diff --git a/Data/dfindicators - Copy.xlsx b/Data/dfindicators - Copy.xlsx new file mode 100644 index 0000000..267ac73 Binary files /dev/null and b/Data/dfindicators - Copy.xlsx differ diff --git a/Demo overall graphs.ipynb b/Demo overall graphs.ipynb deleted file mode 100644 index 8ac8a99..0000000 --- a/Demo overall graphs.ipynb +++ /dev/null @@ -1,102914 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Graphs for demo" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "import pandas as pd\n", - "import plotly.express as px\n", - "import seaborn as sns\n", - "import os" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0CountryYearAlcohol per capitaEducation GExpEmployment-agricultureEmployment-industryEmployment-servicesExports-Commercial servicesExports-G&S...Literacy rateMortality-infantsMortality-pollutionNet migrationNinisR&D GExpRenewable electricitySuicideWorkers high educationContinent
0347DEU199012.972510.2245792.25103431.33827666.4124144.922992e+104.045759e+11...NaN3090.86666716.01.478270e+067.8661112.6083681.667000e+0913.3074.552174Europe
1348DEU199112.972510.2245793.48000037.72000158.7900014.842279e+104.422840e+11...NaN5404.00000016.01.478270e+067.8661112.6083682.088000e+0913.3074.552174Europe
2349DEU199212.972510.2245793.40000037.36999959.2300005.465244e+104.730958e+11...NaN5019.00000016.02.628459e+067.8661112.6083682.338000e+0913.3074.552174Europe
3350DEU199312.97259.5829703.35000036.74000259.9199985.254376e+104.207571e+11...NaN4679.00000016.01.478270e+067.8661112.6083682.642000e+0913.3074.552174Europe
4351DEU199412.97259.3955703.26000036.41999860.3200005.468545e+104.655068e+11...NaN4388.00000016.01.478270e+067.8661112.6083683.503000e+0913.3074.552174Europe
..................................................................
1472247CHN20165.820012.26956027.70000128.79999943.5000002.071921e+112.199968e+12...90.167660131852.000000112.7-1.433525e+06NaN2.1003301.431141e+108.20NaNPair
1473248CHN20175.820012.15530026.98000028.11000144.9100002.113642e+112.424200e+12...90.167660120075.000000112.7-1.741996e+06NaN2.1160301.431141e+108.10NaNPair
1474249CHN20187.050011.45069026.07000028.32000045.6100012.318095e+112.655592e+12...96.840889109028.000000112.7-1.433525e+06NaN2.1405801.431141e+108.10NaNPair
1475250CHN20195.820013.03755325.33000027.42000047.2500002.427723e+112.628935e+12...90.16766098805.000000112.7-1.433525e+06NaN1.4272391.431141e+108.10NaNPair
1476251CHN20205.820013.03755342.55172425.39069032.0575862.327021e+112.723250e+12...90.16766089463.000000112.7-1.433525e+06NaN1.4272391.431141e+1010.51NaNPair
\n", - "

1477 rows × 26 columns

\n", - "
" - ], - "text/plain": [ - " Unnamed: 0 Country Year Alcohol per capita Education GExp \\\n", - "0 347 DEU 1990 12.9725 10.224579 \n", - "1 348 DEU 1991 12.9725 10.224579 \n", - "2 349 DEU 1992 12.9725 10.224579 \n", - "3 350 DEU 1993 12.9725 9.582970 \n", - "4 351 DEU 1994 12.9725 9.395570 \n", - "... ... ... ... ... ... \n", - "1472 247 CHN 2016 5.8200 12.269560 \n", - "1473 248 CHN 2017 5.8200 12.155300 \n", - "1474 249 CHN 2018 7.0500 11.450690 \n", - "1475 250 CHN 2019 5.8200 13.037553 \n", - "1476 251 CHN 2020 5.8200 13.037553 \n", - "\n", - " Employment-agriculture Employment-industry Employment-services \\\n", - "0 2.251034 31.338276 66.412414 \n", - "1 3.480000 37.720001 58.790001 \n", - "2 3.400000 37.369999 59.230000 \n", - "3 3.350000 36.740002 59.919998 \n", - "4 3.260000 36.419998 60.320000 \n", - "... ... ... ... \n", - "1472 27.700001 28.799999 43.500000 \n", - "1473 26.980000 28.110001 44.910000 \n", - "1474 26.070000 28.320000 45.610001 \n", - "1475 25.330000 27.420000 47.250000 \n", - "1476 42.551724 25.390690 32.057586 \n", - "\n", - " Exports-Commercial services Exports-G&S ... Literacy rate \\\n", - "0 4.922992e+10 4.045759e+11 ... NaN \n", - "1 4.842279e+10 4.422840e+11 ... NaN \n", - "2 5.465244e+10 4.730958e+11 ... NaN \n", - "3 5.254376e+10 4.207571e+11 ... NaN \n", - "4 5.468545e+10 4.655068e+11 ... NaN \n", - "... ... ... ... ... \n", - "1472 2.071921e+11 2.199968e+12 ... 90.167660 \n", - "1473 2.113642e+11 2.424200e+12 ... 90.167660 \n", - "1474 2.318095e+11 2.655592e+12 ... 96.840889 \n", - "1475 2.427723e+11 2.628935e+12 ... 90.167660 \n", - "1476 2.327021e+11 2.723250e+12 ... 90.167660 \n", - "\n", - " Mortality-infants Mortality-pollution Net migration Ninis \\\n", - "0 3090.866667 16.0 1.478270e+06 7.866111 \n", - "1 5404.000000 16.0 1.478270e+06 7.866111 \n", - "2 5019.000000 16.0 2.628459e+06 7.866111 \n", - "3 4679.000000 16.0 1.478270e+06 7.866111 \n", - "4 4388.000000 16.0 1.478270e+06 7.866111 \n", - "... ... ... ... ... \n", - "1472 131852.000000 112.7 -1.433525e+06 NaN \n", - "1473 120075.000000 112.7 -1.741996e+06 NaN \n", - "1474 109028.000000 112.7 -1.433525e+06 NaN \n", - "1475 98805.000000 112.7 -1.433525e+06 NaN \n", - "1476 89463.000000 112.7 -1.433525e+06 NaN \n", - "\n", - " R&D GExp Renewable electricity Suicide Workers high education \\\n", - "0 2.608368 1.667000e+09 13.30 74.552174 \n", - "1 2.608368 2.088000e+09 13.30 74.552174 \n", - "2 2.608368 2.338000e+09 13.30 74.552174 \n", - "3 2.608368 2.642000e+09 13.30 74.552174 \n", - "4 2.608368 3.503000e+09 13.30 74.552174 \n", - "... ... ... ... ... \n", - "1472 2.100330 1.431141e+10 8.20 NaN \n", - "1473 2.116030 1.431141e+10 8.10 NaN \n", - "1474 2.140580 1.431141e+10 8.10 NaN \n", - "1475 1.427239 1.431141e+10 8.10 NaN \n", - "1476 1.427239 1.431141e+10 10.51 NaN \n", - "\n", - " Continent \n", - "0 Europe \n", - "1 Europe \n", - "2 Europe \n", - "3 Europe \n", - "4 Europe \n", - "... ... \n", - "1472 Pair \n", - "1473 Pair \n", - "1474 Pair \n", - "1475 Pair \n", - "1476 Pair \n", - "\n", - "[1477 rows x 26 columns]" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df= pd.DataFrame(pd.read_csv(os.getcwd()+ \"/Data/\"+\"GoldenDataFrame.csv\"))\n", - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the following cell we are going to define all the variables that we have and want to compare with the GDP" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "variables=['Gender equality','Exports-Commercial services','Renewable electricity','Employment-agriculture','Employment-industry','Employment-services','Exports-G&S','Fertility rate','Foreign investment','Education GExp','Workers high education','Literacy rate','Mortality-pollution','Net migration','Mortality-infants','Health services use','R&D GExp','Ninis','Suicide','International taxes','Alcohol per capita']" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " Moreover,we are going to provide a scatterplot of all posible variations of the data to see if there are any relationships between them as well as histograms." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
 Unnamed: 0YearAlcohol per capitaEducation GExpEmployment-agricultureEmployment-industryEmployment-servicesExports-Commercial servicesExports-G&SFertility rateForeign investmentGDPGender equalityHealth services useInternational taxesLiteracy rateMortality-infantsMortality-pollutionNet migrationNinisR&D GExpRenewable electricitySuicideWorkers high education
Unnamed: 01.0000000.019877-0.1179140.2087430.043612-0.078586-0.0192120.025018-0.0208560.1978640.0791500.070815-0.226796-0.053614-0.018592-0.144043-0.0501340.1137300.1884620.129553-0.0590080.0624810.0481310.038948
Year0.0198771.0000000.0035680.003605-0.1549980.0179190.1922250.2335630.256772-0.222668-0.0513980.157381-0.0150980.0640570.1033940.031291-0.0988300.0026660.006420-0.0243280.0508590.136225-0.011579-0.040452
Alcohol per capita-0.1179140.0035681.000000-0.300681-0.4076740.1763320.4191620.3896290.352551-0.4432340.1606510.2479330.0062250.291795-0.1635260.427703-0.055892-0.3089520.319085-0.6767230.4384340.2710020.5182740.207073
Education GExp0.2087430.003605-0.3006811.0000000.230819-0.276716-0.156344-0.221611-0.1847310.248518-0.102232-0.129283-0.065926-0.2483860.100123-0.150013-0.0667300.155575-0.1640400.312791-0.264417-0.125841-0.0299350.065043
Employment-agriculture0.043612-0.154998-0.4076740.2308191.000000-0.655428-0.936963-0.322845-0.2897720.564017-0.178304-0.2200060.222188-0.8171400.066569-0.6229530.3685820.704718-0.4590630.393902-0.482398-0.217153-0.213016-0.049262
Employment-industry-0.0785860.0179190.176332-0.276716-0.6554281.0000000.3547430.1236080.187650-0.5778260.0178050.1023910.1619840.667184-0.0142930.529376-0.158150-0.5348840.199263-0.2986900.2163750.0641490.2328890.042099
Employment-services-0.0192120.1922250.419162-0.156344-0.9369630.3547431.0000000.3413240.270584-0.4325880.2102860.225371-0.3136980.702957-0.0784790.528697-0.384806-0.6246230.478032-0.3653260.4790460.2375530.1484630.043815
Exports-Commercial services0.0250180.2335630.389629-0.221611-0.3228450.1236080.3413241.0000000.871731-0.3056540.1417090.8694890.0063020.270483-0.0454170.202589-0.020433-0.2677400.602334-0.3216580.4705130.7665570.2638940.007372
Exports-G&S-0.0208560.2567720.352551-0.184731-0.2897720.1876500.2705840.8717311.000000-0.3261820.0317040.8752330.0703110.258878-0.0080110.181418-0.024627-0.2255470.455150-0.3576530.4689860.7291530.2549990.007270
Fertility rate0.197864-0.222668-0.4432340.2485180.564017-0.577826-0.432588-0.305654-0.3261821.000000-0.022310-0.221499-0.585553-0.711077-0.049193-0.7656070.1545500.741216-0.1613220.571657-0.391923-0.204778-0.303122-0.160760
Foreign investment0.079150-0.0513980.160651-0.102232-0.1783040.0178050.2102860.1417090.031704-0.0223101.0000000.004838-0.1367160.111193-0.034543-0.088726-0.114495-0.1354960.296592-0.1701430.1838840.1810010.124718-0.009456
GDP0.0708150.1573810.247933-0.129283-0.2200060.1023910.2253710.8694890.875233-0.2214990.0048381.000000-0.0094840.185386-0.0178060.1335910.004512-0.1715650.601395-0.2088740.3745660.7802990.183871-0.018627
Gender equality-0.226796-0.0150980.006225-0.0659260.2221880.161984-0.3136980.0063020.070311-0.585553-0.136716-0.0094841.0000000.251628-0.0588980.615286-0.082477-0.569214-0.113754-0.615597-0.016683-0.040664-0.000291-0.073308
Health services use-0.0536140.0640570.291795-0.248386-0.8171400.6671840.7029570.2704830.258878-0.7110770.1111930.1853860.2516281.000000-0.0607500.757966-0.363231-0.8282120.355327-0.4598000.3910760.1579000.1417930.052584
International taxes-0.0185920.103394-0.1635260.1001230.066569-0.014293-0.078479-0.045417-0.008011-0.049193-0.034543-0.017806-0.058898-0.0607501.0000000.1169380.0310070.072819-0.0984740.124670-0.061600-0.020631-0.0389100.080421
Literacy rate-0.1440430.0312910.427703-0.150013-0.6229530.5293760.5286970.2025890.181418-0.765607-0.0887260.1335910.6152860.7579660.1169381.000000-0.232806-0.6942670.212623-0.5394130.2012430.1261590.1263090.196954
Mortality-infants-0.050134-0.098830-0.055892-0.0667300.368582-0.158150-0.384806-0.020433-0.0246270.154550-0.1144950.004512-0.082477-0.3632310.031007-0.2328061.0000000.434229-0.3329470.223247-0.0934910.0114250.071272-0.235700
Mortality-pollution0.1137300.002666-0.3089520.1555750.704718-0.534884-0.624623-0.267740-0.2255470.741216-0.135496-0.171565-0.569214-0.8282120.072819-0.6942670.4342291.000000-0.3624840.502968-0.441051-0.170879-0.242762-0.169108
Net migration0.1884620.0064200.319085-0.164040-0.4590630.1992630.4780320.6023340.455150-0.1613220.2965920.601395-0.1137540.355327-0.0984740.212623-0.332947-0.3624841.000000-0.2808190.3860820.6001750.2177930.114323
Ninis0.129553-0.024328-0.6767230.3127910.393902-0.298690-0.365326-0.321658-0.3576530.571657-0.170143-0.208874-0.615597-0.4598000.124670-0.5394130.2232470.502968-0.2808191.000000-0.543981-0.207203-0.333862-0.202677
R&D GExp-0.0590080.0508590.438434-0.264417-0.4823980.2163750.4790460.4705130.468986-0.3919230.1838840.374566-0.0166830.391076-0.0616000.201243-0.093491-0.4410510.386082-0.5439811.0000000.3514130.5138510.093306
Renewable electricity0.0624810.1362250.271002-0.125841-0.2171530.0641490.2375530.7665570.729153-0.2047780.1810010.780299-0.0406640.157900-0.0206310.1261590.011425-0.1708790.600175-0.2072030.3514131.0000000.143960-0.030940
Suicide0.048131-0.0115790.518274-0.029935-0.2130160.2328890.1484630.2638940.254999-0.3031220.1247180.183871-0.0002910.141793-0.0389100.1263090.071272-0.2427620.217793-0.3338620.5138510.1439601.0000000.012819
Workers high education0.038948-0.0404520.2070730.065043-0.0492620.0420990.0438150.0073720.007270-0.160760-0.009456-0.018627-0.0733080.0525840.0804210.196954-0.235700-0.1691080.114323-0.2026770.093306-0.0309400.0128191.000000
\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "corr = df.corr()\n", - "corr.style.background_gradient(cmap='coolwarm')" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAESEAABCKCAYAAAAsmaSHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzcZ5idV3ku4GdPrxpNU++SJVe529jGNsaN3iEQSEICAZKQftJ7AifJSU5IIOVAAgFCL6Fj44Ix7r3b6r3PaHove58fInImko0kWxbC931dvmSv9b5rvevbgp9PoVQqBQAAAAAAAAAAAAAAAAAAAAB4/io71gMAAAAAAAAAAAAAAAAAAAAAAMeWEBIAAAAAAAAAAAAAAAAAAAAAeJ4TQgIAAAAAAAAAAAAAAAAAAAAAz3NCSAAAAAAAAAAAAAAAAAAAAADgeU4ICQAAAAAAAAAAAAAAAAAAAAA8zwkhAQAAAAAAAAAAAAAAAAAAAIDnuYpjPcBRVDrWA/C8UDjWAwAAAAAAAAAAAAAAAAAAAAA8U2XHegAAAAAAAAAAAAAAAAAAAAAA4NgSQgIAAAAAAAAAAAAAAAAAAAAAz3NCSAAAAAAAAAAAAAAAAAAAAADgeU4ICQAAAAAAAAAAAAAAAAAAAAA8zwkhAQAAAAAAAAAAAAAAAAAAAIDnOSEkAAAAAAAAAAAAAAAAAAAAAPA8J4Tkx8hXH9ieS//mpnz6rs3HehQAAAAAAAAAAAAAAAAAAAAAjiOFUql0rGc4Wn5sH3YwPUNjueAvv5vh8clUlBVy+++9ODMaa471WM8HhWM9AAAAAAAAAAAAAAAAAAAAAMAzVXasB+DZ8c2Hd2Z4fDIfesuZmSiW8tUHth/rkQAAAAAAAAAAAAAAAAAAAAA4Tggh+THxvdV7srC1Lq9YOTvLZzbk+2s6j/VIAAAAAAAAAAAAAAAAAAAAABwnhJD8GJgslnLXxq5cuLQthUIhFy1ryz2bujI+WTzWowEAAAAAAAAAAAAAAAAAAABwHBBC8mNg097B9I9M5KwF05MkZ8yfntGJYtbs7j+2gwEAAAAAAAAAAAAAAAAAAABwXBBC8mNg1c59YSMnzZ6WJDltblOS5NHtvcdsJgAAAAAAAAAAAAAAAAAAAACOH0JIfgys3tWX8rJCls1oSJIsaq1PTWVZ1u4eOMaTAQAAAAAAAAAAAAAAAAAAAHA8EELyY+CJXf1Z3FafmsryJElZWSGLWuuzsXPwGE8GAAAAAAAAAAAAAAAAAAAAwPFACMmPgVW7+nLirMYpa4vbhJAAAAAAAAAAAAAAAAAAAAAAcGiEkBznBkcnsrVr+KAhJFu6hjI+WTxGkwEAAAAAAAAAAAAAAAAAAABwvBBCcpzb2j2UJFnUVj9lfXFbfSaKpWzrHj4WYwEAAAAAAAAAAAAAAAAAAABwHBFCcpzbsndfCMmClrop60va94WSbOocfM5nAgAAAAAAAAAAAAAAAAAAAOD4IoTkOLel6+AhJIvbGpIkG4SQAAAAAAAAAAAAAAAAAAAAAPBDCCE5zm3tGkpjTUWaaiunrDfXVaauqjzbu4eP0WQAAAAAAAAAAAAAAAAAAAAAHC+EkBzntnQNZX5zXQqFwpT1QqGQWU012dUnhAQAAAAAAAAAAAAAAAAAAACApyeE5Di3pWsoC1rqDro3p6k2O3pGnuOJAAAAAAAAAAAAAAAAAAAAADjeCCE5jhWLpWztHs6C1oOHkMxuqsnO3uHneCoAAAAAAAAAAAAAAAAAAAAAjjdCSI5jewfHMjZRzNzptQfdn91Ukz39oxmfLD7HkwEAAAAAAAAAAAAAAAAAAABwPBFCchzr6B9NksxorD7o/uzptSmVkj0/qAMAAAAAAAAAAAAAAAAAAACAgxFCchzrGNgXLtL+VCEkTTVJkp09w8/ZTAAAAAAAAAAAAAAAAAAAAAAcf4SQHMf29I0keeoQkjnTa5MkO3pHnrOZAAAAAAAAAAAAAAAAAAAAADj+CCE5jnUMjCZ56hCSWU01SZJdvcPP2UwAAAAAAAAAAAAAAAAAAAAAHH+EkBzHOvpH01BdkbqqioPuN1ZXpKayLB39o8/xZAAAAAAAAAAAAAAAAAAAAAAcT4SQHMc6+kfT3lj9lPuFQiHtjdVCSAAAAAAAAAAAAAAAAAAAAAB4WkJIjmN7+kfT3vDUISRJ0tZQnc6BsedoIgAAAAAAAAAAAAAAAAAAAACOR0JIjmOd/aNpn3YoISSjz9FEAAAAAAAAAAAAAAAAAAAAAByPhJAcxzr6R9Pe8PQhJO2N1enoF0ICAAAAAAAAAAAAAAAAAAAAwFMTQnKcGh6bTP/oRNobnz6EpK2hOl1DY5mYLD5HkwEAAAAAAAAAAAAAAAAAAABwvBFCcpzq6B9Nkh8aQtLeUJVSKekaGnsuxgIAAAAAAAAAAAAAAAAAAADgOCSE5DjVMTCSJJnxw0JIfrDf2S+EBAAAAAAAAAAAAAAAAAAAAICDE0JynOroH03yZMjIU2lr2LffMTB61GcCAAAAAAAAAAAAAAAAAAAA4PgkhOQ4dbghJJ39QkgAAAAAAAAAAAAAAAAAAAAAODghJMepPf2jKSskrfVPH0LyXyElnQNCSAAAAAAAAAAAAAAAAAAAAAA4OCEkx6mO/tG0NlSnvKzwtHX11RWprSxPR78QEgAAAAAAAAAAAAAAAAAAAAAOTgjJcaqjfzTtDdWHVNvWWJXOASEkAAAAAAAAAAAAAAAAAAAAABycEJLjVMfAaNobDy2EpL2hOp0DY0d5IgAAAAAAAAAAAAAAAAAAAACOV0JIjlN7+g49hKStoTod/aNHeSIAAAAAAAAAAAAAAAAAAAAAjldCSI5DxWIpnQOjmXGoISSN1ekcEEICAAAAAAAAAAAAAAAAAAAAwMEJITkO9QyPZ6JYSvuhhpA0VKdraCyTxdJRngwAAAAAAAAAAAAAAAAAAACA45EQkuNQR/9okhxyCElLXWVKpaR3ePxojgUAAAAAAAAAAAAAAAAAAADAcUoIyXFoT/9IkqS94RBDSH5Q1zU4etRmAgAAAAAAAAAAAAAAAAAAAOD4JYTkONTRvy9MZMa0mkOqb6mrSpJ0DY4ftZkAAAAAAAAAAAAAAAAAAAAAOH4JITkO/VcISXtj9SHVN9dXJkm6BseO2kwAAAAAAAAAAAAAAAAAAAAAHL+EkByHOvpHU1tZnvqq8kOqb63fF1YihAQAAAAAAAAAAAAAAAAAAACAgxFCchza0z+a9sbqFAqFQ6qfXleZJOkeEkICAAAAAAAAAAAAAAAAAAAAwIGEkByHOvpHM6Ox+pDrayrLU19Vnr0DQkgAAAAAAAAAAAAAAAAAAAAAOJAQkuNQx8Bo2g8jhCRJWhqq0j0khAQAAAAAAAAAAAAAAAAAAACAAwkhOQ519B9BCEldVboGhZAAAAAAAAAAAAAAAAAAAAAAcCAhJMeZkfHJ9A6Pp73h8EJImuuFkAAAAAAAAAAAAAAAAAAAAABwcEJIjjOdA6NJkhnTDi+EpEUICQAAAAAAAAAAAAAAAAAAAABPQQjJcaajf18ISXvjYYaQ1FWle0gICQAAAAAAAAAAAAAAAAAAAAAHEkJynNkfQtJQc1h9zfVVGRqbzMj45NEYCwAAAAAAAAAAAAAAAAAAAIDjmBCS48yeH4SQzJhWfVh9rfVVSZKuwbFnfSYAAAAAAAAAAAAAAAAAAAAAjm9CSI4zHf2jKRSSlh+EihyqZiEkAAAAAAAAAAAAAAAAAAAAADwFISTHmY6B0bTUVaWy/PB+uhYhJAAAAAAAAAAAAAAAAAAAAAA8hYpjPQBP6ty6OXd/9YupqqvPBa9/c+qnNx9Q09E/mvbG6sM++79CSLqHhJAAAAAAAAAAAAAAAAAAAAAAMJUQkh8R3Tu357N/9FsplUqZHB/P1sceztv+8gOprK6ZUrfnSENI6vaFkHQNCiEBAAAAAAAAAAAAAAAAAAAAYKqyYz0ASalUyg3/9k8pKyvLz/zNP+a1v/sn6dq+NXd95QsH1HYeYQhJU21lygpCSAAAAAAAAAAAAAAAAAAAAAA4kBCSHwHbn3gsWx59OBe84S1pmjEzi1aemRUXXJwHrv1GRgYH9teVSqV0HGEISVlZIc11VUJIAAAAAAAAAAAAAAAAAAAAADiAEJIfAQ9855upqW/IaZdfvX/t3Fe9PmPDw1l168371/qGJzI2WUx7w+GHkCRJc70QEgAAAAAAAAAAAAAAAAAAAAAOJITkGBsbHsr6++7KSRdflsrqmv3rMxYvTfuCRXn8+9/dv7anf2Tf3rSaA845FC11QkgAAAAAAAAAAAAAAAAAAAAAOJAQkmNsw/33ZHJ8PMtfcNGU9UKhkOUveGF2rludwZ7uJElH/2iSpL2h+ojuaqmvSveQEBIAAAAAAAAAAAAAAAAAAAAAphJCcoytvev21E9vzpwVJx2wt/jMc5Ikmx66P0nSMfCDEJLGIwshaa6vStegEBIAAAAAAAAAAAAAAAAAAAAAphJCcgxNjI1lw4P3Ztm5F6SsrPyA/RmLlqR+enM2PHBvkqSj/5mFkLTUV6Z7aDzFYunIhwYAAAAAAAAAAAAAAAAAAADgx44QkmNox5pVmRgdzeIzzznofqGsLIvOODubH7o/xcnJ7OkfTXVFWabVVBzRfS311ZksltI/MnHQ/V2Du/Ku696VX7/p1zMwNnBEdwAAAAAAAAAAAAAAAAAAAABw/BFCcgxtffzhFMrKMu+kU5+yZuHKMzM6NJiOzRvT0T+a9sbqFAqFI7qvpb4ySbJ3cPSg+392x5/lzp135oYtN+SDD3zwiO4AAAAAAAAAAAAAAAAAAAAA4PgjhOQY2vLow5m5ZFmq6+qesmbuipOSJNtXP7E/hORINddVJUm6h8YO2Fvfsz63br81v3LWr+Q1y16Tr6z9SgbGBo74LgAAAAAAAAAAAAAAAAAAAACOH0JIjpGxkeHsWrc6C05Z+bR1ja3taWhpzY7Vj+8LIWk48hCS1vp9vV2D4wfsfXfLd5Mkr1766rzuhNdlZHIkt2y/5YjvAgAAAAAAAAAAAAAAAAAAAOD4IYTkGNmxZlWKk5OZ/0NCSAqFQuasODk71qzKnv6RzJh25CEkzfWVSZKuwdED9m7ednNOaT0l7XXtOa3ttDRWNubuXXcf8V0AAAAAAAAAAAAAAAAAAAAAHD+EkBwjO9euSgqFzD5hxQ+tnbvipPTs3ZvuofG0N9Qc8Z0t9VVJkq7B8SnrvaO9ebjj4Vwy75IkSUVZRc6edXbu2nnXEd8FAAAAAAAAAAAAAAAAAAAAwPFDCMkxsmvdmrTMmZfquvofWjtn+UkZLq9NkrQ3Vh/xnXVVFampLEv30NiU9Uc6H0kppZwz85z9a+fPOj9b+7dm1+CuI74PAAAAAAAAAAAAAAAAAAAAgOODEJJjoFQqZee6NZm9bPkh1bctWJThqoYkzyyEJEla6qqyd+B/hJB0PJJCCjml7ZT9a6e1n5YkeXzv48/oPgAAAAAAAAAAAAAAAAAAAAB+9AkhOQb6OvZkuK83s5atOKT6isrKlM1clCSZ8QxDSJrrq9I99D9CSDofydLpS1NfWb9/7YTpJ6SQQlZ3rX5G9wEAAAAAAAAAAAAAAAAAAADwo08IyTGwc92+YI/Zy5Yfck9Z27wkSVtD1TO6u6W+KnsHp4aQPLb3sZzaduqUtbrKuiyctjCrulY9o/sAAAAAAAAAAAAAAAAAAAAA+NEnhOQY2LVudSoqq9K2YNEh90xOa0+S1I4PPKO7W+qr0v3fQki6R7rTNdKVE6afcEDtiS0nCiEBAAAAAAAAAAAAAAAAAAAAeB4QQnIM7Fy3NjMWL015RcUh94xUN6VmciRdWzY+o7ub66aGkGzs3XfeoqZFB9SuaFmRHYM70rNlXcY2b35G9wIAAAAAAAAAAAAAAAAAAADwo0sIyXNscmIiezasy6xlyw+rbyDVqZ8czJ6N65/R/a31VekfncjoxGSSZFPfpiTJ4mmLD6hdNG1RkuS2n3pl1l/9kux63/tTKpWe0f0AAAAAAAAAAAAAAAAAAAAA/OipONYDPN90bd+aifGxzFqy7LD69gyOp6l8Mp1btz2j+1sbqvfNMTiW2U212dS7KZVllZnTMOeA2rZVu5MkPZefmenF5en+1KdSvWJ5mt/4xmc0AwAAAAAAAAAAAAAAAAAAAAA/WsqO9QDPNx2bNyZJ2hctOay+PX0jaa+rSOfWLc/o/pb6yiTJx//y7lz30ceyoWdjFk5bmPKy8il1pWIxVR/8jxRKSd8rLsysP/mT1J1zTjo+8Pcpjow8oxkAAAAAAAAAAAAAAAAAAAAA+NEihOQ5tmfzxpRXVqZlzrxD7ikWS9nTP5pZ0+vSs3NHxsdGj/j+ntW9SZLStMqsu3d3Ht+2JoumLTqgbvDWW1NYvzkzy6dn8+C2FAqFtL33vZns6krft751xPcDAAAAAAAAAAAAAAAAAAAA8KNHCMlzrGPzxrTNX5iy8vJD7tk7OJbJYinzZkxPqVRM1/ZtR3T36PBEtty2K0my4uoFOeNl87O3tCttxVkH1HZ/+jMpb2vL4hkrsrl3c5Kk7vzzUr1iRbo+8cmUSqUjmgEAAAAAAAAAAAAAAAAAAACAHz1CSJ5DpVIpHZs2pH3h4sPq2903kiRZNH9mkmTv1s1HdP/au3elfHgySdI9NJb2C8pSLCumuL5+St1EZ2cGbrkl01//+ixsWpzNfZtTKpVSKBTS/JY3Z3TNmoyuWXNEMwAAAAAAAAAAAAAAAAAAAADwo0cIyXNosLsrw/19aV+45LD69vTvCyFZumB2yisr07Fl0xHdv+ae3Zk1sz6V5YV0Doxl29CWJMnEuroMD4ztr+u/8btJsZhpL3tpFjUtSv94f7pGupIkjVddlZSXp+/b1xzRDAAAAAAAAAAAAAAAAAAAAAD86BFC8hzq2LwxSTJj4eLD6tvdN5okmTm9Li1z52fv1s2HfXff3uHsXNebFefPSkt9VboGR7Opb1OSpGlwRtbf37G/tv+661K5cEGqly/PwmkLk2R/bUVLS+rPPz99116TUql02HMAAAAAAAAAAAAAAAAAAAAA8KNHCMlzaM+mDUmStoWLDq/vByEk7Q3VaZu/MB1HEEKy4YF9ISPLz52Z1vrq7B0Yy6a+TWmpacms9rasuXtXkmSyvz+Dd92VaVdemUKhkPmN85Mk2we27z+r8aqrMr55S8bWrTvsOQAAAAAAAAAAAAAAAAAAAAD40SOE5DnUsXljprXPTE19w2H17e4fSWt9VaoqytI2f2EG9nZmeKA/k8XJQz5j2+ruTJ9Zl2lttWltqErn4Fg29W7KommLsuzsGdm5vjfDA2MZuuuuZGIiDZdemiSZXT87hRSyvf/JEJKGSy9Jkgx8/5bDegcAAAAAAAAAAAAAAAAAAAAAP5qEkDyHOjZvTPvCxYfdt6dvJDOm1SRJ2hYszFDVZN707Z/IRZ+7KN/f9v0f2j85WcyONT2Zt6I5SdJaX5WuwdFs6tuUxU2Ls+DU1qSUbHuiOwO33ZZCXV1qTz89SVJVXpX2uvZsH3gyhKRy9uxUn3BCBm6ZGkLS0T+aD1y/Jn/69cdy/5buw34nAAAAAAAAAAAAAAAAAAAAAMeGEJLnyPjoSLp37jiiEJLdfaOZOa06SdI2f2HuO7E724Z3pKmqKX946x9maHzoafv3bOrP+Ohk5p34gxCShup0Doyma6Qri6YtyoyF01JdX5Etj+/N4O23p/7cc1OoqtrfP7dhbnYM7phyZv0lF2fovvsyOTCYJNnaNZSXf/CWfOi7a/P5e7bm9f9ye75837bDfisAAAAAAAAAAAAAAAAAAAAAzz0hJM+Rzq2bUyoVM2PRkYSQjGRmY82+/2isyabZQ3lB6eT81SV/le7R7lyz8Zqn7d++uispJHOX7wshaamvyvBYMaViZRY1LUpZWSHzT2zJnntWZ3zzltRfdNGU/jkNc7JjYGoIScPFlyTj4xm6846MTRTzzk/cm+HxyXzzly/OvX94RS5Y0prf/8ojeWJn32G/FwAAAAAAAAAAAAAAAAAAAIDnlhCS50jH5o1JkvaFSw6rb2KymM6B0cycVp0kuXHLjZksL2X57qac0X5G5jfOz/Wbr3/aM3Zt6EvL7PrUNFQmSdoaqpIkpcn6LG7aF4oy/+SW1Gx5JElSf9GFU/rnNszNrsFdmShO7F+rO+vMlNXVZeD7t+RTd27O6t39+bs3nZGT50xLfXVFPviGk9NYU5E//fpjh/VeAAAAAAAAAAAAAAAAAAAAAJ57QkieI3s2bUxVbW2a2mccVl/nwFiKpWTGtJokyU1bb0pzsSHV6/tSKBRy5cIrc9fOu9I72nvQ/lKplN0b+zJz0bT9ay31+wJNyopNmdswN0ky54TpaeleldL0tlQtmRqUMrdhbiZLk9k9tHv/WqGqKnUXXpDO2+/IB29cmxcua8sVK9qSu/81+cBpafuH+fml0hdy18au3L52dwAAAAAAAAAAAAAAAAAAAAD40SWE5DnSsXlj2hcuTqHs8D759p7hJMnc6bUploq5f8/9OaXmhAz39ma4vy+Xzb8sE6WJ3L3r7oP293YMZ2RwPDMXPxlC0tpQte/PyoWpKKtIkkxrrU5z79oMzTs1hUJhyhlzGuYkSXYM7Jiy3vDCi3Nj2az0DI/nvS9aksLXfyn59v9Kps9PLvvDvGV+V9rTnY9+4SvJ5PhhvRsAAAAAAAAAAAAAAAAAAACA544QkudAqVhM55Z9ISSHa8cPQkjmTK/N+p716R3tzdkzz06S7N26Jae0npLaitrcu+veg/bv3tiXJFNCSNrqq5Mk0yvm718bW7s2lWMD2VW9JKVSacoZc+vnJkm2D2yfsl7/whfmW4svzNKqiZy/5d+Shz6bvOj3krd/K7n0t1Lz9i/n9csr8r3+Odnzld9L/se5AAAAAAAAAAAAAAAAAAAAAPxoEELyHOjdsztjw8NHFEKyfX8ISU3u331/kuSFyy5LknRu25LK8sqsbF+Z+3bfd9D+3Zv6UlFdnpbZ9fvXptXt+9nry2btXxu8884kya7KJenfOzLljFn1s1JI4YAQki1VTVnbPD+v6rsrhe//VXL6TyaX/k5SKOyveeMrX5HJlOcrD+5MHvjUYb8fAAAAAAAAAAAAAAAAAAAAgKNPCMlzoGPzxiQ5ohCSHT3DmVZTkcaayjzR9USaq5uzfN6pqaqtzd5tW5IkZ888O2u616R/rP8gd/enfX5Dysqf/Kl7x3YnhbFUFFv2rw3deVfK5y7IaE1zdqzrmXJGZXllZtbPzI6BHVPWv/3IzhRSymsrvpBS85LkFR+YEkCSJEvbG7JyblOuqXhxct0fJP27DvsbAAAAAAAAAAAAAAAAAAAAAHB0CSF5DnRs2ZhCoSxt8xcedu+OnuHMmV6bJFnVtSrLW5anrKwsrXMX7A8hWdm2MqWU8sTeJ6b0loqldG4fSNv8xinrm/s3p1DRl+JEw766iYkM3XNPGi96QarrKrJzbc8Bc8ypn5PtA9unrH37kZ05q7Y7Cxo6MrLo55LKmoO+4apTZubBkVnZM1qdfOf3D/sbAAAAAAAAAAAAAAAAAAAAAHB0CSF5DnRs3pjps+eksvrgIR1PZ3vPSOZOr81EcSLretZlRfOKJEnr/CdDSE5uPTlJ8tjex6b09nYMZ2J0Mm3zGqasb+zdmLKK/gyNVCZJRh57LMXBwdRf8ILMXjY9O9b1HjDH3Ia52TGwY/9/7+gZzqpd/bm6eGP6d9Sl97H+p3zDlSfPSpLcsPg3k0e/nOx44HA/AwAAAAAAAAAAAAAAAAAAAABHkRCS50DH5o1pX7j4iHp39AxnzvTabOnbktHJ0ZzYcmKSpHXeggz19mSorzfNNc2ZUz8nj+99fEpv57aBJEn7/MYp65v6NqWqeiRdg5NJksE770qS1J1/fuYsm56e3UMZ7B2d0jOnYU52D+3O+OR4kuTWtZ1JkktK92Wg/JIM3nLrU75h+cyGzGuuzc3FM5K61uT6PzmibwEAAAAAAAAAAAAAAAAAAADA0SGE5CgbHRpK757daV+w6LB7B0Yn0js8njnTa7O6e3WSZHnz8iRJ27wFSZK927YkSU5uPTmP7X1sSn/ntv6UlRXSPLtuyvqm3k1pri/Lnr6RJMnQXXemesWKVLS0ZM4J05MkO9b2TOmZ2zA3xVIxu4Z2JUluWbU97YWerFh5fqoveHnGNm7M2LZtB31HoVDIBUtac9fmvuxe+O5k48353l9+Irf/57oM948d9ncBAAAAAAAAAAAAAAAAAAAA4NklhOQo69iyMUnSvnDxYfdu2TuUJFnQUpdVXatSUVaRJU1LkiSt8xcmSfZufTKEZGv/1vSN9e3v79w2kObZdamoLJ9y7sbejZk1rSaDY5Pp6x/K0H33p/4F5ydJ2hY0pKK6PDsPEkKSJDsGdqRYLOW2tbtzceGRFC7+jdRffHGSZOC7Nz3lW86ZNz09w+P58PdPy0hpWlZMfCYP3rA1n3//PenZM3TY3wYAAAAAAAAAAAAAAAAAAACAZ48QkqOsY/MzCCHpGkySLGyty5ruNVnatDSV5ZVJkoaW1lTV1qVz274QklNaT0mSPLH3if39nVsH0javccqZ/WP92TuyNwuapydJtt71YEqjo6k7/wVJkvLyssxe2pTt/yOEZE7DnCT7Qkge39aZrrGKvHB2MZl5cqoXL071CSek7zvfOeg7hvvH0nXttiRJ2XmzU33ZL2f25J1587vrMjE+mW/908MZHRo/7O8DAAAAAAAAAAAAAAAAAAAAwLNDCMlR1rF5Y2rqG9LY2nbYvZv2DiVJFrTWZWPvxiyZvmT/XqFQSOu8+dm7bXOS5OTWk5Mkj+19LMm+4I/BntG0zW+YembvpiTJsrb2JMmWux9IKitTd965+2vmnDA9XTsGMzwwtn9tZv3MlBXKsm1gW2679XtJkhe+6CX796e97KUZvu++jO/ePeW+ibHJfPOfHk6hazzzGmuyKRMpnP/zSVVDWtZ+JC9992np3TOUu7624bC/DwAAAAAAAAAAAAAAAAAAAADPDiEkR1nn5k1pX7g4hULhsHs37x1MS31Vqioms2NgRxY3LZ6y3zpvYfZu25okmV4zPXPq5+TxvY/vu3fbQJKkbd7UEJL1veuTJKfNXJAk2fbo2tSfe07KG56sm3vC9CTJjrU9+9cqyyozq25WdvZvz31rNmdhRXdmnHrZ/v3Gq/cFkvRfe+2U+275wtrs2dSXq95xSi4+qT13bezKZPX05JyfSx77z8xt78upl8zNo9/fnr3bBw77GwEAAAAAAAAAAAAAAAAAAADwzAkhOYqKxcl0bN2UtoWLjqh/U+dQFrbWZUv/lpRSyuJpU0NI2uYvyHBfb4b6epMkp7Sdkkc7H02SdG79rxCSxik967rXpbq8OitnLUyS7OkdTsOLXjSlZsaiaamoLMuONT1T1uc0zEnLtgdy/8jsnDWvIflvwSrVSxan+sQT0/fta/avrbl7Vx6/dUfOunphlpzRnvMWt6R/ZCJrdvcn5787SSG5599y3quWpLKmIvd+e9MRfScAAAAAAAAAAAAAAAAAAAAAnhkhJEdRz65dmRgdTfvCxT+8+CC2dA1lUWt9NvZuTJIsalo0Zb913oIkyd6tm5Mkp7Seku0D29Mz0pPObf1paK5OTUPllJ51veuypGlJptdVp7pQyt6aaQeEkJRXlGXW0qZsX9szZX1Ow5ycumVXOjM9Z5122gHzNr3i5Rl+6KGMrluXwd7R3PyZ1Zm9tCnnv2rf+8+c35wkeWBLT9I0Lznplcn9n0hN5VhOuXhO1t+/J32dw0fyqQAAAAAAAAAAAAAAAAAAAAB4BoSQHEUdm/eFh8xYuOSwe0fGJ7OjdzgLWuqyqXdTkmRB44IpNa3z9/1357YtSZJT2k5Jkjy+9/F0bhtI27yGA85d170uS6cvTaFQSOv4YHrb56RqwYID6uacMD17tw9kZGB8/9rKiUJGB2cnSc5c1HZAT9PrXpdCZWW6P/PZ3PaldZmcKOXFP31Sysr3/TVb2FqX5rrKPLi1e1/D+e9JRnqTh7+QlZfNS6FQyMPf23Y4nwkAAAAAAAAAAAAAAAAAAACAZ4EQkqOoY/PGFMrK0jrvwJCPH2Zj52BKpWRJe3029W3KrPpZqausm1LT0Nya6rr67N26L4Tk5NaTkyQP73k43buG0vo/Qkj6xvqye2h3lk1flomurkzv60xP+9yD3j//pJaklGxd1bV/7cLN9+fu4vLUVhZy4qzGA3oqWlrS+NKXpPsrX83G2zfmrKsXZPrMJ2cuFAo5Y/70PLClZ9/Cghcks1Ymd304DdOrs/j0tqy5a1cmJ4uH/b0AAAAAAAAAAAAAAAAAAAAAOHJCSI6ijs0b0jJnXiqqqg67d/Wu/iTJibOmZVPvpiyatuiAmkKhkNZ5C7J3274QkmlV07Jo2qI8uOORlIqltM2bGhSyoWdDkmTZ9GXp+/Y1aR3uTVfd9IPeP2PRtFTXVWTLY3v3LfTtyNzNd+Z7hRVZPKM8FeUH/6sz/ad/JhkeygldN+eslyw8YP/MBc1Z1zGQvpHxpFBIzn9P0vFEsvH7WXHB7Az3j2frY10HORkAAAAAAAAAAAAAAAAAAACAo0UIyVHUsWVT2hYsOqLeVbv6U1leyOK2umzq25TFTYsPWtc6b346t21JqVRKkpzcenKe6H48SdI2v2FK7dqetUmSZc3L0vu1r6W9tjydI6WDnltWVsj8k1uy5bGulIql5O6PZLRYke0T8zOrdeQp535sU112t5+V2RtvTKlr7wH7Zy6YnlIpeXhr776FU1+f1LUmd304C05pSW1jZVbduevpPw4AAAAAAAAAAAAAAAAAAAAAzyohJEfJyMBA+js70r7w4OEhP8zqXX1Z2t6Q3rGuDIwPZNG0RQeta523MCP9fRnq7UmSnNp2aromOzNWP5CmttoptWu61qSuoi7TN3Vl5JFHMn/FovSPTqR/ZPygZy84uTVDfWPp3Lg7ufdjeWj+25KUpzjyaO7+2pey9fFH9oefJEnP7qHcd+2mFF/19hRKxez6iz+fsp8kK+dNT5I8sKV730JlTXL225PV305535YsPWtGNj/amYmxycP9ZAAAAAAAAAAAAAAAAAAAAAAcISEkR0nH5g1JkhlHHELSn+UzG7Opb1OSZFHTooPWtc5fkCTZu21rkn0hJEkyPH9PCmWFKbWPdD6SU9pOSc/HP5my+vosfeG5SZLtPcMHPXvRytYUygoZvPHDyUhvbskFSZI9O27ILZ/5eL7wZ7+XL73vD9K/tzOlUinf/9zqVFSU5fx3XZL2X/nlDNxwY3o+97kpZzbVVmZpe30e2tbz5OI570gKZcnd/5olZ7RnYqyYLY93HfK3AgAAAAAAAAAAAAAAAAAAAOCZEUJylOzasC5JMnPJssPu7R0az47ekayY1ZiNvRuTJIunHTzMpG3ef4WQbE6SLJ++PIVSWfa2bp1SNzo5mtXdq3Ny5YL0XXNNpr/xjVkwpyVJsq3r4CEktQ1VWbSiNjO3/3uG2s7MtQ/uTmVFdxpPbs17//3zefHPvju71q/NZ/7of+WB657I1ie684LXLE19U3Va3v72NFx6aXa9/3+n/7vfnXLuynnT8/C23icXmuYmJ78qeeA/MmdRZarrKrLxoY7D/m4AAAAAAAAAAAAAAAAAAAAAHBkhJEfJ7g3r0tjanrqm6fsW1lyXfOr1yb9clHz9l5PuTU/Ze/+W7iTJmfOnZ1PfptSU12Rm/cyD1tY3t6S6vj6dW/eFkEz2laV9YH42Va6aUreqa1UmihOZd90jKaupSes7fi5zp9cmSbb3HDyEJEnOnnFTagvd+fZjM7K7bnbmzhhP50R3quvqc+ZLXpmf+NO/zuREWe74ysa0zqvLKZfMTZIUyssz52//JjUnn5xtv/wr6f3GN/efuXJeU/b0j2ZX78iTF53/nmSkN+WPfTELT2vNpof3pjhZfMq5AAAAAAAAAAAAAAAAAAAAAHj2CCE5SnZvWJuZS5YlpVJy/R8nn3lj0rkmmTYneeRLyb+8MNn4/YP23r2pKxVlhZy5oDmbejdl4bSFKSsc/KcqFAppX7g4HZs2Jkk6tw1kbu8JWT+2OoPjg/vrHtj9QJJk/g2Pp+29701Fe3vaGqpSXVGWbd1DB3/E2FBmbPtYto6eltXFKzJQqMkJsyuzZ3hPxibHkiQzFi3JgtPelVKpOmMD16VUnNzfXt7YmAUf+2jqzjwzO37rt7L7L/8qpbGxrJw3PUny0LaeJ++af34y+/Tkrg9nyeltGRkcz451vYfyqQEAAAAAAAAAAAAAAAAAAAB4hoSQHAUjgwPp2bUzs5aekNzzb8lt/5Cc/bPJe+9L3vrF5JfuSprmJZ99S9K57oD+ezZ25dS5TamtKs+mvk1Z1LToae+buXhpOjZvTHFycl8ISd/yTJYmc++ue/fX3PTo1zO/I5l/5sVp+emfSrIvwGRuc2229wwf/OC7/iWFwT25s+us7KzeN8OZC5qSJDsGdiRJNj+6N5sfG8rilRXp2Hh3bv3cJ6ccUd7QkAUf+2ia3/a2dH3iE9n4+tdn8a51qSgr5OH/HkJSKCTnvTvpWJWF9Y+lvKIsmx7qfNp3AwAAAAAAAAAAAAAAAAAAAPDsEEJyFOzZuD5JMn/6RHLt7yYnXJW8/O+Siqp9BdMXJG/7UlJelXzx7cn4yP7ekfHJPLytN+ctbsno5Gi2D2zP4qbFT3vfjMXLMjE+lq4d29K5tT8n1p6axsrGXLf5ukz29mbDX/15Hhpak/N6WzP3b/8mhfLy/b3zmuuyrfsgISS921P6/t9m8/i89NdVZUd5MVWFQs5ZMDvJvhCSvr3DufETj6d5dn1e8q5LcvqVL8293/jPbLj/nilHFaqqMusP/yDz/uWfMzk4mN0/89NZPNGXB57YllKp9GThqa9P6lpTcf+/Zc7y6dny+N7D+OoAAAAAAAAAAAAAAAAAAAAAHCkhJEfB7g3rkpQyc9W/JHVtyes+kpT9j0/dNC957f9Ldj+S3P7B/cu3rO3M2GQxFy1ry5a+LSmWilk87elDSGYuXppkX/jJ3u0DmTW3OVcuuCLXr78mj7386lx/7+czWV7IK975/pQ3NU3pnTu9NtsPFkJy3R+mNDmR6zbPzkVvek26mysyc7yQ0pbaJMm6XZvyzQ89lMmJUl767lNTXlmWF/30z6d94eJc888fSP/ezgOObLzssiz95jfT+p53Z9nONXl4S3fWvvjy7Pi930/Xpz6doUeeSOn0tyWrv51lS4bSvWso/V0jB5wDAAAAAAAAAAAAAAAAAAAAwLNLCMlRsGvDupw7bzjlux9OrvqLpLY5SVIqlfKxWzfm0r+5KVd94OZ8uf+UlE56dXLrB5Le7UmSrz+0I9NqKnLBktZs6tuUJFnc9PQhJM1z5qaiqjo71m5MX+dI2ku7ct5H78pwxvPNyxtz7ZsWZdG0RTlrwQUH9C5oqcvewbH0j4w/ubjh5uSx/8wjoyemcubyzD/z/GwdGcuy+prc8/GdKS+V57s33JehvrG8/BdPS/Os+iRJRVVVXvFrv5vJ8fF88+//OpMT4wfcV1ZXlxm/9mu56OffnIGqunSfdk4Gbr45u9/3vmz+yZ/Mut/7fEqlZMG6f0hKpWx5bO+R/AQAAAAAAAAAAAAAAAAAAAAAHAYhJEfB3g2rc+601cn885PT3rh//SPf35A//+bjmd1Uk5rK8vzmFx/Ke4d/PkPFiuSm/51t3UO59tGdef3Z81JVUZaNvRuTJAunLXza+8rKytO+aHF2rd2TRZuuSe0//FqWrxvOJdWn5rNLdmXd8Jb82tm/lrLCgT/30vZ9ASIbOgb3LQx3J1/9xUw0zMv31jfkrJe9Kg/v6MtEsZQ3v25FzrxiUZom2zIxsy9v/L1zMueE5inntcyZm6vf8yvZseaJfPdjHz7ovLsGd+WbHf+aJPnCVWfmhNtuzbKbv5d5//zPmf5zv5LBnrbU7vlOVm75dLY82nFoHx0AAAAAAAAAAAAAAAAAAACAI1ZxrAf4cTM80J95ow+mtjSQXPb7SaGQJNm8dzD/9/o1eckps/IvbzsrpVLy4e9vyP/5zqpsrP/b/OEDH8qHdtydskIh77x4SZJkY+/GzKqflbrKuh9679xpzan+/LfSNLA3dVe9NPP+/I/ztw3V+eq6r2ZB44JcNPeig/YtndGQJFnfMZDT5zUl3/yNZGBX7m762ZTVbM6JF12aj9y+LUly/gltmX56VU69cUV2D+5OU/vB51pxwcXZs3F97v7al9I6f2HOeukr9++NF8fzazf9WjaObElZ2cX5+uMP5cUnT8vLl7w8lTNnpvHFl6W06YwUPv6yLCu7IY99tTaT7/pQysvl5QAAAAAAAAAAAAAAAAAAAAAcLZIdnmU7Vz2a89q2ZbT1tGTxpfvX/893VqeyrJA/e/UpKRQKKSsr5BdetDQfe/u52TbRlJ8c/b3cvaU/73/taZk7vTbF0dGsXXNnZqzpzBOnnpb1V78ku/78zzN4550pTUzsP7c4OJiOD34w7Z/4bGpHBrP2nHdl4Qf/LuXTp6e2ojZvOfEtTxlAkiQLWupSUVbI+o6B5P5PJI/9Z8Yv+l+5554NOemFl6Wqpjb3bu7OCTMaMr2uKkmyaNqibO7bnGKp+JTnXvTmn8rSc87PTR//cB6+8Tv71z/7xGfz2N7H8r4X/llWzm1J7cSKvP+u92dgbGB/TWHhhcns09NyVkXmbr4x2/7ja0f0WwAAAAAAAAAAAAAAAAAAAABwaISQPMtG7/98plWOpvyy304KhSTJjp7hXPvorrz1BQszc1rNlPrLVszILb99ef71xPtzfe3v5w3LKzI5MJDNb397tkx2ZGH5jLT+7NtTtWRJev7zK9ny9p/N2osvydZfem+2/Py7svbiS9L5z/+S6ksuyV1n/3pGTznjsOatLC/Lwta6rNuwMfnmbyRLL88jIydmYnwsK694SYrFUu7b3J1zFrXs71k4bWFGJkeye3D3U55bVlaeV/zq72TR6Wfl+o98KN//zMczPDqYTzz2iZw/6/xcufDKnDG/OWPDM9M3OpAvrvnik82FQnLeu1NdvjdZ2JSBf/7bTA4MHta7AAAAAAAAAAAAAAAAAAAAADh0QkieZa07rk1/qTEVJ798/9qn79qcUqmUn3rBwoP2NNVV5spXvTVLsi2l2/8xO//gD7NjwyMZri7ktFe/PTN+8zcz/1/+Octvvy1z/+EfUn/hhRnfsiUTnZ2Z9vKXZ9HnP5cZ7/ubjNfOS6HQedgzL502mfVbtyUzT07pjR/PQzdel9nLVmTGoiVZs6c//SMTOXdR8/76xU2LkySb+jY97bkVVVV5zW//UVZe/pLc87Uv5c/++u3ZM7wnP3PyzyRJVs5rysh4KadOuzyfWfWZFEvFJ5tPfX1S15rmc6tT1teVvR/9t8N+FwAAAAAAAAAAAAAAAAAAAACHRgjJs2hyx0OZkZ3Z03ppUlaeJCkWS/nqAztyyfL2zG+pe+rmliXJKa9N7vq3DN54TYZ+/nVJkkXTFu0vKaury7Srr8rc//u3WfKNr2fJV/4zs//iz1N7+unp3DacJBnqXn14Q/dszdId38qm4syMvunz2b5hS7q2b83KK16SJLlnU3eS5JyFLftbFk7bF6byw0JIkqS8ojJXvuu9ec1v/1HWTNuT2pHyPPb+j+T7n/l4FlQMJUmW112ZXYO7cs+ue55srKxJzv7ZzKx4OH3zV6Trk5/KZG/v4b0NAAAAAAAAAAAAAAAAAAAAgEMihORZNHLTBzJeLEvpjLftX7t/S3e29wznVafPOWhPqVTa/+/FM9+ZQnE4bRdNy96LTk6SLG5afEh3797Ym6SUvVsfzPjY6KENPNyTfPoNWVlYn4mU54nB+jx0wzWprqvPigsvTpLctrYzc5pqMr+ldn9be2176irqsrlv86Hdk2TO6SuztW0ol865ODMXL8u93/jPfO/9v5HqTGTPulIaKhvyjfXfmNp07juSQlkaTklKgwPp+vSnD/k+AAAAAAAAAAAAAAAAAAAAAA5dxbEe4MfGcE9q1n8rj/e1Z/Fp5+9f/ubDO1NdUZarTpk1pXzXht7c9qV12bOpL00zanPeK5ek+cFVqdlTleYlPdncuyG1FbWZWTfzkK7fvbEvja3l6egeye71azPvpFOfvmFiNPn825K963PGa/86+fRg7lqzM8N33ZaVV7w0ldU1mZgs5rb1nXn5abNTKBT2txYKhSyctjCbejcd8ue5bfttGZkcyRvOeVvOf+X5Gezpzurbv59v3tyX+9ePZ0mxITflu5koTqSi7Ad/LafNSU59fZY//I08vvSF6fnc59P28z+fQmXlId8LAAAAAAAAAAAAAAAAAAAAwA9XdqwH+LHx0GdTXhzLupyahuaWJEmpVMr1j+/OxSe0p6H6ybyX7au789W/eyADPSNZefn8lFeW5boPP5DdH/lYBktnpWx4T6av/16WTV82JfzjqRSLpezZ3J85y1p+cP4TT99QKiVf/5Vk0y3Ja/45s097UWZNq8ktD6zN5MREVl7xkiTJg1t70j8ykUuWtx9wxKKmRdnYu/FQv06u33x9pldPz9kzz06S1E9vzlkve3WuuvScdNfOzKxtVekb78+ND3xjSl/hol9JZWE45YuTiT170v/dmw75TgAAAAAAAAAAAAAAAAAAAAAOjRCSZ0OxmNI9/5ZdY82pXnbR/uVVu/qzvWc4V5w0Y/9aX+dwvvUvD2dae21+4vfPy0WvX5Y3/M45Oa16TQq9e9N/4a+k1Losl259OCdMX3ZI1+/dNpCx4YksOGVGWubMy/ZVjz19wx3/mDz8ueSyP0hWvilJcsaC6Xlsz0jmrDg5bfMXJkluXLUn5WWFXLS07YAjljcvz47BHekb6/uh841NjuXmbTfn8gWXp6KsYsre6fOmZ7yYvPLN/yflxUI+ce0/pHPr5icLZp2WwfaLs6T5npTNnJHuz3zmh94HAAAAAAAAAAAAAAAAAAAAwOERQvJs2HBTCnvX5b6OGVlwysr9yzc+sTtJ8uIT94WQlEqlfPc/ViVJXvHelalpqEySlFeUZd6e2zIybXZufqgx3ae+NSeODOeFE4VDun7bqu4kydwVzVlw2unZ+vgjmRgfP3jx+u8m1/9xcvKrk0t+a//ysurhdJfVZ9ZFVydJisVSvvrA9lxyQlua6ioPOObElhOTJKu7Vv/Q+e7YcUcGxwdzxcIrDthbOa8pSbJzrCHnzzw/m9r689W//YuMDA7sr6l88W+krrwntefPytBdd2V0w4YfeicAAAAAAAAAAAAAAAAAAAAAh04IybPhnn/LeEVj1va3ZcFpp+9fvuGJPTl9XlNmTKtJkqy9d3e2r+7Oha9blmmttfvrRteuzchDD6XtrT+R0aHJfHFza7rKynLOhrsO6fptq7vTPKsu9U3VWbjyrEyMjmbnmicOLOzamHzp55L2E5NX/3NSeDLkpHnT3UmSddULkiR3btibnb0jee1Z8w5653+FkKzqWvVD57tu83VprGrM+bPOP2BvXnNtmusq8/C2nly57Or014xly/D2XP+Rf9xfU3XiZekuW5Hm2oeS8rL0fPnLP/ROAAAAAAAAAAAAAAAAAAAAAA6dEJJnqntzsvqarM/JmTZrXqa1zUiSdPSP5qFtPbn8pJlJksmJYu762oa0zmvIKS+cM+WIni99KamszOyfemNWvnhe7t2yNp+f1pDmzXcknWuf9vrJyWJ2rOvJvBXNSZL5J5+WsvLybHr4gamFY4PJ596alIrJmz+dVDfs3+rf25ne+7+XxTXj+cL9O1IslvLRWzdmWk1FrvzB/P9TW21b2mvbf2gIyXhxPN/b+r1cNv+yVJZXHrBfKBSyct70PLytN5fOu3Tf2otPyJo7b83au27/r6J0LX1nGgs703rF4vR+9WspjY8/7b0AAAAAAAAAAAAAAAAAAAAAHDohJM/UvR9LqVDI7Ruqs+DUM/Yv37RqT0ql5PKT9oWSPHHbjvR1juSC1y5Noaywv644Npber34tjZdfnoqWlpzz8sXpnbYz36yfl1J5dXLHPz3t9TvW9mRidDLzTmpJklTX1WX2CSdm00P3P1lUKiVf+6Wk44nkDR9LWpZMOeOh669JqVTKu1+8PGv3DOSNH74jN67ak1940bLUVpU/5d0rWlbkia4nnna+e3bek76xvlyx4IqnrDl9XlPW7O5PfUVzTmk9Jesa92bGoqW54aP/nJGBgSRJ08VvSu/EzDS2b8/k3s70f+97T3svAAAAAAAAAAAAAAAAAAAAAIdOCMkzMTaU3P+JDM+5ON2DpSxcecb+reuf2J3ZTTU5efa0FCeLeeD6LZm5eFoWnNwy5Yj+66/PZG9vpr/xDUmS6tqKDM3sTGlwfvrnvSZ56LPJYOdTjrDhgY5UVJVl/n87d8lZ52bPxvXp3bNr38Jtf5889pXk8j9Jlk0NA5kYG8vDN16bpWefl5+4+KS89fwFeWBLd155+pz8/MWLn/b5J7WclI09GzM6OfqUNddtvi51FXW5cO6FT1lz1sLmFEvJ/Zt7cum8S/NI5yM57+d+JsP9fbnlsx9PkrTOb8qjpZ9I7cSGTDupNj1f+tLTzgYAAAAAAAAAAAAAAAAAAADAoRNC8kw8/PlkuDuriyenvLIyC1eemSQZGZ/MrWs7c8VJM1MoFLLuvj3p6xzJWVcvTKFQmHJEz5e+lMo5c1J/wQX7eidGsn18S+aXLc5NG65IaWI0uf2DB72+VCxlw4MdWXhKayqryvevr7jg4iTJqtu+n6y9Ibnhz5JTXpdc9KsHnLH6jlsy3NebM69+ZQqFQt7/2tOy7v0vy4fecmYqyp/+r8dJrSdlojSR1V2rD7o/UZzITVtvyqXzLk11efVTnnPOopaUlxVyx4bOXDr/0pRSyqryrTnj6pfnkRuvS8eWTSkUCime9pb0Tc5M+5nDGbzllozv2vW08wEAAAAAAAAAAAAAAAAAAABwaISQHKlSKbnr/6U0a2Xuf6wzC049PVU1tUmS29d3Znh8MlecPDOlUin3f2dzmmfXZ/HKtilHjG3dmqE77kzTG16fQtm+n+KJricyUZrI5WdflG0dbeme8fLkrg8nfTsOGGHn+p4M9Y5l8RntU9abZszM7OUnZscd30y+/HPJzFOSV/9j8j8CUIrFydz9tS+lbf7CLDjt9P3rZWVT657KmTP2ha7cu/veg+7fs+uedI105cpFVz7tOQ3VFVk5ryl3bujKSS0nZUbtjNy87eZc8Pq3pLquLjf/x0dTKpWy9OzZuWfgTakq7kzD7KH0fuUrhzQnAAAAAAAAAAAAAAAAAAAAAE9PCMmR2nBT0rEqAyt+Ij27d2Xp2efv37r+8T2pryrPC5a0ZPOje7N3+2DOunpBCv8j3KPnS19Oysoy/XWv27/2cMfDSZIXn3lh5p/UnOs3vDql4mTyvb88YIRHvrc9VbUVWXx62wF7J59/Xi4uuz7FYpI3fzqpqj+gZs0dt6Zr+9a84PVvTqFwaMEj/11bbVuWNC3J3bvuPuj+tzZ8Kw2VDblk3iU/9KwXLGnNQ1t7Mjw+mUvmX5Lbtt+WirravOD1b8nmhx/Ixgfvzayl07Ol4ooMVszPzPMn0/OlL6VULB723AAAAAAAAAAAAAAAAAAAAABMJYTkSN3xT0n9jDy6pyEpFLL07POSJMViKTc+sTuXrmhPdUV57r92cxpaqnPCuTOntJcmJtL7n/+ZhosvTuWsWfvXH+p4KHMb5qatri0Xvv6E7B1qz5bGNyb3fzLZfMf+uv6ukax/oCMnXzQ7VTUVU2ebnMhpXZ9LS/Vw7q58WdK86IDxJ8bHc/sXP53WeQuy/PyLjvgznDvr3Dyw+4GMT45PWR+ZGMkNW27IFQuvSHV59QF9kwNjGVnfk6FHOjP0SEfOrq3ORLGUezd150XzXpShiaHcs/uenHH1y9I8e05u/uRHUypOZvGZs3Nnz5tSVdWXmrL1GbrzziOeHQAAAAAAAAAAAAAAAAAAAIB9hJAcie33JetuSOm8d+Xx22/L/JNPS0NLa5Lkke292dM/mitOmpkd63qyc31vzrxyQcrLp37qge99LxMdHWl6w+sztn0g/TdvS+cnH8+DG+/L8o552fV/703pmg05ecm0fGfNKzJeOzf5xq8mY0NJknuv2ZQkOe1F86bOViol1/5uyjfcmPUz35jb79uR7p3bD3jCPV/7Urp37siLfuodKZQd+V+Di+denKGJodyx844p69/b+r0Mjg/mFUtesX9tomskvd/ZlF1/d292vu+udP7rI+n69BPp+vSqLLhma8qTXP+5R3Pi4zNTXVadm7fenPKKylzytneka8e2PHzjtVl6VntWD1yQ0YYTMuPMgfR86QtHPDsAAAAAAAAAAAAAAAAAAAAA+wghORI3/5+kZnp2t784Pbt25qQXvmj/1g1P7E5ZIblsxYzcf+3m1DZW5qSL5hxwRNenP5vy5vYMPtSUPR96IL3XbMyuvdvTUdaVUxtPTuWs+hTHilncPZT6srp8Z8c7U+pck+KXfiHr79udx2/ZkZWXzcu0ttonDy2Vkpven9zzr8mFv5w5P/l/UlFVle9+/CMpFYv7y7Y98Wju+srns/yCi7PojLOf0ae4YM4FaaxszHc2fWfK+qef+HTmNszNOTPPyfiuwXR+8vHs+pt70v+9rSmfVp2mly5O28+dmhm/elZm/OpZWfCO03JmS33umBjP+Pc6cnrfCblp1Q0Z3dafpWeflwWnrsztX/h0WuZUpL65LvcX3pOquvFUbv5KJrq7n9EbAAAAAAAAAAAAAAAAAAAAAJ7vhJAcrh0PJGuuTS54bx678+6UV1TkhPMvTJKUSqV846EdOX9xaya7R7P50b1Zedn8VFaV728vTRbT/ZW7M3TH7SmfeUHKqivT/LoTMvv3z8vGV40kSS56ydVpfetJmflLZ2TBn12Ul/7sSdlbODt39r81ZWu+msHP/WpmLajLC16z5Mm5xoeTb/5a8v2/Sc78qeSKP0/99OZc/Na3Z9OD9+WmT/xrJsbGsvWxh/O1v31/ps2YlSve+YvP+HNUlVflykVX5vrN12fv8N4kyT277smDHQ/mbcvemt4vr8/uf7g/oxt60njZ/Mz6nfPS/s7T0njpvNQsb07V7PpUza5PzQnNufoFC7JubDzFX1qZS+demp3Zk3v/9dvp+eq6XPKmn8vo4GDu+vJnc9KFs3P/uiUZm/HCtJ3Ym/6vfOoZvwMAAAAAAAAAAAAAAAAAAADg+UwIyeH63l8nNU0ZXflTeezm72bFBRenpr4hSfLg1p5s2juU1545N/dfuzmVNeU57UVz97eObe3P7g8+kL0f/VRSVp5Zf/SuzPzlM1N/3qyUT6vOHTvuSHN1c05qOWl/T6GiLC3nzMpPvP/CFM/55ayZfF1W1l+Tl4/+Zsa//YWUdq1K7vt48v9euO/PF/568qoPJWX7ftozrnp5znrZq/PAtd/IP/z06/OFP//91NQ35HW/+6epbWh8Vj7J2095e0YnR/P/Hvp/GZ4YzvvufF9mV83Mhd9YkKEH9qThhXMz+7fPTdNVi1Ixvfopz7n8pBlJkpu2dOfqK1+bQgq5+5T1GbxnVyY/35GTT780D173rcxcVEySPN7+WymUJ5UP/kNKpdKz8hYAAAAAAAAAAAAAAAAAAACA56OKYz3AcWX9Tcmaa5LL/ziP33VPxkeGc+ZLXrl/+6sPbE9VRVnOa23Mt+5bm7OuWpDqusoUxybTd93mDNy2PYXq8UzsuD2NV1+V+rOX7u8tlUq5Y+cdecHsF6SscGA2TE19ZS56y4lJ/j0TN1+cqpv/NGUPvCd54AcFM09N3vblZNkVU/oKhUIu+5mfz9Kzz8uWRx/KtLYZOfGFl6aqpvZZ+yyLmxbnzSvenM+s+ky+s/E76R3ryZ9v+aXUN09LyzuXp3JW/SGds6S9IctmNORbj+zMz1x4Qc6bdV6uG7glv/TLv5Ker63PCetPy9qyO3PXFz+aBSf9RB68bzDL574iDWXfyOi1/5jql/7ys/YmAAAAAAAAAAAAAAAAAAAAgOcTISSHanI8ufZ3k+ZFmTz33bn/t389s5etyKxly5Mk45PFfOPhnbnypJl59NubU11bkTOvWpiRdd3p/s91mewaSf35szKx7bqUhgbT9q6fn3L8o52PpnO4MxfNveiHjlJx6c+ldOFbMnLztRm+Y3XGhmemes7FmTZ/UQ6ML9lnwamnZ8Gppz/Tr/CUfvOc30xDV1Ue3fhgXtLz1rz4kpen4YVzUygvHNY5rzljTv72ujXZ1j2UVy17Vf7g1j/II2Wrc9a7zkrdPbty6qcvzv2rr8vpjS/IYE9jtlz5B1n0jetSecf7kkvektS3HaUXAgAAAAAAAAAAAAAAAAAAAPz4eqrMCv6nWz+QdKxKrv7feey2W9Oze2fOf91P7N++9tFd6Rocy6Uzm7L50b0588XzMnTNxnT+26MplBXS/q7T0nTVnHR/6j/S8KIXpeakk6Ycf93m61JRVpEXzX/RIY1TqKxNzRWvTdNv/a9UnXdxBu7cmd1/d1+GH9/7bL76kEz2jabvP9bmtTefl78o/K+84ud/Ko2XzjvsAJIkefUZc5MkX31ge65YcEVqK2rzlbVfSaGskIbzZ+eiP3tnZjQvyuP3fzKNVcl9N3VncN47UlYayeSnfzopFp/t5wEAAAAAAAAAAAAAAAAAAAD82BNCcih2PpTc/NfJqW/I+KLLc8eXP5fZJ6zIkrPO3V/y0Vs3ZmFrXSZu70h9Q2VmPLA7Q/fvTuOl8zLzV89M9ZLp6frkJzPZ25u297x7yvGTxcl8Z9N38oLZL0hTddNhjVZWU5Hm1yxL+3tOT6GmIns/+Xj2/sfjmewdfVae/nRKpVIG79udXX93f0bX96TpFUvS/u6VqWyvO+Iz57fU5YIlrfn0XVtSWVaTVy19Vb618VvZPbg7SVLVXJeX/9HvplhWTHHonvR0jmRz9auy54kZKd9xW3LT+56t5wEAAAAAAAAAAAAAAAAAAAA8bwgh+WGGupLP/1RS35687G9y6+f/IwN7O3PJ234uhUIhSXL7us48uLUnl9c3pHvHUE4tFVPVVJ0Zv3Rmml66OIXK8ozv2pXOj/xrGq+6KrVnnDHlilu335qdgzvz6mWvPuIxqxdOy8xfOTPTXrIow6u7s+vv7svAHTtSKpaeyeuf0vjuwXR+9NF0f3FNKmfWZcavnpXGF85NoazwjM9+58WLs7N3JN9+ZGd+5pSfSbFUzKee+NT+/Za583LpT/1c9vbfkprKodz/+HAGqt6U7vV1yS3/N3n4C894BgAAAAAAAAAAAAAAAAAAAIDnEyEkT2d8OPnCTyf9O5Of+FS2btyW+6/5ek6/6uWZd+IpSZJSqZS/umZV2isrMv3hvsytLsuKVy3JjF86M1VzG/bX7PyjP06Kxcz47d8+4JpPPfGpzKidkcsXXP6Mxi2Ul2Xai+Zn1q+flar5jen52vp0/L+HMrqh9xmd+99N9o+l5+vrs/sf7s/YtoFMf9XStL97ZSrbap+1Oy5bMSMnzGjIP9ywNjNr5+bqRVfn86s/nz1De/bXnHH1K3LKpZend+9XMloqZdWMy7L7iaUZ6m5I6SvvSR776rM2DwAAAAAAAAAAAAAAAAAAAMCPOyEkT2V0IPnsm5NNtyav/uf0VMzN1z/wV2mZMy+X/OTPJEmKY5P56GcfzsPbe/OC3kKm11bkqt8+O42Xzk+hvLD/qK6P/XsGb7klM37nt1M1b+6Ua+7ceWfu3HlnfvqUn05lWeWzMnpFa23a3nFqmn9iRSa6RtLxkYez58MPZ/ixzpQmi0d05njHULq/ti47//qeDNyxI/Xnzsqs3zonDRfOSaGs8MMPOAxlZYX8/stOyobOwfz7bRvz3jPem4niRP7mnr/ZX1MoFHLFO38ps5ZMz+ToPdk0UpbhK38hW29szEjf9JS++LMp3f4vSan0rM4GAAAAAAAAAAAAAAAAAAAA8OOoUPrxDWk48od1rEm+8NNJ5+rk1f+UztaL8uX3/1Emxsfzk+/72zTWtmbwnt25/7Ytec9wX+ZNlufNkzV5/W+dm5Y59VOO6v3GN7Ljt38njVddlbl//4EUCk8GdgyOD+ZN33hTJkuT+fprvp6q8qojHvmplMYnM3DXrgx8f1sm+8ZS1liZ2lPaUnNiS6oXTUtZTcXB+4qljO8eyuja7gw/tjdjm/uSskLqzpyRxhfNS2V73bM+65T7S6W86z/uy82rO/LF91yQO7o+l3968J/yZxf+WV53wuv2140MDOSL7/vj9HSuTFnl/Ly45s4Urv9k5l9RlfrpWzI+4yUpe/3fp3zm7KM16rObwAIAAAAAAAAAAAAAAAAAAABwDAgh+e+GupI7/im5/YNJVUOKr/u3PLxhJDd/+mOpqq7Ny1/9a6nZXpmxjX15vDSR3yobSWmylHeU6vOW956ZGQunPXn5+Hg6P/yRdP7jP6bu3HMz/18/krKamv37o5Oj+bWbfi2377g9H73qozln1jnPyqOfSmmylJHVXRm8d3dG13anNF5MkpQ3V6eiuSaF2ooUygopjU1msm8sE53D+2sqZtal/qyZqTtzRsqnPftBKU+le3Asr/jQrRkam8i//+w5+acnfif37Lonf3HRX+SVS1+5v250aCjf+tDfZ/vaBSkrn5kX9H01dQ/cmJmXtqV51hMppSoj09+c0gW/mJqTFqS8qfrZHFMICQAAAAAAAAAAAAAAAAAAAHDce36HkJRKSd/2ZMudyapvJmu+k4wPZXj+1Xl08tI8eO+96evtyKzGxTl3+ktTV9GYLdMq8vnCeL7Z25/6YiG/0Nyat75rZaa11iZJJrq60n/DDen6xCcztn59pr3qlZn9F3+RsurqH1xZyu07bs8H7vtAVnevzp9c8Cd5w/I3HNUPccCzx4sZ3dibse0DGd85kMm+sRSHJ5JiKYXq8pTXV6aivS6Vs+tTvWx6Kp7d0I7DsqlzMG/9t7uyp38kb79ofh4d/6c82nNbXrropXnnyndmefPyfW8qFnP/tdfkjq9sSaHshCze8o0s2nh9aubWZNYLylNXuSalUmVGiudkrP7ilOafl4qFJ6VyTkPKW2pT3liVQvkR5YkIIQEAAAAAAAAAAAAAAAAAAACOe8+vEJKxwZS+/fuZ2LwphZE9KRvbkbLJniTJSLE2mwbm5N697dk9Upkkaa2em+WzXpj1NYvzlcnhbJ2YSEehmCQ5s6I6v3flipx78bz0fv1r6b/u+oyuX5fxLVuTUinVy5en/Vd/JY2XX77/+j+/489z45Yb0zXSlRl1M/LHL/jjXDr/0qP/JY5zXYNj+bNvPJavP7QjpVLS1jSW/sITqWj7VuY3N+bk1pPzjlPfkVPaTsnIwEC+/9nrs/a+4TT2jWTphq+lpWdNqqePp/GEiUyfP5jKqrEkSbFUncnSjH3/pDnFqtkZan5HymoqUlZTnkL1vj8rWmrScNHcpxpPCAkAAAAAAAAAAAAAAAAAAABw3PuxDSEpFArXJmk71nP8QFuSzmM9xFHgXUlnqVR6ydEcBgAAAAAAAAAAAAAAAAAAAOBo+7ENIflRUigU7i2VSucc6zmebd4FAAAAAAAAAAAAAAAAAAAA8OOh7FgPAAAAAAAAAAAAAAAAAAAAAAAcW0JIAAAAAAAAAAAAAAAAAAAAAOB5TgjJc+Mjx3qAo8S7AAAAAAAAAAAAAAAAAAAAAH4MFEql0rGeAQAAAAAAAAAAAAAAAAAAAAA4hsqO9QAAAAAAAAAAAAAAAAAAAAAAwLElhAQAAAAAAAAAAAAAAAAAAAAAnueEkAAAAAAAAAAAAAAAAAAAAADA85wQEgAAAAAAAAAAAAAAAAAAAAB4nhNCAgAAAAAAAAAAAAAAAAAAAADPc0JIAAAAAAAAAAAAAAAAAAAAAOB5TggJAAAAAAAAAAAAAAAAAAAAADzPCSEBAAAAAAAAAAAAAAAAAAAAgOc5ISQAAAAAAAAAAAAAAAAAAAAA8DxXcawHOFpe8pKXlK699tpjPQY//gpH4czSUTgT/qej8XcXAAAAAAAAAAAAAAAAAACA41TZsR7gaOns7DzWIwAAAAAAAAAAAAAAAAAAAADAceHHNoQEAAAAAAAAAAAAAAAAAAAAADg0QkgAAAAAAAAAAAAAAAAAAAAA4Hmu4lgP8HwzMj6RrV3DmV7oT0upJ0PF9oyVqlOc6EmhUErTjJmprK5JqVjM+NatGZ+czFChlPLq6jTNmJUdfWMZmRhLsXxvKsqTeQ3zUl1RncliKVu6hjI2Ucz8ltrUVR340w71jWaobyw19ZVpaK5JkvSM9KRzuDP1o9NTOVGd+qbq1DZWPeX843v2ZLKrK+Wtbalsb0uSDPZ0Z7C3J2XltSkU6lPfXJOausr9PaXx8Yxt3ZpSsZiq+fNTVl2dieJEtvVvS9VkRZpHp6WiojLlLdXp7xrJxGgxDS3VKR8bzMSuXSlrbEzV3LnP8i8BAAAAAAAAAAAAAAAAAAAAwH8RQvIc2tY9lL+7bnXeOK8nC9f9YzbP+82s2ziU8rJH88iNX83kxEROOP+iXPymt6V443fTt7czj472Z81D96WsrDwrX/rq7FqwMo/nunx78xcyWZrMq5a+Ku845T351gPD+dB312V0opirTp6ZP3j5SVnYWr//7l0benP9vz+evo7h1E2ryot/+qSMztmbv7/37/OG6p/Nxq/vzMjgeFpm1+Xyt5+cGQunHTD/wB13ZOfv/G4m9uxJxZw5mfu3f5Oe+tp8+5/+b3p370r99Oac95p3Zdvahlz0+hPSOrchEx0d6fzYx9L9H59KisU0vfY1aXzPO/Opvddm5mhLznt0Wfau3ZhUlKXukrm5b0N/1jzYkVlLGnP+ioH0/84vpqypKbP/9E/SePnlKVQ9dUAKAAAAAAAAAAAAAAAAAAAAAEem7FgP8HzyjYd2pnZyIOc89Efpm/uGXPefo2lq782D3/lSJicmkiRr77otj918Q3q/9a3sqK/OmgfvTUqlFCcn8uA3v5ylxd359uYvZKI0kVJK+dr6r+WGLTfkY7dtyuhEMUly3eO789m7t6RUKiVJBnpGc+1HHklfx3CSZKhvLNd8+JE8vmF9XtRwdVZ9fiAjg+NJkq6dQ7nh3x/PcP/YlNnHNm/O9vf+cib27EmSTOzYkY6bv5evf+Av07t7V5JksKc7t3zm79M+fzK3fnFtxkcmMnjHHen+948nExNJsZjeL/9n+m+4IbduuzVnbl2WrB3ad8FEMUPf3ZoVS/aFn+za0J8H19el+oKLUuztzfbf+M2MrFt39H4cAAAAAAAAAAAAAAAAAAAAgOeximM9wPPF0NhEvvHQjrz75LFUrnkkfYtaUtNYle4djx5Qu+aeO7Pkqiuzfs3DB+ztWfV45sycky39W/av3bj12pw271dy8+ong0O++fDOvPuSpWmur8pA90gGe6aGikyOF5O+itSWalMqFqfsde8aymDvaGobq/avje/YkeLg4JS60fq6DHZ3TVmbGBtNabIv21btCzvpv+l7B7xh7Dvfzat/65Wp+c5EJv/HXuXAWKrrKzI6OJEtawez8tyLM3rHbUmplPEtW1J78skHnMfxY3ffSB7c2pN1ewbS0T+avYNjGRmfzPhkcd8/E6VM/iA854cpHWJdkhQKhZSXFVJRtu/P//r3skIhFeWF1FdVpL2xOrObanLK3KacMmdaqivKj/SZAAAAAAAAAAAAAAAAAAAAcNw5aiEkhUJhfpJPJpmVpJjkI6VS6R8KhUJLks8nWZRkU5I3lUql7kKhcGWSv0pSlWQsyW+VSqXv/uCss5N8PEltkm8n+dXS4SQQ/AioqSjPWQumZ9tQd9IwI3VVIxkZrE5j6+wDamcuWpKJxx/PzLlz0rF545S9pnnzs7d/75S1U1pOz3dXjU5ZO21uU+qq94Uo1NRVpqKqLBNj/y1spJAU6oqZnBhNUjl11vrKVNdNXStvaUnKypL/FlhSOTGZiqrqTIz9t7sLhZRX1mVaeylVtRWpPe209F9zzdSzVp6cB/seyYWzlid9U99erKvM+PC+aJLmmTUpbl73ZF9razj+TBZL+coD2/PJOzbl4W29+9cbqyvS2lCV2qqKVJUXUlleloryQirLylJI4ZDOLhxaWYqlUiaLpYxPFjM8XkqxWMpEcd/aRLGU/pHxdA6MZbK47/9WairL8tJTZ+cXX7Q0J8xsPOw3AwAAAAAAAAAAAAAAAAAAwPGmcLSyPAqFwuwks0ul0v2FQqExyX1JXpPk7Um6SqXSXxUKhd9N0lwqlX6nUCicmWR3qVTaUSgUTk3ynVKpNPcHZ92d5FeT3Jl9ISQfLJVK1xx465POOeec0r333ntU3nZYxgaT3Y9nYHAku3sns617PEtm1Wfmqn/PvaVfzGTZZDY98OkMdndm5RUvTVPzjMyZsTxlXcNJfVm+e/1n0tfdkRUXvDClJI3zFuUrg9fmlr2353UnvC6llLK0aXmG++dmV1dlqivKMq00lnNL3anp7sxY64xsmz4nNV2F3PqZ1ckPfu5zXrYwbadU5N82/Wsu2/OGrL25K0lSKCvkircuSV3b3qyv60/TaE0q946mYqyYacWk99d/M6WhoaRQyIz//b7saKjKdR/9cPKDv0dnv+LN6dyxLOe8ZH7m1q5Kcagq237/LzO2YV+YSu1r35TSG9+Zjb27c/KsmZn8wraUhieSJJULGzJ2zrTcfdOedG4dzZUvrc/Y77wjpfHxTP/Jn8yMX/vVlE+b9pz/hD/EIcZgHJbjKmDn6WzrHsovfvr+PLytNyfOasxrz5ybcxa15KTZjamrOmoZSEdksljK7r6RPLytJzev6cw3HtqR4fHJ/MKlS/MbVy5PWdnR+KmPqR+7BwEAAAAAAAAAAAAAAAAAAHDkjloIyQEXFQpfS/KPP/jnRaVSaecPgkq+VyqVVvyP2kKSziRzkrQkualUKp34g723/KD/3U93349ECMnkeHL3v6Zv15Z8+97hbF+3PklSUVmV1/3G/8rOba1pmV3K9rV3ZdaixXnw2m/n4pVvTvHe/v1H1F45OzvLN+c7//KB/WsnXX11ml58et77/V/NRGlfgMe5My5O0+Bbct7s2TnzrmtS+sg/768v/4M/Tces81M9nkyMT6aisjxlFYWsvW93znrN3OxZO5Cq8qpMThRTXlGW5oq+5P/+dsb+6vdy2yf+I327didJahoa8+qf/YVU3XN/ympqUrloZjZPjGRovJCJsbFUVFWlun56KqpPTEvjQOaueV9GGi5M35rxFKqrk9kL8nj/wjx6596UlRXyqp9cnobB8aSskEIhmZycyOM7bk2xpjLTZ1+Y5vpiqu74VsoqK1Ooq8v0178u5Q0Nz8UvdziEkDyFdXv686YP35nxiWLe99pT86rT52Tf/7SPD12DY/nf334iX7pvW1522qx86C1npfzHK4jkx+oxAAAAAAAAAAAAAAAAAAAAPDMVz8UlhUJhUZIzk9yVZGapVNqZJD8IIplxkJbXJ3mgVCqNFgqFuUm2/be9bUnmHuWRnx171yXX/1F2nfnX2b7uq/uXJ8bHcsuXv5TWxW/LUO+a9O7Zli0P359zLnxVinf0Tzli+Lu7kvMmp6w98Z3v5MQVbf+fnfuMj/Qq7///Off0GY1679rV9t5tr3td9wbYYHrv/RcICfmHBJKQQkJCIDRjmikGYxtj3Lu9LuvtvWi1q97LaHo5/weStRZaY4p3ZZvv2695jXRd55z7uuce7TN/JwNIAJ7tfYwPzLuE/K4c9jv/N2W9J+Nh268OY3PHsi2MgdWXNhFpy7D1ro4p64P5Xs7bcBUD+45MBpAAJMYi7Nj4GHMfe4bU/v34/urT3H/f7dhc7ti5jsNp1/0tux7LcdXyuYxs7mLwJ+P37vnb/2TnUwMAzF5agrO5h0hndMq1685axC3f/wKnXz+bfU/kWN11mPj9vwUgsGwpweXLf98nLq8Q/WNJ3v69Z3EM3Pbh9cwue8WFx7yk4pCXf3vdUuZW5PFPd+2lPLybv79i0UyPJSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiInJCOCf6AsaYPOCXwMettaN/wPpFwJeB9z1fOs4ye5waxpj3GmM2GWM29fX1/akjv3ziQ2AcorH0tNZgVweF5W5G+9oIl5Qx1NWJ23qm31nW4rbTs2JSkei0WpoI3tgYvCAUBCBtvFMCSACshVzWkkpMDTgBiI2mcGrqGOruntbr7+/BVVM9PkMuOyWABMDmcuSycYZ7EqSLFpE4dCzgJGW9kz8XFfvJDSSmne/OeHAch2w2zvBAGlPXONnLDg1NWy+vTP/f7bvojST57tvWvCoDSJ5njOG9Z87mneubuOnJVh7c2/PSm0RERERERERERERERERERERERERERERERERERERERERehU5oCIkxxsN4AMmPrbW3TpR7jDFVE/0qoPcF62uBXwFvtdYemii3A7UvOLYW6Dze9ay137LWrrbWri4rK3t5b+ZPUVgPgUJKCjzTWnPXnkrr9hjljUvp2LuLpuWriCQGMD7XlHVOvpdYLjKl5vZ4CZYVTzvTaysYLijFKSiYUvfHBwiEp87gC7nJZrLkFXswvxPzUtUYJP34g9QuWDjtGnPmLCC1dRsAwVyOQDh/Sj8QzieXzaN5eQHBAzeTf8bSyV4wPYTjHr9Yy/5hXHOLpp2fcMfw+P3YXJhZc/2kn3wIAOP14qmrm7ZeXnke2NPDb3Z08dFzm1lWVzjT47wsPnvxfJrL8/j8bbuIpTIzPY6IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIy+6EhZAYYwzwXWCPtfYrL2jdAbxt4ue3AbdPrC8EfgP8tbX2iecXW2u7gIgx5pSJM9/6/J5XvIJauPZGKhM7Ofet78AXDIExzF59CivXzGPVueVkspU0LF1F47KVdHUfJHhlDa5iPwDuiiDBy2vIqymlrKEJgHBJGed/5ONQHGJd5ToACn2F/M2aL7DrcIiS2Y2EvvRlPI2NAHiamsjOn8Npb55HYUVwfKzyAGdeN5fIQIJ06Qjr39o0GVJSNTuftas9+MoKiVZ5WXPN63F7fRjHYcm5F1Hj9pEdGsI3bx4lS+Zx2XvfTVFVNQBFVTWc+85PEBnysmItuJZeQ6jGUvTmN4HHQ/pn3+HCt84hr8hHf/sYuXlF+BaMB5EYv4u8S+rYf/BpznvXp4iN+pjXlCW9by/uqipqvvpf+GbPPllPTv5E1lr+7Z59zCoL8d4zXzvPy+t2+Kerl9AxHOeHG4/M9DgiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLztjrT0xBxtzOvAYsAPITZQ/BzwN/ByoB44Cr7fWDhpj/hb4a+DAC4650Frba4xZDdwEBIDfAh+xLzH46tWr7aZNm17GO/oTRAfglrfTM+/d/Pond9K8eh0en5+OfbtYcuY5bH2sgOXnuNh+/y+oW7SEkL+IitZKvJV5uAq8ZAcTZMiyP7eZoZ4OiqpriI0MM9DdQfiaddzZdQ+LSxcTSUXY3LOZq2v+hoKom/lf/xKBpkbcFZWkOzth+VqebG+gqCxIXrGfsaEE6WSW/DI/ZbNDPP2LI9QvLMYX9DDQMUZltZvSO/+T9HvfxiM//gFz1p6K43JxeOtzrD//EvJ27iV99Cju09bw0PbnKKioIlxaRqS/j0w6S1HNJZRVeJi35z2M1X2I3v/7EXnnnINdso4HHoOqOcUUlAWow8LRUbwN+dhUlsSBYZJrYOtT91LacAUlYUvxwUfI9vaQPNpG7Vf+A3dx8cw+0+nMCTjzxPxRngQP7u3hnTdt4t9fv4zXraqd6XFedm/+ztPs64nw2F+dg9/jmulx/lwn4rsrIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIir1LuE3WwtfZxXvx/cj/vOOu/CHzxRc7aBCx++aY7Sfr3Q9cW2r3tjPR08dxvbptsxUdHaVr9AQ4881sqZjXz3G9u55LXfYxMR5RMR/TYGQYK15bz9FM/m3J00xnzeKLzCZ7ofGKyNlB+hKpOL6mtW0lt3TpZdy85h96WUXpbRqecsebSRkY7U4z2xdn5SMdkvXO/i0tPP589G59kuLuTZ+/45WRvx7MbWbppB4ldu3GWLqRj3x469u2Zcu76N57Js/flqD/r9Qz+8E6S+w+Q3H8A/r+VDPVkGerpZN35taR29mMTWZKHRib3OqMhDj77BBXNZ7PlaTh15Cjxu+4AINXS8koMIZEX+OYjLdQUBrhyefVMj3JCfODs2dzwnae5bUsH16+tn+lxRERERERERERERERERERERERERERERERERERERERERF42zkwP8NpmAYPFTuvkcjkcF9hcDmMMNpfjOMvAgjEvluUylcFCbvoh9njn/p6mtYDLIZfLTe/lcuC4XmISSy5nsY5ryhkvvJRxzPHv93fneMG17HHmkVeOtsEYTx8e5E3r6vG4Xpv/tJw2u4R5FWF+tqltpkcREREREREREREREREREREREREREREREREREREREREReVm9NpMCXilK50JJM7VlXlxu95TWmg0Xc2jLCLWLTufAM0+y+JwL6B5owSn2TlnnWZBP/0j7lFpxQwNOcWhKrcRfQixazlhlLa7ZzVN6PjtKUc3U9TVzC+lrGyNY6cYXnDrbstVBojd9k9mnrIPfCUBZMGcBiZ07ASjw+yirq5/Sr1+8iv42F6vPLSK489uUXL5+shcaaCEYHr/Wruf6cK0sn7LXBNwMp3qomb+UwU4PSxa5SD50z/g9LFiAb9Ys5JXrV1s6ALhyefUMT3LiGGO4emUNW44O09ofnelxRERERERERERERERERERERERERERERERERERERERERF42xlo70zOcEKtXr7abNm2a6THgyEbiPQdozzWx58nHScbGmLtuPfXVBYymmxiLRMB24gsEiAwM0Fy/isz+MdLdUXxNBTizAvRFjtK2ewddB/ZR3jSbprVrac+PsHNgJ093PU1DuIFz6zZw8Eg5S6oLaOw+SPbB+0nu3Utg1SrSZ55LOlRL2/Z++tvGqJxVQPWcQiIDcdz1SdxjQY48N0xkKEHDomKqgiMERtton1UC/XEOPPkYuVyOBevPpnhohMQtvyS0bh2hM9cxaLPs27KNvtYWquctoHbhGqIj+dRWjlGUO0RqOEW0PUPknntxNTSRveo9HNw6wHBPnHMvb8TpipLcP4SrwIt3cRF7W56kpG4OsUghpaaP+Df+A//CheRfcjHBFStm+mkej3npJX+0V90fpbWW8/7jEcrCPn72vlNnepwTqmskzmn/8iAfPXcOn7hg7kyP8+c4Ed9dEREREREREREREREREREREREREREREREREREREREReZVSCMmJ1H8Qvn02h1b+E7fd+HNK6xvxBgJ0HzzA+te/kb2bapm9vI/uA5vJpNMsWXk++U/5cOV5cBUHSHdHcZX52MGTHNj8JCW19Qx1dwKQ946z+Nqhb7OgeAHd0W56Y728s/G/WRx3U/Hp9+IqKsJbX0/ywAH8n/w7fvt4AG/ATWF5kMGuKMGwl7KGPKrnF/DQTfspKA8QzPfRd3SUeUvD1N33Hwy/5Voe/tFNVDTNxhiH7pYDXHT19YR/ez+JXbsIfvb/cettP8UfyqOwsoqB9qOECkuoXvh2ikv9rOr8AP3xDfR952b8ixdj3vhB7ronQ7jET/OyMpoGY2Tbx/DU5pGLpMkMxomdAU/cezN1y95NoTdHxeM3kdi5E6yl4ec/w1tVNbPPdDqFkAD7uiNc9F+P8qWrF3PDuoaZHueEe+O3nqJvLMn9nzxrpkf5cyiERERERERERERERERERERERERERERERERERERERERERCY5Mz3Aa9pgCwRLaD3YAUD/0VY69+0hl82w58nHmLO6iCPbHqNy9lzad+8gSB5kLdmRFKnDI9h4hszRKJWVs4lHRmnfs5Po0CDRoUG8Yzmi6SibejbRPtZOKpci4+rF3d2BTaXI9PQQe/ZZssPDRFNeMqkcsZEUnQeGSYylGeyKEi4JEOlNATDSG6fr4DCZVI4DO8cIXv16DjzzNFhLT8tBug/tB2tpOXyA7NAQuUiEkdERMqkkY0MDtO/ZSTwySn/bYfIK0+zZNEps/jsYuecxyGZJbNtGJOHGWhjtTxD2u8gcHsWmc6QOj5Lpj0MO/NkAg51thPJTHDiYI+v2kentJdPXR7q9fSafpvweD+/rBeDc+eUzPMnJcd6Ccg72jtE+FJvpUUREREREREREREREREREREREREREREREREREREREREReFgohOZEChRAbpKgkf1qruKqG4b40+WW1JGNjBPILyJrMtHUm4CaeiEytGQd87mlrXYTIBcPT6l5XdlrN7XXIZSyegGtaL7/IS+7IYYorq6b1igpKyA4OAuDz+qb1PT4/uZybojIvntF9eOsqj/VITf4cjaVx8jzT9mdNGrfHi7UeCgsMue7O8Ybj4Mqf/jnKK8PD+/qYXxmmqiAw06OcFGfPKwPG71tERERERERERERERERERERERERERERERERERERERETktUAhJCdS2XxYfC2NhUnyy8omyx5/gJVnrCM6EKN63hm0bN7E6suvZv+Bp3DPnxoi4jmjiASxKbVFV16KKQ5OqZ1bewlbD/lJ1DXiufiyKT1T4KVxbfmU2vLz62nZ2ounKk1J/bHgCMdlWLXCIXb/b6k5ZSX+UN5kL1hQSK0/SKavD4yhtCKfxevXTzl39RVvoXVHmlXrvXg6N1Jy1RmYwPj5vt0bqZ0zft6OZ3pw1teAObbXPTuPQ62bWX3FmzmyK8v82hjJ7dsAKP3gB/E2Nb34Zy0zJpJI82zrIGfNK3vpxa8Rs8vyqCkMKIREREREREREREREREREREREREREREREREREREREREREXjPcMz3Aa5oxUL0C465i6fm15DIZrLV4/QE8eUU0ryokXJpixYbLySspobCwigDFmLpibDaH8bqwZS6KTDXrr3sLmXQKt9dHuLaS7lCaj634GPFsHJ/LR5mvhkS4hvJ8L+FVK3DNnU0umcQJBUmXl1IdLKCiMo9MOofH56KoIog/z03Q7zBndSWzl0Eua/H4XOSVpnC/+c2M+PNYfcW1ZNNpAHyBAIFgPnkf+AAmGMBVUkHlXCiobSKTTuP1+SmuqSNYXIo3nIZFV2N8DZR+8APYRAI7ayENnnKq55dhHIO/xIdzYQM2ncO4HGzIoSaxCHcoTLisnEBwlND734/j9+ObPw/j8czwA5XjeaplkEzOctbcv5wQEmMM58wv49bNHaSzOTwu5TmJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIq5tCSE6knt1w//9HS92nefz2u6e0Vl96NSPDKzHZhwgVhnj6tp+z4eoPEXn0yJR1rhIf/fmH2fzgrydr3kCAvHefy1cPfX2yZjC8d/b/kNiXYfCL/zjlDO8Xv8GT9/dOqYUKvTQtKyOHn6duPTyl1zQ/xJKuvRyIDrLrkQem9M6++EpCN92Ejcfx/OPfc/8vfjiln1dcwtz1HyXS7eY0zz76797C2BPPAOB84Zs88VALAGvOrSV2Rze5sfSU/e4zHB74yX+x4MyPM5rMUvnrO0h3dOKEgjT96ld46+uP/1nLjNnUOojHZVhZXzTTo5xUp84q5UdPHWV35yjL6gpnehwRERERERERERERERERERERERERERERERERERERERGRP4sz0wO8po31QEEdne2901qdB/ZQ0eCn/+h+vMEg8dERPDnvtHXZgSTFpTVTaql4HH966qOzWDJmBDM4MO2MRNJMq0WHUwQLvIz1J6f1errSuJYup7vl4LTewMAA7tJSAGLRyLT+2OAAvmCWzsNJ0uWrie85dkbc+id/zgu6pwWQALizXqLDQ3gDGbr7HNz1DQDkojEyg0PT1svM23RkiCU1Bfg9rpke5aRa3TgeuvJs6+AMTyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLy51MIyYlU1ACDh2hqrpnWmrV8NYd3jlKzYDXRwUEKKipJmPi0de7aEF3t+6fUggWFRLypKTWP48Fki6GyatoZwSDwOzkkRVVBhnviFFT5p61vaPKQeuA+mpYun9arLKsg3d0NQH5h0bR+SW0DY4MuZi8K4Gv9DXmnrZzshRib/HlgMImr2Dd1s4GkE6eoqoaxETcNVRlSe/cC4CopwV1RPu16MrMS6Sw72kdY3Vg806OcdBX5fuqKAzx3ROE4IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8uqnEJITqWwBXPyvNPj6WXj6WWDGk0Ca15xKc22Ahvn5lNSvZmx4iNNefwN7dj9G8KIajGf8sbjLAphTw1QvXoQvFAIgVFTMKe99J3XVzZQFygDI9+bzmVX/wKYDDmNV9YQ/97eYQGD8jPoGEuX5nHbdHDw+FwDhEj8rLmwgFUsTKeph8flVOM74bJWz8mkuGcIzuxHfkgYalq0AwBiHZedtIP/wUUin8c6ZQ1llHhe+/R14fONBJgXlFay96l1kUm7m1A9gKuZSvGEN/mVLAXA9egfrLqvHcRt2PduD98JGXIXjQSTG5yJwSTU7tzzIKde+l1zaQ0XyMNmhIdxlZdT8+7/hrZoesCIza2fHCKlsjlUN0wNp/hKsaSjm2dYhrLUzPYqIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIn8U90wO8po31wNafMLroY4w8+yCnXHMdxhi6Du4n6quhqzXK3NVJiqpr6Dqwl6WnXUhq6wh566vBMWRHUhB3c2T7ZhafcyFur5dkNMrQoSPstyOcV38e+b58EpkE2/uf5pTm6yjLREn99i6K33wDxu0h3duLxbDrmR4Wn1WD43KIR1LER1P4gh4qTTmbD7WzckMDAINdUbKVs8jdeyv58fU4jotTX/dGrLV07N2F+4zzKC0sItXRQSznY+fG+1h+0aU4bjex4SGiw514Ao3EPPUU9O0n6VuIp7KKvPWnk1l2OoefGmLFBfXkFfjIto7gn1uEk+fBZiyp1igLTjmLscF2XN5mzKyllLzvfeTGIsS2bCG4ejXG45nhhyovtOnIEMBfbAjJ6sZibt3SwZGBGI2loZkeR0RERERERERERERERERERERERERERERERERERERERORPphCSE6lnBySG2f74U3Ts2UnHnp2TrXBxOcVVZ7H5N99n9up1PH3rz5lbuZZM2xiRtrHJdU6eh8KaKp658xfHai43RR+4kO+0fHfK5d4z+2yy+yMkt2wmuWXzscayi+lpSdLTMjpZ8vpdLDmnlu59Y/QejtB7ODLZS46EWLNkCZvvuJ2ewwc5vGXTZK+rronwTTdh43FyK5fQuW8vnfv2TvZ9wRDLNnyGXc+kKatdR+8/3Uimp4eIx0Pqb9bSezhK7+EI51zeROrpblJ26kfmLfTx4K++yYpLPsuBPTnq776b9JEj4PGQv2EDvlmz/vjnICfMjvYRaosClOb5ZnqUGbGivhCAbe3DCiERERERERERERERERERERERERERERERERERERERERGRVzVnpgd4TcsksZ4g8URyWisZHcMXdEjFYwBYm8Mc53HYZBafPzillstm8BwvP8ZkMKnp18rmzPTR0jk8PheZZG76bEkLeWFSidi0Xiqdxng84+dms9P66WQSlxsSMQveMLnY+BnG5SLzgjkcA9hp23GsIZNK4bghlTY4gcDEwWlsOj19g8yoXZ0jLK4umOkxZkxzeR5et8OuztGXXiwiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLyCnbCQkiMMXXGmIeMMXuMMbuMMR+bqBcbY+4zxhyYeC+aqJdMrB8zxnztd8562BizzxizdeJVfqLmflmVL8QMHGDZirnTWvPXncLuJweYd9ol9LcdoXreAiK5IXBPfSS+NSUc2PnUlFr9qlW02M4ptcb8WXT158HsZszzwR0TwqVePD7XlFrz6goObuqlfF4QfiejZOE8Q+zHP2LxeRdMqRvjUJGXT250PHChtKoCj88/9b7WX8CRXSkWrw3h2vEdil9/CQA2kaDIGcJxxi929GgEV0N4yl4n30N/pJ25p55H2540s6pTJPftAyDv3HPx1NVN+xxl5owm0rQOxFhckz/To8wYj8thQWWYnR0jMz2KiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyJ/FfQLPzgCfstZuNsaEgeeMMfcBbwcesNb+izHms8Bngc8ACeDzwOKJ1++6wVq76QTO+/IraYbXfY/ynnYufPcH2frAPRjHYcVFl1Gel+Ks1y0glSrGHzIU19Qy0N5O3fXriT/dS3Y4SWBpKekqyym1b2TnQ/cx0NZK4/JV1JyymvK8MVJOli19W1hWuowL6q5i35EiouVhav/jP4ne/CPSHR2ELrqIoYIgF7ynkV0PtzPSl2DW8lJKavOonlvAaF4P571zHrse6iKdzLLg1AqKR/eQ97nPMlLp5fQb3s7eRx/CF8pj1SVXEHz4CeKzZ1Nw+WWESoJc8bFPsvneexjp7aF57WmUN60ily2kLK8Fc/ZnCUf8EChh9Ld34+vex4XvuY7tD3Yw1JcgfP0cUjv7SR0awVMdwrOsgMyuQ8xZex65bBHhw08Sa2ggdMbpFFx1Na5gcKafqLzAns7xMJpF1QUzPMnMWlRTwJ3bOrHWYox56Q0iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIir0DOiTrYWttlrd088XME2APUAFcC359Y9n3gqok1UWvt44yHkbw2dO+AW97Okf4cD37/O+QVlRDML+C+b3+NnrEAT9/ZRtf+pxgd6OXh73+b8rw6hm/ej83k8FSGiD7VjWlN8eiPbiTS30tZwywObXqanXf+hjv23sa2/m3ML5rPrsFdfGXrl2gf7aeos4XeD3+QXCyGb+5cRn/xCwJjaX779R0k41lKa/PYu7Gb9r1D7Hq4nbyhMh763n48fjf5ZQGe/vURht1V9P3P14huOcCzv7qFwqpqXB43d37130gsmIOveTaDN32fvoE4t/77v5CMxyitb2DXw/dxdMcTbH2wjb5IObmnv8vgbQ8xdPNP8M1pJjn3NO751i4cx7B0fSWRXx0geXAYT1WITF+c6O1t+AjQsvlhtj3URrSwEd+CBYw9+BD93/gGuXh8pp+ovMCu50NIavJneJKZtag6n9FEhvYhfT9FRERERERERERERERERERERERERERERERERERERETk1ct9Mi5ijGkEVgBPAxXW2i4YDyoxxpT/gcd8zxiTBX4JfNFaa0/IsC+nvr2ka9axdeMWMukULZufmWy1bN9C8+pzefa2e1lx0eVEBvrwxjzkcglSh0cn1yW3DNG85BSeufsWeloOAjDa38eydZdyb8f9HB45PLn2/FljsL8LcjnimzdP1kf7U9icpfvQyGTtwDM9rL18Fu07RsjlLG27Byd7e/emOeWaa9j18N0kY1EOPrNxsjcwOEDegw9BOs1Adw82l6Nz357J/p7H7mXlZas5sD1KTfO1jPzXf0M2S+y5zfQtuwFroX3fEAvnFZIdTAIQHziWO1PgL+Xxx3/AmqtP5Wh7hvrdu0l3dIy/urrwzZr1Zz0Sefns7ByhLOyjPOyf6VFm1OLqAgB2doxQVxyc4WlERERERERERERERERERERERERERERERERERERERERE/jTOib6AMSaP8eCQj1trR19q/Yu4wVq7BDhj4vWWF7nWe40xm4wxm/r6+v7ES72MPCGcxCD5heFprbzCYmKRDMH8QozjkMtZcq7ctHUm5CYWGZpS8wWCjOViU2qOcQAvNhiadobbNT2vJRD2Eh1JEsj3TJ8tCLavj0B+wbSe1+2GTGb89jzT9wbyC0hELeFCB+L9uArGz7DxGAHfsTlyAGbadrJkCeQXkIxB0A+5SGT8/vLyMD7f9A0yY/Z0RVhYlT/TY8y4eZVhXI5hd9ef+s+biIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyMxzn8jDjTEexgNIfmytvXWi3GOMqbLWdhljqoDelzrHWtsx8R4xxtwMrAV+cJx13wK+BbB69erpyRsnW/VyXOkoq9bMo2XHTrLpNAD+vDBN85q47+cRll34RvZvvJMFZ5xNb+QolUXV5IaS4/sNeE4tZPC3XVOOXfy6K3nYs39K7cqmN/HQDstZq+cRbGgkc6R14gyDryqPgsocI93HgksWnVXDjgfbWPPmarwb3aTi48EiLo/D3Koo8e8/wvL/9yEe/N+vgR3/KPPLKsgfGiFhLbhcVNZVUFxdzWBn5+S5Kza8iZ2Pxbn0hgI8D/2cig+8h84vfY1cNEZxso1gfiWx0RS7dgxw2opyMpuPPX7Xojx2b7+dlZe8mT1PxTlz/iDxwUEAyj/9abw1NX/+M5GXRTZnOdQ3xunNJX/6GZkMsdFhUrE42Ux64pUhl8kCx/58rT3On/JxS9OLBoNxHBzHAcfgOA7GOBjHwZjxnsfnI5BfgC8YwpjjJOO8BL/HRUNJkP09kT96r4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMgrxQkLITHj/zf/d4E91tqvvKB1B/A24F8m3m9/iXPcQKG1tn8i1OQy4P4TM/XLzBOA0z6C31XDmTe8g+jwEI7joqC8HF8wxKqLiwkVjLHorPPxBUN4HD/hxmpsJINN53DyvWSKLUvOvYDGpctJJeKECgspmN3IWm8h1XnVjKZGKfYVMyu8iAXeSryhHEXvfje2pwubSOIqLyOaF2DFBYXEhpKkU1lCBV4KKoKsubwRTzDDuquaiI+ksTlLXpGXkNOL+33vhdIyzn7Lu4iNDOPyeCmqqCTUP0ToPe/GXVGBKxRizeVXMzowRCaVJFRUTHFtLWuvCBEIDsH6j+JJN1H+V/+PzMAgNFSzprmO6HAaj9chWJMHZQFysQxO0A2lbmZXraOgrJ684jyC0RyBd74Td2kJ/iWLZ/ppygscHYyRyuSYUxH+g9Zba+k9fIiDz26k6+B++o4cJjYyfGKH/CM5LjfhkhLKG2dTM38hc9adRn5p+R+0d255WCEkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8qp2wkJIgPXAW4AdxpitE7XPMR4+8nNjzLuAo8Drn99gjGkF8gGvMeYq4ELgCHDPRACJi/EAkm+fwLlfPp2byT3xP2zJXca2xzfiuNxYm8Pmclzwro/S3pJh8OjNzFqxkoe+/y2ufuPnGHm0BQzgGMhafMuL2bL51/QebcHldpNNpylvnsPOsx3u6rwXr+MllUtR4i/hnPCXWNkxTN/n/xYcB+NyYdNpnK8s4+E7BsCA4zLkMpb6RcUYYygZCrL5Ny0Yx2CAXM6y7vQQZVsfZtMzhs69e3C53eSyOazNcenlr4ebvj9+7n/8M/f84DtgDC6Xi2wmQ9PK08hxHq41QWYPbKfz2z8lfbQNp6CARO16Hn/kAMbA2Zc1MfrTvZC14DaQsRifi+zCBJue/imO72Lm1blw/fSn2FgM/5Il1N/4XVzhPyz0Qk6sAxOBG3PK815ybce+PTz64+/RuW83xnEoq29i1so1hEvKCBUW4guGcHk8uNweHLcbl8uFMc7UQ8xxDjbTi+Z3Fj7/92atJZfLQS5HzuawOTtRz5FOJIiNjhAfHWG4t4feloMceOZJHvnhjcw99XTOvOHtLxlGMrcij3t3d5NIZ/F7XC/5mYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi80pywEBJr7eMcPzoA4LwX2dP4IutXvRwznXQDLSTLlnH40RYActnMZKu37Shl9ZXseWgfjUuX4fEHcI+5yAFYxsM5gExrlOqmefQeOUQ2nR7fe/AA8y+5lLu4l1QuNX6pxABltVnYfWj8Arnx8AUTCBAZHt+HhVxm/Nye1lFWbWikdUf/eCtnsROzdfa5qFy1gq7bfwZANnNs7lguSyCdxgSDDPb2TpxrJ9d0H9jJ/LMuoqctSWPlPNJH7wHAXVJC76Dr+eX4OHaPTMxkk1mCvkK6Duxi6YWXMxixVIZCZGIxEjt2kB0aUgjJK8SB3jEA5lS8+POw1vLUL3/Kxl/8hFBREee+433MX38WgXD+yRrzTzbU3cmOB+5h6z2/4fCWTVz0gY8xd936F10/pyJMzkJLX5SF1a/8+xMRERERERERERERERERERERERERERERERERERERERH5Xc5MD/CaVtyEr387jfOaprXKauvpP5qmYtY8HJeLVDxOJi87bZ27MUTn4X1TauWzm9kbOzilVuIvoW/UhWmaNaVu43HyCj3Tzq1oyKdj3xCVc6aHSFSXZslu3krV3HnTekEz/pWxsRjFZWXT+pXNixjszFBR58U1uh9PXS0A6a4uyopzk+uSAK6pGTXG6yKWGqGyeSGDXRmKw1kyQ0MA+BYvxlVYOO16MjMO9ESoKQyQ5zt+jpG1lod/8B2evOXHzD/9LN7xlW+wYsPlr4oAEoCiymrOvOEdvO3fv0ZJbR13/ueX2fXIAy+6fu5EGMuB3sjJGlFERERERERERERERERERERERERERERERERERERERETkZaUQkhOpZhVO/SmsWFpPcXXtZHn+qadTU2xJRXMs33ADLVs2ccYb30pr93Z8S4om17nLAqQas9QuWgxmPLAjWFDI3NddyrzKRbid8QCIkCfE+xf9DTuPOPTWNhO88qpjZ9TXkyzxMe+0qslauMRPw5IScCw0RqhsPhZEUj07TFlkH05VOXOvuphQUfF4wxhWXXQ5nieeAsA7dw5VpV6WnHX25N78sgpmrb6EUL6P6qJ+3GMHqPr0e3AKCrDxOIU9O2hYNH7ecxu7CF3SBO7x+zIeB+/5Jeze+ghzT72SUNhHcN8TkMngKimh8vN/iyv/1RFg8Zdgf88YzeV5L9rfdu9dbL7rdlZcfDkXf+iTeAPBkzjdy6egvJLX/+2XqFu8lHu/+d+079113HVNpSHcjmF/j0JIRERERERERERERERERERERERERERERERERERERERE5NXJPdMDvKbFhyA2yFhJJTXzFzH31NMxxmG4u5NUsJaiahfpxFEWnXkeva0tLFtzIWZPjvzz67EWcmMpTF6A0f4eTr32jdhcjlQiRiDt5nDsMO9a/C5yNkfWZkkzzMr6GmrdaZzoGKUf/hDkLJmhIfz+AB2xEdZc1oTNWRLRNIGwF3/QQ5lTxFjJEHXzSgCIDCTwNK8g+9gdOMMJ5q47DV8wD+M4jHR3kXfVlTgLF5Hu7yfhKyUeS3Lq696EtTnikQjBPIvb7yETrMZWLSPZPkThtddgvD7Sa9bj3p1lzWVNFBX7yHRGCJ9ZCxawkElnaF61Dn8wh+PxEDjzHPIKfGSjUbLDwzP6KOWYXM5yqG+M02aXHLffd+QwD//g2zQtX8U5b30PZiJA59XK4/dzxSf/mh/99ce587++zNv+/X8J5IWnrPG6HRpLQ+zvGZuhKUVERERERERERERERERERERERERERERERERERERERET+PAohOZGOPEkyA4/+6g76jrROaZU3LsK4ynniZ99l1SVXcfDZjSypOJPEzgiJnQOT67zDBcSHR9n4zM2TtaIt1TiXl/LNQ9+crAXdQa6v/iqZZ3cRv/9+xu6/HwATCJBYcgWHtw5yeGv/5PqB9jFKakIceKKfls3H6gAhk0d1OMyTP/4hibHIlF5DYQnm61/HBINEF87m4LMbOfjsxsl+f9tR/AXX0NniJpjOp/erX8emUnhqa+nMO5VDz41xiD42XDWL5KZeki883GUIrgrz3G9+SrjiOvp6Mri/9S3IZhl75BECS5fiLir6Y5+CvMy6RhMkMzlmleVN61lreeDG/8MbDLHhQ5/EOM4MTPjy8wVDXPaxz/Djz32SjbfczLnveN+0NbNKQxzuj87AdCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJ/vtdGQsArVbSPjL+U6PDwtFYiFsPrNyRjMXK5LN5AEBOffoSNZAiGC6ceOzxMiWdqGEcsEyPPb7D9fVPqjt9PPJqddm4skiJY4Cc6lJrWG4sBBYUkomPTemmbGz83ECAaiUzrx4YH8Ycc4tEc1gSwqfHzXYUFRKLHvm6OtdNvNmtxOz6iw4P4Q4ZkxsF4POOt/j5yyeT0PXLStU4EbTSWBqf1Dj6zkY69u1j/hjcTzC842aOdUBWzmll6/ga23vsb+o+2Tus3lYY4MhAjmzvOd1tERERERERERERERERERERERERERERERERERERERETkFU4hJCdS/akEW+9m+Wmrp9aNoaK+hs4DGZqWn0IukyEVi5IqzUw7wr00n6N7tk+pzTv3HB4dfnpKbU35eh7fm8a15pQp9ezQEKWN4WnnNi0rZc+THcxaWzx97LI02QcfonndqVPqLo+HcHo8hCQ7MEDdnDnT9javPZ+O/TGqG714hp8lsHwJAIm9+5hVk55cN5LMYQLuqedXBWhv282cdefTvi9OkWsUm0gAUHjddXjKy6ddT06+wxMhJE2loSl1ay1P/uJmimvqWHLuhTMx2gm3/ro34/b6ePq2W6b1GktDpLI5OoePkyYkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8gqnEJITqXIp5vy/Y+6CetZcdhWBcD7FNbVc9tFPU+mL0LCwhMXnXEk6meKiD36cvrGj5F/ZhKvYj5PnIXxhPWOBCOe96/2U1DXgzwuz4pIrKFm9mPcvez9LS5cS9oS5tOkyXjfr3ayfXUV7aS2lX/winro6XCUlFH3owwz7Hc552wIKygMEwh5WbWggVOhj7RVNjFX0sObKBoL5XsIlfs66bjbBzh0UvvNt1J9/OovOPg9fKET5rGau+Nhn4KFHcJeXUfbpT1EWzrDhfR+msLKaQH4B666+nnDpfE5//WzKfEdw1S+h/CPvInzxBhy/n4JEB6e/vpm8Ih/7dg1QeP08vE35GJ8L/6ISPGcWESgroqh6MadfOxvvtodwFRZS9Na3UnjttRhHX9dXgiMDUXxuh4qwf0r96M5t9B9tZc3l1+C4XDM03YkVCOez9LyL2LfxMUb7eqf0GkvGQ1laB6IzMZqIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIn0WpDidS9w7sY//JvgO97H9mI3NPPZ3yhlnc/51v0J8ro7t1mN2P3E64pIT7vvU1asvnE7n7KL7GfAILS4hu7CbfKeaB736D0tp65p92Joc3byLe0slXNn2FIn8Rl8++nJaRQzzVdzcP7u2maaiTwX/+Z4IrVxI+/3wiv7iF4qyLx3+6n4rGfGatKGff090YDM/+5gj5fVXseqiLxqWl1Mwt5Kk7j5CZv5aRW26l7YEn6Dl0kIVnnEN+cSn3fud/8V//BvLOPpvB791EfzLIA9//LlVz5jF33WnsfvR+yPXyxK0tDGUbyPa20/u/N5Fua6fgmquJlMxl011HqFtQzCnn1zHys30Yt0NwVQW50RS5HVFGu7vJJLt54peH4KzLyb/kEsYeeYToU0/N9NOUCYf7YzSWhHAcM6W++a7bCRYUMn/9WTM02cmx8pIrMcaw+e5fT6nPKpsIIelXCImIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8+rhneoDXtP13M9ZwIc/94gFS8Tjb7r1rstXb0UVxZSlPPLyR8qZGAvkF0JLCJrPENvdOrktvG6G0roF9Gx+brO25+17WXbOSX7TdPlk7MHSADy+9hNTtt5KLRhm5fbznqammfc8w6WSW/c/0HFv/bA9zV5ez99EeYqMpdj/eOdnr7MhQtWI5B+75FVhLf9uRyd5gfy+un9+Cp7aWg1u2kE7E2fPYQ8dme/y3lFRdT19nkrCrgfjm+8YbwSB7vBeSiKbZ82QXs8v85GIZkgeGSR4YHl9joH7tYrY+eieldW9haCSL5+abARj47o3kX3wJ7uKiP+OByMuhdSDK7InAjeeNDQ7QsmUT6656A26vd4YmOznyS8uYvXodex57iDPf9HYclwuA8rCPoNfF4f7YDE8oIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8sdzZnqA1zR/Pk46hsfnn9ZyHIecNTguN2DIpJJYz3HO8BnSqeSUkjfgJ55NTF3m9hFL5iCcP6WeS6bw+sy0Yz0+F6lkDrfPNb3nBpNJ43JN7zlm/CybSuILTL8vrz9EJmVxucE4wPPrY3G8Hju5zprpM+EYstkMXn+IdMriIneslRfCuKfPIydXNmc5OhCjsWRqCMm+jY+BtSw885wZmuzkWnjGucRGhmndvnmyZoyhoSRE60B0BicTERERERERERERERERERERERERERERERERERERERER+dMohOREmnMBoda7OOOSqcEMeUXFVNWW07ozzeJzryA6PITb6yNeEgf3C8I5HINrUYjRvt4p++dfcSl7Ywen1F436z384pkInHEOxuebrGeHhiidW4jbe+xRGwMNS0o49FwPc88thhdc0uN3UWZ6sbt2sviSS6dco6y2nsDR9olzh5m9aAHuF1zLGIdZqy9ipD9BRbWDt+9+Cq+8CIDkzh3Mr09inPGLdQ0mcFUEp5zvWhlm68a7mbPuEkZ6EoQGj91j+Uc/hit/asCKnHxdI3FS2RyNpVNDSPY8/ggVs5oprq6doclOrqYVq/CH89n96ENT66VBWvsVQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKvPsZaO9MznBCrV6+2mzZtmtkhIl3Q8hi9Tg1tbX30tR4mkF9A7bwFFOfn0dVfjD84SGSgHX9emKATotBUkumIgrV46sJEgxEGBtrpaTlIKh6jcvZcPI0VHHX3smdwD/3xfuYVzachuIzBoWIWeJKUH9xBaucObCaDb/lyBuatJTPq0NcaIZvJUdGUj8fvwjiWdDhKttNH39Ex3F6HysY8Cnt24C7NoyfsYfTQUQbaj5JXUkrdnAX4H30CRkfxr1iOaS6nvW+MnpaDZDMZKpvn4ws14vHkURM+gjdykGi0iviOfSQPt+K58o302zJ6j0TIL/Yxry5Mpj1CdjSFuyJIptTS0bsff14DLneYvO33k9m3B/+ypQTXrcPf2Dizz/P4zEsv+aO9Yv8oHz/Qz5u/+zQ/ec8pnDq7BICh7k5u/Nh7Oest72L1ZVe/rNezuRzWWsjlsLkcWAt2omYtxhhwHIzLNf4yznjKzklw/3e+zq5HH+CD37kZj3c8jOdf797Ltx5tYe8/bsDtesVnPJ2cD0pEREREREREREREREREREREREREREREREREREREREReFdwzPcBr2qGHSO78DQ/tq6B9/37CJWUkY1E2/fpWLv7g39HX3s2ex77K8osu4/Gbv8/VV/01I08exAl5wED06W4CGyq5/8b/xXG78Pj87HzoPpZedjlfDdzGYHKQAl8Bvz70a9ZVnE6u582syB2i58v/hKuoCFwuRn59J4kv/pgn7ujEH/LguAy7H+9kxYV1dLWMkF/mZ//GI4QKvWTSObY/mOH880P4HnmMR47sITo8RF5xCfHIKJsyv+TqDVeTuuUWRu64ncTffYb7b/4BgXA+jsvF9vvvZs1Vb2f/s+Vc8nofpd0ttH/pv8glk/gXL+LI/hRbnt5HMN/L2RfVM/SjPRiPgxPyENvai6sySHt2G8HyAQ5uqeactVVkn/gOI7feSvF734PvE58YD52QGdM6EAWgsTQ4WWt57lkA5qw99ffuzaWTDP/2ZtKb78Y9uh+vHcbjiuFyZzBODsexGMdiXpDdYfjTkjJsbuL9+TgXa8aTXez4qdZO/GwNmbSLTNpHOhsgni0lHl6AXXQZtddcjD8/8KLXaF69jm333UXbru3MWrEGgMbSEJmcpX0oTmNp6E+YXERERERERERERERERERERERERERERERERERERERERGRmKITkRNp/D7GSFbTvfxiAyEDfZGtkoA9PoJDo0CCZVJLShibcnZACctH05Lrs4TjFNbX0tBwkGR0PgGh77jmWX7aYOzvuJpaJAfBs75P8v4UfxH79ofF9Q0MA+Bcv4tDB8TWJF5zb3TJKw8ISdjzcAUB0ODXZG455KS4rYWzLwPjc/cfmHkuncA0O4l+yhN27dgIQj4xO9jv3PUtx9XWMDCUpSPjIjY0BYCrqaD06ngwRG03hSWYBsOkc2eHk+MydMarXzGPXlocpqXkj0awLd0/P+Az33EvJu96Fu6Dgj3kC8jJr7Y/i9zhUhP2TtcNbN1FcU0dBeeVx96T72xj+7/dTlNlIsXf8uafcblLJALFsEdl0EGu8WMeLdXxgnInkkfH4Eft8DIl5QSTJC8NorJ18GXLAxO/kJmrH+xkghyGHy8TxuMcI+CIUBnoxzm7soV8y8okQ+zIXUPKBv6H2lLnT7qt20VI8/gAtzz0zGUIyayJ45PBAVCEkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8qpywkJIjDF1wA+ASiAHfMta+1VjTDHwM6ARaAXeYK0dMsaUAL8A1gA3WWs//IKzVgE3AQHgLuBj1lp7omZ/2dStxd+xl6KqKoa6uqa0guFCIsM+vIEALreHkZ4uMgty45/ICzhVPkaf6J1SK2tu5u7os1NqzYXz2NEe57RlK2Djxsl6uqOTshofrbunnltcFaK/fYySuhCxXakpvbA/g3soii8YIhmLTun5HRdpIN3RQdXVF9OybfOUfkntfDoOxgnluXClLHg8kE6TbdlPxQaHoYmPIe128PzOx+UU+Rgc6KS0fh7dR5L4KuNkn/+8Vq7EFQwiM6t1IEpjSQjHGQ8BSSXitO/ewfINlx93/dBP/43w9n+m1JNlaLiMsepLCV34ZopWr8LrOCdz9D9MOk5696PEH7yRMA+w1NxG/1cf4qmffIzl//xR/MFj31q3x0Pj0hUc2vws51mLMWYyeKS1PwrzZuomRERERERERERERERERERERERERERERERERERERERERP54JzIFIAN8ylq7ADgF+JAxZiHwWeABa+0c4IGJ3wESwOeBTx/nrG8A7wXmTLw2nMC5Xz5zNxAY2sX5V2/A7fNNlpeefQ6VJW7a9mQ57Q3vpevgPuoXL2M4OIhTfGydqzxAvChBUVXNZC1UVEzJ6SuoLag7VvOEuKbhg+zvTjG85gw8TbMme6aoGF9DiKLqYwEe+WUB8gp95JwsNWf58YeOBSvUzQ0T2LcRV1GIVW95E47LNdk79dKr4bf3AOCpqqS5uYrS2mNzFFXWUFC+lNo5QUqLEvh67qHyk+8HxyG1fx/N5aOECr0A7Ns/jG91xbE5PQ6cGuTI/u0UVa+kdlYI98a7AXCXlVH8trdiPL8bWyInW+tAjIaSY9+lozu3k81kmLVi9bS1A//1Hor2fpFk1Etbw79T9L8HqP/br1Kydg3OKzGABMATwLPsIvI/8TNcnztIZt61lM0bYXH8y2y64aOMDcWnLJ+1cg1jA/30H20FoCTkJexzc2QgNgPDi4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiPzp3CfqYGttF9A18XPEGLMHqAGuBM6eWPZ94GHgM9baKPC4Mab5hecYY6qAfGvtxonffwBcBfz2RM3+sknHYNa5JE2I1ZdejcXicnuw6QQ5XzHzT3WTiXczf/2ZdB3YR3ltEy4sjs+NMZBNZbFhF+VNs2hctoJcLkcum6XIW0CJr4QPLf8QmVwGgPI8P+sa8yn1JPCceTquSy8GIJdI4vZ5qZtfTPPKCrCWTDpHYVWIVDZNngmy8HQPjsvBcQzpZJpQwalkx7pwkllOueZ6spk0Lo8Xt3EouPYaOPNMcokEGW8h9UtXMueUMwDIpFIUVQWxWQO+LLnF15PdnqLswx8ml0qRrG1krgGXx6GqKojTMUb+BQ3YbA4MZMOG5tWnUFgZIJtyEb7wAsLN9dhMBpvLzdhjlHHWWtqHYpw9t2yydnTHVtw+HzXzF05ZO/B/n6Jk+OcMdpfi+evHqG+oPtnj/vkChXhuuBG76QxCv/4Ey3K3sumdAU67+V/xBsb/6axfsgyAtl3bKWtowhhDbXGQtkGFkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMirywkLIXkhY0wjsAJ4GqiYCCjBWttljCl/ie01QPsLfm+fqL3ybf0Jo2kP9972fRJjkSktf0EzqaSXJ3/2XU699o107dvLImcdiT1jU9b5XGXsefxhktHoZG3u8Nk8V/UcB0YOTNYWFW9kPp8gc9ttjN36y8m6t6mRo2UXsHtj/5RzF51Zg83l2HxbB4Md0Sm9wnN8+Ef6efLhu8hls8caxlB8wRWkvva/eJuaOBxys+3h+6fsXb7BxdE9TVQV5igbGqPvq98ev4/1Z7I9fQodh8avdcU1s4k/1UX8BXtdxT5S+RFatz5Fx8F5FC91yH796wBkBgfx/8MXMI7z+z5xOYEGoykS6Ry1RYHJWvuenVTPXYDL7ZmsRTf+hqLO7zDSX4jv7zYSqn6pP/FXNrP6HdhMkvDdn2HR8M/Y+NnZnPlfH8QYQ35pOQUVlRzdtYOVl1wJQG1RgCMD0Zc4VUREREREREREREREREREREREREREREREREREREREROSV5YQnOhhj8oBfAh+31o7+KUccp2Zf5FrvNcZsMsZs6uvr+xMu9TKyFrq3k3YXTAsgAUjGxshlE9hcjlw2S35xOWZk+m3lhtIE8wum1EbbOqkMVEypdUSPMrvICwf2T6m7yisY6ktPO3dsKEF+aYBIf2JaL2U9pB0zNYBk4p5SEx+9q6KCvq6OaXsj/e0E870k4pZs4th+p7qOkcHMsbmyuWl7s8NJCoorGe1rJ1TgJY13spfcuwebnn4fcvK0D41HxtQUBQFIjI3Rd7SV2gWLJtfYTBLXr95DJu4m+cafvuoDSJ5n1r0Pu+QNlC6KUrXp6+z97c7JXt3CpbTv2UEuN/59rysK0j4Ux9rj/jMlIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8op0QkNIjDEexgNIfmytvXWi3GOMqZroVwG9L3FMO1D7gt9rgc7jLbTWfstau9pau7qsrOzPG/7PZQwsfyN5g1uomTNnSstxuSkqLyedyiOvqAS310v7gV1kG6Y/DndDkOHu7im1hvXr2DqwbUrtjKoN/GLrCM6lV0ypJ3fuoGlx/rRzKxryadnaS+PK4mm9sB3BHxkjXFI6pe4P5RGIRMfP3bGDhavXTNtbOXslQz0xikpceINJnLw8ANJPPsycuZ7JdQm3My1exjU3xP7tT1I9bw1DXTGC6cHJXsE11+L4fNOuJyfP8yEktUUBADr27QJrqVuwZHLN4Nc+hD8Ypd3/RsrPOHVG5jwhjMFc/GUIFFK7spf+f/sX4mMpAOoXLSEZjdLXehiAuuIAsVSWwWhqJicWERERERERERERERERERERERERERERERERERERERER+aOcsBASY4wBvgvssdZ+5QWtO4C3Tfz8NuD233eOtbYLiBhjTpk4860vtecVo/EsfBXNnH3VJdQtWgpAflk5l3/0k5SHEqQTXs5958cY6uzg9OvfyohvgOCpleAyGJ+L8EX19Kc6OOXa6/H4A7g8HlZeehWJ+jw+vOLDFPmKcBkXFzdeyoLQhVyxvIa25qUUvO1tGK8XJxQk/13vJl7qZfmFdbg8Dh6fi9UXN5KMp1l8XjX5qzLMWlWKMRAIezjnukY8Wx/Cf8pKTn3Puyhvmg1ASV0Dl77voyR//guccJjSj3yYhgoPqy+9ErfHi8fn55Rr30Q6XckFb2umJDSEl25qvvwFvLNnk+nooLEqzfxTK3Ecw67dgxS8bg5O2AMG/AuKSDVbahctI5er5vy3NJP95fcwXi9Fb3sbeWefNZNPUoCO4RgANRMhJO17duHyeKhsngtAdqSPwr5fMtxTSP3nvvKi57xqBYsxF32RYEmKRvMk2258EIDaReMhLO17do3/XhQEoG0itEVERERERERERERERERERERERERERERERERERERERETk1eCEhZAA64G3AOcaY7ZOvC4B/gW4wBhzALhg4ncAjDGtwFeAtxtj2o0xCydaHwC+AxwEDgG/PYFzv3x6dpIeamPLk5tw3G7WXXMd9YuX8cQvf8pAqoi8Inj6th9Ts2ARz9zxC8pC9aQOjRI+vYbQ2kpiz/ZSVtzArkfuZ9n5G1h1yZW0bt1ERSrMd3d+l4ubLuadi99J+9hRXP5ObtvcyayhduKPPUbx295K4XXXEb3rLopShtZtAyw9p5bFZ9awf1M3pXVh9j3RTa4lRGwoxcoNDcxeWc5zD3bjOmMDyT372X7r7RSUVbDumusoq2tg0913UvT/PkXhNdcwdMst9CZCtGx5jhUXX86yCy5mz+MPUVqT5Zk7jxJNhUgH59Dzlf/Fv2ABpR//OH3JfPrbx1hxYT1r1lcTufcIgYWlhM+pIxfPEkrlc2THcxRVZHjmrjbCH/gExW97K9HHHyd95MhMP82/eO1DcfL9bvL9HgA69u6icvYc3F4vAEPf+DguT47hJZ/CHfDO5KgnztLrsYUNlC6Nkv35t4mNpggXlxIuLaPrwF4A6oonQlqGYjM5qYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMgfxX2iDrbWPg6YF2mf9yJ7Gl+kvglY/PJMdpJkUrDxa4xUnsfuXz4I1nJk2+bJ9mBPD1g3fa0HGeldRnXDXDKbRsn0xoj0HgsvyByJkoxF2XTnryZrBx99jOLmYm7ee/NkLZ5OcvmCvyXxzf8m1dLCQEsLAIHTz2T7470M98TYcu/RyfWdB4apbi5my71HyaRydLeMTvaGx3x4rKF7/166AZ45dlsjNY1kvv99/GeewbP33cNgZzuDd7RP9tv3bCURm8tAX5bSgQypQy2kDrUQeNPb2dI6SnQ4yUBHlPrLG8mNpIg+3TW51zWYoLZpEW27NpFMLGZ4MEvu298BYOhnPyd06ql/+vOQP1vHUJyaoiAA2Uya3tYWVmy4HIBccoyCkbsZGSmg7vMfnskxTyyXG3PWXxEY/hB17s3s+PFjrPvAeVTNmU/XwX0A1E58Rm2D8ZmcVEREREREREREREREREREREREREREREREREREREREROSP4sz0AK9p5vd9vAYMWGuB8Xdr7HGX8Ttl4ziT+57nGEPOgnWm5r5Ya+E45xpjsHb8/bjXPF6dF6wf3zy9P3F9Y4AXzpKzL3bkCw8Hm3vBTMfmNi59VWda+1Cc2qIAAP1Hj5BNp6mcPReAwR/8Cx5fhsHqN+F6rT+rJa/HBoopbE4Qu+0Wsukc1XPmMdrXy9jQIHk+N0VBD+1DsZc+S0REREREREREREREREREREREREREREREREREREREROQV4jWeFjCD3F447SMUtt/D4lPXTmkVV1dRUlZEZCBAeeMcXB4vR/dtI7fQ/TtnODg1PpLxF4QZGEPj6afQOto6ZemFNTfwg02DuN/8jin15OZNzFtfPqXmuAwF5QGO7u1nwflTe4Gwh9BQK75clop586b0GucvxtmybfzcbdtZfe55v3Oum8Kqhbg9luKSHD53N96mBgBSd9/O8uUeAGzOMorB+FxT9tulPvZsepSS+mW4XeBr2zl5z4VveAMyc6y1dAzHqSkcDyHpOrAPgKrm8RAS376fkYx4qP7I52dsxpPG7cOsuIFwTZzKvsc4tPEwVXPG/1a6DuwFoK44SNtQfCanFBEREREREREREREREREREREREREREREREREREREREfmjGGvtTM9wQqxevdpu2rRpZocYPAxtT9FFA4f3HabzwF5KautpXrWKoCuP9m4/4cJBRvs6CYTzCXuLCacKSe4fwvG58C8uoS/dztjoIIeeewasZc4p64lWeuk3IzzS8QiRVISzas8mkJmP35RRGx+g/OBOog8/jBMKEbjgArrrl8Nghtbt/bg9LmYtLyUeTREu9xFzRUgcdtGxb5i8Ej+zFuYT3H4/zvJF9JsM3dt303ekhYpZc2hauAS+fSNOXh7hC88nU+6hvSfGoc3P4vH6aF53OqlEBcUVYardu2DwMNFkI2OPP03q0EG8H/preoa8tO0Zon5uIbOrQyT3DJIbS+GbW0TEN8xoaohMporCkjDOzV8lF4kQvmgDwXVr8ZSWzuzzPD5zAs58xf1RDsdSLP+H+/jbSxfw7jNmcffX/5PDW5/j/d/8IanD2/H94Eza+1dS+7WHZnrUk2PgEPzPSnq3htlV8UnO+J8P8z9vfwMrL7mCs978Tj744+fY2xXhwU+fPdOT/j4n4rsrIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIir1LOTA/wmrbtp4y1bufX3/wWm35zG8lolL1PPMJt//7PtLXFiI/08uuv/COpRIyNt9yMsz/NyB2HyI4kSbWPMfijvQRTedz99f9ksLOdoa4O7vrvfyPbPsBfP/HXbO/bTm+sly8+/Y/sjTzJ/z64n8Ddd9DzhS+Q7u4msWsnA//6ZQZ2DPDQj/YSGUjQ1xbhnu/sIpPMsefRbnbfPsgzv24lEU1zdOcAv/n2PsY8pYxt38Xd//6v7HzoXpLRKNvu+w13f+drsHA+seeeo/uf/oWdz+3h3m//L6N9vfS2tnDnf/4TyWgHd359N8PdIyS7R2n7wEcZvesunOp6tjw2yJO/PERsNEWxx2HoR3tIHh4hO5Zm5DeHcR3J8vhPvkd8tI27vrOH7MK1pFpb6fzUp4jPdKDMX7j2oTgAtUUBALoO7qeyeS7GGEZ/8iWsBc752AxOeJKVzMbWriE8K4t326MkopayhiZ6Wg4CUFcUpH04Ti73isuTERERERERERERERERERERERERERERERERERERERERETku90wP8JoVG4LtP2N09juIDOwAoPvQ/mPtyBDYLB6fj5GeHmYvWUfuQAwspDujk+uy/SncXh8DbUcma11bd9DY2MjB4YOTtY299/DGeatJ/eNdkMuR3LMHgMC113N42xBY6G8fm1w/0henrC5Myx39APQeiRybjTCkOsgkk2SSSbrHxnvJaJT4EjeZtjYC117DnmeeAmvpO3J4cu9w92Hc3lmMjnlxDWUgmyXb30+uqpHDO8awFiIDCVxDCbJAdnD8HSC3P8GsRasZ6jiAx7OAaMaP3X8AgMj9D5C/YcOf80Tkz3AshCRIKhFnsLOd+aedCUBo6EmiqRDVV13xkudYa2mLtHFg+ABdY110RbuIpqPEMjHimTjJTJIcObBgJ/7L2RzWjod5WMbfDWb83Rgc42AwGGN4/j/HOGDAwTlWN8d6L/w97A1T6CukyF9EVaiKuUVzqc+vHz/j9zALryLQ/izlmd0cengv5U2zOPDUE1hrqS0KkMrk6BtLUpHv/5M/dxEREREREREREREREREREREREREREREREREREREREZGTRSEkJ4o3COUL8bkyuNxuspnM1LY/RDaTIRWPEcjPZ/DIUUzRYohNXeeEXGTSqSm1/Npq+uP9U2q1wTnsGcqyumkWmd6+ybptP0LhSh+RgcSU9f48L7GxFIGwh3gkPaXnIYnj9Uy7JbfXhzudIgPkOjooaa4l0t83ZU0gv4RUIoPPl8MVPPb1ynUcJb+0mZG+JKlkhlzgOF+9YjeDvV1Uzl1FMp7Ba1IkJ1q++fOmr5eTpmP4+RCSAP1HD4G1lDXOInFgK8G8CG3D68lzvXhox97Bvdyy7xYebnuY3njvZD3gDpDnySPgDhBwB/C5fccPDnGcyYARDGAhx3g4yfMhJZOBJeMJJpM/52wOYErf2vFXjhxjqTGGEkNk7LG/vRJ/CefUn8NVzVexrGzZ8W9q4ZVw799QUBej/Y67KH/jMnY8cA+R/j5qi4MAtA3GFEIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIirwoKITlR3D4445MU3flJzrz67Tx0y62TrXUXX0R5qY/Nj+dYcMZFZFIphvu7yVziwvQ4kBkPTXDVBEnlpQnkhYlHRgEIl5UTnFtL+ECY4eQwAPnefJYXXMq9LRmyb38vZvt2bHw8NCITGaVpfQXdLWOkk1kAiqtDZNNZUibBoqtKee5HXVg7Plvz4jDuTb+E89ew4KIL2XPPvZNzn37xlWRu/CEATjbDKeefRcf+vaST4wEnpXVN5HKVLDnNobhwGKdtE/kbzmP07gdI/OZWTvmnS7jvzhS5jKUnnqW6MkimOwaA8Tqk5uaI7O+n0tSweI0Le/eN4x9lTQ3hc845EU9J/kDtQzFCXhcFAQ+trYcBKG9sInLjZ/ADzmlvP+6+/ng/X37my9zdejd+l58za89kXdU6FpUsoiavhgJfAcaYk3cjL8JaSyQdoS3Sxr7BfTzZ+SR3tdzFL/b/gvU16/n8KZ+nJq9m6qbCOqhZRd7oXrwbnyFcegUAPa2HqGtYAkD7UJzVjSf5ZkRERERERERERERERERERERERERERERERERERERERET+BL83hMQY4wDbrbWLT9I8ry2OG7virfijFZx+/VtJJxO4vT4KS4twAvnMXZdPdKia/NJifMEQoZIi3OcWY7MW4xisGxLBJCs2XI61OcDg9noIBgq4fNbl2In//C4/dYFCzl8YIuQewvve92DTGXA55IIhnKCHlRfVk8tajDG4vA55hT4yxod1WdZeMYtMKofLbQgEIL/2dDJlRZRYw/rr3kwmncbj81FUVkn+dW/AptI44RCpYD5rr3od2UwGx3FwewPklxdism6cQB8suBxfapiyuYuwQKy0mDWXFZPNWCpq8wjkezCLwVowHodUSYpFZ51PQXkhpD0UXHIh9rS1mEAA4/XO8MP8y9Y+FKe2KIgxhr4jLfhCIcIlZZjeR4lnfVRefc20PVt7t/KJhz/BaHKU9y19H29d9FbyvfkzMP1LM8aQ781nUckiFpUs4po51xBLx/j5vp/zjW3f4Jrbr+Hfz/p3zqg9Y+rGuRsItD9HSXwvsR4HjKGvtYWVy9cC0DYYm4G7EREREREREREREREREREREREREREREREREREREREREfnj/d4QEmttzhizzRhTb609erKGek1IReH+LzBUfhb3/OBb5LLZyZbjcrP+jZ/H5hI8feuPWHHRpYz1DpJs6yPWHZ9yjPuSYp685cdTamvf8VZu7L+RRDYxWbu66a04nWcRv+0rjGzdNln3n3Ue2wcX03lgdOoZlzeRjGXY+1QXyWhmSm/D6S7swVYev+0nU+qBcD4Xz1tB4rs34j/nbJ45uIv2fbunrDn9TR/nubsd3vD6CP7+Hvr+4xsABN/0Th65rYvIYAKPz0XdhXVEHuuYste1KI+9Ox5i7il5bHnQw8UrfMS/9r/jvYICvHV1L/pxy4nVMRSnpigAQN+Rw5Q1NGHHhsgL9tM9uIgqz9R/Sjb3bOb997+fskAZ/3f+/zGveN5MjP1nCXqCvH3x27mw8UI+/tDH+ciDH+HLZ36ZixovOrao+TzMQ18iXBHj4ANPUFxVQ29rC36Pi7Kwj7YhhZCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIq4PzB6ypAnYZYx4wxtzx/OtED/aql4xA91biaWdKAAlALpshk4qSSUcIFhQw2tdLWWUD2b7E9HNidlpppL2TQn/hlFprdAfLi12k9+2fUjdNzQx0TA9CSCUyeHyuaQEkAEn8xBPxafV4ZJRcft74ufX19LUdmb43OoxxDPGkh+xYerJuK2uJDI7fXyDswRlNTdtr+nKUVNQRHxvA5XJIuYLHzv2d+5KTq30oRm1RgFwuS9/RVsoamhi68yaMA+lZF0xdG2nnIw9+hIpgBTdtuOlVGUDyQtV51Xxvw/dYWraUzz32Obb0bjnWrFqBDZYQqs1it2ykrHE2vYdbAKgtCtA+NP3vSEREREREREREREREREREREREREREREREREREREREROSV6A8JIfkCcBnwD8B/vOAlv0+wBBZcQdgZwxsITmn5QiE8vnzc3iLGBgYorqnl8N7NuJqC088pcE0rlc5tpi/WN6W2pPBsbm+N4zvr7Cn17LNPUL+oaNoZ/qCH+FiKgnL/lLrjGIKZEfJCeRhn6tejuKoG19F2ADLPPcfsFSunn5tXgcvtEPbH8BS6J+t212Yq6gIAjA0myRT7p+3N1btoP7iLUGE1jsvgi/RM9oJr105bLyfHaCLNaCJDTWGA4e5uMskk5Q2zsNvvJJcxFF71rsm16WyaTz78SSyWr5//dcqCZTM4+csn5Anx3+f8N5WhSj79yKcZTY2ONxwHM/s88qpTFPTtIpA/h8hAH/HIKHVFQdqGpgcAiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLwSvWQIibX2keO9TsZwr2ouD6x7P4Wju7jsPe8ir6gEgLziEi573/upq/XQ3ermnLd/iOjoCCWN9WQWuPDU5QFgPA7hi+sZTvcxa9V4AIfjcrPq8msYLMlwZfOVOMbBYLik8TKc+ELOWVJL5Jo34V85Hg5i/H78F11E8coSqucUTozlsObSRvrbI5TN97PodSUUlI+Hg/hCbs59XS32sTuxTRWc+d734Q+Nz1NUXcO5V19H4o5f44SCFF99JatPXUzN/IUAuD1eTn39WxnsCnLhW+oprMzDH3+Oyr/5K5xQkMT9v+WUswsprgmRy1nahpKETq8Gx4xfe2ERg74eFp+zgeHeMOe9oY7kj78NHg/F73oXwVXTA0/k5OgYigNQWxSk78hhAMoamghl9hAZLiB/Vv3k2h/s/gF7Bvfwj6f9I3XhuhmZ90Qp9Bfyr2f+KwPxAb78zJePNWafg9uVpCDQj+3NAdDb2kJdcYDO4QSZbG6GJhYRERERERERERERERERERERERERERERERERERERERH5w7lfaoEx5hTgf4AFgBdwAVFrbf4Jnu3Vr/05YpVr2frI48xesw5/XphEZJSDW7dRXHchs5cF2XrPj1h1yVXsfuwhAtUByM/gP7cIspb4rkGKTq8gk0pyyrXXY3M5ju7cxpJVr+dHgwd4z5L3ALCpexNnzLLc+cwA52X3YIuLyfvAB7CZNPHNm3BmnY834Gb1JY3kspajuwdYfFYtgx2jxIbTVM0uoHlVBelkhoO7I6w672LSYxn23nc/C886D4/fT6S/j672NuZ88pNk+vqIbnyKwcLz8OeFOeWa68llMxze+gwrL1lCy84RqpvasHWXMvSfP6PwuutxV1WzrzVFSXUes5aVMas2ROrxdsJn1YJjSLWOUlU9h223fZ2VG5bRunuYJZ/6f+TajxJ96ikKrrwCd3HxDD/Qv0zPh5DUFAXo292CcRzCToZAKMZAZgUFE+u6xrr45vZvcl79eZzXcN7MDXwCLSpdxDsXv5Nv7/g2r5v7OlaUr4CG9QAEy1Owdz8wHkJSW7GabM7SE0lSUxiYybFFREREREREREREREREREREREREREREREREREREREREXtJLhpAAXwOuB24BVgNvBeacyKFeEyI98OA/MLjw47Rs2wJsOdYzhvXXn0oqMUpybIzDWzdR17CQ5BP92GSWxK6BY0t7HI7u2MbRHdsma5UHD7J/ZD87BnZM1ioC97K+8BLG/uF/yEUiRO6/H4Dg29/P1nvaiEfStG7vn1zfsCiBGw/7nuwAO3X0uetDpDo66Tl0gJ5DBybrbp+PylVnEL/xRoJvfxtP/OoXxCOjHNr09OSa4e6j7HnKw+KaUnxdXST37CG5Zw+BT3yebdsHyWUt+aV+GuIlZDpjpDtjx853ZyGbY7jnCLuf9dG4BhLf/CYAseeewz937p/2LOTP0j40/oxqiwI8duQwxdW1jN13C0GABRdMrvvGtm+QzWX5zJrPzMygJ8m7l7yb2w7exlc2fYUfXPwDTFEDtqCWQHUEz54dhBaW03+0ldr5ZwDQPhhTCImIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi84jl/yCJr7UHAZa3NWmu/B5x9Qqd6LbBZyCTI2eP1LGCxNofL4yGTSuH2eLCZ3PS1xzkgm07jmKmPLpmNE3IZbCo1pW58fjKp6edaO3HuceazOORy0/fkMhlwj+fWWK+XzO9ca7yRnRjbwWZfcIbjJjdxLy63A+nstK0mDW6PB2wOLFjjOnZsMjn9WnJSdAzH8XscSkJe+o60UtbQhDn0MLksFF/2RgDaI+38+tCved3c11GVVzXDE59YQU+QDyz/AFv7tvJYx2MAmIbTCZUnKRzaR7h0EQPtR6ktCgLQPhSfyXFFRERERERERERERERERERERERERERERERERERERERE/iB/SAhJzBjjBbYaY/7VGPMJIPRSm4wxdcaYh4wxe4wxu4wxH5uoFxtj7jPGHJh4L3rBnr82xhw0xuwzxlz0gvrDE7WtE6/yP+FeT65wFaz/GMXpNgorKqa06hcuglwAnBLGBgeonjOPnU8/gGtpeMo643NhSjxTao7LRcnsWcQzU4MNlhScw48Px/G/6c1T6umHfsOCsyqn1NxeB+MY4vEUVfOmXrOgxIuvYw/hyjL8obwpvcVrTyf7wEMA5J7cyOoLL5rS9/j8OJ4yKpuCFDpt+EvA+P3j6x/9Lc2Lxs8b6o6Rrpl6XYB0k6X3yGFc3nKqm4KYrY9PDOwmuGrVtPVycrQPxakpDJBOxIkM9FFSW08wfYDoSJhg9fh366ZdN2GM4Z2L3znD054cVzVfRUWwgu/v+v54ofF03K4EeYFhQokQAx1tVOV7AYWQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyKuD+w9Y8xbGw0o+DHwCqAOu/QP2ZYBPWWs3G2PCwHPGmPuAtwMPWGv/xRjzWeCzwGeMMQuB64FFQDVwvzFmrrU2O3HeDdbaTX/Evc0sY2DuxeS1PMxF77qSnU8+Re/hQ9QuXMLCtasxNo/2NsPFH/4rRvu7WXX51bgL8wgWFZDYO4ir2E9wTTmdkUOc9ZZ3sffJR/HnhVl24SW0h2P8/al/z20Hb8PluLi2+fUM9NXwiQsryAyEKQkFGHvgATy1tQRe9wZSFSWs9Xtp2dJHuNjP/NOqGOiI0LCygIolAUqrC+jcP0x5Qx5zl+ThfXY3yZoKzv/Ix9n/8MMMdXUwe9U6mmbNIfHwk4QvuYSi119DOJjG+N/EwU1PEy4tY8nZGxjsKWL9VQH8ZpRc70Fq/uPLDP/iV2T6+ll6dg151XHadw+ScBmqr5tL9JkeyFkCq8poG9nLxR/+K0YGSjjlMh+JLxwldPrpFN3wJrxz5sz0E/2L1TEcp6YoyGBHOwDFZcUEQyN0Dy8lDIylxrjj0B1cOutSKkIVv/+w1wiP4+GGBTfwlee+wp6BPSxoOA2AYGkKb3c/mXSSxNAA5WEf7UOxGZ5WRERERERERERERERERERERERERERERERERERERERE5KU5L7XAWnsEMECVtfYL1tpPWmsP/gH7uqy1myd+jgB7gBrgSuD7E8u+D1w18fOVwE+ttUlr7WHgILD2j7yfV45MEh7/CoORDLd+5T/o3LebcEkZB5/ZyIM//hG7t4xh6Oc3//XPpOIxWp5+huxTo0Sf6sJV4CM7mGDwh/vwpXw8+fMfEwwXkI7HuOM//om84RxffPqLBNwBXMbF3z35t+Bv56ePHcB14/8x9MMf4qmoINPZQeT736floQ623d9GqNBHdDjJPd/aidvjpmd3lGd+2MHhrX2Ei310HRrl/p+1kYgb0u29/OZf/4mhrg7CJWVsu+8utj36AP61a0gdPEjvTT9g472P8dxdt5NXVMzYQD93fOWLOM4wj/z8CIl9G0kMemj/0MfI9A/gv/gKHvnlUfY/1U1+qZ9wOsfQLfsxBozHYeT2Fopc5fzmq/8MuQGeuO0o/nMuJBeN0v6hD5Pcu3emn+hfrPahOLVFAQY62gAItu7EOJCpGQ/e+HXLr4ln4lw377qZHPOku3butQTdQW7eezMUz8IGivBXWPydhwGHgfYj1BYF6BiOz/SoIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi/pJUNIjDGXA1uBuyd+X26MueOPuYgxphFYATwNVFhru2A8qAQon1hWA7S9YFv7RO153zPGbDXGfN4YY/6Y68+I0Q7Y+UuG4m7SiThDXZ20bH6GyEAfXQf34w8mSER6KJ89m9Ztm2lsXk7m8Bi5WIbEnkHSnVHI5LDDadLJBIe3bqJz/17I5Rjt6CJnc2zs2sgz3c+QsRl2Dz/FReWGxKOPkBsZYezhh0ns2o2z7mxatw+QjGU4smOA3iMRcllLKp4BHCKDCcaGkrTuGGC4J0Z0OEmisIaR3l5sLkffkcO0bH6GeGSUPZueIhUOk9y/H7N8KQeee4ZkNErL5mfpaTlILpshGe2lvyPOqH8B8dY+ABI7dhAzeQx0xYmNpohH0phDw5CDZMsIyYPDkLWY1gwltXUkoz30tMWIewuJb9kCuRzJfftn8mn+xYqlMgxGU9QUBhjsaMNxufAcehyA4HnXYa3l5/t+zsKShSwuXTzD055c+d58NjRt4J7We4hl4pia1QQqIDx8GOMqpb/tKLVFQdqHFEIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIir3wvGUIC/D2wFhgGsNZuBRr/0AsYY/KAXwIft9aO/r6lx6nZifcbrLVLgDMmXm95kWu91xizyRizqa+v7w8d8cRwByBUitcz/SN2e31Y68Jx+4mPjpBXVEwiMYbxuaaf45n+sbiDAXI2N6VW6K2gLw1OQcHUxSNDBPI8085wXAbHMdM/dQNum8br9U3bEyosgsHB8V8iYwTywtPPdftx3AYPMVxh/2TdlUnguMcvFh9LY8PeaXttCOKRURxXALfHwUlGj+0vyJ+2Xk68jokAjdqiAAMd7RRWVuMf3Ul81EfRyuXsG9rHweGDXNN8zQxPOjOunH0l8Uyc+47cB7Wr8fkjhFOdhAP1DLQfpbYoQOdwnGzOvvRhIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjPoDwkhyVhrR/6Uw40xHsYDSH5srb11otxjjKma6FcBvRP1dqDuBdtrgU4Aa23HxHsEuJnxUJRprLXfstauttauLisr+1NGfvnkV8GGL1M6/DRzVqyY0jr9qsvwuT0kY0W43F4qZjWz49n7cU6ZGrThagqRKzAYc+wxFdXW4q8pxe86FvBR4i8hnFvCznQAz0c+MeWMTOs+Fl9SP6VW3hgmMpAgG0ww56ziKb3Fq/Kx9/8Kf30FpbNmHWsYw+nnXkzy13cC4O3v4ezXTQ2eqJqzkLHhMOvOL6LAdBAsHMNTP/5I07ffzKrTxgNShntixCpCU0JXTMBNJH+UYH4xsUg+q9eHSd928/i1mpvxL178Ih+0nEjtLwghGexoo6S6lpC/j7FkFY7jcNfhu3AbNxc2XjjDk86MFeUrqA/Xc9vB26BmNQZLoDhFccrFQNtRaouCZHKWntHETI8qIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8nu5X6xhjLkL+BCw0xjzJsBljJkDfBR48qUONsYY4LvAHmvtV17QugN4G/AvE++3v6B+szHmK0A1MAd4xhjjBgqttf0ToSaXAff/cbc5Q8LVOPMupLm6iLI5i8imU3gDQSqb6kmlCwmlMhSUXkxecRErL76CYGUhZkMBNpXFuBxMsYeMZ4Azb3g7yVgMx+Uir7SUbDDER1Z8hEg6goNDib+MQKaEOYWFBIfj5H/6U+TGojheL8xuJlse4NRrZpOKZ3G5DeESP9lMjkCZIZyfpbigkEwqi8fnoqTURX5oA9H8QpacexHJ1RFymQy+UIiiilrcN9yA4/fhnTObbEne+GzxOC63h4Lyaqwpo6jQwbELMWEoftssssOjGJ8f95wyTikuJp3MklcWwH9+PSSzAJiQm5xngBUbLgdXGfkhB9+VVwDgqa3BFQ7P5JP8i9U+PB5CUpnn4ZGeLhbObsLtzZIsXETO5rj78N2cUn0KRf6iGZ50ZhhjuGzWZXxj2zcYWPs3lAD+0jR5gwO02zaWFXiB8TCX6sLAzA4rIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8nu8aAgJcBNwD/BDYDGQBG6eqP3jH3D2euAtwA5jzNaJ2ucYDx/5uTHmXcBR4PUA1tpdxpifA7uBDPAha23WGBMC7pkIIHExHkDy7T/iHmdGpBd+9V76F3yI39744ymtgopKZq36IKHCYXY+cCs18xdSGK4k+nQ7uWj62EID6fM8PPKjG6fsX/3Rd/NvB/9tSu198/8ec6SK2f/zWTJ9fZP1wFvezcaHg4wNJaesX3fFLBJj8PQdh7E5O1n3+F1c2JwgfrCVh27+3pQ9DfMXsbK9n+QTT+J/y5u5t30/Y4MDU9acfsPf8OydOV53+l6yA356/vlb43N87HPc+8NDZFI58ksDNCQzjG7unbLXrA9x/y3/wymv+yTP3WU5wxsh/pObxuf63o2ETj31xT5tOUHah2J4XQ6esX5sLkfx0FEAXPPPYHvfdrqiXXxkxUdmeMqZdX7D+Xx929e5v/c5ritpJlA9SN5zR8iEXRTmxkNc2odirG0qnuFJRURERERERERERERERERERERERERERERERERERERERF6c82INa+3PgRVAHnAp8DPgp8AQ8KGXOtha+7i11lhrl1prl0+87rLWDlhrz7PWzpl4H3zBni9Za2dba+dZa387UYtaa1dNnLPIWvsxa232z7zvEy/WD8NHiMTttNZITzeB/CyJsX5KauvoOXyIcF7J1AASAAvEctP2J4dHp9X6kodpcKemBJAA2PL6aQEkAJl0jnQyNyWABCCdyJIOlTA2PDxtT2drC868uQDkSounBZAAZFOjRIeTJAKzSRzumayn/EVkUuP3UloVxOmKTtvrGjKES0pJp0YYHUhCdeOxubp7pq2XE69jKE51oZ+hzg4AQqMHsRYKz72Ch9sexm3cnFV31swOOcOaC5tpzG/kviP3Qc1qgsUJ8kcP4ziVeCLj39uOofgMTykiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLy+71oCMmENBAFfIyHkTz/Cp/guV798sqhpJmCgJnWKq6pJTrsEAiX03e0larmeQyP9OCEvVMXGiA0/RH5iwun1cp9szmY8eGuqpp6RMch8ksD09a7PQ5evwvHPXU+X9CNZ6SHcFHRtD11zXPJ7dwFgKu3j/yyimlrXN4CwiU+gtE9BGZXHjs31o/H7wKgt32MXO30r1Cm2DLa14vHV0RhuR9a90/2PDXV09bLidc+FKe2KMhgRxsYQzBzhOSYj0BNDQ+3PcyqilXke/NneswZZYzhgoYL2NSziVjFQtxODL8vSl4mj7HOo5SFfbQrhERERERERERERERERERERERERERERERERERERERERERe4V40hMQYswHYCgSBldbav7fWfuH518ka8FUrVApX/A+l3fdx9vVvxHG5AQgWFHLhdVfT2BxiuDePWStPobCyis62vXjOK8YJjq/D7RC6pJZsMEe4pAwA4zisvvb1JIrdzCuaN3mpK2ZdzZHOMiobanD++u9wTQSIGK8XM7uBJVc3Egh7AHDchnVXzqJt7wBOZYI119fg9o5/DbwBN2ddXIJ96gEytQUsueRSjBnvFVZVs3LZGpLPPIvx+ylaOIcNN7yB/5+d+wyz6yzvtn+u3ff0XtV7s9Xl3is2LnTTEwgQQkhP3iQ8Cc/zpr7pyZNKhxQgYKrBBmODe5MtW7J6l2Y00mh627Prej+MkDyMjYFIHtk+f8ehQ3uu677vda291uib/umqagCisRiXvO19HNkd4arX1VDWOoOydAfVt94EQPa/PsEVr2snkYoy0p9luCZJfPapIJLE8loO923nvNe/g649US6+opLxb34ZolEafvmXSS1deqaelH6MzoEM7TVpejsPU9XQRHmil9F8I4eHDrN3cC+Xz7x8ukc8K1wx8wqKYZGnJn7NSNfmqc0H9HYcYkZtmo6BsekdUJIkSZIkSZIkSZIkSZIkSZIkSZIkSZKkFxH7Mb2PAG8Kw3DrSzXMK0qxAIcfJ7PsNg7ds4UNt7yRkJDc2BiDIwW6j+aZc045W+7ppG3RItoWLCVyvETZmmaC+ETwR+7YGLTCvDXrSFdWQwA9XR20r1nIwtqFXDHzCoIgYFffLq5eXEXX0TES27aQuPlmgnR64ozBAUY7R1m4vpl4cuJxDxwbZcHaJmKFkK6d/Zx7xUyCCJQKIUNjBdrPv5Ao5ezoOML5b3gLYSlkdKCffEU59R/8IBQLZHsH6CzmWHrxZcRTE9fq7TzIgrXLGByG9pFnybdcSb7vDhp++UPQOput+0dZfmk7kVhAQ22SsDpJ6qqJwJT8sVHmLl3N0499l3mrz2UsV6Dxl3+ZcHyc7L69lEbHiFZWPs8XrTNlPF/k+HCWGbVp+h4/TGt9DYkgTzaykPs67gPgspmXTfOUZ4dl9cuoSdZwd+YIFwVRkvVFKgcGOXp4lBmrr2Jzx8B0jyhJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0o/1giEkYRhe8lIO8orTvx++/8d0r/pT9m16kn2bnjzZSldWseLq3+LYvt1AyKa77mDlumvJPNwN4Y+ccwk8c/edk0rpc2dzx6E7JtXml59PW38bIx//NygWT639jY+y+a7DlEqTD65uKCMYhX1P9AK9J+uRaMANq5vo2bmLg5s3cXDzppO97n17uGi0yPj37iH5a7/CI1/7CqXnXAugrm0Nm+8rMfM1i8g+vJGx++9n7P77Sfz+X7L10YlrzV5Wx5yOYQqHhiftDSor2P34Q9S2r2HrgwFXN40z9ql/BqDmlluJtzT/uG9cp9mRgQwAbTVJDh/pYMWsRkgAc87j4SMPM6dqDjMrZ07vkGeJaCTKBW0XcF/XY9CwkFTLcSoPdbK9q5K2y5Pc9WyGYikkGgmme1RJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkp5XZLoHeMUqjEMxT744tZUdGyWZjpAfHyVZXsH4yBARolMDSIDgefYXc/kptVwpQ7JUmBRAAlCKJaYEkACUSiHFwvPUiyGlZJpcJjOllxkdIaiqmlgXjUwJIJnYnyM/XqCYqCXfP3Rq5ufk3aTTMcgUpuyN5ALiySRhMU9urAAV1afOfZ55dGZ19E9857VkKebz1I53AJC6+Do2HtvI+a3nT+d4Z52L2y+md7yXobo5pGvGqRg+TFiqpT5WIF8M6R4en+4RJUmSJEmSJEmSJEmSJEmSJEmSJEmSJEl6QYaQnCk1s2HOpTSk80Tj8UmtFZdczpG9Baqa5nPo2WdYsP4CjnTtJNqcmrQuWpWgkJ4c1hFLJqlsaZ5UiwQRKoI57IxUEl+xYvL6A9tonlc1qZaqiFMslEjVREmWxyb1WueUwcb7aJg/D4JgUu+c1RvI3f8AAIlj3bQtXDSpn66qpliqZtGaWioOfYXKdYtP9pJHd1NZmwBg/44+wiV1U76y8apxSsUiITUsPreCwj3fBCBIpUgumD9lvc6sH4aQpMd6AKgsHCaXibG/MSRTyHB+myEkz3Vh24UAbE8kiEVGScVGKC+UU5kfBKCz3yAdSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdLZyxCSMyVVBdf8H+pjA9zyq79J66IllNfWseaGW1h18Xo2XNNEoVDH5e98PzXNrZS31JO6poXUOQ1EKuKkltZR9ca5RKtTnHv19ZTX1DJj6Qpu/I3fJVMV4RfO+QWay5pZVreMP7vorxjsb+K8c+eQ+PXfofLGG4k2NFB+6aXErr2aVTfPZdF5zZRVJZi1rI4r37mEYqlEsq3Ipe+Zx8yltZRVJVh8XjPnXVZNxbJFjDcmue6Xf53G2XOprG/kwje9jZltMwGovOYaGq69isvf+DqWXnw5ZdU1zFm1lut+8bchUsGqiyuJnffzJKuztP7x/0ti/nwKD93DVe9YyJxzG4hGIxSby6i6djbRmiTxljKq3zSfI317uP6XfocgWsXS1RWUuo+RXreOGf/8TyQXLJjmB/rq09E/RjwaEPQdAaA8fpyxTB2Pdj1KJIiwvmX9NE94dmlIN7C0bik/KPQBkKrNU5UpkhruBk6FukiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdDYyhORMGeuDb/0mx2Oz+frf/w3JsnLmrlrL3o2PsnPzTu7/WhdlFQM89KXPMdh9jHC0yPidXRT7xkktraM0VmDomwcZ6+7j8NbNzFuznmg8znf/8W+JDxf4xt5vcEHbBbSUt/C/H/0Irc2D7Np5iNyf/b/k9u2j8vLLKY2OUnj0CTZ+eQ+9HSPMPqeeQr7EA/+9m0QiSuF4jPs+vpdiMWT2OfX0dIyw5akMY89uJ9Wb53v/+n+pbm5h1jkrefq73+b4UD9V111H/tgx+h59grv/64v0HD7I/LUbyGfHuffT/0g0Ms7OZzKU7vtrxkdqOPonf0Zy0SLK3vthvvvZ3WSGcyzc0Ez82BgjDx8hOb+aWEMZg1/fz6z2FdzzyX8Axti/K0PVrbcSSSXp/M3fInfo0HQ/0Vedjv4MbTVpBo4cprqqglR5hkxiLo8eeZQV9SuoSlRN94hnnYvaL+JbY4cBSNYVqcmMEDk+8e529I9N52iSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJP1Yseke4BWrfz8ceYrjDW+jmM9x4OknT7ae/t53WXfLejp3PcTsFSvZev89XPGa91B8NkuRLPnOkZNrUwvK6e86Qn/XkZO14aNH6R7r5mt7vnayNpA/xMKRWvJ79gCQ3b4dgMQ1b6b30VEAejtHnzNgwGhPgdx4kSO7Bjiya2BizRFYfvGVdD67lWI+z57HHzm5Y/OTj1IzFjK+eTOFa6/i+MEDABw/uP/UseEAWx4MOfct72XwCz8gzGQYvvNOgjU3MDaUY2woR0t7OcVdfZRG8ow92X1ya7QfMsNDUOpn65MB7TNSjD340MT97N1LYtasn/456Gd2uH+MGbVp+g4cZkE6ThCB8fZz2dLzPd6z4j3TPd5Z6bzW8/jElk+QqWwm1Vak8smjHO+spqHiHDr6M9M9niRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJLygy3QO8YkWTEATEYsGUVrK8nGymRDJdQW58nGRZOWFQet5jwkg4pRaJx6fWggSF2PPUwyJMHYFIJCAam/r4Y7EIZEZIlpVN6aXTZYQjoyeu9zyHApFInEQ6SmS8h1hN5cl6NCie/JzNFAlS0Sl7w1hIqVggiMRJlsVhePDUucnk815PZ05Hf4b2mjS9HYdpoQ+AvUtnUgyLnN96/jRPd3Za2biSWCRGR3kd6doclcOH6T+ao70mZQiJJEmSJEmSJEmSJEmSJEmSJEmSJEmSJOmsZgjJmVK/ADZ8gOZYD5X1DZNal9xyC/2d41Q2LuHw1s2suPxqdjz7ENElFZPWxVdUMR4ZnVRrXLiQdMvk89rK2xkebKKrupn4zbdOnmOgi3nnNU8qzVpWR/fBIZJNJepmpib11pxfwfjt/0HDssUky8pP1oNIhFXnrGX88ccBqChmOffSSyftnbfmQroPx7jwNbWUd9xJ9fkLCE6Eh8Q2P8DM+RPBJns29xCunjxTpCJOb/YIM5evofdIgrXr4ox/6ysApNeuIbloEXrpjOeLHB/O0pyCXGaMmtIRirkIm2qzJCIJVjatnO4Rz0rpWJoV9St4OloiER0iyTCJ8Rgt5VE6+semezxJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkl5QbLoHeMWKJWHxjaT6u7nkrevp6eggOzZKfftM6me2c25NI4VSjotvezfltTWkK6spb2iGmfUUB7NEa5JE2pJUjee5+K3vZrD7KOU1dTQuWMBAJfz2ut/m4PBBquJVLK5dzmBfC3Nrq6h8zWuIzJ1FoauLeEsrpTXrWFDeRGNTOcN941TUJmmYUcHoYJZ0Lay6fhZDnTkywzmqG9O0NJZIvvc9DFSVc9m730tfRwfFfJ6GmbOpTJUTvvENxNvbKVu7ikXkqWydzVBPN5X1jTTNXUxmpJGm1gI0vodotozmj/w+uX37COobWbFmFi1LxxkdyJFqKyN+0zwKxzNEklEiLSmGBrOsvv5mspkm6svGKd14A7GGBtKrVxOtqZnuJ/qq0jmQAaCqNMoQUBHrZmy0imd6N7O8YTnJaHJ6BzyLrW9Zz32HHuNNQLI2T02mRF2Q5cjAOKVSSCQSTPeIkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRNYQjJmdK3D75wG12r/ohvf/YzxOIJ4qkUmeEhll1yOWNjl9I8u4uju5+gVCqx7NzLGPrePghDIuk4pUyeSDpO/5IuHrz9c6Qrq8iOjgKw8Nfeyl9u/0tqk7WMFcbIFrN8aPHfUbYtTdVHPkxYLBKtrqY4OEjZb36Ue58epZgvkaqIkx0tEEtEWH5pOyEJ7v+vPURiAcl0jMxwnqaZZawfeIqBeInv/9fniCdTRGJRsqOjnH/VDbRseprcl2+n7Hd+i6/dcwfFfJ5UZSXjI8MkUmlW3/A7dGwLuLriqwx1L+H4x/6LSEUFid/8I+78xA4iQcC8lQ1k7+tkbN8gkbIYYb5EmC+RvDzJNz/9p6y96XfpOFpg4eFOxr/yVQhD5n7ldlKLFk3zQ3316OifCCEpG+tlOAwpqxjlWGY523q38Y6l75jm6c5u65rX8dX4xD+tqboiVWOjVOSHyBWjHB/J0lyVmuYJJUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmaKjLdA7xiDR2BIEpP70RwSCGfIzM8BMCBzU/TvjhN9/4tNM2dT+eObaSCMiiGUILSaP7k32WxSghDMkODlIoFSsUCuYFhAPqz/WSLWQDG6aFssJcwl4NikWJfHxSLjEfKKeRKhCFkhvOUSiG58SKRaISxgTwApUJIZnjic/fhMRIbLuLIrl0A5LPjJ8NPDhzcQ6SpEUolxgp5CrksYVgiMzRIWCqRHRsliIxyaMcw47NvZPixrRPnj4wwVkxBCKVSSGNTmuLBie+iNFYgzJcASBZS5MczBMEIHQdzBHOXQD4PhQKFrq4z/sh0Skf/GADxgS5mJ2NEYiGdzbPJl/Ksalo1vcOd5VY1raI/nmA0WUGyNU7laDeJoR7g1PcqSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdLZ5oyFkARBMDMIgu8HQbA9CIKtQRD86ol6XRAEdwdBsPvE37XP2fN7QRDsCYJgZxAE1z2nvjYIgi0nev8QBEFwpuY+bSoaoZijtiY9pdW6YBHHD+aom7GIviMdNM6ZSz7IwY/cVZCMMl6cHFoQBBHileVTzkxQQ66yBqLRSfUkWSLRyQdH4xEgJFURn3JObVOSwvYtNM2eM6XX3jqD4oEDAKRiMSI/cq1YIglBGS2zy0gcfYjyc+ef7KWC8ZOfu7tGibZOvYdcNEs0HicIymhujVPatfWHN02ssXHKep05Hf0Z4tGA0rEDzE3nANg5Z+IZrGxcOZ2jnfXK4mUsr1/OnlQZZfVFKkc6CI4PAhPfqyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJZ6MzFkICFIDfDMNwKXA+8KEgCJYBvwvcE4bhQuCeEz9zoncbsBy4HvjnIAh+mHLxL8D7gYUn/lx/Buc+PeoXwo1/TWtuBwvXbzhZLq+p5fzLN1DXGCdZNp+xwUHOvfI6Nm+8m9QVTaeCSKIByWsaidaniMZiwEQAybq33kaysYby+KkQjzcueDtP7UlTmDGL1G/+P6eCSOJxivVlrH7dPILIxMGRSMCGm+ZyYEsPxeYRFl/WcPKcRCrKBRckyT/zBMmFrTQvXHyyV9c2kznlNeQ7jxAkkzS01XLVW28jiEy8QpFojItuez+Htxc5/7IYiWSc6lXNJObPmzjgzi+w7upWCGDfs32Ea5uJlMVOXfvcWnbtfoyL3vI+OnaGnLMgR/aJRyESoen3fpfE/FOBJjrzOvoztNWk6e88REO0h1IRHqvOMbtqNvXp+uke76y3rmUdG4McifgAqcIg6a4BwBASSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdLZK/biS342YRh2AV0nPg8HQbAdaAduAS4/seyzwA+A/+dE/QthGGaB/UEQ7AE2BEFwAKgKw/ARgCAIPgfcCtx5pmY/LfJj0H+I3LxrSHTv4MI3vZ1SqUghl6OQqCebjzBzQZLxkSVEojHOvfw6guGAqqtmERZDiASUoiH5wSwbbn0TpWKRaCxGoRQSEHDb4tuIRqLEI3GGx0e5bnkTtZSI9Ryj4Zc+SJjLE8RjFFJp8oNZ1t0wh1KxRCQaIRINWLShmZp4kt58LxtumkuxEBKWQqiBivMvIBKponnWXOatXAuEZMfGiM2dT/0HPkAQjZJPlDPY3csFb7iNYqFAJBojEhRZuLaRYiICpTzF2oWUnT9I1fXXEy5YwaGeIhteOxeCgFQsQmRdM0EsQhCNkB/JsnDOBfT2H2PemkYi1YWJayUShNkcYbE03U/0VaWjf4z2qgRjgwNUN3eTGS3n6f6tXDrj0uke7WVhbfNavhGPElAiUVWgZihD3fwYHf1j0z2aJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnP64yFkDxXEARzgNXAY0DziYASwjDsCoKg6cSyduDR52zrOFHLn/j8o/Wz2/Gd8Og/cnjBH7D1B9+b1Oo7fIjyxtex+7H7SaQiPPiFz3L1zR8g88gxMs9ZFyQiBCuKPHL7559TDJjT+AY+ufeTk878wKLlNHZGGfnUJxl5Tj3xh3/H5vs7Jq2NxAJWXzObwYM5dj3cPalX3Zjiipok+x57lM33fGfyPV1yJTPv+Bb5ziPE/tfv8fg3vzapHY3H2fD6j/DYd0NuWFRL3+e/wvC9D05c86P/zLaHJq619rJ2xjcdozScm7Q/uDTBA//5Cc5/00fYtDVk+dPPkH184pUov/AC0suX/+i3rDOkoz/D+a0JCEuUlw9xJD+b/mw/q5pWTfdoLwsrG1fyl8kkAKnaPFVjYzSnI3T0Z15kpyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0yNypi8QBEEFcDvwa2EYDv24pc9TC39M/fmu9f4gCDYGQbDx+PHjP/2wp9P4ECSrGBwYmdIa6D5KZX2c4Z4jpCqrGB0cIFqKTlkX5kok4+kfKYaUxvNT1hYZI5IZnVLPF6c+4lIhJAggny1O6Y0M5IjOnE3fsaNTev0DfUTr6ifOzWWnzpDPE5BjqCdPvmI+uY5jp+YgfvJzWUWc0khuyv5oKUapWIAwx9BgiWhT66mZh6d+jzozxvNFjg9nqS6O0hAJiCVL7K9vBmB10+ppnu7loTpZTaJxCeORGMmWOJWjfdQEOToNIZEkSZIkSZIkSZIkSZIkSZIkSZIkSZIknaXOaAhJEARxJgJI/jMMw6+cKB8LgqD1RL8V6D5R7wBmPmf7DODIifqM56lPEYbhx8IwXBeG4brGxsbTdyM/i7q5UBhn1qz6Ka1lF13Kno39zFx+EZ3btzJn5RqGCwME8cmPI9ZeRnfvwUm1suoaitWJSbVEJEGQbyTX3E6kvGzy+kiGRDo2qVbTXMZI/zgVjYkpES8Ll5UxdvvnWbh+w5S5F8xZQHbHDgAqyytIpCdfq659FiMDSZaur6J8+yeovvaCk73yfB+RyMTF9u3sJ7qwdvLhERhliJqWNsaGUyxcECH76AMAROvrScyaiV4anQMTQRll473MjU+EzWxpqaAyUcnc6rnTOdrLyurmtexMxEk1Q+XIYcozY3QMZCiVnjdDSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKkaXXGQkiCIAiATwLbwzD8m+e0vgG8+8TndwNff079tiAIkkEQzAUWAo+HYdgFDAdBcP6JM9/1nD1nr7q58KbP0UwHV/3cL5CuqiYWT7D2hltYNLea829qJ5aexYxl57Dskis41rOfijfOIdZUBgEkF9WQvLKJGeeuoG3RUggCWhYs4qoP/yqNTTO4bMZlRIII86rn8UcX/hWd3VUkZs+i6i/+huTixRAEpC+8kPy8GVzxnqU0zKyAANoX1XDezXOJpyMM1XRz6bsXUFmXIhIJWLS+kcWzslRecxWZtjTnvfE2EukyEukyLn7LO6kdGCEsFqm44goa5rdz84d+mcbZcyEImLl8JRe95QOkKipYOG8Ezv8gFYvrqPv5dxOkUvDdL3Pde5dQ3ZTmyN5BEhtaSJ3TABGI1qWofMNcDhzcxCVv+xCpiipmVAxS7O0ltXIlM/7+74i3tU33E33VONw3BkCi/whtqSHCEB6oGGdV4yoiwRnNLXpFWdO0hm3xKMnUIGXjx0kNDpMrlOgZyU73aJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkTXEmEwUuAt4JXBkEwdMn/twA/DlwTRAEu4FrTvxMGIZbgf8GtgF3AR8Kw7B44qwPAp8A9gB7gTvP4Nynx8Bh+Oav0Fuxioe/8iUWn38xq19zE/s2baQ7U8bD3+gkkezj2P49HHjmKWbNWsbotzqIt5RTedlMKIYUtg+z86EHSFVUsOGWN1JeU8uTX72dg917Gc2P8p4V72Fp3VL+5Zm/YW5LgVj3MYb/6H+TmDuX+ve/jyAMSfYM8uDnd1PdmGbtdbOJxCLs23Sc7EiRuvEWHv/yQWYsqWXVNbPoPzZOX6me4Tvvoqo/wrbv38OKK65hxRXX8PT37iS/YB717/sFisPDDB4f5Luf+Qy1rW1suOWNRKIRdj92D5mhcXpG6+GhfyDTHWX43h9Q+7a3kfz5D/P9L+yhZW41l7xpIYVneygNZKm8dAbJuVWMfe8I8xavZ8dDdzE6MMZIupn6X/wAsYYGjv/zP1McGpruJ/qq0dGfASA4tp/aRC+ZsSTbxg6xqmnV9A72MrOmeQ07kgli5IhXFKnt7Qfg8InvV5IkSZIkSZIkSZIkSZIkSZIkSZIkSZKks0nsTB0chuGDQPAC7ateYM+fAH/yPPWNwIrTN91L4PhOIGT3lm1khgZ5+rvfOtl6+nvfZf7qd7L9/k8zc8W5PP7VL7F0zsWUhrJkNh8/dUYkYMbaZdzz3//GvqeeOFmecel8Nh7byMZjG0/Wci1HCfblKR49yvBdd52sB1e/g9G+cfb2jZ86N4D1N86h/9A44yN5tj/cdbKVGc5xzY238sT372a49zhPffvrJ3t7dzzL3G/dTb6jg9FrrmCop5uhnu7nnBtw4Vsu4en7sszY8E56/+or5A8epO9Tn6I4+2LGh/PsfOwoLQ0p8puPQwlyh4dPbk9kE+x+/EEuessVbN0csHr7FjKPPARA9sABys4992d6FPrpdPRniEcCwp7DVM4epCOoA2B10+ppnuzlpaW8hd7qNujpI1WTp62/D5qho3+MtbNrp3s8SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZImiUz3AK9YkQiUCkRjU3NeYok4xXxIJBonLJWIRCNA+DxnBJSKxec/+0cERCASnVp/nhiYSBAQliASmdqMxiKQzz7/3NEo4Yl5Is8zQyQSIQwDorGASClPED91RvCc+wvDFxiMkCAICAmIRkPCQv7U/ujUe9OZcbh/jOaKGJVAoizP7upaokGU5fXLp3u0l52amRdQBOJNAbMHJ8J+DvaOTe9QkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQ9D0NIzpTGpZCsZuG8eiLR5wR6BAGrr7iSvZt6WbDhevY++TjLLruK7sGDRGrik45IbKjlSOfOSbVZG9YzXF6YVFtQvZgjx6sozJ5LdNbsSb1UVUB1S9mk2qLzmjmwpYfKmTES6clhI6tXRhn598+w9MqrJgWFRKIxZjW0UOiaCFKob6qjrq110t5ll97Aoa151lxWRWLLJ2l46/Une+X9+0lXTtzfs5uOE1vTPGlvUJvgaP8Bll58LYd3FFk6v8j4kxsBqHzN9STmzEEvjYO9ozQnCsyJ5AB4qj7JkrollMXLXmSnftS5rRvYF48TbY/QMHSIujgc6Bmd7rEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZoi9uJL9DMpq4fr/piKgSGu/+CvcHDLMxTzeeasWkttTYrLbptJsTTK2htfR1l1NZm+ASrPmUPxwCiF/iyJ2ZWErTGWtl1OdUsLvR2HaJozn+YVy+iqHOFDsQ+xrXcbc6rmsLbpQjq6WimrS1L3e79H4bFHyB/uIL1qFZm2Zi58QxNdOwcYPD5G05wqGtoraF1YQ6lijEvfsYCuHUOMj+aZsaiG+mgPqT/4CEfqK7j2Ax/m0OanicbjzF21loqjx8lffTXptWtItzZzxTt+jgPbdjB4tIuWBYtonLuC7FgNdTV9cO0fkRgrp/mjf8jYo48RS5S4/G2LOLxzgPHhPGXn1ENditzhYWJ1KaJzy0kcOs7iFeeSz9RQNX6Y3OWXk1y6hIpLLyVaXj7dT/RVIQxDDvSMcUH5KO2JQQDuTQxxVdMN0zzZy9OapjVsT8S5smKU8rEu6sM8+3sNIZEkSZIkSZIkSZIkSZIkSZIkSZIkSZIknX0MITlTurfDF9/FwaUf5Ttf+ARVjc1EY1F2PHw/V77zfex4ChratlLKj3B4+xYuf83PMfifu4mUxYhUJhjf2Ud8biVbjn+HwzufpaqhkUNbniF9/z2MvXkJ/37wi8yqnMWTx57kizu/yJtb/4YlA3D8V3+RaE0NsaZGRu+/n9SfLuXObx8lmY5RXpPk0NY+6meUU16dZGZYw/f/fQflNQkS6Rh7Nx1n1XlVtH3ncxy/4Qo23vF1alvbKBaKbL3vHl5z622kDh1i+Ac/oOzP/4jb/+OTpMorqKitY/8zT9I0ZyFVrW+iML+MFZ2fpG/HAgbvuJvE3LmMX/ZGvvNvW0lXxll5URujX9tDcTBHrCFN7sAgpUeKpM5L8tAXP0HD7LfTWgPVvT2MfvozDH39G8z5wueJNTRM91N9xesdzTGSLVAR6aExPUAmF+NopMiqplXTPdrL0ryaedxZXkX56FHiiTy1I8Ps6TVQR5IkSZIkSZIkSZIkSZIkSZIkSZIkSZJ09olM9wCvWH37oHERu7YdAGDo+DH6u44AsPupx5i/uoaDzzxMeV0dg8eOkiqWAVAaK1A4NgbFkPyeIeYsWkUuM0bP4YPks+MMdR+jsVhFtphl98BuhnJDjBXGiCT6CToPA1AcGCC7azdhPs/IcAlCyI4V6DsySrFQovvAMM1zq+k9kAFgdCBHf9cYhLBvT47EjTexZ+MTAPR3HWHo+DEAjh4/RnFwEAoFBnp7IQwZHxmm5/BBivk8Xbu3Ud8WsPOZDPn5r2P4+w9DGJI7fJih8QQAmeE8ZbGAYl8WiiGFY2OUxgpQDElTTve+XdQ0FTnQGSOIxgjHxsh3dJDv6nrJHt2r2YGeUQCS/YepKhugM6gAYFXjqmmc6uUrEkSg+RwAUrV5mgf76RvNMZjJT/NkkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRNZgjJmVLeAENHaGlvnNJqnrOA4x3j1LbPpZjPk0inyUdyU9ZF65P0He+cVEuk02SikwMMAgJiVBDW1E45I5l8ntFqEowOZKloSEzp1TdEKe3cQePMWVN6NVXVFAcGAEiXlU/pV9TVkxkJaJmZINr3LMn5cyYa+Tzp2KmZx3MlgmR0yv58pEB5TS3ZTJSG2uLJ4JFIeRnR6uqpN6LT7kDvGABl3YdIVYyzvaKC1vJWWspbpnmyl6+6uZcDUGwJmTHYA5wKe5EkSZIkSZIkSZIkSZIkSZIkSZIkSZIk6WxhCMmZ0rwCFlzN4vY4VY2ngkgqGxpZvHQ2Y/1Z5q+7nn1PPc55r3sLe/ZtJL646tT+aED04mp4blhHELDyrW8mXvecdcDbF32AH2yBzKx5JK57zalGPA6N5cxZ33SyFIkErLpmNoe39RJtH6duVtnJXrIsxrLZ4+R2bmPOlReTKq842WucPZfa/iHCbJYgmaSprYZlF1xw6txolPW3vJcju3MsXZYn2r2JpnffRJBOA5Da9SjtCyoBePqxo8SvmAnBc0ZdW8OzT9/Dhlvfy5E9BWbGuyh0dUEQ0PwHf0B85syf7vvXz+RAzyjRAM4p9RFE4ImqgFVNq6Z7rJe15TMu5kg0SmkmzO3fD8CBXkNIJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElnl9h0D/CKVSpA9UxKNctYclEl0djEVx0EQHkDM5eVUVmT4ZyrrieRTNG49nwSg5WkZ9USFksE0Qil6ihlVdVc9JZ3UMjnicUTlNc2cSzWzYdXf5hsMUsymqQu0Uzb6pk0pAPK5s6h+ld+hTCfh0ScXFUFtY1Rmm6aS7EQEosHVNYlWXJBC1XJBLOXxVhwbjNhGBJEApINWaJXXEkpVsaq628iCCAIAiAgXVVHxQc/CIk4YUUd1a0zufDN8ykVCkTjcarqK1l8fg1BWQEWXUsYbab+ve+BUkhp+XpahmpoX9pAPBkhkY6SumY2YaFEEItQSoQsqr2ERHUVizfUkqxMkf7FXySSShKtrTsxg860A72jNKcD5sQHAHg8WeRdjaumdaaXu+X1y3k4lWJpaZx5x7cBcKBnbJqnkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRpMkNIzpSjmwk3/zdb4rDpBw9MaoVveDtDA0vY/+QXmLl8OQ9+/rO8/u0fYfS+zknrYm1l9BUOsf2x+07W0pVVFN+5mo8d+NypdUGMd8/+B/IdQwz8679MOiPSuppNd00OPKhuStO+qJZCqcSmuw5P6g2trGBhVxebvvpVDm/bMqlX/to3Ev/Yx6BYJNL8f3jkK/89qV/bOoMZ57yPveNxqiKDHP23vyO3/wDE4xQ+so4nfzBxrUtvnMPIDw5DITy1OYDYhRHu//o/MWfNL1E8XqDmi1+k2N9PtKaG5Fe+QqKt9cd84TodDvSO0hDN0pjqZ7wYoTMWZXXT6uke62UtHo3TXzOThtEd9IUj1IQFDvSOTvdYkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRNEpnuAV6xRnsoVc/kaGf3lFZPxyHq2hL0dx2GIKBYKBAtTs2DKR4fp7551qRaZniImqByUq0QFggjowSD/VPOyI5PHW3weIbaljIGj05t9vRCZNEiejsPT+mNjI8RSaUAGBsbm9LvP9pJZW2EY515wrql5A4eAiBaXs7IePTkukQQTA4gAQghVooz2H2MsuqAvqEIscbGie9hYIDS8NDUG9FpFYYhB3vGqM4PUFs+wMGgjHS8jIW1C6d7tJe9ePsaIkDQUKBhfNQQEkmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSWccQkjOlfh7Ro0+zZMX8Ka05K1ay/+lhZq88n+zoKOU1tWSjU0M94kuq2bf9yUm1xjlzOVA6MqlWm6xlbKwSZkwOLAGoqI5Oqc1YUsvBZ3toWlg+pTd3Vkj+23cyf915U3p1ZRWURifCE2rq66f0Z5+7nqP78yxYniK675tUXHoBMBEiUld2KvBkYCRHpCoxaW+QiDCSH2Dm8jUcP1RgRkOe3IEDACSXLSPW0jLlejq9ekdzDGcLlPcfIV05xpaKFCsbVxKLTA3I0U+ned41AAzNKdI6MsCBHkNIJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElnF0NIzpTmc+DaP2ZeY4lzrriKIBIhGoux7rW3Mqs6w5zltcw653JG+vu4/F2/wJ79T1LxmpkEyYnQkOTCGgqLIqy46mrKqmsAaJo7n3Pf/hbWzbqA9op2AGZUzuC3V/8x3X1lHGueTc1H/oBIZSUA6fPOZ6gmzcVvW0SybCJIonVBNQvXNVPTWsZA3RFWXtdONBYhCGDxhkZa8vspv/Zqqs9bytw16wGIJ1Nc+tZ3k3x8IhCl/IrLaaqPcs17foFk+USQyYxl57DkoltomFHFzJrDRNqW03Db9ZStnzgj+cz3Oe/mOcQSEZ559CjlN88n1pAGIFqdJH1TG/v2PsXyK95AQ3sNlR1PEeZyJJcto/X//G9i1dVn/pm9yh3snQjGmDV4mEgUHiuHNU1rpnmqV4Ylc69hKBKBtpCZQ0fpH8szOJaf7rEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSTopNt0DvGINHIRH/om+FR+h+9A9bLj1TYSlEvs3bWTOOe+hc+8IMxZ2Ut8+g6333cN5l72B8Yd7KN/QQhCPkOsYIV0s45m772TR+ReTLC+n/0gng7v3cW/9Zja0bKCxrJHusW4eOfY9aitfz+zxfsb+6z+oecPriaTLyGzdSn0kzv33dLDkglbiySg9h4fJZgr0dY6xYukcnth8iJVXzSSIBHTs6KN04SrGPv5nRJtfRyGb5fzX30axkGfbQ/dz9U03UTFvPmNPP81wWMXGu/6d5ZddTSKVpvvAXrKjXfR0NDK8fAFlxz7BSF8VkbIyGj74QcZXXcGOe45xzuUzaGwpI/NYF4lZlaTPaaA0mie/bYSZC5YzNnCY44fbmLXuEupjRXIHDzLyyCOkVqwgCILpfqqvaPt7xgA4h04AtiXjvKF59XSO9IpRkazk2bJqaoNx5vTvA85jX88Iq2fVTvdokiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQBhpCcOV3PkK9o5/Hv3suxvbs5tnf3ydbBZ5+lec5KNt7xRVZdeyMdW7dw/opbKfRkGHmg8+S6Qn+GxtY5PP2dO07WYpuSLHjfZfzjno9Putz7511NYdthwv376du/f6IYBBSvfz8Dx8YYODZ2cu3xwyMsuaCFA0/20981Rn/XwZO97WUh51x4Phu/djujA/0c3rr5ZK/n6BES//IvEInQf/1V9B/ppP/IqXmPHzzAvA2/zP5nh6lrvJjev/4s4fg4mWefpbf6fAa7M2z67iGuvWUehd0DFH7kK6u8sJ7vf/OTLLn0N+g8mKXuv/+bYl8fI9//PtU33kiivf1nehT6yezvGSEahKyI7We8FHAknuTchnOne6xXjLGGBSw4uJFZQwcA2Ht81BASSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdJZIzLdA7xilYoQxCgWi1NaxWKBaBRKxQIQQhBAKZh6RhGikck5MWGpRJTnWRuEUCpNHaMUPs9oJaKxCKXi1PXFYgDxOKXnmfu5J4Xh851bIBKBQiGESIzwxBlBNPIjo03dCxAApWKRSGTiVoJo9IdDPe+96fTafWyEpliexrJe9sZSLKlfRlm8bLrHesVIz9hAKgyJN3YTDUvs7h6e7pEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSTrpjIWQBEHwqSAIuoMgePY5tZVBEDwSBMGWIAi+GQRB1Yl6IgiCT5+oPxMEweXP2fODIAh2BkHw9Ik/TWdq5tOq5VziXU+w/qLVk8pBJMKcpUvZ+cQwK664hYFjR6lrn8FofAhik8NFEhtqObBz06Takmuu4cnMtkm185ov4ck9EYIlywiSyVONMKSipYxYYvJjXnJBK8/e38nM1dVTxl48O0/29q+y8oYbJ9XjyRRVuRPBJKUSzTNaiT33WsDyy2/h4NYM85eXEd/1n9S9ceKMQvdxWitHCCIT99fZNUa0rXzS3khbikOHt7Liils5sCVDS8UIhePHAah997uIt7VNmVWn157uEeqyfZRVZdhUHmd18+oX36SfWPviWwDIzsnTkhlh91FDSCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJZ48gDMMzc3AQXAqMAJ8Lw3DFidoTwG+FYXhfEATvAeaGYfgHQRB8CFgXhuHPnwgZuRNYH4ZhKQiCH5zYs/Gnuf66devCjRt/qi2nVz4D++9nYCjHwf4IOx5+kEQqxYorrqa5vMTRkXlEooMMHttNbWsboz39zG1ZyfjTvZQyedLnNJCpyjA03suuRx5ksLuLOavXU7t8Ad1lo9zXcR87+nawpnkta+svo6u7kQVVEeZ37GTsm1+n0NtHxbXX0r3yQpJBNbsfO8rYYI65qxooq04SicJgVTflvfXsfvw4YSlkyYZGqrqeoaypkoP1ccb3dLJv4+OU19ax/NIrSX/nHnLbt1N54w0kl8/gaAa2PvgAYwP9LDzvIsrrFhFL1DKjbA+p7GEy442MbNzJ6EMPknrdWxiZdz47HjsGwBXXziK3vZf84RHisyoI5qXYc2AjlfWLiSfqKN9yN5m7vkX5pZdReeUVpBYvnr5n+eMFL77kp3Zmfil/jGyhyNI/uItr+p/k31r+mt9rrOeq136Mq2df/VKP8spVKjH8Jw08Wazg3w7+BocWnsNDv3/VdE50Jt5dSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdLLVORMHRyG4f1A34+UFwP3n/h8N/CGE5+XAfec2NcNDADrztRsL4nOJ+Fbv8m2rQe599MfhzBkdHCAb/z1n9E1EOHZBzvZfM9XyIwM8e3/+1fURBsZ+K9dFAfGCYKAwW8fIHok5O6P/yPH9u0mlkyy8Ru3s/t79/LJZz7OA50PUBYv45t7v8G/PPtXPHzgMHUHd3Psw79M7tBhgliMnr/5GxIDee76ly0MHBsjEovw+Df3c2zfEE/ccYBIRyXf/+xOcpkCxXyJe/5jN4OxZno/+Sn23/V9Hvny54nEYvR1HuZrf/nHjC9ZAAF0/8mfcuz4KF/76z9n4OgRIrEYD37hc3TteoKHbt9L91AtxWfv5NjffYy+z36WoLyC/kQ73/nENjJDORYvq2Pgv3aQebaXIBkls6WXzLePMHasn8NbH+bB2/cwUjOfIJWm75OfpO+zn6OUz0/3E31F23d8lFIIy0uHAHg6mWB10+ppnuoVJhKhq6ad9niGuX0HODI0zliuMN1TSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIEQOwlvt6zwM3A14E3ATNP1J8BbgmC4AsnamtP/P34if6ngyAoArcDfxyGYfiSTv2zOLKJsZlX8Oy9GykVC3Rsf/Zk6+j+A8xYvIIH/uMxmufMIZ5MEe2BEpA/MnpyXX7LIHOWrmbbI/fSd6QDgL0PP8RFK6/k/+79OF2jXQD0jvdyxcKA4gObAMju2AFApKKCvs6xiTWdo8DE2fufOc6Ky9o58GQvYQjH9g+dvOb+QyErrrmavd/8b8KwxOGtm0/2BkeGST7+BJGqKrr27wfg+MH9J/u7H/8+c9cu58i+DE31G8g8/U8AFLu7OXh4Yk33wWGiKxsIMwXCDGSHcif3Ny6cxX13foZFF63i+ECR2m3bKI2MMPiNb9DwoQ+RaG/72Z+Hfqzd3SMArI7sZiiMEKtbQH26/oxcKyyUKPSNUxzIUhzMUhzNE2aLhNkipWyRMF+EYkgYAqWQsBRCGEIphOf+5gdAEEz+mVO157ZO/hBAkIgSxCNEElGCRIQgESVamSBanSRanSBamyKSiJ6Rey+2rWJR7zeoDToJmQh/WdFefUauJUmSJEmSJEmSJEmSJEmSJEmSJEmSJEnST+OlDiF5D/APQRD8IfAN4IcJFJ8ClgIbgYPAw0DhRO/tYRh2BkFQyUQIyTuBzz3f4UEQvB94P8CsWbPO1D38ZCqaiI3eT03DTIZ7eya1yqtrGBkqUl5dQyQaJTs2SpieekSkNsHwoeOTapX1jXTmJtfKYmWMjkPQ1DSpXspmSZdPDVOoqE0y1JOhqilF157BSb3qipDw2DHKa2sZ6eud1IsHEQDCTIaK6qnBCVX1zWSGS7S2xonkB4lUVFAaGaHY30915an0iGIkmLKXaEChlKWyvpmxwZD6hiLh2ESASry1lUg6NXWPTps9x4YJCFlZvotnUilWN685bWeXskXGd/WT3dNPrnOEfNcoFH8kRyiAIBkjkpwIBiESEAQBRIOJXiSAyMTnk0EkIad++GEu0Q9zSp6bU3RyfQiliRCUMFeklCudDDz50VliTWUk2itIzq8htaSOaHn8tHwXtfOvJbrlG1Q2dAKw69iwISSSJEmSJEmSJEmSJEmSJEmSJEmSJEmSpLPCSxpCEobhDuBagCAIFgE3nqgXgF//4bogCB4Gdp/odZ74ezgIgv8CNvACISRhGH4M+BjAunXrwudb85KZsYHEg3/PhVe8ni/v208xnwegrrWN9hn1fO/2cdbd/HPse/IeFqy/gJ58J401jZQGJnJZgniE4Nw0ud3jJ48MggjL3nwL2/M/mHSpdyz8MN94MMc1F64kNXMWxcOHJtZHIiTbK6huzjB4LANAJBawYF0zz3z/EKve1Mz+TTFymYm8l3RlnLbYUfJ7drPmtjdz/7/868kwhxkLl1C2dz/jQJCI0z6zibrWNvq6jgAQjcdZfPGtbL0/R/uVERL3fZ2mX3oXR//inykcP05r9Cjpyloyw3l2bO9jw+om8pu6T95D7Lxqnn7wv1lx9W1sfzhHdbCLTD4PkQjNH/kIsbq60/+MdNKuYyM0hmNUVY7xZFk1q5tW/4/OC8OQ3MEhRh7pIrO1BwohQSpKYkYlFRe3k2gpJ1qTJFqdJFIRn3jfg+cJp3kJhPkSxeEcxcEsxcEs+e4x8p0jjO/sZ+ypbggguaCGivPbSC2pI4j+7HM2L7wBgIbGLmLFIts6h3j96ct7kSRJkiRJkiRJkiRJkiRJkiRJkiRJkiTpZ/aShpAEQdAUhmF3EAQR4H8B/3qiXgYEYRiOBkFwDVAIw3BbEAQxoCYMw54gCOLAa4HvvZQz/8wiMVj1DuIVM7nwzW8nPz5OJBKlrKqKWKqSc66ooLyqjyUXXwbFEnW17VQ01EA+JAwhSEUpVJZYctFlzF93HqVCgUQ6TXVjG+tK61hUv4hsMUtZrIx5FQupOr+JdDpPzVtvg0wGikWCykpGy5Isu6iNYq5EqRSSTMeoakyx8qqZpNMBa18zi0K2BEFAKh0hHUkSveEG8tX1XHzbuyhks0SiUSpra6noH6HiQw1EKqsIyio556rryWfHKZVKJMvKqW6qZeXVaRKpAVj/PuIj7TT+xq9TGstQmjeb1c015HMlKipjpFMx5/CbdAABAABJREFU0o1pwnyJIBEhrI9yTvI6qpvqOefyMsrGspR/8IMEFRXEmpum+2m+4m3vGmJ2pgvSsDmZ5M2t5/3MZ2UPDTH4rf3kDg4RpGJUbGglvaKexOzq/1GAx5kSxCPE6lLE6lKT6mEYku8cIbOtl7GNx+j9923EGtJUXz+H1PL6nyk0JSivpztdRUtinFmHj/P03trTdRuSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJP2PnLEQkiAIPg9cDjQEQdABfBSoCILgQyeWfAX49InPTcB3giAoAZ3AO0/UkyfqcSDKRADJx8/UzKfVoUfI7f4+9+/bx6EdOya1rnnfb9F/dJzHvvwPnHv1a9j4zdt5/et/n6GHD05alzq/gafvvYPBY0dP1mauXMUPVh/joe5HT9baymdwXvKjXLx7Hz1/8Rcn60EySf5P1vPIHccmnbtgbROFfJFUR4wdD07uXXRZGTX7n+WBu/YwdLx7Uu/mG99I4Z/+mSCZJPd/fp/7Pv+5Sf0lF13DYP8Gyi9PMaO3k84//wSloSFiTY301FzAU4/uBeC6181n6M49k/ZGyuOMzx3m0LY7GBu9iPjCGOG//AsAY5dcQvs//D3RdPqFv2/9zIbG8xzsG+PK4n5KIQzUzaOtou2nPqeUKTDwzb2MPdVNpCJOzS3zKVvbTCQRPQNTn3lBEJCYUUliRiVVV80ms62HobsP0fsf20nMraLujYuI1f/07+Rw42IWdz7JrJGDbOxuIQzDnynQRJIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk0ylypg4Ow/CtYRi2hmEYD8NwRhiGnwzD8O/DMFx04s/vhmEYnlh7IAzDxWEYLg3D8OowDA+eqI+GYbg2DMNzwzBcHobhr4ZhWDxTM59WR7eQrVtC14GDU1oj/f2kyouM9PVSLOSprG8k2j/1iOLhcepbZ06qde/ZzaKy+ZNqR0Y7mNMUI9y+bVI9Wl9P/7HxKef2dIzQPLeK7n0jU3p9gxGY0TYlgARgrJgHINbQQPfhw1P63Qe2U9OUYKC3QDGopjQ0BEB81myO9px61WLF0pS9pdE8leV1HN+/g9rmGGPFJMQmMnIyTz998iydftuPTHy3a2I72JOIs3rmxT/1Gdn9gxz7+6cYe7qbyitm0vLb66m4oO1lG0Dyo4JoQNk5jTT/6hpqXreAfNcox/5+E6NPHH3xzT8iPfdSGoslapKHGSlB1+DU31FJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkl5qZyyE5FVv5gbSxzYyd+miKa3qhgZG+qPUts4gGo0x1N1NoT6csi46v4xjB/dOqs04dxVPDW2eVJtfvYhnD+eIrFozqV7o7qZ+RnrKua3zqzn4bB/ty6qn9JpqCrBzN/UzZ0/plUfjAOS7u2mbN29Kv33JOno6xqlvjhMrHiXW2AhAbs8eZjYXTq7LRgIIfuRea5L09XfSvnQNxw/lqIiMQmFiT8WllxKtrZ1yPZ0eW38YQlKxg02pJBe0XfBT7R994ijHP76FIBrQ+Isrqb5uDpHkKyN85EcF0YCK81pp/rU1JGZU0H/7bvq/toewOPX394U0LX09AK01EwFFWzoGzsSokiRJkiRJkiRJkiRJkiRJkiRJkiRJkiT9VAwhOVNmnkesdRnnXbqahhOBHpFolPNvfSMtFeOMjwSc/8b3cWjrZi5667voHNpNamX9yXCO5MIaRqqGWHLhZQSRicfUOGcejVes48q5V5OMJgFoK2/jnQt+g2w2ScfsJZS//g0QTBySWr+e0ZoESy5uPXlu64JqqpvSNM4tJ7pohLbFJ4JIAlh6XiMVex8luXIZ577tjVQ2TISIxBJJrnz7e+Br3wSg4pJLaK+PcO4VV5281oylK6htX8uC1fU0l3cRH99L2//6VaINDRQHBmjKHmDuygYAnnz0KBU3zydITNxXpDJB5PIqjh7ZS+Oc81m4up7YQ3dMfA9Ll1L/gfcTSSTO1JN61dt6ZIjq0hjt8X42pZKsb1n/E+0Lw5DBu/bTf/tukgtqaPrwapKzqs7wtGeHWE2Khl84h4pL2xl9tIuezzxLKVv8yfY2L2c4lmRp7QGCMOSJ7T1neFpJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkl5cbLoHeMUa6oKhIxyPRWicM48FGy6AEI7t28Xsc86nugmOH9rI0osvZ+cjD3D5a36O0lOjVF45C4B81wg1Na0c3ftlznvdmwEYOHaUymyCR/of4Z3L3kk0iNI33kcmPEosMpd5jFHo7KDhlz4IwPjuPTSnknQeG2T9DXMA6DsySlVDmiN7+lk4r4XBVB/rb5zoHd0/SOLiK8g/9h1GKDB31TrKqqoplYoc2rGNC977HoJ9+8hs285ooom+7ke54A23AdBz6CBV9bDz8THGl88g3nAOw49tpuo11xMpryCzeBWFTeOsv3EOLa3ljD91lIoL2iAaUMoUKI1CXWs7FbUhO3eNMOfWN1O5cA65w4cpHDsGixa9tM/vVWRLRz8Lc51QBv3N51CdrH7RPWEYMvjNfYw8fITy81qouXkBQTR4CaY9ewSRgJob5hFvLKP/q7vp+dSzNPz8ciKpF/lnNQjob17K2mNbaM4c56kdMeCcl2RmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZJeiCEkZ8rObzNSPpf7vnw7maHBSa1Z515GPFHNo1/+Eue//i2M9PZQ3DFCYe8wub1DJ9clk5AZHuLR279wstZ/9Ajllyb5xJZPnKzVJO/mja1/T+7u75B97DEyjz0GQKylhe4tfRzZPciR3admKBRK1DSVs+W7XXQfGGb/Mz0nezMayqmtqeHJr32VUrEwae7FTW2E//TPxNra2PfkU3Rs3ULH1i0n+8ViQL5wFT2dBVKZCvr/a2LG5Jq1bONCDu8Y5vC2Pl77unkU9g0xvO/UvQaJCNXLmnn23jsIo9fT21Mg+Od/BiB36CDpNWuIlpf/9M9BP1YmV2TP8VF+PtjNvliMZfOufNE9YRgy8PW9jD7aRcWl7VS/Zi5B8OoKIHmu8vUtBKkofZ/fSc8nn6XhvSteNIikcuH11HY+TVNwgF1DdYRh+Kr+DiVJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0y8y3QO8Yo32UIpVkMuMTWkVC3mCoEipWKRUKhFPpQiyU48Ix0okUulJtdzoCBXRismXyo9SlYpCf9+keiSdZjxTnHJuLlMgkY6RHStM6eXzAWE8PiWABKAYlk6emxkdmdLPjg0ST0bJFwJKxfDUHOUVjI+f+jkIp2wlzJeIxxNkx4aIJyMUw1OvZnFgkLAwdR79zz19eIBSCBvKtvJ4OsVFbRe96J7hew5NBJBcNuNVH0DyQ2XnNFL/9qXkOkfo/dw2wnzpx66vXXozAG2VexmJxth7bPilGFOSJEmSJEmSJEmSJEmSJEmSJEmSJEmSpBdkCMmZsuxmKvZ9ndWXTg51iMUTNLY20dMZYcbSVQAMHOsiN2NqaEFsWTnHDuydVFt0zdU80vfEpNprZr2BLz7aR+TaGybVc/v3M2N57ZRzZy2rZ8fDXSy6pHFSPQigIT1CbNsOZq1aPamXrqyifHh04tx9+1i8Zs2Uc+euupLuw8M0NEdJFPaRXLIQgPEnHmPJ/FPJI8OFkCAZnbQ3uriCnZsfYt66a+g+NEZFtvtkr/7nf45YdfWU6+l/7smDE8E158V2sSVdzaqmVT92/eimboa+d4iytc1UXz/HAJLnSC+vp+5Ni8juG6TvizsIS8+TtvNDTcsYTlZyftl2AL6/seslmlKSJEmSJEmSJEmSJEmSJEmSJEmSJEmSpOcXhOGP+Y/yL2Pr1q0LN27cOH0DjPTAvns4nq9lx45Odj32MFUNjay76VbqYgX2HmmlunGUrt1P0zp/Idm+UWZWLmbs8WMQhpRf0Mrx4CjjuSE23fVNsqOjLL/iGljUyHA6z+d3fJ7O0U6unXUdC8ouJT/eRFtxlAUHn2XoP/4DSkUq3/Z2Diw+n4rxOJvv7aBUDFl+SRulYomqphTd8U6iB2vY9Ug3ybIYqy5vofzxb5I6byWdZQFdj27iwNNP0jhrNmuvu4niX/41pdEx6t79LqKz0xwagKfu+hbFYpGVV99AGMyjrrWOmfFNRHt2MhY9h/6vf4fMxicp/+2P0p2YzbYHuqhuSnP5lTMYfaiTQs84qaW1ZNuKHOneTSQ+j9qmBiKf/Qty27ZS/YY3UnndtSRnzpy+Z/njnYkUjpfsl/Jdn3iEg9u3c2/lr/MnF/08f3jN373g2vG9A/R86lmSc6po+PkVBDEzjJ7P8IOdDN6xj/LzWqi5dcELBrUc/8JbiO/8LueNfJyLKtJ86qM3vsSTnpF3V5IkSZIkSZIkSZIkSZIkSZIkSZIkSZL0MmWKwJnS8TiFJ/+TJ+57jK0PfJ+WBYsICfnG3/4F3aPlDHYP8ODn/41UeQV3/tNfUx9tZujbB4jWpYjWpxm8Yz/VkTru+pe/I1VeSePsuTzxtS9RPNTLHz70h5QocW7Dudyx/5tsHvgBn3hgL+0du+j5oz8i3t5OYs4cev/mb6gYLnLff+6isi5FbUsZj35tH0EQ8MhX9lHcWcEz3+2gYUYFybIY3/vcbrJzzmXwu/fy1L9/nkObN9G2eCljQ4Pc8U9/TfyWm4m3tnL0j/6YI30lvvfJf6OyoZG6thk88PnPQHiU735yB/1jteR7++j8X39Mdtt2yi+6iKPD5Tz2jf3UtpZxzsoG+v59G2G2RGJWJePb+ojsyrH70Qcp5Y/y3U9vJ7j8JpJLltL78Y+TefyJ6X6ar0ilUshTB/tZE93B08kkFy567QuuzXeP0fvv24nVp6h/xzIDSH6Myovbqbx8BqOPHWX4B4dfcF3dirdQE5Zojhxgx8DoSzihJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElTxaZ7gFesp/+T4ZZL2f6d+yAM2fHQfSdbvV3HSJVX0HNoP9mxEVrmLSLcmSPMlxjf2ntyXWHXMDXNrex/euPJ2p57f8DaK1fz/a5T533rwJd53/qrKXzsM4TZLCP33ANA6txz2fr0AMVCif3P9Jxcf2hrH4vWN7PlB51kxwrsebL7ZK9/JE5lazPHtzwKwMCxrpO9oeEhuPde0qtW8eSjD1PI59i78bGT/QObHqSm+Xr6judIj1dQONJFAYgsXs72rTny40X2PnWcc2ZVEhZCcgeH4ODE3uJgloWrL2Dfkz+gtuVmBkbGid55JwB9//EfVL7meqJlZf+TJ6Ifsbt7hJF8yIWJ7TxYVs772i583nXFkRw9n9lKEAto+LkVRNL+s/Fiqq6bQ3Egy9B3DhKrTVG2qmnKmuj8KykGAQvKd3JvsJS9+waYP6/mpR9WkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQgMt0DvGJVzSBaHCWZnhqcEUskCCIxgiBCJBIhMzoMZcGUdUFFjNzY2KRauraGofzQpFp1spbe0RI0tUyql4aHKKuITjk3VREnM5wnVRGfOlukRKRUIgimvhrREyMWh4aorKmZ0k9X1ZPLFIjHIRI/dd1wcID0c+6vOPVWiaTjjI8NnzwjRuHUTC0tBPGps+p/5r5dE+EzF0a3kpl5MWXxqe9qmC/S+9ltlIZzNLx7ObG61Es95stSEATUvnERibnV9H1pF9l9A1MXpWsYbj2XN/MUAF//zrMv7ZCSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJD2HISRnysq3ULXv61xy0zWTyi1z59LSVsuhHSWWX3EjmeEhCrks4zPzEDuVzhEko4QzYxRy2ZO1SDTG3Ksu5dj48UlnvmHOB/jKxl5Kr72VIJk8WS90d9N+bi2xxKnHHEtEaJhRQefefpZe3wDPCQSpqIlT2buLYKifZa+5btI1Fpy7htiTT0+c29vLinVriCVOXSueTNE0bx2xWImGpoDE4INU33A1AOMPP8C5i0sEkYmLHR3MEm36kcCL9WU8+/g9tC66gFg0JLXvqRMHx6l/73uIGEJy2n3vmUPMCY9QjA9y3tqfn9IPSyF9X9xJrmOYurcsJjGzchqmfPkKYhEa3rmUWF2Kns9tJ989NmVN5ep3cW1xLymGeWzrvmmYUpIkSZIkSZIkSZIkSZIkSZIkSZIkSZKkCUEYhtM9wxmxbt26cOPGjdM3QN8B2H8fR6IL6TzUxUh/L8mycppmzaamtoWjx1Ikk11kxwYBaKidRfloOaXBHAQQbUgxWjbC0SN7GDreTVgqUd3cQmxOEzvDgxwZOUKmkKGtvI0Z6XPp7a9lVXSE6q1PUTzSBZGA2Ow59C+/kLFjBUb6JsJMqhrTJFMRSkEJKguMHYbR/iyxRJS6piTVxzYTbamiOw5DBzsZHRygrLKa5lmzKX9iE2THScydQ2lRO4c6jjPcMxGIUtPSRrJiPrFompk1HcT6dzDS10B27yEKfX0E172Ro0NpRvuz1DelaCuPUerNEmYLRKqTFOqKdBzdQbp6ARHSVG37PqWjR0jMmkXZhReSnDVzup7kiwlefMlP7Yz/Uo5mC6z86J38XPTbtNbfyTt/dReJaGLSmoFv72Pk/k6qb5xL5SUzzvRIr1iFvnG6//lpgniEpl9aRbTyOd/zyHFKf7WQm8Jf5dDwCu77nRuoayl/qUY7E++uJEmSJEmSJEmSJEmSJEmSJEmSJEmSJOllKjbdA7xiPftlRnqOcsc9P2C45zjxVJpCNksYlrjm/R9lZDDgia/+Oee97k1su/9eXnP+LzH49DGIRSAMoRiSuqGFez/1bwQBBJEohVyWNW96E/9Q/DSD2UHi0TiZQoYr229gtPN1rDn6IN2f/iRBMglhSLSuju5fWsLT9x4lGosAUCyUWHv9bPq6Rhgfy9O1e4hYIkKpEFIqhVxzeZLEps189+HvUchmiafS5LPjxOIJbr74GrKf+jTRhgaO/fxbeexbXycaj0+cm89z/hs+wLMPVHLLW0rU9Byn4yN/AaUSqfMuYFdlP3u2dRCLR7j+5rkMfms/RCCIRQhzJaJzytjT8whNC8fZ9nAN12yoI/tff0U4Pk7jr/86yQ+8fzqf5ivOI3t7KBDh8shmtix67ZQAkpFHjzByfyflF7RScXH7NE35yhCrS9Hw7uUc/9hmej67lcb3n0skEZ1oVjQyPnM9txzaxJ8mNvDt2x/nHR+6YnoHliRJkiRJkiRJkiRJkiRJkiRJkiRJkiS9KkWme4BXpGIOdn6LsVQbwz3HAciPZwjDEgDDfX0QjlDI58hns7TOWULQUZjYWyhBMZw45ug45bW1FAsFCrksAEc3P8v86nkUwgKZQgaAzX2Pc8WcJKWH7gcgzGYJcznii5fSuWd04qxCiWJh4vp9R0dpmV/D0T1DE5fMlSiVJq6ZoYzxWIRCNntybsKQQi7LeDRCmM8TX7yI/Vu3TJybz1PM5wHo7dhJZX2K4cGQ/EgJikUIQ4KFy+g4lJu4Vr5E4sQclCDMTXwudmSYOX8Zxw9uo6ohxViYJhwfB2Dk+98nLBZP3/MRtz+0k3LGqEzt5dqLf31SL7O1h4Gv7yW1pI6a184nCIJpmvKVIzGzkrq3LiHfOULf53cQnvh9Ayhb9wu8hSeIUODepyf3JEmSJEmSJEmSJEmSJEmSJEmSJEmSJEl6qZyxEJIgCD4VBEF3EATPPqe2MgiCR4Ig2BIEwTeDIKg6UU8EQfDpE/VngiC4/Dl71p6o7wmC4B+Cl0MiQjQBC66hLHuMitr6Ke2KmlqCSDnRWIxYIsmxQ3sIW6NT1kWak4wN9E+qNS1byv6hA5Nqy2pW83BHjsh5F0yqF/bspHVu2ZRza5rK6D4wROOcyim9NBmSpZBYPDH5luJxUoWJoJTC7j3MXrx0yt669oWM9GepqAyIV0QhMvF6lbZvpnXGqfPy0amvXbQ1zZGDu6ifuYjh3nHSZE72yi+5mCA69fvRzyaTK/L9Pf3cGH2MjRVtzK+Zf7KX3TdI7+d3kJhRSd3blhBEz/5ft5eL9LJ6am6az/j2Pgbv2EcYnggbWXYL6WSEc+JbeLyqhj1Pdk7voJIkSZIkSZIkSZIkSZIkSZIkSZIkSZKkV6UzFkICfAa4/kdqnwB+NwzDc4CvAr99ov4+gBP1a4C/DoLgh7P9C/B+YOGJPz965tnpnDdR0b+Z6972ehLpNABBJMKlb34LLfURDm8vccnbf5HejoO0LlrMSOMo0YbUye2JJTUMxwZpWbD4ZK1p3gKiS1tZ07zmZK2tvJ3z6t5INJKg79LriC9ceLIXmbeAsoWV1M8oP1lrX1xDqViirCXGvNeUk66Mnxr5wgZij95FZEYTG37+XUTjE71oPM5Vb34XhS/dDkDqnBUsWzGLxlmzT+6dtWIVYdjO6isbqa/PkTh+N82//WGIxchufJwVCwtU1CYB2L1/iPT65lNzVsbJrwgYz2aIxOaw5vImSt/8DwCSy5dRdeON/4MHoR911zOHGA/iXBd9mAU3/J+T9fzRUXo+t5VYbYr6n1tOJGHwy+lWcWEbFRe3M/LwEUYeOBE2Ek8RXfNO3sMDjMSruPNT35zeISVJkiRJkiRJkiRJkiRJkiRJkiRJkiRJr0qxM3VwGIb3B0Ew50fKi4H7T3y+G/gO8AfAMuCeE/u6gyAYANYFQXAYqArD8BGAIAg+B9wK3Hmm5j5txnopzb6Y3r5RVl17I0E0SiQSJTM6zHhQzeLzAnoObWbh+gvY/cSj1Ne3E8wrEFmZIAgg3z9OdV0l1U0tzFqxEggZHeinKVEPIfzSyl+iFJYYyg3RXBOQjkdoDUdhzWpi114DQUDu6DFqYjGa5lQxb2UjQRAw3D9Oy7xqug71Ex9Ns2hDnHgySiQaMNw7RsX1N5AvDjB65Bjrb3oDYVgiiETIZDO0vuc9hAMD5Lq6yERqaVm4hAUbLiQIAoZ6emiZV87RvUWKYZLIstvI3LmLhg+8H4IIQ5VNzF1ZIlkWZ9bMCkrbeqm6ZjZhsUSYK1KsjFLb2kLznDKO7S0x621vh4vPp9DbS5jJTPfTfEX51NcepZk8g+XdvG7Ba4GJAJLjH99CkIjS8N4VRMvjL3KKflbVN8ylOJhl8Nv7IRJQeXE70fM+yNWPbiBdGOFbkQxv2tNH64K66R5VkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvQqcsZCSF7As8DNwNeBNwEzT9SfAW4JguALJ2prT/xdAjqes78DaH/Jpv1ZFXLw4N/RX7ue+//7vykVC5Pa6bpzKRVDNt99B6myNKVsgezDvRQ7J4dtJOoa2fnwfRQLp/aHySjPlD3Ddw5+52Rtb/MhFsZ/gcwnPkb28cdO1lPnXcDWH3RxeMfgpHNTZXEiYZQnvnyY8dH8pF7b5RFi2V6e+fY3JtWDSISGK24g+3//kdT55/PUXd/iwJZnJt9XVTs7HmtgXlOWmt5+hr78FQDK3vg2HjnazWBPlkgkYMZNc8hu6SG7pefk3mhbmnx+jM6dm9n9ZCstawPy//TPAEQqq0gtXfrjv3P9RDbtO86WYhW/EfsCDVd/lCAIyHWO0PPJLQSxCA3vO4dYTWq6x3xFCyIBdW9ZTF8pZPCOfVAsUXHpLNKr38S7H/8e/1p5M3f/5ed457/+KkEQTPe4kiRJkiRJkiRJkiRJkiRJkiRJkiRJkqRXichLfL33AB8KguBJoBLInah/iomAkY3A3wEPAwXg+f4HfvhChwdB8P4gCDYGQbDx+PHjp3Pun04xCwMHyJdiUwJIAArZDMXCONF4gtx4hsrqehgpTlkXjhWJxhOTaiPHe6hJ1kyq9WS7mFEeUOo6Mqke1DcyMjA5ZARgfDRPsjzO+NjUXiGMkS88zyylEoUTgQhBfR1Dvb1T1mRH+4kno+RzUMo+574bmhkdmrhWNB4hki9NPX+4SEVVPePDfSTTMQrhqXyc3MGDU9brZ/NnH/sqFYzRUrGFS9a8g8yOPo5/bDNBIkrjB84l3lg23SO+KgSxCHVvW0J6ZSODdx5g4Ot7CS7+Ld6duIcYRf49PcTeh/ZP95iSJEmSJEmSJEmSJEmSJEmSJEmSJEmSpFeRlzSEJAzDHWEYXhuG4Vrg88DeE/VCGIa/HobhqjAMbwFqgN1MBJPMeM4RM4AjvIAwDD8WhuG6MAzXNTY2nrH7eFHJSlj3XqrHdtI4c9akVqq8gsq6BsKwmlg8TnlNLbufeQQWJ6ccE21NksuMTarN3LCOPf17JtUubr6Zz24ZIv76N02q5x55gIXr6qacW9NcxpFd/cxeWTupHokGlOf6KItESVdVT+rVtbaTONwxce6jj3HuxZdMObe2dTH5XJHqmiKJyiJBOg1A/t5vsXhF+cTnbJFsWXzK3mBxil3PPEz9zOXkxgukh0495uqbXjtlvX5637rrUR6nnTfH7ub8d3yKkQc66f3sVmL1KRo/uJJYfXq6R3xVCaIR6t6ymIrLZjD6aBc9Xxum+YJf4F3Ru9mdWs0XP/ZXjA3lXvwgSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZJOgyAMwzN3eBDMAe4Iw3DFiZ+bwjDsDoIgAnwG+EEYhp8KgqDsxCyjQRBcA/xBGIaXntjzBPBh4DHg28D/DcPw2y927XXr1oUbN248I/f1Exk+Bk//Fz3FWh5+dA/7t26nad4CLrrpBqpGj7Dl0EIqW+HIjgdomDmTIBMyM7aY4rMjRMrilF3awI7OJ8iOj/LsD75HJBLh3FvewK7mPnKxAl/a/SXG8mO8dvZtlIY2sKSxndyxo6ze8gDB7V8gWlnB2Hs+xJ6ZK2nsh533dZJIxVh2SRuD3SM0r46xK7ebxJZWjjw9SnV9knWrA6KPfo2R113GkcIoPXc9xvG9e5m1dDnrz7uE0Y/8IdGaGuo+/EFiqQNs6wzY+IMHSaTLWHntWxjqb2XxyjJmjX8XurczFlvLsc/cQXbPfsr/8M/Zk5nJ7se6mbGoig3nNZK79wjhaIHIigo6irsoJsvJjLSyaGGSzB/+GmEmQ8OHPkTVa64nWl394t/59AjOwJmn/ZdyqG+I1/zFfwMxfmvu/Vwc/XWyewZIL6+n9i2LiSSip/uS+imMPnGU/q/vIZIISaZ/h2t7f5nx2DB/ONjDG//u94lGz0he1Jl4dyVJkiRJkiRJkiRJkiRJkiRJkiRJkiRJL1NnLIQkCILPA5cDDcAx4KNABfChE0u+AvxeGIbhibCS7wAloBN4bxiGB0+cs46JwJI0cCfw4fAnGHraQ0h+aKiLQhglU4hQjCXJEqOBAYgkyBTKIZInLOQIIhCGkI5WEIYFGB8hn4hRAsIAwjAgE00TiWYpBVkiQYRSWCIoVhOGQBgSRCYyBWrGBilGYwzGy4hEAwghXWTiGiVIRnMkGKUnGiESJEhk00SDIrHMMGMVMXLRkFJYIlGMEstDPIRIKYRSkWIswVAsTU10lERYYCQfI4hECUlTigaMhyUagkGiQQClAsVinFK2xGhZJfkgSroIxWiR8egINaVKoqUo46VRICAkTTKSIxGMkh+PQCRKvKFhGh/eT+SsDyHJDI/wjj/5e55kFb+W/ARv4rchDKm+cR7lG1oIArMozgb5Y6P0fWEnpaO72RT/DL+U+2UaUxv5nWw5r/+j3yAaO+1BJD54SZIkSZIkSZIkSZIkSZIkSZIkSZIkSdJJZyyEZLqdNSEkeqU7q0NINt13N//fdx7i0dJ63h79Ku8vvp3yZc3U3DiXWH36dF1Gp0lYKDH8YCfZ79/JfxQe4++Lr6ct9SQ39+/nF/+fv6Omrfp0Xs4QEkmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSSYaQSP8zZ10ISW5knHs//y/cf2AT95Wu4EjYwBv5Lr+98L1UXzWX5JzTGmShM6A4kmP0rnv59Kbb+dvirdRHeliSuJtzx5PcdM37WXL5eiLRyP/0MoaQSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZJOMoRE+p95yUJIcp0jFPoyhLkSYb5EmC8S5kpsG97Os8/8Iy2F3XwrvJ6O0mx2leaQJcHc4DDvqh7ine//FWJ1qTMwqs6kcGyEH3z2b/nzQ/XsDGcTo8C86AGaIp1UhUPMK3UwJxhmcNa13LrorSRTKYJElCAeIYgEEA1Izqkmko493/GGkEiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSTnrFhpAEQTAI7J7uOU5oAHqme4gzwPuCnjAMrz+dFw+C4K4TM/ykXknPwXt56Zz2d1eSJEmSJEmSJEmSJEmSJEmSJEmSJEmS9PL1Sg4huets+Q/2QRBsDMNw3XTPcbp5X2eHl9u8P473IkmSJEmSJEmSJEmSJEmSJEmSJEmSJEnS9IhM9wBnytkSQCJJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSd7V6xISSSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSfjKGkLw0PjbdA5wh3tfZ4eU274/jvUiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNA2CMAynewZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0ygy3QNIkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJml6GkEiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmvcoaQSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSa9yhpBIkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJr3KGkEiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmvcoaQSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSa9yhpBIkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJr3KGkEiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmvcoaQSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSa9yseke4Ey5/vrrw7vuumu6x9ArX3C6D/Td1UvktL+7J4Rn6Fzpuc7U+ytJkiRJkiRJkiRJkiRJkiRJkiRJkiS9akWme4AzpaenZ7pHkH4mvruSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJOml9ooNIZEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZL0kzGERJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSXqVM4TkFaJ7eJzu4fHpHkP6mQ2O5egayFAolqZ7FEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSXnVi0z3AcwVB8CngtUB3GIYrfqT3W8BfAo1hGPZMx3xno4GxHN945gj/cM9uAH7lqoXcvLKNmrLENE8m/WSKpZCH9vTwR3dso3Mgw5vWzuC9F89lVn35dI8mSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdKrRmS6B/gRnwGu/9FiEAQzgWuAQy/1QGe7h/f28odf30rPSI54NMKBnlG2HRma7rGkn9i2I4P8/GeeYHf3CGO5Ip995CD/et8+8oXSi+7tGszQNZB5CaaUJEmSJEmSJEmSJEmSJEmSJEmSJEmSJOmV7awKIQnD8H6g73lafwv8DhC+tBOd/b60sQOA65Y3c8M5rXxpYwe/+B9P8vH799E3mp3m6aQXt+vYCMXS5F/tLz15mGPD4y+4p380xycf2Md1f3s/1/7t/Xzs/n30+r5LZ1SuUOJv797FQ3t6pnsUSZIkSZIkSZIkSZIkSZIkSZIkSZIkSWdAbLoHeDFBENwMdIZh+EwQBNM9zllnXmMZD++NsKK9mr/+7q6T9T/59nZaqlPctLJtGqeTXlxlKsYVi5tYNauGQrFECNyz7RipWPQF9zy0p4c/+tb2kz//6be301KV5OZV7S/BxNKr07e2HOHv79lNXXmCp/7gmukeR5IkSZIkSZIkSZIkSZIkSZIkSZIkSdJpdlaHkARBUAZ8BLj2J1z/fuD9ALNmzTqDk509Xrd6Bnu6R3niQP+U3lee6jCE5GXi1fju/tCCpgqSsQh/e/dEiE55Iso/vHU1DZXJF9zztac7p9S+9GSHISTSGfTA7h4A+kZzdA5kaK9JT/NEkiRJkiRJkiRJkiRJkiRJkiRJkiRJkk6nyHQP8CLmA3OBZ4IgOADMAJ4KgqDl+RaHYfixMAzXhWG4rrGx8SUcc/qsaK/mozcto7UqNaU3t6F8GibSz+LV+O7+UEd/hru2Hj3582iuyN/cvYvBsdwL7lnQVDGltvB5apJOnx1dw1QkJ7LLdh8bnuZpJEmSJEmSJEmSJEmSJEmSJEmSJEmSJJ1uZ3UISRiGW8IwbArDcE4YhnOADmBNGIZHX2Trq0osEmFuQznV6fjJWnU6ziULX11hFnp56h4en1Lb1jXE0HjhBffcvLKNmrJT73tVOsbr1844I/NJgjAMOdg7yiULGwA43J+Z5okkSZIkSZIkSZIkSZIkSZIkSZIkSZIknW6x6R7guYIg+DxwOdAQBEEH8NEwDD85vVOd/eorEmw82Me7L5xNQEAQQCkMqU6fVY9Xel6z6sqm1C5f1Eh9ReIF9yxrq+b2D17ItiNDACxtrWRBU+UZm1F6tesZyTGaK7J+Th33bO+mo39sukeSJEmSJEmSJEmSJEmSJEmSJEmSJEmSdJqdVSkVYRi+9UX6c16iUc46h/vHeHBXD08e6ueC+fVcOK+e1po0AOXJGL993WJ+7YtPs71rmFQ8wkduWMqS1qppnlp6ccvbqvk/Ny/jz+7cwXi+xLLWKn73NUsoS7zwP0/FUsjgWJ4tnYOEYUhbTYpCsUQsGnkJJ5dePQ71jQIwt7Gc9to0HX2ZaZ5IkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0ul2VoWQvNLlCkWODmZJxiM0V6V+4n39Yzl+9/bNPLSnF4AvP9nBrava+JPXn0P5iaCGxS1V/Nf7zqezP0NFMsbs+jKCIDgj9yGdTuXJGO88fw4XzKsnky/SXltGQ0Xyx+7ZdKif2z72KLPry4CATz10gM+/7zw2zK1/aYaWXmU6+idCR2bWljGjNk1H/9g0TyRJkiRJkiRJkiRJkiRJkiRJkiRJkiTpdDOE5CVysHeU/3vvHr66qZO6sgR/eNMyrlnWTCoefdG9e7tHeGJ/P++7ZB7lyYn1Y7kiB4+Psqy9mp1Hh7jz2aPsPjbCjee0csH8egNI9LKRK5T4/o5u/vAbz9I9nOW157TyG9cuYm5DxQvuuWf7MX7n+iVs6RggBG7bMJO7tx097SEkmVyBnUeH6RzI0FaTZlFzJeVJ/9nUq8/x4SwAjZVJGiuS7Ds+Os0TSZIkSZIkSZIkSZIkSZIkSZIkSZIkSTrd/N/0L4FCscSnHtzPl5/sAOD4SJYPf34TX/rFC1g/p+5F94/ni/z7e9YTjUY42DvGQCbPivZqIkHI/p5R3v6Jx/jTm5fxlrXtZAsl7tx8hLddMOcM35VeDfLFEjuODtMzMk51KsZorgRhSFkiytB4kapUlEyuRImQymScwfEc5fEY+WKJXDGkOj2xLhWLEAaQyRapLYszOF4gHo0QjwSM5Ar84n8+SRhOXPObm7sIgoD3XzyHgfECpTCkIhllKFOgPBkjGomwrK2aX/3CJkon9mw6NMD/94Zz2HSon+FMnngsQiSA0RPXG84WKJZCGitTLGmppHcky97joxRLJcqSUYYyRSpP3EsxDKlOxRkvFOgazPI7X95MNBLwvkvncXQwQ11ZAk6cXZaMMb+hnEQswqG+MXqGs1SVxRjLlgiCkFQsxki2QCwaMKehnBm1ZdP3MKX/geMjWRLRCFWpGHXlCfpGc9M9kiRJkiRJkiRJkiRJkiRJkiRJkiRJkqTTzBCSl0DPSI6vPNUJQEUyRiQCQ5kCu44O/0QhJHPq0vSM5vmzO3fw2P6+k/U/vXUFs+rTfOrd6xjNFfn9rz1Lz0ieN6+bwa6jgyxqqT5j96RXhyf293H/7uNsPNDPbRtm8YOd3dSUxZlTX84dm49w2/pZPHmwn3wxZN2cGr66qZNbV7Wzp3uEI4MZrl7azFc3dXLF4ib6R3M82znI69bM4BvPdLJyZg3RICASCU4GkPzQt7Z08Ya17XxtUyfxaIRlbVV8Y1Mnb1g7k56RcXYdG6WtJs2tq9pZ3vb/s3OXYXJcZ9rH/9XM3cM8I2ZZLINkmTFmdpg3iQObDTi4SfbdzSbZ4IazISe2k5iZ2bJkyQKLeUajYZ5m7no/tDz2WDLEgjHcv+vSJfWpU895TlV1t7707WdTR5jfP93CeXNquGN9B8dOKCOTK7Bm7yCXLWjg/s1ddIVTnDSlgkwuz+6+OI9u66Hc52R8+Yt7Wdc6RCZfYOG4Um5b147FMPjy2dMo89mJJHL8aUUrp02rZCiR4fHtfcyuC3LchFK8Thtr9w2xsX2YKxc28si2HqoDLmqCLu7c0Emp18HZM6tZNqWChlIFkchbT180TYXfiWEYlPocJLN5kpk8bod1rFsTEREREREREREREREREREREREREREREREREREREZHDxDLWDbwTuB1WZtQG+OKZU7lqcQOXzq/nK2dPoyboes1ze4YTOGwW9g4kRgWQ2K0G02r8/PqJZv77/h08uq2Xc2bV0Dmc5Jt3bmHFnsFXqSry2gZjaR7a2sNvnmzmhEll/MfdW3hqVx8hj4P/vHcbC5pK+ekju7jj+Q6mVPn4xh1baCrzcuPqfVy3spWFTaVce+smbBYLK/YM8JunmlkyuZxrb91IdzhN53CKnzyyi4J54Nq1IRePbevl/s3d1Jd4+PZdW5leG+T/nm7mgS09zG0M8qWzppLO5VnTOszU6gBXLKzjy7dsJJ7Os60rws8f282SSRV87fZNPLKtly2dEX71xB66win+856trNwzQKm3uJf5jSX87NFd3La+g6nVfr5xx2bW7RtmTesQ371vGx67le/csxW71WBl8wC/ebKZHT1R7ni+gx09UQbiaW5b18GSieV8887NPLd3EIfNwnfv386WzghP7+rn23dvYWdP9OjfSJHDoD+WodznAKDUU/x7MJEZy5ZEREREREREREREREREREREREREREREREREREREROQwUwjJURB02/nMqZP41RO7+f3TLfzpmb388KEdOGyvffktVoN8AWLp7Kjx846p5fv37+C06VUAPLClmw3tYb553gwA/vrsPgZiqcO/GXnH6I9nuHlNGwAGBpFUjpOnVHLfxi4AfE4b3ZEU8xtLeGpXHwANJR62dUUZV+ZhS2cEgPlNIZ7c2YfXYaU/liFXMDlteiV3Pd8JQOdwknkNoZF1rRaDfz1tCjevbef4CeU8sq0HgDKfg70DCZr74jSWevnyLRv5v6db+MPyFr58y0YMiwWHzcKSyeU8sLkbiwHpXJ50rjBqX3v64kRSOZZNqeC+Td0A+F12usIp5jWGeGpX/8hch9XCh5eM4+ldAwAsaCrhiR3FvY4r8/DVc6expnWI/3u6hcsW1FMXcpPI5Dl1WhV3begctW42b7KrJ3boN0ZkDPRH05T7nACUeoshJENxhZCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLyd2Ma6gXeK1S2DJDL5kde5gslfn23luAll2KyvHEZitxikCwWaSr3YrQbZvAlAfYmbcWUe/ufBHSSzxbo3rNpHOldgVl0AAJtFGTPyxvmdNtwOK/FMHotRHEvn8rgdVgCMkbECIY991FgmV8BlL84zzWKwSK5gYrcWJ2TyBRw2C5l8gX8818blC+u5bGE9iXSeVC5POJEhkcmTzuVH6lj2Fz91WgUPbekhnSswodwLQHN/nPs3dXH2zGryeRO7tVj7hXNeyrZ/M+lcAbfDcsBe/K7iXrwOK188ayoPbulmXFlxnYJZPD9XMLlqUSP/de82CsW3JL97qpnPnz6ZCp+zeJ329/1SXqc+cuWtqT+WZnZdEHgxhGRAISQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIm8rhmmaY93DEbFw4UJzzZo1Y93GiG/cvomb17bx8L8uJVcwyOULfOeerfzpQ4tx2A4MK3ip1v4o8UyO1oEUP3xoJ60Dcb59wQz6oml+9ujuUXNtFoM/fXARuUKBKVU+6kq8h6X/1M5dJFavJr5yJa7Zs/CfdhquyZMPS+23uANTLg7Rm+nZ/cfqfXQMJ5ldHwTTJJUr4HfZyOQKGPuTO9LZAl6nlVyuQAGwWS2ks3lcDiu5fIF8AVz24pjdaiFvQi5fwOO0ks7miafzTC9EcG/fhG2wj8y0WQw0TmbYtJHO5vE6bORME9MEiwF+t4271rdzrmWA8lVPQMEkduJpbAk1MLuhhK5IGo/dSjpXwGY1yOdNUvkCmVyB5v44c+uD3LK2nVOnVVIVdJHLmWAUg0jSmWJfuVwBm9XCcDLLUzv7mFoTYGd3hFOmVeJzWcnmTGLpPH96Zi+bOsIAVPqdnDmjigvm1NAbTeNx2tjRE2Fnd4yeSJrt3RH+9rHjmFodGLsbOtphf3b3e1N8qdzXfB8+h49l9cvGupW3vELBZPI37ucTJ03gS2dNo7kvxqk/epKfXDmHi+fVj1VbR+r5FRERERERERERERERERERERERERERERERERERERF5x7KNdQPvFFcuqOPyhfU8vnOQv63eh8tu5cNLx5POFl4zhMSwWLn8t8/wy6vn8YPLZoNp4rBa2NodPWCux2nliZ19/GF5CxfMqeEzp01mcqX/kHrP9PQw8Ic/ELnzTgBijz5K5O57aPzjH7BXVR1SbXlzm1LtZ1dfjF8+vpt3H9vEQ1u6qQ64qC1xc+/GLt53XBPP7OnHahjMaQhx69p2Ll/YwNauCP2xFKdNq+KmNW2cM6uG7nCK7d0RLp5fzy1r2zl2fCn5gsm4bBjr//47ybZ9I+v6v/Zt2mcv4aEtPfhcNqZU+blzfQdXLW7k/i3dfKY8TvKaz1IoFADw3H07C370Szb3OLhpbRsnT6kkmsqxft8QVyxq4M7nO+gKpzl9eiUlHgcXzq3j5jXt1IZcNJR6uGf/XlbsGQBM5jeWcNOadqwWg0vm1zGh3IvHYeX3T7dw7uwaeiIpHtvey+QqP+fPqaVzOAnAxvZh5jSEuHdjF+PKvZT7HGzqiFDhc/DjK+Yy6RDfi/L6tIRbuPbpawFYefVKfA7fGHf01jaUyJAvmFT4nACEPA4AwonsWLYlIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKHmWWsG3gnaBuIEfTY2dQR4Vt3bWF7d5Tn24b57N/Ws7J54DXP9zmslHkdfPDPa/jQn57jUzeu5+HtvQwnMkyq9I6a+5El47l7QycAd23oYnNH+JD7zzQ3E7n77tFje/aQ2rL1kGvLm1csmeH29R38/ukWTppSyXfu2sKa1iECbjs/eGAHx08s40cP7+TBzT1MqvTznbu3Mr0mwPXPtvKP59pYNK6Mr92+mZDbwZM7+/jTir2cNKWSr962iVgqR9tgkl89sYfxQ+3kXxJAAmD57c/pbO7gyZ191Ifc/Ne925jbWMJvn9rDpvYw+fvugv0BJAAUCvgeupvrnm3FwGBzZ5jfPd3MydMq+drtm1i+e4A9fTF++1QzPZE01966ifVtw5R4nXz/gR0cN6GMHz+8k/s3dzG1OsC3797K1q4ImzrCfOfurcQzef79zi2EPA6e3tXPH5/Zy96BBA9v7eHRrd2ks3n+vGIvJ0+t5Jt3bmZrVwSb1eCHD+1kd2+Mlc2DfPS6NWw5DO9HeW2ru1aP/HtD34Yx7OTtoT+WAaDcXwwh8TmL+WXRVG7MehIRERERERERERERERERERERERERERERERERERERkcNPISRHgc1qIZ03uWVt+wHHntjR+5rnl/qc/L8LZ2OzGERSOXoiaXxOG99/YAenTqvimlMm8Z5jG/nSWVMp9TrojaZHzm0fTB76BvJ5MM0Dxwv5Q68tb1qd4RQ3r3nxmY1n8iybXMF9m7oA8Dis9EXTzG8K8fSuPgBqQi529cYYX+4dCdw4piHIij0D+Jw2+mJp8gWTk6dWcM/GYliOLZc5YO1CNIqTPMdNKOPhbT0AlHrttA0msVoM8pnsgedkM1gNg+MmlvHQ1h4sBiSzebL54rM7vtzLl86aymAiQyydY9nkcu7fvxev00pvNM28xpKRvbygqczDY9uLPcxpCLJ8d/+o4wvGlXLLuuJ1yhdMUtkCp0yrHAkDekGuYLKhffi1Lrscqu5NnH7nlzg9kQJg9/DuMW7orW8wXnyPlnocADhsFpw2C9G0QkhERERERERERERERERERERERERERERERERERERERN5O3lQhJIZh/NEwjF7DMDa/ZOx/DMPYbhjGRsMwbjcMIzSGLb4hBUwshoHfaT3gmM9lf101lk4u565PL+HnV8/jLx9ezPgyLwUTfvdUM79/upkHNnfzq8d3s+9loSONZZ5D7t9eX4//tNNGjdlqa3FOnXrIteXNy+u04XPaALAYxbFkNo93/5jVKA4mMgeOJV8yVjDBZjHI5gs4rMWPnHSugMdRfD90lNRhOByj1nZf+W5u2psmmcm/pIdi7e3dUYaWnXVAv4V3XczmzjC5fAGnzTKyLhQDU65e3MiPHtrB0P5AhcRB95IbGQMIuG1cMKeWUo9zZC92qzFq3VQ2j3v/Xkau00v6HrUvx4GfAXKYbfg7Zckwn4tlKXOVsWto11h39JYXSRVDfwLuF7+v/C470dSBYUAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIvLW9aYKIQH+DJz9srGHgVmmaR4D7AS+erSbOlSFvInFMHnvceNGQgqgGIxw0pSK11XDajGYURvk/Dm1LJtSwez6IDNrAkAx0GEgnuGzp01mU/sQAIYB7z22kTn1oUPu3zluHKUf+xhln/gE7nlzKXnve6j/2U9xNDQccm1586or8fCFM6cAMJzMMr7cy1M7+7hwbh0AewcSzGsIsbE9zJJJZdgsBmtahzh9eiXdkRTjyr247VYe3dbDZQvqSecKuOwWQh47927s4r3HNQHwnS1pwv/5E+zHHYe9vp7Chz/BziVnY7FaWdUywBkzqrAYsK0rwgkTyzBN+I+9dmL/9VPcJ5+Ma9lJxP/rJ6wNNuFz2Lh/czfvXtwIQDZvUuF3cs6sam5Y1UrBhKFElgnlXp7e2c8Fc2sxDGjpTzC/McTmjuIaNotBicfO506bzN9W76PU68Btt/LI1h4uX/Dic1/isdNQ4uZfTytep3gmT32Jm0e2jZ4HUOZ1MK+h5Ijft3e8ttUA1CcjjPc30B5rH+OG3vrCyWLYSPAlISQBl41oKjdWLYmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyBFgmKY51j2MYhjGOOAe0zRnHeTYxcBlpmm+57XqLFy40FyzZs0R6PCNeWpHLy6HlUgyx6qWAVx2K4vHl1LuszO9JvSGarb0RQm4rHRHsiSzeUo8dhKZPJ3hFD6HjUwuzwmTynHarYdlD4V0mkIigTUUwjCM1z7hneGwX4g307MbT+dY1TzAs80DLBxXQlc4TTydZWKln+f3DTO7LsBwMktvJMWsuhAb24eZUO4lWzBpHYgzr7GEbV0RKvxOnDYr27oiLBpfwp7eOG67hVKfk+f3DdNY6uaYChfJeJKsx8czuweY1xCiP55mKJ5hWk2ADW1hplb5iGfy7OyJckx9iGWTywBYvnuAbV0RFo4rZWd3lIDbRsDtYFPHMIvHlWICn75xPelcAYsBH182AYth4LZbmVLtZ0PbMDNrA4STWXoiKWbXhUhl83zt9k1EUjlKPHY+duIE+mNpplT5cNttdIeTeJw2fvboLqZV+zl3dg17++MsGldK+3CSTDbPuHIvGzvCVPicnDCpnClV/rG9oaMdqTfx2H2pFAqY361huJChpFDgfxZfzuOpTu675L4xa+nt4PdPN/Of925jw7fOHAkiufAXywl5HFz34cVj1Za+hEREREREREREREREREREREREREREREREREREREREDjPLWDfwT/owcP9YN/FG+Fw2rlvRykf/soaN7WEe3NLN+/+4mo7h9Buqt7cnTL5g8lxrmE/duI7LfrOSL968kXgmx2f/to73/GEVH/7LGnqib6z+wVicTmwlJQogeQfpjaa4ZV07a/cN0TWc4k/PtJDKFXhgUxdP7OxlKJHhz8/sJZLK8dSuXu7Z2Ekyl+cvK/bSE0nx3N5B/vFcG7mCyQ2rWtk7EGd7V5S/rGwlb8JNz7Vxz8Yu/vBMCwM5g+r6Su5Y38nKPf30x9L88Zm9xDJ5Ht3ay4Nbuoilc1y3ci/3bermLyv30jmcojOc5roVe+kYSrGxPcwNq1rJF+Bvq1rZ0R2luS/ODc+2cvas6pF9/ebJZv68Yi+TKn08uKmbx7f3MvyyvTT3x4mkcgAMJbL84MEd3LquA6/Txg2rWrFaLXzzzi30xzIs3z3A127fjNVqMJhI86dn9vKnlXu5bV0HVyxs4INLxr/ZAkjenhIDGLkUj3vcAEzN5ulN9PJmC9t6qwknsxgG+J22kTGfy0Y0lR3DrkRERERERERERERERERERERERERERERERERERERE5HCzvfaUNwfDML4O5IAbXmXOx4GPAzQ2Nh6lzl4fr9PGI9t6AFjVMjgy3hNO/dO1Mrk8hs1K33CKf/3H86SyBQDWtw3z9du38POr5vHx69fRUOLG57Aelv5T0ShmNIo5HMaMRrCUleGeNOmAebt6ouzujeGyW5le46c66D4s67/dvRmf3XQuz88f3UU2nuBbcwKs7e3lEzP9jLfHedaZ5wMLg2zp7eGqSV7mhTIsHyjwvWNL2NfTzbmNLk4oN1k+EOe7x5YSHuhhWbWdkytsrOiP8M2FIezxPhaUWnlXyEFvzsKvn2hmZm2QgcEI/29+kI29PXxwio8Z3iTPpAt8b3GIXT1dnN/oojQPW5MG927q4sEt3ZxQ5eCKJoNn+iJ8Z3Ep+Wgvx1XaOaXSxrN9g5wcKrCo1sZnKkKk9uyBkhJCk8bRH+6hyZXnfYuCbOvt4cqJHuYH0ywfNFniNildXMJ1LWl29SWYWObmAxOcjEsPclqtizmFIT49J8R122PEMjnOmRBgWnqQUBY+MMmNz8zSbTFo27CdysmVuBsaxvqWvv1F2gFY43JySSxObT5POp8mkokQdAbHuLm3rkgyS8Blx2J5MYDK77TTGzl8IVciIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjL23hIhJIZhfAA4DzjNNE3zleaZpvk74HcACxcufMV5Y6HS76KuxE1zX3zUeJnP8U/XiqeyOG1W2gYTIwEkL9jTF8PpsGK1GPzHhbMo9TkPqW+AxN69kMuR39dGz/e+R3bfPhzjx1P19a/hW7p0ZN6avYO8/4+rSWTyAMysCfCb982nodR7yD283b0Zn92+aJoT3UlmPvgXrLd3cP6llzL4xz8SvOhCave1kdq4gbM/8hEG/3wdviVLuLSQJ/rY45x6zacYuvFGnJMnc2llFeE77mDGZz7DjDvuxBrwc/G8uQxdfz1lH/8XJj71FMk1a7CWlnLev13LTqeN92y4Ccst2zj3fe9j8I9/xH/6GVwaCZNY+SxnfuJfGLjuL+Ta21kwaTLWr3yTE2fYqPj193HW1HDJ5EkM/eMmKj71KSY/+CAAFy07kaGbbqbs/e+j94c/wj2uieDFlzD46e9Tc8H5XNrRSfL59Zy1fy/eE07gUtMkfNddLLRYWHDV+9i85ERmbVuJ8d3rqfjsZznjzjtJb93KhVVVnPqZLzPoLaPxxt9gCw8ReNe7qPnTnwhdeQWpHTuJP/kk+7xeKr/4BQLnn4/Vq/fDERPpBGCPw07e6aciUwx56kv0KYTkEISTWQLu0f9d8LtsRFO5MepIRERERERERERERERERERERERERERERERERERERESOBMtYN/BaDMM4G7gWuMA0zcRY9/NGlXgd/Pt5M7BajJGx+Y0hjqkP/fPFDINCoUDQc2CAidtuJeC0c99nl3Li5IpD6LiokM1isdsxh4fp/MpXyO7bB0CmpYXOa79CcscOAFLZPD97ZNdIAAnAlq4IK5sHD7kHGRsBi8msR24iv2I5wQsvoO9HP8Li9VKIRIk98gihyy6n78c/oRCPYwkECN92O6ELL6T/V78m096Bc+pUhq6/Hv9ppzH897+T3rYV7wnHM/Cb3+KeM4f4M8tJrlkDQH5wEPMvv2fmM/eSf+JRgpdcSu8Pf4RZMMFqJXrPvYQuuZi+n/6MXHs7ALndu/CueIKK//kWud278cybx+Af/ojv+OOJ3HcfqQ0b8J96Cv0//wW+JScw9Le/g2kSvPBC+n76UywuF4V4nOhDD724l1gMayhE+LbbIJfDzGTgxus4JbkP/vjb4l7+8Q/SW7cWe+jpoeyB25l42x/JP7eKwLvOpe8nP8FaXk62s4v4E0+AaVKIxej+9ndIbd48VrfznSHcAUCP1QbBevzJMABD6aGx7OotL5zMEnTbR435XXaiqewYdSQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIkfCmyqExDCMvwErgamGYbQbhvER4BeAH3jYMIznDcP4zZg2eQhOnFzBHdcs4SdXzOEPH1jIr94zn9qQ+5+uU+J1ks7kqAm5uGRe3ahjXzhzCg9t7uKejV3s7o0dcs/5WAyLw0Gus5NCJDL62MAA2bY2ALqGk+zpO3C91oH4IfcgY8MVC5N77FEACqk0mCae+fOJrVgBgFkoYKbTuGfNIrF2LQCG201+aAhHUxPp7cWAGltNDZmWFiyBALne3mLt2ceQWLV61HqeBQtJPPxQsXY2C7kc7jlzSDz7bHGC1UYhPvp5MhwOcl1d2KqqyOxrBcAxcWIx7MNqHZlvDYXI9fe/uJdCAff8+cSfGb0X18yZJNetHbWGo7GR1P4e7LW1ZJqbRx13z5pF6umni7WTqf17WUB8+fIDrmlq+/ZXu+RyqGI9FDCI2V1YQo144sUQpEg68honyquJpHIHCSGxEc/kyRfMMepKREREREREREREREREREREREREREREREREREREREQOtzdVCIlpmlebplljmqbdNM160zT/YJrmJNM0G0zTnLv/zyfGus83ymoxmF0X5OL59Zw2vYrq4D8fQPKCpooAQYfBh5Y08ct3z+Pb58/gjx9cSC6X59dPt/Dzx3bz3t+vorX/EENArFYKuRyWkhIwjNHHbDaswVDxnxaDZVMqDjh9WnXg0NaXMWPxeXGMG1f8t8MBQLa7C0dj4+ixrk4cTU0AGFYLWK3k+/ux1dQAYGYyWLxeConEyPOSHxgYOf6CbHcX9vHjR9XOdXe9WNtuO/AZBAynk3w4jK28HIBCLIq1tBTyeSyu4nssvnw5/jPPfFnt7pHaL+6lC3tD46j6uYEBbPv7MjNpLD7f6ON9fdjq6l6x9kvZq6oPGJPDKDlE0u6k1FOO4a/FHi8Gz4Qz4TFu7K0tnMweNIQEIJbOjUVLIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJyBLypQkjk9bNYDCw2O9+8cyvX3Lieb9+9lX/9x/M47LaROX2xNNu6o4e0jj0QoJBOYy0vp/QjHxl1rPyaa3DPOQaAyqCLeY0hzppZjcUAn9PGJ0+eyNQq38HKyluALRik+htfx7DbSe3YgXfZMhKrn8N/yilYvB7iq54leOGFZFr24pw8GWtpKdGHH6b0fe8lPzyM1evFXldH5N57Kf3whyGXIx+N4pw2jch991H6/veB7cXn1XC5qfz8v2K4XCSefx7/WWeS2rIV94L5WIJBYk88SejKK0f1aB83jqqvfgUzmcQsmDgmTCByz72UfuhDYLGQ7e7CPXcu6Z27sJWWELzoQtLNzfhOOYXEc8/hO+kkLF4v8ZUrCV58EdnWVpyTJmEtK3txEa+P6DGLsDQ0ErnnXso+/OFRYShRuxvzs18Em410Swue444jtnw5gXPPwXC/GDTkXjAf1/73ixwhySGiVjtlrjLwVWJJDmE1TYbTw2Pd2VtaOJkl4Dp4CEk0lR2LlkRERERERERERERERERERERERERERERERERERERE5AgwTNMc6x6OiIULF5pr1qwZ6zaOqNvWtfNvN20YNXbSlAri6RxrWocA+NV75nPu7JpDXivR2grxOLnOLvJ9vdhqanDOno1jf1hDJpdn+e5+tnaFsWDBabMwszbAcRPLD3ntNznjtaf8c95Mz65pmqR37SLT3IK1vBwzmaSQTmMrKyXX14c1GMTM5ylEotiqq8j19WHxejEsFvJDw9hqqskPDILDgcXlJN/Xj7WmmsJwGNNiYPP5yPX2YQ0FMSZNJu3x4+lqI72nGWsoiJnLUYjFsVVVkuvtw+L3AQaFoSFsdbW4pkwBIL1rF9n2Dmy1NeSHhsBqxeLxku/txVZdRT4aJRmJs91Tye5InoDLymyiVFlzOCrK9/cQwsznRvaS6O4lkimwy1vFd9cO85UFIaYmegj63bh8XgZaO2jDQ2dZPUOGjemJPnz9nUya1oSRTGJmc1hLS4p9e9w4p03DXlExtjd0tMP+7O43dl8qf7mInT3r+N/5F/AL/xy474uc0dTEucd8iM8v+PyYtfVWN+Ub9/OhE8bx1XOnj4zdt6mLT92wjvs/dyLTawJj0daRen5FRERERERERERERERERERERERERERERERERERERN6xbGPdgLxxLf3xA8b29MVY2FTKmtYhyrwO6kLuw7KWp6mJZCbHikIpP9lsI9lW4JOeOOe4/YQ8Dnb3xvnodWuoDbk5dnwpneEUv3x8N3d/5kTqSg5PD3L0GYaBa8qUkbCPI8E0TVa3DPKj23aybyDBlYsauHLxidT+E8+N+5hjcB9zzCsej6dyfO6vz7FyT8+o8es/spilkw8eDLJ6Ry8f/NNzzKyNsXBcCb/aGmNTR54/fGAap02vYm/NZD7ymxWkss0j5/zo8uOYt6D+dfcth1lyiEEDSl2l4C3e1yarm3A6PMaNvXWlsnkyuQIBt33UuN9V/O9DNJUbi7ZEREREREREREREREREREREREREREREREREREREROQIOKIhJIZhVAKuF16bprnvSK73TjO/seSAsdOnVzEUT3P5wnomlHuJpbOHbb21rcN84vq1I6+/etsmXHYrF8+rozuSpGBCPp/nrBlVPLGzl5V7BuiPpRVCIq9qW1eE9/1hNZl8AYCfPbqLeDrHV86Zhs1qOSxrDCUzPNcyNGos4LIRTr7y+6PE62BKpY8tnRG2dEYAmFjhpdznAGBmXZCb/uU4/r66na5wiqsWN7BkYtlh6VfeoOQQg0aBoDMIvkoA6g2nQkgOQWT/e+TlISQ+Z/G/D4fzO0ZERERERERERERERERERERERERERERERERERERERMbWEQkhMQzjAuBHQC3QCzQB24CZR2K9d6r5jSVce/ZUfvrILtK5AidPrcDrsLG5I0xPNMWd6zu597NLD9t68d4+Hl9qxxqP0hWs5isbUly3ooVzZ1UTcNq49zMn0BXJ8MSOXpx2G9d9aBHVfudhW1+Ovmgyy5rWIZ7Y0cPxE8vZN5gglckzpcrPsy2DLBpXQn8sQ28kxdzGEKv3DjK9OkAqm6e5L8ZxE8pZ3zZMXciFw2ZhS0eEJZPK2NoVxeeyUuZ10htNjwSQvOCvz7Zy6vRKtnVFCCeyzKwLsrplkGPqg0RTObZ2Rlg8voTjJpRhGAbPNg+wsT3MCRPL2NA+TIXPic9p4/m2YZZOLieSyjG/qYTVLYNYLQafPHkiqWyeHd1RrJYunm0eZOG4EgZiGXoiKeY1hljVPMhp0yv5z5NrCXf0EKyt5Mm+Aps6IuzqjbGudZhLxzn5QskgFk+KaMbLLx8fYl5jCc19cdqHEpwyrZJF40oIuB1jdAffWczkEINOE7/DD95iCEmNaWVfRiEkb9QLQT3Bl4WQePeHkCQy+aPek4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIHBlHJIQE+H/AccAjpmnOMwzjFODqI7TWO1bQY+dflk3k3Fk1ZPIF+mNpPnrdGuKZPPMagnz7/Jl0h1PYrRbGlXsPaa1MVxcz/v4bYg8/BEDAYuHvP/ghP4iXMpxIURlwsq07xievX0vBLJ5zw7P7+L8PLKAq5D7UrcoYuW9TF9fetomPLB3Pf967jb5oms+fMYVP3LCOyxfW86sn9rC1K8LXz53Ov/x1LcumVLCzO8aTO/v46jnTuObGdUyu8jGtOsAta9v5tzOm8G83bcDvsnPu7Br+4+5tfP70yQesG3DbWbl7gF89uYevnjONT1y/lnNn1bCxfZjn9g4B4HfZCHns5AuwoztCmdfBZ/62npqgixMmlvPXZ1v5zKmTuPbWTQwnMnz9XdNpG0xw7uwa7ny+g97I/r1cv47LFtTzmyf3sKXzxb34XDZ+P9dG6Ze+i7+jE1t1NWd/6Zvc0lPJdStb+fLcAL7//Bm9W7cAYLjdXPaTX/LeOzvpiqQAuH7VPv7fRTN533Hjjto9e8fK5zDSEcLuIGWOAPgqAKgyLQynh8e2t7ewSOrgISQehxWARFohJCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIibxeWI1Q3a5rmAGAxDMNimubjwNwjtNY7msVi0FTuZXKVn+MmlHHvZ0/klk8ez6nTqvjoX9bwvj+u5ryfL2flnv5DWie1ceNIAAkAhQKRH/w3n19QSsE0yJtw03NtIwEkAJl8gQc39xzSujJ2eiMpfvDgDgACLhvtQ0lOnlrBXc93AlAXcrOlM8Kc+hDLd/dTMGFuQ4gnd/ZRG3Sxpy9OOlfglKmV3L6+A5fdQiKTI5LKcc7sav62eh8AkVSOcWWeUWt/+pRJ/HVVK8eOL+WhrT2YJkyu8o0EkHzvktnE0zl+8MBOfvjQDoYSWabV+Elk8pw5o5qb1rRhGGAxDAbjGQom/OCBHZwxo4pJlV7aBpMsm1LB3RuKe6kvcbO5I8LsuiDP7B6gYMKnp3sJ/fc3yHYU5+S6u3F8+ytMyIWxWgyOS3ZS2B9AAmAmkxh/+i0zyhyj9vLDB3fSHU4dgTsko6TCAEQsFvwOPzgDYHVSVigQTofHuLm3rnDylUJIihlmiUzuqPckIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJHhu0I1R02DMMHPAXcYBhGL6BfKh9hhmEwrtzLYDzDjx7eicNqYUFTCclsni/ctIE7Pr2ESr9r1DmR/iStmwdo3TJA44xSxs0uJ1DuPqB2rq/vwLHePsJd/QRKyjFNk2Q2f8CcRFa3/a0qXzBJ7b+nL4TLOKyWkTFz/5jTZiGdLYwac9henGcYxVoum4VsvjjBbrGQyRXP+fOKvXx06XhKfQ56winKfU4MYDiRxWGzEItn9vdQPLcm4ARgScjPov3ZOs4SP33DKRpLPFitBtl8AeMl5wCkcwX+srKVfztjykv2Mrpvp81CKlfsuzEXJT88POqaFKJRalPDeOw2nAO9B16z5mYmnmnl0ZeMpXN58oXCq15rOQySxYCaYauFgCNQfPB8lYRyWeL6HHrDXgghCbhG/3fB47ACEM8c+LkvIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJvTZYjVPdCIAF8HngA2AOcd4TWkpfpjqQ4fmIZ3714Jp84aQJfOXsq15w8kXAiO2peOpHlyRt38NTfd9K6aYCn/7GLx67fTiqePaCmvb4eLKMfF/eCBTzabzKYyGA1DC6ZX3fAeefMqjm8m5Ojpjro4uMnTcDvtFEXcrF4XAmd4QSfOHkC1QEnZV4Hp0+vZCiR5spFDdQEXditBlcsqCdvmpw+vZLGUjfRVJZ/WTaBkMfBMXVBJlV46RhO8IUzp1AdcHHi5HKe2tXHzc+10VTq4ReP78ZmNThxUhm9kRQfOH4cNQEXAaed84+p4ZL5ddTnLLTc1Ez72j7a1/ax56Zm6gpWLplXQ18kxedOm0yl38WEch8zavwcUx/kpCkVVPmdHDu+lGPHl9A1nOATJ42nOuCkxGPnjOmVDMUzXLmwgdqgC2dZKdjtoy+K1UpVQxV+l43ClGkHXDPnOefSYdqZWRvg5CkVBFw2PnbiBGqCBwb7yGG2P4QkbLHgd/iLY95yAtkUiWyCgqkgmDfihe+NoHv0e8Fps2C1GCQyCngREREREREREREREREREREREREREREREREREREREXm7OFIhJP9ummbBNM2caZrXmab5v8C1R2gteZkKr51/O30SIa+T61a28r0HdlAAUtnRPxYf7kmwb+vgqLGO7UMM9yQOqOmcMoXKr3wFa1kZAO65c3F+6jP8dcsQFX4Xq5v7mVbl44eXH8P8xhKOG1/KL989j7kNwSO2TzmyDMPggmNq+expk7h1XQdXLW6kqdTHxvYwnzxlEndv6OSMGVUsGlfGkzv7+Nzpk1m+q4/Z9UHOnlnNvZu6+NfTp7C7N06p18GlC+q4dV07nz51MslMnng6xweOb2IglmFypZ//vHg2p0yr5MtnTeX2dR1cOLeOY+pDrG4Z4NOnTuKhbd2cMLGchlIPka3DmOZLmjVheNMQiyeW0RtNY7UYvPvYRm5d18bHl02kvsTN9BofHz1xAj9+eCdXLmpkfIWPDe1hrjllEvdu7OL0GVUcP7GMJ3f28rnTJ7PXVYL1058fdU1s13yOHfYyLltYzy3xIM4vfQWL1wuGgevsc9i88HROn1nDpAofA/EMnzplEhfNq8ViMY7uzXsnSoUBiFksBJyB4pinHG82hYlJMpccw+beHHb1RPmve7cyGM+87nMiqeL3RuBlISSGYeCxW0lk8oe1RxERERERERERERERERERERERERERERERERERERERGTu2I1T3DA4MHTnnIGNymA1EE9SEXOzqS/DJ69eSzReTGp5vG+ab582gqdRLwOMAGB3i8BLmQQ44amtxnHkWoUlTcJl50mXlNDvKuOlfHNSG3OSxcN4vVnDLx4/l51fNIZLK8u27t3Dy1Mojtlc5skzT5L5NXWzujPDuxY10R1JMrPRSX+KhbTDBu49tZCCepsrvZHyFj739cS5d0EAik8PntHH+nFpa+uOcNaMaq8Ugnctz+cJ6WgfjHD+xHL/bRnc4yclTK0jnCvz0kZ2cMaOKlXsGeM9xTfRF09SVuGgq9bJvMMGVCxuJpLI4bAYHy/SwmNA2mOTkKRW4HVZ6ImmuWNRI+2CceQ0llHrtrGoZ5IpFDaxuGaQm6GJylZ99A8W9DCbSVPidLB5fxt7+OBMrfDw3fSlNP5xEbSZMl93PcHUj+YIVm8XAXxbkrorjmfE/syl3WHgkZqOpqoSewQQTKrw0lnnY1B4mnc3zmVN9CiI50jIxAOIWg4BjfwiJtwJ351rARzwbx2v3jl1/bwKfv+l5NndEiKZyfO/SY17XOeFkFq/Dit16YGaZx2klkVYIiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjI28WBvyo+BIZhfNIwjE3AVMMwNr7kTwuw8XCuJQeXK4DNYmFD2/BIAMkL/rJyL53h5MjrUJWHuimhUXNqJgYpqfIctHYvTroapvDrSClLr9/Dlb97lm/esZV1rYMsGl9KddDJZb9bxZIfPMF5v1jBZ06bitd5pHJu5EjrjqRw2Kx0DCf59ZN7SOfy/OaJZnb2xHi2eYAfPrSTggl/XtnK6pZBtnZF+O7928gX4G+r23hoSw/7BhJ89/5tpHJ5blvXwa1rOxiIZfmfB7cznMhy/6Zufv7Ybm5ctY9zZ9fgtlsZTmT52aO7yBUK/P7pvWzsCLN+3zDfu387+YLJTx/ejTHeBy/L9AgdU8Lm9jDfe2A70XSOOzd0csOzrURSOX708A7Wtg7jd9m4fV0748q9XLeilR3dUVa1DPA/D+4gX4A/r2hlVcsg27oiXPO39fz7A7u4PeFny8R53JEK8eW7d5DM5bl9fSe/eGw3163YSzRYyVZriPt3DPH7p1tI5Ar87qlmfv7YbloH43idNrpe8r6TIyQTByBhWPA7/MUxbxmudBRMk1g2NobNjb3O4SSbOyIAPLKt56BhUwcTTmYJuO0HPeZ12IhncoetRxERERERERERERERERERERERERERERERERERERERGVuHOyHiRuB+4L+Br7xkPGqa5uBrnWwYxh+B84Be0zRn7R8rBf4BjAP2AleYpjl0eNt+68rmC3SFk9gtFmpCbjChUDBxWA/Ml3HaLAzGM5imiWEYWKxw0nsmk04UCPcmScWzBMvdB/1xevdwHIfDSnNXlF8/uWdkfPmefhrXevjPi2Zx40eP4/m2YeLpHLPrQsyqC7zhfeXicbJ794LFimNcE1a3+w3XkjfGAHZ2hXnf1BoabXasXhvHnzmTQt7krPlB0tEspsPCb0+bQSGTx93k5MONleQNg1+eOp1cKocr6OCKqjLypslPTppGJp7FEXBw7plB8pgsXjqFnp445RUerLkC5PIcc9xEkpEMOC38/oyZFLIFPLVlpCZkKFgNfn3adBLJHCd/ZAYta3rxlzkpHx8kEctwWVMFF5SXkDNNfrhsKuloBoffzilnziKbLmB64IryLD25HP978jTcVoOz54eKe7Fb+N1pM8jv38vllaVkAW+ZCzcG5zdVcHFFCRbT4McnTaWnN0HGBt0DCXYMxvnIjFrqbXZsPhvHnz6TZDpHRbmH8ECKWHOU6HgDf6me4yNmfwhJzu7CaXUWxzzlWPNZPKZJIpsYw+bG3tO7+gD4wPFNXLeylbbBJI1lBw+ceqlIMkvwFUJI3A4riUz+sPYpIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJj53CHkJimae41DOOalx8wDKP0dQSR/Bn4BfCXl4x9BXjUNM3vGYbxlf2vrz1cDb+VdQwl+N1Tzdywah9ep42vnDONs2ZUkM+azKgN4HfaiKZzI/M/unQCg4kMhmEAEIukySZN1j3QSsuG/pF5S6+YzJxTG0atZRgGFgO2dkYO6OOx7b10hZNMqPAxocJ3yPtKbt3G0I03Er79dsjn8Z99NpVf+iKOurpDri2vX75gclZFKTtvaSa0qIrYYIqu3cMsuXwyK/60nbrJIewuK3vW9XHCJRNZ9ZcdBCvcVI4LsPapDhafN5519+/GarMwZXEVK+7fxbwzGtn6RCfJaIb5ZzWx/MatzFhSS/PGDvraopxwySSevnEr42aXk88VaN08wJLLJ7Hyz9spr/cRqHCz49nuYoMGnPTB6fT3JHji91tZcE4TGx5uJ58tMOukOp65YRezT66jZXk3Ax0xPEEHs5bV4aipIryqi33bO1h6WXEvtZNDOF6yl9V/3QEGLDp3POtv3sOMpXU0L+/AYrEw9bhqVty3a+Q6TTq+itnjy1n3t12UnFDDYGecvtYoJ1w6ieW/30ohXwz1Kav3cu4njyFQpiCSIyITA8DmDL445q0AoDRfIJaNjUVXbxqbOsL4XTauXNTIdStbWd829LpCSMLJLIFXCCHxOmwkMrmDHhMRERERERERERERERERERERERERERERERERERERkbcey2Gud+P+v9cCa/b/vfYlr1+VaZpPAS8PKrkQuG7/v68DLjocjb4d3Lqug+tWtpIrmISTWb562yb29CV4bFsvK3f38z+XH8NHTxzPJfPr+MkVc9g3EOOeDV10hZPEwkmsVoPoQHJUAAnAqrua6W0dHTaSL0Ahb9JYeuCP1qdV+ynxOP7p/s2CSaYrTmJTH6nmYfKJLLmBAWJPPUn4llsgnwcg+sADRO6995+uL4fGbRp0PdGJWTAJVbrp3DVM3bQSmtf3kc8WqJ4YZM+6PkprvPTui5JJ5hh3TDlbn+7A5bOTjGVJhDNMWlDJhkfbsFgNrHYLwz2J4thjbWCCr8RJz94ITbPL2LGqm0LepLzBR+vmAarGBejYPkQ2nadhRumLASQAJsR7kmx7aB92p5VC3iQ6kGLSwv21AbffwUBHDKvNwvwzm1h7fyv9XSn2bRumfkoJLRuKe6nZv5eSag99+2KkEzmmn1DDc/e24CtxEQzZcbrtxdqPto20MPv4auZOKaE+XWDZueMIVbrpaSnuZefq7pEAEoCB9jg9LQeG+MhhkomTx8DlDLw45i0HoDSfJ56Nj1Fjbw47uqNMq/YzqdKHxYA9va8vlCWczBJwHTyExOO0ksjkD2ebIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyhmyHs5hpmuft/3v8YSxbZZpm1/66XYZhVB7G2m9Zw4kMN69tO2B8+e5+Fo8vI5Yp8Inr1zG9xk+p18Hnb9rAv50xmSd39pHJFTDsVqw2K+lE7oAa2VSeTGr0D8urgm7aByJMrwkwrzHE+n3DAATddj62bAIe5z//KKW2DzJwwzbYH9TgWViFZ46T9LbtVP74R3iamsj19GAJBomtWkUhlcLicv3T68gbYzchNpACGAnT8AScdO0eBiCf2z8WdBAbLM4zCyamCW6/nXg4DYDVZiGXKeBw20aeN5fPQSKSObD2rvDosaCDSH9y1HovV8iZuH02ktEsAA6XjXQ8h2FAPlsAYPzccrY+00k+VxhVu7s5/LK9OIkOpfb3bWXJGY2UhFOwsouTJwewTAzw/CPF993Ck+toHEiQvXMPBlDqsuK6eDIrDfAEXqz9Uolw5nVde3kDMnHSVhsBZ/DFsf0hJCWFd3YIiWmabO+OcuHcWhw2C3UlbloGEq/r3EgyS7D2FUJIHFbaBg/8DhERERERERERERERERERERERERERERERERERERERkbcmy5EqbBjGJYZh/NgwjB8ZhnHRkVrnZWt+3DCMNYZhrOnr6zsaS75uhUKeoa5OBjrayGUPPYjAZbcyscJ3wHhdiYf5jSFm1AT4+rnTyOZN2oeSfOeCmcxtCHHDRxdTHXRhtVvJpXMEKtxY7aMfg4pGP6HK0WEfVotBiddJudvKf1wwk59fPY8fXn4Mf/zgQpZMKv+n+88OJBi+c89IAAlAYk0PhbSLkk99EmcgQPtnPkv7p66h7aMfw+b3k89m/+l13irejM+uJ+hkysIKoBgkYlgMunYN0zSrDADDALvTSs/eCHVTSgDIJHN4Ag6Ge5KU1xefz3BfkrI6L5lkDm/IAUD3nmEappcCYLNbwICOHUOMO6ZY22IxsNgMuvaER+YVcgWcntFhN7lsnmCFm/hwmlCVG4D+tijVE4OYJthdVgD8pS6GexOj9tK5a5jGmWUjtexOK717I9RNDgFQVe0htL2f3PN95AZS5Df2U3hkH8ef04RhMagvdZFvi42cb6by5J7rpnFqCR07hxk3+8D3RXmt+w3dC3kdMjGSFgt+h//FMc/+EJJ84R0dQtIfyxBN5Ua+M8aVeWkdeH3XI5LKEXS/UgiJjWQmf9BjIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLy1mN77Sn/PMMwfgVMAv62f+gThmGcYZrmNW+gXI9hGDWmaXYZhlED9L7SRNM0fwf8DmDhwoXmK8072pLRCOsfuIfVd95MPpdj5rJTOf6ydxOsrHrDNV12K585dRLPNg+QyhYAmFTh49hxpbgdNiaWu6gvdXHchDLuWN/Bjx7eQSSZY+mkcr527jRm1AZJxdK4fTbO+PAMnr2jmeGeBHXTQix+13h8JQeGJQQ8LnwuJ8+3DbOpfZhM3qSx1EMmV8Bh++fybPLRLPlwGu8p9bgnhjBzJpGH9lKI57H6cnR+97/JdXYCYCaT9P7Xd3GOn4B96ZI3fM3ezN6Uz242zdSSbnyn1eCzG1z0qdl0N4epqPFSWeulkMhy/sdm0tUSpqzCw1kfnEqiP8M575tG174IoaCDcz86g3BXgmMWVdHdEcXrsnL+J2YxsC9KdZOfcTNKcAIX/sssnrqjGZfXzoKzG/HaDC76xCy6mqOUV7kpf99UMuEM5314Op17o9hNSKRzNE5y0GDP0pWqJeSx8a6Pz2KoPUpNU4Ce7jhum4ULPzWb+ECKs66awrqnO9n6TCdLL59EejBFdaOfynovhViWCz42k86WMGXlHs764DQCNoNkT3LkclgDDtxTS5k8JYTNbcFrQuwll8sxLoBzQoClTQFaNg9SVe+jqtFHPpolmyvgsUXxJ9qAfz60R16HTJzEy0NIvMVrXZbPv6NDSDqGi89xfYkHgKYyD3c+3/ma5+XyBWLpVw4h8TqsxBVCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLytnFEQkiAk4BZpmmaAIZhXAdseoO17gI+AHxv/993HpYOj6J9mzew8pYbR15vefJRQjV1HHfxFYdUd0FTKXdes5SdPVFcNgszaoPUvRAeYljI5HP8z0M7eGpn/8g5y3f3s6kjzIzaIKEKH9tWdvHc3c0svXIKdoeV/vYoj/5lO5dduwC3z3HAmqtaBnj/H1eTzRdzMv6yci9/+fBilk6ueNVeu8JJtnVGSGTzHFcbwGc1KPvoLJLP99H/py1YXDYCpzVirfWSb20h09x8QI1sR8chXC35ZyV7B3D19zHBVkaupRefpxZj2wAu08SbyZPaOYQv6KR21xCOeBbDY8OzoQ9vqZPa5mGsPge2Gh+OdT14Q05q2yKQM3FNL8W2oQ+vz469I0Zq+yDWoJMLLmoinwmT3ZUhsy2Jz99A7Y4BHJkgPqtBcks/3lATdXuGyPYlaTqzCWvWijF+Mq7lPRjhDI7xAezre/EEHNS2RynEsrjnVmBZ0UEhnuXEWeUMlLkpsRmYu4dwWw28uTypHUN4g05qdw9jj2exeGxYvQ5eiCBxTS3BVuUlvqaLQNBBVXMYy6SSkWsVOKOJzL4IyfV9eO1Warb247YauGIZkhv7sXhseOY6KXR0wIJ5Y3ND3+4ycRIGeO3eF8ccXky7h7ICDL6TQ0iGik9yXaj4/VBf4iGayhFL5/A5X/m/AZFUDoCA++Bz3A4biUzuMHcrIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJjxXKE6u4AGl/yugHY+FonGYbxN2AlMNUwjHbDMD5CMXzkDMMwdgFn7H/9ltKyYd0BYzueeZJ0MnmQ2f+cqdV+zp9Tyxkzq18MIAEshkEqU2BbZ/SAc9oGX1zXzJtEB9Pc/+tN3PWz51lx6x4yiRz5nHnQ9e7Z2DUSQAJQMOG6FXspFA4+H6B9KMHH/7KWD1+3hk/fuB6/xYLhtpLaPkhiTQ/kTQrxLMN37cEczmAJBbFVVx9Qx1b56kEncnhlXR6wTye9PYZ3YRXhe5vBBExIrO3Fu6iayAMt5MMZrCEX8RVdeOZUEn18H9muOI7GALEn2nBNKSG+pptMcwTX9DIiD7Zir/KQbgmT2jYIJuSH08Qe7aDQYZDaFMa3qJrwfc0UUnksbhuJVd1451cRebiVbFeCwKmNxJ7uIN0aI3x/O5nWKM5JJUQfacM5LkBq2yDpXcO4j6kgcv9eCtEsmGBN5xnX4Cd/fwvG/mc2seaFvewlP5TGtn8v6ZYwrhmlYAFHU4DYU+24JpeSWNdLpjlCuiWMb2ktjolBMq0RUjuG8MyvJHxfC4bdSiGVI/l8HxRMCrEsseUxHA2zx/amvp1l4sQM8Ng8o4YNbzkVJsQysTFqbOx1DCcARr4jqgJOAHoiqVc9L5zMAhB02w963Ouwks2bZHKFw9WqiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMoSMVQlIGbDMM4wnDMJ4AtgIVhmHcZRjGXa90kmmaV5umWWOapt00zXrTNP9gmuaAaZqnmaY5ef/fg0eo5yMim07hC5UeMF7WMA67wzHyeri7i5YNa9m1agWdu3aSTacPad2CaeJzWlkyqeyAY5OrfCP/Lm/wYbEao47POb0BX8h5wHnRVIZYKnfAeDyTp2C+cgjJ+n3DbOoIA+BxWIvrpfKkNg0cMDfTHiNhMai89loMl2tkvOT978daoRCSo8ltdZPaWQxuMHMFKIBzfJDUjhffgmamgKPBT7p5GADDZaUQzWIr95DtKp5rK3OR60lguKzkoxkAHOMCpHcPj1rPOSFEclOxtlkwIW/iaPKT3jVUrG2zYCZzWIMO8sNpCtEsVr+D/GAKa8BBrr8YrmOv8ZJpjYABZjo/Uj9wRhOFTJ5sexQK4BgfJLVz6CV7yeNo8JFuKT6r6d3DWFw2gu+aQLYnMbKXbFe8eHzXMKntQ/gWV5Pa36OZLYAJzgnBYsDKy+SiR+ojV8xMjBgmXrt39AFPOeUFSOQSY9PYm0DHUBK/yzYSJlIVKH629oRfPYQk8hohJB6nDYBkJn/Q4yIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8tZiO0J1//0I1X3LsdrtBCurKa1voHbyNDyBELvXPMv0JcuwWK0AhPt62bd5A/2dbUw4Zj6DnW0kI8NMXLD4Da9rtxqkswbvObaRvf1xnm8PY7MYfHDJOObVB0fmVTT4ueBzc3nuvr3EBlPMWlbH5EVVB63psFk5YVIZd27oHDV+2YJ6bFYL8UyOtsEEDquFxlIPNmsxcKE7UgyHCLrtNJa6MTHAZsFa4iQfHh22Yg046OneheuuO6n/xc/J9fZiDYVIrF8PuQMDUOTIsbutWENO8gMpjP33Mh/NYA25yA+lXxyLZLBXe2FfFMNigAGFeBZLIFQslDcx7BbMbAGLq/jMF+JZLH4HhUgxlMQ1pQRHk59MR5RCIjZSuxDNYi1xke1OjIxZA05yQy8JT7AaFFI5LN5iUIKZzmPx2Cgkchj24jmOpgCZfVEyLRFck0pGattCTvKDqdF7qfVBa7F0Yl0vll1DeBYW3xNmzsRwWDAzBQBy/UnSe8LFMJRI5sU6sQzWEieFeHbUNbUFXciRYaajJCwWPHbP6APeckqGdhLLxMamsTeBjuEkdSH3yOuREJLoq4eQhPeHkAReKYTEUXw/xzM5gp6DzxERERERERERERERERERERERERERERERERERERERkbcOy5Eoaprmk6/250is+WY11NNFxfhJnPTej5CIRGjd/DxzzjgHX3kFAPl8juHebkI1tXgDIZ684U/seOZJDIvBYFfHG163MuihLuRi9d5Bzp5Vw0+vnMuPr5hDXyRJznxxnmExqJtSwrs+dQyXXbuQuac34g06D1rTabMysybIv583gxMmlrF4fCn/ft4M5jaEaB2I8/m/P8/ZP32as376FP/72G4G48WAkZm1QT6+bAKXL6yn3Ocin81jmib+k+rB9uIjaCt3Y6vzYtpsEI3R9tGP0fW1r9P+qWtIbdqMc/z4N3w95J9n9Trwn9sElmLYhmN8kPSeYdyzysBmId0awT2rnFxvAke9D8NlJbltEO/iGgrxLFaPDYvfQWJjH76ldZA3MXMFbOVuEhv78Z9QCwbFenYLQ7fuwjO3EqwGmc4YrqklZNqiOCeGMBwWUjuH8MyvJNMVx9HgByC5qR/fCbWYmQKG1cBa4iSxoQ/fkjqgGAZir/HiaAqQ2jUEQLYvgXNCkHTzMK4Z+/eyN4x7djm5viSOWh+G+yX5TCaYtVYsATvJF/byEnkzj//cRjAgN5zC0eAntX1oZC8vsNV4R/qWw8/MxEgYxkFCSCoI5XPEc/GxaexNoH0oSX3JQUJIIulXOgV4MYQk+BohJIlM/nC0KSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiY8z22lP+eYZhHAf8HJgOOAArEDdNM3Ak1nuzSkQjGDYbyXAvd/3ov8hniz/o7tmziyVXvY+qcROIDQ3g8QfYvuIpVt9+EwD9+/bStnUTl1z7LUpr6l5tiVfVn8zxy8f3HPAD8TNn1jChwjdqzO6wYt//g/JXM6s+iNthZVq1H5vVoL7EQ03QxQ8f3MFDW3sAyOZN/vfRXcyuC3LGjComlHn5fvN2Sjx2PrRkPE+1DLLEYsdS6aL8AzPI9iex2C1YK9w8+8jNzDz9NPz/8R3ijz1O7Nln8Z14Iv5TT8EaDL7hayH/vEKhwOadT1CypBKXz4J1ohfXbDcZ0ngurceM5TAdJq6JNWQLGdwX1VGIZsnbwX1xHdlMHue5VZixHFl7Hs9l9eQTBeynlmFL5EhbM3gub8BuOgnfvBuA2NPtBE4tBnoUSi24pjrJmCncl9RjRnMUHCauxmpyRgHPiTUkVvaQ6YgRvHQi+WwWx5mVmPEsGWsWzxUNFGJ5bPUhrG4Pth1ucj0Jks/34ZlXSeD0JnAaeC+rpxDNYTpNXBP27+XCWkgUiA0P0BfvoNDWgzGxQG3FFLLuPJ7LG8gOJTA8VnY0P0dha56qpeNw+y1YmwI4km6iqQG8lzdQiGZxl4Zw1PqwlbjG+K6+jWXjJJwWymze0eOeMgLZDPF0bGz6ehPoGEpy7PjSkdc+pw2f00Z3OPWq50VSrx5C4nUU/wuRyOQOU6ciIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjKWjkgICfAL4CrgZmAh8H5g8hFa600rn8liNSz0tTaPBJC84PkH72X6kpPBsJDPZtj0yAOjz81m6WtrpXH23De8/iv9MDybN99wTYCJlT4mVr4YYjKcyHDPpq4D5q1tHeSkyeVs74nyjXdNZ92+YX726G6+uLiJzK5h8uuzpHcPFyfbDEKXT8JXVUYhn8M1YTKuCRMo++hHDqlXeeOGujpYfftNZNMpjr/salbe8jemnbCMnpbdDHV1ctylV/HsrX+nfvosMAzat24aGSupqaVq/CS2r3hqZMzucnPMaWex9t47WHzR5ay5+3YK+Rwf+ORPRtbMhzNEHm4FA3rnD7B3z/MkwsP0NO8eqQPgKynj+MuupvqqibRv3cyOu/9KeUMTGx95gGMvuZLVt98MwOKLL2fVbf+gvHEc517+r+TuSkGuQGJ9L7aJPlq9O1h+5/UjteumzcRitdC2ZRPHX3Y1z972D4IVVVRPnsr25U+M6mHpVe9n+f/9hcUXXsbae+8gn8uNXKeXstkdvOe7P8FTUn6U7tw7kGliySRJurx47J7Rx7wV2M0ChUxkbHobY+Fklmg6R12Je9R4VcBJb/TVQ0jCyVcPIfE4i8FV8XT+oMdFREREREREREREREREREREREREREREREREREREROStxXKkCpumuRuwmqaZN03zT8DJR2qtNyvTAEyw2A7MerHZ7VisVkxMwMDuch0wx2o7+A+/X69MNs+VixpGjZV47FQFnIdU9+W8DhtzG0IHjE+u9NEbSVJf4uT+zd389/3bWbdviL9v6SIxmMTithE4own/qQ0ETm5gKNzFU9f/CavdcVj7kzfGYrGMPJeGYQCQy2SwO10jx18cc+6f95KxF55pk+Kzns9j3f9eyGez2BzF+1x4WWYEgH2Cn9ZdG0at90JtgAXnXcRjf/oNu7et5vHb/shge9vIc/PCOibmSI/9+/aybdfTmO/y4TqvmvSJVroq29m5ceXL9pIeWW/XqhXMO/t8ctkMdkdxf6ZpYrFacbg9xIeHiudks9gcL+zfOGAvNqcTw2p9Xddc3qBcGsPMk7AYeO3e0ce8xfAXeyo8Bo0Vn5nWjc+PPC9HW8dQEoC60Og3WlXARXf4tUNIHFYLTtvB/6vgcRTfz8nswQOvRERERERERERERERERERERERERERERERERERERETkreVIhZAkDMNwAM8bhvEDwzA+D3hf66S3G6fLTT6fo3LcBFw+/6hjiy68DCwGVqsVu9PFwvMvHXXcEwxRVj86QOSf5XbYGIil+dxpk1k6qZzLF9bzsRMn4HMdGIpyKOw2Cx9fNoFS74vhIQuaQiyeUIbNaiGczHPDqn0jx+7Z3sPu2SVkeuJEHm4l9nQHGdJ09u7iuMuuxldadVj7kzcm6y1lwQWXAZCKxwlWVdOyYS3TlpwEwHBPN1UTJtHdvIvGWXMxLBa6dm1n/LyFRAf6Kampw2Z30LxuNTNOPJVcNoPN4cTl9bHz2eXMOeMcALoGdmE7MQT7gw6slS4K85yEB3tp37aZiQuPA8Ogf99e6mfMprS2np49u8jncrRuep6px59IKh7DGwxhd7nZtXoFs087C0yTQqGAJxgC4Lm7buWBG35GoiTJkw9dx5M3/5FpJywb2Uv1xCn0NO+mYeYcDIuF/rZWuvfsZO6Z72LCgkXYHE6a165m5kmnkU2ncPl8AKP2kk2n8ZdVjLqOCy+8nJy/7Ijeq3e8bAKApGHBY39Zqo23eD88qfjR7gooPh+3/Nc3uPn/fR2zUDjq63cM7w8hKXGPGq8KuOiJpF/13EgyS8BtP2i4DoDXUQzXiafzh6FTEREREREREREREREREREREREREREREREREREREREZa4c3jeJF76MYcPJp4PNAA3Dpq57xNuT0eOhv34cnEOK8f/0K+zatJz48xPh5C6mZPJ3mtavZs/Y5KsdNoHHWMZx9zb/RsX0LvlApVRMnU97QdEjrjyvzsmRSBf9+52Zm1ARYuWeAmqCLiRW+w7TDF82sDXLHp05gT18Mh83KlCo/FX4nXeEEmGCzGLzwc/eCCR97YCt/f+9CpjosRCN9PHTr74gN9jPvnMtYeccOaidX0TSzDJfXfth7ldfHBJ6lgdOv+SI9Ozaz7N0fItzXQyaZ5LzPf5X2rZtYcN7FJCMRogN9nP/5r9KxfQtljeOYuOBYBrvaedfnvkzX7p34y8upnTaDnpbdnPnJz9HXuheHy8U5n/kiXTu3459XgeviEix5C6YXtq1+kuMuvYr44ADxSITzP/9V2rdvZuKi47DabOxY8RQAnTu2MX1pFcdf9m4igwOc8+kv0NuyG5c/yNnX/BtdO7dz+seuYaBtH4nwMOVN43juzluZdeoZGBZjZC8d2zYz/10XFvcy2F/cy46tYBh46ifwo60mn/rsVxncuYlARRVnTp1BPpulZtJUunbvoKdlD0uv/gDRwQFO/sDHGO7uZLCrk+pps3gmFqTx6GdPvLNkYgAkLAYe28tCSDzFABh3Jo5pmq8YqHGkbH78YQAG2vfRu7eZqgmTjur6HUPFgJa60OgQkgq/k/5Y+lWvSSSZI+h+5f8meJzFY4lM7jB1KyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiY8lyhOr2AxnTNCOmaX4H+BLQeYTWelOLD/Zz+w++w74tG5hxyhnMPes8WtavxeZwsG35k3Rs24y/tIwHf/0zTNNk4sLj8IRKcHg8uP2BQ1rbYjG4aG4tt3zieD62bAI/u2oeHz9xIh7HkcmeaSzzcsq0KpZMKqfC7wQglytQ5rXz4aXjR80t8Tiweu109G7jxu99ia5d24kO9PPU9b/B4+vjsT9vY9/WgSPSp7w+VQE3JWVlXHx/nL7Z53PtWrh2Ryn9k0/mXXeH2TXxdH64y80n1rmIHXM2F90TZkXZCVw/UMl7n7EQn/Murnowyq3GbB4tTOTKx/JE513ARx5P8IuhcWwKzeWC+xNUTp7GvT/7Abf98j+4/+8/48b//DKDXR2kA9V8dpOfyIzTueCeMBtqT+K37SW877EUU5acPNLntuVPsOr2mxg3ZwEfeSzBn5JTWeWazsUPpgjPO59PPZXht0NN5OxuHv7tz9m7YS1P3/hnnr3tJkIzFnDe3WF2jD+NH+/28C/rXMRmn8VF94T5SWQqt1vnsjJZwqkzqnkyGmR1+fE8YUzi8kdzuMctpn72e1ly1Repm3YiJuOpPeYivrPRwr9tL+XPlsVc+lASd6iUmpcFQMhhlokDkLBY8Nq9o495KwAI5nOk8+mXn3lEFQp52rdvYfKxJwCwb/OGo7o+QMdwEqfNQrnPMWq83OcgnSsQS79ygEg4mSXofuUgKI/dCkA8nT88zYqIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyJg6MmkU8ChwOhDb/9oNPASccITWe9NKxeNEentYfftNrL79ppHx+edeQMOMWUxZfAL7tmzkmNPP5vkH7sZitXHsRZdRkjcJ33kX1opyXDNmYAuF3tD6TruV2fUhZte/sfMPVYXfxT+e28tp0yqoDbp5cmcv85tKOH5CGbPrQ9zy14cOOKdj27OU1Z/F84+0MX5OBXaHdQw6F4AL5tRRFXDx4JZuPnbieHb3xdnRE+EnV8zlyR29XDi3jsXjy1jTOsQPr5jDUzv7WNhUwrRqPyub+/mvi2ezcs8AFQEnXz9vOiv39PP1c2eyft8QmXye7108m3x4K5lkEoB0vPiR0b17B3OdNt59bBMbOob58eVzeHJXHydPq+D8uTV0rbmXE9/9QXatWoGJWXwfbX6e7192KY9u68Fpt/D/LprFyuYBvnDWFFzpKBt+eueovWUScSJtLfz4irk8tbOP8+bUsnBcKWv3DvGjK+bw9K5+HDYLi8eXMqsmyNbuCHc930llqYv/uGAG3TvDbHpiaH81GxDBX9bMFz84lSf29rN3IMEv3j2f4yeUHcU79g71QgiJYeCxeUYf85YDUJrPk8glcNlcR62tcG8PuXSa8fMWMtDeRvu2zSy64NKjtj4UQ0jqStwYhjFq/IWgqL5oGr/r4EEj4WSWspeFl7yUx1n8bE5mFUIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIvJ2cKRCSFymab4QQIJpmjHDMDyvdsLblScQOGDMYrVitduZtOg4bv3ut0hGwjSvWUXj7DlY7XZ8mTxt771iZH7o8sup/PKXsPr9R7P1w6IvluGmtV186+4d/PmD8/jmkokMdSYw98ToyRmEqmpoZf2oc7wllfTsyxKscGMxXqGwHBVBj50zZ1Zz5szqA46dP6f2gLFzZtUcMHbWS859z7FNxbFZL47t2Z7AHQiSjIRHxhZecDnltbVcM8k5MnbuMS+ud9fjMTY+eDeNs+aCAStuuZEJi5dy2sQyjp/4YujHlYsaAYgNOdkVDBHp6xm9P6+L4+fUHnQvZ8+qIdKfpGVjP/fd3krjjFI+c+w4ghXFj7ItT3cQrHQzcV4lFqtB374osaEUM+oCzJus4JGjKlP8uklYDDz2l33V2N3kbE5K8wXi2TilrtKj1tZA2z4AyuubqBw3gc6d247a2i9oH0pSF3IfMF7uK763+mMZJlQc/NxwMsuECu8r1nZYLVgtBolM7rD0KiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiY8tyhOrGDcOY/8ILwzAWAMkjtNabWvXkaVRPnDxqbMH5lxCqqiEVi5GMhJl64im8/8e/ZsnVH6Bt62YGd24fNX/45ptJ7959NNs+bJLZHGfMqAIgP5inY+swK27ZzVN/28kTN+xg8rEnY3e6RuY73B7K6ucRHUwx/+wmrHbrWLUuL5HLZCgU8piFArlMpjiWzZDP5TBNk2wmDUA+myWfLwYSZNMpTNMkn8uRz2aLY5k0ZqFAPpcjly3W6SbA/I99iXnnX8qkY5ew7OOfZ5tvMqlMDrNQGF17/3qzlp6EaULL82toWb8Gs1Bg1kmnjaz3Qu0X1ssmk8w981wwXky1Ka2rxxcqOXAv6RQAqViKjU/s45lbdtO2dZAVt+5mwyOtJKPFj7KaST6mHV/FhsfaWHPfXgwLnPLeydhdFgqF/KjrVMjnj9zNEcjEAcjb3FiMA7/WMq4gpfk8iWziqLY10F4MISmrb6CsvpFIXy+Z1NH9KuwYSlJf8mohJOlXPDeczBJy21/xuGEYeBxW4mk93yIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIibwe2I1T3X4GbDcPo3P+6BrjyCK31puYLlfCuz11L29ZN9LW20DBjNnVTZ2C12cCE937/50R6u3n0/35JJhnnxKveT2l9I4Mvq5MPh8ek/0NVE3QTSWa59uyp1FhsPH7PrpFj/W0xNj3l5MpvfZ++thYKeRN3oJ7hXhcXf2EyVeMCY9i5AMSHBtmzdjXblj/O7FPPonXTBuwuJ2X1jWxf8RSzTj6Dnj27yKRTNEyfxZanH2fa8UsJ9/Yw3N3JpMUnsG35EzTNnks2laRr1w5mLDuVHSufpqJpAnang+aVy3FX1eNbcBqtpfOxh/fh2nAjA/Yz2LhjG2bBpGbSZLYuf5IZJ55MpL8Pw2JhyZXvJdLfi83upHL8BHY88zjp6DDbn3mSmsnTAGjbuolZJ59OdLCfjh3bWHrl+8ikUvjLy6FQYMdzzzLY3cn2Z55k5kmn09uyh3QyQcOM2Wx56lEMw8ax551NV4uL2glpdj93A5sen0cunWLPmlWU1k9m4dknEOkvYLPv4om//J1jTj2L5vXP4Q4ECVVVs235E/jLKljwrouonTIN4yVBKHKY7A8hMR2egx7Ou0OUxCIkc0c3AGSouxNfSWkxXKmhESgGk9RMmnpU1k9m8gzEM9SFDgwhqfAXQ0j6ogcPIckXTCKpLEGP41XX8DisJDMKIREREREREREREREREREREREREREREREREREREREReTs4IiEkpmk+ZxjGNGAqYADbTdPMHkpNwzA+D3wUMIFNwIdM00wdcrNHQaiqmlBV9aix8MAAgaoqBtvbuPsn/41ZKADQtWsHp3/sGpyhEObwMACG242jsfFot31Y+F12rl7cyJ+eaSEVOPDH7K2bBlhy6SRmnTxxDLqTV2OaJpsef4hn/nE9x11yFY/9+bdgwrxzzuexP/6G+edewMqbbyQ+PMiSK97LQ7/9X6YvPZlNjz5I795mTnrvh3ngVz+hceYxtG3eSMvzazjx6g/wwK9+SkltHW5fgM1PPFxcrGUPJXt3Mf/ks1j1jz+x6IJLeeqGP5NJJjn24st5+P9+yezTzmLN3bfj8vlwuNy0bnqeGctOJTo4wNp7b2fZez7E/b/4MVUTJ9Hf1sqOFU+x5Mr38dBv/hcTk2Xv/hBP3Vis/czf/kKhUGDBuy7k0T/8mnnnXMDKW/9GfGiweM5v/3fkOrRv3cC7Pvd17v3f79MwYzYd2zbTvO45AHr3NhMb6KCiaRLP3XkHJ1z+bh7+/S+xORzMPuUMHv/z7wDo3r2T5rWruPr//YiqCXrWD7tMDADD4T/o4YKnjNJwC4PZ+NHsiuhAP/6yCgDK6hoAGOrsOGohJB3DxdCVupIDQ0hKPA4sBvTHDh5CEk1lMU0Iue2vuobHYSOeyR16syIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMuYsR6qwaZpZ0zQ3m6a56TAEkNQBnwUWmqY5C7ACVx2OPseMmcdqsdK2ZeNIAMkLNjx0HxU/+B4AjgkTaPjdb3FOmDAWXR4Wk6v8fOv8mQRKXQccC1a6cfle/UfuMjZigwM8d9etABgWg3Q8zri5C9i5cjkATo+X6EAfNVOmsXfjOgBC1TX07m0mVF1Lz95mME1qp06n5fk12F1uEtEIhXyOifMXsW3546PWq58xiy0P3QWAzeEgER6mYcZsdq9ZBYA3VMJQVwcD7W1Uji8GeQQrq2heswpPMMRwTzemWaDpmHnsXLkcw7CQz2bJZTPks1lW33kziy+8HG+ohFQ8xrg589mxfy8ur5dofx81k6bSunH9qL6CVdW0bnwOTJO6aTNGAkheUDtlGhsfvRcoBrdkU0kmzl/MtuVPjpqXz+Xo3rPz0G6KHFymGC5iOH0HP+4tpzRfIJFLHMWmIDbQj7+sHIBAeSUA4d6eo7b+SAhJyHPAMavFoMznpC968BCS4UTxazv4miEkVpKZ/CF2KiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIibwZHLITkCLABbsMwbIAH6Bzjfg6ZaYLV7jhg3OZw4J07j4kPPUjTDdfjXbRoDLo7vJx2K7WTg0xeXDUyZrVZOOmqqbh9DkzTpLc1wuYn29n6TCcDnbEx7FagGDxitRUDCAzDACCfy2K1jx4r5HIveY5fnGfbfy4mGBYLZqGAxVL8yCnk81hso8MN8rncAbXz+Sy2/bUNo3huJpkgnUgwceGxI+cW8nmsNltxuUIBi82KiYlhMUbmxIeHWHnLjaTj8ZG+bS9fL5cb2TPA5MUnMP+cC7A7naP2Mqrvl6x9sOv0Ui/Mk8NsfwiJ1eE/6GHDW0lJPk88c/Q+V0zTJDrQj29/CInN4cBXWnZ0Q0iG9oeQlLgPerzc56Q/dvAQknCyGEIS8rx2CEk8kzuELkVERERERERERERERERERERERERERERERERERERE5M3isIeQGEUNh7OmaZodwA+BfUAXEDZN86HDucbRZrHYKJgFGmbOwvZCwMF+88+9EFcggKOxEVtJyRh1ePh5/E6WXj6JCz43l7M+PosrvraQ+unF/XU3h7n1f9by5N928vhft3P7D9fR364gkrHkKylj6dXvByCTTBKoqGTv8+uYtuQkACL9fVQ0jadr906aZs/DMCz0NO+i6Zh5RPv7KK2rx2qz0fL8GqYvPZlcJo3D7cbh9rDj2eUcc/rZo9brad7D8Ze9G4BEOExpbT3tWzczadFxAAx2tFE7dToAGx+5n3QiQUXTeGaedBqpWBRfSSk2p5Pdz61k1ilngGlimiZuf2DUOhXjJhKsrGHvhhf3Eu7rpXL8RLqbd9E4ey6GYaF26nSsDgeP//l3+MvKsdrtNK9/jhknnjKq3kDbPo69+GoActksvpIy9qxdxcyTThs1z+n1Uj1p6iHfFzmITIyUxYrH4TvoYZuvCgeQTQwetZbSiTjZdAp/adnIWLCyinBf91HroWM4gc1iUOV3HvR4uc9BXyxz0GPDrzuExEYykz+0RkVERERERERERERERERERERERERERERERERERERE5E3BdrgLmqZpGoZxB7DgcNU0DKMEuBAYDwwDNxuG8V7TNK9/2byPAx8HaGxsPFzLHxH+0lIGOtro72zngi98jb0b1pNJxJkwfxGeQAnZ7m4K8Ti2qiqsvoP/sP6tJjqQZMNjbWx6sgOn28YJl03CsMXJ5XJkUwOcdCX4S8vZtc5g2zN9tG7qp7z+7bH31/JmfXanHLeUkuo6BjraOPNfPkc2lSQVi3LVd77PQEc7U45bilkwiQ70ceV3vsdQVycuX4CF51/CcHcXl33zu0T6erDZHcw86TQGO9u56Np/Jz40hGkWuOJb32OgvRV3IEh5fRP+8nKCFd9joL2NiYuOJZ/NERse4qr/+D6DnZ14gyEMi4Xh7i6CldWUlpRSce5FTD3+RML9PVz61e8QHRzAYrUy9bgTGejYx3n/9lVSkQiJSBh/eS1bluc47rLPYneEySTjXPmdHzDY0caU408E0yTaX9xLfGiQ/rZ9TFt6MmvvvYOzP/l5MqkkTq+PGctOY6B9H/6yMkobmvD4/FRNmMhQVzvnfPoLpBNxUrEol339/9G8bg3uYJAJ8xZS3vDmubdvK5k4SYsFj91z0MM2fw0AZqLvqLUUG+gHwFdWPjIWrKiibevmo9ZDx1CS6qALm/XgeWMVfifNffGDHhtOFMNJgm7Hq67hcVjpGFYIiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjI28FhDyHZ71nDMBaZpvncYap3OtBimmYfgGEYtwEnAKNCSEzT/B3wO4CFCxeah2ntI8bh9rDqphtJxWMsuvAynB4vd/3ou5z+vo8S//6Pyff14Z4/n+pvfwvXlClj3e4h27aii0mLK5gwt4JUPEuwKks2naZrx3Ye/9NvyOdyWKxWTv7Ax2icXUtsOD3WLR81b9Znd6irk7t/8t9UjBtPsKKaTY89yLL3fIgVt9yI2+en6Zh5rLn7do695ArWP3A32XSK2aeeycpb/s7cs85l29OPMdjRzrGXXMn9v/oxU45dQvO659i3eQPL3v0hHv3Dr0jHiyEIiy68jMmLl3DPz35AoLyS6omTWf/gPSy54j08cNetGIbB1BNOZPUdN1PI57Ha7Zx95Qco5HM8fMuNzDjpVHY9u4KuXTtYctX7eOg3P2PcnPm0bdnIzmefAcATDHHyB79Mx/bn2PDQ7Sx79we5/xc/xOnxMm7OfNbcczvHXnQF6x+8h4G2VgCqJ01h6bs/yPoH72awvY1jL7mSB371Y3LpNIZh4aQPfJTq8RO55yf/Tc2UaXTt2sHWpx4DwOXzc/FXvkXt5GljcwPfKTJxkoYFr9170MP2/SEkxPuPWkvR/SEk/rKKkbFAZTXR5U+Qz2Wx2uxHvId9gwkaSg4ezAJQ4XPSF0tjmiaGYYw6Fk5mAQi6X71Pj8NGMqMQEhERERERERERERERERERERERERERERERERERERGRtwPLEap7CsUgkj2GYWw0DGOTYRgbD6HePuA4wzA8RvGX0qcB2w5Lp2PIFyphzpnnEqyqxsznMc0C/rJyfMMR8n19ACTXraP7O/9BPhYb424PzUBnlHFzyuhtiXP3zzewa20PFsNCKhLhiev+j3wuB0Ahn+eJ637P3JPtjJ9TPsZdv7OlE3Eev+7/SEYjNMyYzabHHqR64hQ6dmwl2t/HpMUn8Nzdt+ErLSM+PMRA+z6mLz2ZZ2/7BzaHHavNTufO7Uw/8RRW33kL+UyWUFU1LevXMPnYJWx45P6RABKA7t07WXnzDcSHBpkwfyHrH7ib0po6BjvaGe7uZNqSZay6/SYK+WLgQT6bpS8W5tE7bsI0C3gCIfZt3sC0JSex7r47ySSTVDSNHwkgAUiEh0lF9rHhwduoGj+Rzp3bifT1MvnYJcW9lJSSiAyPBJAADLS3ER8cpHPHNqafeDLP3XUruXQxIMc0C3Tv3M4jv/8VqXiM2inTRgJIAFKxKI/98Tek4m/t9++bXiZO3ACP7eCBG4a/GgD70QwhGXwhhKRsZCxUVQ2mSaSv96j0sG8wSWPpq4SQ+J1kcgUiqdwBx8KJ1xtCYiWROfB8ERERERERERERERERERERERERERERERERERERERF567EdobrnHM5ipmmuMgzjFmAdkAPWA787nGuMBcNiYfqJp1DIF3j+wXuw2Kwce9HlWFc/P2pecu1acr29WH2+sWn0EKWTWaxOK/GhDMv/sRPThKmLKrDaLCTCw+Qy6VHzC/kc8eEhJi6cPkYdC0AiEqV79w4ActliIEFpXT1tWzYBkM9mwDQpra2jr7WleJJhkM9mCVXXMtTVCYDD4yEZCePy+kiEwwAEK6vYvvyJUeuV1TWw/ZknX7ZeA717m4FiQI1ZKIw6x7BYyCQT+MsqiPQXgx08oRCRvl4Mi4VsevSzVdzX8Ejtju1bRu2lpKaOvta9o+b7y8rpbW3evxcvifDwqOPB6hq2r3hqVN8v1dO8m0Qkisv71nz/vhWYmRgxAzz2VwjcCNYD4Ir3HbWeYoMDAHhDpS+2UVEFQLi3h5KauiO6fiKToz+WprHslUNIyn1OAPpj6QPCRoaTWbwOKw7bq2eVeZxW4pn8oTcsIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJj7tV/XfwGmabZCjQAp+7/d+JQ1zJN81umaU4zTXOWaZrvM03zwHSBt6DOHVt57q5byKZTpONxnrrhz8RmTAGrdWSOraICi9c7hl0emny+gNVqITqUwjSLY5uf7iJfMPGGSnG4R/9I3mZ34C+vwO48Uhk58noYVg+1U2YBYHcUwwr6WluonTINAKvdgWFY6G9rpXriFADMQgG700W4t5vSumLwQyoawVdaRioRxxMqAWCwo53K8RNHrdfb2kz9jGOA4jNQXK95ZD3DYsFqG/1MFPJ53P4A8eFBgpXVAET7+yipqRvp5eV8JeXF2nubqZ28fy82O4blhb1MGjU/0tc7Mi8ZieAvKx91fKB9H9WTpoy6Ti9VM3kGhtV9wLgcPoV0lITFwGt/hc9JV4iExYo3PnTUekpGI7i8vlHPbKCyEmAkMOdwyaSS3PPT7/PIH349EtTTNpgEoKH0dYSQRA/8Oh1OZAl5HK+5tsduI5MrkMsXXnOuiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8uR2REBLDML4FXAt8df+QHbj+SKz1VpbP59j02EOjxmonTSfYMIvq//hfQld/EBwOqr/1LexVVWPT5GFgGFDI5fEGXgxoaN00RCGbxeX3c/pHP4XTUwwPcLjdnP6xa6idPHWs2pX93D43s069gmBVNXvWrmbheRcz0N5GeWMTFU3j2b78CY6/7GrSiQR2p5O6aTPZ8sQjHH/Z1VgsVpKRCBPmL2br00+w8PxLcPsD9LW2MGPZqexZu4oZy07FX1YBgMVqo376QqafeAGldQ3sfHY5x15yJbGhQbyhUqonTmHLk49y/OXvwe4qBno4vV4qx8/khCuvweFyM9zdyZTjlrJz5XLmnvkuvCWldO7YxuzTzsIwih91JbX1lNRPZNGFH2Cws4PS+kYqmsazbfnjHH/Zu8kkk1jtDuqmzwTAEwxx7ge/wISGRVz4iW+wb/MGFp53Ce5AECiGpVQ0jWf2KWfiL69g78b1zDv7fCz7Q4QCFVUcc8bVuH1v3RChtwIzHSVhGHhsrxC4YRgMOlz4UuGj1lMyEsEdCIwa85WUYbFaifQd3hCSDQ/dx46VT7PhoXvZ9dxKAPYNJgBofJUQkgr//nCh2IEhJOFkhoDb/pprexzFZz2Rzf/TfYuIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyJuL7QjVvRiYB6wDME2z0zAM/xFa6y3LYrFS1tBE164dAMw8/jQWTTsfW9wK/lI8x0+g5L0fxNlUNsadHhq310kiksYTtLPgnCbWPtAKJtz8/d1c/a3ZVE+ZwcXXfot4eBhvqIS6qdPHumUBnG475Y3jmXL8NfjLsnhL/CyrnIfXDwsvmEMqHiVQ5mPZ+6bjdOepGHc8yWiEQIWfZe/9BlZbBqvDS+OccwiUuVj67q+CmcDpCVA58ST8pTZOuPKLRAeGwHDicJcRrCxjwqJ/wV+axl8S4KT3z8LpKVBSt4BUPIq/zMey936DRCSCaXpwOKuxW03mnvslAmUF7C4ftdNOx1fmZMlV11LIxXD5A5Q1nIBZyFNTWYc/aWfGlBOpvWYeOSIsvHAOqVgEf5mfZe+fhtOVp3L8CUw9PkZTSTXJe/cRT+/B7bBy8bv/nbAjyonv/hqG0Uc2GcONDzNRYOlF7yGRilLWOINgzUIyiSTZjJeyhvG4PK8d5iCHIBsnaTHw2l857GXI6SOUih21lpLRCC7f6K89i9WKv6yccG/PYV1r95pVVDSOIx4eZuezzzDl2CUjISRNrxJCUu5zANAfPVgISZbQ6wkhcRZDSJKZPAGXnnMRERERERERERERERERERERERERERERERERERERkbeyIxVCkjFN0zQMwwQwDOOVfxn+DmYYBnPOOIedK5eTSSY4/uQrMfqzRJ9sx8wWsAad2MqbAGOsWz2obCpFd/Nu+lpbcPmCeIINWKwByhv8eAKOUXPLagIM9cWYuKiC2kkhEtEM/jIXgZIQhsWgpLJyjHYhr6Z6fBCPfxrh3gQOr51AmUkmncMTcJCMZHE4rfjLIR3P4Qk5SUUz2OwWAuUWUrEsnqCDdCKHYYFQtZVkJIs74MBflsc0TUpqbAQqqnF67JTUeHA4bbgDUwn3JHF4rPgrIJPI4Qk5SEaz2J3F2tlUDotliIH2zZjAuGMmYhZKcXrtBMpymAaU1NhIRjK4/Xb8ZQX82TyRG7cTyRYACE4vxVg6Hpx2ktEMDpeVwAt7CTqwp/PErtuKmckDYGb+Pzv3HR5Hde9//D3bi3ZXvRdbbnIvgI0xpvdOQgsE0htJCCkkkHZzk/ySm3bTE9IrCTeQUNLo3TY27rhX2epd2/vO748VMkKuINHyeT2PHmnPnHO+58zMjv3PfLLE/7GP4nfOpKDEipEsIruxj/SaQchZsVa7qD5vBilXAS5fjnQiS6DMTaDs0CEQMkZSMWI2C2W2Q5/rkNtPXe++V21J8UgYX/HoAKlAeQXBnrELIYmFgnTs2MaJb72avtaW4VCrlv4YPqeNwsME4BR5HFgtBj2R0SEkg7E0k8sLjljf48iHkESTmZe5AxEREREREREREREREREREREREREREREREREREREReb0YrxCSvxiG8TOg0DCM9wHvBn4xTrXe0Cobp3DtV79DuKcbm2Fj4NHdYOaPZYNJwo+1YLgTWAosuOrqXtvFvsT2Z5/mwZ9+f/hzReNUjr/kRrYuDzP9pOpRQSRFZUMvtFePnss0TXK5LFbreN2S8nJkBgYwV66Af/0T14UXkti8GUcmi216Ezz8CM5zzia1bz+2nh7sJy4i8fDDOE46idzAIJZdO3GceSbJxx7HOWMGGGCsXYfzgvPJLFuOvbISW1ER5qOPwvTp5C66kGxVFax5FvPe+3Cdfz7JXTuxhcLYF8wn/vDDuE49jXRXF5mGWu7/y+9JJ+IA2J0uLrnuPfhNg/RTT+NsnIjF7cZ49lkcF1yINZ4m2lKNORRAApDc2o9/mpdc1wZ48CGc55xDav9+rN1d2BefBJaS4QCSF5jpHJaODix7nsNWMZvEc5HhY9n2BNnnenHX7yH2zDM4bFbMSZNoeehh7DXVBC67DPfs2a/OhfsPY0nHiDkceOyHDiGJuAspzOyEdALsrnFfUzwcoryhcVS7v6yCvevXjFmdvetWY5o5Jh23CIfbw45nnyE6OMD+/hh1xR4M49AhVhaLQYnXQW84NerYYDx92ACTF3gc+Wd27CXfFREREREREREREREREREREREREREREREREREREREReeOxjMekpml+G7gb+CswFfiiaZo/HI9abwYltXXUz5yHGcsMB5C8INMbJ93STvSxx16bxR1CuLeHJ3//qxFtXXt2MNi5n12ru+nvjI4aExlMsn1lBw//ZjPPP9lKsCcGQOfunTz0sx/wf//1GZ5/7EGigwOvyh7kyIL330/7Jz+Js7GRrq99ncE778QWCNBx623Yy8vp++nt9N1+O86JE2j/5KfANAndcy893/0u7qYm2j75KdItLcTXraX76/+De8Z02j/9GaIrV5Lt7aXzv/+b2DPP0P+LX9D6sZsJ/fvftN30MZx1dXR/97v0//o3OKqrab/l01g9Hvr/8AeC99zD7j07hwNIANLJBDv37KDnJz8hsXkzqT176PrKV3E1Tafz858HV4BMd3zU/nIpKx2fuRVbWRl9P/sZfbffjquxkfZPfpJ06x4M+0sekVaDXLiP3h/+iGzcMWq+5N4YsWfXMXjvvVidLjo++zkiTzzBwB1/Yt8N7yCxbduYX6P/eLkslkySuGHBa/ceslvcW5z/I9T2qiwrEQ7j8vlGtfvLyokO9JNJjQ7+eDl2r15JQXEJ5RMnUdk4BYDu5j0090WpLz50KMsLSguc9EaSI9pM0yQYSxNwj77HX8rjsAIKIREREREREREREREREREREREREREREREREREREREReTOwjePczwNu8rEaz49jnTcFi8OKxWcf3e53kNiwitC/7qHgrLNw1tS8BqsbLZNOkYhFmXXamSy+6nqS0QgDXZ307hugtxV2PddF9eRCLBYj3z+V5bl/7GXLM+0A7FjZRflEP6dcVcJdX/ksqXg+IKJj53aWXHMDiy67EsMwXrP9CaS7uuj98U+wlZdhNE3D1jQNz9y5xGNRHNOmYTtuPpaOdnwLF5JMp3HMnIHrrDMJP/QwnjPPJO1y4Zw5k4KrryL81FM4588nV1GOfdZM/JdeSnTdOpzTpmFMn4ZnYiOumhq6//e7WIuLscyZhW3PbrznnE0iEcfR1IRjyRKS4TDuQIBwfGTITXFNHQUVFTjnzsU1bx6RlStxNDVBQz32mTPJuKzYpwRIb3tJwE3AhqOpCfsJx2Hp6sJ3/PEkM2kcM2aQDlixnV5M+tE+yJpgNbCfUUwstB1bQwPWKj/QP2I6W20BZtZH4XveTby3F+e0aVimTsEMBkksW05840ZcTU3jfOX+w6Ty90LMYuCxHTp0I+ktz/8RbIGSSeO6pHQyQSaVxO3zjzoWKKsAINTbQ3H1K3ueZ1IpmjesZcYpp2MYBkVD83W0trO318LFc6qPOEeZz0nPS0JIYqksqWyOQs/of5NeyuOwDY3JvIwdiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjI64llPCY1DOO9wCrgLcAVwLOGYbx7PGq9mViLbBQsPfBSumG34FtayOBf/gCvs0AOw27jHd/5KTNPO5vlf7mDe7/5ZbY/8wR1M2qxO620bB0gFTvwUnqwJ86WZe0j5ujeG6K7ee9wAMkLVt17F5H+vldlH3J4ziveQs/11/DA0w8TvfYqlkd62RZw03vD2/jnkw8SvuJy1hW6WJsMMfiut/PPpx9m8MJz2TpjEitadxN+7w088OwT9J5+MnvPWspj61cSe/cNPPL8c7TNn0nrlZfwaLSXZ3paiFaU4fnEzQx84F38+8mHiLztClZZ02yyZul/13X886kHCV12IRurS6ieNj2/QMPgpCuvpWLiJFq3bKL/1CU8uHYZnSceR8vlF/DQs08Qfed1PP7038nNtmJrKMgPc1pxnFnGzj3L6b3hmqG9XMq6Ijdr40EG33M9rW4bf//bdxg4Pkx8scngCVH+ed/3GCgtZN8FZ7B15zPYpvqGz5WlwE5ycpqexhqe7tnPruoSut5+FY+mgqws82P77y+C59AhGfIyvRBCYljw2r2H7JYMVAGQ69v98uoE2+Dp70AyfMSu8XAI4KAhJP6yfBhKqKfr5a3jRVq2PE86maDxuIUAeAKF2F1uNu3vxTRhZvXo+i9VWuCkNzwyhKQvkho+diQehxWAeCp7rMsXEREREREREREREREREREREREREREREREREREREZHXGds4zXsLMN80zT4AwzBKgOXAr8ep3puDB1wL/DgnFZDpHiTTtZvOz91GLhym9KMfwVlTc+Q5xlA6maC/rZVkLEqgoorA0MvzAOQgk0ry+O9+Qffe/Ev9oZ5uOnZu4+JPfoFNTyawu60HuudMMEfXMIzROThWmw3jdRa68p/IVlbGvrJCVj/wdxZfcS2P//bn2BwOSusn8Mxf/sDxF13Osr/8gWQsyolvuZon/vArZp1+Nusf/Af97a2cct27eORXP2Xi/OPZs/Y5Wrc8z9K3vYOHf/FjyiZMZLCzg23LnsRbVMyEBSew6smHKSyvZM2/7mXR5Vfx5B9/TS6b4/iLLuOpP/2WeedcyMp77yLc20PD7HksvuJtxIKD7F6ziq49uzjlunfx8C9+RE3TTDp3bWf3mlWcfM0NPPLLHxMor+D5NY+QikY57q2X0NG8k+cf+hONC05g1b13cdxFl7PsL38kGY1w4luv4Ynf/5Kz3/8Rgj2dPHTnj0ecl0QkzLoH/wlA/6LTmHXO6dhtLlpaN2P2Gjx7959xFfgoqW1g+d1/AmCQdtr37ODq275M0at+Jd/kXgghsRh47IcOecn5qkgaYOnd/vLStx64Fbben6935hcP2zUezgeVuH2+Ucf8ZRVA/nn5Su1evRKb00n9zLkAGIZBUWU167tjAMysCRxxjlKfg95ICtM0h5+7PZF8KElJgeOI418IIYkqhERERERERERERERERERERERERERERERERERERERE5A3vZb2LfRRagfCLPoeBlnGq9abhLCoi+Pd7MB0RDEs38Q3LcU5rouprX8N76qnjWjszOEhs/XriGzeSDYeJBgd55s+/54+33cxdX/kcd9x2M+07twOQSsSx2e1EenuGA0heEO7rJdjVxqxTa7BaD9xeHr+D+pnFI/oGylyUT2jEEygc0b7kqrdTUFwyPhuVoxbu72P94w8BYJo50skEDXPms3PVCgBsTiex4CDVU5to3rgOgILiEvrbWymqqqFr6N6oaJxM65bncbjdRIODmGaOCXMXsOPZZwCYd84FPH3Hb/D4A2xb9iQAhsVCMhqlbsYsdq9ZBYDL5yPc2wPAvufXs+7ff6d84mS69uzCW1jEQGc7AHUzZrN77XMYhoV0Kkkum6VxwUK2LXuK7c89w569a3n87l9QUlvPzpXLAbAP7aVqShP7nt8wtAYrDbPnjTgn9bPm0rpl04FzFOol4Ylz5+2f5en7fk8mlSSTTjFx/nHsWPHMiLFmLkd3R+sYXBkZIRUBIGYcPoTE4yhgv81OrnfnsdfI5WDPE/m/dz9+xO7xcAgAt88/6lhBcTEWq41gd+exr+NFTNNk95qVTJizAJvjQFhIYWUVeyJQ6LFTHXAdcZ6yAiepbI5QPDPc1jcUQlLqdR5xvMeRzzKLpzJH6CkiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIq93tnGatw1YaRjGfYAJXAqsMgzjEwCmaf7vONV9w3NPnMC+Cy6k4tvfovyLXyDT3kHsuVW4GhrGrWZq3z7aP/d54qtXA+A97TQS73w7a/99/3CfeDjE47+5nSs+91Usdhs5k/yL74YBpjliPpvDydoH93PWu704XXYABjqiFFV6KSz30LknSHF1AcXVXgqKK7jy819l15pVDLS3MnnhYuqmzxq3vcrRMyxWnB4vmWQSi8UKQDoRx+nJBz1YLPmQmVQ8jreweERbOpnA4XYD+bAEi9VGLpMdDkvIpFLYXS6S0SjZTIZsJkM6kcDp8RIdHBiulxpqe/HcL0hEI0T6ezEMC5l0CrszH7iQzaSxORwj1p0aWnc6EX/JXkbOnUrE8ZWUAhDu7aGwqprKKdPob2uhsKKKsvoJPPDT7wMwbfFSAFq3bcHhcpOIRkas2+HxwEDfiDVbbEcOdZBjlIoCkLY6sFvsh+zmsXvYa7cxoX/3Ifsc0mAzJEPgDEDXZsimwXroWgdCSAKjjlksVvylZQR7uo99HS/StWcXkf4+Jl21cES7r6SUthY7M6v8GIZxxHnKfPl7sieSJODJ76kvmgKg1Oc45LgXeBz5ez6ayh7T+kVERERERERERERERERERERERERERERERERERERE5PXHcuQuL8tu4F7yASQA9wEdgG/oRw7Bc8IJlN/yKYJ/uYv+228nsel5fKedNq41Q/9+YDiABKuVbE8PA53to/p17t5JIhrB7nCSjEXw+AuZddpZI/o0zJmP01tK8/O9BLviw+2xUIoNj7awa003Tq+d9p2DLP/rLpKxDKX1Ezjx8qs4/8OfYMoJi3EV6BZ5fXAz77y3ARAPBymurqV5w1qalpwKhkF/RzvVU5vo2rOL+llzsFhttG7dzOQTFhPp76Owogq708Xu555l1ulnk0mnsNrsuH1+tq94mnnnXAgcCADZvXolM4fup3BfD+UTGmnbuplJxy3EsFjo2rOLhjnzR6wwm8kw89QzSEajuH1+nF4vO1YuY+5Z5w8dT1NQXMLOZ5cx9+x8WywUpLimjuYN65h20tL8XtpaqZk2g+69u6mbMRuL1UbHzm2EurtZ+8/7mDjvOLY89Tgr77ub2WecDYZBSV0D21c8zY4VTzP33PxekvEYgYpKdq9ZOeq74QkUUlA4fmFC/7GGQkhyDs9hu3ltXvbZ7diCrfkQkWPRsTH/e8H1kE1C747Ddk8Mh5Ac/FnmLysn1NN1bGt4iW3Ln8JitTHphBNHtLsKS+i1FzGtzH1U85QVDIWQhJPDbb1Dfxd7jxxC4rbnQ0hiCiEREREREREREREREREREREREREREREREREREREREXnDs43HpKZp/vdYz2kYRiHwS2AW+XCTd5umuWKs67zWbIWF+M49l+Su3fTd/jMsbhdlH7uZwOWXYT3EC+2vhJnNEnniCaylpZR+6INkQ2FsxUWEvAWj+lZPnY5raA0ur5e2rVuYMGcB1dOm09O8l5LaepxeLy1buvH4Hdid1uGxgfL8C/GxUIrYln4AqiYH8AacY74nGRs2h5X+zgpOvf5WosG9nHjFDcRDgyRjcS686bP07t/DhDmLmL70bCIDg1xw0230tTTjLS5nwrxFhHq7OffGWxjsaMXh8XHuh2bS197Kme/9GMHuDgyLnfM/8hkgQ2FlNYOd7Wxf/hSnXPcuYuEQCy+7hmgwSCIUztdr2Yu/rIopC0+hv30froIC+lr3Y+ZynHTV20kl4pzzgU8y0NGGzeHivBs/TW/rPk674UMMdnVimgYXfPQ2evbt5sS3Xk88NEgiGhvay14mzFvMtCVnEg3m99K1dw9FldVMXLCI7r3NnP7OGxnsbMXu8XH+Rz5D775dAEQHB2jbupmlb3sHob4eTrnuvYR7e0kl01z4sc/RsXMnNkcBdnc9phl4bS/qm1Eqkv/t8B62m8fuYZ/dhpHLwuB+KJl09DUG9+V/Tz0XVvwI+vdCxcxDdo8PhZAcKlDJX1bB3nXPHX39lzBzObaveJoJc+fjfkmNfnshOSNG41H+c1Hqyz+DeyMHQkj6oil8LhtOm/VQw4ZZLAZuu5VYMnP0GxARERERERERERERERERERERERERERERERERERERkdcly2u9gGPwfeAB0zSbgLnA1td4PeMmeM+9BO+5B3I5ctEYXV/7GvENG8allmG14jv3HCr/64t0f/Nb9H7/+3R+6b8JWO3MO/ciDEv+FvGVlrHkmutxuj35z0Ul+EpK+McPvsljv/4Z3c17eOL3v+SJ3/2CdMrB4ssnUVR5IBSgpKaAs949A6cnn3tTVl/AKddMxeEelxwcGQPuAgczT65n1T9TYF3IjudcPPcvD/7yE3niT0mikbm07ixixX0OCiuX8PT/JehqmUKor4Zlf7NSULKEFfem2fN8LZnMFJ78vxyewBLWPGiyZXkpdvccHv9TmlSyhOlLT2fRW66metoMcrkcxZUNtO4sZOU/XASqlvDEnQn6u2fQ01rJ8ntsuPzH0bZ1O9uXP8WOZ5+hZfNmqqedzMq/Z9mxphLDNoMn7szg9J7E+scsrH+0kM3LinniTymmLL6EvRu8PPcvD4GKxTzxpySR0GzadhXz7P0OAhX5vex4roZn74ONT/iZseBcVv49w57n68hmp/L4n1K4fHXD56p16yae/vPvSCeztO4oYM3DPvylC3n8jgR7np/IlhXF7N2YpXyC/zW8om9SqWj+t3N0cNKLee1emu32/IfencdWI9gKzgCUDwWPBFsO2z0eDuP0erFYDx7iESgrJzo4QDqVPOjxI9ny9ONE+nqZccqZo461ZfPP6DrH0c1dWjA6hKQ3kqSs4OgDorxOK7F09qj7i4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjI69MbIgHCMAw/cArwTgDTNFNA6rVc03jJDA4SvO++Ue2xNWsoOPnkcanpXrSIwf/7C1Xf+AbZ3h7MbA6rxcaUOfMonziJXCZNWUMjFY2TR4wrb5zMaTd8gKf++Avatm3G4fZw2js/iicwgcqJI8MWbHYr0xZWUjUpQCqepaDYictjH5f9yNipnezn8hunMdAVY+KMGlKLy8kmk1z4wRmEuyN4it1MnltEKprgvPfNINIdxuVzUjt5GvGBGGfdMI1oXxSb08pFH5hBpC/MKVc0EhuMYzFMLr5xJrmcQSaZYqB9PfFIkJLaKdgLJjJ5npsJTX7S8QQXfiBfz+13MXG6n9hgnOrF57NgxmwsXi/28kaCvTlOf9skogNxrDaDiz80k3B3iJMunUAilCAdS1Jc6aGsxsPJF9fSO89POpPkwg/NINwVwVPkYtKcQlKRBOe9bzqRnijZzg68g82EPvAJTnnXR4gWT8JVkt9LJhFixslnsuWZRwEorKyiadHpWB1l1E8JkEsnuejGmUTDWRxOG6X1Pvwlrtf4ir4JDYWQGI7Dh5B4bB722of+yevdAdPOO/oawTYI1ICnGOxeGNx/2O7xcAi379CBM/7yCgDCvT0UV9ce/TqAVCLO03/+HZWTpzJ10Umjju+JWLDl0hSmB49qvkK3HZvFoCc8MoSkpMBx1GtyO6zEkpmj7i8iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIq9Pb4gQEqAR6AF+YxjGXGAN8DHTNKOv7bLGVrwnjCVpofq7fyIXTmMtdBLv3k6keRu2qU3jUjPV34/F58N32ql03PZZsoODABgeDzX/+x3qTz/7kGPtdgeOgrksvurz5LIxTNPLsr/GsTu3c+Vtxx90jL/EPR7bkHESW7Ma575+akonYI2HyMVSWBwujESYQC6BkchCKoNptWGNhfCl41jTOcxsBtNqYI2F8CdiGDYPRjxBkZHFEgvhj8cxvB6MeIp00o5hKyXjW0oiHsNtFuEdgCJ3jmwshGFzYImF83OncmBCNh0lFw7m1zd1KtZBA195PdZYOF+vID93oZHBGg+RjcXIDkbIdfaSSNeRXLmOotJG7FW1GPGhvaSykHxhL2ECFpOMHczqckLvezf+yioCaRO7zcBIRMhGspRMOZn5M48j67ZTkHLBgAWrL0wumiA7EMJsGaCwzo/vxKWv9aV880pFALA6Dx36AeCxewhZrSRcflw924+tRqgVArVgGFBY98pDSMrK89N2dx1zCMmqe+8mOtDPJZ+4DcNiGXV810CK0lQf8YHEUc1nsRiUFDjojRwIIemLpJhUdvhQlxfzOmzEUtmj7i8iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIq9PYxpCYhjGDwHzUMdN07zpZU5tAxYAHzVNc6VhGN8HbgW+8JL67wfeD1BfX/8yS702Ej0RjKRJbG0P0eXtw+2+s+sZqArR0rqH+q1+6qbPGtO6ZiIBhkFs1arhABIAMxYjdP/fKTj1VAzDOOR4i8XCmgfCVEz0U1juwe3L4HTbsNpGvxwvh/Z6vHcz/f3kom5imwpxz7KR2p8guXuQwIWNBO9rxtHgx+LNEt/QS+D8CQT/1Yo14MQ50U1keQ++M+sJPdwFmHiO9xN+dD8FJ9cQ2zBAdjCJ/4wiBh/YCyZYgfpJASafVE3i3p24phQR746R2NJH4MKJDP59P/ZyD/ZKk+hznUMrdOG/+AOY0QThx7vxneokvLqXXCJLwcmFBB9qxruwiviWMOm2fFAF1mLc8yswjdlE1yQIXOgmeH8zjjofFl+W+PpeAufl95KLZQCw+AsoOO8sEg/2YGBg9ecIPdIxfJ5cx5finlBA+O/78MzzkNwdJbU3xNBgfCVe0r292EtLX7Vr9x8lFSVtGDgdvsN289g9AAz6KqjsPcYQkmArVC/I/+2vhlD7YbsnwmEKiosPeTxQXgHAQFcHE45lGd2drP7H35h+8mlUT50+6nguZ7K1M8JkM0RkIHmQGQ6uzOekJ3ygf3c4yYmNJUc93u2wEk8rhERERERERERERERERERERERERERERERERERERERE5I1urJMiVgNrDvPzcrUCraZprhz6fDf5UJIRTNP8uWmax5umeXxZWdkrKPfqyiTSGFYLZjg9IoAEIPxYC1MmLWTLU4/x0O3fp2vPrjGtbRgGFsMg3dExot33jhso+Oxn6Nm/l92rV7LzuRX0tu4fNb56ciFLr56Cq8BO244Byup8nHjZJByuMc23edN7Pd67uWSO2IY05EzsFR6SuwZxNgZIbOnDTOdwTgwQ39CDrcxNqj1KLpbBNaOEyIp2LB4bZiJDNpjEPbecyNNtYDUwnFYyXTE8c8uILG8bEVnkcFjJrmyHjImj1kdiSx/2mgKSe4OYySyuaUUvCiDJM2Mm4ad7MBz5R1mmL4FnXhmRZ/JzW/2OAwEkAFmTbH+O1N4EzokBElv7MVM5nI2FxNf3YCt1k+6MDgeQ5Cc1sfUY5IJp3HPLCD/dNmINVsNO7OFOyIGtxH0ggAQgB9H1acyjz4OQY5WKErdYhkNGDsVjyx/vKyiBnh1gHjIva6R0HGJ9EKjJf/aWQ7TnsEPi4RBun/+QxwuKSnC4PfS1thzdGoY8dcdvMSwWll77zoMe398fI5LM0OBMEhnoO+p5Swuc9EZSAESTGYLxNFWFrqMe73FYiSYzR+4oIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKva2OaFGGa5u9e/NkwDF++2YwcYsjRzttpGEaLYRjTTNPcDpwJbHklc76umCaG1UIufpCXuLMmpHJMnHccxTX1hAf6qGDyyy7VuTdIz/4w2UyOsjofJQEL5HIUnHIK4QceBMB76aW4brieSF8fz/71zzRvWAtAWcNEznz3h6hpmjE8n9VuYc2/9xEL5V9g37Gqi8hAkgs+VIDTY3/Z65TXnuHwkB3IX1czmwPAGnCS3BMc1ZYdSOQHmSaYYClwkBnMJ28YNgMzlcVw28jF0gBYCuxkg6kR9awBJ6l9oVFzZ/ri+bbcIUIjMiaWgJ3sUIiC4bSSi6bBAmY6N6p7LpHNz+13kBxVz0GmPzGiv8VrJ9v3wl4smMnsyOM+O9lgcsQ8I+oNpkhkshjJJHan8+B7kJcvFSVmWPDavYftZrPYcFqddDmLmJkMQrgT/FVHnj80FAzlHwohKSiDSHf+XjeMgw6Jh0O4DhNCYhgGpXUN9LXsO3L9IT379rLj2Wc48a1vw1dSetA+m9vz9/NEv0Gkv/+o5y4tcLK9MwxARzD/faspdB/1eI/DRl8kdeSOIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLyumYZj0kNw5hlGMY6YBOwxTCMNYZhzHyF034UuMMwjI3APOBrr3C+1w2ry46ZyWErcmK4rCOP+R3k3DncvgDJaISOndtIxqIvq07HrkH+ffvzPPXnHSy7axf3f289XT02cpEIlrIyyj59C7ayMnyf+gRWi4XOXduHA0gg/xL89hVPY5oHwiAGO2PDASQvaN85SLA3/rLWKK8fORc4ZxYB+fANDEjuDeKamm/DMDDsFlKtYZwTAwCYySyWAjuZ3jiO6gIAsgNJbOUezHgGqz8fwpHaH8Y5qXBEveSeII4X6lktYDVI7Q/hmjLUL2uO+n6Y6RzWIifZUApbST40Id0Zw1Hng1w+kOSlrMXO/F6aQwf2AkN7iQzv5QWZvjiOSflAiUx/AluFZ8TxVEsI57Si4Tl4SS6FdXIBD/zm+zz9598RCwVHn2h5Rcx0lJgBHpvniH09Ng/tHl/+Q+/2oysQ7c3/9pbnfxdUQDYJydBBu6eTCTKpJO4C32GnLa1roLd1/4jn6eGsuu9uHG43Cy645JB9NrcHsVkMGgsdxMNHf6+V+Zz0RpKYpknbYD6Ep/qYQkisxFLZI3cUEREREREREREREREREREREREREREREREREREREZHXtXEJIQF+DnzCNM0G0zTrgU8Cv3glE5qmud40zeNN05xjmuZlpmkOjMlKXwcMw4BsDtNtpfjqadhK8y9/26u8FF01lTu//3me/dudLL/rDvrbWulvaz3sfJm+PpJ795INh0e0t+0YIBY8EBiSy5mseXAf1qo6Bn7xS5I7d1H9/e9hNQwMi5WOXTtGzd26dRPpZHL4s80xOuTBsBjYbON1a8mrJR4JEqwKYp3sJbami8D5EzEzJobDgntOKdFVHfjPm4DFYycbSeNZWEl0XTe+M+qxlblJtUUoOLmG+NY+vAsrsNcVkNjRj+/MelJtEZyTAzgn5wM/LD4H2dk2upwtWJsKiK7qJHD+RAyrBTOdw7OgjMjqLvznTBj+flgr3Qx6ekmcANYKN8m9QQpOqyW5ZxD37FIcE/zEN/XiP6cBi8cGBlineom74xhn+jFzJobNgntuKdHVnfm9eO1kwyk8CyvBmg9ZsZ4QIGgbwHqin8T2frwnVOCozwdMWAqdmDNcRCfFsU70EFvXk5+nwJ5f4yQvfWXdtGzdyLp/30/nQb5T8srkkmFihoHX7j1iX4/dQ4tzKKyk5yivRawv/9tbMvR7KIwk0nPQ7vGh567b7z/stCV19STCIWLBwSMuIZ1IsGvVCmaccsZhw002t4eYXF6AP+AnFjyGEJICJ+msyUAsTftgPkDq2EJIbAohERERERERERERERERERERERERERERERERERERERF5E7CN07xe0zQff+GDaZpPGIZx5DfE/4M5ywtIJ5Lk3FaKrp2GmcqB28Lff/4Ngh3tw/12rVpB0+JTqJoybdQcpmkSe3YlHV/4AunWVlxz51D1pS/hmj6dXM4kFk6PGhMLJsmms/gvu5Seb3+H0D33UPn0k5DLUjVpKtuXPzWif+30WdidzuHPxVUe6mcWs39z/3Db/LPrCJR5jnrvof4omXSOZDhLX1uEeDRDaY2XqikBXB7HUc8jY8vM5bj/F/9D/fQ5LL7gGrbsXE7xyTUMhPfQm9zH5HMWsX33CtxzA9gtcTrbdtF4/gns2LsSJlooKqykff9qJlw4j5371pAojFDbOINdu5+h7oJZ7Nm3nqClh6a3LWXn2hWs//O/SEaj1E6bxfT5p5C020icECOYjtIV3Muk805g+94VMNGg6tSpbFzxCFt+8QRg0rTwVGbPOovmljVUXjiFXc1rCTv7mLTgeLbsWoZlihWHw82O5/9NTcEM1v3775z19g8xEN9Lb7yZyWfn9+Ka48dhjdPZthvfvGLcgQCme4Ddy1bSuXM7515/E7v2ryXs6aNsaT3eCh/dfTt49Ne3M3H28Sw67wq27FxO+ekTiPZG2bHxYZofWTt8Tgc62oATXqtL+qaUS4aIWQw89iM/czx2D52GCU4/9G4/ugKx3qHBQyEkBWX535EuKJ08qns8HALA7Tt8CElpXQMAvfv34S0sOmzf5g1ryaRTTFl40mH7bW4PcerUMjzOAJlUknQigd3lOuwYgIaS/Lnb2xtlf38Mm8Wgwuc8wqgDPA4rsVTmqPuLiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMjr03iFkOwxDOMLwB+GPr8d2DtOtd407C4nuCCU7iVjJBlobadj5zac3gLe/s0fYHO4WHn3n4Zfcn+p1N69tHzwg5jJJACJDRtp+9QtNPzhD9iKi6iZUsjzj7eOGNO0uAo69tH9//4fhVddhcXlhrVryc2eTeWUaUyYu4DmDfkQhbKGiUxbvBTDMIbHuwocnPb2Jjp3BxnoiFLW4Kdyoh+r3XJUe86ks2TSJslwlsf+sI3BrtjwsTOub2L6kupjOocydjyBIqqmNtG2ayuD0S62PPc4RdU1lNY1sGnZo5RMnMCWdU9hs9uZeuLJbF7+GP6aSnZsWkE0OMjCi9/CphWP4iz00rJrE117duGvqWDzs4+SNdKEB/tpXr+a6lkzWPP4/WSG7tvOPTuYetIS1j3xdzKpJPWz5rF52SMU1dewfcMyappmsuLhv7Bvw4Fwj72b1+As8hHp6SZtpuhr3UfL5k2UNNaz+dnHsDocuH1+OnfvYOriJSRjUbateZqyCY1sWv4YJY0T2LruaSxWK9OWLGXz8kcprKgkl8vR19rC4iuvZfvyp+no2Enb7s107NpBaV0D4b4epi89g7IJjbTu3My0pUvZsvIx+nun4i0qom3nlhHn1Fda+apew/8EZjJCzDDw2o+cc+WxeYhl41A2DXqONoSkb2hwaf63tzz/O9p90O6JcBgAd8HhQ0jKJ0wCoGPnNhrmzDts353PrcBV4KN2+qxD9ukOJ+iNJJlR7ceTDuSXHhok4DryPTel3AfAru4wO7vCNJZ5sVmP7hkO4HVYiaez5HImFotx5AEiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIvK6NF4hJO8G/hv4G2AATwHvGqdabzqmYZDNZAhUVHH5bV/GYoEtjz/Cvo1rqWicQml9w0HHpfa3DAeQDLft3k26ox1bcRGVkwKcfn0Tax/YRzKeYdbSaqacUI7RHiIXjdH/m98Oj/P/77d5dtNqTrn+Pcw/7yJy2RyewmLcBaNf9PcVufAd73pZe02EU1gtFvo7oyMCSABW/n0vVVMCFJYfOVxAxl42Y+X4i66np/l5tjz9OIsuu5K2bVtIRCOcfPX1bH3mceafdxG9+5vp2d/M0mvfwbblTzP95FMJ9/XSvHEdp1z7TnY8+wx1M2ZTNXUaO559hpOvuYHdq1dSXFPLCZdcwabHHuKc93+U7SuewVtURElNHTufe5YZS0+na89Ogj1dnHzNO9i+4mlmn34Oob5eKidNGQ4hOe7Cy8jlcoR6uph64snsWrWc8omTqZg4mW0rnuKkq66jef0agr3dLL3unRRWV3PRzZ9h95pVxMOh/F6efpx5512Y38u+vcN7MQyD065/D0W1kzn7fR9h13MrqJ2RD+hpXrea2qZZlDdMpKZpNi2b17H1mSc48a3X0LJ5Ix07tnHcRZcz2NHGtuVPMfXEM7G7FKoz5lIRYhbLUYWQeO1eIqkIlE6DnQ8d3fzRXrC5weHJfy4YCiGJ9By0ezwcBMDtP3wIiauggNK6Btp2bD1sv2wmw561q5h8/IlYrNZD9tvRGQFgeqUPT6gQgFgoSKD8yCEkNUVunDYLO7sibO8KM7e28IhjXsztsGGakMhk8TjG678VIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIy3sblbWHTNAeAm8Zj7v8EgZISuqNhbDYrTo+bFXfdwa7nngWgfcc29qxdxaW3fJGyl4SRWAsDo+YyPB6sPh8A3oCTGUuqqZ1WRC5nUlief6k+65iA99RTiT755PC4eCyK1bCwc+UyNj7yABaLldlnnEPdzDkUVdWM3WYNMCwGmVRu1KF4JHXQdnl15HImbdueZ80//sSiy6/iid//kmwmzfEXXc4jv/wJ88+7iJV/+z9CvT0sfds7ePCn32faSaew+YlH6dy9g1OuexcP/Pi71DTNoG37ZnavXsnJb3sHD97+fQJlFTi9XjY+8mcA9qx7jiknnkxRZR2P//bnHH/R5Sy78w/EIyEWX3EtD//8h8w67WzWPvB3+lr2Me/ci5gw7zgMw6Bn/172P7+BU657Fw/+5LuU1k/AZnew9ZknOOmqt/Pwz39EOpkAoG3rZi646RYe/83PyKTTnHDxW3jklz9m3jkXsuqeuwj2dA3v5QXNG9Zy6ac+zyO/+DHVTdPp2LGNXc+tAPLfx2BfD+UTGlnz97+x+Iq38divbycZi+brbd/Cwsuu5oz3fJnm59OE+y2v8lV88zNSUWIWg2rbkUNIPDYP3bFuKFsI6/8I8QFwFx1+UKwfvKUvmqQEDAtEuw/aPR4JA+D2HT6EBKCmaQZbn3mSXC6LxXLwgJGWLc+TjEaZfMLiw861vStfd2qljzT52rFg8IhrALBaDKZV+nhmVy8t/XGuPK7uqMa9wOvMrz2WUgiJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMgb2bi8EW8YxlTDMH5uGMZDhmE89sLPeNR6s7LZ7VjsNqID/cMBJC8IdnfR17pv1BjnpEkUvf26EW0Vn70Ne93IF8r9pe7hABIAq99P5Re/QOWXvoTvvHOp/K//IjBvHg2z57Hirj8RHegn3NfD8rvuIDo4MIa7BMMKZs6ksMKNxWKMONa0qJKiSs8hRsp4y2XCbHrsPgAsVivxcIgJc49j2/KnAHAV+Ah2d1E9dTrNG9YCUFxdQ+fuHQQqKunZtxfTzFE7Yxa716zC7nSRCIfIptNMOn4RW54c+Uhwutys/dffALC7XEQG+qibMXs48MNXWkpfS/6+X//gPzBNk+lLT2f/8xtw+wMEe7rIZbNMnDe0RsMgl8kMB5AAeIuKiYeCQ3tZwPYVTwPg9vsZ7Oqgaso0mjeuHbEuf2k5u9esxDRz+fWszn8fbQ4ni6+4ltmnn82GB/4x3P+FAJIXrPv3fUQHoX1XlPIG38u/IHJQRjpGzGLBYz/ys8Jj9xBLx6CsKd/Qs+PIBWK94Ck+8NliBXcxRHsP2j0eCgH578eRVE+bQSoeo2df8yH77HruWWxOJw1z5x92rh2dYUq8DkoLnHj8hUNrOboQEoDTppaxrTMfZHL8hCMEs7yE254PIYmnssc0TkREREREREREREREREREREREREREREREREREREREXl9s4zTvXcDtwC8BvZX8MiRjcbx+OxaLFQwDTHPEccMwRo2x+nyUffSj+M4+m0xPL476OpxTpx6070s5ampwXHM1RddcDUAqleDRP/5qVL+dq5YxbfHJL3NXo3n9bvq7IngKHZzzvpms/lcz0cEkk48rZ+qiSqw265jVkmNjWCwYlhdyivL3kGma+XvyxW25LIbV+ZK2HBbrgWtnYGBiDs9nmuaL5maoLYfx0rlN80XzjLyP921YS/WUaS8MxvKiuS0WC9lsdsSQ2Weci93lJJ1IDNd76dxmLvei/UHdzNlMPuEkBjvbh+oc2MsJl7yFDQ//ixlLT8ewWiE9eo0vnEen185FH55LWb1CSMZULoc1nSDq9eG1e4/Y3WPzEM1EoXRqvqFnG9QvOvygaC94Ske2eUvz4SQHEQ+HcHq9I+7/Q2mYPQ8Mg92rV1IxcdKo42Yux+7nVjBx7nHYHc7RE7zI9q4wUyvy95fHHwAgdgwhJBfMqeJHj++itsjDCROKjzzgRTyO/H8loqnMMY0TEREREREREREREREREREREREREREREREREREREZHXF8uRu7wsGdM0f2qa5irTNNe88DNOtd6UDCBr5nB6vExfcuqIYyW1DQTKqw46zhoI4F20iMBFF+KeMweLy/Wy6qfjCbyBwlHtBUUlL2u+wzFyBn/5ymr6OyOc9c7pXPTRuVgdBrHB5JjXkqPnKy7hpKuuAyCTSlJQVMLe9atpGrofo4P9lNTW07FzBxPmLADDoGffXmpnzCbU001pXQMWq5V9G9cxbfHJZJJJHG4PdqeLnSuXMeuMc0bUa9+9gxPfeg0AiWiEQEUlLZufZ8oJiwEY7GynctLUEWPMnEnTktOIh0MUFJdiszvYvWYVM045cziYxOn1UlRVDQas/df9JGNRCopLaF6/lmknnQJApL+PkroGOnbtoGFoL2UNEympqefx3/4Mf2kZFquN5g1rmbbkFKw2G9lMhlhwkB0rlzN7aC+5bAbPS743i6+4ljlnNNEwqwSrbbweuf+h0jEMTGKGBY/dc8TuXruXWDoGhfVgscFA85FrxPrA85LnnqcEon0H7Z6IhHH7/EexePAWFlHbNJMdzz5z0OOdu3cSGehn8sLFh53HNE12dUeYVpkPIbG7XNgczmMKIWmq9PPPm5by1w+dhN16bPepx5kPXImllDkmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIvJGZhvLyQzDKB768++GYdwI3AMMJ0mYptk/lvXesAb2wf5n8y/A1x4PNSeAe+RL66X1DfS27mewu4OaaTMon9BIy9ZNlDdMpLi6jmQsMq5LtDudTJh7HHvWrSaTzF9Cp8fLhLkLxryWxWbB7rSy6r5mVt3XPNxe99GxDzyRYzN9yakUFJWwc+UyTnvn++hr2UcyHuPCm25hz9rnWHT5VYT7egn2dHHxx29l79rVNB53ApOPP5G+tv1cdPOt7Nu0npKaOmpnzKJ953bO/8gnaNu+FY8/wDkf/BjN69dQWj+BKQsX4yspxRsIsG3ZU5x8zQ0MdnYQ7u/jops/w961q5l33oXEQ0tp37GNCXPnD4ef1M+aTdv2bVxw0y20bHkef1kZZ7//o7Ru3cQ5H7iJbCbDwz//EQBr/3Ufiy6/ilgwSCIc4sKPfZo9a59j4WVXEnnRXlLxGA/d/sP8mH/fz9Jr30F38x4qG6dQP2sOwc5OAEI9XYS6uzjpyuvo2b+XM971QXr3N9Pf0ca0E0+mbuZsnG77a3YN39RS+edg1GLgtXmP2N1j95DOpUmbOeyBWhjcd+QasT7wlr5kohLo2X7Q7vFwCHfB0YWQAExZtITHf/szevbtpaxh4ohjO59bgcVqpXH+CYedozeSIpLMMKHkQBCLJxAgfgwhJADTq45+3S/msQ+FkCQVQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8kY2piEkwBrABIyhz7e86JgJNI5xvTeeUDv85R2QCkP5DNh4Jyx8Pyz6IBjGcDeb3U7lxEmEe7pZ/c97ScZi1M+aw9ZlT2K12bjo5lvHdZkOl5uy+omc+JZrSCcTGIZBQVEJJXUTxryWv9TFiZc28vRfdg63VU4KUFJbMOa15Ni4CnxMWbiYKQsX5xtOPHn4WNOSU0f1n7poyai24bHA3LMvGGo7abht9ulnj+jfuGAhjQsWjppn2uKlh1zn7DPOZfYZ546qN+fMfFt0cACnx0M6ESebybD8rj/hCRRy7oc+QeP8BTSddMqoOVu2bMQ0cwCE+3p58g+/orCiinlnn0/1tBm079jGqvvuxjRz7Fr9LHvWreacD36MaYtPZtrik0fNJ+MgmQ8hiVkseO1HEUJiy4d0xDIxAoUN+UCow0kn8kEnnuKR7d5S2LfsoEPioRAFxcUHPXYw05eextN/+i1r//13zv3gTcPtpmmya9Vy6mbOwVVw+Gfh/v4oAA0lB86B2xcgdowhJC+X15n/r0QslXlV6omIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyPgY0xAS0zQnjuV8b0pdm6HpfOjfA21roW4RpKIwuB+KGkZ1dxX4mH3GOXTu2kH79q1UTZlKw+z5BMorXlb5yECCUF8Cp8dGYbkHq81yyL6Vk6fg9Hjob2/F4XZTUteAxx94WXUPxzAMmhZXUVTlpWd/GF+Ji8pGP96Ac8xryX8mb2ERS697F//+4beH22wOB8VVVYccU+i14S0qJjrQP9yWjMcocOSDSSomNPKWT32G5ff8lXg4zPwzz2RC05Tx24SMlsqHkCStduxW+xG7vxBUEk1HCRQ1wPZ/H35ArC//21M6st1TCrF+yGXBYh1xKB4JUVo/+ll+KO4CHzNPPYNNTzzCSVddi684X6tj53YGOto54dIrjjhHc28MgIYSz4ElBgLEgoNHvY5Xwu3In4NYKvuq1BMRERERERERERERERERERERERERERERERERERERkfExpiEkLzAMww58CDhlqOkJ4GemaabHo94bitUBm/4GPdvyn3t3QMVMaLr4oN1rmqaTjEZo2bqJupmzsbvd1DTNwOFyH7JEuqeX1N49GFYrjsZGbEVFAHQ1h/jXTzcSC6awWAwWXdbIrFNrsDksWIyDh5EUVddQVF3zyvZ8FBxuG3XTi6mbXjzuteQ/U3nDHE5/120MtO3AWVBE+YQmXL7SQ/b3WaJcdvXZPPrgKjr37qWiYQJnnn8ifks++MLa/TwTHngLNYuuJ+2ehGfjf0PVJ6H8va/WlmQohCRn9xyhY57bnn9uxtIxKGyAaE8+BMrhPfiA4RCSkpHtnhLAhPgAeEfeQ/FwCLfPf9RbADjhkrey6fGHWXbnHznvxpsB2PLUo9gcTqYuOvmI4/f1x7AYUFv0ohASf4Deln3HtI6Xy+vI/1dCISQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIm9s4xJCAvwUsAM/Gfp8/VCb3s7PZQ4EkLygazPE+w/a3WKxMvmEE6me2kQqEcdbWITd6Trk9Mk9e2i9+WZSO3YC4D5xEdVf+Sq5kgqeuGMbsWAqv4ycyYq/7YaKGN9r/zqn153OWQ1nUeerG5t9HqNYKEgyGsETKMTpOUQggMjLlEpmWX53My3bk7h9k0knsmx4vJ1LPlJM3azygw8qmkDltpt565wpJE47DdfgVlybfwDH3w+A2bmRrRd/h/05J9mcScm5X2LGzsfwRy8Hb8nB55SxlcyHkJiHChF5Ca8t3y+WiUHRhHzj4H4on37wAbHeoYEvCat54XOsb8SxdCpJJpk85hCSQHkl88+/hNV//xtTFy+hrGEim598jGmLl+L0HDlgZV9flOpCNw7bgTAptz9APBjENE0Mwzim9Rwrt8MKQCyVGdc6IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyvsYrhOQE0zTnvujzY4ZhbHilkxqGYQVWA22maV70Sud7TbgKD95ucw7/aWayYLWMeHHcEyjEEzjE2BcJ3nffcAAJQPzZlUSXL8M47WJ6WyIYFjj9hiZyWZMn79hOV3c/67rXsa57Hc+0PcN3T/sufuexvUD/SrVsfp6Hfv5DBjvbqZ7axBnvvpGKiY2v6hrkjcnM5gAwrJbD9osPxmjbGcz/HU4D4PTYiIeThx5UUAZX/g7Xsu/j2vobmHgqXP1H8FUCsK98Nm0btrD7nr+SjMdoWLyIgnPeziyLfQx2JkcldWwhJB57PtAjmo5CYUO+cWDfYUJIhsKhPC8JlXnhc7QXyqYNNyfCYYBjDiEBOOmq69i3cR3/+O438AQCYJosvuKaoxq7ry9GQ8nIsBKPP0AmnSKdTOBwuY95PcfCMxRCEk1mx7WOiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMr/EKIckahjHJNM3dAIZhNAJj8Xbyx4CtwKubkjGWSqfA9Eth630H2ma+FUqmkBlMEN/UR2x9N45aH95FlTiqCo566lwqRXTZslHt8TVrcZ16ARd8eBZ2h42WrQNEBhKc+Y4Z2Msy0J7vt6pzFc2hZuaUzXmluzxq/e2t/O0bXyKTzIdBtO/Yxj9/8E2u+e9v4PEHXrV1yMEl42k6dgVpfr6XuunFBLvjpFMZSmp8tG0boGpqIfFgkmgwRWVjgLYdA5TV+ciksvR3RqlrKqZjdxB/qQuL1ULP/jD1M4rp3hfG6bHh9jlo3zFAYaWXhlklFBQ76dwVZM+GHmqnFREeSJKIpimv99G2fYCKiQGSsTTJcIqp9T5Sa7rABPtxFeztjFFY7aWrOYTH78DhttGxJ0jDzBJS0TTlE3x07glhsRgsOK+BdDJLX2eS3Wu7ad02QPXUQmLBJJHBFFWT8nux2S1MnPsVys/8Ej09VvYu68Nb1IrNbiGTTLPxj38ZPlfNy1YQKKjAl51O7/5mQr1xJswppWpyIS6vgknGxVAIieH0HVV3rz0fVhLLxKB4dr5xcN+hB0R78789pS+ZaOhzrHdEczwcAl5eCInd4eTyW/+LR3/1U4LdXVzyqRsJlFce1dj2wTinTysf0eYeen7GQ8FxDyGxWy04bRaiqcy41hERERERERERERERERERERERERERERERERERERERkfE1XiEktwCPG4axBzCABuBdr2RCwzBqgQuB/wd84hWv8NUS6oC2NTCwD8qboOY4OO/rMP0iaF0NtcdDw8mYNi+hx3YTW9UJQLo1QnxTL+Ufmout5OheILc4HPjOPBPT6aTqK1/BjMVItbdjrawiY7XgcNp58BebiIfTAOxY2cWSKydT76tnf3h/fg7DMj7n4RAGuzqHA0heMNDeSqinWyEkrwO7VnfzxB3bmXdWHcvu2kU8nOKEiyby4M83Mf2kKtY9sI/etghL3jqZB372PPWzShjoiNGytZ+T3jKJB36xiZLqAoqrvGxf2cmiSxp55DdbcHrsTFpQxrK7dx2o9Vwn889t4MFfbGbWqTWsvH8voZ44iy+fxAM/28Tk48rZ9FQbnXuCXHrVFMJ3bh8em9w1SMOVU7n715spKHJRM62ITU+2cfwFE3j899tIxtIsuXIKod4EU06oYPvKTmKhFAsvnsgDP99E0+Iq1j64j97WA3sxzfzc6x9p4fwPz+KBnzxPcbWXkhove9b1MHlB2+jzteopnN4T2Ph4HwBblnVwyjVTmX1a7fheqP9UyXwIicV5dKEfHpsHgFg6Bt4ysLlhcD+mafLgvgep8lYxt2zugQGxPsAAd+FLJirJ/46OXQgJgK+4lMtu+cIxjUlnc/REklQEXCOXOPT8jAWDRx1m8kr4XHbCifS41xERERERERERERERERERERERERERERERERERERERkfEzLiEkpmk+ahjGFGAa+RCSbaZpJo8w7Ei+B3wa8L3CeV49sQH416dg2z8OtJ3+OTj5EzDnqvzPkEx3jNhznSOG5yJp0l2xow4hibe04DnvPNzz59Pzta8T37AB94IFFP/Pd7FkTfrbo8MBJC9Y+8A+/ueD3+HaZ65kac1SGvwNL3+/L4OroGBUm83hxOnxvKrrkNEig0mevW8PAA6XjXB/gsZ5ZexY1QWAr9jF1uUdVEz007K1H9OE8gY/z/1jL75iFwOdMXIZk4ZZJax5YB82u4VUIkMqkWXG0mo2P9UOgMVicPL5DVS6rWT3Brn4iknEnDY2PdlGbVMRezb0AFBU5WXXmm5Kawuw7w/x0riDzKYeiiq91DYVs+HRFjDAMCARzfdced8epi+poqjSQ7gvwcS5pex8Lr8Xf4mLbSs6KJ/go3XbwHAACYDH72Dfxn6ymdzwXgzA6Skcdc6KKmsY6EqNaFt5/x4mziuloNA1qr+8Qql8CIntaENI7C8KITEMCNRCsIVn2p7hlidvwcDgyaufpMhVlB8Q6wVPMVisL5loKIQk1j+i+YUQEpfv1ftnqjucxDSh6iUhJG5//pzEQsFXZR0+l41wIvOq1BIRERERERERERERERERERERERERERERERERERERkfFhGY9JDcP4MOA2TXOjaZobAI9hGDe+gvkuArpN01xzhH7vNwxjtWEYq3t6el5uubHTuXFkAAnAU9+E/t2juprZHFiM0XMcrO1QLBYIhWi/7bNEn3mGXDhM9MknMQAMyOXMUUOy6RxeawHvmvku5pfPxzRH9xlPJbX1zD//4hFtp73jvRRWVL2q63itve7uXcDMZslmcvm/h+4Li80Y3Wa1kE3nhgaN7gdg5kwMi4E5dA9aLBay2fzxxWfXUbK5h+Qj+8ms7sLyyH7KTRNXgR2r7cDcL4zNZU1M60G+F1YruWy+Ti5nYhxYDgDpZJaNj7USC+VDQqw2y6i9WF+8lyGWl7SZOZNcziSbLaekbuJwu83uYP75V9G6NTxifDadI5fOHvwkyyuTDJMwLLidRxf64bV7AYik8+ElFNbBYAv37LoHABOTh/c9fGBAtBc8paMnsjnB6c+HlLzICyEkbt/RhaKMhc5gAoDKl4SQePyB/JoUQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIkdpXEJIgPeZpjn4wgfTNAeA972C+ZYAlxiG0QzcCZxhGMYfX9rJNM2fm6Z5vGmax5eVlb2CcmMk0jW6LZuGZGhUcy6ZxXtcxYg2a4kLq99xVKXSkQgWm410axuZjo4Rx6KP/Itc1qS4yoPNMfKSzzqtlt+0/Iy7dtzFD9b9gL5E31HVGytOt4eTrriWK7/4NS746Kd421e/zYylp2NYxuvWfH163d27gDMdYs6CfGiDaYLTY2P/5n4mH1cOQDKeoaDISdeeIHUzSgAI9sQprSsg2B2ntLYADOjcHaRhVgnpZBZXgQOL1aB5Yy/TFlYCUOqxkRtMjaideLKVeUuqaNs+wMS5+fMRC6UorPDQ3xElVesb+fQywDarhL62CC1b+5g0vwzTzAeNWO0j76XiCufQXvqYNH9oL7EMvmIXXXtD1E4vHtE/1BtnwvQAGNCxa5CG2fm9bnwixIR57+C0d3yK09/5MU688jYiwWJsTuuI8bOPL8CVHRlMImMkFSVmMYbDRY7EZXXhtDoJJoeCOQK1mMEWVnas5NJJl1JbUMvy9uUHBsT6wVNy8Mk8JfmQkhdJhPPX2VVwdKEoY+GFEJKql4SQuIdCSGKvUghJgdNGJKkQEhERERERERERERERERERERERERERERERERERERGRNzLbOM1rMQzDME3TBDAMwwocXZrGQZimeRtw29BcpwGfMk3z7WOwzvGTTYPdA57i/IvsL5h4GhRNhkg/JAbAXw0ON2Y8Qy6ewX9WPamOKLYiJ4bDChbjqMoZVitmNovF4x51rO+LX6DyiXPwFDo47/2z2bKsnXBfgiknlOOamOXeZfcCUOWtwmd/9V6ef4GrwEf9zDmvel05PIvdTlX7Myw5dTF7dgxw8hWNtG4fJBFNs/TKRnau6eOEC+rp2R+mvyPC6W+bzLbnephxUiWhnhgde4Kc+fap7FjdQ/WUAGW1Htp29HPG26eye10P3oCDEy9uwGaz8NLoglwyS920QoLhJKHeOKdeM4mdq3uYe0YNA+1RNm7qY9FljVjbopiZDOaEAOs39nDm9VPZubaX4hovCyvrad3Rz+nXTmHvhl7CAymmTsgSGNzNWScm2TVQQjySyu9lbR/Hn19Hz/4wfe35vWx/rgeLkWPmVChoXsm551aypdmkepKfsho3zZsHMaM5qmoDpFcvp6/6ePbt7uPUqyazb3Mfgz1JJk/IUdKyDMO4+jW5hm92ZipC1DDw2DxH1d8wDAqdhQwkB/INgXqMaA/JhJP55fPJmlme7XgW0zQxDANivVA65eCTeUryx18kHg7h9Hix2sbrn9bROoJxACr9I0NI7E4XNoeTeHh06NV48Lls9PZGX5VaIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyPsbrTekHgb8YhnE7YAIfBB4Yp1qvT6E2SCfg6j/BYAtEuqDxDLC7oG8H7Pg37HgASpvg+HdjLz+B5J4g8S192ErcJPcEcU704zut7qjK2dxu0h0d2Cor8V98MaG//334WOGVV+L3GlgLCvD4E5Q2TIGcyfOhDaRtFr560lcpcZdQ6iql1FM6XmdE3mBsJSUUzZ1K4gsfYenHbibx1z8zce9eSj54Iz1f/X+cfMVV5J7qx/HM05R8/FP0ff1TnLj0VGxbC3Hf8zem3/wJBr/zJeZPmoK7dB4Dv/wFk2/6OKGffJcZLje+movp++a3cd32NSI2C2Ryw7U9xxWTevAO6h99lJKbbqbva//Dieedj2WNgWf5MqZfcRUDn/44zmnTcE1vIvije5n7yVsI/uCPzCkrx1t5Kv0/+iETb/wo0V/fzpTBINbiEpJ3r8L94x8R/uWPmZhMU/Khob289UpyTw/iePopSj7+Sfr+5xbmV1ZjZjOk7tpO6ttfJnvLJ5m/5GTc5QsY+PnPqJg+i8wzu8k1TSWwZDGJb32MpR/7OLE//47Jra1YKipJ3vMc7s99ki09TzAxMwV/1XywWF7Dq/rmkksEiVoMvHbvUY8pchUxmBjMfyjMP18rs1mmFE0hlUvxjz3/oCPaQXVBNcT6wHMiffE+3vvQe6n31fO907+XDyjxluaf8y8SCwVx+/1jtb2j0hlM4LJbCLjtI9oNw8Dt9xMPBV+VdfhcdiKJl8YJiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIG8l4hZB8BvgA8CHAAB4CfjkWE5um+QTwxFjMNa7ScSifDut+DytvB4sNZlySb3/2J7Dl3ny/7q2w9wlsb7+H0vfMIvJUK6mWMAUnVuE5vgKLw3rUJZ319cT2NlP09usoOHkJqbZ2HHV1OKY3YS0oAMDtdbFvcB8mJgPpAb7w5BdIZpMA3DDjBso8ZZR4Ssb6bMgbkWnSPsVN/1c/hLVtAP9F52D29xAd6MD3xc8Q27cH77QFOGdNItrTgu+2TxBr3oO1shbXxz5ApK8F7803Em/ZR67Ig/czNxNub8X7vhuItbeSJoHv87fQ2/k8xW85g8yGOLm+FLY5PjL2Lixzm3BOKCfa14rvs58i1rwHT3Udjik1ZO0urBXlRJ98EgMoeve7SPV1UnDje4m17SPjhILPfpJI6348b7+SeFcHkcEeBt9yAtY6B50fvwxPcz+u/qG9NO/BM20ezpmTiPa04rv140Sad5O25LB+7Ho6qrzEv/lhSpoHcARceG/9OMHmHcTOmE5vYwX+whKC//U+bO09+N56EfHeLizhGAOXHs+XE3ezcc02zq5czK3WGymvnPdaX9k3jWwyRNSw4LF7jnpMobOQgeRA/kMgH0JSnckwqXASVkv+ebuxZyPVnkqI9YOnlD9s+QO7Bnexa3AXqzpXsahqEXhKoWPjiLnjoUHc/sDYbO4odYYSVAXc+WCUl/D4A8RepRCSAqeNsEJIRERERERERERERERERERERERERERERERERERERETe0MYlhMQ0zRzw06Gf/zzpFNi90LcTVv0833biR8CwQ2QfbL1/ZP/4AHRvxjF/PkVXTMVM5TDc1oO+VH44FpuNgimTSe1vwUyncc6YiaOuFovLNaKf1WKlL9HHt1Z/aziABOD3W37PwsqFnOo59WVtW95cwv27+e8tP2HTwDY+tvBj/GDtp5hbNpdidzGP7X+MmxbcxI/Wf4YqbxVLGpfwlx3f4UNzPsRvNn8Jm8XG1TOv5lebPs7106/n381/ZCAxwIeO+xA/Wv9xLm68mK39W9nVvguHxUHm+Z/wjuk3UGIv5De7/sDbZ7ydH677IY2BRmbUzuD+Pd/iw/M/zC82fpFULoXD4uAt7z6bK5xvY0+0k1WOXXjLqvjphpu5aupVLGv7C239bdx8ws18f+0nMQwDq9tKujPNbXW38fVtX2dO6RzKveU8su8RbjruJn68/jbKPeWc0ngK/7fjO9gMG6Zp4tru4v329/DdPT/g7dPfzoPNP6An3oPD6yAVS3FR7CI279/M3tBebl6Ur7eochEWv4XlHcuHz+fDnSu4aMK5nKEQkrGTDBOzGHjt3qMeUuQsoiPakf8QqAWgyVKA1+5lauFU7BY7W/q2cF75CWBmwVvGsvZHmVM6h52DO3ls/2P5EBJvCcR6wTRh6FkdC4UIlFeO+TYPpzOYoNLvOugxtz9ALPjqhJD4XTYiqQy5nInFcmz/domIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyOuDZSwnMwzjecMwNh7qZyxrva6ZGbBYIBkCM5dvi/WBkQWLFaz20WOsDgAMmwWLx3bMASQvZtht5IIhElu3kNy9GzObHT6WzWWxW+yE02F64j2jxh6sTf4zhXMptg7uBCCeiWNiUu+vZ0vfluG2nJmj3lfP1v6tAGTJksgmqPRWsje0FwC33U1vvBev3UtvvBeAqoIqdg3uAiCVS1HoKqSxZBI/3/Fr+hJ9B+b217O5fzMA6VyaVC41PObOzn/yUKCFj/T+mIeCz9IWaQOg0FVIW7QNq2ElnApjYpIzc1R6K7lp/k3kyH8n6/31bOk9sJesmaXeV8+2gW0AZMwMpxQez4+LPsQpm+D24o8w2zlx+DvywlqqC6qH9xrLxPLnKVDPlv4to85pq75fY8pMRohZLMcUQlLoKmQgMZD/4K8mCzRZPQDYrXamFU1jc99miOavVcjuZFv/Nk6rO405pXNY2702P9ZTAtkUJMPDc8eCg3j8/jHZ29HqCCaoDBw8hMTj8xMPvzohJAUuG6YJ0VTmVaknIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJjb0xDSICLgIsP8/OfweGBbA4CdVBYn29b/wfIAN4yWPj+kf1Lp0H5zDEpnWpvp/UjH6X1wx+m49Ofofnqa4iuXDl83GqxkslmKHYWM8E/YcRYA4OagpoxWYe88RX56zipYiEALms+5GBz32aOKz8OAIfVgdWwsmNgB3PK5gCQyWXw2r20hFuYXDgZgIHEAFXeKsKpMGWeMgB2DexiZkn+np9aNJXrpl/Hv/b+i+Mq8nM7rU4MDLb1bWNB+QIgf386rc4Ra8zkMhS7iumJ9VDnqwOgPdJOY6CRrJnFY8+HS7htbq6edjU/Xv9j4pn48F4WVOTntlvs2AwbOwd3Mrt0NgCz/U18aFstno//D+kv/y/Ft3yPpge2c27F6SPWsHNgJwvK5408T70H5n6xSUVTjuUSyBEYqQhRw8DvOPrgjyJnEaFUiHQuTcYw6LbZaDBtw8dnls5kS98WctFuADbFuwA4qeYkZpfNZtfALtLZNHhK8wNifQCYuRzxcAi3PzBGuzuyXM6kK3ToEBK3P0As9OqEkPhc+XCtcEIhJCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIib1RjGkJimua+g/0AtcCnx7LW657FDukkXPIjaDgZrHbYeAdggRmXw6U/hnlvh7P+Gy75IVSOTQhJYtMmEps3H2jIZOj+xjfJBA+8iJ7IJbAZNm5deCtV3iogH9Jw26LbmFs6d0zWIW98bqePm+fdyJTAJB7Z/wjvn/1+2sJtNPgbmF06m/t338+H532YRDaB1bByUvVJ3LvrXm6ceyNum5vuWDfnNpzLP/f8kxtm3EC5p5xNvZu4YsoVPNP2DBc2Xki9r57zJpzHD9f9kBUdK5hTNoem4ib+tfdf3Dj3RgaSA/gdfo6vOJ57d93Lh+d9eDhwosRVwtLyE/j2SV+l0FnI7sHdXNJ4CQ/ve5grp15JTUENqztXc23TtZzdcDZ/2f4XsmaWR/Y9wvvnvJ+OSAe1vlrmls7l/j338+H5HyaVTQGwpHoJ13pPhd/eNeKcJH/7Zz5QdBEVngoAvHYv59eezq0LPsFE/wSean2Kd818FzsHdjKrZBbTi6cDYDNsfGjW+5hVefyreAXf/CypKFGLBZ/Dd9RjCl2FAASTQVrCLbRbrVSkksPHZ5TMIJKO0Nu7DYCV4d0Uu4qZXjydxkAjGTPD/vB+8I4MIUnEopi5HB5/4WHrm6ZJdDBJX1uEwa4YuWzu6Df8En3RFJmcSdVhQkgyySTpZOJl1zhaBc58kEskqRASEREREREREREREREREREREREREREREREREREREZE3Ktt4TWwYxjzgWuAqYC/wt/Gq9bpUWAUPfxYyCbjgO5CJQioB+5fB32+CGZfB7GvgkS+ArxLqF41J2ezgIACGx4OtqIh0VxfptjbMeBwCAQDi2Ti/ev5XnN9wPt897bv0xHoIOAOsaF+B3Wofk3XIm8PUinn86pxf0hZspsAR4KKGc4imwlzWeAkDsS7cdi/n1J1OKDFAybRrCMX7sVnsnH7eUgbjvRR7Knj/zHeAaXL6Ob+mP9ZFkbuU66ZeSTqT5Myzf8aytmXD9X647oecO+FcGnwNnFazlHPrzySSHOSqKVcQjPfgtLo4o/YUQvF+Sr2VVPnrALjz/D/QE+2k2FPOO5veRjab4fSzf0F/tJNCVwnRTIwH9j4AwJb+LYRSIa6bfh3TApN5S+Nlw3s5u/a0ob1UYd+8i97cSwIiTJPCtI3fDe2l0FVMXdEkAH57zq9pD+3D5yzksokXEkuFuWjiBfQnB3HZXNT76vX9GkvZDLZMgpDFeUwhJEXOIgD6E/3sC+0jZbMyO34gpGlmST4QqqdnC+XAE/2bObFuKRbDwqTC/LXeE9zDJM9QCEm0F4BYcBAAj99/0Lp9bRGef7KNvet7iIVSw+02h4WJc0qZe1Y9FRMOPvZQOoP5cJFK/8FDSDwvPPNDIexlB+8zVnyu/H8nwon0uNYREREREREREREREREREREREREREREREREREREREZHxM6YhJIZhTAWuAd4G9AH/BximaZ4+lnXeME54L/zuItj+r/znsiaoPSH/95Z78z8Az/0SZr4FbI5XXNI5eQrF734Xhs1Gur2DwsZGjEAAW1nZgT5WJ03FTXzy6U+OGPu5RZ9TSIKMUuQppeiFwIUXqfLXjGqrHgoFAagrnDjqeE2gflRbRUHV8N85M8e/9/6bif6JXDf9OgpdhS+au/bAoMJJJDNJdg/uxjRN6nx1VL6o9nC9obZ0qI1Lak/j7v0PAdAaaeXXm37NH5d+iyp/zUH3kp5kZ7CigkxX13CbtbSUQGMTjkA1NYF6Ejt20Pu3X5Ht66PglFOZMW8uFtfIsIcq3+i5ZQwkQwCELcYxhZBUeisB6Ix2smtgF3abDXu4B3JZsFhpLGzEaXUSHNiFiUFzOsR7apYAMME/AYDdg7s5u35KfsJYPoQkHsoHmbj9gRH14uEUz9y9kx0ru7A5LEyYXUrV5EK8AQepRIau5jC71nSxc3U3M5ZUcfLVU7E7rEe1l45gPL+nwCFCSIbWEgsF8ZeVH+UZenkOhJBkxrWOiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMnzENIQG2AU8DF5umuQvAMIyPj3GNN466hfCOf8Dme8FihdlXwq5HRvcL1OePjwFbVSXRZ1eS3LJluK34fe+FXA6s+RoT/BOYUzqHD8z5AH/e9mfSuTTXNl3LkuolY7KGlyMZS9PXFiUaTBIoc1NSXYDVbnnN1iOvnunF0zml5hSeansKAJvFxm2LbhsRQPJSXdEunt+7jVSPAUBzWTuzJk4dDph4KbvFwbuddWTrzuTvrU9S6inltsYrmJ499D1mr6ig9ic/putrXye+Zg3uefOo+NxncVRXA5DcuZN9199ALpgPn+j/9W+o+dEP8Z911ss5DXKsEvnzHrZY8Nq8Rz2suiB//ToiHWwf2M4UXzlGcBeEOyFQg91ip6m4idjeDSQcHnKGweKqxQB47B6qvdXsDe4FT0l+wlgfAPFQPhTFEygcrtX8fC+P/nYrqUSGBec1MP+selwFI4Oepp8EJ71lEqv/2cy6R/bT1Rzm4pvm4g04j7iXzlACOHQIidsXGFpb8CjPzsvnc+X3pRASEREREREREREREREREREREREREREREREREREREZE3rrEOIXkrcA3wuGEYDwB3AsYY13jj6NkGq38FoXaYcDK4fNB0ATz7E0gM5vvYnLDoA2MWQpLas2dEAAlA/29/R+Hll+NsbAQgZ+b4666/sq57HZdMugSrxcqD+x5kSc0S6vx1Y7KOY1pzPMOqf+xl42Ot+QYDznrXDKYtPHighLy5lLlL+fKMd7Oj7HhCqQgTCxuZ7Dn8fdjVNkjrHRaiA2kAPAEb5e8OUjntEPdMQRl1RZP4wtP38YGpb8UV7aXkuTvhqt8dto575kzqfnY72cFBrIEAVp9v+Fhs7brhAJIX9PzgB3gXLRrRT8bJUAhJxuHBegzPz1J3KXaLnbZoG9v6tzGreDK07oJgCwRqADil9hTMTY/QbmaZVzaPMk/Z8PhaXy3tkXZwFIDVCdFeAGKhQQDcfj+mabL+4RaW37OL0toCznrXfEqqCw65JofLxklvnUxNUxEP/HwTf/v2Wi7/xAIKig4fRNIRTGCzGJR6D97P4w8MrW38Q0j8QyEkoUR63GuJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMj4sIzlZKZp3mOa5tVAE/AE8HGgwjCMnxqGcc5Y1nrdC7bCHVfBpr/C/hXw1Lfgng+Bvxbe/W+49Edw4Xfh3Q9B3cIxK2tmMqMb02nMbG7440BigCdbnqQ71s0ft/6R323+Ha3hVpqDzWO2jsNJZpLsGtjF7sHdJDNJ+tojBwJIAEx46k/bCfbGX5X1yGusaxPFf/sANf2tNCTjVG78K5ZVP4dc9tBDno8PB5AAxIIZOjfEDl9n8tnYz/0aNa5SSupPhit/DUX1R1yetaAAR23tqGCRXDI5qq8ZjR38OyhjbyiEJOsYeV1M0yQWSpFN5w42Cothobqgmi19W2iLtFFYMTt/YLBluM8lky6hJGfSZzW4bvp1I8ZXF1TnQ0gMA7ylEOsDDgR9uAr8PHvvHpb/bReT5pfzlluOO2wAyYs1zCzh0o/NIx5K8c+fbCCVOPy91BVMUOF3YbEcPOvL/SqGkBR68iEkgzGFkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIvFHZxmNS0zSjwB3AHYZhFANXArcCD41Hvdelvl0Qbh/Z1rYaBvZCzQIonzEuZZ2TJmEtKSHb1zfc5jv/fBy1NWTSWQY6Y8QHLXxlxjf47u5v0B47sMZyT/lB50w2N5Pp7cXicmGrqMReVvqy19cZ7eS3m36LzWrDaXVS56tjRnjRqH6pRJZUXGEO/wnigy2sWvIJnBEb7pyNZ6sqmezK0Bhqh8K6g49pHx0wEWszD1/I7qKvfCqtHg9em5cGfy32V7Buz7x5YLPBi0JHSt7zHmxFRa9gVjlqQyEkpss/3NSytZ+n7tzBYFcMm93CrFNrOPHSSVjtI/O2ZpbM5F97/wVAbc1J+cbg/uHjld5KCl3l9AeqOWHCuSPGVhdU0x3vJpVN4fCUQLQXgHgohNPjZe0Drax9cB8zl1Zz6tumYRwiIORQKhsDnPv+Wfzzxxt56JebueDGOYcMGekIJqgMuA45l8PtxmqzEX8VQkhcdituu5WBaGrca4mIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyPgYlxCSFzNNsx/42dDPfw7bQV4MNyxgc45rWUdtLfW/+iX9f7yD+Pr1BC68AP9FF5G12dn0ZBsr/roL0wSLzeDLb/sun2m9kb5EH2c1nMWMktHBKNFnnyW+aTOxVauILluGo7GRys99Fs+iRRjGsb1cD/Bs+7NMKZpCU1EThmFgmiZ2q4nFZpDLHAiRKKr0UFA4vudKjk4mm6E73o3L5sKChVgmRpGjiMHU4HCYTDgZpthZTDAdxMDAa/cSTAYpdBYSSUcwMQk4AvQn+vE7/CRzSVLZFMWuYtqcZUzsrSWc9pExrUxIR3EWZOgkhzsRJJKOUOwqZjA1iNWw4ra5mTivjJbNgyPW2biglEgyQjwbJ5PLUOgqpD/ej9fuJWtmaY+0c+vTt7I/vB+vzcsXF3+RGSUzqHBXMJgaxG6x47A5Ru2l3FVKLhrF4vXSk+wjZ+YIOAKEawqp+f73GPjDH8kGgwQuvgjrwvkMJAYwTZNENkGxs5j+ZD8Oq4NS98sP75GDGAohMVwBAJo39vKvn26ksMLDkism09caYf0jLfS3R7ngw3OwWg8EkcwrnzccQrKg7mRwF0OwdcT0rkSI6qnnwUuec9XeaiAfqFTvKYFYPvApFhzE7p3P6n81M31J1csKIHlBw8wSTrlmKk/+aTur/7mXhRc3HrRfZyjBjGr/QY8BGIaB2x8g9iqEkAAUeewMxNKvSi0RERERERERERERERERERERERERERERERERERERERl74x5C8h+rbBo0XQTb/nGg7cQPQ8mkcS/tamqi6kv/RS6RwFpQAEDr9gGW/3UXDOV85DImG+/u5faP/ZqIq5/JhZMpdBWOmCfd20vwH/8ktWcP8bVrAUjt3EnLBz7IhL/ejWvy5GNeW4OvAZfNxZruNfzy+V8STUf5woL/4ozrj2PFPbuJDqYoqS3g1LdNw+1zvKLzIK9cS6iFXz7/S1Z1rOL6mdfzp61/4sTqEzFNkydan+B9s9/H3TvuprGwkQpPBfftuo8Pzv0gD+x9AI/dw5yyOfzf9v/jPbPew/L25YRSIc5uOJvfb/k9V0+7mp0DO/l42Ufoihisf6SFRCRN7bQiZi4pZ7B/L/9v483MLJ1JgaOAB/c+yAfmfoDH9z/OB7yfYvpJVWxf2QnA1IWV5GxZ7tl9D796/lfcMOMG1nevpy3SxsnjDSkAAQAASURBVCWTL2Fz32Z6Yj3sD++n0lvJDTNu4CcbfsKiykUAPNHyBO+b8z7+uvOvNPgbqPZWc/fOu/lS9fuY8XQLyWdWYDvxeHac3khHqZXl7cu5IX08RZ/8X9zHHYe9spLeH/8ES18bmy+dxc+e/zmn151OJB3hH3v+QZGriE+f8GlOrT0V18ECiuTYJUMAWDzFDHRGeejXmymt83HZJ+bjcOX/aaucFOCJO7bz9J07OO26puGhF0y8gMf3P84ptafgsDogUAuDLQfmziQhMQjeslFlqwvyISRtkTbqvaUwsBeAYK+FTGY+DbNKOO26ppcdQPKCWafU0LknyHP/aqZ6SiG1TcUjjpumSUcwzplN5Yedx+0PEH+VQkgKPQ4GY6lXpZaIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIw9y2u9gKNhGEadYRiPG4ax1TCMzYZhfOy1XtMRuYvg/G/Blb+F026Da/4MJ38MXqUAAsNmGw4gAQj2xIcDSF6Qimfwp4s4vvL4UQEkALlgEM+C+cMBJC8wk0lSu3Yf85q6I92UuEtoDjfzjee+QV+ij2Q2iaO3kKfu3MmEOWUcd/4Eiio9tG3vP+b5ZWyls2l+telX/G3X37h86uV867lvkcgmsBgW/rLjL1w2+TK+u+a7tIRbqPPV8dvNv+X8iefzq02/YmPvRhZULOCnG37KwsqF3L/7fpa1L+PM+jP53zX/ywT/BDb2bOShfQ+RTLh49t49JCJpIB+Ys21VL950Ib2JXopdxdyx9Q4umnQRP17/YyLpCC1rwnQ1h5h/dj3zz6mnZ3+YvSv7eXjfw8womcFTbU/xeOvjnN94Pt9e/W2qvFWs71kPwJVTr+R/V/8viUwCm8XGX3b8hUsnX8r31n6PfaF9NPgb+M3m33BVxXk0fu8+wn/8M6nmZmJ33s2Eb96NZSDE+p71FO7uAdMkvno1kccfJxeNwt8fYc/+9VgMC9FMlHt23UM6l6Y71s2nnvwUW/q2vIZX9E0mkQ/WsLuKePwP27BaLZz/wdnDASQAM5fWMP+cejY/3U7zxl4AzHQay7I1/L9tszjr7j10f+97pFMuzIF9B+YOteV/+2tGla0pyLe1R9rBUwrRPqLBJIO9s7DZE5zznplYDhFAEl+/ns6v/j/2XnElO5YuZff5F9D2qVsIP/44pmmO6n/KNVMpqvDw8K+3EAuNDPcIxTMk0jkqA4f/N8XjDxAPhQ7bZ6wUee0MKIREREREREREREREREREREREREREREREREREREREROQNy3bkLq8LGeCTpmmuNQzDB6wxDONh0zRf32/0B6ohcPlrvQoAPD47FqtBLnvgRXe3z44n4DzkGGtJCZaiYlzz5lH8zneQGxjAcHtI7d+P4bAf8xqyZhaH1cG6rnXDbWWeMjKtDlLxCJufahtu7yl3M+u0WlyeY68jY6Mn3sPTbU/z5ZoPMGefj5PqP0+B6WSgo4urpn4La0eYUys/ic/qIdzcxXnTvo29P8L5/nr8lUUkdndz2pRv4owk6bPNwj/pXeT2DLBk8tfxxE164j18YvLFRIPpUbX3b+7juHOa+H3lZwi1dHHxtG9j64lwZvGH8HoCRKZ4WH5fO/3t0eExiy6q4gsl1+MIxulN9xKYfBXG3kGWNP4/HAMZzvDeyE5/nEEsnFG8iHe6ziDTEeLKqd/C2hnmtPKP47MXEGnu5Lxp36YoZNKz9c/5yQ2DwquvxlZawpnRBhbVf5FCs5/eodq28jIKr7wSw+XiLa563mo5nu62FhbUfIDv9t1FXyIfqrO1bysLKhaM96X7z5AIErFYSA/a6dgd5PTrm/AVjw7kWHRJI/s29fHEH7dy0YJO+n/8A7I9vWCxYPX5yEYi2Ob0UzgpRvunb6HommvxFEXygwOjQ0jKPeVYDSttkTbwlkAqzJO/3wimlbppbTjco/9ZTWzbRve3v0P0mWcwnE48xy3AOW0quVCY6DPPEPrHP3DPn0/VV76Mc/Lk4XEOl41z3zeLu/5nNQ//ejMX3zRvOOCkIxQHOHIISaCQwc72oz6tr0Shx0HH4KsTeCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiImPvDRFCYppmB9Ax9HfYMIytQA3w+g4hOZxIN9jd4PS9KuV8pS4WXjyRNQ/sI53I4vbZOe3aJgrLPYcckw6FsFVVUvq+99L2yU9hJhIAFJxxOgVnnnHMazBNEwODck/5cFsoGcJWkhvVt6SmALvDesw1ZOy4bW6+W/R+HJ/6HxwnnYTTZiX80MPU33orvV//ErbGRsqmTmHw//5C9cdvZuB7Xyfr8VB99ln0/fyrlL7/fYR/cRfJUIj6G66n5/ufoeiqq0hs3Upsxw4m3HQTPZ+7FdeP7hlV21/mxrp5PYnbbqH2lk/R9+2vYJaVUbVoEf2/+x1F7/4wE5tOYO+2fAjJhGleaq3dxL7+UxJtbUz44Afo/uytBC66EFt7B7GVK3EAs70eCn/2fZY8swnu/S+qb72Vvv/5b2wTJlDW1MTgnXdSdfPHGPj+/2Be8dbh9ZS89z2EH3uc7OAgxe94B5nvf5/cO9+Jvb6eTE8PJe95L93f+Q4FZ5yBdc1aIk88QQEwzenkf7/xSd6f/j7JbJJid/GrdPXe/MzEICHDYGBnihMafExfXHXQflabhdOvbmT7e26i5/71uI87jpKvfAXv4sVYnE5yqRSZe7+IZctPiT36KKH7/0HpqWWUVYHpq8F4yXw2i41KbyXt0XbwTAWge2sz6fgGiqtnj+ibbmuj5wc/JHj//Vj8fso//WkKr7oKa4H3wD4yGQbvuYee736PvVddTfXXvob/vHOHj5fUFHDKNVN5/A/bWPtAM8dfMBGAjsH887gq4D7sefIWFhEdGMg/f42X7mZsFXnsDMRS41pDRERERERERERERERERERERERERERERERERERERETGj+W1XsCxMgxjAjAfWPkaL+XlCbbBE9+Any2F310Mux+HbGbcy5bW+GiYVcpp1zVx6tumcu77ZlE7o+iwYwyLBXI5er73/eEAEoDIY4+T3tt8zGvw2r1kyDCrbBZV3nxgQCKboMO/m6KqA2EodpeVBefWY7W94W7PNxVf0oL3x3diJhK4Z88m/NDDuI87jugzz5ALBik45RQG/+8v2OvrSTU3k+nqwn/++fT95rdY/H7MdJrUnj0ELr6Ivl/+CgBrSTHx9evxn3cuA3fcgZlKYX/ir9Q1BYbrWiwGSy6spv+/P4dz2jTiz28i29eH7+yz6P/DHwCI//rHNG35HZdeXcz5i6PM2H0nlm3rSG7dSuDCC+n/7W8hncZR30Bs5YFHRS4aw7ZlL9z7IO7584kuX052cDC/lzvvxF5bS2r/fjKdncTWrKXgjDOw+HyY2Syp3bvze/nVryCbpf+3v8V3xulUfeXL9A/txTVtGpEnnhiuZyaT+H54J5eWncnkwsnMLh0ZUiEvXybWR8RiwYg4WHRJI4bl4AEbuUSC5Nduobx3PXumXE7JD36B77TTsDidAFgcDhyzFgMw6U8/peLzn8eS7AVg7zs+wsBdd5FLjQzWqC6opi3cRjTjB6C2Pk02uZ6ConzITGZggK5vfovd519A6N//puQ972byQw9S8u53jQggATBsNoquvJKJ99yDa9o02j7+cQb/+tcRfaafVMXUhRWs+vte2rYPANAejANQFXAd9jwVFBWTSadIRqOHP6FjoMjjIBhPk8uZ415LRERERERERERERERERERERERERERERERERERERETGnu21XsCxMAyjAPgrcLNpmqGDHH8/8H6A+vr6V3l1R8E0Yc1v4alv5j+HO+GOt8J7Hoaa48a9fGltAaW1BUfd37DZIZEguXv3qGOZvr6DD4oOQnwAkgMQ7gB3CVTOBaebgDvA4OAg+4P7+dLiL9EebSeVTVHvq6fknaW4Q4Vk0zmKq70UVXoPPv+b1Ovx3s1FoqR27Mz/nUwC4KitJbpq1ai25J69AJi5HKTT2BoaSLe0AmA4XeRCISx+P9n+fICCrbyCdEsLAIk//ZrZb0kw88rLSYYSuCMdFDz/KIlEIh8KMnT/mekM5HLD60s+9TgFM6YRvv12bJWVZAqGQiUCATLdPWC1kovHRuzJs2jh8N/22lria9fk9zIUMmGvrSU1tJfYihUELr+Msps/RnzN2vxeXG5ywWB+gmyW/t/+jpIPfpD0/v0jzsmLZXbv4fqG/+I9tbVUF1Qf9fmXw8tFehiwWij1FlE3o/igfcxcjvZbbyO2ahVFn/8y+58tZdU/mznzhukjOwbqALAkeih++3WY/lXkNv4Vw1VA5xe+SM8PfkDx9TdQeOUV2IqKqPZWs6JjBaufD3MqMH12jA3rwJPJ0fX1/2Hgrrsw43ECl11G2U0fxV5VdcT92CvKqf/Nr2n9yEfp+NznySWTFF97LQCGYXDqtdPo3hfmoV9v5urPLaQzmMBiQLnPedh5vUPBKJGBPlwFR//8fzkKPQ5yJoQSaQo9jnGtJSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiY8/yWi/gaBmGYScfQHKHaZp/O1gf0zR/bprm8aZpHl9WVvbqLvBohDvhuV+MbMtloXPTa7OeI8hl0hgFBXgXLx51zFFfB3uehD1PQKgj39i7B6I9MLAL7rw2//PHy2DDHyCVD4NoKGxgUfUiHt7/MF999qt8e/W3Wdu9lvLyIibMLmXSgvL/uAASeH3eu7aSYgpOPxUAi9sFQHzjBrwnLgLAsNvAbiexZQue+fMAMFMpLH4/6X37cE6byv9n5y7j5CrvNo7/zriv+2bj7iQQIUGCuxYtUKQt1hZrS92gLRXaB2tLCxR3d3cPcU82u8n6zurszo7PeV5M2LBNAgkk2SRc33zmk5373PK/59w7s2/mAkgGg9gHDCAdCmErzOwttmIF7smTe9eKPnYflpt/RdZHjxC99kcYiThYLESXLMGz996ZTqaJ4Xb3qdFMJLAVFpBsbsZRMRCA+Lp1OEeOhFQKi3fjWcq/9BIMux1zQzBJZNEiPNOmZ/Zis2LY7RvqmtQ7pvPxJ2j+6/W4NoSXJJubsQ8c2KeG6IoVuKZnrls8fesD8O03mwEDxyuAZDtLdgZpt1oZP2kIhmFstk/rv/5F1wsvUPjDH1L8zW8w/oByVrzfQGtdd9+O2RuCfzozwThGVz2WgiEMevQRKu64HdfIUQSvv57V+86i6pRTyVpQRTDcTHjBwsy41x5n5qpaYt+7jLZ77sF/8EEMfvIJSv/w+60KIPmUxeWi/Jab8R14IE2//R3tDzzYe83hsnHYt8cR60ny0n+WUNceoSjgwmb9/I9xX28ISdtW1/Fl5XjsALT3JHb4WiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIisv3tFiEkRuYb5rcBy03TvL6/6/nSbE7w5G3a7vTt/Fq2htVKOpki78Lv4ho3DgCL10Phj3+EyxuEu46Fu47LPIKrMvtLhuH5H0HXhmCSRCTzvOaj3mkHBgby031+yhPHPcHjxz3OJZMuIc+9mddF+pXFkqLg5Nm4J4wl9Oxz5H//+ySDLdgKi/DMmEHHo49RePllYBiY8QT+Qw+l8/HHKLj0Eqy5ucTXrSPrpBMJvfACuWd9E/vAgfR8Mo+cs88m/MEH+A89BOeoUZm1fD5yjj+Y/KOn4dl7Mh1PPEHB5ZeRjkYxnA58BxxAx6OPUvCD72PbENJiKy3FP7aQsqvPw15SQnTZMrJPP42uN94g64QTcAwdSvidd8m94AJcU6cQW7GS8DvvEnr2WfK/9z1SbW3YCvLxzJxJx6OPUXDZZWCxYEZj+A87DAwDrFayjzoI39Acck87jtCLL5J75hk4Bg0CwJqdje/og8n53nk4x4yi66WXyb/4YixeDwCucWMoPP1ArJZkP9zBPZsl0k6HxcLIURWbvR5ZtIjgTTcTOPpocs/9FgBTjxiEw2Xjgycq+3b25IHNDR3rM8/bqiC7AsMw8M6YQcV//s3gJ58g/+KLMaxW/O8sxjTAX/ccANbKpaQNg+xLL2HYyy9R9qc/4Rox4svty+Gg7P/+jm///Wn89a/pePTR3mv55T4O/OYo6lZ1sGxFK8UB1xfO590QQhLeGSEkXgcA7T3xHb6WiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhsf4Zpmv1dwxcyDGMW8DawGEhvaP6paZrPbWnM1KlTzblz5+6M8rbNiufgwTPg09c9eyCc/QTkDunXsrak7f776VmylLyzzyLV0oLF46HtiScpmhDDvviWjR33/wnscwHUL4B7T9p0omNugCnn7LS6dyJje0+4y5zdjhq4cTKpQUeQGHQilq4qzOwKzNZ6LI44ae9wjFAlhq+AdHcPVks3qcBwjLbVWDx+Uikn1lQL6awRmMFVWN12UrYiLNFazNyRmA3Lsbog5R2GJbgAR5YV5t5BqngaiaGnYQmtBX8J6c42rPYIKd8IjI7VGFlFpNNerI1vYa9/GYBk6cEki/bDmmgk7avAbFyOxWUh7R6MEanCLJxG9TkXYyYSANgKCwgcdRSeiWNxGisye+msxPDlkw5HsVq6SAVGYDQvwRFZhmEBs6WK+OQfYrasxuqykHIOwtLyCY7CXHj9WpJDjyNZcSxGVxVGOkU6nsbeswzr2qfhe/MgZ1A/3szN2u5nd4Md/qHSXt9Jzq0V3JId4Kjz3mFgYGCf6+meHqpOOJF0PM6QJ5/AGgj0Xpv34jref7ySE66cTOnwnI2D/rUfuHPhjAfh2hKYfQXM+fkma6eSaf76t3u4u/DPXD/ilxz80ndYlzWHJ+eafP/uR8lkZn116ViM2osvIfzee5Re90eyjj2299r8l9Zz3stLGJbj4cEf74fF2jdPzEymidd2YfHYIWDhhnNOZvaRxzPCn0e8ai2pjg4wLNhLinGNHYtn6lQsHs9XrnlxbSfH3PQO/zprCoeNLf7K832BHXV+RURERERERERERERERERERERERERERERERERERES+tmz9XcDWME3zHfaULxwPPQi+9TzUzwdPLpTvvcsGkADY8vLoevRRuh59tLfNOXYMlmH/84X16rdg6gXg9IO/GLoa+1737/AvpMv25sqC4olYK5/COnACfHQNlE0BbwGsegEO/Bl8dC1kV8CQA2DeXdj3uwoW3AhWB/Yp58IHN8C0C2HFwxBpx77/j+HDP8CEUzK/Ay2rsc/5OSz6OwzeH4rGYq16HuvgKZn1CkZC8QSY+zD2A66GT/4MA6Zh+kqJuvaiM5GFmTbxuYpwNT2B0d0EBaOg6hXorM2ESHxwDcmJ38U+sIL4mkoAks1B2u74L57f/xjHot9l9jL39xAog2EHw0f/zay38Dqwe2Hv8zGWP4Wz811Y+SgkIpn9Lb4Jxn8D8oZhW/0YtgFjMnV/VskkcGXv5Ju3Z1vx2jJmAO1WKzmunE2uN//978TXraPiv//tE0ACMOHAcha9Xst7j1Vy0o+mbAwNKZ4AK56FltVgpjLnaDPmPleNWeOFQujIA8OdixFpw5s7dLsFkABYnE7Kb76Jmgsvov7qn4DVStZRRwEw8eByet5YQro5yrM3L2LOOaPxZjkBSDT30Hr3MpLBCGYqjmEuZfbqOvx/+CsNAHY7tuxszHSaVGsrAIbHQ9axx5B3wQU4ysu/dM1FG2poCkW/0t5FRERERERERERERERERERERERERERERERERERERKR/WPq7gK8duxMGzoAZF8PE0yBvaH9X9LmseXm4xo3rfW44HBR87xKs1c/37TjmOEj0gDsXDr0W7O4NAwzY9zLIH73zipbtwxWAI64Ddw6sew8mnQl1n8CgWeAvyQQ2zLgUOmsy4R15w2DxIzDrCkhEwExD6V6w+CGYdTlY7Zm+Q+fAsqdg6vmZ0Jq6eTDupEyQzagjMyEna16BvS+A4EooHA3ZA2HJY7Dv5dC4lGjRiaz72b8I3vYgLXc8RPXP/kmk6FRwBmDJozDjErB7oHk5jDoK29I7Kb70W2C3927PM3UirgG5ECiFFc9k9hKqywTm5A+HNa/ChNMg3g2pBJTtBYseypzndAq8+WCxwfKnYMq5mbXrPoHxJ3/mNcyCI/8M7uydfff2WPFIktpP1gAQstnx2/19rkdXrqT9nnvJOeN0vNOnbTLe5rCyzzGDaaoKUbWgZeOF0kkQacucH4CicZuMbazq5JMX1jF5r5HYDBv13fXgK8IabcOXk7fd9vgpi8vFgFtuxr3XZOp/+CNa7/gvpmkSiiaJpU0mTy6ibnUH9//mQ+Y+X01XQzctty0h2daKxfouPa/9lK5n/oFhWAlO24vBTz7JqAXzGf72W4x49x1GzvuEAbf9h8Dhh9P5+BOsPfIogjfcgBmPf6l6871ObBaDxk6FkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI7I4M0zT7u4YdYurUqebcuXP7u4zdmplMUvv9H2DLzcVWUgKpFFitYLdSMKAKPvonmCaMOxkO/hVkV0BbLUTbINwEofpMoETOICga09/b2VGM7T3hLnd226qhbW0mjCSdgHg4c197WsDhAwyIdGTCO3paweYCmx3CrZmwkmg7GNZMKEg4CL7CTLCHmQZnFoSbwZMPqTikkuDyZ/q5sjJhH9HQhrlbMuE2Di8NNz9Ax0OP9Ckz6/hjKb3qfOgOZhqcfuhuztSajGCmEsS6fcTW12P1e3GW5WCnbTN7aYdASaZ+mxOiHdBRA4VjIB0HiwOcXoh0QioGH/wjE8Cz7+WZ0+AtgnQMYmHIHQS5Q3bm3doW2/3sbrBDP1QWv1HLmsce44TcX3DlwOH89dyNvyumabLurLOIV65l6PPPYc3O3uwc6VSaB373EaYJp/1yH6xWS+aM3zA508FfAlcsz4QobRCPJHnw2o9Ip01O+/k+HP/8sYzPH8+faqtpWfY+c8uu4PCLL98he06Hw9Rf/RO6Xn4Z3/7703bhFRz34GpuOXMvpucHePeRNaxf0kJWqJqBje+S1zwX0kns+8zCu/fRvPrRCxj5dr55/f9tcY1EUxPNf/kroaefxjVuHOU33Yi9uHiba535h1eZPjSP60+Z9BV2vFV21PkVEREREREREREREREREREREREREREREREREREREfnasvV3AbLtUukU9eF67IadYt+2f0n8i9SEaljbuRZH2kJxZyfdr73W53rOmWfA6T+EKd+C7sZM6ESgLHMxtxwoh3QaYl2kTBuJ+gaMnioc5eUYdvt2r1d2MHcO+IvA4c8EhzjCmdAQiyVz7y32TFiHJy8TUmNYwe4Fiw28uWC1Z8JqXAGwWDPzOTyQjIMnFyxW1lutdNe1kOwJ4yixU+4vwmfzZkIg7G7wbljP6gCHj1Soa5MyU50hcOcClkxYijsHDAu4ciAVw0hGcJVW4Bq/IWiifR3ErJkQkt69OMDmAHdeplYsULoXUVK4sEJHdeZsuwKZfbpzCJ5wM/FUjEJHFvZQfSb8JL3hdXLn7cw7tcczTZPFb9QyqDABSUi7c/pcDz3zLJG5n1D8u99uMYAEwGK1MPPEYTx7yyIWvLyeKYcPyoTFlEyChgUw8sg+ASQAbz2wiq7WKMdfuRdOj50yfxl14TrS/lJ8lh6yCj//vTjZGSP00jpiVZ3Ysp34DxyAa3jO547prdfrpez//k7bXXcRvOFGFqz8CUw/D9eLT5H2G0xta2DEqvdIN6wnbXPSWDaD6uIDiLiLsCw3sHsPJNbyMel4CovDutk17EVFlP35T/gPPpiGn/2M6lNPY8Ctt+IaOWKravxUUZaLplB0m8aIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMiuQSEku5m1HWt5aNVDPLzyYdx2N5dMvIRjhh6Dz+HbLvM3hhtZFFzEyOyRYIDvjFOIfvJJnz7+A/eHtlXw+rVQ/XYmvGHfH8DkcyB7QxiJxUK8tYvgzbdgGAbWnGysBQVkH3ssttzc7VKr7ATNK0i+fyPNxWNwBQZgWf8ePYP2JWfFc3RYLdgKx+Bc+wZdFfuQW/UmnbEOjLKpeCtfo7NsEtm1Ubo712EOnEnWgjdpKxhOwOIi1rSY+ODZ5C56kMYhBxF7ZzHWG27HCPdgmzCOrp9fQcxTg23Na3QPnE7umlfpSEewlkzCXfkm7iMPouuFF/uU6jnxaLpXv0ikZTnJQbPJXnAfbbkVeJ05pOo/IRYopSWrmCqrQZbFzpBIGJvDR87KF+iwktlL1Vt0lU8lt+otOsNNdA3Ym3drXuK5urc4rHQW+/mH4rfYyZr/JsG8gdRklfDrBTfQEm3he2PPZ3ZgGPmtUcz1HxB1eikINWCf8T0oHN1PN3DPUruinfbGHuYcaMBysHgLe6+lurtp/tOfcI0fT/ZJJ33hXIMm5DN0rwI+fqaawRMKyC31wkm3wYqnMwFLn7H4jVpWftjI1KMGUTosG4AyXxlv1rxJ1D8CjzVJTq5/i2slmnsI/nsRZjSFa1Qu8bpuWm5bQvZxQ/HNKN2qvRsWC3nf+haBI47glduehxA4772DYKQTi9eLNW8IzhnfovxvFzEmy093e4zW2m7qV3ew5I0EeA7nkd99yCGXTCSn2LvFdQKHHYpj0EBqvv0d1p15JhX/+TfuSZO2qkaA4oCLVU2bhgSJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMiuTyEku5Guni5eqHqBfYr3YVLBJNJmGpfVxUeNHzGnYs52WaO+q55R2aOo6anhhnk3MMDI45Jrfoztvqcx3G4KLjgX97ASeP+vmQASgGQU3rwuE7SQfcLGet98k+wLzseSTJKsrcM00yRaWxVCsrtIRKhtWsjq0v1wNHUywJFD0D0FV02ESME0mupWUeb2UuefgbE+TKJ0InWdKylrtxHM3o9YTQvJ8hHUpwyKg9Ceuz+h+lqKywfQaEuS25CkO29/cqujRP5wEwCGw4Fv7HhsC1aTGD+c9b5pWNdHiZVMoaFuJeUdTpqy96XAkkXRtdfQef8DgEn2N79Jl9NKtzGIBtIUNKbpzNufjoZqSsuLaXZOJDvq5r3wUp4JvcfFY75NZUuMgpSNSOE+mb24fNT5pkNNN4mSidR2rCCxtp4BFRWcMOwESsmmbm0NFVmDaM/bn4baFTjiPdw45peY6RTdiW6CK2pwlo+m2b0X3aEWwgNn419Zi1HTjnfYSHxZef17T3dzi16vxe23U5AfJQ3YfMW911pu+QfJYJDym2/CsFi2ar7Zp46gfvVHPP+vxZz84yk484fBrMv79KlaGOTth1YzaHweex81uLe9zFdGa7SVdrcDD5DjMTe7RjqapPWuZWBC4aWTsBd5MRNpWu9bTsdTldjy3LhG5Gz1a2AvKqJt/D64P1rP9A/exDBN4nURWv69hOxjh2LLDgDgz3Xhz3UxaEI+/rz1vHrbS7Qbh/DwH+dy6PljGTQ+f4truEaOZNCDD7DuW99i/Xe+y8C77sQ1atRW1VcUcPHO6pat3o+IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiOw6FEKym+iMdtIcbWZy0WRumn8Ti1oWATAoMIifT//5dlkjkUpQ4C6gsaeRH731IyLJCKtZzfu2hZx2+fF8a/x5+EhBdwOseWXTCZqWwdhMCEmspQXXtGnQ2UnT3/5O5OOPAXCNHUPRz36OZ6/J26Vm2XESPS10d3kp//GfcAwahGN4E54HHqDgssvo+NNtFLucuA+cQ89tt5F3wQV0/+tRCtvb8Z1xOtGbbyH/5JOIPfgaucuWE7jkEuI33kj5gQdgxhaQ9cYb5P3wKlr+8XvSp57au2bB5ZfRdvc92BYvxtO4N6477yL/4osJ3XgfRfE4nuOOI3rbbVjPP5/mf/0L3yGH4D9oDo2/uwb/nDkkg0GyP/6YnMsvI3jzLZTvvTeGayXeZ54hARxUXMzRf7uGrudeh//cT8FlP6DjL7dT7HDgPuggev7zH/LOP4/wrY+Tt2wZueecg7EigiXgp/v9V4ktXETWJZfQctNNDBkxAu+0abQ9eAOFF16I9Z//xDVmNPbi9XgffZTBP7yK9r//jva6egDCJx1D8nuXkl1c0T83dDfXGYxQvbiFKYcPxNJdT6vVSoGvBIBYZSVtd91F1skn4Z4wYavn9GY5Ofy743nyb/N5+saFHHnRBDwBBwCmabL8vQbevHclBQN8HHL+WCwWo3dsqa8UgHWRKGVAwBHb7BodT68l2Rah4IIJ2Iu8ABh2C7mnjyJ4ywLaHlhB0eVTsPodW133+rYwA/M8WJ1OALpeX43Fb8e7d9Fm++cWF5OKL2GcbSw1vqE894/FHP7tcQyZXLDFNewlJQy8/Xaqz/wm68+/gEH33oNj0KAvrK0o4KIrliQcS+J16k8MEREREREREREREREREREREREREREREREREREREZHdiaW/C5Ct0x3vxmf3saRlSW8ACUB1qJrX17/+hePbGrtob+yipa6LzmDPFtdwWp3UdtcSSUZ62yPJCHesvZ9VPdVgJsHug4JRm06QNaD3RzOZxOLxEvn4494AEoDo0mV0vbqZABPZ5bRFE1hvvhczlcJ3xln0rF6D/7jjSVqdGBYLWd+5hPCSZbhn7gslFaRjMXJ/cAXdi5fjHDUK24QpJNo7yb3sCsIr12AtKcF54GHEGhvJuegSeuqasGRlYR0xBufkKXj23pvwu++SDocJnP8depatxHvwIaSz8jBTKXK+9wO6lyzDM+cgklYnttJS7EWFNP76N1hycnDMmE082ELu975PeG0Nttxc3EceR6ymFte0GfjOPIes3/6FRE8hzoLJZP/gSpI2N4bFIOu7G/YyfQaUDiIVi5Fz2ZWkSwbSXTKGlrJppA/6Bvm/vpbw6rVYCwvxn30+4eXL8f/oN3Q783DuPQ3vSacRqawicNoZxGMm2B24Dz8G1/SZxB5/lsjixf19W3dbS96sxTAMxu1XTrJjPY1WK0XeIkzTpOnaa7F4PBReccU2z1s6LJvDLhhHS203D/zuQz58ai2LXq/hievn8/rdKygZnsVxl03G4eobqFHuKwdgebgTAFeidZO5Y+tD9HzShH92Oc4hWX2uWRxWcs8YTTqWovPZtdtU87rWHipyPb1rxNZ04J9djmG3brZ/VmEmnCTl7mJWgYvCgX5e/M8S1i3ZtObPspeVUXH77ZBOU3PhRaQ6O7+wttJsFwB1HZEv6CkiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrsa2xd3kV2B3WonbaZZ3rp8k2vzg/OJp+I4rI5NrnW2hUlFU0TCaVZ/3Ejdyg4KB/oZM6uUstx2sNghNxMeYhomJiZ+h3+TeVxWFx6bBzAg1gnTL4aGhRALZToMmAHZFb39DcPAYjWILFy0yVw9cz/BTCYxbDp+uzJbTxzbyL1oPeJyFi4yGHfh71mxqAWPy0nWZbP5ZF6Qcd/6JXWrOzDDBiVX3cK8D5sYdeIVtNV20V2XYMhVN/LWB00MPnAGkckRlqzqYeQP/sb7HzdRMjYLRh/PRx+1MvTUX1JY5sGIdNMTMnhtfohxF/yW9cvbsKVs5F9xC/M+DjLmtB/TXB2iYW0Xoy+cjntQAM++x1BdGWP5Whh+5f/x7gdNlO+zP8kJ32DB0i7Gfv8vrPmkmcGTC/ngybWkU2H2Pno8y1cOwOtzkPWDWcz9JMj4c35B/eoO0t0GJVfezKpVHeTm+vjkuXXkl/cwYtpo5s9vZtDsc4lOPJ219Smyj7qKBa/UMmKfchz7X0TD4k7GXnodyxe0EMh14fn+gayaG8RTZjDu+PNIN1f2923dLSViKZa/18DQyQX4cpzEOtfTaLNS6Cmk6/nnCb/3PkU//zm23NwvNf+QyQWc9MMpfPjUWuY+Vw1AIN/FrFOGM/6AciwWY9Mx2UMAWNbTTNy04Whd0+e6aZp0PrMWi9+Of86ATcYD2As9+A8YQNer6/HsVYRrRM4X1ppOm6xr6+GAkQUAdL1eg8VjwzutZItjvNk5WO124vlJaAhz6Lljef6RNbxw62JO/vFU8sp8WxzrHDKY8htvYN2551F3+eUM+Ne/MOz2LfYfkp+Za22wmxFFm36WiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIrsvS3wXI1kmmkyRTSSYVTgLghCEncN8R93H/kfdz1V5XYTG2cCtNg1QS3n9sDUvfqqejqYdVHzXx6n+XEwznwOL7oeotAHJduSRSCbx2LwdXHNxnmu9M+A7ZzmzIqQDThHl3wzF/h6Ouh+NugVFHQDLS2z+dTJJOpXFPnrRJSZ599lEAyW7AnVtMw5BD+PCdbgaOyePth9dQv6YTl9fOe09UUTYihw+fqWbNvCB5JV7eeqiSvFIfS9+uZ+m7jZQNy+b1+1bjcNmoWdbGgtfqqRiTx+v3rSLanSTUGmPuCzXklfloqYvwxiPV1DVbee+ZOspH5/Le42upXtxKIN/FO4+upXBQgPkv17L8/SZKh2fT3Jxm8UcdfPhOmEXvtTFgVA6v3buKtAkt67uZ91Itg8bl8fr9qzBsVpa/20C0O8GEA8v5+OkqGtZ04PJt3MtHz1az+pMgeaWf7sXP/BfWAzBinyLee3QNdpeNupUdLHitnrwSLx8/u45AvotkIs38l2qoGJvHmw+upnldFxabhQ+eqqatPkxtZTcvvRQnPXpWP9/V3dPKDxuJ9SSZcGA5ANauRhptVgqMAE1/+COuMWPIOf20r7RGQYWfoy+dyPl/nc05f5jJN383g4lzBmw2gAQg4AhQ6C6kJtZA2FYIwRV9rkcWBImv7yLrsEFYnFt+vwscOABbgZuOJ9dgJtJfWGdTV5R4Mk1FnpdEY5jo8jZ8M0uxOK1bHGNYLAQKighbujBcNhJzmzj60ok43Dae++diouHE567pmTqVkt/8hvB779P0hz9+bt8hBV4A1jR3f+FeRERERERERERERERERERERERERERERERERERERERk16IQkt2E1+alLdrGXoV78dxxz3HyyJNZ372eZ9Y+w5K2JSxsXohpmn3GxGNJLDYL3R0xmqpCfa51tUXpaI7D69fCA2f0BpEU+gqJJqNMyJ/Ab2f+lqumXsUfZ/2RWDJGrjs3M9hXBJPPhBd/Cs9eAU9dCj1tULZ37/z2rCwSTU24p0zBM3NGb7trwgR8Bx6w5Y3Wz4dXfg1PfR/WvgGJyJb7yg6VSrlY8nFn7/NENEXF6DzWzGsGwOaw0tMZp3hIFuuXtQHgy3HRVh8mq9BNcH0mhKBwUIDaFe3YnVZ6QnHMtMnAcXmsmdsEQG6pl+rFrQwan8+qjzNtVptBNJygbEQOVQtbAHD77IRaIthdVlxeO5XzguQUe2mqCuEJOOgMRsBkw5gghgGJeJp00iSn2EOwpgsAw4B4NMWA0blUzgsCYHdaCXfEKRqcRc3yzF5ME9Jpk6wCNy21mb0UDQpQs7wNhyuzF4CB4/JZvaFuM22SjKcZOC6P1R8393k902mT9o4tB0XI5qVSaea/tI7CgX6Kh2ZBNIQtEaHJasP+wHMkW1oo/tUvMazb57V1ee34clwYxubDRz5rkH8QzbYQicBgCK7sbU/HU3Q+X4W9zIdnr6LPncOwWcg+bijJ1ihdb9Z84ZpVwXBm7TwPXW/WYjgseGeUfuG43NIy2upr8e5TTGRJC860yRHfHU93W5SXb1tKOm1+7vjsE08g97zzaL/vPtruvXeL/bxOG6VZLio31CkiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrsPW38X8HXVGYzQ3tSN1W7F7bGRVezFbt/yl+j9Lj+LqxazX9l+pMwU84Pz+cvcv/ReL/eVc93s65hQOKG3zTDATKWx2ixgAP/zHXOrfUMGTawL1r4Jg/fDYXUwoWACVZ1VXPvhtcRSMSr8Ffx+1u/xOXyZ/nmDIRWD4/8B3U3gLYSC0eDL753bRhK710XXh3Mp/OEPSTY0Ypom9tJSbLk5m99k/QK45yQ44ykI5ENPeyaIZOQR2/DKyvZiSfVgd1pJxFK9gQzJRAq7M3NOLZYNbfEUbp+jT1sqkcbmzJwv08y0p9Nm5iwCqWQam91CPJUilTR75/l07o3rpbG7NrRtmDu3xEvz+tCGfoCRme/T85zecOaTiTQWa2ZMS003xUOyqF/d0XfuzezFm+Xo/dnltZNMpLA5rH32koincXpsvXuxO63EepKbnfuzHG77tt6Gr71VHzYRaoky65QRmdc3VAdAs80G9zxO9imn4J44sV9qK7XkM8+XwPCNhuXvQqQd3Dl0vVlLKhQn94xRvef287iG5eCekE/ojRo8kwux5bm32HdFYyZMZ5jLQc/CZnwzy7B6v/hcFVQMYu28j3HtnU/3O7V0v19P8ZFD2O+0Ebxx70o+emot048f+rlzFF55BfG1a2n6/R9wVAzEN3vWZvsNLfRRGez+wppERERERERERERERERERERERERERERERERERERERGTXYunvAr6OOoMR4rE4noCTeDhJY1UXDWs6iEfiWxxjMSzMLJuJy+YilAjxn8X/6XO9truWys7KPm12h41ELI0ny86o6cV9rpUOzybfsX5jQ6QNgO5YN6ThxGEncufhd3L7obdzx+F3MLHwf77kXzgKhs6BiafDsIMgq3TjteZK6K7DGV2COytJ3Q8uo/Xf/6btnrsxY1HsRUWb32RwLXzzMQguhEfPg1d+AWYqE0YiO13UHmLoYf7Mzz0JsgrdrF/axoh9MmepMxihcJCf5uouykfnYFgMGtZ2Mmh8Ht3tMbKLPNjsFtYtbmHkjOJMMInDgtNrY80nzYzbvxwAmyPzNlS1sIXRM0sACHfGyC31Ur+6g8ET8zEMaK3tpmxkDl2tUXKKPADULG9j+NQiYj1JPH4HdpeVtQuCjJmdOY/plIkn4KBmRRuDJ+aTVeDeuJdlrQzfO3MWO4IRigYHCK7vomxUDhaLwfL3Gph61CAsVgtZhW5sdgvVi1oYNbMEM20SDSfJH+BjzSdNjJ1dBkAilsKf68r0m1HS5/V0+ewUDsrakbdsj5NOpZn7fDUFFX4Gjc/LNHZk3rd6kg6cvgCFl1/Wb/XlRlwkbSaxshGZhqalJDuidL9Vi3tCPs5tuN/ZRw/BsFroeKoS0zS32G9FY4g8rwPH+41gGPg2nL0vkl8xCDOdJhQO4h6XT/jDRtLRJGNnlzFmVimfvLCOtQuCnzuHYbVS+pe/4Bw2jLrLLye2evVm+w0t8FHZ3E06veV9iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIrsfW3wVsLcMwDgf+D7AC/zFN84/9XNKXlk6nSKdg6Vt1LH+3IdNowAFnjmLsrNItjhucNZhgOEjaTBNOhDe5Hk9vGmLiy3LQ1R5h7Owyiodk0byui7wyL4UVXgJ3D+7tlxz/Tda1VRJOhZnfPJ9X1r1CRaCCY4ccS6GncOs319MJdhe0rMV4/Nv4HD4GfvsUUtZ8bF47tmFb2F9HA5TvBevfgScv2dhe+Sqc/gCMOGzra5DtIm7YyCvyM+OEbLpaI0w7dgihlgiJeIpDzh9DY2WICQcOINIVJ9IV55DzxtBcHSK31MuAsXl0tUQ46NwxBNd14c9zUjQoQFt9mAPOHEVrXTdOt405Z48mHIoy/fghzH2umrXzg8w+dTidwQhTDh9IuCNGLJzkkPPH0rg2xOABPuKRJA6PjZzidhrXhvDnuZl+/BAi3QnmnD2alpouPAEHc84aRbCmi9mnDqe9qYdQa2adRDRF+agcmqu7SMRSG+buYPwBZQybUkikK87B542hsaqT7o4YB541CsMwmXPOaJqqOsku9HDgN0fSUNnJXodVgAkWm4U5Z42ieX2IGScOpTMYwTTTHHLeGOpXd2BzWMkqdGN3Wvv7tu5WVn7YSCgY4YgLx2MYRqaxJRN8kWgzKf7Nr7FmZ/dbff6WNNhhdX4+5QA1H9L5di4AWUcO/tyx/8sacBI4eCCdz64lurQV97j8zfZb0djFyFwPkfnN+GaVYctybtX8+QMGARBcV8Xw/acRWdRC9/sNBA4cwH6njqClpotX/7uM3J/sTfaGkJ/N1unzMuCf/6DqlFOoufAiBj30ILa8vD59xpQGCMdTrG0JM6zQt3UvgIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI9DtLfxewNQzDsAI3A0cAY4DTDcMY079VfTndHREMq0F3e3xjAAmACe89uobm9aHPHR9NRslx5nDc0OP6tDutToZmDd2kv9PjIK80gMVmUDTUz95HD2LU8AjFTfdD/ggomQQn3kpLXhl2q50Xql7gL3P/woLgAp6qfIor3ryCBU0Ltn6D6TjY7NBeDWYaYiHsS/+Da9Efsb3/u0z75lg2jJ13Z992Mw2rXtz69WW7yY7bWPBoM+8/Xkl2kYfX71lB3aoOOhrDvHz7MgL5Lt5+cBXL32sgGU/z8u3LcPkdvP/4WuY+W4XDZePl25discGCl9bz9oOr8ec5eeWOZcTCCVZ/0sxrdy/HarWw8oNGZpw4jOF7F9GwphN/vos371tJ5fwgPaE4L9+2FH+Ok3ceWc3KjxqpW91B2cgcDvzmKHKKPUS64rj9Dl65fRnpVJqlb9fx+j0ryCpw8+qdy0nG0tQua+XFfy+luyPGc7csprGqk87mHl6+fSmBPDdvP7ia5e82kExk9hKs7sLusPDirUuoXtTGS/9Zit1pZcGrNbxx3yo8WU6WvFlPzfJ23n1kDa/ds4LsQg+v372C5nUhmqtDvHz7MqoXt7D8vQbeun8VzdWf//stG8WjST54Yi1FgwMMnrgxkCOx4j3aLRYKskcQOPTQfqwQjBVBrKaFT7qqIH8EqeXvEFnain9OBbZs1zbP55tZir3YS/uTa0h1bRoqlUqbrGzsYmBnEsNpI3DggK2eO6ekFKvdTkvNOhxlPpwjcuh+tw4zkcJqt3D4d8djsVl47p+LiUeTnzuXvaSEAbfcQrK1ldpLLiUdi/W5PmVgDgCfrGvb6vpERERERERERERERERERERERERERERERERERERERKT/7RYhJMA+wBrTNNeaphkHHgCO+4IxuyaLgdVqIdq96RfM45EksXDic4fnunIxUybHDzueC8ZdwAD/AKaXTOfvB/ydqcVTNzvGMAwKKwLklwbwZbtwZOXA4P3h+FvgmBtg0H5YDAvtsXYeXvVwn7GheIg1HWu2fn+pNCQT4M7Z9Jq/GFxZmx9nmmBYwOrc9JrNsfXry3YTipuEmiIARLqTJKIpPH4HjZUhMCEaThLrSeLJctBUFcJMmySiqUwgiM9BS2036aSJmTbobIlic1gItURJJdI43HaaqzLzpJImncEI7Q1h5j5fzZpPmol2JYlHU3gCDhrXdmKaEO1JEgtn6kjGUix5s45Qa5SPnq6icl6QjsYwqWQai9VKW30PGAY9oQTJeJpYT4JYJAVk1gPw+B00VHb23UvAQfOGvZSNzOGT59bhCTjobo8CYJoGnc2Z18Rqs1C/ugNPlpOu1iiYG16nWGrD3JnAkXBHnHgkE+rQ1Rbdqfdwd/bxM1X0hOLMPnUEhmEAkGxpIbL0DarsdkbPOalf6+sJddJRU8sgWykLgwsxS/fBqP8YW54D/+yyLzWnYTXIPW0kZjRF633LMRPpPtdXN3cRS6YZEkqSfcwQLB77Vs9tsVopGDiYhtUrAQgcMIB0d4LuDzJhWP5cF4deMJaOxjCv370C0zQ/dz73+PGUXncdkQULqPv+DzDjGz/ThuR7yfU6eL+ydavrExERERERERERERERERERERERERERERERERERERGR/re7hJCUATWfeV67oW23Y7VaAJNAnhuL1ehzLbvIgzdnMyEcn+F1evG6vFiwcObIM7nxwBu5ZuY1zCqftfVF+AugZByU7w2lEyFQgrnhn9Vi3aT7pwEAWyWrCNJJyBkMww/7zCQWOOR3UDBy8+NMMuElU87p2251wNA5W7++bDfWgIOS8T4A7A4LGNBY1Un5qEzAjMVqYLVZCK7ronRYNgCpRAqX105Hcw955Zmx4Y4YWYVuYj1JvFmZ8x1cF6J0eGbM0rfqmHniMKLdcQaMyc2sbTMwLAZN1SHKR2bWM9MmdqeV9sYeigYGsFgNYj0JfDnOzBoFHgA6msIUVPgx0yYOV+Y8V84LMnZ2ad+9rA0xYHRmPYsFrHYLwZouSoZm6jJNSKczASl5pZm9dLdHyS7yYHdYiHZnAoOaq0OUjciMsTszb6kNlZ29c39Wfrn/q9ySr436NR0sfLWGMbNLKRoUACAdi1H7gx/g9vSw3GlnaOGofq1x3cJ5AEwpmsKS1iW0tA7FQhe5szswbF/+o9Ve7CXnpOHEq0O03LWUdDTZe+2dt9YBMG1EPp69Crd57vLR42hcs5JkPI5zSBbOETmEXqsh3ZM5ywNG5TL9+KGs+aSZ9x+v/ML5AocdSvGvf033m29Sd+WVmInMPIZhcNCoQl5d3kwsmdrmOkVEREREREREREREREREREREREREREREREREREREpH/sLiEkm0vBMDfpZBjfMQxjrmEYc4PB4E4oa9u5vQ7isRRWm4U5Z4/GE3AAkFvqZb/TRhDId3/hHAWeAsYXjiffl8/QnKEU+Yq+cl2pVIpsZzbfHP3NPu357nyGZg3dtskCxeDOgwN+AiffDkddD998DMYcv+Ux2aVg94LhgJNug4lnwNTz4aT/gOer729Xtyue3Xx/HkMPDlAw3MvKjxqZftxQYuEkLp+dQRPyWPZOPdOPH4LNYSEeTTJ8nyKWv9/I1KMG4ctx0t4QZux+ZVTOb2b8AeXklnqpXdnO5EMrqK/sYOD4PIoGB+huj/HJi9UU7eVi6P7ZlI71s+L9BmacMBQznfk1H7pXAcvfq2facUPw5ThZ8GoN+548DLvXwvSThpBV5KGxqpOJc8pZt7SNEfsUkV/ho3pxC1OPHEQqlaZudQezTh1GIpFg9unDiEeSOD22zF7erWf6cZm9xCJJRuxTRDKRwuWzk06ZtNZ3M3Z2KZULmhm3Xxm+PBeerMzvbs2KNirGZfay5pNm9jl2yIZQFDcVG0JV7E4rs08dTsFAhZB8kUh3nFfuWIY/z8W+Jw0DwEwkqPvBZaTXfIjdarLE6WRM3ph+rXPN3A/xZGVz1PgTSKaTvNqUwLS4cLS88JXn9kwqJOfE4cQqO2j8y1zaH11N8D+LeXdePYVWK2PPHLtt4VAblI8eRyqZpG7lMgCyjxyMGU3S+WJ1b5/Jh1Ywbr8y5r+0nnkvrvvCOXNOO5Win/6UrpdfoebiS0h1dwNw5PgSumJJ3lndss11ioiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhI/zBMc5Msj12OYRgzgF+bpnnYhuc/ATBN8w9bGjN16lRz7ty5O6nCbdfe1EXj2i48ASdm2sRMm3hzXBRW9E9IgWma1IZqaY22srpjNe/Wv0uFv4J9y/ZlatFUrBbrzimkrQrWvglta8DmhsGzYfB+O2ftL2fbkwC+wK50djtjnawNVtPZFqYoq5BQvJN03CAr20tzaysF/gJ60mFiPQnyc3Nobm8h25VNwhoj3BWlKDef5s4W/DY/uFJ0dHRTnFdIW1cbDsOFw2Ohtb2Tgqw8lkUXEk1FGekfRaQjSVGgkK5kF4lIitycLJrbW8jz5hGlh66uMIV5eTSbDfjtfpIRk1goRVF+Pq2hNlwWD3a3QVt7JyW5RbT1tBOPJykoyKbH7MZtc9PZFsZI2sjO8tHc1kq+P7/PXtpDnRSly3jn/kq6WmKUjcpi/GGlhK0dmK40lqiD8BpY8Hwd6WSaSYcPIGeEHcObpCPaSU8kSml+ETlmPi6Xk0Ce60sFR+xAO6qYL/2hkkykeOr/FtBc3cXxV06meHAW6XCY2ssvJ/zW2wz8wX54mh7gwtHT+eepL27PmrdJpCvEvy46h3EHHsreo47mqBWnMNE+hpu8FoyVz8Fli8GT+5XXidd0EXp1PfGaEEmXjSM6Wjh6cinXnTzxS82XiEW55dtnMu6AgznovIsA6HhmLd3v1JF/3jhcI3IASKdNXrl9KavnNrPX4QOZftyQLzy77Q8+RONvf4tz2DAG3HIzZlEJM//4KqOKA9xzwbQvVe8X2KV+mURERERERERERERERERERERERERERERERERERERE9gS7SwiJDVgFHATUAR8DZ5imuXRLY3alIIctSSVTtNaFSSXTZBd5cPsc/V0SAI3djcRSMRxWByW+kv4pIpUCiwV2rdCGzdmjQ0gE2tu76A5F8Pnd5OT2DQlKpVI0NLSSSqTILczC7/X0U5Vfyi4VQhKPJHnun4uoW9XBoeePZfjUImKVldRdeRWx1asp/uUvCcTuo7bmHR445If8eJ8fb++6t9oHjz7Auw/dw/GH/RDnKgt3jn6Bh4xneHn2/1F453Ew41I47NrtuuYLSxq58J5PuONbe3PgqMIvPc/Tf/sjNUsX8e1b7sDucGIm0jTdOJ90d5yCiyZiL8ic4XQqzZv3r2LZO/UMm1rIAWeMxOmxf+7c3e+8S91ll4FpUvSTq3m4cDLXPreCey+Yxr7D8r90zVuwy384iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjsbiz9XcDWME0zCVwKvAgsBx76vACS3YXVZqVwYICSodm7TAAJQLGvmIFZA/svgATAat0dAkjkayAnx8+AgYWbBJAAWK1WyssLGTi4ZHcLINmlNFZ18tAfPqZ+dScHf2sMQ0b5CN5wI1UnnkSyqYkB//wHOYfvi6XqDV72uDlwwIH9Vmvb2ho+evxhyv0jcK624Nu/nPNOuBSbYeO6dU/DlHPh/Zth+TPbbU3TNLn9nSrKst3MHv7VwjwmHXokka4QS157CQDDbiH/7DFgQMttS0g0hQGwWC0ccOZIph8/hMp5Qe7/zYdUzm/GTG85Y8Y3a18GP/E4rrFjafj5L5j9r98w0GvhiocW0BSKfqW6RURERERERERERERERERERERERERERERERERERERkx9stQkgATNN8zjTNEaZpDjVN89r+rkdERL68dNqkZnkbL9y6mEev+4R0LM7Rh1vJevFW1uy/Py233IJvzoEMeepJfLNmkXrlV6RM+LB0FFOLp+68OuMpopUdhF5dT+XfX+ORX/4MUrDP5OMpvHgS2UcMpiRQwncnfpeX1r3Ev0oGYpZNgYfPgfduhFTiK9fw4Mc1fFTdxoX7D8Fm/Wof2+VjxjNg7ATeeeBuWmvXA2DLd5N/3njMVJrmmxfS9VYt6XgKwzCYcvggTv7xFJxeOy/8awkPXPMRS96qI9wZ2+z8jvJyKv57B8W/+Q3W2vX88Jm/EOro4sQ/vchHHyzFNLccYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIv3L2FO/EDx16lRz7ty5/V2G7PmM7T2hzq7sJNv97G6wyYdKNJygcW0n3eub6Fm9lnBNM901QczuEL5kGwW2duyNazB7ejAcDgJHHE7OmWfinjABetoIP3Up3hXP8s/sAGNOvpf9yvf7UoWlexKkYynMZBpSJmbKxEylIWmSjiVJdyeIdYQJB9uItoSItoSIdXbTnWinObqeup7V2OwOjrnoxwya2TcIJW2m+cW7v+CpyqeYnDWMa5qaqWhYQsJbQHTUkdgHTMOVOww8uWBzgb8YrPbN1hmKJqhrj1DfEeGV5U088HEN+w7N587z9sFq+eq3rbO5ift/cRXxSIS9jjyWspFj8OcX4LYHiLxQT3RFG4bTimt4No6KANYcJ4bXTlVliIXvN9BWHwYDcku8FFT4CeS78eU48fgd2JxW7A4rNqcFlwPirzzDe8+9za+yZ9LqDrBPWyUzHGGG57rIK8nHn5tFUa4Pd1YAi9eLYbdh2DIPSyCALSdnS9vYUedXRERERERERERERERERERERERERERERERERERERORrSyEkIl+NQkhkd7XTQkga13by6J8+oaThPUavvLfPNYvfj2PwYFxjRuOdPgPvjOlYs7I2dmitJPHPWdzp91B05PUcM+y4L11Y2yOr6Jnb9Ll9qruX8mHwmU3a3b4Ao2btzz7HfwNfTu5mx5qmyTNrn+GOpXewum0VsyNRzgh1sU8kiuN/O39vHuQN3ew8v3l6KXe8Ww2Aw2rh9H0G8OMjRuFx2L5oi1st1NLM6/+9lcq5H2GaaQAOOv9iJh16JLHqTsIfNxFb20GqPdY7xprloPjqfWirD1O1MEhjVYiW9V2EO+ObXWP0viXMOWs0AK2V6/jH0/N5ojFNC84+/a5591amBFdtMj7r5JMoveaaLW1BISQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiItvZHhtCYhhGEFjX33VskA+09HcRO4D2BS2maR6+PRf/Emd3T7oP2svOs93PLoBhGC+Q2Xt/2NVe812pnl2pFvjq9eyQ8ysiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8nW2x4aQ7EoMw5hrmubU/q5je9O+dg27W72fR3uRr2JXe813pXp2pVpg16tHRERERERERERERERERERERERERERERERERERERETA0t8FiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiISP9SCImIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMjXnEJIdo5b+7uAHUT72jXsbvV+Hu1Fvopd7TXflerZlWqBXa8eEREREREREREREREREREREREREREREREREREREZGvPcM0zf6uQURERERERERERERERERERERERERERERERERERERERERERPqRpb8LEBERERERERERERERERERERERERERERERERERERERERERkf6lEBIREREREREREREREREREREREREREREREREREREREREREZGvOYWQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIfM0phERERERERERERERERERERERERERERERERERERERERERERORrTiEkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiX3MKIREREREREREREREREREREREREREREREREREREREREREREfmaUwiJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjI15xCSERERERERERERERERERERERERERERERERERERERERERERL7mFEIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLyNbfHhpAcfvjhJqCHHjv6sd3p7Oqxkx47hM6vHjvpsSP09570+Ho8RERERERERERERERERERERERERERERERERERERHZZe2wISUtLS3+XIPKl6OzK7kznV0REREREREREREREREREREREREREREREREREREREZPe0x4aQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyNZRCInsehJRSCX7uwrZ2VJJSET6uwrZnaWSmfcPERERERERERERERERERERERERERERERERERERERER2Wa2/i5ApFdPO6x9A+rngd0DQw6AAdPAoqycPV7dJ/DhvyC4EqZ9FwbNAk8BONz9XZnsDtJpqPkAKt+AVAxKJ8Pg/cGT09+ViYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI7DYUQiK7jnXvQHAZrH4JHB5w+sDmhrJJ/V2Z7EjNy+DOYyAehvHfgObl8PZfIVAG+/8IKmYqiEY+X+NiqF8AVa9DpAMMC1jsMPqo/q5MRERERERERERERERERERERERERERERERERERERERkt7FLfbPfMAyXYRgfGYax0DCMpYZh/GZDe65hGC8bhrF6w/85/V2rbGc97dC8At78EwRXQN08ePkX0L62vyuTHa1pWSaAJFAK3gJ47wZoXQNVb8Jdx0HDgv6uUHZ1bVXw0s+g5iNoWQXvXA8N86Cno78rE9np0mmTZxbV09mT6O9SRERERERERERERERERERERERERERERERERERERGQ3s0uFkAAxYI5pmhOBScDhhmFMB64GXjVNczjw6obnsidJp2D5U33bTDMTKiB7Nos18//wQ2HJo32vpZNQv2CnlyS7meAyMNN92xY/ColI/9Qj0o9eXNrIpffN51dPLenvUkRERERERERERERERERERERERERERERERERERERkN7NLhZCYGd0bnto3PEzgOODODe13Asfv/Opkh3L5wZ2zabs3f+fXIjtX8QTwl0A8DE7/ptcdnp1fk+xe3LmbtrmywOXb+bWI9LMPq9oAmF/T0b+FiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMhuZ5cKIQEwDMNqGMYCoBl42TTND4Ei0zQbADb8X9iPJcqOYHPCrCvA+MyRdAZgxGH9V5PsHHlD4awnoGwqTL+47zVfIZRN6ZeyZDcyZP++IUaGAQf+ZPOhNiJ7uNr2CAD1HRFSabOfqxERERERERERERERERERERERERERERERERERERGR3Ymtvwv4X6ZppoBJhmFkA48bhjFua8cahvEd4DsAFRUVO6ZA2XEG7QvnvgBVb4HDC4P3g+Ktvv27ta/92S0clXkkIpA/MnMGfAWZM5A/vL+rky/Q7+e3cDR86zmofht62mHIfplQG5GvoYbOTAhJImXSGIpSlu3u54pEREREREREREREREREREREREREREREREREREREZHdhmKbZ3zVskWEYvwLCwLeBA0zTbDAMowR4wzTNkZ83durUqebcuXN3Rpny9WZs7wl1dmUn2e5nF3R+ZafZEed31/2DaBvs9buX8btsrGvt4YHvTGf6kLz+Lkn62iHvvSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLbg6W/C/gswzAKDMPI3vCzGzgYWAE8BZyzods5wJP9UqCIiIjILiqaSNEWjjNlYA4ADZ2Rfq5IRERERERERERERERERERERERERERERERERERERHYntv4u4H+UAHcahmElE5DykGmazxiG8T7wkGEY5wPrgW/0Z5EiIiIiu5qOngQAI4r8ALSFE/1ZjoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjsZnapEBLTNBcBkzfT3goctPMrEhEREdk9hKKZ0JGybDdWi0FbONbPFYmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjI7sTS3wWIiIiIyFcXimRCSLI9dnI8DtrC8X6uSERERERERERERERERERERERERERERERERERERER2JwohEREREdkDhKKZEJKAy06u164QEhERERERERERERERERERERERERERERERERERERHZJgohEREREdkDhCJJAAJuO7leh0JIRERERERERERERERERERERERERERERERERERERGSbKIREREREZA8QiiYACLhs5HmdtCqERERERERERERERERERERERERERERERERERERERES2gUJIRERERPYAoUgmhMTvspPjtdOuEBIRERERERERERERERERERERERERERERERERERER2QYKIRERERHZA4SiSdx2Kw6bhVyvk45IglTa7O+yRERERERERERERERERERERERERERERERERERERGQ3oRASERERkT1AKJIg4LYBkOOxY5rQGUn0c1UiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIisrtQCImIiIjIHiAUTRBw2QF6/++KKoRERERERERERERERERERERERERERERERERERERERLaOQkhERERE9gChSJKAOxM+4nfZAOiKJvuzJBERERERERERERERERERERERERERERERERERERHZjSiERERERGQP0BVN4HNmwkc+DSMJRRL9WZKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI7EYUQiIiIiKyB4gkUngcVgACrg0hJFGFkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjI1lEIiYiIiMgeoCeewr0hhMTvsgEQiib7syQRERERERERERERERERERERERERERERERERERER2Y0ohERERERkDxBNpHDbMyEkAbcdgFAk0Z8liYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMhuRCEku4lYOExnUyOxnnB/lyIin9Hd3kZncxOpZLK/S5FdQCIWpaOpkUhXqL9Lka+hnngKjyMTQuJ32jAMCEX13iQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiW8fW3wXIF2tcs4pX7/gnjWtWUTpyNHO+9V2Khgzr77JEvtYS0Shr5n7AG3f9h2h3NxMOPoypx5xIVkFRf5cm/aSldj1v3XsHVfM+Jqe0nIPPv4gBYydgGEZ/lyZfA6ZpEkmkcNszISQWi4HPYaMrmujnykRERERERERERERERERERERERERERERERERERERkd2Hp7wLk84WCzTz+p9/SuGYVAPUrl/PEn35HV2vLDlszkUqwqm0V85vnE+wJfuX5UqEQscpKEsGvPpfsWZrCTcxrmsfq9tUkUv3/RflEsIVYZSXJzs4v7NtQuZrnbvwLPZ0dpFNJFrz4LEteewnTNHdCpbI1etqCNC+bR+26JXREO3boWrGeMK/8+yaq5n0MQHt9LY/98de01tbs0HVFPhVLpjFNcDmsvW0Bt51QJNmPVYmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjI7kQhJLu4juZGejo7+rR1t7fS2dy0Q9brjndz+5LbOeWZUzj7+bM547kzWNa67EvPF122nHXnnc/ao46m+hun0P3225jp9HasWHZXS1qWcMZzZ3DOC+dwytOncNeyuwgnwv1Si2madL/7HtWnnMLao45m/bnnEVm69HPHNK5ZuUnb4tdfJhL64gAT2fFCi+ZTf94FtJ54JpFzf0DDmy+yvnP9DluvqyVI3Yq+75WpRIL2hrodtqbIZ0XiKQA89o0hJH6XjVC0/wOeRERERERERERERERERERERERERERERERERERERGT3oBCSXZzL4wXD6NNmGBacHs8OWW9Z6zJuWnATKTPzZebGcCPXfXQd3fHubZ4r2dZG3Q9/SGzJkszzxkZqL76EWOXa7Vqz7H5CsRC/++B3NPc0A5A0k/x93t9Z2bZpsMfOEK+qovbii0k2NAAQW7aMuiuuJNnausUxvty8Tdqyi0qwO107rE7ZOsmWFpquuprEilWZ5/X1GD/+I+2rlmCa5g5Z0+5y43Bv+r7s8vl2yHoi/6snkfncdjs2hpAEXHa6FEIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIltJISS7uNzScvY57uQ+bdNPOo2c0vIdsl5DuGGTtnnN8+iMdW7zXInGJuKVlX3azESCRM36L12f7P5M06Suu45lrcs2uVbfXd8PFUF8fQ1mLNanLbFuHYmGTX8fPlU6YjR55RW9z602G7NOOwu7SyEk/S3R0EByfd/3GTMaJVFbS0+iZ4esmVVYxJxvfadP28gZs8kfMHCHrCfyvyLxT0NIbL1tAbeNUCTZXyWJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyG7G9sVddh7DMAYAdwHFQBq41TTN/zMM49fAt4Hghq4/NU3zuf6pcueyOZ3sfexJDBw/ma7WIP78QgoHDcZmt++Q9QrcBZu0jcsfR8AZ2Oa5rH4fFq+XdDjctz0n50vXJ7u37ng3T1Y+ybLWZQzNHkplR9+QmmJvcb/UZcvJ3qTN8Hiw+v1bHJNdVMwJV/+KYHUV8ViU/PIKCgYO3oFVytay+P0YbjdmJNKn3Z1XiNvu3mHrjpgxm5zSMtob6vFkZVM0eChu/7a/d4p8Gb0hJHZrb1vAZWdFtKu/ShIRERERERERERERERERERERERERERERERERERGR3Yylvwv4H0ngStM0RwPTgUsMwxiz4drfTNOctOHxtQgg+ZTL66Ni3ATG7n8QFWPH4/L6dthabpub44cd3/s815XLWaPPwmV1bfNcjgEDKP7VLwEwnE4wDHLOOgvnsGHbq1zZzSwKLuKPH/2R56ue5+ThJ5PlzALAwOC7E77LyNyR/VKXY9gwcs87r09b8S9+jr2i4nPHZRUUMWzv6YyZdQCFg4ZgGMaOLFO2kmPgQHKuvgoAw+UCw8D6zZOIVRRiMXbcx57d6aR0xGjG7n8QgydNwZOVvcPWEvlfkUQmhMTj2BhC4nfZ6Iom+6skEREREREREREREREREREREREREREREREREREREdnN2Pq7gM8yTbMBaNjwc5dhGMuBsv6t6utlVfsqqjqruHjixaTMFJFkhL/M/Qt7Fe1Fsbd4m+fz7rcf5bfcQmz1amxFhbgnTcLq9++AymV3sKR1CQCJdIJbFtzCiSNOxG/3M71kOiNzR+KybXvYzfZg9XrJv+hCfHMOJN3RiSXgJ15VTcdjj+EePwHXiOH9Upd8OYZhsGSUi/F/+xOsq8VSUkTVACd/XPRX7iqdiNfh7e8SRba7nngmbMRl3xhCEnDb6YomME1TIUkiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8oV2qRCSzzIMYxAwGfgQ2Be41DCMs4G5wJWmabb3Y3k7VTKRoLV2PV0tQXy5ueSVV2B37piwhgJPAQuDC1kYXNjbNiF/Aj6770vN1/X8CzT+5je9z917703Z9X/FXlDwlWuV3U+5r7z3565EF3cuvZNZZbM4Z+w5/RZA8imr34936lQiCxex7uyzMWMxACw+HwPvvgvX6NFbHGuaJm11NbQ31uPy+skfUIHLp7Cd/mImEox4s5rWW/7d2xaYM4tTzz0ap825w9cPd7TTUrOOVCJObtkAsotKdviaItFECgCPY2MIid9lI21COJ7C59xl/+QTERERERERERERERERERERERERERERERERERERkV3ELvmNVMMwfMCjwGWmaYYMw/gH8DvA3PD/X4HzNjPuO8B3ACoqKnZewTuQmU6z8t03eeGf/wemCcD+Z53PpMOOxma3b/f1xuaNZVrxND5s/BAAl9XFlVOvxOfY9hCSeG0dzX/5S5+26MKFxKuqNh9CEqyEVATaqmDFM2D3wOijYOhBYBhfaj+7i1327EY6YN17mfsx4jAIroJEFIrHQuVrMOQACNVDVyNUTIe1r0P5VIiFoXkFDJsD696F3KFgtTHRZmNC3lgWtS4FwGPzcNGAw3C9/w8YeQQUjtq4dssaWP0CdDVD+RRY8xoMnAGRNmivhkH7QdVbUDQW0kloWgxDD4GaDyDaCeNOggH7QGslrHgWLDbIKoe1b8LIw6BlFcQjUDIe1rwKQw7ATMZpv29ubwAJQLq7m9BTj+KyTYfKVyF3CFjtUPdJ5jWpX0iNdzqP33gzyUQcgLGzZrP/BB/uwoEwcF/w5Oy8e9YP+v38Nq2AUA2sfhl6WokPOZvuf/+3T5f0a+9w4NlnY7Ps2I+9ULCZ527+K3XLM2fc7Q9w0s9+R9HgoTt0XZGeeCaExG3/bAhJ5u+ErmhCISQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8oV2uW+kGoZhJxNAcq9pmo8BmKbZ9Jnr/wae2dxY0zRvBW4FmDp1qrnjq/2S4uFMSIM3HyyWz+3a3ljPK/+5pTeABOCte+6gYtxECgcN2eyYZFsbibo6LF4vjoEDMazWzfbbnCJvEdftdx2r2ldhptMMsBRR6C/Z6vGfZcZjpMPh3ufu71xGqGQCC6v9lLpbKB6Shcu7IUilowZsNmhaBY+cu3GSBffA6ffDsIO/VA27i1327C55FJ69AmZ+H174SSYAZL8fZe7RXufA23+F4HI45Hfw8Nkw4ghY+ADJZJrI3t/H/eEt2BIhCAdh8cOUzfk5f7cNYNW4/Yk4fAztbGDwE5dBpB0+upXEOS/T3OalbkUrbqONMncWuQELPHQ2jD8ZPro1E/5x6DWZ9SpmQqSNBAUk8w7AuvITHGsegO5mmHcnnPUkPPKtTADJXmfD49+Bmd+DF38KPa2w/4/h4W/B5LPgnevBlUu8cdPAkERzK7z2WzCsmXGLHoQ5P4fHL6Rn/Lm88tSDvQEkAEvfeZvRQ49l4INnwhHXwbQLd9ot6w/9en5bK6G9Eh77dua9FUgbIyGR2KSrO/EVwoySMYh0YDqziNc1ku7qwl5agi0/v0+32hVLewNIACJdIT5+8hEOOOfbWG123H7/Vi3XE4rRuDZEU3WIvFIvJcOy8ee6vnz9sseLJDIhJB7HZ0NIMn/mdUWTlGT1S1kiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIishvZpUJIDMMwgNuA5aZpXv+Z9hLTNBs2PD0BWNIf9W0X6z+A134HLatgwmmw9/mQM2iL3SNdXX3CDQBMM01PqHPz/Vevpufdd0mHusBqwTlyJN4ZM7B6vVtdYp47j9Ghwcx/5RmeeuNGsotLmH3muQwYPQ7jC0JTeiXj2DwpfAfNofvV13CfcR4fd4+j+c0IEGH+aw1MO3YIex0+EIvFABNIJWDu7X3nScVhzSt7fAjJLinUAK9fk/nZ4YFQHYw+FpY8kmkLlEDzMijfGypfzwTllE4mmM7n/Q/Xsv5vt1M+fCz7HnkwBc+cAXY3xLoo+OBWCmZ+L3Ov4xtDaoh1UlOZ4Pk75vc2eQKDOf7YNnIAcofC4kegYBTUzoV0CoYeSLgti7o/30mq5Qksfj+lV16Jp+dFYrlzSHxUjXXg5bhKfVhXPkh00jXEgh4sBd/BVeLBseSuzEJZZTD/boyKGeQcuR+Rj+f2eSkC+0+F+f+F2VdmgldsLohHINZFvGQa7Q3/3OTlC8c2ZHG8/nsYdUxmDdn+WtZA05I+Z8mam4dr/HiiixdvbMvOxjF40Jdbo2kZvHM96c4muku+Tay6DjMWx5qdhWfaNNyjR/d2baur3WR4w5pVvP/I/axfupDZp5/DkElTsTmdW1wumUjxyYvrWPRqZi6L1aB8VA6HnDsGl8/x5fYge7xIPBNC4uoTQpIJ+uqKbhrKIyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLyv3ZYCIlhGHsBs8jES7xrmua8rRi2L3AWsNgwjAUb2n4KnG4YxqQNc1UD393e9e4UTcvgruMgGc08f+8G6GmFo/8Gts1/IT2Ql48nK5uezo7eNpvTSSC/cJO+qXCY6MJFdD71NP7994dkisgnn2DNycE7ZcpWl5lMJvnoiYdZ/NqLADRWrubRa3/Jmb+/nsJBQ754gnAQ3r0Bapfhn3MazhEj6B5/MM0PNfXpNve5aoZNKcRq66FxdTXdba3kVXyTohQ4a97+TEFxpD+kIZXM/GhuCNSw2DJhMf/bls60dQdG8sRtTxIKNgNQuXARzXUNnHHIufiW3ZkJDukdk+yzWnT4N3j/ucY+bT2hOE09peQYnwm/sdp714s7hlJ33Z9JtbVlKu7qovGfD1Jw0QU0XH1N7xD/QfuTfeL3qLn0x711O0cOp/w7x+JoXLRxL2Yab6Ce4svPp+WB57Dm5VF4xfchHiW27/U4nZ3EKg6gqfRYWrsd+KdeT6HDTcWoUaxfsaJP7dmeDT+kEhvnlx0gvfFcAYlR51B/64sEjjyCwFFHkeruItXSSvbJJ+EoL9+mmc1EgtiaVZir38AetxEfch7t/32cng8+yHQwDAp/eBX20jJsWQEASoaP3GSeirETWL9kIR2N9Tx9/R/4xi9/T8XYCVtct7M5wuLXahkzK4Db104iEsLld9DeFKLEl79Ne5Cvj09DSNz2z4aQZP7MC0WTmx0jIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIvJZOySExDCMXwLfAB7b0HSHYRgPm6Z5zecMwzTNdwBjM5ee284l9o/gio0BJJ9aeD/MvhLyhm52iD+/gGMu/wnP3fgXulqDeLKyOfziy8kpKd2kb7KtndjyZXgmTaLl3/+GZBLHsGF4pk3fpjK721pY8sbLfdrSqSStteu3LoRk/Yfw3g3Ex/+KREMTsZWriBZM3KRbKpkmGe/m1dtuonrhxoyaOScezaSs9Rid68CwwPBDt6l+2U78pTDrcnj1N2CmwJ0Da16B6RfBm9dBtAOyB0LtxzDnF1D1Fh2hWG8Ayae6WoJ0ZB2KLx4GTx5YHbDiWZhwGsy7s7dfyl1MPJLifyUND1is0NUABSOhaQlMOBVWPEuyta03gKS37EMPpflvN/Wt4dU3cU2e2icMJLZyNdHEaTgAIu2QMwjq5mIbdRQ5S/+O/w/X0NOZS/0VPyLV0YElEKD0ut+z0p/Nm7c/0jvPkAkTmH3i8bx87/00r1uHw+3mgOMOp2Dt3ZkOsy6HrLIvdQtkK+QOzQS9WO2QShAzh5DursZMJGm/916SLS0EDj8cw27fpmlToRBtd91Nyz//CckkzhHDKPxR/sYAEgDTpPXf/8Ezc2ZvCEnpiFHM+MaZfPT4g6SSSSrGT8STnU1HY33vsPWLF3xuCEkqmWbk9AD1yx6ksXJ5b/tB519KydDDt2kf8vXRk0hhtxrYrRtDmwKfhpBEEv1VloiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjsRnZICAlwOjDZNM0ogGEYfwTmAZ8bQrLHc3g3bXNlgc35ucMCBYUcffnVxCM9eAJZWw4CMcBWWkbwz3/ubYqvWUPHQw/hnTEdi/Pz1/mUzW7H7Q/Q09nRt3yXe6vGU/sxAGlvIdHF79D95pt4J8zA6akg1pPs7TZkcgHd7fV9AkgA3n72FQZfcDnZNc/DlG/BkAO3bl3ZvgwDJn8TfEWw6EE44k+w7j3oaYNjboDFj8D+V2dCQYIr4Ph/Yg9tGiICYA/kwwE/gXXvw3E3Z0JI/MVwyG9g+TNQNA7v3scx0e7l/ccre8dZLAaFOWE4+u+Z9aZfAm1roX4+5qn3YXQ4sHg9pMM9vWOsPi+pjo6N27Dbcc45kHR5GbayUpJ1G8MgzESKlhOfpqV2Pba95lDojhBY/xIc9gcSPVk0/OyXYLHgGj+eVE8PnSZE4pBdXNobKrF20SKmHrgv3/jmkYTa23EUDia75gWw2+DYG2H4YZnXUnaMghGQiMEpd8P8e0mlnASOOYbg3/7WGzoTevZZLD4fxb/4OYZt6z72okuW0HLTxjCb2Ko1tD/4EO699iIyb+N7Vqq9vU+4jdsfYMKcwxgwZhzpVArTNHnuhj/3mdubnfu5a2cVuMku7GHBc8v7tL/zwB0MmbwXgYLCrdqDfL1E4ilcdmufNr8rE77TFU1uboiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiISB87KoSkGnAB0Q3PnUDlFnt/XRSNh5JJ0LBgY9vBv4Ws8i0OaWuoI7iuivceupe2uhoqJkxixomnUz567CZ9HWVlkNr0i8bhDz4g2daGo6Rkq8r05eRxwDnf7vPF+aIhwyjYUvjJ/yoaC9MuxFIwiO63fg9A9N9/4+Cf/InldX5agimGTy1k9L4lBKsXbjI8EYuSrJgFM04Hu2vr1pQdw1cIk8+ECaeAxQbjvwHpJFjtMOlMMCxgsUAqDlYHuT09TD4ixPznn+6dYuL++5FT/xKseR5O/Dc8cVEmfMfugZIJsM93M0En7lxGTs/Barew5M06vFlOph49iPzBHrDvDRNOy4R5WKwkg020P/gIHU8+Sd53v0vwhhshmQTDwDliBJ7p0+j54EOsAwbAhRfwzodvE378PsacfBwDWkNE77kXrFa6ho/h0b/8nmQsBkBeeQXHX/VzskvKSb76Go7TTiGY4yfqsOH0+Pn4nltJJZKM3X8OJcNHsvzt1wGIO/NxTZiGK5XIvE6jZm58nWTHS3RB4xI47h8411YTe+W1PsEgAJ1PP03+hRdiLyneqinj1es2aet5732yTjqpTwiJZ8YMHAMHEov0ULd8KbXLl+IOBPj4yUeIR3oYte/+HHHJFTx23W/ANPFkZVMxbsLnru302HH7N22P9fSQTMS3qn75+okmUngc/xtCkvkzTyEkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrI1dlQISQxYahjGy4AJHAK8YxjGDQCmaX5/B627a8sqhVPugtq5EKqDkolQNuVzh3S1BHnh5r+RjGdCEtYvWkCsq5vjfvxL/Dm5ffqmw2FsBQWbzOEePx5rVtY2lTps6nRO/fV1BNdV4cnKpnjocAL5m869WYVj4K0/Y7WWYisoINncTDrcQ+TnlzJi8hRmXv0zAhOGYBgGqXg5dqeLRCzaO3zghMkEisoVQLIr+WyYxqc/Wz/z9mF1AGD3eJh+4mkMnjSF9oYGsvNzKHZ144jUwJQzM2Ej+SOh5gMYezy8+JONYRFDDsR7wr+YOGcAI6cXY7VZsH/2C/WfWS/8/ke03HQTAB0PP0L+RRdiLy3FNWoUjiFDcAwbRvCv1xOfOY0nH7kHM50G4OM3XsI84FAG7bsvOd+/lFeee6I3gASgtXY9tStX4PRl0VVUwCeRTtbPfZuZp5zBOw/e3dtv4cvPs89xJ+P0eDFNk9yS8i2/TrLjZQ3InKnXr8HpL8Mx+DebdLGXlIBt6z/y7GWlm7Q5x43Ds/dUul99lUR9Pd799iP/u9/B6vGw5oN3eeZvf2D26efw1j23945Z+uaruPwBTvrpb+np7KB4yHByy7YcPPWpwooKbHZHn9CR4fvMJJBfuNV7kK+XnngKt71vCInbbsVqMeiKJvqpKhERERERERERERERERERERERERERERERERERERHZneyoEJLHNzw+9cYOWmf3kzMw89hKoZbm3gCSTzVVraGjsX6TEJJkczPht9/Bd8ghdL/8MgDW7Gzyzj8fq8ezTWXanU7KR4+lfPTYbRoHQPNyaFlFapCd3LPPpvmvf+0NmrCSwulzYhgGALllAzj5Z7/jrfv+S8v6aoZPm8nex56Ew+3e9nVll+AJZDF40lQGT9pChxP+Aa2V8NA3NwaQAKx9HRoXgf8QXJ7PD/DofO653p8TNTW03HgTnpkzyD7hBABcw4ZRev1fWfL6y70BJAC5peUYAR+Oq39IY2sLrXU1fea1u9y4vD6e/PPvqBg/iXVLFpBbWk5wXdUmNaxbspBxcw5l5PR9ySkt+/wXRXas1kpY8woARlcdrnwLzjFjiC1blrlutZL9jW+QDDZjL8jfqildY8cSOO5YQk8+lZkiJ4fAYYdSf/VPCBx2GLaCAiIL5hNZsBDrqJF88Oj9uANZdAabNpmr8uMPmHTIUQyaMHmrt5Q3YCAn/ey3vHXPHbTV1zJy3/2YetQJ2ByOrZ5Dvl4iiRRuR98/6wzDwO+y0RVN9lNVIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrI72VEhJM+bptn82QbDMEaaprlyB623x3K4Ng3jsLvc2B3OTdotXi/hDz7ANXYs+d+7FFJp0tEohnMnf2m9O/Ml/GR7mI7HnqXgsh9gRmMYdjvxujrMWLRP99KRoznh6l8R7+nBk5WF1fb5ARSym/PkQqSj95z0Ee3Yqilco0cTfuONvm1jxvR5bnW7sVmsvc/3OvJYYj09GIaFZ/7vOkzTZMjkqSx8+XkAphx9Ai6vl9oVS6lbuYyK8RMBiHSF8Gb3DfwByCsbwIyTT8fp3raAH9kB/ufcmI2rcU+YgP+gOZBMYTgdtN9zD47Bg7Z6Slt+PsU//zk5p51GuqcHe1kZjddcixkO0/nYY739sk85BUwwTZNEJILL599krkBBIU7ftp0TwzAoHz2Ok372W+LRKN6sbCxW6xcPlK+tSDyF227ZpD0TQpLoh4pEREREREREREREREREREREREREREREREREREREZHezo0JI3jYM4xemaT4EYBjGlcD5wJjPHyb/y+0LMGTKPqz95KPetmknnILLH9ikr72oiOJf/ZK6H/6IdCSCGenBXjEQ5/DhO7NkKJ2UqcdvJV5dTfBvfwfAWliI4/u/ZG3Qj+3DRgoH+skp9gLgdHsU5vB14i+BUcfA8qc2tlmskLd1ZzVwxOF0PPIIqWAQAGtuLlnHHLNJv8KSMrLyC7G73US6ulj+9uvM/MYZhILNG5a0MWrmflgdDmqWLsLl9ZHYEJLTWrue0hGjqF+1Arc/gDcnl3B7GwAOt5vJhx+tM7uryB8OVjukMkELNks73a+9T7I5uLGPzYajtHSbprX6/XgmT+59XnDRhaz/+GPsJSXYioogncY9cSIOr5cpRx3PS//8PwCyCovobM6E7NjsDoZP25dkLAG+rV87Gk4QXNdFR3MP/jwXFmsSb5ZCSGTLIokUHsemf9b5nXa6osl+qEhEREREREREREREREREREREREREREREREREREREdjc7KoTkAOBWwzC+ARQBy4F9dtBae7Serk5GTp/N4ElTiXZ3ESgoJBIKgZnebH/PtGmU/uH3dDzyKLb8AeScdirWrKwvtXZwXRXVC+fTE+pg8OSplAwfid3h/OKBZVPgpNtwfnArpT+5mMa/3066J4L9R9fx/AsR0snVALj9do67fDJ5pdvwzXzZMzjccNCvMsERSx+H7Ao48i9QPH6TrqlkgobVq6haMBeHy83A0ePIttiouO0/JNatwwRcI0bgGDgQANM0wTQxLBZyhwzl2HMvojsZ5+mbr994fYP5LzxN4eChTD7saJa+8Qq+nDyG7j2NhtUrWfXBu0w95kSKho6gZsUS5px7Ial4HCwGBRWDyR9QsVNeKtkKBaPhjIfhuaugrRI7bZT96ffU/fCnJINBLD4fJddcg2Pw4K+0jGfKFCpuv53OZ54htmIFgaOPxrDbgcy52u/Mc1m/dDFTjzkRw2Klp6MdDIOWdVXklJSy/O3XGDRpCoWDhnzuOqlkmsVv1PLR01W9bSP2KWL2aSNweexfaQ+y5+qJp8jxODZp97tsCiERERERERERERERERERERERERERERERERERERERka2yQ0JITNNsMAzjBeAnQBr4iWma3TtirT2diUndyqVUL1qAPy+P7tZWphx9Albbpl80Buh+8y0afvzj3uddr7zKwHvuxjNp0jatG6xZx4O/uZpYOAzA3Kcf4/gf/oKhU6d98WC7G8afjDFoNlnpJO79jiIZS/Lay2HSyZ7ebpGuBDXL2hRC8nWVPwyO/0cmjMThBW/+ZrvVLl/KI9f+AjaEh3zodHH0IceQuv1Oyv78ZzxTpwBgplJEFiyk/b77SHZ2knv6adiKi2n79ndxHXsMnqxsQsEm0uk0Lq+PaDjzltRcVUkingCgu70Vp8dL0ZBhNK1dw9ynH2PkzP048pIr8eXk7oQXRb4UiwWGHgjnvQTxbvAV4rG7GfTwQySbm7FmZ+Oo+OqhMbGqKmq/9z1SbW0ARObPJ15dTdGPfgimydynH+PQiy6jeuEnLHjhGQBySsqYfPjRLH3zVZa//TofPvEQp/76us8NIulsjjD32eo+bas+amLc/uWUDP1yoVKy54smUngc1k3a/S47te09mxkhIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiItLXDgkhMQzjZaABGAeUA7cbhvGWaZpX7Yj19mT+nHxa1q9j7H5zMNNp4tEeErEY/ry8TfomgkHa77qTkj9dh72khHR3Nxa/n+iqVdscQlK3YinFw0ZSNmI06XSKRCzGh088TPmYcTg93q0svggAI9pEKtRKd1t0ky7dHbFtqkt2vlRnJ4mGBiw+H6RN0uFurHl5pNrbMVwuDKuNVKgTW34+qc4QhtWC4XaTam/HlptLOhzGNE2sPh/JtjasOTmY0ShmPI4lO5t0ewTDZ8VoXU+6pyczd2sbhteDabPy0eMP9waQ5JaVM3LGfnT5A2Sd800a//AHym+6EXIK6F7fROcDjxJ96SVIJOh5912KfvYzzEiE2DPPsu+Pr+T5x+5j3nNPMfPk02lcu5r2hnoqxs/C4R5AoKCQULCZj554mFGzDmDcAYdQMGgweeUVuLw+YmvXEl2+HDORxDV6FK6RI/u8TsnOTpINDRguF6n2dlLd3djLynAN2XLYhGxn3rzMAzATCVKdnSRbW8EwSEciWNzurzR9ZMkS8i+9BOfQYaR7wliys2m+6WZi69ZRPnosFrudzqYG2hvqmfmNMzBNk+62NkwyZ3fmN84guK6a9UsWfm4ISTKRIp02N2lPRJNfqX7Zs/XEk7jtm4aQBFw2unR2RERERERERERERERERERERERERERERERERERERGQr7JAQEuBm0zSf2PBzh2EYM4Gf7KC19mg5pWVMP+k0Fr/2EqFgE+MOOITh0/bdbN9EaysFV19NKhik/oorSQaD2AoLKf7Vr7Z5XafbS8W4iaQSCTDBm53DpEOPJJ1Kb9M8sbVrqbnkElLtHYz65V28Wxfuc33g2E3DVGTXEVuzhvqf/QwzGsN/6CG03X4HOWedRWT+fBK1NeSccQat//4PgaOOJNHcTGTuXPIvuojW/9yGZ599MOx2Qi+9ROEPvk/b3ffgGDwYx8AKOh56mILf/Iq2dJK2cBe+nDw8qyvxO910v/02qY52sk44gfCKFcScmTOXW1rOiGmz+OCxB7BabUw5+niyvnselatXEY+38MGTrWQXHMU+1xxB/NorSXd1ke7uBiAdDmO/536O/cbJdGVlEU+6KRlxJFjjrJ4XJtIW5bBDj2NVfTX1a9eQVzaAQZP2IruoBIDoqlWs/9a5pNraADDcbgb+9w7cEyf2Xq+/+icYViveWbNou/NOzJ4enKNHU/Szn+KdOrUf7t7XW9crr1J31VWQSgFQcMUV5J59FhaX60vP6aioILpkCbWXXEK6uxvH0KEU/fxnpGMxcocN45Rf/J6WmnVMmHMoS954lUh3iPEHHkJLTQ3zn38SgAFjx+PJygGgs7mJ4LoqUskk+RWDyCsrB8Cf5yKv3EdrbXfv2i6vnawiz5euXfZ8kXgKt2MzISRuO13RRD9UJCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiK7G8v2nMwwjFEApmk+YRiG89N20zSTwMvbc63dnml+YZdYT5i37r2DF//xdwaMGcekw48hlU7i9G76RXQzvSEcJJWi8Re/JBkMApBsbqbhZz8jsnz5NpXn8vtZO/dD3nvoHj547AHevu+/xGNRrHb7Ns3T+eSTJKqqcU6fTSRiMvGgAbj9dgL5LqYdNwRvlmOb5pOdJx2J0Py3v5NsaCRw0Xfpnj8f96GHkC7MJ9nZSdYVVxCaPx/7xIlYxo0lXl9PzlVX0bV0KeloFEdFBZ2PP07WEUfQdtfdYLPiPvF4wsuXk/O9S6m1wlMP3sk7zzzGC3f/m3fq1hLPySIyfz5Zxx5H8O//R2LZcibN2B+AkTP348MnHsJMp5l24qksf+dNqhYvYPXH7/LhE39jr8N9tNRHefXNNK5zLgLTxOLzYgkEAEiuWk3y2j8yPCuXQoufyk/CNKzpZvAwF6PtKwn/6GoGPfkiJ5x+LtNPPLU3gASg+403egNIAGxFRXQsXkQyFiMVDtP0+z8QW7YM/yEH8//s3Hd4HFe9//H3bO/qvVlWce+9Oy6JYztx4vSQBgkQSAECl0u7lAuXCz+4tIQAIQTSe0/sxE7ce5UtV/XeVtJKu9L2nfn9IWcdITsF7IDh+3oeP94558z3nCma3X/m0/W736H5/QCEjh+n84HfEu7s+gSvnAg3NND6X/8VDyABcP/iF4QqKv6uumpvL+0//FE83CZcXY375z9HMQ08x5KysknOzmHT438iOTuHwolTOb5jC7mjxpBRVApA49FyYpEw3c2NPP/Db/Pqz3/EG7/6CU99+z7aqisB0FQYMzebgrEpGC16sooTmL6y8CN9b4h/X4HImUNInBYDfaEomtw/QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDiQxjOcb2ngMmnPu9832eAB/9q+99TVxUcfRWq1sPIlQP/kocNGaaGw7TXVqM3GFjyubvx93jwuttxJqfS2VhP5vCSQeOjfj+KohDr6EDt7x/UF+vpIdrcDKNGfeRl9nu6aD55LL6tqSr7XnuRgnETMWVmf3gBTz2hlnYCBw4O7D92GgfWN2FPNFEyNYNIJMbBt+tJzrKTnO34yOsSn5xot4dIVgYdE0axa9NbTLzxWip2bcPV34Pz5uvYvnktE69YSd2hA+gaq8n6zM1s3bAOnV7P1P/9byKHB+4ffWoqhquuoDoapHP3ZkZ/+ma6fF72vfr8oPk6GuvwTJqODlBDIdDrsa++EqvOwNJrbiZgUNBUFWdKKmgwbtHFnNy5FTSN8YsuJhpuwJmSia8rSMA1cI8a8/IoeOxRvG+vI9LYiGv5pajeXkLf/hbzv/oNIikRQm+9SrC5CcVsJlJbS2DrNpyTBj+qwk1N8c+We++mNhqketdGMjuamLJ4GYHDhwFQ/QHMK5YTHj+WiBbDHtUIPfYEamcnpKacx6slaD8G5c9B0z5iRV+MB4W8X7i+Huv48R+/dnctHH+NSFP6kK7g0WOoHk98u626koU334HX3U40EmHSkuU0HSvHlZrGiJlz2P7s4/S6O4gEA/R2tJ1eW8DPgbWvsfS2z+PrVtnyTAWZw12MW5BDZ1MfW56rYGX6BBLShoZQCRGJqURiGlbjmUNIVA36wzEc5nP9s08IIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQvwrOddvoypn+Xym7X8/fW548Q5oGQjmoGEn1GyEqx4hYrDSXlVBd3MTFpuNZL2JqNlAwbiJdDXUs+3Zx0HTABi3eBmOa1NwJCbHS+uMRrRQCH1KCuj1EIvF+xSjEX1a2sdaaiQUGtLmdbs/2s5BH7z9HQLB6djnzcW/dy+6YD+u9BxGz84h2BfGYjAy6ZICLA7jx1qX+OTonA4aUhPY/+5aZl19Ixv/8hAGk4m0gkK2P/cEUy9bzfbnniDk72fGldex6bGH4/uufeh+Lr/36/CQApnp7Dt+iPoTR5h3422s/+NvmX7F1QT7h4ZEqAYDOkCfmIDx+//FO7u20L3lLUomTmH8wqXojUYcySmY7DY2/vkP8f06n63nots+hzPZjK8riDUtkeQHf4t9+nR0ViuWkSPjY/t374ZolOC6NzAUl6K78W66w06Meo2kcDOW3IQh63IuWkTvc89jWbiA/e4m6o+VA+B1d9B4rJxL7v8lVFVDTi6HvR1Ur3kRAL3BwIr/+Aq6lOQhNcU55KmHJ1aDrxUAfe5KDBkZRNvbT48xGlHDEdRwGJ3J9NFr+z3w6t1Qvw39rOeGdBsyM9E5nfFtW0IiW5/6C+76WgDMNjsXf/5e1j90P21VFYxfsozMohLqyvYNqdXZUId30yaU3NEMn5xKWq6L/t4QGYUJ2BPMmK1DAyYAAj4f7bVV9Ha04UhOJbN4BHaX66Mfo7jgBSID3/k205lCSAa+Z33BiISQCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKID3Su30bVzvL5TNv/froqoa0cRl0OqaXQXQMnXoeeBk6ebOPt3/06PvTiO+8l0ZVNJBBgz6vPxwNIAMrffYvSmXMGhZDozWZwOlEMRlLvuZvOX52qpSikffU+LKNHo6kaqqqiN5z5Rfb3eN0dOJNTQFEGzVs8fRbOlNQPP872I1D1NrpRS1F8Ks6LL8aQnsSsWUWs//Mx1OhATaNZT3bx0MAH8c/BHw5xaMdmADRNJRIKUjR1BpW7dwBgMJnw9/aQN2Yc9eUHh+xfsX83Ey+/nL5gkPoTRzBZrfT3eNA0lfryMoqnzqRyz474eL3RSHJOLn0OB/0uB2++/DTR8EAYzvG9O4npFBbeeg+Vu96lobxsyHy1ZQfQmXMZPcmJbtsamt94hfw/P4Jt0qRB48wjRpB4ww30vPAClnt+xFuP16NpA4EoFkcaywsdKBs3Yp0wAUPywN+YqbCQtJ//jP7UZOp/+eNB9QI+L23NDex5+1UuvfNeqo8eivfFolG2bXiLnHkL+RixF+Ljaj4QDyABiMVspH3zm/Rv247a3Um0swvXJZegmIyDnmkfSVcVNO6EkSswFhTgumIV3ldeBQYCnjK+8Z9YR406Pby5MR5AAhDy93Nk03omXLyc3S8/R1JWDopOx7AJUzi0fu2gqUpLR9P1o//Bedd92F3j2f1aTbwvb3QyBiJDlhcJBdn98rPsf/OVeNvk5auYsvIKXCkfL3xKXLiC4YEQEovxTCEkAz/1fMEoWfKVK4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghPsC5DiHJVRTlN4Dyvs+c2s45x3NdeHR6uPhHUP4C9DbiGfUlenK+hrXfypYn/jxoaPOJ47jS0tE0jXAgMKRUsK9vSJutsJD+AwdQLBZy//B7Ym43+tQ09CnJdLUGObK1mc5GH6NmZzFsfBqORPMZl6nGorRUnmThzbez97UX6e/toXDiFHJHjSEWjWIwfkicQsgL0RDGgnw8Dz2Nc9FFBEomUbGrPR5AAhAJxag93EV2SdJHOHnik6Y3GDDb7ERDIXQ6HQCRYACz3Q4QbwsHAjiSkofsb3E4SPnCNfR6e9Cte3Xg3jEN3DttVRXkXjaW0fMXUXtwH4lZ2cxdeTmu1kqSH/gpDf2ReADJeyp27yBr1KUMn3Y9XQ2bh8znSEpm9BQ9vc21dFnzcd17N56nn8YyZgy6U/N62vrp6YhiXPUZ0ldezaZ3ugdlUgT7IrQ2h8k6uYmYx4OpoABTURG9bW3sPFbG8Gkz0OkNqLHooLl1Oh1qLEpPp3vIurpbm+nZtBHyC7BOmoSiKB/1EoiPKhrAP/rTdCcuQbOnEdTncGRbO8b0VYyeA/aT29AU0Dud6Mxnfu6dlaIbeG4ffRVD1YtYp07FuWQJak8vhqwsIr09aJoWv66+M90DzY1klw4ElaiqSt2hA8y55kYW3nIHO55/klgkwrgZc0lv6SDU00OkdDJH/lI/qEbjsW56Z6aSlN6H3uF4X+2mQQEkAAfXvk7e6LESQvJvxH8qhMRmOlMIiREAX3BoiI0QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDvd65DSP7jfZ/3/VXfX2//+7GmQFc1lCyhzbGM157wEgm2s/zOVAI+76ChRzetZ+LFKzAYTSRmZNHT3hrv0xsMpOTmn3GKaGsrgd17cP/kpwAYsrNx/eQBXv/zQUL+geCEjjofvq4gM1YVodMNDUSwJSaj0+tpPnGMOdffTCwSQdOgrbqC8Usu/fDj1BmhZCmKGiDh0mW0fe/7OJ56m2B/dMhQvzf84fXEP4Q9MYkFN32GNff/HL/XS3JOLnWHDjD3hltpr62mu6WZ7BGjaDl5nFG33EFt2YF4OIfBbGb45OlYhg0j1NHHuMWrOLTuRfQGI1ZXAgFvL/tef4nk7Fwuu/crpB+5H/PbV0DOFEhdgdUw9P42Wa0EfSqHNriZuWoaBuMGopGB+0dvNDJy9jzW/uFX+DrdWJ0uxi9dTuqlS9HX15CaX4i7McDr9x8iEhp4WX/milwCZ7gnoyYHoapqep59DgDb/Hl0X3kFVft3kTt2HOMWX8yhdWvi4zOLS+lpbxs4btPQgJ7hY8YTfPU1Gvbtp+CZp7GOGfP3XRgxRJ9rMhubCmnaEmT6ykx2vVIR76s/DsuWTER78L/J+tnPP35xexp426BwHmF1DOH9h2l/5hnQNHQuF2n33kOkpRVTTjYA2aWjOLDm1UElSqbP5uiWdxk+aRpqLEZCWjoWh5MpK66gZPps/IcP0/fr+wlVDKxbM1oGheO8R1UV1EBwUAhJKOAfMk7TVHrdHR//WMUFKxAZeK5ZjWcKIRn4qecNDn3eCSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII8X7nNIRE07RHz2W9fzkhLwS6CXvc7GheSCQ48NIwipH8sRNoOHIoPlSnN4Ci0N3SxLwbb2P780/S3dSAPSmZi277HKm5eWecIub10bdxY3w72tJCd3soHkDynkPvNjFmXg6uVOuQGiaLheIpM9nX2sK63/8GGAg+WfGl/8RgNH74ceqNkD8brCn073oJxWol5A1SNDmN1qqeQUOLJ6d9eD3xD1M8dSbXfPfHNB0/xvybPkO/p5tIKMQV//FfuOtrKJ05l9BiP/093Vx23zdorTyJGouRO2osWSUjAIiENILB0cy7sQBfVyOLb78XT2sLsUiQguJcMkNHMVS8CmYXlC6nz92KIX04wydOoqbsYHwt01bdjL/PBvRyaEOYOTd+k2igDpPVjDM1nbbqSnydbowWKzNWX8f2Z58gEgyAojDr6hsJ9o+OB5AAlG1qZ9LSXHa+Unv6gBVIT1YJ7N9/ui0ao7niOAC+TjcBn5c5191MsM+H0WIh2NdH2dtvDOyuKCz74lfY+OhDhPr7ySkewaSCEgJPvgRA8HC5hJCcB+1uCw0VAXJHJFFf3jm4U4Ombhs5KET/lmAOfxd0HIWqd4hNfwzP00/Hu1Svl+7Hn8A0bBihygpskyZhcTqYddUN7H39JaKRMCXTZlIwfhJJOXm0VhznxPbNLP3sXfEarrR0FJ0eXzCIdcFFRI4fwaz5SS9w0lHvi4+zuUw4ks0YUlMGLS8xIwtbQiL+3p54mzMlDZPV9vGPVVyw/OFTISSmoSEkrlMhJD4JIRFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEB/inIaQKIoyFxiuadpjp7ZfAJJPdf9I07QN53K+C040BEdfIjzlW3TuDceb22vDTFp2GQaTmbpD+0nMyGLaqqvReb20VVVydNN6SmfNY+Ts+fT3ePB2dqDodGeeouMML9mHAkOadHoFlDMvs7qnmnBvByd3bo23xaJRNv7lIbJLR2JPTPrg44xFAA1NVdDZbai9vSiKhtVpZM41xRzd0oJOrzBhcR6OFMuQ3dVwmFBVFZGmZgzpaZhLStDb7R88pzgvjBYL+WPGkz9m/JC+oinTCUaDVPdUEwtZ0dnTmVhcgqpqtGhutrp3kunPpDCxiIBPx963wOoYTsV+P2ZbKqu/NpnEDDuc7Kdv4ldxJ69Eset457kH6O14iNHzF7Hk9i8QCWloShL1R3WkZCss/UweaAEsdheBPhee1kNsfPQP5I+dAMDI2fM5sObVgQASAE1j5/NPMu+mbw5af7A/QkKSkVkLnBw9GsFs0TF5ug3ljcfiY8zLryC6eDXpsXZO7tjI8W2bmLx8FduffYK8MePIHzOBqj3rMRhNTLh4OSUz5uBKTSOnqJSeTRvRdu4m8JOfxespZtN5uErC2z3wPI3FNHSGoc9GvcmAFo2ifJQQpb8W9kHVOwCo3p4h3ZH6ekI1NXT8+H/J+O8f0O2ycnzbJqasvAK9wUhDeRmH33mbpOxsjmxcD4C7vpbMotJ4DX9SAe23/JyWhiAFc8ButjNmnp3knB4aj3lIH+akaHI6kbCGogx+cLtS01h2133seO4J2quryCodwah5F2F1uvCXlRF1uzHl52MuLkbRDw2oEP8agpFTISTGodfYaRm4733ByCe6JiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIceE5pyEkwA+Ae963PQK4DbAD3wL+vUNIDBbQNLCnkTsyidpDnQAc3eZl2nIjxdNmMnr+Raiqih6wOB2011YRi0Y5vnVjvMyIWfPOWF6LRjGkpw1pT8xPwZHkps8TirdNujgfZ/LQAJBydzk/2PkD/tN405A+X5ebYH//h4eQhPug4ziqdS7WCRPoff4FDOF+ynf30FHvo2BMCqqqUra+gUW3jhp8DJqGd+1aWr/xzYFzBaTefRfJn7kdvc36wfOK8yLidhNpbETnckEshtrfjz4lhUh3F21aL+6+JsI9HprTs7Ho0gnpVToCzdDdhSetG7uugwVXjmHfu+3UH+kmJdfOvGtLBwJIgL6Eqbx9IgH0EYiuo7ejDYBjWzZwbMsGLrrt6+x8NYQr1YwrpZ13HvoDAZ8Xe1Iyy75wH3tefo5IKEhSVg4AtsREvO6hYTw6+vnrR54h7MPxmy8xf+kKnNNnEdj0GvrUJPyAaeoMGkZcydHXfSy9fQR5YyfTeOQARzetZ+Etd2C22LC0t7N81iLsc2eTWDgcnW4gACAxNw9dShrN755+5OkSErCOHxrmIv5+KZkD4S5t1T1cdPNImis8MPD4QGdQyBqVhrG4CF1Cwscvrj8dHGOy9A3pNhUVESw/AkD3n/+M98ar6WlvZfdLz8bHuNIyyBg+PL7trq+Lf+7zhFj/Qiu9nQPPZ3cDuL0dgEKfJ0j+mGQ8rf2888gxLr93whmXmJSRxeTlq9DrDYQDAQJ9XqwdndTf97WBAQYDuff/BudFF3384xcXBH94IITEZhr6s85pGWjzBaOf6JqEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcSF51yHkLg0TTv2vu1KTdP2AyiK8r8ftrOiKHnAY0AmoAIPaZr2a0VRkoFngWFAHXCtpmmec7z28y+1GIoW4w4XkDHMhb83THudl0goRjCQQ+HYbPramjC0dxL8/UP4bruVvDHjaK+uHFQmu3TkmetrGpHWNpI/91l0ZgtaJILOZsMTMjBqTjZqTEWNaZhtBnraAwT6IticpvftrrG5aTMaGibT0ICSjKJSbK6P8BJ/5liihgSUgJWuPz1C2pe/RMBqoenEQDBE5b72+NBQf2TQrpGGBty//g0pt98OBgOKQY9v3TocCxZgHTfuw+cW51Tw+HGa7r4HQ3o61gnj6X7iSdLuvgvvm2vQYjESll9K9I8Pk3zLzfiffpH+5maSb7mVzN89iGvlSqI9NWipOejmOxjb8BpjRxehNlRjLZ+KWrASndGIu12jrS7AmHkJHHn3yBlW0c/My5OxJURZ9/vfEA0PhDX0e7pprTxOJBQEoO7QAWauvh6/r5ekrBw8rc2DqqQk2UnP1dHRFMBg1DF1th17dw1+jwf/c0/gf+4JLOPHk/4fXyNUUUls4SqO7hoIndj+Qjtzrrqd0fNWoWkxkpOSMB3cBX4vgbIyzKNGoSvSD5rPvmABeX/6E30bNmDIyMCxYD7m4uJzf5EErgwnExblcmRLC5FgjNmri/H3hjCY9JgsenataWTJNbcQaW8jHA1jMpg+vOh7UoohezK0HMDc+hJZ3/0akd4wWiiMYjBgSE2h/ccDX29qOEJSdu6QEvljx4OinC6Zmxf/7GnrjweQvKf+SDdzrylm2/NVdDX3A2BLMJGYaT/jEhMzszDb7XhamiEZbOFMur/zX6TefRdaNIYWidD+s59jGT0aY0bGRz92ccEIRAZCSKwm3ZA+q1GPXqfgC0aG9AkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPF+5zqEJPH9G5qmrX7f5kd58zkKfFXTtAOKojiB/YqirAduA97VNO0niqJ8A/gG8J/nZsmfILMTVvycUFmQ3c/XUDghjanLh6HGNFoqu8kbkYwWjRJtb0cLhcBkJNGVTc6osTQfHwhnKJo6g8TM7DOWV4xGbNOn0b9lC51/fBg0DZ3LReynS1BjKpFQjJ52P6m5TvQGhVhEHbR/OBamqqeK5r5mPBYv82/6DP09HgwmE9FQiJwRo1ErKoiNGIHe4Tj7cRrthLVMol0t6Ox2On72c+z/NxIUQBs8VG8cHNwQ8/WRetdd6Ox2VK8XndVCyhe/SKyv72OfbvH3ifn9tP+/nxFpbibx2mtw//JXmEeOJHjiJKHKStLuvRf3Aw9gSE1B9fsJHCwj5XOfxf3gg6Bp6EeNp9OQz8GDEWJrIoyfeAVJe18ktOZVAm+8gmXkSCyjRhEKRAHobo2RWTyG+kN7Ti9CUXAluXj9Nz9m2qqr4wEk7wn4erElJOLv7aHpWDndzY2MnreIxZ+5k7ce/BV9ni70RiMLb/0sjqZGpnWXoU6bhi7YT/Tx57D+8AcYcnKINg8ElhgzMzHl55Py05/Q3tDElMQAvW4LVfu9rH+kGmeyhcVXZ9N3+1UoRhOm+35I4/x5HCuDkZZOsksSMVkHHqt6mw3HnNk45sz+RK7XvzMtEqP+aDcTl+ShN+mIBWL4fWEioRiZwxMwmgwE62uwjc6nL9yHvbGXSHs7OrOFaEc7itmMqaAAY04OOtNfBZTYU2H1Q3DoaehqI9LiofMPj8Sfr2n33gO6geCHxJUr6HU4GTl3ISe2bwZNI72wiLzR4zBaLMy48loUnQ5nanq8vE6nMIQCKZlmRs3Koumkh7R8BxMW5+NMHhoOFT8HmoaqqfFnbModt6OFwmA2EW1tI+XTnybm80kIyb+oYHgghMTyV9+pAIqi4LQY8AWjn/SyhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEBeZch5CcUBRlhaZpb76/UVGUlcDJD9tZ07RWoPXUZ5+iKMeBHGAVsPDUsEeBTVyIISQAycNJKuxFo42aMjc1ZW4S0syMnOnlme/+CDUWRW80csk3voohLYNIaxNZRaXkjxmHougwms2gnOGl9VN0JhOexx6Pb6teLwnWEGWbe/C0+QFoONpN6YwMzPbBl99sMDM9czrvNrxLraObSUoex7ZsIODtJTWvgMKiETTc8WlS7riD1M9/Dp3lLC/Ed1ZAv4NgeTkJl19G6NgxVIud4skJVO3viA9LL3CSnGUbtKvidGBITqLtv3+IdeJE9C4nKDoSrlj1cc+0+DvFPB78u3cDoAaCAFhGjqB/16m2UAhUFXNxCYHygZAcdHo0vx9zaSm9icVseaUrXm/X5jDzL7oS46b1aH4/kdZWLKNGkZRpR1HA1xVhyiWr8LTU4XUP3CdzV13LoXfWosZi6HR6FEWHpp0Ozzm5YxuLbv8Smx/7Lb6uTjRVxZ6UxDuP/I7pK6/EZbXhysvH0tGFlmqG0kJ8rzyKLiOdtC/eibmoiGHPPE2kqQkMBsyFhfR6e1jzm5/RXlsNQFbJGMZfdA2HN3oBjdi29aj9fizf/gHrthuJhDoBqD7QydLPjKF0uoQ8fNLssTqcCRr736rnks+OYcvTFaixgTSO2rJOFt5QgvnoAbSYiunAMWrvuZe0L91L528fRPX5ADAVDiPp1luxjR+PZfTowROklsCi/yK0fx+d370l3qx6vXQ//gRJN92EPikR1/LldNdVkZqbx+yrb0BVVUAhEg7RVlVB+YZ1TLr0cpKyTgdJpeTYGTYmibqjnnjbqOnpnNjdgbvRT1ZJIr3tftb+oZxrvjEVV6p1yPF72lp464Ff0FJ5AoDMwiJm5xZjKD+KecQIDHl5aMEAOpttyL7iX4M/PBAwYj1DCAkgISRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOIjOdchJF8B3lQU5WrgwKm2KcBsYOXHKaQoyjBgErAbyDgVUIKmaa2KoqSfsxX/A6TmOVl+5zi2PltJX0+ISRe7KH/nNWZdfQPRSBiD0cTR/XuYPnsBOkWHt7OD5Jxc1FiEgM9LSn7BWWtHOzuHtPU3duBpG/zyccWediZfUkBKtuP0vmqUbHs215ZeS5qSxMY/P4QaiwHQ2VjPphefYsHK5XT9/vc45s/HNmnimReh06HYrOiTEun87YOkffU+jrXoMJh0zFg1nM5GH65UK2arAaP5r16YDofpXbuW1HvvQWe1gqahs9lQI5GPdnLFOaNPSMA6aRKB/fvRWcwAhKqqsY4di6+tbSCERlEI1dbimD+P4OHDoGkoZjOK0UBDkzak5sk6HVMnT0Ht7cUwrBCA1DwHK+7KoXLXNir3tLHwli+iUyNoR49gae2gwucFoHL3dqZediV7X39pYB6djhlX3kRPs4VLP3UvQdVLU00Fe155noDPy4bHH2bmytUYn3uRzs1bBo4pNZWM73yHwNGjRBoaCZSV4Vu3jt7X38B67910V5+kp6c7HkCSM2I0wyZOxmhuZf61aaQmJtJ72wMoZjMefTqRUN+g49v7Zi0Z9l4sNiMAhsxM9NahoRHi3DJFupg3sYeDiSNorvDEA0jec3JvB7MMYfQOB81f/jLmkhIC+w/EA0gAwrV1RJubafzDQxQ8/him3NzBkygKkQ73kLkj9fUkXLYSy4gRAGg1FXQ1NeJKz0BRFHraWrAnJuH3eYlGwux97QVyRo7GbLPTcOQwJ7ZvJiU7j0tunUDd4RgZCWES0yO89pwHm8tE0Bcm0Bch2Behp91/xhCSyt078LS3MvuaG1FVFZ1ORzgrh9Sx41EDfhSrFbW3l5jXC9nZQ/YXFz5/ZOC72mY68886p9mILyjfo0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ4oOd0xASTdOqFEUZD3wKGHOqeQtwp6ZpwY9aR1EUB/Ai8GVN07yKonzU/T4HfA4gPz//4yz9E6U36CickEbGcBfRsIqnpYKM4cVsf/bx+JgJFy9HMRlxl50gKTsHNNAbTXgb63GlpJ21tvEML5grOj0QHTr4rzIieoI9fH/n91mYt5D8UDInTwWQvKezuZHYovGgaUTb289+gKkj0J3YgmXkKJwXXUTnA7/F8R8PoiQn0lbdi6JTMFn0xKIqOr1u8JJiMezTp6O32eh66CGCR49hzMkm9Z57iI4Zg8FmO/u8F7B/xntX73CQ8Y3/pPHzd9K/cxeJ111Lz3PP41q2jODx43jfeouUO26n65E/Y0hJxVxaQu/rr5P6hTvxPPscdod+SM2UNANM+BwVtQbKXuxm7EIbSRkh3vzVDwicChup2b+TBdffQsLjT9Hf18eE732L9XU1dDbWo+h0zL7mU7gSE7E2NKN78QUSLl1G39ObaSjJp2zH5kHzndy/mxyHA/OkyeiSUgjt3UXXgw/iXL4cz3PP4Zg/n96XXsb6qRvYdOwA9uQUIqGBR1VqXgEZRYP/Lmcuv4LsGTMI7d37138+AGiqRqSpmfYffIdYdzeOBQtI/8+vYx4+/NxdmH9C//D7N2MsSWtXML9wKXsjtw/p1qIxzKNLCKohYp2dOBYsIHDw4JBxUfdAyEi4pmZoCAlnfr6aSkowZGTEt53JqWiAXq9HVVUcScn0dXfSUF4WH9N0/CjeTjcbHvkdANXswupax4r5lxD4318QvftbTFo6iWhEo722l5zSREbOysRoGfo3BVB/+CAzr7yOrU8/SjQcAiC1oJDFk2fj+/5/Y504kZTPfx6MxrOfQ3FBC4RjKApYjLoz9jstBrzBM/wOEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ4n3OaQgJgKZpIeCRv3V/RVGMDASQPKlp2kunmtsVRcnSNK1VUZQsoOMscz8EPAQwderUM2UE/FOxOc0A9LTCwbdeH9R3aP1aSiZMYVRyBlV9fVTs2UFyTh6zr7mRlNyzv+RvLh1Bxre+SfvPfg6RCIa0NFImDCehrI5edyA+rnRaBq4066B9HSYHo1JGcbTrKFdYZgAwefkqskpGoKkq3k43pq5eok4n+rTUsx+YPRVzTglKRE/CDddjX7gAb3oObzx0AjWmkTncRX9PmMKJqegNg1+Y1iUkYMjKouNH/0O4thaASHMLbd/9Hnm5uRimTv3wE3sB+me9d63jxpH17NN0tjTgt5kxXrmMVp8X869/SGfjSVILppJ66TKCvl6Sli/D5OtD0RuwL1iAM2qnqytE3kgTOqOOWFTBkRCltT5Ge0M/fZ4QrdW9zLuGeAAJQGJGFn19PvIfvJ+ekyewOp0suP4WDr77Nmo0ikuDtIY2un76cwACO3bgWLSI1OJS+KsQkvT8YejHL+XYURVfH4yY/ylMx94l1tWFbcoU+rduBSCYl0PXkT0E+vsonTmX1sqTlMyYza6Xnh1Ub/fa17j2rq8SKS8nmU70RhuxiIreoKN0hpPcIvA3N2C6607Cfj+xljbcD/yW7P/9MTqz+TxfrX+cf/j9m5gHVz2MofUQBWYTBzcoaOrpZUxYkIk3VU+Fr5rC7GyM2dno7DbCNTWDypiGDaP3tddRLJYzTnOm52vWj36IITExPiazuJRAn5cdzz9FqL+P8UsuJSkzm4tu+xyKTkfDkUMkZWWx9anHBtUOeHvxEsMQCqFvr6PTX0JXcz+puQ6aKzwoikLJ9AzOZMTseRzd/G48gASgs76W7mmzMer1BMrK6HzwQTL/+wcf98yKC4Q/HMNm1HO20DanxUiTx/8Jr0oIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQlxoznkIyd9DGXh79k/AcU3TfvG+rteAW4GfnPr/1X/A8s6bcDCApqqDGzWNWDiMLzONujWvMnzyNLydbso3rSc1rwCLw3nGWnqblaQbbsA2azaq14sxJ5u6JoURMzLp6wnhaesno9DF8AlpGE36QftaDBbumngXr1e+Rl9DF5fd9y0qdm7lzV//PwByRo0hf/WNZOYVoE9OPvsBBXvg5Fvoq3fTXZWP59V1hL//KMPGJVM6I5N+T5hYTMWVbMHnCeBMel8YSjAIoVA8gCR+OsJhIi0tH/mcinOjo76WN371U8w2G3mjx3FgzavEolFcaeksu+s/aGhvZcMjDxIJBbElJLLsC1/D7swlId2KtaeTgrG91B7Yi6Zp5Iwczfa33sHT1sKMK26nqiwBo9lILHo6gGTC0ktRVZW+rk52rHmF6r27ALA6XVxyy+dIUjW6fvg/qAsWYF+wgP7Nm0HTIBogt2gY6YVFdNRWA2BxOBm/aAVvPtxNLDrw99XZCDOWXE7q6z9HQcOYm0ukuZn34ir8vT0YzWZyRoxGU7Uhf5eaptJXW0Pmf34dQ04qqyYVcHxvJ5mFEXY89wAd1SlkFBZT9vabqLEoiemZLJq7mKjbjSk39/xfsH9XbUfg7W9CWznh+W8ye3URLZU9RMMquSOTMPZ3Edy5ltKbryX9Z/+Pvl27MebkkP6db6N6PGAwoE9MpG/jJuyzZmIuLj7jNGd6vhozMweN8bS1sPOFp0nKyMJktVL+7lssvPWzvPHrnwIwZv4iUvOGEY2EhtR/7z6M5pSSkeqidGYmgd4wxdPSCfkj+LqCJKbZhuxnS0ikt71tSHt/n49kiwW1v59geTmqz/cxT6y4UPjDMayms/+kc1kM+ILRT3BFQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDiQvRPFUICzAFuBsoVRSk71fYtBsJHnlMU5XagAbjmH7O88yMpKwdbQiL+3p54m8XhxJKUzJsP3U844MfT2hzvGzVnIcPGTzprPcVoxFIy8BJ9NBLj0F8O0F7nw5FkxpVq5fj2VhRFIas4cci+Y1PHkh5w0Bmpo8/TxcmdW+N9zcePUlG2jzGaEfuUyWc/IHcl7PgNwZKv4nnpD6DX4yzJw4lCe42XsncaUGMaNpeJRbeMHBRCEjY7IT0LndOB6usbVNaYlnb2OcU5Fw4G2fLEI3hamphz3c1sf/bxeJ/X3UFHbSWbH384HtTh7+1h3R9+yYyrv0FHvQOTpZF1v/91vL9y93YW3PQZtjz1F3Y893tWfPnH1JWD3mQhMSubkXMWEgkE2P/my8y+9iZ2PPdEfL6Az8vav/yOlZPn4lx0EfYZU0gmldilI0CNYvLuRl/+a678+s/oqDpJoLIKe48Xb4MWDyB5z+HdHpZOmU3f735Fxje+Qai+HueoiSSV7cXT2sTe116kZPpsMotLh/xdWp0u0ubMIyG/AMVoxNTQwNRpCm889QS9HW2MvWjpoPPU09HGnvL9XL5oyfm4ROI9HSegaR+xwiUc2K3RWl1Fap4DvUHHrldrGD3RQe6azWQsXYV1yhQMublE6upo/e73iNTXA2CfN5fEG2/EOnIkhg8IWXr/8/Wv9Xa003jkMO66Gtx1NfH2w+vXsuyLX6GhvIwTO7aQPWI0M6+4jm3PPhYfY3E4SSoaTb/RiGPmVAJdCtuerSTkj2Iw6pi2shCjRX+mabE4XRRNncHhd94a1J5ssqL29wOgT0oCg4FIW9uQ4BRx4QuEo9hMZ74/ABJsRryByCe4IiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIcSH6pwoh0TRtG6CcpXvxJ7mW86arCk6sgYZdMO4qKFxASk4eK7/0n2z48+/pbKwnJSePiz71aUL+fsIB/5AS/Z7uD51Gi8VQQyEUkxmjZeAy93lC9HlCABjMZ39ZORoMEgkFaD15fEhf/ZEyStILCFVWYUhJOXMBNQIhL9HgwLwp3/8hEZsRT7ufA2/Xx4f5vWG2Pl9JVkkCOr2CGoPNrzQSC2lMeuBZgl//DLH2dgASr7kGY1HRhx63OHf6PR4ajhxCpzdgdjhwpqSiqir2xCS6m5vQ6RRcqWmEAwFcael0NzdhdjiwOlWqD3ow6g/GA0jeU1O2n2ETp9LdVE80EqDucD9FU0uZsuIqPC0NHN+2CQA1Gh2ynlB/P8YJE7D6+rC6ulGq9qGmzQUNCCdBcgFWq41Mo5WQyQoZdtQ0F7kjI+SNMqA3QCxqwmLXYXEmYM/7H0LuXkLf/APRqJ2Jy+7E03IQd8MJ0oYNR9M05l5/M/vXvEZXYz3JOblMuHgFislEoKyMWH8/bT/6HxJ+/nOioRAGkwmzw4EjKQUUsCUk0tlQT1PlCUJaDOuQIxLnTNQPOj0k5mHqGfgK6Ww8HWJkNGgY8/KIeX349x/AmJ9H72uvxwNIAPq3bsO5eAnqsGFoqooaDKKzWFB0OvA0QOU6qHoXii6C0oshadiQZbRUVdDb0Tak3dPWQsDbS1tVBfNv/DSdTfVMuHg1MdVG07EdONPySCuYRk2dnZnr1tPVb2bXy+WE/FFu/vFMrE4jZe/UE/ZHUcNhAgfL6H3zTXQuJwmXXU7GsCI0VSXY10fl7h2YbFbmXH4N+hdfRQVQFNK+9jV6nnseY3o6aV/+0sBxiX8Z/nDsA0NIkm0mfKEo4aiKySDXXgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCnNl5CSFRFGUO8H2g4NQcCqBpmjb8fMx3wfC1w/O3QVcVnbMeoLIsB/c79ZROD5M/tpRrv/8T/J5uovsP4Pn0Z3E+8xRpBYW462vjJfQGA86U1A+cJnjiBN1PP03wYBmulSuYeNEqmk56BsIaAINRx7CxZwkQAYwmC/akZNKGDefEji2D+rJKRhLeuofI8A+4lMlFMP5GdCljQVGwzJyHpyVIJDg4WGLe9XnkjrLjrquk6dgRmk8cI2vESPLHTOTo9gBjf/4w9q4qtGgM75o1RJuaMaWnf+Cxi3NHi+qYsHQltgQXjUcOMff6W3A31KHGYky6ZCW1hw4wY/X1eN3t9Hm6mbx8FTUH9hL0NZI9HDpq1SE1FU1j0rKVVO3didddw4zLEvB3l/Puw/dTOnMO9oREAt5edHo9Or0BNXb6nsksKiFoNtHs9tFT1knB6FuoPbiXzOJSVOcK2o5VUWzbR8PRw7jSMjFbzDTufp6R02fRfPIYZrsdZ0oqlbv3w/TZdId8RK0qqZZmqvfsYdjEaSSkJ+NMnY4rLZ2KnVtBUZh19Y30tDbT1dTAliceIeHWzxO+7+ukff3rWH/wXY4e3EXx9FnYXAk0HjnM/E99mvbaKrpbmiieOpNAnw+LxfZJXrp/O+G0qTSvPMzxXZ0UT0un/sSJ+PNOb9SRl6ViKhpO4+c+B7EY6d/+FoED+4fUCR47hhoMEO3spH/LVmzTppF4zWosB34IFWsGBlWsgRNr6FnyK2oOHaLh6GGGT5rKsIlTqdqzg+GTpg6pWzR5Ou211XS3NLHn1edZ8tm7aT7uo3yLg7S8q+hqCVNzyIs9McS0lUWE3b0Mn5ZC8fgYB9c8Q1dTA8MnT8NoLMG/9wSNt9+BefWV9KYlseuFJ8gsHUnu2AmUzpzL+CXL6GlrxdNYT/Jdd5IWCKPT6wnX1WMdNw73L/6PpBtvwJiZeT4vifiE+cMxrB8QQpJoNwHQ4w+T7rJ8UssSQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBAXmPMSQgL8CfgKsB+Inac5LjzuE9BWTs/Mn/La2gwCPj8AjSd6mbp8GNNXFqK0tlH7re+AqhLxdDLjymvZ/+artFaewJWWwcwrr8VgsZ51inBTEw13fJZYZ+fAlL+owHWblyu/8hlqy7sxWfQUjE0hvcB11hqJWVmoagxVjZFdOpKWihMD7ZnZlM6ai///HiD1zs8P2icWi6HXn3oB2ttMdMrddP/oV6Tdey+atwtFn0BC2ukgBr1RIX+Mk2BfPzuef4qG8jIAasv2UVuyjxmrv0AwZiL08MOYCgqwT55MzOf72Kdc/O2sJiPO5BS2Pv1npl1+FVue+gshfz8zrriWt3//a8YvWca+11/E09LC/E/dxtoH/o/iabM4sW0TTcePsPLL/8mRjevRtNNhJKMXLOb1X/4vNlcCwydNY8ezj7Pg5tsBqN6/h7nX38qWJx6hfMPbzLvxNg6+9RpedwfZI0Yx8eIV7Hr1OdqqKlhw8+28+cD/kTd2HIHDB6k5sJd5N97Gmt/+gqTMbNRYjPIN65h9zY2s/+MDGEwmxixYzPqHHmDa5Vex9cm/EOzvY+bq63j7wf9j3OJL2P/GC3Q1N7Lgps/w5q9+Gl/zie2bmf+pT3N82yb0BgNGr4/E//gaoXGjeekXP8aWkMDwKTPY+fxTzLjyWjY++hABnxeA2oP7mHvNp/D8+tckrFyJdeJEFEX5ZC/kv4GGVidvP1IBgKc9yOzVRfR3BzEoUXKzweFrpPWJJ+PjNb0e27TphGvrBtWxz52D56mn8e/aBUCoooK+zZso+MI0jO8b57flsvbB+2mpOglA9b7dlMycQ9Hk6dgTkphx5XWUvf0G4WCA0plzyRk1ljd++RMA+ns8qLEYrjQn0bBKa3UvKTl2sksScKVaMdsMmB1GSicrvPHLn9PX3QUM3EuTl69i4uVXYxo9iprMJA6teXlg/sMHSNjyLgtuvp0X/ue/QBtIYDmwfg2rbvwMrvpmYl4vjiWL0SUkophM5/waiH8sfziK7QNCSJJtA9fc449ICIkQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhDir8xVC0qtp2trzVPvCdSqMoUsrRafXMXX5MDQN9AaFhmPdjJqdiUnVQB0Yp56o4Ii7mQlLlzP50svQUKg/fJDM4tKzThGqro4HkLzH++gjFF6zmsSleWgq2BPNH7hMo8lMNBLB39PDqHkXMX7pcrRYDJPNTjQUIuXOz2PIzgbA3VBH+bvraKuuoGTGPArGTiHdZkPr7SJUfgTb5Cl0/88PcP3oQZoqPExdXsC+tfXMv74Yg8FIX1dnPIDkPa2VJ9BUN8H+THRHjxE8cpT+nbvIfeD+j3vGxd8hHOhh7+svAGAwmen3dFMyYw4nd2wBwJ6YTHdzE9mlI6k7fBCAtIJh7HzhaVxpGbRWnmD+TZ+hteoEkWCQ/DHj8Xt7iQQClCy5lLJ1bwJgtg2E08QiEQ6/s4Y5191ELBJBZzCw8JY78HV1Un/4IJ7WFtqqKkjJK6Cl4gSappIzYjQ7X3gaq9OFr6uTWCTC8CnT2ff6y6AoqKpKyN/PqHkXUb5hXfxY+jxdFE+fxcmdWwFwJKXQ1dRAVskI6k8dy3s0VaW9tprknFymLL4Uk8VGta+XyMljREJBSqZfyqH1A487nd4QDyB5z543XiZj7DQabr2Ngmeexjp69Pm4XP+2wsEoBze0MmFxHiaLHkVR6HUHKBiZgHHfevy/+B2mG24YtI8pJwdLYSHBI0cIHjsGgPOSS9DZ7fEAkvdEmpoJhS8dFELSbR9NS9WaQeMqd21n8rLL2PPKC0xadhmZw4vRFIVAbw+bHvtjPIxHpzegAOkFTpbePhrUNip2vUOfx03m1EsJB/OwOow0HW2KB5C859D6NZTOnItuyWLKt60b1Nfb0Y7X7Y4HkMDAvVtddYKitzdjGT0aRa8n4z/+A0Ny8t9yqsU/MX84RrL97N/tSfaBO7i7P/xJLUkIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQlyAdOep7kZFUX6mKMosRVEmv/fvPM114UgbCcnFKPZkJizO4+C6BvavrWPP67Wk5jpQVTDm5+FcvhwA9ZXXyEnL4q0Hf8Ha3/6CNb/5fyRlZZOUnXvWKRTD0FwZ88Il1LSYeO7H+3j6h7vZt7YWv/eDX0SORSOYLBY0VUVvMGC0WOhsqMNgMuHff4BYZyc97a288KPvcGzruyg6hX2vP8++N1/GHUzDEKoj5ZZriLndBA8cJFJ5jMQ0Gw3Hupl1ZREpuQ7QFLT3vTD/fpqmEfAEUKzWgfV0dxPp6PioZ1qcC/qBEIP3U04FewzQTrXp4gEL8XE6Bb/Xy+bHHyZv9Dj8Xi87X3gGf48nXgd1YH+dwUDemHEAeFpb2PH8UyTl5LL1qb9w+J23OLF9MzUH9sbn0+l0Q9aFosTXoChKfOz71/3ePjqDAZ1ej6LoznAsytDagMFgYOWnv0hO6Sj2lx9g57triUUjp45Vd9b7GAbOoT4xES0cJni4/KzjxN9u1Owcqva3s/fNOrxdAWwuExuerOKdmuGEfvAYSkHRoPFqMEj3n/+CfeECsn/xC7J/+QswGYn5+kBRhtRX7ImDtjWT84zrMJjNLPvil/F7e/F5ugENb2cHvk53fMy0VVdhMFvo84TwdjSw9v7/pqO2klgkwro//IrKXduIRdQz3lOaqgEa6M787NTQ0OkNGM2W08eqqqDT4X37bRRFwTJxwgecSXGhCkRi2M36s/Yn200AePwSQiKEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIc5uaGLFuTHj1P9T39emAYvO03wXBlcW3PAU1p5k9r1Qy9QVw4hFVHQGBZszSFfzcdzRMPbPfYa0efPwPfMMw002cr/1Q/r6fbhS00jNH4bBaDzrFOaSEsyjRhE6fnygQVFQb/s6G/9cgcGoQ2/SsfvVWsxWI+MWnj3MxOZ00dvWQu3B/dSW7UNvNDJl+Sr0qoZ55gy0aJTOxnpGzbsIs9VG0/EjjFmwBL3JiLuxjdSsbJyTrDT9vycAMFlM7FhbT2dTHx11PgwmPdd9eySulFRyRo6h+cTR+NzphUVoWgoJJh9Rvz/ernvfi/Xi/EtIT2f6isvZ+vzTxKIRrE4XdYf2M3Xllex4/ikCPh+JGVm0VJ5g3g230lB+iO7mJrJKRtBaeZKJS5dzYttmTuzYgjM5hfbqCixOF3qjkaq9uxi9YDGH31lLb3sbCemZFIybhNFiJdTfh6e1BYvdTuOxcmZffSOtlSfxdrpJzSvAXV/L6HkXUbVvF21VlRSMm0h9eRkJaRno9Hpqy/Yzcs4Cjm3ZEA9kqNyzg2lXXAOqSiQcYva1N+FMSUVvNFG+4W0CXi+Jmdm0VlYw78ZbqS8vO30iFIXSKTPo7O4kEo1wYtc20DTMdgcGo4mqvTsZs3Axh9atQdNUzHY7of7++O4TLl5ObShEzve+jc5u/+Qv5L84nV6ho76XUbOzMRgVDGYD256rxGQ1EAuobHm5kUtuHkvC1VfT+8ILAAR27cI6cQKhY8fp+t3vUUwmEq+9Bi0awbVyJd7XX4/Xt06ZgnnyfEj+PlS8BSWXkFw0m/Rhe+moq4mPK5w0laTMbMw2O4lZw1jzmx+TWVzC2AWLWXLHXfi63BjNFnRGA6oa5dDGJpwJbhbc/Bnaa6vp83iYf9OnaTh2hPSiSSTl5GJLSMTf2xOfY+yipSRl5hCdPJWxYT/l2zfF+3LHjCdzeDGX3v1Vetpb0SkKx7ZupCivkHDN4ygmE4FDh4isW0fGV7+K8gHfI+LC4w/HsJk+IITENhBC0t0vISRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOLsFE3T/tFrOC+mTp2q7du37x+9jDOqPeTG0+5n18vVaBrMuDwVRatl3+sv0efpIm/MeGZceS35I8ec8UVxTdNwB9yY9CYSzYlD+sMNDfTv2EHw+Amcyy9lb1UCKTkOosEYIX+ExEwbDUe7WHTraIxneWm5q7GBva+/SFdTIwUTJqFGo1Tu2cmsK65B+eKXyPvTw3S5HBx48xVqDuyJ75dWUMjcG++hIEshcLwC77od9L70Egm/e5I1r/cR8kfjYxffXkhqrpFgby91ZQdoOn6EnBGjKJw8nYZjJgqyY3hvuwIAY34+Ob/6FdbRo/6+k3/uKee64D/TvetvPErd0RMc33+I0QsuorWyAk3TyCgs4uSObYyYMw9PcxN93h6GjZ3AiR1bGT55Kv7eXjqbGimZPpPK3dvJKhmJpqo0nTjKyNkLqTm4j6TMTMw2B3WHDzB67kU0HjuCyWYhOSuXij07GDVnAe76WmKxCIUTp9Ld3IjF4UCvN1Bz6ABFEyZzctd28saOJxLw01ZbQ+mMudQc2E1KbgF6o5HGY+WMmrOAlorjpObl887DD5KYkcX4Jcs4sPY1+rq7KBg3kRGz5wPQ1dxIwOejYNxETu7cik6nZ+y8RRhsFl763+8xfdU17H75OTRNxZaQyLTLr6a18jjJuflYTh3LqDkLaK44TndzE7kjx+Bpbebkzq0YzGau+88fkDlm7D/4qsad83sXPvn71+cJUne4k10vV1M6PQOfJ0jRpHS87uBAwJPLRGeDj5LjT+C69FIUnR7DsAJ6nnqa7j/+cVCt7J/+FFNJCeHaGvx79mIZOwb7zFmY8k4FNqkq6HQAeFqaOblrK3WHDlI8bSYl02aRkJEJQHtND309XahqP/Vl2+ioqyF/3ATUaJSK3duZdtlV1B7NYNy8GG/8+idEQ6H4Ghbe+llyRs6k8aSXjPwAJ3dupaupgaIpM8gZMYbs0hEAeN0d1JTt48T2zYxZsISethYOvPkqAGMWLibY30/xxCkYfnk/kRMnSbzuOozDCnD//P8Y/vprmIcPP9+X5nw7H/fvBfuDaOz33ubaqXl897LRZ+wPR1VKv7OWr11cyt2LSj7h1Ym/cl6evUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ54LhfBRVFCUB+B4w/1TTZuC/NU3rPR/zXWisTiObnmzkvfyXxLQAr/3fn9A0FYDGo4cBjeS7voYzJWXQvu397bxY+SJPHn+SJHMS9029jznZczAbzPExpvx8TPn58e1Cq5uNT5zE7w3H2xbfNgpFd+b1RdUoATWILTGJaDjMnleeR28wMm7RxYTDIWyJiUSamtBGlgwKIAFw19eiRXtQtv2JSGgBxpxsTEVFRDe8RuGEazmxsw2jWY/BpOPdP9Wy4q7xZJemk1FUyrSISnVZJ43Hg9QecpOWlYvz4qUYs7NRLFYUw5kDU8T5Y8sbw2hnIqPGF6EYTIyaPhPNaEFRFMYsXIKiDLxLrakqik7HyLkL420hf5jqA26iqoOGExr5Y1OYdc1i1v3xGEbLHIIBPd1tfqYuu40Te7vx905h3lw9of/3HS77v+9BbglJmVmEgwHe/PX/I9jfB0BSZhZLZi0i+I3/YnxWFgm5xQSOHCH72jupOuJjysrPcmRrM/YEjWmXjcLbqeFKT2P3yz8DYMzCJWx96tH431t9eRlqLEZiVg51ZfuY96nPsW+NhiNlBSNmm9m/7mlcqamosRh1hw4wcs58jm/bhL+3h82PP8zMq28g2OejbO3rpOQXsPPFZyieNhOrK4F9b74cD5iIhkJ0tDX9M4WQ/EswWQ3UH+kiHIyh6BRGzc5m3R+PoqoDD1ijWc/Ft4/GohtDpLUVx9y5aIpC37vvDqnlP1RGwqrLsY4eRcKKFUMn051+aCZl5zBz9fXMuOJaFN3gh2lfb5gtz7Qy77o8bAmJOJKS2fPy8+hNRiYsuZRIOMzo2Vl42nYPCiABOLDmNQonzuDkjk72vh7k9l/eAbEYLTVeDCZbfJwrLZ2JS5czYfEyjmxaz55Xno/3HVq/lpmrr2ffW6+z+LKVGJYsIVRdjb6nF1QVTVX/pnMt/jlpmoY/HMV2llAxAJNBh8NsoLs/8gmuTAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCXGjOSwgJ8AhwBLj21PbNwJ+B1edpvguK3qiPB4JkFtvxdbsZMXs+YxYuxtfVicliobfTjd/XOySE5PWa1/ndod8B4A17+dLGL/HoskeZnDH5rPN5u4LojTqmrRiGqg68R39ydysFY1MwOIa+tLyvbR8RLQyaxsmdWwGIhkMcfOt1LvncPcQCAXQuF9FwaMi+ANFIhKb0O3C21tD52wdJXL0aQ3oKo6cmklWcSE+bn0g4Sk5pEunDHHg7wzz7wz1D6oR6+9FVVdO/azeOBQswFRR8tBMszqluv4anNYzVaSHWWUUkFMSekER/jweD2Uxqbj62hESAeAAJQHNlLxufOBnfbq3qJeGOMUy/vJAdL1bR0x6leGoGvu4wLRU9jJ1sJ/bm8xhXXUZjSy8N+16i+eQxXGnp8QASAE9bK+1+H65ggGh3N+GkbNxjhxFtCqFoGt2tfkqnKmx98mF2PF2JLSGRZV/8KoE+LwCxSCQeQGIwm5l0yUr0RiMJaRno9XqiESfeLjcFYy1sfOR/MZjMOJOTAWirriA5J5eZq6/H3VBLSk4eqbkFbPjz75m4bCWappGQkYlBb8RktZKSncuhd9YS8Er+0vmixTR62vwABPsjHN/ZyohZmTgSzSiKQldLHy1VvSjvvott0mQCB8uwzZmNqbCQcE3NoFrGzKyPPf9fB5AARMMqfm+YE7u6cTj9VO7ZMdAeCrH/zVdYdtdXMNsNqK3RofUU0LQoi24dRXuNl+3P1uBKtZI53EVavvOM81fu3s3qb3wfv8+LgoLV6aTsrTXYEhKJ+gP0PPRHEpYvp2/LFhKuvBJTXt7HPk7xzysUVVE1sH5ACAlAkt2Ixx/+wDFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOLf2/kKISnSNO2q923/QFGUsvM01wXHnmQmq9hFa5WXGZenEunT4UpN5/Vf/C/hwMDL9MMmTaVwwuBgke5AN8+ceGZIvUPuQx8YQqJpMHpuNnvfrEWNaugMCtNWFBIORrE6TIPGeoIe6rx1JAettB7cN6RWa+UJRl9yMZbRozH3exk2YTJ1hw7E+1Pzh2FxprDz1V4uKjLgvOQSel54AQBbYh67DqcQ8EUAOLK5heVfGEfOyGQKJ6aSludEUzVQFNSoisvmR0tJIeGKK7DNnIHObP6IZ1icK80njvHij79L3phxGM0WTu7cyoKb7+Ct3/6SgG8g1CNv7ASW3fklXGnpg/atLXMPqVf2TgOrvzqZ3JHJqDEVTQVPZRO5c4No659Cu2wpb655ialZqRx863WKp87E09pyuoCikD9mPOacbFw33YRz5RXs2Oil8kAXUE/6MCcl0xPY8OeH6KipAkCNxWitOsH4xcs4sOZVdIbTj705197Mnleeix9L7qixJGbPBcBg6sff2wNA2iUrUBQdmqZybMsGDEYTi+/4Ir6uTtRYjFlX38Dmxx+hcNJUuhrqqdq3a6CG2cy8629ly1N/RqfTk1U84pxcF3GaxW6kaHIaB95uwJlixZ5g4siWZjytA8/SrOJEckcm4bpkGZ4nnkBbvAjXpctIvPJK/Pv2ofYOBMSYiouxThj/d68nHIjiTDKj6BSsDqg5MDRgyV1bQ0zNJiUnD6PZQiQUjPeNW7wMo83GsR0dHH63Kd6eNyoJVYXEdAsoCsG+CLYEE45EC1Mvu4L1D91PT3srAImZ2Sz97F24qypRNm8n9e670EJhEseOxbF4kTxL/8UEwjEAbB8SQpJsM9HdLyEkQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDi7M5XCElAUZS5mqZtA1AUZQ4QOE9zXXD8PSEKx6ehaWAwqOgcTjY99sd4AAlA3cF9jJqzAKc/iDE/H73NhtlgJsOeQbu/fVC9ZEvyB86XnG3nzd8eRo1qAKhRjX1v1lE4PmXI2L5IHy9UvMAXUm8gKSubzsb6Qf1JWbkkL1qOOT8f5eQxRs5dQGr+MDpqq0nJzSdv7Hja61T8vRGUBBe2WbNwLJiPFgrTnDaRwPYaABSdgqZq7H6thitLkhi3IJe1vy8nEjr1MrXLxLBbC3F86V4MiUlYios+/okWf5dgfx8b/vIHIqEgWSUj2P7sE2SPGEV9+cF4aAdA45FDtFScGAgh0QZCZIgESEq3DKmZku1Ap9fhSDQT8odpO9lJR1sUe2ohKZ++nS3vvkSov59oZCCoprXqJKUz59LVWI/BZGbu9TdTvX8PW555nIIx45kci1Jd1h2v31Hno6+rIx5Akj5sOKUz53Jg7WuUzpzD5OWr8HW6GTZhMiG/n4YjZYOOpen4EUbMbmbqsjR0Bg1Fp0NTVcrWr2H+TZ+h6Xg5aixG3uhxhPr6OPzOWoZNmELTiSNEwyHShxWy/dkn4vWioRCH3lnLRbd9jozCYtIKCs/5dfp3FwlFMVr0FE1Ow9flJxKKxQNIAFqreiialErU4yF08iTJ99wFgGXCeDK//z3CNTUoBiPmkSOxjBv3keb0e0O01XjpbPKRku0gc3gC9kQzPe1+tjxzkl53kJmrhhMN95OUlTM4SAfIKC7l8PrHSS8sZMEtd9B84igBby+5o8eRNmw40YCe8g0DASTvPSsbj3vIGZGEp7WPvWvqCPVHsSeaue5bU6g5uDceQALQ09ZCbdl+Ji9eRkxvwZibi6WkGL3D8feebvFPyB/5aCEkSXYJIRFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEB/sfIWQfAF4VFGUBEABuoHbztNcFxxNg8p9HYxbmEMk1I2CQmdjw5Bx/Z5uWl55A3XBXNSUFFIKhnHf5Pu4fd3txLSBl45zHDlMTJv4wfOpGrGIOqgtFlXp6QiQkuMc1G5UjLT52/BG+xm3YDGNR8sJ9vcBkJSdQ3bxCAwZ6QBEg0HK3n6T0plzKJ05h2g4xM7nn6Jk1m2UTEvHXqjSeOt/ofb2othshH70PCNmZJKYYSMSimGy6HE3+Aj6I5RvaooHkAD4vWGaGiJMvXTqxz6/4twI+f2462sB4qEgiRlZNB4tHzK2u6URajbDnj8SGX8jXd1+rEYLM1elU30whrshgMmiZ+yCHBSdAkDljiYaKrtJylQJKTb8iZm4mxsBMBiNKIqO/h4PmqZROnMujuQU9r72Iv09HgAq9u6kq6WJkml3cHJ3Lygwek4CRjPYEhLx9/ZQOmse255+FICyt9/ElZbO1MuvpXDyMnQGPxv+9Oshx9JRV0ld2bPMuf5Opl3+Kfa88ji97W1sfvxhLvr0XTiSM1l7/4+YsmIVfd1d2JOS6DkVMvHeeRp0bpobyS4dT1p+zt97ScQZaBq4G/vIHZFELKpyclfbkDHu2h5SqypJ+O43MU4YC0C0w03XQ3/ENm0a+tLR9BjT6TzURmKmk6TCtLPOFwlF2fN6LUe3ng4WGTEzg3nXlVK+uYnG4x5GzkogGqrD4lCYsvJKOupq6OvuAiA5Jw+9wUDT8cM0HT/MyLkLyS4Zid5gwGx3YHU4iUYUckcmk1OaSDgYw2jW093Sj81lYvNTFcSiA8/z/p4QkbBKR231kHV21FXjzMqGy7L/rvMr/vkFwlEArKYP/kmXbDdR2d73SSxJCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEJcoM5LCImmaWXABEVRXKe2vedjngtVQpqVUbOz2PDYCVZ/LZdYNELBuIlU7d05aFxaQSFlCQeofvJPABhMZlZ/8/s8s+IZ6rx16BQdxYnFFCQUfOB89kQzRrN+UMiHwahDb9ARjcQwGPXx9nR7OpcXXU62LZ89z7zA4jvuItjnRVEUDGYz/pMn6d25i+RPfQo1FqOtqoK2qopB8025zEigz0SkvR61t3dgvrQ0UnKdNFX2cnL36ZCAaSuGoaHS5wkNWXevO/ARz6g4H2wJCQyfPI3qfbsxmswAtFVXkDdmHMe2bBg0NiMvF964j8isr3LkZBcbnnk23jfvhk8z9dJZJGUm4HKBFovhbeslovbS3fg0xzedxGy3M/+me8kfP42KnRs5tmUDc667ib2vv0jZ229QPH0O2SWjObDm1UHzdjU3MvHSGCd3w4SLXFTt+QvHN3Ux9bLVbH/mCcIB/6DxXncH2556hDnXfw+rK5XCyTM59PZrg8a4UtPwdXey6dFfsfiO73HRZ4ahRb3EYjaMliwOvN3GJXf9Nz0tRwDoqK0me8QoWk4ej5+n98sbMwlHYuLffB3EBzNZDBRNSmP9n47hSDJTMC6FzsbBQQsZmXp8968jbeUy7GlZaJEI3X/5M6HjxzHMWkhlTz4n3hkIFTHbDSy/LUz2uDOHxvS0BwYFkACc3NXO+EV51Bx0M/2yZCp2PE5Z1UkALHYHF3/+Hjrqa9HpdPh7ewn198f3PbFtEye2bQLgqm/9L6muRPyKnqQsG7terYmPGzYhlYQMG2PmudAbNOqPheluDlB3xM2w8ZNpPHp40JoKxk/+206ouOD4wwPf7bb3fZefSYbLQrs3iKpq6E6FQQkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPF+5zSERFGUmzRNe0JRlPv+qh0ATdN+cS7nu1B01NdQvXc3XncHRdNmkJxdytGtzQBEwia87kYmLVtJX3cXbdUVGIwmpl1xNaEeD9VHD8XrRMMhNj76EL4ri/n9yYcBGJ86nh/P+zEFrrMHkXg7A0xbOYz2Wi+JGTb6ekLklCRSubedzOGuQSEkOkXHzaNuxnOkkuKpM9nwyO8I+AYyZBxJKSy5+Xbc3/oO9ukzSM7OxWJ3EOw//cJ/9ogxtNdpZAwzEq2pP13XYiEcjNF03DNobQfWNVA4MY380cm4G3yD+vJHJ3/cUy3OIaPJzJzV19PX3cXJnVuZdfUN7HvjFUpnpJM7ehxNx8rR6Q1Mu+wqrI48PMtfo6+/h03Pf2tQnW3PPso13x6N2tJD484OEkYVErXoqdz9Au3VJ1F0OiYsuRRvRzUjZs6kr7uNlpPHOfTOWpbc/kU0DYwWB4oy9AV7RdGRkp3A6v8opbViJ12NtQCUb1jHrGuux+pKGLKPKy2D9voAdeUdrLhzMV2NDTQdK0OnNzB20VK8bjd6vZ5gnw9PWzeVeyF3VC7Ht7eSMbybiUtcHFzzOEVTpoKiUFd2gPk3fZqw30/Vvl3MuPJa9q95lWgoRFrBcGZddTOhgILVdX6u07+7SCjG4XcbAejzhMgdmUzAFyEhzYoa0wj5I+jtFvTp6Rj6ggCowSDBI0cH9p++FLVGZeryYWiqRiQco6MtitnpITk/EeWvwhqikRhnosU0hk1MQaGCtlMBJADB/j6ObH4XvcFI5e7tACy76z5MVivhwOmgpdwxE1F0yTR//T8xfOVHHNnUPPg4A35ajm/l0FtPEAmFGDFnKVmF0+mo66d4cjEjZs/n5M6tAIycPZ+MwuK/57SKC0g8hMT8wSEkmS4LUVWjqz9MmnNoYJIQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDnNIQEsJ/633mGPu0cz3VB6Kir4YUffSce5HFk03oW334XOn0qNpcJd30FRpPK7ldfYMbq64CBYAVNU+lrbRlSr6uxgUnOFXxhwhfQ0AhFQ2xu3MwtY2454/w9nf2c2NnGqDlZ1BzspPqAm+RsO0WT0olGYqixoZclzZRCQ/t2upsa4usG6PN00VZfQ1pqKpG2NhLHj2PV17/Lzuefwl1fQ+GkaRROuoRAv4MkVwCdxQyKAppGuL4eYuqQuWIRlVg0Qk6pij3BTqDfSktVlLyRyaTlO/6mcy7ODU3TiAbsjJh3J2g+0vKSmZcwDrNVI334LIZP7SY5y8WxnQGO7glgtkcxmbtRY4NDGjRVpamig3Aok8ziYppaK/H3dtJ4ZCBgZ/LyVZzcvZ3etlZQFIqnzmTlV76Jr9PNzheeprulCYAFN3+eEXMu4uT2jaAojF24hMzikUQjQYL9tXQ318Xn7GlrYfuzTzBz9fVkFpXQVl0JgE5vYPzi69n1hg81qtHZYsCevIqVX76SWNRLf4+HtqoK5t90Oxa7HYgyc5ULf28ri25KBiWGr7OChLRUjm3dyMKbb6d843oOrHmNmVddj9FsxmjNZvU35hIJBfF2Gnjzdy2YrO3MurqIkkkZGEwfHBQgPp5wMEokPPBs0ekVzBY9zmQLhzc2odcrTL6kAJ8vRvaVN6JLGEiC0TuduFauoPOB36JPTKKruZ6Kve3MubqY2h2ddDf3YzDpmHNVMSNmZmI0n/6qTEi3kpxtp7ul/3RbmgVHsoUR06wcXl/PX+tqrGfissvIHF5M9f7dxEIhLv/q99n90pN0NtYxfMoMSmfOQ/G3EqqogM4u0gpsDJ9kw+qIoUb92Fwm3vjV44QDfgCOb1nLxXeOITHTgaelncziEsbMXwRAZ3MjvR1twITzddrFPxF/OAqAzfTBP+kyXBYA2r1BCSERQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBndE5DSDRN+8Opj+9omrb9/X2Kosw5l3NdKNqqKtAbjcy86no0TUOvN1C5ZwdTVnyGgE9DRz2qGiMpMwt3XQ2qGkNvMGAwmTHbrEPqDZs8lbc7NvJGwxoAUiwp3DPpnrPOHwurjJyVybZnK+l1BwDobunnnUeOcvEdYzDbjUP20RsM6BSFnvbWIX1djQ1kpaZizMrE6+5gyxOPkFU6gpFzF9BWXYmiC5GamUjGgfvwJd1M9k9/Svdjj6EvHYUu2YLJoiccPB1SMWpOKnUH32HH80+gqSq2hEQuuu2rhIJ6ulv9JKbbh6xBfDICHd0c3tlF1X43My4fzprf1+JINFMwLoUjm+uZunwY7z7aCAqMX5jL/rfqWXRLDha7g2B/X7yO2WZHjTk4srmZ7KJE1v3h/xh70VJcaRl43e24UtMGAkgANI2qvTtpqThOyYzZ8QASgK1P/Ymld/43aQWTSMq0suvFp2mpOMGwCZM4uPYNZl9745BjiEZUlt/7ddqqKwj4+rElZNFwXE9Cmh9Pqx+9QUf9UR/F0wo4+NZTtFWdBKBi1zZGzl1IT1sL/Z5u5t14K0c3v0j94YMApBcWMW7RxUSDQTKHF6M3GnHX1WB2OIiEXegMBtLzLBzb0UUsqhLwqWz48wmsCQaGjUw/j1ft34/ZZmD0vCwiAZXcMYk0H+/l0LuNAMQisOvVGi66eSSOvBmEOX1fJqxaRcxgYc/mVrqa+8kfk0zNATfdzQPhItGwyuanK0jJcZBVnBjfz+Y0c8lnx1D2TiMNR7vJG5XExCX52BPMeN0hXGlDr2/+2AmUvf0Gve1tXHTb57AmJJJdOoJ5n7qThvI9BP0+6sr2UH/kMAt/8F0Meg+pOXX0tobZ9NbraKqK1ZXAnGtvYstTfyYWiTBp2Uoq92wmf+wEFEUh2NdHa1UFAGositFoOo9nXfwz8YcHvlNtHxJwlJkwEELS1htkbE7CeV+XEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYS48OjOU937P2LbvzxVVZmy4gr2vvYiu196lh0vPEVa/jCcSToiwSj25CQiwSAAu195jt0vPUdHbQ1Gi4XmiuPMWH0dJutAGElWyQjGXbo8HkAC0BXsoryzHE3ThswdDkYI9kVQY1o8gOR0X4xwMIZeP/QWCAcDmGx28sdOGNJXWFBE4rXXYi4upq26gtKZc+msr2Pjn/+Ap6WJsN9NQ2UvfXN/gsFho+Xb38aQmorh8hspe6eRhTeNJKsoAaNZT9GUdArGaGx/9jE0VQXA39vDrhcfpr2mnVB/5G8/8eLv5g8ZqCnrBCAWVdFUjaySROqPdAGgaRAJxcgY5qK5wgNAf6+Z2dd9CWdKGgDOlDQW3voVfD06EtKstNcMhCSc3LmNmauvY94Nt6Hoht6DIX8/JsvgEB5NVfF1hTi6zUhHbT3u+hpKZsym7O01aJpKa2UFk5atxGA0gaJQPHUe2SOmsevFZ1jzm5/RdOwQ3U3H6W54ElfiLuZc5cKVamH2VcWYrb54AMl7Tm7fwrAJkwn0+fB1d8UDSAA6aqvxdbo59O5bHN38LoffeYuydW+iKDpSc4LUHfgj7zz8HRJT9jNx8emX/dsbev/eyyL+isGoJynDzr41dVisRqoPdAwZ03zSgy0riYD9dO6WKTcX6xXX0Xhi4N5Ny3fRWj30+vR2Boa0JWc5WHDjCK779jQWfmokKTkOAFypaaDA9CuuQW8cCHgaNmEyVqeL3vY2AA6+9QZGsxmj2YC/tw2dXqF6706Obd1I7sjRtPt6aOl1Y7GZObDm1fizMeDtpWzdm5TOnAuALSGJkumzObx+LQoKvk43u19+lt0vP4uvqxONod8J4l/TeyEkVuOHhJC4ToWQeIPnfU1CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOLCZPjwIR+doiizgNlAmqIo972vywV88Nux/6JScvN4/Rf/SyxyKlBD09j/5ssMmzADg9lEb0cH9UfK8LQ0MWXFFeh0ehqOHuL41k0k5+RybPMGJixdjt5gpLOhjg7/0BfsT3SfIKJGMOlNg9oVvYKi02Ew6dEZFNTo4JfSTTYD25u30+HvINeZy6jkUThMDvRGI7UH91E0ZTqTLr2cw++sRdHpmHzp5eRPnYGroADFaETR6Tmw9lV8nW4AGo8epqetldnXfY2GRgvp+w9BJELfpk3Yrr8bq9NE3aFOTDYDo+Zk4Wnrp6+7e8jxdDXVM2IuHN/RSsm0DAwf8mK1OD/MDhPOFAu9HQF0egUAvzeEM9mCryuI3nCqrTdMco4daryoMY2Db4cZteBLpBfo0emiHFr3EkF/P6Uzl+FIysGRlMKYi5agKAp9Pd0U5E1EbzSe/hsBxi5cSnPF8UHrGTlvKW114Eq10l4z0KegoMaiANQc2ENSVg6TV6wiZ+Q4ejt78borOLblXZwpqbhS09j5wlOnqh2l9uB2LrvvR6TmhOluaRty/JqmYrY7WHjzHTQdPzKkv/FYOam5BfH7H8BktfLOwz9FjQ2EAhzf+hYjZkdIzZtFZ6Mfg0OCIc61aCTGwXUNxKIqil4hId2Ku8E3aIwr1Yr/8GFUXRBKJ8XbzU4zqTkOOpv68HUFSMyw0dPuH7SvLcFEk6+JY13HCMaCFCcWMzJ5JHq9Dqtz8DPXnpiEzZXI/i0vM3XlalLy8jmycR17Xn3h9HrDIaKn7vVIMMiWp/5CxvBiRs9fRDQSwZmSSrC/n3BwaPiJp7WZ0llzMVosJOfk4mlpwuJwUnNgD4E+H9NWXQ1A7YG9+L29TLpk5d93csUFoS848Ax0Wj74J12qw4ROgXYJIRFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEGdxTkNIABPgOFXX+b52L3D1OZ7rgqBGowR83iHtAV83ii4HLaYwfOJU1u/dxZ7m5+P9F932OWr276Fw0lT0BuNAowJJienxMXpFT0yLsTh/8ZAAEgCj0YDJqicaijL54gL2ramL942cnUXQ6uVo11FCsRDugJsWXwsrilZgMJqYdtlqnv/Rt0lIz2TK8lXoTWZGzllAQlb26Qk0bVAAA4Cvy02gr4fuZpXszIx4u66lhoxhk9n81MlB40smO/lrKbn59PfoUKMxNMls+IdxJluZe81w3PV1oJ5gyW1pBH29KDqN0XNc+LpOsuTWZMKBILGol+HjU/B2VjD3GhexaD+aqvLaL38ar9deXcHFd36JpZ+/h35PFxani4pd26jYtY15N95G9d5d9LrbGT55OoqiUDR5OonpWQR8vYycuwhPcwuxWAPpw0bS1z2JukP76fN0kZSVjae1BRgIaTi0fg1JmblsfOTXTLv8Kpwpacy94RY2/Pn3g44vHAjQ217DOw//lqkrr8SZlo7PfTrkJ3/cRIxmM5see5jJl14ebzdZbYxZuIS0/GH4ez10NTfgPbWfGo3GA0jeU7l7EzOuWkgkFsOZYzzXl+nfXrA/iq97IFRh18s1jJiRSf2RLiLBgetgTzSRWZRA5xd/TPIPvztoX4vNyLzrS3nj/kNUH3Aza3URu1+tIRIa2Hf0nCx0qRE+v/7zNPgaADDoDNx/0f3oFB02o43mvmYMOgMjk0aSoU9h3+sv4WltZvfLzzL3hlsJBwLMuvoGNE3D6+7AlZ5Jck4uAN7ODlJy88kbPY7tzz4RX9ec627G4hj6bEzKyiE5O4+ln72bTY89zKi5C/G0NjNp2WXsfOEpOmqr42Mv/vy95/Asi39mvlMhJA7zB/+kM+h1ZCVYafIMDbgRQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBACznEIiaZpm4HNiqL8RdO0+nNZ+0Kl6A04U1LxdXWeblN0WJwOopEoRlcK3k43M1dfT9nbb6CqMcYvWU56YRHOlFQ2PvpHfJ1udHoDM1dfh0Fv4vaxt+Myu+gL95FoTmRS+qSzzp+a46Q9rKLoYOmnR+P3hbHYjehMsLbrOR4++nB87DWl1zAhfQIFrgKseZlc8b0f4mlqwmqxkVFYTFLm6QCStqoKIuHQGed0pbhIzkpH35iAYrWiBQIEHvgJ6g+fGjI2GtGYeMlKDq1bg6apWJ0uJl16Oe5GjbELcjGa9H/LaRfniBpuYOsT/8OoeQup2ruB1oqTLLzlDjY88mvyx01ErzdQtW8XC26+nbcefIik7FzSC4bTdLycnJFjhtQ7tvkdHClp6HV6Oupr6Pd0A7D5sT+RP24CF3/+XkKBIKgaRqsLV3opOp2fN371Y3R6PXOvu5ljm59n7KKlDJ88jeNbNzL3htuo3r+bpuNHSB82nDnX3sRbD/4STVVxpWUwat5C2muq0emG3kuh/j4AFL2eyZdcRkd9LZ0NtRSMm0hGUQlrH/gFaixKyN9P/tgJtFaeZM61N7H7lec4uPY1DCYz01ddxYkdW+ntaMORkjZkDpsrEVuRjpLxFrKzhvaLv4/RrKNkagb71tRRvb+DETMyuOimkQR8YRSdgtlmhLZ6jFlZmByuIftnFydyzbem0dvhx+IwsvrrU+jrDmK2GUjOsrOm+Y14AAlAVI3yh8N/YHXJan6696f0R/oBSLGk8OiiR9AZTn+tdjU1klU6kl0vPoumqaTkFTBu8TKSs3IAsDidlM6Yw66Xnhm0pp0vPMVFt32OSZdeTtlbb8SfjRMvXsH6P/yGKZddia/TzdFN77DgptupLz/IlJVXcmTDOgDGLV6Gpqnn/FyLf06+YASbSY9Br/vQscNSbdR09n8CqxJCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEBeicxpC8j5+RVF+BowBLO81apq26IN2UhTlEWAl0KFp2thTbd8HPgu4Tw37lqZpa87Hos+HWDTCrGs+RSQYIBoOo9MbsLoS0DSwJ+gJ9qmsf+h+Rs5ZwOI7voiiKFTu2UlPWwsH33oDX+fAYauxKDuef5KrRv6IMSlj+Oa2bzIhbQKhWIjnTj7Hg0seJN+Vf8Y1pBe40IDmCg+eVj8FY1Pwp3Xy8MaHB417sfJFbh5xM1WeKjr8HVR4jmIz6rHYXEQNySQxEEISCYfwebpwpaYx4eIVHFr3ZrzGxEtWcmJnkNJpQfq2biL1C18g6u5AC0cwGoND1ub3dtJy8hgzr7oeTVWJhENsffIvLP/S/9BWIy9K/yP5vb1seOwhNE0lMSOLY1s2UDB+EhW7txOLRskqHsGO558kJa+A1sqThAMBhk+axs4XnyareARGs2VITZPNTvqw4SRlZXN0y7vxdk1TqT98kMziUgI9XkbPXkLV4TLaqsrQ6XRoqsr4i5ezf82r6I1GqvftJhoJM/2KawgH+skqKWX0/EX0dXUSDgUJ+f0DddUYe155HntiEuMWX8KeV56Pz2lxOEnIzGLOdTfjSE4mHAhgS0wi22bFkZwCKKixKACH1q2heOpMLv78PWx58i/4e3sAiIZD7HjhaVbe+y163HqMzkTSCofjrq2JzzP3lk+TWpJJui0dRVHOw5X69xYJxVBjKmPmZXNydxt1hzvJH5NCd0s/RrOO/Mwolur9xMaOIeDz0NfXSpYjCwI9YLSCwUxSho2kDFu8ZmqOI/65rb9tyJwWvYVdrbviASQAXcEu3m3fxJyrrueNX/0UgOTsHLY/+/jpMY31HFjzCqqWQP2RXgrH5uLv6UFTBweGqLEYVmcySVk2VnzpO0SjMVwpTt741U+IRsJoqorBZKa/x0M0GiajqAQ1FmPRpz9PV3Mjx7duJCk7h/GLl52r0yz+ifmCUZyWj/ZzrjDVzmtlLWiaJs8jIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggxxPkKIXkSeJaBQJE7gVs5HSLyQf4CPAA89lftv9Q07efncoGfhEgwiE6nR6fTsfnxR8gbMw6LwwkaTFp2OdFIjJC/H1daOie2b+bE9s3xfccsWExHbfWQmt6OdjZ5tvD58Z9nW/M2bEYbFxdcTJWn6qwhJI0nuqk95MaeaCGjwIWnrR9DanTIuHGp49Dr9HQGOwk0tRN7Zi9Nra04klNIucmCz1mA0+xEVVWsDifuhjr6uruYc93NREJBjGYLyTl59HSm0NUWInvlMlru/BL6xEQwGDC0dzNh8Rc5vKEFTYOENCsZhWlse6qGjrrToQ2Fk2bQ2ayRmGH9+y+C+JtFQkH64iE4MQBsCYk0nzg2qM2emEhfdycAmqoycelyLE4nrrQMDEYT0UgYAEXRMfHi5bzz8O/ILhlBSl4BXY31g+Y0GI0c3rCWrNJS9r32OMMnT6fP0wWA2e6gr7uLjKIS/N5eGsoP0VB+KL5vwfhJ5I+dwJ6Xn2fMgkUc2fQOvq6BdfX3eOioq2HOdTfRVlVBYlYOVoeTA2teo3jqDFpOnkBvMOBMSWXva28T7O9j4S13YHW6CPi8APR5utE08HX91aNM0+hs9lH2rgFXWpSMa5dQ4AlhDCokpRfQfMxMa0UnYxdYyCxMOGfXRwww24y0Vvfg90aYdlkhAW+Y6oOdpOc70DQIxkKEXn0NNeinf9VMbCEvmUffRDn6PNgzYc7dkDvtrPXP9FxdmL+QtbVrh7RX9VRx09QbuOy+71K1b1s8xOb9Go8cZuplfoonOPB5mkjMyMRstxPqPx1oYnE4MVrSOfhyCwFvH6l5drIK9zF15ZV0NzcR6u9jznU3sfnxP1FXdoDMomK2P/vEoHnGL73045xGcQHzBiM4LcaPNHZYih1vMIrHHyHZbjrPKxNCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEBea8xVCkqJp2p8URfmSpmmbgc2Komz+sJ00TduiKMqw87SmT5yi02G22dj69BvMv+nTVO7eQUdtFUVTZhAO+YmEzKDBlBVXsOP5Jxk1bSF5uWNwpqRitNtJzs2nu6lhUE1LYgJFxiJ+eeCX8bbdrbv52fyfnXENfm+InnY/9Ue68XUFASidnkFxIIMUSwpdwa742C9P+jJmgxnNF6L60Vfp6x7o6+vuYv8f/kJW1jCcw8dhtliJhiN0NzdRvW8X1ft2oeh0aKpKal4B6cWfwZ7owKxVkPv9e+h6dSuKyUhwxUpe8niZemU+I1MdJKVayMmwsOSz97DliT8RDvjJGTmWcUuuwdtpBJRzfEXEx9FvijJizkKObX4HvdGITq+n6Vg5RVNnUvb2G2hoZBePZOzExSQnZdM2sQpdkpGWyuM0rDuELSGRWdfcSH+PB01VcaWl093SjNfdTr+ni/mf+gy7XnpmIORDURi/+BLaa6qYdfUNREIhAJqOlzN5+So6aqvR6XQAuOtqmHX1DdSV7R+03uLps9j0l4eIRaOk5OYx48prB0J/Tqkr209DeRkjZs/DZLaApjF24WLW/eH++Bijxcrsq28kHPQTDgaYd+Ot+L29eFpa0DSV1sqT2BIS8ff2DJrbaHYBfuwJZhJjNmp27iTg7mLYpPno9SM4tt1H1X43V31tEmkFEkRyTmkwYXE+bz90hFhIxWDU093ioWJ3GwB5o5KZ/P3/44h3E3+pe5if5P8Ed3Iu6SnFYEuFirfB5ID0UWcsb0bPPZPu4bmTz+ENe7m08FLCsTDzc+ZzyH1o0Ngl+UswWazYEosZMSudsL8u3pdeMJwpcy7D6UjFaUikw9NGd3Mj+994mVlX38j+N1/B1+nGlZbO4tvvptdt4PJ7JhAJq9hcZqr2tLLpsYdxpqZhNFtoqTjB0s/eReqwErqb68gsKqWtugKAzOJSHMmp5+d8i386vmAUl+Wj/ZwrTLUDUNvZf9YQEk1Vqdq7C0dKClnFI87ZOoUQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxD+/8xVCEjn1f6uiKCuAFiD376h3t6IotwD7gK9qmub5exf4SQiHgkSCQUqmz2bLE4+gxmIA7HvjZQxmM3nj5hDut7Dhz79n1ee/hbFMwxyxo/MZiTYHWH7rVyjfs57c0WPRVJVedwcmi5UNtRsGzaNqKmXuMi4edvHQNQRi1Jd3xQNIACr2tJM3OomvTf0aT594mvLOciamTSTZkoyqqZj8ajyA5D3RUIhQdy8MH9g222zojcZ4v6aqABjMZmJRjWPbW5l4dRKuyi9jv2Qu0aK5HMqbysV9IVwWI+XtXibrzBjNFgomzGN5chE97V7aalTW/6kFDZh7TQlqTEWn152LyyE+Jl3QSP6YiSSkpaHo9az6+n/RWVeLPSmZS+/+KrFQhDFL76L/7SYimptUYxKOK/PZWvcoAP7eHrY+9RdsCYksu+s++ns89Ha0YUtIZOK8S9GFdExfdS3RSAh7UjKH1q9l9LyFbH36UWZccQ0A4UCAzvo6Zlx5Lb2dboZPmU7N/j00HT/KzKuu5+jmd0GD8UuWEerrIxaNkpSVTVdTA57WZqavupqCcZOoLz84cEx6AyPnLKRm/276PR68nR2DjjkSDOBISeGdPz5DyN8PgDMljZlXXc/6h+7HYncwY/V1bH/2CaLhEIqiY/KKG6g7MnD/j19iYeNDT1I0fRbmkjFEwiFS8/qYvjKFY9v7aK3qkRCSc0z7/+zcZZgd5f3/8fcc97Nn3TUryW6SjbsSJQR3t7b8SmkplBqVf92FGm1pKRR3giVYiEPcs9kk6+5yXOf/4KSbLBtaJKG0/b6uK1fOuf2emTOzT+YTU4nFVOZeWYrZpqfxYC/dTZ6h+qaqXjLH2vhm231MTJuIQTFgOPwy7H443iCxEHJnvmcISao5ifsO/Y3ZWbOxGWxsbt5MqauUw72HuWr0VTx39Dn0Wj23Vd7GpLRJAIQCUQ5u7mPsXDsTzz6PvDGVuDzJqF0htGYjwY2dJFUkMWizEfB62Pz4Q5TNnofFmUAsGmWwx0IoEMXd46egMg0AV0YWrsws+lpbADCYzRjMVvQOJ4efWE9CegYFEyYD0NfaTPXm9VTMO+tMHXbxCeIOhEmwnDpQ5N1ODiGZlOc6ZZsNjz7AjhefBUXhwq/+PwoqJ522tQohhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiE+2MxVC8n1FUZzAncBvAQfwxQ851r3A9wD1+P+/AG48VUNFUT4NfBogNzf3Q053+vgHB9DodGg0mqEAkn/Y98YacipmoNFqSMkvQN+vw1rmINTmReswYMhyYDGbQFF45bc/R6vVMWH5SghH0Wv1I+bSa0aWAWi0Ch31gyPKPQNB9qp7uXnszSgoAPxq56/48pQvY7O70BmMRELBYX1crrQT85lMFIyfyL7XVxMOngg4mXzOhax9xI1Wq4FoCKIhNG070M25nRd2tzIl2U54wEdmXxCjJUTAFcZiN9DkNvHOqsZh8+19o4niKalY7MZ/caT/833Srl0AXTiCp6+TlqqDePp7KZ+3iB0vP0/53IX0d7QzpmIe3jeb479MQA3H8L7cwqQF57HphYeGxvEN9IOq0tfWQnruKM674C7Y7iMWiKIdYyM8SmXb2uexOp0c3ryeSDBIZ10tsy67hreffoxjO96hu7mBedfchBpTySgqwTvQj9Fi4aybPksk4qC7KYzN2ca8a26io66GaDhM/rgJdNbXkz9+Illlo4lFY+gMBmKRCHtfX03J9NlEIxEq568gK7OUGDEaGw9Qt2fnUAAJgN5spungPgACXg87XnqOSeecj95oIr2onJ5WI5FokAnLEgkFjjJ20VJ2vryK8YuX09vSxM6Xn8dgMjFh+ZXozVkf5yn82Pw7r1+vO0g4GKWzfpCMIiedDSPvd131XrKTsrmy7EraPE1M2v/MicreWvB0vOf4+3sPMzF1Ik6jk2gsysqilYSjYa4ovpgsRz7Xl1+PgkKa9cT9UY2qdNYOEpysweZKhIEoOqcJVdGihmIY8hwoYYWCovEYrVaCXi/733wVgKX/dzsGq42tLxxj6Q2lQ2PqTSbKZs5FUTSoqoqiUdAbTeg0CgUTp7DugT8PW/eC6z/9YQ+p+A/jDkTISbS8r7Y5iRa0GoXaLs8p6we7Otn58vOUzJhDd0Md6/7+F/LHT0RRlNO5ZCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII8Ql1RkJIVFV96fjHAWDBRxxr6O1wRVHuA176J23/DPwZYPLkyepHmfd0UNAw0N2B3mQaUWe0WPH0DhCLDDJp+XlYIy4i7T5i3jCDe7oAMOQ7GFUxhb2vvUwkFmL7C8+QmJ3D4tzF7OjYMTSWQWNgdOLoU67B4jCQMcpJ/b6eYeWmZA2PH3icx488fqKtzoJBa0CT6GL2dTew7r4/DtVNv/hykrNzhr5HQiG6mxpYcsvnaa46SMjnJXdcJTqTCUWJMGFJLnbzQZj3FVA0KN52Vo4qo+qxYzT1xsNNjmxuZ86lxYxbmINGM/IFZ+9AkGjo334aPxaftGsXwGQ10XrkMI0H9zH78mvZ+NiDOFPTCPp8HNv+NjOmX0xI7RzWJ+YNk5ySPaysfN4iDq5/g+otG7ns/35AbP2JkIjoATdmezqTzr6eaLiPV//4MwBSCwqp2vQW86+7iWg4gqevlzV/+BVJ2bkUVE4mJS8fs8OJt7cPn7sHV1oOZnsaq372B6LhMABHt25myS2f582/3jtUBjD78msBqN+7i0s+/13U9W6ib8eDdCaMW0ijrnqobcn0WaQVlhCLnujv7etl67NPMG7ROTQc8uDt70Vv0nJ0WweLb7Ky+YmHScrJY7Crk7rd8d9pyO9n67N/5dw7vwPkf8Qz88nz77x+jRYt7u4AVZvb6GocJKvERXfT8ICFlEIrXy75MpmWTNJXfxVC3uGDKJr3HD+kRni46uFhZQWOAi4ovgAzVnQGzYiABlVVQVFQFIUNj/yNm7/5Z2LtIdzrmiCiorHocCzJR6sYWPKZz9NcdQD/4CA55WNRNBoMxl4qZjtxpZuHxqzbu4uwz4fF6QRU9AYTDQd2k1E2lsSMLKacexEH3nodFIWK+YtwZfx3Bt6IkQYDYeymUweRvZteqyE/ycKxzlOHkBzc8CaqqjLvqhtoPLCXV/94D21HD5NZcuq/MYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxH+XMxJCoijKg8AXVFXtP/7dBfxCVdUbP8RYGaqqth3/egFw4LQt9AyzJifhCnhpqTqINcGFt79vqG7qeRfjHYhgdWpZ/Ydfcu3Nv0Bj1BI82j/UJlQ/iD0/HYszAd9AvLzp4H78sx3cOflOqnqqMGqNFDgL0LzHS/RBf4TRMzPoafHi7okHLYyZnUGSy8nNxbeAKcKE1Ak0u5tp8bSg0WjISsgmdV4qWQWlDHZ1YHUlkZybh954IkxF0WhQVZWX7/kpFmcCepOJqk3rmHXZNcy7ag6uJD3Ko18H9Xgewazb0Vtn4zkeQPIPW1+opaAyBXuiCUWjoMZO5BcUT07DaNN+lFMgPoJoJEL9np0AhENBUFWySsdQv28XADGTCgpwUuSExm7AkpHAlHMvpvHgXtIKRjFq8jSe/cl3MFqtaHpVYu+aJ3KwFzJzceYUUDx9FvvfWEMkHKa3pZn6Pbvw9PXSWVcDQGt1Fa3VVZz9+bt47Y+/IeBxozMambBsJTq9fljYCMDe19eQN7aS2l3bTxQeD4xwpqShVIeJdASGqsL7Big6fxIbNQ+RWVyGRqtj46N/Y8q5F5Gcm093Yz0A9uRUCifNY82f47emvFwrxRMj9DY3ApBVOoajWzePOKZ9bQ3ApA9yGsS/oNFoObojnlU12B1k2rmJtBwdoLvRDUBuRRKuVCvXrLuW3yy4hzzn8JAcDFbIGP+e42fbssm2ZfOFiV/ArDPzVPVT3Jj3f3QdChD0eTBadCRl2UhItQz1sTiNpBfb6W2JB9ro0NH3Zs3QbyXmi+Be24jz8lG8+MsfYXY4MZotHN68nrELl5JdMY6Ww68yftGdQ2M6k1N44y9/QGcwMvOSK2mvOUpvazMdNUfYv/Y1WqsPUTpjDgCHNqxlsLuTgkq51v4XDAYiOEzv/8+54lQ7Rzrcp6yr3bWdjFElOFJSKZ42izf/ei+HNrwlISRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEP8jzkgICTDuHwEkAKqq9imKMuFfdVIU5TFgPpCsKEoz8G1gvqIolcRf364HPnMG1ntGGI0mouEwdXt3c9ZNn6W7sZ6A10NGcQmRSBSj1Y6Cn6DXS9SqEq32jhgjWucjOTuXxuMhJImZ2QwYoty7915sehuhWIi6gTp+Ovenp1yDtz/I4S3t5FUkYbLq0WgU2moH8PQGGVe7EO/4Br6+6esUOAr4zLjPYNAYANDrDaQXFZNeVHzqvVltdNbXAsQDUgbi5Ue3bSGlqIRqt8rZBcsx1L4CgJJSii0y8nKLRlTUmIqnP8jMC4s4tLkVT1+QgvEp2FxGQr4YBuMHOeridDGYzbjSM+lpaUKr0wPg7unClZ6Ju7uL9p4aUudlo272oIZjaCw6ojP0PP+Lb2K2O1h082d57U+/JXt0OQDhQJCY8d0RJKBJMrFOu5qxjGPyigvw9fej08fnazq4nynnXjgUQgLgSE2j/Vg1AY8bvcnM7Muu4dCmdeSNPREkodFqKZk2i7SiYjRaLW3HjuAfjF+knt4epl1wKaF+H7EG/4j1xLrCTDn3IvQGI5uffBiA7S8+y9gFiymeOpPk3DzSi0qo3xcPL7G5jNgT6tj02MPMvPTqoeOUkJ6J3z04bGxnauqHOxniPen0GpwpJgY6/WSVOOlt9ZKUYaVgbBKKotDZ6MbfFyXJnIQ34oOZnwdnLvTXgyMbCudDatl7jm/T27i18lbu3XsvA8EBvj3hu1h7k1j7WBWhQBS9ScucS4sxmLVY7PGbVdAXIrcsGWKdAITdgWFhPQDRwRDRYDw0xz84MHR91uzcSvaYsTQd3Edn7TFsiUkApBfFgyFKZ8xhx0vPDQVTubvbUTQK3v4+9rz28tD4iqKw7YVnyBkzlvSiYpTj4Tviv0swEiUUieEw6993n5I0G68daicYiWLUnQj68g30015zlJmXXAmA0WKhYOJkandtR1VVuYaEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIf4HaM7UuIqiuP7xRVGURN5H4ImqqleoqpqhqqpeVdVsVVX/qqrqNaqqjlVVdZyqqueqqtp2htZ8RkQjUcrnLuCFX/yAbS88TdWmdaz+3a+wOpwYTW4i4RB54ydycPdadJnWEf1jaQq9rS0AJKRlkF5UzD277uG8ovM4u+BsLiq+iM9P+DwZtgzc/jAbj3Zx77oaXtrbSkufn2gkRt2+bnrb4gEn4VCUgU4/QV+YQ5vayPWMxh1ys6drD3euv5P6wfr3ua8IrsysEeWJmVkMdoVoqx0gmDI9Xli4AArmkZRlRW/SDms/bmE2tkQTeoOGd1bVkpxlZ/TMDLqb3HQ2ujFatCPmEB8PvcVMxeUXodXp6G6so6ByMk2HDlA4aSp6k5kjWzdxpGM7ntkRYkusNI9qYtXDPyHk9zHQ2c7R7W9jT07h8OYNjJmzgFg0Qru7DiXlpFQZnYbo2BT6/W62tGyht19BMSwlrWgik1ZeSjgYoO3oEWZeciXJuflkFJcy+9Kr6WtrBaB87kK6WxoZNXkqSVm5aLQ6NFotc668gZ6WJtY/9FfeeeZxJq04H1dGFq6MTJwpqRzb/g5Z48rR5Y38zSmJWpxpGbiyck4Uqir7177G208/it5kYU8vRBL1aLQKRRNM7H39GQD6WpvJrRhP/d5dlM2ci854Yq/Jo4rQZrnePZ34iLQ6DeMX5TL13AJKpqVTu6eL/g4fsRhEwjEGunx01AySbE4myZQElkRwZEDD27D3EejYD/7+U47d4+shEA3wtU1fo3aglp5AD9mxQtY/Vk0oEAUgHIiy4bEj9HeeCLTR6XW8/UwNjpQ00opK8ET6RoytsekJ60Ijyh0pqUTC8fKg3zdU3tVYT/G0WTjT0ocCSAAa9u+hoHIynBwQoSjkjZ3AofVv8sT/+wodtcc+yCEdYdAfYsOR+LPl5X2ttPaPDO8R/x7uQAQAu+n9Z8qNSrMTU6G2a3jwWePBfaCqFIyfNFSWN7YSd0/X0D1XCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEL8d3v/b61+ML8AtiiK8vTx75cAPzhDc32iuTIz2frsYwBEgkEiwSAAjQf2klM+gZ6mTlxpGcT0MQLJIQz5DkL1gwDoMizoyhxMs12GRqtB0Wjobm3istLLeP7Y8+g0Oi4svhC70Y6qqjy1s4nvvlQ1NPfU/ER+e04FE5fm0tvqZcfqenR6DeVzstAb4+EeA81BksxJdPm68EV81A7UMj51/L/eWCyKxe7E6krC29cDgN5oonTmPF6730dmsRNTaibM/xqkjaMp4iSiVVl66ziObGqlt9XL6JkZFE5IQaNRiIRj5I9N4uiODgCsCQYq5mURCcXQG//ZQsSZ0uXr4v81/5o7v/hpEtwGTC4no886C5/fy/K7voKvtw9TghObxcGWxx6i8cDeYf0joRAzrr4WT1cXRquVtKJi6vfuImVeIXZNJv7eCB4VDr7dStk5ZWxs3sihd9rIKIzR21KLLSGTc774faLhAQa72kkrGIW3v5cNjz3IjIuvpm73DhKzc2itrmLzEw9jT0pmzpXXE4tGqNr0Fl0NdQD43YNsfvwhzrvrbpzGVNS+MIVXTsRDP/oJTsINHmL98dAHbYmNSILK69/9DWffdhcJ6Zn0t594+d6RkkpMZyDUsgddjoXS68w4PCbUaDyQomrTOspmzmXGRVdgsFg5985v4+7uImaCt9UDbPfuYxTlH9MZ/N/g7glQs7OTQ5vbSC9wUDQplc66QXatqUej1VA2M4PEHDPnpJ3DVzd+ld9N/ir5z9x0YoAXbgOdCcZdOmzcmr4aVtetJkZsWHnUqxA+HkDyD5FwDG9/cOh7LBqjfH4m3Y0HKZ+7EL/eR/LSbLyvN0MMFIMGy4pset1tJGbn0tvcCMDY2UuZPGslajDG8qtvJzEze2jMnuZGwsEgrowsLvzq/6O/o521f/sjg50dtB2rZt7VN9F6pApFgYziMlqPVKHV64mGwzTs2016UfF7HkNvMELnYACrSUeq3TSsLhZTeXRbEz9efXiobFZREr+5YgJJNrk5/7v1eeP3rgSL4X33KU61AXC008PoDMdQefuxI+j0BlLyC4fKcsdWAtC4fw+JpwgeE0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ/13OSAiJqqp/VxRlB7AQUIALVVU9dCbm+qTTG4zEojEq5i8mvbgERdHQUn2ISDCILSmBXHMlL/36J4QDAfJyxuHIc2GbmQlAeCBA7cHdrH36zwBo9XqWfeWrvFD1K87KO4tILMIjVY9g1pmxqjn8/q0arp+Zj82kQ6sovHqwnbZYmHAoRv3+eFBIJBRj75tNzLuyFABnmomBhoGh9Vp0lve1L2uki4S0dCqXnI0ai6KqKjqDEZPVhsURYeqyTPRPLgRVhfSx9C+p5Im9Paw52M68Uclcc+Uoxua7UBQFAI1WIeiNMPWcAmIxlVAgQnN1L6NnZpy2cyE+GIPWwC3Z19D03FoaQxFKps1ix0vPMWHZOdRu3EgsGqN42kxee+znTL3gkhEhJNll5Rx+8w2OvL2J2Zdfy/63Xker17H2yT8xduGlHNxiwNMbYsb1Ody28wvcPeZrFIwPsfr3P0KNxYMfXBk5zL7iViwJQYI+L1aXi9FzzsLndjH53Gsw2+wc3rIBAHdPN+sf+gtzr76RzrqaYWvRaDUk6TLxPN4IkfjYunwzh6zryVo4BquSjKrVorVb6GuupWLmWQx0tDHurKU0Vx2k7Vg1GcVlVMxfRMwzwHT/O+wIlvDTxr/xq6m/ZvzSlex86RkADm/ZgNFiZfGnb2Prc4/QUnUQnd5A8cqlODMzz/Rp+5/T0+Lh0KY2AAa6/UQCUY7t7AQgGolxcEMLc64t4kdbf0QwFuSgp5H8f3TW6ECNwc4HoPxC0J54JO7t3suLNS9y5Zgrh82nscTQ6TVEwifCSTQ6BYvjRAiE3qilo3aAijkprP79L4iGw2SOGsP8C27AZkkgYojijoBeNTNmznxikSgpaXnYa2z4nmwCwKFHGorRAAEAAElEQVQ14ShJHBpz1OTpHNm2mWd+8C1i0Qj5lZO48Gvf4e2nHyWrdAyrf/cLknLyQFU58s5mltzyBfa/9ToAsejw0JSTHe10870XD9HQ6+PSydkUJNuoyHSQm2QFoKHHy69ePzKsz+aaHqrb3cwcJSEk/249x0NIkq3vP4SkMMWKRoFjHe5h5e01R0nJL0CrO/E7SEjLwJGSSsP+PVQuXXF6Fi2EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIT6xzkgIiaIouYAHeOHkMlVVG8/EfJ9kWq2OaRdcxkBHGzXbtxKLRSmaNJXknHz6mlvQ6rRMXH4uAbcbeygBJaLS99QR1KiKeWwyo8qmUDN2G3qTmYIJk6jXdNLl7+Ltpre5vux6CssLCUfC9HpDfG7hKO5dV0OnO4hWo3DtjDyUsEr9vu4R6xrs9nPxVyfhDwYI1cVfYp6YOpESV8m/3tRgG6Z3fkV9eAE7XnpuWFXlspXMuvg8Yv5BOOceaNqK6m7n7fp+Ht4aP/3P7GnlpQPtPHLzNCbnx1+yzyhKYN9bLWx7qQ4Ag0nLubdPQKfXfpTDLz4Cm2IjuL6armPHmH35tWx6/O+4MrLw9PbQuH8v59z+FV6+52eoaoy6XduZc8V11Ozcilavp3DiVEJBPwfXvUHFgsXsWvMCAx3tQ2NvfPQeln7u+wRtUbTaHn5X+F16dx9le9WrQwEkAH1tTXh663nrwT+h0+mJxWLEohEW3PRF7GXjMRoD8aCbkwx2dmBxJuAb6B8qGz1tPoG1HUMBJAD0RikYW8mTv/kmiVnZnHvl3XifrcfYF2Zs+hyUbAvrVz9ILBJhzpXX0XbkMC/84geMX3I27eZc2t7ZwV2jLsbgCWOyWJh63sU0HtyHMyWN7PKx1O3eTkvVQQAi4RBVz77IuaUTzszJ+h/W3+kf+pya66B2b9eINg1VnWQmZlI3WEcoFoY5d0HWROithbAXrKmgaABwh9wc7TtKX6CPVl8ro5NGk2pJpdMXDzbpjnWy5DNj0Ot1ePtDWJwGwsEIJuuJx2lilo3kPAfhYBNzrriOroZ6KsctRX3DzcBAN/psK5opGfR6W9n02N8BuPDabxA+fCIQiqhK/4u1GLLsaG0G+tpb2fXyqqHq+j07SczMYt6Nn6Wn5ghzr7qBmh1bQVGYe9UNxCJhTBYroYCfvHGnvu68wQjffeEQHe4A547P5J43jhGKxkiw6Ln3qonMKErGF44SPPl3c1zv8fAL8e/V44mfh0Tb+w8hMeq05CdZOdLhGSqLxaJ01tVQsWDxsLaKopBbUcnRbZuJxaJoNPJMFkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYT4b3ZGQkiAl4F/JAOYgQKgGig/Q/N9YhnMZgJeN2/+7Y9DYQkN+3az/HN34khNo/1oNRsffYD513wavdmEqkRIOL+ImDeMxm4ARSExK4f22qOYbA4sjgjPrHiGGDGaPE2097aTbE4mZqzn6R1uOt1BAKIxlb9trmf5mDSSsmy4ewLD1qXVaVjzpwMsvG40n6v8HCmWFPLseRQkFPzrTQUGiFlT6T4wMlOmu6GOpJwQjrQYPPN5yJwES77Hz+6rH9YuGIlxpMMzFELiSDZz9i1j6WnxEAnHcGVYcKVZP8QRF6dLb3cP7rZ2zr3uKyRaMxj1pcloVB2Bnn5G5U8hEomhqvFwgu7mBsZNXszC+TdiTkogGgkTHgxw49f/AD6VCRXL0JlMBDr7CSlBjtVsx2wNs+2hv1I2Yy7RwRBjRy2gPH8uRpeNQMcgBpcZIoCqcNPX/kCgcxCt3YgGDWowgmKzonXbuP6O36BoNAS6BzBnJBB1h5hceQ4xJYa/YwBTmgOjxUrfQ9XxjWkVHAtziQ4GiRwJctEV30B1KniePoYaju8n1u5Huz7G5LPOo6W+Cnd3F/vXvkZWWTne/j72vvYKAK3VVdRs20LlwrPJSiqlYtk8sGlRwpCan0VR/mS2vPE43S0NAAy2tELlx30m/7u50i1Dn909ARKzrHQ3eYa10aXG6HZ3Y9AYGG1IhCQDPHUdRI8HaViTIXc6PfZUfrXzV6yqWcXnJ3wegO+//X1+MucnHO07ij/qp8JaBIMh8IaxBSN4WkMYXCYiwejQfCaLnmkrC2k/6mP/m2uYMu8CLFEbmsUuVF8Yjd1IqNOL3+Yc6qNXDUB42Lqj3QFiwShaG7Qdqx6x99pdO5hw9vlseXsjzYcPkT0m/ojd9PhDZI+pYPyKC7DkFJOYX3jKY9cxGGDjsW7uWFzCr944MpTn0+8Lc/sTe1h16yyiMZXphYm8U9s71M9h0uEw6085ZkOPl4YeHw6zjlEpdmymM/VnhgDo8caf+UlW4wfqNyrVxtFO99D33pZmwsEAaYWjRrTNrRjHgbdeo6u+7pT1QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDiv4fmTAyqqupYVVXHHf9XDEwFNp2JuT7pVFWldue2oQCSf6ja+BY6nQ6bKwlFo6Fi1iIUo5Zwb5C+p44y8Eo9fU8cIdzqoXzmAiatOB+zw0mRowiL3sKurl3csf4O7tt/Hz/a9iO+teVb/OBy14j5j3Z5mbA0F4NJO1SWnG0jFIjg6Quy7YVaxtkm8nrD64T+8UL+PxGKRKn22Yj1NVAwdvyI+oKJU9mxph5/yAJl58BgE2z6FZeMTxrR1qwffvlZE4zklidRWJkiASSfAHqjiWXnfw7zRlA6o0S3D+J9toHo+gFMG1TSDfmYHfEQheWX345zhxWqgkRqPHifbsSkmvG/2EpgYydGtwHf043ENgyiWx+kwj6L1gNV9DQ2kJZeRMFAKaE1XVj1TrxPNmLo1hLb58P/QisG1Yj36Ua0dVE0dRH8z7dgUM0EHm8ksKEDbaeK75kmrFongdXthDb0ovTF8D7ZiCViJbSuB+9brZiK478P++wsPFvb8G5tJ1jdBxu9ODUpQwEkAIpRiyHbQYIzg/TSGfR3dAKQUz6WY9vfGWo3es4CKhcvpyR7CoZ1EeiKENrUg+fZBmIbBjFvhEVnfxqDOR6U4UhJ/bhO3/+M1Dw7FXMzAeht85JR6MRsPxGQkZBmJpDRzZSkCv5S8X+U+jyw74kTASQA3m6ofYtDPYdYVbMKgO0d27l69NU0eZq44dUb2NO5h0WWefhX16G2eBl88gieV+rgtQa0ezvRDr/FY7LoQVGYuOJ8sgvLCTUM0v/0P+7t1Wj1WjLzy4ba+zXeEXszjU5EazcAkJiRPaI+OS8frdFCauEoYtEIjfv30rh/L7FohLTCYlpypvFqt5ljXT463QF2NfRxpMNNOBK/1m1GHRNyEwhFY+9+RNExGKRjMIg3GGFaQSLnVWaSYjMyozCJ2xeVMOAf+bzYUd/Lyt9u4tr7t3H+77fw89eq6fP96+eK+PB6PCEUBVyWU4fCvJeiVBsNPT6isfiJb685CkB6UcmItuFwNgbbpexcffijL1gIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQnyinZEQkndTVXUXMOXjmOuTRlEUdEYjADZXEomZ8RfJNTodfrcHq8vFhXf9P5SYitasw7+zY1h/z6YWjCEzL/3qx+x86TkCbjd9oT7+tO9Pw9rVD9ZT764ZMX+Wy4zFruec28Yz/6pSpp5TQGq+g31rmwHorHeToy1AVVVeqX/lX+7nndpeVty3j8MVd5JbkEHl0hVotDo0Wi1jFy5FZywi6IkQ8kegtwYqLkJJyOULky3DxilNszEq1fb+D6T42OmjOmLveEEFXaKZUKN7WL3v9VZWfOpLpOQVYO0wo4aimMsS8e3oQGPTE/WEiHnCWMYm49nSOqxvpMpNWmI+05dfRpI+g1hbEPPoRHw7OyCmok+3EjzWjyHXTvBoH2o4hrHQiX9vF1qXkUi3H9UfwVyRhOedNhSDFjUSIzoQwjI+Bffm+Hwai55Ip49QwyCGXDuGAgeKXkNs8F3BCIETASTG4gTsc7IIt3mIvNmLw2OjaPyMeKUKCgoA4xYtp7+9jWCvD9/r7aCC1mkk3OI5Ma4Kmu1Bxs1eQv74iad8wV98NBaHkcpzM5n/hXwKr9Gyw/YWmgsayb9US/7lWqbcnM4yk59fWMcwYbAXRasHT8fIgQbb6PCdKH+79W1q+mr46Zyfcsu4WzDoDPhr+jAVJIy4nqOH+9B6wiOGjEUjDHZ2EPNFCBzqHVbnfqsJTRhmXX4depOZbeufxbA0BcWsA8CQb8e5PB+NIR4glZpfQGrBqKH+ZruDykXL2d3UjzM1ndSCoqG61IIiEtIyeGlfB/dvruPpHc18+am9XHjvFs6+ZyP3baylun2Q5/e0UJZmJz/RwvTCxGHrS7EZ2V7fy7baXjoGg1S1DbJwdCoo8Ni2RjKd5mHt+30hvrnqAIOByFDZA1vqOdQyeMrzJk6PLk8Ql8WATvvB/pzLcVmIxFQ6BgMAdNbVoDeZSczMGtaupbqPTU81odGnU7ffQkt132lbuxBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE+OTRnYlBFUW546SvGmAi0HUm5vpPUD5vEQXjJ9HVUEvQ52P6xVdgdSSg6Iy88LP/x3U/+gOxqEosFBvZOQYcf7e9Zsc7lMybRzTPzmBo5IvdgUiAe6+aRrcniEmvxWXRMzrdhiYKihb0Ji3bHqkb1ie9yMH2wc1sbt3M/Oz5/3IvL+5txWnS4+w/SHLtE0xa9hB54+YQDceo2RPh7ed60Oo0uCx90FkFnVWo4y6nJ2Lk15eNp67bi8tqwGnSk2wzjJzA2w0dB8DfD0mjIHUMaD6WrBzxLooSIzYQBECNjrw2Y94wNlsOi266DeVNX7xdTI0Hb1j0xNzHL1ytghp+V3+NQlp2IdY9OtTMeDuN1UC0bnDYfBqbnmhv4MTYgMaqJ3pyiEhURWPVEvPFww8UgwbVHwGFYfMOvt6AqcSF5hTXXbC2H/30JMI7ejHmOxl8veFE5WsNpF9ezKgpc6nft4vSWXOp3rIBmyuRfW+sZnTlXGKe0Hsep6g7SMXFSzGnOrA4nac40uKjCqsR1JBCpMZCumk0kdxeftR5NwPBAe4ddS8lvfVgsMLo8+Cd30HJUug8NHyQUWeRYx4erHGg5wAT+ifwx31/JM2Sxo2688F6iusZ0ETVEWXRcBSz04UaiI6oU8Mx1HCU5iP5LPnMt1A0MaLJiegTNqDNdWEoUNBYToypqiozLrqcUDBALBLB5kqir6uLvdhYlpbJ1PMuJujzoShgcboIhcNcpDnIpZPTOBzxML80jfKsBAZ8If60oRatBn726hEiMZXHtjfx7ZVjONrhoccbwmrQcueSEn64ugqHUc89l45jyZg0Wvr9zC1OJslmQKMow/Yz6I9Q1eZ+9zZpH/T/kzMnPqrWfj8ZTtMH7pftil/rTb0+MhPM9LQ0kZSVjXLS81aNqWx88ij2RCNJGVXU7stm+yt1ZJW6Ttv6hRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEJ8sZCSEB7Cd9jgAvA8+cobn+A6i89uffEPR6Adi95kWWf+7LVL1jYsktX2TD0w9w1pX/h9amR2PVE/OGh3pqE0348Qx9D7rduIw5rChcwapjq4bKDRoDhc5CrvvDXvzh+AvvE3MT+OY5Y5iQ6yIaiWG2Gxi3IJv965pRVbAnmphyTgF31/wGgJVFK//pLoLhKDqtwk3jTeRoesCZy0BdC8aUQna/1kjToX4S0ixMP78ILUdh/ldBVVECAzS0d3P7K30kWQ0MBsJ885wxpDqGv/CPpxNe/hJUHd+XRgdXPgmjzvrQR158eJZEK8HKZII7u1B0GtAoEFNBp2CdmoE20UQkpOfwrjDjy5MJN7qJ+SNoHQYiXT4slSn4D3QT6fajz7QSbvUOjW0el4RvXRvRgRCKXgMKBGv6MY1JxLe9A0WjgE5DqH4Qy+R0wu0+1HAMjVVPuM2LY0EOwSN9RAdD6JLNRLr96JLj11O4xYOhwEmobgDFqAUFUOP/AtV9GMcno7HpiXlO/M4i6TqeTnyDFVcvJrChf6hcMWixVKagCcSYuPBaDEoYo0lL2dSFtDXEQyyO7n+b9OJLiR7xDO2Fk/IojOOSceano9Prz+DZ+t/mqQmy/o8nApb0RhN3Xv51nu9/glRLKjS+DbFYPI2pqxpsqTDjVtj/FBhsMPuLkD2FMcT4/ITP84e9fyASi5BhzWBcyjgUFDp8HfSVBnDUBdBnWAm3nbieFYMWjcs4Yl3O1HTaaw6jdRnj4TgnBU3ps2xorXq6m7xsesbPpGX5hPv7cLU2oHUkEukcIBoMobXF2ydm51G3cyvbVj1NKOCnfP5icqbOoWWvhwZtgP1//jmxaPzer9XpmH35tdS8+iwAaaUV5I76NN956RjJNiO3zCskwWzg03MLsRl1PLqtkT+ur+Hhm6fR6w3hNOu54YFtDPojfHlJKdVdXu5+/gDq8ev60snZXDope9heE616phUksrWud1h5TqL1w59Y8S+19PkpSP7gxzgn0QJAU5+faUBvazO5Y8YOa1O/v5ueFg+LbhhDLBzi6LbNtByx4RsMYXGcIkRMCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEL8x9P86yYfnKqq3znp3w9UVX1EVdXAmZjrP0FL1YGhAJJ/2PnyM0w/L5mXfv0jgh4P4TY3UTWG67IS9Nk20IChwIHromJ2rX9xqF9iehaKqnBx8cVcPfpqUi2pjE8Zzy/n/5KXt5qHAkgAdjX2c6TDDYBG0XBsRydJOVbOuW08Sz9dwcLryqje1k5RQhFfmfIVEowJ/3QfnkCEOcUpFCUZ4y/zJxehcyax+t79aDQw88Ii0oscbHuxFrRGWPdjWP8TqF7NnCwdX1xczJIxaXz//AoynSa0GmX4BO37TgSQAMQi8NId4On6cAdefCQ6vR7jnBQMk5Pxbm/HubIQXaoZ55J8Agd7GHypFt/j1YzVgSbTgnVxDv793djn52DIcxCsH8C+OJdg7QCWCakYS12gAU26CW25nXBL/Dfh29GB8+wCVFVFY9RimZKGZ3s7CSsK0DgMxLwhrLMy8e3pwrEoF32WlVCrB9vCHPxVvVhnZGAschKo7sWxNI9QqwdTqQtTeSK+vZ04VxSidRlBp6CfmswRayORy5NhuhN9gQPNOam8kriJjKQMnhl4EY0lfltUzDocS/IIVPcSbnJjOdxH+Ml6Qhu6SY2mMzZjLhdf/21SMvLpTGhFO9qGd2cHznMK0SaZQKtgmJiEb7KdwZD6zw61+AjCwSg7X2tm7PxspqzIZ+o5BeSMTsTVm8Mdk+4gr/4dCPQfD9EJQ/n5cOAZOPAslK6AnKlgTgKDFbvBzvUV1/P0yqd5bMVj/GXpX+j0dnL39LupSKrgGe/LaAvsWCanYRyVAJp4mIjunAI80ZHnuLu5id6WRqKKSuIVZegzrKABY0kCzrML8PYGmLwij4o5Wex5vZGkRDP6ggvxV6fh3ecksNdN1B8Py+mqO8a6h/5CZuloiqfO4PCmt2javZVlFen49m4cCiABiEYidNbXkpCeGe9bfQBPewuqCl3uID99tRqLUccf1tXwy9ePcMOsfEKRGC6LgVmjkslwmjDptQCUptv5yZrqoQASgCd3NNPjOxHiA2Az6fn2yjEUJMfDLQxaDd9YMZoxmY7Td7LFMKqq0trvJ8tl/teN3yUzwYSiQHOfj5Dfh6enm8SsnGFtDmxoxZpgpHhyKtljKoiGjoIKtXvkmSyEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII8d9KdzoHUxTlReA937ZXVfXc0znff4pQIDiiLBzwE/R6iEUjdDfVE/OEMbj0DLxej3l0IvY5WYSaPYRaPDhTM9EbTcy89CoyikoxmEzYvXZuHHMj5xWdh03noLPfzKp920fM0+WOzz3Y7Sct38HGx48QCcUA0Oo0zL+6FIvWwm93/5Z7FtzzT/fRNuDnlX2t3DHNCQ0B2PhzQguXEw5GaTjQS8OB3hP76zkpdKW/AcPhZ0lLvgW7UU+PN0RuomXkBN6ekWX99RDyACn/dG3izHCkJ2E/34W3343WoMNZ6sSzupHowIlrOniol2CalfVvtzPv0iL8Li3OylICHj8mmxl1jBFN+x6c+YfpLJ/HvrfXodtooDx1KtHOAJGeAIOvN2CuSEY3JpG3et0UT3DxVMvj5MzPZ0z3ZBrrBiiYk82AL4I3y0GCy0jD0QGKl6Vw8PB6+v3tpKTn01vViiXLwWiHhkTjX4iVj0fT0wJnzyecUMbvdw0yW0nl2QPdXDw+g3zvNpzb/8KFSXnom93oA/1Epl1NoKof6+Q03GsbiYViaJ1G3Gub0CaZMOTYGHihBgAtUFY0mb2NG+iyNlA6bzY7dr+EkqChfNlskg79hJ6qfAJJd4HV8G86i//d1JhKydQM9q5twuIwEg5GMFn0FCSnU1bzHLz6tRONa9fDBX8ESxK422Dn3yAhDyZcO9REr9FTlFA09D2khvjxth8zO2s2Mb3KIUsXSX3JKKMSiOQ4aG0YJLK3m4lL8kaszdPdyc6XVzFtziV4trVjHpeCPTGbYMMggSN9aMtcbF1VB0BqvgNDoxd/vS/eOaIy+Foj+mw75pJEmg7tJ+T3c2jD2qHxj21ex/gJ8+n2ekbMHQ4E0BuNQ9+DgRM5YKoKvd5QfJqYyiv727ljcQkOU/xPgiSbke+dV8HND+7AF44y4B8eOALQf7z/ycZkOnni0zNoHQhgN+rIS7Kg056RrDNB/Bx6Q1GyXad4nv4LRp2WNLuJpl4/va0tACRmZQ/Vu3sDNB7qYfLyfDRaDfbEZJypBsJRPw0HeqiYm3Xa9iGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIT45TmsICfDz4/9fCKQDDx//fgVQf5rn+o+RPXoM21dpUNXYUNnYs5YTDsZf7E7KzCXc7EOr0RJu9BBuPPFCucaqp/KqZcQIk1s+DoPJBECiNRGAFFsKh9sG0WkjLChN5bndLcPmLk61A6DGAAUmLc8n5Iugqiomq56Qycff9/6d0Ymjh714fypmvQabSU91u5vC/U/Fy0KNgGNYO61egyHUMazM0LSZ5JxbaAirVGQ6sJtOceklnWL+kmVgS/un6xJnUNiP0rITW/NOSB1NVHERaRyZM6T1hAm4w7z618Nc9OlE1PZDRNqP0p9UijMtH9Ohv0DOdEK+Bg5ueROtXk/xjdPQbdSh+iOooRh+o4a9nb2EDUbcsQAbutdjHdwL9dm07fdwdGcXo2dmkJhpoa3Ny+HtHZhdDra9+hTR8PCQhML8K9AcegINTwBg33MvB89bx/LkJDrX9bE40Um0N4brnR9BVzWuhk1DfYOFL2G+cim6gIGYL4Iu1UKkMx4MYRmbjGdz67C5ojU+plx6PutffZAnf/51APRGE66CKfQnfZZUSxu2qAewns4zI47TGjT4PUEmLM7BNxhCURT0Zh0aRYXdDw1vHItAVzXMuQvadsfvLToD9NRA/qxTjj8xdSJmrZl1TesAqCyejvuIjtR8B35vmIwxiQS9YQ5uaiUaiZFW4ESjUQBIysmNTzsQJFjVS7DqRFATOg1JJS6mX1CEXq8hL9uA96n6EfOHWzyYSxJJSM8YUWfPzKG2N0DJvCU07N05rC6zdDTHdm4FwGx30K44gO4TfU+6B/d4goSjMfr8YSzGePmc4hRW3ToLVVUZlWrjWOeJ55JOo5CbNDz4oqnXy8v723llfxvTChK5ZHKOBJCcYdXtbgBK0+wfqn+600SnO0Bva/y6TMzMGaqrOn6fGz3rxHWXUz6WI9vraT1qJxZTh65zIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgjx3+O0hpCoqroeQFGU76mqOvekqhcVRdlwOuf6T5JZVs7KO7/OrldWEfR6GDN3EYlZ5aDoKZo8nfaaIwRLPRgjx0MKFFB0GtRwjJgvjHegF1dmNq7snFOOH4pGOdLu5fIpOfR4gmw42o3VoOW2hcVMyXcRDkXRG7WoMZWEVDP1+7px9wUpGJdM2OrmmzO+yfT06aRYUv7pPiJqPEBkf0c7y3RGFCCx6VHGTv0i+7f5h9rNOieVhMNfHNa3L385tf0xuj0BjrR7+PrZo0dOkDYWLrofVn8JfL1QMA8WfQcMlpFtxcejejU8fQNMuRn2PY5GY8RY/Ad8O4LDmkXsBoK+MKoKoZ5OEl67GdPxutjsOyClDNZ+j4ySC5i28ly2v/IyLz70M8667DOkZ5URCoUIrXmS/Mf3kP+pO4kGE/lp5ndpt7RiyjTTedhHNByjaksb1gQjS69M4egOPTW7g0w652q2Pfe3obVMXHEh+uwxRDKnoGvdDrZU+pbcg68zgW1PHxlqZ7TqyL/qHpJfWDZsL92aFM56+ACvXj0Fi1YhOhDEVBYP/UGjoIZjw9qjgag/TFpRMQNdHThTsymYsJj+bguDGgtb3gxjsTcw7XwdWaUutBLMcFqF/BGSsux01A5ybGcnRquOKWfnEw5FaSz/BUlZr2Pd8ytQj4fn6ExgT4W0qyAwAC/fCSt+8Z7jF6t6/lZ5B5v6q+mJ+hiToGCekMThbZ3klSex/pHqoaEPb27jgi9NJL3QCUBWWRkzLr6KWDQ2cuBIDEUDFWUw8NSTeF7vw1B0CUFvGDRAJD6oLskMQE75OBKzcuhtaQLAYDYz4/yLORA00WnIpvyaz9O1eTWKRkPZ4pUMdLRjT0zGmTeK8uXnc+2qVhaWpdLY48VpMWAxaIeWcvmUHGq7vdiNWgZ8IdoGA9iNesqznOxv7OW755azak8rKHCsw801M/Kx6E9cx95QhB+8cpg1B9oB2Nc8wJoD7Tx5ywwynOYPdV7Fv1b1jxCS9A8XQpJqN1Lf46W3pRlFoyEhPR2AWEylaksbuaMTcSSdOH/54yZwcOMqFO1oels9JGd/uHmFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcQn12kNITlJiqIohaqq1gIoilIA/POEi/9ieoMJcsZw7jU6oh1VHGwtQqNLwNNTR8n0WRRNnoqSYEZrMmKdno7WZiAWiKKx6FBDUSIGPxXzF6EoCn2BPqr7qukN9JJrz6XEVYJWUXh8exMXTsjiS0tKuGVeEUadhlgshtOk5+CGFjY+eTS+GAWmrSwAjcLbz9Ww+MYxXDJp7PvbiAopDiN5SUX0Z92F6+VPYWh4lalFNgovuQKvcRQOl4Zkax+KZxL014Gqoo5aTKjsAsxtGqYVJDEu24nToj/FgTLC2IsgdxqEvGDPBJO85Pxv4+mE1+6Of7alQuchlJKl2HMaCLckE24LgALacSlUNQyiqmBNMGDpXj9sGI2iga1/AsDvGkfrjnqmnHcxiqJw9OBWtAkmDNt3MJCbQqDkPLT+ALXvtNPV6Ce3xMn8cVvIvSCJbsagDfaSoqnC9cqVXLjobrqM0wlps1nxhUJ6W9vQGhz0tprQN+3n0MK7aIh4UFQHOt8oWtY0DltX0Buh2ZOLZdQ5WI69BHoznRNvp0pbiqrW8VB1O3cuzcLzSjOoKvosG+EOH4YcO6EmN2gV7HOyQQtqSENO2jxyb1zA1peb2LcuTGEl7FvbHD+UfUFe+u1eLrxr0lBAhTg9vP1Buprc7H49fn7L5xax/vEj+AZCACRmLWHyRctJPfBLnLUbIbMSXrwdBpogfw5c+GcwWN97gp5jlDbtplRvgb4OfBYNz71Qh9lupHZ311AACcTDG47t7Bw6xyarjekXXoq/uR/FqEUNRofa6nPtaBO0tNz2Dfw7dqCYTOTcfxOGvIR4QIlJR7DNjSE3fg+MhsMUTZxK6Yw5qGoMRVHQAAXeOtqamwlaUvDMvZb8jCSuevog2QlpTJv9GZrcUXKsaXx1uYMNR7pYPCadqQWJKEqMZJuBleMzMeg0nFeZxbFOD9958RB7mwdwWfT84IKxFCZb6O0L0OMN0usNMT7bidOso8cXHtpLU49vKIBkqKzPz7EOj4SQnEE76nvJcJpIsRs/cF9VVUk169k6GKQ31kRCeiZaXfy53HiwB09fkNmXFA/rU1A5GY1yHwAtR/olhEQIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ4r/QmQoh+SKwTlGU2uPf84HPnKG5PvGq2gc51j7IKPUAyt6/UDLlh/THkohFe+mqb8BkszPY2UnJ2BmoHX6875x4mdt+Vib+++5D/dlPafMP8ts9v+SluheYlTmLcSnj6PZ3k6YbzcrxGXz/lSqMOg0Os56sBDM3zsynv8PHpqePnViMCttfqWfikjxiUZVoOPa+9hCOxvCEYtiMOj7z0C7umJ7LJec/gLnuDbSOLBKKksgyBVCCA/DMDeDMgblfBkDpPoouFuDJHd0sK0+nOPVfvLjszP7Ax1icftGgD62/n1DxBXgcC9BNNeGgGf3Wu0nOmkd4/o14VSeb1nbTfKQfs13P4kuTsL167/CBNBqIhkBnpMVrpenAWpoO7BuqTiss4lDtIXpbm4fKZl9xG4PdZhqPBOgqL6Nw07k4F3ybYLAFtCl0T/4pkaQsAn1deHqa0ehSObjZRsgfAkJkT53Jw61/Zk3dGtKt6fx87O9ojqm8W7cvxj3+z3Ddoltw2qzc+UY/ZRl+bppdQLa2F0fdd7Asu5qgLRdNVib+vhD2ZBPK3m4MaRZ829uJDsbDLjQKWC8poavRR9mMDI7t7Bw2l6pCZ22PhJCcZgFPmJqdXQC40i30tnqGAkgAelv81NRbeT53NLfMvhP7o5eDrzteWb8xfm0u+QHu3gCe/iBmqw5nqgVFUeJtNDpo2QGN7wAwYFuOpz9E2YxMmg73jliP+q7rTKPVYs1LQndDOf2r64i0ejGVJeJYlEektQ7/jh0ApNz+DQZe6SDmOR7uoYHkGyrQJZgAaDywl52vPM/Es8/DYDKh1Rvoaqxn67NP4O6J77942YWs6qzgziWl1HV7yEwwc/mcZDYf6+Enr1YPrenpXc38/soJLC1PZ82BdtoGAlwyKRuXRcfe5gHSHSaSbAa+8PhuHrppGkc63RSm2DDr/SRYjexp6mfOqBR2NvRRnGpFURQUhWGBLABajfIhzqh4P8LRGJuOdrNiXMaH6u/b1Yl5ZxcDhOkYbCUlM5u+QB/rmtbRtUmD2ZFE/rjkYX30JhOFlWU0VntpO9bH+IU5p2EnQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDik+SMhJCoqrpGUZRioOx40WFVVYNnYq7/BE09Xmq6vFBSBGXnQNiLOUFHf1uIxoP76G6sByDDVoShLjKsr2djO7YFK+j2hljXsI+X6l7gstLLaPO08fyx53ml7hWybNmcl30bN88pQFVBp9XQ1u9Hq1Hwu8MjXoqPRVRUFUxWPQlplve1h9Y+H2a9wpZj/XxpmplrNC+j9SZDViWqRkfMaIJgP7hbYfD4v6atQ/3tZeeyv8XA/pZBdjf1c89lE7CazlQGjjgdvGGILH+ajW9qad7ooXDCAkZVJqBx3EBCYDeJ/a9hPPgc8ypuwD9nArbON7G3d4M1BYLuEwMNtkPeTGg/QCAYHjmRogwLIAHYs+ZRSmZ/gUOb+nHHkvFf9DDbArm4zEnseKqOmRcm8MZvv0/Q6wXAYLYw49K72PpCfN6jvqO0eFr4+cxfoj3mYv+jvYyemcGeN5qG5tCbtOiTjLy1zs1bNXD7TD2PnBXEFjyI25qD1WhEs/UNDMFeDmf+ko0v9Q31zSlzMa/AMRRAAoAKwc0tjJ6SRtAfwWTT4zu5HjDoT7F/8ZGEQ1HMdgP9HT4cyWZ627wj2oTaFTaGd7I4ZTKVZWfDrr+fqOw8REtfKq/+Zjt+dxidQcP8q8sYNSkVrVYDqEMBJAB6s4Hp5xex761myudk0lLdP1SnKFA0MfWU6zTmO0m+oQI1EEVr06PoNEQHDaDRoJhMKLZcYp7AiQ4xGHyrEUOeA41Bi29ggMkrL+Tw5g0MdnUAoNHqmHv1Dax/6K+osRg1r69i6pVj+N7qKh6+aSqzRqWwv7mfezfUDFtLlztIbZeXjUe7uXp6HoFwFINWQ2VOAgkWI019PjrdQZZVpOMPRVm9v52ZRYnMLk7mmZ3NjMl0Aipba3upahtkRmEi107P48G3G4bmGJvlpDjN9v5PpPhAdjf24w5GmF+a8qH6B6p6SCIeEtPSOUDixFFc+MKFdPu7wQI3TPk8Wt3sEf0ql51D3YHNNFeZAYiEQmx/8Rnq9uykaOJUpp5/yYkAHyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII8R/ntKZAKIryZVVVf3r867mqqj51Ut0PVVX9+umc7z+Fy2okxWFi0JKHudBFV0cSdo2OaCQyFEACoFE1I/qqoRjGkjLW1vbRFezFqreSZ88jy5ZFojmRYDTImKQxDKgHmVW0kAe2NJBiN5KZYCbBYsBuNmIwaQkFokNjGq067IlGJizJHRFQ8l5iQDQWQ1HgiuwetA1ueP03ACiAYd5XofQcMDpBo4PYSWEqikLY4ALi4QBvVHXS0Os9/iK7+KSKaq1s3WqmuaafgvHJgMJrfzsGgEaXyYrLi8mdkUZC1QskDG6B9ArYsxamfxYaNkPDFsiaCKPOgp58cGSSmeCMJzWoJ647ndE4Ym6/ewCDKf45Ud+C+bnrKDh/I6v/cgxnioWWqq1DASQAIb+PzrptOFMnYslQ6Dc3Mds2G2t/EntWxcNDBjOtTFmRT8uRfqwpJlLGJdFnhKXlaejCbq7zP4Rr1cMA2IHw4h9AYhFoNBzPfBjSXjdItDxxxLpVT5jMhdm0HelnXKmTdY8dheNbtSboSU/5n81iOmNsLiOl09Nprx2gq9HNqMmpdDd5hrUxFkRpam2iv78OylbAnkcgFr8neirv5PVHm/C74wExkVCMNx+oIinTSnK2HYz24RO68tnxYD0BT5ianZ3MvLCIpqo+DGYtY+dnk1boeM+1ak06OCl8yZCXh+vaaxh84UXU8MjghthgGKLxCyhv3AQa9u0aCiABiEUjVG/ZQN64CdTv2UksGmVUkpG/XjuZKfnx61MBwpGR9/lITOXaGXn8aPVhosefA5U5CUzKc/HYtnhYz5tVndx//WS+e145e5r62ds0wMWTsslMMLPxWDe/e6uGaEwlx2XmnssrqcxJYMPRLibkuJhbkkKK3fSex0J8NOuqO9FpFGaOSv5Q/WPBKMnE/+ZwKwYe0b5JKBriTuv3eKz17zym/TNXeleSbk0f1i97dAWOpE143Ro2Pv4UR995nb62VpKyc9n0+N/RaLVMOfeij7w/IYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgjx7zEy9eKjufykz197V92y0zzXfwyTXkNFloMNrRp6lBx2v9pE65EBNDr9sHaDoR4Ug3ZYmbEkAU1uMnXdXrTRVMYmjcVmsPG73b/j+WPPs7puNb/Y8Qs0WpVVe5o4tzKDt2u6SXeYSLDocaZaWHbLWKwJBiD+wv7MC4o4uKmVt5+roa/D9772oANqu32cVeLCoNfBzr8Nq1c2/QI1GgRLIsz8/LA6ddr/8dP9lhNtFdBoRr5wLz5ZIlEzdfsHAEjJtVO7u2uoLhZRWbc6jE+bCSE/jD4X6jZC6dmgaMDdDkt+EA96eO0bEA1Ax0HSYg1c8OkbSMnNx5aYxMSLr8GWVYBGe1Iwg9nCzMtuJODRM2uJlbSmv0AsitLeSCQUIyXPzkBn64j1evvaKL8okbbxe2kONfCnfX/C13UiDKd2dxe7X2tEq1ewTUpic6+bO5/ay8yiJL4zQ4er6uFh4+nf+h7hBd+Etr3kjjIMqwsHo6gppnjCw0nMU1K4dc0hvlfbRpK9igsvDTFriZmF5xg4b1ENCYnDf9/io7O5jBgtWhZdP5qKeVlkFidQNDEFjt9nys9KZ7P6Oho05IYC0NcAjux4Z0XBl74Ab39o2JhqTMXdezwwJqkIChYM1bk9egKeeGBJZ4Obt5+vJRSIUD4nk6wSF1rt+3+sagwGkj71KTK++x2MebaRe5uZgcYc/22kjypGoxl5/Xh6e7E44oFOKYUlvFIXwmzQYtDF21qNGq6dkTd8XKOOohQbj2xtHAogAdjT1I/DrMes13L7omJ+eEEFXe4goJKZYKYkzU6SzUi/J4iqqkN9m/r8/PTVapaMSedXl03g2pn55Cdb3/dxEB/cuuouJua5cJj0/7rxKcS8YZKP38AakvQcDdZzx4Q7iG1L5mrdZ4moEe4/cP+IfoqiMPuypQDseGkzWp2ei+7+Htf9/PcUTZ7G2888Tsj//v6uEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQnzy6f93kA1He4/Opvv/PMOk0+MJREqxGqts99LZ5aa8ZpHRaNoqiQVVjAGx8+SEu+b/vwm4/kTYvpnHJ2Gdn4VUg3WHiD+uC/PDSW9nW/Tqh2PCX5l+tf5U7p59Fe3+Ecyuz+MVr1fz9pqkA5JQlsuzTY2mq6sXbH2TTU8cIB6MAWBzG97WHTk+IUESlv7cHJeoe2SAapn9wEJfFgFKyDLImwmArqj2Tw2oeDz7UNNT0yqm5FCTJC+qfdD5VxZlmob/NSzSijqh39wQZNOSgTv4sEe8A4Um34+1uRKdx4Zx+B1p/L7Fpt+PraUFvsqBbOJ3+jmY0FjNTPnMHYVXPnq4IbX6FMTfeRdfaZ0nOySEpK4fDm9/A7kqktGAM+tp9AJg1AyhKKu21A1TMnkPd7m3D1lM0dT5fOXIbZxeezfOHnieqRomah/9OIuEYIW+AfncvP3+tlrtXjOa3a48xe6Gb5HdvMBJgQJ9C88KHyLD2U7kok31vtaHGVIomp3BMC/kXFRDb0I7qj2CaksJbevj60iJcgUa8qGQkdJPS8Qge0mhKXYHfWEDm6TxJAjWm0Nfuo6fJQ1ejG783zJQVBRRPSWNPeCv2bAfbtmzid2M/S8GbP4Oxl8DKX0P3MUjIxmRMwGgdJOg9EViDArbjwU2YXfH2VS/AsTcxOa1otAqxqHp8fpXO+kG0+g8XMKNPSkK/aBFqOIo2IYWBNXXE/FHsc7IwjU0ZaqfRaEktLBrRv3jGLBr37SF3+nyCo+dypDZMcap9qD4UUSnPcvD1s8t4ZX87OYkWLpyQRSAUobXfP2K8SDTGbQtHcd/GWvp8YX556Tj+uqmeN6o644dGgR+cX8HSMen8Zm3NUL+tdb30+kJYTaf7zwrxbp2DAQ61DfLlZaUfeoxYIDoUQlKfqCPTkkFJ5xQ2DB5j8fyJHO49m1XHVnHHpDsw6UzD+haMz0eja6By6Y3Mv3osihIfZ+p5l1CzYytVm9YzfvHyD79BIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgjxb6M5zeOp7/H5VN//N3j6KDYNMt7QQqYlwuMH28irSKJ+XzehoMqyz96OKyMTncFI0eRphKxBkq8rJ+32ibhWjkKfbEGn0WAzaZlTnMoruxRixEZME46GcQciWA1afvHaEeaWpGA76WVwZ6oFa4KRQ5tahwJIRs/KIL3Q8b62YTHqyE4ws6cHVEsimBKGN3Dlo3OkwstfhPuXwBNXw+ovozx5NaN0HXz//AounpTNry+r5PNnFWP8kC/si4+PxaYna2EmWr0GnWHkrSK9yEFt2Mh3DybzVngMN6+FJ3pGcURXyl3b7WyKVXDzGzGqbZN4vieLL2yxcMA0kV5XJQe6ggz6/dhCnSy3HiXFESX1oltIzsxkwyN/o7O+lprdO3j6z4/SOf4OABK61rDkxgyyi5vw9LQy+/LrMNsdmO0Opl14PZrcRHIcOWg1WmLHg3328g7JJSdeoNcZNMyaFyMa9vDp6ek4ogNkOE1YU/LBYBu2PzVlDNu6TdxX42K7387zUS9zbh3NmOsK2eSM4I/08LW9DTQsSqVmSQrf7OhjQnaEya0PUfnKSopWnYdlw/c5PPoLXFR3Diuf9bGrsf+Mna//VWa7nrA/SsAXoWRaOmPnZXNoUyt9/j6+e/gbKFEfj5hGM+OVb6G42yCtHJ66HlbfBY9dgePJhSy6IhetPn6NKwrMvqiIhDRzfIJwADr2w/b7IOIj+dBPmLoyf9gaJq8oICV7+PXzQSl6LeYxSaTeUkna5ydgn5uNzm4Yqu+sryXgdrPwhs9gT05BbzIzacX5jFm4nPIb76K5/GxISONXl1WSbI+HS3W5g9R3+7Abdayt6mRGYSJqLMa2ul5cVgOLRqcNX4MCLouBtgE/fb4wADqNZiiABEBV4WevVhOOqei1J7LFxmU5cZr1H+kYiPdn/ZEuAOaVpPyLlu8t5o/gREGjxhg0mbmo5GL2vt5CSq6d7NEuVhatxBfxsaF5w4i+Wr2GlBw7fe3hoQASgIziUlLyCji47o0PvS4hhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPHvpfvXTT6Q8YqiDAIKYD7+mePfTe/d7XgjRbkfOAfoVFW14nhZIvAEkA/UA5eqqtp3mtd9+vW1QDQMnhY0O/4KDVsozJ7CvWfdRl9zGzpDJtFAB5sef5C8cZUUTUqgft9uEjOzySodg8ZhHBqqrd9PolnPeZWZ7GrspzxtNo8efnQoaAHg3ILLuOGBPXxn5Rh+cmEFjb0BbIYTp9ds05M/LpmVX6hksNuP1WkkLd+O0fL+XhovTLbySE03iwqMKDEzLLgb9j8B1jSIhlAn34hOAaX7yIi+WnczRSkTSXeYSLEZSJAX1f8jpNhNZGf4KbneSjg4yPwri9nyXB0hf4SUbAvzZg+QFDrE9OgaNG1mVk6oRLvnYdSsm5lr3Ya2uo+FE5aiWf8VZo+/nGuSa9EeqiY29nImHHwYZeZtsONL4OnApdHivfgZHl798rA1RCMROgYgLa2c0MSb2PHIX2mpPgyANcHF9IuuIHnUaFZ1vsZ9W7/LwtyFjEss54Ki83j62LM83PgAF433MW3qPArUBFIDu0nUhVjhSGZF0xNobGVcPNaCdvse1Av+DGu/i9J1GDVvNsqEq1geq2KpdQvadpXlBVPQvPNNlIoLmGM8iHb3YeaMvyJeVrSQmSl+tF1ZsOUnJzbQV0fZ9rupSL6bmi7o9AQ/zlP4P0FRFMrnZtL39FF2vFKPRqcwemEKT7j/xlm5ZzG6qx5zRxUkFkDZCrBngjUVrCnQcwx8PeTp3uGyu1fibuvGEqglofoOdOsroGw5hP3w3Gcg5IX+RvRN2ygv15B665dx94axJZlJKXChN52ex6nGcupxBrs6efOv96LV6ymeNhOjxUpSbh5WhwNtNMLYbBN2k25YEMih1gEOd7jZ29TPVdPzCISjjMlw0NTvp7bbS2GKleUV6bx2qINUu5Gb5xRQmeNkc0330BjuQGTEWvp8YQLhGHctLeOZnc10ugN8ZVkZoWj8mVTT6WF/Sz+hiEp5loMxGY5hYRXig/EGIxxsHWRynguNRmFddRcpdiNjMt5fiNi7qTEVNRBBQUGv8RILOxjvm82OrnaWfaYCRVGYkjaFJFMSa+rXsCR/yYgx0gudHFjfQjQSQ6v7R4CPQsm0WWx+6hG8/X1YE1wfad9CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOLjd1pDSFRV1X7EIR4Afgf8/aSyrwJvqqr6Y0VRvnr8+1c+4jxnnqJCsB9e/iJ0VceLql5ALVlG4mufY96kW9nrqcQ30EfVxreGuu19fTUV8xdjcToBiMZUFEXBaNDxlWf2U9ftZVq+k9+d83ueqH4cb9jLstyLeXqTFX/Iy/dfruLnl4wjyWbCaTEMW5LFbsBSlvihtqPXani7tpcKqx7CxyBzIujN0LwDUkrAkoQ7FMWSPQWatw/rGzSlcMV97wx9/+Wl47lwYvaHWof4GMWi5He+iS7qh8FWsKeRc8MsQmEjtpqHMXmTYNNDKEE3zPkS2te/AROvRdn6R7S9NXDW/0O7+ktQsgyOrEbbsAUWfQdN/XqY8VnY8DPwdAzNpRmoR2c0jliGNiEDim6j1x0ZCiAB8Pb38dYDf+LKO29lcUYx5ebPkuLIY1RXPaXJUym2ZfNi81oM5hiFib2U1q+B9ApoPYQm2wm50yAcQJtUAIE+lOatMPcuMDpR3K3QcQAlqRhtzkTob0BrSYC8GdBzFG1iAaRVoH35dkgfC/11aPc/DUt/OGL9uuZ3WH6WnlVVkJdoOUMn63+bM8XCkhsraGnrpMnbyKrOBylNLGaZawzm3kbImgjmRMidDlor5M+CoBsmXgcHnkEx2nDpO3C9ugAC/fFBM8rgyWtgxS/jASQnMR18kJzcCnjrLtAa4OY3wTrujO6xq6GOSDhEJBziwFuvA5BWVEw4cwwX3r9nqN11M/K4a2kpNpOegUCYgmQrv3+rhrXVXdiNOgKRKOGoyvfOK2d0hoPK7ARunJWPWa8l0WrkaJebmUXJvFnVCUBmggmdRiESU4fmmJCTgMui54evVPGHqyaQ6TTR2h/gzxtquWBCFlf9ZSu93hAARp2GRz81nUl5EkjxYd366C7WVXdx64IibltYzFvVnZw/IetDB7uooSioEFNjxAz9mCPJ1L3hxpVuoXB8CgBajZbFeYt57thzBCIBTLrhOXLphU72vtlEd5OHtIITYSgFE6ew+cmHqduzk4r5iz78poUQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxL+F5t+9gJOpqroB6H1X8XnAg8c/Pwic/3Gu6UMJ+UFjhIHGoQASAOwZ8ZeGLYkYd92LXjvyBWI1FgVOvOxd1+3BHYzS0OOjrjv+Ivz4bBcJSjnnZnydQOPNfOMRha018brBQAS9VsMT2xvxBMKndVtzRiVTmKiHvFmw/wl44XOw6wF49esoa75Cis2IOuFaSC6Jd9CbYc6dbB8c/vL5/3vhIE29vtO6NnH6eXta0IUG4M3vwPb7YO33cbxxE8m+TZgO/R20evB2Q/ZUqFkb72RPh55jkDQK2vbGyzLGQcMWMNrBkgjuNug4AO37hs1n3nYPs887Z3iZ3UF6Zgq8eCtq0HPKdSo9Ryl76FIWmrMY+9SnMG/5Lem1G7hyzQ94sC/I13a9SOmBF8GVD8//HyjA+h/DWz8Eow2euRne+QNsvgdevhOifnj5Dug4BEdfg1e+BNYUWHUrbPw5bP0TvPH/wOQAVBi1CA4+f3zBpwhayBhPotXA7YuK8QRP729SnKA3asnPz2BO+TR+WHkrn6rbR07z7vg5f+deeOsH8MQ1EPHCzgfgwDPw+jdh6qfi10Z39YkAEgCDBTydYLDF72Un0xkhtSz+ORqCzkNnfH+KduTjWo1GeXh707CyB99u4Ehn/LdSlGyjdcDPyvEZALiDEcJRFaNOQ7bLwvjsBPKTrZRnOclIMOMNRWjp8/NObQ93LC7GYdLxzM4mfn1ZJVkJ8WMwrSCRu5aVMuiPX8ubj/XQ1OfntUOd7Gvu482qjqEAEoBgJMZfN9YSicbOyHH5b9ftCbKuuguAe9fV8Ie3juELRVlWnv6hx4z5IwDUWhqIGdxoo0n0tHiZtDwfRXPi75I52XMIRoPs6tw1Yoz0wnjwSHvtwLDy1PxCrK5E6veO7COEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIT75dP/uBbwPaaqqtgGoqtqmKErqv3tB/5JGA0RBZxpeXjg/Htqw4G547RtkmQfQGYxEQsGhJlMvuBSLM+FEHxVUVSUcO/EC96ziFNr6g5j1enY0DBCOnggtyXaZcZr1HOn04A1GsJn0p2lLCqVpdpzWKLhbYMf9wxu07kbTWQWZlTD+Cgj7wWgnkDGZ2x/xDms6GIjgDUZOy7rEGRQJwI6/Di8bbAVFG//8j/+DbnBkvqvMAyZn/HMsFg8siUUhHIgHktgzIH0s/sSxuG2l6FU/CdUPU5Bh4qLP30rd/oOkFBRiT82mv+ko6rRv47JrSc3JobPpROhC/pgxuHq3g9EBLbvia5l8E2z7E4T9GI69ebzhHNj0i/hnswt6aqB0eTyI4mSJBbD3CYhFIHcarPtxfK29tfFr+h/UGOx7Mh7AEvLGA1b8ffF+lVfBnkfi7SxJMOFa9CYLD7/TwA2zCj7CCRHvl6HjEPi7Yf/+4RWBfmjZDrkzoXFLvGz7X+G6F+P35pP941qOhmHpj2DNVyASBK0BlvwQTrpvo7ecsb38Q2HlZLY99ySxaHSorPKcC/nha/0j2vb74iEgZRkO3IEI6Q4TZr2WtYc7yUgwc+74TAqSLWS54sEiW2t7+PIz+2jo8fHA9VN4o6qDw22DfP3sMopSbDT3+fjRRRUoqkJTn4/Ve1tJsBgAcJj0eAIRmvt8ZLvMtA8GRqynsc9HOKai056BA/Nf7u2aHgD+fuNUvvjEHn6z9hi5iRZmFCV96DH/EUKywbkTTcBJ0GPBkWKmePLwP68mp01Gp9HxTts7zMycOazO5jJhcxlprxtgPDlD5YqikD26gpaqA6iqGg9eE0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ/zE0/+4FnE6KonxaUZQdiqLs6Orq+vctRGeESBgcWTDuspMWqEHtb4B1P4I5X0LJHM+C6z5FyfRZZI+uYNZl15BeWDxsqMwEIzqNhsJkKw5zPDNmwB9GVVV8wQg/uGAsCZZ40Ei2y8y3zhlDny/MBZVZpDnNBMJR9jf388ahDg61DhCKxPiw/JEISsgffyk/dooQkWgwHupQ+xaoUWjfj2H3g8zPMw5rVpnjJCPB/KHX8d/oE3PtnkRnMMUDNt5NbwZFge4jkDsD2vZA/ux40Ej9JhhzHrjbwJUHBhscfgkmXhf/Xbhb4mMcfpmumT/iqW0KDz34Bg89uYsDpd9CiYbJX38zs2aX0tfWytM//i7P3/8YD//9LTq7vKy46gJmnL2UzJIy5pyzhLMmOTAefQF0BggfX6tWFw+LGLaZk/aiHv8N6MwQ8ozcW3BweDu9+dTHITgYDyg5+CxM/VS8rLMqPuaCr8Pcu2D8FQxq7Nz8bDM93hBjsxwf6Bz8p/jEXb/RYDwY5N3nFyDoBWvq8La+XkgbA3mzTpR3VkHRAjDaYNufYc6dcNa3Ye6X4uE80eNhG4mFkDH+zO4HMFqtnHXTZymaPI2c8nHMuep6EtMyyEwYHnZl1mspTLZS1+VhfXUnJr0Gh0lPYYqVq6fnsXhMGloFIsfDqxp6vHzq7zto6PEBoNXAd8+tYMAf5qvPHuBw+yDJdhOvH+rgV28cwR2IMLcsld+tr8Fq0FKR5SAzwcxFE7OIRlXOGp02Yu1XT8/DrJcEkg/jQOsAeq3CzKIkfn7JeKYWJPLTi8eh1374P9/UQPz5vdtcjSUSwqcqVC7JRfOuMS16C+NTxvNO6zunHCetwEl77cCI8pyyMfi7u+lvaf7QaxRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEP8e/wkhJB2KomQAHP+/870aqqr6Z1VVJ6uqOjklJeVjW+ApOdJAb4Upn4Zzf4c64zbU0eeidB+FmZ8Hfy911bW8ft/v6G1pBkVh67NPsPeN1cRi0aFhjHo9FoNCJBrjD1dOZHlFOsc63AwGwuh0Gv6+uZ5vnTOGX106nk/PKeTNqg4seg3jsh0Ew1Ee3FLPyt9t5ua/7+Cc327ihb0txGLqB95OU4+HH79STUOvF2zpULRweANrCiSXwJbfxMMb9Bawp6FJLuRHc/TkJsZDR2aNSuInF43DadZ/pMP73+YTde0eF7KkEZp8y/BCnYmQNQvPhY8STC5nYMItuJf/Dl8wiueCh/AXLKKvcCXuc/5EtzeM57z76R9zNeGsqYSW/4po4igAgnlnsfap5+hqagQgHPDz2t8fotung5X30OXWsG31mqFpo5EIrz6xCn33AWaWaLn0+pVMbf8NCTt+Fm/g6YS82fFwlLqNULZi+LrrNqFOvun4FxWMDqhZC6PPG96ueSex8VfGP/c3QeoY6K2F9HEjjk9s3OUMll/NwNQ76TPl0nPFVhocl9NR8W2CrnJisSih7Bnc25iH06Tnt5dPYGpB4oc6F590n4Tr19MXoPlwL23H+gm4KmGgBcacP7yRooGcaVD1/ImyCddA+z6wpcIFf4SL/goL7oYJV8PZvwBvN+TNjAfbtOyAcCAeuhP2wDm/gqueiQfunGGN+/fy+p9/i7unm1g0yubHH2b3K8/zl2smMDnfBUBRipUHrp9CpzvIyt9t5sYHd9DQ6+Xu5w/w49XVvHqwnYfebuAbqw6yvzUeHtHU62MwcCJUqqrdjc2o5WcXj+M3l1diMei4+cEdGLVarp+ZT7rTyPoj3dy2sJivLCsjyWrApNGQaNVz17JSpuQn8qvLxpPtMpNkNXD32aNZdIpgEvH+HOvwUJhsQ6fVsKAslSc/M4PphUkfacyYP0pACVJnbCM5bAcFUsae+t40I2MGVb1V9Af6R9SlFzrw9Abx9sdDn6IeDx0/+jHGb32fpQfqaFuxktavfo1we/tHWq8QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhPj46P7dC3gfXgCuA358/P9V/97lvE86AyTlx//lTKa5y81tT+zkmVlXoH3xVvwLfk53dQMA3U0NQ93aj1YTCYYwmOOhHX3eIEc6fQQjUXo9Ia6ZnovLrGdLTQ92o47rZuXz97fraez1c9boVM4em07nYIAtdX3YTXp+subw0NgxFb7x/AEm5rooTLF9oO0MBqK0uwPc8HKEN65zop/3FZTkEjj2RjygYfKNEHBDQi5kTYK13xvqayzYxOqb/0xXzEGK3YjV+J9w2YmBQJTn/fO5Zl4CzkMPE3UV0TH2M3x3j401Bzr48tJzueeZY0zJz0CvVVj3ahd3LFrBH1bVEIxEcZgrGVwXxqgr5uHrxzFB30TU2wuzvogv6qD5pbUj5uzraCNj1+14J/xsRJ1voB+/LoH2qIOHdhq4csbPGVXzIBpFJVJ5LdpYDO2S70PVi5A+HhKLoPplSCqG/FnxAKAZn4Njb6Iu/wlUr0Hx9RBb8kM0ex8hZEyipvTTPH0smasW/J686vtRJt9IrKMKXcNmoit/h7LnYQj76Rz7GTxp83inNcLT+83cXpnH0T/WEfJHgB4qZyYzydCBadNV3HHh/dy8eAVJdtPHcNb+N3W3eHjlD/tw9wQAyB+XzNzlv8fe/hrM/xpUvQDmRJj6GXBkQ/FiCAzG/+84BK78+EAJufF/J4uGYcf9UPvW8YKX4yEkk2+E1NEf3x6PPyc662qGyjrqapinDfO366fQ4wnhMOvQaTRcdd9WPMF4sEiyzUiXO0gkprK3eWCo76A/DIDLYkBRQD2eTbX2cCcFSVbqe3xku8wUpVixGnX8ZVPdUN/Lp+Sg10JhipXbHt/NrfNHMb8shdwkKwAXTMhmXnEKEVUlVa77j+Rop4ex2c7TOmbMH+GgpYaoEiM9kEmNAj2+EOkJ5hFtJ6ZNBGBv117m5cwbVpdeGF9Xe+0A2Y5Bmm75P8KtrdiXLGH34X2kWR1oXn0V95tvkvWLn2ObO/e07kMIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQpx+mn/3Ak6mKMpjwNtAqaIozYqi3EQ8fGSxoihHgcXHv//HSU4w8/Wzx0LdOohF6dcWk1ZYPKJdwYQpQwEkAJFYDH8oyhef2MuqvS1sq+vjnrXHyHSZ8YSi7G/u5+rp+Xx75RhK0+z0ecPsbR5gWXkazX1+Yurw8QPhGJ3uwAdef5LdwLLydBRFxd24D6WnDqbdBpc+CvO+BhnjweSASTfAtvuGd67bgLX/CPnJVgkg+Q+SZDWyb8DCgk2jucv5S24N3cYetYTFo9NRFPCGYhi0Gvp8IfRaDaoKne4gLouemAr9vjAxFUpTbVR0r0Fz/xL0T1yO9uir6HMrSUjLGDGn1W6HBd/AmV0IijKsLjErB7VsGc96ytnRFmFNYDS1S+7nav+XGP24iQfqXQQOvAw6M7TthsatBBd8Fzzt8OrdsPMB2PsYpI1FKVqEctFf2VlyO2dtGcPmuY/ymdiXOedlLX/d0cvZbyTxBeN3ecexjJXHzuUr6uf4dfck3p71FzbOepC/9E9g9TE/v3nzGBeWZ9L6ZuvxAJK4PVt8dCetBED/+tdJYgBxZkSjMfa+2TgUQAJQv6+bti4bFJ0FJWfDJQ/Bil9D0A9HV4OvF3Qm2PAz2P13CHree4KQ56QAkn9MsAmC7jOzofeQXjTyeZE3bgJmhxO7SU9+spVEq5FOd4DDHYNDbRp6vCwtTxvWT6tRyHZZAChKtfHFRSVDde/U9lKcZmPh6FTSnCaC0RhfWDiKSyZlU57p4NYFRSwancrrhzq5+q/b6HKHSHOY8Aejw+ZItBklgOQjisZUWvv95CZaPljHvgao2wiDbaesjgUi7LFUo4lpyPKmANDlDp6ybUVyBTpFx+7O3SPqUnLsaHQKnduqaLj+BmLBAHkPP0z2r39FbNFC9mUlUbjqefQ52TTd+jnca986xQxCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOKT5BOVCKGq6hXvUXXWx7qQM8Cs1zG1MAl1ZwiSihjwJ2B1OSmfv4hDG9aixmLkjZtA8bTZw/olmI34wxGyXWb2NQ+yrzn+cnmy1cCc0lRQFFr6fETVeNpIhtPEgrJUxmY7OdjqxqSPh0OMSrXRORgkpqof6sXwdIeZpeXpXDYqSlLP2/GX9//BngGXPAjJJeBug7Bv5ACh4S/5x9QYsVgMnfYTdQmKk5gNWu5aWsqXn97HUwf6Meu1zC4NUZpu5ytLy+j2BPnhhWP5y4Zaphcmsv5IF0/uaOLLy0p59WAHe5v6GZft5EfzbRif/caJgTsPYXvuKhZd8zjP33MPkXAIgLEzp5La/Dwce4Hk8//M2bd9iTfu+z0hvw9negbLbv0iaRmZfDk9g88tDGE1GOn1Bunxx4jGVL63yUNg9re4PM9LQ2cf+x1pnD9Qg7Fl14m508dBQg7ewW78ioOvvNxAXbeP3oiBTXVuosdTewLhGLtag5S2BlgxPos0h4nCFBtl6XYaerwcfPsQ4ajKbWeNYpTZxK5W74jj5w1Zj3/ohsgHD/4R7084EKX1yMiQl+5mNyWGnfD8/50oNDpg5T3QcQAiJ4UuKArhaBidRofyj/AbVYX+RohFIGcqNG0bPoEaOwO7eW8ZJWWMW7SMA2+9TiwaJad8LOVzF6LT64e1sxq0zBmVwoajXZSm23nw7QbuWlKGVqPh9UMdZCaYuG5mPqWpNgBMei03zipgZlES7YMB7EYdD29t4PVDnUNjXj09lyun5tDtCeGyGrjnjaPsax4g0Wrg03ML0WsVbCbtx3o8/hf0eIJEYiqZzvf5zPZ0warPwtHXjhcoUHERnP0zsCQONYv5I+yxHCbVnUdmLACY3zOExKwzU5ZYdsoQEq1eQ1q6HvMD3wYlSt7DD2EsKgIgZ0wFx7a/TdBqIe+BB2i88SZa7ryT/Mcfw1Ra+kEOgxBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE+BhJAsTHTJlyMxx6DgfNvPComakrF1FQOQsVlVgsgcSsvGHtTQYtOo3C9TPzefNwJ3sa48EOy8amc6BlkCn5iWw40oU/HOWsslS8wQhnj81AURRC4T7uu2YydpOObk8Is15DokWP3fThTvuMokTU1iZ49f7hFe426DkKudMguQwKF0DtWyfqDTZIPvHS8f6u/TxW/RjNg81cWnops7Jm4TK5PtSaxJlVnGbn91dNpK7bi8uix6DT4A1GmVuSTEufH5tRx/cuqCAciXLvVROpanejqHDn4hL6/SGsBh1JmgYIvSukI+zDZfBw2V234+3rw+RvI6nzLUzH1gCgfe2rpF+/kat+fA8hnwd7UgpWZwJ1A3W8XPsyW1q3MD97AdPTFvLDCypo7vPjC0bocAf57GZItifyyoE2Zl9ZhlNvhrAfFnwdGrbA2u9hfft3ROZ9jy/On8XrRwfocgf46UXj+M5Lh+j3hTl/fCYrKzMJhKNku8yoKiTZjDT1+UBV+eE8C6GeBixOHRHHKNIKHHTUDQ7bosN4/PvEa8GR+XGcrv9JRrOO/HFJ7FvbPKw8LdcK2+4b3jg4CD3HwJoKA00AdE6+nvXaIM+vuZ7RiaO5uORiyiwZsO8xePN78VClspUw43Pw9u/i42ROhKRRH8f2hiRl5TDzkqsonTmXaDiMKyOThLSMofqWPh89nhCeYJibZ+fz2QWFdAwGsRp1JJh0nF2RxpIxaRh1GnITLWQnWYf62kw6JufHQyo2He3i0sk55CdZqe/xMSXfRbLVQILVyIS8RN6u6eaW+UVcPT0XrVZDMBShscfHrFEpH+vx+F/QOhAPL0p3mnni8BM8dvgxShJLuHva3TiNzuGNe2rgofPjQSQLvwlZk6BuPWz5HXQeguteBGsyAIO+fmrMzUzqWUqhEgLMdHlOHUICUJlayVNHniIcDaPXDg+9KTj4GIb+NjL+8pehABKArNEVADQd2s+YOQvI/sPvqb/4Eppv+zyFzz+HxmL56AdICCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKcdhJC8nHzdsK2+0jOOcbUBV9l6wtdxKIqjhQTyz6VgdGsH9FlXkkKP3jlMApw5bRcgpEomQkWdFottz6yk0sn52DQafnJmsP8/qqJKIpCZ78Pp1lHKAbfWnWQfS0DaDUK183I46KJWaTYTSPmUcNhwm1tKDod+syRoQkmvQ6sjnigwwhK/D97Koy7FMwJULsOkouh8mowOgA43HuYG1+9kUA0/nL17q7dfH3q17li9BUf8oCKM6m6fZDPP74Hg1bDvJIU7ttYy//NL2JddRd9vhCXTs7h3nU1XDYlh6Mdbo51erh5TgG3PLyTRaPT8IeipBtDfD2tAk3HgRMD68106tO57TUvD011k7zuK8MnDgd4YWcdffo0bphZgNWip8ffw5fWf4kjfUcA2N+9n80p73BZ7t384KVarp2Zz6/fOArANdPzuHFmPmv7zPTNe4gK3zsY2/aj1K6Lj+/vw7nmc0y8+AXu79Xz/O5WUu1G7l4+mrwkM3/ZVM9dT+/js/OL+OaqgywoTSEYidHnC/HzCT2kVj9NxFKMtvlN+jImMOfsabz6eAB3TwiNVmHGEgdJbX9loPIWohNuJlE78nctTg9Fo1AxL5vOejfttQOgQMXcLDIKrPCOe2QHNQbFi+Hgc0QL5/FIcjr3b/8xAPu697GmYQ2PzP45eatPuiarVsH0W6FkOaSPi9/jjgc6fFDhtjbUcBh9RgaK/oNdF9YEF9aE4YFNqqqy4UgXDT0+7l1fQ9tAgL9eN5lvv3iIo50eDFoNn55bwJziFG54YDvBSIyvLi8joqqUZzpHzFGYYuP6+7dRkeVkUm4Cq/e3M2tUEudWZgEwOsPBH9fX0DEYIMFioLp9kG+sGIPZoP1Qx0O8t/aB+LP2mGc7f6j6PqMTR/N6w+v0Bfr48+I/oyjHn7uBQXj0snjY0w2vQNbEeHnRgngo2KOXwkMXwE2vgd7MLt8+VEUls7+AIqMVi05Dtzv0nuuYkDqBh6se5lDvIcanjB8q92zajGn3WurylmFzlWI/qU9qXgEmq42mg/sYM2cB+tRUsn7xcxquvY7On/+C9G998/+zd5/xUZV5G8d/50yf9N4rhN4JSLeDvWCvu+ray6OurusWXV11de29K3bX3ruCgCiC0puUUBPSe6bPeV5EcbNBFzQQWK6vn3zC3Ocu//uck5l5cy67+nSJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiISBdQCMnOtvJjyByIs8cohrjmUfi7YQRbWokfMBhvUsxWh6THezh3QjFralqJRi1KMuIoSo0hL9nLw6eV8u6iCsJRiwdOGc7gvEQA2kJR4j1O7pu6moWbGgGIRC2e+GItg/MS6Z+T2GGNYHkFDS+8QKSlBbCw9y7B3H88KWl5HYtJ7gGjzocZt//Y5vBC9tD2f1cuhjcvgIyBMOAYaFgH71wKJ2VC3CSW1S7bEkDyg0cXPcrEwomkeFJ+4UmVHaEtGOaW95fT7Avxp8PzefWbKo4emkZibADLivL7g3J5b2ElY0vi6Z0N364PctmkXL5aU0XfrBjG9nbx3JfVjOyRyuIB91Ky4ll8Zgh3KETNgN/w4WY7TrtJffZAYvoehhUJ4Y9NI3nzUjYMP5cV61ysL69ifG83Qz25rKxfuSWA5AffVn/N4fnlDM6PIyHWz6jiBBJjDFrDTayvM5jQ18MDM738cZ/jSVt0P0k5w6nL6Iu7pQYjGiZs8xOOmkwuTaI1YPHJ8k0cPjSJmhYfVx+az+w1VfTJ9DK+j5vKylaO7mnirYtnw7sBfN88g7NnTzKvOYFo21ImH+yn3laE22jBy7dsHngJV30SxvZ+HQ+fFibGpbfbHSUpw8u4swporQvidrpJz07A7rC1B4e8c+mPHU0bxGbCktdgwDFU5AzmmUV3dZirMdDId41rKOiwQBHEpkPRBEgqgKTC7a4x0txM4zvvUH37HbgHDCD+iMOJ2WsvnDk5v2DHP1pb28bHyyqZtqKaikY/Z4wtZMoXa1lZ1QJAMBLlvqmr6ZeVQFsw0r5HX4hr31zCk2eMIM7dMQglO9HDQ6cNZ+qKahZvauR344vYqzgFu80EINHr5NjhuaysaqHZF+awgVkUpm79s0t+nfKG9s/K51bex+C0wUw5aAqvfPcKN86+kekbp7N33t7tHd+6COrWwG/e+jGA5AfFe8NxU+CFE+Gjv8Kht/FNYCH2qJO0hghxKYmkuoJUtwR+so6h6e2f7/Or5m8JIYn6fGz+299wFBayseeheOdXk9//x89wwzTJ7TeQ9YsXbmnzjhhB8umnUffU08QdeAAxo0d3wVkSERERERERERERERERERERERERERERERERERERka6kp+J3tvwxkDkYQi2YbdUkh7+AtN6Q4PnJIfPW13PiI18RjloAuOwmL54ziqH5SZQWJlNamNxpjAW0hSJ8saq207GVlS2d2lrnfI0VidD88ccYTieJqak0LZ7PkpIyxueMxzAMACKBAFa/32BPyIO5j7eHkoy+EDL6tU8U8oFlweaF7T8/CLc/4GwaJj0Se3Bg/oFYWDQHm/my/EsMjG09g7KT1LcGyU0PUlSyhKfKHuKk0SfxXtl7rLfymTQujSdW386pI05l2obP+abFy+Hj+/Ds6ts4sf9JzKuax0dVzUyeMJ6Xv7uTaOwRvJ6WwJrGNRze63Be/u5uJuSOZ8yIVv6y6BtOGHoCb61+iz4pecTm9uHTDf/i1AGnUbfuY15fl8K8hkJMw9xqnSnxIQ4aVUVrqIXzDsrnheUv0CdzOFVt1TyyYimTxxzD9UsfZFjWMIysAr4o/5JTSk/ivbL3yaufzaQxaXy47gNOG3gan2+czvQ6N4eP7/f9Xk7ErFrAh5WN7Je3LwvrTQZ8vIrAipW4evUi4Ygj2HzN34k0NOA8/ihmDa/Hk53NW6u+YMOGfzG+76FEm0dQ2xpUCMkOEowEmV81n2eXPsuSuiWUZpRygvsEhqYPxeh3JNgcMOcxiEmFvc6H96+C2pVQvQLDcxmxjlgOKjqIeGc8BgYfr/8Y0+76cYHEfJhwJbRsho1fQ9USSO8PJQe2h5psI9+CBVTd9A/SLr+M1pkzqbrxRjyDh5B+xRW4+/X9xfsvb/CR6HWysd4HwLD8RJ79al2nfhWNvi3/dtlN5q6rp7Yl2CmEBKDAA78dkoZtXFGnY2uqWzjpkdkdQivuPWkohw/O/sV7kK2raPRht1k0hDZxRenN2E07x/Q6hilLpvDwwoeZkDsBY/k7sPRN2P8aKBy39Yl6HwyjL4Iv74NeBzEnsoislmLiYhsxDZMUh53qZv/WxwJp3jRyYnOYVzWP3/T/DQA1Dz1MaONG8p96ivwFHsoW1LD3SRaG+eNneV7/Qaya8yWNVZUkpGe0z3XZZbR8Pp2Ka/9G8TtvYzqdXXfCRERERERERERERERERERERERERERERERERERERORX2/pT/bLjpPaCmuXw6fUw43b49DpY+BI0rv/JIc98tW5LAAlAIBzlrQXlP7tM1LLwOmz0y47rdCw/2dvhdaSpifCGjdQ98QSRmhrC5eXU3HsfcTVt3Dz7ZuZsnoMVidA6+2s2nnMua08/m9ovKgj1OL697g2zIRxsnyw+F3ru33HB5GJIKQGgf0p/xueM57FFj/Hwwof5eN3HXFF6BcmezkEq0r1iXTbMhC94afWj7Je3H//4+h+sbFhJjCOGBxc8wITcCdzz7T18WT6LooQi7vz2DoakD+G55c/ywdr3Kc0o5aavbyI7NpupG6byyspX2Dt3b67/6nrAoqyxjGeXP8P+Bftzw+wb2NS6CcuyeHjRI+yXvx+3zb2V+dXzyIzJ5O5v7ybWEcug1EEdajy06FAag43c8c3t3Dr3Vq6cfiWjs0ezsWkj/1rxIvvm78vfv7qepkATjcFGnlgyhf3y9+Mfc25hef0K4lxxPLiwfS/3zr+XWeVfUJxQzB3f3s7gtME8v/x53l/7LodkH0DvpU0U/f15WqfPIPk3p5N8xhlU3XYbwbVriTQ04HtkCmMXBXlk4aPMrfqGyrZKXlnzBJHYacS7FbKzoyyrXcafZv6JqRunUtVWxXtl73Hj7BtZXb8aqpfD57dATBoEWmDGHTDpH1vGZi95h2v3+hOfrv+Uhxc+zGOLHmNc9jhKUvq3h0UBjLkY1n3xb+/Z18OSV6F21XbV2Tb3GxKOPor651+g9YtZRFvbaJ01iw3nnUdo8+ZfvP/UWCe+QJiUmPYwh7U1bfTNjO/cL86F02ZywT49+HDJZnqkxRDv6RhAEmlpofG991l38smsO/lkGt9/n0hLx9CqhRsbOwSQANzywXJq/6NNfr2KRj+mo4mBqQMYkj4EAIfp4MwBZ7KoZhGLNn0J7/0BMgbAmEt+frL9r4GUnkTeu5xK20ayG3qQlu8Eu0GK3UZ1889fv6HpQ5lfNR/LsghVVlI3ZQrxhx1GzF4jKR6SRltTkIo1jR3G5PcfCMD6JQu2tJluNxl//jOh9eupf+aZ7T8pIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrJDKYRkZws2w7dPdWxb+gbUrd1qd8uyaGwLdWpv2Epbx3FRymraOHhAFk+fNIxHD+jHQ+N688ThgxiS8x8PqDsctEyf3mkO/9xviXHGUNZYhn/ZMtafdRZtc+YQ2rCBqgefoWFBPbTWwCfXQvl8iISgaikMPR1GXQC5pTDsN3DYXZDRF4CWUAtTlkwhbIUBqPZVc/e8u2kMNHZaX7pXW7SOd9e+AkDUiuKP+BmdNZpP138KgMvmoj5Qz+D0wXxZ/iUA6Z501jWtozC+kKV1SwHom9wXI2xyS8m99KkZxc1F93J60Zl8su4TAEKREKFoiPE54/lw7YcAmJi0hFoozSjl842fA1DdVs2Q9CGcM+gc9s/bn7MHns3hxYdz29zbaAo2AeCP+Ll73t1kxmZiGiZtoTYiVoTxueN5v+x9oP1vyhf2MTr7x724bW7q/HUMShvE7IrZAGR4M1jbtJaC+AJ6lVs4/nQ7wWXLCK5ZQ839DxBtacFwuzucs+DLb7FfXGmHtvfWvUZbtL4Lr4z8u40tG6lsq9zyOt4Zz3Fpp9Ky3GTVGjcNfS6Css9h/ZewbiY0bYS9/wh5I2kuPYOHFz9OVVsVAGErzFNLn6I26oOTX4STX4bEAljwfMdFF74EjZs6tvmboHY1tNZutU5nXi72lFRCGzZ0aA9XVRFct+4X7784LZZ+2Qmcu3cPXHaT+6eu4qL9ehLvsW/pc+jALIpTvdx5wmC8ThuT+mVyyzGDSP4+uOQHbV9/TfnllxP4biWB71ZSftnltM2Z26FPIBzpVENbMELk34KypGusrK4hYtZwQp8TOrQfUnRI+3vW5zdCczkcdifYHD8xy/fsLjj4n9jq1/Hbxiayaj2kFeRhumyk2P57CMmQtCHU+mvZ2LKR6nvvhWiUtEsvBaBwUCp2l43lsyo6jEnJKyA2OYU138zp0B47fhyx++xDzQMPEq6u3raTISIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI7hUJIdrZIEKKdH+ImuvVQEcMwOHVUQaf2ycNyfnKJ6mY/t3y4kotemIflC1PxwUa+e6WM1e+sZ/mzK7FXBzv0N51OHDnZnUvKTqO6rRq33Y1/6TIIhzscr3/lA0K5B7Xvp2kT1KyEV8+ED/4InuT2MJLUEkgu3jKmvKW80zrf1X9Hnb/uJ/cj3cNhOoh3tQfWmEb7W0VzqJl4Z8e21mArCa4EoP1+hfawmR/6xdhjONV2IWVPR5n3r82UPR/BmpXGYTlHdJw72NxpvZZQCwnOBLx2L7lxuaxqWMUXG7+gMKGQZ5c9S62/tlOATTgaxrIsolYUu2nvVM+WuYNbafu3fj/sJdGViHP6N53OT9N77+IdPqxDm5mRTlWkY+BIvDMeh/lfAgLkF3PbOgbB/KX4BppeTOaLp9fy4b8aeP2zvtSNuvPHDjUrwZMEQ06jLr2EZXXLO81Z3lIO8dnQayIYJlhbCdj49/fsymUw9SZ4/EB4YiKsndmpu7d0BGZ8PHx/X/07MyZm2zf8Hxw2k8MHZ7F3r1Se+O0Ibj9+MB67yZO/HcEdxw/msdOHc86EIkIRi+kra3jlm43c/vF3XPXKQsqqWzrM1fDKq53mb3itY1v/7AScto5fHc6ZUEx6fMfrIL/epoZW7I4mJhZM7NAe64zlkMwxDF89i2ivgyBv5LZN2HN/FiUVc05DE3lNG0jJzcdw2UkxTZr8YfyhrXw3+d6Q9CEAzFn0IY2vvU7SySfhzG3/HuJ02+lVms7KuZUEfT9+TzAMg54jRrF2wbeEAv4O86Vf9QeiwSBVd921bbWLiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyE6hEJKdKRIG0wkpJR3bY1Ihqegnh43qkcKDpwxjcG4Cw/MTeew3pZQWJP1k/0WbGqlq8nPpASWkhU1qypq3HLMsmPHid7Q1Bba0GTYbcaeejOFybWmzJSayrH88cc44ShJLML3eTuuY8XEYoWZweCEuE5orIBpu/z31Bnj7EvjoL+2vv5fuTe80T1FCEUmun96PdI9UbypXlF4BQK2/lh6JPZhVPotDig7BNEzWNK5heMZwltYtpTSjFIfpYM7mOUwsmEi1r5qc2BxiHDHE+pNZ/X7HsIN13zRwRPLxQHvwR35cPtM2TOPonkcDUN5aTv+U/nxb+S1HlxzNb/v/lmeWPkNbqI2Diw8mNzYXy7Ko8dcQ54jrMLfNsFGYUAhAMBIkMyaTj9d+zAm9TwCgxl9DSWIJX5Z/yUGFB2EaJqsbVlOaUcryuuUMzxi+ZS+TCidR3lKOmZzc6fzYkpLB829/FzYb5rmnsjKwsUO/35f+njRv2i++DvLzMmMy2Tt3bwD6JfUjuCCWUODHMIW2pjBrG4rA+/01zOgPM++Cty8mcdGr9Ego7jynN/PHF95USMjv2CE+G364puXzYNbdsGE2DDoBeuwLzx8PNas6DHEW5BM7cSJJp57aoT3xpJNwFneuYXs47TZ6Z8YztmcqfTLjOfPpuRz30Jc8OG01N7yzjGUVzdz32SpmrqxhRGEyF+3bk9U1rcxYWdNhHnta5/vUkdqxrX92PM+dvRf790mnV0Ysfz9ywM+GYskvE45EafHZyUuOw+vo/Pl7ZksbcdEo8/ofsl3z3hATg2EZjE/6nJScfEyXjWTag3FqW4M/Oa5nYk9iHbHMnvkSptdLynnndTjeb1wO4WCU7+ZUdmgvGTmGcDDA6m++7tDuKioi+bTTaHztdXxLlmzXHkRERERERERERERERERERERERERERERERERERERkxzEsy+ruGnaI0tJSa+7cud1dRkfRCCx/F9pqYdlbsP4ryBoEg0+G/FGQ1vtnh7cFwxiGgcdh+9l+L369nmA4ymMz13D7XiV8/cLKDscNA079+2jiUz0d2hsWzSO0fAUhE2oLElgW20yv5F4MSR9CYO061v/2t1i0Pzzc9u235Fx9LvGbH4B9/gSpfcDhgofHtweR/MCdAOfOgKQCAOZVziPVmUpVsIrVDasJRUIUJxYzKmsUhmFs+7ncdXR50bvSvVvX1sSi2gWsbSyjMKGQpmAj/rCfrJhM1jWtIysmC3/ET1Ogkfz4AtY3rSPFk0oUi5rWKgoTi/E2JjPrnopOc485M4+mzE2sa1pHoieJBGcC5c2bSXKls7pxFflxxbSGWrAMHzd9feOWcQYG/xx/O/HOOCrayrGbNv7+1d+xLIvf9P8NGd504hyxeBxeNjZtoCixmBpfNWCS7E5mXfM68uPyaQo24Q/5yIrNYl3T+i17aQw0kh+fz4am9SS724MrelbZCF1wFdHWtvYi7HZiH7wNKzUJx9oKjHCEaGYqC5NaiHMnUOOvIRgOkhWbRZWvihhHDP1T+pMbl7szLtu22iF/cN1x/y6oWsCqhlWYERuh13OoXt/c4Xi/ETHs678ECsdByUR4/w9Qv5bGUeeydtgp1Pnr2NC8gThnHD0Te+K0Oemd/P378aZvwd8IX94L676EvL1g7CXgiofYdHh8EjSX/7hY38OhtRrGXwElB3aqNVzfgH/JYkLrN+DIy8Xdvz/2rYTc/FKrq5q58Pl5LN/cfg4u2KcHz81eT6MvxOjiZE4YkY/HaZId76ElGKK0IAWHvT2PzLdgAetOOx1bQgIAkcZG8p95Gu/gwZ3WCYQjhMJRYt2OLqt9O+2I+3eX+UI0Y+0iTntoPceOCXPbEUd2PNhai3X3QD5z2pg2+rf8fezft2nO9Y0bOPSNQ7htTQqTjHlEzviQ2vc9zPT5ubyyhjcuHMuQvMSfHP+7V0+iYs0inoq7mNTzzu1wzLIs/nXjHAwDjv/TiC2f59FohCf+7xxik1M58bpbOoyJNDezeuIkXL16kT/lyd31O8AvscdsVERERERERERERERERERERERERERERERERERERHY/9u4uYI9i2gAD3rm0/WH44b+Fmu/aX5/25n8NIfE6//vl8ofC9M2IYUF5E2ePL6bCH8Yw4N+zZnqNzMSb6Ow0NnHgUMK5hZhuN9keDwP/7ZirsICcu+6kbc4cgmvWkPnXv+DqkwcDroON37TvJy4TjrgP3r4EIkFwxsDRD28JIGn0NZLiTGFzYDNXz7iayrZKABymg7v2vYsJuRP+6/5k5/pi02z+POv3HNXzKD5c9wFLa5fy+9Lfc/HUSxiXM45INMKMTTO4ovQKLp12GSWJJRQnFvPGqje4eOjFXD3jao7MO5qcvDHUbmjdMq/DZSMU18pFUy/e0jY0fRj7Jl3OeW9s5PKJ+/D7V1fxm7FFLIzc2KEmC4uIFeaK6ZfTHGomw5vBWQPOYmDKYP721TVYWEwumcxDCx7itH6n8fLKV6lsq+S8wedxzaxrOLLnkXy49kMW1SziitIruHjqJYzNHgvA5xs/54rSK/jrzL9yXO6h2Lwh/rnkXi4aehH5t15E1so63FE763rEMiexguLKalKXlpEYn4EtCn3fm48/O4mqYieBrAQu+uwiIlYEgML4Qh7Y/wHy4vN2wpXbswxOH8zg9PagjMXVG/n8+Y4hJIUDU8B7FVQuag+DCvuJJhczo2Q8bfUr+PtXP4Y4DEodxB9H/pG2UBtehxc8SfDxddDv8PbAKH8TTL8DDr8LqpZ3DCABWP5OewCJJ3GrtRpOB+6BA4kdN64rT8EWXqeNcyYU86fXF+EPRbHbDBp9Ia47vB/r6338+fVF5Cd5eWCEm+QvZ1Du8xN/4IEkDh+Ca8AAch96iNYZMwCIGT8e94ABW13HZbfhsv98IJb8ch+smg1kMb5wK+f/i7swQj4WDjuBz9Z/xjWjr8Fh/vcwmI8XTQNgWd0wJiQtw/PJNZjO20n+/q25ujnwk2Mty6LH/Gq+7mFgP+qoTscNw2DAhBw+f34FFasayS5JBMA0bQyZeCifP/sE6xcvJH/AoC1jbHFxpF54IZU33EDL558Tt88+/3UPIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrJjmd1dwB7H9n2QyNqZ8NUDsOoTsKJgds2laGgLkpXoISXGxV/fXMJdc9bS69hiYlNcGKZBr70yKD20EPt/PDweLC+n+oEHWHvscWy8+BLavp3X4Xhg1Wo2//Uaqm+/g8bX32DzX/5KwzufEfU1Q8kBkJgHNgcMOh7Omwm/eQfOnQG9DtoyR2OgEZfdxfyq+VsCSABC0RBPL3kaX8jXJedAusb6xkruX3g7FhbZsdksqlnEqKxRfLT2I8LRMP1T+jNj0wx6JfViQfUCfGEfY3PG8uaqN0lxp1DdVk19oB672yRmYiMZfWPAgIQcN6VnZHDjims7rDev6lsC5gYADCAYieK0mcQ44jv0y4nNYV71tzSH2oMmKtsqeWrpUyyqXUhlWyUHFR7Ec0ufAyDOEUdZUxkHFhzIS9+9hIVFTmwOC6oXsFfWXnyy7hPC0TADUgfw+cbP6ZnYk2hTM3eHj2XiTVMZ+rdXmeI5D1sgxCUb7uDTkW7OTHmTSyvvo9SXSdqV92B761PMxmbqrvozbS+8TPT2R+h/02sk1Pq3BJAArG1ay6KaRTvwiglA0eA0RhxWhN1p4oqxs/cx2WTXvwIr3oXEQkjrA2d9woZjHyXRncT98+/vMH5hzULWNq2lrLGsvaF+HfQ6AD69Dl49Cz65BnodCI0bvg+W+g+GDVJK2tf5N9FgkJYZM1h/5pmsPf4E6l98kXBtbZfvPzXWjWFZ3HjUAC49oITi1FiK02Ko94V4fGYZrcEIVxVHCZz/O5oef4y2559l85m/pfWbb/EvWMCGc86h7sknqXvySTacey7+BQu7vEb5775YswCAzAULCFVV/XiguRK+fhQGHs+QfifQFGxiTsWcbZrz87IZxAQTMGvKWeXcDzbMxhWaTnK4/fjPhZC0TJ1Kj6/LsQxY0rpqq316j8rEFWNnwacbOrQPnnQoiRlZfPTIPbTUdbznk044HmdBAVW33oYVDm/TPkRERERERERERERERERERERERERERERERERERERkx7F3dwF7HGcMFI6HtTN+bCveB9zJXTJ9sy9MvNvOkvImANbUtfF/ny/n2MHZ9Ej2MmBYFonJ3g5jAo2NNPzrJWLHj8dZWAiWRcTXhn/FCty9ewPgX7GcwMqVHcbVPfcC8Qfcj2fxy5A3Cpye9ofy03q3//yHkBXCa/NS01bT6VhlWyW+iA+Pw9Ml50F+vUA4gD/s5/4+f6VfUxpHDnwIB3aCzY3YCi7F3tDCEf3ux2F3E26s5w8jTsXR0MJRve/G7o3FqmvgrNKDcLT48Uf8OA9OILpfCrgs7E01PJByEfaSJEJV1dgSE7FCQVxBgyNPToO6Sk47IQfLCELzqQRHXEC4phrD5cLu8RKtq+d3wycRaWgA04Y9NhajvpGjhj2O0xfmxJyB1CQY2EMR+vf/G32sTEKpE7D3TsFW1/T9XmwEmhpoGHI6RsQiKf8cEuPSGNqcjFW5GGPiRMzYWJyJBeQ2mew76CFCjQ0MdE5mTXoI7/L1+JqbSZw8mfoXX+xw7iKbyhlRFcdfcs7i3ppXaAw0AtAQaNj5F3IPE5PgYsShhfQdnYmx8StiG96GmHRISoa10yE+G0oOxBdtxeYPUe+v7zRHW6iN1lBr+wubHabdDMGW9teB5vbXJ/8LUnpDWl+oXvbj4BFnQ88DwBVHpLGRwKrVREMhsCxwukg580yiPj/21BSapk3DmZmJPTMTV1ERRheEUTnsJsMKk3l+9jp8oSiDchI4d3wRj81cC0B2gpuM+V9ihUI/DrIsmj/+GCvgh38PggiFaHjtNbzDhhJuaSFUVgZ2O65evTBtWwlgkV8t0tLKvFuupiKp/ToY/7yB1f8Mk37lFSSddhrGzDsgEoS9/8CYxFy8di8frfuIMTljfnbeYDjE0tB8BoSGE4puINjjt1C/Dm/N/SREHwJ+OoTECoepuv0O+jnzMY0K5lXNY2zO2E79HE4bA8bn8M2H62isbiMhzft9u4uDL7qcV268hqevuoRRk09g4H4TcbjcGA4H6VdewcaLLqbhlVdJOvGEX3H2REREREREREREREREREREREREREREREREREREROTXUgjJztZWC+l9IHcE1KyA1N4QaIJwW5dM73Xa8EcipMa6trS1BiM89e0GhuUncuSY/A79w62tRDdtInbcWCpvuonA0qUAOPLyyLrpxvaSN2zACgY7LxYOY7XUw/ynYcLvwVnws7XF2GMIR8IMzRjK8yue73DssOLDSO6iIBbpGgUJWbxadBMt9z5EY10dCUcfRd3jT5AweTLBtWU0LVpM8llnUvfEk8TuPYGIP0Dj9OmkXXgBdc88i7tvX2ypKdS88SZp/3cJDbfciy0pCffAgVQ//zxp559P86dPEvX7iZs4kbopU3CcfDKhRYsIlpXhPOUUap94gviDJhGuraXt6zmknnsudU9NwTO8FMPlpPnDj0i/+CLqX/wXztxcHEVFVL/8MmkXXUTie+9h2Gxkjh1L3VM3k3LWWbR+9TzhqioSJk+m7oknSDj6KOLXr8e/cCEHnHUWdU88RGT8eKKhEC3TppF20YVU/fOfhNatx5GbS/Lpp5Fx/7NkpaXiOfpIfIDhdGAFOj+8byuvYshNz3LXzZdyzuY7CEVD9E3pu/Mv5B7IMAzi3K3w2cXQuKHjweQeUHIg2bHZLK9Zzt65ezNt47Qth+2mnYL4AvLi89obIsEfA0h+EGqDcLA90OTEZ2HVJ7BpHpRMhKJxEJNCqKqayn/chG/BQpJOOAFnSQl1Tz6Jb86c9nXS08i65RbCVVVsPP8Ccu67l7gJE7pk/wUpMfx+Ym8qmwIs2NjAyKJk3ltcycqqFhx2E29bgP/8xLEiYSJNTZ3mijQ2Eli7lpr7H6Dp3XcxHA6STj+dpJNOwpmd1SX1SrtISyvrzziDz7xLiMYdjttuMOjVF6m+624qb/oHoTULSbc9hTH0FEjpgQvYO3dvpm6Yyl+if8Fu/vRXuqnzZhGw+RhEIRYbyOjVGxL+ju3ZySRG3yTJO4nqFv9Wxza88irB1avJv/ceevsfZX71/J9cZ+A+ucz7eD0LP9vI+BN6bWnP7tWXk67/J589+TBTpzzCV6/9iwPPvpCSkWOI3X9/PKXDqb7vPuIPOwxbbMwvPYUiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8iuZ3V3AHic+F+Y8Dl8/AnVr4OuHYeFL4E3tkulzkmOIhC0G5sSTn+zd0u6wGVy4T08SvM4O/cPNzeD10jZnzpYAEoDQhg00f/gh0WAQ027HkZuLLbljSEjc/vvjspVDSi9wxf3X2jLjMllYvZDC+EL+stdfyIzJJM4Rxxn9z2B8zvhfuXPpamZzC21PPkvbnDkkHHE41bffgRkXR7SxkZZPPyPxuGOpvv0Oon4/ZmwcTW+9ReJRR1Jz/wOEKipw9Sqh4bnniZt4IPUvvEBgxQpiRo+i7tFH8Q4dSsv0z/HNm0f8QZOouftuHJmZBNevo3XmTBKPOYaqO+7AMAwwDJrf/4DEYyZTfffdhOvqcWRn0/jyKyQccgi1jz9BsKwMz9Ah1E+ZQuy4sTS98zb+RYuI3W9fau6/H1dJT3wLF9I2ezYJRx5B9R13YMbEEG1uoeWTT0k87jiq77iTqM+HmZBA05tvknjUUdQ88CChdesBCG3cSPV995N47LGEV63GnpYGDgct0z4n/vDDOp67mPa/vWhrKwn3v8xv8o/l7n3vpn9K/51+HfdYzljIHNS5PaUHAPHOeHom9eT0fqdzSOEhuG1ueib25LYJt5HhycD84eMxLhvs7o5z2JztASQAKT1hr/Ng8sMw8BiIzQDAv2gRze9/QMLhh1Hz7LOEKyq2BJAAhKuqqX/xRdwDB2JLTqbiT38mtHlz123fbiMv2Ut+spd9b5/OGWMLcdlNbFjEDh8KhtGhf0zpCOIOOLDTPHEHHkDbxo00vf02RKNYgQB1jz5K29dfd1mtAlYkwqZLLsG/dCkLD+pJrJFLdpIXd69e5N5/H8lnnolz1XMQicCEK7eMO7DwQOr8dXxb+e3Pzv/x0qkYlkGPJjsGJum9ekLP/QkljSPOeIG0GDs1zZ3DxiItLVTfey+e0uHEHXAAQ9KHsLB6IeFoeKvrxCS66FmazrJZFQTaQh2OpRUUccLfbuaEv91MfGoab91+E4umfoRhGGT84Q9Eamqoe+LxX3D2RERERERERERERERERERERERERERERERERERERKSrKIRkZ/M3wLjLIeyDqmUQjcA+V4M7sUumj0YtPl1RTVKMgzuPH8TNkwfytyP68+QZI9i7V1qn/qbdjmkY+Jcu63TMt2AhkdZWTIeD1tmzyb7lZuIPPRRXSQkp55xN3GGHEk4eBIfcBt7kTuO35uuqrznno3M4MPdA7t33Xh6b9Bg5MTkUJBT86r1L1wpX19AyYwYAUZ8fLKs9PGTWLACsSBQrGMTTvz9t33wDgOH2EGlowFlQQGD5CgDsGZkEy9ZixscTrqoCwD1gAG1fz/lxbsA7bBitX7TPHQ0GIRzGPWgQbV/Nbi/ItBFtbcVVUoJ/0UIAbImJhDdvxp6eTnDdOgCcRcX4lywFm41oSwsAnmHDaZ05s31ufwAsC8/QobT++14CAdz9+uH79vu9eDxE6us7nJNoUxP2nBzSLrsUq6aO3LvvwFFYgD07m9SLL8LVqxex++5L6sWXUPfsc+3ncfl3nFVwAvvl74fT1jEESHYghxsmXAE5pZA1BAwTckZA3ugtXeJd8byw/AXOH3I+Uw6awm0TbmPp5qW8t/Y93lz15ve9rPZ5frh2Nkf76/8iWL6p/R+GiadnT4JlZZ36BBYvIRoK4czPI1JTQ6Sh4dfteStKMmK57oh+tPmDPPHbEdx8QD7Nr75K+lV/wDtqFJ5hw0i7/HKiPh+BNWvIuvEGPEOH4hk6lKybbsS3ZCkxvXp1mrf1qy+7vNY9Wc3DD9M6axbOay5nYbAMD9lkJbSH3xiGQfrvjiWxh5/6lW5al27cMm5czjg8dg8frfvoJ+eOhKPMb5tLASX4NleQ4ErFGecBIFhyJQY+0oKbqG4JdBpb+9hjRGprybjqKgzDYEjaEHxhHyvrV/7kekP2zycUiLB0ZsVWj+f2HcCJ199K4eBhfPzIfZR/twzPoEHEH3IItU88SaiycpvOmYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIh0PYWQ7GzNFbDsLZhwJYy/AsZcDHMeh1BLl0xf2ehnfZ2PG99dwYxVtVQ0+lm4sYG35pVjt3e+3NFQiGgohLd0eKdjMePGsbp1A1Y4jLtPH6puvY1oMEDsgQfSMnUakepq7JkFUDR+m2qzLIveyb2pD9az96t7c9w7x3HCOyfQFGoixhHzq/cuXctMSsRZ0B4OY7pcAIQqyn+2zbCZYLMRqanBkZ0NgBUMYsbGEm1rw5aYCNB+PKf9uOl0fj9PBY7/mDtcUYGzsLB9bocdDIPw5s04cvPai7SiGC4XkcZG7GntITvRlmZsKSkQiWC6PZ3m+bHuCpyFBZ1qcOZ/vxfTBLu9wzlxFBQQbain+s67qP7nrWy84GIceXnY09NpePVVks/+HeHqaqpuvploYyMA3jFj8KRn/ZJLIL9C1Ioy32Hyt35j+X2voXxx2ov4jn8KkvK39MnwZmAaJoe/cTgnvnsiR711FE989wQum4uXvnuJOl8dtNXBvGdh3KXt4SPjLocFL7a3/wxXcTEAVsBPYPVqXP36durjHTsWy+Eg8N1KHAUFW+7hruRx2Dl0YBZ1vjBfrqllTatFyO6k6p+3YoXDGE4nNffei+nx4O5VQtWtt2HGeDFjvFTdehveQQMJV9d03l+PHl1e657Kt3gJNffdT/zhh/PtkDgsLILBGLISPFv6GJ//ExxOmtr6s+kPV20JrPHYPYzLGcen6z8lEo1sdf7581dQ6VnP2KyxVFWXkRqXt+WYldqb1sgkUluWUd3Q3GFcqKKCuienEH/YYXgGDgRgWMYwAL7e/PVP7ictP47skkQWTt1ANBLdah+7w8Fhl15FfGoa79z9T/ytLaRdfhlEIlTffc9/P2kiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiskMohGRnS+0NNd/BtJthxm0w/VYo3htiM7pk+qZAiGEFiSzY2MBdn6zk7k9X8smySvbtk77V/s60NKKhEO5Bg4k/9FAwDABiJozHMWE0J332G6LBIJbfT7CsDFtCIrb4OFx9+1D75BQsy7VlzH9jGAYp7hQuHHIhGd4MElwJnNL3FEqSSrpk79K1nGlppF/1BwyHA//yZcTuvTdtc+YSt88+mDExtH45i4SjjyJYthZXSQm2lBSaP/qY5NNPI9LQgOn14sjLo+mdd0g580yIRIg0NePq25em998n6bTTwG4nsHYt3lGjaJkxg4TDDsXweGj79lviDjoI/9KleIYNxZaYSMvUaSSddBLhqiocGRnYMzNpevc9ks84A8vnw4pEcfboQdM775JyxhlgmoQqKvAMHULzJ5+QeNyxGE4n/mVLid13H3xz5xI7YW/M2FhaZs0iYfLRhNatw9mjB7bUVJo++ojk00/vcE5SL7yA2ocf6dBW/8STWCmJ4HLR8PwLePfaC0duLq6+fYk95BDSL7uMaHPHh/tlx1tcs5gzPjyDV1e9zkfrP+W8GVfwVdN3Hfo4bA4mFk5kUsEkPHYPJYklXFl6JQBZMVm47C5IKoSwHz7/J0y/DT6/BQLNkFTws+t7Bgwg9eKLaXjzLVLOPBPD6STxxBPAbP/Y9QwdQsKRR9D67rsYHg/Zt9yCPSVlh5wLl93E47Dz+Iwyrn73O6onn4bpceObO5e2r77C1a8fnhGltH3zDWZCAt4RI/GOGIkZH49v3jyIRrYECEF7GE/M2LE7pNY9jRWJsPlvf8OWkkzmNX/lk/WfkBubT11LmKwEd3unyiWw4AWMkWeTedM9ROrrqbzln1vmmFgwkRpfDfOr5291jdcWvg2GxX5ZwwiFA2Sm99xyzHTZaAqfSprdT1WTDysc2nKs8uZbAEi/7NItbZkxmRQlFPFlxZc/u68hB+bTUh9gxezNP9nH5Y3h0P/7Ay11tUx76jGcubkknXYaja+/jn/58p+dX0RERERERERERERERERERERERERERERERERERER2DMOyrO6uYYcoLS215s6d291ldBZsg2VvwSfXQms19J8M4y6HjH5dMn1DW5C3FpTTGggTCEexLIh12RndI5kBOYlbHWNFo7R++y22+HgiNTVgWfgzEpn05ekEo0GGpQ7jrsgx2BxOqh94gODKlbj69SPld2fhGTIEZ3b2Ntd3/ZfX8+HaD9k/f388dg+fbfiMksQS7t3vXmymrUvOwU62bQks22FXuncty8K/ZCm+lSsJp6Rh+f2EWlrxZGcSrqjAm54K0SiRunocebmEN2/GjInFcNgJV1XjyM8jUlUFLhc2r5dgeQVWVjbB2jqwLDxpKYTLN0FGCrT5CLa14krPwF++AXtaGrZwFJrbcOfmEa6owIyPxzBMwjU1OPPzCFVVYbrdGG434c2bceTlEamtxTIMDMC/bBmu3r0xgKhl4UhNJVRejiM9najfT7S1FUdaCuF1SzEz8sHXRLRqPfYeAwk3BzDjkwAIb67EnpWFYTNZf9rpnc5T0w0X83l8OYOiOfRLKMGc9S3e7Dx88+bR9M672OLjSf/jH4mfNBHT49m5F/Gndfm9C7vO/Xv/vPt5aOFDHdqGpQ3j4YkP47a3hztsbN7IUW8eRVFCESMzR1LZWslnGz7j7IFnMyxjGHtl7dU+cO0s+OhPUD4PsgbDpJugcNx/rcEKhQiuX080EMBwOom2tRFta8MKBrElJWHY7RAKY8/KxJGW1uXn4N9NW1HF8s3N+IIRPA6Tca42UmvLiU2MxdWrF470dGqeeopIdQ31zz4LQNKpp2JPSyPlN6fjW7yYwKpVGA4H7j59cPXosUPr3QY74v7d6V+I6p57jsq/30DOHbcT3W8M+7y0D8cU/Y7H3y3ipqMHcvJe+fDccbBhNlwyH7zJVN15F7UPP0ze448RO3YsraFW9v7X3hzb61j+OPKPHeb3t4Y4bMrROONMrk8+g8+feZzjD7mGvN+MBMC3vI7aKUv4qF8l1y/18PV+K0ifeDnN06ax8bzzSbv0/0g977wOc/5j9j94beVrzDxpJi6ba6v7siyLV26ei685xCnXjcLm+OnMu5kvPsPs1//F0VddS0GPXqyeOAl3//7kP/H4rzu5u64d8t4rIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi0hXs3V3AHqdqGXz4Z+h3JHgSYc00WPdFl4WQJHqd7FWUwherqvGHosS4bJQWJv1kAAmAYZrElpYSqq7GME3W2ho4aeaphKNhAL6t+ZZg/3NpvOj3RBoaAAgsXUrVzbdQ8Nyz21Wf3bDTFGzi9VWvb2nrk9QHw9AzubsiwzDwDOiPq18/Zq2u4dq3lrCu1s7hgxxccsD+ZKTGbtd8MUBda5C1m5vxhSL0SIshf6+RVLRWsKFpA3/94g7KV5S3d25u/3X9mOs5umTYdtceaW7GVVyMGRuLIyNj652+fRreOrn93ytc0O8o2OdsSO8DrritzukZPhzfN99saTNjYihPtnhmw5v8Ned3+H9/LbbERMzBg2h66+32cQ0NVPzxjzhysokZMWK79yLbL0r0v7YZ3/+3vG45y+uWb2nPj8+nNKO0/UVrDXz0Z0jIgx77Q+0q+OBqOPVViE3/2RoMh6NDWIdlWYQ2bcIKhXBkZ2O6th7gsCP0zYyj2R9mdXULEcuiOimDwmH9iHX9+DXA5nJR/dhjW17XPfYYmX/7GwCeAQPwDBiw0+rdE4Sqqqi+8y5ixo4l7uCDeX3V60SsCP0SxgAVZCW4oWwGrPwIDrwevMkApF5wPs0ffcTma66l+K03iYmJYUz2GD5e+zFXlF6B3fzxmn72xddUxq7jnB4XsG7aPGLtSSTkZm45brraw7/ycofC0uWsnfkSqXkDqbz+Zpw9epBy5pmd6h6TPYbnlz/PvKp5jMoatdW9GYbBXkcW8/Y9C1jw2QaGTSr4yfMw6pgTWT33Kz5+5F5+c9sDpF54AZU3/YPmadOI22efX3BmRUREREREREREREREREREREREREREREREREREROSX+un/Nb3sGBvnQFsNzH0cZtwOm76BWfdAa22XLdE7M46TRhZwfGkuJ4zIZ2h+0jaNs3w+IjU1pLfZKU0e2uGYWVW7JYDkB+GqKoJlZdtV28FFB2MzbB3aTu57MqahW3FXZpoG40rSeOW8MUy7ch9uPnYQRdsZQPKD5Bgno3qksG+fdPJTYgDIisliZNZIzhtyXoe+XruX/qn9f9E6trg4XD16/HQAia8BvrqfUP+zaO37F3z9riLSUAPrZm41gOSHObOuv574ww/D8HpxDhmM77Y/UBYfAKCkxk6krg7viBG0fD6903j/smW/aC+yfdY1riPDm4Hd6JizdeaAM3Hb3VteZ8VmceaAjiELqe5UBqUOwmZ+/z5VuxrKv4Vlb8GM22DpG7B5YXv7doq2tBCpqyNcU0ukqXm7x/8aGQkeDhuUxQmleRxXmse+fTI6BJAANH30cadxzR93bpOuUXXzLVjBIJnX/BXDMPhw7YfkxeVhhtvDbXITnPDhnyA+F0aeu2Wc6XKRdcPfCZWXU3XnXQAc1fMoqnxVvF/2/pZ+lmXx/MrnsEedHD/gKNYvWUi2twf21B//BozvQ0jyPe2BOGtjBmK9eBpGy3qyrvsbhtPZqe4RmSNwmk4+3/D5z+4vr28yRYNT+fqdMhoq236yn93h4KALLqO1sYFpTz9K0okn4uzZg83XX0+0tfW/nEURERERERERERERERERERERERERERERERERERER6Ur2/95l12AYxlqgGYgAYcuySru3ol/I4enc5owDW9deCo/TRo7Tu839W778kk0XX0K0pQXsdv76+4v4aGApX9Z+w6C0QRjNXjAMsKwfB9lsGDEx21XXwLSBPD7pcd5c9SbBSJCjS45maPrQ/z5QdglJMU6SYjo/lN5V9s/fn3hnPG+vfpuc2BwOKTqEXkm9dsxiph1/rwvZeNtzhNa2P7gfP3Fv0geV4PiZYZVpdr48bTC9Tp/E4xvf4OMNN3FAwQGcN/g8vCs9RIFwVSWOnBwidXUdxjrS0nbMXqSDd8ve5fVVr3PZ8MtYUL0AX9jHIUWHMCB1QId+pmFyfO/jyY/P5/2y9+mT3IdJhZPIi8/7sZPtJ+4G2/b9HYSqqqi69Vaa3n4HAGdxMTl33427pOd2zfNrGIZBVuJWPoO+5ywooG3WrE5t0vVaZn5B03vvkXrJxTgLCqjz1zG7Yja/7f9b1tW1YRiQt/r59sCb46aAw91hvHf4cJJOOYX6Z58l/qBJ7DN8H3om9uSxRY9xSNEh2EwbS75bxSLvLPaNn0TTijKikTDZ3p7YU368B8zvQ0gybXbspsF33olY9a9QeKgdW9HWA8y8Di9jcsbw8bqPuXLElT8ZImYYBnuf3JsXrpvNB48sZvKVw3C6t/5dJ6O4J3sdfhS1nz1My9MzKdqvgvCmMiK3DcEcfCD0Pxp67AembavjRURERERERERERERERERERERERERERERERERERKRrbP3J0V3XvpZlDdltA0gA8kaC5z8e7N3vT+BO6J56gFBlJRV/uKo9gAQgHKb1lrsoaXATiAR4ftnzTLOtJvHEEzqMSz7jDFy9ti8gwm7aGZ4xnOvHXs/NE25mr6y9cG7nw/zyvyveGc/++ftz1753ceWIK+mf2n+HrWWZLuo+XUJo7fotbU0ffY6vMvqTY9pCbdzy9S3cvfgB3m/7mg+qPidiRfhw7YdMWTyFmpwYzPh4WmbMJOHwwzCcP97b7v79cA8atMP2I+38YT+fb/icza2buXXuraxpXEOdv45P1n/CkpolnfqneFI4tPhQ7tv/Pi4aehElSSX/0aEEBhzXsa3fUZD6H/3+C9+3324JIAEIrllD3TNPY4XD2zXPjhQ/aSK25OQtr23JycRNPLAbK/rfFPX52HzddTgLC0n53e8AeHv120SsCIcVH8bamlay4xy4P78BSia2329bkX75ZTjy8ij/85/BH+CCIRewpnENDy18iFAkxHWzr8O0TC4ZfwHLZkzD7Y4lzZOLI+PHgDIztj1kx/SFyYt3snzeOirXj8B0O+DR/WDlx1tde2LBRCrbKllcs/hn9xqT4GLiWf2pq2jlw0cWEwn9x/trNAJrPoc3LmTMums4Inc5tnUzsFLyicT1IrCpEWvJW/DcsfDAaFg9ddtOsoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIj8Ilv/X9LLjpPeF377Hqz+DFqroef+kDuiW0sK19ZiOB2kXnwxViiE6XTSNm8eztpmFvgXAPBi3UdMPPE6PIOHENq8GWdeHu4B/bHHxXVr7SK/VKS5mdbZc7e89pSWEjt2LOH6ZvzLluHq0QMcDtY3r6emrYZUTyqBSIDpm6ZjYJDsTu4wnz/i5wNrMVc/+ThNr71By9dfk3PP3USamrDFxePu2wdHZubO3uYex213My53HEvrlgKwqmEVAKOyRvHE4icYmTUSr8P7c1P8x4RxMPF66H0QbJwLOcOgcBy447erLt/SpSQccwyO7CyIRLEiYZo//YxISwv2xMTtmmtH8QwbRs7dd+Ff0h7W4u7fH8/gwd1c1f+e6vvuI7RhA/lPP4XpdGJZFq989wqD0wbTM6kna2u/oDC6HojCIbeBYWx1HtPrJeuGG1j/m99QdeedHHD11RzR4wgeWvAQzyx5llarhRNs55DpTuTNb76mT/5onOlxGA7bljkMpw3DYRKqqqdg3RKWxWWR+teHMRKAF05qD//oeziMugDyRoHZnl23d97eOEwH76x5h0FpPx+ulN8/hX1O6c3UZ5bz4WOLmXRKJrbKBbDifVj+LrRsBmccRr8jqE8dy5T7X6RP5ngmXnEuZZMnY60K0OMfZ2J+dQc8c1R7LQdcB3YFmImIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIh0td0phMQCPjIMwwIetizrke4u6BfL6Nf+s4uwp6WRdPrpVN16G4TDAMQddBDu7DxYA0muJI7rdRyh/ExSevfHikYxvn8QWWR3ZYuLI2b8OBr/9RKeoUNw9Sim+u672w8aBtn/vIUlw1O4bOpltIXb8Ng93LXvXdhNO+FomLLGMvbP359P138KQG5sLqf1Ow1vUi+8/Qfo76Qb7Z+/P59v+JwV9SsAKM0oxRf24XV4sZu/4GMvPhsGHtv+8wvF7LUX1bffQeOrrwJgJiSQec012GJjf/GcXc10OokZMQJvaSkAxk+EX8gv51uyhLonp5B43HHEjBwJwOzNs1nbtJbrx1yPZVmsrazj0MgSOOwaSCr42fli9hpJ0imnUP/0M3iHDee6idfRP6U/MxZ9TdyiHpx74W+Z9/4bRCNhilwDcGTHdBhvGAaGB+qfvJESWxLT+h9GY0oW6fFuor+bCl/ei/nlvbDsbXAltH938SQRH43wYl2AwNR7iM59EzPYBsFmCLRANAymHUwbGDYw7fQzTUryDCIVQWx3tLQv7vC2B7H1nwy9DwaHhyRg5KYoX732L3qNGkvO7bez9qSTKH92Djl3fIXx8TXw1QPtgUDHPw3xWTviMomIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjssXanEJKxlmWVG4aRDnxsGMZyy7Km/3sHwzDOAc4ByM/P744ad0+WRd3jj28JIAFo/uADko/cn3MGnYM/7AcgwZUAoGCFHUD37s5nOByknHYavnnziR0/gep77vnxoGWx+W/Xsf6fp9IWbgPAF/Zx9zd3c+aAM3lk4SO8V/Yeo7JGcfXIqylKKKJHYg/Svek/zr8H/Z3savfvgqoFnDXgLNY1ryNqRfmu/jv+teJfPHLgIzhtzm6pKby5Ev/SpVteRxsbaf7oQ+IOPIBdLepD4SM7RrStjfKrrsKWkkz6lVdsaX9s0WOkedI4pPgQKld+Q0PQpCQrFvY6b5vmTb/qD/iXLKH8T3+isPgFTux1IqFnCohP8+CNC/Pt+29TUjqa2Np4nFkdQ2+ira20fnYn4Y1LOfCvN/HoIvhwaSUFyV5+//ICotGh3HPsl4wNzYJ1X0DtamhYD6aNHGc8C301lLs85GYPBWcsuGLbA0iikfYwEiva/jsawREN07CxhbkrY/GUDGPYmcdiuLyd9rPX5BNZNecrPn70fn572wOk//73VN1yCzUPPkLaJf+EgtHwxoXw6L5w4nOQM/zXXRgRERERERERERERERERERERERERERERERERERER2WK3CSGxLKv8+99VhmG8DowEpv9Hn0eARwBKS0utnV7kbira3Ey4qrpTe6S+nnp3Pbmxucwqn8WkwkkkuhN3foF7AN273cPVsycFU56k9csvOx2LtrYSF+gYJLK0bil/GPkHBqcNZkH1AooTihmaPpTs2OydVfIuaVe7f6dvms6CqgX8dsBvaQm1kOHN4M97/ZlhGcO6rabg+vWd2vxLlhJta8N0dk8wiuxcm2+4keDqNeQ99ii2+HgA5lXNY3bFbK4ovQJXay2LXvkHcCYDJ50J2xhkZDqd5Nx9N2XHHsOGs88hcvlttNQFGHdsTz56+B6i4TClY44i+nYdjpwfQ0iCGzey6dLLCG9ahnefc+lz8pH0vWcm1765GAvokRZLNGpxwUtLmXrFUSQPOr7Dul7L4u53T6LOX8fbR9yNy+b6r7WmAWvfLeOrt8tofmU9e5/cu1Pojd3h4KALLuO5P1/Op088yMEX/Z7AqpXUPPAgjpxcEo+ZDKm94IUT4clD4Ij7YNBx23SuREREREREREREREREREREREREREREREREREREROTnbdsTrt3MMIwYwzDifvg3MBFY3L1V/e+wp6XhHjSoY6NhUBbr59P1n3Lnt3eS5E4ixhnTPQWK7ED25GTcvftgOBwd2h05OZS5mjq0OU0nSa4kJuRO4OKhF3No8aF7fADJrmhM9hiaQ83cO+9eXl7xMu+seYemYBN2s/tytzxDh3Rqiz/0EGwJCTu/GNnpGl55hcbXXiPlvHOJHTsWgEg0wj9m/4MMbwbHZe8NTx/JIn8apgH9ivO3a35HRjr5jz2OFQoRvOZCCuzrWDn7RdZ8O4cJp55BTLMXTANnfhxWNErD629QdtTRBNetI+m3f8aWWgoWXBsbzzCnizNG5vP2ReN4+LThtATC3Pnxd53WNAyDS4dfSkVrBc8ufXabay09pJBhBxWwZEY5M19eiWV1zi3KKO7JmGNPZvkXnzPv/bfI+tvfiBkzhoq//pWGV1+FjP5w9lTIGQ6v/Q4+uQ6i0e06ZyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLS2W4RQgJkADMNw1gAfA28a1nWB91c0/8MW3w8Wddfh6tfPwDMhARcN/6J+5rfps5fR2F8Iaf2PRWH6fgvM4nsnpzFReTcdy+2lBQAHEWFZN95B316jsJpOtvbTAfXj72egviC7ixVtsE+uftQmlEKQFu4jaKEIg4sOLBba/IMGULqpf+H4Wy/n2IPPJDEY47FMIxurUt2vOZp06i4tj1EI+3CC7e0T1kyhWV1y7im16l4nz0GGjcxP+NoStLj8Dht272Ou3cvWs+/haDNQ/En/8T+1LOMGz6GwftOxPddHbZ4H42vvUzZ0ZOpuPpqXD17UvT668Tttx+EozR9up7clU3cFXBxid2Lx2mjJCOOk0bm8cLX61lf29ZpzVFZo9gvbz/um38fi2u2LRvOMAxGHVnM4P3yWPjZRma/tWar/fY6+nh6jhjN5888Qdmi+eTedy8xo0dT8ee/UPPIo1ieZDjtDRj2G5h5B/zrFAg0b/d5ExEREREREREREREREREREREREREREREREREREZEfGVv7P9D/LygtLbXmzp3b3WXsVsKNjYQ3b8YWG0sgLYE1jWsIRULkJ+ST5knr7vJ2VV2eIKB7t/uENm8m0tCIPT0Ne3IyUSvKuqZ1VLVVkeZJoyC+AJu5/eEAu6gdkn6xq9y/Df4G1jatxcKiKL6IRHdid5eEFYkQ3LgRKxTCkZODzePp7pJ2Zzvi/u3yL0RN77/Ppj9chbukhPynn8YWGwPArE2zuODTC7jE25MzVs/FwMB/3PMMfqKBU/Yq4JrD+21f4ZbFoqnfMOOlevCtoGfFa+RvroVg8PseBj9sz9WrFym/O4v4ww7DME2C5S1U3TMPAGd+HPYUD77FNWRdPRLT66Cqyc+EW6dyyIAs7jhhSKe1G/wNHP/O8fjDfu7d/14Gpw3e5pqnPbucpV9UMOLQQkYcVtQplCfo9/Gvv/2R2o3rOeL3f6Kw/2Aq/vhHmt57n5i9J5B9003Yk5Ph60fgg6shIQcOuQ16Tdqu87eTKXlIREREREREREREREREREREREREREREREREREREdlkKIRH5dRRCIrur/+kQEvmft0uHkER9Pqrvupu6p57CUzqcvAcewBYfD8Bn6z/j7k8v48qmNsbVV0HmQDj+Gd7e4OLiF+bx3O/2YmzP1G1ea/3ihUx//i0aagZhmAYjDjYZdshEjECA5k+nU//iF1iRMAmHDiRm1EhcvUo6hH1YlkXVAwsIV7aSdv4QAKru/pb4SYXE75sHwD/eX8Yj09fwwf9NoHdmXKca1jWt47yPz6O8tZzDiw/nkKJD6J/anwRXws+fp6jF1KeXsfyrzRQPTWPCCb2ISXR16ONraeaVv/+F6nVljD72JEoPn0zzK69QdfMtGC4XKeeeQ/Kpp2JWzYO3L4WaFdBjPxh9IfTYH4xdLvNjlytIRERERERERERERERERERERERERERERERERERE5AcKIRH5dRRCIrsrhZDI7myXDCGJNDfT+OZb1D72GOHNm0k69VTSr7wC0+WivH4NU6dfS9aKj9m7zY9pd2GMuwzGXU7EdHDU/V9Q3xZk+pX7Yppb354VtfC3hWhp8LN67gJWzPqGxmoHNldvnB448tLhpBcktfcNR6l+dBGh8hbSzh+MMzv2pzcetbD8YUyvA4DqxxcR2txG1lUjMOwm9a1BJvxzKoPzEnnqzJHYtlJfY6CRBxc8yGsrX8MX9gGQ7E4mNy6XvLg8cmPbf+fF5VGUUESS+/s6LYt5H69n9ltrME2DnsPTye+XQlpBHPEpbkybScjv56NH7mX5F58Tl5rGgH0OpDgrj+Czz9E67XPMuDgSjjqK+AP3xRP4CmP2g9BSCQl57YEkheMgrQ8kF4Prp8/DTqIQEhEREREREREREREREREREREREREREREREREREdllKYRE5NdRCInsrhRCIruznR5CYkWjWMEgViiEFQwSaWwkUltNqKKc4OoVtC2YT8uyhURtIZz987EfPJpwbIhA5SIc1Ssobq7BZUGrMwbX8DOwj76IUEwGG+t93PvpSl6bt4nbJw/koN4ZtNQHaKnz01Tjo76yhcaqNhqrfbQ1hvnPr202h0Wf0dnsdUQPPLFOACLNQRreWIVvSS3JJ/fBOyhtu06E/7t6ap5YTPxBhcRNyMUwDZ6fvZ4/vb6Ig/pn8n8HlFCSHovdZnYa2xZqY37VfFbUr2Bd0zo2Nm9kQ/MGNrdtJmpFt/RLcafQM6knPRJ6kOJJwRX0sn5pHZvXN9BGM22OZnyuJoKeNnzOZtrMFgL4wAIzCu6AjZiwg7Sol6y6MGkbGkhpjJIadJGRXkBBoY0UdyVu/yrMiO/H62h3gycFYlMxXPHgjG0PJtnyO+6/v7a7wLSBYfu3353PxU9QCImIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjsshRCIvLrKIREdlcKIZHd2U4LISk77nj8S5dCJIInLUD+3nUYpoWxjZkTPsNgoyeW1uwh5A8+neS+R4HdyeMzy7jx3aVErfaVx/jtjA04OhcV9WNFG9p/Ik2YtgBp+RkUDR1Az9LBJGbGYPu3MJCaJxfjX1EPBiQcWkzcuJztPxGWRc2TSwh8Vw82g/QLhuDMieXR6Wv454fLCUUsDAPuPWkohw3K3qY5Q5EQFa0VrG9ez+qG1axqWMWq+lWUNZXRGmrt1D/OTCCeRDzhWJy+GOytHuxBFxYWUTOMz9FCm6OZVmcDrc5GgnbfVlYFu2VRHAjSIxgmJxSmX22EERsj2F1RTIeFabe+//39a9uv+F7876EkV28Em32rvX75AiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI71v9sCIlhGNXAuu6u43upQE13F7EDaF9QY1nWQV25+C+4d/+XroP2svN0+b0L3f7eu6ud812pnl2pFvj19eyI994PaK9re/yvndcdQTV1tEPee0VERERERERERERERERERERERERERERERERERES6wv9sCMmuxDCMuZZllXZ3HV1N+9o17G71/hztRX6NXe2c70r17Eq1wK5Xzy+1q+1jV6sHVJOIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjI7sTs7gJERERERERERERERERERERERERERERERERERERERERERESkeymEREREREREREREREREREREREREREREREREREREREREREREZA+nEJKd45HuLmAH0b52DbtbvT9He5FfY1c757tSPbtSLbDr1fNL7Wr72NXqAdUkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIistswLMvq7hpERERERERERERERERERERERERERERERERERERERERERESkG5ndXYCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIh0L4WQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI7OEUQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrKHUwiJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIHk4hJCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIns4hZCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjs4RRCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIisodTCImIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMgeTiEkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIie7j/2RCSgw46yAL0o58d/dPldO/qZyf97BC6f/Wzk366nO5d/eyknx2hu/eknz3nR0RERERERERERERERERERERERERERERERERE/sf9z4aQ1NTUdHcJIr+I7l3Znen+ld2V7l0RERERERERERERERERERERERERERERERERERER2dP9z4aQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyLZRCImIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMgezt7dBciuzffdd0SbmiEcwoiNw1mQjz0urrvLkm4QqqrGv2wp0WAQ02an9csvcfbsiTMvD8vvw5GXB9Eoht2OmZKC1dyMLTERm+4X2QVFg0H8q1YRbW7BMA3M+AQ8vXt1d1kiuyXfihVEm5ogamHEx+PuUYzpdHZ3WSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKynRRCIj/J9913RCorCa7fADYbhsOOFQxgHzasu0uTnSxcU0PFX/5C2+zZpF18MVW33YZnyBAIh6m89lqSTjmZ0OZKWr/8kvRL/4/Gd97Fv3Qp6Zf+H/bsbAyHA1fv3rjy87t7KyIA+JYtI1S2FivgB8vCTEoiGgwQM3Bgd5cmsltpW7iQUHk5kYYGDMDweiHgxztkSHeXJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLbSSEk8pOiTc2EKiuxwiEIhSDiIFxegT+pDHdRUXeXJzuRf/lyWqdPJ+6AA2h85x0AYidMoPqee7AlJWE4HLR8+ilJp55C7WOPEa6qJvWCC6h/4QVCm8pJPPZY/EuW4F+ylJjRo4idsDdmXCz29HQMw+jm3cmeJtTSQrSxkajfjxXwYxgG0aYmogkJ3V2ayG4n0tJKtLkZgiGiloVpmESamgj7fNg9nu4uT7pRNGoxf2MDQ/MS9VkvIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKymzC7uwDZdVnhMADhqiowIFJfTzQUJNrU3M2Vyc4WaWwEwHA6sQJ+AKKBAADuvn1pmzcfAFtcPOGqamyJiUSamwltKsczdAiRlhZqH3qYcHU1ViTKhvPPZ80RR1L/4ov4V64iXF/fLfuSPVO0vp6o30+4rpZIfQPh2lqiPh+GzdbdpYns0qKBAMFN5YQbGra0WcEg4epqGt56i8Y33iCwejVRv3/L54bsuV75diOTH5jF6/M2dXcpIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiso0UQiI/y4yNw56Whm/+AqxgAHtCIlY41N1lyU7mLCoCm42WmTOJP+hgAAynAxwOghs24OpR3N7RZoJpYktNJbx5MwAxo8fQ/OGHAMQfcgjVt99OaMMGkk89hdaZX7D2hBNofOMNqh9+mIrrrqd52jQizQq6kR3HcHuItrURqayk7qmnCNc3YNhsNL3+OvUvvURww4buLlFklxMoK6Piz39h9aRJrDvpZFq++AIrGsVqbsZ0uvD074+7dy8cmRmEKysx3e7uLlm62Xeb2z/LF29q6uZKREREREREREREREREREREREREREREREREREREZFsphER+kuFxE1izBsvnx1lQgOFy0zpnDkSt7i5NdjJ3797kPfggtoQE/MuXkXblFfgWLSbjj38k2tyMMz8fe1YWLdOmkXjcsQTXrsXVp3eHOczYWMLV1QB4SkvxLVpMy6efknzKydQ9OYWaO++i5bPPCCxdRuPbb9M8dSqh74NMRLqS4bAT3rQJe1oaqeedh7tnD0IbNtD41ttsvuZaNl1xBeGamu4uU2SXEfX5qLrtdpreeQfCYYJlZWw49zwCK74DLMKNDdjTUnFk5xBtbcV0ezAMo7vLlm62trYNgMomfzdXIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiItvK3t0FyC4sGsWenES0oRFbfBxW1MJutxFta+3uymQnM2w2YieMp/BfLxJtbcWenk7yKae0t++7D5GGBuImTiS0aROG203cxIlYgQApF15A6zffEnfgAbRMnYbp9QLgLS2l9uGH2+d2uQhXVYHDQcpZZ1J1621YoRDxhxxCcO1azLg4XD164O7TB9Pj6cazIP8zLAtHdg6hykoMh51oKIQZF0/K2WdT++CD+BcsJLBqFfbU1O6uVGSXEKqsouXTTzs2hsMEN24Em609dMTlxDBNrGAI0+3CcDi6p1jZZWxu8gFQ3ujr5kpERERERERERERERERERERERERERERERERERERkW+1yISSGYVwG/A6wgEXAGYAX+BdQCKwFjrcsq76bStxjmC4XpseD5fdjhULgcGC6XWCzdXdp0k3sycmQnNyhzZmdDdnZALiKizsci91nH0KbNhFtbcU7ejSEI9hzcog2NmJLSSFSUwOW1d53wgQa33wTKxQibuKBRJqaqLrlnziLi0k8ZjJNH3yIPSmJ2P32xZmfj+l275xNy/8cw+XC8HowvR6sYBBMEzM2FkdmJmaMl2hrG1Y40t1liuwyTI8bW3Iykbq6Du22tDSsUBB7IEBg8WKsQBBnj2JwOrGiVjdVK7uKJl8YgMpGfzdXIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiItvK7O4C/p1hGDnAJUCpZVkDABtwIvBH4FPLskqAT79/LTuY4fEABtjtGDYbBoDLBYbRzZXJ7sIwTZx5ebj79CH5pJNIPu1UCp58Au+Y0aRdemn7vWSaGF4vjvR0QpvKAXD36UvrzJlgs5F4/HFU3XY79c8+ixUJU/fU06w75RRqp0zB/91KQpWV3btJ2W2E6+sJbirHCgQwLAurtY2WTz+jbdYsMAwMpxNbegb2rCyc/xGoI7Inc2RkkPGXP3doS7vyCvzffEP1zTfjX7AA7157YSYmUv/Ci0SbmrcETMmeq9kfAqDRF+rmSkRERERERERERERERERERERERERERERERERERGRb2bu7gK2wAx7DMEKAFygHrgb2+f74U8A04KruKG5PYthsYJqEN24kVF2DYTNx5ObiyMrq7tJkN+bMz8eZn080FMLVsyehjRvJvfsuWr6YRez++9P46qtYofYHlr2lpbR8+hlYFonHTKbpnXcJlpURu99+hKuqWHfKKWBZpP/xKmJGj8aRno7hcHTzDmVXY4XDtMyaReUNNxIqLyfh0EOJnXggtU88QczYsVh+P9V33EHWjTeScOSRxO23L85svc+J/Lu4Aw6g4MUXCK4pw5GTTeNbb9H46mt499oLe14+LTO/ILh+PTFjxhCuqgQr2t0lSzeyLItmfxiA1mCEUCSKw7ZLZR+KiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIVuxSISSWZW0yDOM2YD3gAz6yLOsjwzAyLMuq+L5PhWEY6d1a6B7CcLmItrTgyMvH1acPkbo6zLh4DMPo7tJkJ7HCYfzLlhNYvRpbfBzufv1wZGZ2ydymw4F3yGAYMhiAmNGjCWzc2H7QbsdwOjHdbsK1Ne1NaWkEy8owHA7c/ftRc+99YBikXnQhbbO/pvbBh/CMHEnK2b/DkZmJzevtkjq3V2hzJf6lS4g0NeEqLsbdt6+CUbqZf8UKNp5/AUQiADS++SaOXiVk3vB3wuUVGHY7CcdMJrB2HannnI1h6kF5kf9kOp14hwzBO2QIgTVriLa0knbJJZgJ8ZhuN1ZzMvbkJGypaUSbmjAczu4uWbqRPxQlHLXIjHezuclPsz9McozuCRERERERERERERERERERERERERERERERERERkV3dLhVCYhhGEnAkUAQ0AC8bhnHqdow/BzgHID8/f0eUuEexwmGM2BiMSJSKP/0JolEA3IMH4erRo8vCKGTXvXdbvpjFxvPP//HaDxlC7l137pBrb9jtuAsLyfzbtYQqq/AMHkzV7bcTd8AB+Bcvge/Db1x9+uCbNx+AuIMOomXqNPyLF+MsKsTduxebr7kWy9dGyu/Oxjt6FLaEhJ0WnBOqrGTTFVfgmzu3vcE0yb3vXuL222+nrN9ddtX79wfB1Wu2BJAAmLGxuAqLKP/977H8fgDs2dlk3fB3BZDsYXb1e3dXZdH+HaH6nnu2tKX+3yVEfD6M1hYcOTlgRbuvQOl2Tf4QALlJHjY3+Wn0hRRCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIishvY1Z62PgAosyyr2rKsEPAaMAaoNAwjC+D731VbG2xZ1iOWZZVallWalpa204r+XxXauBF7YiI19967JYQCwL9gIf4lS7uxsv89u+K9G66rp/LGGzte+/nz8S9ZskPXNR0OXLk5xI4bS/6TTxB/yMFk33YrUb8fz7BhROpqsaenA+AqKsK/eDEAicccS9Ut/8Q3dy7u/v3xLVrEhnPPo/KmfxBYs2aH1vwD/9KlPwaQAESjbL7hRsK1tTtl/e6yK96//86Mj+vwOvG0U2l85eUtASQA4fJyAsuX7+zSpJvt6vfuripaV0fLp592aKt9+BHcRUXtQT52mwJ99nDN/xZCAtDoC3VnOSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrKN7N1dwH9YD4wyDMML+ID9gblAK/Ab4Obvf7/ZbRXuQUKbN+NITydUWdnpWKSpsRsqkp3J8vsIVVR0ao80Ne20GuyJidgTE3EVFRG7//6Eq6tpmz0b0+mk5bPPwABME1tyMsEN68GycA/oT7TNR8NLL2MmJBA/aSI1Dz5EuLaWpOOOxTtmDPaEhB1S79bOTbiykqjPt0PWk23j7tsXz4gR+ObMAcBZWEjLRx936heq2LyzSxPZLUVaWju1WX4/0dY2DMPECoaIBgKYbnc3VCe7giZ/GICc70NImhRCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIislvYpUJILMuabRjGK8C3QBiYBzwCxAIvGYZxFu1BJcd1X5V7DldhIeGGBuIPmkTTO+/+eMA0cRYWdV9hslPY09JIOPJIGl955cdGw8DZo0e31GPzeLDl5+PKzwfAPXAgoQ0bSTzhBJreew/D6QIgZuw4ah97DIDk00+n5v77iba24RkyhOCGjfgeehhnYQHekSNxFXXtfewq7gGmCdHolraEww7Dnp7epevI9nFkZJBz2634ly7FilpgQNykidQ+8GCHfp4hg7upQpHdi7MgHzPGS7S1bUubq1cvfPPn0fTOu2Tdeiu++fPxfTsPZ34e3hEjcH7/3i17hh9CRzIT2kNI2oKR7ixHREREREREREREREREREREREREREREREREREREtpHZ3QX8J8uyrrUsq49lWQMsyzrNsqyAZVm1lmXtb1lWyfe/67q7zj2Bq6QEy+fDM3Ik8YcdCnY7jpxssm66CUd+XneXJzuY4XCQes7ZJEyeDHY79uxscu+/D0+fPt1dGgCu4mJi955A2kUXkX3jDXiGDcWM8YIVxTBNMAyIRIi2tmEmJBA7YQLVd9xB3ZNP0vjW2zR/9hlNn3xCYO3aLqvJ3ac3uQ/cjyM3F2w2Eo46kpQLzsd0OrtsDfllHBkZxI4fT2DZUjZdcCHhmhqSTj0Vw+3GlpRE2uWXE67TR4vItnAVFZH38CO4+vYFw8C710gSjjqSpg8+xDN6FIZp4Js3H8Nhp+ahh9lw0UWEKiq6u2zZiZr9YQAy490AtAXD3VmOiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIbCN7dxcguy6b1wuWhW/OXOwZmWTffDOBDeuxwmGsYLC7y5OdwJmfT9Z1fyP1wgswPR7sycndXVIn9pRk4g44AABnYSG+RYtJPPlk6p9+ekuf+IMmUf/iiwDEjB2DPSOD6ltvA8BRUkL236/HmZ//q/dnOBzE7bMPnkGDiPp82NPTMR2OXzWndJ3ghg3UPvwIAM7cPNqWLiHzur9hBYO0fvklsfvu180Viuw+vKXDyZ/yJK2zZtH48itU3Xobzh49iB09muo77yJ2332I+v0knXwSdVOewr98BY6srO4uW3YSfygCQEpsewhXazDSneWIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjINtqhISSGYYwDSizLetIwjDQg1rKssh25pnQxmw3PgAE0vPoq9S+9ROyY0e3hJBE9TLqnMBwOnDk53V3GNvH07Yunb1/CtbV4hwwm2ubDjI3F9HiItrYA4B0xguq77gYgYfJkDKeTDWefgy0+jvQrriR2330w3e5fVceuGNYiYIVCWKEQrl69wG7DmZpK5c23YHo8JB17LIZduVwi28OekIAjO5vWOXPAsog/aBLB9RuInTCBxjffwoyNxZmbS/KZZ2AFA91druxEgXAUgCRvewiJLxjuznJERERERERERERERERERERERERERERERERERERkG+2wJ64Nw7gWKAV6A08CDuBZYOyOWlO6nulw0LpyJXGTJmH5fZgxMYTKK7q7LJGfZU9JIf7ggwFw9e1Dy8wvSDh6MvXPPkvU3/4gvD0tDVtcHHVPPQVA7N57Eywro76yElevXngGDsAWF9dte5Cu58jNJXa//bAlJmKFI9hTU0k64QQMm0k0GMQKKCRBZHt5Bg6k4JmnCaxeDeEIhssFloU9LY3g6tVU33kXWbfcgqtnz+4uVXaiH0JIEj0OAFoDCq8TERERERERERERERERERERERERERERERERERHZHeywEBLgaGAo8C2AZVnlhmHoif7djAWENm0k2tCAs7CQ1q9m4xkwgGgo1N2liWwTT79+ePr1I1RZiSM7C0wbAN699qL5s88AiN1vPyKNjVTfcw8A9qwsMq6+Gs+ggTgyM7utdulaNq+XjD9ehW/JEiKNTdQ9NYW4vfcm4vPTOmcOaeef390liuxWQlVV7YEjGRlU/PUagitXth8wDNKv+D3V9z+A1dZGYNVKEo88onuLlZ0q+H0Iicdpw+0waQuGu7kiERERERERERERERERERERERERERERERERERER2RbmDpw7aFmWRXuOBYZhxOzAtWRHiVrE7bsvoYpyaqdMAcCWmooVCHRvXSLbyZGRQcqZZxJ/2KFkXHsNkZYW7GlpALj796d1xgwA4iZNIn7iRCr+/GfKjjqa+hdeJNLY2J2lSxdy5ucTM348kfo6YvYaRcPLL9Py2WckHHIwEb+vu8sT2S1EGhupe/55yo44kjWHH0HTG2/gKir8sYNlUf/Sy8QdcAAAjuzs7ilUuk0gHAHAaTOJcdppC0a6uSIRERERERERERERERERERERERERERERERERERHZFjsyhOQlwzAeBhINwzgb+AR4dAeuJzuA6XFT/+prxO69DylnnYV36FCap00Dc0feOiI7jiM1laTjjyfjqj+Qet654HBAOAyA4fXiKi6m7qmniDY3Y3g8hKuqaJn5BYE1a7Aieoj6f4FhGFhtPhpefBHD7SHh6KOwwhEcqWlYwWB3lyeyy2udPZvK6/9OpKGBaFMT1Xffg6tnCYbbDYCzqJCEI4/AO2woqf/3f3hHj+7mimVnC4ajOGwGpmngddkUQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrKbsO+ISQ3DMIB/AX2AJqA3cI1lWR/viPVkx4mGIyQecwzR5maIRsHpIH7SJKxAoLtLE/nFDJsNV1ERzoICCl98gXBtLWZCAu4+vWmdPRsAe2YmSSedSM39D2AFAsQfeSRx++2LmZCAq0cPHGlp3bwL+cUsi+YZM0g68wzcvXoTrqjAv3w5tY89Ruaf/0TC5MmYLld3Vymyy2p6771ObW1z5uAZOJBwXR0Jhx5KpLWVcCgMLifhykooLNz5hUq3CYSjuOw2ALwOO62BcDdXJCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIttih4SQWJZlGYbxhmVZwwEFj+zGbPFxRFxOLJ8Nw+kEK4phs4HN1qXr+JqDtDQEcHntxKd4unRu6TqN1T5C/jCxSW7csY7uLudXM0wTT//+AOQ/+gj1L7xI1O8HIOHII6h54EGsQICk00/Ht2ABm/7vUly9e5MweTK2+DgcWdm4+vTGnpjYjbuQ7WU4naSceQbhykpC69eDzcQ9dAiO/Hw233Aj7kGDttwXv0ZTrY9AW5jYJBeeWGcXVC7SPdqaArQ2BnHHOIhLduP8PlDEcLtJPv00DIcDW1ISmCbRNh+m00ndM88Qqa8HIO6gg7CnpeEuLu7GXcjOFAhHcNlNALwuG75QpJsrEhERERERERERERERERERERERERERERERERERkW2xQ0JIvveVYRgjLMuaswPXkB3MsiwwbdiSksFuB8PAioSxAoEuW6NqXROfPLmU+s1tuGLs7HNKH4oGp2KzmV22hvw64VCEVd9UMePF7wj6I6TmxbL/b/qSmhvX3aV1Gc+gQTh79CCwYgWt06eDYWL5/ZgxXkynE/+CBdgzMoibeCBV//gHhsdDyu9+R9vcuViRCLH77oM9KQkzLk6hJLs4wzQxTBuN77xD7OjRuHr3JlxbhxUIkHbxxUSamn7V/JFIlLL51Ux7bgWBtjDJWV4OOKMfafnxXbQDkZ1n85pGPn5yKU3VPjxxDiYcnkXWPvvQ/MGHJEyeTN2UKUTq6sBuJ+GII0g87jga336bSEPDljmaP/iA+IMPUgjJHiQYjuL8PoQkxmmnNRDu5opERERERERERERERERERERERERERERERERERERkW+zIEJJ9gXMNw1gHtAIGYFmWNWgHrrlbsSwLwzC6u4yfZWBgetw0vf8BLdOn48zNJen00yBqdcn8vuYg019cQeGgVIqHmtjsBvM/Xk9iuud/KuBid1e7sZVPpywDwLQbZPVIYMPyeoL+CCnZMbi8jm6usGvYYmLwDhtG4YsvENy8GcPrxZ6ZRXD9OgDiDz2UuieeBCDlrDOpf/ZZIvX1pJ5/PnWPPUbL1Gk4cnPJ+POfiBk9GsNm687t7HG29T010tpKqLwc79BhNLz8MqY3hsQTjse/ZAm+b74h5ZxziBkxAsP+yz4i68pb+eaDdQzeL49IxMKKWsx4eSWHnDcQd4zzF80p8kv82u8ZrY0Bpr+4gpLSDABsNoM506sYnbuJzBv+TvP7HxCpq8OMiyPt4otofPNN1p12Gt7SUtKvvIKqO+6EcHv4RLiuvkv2JLuHQDiK6/sQEo/TRk1L14XXiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyI6zI0NIDt6Bc+/WfM1BNiyrY+N3DXjjHBQPSSO9IL67y9oqw26j8Y03aZ05E4BgWRmVN/2D3Pvu7ZL5WxsDlIzI5Ou3ywj6wmBA/3HZtDUGQCEku4zG6rYt/97riGIWT9tEc50fgJ7D0xl7XAmxia7uKq/LuUpKcPbsSc6tt1Lx17/gLD4Q+BjT5SLa2orhdGIFg0Tq6/EMHYp/+TJapk4D2v9GNpx7HoUvv4SnX79u3ceeIuALs+m7etYvrcXusNFjWDqZhfEY5k+EL5gm0eZmGl58EYBoaxs1991P2uWX4/vmG2qffJKEo4/CVVT0i+ppawyQ3TORr98tAwscbhsjDy+itTGoEBLZKarWNbH0i3Iaq3z0G5dNXp9k3LHbHxbV2hikpDSDr98uIxyKYpgGQw/MJ2RatEyfTqi2BoCkE0+g+r77iTY1AdD21VeEq6tJOOxQGt94EwBnYUHXbVB2eYFQFJe9PYjL67TRFox0c0UiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKyLXZkCIm1A+fera1bUktrfQB/cxCiFpu+q8fhtJGUFdPdpXUWjdL6xRcd20Ihwpsru2R6u9Nk3eIahk3KJxyMYtoM2pqCRKNdMr10Eae3/a0ivSCOzasbOwSQJGfHsGZeFSk5saTlx+F078i3lZ3HMAxi99uXwp4vEKqtJVReTnDjRlwlJQQ3bcIKhQDwjhxJ7aOPdhwciRBcvUYhJDtJxap6Girb8DWGcHqibF7dgM1ukp6/9SAjwzBonjq1U3twbRn2zEzCmzdjhcO/oiKDQFuYkYcVEQlbOJwmG5fXkd8/5VfMKbJtaja18MYd8wgF2kMfNi6vZ8KJvSgeksaGZXWULawhsziBwkGpJGV4f3Yuw4SNK+sZfkgh4WAUu8OkdlML2QNSicxtIP7gg2n54EMMu2NLAMkPgqtXEz9pEtjtpF5wPp7+/XfYnmXXE4xEcdpNANx2G/6QQkhERERERERERERERERERERERERERERERERERER2BzsyLeBd2oNIDMANFAErgD36KdTWxgCtjUGC/ggpObGYpkFjlY+mWh9JWTEEq6oIbdhAtKUFw+HAlpSMp2+fbqvXnpKKLSmJSF3df7R3zcP0lgW5fZL59qN15PRMwt8aIugPUzgotUvml65hmgY9hqVhd9rYtKIegMKBKYSDEb5+uwwAu8Nk31N6kumqxxYJEm1qxJGbi+n1gmHgyMri/9m7z/C6rjr9+9/dTu/qXbJkW+7dSeyQ3nuhM4SEGSCUobeZ/zPDFBgYGDpDHeoMhAQICYT0Xu24JI57tySr19PLbs+Lo8gxTjGJFTvk97kuX9JZe7W9zj7rKC/WHUVVj+dt/MUURcHT0oKnpQXfnDmYB7qwsxmGv/o1tHgCNA07mUSvqMAaHj6srRp5/gAMcWyVChap0QKFjEmiPoiqKkwM5ghX+F84hMTjwWhqorRnz2HlWiyOk04TOvssjMbGlz8p1SU7UWSsP0uk0sfg/hSdp9S9aJPc1m3Y42NgO2jRCJ72DvRw6OXPQbxuDXenpwJIAFDALNnsf2aEXLJIpNLH2lv3seOxPi796GJCMd8Ld+a6JGqCbH+sj6rmMBODeSKVPlxXIXLhBXg7ZlLxnveAYRzRVDEMAqtX0XbhhXhbW1Cep47461W0bLyTISR+j4SQCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEK8V0xZC4rrugue+VhRlKfC+6RrvtcIqOXh8Gpvv7yFRH8K2HKySTdPcBK7jUOruwR4aBMsGTcUpFAGOWxCJp7GBms98hr7PfGaqLHDSSfgWLjwm/WuaSnq0wNxV9XRtGSUQ9tB5ch12yTom/YtjwyxYmEWbGUuqANi5ZoDq1shUAEnDrBiNnQmevr8fTVeYP8smtOVJdM8GJm66Cd/ixUQvvhg7k8HT1ISnvR3V40GvrkJRlON5a0dN8/vRJj+Hvh/9EGtkBN+8uYz/8lckrruOoa98pZyqA/hXrMA3Z87xnO7rhm05qJrKricHqagPYhZtLNOhYVb8BduoHg+V730Puccfxy2W91i9pgYtkSD+zr8hdtVVaH7/y56Ta7u0zK+gb88Eo71ZWhZUYlsOruM+b/3cM89gDQ3jFPLle8rlcAF98eKXPQfx+vXnW+rS81rYuaafsb4cAIGohxWXtLHmlr2M9WWPCCFxHBfbcjA8Gq4LmqHSMDtO/54kFQ1BqlsjKCEfgZn1qH4/VR/9CKXuHszegyR/d/NUP5Uf+QiBRYtQ9OnMuxMnqpLl4JkMIfEaKgXLOc4zEkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcTReNVOhrquu1FRlBWv1ngnKsOrkhzOM/+MRg48M4Lu0Zi5ooZS3qKwfz9uJo2TL2CPDAOg1zdgp9PHdc7hC86npbmJ4p696BUJfPPmYVRXHZO+FU3B8GmoqsqMxVWoqsJoX4ZIZeUx6V8cGzF/iZGeFB6fTm17hJGeII5dDlRQdYWmOQnW3LoPgKrmMGlvDc7p78DbvQXf6n58ddX0/8M/4O3sJHLxxQz+x3+A61L98Y+j+P3oVZV42magBV5+8MOrSQuF0EIhvK2tBJYuxS4W8S9dQmnfPrRYDN/ceRjV1cd7mq8LiqqQHssz7w31dG0exfBrzFhahVm0X7RdYMkSWm/8NYWdO1G9XrydnWixOFo08oqDcTRdo3/fBFXNYRL1ITRdITNeOCIc4llOPo9byGMNDOKWiug1tTipFMXhYbxVx2avFa8fVc1hPH6dUt7C49dxHXcqgAQglywx1pchXhvA/bNciKGuFM88cJDR3gxzVtVR0xYlNVogURskEPGiGyoD+5JUN/hRfOXwEkXT8La1Uv2JTxC58ELMwUE8TU345s6VAJLXsaLlEPKW33+frlGyHGzHRVNfG8FjQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxOvVtJ0OVRTl4895qQJLgeHpGu+1QlUVghEPT/x+L1UtYUp5i8du3sO5184FRcW1bZxMGrdUAhfs8XH0isTxnbPXS2DJEgJLlhzzvhUgHPcx2pchEPYAoOkKruse87HEy6fv38yZ80sMB+LYlkNlY5jaGREMn0ZVc5jubWMAxOsCNHbGWTsZSNK2qIGZb/sEVu8e/FeXCLXUMfzVr6J4PFR/8hP0f+5zOOk08be/DU9HB4qq4Z01E9/8+aiGcTxv+aipfj+q34+xeDGBxYuP93Ref1wwDJ11t+2nujVMPmXy+O/2cva1c16yqa+zE19n5zGfkm05RBJ+XKe8j5lFm0R9iOfb1ux0GmciSam7G0VRKe3dx8Rvf0fNpz+Fm82ChJCIv1BFfYgrPraE3esHsUo2uWTxiDpj/VmqWyMk6oOHld369afwhz0Eol7W3LKP894zj6qmEPm0iaqp2JZDvDaIYzk4xSLaZBAJgJ5IEDr11FflHsWJr2g6eHUNAL+n/LNo2QQ8EkwjhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCnMim8yRg+Dm/W8CfgN9N43ivCZpHY/hgmlOu6uDgjjEUVWH1ig4mhnO0toYomRZOOgOKAo6DWyhg5wvHe9rTRlEVFBX6dycZ688C0DwvgUSQnFj0qmryH38nVcuXEbj6rfjClWSTUU66bAaDB5KUcjYA7Uuq2XhnFwDzT29gYiDH3T/bCUB1wzmcOqN8EDl83nmM33gTTipF/O1vJ7duPeO//BVGczOxq6+isGUremUlvvnz8DQ1HZ+bFq8JigrjQzlWXtrGwZ3jBCJeOk+pJTOeP25zUjVAhfV3dOE6Lt6AzspLZxwRQuKaJuM33MDwt79DxbveBX4f3lmzCJy0kvSjj1E5d+5xmb947atqDpOoMhi/6UYGQ7PY+WfXW+ZXMPukWsKJQyEi4wMZll3YylhflvRYgYVnNaKqCoqisOXhXsyCjaopLD2/BVQXRdNe3ZsSrykl28GjqwD4Jn8WTIeA53jOSgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBAvZTpDSLa5rvub5xYoivIm4DcvUP91QVUV6jtiPHrTHlZd3Y4/YrDutv0sv7ANo7KSnGWSuv1PBJYvRw2Fydx3HxXvvg7Xtv8qD/wqisLIwQwrLmnFshwcq3xgP58xj/fUxHP4OmdT+YH3M/K97xNYtpzg1ltRIzGKb3w/kQo/VYvDdG8bw3XBcVwMr4bHp3Nw5zgA1a1h2hZVMegqBL/8MzxxDdt3O57ZnaiXvhX/ijOxsmAnakj37sD8yTdwRkeIvuXNxN/4Rjytrahe73FeBXEiUlWVyoYQWx/uZekFLSgKrL1tH6e+cdZRtXcdl9G+DBODebx+jYrGMIHIKzslb5su2WSJs6/pRPdoFHMme58apr4jeli9Und3OYDk3e8m/eCDBBYvQg2GSN52G/G3vhXVI6f1xctX2reX4S9+Cf/lb2HBiovZuiGD47rMXFbF3FPriVT4D6vv8Rk8dc8u4rVBEvUBxnoz1M+MMT6Y5Zxr55BLm/gCOiMHMzimi6KWgyVKBQvHcfEFjONxm+IEVTRtvM+GkBjlv18Lpn08pySEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIozCdIST/wJGBI89X9rqi6SrFvMlFH1jAwR3jDB5IsficFnxhHUVVcZJJopdfzvivbsCemCBy8UVYo6M4hQJaMHi8p3/MaZrCjCVVPHbTbsb6cwB4fBrnv3f+cZ6ZeC4tHKbiPe8hfM452Mkk0auvwi0WUbw61bMrSQ7lOeWKGfijXrwBnWDMy/hAFoBwhY+mOQnW3roP3VBZcl4zEymF2JXvo+uZEdTNJqmRAL27JoAeVC3Eef/0bSr7n2Li1zcy8asbCJ9zNlUf/jDe9vbjug7ixOO6LoGowfKLW8klS4z2Zlh4eiOG9+hCmw7uHOO27zyDY7sAtMyv4Mx3dhKMvvzQG81QmLG4ig23H2B8IEfrggoWntkIyuH1nFweRVHQKhJEL7iA8RtuwE6liFx8MXYqifpXuOeLV4+TLe/BxVtvpGHuFpovuBpUncpT6gn9WQAJQDFvsurqDvZuGOLgjnFaF1aiGgoVDWHu+P6WqXoLzmjACHhwHIWD20dZ+8d9lPIWi89ppn1JFf7wofCcUt6if1+Srs2jhCt8NM9LUFEfmv6bF8dd0XLw/FkISV5CSIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQogT3jEPIVEU5ULgIqBBUZRvPedSBLCO9XivRTWtUe75yTZyyRIAu9YOsuqqdprnVKIGg2Qfe5zYm98MloVrW1ijY7iOc5xnPT0Mn8Z4Xw5/2MPKZTU4jks+XWLLI300zIqjTR5gFcef6vfjmzv3iHIvEIz50A2NXLrEyktnsOXhg8Rrg+zfNELHsmo23dcDwJLzmtnycC+x6gBDB1Ic2DzKykvb2P74AFAO6Zmzuo7xohe9bj4kHkA5cAC9ppbMQw9jDg7imz0bvaLi1bx1cQJTFLBKNmO9OZ554OBUebTGT+IjSwgnfC/YNp8p8fCvd00FkAB0bRlluDtNcMHLDyFRNZUNd+yjbVElLQvAsRw2P9zL6qs7DqtnNDbgmz8fLRQi+/QmYm95M9gOTqGAk0rj2nJgX7x8npYW9JoarMFBStu2wratGA0NeC/71fPW9wUM7vvZM1il8t8bm+7toX1JFU/f08XS81tQVFAUhd3rB2mZX8HggSS3fWfTVPuHfrUTVVWYe2r9VNnep4e4/+c7pl4/fY+HS69rwTu0D09LC97W1um5eXHclSwHr14OH3k2hKQgISRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHECe+Yh5AAfcAG4LLJn89KAx+bhvFec8YHclMBJM966p5umucn0BQV17IY+fa3AVDDYao//jEolZ6vq79IIWuSnSji8esvejD/1eRSDhHwhQyevG0/AJFKH4vPaaaYtwiEPcd3guIw6dECpYJFKO7FGzCmyjVNpa4jRjFnct/Pt9M4O05dR5SmngSarmKVHDRdxbFd8mmTuafG2HBnFwC2dSgA4uTLZ/DMgwdJjxYAmHPye1jwlrcz8Z//hjU4CIB/2VLqv/SfeJoaX8U7FyeqQsakkLHY9mjfYeXJwTyjvZkX3evMgk1yKP+8fb6UXKpILm0SCBsEIocHluQzJo2dcdbf0YXruHgDOisubiOfNonXHKqnx+PU/vu/UdiyBXNoiNTttwOgJRJUfuiD8FcaPiVeHUZNDU3f+y6DX/s6+fXrCaxcSfXHPopRXY1l2aRHCiiKQqTSh6qpJEcKUwEkzyoVLBae0cSTt+3HLNqomsLS81swixYD+5NHjLnp/h7al1Xh9RvkUiXW/H7fYddzqRIDmw+i/fP1qMEATT/8IYFly6Z1HcTxUbQcvEY5SM43+bNgyp4mhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCnOiOeQiJ67qbgE2Kovyf67rWse7/r4HrukeUlQ/+KoCLFotR9eEP45omisdD+rHHCZ1//isac6Q3zUhPGlVTwYWJiIf6jhiarr6ifl8pTVMxfBp7Nw5PlaVGCvRsH6NzVe1xnJl4Ltt02Pf0MA/9eicer86S85pRVPAGDCqbwxiGii9k4A0YnPqmmQzsS7LjiX40XaW2PUplY5DkSAGzZANQzFn4Qwb5tInhKT+DdR0xurePTQWQAGzflKWprWIqgCRwyikEV64k+8jDWHPm4J09Gy0QePUXRJw4VAXNULHtI/dVx3rxA++BqIcZS6vYu2H4sPJYzYs/UwP7kiSHcyiqwqjtEqnyU9cem7qu6ypP39Mz9bqYs9h0fw8XvHf+EX352tvJrVuHb/YsgqecArYNmkpuw0Yil1zyovMQ4qX45s6l8dvfwpmYQI3F0Px+MuMFBvYlcSY/M6N9aera46iackR7j09nw51dmMXy3u3YLhvuOMClf78Ib+DIkDB/yFP+OwNwHAfreUInlGgcNRjEyWYZ+MJ/0PKzn6JFIsfytsVx5rouJdvBoz0bQqIBUDTt4zktIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQhyFYx5CoijKZsCd/P2I667rLjzWY77WJOqCzH1DHaGYD8d20QwVTVdI1AVJ+wNY/f2YBw9i1NeRe3oTib95B5TMlz1eMW8yMZQnnzKxTAdVU3Edl7G+DFXNx//gb2a8iKIqNHXG8YU99O4cY2BfklLexvAc80dUvAyjfRnu/slWFEVhxUVtPHrTbnSvxspL27jvp9sY68uy6OxGmudV4A0YtC+txgXu/ck2inmTxec0s+2xfoJRL4oCe9YPseicJtbeuo/d64c46bIZFHMm2x/vP2zcuo4YbjCM0TETLRjA09DA8De/CYDi81H3pS8SWr0aLRw+DqsiTgShmJeKxgBnvGM26dECqqpgFm12rOknUR960ba6oXHSpTMwiw7dW0bxBQ3e8JaZVDa9cLvkSI7MeIHsRAmzZGN4NTRDZWIoS6w6CECpUM7fquuIEanwMbA/SXIoj6Ie+Z0IoIXDZNespbR3LwCK30/1pz8FloWdL4BZkpAG8bJpfj+a3z/1eqw/SzZZxCyWA0K8fp2x/izxmgDRaj/JofxU3Xy6RCFrEq8LUN0SITmUY2BfimKuRFNnHG9AxxswmLO6Dtt0iNX4KWRKGAk/waiXJec1s/bWfVP96YZKhCSRz/87/f/4/yhu346dSsnz/VemOBkA5TUODyHJSwiJEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIccKbjoSHS6ahz78qwZiX5GCebY8cClw457o5KIqCi0v4nHPIPPIw+U3PEFq9GjuVhhc4vH40shMlHNNB1VU8moqigOO45DMvP9jkWKpqCbP66g72bBxifHCC9iXVhCt9eIMSQHKimBjMgQtNc+Ps2TCI47gsOL2BJ/+4n1LeYsEZDYz2Zll/Rxc1rRHmn9YACpx97Rz2Pz3M+FCezlW1qJrK+e+dz8Y7u+jfO8F5fzuPXLpEIOLBFwyTHM6zf9MIHp/Gikvb6N4yxpo7Bmi94p+Y1aEwfv07AfAvWULojNMZ/f4PGP3+D6i8/n0ETz0VLfTioRPir4+iKCiuysO/3oVtlg++hxM+LnzfAmI1gZdsH68Ncv575pMdL2B4NEIJ34vWz6fNcniUrqB7PDi2g205FDIWVB/qc/WbOujaMkrvrnGa5iSYfXItwajneft0UumpABIAN58nt2EjnpZWRr//fazhIeLveAeR889Hr6o6ypUR4kiWaVEqWKiaiser4AKKqlDKW9TMSHDqm2YyPpAjPZYnVhPE8GqcdPkMxvuz9O4cp6IhxOqrO4jVhahoCHHlJ5Yy2pfh3p9ux3VcACqbwlx4/QIiFT7mrKrDQ5HtG5NEIioLVkSwvv9FRsfGqPzgB7BGRtEqKo7voohjbiqERC+Hj/gnQ0gKk3u0EEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIU5cxzzlwXXdrmPd51+b1HCB3l0Th5U99ts9NM5OoPp8DP3kJ4ROPw3f/AWU9u7FTk7glEovezzXddB0lVDcQyFjoajgDRgoLz/X5GXLJotouoIveOgwvi9gcMfNm3Hs8gHmZx44yNILWtA09dWfoHhe/nD5/fIFDSYGc4TiXhL1QVoXVNC3ZwJVU9m/aYREfZC69ij3/Xw7wZiXxWc34Y94sU2bSIUfs2gTjHm59MOLcF3whw49B/lsiZb5FYz2Zpi5ooZ1tx2glLcA2DxWIFOI0bnqDRTXPEbozDMZ/trXyg0Ng/Td96BGo/hmz0ZPJF719RHHj2XaPHVvz1QACUB6rMBYf5a6jthR9eHxanhqg0dV17FdVE3BH/FSzJkEwh4UFBzbnqqje7TDnt/tj/czY3EVhu/5v3KtsTH02loiF16A4vWRW7sG/4L5DH7nu+iLV6Lu2srgF/4D17KouPbao5qnEM/HtUHTVTRdBR3MokUg4sHwqhiGRsv8CuK1AWzbLYfmuLDutgP0700CkBkvMtydpm1xJVAOVbv7f7bgOi6KAk1zE0Sr/EwMZIhU+AhEPDRbu2iYC3o0RN+175yay/B/fZX6b3wdze8/Lmshpk9pMoTEo5f/jvMZ5Z8F037BNkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQ4MRzzEJJnKYqSBtzJlx7AALKu60Zeol0M+B9g/mT7dwM7gRuBVuAA8GbXdcenY96vhmcPpj9XPmNiFm3I5Uhcdy1jP/s51sAAvnlziVx6KW6x+LLH0w0N3aeRHMyRGing2C7xGod4w9Eduj8WsskiO9b0s+neHjx+nVOuaKdlfgW6R2N8MDcVQPKsLQ8eZMHpDYTivldtjuKFVTaGmH1KLbhw6ptn0btzjEd/sxuPX2fJuc0M7CsfUG9fUsX6O8o5RIvOauSJW/Zi+DSWXdDKH7+9CUWBpee3oKoKtu3S2BmnuiWMbmg4psuTt+2nbWElwZj3iM/J/i0TzD3tAnzJUfIbNwKg+HxUf/xjTPz2t/Rc926MpibqPv95gietfHUXSBw3lumQHModUZ4eK0zLeKoGjuOSHMyTHi8QivuIVvlRnhOalBzMHfH87nt6mPRIgUT9kfuuf+UK3EKe8V/dgJPPEz7nHOxFp7E7PY+evTmqO09m0UVvYfyHXyZ66aXoFRXTcm/idUAFq+SQGS+y4fYDOI5Lx7JqmubGWXPLXhL1QepnxohWlb97h7vTUwEkz8qlSiSH8kSrAlglm/R4EW9AZ8UlbezdMMjOtYMUcxahiIF7/y0Mf/NbuMUikQvOJ/7Ov2H8f/9vqq/kzTcTOf98lOORiiamTdEqh414p0JINADyEkIihBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCnPCmLYTEdd3wc18rinIFcDTJAN8E7nRd942KoniAAPCPwH2u635JUZTPAp8FPnOMp/yqidUGiFb76VhWA4BZsChkSgTjXszGFsbuuofQGaejxeKYvb0kb/0DoTPOeNnjGX4NM2eRz5hEq/2oqkIxZ1LMHhmGMl12rx9kze/3AZBPm9z5wy1c/tHFNHYm0D3lQ6pVzWECUQ8D+5J4fDqarr5Yl+JV5AsZdJ5US9czI5ipIrvXD5FPm+TTJo/cuJuzrulk97ohHAdcxyVc4WOsvxwuM/ukWjbe1YVtOqy8pI1nHjhIIWNS2RRC0xWGulKEEz5qWiOsuLiVx367h6XRlsPG1wyVps44kTfMJfP4XaihcpBD9PLLGP3Zz7H6+soVFYXsE4+jBvx4Z81C9Xpf7aUSrzJfwGDeqfUM92TKYSCqwsHtYzTMiv/FfbmOi6K+eBiC48DEYA5VU/GHPKiqwsRglnDi0LOmTe5pifogkQofQ11pSnkLw1Bx8haKTzs8dKFQIHX7HcTe+lZUjwfTG+aB24YYOZgF4OCeNCMDBudf8z4Uw/iL70uIKS4UMiYHnhlm9tIqSraDpqs88L87p6q0LKjgnGvnontULNNGURUCEQ9VzWEmBnNMDOYoFSySwznCFX7mrKrDF9B58g/7KBXKIRO7nhwkM1Zgcc9m3Fw5JCj1p9up/PDfU/mRj+AWCmQefhi9okICSP4KFS0HODKEpCAhJEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcQJb9pCSP6c67q3TAaIvCBFUSLAacC1k21KQElRlMuBMyar/Rx4kNdyCEm1n4VnNvL47/ZiWw6BiIdL3zef0pYRMg/n8Mx6J952l+K+dfgWLiRw0kqcQuFlj+f1G7gK+EMe0qPlfvxhD4oCjuOivsSh+1eqmLPY+nDfEeU928do7ExQ3RLmtLfOomf7GOmxAnNX1dPYGcMf9kzrvMTRGzuYwh7M0ZEzcdf0c8EptRwsOjz5wEEA0qMFEg1BbNPGFzRQVQXHLh9CNrw6hYyJZqhYpkMhY+ILGbQvqWbNLfvw+DSWX9TK/k0jpEcLnHzFDMIJH9WtYYYOpGnsjNMwK86BzSM8evsASz7yeaKlPtJ334MWT0wFkIROPx2jpYWxn/2c0R/+iOjll1P5oQ/iaWh41dfLNU2cYhEtFMLOZlEMA9Ujz/N0aexMsGfDELvXDYICc1bVEa32H3X7oa4U2x/rZ3wgy5zV9TTPTbzg/uOYDpmxIr27xknUhxjvz1LTFsGePHQPUNEQ4ox3zObgjnHGB3LMWlnDvAUVmPd3M9STxr+gksDyGoyK8hzNwUHCF16I69igaVgLTmHkfw/fMwsZk9LMFWiRyMtYISHKVF2lrtJHVUsY+rMYHTEGPRo7FcAt1+naPMpId4qeHeN0bxvjjHfMZqgrzcDeJNUtYRad04Trujz4qx2c/rZOFp7VRN+uiakAkmf17Umy9JIr4a4/ARC5+CKswSGSN9+M67pEL76Y2Jvf8iqvgHg1lI4IISn/LD5nnxRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEiWnaQkgURbnqOS9VYDlTR1xf0AxgGPipoiiLgA3AR4Aa13X7AVzX7VcUpXoapvyqGe/P8ciNu6dem0Uba3+S8ft78DSHwXFJP5ghctZyRr71r0QuvRT3pVbuRWiaWg4aUVwMr4aiKSgKmEUHy7TxeKc3i8Y0LfxhDxODucPKPf7yuLbp8sQtezEnDzCP9GRAhcY5FdMekCJenDk0ROquu3DnnYl+fzdmcfKQ+USBGWc0MbG8il3rhwnFvVzywUWMD+Ro7IzzyE27qWwKs2vdIIVMiVDcSzFvTQU1zFxezTMP9ACw6Owm1t/RRSlv0b60inzaYueaLmadVMPcUxuwTYdHbtw1NaeebWNc+fGltPzqV5T6elE8HlzTxL94McPf/OZUveTvf4/R1EjVBz7w6i0YkNu0ibEf/wS9pgajtpbkrbei19VR8Z6/I7B0KYqqvqrz+WvnOC47nuhnqCtdLnBh+2P9tMyrIFLx0kEko30Zbvn6U1P7T++uCVa/sYPF5zS/4HjBmJe5b6jHtV1q2iK4totjH9qkrZLN2j/sI582AeicX0HuN7tQPBp6wkf2yQHMgSyJt3WiejS0qip8wSATN96EPT6O5w1XlIN8nMM3fkWCbMQrlTNx1vRh7UkCYI3kqWgKs/ysJtbf13Oo2miGjXd10zK/gt3rBjm4YxyA0d4M/XuStC2qpGVuJQP7UnSeXMtwd/qIoTRDRY3GAVC8XjwtrYx897tT15O33op/6VICSxZP4w2L46E4FUKiAeDRVBQFCqb9Ys2EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIcQKYztPwlz7n3/lAGrj8JdrowFLge67rLgGywGePdkBFUd6rKMp6RVHWDw8Pv7xZvwrS44XDXjd3xtGHc0TPbykHhPh0ohe2Yec82BPjDH/1q2QfuP8VjakoCq7tsmf9EBvv6GK4O10OIilYr6jfo2F4NGafVHNYoEgg4qGyMQyUDzWbBZtwwkddexTDq/HMfQfJjBVeqMu/Oifis+s6DhM33sjQF/4DLWvhTgaQeGfGiJzZjL13gsVejSv+ZjZ1M2OEEz6a5yZomV/JVZ9cRvP8BJf+/SKKOYuVl7ZheDQCEQ+KUg6gKWTMqbFKeYtAxEOkws+GOw6QHiugKAqjvRl2ruk/bF6BsIex/iz++fOInH021f/wWfSaGkrdXVN19Lo6Kv/+Q6AoZNetx04feUB+OhR27ab72uvIbdyIYhgMfeUrFHftIvvQQ3Rf924K27a9KvN4tR3P57eUtziwefSI8sGu1FG1HzmYmQogedb62w+QmSg+b32PVyOU8NKzbZwNd3TRs22MQNSDx69N1Rnrz5JPm4TiXurao8SDGqFV9XjborhFm8CSKrS4D2s0X25g2/R98lPk1qyhuHMn7q4tzDm1/rBxWxZU4I9ICMmxdiLuvdPBShXJPNnP6P9uRwt6iF7YhuIpP7NmT5qO2bGpusGogaqUQySqmsMc3DGON6BT1xElGPOQHivgDej0703ybLZcIOqhYVbssDHnn9aANlbev70d7eS3bDliXsk//AHXcY79DYvjqjQZQuLRy/+ZoSgKPl0jX5IQEiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOJEp09Xx67rXvcymh0EDrquu3by9W8ph5AMKopS57puv6IodcDQC4z5Q+CHAMuXL3dfxvivimDUO/W7ooBt2XhbKkn+Ye9UeXH3OPGr23FL5aCGiRt+TfTyy/E0NLysMV3XZaw/S8fyamzLxfCoDHWnqZkReWU3cxS8foNojZ+Vl7VhFmwUVUH3qESr/ABousJJl80gNZonNZxnwRmNFLImynNCS/7anYjPrjU4xOhPfwaAauYAULwa3pYIqXsOBX6wY4xAy6LD2gYiHgIRDxV1IZo6E7iuS9OcBNlUiYs+sJD9zwzTurCS/ZtGyh8CyiELu9YNALDg9AbW3LKX2rYomjEZ7qDAsvNbKBUsdq8fxDYd2hZVErviCnzz55Pf+BRwC2o4TOKadzL8ta/jmuXPT/xd11D1oQ+hhcPTt2BAcfcu3Hye0EUXkfrTnw6/aJoUNm/GP3/+tM7heDiez6/h02iYHSM1kkdRwJ0cvbIhdFTtFeXIfebF9h4Xhb49SRo749TOiKAbGn17J4jXBafqqLrKykvbyIwXmRjKkWgKk7l1L/ZksEmpJ41vbgK08gH9wpatYB86nF/85Q+puP6LnHT5DEo5C8OnYXhV4jWBo7oncfROxL33WHMdl+yaftL395QLutMUdo0TOrW+XKaAq0D97BhBw2J25RiFvr6p9vNPb0D3qAx1pWldWIU/ZICioKiQqC8/9/GaAM3zEjTMjmMWbLwBnWDMS+WM+YS//z0AClu3kn344cPm5l+0EEWdzjw8cTwUrcnQMv3Qe+v3aBQsCSERQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghTnTTFkKiKMrPgY+4rjsx+ToOfNV13Xe/UBvXdQcURelRFGW267o7gbOBbZP/3gV8afLnrdM171dDRUOQc6+bS2q0gFm0qagPUNg8cnglF4r7k6jRKPbEBEogAIbxkn0Xu7uxBgZRNBW9oQFPbS0ACjDWn2NgX4pIpZ+hrhTzT2vAscG1LAp79mCPjKAEg3hbWtATiWN6z/XtMXRdI5cqoBka0aoAserygfpIhY+HbthFLlkCoHfXBPNPbyAQ9RzTOYi/kK6h+v3YuRyFpx9Cr1iG0RAmt2n48Hq2S3F/Em9TGDuVwimVMLt7MPv7MGrr8MzsQPV6CcV9hOI+ABpmxUmP5svvsQu+kIFtueiTgSOuC1bJoXf3BOdcO4f+vRN0nlzLgc2jjPZmAOjbNUHPjjHOffdcAgsWoEejJG++Gf+SJYz99KdTASQAE7/5LeELLiC4ZMm0Lpky+Rl1iwXUgP/I6z7ftI7/eqRpKovPaSJRF6SQtVA1hUDYoG5m7KjaVzWF8AZ1illrqmzlJW2EYt7nrW+bFpqmsP2xPioaQoz1ZamZEcU2Dx2uD8V8PPjoDjLj5dCR/MqaqQCSZxW2jxE5twUA1Xv4WOaObUTX/R71qusollwMn05FfQhv4KW/A8Rfh+KBA5T6+lE1FaOpCU99/cvqxyzakCmRfrj3sHI3b00FQOnzK9m/L8WZq2D0K18lt+UZvFe+lY55F5DPlMglS+XAKMr7bqwmwMKzGpl9Uh2JyfAdf8jDrJV1jPVnMIsWvpCHqsYwHr+Op6YGAE9TExM3/x6rt5fw+ecRufRS1GCQ/PbteDs6UI/ibxzx2lA0HQA8zwkh8ekqhclyIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQpy4pi2EBFj4bAAJgOu644qiHE0CwN8Dv1QUxQPsA64DVOAmRVH+FugG3jQN833V2JbL/s0j7Fk/BEBde5RTK7x422N4WiMAlLpSuMU8WOWD8ZXvey+e6uoX7Te3bRv2yMhU+IJjmjiZDL6ODmzLoW1hJcPdacYHsrQvqcIs2eC6ZNauJf/EGjKPPYZRU0P4/PMJnX46eiJ+zO7ZMh1yqRLP3NeL7tVYfE4T4YQPTVdJjxWnAkiete3RPhad3TQVVCJefUZVFdWf+AT9//iPmN07CZ0xE60ihjWkTNVRwx4CS6ohqHNwYz9eZxz9wDbMvn4wSzilEsPf+hZOqUTFddcRXHUKWiiE4dVI1Id4w1tmkU+VaF1UQffWUaqbwzz6m92oWnmMmtYwvTvHWXVlO4ZPY8cTA4fNsWvzKMmhPNUtBp7mZpp++AOKe/cy8etfA6B4PFT83d/hFItk7rsPiiX8ixehTlMYiG/OHPSGBtL3P0Dl9e9j+Gtfn7qmxWL4Fi6clnFf7woZkyd+vxfHdgEIxDzUzzq6/SteG+SKjy5h71PDjA9kmbmihoYXaGuOjoLjEIx6aZgVZ/BAirqOKJEK/1SgA0B6ND8VQAKQzZj4IpOfFU3ByVnknhrCTiWhLoR33lzUSAQnlZpq4zv/UroPZNi3aZSGWTFCUS/B6PMHo4i/LrnNm8k9/gTp++5D9fsIn3sewVNOxtveftR9ZMYL7H1qmO2P9XPSWY14VAX3z+ooAR3jglZ27k/hsS2sp9cRWLKM2GVvB6vEvN4HcU/9G/7wg52HtZsYzOEN6CTq/VPBUQDFnEnX5lH69ybpWJzAGDyA8vTjBE46Cf+ihXjb22n9xc8p9g9AqYRrmjjpNK5p4eRyBJcteyXLJk4gJbscNuLVDz0fPkOj8JywJiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKcmKYzhERVFCXuuu44gKIoiaMZz3Xdp4Hlz3Pp7GM7veNnrD87FUACMLAviXHeAuynh0jf1w2ArzOBf0kNpT2nEli5Eu+cOS/ap2tZuOlM+VBvPg8ooKjYk4fa/WEPvbsnqGgIEa0OoHtUilkTxyyRvf9+xn/5KwCK27eTXbuWxu98m9Dq1cfsng/uHGeoK039rBgoCgd3jKPpKnUdMVCep8HzlYlXXfi8c9FrqjH7+un/7N/jW76cyus/R/K2HFqFj+DyGtIPHsQt2qgRD/olMxipXUrQs5/cf3+FxLuuIXLxxViDg5R6e9G2b8e/cCGqtxymoGkqobiPUNxHdXMEs2iRqAswMZyncU4cw6MxeCDNtsf6OeuazuedY3aiyLg3S7w2iFFTg+L14Z07l+K2bSSuu5aJ3/4Wa6j8eRv7nx/T8I1vELng/GlZL09TE80/+iHZJ9bg5HM0fPvb5J/aiF5dTXDVanx/QYiAODpWyWb97QemAkgAchMlBvcnSdQFj6qPaLWfprkJolV+DK+O6/x5XENZqa8PVa/mwOYRRnoyAIz1ZUnUBWmccyi45M+3r6RpU7G6nvR9PbglGy3iIXZZG4UdG/C2VqL4fNR94fMUtm7DTibxn3chz+xVCcRUmudVoBsqT93bw0mXzSAUkyCSv2auZVF46mmGv34owCj35Drqv/bVow4hcWyH7U/0oyoKbYsqSRUsGlbXU3igZ6qOEjIYKNgc7M2wb8sol71/LoHM2aQfSZHflgVVIXjyfMzUCACqphCIeMilSji2y8Rg+e+MaFX5M5YazfP0fd1EKvw0z6vAVVR2devUr3+Kke98h8bvf4/wGWdgNDRgjo9j53M42SzYNo7rougaxe5uvM3Nx24xxXFTtMphI15dnSrzSgiJEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII8ZownSEkXwUeVxTlt5Ov3wR8YRrHe80wC4cfwjR8OqX+DOb2samywo4x9GoFK5Wm7+OfoOWGX71on45p4rgObrGEp70D1e/DtSysiRSDB5Lk0yXqJwM/Bvam6NoyQWNnHLdkMvH7W/AvXUpg5UqcbJbUHXdQ6uqCYxRCYls2+VSJrQ/3UsiaAPjDBomGIHVAvDZIMOZl8TlNeAM6VskmUuknnJDD9sebGgxSbF3EqFVD4Kd/ZGLCITlaYsab2lFdlYmb98BkYIOTKlH40z7G2mI8utHg/P/3n4z+y8ex+vqo/MAHKO7YzvjPf070yisJLF+Gout4WlsxamoAcG0bDZvGOQlqa8Zp6WxndKDAWF+O0d4MiqpQ2RSaCn8AaJqTYOsjfRRzJqe9fTbx2gB6LEr95/+d3k9/BsUwpgJIABSvl9SddxA45WT0aHRa1syuaiS37AJKJRt/0CBXuRDDo+GrCU3LeK93tuWSHitOvY5U+ll+cQuqqrJn4xCxGj+VDeEXbO86LtufGOCRX++aKpuzqo7Vb+zAGzAOr2uaWLbFSE+GyqYQlY1hRnszDHensUqH9vVEQ4iTL59BMO6llLdoqg2Q+t9t4EzOOVUidW83enQYc3SU0q5dDP7bv6M3NaFHo5jzTkH3xll7676pPmetrCE1nJMQkr9yVjJF8o9/xNvZSej003BNi/Rdd5Jbu5bohRceVR/psSK6ofHEzXtwXahsDOE/o4Gaq2eS3zaKG/GS9OkkcxYtCypZfG4LoZiH1B9GMHuz5U4cl+zjI4TPjvCGN8/AF/JhFm0Mr8ZYf5Zcsog/dOjzkR7JU8xZPPn4/qmy5Re1op9/BcU1jzH8zW8RWLYMLRzGNU3cUgm9uQlFUUBRcLJZnFzumK6lOH6KZnmz8zwnhMRvqBQmy4UQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQghx4pq2EBLXdX+hKMp64CxAAa5yXXfbdI33WhKr9uMN6BRzFpquEq8NwMHJYAUVQAHHpdRj4p87F9+MNtxi6UX71Px+QEFvbKS0exf5DRsx6uoonn4l2+4/yO715SCGmStqaF9aiS9k4PVrWLZKxbvfTWHbNkZ/+EO0SIT437wDraLiGN6xwuCB1FQACUA+bTK4P8XM5TUM7J3g7GvnsPHOLg7uGC8vg65wwXvn07aw6hjOQ/yleneN88dvb2L+aQ10bRklOZRn6fktPPTYEIvnxFEmA0ieZadNomGDXMri4KBKrFgkdOYZZJ98kvz69UQuu4ziju2Mfu97BE87jcDKlVhDQwRWriR9910YTU24pknm/gdIXPNO1NvvIPrez7HgjEYyY0Wa5iRonB1nYjDLzJW1FDImiqqgagp3/WALlQ1+lp7bSPXcubT87y9I3XHn1NxCZ5+Nb04nufUbGP72t4ldeRX+eXOP6Xplk0UeumEnBzaNsPpNM7nnf7ZilcqHrutmxjj3urmEE75jOubrnTegM/+0eh79zR5UXeGUq9rZvW6QfU8Po6oKnafUMffUOmpanz90Jjmc44nf7QEgWu2n85Q6bNOhe/sY9R0xgtFDoR9qIIBesDj5ihmkRgtYJZvK5hAdy6oxvIe+Tm3LYaw/y5rJEJFLLmtDe/bsva6A5WKPlwivXobi8eDk8gBYPT1YPT0EaxvZ9Ouew+a568lBZq2swcnnyW3YwPiNN6L6/cTf/Gb8ixej6NOZKSZeNbpG+JyzKe3bz+hPforqMYi9+c14mpuPugvXcdny0EFQFE6+rI3hnjSP37af+o4YrQsrWXfbftqXVzNvdT2+kIGiKvRvHkXbOX5kZ0Ycj99gza37SI8WCFf4WHFJG66bobLpULhPMWey/+mRw5puuq+HhqtbAHBSSVzLKs/PMFB9PvKPP441Okb2scfwdnQQ/5u/YeL3vye3fkN5DQ4cwBoaILhyCf6OBrSGeaCqiBNfyS5veN7nhJD4DI2Cab9QEyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKcII75qWVFUSKu66YURUkAA8CvnnMt4bru2LEe87UmlPBx4fsXYJZsihkLq2TjMW38rRFcxwUHFI+KlRxl9Gs/R/H7iVx00Uv2q9fWkL3nHiZuvIng6lXYJZP+fVl2PTk4VWfX2gES9UFGDqapbAyBpmGnkvg6O/F1doKmYg0N45s3/5jdr6arpEbyR5Snhgtkxors2zRC28LKqQASAMdyeeLmvVQ1hQnFJbTheChkTB65cReO5eILGCSH8kSr/eTTJbq3jdE5O45/sq4aMgitqsc1HQI+jbMub6OvL0llRQLfnLmMfPe7oKp4WloY+fa30evr8Xa0M/xf/0Xl33+I/s98Gi0WQwuGGL/hBio/+AEGv/glFE0jNrKbsFGFJxLk4K5xFAXmnFLHozftJp8uB9v4ggaLz23m4PYxenZnKBZcKpuj+BcuAMNATyTwtDQz8p3/BiC3Zg2pW26l9dc34O3oOGZrNtKTYf/TI7TMr2DP+sGpABKA/t0TDB1ISQjJNOhY4CFRvwiz5DCwL8m+p4YBcGyXbY/2UdkUesEQErNoY5kOhk9j3qn1PPH7vbiT2TqNc+Kcc+3cqSASe3AQRnMYsXnohsrQ/hR1HTF0j4o/4pnqc6wvc9i+a2oq4WU16AkfTtFC9emUejO4ZgrFMAgsW1oOV3DKz4s1NIRjHR7wA+XLubVr6bn+/VNlqT/dTsv//oLA0qWvbBHFCUE1DNB09NpaKt/7HlBV7IkJlFDoqPvQDJXMWJHZJ9Ww68lBxvqzAOxeP8TA/hSXv38+7mCe/JMDZEMe1JoAu58eYl59CGfPxOGdRbw8+sudFLPlAJH0aIHHfrObC69fQHVzOYTEHBzEHDnyTzuzaGMNDgCQuPY69HgcAKVYZOh738dTW4s1NEhwxQpcVWXsxz8m88ADVLz3PQx87nNYQ+XP8dhPf0H9P32U6Buy0HzyX7Se4vgompMhJIY2VeYzNJJ584WaCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOIEccxDSCiHjlwCbACee4pamXw9YxrGfE3p3T1ObqLI/mdGpw7Lv/X6+eRu3YubLx/0RVeIX92M67pY3d1YAwN4Z7z40rkTSazRMYKrV5O+917i77qWg7smjqh3cMcY3oDOutsOgAszO+cy9J9fxDujHbdUxDVNgqtWHdN77jy5jt6dh89l5spqcpkS1c1hCpMHnJ9rYjBHMZmSEJLjpFSwmBgoh8e4k6kMtW1ReraXD5s/s3GIVafUY6/pI3x6I8m7usAqHzyO+DRqr57BwNf3E7JtMAzUQAB7ZKR8/fzzmLjxxvJAjoOTzRG55FJSd989Webi5vMEzzyT7E++S2higuiXvoWzMI5lKwweSE0FkAAUsiapkTyRaj9rbtmH7lFZel4zNa01VN5wG9r2Jxn56lcPuz814Mfs6z+mISSZ8QIAobiXwQOpI64/XxiPeOVGhnTu/MFmFpzVSM+2I8MQ+vckWXB64/O2DSV8VDSEqGmL8MwDB6cCSAAObh9nuDtNcIEXK5mk1NWNuvJ8dt7SzdDk+ztyMENFQ5DqlgjRynIsz3OfTYBUziSaKpLbcCiYJHxWI3axBzebxT9/Pk3/8z8kf/tbnFKRQE2QaJVJcvjQ82L4NGLVPka//vPDb8C2Sd97r4SQ/JVwikW0YJCxn/4UT3MzbqmIk83hnTP3qPsIRDx0LK8mFPex44mBw65V1wcpPdxL8ZmRqTLfqjoUQ8OeGUPtz+Jky8+v2hEj59GmAkieVcxZ5NIlNEMtv96zB29XL5pRjW0eCl6qbAyh7X+M2n/+Z8LnnTtVbnZ1E1y5Ai0SJfvwGKk77sC/YjmBZcvIPPIIisczFUDyrKEf/ZpgnYkebYJow1GvhTg+Snb5OfBo6lSZ39AomPbxmpIQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghjpL60lX+Mq7rXqIoigKc7rrujOf8a3Nd93UfQJJNFhnuSqMoylQASSDiobQveSiABMByyW0aJ/7Oa6j80AdBUV66c13DzWaZuPFGjJkduApUNwaOqFbZGGJgbxKATff1UPLHqPjbv0Px+dCra4hedTV2LntM7vdZzfMqOOmyNnSPiuHVOPmKGTR1JgjHfbhAKO45ok3LggpCTvcxnYc4erbj0jQvMfXa8GmkRgvEa4MADHSleWzrGPbFMygeTE8FkAC4BRu60lR99KOkH3mE+BvfiJNKoVdVAaDoOm5poWtS5AABAABJREFUMqhh8tm2Uym0eLxcputTZXoigTUwQKEID9+0j/2bRpgYzB0x3+RInrG+LJqucvIV7Wx7rJ8/fmczv/vBPvqqVqLPLh/iVwyDqg9/mNBZZzN+ww0k/3gb1ujoMVkzX8gAoH9vkua5iSOuhyskUOdYy6ULbLqvB8t06N46SmVT+Ig6VU2hF2zvD3k4991zqWwKkZkoHnG9mJt8Tm0Ho6aaQompAJJnjfZmyWdKU6+jVX4U9dCeHQvoFHdPHNYm/XAvqjcOHg+KYaCFw2hVVSiGB4+d4/y/nUPdzBgAifogl3xoEdEKLwrP812gHPOvcnG86Dpmfx+Ja6+d+k6OvfWt2Lkj97wXkk+XiNcGCCe8/PnjsmBJ5WEBJACFJ/pprA3QM5RncF4lpdMaKZzRxBbTxVQUVPXwTlRVwRc0pl4rikLxZ9/m3AuCRKvKe1zDjABnvrmF+uv/lvjb34ZeWXmofTCAp6WFiZtuwsXFMU0y99zLxM03E73sUrAdUBQ8ra1osRgATi6HmxyE7OHhJOLEVDRtFAUM7dCz4zVUCs8JqRFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEiUmfjk5d13UVRfk9sGw6+n8ts4o2VsnBLB76v8F7/DpKzkTxqPjmVKB4VAo7xnGyDsWn1lHav5fwBRe8ZN+Kz0exr4+WG35FYccOirt2M2Oll91PewmEPaiqQi5VIhT3kZ0oH5jXDBUt4GH4a1+b6ifz8MPUf/nLx/S+AxEPyy5sZdZJtQCEEz6UyfCJhllxtj/ex6lvnsm62/ZTzFnUz4yx/OxKvJqEkBw3tkPDzBhmweaZBw5y8uUzOLhjnJZ5FQweSFHKWwx2pxkYztKWLB3W1NMSwajwE1lxJpFzz6Q0MIzR1ori8RJ949VkHnyIyKWXkrz5ZlzTRK+qInP//VR99CMMffkrlPbtJbBiBbn166n57GfJrltHKVU+hD90IM3S85vp3jp22JjNcxOs++N+2pdVs/XhXjLj5UCJ2SfVks/aqH/7OfxnPU0w28f4r2/AGhoCIPPAA1R+6INUfuADKOoLhznkt20nt2YNWiyG4vVQ2LOHwJIllPbvR/F60eMJ7Ph8Vl7axqb7emhbVEXz/ATdW8YwfBoLTm/ElgPYx1wxb5MaLQAwejDLwjOb6N46QqQygGOV99qWBZUv2kdFQ4hg3EvvjnH2PnUo5EBRIBrTANATcZxs9gWfEeU5QVFVLWHOflcnj/9uL7lUCa+u4irg7YihJ/yUelKYfVlUjx/VMMhv207XNdfg5vMApO+4g4ZvfJ1LPnAOuUwJX0DHFywHNSXefR3ZJ544NLCuEz73nL984cQJSVVVtHiCof/8z6myzMMPU/eFzx91H2bRZufaQVa/sZ1VV7VjlRzG+3PsXj+I36eTA7wzoujVAczeDKWeNBU1AQZ3TpDOmKy5dxBUmH9qHdlkkRWXtrH5wYPEa4OMD2SZf1oDoZh3ajxjxgwq3/c+Sk/dxXkrV+JGK6B7N1GjhvQ9j1Ls6iKwbBmBJUvQIhGMlhacVIrYW99K6cB+IpdcghoI0PfRjxG54AL0ujqqPvpRijt3olUk0GJxoITObgjVHMPVFtOlaDl4NPWwfdFnaBQt+0VaCSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOJEMC0hJJPWKIqywnXdddM4xmtOIOYlEDbwhz3ohoplOkwM5eDCZsKNYXLrB3FKNoHFVWhxh/GfbMTNZrF6e6Gj40X7drJZqj/+MUb/+7/J3P8AAPr69Zz+ue+ybd0YtuUw99R6tj7cO9Vm+UWt5G/5GvVf/S+cXA7XNNHicYr7Dxzzex/ryzJ4IIXruFS3RqhqCgNQ1x7FNi2GuzOc93fzcB2XsDZEYu834Yx/PObzEEcnUhXAsUfQPSoLzmgkNVJA96pU1Xm5+DyVfKwFbyRI745h3FlxOJACTSF6fivFPRMk7+4h3xoidEqEwLy5qH4/1sAgpQNdVLz3vbiug1FfR/aRR6n66Ecx+/uwRkdp+M63MXt7MVpaiP/NO7ALBZq+913yrkYg4iGXKjHWn2XhWY1sf6wfcDn1TR2EK/y0LqokUulj19oBAOaf3sDg/hTbHu0DwPBFuezvlqHe/ieYDCEBGP3pz4hefjmepqbnXYv81q10vfMaPI0N+JcsZeLGG6n80Afp/8xnUQyd6JVXMfgv/0rkxnt46qkhZp9ci6JARX2I2SfVMT6QZcfj/Zz77rnT/r693sSrg7QvrWbjnV0A7Hiin5Mva2f3hiH0sIcFp9cTrfa/ZD++gMFJl7XhWib7tkwQink5aaWB9fNvYn3qk+jxOJ72DnTVpnVhBQeeGZ1q2zQnQSBiTL32+g3a5wSJXz+XUtEh6lNxL20nv3mY/OZhvDNiBFfU4uT3kL5/D/bYWDmARFVRNA3XNJl48mnchqVMDBWJVPqobo0QjHoJrFhB809/wsTvbkYNBIheeQX+BQuO/cKK40LRNHJPbaThm9/AGhtD0TQUv5/Czl1H3Ucw7mPB6Q386bubwS2XLTizgYs/sABTV4hd1k5+2yj5Z4bxtESIXtZORleZ21Yge6CP2ZdFcHoOQDzE7b/s58L3L2Du6joO7hhn7uo6GjvjxGuDU+MVt29n9Ac/wLj+MySzMdSCS+3SN9D3D5+k8PTTAIzxI6o/+xkS73oXimEw9NWvUdi0aaqP+DvfSfU//X8YNTWU9u1j+Otfn7qmVVTQ9PkPo9R3QqTuFa2veHUULQevfnhgk0/XyJckhEQIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQ40U1nCMmZwPsURekCsoACuK7rLpzGMU94hkejcW6C5HCOc949lzW37GNiMIeuqaTu3DtVL/NIL5Hz6ql8//VYAwO4jvui/dq5HNkHH8Q/f/5UAAmAeu0n+dOPd00dRO7eOsaZ7+wkVjtOw8w4oQovsSuvIv/UUyi6BpaNk07jX7rkmN73cHeajXd3kagN4jgu6dEhHNuhpjWKoijoqs2uJ/t54vf7qG8PcurJo7DxZ7DwLRBYdkznIo6OMz5KDQfxzG+mb0+KYMzD7AVRvD1bqFjRRj5jcsuP95EcLpBa5DL/tAb8LmTW9GOPFQAobp/AHMhT+U4vgYULsdvSmJqfcSVCYWCEgB4lfPnlZB57jNzjj+NftgwtFscp5FEHhwgsX4aTy9N93XUAnPPF77Jpq5+DO8ZZen4Tl31kEY7tsvYP++nbPUGiPkjbwkoqGkKM9mYIRDwMd6cBaFtcSWVjmDX3DBG76t9pDQ7h/PK/iVxyMU46Q3btk7iWhbet7Yi1yNx3P24uR+jMsxj9yU9QPB5c08QeHyd+zTWM33ADAN6tj3DS+ady8ECB1Gie2tYIO9f0M9ydZvWbZlLdEnmV3r3XlxkLohSz9ex8coC2hZXc/787pq4d2DTMFZ9YSn1H7CX78Wf6mb3228xddTYMD1D4wo2kMxkSV12Jvnw5pf37sau9BKJell3YwsRQnprWcpjSxru7WXBGE3UzIiiqQn+vxUM37CQ5lOfid87GuLcbN28BkN8ygp0pEpjvpf/znyf2trdR8b73TQaQlNCaWzhgzMHuyuLYLqWCRf+eCZZd2Io34CN4yikETzllWtZSHGeKQuwtb6HwzDNgWqAqoKiEVq066i5KeYsNd3aBC9FqP/NPa6Bv9wRbH+3j5HObST3QjZM2AShsH8MaK+Cc24yydxuF//kJoU99DqtjDj7yXPzeWTz5pwMM7k8BMLAvRc+OcS7+wEL8IQ92Os3wN76J8fHPc9cDLraZofOUWkoHSkQ/8O8E1t5F7hc/ANNk+FvfJnzOOZR27z4sgARg/Ne/pulHP8RobGTwX//tsGv26Cilnn78u74DzaeAP/oKF1lMt6Ll4DW0w8r8HpWC5RynGQkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDiaE1nCMmF09j3a1q8Jkh6rMBjN+1iwZlNRCp9qD0p1ICOf0EVqk8jv2OM3NMT2L27Ke7ZSewtb3nxTi0L17JwSqWpIqO5me4RH7iZw6ruWjtAIOphza17Oee6ubjFItbICEZtLQBONoc1PIxTLKJ6vUA55MQeHwdNw6iqQtEOP1z6UkYOpinlLZ68bT8A3oBOoj5IdUuE1Eie276/k9LkAf2+vVnuTEa5etl7CeTH/qJxxDFkWWT+8cMEOucy/7I34XQfJPfln+N8+tO4xhLGMiWSw90A7No0Qs++JBdf2T4VQAKghj0E5lZg5b0YrkveMnhiR5iuzSMA+MOtnH9VFel/+zcUv5/AkiUM/dd/ARC9+mpQVbKPPVYOxlm8GO2BW5jbP8iSq65hW1eSiaECfbsmSA7nARjry/LQDbu44G87ufPH27HN8oHnYMxLtMrPusnnrxfY7fNy6T/8B8N/9xawbQD06mqaf/ZTvDNmHLYUdnICoPzcmyYEAriTnzXV58XJl8d3R0cofu0qWt56DWpDM/a9G1nUPJPYRy4g0lh5rN8hMSk6/gh1TfNpX7qA9bcfOOya68L+p4ePKoTENU2KT66BJ9ccVu4Ui+XrpSKl7h62PaJieDVOfVMHj9y0G6tUfs72bRzmyk8sxRPQue2/N+FYk+lPqRJuyca/sAo94aN0ME1x7wShVc14FyzEv3ARg5//PNbQEAChz30ZQkE2/HE/juOCAovPbmJiMEdN2/QGMDjFItZYed/VKypQPZ5pHU8cyR4dw2howNPRgVMsknvkEZxM5qUbTjILFrlUeX+a/4YGHv/dHtzJR3FOWwRP1sI/vwK9KoDZl6Gwa5y438BdvJzchxdw/x+HsMwCsWofqy9nKoDkWYP7Uoz0ZGiak8A1LbTaWrb3+rHNDIvPaeLgznF2PDEAQDixiNM//XlyX/gMbqGA67oo/gBqMIiTzT5n0iZuoUhh82aeL3LNtR0Y3QOljISQvAYULRuPph5W5tM1bMfFtB2MP7smhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiBPHdIaQpI+y7HUnOZLn7h9tpZizeOTGXXh8GldcOYPom2aiBQycrIlvXoLSUJax745R3LkTs7cP38yZL9inFokQWL4CLR7D09pK6cABsG1UVTmirqIppMeK5FIm+bRJxLJwc1ns8XH8ixdjjY2haBp2KoVaVUXuwAEYG8NKpVAUBbOvH721BW8icdT3bFsO3VsPBYoUcxZbH+mjZUEFyeH8VADJs1IjRdKNVxCIy2Hj40WvqSHxrmsY/f4PKD21AQDF4wFcxn/5K4q1Cw+rn0+bTCSLBCdfe2fF8dQFyTw5QHbdAOb5rdiVfjyqQnVrhFDUQ1NTCKVkUP+9/0PVNayBIWo+90W0ilpcu4SqawRXX4RWUY9eFWbk699ADQbJXPkxdm0cYPlFrVMBJM8q5S2Kff2c29mL09ABQPuSKrY/3n94vYLN6JCJOhlAAmANDZFbt/6IEJLwuecy/stfkX/mGQKnnELuiSfQEhWgaWQeepjoRReRvPVWFE3HtSwy//PdqbaJd7+bcF38lbwV4iUMaUu591d7qZ+VRlGO3PNU7ciy5+NpaiJw8knk1qydKtNraqaeB0/bDIK7ezjnyiV4fTpDw4WpABIoB57s2ThE/czYoQASAK9G4m86Ub06TsHCOzuOb3EVhW3rqPjbd5PfsHEqgATAbWpnw2+7ygEkAC48fV8PTXOOfs99OQp9fVgDA7jpNKBQCg9g1Nbgra+f1nHFIXY2izGjDXJ57OFhUBRCp52OXci/dONJoZiXpjlxUqMFhrrTUwEkiqoQrgsSuKYTzWvg5E28M2N4F1ZiBHVGsxXs27mX6pYw/ftSTAwVMJ3nDxyzJgOe9ESc6FVXk3lawfBpKKrCSM+hwJT0WIkDtNP+wY+hzJzPpo0F+g+Eafn0d4nueoTCL/8HgMCqU3Ask7Ef/4TqT3+K/k99eqoPxe/HN3s2zPg4BKv/0iUVx0HJcvAafxZCYpSfpYJpSwiJEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIcQKbzhCSjUATMA4oQAzoVxRlCHiP67obpnHsE1p2vEgxdyh0o1SwCcyIoIyVGPvtdlzHRdEUYld0EL7qCpxsGiebfcl+fXM6yW7YSO2//SsTv/0t+aeepq3dy7anMocOswMzl9Wwc90AKKAZKrgOwTPPpLRrNwP/8i+4lkX8HW/HN2sWekUF7ugodiqNoiqgqNjZDHR3/0UhJGbRPqJspCeNWbDxBgwAqprDVDaGGDmYYbQ3g5HrBs8pRz2GOLYUVSVy4YXguqTvuhu9pobwuedijY0z8q1vkfjPb5KoDTI2UJxqk7FsYkuqMTcN4W2NkLq7CxSInNdKadc4pUd7WXVGE/m9E/g7YiRv249eF8RtSZB8vI/I2Z3kt4xS6ncILKon/dBB3JIXNfYGAssSqOEf41+8mF37CkA59EHVFBy7/HxrukrL/ArCHQ0Yo9uw96/h9HObSaKicHgQRW17lEBdHKumBmtwEKOlhejFF6MYOqXubjzNzVN1/YsX0/j97zHyve8TOe9cvLNnkXn4Yer+/d+Y+P0t6PX1VFx/PemHHqL2n/+Z1O23U+rpIXzuOUQuuRRFe/6D/OLYGB00Aejfk2TVle307pqYuqZqCm2Lq46qHy0cpvZf/oWJm24ifc+9BJYtJXHttRh1deUKgSi+QBj7oR5woKU9SvSNHdz72z1TfSgK5T1NgYaZMcIVfqItYZzRAuM37QIUVI9G7KoOlDlt5B95CCeXI3DyyQRWLAfboeALYhYGDp+c+/z76LFkDw7iptIw+bw66RSWgoSQvIocVcXN5XBy+cnvXAU7nUKLxY66D8Onc+qbZ/H0vd3Y5qGQnDMuacXdPQodFYz9ZhuuA4quELuyA8fOE0g7rIqUv4+tN3Xw+OP9mEWH+pkx+nZPTPVT1xEjEPFMvQ4tW8JcbZynH7VJjRwZljLQnaXmrEtYf3sXyeEeAA5uhznLz6L9/F68FXFC551L7wc/iKe1jeDKldT+yz8x8ZvfYdRVkbhgGb5HPwTn/Avoxl+2oOK4KFoOXv3w7z3fZChJ3rQJ++R9FEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIU5U0xlCcifwe9d17wJQFOU84ALgJuC7wEnTOPYJzR820HQV2yofDjZ8Gprpkt0+Smh1PXaqhBb2UNg1TnDJKRTaH8fTPuMl+9Wrqihs3ED///2Suq99ldjb3kbmqQ1ccs2p7D/gUCrYNHbG2b1+EAWF0946i3iFijLqwR4eYfSHP5zqa+zHP8FobESrqsK1HdxSiVJfL4qiovp9aG1tuLb9ouEKrmlS6O4By8QfiuAN6MxcUYM/7GFwfxJNV1F1lXhtgPP+di5DPWkCEQ/RGj/Lz68ltuYt0PB5iNS98kUXfzHHNBn7xS/IPPQw1Z/4BMlbfk/+6acobNkKgNq9k1Nq44x0zmVoxKWhokStpw81EsHX0YG5KwmAf34l+S0jmL0ZIhe0MvGHvQQWVpF5uBe3ZOObHSd1dxdGY4jSwUy53nktpO7pAhe0uJfgSXWYQya1n/8FOKPUZTS6t8PejUMsPLORp+/toaIhxOyTati5dpC7f7KTJWefQmuHn9BnPk7V264lcFYrmx8fpmVBBfUzY+x8op/Hbuuj/bov02DtxZ8bYeRHPwLTRA2FaPjmNwitXl2+V5+P8BlnEFi5EhwHNRjETqVQAwHCF14EZgktEiF/3rkMfulLKC74580jdesfsAYHqfvCF1A9nhdca/HKRCLlcA7Xcdmxpp9VV3cw1JXEHzToWBAlyhiuGUAxXvrgu7e1lepPfpKK970PLfBnbUohsmsOBY6Ye5PEqwKc9taZPHrTHlygY0kl/piPSz60kF1PDlIqmPgdyPdmCK9uwM6YaBEPuU3DhFY1kW7pRG9pw3PPrYx8+zsARM+8ikDEQy5dwuvXKRVsFBU8/un8ygbXsrCGh0jfdRcA4QsuQPUHytccB2twEMUw0Csrp3Uer2fu2Bg4LtbgAG6hHLZk1NfjWtZLtDxcoi7IG948i4H9SXavHyIU8xLPmYQX1ZB/ZoTQqgbsdAkt4iG/ZZTgSbWkf/3MoQ72JTnlvBbWP9nP8gtbGJgdZ/BAiuqWMA2zDw8h0SsraTs5guvz4fEaJOpDjBxMc+CZUVzHpXZGlHzWIjl8eEDJjg3jzHvPB7D/+Ct6rr0OgIr3vQ+jpob4fD/RooqS34my/oZygwe/BLMugFD1y1hZ8WoqWg4eXT2szGeU/14sPicYRwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBAnnuk80bzcdd3rn33huu7diqL8h+u6H1cUxTuN457wotUBznjHbJ68bT+VjSGSI3mcgoWiKqTu7pqq55sVxzEhefPNRC65+CX7dU2T/KZNxN74Rsw9ezD37sUZHELduZM3fPGLbHqgh/t+tn2q/sC+JFf8XRvecJjUbX86or/kLbcSufxycB3s4SGKu3ahen2gqqjhMKXhEby1Nc87F7tUorBlC3YyieLxohgRTn3zTJ74/V5yyRINs2MsOrsJ13ExizaKrhKvCpBNlfAGdDSfn0LrZQQc82WssDgWrKEhkn/4I5gm1sAAubVPEjr7bBS/f6pO/htfoOasM6lPVJD68Z9Qr72Wke99j4qPfAyl6WwA9Co/+c0jKB4VJ2uC7aLFvVhPDQHgTobxeBrD5DYNHypzAQVCqxtI3r4fHBcAxa8z+6oKdm/OMDaYYzBkcNpbZuIPe7jrf8oBKZ2n1JGesLnnpl6qr/gn2ut1qvbvpX1xK7vWD5NPlZizup7x/hz5TIkDxQU03PMfYJafNyeToe9Tn6b1d7/FU3coBEcLBKZ+16PR8i+GAX4fAMXdu8k/ue6wdUz96XaqPvIRPI2Nx+R9EUeqCQ3QsSCA6foxSzZP3dXFpe/vxD+yH6e3G8tjkB0bwz9vHprP95L9Kap66P19DrM3f0SZs2eCVGOYU69qIeYt0rdngs0PbaeiMci8NzSQGSvimDbmQI7s2oGpdsGT63AKLrfdp2MWDzBz/mpmXh8m//2vYmbyrH5TB+nRIpnxAsGoh2hVANu0X9lCvQR7YIChL3+F0BlnADD0n1+m9p//GXNggPFf/oqx//s/tEiE6k9/ivBZZ6E+Zy8Qx449Mkxx924wLVzbAhfUcOQv7sfwajTMjHHFx5cwtC+Jtmcc13KwUyVy6wen6gWWVuMWjgw50btTrLqkgUdv7WK0N0PD7Dj+kMGjN+0hnzE55YoZGH6d9GgBT0DDH/bx6I27SY8VqGmLcPrbZ7H3qWEMj4aZf4EQFRcCCxfilkpEzjuXwIoV5XIrj7r/bghUQEU7jO0DKw+uBFi8FpQsG+8LhJAUpnkfE0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcQrM50hJGOKonwG+PXk67cA44qiaMDr+hSpqirUtkU4+11zsC0HTVdQFIXcZCjDswq7xgmuqkOLxbD6+1+6X4+Hive8h+FvfovSnj0AeDo6qPjCV+jePkYpZ7Ho7Ca2PNSLbTnYpsN4EoKqiae5+Yj+vDM70Px+3EIRXBerr5/i7t0ETz4ZeyKJk0rCC4SQlPYfwCkUsMfGsMcn8J8ym9u+swm3nCNB784JAC66fgETw3msos3a2/bj2C6W6TBnVR3eZe8hUJH5C1ZWHEtqIIBRX4/Z1UV+82bC551L5sGHqPrIhxnavh1rZBRPWxvZRx6l8kMfwvfW60jNOQ39XxdQ6NtBoDGAGjLK4SG6OhkqogBgDuYwGkOYBzMokweVrdE8Rm2Q0v7kVJmnNUJh+9hUAAmAm7dwBk3OWJoiH25CD/gYHMwy2pcFoLIphOu6bLyrHOgzsC+JojfiOK1sur+X2vYoobiPu360FddxCUQ8rLikDeOiN1La9BQARksL4XPOwR4ZgeeEkLwULXJkcIVRVydhDdNMr2hi4XkxLNtFQcHwamRGkmTNKAG1iN7bhaHrFPftIzB37ssex6g98n10awIc3JNkZcBkcCzI2vv7qWoOU1Ef5u4fb8XwaLRf00mpK3VYu+y6AfyLKikVygfyd23OEDhtJbM/+UlsK8X+/RZbH+6bqt80J84pV3W87LkfjeLu3STedU05fAhIvOsaSv19mLfeyuiPfgSAlc/T94lP0vyLnxNcuXJa5/N65FoWdjIJpkXm/vvRa2rwzZyFUzgyAOdoqJpKfUeM+o4YaZ+GgkJx1/hhdXJPDeFfUn1EW8Ono0bCFHMWi89txh/2kE+XcGyXzpNreebBgwwdSANw4fXzuftHW7EnQ6UG96cwSzazT6rhiZv3sfDMRiKVPlIjhan+Zy8Mkfmvf2F862YavvkNwqeffmjwuoVw9j9DegCyI7D4HRCug3Dty1oH8eoqWg4h7+H/ieGfDCHJSwiJEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIcUKbzhCStwOfA24BFODRyTINePM0jnvCK+UtsukSmbEiyZE8hlcl0RoBF9SQgVEfwhrNY48WMPt7SbzrXegtLUfVd3H3Hkp79mC0tKDoOtoZF/HAXSn69pUPswdjHs6+dg5dW0bZ99QwRsALeRfv7FnoVVVYw8MAqOEw0csuQ1EUcBzG/vf/CJ1xBv4lS3CSSdL33oN/8aIXnIdTKuJMTJRDSJJJUiO5qQCSZ/XunCA5UsC2XLq3jLLwzCZKeQvNUHFsh0zKgkr15S2yeMX0eJza//eP9Lz/A2Tuv5/gaadR9YlPoMVi1H/ly+Q3b6HyA++nuP8A5uzlPHpvnuTNowBU1i/iNIoUTq1HURXCZzaSvqcb1aeheDQK20eJXjSDTM7C7Mvgm1dBYdso0UtmYA1mKeyeILiiFjtTwk4WD5uXFveihrxUn3om+f4R7v1tP8N9eRad1QhAy/wKnrqrG4BIpZ8FZzZgWw7r/3Rg6vraW/cBEK8N0HlKHeMDWaz6pSQ+9194e7bhFouM//KXTPz611R+6INEr7wSPRZ7yTXzzZuL/6SV5Nc+WS5QVWr+6f9Dr6g4Bu+IeCFj+TiZiRLp0TyxmgD3/+8O0qPlsIPqpiCnrZoFXbvQAsFXNI4aLGI0hzC7y+FIStiDPTPOyOMDGGfUsP3OJAAzllSRT5dYel4LZsnGmQzR0St8aAkfZl8WJ2sy/pxABoA9m9M0eIcxmk22PdJ32LWe7eMsL1ivaP4vRa+uJnXHnUQvuQSA7BNriF55JaM//MERdfMbNkoIyTRwHYfC9u24uTyxN74R17YY+/UNVH/sY6+4b//8Sgr7y8+oFveiVwUw+7M46RKO5YDKoYg4BfL1IfrWDdC5qo4nbt6D65ZzpJZf1IqLOxVAApBPm1MBJM8a683iCxgA9O4c48y3ddC9fYLhg1laWg3iux/CLuRAVen/h3/Ee/PNeOonQ580Dzzx35Arf6ew9Wa47DuveA3Eq6NkOXiDh//95vdMhpCUJIRECCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEOJFNWwiJ67ojwN+/wOU90zXua0FqLE9qOM/BneNEKvyYBZt9PWkaz2vGzVoUu1J4WyIYJ9fhOr3k1q3Dv3jxUfVd2LuX6s98msLWbbhAcv6Z9N3SR6I+SE1rhImhHAc2j1DXHqN+ZpSqlgjsVMit30DF9e8DFNxiAS0ex/bobBjYQHuxSPytbyH9wIN46usxR0YIn3EGrvnCB+IVRcHJ50FR0WtqMTxHhokEoh40XcGxoX5mDMty8Gk6qqbi2C66ocLgZog1vbyFFq9YcNUqWm+6kcLWrVjDIzjZDNlHHyX7yCNUf/azDHz+C4TOOosDCZ3kyKGwkJG+AgMHi7TGxskqMYqxENGrG3DzFvE3tVHsypDtTuE9vwXXhWzGhIYwo1kT/8UzKCWLhKo1rJEsEMfsy4ICkbObsZJFcusHcbIWanuU3r270D0q8bog3qAOLuXYI2Du6joe/91eOk+pxRc0yJSKWKXyQXlVU5i7up7Hbt4DLiw8s5FicA6FxnZqKh3CjTOwtzyNnUqRffxxfHPm4GlpQVFfOBjHqK6m4ctfprB9O04yhWfGDHyds6fxHRL5bJFcssTA3gkiVX56to1RylvMWlmDbTl0bRllsFBPYzCIUyq+dIcvwjywHd+SOjyrZmMXbQq6yuBInnPfPZdYix//Y3lSIwXCcS+qoqDqCpqhklUVohe2Yg7mMIdyBBZXoUY9PL5u8LD+YwkdZ/s+Ci2duG7kiPFt0zmi7FhyiiWMulqKe8tf0UZ9HXYqSXDVaia6f31YXb26alrn8rplmnhntJN57DE4eBA7lSJ89jk4pdIr7lpP+FAOHCB6QSvmaB6zP4t/XgVa3MtowSL05tm4+5OYRZtidZBH7u5h5soa1ty6l4bZcUJxH/17J9hwZxenXNU+1e/yS1oxfEf+OenxacSicMHZCkpLA3/4760EIgbhhI+hAZe61iZKe6oJnXYa1tAg9sQ4PBtC0rfpUADJsx78D5h1PoSqX/FaiOlVtBy8unZYmc+YDCExJYRECCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEOJFNWwiJoihVwKeBeYDv2XLXdc+arjFfK2zLxSzYJIfyFLMWVsmmZW4cczhPYWv50K15MIMW8+Kp60Lx+bAmJo6q7+gF59P7sY+DZaHX1zM8602svKSN8cEc3dtGSdSHqGuPoekK6bEC+bRJSFHwtDST+tPt5DduxDt7NrGrr0IpFnFcHS0WwTrYg55IkH3ySfwLF+A6LqrX84LzUAwD1efDti2yD68lNHMF889oIBD2YFsuigLRGh+xmiBj/WkMn0Zu2OTAMyN4fBpti6tQdRVsOax6PCm6jn/ePMaqfKRv/A3u9/+P6k99ksKWLeSefBL/okXYuQJ5U0f3qFMBHwBDPTmiP/wi4bPPZuR738M7bx6Ja95JZlM3xox2Dvg72PD9LXSeXEdyOE//ngkMr8b80xuoqvfTv3kr6uN3Eb7gEgIXtKPmLXKbhrGG80D5M+LZF2X20ip696fo3TnOojObCEQN5p1az5aHezFLNq7jsnfjMEvPb2bNLfvQJwNxmuYm2L1hEFyYdVItg/tTDB5IUdcRJRSvYMvgLLS62cyfqaD8+EtYe3bR+N/fIbhq1YsHkdTUYNTUTO8bI6aUchaKqjDSk8ETMFA0mH96I3s2DKLpKssvaiOXzlHc+gxGIoHrOC/6/r0Yva6OsbWbmJhTyVhfDo9fp5Q38fp18Hg56bIZ/PFbT+MLG5SKNgd3jDMxmKPywhacx/uxk+UQFPNgBt+CCrwBlUR9EKtkk0uVWDRfwV2fQt2xkdZ5l1PVlsCxXTRdoXfXOLGa4LFcuiNokTDe9g5St98OQOTii9DCEQJvvJqJ3/0OTBMAo7kZ/7Jl0zqX1ys1HMa1Lbwz2sg88CB6TQ1GdRVq4JW/91YySW7N49iFhVhDz9lHO6LsQWX7+iFOf8dsnr6nG313Ctt20HSVVVd1sO/pYXq2j9E8N4FvsYE+GSjRMDtOciBHJOGjY1k1ezYMTY234tI2il/6LNrJZ3L3oyqu45KdKJGdKDEAtL3Bj/XQQ2QeeojIJZegVVZOtbVVHxOnfo9MKUrQkyG+70ekGxdhWzkqXvFKiOlWtGw8+uH7rH/ymSlICIkQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQghxQpu2EBLgl8CNwCXA9cC7gOFpHO81QzcU8lmTlnkVHNg8gu7VaKgLUXjw4GH17Iki+pJ2AiuyRx3GkVu3Hv/8+QRXrwJFxVhYyfqHRhncnwIgOzHGcHea094yC9eBXKpIJBgkt/EpQqe9gcDKlageD/ntO/DPamdfch+zlRaKO3bim9OJp7UV1eultG8v/qVLKWRNeneN07drgkDUQ8v8Ciobw6ihEHY6A6qGf/FilNEDeH3tPPnH/QBohsr5fzcPVVVQFIX0aIF1t+2fuo++3ROc95550Dz3GK26eCW25vbyw8a1fOZH/8p4OkXsu/+O4lajBOIM7MlS7C6y6OwmHNtl97pBMuNFGtv82MkkZl8fnvZ2zAMHKGzdxvgvfkH8ne+kLjbEyrOWUHA15q2uZcWFTWiGxro7unjq7m5AZ9bCt1LnrWDNHw9wyVXtUwEkzyrtTTLninZ2PjVMOOFjza37WHhWI6gKyy5sxeMvH3ou5S32bBji5Cva0TwqS89vJjVaYGLQAiBW5WfX2gFUVaFlfgVrbtk3NUbfHrjwM1+lemwHE7/5DeM3/Yb4m99MYNlSVL//VXsPxPPzBg1Swzka5yQY6UnTMCvOo7/ZPXV9zS17Oe+6TtihcfBDf0/D//6MyOKlL2sse2QUFq3CLUDvznHG+rPEagLEagKkxwo0zIpx1aeXUcyZPPnH/RQy5mS7POpkAMmzCltGWfz2mWwNptANlYYZIYw7fkEpHCY4fyYdbVXcf8NeHNsFBVZd1Y4/Yrz8hToKrm3jmibh884tvy6ZuLaNf948Wm/8NcVdu1H9Pnxz5+JpaprWubxeOMUihW3bKB04gJZIYDQ3Y6cz6BUVRC+9FHSdYlcXen39Kx5L9fnwn3QWE7/pOay8tCfJzEtnsH39EIoC895QT3q0gOHVqG4Nc9/PtpNLlQDY/ng/rQsqmLGkisqmEPUzY6y7bT8D+1KcfMUMamdEKOZtYtV+wmGFiQ3r8Z15GWbxyL9hTM2HMvl76vbbqbj+fVBdjeO47E4u5P6b9+E6Looa4KQ3fY+fW99hWe9D5LruwHZsVtWvYkHlAgxtej8X4i9Xshy8fxZCEvCUv4/zEkIihBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCnNDUl67yslW4rvtjwHRd9yHXdd8NnDyN471m+IIevAEdRVVomltBfUcMx3FRPCrBk+oIn9VE+IwmtLgX1e/H7OsDVXnpjgFPaytGUxMj3/0eI9/5DppVmAogeVYhY5JNFnFdF8d2cXUdb1srY//3S4q7d5O+916c8XEKxSyfX/t5ilYR76yZhzpQFPS6OlzLomvrCMmhPPm0SWa8SM/2Mcb6M6heL2rAj6JrlLq6yOgVbLize6oL23R48Jc7yYwXMTw6u9cPHTZH14XhrjR4Ai9/ocUx49E8NPpnkDOaCdWcxuDuWvbu9PDIjb2sva2X8YEs3oBBMWfSMr+Cs97Vib+hiP3FT2GtWEDskx/F6GhHr6rC98Z3kDv5UtzFqynZBkNdaYoFmwd+uZtbvrEJw6ux7MJWAEquh61rRyhmLTIp87A5eTtihM9uJhbTueC9HaC5nHz5DPZuLAeSPHN/D7HqAOEKHwAjPRnW3LIXr1+nf2+S5rkVzF1dPtjvOC4ANTMi9GwfP+L+dz09wVO91WiXvQM8HvLPPEPqzrvIPfU0diYzjSsvXpKroKgKmqbQurCC3esGj6jSu2sc39w5hM89l9y6dS9/LK8XwlE23dfD7EWVXPLWmSw5qYYtj/Rimw6qplLbFiWfMqcCSABQnmf/VsB0NPJpk0LWYmSwhHPem/AvXIhZN5OHfru/HEAC4MLjN+9lfCD38ud+FBRdZ+yXv2Tkv7/LyH9/l/Ff/QrF0FEUBdXvL+/phoGiTuefDq8vuXXrGPryV+j/h3/k4Puup7R3L0Zjw2F11FDomIw11j1BMquhhgxCpzUQPquJ0Kn1KH4dr98gEPGgGyqO7ZLPmJhFm5GeDMsubDmsnwNbRsmlilQ1h0nUl7+j02MF7v3Zdnq2j5MayVPImji+PJF3vB22rqeuNXhYH7qhkmiOo0aj5QLXLf8DkkM5HrxhP+7kvuw6Lk/+9iDvbHg3P9j0A7779Hf5wTM/4No7r2X94Ppjsjbi2CpaDp4/CyHxT4aQ5EoSQiKEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKcyPRp7PvZE9j9iqJcDPQBjdM43muGZqjoHo2RnjSRyvIB3v6BHLOumknqjgPYySKKoRI6owmUIUp9ffgWLTqqvtWAn9Qf/3jodSyBqg5i+DSqWyNkJ4qM9WUJJXy4LliWgxbx4pgmVR/9KJil8kF7xyFvlt9Cy6NieLwoioJ/wQIomeDxYMbryO4q8MTv902N5/HrxGuCRGeFcE2Tid//nvCZZ5LBD5TDUFRNwbFdcqkShaxJtMqP4VHRDZWG2XFs06F39wRejwODmyFSd2wWXrwsdibDwnwzxf53sv/BLMpim20PDrLikjbG+rOgwPzTGnj8d3uePUPO9if6OeX6ej7a8xXeNOtN/HjLV7n8787lnY2r2ZTMYK4tEK1S2LNhiJMvn8GjN+2earv/6REUFOafXk9VU5g9G4cB6OnL0tkUwu7JEDy5DnuiSPq+crBNtDNK9SID3afQsXQhrqLRNCdOarTAOdfOZeRgmlLBJhj1YJVs+vckCca8dCyrYun5LSiaQjDmxTYdPP7Dt8VolZ/atijBuIen1g3htL2D2Q0FPA/9DvtnP6XiPe/FO7MDo7kZze8HoHTwIE4uh1ZRgT02hur1YjQ2SnjDNHBx0b0aE0MZEk0hfCGdcIWPeE2Akd4MuWQJf8RH+s77iF58Eamhg+TNPH7D/xePpXo8mKkMF17VTvH2/TjpElGPxgXnt5B9NjAEjniGBsYKtFT7cYbyU2W+5bU8ePsBBrvSQDmU4ax3deLecAPa+2dgFsrzU1WlHJLjQnaiSFVT+OUs01EpbNtOzT98Fr2yElwwh4cpbNlCvrOT7uvejZMq7+FGczNNP/g+3ra2aZvLXztrZITUPfcwceNN6JUV1H7xi6iGgeLx4GlrIz+RBEBRFHAcFO2V/blWyJo8+JsDrLyglfiZTaTu6cIt2KhBg+hFbfQVTc559xwG96VY+4f9U+18QYOzrukEBZh8xA2Phj/kwcyb+JUCVS0hhrsyuI5L15ZRotV+Zp+a4Ef9P4YzXDpLdayqrWLLvQpdu7Ikqn2sWOyS/fyniV1xBWM//zmRSy/F09QEQD5tYlvOYfN3bJdSxiFtpqfKXFx++MwPWVK9BJ/ue0XrI46toung/bMQEp9RDiHJSwiJEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIcUKbzhCSzyuKEgU+AXwbiAAf+//Zu8vwuM477+PfA8OgGTGTJYPMjElsx0GHqU3SlJJyCtumu4XtU9htt+12t222TTEppIG2QTcMDhtjZlsWszSShvmc58U4clQ5bcDOppv/J5euaO5z07nPmTPjF/dPp3C8fxiapmAaJsHBOMloBlVTKatyEX66g2wwCYCZNgg/2Y73HBeWoiJIZ15X34kDB8e9Tpsqp18zmeBAnJ7Do+SXuZi9ugpXnoVwIIGqgmK341y0CDIZMr29KBYLemkpdotOuasch2LF9PvQ7Hb6vvJVMv39WCrKybvtXg5saEPVFUrr8kgnswx2hBnpj1Ez3U8mMIxz7jyGb/sNtn+ZzORFtfhKnJimictno681iNNrxWLTWHxRLf1tUVp3DaJZNJZdPolKdyvEhk/6+ovXL3n0KL3f/CaZyz5O8+YEkxeX0rZnKHfwWGpISa2XzgPDYyEikNu4bvbY+Y+Sn2I6Y1zVGGFdy4Oc6/ggPc1h5p9bw/YncgEimbQx1tbutjDj9ApcPhuDHWGeueMQK65opPvgCPu39uNdU0VFox9VVYhu6h0bL3EwiObzMPr4L3Kb2UvLcNfXUVhZBEB5oy83VjJFqDfEnDNKCI5m2fdCL1VN+eSXOSmqnsLhTb2UT/bTsW8Y0zRZeH4t4eEkBzb0UlTjoajaw0h/jBEtj+CMD1B0hoJlcD+J//oErlUr8V99NYlduwn86pfkf+ADhJ96mtiGDSh2O0X/9Dl8l12G5jl1IRLvRsqx/zLJLNlkllmrq2h+eYBAd4RJc4uw2nVKG314lXMxFZXQtEpsqfCbCiHJBobwVZWQeCgXQAJgprLEHm7Bf8PMsXrFtR4KKlwEuqMAbH+hh6rrm9AH4jAYwzXNT3NfnMGuCGUNPjKp3LNzqDNK48c+RiwywKR5Cyiu9aJqCmYWhrrChIcTdB0cpqzRh6ad/EAbz1lrCK1bR3BdLsgq7+KL8F58MSO3/2EsgAQg3dFB9IUXJITkLQiu+wsD3/8+ANrSJagWnYH//M+xz9eSr36V5KHDmNkM2WAIE5P0wACW4uI3NE40mCTQFSEeTTNjdTXpUIrgU+2QyT10jWia0KOt6GdWo2kq+17oAcDptZJf7mK0P0ZkJImignksO2LGGRUkomm8hQ7Mg7tZXBSjs2Y67Yci1M7Kp2lFJVlPjOX6cuy6ndv23kbZQYWpW7czY8kZGG3NJP71Icx0Gv2KKyn56ldwn3kmqj0XJOLyWbE6dFLx4997LDaNtDPOXwsmg2QNCbV4p0llDWy6Nq7McSyEJJGW6yWEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEK8k52yEBLTNB869msQWHWqxvmH070NNR4nk6qifnYRR14eIJsxmLuomMwL3ROqZ0dTaB4P5qsTHv4G+7Sp417bnFba946w97lc3/1tIToPDHPex2ce61PB1DQURSF59Ciqw4kRi5E6dBjbzBlcWX8ZetKA4mK6b/w0RjS3qT7d3YMZCVNY6Wba0lIioSSapjJ5cQm6rqBoGqrDjubxUPDxj0FjFZldWbJpg0zaYLB9iIopfoxsbjNqMp5l87qWsXn3Hh3lkutLoND7ZlZZnARGIsHQE88Qv/DjxO3lQAvxcAq3z0Y4kCARzeAttKNqKtm0MdZu3jk1pBIZju4YpGKyj2JPIWf0Xc5Vc99P/5EIAOlUFqtdIxnLoGoKAIqqsPD8WjY+cJT559ay/8XcZvhd6ztZdFE9iUiavGoHcQ3UXSMT5pseULFNnUrP578AgPfyyym47n3oZWXoeXkA6DYr+bWFzHPASF+MSEzjyd8dYsH5tXQfHmXqkhJ8ZS5Oe08jqqqw9/luhjpzcx7ujeIvczLjjApeuPsIFpuG/5waOjxzMD/6EyqKs8T2HyYc0xm67j9oDkL1ebXYnXkkn3qUgf/4LvbJk3EtXXrKrtm7kWmaqLpKKJDA6bXy7B2HGOmLATDQHqZyip+iWg/pvn5sTdNoLwkxyfYGnysDB2FgH5rdipnVyAZT448bYLyqzO2zc97HZtK2Z4hAT5SSWi/9QwkUTSXhsTKlQCVwIMnii+uJBZOgwOTFJWRSWeLPbMc5fyE1jQUEB+IEuiP4SpyUNfjoaw3ywt2HufSmeZRN8r3FlZsoeeAgwfsfGHsdvO9+bI2TySaTE+u2tEwoE69PenCQwK23jr32X301vV/+yrjP196v/itl3/k24aeeQnW6yHqL6GsJYhlVcaYDmJ2tWKursU+ZgqJpJxwnFIjz5K/30deaC5Cx2DQuu3YKicz47xNGLIPLopFVlNz3kbOryaQMBtpD1MwowJ1vY8lF9URGkrh8NjoPjFAxxU88lqHdPpkZc5NUNNYwbaVCx75htqxroXZmAcumno7LZ2NeyTySBw/Rv/2XJF/eMjau4nTiXr0KW23tuPnkFTo45wO1PHl7O4loGptTp+FyJ71aMwoKJsfn//7p78dldb2l6yFOrkzWIGuYWPXxQUlWXUVXFeISQiKEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEK8o52yEJJXUxRlu2ma896Osd7R+g9Az0401YbVVktwKEHdrEIMwySFgrXchWt+CZrbgpHIggKZ/mYCv/o1RZ/7LGY2+5qbjV/hXLgI1/JlRF/agOJwYBom+1/qGVcnGcsQCsRJJ7JkUgamqWIkk1gnNZDp6UZRVCx1tZjpNCvyZmCGkmSDobEN0q9IP3Yf9ae/h1AgwVBHFN2i4sqz4S/NbQhWXS5GnnwS1+LFRMwCHO4ILTsHxwIC2vYEGB2IseyyBnY93TX+RExoORCnoqHkLS66eLMyI6MMFc/H1LxU+214L6nn0KERauYX098eYt/z3SxYW0tsNImvzEX34VEaF5TQdWiYgbYw/lInDo+VfS/2YBpgc1rw5DsBaH55gJkrK3n5kTYiI0mKazw4vFYOb+0nk8oF1bwiHEiw6YGjNC4sZv+mCEbGYNkUHxzOBZHoJU6cs4vApmGGl+BYtAv3skXEd+6i9YorsdbXUfqvX8O5cAGKkgs8cZQU4iiBRO8Aa99bStppZ/9LMY5sHcAwTcrq8yiq8YwFkLxipDdGIpIGYO5Z1ex8uoNkNIPLZ8O6ohylfhGHXuplUq2X4nyTcNogdcb7cO3ZTqa/n8ShwxJCcpKN9sfY/GAL008rJxFNjz1fXtF1aIQZqypQHHYyZJnqn4pdt7/+AcID0LMdRjuw+6YQdNhQnTpGLDOumukY/2zOK3ZSN6eI7sOjPHfXYZadX0NjfR5mLI2W1WlaWkpPc4iBtjAWm4bbZ6e41kvk6afRLvsArbuHaN05lOtsT4DCKjeLLqzj0MY+Og+MnJIQksjzz08se+EFim/6ApFHHx1X7j7ttJM+/ruFouuodjuvRDFkg8EJn6/ZkRGywSDxXbtxf+XbPPVEjIH2AaCT+ule5tbbiK9bR/a003AvX37CcXqbg2MBJADpZJZoMotrdiHO6YUY8QyqUye6vZ/enihdOwdYfkUj+17oprc5CEB/a4j+1hDTTyvn8JYOkrEMCy+oxcgYREeSBFMGA3UVlKQ1nvj1HoZ7cufRvC33jF9+RQMuiwvH1JkoX/tX+v7t31FsNhS7ndKvfBm9tHTixLu3UR3bxFVrXcRSDhxKgICukNIr+N5p3+Oug3cRTof5QNMHWFm58q1eDnGSpbK5z2/bX4WQADgsGrGUhJAIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ72RvSwgJoLxN47yzhXvBWw4dm1Bdq2l+eYDwcAKAC943Bc+Z1WS6IwQfbgED0BTyzilHLy0l/MST+D/wATSH428OYa0op/wHPyB1tAUjkyasKuQVOpi8uJRs2kDVFMKBBJgKu57uZMWVjWQVDdVipe///T8yg4MA6MXFlH3n29zf8wSfVM9Ey/OCqoJxPBwi0z9ANJhi0wMtY2WdB4c5+8PTATDTafzvuYqE6mR0OIXHb5sQELD/hR5mnlGJzaFTOimPyin+XD8HhrHqaejbA76qt7z04o1LqE4KiotR1neQ2JTBDsyfWcCR7jDLL2tAs6rYHBamLCnFZlfwek1CQTjycj8A05aX89K9zWDm+us+NMLp753M7DWV7H2259jrBhKhOHXnFKPa7Dxx2yEANF1BURVMwxybT1G1lw33NpNf5iLms2EtcaCkDBwzCgk92T42Tt4VXySx/R4izz6LYrXiPessIs89R+T553EvX45jzmzUY+8jS3EhtqiV4SPDzD2zAk+Ri1Qiw+71XeSXu8atR1G1h+rpBfhLXVRO9ZNJGySjGXSrypyzqth4/1HWXDOFWV4L2Wc7ASh06Jirq8leejWZn/8IS3nZKbxi705DXRHmnlXNxgeOcvb107HaNWatrkJRQFEU0qlc2JJeVo6qWyl0FL6xAUZawOGH5qfQtv+e9HmPYD+3lti6o5AxQQH7GZUkrRMDoiIjCfLL3UxfUELecIyR2/fn7lNdxX95Ay/tGWLgWEhE58ER1nxgCprPR9pXRuvOA+PPszNCOpl7/lpsfzuM6s2yTZ1CbNOmcWX2KVOwlJfjf//7GbnrLhSLhaJPfQrH/PmnZA7vBrrfT9E/fY6em74IgObxTPh8VSwWVI8H74UXcaRdYaD9eCBSy74QFYUO8g4chKyBffp0dJ9v3BiZdJbh3vHBJgDhZAZ/mZvhuw7m7kVNwXfRJAb3B2jfGWD6soqxAJJXDHVFcHisLFxbi8tnQ7NoPPKz3WPP3J4jo5z14WmM9sXwFNipmpZPPJxi/0s9zDijgvwyF6rFQt4VV5CZt4qelhCZlMGIGSD63e+Sf/XV2KdMOT7gwYfA4sDz/FfxHCvyAnVF0+BDj7CqehUZI4Pb6n6zl0CcQsn0a4eQ2K0aibSEkAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDvZG9XCMnDb9M472y6DR76LFgcROs+OBZAUlbvJS+dJTsUJ/xsZy6ABCBrEnqyD9/V1xPf+RKK/voul+73oy/IbRAPNY8w75wauptHmbKolEQ0RWGlG4fXQjqZ5cDGXqqnTiby/PNjASQAmYEBIs8/T/eiYVJ+J9a+AIWf+DhDP71lrE7eZZex7YXB8YOb0H14hMaFJWgeD+lwGOfC+RhtJnmlEwNUTAAF5p1Tye5ne3n50TYUoGF+CbVTLBA5+HpXV5xkmqaj7egnG8+MlWX2BJj13inYKkzswb1g9UDGDV0d1D16HT2XbgUgr8jBUGd4bJP6K5q3DeDOtzH7zCoqqkzKDnwZS/eLsCuKUTCNhjm3sO+lQQ5u7GPxRfXsfKqDRCRNQYULl88KwHBvlNFYlmixm+kzC4j8+fC4caIbh/Bc/j4Svd3knX0uofvvJf7yyyh2O2YyQXZ0BGtNDda6OnpaY/zlf3ahWzUWXVTHnme7CXRHqJzix+a0UDOzgPY9ARoXlqBqCtsfb8c0TGpnFuAvcwK5e3XPM90YGRO/rpLYPTQ2FzOeQd/ej33lOejBARyzZp2iq/Xu5fbb2PV0F9m0gaLCsssbQAGn14qqKgR6o+gWFd3vI3HwAPZ5M9/YAIoCT34NRtrAU44a7uahBxXmL6vACaQ1hc07BlkxtWCsSTZj0LJzkGfvOEQqnuGDn5nFyL1dx/vMGAQfauWsKxu540e7ADANk8GOMKU+H6picCKqlgsgqZrqf4Or9Pq4V64k/MSTZHp6ALBUlOM643R0n4+SL95E/vuuBVXDUlGOoki22FvhXr2aqlt/TeT558Fmo+CjHyHw81+MHS/6/D+R7u5BLa+gY2d8QvuBEQ3XQD/ORQsxYzH4qxCS0f4Y1hOE1dRXexj+zb7jz8ysSfDhVha/byoHNw+QetXz/tVSiQzxSIZsxmR0IDbh2b7/pV6WXjqJ0YEYrbuGcOZZWXJJPdl4jMgLOwh5aggndZ6/+8jYGIqqsPbaa4hu3oyan4+1qOjYYPHczf7XQl2QTmB35p94UcU7QjKTe35Z9YnX0GHRiKckhEQIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR4JztlISSKonzPNM1/ATBN81//uuxdKdwLtadB0VQS3Ql0i0rd7CLqpvhQ01nMZPZ4AMkxZtpAdfkpuP56VIvlDQ+paiq6XaV2egGP/3IviWgai01jxVWNFNd6GO2LgaqTammZ0DZ1tAXLUg/bUkdYOJjFRKHi5pvJBgJohYUoLhu6NT2hncWukQ2HUTQdW109Q9/5OiU3fQ9D1/Dk28fCVwAmzSsir9DBgcMjHN2eCzQxgSMv91NVU0jJtDcYGCBOGsNIku2LTig3Yynsvz0DbF6Ycy20PAe6BbIpCkafoXraLEb6k6iaOqGtqiuEhxIc3tJPw/s1LEcfyh2YfC5qxXzmFKtEw/m07R5m3wvdnP7eRnSLxpGXB+htDpJX5CA4GGf3s13MXFlJ1jAx08ffNPbpBVjLXKDa0W74BuvXd5F/2qdpuDyCV4sw+F//zcidd+H49JdJBz3ser4f04QZZ1Sw7ZF2EtHc/dy8bYDISII5Z1ZROikPXVd56Z7msXHa9gQorPbg8tlw+WyEhnIhAdoJNldneqMMdPoIN15KXlbjjb+Lxd+SV+QgMpLA5bMRDsTJL/ew5S8t9DYHAWiYX0RxtYfY4y9hmTSJTDwGVvfrHyAyAOXzYMblMNxC2rATDgR59i+t46qlE8ev/XBPlCdv3Yd5LKjBCE98ThrRNHp2fJKDRYdsIIDVplA1zU/ngZHj51nswJVn49Kb5lFY5Xn9838DYtu3U/rNb5IZGEBRFBSbjcxQAADFYsFaXX1Kxn030pxO3MuX416+HADHjBk4588n0z+AVlRI+On1kEljKiqVU68k0B0Z177InyXd24dWUID2SnjHq6QSWboOjjD3rGr2Pt9NOpWlZnoBZjQ9IUDETGVRkllOe08jqq5QPSOfjr3DY8fLJuXR0xzk4IZe8stdlDf6Joyn6wqZTJZ9L/TkvgNkDLasa+W8S/2kNB9P3d1B/dyicSEnpmGye0uYppmz2ftIL0WTUlROzcfbdBF0bgZFBfNVX4rmfRA8JW98sScsThQGDkKkH/w1UDgZNHkynyypYyEkNn3idwCnVSOelhASIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ4p3slIWQAGcBfx04ct4JysZRFEUDXga6TdO8QFGUfOCPQC3QBlxlmubIa/fwDuYqgmwKMglqm9y4fE4ObOglHk5SOKcQe7UHdBUyxzfdKg4d1+I52CaVve5hks3NRLdsxTQMsovOw+608Piv9o0FLKSTWZ678xBrPjiN7sOjOPNspM5aQ2zz5nH92M9cyYvdP2ZO/SSMqAWyWQZ+8AMUq5W8iy7EkkwwZ81SOg+OjG1qVnWFhnnFJA8fBpuV+M6dJHbsoMCa4eUXe2laUU5oKM5wb5TS+jyceVZ0q8aRbYNUTPGPbW4eaAtx9ECaaYsr3tqaizdNUUz02jwyLcHx5S4dokOw6KPw7HegchEc21NsW/8Fzrj4QTp6PGh5Xg5v7cPIHLs5FKiZXsCm+49y+sXF+JWXYfploOq5TeHPfBsf3+bshosIf/7/oftKsapxHvltO73NIVRVYdGFdQR6ogx1hol0DqDU1KJ5rWRDKVyLSskE4oSe6gBA99uYs6CU0ZRBWzCPTDxFxae/jZcwz+72UqSHxt4Tmq6O/f6KvpYQtjPjFJXaOLz9+IZ8i11j6pIyLDaNNR+aRm/zKOWTffQcHiXrnPhI1ao9dHeEadkToKzOhbtiYmCAePPyy9wsXFvLQHsYRVVo3xMYCyABaN42SFmDD++WrRTMnImpW9/YAI58sDjB4oaGs3HoLuzuGInI8fvF6tDxFNjGXoeG4rjz7UxeWAKKgpZvB4Vx4Q9ano2kqoy91i0qldUW7J/6FOG0lfxyN/4yF/2tIQoq3Lh9NsKBBJMXlb7hNXq9bHV1JHbvJvTQXwDwXnAhqY4O3MuXofv9p2xcAZaiIixFRaS6uwmuW4eqaYSfew69tJTGC3S625wMdccAqG5wkNf+MkZ1Fc4FC04YUOYtdDA6ECM4FGfG6RVoFpWh7jBangV0BTLHb0bVqZOxamy87ygL1tbiyXcw75waAj0RSuu8pBJZdjyRe64O90SZtqwMVVMwssef7U1zPDx1bwezz6xC1RSCg3EmzS0mZdcZbRtCURVSicyEecZiWQ4e0mnbE4CNQxTXeVn70bk4FQXO/wFsuiUXFjL3/bD4o6Bqb22hUzHY9DNY/2/HTl6Dy34NMy57a/2KMclM7guB9QQhJHaLRuwEYV1CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEeOc46SEkiqJ8AvgkUK8oyu5XHfIAL72OLj4LHAC8x15/CXjaNM3vKorypWOv/2aQyTvazKvA6kaNaWx44Ajlk3zYXBbiHhuZLb34Lqgj+FgbZiKL6tTxXdaIvbHwdXefPHqU9uveT3ZkBOcFl5JuWoMC4zbMAxhZk3TKYPaaKlRNxb1qFamuLkbvuBOAvPddwwOlXSQ6E4wmgygUMPrAA3jOPhtMk5E/3EHR5z5HxWQ/l39xPsGBGIqq4C91UljlIdw8jKW0lOCRIwBkRsM482xsXteCt9COt9DBoU191M4uAKBpWSktO4fY+lArAJVT/Uxf4ofu7eBdexIWXrxRmbhJrNGPI5gkG0iApqAvKmU4liQPIJMCIwtdW2H116D1eTCyeO+/gBmVizDn/w/+z8+lZecQ2XSGhnlFGNkMV3zEi3/3N9GssyBwBJZ/Fu69YWxcS/M68kPNsOyzZPY8iJn9JwAMw2TTgy0UVrtZdEENll99g2z1+zDOqEfb3IvqtpDc0geAYtNwNhXgcepoWpbDm0YY6Y9xADj9PU3EI210HhimaUU52x9vR9WUCeevagqZbZtI3fkLir96G4e3gMWmsfiierY/3k4smMJi01hyST3LL6nl+T8eYSCcJn95OZlNvZA10fJtJKYV0Pqn3PtgdCB5qi/bu1I8GCPQHWXq0hL2v3howvG+o0HK15xJdjRImvQJevgbFA1mXA62PNKRDMFv/hurrvoUL25WCA+ncPttnPnBaeQVOceauPw2pi4pZccTHWTSBrVVLrxn1xJ+pgMzZaB6LHhWVZKxwZkfmIqmq/hKnRRVeWF+PYkjI+x+pgu7S6egwk3n/mHCwwnWfnLmW12qv8mMxxn905/wnHMOmCajf/oT/muuJjs6KiEkbxdFId3ZRfLgQfIuupBMIMDo5z/C2T/9FTGtAmNkBGXLeqw2E+9//xB7w6TjbWPDEOoFzYLb4uT8j0/npXuaad8boHZWPotWe1AyAbxn1xB+uhMzmUV1WfCuqaarM0wmbZBJGRzdMcCURaVUTvZjdVnYfPuBcVPc+VQHaz7UROf+YbIZg8qpfmw+C1OXZultHmWgPQxAy45BJi8qprI2j/DwKP4y14TTrZtVyM6nOsdeD7SGCPQncE5dBhULYdpFkE2Dp+StB5AADB48HkACuc+wv3wWyudBfu1b71+QPBakZztBCInDopFISwiJEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII8U520kNIgDuBR4H/IBcY8oqwaZrDf6uhoiiVwFrg28DnjxVfDKw89vvvgGf5Rw0hsXlAs0A6SaAzwIrLG2nbPcRwbxRDAXtNHrHtA7gWlaHoCprPhnKCcIS/JbZtO9mREQDSRw5gsUA2q2K1a6QSxzd+KgrkFTnwl+Q2BVsrKii56SacV17GSGKEI+44/sQgNxbcyOL8eWS2rMd77jmM3nsfKAq+Ky4nMzJCIpamfd8QI/0xLBaNcCCOy2fDWlVFqr8f15IlRJ5ejxroobxhDoc39xEaShAaSqBbVGpn5QJWMimD1l1DOL1WNItK18ERKifZwWg7OWsv3jC7z8mOzUcpqfBQNL2QrGGya9sgS8/Oz1XQbbn/Gxk4sA7O+hY0PwUWFyz5BEp+PaXFVkrrfQx2hnn2zoMMtIbx5NtZefl/UKVtgzOXE0/qWOrPw9L6OJi5zcsMHoDAYfTO55i76hs82hoBYNbqSnSLRuvuISrf+894SkyScZXEnGJsodSxeam5TfbPdGJE0lg0hVXLytl+NEhRvY9ELMuSS+rpbQ4SGooz9+xqoqMpqqb56TwwMnb+cxa5ydz7Y7J9fRQr/RRUuiipzWPXU53Egrmx0sksLz/SxpJL6pl3Xh0YBs8808WSc2rRTGjvDLP73mZMM9ent8h+yq/bu00imkaz2zBNk0gwSUmdl6HOyLg6hdUeEusP4r/sMrri/RRZnNCxEXbcAXYfzLkGKhfkHox/zeaDWB88+kWSzvOIb9uOsv9GTr/0PZjz61GHeyh2101otvWRNjh23bOhFKYG7mXloCqYGQPThMRwhq5DoxiGSUk4jafAgd1pQbeqzFxVwe6nu+g6mLsn62YXottOQgjD35Dq6sJ7/nmM3nPv2HPeSCTRCl9/EJZ4a8xsFr2oECNeQ+C3v8NSXEzhDdejdB6mYueHwF2CMe1i1OUfh/z64w379sAL/w0l02HrryE+QtFFP2XF2VPZt9Pg6I4hMnE3c2cVoKgGrqVlKKqCaZiYmFiOPXrtbp2F59cy0h+j+/AIhmGw5OJ6Nj3QMjZUIpIh0B2l6+AIqqZQUOEmHk5RWpfHnme6x53P4a0DTJ0/FZfPRse+AKuum8ruZ7rIpLI0LS+nryVIOjk+lCI9EiI9kMFSXAzuopO7wNGhiWXJEMSHgdqTO9a71FgIiWXi88ph1RgIv8EgKCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEK8rU56CIlpmkEgCFytKIoGlBwbx60oits0zY6/0fxHwD8DnleVlZim2Xus715FUYpP9pzfNhY3hPth0y24Z/yEJ+9ooW5mIYXVbgKDcez9UVIdYTLDidwm9USW/KunvqEhjGh07Pf0oYO4hjqIeKtYfmUjz991mGzGQFEVllxcT3GNZ1xbRddRK8vZ0bmfvxz4C/NK5qEqKut7nuUDRUUM3fIz3KtWoegawfvup/Dzn6f36CgWq85IT4x0MovTa2OgLURNUwOp7m70sjJ811yDMmkamZDB/PNqMAwTTFB1BV1XARhoD7H00kmEAgmy6Sz5ZS4GOkIYcxajvvWVF2+C3amz7PwiHv5dJ7uiGQCmL86n2NEOVYvh4MOw9FOw6Rbo3gYDB+Dae6B6CajHNx/Hwymeum0fw70xAMLDCR75TReX/fN5HN0+yKFNvfgKPsuiVR+jfOsnoO40qFgAigqzrqKq/1dccNVFDCYq6Ng/Qm9zCGeelYIKL0NhK+tvP0TNrHwq5uUeDc7ZhUQ39GBEjm10zpoYW/pYetVk/vSzvWSPbZAub/ThLXRwYEMvC88uo9EzwpRppYRGUniVEPqzd5I6fAgAc/06LvznrzPYGWb/iz0AWOwa88+pIRpM0tcSorDSTUGlk/JGD4/ceZjlVzRweHcAI5NLomic7aOkLHPqL9y7zGh/lBfvPoI7305oMEn93CK6Do4QHIgDUFrvpaTGg+fcc0lrGi7dBa3PwV1XH+9k5+3w4cehYv74ztNxMBLwwCch1I1RfzYAZjxO/M7f5uqoKuZ7Lh7XLDqSHAsgAXD4bIT/eAg0Fc2pkw2n0DxWrJc10HNkFItNo7DSTce+AJqu4sm3oioKyy9vIB5NY3daiIwm0LTjT8PoaJLuwyP0HBmluMZL5VQ/3kLHW1pLLc/H0B/uwLN6dW5t77mXok99Ct3j+TstxcmiOp2kOrtI7N2L79JLyASGGfjxzVT+4LtgmhDuQ932C/AWwcIbyGhu4qNRLCMj2KecB/d9JNdR2WyikQxPPB5kpD8JwO6BODNmlhJ9NPdc09wWsuE0ik3DubYem0snv8xF664h2nYN4fBYmby4hOGeKOWTffQcHkXVFBaurWX/Sz2EhxOUN/qIhZLserqLFVc1TDwhE0wUpi4qBE0nkzaYe1Y17XsD9LeGyKSMcdWdXivalqfo+N5DVN18M5aqKpQThQO9Wb4qmH0N+Cpzrw89CrFh8JafvDHe5ZKZXKiMVZv47c1h1YinshPKhRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPHOcdJDSF6hKMqNwDeAfuCVXaYmMOs16l8ADJimuU1RlJVvcsyPAh8FqK6ufjNdnDqmCRi5YIW250k1ZFi0to59L+Q28q6+vIFMNE3eeXVkAnEUq4bq1MlGUm9oGMfcuaCqYOSWPPbj79D73u8y1BVhzYemkYhmsDl10qksFtvEy6+pGsFkEJ/dx6Otj2LVrKyoXEGqt5eCD3+Y4JNPomDie897UBRIhNNsvP/oWPvtj7ez5OJ6amcVoagqiX37sDY0kPX6IBTFYtM4tLkPi02jaUU55rGd+jUzC3nqtv1k0sduFQXWvH8KqvvdsVn1HXnvRvooe2wNV1z6XwSVBqwuOwUtP8P6wK9h2Wdh8jngLIQZV0IskNvUXTA5d/+9upuR5FgACUB1Uz51s4vY80wXBzf2ARAdhXUdKlfecBcFGz4Fu/+UCzJZcD0Wm0LNi5dgveBFNq8LATBnTTWbHjzKvLNryGYMBlrD9DT4KZhThJZnIxNI5AbTFbwrqzBSWYyjQc6/tJ5tWwfoaQvRc2SU2pmFeJQw3j1PYi9wknnxLgqWLWXw+//Jq9953rVrcflsZLMmDo+FeDjN3LOq2fFkB8nY8WCRJZfUk8koXPCJJpT4CBd8qIzYcBSLliG/63bs/VOg7gQb9f/B/W/evwPtYaYsKUXVVbY+1MryyxqYe3Y1qqqgqArxcJoX/3yEpeZmPKcvwm+tgRd+OL6TbBqanz4eQpLNQPtL8PwPYO41EOoGwObNoLqcGNHj93PexRdjKR8fYOD02ca9jg3GcS8rR7FpZINJ9HwHqZ4IQy0hwsfu1Y33HWX1dVPZeN9RzvzgNGxOnVAgTl9LEF+pi/KGPOKRFEbWwMiabH24lX0v5AJx9r3QQ3ljHud+dCYOj/VNr2VmoJ/8695H+On1AORf9z7SA/1vur9/BO+oZ28mDbEwekEBrmVLiW3fgeZ2UfKFL5CNxWD+B2HnHbDin2C0g5Htz/HyviqO7gnjL7GxYu0syl0lKNF+qF9FMOIYCyB5Rag3hnd+CarHSnY0ge63kx6KYxgpLv2Ai0MHRtjzbO5+j4wkGeqKsPiiOmpnFlI2KQ9NU0mns0xZXEp+hZuBthAWq8aC82uxOiwUVrkZ6oyMjVc11cfeDYO07hoCQNNVll/RwJGtuftq7tnVeAvt9DSPUlzpoMHVi7ZxL841a+j50pexVFeTf/V7ccyeffLWuW837LoTVD23prOvBk/pyev/XS51LOjLZjlBCIlFQkiEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKId7pTFkICfA6YYppm4HXWXw5cpCjK+YAd8CqK8gegX1GUMtM0exVFKQMGXqsD0zR/CfwSYMGCBeZbmv3Jpii5ABKHD+x52BwWnr7zKKaRm+bBHYOsWlpC8MGjHMvlQLFrFFwz9Q0N45gxnapbf83QT39KNhCg8MZPsWtHhHgkzWBHbmPwnmeH8JU4aVpWPqG9VbOioDCraBYW1UIym6TGW4O9SSXb34/njNPBNNE8HixVVTjtKVZcUQqqG5tTZ/vjHTRvG2DW6koUm41kSyt2XUdRFUb7Y+x9rpuKyT4yaYOnfnuAsz7UBECgO4I73079nCJUTaG/LcSBjX00FMfR/O+QUI5T6B1571ocYHPje+oD+ABcRaSW/zPROetxlk8mGk+j6RYcxZ6/2Y3VoWGxaaSTWSYvLiUVzxAZSXBo8/FwA1VTqG7KJ2Z6yTdMjNqVqPEAyoF1cOGPYccfMNK5WBBfiZPB9jBGxiQ8nMBf5iQ8lGA0mOJIV4zlMwpR/TaMkSSe0yqJbO7FCKdz4wBL1lTzRChJ7cxCfMV21KcexF7kJ/Dz35MdHUXzeCj5f19j9O67Qbfg//AHsc+ZA4C3wM6q66bx1G/2k0kZYwEkiqowaW4RiqpQUufluT+2cN75EYr+eOX4xZhy20m4MO88/5v3r81pwerQ2fV0JwDR0SRHdw5SM70AwzBp2TFIZCSJ9bxFJKMh8lTLsVCov2IYx3/v2Q63XwKmAQuvzz2/TRPboZ9R/a1/ZejBDSRbOsm7+GLyLr0E1To++KOg3MXSyyYRC6bQrRquChfJpztJdx8PZ3AtKsW0a8xYWUFJrUYqniQRS6FZVNLJLHuf76ZpRTmefAeBrghHtvSjqAqX3TQP3aay78WecWP2HAky3Bul4i2EkFgnNZANBHAuXAiKgmJ3YK2sfNP9/SN4xzx7e3bChv+B/FloeV4Uqw23x4NqtZIZHcVZUQgHXoQLboaXf03aXsYLR0vpPBwEYKg7zl9uS3LlxV+j4KUbITqA6rNMGEbPs5JpC5Lc0jdW5phVhLvEQlop5eDGFlCgcoqf+nk+rNYEmkWjdfcQBzf0juvrrOunk8kY7HiyA0ywOXVWXjuFnuYgvc2j1NTouKuLee7Ow2NtshkD3aqi6gpGxmTHEx24/TamLyuhePMfSDzzFM7LLmXoJz8FIL59O+HHHqP27ruwT31j34cmyCThue9D/97cayMDW38NU9a+tX7FOMljISRW7TVCSNISQiKEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEK8k53KEJJOIPh6K5um+WXgywCKoqwEbjJN832Kovwn8AHgu8f+/+BJn+nbRbfnNrqv/DLxYGwsgATAYlWJbevHMasIvdCBokCyPUR6II598usfQtF13EuX4pgzBzOVQs/LY3bBAJ37h9n1dCemaTJlcSn184pO2F5TNdxWN+uOrmNR6SJMTNqD7SiWyWC1YikoQFEU0lVV9CpZAi1bAZOCqlqy2WJmra7C6bGgakrulAsKGPr5L/CfcRFHtw+STmZp23M8l2akLwaAw2OhuimfXU93ks0YVE7zUzurEGPwWbRJK974Wou3zlUI530f7novFE2he9pn2fDEdvJrTCy2Pex95kkmL15GZdNMMqkU/tIyimonYbXbx3WTV+Tk9Ksns/53B/AVO9jyl1a8hXasDo1kNIPbb2POmmoObe7j4PYIw1PuomVXgKlLign2Rxl8PE7DsuepKMhQO8NPJJgmlcyFfxzZ0s+SS+rpPDgCmETjae799T6u+OA04g80g6qMBZCgK7jml6BpChdfN5UXnujgkee6Ka+9kKXL3WRvywWEOGbPZvDHN+NavAj7nDlkOrsY/OEPsc6fi3vadCpKXVzxpfm07BjM9avA0kvqOby1n+ZtA1jtGrPXVBO2mhSpem6jO0DRVKic/3ZcuXeVomo3Wx9uHXvtLXaQX+ZixxMdqJpC04pyHHYTtedFkoumYag6rPgc/PHa452oOjSuOf66/aVcAAmALQ8WfQw2/xziIzi2foGK6/4do/om9JqmE85Js6h4C+xsf7ydZDRDTcEUsq8KIAGIvtxP6QenYcsfYrD9KJlUmtK6Rs57Tw3ZWJbTL57ES4+0EhpMjLUxDZOB9jClDd6xsKpXM7KvL0PDSCaJ79pNdMNLaD4/rmVLsU+ejGIajNxxB+4zTgdg5I47KPr0p19Xn+KNG4gN0BvpxW1CzcNfQO9+GZbNRi8uITs6QnZ4BHw+NL8fU3dgLvwYmbiCUn0OYUs1nS/FxvWXzRiMmrUUAOx/EP/aC5g03cHRffGxOrpikmzJfTXTixw4ZhYCkEpYeXlzHyuvnYJhgNUaYKTnAEN9wzg8XhrmTaJ1l4VkNPc8VVSw2FT2rO8a6zsZy7DlL62sem89jT2P4q5dyDPbhyacd3fzCKdfNZk9z3UTGopT3ZRPTXmWoXv+iO/KKwk+uG5cfTORILF331sPIYkFoPmpieWBZmhY/db6FmNeCSGxW04QQmKVEBIhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDine5UhpC0AM8qivIwkHyl0DTN/36D/XwX+JOiKNcDHcCVJ2+KbzN/NQwegspF2Hss4w5ZrRqOyfnEdw8R35ULN7BPy0d1WU7U09+lORzgcACQTmY5uKmPmhkFaLpKy85BSuq8r9k2k81Q4a6gLdSG15rb7K46nWhuD5nBQbBYCdVV07l7D0U1ddhcLuLhEB6/TjpZSjKeBUVBUVWMeIz8D34Q2g5hd7kJ/dV+ZLsrdws63Faef+bIWHnXgRH8JQ70SQ1v6vzFSVK1BN5zB0MRk3t+fBs2p5Oi+ilsffAeaufMJxoc5eEffx9V05lzzlpG+npx+/MprKrBnV8w1k3D/GLyy10c3Z67t5tfHmDmGZW8/Egb00+rYMN9zdicOlXT8nnxnhZmn1nF1kc6CQcSFNd4yKh22jrC1Mx0kVdSgJE2SSez9BweZcN9Rylr8FE91U1T4TaCcR/h4UMUvr8Bo/dYkIQCeefWEXmpm+xIEhRYuKAUXVHo6QjTMeSg/DM3kX7mcWJbtmAEg2TDEeIvbyOyfj3ORQvRfT46vvcDME2Kv/RFysuno2oKlVP9tO4eYqgzFzKRSmTZ+lAraz82Ba74TW63vmlA2ZzcM0CcVN5CB94CO8GBOHaXhUB3lLY9ASbNKyabMdj/Yg8r31uPeWSEwHAXhcyF+pVw7T2w9VZw+mHeB6B83vFOre7jv6sqNF0C1Usg1AueUlR3GeorGVvRAHRvg2AnWF1gcTFsX8wTv96HeSwTJBlOTfywNUwwEnTs20lJXQMulw9Hj534C0fBAEeelVXn1bLuD4fGBVZZ7Rp5hQ6qmvLp3D/8qnWw4y91va41i27YSNcnPjH2WvP5qLn996SHAuR/+EMYsVy4Rf71HyYdCLxWN+It2De0j889+zn6on3oqs7nZ17N5aqKXrMczRgk09tLqr2d+H33oZeUUPa97zK4IcjI3bei+f34v/0DrPYAqcT4QAdrfhGs+QY4C7CV1LDiIhf1c1IMdKcprXbidmuMAJZKN/ZJPsLPdUHWRHVbmL22jqMdAaqnWQn0dBMLh1B1nVQ8Tueel1nzgSU8fEs3dpeFNR+exmB7eMJ5jfTFsHrs+D5yPZrbzQz34Lj7FKC8Lo/9L/Uyf00pBbX55BU7MYYGSV9+OWY2g2I5wVfTbCL3XnMVTDz2etnzoHIhHH16fLmv6s33KSZIHQshsenahGN2i0YibWAYJqqqvN1TE0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcTrcCpDSDqO/ViP/bxupmk+Czx77PcAcOZJntv/HlchjLZRFNlOaXUTfR25fJbBgRjZMifp7shY1cSBYexT80/YjWmaZI0suvb3L+FgZ4RFF9RxeEs/mXSWGWdUMtIfwzRMlBNsAnXoDhr9jdx35D5GE6NcNeUqSCgYyQSYYGuaRjIWp27uAnY+/hDtu3dQXDuJJVdcTeUUH7FgitBgHKvVihGNkTEH0bV9zDvzEh77TRiO7ad3eCxUHju/4e6Jm5lbdwVYaH8Uh80F5XP+7nmKU+Dwo2Q338pA3Y1kUkkaFy2leetGAMonT2PDn/4AwNIrrmb3U4+x/ZEHmbL0NErqG8mkklRMbUK32lA1FX9pBaXHwm9ioRRdh0ZYckk9mkXFyJrUzizk8JY+AKwOnXAggaorzFqdT/f+9ex//mF0m41557+X3pYCXHlu1n5qFoMdYYqq3RSVW7AGesnb+lnIJCH4XlIzvwqagm2Sj/i+oVwACYAJma19zL1oEnmVbg5tGaDdNYO51y9Af+ZuAJzz5zH0k5+CpuFes4aB730fRdMo/sIXGPrpz8lGY5z3r/9NxFLAc3ceHlsyi12jYX4xqgqpA4+TmPExtNIpuPJsb9dVe1fRLRoLziqm+8goJXVeUvEMs1ZV0rxtAE1XWHhBHaN9cdxDAcqs83PPPN0NjWflfk6kZjnYfZAYBasHgh3w0s3Qsz0XJrPkE1AwBWIj8PhXYPfdx9uu/BIho2wsgARgNJml2G3BiKTHyqxT/CSIUlBRzQt3/pYz134E5bng2PFsMIVlxwANswo4sjOX3uT0Wimp82JzWDjj6skc2txHy45BKib7aTqtHLf/799j2UiEwZtvxrl0Kc7588A0SR45QmzHDqw11UTWP0Po4YdBUchbuxbXqpWv+1qI1yeUDPGtjd+iL5p73mWMDN8/dDsr5nwd92MvErj1Nsx0Gu8ll+B/z1WkurvJDgUY/dN9GKEQRijE8BduZNn/u5Vn/9w+1m/1ZDsF9l4oWgw1ywBwA5NrYPIrY3eGUP02HE0FhJ443taIpEk/3Yla3cYfv/EHamfPZ+55FzLa34fd5SKbyWAaURacX0tVUz52l4XQUGLCuRVWuXD5HGjHAtQqpvg563317Hi2H02FGdPA+cgvWL1iOcnH/kL+N78JgFZSQum/fpVUVxeOOXMZ+P73MQ0DMxZD9Xhw2Hvh8KMYTVeS6uwEE6zVVai2N/BctbrgzK9B3y6IHktEm/We8QFE4i1LZnLBOFZdnXDMac0FkyQyWZzWU/lPECGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEK8WadsB6Bpmt8EUBTFZZpm9FSN8w8nE4envoF7pI2z536RwfnLSWadlEytIbWuC9Vlwd6UDyYk9gdIdYVhcdm4LnYP7mZ7/3Z6o73MKprF3OK5lLvLx44nW1uJvbyNbCCAc/FiiqtLObS5j0lzizAMk1goRX6564QBJAAosK1/G+fXnU/GyGBRcpuJjWQSTBPTMPAWFbL+tp+j6RbmnncRkcAQj9/yI9Z89F858nKKeefUYFNVnHPnMPz720l3dWF9aQMXfvZbDAQU7F4b5Y1+8stcAOTlT5xLcZmGJbALDnskhOR/Q7if0UCal81/xx3JheMkIhGceX6CA/1kM7lAhbySUkb7ewkHBqmcNgPTNHn+jtuYufoctj/yIEe3baG0YTLTzzgTVdM59yMlhIZGyWZCeAs0EpFRFq614Cux4vC4admp4PBYcPlslNR7CXTsZsdjfwIgGYvywh23sOYjXyaTdtF9qBsAw3ATS1hR5n8KS9PFYGTAV41FtVD0AZXUoEHw4bbj56Yq2KfmY/NY6HgqQGgojqo5CSTdFF72KRw100BP4r1gLbYpU0h3dlH4yU+gut2M3H0XqdY2PGedhfrU3fhqp5JX1EhwMEFesYPpK8rZ82w3VrvO4egnOXLzAHbXVlZc2UjtnEIsFu1tvYzvBmXRx7niMh8jvknEhmGoK0LjgmJQFPpagkyanY9jehOGAXbd/vc7LGmCDz1Ksr2D2Av7yPa04ai7Akc6i9q7E578Glz+GxjYPz6ABGDjLTjOPGfspdNrRfXZya6qxhVLoZlg2nXMMifDoWYe/9mPALBmbUBmXFfpzjBLPjaLglovdpeF8kYf/tJjz8wiJ4suqGfuWTXoFvW1n+d/xcxkcC1bSqqlNReyAzjmzcNSUUF8127MZJLCj38MFIXkkWZSrW2vq1/x+g0nhtk/vB+AGYUzWFm5krSRxtGrM/SznwNgqajAPr2JVEcnZjpNsrWFws99lqEf/Zjs6CiZ/n5KhzZz6ScXMzqYwqFHKKqw4yyZBJ6SCWNm0wZte4bY/JcWFq0ox+u14VpWTnYoTuLICJiQHYpTuqwRu8fL0W2biYyOcNrV15GMxXH5veiaherpBRTXeoiMJnHn21mwtpbtj7ZjGCbOPCtLLp6E/VgACYBOGusvv85irx+yWRJ3P080lcLqduA67fRxc1QdDmz19RiRCPkf+iAYBta6aqx6P7Yd3yJtfIih+7/N6D33gmmSd+mlFH36RixlZbxu5XPhI89AoBmsbiiaAva8N34RxWtKpg0AbCcIIXEc+/yLpySERAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhHinOmU7ABVFWQrcCriBakVRZgMfM03zk6dqzH8I0SEYaQPAs+M/8fCfAJj1dxNZPBsjmCK2vR8UBdfScixl7nHNDw4f5BsbvsGR0SNYVAt3HryTG+fcyEdnfRRFUUi1t9Px4evJ9PYCYKmsJP2123B6LCRiaSw2nWQsjaYppFNZLNaJgQgqKoZp8EzHMxS7ijk8cpirC76MGQwS+O3vsNbUoH3nWzQsXEKgq4Mdj/2FvOJSFl92FaYRonVXBNM0WXV+ASN//BOu5cvQ/PlgZAn9v08y7TvfxrVw4bgxy8oMyuqc9LbGALA5debPGUVf/zyUN53sqyBeh2zWZPvRyRzaEWX6Ch+FVfW079nB6dd+iL6jh1FQsNjs+IpLGe7uBKBq+iw23nMnutWGw+tlz/rH8RaVUD1jNk/f+jPmnX8xOx77C6HBfpZecQ0P/fBHuPMLmHf+xWy650948guZvmIx7bvuorKxkCnLTueZ36wfm5OiqkyavxiXz8Jg+3Z2PXZP7oBxGYc21ZBNW1h80SSceVZcug0FsE0uRy9PEt8bINUaQvVY8KysIrZ9gNB9zaxs9BFaXsZwJMP2x3Kb6Yuqp7D0ohr08kZGfvwfZDraAfCcey6WigpSbe3Yp01j8OabUTweVtx8F4/d0cm0pWVsvP8o3iIHqXiGQ5v6AYiFUjxx6z4u/cI8yht9b+dlfFdQwr3ECiw8GP8z52hXkU5kyGZygUmaVSWTgfDjT+D5xEeIpWM4Lc6/22cy7qTjn79Hpq9vrKziG5/BGzwKkQGIDYFmOUHDEAUcZtYZM9n9XD8zzqjg5YfbWHNBLanmINn+KJZGP0q+jeHuTmwuF1OWnoaropAo4/O6LJVuXKVO5te9dkiCxfbGQm10nw+9pIThW28bK4tv305s+w70wkIyg4OEH38cyIWTOObOfUP9i78vz5ZHXV4dTt3J7KLZ/GTnTzi94nSiW3rH6vjffx1GMETgl7/ETKVQXS6KPvNpfFe/l8CxoBIt0ku5q5PyaUtAUUG3vuaYA50hHvvVXhQARSFxZITkwWEspS7yLqgn9GQ7ikOn9cgumk5bhWEYaLpOKpEgMhKgr/kQjYuXUzYpj1goya4nO0glshRWelh53VRUFfpbwzRvG6RmRuHxgQ0DIxQiuWXLuPkoVivOeRPvrdiOHXR88EOQyQXyqC4XVT/4OvHJnyPjmkLokW+BkQu5CN53H/aZM8i/+uo3dgF81bkfcUqksq+EkEx8No2FkKSzb+uchBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPH6Tfwz5SfPj4BzgACAaZq7gNP/VoN3BVchqBOzXxS7B9WqEXmpG0ulB2uVm8gLXWAa4+o1jzQzvXA6N865kWunXcun536aXQO7ODJ6BID4vn1jASQARjKJxabhLXRwaFMf2x9rw8iaqJoCmCecoqqqLC5dTKmrlN5IL2uq12Cm0gR+9WtIp8kMD2N1uuhvPcrhTS+RTacZ7u7kudtvw+bMbYJu2xMgknXgf89VRF98kcDPf87w7X8g76ILMRKJCWN6/Trnrmjmog8Vcv7FGa44+wDFL92QOzj1gjez0uItimW9HNqZC4XZ91KQ+oXvZ8nlH8dE4dJ/+TrOwgLWfOozpNNpyhqnAmAeu1/zSkoZ7u4CYOqy09j+6DpUTcPqcDDU0caUpbkyI5tl5uqzef4PtxEaGqC0oZGnf/0T2nduI7+sgIMvPIrLnw+A1eFg5XU3EBkJMNh2lA1/uo14OEQ8HGLTvb+lsHyE8kY/j/9qLy/88TAHNvSy8f5mjm4bYCiQxLWmBtVtwb2knOCjraS7I5jxDEbzKMUqqOksKDBlSSmFVR4e+vl+1j1uEnjfv2E7/1IAwo89hnPBQlS3m8xwAAD3smXwq+9w7twhLLqBaULlFD9te4YmrOlgR/jUXrR3q9KZHHG4KXeXo+oqVofOzqc62Pt8Ny6vDd2i4l57Pol4BI3XF9qR2LtvXAAJwMBvHiBTdyEoCnhKIX8S6LbxDctmY+vbyOKzCrnspnm48qwsPK0cbX0HqmFin5qP0RPBeL6bsprJLLzwcqKjoxw89BLq3OOhU6rLgvucSjTHCYJO3qLE3n0TyuLbt5EdHia+ffuryrZjhOWePdn8dj/fWPoN1lSvYV3zOm5acBNOi5N0TelYHb2wiKFbbsFMpQAwolGGfvZzbA0NAFgqynGUabnvFBb73wwgARjqjIAJk+cW4TkwRGLXIGYyS6o9ROipDtzLy1FXekgm47TueBm3P5/tDz/IS3f9HgUF3WojEQ7l+uqKkFfspK8lyEv3HGH3+k5MA4b7othd4+9XzeWi4Ibrx09G0/CsWYOenz+u2MxkGP7tb8cCSF457+DzO+j84YP0/dt/UvSZT6O6j79PQo88gmme+LuM+N+RTOe+B1j1if/EsB8LvktICIkQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgjxjjUxDeMkMk2zU1GUVxfJrsPKhXDGv8Az3z5etvAjmGXzSO7sxnNmNfFdg5iGieeMKtI9UZhZNFbVZXHRFe7igeYHxsre3/R+FDO3zmYsPn4808QwYNuj7VRPz8fhsdJ1aASbU6d2ThGWE+xbdugOnm5/msXli2nwN5AxMmQiobHjxvAwZLO0bN9KUU0dNbPmEh0d4ciWDYSGBgENV54Vi1UluH49vsuvwEynUd0u4pXT6YkWYjzRTnmjn+IaD4qqQH4dzooenMED4BuEHXdA4RRY/tncmom3nW7T8RTYCQ7EwYTdz4RQVTvnfWIhtTML2dK7hY88/Uk+tvZ68lxTqRsZIDoygq+0nPDQAPVzFwCgajqZZBKby0UiEgHA6fMTHhoEIJvOYGSzTJq/mH3PPQ3AnHMu4MU/3k46EWflBz5C1749zFpzHpvuu5u84lJ6Dh8YN9fqmbPR9CSxcAQUcPvtrP/9ASqn+MmkDfb+phtNUzltbS1erxUyuU3rjhmF6IV24tsGqHHqVF7VSH8yy4b7jgJgYNLVo1ByxfVYB3pIvbwZvbICIx5HeyUcpa6O8M9/Dhs2YP3mLwGIhVK4/Xbi4fS4eTq9fzsoQLxJJdOxx7qIR5qJBBIc2tRH1bR8XH4bbXuG8BbaCT/2OJaPXkfGzGDD9ne7NGKxiWXBEKbFA8s+A2WzQbfDNX+Ghz4Hwy1QsxwWXA/FU7AWllBWCOlkFjOWxrummuTRIKn2ELZ6H5rXikVX2fLgPZx5/ScYaGth5/B66pbNQTctjEY7Ge5OEjtYRX65i9L6PNx++0lZLuf8eYTWrRtX5j33XEKPPjahbmzHjpMyphhvXsk8hhPDXDvtWn6x6xeE02GW1H6c2VMaSR86QjYchuz4r0zZ0VFUm5WKr3wcuyeItaYeSqa/rvHszlw4SGW5i/SL3eOOmakslio3qR1Rpo3MZdqcRSS9GYrr6uk5fJDn/nAr533q88TDIdr3DpFKZtn8YAvpZG5+Q50Rtj7cyvzzaiis8EwY271yJaV/+BPxF58n23aE/GuvxTFr5oR6ZjZLZnBieJMRDqE6naQ7Ogj86tfkXXIxI3+4AwDnwoX81fdM8b8slc2iqwqaOvG6OC25EJJYSv45IIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQrxTncoQkk5FUZYBpqIoVuAzwIG/0+b/Ps0CSz6RC9YYbQdvJVTMR7E5sVZ4GL33yFjV0JPt+C5tmNBFKpvixjk3kjJSWFQLT7Y9yRWNVwBgmzoFdB0yGQCMeJxULM2yyxs4vLWPwc4wtbOKsFhVjGN/rf6vZbIZphZM5ee7fo6Jidvi5sr6b4+rkzWyLLnsvYz0drPzsYdwFxSy/Kr3YXU6QUmy5JJJOLIhjJUrGb3vPlxLlpKYvoxHH4piGl1ousqmB1q4+J/mUt7oy3Wq6vDgJ3Mb+yetgmwaXMVgOTkb78Ub43BbOe2qRh7+6W7MXGYHxbUeCivdANTn1VOfV8/PD/2aj876KFsbm/lI9XUUL5nN0WeeQ1E1yqdMY7Svh6KaOgbbW3EfC+7oO3qEyqaZdO3fg6qpAKiahvHKpnsF0olcoM6WB/7Mokuvwu33Ew+HsNgdFFRVH2ujc9o1H6Bl+1aeu/1Wimonseji9/PSvX0AVEz1s/nBFgAqJ+cRzZhEErn3hurU0QvthJ/tOn7SnWGKL6jPHVcVFl9cT19LkGfu76F88Y1Mv/JDDFUrDN58Ez6lFOe5Z5Nqa8M2ZQrJQ4ewHd5CWfVS2vcGWHZZA4HuCEY2t3j55S5K6ryn4lKJTAIzHcdUoL89xPIrG2neNsDQngA1MwrQdAXflVeQiCVxWV2vq0v7tGnjnqUA/muuRF+4FIqngcWRK6w/A65/EhIhsLrAmZ97zh9TWOkmjUn4vmaMaC6UJratH9ukPLRaH4svuZIX7/498XCIKUtPo2foCDsffwiA5Vd/nm2PtQFQO7OQ1R+YhsN9vO83y7V8OY4li4lv2gyAdXIjzsWLMWIxYps2javrPv30tzyeOLHavFoOjxwmnA7js/kIF7t46jNLmBU8h/yCAtC0cUEkms+HrcyLtaAIipZD2Rx4nQEcxbUe8kqcZAB0ZSyICcC1sJTRda0Yw4lcwUgS25CD6ilz6Dl8kGw6TTwcoqCyjnU372bV+6aMBZC8IjSUwJ3voLh2/DMuMpLk8JYh9jwbwulZxOKPvAdLoUk2GETPzx9XV7XZ8F95Bb27do0rdy1bRuihhwHIDA6iunNBJ5bqavLWrn1d5y/ePsm0gVVXT3jMYc2FkMQlhEQIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR4xzqVISQfB34MVABdwBPAp07heP84bJ5cyMZfSR4dnVAW3zOIa2EpyrG/KG/X7cwonMGte2/lwvoLyRgZzq49G8PMBYrYm5qovvVWhn7yE9I9PfiuuYZwkZPHfrEXf5mLwkoPzS/3M2leERa7dsLpaarGnQfvHHsdSUf4r9F7+cqX/4Wh//wvyGSw6FZCg32EA0Oc+6l/IhGNYHO6cPn8nP+JIhweC4qaJhsK42hqIvLcswRqz+W0qxpRFIVUIoPLZ6Nt9yCl9d5cEMXOO8HIQCoCB/6SG9zhh5olb3HBxZtVNS2fS29qZLSvB5vTRUFlFW5/LhSm0FnID874AS90v0AoGeLMSWezN93Kj3b+iFn1M/jApHmYk2eQCGeZd8Zy9j/8KG27d7Dk8vey/dG/sPiSKzGy2WOb26s5um0LM1efzZYH/oyqHr83Y8FRNvzpDyx/z/sACA32k19+HjaXi4YFS9jz9OMM9+SCRPqPHuLJX36X2efexO5nQqQTuY3OTq+VomoPm9e14Lh0EgWVbiz5DuJ7A+NP2ATraBKbU6d+bhH7X+ohOJALQ2nZnwZbEbMzHZQNDrN3sYvA1YuZwwK0jI7r0DbiP/0eC28sI3nmFDJGLxd/tprQUACLzU5BZTXeQsepvmTvTu0bsTocGEqGyYuKeeFPzZTUeMkrdnBwYy+ZVJbKeg/pfAuGaaAqJ94g/2r2pmlU3/prBv/nf8j09eO7+mryLliLUlIysbKrMPdzAs48G9HO0FgAySuSR4O4VvhJxGKseO/7yabTqLrGQGsrecUlOPMKcPsryX18QtueIUb6osRdFoY6w2RSBt4iO/nlLpwe2xtaLmtlJZU//CGplhbMbBZrXT2WokKUM88k/MyzxLdsAcCxeDHu1RM/q8TJUeeto9JdCcBFky7i1j23MpocBWCSWcv3v3QjxvdvwUynUZxOyr73XazTFwOL3/BYeUVOLrxxNsMDIexaBYnnjocvaQW24wEkx2T74hTUV1A/byEl9Y3Y3R4GOgwWXlCHzZULwqlqclNSncEwUmQyXjz+iffhoc29bHogFwQVC6fY8WQn82cZJP7jSxR//gu4V56B6sg9F7OxGMmjLRR+8pOEHn0ExWrDe8EFGIkEqCoYBqrbjWv5MpwL5mNraMBSWvqG10KcWsmMge01QkjslmMhJGkJIRFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHeqU5ZCIlpmkPAtaeq//+LNI8VvdCBY3oBaArJ5lFUt20sgATAqlrBgB+e8UP2BfaRMlJMzZ+KruYupaKquBYvwj7rF5jJJLrPx9CmXpZcOon+1iChoQRNy8tJJtKkhgPYyktAUcbNI5qJTpjbU/3P87kLPk/d0mVkR0aIahrDvb3MWn0Wj/70v8mm0yiqyunXfIhoxKR2VglKnko2FMRaU4t9WhP69Apa9wSwOSyouspQV4Tq6QWYhgkakAxPXJQTlYm3TX/rEe7/7jeJh0MAzDnrHJatXIjDVwjZFNW6lWsbrwIjDVYnXeEu7jl8D23RDnbF9vP7/b8HQO/Q+eg5N7DCt4iKwhpmrjqbbCbNzDPPJjY6yswzz80FiZgmZ3/8s4SHBqiY2kT3wf1jc8lzWZh91lnsevJJNt//R+avvYT8iir2Pff0uDknImGcnhimYaJbcxuhXwkUAYgbJh2FTuon5aGMxMfaKTYN55wirFUepi8qQXNbxgJI/KVOmlaU074nwMZQKTOWzmS6zcKWZ3p4+nAXqqowZekMGv5wHwc3PMzu//46Z1x3A8/+7idER4YBaDp9Nadd+yHcPv8pulrvYpkEqr2Ema469D6V+WfX0L43gKarLLusgf0v9RAtM8lkksTTcVxW19/tUtE0XIsXY585EzOVQvf53vT0NIcFxa7hnFOM6tDJDCeIHwiACiO9XWx98M8AuPz5nPWRGymfMpfuwwYWm4ezrm8CE7Y91gamySO37CY4mLsvPQV2llxST/3cInT9xKFSr0X3+9Hnzx9XZq2upvLmH5NqbQMFrLW1b+m8xd+mqRrzS+ZT6arEptnGAkgAjkba+IJ7Hbfc8Qvy4yp6aSnW6urX1W8ik2DX4C6292/HptmocFdQ76unsaiRbqWVkSAUnl2DN8+KZoWMkgZdhYwxrh9XgR/TMNl4Ty6UzJ1fyOLLPsOup4dZcUU5Ldsf4MW7XszV9eczedE3CAXKSEYzuHxWAHavz4WdlDf6qG7Kp21vgO17VJpu/Bb9N38bze/HtSQXqmJEowQfeAAzk8F92mmYqRRDP/kJ/qvfi2KzYWYylP3bN3EtXPiW1l2cWqmMge01nkeOYyEkiROEkKRTSf7yX99hqKuD82/8ApXTZpzSeQohhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDixE5ZCImiKHXAp4HaV49jmuZFp2rMf3SOWYWYGYPwSz2QNXDMKMS9pHRcnayR5fTq0/nic18knM4FdOiKzg9X/ZCavJqxeprDAQ4HAE6vlU0PtFDdlE/19AIG20O4821o2RB0dULV+A29NZ4a/lqdtw6P04+9IB8jm+XI00+w4IJLeOLnPyabTgNgGgbP3/kbLvnivxEdTWF6TWw1tYTXr8e1aBGGCW6/nR1PdpBOZPGVOCmu8RKPZnD7NJh7HeRVgNUJpgmmATXLTuoai9cvGYvy7O9+NRZAArDzyceZNKWO2g3/Ae0bYPW/wuARCByBJZ+gMh3nx4u+yv09z9Md6QZAV3U+P//zPNzyMLfs+zmV7kq+vvTrLC5bjKIoONxeAIqqa8fGyWazzFh1Nn1HjxDubafQHsPp7OGBhlGm112JJZbFKMwjk2dF1TSM7PgNzd4iLzPPshGPpKmZmY+qKRhZE4BMymDbs91090RZvrQUuiKobiue0yuIvNBNdHMftSVOXGvr2G5RyaYNpi0v56V7m8HMZfZYHTozz6jAU+TA0h5m0QX1HNjYi8s7yO4nHqayaSZtO18eCyAB2P/8eiYvXo57weJTdcnevaqX4rDo/GLn//AZz9c4vKWf2lmFGIbB7me7mLW6EiVyEHtcxWlxvqGuNacTnG+szV/Tix3knVtLaH0nRiiFpdSJ/4rJ9I4epXnLxrF60ZFhdjz+ELPWfJADG9rwFiXY/GArdpeFFVc10t8aHAsgAQgHEvQcHqWoyoO/9O8Hq7yuufp86HPnnJS+xN9X4anglrNuoTXYSoG9gEAiMHasM9pDvLIAV/7kN9Tn813P84XnvnB8DHcFF9RfgEW1kMgmoNiCZVAj9mQHxmgSrdCO75J6gn9pxUzmnqX2BUWMqiO07nx5rJ/I8BBtOx9n6tLryKZbadn24tix6MgwG/54B7rjPDr2h/AW2Tn3IzNweCwkYxmqm/LZ9GDL8XM7CBd86XvE92wYCyHR8/Pxnn8+I3fcQeiRR8bqOufNxjW9BktxAdb5q9/QWoi3XzKTxaqrJzzmtOZCSKLJiSEkL/3xD7Tu2o7d7eGhH3+fG27+NbrVekrnKoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQoiJTrxL8OR4AGgD/gf4r1f9iNdghFJEN/ZCxgAT4nuGSLaHxtUpcZWwpXcL4XQYh+7Aa/WSMTP88eAfSWfSJ+w3lcwwZ00VXYdG2PZoG5m0ga/ESSaWhFgAho6Oq9/ga+Ari7+CruayYwrsBXxr+bfId+Tn+ovH2f3UI2O/v5ppGMTDI9icOqrNhplKorlcJFtbME3Y8lAr6URu8+lof4y9z3WRjB2bt6cE9j0Az34XnvsebPkV2H1vZUnFW5CIRultPjyhPBwMQcuzsPAG2PwL2Hk7TLsAHvwUPPYlJnfv5rNdrawunAvAubXncs/he9gX2AdAV6SLG9ffSGuw9TXH1jQNb2ERkxcvY/65a6mpKqDV5+fO9nv4atcPOFQe4sdDv+PB0adouuiCcW0bTz+Dnw3dxrfNz/JU4V20z9tEoq6fWWdWAqBbc489t8/Gps19ZNbU4Dm/luDj7WRDKQCy/TEiDxzloo9MZ+HaWgLdETBBVRWWXdZAMpbhoZ/spvdwkBVXTabr8AjDPVEyqSAABRWVDLS18NdG+3vf4FUQr4sjn554P5qpkxjOUlLnZefTHex7oYdJ84owDQOnnsaJDUVR3vbpmbEMo39pwTh2f6X7YoSfbEfJTpzLQEszujWFy2cjGc0AkIimeeb2g+i2iblhI/2xUzt5ccrV5dWxuno13zv9e3ituVAmm2bjW8u/RV1e3Rvqazg+zA9e/sG4su5IN5qicXD4IG6rm/bhgxiPtWOMJgHIDiUIPdaO8+IKtHlu3JfXsm/kRdr375zQf9/RA4SHgwx1dk041nvkAC5/7p4ODSZ48jcHWHhOBeWNPlp3D42vbEJ7cxxLdTXmsRApRdPIf/91eM45GxQF1eWi9HMfxtn2P7h3fhpboY6in7LsPHGSJDPGa4aQuO256xdNZca3icXY/dRjTFt+Bhd89p+Jjgxz8KXnTvlchRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCDHRqdzNmTBN8+ZT2P//OYkjo6CAtcqDYtNItYWI7xjAvaQM9djmc6tqJZqO8snZn8Rv81PqKkVD4/6j95MxM1iwTOjXatXZ+tBB6uYU4V5kJ9AV5uiOQepqPRALQnxkXH2HxcGVk69kUekigskg5e5ySl2lY8dtTifVM2ajoODweImHjwelqJqO1eFHURVMVcU0wd7URPi5Z0lE0mCOn1ugO0o6mduATMuzMONSsOeBqwhSMdh9D5TNAfVU5uWIE3F4vFTNmE3H7h3jytWSUnov/CHZwgZsnmKKDjwC3dsgFYFVX4GXf4N96DDLpp7DdXUX4nSX81DLQ2Ptz645mwZfAweH92NTLVR4qwAYjA0Sz8YpdhRj1+3HB7R7aamYRWi0GQC/zU8im+Dg8EFWVq3kAc8WLvrkNbiiGiFbEmdlCUf2v0BPtIeH4g/yoRkfYp+xjSm1cVa8r5GhljiLLqzj0JY+yht8PPznZt7zwam58J9XaAoWv41YOMXhl/tYeH49hzb1MWl+MQc39RLojgKQSmQY7okwZUkp8VAKi80KwEBbC+WTp3J025Zxa5dfUXXSro94le6txJ02VlevwjwKnQeGmXlGJZqu0rZniJlnlGOEEliLi0/YvCfSw2hiFKtmpdJTOf7+OwkygThkTfQiB3q+nVR3hMxgnDxX5YS6ldOmYxguZp5hZ8vDx4N6shkD7QQb+8sbfTi81pM6X/G/Y3HZYv50wZ/oj/Xjt/up8dYQTobpDfaimAqlrlLy7Hl/s4+UkSKYDE4oz5pZsmaWUDLEHOdMbLUZUj1RjHAuGMeIpMkqkJrmoqNtmH1bnmHuuRdO6Kd8ymxcfi+KWXrCY0Ndx8PQTMPE6VJZuDKf3duC9P9V7pSuGgx893vYauuwT5kMgLWmhvLvfpf0B69AifdidaTBuApiZ8HGn0H5PHD4/t5Siv9FyYyB3fIaISTHvsuGE+NDSFq2byGdiDP77LWUT56Kv6yCgxueZ8aqs075fIUQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggx3qkMIfmxoihfB54Akq8Umqa5/RSO+Q/NUu0mr7CexOERzHgGz8oq0EDRtbE6WSPLqupVpLIptvVv47Z9t1HuKufDMz/8mhvn00mDRRfWs+e5LoIDfZTUeWmYX0w2GYRsCjIJAEYTo3RHujExybPmMck36YT9KarKrDXnsu+FZzjzhk/y1K9+SiISxmJ3sOoDH2Wo24nVEaW61g+myeDNN6PYbNhcE283l8+KzXHs/OxeME3Ir8sFWtjzoHRmbo7qyQ0FEH+f1W5n6dXXEurvY7S/F1XTaFx7NpuUZoayIzy2+XbOqTmH6as+g5JOkDf/vWwb3IVn/uUsLpmPmRjlWr2EaOEc1rnK6I32clnjZXSGO7ll1y0AFNgL+MXpP6AzPsB3Xv4BQ/Ehzqo5i8/M+ww13hoA9g7t5YYnbmB5+XLmFc8jY2RoGW0Zm+eLQ5t4cWgTX170ZTzDGvFNR7ghdjqu2R+EIjd3Hf0Tm/s3A+DQHdyy5mdMLagmf7qOmrKSjKcxLMffY9ZqD46mAuIHh3HsD3D+hZMYxmTJJfWoqsKRrf0AlNZ7qZqWz+5nu9j9TDeT5hZhdfiZd/572fn4n1n+nusY7e8j0NWBoqgsuPBSSic1vk1X790l4a2k3uXBrjjo3pmicWEJ+57vJpMxmLywFCNrEnzgQYr+6XMT2u4f2s9wYphgMohdtxNJRWjwNeC2uU/a/FSXFe85tWT6o6QHYjhmFaFYFFK6ldlnr2X3k49imgYFldXMW3sJVkce63+3AyPzqtQmBTx+G03LyzmwoQeAhgUl1M8pxO6cGD4l/jFVeCqo8FQA0B5sZyA2wHBiGIBQKoTX6iVpJLFrdmrzarFq4wNoip3FXNp4KXccuGOsTFd0HLqDyf7JFEXyMI4GSYdjOGYUoOgqkRe6QVOIRoYIZ2PYnAUsufwT9Ddvpun01ex/4RkwTYpq6qmctproSJqhbiczVl/IvmcexjQNCqtqqJy+hs3rcgEokxeVYLVrPPjzw6iqwpxV5dTPKaJl5yAAmq5S5gyS6O0l3dk5FkICoDoc2NxJ8ORDPASmBYpLoWgqpKISQvIOl8xksb3qe+ur2XQVi6YQSY4PIWneugmXP5/yxikoikLDwiVse/hBkrEYNqfz7Zi2EEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIY45lSEkM4HrgNWAcazMPPZanIDusxPa2o59kg/ThGwohaXShaIpY3USRgKbYuOJzie4r/k+AHqjvex5Zg+/OvtXzCuZN6Ffu1vnuTvbqJtTRMP8EiIjCQ5t7qX2yjxIZsFI0x3qpifSQywbI5FNELVFiSQjTCuadsK55pdXUjqpETOd5pIvfo1YaBSb20NkRKf7cJDpK8pQrFYi658GwEwmcWZCNC0vY/9LvQCousLyKxoZsQ3gxw12HzjyoW8PRPtBd0Lx1FxZyYnnIU6drJHlvtEniF5axdr897M7dID7I5uYak7jDwf+wMqqlXSEO7jz4J3ctOAmvvriv5NnzeOGmTdw49ZvkzWz3DDzBpKBvVxUtxaXzYtds/Ng84NYVSu1ebWcU3sObYkAX3zhS5iYqIqKgsKW3i1kjAwV7gpu33870XSUJ9qf4OqpV+O3+8GEjb0b2da/jdVVq1nfuR7/qM7hn/+RTCrJ7LPOQ2sepnPdc1zRNJ8b57yfA6HDbI/vY2P/Bh5pe5j1nespdBRSVlPO3IKvo80rJrtzEEdTAcHH2gDQvFZsQ3GKixykAWeZlZmriji0cZjaWYVseiAXhqIokM0Y2FxO8qtO49yPzUC3him69kwaDSeNRVPIL69Et1hfe8HFm5IM9bPfYSeWDBIiTEFFNYc29jFzVRWmYdK6axCP34JzcJDsyOi4tqOxUUaToxwNHiUQC2Cz2JiUNwlN1ZhZNPOkzVF16UQ39pANpQBI90SxTy8gUgINCxbTuGgpmWQSu8eDbthxp7Ncfn0TG57upONQbs7zz60hr9jJae9tZNbqSoysQV6JE6vtVH6Mi/9NQ/EhOiOddIY6AajyVlHjriGUDmFVrcTSMWYUzUBXj98DqqJyXt15WFQLj7Y+SomzhCunXEmtp5aaeBmJI8MoTiuplEF0Yy+2Rh+2Rh9mhU6AAZLRUVR9lLyiaiz287A5MtTNXUkokCQ8bMeRV4oSTdG2O0r19AWc/cnF2G0ZHEcO0dafBcBi0/Dk29n2WDsAWWDrY52surYBpyWJphhUuIKk/udbAGgF+RNP3u6FgQMwcBCySfCWQtl8sEgg2TtdMm1gt6gnPKYoCm6bTiRxPITENE069++hbvY8FDXXrnb2fLauu5eewweomzP/bZm3EEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIXJO5e7lS4F60zRTp3CM/1OywSRano3I5j40twUjlcVS5sSIZ1AduUsVSUVAhXUt68a1TRkpmkebTxhCkk5lmX9eLbue7iQ8nCCv2MHMlZVk0jFIhsE0GYwPEkwHSWVTGKbBSGIExaYQTUZx2VwT+oyFgmgWK4pu4cjWDdicbnSblfLGaQy0haifW4RqsaB688baRL74ESb/4NdUNU0nEU3jLXIQ9gwSS4Sppx7yKqFrK6gqBI6CswC85blAEiSE5O02EB/g9v23k8gmqC+bwvda/ocL6i9gfed6AKYXTOenO3/KzMKZbOrdhGEaXNJwCT/b9TMi6Qj/NP+f+OnOnxLPxDmt4jTmFs9lJDPCf6/8b1qDrSQyCfxWP5qqsaJiBRt6NvDJOZ/k6Y6neXzT4+iqzr8t/SZHRo6Mzemug3dh1+x8c8nXWFO+nKd6XuKyxsv45wVfRN8XIpNKUjppMololENPPkrltBk4NTvP/eDHZFJJFsyYyfz3r2Zf3y7mZvJJHB7CNb2Wuztv45oF16M1+khsHwBA9VpxLysn9HQHZtrAo6vY1xYTG36amSun4MpTsLt1CqscTFtawoGNAdb//iA2l87SM/NJxHr40sC/Y1EtPDT1IQkgOUXaksNEUhGi6Sg23YaiKngK7Gx/rA1VU5m6rIxELIs+eRqa2z2u7VBiiNHkKBXuCvw2PxbNAkA0HT2pc8wEEmRDKVSnjpZnIzMUJ7EvQOHSyQRTEfa/8CzhwBCnr30/xpMBhoe6AVg6v5i5qypJoZBX4sBb6ACgoML9N0YT/1fEM3F8Nh82vw1McFlcJLIJajw1HBo9hIFBe6idSb5J49rNLJyJRbXQ6GvEqlqpzqumbriUwbv3onutZCMpXAtKie8PkDwyiufaevrCbSQjEV6467dk02kqm2ay5NJreOiWIWpnuimoMHB6wgx3KzQsrOXCT1eSiA6zbd1dpJJJ5p++mureXZSuqMA6YyZbnxqYcD4d+4OctkCh56YvkejNhZHlf+iD2BobJ558IgipCMQGIdIP7mIIdkB+be67gXjHSmSyeB2W1zzututEksdDSEZ6e4iHglRMnT5WVtYwGVXT6D64X0JIhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiLfZqQwh2QX4gIk7UcVrspQ4UW0a2XAKR6WHzEgCwzR45W/K2y12oqkoHouHkeTIuLY2zXbCPq12nc3rWkgnswAEB+Jsf7ydihuqwFkMik7WzGJiMhQfImWksGt2nBYnfdE+JtkmTegzm05j0XWSiQR5RaWk4jHsLg/xSIiamfkMtIVQ9BoKPvxhoi+8AIZBtr+f8EeuxP37X9BTnaQ5HSARTtDoP7YB2TQgHQUjA1WLQNEg1A3+mpO2vuL1s6gWvDYviViCPFsuTCaYDOK3+ekKd5ExcpuIbZqNeCaea6NZiKQjlDhL6Ah1EM/EmeSbRIW7gpt33MzHZ3+cb238FoFEgPc3vZ89gT280P0CDb4Gbl51MyPJEeyanZmFM2nwNRBIjnB2zVkcGT0eRJLIJnAZJv8+GOCjS/4dM9BMTfMWdiVzQTU1s+ey5YE/A1A7ex4v3v17ABoWLqWopo7g3mb6H36CcGAIVdOYkVfEyoaZjCRaMdwqhZbc5mnXvOKxABItz4p7RQXpjigL8s9BqbTR3L6ZpReXsGf9fWz4U5AFF1xN3Uwv4WF4+cUgsy6fBgPgsXqwqK+9IVu8NUkzTdpMMxgbxKbbcAdrad6W+9jJZgz2Pd/NiismYSnwY2tsGNfWwMCiWtjQs4FIKsK8knmUu8txW09uyIeiKnhWVmGms2QCCezT8skGkwz3dPDy8+uYdvoqPL4ClL1JMkOJsXaJbQPkNxXgaCpAUZSTOifxzjYQG8BpcdIeaOeOg3egoHBh/YXMKZ6T+6yODWH32Imn4xPaqopKU0ETTQVNAGSCSUJ7OnAvLiXdE8VWlwcKOGcXEXqynY7mPezc9Ajz117C0iuuwchmMbIZRvs7Ofv6GnY9eS8vPb8FVdM547oPs/3hZ+g9dIBZZ53HwkuuJJNM0LF/D7GiEkoGOigpmElhpYfe5uC4eeVXunHOqqTqlltIdXaiFxRgm9w4IRwoN+kUDLdCYSP4a0FRIDYCmeSpWG5xEiXTBjZdfc3jbpuFcOJ4CEn3wX0A40JILHY7xbX1dB/ad+omKoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQogTeu1dgm9dCXBQUZTHFUVZ98rPKRzvH55i0ciMJtG8NiylLlBAdVpQsuZYnXgqjkW18NFZHx3XttpTzWTf5BP2m05kxgJIXhELpkgHR2GkGYwkmDAcHyaVTZHJZkhlU/RF+4hlYifsU7NYUTSNYF8PG++5kxfv/j0b/3wH8WCIhWsLqGoqAMA5by41f7idgk98Av/nPo3n1pvpLMzSm+ghmolS4akgmT22qVizgs0LL90Mz30fnv0POPxoLpxEvO0KHYV8YcEXgFwgyfumvY8tvVs4r+48NEUja2ZxW9zsHNzJ8orlACgoWFQLDt1BNB0FYHXVau45cg9W1Uo6myaQCDCjcAZ90T7ub74fj9XD0vKlfGvTt3i09VHOqjmLPFsexY5iylxl5NsL+Oayb1LkLMJlcfEvcz7D3Lw6XHUrmdZ3iKYnvoVrx+3UTpuKoqqYhoGqaSiqSiqR26Dvzi/AV1LKxnvuJBmLEg4MAbD8qvfRsWcn2x+8n+H9h9nwk5/BVBsogKpgpnP3nntZBcHH2ojtGCA7kMAS1plWtgxnxI4vr4QZK89i20N38+QvvsG2dd+lYc4gsXgagC8s+AJFzqK38cq9u2SMDAPRAZJGEo/mpXXX0IQ6g50Rij7+UfT8/AnHeqO9LC1byozCGdh1OwPRAR48+iDdke6TNkfVZ8WIp1FdFizlLhSLippnZWi4i/yKSp78xc20bNpKujU88fz6YxJA8i7RF+3j7oN385EnPsL6jvV0R7qx6TaumXoNXZEufrrrp3SEOhhO5D6rB2IDY2FQf4sRTWEtc6FoKpZyF6rbQqJlFC3fjjbDQ99AMxVTp/PYLT9i15OPoFssbHvoAZ757S8ZbNtJ+64tAMxacy7bHn6Q/c89zYxVZ3HgxWd58D//jcd/9mNsDictu15m23AvRr6facvLsLmO59w586xMmluEYrFgnzYV79ln4Zw/D83jeY1Zm9D9MjzzHXj+P3M/Njcop/JrqzgZkhkDu0V7zeMem04kmR573XvkIHaXm/yKynH1yqc00XfkMNnM37/HhRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCHHy6H+/ypv29VPY9/9JigqZgTjZwTia306qPYRzYQlG1uCV7Zz5jnwOjxymLdjGd1Z8h8PDhyl0FFLgLCBlpE7Yr9N7LFTheJYJmq5i02KQikEyhOn2kzEy6KqOgYGmamSMDEkjecI+bU4nqXiMF+/6PZl0btxwYIgX7/4dF33+KxRV5zaTKhYLznnzcM6bx0BkgKPBI7zctwWrasUwDcKpMLMLZ+c6zaRg/zpIvyr4JHAURtvfyrKKt2B11WpuO+c2WoItNOU3ccOsGyh1lvLtFd9mID7At5Z9i9/t+x2bejbxLwv/he192/nE7E/wk50/4dLGS3ms7TE0JXcvuSyuscCZJWVL+M3e3wBwYf2F/Gjbj/DavMwsnMn3tn6PWYWziGai3PTcTWiqxjVTr+Gm+Tfh0ezMaNmA9/7ToOkSOO0mOPoMDB2iNLiRK2+4ikMtAWatOZcdj/4Fi80GQOOiZex99qlx51ZcW09fSzOj/b0su/JaNt57F1VNM9n04r3MWLUaNd+WC4twWkgPxiBrovls2Kf4CT2euyd1TWHh6osY1vuJhYIApJMJNt37a9Z+8Zv8+uxfM7Nw5tt0td6d0maalJHCqloJZ8P4qyoY6oyMq1NU7cZaUjKhrWEalLvKOTx6GMM0iGfiaIpGvbee+47cx41zbjwpASBGJEM2kia6uW+szLO6iqq6Gfzhrn8CoKftIFOmzceOF9WqkTg8ghFNYyl1vuXxxTtfIpPgJzt+woNHH+S6put4qOUhdg3uwqbZ+OjMj/L1pV/n/7N312F2Vff+x997H/eZOePumcnE3Y0gCRAguEOhFChQv5Vb2l97b+X2UoUKbSlOCU6QACEh7m4TG3efc+a47d8fkw6dJtBeyFD7vp6Hh5y1l+21d9Y5/LE+dPg76A51U+wqRlVUYlqMaCL6of1qCQ0tAZHmAQK7OwcLVQXX0iI0LUG1dxuOjDQ2r3gSgKp557D5uaeIR6PYU9x4OjuG+rI4HHi7OsipqKKp+hCddTUAxKIRdr32ErOvvpHNK56kr7WFrLJRXPEfU+huHkBRFVJz7bjS/g/vcrAXWve+/zkehd2PQtG8v70P8XcRisYx6T84LMZu1tM5EBr63NVYT1ph8Wl7bWZxKXuiEfpam0nNLxyp6QohhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDiL4zk/1J+LHBA07T1f/7PCI73Ty8RS2CpcoNOIdLmw1jgQIsl0CLvp4cYdAaC8SDtgXYUFKZkTiHDmsGrJ14lEj9zCElyppVpFxcPK5tzaRZJ+g7IGAtGO6qqYtQZCcaCROIR/FE/Rp0RTdPO2KeqqoR8vqEAkj8JePoJ+f3UH+w5rU2KJYWByABHeo5wsv8kPaEe1jWtoy/cRywRGwxKOVPgiK/zwxdOjBiz3sxUSzZXWwq4yFHCOTnnkmrOptRVRrGjmCRzEtdUXMO1FdcSjoVxmBzk2nK5e/zdZFmz+K9Z/8VAZIDJ6ZPxR/2kWdJQUAhEA9iNdgDC8TAaGgvzFvJqzasAzM+bz1PVT6Gh8dkJn+Xdhnf56savcve6z/GwKUHNjc8TyZ0Cj54PxfNh8q2okQHyNt3DoqT9TBufycU3Lsdk1FM4fiKapg0dcI7HolgcTtx5BbTXHB8q0xIJupsasCYl8dIj3+VA7XsYzk1FMaqQGPx7YBmXhm9TCwD6VAuuCwqJHvFg26bjkgu/wvSlV6E3DgafxPo7mG7JxmqQEImRpGhgM9jwx/x0B7tIm6LHbDcMXXdlWMivTDpjW1VR6Q33sr5pPf3hfg71HKLeW0+WLYtXTr5Cb6j3rMxRC0YJHe4BvYLqMIICvk0tmP/s3YhFwlgrU4n3hQg3eLFOzsB5URHGPOdZmcOZdHhD1Hf7CcfiIzaG+Ns0DTSxsmYldoMdvaJnf9d+AO6ZeA8rjq/g21u+za/2/4p9nfvoD/fjMrvItedi0pk+sM9od5D+N2vpeeII8f4IrouKUUw6SGj4d3cQNUTZt+HNYd/jGhrx6GCwScDTjys9c+jan/bQrLJRNB0+cNp4schgyFQiMfg+JWVYKZ2cQcnE9P9bAAkMDyP7Ewkk+6cQjiU+PITEpMcXigEMfe+mnSFkJK2gCICuhroRmacQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghzkw/gn1nAjsVRdkD/AF4W/ugRAsBgGrUE+kfwJjnIO6JoE8xo8UToL7/f4dPMiWRY8vh4uKLOdl/kgQJjKqRayuuJcOaccZ+9UYd4xflklvmwN/ZjcOlJ+XwD1A3PT9YofwCjOd+Ew2N3lAvwVgQVVFxGV0fGEKiqCr25BRQFPizOnqTCaM1mYAnfPo8dHoC0QCzsmdxoOsAUzKmsCB3Af3hfnwRH0khD1Qth40PDG+YM+X/uJLirGndS+Ktr9GdPQ6Lrwt32jQ2aNOwmO3kJFeiVwzMz56Aw2IgGo/S4mtBQaHAVYAn7KEn1INRNfLpcZ8msyaT9U3r+eaMb/Juw7vcUHkDv9z3S/Tq6dtQOD74/pQklXCi7wSt/lbMOjP3TryXDc0buKnhbWa5x3HPxT+mIJaAug1QPA9UPWpyAfbXb6dcS4C7jFHnf4neeBIOt5uNzzzOnlUrmXn5tYQCfnJGjeZo93p0BiMoCgFPPwaTiZxRo9n20h8xXmsmY1YRVosD9nai6BW0SAIA25QMPG/WgQamYhcmZzKjmUnxNePpCDRgdlqJv/Of9M7/CqakApymkQuT+Hem0+lJaAnafG1oaLwefJGLPrMcg8dOVIvgyjLhSDnzgfi4FscT9nBF+RW4TC76Q/3EEjGiiSj5jnwsestZmaMW17DPykYx64h7I+iTzURafUSj7++Tc8+9gYEX6+HUdurb0IzrkhJ0DuNZmcOfC0fjbKnp5mj7AIFInEyXmTklqRSk2s76WOL/JtueTZ13MHRhTOoYGr2N3DfxPgAePvAwh3sOo6gKK2tWcqLvBIvyFuE0OSl0FQ7rJxGJ0/9GDeHqPgDC3giRlgHss7JJ+KOoTiOJujA33PUjgpYg21kBDAaMqTodiXicRDxOf3sr5TNmc3zbZjrr68gfO4H+9jbcufl01tUMG1NnMJJZWk5KVu7HXwhX3ulloy8D2Uf/4YVjccwG3Qdet5v1+MKDIST9ne3EwmFSCwpPq5ecnYvOYKCzoY7KuQtHarpCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE+AsjFkKiado3FUW5HzgPuBV4SFGU54BHNE2r+fDW/6YUiDYOEGkcGCqyTsmAeByA473H6Q31Ytab6Qv38UrNK7T720kyJfHpsZ8m2579gV0bzXqyrI2Q2gknV0P18+9fPP4W+nP+k2A0SLI5GX1Yj06nQ0Ehkoh8YJ+WpCRmX30jm599YnD6isrCm+9gw7NdTDivAG8ggtM6/AC91WDFprdhz7bzq/2/whfxcUX5FXQHu0lSDaA3woQb4MCzYLTB9LsgqeCjrKb4uEIDtDRt4bnSqbzUup4saybXZmVQ0/ESM1PnsK+/ieRQBn6y8UWCFLnySLE60Kk6ClzvPzNProdoPIp7jJuB8AC9wV4qUirItmfzpclfwm1xMyF9Au81vcc1o67h4QMPY9KZAChwFnCs7xgAV5RfwWOHH6Mr2EWuI5cxOTP4dc9+LIrKRYWTGVe/DcPy30F4ALQ4JOJQfh7Wjd/F2t+Iu/hCkm68nOrqZsI9zVSNLaF3UhUdjbUc37aJacsuZ+drL7Fz5YuUz5zLhV/6GkfCNbwTfY2rnbdgvbAIIgkMWTZiPUHivihooDqMGAuceN+uH7rnjJRMPONN/KRwDK+vu4cUcwpfmPwFZmbNxKAzfKKP8V9dPBEnHA+TbE4mloihV/UcjOxmVPYomgaacMfddPfacJgcVLorh7U168yMTxvP67Wvs6ZxDXmOPG4bextOvZN7Jt6D1WA9K3PUp1kZWN9MtNk3VGabkUnUqlIwbgKddbWYBkwktOH7rX9zK7YJ6aiWs/tVfaTNw7aaXkzGwXCWEx0DOM16spMsGPRnDmwRIyvPkcfFxRezunE183Lnsa5pHTeNvonOQCcP7XsIBYUbK28k157LNzZ9A1908F360++Any36GTbD+yEysb7QUADJn2ihODq3mUijl/CO9qFy62Q3F9z5Bd753S84unk9M5ZfzbaXVpCIxzm+fTMXf+k/mXbpVXi7fMQTRvpa6imfYeXd3z9EJBgEoGjiVBzuVJZ+9ktYnGchKERngXP/C7b8HAK9UHERFM0Fvfnj9y1GjKZphKIJTB+yjzhMegZCgyEk3Q31AKTlFZ5WT6fXk5pXQGd97UhMVQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBAfYMRCSAA0TdMURWkH2oEYkAy8oCjKak3T/mMkx/5npEUTwwJIAAJ7OrBNy6RtoI2+UB+BaAANjd8e+C1dwS4A+sP9/HzPz3lo0UMfPoCnGcwuaNh02iVTIopZb6Y33EvDQAMG1UCaJe1Du0vLLcBksZFRXErQ68XidHNsW5yyKU56W3yYiu3DQkhafa0YVANxLc7/2/r/hsofPvAwFr2FUmMOGO2DhXO+MDhXkwOi/g+/LzEiYmEPT4Qaeab+TQC8ES9ratdwe8WtfGP3t8mx5zA2fSx3r/0WC/MXUugoZGXtSublzGNK5hR6Q71UJlfiMrvQq3qKnEWY9IPhIuMzxuMJeVg7sJb+cD+VKZUsLVyKUWfkWzO+RXVvNfdNvI+XT7zM9Kzp1PTXYDPYht75a0Zdw092/4SElmBM6hiyXUU0VMwl39NEedCPc/x1sPdJMFihvxEAi/cE5WVzKbhiAV19tWyKnqDJc4yZd92Ir6sbxWhg2cRvo4+AIzWdWqWdb6/+X4pcRZTaq7CezKOoKBvXtCwMB7tRTh2yto5LxbetbdjaJXrDWDw2nqh+EoDeUC/3rLmHJ5Y8wYT0CZ/E4/u3oaGhU3S0+lrxx/xk2jLJtGWiofH7Q7/nm9O/SSgRQgtrNHgahgXkhGNhnj32LKsbVgNwuOcwX9vwNR4850GmpU87a3OMe0PDAkgA/Ds78BpzqJx/IxMv8GDxOvEzfP9X7QbQKWdtHn/S44sQiMbZ1dhLis1EhydEZZaTdm+IvJSzE7wi/m/MejP3TrqX8enjGYgMcEHBBQSiAR7Y9cBQnR/t+hHfnf1dbhl9C+FEmKeqnyIYC7KtfRutvlbKksuG6sYB9CrEEsPGUVSFcI1nWFl4Tw/pd1Rw048eJBD0obOYyR49me6GTlSdg0jCjSsjk4QW4KUf7UbVmXGlm5hyydfQEn1kFKaSWVKALSn57C2IrxUMFpj8KVBUUBTorIbcaWBLOXvjiLMqEh9830wG3QfWsZv0hGMJIrEEXY31oCi48/LPWDetoIia3TvQNA1FOft7oRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFON2IhJIqi3AfcDHQDvwe+omlaVFEUFTgBSAjJX1LPcMAyAaGgjzh+YmoMb8SLTtUNhTH8SSQRwRP1nN7+z9lSIRaBwnmDh3n/jFHREYlHyHPkUeQqoi/Uh81gw6AzfGiXTncqbTUx1j3Tj6YNzqlmby8zLiseOoz6Jw3eBtKsabxR+8Zp/bxa8yqXzfofUlbeC5ljwJIELbvB1wVXPPrh9yVGRJcS54XGdwFIMafwjbx76F69k2M7XuKH879Ab2sTiZiJx8c9SCgS4EiwhqVFSzHrzHxj0ze4oPACavpreK3mNSZnTOaCogsIx8LkOnIpTSolzZrGXRPuoj/UT/NAM2/UvUGOPYcf7/4x98+4n1W1q7i56mZSLanUe+vRKYOHmkuTStnftZ+EliDfkc/0zOn8Yu8vUBWVayuupTajEFdmKRVVF5MS9mPJmYS+6zjdC7/BOl8N3d7DvN34Fic9NeQ58rBaUohZoqSaU8jOGEVhUjEAMb+RdGs6vaFe6mMnOex+jfsz/ovXHjxKYUUyc4qdqLsMKAYVLRI/bf0CocCwzxoaR3qOSAjJWaagoKExO2c2vaFeUswpGBQDGhotvhY0NPqCfViNVmwR27C23qiXNY1rhpVFEhGaB5pRsj/+gfdEPE5bzXGsA7bTL8Y1FGDnG90UT0wj6lBx2gwk/NE/3RjOxfmoxg8+zP9RReIJilJtNPUGaO4LML88jbb+ELG/2LPFJyvTlslVo64CIBKLcM/ae06rs7p+NSnmFNY1r+PO8Xfy090/xawzY9QZh9WLOw3o5+cQW9M0VGYocJAwnWFgDYglCAS9RAJ+NM8AeqOZnhYbJ3b1Ar0svFkhsygJRYFEXKOvLUBfG4DKJZ/PP7sBJAD2DHjhVhi1FKxuqFkDxYvAeIa/S+IfRvhU6I3pVEjXmdjNg//p4Q/H6G6sJzkzG4PJfMa6aQXFHHpvNf6+Xuwp7rM/YSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKcZsRCSIBUYLmmaQ1/XqhpWkJRlItGcNx/WsYsG6rDQGIg+n5ZqYuQ4ifhDeB0O+hVewGw6q0EYu+HHCgo5NpzT+szHI0TiiVwmvUomWOgbjMUzoHGbdC+f7BSxUWEDGaSTElEEhHu33z/UPtxqeP4yYKfkGHL+MB597UHKJuaQVK6lURCQ9M06vZ1U1WZNKyeVW9Fr+hJMaec1keqJRVzPAJzPg/H34J9T0P+DBh3JSAH4/8eTAYHKZYU2v3t3JlzI0d//SxaIs6ca25i9a9+jjuvgNKpM1j3vz8lNb+A8XMW0LT1IJZUK89O+DW+gJc2tZfK0Z/HbXHzg30/xmVycVnpZfxizy9QFIW7xt+Fhobb4uaeCfegKiqjUkbR6mtFQ+PthrcBcBgdVLmruKDwAmo9tcQTg6Ef5xeez+OHHwfg1qpbebfxXZ72Ps31ldezW0uwo20H182+nRRTMtX9J/jt0ce5e/zdnPTUoFf0XFtxLQ/seoCElmBR3iL6Il72du6l2FXMqJRR/GLhL/j+9u9jN9ppDTWzJfoehbNG07S9n8O5dpwTMtBZ9FgnpRPY2TG0dopBpdt+eiiQy+T6BJ7cvxdVUTnac5RXal4ZKrtl9C0scizCaXSiohKMB7FhIxqPDmtr0VtwGB14wp7TynuCPbgtH+/Qe2d9LeFAALPdgmo3kPD92d4+KhnsBiaeX0AkEKW9P4Q2OQMXGkpUw1zsxFSU9LHG9wajGHQqlr8IMtEpKkdaPUwsSCYWT6BXFaKxBEb92Q88ER+NUW8kw3r69266NZ1YPIYn7OFY7zGKXcUsL1tOniNvWD1FVTjkNlB6eQmm7hBxp5FqIxQ5o+iSDdD3/ruo5FpQ9RpRfwRNG/wO1xIxKmaZqNmnkIhpHFjTSvEX0xm7MJcTOzuompsDgMmmx5l65gCJjyUSgAVfg31/BF87VFwMJgeoI/mzVXxcoejgd7PJ8MF7icM8GG43EIrR29pMSk7eB9ZNKygEoLupQUJIhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiE/IiJ3m1DTtW4qijFcU5eJTRRs1Tdt/6lr1SI37z0yfbCb11jF4NzQRbfJhqkiCMiPeYC9Gq5X0iIntgQ66g918acqX+P727xPXBg98fn7S5ylNKh3W38HmfrbUdLO9to+ZpW7mlqZSodODpxHGXwMTrweDFezp9IT6STGncP+W+4f1caD7AEf7jn5oCElKtpXWY30c3zEYwmC06Jl9RSlxTRtWrzipmBO9JxiXNg632U1PqGfwvhU9N42+Cau3Fd75TyicC2Muh9a9sPpbUHLOx11a8REoKNxQcQMP7H4Ax4CO1kiYkinTqd68HoBRM+ey9flnQIGKWfNY/+QjJGVmU1FYzNs/+hG5o6vIrRzLoffWQGoaD57/LcLRIF5/jLuybiTdmo6vw4O3qwNLto3Du95moL+XkglTydCKmFTyRXqtYUJKhC+u+yIVKRUoisJFxReRZkljbdNaVEUlkohg0VsAaPA2MD5tPO3+dtY0ruGm0Tfx5LFnmZMzh1dOvgJAQhsMtZmZPZO36t4ioSWYlT0LvarnZ3t+NnT/35j+Da4edTW/Wfwb+iP9LClcQouvBdNMFWO2GV1QZd3KOkxWPRfeXIlep8LJfkgyoU1wozjqUBV1aLwcew5jUsd8Ys/v30UkHhkWQALwZPWTzMqZxVemfIUaTw2PHX6MRXmLWFK0ZFg9q87K3ePv5gc7fjBUVplSSa49l3pv/ccOIYlFI1jsTgIRH84r8ons6SPWEsBclYK+KpWtDx0geCp0KjXXjn5UMus3tKDTKczPriBZp3ykceu6fWyr7WXt0Q6yXRbOq8pkVokbRVGIxOI4zDqa+4M09gVJsRnZ19jHXQtKSCS0v965+EREY3HOLzqftxveJhgLAoNBXucWnMuhrkMANA80880Z36TAXoqqqMPaq4pCZzTGt9aeZGpRCt62KNF4gq/OTiHrshy0fT5iDT6MpQ6osBCK+IlHw/Q0N4KmkZyVi8vlYuqFhWx/tQ6DWUWn1zHp/AJyypNZ/chhYtHBva2jzsvcq8qxOo1nbwFC/fDud2DUEsibBjVrIdADk289e2OIsy586p0w6dUPrJNsHQwh6fWH6O9oo2jilA+s687NBwZDSArHTzqLMxVCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEBxmxEBJFUe4D7gBeOlX0lKIov9U07cGRGvNfgTHbjjbbjj5spre3g4GGblSdDqvThSMllcrkSrpD3dh1dn537u9oD7STYc2gMqUSs94MQHNvgD1NfQwEY6TaTJxTmcZ3Xj/CyY4cfjhBRfF1gKJC2APmFIgG8OgLsZrsQ8Egf24gPPChc47FNNpqPEOfI8EYx3d2UJRdMKyew+hAVVV+uPWHfH361+kKdBGOh8lz5KFqKrjLwGCDug2D/wDkTgNX3sdcVfFRBONB3qx7k89P+jzu/jQADCYzkeDggfh4NIKmJcgpH039gT3AYBjJzldfAKBg7EQ2PfsEtuQUCsdP4u0Hf0LZ1JkYzGZq9+zEefFytj77BFMuuoyNq36Ht6uTedffyprfPMRATxczLr8Gv6ef7sYGHl783xhMDmptGbzdsZFsRzZfnvJl0CDblk1ci9Md7AZgetZ0fn/w9wDYDXbqvfVMz5qOSWfCF/WBAha9BbvRToO3AYBJ6ZN4aN9Dw+7/J7t+wsysmRS6CnGYHMBgkE48EacuuQ76DJje1VM0PpU1L5wkFo2TX5qEtz9My++PMvPT2fzP3P/hZP9J8h35TEifQL4zf4Sf2r8fX9R3WllcixOJR8i151LjqeEb079Bh7+D/nD/sHqhRIgGTwM/nPtDWnwtJJmS0Kt6mgaaKHAWnNbv/5XeaGKgp4uA10N3rB5XRSbmcQ7iLgO717QMBZAAdDf7KBjjRgF0BpW0PPtHGjOR0HjzYDv/+/YxnBY9oUiCV/e38ujNU/BF4rT0BVAUhbvml/DqvlYOtnhYNiGHNk8I9YNzA8QnpMMb4p3D7VRk2NnTv4fvzfkeLQMtoAzudXs79lKRUgHAlMwpBKNBDjZFOKdyeD+KAp0DIa6els87h9spcVu4Lq2PtT98gCV3f4G2yDGyZ4xiy8pf0v1sHSabjfnXf4pdK18if+wEUBR6WhpxutM577YM9PZ0DEYd8WiCHa/VDQWQAJzc1UnljCzyx3y80J5hMkZDIgpHXn2/bOY94PjgQDTx9xeO/Q0hJLbBsJqW9m7i0SjJmdkfWNfqdGFLSqa7seHsTlQIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQH2jEQkiA24Hpmqb5ARRF+R9gKyAhJH9Vgv7edrob60FRUFWFaDCEwWLhfw7+Dz2hHu4YdwcPbX6IUDyEgsLnJ32eayuvJRE3cLTdS48vQiSWIBJTSXeaePiGSazY2YymJVD0ZtAbQW8CvRkScfLsWbSGulmcv5h3Gt6h1FnCF4vvIsOYik3nJB6LotMbzjhbf3/4tLKeZh+jtDPcmZagO9RNdU81RtWIQTXwwvEXWFK0BPLnwY0vwdvfhI6DUL4EFnwNLK6zvL7ib5FmTaMqtYqf7fkZtxXcQEp+AfX79zBu8QXseOV5dAYjiqIOvlPK4IFjDY14LEZKTi6d9TUAVM6ez67XBrOI0ouK2bziKcafu4Q9q1aCpmE0m/F2dZJTUUXj4QP0d7Qx+aLL2L96Fb7eHiYtvYSTmzdSs2cnDncan772RtAb2NK7h5ycUu6ecDdPHXlqKOAjlohhVI1EEhGiicGQh9UNq7my/EoePvAwfzz6R+6deC97OvZwbsG5PHLoESKJyNB96xQdl5dfToo5hXpPHQ6jA7fl/cP1OlVHaXIpXcYuym824Y7aObq1HYDqXZ1D9Tp7+vjKoa9wRdkVfGbcZzDozvz3R3w8qZZUkk3J9IX7hsryHfkkmZJ4p+EddrXv4kjvES4vu5wKd8Wwtgktwar6VdiMNow6I32hPra1beOCwgsodBV+7LlFAn48He0k4gmi4SBhvx93Xj4xwnTUBU+rH/RHmXNVGZklLpIzbR9pzBOdA2yp6eZrF1TQ5g3hMOvRKRCIxGnuC+ILx1GBbjXM8kk55CRbCETiaIBOVT7eDYuPJZHQeHJrPQ+9V8PXL6jgUOQQfaE+0q3pAGxp3UKnvxOjzsilpZcSiUdwGl28dKyTcyqHh3PEE2Ay6GjqCbK4MoOZSWG2/PiX5I4ew0BvN0azhdd++T9o2mBoRNjvZ9OKJ5m45GJi4QhOdzoBbx++/h466mvIrhhNIp5KJBSjt/X04B+/d/B3gL+/D09XJ6DhTE3Hnpzy0RYjczxcuwLe/k8YaIPJt8C0z4Cq+2j9iU9EKBoHwGz44OeUbB0MIWltHwwOS8rM+tA+3XkFdDdJCIkQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgjxSRnJEBIFiP/Z5/ipsg9uoCh5wBNAJpAAfqtp2s8VRUkBVgCFQD1wlaZpfR/Uzz87BYV4LIbF6WKgpwstkcCV7iARjaFX9VxaeimPHnqUUDwEDAY//HTPT5mWNQ1TvIA+fxS3zYheVdCrKtF4AqvRQFmGA3QBsKZAIg5aYjCMxOigQDFzLDLAJSWXkG/L4xLbQpS4RtjrJxKGjmgtmcWlqLrTD5a6sqynlWWPScGTSJxWnmJK4StTv8L21u3kOHIIxAOUuEoocZUMVsibDje8CGEv2NIGg1LE34VBNfCpMZ9CRaXJ08r8pRcT6OrGnpzK/Btvp/HwAWZddT3bXlzBnGtvpOHAXhKxGEaLlZDPh8U5GB6jMxqJBAOYbXb8fYN/bc0OJ35PPwCJU+9JWn4h1ZvXAWA0m/H19mBPcZOIx6nZvQNnWjrjzrmAd3/7EAajiSkXL4f+ID4tyOfzbieRbOWu8XextnEtl5dfztPVT2M1WFFQ6A31sq9zH/dNvI86Tx3BiI9PV96IFvGTNM5ATGfCqrcSiAX4zLjP8EbdGzR4G3AYHNxSdTOTUseSa8kgM6VkaH32d+/nC/u+wEW5y5hUtozOE/5h6xe1+7my/EpurbpVAkhGUDwR57uzvssfDv+Bg90HmZY5jVuqbsEf9fPkkSf5wuQvcLz/OC+eeJGFeQuHtS1wFnD/jPs52X+SeCLOoZ5DZNoyKUsuw2X6+OFHCU1Dp9fj7WrB4kzC19uDMy0de4qbsqkOdr5eP3w+VW6KJ6R9rDEVBRZXZtAfiOI069HrVHJdJnzhGE6zniSLAVWBaDxBPJFgIBhlW10v103LJ544Q3KU+MS0eYL8bmMdAIFIlOsrr2dV3SoSp4JCgrEgV1dczeGew6DB7OzZhKNRJuRlntaXTlVwmQy0qiFOdA5Q6O9B0xLYXEnEwmHisehQAMmfBDz9uHPz8fX1MNDbjZZIEPD040hOQdE0elqaSMrMo2BsKvUHuoe1Tcqw0tfWSsPBfbQer0ZLJMipGE1e1QTcOTnD6vZ3tOHp7MBss5OSk4vBZD5t/jFNwWOtJHHhM7hcNozJmRJA8k8gHBt8p0x69QPrpJwKIWnv6sMKJGVmf2ifqXkFHHj3LbREAkX94H6FEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIcXaMZAjJo8B2RVFePvX5UuCRv9ImBnxJ07Q9iqI4gN2KoqwGbgHWaJr2Q0VRvgZ8DfjqyEz7kxUKBAh6+jE7HFjsDgCMNhsAkWCA3NFj8HR2oKg6DBYLd4y5gwgRnjjyxGl9dfg7yNDlkOY00dIXxBOMYtAr5CRZUQCLQYemMw0Ge9RvBFcueFshpQRLNECqJZU2XxvL0y5A84cZ6O1Fp9cRjvuJxaJ0NTaQUVR82rjmDAvjLizg8DtNxKMJMkclkTElDU8sflrdFGsKoViIOm8da5rWoKCwvGw5kUTkzzp0Dv4j/u6ybVncnnE17f6TBHv6Bg+Laxr1B/YweckyQsEAMy6/Grs7lQvv+woNB/ay8OZPs+GZx3CkpGK2O/D1dJOclU1/eztW12CwQ0v1YQrHT6J+325UnR69wUh3UwOZJeU0HNjLn/KKMovLaDpyEIDRcxex9YVniMdizLriOra88AyxcJissgpKtekYemIUGZL5ytgv0Bhp5StTvoI34uU7s77DI4ce4VDPIbLt2UxIm0BPqIcbVt+O0+jkzvF3km/P43/n/ICnjv6RjkAHDd4GkkxJ3DHuDh45+AgPhh7CbXbzgxnfYqZrFDgzqffWA/BG82vMnDeP5JCTvqYglXNcZBSEUYgxwXUZvoO1nDS1kl5YjDP14wVMiNOpikpMi3Fj5Y1YDBb8ET/esBe3xY2GhkE1cNuY2/BGvPSGeoe19Ua8bGrZxKs1r2LWmxmXOo4MawaxROxjzyscDHD4vdWMmj0fvclMLBIms7ScvvZW9AYjo6an09Pip3ZvF6pOYdJ5+WSV/PXgE293F4l4DGdaOuoZQhmSLEZMehVfOIrVqAdNIyvZQiyu0eYN0euLoFNVMp0m9KpKqt3IvLI0ev0RVOVDc8LECFMVBZNeJRxLMLM4le5IDaF4iMcOPwbAnJw5+CI+JmdMxpPkIRQPYTU6UNTTn1soHCMST7C9rgdNg9vnZ1ILNFUfonDiFPz9vSiqjgnnX4jFbkfV6ckoKcPb1YnRZMGencrbv/k5gf7B4Kj8sROYccW1GIw6Zl5aTNAXoaPWi8GkY9blpaTm2qnfX008HqNo4hQAgl4vPU0Nw0JIWo4e4eUffYewfzC0afplVzHl4uWYbfahOr7+Pna++gJ7V72GpiUonTqT+Td+iqSMrBFaeXG2hE/97jPpPzgwxmHWo1MVOvu8lBqMOFLcH9pnal4BsUgYT2cHSZnyDgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBAjbcRCSDRN+4miKOuAOQwmCtyqadrev9KmDWg79ecBRVGqgRzgEmDBqWqPA+v4FwghaTt5nNZjRwj6faTm5JGUmU1mSRkGg5F4NEJqfiGv//SHRIJBABzuNOZ99i6e9bxJti2bVn/rUF8KCjn2HPQxPb5QgNcPtrG1pgdVgYvHZ3P5pBxiCQ0UBaIhSK+CsBecOWCyQzQIetCregwJHQOBINFQEI/Xg86gx+lOIxoOnvE+FINKa4aemXdV0dIb4Jg3iBKJkGY0nlbXF/FR21/L7WNvpyfYg0E1YNKZ6An2jMwii4+l8cB+Xvqf/4eWSAAw7pzzKZs2m7SCYl594L9JKyxhysWXEQkG6W9rIbOknCMb3qNi1jxcGVks+tSdeDraKJs2i80rnsLT2UHhxCnU793FrCuvQ6c3sH/1m8y/+XZqdm2nZPJ0eluaCQd8ONMy8HR1kJKdS09TA5qWIB6LkZSZTVdjPbFwmOSsHHIqRrPxmccBqFqwGFMsiUy9gRpDL8UZxTx+5HGuLL+SUCzEG3VvkOfI41f7f4WCwm1jb+OBXQ8QT8S5Z+I9XDnqKh4/MtjXpaWX8pv9v8Eb8WI32Lm24lp2dB+k1ddKga+IdHMq9068l62tW/lW9Ve5cMYyrrnscqpfeI79bx5i3g2f4p1f/oR4bDDQIr2ohGVf/Aau9Iy/z8P8F6VTdIRjYfwxP63+Vqx6K1aDFbTBa76oj4cPPMy41HFcWHThsLYHuw/SG+zlgfkP0BnoxGF0YNVZGYgMfOx59bY0UTlnARufeZzupvrBuer1XPSFrxOPRnHlW1l862i8FwdRVQVXmgVVp35gfyG/j4YDe+lvbyMei+Jwp5FbOYbkrOyhOuFgkHg4jF6n8saBdtq9IRQFnr19Op5wjJd2t7C9rhdVgUsn5nDx+Cya+4KMynRiM+n+lP0j/k6ykix86bxyvr3yCOlOI9UdnSwtWsrsnNkoKDiMDtoG2tCrejxhDzajDUXRQNOG9eMPx9jR0Ee3P8KVk3PJdJpZ09LL+OU3cujlp2k/eZz8sRO48L4vs3nFU0RDIRbf8VlWPfRjAp5+AMw2O+fd+TlW/vh7ADQe3MfECy6ip7mR5OwcltwxipA/it5oxplqQVEUFFVloLuLLSueQkskGLPoPJxpaWiahqIoBAe8vPPbB4cCSAC2v/wcBeMmkTd6zFBZ85GD7Hnz1aHPJ3duJaOkjBmXXTWCqy/OhnBs8LeC2fDBe5mqKiRZDPQMhJiSmYWifnBdGAwhAehuapAQEiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOITcNZDSBRFSfmzj/Wn/hm6pmla79/YTyEwEdgOZJwKKEHTtDZFUdLP1nz/Xjyd7XTW1RD0+UjNy+fAu2/h6+1mzMLzyKmswpmZyd43Xh0KIAEY6Omi92gNumwd9026jwd2PUB3sBuL3sI3p3+T4qRiWvsi7KzvY2vNYKhHQoNX97UyMS+JF3Y3cXe5EyzJEPUPBpLEIxCLQCyGzmA4dVhYRywSYtfrLxEJhdDicdKLS5hy0eVnvBcNsJsNXPLEjmHlv71x8ml1E1qCmdkz+e7W75JiSSGuxdEpOr485ctnb3HFWREc8LLmsd+gJRKY7Q5mXH4NdXt3seYPv6Zg/ESmXXoViUScN3/xAIl4jLLps8kqqyB/7Dg66mpoOnyAA++uomLWPGp2bcedm0dORRV6o4mc8krisSgF4ydSdsFy1jVHmH71p7CbI6SnLcHvjbBg8l3UHdpLdlYRzdWHUHU6VJ0Ok9VKaGAwJKJ8xmx2vfYSAJOWLqPl6BEOr3uXMQvOpTQ5meZ31nNr+SKK1Cp2+faSbkjFoBqwG+xUuatY27iWcDzMdRXX8fzx5wnGglxedjn7u/Zj1BnxRrwA3Db2Nh45+AgmnYkbRt/Af639LHEtPnhtzG0UOAs41nsMvX+ApsP7KZk8jepN64YCSAA662poO3lcQkhGgE7V4Yv4CMQChGIhTDoTOlXHPRPvwR/xc07+OWxo3kAwNjxIqcHTwNLipTxx5AkavY30hHo4t+Bcbhtz28eekxZPMNDbMxRAAhCPxdj20grOv/NzABiMOtzZ9r+pv/aaE7Qer8ZktaFpGp0NtZhsNpKzsgkHA9Tv38v2l1cAUH7epRQn62n3DuZT9AUibDzZzfa6wa/fhAYv7WlhXI6Ldm+IZ3c188Vzywc3c/F3denEHHKSrSQ0KEkq4fs7vo9VbwUgGAvy9elfpzvQjS/mw2a0gQL1PYGh9vGExnO7mvjOa0cA+OHlY/nqSwcJROKMyUjn5k/9J0kOPxaXi+66WkbNnIvOqKf5yKGhABIYDL2p2bOD8+/+AvX7dtNcfYiB3h6qN75H4fjJ7HnrNXSqjunLr8bqmIjBbMbb1cHu118e6mPvqpXYU9yUnPopEPIN0NvSdNo9+3q7h31uOrT/tDrHt25k8tJlGEzmj7y2YuSFo4Pfiya97kPrJduM9LUPhor9Ne7cPGAwhKR06oyPP0khhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCfKizHkIC7GbwKLNyhmsaUPzXOlAUxQ68CHxe0zSvopypqzO2uwO4AyA/P/9vne/fhbenG0VRSM3NZ+0fHqZs+kyyyyuo3buTcMDPqFnz8XS0o+p05I4ei6pTaTx4AG9nO/50P7/a9yvum3gfCgpVqVWUJpWiKAo2U4Jttb3oVYUphcnEExq7G/o43OrFYtATU03otfhg+AiAloBQPyQiaJqeYDwIZpXWY9WMP3cpnq4OVFWHLTkFT1fnGe/FZtLx8p4Wrp6aR5bLjKZBfzDK6wdaOa8qc3hdvY0d7Tv40pQvEYgFUFGxGqw0DzSP8Ir/Y/tHfHejoRDezsFnPvGCi9n87JMkZWaRkpNLT1MjmQtH4e/rxWy3Uzl3IV31tbz6wH9jT3Yz44pr0BtNWBwOjBYbR7dsoKO2hpScXLY8/wwA+WPGkz9mPN3b1zEhM4/aujjbunX0BrO5aoaNN9sjGHIm02dTmfflb6MNdDL7xlvZ8vQTzLx8FnX7dqEoKvFYDL3BiMFkpqP2JOlFJSQScba//ByZJeU4DQ7e/d8HcOcX8NlZl9Ozs5Fv2m/BkVXA0+0vo1N0OE1OWnwtOI1OilxFzMyeiYKCQTXgNDpp87fhi/pYXracRw89SlyLk2RK4raxt3G89zjheJgvTPgswWP9ANiS3bSeOHbamvr7/6YMpn86f8/3N5aIcaLvBCa9CQ0Ng86AqqjEE3H8ET+v1LyC2+zm85M+j/IXX0vTs6azrW0bC/IWkGRKwqK38Mu9v6TF10JVatVHmk80Eqb95HF621owmEzoTSZi4fDQdW9nO4lo9P/cb8g3gNnuGEwVAcw2O5FAEJ+nn7YTx9j4zKOUTZsFwKFXn+ELV9xCdZeBQCROa3+I7bW9mPQqkwuSCUXj7G3q51jHAOdUZjA628Xzu5tYOjbzw6bwL+kfbe91WYwsrsygodtHdW819068l0B0MGTEprdxrPcYmdZMYokY/ogfzZrgSKt3qH1Dj58frjoKgFGnYjGo3Dm/hEg8gU5R+PHOJnKTTfxwqge9ycyJHVtIzS8kFgmfNpf+tlZGzZiDzZVExez5OFPTyR8zgZ0rX6B06ky0RIJ1T/yOxbd/lqIJk2k4sPe0Pur27mLKRZehKAoWp4uM4jK6m+rJHzOeWDRK8+GDONOGBzOlF5fCmreHleVUVKE3GD/2+oqRFY4lADAZ1A+tl2oz0hhVSM766yEkRosVZ1oG3U0NZ2WOQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhPhwZz2ERNO0oo/TXlEUA4MBJE9rmvbSqeIORVGyNE1rUxQlCzhjGoamab8FfgswZcoU7ePMY6QpiooG+D39TF22nD2rVuLr66Vo/GSMZgvxWJhx5y4lvbCYaDhINBRm9lU3EgoEeLf7Se6deC8aGvFEnLLksqF+3TYTF47NJNNlwWnRoyoK10+PEYtrOC06VJ0eYiHY+GOIBk81KoHzKlEUG76Ijw5zN+6cfKq3rGfcovNRFIUjm9dTNXfhGe9FRWFhRRrNfUHyU6zoFIV2b4jxuc7T6ka1KFMyp/DSiZfY0LwBgNnZs7m+8vqzvsb/TP4R311rcgqVc+ZzeP0aVJ2OWVddT+uxamLRKOPPXUpfewtWl4vFt9+Nv78fi8NJWkEx2eUV9LQ0EY9FcbhTcaSmMfe6W2ipPkzA4wHAnuIms7ScTc8+AYDeaGLc4iXcNmUeb9WruAIGtP4ojx3u5VOzi7j9rXrOH2+hiZUsvnMJFlsWc2//NKGuPlzpGSTicQZ6ugEomjCZnStfBKB06gw2PfsEFoeT/KrxrH3k1yiqyrRLryR+oJVL/aO5ZvT5pFiz8eZfSWuiixXHVmA32KlMqeRzkz7Hi8dfxBsePORv1pvxRgb/fOPoG/nVvl8RiUf40pQv8e0d3+OOtGtBUWg6fIDiSVM5vO7dYWuaXljyiTy7T9rf8/31xXzoVB3RxGCwRyAaoE/pI8eeg9vi5stTvkwkHuF3B3/Hd2d9d6hdOBbm1ZOvUpJcwjPVz9Dsa8aoGrlj3B3EErGPPJ/Wo9WYbDaS0jNJxGJc/e0fcmjdGva/8zoAZTNmo7eYAYjHYvj7+zCYzVjsjg/tV1FVOmtrOLlrGwDuvAKmLbscFYWuhjqKJ05h3ztvADB24blEOpv57iVzqenyowB3LyghyWrAE4jSF4xyxeRcTHqV5r4gOlXhnoWlxBL/EFvPJ+ofbe9NJDR2N/bR7QtTnlzOc8efY1PLJgDm5szlqvKriGkxovEonrCHhKZxTmX6UPtAOD4UBHHZpGz2Nvbz2JYGUmxG7ltUyvcvG0M0Hkfz16PT6+hpbmSgu5O513+Kml3bh82lfPosNj7zGF0NdQDoDQaSs3OZcvHltJ88ztGtGxm78Fy6GuoomjCZlNx8jGYLSZnZGK1WYpEIZrsdVVUZ6OkmGg5x/t1fIOjpIxwMogAzL78Wd+7w8JeCsRPILCmnveY4AHZ3KuMWX4Cifniwhfj7C0cH3z2zQfeh9VLNCod0NpIyk/6mflPz8umREBIhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDiE3HWQ0j+nKIoy4E5gAZs1DTtlb9SXwEeAao1TfvJn11aCdwM/PDUv18dkQl/gvRGIyd2bGH84iWs/Mn3QRs8+1y3bxeoCvnjJpJeWIS/v494LEo0FEJLJLC6kki3pvP1TV8noSVYUriEkqQSKt2VAKiqwrSiFKrbB/jZu8cJxRJcNy2P2aWpWIw6NF0YDqx4P4AEoKcGempRnFOwGWw0RFso0JspHDuBjtqT6AxGMopL0RmMZ7wXnaqQ4TQT1+CxzXWUZzqYkJtMqt10Wl232c2x3mNDASQAm1s3MzZtLHNz557FFRYfl16vp+qipfhDAyRn5bD6tw8SDYeYd/2tvPnQA2SXV5Kclc2h91aTWzmGwvGT6G1rxp6SwvaXV1A2fTYD3V1U/+E3ZJdXUjl3IYlYjKX3fhmDyUxXQx1VCxYTDgQoHD+Z3a+/hMFspqSpnm1PbsfqdPG7m+/Ga45QnGykq8/I52d/hUBrPb2tTQQdCt5yHVPG3MzhF1aSlJEFgKZpgIKiqkRCg+952fTZHHh3FQATL7iYo5vW4ensYOyi84gdbWPDI3/EbbUz49Il1Gb287ODD1KVWsWaxjUsK1lGlj2Lt+rfojPQSb4jn45AB/6on2AsyPUV11PTd5IOfweP8wKfvf06al98C4vdQcXs+RzbuhGz3cGUa67GlZ/793qc/7J06HCb3fSEelBR6Qx0Ytfb0ak6nj/+PLWeWtxmN1+c8kV6g71D7ZoGmvBGvbxW8xrNvmYAIokID+17iF+e88uPNJdwwI/ebMbX30s8HCEWixKPxxg9dwHHtm6gcNxEKucsIOz309feys6VL1K9cR2utAwW3PJp8seMQ1XPfHjf399P+ax5lEydgaZp2JKSaDx0kMLJ0zAYjWx96/Whunvfep25N3yK/BQrqTYTwWicB9ee5FjHAHNKU5lUkExfIMSMohQAHlpbw50LSki2GD7SfYuz52CLh6013SRbjHiih4cCSAA2tmxkTOoYsm3ZRBIRXCYXCRKMzhoMsNESCZKCHfx+pkYIPSn5Fr76TjNXTM7mikl5PLuziV+sPcmM4hS+UK5iMA2G4URCIUK+AWYsv5rdb65ESyQYd+4F6AxGply8nM0rnqJs2kyajhxi+8vPAZBWUMSkJRez/aUVLLz1MwCUTpnOmkd+zdEtGzCYzEy+6FI8He0cWreaDU89SiQU5Mr7v4eW0IhFwqiqSiIRp6+liazyiqH7TMrI4tL/uJ+e5kbisRjunDycae8HrYh/XKFYHACT/i8CY46/A41bYPSlkD2BJDWMX2fDmZ71N/WbmldA/f49xGNRdHrZp4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQoiRNGIhJIqi/AooBf54quhORVHO1TTtsx/SbDZwI3BQUZR9p8q+wWD4yHOKotwGNAJXjsysPzmqXs/0y66it7mR0XMXkjd6HKpeTzQc4sDqN1F1OqKhMCG/DwXQm0xEwkGUAZVlWRfw5NEnAXij7g2Kk4qHQkg0TaPVE+I7rx0ZGuuh92pwWgysOdJB5QVZFPc3nT6hYDeqomLUGQEFo8XCQK+Gt7uT1PwirC4XmhY/471YjHoC0QSrDrVzblUmqw62c6zdxw0z8vEEIrisw8NL9nftP62PXe27PtpCihETjoX5Sc3DhKsClEWChAN+iiZO4eiWDWiJBAXjJrLluadQdXoKJ0xm0x8fZ/plV7H52cF3Mykjk20vPktSRhbZ5RW8+7uHKJs2C4PZzJGN7+FKS2fS0kvQ6fUYTCbO+8x9hPw+sstHkVU6ivSiYjwdHVg93dw/Pone1uO0vNnBkQ1rsLqSmLT0EuxtUTzGRoqXn0+EGGOWLqVu7y6q5i/i4Np30J8KztEbjUTDIQDMNhuezg5sySnoTWb2rloJQPmMOZi9MUZ5rPyi+P/hsGYQSPKwpmkNMzJncN/E+1jTsIbPj7sXrdOHc8DEeVW/on77Dny9HmZM+wJvxLfw7c4H+cwtt5CaPJ4dXe/innQ+nriPL7c9wP8OZDDdPv3v8jz/VZn1ZpoHmjHpTWhoFLgKMOvM9If6qfXUAtAT6uHbW77Nbxb/ZljbIlcRqxtWn9anN+L9SHNJJBLEo2F83d0EBzwkEgnMNjtWp4ur7v8+7fUnOPjuW1QtWMzujWs5uObtwfm1NPLyD/8f1/33j8koLj1j36l5+az+7UOMnruASChER+0JCsdPxt/dTcvRw8y+5iacqWmAgre7k9ZjR9injcJp0fP7jXUEIoP79ztHOuj1R3BZDeQmWXhhdzNLx2XS3BcgHNc+0n2Ls6eu28eehn5umlXAuoa9p13f27mX0vJSzDozRp0RS9yMtbee3QfWY09x8+aDD5CIx3G408i++DL+p8SPRgcpngSXjUkj3xqnMtbC7je3UDV3Eed95j683V248/LR4nEu++q3iUXChINBPO2tDPR2c85td9LVUEfrsfd/V3Q11JE9qhJ7ipvmIwcZs+Bcjm7ZSMHYCSRlZlOzazvbXnyWC+/7Cm/84n8BWHDLHcQiEba99EcyS0dhMJkxWq1kFpcRjYQxGN8PLrMlJWNLSh75BRdnVSh6hhCSfX+EV+4c/POWh+DGl3FEfWiKStSZ+jf1m5pXQCIep6+tldS8grM9bSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEL8mRELIQHmA2M0TdMAFEV5HDj4YQ00TdsEKB9w+ZyzO72/L6vdzkB3F2aHk/wxE/B0taMoOnQ6HTOuuA6DyULIN4DZZicc8BPo68NosaDadSTHbcP6Wtu4lluqbjkVIAJbanq4aFwWZel24pqGPxxn1cF2zh2dzq92ePjfcVehbPjf4RPKn41BMZAgweH+I5TEpuF0p+F0p1G96T2i4QjjzjmP4IAXi8M5rGmnN8jx9gEWVaTzvTeqh8q/+uJB0h1mFlakD5XpVB2T0iexpXXLsD6mZEw5G8sqzqLuYA/uuJ1J/krC4cFQBrPNTm9rMwDxWBSA7PIK6vfvGWykKMSiEdy5+XQ3NgBQPnMOe954FRSFtMJitjz3FEaLhQnnXci6J36PMy2dCeddxLYX/8hATzdjF51P/rgJ+Ht7Cfl9g6Eh7a1YrFa2bVgDwNSLl7NpxZPEo4NzSCssZsz1l7O2sJU5Y89hlLOcnMoxBAc8ZJVXUrNrG5VzF7L/nTc5tSWRVzWO2j07Buc4Yzaezg4OvbeaksnTcEfz2f30SiZMnMz55Tfjb/HgyslmmqOAyDE/G554jDnX3MS7v3+UWDSCqtPjTEnjjolXoeTeSMP27ew+8Tijp49lX1Izzza/DMDxvuNMz5IQkrPJG/ViM9r47YHfEk1EsegtfGnyl9AYHqgRS8Ro9bUOfc515OI2uylwFtDgbRhWN8Oa8ZHmYrE7iIZC+D39p4KbNJIystj20rM0HtxP9qjRFE+axsoHvsfsa28a1jYRj9PT0vSBISQddTVUzV9Eb0szmqZRv38P+1evYslnv8iYRefh7ezA29UBgNFiZcyi83lgdQeXTcwhEIlj1KlcPyMfp9mAqkBusoU9jf34wzF++V4NN84oQIeEkPy9OcwGdjb0Mi7PxTj3BHa07xh2fXzaeL63/Xv4o37unXgv1q4Qb//yp2SXV+Dr6yURHwyBmHzhJax/8pGhz3qTiSX3fJmpgZPseHkFE5csY/ebr+Jpb2P2NTexf/UqOmtPkj9mPJOWLmOgtwdfbw9Ht2ygbu9uHG73aXPtrKslJTuXtPwielub8XZ24MrMpGjiFIonTSXg6SccDAzVLxw3kf2rV5E/ZgIH1ryFr7cHAKsrifM+cx+JeIz8sRMwWawjtbxihP0p7MhqPPWfF55meP3zUDgXLn8EHl0Cr30Oi+5eIB2PZvmb+nWfCh7pbmqQEBIhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBihKl/vcpHdgzI/7PPecCBERzvn0oclYDXg8XuQGfUYzCZiUVCqAY9mqYRi4bR6Q2E/D4SsRgmmw2d0Uh/R/vQoeI/qUipwKAaAFAUhVklbhxmPaMy7YzNcTE6y8nnzinlaPsA/cEYyqSbYOrtoOrBkgwX/wLyp6NTdTx++HHKzcUoOh0Gs5l3fvsgTYcP0n7yGO88/CCNh05/hNVtA0wuSGJNdcdp19482HZa2bkF51KZUjn0uSypjCXFSz7ukoqzLW5ickcW1Stexe/px5mWTsPBfZROnQmAqurQ6fXEohEMJhMAWiKB3mTC19eDKyNzqF4sGsFstRHo7wNg1Mx57Fn1GloiwZgF57Lh6T/Q19bC6HkLiceiHFn3Lo2H9rP52SdY88iv6airxe5OY/Y1N1Ixez79nR2UTp3BzCuuY8k9X6JyzkJ2/eZRJu21QVzjswe/yuH0bsrOWcSyL36dc267m5LJ05l/0+0YzVZMNhtBrwd78uDB+tS8ApoOH0BvNJFeVMqOV1/AmZ5OLBJhzW8eQh9XWPfLh/C0tLD1uWfQG02EA35i0QiKojL3ultorznBOz//MWse+DEuhxtVr+focysZ15xKoaMQgExb5if8EP/1xRNxHt7/MNHEYCBNMBbkZ3t+hl49PWMryZQ09Gez3szCvIV8btLnsOrfDz24ZfQtjEoe9TFmpODtbCfs96FpGoH+PirnLmLqJVfg7e5k39uvMWr2PGLhMDqjEaPFgtnuAMBktX1gr/FYDHtKKj0tTbTXnGDc4gsomzqT49s3g6ZhstlJxOIkYnFMdjvE41iNOvS6wa/5L55bTmWmg4pMB5XZTvr9UWYWu2nsHQyJeGVvC8Fo4mPctzgbMl1mXGYDmgaZ+pmUJ5UPXRuVPAqr3kpvqJdwPEyPp5OTO7YSHPBidSXh6+sFIKOkjMZDB4b9VrA4nBhNJva88crgZ7uDnqYGxi6+gN1vvEzD/j0EB7y4c/PZ+sIfWf3wL4jFosy7/lbKps0ku7ySv5RZUkrA66F8+mw2Pv0oheMn0Vl7knd+83Pe/vXP2Pf2G6Rk5zJ9+TXMuup6oqEgvc1NWF0uxi46j1lXXkfJlOkEPP00HNjL+icfofnIoZFdYDGigpE4Rr2KTj2VJ7j5F5CIwaW/AkcGXPAD6K2hpHc9ALVdfgB6fGGe2tZAbZfvjP2mZOeiqCo9TQ1nvC6EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIs+f0U9pnjxuoVhRlx6nPU4GtiqKsBNA0bdkIjv0Pz2QyYrHbAYXaPbtQFIWKWfPobm6kdvd2Jpx3IWhgcyWx+rcPEhwYICkzi/yxE4b9X+DdZjfLSpahKMpQWbJFz+LKDN440MZLe1sAKEu3880LK1EUICkdLvghzLyXUMLGQMCEoV+HUW+kaaAJsyeO0W6jdvd20LRh896z6lVKJk9DbzQOlen1KgktgctsOO0+k23G08qKk4r59eJfU+upRdM0il3FpFpTP+aKirNNH4xSv34Lky+8FFd6Bgtuup32mhPYXMnMvPI6Tu7azrwbb2PHK89TMWse9fv3cHj9GmZdcR1bX3wWnU5HSk4eva3NpBeV0FVfh9XlAsCalMRATxcA8WgULZHAlZ6BoijsX72KWVfdwJbnngJg2qVX0lx9iNd+8gPGLjqPjOJSLA4nB9e+w7EtGwHILC2nYvZ8eluacLbE+Eb6nWxu3882k4vzi87HnpwCQNGEyYSDQXJHj2HP26+TU1ZB24ljJBKJoX4aD+0HoGDsRLa+8AxWVxIDvd2E/X50egPRUBC94f33umjiFE5s30RvSxMAsXCYg2vf4fw7P0fQN4C3q5P78+5lY3QfY1PHfgJP7t9LNBElpsWGlfmiPkKxEKoyuDcBXFl+JRm2jGH1suxZZNmzKE8up3mgGZfJRbGrGKvBykcVj8XIHzue4MAA9qQU3vrNz4iFQuj0eqZfdhVHNq4jKSOLWCTCubd/lq6GOuKxGKl5+aQVFn9gvylZOYR9A8xYfg3xaASDxYJerwedDi2eYNvLK5h/w60ArH/qUeZeczNfW1JBJJrgwUvHUuqwsq/Dy7feOU7XQJhl47O4JjuPWGJwj7eb9Rj0ygeOLz4ZVdkuvrakkpOdAzh1OYw3fIWlVQPkuRU2tW7gZ3t+NlTXarDi6Rj8jm84uI/SKdPZv3oVRrOZcNA/rN/xi5fQcHAfiqqiKCrx2GBoj8lqxdfbAwzuefFYlEgwwOSLLsNsd1K/fw/RUAh3Xj7Fk6ZSu2cnADmVVZRMns7EJcuIR6N0NzdSOm0mLUePAIOhJ5OWXsLh9WtwpWUw0N1NR20NU5YtZ9OzTxKPhPH19pBeXML4c5fQ2VDLqFnz2Pf26xRPnIKijmRGnhgpwehg+BEAIQ/seQLGXQNJpzIJy86D7EnMaFyLSVnOwRYPF4/P5sqHt1Lb5cdu0vPavXMoSh0eyKQ3GknOzKarUUJIhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiJE2kiEk3xrBvv/5KQrxWJxoOMiYhYtp2L+PdY//DldGJpOWLCMWCWMwmdn60h+ZuGQZqqrScuwIOr2eeDTCf83+LzRNI8WcQpo1bajb5r4AsQQc7fAOBZAAnOj08dKeFjzBCLnJVorT7PQEU6ne0orBNPgaOFPtXJS7jHAijKKAwXh6gIjRYoG/OBxckelg44luFo/OYM3RzqFD7WaDyrmjM07rA8BtceO2uAEI+XwEPP1YXUkfa0nF2WU06Fl4y6fxdnXSeHA/tuRkciqq0BmdhFscnHv7DA6tW8WE8y/E5HBy3mfuo6uhjqDPy5LPfpGgz8v0S69koKeHMQsWs//dVXi7OimeNJX2k8fJqxpL0+GDqLrBA8sF4yZxfPsWgKED8s60DIJeL63HqimZMh1vdxcndmylav45tBw9PDhPi5Ws0lGk5OTjSstgywvPEPD0kzOqktzrU3ir5i3GpY8j1ZzOyU4fYW8/vriRZw3TKew3M/vOb5LpAIvTRcg3QHJWDgDaqfAKk9VGyOcDoL+jjdT8Qrob6zFarBhMZtIKi9j+0goA9AYj05dfhb+/nyMb1pJeVELbiaPUPbeLqkXn4qwyf3IP8N9EobMQvaonlng/iMRhcBDTYjy48EFa/a24LW4i8Qhdga7BeKy/UOAsoMBZcPqFj0BvMhEa8OLr7aGjroaFN97OwbXv0F5znG0vrWD6ZVdhS0om6Bugbv8ejm1eD4CiqlyZnYfTPTyQKRIKEgkGsbmSOLxu9VAIRHJWNotv/ywGswVffy/TL7mSrc//EYDpl1yJotOxvbaXKQ4bzq4IHl2MQk3jx7PLuX97DSv3tzGzJJVCt4VjHX7uXlCCUa87K2sgPp4LxmRyrN3KPc/spaE3AMDXLk5hVd0qNN4PBnu5fiXfn3oPTYcP4O3qBEVh7KLzOLFjK1OXXU5L9eAeqSgq0UiY49s2M3bRuex5cyVGswUUBVUdfOalU2eSUzGaun27GHvO+XTUnsRoNuHr6yGjuBRbUgqRYJCFt9yBPSWVrPIKHKfCnfo72ymZPI2B7q6huVUtWEzd/l3YnEkcWvcuFbPnEfQNYE1KpmjCJLoa6igYNxGdwYCiqpRNm0U0HMZktYEiYTj/rAKROFbDqX3kyEqIBWHKp96voCgkJt+Mu/VzlOr9HGju52drjlPb5ed7l43hR28d4/5XDvHU7dNP6zs1v5DOuppP6E6EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIf18jFkKiadp6AEVRnH8+jqZpvSM15j+Tga5O9CYTjpQ0jm/dQMH4iRSMHY+iKAT9PvRGI4lEglEz5tBcfYjqje8Nta3bu5uOpRk82biCq8uvpiKlYuhapzdEhzdMnz9y2phba3uYPyqNnfW95LksdNR70RkGA0VUnULIF+MzhffyTOvDjE1UUTxpOvvfWUUseqovRWHiBcvQ64e/NpkuC06Lni5vmO9dNoaaLj86BSbkJ1Potn7gGkQjYTpqT+Lv6yUSCuJMyyA1Nx9bUvLHWVpxlgQTOnpbmtj6wh+Hyo5v3cTSe/+DthMeDm/0M23pVPa98zSj5y5k07OPM+fqG9n1+ivU7NpOal4Bx7dtJn/seJqrDxKNhKmav5iuxjqMZgsp2bkA+D19pBUUEfINYHMlEfR60OkHD6anFxbTerwagIyiErY8/wxZZaPoaqwDBgNCZl55HTtffYG9b72G2eFgwU13oMXj9DTXs/O3j5I/ZjzhiWk0ROoJdHez9fmnmbh0GZ8rdOML9ZBsSKX+eB1LPvtF9r39Onmjx1C3dxf+vj6SMrLoa29lzILFHNuygePbNjH3uls4sWMLu994hbnX34JObyA5K4e+thYmXXgJe996nYCnH4BjWzcyddnldDXUcXjtasqmzKRk8rRP9kH+ixuVMorvzvou39n6HcLxMFa9le/O/i4723fyzNFnhuqVJ5dz/4z7R3w+WiLOe0/8jlg4DMDRTes494576W6sJxaNYHUlYbI7CPoGqN+368/aJdj5+ktkj6pEd2qPba89gberi5BvAHuKm9zRY4ZCSPraWjm8fi0TLrgILRolKTOHudfejKZpqDo9IZ+HsmQr2QkdPoOKlgCdXsGGwhdnFPG5VYc50NTPXfNLCMU0DDoVvXr6/YhPnlGvYtTrhgJIAB7f4OPuJd/kV4f+m1A8hEVv4ZrSz3K4O5cpl1zJvlUrObx+DXOuuYnM0lEEvR5mX30jR7dsQKfTYU9KwdvVwUBPD4s+dRe9zY0svu1umqsPMXruIuxuN+uffIRZV17PmkcfZtbl1/LeY7/FZLWRP2Y8O1e+gKKq1O/fw9zrb8Hb1UlnzUmCPi+ujCwKxk7E3//+zzudXk9O+WhO7tzK6HkL2fX6y2SXV+LtaOfge+8M1UvJyWXCeRdhstnQEv1MOP9CFAkh+acVjMSxGE+FkBxYASklkDNpWJ2BzPlYEyrzbCf5dbOT/c0erpmax/XTCwhG4vz3G9Vsr+1hevHwxKjUvAKOb99MNBTCYB4M9NI0jWAsiNXwwb81hRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPF/M2IhJIqi3AH8FxAEEoACaEDxSI35z8TX14vF7iAS9FM4cTLBAS9aIoHBZMbqdGG224kEwxitVo5uWj+sbXdjHXMtS0iamM6ahjWE4qGhayk2Eya9j6ps12ljTi1M5mSHjyK3jeDAYLBI46FeBvpCJBIaRWNTScmyccuUT2MegEB/H8u+8k2aDh8gFolQOG4i1qSUM96PQaeSajei06mkWI1YDDo8oQjBaPwD16Czrpb9q1dxdNM6ACxOF0vv+ZKEkPyDUAIe9r39xrCy4IAXb1cHXU0m7MlmIuE0situJilbYeHNdxCLRqhaeA47X3mR0XMXcXzbZrLLK9n24rMYzBZajh5m9xuvMO3SK3n1x98nf8w4civHkFFUSmBggNKpM1j10E84vP5d5lxzEyd3bSetsJie5kYSiQQAfa0tVC1YTOPB/Yyefw7bX36OoNdDclYO4xYv4eDat4iGQpRMnk7B+InodHpW/uT7xMJh8seO5+LPf5UDa96i5uXnmXvdzaz++fcpGj+ZA011hIMBnGnpzL3+FoIDXhbc/GkOvbeapupDLLj50+x/5w32rnqNOdffgj05BUXTsKa4caal8+oD/41ObxgKIPmTA+++RdWCc9jz5kr621s/qcf3b0Ov6rmw+ELGuMfQE+oh3ZpOXIvzm/2/4d6J9xKOhzGqRvZ37ccX9Y3oXAb6+uiqrxsKIPmT/avfZPT8czj03mqSs3LoqD2J2eYg7PcPqxfweEgk4ujQ09VYT/XGdexZtRI0DaPFyvl3fZ6iSVOpOxVE0nq8mumXXUVXwE9/VycZRSVo8QT97W2k5OYyJ9VN15F+jmxsARRi0TgTzslnVJ4dgPF5LhxmHSl6PfXdAfY3eRmfp5DmMI/oOom/LtlqICfJQkt/EIA2T4TfrrLxk2sfpy/cQ0u3gYdX+Wj3tnLLjInc+J2FpDpMOFPT8XR20NJaz/7QESZ/5mYsIRUlruFwp9J67AjJWdkkZWWx+41XKJs+i6JJU1n14AMAaFoCV2o6bSePA1A6fRZJWdnMu/5WUBRsrmR2vvYiqbn5pBYU0n7yOO88/AuWfPZLJGVkMXXZ5cO+N8pnzGbziqcYe8755FaO4a1f/nTYffa2NGMwm+moPcmYhefizs37hFZYjIRAJDYYQhLsh4bNMOeL8BehMv09Hjp8yXzK/Bzb8xdh1Kvcf9FoAG6YUcDDG2r5yerjrPjMzGHtUvMKQNPoaWkis6SMTS2b+N6279Hsa6YipYLvzvoule7KT+pWhRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiH9ZIxZCAnwFqNI0rXsEx/in5UhxM9DXizM1DU9XB7FwmNajRziy8T1sScks+tSd+Pt70RtMaFritPbd/m4ePPYgd46/E0V7/4BnYaqNYDhKQ1+Qi8Zl8fqBNgBykyxcOy2fmx/dwRfOLUPTNLqaByiblkEkGENv1KEAAV+ESns2HV01JGIxAv29WJxOVEUl5PdhstrOeD9Os56uaILqNi99/igpNiNV2U4UTfvANejvaBsKIAEIej1sfeGPuPMKcKS4P9rCirPGbDYTj8VOKw8HA4yZE8adm8faJ+vIKnOy65XnaTl2mBmXX0NHTQ1zrrkRW4qbBTd/mlg4jKKqaPE4Ov3glhOPRtEbDNTv20122Si2PP8MxZOm0mE0MvuaG0+NpDDlokvRG4y0HqsmNDCAMy0db1cnADkVVRgtFoJeDwBjF53H+qceAU3DlpSMpiVIzS3A7+kno7AEW3IKydk5bH3hGRwpaZx3573U7t0NQFbZKLY8/zSZpeXse+dN6vftZsrFy1n/1COMXXQervRMoqEQs66+EYvDSUftSer37qJwwmT6OzsIej0s/+q36WtvO2294vEYqqoDIDk792w/JgGoikpRUhFFFAFQ11/HOfnn8ODeB4fqLClagklnGtF5eDpbz7hfx2MxUvMKWHz73UTCYTJLyrAmn77HTV66DINxcI797a3sefPVoWuRYIANT/+Bcz5111AIydjFF7DxmcfIKq9A0xK8eSpIYvKFlxILh7HrdXTUexm3KJ9YOIbOoCPgDZOswYLyNJJtRrp9EQbCIZKtBj795C4WV2bww+VjcdtHdq3Eh/MEI3ztglF84+VDDIRjqApcPTUfm5JKnFTue23nUN3ROcm8URekPNPIDFuUhoiZY7oEPzj+UzgOBtWAy+TilmuvoiKYixEdOp1KX1sLO155nng0ht5oBEBRFGKRMAbT4PMvnjSVlupDHFj9FlnlFYw/bwkFYyey+42XUbZtYvLSSyiaNJUNT/+ByrmLcKSmc+5n7sVst5OIxelqqCO1oIjM4jJUnQ6N038TKKpKyeRppObm09fWSsjvw5acgist/YxrE/L76WluIOz3k5SZRYrsq/8wApE4VoMe6jaAloDSxafV6e9opXkglQudx3jpYiPkTR26ZjbouGt+Cd99/QjbanuYUfz+PunOKwCgu6mBY8ZWPvfe5yhyFXH3+Lt54cQL3Pr2rTy99GlKkkpG/kaFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIf2EjGUJSAwRGsP9/asnZuQz09qLT60nE47QeO8K+d94ABg+bv/SD/8fV3/0fVBRKp83k5I6tQ22d6RkUF1Rxb9q9bGnZwtKipcP6Nuh1WI06phUmM7cslXhCw6AqGFSFX147iZJUG6qqIy3HgapXCHgi+PvDZJUmYbYNHkTWG4x4Aj7WP/kHggNeAMw2O+ff/YUz3o8G1Hb5cFkM5CZZSWgaJ7t8pDiM5H3AGgT6+04r66g7STjgx+5woikKqn4kX1HxYRxuNxPOu5Adrz4/VGYwW3ClZ9B4aB+RoJnpy1wM9Jnw6VIB0DSNhgN78PX1kJyZTXP1ISZesIyxi87jwLtvoTcaMdsdHN+2ifHnLmHnyheJhsM4UtNwpKZxbMtGTmzbzIwrrmXbi89SOnk6nu5OiidNJaOohLwx4zmxbRMndmxl/HlLySgqYc+bKzGYTPR3tIGmYbRYmHLx5Wxe8SSxSJhRs+ZROW8hCjDQ08NAbw+5o8fS29KM1eFg9tU3kpKdQ3JWDqpORyI+GLxitjsYd84FbH9pBZllo0gvKKL56GFSsnM59N5qxi46nwPvvkXzkYPkVFSBouBMTcNosRIJvr/1jV+8hN62FiYuWUZmSdkn+gz/XSmKgkFn4I5xd2BUjRzpPcKqulVcXnb5iI3Z19pCV30dBpMZVacfeo8AJl5wMXa3m7WP/BqAedffSlZ5BZd99dtsffGPRIJBpl5yBUUTJg+18Z9hf/R0tKMog6FTqXkFpGTnsPPV5ymeNJV3Hv7FUL2NzzzGeXfeR3IBZBW7iEUTdDcHcWfbSMm2odcr3Dwzn10NfYzNTcJlhYFQlPNGZ7CnsZ/6bj8uiwG9Th2p5RJ/xUA4hs2k4/c3T6a5L0g4nuCFnc2Eo3EsRh2fmVfMm4fauGVWIaoCoHCk1YPDpGNrTS9lmelMSJ3Cvu5dRBNRuoPdPN/1Bj+Y+SuKzXaaqg8xet4ijmxYy4F3VzHrqutY/+QfiASDaJpGWn4hydk5BD397HlzJWMXnU8k4KenqYmtLzwzNM8NTz/Kwls+Q92enag6lbV/+DWqTs+8627hyKb3mHXFdSRnZrPxj4/hSE2nfMZsjm/dNNTe4U7DlZaGO6+Q2n272PrCH+moOUF6UQkLbr6DWDhE24ljJGVmkVMxGqPJwsZnH+fgmrcB0JtMLP/a/yNv9NhP+AmJMwlG4yRbjVCzBowOyJ1yWp2+tlYawxloai1K9cphISQA103P59fra/j5uyeYccf7ISRJmZnoDAZONB7if9ueY1TKKP5w/h+wGWxcWnop17xxDf+x4T9YcdEK9Kr8dhRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCE+qpE8pfd1YIuiKNuB8J8KNU27bwTH/Keh0+sxmM3EYlF0BiPVG9cNu64l4mixGHGgcOwEnKlptB4/SmpuAVllo3DETTy490FurbqVaDw6rK1ehf5AFE8oxrMb6vBHYlwyIQe9XmXj0S5K0u2kJekw2w2013kwWfUYTDqC3ggmsw4Ag9lM46EDQwEkACG/j5pd2ymdMv20+4lENUrS7Bxq9fDUtkaK02xcMTmXSCRxxvtPJOI43IPBFXqjCZPNhr+vl9yKKkzxBIG9e9ESCVSbHX12NkZ3ykdfbPGRBDz9eHs6mb78apoO7ceekkpW2SgCnn7q9u5m/ztvklc1jlEz55JTNo+TO7egJRLoTSY8He2UTJ7GyZ1b2frC01TMmsfMK67D19vL4tvvo6e5GYPZzJJ7vkLriWMsuOkzREIBYuEwh9evQafTg6bRdvIY5TPmsPet15h15XVs+c3PGTVrHuPOuYAj69egaQmmX3olu998FZ1hMECnYvZ89rz5CrFImKoFi/F0dvDu735JWkERlXMWMH7xEjQ0VFVHNBxGbzBweP1aCidMJm/0GKLhMOUz5uBMy+D1n/6AaDhMzqhKNq94iunLr2bnqy+gKCoOt5uDa9/G6koib/RYNjz1B4wWKzMvv4b22pN4uzrJqxrLQE83My+/FnduPgaT6e/8VP89HOo5xC/2/AINDZ2iY27uXBbmLSQYC47IeIl4nJZjR9j24rNMXXYFC266jfr9ewkH/RSOm4jJaiPo8eLt6gSgr70Vg9FE8aSp5I4eg5ZIYLLahvXpTE0HBgOhzA4Hvr5e3Dl5WFwuln3xG1iSkvD19FA5ewHHt20+bU4ntm+hdMpcgr4oCuBKswIKnq4gjgwrdd1BJhYkc6LDx8lOH+dXZXDttHwyXRa+9tJBqrKd3Da3mLE5rhFZM/HhbEY93mCMJ7Y2svZo59B36i/fO8ldC0ow63XMLHbz83dP8JXzR/HGgVaWjsumtitAJJ7g56vb+Pbyr7Crew1b2tdRlTyZxbnLGPBbsWWlUDJ5Gim5eVTOWYC/vw9Vr2fe9bfS09LEnGtuJuD1sPDmO2g8uA+9yYTV5aKvrQW/p/+0uTZXH2L8uUvxdnagN5mIhcPY3al01tXg7e2mt7kJT2cH9pRUMorLsCe7aT1ejTsnj6TMbBoOHkDVG3j3d7/E19sDQCQQoGbXNna//vLQOFmlo5h3421DASQAsXCYd3//K675zv9gcThH/LmIDxeIxMlJ0sHJtVA8H3SG0+r0d7RhSctDKTLA0dfhvP8adt1s0HHn/BL+6/UjbK/tYXrxYBCJqupw5+Szwv8WUUeUB+Y/gM0wuG9m2bO4f8b9fGHdF3ju2HNcV3ndyN+sEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII8S9qJENIHgbWAgeBMydR/JtT9Tp6mhox2+zYklMIB/zDrmsoRIMB3v3Db7A4nKQXFNFUfZBD61az7Mvf5IULX2BXxy7iWnxYO5NBhy8c48fvHB8qe3xLPc5FpZw/NhNvMIqSbCUeS+DpDODOcQDg84QxO/REQjGcqWkMdHedNuf+jjY0TUNRlGHlDrOO1w60oioKy8Znk9A0fv3eSf5jSeUH3r81KZnlX/8uim6wL1XVYbBY0A34iAcCoEE8nkBLxCWE5O9AbzDSeqyaml07yCorp7eliePbNrHg5k/j7eogp7IKV1oG7/7+l1hdScy8/FoMViuLbr2L9x57mKDXS8nkadTs3kEsEsFktaHTG+lr70cxlGO0pfDeMydwpo5FNdjIr3JSNT+DkN/PyV3bmHLxcna/8QqaplE+Yw6Nhw5SMWcBxzZvIKOohK4WjhUAAQAASURBVJ7mRiKBACd3bWPqxctJzsrm0HursThdDPR0A+BKz+TwuncxWqxUzJrHhqcfRW80MfPya+htbaa/vQ2DyUTOqEp0Oh1v/uIBJlxwEW0nj5FbOYZIMEhKdi5dDXUAKIpCIh4fDJU4FdAzatY89r3zBgCRYID1T/0Bd14BUy66lPce+y1Gi5X5N3xKAkg+Ie3+dn6040dcUXYFy0qXoVN16NARTUSxG+0jMmbY78fX30c0FCLg6WPnyhfJKCnDaDaz7aUVpBcWM++G24bqB73vhzsZzZYz9mmy2bny/u8RDYeJRSMYLRYMJisDPT3sees1oqEQ8264FbvbTSIeP619UnomsUiCRCxBLJpA1anEYwnCgRjEE3z3tSP86Iqx5CVb+PE7x1k6NovXD7Tywu4WAE50+lh7rJNX7p5NcdrIrJv4YAlN43cbatlcMxjKcbjVS03XUT4zr4SaTh9GvY7NJ3tYNiGHYDTBuaMzSLUZyXKaMOtV3o63o0XdpMUu5trcpexr8HPTGw389KokPIEILquZ9PwiOjV48fvfGhp33g2fYsNTj7DoU3dxdMsGsstGkZSRRXdjPTkVo/F2dZw2V4c7lar5iwkOeKlasBidwQDa4DVPRzttJ44CoDcaObljK/3traQXFtNy9AiH169h3OIlBPr7hwJIAMqmz2LvW68PG6ft5LEzjt/b0kTY75cQkn8AwUgcixYATyPM+dwZ6/S1tZKSnQOjJsKbX4buE5BaNqzO9dPz+fW6Gn6+5gTPnAohAfAWGjlsbeHusXeT58gb1uac/HOYnDGZRw4+wuXll2PSyXeuEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII8VGMZAhJTNO0L45g///0FBSMZguRcIiZV1zLm794AE0bzGtJycnDlZZOd1MDaBpBr4eGg/v+rC20BdqoSqtCTRip7/JReOqgeDgW52j7wGnjvX24naosB6l2IzqdgpbQcLotxCJxVJ16qmOFaDiO0aynbMYsavfsGNZH5dyFgwEkA50QD4EtDQwWInGNKQVJeENxWvuDWAw6bpxZSJ8/fMZ7V1Ud8VgMRVXoqqul7eQxUvOLyCwuxZqSinbyJFowhGq3o6gqka4ujGlpH3/Rxd/M6nKx8OY7ePXH36Px4H4AUvMKCHo9ABSMnciW554CIODpZ9OzT2B2OJh26deYcsnXcLoTxOMWRs2+jM66Xax74ncAZJSUMXruIiw2mH+1DU0L0t1wiFd/tBI0jdJps5h/w6cxO5Iomz4LX08Pvr4eopEIGcWlZJWWo+h0LL33yxzbtomquYvY/PzTzFh+NdMvuwpbUjLuvAJ6W5qIRQbfv/IZs9m3+k0AJi1dxq43XiHo9ZBRUobJaqO7uQF7UgoXf+k/aT1+hJbqw+RWVKE3GAkOeLElDYbgtB0/SuH4SdTv34PVlQyAwWQiEgwMW7uepgY8nR1EgkHOv+vz2JKSR/hpiT/xR/2Mdo9mWeky2v3t+KN+MqwZGHQGlKjy1zv4CAxWK3qDgdT8AqKhEAAdNSeGrod8vqF3EaBg3IS/2qeiQHdTI3vfWgka2JKTmXbJldiTUyiaMBlXRiYdNSfJr5rAQEYn1ZveIxIMAmC0WHHn5ePpasSe4qC7yY/RohKLxHGlWUmcyiw52Owh22kiyWrAadHz0p6WobENqoo3GONAcz+pdhNOi+EsrZb4WwQjCep7AnxrrgOTTuGJIzGOdQawmXTYTTaC0QRzy1I50NzPU9sahtr954WVTCtM5geXj2VPYx+eYBS3zUQomuD2uUW8eaiN+eXvf5cmZ2Yxev4ijqxfCwwGKaXk5BMJBtDicezuVOwpblJy8lB1OtKLSjm5czvR8OB7brLZyCodReOhfVhdyXTWnyS7vBJ7SioAmcWlWBxOOmpP0lJ9mOnLr2LziqeG/Z4pHD+JeCyKoqhDv4F0esOwvzMfJq9qHFZX0sdZbnGWBKNxrIHBEDBKFp12PR6L4eloo2TyNCg/ZzCE5Phbp4WQmA067pxfzH+/Uc3O+l6mFg5+B693HsPi03Ft4ZWn9a0oCneOv5NPv/NpXjnxCldXXP1X56tpGg2Heji8oYWOei+JhIY7286o6ZmMmpmJ7tRv4zOF7wkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBD/qkYyhOQ9RVHuAF4Dhk6SaprWO4Jj/lNRdSqJhIbRbCGu6lj+je/Q19qC0WrFlZ6BqtdjstlIKyymq752qJ3DnYYlzc3RvjUUu4rJsupo6fUTiScoz3TS6Q2Tk2Q5bbycJAvvHeuiMNWOqlPRGVRMVj0BTwSjVUVLaCgoJGKDh4BLJk1j7nW3sP3l59ASCaZeegWlEydD/RYYaIVgHzhzwF2C3ZSJBkRicfJSLIBCa3+QcXmuD7x/i9PFiW0bcaSkkTOqis76GlRVxWS1ouzZgz7FTaK2BvPo0ehSUkBCSD5xOZVVXPof99PT2IDV5cJgtnJy51YA4rHoafVDAwPEYwEaDqm40i3U7etk8S1Z7HnzFQBKp83EZLWx/aUVTFxyEZtXPMXsq29gz6pXAUgrKCKrtJzmowcxW+2c3LUFRdXRsH8P0y65gtd+/H0iwQDzb7ydd578BTmVY/D193H+nZ/DaLaw563XSC8oYvLSS9j20gqM5sG/B2abneCAFxg83B70etAbjJRPn83GZx7D4nQx/bKrOLplHf1tbQBUb1rHtEuvZNtLz2JxOLAlp9BwcB9TLrqMpIwsvN2dTL7wUuoP7KV8xhyObl4/tA56o4nU/CIu+Y/7yS6rHLHnI06Xbknni5O+yKGeQ6iqSm+ol+5gN13BLka7R5Okt5OfXHxWx9Tr9SRlZjF63jkkYrHBFA9NG7o+bvEF+Pp6sTiczL3+VnJGVf3VPkN+H7FIhNHzzsHT2U5mSRnN1YconzUPDY2W6sPkjRmH0WxBbzJy6X98i97WFhRFITkrm3gsxo5XVjD5oqvpqBvsMx5NoOoUVN3g55wkC3sa+7h5ZiEnOnxcUJVJdrIFh0lPMBrHZTFg0us41uZhSpFbDuF/glJUPy9N3EfGnp+Aomf5kp+i6PTo43uI+nsJZk3gUG4RDrOew61e4onB9+1nq4/z+5sns+pQO+lOMwoKyVYj543JZHd9L5lOCxbj4AsQioVY17qOlolmxhdcg/9EE7asDCYUlfD2r37G5Asv4d3f/ZKy6bMomjiFw+vXYE1KZv5Nt+Hr7UFRFOzJblqOHaFm93ZmX3UDtmQ30UgEtASXfe3bGE0WkjKzaT1WTe2eHTQdPsjCWz5D9cb3MJjNTFq6jGg4TMOBfUxaegm733gZgJZjhymZPJ2a3duH1sRosZJeVMI5t9/N+iceIRYJk5pfwMKb78BoOf03j/jkBSIxrAP1kFwIKafvs/3tbcRjMVLzCiApH9Kr4NhbMOve0+peP72A36yv4efvnuCp26dzoOsA1bE6ptQl42vrIMmVelqb6ZnTGZc6jqeqn+KqUVd96J4VDsZY89gR6vZ3Y0syUTg2FZ1epfVkPxse20frg9so8O0n3tqEoiiYR48m6aorcS5ZgmKQUCYhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBD/ukYyhOS6U//++p+VacDZPf39T0xvNKMl4uhNdvR6I57uDkJ+P1oigeZOIx4O4+vuZsbyq6nbt5uG/XvIHjWasqkzaI108Mt9vyTZlMz35nyPui4bZoOOcsBm0lOWbifdYaJzYDD/xahTuXlWIf5wjFh8MGREVRXMtsGDlKl5DvQGFU3TiMUHDzNbHE6mXXIFlXMWoGkaDncqSts+qFsPrXuhcA407YBEhJSMDIw6FVVR2HCiG4tBx5SCZBIJ7Uy3DkA8HCY1v5jj2zZxcseWofLCCZOZXVaG1t6BlkiQCIZI+H0j8xDEhzq5YyvvPPwLFEVF0xKkF5Ww+IZP0d1Qh6qq6PR64rHYUH1XRiZZuW6qt3RQUOUGQNPiJOJxUBQyikrYvOIpJpx/EXtWvQZALDoYZqI3maics4ANTz/K7KtvYO1jv6Fk0lS83V0AKDodkWAAd14BbSeqiUUidJw8TtH4Sax95NeE/D5mXHEtGUVlxBMxiiZOxp2Xz+yrb+D49i2MmjmXw+veHZpr4fhJHNuyAYDxi5ew+dknMdvtFE2cQtuJo3i7Ojmy8T2mX3Y1thQ3i2//LL3NjRjMZqxOF531deSMHoMzLR1HahrOtAyObl5HUkY2VfPP4b1HH8bf38uiT91FxexzsdiNn8gz+3fnMDmo9dTS7Gvmdwd/N1Q+O3s2XcEuUoyusx5CAmB2OOmqryW7YgwXfe4/2PX6y4QGBhiz6DwUVSW/aiw3/uhBHCnuv9qXt6sTRdVxcO3b9Le3AnB43bvMuPwaEok4A91dpGTnEo9EsSUnExjop7+tldCAF4PJRCIeR4vHcefk42lvpGTSZBRVJR79/+zdZ5hU5f3/8feZXnZne+9L770JKIgo9t5bYmyJMTExRf9JNJpqiokxRfNLjIklaqyxNxQQkS69w8Lusr3P7PQ5/weD4LpYgyzI53Vdc+2c+9znnu8pc+bw4P6QwN8ZwsAgJ9XJiOI0fG47CRNW7Grjy1PL+f4Ta9jeHNhby2/PHUmLYbKrJUBZdsoBP26yf0Vd72JfdBtY7TD7J7jn/xSKJ4Ddg82ThXvhT0kb8i1yU8u59dSh3PLMOooz3IzMdxKLm9S2h1hV08HJIwp4ZUM9PqeNE4bnU+Bz4XYkH/2qd2wkvmon+aEEGUMKecG1jHeqb+Wu/P+HxWYj2NVF6fBR2BxOXvzTnUw683w6Guroam7CYrUCBu0NdTi9XkJdXQTa22ipraFidBbP/OZndHe0k5KRxYTTz2bMCacwYtbxYML2lUvJ6zeAitFj8aRlsHP1Sta9+SqjZp/Eidd9m+7OTjw+XzKQLS+PLYsXkVtRyaSzzie7uJSsohLKho8mEuzGl5OLO9XXtydLAEgkTELRBO7O7TBx1n77NFdXAZBVUpZsGDQH3vp9MtTOndGjr9th5eqjK/n5CxtZvrOVf277G6n2VAbtSqGleifFg3uHORmGwQWDL+D/vfX/WFy/mMkFk/dbR6A9zLN3r6KtLsCUs/oxalYJVqsFAP/bb1P93TugpZGWtArSjj6F9Cw7gXfeYff3vk/rvx6g8Fd34KzUP2dEREREREREREREREREREREREREREREREREROSL6XMLITFNs+LzGvuwUb8ODCu4fBD2Q+7AnustkIjHcDhd1G3ZxGt/+xNmIhkQUjRoKEdfcgXxWIydK1fSWLWdkmEj6Wpppruzg3ZvMtyjLdzGkrollLnPo6M7GeYwuCCNbU213HrqMFoCYWJxk9JMN/e8sZWq1iD3XjoOAMNqwe2z4013sviZ7bTWBygdmsnYE8og17O3zNSs9/1v8/5G8BVBwUh492Hoqof0ErLC1bR2p/DzFzfu7fryunruumD0fg9NLBLB6nDgcDl7BJAAVL27nLFjJuFtbsHidoMBvC/oQg4Of1srC/79TwBMM3ldNu7YRltNNaeedSGdXX5Ouu5G5v7r/wi0tZJVVMKMGSfgXfM2Mytt2PpVULspha4WO6XDx9C4YwuBtjYAnB4Poa4uAGz2ZBBO/3GTWPvGq8CeYBLTpGbjOkbNPommnTuwWm1gGFgsFhKxOABDj5nF4qceIxTwM2TaDFprqnnn8X8z5OhjGTBhCrFIhGgkzPAZs0nJzMLhcmGaJimZWVhstr0BKCYm0XCIaDiEJy2drJIyWqp30l6/mx0rlzH2xNN45tc/oXLsRMLdAWo3rmP6RV/i6Ttuw+50Mfms89m4cB5Fg4cRaGtlzRuvUjpiFBsWvMHbjz5AOFhCTlk+ZcOzsNmtB+8kHqEiiQgPrH+gR9vC3Qu5bvR11Pp3f/oBW7ZDLAoOL4TaIasSHJ4eXfIrBxCPRulsrGfLkrfxpqWTnlfApkULGDFzNoZh+UQBJIlEnOUv/Je8fv33BpC8Z9mzT1E5diKrXnkBV0oqJ153I10tTTTu2Mbipx6ju6MdAE9aOidedyP5AwfRWl1NS0MzGxfVkVngZdJplTjcVn5zzkg21nXyk+eT9+yvzehHiz/SI4AE4HevbeGWU4bQGYp++uMmn5l96yvJN4NPgZoVMOpCWPkAeHNg0Ikw5mIKq+by93UzufH4gfz33HSGN72ApWo+5s6ZHDXrVDYEC9i5awfp+TbuWZ3g2dV1PHp1MpShpWYXr97xK4JdnQBsevYlTrzmEubFF9AUacablk4kGMSd6mPpM48DEO72k5aXz8JHHti7nTcjk6POuYiMwiKsNhtlI0bxyr13Ew0FAfC3tbDoPw8z84priUcivHLvH/bu46pXnuf4a77B9hVLGHvSaax48VlWvfoCdqeL2Vddx4t/vJPjrv46k848H4fLhc3hBJJBExkFhQflPMgn548kn9O8iU7od8p++zRX78QwLGQVlSQbBs6BBb+Fra/DiHN69b9kchn3ztvOz19cxWb3G1w78loSr7xJ066dH1rH8eXH8+ulv+aRjY/sN4Qk6I/w1J0r6O6IcMrXR1EyNHPvurZHH6P+9ttxlJeTecev2LTUwfJNbUyeWMmYH/w//C+/TP3tP6HqvPMp/tOf8E6a+GkOkYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyGHBcqAHNAzje+97f+4H1v38QH/eIat+LUQCUL0IFt8Du5eTqF3J1oZOdjT5SSRMvL4Mti5ZRDQcYvFTj+0NIAGo3bSetvpaDItBR0M9AycdhS87l7zK/mxYOJ+3W5ft7dsYbCTX58RlN0gkTKwWgznDC8n02rEAOakOqlq66ZeXSiAco7Y9SCwSx2oFh8vOK39fR3ONn0TMpGp1Cwuf2EqwK/IhO2ZAWhH850uw8TmoXQbPfxvLzgXM39QIwPA8N29cnMmaL3mZlbIT2mt6jWImElgsVgzL/gMZTJsVz4TxOAcMwF5UBC7XZz0T8hnFYzFikd7XQdxqIXPu2ZRn1jBwzQ+4+PwpXHrz9zn3tJEUsJnUoTnkjcgkvXoex5/qI8cbYco5X2bQ1ONI2RPCUL1uNZXjJgBQs34tI487EYfHSyjgB/YFk4QDATqbGhl70mnUblzH6Nkn0bSriqLBQwGwu1wEuzqxWK2k5xey+Z23yCgowuXx8N/f/oxda94l1NVFOODH7nBQv30bWUXFTD3vEtLy8hl2zCwArDb73v1b/ORjFPQfyFHnXsQJX72BwsFD2bInKCe3opLajeuwO110d3ZgJhIMmjKdlS89S2dTAxsWvMGutauoWb+ajPzkJPlYNEo8FuOle9fStLPr8zhVAtBZD9WLYfs8nKZBKB7q1SWWiJHp9MHbd8Pcn8LOtyH2vmu8vRrWPgHzfwNbXoNgOzRtB38DbH0ZFv0BmjdB81YAIqEgXS3NRCNhbHY7ZcNHEYtGsVgs5FX2Jz2/gKKBQ6hatQJ3qu8T7Ya/tZXVr70ICbPXungsCpjJ4JuzL+DFP/6GjuZGmnbu2BtAAtDd0c6Od5fidLlJye7H+gW7ScRMmqv9vPK3dUSCcQJvNVIYNDimIvmdfHRpNW5H7/txsz9MXqoLi8VgS30nWxs6ie+nNjnAcvaElmX1g/xhsPJBmHAlZFZA0yawOkj1pTEgL4UCSzsjlnwPyzt/hPrVGAvvwvrSTQxre42T3zqb85ddwMMjVjKzwsWbm5uA5DPGe0Ei79n98kKOzT+GOq+fULefspFjqFq1HKfXS1ZxKc27dtKwbUuP7QJtrbTW1QIG3swsYtHI3gCS90RCQTw+H9tXLO21m9FImLotm6hZv5ajzrmQSWedz/hTz6K5tppELEZmQREeX9reABI5dHWFkiEkPiMIFdP326d5107SCwqxORzJhqJx4MmGzS/tt7/HYeOqoytZXtWNNdyfi4dcTFZJGc27dnxoHU6rkzMHnMkb1W9QH6jvsS4WifP8n1bjbwtz6vU9A0jan3iC+ltvxTttKuWPPkrGtEmcev0oBkzI452nt7Pgsa2kzDmRiiefwJaXR/VVVxFYvOTTHCIREREREREREREREREREREREREREREREREREZHDwgEPIQEueN/7mz+wbs7n8HmHHtOERBQ2PgvdzWCzQ2cNRtV8iAZ5bX0DK3a14XA6CQe7AYOu5qZew0SCQYoGDyWRiPP2fx7mnScfYcUL/6XypGP5b83ze/sdXTSTTfVdgEE4FgfAYbPgsVsJxxPM39xEayCCzWLw7eMHkum1428PY1gMulqCxCKJHp/bsL2Ttobu/e+b3QX1ayAeAU8m5AwGixXjnT/zpVFuUp02Hj/DQ4U7hMti4jSj0LYLWnd8YBgXVqcDT1o6ef0G9FiXVVRCWlEJtd+8gbrv30TNNdcSeH0usba2T38u5DOzWFMZNuOUHm02pxNvZinEwxBsg/rVpO56kdwVP8X75k04u9/FueEvuF+9kJS13yet5WnKXfMpDr7N9OMmUjFiDAMmTGH35o1kFZcyeOox1G3dRMjfxeAp0xk1+yQAdq5ZxYhjjwdg48J5bFu2mHGnnkd64XSOvuRmPOl5nHj9zXh86TjcHrzpmXQ0JicbD5g4hTWvvwJAanYuq197id1bNrLs2SfJLa8gHovj9KbQ3dFBdlkF0y68nO6OdoZMnwmAaSZY+8arWO12ljz9GKtfeYHM4hIAEvE4VpuNRCL5F8CTnk5Xa0uv45eIJ7+LQ485iR2rwwA0VnUc0HMke3TWQ+t2iIYgEaM8bjAye2SPLh6bh1R7KqMiiWQIyfxfw/0nQdWCZAd/Izx1LTx+Bcz9CTx0Niy/H6KdycClWBBcPmjbAQ1rqN+8gad/9RPuu+Eanv/9r2jaVQVA2cjRtNbtTt6zn3iEtfNeY8Lp5+6bdL8f/rZWNi9eyMLHHmT3lo0Mn3EcaXn5OL3eHv2GzZiFzelm8LRjWPHCM4QCfhLRGJ1Njb3GbKmtweZwsXZezyChaDhOV3OQHUsb2f5kFZeU5JDmtmMCmSkOrBajR//bTxtKMJZg3sZmnlhZyzs7WlldrXvx567/bEgrgXAXNG+BSVdDqAMyysFXCG1V2Cqmc+skgynuaoyGtT23370cw1cEniyIBil453a+NrALq5E8v5FgsNdHRgLdeK0e/rLzfnIuOw63z8ewmbM59kvXkFNeSXp+Aa21vUPFOhrqmXrexbz+tz9jYGBYej5aGoaBxWrD4fH02jYaCjLoqKNprNrO2/95mMVPPord5SLQ1srML19DR0M93R8IS5FDU1coCkBqViG40vbbp7FqGzml5fsaLFYYcDxseRXisf1uc9LoFAyrH1fH+aQ50yjoP4iGbVuJRaMfWsu5A8/FNE2e2PJEj/a3/rOFhqpOZl8xlIL+6XvbO196mbof3YJ32jSK774ba0ry3mu1WZj95aGMmV3K2nm1vPzXtRjZeZQ9+AD20hJqvvY1guvWfYKjIyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIicviwfQ5jGh/yfn/LX0yJOARawZUOmHubDYuVSnMnq1IK2dkSwOe2MnTaTFrraqkcP4ltSxftG8MwyCoqwZedy6nfupnGqu1Egt2kFuQzP7ICt92Nz+LjqhHXYg0PpDjDTSSaoDUQociRPK2FGW4s1e20dUdp7gqTMAzKsjykue3Y7FZsdgOHu/clYHdacbis+9+3lAKw2GDOL8GdAW1Vyf20uxld5OWWWbm4LEEwLZBI7Im5MSHYClT0GMrlTaWrqZGKUePILaugbssm8ir7k5ZbQCgeIxEIJDuaJi333otnwgRSpk39jCdFPi1LIo7NOYKJZ6RS9e6bpGQVUD5qFkS9cMIvoHoxHPN92PgiZJQmN8ofAW/+Mvl+2rdh4V3JQJ5jf4Tz8fPINRMcP/s3jJs0iFg0TsakE5h+4rFYE3HYtQNP5QCsZ13EmoVzycgr5NRv/4jujjChbjet9T7eeWY7mQVeMgu9bFvRyNEXjGb6RSm89fBf8GXnAmBYrcRjMQyLhVgkGf6RU1rO8uefZte61Xh86Sx6/GH6TzqK1ppdxKMRKsZNwDAhs6gEu9MJZoKaDesZOGU6i596DH9rCwMmTWXrkkWMPO5EVr70LFabHXeqj92b1lM2YjQ7V6/cd/AMA7fPx4TTLycSLqejsQsApy1+0M7fEaWzDgwTzAQYVnyhTm4f/z3+vO4+3qx9i4EZA/nqyKsYaLjJ37UUUvPB35AMjJp3B5ROgcb1sPOtnuO++QsoHAuOnmEgHY5invz1Twl2JkNlti1fTFvdbs7/8S/ILCji7P93G01VO4hGwuSUlJH9/kn3HxAJBnnr3/9i3bzX9rYNnT6T7o4OJp91Abs3baC9oY6SYclQFTMRx+NL2xs8sn7+XMpGjmHX2lU9xh0wcQoWu4+O5t4BJa7UfYEouxfUc+aYfCqKUxlakMafLxrLXa9vpq4jxOmjCxmYl8qWBj85qU6yfU5M02RrY4D8NCcF6d5eY8sBkjMIvvQcNG3ec30DK36fvG4Bhp+D1WKlf3crFI/vuW3plGSww+aXYPhZkJIHHTWM8rYzyngW1lVSWFmBYVgwzX0hZP2Pm8GjLf+kPLWMEWkDeOG3v2biGefx4p9/B6aJ3eVmzJxTqd20vsfHlY0Yze7NG/Bl59CwfQtHX/Ql5j30j+T3yzCYcNo5dDU1MWDiFDa9PZ/4nvAIi9VGQf9BjJh5PMNnHEd3ZwfetAw2LnqLpp07WPdm8jsx++qvM3LWkZFhdzjrakuGcaUWD93ven9bK51NjYw98bSeKwbNgVUPJ58pyns/4z2z/TGcOauorz+TV9Y3UDlkGCteeIaGbVsoGrz/zypOLWZq0VSe2PwEV4+8GrvFzvZ3m1i3YDdjZpfSb0zu3r6hzZvZfdNNuEeNovgPd2H5QGCUYTE46uz+eNOdvPX4Fv5717uc9LWRlP7tb1RddBHVV11N+aOP4Cgp+TSHS0RERERERERERERERERERERERERERERERERE5JD1eYSQmB/yfn/LX0xWW/J/d7c5IR4BTxbEomCCEY8xtCCFWAI6u6OMGDOObcuXMOaEkzETcbavWIo3LZ1jLv0KhYOSkytTs7JJzcreO/xFDGZw6lE0+6PEIh5Mi4W27ghF6W5i8X0TilsDEUzT5MThBSzf2UpOqovCdDct/jBDCtLo7gzhTXdSMjST6vWte7cbf3I5WUUp+983RwoUjIKGdfD0V5OT/gHSSki5ZAqnDk6DYAisDkh0Q0sVWCyQPbjXUF6fj12dHbzz5COk5eaRXVJG7aYNrJv3Ojnf/WGv/rH6us9wMuSzske6yPfEWLAgm/zKy+nujLH5nSjHHtsIC34GJ/4KdsyDkedCRgVsfS056Rz2Tnon1A7jvgyL/ghddTDrVlzPXkmRxQ4zb4aHroO0Ehh/BWx+EM/krzIqLcygy64kVNuKvxHSC/vx5twdDJwYw+G2YbEaxGMJTBP87VE2LrIz8azvk1looXz0BHatWUX/iVPYsnghDrcHgOZdO8nvP5Ddmzbs2z+Hk5UvPUtnUyNTzrmQNa+/wtiTTsNitWJzeOg/fhLhYJATr/s2wa5O7E4Xg6ceQ8jfyawrv0agrY3jrvwabXW78eXkYhgWqlYtx5uRyYTTziGjoJSVc7sIdSUDSNKznWTYOg72aTxCxMHigGBDMqQhvYR+9gp+XnYGrWSQ0rSV1PvPBW82nPU3mHv7vk1DHZCIQSTYe9hYCOLhZPCSzQmOVIiFaO8I7Q0geU/r7mraG+vxpKWTlpNHWk7eJ6q8dXdNjwASgPUL3qBw8FDmPfB3cssr8WXnsHHhPLo72hkwaSqmCanZOXQ1N7F16SLKRo5mwmlns/LFZ8EwGHfy6WS1dOAc7GPcnDKWPLtj79jlI7NIyXDtXU7ETU4fXUhFsQ+rxcBuM/juCYOwWy20dkcIhhOkuu24bRZS3XZ2d3Tjtttp9kdZW1tPOJ5gQG4qA/NSMIwjI2fsoMkoT75atsPqx/YFkFgdMOxMjKV/SwbnXP4clE+HqgXgSoN+x8Lrt+0bZ9RF0N2MZfn9e5vyj72Vc26+hUVPP0F3RxtjZxxNhW0LD5RchLe7me1r3iU1K5vaDWv33tejoSBdLU2MmXMKq19/GcNiYcKpZ1OzcR1Vq5ZTNGgYDTu20bB9G2fddCvdbW24PF6szS24q+twDR/GGd/5ITUb1wFQNmIMxUOGYVgslI8aC7UrWLlkNWvnvtTjMCx5+j8MmDAFty/tczzY8r/q2vku4CC1fCwbF86jet0axp1yJpmFRQDs3hNeUzBgUM8NK2eCxQ6bX+wVQhKMBXls02McN3wsGxMp/PLFjTxz5WgAajas/dAQEoDzB53P9XOvZ171PKakTeeNBzaSU5rKpNMr9/ZJBALU3vAtLCkpFN31eywez4eON2pWCZ40B6/dv57//HIZJ1w5LBlEcuFFVF9zLeWP/Burz/fJD5iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMgh6vMIIRllGEYnYADuPe/Zs+z68M2+YGwOcHghZgNvFthTIB7GJMH9b+/E7bAya0geDpebodNmEAkGOeGrNxAO+LE7XaRkZH7k8P5uDylWg/m1LdwzbxsAFgN+fc4oCtI9OGwWME0sFoMb/7Nq73Y5qU7uOn/0nhJtrJq7k1Gzihk0MY9gIEpqpotYNP7hk8mj3RAJwLsP7QsgAeioxlq9BOvAkyDUAM1bYf6voGwq+Aph7dMw6xYoGtNjOE9aOp60dDoaG+hoTE6wTsvLx+NL54NxDbaioo897HLgWF3gfedJjh0/E7/FhT0nhrtqJZ5QMUT80LELVj+anBhvscP0GyGzHxRPSAY7dLckB/JmJQNJHF4ItkIsDGPPh8X3QjwKoy+GV2+BIadiLPk/XA1rcR39XaKBWrzuidDWwcyCXSSyMim4sJx3XqyloF8aO1Y1k4gniATjrH87SOnQLNxpJzFkuhWLBTIKymnaVcXU8y5l2XNPMuXci+hsaiQejeBJS6etrpac0nI6mxoBA39bC9tXLAWSk5snn30B7zzxCL6cPIqHDGP9/LlMPusCFj/9GIZhYfLZF/Dc739F6fCReDOziMeiTDrrfIKdnSx+6hHmXH0Ts84upmt3O9ZYEM/udXgTgz78gMtnZ7HCygcg7E+G2mz4L5z6R5xv/oKC6sX7+nXVw+4V4EyD7uZk21HXg8sHOQOTAQ6h9915Bs5JRme50pJBJBYbZFbiCKX2KsGwWHC43J+69Fgkst/2lIwsrDYbjVXbaazaDkDZyDHYHXYmnn425aPG8Mxvfko4EOCN+//KlC99jcFfu40hnbvJzMig4Td3Ehs2C7vHxpxrhtPVGsKd4sBqM/C3hfZ+ztgTyhg1cF/Ilddh5dlVdTy4eBcAz103FbvdYOHWFrY0+pnWP5uSDAfvVrdz7/zt1LQFcVgt3H/FBI7ql418DrIqk2E47xlzGbz5S2hYk1zurIUp18HI8yBrYDL06f0yy2HVwz2aLPN+QenF4yi46VbisRiu5ffC3DvxHfN9WPJXwgXfAsMgkUj02G7DgjcYf8IcLv/RD4mHrRiZmSx55nHCgQDbVywBwDAsxCJRLF/9BhHAM2ECYYcdhxXKN19HeVZ/OP0eKB2xb+C61fDgWVgqb+q1+1a7HaO7BRRCckjrqlkPjKatI8bcv/4agK3L3uHSX95FSmYW21csw+nxklc5oOeGLh+UT4PNL8PxP+2x6tltz9IebudLwy+lMa+Irz20gndqQ2QVl1K7J8zmw0wvmk6+N59HNz5KYEMWsWic2VcMxWqzAGCaJnU/vo1IVRWl9/0de27ux+7jgPF5pGS4eOVva3niV8uZeGoFA3/3e2quuZqab36T0r/+FcNu/+QHTURERERERERERERERERERERERERERERERERE5BBkOdADmqZpNU3TZ5pmqmmatj3v31s+cmbmGXawuSGzEtY+AU9fsye4w+Tpd3dz/9s7ufKfy1i0PRnU4HC78aT6yMgv/PgAklCUFKeNYCyxN4AEIGHCj/+7jo31e3JfDIP/m7+jx7ZNXWF2tAQAsFig3/hsDIvB9lXNbHy7no6mIL6sj8iKiYWSE/EDTb3XhdogJRO6GsHfCDN/ANWL4a3fJQMo2nb02sTp8XL0JVdQOGgIVrudkmEjOObiK/DZHFizs/ccSju53/kOziFDPvK4yIEVT0TIntGfxN9+hf3Wy+G2a/CaTbgy45CSBx21kD8Calck/879KTRtgIpjoPJYKJ2SHCgSAE8mmCYYe245KbnQngw5IBZKBtp4sqGrLtlmdWDf/DCpG35IqmsdeeWdZHWuxf3ag0xzLKLQ3coJ5+bR1RJg4inldHdGSc/zsGN1F7u3ulj2UpitK0voP+E8GmsHctzVtxOPFzPxzO+QVTKM4668kYIBw+k3YQrejEw6mxvJLa+kbstGykaOBsDf0kJmUTGdTQ1kl5RhGBa2r1zKkGkzSMRjxCJhUrNz2LnmXVIzs3Cn+lj+3NPUbFzP7Mu/RsbOLcRvuw7b/7sI49YrCbU30F76gcnXcmAE26FofPJafOtOSCtNhuD4G/fft3Im5A2DM/4Cg05Mtmf1g0ufTgaPpBbApK/CCT8H2557+YoH4LVbYctLZMarGTFjZo9hJ515Pun5hZ+69IyCQjIKi3u0ZRaX4MnIYMblV5NdUobN7qD/xCmMOPZ4MvKLcHq8lAwdwSW/vIvzbvk5Z952J7etdfCtl2rx+XzEOjtx3nwHrbu7SU130ryriw0L66jZ1IYrxY7NYSGv0sesy4cwcGJej8/2h+N7A0i+PrMfHeEYN/5nNb97bQvPra7jpifX8OyqOjbsbueEYfnMHJRLJJ7glmfW0t69/0AVOQD6ve9682btCyABqF4CrnTwFUMiBhOugMtfgJk/hKO/C979hCvEIxAJYHe6cHlToN+xYNvz2x9qp7gglcadOygZNqLXphXl2biCcSxr1xN78mkGTpnOkGkzsDmdpOcXMuNLV+FNSQb12IuLybrqKoKr12BLsSRDqkZfBLXLobtt36A1SyHYRqEvisPt6fF5R82ajMvf+/lBDiGmSWd9Mixp3QtPklVcyqV3/IFoKMRzd/2KcHeAbcsXUzFmPFbbfvIPB86B5s3Q8v5n2gQPrH+AoVlDGZc3juOH5lGQ5uLBxbsoHjKMmo3riUWjH1qS1WLlnAHn8E79O6yt2sS0cweQke/du779P/+h89lnyf76dXgnT/7Eu1rQL43zfziRipHZvPP0dv77Mtiv/i7di96h7rbbME3zE48lIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJyKNrPTEA5IAzAVwjPfRNakxMz2fIKloZ13DDxXu54u5NwLMEbGxs5ql/2pxq6KxTDNM39TvjuCsfoCiYnZVotBoFIrFefaCxBNB4lYY/hcNp54U+riYbjACx60s/o2SXkV6RjWIwe2yUSJgnDjs1XBGO/BPN+8b79NaBwHDRsBosD8obAo5cmJ0QDbHwWYmHoPxtcqXs3yymvIB6NMuG0s0nE4thcLrypPhq/931yv3MjJBIYTift/30W94Tx2NPTP9Wxks+uw5JKdnQtZdeOImqegMVu4qh/ASNjJvHzHoTWHRijLqI22kGHGSP3nL+R+/afof8s2PhfOPl3MOsW2PAsTP8OvPZjcPqSgTS7V0LZUbDzbbDuySba/gYMPgVW/DM5QX3wybDxeahejCtvGK51d+AdfyEh22ASsVY6f/Zzxl91Fd3z1nPyMUcRd3Zz7AXlvDu/kVHHlrDshSrqd4QIB2JsWBTAarVSvaGJiadWsOTZHYyYOY267RGGz7oBX1aIyrHH0Lq7ingsxMwvfZXVr7/A6ONPoX7bFrYufYfjr/0G21csIz2/kFlf+Tq7t2xk2gVXEA4GiYbClI8ZRW7libQ3xpj/dIBTLxpO8fcvIB62ssPVnx+vCnJuc4zzyvvyrH5RGfDsNyC+Z0J69sBkSMOYS2Hu7T27lk6BEecl+5oxCLSAJyu5rmgsnHs/hLuSbRYrtG4nuvw+dg09kYjFQnHtGlKr3mBaWQEDvv0durpCpOXlk1fZH5v90+dsedMzOO3bN7P8+afZufpdykaNYdzJZ5BdXEosHGHcKWeSiEVxelNIzy/E4dkX0JCem096bj5bGrrY2LSR8YUpBJ55hsTpV/DcfdspGpBB7cY2dq1vBaB1d4Dq9S3MuWYEZ357LFbbvhyyFn+Y1kCEtj2/K1dMLcfndlDTFmRnS3ePmh94ZycPfWUS59y7iBuPH8i8zY1sbwrQFYqR7nEQiyeobgsSSyQozfDgtFs/9XGRDyiegHn+g/DabRgWWzIwJBZKris/GhJRqHsX6lZD4RgoHgtv35W8lo/+bjKkJNS+b7ySiZBRATvmE0xEqXb74IrnKG2rxjX8XPI33sNZX/4G69dtYOaXrmHXmncxLDB6VDmFDc8Scl5L+yOPEt68mexjZzDwqKPpN34yJibeFB+OJcvJ/upXibU0U3fLLeT/9Ce480wouhSaNoEzAjsXQvFESM1NPkMAOSt+xfkX/4BttUECgTD9RwyhaMOfYMyvDvYRl0+jcT1doTAAgdodzLjma+SWVzL76q/zwt2/4Z/f+TohfxejTzhl/9sPPAFe+j5sfhmmfA2AV6peoaqzil8f/WsMw8BmNThrbBH3zNvOt04bT/TVF6leu4qKMeM/tKwZnhP4c+LP1A5fydBp5+9tD23YQMNPf4Z36lSyr732U++uy2tnzjUjqFrTzFv/2cLL64oYOeYMePwJHKVlZF991aceU0RERERERERERERERERERERERERERERERERE5FChEJLPQ9gPCRPCHfsCSN7TWctITwuQnKwejMY/0ZDReIKOQASHzUJmioP6jiBlWV7sVoNofN//ul6S4cbtsJBImFRme7loYil/fnPf/yzvsFoYVWbnj+/+EZfVxbSOU/cGkLxn7Zu1DJ5SQFZhSo/29bvbcNmy6cdujMpjINoNqx5KTtbfO8m5GfKGwpaX9gWQvGfrK3S3VGPNHbR3UrrVaqNo8FBCAT/xeBy324P/jTdoXbuWuptu7nkMTj0FRo36RMdL/ndpoToMhwd7ohP7pr9AZj/ajv0e3RbIePeftJdNYVWknp8s+w1d0S7yPHncdfyPGGbaMbMGYLRVYRaOhZS85GT3k36DYRiYZ/4fxrbXk5PgE3HoaoD8kVC/OhlgMuYSWPc0DD8HzrwHwgGIBWHspVjtbryvfAlGXYjz1i8RaenEOnokdT+5ieyrryZ639+Zffsv6V78BMeVp5HIS6V/rkEwYcORnUXQH6arNURuWSrbljcyYEIeq15vxGq3MOm0Yix2H/72MBsXt3DUWd9lx6oWorECRs5OY+38ZgYfdTE73m2isbqTiaecxVuP72D4MRW8O3cXiWhLj+PX1hon178IPFnYM/uzdHeAM2KJPjmXX3jtO/cFkABklCXvT67UZADOyn+BKw2mfRvcmeBvhM7dYHdBaj40bobcgclt7e7k672hE1EeGH4sz9S8isPmIC8lk1vTB1LuyqWi+XU4/if/c/nZJWUcd+V1RLq7cXg8WG3Jn+aSIcMo6DeAeCyKw+3BMIxe2zZ2BInGEpw1pphxNj/hN7exZXU3iZhJXoWPZS9U9egfaI/Q2RRkUyRMwoT+uSm0+EPc9ORaNtZ38ZeLx5KX6mBsaTpbmwKkuXs/JsQSZjJoC9ja6Kc4w8PQQh85qU5a/GH+sXAH987fTixhcsboQm48fhDFGZ5e48inYHdjDDmVDc6RLNnWwIkTbeS+fVtyXWoBvH4r7JifXF7/FAw4AU7/Mzx2KSy+F+b8ElY9krzPVhwDw8/CXPsE9YXD+H3tXFa2bwJgQt4Erp/5ffJrVlCx4y2Kjj+RRM4Qxp54KkSCULcSCs/F6HYSb2sDwLZhE84350F5KZ5BQ2j8yrX4Ez3vdUY0hG3785AzBJwpsPklqH4H4mEYcjoUT0gGVIU7yV34fXJTcpPf3blfhylfTwYLyaFr88t0mR6smDgsJgMnTQNgyLQZdDY3sey5p5hw2tkUDRqy/+0zKyBnMGx6AaZ8jXgizp9X/Zn+6f2ZXTZ7b7eTRhTwpze2sc7MxeF2s2XJ2z1DSOIx6KyBUCexcITND25jSsYgtmXNpSvcjs+VQdzvp+aGG7Cmp1P4619hWCz7KeiTKR+RTcmQTNYt2M2yF+zEa6vhzjsJp+RQdNEZn3lcERERERERERERERERERERERERERERERERERGRvqQQks+D1Q5WK9g9YBhgmj1WRyxuIIZhwMxBuR873Nb6DrqjcWwWKybgsEKO10lNe5DvnTCYe+ZtoyUQoSzLw/XH9gcT5m1uYubgXM4dX4zPbeeJ5TUUpru5cloFrfHVDM0YSklqCYnO3pParQ4L5geyEqpb/IBBa3ecfm4TNj4H65+BIadBqAOe/w6ccx+YCbA6wZHae0e82cQtDnY0+RlWmNZjlcu7L/DEkpqKYbdjRqM9+ljT0z/2WMmBY3enwMYXwDCIj7uCdwoH8fO1f2Rq8XSCmRkUE+Ced35LzIxR5ivj7AFn8++auQxIKWGwrwy/A4q7qnEaBkYiRGHrDszcgdjd6Zjl00g40zGmfhuCzRjDzoK6lRiGBdOTjTHoJNjwLKx7BoKtUL0YZtwMr/0Y7F5wZ+J44+s4Bp+CaVhx/+QyYr5K4mecRuA/D2PY7fgXLiT7mmto/stfyLrySloefJBJs0/CdtQ5UGAQSGRicVsZd3wR6xY2sm5+LVPn5ODzOtm0OEpXq8mO1R2k53qo3hikuaabkD9K7eZ27E4r/tYwkVCceCyBzWoh8oFAIavTARuWQCxMY/rpOG0WBuXv53sh/ztHz8Ak3Onw1u9g4BxY9W8YdDKEO+GF7yaDGdLLwWIBixX8TWB8yE9h00bWOCwMK57GlMqTAIgn4sxtWsNlWUOxhdoP2C5YbTbcPl+vdpvDgc3h6NUejsZp6AjRFY4SjMQ5a0wh3vYmrNlZdPv3XYuGxcBM9PwNwoAHF+/i1fUNZHkd3HrqUGYMymH20DzSXDZ+fe5obn9uPVsb/fzfpePI8jpoCUT2bn766ELS94ST5Ka66J+bwleP6YfLbuWNjY388Y19wVdPrdzNoDwf187o978eoiNb207YPo9Bde9SlD+Zt8PTGXjKY+TF6vB07cZ4L4DkPVtehnGXJ9+HO8HfAHYnjDgHapfDfy7HOPq7LCLCaYMv4DyrCwwIxoIsaVnPaSPPg5Hn0ePKc7ih7CgArJs3kzrnBNoeeBAwMKNRAn//B66vX9e7dqsVLAZsnwd5w2HeHfvWVb0Fl+VB+TT40vOw5j/QXg3DzgSnDy55AnKHgkMhNoe0La/S5TkKZ2eU4kFDcXr2na9JZ5zLpDPO/fgxhpwG838NHTW82PIuOzp28NtjfovVYt3bZWiBj/IsDy+vb+Si8ZPZtOgtjrnkCpw758KKf8HOhckAKpL/wDnVgFPbgXaI31GJmVpItCWBLyVA6g/vxZaZ+T/vutVmYeTMYoYcVcCql/Po/Pm3if/0FrZuNxl9zQmk5ejaFRERERERERERERERERERERERERERERERERGRw4tCSD4PNmdyUnwsDOOvgqV/3bvKHHMpW80Cjh4Q5NzxJfRK+/iAcCRGMJrAMAzsVrBaLJiYOB0WdrR08+c3t3LGmCK8ThsNnSF+8NRa/nXFRO6Zt5WJ5RlUZKdw7TEpXDyxFIfdgtNmZfHuFGwOG6FEiNy8ArzpTgLt4b2fOWZ2KZmFPSdNRuImFgMMw8CMhzFWPgihdlh2375OzVugeEJywnNKDpRPh6oF+/b9mJuoimXS0BXEZbXQL+9DAhk8XrK+ei3Nf7h7b1PGpZdiKyv7BAdfDpQ2ez5px/4I65NXssWTyteX/oIcTw4JM8HT257hqhFXETNjGBicN/A8frv8t5SllpHjyeHKBd/luNLjyHZn89TWpzhv4Hm4szJYXPsCF7jOxLREIFJHubeQ7nCE9Lif1LKpRBMxrIlUsuKtuOpXY6QWgmFJFpSIJgN9cgbB7pXJtrxhGPPuwOlbhrPiaNw5m4gcewOJhA1HYTZGSgqG00lwzRo8Y8bQ/eyTZJcX0Xz33Tj698c1dAgsX86p372F0LK3iP1+Kb5Zc5h+7HBqaroYNq2Q9W/tZtDkfLataKKjKUhmoZfW3QE8PgeGAdtWNDLs6CJWvrJr77FLzXCQndENrduJn3EPz29z8L05g2jqDPXBmTwCpBZA5QzY/mZyORpMXifrn4bOWlj+j31961aBxQHB5mRglN2TDCP5oM7dxOf+nLSZ38HEJBwLE06EcVqdTCiYRCd2MvsdexB2rretjX5+/9omwtEEl00uxW6z0tgVpiQrF/dRRzE4287urbBzbQuDJuWzcVHd3m2zS1LwZji5bkY/Xl3fQEsgwtPv7qYtEKG+M8S4sgyW7Ghla6MfgKqWAL84awQvr6tnc4OfYwfnUprppiscozTTzczBOUyuzOCNTY2MKklnwZbmXvU+s6qWy44qw+PQI8dn4m+Cp66BXYuwAD7+zrHjrqZ63E2Eg1V4InX73+695wurHeIR2PJqctnmSt5X23czZuzFhOIh2kJt+KN+Mp2ZlPpKP7Yke3k5tuJiMi69hND6daQeP5vAwoV0vfY6GRdftCecJCnz0kuwmh1QMa3ndxEgEYOaZckQksIxyZccXoJtUL2YZu8FOKMBykePSzbHgiyrX4ZhGIzNHYvH/jFhHGMuhvm/IrL8H/yu5U2GZA7huLLjenQxDIMThufz9wU7uOWSk2lc8hzRP0/HGdgOviIYcynkD6e+3sLyl2vpPyqFQaN9PL7uXwTatnNWJA+7fxW5I2LwxiXQ+WWYdQu4egdAfVp2p5Xxpw0kMPbv7DjvAtIf/TlPbo0y7JwJjD+pHIuld+ifiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIoUgzgj8vvgLw18PQ06FsCnRUQ3oppBZS0pFNUXsz33hkJTfMGsCsoQUfOkxdZwiH1UJ3LEFdZ4QH39nJtqYA9140ihSXlbbuKP9YWLW3v8dhxeOw8J3ZAwlE43hddgBS3fa9fbx2L/FEHLfVTcTXxbGXDqZ2czv+thCFA9PJKU3FYrH0qMNttxKJxalqDjAwz0Waw5MMIXk/uxuaN0HJZIj4YcxlyWCAWAi8ORjZA/nvO+v4v+WdPHbpOIotBoZhAZuBI929dxiL1YK9tJSiu+4iWrcbW14e1uxsXCUln/l0yKfXGYoScPQj8uX/sjXSytT2KVxddAWRQJDTJswhNeZl/IiRpDpTiQUj/GHMnRTa8qkK7OTnI25ngLOSFd1r+M3IX2LFyjudS/jOgBtY2LyIjkgHJxafwB82/5VRqSOo9CR4fM0fGZM9hixPJovq3uHoY67Ha3UQjoUoPeabdMfDeE77LenOdEKY5JZOgPzhMPlqcna8TbziGKxVC3A1vgRtO3BntxIbOxXPr/8frc/Nwzv1GOKtrcSbm3EOHEB48xZ8J55IZOs22n5wIznf+AZdWzy4PHbcf/oeQ6ccja1yIMUnD4JsB1PPLGP5q7sZd2IZ21Y0suHtOqadN5BN79QR6Ahz7KWDaNjeTnqmhaxKCxsdVXiufInWcCeTh7Yzf10XVqOor0/rF1PYD+OvgIpjIBpIBoskEuDw9u7r8sHL34f2nckghqnfBE92jy7t4XZauxt4a8AkHl1wM3ccfQet4VaCsSDlvnKsFithm+djQ6Q+D/5QlJ+/sJ7pA3JYuLWZ2o4wNz+1BtOE/rlefn/KcQzITqNyUn8gQSiSIK/CR93WdlKzXBQOTOeq59Zy/az+e8fc3NDF+LJMVla309QVZm1tx951HaEYVz+wnGMH5XD0gGz++24tO1q6efjKiZw8soC3tjaRm+LizU1NnD6qgHHl6TyxooZwbN+xGVOSgdO2n6AX+WSaNsKuRT2aHCv+RtnIs7E+dy3G9G9DzhBo2rCvQ+FY6KxPvs8eDK40QkXjWDv6bDbH/RSklpKXOwojHiISj9ASasHEpDvejQcPjZ3dVLd0YxoWDKAy20tGinPv8FaHg9Rp02j49a9JO+MMbAWFFP3+dwTXrMGen0/hnXcSb28j0d2NYTVwNj4PHjvY9/Od3N/3VA4fW18HM87usBd3vI3yUUexoGYBP3jrB7SF2wBId6Zz4/gbOb3f6RjGh4RxZJRDv2OJLL6H9vwMfnvMb7EYll7djh+az73ztrN+yxouqVxFqNNK8Pg7cE+9CixW/G1hnn9oCal5g+h/2TiwWRhbOZWz/3sWS9Y2cVPoXIqv/x7Goj/C0r/B5pfhokcgb9gBORze4jwGPHgfVRdcyIQ1v2NF9Bp2b25j9leG4U1zfvwAIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIifUwhJJ8Xlw8sdjBN2twDiXpHE+howxnyUpGa4Nql1QBU5nz05NsUp5VAOEY0nuDrD6+gMxQD4Kx7F/PQlZMYW5rOil3te/tff2x/qlu7MTHITo1CqqvXmHaLHafVyfrW9dz69q0MSB/ALSN/Sok9h5QsJ+ne3v8jvNthxR+ysKs1yImvNbBw9vcxnvvm3vVmaj5G3jAINMGmFyG9BJ76Uo8xzMpjGd7vxzw5tB9DM72YCZN4SzfhbR0E3Tac/dJxVaThGT4cw2olvG0blrR0rGnpuIcP/6RHXg4QV6KbdqOV4G4XU2IjmRIZSvDhetLmlON/rh7D1s2wERV0zasmZUoh0boA0d2dTD52FF3za3CW2jnRN5nAsgbSjitj0OYsEkujXDbxLPzL63AHMrnDuInokg48U/OZ4K/E6ADroFSOi47HFvMQa41AMIG7yEe0qRtbugtiEOnw4yqaQaQrCIVjaO9/I22tLfjOeJV4LIaJicvpItoWxDnQje9r00jEE+TfeSzR5gCpF3wV/GHiXQFSjj+XeEc3Fo8N1/Q5xAJBSu6fQ6ypHYvLiWG1k+jswto/nQHZZeCwM+iUAmKdMWw+kwEnZpCwOLAbLRQPNgn5Muje3UF/BmDJcpBR5SbojJDdL4Ajy+zr0/rFZLXAI5eDuef4+opg6g1QPA7qVu3r50qDtJJkAAkkQ0Te+h0UjgMgGo+yaPcifrX0VzQGGzl/4Pn8bPrP+Nnin7G2ZS0AqfZU7pxxJ1mONFj7LPSbccAmr38SuztCDMxL5e8LdnD/eQNYsr6Kn80q5OSKIsyd3TjcXhL1IULb2rG4bDgrfFRkOKiYVcxWfzfnPLmCxq4ILYHI3jEnV2axfGcyLMAfjjG2NIP5W5oBcNqSIQBzNzUxd1MTkAykWLS9hQyPk/9bsJ07zh7BOWOLWLithVSnnVtOGYrdauHFtfWsrmnnksllWC0fEjwgHy8R7blcMgmm3oB18V8w2nbAs9+EL78I656GnQuTYTxDTgEscPlzYHEAJq85TG5e8xcuGXwJ/TIr2dKxhcKUQm5ecDNjfSOYYh9Jd9xP/37j8devI9vuICUjE78/QHNVDH9WHiUFOXvLcPbrR+H3riK69m3MoAOLx4Vr4AASwW5sGT7sjjYsGYNwrP41luZ1cMpdEI/A41/ety+uNCg76mAcRfm8rH0SUgtoaDXIsMbY5mjgG69/g35p/fjl0b8EE+5dfS8/WvgjltYv5UeTf4TL1vvZFGD1wGMZuW0ut3snMzp39H77jClKJdse4ZXFqzipfDwPL3JhfWIFJxftIKe8H6/et45YLMHsK4Zi3XP/Ko2nccZKB4+PDjJn3CxKsirhlDth1AXw2GXw9+PhwkegYvoBOSTOygrK//0Q1VddzYS1d7EhchGPN3Vz6jfGkFmg0B0RERERERERERERERERERERERERERERERERETm0KYTk82Rz0hay0BmMEgk14vR4CPm7cDsjXHtUMYGElfFlmR85hAHYLAbbmwJ7A0gAOkMx7nlzC7efNowN9V3sbg8ytMDHq+vruOOlTQAMyU/lr5eNpyTT07Msi43uWDd3Lr+TuBlnY9tGLnrrHAD+POvPTPf2noQZjCbweWyUZHnY3RHihvX9+OXZD+KsXoCZWgD9ZmF1eCAehddvheNu770vO95gwMib6Jfjw7SaxHcFaXt00971/oW7ybp0CK7KdNxDhuAeMuQTH2o58CxGAGdDDinPt2M/3krnohrsRSmEq7uIt4bwzS6j87WdWLx2iJuEt7aTMr2Iztd3YUbi2PO9dL62C/eoHLpXNhKtC+CbU07Hs9uxF3pJdEbofreJ1FmldD5bBQkT33GldDyyHe+EfCJvNBGtD5B2ciUdD23BWebDTA0TXNWE77hSuh7fAQZ4x+fR+foWfKNyYGsn0U0t+GaX0/nqNlyDMgjHuwltaiVtTgWtL27EPSKbSGcH4e0dpJ1cQdsj27B47biHZ9E1bwepM0poX70Tw2bBUWEh8PbOZI3zqyBu4p2YT9tru/BMyCPUEiK8q5O0EytoesWPd2I+sbn12AJRHMem0/nwDgzAA1R4nYQuTPTtSf2i6qjdF0AC0FkLy/6WDD04/yGoXgTubCidDA+f23v7UDsAG1o38PW5X8fEZGL+RAyLwabWTXsDSAC6ol3ct/Y+Tiw7kdS8MrZUv4KrYRGTi6YyJOvzv2e57VbS3HZ+ON7Jq7+8mUgwyKU/+h2hl2pxDc6A1jAt/37ffdVtI/P8gbT9awNpp1fQ2JUMH8lKcQAwuTKT/DQXO5oDOG0WCtJcjC1Np6olwDOrdvPyunq+PXsgf5y7lUg8QU6Kkx+eMoTsFAc/fW4DPzhpCCRMqtuC5Ke5uOnJNQSjcQDOHFPEo1dPpn9e6ud+XL7QsgeCrxg6a2DiNVA4GmqXY1QtSK43E2BYATMZiLPpBVj6VzjjHsgbAfdMoXHq9fy6aS5lqWX0z+jPta9ey7fHf5tN1Zv4UtlF9GtKI9bqp9+E8YQ7uwj5/RiGQfvuWqo3rGXT2/PJLi1n6vmX4EnLoHDAIABs/u3YVvwwWYfVAXY3hDpgxMNQORpSC6DkDnD6IK0IosFkMMrmF8GbC/1nHdQQHznAgu2w9VXM8V+h4w2DfllubnzzRsp95dw35z58jmSo3aSCSdyz+h7uWXUPW9q2cOeMOylOLe4x1Oqm1Vy79WH+7k3npKqV0N0Kng88I0cCWJ64itmJAv5rHE3i8ls4ecY2nv71T3nw5hvILDmdbn8/xp+USVfzNtbMXcGOZYsZ8PZyTu/uZuuUQdy68hd4UjOZVTYLSibCVXPhgTPh4fPg4v9A+bQDcmic/fpR9si/qf3GNxny7n20NL/L8+3nMPu7x5JfmXZAPkNEREREREREREREREREREREREREREREREREROTzcNiEkBiGMQe4C7ACfzNN85d9XNLHC3cQtZVjd0XZsXI5y194BkyTzMJiLr3mG2RUDMTj/OhT0BVO4HVYsVktvdbN3dTCLScPJb0yg1g8nesfeZc1tZ1712+o7+Kd7S09QkjiiTgOi4OmaBOtodZeYzZ1N+23jsJ0Ny1dIVr9Eb4yrYKHFu/kmfUWzhxzESN9aZydUYwv3JScgJySD67eEyzN7MEsbrDQv8QCURP//Jqe64MxItVduCrTP/KYyMFhxN045zWQAMxYMjzDnuchvK0d3mszwZ7vJVLdldzGbsEMxrDleojUBQCwZbkIrmrCcFpJ7AlAcA3MpOt9598Mx3GPyiGwrAEAa5qD6NIAjnIfoU2tEDdxVqbR+douLD4H8a4I8Y4wqTOK6ZpXA4aBPdtN555wEP/CWszwniCUV3Ymx15SD3ETe46HznebcJSmEt7aTiIQJeWoQjpf24nV5yTRFSHWFCR1Vildb+zC4rFhhmLE28KkHF1E14JaMMCW5qR7aQOe0TkE3qnDDMexOK3E28LJ4JXlDT2OZyIQxdVoQv/P86wdoVILereFuyAlF8qmwJBTkm31qyG9DBrW9uzryQLTZGvbVkySYSaTCybzxJYnOKHshF5Db+/YTpGviGtevYaYmQyHcq2+l/vn3M+w7M83UKEk08NR+TbevvMvdHe0M+7kM7F2WbAOyMA1JIv2J7b26G8GY0Rq/WAFz7ImThiUw5CSdEKROE9+dQpbGvzcO387R/XL4rghedzyzDoau8Jcc3QFPz19OP1yvDy1soZvHtcfu9VCU2eY6x9eyR8uHM3sYfn8+Nm13H3BWBq7Qry2oWFvAAnAUytrOWtMkUJI/ldpxXDxf4gt/ye2ssnw5FVQOAaKxsGWV5J9OnbB4nt6bvfaj+G8f0I8SthqxzRNfjPmpwTa2rhn3J0UeouIxrqwWuw0s4PMin5sWvgmK198DtNMkFFQyITTz2HQlOlsens+zbuqWPDwPykcOARMk8KBg8FXBIaRDAGKR5IvuydZc97QZB2ejH012d1QMT35ksPfxuchHqEudTwhi5O61DqiiSh/mPmHvQEkAFaLletGX8eI7BHctOAmzn/ufL4x5hucXHkyAM9se4a7VtxFliuLrHN+jvHAOfD01+D8B8G65zm5aRM8cSU0rOX4ib/n34tsLKpqZ8agIXzlrv9j/sMvs3mZj1h4LW89lPxeWCwWJvhjZLR3sbaikClLMogcbeWGN29gYv5EphROIc2Zhu+Y65n66s9xP3g20YsexVU544AcHntuLmUPPkDLff+Au+8m881VbNj8HOGvX0rp6UdjWHo/24uIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiPS1w2L2m2EYVuBPwInAUOBCwzCG9m1VH687fSiGxYK/tZnlzz+dnKQLtO6uYdnzT+GwJD52jNJMD267jQKfk8psb491V06vIBhP4LRZ6QjFqWkL9tq+sSvcY9lqseJ1ePHavQxIH9BznWGlMKXwQ2vJ8DopzXLz2oYGvnxUBdcf25+GzhCxhInPbQeHG/wNMOVr0FUPg0/Zt7HdTffM2/n9O60YDgvEEyQi8V6fYUY+/pjIweHAjbnnHBm25K0iWh/AUerb12ZArCWILX9P0I1hgNUg4Y9gS3cm2+JmMpwknsCwWwEwY/HkdbBnEwCL00oimAx02PNVweK2kfBHk22JZKMtzUmsNbSng4EZTWBNdexts6Y6iLeFwcLe+q1pTmItye+HGU9eY7YsN9HG7j31JANVbNluovXJ8BRMExJg8dqJd0T27rMZjmM4rcS7k7VaM13EmoI96jYcyX69jmnisMl9OrwUjYWxl+9bttphzh2Q1a9nv65mGHMJeHOSy4YFJlwJsTAkYqQ6k2EZNsNGIBpgYPpABmYO7PVx04umU++v3xtAAhCKh3ht12sHfNf2J90M0t3RDkDFuElEwsnrzzCMvdf8+5mRBBafg9huP+ePLOLx5dXk+VxkeBz85tVNfH1mf0wTfvL8+r2/GffO30FDV/L+/uiyWn798mZ+/sJG/u+tHQQicVr8EX7z8iauml5JwjQpyvCwrSnQ67Mb/eFebfIZ5A3FNucXmO01EI9C9RIonw4ZFcn1gd6hYrTvhGjyHpe/awn3Df0ti//8N96847es+tM/8VfvZuHDD7DosQfx5eTS2dTIihf+i2km75FtdbvZvOgtGnZspXBQ8pGrtbYab0YGW5cuSn5G4Sg45qZ9n2kYMOfnkD/yczsUcghZ/Qikl7Fse/L3d3diK9eNvo4SX8l+uw+3juP7jl+RHsjlp4t/ypR/T2HKv6fwyyW/ZGT2SP554j/JrZgJc34Jm1+E+0+CxX+F574F90yHjmq48FGmnHQJHoeVV9Ynw76CXbBzfRaZBSlccMvpnHbj/+Osm2/joulzyNqyg6yrrmTKb+8ivLuZC6vG8s2x36Sxu5G7VtzF7Ytu5zvL7+AUH1QTI/bgmfz95a/THmo/IIfIsNnIvvoq+r/8EqnnnEtu/VK6b/4qG6dMo+b662m+5146X3iB4OrVxFpaMN97kBAREREREREREREREREREREREREREREREREREekjh8uM+InAVtM0twMYhvEIcDqwvk+r+hgJixOLLUZbXW2vddVrVxPs6iQ1M/sjx7BYDFx2g7qOIDccN4Da9iC7WrsZU5JBSyCM12mDhIndCscNzeM/y2p6bF+e5dlPYdASbOEbY7/BH1b8gS3tW8hwZnDDuBuIJ3pPYH9/LcMLfFw3sz9/eXMbgXCMSyeXccKw/GQHTwbYPbDgdzDqAhh+Fow4F4JtmNkDuWWJh8umeIjG41idBt7xeXS+vPN9HwCOkpSPPB5y8JjWMJYRKcSXdxLa0ErqMcV0vVWLe0Q20YZugmuaSD2mhK75NdjSXdiyXARXN5E6vYiueTUYTivWDCfdq5tImVpE15vVYAGrz0H36mZSJhfQ9WYNZtzE4rUT2tiKZ1QO/oW7IW5i8dgI7+ggZUoh0boAZjSBxWsnWh8gZVoR4S3tJIIxLKkO4v4I1j2hJ/H2MLZsN7HmIIYjGXoSqerANSiD0PrWZHiKBSLVXTgr0+he3rg3UCXaEMAzMofIri7MUBxLqp1YSwjP6FyCa5uJt4aw5XmINXRjTbEDe4JZSlKJVHdhWAwMuyW5L6Nz8S9433ffYuAtzTjo5/GI4M2G438Cw86EQBNk9YeC0b372R2w+N7kfcnhAYsNNr0IpVPAamdo1lAGpA9gS/sWPHYPbeE2bBYb14y8hn+u+yeheIhpRdOYWjSVLW1beg3fFmr7/PcVSMvMwOF2EwkGySwqYtfO5RRa+hFq78Y7IY+OF6r2dTbAWZaKf34NzjG5PLOpgR+fOpxJFZk0dIWJxEx2tXWzaHtLj8+wWgxME1KcNoYX+Vhb27l3ndNmIdfn4m+XjSMaN6nvCBGNJZhYkcmSHT3DMPb7GySfjcWC4c3atzz3dhhzKaRehJlZgfGB7mbJJIzqFQD4+1/IvL/9lfaGOgC6Wpp55Z4/MOe6b/Hc7+/A7nZRPGREr4/cvXkjmUUlFAwYxO5N63F6vMQiEaLhPeEyDi8cdT2UT4PO3ZBRnvzuGR+sRr5wmjbBjvlw7I9Y8cJaYDql6elcMvSSXl27OyMsue8t2t5YiCfYyE2eQrYX57ImK0aHkUFReChz0o8h3ZKZ3GDiVeD0wSs/hBe/C1ZH8r4961ZIzcMFzBiUw6vrG7h55gCe+9MqLFaDk68biS/bTV5FGW2PPEr9H+7Gd9JJ5HzrWxgWCxNPP5t3nnyU8477BVeeeSWBaAB/xE8kHiGSiNDYsJq0p77BOYsf4tsNS7nuhL8wNm/sATlc9sJCSn5yK4Gvf4MFP3gA19ZlGGs20PVqz/Aqw+3GUVyEvagYe0kJ7uHDcI8Zg72kBEPfKxEREREREREREREREREREREREREREREREREROQgOlxCSIqD6fcs1wKQ+quUTi0SCOFNTcaWk9lqXW9mfRDzxicbxup30y03htmfXU9MapDjTzdMra/njRWPJSXUTisaJxOLMGJhDOJrghTV1ZHgdfHlqOSUZ7l7jZXozyQvl8eOFP+aM/meQ5c4iGo/yxJYnuOWoWz6yltLsFEqzU5hUnpwoWpbt7dkhpQjGXwHzfrmvbfjZdFccz4xBBqtr2nlxaysnl6TjqEwj7aRyAssbsXhspEwtwlr0gfGkz7i9XrZbd5I/pZTE1hihzgBpF/enefdO4mPipHqzaO7cjetUH+3dTVimO3EabjoCbThOyyIcD2M7LgMjbBAyQ7jPLiIWjOM6MR/THydmSZBydjnRxiApp5YSrQ1geG2kHFdMcG0LvjnlBDe1kghGSZ1VQveqJnzHl9K9vJF4RxjPhDy6323Cd1wp/rdqSQSiyVCR1c2knVhO15vVRKo68U7KJ7C0Ht+sMsxIgsDSetJOqsS/sBZrmhNHZRrdq5pInVlC17wasBo4K9MILKvHd0I53csaiNR2kTK9KDnOcaV0r2oisqsL75SC5HhzKkh0R/G/vRvfnHJCm1sx4wlSjy8l+G4z1jQHqTNLcBan9fVp/eJypUG/mR/dJ2cITP4qvPi9fW0lkyF7IABFKUXcPetu1resx27YWde8DqfVyYqGFdx21G0YhsH65vVsbttMujO91/BzyuccwB36cOl5+Rz75Wt55d676Wpupqm5CjJMyqIjsJX7SDu5gsCyBiwuGynTCgnV+HGUpOI6qoAfpTvJTkkG9hSmu/l/Jw1h5a42BuWlsqmha+9nXDyplPmbGinNcHL10ZX8e3E1i7a3UJnt5YppFeSlOvneE2vY3NDFXy4Zy5iyDMaUptPRHWVTQxduu5UfnjKEIQW+g3JMjhgFo6FsKuxcCPEoLLsPTvsTjeljyD35TozXfgzhTsy8EXDcj+HRZCBEZyJtbwDJe2LRCMGuZLhM1bsrGDKt9/cnr7If4WCQaDAAhsGUcy5k6bNPcsK139jXyeFNhpDIkWXxvWB14K84hXnOX0EYbph8KTbLvn9amIkEO//xJA1//yd5rVvJA7DbsXg8ZG/xMzEeB4eTQGU763cabHh7AFPP6c+A8XkYo86HkedBVz14ssDm6PHxxw/N54U19fz5zqWkdyQ4/Zuj8WUnn3nb/v1v6m+7nZRjjqHgl7/AsFgAmHjGuaxf8AZv/ONeLrnjLrx2L177vufOfun94OrRRP8+m9/u2sbXnrucr8z+PbNKZx2ww+bNy2DGXV/l2btXsWFXF8f9tIKSnAjR2lqiNTVEa2uI1CTfB5Ysoe2BBwCw5efjO+EEfCediGvkSAWSiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjI58YwTbOva/hYhmGcC5xgmuaVe5YvBSaapnn9B/pdDVwNUFpaOm7nzp0Hvdb3C3UHCHR20LR9K5vfWciWxQsB8GZkMv3CyxkweSoOp+sTj7dhdwebGvx0R2L0y01hYnlmj0mI62rbqGkP0eqP4LRbKcl0M6E860PHW1a/jAfWP8CyhmWMyBnBlcOvZHz++M++w+9p3Awtm6C9GlLzIH80ZPfr1S3SEcQMxSGSwLBZsOV6sFgt//vnH1wHZBbooXbtvqd+62Ze/PPvmHbWJax642XqqzYz+viTWfzko4w6/iR2rVlFe30dR1/8JeY9eB+55ZUUDhrKuy8/x4hZJxBoa2PX2lVMv/ByVrz4DLkV/bE5nWxetJBjLvky7zz5CP0nTCHY2c7uLZuYdOZ51G5cj9uRSuno0TTXVJEIx8ke2I/MrFLiVium04U1EsPmsmC2d2OxWgmH/YRbukgvLiDaHsQwDRxZXkKtfhzpHuKRGIlwFFumh0R3hOa6nTRVV9Fv5ASqNq4kL6cCm9dFsL2D9PQC/OE23K4UOpubCEQ6yC0sZ/uGFZQPHk1b3W46O5roN2w8u6s2kVdYSairi6gZweNIA4fB+hVvYiQMWptrOfGqb5FeWIDFbu3r0/lBB2wG86F6/e5Xey00rIa2KvBkQu4wyB++/66hdhr8DWzv2s49q+6hM9LJ2QPOZlzuON6seZPK9Er+s+k/OK1Orhp5FZPyJ+G29w5++jx0tbWwffkSHC43iUSC5c89RXdXJ+OOO52RRx8PYRPDapCIx2mvqcVZlEZGSVGvcQLhGGtqO+gMRqlq6WZLQxfHDMxhQkUmrf4I25v9FGW4qWsL0haM4nFYKcn0sLOlm3A0Tr/cFMaVZmC1WkgkTOo7g7T6o6S6bJRmeT7PifJf6HvvR2raAnXvQqgdsgdByQSwu2nsCOLs2Ioj5sfvLqYhnsKg+BaszRtoco/g0V/+nGg41GOok67/Di/c/Rt8OXnMuvKrrJ37ao9nlQmnnU1aTh6hgB+rzc6OlUvpN2EylWMnYHc4D/6+fzF8Hl+Kg/sw31EDfxgDoy7kQaOS2zdvJdJ0IgsnDsDRGibeHia8awMdix/C3rGTkDublKNOIueE4/BMHoo9x4MZiRBat47O556n4/nnSXR00FEylo15c0gfO4yjLxhEZuGHB9Nt29zK8fctYnTUxt3XTqRwQAZmPE7T739Py//9jZSZMym66/dYHD3DSzYtWsBzv7+D46/5BiOOPX7/gzdvIfHPU4kEGvleTjYnnPA7Tq48+UAeQSLBGM/9aRX12zqY9aWhDJqU36uPGY8T3rqV4MqV+OfNJ/DWW5jRKM6BA8m8/DJ8p5yCxXnQv4dKPxERERERERERERERERERERERERERERERERER+YI7XEJIpgA/Nk3zhD3LNwOYpvmLD9tm/Pjx5rJlyw5ShR+ucWcVkWA3a998lbTsHBLxBLFIhIoxYykdPrqvy6M72k1zdzM57hzcjoMzef4L5oBPxjxUrt33dDY30tHUSCwc5p0nH8GXlUNe/4FsXDiPEccej7+1lUB7G6XDR7JlySKyikvJq+hHuDtARn4hGAYYBh6fj1BXF05vCpFgN/FYDKfHS6C9DYfHQyQQIBwMkFFQDGYCq8OBLzuHWDiCw31gr81gVydNO3cQCQZxp/roam3GneojEYsRCYVxp6bQVl+PNz2NBQ/dT/nosdRt3UxXUxMjZ5/I2/95iBEzj6e1robGHds56tyLWfDwP0jE4xQNGsqQo4/Fl51DZlExaTl5B7T2A+hzmUh8qF2/B0pHuINwLEyuN7dHeyAawMDAY/cc9Jq6OztpqUmGZmx65y08qT4geX170zJY+NiDAEw59yLGn3IWDtcnD706DHzh770HUiKRYNWrLzD3vnv2to087kTisRgbFsxl9tXXs+nt+QyaegzuVB/xaBS7y4XD6cK0WjCjMaw2K66UVDILi/twT74QDv8QkqeuxVzzOI0T/sMZ1d+hs/5MnN1jeNaRjsUTJLD4EaIbFhJypNM++lwGTpgBTSHMSBwAa4YT18AMXAMzcfZPx4wGaf3Xv2i97x/EAwGaCiawvewUBp48mlGzSkjJ2HfvCvmjrHqjmpUv7+KFlAjbHAmW/OA4HO0t1P3oRwTmLyD9/PPJ/8H/w/hAAAmAaZr8+5bv0tnYwBV3/RWH60OeL7rqiT98Hta6VTySmkLqib/i5KEXH9DDGA3Hef7Pq6nd3MbMSwYzdGrhR/aPd3bS9cortD7wIOFNm7BmZpJ52aVkXHgh1rS0A1rbR1AIiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIF9zhEkJiAzYDs4BaYClwkWma6z5sm0NpMnE8FqNp1w5aa2uIRSNkFZVSNGhIX5clB8YRNRE+HOwmGgrhSUsjHo1iWG3YbLa+LutzFezspLurA5vDQVdzM1gMDKCrpYXU7Bxi4RBgYnO48Le24EpJIaesAo/voE0I/qwUQvIFUr9tM827dmJYLGSXlBGPxehqbcaXnUt2SSl25xcqgASOsHvvgRAJdlO/bQvtDfV40zNwuj20N9SRlpdPSkYWFpuVtJw8wt3dJBIJXF4vhqG8gc/BYRtCEu+KEHnjKdwrrqYjdh435nSxxLcOz/ZbGZCXx2/jK2m57z4S0QS7So+j+FtfZfjx/TEMAzNhEmsJEt7eQWhTG+Gt7clQEquBszIN16BM7IVWOp56iLZ/PUgiGqM2/yiqi2fiHVRJSoaLkD9K465OEjGT/uNz8U3L5cL7l3JjXoDjH/wVZixG3k3fJ+PCC3seHNPEDMeJ+6Mk/BFqN2zgqft/ytjxJzFuzMkkwnHMSBwzmkgGpwEYYLFFsDfcjbvuEfwWg12lxzP46J9gLR2AYbMckGMai8R58d417FrXypQz+zFmdimG5aMvEdM06V68mJZ//IPAvPlYPB7SzzuPzC9djj0//4DU9RF0UxARERERERERERERERERERERERERERERERER+YI7LEJIAAzDOAn4PWAF7jNN82cf1f+LPplYDhmaCC+HK4WQyOFM9145XB1WISTxrgjBdc0EVzcTr1pLrv27xK05/G7oSTwQeJbxmwqYn/gG5+16m8tWPEVj3lhqR53PsTccQ37lh4dxmbEE4Z2dhDa1EtrYRqyxGwBrpgtbepTg8qcIvPUixON0Fw6lI3co0aJB+PoXUTE0DXd3I4G3F/O1xiy2e3J5qO4lSi78GoY7m4Q/Srwrkgwd2fOXWKLH5y9q/C+13Vs4rvAyMrx5GE5rMljETB5O0wQzksAMx8DYTEPKHYyLNAAQTgwibD+KeNYUjJKx2PNTseV5sOd5sDg/fTBbPJrg1X+sZ9uKRkqHZXLMRYPwZbk/0bahTZto+dvf6XzhBbBYSDv1VLK+cgXOfv0+dR2fkEJIRERERERERERERERERERERERERERERERERES+4A6bEJJPS5OJ5SDRRHg5XCmERA5nuvfK4eqQDiExYwkiu7oIb28ntLWdyM5OMMGTsZ706C/AZuG3Y+bwr/oFTFpvZ9zq4dwx6nxuWfMctrQJ5B87kennD8Sd6vhUnxtrDSUDSba0E63pIt4ZIRFqJ7pzIbGapSS6dvfeyGqnquJovjZsDrOx8yPDjWEYWFLsWFMc+/6mfmA5xU4oHuChn9yIw+3m/Ft/SUpm1v6PR8LEDMcJ+7v51fzr8dW8ydndUBpuByBhphBKjCScGE04MQzT1x97fgq2XA/2XE8ynCTXg8X10eEkpmmybn4tCx/fimnCiBlFjJhRjC/7k4WRRGpqab3/ftoffxwzFMIzcSK+k04kdfZsbFn737fPSCEkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJfcAohEfnfaCK8HK4UQiKHM9175XDVZyEkpmlCzCQRiZPojiaDPjojxDrCxBq6idYHiDZ1Q8wEI4Ir1487cxv2zudwtCynxZ7K9ZkZrHXDOW/FOfEdBzfOvJFOh4+bMvKZcmZ/yoYdmMCLeFeEWHOQWHuYeEeYWGsr0V1bSXR2YDgd2HLycFT0x5rq5p5tDdy9soazRxbyvZMGk5f+yYI7dm/ewOM/uwWHy8XU8y9lwMSjcKWkfGj/hJng3xv/ze+W/47UaJivePtzdCRBQd1G7IH6ZB9LClHLYMKR/kRjRcTMQuJmLkZqJtbMVKzpTqzpTmzpTixeOxaPDYvbjsVtw+Kx4fdHWfLsDjYvbcA0TfIr0igZmklOSQoZBV48Pgd2pxXD2P9lFGtro/2RR+h49jki27cD4OjfD8+YMTiHDMFRUoqjpBhrRgaW1FQMi+VTnhmFkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIfNEphETkf6OJ8HK4UgiJHM5075XD1UELIele2UjHK1WY0QRmJI4ZTXxoXInV58A/9w5sZh0lEzdjc8b2rmuwWnnIl8ojqV4G7LIz591SUhLjuXvQOKqsBj+fNZjzj6v80GCMz5tpmtz56mb+9MZWEibkpDrJ8jr47XmjGFaY9pHbNlZt5+W/3EVj1TYAPGnpuLwpTL/4y/QfP2m/2zQEGrh/3f08v/152sJtYJqUx00mx2B0OMq4SJy8QCuGmeixXcJwY+LFTFgxTRtgJZQYT0fsip4fYEDIMNgZSVAfTtAe7TmOxQCHxcBigGEk/1oMOOGq4eQMz957TMKbt+B/4w26V64guPJdEp2dH/gcA0tqKhanE8NuB7sNw24n+5prSTv1lA87ZAohERERERERERERERERERERERERERERERERERH5gvvChpAYhtEE7OzrOvbIBpr7uojPgfYLmk3TnHMgP/wzXLtfpPOgfTl4Dvi1C31+7z3UjvmhVM+hVAv87/UcCvde+OId18+Daurp87h2XyK5T4eKQ/Gc/6+0T0mfy7ODiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgcOr6wISSHEsMwlpmmOb6v6zjQtF+HhsOt3o+ifZH/xaF2zA+leg6lWuDQq+ezOtT241CrB1TTkeiLeHy1TyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIicqSw9HUBIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi0rcUQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiInKEUwjJwfHXvi7gc6L9OjQcbvV+FO2L/C8OtWN+KNVzKNUCh149n9Whth+HWj2gmo5EX8Tjq30SEREREREREREREREREREREREREREREREREZEjgmGaZl/XICIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIn3I0tcFiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiISN9SCImIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMgRTiEkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiRziFkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiBzhFEIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJyhFMIiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyBFOISQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJHOIWQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIHOEUQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiInKE+8KGkMyZM8cE9NLr834dcLp29TpIr8+Frl+9DtLrgNO1q9dBeh1wunb1Ooivz0Nf75NeR8ZLRERERERERERERERERERERERERERERERERD6hL2wISXNzc1+XIPKZ6NqVw5muXzlc6dqVw5WuXRERERERERERERERERERERERERERERERERERETlQDrkQEsMw0g3DeNwwjI2GYWwwDGOKYRiZhmG8ahjGlj1/M/q6ThERERERERERERERERERERERERERERERERERERERERERkS+KQy6EBLgLeMk0zcHAKGADcBPwummaA4DX9yyLiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIAWDr6wLezzAMH3A08CUA0zQjQMQwjNOBGXu6/RN4E/j+wa9QPpHGDVC/GrBA/gjIHdzXFcmRJtINdaugZQt4c6BwNKQW9HVVciiIhqB+FTRtBk8mFIyGtKK+rkrk0JBIJH+/G9eDzZ28d2ZW9HVVcjgxzeQ11LAObK7kPTarsq+rEhERERERERERERERERERERERERERERERERERkU/okAohASqBJuAfhmGMApYD3wTyTNOsAzBNs84wjNw+rFE+yu5V8M+TIdyVXHalw+XPQsHIPi1LjjDrnoRnrtu33O84OPMvkKJbxxFv0wvw+Jf3LZdOgXP+AT6F1Iiw62341+mQiCWX08vg0ichq3/f1iWHj12LktdQPJJc9hXDZU9D9oA+LUtEREREREREREREREREREREREREREREREREREQ+GUtfF/ABNmAs8BfTNMcAAeCmT7qxYRhXG4axzDCMZU1NTZ9XjfJR3n04GUDizgBvNoTaYc3jfV3VIU/X7gHUtgte/n8922oWQ/OWvqnnCHDYXL+ddfDi98AwwFcEDm9ywnz96r6uTPrIYXPtHgyRAMz9GThTk7/fAO07Ydc7fVuX7Nchee1GgjDv18kAkpS8ZBBdZw1ULezrykT6VGdzE2Yi0ddliIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIh8Ira+LuADaoAa0zQX71l+nGQISYNhGAWmadYZhlEANO5vY9M0/wr8FWD8+PHmwShYPiDQAMf9GDp3QyIO6aXQur2vqzrk6do9gGJBCHUk39tcMO2G5OT6jc9DIgrFE5LhE3LAHDbXbywIecOg4mho2QbeHLBYk8FJckQ6bK7dgyEagiGnQv7wfb/fy/4O/kMk4EJ6OCSv3VgIDAvMvj357Gd3gycLulv6ujKRPlO3ZRMP//BGpl1wGZPOPK+vyxERERERERERERERERERERERERERERERERER+ViHVAiJaZr1hmFUG4YxyDTNTcAsYP2e1+XAL/f8faYPy5SPMupCeOyy5ERUAIsNzn+wb2uSI0taMfSfDVtfhSlfh2X/AH9Dct07f4Jz/gHDz+rbGqVv+Iqg9Ch4/fZ9bRkVcM4pfVeTyKGifSe8flvP3+/Zt0PB6D4tSw4jngwYdR48dQ2Ye3JRXGl6DpQjWvX6NQDseHeZQkhERERERERERERERERERERERERERERERERE5LBg6esC9uN64CHDMFYDo4GfkwwfmW0YxhZg9p5lORRVvbVvAjNAIgarHoVEou9qkiOLwwtzfgEjzwerfV8AyXtevw0CzX1Tm/QtfxMs+mPPtrYd0FnXN/WIHErWPd3793vXO1A0rs9KksNMJABL/rYvgAQg1AEN6/quJpE+1tFYD0DI7+/jSkREREREREREREREREREREREREREREREREREPhlbXxfwQaZpvguM38+qWQe5FPksgm37aWsFM8GhmXkjX0jZA+C0u+Hdh3uvC3cmJ9fLkceMQSzYuz0ePvi1iBxqgq2920IdYDnkHhXlUBWPQbijd3tY4Qty5OpoTIbhdTTUYyYSGBb9e0hEREREREREREREREREREREREREREREREREDm2aBSUH1ohzerdNvAqsmsQsB5nNCYVjwOro2T7lekjN75uapG/5imDcV3q2ObyQO7Rv6hE5lOz39/tq/X7LJ+dOS/7Gvp9hgcqj+6YekUNAoC0Z8BSLRgh3d/dxNSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiH08zS+XAKpkElz8HDWshEYO8EVA0tq+rkiNVwSi47BlYcCf4G2DGzcnQifq1kN0fbK6+rlAOJqsdpl4PRePAXw8ODxSNh9zBfV2ZSN+IRaFlC4TaIaMCLnoc5t0B8QhMuwEqFB4hn9Kgk+Dix6Fh3Z6Qp+FQqOdAOXKFAn4sVhuJeIyQvwtXSkpflyQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8pEUQiIHVrANVj4Aqx9NLheNgzPvBZevb+uSI5NhQNlRyQnQTRvgscuhfScYFph2Ixz1dXCn93WVcjCZJmx4BjY+l1wuPQpO/yNk9evbukQOtrAflt0Hr9+WDA1LyYMLHobL/wtmApyaKC+fQWctPPct6KhO/tZO/w7kDdFvrRyxQn4/6fkFtNZWE/R3kk5BX5ckIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIvKRLH1dgHzBVC3cF0ACULscVvwTEom+q0kkEYPXbksGkEBygv2CX0Pdu31alvSBbW/sCyAB2PU2rH2y7+oR6SsNa+HVHyXvjwD+BvjvNyAWVgCJfDZhP7z8g2QACSR/a+f/CupW9W1dIn0kFokQi4RJz08Gj4T8/j6uSERERERERERERERERERERERERERERERERETk4ymERA6smiW927a8ApHAwa9F5D3BNqha0Lu9fdfBr0X61vZ5vds2vwjxyMGvRaQvvRcU8X6N66C7+eDXIl8MwTbYtbB3+/6uNZEjQCiQDB3JeC+EpKuzL8sREREREREREREREREREREREREREREREREREflEFEIiB1bR+ORfVzoUTwCbG/rNAoe3T8uSI5wrHUom925PKznopUgfq5gGFisUjYOU3GRb/9lgdfRtXSIHm6+od1v2IHBnHvxa5IvBnQ7Fk8CRknwGdKYm2/d3rYkcAUL+LgDS8woBCPr9fVmOiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMgnYuvrAuQLpmwqnPcQWCwQ7gRXBvgKk8sifcWVCif8FB4+H/wNybbJX4eCUZ9se9OE2uWw8Tnw5iYnVLdshbyhkFYMFjuklyhs53BQdjRc9Dh0N4HVCRYH5Azs66pEPrn6tVC9GOJRKJ0EBaPBMHr3i0WgfjW0bAPDAjmDIH/Evr55w2HGD2Dez5P3OHcGnPYH8GYd1N2RLxBnKpzw8+TvbKgdXD7AlrxGRY5AoUAydCQtLz+57O/sy3JERERERERERERERERERERERERERERERERERD4RhZDIgRfpgnl3QNuOZEDDzB9Cehm4fX1dmRzJCsfAVXOhdQfY3dC2E979NxSMgMKx4EzpvU1nHex8GzDh6a9CRjn0mwkv3wyVMyDUBkv/DtFuGHQyHP8TyOp3kHdMPrFYBHa9Ba//GLpbk4EM478CGWV9XZnIJ7N7Fdx/EkSSE9uxOuBLz0PJxN59a5bC0v+D9c+AxQqjLoKxl0PuYKhdCXWrIKsSrnwdIoHk77S+C/K/CLRC8yaY+1PoqE5eUzNuSt57RY5AIX/yXu3xpeH0egl2dfVxRSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiH08hJHJgte2Ajc/BmEsgGgSbE6rmJ8Mbyqb0dXVypEsrBsMCj14Ktcv2tZ96N4y7rGffcBe8dgtULYR+x0I8AkNOhbfvTq6vOBpevz35Pm84FI+HDc8lJ/UXjkl+lhxaapbC0r/BlOshGgCrE7oaoKsW8of1dXUiH2/DMzD8LEgrgXgY7B7Y9DwUTwDD2NcvHoNtc2HdU3uWE7Din5A3DDpr4bFL9/UtGAMXPARpRQd3X+SLp3lT8robdzlEQ8nAr00vJMNIfHl9XZ3IQRfpDgDg8HhwerxEgt19XJGIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyMdTCIkcWNEgpJfC3J/saxt0IkQCfVeTyPs1rO0ZQALw6o+SQSPp7wsOadkKqx9LBujEI8k2izX53umDrvpkmzsjGQrw+m37ti2ZDOfeD76Cz3NP5NPq2g1DT+95rgrHKiBJDh8peVC1AFb8a1/bcbdBIg7W9z3SRYPJMIgP2vl2cgxfYfIeZiagbiU0rFEIifzvIgGIhWHuT/e1TbhSz4ByxIqEQgA4XG4cLjeRYLCPKxIRERERERERERERERERERERERERERERERER+XiWvi5AvmAcHlj6t55tm14EM9439Yh80P4mQ4c7IR5Ovk/EoWYZNG1OLrdVQd5wMAyoWwVlR0E0kAwfARh+Niy+p+d41e9A/erPbRfkM0ot7H2udq+A7pa+qUfk0/LmQPWSnm0Lfw/++p5tNifkj+i9ff4IyB4IlTNgxs0w6KRke1ghEXIgmLD+6Z5Ny+8Hu7svihHpc9FwMoTE7nJhd7uJhBRCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKHPoWQyIEVj0M80rvdNA9+LSL7kzMIbK6ebcPPgbTi5PuaJXDfCbB9LuQNS7at/Bcc/1OIRWDY2TDmMoiGoGg8uNIh0Nz7c8Jdn+tuyGfg9EH3fs5VVJOC5TCxv9/SYFvva9jmgGFnQUruvras/lAwGl64Ed59GN74GaQWJINJcgd/rmXLESIR239bQkF0cmSK7gkdsTucOFxuokE9b4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIoc/W1wXIF4zVDnkjoGHNvjZXOqQV9VlJcoSJRcBMgN21//W5Q+HSp+H126F5E4w4HyZ/FWzO5AT/xX9NTppe/Rgc8/3kBP3a5dBeA6fcCWklYFiguwUmXZ1sb90O657c9xkWG2QPPCi7K5+CJwOGnAbrn9nXZrFBSl7f1STyaeQOBqujZ9jXoJPBt5/f2KKxcOZfoXkLWCyQ2Q9e+3HPPisfgMueSd4XRf5XqYXgyUr+Pr4nawA4vH1Xk0gfiobD2JxODIsFh9uNv7Xl4zcSEREREREREREREREREREREREREREREREREeljCiGRA8vfCCPPhR15ULUA8obDyPPAkdLXlckXXTwKuxbBwrsg2J4MFul/HLjTe/ctmwIX/wdCndC6DZb9PTm5P60cAs3JPmYC3vwFZA+A/8/efYfJVdb9H3+f6TO7s733lE02vSdAaKF3pEhRREXEAopixc7Pgo/1UcSC+iiCKCIgCoiEmgChhPS+STbbe51ez++Ps0lYEyBANpuQz+u65to597nPfb5n5t4zs3/cn537YTjm42Cz7x0js8j6mV1hPfdkw7p7IXccnPlda+7L4SWdtMJhpl8KWx+B3BqYezWkYmNdmciBKZoKVz0A//kK9NbDtIvhhM+By7dvX8OARBj6G637VLAL2teM7JOKg91t9RV5p+wOOPELsPFBa65VHQcTT4VA+1hXJjImEtEITrcViufy+IhHImNckYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIm7ONdQHyLpNZCMt+CIkILLzOCmfo3AhZFWNdmbzbta6CP10I25+A1pVw/0eg/vHX7+/OhM4NcOd50LYatj8Jd50PE04e2a+nHoqnjgwg+W/54+GcH8INr8CHHoEJS8Cm2+thJ7PECpnprYf5H7ECHZ79IfjyxroykQNjGDDuBPjgv+CGlXDezyB/wv777lwGf30frLkb4gHo3gy+/JF9Jp4KK/8P+hpGv3Z598uugPqlVijXwuvATMELt4HdZX2WihxlEtEoLs9wCInXSzwaHuOKRERERERERERERERERERERERERERERERERETenFbJy8GTjMNgM5x8Mzi9sPXf1oLUzGIIdIx1dfJut+MpMNMj257/OcSC++8fC8Izt1rPa46H9fdBKgE7noZTvgYlM6F8Plz5V6hc9Obntzut+e7LfWfXIaOndwd4sqDqGNj2GEQH4KQv6P4kRx5vjnW/cTj3vz+VgJd+ZT2fegG8+kd46Tdw+i1Qdz7kjYd5H4Li6VZISdOKQ1S4vKsNtkDlQut735ZHwJ0Fx95g3Wu7No11dSKHXDwaxel+TQhJJIJpmmNclYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIG1MIiRxEBoT74D9fgdiQFeKw+WFY/mNIhMa6OHm3c/n2bXNngmHff/90EuIB63kqtrd913JY/hNrgf/5P4fJZ+9/bDnypGLw/M9g00NQMsMKonnsZgj1jHVlIgeZAW6/9dThgUTYejQstwJKSmdbwU3P/8zqM9A8ZpXKu0giYoV77XrOmmODLbD06xAdBNvrBOaIvIslYlGcHiuExOn2YKbTJBPxMa5KREREREREREREREREREREREREREREREREROSNjVoIiWEY09/mcbsMw1hvGMYawzBWDrflGYax1DCM+uGfuQe3WjkoHE4oqAXDgOaXYeMDEGiHuvMgb9xYVyfvduNPBlfGyLYTPg8u7/77e3PguE8PbxjgfE3QSCIMvdvBXzwKhcqYya+FCadCoAM2PgjNL4Fhg4JJY12ZyMFld8Axn7Tm99Z/w8zLrPamFZBVan0+DzTt7V+5cGzqlHeXvHFQdSz0N1hzrH0N2OyQWQzFb+vPApEjWiIaxem2QkhcXu+eNhERERERERERERERERERERERERERERERERGRw9mohZAAvzYM42XDMD5pGEbOWzx2iWmas03TnD+8/WXgSdM0a4Enh7flcFR5LFz4S8gotMJIJp0FJ30JHO6xrkze7UpnwYcehSVfhWOvhw89AjUnvPExdefBe35lhVGc/T+QOxyWU7EALvk9ZBSMft1y6Hj8cMrXrSASAH8JXHwHVB83tnWJjIaqY6x74rSLoXQ2nPk9cGVCYR3Mfr8VDuHJhnN/ChXz33Q4kTfly7fmWc2J1nZWOVz8WyieCblVY1ubyBhIxKI4PVb4iMtrhd3FI5GxLElERERERERERERERERERERERERERERERERE5E05Rmtg0zSPNwyjFrgGWGkYxsvAH0zTXPo2hrsQOHn4+Z3AM8CXDkadcpB5MmH2+6wFqPEg5FSDyzvWVcnRomy29ThQvjxrvk65AOxOmHwORAYgswg8WaNUpIyp8jlw+V0w0AzuLMguG+uKREaH3QnVx1qP3eZeDfbhULATPw82F+RUjE198u5UPheu/AsMNoMnB7JKx7oikTGTiEZxuq17rms4jCQeCY9lSSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIib2rUQkgATNOsNwzja8BK4OfAHMMwDOArpmk+8HqHAY8bhmECvzFN8w6g2DTN9uEx2w3DKBrNuuUg0KJmOZK4M62fDjdkFIxtLTL6XBlQVDfWVYgcem7/3ud548euDnl3c2dC0ZSxrkJkzCVi0T3hI07vcAhJNDKWJYmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIvKlRCyExDGMm8GHgXGApcL5pmqsMwygDVgCvF0Ky2DTNtuGgkaWGYWx5C+e8DrgOoKqq6h3VL3Ioae7KkUzzV45UmrtypNLcFTn8xaNRnB43wJ4wkkREISQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIicnizjeLYvwBWAbNM07zeNM1VAKZptgFfe72DhvdjmmYX8CCwEOg0DKMUYPhn1+sce4dpmvNN05xfWFh4UC9GZDRp7sqRTPNXjlSau3Kk0twVObyZpkkiFsXp9gDg8lohJPGoQkhERERERERERERERERERERERERERERERERE5PA2KiEkhmHYgWbTNO8yTXOflVamad71OsdlGIbh3/0cOAPYAPwT+OBwtw8CD41G3SIiIiIiIiLvRDIeA9PE6bHCR/aEkEQUQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIihzfHaAxqmmbKMIx8wzBcpmnG38KhxcCDhmHsru0e0zQfMwzjFeBvhmF8BGgC3nvwqxYRERERERF5ZxKxGABOtxsAl8cHKIRERERERERERERERERERERERERERERERERERA5/oxJCMqwReN4wjH8Cod2Npmn+5PUOME1zJzBrP+29wKmjUaSIiIiIiIjIwZKIWmEjTo8XAJfX+hmPhsesJhERERERERERERERERERERERERERERERERGRAzGaISRtww8b4B9uM0fxfCIiIiIiIiJjKhGNAuB0ewCw2e04nC7ikchYliUiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8qZGM4Rkk2ma9722wTCM947i+URERERERETGVHw4hMTl8expc3q9JKIKIRERERERERERERERERERERERERERERERERGRw5ttFMe++QDbRERERERERN4VEjErhMTp3htC4vJ6iUcUQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIihzfHwR7QMIyzgXOAcsMwfv6aXVlA8mCfT0RERERERORwkYgOh5B4XhNC4vESjyqEREREREREREREREREREREREREREREREREREQObwc9hARoA1YCFwCvvqY9AHx2FM4nIiIiIiIiclhIxPYTQuL1Eo8ohEREREREREREREREREREREREREREREREREREDm8HPYTENM21wFrDMO4xTTMBYBhGLlBpmmb/wT6fiIiIiIiIyOEiEd1PCInHS3hocKxKEhERERERERERERERERERERERERERERERERE5ILZRHHupYRhZhmHkAWuBPxiG8ZNRPJ8cLpIJSCUgEYV0eqyrkYMhEYV0aqyrOHKkU9ZrJoevaABSybGuQuSdS8beeC6n4tbnssihFgta81PkKJSIDYeQuF8TQuL1EY9ExqokEREREREREREREREREREREREREREREREREZED4hjFsbNN0xwyDONa4A+maX7TMIx1o3g+GWuJCDQ+D52bINwLO5+BigUw70NQMn2sq5O3I9AJ2x6DVX+E/Emw6DoonzfWVR3eWlfBy7+F7i0w92qYfA74i8e6KtmtextsfRQ2PQT542Heh6Hm+LGuSuStC/dB/ePwyu8guwIWfQIqF4JhWPtjQWhYBi/eDg4vHHs9VC8Gh2ts65Z3v4Fma26uvQcyCmH+tTDhFLCNZvahyOElHrXCRkaGkHj3tIuIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIHK5GM4TEYRhGKXAZ8NVRPI8cLppfgmU/hIwi2PxPq619jfX8I0sht3pMy5O3yDRh9V3w1Let7dZVsOVf8JEnoHjq2NZ2uOraAn+6AGIBa7ttFQQ74cQvavH14SAZh5fvgFd+a223rYL6pXDVA1Axf2xrE3mrNv0DHv6s9bzlFdjyiPVZWzbbamtYBn+9cm//HU/ABx+BmsWHulI52mx6CB5/zVf/7U/CVffDuBPHriaRQywRi2F3OLA79v657fJ6iUcUQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIih7fRXBX//4D/ANtN03zFMIzxQP0onk/G2po/Q80JVlDFawU7oWvz2NQkb99QGzz/vyPb4iHo3DAm5RwROjfuDSDZ7fmfwVDr2NQjI/Vsg1V3jmyLDlrvm8iRJNQDz/10ZFsqDi0rh58n4KVfjdxvmrDxwUNTnxy9Bpr2Bj3t9tq5KXKUSEQjON2eEW1Oj49ENIKZTo9RVSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIib87x5l3eHtM07wPue832TuCS0TqfHAacGdYiZ5vDWgD9Wnbn2NQkb5/NDnbXftpH7bZx5LPZ922zu8DYT7scervndCr+X+2a03KEMV7n/rzns9YAp2/f/ftrEzmYbI43mZsiR4dENIbT4x3R5vJa24lYFJdX92MREREREREREREREREREREREREREREREREROTzZRmtgwzD+YBjG//33Y7TOJ4eBWVfAtv/ArCtHthdOgaIpY1OTvH3+Ejjl6yPbMgqhdObY1HMkKJkJ/tKRbad8FbLLxqYeGalgMhx7w8i2rHLrfRM5kvhyYclXR7Z5sqFigfXc7oBjPgmGsXe/3QVTLzh0NcrRKasMFt84ss2dtXduihwlEtEITrd7RJtrOJQkHomMRUkiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgfEMYpjP/ya5x7gIqBtFM8nY61iAZz3E+jcCMXToW0VlM2BiadZi1LlyDPtEvCXwdZHIG88TDoT8ieOdVWHr/zx8IF/QP1/oGc71J0DVceNdVWym80Gcz4AeeOgfqk1l2tPh9IZY12ZyFtXeyZc9SBs/hdklcLks6F46t79VcfChx6FzY+A0w2Tz4HyeWNXrxw9Jp0Dl90FWx4BfxHUngVVx4x1VSKHVDwWxeX1jmjbvR2LhMkkfyzKEhERERERERERERERERERERERERERERERERF5U6MWQmKa5v2v3TYM4y/AE6N1PjkM2OzWAmebA9rXQd0FUFQH+RPGujJ5u7xZMPlM63G4CvdbgTc92yC3Gsrmgb947OopqrMecnjy5UFOJdSeAa5MyCwa64pE3h53Bkw8xXrsj90JrgwoqAW7w3puGIe2Rjk6ZeRZ3wddGTDYDOkUxALg9o91ZSKHTCIawenZfwhJIhIZi5JERERERERERERERERERERERERERERERERERA7IqIWQ7EctUHUIzydjoWkF/OlCSCet7cwi+ODDUDh5bOuSd4+BZgj3gNMLwR7YvhSe/9+9+2e8F879MXiyx6xEOYxt/hc8eN3e7bI5cPk9kF02djWJjIaWlXDneZCMWtueHHjfvVY4hN1ptQ22QtdmMFNQNAVy9DVNDoJgFzz4cdi1bG/bOT+CBdcqCEeOGvFoFH9+wYg213AoSTyqEBIREREREREREREREREREREREREREREREREROXzZRmtgwzAChmEM7f4J/Av40midTw4DiQg8+4O9ASRgLUTd8eTY1STvHqYJ2/4Dd5wI2x6DP18Gu56FFbeN7Lf+PujeOjY1yuFtqA3+c/PItrbV0PLK2NQjMlrSKXj513sDSACiA7Dub/DiLyHcBz3b4a73wJ8vgXsug9+fCZ2bxqpieTdpfXVkAAnAE9+CgcYxKUdkLCSikT2hI7u5vD4A4hGFkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjI4WvUQkhM0/Sbppn1mp+TTNO8/82OMwzDbhjGasMwHh7ezjMMY6lhGPXDP3NHq2Z5hyIDEGjbt31oP20ib1Xvdrjvg2B3Qahn72LmdGrfvvHQoa1NjgyxIET6920PdR/6WkRGk5mC/qZ928O9sPpuaF9rhTn1bNu7L9AGa+4+dDXKu1eoZ9+2eBCigUNfi8gYSUSjOD2eEW0urxVKEo8qhEREREREREREREREREREREREREREREREREREDl8HPYTEMIy5b/Q4gCFuBDa/ZvvLwJOmadYCTw5vy+EoEYK68/ZtL55x6GuRd5dkzFosn4hAVjn07rDa+3dB0dSRfTMKIX/CIS9RjgA2J9SdP7LN7gJXxtjUIzIaElHob4R5H9x3X9ls6K23QpxaV++7v/klSCVGvUR5l/Pk7HtfHXcSuHxjUo7IWIhHo7j2CSGxfgfiEYWQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMjh66CHkAA/Hn7cDrwE3AH8dvj5z9/oQMMwKoBzgd+9pvlC4M7h53cC7zm45cpB4yu0HsdeD5nFkD8RTvsWeHPHujI5kg00wcOfhY4NYNigewuUD+cZbbgfZl4Gk8+2Fj3Xngnv/zvkVI1pyXKY8uZYc2XWldZ9qWwunP7/wOkd68pEDo7+XfCvT8PtC6D+CWt+Z5VB7jhY8hWofxxME7x5MPnMfY+f8V6wOw952fIuY7PDqd+AyoXWvXb6JdYjs2SsKxM5JMx0mkQsitMzMnjH5bG+b8Qj4bEoS0RERERERERERERERERERERERERERERERETkgBz0EBLTNJeYprkEaATmmqY53zTNecAcYPubHP6/wBeB9Gvaik3TbB8eux0oOtg1y0Fid0DhZBhqtRb6Vy6CZBQyCse6MjkSmSb07YI1f4E1f4ZN/4DjPgWJMAQ6rPARgKe+DRUL4dql8N4/QtnssatZDm92J/jywOG1FsRnVcBAM2RXj3VlIgfHmr/Aunut++emB+GFn8Olf4QJS+CFX0DjCzDxNCifB+NOgmM/DTaHFfA052qYfO5YX4G8GzjcEB20QkemX2LNsfwJ4M4Y68pEDolkPA6micvjGdHucLsxDBvxSGSMKhMREREREREREREREREREREREREREREREREReXOOURy7zjTN9bs3TNPcYBjG7NfrbBjGeUCXaZqvGoZx8ts5oWEY1wHXAVRVVb2dIeSdCHbBA9fCqd8EdxbYbLDjaejeAuVzxrq6w5rm7n9JxGDj/bDtcejZYrV1bbIWMp98M3hyYdyJcPznrMXzuTXgcI1pyUezI2b+BrvgoethyVfAkw2GHbY/Ab1boEL3qKPRETN3D0RkADbcN7It1ANb/w154+GYj4PNCUVTrTAepxdO+wbMuxrM9PB91D0WlcvbcNjO3VQSnrkVyufCtIusuRUdhFfvhprjx7o6kTeV7Omh/evfIPPEE8i98sq3NUY8aoWMOD3eEe2GYeD0eIhHw++4ThERERERERERERERERERERERERERERERERGR0TKaISSbDcP4HXA3YAJXAZvfoP9i4ALDMM4BPECWYRh3A52GYZSaptluGEYp0PV6A5imeQdwB8D8+fPNg3QdcqAMu7Ww/+HPjGyvPX1MyjmSaO4OS6egYz0EOuChT0LxDMifCF3Dt46OddbjvJ9CUd3Y1ip7HDHz1+60ghce/uzI9tozxqYeGXNHzNw9EE4flMyE3h0j2x1uePq7kIjsbbv2KaiYZ/1OFNQe2jrloDhs5246BYVT4KXfWI/dlnx17GoSeQt6fvVrgk8/TfDpp8lcsgRnSclbHmN3CInL49lnn8vrJR6J7NMuIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiInK4sI3i2B8GNgI3Ap8BNg237ZdpmjebpllhmmYNcAXwlGmaVwH/BD443O2DwEOjWLO8E8kwLPyotah5t4mnWQugRQ7Erufgd6dC6ytgmlbgSOUi8Obu7VM4BcadNHY1ypErlYRFHxt5j6o9feS2yJEqOmgF6nhy9rYVT4d4cGQACUD/rkNZmRxNwj1QMBEyi/a25dZYoWIihzkznWbo8f/grrOC7gJPPPm2xklEowA49xdC4vGSUAiJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiBzGHKM1sGmaUeCnw4934vvA3wzD+AjQBLz3ndZ2pOkORHlxZx/bOgMUZLhYOD6fKaVZY13Wvkxg/QNw4hcglQC7Czo3WGEScsTb3D7Eg6tbWd8ywOULKllQk0dehhuvy35wThAdgie+CekkOF6zaPOZW2HRx8HphaJpUDYLssoPzjnl6GIYsPlROPGLkIpb96iO9db9Sg7YupYBXtrZSzCWYlppFgvH55Hjc411WUc10zQJNa8l899fhIUfA5sdDBv4y2H5j/c9IKv00BcpR4dUHOqXwqz3WSF0hgHRQVLxMEbaxGYzxrpCkdcV39VIqruHohtvpPsXtxNZuxauev9bHydqhYw4Pd599rl8vj37RUREREREREREREREREREREREREREREREREQOR6MWQmIYxmLgW0D1a89jmub4NzvWNM1ngGeGn/cCp45GjUeCdNpkeX0PG9uGeHpLF8XZHjAMfC471fkZY13eSOkUzLgEnvoOJMJW29wPgt09tnXJO7arJ8RVv3uJ3lCcs6aXsK0zyC+e3kF+hotPnVrLonF5OO22d3aS6BAMNFnPtz8J8z8CK38P8RCsuB2uuAcmHrW3AjlYpp4PT38XYgFre+bl4FCAxoGq7xzi1cZ+ntjcRU8wRjieIoXJ2dMVajGWWjp7yA0PgNMHz//U+jwGcGXAe++Ev12993P5+M9C8fQxq1Xe5RJhqDsXlv0Awn1W2+RziI47h4b2QaaX54xpeSJvJLZlMwCeadPw1NXt2X6rEtEoAK79hZB4vMQi4bdfpIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIKBu1EBLg98BngVeB1Cie512tYzDCmqYBTOC8WaXYDYMnNnVQne8b2xCS3p3Q+DwMNEL1cVCxALLLof5JOPaTVh+7Cxqes9rliLa1I0BvKE6uz8n4ggx++cwOAMzCDF5p6CMUSzK52E91vg/DMN76CZpehNV/hrrzYNWd0LQC0glY8hXIr4WS6dbPdyIegpaVsOt5yCqDmsVQ8A7HlMNXTz3sWg5DHTDueCifD/4S6FgPC68DwwZ2JzQsB78CNA5UY1+Exzd2cNyEfJJpk6FoktWN/SysySU/0zPW5R19knESO5dT3vIyNn8R1J4B2RXQtwPW/Q2z8hiMquPgY8uhvwG8eVBYB+7DLMRM3j2yKzG3/Qdj9lXg9EBOJSRiuBqWUpPbCL4TIbd6rKsU2a/o5i3gdOKeMAH3lDqCy5eTjsWwud9aoGIiGgHA5dn3c9Hl9RIeHDgY5YqIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIrRDCEZNE3z36M4/lEhGE8xqSSTUCxFKJ4E4PRpJUTiY5jrMtAEf7kcerbtbTvvf2HaRTD1Atj0IDQssxY6L7gWXJljVqocJMO5IifUFvLo+nYA6kr8nFJXxO1Pb8flsHHdieOpyPXi9ziZUppFVZ7vwMbu2AB/uhCSUTjmEzDzMtj4Dxhqg4LJMOksayHzO7XlEXjgo3u3s6vggw9B3vh3PrYcXnp3wJ/eA0Mt1vay/4FL/wBTzofxS6x71LbHIKcaFnwUHArPOFDheJIzppUwFE0CJmXZHnJ9TgLRJPm61R9ywYaXyXzlV4AByx7fu2PqhUSPvQlmXo7HnQHuiVAwcczqlKOIJwtz8WcwXvgZ9DfC5HNgxW04ASfA2rlwxT2QpfAnOfxEt2zBPX48hsuFp24KpFLE6rfjnT7tLY0Tj0YBcHq8++xzeX3EwuHXPXYwksBlt+F12d9a8SIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiB8lohpA8bRjGD4EHgNjuRtM0V43iOQ8/wW7o3wU2BxTUgvutrdLO9jjwOR20DURx2A1MoHMweuABD6OhYwNkFsOM94KZAtOEF38FpbPg4Rth3Ilw/GehrwEe+zLkT9Ri0yNcXYmfoiw3kUSKTI912zhnRik/fWIbpgmfP7WWXz+7g4FwgmllWVwwq4ySbA/jCjKYVOzH43yDhZSdG60AErDmUfE0OO5TMOt972zRfH8jDDaBr9D6/Vv6jb37xp8M1cdB04uQilthJ4bx9s8lh5f2tVYAidMHCz9q/exvhJ7t8I+PQ9lsOO5GCLTDU98GfzEUTn798RJR6N0O8RBkl0N2xSG7lMNNlsfB+pZBMt3WfSAUT1Lk9+DTYulDbkdXkPwdy6B8Pmz+Fyz5qvWZbNhhw/00TfwI5XkKHpFDLJXCeO7HYKbhjO/AE7fAyTcDpjU3tz0GXZv0vVAOS/GGBryzZgHgqqkBINHc9NZDSCIRAJyefUPOPJl+oqHgfo97ZVcfH/j9S2S6nTx0w2LKc/YNMRERERERERERERERERERERERERERERERERERGW2jGUKyaPjn/Ne0mcApo3jOw0vbGtj6b0gnwLBBcyFMOhPyag54CBNIpNPct7KF7qCV5VJblMmMiuxRKfmA2OxQdx7EBiEWBF8enPg5MBxWkEPDMuuxm8M9drXKQVGdn8Fd1yzksQ0dnDy5kK/9YwOxZBrThAmFmWxqG2IgnGBCYQYnTSrk1n9v2XPsLRdM5cqF1bgctv0P7vyvBZqdGyHYBQuve+uFtq2xFjjnT4B/fxH8ZTD9EkhEIBaw+tSeDp5sePp7kFsD8z4M9U9ARr61mL+g9q2fVw4vCWvxL2fdar3v4V5IJ2HXMjjmenjhZ9Cycm9/xxss8h1shs4tVsjD2ntg4qlw/E1Qtej1j3kXSyRNNrQOsWJnLwAZLjtfO28q0UR6jCs7+mxoHeRkTxZ4bNb9MtQF0QB4c+HY65mYBTb3aH7NE9kPm420Nx+7YbMCoI7/jBUKFekHTw7MuhJMhX7J4cdMJkl0dJB17rkAOMvLAYi3tLzlsWLDISOejH3DJz2ZmSSiEVLJJHbH3nt0Om3ylQfW43M56AvF+L/nGvj6eVPfzqWIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLwjo7Y61TTNJaM19hEhlYTuzVZgR3YFuP0QaLfa3kIIicNmsKqxn6uOqSJtWhkfpgmNvaHRq/3NODNh6yMjg0aO+SRUHQ/zr4VXfru3vfZMKJx86GuUg25ySRaTS7KIJ1PUFvnpHIpiM6Ak201LfxiAc2eW8sundwDgcdr46Anj6Q8neHB1C7Mrc5hckrV3wFAPNCyHSB/k1MDArr37Tv9/4C85sMJSSejZZv1+3ft+mHYxrP0rhPvg2E/Bk7dA3niYezW8+EuoXARPfcf63Vx4HSz9OqRT1liZJfDBf+47Z5MxhekcSUqmQ/VxVvjTE998zftbDOf/DF76JaQSVltBLZTM2P84DcvhX5+GVNyaS1f+BTY8YIVLFdRaAUxHmf5wnCmlfo6ZkE8ylcbjtPPM1i6Om5A/1qUdFbZ1BtjUNohhGGT7nPTaZpLtDsP6v8LGB/d2nHUFxtxJVqBTZtHYFSxHH8MgOudaMlwOsDtg3TIrwGm3qe+B0tljVZ3I60p2dkIyibO8DAB7Zgb2nBwSra1veaxoKIjT48Vmt++zz5PpB6ygEl92zp7257b3UN8V5GdXzObxjZ08sKqFr54zBZtNoT0iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIicmgd9BASwzCuMk3zbsMwbtrfftM0f3Kwz3lYCnaCww/ViyEyYAUYFEyyAjzeAp/bwcyKHO5YvpMTawux2QxW7Ojh4ydNGJ26D0S42wplOOVrkIyCwwObH4ZpF0FGPiz5Cgw0Q1YpOHyAFs+9m7gcdhaOyyOeTHHrxTP5wWNbuGx+JauaBkibkEybAFy/ZCJ/fH4XvaE4ACfWFvC5MyYzriCDLI8DVv3JCgixOWDxjYABZhrGnQgVCw6sGNOETQ/BY1+C6RdDImLNu/4GK4Aibv0nerw5kFVmheWk01bb+CWw6R97AypqjodxJ8Gu5yHcy555u/Np2PksLPoYpBNg2KF0JvjLwOkdriMFdtc7fWnlYCmZCWf9Dzz+dVj8WbDZrPdtsAW6NsOZt0LHesgoALsb0sl9x+iph3sug6KpcMZ3IDIIiag1z7b+G57/OUw+21pM7zx6AmqyfU5ebuinrtRPjs/J0k0dXDa/CocWSY+69S0DXPnblwjGrPl65qRsfp7/ANSeOjKABCAewgh1wWCTFcpTOMVKMRM5BDxeD2Y8jBEPQagLlnwVUjHrc3LNPRDpH+sSRfYRHw4bcZaX72lzlpeTaHnrISSxUAhPxv7/5tvdHgkGRoSQ/GN1Kzk+J2dNLyGRMnlkfTvbugLUvTbAT0RERERERERERERERERERERERERERERERETkEDjoISRAxvBP/yiMfeRwuCGrBKIDkAhBbBCcGdaCd9M84MXAPpeDoUiCT5w0nr5QgpRp8tETxhOJ7WfR/KHi8FohDE99Z2/biV+wruuZ74PNDr4CiPRBKgHjToCK+WNXr7wzkUEYagGnD3Jr9sxdl8POpfMqmFuVw2AkQTKdJpFMk+114rQbdA3F6A3FsRnwxTPrWLGzl/f+egWXLajgE7NdlC/7oTV+OgnLf2wFerz3TzBhyZvXlE5D22oYaIR/fcqqLTX8OxHogNxxVhCJYzgcouYEeOrb4MmG835mtXlzoG+n9bxyEeRNgKe/a20bBpz+XWh4Buoft4J1HvuyFS507PXQ/DJ0b4E5V8GWR6xzHnu9NY43z3q94iHIrrDOI4eWYVihM1MvsIJuooNWe+ksK2zmPzdb4TexgBVcUzQF8saNHKN/FyTCcNb3ob/RCppJp8DpgYJaWH8f9O2A+dcc2Jx9l0imTT60uJq+UJxwPMXVx9bQF47jcdrGurR3vb+tbN4TQAJw6fgE7mf/CJXzRnacdpEVwPS3D1jbdhe8/+8w/qRDV6wcvVpXY29fC707YMIp4M7a+9lqs8Op37RCoUQOM4nWNgBcFRV72pzl5cTq69/yWNFQEE9Gxn73eTKtP5GjweCetnTa5Nlt3Zw0qRC3w86icXkAvNzQpxASERERERERERERERERERERERERERERERERETnkDnoIiWmavxn+ecvBHvuIkkxYi9YTIWsR/GAL+EvhzO9BbwMUjD+gYdJpk+oCH39+qYlU2iTD7aBrKManTpk4yhfwBjx+2Pa4FTyCCRiw6SGSE063JlQ6ZYU17Gamx6ZOeee6tsC/boTmF8GVQfqM7xCefAmZ/mwAIokUgWiSvlCc98wpJ9tjZ/HEAn71zA56gjEAzp5eysPr29jQOsQVCyqZnpPEEezdd14kItbj9cQCMNRmhX748uHRz8HiG62wj3gIcqutBc4b7rcWOT/7PxDqgeJp1nE5VdBTb4VLnPQlWHcvTDkfXrgNJp42MoBk1pWQCMK090BGEYR7rTk9/mTo2Qb1S61zPHQ9pOIw92pofgk2PABls2DZj6wQgIoFcMFtVsiFHFpuP+x4Ema8F3x51qL31pUQC1pzKZXY23d/96jd4TGpBIS7rfkRC0DpbDju09C2ClpfhR1PwbVPHHHvcV8oxrbOIIFoknEFGUwsynzD/vFkikg8RUGGmz9vaKJtIEJuhotHekJ86pSJpHSbH1VmLMSlpd1cfNoQnbYifrHezsRCrxX+1bsdKo+F8SdYc7l4Ojz+9b0Hp+KYj9xE4H2PkJVfMnYXIe9+pml9RvZuh4ZnoXyuFcJ38s3Wd+JwH7x8B+nL/wxpE5vtwAL5/lvnUJStHQGS6TS1RX4q83wH+ULkaJRobQXDwFFauqfNWV5O8NlnMU0T4wADJAFioSDuzP1/rnqG22OhvSEk61sH6Q3FOXlyIQAVuV4KMl1saB18O5ciIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIvKOHPQQkv0xDGOVaZpzD8W5DhuhXkgn4eHPWIsuAQLt8K9Pk37//bT3l1Ce++aLJm02g55AnPNmlhKOpTABn8vOrt4QyVQah902qpexX+mUFbrw7P9YAQx2F5z0RXqDUYoqFmC0vLK3b8VCyJtw6GuUdy4Rgae+YwWQAMRD2B75HDsTFayITeC8WaW8sKOXR1c3MD3f4B8hFzefWMCiQg+LzvES7mniCzPz8CfbCKXt+I0E/sHHcORPxJYIw+nfhmg/dGyA/gZIRAgWzMCIJ8kwo2B3gsMNoW6ofwK6t8L2JyAVhZKZVjhELAAZhVaflX+wxtzxJGx/Ci79o1X37Pdbv3t158H9H7GCgdb8GU74HLiy4PibRoZQnPA52PoYrLnH2q5cZAVZAFQuhGd/AE4fRPqt+V9YZx2/4hdw6jfgiW/tHavlFWv70j+AS4ukD6lYAMadCC/+ygqeAag9Axwu8GRbATUA3lwoqN33+MI6WPQJawH9Y1/e296+Blb9EWZfBavvssJmOjYcUSEkXUNRvvHQBqKJNHmZLl7d1c+PL5vF/Jq8/fZf3zLIQ2taCERTlOd6uHB2GY29IVImnFRbQH1XkHnVuYf4Ko4i8TDGy79h1pPD2W42O/PP/CW/2jqBmyaeR8aWR+C4T8Gjn7fuSQ63FbT0yu9hqBUAo3c7r2zZxcQ6P9X5GWN4MfKuNtAC25fC+vv2ttld8Myt1vOcKlj4MYxIPzStIOrJxVPy1u6djT0h7li2k0gyxQvbe0mlTe76yELqSrMO4oXI0SjR2oqjqAiby7WnzVFYiBmLkQ4Gsfv9BzxWNBQkp3j/oU+eTGucaDCwp+2Zrd0YBpxYa4WQGIZBbZGfbZ3B/Y4hIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjKaDkkICfD2/tX5kSoasIISQt17A0h2iwVgqI3lHSVcMrcSp+PNQ0SKstxsaBvizud3EYwnOam2kMsWVBJLjlEIidMHa/8Kx3/W+s/2dhdsfpicM47HqDkBymZD+1oonQWeHCusISP/0Ncp70yoG7Y9und74XXgy2earZG6wgSxl+7hPVVzuMT7B2y2ItLl5dgeWwqTz4Fnv4/7+M+Su/mfYNgoHHcivPxbmPdh2PUkNL0Icz4AvnwItGMu+jjmQDOOrQ9jt9tg499h/kege7MVMvLEt6xF9Z3rrXkVD1k1rfkLLLkZnv+ZFWSy7Edw2Z+gYgE4Pa+5mNmQTsN1z8BQG4xfYo256GOw7q9wwS+shfu+fOt3tnODdVjeeJiwxJrjp34D7G6wOazQEWP4d2/y2bDidut5Irzv67jtMQh1gavmYL478mYcXuteNeNSsDlhw9+h/nGoO3d4Hi6HnGoonrb3Pt27HeqXQtsaqD0djvkEbPvPvmM3LINL/s8KIQGw2Q/ZZR0MWzuGOGlyIQPhBABTSrJYXt/N5GI/fq9zRN9d3UFebuilYyhGQ0+ITI+D5r4wT2/pYvn2Xk6sLeDSeRWkTXMsLuXo0LMVdgeQAKRTFDz1BWpm3c1fnNfxvpkD+J77vhWglE5Y833d32HWFbD8x9YhE0+joLCEtU0DCiGR0RMbgI0PWM8NGyRj1vfAk78MpgnBLmh+CaN4OtiduCO9JDu34CiuO6DhTdOkdSDCxOJMNrUNcdb0EuLJNH9+qZFbLpiOzXZ0/bkhB1eitRVnRcWINkdhAQDJ7u63FEISC4VwZ2Tud59nuH1ECMm2LmZW5JCf6d7TNrnEz30rmzFNE8PQ3BYRERERERERERERERERERERERERERERERGRQ+dQhZA8cojOc3hwesEwwJtrhRek4nv32ezEPfms3jLAcRMKqDqAxcDheIpH1rXzgWOrsdsMmvsiPLm5k+Mm5HHo3sLXSCdh9vvgme9ZzzFg8WcwokPw3E/AXwL5tbD5XxDogNozDn2N8s65s6BoKnSsh/nXQNMK6NmG/ZSvY7/vfbgWfwYe/pS1yPjY67E9+wM48Quw/EfgyYZkFHrq4YTPwws/t4Ia/MXw6h+gaApgwvP/Cyd8DuPJWzAMG54Z74UXboPjPg1Pf8cKHNn1/Mi6OtbDtIutcI/YEDz9PWux/YTToHgq5FTt/3psNiiZYT2qjoE5V0EiAjk1VtDEef8LWx+DjnVW/5xqa9xnf2DNc5sdlnwVjr3BqtuVYb1GyRg4PNbvucOz73kL6qx+cuikU7D5IXj4s3vfuxM+D+vvg86N1vudUwWtr8K6e+GiX8NQO/z1Kiv4BqxwmuM+DSUz9x0/b/zewJmMQijdT5/DmIlBPJEmlkyTNk1spKnOzyAUT+4TQtI6EOGpLV0sHJ9PTUEG6bTJlo4A1xw/jjnVuTR0h1i6uZP51XljdDVHgWDXvm2xIap9Ma5+LMGxBR6mTTkPlv1gOCDJboU2uYYXwJfPxTbuROrW/QDf7BsPbe1ydHFnWWFd6bD1PcDmgK5NsPYv1v78iVYAmZmGYAdGLITd4X7jMYel0yYv7uxlVVM/Lf0RmvvCnDq1mJ3dQdoHY0STKXyuMfhOLO8aibY2vHPmjGhzFOwOIenBPX78AY8VDQXxZOz/bzz3cHs0FASgLxRnTfMAnz6ldkS/iUWZhOIp2gajlOd4D/jcIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLv1Kit1jMM439M0/wSgGmaX/vvtnc1w2YFEiRjVijD09/ds8s84XO8Ei5jdqWTYCx5QMPFkyneM7uccDyJ3WaQn+GkPNdHMJZiMBLC5bBRmn0IF6c53NC5CS7+PQQ7we2HYCcOt8cKYQh0WA+wFuh7cg5dbXLweHPg7B/A3RdbwTId66HuXCvIAcDhgnAfjDsJdj47fJBpzf3M8dDfaDXZhn8fPDkQ6rHaJp0FK263ntud1iL7uR/cO7bTa82h/FpwDy+kH2i0Qkna18Lmf8Jpt8CWhwEDxi+BmhPA/eahPoC1OLrqmL3b0y+BVAKKZ1hjtqyEGe+F5T+2QiycPjj2eqtPbg28/+/Q9BJc8WcYaIbTvgWBduhrsEJ36h8ffo08cO6PwKeAhkOqdwe8+Cs49Vvg9FgL4xNhOOVr1vs02GzNp90yCq2F8rsDSHZ78ZfwwYdh8rmwdThLy+G2xmldDad8A+rOsRbWH0FS6TQepx17LEkqaZKd4cRlN0ib5p4+vcEYgWiSUDzFSZMKiSbTAPhcdqrycnDYbADkZrioyPUSS6bG5FqOCtmV1n0yldjbllXO+Am15GVsJ8/vgaYtcPLNkIha98/WVXDsJ+Ga/1jBTk98C7eZpnLaBbCzHWJBKKiFwsljd13y7pNTZX3vffIWazsVh8WfsT77vdnWvOvbaX1P7t1hfbcIdZKOhbC9wed3IJrgxZ29bGgdxGm30zEY4czpJfxrbRtVeT7eO69CASTyjpimSbKrC0dR4Yh2R6G1nezpPuCxkvE4iWgErz97v/ttNjvujAyiQSuEZHl9N6YJS+qKRvSrzvcB0NwXVgiJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiBxSo7li73TgvwNHzt5P27uPmYZUEvoboGQmXPYnGGyF7ArILGPtdsj1mtgN2wENV5zloTMQ5y8vNzEUTTKtLIvP1RZw21PbWbqpE7fDxmdPn8S5M0rJcB+CRZiGAXVnw44nwV8M4W6IDmEa863F+c/9FMK9kFUGx33aCmORI1P1cXDds6SbXsQGVqhG3Fo0iW14roV79oYwpJJW4EPfTph6gRXo0bHeCvxoehH8pVa/dBLsLmuB8u7gg2TECvsAa44BND4PZ3wHGl+AtX+1FjNXL4aeeus8l/wBMvP3HvcapmnSF4qT6Xbgdtrf+DqdHutROsMKMml8AQz2zt0TbrJCLcK91vlrz4CyWfDkd6DlJet1mftB0pPOwnT44NhPY48PQd4ELfIfC5FBKzDnyW/CtIsgb7z1Xhh2KJwKBZOgewu4MuCYT1rvs20/904zBfEQLLwOppwP0QFrHGeGFZpTWHvIL+1gMAwDv8eBYRhEEkmK/B6cdoN4MkU6bfLSrj5+v3wH61uG+MGlM0mmzRHH24aP+/mT21lQk8u0sixyfM4xupqjQOFkuPRO+Of1EOm3Qkku/T0VleP41w3FZPettu5fT31n7zFzPmDN6wz/cFgTcNKXcQ81WvfsgWbY/DBc+nsr8KmgFkpng2vfe6nIATMMmPdhglkTyQi3Yhh26zuAzWZ9J3a4oXQutK225qG/FMOEjS3dlBY5cDpsGIDfu/d+0h+K8fTWbnb2hHDZbWzpGGJ6RQ6PrmtjSmkWZTleJhRljt01y7tCemgIMx7fEzqym6OgAIBk94GHkIQG+gDIyMl93T6eTD/RYICVHSv55tLlZHomMbN8ZGhJRa51P27pjxzwuUVEREREREREREREREREREREREREREREREREDoaDnlhhGMYngE8C4w3DWPeaXX7g+YN9vsOS3QG+fIgOWgvdzTR48zD7GthkVvOjx7dy9THVTK3Y/3/I/m/RZJqfLt2Gw2aQ5XUQiCZZ1djPuIIMPnhcDfkZLgYjcTa0DrJofP4oXxzWYv1wvxUQ0bsdbHaY92FsyQg89xOYebm1SD86AC/eDnXnjX5NMnoKJxMIR8l2eGDHUzD/Glj+Y+jaDONOhIZlMPt9sP0JWHM3nPwlWP4T6N0Bc6+GNX+BEz8PBXVWoMOJX4T198G8D8GKX4BhA7cftjxqhX08+f8g3GcFR/TthFd+B6d9i3SwG3wF2CaeCsVT37Dkpt4Qf3mlmX+uaaOuxM+nT61lVmXOgV1v3ni4/C4r6OSlO8DhgmCnFUCSNx7K58FT/w9O+LwVQGKzw2nfhBd/je3l34DdSe8xX8E2/8Pk5r7+AlQZRU4XvPBzOOlLsOURWP93a3H83A9Z4STl861QkVQC1t0LNSdA3jgrJCfQvnecmVeCJxt2Pg3OTOve3rUFPFlQMW/MLu+d8jpt/OCxHWxqHwLAZsBtV87BMGFVUz9PburAZbfz2dMnYQKrmwdYuqkTsF7Gm8+uIz/Dhd/t4JVd/eRluDixtvANzijviM0OU86F0pnWfchfagWAAeW5PuJ9Jqz728hj1tyNOe0ijIE2a3vSmRAbxFj2A+s7SWGddV9+9vuQWQz/+jRceDvMueoQX5y82yTd2dy6o4avzynG0/IcvPwb67Pfl2/NOU8m2O1WeFcqgVkwiVQ0m39v6OAPL+zC5TD49Km1nFhbiNdp55mtPezoDjEUSfCvdW3Mq86lvjPAwvEFOO0GM8qzmFjkH+vLliNcsqcHAEfByM8yW3Y2htNJanj/gQj29wOQkZv3un08GZlEQ0F+tfbXDA6cTl7eTmw2Y0SfshwPhgHNfeEDPreIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyMFw0ENIgHuAfwO3Al9+TXvANM2+UTjf4cmXB+NOgtaV0L0F07CTqDiGc3/dAsDdLzVyxrTiAxqqPxTns6fVcsz4PFr6o/jddnpDMQajKfpDMZp6wxT73cRT6bdUopk26dw1RP0rncSjSSYtKqF0QjYOp/2ND0ylYMu/rAASgHTKCoqoPAZmXA4v/RpMExxuzDO/h+F7/UV4cnhLptJs6wzQFy2l+tx7KH31hzgGW0if9v+wrfsrqamXkJ5+BeFAP75L/oR9qBHDsGOc80NrDgw0w5KvEixeQkvCoGFbkpJyO5VnXoLNHiCdNxdXywrc5/8S57ZHsfXUk7zodyRaVmFbcgv2/u2k2tYTdhSypuA0BmxZVEUziO3ooSTLw7iCDAxj5KLNaCLJjx7fxj/XWovvO4eiuBw2bjpjErUHulDZmwOVC+DSP8Azt0JoePHp1Aut+e3MhGTUCuSZdBasuw8GGq0+qQT5z9/CQOV8Xh2aTlNvGJ/bwfSyLMqH/6u9jLJ0CnKqoHsbDDRZ71M6Ca/+AcpmQ8sr0LPV6jvzcisEJ6cKrrofVv0Jml+G6ZfA1AsguxJScWh4FgIdULEASmaB0zOml/h60mlzxELmYH+Mls19NKzvoWR8NjUzC2gdiLKjO8h5M0vJz3SzfFs3P1m6jZ9fMZuP/mkl/eEEAI9u6ODnV8zeE0AC1q/1r5/dyW+umsvnz5xETX4GT27qIPEWP3/kbciptB6v0TEYpbdjgGn/3dc0Mc00xtKvWNsVC+Gpb+/d370Fml4A1/DcB/jPV63vLf91DpG3YiCSYFxBBm5zAJ7+nnXvBStAZ/lPMC+8HcNfTrD4NJpafTTcFyCrqp8FdTmsqczmhR293PLPTfz8ytl4XXa2dQyyfEcvnYMxrjthPA+taeOcmaWYaZOZFdmML8jY574n8lYlu7sBcBSODCExDAN7YQHJ7gMPIQkNWH/uZuS8fhCdJ9NPKDDIK7u6MFOZhJz/oj96Fbmevce4HXaK/R5a+iNv5VJERERERERERERERERERERERERERERERERERN6xgx5CYprmIDAIXGkYhh0oHj5PpmEYmaZpNh3scx6WskqsR94EgimD6+7dygsP713AljYhkTIPaKjxhZmUZnv4+ZPbuWxhDjn5Q/Q7GijJc3PslPG8sCkDp93G9q4gC2vycL8mRCQcT9LQHSKcSFGT76PQv3fhfFfjEA/+eBXp4Tq2rOjgvE/Nonpa/hsXZABNL+7bHu6GphVw8s3Won3DjrH8J9bi59KZB3Stcnh5ZVcf969qZVVTH585ZRL9C77LxKw0zoal2PImYI/0ksybiK+sBOffPwDH3gDLfwR5E6BoCmx6iGT5saysP56NLwcA2LkOslf7ME8q5FtLu5laciGXFFXQ5Z2ImUpSFMggs2gR7pSNbZFJBH1nUhJxk+Vx4nIaXP37VwjFk3iddn5+5RxOnzoyzGdXT5h/rbMCSCpyvXzptHHkx5ro2fwcvR3jqKmuITfDoGGogcHYIGWZZUQS1gLP9lA7g7FBijOK6Qx1kuXOwnPO/2Mw2EHR3MvpiA+ScfHPiNsc7BhqZPoV/0fSZiPVW8/4KWdS8/yvIDoAQH/bdu7uzqLQ7+aOZTupK8nkt1cvoDJPQSSjLqucxvN/TH0qQmLepYQSIXJc2Uxp20h591aY90GI9IPdZYWLtK+F8rlQPA3O+r51/3K4945XsxiKZ1iL6b05YLON2aW9njXN/fz15Waa+sJcubCKmRXZBEIJupZ1sPk56/dh5+putqxoZ+Kl4/jCmZO595VmOgPdnDmthByPk95QYk8AyW5D0eQ+5+oLxdnZHeKb/9yEw2bwiyvnkJfhOiTXKSO19oUx/dXgL7FCcoaZOTUYySic9EWIRyC8nwX0TS/Rc/Gv2BZsJXr2Nxkfi1OTirG5dzM7BnYQToSZkDMBu81O41AjOe4cpuRNoSijiM19m1nduRoTkzlFc5iSN2WfQCg5OnkdBrGUiRnqxkj/1/0j1A3pJN0Fi1j9+CD1L+6y2tf1kr82kzPOLGdmRQ5dgSif/PMqPE471x4/nmuO9YPN4KdPbOPy+VWkTZMZldncvaKR1oEoHz95Agtr8ijP9R7y65V3h90hI/8dQgLgKCjcE1JyIIa6rOAuf8G+Y+3myfSzLbSdaGACYGLPqGdb/zYWlS4a0a8yz0tzf/iAzy0iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIicjAc9BCS3QzDuAH4FtAJpIebTeDoSqPILGBoIEx9V5jyHC/Ty7PY0R2iOxBjYlHmfg9JJ1IA2Jx2WvrDDEYSDEUSVOa6yS/o4a7N91KXW4eJyfOtz3Nl3ZXc+TQsnljIto4AVfk+sn0uekMxfrp0G3e/aOW+VOf7+OX75zKtLBuAhrU9ewJIdlu9tImKybnYHW+wyN6XD2VzrMCREddaCu1rrMdunmwwDyxsRQ4vvaEo973awgOrWvnhhZOY1/cI5Zv/D6qPg1f/AOXzIKsU93P/AwWTIB4CMwXplBXEkWEtvhyqvpJNDwZGjD3YEaYsapJKm5wypZifLN3GUDTJFQsqCfZEeGxDA/mZLi6ZV0FvKEgonuLlhn5sNrjx1Ik8tbWLlxv6uOneNTz86eOpzs8glkjxxOZOmvvCeBx2IokU3zqtlNmtv6dg9e1gpknlT6Tjgj/wu53P85t1v+LaGdeyuW8z8/LmEE5H+f2m33PTvJv47kvfpTSzlMVli/nTpj9x/ezr+f7We8lyZbGodBF/2fIXrph8Bb+o/ysbejbgMBycN+E8znvvryltXknlmr/Ra8vnwdWtnD+zlOnlWWxoHWJN84BCSA6BqCebh7vXUFdQx86+nYQTYR7Z+QiTcmv52pSrqbrzPVagyG6z3rf3uWGMDCDZzZv1jusy0yZmIoXNfXA/eje1DXHFHS8STVgftS/s6OXTp0yk1Oag//m2EX372kJ4Imm+9+hm0sO35vtWtnDlwipSqfR/D00yncZuM6gr8VOe42V18wAVOV6e39EzvN/kp0/UM6nET6bHeVCvS/avfSDC8u092IDfP9dAQ2+IO8/6FfPq/xdHy0ukqo7HNvVcjPs/AqkEzH6/FbDzX9qWfJGb6//Mqp51OG1Orpl2DacnEmwa2MSv1v+KSDLCR6Z/hP9d9b+YWJNlQfECbphzAx9b+jGiqSgAbrub/zvz/5hZeHR9vZP929wR5A/PN/DJy7Ot++lrvwN6cjCcPrqDCepfGhnq0NscZL7HRWM4xi+e3rGn/Vv/2shXzpnCih29fOO8qWxqG2R+TT7feXgTmzus7xZfuG8tP7l8FmU5ZfuE4aRjSQyHHcOukBx5fbtDRhyFBfvscxQUkGhpOeCx+tvb8Pqz8Gb6X7eP1++npauXZPBkppR5aHGE9xtCUpHr4+WGvgM+t4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIwTBqISTAZ4DJpmn2HugBhmF4gGWAG6u2v5um+U3DMPKAe4EaYBdwmWma/Qe74NFSluPj1x+Yx8bWASKJNEsmFzG52L9PGEE6kSLeHCA1FAcD7JkuzAw73YEYqXSa607L4cX2zaTNNL9e92tsho1zxp1DV6SLupKJ7OgJUlPg45o7X+HWi2eyvSu4J4AEoLE3zG1P1vOzK+fgdthJp/cNBzGT5puHhvRuh2Ouh55tELbeXnPW+yC7CqqOgaYX9/ZdfCN43vnifTn0egNxHlnXDsCijHbK//MlmHUFbH/C6jD5bHjqOzDuJAhY/YiHIaMAgl3gLwVfHiY29jejnPa9QTc5PhfXnTieoiwPz9X30B+O0x2Mceujm/nl++fS2BvG67KT7XVSnuvlmHF5HDuhgPaBCAPhOPmZLl5u6OP6e1ZTmeflqmOq+f1zO5lmNFCw6jYAoqWz2Tj3cjoTu/j1ul9Sk1VDia2IM5zHkfOcDaPcy1XzL6Ev1EtB7c248nz8ffv9FHgK6I/20xPp4T0T38OdG+/EbtjJ9eSyoWcDNsPGZ+Z9hoe2P8Q/tv8Dr8PL55fcSMOuQqCff2/o4LoTx7OhdYieYGwU3zHZbVPvJqqyq/jRKz+iJdhCliuLa6Zfw9/r/86G5ABV5mvCNkpnQ1b5qNcUaw+S7I1AIo3hduAs8eHM8x6Usde1DOwJINntvldb+N4pdexv6XI8mea/b/8PrWnlvfPKyXQ7CMb2BrTYTPjd1fO5d2UzDd0hLpxVxqLxeWzrHOITORNw2A06h6KEX3OMHFzxZJrVTf08tLaN8fkZrG8bZH3LIHOqcvaEMFzxcITrF9/ClSd5KNpxP/ZHbtr7Wb76LrjoNzD5XNj6CGbeRNJT3gsFZ/GJ2BSGCsNMLqzDWBXA9UyYuePG8bNZP+LZ0AvcvfnuPQEkAJ3hTh5teHRPAAlALBXjgfoHFEIiAMSTKT5x8gRSnn4cp3wDnvo2mGkr3OmsW2lNhAmlwuzvi4FpJnhoTes+7Vs6hqjvCnDro1v4zkXT+fzf1tI2uHcOJtMmO7tD9AZj5NrtpAZiJPuigEnghTac2W4yjy/HVf76oRBydEt2d2N4PNgy9w2IdBQWElmz5oDH6mlpIrf0jb9XeDKz6LDbSEcruGBmDX9qy6QlsG/QSUWul4fWREim0jjsbxAQKSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJyEI1mCEkzMPgWj4kBp5imGTQMwwk8ZxjGv4GLgSdN0/y+YRhfBr4MfOngljt6gtEEzX0hHlzdxurmAdwOGx8/aTz5mS6q8jP29Iu3Bkl2R4hs7MWMJPFMyaNwXBaFmS68Lgfp9CBtwTaWtSwDIG2meXjnw0zJm0J3sIKGnjAn1RZwYm0hq5t6aR+M71PLiw19dA1FqczLYNzMAtYsbRqROTL79EoCqQCpZIo8T94+/1EegIFGeOxmOOmL4LYCRoyt/8ZMhmHBdVB7hhVG4S8BfxnYR06z1kArA7EBclw5lB+Cxf/y9mR7XRRkumkdiJARaiZZUEtjzSKC1QsoH+zELJyIc9bleCMDhOZdRXZ0APvqu2DJV2Hl/8FzPyF90s14swqpnZtH/at74xD8+R5qJ+bwNe8U8jJcXL6gktueqieaSDOl1M8XzpzM9x/bQtq0wnN+/Pg24qk0uT4nGW47M8qz2dQ2xPzqHALRFJ+7dy25GS4AmvsibOkY4ivnTCHLsR7K5tA+/0PsKqjhh2t+zhVZV1CRWcFZ1WdxbGAWxr97MMozcbtdBO/aSValnxOmziO6uo9pto8xNMfg0dTTADgMB4l0gkxnJoMx6/a2uGwxTzQ+Qf1APQCRZIRvr/kZ10/6GQB5GS4GIwkAppVlH7L372gTSoSIJCJkOjMxDINfrvklLUFrQe9QfIjbVt/Gx2d9nO5wN5z/C+jfCS4f5NfSm1lEV89mvE4vFf4KHLaD+9GY6I2Q7AoT29xHoiuMqyYbAxN7pguby/6Ox7fZ9r1P220GW4IRymbm07Z2bxZYVqEXsva9vsJMN89s7ebTp9ayvmWAjqEox07Ip6ogg2XbujhzajHBWJIsr5Pm3jBuh4PbXthKNJFmaqmfUDxFTyBGgd/9jq9H9grGg+waaCHtSLJwnI/SHB/FeQnmVPm4e0X7nn6mCb9Z0c576ibgfOXX+4aJDbbAvA8TX/AdghsSJDaH8IZN6hw1BB9rJet0F6HtCZL9MZxdkN3qYfEFx/Lrdb8eMUymM5OeSM8+dXaGO0fl+uXI4/c46Q3Gidk8OEpnw+V3QyJiPZb9kLYLf8wfN/2G02ZeTdu64J7jsos9eAptvH+xn5vvGxoxZr7PxXmzCqgptOF1prD9VxaDx2njwrIcjKVN9LQEcY/LxkyZhFZ2kn1mNUNPNRPZ0k/RJ2fhLBwZACgCkOzpwVFQsN+/exwFBaT6+jATCQyn8w3HScSidO7YxpyzL3jDfl6/nw7bBABOn1rCE0NltAXb9ulXnOUhbUJPME5JtuctXJGIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyNs3miEkO4FnDMN4BCtcBADTNH/yegeYpmkCu1ckOocfJnAhcPJw+53AMxxBISTtAxFe3NnLyXVFnDCpALth0B9OsKUjMCKEJD0UY/CxXXin5mMr8hFe0w12g9mz8rh3ZSu1pVms7Fy5z/jre9Zz2rjTWVCTTypt4rDbqMrLxDTDe/o4bAbJtMnsyhwy3dbbXjwui/fcNJf1z7QQjyWZdmIZvXnN/G7l/fRF+zil8hQWlC6gJqtm5AmzyiEehKXf2Ft71WIwwYj0WQtNbQ6IDmDaXRi+YgBM02RV5yoe3vkwLYEWcjw5XFJ7CYtKF+0/7ETGVHG2h5vPqeOGe1YzlFXBo/Mv4ycbbuPcceeS6cvk6Y2/5iPTr+H51ufYuPkOTp11Fh/IGE/Fq39m8Phv0G0v4p5NcR7YEuH2i0qoLcwgUD9EbrWfcKmb5a0DfO/Rzdx0+mR+9PhW65xZbs6eXkrKNPnauVNo6AmTMk2S6TTFWW4+cvx4frtsBw+taWNOZQ4nTS7k5gfW0xeK8975lYAVplBXkWbQ8RzfHtjEgpM/xR82/IHJQ5O5eOLFrGhbwY+n3ErZQB7Rl7tIAt6p+QwtbQSbgWdqPkOP7bJeBAPybTlcc/L7aC5tZFPvJuYXz2dl50oKvAUATMmfwh3r7tjn9YsZXYCfDx5Xw/2rWrjtyjnMrFAIyWhY07WGVZ2reLHjRSozKzmz5kwG4yMzsFJmingqztTsCdC4Cmx2SCVZm1fOf5oepr6/Hp/dxyWTLmF+8Xx8roO3UD01GGPokQZSQ1YwVKItRKo3gi3Xg7s0c0RfM22SGopjOAzsma4DGn9WRTaZbgfBWHJP2yVzK/jt8zu5cno5086oILIjQHltDpMWlfBqX4CJhZls77Y+bg0Dbjytlq/9YwPheIraokwKMt38dlkDv706j/xMNy0DEWLJNEPRJFNKM7nmj6/uOdem9gA/e7KeM6eV8L6FVTgdtn1qlLdu58BOXu54maebnwYTTqk6BdNZzUOtv2NG4Qy+d+XxfPjXUULxFABzqnIJkEmyfBGOnU+MHCyjkIStlMguO+lAlERHmERbCHdtDu4JOQSeaiZzcTmBZ5qt/i1RMgJ5HF9+PMtbl+8ZZvvAdq6ZcQ1PNj05YvhLay8d1ddCjhyxRIqUabJu0Msx8Q6MQDvkVME/bwCgZ2AXy7qeZcr0GUysmE1oqwNvVYraBcUEHH04M3dwytRCntoUAOC0qbksmNbGww3/pCfowpV1HD/6QCW/fdLJkxutPndcMI2sDf3YM5ykXHaCz7fhnVGAqyyDwLJWfLMKCb3YTrwpgCPXg6F7lPyXZHc3jsLC/e6z5+UCkBocxFFQ8IbjbHlhGalkkvFzF7xhP68/i750HV5PgAmFGZRlltEabN2nX3GWFTzSFYgqhEREREREREREREREREREREREREREREREREREDpnRDCFpGn64hh8HxDAMO/AqMBG43TTNlwzDKDZNsx3ANM12wzCKRqPg0ZJIm0wtzSKWTJPldWMzDDwOO6m0ObLfQIysUyutBehOG94ZBZjxNLZoGofdRuNAO7MLZ7Oxd+OI46blT+OJzV3Mrc6hyJ/JD/+zlSc+cwKmCd++cBrBWJK8DBdel52CDDe5GW4AbHYbZbU5lE7MBhNeaH+Bzz7zWSLJCADPtT7HFxd8kZqpNSMvqHQ2LLgOXhkOXsgoJLrkFhoCNqYGuzCG2sCXh9nXSaL6ZFxO6+3fNbiLxsFGzqw5k6ZAEz6HD7thZ2PPRqYXTj/or7u8c6dPKea+jx3DrvRWfrDyLgq8BWS5s7hr0118eNqHuX3tL+mL9jEuexylueP5Zd82phxzNSWZGbQONTJvdiWzZrtojm3FP9WFf0aK1qEgsXA+v322g7QJ0aS1gN5pN/j4SRO49dEtxFNpCv1uPnRcDXXFfr77nunYbAZp0+TL50whHEvyyq5+XtjRy67eMItrs1g8ycH08Xl0RbfTFtnBX7fdz41zb+SWFbdQ4C2gPLOcn776U34443vk/D1CsiaA4bIDYCbTALgq/cTqB6yLdxhknzWOyMZegv+3nZunXEtsoY8+2wDLi1awtW8rH53xUXrCPVT5q2gKNI147cbnlnDvddMpy/Hy3vkVFPm1eHQ07BrcxRONT3DnpjsBWMEK/tP4H76z+Dvc+PSNI/pOzpvMHE8RdGyE3Gp6a06gI9zD8WXHU+2vJsudhdvhtsJmSucftBpTAzFS4QTeWYU48jzEmwNEt/WTeWL5iH7JgSjBF9sJvdCOzecg+9xxeOrysDntbzj+5JIs/nrdMTyyvp3m3hCnTy3BboMvn11H2jSJOOxMXVTMhOJMHl3fQYbbzkmTC7loThnxlInbYSMUTzK9LJuXd/VR3xWkviuI3WaQBiKxFOOLMonEU7gcNnqDcQoyXfQE43tqWLGzl7lVOTT2hZhY5D9or93RrGGwgdqcWlx2FwYG1VnV9Ef72TGwg5c6XuLVjle582NfZcVWG7t6Qswoy2ZLb5KaxTeT270BzDRN86+mK6+aWv+JmFvTGDYTR6GX7InjGHq8iVj9AP5Tq6z73n/lMpg2kyWVS8hyZfHYrscozyzn5kU3M7NgJj848Qfcse4OUmaKj838GItKF43JaySHn1gqzaa2IX67rIfN143H3bAcbC448Quw/McUx0IA/KbhF+S4c5g0YxKhZIhv+L/BbatuY3rhdC5ZnMEx1XW4HAZFJdv53LLP7Rn/ycYn+cKCL3DViaWcPmk6HredBVkZJKN2Yg0D2Nx2ss6qYejxXfhPriT+VDM2n/XnTqo/Srx5CPe4nLF4aeQwluzpxj1u/H73OXKHQ0j6+980hGTdE4+RX1FFxZS9f9d0DUVp7g8zuzIXu80KXew1vUTj45lWXY9hGJRnlvNKxyuYpjkimLHIb/3N1jkUQ0RERERERERERERERERERERERERERERERETkUBm1EBLTNG8BMAwjwzTN0Fs4LgXMNgwjB3jQMIwDTqcwDOM64DqAqqqqt1bwKLLZDEqzvXz30c3s6g0DMLM8my+cOWlPH9M0ceZ7SfVEiTcFMBw27FlO3BNzCdvAbjOIpqJMzptMWUYZbaE2ACblTGJi1gy+9WoLj2/q5LYr5wDgcNgYiMSp7wri9zh5aM0ucn0uPnhcNfFkGtdr/gu8YRhgwJa+LXsCSHa7Z/M9nFp5KmX+sr2NGflw+jdh9pUQC0DeeNb2eLBl2vh3+HwWFPXgNONEJ4/DnlvJ7v8rPhgbJN+XzyM7H6EkowTDMHix40UunXjpiHMmurqIt7QABs6yUlwlJQfpnTh8Ha5zdyASZ0PbEK7sLs7MP54PeU8h1tjL/AlfIt9dgpE/xAM9T3LF5Cv4/svfZ2r+VFx2Fz949QdcPfVq/t14P73RXi6qvYjvrvg1ALMLZ3PRxEu4/qxs1u3KwT08F5dMLuL+VS3EU2nGF2RwybwKfvPsDj5+0gTuebmJln5rbs6tyuGqY6p5tbGfs2Z5uOPaIu7d/nsaYgv4zbrfcNWUq/jnjoewGTbCiTAmJqdXn04kEOJP1b+icqiUofAuotv6yT69hsHWIIbdAJuBmUpj81iBDxnzSgg+10pqIIa7NgdXQSaJv3RQkEzzgZPOw5ibjdvvYyDWT1eoi48/+QmGEkMAnFV1ISu3+ajKHaI6P/NdH0AylvO3M9zJ3+v/PqJtMDbIQGwAh+EgaSYBuHb6tRR5CvCXzIIlX4GBJgbyazAHd/JMyzNkubLoifTwYvhFLqm95KDWaHjsZJ89jtBLHUTWdeMel0322ePAMTL1IfRyJ7H6AZzlmcSbhuj78xYKrpuJZ3z2m55jenk208uz2dUdoL4rxFDvALONIbKMNHFXFj0xN8vre/js39Zw54cXMK4gg58u3cZQNMHJk4q49oRxnDolhc2AFxv6KM328OHF4yCdJpJMcdPf1gLgcdr44aWzuGx+Jb98Zsee89cV+2nsDZNIma9X4mHpcL33AmS6Mrm//n7K/eUYGLzc/jIX1V7EZZMv45drf8nq7tUMJdt4fKOT4iw382tyaRmI8OHHolw8448UV/fx4/U/4wP+KuoGvERauojtGMBR4CXjmFIyTywn8HgjAIbXgZlI7zm3fWYWtjwPE5hAJBHhozM+Sp43j1yPtRj/7HFns7h8MQBZriwAkn19xJubMZNJHIVFuKsqD/ErdnQ5XOfuYCTB8voebAYsDVRywoLPYPTvJOH003/BiThJcHXdVfxpy93M80/lY1kXUmLLpaOpldZAE3NK5vCfxkd5/+SP8IdnwoSH7h4xftJMUt9fj2mazJxQxMRIBaFnWolu7MVV5cc7s5Dwum680wsgDY4CL6mBGPZ8D+lIkuDKLnDYcZVlWp/9IkCyu4eMhfsPU7IPh5Ak+/txv8EYfW2tdGzfxslXX7snSOSF7T1cc+crRBNpZlXm8Lur51Pod/OPhhiQYk6p9b2xNKOUUCLEUHyIbPfez/ziLOv7Y1cg+s4vUkRERERERERERERERERERERERERERERERETkAI1aCIlhGMcCvwcygSrDMGYBHzNN85MHcrxpmgOGYTwDnAV0GoZRappmu2EYpUDX6xxzB3AHwPz58w+bldA+p43ntvdw7sxSFtbk0dQXxm4zRvyna8MwIG1iOA2cxT4S7SHseVmY0STONGS67GAkCCaCfGDqBwglQvhdfvI9+XQPWguHByMJWvrDwwOaDIQTZLgc3P709j3neWVXH/d8dBELx+UDEA0l6GkJEI+kmOs7hmx3NoOxwT39TUxstpEL5QFwZUL53D2b7TtaCMcSzKqqZGeiDI/dTiSeZBx7rzHDmcGW/i1s6tvEP3b8g1x3LseWHUtftG9Pn+jOnSRaWnafnPjOCKmBQbx1k9/+G3AEOBznbjpt8vDadqLJNDPt5cxb5sT85zcou/wyytakGXzkJ1x52WV8YMINBJ5s5e/Tvo3b7WNToB5nzcVM8tXwZOwJzhl3Dn/a+CcAzqw+E4/dw0tNL5HlyKHXt43jCj/JF5fUMjPLR/9AjO6JxaQyHdz66GYmFGaypSOwJ4AEYFXTAO8/toALTtrGyoHnWNm5kr5YH7V5NUSSEUxMMCCdTuO0OQHwu/ycM3Q8rv8E4LThhfZJk/CaLrLPHkcyGCPnwgkM/rsB36xCotv6sWU4SA3EwAD3uGyGhhfr23wOzLiJoyWB6YvgeHWQ4kGTRxf8jZ25PewMBUjFiui32SjJ8vDYhnZKs71Mr8iiPMd3aN/EQ2Qs56/dsGOa+57SwOCGOTdgYFCeWc4D9Q8wp9gKaaKoDorqiPduZjAxyJNNT5JMJ4kmolwy+ZIR96SDweZzMvR4I94ZBWCamEmTyJZe3JNz9vSJdYWw+53Ys12Y0RRZp1YR2zlIvHnogEJIdounTEJ9A5zhGsSMx8DmAIcff3cch8fJwspcHt/URYnfxW1XzsYwDFx2g0fWd1CV5+Om0yexfHsPPcEYtz+9nR9eOpNppVn85LJZDIQTVOR6WdXYx5LJRXtCSHwuOzedMYmHVrdRnX9kzfHD8d67W3uwnfZQO083Pw3A1PyptIXaKPAW7OljMwzOm1nK9x/bwocXV2OYcNPpk0gYvTR2ree2rO+R+5KDRMkQGYtKcVX7SYeSDC5tIu/iiXhnFRJrGiL34omkAnHcCwswKz2s9Wzlf5b9iCWVS/A7/RR4C8j2jJyHu8NHAOJtbcQbGjDTaUiliIfDpAYH8M2YcWherKPQ4Tp3Y8NhNjPKs1m6sYuuimwmFs+nbTBCLJGmLMdDjVnFP5ZcgrffTSSUIup3UZoOcFfNLXy44XvMKpzF7et+zKdO/iK3rbO+RzoMB9nubAZiA5iYTHZNoLI+i8CaXTgKPOS9v47gc60EX2jDMyEHZ5Wf8Nou/KdWkugM45tRSGBZM745RfTds5m8yyfjrjnwe6u8e6XjcdKDgziKCve7f3cISap/4A3Had26EYBxcxYAEI4n+dx9a6nI9XHVoiq+/9gWLv7V83z4uHE8uDmAI3s1FQ4r1qTIVwRAT6RnRAhJQaYLw4DOodg7ukYRERERERERERERERERERERERERERERERERkbdi1EJIgP8FzgT+CWCa5lrDME58owMMwygEEsMBJF7gNOB/hsf4IPD94Z8PjWLdB53LbqMk28OkYj+f/PMqQvEUAMVZbn7zgXnMrszFTKYw3HaG/tlCOhAHIN4UwDevCO+EbMYVZRIx06xoW0EwHuTCiRfSEeqgLdjGooKz+OzpkxgMx3E77Hz+jMlEYiaFma49i8R3S6ZN1rUMsnBcPsH+KM//vR6Hy055XS6xJg+/mXYXycIhsj3ZhOIhNvdvpthX/KbXOBBJsLMnxGA0icdlJ5pIsbMryDcvmDai37qudVww/gJKM0vZ2LsRv8s/IuQk2dcPgJk2sbmcmGmTdDj8jl5/eXs6h6KYwF0rGjhngZ3oP5fiKC7GcDrpv/fP+M86i9jmTfTfeSd511xD9P/uJ7xyJfM//nFmD9qJrP4Lf7jqGuz9fhZ5P0CwNJeqnAkEB/3UPxsgEUpx0onnU5jlw/dygLWvWOEzTred466dQq7PxfjCDDa3D1Ge7eWKmWWE4il2BodIejZz97rb+djMj9Ew1EC+J594yvq9ebb5WS6YcAEP1D9AIBHgS3Wf5xTPibCigzSQjqWwZ7tJDcZItIcYbG/AfkYVD8RDnPehqSRTabI+VIcRSoIBjgIvifYQAIbbjv+UKoaeaMTvraT/b9sgaa39ju8covo94/l7O/SHB3n/ojK+/o+t5Ge6GYwksBsGd1w9n8q8Iyuk4XDnsXv45KxPckzpMXgcHnpCPfzg1R9Q7a+mcaiRYm8xd2++G5/Th42RgUrpdJqtfVu5YfYN7BjYQVlmGYW+Qhy2g/vRaEZTeOvyCTzdbIVNue1knV69Z+4ApPtjDDy8E1JWW2znIFmnV2PLcL6lc8WSaU7KjGGEkxgOB222Gppe6adqWj6hhiE+VVrE77p6MU2TVxoHME2TyjwfO7uCfODYaja1DdEViFGe4+X9i6rI9jn480tNPLute885vn3hNLK9Dr5w5mSK/G6q830kU2m+eFYdPtdofq04enSGOvG7/FxSewmNgUYMDMoyyugJ9XDZ5MuYnD2ZP2/7M/neQta3DvLtC6cxEE7itNu44Z7VfPX8HE5tmod9bZg41veJyJY+K2Rpcx/Zp1WRjqXwTMwhORgn3jBE8NVOvB8fzydX3khRRhHHlh3LstZlfGLmJ/C7/ZimaQWTGfsGk8U7OzF3h445nZjpNOlYnGQkgsPrPbQvnoyp8lwvp0wu5PRpJTgMqMjz8dUHN9DQG+K4mjwm5WVw5aJKzK4oG9f10rCul2Q8zXEXTyA7O4Mvj7+enY5uKv2V5Ht9fGPhN+iP99Ew1MCuwV2UZZYxI386ZWszCT61C4B44xCRjb3kXDiB0Msd2LJckO8g89RKhh7aSao/hhlLgd3AWZRB+NUuwmu6cZZlYNM966iX6rY+3xwFBfvdvzeExPobpWlTLz3NQWYsqcDpsu/p19WwE6fHS25JKQAPrGqlfTDKvdcdw6Lx+cyuyuXaO1fy/x7eRFmuwWDBo/jjVwDsCZfqifQwIWfCnjEddhv5GW66hqIH+apFRERERERERERERERERERERERERERERERERF7fqK68M02z2TCM1zal3uSQUuBOwzDsgA34m2maDxuGsQL4m2EYHwGagPeOSsGjpHkgzKzybP6+qnVPAAlY/9V62bYeZlfmEujrwx5M46724yzLxEymMZw2olv78cTS9IVieLJTzC6czfic8fxzxz9JpBKcP+F8TOCnS7dRW5TJaVOKMQzwOA1Ksr1kuO371ONxWguIuxqHmLK4lO6mICsf2YXdYWN2YRWxjD6+8MoXqPRXcvnky/mv93C/KnO9PLaxg7tfbAQgP8PF9y6egfc1izv9Tj8nV51MZ7iT9T3rWVSyiISZoHGwkdacVjLCuXRECkgmcskvcJARaMbmsIPNINbbizs//x2+E/JWJNJpvN5+vnFFCscaa4Gmb9Eigk8/A4C7diK9v36SjCsux5w1g9S2rWSdfz6BZ54hvn07BZ/+FEN330ts2zbqvvgFooEEsfEmvR1RYkNJSsZn4055iTfY2fFKNzaHQemEbKqm5tO9tpdfHjcJT74Hh81gqHGIjU+24XfZOeuiEnYluynLKAPAYTjojfZS4a/AZtioH6hnUu4kbp5/M/OcM8hamsBTmSYyfF3BF9rIWlJJOpIkGYjRURkkUDTEwkQJLzy8i8GWEPlTnGQvSFB9TCa2tVHsfpd1/XOKCDzbAimTdCSxJ0TCUeTDN6cIM5TkizUlDOZEeDr8BN++opZAYohAPIIRK2NT25BCSA4yp83JtIJp/HXrX1nXs46FJQv58sIvYzfseJ1eHmt8jGkF01hcthi7MfJ+6HF4qMupI9eTy9ziuSTTSR7b8RjHVx5Pe7Cd0szSt11XsD9KV2OA0GCMCSU+kr0Rsk6r2nNvj9T3456Yvad/vCmwJ4Bkt/C6bvKunHxA5wuFwnQ3NZJhmjgzfRCLEMksxWNzY7PbeOGBHRSUZzLzlApuGufngr+uxO2w8fkzJ3PLPzdywawyTNNkSmkWf3xhF/e+0gzAlNKsEQEkAD96fBu3v28OpdkeDKArEGNKiZ+qfM3td2owNsgjOx/h9jW38/FZH6c/0s/s4tkArOlcw7SCafxy7S9Jm2kun3Q5sUQCv9tBTzDOuuZBkqbJUDRJnbME+7qmEWOnh+IYLjvOsgwMA0imwWXH7rEz8EQj2AyMQIqbxn2cLleAXaFGrp5yNcl0ki8t+xJD8SFOqjiJAk8Bs4tnU+Qr2ju4aQWHpaNpiCewZ/jAbiPV24ujouLQvYAypvqCMewGfPC4auIpk75QlM3tAXqCMW4/azrh1b0EXw3QnugkryyTSDDBmddOo3NXgI3PtXHM+QUUJoowXQ7a4x1saltLSX4ly1qXYTfshJIhfrHmF9w276e47Xm4Tq3CMMBMmQSWt5LsieKpzcUscNLgb2dazlRsF0wg9Eonhg2cxRkEn2sFwIylCK/vIWNOMYbtzb/nyrtXcncISWHhfvfbc3IASA30M9QT4ZFfrCOdNultDXL6NXvDFrsbd1JYPQ7DZsM0Te5a0ci0siwWjssDYHZlDsu+eDJbOwJsDjzBrSvDZEasv5PyvdbfOD2Rnn3OX5zlpisQO2jXKyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLyZkYzhKTZMIzjANMwDBfwaWDzGx1gmuY6YM5+2nuBU0elylGWiMfw9DQS2LSW0x1eFpw8nu+uGCAYSwIQi8fZ8erLbF7+DKecfg2mCUOPN+453n9SBdigoiBGZzzJhJwJ3PTsTWS7srlhzg1EkhFyMgJ89IRKHljVya7eEGuaByjKdOJzO7lqUTVff2jjnvFyfE5q8jMAcPsc9LWHefEfO/fsf+rOzZzx8Sl0h7u5Mvd8ep9bywpvE+OnzaF43MTXvc5ANMEHjqnmjKnFxJNpqvK8hOJJnHbbnj553jzsNjsVmRW0BFr41FOfImkmWVSyiOMzT2Hpb1YT6rcW2dlsBud8sIastrU4igoxg0FQCMkh5bbbKCro4zfrfscnM86gFEj19eIoLibR2orhdOH41td4ZsWzdP/hdqonT+O408+BJ58mdskFrBkaoOCi8yhy+xjK9LH00QcJPPp33L4MjrnkWlKU8PLDDcw7p4bZp2WB2U462U4qXkki5ic95OLVf29jyuIyVv2nCcNmMOvUSno2R4g2F3PjpG8TS3Vz+eTLear5KZoDzXz7uG+TjqaY7ZmGd10Sb04mQ82NRAYS+OaXEFxmBYgMPdGEPd/DljMH+NnO2/li4Vd55c4tRAIJAEIrYhR2Z5B7iQOjzInH48ZY78Tmc5AOxMFh2xPOY3gdZMwtYvA/u2A4Q8JZ5WfxmcfxrbW3sLZnLU6bk8smXcYJpWcDJWPyfr5bxdIxvvnCN2kKWIEL2/q3sb5nPbcccwsP1T9Ec7CZVV2reKb5Gf7nhP8ZcaxpmlRmV/L9l7/PzsGdeB1ebph9A07DyYPbH+QTsz5xQCFM/y08FOfpu7bQtKkPgHE3zMBMpkfe20+uJBGOsuqBR8guKqHcMW6fcQy7gT3X86bn621p5oW/38O2FcvBMJh87PHMP/4U7Nk5rPr7Dlq3DgAQGojR2TjE2Z+Yzg8umUEkkeZfa1p57/xKivwuivwe1rQM8MqufsYVZFCe4yUQTexzvsFIglTa5Ka/reV7F00n0+Nge1eQCUX+t/xayUgrO1Zy68u3Mj57POOyxrGuex2/2/A7AM6uOZv5xfPxOrz8adOfWNW1iu8t/h4nTc7CNNNMKfFzx/IGAHb1JMk3DDBHBtvYs1wke+0M/Gvv537m4jIcRT6MSjcP33ErvW0tzD7rXBbU1dLtjfL1l75FyrQC1F5oe4Eb597Ipt5N3DD3Bhw262ukYRhE1qyh97e/wzFzBqkLz6cnNEj2QCmlkTDO1nZsPi/uSZNwDC/ol3efcCRCRn8THatfxZ+dxaQJ01g26OTGReNofXAX8ag1jzYsa6N6Rj6184vZ/Hwbk48pxpsR57Hbv0Y0FCQzN5/5F1zMxmefYuJ7LmVx/nx+t/MumoPN3DT3JiY5JhBYth0zZo1ny3SStaQSTBPDZac5vxeX4cLmtOMZnwNA/33bCL/aZRVqA2dpBgMPbsfuc+Kq9mP3ucbiJZPDQLLHCv6wFxTsd7/N7cbm85Hq72f9My1gg6nHlbHpuTYmLSyherr198lAZwc1s+YCsKl9iK2dAb570fQR3yN8LgdzqnJZtqoNWxrcQWsOF3itc+8vhKTI76ZzKHrwLlhERERERERERERERERERERERERERERERERE5E2MZgjJx4GfAeVAC/A4cP0onu+w1LRuDY//8Nt7tt0ZGXz5vZ/la8/2AnBxjZ3//Ph/mX78GQBEN/aOOD7wfBsFMwvoj3dR4C7goZ0P4XP4+Max3+CbL3yTofgQNsPGtdM/yk1nnE6uz0VNfgaheBqfGx5c1cqXz65jZ3cIv8dBttfJ9q4gx9cWYrPb2PZSBwB5pRkUVGbSuKGX5vUDfL32Rjb84i6SiTgAL7v+yuXfvJWSiZP2e50zK3P4w3O76BiK4nba2NkT5LoTxgPQMRhhc3uAioI4iUSCSDrCPVvuwevwcmPVRymNZBHaWc/khVmsfyZJIpYinTZ5dVkPp55cDdEg6aGhg/vGyJsKmx3ct+0+dgzu4PHybXz41ptJP/Q0hTfdRF9XB+GqCh794XdIRCMANG7ZQDgcYsqxx7Ps3rswDBszTz+LjLopPPOn3xLosf7TfCwcYtmfb+P4930dgPzSFMvuuoOBzrY95z7lmht59fEhyibm0LjB+p2YuriUrS91MNgVwe1zMCGzEqOrkHEZ01hSdzYvBJ7g2NAsjG1RzGCcWH0/nhN9AKQDcZLdYbJOqyLWOES6wE7vxDgRT4ILJ1xIb0eQSGDkYv3u7SGcHX18Y9sXmZ4/na9ffjPOuIEty0V6KI7htmO47PhmFhB4oW1PAAlAqilA7mARW/q3UJdXx1BsiD9v+TPTCmYAs0brLTsqtQZa9wSQ7La2ey1t4TZumHMDv133W7YPbqc12EpLoIVZRXtf/1gqxi9W/4Kdg1YgQyQZ4Ycrf8htS27jgfoHuGLyFeR5895yTX1tQfo7w+SVZtDXEcKGQXRz34g+wedbyZ4wiefvvQuASz7+TZxOG2YivadP5skVNG9ZSzQYJLu4hMLq8TicTgDikSTdzQGCA1EG21+2AkgATJOtLyyneNxEyrIm0rp1AE+mg6qp+XQ1BhjoDDPYGaUykCaWaWdOZQ71XUHOn1VLpsdJJJbii2dOpr4rSENPiOp8Hy67jXhqb10LanLZvaR6c3uA6jwfbz2qRfanO9zNdTOvo9pfzbb+bTy267E9+x7d9ShT8qeQSCf4woIvADAQH2BLm8mMyhzWtwxy5rRiXm3s5/cb2pg9twj7yq49x9vzPRgOG5E13SPOGVzRTt776nhx+d/pbt4FwKpHHuLkgo9Saxbw+8of4MnMpyeV5NnQk9T3buO0nOPpbN1FWfl4TEwG4lF6Mz04Pv8ZKC7i4V/+dM/4RTXjOf340zCfeYb0/fdT/OUv48jNHb0XUcbMUMNW/v3jvd95XV4fp37uFnY2O2keDiAByCn24fY5cPlg/CyTdKKJJ3/3E1JJK6Av2N/Ly/+4j0UXXcZLD9zLoosu5/q662hMtJHvySfwXBvE9o6XDiZIheLYM110+vsZIkAkFKE6pxqPw0PYZcd3ejWJDT0YdhuuKj/BFe2QNIk3B0gNxPDU5eE4gNAnefdJ9ljfMx2vE0ICYP//7N11fB7Hgf/xz+4+zCBmybLAlszMkMQBJ7HjMDTQNu015Ta9Xi/XXg/L7V3x2hSSNmmShjkO2zEzkyxmfBgXfn88jlxXKfzu6jR3nffr5Zel2dmZ2ZnVPqs/5qtAAHVsjK7jYxRP8rHs+jp6T4XY9PBJbqifhyTpxENjePLyAXj56ACSBGumvnPwXE+sB3fWRjoaB8BtdmORLYwkRybULfTYONwrfg8SBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBOHdc95CSAzDGAZuOl/t/2+QTsTZ8sgD55bF4/ijPRS4Pdy2qBotOkgyGsEbzEePZyc2ouokwyHK4gZ2v5MiWyGfnv1pvr3n20QyuQ1puqHz40P/xdcWN/PE1ijxjMqrxwf58hVTUA2Dr7xwnCKPjURWJZJU+cY103Ln6QZOr5U1H2xiqDPKSE+UOZdWESx1sue1p1l68x3kV1SRTSWRzWZG+3rOhpDEh2HwOGQTkFdLbUENn7+kgVNDMQzDoK7AjdtupmcswXdeOUWZ345kizAlOIX7jt0HwL9P/QeKI27GxroYy7bj8PqYd3k1Wx4dy3URzqLLNmQkDMOYODfCeZXRM3gMP18t+wGZ01bsC20MbHDR23aCgupJZMZGmXv5egbbWmnZvZ3aeQuZPG8RdreX+VddR7C8ku2P/hqby01kaPCctg1dR82EMFstxEa7zwkgKZvSTDo+yqL1U+lvlfHk+YiOJPEVOeg6NsqkmR4mz/XR1xpHUdKYrBaCKRO3Oa4l/ut23KvKie7J9SdZlfF2U8dGSZ0cw35BKadq+/ji9i8ykBhgTdUabgssp5P2c8YoyxJxIwbAhVUXct2Wmyh0FPLLK3+C9Js+opt78KwuR/ZYie/snzB/Rkzn5zWP03FoGMmtodWHGE52/7mWRzjDJL/zx5hJNvG1XV/j7+b/HZ9987MASNLZqAxN1whnwxwcPjjh3P5EP6WuUmym/96GdNk0ypINZjRVxeosxsjoE+oYWR00g3nrrkGWFfZuf5ZVN3wQOrLosQy2piCdw0cZ7e8iFYsRHhwgGYlQM2suuqZzeHMP2x4/zbzLq2k/uPfc/hWF6MgwnqCNZddPJpvR6T05Rs3MfPLKXIQGEux9pg0kuOoDUwkur6HAYwcg32PlC08cZiiWBmA4lubb103n6y+doGM0wdLJ+dy+qJJdHbnndJ7Lgs0koShnf9ZaBqPs7wqRUXWay3w0lXjOmXvhne0b2MdPDv8Em2Lj68u+zpOnn5xQZ0vvFuYXzedfd/wrn5z1Sb6959t8aOrn0OM2lrl7qbaEWHlDAZ/flObXRpqb11ZhbY9iyrMjyxLqSHJix7qBLunse+PZc4qTkTBbHv4V2VQSSZJZcdtHuLVsPad3b+LAxp9xVJaZddk6ambOobuvm0QmidlmxxoOsWDDDciKgqZmsdgdGPWTiXqcmIDB4QESp08gyzIOrx9vQRF2t/v8TKrwrsmkkux96pHx7/3FJTi8fiLtpygvnksXIMtwwR1TGemJkYikMdRuBtqO4Q7mjQeQAPiKSrjgg3eRjsdZfP0tKGYL9phM3OrFrtixjELmd/rX41n0Agsttk7ylAJ0dGKZGDaTjWRSZbQnTmFcRU+pJA8NA2AK2tAiGTKdUfSMhntJKZIivwuzJbyXqCNn7ofA7w8dU/x+ssOjjERizL+iGsUks+z6Op7+j/3sfq6dxkUuMAzcwVwIycYjA8yp9JPnsr5je32xPny6k1QsCuTeT/LseQwnhyfULXBbGY6lUTUdk7g/BUEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEF4F5y3EBJJkqqBjwFVv92PYRhXnK8+32t0XSeTSoAkUVBVg66qDHd1ELDAT2+dg0WRsY0mMFmtuDxBZJuCZFEwMmf/urupyMH+t15g76tPU9bYxNprb6LdOUZntHNCf+HsABuPOvneDTN5dG83mm5w68JKvvjUEfojKQAW1wYp9dmJpqLoqs601WW8dt9xwkO5jckdh0dZsK6a2SsvJRmNsePxh4iODIMkESwtp7iuAb/NgGc/CadeynVs98PNj+MuncWsCj+ko9D5Bhx7hnxnCZ+ZfgHbYkGS6SgSEpN9k3l20eMUyPng0qkqn8au15/krV/fz5q/+RSePDuR4SS1swsg1ImeSqJ4ved7uYTf4THlc4V+M4ceHuLyjwXJ9A5RFq/BlDZhNflJaVHcPh8Na5eyfO1tDAy0MtTShqpm0M06ajrNaE8X2VQKm8s9vtESwO7xUlxbgqG3kkmmxsvnr7+WwbZWtj32EIuvvQn0UaKDcRZvmE3/6ZeYc3E9u55+CEOtQjaZ6Di4n+ZVF7Hj0Re5as3fAmCo+vjPUfLQEJ6LKolt7UWPZzGmOOgrC/GR1z+CZmhcMekKXGYXXeYWCuo9DJ5IjI+lcXUBPxz+L8rd5ZwcPcnKgqVcU7CWMWMA+0UWLKqVkGmE0/v30FA3G/XE2etDBt1tYdN/HR4vMu+wsOSuZedxxf46lThLmF04mz0De8bL1lSuId+Wz0hqBIlc+EWVp4oSZwmEusBXTle0i+5oN2XuMrqj54bDBGwBPj370zjMDgBimRgD8QE0QyNgC5DnyPu94+k5cZSWndvY9+IzaKpK5fRZXHbNJ5HMci545AxziRPMEnuefQJd06mdu4CxzADVl8wGoOvYEXY+8xuGOtrGz5m//joKqieRTVnZ8VQrANmMSmH1JLoOH8AVCFIzfR6LLrweBRnG0lSVu3j0J0dIhDJ0HB7FV+hg8TWTcw0asO+ZNq767OzxPtqG4gzF0lhNMtfNLcdhNuG0ynz3hpmkVR1FBl2DREbDYzMxpcQDSAScFgCO90e4/sfbCSVyoVoWRebBO+czp/L3b+4WYCgxxN2b7mYwMchn53yWkeQIU4JT2NW/65x6U4NTKXQUAvBWz1vYTDa+feCf+K+691P00s1gGPgliQcv+Q6nS6cTMiQSJQ7ssoQlkqXCYUHa1oeRPBv4oARsSNZzN7ZbnU6cXj9aJreOhqHz1oP3cvFdn2bfC88Auftg55OP4M0vYNujD6Jlc3W9hUWsuv1DPPHVf4IzAWIzL7mCvpYTLLnufex6+jFadm1HlmWaV62hbuFitKyKxe6gaNJkFNN5ezUVziND18km41jsDm783Ddw2twYOhgKqGaN01VuGheXsOu5Nsb6Elxwa5CNP/oOyWiERdfcBJKEyWIhWFbOgvXX89IPvk10ZBhXIMiia27CGQhi7YlinhlkrDGDs+vc/s0NPvZ6TuCyeRhLjVHqKmUwMUieIw9vvp23HjlFcEUp8va+XP0yF44ZBYRfaMPelEdi7yCO5nxMgf9e+JTwv5c2MoLi9SKZzb+3juL3keodhjLIr/QAUN4YoGFRMXte7KCvxYqk5OHOy6drNMHRvgh/f2nj722vN9ZLmeQhGY2Ml/3eEBKPDcOAkXiGQo+4PwVBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBOP/O507PJ4GfAs8A+h+u+n+T3eVm8bU3Exsdoef4EWTFxNQVF+CorKMrlCbgtGBKp7ngA3eh2MxoSQ3fVbXosQx6QkVxW5ALbOz/h38CoPvYYY68/jJTb9xAtbeatnDbOf3lO/KRpQRdY0n8DjMmWSacyvL3lzXSH0nhsJgo8dpw2OPoSQeyIhEZTo0HkLxt38YuVr/PSXSon2kXXEIiEkLXdNzBPHqPHcVfnD4bQAKQHIPX/w2uvR8sDji5EULt4C7EIkFR94vY5aXs6PLTWKRxsWs11rSCkcyCASgS81dv4PTh3ZzY+gZV06/D0HIb1sNPPUty4ws4ly+n6EtfxFJScj6XTPgtctJK754EV35wMt6MgmG2k46FsDX6iTzejuww41tYTPQ33ViqvBQVlOPutWJrDGAqtaNG0tz40a+gyiqNzUvZ/OwDxCOjTF2+mlQ0QsuO1/EVFWOxu1DMZvxFJYQHB2jbv5vZa9ez/6VniYfGWHrjbbzwva8x94oNvPazH6CqWWpmzWHHE48w78qr2fXUowRKy1Bcuc2jyYPDuBYWE32zm2xvHC2UxrW0hGyFzNc7/pOyWCWaoRG0BfFZfdx/9H480zwkZ2ZpnjYfbVTBVJhlzH+aS4yLycuUUO+o4PDORxk6sJO+TJquo4dZfO1NbHn4VwBUfnQaTrOPzNEQtuY87NPySMUSrPvgZF57opvIcJJsWkPvNUHdX3JV/+8ZS43x8Zkf59DwIY6PHmd63nTqA/UMpgbJt+fjsXj4YPMHmVM4h66urcywFoKvnJSW4nv7vscX5n+Be7bcQ1pLA3B5zeU4TA4sSi5UYyg+xP6h/dx76F4imQhXTb6KpaVLaQg2TBhLZHiI0EA/u599Yrys48Be0uuS+K+tQwul0ZMqstuC4rXQefowmpoLgzi1cyuFNbVUz8gFgkSGBs4JIAHY9+IzTJ6/EKQCdC0X7mB1mPH4yll1+4cZ7eli8QU3YiQ1dDUXZmWyylz9wanc//V9AIQGEmTOBIQAJCIZ1N8KR5FlCatJ5rs3zODkQIyjfRGmlfkYGIoxEstQ6Lbic1pYP7OE2ZV+ntrXw+UzSpldHQTgWG8Ui3I20CKj6dy7qY0ZN/owKecGXQhnDSYGGUgMUO4u5/jocZaXLkdH57XO1+iK5tIWKj2VzCyYid/iB8BmshFJR2gNtxAaPUrRmcAPDAPrxs/huXYGx7VirCaZU4Nxntnfyw8vrsW/oTZ3LyZUZJcF2WshlY1jd3vIJBPMW3cNWlalv/UUC6+5ge5jh+k4uI9sOkVkaGDC2Fv37qRy2kxa9+wEIDzQT3RkmMs/9XdsfeRXjHR3su/FZ7jiM/fQfewQLTu3AaBrGgdefp6C6hoMXWO0rw9dUymf0vwuzLjw52Z1OFlw1Q1UlE1FVhX0lAY6SIqERTaz/OZ6Qv1JxvoSWOwmRnpOjAcwtOzaxqUf+wzDnR0Eyyp58YffJh2PAxAbHeHNX/6Ui+/6NDaLHc+IRLLKSmapjHVHEhQZZUWQU/5u+pJ9eCUvXquXlrEW5pfMB8Dls7H61ka2P9XK/NUV2IeTZHvjhJ9vxd6ch60hgKnAjpZSz+svRsJ7kzoyihIM/sE6Jr8f9cgpKAN/oWO8fMVN9XiCNva80IbV8z66T8h0ngkSWdlQ8I5tZbQMQ8khZpjKzwkhCdqD48/731bgtgIwEEmJEBJBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEN4V53OvXcowjP88j+3/r2B1Otn++EPUzlkAksSh116mdG0RH9rYztWzSvl4k51TO7ZQV78AOd+EPpYi/EJ7LpxDlnBeVobTFyA6MgRA656dNF95OR+f+XH+Zfu/MJIawSSZuKP5DhTdzxXTfRR7rTgsfp471IvdrGBYQNMMOobjTLZa0Y8CM0FTjXcc89Ibq3AFDXRVY+ujDzDYdhoAdzCfCz7wEVKpXiZsgevdC+kIZBOQCsGRJ6D2QsivhWyCC7waIzYPsUyMIiOAkc1gqAZGWkOyKRgZjas//iWevfdrFFS42PF0J40LCtE6WgGIv/kmqaNHRQjJu8iuZ1lzZTmJxzsIJ3NBCfbpeejRDEZGx7mskPDGDiRZwlzsJPpqJ5ZqD0ZaI/JEG/Zp+VitFrS9IcxTrFy8+kNkhxJknCpGAQz3dnL68E5Km5tYfvMHyCTj4+ENFpud6MgwFc3Tadm1HQDFZCYVj1FUW0d/y0kAJEVh6eW3UCxXY7bbkR0mtFCadGcUz5oqNFUlpo5yon8nRYM6Hw6uJ5YqoKKmAVeehdPhViZ5JiFLMvd1/BRF+gVeq5f10jUsYQmzlCa6Ww8yaj5A667tLNhwPdsfewirw0kiHALAk19Ie+s++k+dYvmGO6DVYOyXx3PjsymsvbaKR356EjWtY6SzCH9eAXuAtkgbY8kxVpatZHP3Zvw2P5WeSj4565NYFSv7BvbxyMlH+MH8f4T2XFBCqbOUGm8NKTXFV5Z+hZHUCC6zC5fJhSzJRDK5jcHHx45zeOQwK8pXoBu5sI7hkRCn2gcYao+SX+GmuNaHy28lHY8x1N46YYxDQ50UpIqJvtGVe7abJPxXTebInjfOqXdi22ZmXXoFZqsNQ9cmtJNJJTF0A2+BDX+Rg7H+BFa7CZPZxss/+R4Xvv/jGKqOkdXR0yqSIoEEZoeC3WMmGZl4/01dVorTaxn/vrHYzb+sa+KeJ48wGE0zvcxLMqtx7+Y2VN0g4LTwxbVTCDrNfOSBvVw0pZCsqtMbSvLa8UGeP9THRVOLCDjNfO+1FnQDukMJVN3ApPw3F/mvgM/qw2PxYJD7XO6MdGIYBnfPuZux9BgAfqsfwzDoj/cjSzKLShbx9V1fx2Px4E5Fz21QTaPFhjkRdtFQ7KbEZ6e6wE3aCkp7ishL7eMhYL4rJrFv37Osuv1DIEm8+cufEhsdGW9q3rprGO7qQJIkzDb7xLEXlzLQ2nJOma5pbH7wFyy/+Q6e+ua/gmFg93jGg0p+W/exIxROmoyvoJB9Lz5LWWMTkiSRTacwdAOLfWKfwnuT0x9AwYyeUTHOhJAYVgk5K0HSQFNzz1CTRSYZOXvP+otLOfTqRrqOHOSCD941HkDytnQiTiaZQNd19EwWS8ZgbLqOfYobu9lB3JpiZ+9uYpkYpe5S7CY7pe5SCp2F423klbmZeWE5LUdGqZ/kxWwY2KcGSOwfYuzhEwAkdvTjv6EeW7Xv/E+W8J6hjgxj+iMhJIrPD9EwJrOMO3D2tyBFkZl7WTV65iA7nunlwKv17J+VosBtZVK+8x3b6o/3Y2BQZM0nFTuJYRhIkkSePY/9g/sn1C84EzwyHEv/9y9SEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEATh/8P5DCH5D0mSvgRsBMZ3TRmGsfc89vmeomsa/S0tlDU2sef5p8AwmLJsNYH0CJVBJ4/u7eFjjWVE+gdx5bshaBB+sR3ezgbRDRIv9jBv5XpeffTHAATKytFkSKaT3LPgHqKZKE6zEwywmgwubS6mL5ykJ5Rid/sYNflOmko8RFMqG2oKOPjgKY5Hswx1x2heVorHYsfltxIbO7uxLa/MBLrGYEfreAAJQHRkiJM7thC47MKJISSNl4MjCGMdEB+GyWugYiHsfwBC7ShTN9Bgd2OS3GDoGDoYGQ3JJOc2zad0LHY7jUtXsfelHiqmBtF0UAKBs/MZjvxur8J5ZCZL/I1ejDMBJADJA8N4L6kGwNAM0AwsVV7SLSEAbJN8RF7pBEXClG8n+mon5mInklUh/Ewb1sk+bCYHsdf6KSgooGrl+1EzGTJGCr1ERrpYZt9rz4z3pyhmMokkALIiAxAbGaFwziQ6Du3H5y8keDqI2hEmYoniXlaGoRtkjQyD6U62vPwAIz3dGIbOJXd9nm1PaxTXxqmbMZXDT/dgGqnli5d8GtgeAAEAAElEQVR9CysK9U0zeG70Ca4qXoetM0m0bQ+t7aeJh8YIlJblrlnXUUwmMskkdrcXgLr5izjw8gtk0yksmpnUnr7x8RspjdRrvSy6rJytz3QR9IgQkj83u9nO13d9nZHU2dCEA8MH+PKiL2NX7GT1LLX+WhaVLmIAFUpnAeC2uvn8vM/zLzv+hQNDB85p84erf0iFqwKAWDbGydGTNOU15Q5mFZJ73WzcfmS8/qRZ+ay6pZFsNoMrMHEjc0lBLWP3HT9boBqEn2tj6eU3075/93hx4aTJKGYzAN78IhxeH5PmzMfh9dHfchKL3YHD68PutnDRB6ay5bHTpKIZBlt3oGsaVfUzQJXQsxraaApJllACNrAqFFR46Dg8gifPhiffjs1ppn5xMU3LSpFkaXwMdYUentrfy2A095lwwZRCvrnx5Pjx0XiG77xyku9cNwOAjUcHuH5uOd/YeILH9/YAsPX0CDV5Tm6cV8GvdnRy68IqbGaRQPKHlLpL+efF/8xn3vwMDfUNPNHyBLOLZvPVXV89p97fzfs7JCQ+OeuT/Pr4r3Nls/+W0he+eG6Ddj97ww4A9neGmJTvZGVdHt6EmZGXTpx9z9By9+Lsay9n51tP4CssPieABODAy88z6+Ir8BYWYXU6sXu8JCNhAFyBIBVTp9F/+hTzr7qOdCzGyZ1bcPmDhPp76Tx8gOoZs+k6fJB0PE6wvJLB3wnq8RcWg6GTzaiomTRqNkP30cPseOIRMqkkcy+/iuqZc7A5XX+m2RbOl9BAHwVV5RhpFcMASTIgbYAV3D4rKQO8+XbCQ0mK62ZhdVpIx2I4/QG2PPxLAEwWK7KioGtng5hkRUGSZYbb28ivrCIVjZEYGeWp2BasipU1VWtwm92YZTNW2UpaTbOgZMGE8eWVuRnpifPk/ceZt6qUyqxO+lRo/LgWyRDf3kfcLGN1WXD5JrztCv8HacMjWBsb/mAdxe9HyiTx55vO+cx8WzYdRk2+jKegme1to6ycVoQkTawH0BvvBaDYUcSAdoxMMonV4SDPnsdYeoysnsUsm8fr57utAAxGRAiJIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjvjvMZQtIM3AKsAvQzZcaZ7/8q6IaOyWzi4Ksv0XzBxZQ3TCUVi2GyWvHYclOfNBTyS6uw+l2o/YmzM3WGkdUJBMtoXnURvSeP07x6DUP6GF/Z+RWurL0Su8mOpms82/osn5/796h6IUd7o/gcZhbXBjHJEm+cGOSOJdVYetIko7kQhFPbB5i/tpr+tjArbm6g49Aww90xKqYGMVQVWVEY7emacE2DbafpyqxHWfwF3Nu/AVoGKpfAwo+CYs79y8Rg0mp4+Kbc14DUs5dZSz7J/sJrMZAwsjrZnjipk6OY/DbsM/KR3WbyyqupiJpp3T9Mw9wgmZNnNr+bzViqq87bWgkT6YaM1pecUG4Yud3rkjkXCqInsrmgA+DMIUxBO9n+OAC2xgDRN3L3krXaS2RjB7LDhL0pj/BTrchuM+7l5SS3DVMeqqD8wk+TLEjhLSym68hB5l91Hf2nT9JxcD9Tlq3i6KbXcPoCuPPyMWXMaB2JXN8ZPReAYpLILjWx8bEfUDSpjsZlq9CyGSRZZ8aqKKe2P0u8YimNCz3omg7GGNE2M167k1utV2AJaxw5sIkpy1ZhsdvoPXmcQEkuhKRl13aaV61h/8bnCA30UT1jDpIsj88Jibd39p+l9ScpurCEi5breG2pP9PqCG8bSAycE0AC0BZpoz3Sztd3fZ0vLfoSb/W8RXesm++u+i4UThuvpxv6hAASgP5EP0vKlgC5+73QWchrXa/hMDn4u4p/4vXtbefUP713iFkXVXL8rTconzKNkvpGXP4AZpudvlMnMGLqhD70eBaHxT3+vd3tYeaatchyLqzDX1bBivd9kM0P/oLoyBCVzTOYefFaPHn5DMfS7BiN0t/kYmp9gIFWuOETXyH5Sh/qQAJrrQ/ZZiK6uQfFa8G3rhZ30Mq0VWVUNgWJjaWY8+EpjKhZ3IFzN9knMyrH+s4GPqXV3/lQAtpHEmQ1nftvn8PGY4NoujEeQPK21uE4V80q5R8vn8KqhoIJbQgTNXjn8/7q75JNxPhg89/wrb1fm1Dnze43ubbuWk6HT3NJ9SXMzJ9Dk38GkdVWPC/cBfEhcBdxYtG3COnFfOPZoxgG2M0Kj143Cy2cORtAcoaR0TDrFk5se4ulN946oU8tk8VfXEIqmSAyPMi6u/+BeDiErmlYnU4Ukwm7y82OJx7B4fGy+LpbiAwPAjDY3krR5Hpq5y5gz3NP0LR8NZ2H9hMPjQEQKC0nUFaOYRjsevoxFl93C/2nTvD4v39pvP/nv/sNLvvE52hYtOzPONvC+WBzuTA0HXUkRfLAEJJJxjGjANllJqvqPP/Dw1zy4SaS0SGOb36Clt1b8RUUccEHP8L8q64Dcu+Z89dfy5E3X6WyeQaJSJhgWQXoBsWT64gMDuDw+qmylpMcS7Kmag27BnahSApzi+YSy8T47r7vcn/h/dhM5z7frA4zk2YVEA+nyVpMqIMT33EyXTFcmsFAe4SwI4nVoZBX5nlX5k/4y1BHRnAG8/5gHcXvByDo1t7xeDISwe52kLewgOi2MNPyfn9oUm8sF0JS6ilnAEhGI+MhJACjyVEKnYXj9fNcFgCGoiKERBAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRCEd8f5DCFZD9QYhpE5j328p+mqStexw1z7D//KzqcfpzWxCy2r4skv4Pqm+RzqiZC2eXCXFCB7LOjhDJhk+K1N35LdREZOYxgG9QuXIAWcqLJOwBbgl0d/OV6vzFWG2+xBtZtpKHbz402tTMp3MRxLM7PCR7HHSrglfs74VFVHMiSe/e4Bimt95JW5OLyph4rGYtRMhvKpzRzf8uY559TMmsffPNZCnmMhX9+wkaBVJ1BaB7Yzm+kdAVA1GDk1HkAyfi07f4Kz6WokSSJ1fBQjpeGYWYCh6sQ2deNdW8NbD92Hu+BqPEEbDp8NxetFdjop+Oxnsc+Y8eddIOEPMnsdWGo8ZFoi55QrPiv2Gfmkjo/inF9EfEc/jlkFpE+OoUczKAEbWjSDrS63YRNJAh2sjQEUnw37tDxkt5nYltwmTNfCEsIvtoGa2xlvDTkoqKzgqo9+kVCsj7H+fq64+x5ObN2MMxDkks9+nng2zqWf+jt8WR+hLSfO3VSvGngLipix5jK6jhxiqLOd4tp6hjpb2fXUozSvXoMk6Qy2HScZjdKweDmKMoLN5SaT1ElGItTOWcDe556iv/UUsy65guK6RppXreHQay/hLShk+S3vJxGJUjZlPg6fG8OQ2P3Mo0jeiY9Uc7Ub6ch2XBYT9sZF52Wt/po5TI4JZbIk0xvrZbJ/MpF0hJSWYn7RfMyyOfeMOsNtdVPqKqUndm6Aht/qH/9a13VqvDVEM1EimQhW1YndbWb2khKcJpmsBPt2DJBOqiRCIaIjwzStvJDe48cwMJiydCWKxwIS59ynis+KyW3jqr/7RzRVI6+sAl9R8fjxxNgwL3z/mxh67vOg49B+DMMgr3ISrx8eoqM/xs7eMMPxFHddfAPxX3WQTuc2R2ujKSzNeXjXVhPf1ke2P447YKN13xAHX+9m7V3T6EqmSKQnbqY+PhCludTHa8eHALCa5Al1ygN2FFni2UP9XD69BJtJRpLOhhC9ranUy4p6EUDypzIMme+/FCOZ1fjKBisNgQZ29O84p06dv47/OvhfHBs9BsAvL17FD99s59E9EnfN/gULiwzMnkJ+fTTDi4dbx9fk5hmlpLoTyJO8YJLGn7cAssOE7DSzYMP1+IvLMNvsZFNnwxmaL1iDpqnIksyxza9z5I1XaFyykoHWFuweN41LVtKyaxsAiXCIvc8/xYKrrmf+VdfhKyiisHoSmUyGOZcFUcwWmi+4BG9BARgGo7092Fxu2vbtYfG1N1Pe2MRbD599t3nb3uefpnbOAkwWy5972oU/I29hMWpXgkxHBPu0fFB1Yjv6cK8qZyCWQc1obH/qFPVzQ1TNmEnZ1KnklZXzyk9+SGigF5PVytIbbiWvogqr08VwZzuapuIvKsHidPDU1/6FxdffjN3lRrWYmVc8j2Q2icPkwCJbODB4gHA6zN1Nnyc1pqGZ09jdZmTl7HPM6bVSOTWPV39xhMlX1ky4Bmu1FwwDNaUSy+hk0wo2KYrdbUHxWN/N6RTeBXo6jR6NYsoL/sF6kscLgMeRfcfjiUgYu9vDoCcXJJYfeuewEoCeWA+yJFPiK2UvkIpGoLCIoC03hpHUyDkhJFaTgtduZigmQkgEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQXh3nM8QkgOADxg8j328p5mtNhZefSN9J49RO3cBmWQCQ9fxFZVQakrwocUV2MK9FE5pJhmPYss68V5YQeSNboykiuw041lfTTzeQlFtHXaXBy2uYst3cU3dNewd3Muh4UNMDU5lYfFCJMyYZJmOkQTXzS3HZpJRZBlJhqDVjFzkRJYldD23+TgVzZJOqgD0tYToawkBoBtmJLJYHE6aV6/h8GsvYxg61TPnUjltBv80o4DpUivmYw/iUEOgXweVC8HiBMUGxc2gvcNfl5/6PoyOPIx8HXOhg9SJMaKvdSFZFVyLS9BTGr0njnDF2ts4sStD76kwi7/xdfRwGC0eR1dVFLEB+V0jmSTSU0EJWdGH06BImOZ5idojGLNllJQL7Hack6vIJlV8t9SRHojhqisnuWcIyWnCc3EVkiwReN8U4tt6GXvsBJ7VlSgeC7LdjCRLGMrZDfHu1RVk2sOEftOCZJFxLQqwb/ez2AM+qufOxexx0X/iOAWuMkwH4yRIYm/KI3loeHzcpkoXaUsKh8dHXlkFNrebVCyKKxCkavps6hcsYetjD1HeOJWKphm89MPvkF9Rhc3t4cTWTZhtdmZfeiVTlq2kedVFWF0u+k4cw+72sO5z/4Cqmug6CsHSPHY+18nUpS5SqSksuPpDhLPD2Bd60HZGQTOQg1ayzRJbEjV8becwP5uXYUqJ7S+1pP8n1XhrWF99GU+0PTdedvXkq8lqWeYVzyNgD3B9/fV0RbsYTg6fc265u5y759zN5zZ9joyey8u6tPpSGgON43VMiokDgweo9deiGzoOt4VLr6xBe7kDI61hkyVWLy8Di0zzBRcz1tuDxeGgbGozWjaL3e0mLsXwXFxF9NUujIyG7LbgvbgKa7Gb6vI573hdQx2d4wEksmJC11Q6Dx9gpKuDaVKGkqzBNJ+PqTPz0boiGGcCRdzLy8j2xwk9eRpMMq75RUg2EwdeaiURyl1jKqEi2aQJoSEAfaEUp4difGBpNb/c1sHmk0N8dOUkfvDGaXQDPHYTH1xSg6brPLK7mxcO9XPvrXNYN6OUJ/adDXOZXOCisdjz31jRv14lXhsfWTmJb718kgK3jSr3Kl7tfJXuWDeQu1+n5U3jF0d+AcDNjTczMuoho4Z59LpSCgY2YTm2iVj5CtbXLOK+bSkA8t1Wqhw21IzOUCRN4NJqIhs7MFJa7j3jkioO7X8dv7sAXzLA+z7yTcbSA/T2HcdbUITZbsfQdV764X+Mj3X74w+x6Nqb2fHEwxRNqmfO2vXs3/gCS264BacvgCRB+ZRmxvp66Tp+hOoZcyiqqeXAy8/j9Ho59OpGyhqbKGtswlNQxNKbbkVRcq+kVodzwtzYXG4keWIgjvDeoWYzkNEACxgQfbUTySzjXFCMFk7TM5S7H5uXOYmN9uL0+fHk5bPpgV8QGsiFksmygprNkgiHcfkDpGIxHF4fw13tFFnrqVu4BJvLjWw2ceuWD3P9lOt55vQzTMmbgkky4VMCzIwt4/gTKQ6l91I3rwhP0Eag1EWwxIndnXuHLJnsY/XtUzEwcMwqILFvEAywlLuxNQYYu/84BRdVkHGbcaU01KOjxE0SpkInljIXJhFG8n+GNjICgBL8wyEkWXPuueSUU+94PBmNYPd42DUcwyXJxI+Gfm9bfbE+Ch2FuD25ULRkLApA0H4mhCQ5MuGcfLeVoagIIREEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE4d1xPkNICoHjkiTtAsZ3TRmGccV57PM9RZIkTFYLNreHlh1badm9HQCH18eav/kkV1camCUbWjaDx1lA8tgQlmIX3ourkBQJzDKqkuWF734TNZtBkmWW3XQ7gdI8ZElmRt4MVpStwDAMskaWpJrGaug0l3go9NqIJlUkGTx2M9msjt1tZvmN9Rzf3kcymiUdz2J3mSeMe+8Lo0xfbSETT1BYXUvJ30xBUUzIioKayTLF1kbwN+tAPbMR7/AjcN0D0LgWJBlCbVC9FFwFEDubQdNT9Wle+dFhrv/0DIzOKJn2CJJFxlB1oq91EbipgUXX3ISqGnQcGuGyW8qJPvskpmAQa2Mj6sAASnn5u7F0AjA8PMpj3/8y05ZeRHFtLVk9zd43H6RJuZC9zz+F3eOlomk6+198lhW3fpBXvvF9Vtz+IXb96jesvOoOSosKiTzWirXGh7pvkGxfHNeyMuJ7BtBGUkhmGcfcQqzVPtyrK8j2x1CHEqRPhwEwMjqZTcOsvO4DPPvA15EkGO5sJzI8xLrLP4faHgPAMasA9+oK1NEkep5Ed+gkkX1D7H7mcQCaV12Ev6QMk9lC84UXo6oqNTNm07p/N0Md7STCIUobm9j6yK8AWLjhenY++RsyqRRLrr+Flj076Dt5nGkXXIxhGJjMEvULi4gOG6x6XyPJaIaOw9BxyIPVPsShN55h9pK1mBUr/YPHOPD953He9Pf0R9Ic6AoxpUQEM/w5uSwuPlF7DfNKl9Ab66XCU4FZNtMZ6aQ+UE8oHUI3dMrcZdR4a6DvABRPHz9/edly7l1zL52RTnxWH3X+OopdxePHdUMnlo2xvW87LouLmwMS8Te6xkM/0A2yb3ThqfESrJ+CJEnsef4pWnfvAMCTX8iNn/0aujeL/5rJ6PEsstuCntXRMiom08RgpUQkjWI2Mf3CSyiorkVSZNR0hta9OzGZTdicWSqnmTm2+U3crmuJpnI/C0rAhhbPkjoxhmSWMXSD2JZe/NfVkQjnAkiQwO62YNHT5Lsn9l3qs/PswT4ai91894aZDERSxFMqH189GVU3UFWdPLeF8JkAq2ha5eRAlJUN+cyt8vPi4X7mVwe4pLmYQo8I3PlTJbNJopkoCxtjfLVYJWIcJz5awr8t+hY9iTYAyl1VDMaHuWf+PZS5y5gSnMK+9gyzCySK37wbW88WAPynnsc554M88P47SKhWonErdV47kcNjBFwWtOEIvnW1GEkVyWEi0xllStMSIg+1EUt2AGCxmyhb0cibz93Hwmtu5Pj2tyaMufPQfoonN9B+cC8Ni1dw1efn8eIPv01kKPe5XzN7PtXTZ6JlMrz5y3u54P13YXU6iQwO0bh4OfteepZTO7YwZ+166hYuRXHmXkknzZ7H7mceJ5vOvWNIksyctetRTOfzlVX4nwr19xELjWHu00i3hHLvd5pBbHMPvg2TaX8lF6bj8BjoqpdEOIRitjDYdhrIhS0tvvZmtj32a1JnQhmaVl7E5HkLaT+0D9lkprRhCoGScqLmNF9e8mVaw61Ue6sZSgwxp3AOk+LT2PXrAcqn+qloDDLQFkExyQx29OEvdjBtZRlma+4+8gRtPPO9A6y4tAp/vR8jrSFZFWJvdmMksiSeayNwUwOx3f1Yq70YqkGmLQQSGJqB2S+eb/8XqCOjAJj+SAhJSnIAYDMS73g8GY2QV1bBwe4QdX4HY60J4uE0Tu/EwJqeWA/FzmJsLs/4uXA2hOR3A9MA8l0ihEQQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQhHfP+dzR+aXz2Pb/CmP9fciKmWwqOR5AApAIh9j7/JOseN+dIMtkU0mkDCT3DpGUhjCd2UhupDQ8V9XQsGQ5Tn8ANZNhz7NPcknNZzHJJl5qf4n9Q/vxWDx8sPmDBP0+UnGFsoCdjtEkRR4rXruZoWiKAYtCnmTgzrcz65IqJN3A4lDQdYnmlWUceqMbDHB4LEy/oBzJPEJosBeb040aHkMxmdE1leLJDTh6tp4NIHnbpq9DzQqwOKF4JhjA1T+HSB9k45BXT6QlzRUfn0F8LINlLInn0mpkjxnFZ0MbS5EJxbE6nXjyzFxyx2TUb/4towf2AeC58kr8t9/2rq2dACaTmWBpGYe3vsrY5B5ioVFGejpRTGaiI8M0r76Yrb95gMalqxhoO82F13+E8vwmJn9gFvHXe8mmIuixLKY8G8mDQ6BISCYJbSQFsoTn4ipim7qJb+0Ds4zviknoySzZ3jjqcBLngmIUlxljQGfNuo+StqXYNvAgTcsvwjxi4kykAom9g6BI2JuDvLH1lxTW1HJg4/MATL/wEvpPn+LQaxtZcsOtHH79ZWpmzWXLw7+kcelKeo4fAUBTswAESssYbG8lFY/RvGoNB195kdBAH9MvvISB1hZ2PvkbKpqmM2nOfNSMCnoBkqmQBetqePUXx7B7XIz2drF32/O4fQEGO1tpXLoaPc8LDCLJf4GF/CsQTMcpdhYTzUT56q6vMiU4hfWT1vPVnV+lNdIKgMvsYonih+jIOSEkJsXEzIKZzCyY+Y5tO81OLq25lGdbn2U4MYyeSaHHsudWMkBKZjGZzYQH+ogMDjD/quuQJInBttNISQN9KE16II650Eni8DD2xiDqYBJT1cQgkNHeBE6fj8KaybTs2kYyGiW/soppq9egaSpdRw7QeeggY71dLNhwHRlbBmuBFWuJm+xwAs/aaszlboysTrYtQrIvTKDESag/wYJ1NahO8KkWbJaJN2RdkYt/unIq//zsUf7x6SPcsrCSSQUuVN0gnMzisipEklkK3Wc34MuyxM/eauc3H17IjfMr/ztL+FcrpabYO7iXJ04+QZWvih8d+NH4sSurr0OWbqLAOZ9oMkt3XMNnz2dx9UIcVjPxtErbUCe1mbbxABKA7qWf4n4lzjM738/fTvoYvg6Vk919LLrwaoz+BLHXu5DMMorHghpOg2rgK8yFkrzNSKpY+uws2HA9mx/8BZXNE38+7G4PoYE+iifXEx4coGXXVkwWC/PXX4skywx3dYAkcej1V5i26iLaDu5BTaWw2G28+rMfjrfz8k++h83tpm7+YgAKa2q57stfpePQftR0iqrpsyiaVHc+pl/4M0rFYpDWyA4l8FxZjbnUjZ5WUduiaLE06aRK9XQfhq5hYJCKx3B6/XjyC4kMDVA7dz6H33yFQGkZFU25Z3TXkUMMdbZR1jAVq8MOup9MNs2mzC7qzfXML5pPPBsnHo5jls1EuzJc+jfNdBwZ4eTOAcoa/BTXeuk5GSKb1ujuGqK6Nhcy5fLbWPOBJk5s76M8z4ayrQ9t9Oy7rZHV0ZMqss+KOpYLf1BDKSzVPlLHRlEDNiSLgrnYiWIXATn/W6kjucCPPxZCEtftAFjU2DseT0bCSC4vp9pi3D6zjDf4Psdef4ZvXv4VrMq5QSR98T7mFM7B7nYDkHo7hMSWG8NIamRC+/luKwe6Q3/6hQmCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIPwPnM9dc83AA4ZhjJ3HPt7TMsk4itlMOhGfcKy/5RS6pmJzeEjHo0hmBSVgQxtNoY6c3QRp9tupnbOAVCKOYjJRPqWZdCzKm+E32T+0H4BIJsI393yTby2to9SaRzhlUJPnoHssyfG+KMU+OwFdJjwUJzKUwl/kwOG3Yhgwlh6ibK6T8inNaFkdf5GTo/o+vrP7O/z7pE/Tsms7oz1dWO1OGpYsp0fykWdoEy9W18jtxJdgtBWCkyDSA6//CyRGYfqN5DX9Gy/+12HqZuYz6+JqFIcJtS9B9MV2ZIcZ57xCiovqyWZTvPFoHxd//AuYdr2KbLWS2LMbfWgIGhrO02oJv0sysizdcBuWYQWl3UCvNOBqK8eOvQWAls2wYt3tVASnYvd7CD/XjmzXiG7tQvHZ0KNnYkI0A8ksgyKhp3L3jn1KkMSeAbRwBsVnxbWklPjWXgxVx72yHEPVMdIa6lASdTSJfZIP6Wiay6+/m8TeQUxFNjKnQmcHqxkoARsrL3k/Jq+VmvrZ9HafRNc1Bl5+gdKGqfQcO0LfqeNUNOc2Nw+0nqK0YSqRoUEkJMxWG05fgMjwIABOv5/QQB8mqxWr00XHwX34i0vIr6zm9V/8GEmWmXXplbj8Q6hpNxfeXoSayXLjp7+GdCqD1etGWWkheXAUpUXlrRtmkipyvWvr91dFUsjqWb6+++uUOkv5RPHniRxX+aLrOyi1GT517MMMJ4e5f2gn/xaY+yd98CWzSfYP7efp008jSzJLSpewv3cvigqy24we/a0gEgkkZy5MRM1kWHTNTWiaip7NUjSpDkmWMQVspFvDxLb2YqvzISlnA0CiI0l6W0IMd8coqvHiDijEQ7n2Z1x0GelEHLvbS1/rKTwFhfiLy9jx+MPMufwq4iOjKB4rw5O6Kcrz4F1UjTqQzD1X7bnnqsnmZm6hB5vDTFzK8OjRQRbX5vH64X6GohnmVPnx2HPjt5tN3DivgoU1QcYSGWwmmb9/4jCHeiPj41VkiR/fMhsAn8NMTZ6TpZPzMCsy/ZEkXaNJ3DYTNXlOLCblf7i4/3e1h9o5ETrB37/199zceDO/OPyLc44/1fYwq8rWsL9LJ+iykueycO9brVw/r5JVDQWMxjMc7o3QUCCjzrgVKRvDGDrO/UqcX3e8yCdq7mTgly/TNjqGzeVCq7oIfEGQJYysPv6uIdkUDFWfMD4lrpBJJlFMZgprajHb7GRTydwxs5mS+imM9fWQX1mN1elipLudyuaZ7H7mcTRVpWHxctzBfGZcdAkF1ZMwDIOx3h5kRaOieTqdhw6M93XwlZeYPG8RkiQBUFg9icLqSedp5oXzwWK309q6i3lr1+fe7Z4/+25n2GQuvLEaV7FBYmwMi9WOJ68A2WRi2U23cXzLJmpmz8fQNNx5+cTGRokMDeItKsZbWEx0ZAib001osB93IMj6KWuQ9Sz5Fh+Rwjksda8i0pXFanaTTqoU1XiJDCfpOjaKrusU1XjpawkTjsVoPdXLSEsaPWtQWudj7tpqom1hEm+/s5whmWX0WAb7lCDqWAoyOtY6H9poAkOSCL/QhrnIiewyYy50YK30YC50/oVmX/jv0kZygR9KMO8P1otnLDgAc3bi73S6rpGKxeiX/RgGyME2jie3cTwMj5x4hFum3DJeN6tlGUgMUOwqxuZ0gSSRjOWCTRxmBw6Tg5HkO4eQDEXT/4MrFQRBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARB+NOdzxCSImCXJEl7gZ8BLxmGYZzH/t5zLDYH2WwadzB/wrHypmlIioKuaigmC5gk3CvKiLzYjp5QQZZwLSlBsiu89p3/IlhegScvn0Q4zJzL17Pl2JYJbfbEeqh0TMFlUdjVEeabG08Qz2jcs2oyB7cN07Z/eLxu04pSIsNJAlPMfCX1ZQD+du7fUpvfTP+Jfk6GT/Id8318eNHNVKfnYFgU5ICXj9x/ip+snsE8xQzab23CX/ppsLohE4OqRTB0Ap7/DJxZcjUyTHgwSSqWZfKUAIrTRLYjSvjZtvEmUidGcV1TwWi4m8LqIF0tCfyPPII2Oor3qvVgNv+5lkb4E2TNBp6Qh8SmPt7eni6dStJ45TKOb32T+ubFqK+MofVESZcYGMncfWtkdNThBI4Z+SQPj5A4NIxrUQnRN7tRPLmgA1OBneTh3P3onFdE+Pk2wMB7WQ1jT7TAmQ3x5lIX7mWljP76BL4Nkwk90YIezeJaUoKl2kOmLReMYKn0oDjMSKMqsec6IaNROaMe8wwvxza/TkldA3ueeyrX95n7aLSnm7oFSyipa+DAKy+w+PpbOPrmq1TNmE3viWPIci4kwpNXwGhvNwCT5y9mz3NPAjBn7XpO7thCbHSEZTfezlNf/2dWXHk7ln0eJJOMPNdH5Jn23FwCHB2j+I7687dgf82ycYb1DFk9yzcn/5BXv38KXcs9eyx2E/d+8EHW7bqIlkgbyaYP4f4Tmtw9sJuPvPoRAMyymayW5Qulnyb68Gk8F1QSeaUDI6WBImFa6mM42ok17SKvspptj/4ah8eLzeWmff9ebv7E1wg9czpXH0geGEYLZfBeXkMyluG1Xx6n+3gur8vq6GP+5SrewnziY6O8cu8P0DUVlz/IhR/6GGpGJdTfgyTJmCwW4pFRkpEI0fQoAU8Fak+c0FOnx68jdWKUvPdNwXfgBeR5C1j+YBsNRW5mVfqYWuzljvt289WrmrluXsX4OSZFxuswo8gS4WSWI30RfpumG4STGW5fVMXKhnySGY11M0o51B3izl/uoS+cQpElPnnBZG5bWIXbLp7dv2tn304ODB0go2VIa2kUWSGlpSbUOzbYz9efH8SsSNy5tIZr51Tw4V/t4eE7FzAp38XFk9wEsl5eOlyBLEnULfggqeTzTA9OZ5F9JtELipAVhaLqyZg2aZimOPFcWEHk1S5QdSSLgueiSkzlE38qrJUe8r0WosNDJCNhVt3xIVLRKGo2i7+omPDQILVzF6KYTPQcO0xZQxOv3Pt9AHxFJXgLChlobSEZDePw+Tn82stkUwlGerqZdemVFFRNYvczjwPgCgTHA0iE/52SsSiT5i0g2xUj/EzreHnqxCh5t02FF35O+LKLMXSdl370HTLJXKDN6vffhaegkGObXyc2OoI7L49pqy/B4nBQ1thEbGQYh9cLhoHVbiebShHsO4IpHYLyuVTKk3jjoVZGu+NALrxhzqVVlE8JEihycHRLL3mlbhxeM26nhTfvbWXxhlrSCZWxgQRI0Lp/kMkrytHf6MLI6khmGffqCmJv9aLFsnguqiSysQPZbcZ3ZS16PIM6kMA+NUj09S48qysYuvcQeR9oxiKCSP5XUYdz94wpL/gH68XCKmazAyMSnnAsHY9jGDqdei5ori39BgG9AFvWxdOnnz4nhKQ33otu6JS7y5FkGYvNTua3wiqD9uDvDSFJZDTiaRWn9Xz++i4IgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIggDy+WrYMIx7gMnAT4HbgFOSJP2bJEl/NX/a3l9cgiTJOL0+ZqxZi3Qm1CBYVsHMNZdjd3to278bq82OkVAJP9+GY3Yh7lXluFeWkzo+hjacZtlNt1NQPYmRnm68hUWkEwnqfHUT+gtYg2gahFMa3zgTQAKwstB/TgAJwJE3e2hcVILmSeCxeLiw8kLimdwmuHxHPibJxObhbdx06C5ua/0c/9r/Q1SnhX9f30yLUkv/+sdQm65Fq1kF1z8AtRfkGo4OgJrK/f9bmTOhOf+EJIFilvEW2EA1iG/vP/cCNANpWGfzr37B1MUmElkTsju3MTr8+BPIIoTkXeVKmUluGRz/XvFacC4oxuvO57pr/xHrkAWtL4nitaKNndk8bwAmGXRIt0dwryhDT6qkuyL4rp0MbgX3FZVo8SymAkfuFM0A3cBWHyCxb3A8gER2m7HWeDFMMv5r6kDT0aO54JvYW70oTjOeCyrwX1eP4rFgZA2ir3VhJFVkmwmb241pRGbNdR+ltG4q+VXVAHQfPUzTigsB2P74w7jzCrjozo/h8Pm58M6PUT1jDrMvW0/XkcM0LFlBZHiQQElZbkyKgpbNIismFJOZ8EA/k+ct4sArL5BOxPFZCzHSGraGAIn9Z+cOAFUn03VumIPwZxLpJWgN8oVp99CyeWQ8gAQgk1TpOxpjXfU6lpYtRfIU/9HmMlqGnx/5OQDVnmo+OeuTpLQUyVOjGCmN6GudOOcV415VjmdNFcd7t/Pcf/4b3Se7SITDzLjoUiRJIjTQx7x1V6NFMuMBJON9dETQ0ypjffHxABKAmhkutj58H5lEgi2P/ApdUwGIjY2w6Vc/w2w1075/Lytvv5NgWQWpWJTBtha2P/YQ+XmVxLb1nXsxmkG6PYKqyLQn4aMra1k4KchYLEtK1bnnskaO9Ud5aGcnbcMxNN3gjRODrPveFlZ9802++uJx7rlsCop8bkBEwGnFYVU43Ju7pws8Vv7x6aP0hXPPAk03+ObGkxztE/f87xpNjvKP2/6RlJZCkRUABhODVHoqz6lnN9lJp/wAZDWD779xGkWWMAzYfGqIoMtKldrP8//xFY6/9QahwX5GenpYeNDP3wfu5OXvfIu3fn0fm371M0y6BUulGyOlEd/Zj3tZKe5V5bgWFeeem7EsrmWlSFYFyargWlJKti+OJWbB6nSTCIfQVY3w4AA7HnuIZ7/zVTY/8HO2P/4QaibLvhefIR4+ex83LFpGeGiQgbYWqmbMIT46iqZmqZkzn3lXXE3XkYMAXPHZe/AWlTJ5/sqzFx7uhf2/hsc+CDt/AqNtCO99uqaT5y0j/k7PoM4IpisvJzY6zKYHfj4eQGK22XF4vSTCISbNmU/ltJmomSxDHa3klVdhttjIpJJ48gtIJ+NYHS5sTiemTAjGWiExzGhP4kwAyVmH3ugmPppiqCtG/bwi9rzYgStgo/dolCXXTObNX5/krd+cYutjLbzy82NUNuXzyhs9mNdPzv1cLC4lvrUXLZzJvZsqMv4b6jGXu0m3hMgOxDHl2dFCaTDA0A30aJbUsVHi+wZRo+l3adaF/yl1ZBjZ6US22f5gvdhYCs3mQRsbm3AscSaYpCNlpsRn4+DoFmbY51LVN43jo8fpinaN133763J3OQBWp5P0b4WQ5NnzGEm9QwiJywrAkLi3BEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEF4F5zXP6VsGIYhSVI/0A+ogB94VJKklw3D+Nz57Pu9IhWPMdbfR+/JY8xffy0YEBke5NBrL7Hslvcz1ttNaeNUbGY7RlYntrnnnPMlq8zxVzbRsmsbAN1HD3F6zw6+cNdn+MC2u8jquVCGleUrGR3LozubJK0bTC5wccGUQtKqjprWJozLMEAxSfhNPqabp7Otdxsz8megGzo2xcbdc+/m50d+Tn+8n/pAPbdPvR2rbOfxfV1cPq2EpNlPouFqzIqMzV+KZPPkGrZ5YaQVvGXn9Je15OMOyriDNlAkDN0ARZowLhSZdCZJMjxCxcx6Mt/sHD+kp1L/k6UQ/j8ZOkiKhAGYi53YpwaJ780FayQ39WNaXQFApiuKa0Exmc4oiX2DeFaVE3m1k/TJMbKDCbxX1xDJDHO8dwcYOqH+XmxmN00XrCL+RBfSmXADxWsl05ELLDDl2XHMKiD6Vg8er5Xwc614zvT3tuThEZJHRnCvqiDTEUGy5DbzSxYZ98pyIi93YKQ1kMAx18uKG97PY1/7Eh2H9lNaP4VVd3wYq93BSE8Xr9//E2ZfciX7X3iaoc4OGhYtY8GG6xjt6yG/ogp3MJ+qGbMY7minpK6B4a4OMqkEAN7CIo5veRMAm9tNihj8nvvbmFAi/DkkPDNQDruYainjZGRgwvFkJMMt8+/gUHIvuvGnrYJxpt662nXsG9zHvKJ5mIft6MTQEyqxTd0AmKqdDA+0k4rHMLQMZouFp7/5r2hqLjyk48Bear/4i4kdmCQkRUbLqOcUW2yQSsSIjU3chDzS3UkmkUTXVEZ7uug5fpRF197EcFfn+Jild3yuSuhVVcjpFKGkhYyqUeCxEkmpHO2L8OS+HnQDKgJ2vnvDLD5w325UPXf921tHSWd1Lmws4MUjubm9Zk4ZWU1n2+kR1k4rwTAMxuIZ9nRO3JzdHUoy/0+a8b8ekUyErmgXiqQwlhqj1lfLc63P8anZn+LZ1mc5OnKUCncFt0z+DPFQKR9dlY9FkTnaF2E4lgHAaTETGQpzbPPrYBiYbXaqZ8xh84O/oKCqhkwigZrN1S2qrsVyCiS3gmxV0MbSRF87uykeCSSzTLotgnNuIQDJQ8No4TSuqgqmXbAGXc0SKCnlyJuvjLf7tkwqgaaqSNLZXDsDA19hEYrJQiI0yhv3/4SS+kYGW1s4uX0LkHuf8e7YwsUf+RRvPBShsDqFiwHo2AK7fgI9e+HQI1A2H254AJz553NZhP+hTCIOmg7yxGeQJEvE4rnP91B/73j57EuvZON//QdNKy5k11OPER0ZAnL3RvPqUfLKKymeXI8kyfS2nKSkrpH82CFwB0CSYPO3ofZbE8eS0jBZFdSMznBPnIaFRRx6rYdFV9UyNpBg2qpSQEJNa9hcZoY7I8y5pJKO02FKT4ygx7LntGekNcaeb8V/VR1aNE12OIlzYTHhF9qR7CaMbC48zcjqjD18Au8Vk7BN8mIudP65plc4T7ThEZS84B+tFx1Lg8uDFpr4OZeM5u7tjrhEWZ7EMS3FvPK5tG3PQNWT7OzbOR46MiGExHFuCEnQFqQ13DqhjwLPmRCSWJqqPHFfCYIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIJwfp23EBJJkj4O3AoMA/cCdxuGkZVyu1RPAX8dISTRKGO93Qy2nWaw7fR4uTuYTzISprxpGqOdnXjKpuOaX0xs69nNmdZaH5JFpmX39nPaHOvtgZEE/7bk3wilQ9hNdjJahuE+Gy93DXL93HIW1eZx39Z21k4rwemz4vRZiYfO/vXsQIkTh8dCtMdCYUEhNzTcgCzJJDIJ4tk4Fa4KPjXrU4TSIQocBVgVKzI2ltbmsczVjf+Ne6DhUkhHYMAG6ShUzAdnHphdkByFqRvgyGNnejQIDydZcUM98bE0toSKa1EJoSdaxsckWWSkQjN6VsUVDJJJS6AooKrIbjeW8vLzs0jCO8qaNaTZLtgcwt6cR2RjB/YZ+SSPDANgpFQUnxUtlEaLZnDOLSK+b4D4vgG819Si6Rm6Oo/ywn/9hNBAHwAXffjjVM9fgJZM0x9rw702AHYzSqGddFsYa52f5P4hHDMLiLzcgbXGS+roCBiQ7ohgmxokdeRsOINzfhHZoTh6SkV2mgFwTC8gtqUnF0ACYIC2M4y9uoylN96KYjKRCIdJxWIcevUlhjramHfl1Wx79EFS8RiyomCyWBhoO43JYiE8OEDbgb0suOpaUtEoZquNY5tfxxXIA2Cks4PCSZMZOH2KtC2F7DKTPDqCe1kZkZc7xscqWRVMpY53Y+n+6pxs97PridPMX1dN/YIiBtoj5xwvb/BjNevYs3ZimTCet0OTfg+LYuHWqbdyfPQ4XquXleUrsZvtqE4TJpf57AZ1RSIz2aDz9YNY7HYyKYWRzhPjASRvkywy1kle0qfD42Wu+cVgkvAVOnH6rcTHcs/n9sNpZly4FqfPP2FcvsJiLHY71TPnsOvpx9A1jfDgAEWTJtN15CCh0UFci0sIPXrqbN9mGUu5m94jg3SXlNBUYqN1KMatP98FQEORm09eUMe3Xj5J52iSEwMR6ovcXNZchNmkMBpP89DOLu5YUkVtoRuLIrP19DCxtEpl0MHXXzrOd66fiddhYVqZh4Pd5859sdf2R1bvr0/QFmRa3jSebHmS6xuuZ1nZMiyyhf54P5+Z/RmCtiDZrJ3Nx5NsPjVIc5mPrrEEsgRVQQcOi8IF9fl0nRhF13PPuUmz5nJ002sA2Fzu8U3xAFNmryS5ZwgMg7z3N2GbEiB1dHT8uHNOEShgVCvENp19B8EkETdFCZaVExrop6/1FBVN0+k9ceyc61FMJppWXEhkcIDyqdPoOnIQNZ3G5nbj8Hg5uvkNACqaprP98YfPOTc8OMBIdxdWRx5qfws8czmkwtBwOVQsgm3fg+4dMHRChJC8xyXCIdL5ydwz6Jx3OwVzuRtr1EXnwQPkV9Uw1J4LWZBkiXQ8jsXuGA8gedvh119m5W0fwmyxMtTeRu2c+QSGt2H32uDAr8HQYPLFeIMGillGOxMEAlAzI4+BtgjBUhcWm0ImqSObJA5v7qa8MUBRjY90PEsqlqF1/zCT5xaiZlXc5S5MeTYyL7WPt2UucqBFM6BD8vAwtmlBzBaFyCudmAI2nPOLiLzcgWRRkM7kr6RPh1BHU/gurkQyKedv0oX/MXVkBFPgj4eQxMZSSB4f6lhowrFkNIKGTFdUZVJVCjIwe/J0xlIdeGQfewb2sKFuA5ALIbEpNvLtueeZ1eEkHf+tEBJ7kF0Duyb0ke8+E0ISTU84JgiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiC8Od23kJIgDzgKsMwOn670DAMXZKkte90giRJ5cD9QBGgAz82DOM/JEkKAA8DVUA7cK1hGBP/FPV7kaETKJsYnlE2pQk1k8Hh8WKSLejRDNmhBJ6LKtGTKrLNhDqaRI1l3rHZkdQId2/6ZyC3ofmfF/8zdr+LphIfGV1nb8coN82v5Mn9PXygvpjlN9ZxZFMvQ51Rimu9TFlSQjqVRbLq/MPWf0BC4s5pdxKsDeK2uHnk5CO81P7SeH93z7mbkoIm5voH8bU9D03rYOM/gHFm0+e+B+CWxyFvMlgdEO7MfX35f0I2iclmweGSGBuIY7IoFIdTaEkV/7V1pI6PIrvMWGt87N/7Eitu/QAoXnpOhinOy0N2uyn+xy9hqaj4sy+P8PtZLRZ2ntzI1BUrQM6VGWkN2W5CA2Lb+/CsrkAdTpIdSJCebsZ0Rxmbhrbw+sC9/G3t59BdLpz+PGxuD5PnXwwFpfwy9AhDiUGuisxj6OCzzLl8PZ4LgshjYPG6MLIahqaDAZJJRjsT+JA+FcI+LR/PhZUYuoHisZA6MYqlwgOqgWSRUfxWZLcZbex3NmnKIKUlNj3wc+atu4btjz7E5PkLx8MiZMVEKh4DYMGGGzj8+stEhgYACJSWs/i6W3j0n+/BZLaw8vY7qZoxG29BEas/8BF2PfUosy9dRyoaoavjCJ7pQXyZIJlUCs+GalInx5A9ZvRJVrLF5ndj6f6qjPTGOPJWLuRGBjx5Nhasq+HoW72YzApTl5XgCtq4t+U/WVm5kkw29Se1O794Pt9a/i0UWeH+o/fzZveb2BQbD214AGePFbOsMpru5fVHv4dsUlhy40foO53FapEmtKVFMig+G54LfbnAHLuJdGsYW1LDXWZj7V3TOfhaF70tIWpm5FM9vZxsaoTZl61nz/NPgmFgsTtY/r4PkE0lsdgdGLoBwFsP3c+ld32G6plzOLV7C1ODi/Ffd+a56sg9V9O9EZSaBv7z9V6iKZW100qYU+lnd8cYx/uj1BW6qSt0cXIghqoZvH9JNS2DMXoHYkwucPPP65o41B3mUE+YhZOCLKgJEnRamFHm4+rZ5QxGknjtZr58RRMfuG83I/EMkgQfXj6JqSV/OPDlr5Hb6uaeBfdw95t3c9+R+7hi0hXU++tpymuiyFUEQOdoHFlOkdF0vv96C+UBO7ctqiKtqTzyoYV4dYnHHmln+bWraNu7C9lkGn+e9Z48ztwrNtBz4igAqVQc2VaAnlBRQ2kks4LnwsrxezHTFUVPqPRl2ylaVY18KovsMWOdE6Sz/wgdu/aRCIcoqW8kUFpGRfMMOg/tB6Bu4VJ8hcX0nz6F0+/HFcyjcelKrA4HVoeHdCKCrMjj1y4hYWCcMx8GBuX1PlxbPwOKBaNsAVL7Zqi/BAI1MNoKZ8JWhPcub0Eh/adOkBcvOvfdrtqLmkyhmEzkVVZTNWMWmx74OZGhQSRJwmy1YbHbJ7QnSRJqOo2ayZJOJrDLGewDO+HoU1C1GKxe1B0/5OTaCppuy2foTQgNJKlsCuIO2LDYTRx4tZO6ecUoZpmq5jx2PNVKeUOAlt0DhAaTTJ5bwLTV5WAYDHeniY1l8Tb6Ua6YhCOeRZJAT6rjAYFGRiPbE6fDpFB5XR0W1SC2uRtbrQ9LpYfIa10AyHYTqWMjaEtKMPlECMl7mTY6gqWq6g/WyaY10nEVxedD6+iccDwZCRMye9F0MMy92HU7dcU17AgMUKXWs3tg93jdrmgXZe4ypDOJNVaHg+jo2XC9oD1IOB0mq2UxK2ffGfNdIoREEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEIR3z3kLITEM44uSJE2XJOnyM0WbDcM4cObYsd9zmgp8xjCMvZIkuYE9kiS9DNwGvGoYxlckSfo88Hngb8/X2P+cCmsm03X0IA1LlnP8rTeBXKhB06pLkWSZ7qOH6D15nIs3fBQ9qRLZ2AEmCVQDJWDDOjePxsXLOfbWG+NtBkrLKayo5h+K/gHd0AnYAsSyMT7x8H6+cc10ekMJVtQX8NUXTzCrwkc2rZGIZKhfWEjj4mIMAzJpDZvdhC7lQkQMDDqjnUQzUWLZ2DkBJADf3fdd6pbNozTWgmT3w8FHzgaQQC50pHt3LnjE0GD3z6BgCjALzE50DXRd58T2fgbaIlxx1ST8U4KYrAqO+cVICui6QeWcmbTu3YWqxvAXuam47z4UjxuT33++l0r4HXE5jq+qkkfv+zJXv/9LyEDq5Bjei6sI98RAM4hs7MBc5sK4Mp/nRp+hTqljclUjzjE/Q6cNDjynkV91FbIicWq3SoPFzp1NV7A/0YFZt9FcVMpwdwddkUP0tZxi3pVXY262EDDnNiSnW8O4V5ST7ckFhCQPDpGUwHPLJDa//CCT6uficsDJ7DYsPVZKFjfiDjow5dlRh5MgS7iXloJJxkgYvO+z3yamRFh20+3IisLkOYvZ9viDFJXXsuKaO8jzVeK0e2i8cwl6JAMmCUuek2wixa1f/i6hwT70rMqhLa9SN2cxpTWNVN31zyiyicmfmI8aSjE63MOB1tcY7GplrK+XFbd9iJFJMp9962/5tuvbrHCu+Mst6v9BoYEEdpeZ0MCZ0BpNx+m1sGhDLZIEalZH1wzC2TBPtjzJ3dPu+uNtpkKk1BRzi+fyVMtTvNmde3antBRtoWFOPp7GV2hlzsUBZlx8G5rm4PCmLNNXu/DmNWEyW1CzZwOkFL+V1IlR9Fh2/PlunexD8lgAyCtzMefSfOIhE66An3hIIRntIBEJc9nHPksmlcRis7P7mcdZcesHyK+spmHxMo699QZqOs0z3/4Ki669ibLGJqRhE0rAhnNB8Xj/ZtmJbnExpThLoceO127igimF7O7IZXnt7RxjTmWAtuE4lUEH//j0UU4NxsbPv3NpNavq84mmVb658eR4+ScvmMy/P3+ML14+BYCZFX6e/uhiOkYTeGxmJuU7sVvOZ9bZ/16NwUbuv+R++uJ9uMwuyj3lyNLZsI50Vufp/b0c6A4D0DWa5CsvHOeHN82mqdRLS1sIWZLoOOrg0o99ntO7t9C86iK2PPxL1EyawbYW5q27hmOb36D1+G4aLl5E/LkuZItCpitK8sDQ+L1oKXejW3X2vPoUNTPn0nzZGjRVYyjajcPro6SuEU1TURQTm371c+ZevoGZa65gtB8qmorY9pv7mHHRpaRiMVyBAMNdXSimDPGoh4JKBw2LltF5+CAdB/dTt3AJJ7ZuGr9OX2ExgZIKvESJ+9ZyovsiWk91UVt/KbW2FL4qBUx2Or2FHG/fiIREpbcSv9VPnj1vfCO/8JdXXNdAb+ooStCJErDhmF+EZJLRDYNwOsypt7bi8AYIFJdyyV2fIZNKYHO4kBUTVocTT37hePgXQNPKC0ECWZZx+QMorjyoWgKKlezCT6D17KejdgWfeiv368DVc67hhrL3YU7aGWiLMdwdo2l5GSe29zFvbQ17XuzAbFWIjqYwW03ULygiMpRE12DbEy3oai4c58CrXVz0galIGKjPtPLbmTnWyT5S8SyBCjc7NvdSWOGm4bIaIk+1kDycC5KQLDLmfDvZgTiSVQSQvNepwyPYZ8/+g3ViY7nwMlMwgLZvFMMwznn2JCMRRiwBABJyC5O8k5AlmcJKDwXD1RyUd9AT66HUVUpbuI3Jvsnj51qdLka6zwabBG1BIBc2WeQsGi/3OywosiRCSARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBeFect93BkiR9HLgTePxM0a8kSfqxYRjf/X3nGIbRB/Sd+ToqSdIxoBS4Elhxptp9wBv8LwkhCQ/2c3LbWzQsWk7DomVoqoqmqiDlkU0nOLFtM4NtpxleejmBFeWkjo2S6YxgLnFhn57HSKyHKctWkVdZTeeh/RTW1FI5Yzbf7/wlr3a+ikk2sX7yelaWrULTB2kfjhNJZbCYchsfo0kVNauRimfRNQPFJJFNazi9VrJZHY/dNT7Wcnc5kiSRVJMTriOlpUioCfK0EfBXQmxw4sUmR3P/GxrMvgNe/xdoeYXkgr8Hcn9JvL81AoCrxo2cheGfHcFIawDYZ+Qj1YPd48FiB3+RA2tl4M+5HML/h0xSIjZWzdKbPkb/aBuV0+vJHggR39GP9+IqtIyKYTFIOBIcefFJltVP4cSLm/BMnU6pxULfqWdZfPV81Ewa2WTC6ctjtGeY4dN2FI+f48pJTqmnGLIOccvimyltKiFr0uk6sR+tMot9hgttf4x0RwTPBRUkj45gmIBmG8dObCV/Ug2H972Gp7CQ8ilNRIeHUa0wnB0kcFkZscc7cMzMJ3FoGG00haXKg60+gDvhJFi1mNSRURTdzIbL/45MewK/yU/ilUGslxYSebQTySLjXlZG+JctWCrcWMrcOHZIOBdWkD/1Zow4GHszxA724r24isjGdoyMjhWYPWMN7SXHUJxezLYSinQVh9lBZ7Tzj0278P8pPpamZlY+A20Ruo+N4vAUk4xnUTUDSYJsSkOSJQ4OH8Rn9f3B0IKslmVr71a+tutrDCWHuGPqHSTUxDl1yrylZKdHyC93M9qv4Q7UIssSS6+zYLWPMdDWw6r3/w29J46SisUorq1jLDmI74pJJA8OkR1IYK32YpsSxFroBKDz0AGe//43iY+N4vIHueCDn0TLZDi2+TWObX7tnP5TsRiP//uXaF61hvnrr6X72BEKqmooqq1n8FgLU6YvZ/SXx3KBJ4Cl0oO5yIH3dJjbV5Rw5aP7yHdZ+ed1U8fbbC71IksGf3dJI/2R1DkBJAD3betgZUMBD+449/798aZW3rewktNDceZV5zZOl/odlPod/5+r+NcpYA8QsL/zZ1xW1ccDSMbLNIPBaIqMptGeTFG1qoRTL3TRug+qp1+Cw2tmzZ0f4dCbrwMQLK/iko99nkwyS8xi4L25gUw4ifeSKpKHR8j2xrBUeLBNCfDUL7+G3e2haNJkxgZ6cQWCKJJCNDSMyWYl2jNEPDTGkuvfx9FNr1HRNJ3IWC1aJkXHgT207tlxzlhX3f5htj55mvlX1uAtqOPyT36B9gO7KKqto6Sukda9O8mrqKJ6xmycDivd7f30t+m4g0UEy+DNp16ko6mJtVddQvf8O7jz1bsodhWzomwFyf4hpJPDZAdD1C9aRk3zLOxuz/lZJOFPZne58deUYx4yM3zvITgT6uFaXIJvThCXP8jA6VNse/QBJEli7hUbKKiswV9SSt/JE8xffy2h/j6GOtqomj4Lp99P277dmKw2AsUlDPf0kC1aRlivQ28fxGStwmm28u/NX+JvD34Js83EQW03nYlO5lUuxetzYdYU6uYV89JPj4AB86+opr81QkGFm1QsQ2QkSWQ4OR5AAqBldWKjKTJWmZJr6kht68PQDexTg6T74tCUx9hAgoaFxcRDaQbDaQovn0T65BiGaiDbFWJb+wjcUI9iN/+llkP4ExiqihYKYQrm/cF6sbFc8IetMEgqk8FIJJCczvHjyWiEkL0ARZYI6SdocjcAUFDlwf9SJRTAzr6drKlaQ2ekk7U1a8fPtTqcpOPx8e/z7Lmx/G4IiSxL5LksDEZT//MLFwRBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARB+CPOWwgJ8AFgvmEYcQBJkr4KbAN+bwjJb5MkqQqYCewACs8ElGAYRp8kSQXnZcTnwVhfD617d9G6d9d4mclsYf0Xvk1kOPc1wGPf+zIX3PgRyqdMwTYtCFaJwXAHuqGx66nHGGxrIVBazuHXX2aw7TTNl0yhdGopmqHxauerlLnKsJoCGBhsPz3CdXMrAPjcwhoUk4KhgzffTiKcwVdgRTHLbH74JLMursRuspNUkxQ7i4llYwSsgfGytzUEGghYCxlyTqbixP0w7TrY8p2zFypJUDon97UhQevrcMGXYfgkWuFsTFaF5JlN8Uhgd1gIPXxiPIAEILl/iMCUBrYdfIhF1y/JtSP8xVhw4c0fZqjjCOUNjRw+/RZVy6dh9XhoHzpCTB3j+LZNjPX2sPSGW3nxB9+ieuYcOg/to/3AXuZesYHdzzzIWF8vS2+4le2P3UtsdIT5668lL+bErfooCkwjViHzjf3f5JN1n+VYcpiDBZ3crExhW8uTTF95MSabTE/sNKa5dg699hKDvzpN/aJl7HvpWZpWXIC/uJSxvl68+YXseuYRUrEoldNm4qh0MyVYhjaaQnaYsNX6iLzUjntVOaHHTyNJ4JxbRGRjJ54LK4m83IGp0EGmK4qR0XAtLCbySidGVsNa7SWysQNbnZ9Me5R0awjPBblzHDMLiG/vw8jo43OX2T9GzYbZ7Nn9LEc3/wC7281Xr/kMdl/5X3BF/2/ylzh588ETzLuiGrNFxmxTCDicpJMqsiJjd5qRFQlVV7m0+lKSfyCE5NjoMT722scwyG1I/+GBH/JPi//pnDpmyYzLb2XH063jZVOXllA338rhNzZy8OUXcuMqLsFfWo6vuIRdLzxK/eyllM5twKbL6IpG5/BR6ozFDHf28PS3/o10IrcJOTY2wgvf/wqXf+oLZzuVJDAMCqpqkCQZgEOvvUT51GnU3fZpep76OYdf3sjK9e8nvrV3PIAEINMRwVrrQxtLUXwizOwyL3u6w4QSuTqVATsXTy3iiX09/Ovzx/jXdU0T5iWr6WRUfUJ5IqNhUmSy2sRjwv+Mx2HGazcTTmbPKXdZTZhlmaDLyhF/ghUfmkpiII5f7qcw9jruYz+hbu61hJrez/7Xhjm1qwezVWHGBQ5SxaNs+s03qayfwdylV2Jt8mPYJF5+7EeUNzYjKwqv/uxHGLrOzIvX4vQFeP2+H1NQPYnGJSvZ89yTHN30GguvvpHw0ABTV6zAbE1T0TyDtn27zxmnw+cDMqgZnda9Cax2H0X16znwSjepZJZpK28nNpYmNmrhxLZX8Bfl4S0oxOpwYHU6ufgjn2Lbow8yppSxeWA7g8lBbmq8CcaS9PzqDRLhEABtu3ay9MbbmHvFhj8YMCS8O5yam5Gnj44HkADEtvQSnORF1zRadm8HwDAMSuoa0VSV137+I+JjuRA7pz/AgquuY7C9jS2P/Ap/cQk1s+fxyr0/IDTQR9X02cxfdzVdRw7hKSjE5nQzzd3A5VWXEU6HeaPrDTwWD3tMW1FtKtMsc/CnK5h1USWKSeLYtj5mXlBBIpJh/8YuLr2rmdhomslzC0lEMmz69UnyylyM9MQ5+lYvillm5YZJ+N1m0qpBm0lhdHs/6YRKWaOfvS92Eix1smhDLfmLS1EH4+gpjbwPNGHOF2FM73Xq6CgYBqa84B+sdzaEJI8UoI6FsPx2CEkkzJg9n+qgg4FkD2tcqwEorPIQSBTjNwXY0ruFam81BgYNgYbxc60OJ+lEAsMwkCSJoD03lpHkyIRx5LutDEXT/9PLFgRBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARB+KPOZwiJBGi/9b12puyPnyhJLuAx4JOGYUT+1I2lkiTdCdwJUFFR8f812PPF6QtMKMuvrMZktqFl0zSvvpLek8dQsxlevO87mMwWrv3yVzGbbSQjIcx2B7IiM/eKDaiZDIrZwkDrKSrVPL569BvjbfbG+wg4i4imsnxs9WQOdoWZXeEnmDLoGwgRLHLx/A8PoWV1ZFliwfoayup97Hy6jcsvWMdT3Y8zr2AeMTXGqbFTfHnRl7n34L2cCp1iftF8Pjz9w4yMKhyMlLCodB2TvBLSkk/D3vswnPnoq/4RpWRmbjCGDoFqeOVL4CnBqeuEHDNxeszYXGYyCRXSGtmBxIS50SIZEpEII13DFPnT0NcJxdPP1/K8Z7wX713FbGakcxPHNr2CNz+P/a8+R2JBmOGuDkZ7ulh49Q2MdndR2jCV9oN7ASiaVMe2Rx/E6nBi6DpDHW00r7qIvS88RXhwgAVXXc+Bl18gPjaKt6CQppUXUZnx8NXCe8j2+PBlDGZPXoCW6qe4oYETp7YSGxtlpLODZTffTlFdHaVTpuD0B7jkI5+i68ghRnu6OfrGK8xeu47eE0eZt+4a9jz7BAYSdWXzALA35xHb0Ze7MEnCSKrYpueTPJLb5GmcCVFQnGa0SObMBEgYGQ1Tvp1sXy4gwlzuJvpqJ5JNQYvl6il+K+q+wQnzp0czHH5jIwDx0Bg7fvIzrrrnX6H0/KzXX9Jf8v6NhVIsXD+JEzv6KWvwIQNbHm1hrD/3fCmu9TLzwgo+NO1DVLgrODZ6DHeoi/yR1tyzpXgGmYzOUGcUfdjFr2c+xWg4zIg0yBuxFylxlrBh8gaeaHkC3dCxSFYOvn78nDGc3DlA9TQvh1/biKwozLr0Siw2G7qugwE1s+Zyav9WnvvR15h+0WU4/QGyqSSKrYqh9tPjASRvS8fjpOIxLv3YZwkPDaCm09jdXlyBANHR4fF6TReuZUdPggJvAdWBCkxWC5me2IQ50iMZZLsJtS3Moqk+9nSH0Q2DH9w4i0KPlet/sp2slgsNyHdb8TvMjCXOhl9cNLUIr92M1SST/q0wkvKAnbF4hgXVEz/n/rd4Lz57AWQJPri0mm9sPInfYebuBTWUSSZ8CYnwUJKGIjeRZJY3esPUVbgolWWcoTyw34LJU4rZlGXK0goqmwrQVANZThMbaSE80M+Bvuc58MbzACy65kbaj+ynavZsXrn3++P973zqUZbf8gEcHh+DbafRNY26+Ys5vnUT+154mgs/9DE2/vQkC9cXMvOSy4mHxhhsO43JbGHuFVdhc7mBEWxOEyfbIiy5YRJt+0aJDOfCzQ691o2uGfjznQRKCuk6egiT2YyuqgQrKhnt7WbBVdcTiyZpGi7hx9X/Tr8aw5KQOX4mgORt2x9/mIbFy/Hk5b9by/Oe8F68d42Uhh7NTCjXIhm6jh5i4dU3AgYmq43R3m6sTiczLroMTc0iyzKZZJLND97H9AsvIZtKMu/Kq3n+P7+BrqkAtO/fjZpOsuK2O2nbtwer3YGeUbmp/Dpu2fJ+1k9ez8b2jYTSIQBM8v3cVf1JFrpWk03qzL+8ht5TYxzZ1MvFH27m5Z8eHQ+YqJmRxxWfmEEqkUXLahzf3oeW1XnloVMArLipntPHxxjtizPnkipadg+y5JpaRnvjhPrjePLsOKp978Y0C38m2kjuHVAJ/uEQkngoBYC9NJ8QoI2NQdnZl7lENMKIqYIZeRYGdJVSV+5YfqUbWZJolGewrXcbU4JTAMb/B7A6nRiGTjaVxGJ3ELT9gRASl5WhmAghEQRBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEATh/DufISQ/B3ZIkvTEme/XAT/9YydJkmQmF0DygGEYj58pHpAkqdgwjD5JkoqBiTv+AcMwfgz8GGDOnDnGO9V5txXW1FI7dwEtu3J//d1stbH8fe8nMqrh9FkZ6spjzUfuoevwdqxOF41LlmHoOoam07p/N1OWriJQUs6Wh3813mbD4uUU2YvO6afO18ja5mKW1uVhNyv8eHMr91zaSHGpCy3r5oUf5QJIAHTdYNvjp7nwjqkc2dzPhqqrWV67BCQYTg5jNVkZTgxz69RbcZgdWGUrY+kxbOYKfC47gzE7tU/eCnY/TFmHlE2geAvBZDkzGh1Mdlj4UWh9HclsxWo3ExvLMP+KGtoPDYNZxlLlJdMWPuc6FJ+VugWL8Zf4CWy6HZLDcPuL4PzDGwT/t3sv3rtGMsLxLa8DIMtKrswwkGX5TI1cOJCha0jS22ufG7ormEdooB8Ah89PeHAAxWxG1zXiY6NY7HZmrFnLpgd+jtPnZ+7lGzi+9XFkWcHlvYR4KEReRRVWpwvD0KhsnsHJnVvxBPPYv/F5lt90O2/+6mcs2HA9Ox5/BFcgSHQkF84gSRK6rmPoOlKeBSSQzDJGRj9z/MxIUyqy/cwjUJKQzDKZriiupaVkOiK5SzHJ6AkVxX3m+nQjF06S1lBcubJsXxxLhZtMZ/Sc+dMdE+d0qLWV6ub/e6E6f8n71+W10XFkhJqZ+dg9Jtr3j44HkAD0tYSpnp6gsrGSwyOHCaVDLAqFYev3QTZh3P4ix04Wse3J0yxcN4m3HjqNmtEBEyvnXI9lip05BXNYXbGatJYmG9Levs3HFU1yEervxdAN5q27mqObXyc6PASAYjJx6cfvzgWSACe3bWbZzbdj6AZ7nu+mssmBrCjo2tnMLlkx4fT62fLQ/XQfPzxevur2D+Hw+mlacSENS5YTdZfiHU1RMXcx5q4htIyKtcZHYs/AOeNTfFb0eBbLlCDbe8dwWU2U+R1sPT3EZYESZEni7YvKqBqfWD2Z7W2jtA3FWTApSG2+EwmDb183g3965ij9kRT1hS4+tHwSfoeZKcXuP+OKvrvei89egHha49mDfdy9pp6FPje7fn6MQ2eeYQ6vhSs/MROTSUbVDCKRKMHhJ5B3/wgA2eJidPlSsoqVo2/10tcSZvbFJk7vepVJc+bTsnPbeD/9rS0suvZG2vbvmTCGlt3bqF+8jH0vPM1wZzuT5swHIJtJY3fnkQj30LY/TEndCHMv34Ch68hmE2omQyqWYdmNdWSKxui88E1ORXXcriJcAQtTF5uIjrQiyyZ8RfWc3NpGaX0DJrOVo2+9Tsvu7VROm0k6meClH/3H+HgqZ86iYMVijv/OOA1dB+M9s3TvmvfivSvZFUz5dtSh5G8VguKzMf2CNbzy0x+SjseZeckVtOzcyspb7+TVe384HjLiLShk5pq1uM6EQiQi4fFjb+s+doR0PE751GbUdAZZUfBY7fisPnb17WJZ2TKePv00AKqu8h+nv8GKVSvY+b0uEuFcQMqUxcUc29I3HkAC0Lp/mKppeWx7vIWSOj+rbmnglZ8fGz8eD6WZPLeQ3c+1o2sGLr+NI5t6/x979x0mWVXgffx7Q+Vc1TnnnpxzDsAwpCEN2YACa8JXUcy6rmJcV9F1xbAKKggKKjkNDDCByTlPT+ccK+eqe98/auihtwEBZ1xdz+d5+umuc0+6oe6t/uP8imgoQVFtA/2tQaqn/XMF4fyjywzlgj7UvxBCEvEnsTgMmPJzz7pswD9mezAYZgQLea4UBBkNITGaVbyldir9k3nVtpEf7PkBde46CqwFo21N1tyHxWQslgshsZwOIUm8QQiJw8TR3tC73FtBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEIS3T/7LVd4dXde/D9wMjAB+4GZd1+9+qzaSJEnkgkqOnW7/mseB953++33AY2d9wueI3ePl/Ntu55qvfJPL7/wyN33rbopqJ5CKZelvDZGMQXgkj4LayymbfAnFdQ2YnW5kRUFRDahGIwc2PD2mz+NbX8Ggy6iSitPo5EPTP0yJpZZp5U56g3FO9oWZVubiaGcQg9FAMpYmFR+7iFPXIRnP0LigkLQlTiwdoyPSgcfs4WcHfkZrqJX2cDuHhg5x1/a78Jl9GBWZXW0jzAy+AMkwBDpg9y/hwIOw97dnOs9rAG91rtxdCb0HiYaTgI6/L0rV1DyyqoRzVTlqwemkBlXGeV4FKXOKPU/+mZFuP5Gi82HoJIS6z/FZEt6Ioppw5uUW1MaCAXxlFbTu382ExcsBiAZG8JaW09t0kqrpswAI9PeRX1lNsK+XvPJKADLJJGabHUU1kEnlFvw2LlzG3qcfR9c0pp+/llfu/xVDba3Uz1vIs/d8n0B/F68+/ABbf/9bEuEIWx78NUXVtex//mnyK6roOn5kdJ66rhHxD+MuLAag7eA+GhcuBeDI4ZexX1NFajCGdVZu0aeWyKJ4zSROBbBMywMJojt6ca6pQnYYyQzEsS8vI3Z0GOfqcrREBtlmQHYYiB8dxjanEHRID8QwT/aROD6CZWoear4FyAWeKEtc+BN9446pyeo86+fpn52nxIrNZWLXU604PBb6WoLj6gy2h7FIVn68/8dM8jTg2fdgboOWIdDZx7ZHm6mdmc/hTd2nA0hyunZHSA0oHBo+hFk2Y5AMYMvi8JnH9O/MU2jZt5uJS1eg6/poAAlANpPhwIZnKGmcCIAjLx9XYTF2XyVDXTGa96WZc+l7z6TjSBLL33MrEX+IruOHya+spmbWPCxOF6/+4QGK6xtZ8+H/R+XUGahGI50jca58sJkWVyGhje1YZuRjrDx9nclgnVtIqieC4jYRmeGjwG3mjvMbyGQ1FtTk8cMXTnLH+Q04zblAnrbhGIl0lvoCOysa8sizGwknMoQTGX6/q4OPr67j1zfP5VtXTGVKiYNZFV689rHHQ/jrlbgs5NtNvHCkn87t/WOuy1gwRfuRYSo8Fp470stiTwDTnp+Nbo9PfB+vPhskncjSeyr3ftCzafpOnaRswhSmrLoAo8VKflUN1TPm4CuvxF1YNG4O7sJiAr2556/Z7iCdyAVLTF15AeEROwBth8IYjHk07XyVkZ4u+pubaD94hLbDOtv/3IIp5OTZ/qfYm9qOya4wc7WBzQ98i71P/Y7dT/yGJ39wF6UTJuPIK2DXE3+kv7kJgLyKKl79wwNj5tO+by+yJmG22ceUz1t3NY48Ef7w9yBgS+C6pAbFm7snSEYF18U1SA6V/pZTpGJxyiZNpaimniXXv589Tz82JmQkONCPyWbDV17JnEuvxGwfH3D02vnXshqKomIwGynveoXPTPsQraFWvGYv51eejyIpeEwevrXwa5QVF3LJR6dTPsmLwaRQNtHLQNv4MIfAQJwZ51fQvDd3D3fm5fbD5jaRTmaRJJi8rIT2w0M0zCtkwqIiJi0uJRlNk4ikGOoKj+tT+PuVHXmbISSBJDa3CcXjybXzjw0h6Yzq6EjY7blr6rUQEoCiGhfek3WU2csAWN+wfkxbkzV3PSejEQAsqgWbwcZQfGjcPPIdJoYiKTTt7yJzSBAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRCE/8PUs92hJEne171sO/0zuk3X9ZG3aL4YeA9wSJKk/afLvgB8G/iDJEkfBDqA9W/c/O+T1enCOnna6OtUIo1qVBjsCJNf4UDXoftkgImLciEKBpOBaCRM48KlJCJhdE0b12cyGuP7y7+PJKn4A07ufSVKbT5MKHJy+5/28b2rp6GjoxhlkMBsM5CIpkfby7KEw2fGXWqhX2+l1F6KLMk4FAd3zr2Tr2//OkPxIWwGG3fOuZNJvkkciEVwWYyoI53jd9Lf9rod9sK06yCvHkbayFgLiAfTpBIZjBaVWDDJ8YPDTJrowX1lHVo4jWxWyJp1dr/wMBMWL8dil4n7LsZ56G6Qz1lWjvAW7B4Xc9a9jxd/8V32b3ia2Retw2x3YrLZuPjjn6Jp907mXXENocF+An29XPL/Pkfz3l3MXHs5Qx2tZLNpJi1bzfGtm5h72VVs+f1vsbm9IElY3W7Cw7lFvtlMBi2boX7eUg6//ALoOg6vj0MdbdTMmkfL3p25etks6DpaNouiGoAzoSeD7a0MdbYxecV5HN20kcLqWuZfeS3tB/ZhdngoXzQJWbVhtUskDvuxLSlGi6dJhWI4r6kh2RMiHBqGFRZ0q4mkSUeucNJy6gD2lT4kNYDxQh9KQiGraNguLyfZGcLS6MU420Nf8ymkWSrpYIpkOsru5+9l1kXrkBV1dIG1t7QCb1nt/87J/D9MUWWsLiO1MwpQVJnSRg9DnZExdQqqnFi1LDdOuJE5XYchfuYxlEnpZNMaDp+Fkzv7x/WfCKVZM2kN8WwcJFAsOouvquPAxi7624IUVDqpmlqCpJWjmkxkkolxfYQG+nHnFSIrKguvuh6DyUQ86gC6CfQnUAzFLLnhiyhyjLKJ5SD5GGw/xPL3fJCek8cJ9PUwcckKMqnUaJAPQDSV5b9eaiad1fnQEyf5zqpGVoYSONdUkg0kkawqklEmHk4TnJvPc51+ppe56Q8lsBgV5ld7eeH4IBOLnXxgcTUZXcdmVPDaTTxzqJd0VsNrM7F2ShEf+d0+QokMr5wcotRt4T+umU5DkevsnUhhDJtZ5YsXT6RjMErgya5x24ODMWZ6K/jEeY30D+2nSD+zKD1ZtJhULEtgIDZapuPGbLPT13yS0omTqZo2E13XCfT1MNDWTMP8JRzd/BLxUC60xGS1UTt7Ho//xzdBklh49fWc3L6V2RdfjtXpIZPOjadldVS1kJlrr2Gku4t4RCYSMnJqd+49uOPBDv7fdZ/mqb7Huarxao78+Xm0bHZ0XulEnEB/H8UNjUROBwIAGIwmUvEz83+NUVdZeecddLy6k0BnF1NWnEf1jNlIr4X4CP+rAukQNlcenmsa0EIpJIuKZFFoNXaTTadZdtMHaNm7g0w6SWhokNDQwLg+YqEg8UgEXdOQkKiaPou2A3tHty++9j0MtLbg8PmwOt04mx8HQ5YVWpr7Ft7F0fgAc0rqua16Hd7IIAWKE4I9mCtqmH9pDSd39eHvi1Jc76J5z+CYsT1FVoIDubCdaDDF7AurSCUyZFJZdj3dxqqbJmC0qNTMyGfvc+10HDnzLFl+fQMRfxxfiR1JFtfjP4LMUC7oQ/kLIUaRkSQOn/kNQ0h0Xac7aQAbyMZ+JCRK7CWj24uqnRzZ1M2PZv2UDvkUKytWjunbZM2FMSZjZ+53eZY8huPD/E/5dhNZTccfS+Gzm97h3gqCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCILx9Zz2EBNgD6MAbrcDTgZo3a6jr+pY3aQew+q+f2t+HbEZH13V8ZQ4MJgWAvDI70umsDS2dIRYMYPW4SYTDuAuLCfT3jra3OJzY3R5WVk5iOJKkkxg3zc+yr8PPJ39/gAqvlYPdIf64p4vVH13CYHuIpdfVs+nBkyRjGVSjzJL19SQTKVSLxr7BfRRYCqh0VlLqLcVmsnH3irsZTgyTZ85jct5kFFnBbUmhyhCfuB7DiSdyk/FUEZj/BbS8ibg1Dfm1wBCbD+ovAOBgu588RWPbvadoXFCEwaiQSWocOTxC5WSFzo797HrqT6OhFPXzF9N5PInZaqHggm8iKea/zYkRxjCYFNxFjay4+cskQv3IBgsObxlFjiC+x9dQd8W9nOhx09fqoqDKwSt/6GHJNdey77kONG0Scy8qoyU4zJIbVqMD5936bxhNKS78yJ10HTtA+eSpdB45NHrNmGz20QXw+ukF9cl4FLPDkSvLZjFarAx3dTBl5fk07XyVE1s3sfjam3AVFtF59DD185Zy5ee/QX9rjOCgkRlrl7NvQzdD3VEC/UNk0lmmLyvE7Yox4D9O6/6ddNx/EIPJjJbJkEmnuPjjn+HpH38Po9nCovU3su2F31PaOIl9zz7BgquuY/sfH0KSZKwuF4lHwzQsWEI2k+bk9q2jx06SZZx5hVzyia8w3N0HGLB7yjFZvQhnlwRoGQ2k3O/KyT76WoL0t4QAqJmRh9luwGW3cEfZ+Rh/sWpMe0e+k/xyK4MdIYrrXPSeCo7ZXlTspS/TSpO/ibSWxiuVc/z5YaYsL2PqilKyaY09z3Qw+5KlnNzyDGUTJo+bY93cBTgKCrjic/+K0WpFVo0UVbsoqHYSGY4zaZEbk1Uir2wivjIXvc0BbG4fm357D4loLsxhsL2VSctXY/OcuYaC8TSpbC6kStfhMy+eoMpn5d8vm0KXluSKCYV0+2P8+lgvU8tcOK0GrEYVi1HBaVYJxNKUeSzIsszdLzaN9ju/2sPVs8vJdxhxmA189IG9hBKZ0e3dgTg9gfhfd+KEt5TVdJ453Me9W1v57swaBjvCY7ZXT80D4LyJhYwMTEbfU4s00pzbqKcobXRjcRhH6x/eHGHRdZ+i58QmZFlhqLOdUzu3MWnZKsJDg5zYuYVLPvE5An3d6JqGp7iUTCrFyvffRioeIzQ4wKL1N/LkD7/D0utvZe+GdgAa5xdR0phHz6kAulTN7meagNTouIlompXGRVTbp3D8mSFioTOL91+TjEZJxxNIkoyu567ngbZmShsn0X3i6Gg9xWCguKSUvOpGJk2clwupECFlf1ckshynie5MN1W+SpAlZEVGlVRKJ8/gyR98E3dhMZ2HD1IxfSYTl65k55//MKYPi92BIst4SkpRDAYWXHkdk5atIhYK4szLJxGNAjqJcBiT1YYl1U8wbyUZ1cGMSAez/X2w/V+hegm4K6FyMaRyAQ8Gk8zhV7rRsjprPzQVf0+Mkd4oSDBxUTE2t5HwcAJJAnR46f7jLL+hgZ1PtlLW6CGb1dn04Emmry4nMpIcM+/tj7ew5tYpDHaFKahw/o2OuPDXSPf3I9tsKHbbW9aLBBIU17qQHQ5QFDIjZ+5j6WSCQdmFQdKJSG3kW/MxKmfuvYXVuWsh3WNg9eLx/8qabLmxk7HoaJnP7GM48QYhJI7c/0ODkaQIIREEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE4Zw66yEkuq5Xn+0+/6/JpDR0LbcYEgBJOv2t6bn8FVd+AcGBfgI93VhcHmZfvI7j2zbTc+IYBdW1TD9vLRZ37tu4fXYTPruJIz1BfrGllVRW48IpRdz3ahu6Dsl4Gm+xnSObe1h6XQNaRsNgVjHbVUZ6YvSqTfxw/w8BuLzucmwGG3WeOnxW37h5y5JOhc/GF/c5+daau5GiIzQziVOv7EI1tuIrPcTEJcvxlpSNaeexqqSGYiy+qo7j2/sY6YlSNdVHUa2LkZ4ONv7mZ2PqN+18lUXXnsehl/1MmDgDj3wusnKEvyQaSPLCvceonVmAxeFDkuDwpiHUBQZ8usZItoqXHx2hrNFDX0uIdCLLUEeYTCpLxJ/k1B4/3hIH2x/vYfaFVfS3BLB5PBzZ1MOCdWupmZVA035HIhrBU1xK24G91M9fxIHnnyabyWC2O+g+fpQV772FrqOHOfjicyy65kb2PfsE+559gpXvv42R7m5Cw37q5l1E+dQrsNgdnNwVJBU30354GG+Jh+BAnPBwghU31hP1d+Af2EskZKO4fgont29G1zRS8dwC5aK6Rk5s24SuaSRjUTY/9GsmLFpG5YzZNO14lf7mU5RPnkbnkYNEA7lFqG0H9nLxHZ8jKWfo3LEHV0Ehi679ALFQIbKiIKsekOD49mGQwxRUisXJZ5MkS2iajqrK6BIEB2NMXlrC1OWlSLLMcFcIg0mhUI+Auwqu+S28+DVIBmHh7ZgrJrL6ZhvbH22mZkY+yViGkZ4oqlGm4SI3UecI39zxTbrCXQDMnrmYoa4IG399bMwc/Bk79VesReqNsuiamziw4WmSsSgTF6+gqL6RbCaDv68Xd34BrpoCbC4LF9xST/eRPZza/Ri6ruEqLGLS0tWAm4h/eDSA5DXHt7zMgiuvxWSxAuCyGJhU7ORob2i0zkgsRVqV0KTc8ySayjCpxMVn/niIlQ35nBqM4LEa+fjqena0jvC9q6exo3VkzDg7Wv3savPz7CeWEUlmGIyk+J+Mqgh/OJc6R2Lc83IziizRbMxSt6qU9lf7UA0y89fVUFznBkCWJfKKyuHa38LL34bWTRgzAfLK7eiaxpTlpRzd0kM6kaXtsELDvPWYLVEyqRSRkWFe/cMDVM+aCxmN3U88gre0Al9pBZGAH39PN0OdbeSXV1E6YTInt29mziXXkk4VM2etHYtDJb/Sjt1jRlFlZEVCknKBOK8xWVXCQ0l6jkToPRVh+srz6Tt1csy+Vk6bwfY/Psj0C9ay/7mnAGjZt5tLPn4nFqeLlr078ZaWs2r9Ffgq6kbbiQCSvz/hTJh/2/ZvtIXaAFAllW8u/SYTPBNoPnYYdJ10Io6ntJzWvbuZuvICEqsv5OjmlzDb7Uw/fy19LaeoWriS2tnzAMhmM2inn9M9TSdw5RegGM1IMpitFg5bzmPHfY/gKSqheuYcSmquorBqCbRtgXQM0glQc6EQ7kIrS6+p55UHT/Lcfx9h8ZW1WF0mJAkyWY3wSILgYIyl1zbQdmgIgP0vdLL8hkZ6TgYYaMvdaw+90sWM1RW5AJPTkrEMwYE4sXASZ54Fs9XwNzzywruRGRhELSh4yzrpVJZkNIPNY0KSJBSPh6z/TAhJLBhk2Oil3C7TF+2h1F46pr27wIrJptJ7KsCkxSXj+jdZ3yCExOLjVODUuLr5jlzwyGA4yYSit7+fgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAI79Q5TXeQJOlKYAmgA5t1XX/0XI73j0JSIJ1IYzSrRINJFEXGYFZQXreo2+HzoWVShIb6MVisVEyeTtW0WahGI5lMGkVRxvQ5qdjJLUuq+d7zJ1FkmVWNBTQUOcgkNVSTTHmjh2B/DCQJoymNxeEkk8ySyCRG+3j01KOsqVxDnaeON5LKQs9IlC8sz8Oy6Qe0TfkCcjRKcW09uq5jc3voazk1LoTEbTbQm8wSHUmiGmUqp/pIp7Mk4xlsTmXcOIqioGvS6UXNBlBECMn/CklCkiSObO4ZU6yYisFTTXQ4RN3sAnylNhSDQtUUH50n/Ew/r5zmvYN0Hh1BVTUu+3A9Fm2YKTM8HD0I2YxGIiaz9U8DlE+8gtIJdgprFhIa6sLmtjBvnY3jr25iyfXvo+PwAZp2bmPNh+8gMjxMKqGw5PpPEOxPEAuZKKydQWGVk3hvJyTAqXczY5GFLDINc1wEB4+x5pYiIsEQmcQxXvnND0GSmLX2Uka60kw//yJ6mo6DrjPtvLUU1zVwbPNLo/uaSSY5/NIGMqkUK275FzLROKrRiK+0nJZ9u/CVVlAxdQZHB4/wp+ojfGHZ1+jdl6b7pIXe5h6CA/Exx27ysvELUIW/jsliQJIlVKNCIpzGmWeh/fAQZpsRLatj91gwWlV48auAAmu+CR/cAFoK7IUAeKwaC6+sI53IUjXdRzquEZMi3Nf2c6oCVaMBJADpTJaZ51ew59n23JMNmLG6nEwmyTNdG1nQV467sIjp569FkiQsDhd9zU1U2uy4Cwqxeb3YXLkQKX9XM7quk1dRCTo48vLoOXGM4gkLkeXx90ZZUZGkM8+Jmnwbty6t5vEDvexoHWZCkYMPLqlG03RcFpUdLcPYTQqxVIq71k3hYHeACcUOZpR7GIkkkNCZX+PDbTXwzOE+jveFR/t+z4JKKn1WJODaOeX8bmfH6LaqPCvTSl1n7yQK42Q1nUunF1PstrCtI0CizMncmxvx2QxMrhsfEkZeI8y4ERzFWNsfp7Cinu3bTNTNKmDFjY3oOkT8CV6+P7ew/byb67nwY3ew58nH6Dx8gIqpMyhpmEg8HGawvYX8qmoKq2spqm0AXcPsdFE/fzm65CAZUVAN/Rx47il85RVUTp2O3V1GJKgz+6Iq9j7bjpbVUY0ysy+spPuEHz2rk0lrDHZ5WXTNhzi+9UlUo5mFV1+PrCgMtLVgtjtYfO17yKRTqAYjqWSSiinTKa5vZOKEUhyBg6AvAca/N4S/D02BptEAEoCMnuHew/fyjSXfQDodBBIN+CmsrqW/uYnHv/8NLv3E5yisrcff2014ZIS6NVeRNdlG+1AUlbKJkzGYTNi9ecQjYWRVxeX1kYhE2P/8Myy88npGertIRsL4h0YwllfgsReBagJ3Re4HkBWZCYuK8RTb6D0VJJXIcnx7O2abgVlrKogEUhjNBrJpjc5juaAJXYOhzjAVk72M9ESZc1EVqlFGlqUx+1452UfXiRFUVWakO0JJveccH23hr5Xp70ctLHzLOlF/EgC7JxcAonrcY0JI4qEgI0YvC70m2iPdzC6cPaa9JEtUTPTSfngYXdNPh06eMRpCEn1dCInZx474jnFzeX0IiSAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIwrl0ztIdJEn6CVAHPHi66EOSJJ2v6/pHz9WY/yhUVUZHIpPKMtQVwWhWKW10oxrOLEzzFJXgKSqh+8RRHvnGl8krq8RTUkp/yymqps/Ecd6FY/qUJIl1M0opcJjo8cepyrNx9wtNXPWBPJLRTC7kxCAjqzImi4osQ9vhIQrX5o3pJ5aOvem8dXQW1uXjaboH2VmCpKik4jFa9u0iNDhAzcy5VE6bwVDXIK5CLwZDbqGwx2EmYDew5+k2qqfnYzApDHaEQYeCqip8ZVUMd7WNjjN5xaW0HU4z+8JyXNIpyNSchaMuvFN2t4n562p4+f4To2VWp5G8Ah3W/xpHsojMiT52PN46un3mBRW07Btg1nnFeBwurKYEhnwHmIqQJImS+hCljW4kGeasreTI5h6CtXnse76D+jlVSKqJYMDNlNWz0DFjdpYwdZWPVx5sQ8vmM3ttFQc29jLUGaGoxonNq8HwSSq2vY/4rA9z4JTGwZ37mLryAl59+AFmXngpR195kqK6BjoOHwBg+nkX0nH4IHkVIaKBEZZe/z6sThdHN7/E4Zc2sGj9DXQcOTjmWJQ2TiLQ2UVv0wksTifdx49QOmEywf5ejmx+kb4LCzjkP8IO3wHkk1WkExFmralkx2Mto32YrCqFVSK44WzLZjRMZoWoP4m/N4rRrJJX5iCb0ZBkKbdQXNPh+NOQTcGkdTB53Wj7VDzD4U3d7Hi8BS2r4y2xccEHJ1NRUsSV5it5qfOlMeP5TD72H+1h3iXVZDMaiirTdnCIGRNKGAwO4itbxJ+//TUqp03HaLbQdnAfC6++AUX14irLx+mxEA0k0TQdHYhHwpzauY14KET9/EWUTpiMIoXJZr24ikoI9p0JAZp3+TW4Cs4smPbYTEwpdWE3q1wxswSrScFqUDjcE+JIT4iO4RjLG/OZVuLieH+YaDKLSc1ysDvA/CofbpsJSZKYUOzinptm8fKJQfZ1+Fk1oZCFtT5Mau4efvuqOqaUOnnhWD/Ty9xcOKWICp8N4dwpdpswqQo/3pgLDdlyaohSt4X/ft+cN24wfAr+8J7cNQ6U9R9j9dyv0GctwC9p+Ewqu37bNlpdy8bY9tiD2NweVn3gw+x56s+c3L6FBVdex/Y/PYTV5aZs4mSKGybSsmcXnUdy909HXgEr3/8RNj3wS6auuoAjr7zIsU0bmbp6DSUTFuMtcOG9eRIRf4JkLMP+FztZcUMjB1/KBfl0HI3S1+KgcuptzLmoBqM5y/Gtm7A4nHQcPjB6n66ft5BK50xe+e1/c9FNV+PY9g2oOw9GWqFgwjk66sJfK5QKjSvrj/WT0TI0TpvI4WeN2Dweuo4foXTCJFr27uTP3/0aBVU1+MorcUxbwuW/O8WDt+VR7LaM9iFJEkW19WRSSaIBPxanG2PfHjbvb2LBVdcR6OuhefcOEuEw9QsWY7JaSfmWUZg4Ar4aMJgBSETTJKJp3IUWPEUWwiNJimqcpJIZnr7nELIiMWlpCV0n/OhaLmVqxvnlGEwyOx5vwd8bOz0fuODWKRRWOxjpjVE52YerwEp4OE7Yn8TfF0PTdcoavH+Doy68W5mBASyzZ71lnUjgdAiJOxcAorg9Y0JIBob8RFQ7tfkWdsb6KbWXjuujcmoeTbsH6G8PUVQ99nPgaAhJ7HUhJBYfoVSIVDaFUTGOlosQEkEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQ/lbOWQgJsByYouu6DiBJ0q+BQ+dwvH8YyXiWaCBJJpXFbFWRZAk9q5OIZsbVjQUDLLn2PbQf3M9AazPVM2YjyTKJSASrc+xCtnKvlXJvBT2BOBf/aDMfW1lHaDgBWR0k0DI6mqZhtsLBlzqpnVmAJp9ZMOo1e6n11L7pvAscRrqGIpjbN5Jc8kWy4TR9zU0svva9qEYDmWSK9kP7yKusp+dEgMopvtG27gIrcy6upuv4CIOdSWpm5FM5xYcr38p5t36KtoP7iAx3U1Q3haxWTMVUFwUlWTj6Arje/9cfdOFdqZ9diLfYTCoeQlaN2FwuMlmdjkCKaCBJ5zE/9XMLceZZGGwPcXJXPxd/ZCqyKpNM2IhENQ4/20b9nAIG2sMMd0donF/EoVe6SEQyTFpcjLfExqIra9n7fAeqUWb66nKS0TSqQaVyqoOIP8Oq907E3xfFaFFYeEUt4eEEqlFGz2Yw2MyEp32SbrmOrU9/j1kXrWPv048BYHE4Gepsp2r6LGLBIAA2t5ehjjZsLjdaNsvm393HhR+9g87TwSNtB/ay5Lr30rRrG4qiUDd3IbKqsOWh3wAw59IrmXXROnqbTlIzbyHexjqGpSQpBVRZYfLNbjwZO0YJ1n9hOolQGGQFu8eDt1gEN5xt6WSWo1t7KZvgJZnIIMsy2axGNqMjoWN0GtGzCTA5IDYMA0fGhJAMdITZ9ufm0dcjPVG2PdrMmlunMDV/KsOJ4THjSbpE9bR8dj/VhqbpSLLE7AsrQZO4qOYiwseHWXrDezm1azvh4SFmrLmY0EAfxfULSEYytLT189IDJ1m0vhajmsZsc7DivbcAEA0EGOxsI7+6lvyKEpbe8EkG244QHuqhctosqqZPQ5KkMfOpL3RQX+gAIJXJ8vDuLu55uRl/LA1Apz/GB5dU893nzoQJlbjMTCxycqQnxNL6fACq8+xU59m5eXH1uGNc7LZww/xKbphf+decKuEd6AsmefZwLx9ZUcOUUhepjMbPNrXQG0wwsdg5vkGkfzSABECK9OLd/GEOLf4N73tR5eZZ5cybk09+iR1PkY1k9Cj9zU0AFNU20N+SCzuRFRnIffZo3r2DgqpavCUlFNXW0bJvN6lYjL7moyy48jp2/Pn3TFq2EndRCeGRYaL+ZqyuBrSsSu+pINmMxqr3TKCk3o270MquJ1tpOTCEu9DKlOU1eIvdtO7fw9Y/3M/i9TfSffIYI91dlE+eSt2cBbTs3MwV/+8TlNijUPpe6N4HsuHcH3zhXWv0NI4ru7DqQg6esnCZ6TDXvv8igoZynv3lzymorGbp9e+jaec2kKBi2iwOKT4+vMLDrjY/syvHB3ioRhNGi5f4SJj4SIqShklo2SySJDProstIJ5Kc2LYJhy+PiinT6TVPI3oyi8MXQlFBNcqEA0kkDZAl+ltCFFQ5qZjk47JPzGCkN4orz0JxjQtfmQ1XvpVUPI2iyqMBJAC6DjufaGHRVbV0nwjQedRPaDjOrAsqGeqKcHx7H0XVTlSDgq/UhsF4Lv/dEt4NXdfJDAxgKCh4y3oRfwIAuycXZKN4PCRbznxmONEbAKAoX0Jr0944hGSKD1mROLmzf1wIiWo0ohgMY0JICq25sLH+aD/lzvLRcptRwWJQRAiJIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjn3LlcFXcCqADaT78uBw6ew/H+YcgyDHdHiYWSVEzykYik2fVUGxd8cPK4uslolJd/898U10/AU1LK0c0voWezzLpo3Rv0nKMD375yCl6biY6NvSg6VE71oagymgZth4Ypm+AjNJTAU2NClmQm+ybzyVmfpNb95iEkEhKbWwIUF63G7KhCig4yZflqtj3yO7qOH6Wgspol17+PbDqF0Wwd03agI0zLvkEqJnpQ6mWadvdTWOWEAogGzJhsMzHbZxIaTpFf5aT10BBF8QNQMAkyYrHd/5ZAfy97n3qYk9tfYcaaS8irqCEaiJNXUYXFLrHm1jLCwwlSiWEa5ysMtHYw0gUD7W30nDjElJVrKa3NkgiFcPkkDOoIkRE/dbPykCQFWTGSjGXY9NBJFFVm3mU1vPzACcoaPNg8Jk5s72PhFbW8+OtjGC0KNdPz2fjr49TMzMfqNNG8t59ZF1ZxYsc0vIX7ATCaLSSiESRJJpPOLcpv3b+HhgWLObppI5qWBaDj8EFWvPcW+ppOkIicCePpOnaYvlMnqZg6nbp5C9nz5J/Jq8gFMzjy8lENRl667xcU1zVQVN/AkcceJ5tOc935l5JMZFCHAmx88IfUzp1HKhbj+JaXMTucLL72A1id8zHbLH/bk/h/nGKQcOZZ2PVUK3MuqqbrhJ/CWhcWhwGDUaHj2AhaNEiFxZMLISmaNqZ9aCg+rs/OIyMkwikMPgsLihfw9cVf5z/3/SfBZBCb2cqprmFmX1SFltWRFYnBjhDlEz2U501l/8ijvPqH31E+eSrO/AL2Pv0Ydo8P1Hkc2TxMaaOH+ZdV43BHGWwbQlEUnv7xf5AIh5iwdCWTlqwgk0xwYOMg1dPz8VUswlWU5eSuQSqnmd7yWCTTGoF4ejSABODiaSX8fFPLmHo9wQQD4SSTix1/xZEXziUJuPvaGfSGEmw42k9Nvp3PrJmA0/wmH9scxaCaIZM4U2Zy0J11AVEO9IdYO6WCA0+10zCvEHe+NlrN39NF6cTJdB87QufRwzQsWMLJ7VuomDoD1Wji1K7tJKIRGhcupWbWXLqOHaH90H5mXbSOVx9+IHftLlmB0WJFUTsprFtNUY0TTdMpbfSgGhQ8RSqr3jeRhaE0RouCyZoLE8mmU2SSSV65/1cUVNfiKy2nZe8uZi6Zz6opKrxwA6SiULEAFn0c0BD+fs0vms83Fn+DH+37Ef6En3V165jjvZAP3XuUC9+bT9GWWzAu+RaZVIqek8fpb22mYvJ0AKJZmapSN8cP9QImYqkM1teFd+iaTtcJP688eILgYJyyCR4WXe4mNDSIwWwiEQ5jstlZfM17GGht5o/f+DLpZJJp511I/fxFBINBFIMBo8WMarKSSTnIL7dzdEsPiiJjtqtIwKaHTjLSE6W4zkVhlYsDL3ZQO3N8UEXEnyTqT+HMs7B4vRctC7ueaqO/JRd41tccpLclyNJr6jHbVFz5IoTs70k2EEBPp1ELCt+yXsSf+x/E5sk9fxWPh6w/MLq9aTAGmHB5k9DGG4aQmG0G6ucWcmxrD9NWlOEqyH0OfC1UzGS1jQkhKbGXANAb7R0TQiJJEgVOE4MR8X+RIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjn1rkMIfEBxyRJ2nn69VxgmyRJjwPoun7ZORz771o6kaVishejSUExKiSjaWpm5qOa5XF18yurkRWV3qbjo2UL19+I3TP+G+Jf47EasBoNvP/eXTxy0XQ23neMpt0Do9uXXltPNJCkoNJBoc/BY+sew2v24jQ533LeVqPCcCRJqOY8VN2Aze3l6R9+l0B/LwADbS089aPvcsVnv8b+F9o5r9SGyWIgGU+z77kOhrsjtB0cGu2vuG6YohoX7kIrL9x3DJNNxeY0cWRzD+X1Fqwdj0HXFrjxkbd9bIWzJ51MseuJRzi+dSOTl6+mr/kke59+jIVX38DOP99LPBRiysrz2fnYIyxafwNP/fBe6ucvpv3gLvqaT7Jo/Q1s/t0vMZjM1M1dwO4n/kReeSWTlq3iwHMPkYrHWXDlezGZC5i20gmSk65jIwCUNnrY8XgL3hIbg51hooEkk5ZUs/vpNmRVxltsY9dTbUxbWUbbgV7qZoKWzS0SHmhrpnTCZLqPH8FkyYXhDHd1UDFlOlNXXYDBaEI1mcgkk+x6/I8suOo6nL4CrC43sWAAgEw6RTIaIzTQTzwcxmzLLR6esGgZe556FC2boWbWXF759S9Aklh2w8088+PvMv/y9Wz9/f24CovIJBIcefkFAKL+EZ7/6fewub5Bzazpf+Mz+X9bNqPjLbFy/s2TiAaTFFQ52fzgyTF1Lri5AZ5thhk3QNHUMdvsrvHBHvlVDozW3OPRrJq5vOZSlrgnkk5HyQR0qqbkMdARZrAjTF6Znerp+WQyGuZUnPJJ09B5gI7DB0b7q197Icd35Bamd5/ws2BdHo9+9y5Wvu9Wnrz726P1jry0AYPJxNTzLqegUiI8lGDnk62j2wc7wtimvnkQicNiwGszjikzqzKxVPYN66vK+GeO8PfBYVbY2jzMzza1cF6dnQqvH3M4QH4mTfxEEkthHbjPLE4nNgIrvwSvfAtSUbLFc+ic/1Nqw2Y2XGtCz2ps+O+jSLKEp8hKPOjGYLaQTsQ5tuVlJi9fTcP8JaTiMey+PEoaJmBxunnmx98bHeLopo0YLVaa9+5k2Q0389QPvzO67cjLLzBjzSU07dxMUe0stv15ECSonJJHfnku7EY1KDh8ypj99JVWYLRYScVjDLQ2M9DaTOOipbikIDz3hTMVO7aD1Qfnf/2vP7jJMAQ6cqEtnupcMpxwVpgNZgzxOVxZ+F3ynTIPbQvzq/YeAFLWYljySZwdTzNx7hyO7dxNNp2mdf9ujBYr/mlr2b61jZsXV7K/PcCJvjAzKzyjfY/0Rnnyvw6gZXQAuo75iZ9nYudjj9Bz4igAjvxCll73Hl65/5ej7fY+/RhmuwNnYSHhoQEceflkzCmM5iSqsYiCSgftR4fIL3dgMClUTfPh74vReypILHSKmpn5eEtsuWQg/cy+1kzP58DGTvy9Maqm5TF9ddloAMlr+ltCRINJshmdbCaKt1gEkfy9yAzk/i9SC8YHzLxeZCSByaZiMObuXYrXkwsw0TQkWaZlJIlBk8kYhwEodYwPIQGYf1kNbQeHePDfdiApEqpBZuk19TQuKM6FkETPhJAU24qBXAjJ/5RvNzEYFiEkgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiCcW+cyhOQr57Dvf2jJWBKjWaX7xAin9gyOli+9tp6yhly4SPzkSdLNLZgNKld++kvsfOrPhAYHmHb+WiYuXj767dlvJJ3OoMei3LK4kvBgnNlrKzm6pYdsRmfCwiKyaQ13oRWjRcVmN2OXqt7WvK0mA6snFpLHKcL+YdKJ+GgAyei+RaOEBvtoO5wl0B+jsMpFOplFeoM1vvrpxZyuIisrbmxk26PNjPRGKa51MndtEYa+uWCxQHRwfGPhnAsODtG0/RUAXAVFHHnlRXxlFfj7euhtOsGi9Tfw6sMPkF9VQ8fhg2jZLN6SUk68ugmLw0k8HCLqH2He5evZ+9RjAExcupJND9yLJMksu/H9HNjwKCPdnSy46np0XcdkDXH++2eTTnazdL0Dk81AcGCIWWucyIqE02dkyjIr2XQ3s9Y4sXvNSHTz0n2/ZM4lV5BXXknLvt0sue69qCYTx1/dxPKbPsCepx7jwIanmX7BOkomzOb826o59MKf8Pd1ERwM4S3PZ94Vn6Dz8AYG25uomDIDu9dLLBhg1kXrsLm9HN+6CUU1kE4mUE0m4pEw2UyGiUtWcOCFp0kn4mRSKXRdo2LKNJp2bht3TAfam0UIyVmmqjIOr4XnfnGYqml5eAqtTFtZxvFtvahGhUlLSohGsnDht+HoYzDcBJ7K0fZ5lXYmLi7m2NbcvcxkVVlydT0miyFXQdPg6GPkPfohyCTpuamNwGAcd6GV/DI76bRGsD+Gu8ACv7mMonU/5crPfZVtjzxIIhJmyqpLGO4uJBmLjI4ZGuwmm0kz3N0xbn9ObtvC1JVrSCc1ZHnsfT6b0f7i8ZhZ7qbUZaY7mADghWP9XD+vnPtebR+tYzEouC0q21uGmVbuwmN982AT4W8o5odUGKw+lJFmLvYNcvstbqw7f4w8mIWIDw78LlfXlgc3/AFKZ8NwM/zuajDaYd5tYLDTpl7Krif8VE7x8cLvTzF9VS6wxOE1098aovVAhKU33knzricY6mxHNZpw5uWz4Rc/JhGJMP2CtSTjsXFTbN69ndkXr2OgrXnctpPbt1A7Zz6pRK6dBGTeJADnNZ6SUtZ/+Rvs+PMfGGhrYeKS5UxZeQFq++Noq7+Gbi1CiXYBGhx8GFLj5/SODDXBU5+C1lfAYIGVX4RZ7wPzW4ewCW9ffYGDrz5xlP7QmaCENZML8XRthKbnUSdczKIZ03HlF3B05x4cJeXY56/lC5sDhBIZFtf6mF/rI5LMjOk30B8bDSABUAwyw50towEkAA6vl87DB8fN6eS2zaz96B3EHAGS8QSyLBMN+HEW2jm4sYs5F1Wx+aEmErE0Cy+vZe2/TKXnlJ8DL3bh9Fk4+HInF3xwMtsfayEWSFIzqwCz3YC/N3c9th0cYuLC4jc8HhISqXiaTCorQkj+jmT6+wFQC986hCQ4GMeVZxl9Hc9mIZtFC4dRXC46olAoR+mNDqNICoXWwjfsx+E1c/Vn53BkSw/oOn0tQV789THyyh2YrNYx99siWxEAPdGecf3kO0w0DUTGlQuCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIJxN5yyERNf1VwAkSXK+fhxd10fO1Zj/CKKdbQx1KVgcxjEBJADbH22hpM6NZegUA9/4JonDhwFQS0u58Ec/RK2swGJ3vGX/sRMnMMgys2KDzCq08fLWFANtIWpnFSArEi37BsmrcDDnwkqymexbhpm8kXklBpR+jbTdga7ryIqKlh27UNRosWJzJTGYc98abjApTFhQxJbOU6N1FINMYWVu0a+/J8qOx1tonF+E0awy1Bnm6LYh8iblo1QvA3clwt+eohqx+/II9vehZXMLyQtr6ug8cgiAbCaDls1iMJlJjS6ezF1PFqeLyEjurS7LCpl0CqPFSsSfK6uaMYumXdsYbG9l3rqrOfD800QCI6x47y1s+Pn38JaWUVBZw/4NT4Ouo5pMXPSxL1A3089L934XSZaZffHlWO0aLz7xGwB2P/Uo01ZfSMOCxVicPhoWXIvNbaLjaIRpF34ad6GRgy/6sZ2EPc+EmHvJ+0nGErQejOAtU9n1VJj88lUsufFaQgNJdD1ISaMFg9VHPKwx78o7cealya+sxt/TjSznknWcBYUc2/Jybl+V3DUfCwRw+PKIh4JjjqnF4To3J+ufWCKe5uDGTjIpDafPTOdxP9FAkgmLislmdI5s7qZqmg/0Z6D9VahaCnXnjba3OkwsvrqOSYtLSMYzuPPNmML9RDYdQHG70TNJtBNtGCd/BCXSgsGk4Cm0EhiI0dsfw11gxV1kRTUp0HcQ5U8fxHnxE/iqbqS4zonJYmXX08fGzFlWFPRM9g2vB4cvD0mWcBdI+PvOLLj3ldqxu/9yWMiEYif3fWAeG472c6I/zNK6PGwmlTy7iUf391Dts3LZjFK+9NgRLp9eQm8gIUJI/rfpOrRtgafvBNUEjRfhGTqBx1UB3T1w8mlY9WXY+PUzbaJD8Mxn4fqHINAByXDuZ8sPiMz+LK9sGmDayjJ2PtmGrusYjLl7Uzycwl1oJRnLsPOpGIuvuIDgQDsWp5vQyDAXf/xONE2j/cjB0fv+6zl8eShGM6phfBiIM6+ATDJJJGACotTNKcRIgsimzaiFhWRTKTId7chWG1JBAfhHyAwOYS8pYfWV16NJoB05RvaVTQRdlZBOQ1hGCxdirzJjWHoHWDzv/jhn0rD1B7kAEoB0HJ7/Uu4zxqTL3n2/whh1hQ5+cuMs7t/ezoHOIKsmFHDj3GLUxz8D/Ueg/whuYJG7islXf4S7+ubwyIa+0fbRVJZMViedHRu6ZLKN/ZfF6jQy3NU5piw0OEDltJnj5uTML6T9yCFK6hvRdQmD2Yq/rxezw4OW1THbDMRCKQB2PdXG4vV19LeGmHFeOZlUltqZheiaxnnvn0gynmHbn5oZ6YmOGSOdylA2wUPXcf9oWWmDm1N7+mmcX0wmmSWbyaKoyrs5rMJZlhkYAMBQ8NYhJKGhOIVVuf9XogE/255/kulA34F9lC5bQU/axBRzhO5IN0W2IlT5zf+1dhdaWXxVHQCJSJrffnkbe55pw2Szk4yeCRYxKkbyLHn0RfvG9ZHvMPFq8/A73V1BEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEIR35JyFkEiSdBvwdSAOaOTSCXSg5lyN+Y8gE0+iGh0koulx29LJLKlEFvbsGQ0gAch0dxN+4HcU3/X1cW1eL9bdDZJEfMtWBv7931ELCqi96ze0Hxrm8Cvdo/UWXlFLOpVBNb+z069rGmaLHdo3o1VciYTEnEuvYOejD4/Wmbx8NZruYuHlDrxFdgBMFgP55XYWXllLX0sQo1mloNKBp9gKwEhvlHg4zcGNXaP9qAaZOQV+HMd+Dlf98h3NUzg7VIOdxdd8kGd+/C0Ug4qsKPh7e8irqCQ8PIhiMALQe/IYC666jq5jhxlsb6Vs0lS6jx9hwuLlNO18lZGeTgpr6hjqbMdgyoUdFFTXsuNPvwdAMRiJ+IepnDaTUzu3kYiEqZ4xm62/v390LplkkkB/B9seuQ8tm2Xx1dez/7mnkGWFbPr0e0nXOfjCMwBc+JEvsvNpP5WTfQSHNHq2jNC4oIjySXmYbSqSInFk8wC1MwsIDQ5xYkcfcy+uYu+z7bz0mzamLC+jpLIEQyqM/th9ONZcyrOb4xitBhZd8xF2P/lbVJMZo8XKUEcbRXUN9J06SXhkiMLaelr27WbZTTcz1NE+GtLjLSnHU/xPffs7JzIpjdBwAoBTewaYcX4Fmx48eeZ+IkHlBAc8tz332ls7rg+TxUBRTS4QJLxhA613fCoXgCBJeG9+P9Ft28n09lL637+ATApnvhnFKOHwmjFaVKwuI1I2RXLu1zDt+gqB3gCndvs5tdtP3ewCyid66Tw2Mjofo6UAm8+Hp6gEb0kZIz25ucqKyrzL19OyZxe9TSdoWHw9lVN8uAuteIutuAqtb+uY1Bc6qC/MBVad6AtzzU+38dFVdTQW2ukLJbn9wX3IEiyozWMkmhrXXtdz4SfvNKRKeJcGj8MDV0EmmQsbeekbsOor6LIRqXNHrk46Pr5d9+5cW6MdJCkXZgKkTUVYnSYcPjO6liuLR9L4Su0Md0cwmFS8JTZS8Qxdxw5z5OUnxnTrLSlj/pXXMtTRhruohEBfDwCKqjJ5xfkc37qJ2tlzx127cy69AsXopmk3zF5bhTffwMiH30+mox3JYqHgk59k8Id347j0UlS3h+Gf/Qx0HclopOiuryNbrUiShP8X/026MxcuYZ4yBc973kP4eD+e6XYk5a/42BobhGNPvsFx3AMlM8Fd/u77FsaYXellepmbWCqLw6zm4slKZ+eO9WlSoI1kMsyLJ88EKsyqcOOyGOgciVLhtY3p01dqp2ZmHi37hgCI+pMUrp4APDVaJzIyTFFtAw5fHuHhXD3VZGLKyvN45be/JNjfQ+PCpSiqQiISIRZSmLqijJ1Ptoz2kYpnSEbTyIqM3W1C0zS2P9bCihsaCQ7GCQ2Nfy8WVDqwOo34Sm3kVzgY7o6QV2bHV+Zgwy+P4C6w4Sqw8FpQW8SfIOJPYrYbcOVbxL32f0G6rx8kCTU//03rZLMa4ZEk9XMtAJzYtpnk6VN14vlnMM9aSFQyUe2K0xXpptRe+rbHN9sNNM4v4ujWHoorHKPX62tKbCX0RHrGtcu3mwjG0yQzWUwi0EYQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQhHPknIWQAHcCk3VdH/qLNf9Z9B7EatGxOLxIsoxikMmmz3zTu6/UhsOtEDrZNK5p4vAhtGgUxeF4w66zqRRSJkN2eJiB738fNI1MXx/27oMsu24aTbsHkSRomFeII8+MltFw+ixva9qZcJh0WztaIg6KglR8GTpwdMtLTFi0jLzySqIBPxanC1deITo+8ipzi0ezkQjZVAqvMYxUYcGZZ0E1yHiKrLjycwvqVcP4RXTOfAuGbBDCvdDxKlQtfltzFc4eMyHCgy4u+eRdJGMjXPTxz7D197+lYcFi+ltO0bxnBzPXXsa+Zx6n88ghFl1zE007ttKwYCnV0+eSSsVYdM172PvUn5l3+XocvnxkVcXu9REZGcZVUEhwoJ9cNhF4iko4vvUVADLpMyE9roJCpp23FoPJiJbN4vDlERoaJBrwEwsFceTlEx4aHK1vMFswWDwsu9KCqmdRCgIkG51ktASWwAkcvgIc67zs2hZD03SmLCvh+LY+Wg4McsF7apEiAaT9G7H6Yfiee5AMBiweGysrfSRqZ6ONZFhy+a1opCn91BTaDu2jcdEyXv3DAxx68Tmmn38R089bC4qRyz/7bwT6+lFUE6qpEMXg/luewn8KFruRmpn57Huug9BQAi2rs2R9Paf2DqCqMg3zC/E5wyDJUDgVCia8aV+pri56vvDFXAAJgK4zcu995N9+O4M/+hHZ7h5CP/4Clh/8GoNRxWwzoWWyIEmEPvNREk4zJSsvQTGfCQs5tWeA+jmFzF9Xg9UqY+48gqWnnfNu+RjB/h6Wv/cWwsODZFIpnHkFyIrC0c0vMtLdxaSl59O4sAqTRSWvzIHZanjHx6e+wM6Pb5zJw7s7mVjsojfYz4qGfK6fV86+thHes7hqtK6WTJJobkaP5RbZS1YL5tpa5NPhQcI5MnwqF0ACkImTWnIXGecS9HQGps1HmqtgDW8d365sLgy3QKAdVnwhF14CGLN+ShvdDLaHsbqMxIIpDr3SxeSlpdTPK0A1yqy4qZHISJJMUh4XQlI5bQaDba2c3LmVujkLMNtsmO0OPMXlqCYPNbPTWJx2JixeDoCmaeSVVWL3lhPvS1JdlcLqkUj/9C5SHe0A6PE4I7++D+fai7AtWUL3x24fHU9PpRj45rco/a8fE3riydEAEoDE4cOkmppQ8vPJ9HVjKIvAG38M+stMDiiYBB3bxpYbbRAdFCEkZ5mqyDgtcu6FrkPtKjjy59yxBvBU45h0PpclFHa3+5lR7mZamQu3xcBgOEltgX1Mfxa7keXXNzJpcclogIeqJph+/sUcfOEZdF2jbNJULFYzaz/2aYa72tGyGjaPh82/+zWV02bRsncXFoeTmlnzKayuIxE0MtQVZqQndmYchwGLw8hwd4SyCR76W4MsWFdL94kAFVN8HH65mxU3TaD98DAD7SEKKp2UNrhxqRFqJrvoaY9TPT2feDjNxt8cy3UqwYZ7j+LMt5BNazz3i8PEw2kMJoWV75lA7cx8ZEX+W5wW4bR0VxdqQQGS0fimdcLDCXRNH/1/pfPIIYyFBdDaS9+BfWSPtQHQUOBgZ6SHxaXv7H+VujkFHHq5i6xWQDJ2eMy2IlsRJ/0nx7XJd+Sex0ORFKXut/d/nCAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIwjt1LkNImoHYX6z1zyTYC7YytIxO094eznv/RLY/2kJwME5xnYsF62owZqNYZkwn9PjjY5ralix50wASAC2VQrHbSQ0NnVlAD0T+9dPY117G4ls/juxwoGsgyxKeSifK21zwmGxpQYvH0eNxJFlBSmfA48BTVMyhjc/hKSrF4nSiGo3EwkGcBaVYbGaiR44gaTqJY8dQHHasSFgkCeu8uRi9ZxbpK6pEQZWDgbYwALIiMWVpKVr49PwCHW/3CAtnkR4KUDh8iKMdVRQ0VNF5IsjqW76MomSZf1UtycgwVredi26fQzYTIx6xUj17Mr4KDzuf6KR+biHxSJppa+pJpaCobjIV9QoV7nxCqTiVk6bx3C/+E0mSMZjM9DU3UTZxCqd2b0c1GEGSkJCYufYyXvntL5l/xTUoqorN4yU0OADA0U0bWXr9+zi08TmGOttxFRaz+NrbcIYDhL/+YSzr1jH8s5/h/eAH8f/2t0RTKcwf+hCpX/6S5Z/5IulwM9rhPUy84lri2zYj/7qV7PAwsf37sXzoQ+ipFIbyctJtrcSf/zm+D32I4Z/+lKjDgWvdZfjvf4BJn/oUwe/8B6tmzkC+4jo0s5e9m1IU1XroaUrQvNeAySqz+GoXBZXvdvW88GaMJoWyBg+JcJoTO/rY9WQry29oYOEVNahaCuNAK5wcJLz6URyxF6H3IBRPf8O+siN+tHB4bKGuo6VSAGSGh0g1NaF/+FrsX/8BmjMPQ3QERypBx6GDpIDMbd9D0tJUTfXRdmgYgKbd/cwvqcGrBvDfdQfmy9ehfPDjWN1x4sEA8VCIbCZNOpEgnUoy0t2VGy8VYdLCwr/q+MiyxNL6fGrzbfSF4iyp89I+HONAV5B1s0opdp1ZxBw/eRLiCbLRCACKphE/eRLb1Kl/1RyEv8DsOvO3q4K0YSZaJAqpJLokIetW4s4lWObeAnvuBS0L7gqYdDlE+mHz9+CWF6F6BYS6GUlN5+BjbRhMCsuua+DAxk6GOiP0ngpQWleONdCO3JTCUd6IUlDD/MvXs/eZJ8ikUzTMzy2iH2hvxubysPfpxwC4/DNfIZ3OZ6gnhdU9E39fjETEidWZwO6x4ZQVIh+7lUxnJ8gy5g9/iPjBvWN2M93dg+LzkfX7xx2CbCCAFg4TP3Bg3LZUZweWokJS5oloQwmSB14EXcfc0Iix4h0Eh5gcsOLz8NANkMpd41QuhtgQ2P+695nwF4y0wqMfgVnvBdUEkgSJIFYtyh3nz6ZzJE4gnuZEXwSn2cCyxnx89vHhR1anicopY8tLJ3yQ6YtmkQ0OYhjKMHj9+zCtWkF6+WK2PfIgmWSSunkLUY1GwkODDHW0UdIwEcMjj5I5cIDKj/87HUcU0sksZruBBZfX4u+Nkoim8RZbGWgP8eofTzHv0hq2PHySFTdNYOeTrZRPdDPrggpsHhOGPS9gsE7ClRomnlfIc786gZ7LV6Os0YO/LwY6jHRHOPRKN7WzCtCyOi37BnnhV0fxfnEuvlL7uP0Vzp10VxeGsrK3rBMazAVyufJzz8nBjlZKa+pg+wGUeIIXXtgCFDGxrpDBE4OU2d+6v/+psNqJalJIxt0kY9Ex20rsJbzS9Qq6riNJ0pk2TjMAfcG4CCERBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBOGcOZchJJ8HXpUkaQeQfK1Q1/WPn8Mx/74lAiSsE8lmdbxFdjqOjTBrTQVWpxFJlkACMhlMEyfiuvJKgo8+CpqGddFC7KvPe8uuFbOZZDSKWliEZLWix87kv6S2vEThB27CWl76jqecCYchnUFPJECWQZYgk8Ygy3QcOYQsSciKQmhwgF2P/4m1H72DvDIHibZ2lJISUgcOkmo+ReDBh9A1Ddfll2NwuzAuWHBmjLSGr9RO1dQ8tKyOrEh0HO2n0dWcq9B48Tuet/DXU/KLkLZvoDGRJjH932jdP0zr/mGmry4jrzyfTMpBJi3hdEhYI2G6Qlma9kXpOhFj4doS1EwcJdoMFTVkZDOBkTTP3z9AfqGLadPzyT70Cy5bdiEZp4dLPnoHR7ZuomzyFMIjw5x4dRMLrryWnpPHad69A13TOLppIwuvvoE9Tz3K9PMvov3gPjKpJK/c/ysa5i9i/lU3EQ85cek6kW99gkxfH5LRAEBmYABDaQmp1jZkkwk9nSb2yIMYa2qIPf8s1tpq4o88gGyx4Lz4YuL790Mmg2y3k+7qwnnBBYTZQHZkGENpCenuHlRfHgDxffuQzRYSv3+Y/JJShn/5K+asuxYGC5B625iycjYSWaztLyI3rgFT/v/iWf2/JxnPkIimKapzUjnVh67ppFNZdj/dxhzzQYa//23U4mIK7vw0seorsfY/Nq6P0HCc4GAcg7kIy3lriL/w3JmNBgOSIfeoNJSUAJDu7MT//qsBMDU04Pz37wKg5ucjDx1AdhciqybmXVpNNqOjGmVaDw5RMV/HPH0axqoqIn94iMx58xloa8aZV4DJauXE9i10HzsCgCTJeIqK33S/M8EgkqKg2N/ewvUSt5UStxVd16kvdHDJ9FIUWRpbKZ0hMzxE9nQQi55IoBYWAaAlk6R7epAMBgylpWMWRQt/pYJJMOESOP4kCc889OEIpFOgqkiAnkyiqQaoPx9KZoG/FWIj0PIKWE4HmHRsA2cZhPoIRicAkE5meem3x2lcVMTMNRW4882cfLWLI68m8RaZmJNswWsI4ssrYPoFF6GoKu0H93Ni22YWXn0Dux7/I4qqsuSGm8lqhYz0JFENMi37hmicX0ho2IDDbcAV72Lk/e8/sz+ahrG0DC0SGbObpoZ60t1dWGZMz32e0LTRbWpxMYrbjXXuXJLHjo1tV1OLYrXS9dmv41x7IfEDB0keO4bi81Hxq19ibmx8+8e6chGsvw+6doEkQ7Ar9xnD9c4/HwnvQCoK8RHYevfY8urluKwmXFYTsVSGedVejKryjrpWDUbyqycSeLKZ3i9/HYDEk09TVFjI2o/eQX/rKToO7adpx1YACqpq2fTAvSzHQqapCeXrt7H2Y58j2zATyaBwcscAA+1hzn//RI5t6yXYH2fuJdW0Hxoi6k+x4b4jLLisFk+hhcHOCCd3dDN/xRw0lwkGeikp0Ljyztl0HhsBwN8Xo2lXPwCyKjN5aSk7HmtBMUhMXVFKz6kg4ZGECCH5G0t1d2ObN/ct6wQGzoSQpJMJggP9TJq/BACH2cqhrhHMVjeuciucgFLHO7uPKIpMSZ2bgbYkmWSSbCaDouY+bxTZikhmk4wkRvBZfKNtSj254JEuf5zZle9oOEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQhLdNPod9/wzYCGwH9rzu55+XJGM0ZFFNMh1HRxhoDdPXEmLvcx1sf6wFg1lFT6dJtrfjuukmyv/7F5T94hfk33kn2Wj0LbuWVRU9GkXyeij+t68iu3ILkxW3m+K7vo516tR3OWcJXQLZZEItK0NxuSGbJROLUzNjDpqmsf1PD3Fyx1bmrbsKWVFQDQp6MgHBIJnuLvy//g16KgWZDMFHHiF+8OCYIeweM72ngux8opXdT7ex++k2Ji8px9izFc77Nyib9+7mLvxVJBmcl12GPjyIKdQLgM1tRNfhxfuOseupVrY/2sLO5/vJFFZR0v4C55ce5fwlWbS7Poat9whJdymdfQr7tvrZ8lgXEX+S1uNRnnsyguU9t6H2+bGaS+hqdpNMr8KRN5OSCe+lYfFNmB1TmLX2vaPfDh8aHGD/808xddUFFFTXMufS9aiGXICPyZGH011Mefgk0S/djufGm8BgQIvFMZSWEt6wAfe114GqEt2+Hfc160mePIm5sQFjbS3+P/yBgk98AtlqRVJkbIsXE/jTn8j72EeRLRbS/X04LryQ4JNP4X3f+1ALCogfOoT7mvVEtmzBedFFGCoqiGzajPvqq4k/dB+xu79BeudWHG4VtauJoV/dT+Lg/v/FM/p/kyRBMpZm1xNttB4Yomn3AK88cJKKST6if/wdAJneXnq/8EW0YIBsWW4BMf52aHqB/uOdPPyt3Tx+937++P1DdC6+Dcvl6wGQbTbyb7+d4J8fxdRQj1xYSMFnPoNkMgFgKC2l8POfo/PTd4IkUfjRGzB0PIm1pJRMMsvOJ1rZ80wbOx5roXZGHrbKQsrvuQfLnDlYHCrh7i56m06QjEWxe30ocm7xsc3t4eLbPoY3v3Dc/mYCAQJ//CPt115H+403EdrwAlo8/g6Ol4TNZIBImNievUR37yEbDAKgRSMYGxsxVlbmfhob0aJRUp2d9H7pS7RcdDGt69bhv//+0aAS4Syw5aFffDeJqzaS6fUjGwzogFJQkAuZSaeRVIVM+1FiIxYS5rlki+aAwQIH/wC2PIj0Q3QAMlHsdn20a03TObalF393iBPbewn6NZBgoDPOhhfTRE0+8sx20HV2P/lnBjtamXbeWqwuN7MvuZwrP38XRtssNvyyOXctP96Cyari9JmodPpR/u1WlFMHMU+ZkhtQUfDcdCOS1UL+pz6FZDYDYCgtwX3d9YSfex7/o49S9JWvINusAKgF+RT961cY+s1vsC9bim3RolxfkoTjwguRbFZSnV1owSCBhx/BsWIFANnhYYKPP/HOjrVigNrVMHU91CyH5Z/J/RbOLXs+FM8YW2awgq9u9KXVqL7jAJLX6AYLwaeeH1MW+eW92EMR0okEA63NqEYTMy68hMGONmLBAGpDAwDZoSGUA1spUAZxHH6JxtAWlqSfw/HMz5hb2Mmqdfkc3NhJb3PuPplJaET9SV78zXG2P9pC2+EgbR3wwsO9hCwlmCvKKKpxUVDpYNeTraMBJHnldgL9MaxOIzPPLycVz7LrqTbKJ3iwuozvar+Fd0dPpcj09WEoLXvLesPdEUw2FavLyEh3F+g6vppaJJOJkqJihox5VBpjDGcGACizv3V/b6S0wU0iqoJkGf28C1Biy4We9UZ7x9Z350JIugNv/7kvCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCILwTqnnsO+Mrut3nMP+/7HoOuTXk4nFSMctFNe4yGY1BjvC5JXbMZhU0okseiYJ8QTD//Vf2JcuQdd0Mjt2YJk75y8OYa2pId7bi3HuXMp/eg9Zvx8lP//dB5AAqt2OrCiQn0/m1Cn6v/FNMgMD2K69hmYpiWo0Mv/Ka0mEQ+zf8DRXfzH3LfSSxYJsNhPdtm1cn5GNL+H7wAeQVJVsVmO4O0LFZC8N8wrRsjqKKtN5wk/Fqn9F3vwdqFsNNu+73gfh3cn095IZHMKxZg2qU2f6sgLiSZnWA0MAKKrMvMuqGWgL8fKjvdRMvozGqQ6yoRDxj36PlNPOS/efYM5aJ90nA6P9Onxm6mYXkPJ42CavpDbi5NCmFgBe/WM7k5aUgAROj4rFpDB5xUUMtP4nAJGRYXY+9girP/gF8qtWs/IDc3J19QyGHZsJPPQ7Cj5zJ6nuHoq+8mUkgwHbon8j2dSErmuUfO/fyQ4Ng6JQ8r3vkRkewnfLLWT9fgxVVRR87nPoqRS25ctJnjyJsaqK/M98BrIZJLMF89QpKMXFeG+9FUmWUHw+DGVlqMVF+G67FS0cxlBVhZLnQ83LI9XZRc8dnwJZxnP9daSH/X/z8/h/XSYSpGn3ANNXldPfFiIZyzDnoioUg4RsOLOwW08kyPT2kVQLsfYdgvuvJFm6kk2tN5OIpEfrHXylj8qPfJiqS5eixDvQ8uqxec/HkG5GfXgx8i2HKJ82FS0UQikuJhuLUXTrrRgrSzEX2cF6BaEWiYYFRRTXu8mkNMx2FbPNQMLowOa1o3q92ObMQWs6wSsPP0Bv0wmQJCqnzuDS//dZnANDmEMxZG38/ka3bKH3i18afd19++2U/+pX2BctfNvHLNHUxNB//ifh5zcAYJ07l6J/+yqy3c7Iz35G6IknAXBeeinu668j8MgjhJ58ClNDA3oqRf83vomxugb7ksXv9HQJb0BLJAhv2cPAt75JZmAQtbiYws9/ntSJE/Tf9Q20YBC1oIDCL32RgW98h3RPD+6rLiV/ig21cjFMvAS2/gjO+yo8/yUKZmVonLuGE7ty95viOhe+Mif7X+gim9GYtaaSnqYAXcf9xGQnmY9eS82n78Cw7mqy6TSndm3n4AvPUD5lBjWz19B2qJv562rIpDRUg8xgZ5hYOIMc0XLP8WAI04RG7MuWga4TfvllEidOYpo2De/NN2OsqUbxetHCYUq+/x9IioJaX09Zwy/I+gOo+Xkk+wdwX3QRw7/5DdZZM3FdfdXpY5OETJqhH+WeAWSzueSh0xKHDqLrOtLryv4iWYa8eqD+LJ1B4S8aaYEpV4LFDa2bIL8R5n8YbOODlt4NabgJU1U5se07xpQbu3upnzAZ1WhE1zRO7dqGv7eHxVddj3fqLBzFxaRaWrEuXszg939Aqr0d17p1WC9ajS5JkMmgh3u48KZKThwIERxOUVrvyb0HgqnRcbSsTtfJIIPdUS74oBGjSaW41sWa26Yw1BlBViSigSR7nmln4uJiqqb5mH95DZ1HR/D3xZh2XvlZOQ7C25Pu7QVdx1D21qEhQ10R8socSJJEqKuJGZ4eqo5+F3ltN1ljF/7U5VzFUyy99/dsVGScz38NJlwCU68Bkx0APaMR2zeA4jVjrnWPG6OwygmArBSSjEWxOnMhkuWO3DXREepgSt6U0fo2k4rHaqDbL0JIBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEE4d85lCMlLkiTdBjwBJF8r1HV95ByO+fdLksDkRk2FMNlUWg4Mkopn8BTZaN47iN1jon5OPnokiWQ04Ln2GuL79pMZGsK2cCGK3f62hrEUF+f+KCo6K9PW02l0XYcRP71f+CJaNPct3dE/PMyCz97JqXSMo6+8SEltHZd+4rO48nMLSmWrFS2ZxFRTS4QXx/Rpqq9HUnOXnpbWCA7EOPRy95g6rnwLc6c3YPbWwHAzFL37IBXh3ZGsDmI7dhDdtAnJ8EsmfOVrpOsnEx42Eh5OMHVFKQde7MRsM1A51YvFbeb4sRSDnWnCQ2EKqzOgg67ryIqEltUpa/SQX+kgNBRnxxMBhrqiVE49k7QQHkmw4/EWkGDlDQ3s2zSI3V3E/Ktu4eSrT6MazUxadgXHd8Jw90kmzi9gWl43SiaBlO/DVFcH2SzGslKiW7Ziqqul9/NfwHvz+wk8+hjayAh5t9/O0H/mFrQXfO6zDHz3u9hXLCf05JMkm5rI++hH6LnjDjw33MDIr+4lGwrhfe97GP7Zz/HcdGOubGSE/Ntvp//rd2FfuYLIxpeI799P/ic/QfeHP4JpwgSM1dWEn3lmdN9G7vs1Jd//3t/6NP6fJ6XDlE/ysvWPp/CW2DBZVHY/08qq90xESybH1FV8XlKtbVj9JyAyQNI7k4FXxi/kjUahYvH5EBuB/sNw9DugZQCw/HwSKAa46U9QPTHXYPbsMe1lZYgX7z2Mrp8p85bYWH3zpDH1CmvquOoLX+PV399PNOinoq4RR1cvVqcTyWxGtlrG1NdSKUbuv3/cfMMbNrztEBJd14lu3ToaQAIQ27WLyJYt6Kk0occeHy0PPfYYpoZ6lKoqCj79KWJ79yGbTbivWU+i+ZQIITlL4keP0velL40+XzO9vfR95Sv4PvJhtGAwVzYwQP/X7yL/U3fQ+7nPE/jjE9gXfwtHzQAMnYBMIveTTWHd9S2WNjQz5eYPksoawVbAE/ccHR1vqDPC/HU19DYHMWtd5H/tOjL5ZciKhd2bXiSdTDBzzSVUz15NKiHTecRP55GxAUo1M/KJDmtUrl+PFgoSj2dJ2EqQ0wm0eJzksWPY5s5l6Cc/AcB7882EnnsOSVFwnH8+0t59SA47I7+6Fy0aRVJV8j7yYazTpjP04x+PjiMZDOTd/jH0VC7wwTxlMqm2ttHtrnXr3lkAifC/I9AJG74C1ctgySdhpBWe/jRULQWL86/vf/AY7pWzCD6zYfQ9o/h8KC4X8S/+K4UfupU9e7ejZbMsuexqqovLyXR3o2ezKMXFBB99lNjp0Lzhe+5hGCj57ndINjejpVIYfSeZ0NuD9fKrefG5YXpPhUaHdhdaiZ4OJElGM/SeCrL76TYu+shUWvcPcWJH35ip9reGcOaZKa5xk01pIIHBoPz1x0B421JdXQAYykrftI6m6Yx0R5iyNA82foOazXdTX5RCi2jEknkcSjWQNqpMnbmAzalegr37uXi4BZ78JGz4Kqz8PMy7jcDjLUR35q4B382TsTSODVXMq3AAIKmFJCOR0fJyZzkSEu3h9nFzK/VY6A6IEBJBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEM6dcxlCcsPp359/XZkO1JzDMf++aRnIJEklskxYUEygP8ZgZ5jKKT5sHhPZjIaeTKAWFdH76TvJ+nOLfoMPP0zRXXdh+x8L3c+WTDBIOhCAdBo9mQTVgKWuFklRyIyMIJvNpDqbRhdIA6DrxL79Xeb+9y9Y6D6OcfZK1Kra0c2SwYAeCGBbtpTQU0+S7u4BcotCnZevG62XzWq48scutAcoqnUhdz4B9gJwnJ1AFeGd0TMQ3bo193c6zeCXP49SWMic//g1T7WEMZhVpq8qZ6grjMNjZsvDp5h7STVdx/w4fGZkRQag9cAQExeXcGRTN2UTPGx/rIXZa6to3jsIgGqUx41dXOui5cAwqXiGbEZhoM1LxZR/oWJyHt1NMXQtxPR5DspTh6ArSPTYMWJ79uK++ioks4VMfz+oCigKstOJFo4gG41oQLq7G/O0aSQOHmTk/gco/OIXQNMJ/vlRrHPnEn31VQAUl4tMfz/G2lpSLa0AyHYH2eFhZIeDzMgwAKbGCQz/9KcAaPEEAJbp0wk/99y4/XrtfSCcPbrBSjIaYt4l1bQeHEJWZRZcXksylsainlnY7b7hepSSErK9HdC8EQDz4DZKa2bQ3TJ2Ma/TZ879YfWCwQYrPg8bv36mwtJPgzr+vvWaWCg1JoAEYKQnSiaRIXb4CHo6hZKXh8HppHLqDDy6jP9PfyL5o58SGB4mABR/9zvoiQRYrei6jiRJSLKMIS+fxP8YT83zve3jlQ2FiO/ZM65cdjoJPfrYuPLolq2U/uD7NC04E3ISen4DZT+8+22PKbyxbCRCurubdGfX2OcrkA0EUGy2MWWZwcHcp6jTkieO4Ej8FIw2WPopMDlBVkHLYDr5B4pO/gEKp7DJ8ZNxY7cfGmLmijx8/T9BAXp/tAfbkuXMmbOG4elWZJubLQ93sPr9+VgcBuLh9GhbSZYwWVUyFgX/r36D4zv3sCs4yMCuOIpBZvZ7vob35XvRtVzAlOJ2kwrHKfre94g++wz+Bx8ETcN9/fXYly0j9MQT+P7lNiLbd6Da7RR+8QsEn3gS1evFdeUVhJ57HiUvD/uyJdiWL6f3s59HMhjwvO+92JYuO3snRDh3bPm5362bcj+QC5ezet+8zTvhKMa851tUfu2DxIMO9FQWtbSU+M4dZLq64KtfZ8GSJUieAvRHn8Zwww3oZhOSomCuKWP4dcE3r0mcOIHi9UIkiqQouXvwYC9L1tRw0ifR2Zkhv9yBu9DKzidbR9vJci4UJx5O4XyDz7dlEzx0n/BjsRvxltlwec1n5xgIb1u6MxdCYiwre9M6wYEY5mw/szs+DUebGLTNYONJC9f/6zMEPv5xdgUtUAJTVl7Hfxw4QLtV4ZLLH4XOXfDKt+HZz6EdepxY8+3Y5tWTbAsSfLIFc70HST4TnGSyqNjcCqFUIYnomRASk2KiyFZER6hj3NxK3RaaB6PjygVBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEM6W8av/zxJd16vf4OefN4AEIJtAzoZRVZneUwH620K48i10n/STimWQtQy6LJM6dWo0gOQ1wz//OamBgbM+JT2dJuX3o4VCZIeGSOzbT3z7dmK7dpEKh5EdDnRFRfH6QBn7Te2SwYBiNmElgmowjNlmcLnQMhkkh4OSH9xN8Xe+TfG3vkXZPT8ZE6aSzWgYLQbqZheMluWV2ymb4MFQNhUGT0Aqdtb3W3gbdA1T7di3bLa/H2e4jUs+PJG8chsHX+oi4k/RenD4dJvcCvnwcAJviQ1ZkRjpiRL1J1h0ZR3JRAaAaCCJMy+3OLf7uJ+pK0pHF2U6fGamr66g48gwvS1BKif7SKeyNO0O8uKvm/H3Rli5xknhA19APbmH0LPPEX7ueezLlpE8foLu228ntmsnxrIyEgcP4bv1VqyLFlJwxx24rrqK+JEjWOfMJv9Td1D42c/Q+8UvkWpvA0CLRpHtuW+lR5ZAlkn39mKsrsrtv9+PWlSEFo2ieHKLp9M9PaPbZZMpV9bdhbH2TCjPaxSP568/L8JYBhuuAgv7N3ZidRnRdZ39z3dgshoo/ta3KPzqVyn9yX/hvOYa4nv3YplcD41rATA2P8HihQEcp0NHJFli/mXV5Jc7zvSfTYM1D657EC7+Plz/EDhKcqFSbzYlszKuzOo0IsmQOHiAxL59pNs7SPb0MPLkk6S2bSP20O/JDg+P1h/55a/IBAL0fPkrdNxyK6Fnn0OLRvHe/H543f1WttlwrFz1tg+XZDBgamgcV64nk5gmTBhXbp44gfDOnWML02ni+/a97TGF8ZItLXR97GO0rrsc2WR8w+fr/wyykW02JPVMdpyxtBBSYQj35kJyzB5Y+21QjLkKBgss+wwmy/jr0WRRmerejOXEAyTlOuIHjpCZtpiXXsoSDpuIB9OEhhLoms7stVWYbLlxVYPM3IurkGSJwnof7g99jH27ogx05oJ8smmNnZvDyNd+iMjGjZivvonI7XezxXghm16F+MQlyFYrejKJ/777ME+dQvkvf473Ax+g+Ctfxrn2QlS3haKvfAHP5auRMwEK3nsh1d/6AMVzIzhn1VPz+OPUPPUkBZ/4BIaC/LN4VoRzJu6H2TeDdDp8weqDVV8Gi/vs9D/SDgWTMRv68eQ3483+HqfpCKbG0/e6TIbEyy8T//OjqAUFSIoCmo6ezpANBjHV14/r0lBahp7VUL1eZLsN89SpKHl5mNoPM1E6zJplafLyYMfjLeha7s1aOcXHQEcYAF2TQNepnp432mdBpYPyiV6K6zz4+6IMd0aIvS7gR/jbSHd3gcGAWlj4pnVGDu3nat9nMab64cY/skO6gKSjGkmSUPPzOa7bcVkMlHstdEe6KXOcDjQpnws3PgLrfoLUs4sC0504F5txnldJZjBO/MjwuLF8JRZktYBEJDymvMJZ8SYhJFa6/XH0//mQEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBOEvOegiJJEmfed3f6//Htm/+hba/kiRpQJKkw68r80qStEGSpKbTv/9xV/HrGrItF7ZhcRppmFeIu9DKxMUlZDMasgK6pqEnU+ObJuKQPvsLFRMdnUjZLHosRvfHbqf/rrsY+Na36LztX0gdOoRitSJJIBfkk/eRD59pKEnk3/FJLNZhiA7CUNO4vm0TJiBLMrLVinn6dMyzZmKdNm1MnUxaR1YlFEVi7iXVzLmoiqIaJ4oqI0UHc4tUtexZ32/hL5MUFfc11yBZcmEhppUXYP7+fYy4JvDkPccYbI8QDSTRshqKkltYHBiIk1+RC3A48GInCy6vZeLiYmwuhfwiHU9BLqTj1J5+pq0sQzHIdJ3w09MUZPkNDSy7voGKSV78fdFcKIkO+za0M/fiauZdUsXyy4qYVzVI9vf/TaarC2NFJcnjx8FgwFBcROTllzHW1KB4vAz+x/fJhkKkO9rp+dSnCT72KKbaGswNDRiqqjBNnIj/dw+iJ5NkQ2HUkhISR49inTcPDAYiL7+Me/169FgMLRLFOn8eoSefwPeBm1HcblLt7dhXriD83HN4rr8eyWolceIE9hUriL66DeeaC5Dt9tHjaZk9G8Xt/puew38Kiko0mGTW+RXkldoprXczYVEJ6WSWpLMY6/x5GCoq0APDOLwBTEMvwYwbYeJloGvkb76Fq64Oc+UdU7n2i3OZeUElRov6uv6NYPXA9p/Aqz+CV/8TLK4zQQ9vwGhWaVxQNPpaliVmXlCBrGXo/9rXGfjuv9P1L/9CuqUV04QJaG9wz9cSCbKBAMGHHya2dSvdn/gE4RdexDJzJlW/e4CCz36Wwq98mcoHHsA8aeLbP1xWK7bFi7DMnHFmvrW1WCZNxnHeagylpaPlhrIy7CtXkWluHtePWPr87mnpNMM//zmx7TsAiO3dh+/WW89UkCTyP/Upson4mdAGVaXgM3cy/KtfAeC46CJ0dwWpWV/Mbc8kIRmEgslwwx/guofgtpdh//1U+1pRDfLru2fmIhPWV78CgG5w5uYhu5h3aTVmuwFXfu6+L6mg6zoTFhQze20V01eXk83k7vkGLUmwah7tR8aGpgGEYgrZeJy++gvYtjnKSE+UtsN+ntuoYfjQZ0frhTdswGbpRLHZMFVV4Vy7FqfxIBatCXuNA7t3BKN/DwaPG6luJVI2gbGiHGNFxZhAFuHvWDYDO+6BvgOw/HOw7E6Yfj0cefzs9O/vAD2TCzTx1eVCosrnQ89erLNmYJ0/f7Sqmp+Pc+1aFKcjFzI2OEhs1y68738fsss1Ws88YwaGsjJMFeUYykpRS0qIHz1K1623IZnNGEpKoKeTosBhLr65hkUXlzJ/XQ0mq0rbwSEA4uEkZrsBTdOZe0k1cy+uonyyF0mW6GnyY3OZyKQ0Oo+O0N8WOjvHQnhbkqeaMVZW5MJo3khkkOLttyDLGtIHn4X68wgPD+Hw5QJl1Px8mqwFTC7Ofd7tinRRaj/z7ESS0KffwLD0DVR5GOVP12OpM6B4zUS2do8bLr/SiSQ7CfujY8orHZW0h9vH1S/zWIins/hjIsBGEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEIRz41ys4LwO+O7pvz8PPPy6bRcCX3iLtvcBPwZ+87qyzwEv6rr+bUmSPnf69WffoO3fv8gQmDxkNY28MjsHN3YRDSYpqHLSMLcAyWBESmcwNdQjGQzorwsdcV9/A8bXLQ4/W2SrBS0eJ7p5M1okMlqup1IEHvkjtgULkC0Whu+7D/f69ZinTiXT34+hpIRsJoO89avQvRcWfuwN+zc3jP92+dfTMhomi4rFlVvQL0lgthmwOA3wu4+DLR+uvves7a/wDpiMZPr78d18M1Q1cHi4mEizRupwJ5qm50JCgP62EIuvqqPj2AhNu/uZvaaSgiongx0hYsEkNTPzMBgVTu3so6jRS165naHOCHufb2f2mkocPjPhkQTBwTh9zUF6TwWxe0wsvKKWgxu7CI8k6DwyxMKVbqwjPYT3vIJl1ixCzzyTm6cso+blke7KLex0nLeakft+DYB15kwGf/hDFJ8P85SpDHz333FceCGR559HcXtId3YC4H/oIfI/9lGSp5oJb95MyTe+QbK9HcXppPi73yE7MoJ5+jTcV19Nxh8g/5OfQDIa0VIprHPnofh8FH/1q+i6BoBt+XIkVaHo618j1doGuk6qvR1DUfHf9hz+E1DlDFaHkb7mEK37B5ENElOWlaHpOoHObrwvrRzb4PJ7wFMBV/wUVnwOZAM2bzU2xfDGAyRDoFpg1vsADZBzr+OBN52TYpBw5VuYd2k12YyOrEhYnUaIvG6heTaL/8EHsS5ZgmX6NFAUyJ4JXPJcdy3JkyfH9Dt0zz3YV63EMnUqlqlT39mBeh3LzJkUfeUrpDo60AFTXR3m2lp67/4hJT/4Pum2NgAMVVWEXnoZ9zXrGfrhj163gwqOVave9fj/7LIjI4Q3vDD62v+b3+B573so/fF/ogWDqIWFYDCgaxplP/0pWf8IakEB6ZERHCtX4li9itjuPQz/5B7c6y7GXTQLuW8vGKzw0A0Q94PZDVf8FL1yGa5QM5fdtJLuXplsIk7FBAeFk2rBdh/07seoWlCLCjH5XOx+roPuEwEKq53Mvbhq9BmdtmbJZnQUg4ysysiKhD/t5fiOHrwlNgbawmP20emVcHz127z88NjybFojbCzgtXebsaISKa927AGadDFk0/DYx8Dfeqb88nvA5EL4B6OoUDonF0TSvfdM+aov//V9B7vhDzdB74EzZSs+D64S8NViLK+k9AffJ3HkCNlgCLUgH1QVLRpF1zQkRcF//wMgK5T+8Ieku7uQTSZkp5PMQD/miRMZ+vkviDz33Gj3yaNHkT1eUFWspXnYMt2omx4lteQKjp++XPPK7VicRhKRNHmldnRNR5YlrA4DnUeHqZqax/HtvdTMyAUTnto3gMEk4y22I5x7yVOnME+Z/MYbtSz6w+/DmBlmT9GPmV+YqxceHiS/sjpXxZdPq9PACreKP+knmo5S5igbO0ZrkERsEsnVP8G87VakP30Q+8K7CT7VRqorjLHMMVq3oMoD9BDoS4zpo8JZQTAZJJgM4nrdva/UkwuJ6vbH8drePBBNEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEATh3ToXISTSm/z9Rq/H0HV9kyRJVf+jeB2w4vTfvwZe5h81hMTiQj7xDLr7gwx1RSif5MXiMDLSG0HXJXRJAlUhMzJC6Q/vxv+7B8kMDeFadxmW132T+9mkZzIoZguZ3r5x2zJ9faBp6ICxuIT2K6/CtngRsslM5OWXKfjsZ0HXoXo52PLe1fjZrE7EH6eoxk0ikgLA7DCgpXJ/Ex2E7t1QvfTd7qLwbiWTZEb8KC4XcU8VR5/upmFeIYH+GADh4Tj5FQ4GO8Ic2dzD4ivrGOmLEo+kyC93UNLgYt+z7QT6YyTjGfpbQ5idZgoqnUxZXkZkJIGm6URDKXY+0YokweL19Yz0RIn4k+x8opU5a8oodMRJPfTfyGo13T/9KfYLzgdVofBLXyLZ3ob7mmsI/PGPGMpOh/TICno2C4qCFs/N1XnBBQQezuUhmRsaGPzRj1CLinCsXoX/gd9BOs3gD+7GWF1N/qc/Rf/Xvo7nxhsY+s//RC0sxFRTQ3jDBvI+/GGG7rkHyWzGc+ONjPzyl7jXr2fkt78l09tL/h13IBmNxLZvx1BejlpYQPj551GLCsm75RbMkyb+r5zK/8uS4Rh2j4lYOMn088r5/+zdd3Qc1d3G8e9sL9pV77JkyU3uDWMwxnQwofdeEkryJoQkJEAqpJBeISGhJaH3ktB7MRgMbuBeZUtW7217mfePNTbCNqHYXtl+Ppw90t65c+d3R6PxiHPus/FYks7GfmKRBL7h2eD0p4JEAIrGg3/zdeLwQuEOFiF/lMMD8+6C6uPB4oBkDJY8BNMu2+Eu8aiJL9eFAURCcTyZTqLhOIl4ZEA/MxrBWTkUMjI23/PvJ9ndg/+Uk3GOHk3zjz+2SN9iSSU1fUGGYeAaPRrX6IHXoyM7i9pzzyNj1iwA+ufMoeB738VIJBhy2610PfAgFl8G2Wee+YVCUPZ1lowMnNXVhBYu3NLWdfc92LKy8R51JB1//zuBt+aSccghxBobCS1eTOlNN9J12+3bBNMkjjyCRNmhWCoPgvduSwWQAIS7MV/4MX3DrqPxRz/FDN9KZnExxVddjrd8OobDAZWzwOnH0bGeIX+6gbr+GA2ruwFo2dBLX0eYouGZmKZJdpGHQE8Ud4adRCJJPByjcW0vtcs6mHn6cLqbg0TDqRCdqvE+Cjy1RK2V2Jxb27fM30iFNVmzsvBMmUzcUTzwYbR0P1h098AAEoA5v4dz9/vC51/SYNSxsPwx6G9Nvc8emgqZi4XB7vr84zYvHRhAAvDerXDw98CTD4aBLSeHjIO3PkN2PfwggbfeIbJ+PdH16wGwZvrpefQRHCNHQjyB4bDjmTKF5p/9nPCSJQOGj3d24iwswur30f3Qw3gPmUX2WWfRP2cOh+Z5sZx8FDU1cebcv4bsYg/VBxRjsRkYFoOsIg+Brgg9bSFGTC1k+ZuNVB9YRLg3yoYPOhRCshskg0Fi9fVknnzS9jvMvRGjdi5v9H6T0tmp6yYeixHs6caXm/pbZ40jh7g1xHhPnA09qftUZWblgGFCS9sx7BYch5wEWV3wzFV4i++j1zmL/rmN5Jw1akvfwqFZAPS2xweMUeGvAKC2t5YJ+RO2tJdmpUJI6ruCjC9TMJOIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI7Hy7IoTE3MH323v/aRSaptkEYJpmk2EYBZ+7snQrm4oRi2Drs5CIJcnMd5NMmOSWZJBMJLFv/mlYLBYiGzaQdc7ZWLxekokEFq93l5RkRiKQ48U9eTK9zzwzYJvv8MMxbDasHg+J9jayzz2XnscfAyD73HNTAQ/TLoH1r0HXRij77IuDDcOkuzVMJJggHIxjt1sI9kQpKPnIpRLs+CJTlM/JVlCAxZdBz+OPk5iSWqxZv6qL4fsVsOTVela908zEI4ZQPiaHUH8Ehz3BiKn5vHb/GjZ80M7wqQW01wcYOiGfBc9uxOmxEQnGWfFWIwCbVnTS1xlm8tHlZGQ7U8EjT9Yw7pAyMvOc2BvX4Nk0h+hLzxJetoyM6q+DzUb/iy/hmTyZ1j/8EfekieRefjmOIUOwZHjxzT6GwFtv4Z99DL3PPIvF7dk8GRtmLAaw5WsqZMck8+STUn0zMvB/6VgSfX0k+vqIrF6NY2gFkXXr8R15JADJSASL14sZj2NsDoOw5uYSb2pKHSeZoPWPf0yFO1it9L/6Kjlf+TKZp56K1e3eXT+6fYthpXZZC9UHFtPTGsLptuH02Nm0soPJlR0w/XIwLGBYobcRNr4JVYd8+vFLpkD5AfD4JalxzCQcfQOUTN5xSQZ0NQexWg3isSTRcJxoKEGms3NAv+wLL6TjX/8m96ILMaNRss+/AMNuI97ZCZEIibbWAf3zv/ENbFlZn+XsfCbxru7Uff6xR1P1nXsuie4eLDYbGbNmbQknkS/G6vVS8L3vsunSy0gGAgB4pu9PtH4TnlAYx9BKiCfofe45bHl55F91Fcm+fpLh8DZjWdxujAknQrIT3vnrgG3RIafR+MPrU//OA/GmJuqv+x2VTzyOMwdw+lIBX5UH4wKic+oH7B/sjRLojtLVHMThthMNxYkG48SiCTxlNrIK3JhJk/ee3sD4Q8swLAbeTDtVQ4N48ofjiluZfqSF1x7bOq4n005egQPrN76OGU+QCIcxTfvHJmWFWHDbExfsgERi23YZ/Do3wsRzwOZK3SDDPfDij2H4kZBZ+vnHjQa2bQt1QzIBvqLt7pIxYwbh5SuJ1dVhzcoi+9xz6Z/zJmYshmvSJAwMnKOrMV0u/Md9aZsQEs+0/TEcdrDaCL73Hq7qaoJt7XhmzMDichFtWMmoLD8ll48l0BOlpzXE0jfqScZNRs8opnJSHptWdhLsizL6oGIWv1jH1GOHsnFpO5OPLsdi+eJBU7JjkfU1YJo4h4/YdmPrSnjtl7T5jmRt+xHMnJgKHenvaAfAn5cPwJKYGwgxnj4W9qRCzj4aQmKaJqHlHbhGZWNxWGG/r0DdO1je+i2ZI8vpXpIk89ihWP1OADx+BxAi0GMZUE65vxzYNoSkIjf1bLuhYzvXv4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjITrArQkgmGobRCxiAe/P3bH7/BT7u/H8zDONy4HKA8vLyXXmoz698GsbKboqG+envjBDqi5FT4iGz0I3TaRBNJgETqz+TeHMzlgwf1twcLD7fLinHsNkIL12GJSuL/G99i57//hczFsV//AnYh5QBYMvIwJqTQ/eDD5J15pkA9L7wIvlXfgOeugyScZhw9uc6vsfvxOt30FrbR2dTAKfHxrApBWT0L97aqeKgLzzPwW4wXruG1UrOhRdicbmIuFMLv4O9UWLhBOMOKWXtghY2Lmlj/4P9ZKx5np7f3o33F79k9NhS1q6JEuyNAqnFmBarQSQYx5vlAGDtghb2P66Sd55YzwevbmLK0RVgmkS6+8mJN5LT3kP79VfT53KRd/nlhJcto/fZZ8m77DLab7+d7ocepuDq7xFeuZLeF18i65STMRMJcidMIN7WhmG34xwzlnh7G/7jj6fvlVfIPOUUuu6+G8PpAIsFkkm6HngAx/Dh5F97DZ7JU0jGoiR7eii//Taim+rJPDmX4MKFYLXgO/poep99lpwvX0z7327GmpuDvboaa3Y2Rb/+NUTCxDs6KP7ZT4lsrKXnscfIOu1UMg49dK8PIEnn9WuzQ1l1LusXtZJX5qOrOYAv10X1jFH41v0G5t86cIeT/rbl2/DatUTWrsPicGAvH5Iar6BgYNCH1QZTLoaSSdC9CfylqWASu3OHNXn8Tjx+BzWLWwkH42QXeigenoUrmSQ8fDjJvj78XzoWw2JJLYT3++l5+hlsublYHA7CNTVknnIyZbfeSv+rrxJrbCTzxBPxTJu2807cdjhKium49dYt9/m+F18k+7zzseXl7dLjplO6rl3P5MkMffQRohs2gNWK4XJjcTqwlZYQ3biBWHMzuZdeQqKri45bb6Xkj3/AOXIEsbq6LWO4JkzANXE8NksINr6TCniIbw0qiUfsWwJIPmSGQsTb2nEOHbpNTd5MJ4YB5kcywEL9UTKyndSv7qa3LYTbZ6dqUj6OQAv+0dXklHrpbAiw8PlaHC4rx18ynNgHqwmWBXFWVzPsoKF4cr3Uregiw5WgpMRK/D93k0gkcY0dA/EEtqLthEXkV6fCSJIfCR2ZcDbkDf/c53xvMxifG3bImwNPXzmwrfxAUn8afAH51WBzQvwj13n18eDKhNzthEwA9rJyMo44HKvPTzIcouvBB0l0dpJ76aXYcnKx5uRguD0k+npxjhlDwTVX03nPvVjcbnK/+lVspSUkWtvo+PvfyTnvPIKLF+GsrCL83nx6nn2W0r/8hXhDAzG3CTgJB2IMn1JARrYLV4Ydh9uGP9fF0jcaMZMmU46pYOOSNkZMK1IAyW4QXrYUANeY0QM3mCY8811Mp48Xmr5M5aR8nJ5UQFJfRxsAvtxUCMn7PSbF/e1k9trZ2NOI0+qk2Fu8ZahYY4BkXxTX6NxUg2HA8X+BpiV4G66jN/kn+uc1kXn00M2bDazWXsLBgYGTQzKGYDEs1PXVDWj3uewU+p3UtCmERERERERERERERERERERERERERERERERERER2jZ0eQmKapnUnD9liGEaxaZpNhmEUA62fcOzbgNsA9ttvP3NH/dLKasdut+Hy2knGk3iynLg8NhxOG2Y4gIEBdjtGPI5hs2E4HRh2O46cnF1SjrO0lFhtHbbsLKLr1+OaNBHDZsdwOnBPmQJA74svYZrgnXUInffeh2GzkXvpJXgjr6cCSCadl1os/Dm4MxyUjsqmcW0XZdXZhAMxvM4AWav+kVpcevBVUD5zJ854cBqs166jpIT8b32LUO0mZh2byzuvdbPy7SaGVPs5/ivDiDx8F/G/vQvjxkIsRqK+lpx3HuOAUy4mWlTK+kVtbHi/nTEzS1j2RgMbl3Yw7bihLH29gaVv1HPYucMhkcDSsA5X4wpc1iQdv7mN0IwD8R9/HL1PP0Ng/nzyv/Ut+l5/nWhLM+V33I4Zi2MrKSbnggswrB+79kanFpZmHHggyUgEMxYjWlNDMhrFOXwYfW+9RdH119F+89+Jt7ZiKyrEe8ABuIYPXNzumTo1Nc7BM1PjJBJEazZgmibOESOId3SSecwxdNxxB7kXX0TrH/8EyWRq34NmUHHvPTiGDsUw9v5Fxem8fj25ubhaO6gYm0tfV5jCSj8unwOLBcgfAf4S6G1Mda6cBdZUeEjwgw+o+/JXMINBAOxlZfiPO46+116j5Ne/wj127NaD2J0wZHrq9SlkF3noagngzXKSN8RHf1eYgmI7LNqEa9xYDJudZDSGNSsbwzRJRKP4jjiceGsbyXAI/+xjsNhs2EpKKLzmmp15uj6R77DDiNXX03nnXWAYZJ93HhmHHYph2xV5ZYNDOq9dZ2UlzsrKbdpzLryQjttup+O227FmZ1Pw/Wux5uVR+MMf4j1wBoG5b+GeNAnPxFG437wEJp4FSx6Cg78Lb/w29e+yxYqtahKG0zkgiMRwu7Hlbz9Uxpfj5JBzR7Hg2Y30d0coH50DScjIcWBgUladTaAngqu/Fbejk4wsG8dfMZH2dW3EgxG84VZ6v3wy3f39ABT+6EdkHHoIpWVOyoaXE92wgURHG4mDD6bvlVcx3B58Rxyx/Xtk+Qw4/U548w/Q1wTjz4BJ54PVvlPO/d5gsD43bJc7B6qPg1XPpN57cmHMidCzCTJLPv+4hWPgvMfh1V9A5zoYMRuGHwGl+4E7c8fljBtPZPlKOu+9FxIJss46C8+BBxDZsBF7WSmejwRUZEybhu/oo8Fmw5KRQXjFCiLr1uI76kjCa9biP+JIIuvX0f/mm/i/dCyuYVUY1aNI1LYTDiVx+xzYHVZM0yQj24k9GaLM3Yb96DKaa/pY/FItlWOzqBi9a8IGZaDg4sVY8/Owl5UN3LD0EaidS/ukG+jZ4OHgA7aGivR1tAPgy8vDNE0WNQeY2FVLvC2TDYUbGOofisWwbOkfXtkBBrhGZW8d35kBZ/wb4/bDycv6G+3zrsd/2BAMe+oZ1u4KEQ7kkUwksVhTY9mtdoq9xdT21m4zj2H5Gaxv699Zp0VEREREREREREREREREREREREREREREREREZIA9YWXxk8BFwG82f/1vesv54nLLMojHE2AYGIDTYyOr0IMrM5tAYyP09WEmk2CxYACGy73LajHsdhxVlUTWrME5bizeAw/EcDlxVVdjcTiIbNxI629/S7ytDefYMRReczVmLI5j2FDsiU4o+iGsfw0Ssc9dQ0GFn8MvHEN/dwSnx4Y/2wnVf0uFBWSV/e8BZJcyDAPP0HJGOe0UlTiIJa04A230/+VnZMyYQfvTDTi+dCy2khICc+firqig58f/R/4fbmTGYTksfC9IsCfCYecOp68jhJ8ujj3ajs3rou/PV2HPzsJeVET3Y49hP/NMss46i77nn8d7xOGU3vw3iMdxDK0k+8ILMBwOLPZPvwjd4nSC04l7wgQAvPvtR+Ypp2BYrWQcdhjJYBBbfj5Wr3e7+5uxGJGaGhJd3YSWLaP3uefwTJpI1333k/+db9N+441knXkGnffcuyWABCA4921im+q3GzAgO19WoZd4LInVbgED3Bk28ors8M7TMOYkcPrAsELLcgh1kYzF6Lj99i0BJACx+npIJIg31NN4zbVU3HM3ts8Z/mS1WRgxtZDCoX4iwTgZWU6ctgTh8Jgt14TF58NWWEjJ735L29//Ts6FF2F4Pdg8HsykCU4nzpIvsDj/c7Dl55P/rW+RdfoZmGYSx5AhGBbL/95Rdip7WRk5X/8/ci+7DKwWkhg4hw7FakTIOWwsOUdOgq4aePDE1A5WB3TXwQcPwKzvQSIOzgwco8ZR8ptf0/j9H2BGIhguFyW/+Q2OiortHjen1EeoP84BJ1dhs1vo74ngdSSwPnwz048/kYjVgTW3D8vapdgmjCfw8svYhwwhcsmF5H3ta7TddNOA8Vp//3viHR10P/oohT/6Ib4jjsDicGDG4/iOPAqr27Xjk+Bwp0IqSveDWBCyh4J1T3hkle2yWCEegcN+mHpejEfgjd/BWfd+sXENAypnwvmPQX8LOLyQUZhq/wS2nBxyv/ZV/CccjxmPY7jdmKEwnv32Sz03fIzjI4EVGfvvj72oiFjdJmwFBcS7ukgEg3gPPJCs007H2PyMklWRRyTZQyySwO6wYrUZZLjiWOe/hsXnZ0hBkvxpxQwzV8G8R7COu4BEzmSsDscXOyfyiULvf4Bn0qSB4UfxCLzyCyieyIKmWXj8fQwZvTVAZEsISW4edZ1B2vujjIu0EW+NsKFnA2Nzxw48xqpOHEN8WDM+9rMsHAuzf43j6e/giT1MYHEVGfunwk7c3hjhgJXulhA5JVufSSv8FTsMIfnv+w2YprlPhN2JiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyO41qFZ0GobxAHAokGcYRj1wPanwkYcNw7gEqAPOSF+FO4fLa6dibB793REwTTKyty7EtQ8dimGxkAz4wDSxZmXiGjNml9bjHDIER3Ex8fYODJcTW1bWlm3x9nbibW0ARJavoGX5CgCKrr8OVv8h1anqMLB7vlANbp8Dt+8ji/Vyh32h8WTnc/jt5Oe2QjIOOUmyvnIQFI7CV3kliZBJxl9+SXz9Coz8ofhmTSPe3cDIChelOQYWv4mtcQHBhQvIOPgg4vWbIBGh8BtfIdHdj61sKJmnn4YZjWKrqCDv6/+H4XRiy8zc6fP4MMTEXlDwif2S0Si9zz5H03XXkf9//0fbjTeS+9XL6fzXv7FkZGz5vbDm5BJvadlm/0RP906vXbbPl+MiI8tJf3cEq9XAk+mEQAeMPhGe/z4koqmOWeUw9mQS/f1EN2zcZpx4RzsWfybR9euJt7R87hCSD/lz3ZC79b1n8mTinZ2Y8Ti2/HwMw8Cen4+jooJwTQ2O/DySoRAWjwd7mgJsDKsVR/mQtBxbUuz5+djz84nVrcMIdWBzAy0LYc3z8N6tqZCF4Udu3aG7DkqnQsNCeP03qbYz78bILMZ3TCGVo0YRb2vDlp+PY+jQHS5Yt1gMhozOIdQfJRZJUpFpxwiHiFf+H4m2Nozl74Np4pg0iZ4XX4TeXuzlQzCjUZLR6DbjmdEohmGQaG+n8TtXUfHA/XgmT8aw2bDaPuXjZ+buDeKRXcSdA04/vParrW3Tvwr9rbDq2VTITOEXeNZ1ZqRen4FhGAPCRT7T4crLcZaXA6Tu6V/6ErbCwm1+tworM8kq9BAORLF0NEJrE5QNwXDYMVx2Ar/9CeF33wUgceJxhJcuxTt16ueqSf63yIYNxOrqyDn/vIEbFvwbeuqIHv0nNv6jk/GHlGGxbg3g6utow5Xhw+50sXB5PQATXFGCzQ009DdwXNVxW/om+qLE6vvxH739sCemfhmz5nUyV9xD5+tT8e53AYbFICPboKsVOhr6B4SQVGZW8vjax7eGjSTi0LqCqmQtvWEL7b0h8jO/2N9gIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIfN6hCSEzTPGcHm47YrYXsJhlZ2/m09exsHNnZ2+m9axk2G/aiwm3bnU48BxxAcN68rY1WK7aSUij8Hlid0LEW9CHce7dAOzz7vdQi+EO+Dy9fj3XGlfDWL7CGuuDwn8Djx8C0S+G9P0CwHWZ+G176Nt5ZV8OiZ6GzhqzyUeDIgBFO8JdAYQkUjgeL5X+WsLskQyGC8+cTra+n9Te/xVFWRnjVKgAMqw0zFsNMJrFuDkgJLVqI96CDCLz11tZBLBYcaQqR2FcZFgNfztZAJxxeaFgMh1yTCiExrBANQKQfkkkyDjmEzvXrB4zhGDqUnv/8F4vfj9Xv3yV1fjzYxDAMHBUVOCp2sGBZ9k3ta7E/cSa4/KmwhkQU5t2c2hZsh4yPhCgtvgemXgwTzgaHB/JGQtFEAAyLBWdVFc6qqk99aHeGA/eHeQ4ZGVgzMmi+6y4i69Zh2B0EfvELAPK/8x1Cy5al+pkmFq+XZCCwZRx7RQWx1tYt7yOr1+CZPPkznwrZC7izUyEkh/8YYmGwu2HDG1AyBcI9EGgBbwFk5KW70s/sf4VVOT12nB475I+A6hFEamvZdOWVxFav2dLHPWUKZjxGvLWVcE0Nrs/w+yqfXt/LLwPgO/IjIU6RPpjze6icxdqO0STjaxg1vWjAfr3tbfjy8gFYWNuFz2ljZIGXNfVrSZpJKv1bn/fCqzsBcFXv4LowDIwTbiK5YQGZ/TcQXnoQ7onD8OXaMM0E7fX9jJi29e+xqswqQvEQzf1NFNe8CS9dB/3NDEuMB37A2lvOJv+ES1KhazsImBIRERERERERERERERERERERERERERERERER+awGz8p/GZRMIOeii/DOmAGArbiYouuvw5Llhzl/gNd/lVo4Ggl88kCyZ2teCsufgOFHwtJHUm12FwTaYMj+sP6VVJs7G3obILsSmpen2hb8M7U43kxC4/sw53dgscKYk6B44qAJIIl3dNA3Zw59L7/Cpsu/Sry1DTMaJdHZia0gteA/vGIFnmnTIJEg0dWNa/x4gu/NxzNlCt6ZB4FhYCsspOyvf8U1alSaZ7SP66qF4gkw/w5443fw+q+hcTFgYPX7cY0dQ+bJJ4HdjsXnI/fyywjMexcMg8LvX4u9tDTdM5B92bpXoKsGxp4MoZ7UPfhD8QiEuqB8xta2tS/D0INg8vmpe7J925CzLyLrtNOIrl1L4PXXAbBXDiUZCeMeMwaA7oceIv9bV24JX3JNmED2OefQ++STW8awZHh3ak2yB7G7oWQivPVnePMP8OovILMMOjdALAjBbuhc/z+H2Rs4ysoo+Nr/YS8tAcAzfX+yTj+NRE8v8bZ2QgsWkujpSXOVex8zHqf7kUdxTZyAvaRk64Z3/p4Kdjrip6xd2EZ2kYe8IRkD9u3raMeXmwrIWVjbxeSKbJylZdTF2wCozNwaQhJZ140lw469+BPud+4sjLP/jdXSie2ZCyEaxOPLwEx00rapd0DXqswqRkWieO49HZ64PBXgd+odjLnoRgBWMAwevhCe+hYkE1/kFImIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIbGFLdwEyyMVimMkEmeeeQ9ZZZ4HdhmF3YBgJOPh7YHPAqmdgxNHprlR2pWBH6qvVAYlI6nvDmvqaiIHdk/reYkt9EntfUyqwBCDYCe/eAgd9C7yFUDYN8kemFiUPAtHGJmKNjXQ98ADxxkYMlwsAMxbDkpFBorsba6YfW2Eh/a+/Tt7Xv46tpJi+l18m+6ILyf3q5WAY+I77EoZhYLg92PPz0jwrweaGDW/A2FPBmZG6XltXQCKMGYthOBw4R48mr7ISW24e1uws7MXFeKfvj2v8+HRXL/u61hWpr9EAGFHIqhi4ff4dcPhP4PAfpe7BeSMhc9cF57hGjqTigQeIrF2LYbEQa26h+Wc/wzt9OnlXfIPeZ56h+/EnyPvWlVg8HpKBAI3f/wHEYqn9x43FWV29y+qTQc7ugY71MP1rqWcEqwPWv5YKsUu4wWqDZDzdVe4WhtVKxlFHYivIJ97VRSIQINnfT6KnGzMaJd7UjDU3F/8Rh6e71L2GmUjQ/ve/E6uro/D7127dEGiHt2+C0ScQzZtI07o3mXj4EAzDGLB/X0cbpdVj6Q3HWN3Sx7HjirF7SqnPTmBgo8K/9f4c2diLszJzmzE+zqiYTl/RVWQ0/ZbEP47FO+LrmIk22uuLt3YKdjLuvbt4qLGZmKMfTvwrTDofLBbygOLMV1hafj7kZ6YCfiJ9cNodqaA/EREREREREREREREREREREREREREREREREZEvQCEk8okSfX0ke3tJxuJYnA7MYBLDZsNq9Kc+zR7gsB9C3qj0Fiq7Vu7w1MLhdS/D/pfDnN9Dx1oYMh3q34OjfwnrX4G1L6YWSC6+B6x2KBgNrSuhtwHefwDOeyTVlmbJWIxoTQ2Jnh4ar76GrDPPpO+ZZ3BNmIDFlrot9jzxBHlXfIOOW26l49bbyL3sUuxDyjFcTvwnnYj12muxeL1YnM40z0a2K3sI7HcJPH7p1hCdsv2hcDwkEnQ99BDeGTNwDh+OGQwSWryY7ocfoein1+McOjStpYsw4ihYdBcsvheO+RUYFiidCg0LU9u9eanreejM3VaSo7QUR2kq6KTppz+FRILA228TWrKEjFmzcIwYTte99xJvaib7K18h/xvfwAyFMFwu3FOm4Bo+fLfVKoOMxQITz4H7zoC+xlRb4TjwFaVCdDKKwZ2T3hp3I4vNhnPMGJIffEAyGCIZi2MGAtiLi+m6624cQ4cSzM3BM2lSukvdI5mJBB2330HnffeS6OyCZBJMk8yTTiTjsMO2dnzzjxALwuE/oXFNN8mEyZCxA6/DSDBIJBDAn5fP+3XdmCbsNzQbu6uM2gKDMkcBns1BfPGuMInuCM6DPzkQykwmafnVr+m691785VkU7/8+o7q+S5NnOi2BbMJr3sa16RV473Zc0T4ey8pl7eQz+f6UCweMM640k6WNfXDOT8GVBS9fD/4SOOaXO+M0ioiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMg+TCEk8okMw0L3E//BPXYMhtOFGQqR6OnGec6ZcPyfUwtI/WXgL0p3qbIrFYyBM+6GZ66Cpg/gqJ/Dyqdh7Mkw+QII98LZD8D61yBvJIw6FoKdcNxfINoHGJBfDVllaZ1GrK2NWFMTgblz6X/9DWy5ucRbWiAeByC8dCkF115D4K23SHR20nHLrWSecjLeGTNwVFVtWYAvewDDgKzK1HXbWQN2J2RXQl41ic5efLNm0fKrX2Pxesk8+SQsmVmU/vGPZBy8+0IdRHaofAYc/pNU2Neyx2HqRXDoD1KBOskE5A6DkilpKy/zxBPpfuRRSCRI9vfT+9xzFEy4htDCRWCadN5yC/5TTsFZUU541SribW1pq1UGiaJxcPEz0LgYEhFwZkIiCnZXKkAhb0S6K9ytrG43jmHDCC9bRrI/QDIYovVPf8Z31JH0v/EGVp8Pi9+Pq6oq3aXucVp++Su67r8f7yGzcFWPBouBa9QofEcdhWEYqU7ddTD/Dph0LuSPou6VNdgcFkqGZQ0Yq7e9FQB/fgFv1XZhMWDikCzs1hLqCgxGmXlb+kY29gLgqMz8xPra/vxnuu69l+wLLsBafCD1T/yOgsr5HJX/MvAy3L+5Y/XxcOgPeOr9P2AGm7YZZ3xpJi+vbKEvHMM389vQ2wjv/C31zD75vM9z6kREREREREREREREREREREREREREREREREREAIWQyP+STOKZPBkzGiGyehXOkaOw+8owXB4YOhvcmeDwprtK2dVsDhhzIpTtB9F+8BXD9K+BYQXrR24jo45NX407kOjrI7J+PclwhOYf/YisM06n/cab8J94IqGFCwAwkwksPh/Jvj66H36EgmuuJrxiJdbMTHxHH4N7wngMqzXNM5HPLK8SskogpwosFvAVEZg/n8C772H1eim4+nuEliwlGQphLykh1tWV7opFUry5MPMqGHc6mAnILAebHeJRwEh9n0buiROpuOceep99FjMeI+Oww2j9zW/ANAGIt7URb26m/9VXia5bBxYLGYcditXtTmvdkma5VakXQDQAfW3gdENGYXrrShNHfj7e/afT++wzxFtbyLn4YuLNTVhcTvrnzcOanYXF58ORn5/uUvcY/XPn0nX//eRcfDGF3792xx1f+xVgpMKdgLoVHZSOzMZqtwzo1tu2OYQkr4BFK7qoLvKT4bTRX5BNczYc07/1nhbd0IPhtGIv2vHfRf1vzaXj9jvIOussCn/4A5J9MRrXXMPGN3+BaWmgccqpVB04gsrjjgNf6veiKrOKF2tfxDTNrSEqwOTyLEwTFtV1c8jIfJj9a2hdAc9+D0qnQkH1Zz19IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKAQkjkfzGT2EuKSUaiWLNzsPh8WLOzwOGEzJJ0Vye7QWRjLbG6WiwZGTiHD8eaN/h/7slwmPDKlcS7uul7/jkSnV0kw2FiDQ0kwxEAwsuX4548hVhDI10PPEj+N6+g58knCa9eQ3DBQgqu/h7OoUM/87ETfX1E1q0j0duLo6Lic40hO5Ft670q1tZG49XX4D38MKw52VhdblzjUwEz1txcMP7HWCK7k8UCOUMHttkcaSnl4wyrFdfoagyHnVhTM4mODrIvvJDOf99JvLUV31FHYcvNSQWQAI6hQ4msWoVn8uQ0Vy6DhsMLuQqxc40fR7ynh1hjI1333Ydnv6l4D5xBIhImGQoTnDePxLBhuMeMSXepg54Zj9P6m99gHzKE/Ku+s+OOLcvhgwdhxhWQWUZve4ie1hDjDy3bpmtvWwsA3rwCFtdt5NQpqT4bgpswDYOK9q0PDpGNPTiH+jEs23+YMGMxmn/+cxxVVRT+4PsYhoHV78B/eCXR5tOIzvsbgVo7NVMOoNK3NZinKrOKnkgPneFOct25W9r3q8jBYbUwd117KoTEYoXT7oB/HASPfhkufQUcns90DkVEREREREREREREREREREREREREREREREREQCEk8gmijY0kk0ks/kxaf/xjkoEAAP7jj8cxYkSaq5PdIbh4MZsuvWzrz/6UUyj83nex5eb+jz13r0R/P/HubhKtrfS/+SZWfyatv/0t+d/6Fr1PPkXupZfSceedAFhcTgCi69fjP3Y2rvHjCS9dSssf/kjhD39Iyf7TsBcXY3G7P+GI2xfv7KTtz3+m+5FHU8fyehhy2214pk7daXOVzy/R3k68uZnQvHfxH3IITT+5jnhrKwCuyZPJv+Ibaa5QZM+QDIXovPtu2v78l1SD3U7+t79F/nevAhN6X3qJzn/fCRYLmSeeAFYrsYZGUAiJyACGYeCZOIFEWyv28gpCCxYQ7+km1tBA5y23AmDx+ym96UYyDjggzdUObn2vvkpk7TpK//JnLI5PCGx65efg9MPMqwCoW9EJQPmYnG269ra3YbXbqemDQDTB9KpUnzVdawAoW98LQKI/Srw1hGdK4TZjfKj7sceI1dVR9o+/Y3G5trT7Dy8ntPpAWpb9i4oNL7C6dvaA/aqyqgCo6akZEELidliZUpHFW2vbt3b2FcGpt8G9p8Lz34cTb9rxeRARERERERERERERERERERERERERERERERER2QFLuguQwSu8fAUWj4eOW2/dEkIB0Pv008Tr6tJYmewOid5emn/164E/+yeeILxiZRqr2irW2krgnXcIzJvHpssup++556m7+MuYwRDtt9wCVivJUBCAyPp1uMeNA6D/rblkn38eWCy03/x3HMOHMeSfd1D52KNknXoKzqqqzxVAAhBeuXJLAAlAMhCk+Rc3EO/u+eITli8k0ddHMhrFVpCP4XDQ8/QzWwJIAMKLFxNZvz6NFYrsOSLr1m0NIAGIxei47XYi69YRb27CME3yvv518r7xDTz770/7jTdhLy5KW70ig5nV78c9bRr24iK8Bx6IY8gQ+l96ecv2ZG8v7X/7G7HOzjRWOfh13f8AtpJifEcdteNOte/Amudh5rfAkwoUqVvegS/HRVahZ5vuvW2t+PMKmLehC4ADqlIhIGu61uBO2shcWodpmkQ3psJInEP92z1sMhSi/ea/454yhYxDDx2wzbBZyP/KeBpKy3BEerF8MJdEIrlle1Xm5hCS7pptxj14RD4rmnpp6gltbRx+RCpgZdFdsOThHZ8LEREREREREREREREREREREREREREREREREZEdsKW7ABm84j3dOHw+IqtXb7utQwsh93aJvj4iK1Zs0x5rbdmtdZixGMlgkGhdHWbSJPjOO1h8GXTddz+eqVMJvPMOyf5+4s1NmNEoFo+HZE8q9MPiSS0o7X9jDoXfv5ZofT2hBQtIBgIU/+bX2PLycFZUYC8t3Sm1xlvbtmmLrFpFsq8XsjJ3yjHks4t3ddH2pz/R+/wL5H3jG4RXLCe8dNk2/aI1G9JQncieJ97evk1bsqcHYnG6HnqYwh98n/CSJZjRCG1/+QvZ55yDc9SoNFQqsmdwDhlCcuIkAvPeIRkIbrM9vGIlsfoG7Dk5aahu8IusX09w3jzyv/MdDKt1+52SSXjpJ5BRBNP/D4BEIkn96i5GTCvEMIxtdulta8GfX8BTNR2MKMggL8MJpEJIqiyF0FtLvLWVyMYA2AwcZb7tHrrz3nuJt7VR+pc/b/c4Vq+dxIRRhGubKK1/g4ZnT6P8hFT4SKGnEK/dy7ruddvs96Xxxfz+hdU89UEjl88atnXDYT+Cunnw1LeheCLk6/4rIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIp+eQkhkh9wTJpBo78B74IEE3n57wDZH+ZA0VSW7izUnh4yDZ9L/+hsD2p3l5Tv1OIlQGIvDTqy1lWQkghkIEK2rw5qZSf/rb2AvLaX3hRdwVpQTXrGSeEcH/mOOJlpTg/+YY4jV12PNyYGkCUB4xQrcU6cSWriQ4IKFZJ19Nt2PPELrX24k97JLcVVXY8vPx1FVhdWz7afefxHb+73wHHQQ1tzcnXoc+WzCK1bS/cijAHTcdhtFv/stttw8OjcMDB1xT5xArLMLe052OsoU2SMkQmFsRcVgs0E8vqXdVlJCoqsLW1YWyXAY/3HHE29uxn/MbBxVlVhcrjRWLTL4uceNJbE5VO3jvAfNIFa/iaDVgmv4cCxOZxoqHLy67n8Aw24n64zTd9zp/Xuhfj6cdDM4Us9/LTW9xMIJysdsP9ylp62VoRVVzN/YyelTywBIJBOs6FjBsVnTgVoia9cR2ejBMcSPYbNsM0aip4eO2+/Ae8gsPFOn7rC8jNxcGsuHULVmBc1Pvk3xtELsRV4Mw2BU9ihWdq7cZp/KPC8Th2Tx+KIGLju4amvAidUGp/8Lbj0YHr4QLnsVHN4dnxsRERERERERERERERERERERERERERERERERkY/YdqWUyGbWnBySoSDZF16Ic+QIAAyHg/yrrsI1dmyaq5Ndzep2k3/Vd3GOHg2A4XZT8qc/YSspJRmPE2ttJd7dTaK/n1hTE4lQiGhDA7GmJuKdnYTXrSPa0kJ4xQpCy1cQWrKU3ldeIbBgAV0PPUzPs8/R/q9/0fTDH9B5771sPP0MgnPmUHv2OYSXLqPp+9+n/5VXiK5dS3jRIuwlJURWr8ZeWkp0w0YATNPEsNtJdHZiLy0Fm43+OXPIOGQW3pkzCcydS6ytjfJ/3kH5v/9N9lln4zvsMNzjxu30ABIA5+jRFP74RxibFwc7Ro6g8Jqrd8mx5NNLtLdt/b6zk67bb8d78Ey8Bx6YarRayTr3XOwlJdRfeSX9c+dimmaaqhUZnGLNzXTccw+1555LdEMN+Vd+E4vPB4CtqIjCa6/BVlqC70vHYths2PLz8B54AK4xoxVAIvIpeSZNxFZYSO7XvoZhtwPgHDuGrFNOIVZfT7yhkeD7HxBYsoRIV1eaqx0cEv0Bev7zH3zHzsaWs/0wEQId8NJ1UD4DJp67pblueQeGxaCsetv9gr09hHp76PINIRhNcEBVKlCupqeGYDzIxMrUM0Ro2XJiDf04K/3bPXTHP/9FsreXgu985xPn4cvLZ4MnQcJix9j4Oj3PbQ1KG5M7htWdq4kn49vsd9Z+Q1jV3Mc76zsGbvAXw2l3QNtqeOrboOcaEREREREREREREREREREREREREREREREREfmUbOkuQAavRG8fGAbxtlZyv3EFhpnEcLkxvB6sXn2a9r7ANXIE5f/+F7GWFhIdHbT//e8EFy7A4nLR99LL5F7yFboffxxH1TCsGV56n32OvP/7Gp333od32jTiHR2Ely4l+/zzaLvxJvK+9jW6Hn4YW3Y2rvHj6Xn8cfK/821af/0bMo44gp4nn8SMxbC4XcRb2/AdeSTB998fUFN03Tqyzz2HwNtv0/fC82RfcAGd//oXnffdR8H3vkvo/Q8Izp9PzmWXUvjjH2HNysKWlbVbzpfV4yH73HPxHnQQyWAQe0kJtuzs3XJs2TH7kCED3gfffY+sc88l89xzyTz7bAyrBTNpEuvtxeL1UP/1b1D5+GM4hw1LU8Uig4sZi9Hx73/TddfdAERWr6Hnv/8l+8ILcI2qBruNWHMzVrcbIzOTZCBAMh7Hmua6RfY0FpcL5/DhmKZJybhxJPv7MJxOQitWYIbCxDvascZiGHYbhCMkPG4848alu+y06nnyvyQDAXLOO2/HnV66DiJ9cPyfwLI1g7N2eQfFwzJxurf9k7izYRMA681soJ/plamgkqXtSwGYVHEAiYpygu8sxFo8Gmdl5jZjxFpb6bznHvzHH4+ruvoT55FVWETEjNNdNYPsmrcJLqkjWl+Bo8zHmNwxhBNhNvRsYET2iAH7nTqllD+/vIabXl3LgcNyMQxj68aqQ+GwH8FrN0BOJRz2w0+sQUREREREREREREREREREREREREREREREREQEwPK/u8i+yoxGUl9jcZLdXcT7+oi3tWEmkmmuTHYnW1YWhmGh/v++Tqy2DovNTuc//4X/2Nm0/v4PRNfXYM/Po+uee8k84Xja/3Yz8ZYWrDk59L/6Kv4Tjqfjjn9i2GyY8RiJ9nYyDj2E3qeeAiAZCgNgLyggVt+QOujmBZSRmhpco0cDEKtvwDVmDMlAgER3D75jjia6sZbQ4kUU3fAL8r95Ba7q0RT/4ucMue02MqZPxzl06G4LIPmQYbHgrKzEPXasAkgGCWf1aIquvx7D7U69HzkSS0YG0bVrSPb0kOjoIPz+YiyGQaKjEzMSIbppU5qrFhk8Yk3NdN3/wJb3/XPm4D1gOh03/53gokUkO7swkiaGx0ustg4zEsGMxdJYsciey56fj6O8HMNmJdHfT6y2lnhrG9asTMx4nERfL/G2dsxEnGRPL7GOjnSXnDZmMknXvffhGjsW14QJ2++06ll4/16Y8U0oGL2lOdAdoX1TPxXjcre7W0d96jlgfrvJxLJMcjOcACxpW4Lf4afCX4Fn0mTCy5dgWsBR4d92jFtuwYzFyL/ym/9zLpkFRQBEZx6FJRkjsmkuva+lahibNxaA5R3Lt9nPZbfyzcOHM6+mk+eWNW878KzvweTz4Y3fwvw7/mcdIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIKIZEdSyYxHA4sfh+maWIYBtZMPxanI92VyW4WWb8OMxLBc8AB9L3yCgCGxUqyvx/X+PEE35ufanO5SXR34ygrI7p+farN4STZ14dht5MMbw62SSQwHHYALI7U9RR47z0yDjkEgERPD/bycqI1NTiHVWEfMoSe//4X74wZ5F52GbGWZnzHzKbioQcp+tnPyDz+eLJOPRXvAdOx+nwDPwVe9nlWj5uss8+i6j9PMPSxxyi56UYMux2L10v/a68RnD8fx9ChWPx+IstTC3ytCpAR2cpiwbDbt7yNrFwJQOF1PyFas554VyfWnGziTY3EGhuwFxRgJhVYJvJ5OcvKcAwdij0vD4vPh3PECDAMDKsNYjESgQCJ3l6SoRDxrq50l5s2gblvE62pIeeiC7f/7NfTAP/9BhRNgEN/MGBT7fJUeEv52B2EkDTUEfXksKw5wBGjC7e0f9D2AePzxmMxLLinTCHZ3401ow+Lwzpg/0hNDV0PP0LWGafjKC//n3PJLEyFkDgq/XRmVxPb+DqhZS3E2oIM9Q/Fa/eyrH3Zdvc9d/9yxhT7+flTK+gJfSwAyjDg+Bth5Gx45nsKIhERERERERERERERERERERERERERERERERGR/0khJLJDhs2G4XBidbuxZviw+PxY/H4MtzvdpcluZvF4AEh0d2PLy0s12mwAxFtbsZeWAGBYLWC1EmtsxF5RsXV7RQXJQABbfj4YBr3Pv0DWWWcBEK2txTN9f6Lr12PNy8N39FF0PfgQWaecQt43ryC8bj1F11/PkNtvJ+OwQ8m59BLKb7uNzC8di2fCBFwjR2JxuXbvCZE9jmEYOCoqcI8dgzU7GzNp4qgYiv+E48k44ghsxcV03Xc/mCY5X74Y57Bh6S5ZZNCwl5aQ/42vD2gLLlhIxqGHknfVVbgnTCDZ14c1Kxv/7NkYXi+Gx5umakX2Ds6hQ3GOG4+zsgrD5Uo9f9msJKNRnBUVJPv7MTExLfvun3Od99yNNT8P/+zZ226M9MMDZ0MiCqf/C2zOAZvXzm/Bn+cit3T796qWmvU0F0/CNOGI0QWptkAL67rXMb14OgCe/WcAkOzaNhyk5be/xeJykX/FFZ9qLv68Aqw2G7HIJpqqjsTo7yTeuJD+NxuwGBamFEzh3aZ3t7uvzWrh16eOp60/wo+eWIppmgM7WG1wxp0w8hh45rvw4o8hEdvuWCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIitnQXIIOXCRh2G6bbjc3jSX2SttuNp7o63aXJbuYaVY1r/HgCb79N4TXXEFq2jPCyZWQceij9r79O1qmn0P/mW/S9+BI5F5xP5513YcZiuCdNovfppyn43nfpeuBBep54gsIffJ+e/z5JvLOT4htuILjkA7LOOYeciy7CjMbIPOVk8r/7XSwuF/bCwv9dnMhnZM/MJObxEA8GwWbH4nRgsdnwHXooORecj2vUKKwZGekuU2TQMAyDzFNPw15RQf+bb+IcNoyMmTNxlJQQ6+jATCSwFRdjWCyYySTYbDh8+h0S+aKcZaU4y0qxrl1HvLWFRHc39rw8krEY1swsLFmZuIYMSXeZaRFatpzAnDfJu/KbGA7HwI2xMDxyEbQsg3MegrwRAzYHeiI0rO5i6rFDMQxjm7HjsRgtNWtZOuJARvozGFPsB+DtxrcBmFGSCh9J9DiwZFUQWTEX0zS3jNX3yisE3phDwTXXYMvN/VTzsdps5JVX0l67joIvXUD/6iewrH+G/gX74T+qggOKD+DNhjdp6m+iOKN4m/0nDsniqqNG8vsXVnPoqAJOn1o2sIPdDWfdC89dA2//FerehRP+AoVjP1V92xXqgpblEOyEaCB1DHc25A4Df2nqb0cRERERERERERERERERERERERERERERERER2ePsMSEkhmHMBm4ErMAdpmn+Js0l7fU8I0cSXLUaq80Gpolht2Pk5aW7LEkDe1EhpX/5M+ElS4j39TPklluINdRjKy4m87RTSQYClN38N+KtbVj8PjIOPZREVxf+E0/ADIXBgCG330YyEMCamUnmqadixmLYsrPJOv20dE9P9kHO0dWwvgZiUQAMp5OsAw9Mc1Uig5ctOwv/kUfiP/LIAe3e8eMJrl6NGQxCMoklIwPX8OFpqlJk7+QaMRxGDCe8Zg2J3l6MZBLD4cBRVITFbk93ebudaZq0/uEPWLOzybnwwoEbQ93w8IWwYQ6ceBOMPHqb/Ze/2YhpwqjpRdsdv2ntKlrxURNy8KPDhmwJF3l90+vku/MZmT0ydail7TirDyM0704Cc98mY+ZBxJqaaPrRj3FWV5N9/nmfaV6FlcNYPe9NZl1Qwmv/OZGJS/9BbO3r9L89lBn7p4JP5tTP4azqs7a7/9cOGcacNW1c999lTCjLZGShb2AHqx2O/zNUHATPXg23HAzjz4Dpl0PJlE8ODYmFoGkJNCyExkWpr501O+7vyoIh02HY4alX3giFkoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjsIfaIEBLDMKzAzcBRQD0w3zCMJ03TXJHeyvZ+nupR6S5BBglHaSmO0tJ0lyGyU1jtdt3fRHYSzyj9LonsDq6RI9NdwqDQ89hjBOfNo/BHP8KakbF1Q/0CeOwS6KmHU26BiWdvs280HGfJa5sYOiGPrELPdsdf+97bzM/ZH6/DymlTywDoDHcyp2EO51Wfh2EYJHojhFZ1knnSScQ3vUTTj39M7qWX0nnXXZixGKV/+hMWh+Mzzat09FiWvPI8yXgz/sMOobNpDjkrn6DnhQlUzjyeEdkj+M+6/+wwhMRqMfjL2ZM48W9zueSu+fz3GzPJ8W6nhvGnp4JB5vwBFt4JSx6EzHIonw7ZQ8GdDWYSQl3QVQutK6BtNZiJ1P7+UiiZDJMvgOKJkFEADi9EgxDsgPY10LwUNr4Fa19I7ZNVASNnw8hjYOhMsDk/07kRERERERERERERERERERERERERERERERERkd1nCwbSSAABAABJREFUjwghAfYH1pmmWQNgGMaDwEmAQkhERERERET2AYH33qP5hl/iOfAAss87N9XYugrm3ggf3J8KyLj42VSgxna8/dg6IsE4+31p6Ha3R0NBnp+3irVZR3LlzMotIR53Lr+TRDLBqSNPBaDv9XpImvhmVeCu/iubvvo1Wm64AXtpKeX/+ifOqsrPPLfKyfthWCysmTeXmWeew39WXITvjZ/R9/pf6LivkFNmnsLv5v+ORS2LmFI4ZbtjFGe6uf3C/Tjr1nc47453uesr0yjwubbt6MmB2b+CQ66GlU/Dmueh9h1Y9lgqgATAsKTOZ+FYGPUlKJ0KpVPAV/TJE6k6ZOv3XRth3Suw9kVYdDe8dyvYvTDssFQgSdVhkFkGhvGZz5eIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI7Bp7SghJKbDpI+/rge2vLBMREREREZG9Rryzk+6HHqL9H//AVVlA2de/hPHGb1PhFo2LwOaCGd+EWdeAy7/N/rFIgveeqmH5m41MPqqcwqHb9onH4vzh5vv5j/9ghmbZ+dqhwwB4re417l5+NycMO4FKfyXB91vpf6cR7/5F2HLd2HJHM+ylF4k1NOAoK8NwOD7XHN0ZPkZOP4gPXnqOCUccw7HXHsqbiW5GzPkTzX/9NuXzTyHv0Dx+Mvcn3H707ZRklGx3nElDsrjtwv342j0LOe6mt7h2djXHTyjGZbdu56DZMOWC1AsgmYRITyqAxOEDi+VzzWWL7KEw7ZLUKxaCDW+mAk/WvACrnk71ySiE0v1SYSc5ValXdgV4csFq/2LHFxEREREREREREREREREREREREREREREREZHPzDBNM901/E+GYZwBHGOa5qWb318A7G+a5jc/1u9y4HKA8vLyqbW1tbu9Vtnn7JSP7da1K2mw0z5yXtevpIHuvbKn0rUre7Kd9uzwEdv+MZpMwsMXkAz0EF27CqJBSEawOpLY3CaG8eEuBpRMhjEnwuQLwJs3YJhwIMard68k0B2hszFAPJZk7MElzDpnFBbL1qn85G+P8FZjjJa4k6DFRbk7zoPfOpr7197MnIY5bOjZwOic0dyY8XOY30eiM4yjwk/eV8Zice7cTM/ulmbu+9FVxKMRSkeN4eBzL6FjfiOhP9+Ap2sDK0sNfnW2lbgVhrV7OcF1PUXOMirG5zJ6xsBQkuWNPXz/saUsbejBabNQmeel0O/C67Ry3fFjKcp07dTaPxPThNYVsHEuNCyAhoXQWQNmcmA/pz8VlOL0gc0JVifYHKmvHwaUGJbUK7MMjvnljo64K65dERERERERERERERERERERERERERERERERkb3SnhJCciDwU9M0j9n8/gcApmn++hP2aQMGy4rMPKA93UXsApoXtJumOXtnHvxzXLt7089Bc9l9dvq1C2m/9w62cz6Y6hlMtcAXr2cw3Hth7zuvu4JqGmiwXLu70mD8mX9RmlPKrrh+n99cy+cxGH8uqunT2d017ZLnXhEREREREREREREREREREREREREREREREZG90Z4SQmID1gBHAA3AfOBc0zSXp7WwT8kwjAWmae6X7jp2Ns1rcNjT6v0kmot8EYPtnA+megZTLTD46vm8Bts8Bls9oJr2RXvj+dWcBqfBOAfV9OkMxppEREREREREREREREREREREREREREREREREJMWW7gI+DdM044ZhXAG8AFiBf+0pASQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKD3R4RQgJgmuazwLPprkNERERERERERERERERERERERERERERERERERERERERERGRvY0l3AfuI29JdwC6ieQ0Oe1q9n0RzkS9isJ3zwVTPYKoFBl89n9dgm8dgqwdU075obzy/mtPgNBjnoJo+ncFYk4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgAhmma6a5BRERERERERERERERERERERERERERERERERERERERERERE0siS7gJEREREREREREREREREREREREREREREREREREREREREREQkvRRCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiso9TCImIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMg+TiEkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi+ziFkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiOzjFEIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKyj1MIiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyD5OISQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiL7OIWQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI7OP22hCS2bNnm4Beeu3q106na1ev3fTaJXT96rWbXjudrl29dtNrp9O1q9dufO10un712k2vXSHdc9Jr33mJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjsVnttCEl7e3u6SxD5XHTtyp5M16/sqXTtyp5K167syXT9ioiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgMLnttCImIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIh8OgohERERERERERERERERERERERERERERERERERERERERERER2cfZ0l2A7IFiEWhbCT314C+BgtFgd6e7KhmM+pqgZQUkE6nrJGtIuiuSfU3nBmhbDXYXFIyBjIJ0VyTy+fS3QusKiIUhfxTkVKa7IpHPpqsO2laB1Za6H/uK0l2R7Gti4dQ12FMP/lIoqNbfMCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiH6MQEvlskglY9jg0LQRXJtS/B01LYOI5YHemuzoZLPpaoGcTPHkltC4HRwbsfxlUHgpZ5anF84aR7iplb9f4Prx7K2SVpd4vfQwOuUZhOLLn6aqDJy6HundS7z05cNHTqe8TMciuBHdm+uoT+V+al8P794LDC2YydW+e/WvIqUp3ZbKvSMRhyYPw9Leh6jAom5Z6Vq08RPdPEREREREREREREREREREREREREREREREREZGPUAiJfDadGyARAocv9d7ugWQcOtdD4Zj01ibpl4hB3Tx47hoYdvjmABIvHP5jmHsjvPVnGDoLZlwB7mzIGQbe3HRXLXujeASaloKvaHODBfyl0LJcISSy59n45tYAEkgFOs37B7x/XyrQYcLZMO1SwEwFPW257kUGgWQCujaCJxfiodRzY9k02PgOZJaDVX+OyG7QsQ6evRqmXQZdG2DFf1L3z/5WqJwF+SPTXaGI7IBpmgAYCrEUERERERERERERERERERERERERERERERHZLbTqTz6bYEdqwV7dO1AwBvpboHA0hLrSXZmkUzQAG95MhdTM+S1kFKYWHAOMPxPe+Rv0NcGYk8DmggfOAtOEUcfB4T+ErApw+tI6BdnLhHvBZoPGxalQhmg/2JxQNDbdlYl8Nol4KjznQxYrFFTDa79KvS8/IBXm9O/ZUDoVKmbAuNOhaFx66hX5uP526K6FtlXgyID6BTDpbLDYoHUFFE9Id4WyL+jZlArGszlTzwjDj0yF43nzU8+sE86C4vHprlJEPiaZSPDIL35ELBLm7J//Hpvdnu6SRERERERERERERERERERERERERERERERE9nqWdBcgexgzCaFuyK6AFU9AXyO4cyEWSndlsrsFOlLXQssKWPNCKlgk1J4KpOmsgcIxqX7eXOipB8OAwnGw5KFUAMlB3wKXH+46Ee45FTbOTbWL7AzxMATaU2ENa56H5qWQXw2xcLorE/ls2lZDZtnW9xlFW0OeAIYfBe/dBkdcD65MWHgnvHR9KoBHZDDobwRMaF0Jq56GIdOgtxFcGbDxLYjqGVJ2A4sdyqal7o0jjoZ3boZxp8LYU2DZI/DYl2HFk3pOEBlk6pa+T/3KZbTUrKNm0XvpLkdERERERERERERERERERERERERERERERGSfYEt3AbKHMazQsAjMBOx3SSp85N1b4Njfpbsy2dXa18L61wADYv2w4S0om5oKD7FszjMyLGCxQSKaCiKZdG5qcbEnJxUw0t+S6lc6FTo3wMonU++t9lRQhMWWCi9x+tIyRdmbGKkQkuZlMOVCSMRS4QyHXJvuwkQ+ncbFUDsPIr3gyIBpl8KiuyHYDnmjYMKZkFWeek29BBb+O3XfBVj/MrSvhkteBH9Jeuch0t8GSx+FUbPBBFY/C0P2Tz0zRPuhYQFUHpzuKmVvl4hC9XHQsjz194snF3zFMPfG1HZfCTR/AN48KNsfrPozWWQwqFuxdMv3jatXMHL6QWmsRkREREREREREREREREREREREREREREREZN9gSXcBkl7heJjmQDPBWPBT7pFMBU+Eu2HO72HxPTDxbH1q+N6uexPcdybM+S30boKXfwrl02HO7yARSYWIACz/D8z4Zur7pY+mFnpWHQLH/yW14NObn9pWdRisejr1ffFEmHoxLLoL/nU0PHAOtK3evfPbCWLJGJt6GukMdae7FPmQMwPsbnjzD/DerTByNkQ/7b1uoK5wFy2BFkzT3MlF7j69oRiReCLdZcin0bAY/jUbOlZDsAOivdC+DmZcCQd/F/JHQdMHMOcP8NJ1UDIJ4h/7d7hnE3TWfKqfe3uonfZQ+66bj+xTuiPdNPe30BOMpO6ZiQjkVMJbf4a3b4Sy/SARB7sHNr6VCjnrrE132bK3i0egZUUqCM+dDVWHwqpnUtumXAS5Valr9O4T4dVfbA3O+5hAJE4gEqcj1EFbsG331S+yj2pYuZzikdWUjBpD49o9729EERERERERERERERERERERERERERERERGRPZE+4nkf9n7r+9zywS0sal3EuLxxXDHpCqYUTvnEfUzDjlH7NtTNSzWEe+D138DZ9++GiiVtmpdCVw2MPwNWPpVqi0fANKFhARx9A6x/FdrXwHo3HP4TyBwCeSOgYDRYnfDVN6C/DcacAtE+cGdBsBPGnASv/HzrsTa+Ca/eAKfelgqQ2MViyRgtgRZsFhseI4fuUByPw0pbXxiLxSDblyAY78Fr99IR7sA0TQKxAO2hdrx2H6/WvkZ17kiWdyznhY3PU5JRxpWTruKQ8gOxGMp5ShszCT0NsPbF1PtYCOb9HU7+x2caJhwP89qm17hp0U30Rns5c+SZnDTsJDCgob+B/677L06rk1NGnMKE/AnYLOn/Z3Vdax8vr2xlVVMvR40pZHSxjxeWt/DIgnqG5nr5+uHD2K8iJ91lyidZ/WwqVMSTCw5fKvRr8vlgtUH2MHj+B9C1IdW3rwme/hbM/E7q3+OPqO2DLz86l2EFXi6eMZT8DCcdgSjPL2vGMAxOnpLFyr453LrkVgzD4GsTvsbsytn0Rfp4ddOrzG2cy8T8iRxUchDj8sZhtVjTcDJkTxFNRHml7hX+uvivdIe7OXn4yRyQfxwzO9ZjWfbY5l4JWHR36jmheTn4i2Hlk6lgnZyKtNYvezmLFXrrU4F4ReNT99Oeegi0p55JF921uWMC5v4l1Wf86Vt2D0TivLSimQ8aWxhZtZZ/LruDaCLK+aPP59jKYxniH5KOWYns1UzTpKOhjuoZszAsFlbMeQ3TNDEMI92liYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI7NXSv1padrrWvjBehw2vc8c/3vVd6/nRWz+irq8OgPnN8/nuG9/lzmPupCLzExaBJqOpsIn8ahhxVCpEYuWTO/y0cNlLJGKpr5FecGWlvrc5wbCkwh4W3glH/QKal4E3DyoPSX3SvOUjIRz51alX8QToqIH80fD0tyEWHHis/FGQXZFaGJo3YtdMJ5mgrq+O3kgvT65/ksfXPk51TjUXj72UZMKJzQILmhcxpbiaH7x7C2PzxtIf7WdFxwqOH3Y8ty25jSsnX8ntS29nZPZIOqNtvFr3KgDrutdw1ZwruOPIe5haPG6X1C+fgpmEdS9D7jAYORsi/bDiv9C25jMNs6BlAdfMuWbL+zuW3YHdaifPnccv5v1iS/tTNU/x79n/ZnLB5J02hc9jQ3s/F/3rPRq6wwAsbejl4BG53Pl2LQA17QHermnnka8dyPjSrAH7JpMm4XgCj2PbfzuSSZPuUAyv04rTpiCKXS7Sl/rasT4V3nTItdCxFgJtkDtyawDJh+IRcOemFtkPPwryq4k4srhhXpya9gA17QHeWtvBP86fwlfunE/SBKfNQmnpam5a9qstw9zw7g24bW5e2/QaL9e9DMDbjW/zSt0r/Hj6j5lcmN7rWwa3+c3zuXbOtZiYANyz8h4shoWDe1pToWLVx4O/BDbMgaYlMOyw1L3a4QFD9xXZxRJRKJoAwTZ4/z4YdiQc+A2Y/0+oe2drP0cGjDkx9cybiKfCSoA31rRy1cMfcOMlFn4495dbuv/1/b/itXs5feTpOG3O3T0rkb1aqLeHSCBAdnEZYBINBQn39+H2+dNdmoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyF7N8r+7yJ5iTUsvf3xxNaf/4x0uuXM+b6xuxTTN7fat7a3dEkDyofZQO2u6drxAPxyNEzQ8qcXQJZNh/h2w8S04+Hsksqt26lxkkCkcA67MVADN+NNS4SPLHoVZV6fCSNrXwpt/hP2+Asf8EoZMGxhA8lGuTCidDBPOgoufgY9eO9O/CiVTUtfWvafCyqcgFvnC5UfiEXrCPbzf+j7P1TzHPSvu4YqXr+Cpmqd4eM3DVGZWckDJAXz/ze/RFqnh6reuwLAF+fV7v6Kur44CTwEv173M7MrZ3LPiHlxWF/2xfkLxEPsX7c/rm14fcLx4Ms767povXLd8Ab4i2P9yGHpwKiRn3Usw4woonviph2joa+D91ve3af/Puv/QHeke0JYwE7yw4YUvVvNOsLiue0sACcCRowt44L1NA/qEY0mWN/YOaFvV3Mv1Ty7ntH+8zc2vrmVT59ZwoJq2fn757ApO/NtbXPnAYt7f1L1L5yDA6BPAMGDV0zD6eJh3M6x7BZqXpsLAHBnb7lM8Ac59FEJdMO9mLBve4KLR4LCm7sWhWILVzX0kTRiW7+HbR1XwXsdz2wzzcu3LNAYaB7St6VrDB20f0Bvt3aa/yIdWdqzcEkDyoadrnmbN9C/D4T+BxsXw7i2QVQ5jT4Y5v0u1jTkFfIXpKVr2Hb4iiIVTgWTtq+H1X4HDD8f8Coo2PxvkjUz9nVP7Njz/A3jhB9CVCvF6bGED1cU+3m6as83Qz254ltre2t05G5F9QmdjPQA5JaVkFhYD0N3S9In73Dl3A4f/8XXue1e/kyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIp+XLd0FfJxhGN8BLgVMYCnwZcADPAQMBTYCZ5qm2ZWmEgelaCzBffPquOud1GKbus4gi+q6ueeS/ZlelbtNf7vVjsWwkDSTA9o/6RO8+yMxXmjwc264B+ODB1KN3bXwyk8xLnzqk+uLJ1nZ1EN3MIbXaWVkoQ+/2/EZZylpkzcCLnwS5v0DNrwJp/8bujZCZhlc/Gzq0+X9pZBd8enHdHhg6EzIHZFacN+yPLU4dMu1VQcPnQ9feRHKp3+usk3TZHHrYu5beR+TCybzu/m/45uTv8lNi2/i+KrjmdswF4Cjhx7N39//O6NzR/Nu87skzAQZ9gw6wh1UZVZRszlQxG6xE4qHcFldWwJ++qJ9ZDuz6Qh3DDi2y+r5XDXLTmJ3QTycCiABiAbg1RvgvMc+1e71ffX8Y9E/GJE7YpttBe4CgrHgNu0fX3y/O4SicVY299IXjpPnddDSGx6wPRxP4nXaiMSjA3fcXGpfKMbKpl6++eBiWnpTgT8rm/pY1tjLH8+ciAn84ukVvLa6DYD6rhDvbujk0a8eyPBC366e3r6rbBqc/zi8dSOsfBpO/SdE+yERS4WTzP4NPPVN+DBobOZ3wJsHDx4NwdS9yL7xNWb01HLZ1Ju4+b1UeIjNYvDd47JpTLzK2GGzaK4r2ebQpb5S1nRvG0gWSUQIxUL4Hf5dN2/Zo3kd3m3a8tx5qeCyl66DZDzVuOK/qbZjfweGDfzFkFO5m6uVfU7RhNQ9s3giRPsguxKKxoM7KxWit/IpmHgOvHzd1nvre7elrtVjfkWm287qll4KPAXbDF3gKSCWiLGurYHh+aW7d14ie7HOxgYAskvKiEdTz6ndLc0UDx+13f7rWvv56VMrcNut/OQ/y5hakU11kZ5bREREREREREREREREREREREREREREREREPitLugv4KMMwSoErgf1M0xwHWIGzge8Dr5imOQJ4ZfN7+YjVLX08vKB+QFs0kWR1c992+2c5szhj5BkD2o6rPI4iT9EOj2G1GMwoTKQCSKx2KD8ACseBaWJpW/2J9b2zvp2/vrqOy+5eyA+fWMarq9roCUU+5exkUCiZBCfdDKf9E8aeDDO/DeNPh7L9oGLGZwsg+ShfIRz/Fzj5Flj19MBtWRXQ3/KZh+wIdvB0zdM8vvZxLn3xUjx2D/euvBcTk3AiFdLQGmylOCP1idrRRBQTE5fVRSgeAsAwDKyGleZAM+X+cgBqe2sZlT2KcCKMz+HDZXXx/MbnOXf0uQOOPzp7PMXuYZ+5btmJgp3w/n0D71UAjYs+1e7L2pdR01/DiOwRFHuLt7TbDBtnV59Nma9sQH+LYWF25eydVv6nEY0neGtdO396cS2X3rWAhxfWY7dYyPbYt/R5Zkkjl8+qGrBfWbabvIxUCNQT7zcwd33HlgCSDz23rJmVTb0sre/eEkDyoe5gjGWNvbtoVgKAzQHDDofzHobzH4XKmTBqNow5AUYfDxPOgstehzPuhq+8ADOvgp76LQEkAOSPwuIvYv+s1HPAkBw3o8usvNbxJ2r6l7Kuex0Hlx6Mx7Y1MMln93Fw6cEMzxo+oJwRWSPIceWS69421EzkQyOyRgy4N1oNKxePuxirxZoKIHFnp8LHMoekgkjyRsGIo1LPFyK7msMDFQfCqGNh/JlQeXAqgASgcAxc8iI4vFsDSAA8OdCxDvrbOHFSCa29UWaUzCDLmbWli8vq4rjK4wgnwkSNHtY29+zWaYnszbqaGrDa7fjz8/Hn5QPQ1962w/53vr0Bh83C01fOxGmzcufcjbupUhERERERERERERERERERERERERERERERkb2LLd0FbIcNcBuGEQM8QCPwA+DQzdvvAl4Hrk1HcV9EMpHAYrXukrETSROfy0YolhjQbrdtP2fGNE1mV8xmTM4YWoItFHgKqMqsothTvN3+AMFIgjAOktXHY8mugA1zUp9cP+kc8O14vxWNPfzjjfXMq+kEYE1LP9c+toR7vrI/k3JNDMCwWbB5HZ994rJ7WW1gzdj543rzwGKHzLLUInqrAw65FiJ9JDfMxRLuSS3Iz9z+p8uH4iG6w900BZp4u/FtuiPdPLLmES4dfymxZIxMZyYdoQ5mFczkCO8s3MMdLA0u5+xhZ5JIJpju24++ih5ean2Fr034GotaFvFK7SucU30O9628D4BJ+ZOo66vjorEX8W7DPAK9ffz6wF/xQedSkkmTPx3yF3rDQUg6sMRLaelwwJCdf6rkU7K5YOSxqWtrwxtb71Xewk+1e1+0j9Wdq/FYPVw97Wo2dG8gkoxQ7ivH5/Rx1+K7uGrqVbzf+j5eu5fTRp7G+Lzxu3hSA61q6uWPL65hVXMfFgPWt/Rx8sgCHj1nKvmZTlr7I7zX1suQbC9XHzOK2o4g2R47TrsVn9NGfVeQ3z2/mssOrtxmbKvF4M217ew/NAeH1UI0kdytc5PNbM4dtDtSwQ0fDW9w+lNf3dlw8HehYREEWjnA38G/z5rGolaDVe01rO1ZzYySGdR01+AwHFy939X0x/qxW+30RnqZ3zKf2UNnMyF/AvOa5jE8azhjcsaQYxlDPJ46tMj2+Ow+fnrAT8m15jLEUULEjLAp3kgkHoH9LkmFQNTPh2GHQe5wcGWmnitEdie7a/vt2RXg+0gY4/SvgmFNhZctuIMDqk/l7+dNIdKT4Pezfs+qzlXEk3Eqsyrx2/0MsZbgt2aStCdp7g5SlOXZ/nFE5FPrbW3Bn1eAxWLF4fZgd7oIdHdtt28yafLc0mZmjy1iWH4GJ08u4YnFDVx/wljcjl3z/2BERERERERERERERERERERERERERERERET2VoNq5Z9pmg2GYfwBqANCwIumab5oGEahaZpNm/s0GYZRkNZCP6Pm9Wv54OXn6GpqYMIRsxk6cQoef+ZOPYbdauHrhw3jp0+u2NJWlu1meL53m77xZJxwIoyBQUVmBcOyhgGpT6z3uXw7PEZHMMay1gQjS6fC09/eumHNC3Dhf3e4X1cguiWA5EOzhuUywW4jtq6HcE0PtiwHzmFZuKqyPt2EZe/jzoQjfwb3nQYHfJ32ZC7LN5g01gepHtvHsMgc/NNO3bIoPxwPs6lvE4FYgNuW3Ma0omnctPgmLh57MY+tfQzTNLEYFq6o+iozYwdw6dTziMxrI/5egLOPOoGTGg/CHvFwo+16gg+2csX0C/h6yYWE1wX50rTnCXT1YXe7+NrEC4n0hLis4nxCH7ThastiZvdoIjU9eGeWMrVtGDismHEnoQ3d9HtsrM+wklFkT/MJ3cc5PFA4Bp785ta2NS/Ahf/5xN0SyQR1fXWU+cpImAlqemoozihmRPYIkmYSn91HOB7mgjEXUO4r55zqc3DZdrCgeRdr7YuyqrmPCUUerhhrZZwvk2yXg2RPjMgHjeT5HJxc5CW8tJtxw7O4rTdCXVeQ06eWUdcVpCDTTSiWoKknzOhiHyub+raMfdqUUl5e2cJRows474By/v2RT5KfUJZJcWZ65iyfIG8kTLsMMgrg9V9DNACAc+NbzDjqN8TKTiZIauHu+63vc/6Y84kTZ13POqYUTOGFDS8wqXASr9a9itfmZVzueKYXHYA9bqN7TTv1b93LC24XU449gZKRo7HaBtUjpAwCNsPBpPhoYvVB+jfWYc/zMKyyjGZ/J2awA2PBP1Md6+ZBVgWMOy29BYt8XMkUKBoP3gLoWA/rXk61183DtfIpJpz8IG+32hmVm8v+RfsTTUaJxWOMT4wi2RkjtK4RLAaZI7PpSobJzslJ73xE9nB9ne34cvO2vM/IySHQ1bndviuaeukIRDl0VD4Ax44r5oH3NvH2+naOGP3pQghFREREREREREREREREREREREREREREREQkZVCtIDUMIxs4CagEuoFHDMM4/zPsfzlwOUB5efmuKPEza6/byMM/+wGTNy/ajUXCtG6oYejEyTv1OJF4nOoiHzeePYkl9T3kZzgYX5aJ02bZpm84HqYn0oPVsOK0OUmaSZxWZ+qT6j+B22Glu7sT6/p/DNyQiELDYqiYsd39PE4rfpeN3nB8S9tfTxhLdFknvc9v3NIWnN9CznnVOCt2bkDLnmAwXrtpUTkLLnmFnp5+Hrvpdvo3LzJrXL2S9pkzOGxkI21OF+2hdh5c/SAWw8IHrR/QHemmNKOUeDKOgQEmmJhMc0+m5A0rDpuNuK+L2OoefEeU0/PCRgy7BXueh/7XG/BMLiCytpvopj4yj6uk94Ea7CVejMwEfR+0kfmlSrrvW4VrRDbhpe1E1vfgP7qC3qdqsDiteCYX0PfoWgC8wKQsJ9Ez9p3reFBev6EeeOfmgW2JKDQsgoqDtrtLf7SfR9Y8wl8X/5WyjDJ+OP2H3L3ybmZXzGZq0VSSZpKWUAuBaIDDKg6j0JPeBY2Zbhtuu4Wvj7YyzO3EsdEgaY/Q9ciaLX0MpxXfIWX0PrCay08bzs/WNfHlOxdw+4VTKclycfqUUh5asInLDq5i1oh86rtCHFadz5w17Sxr6CUUS3DYqHyKM11saA9Q6HcxpthPPJFM48x3nkF57X5ezgw49Aew4j9bAki2bHrnT/TtP53xOV7uqvgtcY+VD5Ib6Q5347a52di7kdNHnk7StDBk5ARclmy+cusKYoku/nqQk+V3/XnLWOvnz+Osn/6G0uoxu3mC8lGD8dotthQQWtpC/5sNQCpN0JbvpuiMERjrXhrYubsWWldBZtnuL1TSbjBevwBkDYGz709dm/efMXBb2yoKInXEEpW8t9bGfiPihONhxtpGkWyN0nn/Stj8T2NgXhO5F45hxfLX8OXmUzRsBHanc/fPR2QP19fRTsX4rf/fxJuVQ6C7a7t9565rB2Dm8FRoyfSqHLwOK6+salUIiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyGc0qEJIgCOBDaZptgEYhvE4MANoMQyj2DTNJsMwioHW7e1smuZtwG0A++23n7mbav5ELRtrOPjci1g1dw7v/ecRAFwZPk763o8oGz1upx3HajFo7QqR4bAxa2QeJE1i8SSZmfZt+vZF++iL9hFMBClyF5HtyqYv2kc8Gd/OyFtFYwkOHVVIcoMTy9SLIaMQDANaloPFusP97FYL3ztmFNf9dzmQ2sUIJuifUz+gX6I3SqwluE+GkAzGa/ejQrEQdqsdm2UX3zIsViidTHvty1sCSD60dO48So8+kquWXscxlcfw5Pon+eqEr7KhdwPZzuwt/d5qeItjK4/lqZqn8LbZoCmCY1YB/XMbtvQxIwlc1TmEVnQAYMt1EVzciq3QQ7SuDzOawDU8i96X67BmO4m1BCAJ9jIffa/Ugc2CGUlgRhK4pxXSP69pQK3J7gg5/VEgde5sFht267a/i3uLQXn9GhawuWDapeDJAcMKDQtTX3dgRccK/rTwTwBs6N3A3cvv5roDr6Mn0kMwGiRqRumP9WOxWGAQzDLLY+fnJ42luGclZq8F36wyuh9bN6CPGUmQDMUxHFbCcxrwl9n49pEj8LlsOG1Wrjh8BEWZbh5bVM/E0ky+cfhwKnK8PL4o9fuyrqWf1v4IQ3O9DMn2kMRkYW0nx44rTseUd7pBee1+HokYtK+FQCtkDkkFO/R85N/YnCqGx9t5+oa/YZqpVfLTTjyN/ClT6HVG8PqyME2TZRsy6AklqC5ycda0IWxs6aVj3n8GHMo0k6ydP08hJGk22K7dvq4OHD02+t9pHNAebwuRaA9D2bTUtekvST0Itq0By7ZBebJvGGzX7wBZ5RDuHdg2/Ago2x/CvRxakuDnr3fx11c7+PtXsnHioHdx7ZYAEgASJqGl7dhL3Tz8s+8z8+wLmTT7BJxu926disieLJlIEOjqwpebu6XNm5VN68b12+2/pKGHITluCvwuAJw2K9OrcnlvQ+d2+4uIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMiODbbVf3XAAYZheAzDMIAjgJXAk8BFm/tcBPw3TfV9ZhabDQyDxjUrt7SF+/uY/9TjxGPRnXKMWCIJpkGhz0VzT5il9T0090XIcNmpyM/YTv8YVouVKn8VSzuWcsO7N/DshmfxOXyfeBwTg9vfbSdxxE9h41vwxm/h9d9AuCe1uHQHWnoijCjw8q+L9uOnJ4zlprMnYWJixpLbdk4OrnWI+7q2YBsPrHqA8587n2vnXMsHbR/s0uOZpklb7QYi8YG3JsNioXjkKGqCteS6c1nZsfX3yWbY6Ip0Uewtxm6xs7JzJSMzRvDk5IcpTaQ+9TrRE8GWm1r4aRip/ZKhONYMx+bjptqsXjuJ3uiAtlTYxIc7mWA1MIxUrQCG1YIZ3/ZajoaC3L38bi58/kK+8/p3WNiykKS5nWtedg2XD478Kax9Cd74Hbz+a8CE8gN2uEtdX92A902BJjDBZrFx3+r7uGPpHSSSCSoyKvDavbu2/k+hNxyjMtdLZ8MmgpsXTJvRxDb9zETquiVhcu60IdS2B4hsvmaH5Hj49pEjeOqKmfzprEmMKcnE67Lxk+PHMKrIx3VPrmBKeRbt/VEeXrCJlY19HDqqgKRpsmBjJ5HYtseT3WtDSze9790Ptx4Md58ED18A+18Ovq1BMS0H/Io5d9+xJYAEYP6Tj0FHgBU3309X/SbuWnEXFWVNjC0zWNXSx/ShOVx5xHDs9m0DlKzWHYf5yL6pac3q1L+biW2f48yESeDQH0HDAljwT9gwB6JByCja/YWKfBo5VTDxnNT3E84EqyP1HPHw+eQ/dAI3zDC4/oQxxENFmMb2/+1NRhIMqRrD8Zd8j/eefIymNStJxGO7eSIie65AdxemmSQjJ29Lmzc7h/6uru32X97Qw7iSgWGmUyuyWdfaT3dw5/x/FxERERERERERERERERERERERERERERERkX3FoAohMU3zXeBRYBGwlFR9twG/AY4yDGMtcNTm93uEgoqhdDc3bdPetnEDwd6+nXKMFY09vLuxE9OAkUUZHDIyn5GFXvI2Byx8XF+0j3JfOY+ufZR/LfsX67rX8dzG57h6ztWs7ly9w+P0hWNMKPPB2hehY93WDRvmQMeaHe5nAv95v5G2/ihZHhuBcALDY8ez/8DFp4bDgq3AQ3dr82eav+wapmnyyJpH+NW7v2JN1xperH2RS1+4lDWdO/5Zf17xWJS22g1seH8h9/3wOzSvX0tmYer6KB5RzcyzL8Tp8RJ7Yw1fzj6VCbnjsRgWGvsa+e7Uq3Banby66VVuOvAvPDrtPk7sOwz7/e1YkqlbXGh5O979i8BqkAzGseW5iazrwj0+DywGZiSOxe8guqkP57DU4rVEbwRbnptEdwR7gQcsBqEVHXinFWHGkljcdrAahFZ24plcMGA+htNKzBvn9wt+z6rOVbxR/waXvnjpgPAU2cXiMVjyMHTXbm1b+xJ0b9rhLgXugT/HWDJGJBHhu69/l3lN81jZuZLfzv8tq7tWE0/Ed1XlW7TVbWTOff/m4Z//kKWvvUR/18BPcndbTNyRHlpq1rJwzpP01bXhPaB44CAWsPkdmKE4zhnFPLSsmWPGFdMV2LoY0zAMsr0OnPatwRKji/08dPkB/OGMCZjAsAIvlx5cxeTyTBJJk6/es4gzb32HP764htbe8Jb9EkmTpp4QPSEttN4d1rT0smntEvwvXQXJzddkPAxv/I74kTcQqz6ZTUffQVcwQTQU3Gb/SDBAZ30djU++wVmxQ6j751O4alcwzJskEE3QGUow7rCjBuxjsdqonLI1eCzU28vKuW/wyA0/5tV/3UJLzbqPH0b2AYGuDqLOCK7xeQPaLR4b9nw3/U4v3eUnML/4WzxYO573kjPobm1NU7Ui/4PDA4f/GE74G5RMgdXPbd3Wswn//Jvw201+/3wt7Zb+bZ4DATwT8uh+eB3+RR7Ov+aPRMNhGlbrOVDk0+rraAPAl/eREJKsbGLh0DbPNL3hGBs7gowt8Q9on1qRDcCiuu0Hl4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMj22dJdwMeZpnk9cP3HmiPAEWko5wuLhiPkDakAILOgEFeGj7baDVROmorb5/tCYyeSJksbulnb0o/LbiUYSfDcskbWtARY0dTL1w4ZxnePHjVgn6SZpDvajQULL9e+PGBbV6SLtV1rGZUzcB+A3lCMRNJkbL4N+wevb1tM/cKtnxj+oVgI+lup8hpU5npZ09JHfVeI8aV+ovV9uCfm4RqZhRlJYtgsGBl25j5/H93tzRz/rWtwer1f6PzIF9MSbOHeFfdybsXZzMqYQQ+9PNz6BI39zYzMGbnTjhMOBFj4zBO01W6kv7OdRDzO+y8+w/STzyQWjZBZUEjHulrGjDkEd1YmjoSDabYDOG/iKYQXtuOKZnHCyMPBNIm+1Y0930PgvUYAQkva8B8zlP63G+l/sx7fScMwDbAM80NrkGAwiuvskfR1hMg6eTiRZe0kAzF8R5QTeLcJ36FDiNT2EvighaxThhGp7cX0GPhPqyTeFSbzzGGEl3VizXaQcWQZkeVdUOrEMdKHaTf4zaRfYgtBkDD3Nj/EsvZljM0bu9POnXxMoAOi/ZBRANEAbJyzbZ/W5TD2pO3uPjZ3LF+q/BLPbngWgEpfJcs6lhE3BwaOPLTmIWaVzSLLnbWzZ7BFd0sTj97wY4I93QBsWr6EaSeexsyzL8RitRLq66XplSfANCkbPY53H3+IjU1LGLffYeReOg4zGAebAVYLwfnN+E8Zxl/r2vn3wk08vriBv583ZcDxOvojdAdj5GQ4aO4JsWRTD+2BCBU5Xta39vP7F9YwstBHQ3eIvnCcn544hmsfW8ptb9YwpTyL2eOLqesI8O+3N/LYwnqG5Hj44ZdGc2BVLhaLscvO075uU2eI0e6+rQEkH4r202jm8H+tl7J6SR93n+rBl5dPX3vbli4Wqw23LxW6VL9iGQecchZNXh9Ln3qaA8/MYpm9jMJkP4ufe5JDLriEprWrsTkc5JcPHfAzXfHmq7x+9x0A1C19n+VzXuWc635OXnkV2LYfhiZ7H19uHhvfXcDIg2bimZwPMRPDZmD4nfTFA/QlLbzxXgebVr8DQMPKFdSs3siJQ6fg8fn/x+giaZBZBlMvgDl/3GaTUTuXaUdYmF6Vww/+s4Hbjh1D9hkjCbzbBIZBxowSjAwbGfsXY9gtWGwOhpSOYcWSOfjzCsgqLNrOAUXko/o6OgDw5WwNIcnIzgGgv6uLHLdnS/uKxl4AxpZmDhhjYlkWNovBwtouDq8u3NUli4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiI7DUGXQjJ3ibQ0403J4fjvnU1G99fRLCnh1nnf4WCiirsji+2OPf9ui7eWN3C1KG5BGMJkkmT4yeU8v6mLg6vLmBtaz8d/RFyM5xb9jE2/2cxLNgsNmLJ2IAx7Vb7do+1sSMAwPLWBFVlR5FXeTC4c8AwoLeJRNn+WD+6Q9MHsO5ViAWptLv4culUbqktoiLHzcR8L4nGEFa7jf43NhGt6wOLgffAYkZNOoiH/vhDupobKRo24gudH/liQlGTOybeTM5LCeLNIbDlsf+sH7Jp6RpW1L7GugXvMny/6fS0NNPf1Un5uAmsmz8Pm9PJuEOOoHhENRar9ROP0d3aTNvGDcx77EEmHv0lGlYtB8BMJol2BxlTfTCe7CyKV5dg2WTBHvcSmN+M5dgs+p7dgKPCT7I1TOC1+lRgyKouHCUZmJEEALGmAPHuCJ4Jefw/e3cdHcd18H38O7PM2l0xsyzLzBw7jiGJAw46DE3aNOWUm9LTPk8Zk1LaNE3DzHHQzIyyLIuZtcww7x+bKFHlUGsnedP7OcfH2rv33rl3ZnZmpHPub7XVaQzowuzs9KFJ6tnQ0c+ZFQ5KYz24hhswRkzoxldg1hl46OgAExdlMd3q40RgA9kVFWx49hFKZ8ykdft+OuuPMfuCS7GpMtFXWDmy7gkG21uomX8W5aZpBB7rwHpmATOOFRDr9INKYvLc2xnQRk77cfuvlEymAkc69kAiAjoLVKyAqnNTIQgaA0gyDDZA9qR37MZpdHL77Nu5vOpyArEAxdZiXm17dUw9g9qA1hdn//ZnaT92hNIp0ymeMh1reuYpm9JAe+tIAMmb9q99lklLV5KWnUN3YwP+gT6mnHMeQbeb5bd8kYz0YpLeGP4tXURbvanr6pxsTPNz+cbWep6vHQTAE4rR6XrrG+R3twzxzScP0zIY5Pp5xThNGkoyzKhUEglFwahV871zq+n1RSh2GhnwR8m06FDJEomkQpcnTDSe4I8bG3l0TycAtd1errtnN898bj4T/mVBqHBqROIJtjYOMr46D1RaSK+A8RdAPApaE0c9Bmq7hwE4Go6w6Iab2HrfP/D09WKw2lh4xbUc3fgaAI7cfII+H6XTZ2F2OKnftpHxs+bhdBYx64JL8A8Pkl1eSf2OLRzbvJ4LvvZdAHzDQ+x6+rFR44qGggwc3UH64Ttg0dfAUfq2N4PQuQfqngdTBlSdDTnv/JkU/v+h0RspnVBG0hvBv7WLaNsbz3bzcjCNczAcCNBRf2JUm66GBtzdXRirRAiJ8DGWNX706/EXQOkSjENH+ezkEh4xZtAT6WQg28+kNeOREhKeDe2YJ2Tg29hBwhVB0qmwnVNC1bSF9LTWodKoRwUrCIIwlm8oFZxmcWaMlJnSUiEkQbcLR27eSHntGyEkE3JHP3MatCrG51rZ3+Y+zaMVBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEH4ZBEhJKdROBTCYncQcA3z2l//QDQUAqDl4F6WXP8ZCmom/kf9R2JxrEYdn75/H5F4kiyrjl9cPAmrXs3/vHCccyZm4w3FRoeQSBJGtRFX2MWaqjXcX3f/yHtltjKq7FXvuL1oPEkgliBcthJl3eeQXK0AKJk1KDNueqtiYAh6j8DRx6GvFklrQjfnc3yq/Gz+dNzI5AwLal2U0KGhVAAJQFIhsK2btMvKQZJQksn/aN8I/zm7nIZxZz+xXn+qIJ4kvL6PgovH8c9ffZnJy85m11OP4urpZtFV1/PC734+0rZ24+tc/sOfkVc1/h16h+76Op7++f8wecW5AHQeO0rptJkc27yeKUtWUcU0krv9xEpUxLsDWM8qxPt6O5ocE5HW1EIzXXkavvXtqKw6Eq4wANF2H7qKNCINbgCUUJzg/n782UGaj+8keryWmhWroGs7JZkzWH/vX9EZjcy95EoO3/d74tEY569ajVoZ4ulf/BGVRoPGoKO7oQ5Xbxczz7+YvpZmjDYbG/75NyYvP4fOuiPEImGynSXENg2hyTMT6/anAkgAEgrarQHGiWCd06P3YCqAZPsdEPGmwhiMGVBzITx2LQRSixgpWpB6711YdVamZU0jqSQ5PnScGmcNFo0FX8w3UudbE77Kprv+Qk9DPQBNe3ZSOWcBK275ElqD4ZRMSZLkkxUCEIzGSSTi+F3DvPLn37P4mk+x9s5fcctv7iO8YyAVQAKp6+r2HrR5Fjq90VFdKQr85rV6phXaaR3yc+HUfBr6fEwrTKPLHearjx0aua/8+IIJWPQqQvEkd6xrpHkwwMxiO985Zxw/f6meDLOWPm+EJ/Z1jdpGPKnQ0OcTISSnSV23F4NGxYZBPRes/iemvr2w8aepgyvJTFn8K4ocxbQNhxkIRPix60984aYbsEeMaFQa9q19lvYjB9Ho9Exedg4qlYrX/3bXyLNK095dLLr6RmKhMDuefAiNTs+CK67FNziAJT21IFhSTj62hN4O2x8EJFj6fdBZQWuApnXw6NVvVdxxJ9zwMmRPOM17SzjdJFlCbdITONiTCiCB1DVoazfafDMq6Z0afmhDFIR/T/4MmH0L7L4LplwF7g544csA2HKncu3Zv0e9/bdEltzGV/Z9nR8lb8NQYMPzYgsJVyp8TokkcD/TSPqNEzi+YwuSShYhJILwHvzDg6h1OnQm00iZ0ZZ6pgx63aPq1vd6STdrybDo+Fc1uVZePtqLoihIkrjpCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgvB8nWeUsnCre3m7UOh2unq6RRb1v2vvCUwS9nv+o/0hC4X9frCMSTwV29Hkj/OC5WmYUOwFYe6SXxoHAmHYqWcX+/v3MypnFD+f+kAvKLuBL077E9+d8n2Jb8Um3VZJuQquWKHIaMTStHQkgAZD6a1G3bX2rsrsNDj4EuVNh0ddh7uegfi3GYCf37WhDhYSkURFtcI3ZTrw3RMWsuaj1+n9/xwinhDoQJtbkHVMeG0qdy0abneHuTnIqq2g9fGBUHSWZpH77lnfsO+Tz8drdfyAc8KPWaAEY6mwno7CEK774M2ZOXUWyJYQm2zQSVKMkU6vdlYSC9PbVzAokfFHUjtQ5E2l0oy20YpiUgWRQo8o3wnILTSf2cODl5ymfMYcN9/4VCajbugFFSTJp2dlse+wBBtpbmXTWStbd/Qfcvd3EY1EiwQCySoUjr4CQz4t3aICFV1xLOOAnFgnTsGsbE5YsA0CXMAKgzbcQaR77+ZYH4+9n1wsflLcHap+CObekrjmFc6F1C+z8y1sBJABtW6H36Pvq8lD/IW5ddyu+iI+fL/o5N0+8mUsqLuHXZ/wavScxEkDyphM7t+Lq7XqH3j649MIizA7nqLLp516INTOTnt4Bttx3N71NJ5h1/iUc37oRFAWVoibS6B7TV7Tbz+KKt75F3m7UkJtm4I51jdxw7x6icfjD+gaGA1GcZi0/f/n4qPvKT186jkGr5pev1NM8mLqn7Gl18eDOdr63qpq8NAM6jYzDpB2zbbNeZJ2dDr5QjKFAFINGxqzX05V0wLbfpQJIAJQkuVu+zZempK6Vaw+EmZpxBjcf+Aqfaf4OQ9Fh8qsnMOeiNUw753w8A30M93SOeVY58NLzWDMzScvKIRYJs+vpx1hx65dx5hcCIEU9TDxzxag2epMZkyMz9eLIo3DiZXjsGug5DBt/NnoiER+07xhV1NfcyNZH7uPlP/2WloP7iIZHj0n4eNLo9EhJaSQA7O1iPUGQZfKrR4fN5FZVY7ZZPqQRCsK/yZQBZ/0QPr0FihdByyaSacV0LbiD9fGVbH/xNfryVlNRu5bPTLwJf0UCtU1LYig8uh8F4q4w0+auIhaJ0N/a+lHMRhD+v+EbHMTizBgVHGK0pQEQ9Iz+Pat1KEhJuomTGZdtxRWM0e+LnLaxCoIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgfNKI1cGnkaRWQ1IhET9J8ICigPKf9d/tDo8pax0K4gnFRl53DAdP2tYf81M7WEuLt4UZWTPwRX3v+m30Fr2GPm8UbzCMc2D32Aodu2Duramfk3GoOhv23QtDjSCrYfr1SIkEwWicgC+CzaBBnWMi4Y2O6kbl1GFxZKAkEu85f+H0CisJVJkGEr2jF4An1G8em9QJLCGhKMkx7WWVisGOdvqaG0gk4mSXlpNRVEpPQz3D3R0MtrcB0HW8lklnrYS4RGnGFILPdqIsMQMQ7wuiLbQQ7w9CQkHSqYj3BzHNzCJUO0i8L4C20EK03Ud8KIxhgpPQ0SF869rRTEjDtKaALc/dj7Uti8PrXk6NWkkSi4TRGY24ertTY5VVRENBsssraTtyABQFJZFAozcQC4fY/dyTTFq6klkXXEJ3w3E2P/gPpq5cBYCnvw+/a5h5l16JbNGQBOJDqQCVfw0ieTMoRTjFEjEoWQhbfpO6/jhKUwuGX7l9bN3B+rFl/yKeiHNv7b0Mh4fpDHSSVJLIkozT4KTT34k1mnvSdoryH17U30ZCYvo5F+Lu68bT30d2eSVpWTlISASHB3H39QBQMnUGLQf2IKvUxAijyTGRcI1eZKlJN1Ck17CkKoMip4npRXYOdbjeGDO8cLibhRUZrD/ez0VT88aMpWUwwHAgSjA6+rrcPBig0GGkbTjA9GIHPzhvPJ9/6K1Aool5Nmpybadsnwhvqev10usNk2HRE4kn0eGC5L/cN+MR5mbDmVUZFKWbmJVRSoEln119Wzhi7GJR2QTcHV3EohG6Txwnt6p6zHYUJUlfUwPjF53JoddfIuAaRqPVodZoIB4lGRjC09/LvMuupufEcUx2O/bsXKLeoVQH1nzQ6KHxNTBnQvwkgSLxt87XgbYWHvvRt0fCUGo3rWPVl75J1byFp2zfCaeHWqslroqiyTER+ZdnO7VTj6e3h8ySUrLLKxloayG9sBit3oAGEc4l/H9AY4CcidC8HoCeiV/l0bufQEmmnn8PbdzMZZ+/kSlP3MLe1b8jV5OLbNKQDMRGdaOyaDE26LBUVNDadARjmg1zmv1Dn44g/P/ANzyI5V8C+QwWK0gSAY97VHnbUICFbwvce7tx2amwq7oeL1lW8buYIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjC+yF/1AP4JDM7nChKkrTsXDS60Qtepp97IUbb+1ucHQ4G6DpRR8uhfXj6egFIJBXSzboxdXNseqLxtwIhSjPGfiOwP+qnNK2UpxueptHdyN+P/B1Jkogn330hqN2k4b5dHXTlrUgVqLSgfmMMlSveqqgyQMNrqfCR+V+CqVfDkcdBgqQCjd4wyVgSy8I8ZJNmpJm21MZAqBNXbxdqnfZ97Rvh9IkajajPcCLpVCNlqnEmwrpUsE3I6yUtO5fuhuMUT5o2qq0kyZROm8WjP/gGL//pt+x97kmaD+ylef8eHvvRtxnq6GTGqtUsv+JzzJx5HrNnXMT0/JVEtw+nsk0kCUkjEx8MoXYaUGcYCOzpxbq8CJVTj39HD7bzSpGMavQzMjDOzyba5UdJV2O9ppzA/CSHPZs4XruNE3u3EQkE0JtTwSaynLrstR05SMWsuakytZrMkjLGLzyTwppJzL3kSloOHWDeJVegM5owWm3Yc3KR1WqOvP4K8WgEncmMWpM6Txt2bWPXM48TT5NRT7AQaXKjH+9ENr6V86Qf70RTYDltx+u/miTBvn9CzWpYcBuYMqDuxVQY0r/Knfqe3cWVOL3BXhQUDg0cotXbyjONz/Bq66u83PIyUrqJjKLSUW1KpszAnp0KJwn5vHTW1dJ6+ADewYF/a0qD7a1seuDvNO3dTcjvY+9zT/H63/6IZ6APi8WMSpO6dkaCQSrnLOSSm75P9JAX8/w8ZPPbrqvFVtS5Jn7w7HECkQTrjvfx1ccOIUlv3f4DkThGbepz7ouMvQ/k2vQYNKox5XqNzOFOD1pV6r1l1Vk8ectcfrJ6An++ahp/uXoauWmGf2v+wrsb8EV4an8Xeo2MQatiWJ0BWhNozanPA4A+jZaoDbNew6b6AW74+zG+8yB0N15Addos2nsbScRjnNi5lY7aw6jUmjHPKlNWrMJZUETI56V02kyWXP9p7Dl54OuD176PRRUmJ9vKzicfIeh103bkILueeQxnphMkGWZ+CoZbUp0dfxGm3zB6IioNsfz59DY10HJgL97BgTFj2P7EQ4T9/tO1K4VTRK3T4XMPYlmUP/rZrsyGOsuAwWTh8Gsvc2T9KyiAzmDEbHfg9gSJhseG6gnCx1LOFFxn/JK+iIW5l1xJfvUEIBXYdGB3HYOL76B65z10xFuxnVcKqrcSHs0LcknGE4SPu4gd9lFUOonmfbtJiuBFQTgp39AgFufoYBFZpcJgsRLyukfKgtE4fd4IxU7jSfsZl20F4Hiv77SNVRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE4ZNG/d5V/nNSarWzWVEU74exvY8LjVZHJBwmGg6y9FOfpbPuKL7BQYqnTiezpPx99RFwu9n84D0c25z65m292cJF3/4fMksrMGhlPrWghHu2taAoYNSq+N6q8fzm1XpkCb65chwOo5bDnW6KnCZshtSiULWs5vmm5zmr+CxMGhOxRIz17euZlTXrXcdiUKu4fl4JtZKFrPOyUbuaAQUlYxxS6eK3KsZDkDUerLlw4AFIK0qFkSQigBZXKEb46BDaUiuOa6tJDIeR1DKSQcWx7U+RlpWDkki+wyiED0u2zcBBkwbnBRmoXCEMThtd/fUMNraw8tavUL9zG3MuWoO7t4uhnk7O/eLXqd+xFbVWy9Szz6P10AGi4TDVcxdTOXchkT4P5riN6792B5GjLkyVGXieb8ayJAvv402YZmSTDKa+MT6wswfrymKC+/rwburAdlYOaoeWpBxDtUwPsp79u18iLscJdXgZ7Ghj9rmXsPuFeyibNYfdTz+OoiQpmTqDiWcup2H3dqafeyHbHr2foMeDM7+Qoc52fEODzFi1mng0Qsnk6ay/9y5QFFRqNfMuu5qjG19nysrzyKuu4blf/JgZ51+EggLA/rXPMn/NtXSfqCMSDJA7ewnHEnrKpukxlmnxhocwXl5CIgRmqwFNlhHV2xZmC6dQyAdn/QAOPgwduyBzPGRUQMkZ0H8cWjenQpEWfBWs+anrUjQAeTMgdwrIowM29Go9V4y7gu9t+x7r2tdR46xhdflqSm2lrO9Yz/f3/y/3fuHPtO7eTduh/ZTNnEvFrLnojCa8gwO8fvcfaTmwF0iFUV30zR+SUVzygaYUj0UB8LuG8LuGAJBVapSkQkFxAXMuv45tD9zN0U2vM3XWSgIPtEGNkXCTG8fV1SRcb1xXzRoinX6umlvIk/s6KbAbuWFeCXdtbhrZ1oqabB7Y1QZAocPIZ88o5S+bm0fuK99dVU0omuC8STk8f7hnpN2nFpSgUUnYjRr6fWF2NQ+xrXGISXk2anJt5NlPvhhUeP/6vGG63SFsBg3FThOynFrQXmA3sq/NhVmn5spZBYQxkTj3d6h6DoDBDp5OuvLP4ZDPyrmTUgFMvnCcmlwr8yvS+d7jbfz67BI2//y3lM+aQ/nMOajUKs7+/G007N5BwO2ifOYctAYjr/7l9yOL5GWViuyyCsyhw7Drz5A3lepxeRgtF3Nkz1Gya6qZMHcm6fIwLLkdQm6ofzE1mbAbdDZY8h1oeBUMdqI1a9iz/TA7n34cALVWx/zLr2HHEw8RDaUCrxLxGIoingk+7uxZOfQMeAm3unFc89Y1SDZpiPUGGe7pYv6aaxhoayZvXA0b/vk34pEIANPOv5Sq5eeTm2H/iGchCO+sxx0i6LXw4r2vEQuHABi/6EyKtdNoPbSfWDTCa48+yeJlK8jofB1v4QWkf2oCCVcY2aghEUkQbfGRGA6TdOpRjodJz8qn49hRiiZO/ohnJwgfL8lEgoDLhcXpHPOe0Woj4HaPvG4fTj0vFDnHhq8C2Iwacmx6jvf8V/0pShAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE4T9y2kJIJEl6CLgFSAD7AJskSb9RFOWXp2ubHzdKMslwZztag5FYOEQ8FiOztAxHbj62jKz31Udfc8NIAAlA2O9jy4P/4Ozbbudgu5sJeVbuuno67lCMHJsebzDKF5ZWolVLvFbXx89ePo6iwKxiBz+/ZCIl6WaSSpJVZavY1bOLIwNHmJA+gVWlq9DI7xyQoCgKPe4gRQ4DZfEo6ue+CVkToGQhUt8xyKgGS3aqstYEKi1MuBjSq8DblQoiMWVS4IgzI9eG0jeA76U29OPsJENxQrXD2C+toHbTOgonTEat06EkEiT8flRGI5JGhDd82GRZIifLSZc0REaawlAyhi5rDkuWLUOSJGrOWAqAklBIRuMMRmPMzJuMVi0R98aoyJtFzW0LiRxxYUg68e6JY1hqxPtcG8bJGfg3daLEkijxJCQhfMKFYWI6gR09JAMxPGtbMFQ7SFuZjnbTzUhGK+jMmBzlULoYTXGYgaAO7YSZdKXbCQTcREJB2o8cpGL2XE7s3EbLgb1klZYz/dwLyS/O4+LPf4bern4WXnwRQY8bf38X+ZVFSAYrj/7kx6CkAkYS8Ti7n32cFbd8maDXTfPeXcRjUTqPHaV8+mwa9+4k6HGz6f67KZw0leXXXInK34EyvJVQ3Iomt4KQZKA5Eien2Ik+zfBRHspPPlsOhAwweQ0MNUHBLAj7QO+AS/8Bgw2pa5LOAveeDYHBVDtZBdc8AyWLxnR5Rv4Z3D77du45eg/BWBCtSssDdQ9wePAwF1VchCHDwdyL1zBn9WVIsjzSrrv+2EgACYB/eIg9LzzNilu+iEp98luuu7+PlgN7aDt8gOLJ0yiZMh2D1Zb6pnffWwsmx81fhKxSEY6DeeI8zvtOKSH3ILJfgXiSSKMboy0L12MnMFQ7SEYShI4MknZJBemKlmvmFpFm0GDTaylypIKpzpucy9EuD8kk/HT1RPQamfJMM7+/fAr+SByLXkMgEseoU3HupBxWTsim1xumyGEkmkgQDCdRq2T+tL6Je3e0AvDIng6mFqTxt2tnkG7R/efH97/UgXYXn31gP73eMHqNzPdXjefiafnoNCqqsi388pJJPLSzFZsmzpT6u1Htv3ukbWLy1eyJFrPx+CADuVGum1vILdMtBLxD7Blw86WllcStUeZ95VZaN23DdfgA4+YvRkkqjJu/CI3OQDwaoXbTupEAEkgtCq7dtI7cgjfCaAwOjIEBqjOjjFuej5RWCIFmFOckEgktqvZ1SP11qbq5U6FrLxx5DArnQsjFwHBkJIAEIB6NsO/Fpxk3/wwOv/4SALNXX4bBYj39O1z4j2nTTNAexf34CfTjHCTDCUK1g6StKiWntJJnfv4/zLrwUnY++ehIAAnA/ucex+Msw1FWxaKKjI9wBoJwcjubh1h/sJmMjX8bCSABOLZ5PfMvv5rWQ/sprJnE5gfvpbaohMmLluLSDLPFt5tV1uVE6t2E613EB1JtdSU2vOvbcV4znubug/iGBrE40z+q6QnCx47fNYyiJLE4x94TTGlpBL2ekdetg6kQkuJ3CCEBqMq2cLzXd+oHKgiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiC8Al12kJIgPGKonglSboKWAt8k1QYyX9NCImsUpFMxAl53HgH+rE40tGbLajUaqwZ72+RpX94cExZT9MJiIaIJRWe3NfF9CI7CgpP7Ovk/Mm53L3lBJ8/s5yHdnWMtNndOszDu9r59jnVxJIxJCS0kpazis7CF31jQY70zuMIROKEEwoHmvtYpDwJM29KLezf8mvQWcGQBs4y0JkhHoGypXDsGbDkpN5zt0E8xq8uXoZNpSKsV6MrTyN4eBCVVYv1rEKUeJKaxWcRj0aJe7z03XU3/o0bMc6aieO669FXVb7/nS+cEtnRTrL3fBfpxMskS5YRn/V/REIJUCRiAwHUaQZCRwaQjRo00QRKuxd1mZ3w1i5MZ5fgebYF87xcfK+3gwTJQAwSCqo0HfH9YQAkVSrAIeGOoMSSmOflEqodRDZrMBW70A5sQJIS0PAqTL4CxVEKRx7Dvu9e7G+Ms9iWT7Doy6R9/jZiPc1oLQ6cBcU07NqGIbuAIXsZRYYY+a9/keI5n4f1304Fjqz8Gay7kabqb4wEkLwpEgjgGxpg/0vPkVsxDoDOuqNMXbmK6edeSFf9MfJKi5lQasbQcwzvllrcr21HV1yIefV87Ed+RE7uVPrn/YB1PVmMz7WSYxNhJKeFxgQnXgFTOhjt4OkEtQkiHtj0E6h9OhWOtOArkFkDLZtS7ZIJ2PRLyJsJ2tHHxq63s2bcGgothfQF+7jjwB0MhYZYUrCEEmsJ0hsXzLcHkAAMdrSPGV7X8VoioSDGkwQphPw+Xv/bH2g7fACApr27KJ4ynYlLVzDjvIsYbG/F3ddDfvUEQn4fyUSCZw92852nj/DNs6uYnDuBpC+1qDkZiJHwRDDUOAkdGUTWq7AuLSQ+EMIec7G2OcKgP4LdqOHrK6qIJ2FaURpdrjDfPVdFgcPI0S4PX3/8MOdPyUWtkhnq8lDX7WXJuEzu2txMod3I5bMKAIlwTCHdoiWWSHLfztZR8zrQ4aah3ydCSP5NQ/4IX3v8EL3e1HUyHEvynaePYjdpWVCWjsWg4ZLp+WRYdER6j6B/WwAJgOrQA0wuvYLMpeM43OHC1L2NcbtvB3c7U3Km4634BXcdMlJd4cK4ahrD3naGOobZ8qd7mbHqIrLLK9jz7JNo9WOvWZFAAHImpl7Iaug9QsJRQcBYhgoLsuzE9ddnCe7YiWn+HBznPIwuUguZ1dC5O/W5a1oPtgIC6rHPQv7hIbKKi8ivrmHysnMonjzt1O9g4bSIxyJojFr01Y7UNcikSV2DvBFkh8wZ19yISq3BNzQwtnHQyxceOsA/b5jJlEL72PcF4SPS6wnxxYcP8OnJFjx93WPel2QVZ1x9I3VbN6IoScJ+Py/fcw9nXXEVs+/dhUtbi231rXDchdqpxzg1k0izB1mnJhmOU1YynfbmOtx9PWRXVKHRaD+CWQrCx8ubfwMxO5xj3jNY0+hrbhh53TYUAKDQaXzH/krTzexqHkZRFCTpXf7oIQiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAAgv3eVf5tGkiQNcCHwrKIoMUB59yafLCq1GiWRJB6LEo2E0RqNGCwWwv73/y28tqzcMWWFk6bhR49OLaPTyNyxvoE/bWiiJN2EViWzZkY+BzvcY9q9XtePLxwnqSTZ07MHi86CXW9HLavpDfSild950dtwIEoskeTKsjByMg6BAahfmwpuCHtg3f9A1/5U5YgPol4YboEN/webfwnr/xcpNECuPAQSqMwawseH0VfaUVm0BA/2oTJrqN34OtFwiOjRo7geeIBYZyeep56m49ZbifX1ve/9JpwC8Qhs/L9UAEnRcny2b9D/wACx7iCDdx8hMRTB9WQDodohJFkiuKsXw/h0/Nu7UKcbiHb7AZD0qlT4iAK8segr1htAW2ABIOGPoslOLRoL7u0jdHSQtHOdpM9rRB/biOLrILrkBwSveQn35E+zUTOfuO9fwnk8nehaXuYbG73css/KjkQBX23IZM/Eq/BPvxB1Rh6XPRfinxPuJWgpSs0tbzpK6zb883+LtmAWsko1qkuz3YmruwtPXy8ZRSUj5QdefoFjm9ez4NI1zCvTo0+kM7T2MAN/f4RYezv+zVtp/84dRKpuRWp8nfRdP+fh7Q185v59dLqCp+lg/ZeLeGG46Y3rza9gw/+mwkiOPgFHnwQlmbourfsRlJ4xuq2/B5LRd+zaF/XxZMOTnFt6LjdPuhlfxIdOpSOhJE5aP7usYkxZ+czZ6E0n/3Z2d0/XSADJm1oP7sNkS2P3s4/T19yIVm/g8LqXkSSJkNbKT9bWAdDjDvPHjc34JR/qEjMAoUMDBA/0Y11ehDrfgufVNlQmDXOPb+WyyZmsnpZPda6VYDTJq7W9qGWJqmwLBY7UZ7Ayy8J3zqnmod3t/GF9I/taXXx2cRm7Woa5fl4x5VlmdjUP4Q5Fue2xQ9y5oRFJguRJ7u6xxH/VLf+U6vNFaBoIjCmv7fayv90NgCsQZWP9AOXmk5+/TlWADleQnEQn49bfDO5UQI6mZx+Ol29lzSQbSZLcX3c/QSVMTnYJ8UiE/WufoavuGN31dRTUTBzT74QlyyBvBmRUg5LEnTaVDXsH+cev7ubhv/yTts4+Avv2E+vqwv3Yk3T+5C/E+7pg11/AVgSrfgcX/AnWPIg1r2RM/468fHKdWi6aZ2KcfAS9v+3f35HChyqWiKN26gkdG0ZXbkdl1+Pb3Ikmw4gzt5CN9/8d3/AgzvzCMW2jhjQ8oRj1vT76vaGPYPSCcHIn+nz0+yIcHk6QXlI+5v20zGxCfh/RcCo0Krusgv6WJlpONMDsWXhffJZo2170ExxoCiz4tnYRaXRjnp+LEoqT9McozB3PY//zbdoPH/yQZycIH08Blws4eQiJyZZG0OMZed02HMRh0mIzaN6xv5J0I6FYgj5v5NQPVhAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE4RNIfRr7vgtoBQ4BmyVJKgK8p3F7HzuRUJCg18NgRxtDne3IKhVZJeUUT5tFXbeHAocRsz61WCYc8IMCerN5VB+O3DzOuvnzhDxuEvE4OrMZXV4Fv9/QwoEOFw6zji+cWU5SgXV1fWRadKysyWZzw+CY8UzMt6F544ibtWbyzHmEE2FKbCX0B/tRy+98OiSSCtk2A4b+g6lF/C99c2ylnoOQUQXxMEQC0LzhrfeUJGz/A4bVC0BSUKUbMM/PJRmMo3boUTszQCMzftGZJJMJ4gMDo7qOd3URaWxEk5X1vva98J+LDbWhqXs+9XPJDfhejqCvshM6NAAKSFoVSV8UXXkakZY3FoIpCiRBiSWQtKmMo2QgjsqqJeGNIutVSFoV4ePD2M4pJRmOE9jZg2leLqa52RB0oZHb0G75KtLAEVDriF14Nxc9rzCxwMyeVhd2Y5jyKaspOPHCqPF6qq/gyNMeYgmFu7Y0c8WsQtLNWsozLfjCMbzhOD/YHKJ7egZfmvNDEkEnoaJxbH7+KdzDLzHv0qvY/ezjxKMxZl5wMY7cfDz9fUxZfi7HtmzgjGs+RdPeXcTjMaYtXIKxtZuOv7+AZcli3E8/gzo/H83cOSR7e4ls207YrUIHqE68yOfO+yKrHxvkUIebfPs7f0u38G+KeKHx9bdeKwrEAnD8hbF1PZ1gdEJwKPV61i2gt71j1/FknOlZ09Gr9MSVOPPy5jEYGkSWTp7hlV5UzLKbP0/APUwymURvNJE/fiKyrDppfUU5eVBHPBZjzsVX0HW8FndvDzVnLMXizECJhTivysYrTT6e3t/Fjy+cQE/3XszFZopmTyDpj4EsEdjRQ7TLj2l6FiqHjkj9CUonz+fxhigXTMnDqJEpcBjpHA5SnmUd2a5WLTO1MI071kxFUcBp0rK7ZYhbF5cRSyjMKXXw4uEe+rypxdb72tyEY0kWVaSPuu/kpekpzzSPmZfw/mhVEtlWPb1v7Oe3ymV2tgxxRlUGgUiCWCJJXKUHZxkMNb1VMa0Q2WDjr6+08MvJvan78ttIg/Uk/YPY1RZuLL+GzlgfiUicmedfTO2W9STiURQlyYld21h01Q007tkBksSs8y8hb9x40OnhmqeI9vey99BRDm3aDICnr5e1D/+T86+4DH7ycwCiJxoIW67GfOwf0LoFzJmgs8INL5GebmfFZ7/E8R1byKscD4pCemExLzz8ADXTJjBRE0H/4KXwqVchreD07nThPxILh+lprMdZsQjL4nwSnigqdOgr7aCV0SgazrjqBpr372HepVex+aF7KZ02E4PZgtmZjt9iw6L30esN0+MJk2k1fNRTEgQisQQKYDNoWHvczbLlVxJ95q8E3S6mn30+loxMfMODhHw+KucswJGbx74XnwEgHo2y+fBBlt7xO1x/+jN5P/8r0c4AarseSasCFSBJKAkFJZwkvaCQrY/eT351DTrjyYPLBOG/hd+Vek43pdnHvGe0pRENBYlHo6i1WtqGAhQ53/33q+L01GeqZTBAtk1/6gcsCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCILwCXPaQkgURbkDuONtRW2SJC05Xdv7OErGExzbvA6T3UHl7PkoSpLm/XuI27L49ZYItywu48xSKwPHDrDrqUcBmL36MspmzB5ZfObu7aHlwB6a9u4CQK3RcubNn6dz2MC1c4u5/Zmj7GhKLdLRqmS+uNTKoC9CllXHzGI7e1pT3yKcl2ZgcWUGerWaSCJCtbOax+sfp8Pfwezs2SzIW/COi+oB9FoZrSyTMDqh6wA4K8DfP7qSLQ+iQbDmgb9vbCf+PmSVCiRAAtmsAZWErFeDXgUqibqtG6lesASiY7+lWInHP+ghEP4DCSQ0jhIYbCAeS4UJyAY1sYEQAJL0Rj1PBE2uGdp9KNEEsklDwhNFk24AtUzwQD/WFUX41nfg29KFdWkhcV+YWLcL+3IzeF3IgddR772P4KJvoXvq2lRoDaBYCzgSy6e2t4ezarJpGvCTZtSwI1FNctFvKTp6J5iyCMz+IsFAlJfXOPjh9hgHuoMkFYUpBWl86p97AfjsgkIqPN1U6iIMPtuAdkUxdQf30VZ3FIADr7zA5GXnUDBhMq/ddQe+oVSggj0nj8q5C9j84D+YtGQZEwvKcX3ne3DddZBmI1wzHuMffkdb0wnq9uwgLTuD6T/+ASrcqR2UVgykPlt9PvHt26dF/CT7daAeHGXgbh9dnlEN1n2g1sPcz8P489616yRJjGojj9Q/gi/iY2XJSkqsJe9Y39vfx+H1r9LXdAIAg8WKOT2DzOJSJHnsNTYtJ4+8qvF01R8bKcuvnkAyHmPTfXeTWVKGLTOL49s2E/S4WaJSU7bjGX684GzWh3N4cl8H5/fvIxrwk//ZSWgtJpLBOMYZWRhnZ6eCf9QyxGJUO7R8ZlY6AzEJlUom12ZgwBeh/G3ZTn3eMP/74jGmFznY0TxEml7NWeOz+f6ztbQOBVhYkcE1c4tQSW+1aRsKctmMAmYWO1h7tIdZJQ6unFVIbpoIEfh3aVQS3z57HN966gihWAKAq2cXsrVxkAun5ALgsGiZkGelwdVP0bTroG07dO6BvGlQthRZreX+JS5seseY/hNZU1ACIbqeXEvY56Vg8Ty8+n5O7NxKzcIzySop55B6Lb2NJxhobSZ//ESmrjyPgpqJaHSpxbvhHh+DOw5Ru3XzqL4VJYnPYuLtS3wVlTl101AUCAzAOb8GcyZqoHzWPAbbWtj+2AMAyCoVC9Zcy57nniTz8pUU+bphqFGEkHzMJRJxal97mYlVi1CZNKQe9hRkgxpJllGSClsevo/CiZPwDg0w75Ir2PbYQ3gHegGwZedwzw238bfDHqYX2ul1h8gW1xDhI+aPxFGS8NnFZfzm1RN8bf0QVy64mauqdLx65y8I+VL5mpklZeRX1+AbHmKgrQW1RovOaKK/tYlBJUb46svR1u8ko3o+8cEgJBUUADkVRiYpkFVcScfxI3QO+SkTISTCf7mA24UkyxitY4MCjbY0AIJeN9b0TFoHg8wqGfus83bFztRnqnUowNwy5ykfryAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIwifNaQshkSQpC/gJkKsoytmSJI0H5gJ/f5c2VcCjbysqBb4P3PdGeTHQClymKIrr9Iz81DFYLExftZr19/yF7vo6ACRZxrL0ClqOuPjO00d5/lwLL/3h1yNtXvrjb1j15W9RNXcBAJ7BvpEAEoB4LMqepx/l1uu/yuP1w3x9RRXbGgex6DXMLLbT7wkDScqzrJRlmFlQnk5CUQhFE2RadEiShCRJbOncQk16DWcVnUWBUkqRaxwDXQnkYhdZRVbUWtWoubiDMTyhCEO2CViDnagmr4Hu/RBLBVKQOx3yZ4LRCX11qf8leSRMAoCSxfRGDRQbpNSi+ISCyqgBjYykkWlvO8rks84mGgqiLS4etX3jnDlIWt0pOzbCe5PT8knO/wryC19CcRiBEOFGN8apmfi3dBEfDqPJNxPr9GOakUWkwUVgTx/W5UUEdvTg29KF7exi4t4wAZ8X9eV5qBVQ+Y5jbvotUuVyaGmChleI28sZWvITXhzOZdEFz5AfayWuNnFMKuP2DakFnm+GnriDMRo8Ms/1jGdZzT+42N6I+ZnrMcUjIKv489Kf4r1kDTkOK88f6qbHE8akVbHU34rmwDak5cvwrl7FQF8vjQf2jMw34BrmxM6tREOhkQASAFdPF8l4nPkrL6CotILg7+/EcOklRGbPoFEVo3/DSzhy8ji+PbUQ3z88RG9LM2s+fxPmWjWJ+V/hjn2pkIzxOdYP5+D9tzFngqyCZOKtsr5aWPhV6NwN0UCqLGMc5M+AyZdDPArmjPfsWitr2dy5mTMLz8SsMbO9azuTMiaRfPu17W0G2ltHAkgAQj4vtZvWkT9+AiZr2pj6RouVFbd+mRM7t9Gyfw+l02aSXzMJd283AP0tTfS3NAGgN1vQm814+vsIvvgI13zmNrrCCpXTL2Tj3//Iq/+4g1VXfw1JLSEZ1KnPjFoGWWLwvNuIBkyMD3fTUVjKoD+CWiWRYR39bfDHe3xMK3Lwf2vrUBT4ylkVfOmRg0QTqfluOjFAMBrnmyurRtoU2A04zTpWTc7lUwtL0KtVyLKE8O9LKqDXyNx5xRQOd3lQyTIbjvfjCcZGFs+atGoyzDoUXTnunp2kBQeh+nzoryNhK8T4+OUY/f1Quhhl8pVIhx4a6b93+nd47lf/lwoFAWoff4ZzvvwN9g4Nsee5JzHbnSy44nr6mk4Q9HnIr57A/rXP0rh7B3MuXoMlzc7gn/+MNHcOZrsDd1/PqPFrbG9d6yzLlpGMJuGyByA4lPoc5k4deX+oo519a597a+6JBHuee5JxCxYzNOSnSKVNhQYJH2t6k5maZatQVIBKRjaoUZQkqGRQSXS317NgzTUM93Th6unG1d01EkAC4OntwVW7l6vnrKRpwE9CUUQIifCRM2hVBKNxhv0RbllcSlKBPKuGuo1PjASQQOpeXTJ1BpIkUTl3ATnl49jz3BOo1Gq8gwNkFpXy2qP3cfHEmWjTDSjeKMmEAihIagmFJJ0njlKz4nx8ioYBb3jM/VkQ/pv4XcOY0uwnDfAz2lLBJEG3G12ak25PiEKH8V37y00zoFXJtA4GTst4BUEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQPmlOWwgJcC/wD+D2N16fIBUk8o4hJIqi1ANTACRJUgFdwNPAt4B1iqL8TJKkb73x+puna+CnUtWchajUavavfQ6txYZz/jn8ZH8quGNRRTr1214e06Z20+sjISTxcGTM+66eLlQobG0c4oXDPUzOT6N9OMArtb18fUUVUwvS6HAFuGBKLq2DQZKKQmmGiVA0DkBCSZBlzCLPksdUw0yaHo6zo6d9pP+zbqimanbOqG0mEgrrjg+wQZL4RbER1br/gflfSoWMSCqwFaT+SRKEPany5f8LO/4A3m4oOQOmX0+tS0P94BBnZ6cBKkgqSBqZWDLKgdeep6+5gYVXXIek0ZP+hS8Q6+5Gk51F0h9A0mlP0VER3g+tzkAgZxb6c35Ni9WHcbEN3eYgSV8U88JcQocGMc7KQjfViW/Ii/riXJLBOAEpDCuseDu7GQ4fJ1lmYTDRSmlfC8WoYeefIDAI7VvBUUrogrvZHsxjwKdiWrGN4y4zmwKF/Py5esoz/Swbn0WnK4SkJLl8Rh6P7evib1uaWTUph3m5KszPfBnib3xOkgnMr38Lc9k8kCYSiib4zfJC5hlCRHo7WO/rZ/xgH4l4DLPDSUZhMd6B/pE52zKz6W9tHrMv3L09zJxzHvXNkPuN29l4/x+Z0FnM0c3rmXXhpex9/qlR9eOxKINBifRzfs3GaCUHenz88pJJTMof+23ewimgNsCyH6fOLU8nFC+AmZ+Gumdg7ucBJXWdCgyAuw3ypr3vrhNKggnpE0jTpZFUkpxZeCaeiIdgLIjDMPZb1/1vC7B501BH+0jYw8nYs3OZfeGlzDr/YmKRCM/+6n+ZsnIVeVXj6ao/NlJv2tnnozdbUWt1LFhzLbvuvwu/a4hGrY55V1xPd90RghE3Rp0NWU6CBJJGpu7QIDvXpkJNCqrtpOuH0VhthOMJStPNo8aiUUnsb3ONDDeeVEYCSN60p9VFNK6QbtbyteVVZFv1xN8IZTFq1UTiCdoGgiSSSQodJky60/mo8ckUiCTo84QpTDcyIddGvy/CNXOLyE/TU/K2Y6bXqLhv7wCqKWsYnzeP4EA7aYuuxLrj5+B/49rWvBGpYhlc+BcYbgSdje6mljHn5P4Xn2XF17/O0bVrCQwNoYr5KJ06nUOvv8KOJx4mmUg9QzgLCikeN4Hgzl2YLzyfycvPYfMD/0gFTgDpBUXozFYs112L2m4n2tKKJicHqqeffK7usZlyIZ8XrcGA1RyF0jMho+okLYWPG3PlFLr728jLKAIZJEVG0khEkwqRaICdTz5KdnkllXPnU/9GcNfbedsakKcsY93xfm6YX/zhT0AQ/oVWJeMOxZhamEY8CYO+CJUOLQebG8fU9Q8PUTBhEhqdji0P/5N4JMK0c86nYdd29CYzRouNjuZGcrOrMFq1EE4gSaDIEj09TeSfsQq5dDIdrhDheFKEkAj/1QKuYUxpY5+zAYxvhPoFvR78wyEUBYrT3z2ERCVLFDqNtIgQEkEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQhPfldK4MTlcU5TFJkr4NoChKXJKkxAdovxRoUhSlTZKkC4DFb5T/E9jI/ychJEabjUlLV2IbP5O/72jnwQ09JJKphb+VGQb0wdELwCVZxmCxjLxOy8phwuKzKJk2i5DXjc5kZrirg3XtIa6ZU8RvXjvB3rbUAl6VLCEBoVicQCTJHzc0srgqk1hC4Y51DVw/vwSASDxCpaOS9e3rWWK/AFdP3agxbH+yifxxDkw23VvjkiTKMlNjjXbsRxcYhI0/e6tR9kSYsBo0RvB3g7cPJAXGXwhaE8gaGDxBumMSd+8aoDzPRpVJS8QfZHiojZ7OBvLH1VA8aSohrxddTSlDd/6BxNAQqqwsHNdcjfy2/SJ8OEzZFURsObS0vcb94T9y2+VfQB0d5ITSRNll5bzY9jfqBuuZmzuX+/fdD8CtU27FE/SAOY5ZI7OcGiY98zWIeFLnx/wvQixMBC2Nlhl4EuX4EgkOdgzTNhziz5ua+NLScm6bbSfb24LV3cZZi7Op33of4wuK+NSl0+kd9pORZ8EqBxma+lVsHS+j7tqZGrSSBF8fZE9kri1Jsm4/oYoS9tUeBFkmq6yMV/9yJ76hAc645ia6Txwf+TZ7SZYpnjyNnobjo/ZDwcSZNHYmyCwLMdzVwZQV56I3mSicOJlYOIyzoIiKWfNIxuPIKhXDXR2gNhMZt4CysMxL42Vy0gwf5qH77xLoA1kNNReDWgOxSOo8aFwPno7RdY1OqFn9vrtOJBPkW/J5pfUVvBEvZxaeCYBaPvntM7u8kqU3fQ6NTkciFkNvMjPY2YbR8t4BNJIsE/L76Dh2hCkrVuHIK6Bo8jQS8RganR5XTzfZFVWMm7eIAy8/j981BEA8GmHzfX9l+bd+AokAwaQKtWxAkWS2vtBKa+3wyDY66lxMOCOXBhRkQJalUWMocBh5e5FaNfYb6K0GNSadil9dOolILEmnO0RSUZhaCP2+MH/a0MR9O1pJKrCsOovvraqm0Gl6z/kLb0kkk3R7wzx7qJtVk3IJROMc6Qhim5A1qt7MYgfxpMLvXj+BPyJzybQFLEjEcHTvHd1hw2uQMQ52/xUA3bgfjdlmPB6nw+TBvmYhFwwOkOir5f6HX8c/PDSqnqunm4DbTfmK5Ui2NDzNJ5i/5hrikQiySkXQ6yGZiGOYM4f+//sJWd/4OvoJE0b1EfR6kGUZvdmC3mRCkmQceflUzVtEIh7DYLFgMFswpFk4bi3G2NxBRpEag8V6CvaucLpozGZ6k1qSsg+HXo1BMVB/ZIhdr3aw6DKZGeetRlGSmO1OcqvGM9jexhlX30g8HkOt1WHLzOaLrzeRYdOh+pdrkyB8FNQqmcosC3/e2MTUwjT0GhV/39XN6ulzcb/4JOlFJSy84joCrmFUajWSrGL3M4+z4pYv4enrpe3IAfyuYZKJOOMXnYlKo+Lh3x6kalYWk2dkotXLJI0QKzcypJlK60AcSUpg1KlpHfJT7DS/9yAF4RMo4BrGkpF50veMtrRUHY+LfkMqVKTofTxnFjtNtA6JEBJBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEIT343SGkAQkSXICCoAkSXMAzwdovwZ4+I2fsxRF6QFQFKVHkqSTr0j5GBuMwMyyLB7e18ObSSwmNRRPnsaJnduw5+RSs3gpsXAEs9OJZ6APW0YWiWQSe14Bz//mJyN9zTz/Yi6dk0NU1qIoCk8f6CLDouOG+SX0ekI4DFp2eYeZX57OoD+CVi0ztdA+srA8qSTZ1rWNDEMGkdDYXJhwIEbIHx0VQpJp1ZFu1vFKbQ9XVM3Fcuyh0Y2qVqUCJgBkLUgS7L4Lai5KhQHUv0jMOY7fHenk7In5pFv1JLUKXc31uLo68PT3YUnPQKXVYsvMQh2NYr/qSkgmQa1BNplQ2+2n8pAI75NKpWGcpop59pl8s+573DzpZn6z73fcNOEmnul8DoBlxcvIMefQ6evkzgN3srxwOZ8vOoeCV76HOvRPmHsrbPwpxIKw8WdEZ97Kxpyr2NIeYZFZ4suPHuLymQU8faALgClOmcb7/kHzYD9zLrmCdXf9jvTCYrQaDc///IdMWLyM5trdvLRjKwBTz1zBrDMvxLT3DggMELYWMHj8BFLIx+ajeyhWJ0kvKsZkt9PTUI9vaACA7Y89wJQV56LW6nAWFNLTcJyg103lnAWc2LUNtUbDwitvwpmXy9F1d7H76RbmXXIFA+2ttB85iDO/kLxx48kbN54X7/glSjIJQOm0maRlZ6PVaCk2606yV4VTSm2AdT9KhYtYsqDvKHQfgPKzYN8/RtfNmfyBupZlmc2dmzFrzGQbs1nXvo6rqq9Cr9aPqheLROg+UYfJ7mDHk48w1NEGgEZv4PzbvkM0EkFneO8gGr3ZTP64GnRGI+lFJfgG+1FpNIT9PnIqKolFIpjsdtx9PSNtdCYT8y67mlhfO82xKLFIhP0vPUvFzIVoTTPHbCMaTqLSSATfCMR6uwKHkctmFvDS0V6SCjT2+ZhX5mR701tBFF9dVgUo1Pf6efFID1fNLqIyK7VQenfzMPdubx2p+1pdH5PybXxhacV7zl14i1Yl44/EWVqdRZcnhEWvQadVoZFHh8LoNCoWV2WiU8lEEklkSaLJ46e4YDHmhmdGd6pPg3gEgJxsG0ZbGkGPO/WeJFF53nLubHyAC8suRHf4XkLpEymorqFu2+aRLgwWK4UTJjPU2c7Q/Nk4VSqySisY7mxHVquJRcKkZeWgNRgwFGRT8ugjqJ3OkfYhr5fj2zez5/knUWu1zL/saryD/Zx5w2cI+bzsePwhFCWJwZbGgsuv4ZGf/BiU1Hlac8ZZnHHtpzCYRSDZx5VeLRNLJGj2qOmy1VPqn8i2F1LXQoMlk4G2ZnobT5BZXIbVmcHyW77E2jt+SSwSBiCjsJjf3ngrdx6Nkm0TwV3Cx8P0IjtXzSlkb6uLSDxJVY6N1kgNE1dEqJg+k7V3/Iqw3weANTOLWasvIxLwEw2HGTd/MWXT52DNTAVIJbECfup391G/u48Z5xRjSdcTKU1i0Ki4Y30D31gxjkQiiTcYo08TIssqPgvCfx+/a5icynEnfc9oSwX7BT0eWjVBIBUw8l6KnEa2NQ6iKAqSJIKuBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQ3s3pDCG5DXgOKJMkaRuQAVzyfhpKkqQFzge+/UE2KEnSp4FPAxQWFn6gwZ5u8aTCoY5h/nDlNFoGAph0KsZlmlB6hlhy3aeRZIlX77pjpH5GSRmrv/49NFot2x+9f1Rfe55/iosmT8eUX87MYjsziu3IksTT+zpRJAm9WmZSXhob6vtZV9eH06zjmjlFOIwaAHJMOejUOq6quhpTjxZZJZFMvLUYvXx6Jmr16IXOGRY9E/OstA75OWGcgm3S1ehjnlTwSDQEky97q3LzRig9AwzpsOsvqTKjA+/S3/DlCYXYDGpkWSbg6kdnMJBeWELjnp3UblpHekERi66+kXD9CRSPB8lgJDEwiGw0oklPP7UH5WPk43ruunq62frofZzYuQ2j1caPLvsCj7S9xvfmfB+n3olNZ8MT8fCXQ3/hkspLyDPnU6kyUdl1mPRDj0NfbaqjuufgzO+hSCq86ZM5rhRR2xXHrFNT1+cFIJZIUmA38JVpRhyeNrw9nRRPmU7jnh0AVM6ex44nHkGjN2BMS2P3M48DMO2cCwB4/vUGyiZ+k6Ipcwj3BHjprt8zaelK4rEYGcWldNQe5tjm9cy95IqR+cUiYfY89yQqtZo5F60hq3Q8kpzGQEeC8796IUoywJ7nHiK/uob+1mbKps+i7fBBuuqPAdB5vJbiKdM59NrakQASgOb9eyidNot9zz/Ogiuuw5Gbd9qP1UfpIz9/1TqoXAkH3rhWyipY8VPInwmeTjA6IOoHeynkz/pAXWcbs7FqrZSnlZNUkmSbs4kmoqTp00bV62tppHbT6+SUjxsJIAGIhUPsf+lZVpaUwfsIIdEZjJxxzaeIRSMYzGb2PvckvqEBiiZOoWTKDDQGPbFQELPdid81hKxSs+KWL/HSH39LLBwCQGswMOeiNWx+8B8suKIYtcZIPJY6P3VGNQaLlj6fjwLHyRdslqeb+O651exrcyPLElfPKWL11DzcoRhpBg0vH+1hUr6Nn750nIpMMw6ThhxrKmxn29vCSt609mgPn1pYglF7Oh85/j0f+bn7Dqx6NXNLnTx7sJudzUMUOoxcNacIi37sPuz1BIknFZp6hymzxCnKyGTI8kX07hOoB46BrCI250u02eeRuepvYEhj00A6S74yE3fbEQJ+D7bSAk7oeqmSqnDEotB7iJ78q0kvtpDW2Ii7rxuARVffyMt//i3xSCrMRGc0cd5Xv03T3p007t2J0Wpj/uXXoNEb0ObnjxpnNByifsdm1v/jLyNlL/zu55x10+eIRSPsevpRFCV1no6bt4gtD907EkACULvpdWoWL6Vg/ESSiQSJeAyNbnQY0H+Tj+O5m+8w0++L8mpzH+elF6fKqux01rto2JekdHINlvRMuuqP4ertJh4OjwSQAAy0t9Jde4ibpy+kItP8Ec1C+DB8HM/fdyJJElML7HS5gvxhfRMJReGyGQWcOW8xtS8/OxJAAuDt7yMaCqE3mVBrNLz21ztH3lt+y5cw2XRo9Sqi4QRGq5ZYJEEimiQ95kSbY+IbK8cRjcXZ2exhR9MQ311VTaZFLwIThP8qiXiMkM+LKc1x0vc1Oj0avYGgx02bFMCiV2N/4+8c7yY3zUAolsAVjOEwaU/1sAVBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBED5RTtuKYEVR9kuSdAZQBUhAvaIosffZ/Gxgv6IofW+87pMkKUdRlB5JknKA/nfY5l+BvwLMmDFDOVmdj4pKlilymvn644cocpoYDkS5bWEeJT4vJruTDffeNar+QEsTgx2txMIREvH46M4UhYjPw7AnzNefOEKXO4Qswc0LS5lWmIZeLTMUjDKt0M788lRwx3AgOrLgfErmFEKJEOq4Fo1exbyLyjmxpxf/cITiSenkltuwpI9dLD+5wE6+3YjX70dtXAUbfwoRD8z+LGgtqUrJJBTNhWc+CzNuhJrzQVFI5s+iNlHI9qYBxufaqMm14fMqxKMx1t/zF/yu1ML1wY421t75K1avvhKDRoMSCiPrtCTcrlN8RD5ePo7nbjweZ+dTj3Bix1YAgh43++6+j6/c/iOO+uzUdcf4dMXP2NT/AI3eOiLREAvNRZT988LUwvHl/5sKg0gmUmEkfbX0n/8g8+4Pc82cMM8c7MIdjHHbskoANtb3c/cyO5vu+F8KVqdCbZREAlmlAiCRSKAoSZz5BfQ1NQBQMmUGQx1ttB05SEHNJCIJmUMbXqOzrpaAy4XeYqFk6gwGWpup27IRgGQigcFiJeTzjsx14tJzUOsn0Lg/jqSK0XZ4iKwbClj399+iN1vw9PUCkFFcys4nHwHA4kxn+rkXotJo8A0OjN1/sRgNu7ejUqtZceuXUWs+uYvdPvLzV6UBSQVLbodEBFS6VPhIyRlQdmYqDMlgh2nXgd72gbqelDGJQDzAHfvvwB1xc1X1VZxdcvaoOoqi0Lh7BxmFJbj7esb0MdzVQSTox2i1vq9tZpWW07h3Jy/98Tcj4TZtRw4Sj8dZfM1NbH30PmZecDFbHvonM85bTeOenSMBJADRUAh3Xy9pWTn0NBxg4pLLOb6jB0eOibJpmWgNKsLDSTIsY8/JcCzOnjYXB9vdnOjzMbnAxrbGQR7c1Q6AQaPi6ysqURSFryyrJBJLIEsSA74IJp2GiXlWHv6XPmcVO9CrVe9r7h+2j/zcfQe5diO7WodZOi6TlTXZKCgM+MLk2zNH6iiKwrbGQfq8YapVXVzZ8zcMe7cSKVpMfekNdC68l5xELwmNgS4pF0XWciRWyOajgzx9oIscm4tfr5nBYHgfvzr2KyRJ4rOTbmFOZy04yjhxvJO6PXs588ZbiIXDqLVa2g4dGAkgAYgEAzTu3kFfcyMoCkGPm9f+eicXfP17Y+bU19xI7ab1Y8p7m05QMnXGqGcdrcEwamH/m0I+L71NDex/6TmGOtqoWbKMillzsTg+uSFl7+Tjeu6CwuQ8G16/hnSjmoIaB0abFt9wGI1Oz/bHHkBvtjD/sqvZ/OA9Y1pHQkFMUQ+SlH+SvoVPio/v+XtydpOWa+aWsLQ6mz5vmIMdbhKBgZPe8wfbW5m68jw8A/1IkjwSrrT14X9ywdduZ+a5Gtrr4hTWONi3tpVln6rB3NNCf2YJG+r6mV+RzpbGARr6Anz/2VruuHwKNflpH/KMBeGjE3C7ATA7Th5CAmC02Qh63LQmghQ7Te8rqCcvLfX3jS5XSISQCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgvAf5dHUsSdLnALOiKLWKohwFzJIk3fo+m18Bo9YxPwdc98bP1wHPnrqRfjg0KnCaNHz+zHLOqMrg2rlF5DnNnNi1DaPVSsjrGdMm5PdjtjswO5yjyrUGIxZnBr9+9QR5dgNfXV7JrUvKMevVxJUknZ4w25uG8YRiNPT76XQF6XaH8IZTGTA6tY7FBYvJknJRa2TMDh3ZpTYqZ2eRlmXA4tSjUp381HCadZRE6lE/sgZ6D4GrFV7+JtQ9/0YNBTp2w7Ifga8Heg6BzgJtO2ka9KPXqCnPMEM8tYg5EgyMBJC8Kez3EZAUer//A/p++lOijU0kw+H/7AAIH1jQNczxbZtHFyoKfe3dfPWxWvyRJL95Icg51pt4YNZP+V7dZspatqcCSAD2/D11HlSfT2LceRxb+k+2x8eRSCq8eLiHG+YVc+VkJ5VqD3eeW8B54+wceeZBkokE8WgUU5qdjmNHqJg5d2Tbaq0O3+AA9pw8ALLLK2g7chCAoolT2PX0YxhsaQx3d6IoSbQGI/vXPkvQ68GUlgbAvrXPMvP8ixm3YDE5FVXMuvBGFHkqu57vp/3YMOPm5VAwzkIyMUTQ48bT14OzoBBIBZioNKlv2p6y/Fw2P3gvDbu3Uzhx8uj9JEmYbKnt1e/YSsD1yQ7R+ciF3JBRAd4u6NiTur7EI9C0Dl75NrjboOcgPHw5dO37QF1rVBoW5S/iHyv+wWOrHuOGCTeQYcwYVSfs9+EZ7Ke74TjGN47725VOm4nROrb8Xafk9YwEkLypq+4oiXiMiUuWE/b7OOOaG8mtnkjgJCFNvqEBrJmZOHLLyCyxMHV5IZnFVizpemRZwheJM+iLjGlX3+vnyf1dnD0xhyKnkSf3d9E66Of3a6bwrZXjuHFBCd5QDJNWhUWnwmHSotfIbG8a4uE9HcwvT2da4VtzzUvTc+XsQmT5vReHCm8JROIcavcwFIjSOOCnyx2ixxvBFYyO1GkZDPDYng4irm7GbfgMhuNPgK8X3dFHmLD9SyjJJIeVMlzGMo70hjje5+W+HW08faALgB5PmF6XxFDvBD5V+jv+sOgeznNMwFx1Dsz9Alang2Qiwet/+yO9TQ2oNRr87uExY/UNDqA3m0deT1iyDP/wIBvuu5vaTesYaGshFonQemAvBsvYIB6twYhWp0dnMo2UDXd1kllSNqqerFJhSrPz+I+/Q92WDfS3NrPhH3dx8JUXSSYT//E+F06N1qEQ/7v2OAP+KD4DZBZZ0JvVZJdZAYVwwI+7txu1Xkfl3IVj2ttzcj/RoV3C/99y0wxMLbRz3dxiSCoUjJ84po4zr4DX/nonGp2WkqkzRspDPi/RcIiMIg1anYrWw4MsvX48MgmS9cdJKgrnTc7hf56vZUVNDgBNAwEOdnroc4fGbEcQPqkCrtSzhint3UJI0gh63LQNBShyGt9Xv/n2N0JIxOdJEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEAThPZ22EBLgZkVR3G++UBTFBdz8Xo0kSTICy4Cn3lb8M2CZJEkNb7z3s1M71NNvyB8jzaCl0G4gL81AocOA1ainZtFSZJWKilnzRtWXVSqs6ZmEAj5mnncxzoIiANKycph32VVEYzFiiSRlGSZ+/eoJ/rC+kd++doJhf4xAJM4T+zr5xSv1/HN7K797vYF7trVS3+tDUd76snG1WoXfFUaSJfIq08irsuPIM4+qc1Itm8eW7fozhD2QiEHuVHj1u+BuB283vPZ9yKqmxGlm9dQ8JuanodZoiUUiaPUGJPlfTkNJQh2KkPG1r5F/5x0oBgPExQLjD5tGr8eWlTWm3GEzcsF4C5UZRp5ZHuDilp9RsO3XaHoOwVAj5E1PVXS1wCu3E1MbeKHkds5dq+GeXb18fUUVOrXEJGOQir33U/unH9L98G+4cbyewGA/APtfeo5pZ59P1bxF9DY3cu4Xv040EmXxDZ8hmUxisFqxZWWPjMnscOLq7QYg6HZjSc9AkmXcb5Sd2LmNycvOAUkiHomw+cF/EAmEmHvZF9AYJ9N5PEr+eDsrP5uPrO5Dib1CyDeIJMsk4nE8fb1UL1xC4+6dTF52NmqdjpDPSzIRp/3IIQonTCG/egKQWhS3YM21hHypYCFrZiYarVhQfVoZ7LD7r9D4OsTDqeuRowT23D26nqJA2/Z/axMWnQWH4eSLITU6PUUTJtO4ZyftRw8y8/yL0RoMSJLMuPlnUDptFolE/ANtT2swjSkz2tKQVTI7nniYXU8/Tnp+ITqDgbxxNWPqls+cy8SlKymbMZuQN4rOqCaj0IxKJROMxPnd6w1sPDE4pt1wIILDpOWzD+4nEE3w8E2z+fJZlQz5I9T1eimwG5hb5uSl2j62Nw1RlW0GBbJsen79aj1JBf567Qwevnk29984i8dvmUdV9tjgCeHddXvC/HNnG794pZ5737iP/3N7G00DfhRFoX0oQKcryNQiO1XaAWRP66j28uBxavSD2I0aHt7dTlW2hZ+/XM+BDvdIHb1GJtuqpzLbwpn5FkoP/x3+OBv+egb+COROnjsSDFK/fTMb77uHqjkLxoy1ZMoMXD2pYJOSqTPwu4ZZ9/c/s//FZ3j5T79l++MPMdDeQsDjoWjyVFRq9UhbnclEbsU4BjramHvxFZjsqc9Y94k65l16FblV1UDqGn/B175LyOslGhq9eHjfi8/gGxx7LgsfDZNOTZc7xIl+PwO+KHpPByWT08mpSENvTaNs+iwAYuEwhTWTKJ81F0mS0RqMzLrgEk7s2EZSVr/HVgThoyXLEjmlZai0OiYtXYmsUqHW6pi6chX9rc0Mdbbj6eslo7hkpE3FrLl4BwZIxmNMPiufmoV5xKMJkCRko4E+b4ROd5hfXDwJrSoV3GU1qGkbCrC33UUy+R6/nwnCJ8SbgWdm+7uEkFjT8Hm9dLpCFDvHPjOfTG6aCCERBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEF4v07nKj9ZkiRJeSPRQpIkFfCeK/EVRQkCzn8pGwKWnpZRfkgkSeKV2h5WTc5LhWzIEpp4kN1rn2XZzZ+jbMZsVBoNTft2YXFmMHnZOUgqiWQ8weYH76Fi1jzKZ87BPzTI1ofvY84Xvse5k3L44XPHRraRVOAXL9fzx6umYdSqCEYTBKNvhXeoVRI7mwaZVuRAp1GRWsom09vswWTTIcuQSEBGofndJ3OyhfimTJA1kExA2w5Y9mNo3ggqNUy6DNndyuKFF49UV6nVqDUaEok408+9kL3Pv5U5M3PVauzZOcQOHmTwT39GV1GOfuKEf2/HC/+2qErP1IuvZeOffkEykTqP8sdVUxSr47eVMiRbkF//GuTPAEmVanT0SZj/5VQQSe9hvAVn8lJiNp0emcum57O5YZDGfj/3XTuZ3Xf9kuHONtILihg3/wy2PnQvZdNnc3TjayRiMbY8/E/sOXmc88VvgDOXePFk/ryxibOu+ga5lhhFNidxi5nKWfNoObQfo9UGwPHtm5l/+dXsf+l59OZU+EEsHOLoxtdZcPk1JJMJLM50NHojJ3a8TMXMOWQVm/D0dfP6nx6hcu4CGvfupGDCZKauXMX+tc9Rt3Uj2WWVzLl4DUgK9pw8IsHgyL7a+sh9FE2ayqKrb8RoSyMWibD76UeRZJmFy89j8Ke/wHTxxThmTkeSpA/1OP5X8PfD7FtgqAmGm2HWp1OBSMb01Ou3M9hP+ebVWi0ZRaWoVCrajxzC1d3NpKUrUWm1ZJVV0nxgL/k1kz5Qn0ZbGiVTZ9ByYG+qQJJYcPk1SMjMv/waNDo9aq0Oe24eLfv3MHv1ZdRuXAcSTFl+DrJKhVZvoK9VIh6NYnYYGOjwkVNmJ6SkPs/p5rG35HhC4dmDqfCeHU1D3LKohAFvmIosCxkWHRkWHZ2uEP5wjNfr+llUmUFZhpFBf5RIPEkoGqck3US6Wfef7dT/dgpY9Wq84fio+7hKktjZPESXO4QsSWRbdeTIJz+nY7IOvVrF2RNzSCSS/OSiCXznqaMj7//oggnMKXUiyxIcew42/wIA/8RPsXbtXgKBbSy+9mY8fb0oShK1Vkt3w3EWrLmWA6+8gCyrmL7qQhTg7M9/lQOvvEBuxTi2PfbAqHE079/NuPmLKJ02k/rd25h76VVEAn4klYqC8RPJLi2nr6WJoxtfp2LWPHQmE9FgEHdvDys++2WUpILOaMRsd9Cwe8eYeao1WmTV6czUEz4Ii07NhVPykICO4RAVeg0qJUY4KhGPKExedg4arY7OY0fJqagi6HYxa/WlxKNR6rZuJBwIIGnF9UP4+LM405mw+CzcvT3oLRaUZJKG3TtGAvCUZBKLMx2zI52CmokU1kyi7chBVBoN9mwtQZ+eeCTJUCxBcdUMpqrCbNdrybToSLdo+dbKcahliReP9uAOxXCatUzItWLWi2A74ZMtMJwKITG9SwiJyZbGsaZOEmkKRU7j++rXbtRg0KjoFiEkgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAI7+l0hpC8AjwmSdJfAAW4BXj5NG7vY8sbirGv3cXS8Tl895la6vt8ANx1cTl6k5lkIkE44Ce3Yhz54ycgSTKRUJB4OIItO4eCmkkc3755pL+yWfN4sS3G5FLNmG35InFUksIN80v444bGkfIzx2UiAS8e7cWkUzOpwE48kmSg3Ut+lZ1IMI6sktDo1USC8XefUMlCMDogmFoghCTDGd8ArRG8PZA9AV7/AeRNS4WSvPp9uOivY7oJ+XxodHqMtjTO/vxthHw+dAYDzrwiAn+/B++zzwEQPnIE/6bNFNzzdwxVVR9w7wv/rkA0TmZjExcsvwCfrKCRVBjaOtHqi5FfvgIWfQ0SUejYDWd+F1q3pBpu+x2YM2lafi+/rzVwyfR8Jph0FDoMRBMKZr0aX08nXcdrAVIBJI/cB0Bu5TjGLVhMw86tGCw25l9+NVFzOv/37FGW12Rze6WK2KMPorWYcD/8CFk/+AE1887DUTAeU5oWa2Y23v5e/MNDjF+4GL9riNKpM2g+sJfhrg72PPcky27+HNsefQBXbzeLrrqB1/72WyaddTY7Hn+IgpqJ9DScACDk89DX1MjCq25AlmXi0SiNe3aQlpXN7mefYOGV16MzmogEA6AotB3aT/WCJdj7BvEkosxbeT6GYTeJ3/+RQEcHwZfWkrz3fjKmfbAwCuF90Fthxx9AZwNbHuy5G6rOgYVfhUeuACWZqmdKh+J5p2UIOeWVTF+1mt3PPI5vaIC9LzyNIy+fRCzG+IWLUas/2O1WSSYonTaLytnziQSDGG02VFotrUcOkIzH2fLkPyiaPI3zbvs2ORVVDHd2MPeSK9AajHSdqMPizMA70I/JkY8SV5BkicJqJ10NLiw5JmYW28myjF3o7wnHRr2OJRTaXGG+8dRRkgrYDBp+fvFExuWkAn6OdHqozraw/ngfM4rt5Nvf30JQ4d3Fk0luXFDC715vGClbUJ6OLEv87vUGdrWk7r9nVGZQuKSIjIlr0Bx5ZKSuu+Zavro+SFQ6wTVzivj8wwe5cEouT312Hr3eMAV2A5VZllQACUDThpG2/cZJdJx4ApVGg6evl13PPIYkSSSTSc6+9SscXvcKpdNmoiSTNO7ZQU55FbuffZyzbrqVRHT0+QOQUzmOaDjM0fWvoNJoMU92IEkyGp0Oa3omerOFvHE1hPw+XN1dJOIxjDY7lnQn9qwcJPmtgJGMohIs6Zn4BvtHyuZddjUWZ8Yp2/fCf0arlijNMGLWqanOsVIX0jExESSiNoNkAWmIwklTUanVmNLs+F3D7Hrq0ZH289dcR3Zuzkc4A0F4/9KyslE0Oo5ufI36t/2ullddgz0vn93PPM6M81Zjdjg5vm0T+dUTCLpdqDUaDOZiOjtDZBZZ8Ee1yFKEfQ1D/K51iJ9dMokXDndx3bwSzp2Yw12bmrHqNfgjCc6qzvoIZywIp1/APYwkyRhttnesY7TZ6I2kQjCL003vq19JkshN09PlEiEkgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAI7+V0hpB8E/gM8FlAAl4F7j6N2/vYaujzMSnXyqu1vSMBJAC+QJiK2fNQaTQkYjGisRiKogASkkpCazQy1N1Nxex5FE2cykB7M+kFxejzS4kmnPT5wmhVMtFEcqTPArsBJInDnW6+vqKKUCyBTi3T0OdDq1bxwM52ZhU7mFRgR1EUsktt7HquhYH21LgKaxxMXVH47hPKrIbrXoSBeogFIb0Scqem3ouFwN+XCqU48QroLbD8R5AYuzA57Pex4Z9/Ze4lVxIJBpFlFf2tLZitaYReeHFU3cTQEJH6ehFC8iHSu4cZuPMOkoEAb37nehgIF9nRAaj1qcJkHOrXwln/AydeJqkxEJn5OWKmSr6+wkSBw0gkFKS/pZ6Ax81AMkl/azNp2bm4e7uJR6Mj29y/9lkyikqYfu5qyuYv5tXOJJpmN9cVyhS4Wwj88Luoc3JIFBai+/EfGcgtZ9MjLehNmUxYnEvNkhws9jBddTup3bQOgPJZc1mw5jr0ZjPewX48A324ervJKqugq/4Y/uEhErEoipLE1dtN8aSp9DQcxzvQTyQYYMuD/2D+5Vez/6XnCXk95FZVs/DK69EYzZzx2a8x2HwCr9uNqngC1lAMz/e+j+2i1QR27CTa0zMyNyUaJXL0CIgQklMvGoL5X4GegzDUBNOuTYUjWfPgU6+lrlUaQ+ralTHutAxBVqmYfs6FOPIKaDt0AEd+PmlZOfS1NDHc3UV2WeUH6k+SZXoaT5BbWYUkS0SCAU5seI3CCZMJeFwk4nFc3V0oiSTJeJx4PEYykMTvcmGypRHy+zClOdAbY7z295aRoKlZq0owmzTcZEwjM65m2/F+ynOtZFlTn2enSYssQVJ5ayx3rn8r0MoTivF/a+v4zaWTAajOsdI+FOT6ecWUZliwGsaGYwkfXCyR5EiXh2+sqCL4xn28sd+PooBBoxqpt+nEADOL7aTN+hbpNRej8nURNORxX7OJLa1uIMDScVkUO4w8c7Cb5TXZnDPxJAEP6eWp//Vp+GQ7AIlYjKDXQ964GjqPHWH+5dfQ3XCcruO1IyFSAFkl5cRCIYY6O8ipqMKem4eruwsAlVpN+cw5vPqX34/U76g9zLlf/AamNAeO3DwA1BoNZdNnMZzVgd81hMWZgTO/YFQACaQW/F/8nf+h9eA+hnu6KJ0yg7zqmlOwx4VTRULCG4qTYdEzGIjQ74tSZVYY6gqw96VWzv60g2gwQDwaRWc0s+iqGxnu6sDd30tmcSmSpEJJJpFUqvfemCB8DNgddmZedh15E6fRW3+UzKJSjBYrr911J0GPm54Tx5l/+dUUVE+ks+4oJVNn4h3sJ6MoHaNFS+vhIdqODgEwudBMxdQC/rqpmZ9eNIntTYMcaHdzwdRc1h7uwRWMsqjciVZzOn+FF4SPlt/lwmizIcvvfB8w2tJwqywAFDnffwBent1It0eEkAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCILyX07aCSVGUJPDnN/79V+vzhSl2GDnS5RlVPjHLwIlX6nDkFeDIK8A3NIB/eBiTLY20nFw0Wj1HXn2BjtrDqLU6LE4nJ3ZsI3/OGZSddw1/eOQgX11eyd+2NDPoj1LsNPLdc8ejKLCkKoM71jfiDsYwalV8bkk5WlVqMW+fNwKk1uj3NHpGAkgA2muHKZ6YTn6l450n5OuFzb+E2qdSr82ZcNUTkDMZogFwlsHGn0NWTSqk5PATsOhrY7rRm834h4d47a93jpSpNBpqZs0jLMsoicSo+tK7LEQSTr2YApJmbKCAJEupHxrXpcIe9t8HHbuh+yDxSx9AVTgLg9HOm1EPSjJJ7cZ1bLj3LhZeeT1bHroXtVbHgiuuZevD9yH/y0LjgbYWYpEIe60T6XFF+UqZjPfrn0d/9dX4BwaQLBbUl32WV+5tY+qKOLFIglgkAYrE4Y0e5l5g59jmDSP9Ne7eQePuHcy77Gp2P/M4cy+5AgBHbv7IQnqVRoskyfgGB7A4M0jLyqFuy0bmXnolmSVlHN++lUVX30gykSAYTTCgz6A+ZuGOpxr5xsrZPNLeQecmPxtmpgKBlFj8pPsuIcljyoRTQKODrn0wWA+2fDj8OMz/AsQC8MSN4E0FIlB1Dqz4P3B3QGAwFUziKIXMUxNMYrTZCLqG6W2qp2nfLqKhIADO/EKyyyqwZmSi1mjfo5cUrcFAMhHn9b/9EUhdG5fecAuhgJ/Dr78MQNmM2cQiYZKJONaMDEJeL0oygdZgxJqegauvh94WC5FgHIBkQmHnc82c89lJNG7vpXF7LxMvLuWxLjefW1KBLEtE40m+uryKv21pxh2Mjdwv3q5jOIQvHOfMqkzy7HoSCYVCh4nyTPOp2I0CoEiwpCqT369rYMAXQaeWuWlhKRqVjCRJXDojn8f3dgLQ6wqQ3nsI3UtfgWQCq6zmgkW/ZntROXecoZCePMxN50p0Kum8MOAfs61oOMyAcTqeab8jLa8Yq8rK7IsuZ6i9jSPrX6F85lzOuvnz6I0mWg7uHdN+uKsTa2YWSjJJR+0Rpq44j76WJrqO11Kz6Eya9uwc06aj7ghLb7hlVJlGqyOrtJwsyt913zjzCnDmFXyQ3Sl8iCLxJAlFQa+W0SoRzre34g4Xs/PZVJiRgkRadg7D3Z14B/tZf8+f0ZlMGK026rZsQJZl8sfXoNHpsaZnoFKLsAXh4y8zOxOdagKF4yfScHA/a//wq1HvH3rtJZZcdzOlM2aTjMXoaTyB0WbHkVvGvpeHRuoNt/spKrYQCMcoiTUw3ngUaYqVqDmfA61qJAk2HB9gRokDp1n3YU9TED4UAdcQJvu7/C2CVAiJR2PDoJbJ+ACfhbw0A7X/8jcZQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEYaxTvrJPkqTHFEW5TJKkI4Dyr+8rijLpVG/zY83dzlnhDUi79/D3abO4L6eQO/YEANAkIqQXFKFSqRjo6kAlq7BlZhGPRvG7BrFlZaPR6QGwZWWTU1aJK60bjd6APxxnTlk6f97UxIVT8jDr1bgDUTQq0KllkgrctqwSi05NNKHgMKrRq1MBCLlpqT4lSaK7wT1myL3NHiYuzn/nOXXtSwWQmNKheGFqMf/GX8CS2yHsAUWB6demUk4kFfj7wJozpptIMMDEpSs5su7lkbIZq1aDrCJtzRpc998/Uq4pKEBXfWqCAoT3x5KTjfemW1A/+E80C+ajDAwQqz2GrqwAGoD2HSCrYOn3wJgOOgvqXX+CY0/BuHMg6kfJqKE/ILPloXvRGoz4XcMAxKMRdj/zODNWrcaWlUPhxCm0HzkIgKxSMfXyG4m5/eQef5X4Lg9Jnw80aoxf+yFDjmoGj4RIJhUkFPLHpZFZlERW9bD0ah3ewVZUajXxWHTUfExpaQAoioLOaKK/pYncqvF4B/qp37GFWasvZc+zT7LjyYeZumIVWWUVxKMRCidOJpqAgZZGdjxyL8l4gmmXXsPZVRPpGG/HG4xx0ww7i9M16JJq+MoXSbR3YbvtK7h/+UviXd2peVksUD3hwzp8/13sxSCroeYiSEQgfyaoDbDn76lgpOrzIeqHhldg3CowZ0HEC5IE3h6QNZBe9s79D9RD4+sw2AgVy6FoLhjSTlpV1mjwDg5QMmUGWoOBloP70Oh0ePr7aD1yiOziUuw5eRis1ned0kBbK0G3i3mXXkUiEUeWZbY9/iBnXPMpVBoN1fMXo9ZoGexoQwE8fb2oVBrMznSSyQSJeAyjJY39r/3LQksFAq7wyMvWjd24plro9oTItxsx6dU8e7CLi6flY9CqyLLpx4ytyGnEadJiN2k40O5mdomDfPvYesK/z6xVYdKquP2ccYRiSUxaFZ5QFJ1aZkN9P19cmgoWiyaSXFcVQ/f0VyH5RnBXMk7R1m/y4NXPoEpEwOMHWUWhNcGnK0MQ8oDBlqqaTHBs83pi0TDWjApiWjMb7vkz3v4+pp5zAecv/g7d9cdQadT0tTaRXVZBd33dqLFmFBXTt7ERe24eL935a5ZcfzNBj4s5qy9H1qjRNBwfVd+RV0BOWSXhYBCjxfKh7E/hw1Njj1GccYy0lk0YsquQCmbS3R8beT8SVOMb7MVgto78khAJBIgEgxSMn4AjN59kPE5v5wm6TxyjoHoi1ozMj2YygvA+hLxe6rZuIOB24cgvQkcclVqdeg4wGmk9tB+1VofBmoanoZ7mg3uZeOZyDrz8PJPOumZMf8FWP/dcace8++dQOA9UGvSRYZ5YrsVvNLCrsQHD0H4UXxtS1UoomAuGd3+mEIT/n/jdLiwO57vWSYWQWMmzqJAk6X33nWPTMxSIEokn0KlFwKkgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCMI7OR1fL/6lN/5fdRr6/v9LyAXPfQlt83oA0rmfL9RcQl35tbzW6EelTS1Mzy6rQGc24+3vI+lxoVKrycmuIhzwM/6MM8kqLcfV3UnLoX2kFxQxadZMetUSOTY9a2YWsKNpiEKHkUn5aWhUMsP+COOyLTy8u50Xj/QCkJ9m4KcXT+SS6XlkWVPfFpyIJcmrSGOg3Tdq2Nmltnef13AzTLkSzNlw/Hmw5ELZYkiEofbJ1KL/gtlQ9xykFcLkKyFv+phuYpEo3v5e5l9+DfFoBI1OT+vh/ZRVTcAwoYbsH/6AwI6daMvKMM2dg77sXUIChFPOqFejPmMRHXqF49s3YklPZ/5vforW7Ibz7oBjz4LeChojRHzw/JcgZzI4y+Cxawmt/D1HNu8irrYQj0ZQaTRodG99U3XQ42bnU4+QUVbJlGu/SMmSHoaG3dicGRSoJYa/9zmYO494fx+ayioSUxax/TU/cl8YZ76JOReYCAzvpmxyBq///Y/Mv+xqnrv7Xhw5eUxYsoyDr744sq207FwiwSAL1lyLp7+XZZ/+PCd2biW7tBx3Tze9TSdIxhMs/8wX3hinnqObXqegegJP/+x/mH7OBWx//EEkSWbBmmvoOHaI/Y/fz/SiIhZfdD56s5XXHngKz9Agsy+8lPquVjzPPsz466+iyGDF19BGbO4iMqorP4Ij+V8gowrmfQEOPw69h6DmQihdAn21MPdzcPRJMNhh+f+Crw82/Qzc7am2k9fAtBveOYRkuBXuvwi8nanX++6BpT+E3qNgTk9dC3Mmj1TPKi1nwZprObZ5PZFgkJozlpJfPYGX//hbMoqKsWVksudvf2Dhmmtx5L1z2JOsVtN+9BDtRw+NlOmMJvRmC9POPp+mfbuZeOZyAsMutCYDkiwTj0Xw9PUiq9RYyzNwmE1otH3Ewom3OpYgHkuOvIxHE5g0KuQ3FnCmGbRcPC2fuh4fzYN+5pQ4uG1ZJXesayCeVHCYtNx+TjUJJYksS9R2eylNN9PnjWDWaz/IURPehVqlwqxXc9ujh/BF4sgSfHFpBXZTBICO4RAZFh1ZVh32pBsSsdEdxMPI7hbYf18qMMpWAAu/iqr2GfB1w6ybofoC3N4wWr2e3c88hm9oEGtGFjNWrUaWZQ6+tpbG3TtZct1NJGIxdEYTQU+MwomTaT+SOi/LZs7BYLWy4rNfxjPQx8zzL6avpYnJy84h2d6BpaiY8YvOpPXgfhQlyZyL1+Du62Xro/dTv3Mr084+n/zqmpHANeH/c8kklqMPYtvwY1DrIPt22PkXTFlXABoAOuqCFI3Pwt3bjdmZjiUjk2ggwNxLr6Rp7y4a9+5CUaBy7kJaDuzBYLZiSc/4QIvMBeHD1NvcSDKZwGCxsum+v7Hk+s+w6KobqN28nlCrl+oFi8ksKaNh9zbSsnIpmjQVncnEQGszOuPYa5+j3Ip1cAcUzoW0AvD3w9Enkfx9mKdczVJfG9Lev6cq77sHVv4MZt4EKs2HPHNBOD0CrmGyyyretY7RmoZbbaNGn3zXev/qzb+DDPgi5NuN//YYBUEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQPulOeQiJoig9b/x4EfCYoihdp3ob/9/oOQRvBJC8SVP7BL+46ma2zaxAibsomzGHoa5OkrEYjpx8tEYDyUQCT28f9jw1Q+3tdBw7RGddLZBalNPf0sSSb/wfJp2Khn4faUYN4VgCtUpCliXiCtT1eEcCSAA63SEe2d1OidOERZdapJZUFCzpehZdUYlaoyIaimNy6LClv8di4JwpEByCrb9JvR5sSC1yvvLxVDDFpMvA3wcli6B1K2jNJ+3GmpFJOBhg26P3j5TNv+xqNB2dxHt7SUZjWJYvI9LWRjIU+oA7X/hP+UMR6ja/Rt2rzwHgGxrkyd/+kitvXk3Wltvg3F/Dzj+nzoU3F8BXroTNvwRbAR3hdLY88xcq5ywgs6SM/pYmJFnGbHfidw0BIEky41ddxo1PNLCiJpsVegXHd78FF16A7pJr8VXOQZ2Tw0BHkJhkwOQI4cw1UDgejm/ZQ/GU6bz8p9+iM5pw9/WAojDc3Ykjr4B5l17FUFcnGUXFJKJRtjx4LwU1Exl/xpm4ersJuFyYnemkF5UwbsEZ6M0WDr26ltJpM9n26P3MuvBStj58H5b0dAbaWwGomD2XE7u20dfciCTJ5FaOxx1QqHv5GbobTzD/8qvZdP/fScTjAOx+4Skiy8+l6uJLsDozsJl0Y/azcIrkTkn9e5Ov9/+xd9/hcVT3/sffM9u7Vr03W81d7r0bYxtsA8b03pIACankJr+0m3q5JKSQCiQkhN5MMbaxwb3JvchFvfeVtmj77szvjyUyjg2BBBO4Oa/n0WPt7Mw5Z86MZmf9PN/PJAJx3vx/Z5a17oXVf4bcyYnrVCySCCgpuei92+04dCaA5G92PgSV18PuX8ORp+G2jYkgFBJ/J1v/+kdQVQD2v/YSOqORBXd8jg2/+TnWvTsZOWcBR99az5zrb0WS5fN2m5SeMfR38zcTL70ck81OVmkFWaUVGEwW2k8fB1XCZHdgS0lBlmUCg146a09RNnoms64uRVUUAp4oBrMWrVFm/+vNQ23mTMvAmm0kO8kEwGAoik4j4wlGcJp1aGUJSVX4+VXjCETi6DQS3mAEXyjK8/sT87K9to/7Ly7ns+m2f3CQhA/KpJX57qsn8IUT1xJFhZ9vquXBK8cAUJmfxISCJI60uQlb3gmDchZCegV0HwdvJ5KrHsZdD0WzIK0cXroTJamI3vI76G9XMcaOYUzJ4a0//o5IMACAt7eb3S88xci5i+hraWL5l7/B9qf/TE75CHx9faTm5ZOUkc2YBUvQGY1IGg1HNqwl5Pez96VnAXBmZVM6aRq2SAy3qw9vcJDZ19+Coig0HT5Aa/VRIHE/01VXw/KvfJO8ilEf/yQLHz1PK/KOBxO/T7wV9v4evO2kuLuZfsmD7H6jB3tqMpFQKym5+YSDAebfdCfRcIhNj/5m6Dw8umkdPlcfWcPLGBzop7O+huzhZf/GHROE9+bt6yYaibD7+adQFQWd0cAbDz86dB9wYO0aJq9YRe3e3Sy79yv4Blz4B/qZtOIqFBzMu8FBPKaw7ekaUnKtlI9PR3IriVCRaBDe+Aooic8CadO3Ye5/Qd5UaN2TGMC2BxL3P/nT/k0zIAgfHSUeJ+D1YElKft/1DHYHXp2dNE30fdf7e+m2xP9zdHtFCIkgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCML7+chDSN7FDrwpSVI/8Azwgqqq3Rewv0+e4MB5F1uVQcwGDVJcwZaaQsDdTzASpmbvTuqqdmO02Zh/62fwuXoxWi1DASRDzfq8RPu7UZQ0+v1hKvOSaRsI0O4Okptk4uVDbZRlOs7pd1/TABeNyKDdHaQsy07IF8XqNFBT1U39wd6h9WZfU0panv2998uWBfv/ePayeAT6GxKFcQEXKFFQ4lCxHGKB8zbj6+tl0vJVuLs6CQ16ScrMQlVUFIOFwDPPEjp2DI3TifOGG5A0mvcej3BB+Fz91G7ZcNYyJR6jJ5ZMhhKD/kbw94A9G3ImQu8pVGsm3hnfo0vNoebQcQBq9+5i5jU3YrY7OLj2Faavvg690UAoGCSenEuDNoObS+IsNvVhWPMc0aQk5MXLaTsSQCOHSNf7MDs66GvuZMzs0ex5+QkG+3JAVelurCMSDCDJElq9fmicdft203CwipLJ03B3dWC0WFnxlW9y+M21rP/1QzgyMimbNguTzc7I2fMJeNy89tCPyakYSfOxwwBIskw0HCLg8VA4NgWA5Ow8avbsBGD8shU0HtyH3mym5fiRob7/FkDyN8ff3oDRagXMjJw7H2eG86M+VMLfi4Xg9Do48Kezl6sKdFVD1lgIe8FghRlfOBOicz4R3/nblxNhToQ80HVsKISkt6lxqPD4b07t2MrMawqZtupajmxahy01DYPZTCQYxGCxnLfbgMfDlMtW4+7qJOj1kJSZDag0HKhi94tPM3zSVEbMno+7u4u8kWPoaaxn6xOPAjB6wWIyioaDQY+vJcSuF+qG2i2dksGoudmc2N5J9sQ0HMNsTM06c73v8ob4n/WnWDwyk5wkE8FonLwUC55glIFAhDynmUBMZe2xjrPG+5vNdawcl03WO2Emwr/GHYzR7j4TvpXnNHBfpYbxUg2Pr8ygKa6yu7Gf8QVOnqoJ8ZXVTyAdeSoRmpM7CRZ8BzZ9D5b9DNZ+EabdAzozjRVf5dXHnkRVFQBmX3frUPDD3wR9XjQ6Lc6sHFxtraiqit89QMPBKipmz6Oz5hTrf/0zkCVGz1+M0WqhYPQ4lFgMvdlMcnYe3uZm/D/4IbGf/hj/QD/VWzcxafmqoQCSvwkN+nB3dYgQkv8rwt4z11NnIXgTOYS6jl2M0X2TzC/9ieodndQd1DJtpYHjW16jbOoMfP1955yHjYf2MWn5FZzevR17eubHvCOC8MF11dWQXliMqiiYk5znvQ84uXMrxeMnUbd/Dyd3bGHWNTeht46melsn/oEwJruOFfeNo3Z/NwFPBDVtJJK/FwYahgJIhux/DC57BP66MtFPNASuesieCFrdx7fjgnAB+D0DoKpYne//fWkgqkGRNKRwnvv095FuTwRC9vpC//QYBUEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQ/hPIF6phVVW/p6rqSOBuIBvYKknSpgvV3yeSwQ6pJWcvy5kARgfmYD8BzwAoEtbUDNxdndTu3YmqKgS9Hva++AySpMGRmYWsOTcrRtbpeftUN1OKUtFoJIZn2DjZ4SXZqudYm4fClHOf7Du+wMkjOxqRZQm/JwxALKKcFUACsOflelztgwAMdHXQ1VBHf0cb0UhiG6JB0FvP3V9JShTk7/wFbHsQdj+cKEa1ZJx3eiQJ1v/6Z/S1NiFrNBzdtJ4jb64F9wAam43k227DtmABgaoqJO2FzMsRzsegkTBazj3Oks6UOHj7/4hr8WPsZiFvNjg5OfURdjXo2binh7eefRFLUqJ4TFUVtj/1OLFIhPk3386odD+jG3/KeA5TgZdp0VYuM/Zi1sXh5hvx3HErO19/EpO1hqMbHiLgbSfg7UanN7Du1z+lp6Ees93B8c0biYZCmGx2wn4/ZnsSetOZAARFUcgcXk7DwX0YrTYGujqQNVokSSYWDpNeUExKbh4OuxElFgEgGgqhNybaUBUFrd5AaNCH3mTGnpaOEo+hNRiQNRp0BgP9HW0M9rtwZCQKpE32c8N/DBYrOoORvS/9iZ7G+o/8OAnv8PdB43ao3Qhdx6H2TdDbzl1Po4PqNbDtf2HrAzDQmAhWei/mVDD8XTtjrobTb5x5LUlDv5rs5wY4mex2mo8dZudzTzDuoqV01dWgN1vQmYzv2a2skXnjVw/S09SARqfj+JaN7Hr+qUR4hKpSV7WbkM+Hz9VHLBzm0LpXiUXCxCKJ36OREDGNkX2vNZ7Vbs3ebix2AxuzoDtFw+hhKTjMZ4qWneZEmM+rRzr47dZ6/KE4A4EoexpcVHd42NPgItmiY1e9673nTPiXpVr1FCQnPsdLU408ObmFK6qupujVy5m7dRWzdSfp9ob44dqTTEiLw/qvw/EXob8BtW0/oYYq4vO+A32nEkE7eivdix/nrZfeGAogAYhFQkjS2beCGq0WSZLILqsgGg7T395KRtFwdEYTrtZmDr7xCrFoZOi8yxpezskd27AkpzLQ2cH6X/8MbZKD5KeeIBKNUrN7B2MXLSUaCqI5z2e5Rqc/ZxkAgX5o3gU1GxIF9sInnzEJRl6e+N169r2fpnkzIX+M03u66G8Pse1ZH1MvX008GkVznvtcrd6Aq62ZjOLhuDvb3rvPkBda9sLp9dBbc074gyD8Q4O9Z+4fBpo/9ObO7Fz05kSgWCwaOW+4mMlqI2/UaGr27iTgcbPhd78gKW2QePAlMgtPUDhSwtsXRGfQUr21nSP+TFSjHXTnfp9Db4X2gzDyisTrcddCb23ifkYQPuX8/f0AWJwp77tey0AiqM0R9X6o9tNtiXvvbm/4nxidIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjCf44LFkLyLj1AF+AC0j+G/j45NHqYeCuMuw4yRsGEm2H8jah6E51tHTgzs4lFI+j1emr37jxr077WZpIyMgkHAkxYtuKs9/JHV6LYM7hoZCZ7G138fms9W071sHBEBjLwi2sqqWrsZ8W47KHa+JIMKxMLnBSlWEix6ImG4sSiCtFw/JxhR0JxIuEYbaeO036ymp3PPsHbf/o99fv3EvT5IB6DCbecvZEtK/Fz+CmYfi/M/gpM+Qwc/AsEz1+sLmt1pOYVcGrHFqrWPE9fSzNjL1qK4hvENL4SNRJGm5aGLivrrCJ/4eMRi4QZe9Gys5Y5MjIxmC0ot2yib+VLvPr4c+x+YwPOzBze+M0vkGSZ5mOHCfq8GK02bCmpQ9v2tTSRkpxM3Genq20a3c5FrHnhRXZtXEuNp4/Xn3+CpvpTbH78N6QXFbP1L49RMXsBkVCQPS8+QzwaJeBxk5KXT3d9LQAntr7FlMtWY7RY2ffqi0y57CqmXnE1Yxct5dL7vk5qfgEj5yzA29eDt7eb9OJhXP5f32XFV/4fnt5uehobqDt+kkg4gkano6exnryRY5A1Gk5u38zUy69Cq9NTteZ5SqfOJK2wiOmXr0ar1xMOBAA4vXs7lYsvQaPVojeZcWZlnzVn4y5ahhJP/J31d3z44lbhA/C0wYu3w58vgSdXQfNuqNsEo1edfe0wOSG1FMqWwOyvwpyvQds+CLrfp3EJ5n4dyi+BrLEw7xugxqGvJvG2ORkyRw+tnZKbj8l2JohEkmQqL17O8bc3EAuHMZgsNB85RDwaRZY1792tLJM7YjSnd21j78vP0VVfy4RlK7GnnSns7+9ow56SSt2+3edsXr9vD0az7rzX+JA/iqyVKEo9t1A6Glf4+pJyyjJs6DUyKTY9Lx9swxeOkWIxcLDFjaKCw6Q7a7vPzh1GVpLpnPaEf06K1cBPrhhNqlXPlytV8rd/BWKhxJvBAYq3fp6L8hRK061Mt3Qi6c2QNZb+qd9hq+FqntzQyaYtJ+jRl9AlF9GRMo/6hm4GB/rP6qdm7y6mrrr6rGUzrr4RsyOJWCRCemERqNB2qpo5N9xGa/Wxc8bacGgfPY21BD0DnNy+mRFzF2DPzKalsY6TO7cyYvY8ehrrsaWkUblk+VnbZpeWE/Sep4DY1w2vfxH+tASeWg1/mAut+/6lORU+Bkl5UHoxTLsbjE7In3rW2+FAdOj3EdM1RIJBtjzxKDnlI8gqKTtr3QmXrOTA62sw2ez43QPn7y/QDxu/A3+8CJ6+Cv4wG5q2f+S7Jfwf5mmDl+44c//wyDzoPPKhmigYPZaAe4DymXPRaLRYnSmYHUlnVpAkJq1YhRpXyKsYNbTY19tDa/URjr21hgNrf4nBFHgniERDiuxGeuYasOeA9e++PlfeAE3bEt/F5n4DIn7IHgN9tf/CRAjCJ8PgO9d76zthlu+lyeUHwBbq+1Dtp1j0aGSJHl/onxugIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjCf4hzHz3+EZEk6bPAVUAa8AJwh6qqJy5Uf59I8Qg48iDsTwR0mJLBlkVY0VJWkImnr5fU7Fx6mxtxZGTR29Rw1uaSLHNo3asMmziVxZ/5Av2d7RgtVlJy82lXdDT29qOVZW6dUURd7yDNrgCVeUm0DQR5/kAbEwqcfGFBCYqq4glEyU82E4rGKUy1YJRkvK4gOr0GWSuhxM48OT4114re4Keva4ANv/vF0PLmo4dY/uVvUpJjBFkDC78H/fWJwn69JfEz7hrY+kBi3zX6RJF/9PxPGu5vbyU1v4Di8ZNQ4nFkjYbqbZvJu/pG+m6+DTWaKFZNueN21EjkAhwg4f0YzCa6G2qYdc1NDA70ozebUWIxouEwmzcdwWS309/RRk75SJqOHnxnqzPn0d6Xn2P80uXoDEbsKanY2rvQH6qm9aGfk/q/D7Bp/au4OtqYMWse3t5uply2moDPw4yrbsSelsa8W+4i4BngxLa3AZA1icwkn6uPjIlTaD52mJB/kD0vPcvIeYtwZmWj1elJycsn6PPhdw/g63eRVljMnhefZsScBbQeO8KRDWuZduW1tJ2sRpZltv71j1idKcy8+kYOvL6Gg+teYe5Nd+B3D6DR6Vh5/7fwdHXiSHZg0kRILcog8+bV+HWpHFoHsXCY/a+/zOSVq4lHowybOBWtTk84MIjFmUJX7SmM1kQohSM17WM9hv8xGrdBw+Yzr40OyJsKh5985zrVCAY7ZFcmrl1HnwFXXSKgpPIGUNX3bltrgFgYQh6wZSZCmHKnwGBv4nXxnESwCaAqCv1trUxbdQ1KXCEc8GNPTWPns08kgmgkiVgsgqoq5xTc/z3/QD9Gs4Xpq68nHoui1ek4sW0zc2+6bWgdd3cnM666gSMb19F89NBZ2zuzc9HpJJKzLPR3+oeWa3Qy9lQT3uoY22r6GF+QfPbuamR21vUxPN3K3LI0fKEYn5k7jE5PiC5PiDtmFQEqv762kleOdNDlDrJ4VBZTi85uR/jXZTqMrByXzShbLSh/Fybj72VxoYZVRTE6/BaO+xej1espS5uJKdTMuLwy9EYTh3YfRmcwkhRspeX4EQrHjqfp8IGhZlytLcy8+kaWf/kbhP0BTHY7sUgYv3uA07u2YTCbWfr5r7D/9TU0Hz1ESl4+7aeqzxqKIy0dUMkpH8my/CIOv/k6bSeOEQ2H6GmsJxLwUzptFiH/INnlI5hls+Pr68Vkt+N3u5E15wnj6TgIJ9aceR32wpvfhOtfBIPto5tk4aNny4KUUoiHoHQJFM1OBD04C7Gn6NDqZLQGDZ7u0xhNWRjMFrY9+SdmrL6egc4OvH292FNTqdu/l3gshlanw5qcQsuJY6QXFGO0vCs8qesoHPjjmdfRILz2Bbjx1UQgiiD8Iy17zr5/CLhg24NwxaOJz/8PIB6LYU/PoPnYYcYvXYHf62bCspUgQTQUIjknj7aT1dhSUskuH8GJ7Yn+jLYz1zL/QD/hQAdtp+Gi20aQ2vUkRAYT9yvLH4amHYn7kJRhUL0GxlwFh/8KIy6D5CLoOYVaMAMR2Sh82gXeCSEx/6MQkj4/WhS03t4P1b4sS6RZDXR7z///E4IgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCELCBQshAfKB+1RVPXwB+/hk05oShZdGOzhGgLcLFIWOWBJtxKiwKsSiEbR6PaPnXcSWvzyKEo8BkDm8DEWJM2n5Faz79c+IhcMYLBYyCoeTUVJGXFWJqQpTi1MIRuNU5jkZDEeRgUAkUax8oHmAA82JQh67UcvCigwGAhFC0Tg2m45YJI6kk1l0ywh2vVSPzxUia5iDaZcPIx4boP5g1Tm7VL31LUquvjgRrtJfnyjut/phxApAgm3/C6jgLARfV+L1LQvOOz1JmVnseekZ4u+EjQBMX30dsZOnSLrqKiSdDgDftm2Yp079yA6L8ME40tIZMWs+r//if9AZjETDYTKKh+HIyOLwhteZtupaAFQljiTpARjo7CBjWAnd9bUo8Rj7X3uJzKLhzErOIvDMc5huvw3tt79Jh0ahvfYUALbUNOoP7OXY22+SO2I0hWPHE49G2PXsE6QVFmEwmwFoO1lN6dQZ1OzZiSXJiT0tHW9vD6FBHzV7dnLx5+6jv72d1376Y8YsvJgdzz7BzKtvZN2vfkrm8FI6a07RfOww01Zdy/YnH6dgTOVQIejggIs9Lz5D+YzZ5I4YTcuxI0TCQVBh6xOPUT59Nh16PSe3byZvxGhKpkzHoJNYcNtn2fX8UwQ8bgY620krLKKz9jSdtafRGQxEQkEW3PZZavfuIqdiNNll7x88IfwT3G3QfuDsZZ5myJuUCA85/CQUz4X8qdB1HHIqE0XGSQUQ7IeDf4GSi89tV1Gg/i3QGsGcCmXLQG9ObONuBn9PIshkwk1Dm3Q3NmBPz2Dz479HbzRSMXP+WUFOlYuXEQn4WfaFr5E5rOR9d8ualEzL8SOc3r19aNmI2fOR5ERgg9FiZezCJWj1BkomT+P0rm0EvR4ATHYHw8ZPJh4MMuuqEva82kB3gxd7qonpVwzHFQqxu97FyCz7Of2qqkqm3UC63UQkrtDlCdHtC6PTgEkn0+ULc7zdw5UTcslJMlKaZsWk02DUy//oSAkfUlyBP+5sYsoiCzmSdHZYjjkZs8mIty/Cyw/9GIA5N9zOxj/8Cr/HzdwbbmPjHx5GVRWQJKZefjXtJ6uZfuV1aHV66vbvwZacytQrrmbLXx4lHo0w89qb6ag9iT01UUwPEAkE2P3iMwybMJnCMeNxtbditNoIDfoAEtfi9EySMrPx9HSx+fE/oMTj5I8aS/3+vYxZsJgjG9ex96VnAVh6z1c4sHYN8ViUSDBIck4eEy+57Nydd7ecu6zrWKIIX4SQfLLZMlHdzUiKAlljoH7zO8dTJjvvFItuH8mBdU1odTJ7Xn6OOTfcxrpf/wxFVWipPkrL8cOE/X5kjZbFn/0CyDLhYBBZlulrbSJrWCmad+4PGew5t//+Bug9LUJIhA+m5zz5mO0HEsFH2g8WHHfs7Tfxuz2MX7aSrtrT+Pp6aK0+Rm9zIxqtFkmWmbH6emKRMI70TEbNW4SrrQVbcupZ7QQ8/Sz5zAx6mvxY8i/GzHcSYUyjLoessXD8pUTwzugrweSA6pcSIWiW1EQomkZPYKAPszP1/AMVhE+BgMcNgNmR9L7rNfYFSNdGCLk9H7qPDLuBHp8IIREEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQXg/FySERJIkGbhUVdX/+ie2TQIeBUYBKnArcBp4FigEmoDVqqoOfETDvTCiQQj0JZ5Y3VoFVY9C4UxIL+eJ/V2UZNoptUbBoKDVG7GnZ7D0818h4HFjMFtJysgkHosxONDPkru/TMAzgFZvQJIk4tEoeotERaaNNneIhl4/5Zk2vMEoqgRZdiNmvWYojARg9cQ89jX189iOJpaNzibNZkSr17D31QbsqSZmrS5BVVU0Og3OTDMBrx9ZPreoXNZoEk8Gr30zURBXthQ0usSTxEsvhhErE0/kdtUnivzDHoj6z2lHVVX0Zguzr72F1uqjBH1eCsaMIy2/CFMwQv/LrxA8fBjj6NE4r1yNZDReyKMlvIeMogKWff5r9He0oTMacWZms/O5vwIQ8AzgzMqhs7aG2dffQvPRQ5zauZXJK68ks3g43Y315OUWUjJ+ErG3NmO87/P4Soez9tc/Y/mXv8G4iy9Fp9ejKgpddTUYzBbyR45hx9N/Ztqqawj5B2k7Uc2cG26l7UQ1LcePUDJlBjOvvhGtwcCiO+8l4HETj8VwtbbQVVvD9qcfp3LJcg6sXYOERDQURFUVcitGcvCNVwBQVYVoOISskVHiZ/5GwgE/RzauQ282U7NnB+OXrmD3C0+h0WpxZuew+4WncWblkJJXwKZHf8Osa29m/2svMffG2xno6qDhQBVv/u6XXHz3F/F0d6MocWwpaVRv2YSs0TJ9xZU40j5YQavwIfSeTBTfvpuqwp7fwvCFxJc8gKbnFDTvgpzxMNAMM+5LFB5bM0Crh7Dv3HZdNfDsdbD6r+DIhbqN0FcLFZcmQknKL4HhCyF73NAmfs8AqqIwev5FSJKEzmTkkvu+TsjvQ5Y1HN/8JofffIPV3/4xOsP7X9N0BiNTLr+a7voa3N2d5FaMIikzG4PZzKI77yEpI5t4LMqOZ56gcvFSln3+qwx0dSAhkZSZhUarI9DWRUuTjtKJ6UxaWkg4EKNufxdF07PQyBJjch3n9OsNxki2Guj3R2gdCDBifA7ffa0aq1FLmtVAS3+A8kw74WgcVYXBSJwkVUWv0fwTB094PxaDzKVjsvnlkX5GTP8BObu/DUocdGY65v0cg97M0e1rAcipGEnTkQP43QNklZTRdPRQIoAEQFWRZRm9ycyu559k1LyLuPSL/4XZZuflB75HJBhk3q2fQQLaThxHZ6wnt3wkDQeq6O9oIyU7l32vvMCRN9ey9PNf46LPfAH/QD9anQ5Zq8FosbHx0V8z7qJlQ9fUlupjOLOy8fR0M+OqG4iGQ1iTU8guH8E133+Q3uYGFEXBlpKK0WY9z86fp4i+cBYgwm4+8VKKYbAXgq5EUJ2z6J37QS+076NYexzjFVcTCeo5tO4FfAP9XHb/t9EZjJRMmc6wiZOJhEKYbXZ8/S4aD+2ndMp03nr0NwybOAVZlskcXoosaxJt/73ciYl71JyJYE762Hdf+JRJKjh3WdEckPUfuInk7Fxyy0ey96VnUBWFMQuXUDplJq62FqLhMCabHXdXB5FQiNbqo2h0emZfdyt1+3ZjdaYwOODC6kwh4HHTVd+OEndwtCrOvLJLUSMeNG98BZY8CMPmQzwCqLDzl6AzJ0LVDHZILUPqr8cYCxHvCqEpmAZm50c3T4LwMQn4POhNZrR/C5t6D419g2SZINDkRlVVJEn6wH2k2Yy0DQT+1aEKgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiD8n3ZBQkhUVVUkSToiSVK+qqrneZz9+/oFsF5V1VWSJOkBM/AN4C1VVX8iSdLXga8D93/Ew/5odR4HrRm2/S80bEksa3gbNW8Ko4Y/QGWumYFTJ3DFFdIKComEooT8fvRGM0aLBUnWoCphGg/tJ6dsBN6+Hkw2O0osRrpOx1+6v41G0jE1eyVNfRYe39XENZPzKE230u0N8ZWLyqhq6qfbE2L68FSGp5nZ0zCAVpawGROHvb/DT1qeDUuSge4mHzq9TN2hHhbdMhJJ1pBVWsGJ7ZtRlXcKmSWJ4sqJIGsTT7ff+j+gt0DED9PuTqwTj8KWn5yZh/ypMOmOc6ZHUeJ0NdSRmpNHWmExqqKQlJnNYL+LDJ0Jy8yZWObMAVkGSQLtBTlVhfehqirH31rP7jUvDy3T6g3MueFW3nrstxzdtIEpl60m5B/E1dbCss99icajBwl0dlI2cixj0/NxEWXL2pcpnTKdPS89w9TUa7j47i9y4PU1lE6byc5nn2DMgosBGDZxCtVbNwEMFZKpqsLhDWuZec2N+Pp6saakAioarZaXf/I9Jl6ykoPrX8NktZE/aiwABpOZoM8LgOad88bX10tSZjautpahcJ2mIweZeMll7Hr+qaH9kzVaktKzCAf8QwX8joxM+lqaASiZMp0Da9egM5rwuwcI+rzsfO6vDJ80jZ6mBqZfeS1rf/4AOqORkXMWsPUvjw613Xz0ENf84H/JLC75yI/VfzStEdr2w6Tb4eCfE9egntN0Xvskb3VXsf7Uo0ywFbF8+GyGvf41GHlZYr2AK7F9UgFc/si57Q60QCwMahxe/iz4+xLL6zbBnPvBmAKmswt8VVXF09uNJMlEggH8HjfxaJTuxjqSs3PpqDkFQDT6j5++7vcMYEtJIR4rwp6ahi01nVgkTDQcxmC2MtDZzoltbxHwelFiFxENh9FodSBBNBxGp9HhjxjoanCTPzKZznoPGq2MrJEJ9of55tJyDNpzAx3ykk388u1aBgJRMu1G4orK1xaX8fttDdT3+qnIsnHz9ELCsXgiaEUj4Q1F0Wk/ePGn8I+FIjGOtnpYNDKDI3YDD3RbuXXZ66RKbhRbLus7zSyTzhTJJ2fnUr9/LwAarY5YJHJWewfWrmH+LXfRWVeDz9VHPBbD3dNFJBgEWcZss7P2Fw9gsjuYctlqZFkmOSePnqYGymfMoau+Fp+rly2P/4HpV16PzmQiEgjiTElBicXJKi45c68AtJ04RvnMueSOGEbA4yG9aBjZJeVIskx/RxsH33iFtpPVAOSUj2DxZ+/DmZl9ZsCyDqbdA/sehVgIsisTBfiyCLv5NFA1GqSwD4x2OPA49JxMBOgkF0P5pUR8ARTJxqzrbqGr9jTp+QXIGg3RUAhPdydBnw9HegaNRw5gT0tHkjX0tTbT19qMp6ebSZdeRnrRcMgcBRf9ELb8KHEvmlaeuMbXbABPqwghEf4xrREm3gaH/pK4fyiYnggX83eD6dygrr/X09yIPTWd139+5rtPZ+1prvz2jwh4PYT9g/Q01mFPy6C7sY7U3HxO7thCwZhKGg5WUTZjNsnZOfjdbo5sWse8G2fx9pPN2FNMvH3trfy5/k9cNvJeJumspMqDmHb+PHFu660w9+uw46HEOa8zgRJHdjfD9p8mvnvN+HziO5QgfIoEPB7Mjvf/24vFFVr6A4zK1BKLRoiGguhN5g/cR4bdwMGWT3aerSAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIwr/bhUx2yAKqJUmqAvx/W6iq6vL32kCSJDswG7j5nXUjQESSpBXA3HdW+zOwhU9yCEk0mHgqtbftTADJO6TWvcyYOMC+DjOVGVkc2bSenuYGisdOwGAyIctaWk8co3z6bCSNTFJ6Jjuf+ysWRxJhv5/k3DzyK8ezq3YnADs6tvK9Sb9mfvkIshx6NBqZHl+EcCxOeYaV0gwrNoOWw61uur0hPjdvGAXJiSIdq9PAzhfqzhpfXoUTv9aNKRKnt6WR2dfdQndjPaqikDmsBK+rD6R8OPwUTLoNJE2iwK1mAwxfAD0nYP7/SxQNawzQsgcC/edMkUajJbOwmPW/eYiM4uHoTWYOb3yDpZ/7IrGGFiSdFjUWQ9LrkG02ZIPhwhwr4T0NdjWzf/36s5bFImFURUWj0xGPRtnz0jNkl5Qzb+ZCPF/6GlO+9EUGnnwKtb4Vz7WrOfDGK1RefCkB9wDTVl2HPT2dVx/8IaVTZnBo/WsEPG60ej1IErJGgxKPA+BzuUgrKKK3uRF3dyfbn3qc6auvp27fbiLBAGkFxSjxGJJGQywcJghYkhKBEL0tjWSVlNFZe5pwMEhSZja1+3Yz69qb2f7kn/B73KTk5uNqa6H99ElmXHU9TUcPY3E4GDF9FtFoDABPTzdpBUV4e3sorpwEgKzREI9GURUVndEIgLe3B29PN9OvvA6twUA0HKJs+ixO7dx61twp8RhddbUihOSjll6OJ3MkDYVTcY9YRIrWQn4ozK+a3+C15g0AHOk9wobuKh6bfBs5plSYejfEgqDRQ/dxGOw+t11LauLf7hNnAkj+ZvfDsOpP0LgdnAVDiw1GE460DDY98jCKEkej1REc9LHglrtofSdwwZaShtl2prgyFomgKsrQ+fQ3SZnZbH3iUcKBAKn5hRzeuI6pl19FbdVu2k8ep7epEVVVmHbldXQ11GEwmzGYrQD43f2oPh9JmRUM9ofY+0rDULuSLFEyNZNYXxjX4NlBFQBdnhD/vXwkh1rdNPT5CUQUHtneyMrKHCwGLc19fu5/8Si/u348Db19aGQoTLHgDcZwmsV1+qPQ0DvI/qZ+ur1hntzbwmfnDiPZoudINMrwHAODsV7ysqzs7kmhfPI06g9U0d1QR07ZCGqrdtFRc4oZq6+j7cSxoTbDAT+gEgkFWHTn3XQ31hPxK+hNZvJGjaFu324AKhdfwo6n/0IsGmHMgsWUTZuF3mhm9vW34u5qx56eSW3VLnqbGhizcAm7nn+KKSuuxJGVhVanx+xIIuBxA3BqxxYW3fV5Tu/aTtORg5ROnYnRZmWwr28ogASg/dQJavfuYvKKVWcmQaOH9gOJgDNZA321iXsrJfZxHALhX6EoqH21oNGBRgvGJJh8B6gq9NfTnpyLW/Jw+K8DjJtnoKe5geT6POxpGURDQY5sWodGqyPgcaPRahl/8XK0ej06o4loKMjpXdsZNW8RPc0NpBcUQ/50mPq5RN/uFtj037DwO9BdDVmj/61TIXwKOPISYUczvgCSDF3HQYlC+0GwZYPB+p6bhoN+ouEQNXt2nPNex6kTGG02dj33JAazGb/HjcFsJrd8BJGAH09PFwOdHRx4/WUqZs7F1dbCzKtuZMcLnSgxlcLRyYzQOvli72EO9x7mpoo7uDN1JqaF34HeU4lQn12/TASq2XNgw3/Bit9AXw0s+xl0HISTr0HOeHDkXsgZFISPVNDrxmR//xCSDneIaFyl0GlEIRFc8mFCSNJtRvr9ESIxBf15AvkEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRCECxtC8r1/YptioBf4kyRJY4EDwBeADFVVOwFUVe2UJCn9oxvmhaCCRk4Us51Hry+MUxdBZzAwZv5FvPw/3+PElk1nrZM5vAydwYDBYmH6ldfh7e3G4kxGkiQUSX1XTyrH3FvxtF1CdpKJeeWZWPQaHn67DkkCh0lHY98g310+isp8Jy8ebKPDG6RQ6kOrM1G5OJ+jb7URjykkZ1sYsyCPF2qf5FLTNApHj2PtLx8kNa8AWaul6fABLrnvfvC2w/gb4cjT0HkEMsfAuGshEoBRV8CuX0HmaPC0Qd6U95yljKJhLLj1s/R3tKGiUj59Nk5Zi6rVIBmMyGYZNFoknRbJZPpoDo3wgUmShM5gIBoKnrU87B9k/o13IAFSdw/2UBhl6zYUv5/g8Wq0n7uL6vqTpPX3kZSZzdt//D3TrryG/a+/ROmUGaiKQlJWNqd3bwfgxPa3mX3tzZzYsZmKWfOoWvM8x97ewPilyxk2YTLRUAijzYbJ7qCrrob0omFEQyEAIgE/liQnfvcAqqrizMqh4cA+Zl17ExqtjoNvvMKUy6/C6kxGlmQu/+o38PZ1M3zCZAb7uvH19ZJli1J5/TL0Bx9FeuvXROZ+hxWfvYv9m7czduHFuNrbMNrspOQV0NvcSHZZBR2nT6IqCraUNHyuXur276HxyEHm3n4XkAiW0OrPDWTQ6vUX9qD9BwroLOwsnMgD+36EK+Qiy5LF/RO/RpO/46z12v0d7HKms0gxkHTor+DIBm8HJBeD7p3CRSUOrrpEcJItC2bfD8q5QR2oKpicUP/2WYvTi4bRdOQAE5atJBzwE42Esaemg6Sh8dB+MoqHM3r+YjQ6HbFolLYTx6ha8zzhUJBJl15O4dgJGC0WANIKCpm26lo662qIBAPMuvYmbMlpSLLMQLuDjOLhjFmwmKzScnY8/RfqD+w9ayzDJ0xh5qUlTF81nJ3P1zI4EEZv1DBlRTGuQIRHtjfws9VjOdQyQF6ymVRr4ny1GLQ8u7+VmcPTSLPp0WkkXP4If9rZNNS2Ra/BYtCSn2Jmb4MLCYl3fSwJ/4JQNM5DG2vITjJxqNXNlOJkvvNqNSsr01k8qZ9v7XmAnkAP6eZ0vjLha6SanSy87bM0HTlE8YRJeHq76Wmsp+HQfhbdcTcntm9B1mgYNW8RDQerKJk8HSUWx2A0M+jqY8bq6+lurEPWJG4HFSVOLBIG4OimRAiVRqdj2ee/RkZxCa/+9EfEImHGXrSUE9vfpq+lif7ONgpGj6OvpZmxi5YQi0QIBwI4MjLQ6nX0NjcCYE9Pp/3kCQYHXOfsd8PBfUxafgWSJCUWxMNQOBPi0cTfY9ZY6DkFBtuFPwjCv0hFjodBawRFhcxRUPUIhL0w8jJqpRi/rv0OP1j+c2oPdjH7+lsJer3seeFpKmYvYNLyVfjdA6Cq2FLT0Oj1dNbXMmbBYg6sXYNGq0VVVby9vRitduzOgsT12NuROD/mfSMRKjH/2//uiRA+DRy5UL40ETYWCyW+t+z/I4y5GurfghEr3nPT/rY2gj4fuvN8R+lpaWTCsstY/Nn7aD91Ao1Oi8FsYd+rL1IwdjwWR9LQuqd3b+eKb34fJa4j5O8kpyyJ7GF2NL2NGDVGQvEQz9Y8wdK86YxQksHXA0efTpzvc+6HmvUQ8iTuX5KLEvcyW34MGaMgtRzm/RekDr8QsycIH7mA14sjPfN912noGwSgON1OHeD3uEnKzPrAfWTYE/e8vYNhcpLE/zEIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiCczwULIVFVdaskSQVAiaqqmyRJMgOaDzCe8cC9qqrulSTpF8DXP2ifkiTdCdwJkJ+f/0+O/COgM0M8BhJQOBuatg29peZM4u1eO9OHm6itepviyonIGg1KPH5WE5IEkiQTj8VR4kEG3f3ojEYsSU5U6ezuNLJMssVAaUbiad3HO7xcPj4Hg1YmpqgYddlsr+khw25ke62LdO9JWHMr7vw/oJDKwlsqiMcUVBUOb2qmdWQrinYSqqJw6Zf+i7aTx4lHo0xesQprcgooIdj6P1A4C0oWQV8t7P090aufA30KuimfgcZtUDADUoYDynmnyeJMpnTqDHyuXpBk7AYV37E64gASqLE4kk6HrNOjS07+6I7PJ9An5tx9F2tmATOuWMXGPz46tMziTCY3O4/Ib3+PtbKSgaeexu/zkfblL2P+zJ1Ex42htvYUhZWTCfkHObVjC+MuWsa+V18kPDiIRpu45Lg7O0jNL0wUsLe3sffl5yibPou8UWMxmM00HNiPt7eX4ZOnUb9/LwfWvcq0K65G1mjobWqkfPpsGg5WUb31LWasvoH9r7/M/tdeZuKll+HMykFRFEbOXUj+qDH4XC60EQ/j2IVBMxJl+Gx6mjfRnJYB+SmcUKP8b9NTzB+9hGDFbMLREDanj+bFyRTmp+ArihGKy0TTR6AN2ZmYUs6pHVs4vnkjky+7Ekmnwx3sJ5As02+JY0tJpf5AFVNWXsmOZ/4yNHdGq42s4WUf+3H8OPw7z98adw3f3f1dgrFEWE6nv5Pv7/0B35r6Le7bct9Z6/aGXBy3FTJz9Cpo3gG5kyB9BCgxiIbg6DPwxlchHgFzClzzLEQDid8D7wpOmHwnSJrENe5dDGYz0WgEndFIb0sTsWgEqzMFnUHPss9/heObNyFrtUio9DQ38uKPv5MINAHW/uIBLvnC/ZRNnwWALGvIGzGalJx8IqEgfa3NxCIhkrNySS8sRtbqaDl2GEdGJibHuU+MN1mtKOEIB9Z1M33VcOIRBa1epm5/D8ljk/n2JSN460Q3b57oxqTX8Otrx1OaYSOmqLT2B/npxtMsqshg6ZgsxuUlcbjVPdT27bOK8Yfj/G5LPYtHZjKpyIlWK50zhk+DT9q1t65nkDdPdnPr9CKqGvu5aEQGX7mojEllfr649Xv4oj4AegI9/GDvf/PrOQ9TEZfJNRejsSgUX3cx3qgJbe8Rkpp+Qd6SW+nxauiqOc6I6bPYs+YFJq9cTX9HG+2nTuDIyAAkSqZMx+JwYHGe+1mrN5rob28lq6yC2TfcgixpsKak0lV3GmtyCvFYDKvNgUvWYHY4qdu/B7PNgUajJRoMDbWj1eoJBwZJyyug+cjBs/ooGD3uTAAJJAIsWvdC237QWxJ/hwv/OxESgP1CTP2nzift3B3i7UBq2g7jrgMV2P+nRECd3gp1G1EqFnLKc4qckSHkyTmYrBFQwd3didluJ+AewNXWijMzC6PFyhu/epCZV99ARvFwDqxdQ+XS5QQHfYQGfRgtVuwVI8GaAdt/CqiJ0JrSi6HjMJRdDDpRYP5J9Ik5f535kFQI2x8CjSZx/lTeAA2b4eRrUDALLGeui9FIHFmW0GhlAj4vQY+bksnTObV9M/FYDABJlhk5ZwGoKvFohIIxY2k7eZyGg1WMnLuI5OxcZFmT+LKnqmj1BqLhMLIUZfEd5Zze20ewf5CoJoj8TqClRtZwzFPPcFM++oIZYE1PBPvsfywRoJIxErqPQcQPeVNh8Q+hZQ8EeqBlF1jSwSSuncInX8DjJqvk/b8vNfX5ASjJdlIHBLzuD9VH+jshJD3ekAghEQRBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBeA8XLIREkqQ7SBSXJQPDgBzgd8CC99msDWhTVXXvO69fIBFC0i1JUpaqqp2SJGUBPefbWFXVPwB/AJg4caL6kezIP0tREsWXk++A3InQtg8KpkPxXJJaMnEaJHQjRtF26gTjLlrGwXWvDm2aVVqBNTmFkN+PyW7nyPrXcWbn0Hz0MOOXLCcmnwn10EpaxqaNodYrMxCIAjAm18HXXjhKOKb8rb6NB1aN4aWDrVw/IQPTnp+Cp4Wc5C5eXhPhyMbWofZGXGfDEtKi1enxD/Sz/tcPEYuEATi07jUuu//bpOq6Ek/ervoDnHwVtWg+PQtf5MBLPgYHxjB6PBSOKMLUsi5RHJcz6T2nSZJl7GkZiRcDLciygqLXIxtNSDot6HRIFhOyXv8RHpxPnk/UufsuxqQ0Zl59I662FsyOJMz2JLTxOINHjzFw8hTpX/sqg5Ew/oJ8ak8do9iRhM5ooOrVF3BmZgNgsFrxD/QDoNUbMFqs1FbtZs71t7J3zXMEPG4iwSB6k5nD61+j+ehhFtz2WQ6+8Qqb//R7xi1eBqrKqZ3bmLzySqrWPE/Nnp3Mvu5m6qr2UrtvF3NuuA1Jluk4fYJtT/4JSZYZPf8iUrMyKC5KJ3lgLxHrDA6mFtAT7mJN4BTVbS9x++jb+dWhX7Fi2AqerXuZOncdd465k/+u+jFfnfhV1res52D3QUqcJbzZ/CY3jriRH5/4HTm52dyz4C4ea3yeipRRBD1Rxg7MJDVsxXbxpfg9bqLhIEvu/jKdtaewp2dQNHY8Kbl5/87DecH8O8/f9sH2oQCSv3GFXGikszOvihxFuEIumrQWZrYfhMzR4O2E3b+Glb+F3lPw+n1DoSAEXPDibXDFY7D8V1C3CVz1ULYkUbDcVwvD558zHpPNTn3VHnyuXvQmE6d3bWfmNTegKirlM+ZgtNqIhCLU7ds91JfWYECnN3Bg7RqGTZyC9l3XO7PDgdnhoL+zjbp9u2k6chCNVoctJZVJl15OPBqlbNpsTm57e6gAWqPVUjp9NjpXO1kFabz5SPVQe84cC0HFziNbWlgyKpO4olLf6+eBDaf40qIy7nriADElMa6/7m1h4Yh07ppdTKPLz4A/Sl6yCYdJh0knc+fsYkLROCadZmjaPm0+adfeHl+IJJMOk16DzaDlzXeCYh4tNg4FkPyNN+LFFR1AS5CUjZ8ZWm5OK4cxV8FAHc71d5BUvoy0yXfy1wcfIrukDHd3J9FQiIaDVaTk5lMxax6yLHNk03pGzl2IPS0Db2/3UHvjl64gJS+f1x/6CUGvBwC9ycwl930DNGY6VB+xUJAtf/4DGq2W7LIK+jtaObljM/NuuhOAjOLheF29FIyuZKCzg5yKkbSfTJyX2WUVODIzcbW1kpyTmwgjCbjAnAoz74N44t6Gqt9DxaUXcPY/XT5p5+6QiB8cedC0C3Inw/R7Yc9vwNsBuZPIcBSSa82lMdSCWSpn3R+amX+9hcJx49n21z+y7L6v0dPcSNvJ4xx7ewMTlq1EpzegxuNc9JkvYLY7CPq8oCiE/D6o2ZBoe9o9ibAajQ46DkHzThI34sIn0Sfq/K24BGQNdB0BjQEatkDzrkSwx8E/w6jLCGqzaanu49TebnRaicrZDjSaxH1GOBjk0i99g9bqY6iqQuHYSgz2JGJBP5IkcWLr23Q31uPMzKKr7jTZpeX0tbdQMnkatXt3Me6ipWx65GEGB/qZvOImgoN5pNgNtIY8XJK1grHayaTpM2gfbKQl2cbwaBpodbDx24kAkuzxMPoK2PgdKF8GhTPhxKuJIKfCmdBdDdYsKF30b51mQfhHVEUh6PNitie973qNfX6sBi25WSkABNzuD9VPus0IQLc3/M8MUxAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE4T/CBQshAe4GJgN7AVRVrZUkKf39NlBVtUuSpFZJkspUVT1NIrDkxDs/NwE/eeffVy7guD8agx2JJ7O7W8CUlHiqti0TVWPgZKeXWek2Dr35BtMuv4rDb77B9NXX4+npwpqcQiQQIBYOo0SjxCJhZl13S6Igx+Ggq6GOvGF5LC5cjE7WUZZcRjgepq53EINOg6KoRGIK919czqkuH6FonDG5Dix6DUUpFj47wYz08jEADDEX0y6bQF9bgEgoRkahHZ+ji7GxEmRZpr+jbSiABEBVFQ6uf538a5agee0LUHEpvun/jxaPlY5dW0jOzEeSHby9ZpDZS4sZ7e+DaXdDxPvB5kxnxBSsImgfQ1yTeEK4bDNiTNVdgAMk/CODAwO89dhvCXg92FPTCfsHicdi2K++kazfPUxAo6HD5+HA+jeYmJ9Db0szOeUjObD2FQwmM0VjxwMQCfgxO5IIeNzse+0lJq9YRdDnwdfv4uK7v0x40Ed/RyuddbU40tKIRcLUH9iLxZlMb3MjA53tTLz0ck7t3Epn7SmWfeF+gl4Pfs8AOSNGYbJaWffwg+hNZiYtv4LyGbNRIiEKhuWRNbifVusY9tvGMah4+cHO+7l73N3s7znAwvyFrG9cD0CONYdX6l9hYsZE9nTuASDTksmD+x9ElmSWFS/jzeY3MWqNeCNeFFVhp2cf23t2UZpWwazQIjRKP/1tx9HoNOgMRk7t3IK7u4u0/EKmXH4VVmfyv+1Y/l+mkTRISKjvKjY3aoxYdVburbyXI71HyLflY9KaeOz4Y/xk+g/AkQuHn4akfJj1xcQ1KhbgnCQNdzNEI6C3QsZoyKoESU6EIzgLwXruR1rA7WbYxMlIkkwsEsFks9F28gSl02biam1GbzIxOOBCpzej1emZtOIKYpEIkVCQtPwi4vH4eT+Y+9tayRpWQsGYSpR4HFmSOLVnJ3mjxtBVX8P01dcz2N8HSFiTU+huaiA1p4j8lGQMdhOujkEcqSaceVY2DnjxBKNkJ5mQZQmAnXUurpsSGgog+RtPMEaLK0CnJ0i63cj+pn4q852kWvU4TDrSbXoa+wJMKhDn90ehocfPLdOL+M3WOj47dxjt7iC+UAyj1o9W0hJTY0PramUtBq2ekCEVi8EO4Xc+a3tPweEn4eqnUFUV6dgLDDSeIBoKYrTZUeJxFCWO0WIlGg5hSUqm6pUXCA36OLTuVSZeejmoKtFwGIszma76Ggb7+4YCSAAiwQCnd2/FkZ6HGpOJThxBck4u/e1ttFYfG1pP1mhYcs+X6Wtp4timdZROnYnV6cSeOp1Rcxai0elQVZWOUycIeryEg36yS8rBngN1G6H6pTOTM/e/wOS84MdA+BdpjeDrBmsa6M2JMLrSi8GcDN3VpLhauHHEjYRc2VRvbmX8RfmAG1tKGhMuWYksy4yYNY/goBeNVosSi1NTtZMJS1ciyxr6O9qQkNCbTIBEb9ROa38mUXcXeZlZZB57GHmgARb/GOIxELeQwj+i0SXuC168DeKRM8tHXgbbHgBJotNyCX0tJzGbe3FkFLPv7TCViyxIkkRgwEXcYqGocjwGiw1/fx89dTU4UlMw25MomTKTwnETkGQZWaNh/W8eYvZ1t1A8fhIZxSW0HD/MYL8LgH2v/oUrv/4jTKoftzmdsjeyaK0P0EovRqsT7WdTIXACkopg0fehpxp6TiUCSZQ4pI+All2JwLSRlyVCeg49kQgisaRCTuW/aZIF4R8L+QdRFQWz3f6+6zW6AhSlWrAmJSNrNPhcvR+qn3S7AYBeX+ifHqsgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCML/dRcyhCSsqmpEkhIFzpIkaflgjyS/F3hSkiQ90ADcAsjAc5Ik3Qa0AFdemCF/ROJRkHXQeQha98HIleDthLAPsiqxGLREw2HyR4wm4PVwetc2JFnG4nASHPQSj0bJKi1HbzKhRGO8+ftfYrLbiYZCLLjtcxx2H6NmoIaYEmMgNMCNI26krsfPgooMZFkiGI3j8kcoy7CikSX6AxGSLXpcgxG6AwZyiufAiVdo8VewbX0dliQDOoOGuv09lM5Mw5ZvQ1FVIoHAObsW8Q+iao0w9+uEOk7y1saD1B8+MvT+yLlLyCiawKE9cYZPHINp0/eIrnqVyN69SFot+uJitM5EEbE/6gcVLHpLYmNXPbLrOJaUIGrMi2rNQFY04MkBxnwMB054N1WJEw2FQFXx9fUy8dLLMNkdGPPyOVl7Gnt6BlqTmRlXXUckFCIpMxtJlkFVCQf8SLJMal4BJ7ZvZurl17Dr+SeJhoLsev5Jpl1xDSl5Bbz0o28xeeWVHN+8kYDHzZiFFzN20RJq9uykYtY8KmbMYXBgAK1Ox/xbPkPN3p2s/81DTL/yWva+9BxKPMawiVOYuupaVCWOMSUD7bAxeKMK3akqbczmh1U/YErWZLa2bQUgppwp4v/b9UlBAWAwOsiolFHMzp2NN+JFRSWuxjnSe4RbRt7CQGiAQlshJZYi5tqmMG5MGUVqLr5oPduefHSo3aTMbIrHT+LgG68y0NGOEoshXBgSEtePuJ4nTjwx9PrOMXdikHTMiQ1nUkBPnxrhUe96Lht+GdnGFDj4eGLj7uOJwt3rX8JjdmIsmIGheeeZxu3ZICnQWgVacyK0pO4tiAYgd/J5x2NJcnJk4zo6Tp9Aq9ej1emZe/OdhP0+9CYzXfW1FIypRKNzsOSeL/PWH39LwOMe2t7sSKJk8rRz2jU7ktjx9J8Jer1IGg1KPMbcm+5AkmRajh2mtfooRqsNgNCgj/zRY8mbsYRNPz5ILKLgSDPRftpNJBhj2h0V+McoSJJKjy8RNDUy247y9yEsgE4jse54J3NK04kpKlaDjmNtbpLNOg62uGnt93PXnGGkvVPQKfxrRuU6+ObLx7lz1jCC0Tgl6VaGZ+pw6HXcNuo2fn/s90DiPL9pxE3oMROR41gWfgd2PASeNkgqgGn3EEOlSaehs2gSGd5EQW9r9VEKx46nbt9upq26FmSJrrrT9LU2A6DE41SteR6twcCEZZex9+XnSMrIRI3Hzxmru7Mdb283rdVHqdmdw+zrb2XtLx8gFk6cUyWTpzM44GL6oiX05eVjS03HlpzMrueeIuDzoMRipOUXkpJXgCM9k5Dfx5GN6xIhJK46mP016DoKgz1QMB26TyT2L6X4Yzoawj9Fb4bkQtj8I0irgJlfgu0/hYEmcOSSWb6C0Zbx7Hqhi2gozq6XBpm0VOLYWxvQaLXMv/WzuLs6Obb5TbQ6HbFIhHk33UHIP4jBbEaSIBqJoDUY0BkMnD5+nL0vPQOAJMlcdt8vyPD3o/ecQuvrAuP7F7MLAgDZlXDzWqj6AwRcqKWXEPHKRAu/SDhpNtse/wWu1sah1adfeTMokzDa/EiyBlmrIRoK4entRafTEQkGsKRWUL15E+lFw6jeuone5iaioSAVs+bSWVdDceVE9EYTvv7+oXZVRWEg2kd4WC76o3p663uG3gsNRjn1di95RXVoTq2FsddCXz2cfgNkDUy4Afx9EA9D+yHImQANmxMbN22HZ6+F2zaBI+fjmlVB+FACnkTYmcmR9L7rNfYNUpnnRNZosKem4+7q/FD9JJv1ALj8kX+wpiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIwn+uCxlCslWSpG8AJkmSFgGfA177RxupqnoYmHietxZ8tMO7gDQ60FsTT6Q22qHrCPj7UQumcjKagVb2YNNL1NaeIqu0DJPdQdDrYXAg8RRsrd6AxZFELBol4POw+DNfIBwMYDCZ6WqswzwpnYsLL0Yv68mz5eE0OqnMjxKKxvGHY9T1DGLUafj1lno0ssTqiXl0e0NMKU7BpI0ninlV6O3TAOB3h4eG7moMMmL6cCLdfnJHjOLoW+vP2rXKJcvRDraD1kBv4Wrqn3vgrPert65nzg1TOF0VQypfSthWSusXv0u0sQkA05TJpH//e+xUa3nk6CMoqsLto29nZs5MrEiJIrnT65CyxiDVdcNAI1zzzAU8WMJ7sTqTmXDJZex58WnGL1uBNTmV3qZ6dAYjLcePUDp9FnqDia1PPEZydi55o8Yx0NGO1ZnC4ICLfa+9xOh5F1GenoHZ4WDh7Z+jv6MNWdZwes8OpmRlUz5zLsc3b2TKZasJ+QbwdnVQPGkGZdNnceTNddT29eLt6aKnqYGxFy2ls+Yk0VCQA2vXMPPqG/C5+tCbLSQNG0GPMY0r/3KQvOQ4dyyO8b9bvs6to26lxdfM3Lw5DEYGAdBr9GhlLTs7dnL76NupGajBF/GRZcniVP8pbh99O1/b9jWuLL2SLEsWnf5Otrdvp2aghitLruTno3/Ivqeewt96koGmRgzDSzm57e2z5s7d1YHRYgWgctkKbCmpH/vx+0+RZU5ja9jNPePuIaJEMGqMjEsfR9axDvq+/HWMkQi5sszPv/ZF6scNY/i+v8KUz0DGSFAVOoJ9vOo6wCuH3mR4biF3jLuCMW9+PxEmtfK3oNFDXw1Y0iA0AMF+MNjAkn7e8UiyTNbwUsqnzyIeiyJJGlwtTRhtdkL+QbJLy9HpDZzYshGj3XhWAAnAjmefwGArJHt4OlqdZmh5JBCkfMYcdAYDqqoiazQMdLajKgp5I0bTWn2U0KBvaP3cilEEA1HCgUQATn+nf+i9np4AVoOW9oEQmXYjwWicVRNykYH8ZDMt/WcCqEw6DSsrczje7qWhb5ApRSkUpJiJxBXKMq2MzXUwKtuBXntmrMI/b2yegy8tKuHH604xPF3HRZPcPFT9Z2Qkri6/mm9P/TZdgS70sh673o6sOBj0teCMBmHavYmAHL0FNR7jrWA7X9/zfWJqjCWZi5g6eTKNVVW0Vh9l7KKlBDxuLMkpdNScJH/kGE7v3j40jlg4jE6vJxoK4mproWTKDOoPVJ011ryRYziwdg0AA53teHt7WHrPV+htbkCSZDpqT5GSV8BAZzttJ6sx2R24e7qZuupqPN1dyBoNjoxMVEVl32svkZKdy6CrD1VRkHQmWPslSBkO5hTY8TNIHwHvBEcJn2CmFKjfnLjXNCYlgmSm3QthL2gMEPZgilmIhs4E2yhxKxqdjng0yuENr1M+cy7zb7mLWDiM3mTm5I7NjFm4hFgkQjgYJB6LYnY4iMcVhk2cMhRCoqoKVRvWMV02Ezt8mJzhK9Gn/ZvmQfh0kSTImwyDPaiHn8Z7OkjHA7+HWAzpwfKzAkgA9r32LHkjR5KkHaRXpyPgdqOqCjZnCnUHq8geXkosHMFkc2C02pmw7DLCAT8arZaavTtpOXaEnLIKDryxhuETp6KbMoM9Lz2DzmDE6EwiHo8Tc537Nb2nyUdk4hhMahja96FO/RyULEIa7IaAC0xO2PKjxLUznAh0QGuE8TdD5kjwdYE1PfFdVRA+YQJeNwBmu+M91wlG4rQNBLm8MhcAR0Ym7u6uD9WPViPjNOtwDYoQEkEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQhPdyIUNIvg7cBhwD7gLeAB69gP19suhtkDMekosST9TOmwaWFB7e1EVuihmUGIVjxqPEFWZefSO7X3iKwX4XJpud6auvR2c0oyiDOLNy2PbUnxjsdzFs4lRKp81Ek5yJ05qCTtZh1pjp80fwhWI4jDpkCXzBGOuPd7FsdBaKqvJMVQt3zCrm4c11LL46DXpOQWoJ2anpnNjfdNawCyuTCRj6MADRWJSFd9zDye2biUXCjFlwMbkjRkHcBWs+S2D2X87db1XFlgJjF+Ri6HmC7n3KUAAJQHBvFd4d2/mm+iuCsSAAX932VX41/1fMxQSLvg+vfA5a9iQ2GHstmEUF6b+DJMsYR8+gTNGRU5zLofWvM2zCZIw2O/mjxxENhdj650dRURmzcAk7nn4crd7AzGtu5NTOrXTV19Lb3EhaQSGRQIB9r72Et7cbg8XC3BtuJx6LMWHxEqYsWYJOr8FhkmhsGeDlB3/E5JVXcnr3dvQmM+OXLKenqYFjb73J9NXX0dNYT09TA/7eDipHZWNveJmmQTOesImvrjBjsw7wh+MPE1EiRJUoAFtat7CseBnP1zzPy7Uv86UJX+KFmhfY27GX70z5Fl3+Tr41+Rt0+7tp62timGMYBKN8c9z9PNX4HFVdVSzOWcIy+xLe/v2D9LU0kT9iDJ2168gbOZpIKHie+dNQtuIGzGOnIMnyx3z0/pPIzM+bjzvsJhqPkmnJRN/txvXN76JG3ikuVBTc//Mzikf/AcvwBeBuhpr1xBx5PGYz8Fz1ywC0+drY23OAp69/hmHGNEgZBu52GHcd9NYkiuhHLAdnISRln380sgZVibPlL48SCQQonzGHgnETsDgc+FwuIqEAFoeT6q3rqFxy6TnbR/x+Wqt70OlNZA1LGlputJjpqndzYvtmVEUhp3wkI2bPIxoJk11WTsnk6dTu2w1AyeTpZJWUs+ZYFympRrx9oXeNTyIl3cw3Xj/KvfNKuG5KHu5ADItey55GF0tGZWLQyfjDcTJsBvr9YfKcZo60uslxmIjHFRaOyECWYFS2Qq7ThM0kipk/KiadlmVjshmebuX4wB6+W/WNofe+u/u7/GTWT0gxpJBkTEJVVQ62tzEnvQBl73eRlRiklUHPCVon38q39/0PMTURQrOuayOWsSu4ctq9xLwBrMmpeHq68HR14mprpWTyNLJLy+moOYVGq2X8khV4eroBUOJxOmtPMe2Kazi4/lWUuMKYhYuJBINEw2fOraDPw56XnmHiJZdRu3cXlUsvJa2gmBd/9G18fb3Muv4WdDo9r/3sx2ft87Iv3M+w8RPZ+dyTXPKF+xPXy6QCKJoLjVvAVQc6M8z5+oWefuGjIMswejXoTNCyCwa74dizkDUO+htQvR1kXjEXq9PA4EAiBO/U3jDzb7mPHU//noIxlaiKQl3Vbur27caSlMyEZSvQm8wM9vdhT00jHo8T8HiIRSJI2bkUT5hCw4G9AIT9g8irVhB68im8b20lpbhUfAYLH1zGKCKp8+n88i8hlrh+xs9z+sTCYSIhP1kWlbgtE0uSE/9AP56eLpIyMtHq9ESCAQxmE9v++hij5y2i4dA+Wk8cJy2vgFnX3MSu554k6PNyYO0ayqbNYtjEKVTMnsfhSA39bf3MKVx2Tr/Dxzkx6vsgaxyqVo+Kipw1Bnb+EnqqobsaAHXq55De/BbIGlj+K/C0wYE/g7MocR9TPAeM7x30IAj/DkFvIjjH7Eh6z3Vqe3yoKpRn2gBIysjkdP3291z/vaRYDbj84X+8oiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIwn+oCxZCoqqqAjwCPCJJUjKQq6qqeqH6+8TJKANvDxh6wJaNZMnAY0jj28tjpNoM9NafRlXiREMhTFYbc264jYDHgyUpCb3ZQiwSobu+jqpXnqN06kzMjiSajx5iy+N/YM79X8JoNeKL+DjVf4piy1hcg35ynGY8wShj8hzsrO/jiT3NAFRk2ciwG9DIEho1BqhwYg26cSspn5bF6b1dqIpKwagULBlaNrTv4CL/KCLBAP0dbQybOBWj1Uo0GMBktYEuGW56FV1XBFtKGj5X79BupxcNw2w3c3xbP8XzFhDY95NzpiZ25DiZUzNp9J55qvgLp19g7si7YM9vE4XG8XDiyd0teyDkvtBHSziPPl+Ye9bUE4kl8WSBSkpOHnvXPM+ouQvZ9+qLTLn8KmLRCHkjR9N89BAAsUiYrU88RnHlRBZ/5gs4s3M4smEtiqJw0Wc+TzwaBRV2Pf9XSqbM4MTWt+huqGPGVdcjyxoOvPEKqqKg1SVCDSLBAH1tzUxesYpTu7Zzasdm5ixfTPriyZg2fRVpXR2ehd+hO0XFoq/jtzu/yU0jb6I7kCieN+vMyJKMQWNgtGMEF4/6Ge6WNhwuJ7+s+D5SNESwswd5j4uU6TGCp7qwSxruz7yWYy+vp1H3Ivdecx2Wgs8T96oEetrpbWpAbzITGvQC0HhoP2XTZnFyx5ahudPqDeQUFnPvOjf5ng5+l59JmtX48R7A/xBhJco3dnyDhfkLSTGl8ELtC/zIch2K13v2iqqKrs8DmRFABb2VjqLpvFT13bNWC8aC1Ee9DMuZmliQlANGeyIMKR4GYzKkFL7neJqPHuL45jcpnTYTvdFE/YG9dNScZN4tdxH0etDq01BUhVg0gsFiRZJlVEUZ2r5s+ixUJAY6A2eFkEhaLZIkM+Wy1UiShLevF41Wh6zRoCgqI+ctpLByApIkYbYnEYzEQFKpvKiAQ2824+0LYbBoGX9RAS2DIfKTzThMWqJxmcJUKyatzIzhaWw60c3Gky4qMm1MKHBypNVNIBLj+ytHEY4qpFoN6LSioP9C08gSb7e/es7ydY3rmJY1jVfrX2VXxy5uG/ZTnjke5PKpP6OkZx3GprehYjn96eUEqgNnbftC+yssHJnNjMP/w2nHk+x+4WmSMrOZctlq9rz8PMWVE5m++nqyS8uJRsLojSYcGZm0n6omo3g4aYVFTFh2GemFxTQePkDQ62bODbdx+M21DLr60Gh1BL0ekrNymHDpSo5u2kDJpEF8fYl7hPT8InY9/+Q5+9R09CBqPM5Fd32e/NFjEws9rWBJgXnfACURBMCBP8Oi//5oJ1r46EkSOHKgdS9IMuRMgJQSqF0PeVNh1CpM2igzVw9n5wv1+Fwh4lEV5GJWfO07BD0DvPLgD0gvGsbESy8n6PWw6/knmXfzXejNFnoa61FVFRUVi8NJLBKifNqsoRCSYROnMBgYBCBQVYV13jyMpaX/zhkRPk2SC4kahp8JMQMc2XnoTSYiwTOBc8MmTsHX30uHPhedRsLvHsDX10ssGkGr1RGLRZE1GiRJJrusgnAgQNm02UxeeSX+gQE2/uFXxN8JOQE4vWcHV37rh7z12G+xXT+TZEsyG12vUnnxAo5v7ESJq+SOTKZscjKqcThqLIRizULryAJFgUm3wd5HwOiEyXcgFcwAVz1428DbDg1boHwp9J6GtiowJUHR7I9xYgXhHwt43gkhsb93QM7pLh8AZe+EkDgysgj5BwkNDmK0Wj9wX8kWPX2DkX+8oiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIwn+oCxZCIknSFmD5O30cBnolSdqqquqXLlSfnzj29MTPOxyAw5QIV3CkZ9LVUE/Q6+HQ+teomDkPvcVMf3sbh99cy/IvfxOd0UAkGOT45o1DbSRn52Ix2nm58Vki8Qizc2cjoeWLi0oZnevANRiiuc/P8nHZWPRaZAk6PCEUwBeKkWTWg68HJtzMqd0ufJ444xcXIEnQVe+hdqsL63wLKlBTtQtLkhOlrZnuxnoqL74k8YR7gKyxyL2HqLz4UjpqTtLTVE922QgyioYR9GuIhMJIYS/mykrCJ0+eNS3GigpC8UNnLUsxpUDYB52HEz/vNmrVR3M8hA8lHFcoy9IxbWQA4mYOv7mW8hlzqN27C+BdQSFBLEnJQ9upikL9gSqsyalIssyYRUuJR6Ns+sOvGTF7Hruef5L80WNpOXaY1uqjTFt1Dbuee5LSqTOJhkMAtBw/wqh5izi+eSN1VbuxJDm55O4vkFb7OIaaX0F7KlG9mY5Vj/BKsIXnDj3EsqJlhONhOgY7KHYUY9NYcESMPFv5B2p37iBHr2fz478gY1gJptHjeP3PTzL+4uXsev5Jxi9dzo5n/0rA62HKytXsePJxdEYTM6+6gQPPPEvZ9FkcfONVRs1bhM5oIhIMYHY4AehtbiSnfCTjLlpG4+H9ODOyGFc+BjXq4/+tjrKn801eqDvG/Py5lCWXfcxH8f++QkchGaYMXmt4bWiZNdWBPzWVeF/fmRW1WvRJydB3ELY/mFiWV4lRa2QwOnhWm3qN/uxOjDbIHPmBxmMwmwn6vBx5842hZZklZRitVnRmEzq9HkWJI8kyx95az5wbbqNm93YCXi8VM+YQV+LIGh0Gy9kfz9akZEx2O7Iso6oqliQnJkcSJquN/a++hCUpiezSclQkTu/aht/jpnTenex8ppaSSRmUTNITiygc3tRCxfJCKrLsROMqkiRR3+Mjw26kzR1k8+leHlw1mqqmAR7aWMPKyhxumFZAssXwgfZf+GhoZQmr1nnOcqvOyrOnn6XR20hF8gg6eqz4AiGerNOxtWYaP7z0ZjKiLSSF/CQbk+kP9Q9tq5f1ZIX8EPbiH3AB4O7q4OSOLUxecQUA2aXlDA64UBXQ6vQk5+ZRW7WLg2+8QuXFl2Ky2VnzwJkgkNq9u1l4++eIRSLse+1FJEkm5B9kw+9+AUBOWcXQupFQEIPZcs4+maw2plx2FUbLmffCqp4B6wQUv4LTfwrTiScTwWTx8L84s8LHIh6BU68nAg8ATM5EwFzFpUiOHEKRGMefPUZeRTImm45oOM6+15uYeIkDkykRzNDTWE9PY/1Qk1qDgeTsXGLhMNFwCFVRkGUJJRYnFomQnJ1LydQZuNpbyRs5Fr9Oh6GsnMC+fehyctBYzj33BOG89AZkixnFnwhy0kdl5t54O6d3bWegq5OCMePQm8woMYVIOITWaECvN2JOchILh4hHYxjMFjQaDamZaQR9XuLxGAGPG53BgLev96wAEkhcb+PRKP3trVRq8/nm8Z8wL38eSdPizCwbhU6SaY9G2OWOkenIZGKBE60kJTaWZcifCrmTQVVBo0ksn/lFGGiGTd+B3Enw1rtCnKrXwE2vQXLRxzChgvDBBLxuAEw2+3uuc7rLh0ErU5CSuKYnZWQC4Onpwmgd/oH7SrXqhwJNBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQhHPJF7Bth6qqXuBy4E+qqk4AFl7A/j5VLElO8keNxWCx0tfazPanH+etR3/DruefRKPTYbCYScrMxuxIOmu7SStW8XLrqzx96mlerH2R+zbfR4AOphSnoJEl4gqUZtrodId4eHMdj25vJMWix27UEo4pGCLuRKHalp+QUWihr3WQA+ua2P9GE22nB8gYbmNR1nwkwJmZTVp+EfbUNApGj0OJxdG8U9imqiqoKjqjgXAwQE7ZCEKDPhzpmdhSTFTMyEIX6UNXUIBp/Pih8dsWLUKbnkY4dqaQWCfrWFK8BDRasGWePVGSDEn5F+goCO8n025kVmU7D5/4Bm5fomA9GgpieKeQt+X4EUbMnk93Qx35o8Yg/63okUSxcFHlRLb+5TEaDuzllf/9PqFBL37PAABZJeW0HD8ytH444KfhYBUVM+YA0Fp9jIGuDmasvp7Zd32J0pu/SpLThL5lC82jVnBk8s08NGYRa6N9/PHkX9FIGmJqjLnpM5mglvDT4d/myobR5Lfo2fC/D6BXtRxYuwaAkknTqFrzPHkjxnB6zw4A9CYzPlcfWSXlNB8/DMCoeYuoeuV5/B43/oEBgj4vp3ZuY8KyFQC0nTzO+KUr0OoNHN7wOkG/n6V3fYXxzT3Ee1vpStPy/3bdz+uNL/KbIw9z64ZbqXPXXbgD9h8qpsS4vPRyLi2+lJKkEq4ouQK9qiH1jjvQOBMhDpLZTNo9dyPpdFD1BwCU5GL2aVSuKrvqrPaGJQ37l8Ji0ouGYbS860nsksSEJSuIhsPodAY0Oj0hn4/Z191KJBhk6xOPkZyTz6xrb6J6+9s4UtMZPt5CeoHtrHYzhpVQPH4yepMZrd5ATvlIsopLEn0WFnFyxxbe+uPvePuPv+Xkji2kFxYTk0Gjlzm5q5MD65o58lYrQV8UHypOs55kiw5PKIpeq6E/EOX1I52UZlopybBx97zhvPy56dw9bzi5TvM/PR/CPyemwLJhS9DJuqFlelnPxUUXo5W1rBy+kiVFF2PQqYzKcfDc/lY6PSEUWcuRSA7P1mXzwOh7SDGmAGDT2Xhg5J0U7nscVAWT/UyBr7urgz0vPkNr9TGi4RBKPI7OaAAVGg/so7u+lkgwSFdDHa3VR88ap6oqtNec5MimdQz2u5h46eUc3rhu6H1Z1qA1JAJsOmpOMmbBxUjymVtPncFI3ojRZwWQePt6efOtEzz5p3U8/ecNvHRAon/KtyF/OlizPtJ5Fi6QsO9MAAlAcAA2fTvxL2DSa8kc5uDEjg4OrGvm6NtthPxRDCYL/V0dlL9zL/A3wyZNRaPRIkkSRpsNjU6PJMvIOj06o4n+jlbSCoqo3buLYROmUL31LdIffxw1FCLu9hCqrv449174tIvHSb37buR3rpPRk6dxpOdiTU4hp6yCzprTmKw2dHoDO556nHg0hlavS5yTWh0GqwWjxYbFfZxcTTuFFWWYrTY0ej2RcIjUvAJS8wvP6rLy4kuIRaMYzBbsVifz8ucxM2c220/o2Ofy8csDTZzoHcRp1jOpMBnpbwEk7ybLZwJIAMzJ4MiD4nmw/7Gz1/W0Qtexj3jiBOFfE/B4MNrsZ32n/Hunu32UZFjRyIm/AUd64v8O3N2dH6qvFIuBfn/knx+sIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjC/3HaC9m2JElZwGrgmxewn0+t1Nw83J3tjJy7kOotmwDQ6g1MWLYSFJV4LMacG27H19dDcNBHekERBquNNbWvDrWhovJczXPMyp2FVtYiSxJdnhB5ySY+O2cYoJJiNRAIxyjNsCJJQPXLsPC72CN2krM99Hf4AXCkm3DmGTFJCi3tLaTmFVC3bzfxeJzhE1JgD0AAAQAASURBVKfid/cP9RuLRhjobKe7sZ6xCy8mHo8jyzJ7XnqGhXfci1ZrQPV4kbQWtCkppN79OZAkgidPgVbLLaNvodvfjaIqpJvTOeU6xVRjLiz9Kbx6T6JQVWuART8A698Fkwgfi/5QH38++VsAjI5EqELTkYPMvOYmuhvraa0+RsGYSmZecxN6k4Wl936VvtYmouEwtuQUmo4eIujzoNHqiIZDxCIyFkciFCLgcWNLScXn6hvqz+8ewOfqY/LKK2k8tB+N3og7KZ9fH4/T5Org+yuLMS37Pj88+BCr9Kt4ovZ5PjPmM8TVOP2hfmY7ptC1YydSpImDsVpaTxwnNTOPWDiM0Wol4PEAEI0kAnBUVUF+pxj+b/+G/YNDxWwGkxm/ewBnVg5BnxcAn6uXhoP7mHn1jaiqSmp+GcPGzyY6GMSs0WLo72bgritodyr86sj/njWf3oiXY73HGJ70wZ/SLfxjzb5mfnbgZxTaCylyFLGncw9XZ03CcugQ9ksvRTabIR4j5vMhDfogFgRZS8uU2/jxiT8yLm0cn6/8PO2D7SQZkpiWPY0syz8fdCBrNMy/9TO4u7uIBAOkFxaj0euJRcIYLBYG3f0YLVY66k6z4NbPEo2E0Wi19LU2M2ruIg6uf42lJaXYkk1ntavV6citGElG0TAUJY7BfCa0wZmdS3JOLv3tbQAk5+TizMrBLalMvLiQ3a/Uo8RUAMbMy8XuNJKiROkPRDna6qEg2UxFtp1vLKtgbG4SqbZEaIRVcyFzyoT3o9dK7Guu4u5xd9Mb7AUgzZTG/s79jE0by96uvaypW8MPpvyW7Uf95CSZWDUxl/EFTlr6A1i0KhMOPscz6dPoNSfhTBtB7mtfgsEeALRaDcXjJ9FwcB8ARouVKSuvJBaLDoXo7Hz2CXLKRwyNKRoOIcvnBtJIwJhFS1BiMZIyszj4xpqh9w6tf42ZV99I2/Gj9DU3k1s+mqX3fJnelkY0Wh3O7Fwk+exi+pbjR6ip2jP0uquxieqSYmbO/zJSPPiRzK9wgWn0IEmQUpIIJPF1QjwCWv3QKsVjU6nd142nJ3FMk7MteHokUvIKySwuIad8BP3tbTizc5AkKRGEU1dDSl4BGllDJBRCZzQRj0XIGDactMJhlEyZztG3NtDf1srES1YSOHgQy9QpBI8fx1hejuZd4TuC8F7UWIzgkaMkrboCSW9A0igMhJyMmDOfgNtN8fhJDPb3s/3px1Hicbx9PVgcSdiTHAT9AXQGA3bJS1LPTrAvIqv1BdLLltDQr2X3i8+w4Na7mHn1DQx0duDt6yUpPYOQ30/I52XG1TdyKHiCcmcF/W4nexr7CYbjXDI2i99uaWBYmgVPMILDpP/HOwJgTYXcCRA9z7XzXYGQgvBJEPR6MNve/zp9usvHrJK0oddJmYl7dnfXhwwhseoZCESJxRW04n5XEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEAThHBcyhOS/gQ3ADlVV90mSVAzUXsD+PpVkjQa/2830K68jHo8hIRHwuDFYbaSbzDQfPUQkHEKj1REJh3Alx+gL9Z3VRigWgkR9OXFFQSNL7Djdx+ySNHyhGG+e6OYbSyu4YVI+yJ0w4WaUWISjmzvIKLIzbHw6qCoBX5TGfS5GJxnJGzmW1x76MXkjRmOQNVS9/DyXfPH+oT7DAT/2tAy2/OWxoQAVgOGTpxEJGQgFouDMJbz7KMbRo4h7vEg6HaayMuKxGD/d/1Ps+kSRkTfiZWnRUigohepXYPmvEoVxkgbiYTA5L/yBEM4RV+NElMQTon3hQSqXLOfwhtc59vYG5lx/K0GfF0mWcWZmE42EcbW1YLLbOfTsk5hsdrJKygDw9HSRkpuPq62F/o42hk+exuld25l2xdVseypRwGmy2Qn6vJzevR2D2cKc2z9HOC+dqp5DLJ8dx2ow4FX28N97f055cjnH+44D0DbYRklSCY3eRsLNPbTtO8DUy69mz0vPJAqg36ltbzx8gNKpMzix7W20Oh0ATYcPMvXyq+htbsTd3UXGsBK662sZMXsBjYf3I8kSkiwz0NXByDkLOL17OwA9jfX0NNYz/+bPYfPH0BzdSTgepi7fwF6HC42kpb+rn1A8dM6cRpXohT5s/3HM2kQoQpO3iSZvEwBarR5dehoah4O4x4PW6SR88iT6mVNh8Y8hOEDI5CAcD7O3ay97u/aSakrFF/Gh1+hJMaYw3PnPhcWk5OYz2O9CicWQZJngoA9DPE7r8Tpcba0M9vex8M57yCmtAFliw+9+Aao6tH3lkuVojbb3bF9nNJ53eW7FKMqmzQIkBgdcIElUZjrY8uoJJiwuQFFAo5VoOtqHPsfM01UtfGlRKdlJRl4/1klusompRcmkvRNAIvx76TUSNe6TnHCdoNRZSou3ha5AF7NzZuMOu2n1tQKQp4vyY90fkCZmoxlxKZLFgE4j8+LBdmaWXUXm2tvIBCicBUVz4NjzAOiUREH69CuvxexwEvC6ef0XDzBi9nwioSAntr4FQPH4SUPXZ1mWKR4/mcZD+88MVJLIqRjJoXWvUTxhMofWvcrIuQs5umk9AEGflwOvv8yyGYuQtBp6BlyoqoKKhBKPEwkGsaWkDjUX6eyk7cjBc+aj8XQjU7M86ObcewFmW/jIZYyCRf8NbQcS93DOAhhohqSCoVUkWSK3PJnSSTqQJAYHQuxf18TFd5Wj1fej0RvQm814e3uwp6SiMxnZ/MffM+/mO9GZTGSUFuDv8+Pp8bLu4Z+e1f3ESy4jGgpjf+hhXFdfQerdnyPc0IB53LiPeSKETyNJr8dQWoqk0xHr60PrdWMJDxDVK6z91YNnfWaPnr+YaCiEKRXSDX7QDkLDGqh/Cwpmgs4IeiuaXT9DGvF1HOnp+PpdmKw24rEYskZDOODH5HDgSM/AHehnf/8OLiu4g7drwmQ7TPQOhvn+6yeZV57Os/va0Mgyi0d+iIDGnMkw6Q7Y/aszyyypYM+CTd+FgRYouzjxOWH/50PYBOFfFfB6MDuS3vP9Xl+YHl+Yiqwz98l6owmLM5mBzvYP1VeKJRHk0x+IkG47/721IAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjCf7ILFkKiqurzwPPvet0AXHGh+vu0ikUi5I0YhautBZ+rl5yykYQDfrRaHabkFMqmzWSgs4NwLEyX3k1YDiEhob6TOiJLMqtKV6HVJA5lKKawt9HF0lFZNPb5cVr0LB6ZSdtAgBKLB0mjgbAb6egLZJf8goMb2s4az5TLC9FIUSQkLv3i16nduxtJhmX3fQ2d2UzfI48QPHIE0113YXIkseC2z3Bo3Wt4ensYNn4SoxdcTPPxALIG1LQetDYbgX37Cezbh2TQ41y9GklKJEN4I96hfidmTISABxw50HMC4lHQmcGWDSK44d8iw5jGLaVX8XD1H9Eo0FB9lKmXX4XeZMaemkZ3Qx1anZ5wWgY1VbtoOrSfKZetJh6L4e7uZOyiJZzcuZXTu3cw69qbqdmzg1M7t1I+cy4X3fNVmnxxptz7HTRBD3M+82X6ao8z0NmGdfQwqs0tPH/4l7T6Wrl11K38qOoB7hh9B1ElSnegm4q8CnZ37mZd4zo+X/l5Gj2NBE52ARANhzCYLYQDfiRJxmCx4GprIX/0OEbPv4juhnpGL1jMsbc20HCwitnX30pXfS1jFy0jPD2A19XLknvuJzzoY9LyK6la8yxNRw8xbdW1HN/8JrFIhAmLluHYvAXvnr0EvnYb2y1dzOxKYtVrjUQKs2mdWExacRqPHHtkaD51so5RKaP+XYfz/6xiRzGXFl/Caw2vDy1zxPRocnIZeOEFou3taOx2km++ibiqQKAftvyI7NGXMyZ1NEf7jgHQF+zDorMQU2KccJ34p0NIrM5kSqZMx93ZQSQUQlUVwoEAzuwcUvMLMCc5iYbDpOSNR28MMPfG2zm8YS1Br4fSqTMpmTyNWPDDXfMGXX04s3JorT4KSOSNHE1XZzf+1BCKorBvbdPQupIEYx2FXDkxj2aXH6dZz7WT83l+fxvTCpKw1VbjXvMKAEkrV2AaOxbpneAe4cJTFJXT3T5UReXzaVdCzX6MWxvwT1rKthwvjuxiNrdsBuDq0tWM2PEQusatiY2rfge3bsCWMYKlozLRxlww/1twam3ic7TkIqIVl9Ha0UHIYMGZk8+u559C1miZtuoaxi+5lO7GespnzCElO5f+rg5krZYl934NV2srerOBgc525lx/Ky3VR5E1GnIrRjPQ2UH5jDmkFw8jEvATCviZtuoaehrrSS0oYlhxKZ7P3Yvx1pt56+UnKZ8xh9S8AlRVpX7fHgwmEwCqojDw1NNkpKZQ/XfzUlhRgVRYCrFzw52ET6C2ffDmt868NtjgmudAeybkyGzX01Ltwuc6+5i6OyPYhss40tKRJCnxmW4yc3L7FkL+QQBi4TDdAQ+lwdOQPoI519/GkY1vEPR5KZs+m6Lxk+iqr8FkLyH1zy8SfvxhggcPEV/hxjxlMhqz+eOYBeFTKNLSQujoMYLHj2MsLQFUfJs2Ypl5MZJBw7LPf4Vdzz2J3+2mdOoMrMkppObmk67tBF8/vP19cDcnGutvgN6TMP3zKNZMZK2WglHjkCSJXc8/zcRLVhD02VAUBa1OTyjgR8m2syC+kK8928yiigzKMm1Y3VrG5iZR1zPIxhPdWA3aDxdCojfCtM8lvmMd/AuklsHkO+C5GyDgSqxT/SJc9EOYfs9HPqeC8EEFPG5S8wre8/2DLQMAVOYnnbU8JSeX/va282zx3lKsic8j16AIIREEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQTifCxZC8m6SJB1UVXX8x9HXp016UTHbnnocCbAkOdn/+sssvffLmOx2AAxmC5nDSgCobd7EcddxHpj9AFWdVZQ4S4goEbSyli7//2fvvsPsqAr/j7/n9t6395626b2SQEJCqAm9K0gVVBAR1J/drw0BlaaICNI7hE4SSO99k+xustned+/u7W1mfn/csDEGkBZEPS+efbL3zMw5Z87Mzszlec5nOsm2ZiMBJT4bv36zlhyniWAshVGn4ednjSIr1ATkwLZHSdpKMZgM5JQ76TgwCEDBCA96ow4lGUNRFcL+foqqx4BGg5xKgaLSc8fvAJD1OhLnno23oIipSy8g2NeDze1Bozeyf30ncy6ohLgWJRhETcTxfuUrKPEYgeUr8Iwfy6UjLuXlgy+j0+hYUrEEWZVBjkP/QfCWp2fKywk48A4MP/XfcGQEqf8gSwMxpo76HaaUhQMaDeuffQIAjVbLwuu+xa7lb1K3cS1jF5xC4/Yt7F21gqlLz2fDs0+we8VbnHDJFTTv2UXjzm2MPOMChhutPL93gPaIl+ZBPwW5vVhzAgzEazmYXY+v1Mczdb/iqoyrqPPXMStv1tCEe61Gi07S0R3pJsOcQY41h45wB3duu5MzS8+grLKag++8S+261Yw/5XTWP/sEW199gclnnkuov49oYIBRs+fhdJkxGEyMnnsiXX1d6IwehufPYP1zB3Fl+jCYS1jxaC855V5yyguZdVEpyfgARpuXEy6+FfOBrWj3HUB36smkLjgTqamBs3da8N//B6KA6bJLyO40kKFUsnD0g3R2NoJBS27ZMMq8w/99B/S/1GBiEL3GwA3jbiCYCGI32JHbB4muW4upqhL7vHnIA34Gnn8B969/Cs/fDYBjz4t854plPLD/MTZ1bqLMVcZppadx3877+M6k73ymPhlMZjJLyggP9NN58CDRYBBVUUglkyTjcUwWPbUbBiifkCK7tIJJpy8lGY/hyStAkiSsLucnaq9k/CSe/sntePPyUVWVtc88RtHFN9PXEWLc/CK2vNZILJxEq9cwfkEh7f1RCgc7GB9qJRCK0pJVynKNDk/jfpq++lVQ0yFXg88/T+HfHsY6adJnGg/h41tzoJevPryZ1y8diean95Go2UsC0K9czWmLF1FzhY0lFUuYmjuVtkAbgawqTO+HkMQD6fCHrBFk2XSY3vgDtKyGktnpYK8XryU14Wrui59Gqd2Pa6SXM8b8hFBHB87MbMIDfjQ6HQe3bSK3YhgjZ88jPOAn0N0BkpZE1EVuVSav3f1TvAWFqIrCumce45Qbbsbm9tK8Zwe+whJSiQSSRmLkCSfRfaiB7ImT8T7/HLHeHop7Wtm/5t2h/ZUkDTPOuxiAVF8fg889h+vURZSMqObQ3nRAUEZhMYWqgeYf3EfOj36AuTr/Cz4qwicSaId1dx9dFg9C+1Yonj5UZHEYmXNBJcv/to9oMIlWp2Hs/ALqt3QzLi+fmMdP4/KthHp76WyoR04mmXb2BaRSSSRJQh9N0er0UdD1HroRJ+ItLEJVFAxmM8lYHI1OSzRQR8RRhLa4nOBdvyX4xhvk3vk7nIsWfcGDIvwnSPX303bLd4jt3AlAeOVKbPNPwrFoETGDlUS0n/DAABNPX4o7J49EJILRYsUWawalB/TmIwEk72vdDJKWTl8ZJPUYLRYS0ShV02bw8h2/ILOkDEmjQUnJzLr0m4SlDrbWujhznJ1luzoYkePgzZpO4illqMoi76cI0XHkwtRrYdwloDXCjseOBJC8b+1dULUIvGWfvH5B+BxEggHMTteHLt/W7EevlRiZe/Rzsju3gH2rV6Kq6lDY6b/itRqAdAiJIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCcKwvJIQE+HizQf4HubJyWHrbj2mv3080MMjMCy4jq7zimPUUVSEQD2DRWogmolR6Kvn5xp8PLZ+cNZlfzf4VkYSeeErh6/PK2droJ99tpsRnJZyQSaGFVBzMbgx9O4gb45htBiYtLgZJorsxgKxJEkwF0aYSyKkkckoHSKCqaGQ53ZgkkZo5HZPLwYFNG9jyynND/Rg2cw4nXHIOge4YOLTI0QjmceMJrVuHPjMT97nnoMop3mx8k0Uli0gpKV45+Arfm/I96D4EkX7Y9Yt0ZbYsmHMrKKnjeASEDyVpGEgV8c5vfg/A+EWnUTVtJnIiidZgYLC7k1goSCIaIeTvp3reyexdvYKad9/h5OtuQqM14MjIpPKEhfzyzVrq+uOMKggybYLMzt4XKCx18Pvtv+eGcTdw/657Ob/qfF5teJWUkkJBYWHxQsZkjCGSinBS0Uns7t3NldVX8uDuB3lg1wNcNOwihjlLKFWyCeyuI6D0UDF5GvWb1nNo+1bmXvY1JAmMVjPOMaPQOAx4bJnYjXZ62gI01Xdj0Jfy7sMHmbDITqA3hs6gxWO2osgqbbUDGM16Mgrz0JONy6pi2rUaWg6gmzsTUjKhb96Gc/Fi/E8+BYDpkotY299O755NzLrwct75889RlfTEUXdOHr7v/ghXds6/7ZD+N2oONPP8gecB0Gv0JJUkJzm/i7WkBFWWCa9di7GyAtfSpemwo/evJ6qCK+xnVt4sSpwltARb+O2W35JjyyHf/vmEHGh1BlRVRk7E0RvTb1mPh8OYrDY0OtAb9Lxx750MdHUAIGk0nPbN75I/3PqJ2skpr+SCn/ya9rp9pGSVQ9oMfrx+kOun+ti3tp2qqdnoDFpApXZTJ7PPLyN2800EQiEACvV67nvkMcKPPToUQAKAojD47HMihOQL0h+K07LvII8Oj+NrrKWzZu9RyyOvvs6YC5fwlb0/oSOcPmdOr7iUzH9cSUkCUOKzoKhxSMWg/q2hxUlbBlbnu9y7/3EAxnjH8B37Zbz9pz9SfeLJ6I0mKiZNR1VVmnbvYN/qdwn0dAHp8Kml3/8Z5//k17TtqyESHKRisp43772LeDTC4m98hzfvvZuMoiIkSUPHgTpOvOJaAAwFBWidTmaeugRJkji0Zyc2j5cTr7iWjKKSdP1mM4aiIqKPPMbYk06k+uQzUFVw5ebRd8utkErRdvOtFP7tYbR2O1qb7TgcBeEzU5R06M0/+4AyR4aZqinZaPVaAA5s7SIWSpIIqFgys3DPn0hxt0Jh9VjcObmoKsTDIYwWG6lUkqQnk66WDQwawhCLEhkYwJWdw5v33Ul4wA+ATm/gtJtvw7hoIfHX36D/zw9iGj0aY17ecR0G4T9PvL5+KIDkfaG338F8/Y2E/XUsu/tXQ890zqxs5n/t6ygpGWdgD2QMh1SU9hlfZ78ziwgK5TJUrX8AyeIFVyF/2n4313ovJNjfi9Xt4eRrv0mgpxury43FVUwiZSCWiuEzZ7N8fw8XTCqkNMNKsS8dOvLyjnb6IwkWj/4Mz5HGw9dN9QO+W8lJUOVPX7cgfAaKLBMLBrAcDmL9INubBxiR68R0+J7xPm9ePolohLC/H5vH+7Ha89qMAPSF45++04IgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCP/FvqgQkle/oHb+I7lzcnHn5H7kOsF4EI/Jw6aOTYwoH8Gtq249avmmrk3U+mvxSqNwWwz8ZfUhRuU52HCoj7quINfOKcOSORp19z1I4y8nsfNlzA4jXY1hNr/aCBJUTMgCncra4FZmyMMxmM2osoJGp0Oj1aJs2gSAafJk9jYfYnhJCdtee/Gofuxf8x5lE+bgKyhFberGWFRE7333Yx4zmkRLCym/H/vXvsKlIy7l4OBBTFoTV4y6AqvOCskYaPUw9/Z0UEAiDF17YMyFn+dwCx9TRO9j5cvLh0IJtr32MpJGw4Krb2TV3x8iGgoy6bQllE6YwmB3J3nDJpA3fA7+rhR9HTbGzCskbgqzrWcHs8fGuWPbz8lIncOftv2JpZVLebjmYQDicnry14GBA4z0jmR9x3qyLdmo0STW7hSOiJaYXWJy1iTq++r40+g70IYSeHRafH2dvLXyNQ4dnjRaNGY8cy7+Kr7iUuK2LBqjMZqS7/Kntbdj0pn4buUPqDaPZ+XfaskudeLvTL8FXpJAp9fQ3x5m+LQcmvb0kYzLNOzooa3ez8LFFky129HmZqHYDfR861Y8X/0qclc3SJr0pGsgUpRP164NlE+ext5VK4YmqwL4O9roOFgnQkg+ZxadZej35OEAhrjPgbRlC8nOLkzDqohs34GpahhKZzeM/wpsuh/0FnYEDmL3lOE2uvHH/Fw64lIK7AUU2Ao+l76ZbDZ0BiN6kwlFToGkwWA0YjCZKRrlpq9ty1AACYCqKGx4/kk8BaXYvT4Mxo9/i84sLiWzuJSD3UEeersOfySJERg+M5ftbzURHkigN2oZv7CIlN+PcjiABEBNJpGXvwWpY0MC1OQHhAkIx0dbC5Pu/TFyUyP84ucfuIo9rPAr6Wy25PZxT8dTWPT/EFijM0LeRAAkrYH4xKuxNK46slySaCiZwvMrrxkqOt91ChueeILhs05IB48lE1hdHrR6HSaLbSiABNIThNc9+QhLbv8J/o42Vj3+V+R/OD82v/QsC67+Oo07t6EoCuWTpmJxupCkdA6d1uEga/xETq0aTnhwAL3ZjM3tGdpea7ORedNNNF9xBfF3lsM7yzFWVqBMnQap9IT5ZHMzwddeZ/Dll/FefTW22bNEGMmXjSsfJl8Nb952pExrgPxjw4xcmRYyix2893gt8UgKk03PxMXFbHqxAeP8bMqr7WgMGrKsdmLhEKl4HI2kQUXlvcENDLeP4a54A+P6N2CSzEy2T6C9ftdQAAlAKplg+xvLmHTF5UiBAGpvH4mDDSKERDiGEo4cU2aaNJH+QC8bX3z6qGe6wa5O+ttbqcp1wEAz+KpodRdww4FHOND+MpAORvvT4v9jYtYI9HKcMVljUUkHOsVDIZDA7HCiN1np7zRgy0vxxP4nuGjYFWikbJwWPTc8sZ1QPIVBq+G7i4Yxs9xLZfaHhzR8bJmjwGBNf9d63+SrwFf52esWhE8hGgwAYHG4PnB5UlbY1TrABZMLj1nmyUs/t/e1tXzsEBKfzZDeJpT4FL0VBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEH473fcQkgkSfqVqqq3Aqiq+v1/LhM+mUgqgqIqLKlcQsNAA4FE4Jh1AokAwzJM9IXifH1eOb2hODPKfQxEkjT7o/QEFS62Z8Pq36LM+zV7H+vElWVh4inFALTs60fTneCx2NOUlH8LX8KIkkpi1GlxOd2EnnoGAMnnJXfkKGKhIIp87BuzVSVGIpIAZy6DDz+D98orUOMJJL2eRFMToXgAf9xPiaMEVVXZ3bublJJioi0LjHZ495egKpA/ESZ9LT2xWvjCRaMxwv6+o8pURSHQ282si69AqzMQ6FWJBO0E/ZW01JrIKLBRMNpGnbSNVzq38NLBlxjmGc769vUMxAcIJALE5BhmnZlwMj3x0ag1opN0OCUbF5Sdx1LnyeT6PVh3tVKz4lkAHJlZzLn6WioGzay653dkl1VSMWU6/XrHUAAJQNPObTTt3MY5P/gFpYU+ejo28syGx7mm5Eam2max7qFmMueHCA8kUBWGJsfvXdPOlDNL2bWilS2vNzLl9BJ0GgUtMvZEN6bWvfQ/+nccp57KwFNPIRn0qPEYAKHly3GeeSYDTz5J4vAEVYvDSXvtvmPHNHDs363w2Vj0FuYXzeftpreHyrRmC6bqamxz54EsY5kwkb6HH8bzix/DqCvSk+Sb17E/OcDb2+5iScUSKj2VyIpMTV8N1b5qMq2Zn0v/MgqKSMZihPz9SBI4fHm4cgrxdw8Q+4cgkPeF/P2E+rrob+2mqHoEBvMnu027rHpmV2QgKyoosPGlBqqmZmO06FFkhT3vtTJ9jvWY7WLbtuK5+GKCb7xxVLl1zuxPtsPCp6Zu3ZwOIAE0egOGkhIShw4NLbfOnIHc1Y3pB3cyp6yEqh9+D01GHmrBNCRXXjr4IWcMAIqi8ExvCdNO/AslBx5B1po5WHYJfUoSFZVSRynn512C5WCQYG83m158ZqidzNJyikePJxmLHtPHQG8PqUSCsN9/VAAJQLCvF6PVir+zHVTIGzaSvKoRAMihEImWFiS9HkNREe7cDw6AME+cQPEzTxPfuwu0OqLbd+N/9NGh5ZLRiBwYJF5bS/tNN5F/zz3YT5z36QZcOH6Gn54OONj5OFgyYOJXoGjGMatJkoTVaWD49By0ei3JeIotrzamA0kUiERM7AitZa59MmpYJSWnkPRatJlWtjfX8OT655lfNB9Zkblj3295ZOZjhPb0HdNOqK+XvrYW3Ddej7PXT6x2P7qcbMwVFV/EaAj/ISS7DWNFBfH6egCMw4ej++53CHS0Eeo/9ryKBYNYtv0FTvgOrP4tO6tmcyBw5JqdVJL8/uBz3Fc6n1AsRKmzlOXdm5htH4ecSBCPhDE7XEjaHBq29ZJnMbGxcyNnVpyJw+7gZy+3E4qnA5gSssLPXt3LE1dN/Xx2tmgqXPAkbH04HaJSfQ6Uz/986haETyESGATA4nR+4PIdLQPEkgqTij3HLPMeDiHpb2uhqHrsx2rPYdKj1Uj0heOfrsOCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAj/5Y5bCAkwH/jnwJFFH1B2FEmSGoEgIAMpVVUnSpLkAZ4CioFG4FxVVf0fVsd/o2gqSkpN0RPtQa/VMz13Ouva1w0tN2gMeE1evDYjX51Zwnef20VjXwS3Wc+3FlTS1h+h0mcG3UjIa8L08qWMm/IYK1/upXFXLwCSRqLgZB8XSBewV26iJK+IgYEeFgxbjGXrfnRnn02yuYVkXx/ZpRX0tjTiyc2nv711qB9muwOt3ofWqGdXpJiS+fPpufMuUFUAbCecgNZo5sHdDx61fycWnghaFyQiMPsWQIXBVnCXgEZzvIdX+AAJo42CqXNpXHMk3EGSNPjKqgib3WQZHWxatp/wQPpPsb8jTCKVZH3GMp5seIKllUup6dvLjLyZtIfbMevMQ/Wsa1/HSUUn0RPsolxTwCMj72bXy69gYJB9jzyKc+n51KxItzt85gmYbDb66w6y7unHkCQNlVNnsOqxvzLt7As+sO9JJcXmmt3YUzn8wnkf/v0xajp7SMbloXOxuaaPiacU09cWIhJIsOnlQ1ROzqJijAtj2z6UuhpCb71FuKcH7WmnkeruRmM0ooTT4Slarw8kiURjI6ZRI/Fecw0RhwtJo6Fp13bKJ01l1ztHBzpklZZ9fgdIAKAn0gPADeNuIJqKYtaZiYbDuJwuev/wh6H1HKefjgqQUZn+mXgFY9tX8/f6Z7lv531D61047EIiycjn1j+r20PF5GmEB/xotDrMdjvJuIwqK/gKjn2be9WM2bTur2Hbqy9w1m2/Ir+q9GO1IysqTX1hokmZqiwb+zsCmNxG7BVO9rzXNrSexWnA5TPyz9OpbWctJbxpM5m3fofw+g3pvk+fRmTzFlxnnPGp91/4+JKHA0gAYjU1OM86k2R7B/H6eszVo9A4HEQ2bwZAPniInIYAmww+pEWPU5ntOupeORBN8tj2Xn7aY2Fy0XdIyipblgV48gYbFxRfzLjueXQ9l4DhsWP6odFo8BUWEejpPmbZ6JMWYXE4ySor/8BlxWMmkFVaAaqKxekCIN7UROdPf0ZkzRrQavFcdhmeK76K3us9pg5JkjBVVWHyapG3P0dMqwxdswE8l19O4LXXhj77n3oS27y5Q4FSwpeEKx8mXAajzwWNHrQf/nXD4bPQsKOHQO+Rc9FX6mBdT4DRbg37Ivu4p+UepmZMZrilgl3hfSxUFzHCO4JzKs+hOdBMIBnArrdz6ZqLeGbkPexe/uZRbVRNn03jjq00abYzfMYJuIqLSLV3oJaXi3NHGCIBjtNOI9XRQdLjIjF1Mk27ttNWt49hM+aw7bWXjlo/o6iEqO/nmIO1KOMuxWjWc9Xoq9Br9Ozo3sHa9rW0hFqJJSOYtCaCiSDPNjzPC7zEL3PuItg+SM26GKH+FrR6DUZLL7nWXBoGGpieXUR/OHFUe4oK7QPHhkN9aiWzoXA6yAkwWD6/egXhU4gMDgBgcbg+cPm7td1oNRIzyn3HLLO6PRjMlqP+n8S/otFIeKwG+kKJf72yIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjC/6DPPd1BkqRrJUnaDVRJkrTrH34OAbs+ZjVzVVUdq6rqxMOfvwssV1W1Alh++PP/lIScIJ6KY9FZyDBnMDpjNAuKFmDRWRjmGca3JnyLlJx+W/aoPCe/OXsM3zqpgh+fMRKzXktZlo1Z3hDSmt9BzhhY8DOyKzOZvqQUX4GNvEoX868cwbM9j7K7dzcaScPewf3sitVitzhRVQWNyYQ8OACShKooBHq6mX3xVykaMx6d3kBO5TBOufEWYlEHkkbCqKoMLltGxjduxHvNNWTceCOSQY8xqTIxK31ozTozV4y6AlmRoXkDuApAksCaCZkjoW3Lv3HU/7fZzUaUUXOonLcIvdGEJ6+A02+4HrvbSe/GEC/cWcOYEwupnJqFJ8dKyYk2subDg7V/JtuaTUuwBUgH6DiNTsw6M8NdVVxRdhnnWU7ma65zWXJgBJa6AO/c8TtsNid7Vr6FnEqRSiYBMFlt2Dxetr+xjFQygaoqZBSX0LqvBoDWfTWUTZxyVL+zSitRUx523D9IqlvLpueasblN9Lenw0PklIrZrieVVGjc3cu0JWWUjc9g+CQP5SVgPbiJnm9ch6SqxOvr0brdpLrTk/ETra0YKyoAGHzxRTK/cwvGykoim7cQtmjYWyQz48Zr0eoNaPUGxiw4BYPZjDM7h9O//b305Hzhc5VlzWJTxybaQ+1oJA1NgSYMqpbwmjVkfPMb6WvPN76B3N+PNp48sqHBQrG9mPOrzsegMSAhcULBCWg1WtrCbR/e4Kdkdbkx2+0A6I1aXFka9CYzC665EWdWNgazmbEnL6ZkzES2vfoiiWgUf3vzx6o7EE3wwKqDLLxrNYt/v4Yfv7KXucMysVh0jFtQSPXcfDw5VsonZnLS5cNJvPI0Gd/8BoaSYvR5uXivvgrV7UGfk0P3r3+D7Pcj+/10/+rXGAoLPvexED6Yddq0od/9Tz6JZDCgRKNonA7kgQEknY7Aq68OrSN39+AxZvDiru5jwrpcZj1TSjykFJV1hwbZ3BxAVSEUj3Ky8SwalgcJD8bxFQxHpzcctW3llBnUrltFb9MhZl5wGY6MLAxmC1POOpcRs+cBkFVWwek3f2/o3J18xtlUz5uPJElYHM6hABJVVRl45tl0AAmALNP/0ENEt2796MEYaEQbOoRv0SgK7/01uT+7nZxf/Jzw2jUkW1qGVtN5fSJE4stMb/7IABIAm9vIyVeNYviMHNw5FkbMzGXkrDysei1v7wqxpGIpYzPGsqFnE0+3v8jE3Em8dPAldBod9+68l7GZY3m+7nl+NvNnjPaNxu9VOPGKa7F7fRitViadvhSdwUBe1Qiadm7nwOb1tAT8pAb8xPbUfEEDIfwnUFMyGqsFVZHpyfTi7+qgbuMafPmFePMLGXvy4vQzXVY2C6/7FtGIj0QCOLic9QaJ76z9Pn/a9Sfu2XEPVr2VOflzOKnwRPyRXow6Iza9jRGeEcwrmofkBavbjdGso3CEh7lfrWBHYjOXjLiER/c+Sm+8g9uXwilj7EP900iQ5zJ/+A58GlqdCCARvhQigUEAzA7nBy5fvq+bCYVunGb9McskScKTl09/W8sHbPnhvFYDvSKERBAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE4QN99MzAT+dx4HXg/zg6LCSoqmr/p6zzDOCEw7//DXgXuPVT1vXv11ULsQFQ4qC3pd8Yb8v8yE0SSgKTzoRe0rOpaxO7encRSUZYUrGEjnAHf9r1Jx5d9OiRDcJB9L1dPLUvxVuH0pOPD9xURaziHIzr70U1OqgxFrNvW4y8SheJuMzbf67h8uuu5f9afsADux7AYXBw84Sb0UpaUhoNSiwGOj16tw1FVeltaUar01E+aSoTTjkDWZaJBgaREx5QVCTAMm4cPXfdPdQt0+jRxPUyJkxcPfpqEnKC1w+9Tq4tFw68DeFuqD4XDq0CvQmKZoKiHDPBWjj+bCY9I4YbeEbXRcaI6XTIQbZ4BsjdnqRufS8A6547gCfXysilHr69/3rOiJ8BQEuwhXmF89jdsxtXwsyD4+6mcdc2HNsD5O73k5R72WNsonHHVny5BShyCqvHQ1vtXgB0ej2SRkPe8JE07tw21CedwUgqHkdvMqXbqdlF9YknM/nMc+hrbcZXMBxvwUhWP5l+E3YiKgPQ1Rggr8pNy95+dq1oYeLiYga6Igz2xDAoMSZVBEhtWU/09R0M6g5fFjXpie2J5macp59O8M03CbzxBpk330Tg1deI7d5N/1NPo/v+N1ie3IliVTjTNY6wFKLnrAIihJCNEqcv+ClZzlzMDsfxP2j/g4odxfxw2g/5zZbf0BHuoNhRjLv0dDRnLCG0bh2xNe+hJpOYx49HNRwdtpBQEmzr2sYlIy5Bp9GxpWsLj+59lB9O+yH+mB+3yZ1eUVGgey9E/WB2kzLkokSj6Hw+NEYjDLTAofdg9zPpa9bIM8F3dOCMLCukEjJGs55oOMFgdycabZBkPMG8y69CVSERjbLppWdIRCMA6I3HTrT8IDtbB/n1G7VDn3e0DvL4phZG+WwMbGomFZPJKLLj7wjz6r27OWX2NPp+eTu2uXORdDoGnnoaZ04exrxcXOeey+ALL4Ak4Tr3XPS5eZ/+4AifiGXcODJu+TZ9996LEk8Q21ODadgwUgMDaD1uen79m6PWd4ybwO5GhSmeMAy2gfPIsdJoNJw9oYCtzQPsbQ8AcEJlBrmmXJrr+4bWO7ANTrzyelr37iIRi5FTXsn+datwZeXQ3XSIhu2bqZgyg+Ez52L3ZGDz+ADQ6w1UTJ5G/rCRpJIJbG4P0gfcp+VAgODbbx9THt60CdPIkQBoPR605n+aWB/ogqLpaHt3Yu2tg/yJRBKFxOsPDK0i6fW4zj3nE46y8GU02B2lqyGAK8tC6/5+9q5pZ/biQl7a14msmHAanVw9+mpicowXD7xIV6SLWXmzqPPXcWDgADeMu4EVjSs5Kedk9iUbmJu/mNNvqiQSGqRt315URaF+83pSyQR6s5n9m9dTtPAM4s1NKMkEpuHDjz0HP4CSSJDq6UFjNqPzeL6AkRG+CEoySbyuDhQZSaNBU1DI3h2bqZwyA39HO77CEsz9fRgsNk795m2YHXa0ehOrn+qh6nwTveVz+dHOP5BUjgSdvdX0Fv9v6v8jEAvw4v43uHzcpcSVOGeUnYFeMnDo7QE6d0fIrXARDSV554FaFl51JjdsvYKEkuDQ4EHu3XsvCwvPYGZ0PpsORrh1URU5TtO/caQE4fiJDg4AYHEeG0KyryPA/s4gPz595Idu780roHHX9k/Ups9mpD8c/0TbCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIg/K/43ENIVFUdBAaBCyRJ0gJZh9uxSZJkU1W1+V9VAbwlSZIKPKCq6p+ALFVVOw7X3yFJ0kcndnyZde6BcA+s/Bm0boHMkTD/J1B6wke+LV49/J9BZ+DFgy/y0+k/ZUXLCl479BpV7ip+OfuXFDmLAIhs347hJz9l0r59TJ00hXPPvwq/OZvVb0Rpqx9BUcU9DK+WqP17lGRcpnH3kQnJPa0B9vXtAyCQCPDD9T9kmGcYBUhIRiP6vFwkvQFFgsziUtY/+wTe/EIigUH0RiMnX/NNLC4rKpBhN5EMBMi48UYSbW3oMjJQgkEwWlnTuIY1bWsAcBgc6RCS7NFg9cJb3z+y4zUvQNZIyJ/4uR8K4aPFU3H+tu/P6BQbHmMxFn2EYCBM4xb/Uev1t4fpO2AhmorSFGhiceEixuuqKE+VMMmcQ/uaGvbxKod2bGHqkvNp2bOTKUvOY+MLTwPpyfIALTW7KRk3kb2rVrDn3XeYef6ltNTswur20NN0iD0r32bGeRez6aVnyS6roH7jOhQ5xe7lb2K0WDnlGz9ixSM9jDIbiQTSb7XWGdJ1t9cNMG1JGdFggt6WEFtebWT6yT4mFEXpuvlrqFdcSf9f/oJp1Ci09vRb5yNbtmI/6SSC77xDZPt2PFdcwcBTT9Hz+z+Q+d1byP7GJbT6XPy/g/dzc96NJOpMrFjWQ3ahmQumf5VdwT0Mavs52NODTZeH0aaiORxsInx+9vbt5ftrv08klQ7uKDNX0B/IYlcj6IrKGXv2tTg7dpI6UDd0rr3PpDUyLmscf9nzl6Eyr8lLpiWTxkBjOoREVaFhBSz/CWq4j3DlbXT+8RaSzc3Y588n49orMPYuh74DUDwT2rbCnufgkhfBkQ1Ad1OAHctb6GsJUTk1m7IJPlQ0aDUaBjraqFv3HuVTZrDq0YdQVQUAV1YO2WVlH2sMDnSHjilb39DLBRVZ1HS0ARDyH5lkGcsuRwlHCCx7FQCty0VTVimlB3agzcrEc8VX0/ttMJLs6vx4B0L4zLROJ45TT0Wfn098715Cq1YTWLYMXXY2Ob/8JZqli1FeehOtw4Hpm1fzor6GBWPdjH1wEaw0w+xboGIBAWsxO1oD9IXjnDshn/gYhUKPhQJFS8PLHWQXOTlA+r7fcXCQ4morbbX70Op01G9ci0arY9Tc+dRtWIPBbMGVlU1fayORwQC7VwWpPiEfT44V4F+GK2ktFizjxjHY1HSkzO3GMn48LddeS6L+ANZZs8i85duYKtLBPXIoRKTXRfCNN9D7XNirZ2Ja+yvMc26j6LFHiWzajKooWKdMwTRq1HE6GsIX6cDWbvo7wvR3hIfKonUB7j5/NI2Bt+iN9vLArgeGlk3Mmkhtfy1GrZGkkmS6bh6G3aUEuuJ4x+oYGNFHoteG3ijRsG0TvS1NoKpo9Xo8ufl0HqhHC6SaW0i1tJJsasIyZQqG3NwP7WO8qYnee+4l8Oqr6LOzyPrBD7DNmIGk/3hhUcKXU6q3l8DbbxNasRLXBeeDXo9Wp8XlzSAWDmHzeKnfuJaGrRvx5BVgc7uRNHmk4r1MPbMEWR0gqNPTGT76XqmTdJQpI2jdFsbYILOrpYuiaWW0aRuwJV3s3tFFMi5zaGfv0Dbh7iRJJUmZqwx/LP2s/UbzS9wx51TGF2QTS8p0DsYo8Fi/0DEShM9DOBnm6dqnsRlsnFV+FjrN0f/fIxIIIGk0mKy2Y7Z9anMLOo3EqaNzPrR+T14BNe8tJx4JY7R8vL8Rj9VAiz/yyXZEEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEAThf8TnHkLyPkmSvg78COgClMPFKjD6X2w6Q1XV9sNBI29LkrT/E7R5FXAVQGFh4Sfu83EX6oZUHF75BgwcnpDbXQPPXQGXvAB54z90U1mW0aLFqDVy07ibODhwkBGeEUzKmkRKSVHXX8dw93Cs3QFarro6HfYByJs3UjFjLu+2QFdfDIBdPSCZ8nD6oDscPKqdpDF61Ju8AWJyDHlwEFQwlpeDJBFPydg9XuZdfjXdjQ3YfRnYvT60eiNrnj3IrPMqSfaGMFdW0XPvvehcLuTBQdwXXwyqxLVjrmVH9w6yrFmM9o3GprOlg1hW/eafdjwJ+1/9rw8h+TKeu32BZqZbFxB9x8VAe4xJp4zHYNXQ4OslePhcApAkcOWY+b70TYwDMtaknjWP/Y3Cs89n7VN/Z+rS89nw3JOYrDaigUEAYsEAVqeL8ICfWDiEOyeP/rYWSsdPomLKDA5sXs+elW8z+aKLMOpNtNbsJuzvZ+MLTzP6pIX4istZeP0P6GncRyKWwps/gp5mPfFIisHuCL4CG70tIYL9MXLKnXQcGGTDiw1UTMxk2ulFKGvfwbh1Ff1bt6CEIyiJdGhJbM8eMr/7XUKrVxPZsAHnGWfg+/rXSQUHGajKYuCPt9GW6GZ3hga7TmFsIMw92d9kx04Du9f3kVXswJZh57X79zP+5DJie13sPxigXreVSacWM2p2HkbLf9+E5X/n+dsR7hgKIDFqjVxiuYqVjzUMLX+zMcjJCwqwGRpJJg+ft7EAHFqFwVPIxKyJuIwudvbsJNeWy4neaVQ2xJFamwjmBjDnO9C9dD0EO4mP/SEtt/0akulrZPDNN1FCg+TNGEDbvCJd96Qrob8BemvBkY2/M8xLd+0gEU0BsOGFg3iyLWQUFDDQuZf+9lbyR1SjNxqZ+5Wr6G9twZWTR8m4Cbiysj/WGOS5zMeUDc9xEJIV9EYtybh81LKk3Yb/F7/Hs38nss1BbcFw6uJWKtwuBv78IPYT56X377XX8V71tY9/MP4DfdmuvUo4jNzfj8ZqwzxyJLYZM9DYbSiRMAcum83oS8+nMdrO9/b/lovMF9GbGAA5kf556/sgJ1Ethdz2lguzUceYfBfPbWvjtycOY/WLzSiySuX4bDw5Fvo70n83GkMOM86/ho66reQPH4kzK4fBrk4Wff3bpOIxWvbuJhmPMXLOfPa810Z7/QBnfHMsFocRAFWWie3dR7x2P5LFgnnkKAxF6bGU9Ho8l19EeN1aUt09AHivvZaO730fNRoFILxqFe19fRT+5S+oqSTh996j43tHwsj6HQ6Kv/dNjOt/j/nyRZi/+tUv8Ih8eX3Zzt3Pwptno2F7z1Flnjwrb9V1UqtZxoy8GczOm8227m1UeapQUXl076NcPvJyKqnmrT/WDl3nBt8CwlpGT85G0sWZfdFXaNq1HZCwulxsWfYCJ115PcH7H8QyZjQoKrG9e1HCETwXX/SB/VMSiXQAycsvA5Bsa6f1uuspfvopzCII51P5spy/4Y0bkfv6iB88iNLvJ9XZiS4nhzHD5/HS/XcxbtFpoEI0OEjByDEgQWRwgGgoiMXpBRV8qoYx3mpawm3ML5qPXqPHKXvZ+8Qgg93p547B96J0N4TwLEki25LYfSb628JH9cVs03NV5lV4LV7eOPTGUHko1c/vl/dx1exSBqJJFEWE2gn/WRRV4bp3rmNb9zYAanpr+NH0Hx21TiQwgNnuQPqnwMCuQIzHNzVz1rg8vDbjh7bhySsAoL+tlZyKqo/VL6/NQF8o8Qn2RBAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE4X/HcQshAb4JVKmq2vdJNlJVtf3wv92SJL0ATAa6JEnKUVW1Q5KkHKD7Q7b9E/AngIkTJ6qfpfPHRSoBwQ4Id8P8n4IjF1KxdPCGv/EjQ0hMOhOhVAiH7CDXnkt3rJvn659ncs5keqO9+Mw+GoONlDcMDgWQvC9qzT4qNALgwPZeZp5dzjt/3YecSmfE+PJteLIsqC1HD50dM0okgppIEN9fiyqBXFyIioTJZie7vBK9yYTOYESWtfS1hdn4UgNzT8+l79e/wHfN1aiJJJLBQHDlSpwnTGekdyTjM8cjqzIWnYWBmB9at4B69GR5AJTUpxvv/yBfxnPXih11o4/+5iDjFhSyZ1UrRqueSYsK0GpVvPng9OmJBrsxKx3sv+cxJp62hLUvP44rO4fuQ4eDIFSQJA2xSBir2w1A7brVTDp9KauffITtry9jwqlnYrLbSSkpXLNGUzqziK5kL9vNhxjrrmLxrT8i0NGOpOhQ8bFvjUrDjkGmnjWLgytaqN0cYuqZmeiNWhq29zBtSRmq0sm+tR2MmJnLqJnZEItgbNyNed1aeu+6E92C+UB6Eqek0SCZzajRKP6//53Mm75FormZpNNK43A79VlW7tr+OxxRB1eMuoJI2wEmWicR6zYymJlLzaY6AErG+NjwUgO+Aht9bSE6DwYAkFMKG15sIKPITuFw7xd+LI+3f+f5a9PbkJBQUZnkm8yh9cFj1mkNuShra0VrS4drcHAFPHMZA1cvJxgPMjVnKmMyxuDU2fC9sBb/3fcA0A84TjmZ7Ikz0c6eRqLVPhRA8r7w2g2kTrvsSAjJtkdg+g1Dy/s7wkMBJO9r3t+LXq8jv9LF2AWLiQYHSSWTmKx2isdOwFNQhDsz62OPwZgCJwtGZPHW3i4AHGYdl0wtIhhOMOGUYja8cHBo3YqJmZicRq7dqWDSjyXaJxNqD/DAReUou+K4zz2HRFM6JMt93rko8f/uyZlfmmtv7wE48A6SaxrJ9g60dhsYjSCBmkqBLOOzZ/F69zZ29O7AH/eztm0t4zLGElj0SxyvfzddT6gLJypvn5PFt1bBOdVuzsoPYotJdMnp3RvoilA40svoEwuQEwo9rSH2rxtg8mkzsDgCJMK95A0bScjfTywYQKPVojeaMNqsQIT+9jAD3dGhEJLwpk20XPk1kNP3b31+PvkPPUxf1Mz+9R1oJKi4+++Y9qxCDQwC6lAAyfviNTVEtmwmvH4D4XdXHrVMCQSI9mowqgqo//3PAx/Xl+bc/RyUjfVRs6qNSCB9vTFZ9bizLIyU9JS4T+PuHb9lQsYEvjf1e+zv309PtIc/z/8z0VQUfZuNZPzoAJPG9YNUz1GQgzFi4TClEyYR6vcTDQxw4hXXYrY7MJ99Nj0/+iGeiy4CJILLl2M76UQM2ceGP6W6uwm8+urRhYpCvK5OhJB8Sl+W8zf03nsYCgpIdXSQ6k9/ZU0cOoShrZ0zL7ua3t5udL4MCqvHEvL3EQsFiQwOoDUYScbCmPUxMHn4wYRvs7JrE0/WPklcjnNn1QNs7e49qq2+lhBliSz2BncxcdFclv91P8rh63JmkZ2C3Gyc9jk8V/8cHeEOANxGN06jFaMuwph8F794bS8VmXaKfdYvdqAE4TNY1rCMbd3b+Mn0n9AYaOShPQ9xRvkZjMscN7ROZHAQi9OV/iCnYPuj0H+Q+/wLURSVG+ZVfGQbntx8APraWj52CInPZiQUTxFLypj02k+1b4IgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCP+tjmcISQsw+Ek2kCTJCmhUVQ0e/n0B8BPgZeAy4JeH/33pc+7rFyMVB4Mdzn4YVv4cOneB1Qcn/gjsRyY9yqEkSjSJxqZHa9YDUOwspjXUik6jIybHSMpJCuwFPL7vcXJsOZxbeS7xZBw+4M3Yhtwc4OiJcGVjM9j4cgMTFhWhyOk3aocH45gGTdxUcBmP979JZ7iTuQVz8Vq86LOyCDccJLh8BfqCfNSFC5AkCX9nB6qqYDCZ8OQWEA2mA006Dg6SkPJxnnwyvffcC4oCGg2+q68moZXY2LGRJ2qfIKWkmJk7k6tHXwUH34HKRdC8/khHJQ0MW/x5HwnhY5BUFx379gFgsOionmOkbf8q+loL0UhN9DfLtOweIB4O4czKJpVMoKIip1JEgwGsbg8AjTu3UTVjNvvXvEtHfR2jT1rEnpVvsXf1SuZ95WoUDXTQx2ZdPbujtVybeT2ViWEM00o09bZglAt458F6JpxcxaZlh3BlxfAV2AA4uLWbopFe9q3rYPvbzUw8pZhwIEZfzwDTzs7DkEii1u3FnnLQ84c7idTsxfqNbwAQWr0G39VX0VNXh/+pp8j85jfpf/RRkq2t9L/xGvrbv8nXDvwEc9BMubaclJLizPIzGdmhw/tkE/rrLuTVFU0MnxFGb9SSXWgnJ9vChDl5pHQStRu6jhnTvtbAf2UIyb+TXqPnspGX8XDNw0TkMCab4Zh1DBY95vHjMbm8kIjA2rvB6iOWipJty+b/Nv0fdf46fp5/Hfp7/3TUtoHX3sR91t1Y1n0HTf51x9StdbmQlH8IPpETYPZAxrD0cl36je56o5YREzNxuYxYsi1sXd5MbrmeaDhINBgkGU8HRZlsNiQ+2XzsLIeZXy0dzZWzgvSHE2gkiYfWNHDDxBIObGlhyhmlpBIyWp2G7sYAwd4o188rp74rSFcgzqQSD+/W9zA9P5/QipWE164DSQJJg3XuCaT6+9F5PJ+oT8InMNgGT14IvbVoznsV88gRDDz3PInGRtBocC05C8lu4+WDL3NKySk8VPMQAG6Tmzu2/o4FmRO4fMp1aLtrwOyGVb/Fkoxw3xn3wsZfo2law/5JRwIUYpEkJp0Gs6JizrGw7a3mdHlYx/a34pxyXRnRQT+KIiPLKTx5BTgzs9BImqE6dIfPazkUoueuu4cCSACSbW10tsV49ZFa3j+V923s4bTLphG+8iy811xzzBBIZjOxHTshkUBNHhs0oioKjL04/Qwl/NfR6DRUTcseOq8UWWX9CweZcnEVIdc4Lh5+MS8ffJlwKsyOnh3MyJvBQ7sfYq5jFkX2Ehw+M4HeI8E2OqOW3oMRsgrMKKluOuvr0kFPNhsajY7+9hY8JYX4rv86/X/9K+7zz0cJBYnt2vWBISSqoqDLzCTV0XH0At3x/BolfBGMFRVEt+/AMnkSkU2bMVZWEnjtVSSnC4/bjfHnP8f5ygv0NjUSGvCj0WhIxuOYrDYkrQ7VkYc00EB3dJB7dqYDzEocJbiMbv75uxeAw2Qn0Bdm+4r0M6siqzg9Rqx6DYlgjH59P3Py57CsYRljMsawsHghsqJy53lj+cvqBg71RvFHEhQjQkiE/wyqqvLAzgcY4R3BGeVnEJfjPFf/HI/uffSoEJJoYBCLw5kOIHnuCtj7Ih34eDw2kbOrvRR6LR/ZjisrG61OR39by8fum9ea/s7QF06Q5zJ/uh0UBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEH4L3U8Z881AO9KkvQqEH+/UFXV333ENlnAC5Ikvd+3x1VVfUOSpM3A05IkXQE0A+ccv24fRzo9WL3w4rXpABKAcC+8ciNcms5ViR0cwP98PXJfDH2hHfeZ5RhybVj0FqbmTqUl0IKsytQP1LO8eTkATYEmfrf1d/x+3u8BsC9aRPD114ea1Tvt5FfJtNb6h8rcORb2r+9g0yuHjuriHIOV6b98kkVXXUHjrDKiNj02WU9kcBDjiBEYysrRZmfRm0qiKjJ2r5dkPIbJakOWkwT70iEkzkwzBuIE99bgu/561GQSSa8n0dyETj+NR/c8OtTmmvY1FDmLGDPxSqRND8BJP4aGd0FnhHGXQN7Ez/1QCP+aqk3gzjXT3xrB6Ynx5v2/xWixYbIa2L/mXaafcyG161dTMHI00cF03pCSSmEwW9ITyZwuLE4XnQfr8OTlM+3sC+hra0Vf4OPk229j30Atj0WWU5pRgT3qpXrwRE7P+gr7XuygIzWIK8tCqN1KrakHOakgH35b/EBXhJEzc2nY3kNPcxCb28iUM0pJpBLEbQG8ww349jTRt/QCnD/9CYE3XiM6fATxunoAort2Yl+4kOAbbxBavYaMm28iunMnfY37MfziNnrUAV7xryI88CxFjiK2dm3l1JJTmSoXMTc8ilhPlAOTv4apSSYZlzmwtZtTLxuGuqkT+alaCu0G9HPyiY10U7up+6gx1Tk+WbiE8K8llSSljlJum3QbBq2Byowsmmv6UZX0WOuNWpyZNpKdSYyNLZCXC1oDSBqSqsoDu/5Enb8OAF1ChmTymDaUtn3gP4RmTMbQROX3ea68Ao2658jKFQvTYUr2LAC8eTZyyhxMmZyFtKEDpaYXfaGdWfOLiNKOJGmxOF3IySQGq4VkIg5o+KTcVgOTS7w09ob43gu7mVmRiSRBb2uI3pbQUesWT8vmN2/Wku8247UauGfFAS6cUojGaMQ0bhym4cNRUZHMFpLNzchFRSKE5Hjq3gu9tenfI4OosoT95AWoiQSSTodkNJEIBmkNHSSbAPdLlxDI0BPPyeamTd/jwMABTpr8I4ocufD299P1FM8i4W9AMdmw6Exk6uow2cpQVZXibAu6TZ3Im6JIuVZOXlrGy4/sZ7AniifXioREPBrFYnegkSSMVhupRAJFSd/fKyZn4cpOTwZW43FSnZ1H7Y5x1Cj2bgvwj1k6qqJSv2uAqX/6LQQHSJx6CoFlrw0t9339egYefwIlFsO15Cz6/vzg0DLJZMI8YhjQABbfZx/vYCf0HwKDBbwV6X+Fz4+iQPtW6DsI1gzIGZt+9v0oKux4qxn1n26R4ViK/3vJzw2njUMraVnXto7TSk9jff0abo9cg25VBEnTxoIp2exuC1O7Ix36MGp2HjvebOGU60Zh96Svf8l4DIPZSvOeHWQVl9F96CAFlWV4Lr6IgVdewblwIZGNGzFUVmIqLv6n/ql4Lr6Y7jvuSO8fYKquRmOzfQ4DJvw7GSsqGHzhRawzZyJpNSS7u8m89VZ0WVmkurowFBejyAoGiwW3yUQ8GsFsd6DR6VBVBdmRh85byMr1PwFAI2k4u/JskskkhSM8NO/tH2qrdFwGLbFGJmRNZNdAiE2vHGLOqSU46/zI9X7MFj258xzEyrScV3UeLYEWuiPdWJUKvvXYNgCmlnpYU99DVbYdi+HfFIITC0D7dgh2gLsYcsaB3vjv6YvwpbezZyfNwWZ+NuNnaCQNZp2ZJRVLeKTmEbrCXWRZ08/LkcAA2WWVsO73sPdFmP8T7m2bgrqti+uj9wOzPrIdjVaLKzuXvk8QQuJ5P4QkFBchJIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCP/keM5eaj78Yzj88y+pqtoAjPmA8j7gxM+1d180VQVZhXDPkQCSoWUK+A+RtE2k7+Ea1GR6gmOyOUj/k/vJuGoMWpseh8GBrMpIksS7Le8eVYWsynRHupGkTEAl4xvfQInH0ZiMDCQkHBlmJpY5CfnjOLwm+jsijDu5kI0vHQkhMZi02IKtRMNh/Hf+nhLfj6idnIPWaCK6dy8avQ59YSE6nw85EkBVVaKBAFq9jlg4hN1kRk5p0ek1zFhaju7QRszV1aS6Oontr8U8ZjS6zEwSySj/bFXrKq6cvQSfrxJW/gLyJ0HZieAbBlrxpvl/h+5UK5nzFYKPawkPdBAPhymbMIXGnemJkO9PSO+or2XS6Utoq93LnpVvM+3sC9n88rNseuFpJp95DnavD43egCUnh/YxZv6+/2nOCp9LlW8Sa1p2kacWE3jNzYBJ4lBmH637BphyeikbX26gZIyPQG8s3Z6sYDDrSERT7FjezJQzSgn2x5CMCrqCGO3GWsZ0GLCu7mPg8SfxXXctSBLhtetQk0msUyYTXrOW0Mp3sc6cie+GG5DysmnM0tAxdwF/2v1nPH1t6DQ6NnVtAuCCYRcwJWcK8+UqNAdbiYwrZ1t7L92NQarnugDwZllgaxfywcNBLMEE8VcbGHv+MBr39BOPpADIGGZm0N4KlH6BR/G/n0VnoSHQAECGOYOB7jBTzywl2BdDo5WwOAw07OjGUrML2+gRcGgVDD8V3vo+FoOVnb07h+raqmmhYngVqX21Q2UapxN9hg0arCTb+9Dn5JJx440oiQQas4nAK8uw33whOve7MGopjLsYPCVD29s9JhaeV0n/n3ajpo5c23UJGesiJyGll0QkgqTVEAsGsXq8KPKxQSgfl04jsag6lx+9XMOUIjdnj/bSvrNvaLnDZ0Kxabn9lGE8t7WNpr4ISyfk4bEaSPX7idfswVCaPkfje3YT3b0H11lnfer+CB+Dkr5GYHYTcWcTfPTvGMvL0fl8KLE40dVrsJ26mFu7JpK47SaMQAZgv+ZKpldMYl3vZhJGK0TTxzmWM4ZNU7/Cgweew5OZwWnDfsqUmmUsvujHpGQv0isNyHEZgFR7GO3yZsbPyWPzilZmnF2OogTQGfSE/X4kSSISGMTqdAEqk04tobjai8GUvi/rvF4cP/wVkYPNSPu3EX3jFSSt9v2chqOoGj09hmHItjCO80eQUV6JEouhMZtIdnZhqq4m+MYbxJtbyP75z4ju2g2RAO4FkzH1vgEzv5UOc/ssOvfAUxeBvxEkCaZcC7NuBuvnEG4ipO1/BZ67EuRE+vP4S2Hu94eCmT6IPcPE8Bm57F3TPlRmdRvJLXIwsttNU1sSr9NLKBViID7AvNgUdBvDAKiySnJtO+NOL0Vr1ePwmWnd7yc8EKevNYzDZwP6UBWFQE8XjoxM+tqakeUUWSVl6MNhbFOm0PvHe/Bddx2xHTswFhYiaY6EQUlaLYmODjJuvAE1ngCdjlRPN5LIFfvPJ8tYJk1C67AjGQzoc3IIvv02rnPOgWQS25w5BAIDaLRagoN+JCTkVAqj2YLRbCERS6HTaymwFwAwIWsCW7u2Mk4/F6vLyKTFxQT749i9JgZ7orSHOsjIdjFyfhat2wbx9keR69IhkUo4ifmVJNbL8zHrzFR4KtBrDGw5oMNt0TOj3Ed5po073q7npBFZDM9xfvHjFQ3Ae7+EDfekP2t0cMY9MOps8X1N+ECvHHwFs87MSUUnDZWdVX4Wf93zV5Y3L+fC4RcCEBkcxGeKwLt/hBFn0FV9NU+9tpJzCsMUtC6DrhrIGvmRbXnzCuhuavjYffPa0v+Lqj+c+BR7JgiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiC8N/tuM0WUlX1xwCSJFlVVQ0fr3b+Y0gShLvAYE1Pdg33Hr3cmkWqNzoUQPK+VHcUeSCG1paeeKsoCgatAZ/ZR1ek66h1nQYnqqJiGT+ewZdfIX7wINapU9FPP5PW/R2E/DHMdj2RQJLiai8jZuRic5nYu64dl1NDqaOP+G9+NVRf/M3lZJ1wM0oojM7jJrJxE/1/fRjb4sUoS09HVRQURSYVTWC2O0gl4njzbCy+fjRWawL6TER37UZfWor36qsgmURRFFRvMb8fdz8vdj3DivblAFS5q3A0b4LO3TD96+lglu1/A3s2ZJQfhwMi/Cs2vZXH/L/l0ssuRxuUAAj29eLKyiHY24OcTGK2O4gGA3Q3NjD5zHPYu2oFNe8tZ+H138JotmLzeHH4MnivcQu/2HIDN4++hRu0P2TP37vYIHdxwenXY4sbWdlTy6g5edRvTp/TqcN/B+31A4yclUdfW4i9a9qZfFoJNava8HdGqN/SSenpFl4ZfIaTdNOZ3GnFf+03sX7967jPXkrP3b/Hc+klAEQ2bSbz298m1ddPfN8+Ilu2EJk0jPqyFLdv+ynXmK6hM9xJa7CVr4/7Ops6NyEhUR6yMm7zAIYRFt5uKGBYtkx7fTpsxGjRodVrqKz2klrRfPTgqaALx5l7dSmh3iCKLsW7yRV4dAVf0NH736HX6BmTMYaB+ABmLFjsJlY9VYfRokNVVOKRFHMuqMSqHQlaLbzxXcgdD2c9gE1rJs+WR1uoDYDnut5k8o03MOzFAqKr1mIeOQLXuefS8ejzuGZ9G407m8GX7ji6/bw8yJ8IE1eC2ZW+1v8TKZyE1D9d2zsjWOVMUFUUOYUcT2G0WFFlGbPNAUAimiQ8mMBk02O2fawsL4x6LSa9hpsXVBJJyLh8DjKLHHTu6SO3wk3llCze6/Dzq9drmTssk7EFLlYf6KEy00b44Dr0WVn0/Pa3KOEIhtJSvF+7Eq3d/imOjPCxZQwDTykbZn0dta+ZyupqBpctI75vH5LJhPuiiyAaw/DSCv4xnib4wF/40QN38VOdhlydI32/BHZOvIi/t7zJrMK5HBo4RItOh2PW15n4wiUMnPA64cMBJO+TB+IUFtlRFhYhJxU0Wj2JSAxUlVg4hMFsIZVMgqph62uNuLMsZBY5SCVlDm7tYvWyOPGIl4z805lx3wXoSTLS6Kapxn+kEQm8xS6W/fkAAHa3gTllLiL3/+jIMNz0LVI9PZhHjmDwhRfRWCx4LrsYU0UOuE4Hg+WzjXMyCu/+XzqABNLhcBvuhbJ5UDH/s9UtpPUeTF9j8ydC3kToPwg7HoeqxVC18EM30+m0TDylGF++jbrNXeSUOamakk2fVmXToT70Wh8nZE0kxAGyTVm4a+MkiB1Vh3xwkMHeGHvXdgCQVeKguaafUSfk4syM0d10CFVVCPb1YrY7SMbjoNHRe9/9oNHgWrqE6J49WEwmYvX1mKuqjlQuSegzM4nX1xNasQJ9bi7OpUtRNcde74X/LEo8gcZmo+/PD6LG4xiHD8e5eDFyXx9odWh9PiRJw2B3O6qikkzEMVqsWN1uVFVPZDCOxW5kVt4s/lbzN0xaE6dlLiHWlKKppo9YKInZricaSFI1LZv3Au+QF8uAYi0zCkcgP1Z/TJ9MAxrMVjNFjiJ0iXLW9XWxuDqHrc1+lu3qQJIgEEv9G0YLaN92JIAEIGcM9B6Anv2QPerf0yfhS0tVVVa1rWJG7gyseutQeYmzhBJnCSuaV3Dh8AtJJZMko2FG+p8Hox1OuYOH1zSSUhSuOeME+KsJNj8Ip975ke158vKp37SeVDKJTv+vQ8s8ViMgQkgEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRA+yHELIZEkaRrwF8AGFEqSNAa4WlXV645Xm1960X4wOmD+T+Gl69NBGwCjz4PcsWj6j50sI+k1SCbt0Ger3kprsJVvjv8mt6+5HZX0a9hH+0ZT5ipDTRwgVluHzufDPG4c0f37SUVkhk3NJjQQx98ZpmJSFoqsImlg2LQcyse66X/gAfp+e/9Rbevz8pA1BiS9gcShQ0hGI77rrkNVVbDZCfX3EQkMoNHo0OoMeHKL6DwUwmQ14MztBzQ4lywhvHo1bTd+A8OIkWhuu4uNjzYz0J1k4egruHDqV7il5gYuHn4Rhmevhd466Nx1pBNtW2D0OZ/7oRD+tRxnET/Lu5rwT3+Dftp0HL4MWvbuZu6lX6PzQB073nyVGeddzKGd2+g8UIc708fSay7H2rsdsy0AhSNBb6Kh9xB/rrmL08tOJzdcxnuvHEKSYPqScvat76B0bAYAwb4Y7mwLnQ0BdHoNSBCPpAj5Y4yem0/txk52rWhhwtI82mikm0MEbBl8JXIC0u+eRM0vwHPpJRjKyuj62c9QYzE01iMT3rrvvBP7ggU4zz+X7Tlx7ux5kryOAm4YdwN7evdw+5TbuHfnfbzX+h63TLwFZXCQ8XevQatCe+YCQgMBVEVFq9MgpxRqN3RyzlWj0IcShB1G5MH4UeOn0yXR/uQHGLZuRTIaOf2qS3CdJSZoft4UFBwGB+FEGK/JS1fTINOXlNFeP0AqoZA/zI2clDENG4bGZoHqpTDQCrufxZBRzrcmfIvbV99OQkkgqzLLNbWU3HYNRV/9Cr1//ivt370NFIXoho3k3fEbnEuWMPj88wBIFgueSy9NB49Y3B/aR8moObbMoEUy6lAUmUhgEIPJSkHWcKRDKSIHW0lV+9i938+uVe348q1MPauc/KoPb+N9GXYTRp2GQDSFTiuxyx+iMxbhhitHkusxp9cJRzEbtLxZ0zm03VdnFGNIFuJ//Alc51+AxmAg2d5Oyu//sKaEz4unhK7zH+G7K2/gR8NvIrxxI4biYuwnnIAqpwi88Sam6lHpSfH/SFXR1TXz/QXfwurKgKgfhp/OpkQfZ5WfhT1uZrF2DppNUSJZMoOLn0TWfMDEda2EZNTStKeP/o4wkxbn43DbGOhqR1UUkokENo+XjgYFRVHRG9PXwO66Ht55eP9QNT2tUTZsTAfm2J1hFn21kn3rO9FoJYrHZrHt7dahdYP+BD2mYuwOB0ogAKSfOVznnE3Hd28bWi+8ejVFjz6KJfNzCCOL+uHQqmPL+w999rqFtEgvTL4auvemf1QFFvwsXZ5KgO7Dw5TsHhPVJ+QzclYuGm36mmlLykwu8fDYxmYe2wjXn5jHyHEa1Cw9tBy9vTHHSo7LhCKrZBTY0eo1bH+rGU+OlcKRDmxuD7FgEH9nBxqNhoziUrSGDNx/ex7N2jcIrVxJvLYW8+jRyP6BoytXVTRmM/GmJpxLlpDq7SW2dy/6osLPeQCFL5qk1xHduRPPZZciaXXEGxvp/sMfyPvdHSihENEd27FXjyRistBetx+L04XBZEGSNIQHddi06e9y5e5yHl74MLX+WkqiFezY2071CfkEeqIMdEepmuLEV2Dle66f0KY5yKtdr+IrdpLpMSB3Hx2oo9foOck1l5fqovSHw3QHY6yqPxJeefLIbLY1+plU5EHzRQfhhDqO/D73dujYmQ4lGWiGqddB7pgPDGMT/jcdChyiM9zJ16q/dsyyEwtP5K97/kogEUAKJpjkbcUWbYSzHyJicPPYhm0sGpVDYV4uVC2Cfa/AKXeA5thn6vd58gpQVYWBjjZ8hcX/sn8ea/qeJEJIBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQjnXcQkiAu4CTgZcBVFXdKUnS7OPY3pdfIgxPnAfDz4KLnoOBJjBYwVkI9mw08SjmsRlEd/QMbWI/qRCt0zj0WSNpiCkxljcv57dzfktftA9JkvAYPeglPZJOR6KxEeu0aajJJNbx4wlLKZr29BEejOPwmdm3toMRM3PR6w9P4knEMVVVonE6UQYHAdC6XFhnzqQx0km+xoShtIzwqvfovfdeJL0et9FAzqwZRDKzQZIwmBx0HDLR1xpm1GwXermbWDyO0tvL4HPPAaC/5Ze89lAtcio9Ya9haw/JqJu/nPcQhZ48KJ+fDiH5R3kTj+MBET6KEo0i3/8oqV01pPbWctIN19OlVfF3tLL4W98hEOgDjczMM+diT07BvPbnaF6ogWGLwaQlJmnZbdDSkxjk7KqzefXAq4xNnARA0SgvB7Z1098epnxCJlqdhuaaPmaeU0FfW5i6zZ1MPrWE7W81U7epi6wyB1O/lsvK/rdodYUY5RnJ2Do9mp3d+P9wD0o4jOuMM+j93Z1IRhOp7m4AwuvW47n8MvyPP4GaSBBtb6Gv9CTu73iI5lArzaFWtnRt4Y4Zv2DOgfXMdk4hVnkyzkNdKDEf3eF30H/tGwz0pS+VB7f3MG5BAXadhtxcG+Gna4lpJBwnFjL4+iEOZwKhKXGQMOuIbt0KgBqPk/jDg5jGTYPcyi/+YP4X88f8xOU4Vr0Vo8aIvcTJqqfq8ORY0ek1bH+7iRlnldL7q7vJ/N73QG8FVwH4D5GKB0ikEtx5wp10R7ux6+2YtWZa411kHPATeuedo9pKdHSSaGnBd8MNqMkkANE9u3Ge++FBSWoqRbJ1H+ZxXqLbj4RI2BYWs2trkILhxVicHjIsuYSeaIbD18fo7l6KTypitwRdjUHeeGA3Z940DkVWaa31o6qQX+Ums8iO9E8TfucNy8JtMbC6vpcMm5HF1aVDASQA3YMxrp5dSos/QncwzrgCN12HQ3TM1aPof+ghAOwL5kNK/gxHR/i4ejUa+mJ9hEL9WKdMYXDZMoKvv45kMuG+6CJUWUZjNKL8wzYaux11MIBPNoAtEyrmQ84Yxvj381jN37ktdA3Kli4UwFAH0ZoU9rO9MDOb2JojATTmEwp45+VD2H0mysZn4Mmx0tUYJm9YNal4FK3BSCppZ8tr7fjybRitet54YBdZJc5j9qPzYIAJi4rZ+nojXS1h5i+0oRqtvPlcOwNdkaPWHQxKuD0eEoEAktGIvrCQ7l/9+ugKVZXgG69iGVkO5mPb+0RMbiiaCXWvHV3uKfls9QpH2DJBa0g/2/Y3QP5ECHWDrwq6ayB33L+s4v0AEgCjXsvS8Xlk2E3UtA8SjVl5e7eW88a7SdUEUKPpUB2tw4Ck1VBZZae9boADW7uJBBJ4cq1EggmSyQzMtiyyy0148wvR6gyYXblse6MFLQplGzaRbGnBe801BN9+C11WFonePgw+LwC6rCziDQ3YpkxG0unRulxEtm5Bn5FxfMZR+MLoc3JxnnkGfffdT7KtDY3DQcb11xPesBFL9SgkSYMmmMRTUIHV7SGVTGIwmgkNWrG5jUPPfQDFzmKKncXs29RG2fhM1j17AJvHhN1j4uD2bnwFpex8qZMpS0ZxQl6EP9U9yPfm3wxPtoOcrshQYCfVGsZ8MIWvwMKoXCvDc+zUdYU42BNiRI6DvnCC1/Z0csWsEgwa7Yfs2XHiKgZJA6UnQONaCHWlw0gaVsKKH8Okr0HZXNCb/1VNwv+A9e3rAZieO/2YZdNzp/Pg7gfZ1rWN6s4g0zOaCObMwj5qKW/vaCMQS3HJtKL0ylWLoeYFaNsKBZM+tD1PXgEAfW2tHyuExGHSodNI9IkQEkEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQhGMczxASVFVt+afJ0f/bs5nt2eDIhX0vpH8gPTFz6YMApLojqNEUjvlFqLKCpNMQ3dWLeYQXTYYFAFVViafi5NnzqB+oJ5KM4Da5qfPXMSVnCqosYz9xHv4nniTZ0YF93lx0M1V8hXYKHV4S0RSFIzzEIknMh8NN5EiEVChE5nduIdXRCRLo8wtQVUACVaslunMnWo8X33XXocoywVeWkTV2LN2BXLwFNpIxGVeGQnaJk7a6fpzefowFhfQuWza0+6GEYSiA5H0te/2MCedizDLD6HPg4Aro2ZdeWLU4PYFV+LdI9fsJvfvu4Q8pYnfejdvpZMRt38LxykKYdTOs/DUUzUi/9by7Bgqm0Fa1gDWJXkh08NTup5icM5kStYoze6/G4Em/cdqbb2fr640A7FnVxrSzyji4vYd96zqYcVEJsVSclClA+Vd0dAf9DOibiLpGcU7hEjL1HqI7d9L81WvwXXklpuHDMVVXk2ppJdnWRrKlGWNlBfG6eiIbN5Lq7sLzlctJThjJfZHXeWXfbZxfdT7zCuehl7SMUfWM2vwYqdLz0expxKaE6Xn6bWw33krkht/y9sutTDwl/fcXCyUp9ZmJv9WINCUHNZk+n0MbO3DMLwJVJWbSsa9+AO++dv55amisrg7r9GMn4gmfnkFr4KE9DzEzbya9hl4qFAeTF5cQj6bQaCQKR3jRoJBo7yDV3gGWflj/BwB8e14kVD6VF2peYGzmWHqjvYSTYebkzyFG8pi2Am++ReYV59H1h4dINDXjWLgQ3/XXoTV/+GTbRFMT/qefxn3xTeh9tvS1Xa8hYdBQMsZHLJREb8pAaQsPBZC8T7Onh5KRHup39BKPpOjviLDib/uGrqMancRZN40nu/TocAarUcfMigxmVnzwBHmP3cjNz+4ix2nCYzVwV20dX51RDIpCqq8f37XXAhDesAGkD6xC+IzkSITotm2EVqxEl5NN/owp5FpzybXnE97wNIbiYuwnnIAqpwi88SamkSPJ/sXP6P6/X5FoaEBfUIDn4osJ79qBtm0lFJaAVkfIYOHBPQ9ylvtUdKvCR7fZH0dpCIE/gf2SCgYD/eDU06tPMDmzBEVRCfRGGeyN0tsCB7YkKBmXTV65k86GASYtLiaj2MGLv9uO3qilZGzmMftl95iIBNKBNl2NIQZiPlY910bp6Ax6W0JHrZtfaCDR3o6xogLXOWeDJKExm46pU5Li0LgGhi/+bINuMMO826FrDww2p8vGXAC2rM9Wr3BELAjbHoWevenPrZuhdC5kV0O0/2OFkPyzLIeZZ7a0kGE3sqt1kP5wAt+CKhbOyAU1/fihJGQC7zThPKWE8fPyaTkwiMGkJR5NsWtlK64sC5lFHmTZhcGiImklug6FaNjeg96oZewNt8D65QReeZlUXz+pzk6SLc1DISQavR7v5ZfR++cHCbz0ErrcXLK/dzumYcM+z9ET/g1Ug56UfwDr9OlovV7UWJT+v/0N90UXosTjmKpHEewK8vrzTZxyXTUGi5ZYOIHVqUHSgNGsP6ZOb7adt16pYcoZpcTDKTQ6DRangUggTnv9ABF/kiLjMHSa13iT9zj70lNRmiNIGomUP0Z4Uzok6uwTxmHIsbFsZzvPb2sl12Xm4UONRBIyV80upX0gSrHP9sUOmNUHp96ZDhda+XNY8DN4+wekvzSS/h533t9h+GlfbL+EL6UN7RsosBeQb88/ZtnojNEYNAYa6l9j5qZnCacMhKfejh14eUc7OU4Tk4s96ZUrTgJJC3Wvf3QISW4eSBL9bS0fq3+SJOG2GvCLEBJBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEIRjHM8QkhZJkqYDqiRJBuBGYN9xbO/LLzoAi34D2x6B9q1QNBNGLR2auKUmZWK1fmK1/iPbaBgKOgCIylEcRgdtwTZWtqzEoDVgN9j54bQfotfq0ZaW0vXzX2CdMgXdggWEN6xHo9Hj9EnsWtlCPCKTVeKgdFwGSkoBgxY1FkONxYju3Yc+MxNUlXh9HebRo8kwZ6AGY1jGjye6ayf6wkKQIPPWW1FkGa1ew6t/3EXBCA9Gs47mvf0UjfKgs/aQaFMwVlYSWr4CyWhEo9fwzwxmHXqNPj0GtW9C/gQYcVr6Ldtt22CwBTwlx/vICB9Aa7dhHD4cY3ERhoLC9GT4N99CSvpBkUFOgtkNBitkDqc7fxzt5XO5r+4p9vTVcGb5mdQP1POVqiuIvealsS6A/QQ7mcV2wgMxnBlmBnuiRAYTrH22nrxhbqpPzeWHB7/D7t7dzMidwfyi+TidFsY6plHmLkOua6D7xYeRe3ogmURXWECypwf/Y49hnZEO9wi89TZZ3/42/ieeINHYSKqnl94sEw2ZEVbv3IaiKjy+/3EuLFzINf1+3BodqbFfp3NdIwPOKWhNPlqmXo+zCba91Yoiq3Q3BhhzYgEWrURyeTOSrA7NtwSQ+2IE3mpC5zWx32uhZlMXJ5+fh+uWW1DD4XRwzzvvoM/L+zcdzf9eZp2Z08pO4+/7/s6BgQO8OPFNmrYOcmBbNxqNxPDpObQciFK2+Cy0bhdK427evxK59r1KydizmZ47nagcJdeWi1Vv5cWDL2LLOIF8lwt5YGCoLe+ps7BFlmO64zYU1YiubAwag+Ej+ycPDmKftYjBF5uOKtdY9fRUZ7DujSaMFh2LZ+ceu7FKeob9YamEfFSQk5JS2bum7ZgQkn8lGpf51vxK/rr2EHs7AsyuyKAi0w7tGhynLELrcgOg9XlRwpFPVLfw8YTeWU77d74z9Nm8ehLP3vxL5P5BdF+5nJ77HyD4+utIJhPuiy5KX0MCfTi/fg3KgUZSnR0MLFuG44e3on3hZBhxEnhKCSaC1PTWsMT9wRPAVRViNf3EQlHuq3yGNw68xX3T/8T+J7rxFdiIh1N0NgySXeogu9RJ065eHB4T7fV+eltCzLmwEqvLwORTS2nd30/JGB+HdvYCoNFKjJ6Xz6ZXDgFQOMLDzg0DBLpjxKMphk3LoW5zJ1qdhnGTLHj1fpQrryTZ2Ej3Hb+j+Kkn8Vz+FcJr1g49F0l6PfbqPFh3N1TMB91H/739S3oLDDsVjFbQ6ODQe/D81+Dy18Dq/Wx1CxDqOhJA8r6GlTD9xqOuZZ9Esc/K/y2p5qfL9tIfTlCVZWd4joPQE/WoiaODm5RICotBSzSUYPfKLgwWPZNPLaFuYyeqmo3ZrqOlxk9XY4CBrvS1zZNrJY4Rk9lMxs03o3U4GXj9Nczjjg5MMRQVkfPD/0fGddcimc3o3O5PtT/Cl4vO4cBYVkZs21YGnnkGQ3k52T/7KSSTaF1u2u+9D9vNP8Bg1vLqPbvx5lnx5dvxd4YZc2IBZufRISSyrIAKY08qZMvrjcTCSXLLneRVukkmFEx2PQajlo7aKCeOPpGuSBdqKElwefOH9rHIa+GMsXk8ubkZWVFZOj6PwWiShp7wFx9CojfDjidgzq2QPykdNPSPD8QAW/+aDncqmPzF9k34UkkqSTZ1buLU0lM/cLkx3M8vIhJz1jyIqrPzfMtIzsgqZjCSZFV9D5dPL0ajOXzfMLshb3w6kOwj6I0mHL5M+ttbP3Y/vVYDfSKERBAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE4RjHM4TkGuBuIA9oBd4Crj+O7X35KUlo3w5GG0y7Adq3QbADvJUASGYdWqcBefDIRBjz6Awkw5HwjkgqQnOgmZG+kZxUeBJxJY5Za6a2t5bZ+bOhrIz8e+8huHw5yfZ2fNdcy6FBhS2vN1ExMROTzUBXwyBrnqqncKQHo0UPsozW7kCJRpG0WlBVEm2tWKZO5f+t+3/cU/Id4l1dOBYupOvnv0D2+9H6fOTd+TvUuIo330rT7j4ALA4D+VUujN3bSRrnYa6uxlBSTLK1Db1RS065k44Dg0P7M2ZePn1yL7kxCXY8CoP/NGmoYCqUzD6OB0X4MFqHg6zv3krXT35KYNmrSEYjnq9+BWOBj8as79JosmK98BE2dW4mw1HAIzWPcMpALus61lPmKqM1lD6WrngGu+pCAOx+t41h03JwZZoprPaw/K/7kZMKqgqqLc5DzfczyjeKWXmzmJw5nmEZo7DqrcjBIPG9tbTdcCNalwvjiBFkfucWUBQGn38eFAVDcXG648kk3XfcgePUxdiu+xoNORoOWINkGE3cf9L9DA40YeveS0ndCkzROCHvEuLtMps7C+jbE2H4tCT1W3uZsMiGkkpPrGze18+cMieFuVYGNnUAoDFrQaeBfwyFGJ1B/RvNZOUbcSR7CL75JrFdu0Cvx33xRRiHDfviDuD/iHAyjNPg5LIRlyEhEWqR6WoMUD0nH0VROLith2BfjBHnLSDRdRCr3jK0be+o07lzxz1cPOJimgJNqKrKsoZl7O3bi9/p55GH/kx8+XISbW04plVjztGi9LhJ9Q8iJ3RIjh40/yJYRp+XR/xQhHSiyBFKOInVpAUgHkmR8pmRtBLIR9ZTRvk4dDjQoXxiJqH+2LH7P5hATilodceGPH0YBZVH1zdy1rg8rEYdW5v8vLWvk0XDRzDw7DME33wLAPvChbiWLkFJJIhu30Hg9dfR2Gw4FszHVF2N9ClDBf7Xpfr99Nx919Bny6xZOBefQsc11yP7/egyMsj6wQ9ITJ+OEgkTeONNzGPHEFz1HrsvmszYvDFoY8OJ+k6nxxDBJ2mB9LFwm9xMz53O8z0vM27sN9FuOxIio3UaUeMyAFJ7nMsXXcriqtMID4ZJxCSaa/pZcMUI+ttDdDYE6GwIkD/cTXdTgILhXpSUgs6gZdpZ5Sz/2z7kpEJxtZfJp6WDwrx5VlY/VU/ycBsjZ+aw4u+1AOxb24En18rYEwvJzDdhevl+lE4XfX9+EICMb9+MobQUQ1kZRX/8JYHl7yGZDTjGFGCquxuKpoFG+9kHv78BNt57bPlAswgh+TwoyQ8ulyTIrv7U1bqteiYVezh1TC7NfRG+uayGp2YUE1955JlRMutAVdHEZOxuE+NOLiIRldn9bivRYJJUUmH60jJi4eRQAInBpKViUhaNLUFK6uvp/cMfQKfDfdFFyKEgiY4ODDk5R9rQ69HnfkBglPAfy5CdTeJQI0o8QeYPf4jWbKbju7ehDA5iKCsj5xe/ILp9GzOXnMqKxw/S1xamry3M2PkFNNX04c62Yio8Eo7U3RigcXcfzXv7KK72Dn3v2vBSA1VTsxl3UgEDPREMBj2ZlkycRidqk4zOZybVGx2qxzTcg9aRrtdq1LH2wOFQBkni3doe9nYEOGl45hc+XjjzYdp18NJ1MOtb0Lrt2HU0unTgptEBmeK5939Vvb+eSCrCxOyJRy9QFFjzO3jv18xXkrxqMeMr+jZ9O9/E6nTxRl0PSVllUXXO0dsVzYD190AiAgYLH8aTl09fW8vH7qfHaqBfhJAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAc47iFkKiq2gtcdLzq/49kz4GeJyBnNCSC4CwARQZfOQCSVoN1cg7yQJxUXxRDgR20Ehrrkbds6zQ6oqkoBwcP8vttv0dFZWLWRG6ZeAsAqd5e/E88QWjFSrROJ/HGJozfuINENEXN6vahevKHu3l/0rKk1SHptFgnT0Lu7QODAducOaQ0oEkpqA0tOObOpe3GG1Ej6Ymbcm8v3Xf8jr5F38eXZ6ekOgNVVUkmZHoPdTMsvBVyZxNas4msH/yAlN9PQK/BnWOhYLgH+fBkZlVRSJhCoM0HT+mxISROMdnz30WORun/y0PE6+oAUONx+u67n+SE33Nh6yssLl3Mus2/QlZlpuRMoSnYhHo4aKEl0ML8wvmsaF5Bc6QJjdaHcjhcYf/6dIhH6WVa7Bf2Ui6NoFtu553gU6zoeAc64JqKcxnnLEejtxJvbKLzhz/EMmECqY4O1FSKjHlzab3xG/iuvjo9mQ0Ir12H9+qr8T/5JGokQtis4U3jbv5Wu4zvTv4uJxScgElngs79sP7PDE79JX3GKuI9A8QsBbQ31ZJf5abjYDokR0kpGMw6EtEUJywuxrm1k2TEi9ZtRPbHCa1tx3lyEYmWIHI0hW6kj34JZs4wYPcfILFsczqABCCZxP/Xh7HNnImxoOCLPIz/9QxaA7X9tWxo38CFFelbTn97mP728NA6WcV2jCZAr0fjrYL61wAI27PY2/AO3ZFu/rL7L6TU1NA2Fw6/EHvVKOy5btj+CCiHkFM59B/y0nPLd0BR0Lpc5N97L5bx4z60f/qsLEzVEuEttUflkGjdRswZZiYtLkaSJBrbwow8rwrq+pFDSfTVPgI6LZMWF2OyGZAkMJiOvWXnVrgZ6I7gzbV97DFzm/Vk2k38dW1jui8aiYcum0DsvZcIvvHm0HrB11/HNHIEGpeL5ssuGyr3P/IIRX//O+bRnz5U4H+ZKssosfjQZ/fZS2m/7fah+2uqp4fO//f/8F5/PYOPP4774otRYjGCk6p4p2U5yYI5LO9czmzbbEZbRsCEy8GRDsMx6UzcOP5Gbl11Ky9lvceCk2bhbTCi85rRuowEVjQDYChzsq5rPb/bfzfnVpzLvBPOZccbbQz2xqiem48kSWi0Er2tIZr29DHvvGKyC/Lp641jsuqRk+nrbuPuPhoPh5CdfuMYTrioitBAAlemGW+BjZJqL/s3dAFH/i7nz9NhKi1F0uvxXnMNugwf9pNPRmNIT7i3jCjGUv9ryJsIjiBMuBRK530+ISQm57FlOhMY7Z+9bgH0Zsgdnw7Ze1/lQlAVsPo+dbXlGTZUVeWPKw4MlbXnWShZUET8wABalxF9poXAihZcS8rxGDS8/dd9R9WRU+akZnU7GUV2skocKLKKqqpsXnaI0ZOd6Dye9IqpFP6//Q3TsCpSvb3os7KQNB8/5En4z6Nx2LGfOA+d10v7zTejJtNhOqaqKgaeforo1q0Yi8YzaXExckpFp9fQVNNH96EAExYWD9WTjKXoaQ5yYEsXeZXuo753QfocDPpjNOzsYez8InaFd+IwOGhPdJA7JgsllCTZHcGQb0OfZSHWFMA6wkex18rZEwr4v9f3D9V18shs3qzpZEKRG4/V+IWM05DKReAqgmAXuMtgzzPp77OQDhwqmQ3r/gjV54oQkv9hu3rS34HGZIw5esHyH8Pau2DEmewZu4Tb13+fq2Id6AxG9CYzq+vqcZr1jMl3Hb1d8cz0dq2boXTOh7brzcunde8eVEX5WNduj9VATXvgk+2cIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjC/4DjFkIiSVIJcANQ/I/tqKp6+vFq80svfyJMux5aNkG4O/1W+MLpoD08PLKKmpSJHRpEa9MTre3HNi0XlCMz13siPXRFupicNZlZubPQa/W0BluRpHSgSHTnTgafeTZdXV8fWrcbjVZi3PxCdr3bipxU8ObZqJiQhd5weEKvBHIohBIOI+l1oNOiJpNEpSQzraOR/DHkRPfQBOn3xXbsoOq7dl75S8PQhGSdXsOZl7sgvIhUYz+GwiL6//IXUKH3nOEUjvCyd007gz1RysdnYnboURRd+o3GM74BLRshdXhytrccskYfv+MhfCS5309o1apjyiOHDhJUgrhNbpqDzUzLmUa9vx6ApkATo3yj2NO7h5ZgC98dfzsj9COJLtCz/fUjb6XOqLDSrt3HXfvuwGV0cdXoq5BjSarcVSzNnMSJuTNRFQORPXsIvvYakY0bsUyehPfqq9CYzQy++hrIMommRkwjRhDbu5fIxo0kGhpwn38+jsWLCee5mR1p51TDZRQ6CtFI6YloYc8UWie/xurnW5i0yMqGVzsZOz99zgX6ouRWuOk6FGDfug4mnVpM18EBMoBYMElkezeOhcUE32tFCSQIvN2M6dQS6huDRPytlBoG4fs3oD3/fIIbNx0zdvH6emwzZhyHo/W/S1EVXEYXozNHkyRJJBBn4inF7FzeQjIu48qyMH5hEVL9KlI5XmKyGdPc26F9Ow7vMCaEJ/BU7VPcNPEmVreuZjA+yNKKpZxUdFK6AVceVC2C5vXEgy56/vi7obblgQE6vv99iv7+6JEJ7B9AYzLhmF9E8N1W1ISMxmHANiuPxo4wm19tBMBo0TFiRg7es6tIhRN0HgrQ1RRgsCeG1Sljcxuxe3VMPbOUA1u7QYWyCZk07ekjf5j7E41Zsz/K+CI3J4/KJiUrGHQauoNxitetP2bd8Np1oNcfVaYmEgRXrhQhJJ+SPsOH92tX0v3LXwEgBwLH3F/lgQH0GT5sc+fS97eHyfnxT7g//B4n5J1MKBFiXOY4HEYHKVRwFoL2yDGqcFdw/4l/oqt1NcZUA85h04nsU9IBJLKKLsuCqcTJdONkYmOuoyXYgmecxHRrOcl4igNbuxnsjg7VN3u+A/Oa5+mqPpNQXwxXhoW8She5lW5QVXpaQrTV+okEknjzrRSNOhI2MX5hMYPdUToaAmh0EuMm2dCteJTuVcvJvPU7oKpYZ8xA7/uHgIqc0XDGPbDyF7D1r+my9ffCJc9DwZTPNvgZw9KhLVsfPlI2/yfpEDThs9OZoWweFE2HvnrIHJl+ptOZP1O1DrOBM8flUei1kpAVTDotP1/bwJ/nVSJ1hIk3BYjs6sU+M4/Q2jYyTipi1Ow8ata0oyoq+cPcGMw6DmzrpmJiFu88tBfl8LO1waQlO99IIvN0LPZMYk88hBIIED9wEMlgRDIYMFdVfR6jI3xZJRIo0Wj6Wnw4gARJwlheTs/vf4/GZsOQDNFxSE9L7eDQZhMWFeHMMKOqKsH+GB0Ng4T8cSRJwmw3kFfpoq1uAEkjMWp2Loqi4vCYKR2TSV9LkPxJ+URSEaKFkNgcJnkoiM5jItUfA0UlsqsHfZ4Vg9NMkdfCtxdUEUvJGHUaatoDvLC9nWvnlH/xISQ6A+SOTf+eSsJ5j8Ge59JhQ7nj0tfX8hPT328TUTB8tr9/4T/Trp5d+Mw+cqw5RwpbNqWDRCZcDqfeRZWSQLfxR9RFDzHa6QJgdX0vM8t9aDXS0RUWTAEkaN7wkSEknrwCUok4gd5unJnZ/7KfHquBvlD8X64nCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCILwv+a4hZAALwJ/AV4BlOPYzn8OjTb9dujsMZCMgi0jXXaYHEgQ2d2LpToDNOnPA682oPPIaEqykXQ6LDoLa9rW8NKBl3AYHQzEB5hbMJe5hXMBiNfVH92mTofBrCPojzH2xAIkjURoII7RqsNkTR9+JRIhvr8WXU42qiwjIaEEAiQs/5+9+4ySo7rzPv6tqs45Tc5JGs0oR1AEhAQigwk2NsY2NgYc8LPrvA7rXa/XXqdlnQMO2MZgjAHbZAECESSUcxpNztPTOXdX1fOixUhjCUSQjDH3c84cqW/fuvdWdam6Ruf8fwV79R4wT0dxu0FRQFUnhpZMJix2hWVXtxAZSYEEvkoHDtcYdOxEcVzG6De/ham+HmN1NXa3iUd+upu66X5qpvnYv2GItqWVJNUQZBLw4i9g2SdBy4OkQCYC0R4obz/tH41wPMXpwDxtGtnduye1x9xGCINOsYD3YPgg59Wfx67gLh7uepiPz/44H2//BKVaFYfWhXj+xWHqZvhZenUziXiahD3EXuMm3FYbs0pmsWNsBz/b+TP+e+Hnma04McTM5HrSjN5xG+rwCNnublAUDGVlhH93J+g6xsrK4loefoSSj30MY10d6S1bsM6fh2vN+VimtGAB/Pajhe3x4SAHN42jWK08d28XVVO8dO0Yo5DXKORUbC4TsWCGaUusOLxmUtEcDglqKuwQygCg5zVij/Zgm1uK4rOw3X2AmHkr4box2scl3CELY0C+txfzlBZSL26adOyM1dWn7fN6u8preUKZEBX2CnR0yhvcbHqoixlnVSMrEmpeQzHKJF94AS5dhbNyLvz1X8DiImQwsLx6OU/2Psk3N32TpZVLeW/7ezFJJryWY4I9KmdDyVTyjzx+3Py5zk7USOSEISRqKkWuswst4yS5YQj7GRVIBgktVSD2SA8VV7Yw85xqFIOMv9KGMThMdNcAqZ0xFItC1axShjuidG4bI59Vecen57H76QFKap0AbHmoG2+5DXeJ5TUds3KXhc/9adekts+cNwXL9HZSGzZMardMbye7b/9xY+i53GuaU5jMdfHFyFYrkXvuQfF6j/9+NZvRslmyBw5QcuOHUZMJKgMNJPNJ6l31pAopRpOjlFvLoO5MkCYX65Y6AtiN5dj330HOayCzqx7niuL1Rw1liD7aTfYCIz/t/Cn/2fBRvBs2oYyOYlp6Ls0fbme4O04ilMFvjsNv/o/8DR8nMZ6nd2+I+lkBLE4Tm/7aBUDlFA/nvr+NTQ91Ud/uJ1DtnFiHt9zOqsv8jD3bi1zIUvjj78keKt6nmGpqcbz3vRMhapPEBuHgI0df5xLw6BfhunvB7Dy+/6tlccE5X4K2yyA+DL4GKJsBsvz6xxSOKm2D+AC88H1Q88VjvPhjEGh940O7LHz/yQ5y6tFfKYZDaUosCrZZJaBBaucYaiiDMZHHU2Hj3OunERlNMdIdY/vaPhZd0kA6nmPFu6cSHUththrwlVl54veHSEVzWJ1trPj3H1D48i2YqqtQoxFyff1YmpuRFOUVVie8leWHhjA3N4OuF6+luo7scFAYDyLb7Ri+8L889rxO/Uw7C6f4KORUyps8lDe6SYSz7HtuELPNwPYn+pi7upYZZ1Xzwv2HqW71suDCehxeM0argR1r+4iPZ0jFcqy5eQaSVaYz0kk/w5RNa8MRKAYm5PriJJ4bBCAdT2ByWylzWbj5d1vRj+ZSsrqtjGAiS1Op4804bEUGIwSmFEM1t/0G9txXDG6rPRN6NsCTX4UVn4a6JZPCsoS3Hl3TiQbTJCNZfBV2rE7TK/bfGdzJzMDMyd/xa/8dHGVw3teKQT+KmaneqXSnhjnTPZeO0QTDsQzLWgLHD2hxFc+1wa2vOK+vqgaA8YG+Vx1CEssUyKsaRkXcCwiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCILzkdIaQZHRd/7/TOP5bl9Vd/PkbssuIGsoQX9c30WaZ6Wf0u1/Hf/112BctIlPIcPXUq+mL99EZ6eSixoswyAYUqVgcaZ7SMnmquXPo3R+icXYJyUgWtaBRO83HcFeU2mk+ZEVGlyTUYJD4Y49hnTmT/OAgaiKB+Suf5umuDRSmXU9h0w4CH/8Ywf+9rVikJ8uU/fuXObQ/y6YHuzGai/Pnsyor31VD66KbKTy1H++7r0XP5ZDtdgZGU5xxaRP7Xxgi2BeneV4ZhbxGvpCHbAx6noGDD04+KL7mU3zwhVdLcbko//zn6fvQB9GSqWLbmpX0VRggDKFMiHpXPcF0kGpHNV9c9EUyhQwLjMvYc98YUmOOwy8GAejZNU7P7nFmX1LJt8JfYjg1jNwjs6xqGZ9f8BlWZHUC+3aRcy6g6+MfJfDhDxP57e8wNTXhPPdcFKcTLZ0mu28fSBLuSy4m8eSToGmM3XYb5qlTqfrf72KZPh3ZdHxRXHo8xq7nQmx7fIB5a+pBB7vbxHBn8Yn2u54eYNEljQx1RDiwYZj5F9Tj85rh0W7S42lc59aR3lXcFz2nktwwBGsCPDD4J95hX8rCLhj/76+TWb0K56pVxNeupeyznyVz4CBatDiHY+U5WGfM+Dt8cm8vbpMbs9HMHXvv4P1TbqBvb4i5q+qIjqeRZQlnlZ2B/WFaFy9GMTqw2Fxw6fcgm0Bz13DXM//HVP9UPjTzQyRyCb7x4jf49IJPHz+R0Yqxuua4ZlNjI4rHc1x7fnyc4Pd/QOT3v6fiOz9GSxtIPNM/8b6hws6uTaN07AqiqTomq4FLV1WRenr46CDD3UxfWUfvvnBxzGyBC26eyca/dDLcGaVxbgnzzq/HYn/lQtC/lczm+dR5U/nV892MJ7KcO60Mp9WIbcECEmufINfdXdy3+nps8+ej5/PE7r//6ACyjPOcs1/TnMJkRr+f5OozsWXTZA93ErjlZoLf/8HE92vpJz9JpqMD2elk7Affp+LrXyeYDmJRLBS0Ao/3PM67Wt+Fx+SGkrbjxk9mC/yqJ8CaKTdQafcg7YoTf/LovQUGCW9JgO9Y/42ar9xB+EiAmfSzX+H6+T0c3BxjvDeF229mwXtu5vCAkd3rezEYZUa7YhzeMjox1ODBCGUNLlKRHONDKQp5lWyqgMVuRDHImB1mCj/7Fmo4fHR+WcZYWXHiABIohlf8rZFdkIm+sRASALsfmsT5e1qYHSCb4KwvQCEFBisM7YSSAXAcH9T0WrSUOvjuNbP4xiMH6A2lWNTgw+S3kX6kDz1dmOineM0osSypsQwxUlS2eFGMMjXTfOiazsCBCGN9cWpavZTUOnn4Z3vR1GKyQzqe5+mnYM3Xvw+RPgp9fUgWC5kDB7C2Hf/vTPjnIDscZHbtQs3m8N98E+M//BFaIoEhEMByzfU8tUEnFcux99lBZFnCZDfQsqAco1lm/R86Gdgfpm66H1mWUAsaug6LLmlE0zScXguhoQROv5VEOIPJamDmOdUYTTJV7joGEgNEshFSpgz6U0OTYjvNzR60RPHcrvFa+dyaVn6+votgIstZU0uZVuHiuY4gixr9b9KRO8LfBEYb+BshmywGkwztgif/o/j+by6HDzwKNQvf3HUKr0o+qxILpos/4xliY2mC/QmCfXFymWJYmixLtC2rZOmVLSjG44M7IpkIPbEeLm++/Gjj6D7oeQ5W/xeY7BPN0wPTuW90P2a3i41dIQDObHqZc7pqLnQ8cTQw6AR8lcXAtdBAP41zFpx0f/1H7qHDqRylztcW6icIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgvDP7HSGkNwmSdKXgceA7EuNuq6/8uNr38a0RAH3efUknh9EjeewTPNhKndQqGlk/Oe3Y507l2pnNY/3Ps7u8d1UO6p5uOthPjL7I1Q7iwU31lmz8Fx1FZF77gFA9vlwl9lZ+4u9VLd6MVoUtj3WWyyAsxz5+LNZDGWluC+9hPT27VhmzMBUXY2qK5xVfRZZLYchHMLU3ELVbbehRiIYysqQq2rounsMKBYsvaTvcJrW1P1Ichvx9c+S3b8fyWjE919n8MSDgzTMLMFgljm0eYSG1XasZgvYAzDlAth19+SDEpgcqiL8fdnmzqH+3nuJHz7A3kw3m+1BmtxePjb7Y+S1PJ9b+Dn2hvbitrj5+sav819zvsHGXxafCB8aSkweTIeBbXHOWnEWd3XchaZr5DJJztUaULbvZGT7AIWhzeiZDFo2i+xyYT/zTMxNjQx++jMEPnLLkXF0on/+C6Wf/hSJZ9aDouB/3/VYpk2bFECiaxq5UJih7iTjQZXdzwwBYDhSLDd4KEL9zAC7nx5AzWs8f28HJbVOll3TwjN3HeTMJRWYx9IA5HpiOJZXk9w4hK7qFBbaUKrgwz834XJ1Ez4S0BB/7HHsy5YR+OhHUQIBan/5CwrBILLVirm5GYPXe3o/sLehUlsp9c56bphxAwbJiNVl4snf7Kdmmg9V1ejbF2LZVS0U1AqURILUWBjb/e8BxYj03vu4rv06vr3526zrWwfA4srFuMyuE85lnjqVkk9+krHvfhdUFcXrpeK/vorBd3xxfWbXLiK//z3O884jveFJHGesIbXXiDqexdTkIj0twP47D6JpxeL3afN9ZLeOTR5EB0syj9GsYDDJmG1GSmqdnPeh6eRSBSyOYsjDa2U0KPxsfScXzazEbTXywuFxNneFOWvrg/g/eMPRwk5dJ/bgg5R/+ctU/+AHhH7zG2S7Hd9734t15szXPK9wVKaQYVdkD57ZJThe3E+5bqfq+99Di8VQ3B5yw8OkX9yEsayUwC23oMVijCljXNx4MXajnTpXHR6zhzJHxQnHtxgVekIpPrw9yXfPrqJuhpmMSSHbGcXgt2A/s5LBxBiu3hD5IwEkAJZr3sva+0eJh3LFdSYLrA0ZaT3DA4CrxEqwP3HcfAP7w/irHdTP9PPY7XsY6ohSP8PPnNV1+Corqfzm/zBw6yfQkkkko5HyL38Zc2Pjyx8gf9PxbVPXgL3k1R9k4e8vPgj33Qj5FChGUPPFdncllL+xEC5JkrCbDSxq8HHxrEr2DES56S+7uPfqNhKP9FIYSWGqcWKdVUL0kW5qL2rk0OEosVCGwYMRjBaF/v1hsqkC01dU0bNnnJI610QAyUvS8TxJVzPG3r2Ef38XFV/9T9Lbt2Osq8Ngt7/M6oS3Mi2ewOAPYLLbKUSjVN72v2ixGMbaWlJ5F8nfDh3tq+lk4nkiI0kkCQ5tGkFRZGxuM4lIFk2DbY/1UjPNSz6r0r8vzMyV1ex6sp/aNj+FvMaudf1c9i9zkSUZn8VHXsuTMhUov6SJxNP9qJEs5hYv5noXmY1BaK3AaTWyfyjOqrYyPDYTGzvHue2JQ3zqvKn0jCep87/J56aroviTCsPPz4FQ59H3dA16XhAhJP/gomNpnr+3g+4j4XgvMZhk/FUOpiwsp6TWicNrpntnkF1PDxAZSXHRx2ahKJPvRXcGdwIws+SYe8Xtd4JsgJnXTOo7s2Qmdyt3k/To7OiN4LebqPXZTrzIyrmw4/cQGwB39Qm72FxurE4XoYG+E77/t3x2MwChpAghEQRBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBONbpDCGZAVwHnMPR5zrrR16/LEmSFGAzMKDr+kWSJPmAu4F6oBu4Wtf18Gla89+VpulER1PkMypOvwXQia3rwzazBNluJHs4QnLbCFokjBoOoRdUpvimcPXUq2kPthPPx7mo8SLmls7FpBTDFwyBAL4bPoDjnLPRMhlMra1kIkZmr6pl99P9qAWdqWeUUdZwtMhez+VA04nedz/mqVNJbdiAOnUq0oxm+uJ9pO05zD29xB58CEvbNHJ9/chmMyW3/YCSGifBvskFyb5yO7psRkskMdXU4Fi+DCSJpNvJvPPd7N8whJrXaD2jHG+twjBRMJhg9rUQPgz9m8FggUU3gaf27/mRCCdgrq/HXF9P9eFBsi8EiW7M0TKrhljlIN/e8m1UXaXV28rZZedSnq5nb+QQuUyBuvbjn2Jtqwen1cl/L/4PZmXK4Ff3IE3dw8h3/g/vu95FeuNGABSfj8CHbyS9dy/hO38PQL5/APO0aWT37SO7fz+jhw7h+8D78d94Iwanc9I82YEBQgeHybgrefgXh5m2uAKT1UA+qzLaG6NhVoCuHUEkCaYsLKNjyyhGi0LbIj+O3AgXXNmEsaATPTJe5kAYZTiJfUE56hQTwe2P4X9WJnH/I8g3fgi9UMB2zXsp1E1Dy6eI3HsHpZ+4FWtb2+n8aASg1F5KPDGEIW/AkfHhaXKTWFDKgQ0jKAaJ2StrUIwy+T37MddXkB858vR0NY9qMOIwOvjI7I+QVbMYZSOSJKHp2gnnUmw23BddiKV1KmokgrG6GsvUqSfsm+vpBcAyrZWx/70N2VeBY8lKJIMFyaowPJCbCCABSKcLSFYDhLOTBzLJlDe5qWv38/BPdnHxx2bjq7BjNCmv+5g5LQbaK138dkMPAFajwo3LG7CbFjH0hS8WnzAPIElUfPWrKHY7zpXnTFzLJcPpvHV4e3ii9wn64/38qOtBrjzzSrYPb2V/9M98c+pnCTy8icjv78Q6eza5nl6SGzZS+Y2vc0X5FWi6htPsJJqJUuWowpSzMTISw2w14C61Ir0UIAMsbQ7w1P4x9o4l8DwzgrnejfOcGtRIltij3VRc2UhuymqC/9aIgTzKi2tRZy8j/pfJ3+mZRB6jpXi+JUKZE17b/dUOPGU2UtEsXduDAOx/YZjxwSSXfHwWjqVLqbvr9+S6upCMJmSXEy2bRTkmOGoSVzUs/RfY+CPIp6FqHsx7HxjMp+YDEE4PxQRmZzGE5KUAEjhln1tbpYvfvNDDPVv6geK1K61nMZbZsLb7yQ8niT7UCZKEvcxIYkeG+L4Mla0etj3aSz6rMmVhGZIk0TKvDNCRpKOXPACTRSEezeNdvAp3OEz4rrtwrFxJbv8BDPPmnpL9EP6xSGYz4Z/8hMAtNxP+3W8xVVWR2X8AdXwc731PYbaPkU0WjtkAFKNCJpXHaFLIZ1UKORV/pZ2BA2GmL69iz/oB8jmVaUsrcLdDKKrQuWMMf42dNTfNxFNaDFloC7RBEGRJJjMax9zkQXGayHbHiD3Wg3VhGeORMfyeEt6/pJ733P4i0XTx39aMKjej8SzPHgq++SEkL1EMYPEc3252/N2XIrx6Y71x7v/uNnRdZ+bZ1ZTWu3AFrDh9FqxO46R7C4Dadj+BKhsHvvkL9v75i9is4DznHAI334Rss7FzbCeyJNPuby9uoOuw535oWgmOyWFi7b7i70rD9hTbesPMqfUeN9+EqnnFPwe2vmwICYCvqobxgf5Xte9euxGAUCL3qvoLgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiC8XZzOSuLLgUZd119rRcetwD7gpZSMzwJP6Lr+dUmSPnvk9WdO3TLfHPlsgX3PD/H8vYdRCxrechuXXz8N2aSQfHF4op/nigb6P/IogRtvRDYZkWSFBeULaPY0ky6kKbWWYlCOfozZw4fp/cANFEZGALCtWkP6mn9FMUmcfV0rIBEfT5NLHVNMp2nkRkbwXX89WiqJfdEist3dmA0Wzqk9B2tUw1BdjbmlhczevTiWL0e2WZFyWcoaXAx2RIiOpgEoq3fhKbehDWoYKivIdXUS/MEPsa6+gI2hMaLBDA0zAygGmX3PDzHNEcDcbobEKNx/M1TPgxWfBrUAe++H6oXga/h7fCTCKxgaGOfJH3aQTRawuUzUqVV4xnx8qeZ/0LNgNpnZ88Qw8WkFkCCfUdE0ndJ6J6PdcQDc5RYaF3hZGJyCYc8QiecfJ/nUU5hr6gFIbdmMfekSYn99EGSZ0e/+L/YzFk2sIfrAA/g/9EFsCxaQPdyBc+W5OFYsnxRAkjzcSzRSIFUw8cR9cWatTKFrOoe3jjL73Fo2/rmTru1B6mcGOPPyJqwOA4GAzPzVVWQ2byT+5euRP/01EhtDmGqdWGcGSO8sFtSr0Rz5eAqeeRp+8mMKl1yMZLGQ0424fnYvT94/SPTFDIrRw8Ib/ovK1sDf7wN6m/OHDOx6SEExpqhpT+KvdnDu+32AxPhAnHxGxV4dID84iJaMFQMOon1Iipm8mievHS2Wj2QjGCXjCecpjI0x9Pl/I/n88xNtFd/4Op5LLz2ur6mhHslqRQ1HcF/1bpDnEv3z0Wt71fJqaqd56d1XzNRKp1WsZ1cTv/tAMa4LkB1GVL8VbX+EZ+85BMBIVxRfxRsrNu4dT+Gxmvh/q6ZQUDUkCf64ZYBZ/fsp/cynSW/ZCoB13lzSBw7gObKdZDzxcRFem5HkCN948RvUu+uZXTKbn+36GWsa1nCBr5laYwnRoSF8H7iB9LZtWNrbcV10EYVwmFxJDqNsZIpnCjMCMxjvTXHvz7cQD2YwmGRWvGsqzfNLMRgVMnmVnz3TxRVzq3CV2rAsrSKzrp9sRwQAU72L/J4oBbPMjh4Xwf4E0+ZeS0tjPZK8E/2YgBygWDAvQS6jous6pXVORnuK13ZvuY2W+WVoBZW//mDXpO3GeuJExzIY9Rzh391J5K67Jt4LfPzjBD70wROfV8M7ivcAi24uFrWP7ocH/xU+8CjYfKf08xBOIUcpnPsVuP+mo23uWqiYfUqGL3VaWNzkZ2aNB1UrhkU9NpLh3GR+4rsawH5GOYXhODOv8tMXHGRI38Pym6ZjTNtIJ/KkIjkObxvFbFNYcHEDm/7Sha6DbJCYe3490ZE0nRkT9Re+k8LaD2IIBEjv3o15SgvK34SeCW99WjKBbeECdMWA95prSO/YiXXGDFyXXUoqMs688+vY+EAXaqH4fTlrZQ1qQSURztO+rJLta/vY8WQfbUsqcZdasblNrHjXFMaHUvTtGad6VhX6kn1ULrLSUlJJWalr0vxtgTa6Il0kWnKY7hxDzxfPbckoYwrYyOyIsaFaoqnEwUfObiKZVZEl6A+n+fXz3bxzQc2bcdhOzOyEsz4Hv7/6aLqP1QvlM2D/X4sBJSXTwH58mJXw5simC/z1BzswWRQu/9e5uALWk26jZbM47/o6rYeeJOasxVZTw/jPfkb8ySep+80d7BzbSYunBZuxGLbDeAdEe2HprceNVSb5MOYlOg1xOoNJrpz/8uEilE8H2QiDW6Htkpft5q+q4eDG59B1/eUDTV7qay+GZIVSIoREEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEAThWKczhGQH4AFGX+0GkiRVAxcC/wX8y5HmS4Gzjvz918A6/glCSMb6Eqy/+9DE63goQ+xQGNu8MgD0nIrsNJE5FKX8i19Gi0eRFGWiv9fixYv3uHGTL7wwEUACYKitZvBAmOZ5pRRyGolIBpvLhMFydCytUMA2Zw6JDRuwz56NruvYlyxGPVIYLJtMZPbvJ3voEKaGBmIPPoiprhbD5e9GMarUtvmwLCg+JTkdz2M0G9GqF6NtH8VYU0vgppuQ2+cgvygzZ1UtmqojyRLTFldiUEGSjVDIQHIU9v2l+POSXOKUHXPhtVPzGqOdYcZH0mSTBSQJ5p5fxwt/OkztdB+FnEZoMEHDrBJGDsfQCzptSyrZ++wgO57oY8rCMtqWV2Ky63iUJJbeLgY//QW8111Hct06oHh+AWQPHsJ9xTuwLViAlslCoUBq44uU3Hor6e3bARj/2c9RSkupvf3nWFpaJtaZiqSJj8TY/uQ4ZpeV7l1DFHIaiiIXx04V6N4Z5IzLGklGsjj9Fhw+C+lYjqxiQR7rJPLZT2BpayM/Zgc1Sa4rhnVmANeqOrRsAQxxpMIIg//xTQAMTVOQ/v3HdCRdBNcGiY5lQIK2JRWoDhO9QwbsmSCJUBaj1UBprRN3ie3v9+G9TRRyKjt3KAwcitM4t4ToWIr66X4io2lkWaKi2UN0NI2OROhXv6L0X2+F0g9BbBBdUvCYPSTyCVKFFDo6dc46ZFk+4VyZAwcnBZAAjP7317EtXIipomJSu3X6dDxXX4Xi9WBsaiG1NTvp/fRzA8y9vJmyRjeSJJGIZkmYDTjPsqDjRbNaKLjNdPUmqJ7qxWRV6NoepJDT3vAxq/RYeXDXEA/uGppou/msRizWFoa//O+Yj/zbiq9dS/l/fOUNzydMllEzRLIRto1uwygbua7tOrJqlumB6SjhPMbycsZ//GPMra3kurqIr11LxX9/DbMhh0ExYDfZSSdyPHnHPuLBDACFnMYTv96Hr9JOaZ0Lu9nAyrZSGgwmkk+PstNmZP5VLah9CWS7ES2eKwaeyRLTF1eyrj+Bv7GEw9uCtC+rZPfTAxPrbV9eiclmYMk7mjHbjNjdJioaHBQKOqoKY71x/vK9HSy4oP64fZVkCX10kOSh/kkBJADBH/wA23kXEtVdREdT2NxmSmqc2FwmyMYh1AnPfufoBmYX5DOn5TMRTqGydlj1nzB+CKw+cJaDpJx8u1c7vMvCf/5+28Rrs0Hm4uvnYW1woybyKC4TuZ4Y2S1RLDUNlJX4OTiwl0ZZ4/Ef7mLe+XVYHEaa5pUQqHQiKRKLLm0kn9WQZTiwYZBpS6p4/t4O7Ne1UvGJ/0fq+WdxrFpN5vBh7LNnn7J9Ef4xSCYTxppaFIuF4F13g6IgmUzke3oJ19ai6jpzVtei66AYJNKJHEMdUSqa3ISHU6y5aTr5rEoyksPhMeMutfLgD3aSjueRZAktKVPuqCXmCGKxmk+4hlpXLRsSG5h+bTN6VxIA2WIg/nQ/el7j4GKVx/eN4LGauO2JQ5O2XdryDxZ617ACrn8QOp8GmxfKpsPv3wmp8eL7bZfBBf8DjrI3dZlC0cY/d5KO5bjys/NfVQCJrusMf+nLJJ56Ct+nPsuzu+qpaPZw1o3vp/+Wj9Bz003suqyXNQ0XHN2o44nin00rjxsvE4sRiJrZrxZfz6k5/v83JhjMxe+YgS2vuEZfVQ2ZRJx0PIbN5X7lvvbi76GhpAghEQRBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBONbpDCEpA/ZLkrQJmKi+1nX95R9bC/8LfBo49jHjZbquDx3ZdkiSpNLTsNa/u/BQctJrxSCjJQvENw6BIiEZZPSsiiFgRY8NYyzxvKpx80PDR19IEvKqK2iR7Ax2RNn+eO/EW83zSimrc2G1G0DTkO12jF4PwR/+EHQd27KleD5yE5IuocsS1pkzsM6aSWb/AdyXXAyKgiqZ2fbYPlrml6OpxcJ4g1lmpCtGuWcM2WYn/tQ6bLNnoQFzVtfyxK/3TRTRO7xmzr6ulYicBGcFzH4PbP3V0fXLBihtfT2HVzhFurcP8cgvDrDgwgYAqlq9HN46hlrQKKlx8uJfuqie5mWsJw7AaE8cs93IoksbkSQIlCpYDm1CGupm/Fe/xvee96Alk2jRKIrfjxoMkjl0CPdVV2EsK0V22Bn+whcp+fjHAdDzeWKPPkrppz5JavNmDIES3FdfhbmpiXQ8R2Q0RSFT4Lk/ddA4u5SOHWHmrXGTjBQvOfmcitNvIT6eYaQ7xkhPjHPeO42OLaP07h6f2M+V19SieL3Idjt6/mgARXpnkLQUxDbXT+S3X8Z5zjkYqqoxvvsmYi0LWfuLg8w7v4SRrmKYw/TlVQweihIeSXLm5U089f1d6FrxSfDuUisXf2yWCCI5xcaHEvTsDgNgNCvUT/fzyE92U8gXrzMWh5HVN7QT+cmdGGtrMVYAj3wJLB4sU89Fl3QsioVkIYlFsWAxWDBKxhPOpcXjx7WpkQh6On1cu8Hno/QTnyDb2Ul+qADE/mZDHcMxYSdmq4FD28dorzORiY/TFwyw7c6DE+83zyulZpqXsnrXazxCx9N1nRuXN/Lr57vJFjSmV7loDjgo9EYp/cynSW/ZCoD7isspRIvrVuNxcn39yGYTptpaJOOJj5FwcmW2MlbXr+bR7kd5cfhFXhx+EYNs4K4L70IfS6Imk/hvuon0tm2YW1owNTSg5wvYjXZkiudMKpYjNJg8buxYME1pnYuCqnFmhZt9v+0gGc4yDDRU2zHtGEPPFuClLBtNR5EkAHzVDjb+pYuyeheLLm2kkNMwGGWcPjMP/WgXulq8lk1dVE50LMVwZwyr08iMs6rRNZ3R3ji17T5694Qm1jNrgYP85ucItS7A+PnvYNi7gfT9fwDAUF7O4YMZ1j/QMdF/ysIyll0zBUtpG0gy6MeE7sy9vhhoIfzjKmRh/bdh7/3Fzyobh1wSrB7w1p6SKaZXurhqXhV/2jaIqumc0egnl8yQebIXyWxATxeKHSXQVZVmbzMDiQHIalS3etnyaA/n3zwDPa/x8I93IRskLrh5BsOdMXQdmueXs/mhbgDCw0n8LS3Itm0UBgdIb9+B4nZjaWg4Jfsi/GNQvF5Cv74D+6KFuC6+GDU0Tq6rG0N5Gb1dORKxJA0zA+RzGpIkYTAojPXFcQesuEot9OweZ++zR0O92pZWsvqGNh64bQdNc0tQjAperYSt4xtYVrXsxGuQFcrsZaSGE2gvFH+X04/cxyCBy6Rw+7pD3HvzmewZKueR3cMossT7FtexqMF32o/Ra2I0Q/2S4k8qDL+84GgACRSvDzOuhNaL4Mj3j/DmSEaz7HlmgLallZTWvbr7y9if/0z0gQcIfPSjlNxwPXMe6mbjnzvJXLaQyv/5Hzb+x60k8gZmlsw8ulHX0+BtAN/x185kNEJJxMRmzY4iS8yqeeXQECrnwO4/ga6/7Pnjq6oGINTfh63tlcfz2or3s+MJEUIiCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIJwrNMZQvLl19JZkqSLgFFd17dIknTW65lQkqQbgRsBamtPTbHj6WIwTX4qfDZVQPVbQAJUHV0tPg7YOstF6pkejBWv7inX1jmzJ/5uWXgGyYIZg1li5xN9k/p1bBll2pIKyowh9EIBPZMh9tcHJ95PrX8W0+xZPFzxCBeXtSCnM8QffRRjbS3R+x/Ac/XVSDI4fVY2/rlz0thnX9eKjgNdK2CdMQNJMaC4XBzYMDwRQAKQCGcZ64tTU19eLDSumgtqFg48DO4qmHMdGE7+ROZ/Bv+I524ylOS5+3tAh0JWxeE1Y3OZGeqIAKAdKUiPDKeom+5npLsYVtC3N0Tf3hDLLq4kc9P1WN95DaFf/RoMBlBkUBSiDz2E/4YPEPrlrzCUlaI4neT6+og9+BAAqe3bcZ63mvijj5HZtYvM3r3U/PSn5JtmcWBXkKHndhOocuDwWdj01y4AYsEMAPHxNL4KO6GhJDvW9jF7VS2KQUI2FIvpC3ltUgAJwPMPDXHhrZ/DKJswVvnIdR8TNqGDMaCSPXgQQ2kp+me+y9qHx2l1pEEvzucpsxEZSWFzmRgfSNA4p4QDLwxPBJAAREfTjHTF/ilDSN7M8zc8lMJfZScWTNMww8/eZwcnAkgAMok8/QfCTP/Yx8BgRA/de+SNCBXrb6PnnE+iSzpukxsZGaNsxG0+ccGiobICyWhEz+cn2uzLl2MoP3Ewgmy1Ym1vRymJk3hhD1ry6HbGZg9bnx+i85hzccmVzTy/Mcm81Y3s+NHuSWN1bBnlgltmUFLr5I0aiWV5bM8wNyxtQJElOseS/PqFblbWlTH2rW+heIpPoU/v2EHppz5Jrr+foc//G6kXXwSDAf8Hb8D3vvdh8Hje8FrebG/GuWsxWPjYnI9hN9h5uPthap21fGrBp5jinUI23oulpYWxb38bU1MTua4ucr29+N7/fmyKAZepWCRssRmxe8wTgUsvsbvNAORUjfHhFMnw0ffDaZVyRZqU62FsdOMqsRKosqPmVUrrnPQfCNN/IDzRZ+X105B0nZeuZgdeHGbhhQ0Md8ZIx/NkknnMdgPdO4O0La3k3HfVEesdx9/gwxQZ5Lmt0wj+IQiYqahfw/zbryXRPYijvZEnf9E1af0HXxyhfVkVlQ4TrPpP2PYbSIwUi9UrZomC9WP8I943kEvC0Pbi3+PHhOKNHTxh99fDYJA5OJLglrOakCTY2hOhT5IoNSlHA0gAS5sPi9GBrulMD0xnd+8BZq2cgitgxe238NQd+9E0HS2nM9IVY6QrRs/f3BuYrUYygyN42qaRePpptEyWzLZtIoTkFPhHOX+1XI74Y4+R2b4dxevFNmcOsUcfw1hZiWyzUVZn5/CfexnpOhok1r68ishIinxOpW6an7/+cOekMfc+N0jj7BIWX9FMfDyNmlcZ2h9nSd0FGGXTy66l2dvMSGk/miSh59SJdvPsAL/bV/z3FM8U+M7Vs7h1ZQsGRaLOZ8NkUF5uyDdfLg7B/ce3D+2A6ADMvhYsbzxcTXh9dq3rR9N05qx+df8G1WiUka9/A+ucOQRuvgmA6Suq2PJINzvW9rLyfavp2zwb2M203JH/u9B16N8EzeeecMxUNEIgYqZgqqLWr2AzneS/pyrnwJZfQqgT/E0n7FJSWw/AcOchqtumM9bbzV+++3WqW9tYdePHkI65lzAoMh6bkVBShJAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAc63SGkMwAfqfrevikPYuWAJdIknQBYAFckiT9FhiRJKlC1/UhSZIqgNGXG0DX9Z8CPwWYP3++/nL9/hEYzDLN80vp2FzcHaNFwVxqw3JJE+mto2jpAtYZAQy+PKamRvRjq4ZfQW5gkMDHPkbk7ruRK2tQFRm1oKFpxx+OXKpAPjmEbLOT3r79uPcz657hhv94H7bODMmuTnzXX4+WySCfczbxxx+n9NIrmLKojNBQkvh4MQCicU4Jbq+Olq+mENqK4rCj5/IQKCed6GXVB9rIZ4uFdQaTwlhfjFJbPYwfhr9+AvzNMPNqSIzC418CZwWUTHldx/it5B/x3M0nMqSixYKsHU/2MW9NPeg6VmcJO9b2oak6ZpuBRDiL1WnCX+VgfCABQFWjjZLCADFNQ26dhf2TXybtKKcHD/avLsVjTmCSMvje9z4kq4XRr/03nquvQksUt08+8wyOs86i5OMfR3Y5MVRUoDW08sSv900UgnZtD7Ls6hYS4SyyIuH0WwDo2DrK4iua2flkH7Fghl3r+pm9upbObWPExzOcefnR4mGL3ciMs6txOI0Y03lS6/oxx6K4VtWR2jkGko61GfLD+0HX0afNZf0jIfI5FYNJBuDwtjHOvLyJjQ90TgSzWOzGibCWY6UT+ePa/hm8qeevDhVNbkZ7YhgsColw9rguiXAWzZlBNmtIjqOBIaau9TR3n0WmejoZLYeCQrWjmhZfywmnUuNxSj/5SSJ//CO5nh4cy5djbm9HHR9Hsb18uIzBbcVzcQOpbWPkR1OYG91YZgZI/bl7ok9Nmw9PuY3n/hhh+lnVNMwM0DS3lHQij8VuYLgziprXkOQ3HsLQUuagJ5Tih+sOT7R99vxW4n/6I66LLka2WkCS0FJpYk88SX50rBhAAlAoMP7jn2CdPRvnWWe94bW82d6sc7fOVccXzvgCN8++GZvRNhEuQqHA+K9/je+GD0BBBYOBQihM3F6Np8OAwWhkXE3gr3JwzntbeehHu1CPhO7MO78Of5UDAJvJQLnPxrERH5ue6mfVFU24+qPkB1OYG9woHjPx+w6x/KwaEtlCsbh+ND0RbtIyvwyry4h27C2IzqR7ikwij9lqRJYlqlu9qNk8gRo71qE9dCXLCQ4mAZBkidImPzHVBjUtpDEjn+B8zqYLEN8JT/4ntF4IDcug4wnY92eoXwKuylP3QbyF/SPeN2DxQMv58OKPJ7eXtZ+yKUqdZqaUOfnekx0Tbbv6I6x77xzyz46iDqUwN3uQrUYi39+D8p5p+Nv8tFY1ETuokopmUHMayejRgvPND/dw4S0zGB9ITHyHNM8rJZ3IwZ615ErcqOMhPO9+N/G1j+M491wMLhGc8Eb8o5y/hfFxkk8/U1xTNkP28GF87343Ojr5/gHK502lotnNUEcUAH+VA6vDSCKSxVdhJ5tR4W9Xr0M+q6LmVYJ9CQo5DX+VnWBXkkhDCl+F/WXXYyyx4Xj3FFLrhyiMp7G0eNErbVRnkuw3G2gI2LGZDEyreIucf/YSmHoB7P/r5HajFR75DJS2QuNZb8rS3u40TWfvc0PUzwi86oDE4A9/hBqNUv7lLyEpxfAbi93ItMWV7Fk/wBmXN9FzZh22jt3Ybr8Pvr0Uon2QHIOqeSccMxWN4I+a0FyVeCuSJ19E5ezin0PbXzaExOHz462opG/PTuZdcCmP/+R7hAf7CQ/2077iXKpa2yb199lMhFIihEQQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBOFYpzOEpBzYJEnSVuAXwKO6rr9skZmu658DPgcgSdJZwCd1XX+PJEnfBK4Hvn7kzwdO45r/bnQNZFli4cUNaKqOJIMykiT6aA+WFg+K10Jy4xCmBgvqWBCzz/+qxi309BB76CGcq1che72YnCY0TcdbYSM8lJroZ7Eb8VbYUaIBcj29WNraiD/22KSxzPPnMpAZxuCYTrbjMKkXN028Z1u4AEXP4y3zMW9NHaloDoNJwVdhoWzsLnLeFcgGBT2dIfHcc9guvo6FFzew7ncHJgJLHF4zK983rTigYgKTA4IHiz8vMb66oijh1LN7TEyd7WLv5giaqrPpr11YXSYuuKEFNexk73MDLLqkkY7NI+x4qo+Fq6vwrKlAGxtGcbmIZAOo/3MPz+0M462oYddj/cAwRovCnJU11PpSxB/8Mb73vAdjQwN5TcH9ua+QGQ2SMnjJ6AUK25/GObWBka/9N4Zv/XbSk+hlRQIJFKOMmtdIRrLUTffTs3ucF+47zKyV1fgqHMiKRHQsReUUN9mqAponjSxLaLrO/Avq2fjnTs5/RxOpdf0AZDsi5HrjWNp8GH1BBj/1UVwXrMF5/vnk3CVkDh4NEnF4zSTCWTY/1M3Mc6oprXMiyxJ9+0I0zi5hz/rBowdUgtJa59/r43vbKKl18tCPd9I8rwxN02lZUMZoT3xSn9p2H1rPXpSqSiyeRqiYBUM7wOKmUlMp14yEKuZjM9qwvcI1R09nGP32t3Geey72ZctIbd5MfN06XGvWvOIa8yMpQncdxFTjxFznItcTJ703xPKrp9DdFUNRZFwlFrp2BAGwu01UNHt47PY9E8XNs86twe4xv7GDdYTVKPO5Na3c8UIPo7Es508vp9ZvxbV6FYOf/NSkvpXf/jaj3/n2cWNk9uz5pwgheTMZFSPl9vLJjWYzjkWLCH7v+8XXkoT56z/j0d8MTIQcmawGLv+XOdRM83HNvy0gNpbG4jThq7BhNB+9rZNcCouuaELPFYPI1LzG4FAEf10B2egi1xunsLUYhKau78dwXgOGgImFlzSQCGUxWhQ8ZTYObR6ZtESH10wmefQ6WDXVi8EkUzPNxxO/2kfhSChKfXsN/lo3UCwqnnteLYc2jRALFu8BTBaFM9/RzNO/OzAxlsEk4ym1QtAGhQzsvvfoxN4GUE7NvwHhNMlEwBGA5nOhYy0YzDD3vZCNn3TTV8tkULh2US2pnMrje0eo8Fh4zxl1PDyW5h1n15J8bpDs4ShqqHiehf90CGOVgzJ3GR3dh2hZUE4+rzJlURnbHu0FQM1rHNg4wsrrpzHWn0DNqeQzBWqarOST0zBUuXGWl1EYGcHSPp3Utm24Vqw4ZfskvHkMXi+WmTPJDwyQ7+/HefY5jPzXf6F4PLguuojEHe9j0f/eQXxpJWpBY6w3TsfWUVbf0E50LE2g2j5xL/gSh9eMwSSTy6jUzvCz8YFO5p1fT0Wjh2Q484ohJK6CnbH7dqB4zZjqXGQOhVFfHOa6i+qYNzWAySD/PQ7LqWO0wjlfhGQQ+jaA2QmLbjoaSjK8S4SQvEkGD4ZJx3JMXVR+8s5AfnSU8F134b7sMiytrZPem3lONbvW9bPv+SH25DuYJleSePAhsrfcgjm9o9ipev4Jx01GI0i6D111gOnwCftMUjKteC8wuB2mv+Nlu9XOmMOedWvZ/Nf7GOo4wDkfuIl1v/45HZs3HB9CYjcRSogQEkEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQhGOdtkomXde/ALQAtwPvAw5JkvQ1SZJO/Mjal/d1YJUkSYeAVUdev/XpOja3CV3TUQsaVqcJdTQFmk7mQJj0zjG0VIFCUAOjBdlqfVXD2pcvQ41GifzhHkI/+QkFVSMZzbLsqinUtvsxGGUqmlys/mA7/ioH5qYmJIMCsoy57WhBjrGuDvv5q6l31SPl8vg/9EEcZ52FsaoS9+WXYVuyBHSdklonaq2VbLmZTIWJwNAvMOy7B13TMQRKyAfHMJSWYDDK9O0NTQSQACTCWbqPFN3jqYGz/23yzpTPgNJpb/hQC6+P0eVk5tIS2uc5MZoVvGUWVpznRX7yPqr+8lUuvtCC68X7ONO+lQtnjeD89ZdxHN5Eb6/OX387QCpn5Ok/dFLW4GLP+gEAAjUO5p1fz74No+w+bCT+kf9lY2Qq6hd/xkb7GkZsLTy2q4wnnpV5dpeDxEU3k5p3HnztV2QzRzOMSmqdnHFpI4OHwsxbUwfAvueH0HWdc65vZdk1LaTjeZ749T4e+/kedjzRT37KGJ84eCN5tZdVF7tpmV9C984g+ayK1Tj5UqjnVNLbx9BdZejZLNH77geDgnPRAlwBCwDbHu9lysJy5l9Qz7w1ddTPCFBZa+a8ayowGovhKNNXVGKyKLhLraz58AxK694iT65/C/FV2Fl4YQNGs4KW1yitczL/wnosdiN2j5mlV7dgdRhR3G4wmRjSssUwg+WfgjnXweZfIiMTsAVeMYAEwFhVhWyzEXvoIUK/+AWZnTvxXH45xsqKV9xOO1LYmOuLk9o+RiGYRk8XMBzcRU2tEbPdwIb7Otl7JLRGLehsuP/wRAAJwI61feTShTd2sI7YMxjntrWHOLPRz/uX1HNoNM4fNvWR2befkltvxTylBfOUKZR84lby40GsM2YeN4apofGUrEWYTMrnUQIBvNddh7GmBtc738n+PttEAAlALl2ge9c4kiThLbdTNyNAWb1rUgBJJq+yrTNM//4wL/61i80PdbN/wxD1jWYUs2viPJxQ0MnHcmz8SyeeUgtVUzwEqh1oaoHG2aVUTfFgMMpUtXpZdnULXduDOLxmFlzUwKFNw+g6bH6oZyKABKB7TwSXzwSA0aKgFfSJABKAXEZlYH+Y9mWVIIG/ys7FH5uFt9wOpW3gqZt8cM75AthfXSCb8CYx2WFoF2gFWPFpOOMj0LkODJZTOs2B4Tg9oSQfWFrP/Dov33nsIN9+7CDZUIbU9rGJABIALZFHSxWvneUNbrKpAo/8ZDcNM/3MWlmDyWrAFbBS2eIhFkzhq7BROcVL7cwAqZyBfns7O0dLybnKALDMnEF23z4y3d2ndJ+EN4dsseC5+ioMpaUUhkeQPR4CH/0ISiCAbdFCDEvO4dCLg/TvD2G2GGieU8L5N7RisirsWjfAaG+Ss9/TSlXrS9dIDyvfN40N9x9m22O96KpObZuPocMRcpkCFofpFdejZ1TUSJZcV4z09jHUI+EmLhX+/c976RhN/D0Oy6lV2grX/BbWfBPmvR92/B4Gthbfc9e8uWt7Gzu0ZRSDWaFuxqv7Xg3dfjt6oUDgpg8f956n1EbVFA87XujmUOQQc9rORTKZCP3mNzCwpRgaUjb9hOOmIhHinuJ5EGHPyRdiMEFZOwxue8VuM1eeRyGX5Znf/ZLqtunMXn0hVa1t9O7ecVxfn91EKClCSARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEI5lOHmX10/XdV2SpGFgGCgAXuCPkiQ9ruv6p19hu3XAuiN/HwdWns51/r0lwhmMZgUJ2PpoDyBRWu+k7uxqsltGJ/U1N5ghE0DX1Fc1dmrrVko/82kSTz+DruuYrUZ6do1jsmRoW1rB7FU1pCJZFFMxdEE2m9EzWQojw/jf/370XBYkGV3T6DXG+dyzn+PZ8m+RPdRBIRzGOnce6V27MbdOA0kq7k9O4z33FAuBfnzeIlYn7wBdQ7KYMbe0gKphMMqMDyYBcPotuPwWgv0JxvqPFNMlRqF3A6z8EsSHwOqFbAJS48WAEuFNEa3IY5g3zOWLpiKHxtH2ryf2wAOooRCm+DDZnv1QU4O9sgzLmvPIVE1hz1OjeMttBPviAEiShFYoFtA3zytjw/2H8ZTZUAwyz9/XxaJLGnnydwepmuKlY8so2WQBT5mNqWeUs+HP3eTSBdylVlZcOxVfpZ3QUJLm+aU8/6fi07KjoxkWXdKI1WkkHc+z//lhqlu9ZJJ5FEXCXWWl9SIfn9x3CwCenhDZf/sk0z/7H6ztLBbeqRYDKBIcU+iveM2oXheWH/0R1Wilf0xl9y+6WXBRAzue6CM+nmH3MwOc/Z6pNMwuQVFkUvkUAxW9zLnchVnKMi6Ncf7ZbQQcPqwnKTwVXj+n38K+DUPUtHl5+vcHaV9ayeoPtqED0bEMsiIh+7xImkbcWwcHHoS9+eLG06+E8hMXRv6tQjCI/0MfJLNnL7neHmwLF6JlshRGRzFVV7/sdgafFWQJtGPOL58ZPT+MLdRDOF9KMlIsNDbbDOQyBQo5DYvDiL/STnQsTSKcJZ3Iv+5jdCyTQSaZU7lnS/9E29lTS8nvGiS8bh2OpUsBCP7kpzhWnkPgxhtJbdqEOj4OgH3ZMmxz55yStQiTafk8htISQg8/jHXWTGSnm2T8+M89FXvlYllZgvlWG+v39k20peN5drwYY3FdFMlkRc8dva+Q7Ubi6QINM0p44H93TFyzAZZc3Uzr4grallWh5jW6dwW54OYZDHdHcXjMHNo0Qmm9m/BI8rh1qHmV6qkeYuMZktHsce+HhpI0zPSz4IIGmme58NV6i2/ER2D6O0CWi/cCjjLo3wKtF4Lx1YWyCW8CgxmW/T+447Ji+AhA5VyoW3xKpzEbZXYPxNg9EJtoCzhNKD4LSEwKcDKU21Dcxe/fQJWdvkSeOavqGO1JUN3mpnleCfmsSrA/Qd/eMH37QljsRla+bxpaQSc8kqKy2UM4r1FmCUI+jwTku7ux1Nef0v0S3hxaKk3Jv/w/9HwBY0mAyB//iHX2LLIdHWSWX0nHwyMsuKicDQ90kssUWP6uKQzsj+DwmVEMMNoTZ/qKauafbyA4kCCfUSlrcjM+kMRkUSitc7H10R5mn1uDt/yVw85kpwljnZN8T3xSe7daoKDpGJXTlh96ejlKoHIOPPEVyB353a9uKVTPf3PX9Tal6zrdO4PUtfsxmpST9i+MjxO+627cl16Kqbb2hH2mLa7gjns3o+kas2sW4rokSvT+Byiv8CFVzALFeMLtkpEQYXsxzG+ssI1ELoHD5HjlBVXOgV1/BE0r3iecQGl9I+d84CaGDh1gxXs+gCRJlDU2s+2Rv6AWCiiGo/8N5neY2NobOelxEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBeDs5bSEkkiR9HLgeCAI/Bz6l63pekiQZOAS8bAjJP7t0PEc2VaBnT4jZq+qQJAgNJgnmNXzLq0g8Owi6jmWaFy15kMhvfk35f331VY2d6+4h9PPbsc6Zg+xwkM+o7HpqAO2YcAWAc65vpbLJg66qaJqGbLcz9OUvo+fzWFpbcV9xOSk9g8/iQzabURMJHMuXo+fzmGpq0DIZJFuxkK6lzMncWg9beyN8fG2Gzy/+EVeZTUgmE7qmIdtsJMfj1Lb7qGhyEw9liAynmLa4grIGV3FBiVHYe1/xx+KGXBK0AtSdCZWzT+XhF16ldCHNMwefozLcwvqdcbweC1NmnUVJyxRyXZ2E/3APnosvIviTn6LY7cQeeRT55ikAZFMFzPZisVmwP0FFk5vxgQSpI0XoDbMC7HyqGICgFjQ0VcddauXQphEApi4q58U/d6IfOW1dfivB3jjL3jmFka4Yw4ejE+sM9icI9ieom+6jbkaA8YEEw11R5l9QT9PcUsaHYqhKjrNqz6IqacIW1chkMmTu+TXzb/wqJsmKOVvAfnkz8Ye70ZJ5ZK8ZbWk1w+MqT98zyvwL69nyaLGYf8P9h5m6qJyqqV5K6124A0cL4g+GDxIOQ3S/Qm4si2OGjV2Zx7hm9pWACCE5HaLBFIe2jGI0KmSTBUIDSdbffWhSn/NvnI7scpMqJHE4/XDjMzDeAVYflLWBzfeq5tKzGUa/+S3MLS0YysuJ/uk+1Hgc15rzQdcx1Zw4MMlQasNzeR2xh/vRUgUMfguOJXYSzx7AWLqIKnmANQvCZFUDptgIFmML89bUUchpjHTHqJvux+4x4/Rb3vDxAphe5abUZWY0djQUYtW0Upz5s4k//jjxxx8/snADzhUrsLRNo/7uu8l1dSJZLJibmzF4vadkLcJkksGAlkrhOm81kqyA1cK0KVZGexKT+jXMCrziONl4nshA4rj20f4MicIBXGcuILlVQYvnUNxmbBc1UBXLYcprBC5pZN/BMId3hwDY/lgvZ1zaRHgoSTyU4dDmEeqmBzBbDWxf28fiK5pIxXPUTvPRvWt80nxuS56p8wPEIgUcPgsHXxyZ9H7NNB97nxtizjwLtrwGFIOhCHfCs98BxQQGC2RjxfCRxR8B98sH/gj/ACrnwIeehLH9xc+urB2c5ad0iplVHgIOE8HE0TCez5zXiq3SgXRtK+E/daCnCxhKrbjPryfXHcVY5cRdaiedzHNo0yjlDS52rxtixooqHvzBzon7DYBMMk86niMZyVLV4kFWZDSLF7O7mUIoRGrffhSPl9zAAKaqqlO6b8Lfl66qIEG+r4/Qr35N4BOfwLZwAYrDgZpIMtgRZdqSCjY92EVNqw+n30I+q7F7/QCX/b85PH3nAcLDqUljzrugHsUgseTKZoxmmZ1PDbP0qhYcfjOGkwQ+KBYD3suaCf3hAIWhFJJFwbS6ll/s7OOMRh8tpScJZ/hHVrMAblwHYwfAZC9eGxylb/aq3pbGB5Kkojnqpr+6+9/wXXehZ7P4P/jBl+3TOLeU8SeLvyvNKJmB7boKovf+EYZ3wKIPvex28fEgQfsUAmaJrJJmX2gfC8oXvPKCKmfD5tsh3AX+ppftNue8i5hz3kUTr0vrGlDzeUKD/ZTU1k+0e20mwqkcuq4jHQlZFQRBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBeLs7bSEkQAC4Qtf1nmMbdV3XJEm66GW2eVuQDTJDh6OEBpOEBpMT7TNm+cn2xHCuqAZZItcXx9o2E8dZK8h3d8O8eScd23PJxSQee4zM7t0YSkuxAopBRlPVSf1eKrCRFAXZZCK5aTO+a69FMhrJdhxCkiTWjjzLvNJ56KqKfdFC8n19FMbGME+ZgrGpEdlUDFUocZq57Z2zeaEzxL7BGGW1PjJVbizpLGaDET2XJZtX8FWYWPe7A8THMwAMHY4yZWEZ9TMCGGw+8LeQqlmDavLi6PgdUqgDnJWn5qALr1ksG6NiYBqHHokBMAR07I5x0WUeIt/6NoFbbmHka/+N4vdTGBsjd/gwAXMep89EPJTD6TNjthno3hVkwYUNOANWTNYjlxwdXqrxkuXiX0Z7YlS2eOjaEaSQ1yYKguesqiU4kOD5Px1GliXOfEcTFvvxT9M2WgwYTAor3j2VTDzP7qcHiI2nmXd+Pck9sCR/BVX2KLI+QtlXv4tkqsPk9xC+r4OkqiPbDNgWVZAPWOnpjeOzG3j2F3txl1oZP6aYv5DT2LN+kNGeOFd8au5Eu1rQcMdKGb07RjZ15An2HdC0ehqR1gg2o+3UfkACALGxDH17QkTH0rQtPfH1Qgc0A3yl66d8ofbLxeCRsrbXPJe5uRnZ5SI/OIiWTqPGYrjOP5/Rb/wPud5ean70Q2zHXKczqTz5dAGLSSbbmcA2pxTJrKBGs6gZE/ZFZxBfuxbJYMBssWC120DS0A0y4wMJuncWAx2GD0fxltuoaTs1wR8NATt3fnAR6w8FGYikWTGlhLZKF5kOO2Wf+QzZAweK+9s6Fex2AEzVVZiqRbH96aZrGsbqGvK9PWQPHEDx+SlvirL8ynq2rxvBYJJZeFED5Y2uVxwnHsxgc5qPa6+fESCw9HIKQ3kcy2WwGsBrIb11hMKWUQqAAsyaX0YilmekN47BpDDYEWHfc0N4ymwsvrwZxSgTGkoS7EvwyM92s/yaKUxbUkk2lWfocAyjWWHu+bW4/RDtyrDpwX7qpvuZvaqWPc8MoBY0WheXU1JmoHSBhmPgRYwV7z+6UNeRc002FANIAKrmgcVzSo6zcJr5m16xMPyNaip1cOeHzmD9oSDD0TQrppQyt86DpMjYZpRgqnaSG0yQ2TPO+G/2gapjqnPhvqABu9vClMUlZGMa9TMCmGxGZEVGLWiT5oiHsgwcDDP3vDq6d4xRM81H8Oc/x3/99ZTc+nEid91Nau9eAh++EbMIInnLygeDSIpC5tAhPNdcgxaPY5s9m9TmzVjap+Mf1cgYFCQkXAErO57sY/UN7cw8u5qBg2EUo3zcmLIs0b1znEQoywU3zWDJlc3YAgolVSe+bmuaTjKSxWCUMWo6ajSLqcqJdZofPa+RfnaIb13cglZmw+84/rr+lhJoKf4Ib6revcX7y5pp/pP21XM5wnfdhX35MsyNDS/bz2hSSFQP4cr4ceguTFN9uBa3I+lr0cum83LRHvHxIEN2BzOqPGwG9gT3vIoQkjnFPwe3vabvGn9NHQChgckhJD67CVXTiaULuG3H/44pCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCILwdnTaQkh0Xf+SJEmzJEm6+EjTel3Xdxx5b9/pmvetwGRVsLtNk9ocPjP28QzJnjj5nvhEu+IoIfHsc9jOOOOk42rZLLm+fiq/8x1yPT3kurowmSWmr6hi22O9E/2cfgvuEisAaiqFbLNimz8fyWxCzxewTJ+O7PPxYnQnn5n1L9BZQM9kUQIlGCsq0FUVWVGQXUeL6Wp8dmp89skLmjeP3MAAqTSkhwsU8tmJAJKXHNw0wtzz63C5XXTN+T3P/3WUbCrPzEVLmLF4HIej/FUfV+HUMqat9D49+enuuYzKeFhHoVgsr2ezmOvryewvhhZwcCcrZjWze9DD7qcHOOPSevRcHr2Qo6I0jGQxc8BvpnP7GNMWV7JrXT+ZVB5PmY3R7jhnXFpCIlwsxARweM3ksip9e0NAsVDzuXs6WHPTdA5sGEbTikklkizROLuEx2/fw7w19Wx+uBt0mH9BPTue7COTyOPwmnEsrcRb30zmgU6MZQXyAyOgFsfQUgUST/VhW9NAPJlH60+Sz2mkYjlq248v0iutc6IoxXVGRlNseaQbp89KNlWY1K/36RTzl9nBeao+GeFY6UQOd4mV6FiayGiKyhYPg4ciE+83zilB13Su2/VppvunY5Etr3suc0MD1T/6IakXNpDr68P/wRvQslliDz0EwNAXv0Td736L4imu4dm7DxEaSvLOD7aR3hacNJZklPFcXUXswQcp+chHGP2f/5l4z37WVRMBJC8JD6dIhLPw8vWfr0lzqZPm0sknZVbX0PM5TE2NQLHwVFK1E20unC6aRrFSV8IyfQZ6oYDU30n9VAPNn52HLMuYbSe/dTPbDYz2xGhfVsm+54bQNJ2yehczzqokvXmE1Mbhib6uCxvIbxmdtL26ZYT2ZdWM9MZpPbOCrY8W8+QiIyn2bxhi/po6OraMUtvu4/DWMZKRLOvuPEDDzADzL6hHLWjsXT9EXWMjroHN2N0V9OweJzSUZPrySurafVj2rCO7dgeWqa1Yzz8HxXY0qClta2Fk5ZNERnN4nBlKE49ja18GZscpOczCW9+UMidTyl7mi1WC8B8PoaePfh/nemJkOyKEJInt28eYf0kdY30xctkcM8+uYtvjfRN93aVWMokcgwcjeEpsOP1mZINE+uKbiIxHsex+FtfKc+i96Wbsc2ZjvPDCiWA+4a0lu28fWjKFqb4exWJFS6eQrFZMTc3kg+OUz2lnZChPdauXzu1jzDqnhrHeGIpBZusjvSy8pIFg39GgOqNFwV9lJxnOoms6PbuD1M33UF5desL5Y+NpdjzRx571gzS0+5hfYUPWIbV5ZFI/285xvFedPDBCEF6N/n0hfJV2HN6Th9rEHnkEdSyI72vvPWnfQWMXpWPF+4O2pZV4lk+DrrVkxsF6gv7ZVIpkJsdIzsA1VQEGo5XsGd9z8h0oaQXFXAwhmXHlyfsf4S4tAyA6Ojyp3e8oXr/Hk1kRQiIIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgnDEaQshkSTp48CNwJ+ONP1WkqSf6rr+vdM151uFBPgqHXjLbYSHiyEPNdN8qKHMcX0L4Rzuyy9H8XpPOm56927ygwMk168n+fzzAJhnn00oVMGiSxsJDSSxe0wYTAqZZB4oBknEHn4Ex7KlpLdvR43FsS9aSCEUIibFiMeDYAggOZ3o0QhqPIGhtARdklBeRcGlqaqKfDSLNhQ84fvSkZ/RrhiP//ZoAejW9UmMtgrml/SBp/qk8winntlgRjr+Ae8YnA50mCi4zR46hHP1KjI7d5I91IG+/lmmGS1YzrsY0/AQoe/dhmy34/zoR5DSMuedW0qo4MBgkglcVUfX3jALVldSUCGdVJm9qgaTVWH6iiqSkSxDHZHj1jDUGWHZO1sY6y0WftZM82KyK3gqrKh5DaNJIZ9TkSTIJPIoRpkFF9VjShawJAtkYznkRje58fhxYxdiWTq3BWmeX4rDay6GopgUXAELsWDx36jFbqR9RRXh4RTjg3E6tozRuW2MBRcdnxAhSWAxvMWfXP8PzOYyUdPuY7gzysCBCNWtXiqa3ETH0njKbCTCGQ7vGsFd4eaCxgsYz43jtrlf11yZgwcZ+sIXyHd1AxB74AG8730vxpoa8n195Do7USMRYhkTf/neDtR8McBDyh0f5KHnNSTFRuU3voFssWCdMxvLjIWYpy5ATqqc/44mXnxuiNDwsUFAR58jn4pnGe6MMdoTx19hp6LZjcP7+gNWACTFgOxwUAiOI8kSis+PZBTFmH9PksUCqopss6GOjyPbbSguJ7IkY3W8+pADT5mNqile9j0/xNzz6460WXEaZMZenFx8e2xQw9FGcHvMnPuBNnav6yefUSfeCvYlGOtLIkkSds+Rc06SQIeuHUG6dgQnmijkyP/ux6z4+i8ZG1XRChpGi4HOF/uo2vQ82ccfIgp43vNuuPJKLFOnUsipbH4mwc5nohNzti26iiWH7mOspIV98W5yao4Wbwst3pZXfUyEtw89r53wvNY1HVcyS+vMAE//9hDnfaidTX/tpn5mgDOvaCI0mMTmNCHJEtseKwbvdO0cY9UNbRRyGmvvHUIxyqw+t5nQv32Biv/8D/KdnaR37MC+YMHfezeFU0BLJBn8/Oep+M//JD/QT7a3F4fTiaFMJRrw89AP9jFrZQ3VrT7ioQyKUWa0O0oqlkctaBzaNMLiK5oYH0hicRrxVzkY6YyiHQm4M9uNmMv1E879UgDJzif7kRWJOQvKyD/Tj7HEdlzfwngaNB1k6QQjCcKrp6kaw50xpp5x8qBPXdcJ3fEbTA0N2JcsfsW+I8kRxnKjzJLPYd/zg7QtrcRaaUHvhMhTO7Ce++7jtkmEgoybfOhItFW66DO2v7oQEsUI5TNgaMfJ+x7DbLNjsTuIjU0O+fHZi7+nhZI5Gkte05CCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAj/tE5bCAnwQWCRrutJAEmSvgG8ALztQ0jyWRVZhnlr6omNp9FVKK13YI7lyOwdn9TX2uYj+dwYuZ5ebLNmveyYajLJ+M9+juv88wj/5rcT7XJwgKFOK717Q7gCFtJ78uTSBa767Pxih1wO66yZDH3xSxi8HiSrjdTGjZR+5jN8sf2LaIUCcsGJEo9BxoxutYLVisFz8lCUl9jdZpw+MyOdMTxlNiIjR4vq25ZW4iq1cuhvnvgNsHdzmvZ53hM+OVk4/UyFOHMX2nnhqaOF4Ba7Ea+jQEiSSG7ciOvii4n95S9IFivW+fOJP/IIvg98AMmgkH7sfkwrzqDmtq+R2Lib8Z/8FPvixYTvuAPZ7cZ7ww0Ef/AD2lpaKPxxDMc117I7Mpux3gQzz64mk8hT0+bF1GUgNJictDazzchzf+zAbDMiSbD32UGaznEx9d02CuEMs8+vZvOfe9B1WHB2FXU1DmxmA9G/dqKdUwtA9nAE28wSEs8NThrbUO0klymw//khzrisiUObR9j6WA9nXNKA02/FZFEwmBVS0RxP/GovbUsr6do+BhQL+6xOI+l4fmK8OYscmAtx4I0FRAgn5i6xkozmmHNeHQazTHgwxcEXh7F7zHTtCKIWNOZfWc0tbbcwmhllKDlErasWg/zav/6yBw9OBJC8JHLPPXivvZbQ7bdjbmtD8fkId6YmAkgAdIuCZFbQs0eDHIzVDpDy2BctJHTHHbivuJbcaCXJTSmgE7MEK1bV8+CfO8llVPxVDpxHnlhfKKhse7SX7WuPBjfVTfex8n3tWB2vPzRE8bhRkwlkZxYAyWpBcbte93jCa2fweFADAbR4AtnrRZJAstnA8tqCjBRFpm1pBWUNLuKhDA6vBX+1HcJZ+Jt6eD2nIjuNaMdct2SfBVOpFSWWZ7gzNqm/3WMmk8gxZUEpmVQx6CGbyuMptxIZTk/0a19ehdNjJHXFe3j8rm6y6QKyJKFpxQWULzsPHn8IgMjv70JxudASCVJlU9m5fmzSnHs3hin5+Hv41FMfoz/RD4DVYOXnq3/OzJKZr+nYCP/8FLcZS5t/8j21IiHJEmRUvAPjXHhFE4MdUaadWcFDP97J9BVV1LT5eObOA+SOCd0J1DhIx/PIR8If1LzGph0Si2bMRU+liD36GJLZgqmuDmNp6d97V4U3QE0myRw4gOfSSxn6zGdQPB4M5eXkDh5EbpnOs78dQCvobHu0l4oWNzPPriYyksLpt2L3WhjrjRPsSxDsS+D0W5h9bg3Dh6PsfbZ4X6kYZCqmuKlwBSbNq+s6Y31xuncFObhxhKbpfs5YVokczhAbTWGbXUJ69+TwRvvCciTDCZIBBeE1Gh9Iks+qVDSdPJAvs2MHmd27KfvSF5HkVz7/dgV3AbB4ygKG/xIjNJTEFz5EATexh5+g7N9SyLbJATvx8SBBU/HfR1uFiz6tjcd7HieajeI2n2R9lbNhx92gaXCStR3LVVpGdGx0UpvfXgx5CyVzr3ocQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRCEf3anM4REAtRjXqtH2t72CgUNSSoGFjh9FiSpeFhklwnn2TUkNw+DBra5pRgCFqL33Ydj+bJXHlRVUVxOJMPkjzR/z69Z8v++zbq1CaKjxeLghZc04q0oFgHpqkohFMZ/wweKRTyShJ7JoskwmBhER6dHUagvK0Px+0GWkcxmTA31r22fcxqFvMb8C+oZH0gQHk5S0eShepoXg0HBZD3+VHR4zch2/2uaRziF8gW8G+/h7JWX0DNsxO3QqTSOouw6QOnnP4c6NoapsR7H+SvJxML4Vi4hn0uTMxi4J7uBnrklXFI7lamDecL/938AuC+9FCQJLRol+uc/E7j5JrBZ6XFmMU6bT+L2YtjIrqcHmHd+HZGRNFVTvfTtC5GKFgvD/HU2FKNcPKdy2YnlpgdktOU5misbceKmvNqFw6yQebALowTJnlix+F7Vke3Fgnstq2JfVEFqxyiy1QDzy3nhuUHOuKwJtaACOmdf14rFbsRgkinkVPr2hnnqx7uYc24t6XieTLKA1WkiFcuxY20f8y6oJxHKkIplqfensG74I6z42N/703vbsHnM2NxmTFaFfFrFNd1Pz+7xieudr8aGUpNm5/hu7j5wN6vqVhFKhyi1v/ZicS2TOa5Nz+WQDAYMpaVUfOXfMbjdGM2Tw6TCiTyla+pJbhohP5LC0uTGOitArnc3pqqFmGrr0HJu8n2pYwYGaeMgiy+qJ5FW8ZbZyKaLgQ/RkTQ7nuibNEfP7hDh4STWZs9r3q+XGCoq0DUNg7943ZVMJgwVFa97POG1kxQFXZIw1deh5wugyEiKgcLY2Mk3/htGs4HyRjfljUcLeVWnhmW6n8zuo+do5mAYz8VNJJ4bJDeQwFjnJD89QMeeELFgmrallRNF9bJBYsFFDeiaxlhvnNp2H8vfOYWKZjfTl1fRvWucoc4ojTMDVE/zMSqPoC9aRHb3MACafjQBJY/p6E2hqiIhMf6Tn2L49NePC0oBiKfTEwEkAOlCmtt33843l38Tk2J6zcdH+OclmxTca+qRzDKZ3eMY/BZs88uJP92Pc1kVqe1jmDqjVPjMdA3GWXPTDA5vHSObzFNW76JvfxgAs81A+7Iqgv2JiRASgMhYFqmpCT1fwFBaSrajg1xfnwgheYspDA+juFxk9+2l5NZb0bJZZKsVo99PKpUjMnb0O3/oUJRUJMeyq5vpPxChrNFF7+5xEuHifajRrOAKWDEYFbLpPBa7kfrZfgyV2UlzappO374Qo90xQgNJGqb7aHcZkQYTZAcSWKZ4yXZEca6sJfniMKgajuXVWFp9f9djI/zzGu4shkuWv4oQktDv7kR2OPBceulJ++4c24lBNnDu4jO568HN7H9+iMWj+6B8Olqqi/gTT+K++KJJ2xRDSPw4TDLVXivtmXYA9o7v5czKM195wso5sOnnEOqEQPNJ1/cST2k5Y309k9q8IoREEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEAThOKczhOSXwEZJku478voy4PbTON9bhsVmJBHKIhtkssk8siIRKLOSfm4AS4MHx9IqJElCMstku6J433kNktX6imMqLheuCy4gtXUrpuZmch0dABTGxrA/cQdXfeorJGIqNpcJX6Udo7n40ctWK3ouh57NEHvkURSXE/ellxJW4/xox49I5pNISNx19i+oTXuQjUZM1dVIRuNr2mdfpZ0nfr0PWZYIVDtQCxrDnVFmrKgCwOo04vRbiI8XC/5kg8SUheXI6TFAFHW+GQzlZTgaq8l85cNMbWlBDYXIRKP4f/h9Cj4nweQouiJze/AvrGhZwlPjf6TOWcfanrV4FQdfbvwI2m8fRrJ5kO12tGSS6AMPUPrpTxG9734kr59Y+5lENTuj+hDBxH4aFs9g76Nj6JrO5oe6sTqN0Bqh5X1GXKkKuhJdDBp3ks95j1tv1WwHC8qnAJDp6MXVH0RxlZIaSSFP9VKIFgtBE88N4FxZS2E0RWEsjWFWAOmSJmKxDHavwqyzKnCVO3EFbESDabp3BkmEMlicRvJplV3r+lEUmUJeA6Bj8whzVtey4f5OCnmNjQ90Ut/mYo5lD9H//Db2D3wAQ3n53++De5sxGBRkGQpZjWxaRS1orLy+lVQsR1yJ8HTqMW7b/HuShWLATa2rFovB8rrmMpaVIbtcaLHYRJvrkkuwL1uK99prMZYVr1VGs0L1VC/9B4qF7KTyaAYZ66wSrLoOikxuIInB60M2m5HdLki4geik+dRYDrvdyNZ1A+SzKmde3sRwZxRZkdBPENKg5rTXtV8vMZWXY3C7yQ0MFF9XVyNbXt+xEl4f2Wwms2MHiteLnkqj5fPIVguy1XZKxlfDWRSnCee5tWQPhjGU2TB4LITuPoC5yYPpyhbieZ1Hbt/D/AvqObRplOpWL4uvaEIt6MgGCYtdYfe6Eepm+Cmtc+P0Fc+RRDiDp9SKzWXCW24jJo/zjRe/QaWxmuaacwj2JY/upyJhy4VIH3ltX7qE9Pbt5IeH8RhzuEvMRMeOFu87fGbCppHj9qcr0kWmkBEhJMJxjCU2PJc2k19YQfZQmOzhCM7lVSQ3FgNx1HiOQm+M5pW1bNg4zLTFlSSjWWxeMwsvakDTdDS1eKF1l1jp2n40CKh+qh15sBfj3NV43/lOBj/zGaxzZmMIBDDX1b0p+yu8dpLNRmrzZmzz5xN94AH0XJ7AR25h7Hvfx3vLR2lo99C1OzLRPzqWRkmEmbKonP0bRlhyZTOFvEYsmCEZyfLgD3fiLrUy5+oyHk3fT6BkNf5QNc88fJBEKMP0s6uIhzLseLyPprmldO8a5903zyB+XwfqVC/ZjgiOxZUgS+T6YrjOrcVU48BU6XzzDpLwT2focBS7xzzx3f1yCuPjxB95BM811yDb7Scdd8voFmYEZuD1Oqmb4efgxj7OtHegLL0YQ1mK2KOPnDCEZMwUYFqlG0mSaPO3AbBnfM/JQ0gqZhf/HNz2mkJIXKVlHN76IrqmIckyAP4jISTjIoREEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARhwmkLIdF1/TuSJK0DlgIS8H5d17edrvneSpw+K8lwllQ8i8GkgFR8MrYpYCXyl8OYapygQ64/jueyZmKHOrC0tZ10XMvsOWT27sO1Zg35vl4ye/ZimTED+zuvI6XJGM1g95pRjApqQUUxKCBJmOvrGPvBD7EvXoyWTBB/8kksH/0gsbEYDqODD8/8MGanF2tN/eveZ6NZYenVLex/fojxgSTV07y0L6vEaCmegqqq0zS3BJPZgKbpKAYZVVVRyJ5kZOF0kSQJz9XXoHh9RP7wByzT27EtWEh2916S69ej79hB4OMf4xMdZgpjj7Dowx8jHpG5tPJCjIe2Ynx6O8E77yVWWorvAx8g+L3vkevoYOx/b8P9b59hvGYRT9/RDfo4AKWtjfguNDKNEnpeiGJxGZhzURVqeZwSRwAZmd27wzSMzUQxmWhfUcm+9UMANC3zUj/dD0AuGCdzMEtifRLnigIA2Y4I1jY/6Z1B9LxG7JFuDCVWrBfVkhwdxjI6hqs8gKW+HoO7+GTwbCrPut8dYGB/iIWXNLLhvk7mraknl1EBsDpNSBJkUwUOvjjCoksbMZpkHE4Za9dWMr/7E6Wf/hSu1asnityE08Mj9ZI3VaGqGpqqk89qGCwyuqZiM1lJFpIoksI1U6+h0d2Iy+x6XfNIdjuBW24mvXkLaiqJfdUaZFnH3NiIweeb6BcLZrB5zCy8uAG1oOP3WYj98RCK14zBZyE/lERLFfBdW4tkMpE9eBBT7cziN+Ux4SLGNj/bN43i8luZtriCg5tG6Nt/gCtubae83sFwd2Kir91jwlP+xoMqZKsVS/OrL+YUTi3JYMBUU8Pod76Lbc5s9GyOzOHDlP7rv56S8dVEnuQLQ7jX1COZZLIdEVLh4vesrmqkdJ2n/3AQKBYq17b7iI6myec0NFXDICnERjP0HwjTfyBMsC/BindPJTk4zuN3dhEcSGGyGsimC6z4UAMbhzdS0J7jP1bNpeRpN2OHUzj9FpZfUYflsd+itbRgmz8fyWoh9ItfUvb5z5P41U9Y1r6QvSM+BnqzVFabmXK2m/XSweP254qWK173v2fhn59iMaA0uNHSeTIHw0Qf6pq4xpqqHGT2jaMPJpg9PUB/T5xsuoDVbqRjyyhTzyzHajeSCGc5tGmYymYPnjIbTo+RqWeWs2/LVZQnLFQECpR+5tOEfvkrcl3dlH3us+I7/y1CSyaxLZjP+I9/guOsFUgGA5hMZPbvJzqaovXMOjJZnaFDUcw2A2eeV4ZLieOqmYLRpDDSFaN/fxinz8L4YIIzL2vC4jQQzg+zuGIJtpiPP9+2nUJOw+Yy4dxlwWBUiAbTmKwGFpxTjT6aRIvnMPiLYZOJ5weRbQaMFXZAFwEkwik3dDhCeWMx9OOVRO75I3o+j/fad510zFQ+xd7gXt43/X0ATFtSSWzPZiSbCmVtOM9TiNx1N2oigeJwTGwXGw8SMtdyXkXxe9xtdlPrrGVPcM/Jd6SkFQwWGNoOM686ef8j3CVlqPk8yWgEh7d4724xKthMCiERQiIIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgjDhlIeQSJLkO+Zl95Gfifd0XQ+d6jnfajKJHJse6qa80YOnzEouUyAeSlPiseA8txZJltBVHcfSSjBLJJ99lsCHbzzpuFIhT2F0FMloINNxGMusmRhWX8YzTyXp3bcVAFeJlQUX1LN7/QAzVlRR4c0x+p3v4r3malA1MFQi2+1Yuof513n/SomthApbBWX2sje0z2M9ccKDSaYuqgB00HX2rB/EX+nAaFXQNbC5zBzaNEIhp9I0txSbyYhsdb+heYU3xlhagnP1ZRinLkEdGSC9/Vn0WIjUpk34rr+e8G9+S2FkBO8v72Htg1FCI8Vi9oq6GhZNKRaUFUZHiT/yCCW33oouSQw2OnnBayb6x0HQQZIl5qyqRZIguUensc1L++JKjBYFn9szsZZ0Iof12UYOH4xymC78VQ6WXzuF8hoLloiKdiBNbE8fek4l8fxocWyzAkB+MImlxYt1RoD03nEUlwlrm0zwXz5I7vAhcvPnU/WjHxFLSGSDEQo5jUQkS/++EJ4yG8G+OADxUAZvhY3wUIp9zw2y+MpmOjaPkknmkSSJZDSHrBkpnbkEz/QzMZbYMZa+8WAI4ZWNxTxsXtvNzLNrsLuNrP/DISLDKQDKp8zh5xfdQcYaw21xU2mrfN3zqKEQkiwjnX8lgzEPfV05qhssTA3l8R/zzWdxGOnYNIKmFavdW2+ZganJjaXJg17QMDd6yPZE0Uwmdq/rI1u6nNL8OO5znCS3ZtGieQytXuI1Thxykshomsd/uZeFFzfQs3uc7ue7WVA1SKevkt6eApWNTmafV3/Sp9oL//jURILx22/Hdd55SEeCwhSfl/jjj+FcvuwNjy9bDRgbXegSWGeUoOdVkhuHMZTasC9wMrSjl3Q8D8DAgTCLLm2gtt3P8/d2oKk6siIx/8J6nH4L8fEMB14cZtaKMsZ745Q2eKidXkI6nsPhtTCyK83V9dfym85f8sX9n+acWecyZ8kCZla2U19fRX7KLdiXnMn4D39Errubkv/3CeyLFzP6rW+h5+5iytz5tLXPQd26k5R3DusrdvChGR/i7gN3ky6keVfruzi/4fw3fEyEf37mGhf5Vh+F0TQoEo6F5eS6Yxh8VmSbEauqMbXMim41MBLLU97k5olf7SOfVUGCOatqsXvMrLiknIH+HA/+/ADocGgrVDU5WNLqQ8+kiT/+ON7r3oO5tvbN3mXhVcj39hK554/4b7gBLZtFNplQLFYcX/g6jz1vJP3YPuqm+5l/QT2BCjO+vo0knt6Cc95sPGV2hjqiHNgwzKJLGmhfWsXTdx5ALWhIssTidzSRUFQKOQ2AyhYPvXtCNE73ct1HZ0IkhxQwAyA7jGQOhHCurCW5cQg9q2KsdmJp9b+Zh0f4J5QIZ0mEssxe+cq/X+uFAuG778Z25hmYGxtPOu6OsR0U9ALzyuYBUNfuo9c5WHyztA3X+Y2E7/gNiaeewn3xxRPb9Qbj5CQjrRVHw8Ta/e1sH9t+8p1RDFA+AwZfW8at/UhoYDIcmgghAfDZTYRFCIkgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCMKEUx5CAmyh+JzxEz1eVwdOXsnyTy48nKJ3T4jePUfzWN7zL7PRB5OgQ+zRnmKjBJ6Lmyj9/OfR8/mTjivb7eT7+8l2duI86yy0Qp6R4QK9+1ITfWJjaXr3hMhnVNb+ch/LrmzEVVdL8Ps/mDSWbeEiKhw+JEkir+WxGq1vaJ9lRaJnzzjb1/ZNtM09r45CQcWEQj5TIBbM4PCaUYwy6UQOu9dcfMKx8KbJdkUJ/nI3+pEiSsvUVRTkp4Di+aZlMni+8g06+w0TASQAQz0pxtqqsTocaIkE2UOHGLvtNgzvvIzR887GGTcxFCsWes06p5qOLaPEgmkAtj0C575vGlPPqJi0lshwisGD0YnX+WwBY15F2jJOeNMIrtV1xB7twXlOTTFQB0jvHMN1Xj2JFwaJrx/AfqYfzyU+tPg4w1/9DOrwMM53vQfzuz/Ige1R1v/hIGde2sTz93Yw/4J6ADKJPHZ3sVC0Y/MIZ17RxIENwwT7Eux8sp+zrp1CMprj+XsP0zDVQ0MsS/SJXgAko0zg/e2YGz2n+JMRXpLPFtj8+CijPQle/EsXlS2eiQASgOGDceoGasjVB8nkMpgcptc9l2yzE9vfyWbXVOxOmDbDT3g8w1P39nLhLV6szuLYigxnXN7E9rW9pKI5TCYJKh3EHjtybZclPJc3kykoPHP3vmKbBOddZMSefQr7Vdfw5KNBhp8fmTS/phZDTXQg84NvUO3zUz97Pg5LK4HqGa97v4R/HGoqhbG6hvGf/GRSe8mtt56S8bWCiqXRQ+yh7mKDBJ5Lm5Cr7JjcEmW9ncxc7GP3xjBIYHdbePrOAxPnnqbqbHmoh9mratnycDfokEqoYLEx1jvASFdsYq7pK6q4tuoK9kS2sDW0k7VDjxEtDzPb1oauqqSffY7hr30Nx7KlWGbPxjJrFobSEkwtLWT37CG3dTO5rZuL+/+eK7Aq+zkcOcx3z/4updZSapw1KLJySo6L8M9NcZpwrazFMsVL9lCYxIZhDD4LrvPqSDwzQO5I0JhsN1J59RS2bRtDLRTvI9Bh22O9LLumBdnpAilC/XQ/3bvHQYeBwwliVRKea95JettWCuPjIoTkLUJ2u8n39DB2220AmFtbMe3bS+LSj5KODwDQs2ucnl3jmO0GVtcEMXs9ZNIqyUgao1lh5tnVyAaZ9X84OHHO6JrO8/ce5tz3T5uYSy1onLG6mgqXmdhD3RRGi/cpiseM54oW4mt7SG4YwrGkEnOzB1O1E0k+0a/SgvD6jfYUv6PLGlyv2C+xbh2FoSHKPvfZVzXulpEtyJLM7JLZAMiKTFN1EHXUQFquxj7bjqG8nNjDj0wKITkcyoIJWsudE23tgXYe7n6Y8fQ4futJgniqF8DmX0AhCwbzq1qrw3MkhCQSntTus5sYFyEkgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIE+RTPaCu6w26rjce+fNvf972ASQAmlYs5jVaFRa/o4lLPzYLI6C4zcSPhBcAoEPkoS7IGdEzmZOOqwOuiy5Ci8UI33knyWefI5y1H9dvrC+Ot9wGwLYnBnB++FYk69GQEfvy5chuF6qmougKllMQBJLLqISHUpPadj/dj6ZCPqvhLrUx0h3FW27HHbASGkzi8lnAXfWG5xZeHzWdJ/KXzokAEoDMgQTWeWcDILlcSJ/7P7ZH6hk8nDhu+5HBHLZFiyZeK+XllFx9LWcEljLLM4eGmQEATBbDRADJS57/02Hig2HUdJp8MIiuqqi5o0E8rXNLWLWglDJNJ7VpBMVlonBkjOyhCNbpxbHzQ0niz/RjnRHAe3UFkV99ib7r38HIV/4N9/nnUXL3X9lVejHdB1I8c+cBAlUO+veH0XUYH0xS0ewmk8xjsRuxuUxoqs4L9x7GV2Hnkltn0TAzwNDhGE/feZBMMk9TvQt1/9FwIT2vEX7gMJnQ5P0TTh1dg0JBp6rVw4prpxDsjx/XJ9STxWayYTaYcVleufDylcgOOyw9nzkLK5gt6XifG6BlLMkZZ1QQPeYcVjUY6ojSMKuEeWvqkXSJxPqBowNpOrGHu7DbjwlE0WHbDg3jrJmo4SEy6cKkuU0WBU3VkQ0SZeYIaiRCvvMw6T/dTaGn63Xvk/CPRTIasZ95JoaSkok285QpGKtf+3dhIa8SH8+QjGb+P3v3HWfHVd///zXl9n6396pVt3qxJNvYlnvDNgYMCR1DIAkEEkIa4UcaJN8kEEJNqCb0ZtyNe5Ft9V5Xu6vt9fZ+78z8/rhi5UWSLVvNoM/z8dBjd8+cOXPO3HPnztXjcd5DZDhFYjKDYnLcfUb8/l7UooXm9+O5ZAmtqy1u+tMFLLmqmVyqcCyM4SijZKJq5cXxs1bUsPOpYbCYEUACsPe5YZTBBJ/Z0MC3LvocH178YW6fdTudoU5y3d0Mf+ITGBMTxH/+C6Lf/jZDf/KnlKJRav7iz1Gcx+47vG+4hHDI4AsL/oj/d9n/Y2XtSloDrRJAIl4VRVFwNPtxdATxLK9BdekUR9LTASQAZrpI+oUR5je4ueHNs7A5XjLHLLjvS7vY/EAfxbzBTX+6mGXXtaCqoHh92BrqCdx+O4plnYfRidfC3tZG8G1vm/7b1tyEWShSmoocV7djSRWOG2+jdNO7+eV/bOVH/7iRp354kIpGL5ZhUcwZM+pbZrlMt6s0dwVZ0uqjMm9SOJKYDiABMGJ5cnunsDf78KysBSxsdR4JIBFnxcRAEkWBikbvy9aLfv/76LW1+K644pTa3TK2hbnhuXjtx9qt8QwRK9Wz+9lxFFXFf801pJ95BiNZvuaahsGRTPka21VzLIRkXsU8APZO7X3lA7deAqUcDG46pX4CeELlEJJUdGpGedhjJyIhJEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEENP0s9m4oii3Aeso52M8Y1nWL8/m8X5XOL02WhdVMmdVLZvu7yXd5ie8vBorVyqfqZcqmagOH3p19Su2WxobY/zf/x+ht78dRdPAYafQFAAmZtRrnBOcXiys6SqK20P4ne9EURTQdUqRKagMEXDYcWgO6r31pz1myzx+UWYxb2CZFvlskcNbx1l+bSvxiSyKqrB4fRNTw0ma57/CE5DFWWPlDIqjx4eLKHY/WjBIvq6Lx+5N43QX6FhaxVjfzAXoNcE8tvp6av/+79HranHOnk3WcvD8D7s5tGWSlTe1YVnWdCjPS+UzJXL9A0T+5j/Rq2twrL8ePNXMXVVNW6OPsFsneW8PXNkMFpjZEpq3HOhQGEjiafTiXVtP/nAMvd6D2upmcCSC44a3oo3+J2YmTdFfTfchg54dk4TqPVgWaJqKUSwvuO/ZNsHi9U1Ut/gZ6Y1z6Z1dFLKl8r+cwejhBDufGGTx+iZUXcEogW6Yx7+FxzL0bhrDVuWmdWEFuk0Wzp9JdpfOJW+eRc/2STbe10NDV4jJgZnztqbVT0HJ4rP7UJXXnr1V6O3F27KY4uPjGOPl0BFjKofy6BHc75o/XS8Tz6PbVTwBO0bJwsgUj2vLzJSw8jMXLecyJVIvbqS44Sku+eIP2fzQICOH41Q0eFhxQxuRsTQ3v7ed9EfecWwnRcF/9VWveUzi9cUWCqGFgvhvvhnV6QBFoRSLo4XDr6qd6FiGLQ/10jArxP4No4z0xKlu8XHdNc3H3WdYRRMzVw698bn8JMP1JMYyVLf5sdk0bA6N4kvmqs2hUdno4bI7uwjWubnnP7ZTPyt4XB/MksV4LkB41kpqH93J+vfeTpO/GS1XJN3Tg1Wc+b4wk0nSzz5L/MGHaPj8f5I/dAhQ0KsroGo2eu28V3UOhDgRW4OXUrxAcSSNkT7+2lwcy+DoDKI/NcDt757Lzk3j7N0yTiFnTL8Phg7GsLsGcXptXPdHF+FwWCS2RnHnU3gvvfRcD0m8RrZwGP9116JXVmDlCzjmzKE0PITis2Zc9665az7dm8fZ/dw4oz0JYmPlEJFcqshT/3eAq947D4dHJ58+Fh6m6gqlosFt752P0zCJ//gg6s3t5AeOD0orjWXQa12YeQP37EpUuU8UZ8lkf5JQnQeb/eRzLN/TS3rD81R95E9R9Ff+r6JMMcOOiR28bc7bZpTbYgfI+2ax55lhll3fiu/aa4h85zukHn+cwC23kJyaYFIPUusCj+PYceZVzENBYffUbi5pvOTlD96yBhQVep+B1nWv2FcATzAIQDoanVEe9tg5NHb8914hhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQogL1Wtfjf0KFEX5MvBBYBewG/igoihfeoV9nIqibFQUZYeiKHsURfn/jpaHFUX5taIoh47+DJ2tfp9tpaLB3meHWXRFI49+ey9TQ2kGDicwDQst6ECxzXxJVI8NvS5IaWrqJC0eYwH2tnamvvY1Jr/8ZZL33U8+U6Bz2bEAk+oWH8EaD05PObBh3rp6bDWV2FtaMPM5VJcT/w03MFTnoMpVxdzwXKrcVac9bpffjm6fObaOZdW4fHYUFSoavDz09d0c2jzOvg0jPPT1PQSqPKd9XHEanDq2zhO81Sq91H7rf8h5ajBLFplEAd2uUdcZnK7SuThMQ7MD39VXY2tqQvV4iDzxLCO9KQ5tmQRg47295NIlqlt8aPrMuTF/dQXJ//eP5HbuQrvhLTz+gs7Gp5NcVOPGfSBCYX/5KfWlsTT2Zh9WwQQF9AonAOnnR8juj+C4rpXtmRLf+9I+Hv35GA9tq8D5z19B+9e76Qmv4/C2cl80XUVRYKw3QdO8Y4v9tz86wIEXRll6TTPP/aSb+ESODT87zNaHj1DIlxebHt46wfx15aCegn78JVVv89OzP8bDX9/NeN/xi0/F6Rs6GGPXE4M43XY8QTu17f7pbW2LKsFS6Ax10hnqPK3jqG43NlWfDiD5DatoQvLY09N9FU4G90fYeG8vWx7sQw04QFVm7KOFnaR/K4Bn3jwbhScewXbrH/Dwtw5gc2osu66FUK2HX39zD20LKqmdVUHt3/0drmXL8FyyjqZv/C/Oiy46rXGJ1xfXkiW4li7BKpVAUfC94TLcK1ac8v7FgsGGn3Vjs+tsvLeX4e4YlmnRuqgSzW8//j7Da0P12oDyovp9D0R47IuHefDLu4hNZFhxQyt2V3mBsN2ls+KGVlRNIZMsMLg3is2hkc+UcHhmLlZu6AoydDDGEbOZ4pYdtFphjAxE+6MYDi84HDP74XFTGhnFt24tg3/8J0z8+38w8e//zshf/jXRex/Fso4PrBLi1VJtGo72AFqtG1uV+7jtztkh0tvGMVNF9PEMc1SLG94zn8PbxmfUG9wfxe7UefoHB4mMF3ngWTejrtkU4vI5/7vEvXgx7uXLUew2zESCjOZnzxE3K29so2NpFatvbufAC2Mc3jqBJ+icDiD5DdO0iE9kWX5dKw53+Rpoc2isvb2TartG8cFeir1xADLbJ7C3+I/rg6M9gFWyQAW9+vg5KcSZMtGfpLLJ+7J1Ind/F2w2gm960ym1uXlsM0WzyNqGtccK8ymIHcE7ewm5dJGDL47iWrQIva6OxMOPABAbHWXSXkFXpWtGex6bh7ZAG3sn977ywV1BqFsEhx8/pb4CaLoNl89POhaZUV7hsRNJF06ylxBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxIXnlR9v+9pdBiywjq4aVRTlO5QDSV5OHrjCsqyUoig24FlFUR4EbgMesyzrs4qifBL4JPCXZ7HvZ006lsfpsREbzVAqmABERtKYNpXScIrQm2YRu7cHM1VEC9gJ3NJBZsM9uFcsf8W2jWgU//r1FPt6KY1PUBwfx8pkSMdLrLixDSyL6FiGyHCaYK2LxjkdODw6ruoK9FvfiJFIoLpcKDYbc8/wuBMTWVa/sYPeHZMkJrM0zwtjd+sUcyWKWQNfhZNVt7TTt3MSl8/B4quasDnOWkaOOAXZTJFkix9PsoAxkkaxqehrG8jYdMItc7Ariem62x7pp21RJStvaqO+zYN7dD8MjjD+s5+j19bC9XeyZaSVkDIzvGH0cJwXfnWYa99cy46NSeLRIl1dNtqq4kR27yJwxx1091hMjea5/i3N5B7sRfM7sNWVA2qyu6fwXdGEXu0mu3cK17oG0FWyqSLRbImRvhT7XygvHHYH7Cy4pIGC180j39hLbZufUI2b5FSO7i3jLL22lW2PHKFn+wQX39ZB/54IigqtCysZOhAjGcmhKOUFp2bBwumxo2oKyUiO6FiGVTe3M5Ep0XFNC7knBrAKJlqtm1RniL6fdgMwMZCkflbw3LyAF4j4ZIZDm8YASExlsffruAMOVtzQCorCyKEYCgoh1+llV5UmJylFoyiN5RAHq2jO2G4eDaCJjqaxTItL3tJF745JYmMZMpkSods7id3Xi5UtoYWdBG5oo+BUqW3zk00Vmb/ES3Odgf43f03c00xh3yT9eyL07zm2SDIdz1PZVIn/qvV4L7sUFAXVZjutcYnXH1s4jO3KK/GsXg2qhuZyvqr9U9EcfTsnWX1LO6loHoCKBg8uj41CvkTw9lnE73vJfcZN7ZSKJoXRUcZHTfZvGJluKxsvsPfZYeZfUo+qqZiGyY7HBrjkrV1suq8Pd8DOujtm8cI9h1l9Swd9uyaZGkzRMDuEN+Rky4N9VDZ56bpiPcMjFk9+fwvJSI6aVi9rvvoD4h96O2SzKA4HFR/4INHv3U3w9jdBqTRjTNHv3k3ozW/GVlt7+idYXPB0nx3/2gYKY2m8lzSQ2jAMhoVjVhBbnYf08yOggKIqGIdiBJfVMDWUntFGqM5DbXsAu1tH1xWMksnTD01R2ehFU0exy1z9naDYbHhWrsS5cCGpZ58lUmzh8K8GObwjQkWDlzkX1/LCvT3oNpVwnRuHWyefmXl98le46N42zkWXN+EO2HF4dPxeG+avDmOli2ju8ud0sT+JZ2k17uU1ZLaU71tcCyuxt/lx6Cq2Ou90XSHOtHQ8TzpeoKrJd9I6pakp4j//BYFbbkavOrUQ0meHnsWpOVlas/RY4cQBAHxzllC518uOxwaYt7Ye/9VXEf3BDzFSKcaGh4nbAsxtPP7+fH7FfF4YeeHUBjb7enjinyE5Cr5Tu+56Q2FS0ZkhJGGPg2zRIFswcNm1Uzu2EEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHE77GzmfJwAGh+yd9NwM6X28EqSx3903b0nwXcAnznaPl3gDee0Z6eQ7pNw7JAd8xc3DJ2JIlqQPzXR/Bf0UzghjY8axsoRcZJ/vrXYJgnafEYRdOY+ta38F17HZUf+hDhd7yDulYPmWSeTff1sun+PoYPxmhbVEk2XsQomeg2Fc1Wngaa349ylha0O9w6z/7kEFgW9Z1B+vdGiA5ncHjKi/myiQLZZIG5a+roWFzFZH+KQu6VxyzOHt2u8cJTg+x120lf1oj2pi4ORHOMDqR56Gu72HRfL3PX1k3X7905iUdJY/3PZxn/xMcpDA6hXH4j1rv+gmdehKHuJG6//bjjVNc5Mb74KVY6NnNlzS4qvvkXqN1HLxUVtRRMBzff1kEIwAIjnkcPO1E95bmafHyAwnAS53UtPPDrAfaPZPjZjw7xxH190wtFNV1l6dUtbHnoCFND5ZCIkcNxmuaHcbh1IsNpureMsea2DpZc3UwxbzB3TR1G0WL3U4PEx8vhKWO9CZrmhQHY/dQga27rpHlemGyygC/soGl+BY8+N0r+qlYKV7ew3+fgkZ8dLl/FAJfnbOY+XZg0XcEbcgAQHcnQuayK0cNxNt3fx6b7eknH89R1Bk77OIrDgZlMksunsV3SMGObvqACw2djrDfOTz67mfhEjrG+BLVtPuZf2gCpIvEH+/Bd2kDwlg5c8yuI/OAAboeNmz+ymJveWkXD4BOM3/UOhv/8L7BpBk7vzGuxqirYX7I4WbXbJYDk95zm8bzqABIAm03D6bFhAYpSLmu9qIpUNE8qkqfQF8ezuq48F5dUUxhIYZQsul8cIR0vzGirf1+EhZc3su2RfrY82Me2R/pZeHkjR3ZNAZCJF9j3/Ajr7ugiHS/Qubyahq4QY70JtjzYB0BjVwDlijfywFd3k4zkABjrS/H0IzGq/ulfqfjgB6n77L8Q/eEPKY1PgHb8rakW8KPYj//8EOK10nx2XJ0h7OvqCL9vIeE/nIfi0Ij9vBwa5llZR3ZfeZG6Gs1x+9tnU9tSXryv21XmXFzLr7+xh33PDmN36QRrXFimRXTfETIbNmBkMudtbOLVKwwMoAADB48F7E0NpcgkioTrPKx/zzx2PDbAkqubp6+rALNX1bL32WGyiQL+Sie7nhjgxV/24CyZGJFcObBMAS1cvpbHfnkYI12g4n0LCb57PsbqOlxzKnB2htA88pkuzp7JgfJ/sVQ1nzyEJHL33ViFAhXvee8pt7theAPLa5fj0BzHCsf3AqDUzGPx+maioxl6dkzgu+YarEKB1JNPsbd/AktRWdRWc1yb8yvnM5GdYDwz/sodmHsTYMH++065z55QmPRxISTl999UOn/K7QghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQvw+O5shJBXAPkVRnlQU5UlgL1ClKMqvFEX51cl2UhRFUxRlOzAO/NqyrBeBGsuyRgCO/qw+i/0+qzxBB9WtPjKxPK0XVUyXlxSFfH8cz7IajFQBq2BSHE5CMUtuxw4i37sbM//yi2KUQICKd7+b6He/y+SXv0zk7rsZn1RomhNmxY1trLihla5VNcQnMriDdlRVQVFAeelqurOkkC0x9+I6hg/FOPDiKKqm0Dw/RClvots09j43jM2hk4zkSScKZBIFjKJx1vslTs6uG6y6xM+BreNECxb3fWcfA/tjTA6mGNgXZaQ7Tnwiy8qb2rj8bZ1cf3GaqqntJB98EHtLC6XFl/BETwsjgwWiIxmwygs6u1bWwNEpV1HnZE5TFkddLbGvfwVXwEUpEqE4OEDwbX+IZ8k6ViwMY/36CFa6iHI0vCf5+ACelbX4r24heFMjtkAvh7f3ERlOUyoY2J0almlhd5brty2uZO9zwxglE1U7Nt833tvLgksbWHlT+f2RSRTo3jzO5vv7iI1lGOmOERvLUtnkBWBgX4TKRi/zL6lHt2tMDiZZe0cnt358KbNX1+EsxlCtEg//8CAJC/ZvmcAyywkkwUoHYXf2HL6CFwa3z8GiK5rQdBVPyMHEQIrZq2pZcUMrK25so2F2aHrh5enQfD6c8+ZDsUDUZ0d/YyfaFU3Ybu4gPyeMqalseqCPYs4gmywQGUqTzxokp3LYw07MbInEw0eI3XOY1DND6CEHqs+Gzaljde9h6stfgWIRgPxUjGXXteBwl0NrdJvKihvbKOZLpz0O8fvPG3ZyyVuQHJfGAAEAAElEQVRm0bNtgoVXNALlMJJS0UBx6BiJAoqqYCQKqA6N0niGgmny4nNp0hlmLLCfe3EdR/ZMsermdpZd18qqm9s5smeKloXH7l9GD8fZ9usjBCqduH12DMMkNlYOYKhp86PZdfr2xjFKM4PFpkayJEbiTH31q0S+8U0869YBYGZz6PX1M+pW/8Un0MPhs3G6xAXOHXCRBIYSeZS5YXzXtOC/uoXSZJbi0LHPjuK9h7nquhYue9tsll7dwsZ7ezFNi1Q0z2Pf3ceqmztQFPA2VjH181+R2/myuYvidcaYnGTkU39PXbU1o3zLg31c+tYunv3xIcaPJNm3YYQVN7ax7PpWrnn/AtKxPIMHothdOiOH40RGMly2vonCc8M4OoMAJJ8exDWvAv/6Zvy3dlKYW8HW7ZMc7E1QKErgojg3JvqTAFQ2nTiExEgkiH7/B/jWr8fR3nZKbQ4mBzmSOMK6hnUzN4zvA90FwVZmLa8mUO1i8wN9OBctQq+uJvnww+wdjgMwp85/XLvzK+YDsGdyzyt3omoOVM6Gbd8Dy3rl+oAnGCZ1XAhJOUQlki6caBchhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQogLjn4W2/7Ua9nJsiwDWKwoShD4haIoC051X0VR7gLuAmhubn4thz8n6joCxMczNHSFaFtURT5Tor7Rg+rUyGwepTiaQfPb8V7SQClZXqCTfvY5iqOjOFpaTtpuqX8A57JlNHzh82R378G1bi2Pb4gzdCA6o17jnBCdy6vJpYqounZWxzrdt6LJ1FCK5de3YlmQjuXp2TnJ7FW1qLpC18paXvjF4em1Q3WdgekF+BeC1+PcNSJR+MJfc+3bPkQ2aCOfKdG6sHLGfBo+GGP4YIyl64LoX/5nePvbcP7B+8gsuJSReJBMMolRMrE5NIp5g8NbJ6ht97Pi+lYqK1XCnjx28mgf/Sjhd78bM5ej+dvfxsobFKZCFA/nMLNjAKQ3jeK/qoXUc0MY0TzZ3ZP4r6igkJ8iM3cpYd2F/cWDHNo8zkVXNLH5gT56d05Oz7me7RMAREczNMwOMXQgSjFnsOXhI7zhbbN55seHqGzwYhrlSZiO5QnVuomOZujePM7Ft3VwaNMYR3ZNsfKmNpbf0IrbZ0fVjmU5KQe2s1zro3jLekrZCNe/o4XEcAytlMU9uBtlazcsbD+Hr+K5cT7nr6qp+CocXPXeedicGs///PBxoSOzVpSYu6bu9A9ms5HXAyQns4wn85SKFlo0jyfgpMbvYGqwfNyJgSSqprDx3l4AWqtmE7i2ldQzQxiJArY6D+5lNZiZEvgd5A8cnHEYraKKbff3M3dNHZqtHKiz55khqtvmnP4YxAyvx2vvmdC+pAp/pYtMIk99ZxDLtNj73DDzugLo7cHp66he5cKzuo5UsoTTY2P/hhHWvXkWmx/oI5ssoukqI4fijByKz2h/waUN2F06hWw5GEezKdicGoP7ojTNC9GxtJrIUIroaIYtDx5h5U3HL2i2OzV8C+fg+5M/Rq+twz6rE/9V68n3HaH+n/+JQv8ARjSKa+kSXAsXnpPz9rvk93Xung/VrX7yuSIHD8RpbvBg2zpGoTeB6tbxrmsgc/T+Ib95jMYrm/i/zx2YsX8+XaKQK7Hq5jZe2DCBd8UH8ehhbCOj2Otqz8eQXvdeb/O3ODSE7eI3EGitomZAYaw3AYDLayOfLpCKloMg4+PZ6c/2a94/n9VvbMcwLLY90s/eZ4cJVLnwxPNkeuL4r2nFKpoU+hJkto7hvaaVvlSRiaEUdpeO3W3D5bOftzGLC8vEQJJAlQuH68Tfrye/9jXMZJLKD/3RKbf5xMATAFzScMnMDeN7oGo2qCoqsOzaVh7/7j6O7Iniu/pqYj/5CX2XNWPzmLRUeI5rd3Z4NpqisXtqN5c3X/7ynVAUWHUX3P9x6H8eWta8Yr+94TDpWBTLNFHU8ve4sKf8XpQQEiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiLKzlvJgWdZTAIqi+F96HMuyIifdaeb+MUVRngSuBcYURamzLGtEUZQ6YPwk+3wd+DrA8uXLT+1RuOdBJlZg/4ZR2hZVkkuXyk/tLVnEH+zFNb8S57wKzHSRxKP9BK6pBMAxuwstFDppm0YuB5ZJ4cB+zGwO55LFUDSoaPAcF0JS2eilkCmhqsopPzH4dNkcGqWCyab7+wDQ7Srr7pgFioLLb2esJ87Km9spFUw0XSExmcXtv3AW5r0e567m86I5bOQ/82fYvvgzABKTWcJ1nunFmL8RCNsxUikMp4/91nyiOwxCtTkADm0aY/FVzWy6r7xoc7QnQWWjl7pLm3EF3ABYlkUpksMqGlg5g1KiQOZX+8tPkVcVAMxMicQjfbguqsIxK4izMwgOjQMPF9lwbx92p8aSq1swCiWcTovr3z+HxOAUPn+BQFs18YlymMihTWN0raxh5U1tONw6hZxBIWeQT5cY60uweH0zI4fj7H9hlFU3tTExkGSsN0F8LMNV75mHJ+jA4bKd8JzpVVXkvvtXeLp3YRWLZDZtmr74ZYHwf3/xjL5Grxfne/4Od8eZGkzTMDtIZYP3uBCSUN3xCxxfE9PA5bXhU3OEKl0kcgYHt06QSUxwTdcCulbWsPXhfnq3T9K5rJqVN7Xh9NjweuzEf3EI96IqVI+N0mSW+EO9VH1gEQC2xsYZh7EyKeZeXMeWh45Ml825uBYF5cyMQ0w733P3bNFtGrXtgRlllY0+1NF0+Tq6qArNZ8eI5ok/2Evg7XOJjqaxLNjzzBDXvbODI4dzODw6qqpgmsdOjaoqqKrCRZc34vTo2Jw6Lp+dB7+yE8sCT9BO87wK9m0Ymd5n9HCczmXVdG85dvu29qYG7NEejOpqtGAARdPwXHIJ3kvKi5k9q1ef5bP0u+33de6eD4qiUFHvI5ss0teXpGFlLZXLaygNp0k9N4yZLpYrqgrKWAZPyEH6JfdBqq7gcOtsf7Sf6EiGcSCegGuuzqAHA6gu1/kZ2OvY62n+GqkUqt9PatXNPPPdHjqXVdM8vwIsi/oWFyYmNqdGMWfM2M/ts1PTVr7OTg2l6Ns5SefCChTDBCDxSB/OrhC+K5pQnBr5Kifje6PoDhWn24aqlr8fCXEuTPQnqWn1n3BbYXCI6N3fI3DLLTjnzj3lNh898ihdoS6a/b8VJDS+DzrXT//ZtaqGzQ/0svn+Xq6/+mqi3/seU4abFq+Cph5/b+vSXXQEO9gztefUOrLoTnjyc/DgJ+B9j4P+8v+H4AmGsEyTTCKOJ1j+/5UKCSERQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSY4ayFkBx9wvU/UF57bwIKYAHtL7NPFVA8GkDiAtYDnwN+BbwT+OzRn/ecrX6fC9GxDJODKSYHjy2Un/XBBTg7g2R3TkyX2Rq9oJqofj+VH/oQuv/EC4cAVE0Dmw3F6UQpFCkNj6CHgrQtmEXfzkkSk+VACH+lk8Y5Ybq3jhGodKFq6tkb6EtYJtR3BelcVo1pWiiqQi5dxGbXiI5mqOsIcmjLGA1dITxBJ96wA90uC/POJ83vp/Zv/oaRv/kbvBU2vEE7I4fjrL2jk7EjCfLpEgB1zU4qHEmSNdWk7RX0bEmiqApdK2rp2TZBKpqnZ9sEq25px+HWCdW6qWz04fTYsEwLI54ndyBK/JFe/Jc3E3+gF9/lTQDke+MErmmlcKT8RHqrYJLZPo5nZQ25PdtJWl5eeHAMgELO4MVf9WB36Vy1Jk/h7/+ehrveT/j6P0C12Vh5o4NC1qB/zxRHdk9R2eilf2+EI7umWH59K7pdpVQwiY6mWby+iX3Pj7Dj8QHWvaWLNbd34gk40PSXf784584lcPtt5Men8P/he7EAmtohOoWqWrgWLjxrr9eFKp8pseuJIWJjGfY9N8x1H1xI/74ImXh5EWG4zkPj7OAZOZbmq8B+MIbnuWEwLOpmBfGsqSWnqigmzL+knmQkx6HN4xzZPUXb4koUVcHSFTSfnfSLo9NtuRZXgV5eeGlva8W1fDnZzZsB0F0uIr1pVt1SDmbSbSpjRxJouoSQiNcuWOMmly6gV7vJbBqbLnfOCVMomVQ2+ahq8VHXEaBYKLHjsX7e8AdzWHZ9SzlAzAIUWHZ9C4MHomSTRS6+tQN/pYsHv7ZrOtMsHSsQqHbPOHb/3ghX3tlGe1DDqGnB57FwTXRTHBsp39uoGqp75j5CnEuegAN/hYvEZI6D2yYJr64l9fwI/CaARwHnrCC53VOsuqmNx7+7f7p86dUtJKM5oiOZ6famhjIk4zr2HTvxrF51HkYkTlVxZATL5uRgb/l7x0vDkuauqmLRUifLr2vlhV8enr7OLbm6mcpmH4mpDMW8wf7nR7j8D+cQ8ujo8TxoChgWuQNRcgeihO7owjGQIlzjJDqRI5cu4qtwYpPvOuIcyKWLJKdyLLi04bhtlmUx/rnPgqJQ9dGPnHKbk9lJto1v44OLPjhzQ3oKUmNQPW+6SNNUll7TwpP/d4AJxwIIBJhwVHBJjfek7c+vmM+TA09iWRaK8gr3v3YP3PQF+OGd8L3bYN2fQf0ScIdPWN0TKpenY9HpEJKQhJAIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELMcNZCSIC/AOZbljX5KvapA76jKIoGqMCPLcu6T1GU54EfK4ryXqAfuOPMd/fcOdFTr50unUKFC98bvBRH0+jVLtBUtEoPjV/4PGpV9cu2qdhsaB4PZLNgWaiKgur1ErLFueo9844Gnij4K50MH45hd5Rfet12bkJIsskCDrfOjicGKBVMZq+qxRd2YAHpeJ6DW8ZYfm0r2x/rp3vLOJ3LqgnVeM5J38TJmW3ziH74v3n+l+MsuaaZfDJPdDDOVXe2kh2dwuGx4472kfnG96n+5F8RD7bD831YpsXI4RhLrm5m77PDxCcyuNw67fPC6BYUu2Nk7Sq5g1H0oIP4g324FlaS2TIGFii6Wo4tMiwy28cJXN9GYSCJ6rfjnOWh0LeT0U9/GsfnvoFZsmb0uZAtkctZaC4X3jVrUW02cpkiNofO6je2c9HljQzsi9C9ZZyqlnKwz55nhlh1Szu7nhji8NYJWi+q4OaPLMYTcOAJOE75fGmhELzjY+x84AihcQ/Ot3yaAy+M4W6zsfKGFrTKijP58ghA0xW8IQexsQyWBS/e28Old84mE8uj6gqVjV6qW04e4PTbSiWDTKyA7tBw+2Y+Sd0qeEg/fehY3UMxQlVupqpcWFiYBlzxjrnMu6QBo2Cy4/F+oiMZbvvDObgWVGIVTUpTWWx1HsyCgXL06e+lyUkCb7qd4O23YRWKZL0e6mfZ6dk2wcjhOBUNHuatrac4FYFZoTNz4sTvPdMwySaL5DJFIsNpPE6NsFPD0RHE0R6gNJ7FVuvBLBk4PDYuvbYZe7pIIVUgo6msuqmdfKaEoihc9e55pOMFPEE7qqZQ1xmktj2Aza5hGCbFbGnGsfv3THHxre1se2SAYt5g/hIPoXQf6e99Ad+ai/GsXYupmKjhClSnA9XjwdHcfJ7OlBBlVc0+0vE8pmFxeDDJ7LfOJrcvgmVY2Ju8pDeO4l5STTqW55q7FpCK5HD5bHjDTp7/efeMthRVQdEUsnv3oFdX4Wg/aQajOM8Kh3swkyl8gQ7GfmubL2RHjwzRWNfC1e+dSypeJFDpIlDt4tCmMXY+MUjXylqmBtM89X8HuOY9c1F7YgSuaaU4msYqmtibfJiFEsnH+pn7jnmMVuYZHkii6ipOr+28jFlcWCYGkgBUNfmO25a47z6Sv36Uqo99DFtt7Sm3+cTAE1hYXNl85cwN43vKP2vmzSiec3EdWx46wsb7j1Az/yISdi8XNVWetP35FfP5RfcvGEmPUO+tf+UOzbkebvkyPPiJchAJQNVcuOYfoXP9jKqe4NEQkmgEWsvXZr9Tx6YpTEkIiRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghBHB2Q0gOA5lXrPUSlmXtBJacoHwKuPL4PX43VTR4aZwTYnB/9FhhvoQecpB6fhjVoVOczOBdXY9VMBn/yleo//SnX7Fd14IF5A4cwIjFQNOwhcM4OjvxAN6QiwMvjjDcnSVc60XRFMySSf63Fg6fLTVtfn79zb3MXlmLZlPp3THJmts7KOZKpGN5ll3dwsP/u3s6UGLbI/0U8wbVrX5U9RWefizOCsu02PnEINse6QfgmR914w7Yuf6ttfiUCDQqqC4d+5r1KDddjalolCayVDVPMtGfon9PBCyTG98xh0DQQXbLGIUdBrHNY2g+O1rATnb3FL4rmgBQ3TpGsghAZus4/qtaSD49SHE4TSo3jPu2WXB4EyOf+BLOG28j9t7Pku3O4690kZjMTvfb7tSoXNaJdtmPiRQ0ctsn2PxgH10ra9jw026WXdfKjscGAKhtDzBreQ2Ht46z/df9XPa22fgrXXiDDhzuV78wdGooxa++uAun10a4wcum+/oASExmufdLu7n9L5ZS0xY4nZdF/BbdrrHs2haGD8UwDYupwTRPf/8At3xsCeHaVxdkFBvPsPG+Xro3j+MNO7j0LV00zwujauWwpsLg8R9pxsEo7hYfwwdj7HpyiJs/uhhNU3jwG3soHL2+WgUDxaGR2TGB6tAoTmbxrq7DKhkAaC438V/dg2P2bDBMbMoujgw0YnPaWHZdC/HxLDuf6Oeyhm5Ks8PoIQkiES8vNp5hx6P9+CpcbH+0n0LO4Kab2ihVOtE8NlIvjKA6NEoTGTwX12PmShj3HCaTL89Jh0PDd0kjRafG7qcGSUXyeMMOUpE8ALd+fAk2ezlQLRMvMGtlDUMHY9PHHz4UY8WV1ayv2Y7i9lD42c+J9PZQ86m/w0wmMTMZVK8XikXUYBBnWxuKdnxAmxDnkm7TqGr2k0sV8fgdlCI5FIdKoSdOdtcErvkVoClkkkUUJQMKpGMFendOsuqWDn71+e3Tbc2/pJ5tuzO0dFxMQ+8welUVmu/4AABx/hnJBLFnNzLrnWvp3RvDKJoAONw6LfOCaJEY7vQo3nAY1+IOFF3n4MZRnvnxITqXVaPZFOaurWP3U0M89M293PLOuaSfH8YqmKhODb3KRW5HFKtgYqaKVCkWekeAQKMPRZHvOOLsm+gvh5BUNntnlGf37GHkU3+Pa+lSKt77nlfV5sO9D9Psa6Yr1DVzw/i+8s/qmSEkmq6y4oY2Hv/uPgZ8swBojw4CC07Y/vzK+QDsmdpzaiEkAEveDvNvhf7nYWw3bPse/N+b4S13w5wbpqt5j95Hp2KR6TJFUQi57URSEkIihBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggBZzeE5K+ADYqivAjkf1NoWdafnsVj/k7IJgsEqlzUzwpSzBs4XDqqy0bioT6ccypQnRpmtkRmxwSB6xoJXHUVlmm+YruKquKaO/eE2/LZIslYnkCFi+d+2k0mWaBlQQWLr2w+08M7IX+1i9VvbGffhlFMw2Tx+iYqGrzEJ7MUsiVM05oOIPmNfRtGWPiGRsJ1ry5IQJwZqVieXU8MzijLxAtEcx5qLu4EIJsqMNiTxCyZHNkVYe9zwyy/rpXajiAuTaFNU2DXJMlkgcJQCt+ljRixPO4l1SSfLAeBKEcDHnKHYrjmV5DeOEppMkvq+RE8K2rRW/3kbWBN9TLyZ3+Gc+5c4vVL2HjfJJqeZvWt7RzaNMZ4X5JwnZvl17cSzcBT/7uHJVc38+I9PXStrGX3U0NYFmg2FUUBy4KdTwxS2eRl3Zs7aZ5fQaDKfVrnbGoojVEyaVlQQfeW8RnbLNNi/EhSQkjOgmQkx8qb2ijmDFRNwTTL11leRQhJqWiw8d4eDm0qv27JyRwPfHknb/rkcqpb/ADYao6fH0qNm3zBpFQ0ySQK9O2YxOW3TweQAOhOjfjGUVzzKlDsKkayQHb3JPbmcrvYdPSqKqa++jWsYhHPJetY+ef/wsGtU/TtnKSyyculb2qn+M9fhLfcfBpnSlwISgWDF+/pYfhQjLbFVWSTReq7gth6Yqi19eW5ODeM4tAw0yUyW8fwXd2KdTSABMDKG7gnMxyaUlh5YxvbHx1grDdBsMbNwjc0UCyU70ks02L304PERjNc8Y457HlmGFVTmbW8GnvQAy6Y+trnoVjEs24dpeFhpv7nf8sHUVV8N9xA47/963k4S0KcWKDShXdNPenJDEqmSHEkg2thFQD57hh2m0b7/DCJRIEXfnGYbLJIbUcABbjx/V1MjeUxFY3Rw3EG9kUZ2AeXvrkDsz9K5VyvBOu9zuTGJkkF28jfsZrnf3CI5de3UioYKIpCXWeA6q4KoOa4/cb7k1z17nm8cE8PB14YZfH6Jla/sZ3uzePs3D7Bpbd0Ujocg6JJZts4RjSPvcUPhokRK1DZ4MVV6Trn4xUXpsn+JN6wA5fXPl2W3b2Hgfe/Hy0YpPELn39VQWBj6TE2jm7kg4s+eHyQztgecIXBe/z7ZvaqGrY+fIRfR8shJPUbn4S3XnvCY3SFutBVnT2Te7iq5apT7ht2N3ReWf63/D3wnZvglx+CP94E3moAPMEwAOlodMauYY+dSEZCSIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIQDUs9j214DHgReALS/5d8GbGEiy55lhNt7by47HBnjhVz1YRZPANa0Uh1Kknh2iNJXDd3kTKJDrPozqeu0L1XKpYnkRckeADT/rJpMogAVHdk2xb8MwRumVA05O15GdUzz5vQNomoLdpfP0jw4yuD+KblMpFcwTLsp0uHQ0/WxOUfFyFAXs7hPkFB19qfKZIi/88jCP/M8ehg/G2f30EKZhsfG+Xka6Y3Q1+8i9OIKt1kOhP4miq1iF8iJ3K2+gum0AFMfSOOeEMSI5UBU8K2pRXDqKXSXjtjEczTDx1msobHoexeHAcdmVHO4rz1mjZLLhZ4fxBBxc+tYuOpZWM3Qgxgu/7KGQLVHMG1gWuP12UpFyFtL+50dYfWsHbn95IZ7TY6OhK3TaASQvPTeFbAnHCc6dzXnqC/zEqclnSmx9uJ8XftnDtkf62fRAH1se7GNgb+SVdz6qkCsx0Z+ke/NvBcdYEB1NT//taA9iazr2FHnVayNd7+PpHx3COpqhFBvPoNtnXreskol3bT2FIwlSzw5hpoo4Z4ewiuX3Q3bHTtIvvEj4Pe+h8kMfwn7D7fz6Owc5smsKX4WLsd4kD37jAJ6//iz60ae3C3EyqWie7q3juHw2MvHydS+fLmF6bKSeGyJwdQuF39xrRLL41zeT2TV+XDtqqoivwskLvzyMy2tj2XWtVLf62fDzw6Sj5XbTiQK7nxqmeV4Fz/zoEHaXjqopPPPjQzz2nQN4//B91H7m/6PyQx/C/8Y3MvW/3zh2ANPEf9X6c3JOhHg1NF3FqSvoIQeOzgDpjaOkN47g6Aig+XTcLp0n7t5PNlkEYPRwnI339uKq8JGcyvLiPT0c2T013d7+jeNkLReDeyfP15DECRTzJQ7tSZHxNXB4R4RsssiL9/Sw9eF+tjzYx87fCuJ7qbqOAE//8CCxsQwA2x8dYM+zw6x9Uydz19SzZ+8UtgYvucMxzHQJ57wK3MtryO2PoqgKpXj+pG0LcaZNDKSoavIBYBUKTH372xx5+9tRXS5avvVN9KqqV9Xeg70PYmFxQ/sNx28c3ws188tfJH+LqqksvbaREd1JZTGN/uSvMXO5Ex7DrtnpCnWxe2r3q+rbDA4f3Pp1KGbg8X+YLtbtdhweD+nYzO8KFV47Uyl5bwohhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgCcIGHgjClZlvWxs9j+76yXBm6YhoXdqaHaVNJ7p/CsqAWbgpU3MKI5FK2EXlGB4nC85uOlojl0XSExefwin+6t46x+Yzu+8Nl7GrdpWnRvHcc0LQYPHHvicM+2CWavqsVf5UTTVfyVzhl9XHFjK4EqeUr4+WJZsODSBjbe2ztd5qtw4vSUw0MiI2n2PjtC49wQw92x6TorL2+kpdZF8dDR19q0QCvPadVXDv7I7JjAe3EdiUf7ye6cxDkvTOCGNgqaSiRXIreilmQ8T3E0Q9t8H9a/fI2RkpfQ3XcwNZXHP5IFygvHLNOid8ckLp+dwf1RZq2omZ5HmlYOgxjYH6FtUSXdW8aJj2fZ+tARZq2ooWtlDRUNXuzOM3MpdLp1AlUu+nZOsuKmNp7/+eHpbe6AnZpW/xk5jjhGUSzcATuxsQymaU2XO46G3LwSy7TY99wIkZE0nqCDVHTm4sOXtqOHnajrWyj2JlAsi1jO5MVfHqZUPBak1L64Cn+Vk8pmL5P9KQBUt43M8yOoXhue5loK/UnMTAnl6LyzNzdROHyYqcPl+eL86s9IRkYBSEaOXRMTRSfHP1deiJk0m4rDpRMdydC5rIbeHZNMDaXIratDf6yf5NODeFfXga0O1aUTf6AX77oGclsmZrRjtPgJ1XlIRQvEJ3L07ToWquDylK+tpYKBy2vDtCyKeWNG+E9kJENsMo+3poH4RB5tNE7N33+KzLPPYSkK7hXLifzf93EvXYpeWXluTo4Qp0jzOyj2p0BVCNzQBkBpLAOqii1ZYPaiSg5sPxYqMnI4zlhfkvbldex+bmaojzfoQNFUjJJFZDhBuF7uBV4PYmMZFE1H1VW8wWPfs6yj9xL+CucJ90tMZZkaTJdDHV8iOZlj8EAMRYEtDx3B9ZZOOq9txUwXsXIGub1TmOkiqlvHXinfb8S5UciViI1n6FpWSeznv2DyS1+iODSE57JLqf+nf3pNn7/3997PgooFtPhbZm6wLBjfB4vfdtJ9g1UZxrQizUUwMxnSzz2H78orT1h3fsV8Hup9CMuyUE4QanJKqrpg6Ttgy3fgsr+EQCMA3lAF6Wh0ZlWvgy390RO1IoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIccFRz2LbTyiKcpeiKHWKooR/8+8sHu93hq/CQWWTd/rvYsHExMI1N4yRKlAcSoEFerWL+C9/gh4MYBWLr/l4NqeGiTVjgd1v+Ctd2Bzaa277VJiGSbDGfVx5qNaNpqvUtPrp3T7Bqls6uPi2Dhavb+Ka98+nY+mreyqzOLN0u8rUYJLVb+xgwWUNXPnOuSy9poX4RJbh7hi5dHlOpiJ5AtXl17dzUSWNiRzFJwfRA+X5lt09iXdVXfn3HRMErm1FcWpke+MEbp+Fe30z2qwQcbeNhMdG0aGTyJYItwU4snuK6ITBY7/O4msIs+vpEZ7+wSE8Qft0GAqAw63T0BUkMZklHcsTqC4v7izkSwSqXEwOpPBXuuhcVo2qKdhdOk3zwlS3+M9YAAmU1961L6li0fomigWTq947j8Xrm7j0zi7e+NElhGo9Z+xYoswoWSy6vHFGuJPLZyNc58E0zFfcPzaR5flfHqZ78xgLL2+El6xxrO8KUnn0yfG/kQce/FUv99/Ty3MPH6FUNEEB3aZy6Vu7qOsM4vLYWXp1C+vu6GTRlU1YKHjX1eNoC4Cq4F5ajaM9gOIsX3utUonQnXeCrTyndbcT3Xb8x/OZnKvi95eqwaIrmzBNi9GeOEuubsbh1nn60QHC75qHc14FpakcxkSWyPf3Y2/0YVW68F7fhuqzo/psuK5pIeuzExtNs/Ta5hntdy6vxmUkiY9n+PX/7mbeJfXYHcfPTbtLR1Hgme0O7t9azcN7GxnSO9DnX4R76RLG/+Wz5LZuxSwUjttXiPNNs+toIQda0EFpIkNpPIOtwYuRLmBNZllQ654RlFcOscpRyJa4/A/nsOzaFjRdRdUV6mYFeeK7+0lFcuQyxnkclXipfKaEoqtkU0XqZwVnfB/S7SqzV9dN/20YJmO9cfY+O0xkKIVlWajazFAERSnfj5aKBrpNRdNUjFypHEATy2Nv9OKYHUav8aD5Ty0oTYjTNTmQIhg5iO+/P8LIX/81WjBI0//8D01f/eprCiA5HDvM/sh+bmi/4fiNsX4opKB63kn37zvcS0xTCZp+8PpJPPDgSevOr5hPsphkIDnwqvs5w9qPgGXAxv+ZLvIEQ6RikRnVqv1OxhN5LMv67RaEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEuOGdzRfNvHoH7Vy8ps4D2s3jM3wnpeJH6ziDti6oo5Ep4Qg5KiQJKtoTqs6MF7JglEytbRK+oINd9GN8NJ1joc4oCVW5SsTyugJ26jgAjh+MAqKrCxbd24PTYz9TQTki3abTMr6Bvx+T0U8O9IQdN88qZNMmpPKCQmMhiWuCvcrHrqSGqWvy4vC/TsDirXF478y5p4P7/3sm8S+vZ/dQQY32J8kYFbv7IYmwOjdhYhrlr6nD5bLS3+jGeKi8UU3QFvcpFaSJLMejAf10rZskk51Bx3TaLbNYggkXONElM5dnx2CBLr27m+V8cZuVNbTxx935q2wPkskXmrasnNp6lb+cUAFsePMKiK5tQVAWX10YmUSCTLKCqCt2bx1h9awebH+hjx2ODLL6yEd/RJ853LKtk9RvbsTl13L4zP++rmn3seHyAkUNxbA6NfLbETX+yiKa5kr90thglk9hEhnVvmUVyKoeml8M7Hv76Lm79i2VU/VaIyG8rZIoYRROjCPueG2H1ze2UiibBWjeNXSE8vxXeZHNoLLuuhc33902XLb26mab5Yaqb/QAM7J3ikf/dg25X8YacdNR78KqgeHRsPh2raGGkiugVFoWREVS7g8zmzVS85z0omoYV6WfJNS1suq93+hhz19XhCzvP0FkTv8+yySL9e6a48l1ziQyncfvtrH1TJ1NDaeITWXweHTNTwkwX8V3aiOq1YZomiUonieU1pOMFDjw6SHIqx/IbWhncH2X1Le0UCya6TWWiP8lI1E7AlmNyME2pNMqlb5nFrBU1HNo0Vu6EAsuubSExmZm+buczJZ5+NMn1Ny0i+vF3AhB88x3YqqvP16kS4mXZG/2YRRNFVbCwKI5lsIoGuX0RjEiOBUtree7hIyiqwqIrGkknCrxwTw+arlEqGlz1vnlYhkVkJMP8Sxo4tGkMX7iF7L59uObOPd/Du+DZHAqKAvl0kY339rDqljbcfge5VBF3wE6w+ljIzOC+KPd/aQd2t07XiloyiTyLrmxi2yP903WWXdeCaZjseHSANbd3UlPpInlPN56L69EqnCiailUwUF069saXvzcR4kywTJPIF7/A0h0/RK2ro/bzn8d3zdUoivLKO5/E/T33oyoq17Zde/zG8b3lnzXzT7r/lkMjQBVdlV7Gq5eiPPooRjKJ5jv+PTG/stzOnqk9NPubj9t+yoLNMOsa2PEDuOJvQbPhCYUZ2r93RrVqn4N8ySSRLRFwS1CQEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEubGcthMSyrLaz1fbvulQkx84nBlEU0GwqNodGzcW1OIomeqUTCwVKJpmeKDa/C3tTI4qmvXLDL8MyLYq5EkuvbSGbLGAUTXyVTtyBsxtAAlDIlkhFs6y5vZPERBYUCNV5+M1DhrOpAt1bxuneMn5sJwWMojwt/nxrnBPmTZ9cTmQkze4nhwCoafPTvriKgy+O8oY/mMOWB3rZdF8vb3jbbOoCdmJH900+NYhnVR3uRVUQdJBUFQynxuYHjjDSHUdRYNaKGrpW1TLRn2bW8mr2bRgBwDQs5q2rJ1jtwrRgw0+7WX5963S/inmDzQ/0AbD+3fN45kcH8YacXHx7B6M9CYYORrnm/fPBUnD5bQRr3GiaetbPlyfgYP275jE5kCKfKRGscVHZKEk6Z5OqKWAqPP2Dg2g2FcuwMM3yxSU2nnnFEBILqGjwMjWUIjaW4YV7erA5Nd70l8uPCyABKOQNatsDXPP++WQSBVx+O3anRj5TnK6TS5cAKBVMYmMZcok8+kASR0cQCwsFhczWMWx3djHxX5/Hs2oVgVtuIfbzn2PE43g+s4qqei+XvrWLdDyPy2sjUO2iUDDP3IkTv7ecXhuekIPN9/fRtbKG537WXZ7owKx3zSWzeQznnDCKq3wLmHpuGGttPQf3RCgWTGra/KTjeQD8FS5GD/cxejS87DdaFlYwdCDGsuta2HR/H+NHknStrKG62UcuU8ITdOAJ2hjvSx7Xv2TejjMYJHD77YTufCuKfjbz8IR47VSbiqstQK4nTqE/gaKp5A7FKI1lQFNoX1hBwa6iKpBJ5gnXeVFVhchImnCdB7NkkU0VsEyLQsGgflaQYt4gORnHVhdDDwbP9xAvaO5ijITDzdRQCsuwsAx4+ocH6FhaQzqeJ5ss0LmshnymyHM/O8TSa1so5g0Sk1nmXFzHwP4oq25pxzIsgrVuPEEHkwNJrn7ffHSHhstrIxvPk9k8hntRFZZloWgKWsiBaju973VCvBLLshj9zGfQHvkR4y2XcMk9/4XqPL0wO8uyeKD3AVbXrabSVXl8hdFdgALVJw9Z2jOSBKq4+cZOtu9fSXXPkyTuf4DQW99yXN2OYAdOzcnOiZ1c13bdafWdpe+Agw/CwYdh7o14giHSsUj5fXk0lKXGXz4/48mchJAIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOKCd8ZXfiqK8gnLsv716O93WJb1k5ds+2fLsv76TB/zd43LVw7+sKzyIvVSwURv9pP5+UF4yRrzwE1NjH/+54TffAeKenoBCoqqlBe+x/JYCuh2DUVRsDnO/iK4UtHAKMHmB/poW1SJaVi88IvDrLmtAwCH24bNoVHMHwsdaV1QgWY7+6ER4uWpqkJVs4/YeAYA3a7StqiS539xGIBDm8aZtbKa6985D3P3JPn+OLYGL8WhFFiQfmEErd6D8YYmHvjmXi5+Ywcj3XFQYPWtHRzeOs59X9yBw62z+pZ28ukCsfEMwRo3O58YIBXJkYqVF8PnMyW8IQepaH66fxUNHqIjaa65awGWCb4KB/PX1aHbdBT1tT/l+3R4Ag48gePDK8TZ4fTa8YQcuP12MonCjG0u7ysvIIwMp5m9qobJIQ/9uyN4ww7mXFyHzXHi64/NrjHQHcHm0LA5NTKxAtFMkaYF4ek6dreG3alRyJWvaYmSiXMqR77nyLG+LarEykdJP/Yo3jUXk3jkEZxz56B6vZRMhX3Pj2CWLCobfYz1Jjm4aYy1t3e+llMkLjDeoJMF6xrY8+wwPTsnWHNbJzanhs2uMhErUJkvkfj1sblo7wgQL5nExrOM9SYY70uw4NIGdj4+SKDKSU2bn7HexHR9l8+GJ2ine/M47UuqUFUFT9DBC788TEWjD1/YSd+OCZxeG41zQsf3r62Opl/dg15Zedr3NkKcbYpNQ69wEf3RAcxMabrcvbia3LODdCyqZjxXwrLg4MYxhg5EATiya4qG2SFq2v1YJZO+XVO0XlSJ06MzORXAvWcP3rVrz9ewBGDs24lv4WX4wi5mrajhwMYRll3byvZHBygVDKqafYTrPEz0J2meF+bw1gliY+X74b6dU1x8WweqqjA5liIVz1HV5McTsFPZ4idQ4aKULuBeUk1my/j0NVf12qj+o0Xnc9jiAhH5xjeI/fBHjM69gcyVf3DaASQA2ye2M5Qa4kOLP3TiCkNbobILHCcOALQsi8NplUpviYVLauhevJBMdwPRn/3shCEkNtXGwqqFbB3fetp9Z9bV4K2Frd+FuTfiDYUxikVy6RQub7m/1b7y97exRJ5ZNS8fYiiEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPH77mw8fv6twL8e/f2vgJ+8ZNu1wAUdQmJZFoVcicbZIQaPLlTUbSp2XcF5XRv57hhm3sDZFUJRLQJXrccyTFS3+7SPq6gKNreOooCqKaiagsN1NqbATLpd5dDmMWJjGbY90j9dHhlN0w7ks0VW3dJO745J4uMZmuaG8QQdWMbJ2xTnVqjWjaopNM+v4NCmselyo2TSs22SxU0+ss8OgQK+NzRhb/RSGEph1nkxm3089sMDzF1TR/pooEjzvDB9OycZ70ui6goXXdFEbDyLw23j6vfOxzQsxvuS1M8K4jz6JOq9zw6z6pZ2hg/FmOhP0DwvzPzLGvEEHHiDEvpxoSpkSuTSBZbf0MozPzyIZZXLO5ZWUdHgfcX9/ZUuxhIFFAUWvKEBX8jJ/o0jzLm49oT1TcOiqsVLcipPKprH7bNT3eqfcb0q5g1W3tRO365JoqMZKmrceLw2ShNZiuMZHC1+FJeOomiY6Qyl8Qmc8+ejV1aAYWKGKujd1geUF7JPt1swEeJU1M0KYlOKZONelEIaddeLZOvnYvfW4F5cTSmaoziSxt7oQ/PaUCtd00EjqWiecL2HK985F8OwaFlQgb/SxfChKBUNXprmhikVTEK1bor5Eg6PTqlgMjWUZmooPd0HRVWYf0k9qq5glspvzMa5IarbAtiCp78YWohzxVbpovJ9C0m/OEJhKIWjPYCZKVHYH0U5ksR+RRO+Cud0AMlvDB2IUj8riK/ajebQsNvLgXvjI0UaG3Pkenpwtrefp1Fd2CzTRHE4yOzZR/P82YwfSeD02tl0fy+LrmymkC2RSRTIJArsfnqYiy5vJDY2OKONF37Zw6qb2vD47TQvqMDptVFRf+y+oziQRNFVvJc0kO+NY6t04VxQiV7hOtfDFReYzLZtjP/n5/FefQ37CtexvMV/Rtq9v+d+nJqTK5uvPH6jZcHwVui44qT7JybGGdErWBjWURSFlbd0sOWp1bh3/YzcgYM4Z3cdt8/S6qX8z67/IV1M47F5XnvnNR0W3wnP/Rckx/AEyyFp6WhkOoSkxl++NxlP5l77cYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIX5PnI1H0Csn+f1Ef19wFEWhkCkRqHHxhj+YzSVvmcUb/nAOhf0R4vf3YmZKKJpC4rF+0lsi6A3N6BVhFP21h4WUigZGyURRymEkplF+IRQFHG77mRvcSSmYhnV8sVWeDg6nzu6nh8CyaJwTYrg7hqKCpl/w0+V1I1Tl4Pp3d+ALOY57LWtafBj7jgYlWJB8YoDc/gj22SG2jmVJGhYXv7GTI7un0B0aAFXNfka64wAsvrKZvc8OseOxAQLVbjb8rHv6SfMj3TFaL6pEURWMksmGn3VTyJe48cMXcdnb51DT4pcAkguc3aURHckwsD/CVe+dz7o3d3LxrR3MXVuHy/vK17foaJoX7unhwAtjbL6/j4339XDxLR04XLYT1rdMi1yyiNNnI1Trxum1kUsXMY1jASG6TePAi6OYpkXT3BBWvEDi4SMUjiRQXTqZ7RMkH+0Hmw//LbcQvftu7C3N5A8eIrN1KxTyJzy2qsk1UZwaTVepqHOifu0fyLz/NlL/9TnMT91Fnd8i8cgR8t0xVJdOds8UiUf7Sb8kPAQgkyjw2Hf2oSrlUJKpoRRNc8MUcga9Oyex2VVsTp2atgBv+uRynN7j71Esy8LhsXHHJ1dwzfvmc9OfLmL9u+bhlQAS8TvIXu/FvaIG1aWT3jRGZnM5kM3KlqgOO9H0k3ylsiwSE1mSkzmGDsUo5k2q2vwYqSSl0dFzOALxUqVEAgwTd8DBI9/YQ6jOjc2hMf+ShmP3pFUu4hPZ8j3pCT5+LcsiUONm/mX1NHSFZgSQAOS7Y6RfHCWzZQzVpVMYSpF45AhGrnSORikuRFahwOinPoVeU432/k9goVDV7DvtdotmkYf7HuYNTW84cRhIYhhSY1C/5KRt7N7XTVL3saKtAoDG2SGUdVdjaHYmv/GtE+6ztHoppmWyY2LHaY+BRW8Dy4BdP8YTCgOQjh4Lj6r2l79TjiVOfB8uhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQghxIXntyRYnZ53k9xP9fUFqmB3i6R8eZM/TwwA0zQ1x6UUV5IHCQHK6nl5pwzKKqK7TWziUTRWwShb5XAmscvhIqQiazURVX3lRu2UY5A8eJN/TgxYK45w3Fz0YPOXj2506S69p4dff2DNdpqoKTXPLTyC2LGi7qBJVU8lnisxdU4eigP1oYIU4//I9PRSGE6CGuOiKRp76/kEA2ueFWbisCn00TaH/2Nw14gUsCzqWVhEdSdO9ZYLEZJaRQzEuuqKRbLKAr8JJciqHZlNJxwrUzwrSvydCKprHssDu1CjkDHY8PsDqW9rJZ4t4Ak7qu4JUNnhP1tVzrhSPYxYKmJEIhSNH0Px+HLNno4dC57trFwRVU+laVcvj393HI9vK15iWBRU0zw+/4r7xI+O8+KueGWXpWIF0rPCyx1MUhf5dU1gWoFg0zg7PCE3SbSr1XUFsdo1cuogr7CQHlKZylKbKT1dXHBqa2071Rz9CcsF8Us8+h2fFChS3i8TPvkPr/DfTtyc23Wao1k249jSeAC8uOHogQO1n/j9STz9D+vnn8ay5GL06CAxiRPMY0aOLbDWFVKqIy2fj4ssbCTk1sKtYVzSiOzR0u0rnsmrS8QJNc0LksyU0m0Z1i5fqFh+6TUNRFHxhB8nIsYW7s1fWEKh0ods1KhtfP9dsIV4rxaaRPxwH8yVfZxSw2TSq/DZq2vyM9SamN1U1+0hGcvgrXBx4YZRVN7ezb8MIq25pJeVaiD9yiPzQEPaamtMKGxSvnpnLga5jH+tl3XUL+PU393HlO+YQGTFJx8r3qJlEAYdbx+m1ER/P4g05SEWPXeO6VtQQqHLir3Cf8Bh6hat8rEyJ/KEYAK5FVagnC6wR4gyIfP/75A910/iVL9M7aQDl8MfTtWFoA7F8jBvbbzxxheGt5Z/1S0/exv5hwM3li9qny1a8eRG7Hr0Y9f77KH7sI9hqa2fss6h6EaqisnVsK2vq15zeIKq6oGE5bP8+nltuBSAdi0xvdtt1fA6d8WTu9I4jhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgjxe+BsrHhbpChKgvIzo11Hf+fo386zcLzfKaZpsfvpIUK1bloXlp8CHB3NoDX40IIOjFh5cZvi0nEvriK35wDopxfGUcwbaLqKWbIo58AogIp2iu2mnniCwY/+GZTKT+72XX89tX/3t68qZKF1QQXXfmAhu54cxOW1sfDyRqpb/BiGSWwsjSfgoHvrGPmMQUNXEE1XyecNHLJu+XUhntb59UNpmuc7MAoGq25uJ5/IM0uDwr092K5rRXXrmJnyHFH9dko1Hh77yi6WXddKYjILQP/eCImpHJ3Lq1lzWwe//ubecgoNEK73cGjTGAC7nhxk5U3t9O6YIDqWIR3Ps/DyRoJVJ17oea6YhQJmsUixt5fS5BRmLsvUN75J8OabGPvXf4NiEQDfdddR+7d/i17xykEY4vSUigbbH+2noSvErOU1qKrCWF+Csb4klY0nD3DK7tlD/OktGMXm47YZuZM/AV3VFHSHRl1nEMsEBQvdrsJLAp1SsTy+sJO+nROk4wUaW7wEl1ST3TY+XSdwbevRBcoubLNmEWpoIN/bizk5hX/5IlbNC1DXGaRnZ4TGOSFmr6zFE3S8tpMkLlj2xkbCb7uT8NvuBKCQLuBaV0/22eHpOs43NJELO7nlbbPJ/fwQpaIJQFOjF61g4vTYiAynmRpK4Qs7aZofJhXN07HQj27TKAwMoAwOsv4aD92HbIxPqbQ2GLR0GmAUsUqWBCyI3wu2SheB61qJ3987XeZZWUv8kT5Ur40r3zyLg7umGNgXoarZR7DGBShsebAPgFLRpJgvkY0XUZ1+LH8YY2qKxLZt+K6/HlWVcIpzIXf4MKlnn8Pe2ADFPFXOBMuva8Hh0XG4yteqUK2bif4ksbEMK29uY3BflIuuaCQ+nmVyMEXbokrqOgKE60/8RcUyLbSAA63CifGS8DHv2noUCSERZ4mRSjP1ta/jWbMG3+WXM/Gdvbj8djxB+2m3fX/P/QQdQdY0nCQIZHgbqDrULjxpG9tHMtgtGwtaKqfL6joC7L7mDvjWM4x+9Zs0ffqvZ+zjsXmYHZrNtvFtpz0GABa/De7/GL7CAACpaGTG5iq/g/HEyb8HCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCXCjO+KpQy7Jec2KGoihNwHeBWsAEvm5Z1hcURQkDPwJagT7gzZZlRU+/t+eeUTKZGkoxOZCaLvOGHORqXbgWVqI6tHImg2mROxxDq6gA2+ktHDINC9OycLh1CrkSmqZic2mgWK+4b2F4mNF//KfpABKA5AMPELjxRnxXXH7KfbC7dDqWVNF2UQWKoqAcXbBfTJdw+x08cfd+muaHCVZ76Ns5SU2bH3fg9BdMiTMjkdGwTAuHS6d/b5R0LM+bPzCfzP/tL29/rB/vmgbQFQy3jZFEgaHN5cAFo2jgcOvkjwaUxMYybL6/j9s/Np87/nIpmWQJm0NjaihFTZuf/j0RCtkSz/70EA1dIa5+3wLqOgKoLwl5OFcswyDf24sRiWKmU8R/dS/OBfOZ+H//TtWf/RkT//mfBG69lci3vzMdQAKQfPBBgm+6He/atee8zxeaUtEkMpQmPjE5o7yy8eQJRlaxyNQ3vklhz14WvPUzbH8xOb3N5tBwT/ZgpEJo3uPbsEwT3a5gGhrFvIHu0LA5dDCPXU8dbhuPfWcfjV0hatsC6HkTK1PEf1ULlmGi6CrprWM4u0LoFS5UTaOYzaIHg1heL4rHgz01ysI1C1h0dSuaJguWxelLx/KggjE7jKfJD+kilkcn59AJOjWMh/qwjgaQABiDKTzJPLueGsTts1PbHiA2nmHDT7u56SOLKQwMUFIUBt73PkJvvZP4f/0X9U1NNDc1U/jFHqbyedQ//mOyO3cQfte7cC9Zch5HL8TpUzQVz8pabA1eCr1xUBTy3TGKg+V7es+qWpoXhGi9KMzI4QRHdkcY3Bf5TdYaul1l1vIa9j43TNfKWopVLdCznYnP/St6XR2eZcvO4+guDGapRHbLVib+/d9p/t//wUylKeouBvZF8Iad+Cqd2BwakeE0LQsqmOhP8txPuqnrDBIdydCysILWiyoBC1VXTvr5XJrMMvXDfXhX1KG69Ok5oGjn/l5WXDiid38XIxql6qMfAWCiP0lVkw9FOb15ly6meWLgCW7pvAWbajtxpcHNUD0PbCfPnD2YsdHuzKH/1vtm9fvWsuXB5Vg//THFD74HW23tjO3Lapbx04M/pWgUsWknOf6pWnAbPPRX2Pb9HJvDSTo287+UanxOxhK50zuGEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHE74HX28rmEvBxy7LmAquBDyuKMg/4JPCYZVmzgMeO/v07yWbXmL1q5sIaT9CBNZEh9cwQiUf7ST7WT/KJAUojebRQCL2y4rSO6XTrGEULs2Sh2zQ0m4JRME5pQVJpZITS6Ojx5WPHl50KVVOnA0gAivkSDo/O7ItrObJriv3Pj6DZVBZc2oCuv+Y8G3GGOYMeAAb2RZi/rpZb3zEHW/pY6IZVMEk+OUDy0X7GIzk2PjGI3Vl+/Q5uHGPJ1c28dLotu7aFcHMFlc0BmudXcMtHF+MNOWhfVIW/0jVdr6LBQ7jWfc4DSPI9PSQee4zYL35J3623kdu1k8EPfRhbXS1TX/kqqtuFMTUFloVeXU1xaOi4NoypqXPa5wuV021j9ura48rrOgMn3cdIpcjv30/xSB/1vY9y8aUeKpu8dC4KcvV6G9l/+eQJX1MAm1OjmDNBsdDtKoqiUMgVy0EkR2k2hRU3tDLcHWPfhhGUvEHuQJTEr4+QfHyAxCNHKA6kMHMGAIrbXQ48UTUUmx3VbkdxubAFAhJAIk5bPlOkZ/MYka3jpJ8axD6ZxXCoTDk1IiWLVLKAYpqUJrLH7Wsmi7zhztkkI3n2bRhhvC/JujfPAkyi3/wWqSefojQ+gVkoAFAcGCC74TmMWAwrm8VIJkk+/Aj9734Puf37z/HIhTjzVIeOHnKSeLSfxCNHyPfEp7cZU3mCuoZRtAjVeoiOpLEsUBRYcGkDHr8dp8dGbDxLNllkcsIgNRynNDGBMT5Bett2zOzx70NxZhipFLl9+ygODkKhQCmRRAv4sWcjLL+ulWQkx6FNY6x/91wqm3wEql1Ut/oAGOmOkU0V0HQFyzTRdA1PwHHyY8XzULBIPTd87LvdY/2Y6dJJ9xHidBipFFPf/BbeK6/EddFFFHIlIsPp6Tl8Oh7vf5yckeOG9htOXKFUgIGN0LLmpG2MT8WZUANcVHV8yKgv7CTw/g9hGQY9f/1Px21fUr2EnJFjb2Tvax7DNFcI5twAu36CL+QnHY3M2FzjdzAqISRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDor1zl3LEsawQYOfp7UlGUfUADcAvwhqPVvgM8CfzleejiGeEJ2plzcR0HN42i6SoNXUFctW4KB2Mz6rnmVaCHTBzNTad1PG/IRXQsSz5dpJAroekq7oCdYI37Ffe1NA3X0qVkt249Vqgo6LXHL/p/LSzTopgtEa73cN0HF2IaJsWiiVEyz0j74syoag3QtqiSQJWLrkYfsf/bh3lFM+gqvOS10ipdxDMlMvECvgoXNqdGJlFg34YRVtzUhi/sJFjlJlTvwe48dvmpaQtw5bt8mCWL1kWVJCay6A6NYLVrRrjD2VKKRDBiMTJbtqC6XIx+5h8I3flWIt/5LnptLbn9B8CyUOwOzFQKbDYUZ/lJ37ldO3GvWknmxY0z2rS1tJz1fouyUK2brpU1dG8eR3doLLi0AZvj5CFGFuBZs4ZCTw+5H38XT+AeVi1fhX/2pYz95adQbDYUx4kXFwerPKQiBVKxHMWcgc2h4QnNvJ6qmoplWKx/9zyKeYNQjYv4M4NgWNN19CoXqr+8ENM9fz7ZgwfLc8o0UT0eXAsXnpmTIy54430JXFNZjCcGKAAFQKtxEby+nbHxLDanhuqy41pUSXrDyIx9tWo30YEkV75zDqWCic2hMdYXp6Lejeb3kd21CwBFUVCcTqzcsYW7en09RjQKgJXLkd2zB+ecOedq2EKcNarXhnNBJbldkzPKraJB5H93EXjnPEZzRdbe0VkO31PAKJpMDabZ8fgAy29oxTRMoqN5jLaLCX3y05iFPIyNkZqcwLV8ObZQ6DyN7vdTcXKSzOYtKDYdva78HWb4j/+Y2s99FmPBxUz0pFCA2rYAz/zoEEuva0XXFRZf1YzdqWEaFqWiRWwsi9Njw+G24Qu7TnisUjRHvjeOFrBjxAvT5YpDQws7z8VwxQUo/vNfYCaTVH7gLqD82W9ZUNt+8lC+U3Vfz300eBtYXLX4xBWGt0IpCy1rT9rGo5sPAHDxrJoTbr/ozSt45pc3UrPhl4z+6B5q33LL9LYVtStQUHhx5EUWVS16zeMAeHrwaTYUBvhkNspA+wv0FIrc+JLtDSEX9+0cwTAttHMcgimEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPF68roKIXkpRVFagSXAi0DN0YASLMsaURSl+nz27XTk0kVe/FUvmq6y+MpmTNMkMpTGDDrwrKglvXUMAPfSarBrOJobzshx6zuCRDxpMokCNodKsNqD23f8k4iPoyiE3/UupgoFcrt3owWDVHzgA6jh8Bnpl2FYGIaFw6Uz0h1Ds6lUNHixFFn083ri8tpZe2UT5kia9JMDYEF64yiBa1tJPTuEEcuj1bopLK3BZVpUNnrZ+vARVt/SjnU0d6GuI0BVsw/lJK+tpqloGuVQh5d5uvyZYBkGhSNHMFIpsps2UxwZIbttG2Y2i3PuHMxEAhQVK5fDKhRQjwaOlEZGsLe3U+jpAUCvrSW94XmqPvYxzFye3I4dqIEAtX/7tzjnzj2rYxBluUyRF+7pwebQWHJ1M6WiyYEXR1BUqJ914kXcqsOBc8F8fOvXk3zsMaxcDmd9NenHHgXTpPKDH8Te3HzCfTWbSl1HgOioTi5TxOGyEapzo9uOhZ6YhklFk5fYaIZMokitTz/6XhnGiOex1XtwL63BypXg6HXY1dV15k+OEEAxXkB7cWa4iDGWxTuWoaFoYmv346nzUFzbgJkqkt01ieLQCFzbRs5jI1DpIjmVIz6RxRN0UNXkxywaOGtqUZ1OUkDspz+l6qMfIfKtb1MaG8Pe1kbozrcy/h//OX1MRVHP8ciFODtUm0bg6hasgkH+QBTVreNd20B25yRWwaS0L0L9yjoikRymaWF36gx3xyjkS6y4sRVQ6N87RePsELGJHFbrGuzGEbTxAUqTU1i5PM7Fi3A0nV4IoSjLDwyS3baVwsAA9sZGVL+firvuIvp/3yO1v5d4aBm5VIGp4TR1nQEuuqKJxHgGh1unsslHuN6LqirExtLYnR7cfhvheu9Jj1cYSJJ6Zgj/ta2kXxylNJ5BCzsJ3dqJrfLEwSVCnA7LMIh873u4Fi/GddFFAIz2xAGobfOfVtuT2UleGHmB9y5470m/w9H3bPnny4SQPHlgHJtZ5LKls064XdNVFn/hkxy4dSfGP3waV0sDgdXLAQg5Q8ytmMtzQ89x10V3vaZxWJbF13d+nf/e/t+0+1qIeMLcmYpwW8M2mnZ+fbrdxpCbkmkxmsjREJT3qxBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghLlyvyxASRVG8wM+Aj1qWlTjpgpfj97sLuAug+SQLyM833aYSqHLRvydCZDgNQMv8MPn9EcxsCd8l5dCR7L4IlmnhXV57Ro6r2VSqmnyvfsdiEVSV8HvfU/7d4UB1ulC0MzN1TMOikDWIjWdweW2UDIvkVI5QvfuMtP+74vU+d9MDCdI/OoBjVhAzWwLATBZIPHIE9+IqbG1+BhNFnvpJN6qqcOmdXVQ2+fAEHTg9tvPcezALBcxcjuLgIMWRUQpH+oh+9278N9xA5BvfoPKPP0xuzx7cq1ZRHD66WN8ooXrc5QX1LS0oDgeJBx6g6uMfJ/6LXxD55jep+KM/Qq+oANOk9u//HkXXUL1e7PX153fA59j5nL8vvaZODqSmy31h5wnrm7kchaEhVJ8PW1srFR/8APbmZixdR6+sxLV4MZ7LLkNRTx6YYHfp1LSd/MnylmGRiRbIpoq4fHbUvEni0X7ci6pQPTZKk1niD/RiP82FoeL0vd6vvWeC261TyhnHlZt5g9Rj/Tj6EzjvnIOtwkXoji78V7Wg6Cp6yEmqN042WSQ2nsXtd5COF9AdGuFqJ5Nf/Sq+q68i8MZbiN93P1Nf/RpVH/8YelUVRjLJ6N/8LVahAIBWUYFjzuxzPfTfaxfC3H09s1W5Cd85h8zWMYypHKnnhzFTRQBK0Ty2wSSNS2um65umSXQ0Q3QkQ//eKTqXVtO7Y5LWiyoZ7Ung7KwjlDlAaWgQBQvLNDDzeVydnedriGfVuZq/ud5ecjt2UOwfoDQ6iub3o7jd2FpaqP2HfyTWsJjBFycxShZNc8N0bx6jutWPL+wk3OBhw8+6Wf+ueVQ2+k4pIM8yLYxkAatoEn+gF9eCSlzzKzBSBXQJIBFnSeqppyj291P9Zx+dLhvtSRCu9+Bwn973sId6H8K0TG5ov+Hklbofg5qF4Kk44WbLstg0VqKlOEqoquqkzQTrAlT/638Q+chdDLzvfaQ//KfUvutOVJeLNfVr+PbubzGx9XnUg/0ktu/DGBnCEfThmjcH/3XXnjRAEOCHB37If2//b25qv4lPr/k09h0/IvyrP+bNwypfVL5IR7CDK5uvpDFUfp8ORjISQiKEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiAva6y6ERFEUG+UAkv+zLOvnR4vHFEWpsyxrRFGUOmD8RPtalvV14OsAy5cvt85Jh18l3a6x4NIGhg7EMEomAP6QA2eTl8SDfSTHM9N1fZc2nq9uTjMLRaxCAatYwCqVUBQFS7eBdvIF+q+GZVloNpV0PI/DbcMoGOQME007+RPGfx+93uduaTyLmS6SPxTDvayG1NODAFgFg/SmUUp+B7u3jnPdHy0kUOXCX+FCUU8tPOhsyff1URwfh0KR6A9+gGfNGsb++Z+p+tM/YeI/P4//hutJPvpoubJVPuW53bsI/cEfkN22jdgvfknlhz7E5Fe+ytS3v03VRz+CEYlQmpyk9h//AdXhQAsGsVVXn8dRvj6cz/mr2zQWXtbI0MEYRrF8TfWFnYTrT3wNSTzwAGaphJlM4uj4zeJuCzOVJvqTn1L14Q/jbG8/rT4pmko2XcQomRglE9Wto2gK6Y2j03XsbQEU/cxcR8Vr93q/9p4JjhoXyoJKijsnjhXq6vQ1On8gSmkyi9boQ7VpqFXHQsBUtfw5XciVyp/RRZNitoQCmKkU8Z//AsecOVS89704Zncx9Y1vYiaTVLz//VT+yZ+QP7AfraIS79o12OrqzvHIf79dCHP39U5z6mheO/Ff9cwotzf5iN/Xg7MziOYvB1e4vHayniJuv52muWH2PDtM4+wQE0eShOs97N0S47J5TSQffAirZICiAgpWLo97wfzzMLqz61zM3+z+/RR6eigODlGamiS7fTvOhQswk0k0lwvFFeLIvgSmYdHQFWT3U0PUtPqxOXQ0m8qep4aYs6qOe7+4g1s+uoRwnecVj2nE81h5A3QFShbZHeXrrmd17fRcEOJMi3z3bvS6OnxXXQWUw3BGe+J0LDl54Mepur/nfuaE59AR7DhxhUwEBl6ASz5+0jYOjaeIGjau8Bd5pXDZtktnwxe+xshf/Q3aF/6N2Je+AOEq6sNxSrcaPPSp97K828JQ7WRdlWhGHtfDDzLxn/9J8I43Uf0Xf4Hmnxnyt2l0E5/b+Dne0PgG/nHdP6IqKlz0FvIPfoq7EpPsnreazzz/GZbXLKcxVL4HGoxmWfXqTpUQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcTvlddVCIlSXpXyDWCfZVn/8ZJNvwLeCXz26M97zkP3zohsqsCmB3pZfn1reXG6quD12yjFcviubC4vVtMU3IursY6GlJxPCmDmcxjRKIqigqah6DYU2+k9Vfk3bHYNy7LwV7pQFHC4yov1dbt2RtoXZ8ZvFqub6SJGLI/30kayuydRXDrOdQ3EdIW1t3VS0eTF7jj3lxUjk8GIxzEmJshs3IheU8Popz9NxV13MfnfX8J37bVEv3c3GAZmNlfeJ5lCCwYpHjmCkUyh19VRGhmhODRE6G1vI/aLXxD90Y+p++y/oPl82OrqXvYJ2+L8KORKbH+sn2XXtmCZFoqiUCwYjByOUdcRmFl3YICxf/pnwu97H/aWZtLPPkfuwAF869ejV1dT9w+fwbNqFYp6euEguq6g6Qourx3LgkK6hO+KZnIHIpTGMjg6gmghB+c3pkdcKEK1XuJr6tD8Noq7JtHCTlwLKkk+MTBd52SLgu1OHUVV8IacALj9dlRdQberVH/iE0x+6UsUjhwB0yD11FPk9+wBYPLLX6bqox9FcbkwpibJHeoGux3v6tVnf8BCnEOOWUGCt3SQem746P17Fbl9EVAVeMn7yl/lYmDfFNVtfsZ7E8y/pIGBfRFsDo1MooDPr5J59ln8N1xPducucgcOYJkGlmmCUcK9aNF5HOXvnuyBAxR6ein095PrPgSGSfDNbybx0MM4u2ahNLfgrKlFnVSo7Qiw59khGrpCuHx2vGEHnqCd6hY/u58ZIhMvMDmYOqUQEoDU5lEC17WR3TmJEcvjnBvGOb8CRZNPfXHm5Q4cIPPCC1R9/GMoevk7WHQsQz5Tova37oNfrSOJI+ye2s3Hl508YITuR8Eyoevak1Z5cOcwAJe0BU/puG2XziH8y7vZ+dX7yT33NLZ0FF+yBXtpC8+9YSFdt36I8EWdeOwaQ4di7HhkN82DT8DPfkFm8xaavvbV6e9syUKSv3rmr2jyNfEvl/xLOYAEQLczOff9NOz8HJ8z6rklf5iv7vgqH1365ygKDEQzL9NDIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKI33+vqxASYC3wh8AuRVG2Hy37a8rhIz9WFOW9QD9wx/np3pmRS5V48SVPTVd1hTvfPY/UvYdxzg6DYZF8eoDK9y48j70sswwDVBV7QyOlqUlUtxvV60Gx289I+/5KF5qmoChgWaCqCrlUkVCt+4y0L06PZZrkDx5E8/pQ/XbMRIHszglUjw3fda1ENYXNG0ZomhNi0ZWn/7TtV8NIJin09WHl80x8+St4Vq9i8qtfI3DDDUR/8APMbA4zm8MqFtGrqykOlRfAqc7yk+jTGzZQ/ed/Tm7XLmI/+AGVf/LH5Lu7ye8/QOCON9H6wx+i+f3Y6mpfVb9Kk5PkDhzATCSwt7XhmDULRZNQnbMpnymx8d7eGWWr39g+42+zUKA4MoqZTpN8+CEqP/pn+NZfiXPhQhSbjl4RxiqVTjuABCBY6+HQ5jFcPgeWYZECihtH0Nw2HLOCFAZSOBwaeoXrtI8lxImMH0mwf8MIsYksc9fUEax289ALY6xe30QokiV+Xw9Y5brOiyrRK088F/1Vbsy9kaOBOeWQn0yiQLDBj+3223B0zaI4MIhZKmFrbcNMpSmNjOBZt5b0M0+TuO9+tHCYmr/5G4xI5FwNX4hzRnPZcHQGyA+lIG+QfHwAq2gSvLUTzTfzXrl35xTP/uQwV71nHrHxDM1zw4wfSXBo8xg3/kEjHFEoDo+gh0O4li3HTMSx0ilKU1Nk9u7FPW/eeRrl75b88DCFw4dRdBua14t3zVoUm43cvr04OtpxzJ6DY+4cXPPmMtub5Ff/tZ2OpdW4vDY0m4pu17j/v3fNbDNTJBXNTQcynYwWdOBbVUf8vh4cnUEcHQEKgwm8lzSczSGLC1jku99FcToJ3XHsv0dGumMA1LafXgjJ/T33o6BwXdt1J6+066fgq4f6pSetcs/Wfupzw8ydPeeUjx2ocnPJ392BYdxONlFAt2tcuvETbJ/YzvI3XYymlr9btS2qYv66eu79Yg1T1Rdx0b7/5ci73kXr976Hrb6ez238HJPZSe6+7m68du+MY6gLb+PAs9+ga9f/8bGlN/OFAz/infPfSY3PyWA0e8p9FUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE+H30ugohsSzrWeBkj4m+8lz25Wxxee0suqKJZ39yaLpMVRUKYScVb59LZts4qtdG5XsWYG/wvkxLZ19hbAwsE9VmY+jP/xyKRQDca9ZQ+6m/OyPHUBSFWStqGO9PEh/L4vbbqWrx4fKemZATcXoyL75I/10fwPXhv8Rx9Xqc42nMySxaR5B9fUk2PTqAZlNZeWPbWe2HEY9T6O/HMk0yGzeBrpN55hn0ujqyW7ZQikZxdHRgZTJoFRXTgSOKrh0dxwt4L38DyYcfIf3iRgK33078Zz8j+v3vU/3xj2FZFno4jO+aa9CrqtDcry0Epzgxwcjf/h3pp54qF+g6TV/9Kt51a8/EaRAnYHfqXHR5I49/d/90maorVLf6p/82kkki3/sehe5uHHPnkt+3D0yD4U/8JWYqVW6nrY3qv/nrM9Int8/O8uvaGO9Pkk0UsIcchN8+l/yBKIUjCXyXNeLoDKLopx94IsRvmxpK8cv/2EYxbwAwsDfC1e+dR+PcMI/88BBrr2mmek092mQW19ww7jlhVMeJg5JUVWHu6rryZ/REFm/QQVWzD5uZZ+KL/030e9+brlv5xx9GraoidPPNGKMjWKUSFR/4AM758xj/z8/T+B//fk7GL8S5Zqvy4FtbT3bXJE7CuBZX4Wibufhf01QWXdHE4L4oT9y9n8Xrm0BRaJofZvmNbfhLE+SXL6PYdwR7ZweR736H3PYdACh2O/X/8e9kTBP3ggXnY4i/M8x8nmJvL6rTyfBffhIzmQTA1tZK1Z/+KVaxiKNrNq45swGoavZx68eWMjmYxLKgqsnH4IGZgUkOt042UWDrw/2sfVMn2st8diuKgnt5LVrISXbXJFrYie/SRmwSOibOglIkQuLe+wjcditaMDhdPrAvgifoIFjz2kM9Lcvi/p77WVG7ghpPzYkrpcah+1FY+6dwkhC/g2NJeqIFLkt1U912w6vuh6ap0+E/17Rdw6P9j7J1fCsraldM1wnVenjjny3hx/9S4sC6jzPn6X9j4MN/TN+/fYB7Dt/DXRfdxcKq48NdA9W1/GS4i+aaAf5w96M8UhXgqzu+SmPoagajmVfdVyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiN8nr6sQkgtBOpZn6FCUVTe3M9wdw+W1UdnoJRHNUb20Bues0Pnu4rTi6Ciqx8v4v/zLdAAJQGbDBgq9vThaW8/IcWwOnYZZIRpeR2MXUIrFGP3Hf4JikUywmfv/dw9uv52WiyoIpoqMDaeZv66eOWvrqG7xv3KDr1JxdJTszl0ousbUN76JvamR3IGDFIeHCd52K+kNG6j8oz8i3teHVlGBVSiU+z0ygr2tlUJvH1axhF5VRW73HryXXIp1+eWknnoKz6WX0viVL6PoOrampjM2l3P79h0LIAEolRj9h3+g9Qc/QA/L/D4bCrkSgwejrH5jB8OHothdOjUtfiLDaZrmhIHy6zL5hf8CTaP64x8jv+gi4j/+yXQACUCht5fC4cOwbt0Z6Zcn6KAt6JhR5qjxnJG2hXg5E/3J6QCS33j2p9288c+WUN3i4/Dmccx5YTpv6sBf+coL4+0uncbZIRpnH7uGZbbtmRFAAvz/7N13lCRXef7x51ZV556enHdnkzYn5YiEhCQQQuSMCQKBEDbZ2CQHjI3BYDAG+4cRGWGSTBZIQkigiNIqrbQKm2c2TI49nbvv749Zze5odhV3unpmvp9z+uz2W1VdT83c7qqec+5bGvzOd1T7xjdp4L/+S80f/5jkuiqNjKj/O99V88c+ptCKFUfnAIEKFGyNK9j65M0D47Uhnf6qZdq7dVgD+8bVuqxa913XpRe8JabIqmUykmwur9Lo2GQDEkmyuZz6v/Y1NfzlXyrteYqsWjXDRzN7ZR7bqsLwiJK///1kAxJJyu/cpfy+fYqdeaYiT/gsqmuLqa7t4Pk5kgjKC7raeneP4jUh1bbEdPfVu1TIlbT+7HbVtjz5udyNBRTd0Kjohsaje3DAEwz/5CeyuZzq3vKWyVqpZLXnkSEtObZRxhypt+tTe7D/QXWOdeqd69955JXu+b5ki9LGNx5xlZ/e1SVXVqtL+1XT1PKs80jSWe1nKeyGde2ua6c0IZGkRENE571tjX77/wpqefmHZH72z/rUjZ/UysaVumzDZYd9vUiiWjYY1X2Nb9Npo9/XN3t79Tb9VPVVL9SDe9LPKSsAAAAAAAAAAAAAAAAAAAAAAMBsRxMSH+zfOqLdDwyosaNKo/1pPXZnj86/ZK3fsQ7DSLakXGfXtCXF4eHyx0FZlVIp5XbvnlJLjeb08C37ZRyjlqUJnfiSxZN3pz4aiqmU0vfep9yeLo399ncTE0ZPPVXpTZsUO/UUjfzyVwpv3KjMI48e3CgQUHFgQMGFCyXH0ejVV6vpI3+tgW9+S4Pf+Y7qL3u3jOuqmEyq7tJ3qelv/kZOVVyBxqM/ObQ4NDStlu/sVCk1LtGEZMYM7R3X1jt71bgwrrHBjLbd3avTXrlscnl+//6J/xSL6v3Cv6vl05/W4J13TXudfNeeckUGZs5h5hwbI4WintY+r11rn9f+nHdR6O2dViuNpxRYvFi17W2SpKoXvUhKp1X7hjfIq69/zvsE5oLbfrFdjQurVCyUtOPevinLwsuWyQSDSl5/w7Tt8rt2yRaLynd1yU0kFGxrK1fkWSO7f79yO3fKiYSV3b592vL8vv3TGpAcTiQeUKw6qHymqH1bh/XIn7slSY7z7Bs6AEdbKZfT4P/+ULHnPU+hZQevefs6x5RNFbRw9XP73nHVjqsUdII6b9F5h18hn5bu+B/pmPOkxpWHXSWVK+ind3dprenRkkVtMo7znDJFA1GdteAsXbf7On30pI8q4AamLF+8oUHrzmrXppulLZcu16jZri8VXzhtvccZY1Td2KzewZz0jl8r+O0X6Wvd3Xp/8z3aP7JEmXxR4YD7nDIDAAAAAAAAAAAAAAAAAAAAAADMVs9tJgiesVhNSCddtFilklXPrlGN9KYVinpqWPDkd0/3gxuPyebzip977rRlwcWLyx8IZeXV1ytxwQWSpNjADkWrDvYssiWrBavqFKsOPevXt9Yqu22bxv5wvcY3bdLINddo9Kqr1HXJJSr2Dyh1550Kr1ql1H33Tdkuv3u3wgcmkY5ed51q3zhx9+2hK69U09/+rSInnqjRP1yv1s9+Vgu/+Q0lLrhA9e98p5r/+q8VO+44hZYumZEGJJIUWrxkWq3qhefLm6H9QQqGPZ1w4WLZklXv7jEN7U/J9RwtWHVw8mWg5ZA7r1ur/q9+VVUHxvahIsdu1Phddyl/mAYLwGzRuLBKwfDUSbMnvWSJooln/3ktSbZUUnbrVo394Xq59fUyoamvF1y6VG59ndyaWhX6B2RCIQU7OmhAAhxQ3RTVypNb1Nc5psF945Kk+vaYaltjk+uEFi5UcOn0a4n4uecpt3u3CgODym7bVrbMs0m+q0s2n1NhcFBV501vnBA99tin/Vp1rXGlRnMa7c9M1taf065EQ+RoRAWes9Hf/EbF/n7VX/KOKfWuhwclSQtX1T3r184Ws/rtzt/qnI5zVBWsOvxKt39NGu+TnvehI77Ozzbt0WimoFU9d6l5yTHPOs+hXnHMKzSYGdR1u6877PJTX7FUe9q26MboDr1ue5OqPvNNDf7fPRq4Yot6/+d+9X79fg1csUUjv9+lzPZhJRqaNNLXI9UtkXvxbxVyg7pw729VstLO/vGjkhkAAAAAAAAAAAAAAAAAAAAAAGA28p56FRxtK05qUbQ6pEdv71ZtS1TLT2pW3SETECuGcVTK5VTzylfIptMav/lmuTU1avqbjyi8Zo3f6TDDnFBIDX/1lyqNj2v861/SCz7xOe1zF2ugN6flJzZr4eo6mWdxV/h8T4+yW7eqlEpp30f+RjWvf53Gb/uzwmvXKv14w5FiUZKU3bFD4bVrldu2Tfm9exVatUrZRx6RXEfhjRuVuf9+eXW1av7kJ2VCQQXa25V42UvlRqNywuGj+NN4ekKrV6ntS19Uzz//i4pDQ4qddZYaP/ABOaHnNvkfT27hmjpd9N4Nevi2/YpUBbXy1BY1dhycNBlevVr1l71bA1+/XLJWtlBQ7JRTlN+3V6O/uUomFFL9298up6ZGvZ/9nLz2drX+8z/Lq6n28aiAZ6e+Pa5XfPh4PXZnt0b60lp5aovaV9Y+9YZPYfzPf9aey94jm88resbpavnUP6rvq/+lwr59Cq1do8b3vV+l0VFltj6m0LJlR+FIgLklEHR1ysuXqvWYau24v0/ty2u19NjGaQ3dIhs3quWfPqXeL/2HSqOjip9ztqKnnKzS+LiUzym/b5/G771XseOO8+dAKpRNJiXHUWl0TKHlx6j6la/UyK9/PXGOv+QSRU884Wm/VlV9WBe9d6O23dOrnp0jWn58sxauqZPr0b8T/rOlkga+/R2FVq9W9NRTpyzrfGhADQvjilQFn/XrX7/7eo1kR/Tq5a8+/ApDu6Sb/l1adZG0+HmHXSWVK+grN2zTxpaImnbuUdOS1z/rPIc6o/0MLUos0ve3fF8vXvJiGTP1u+iohnXT4p+ofqxdZ468XaXUZzTwX59X/KK/lls18Vmb70kp/fCAxm7oUnDU0dDIHhWG0vIalmv09Vdo5RUfliRt7R7R6tbEUckNAAAAAAAAAAAAAAAAAAAAAAAw29CExAfheEDHHN+kY45v8jvKk7KFvFQsyubzSrzylap905vkRCOywSBNFeaJ0JIlavvSF1Xo7pYTiWhRS8szfo18b69KY2NKP7RFpfFxDV95pcKrVip1512yuZzcmlrltm9X9PjjZTMH7zjvxKLK7dih6pe9VIGODo386teqf9c7FTvjdGUeflj173iH3ESVTCis4JLF8mqf+yT758oJBlV94YWKnnCCSqmUvJYWuZGI37HmvGDI06J1DVq0ruGwy91EQg2XXabEC1+k4tiovOZm5fbuU+zUUxXZsFHGcWSq4pImxmtmyxbl3vZWeSeeWM7DAI6axo6qKY14nqtCf7/2/8M/yubzkqTUrbcpuHChmv/ukyrs3y+3sVGlZFK5zt1SycqJRuU4TNYHnqiqLqy1Z7Zr7ZntR1zHq65W7etfr/C6dSoODqk4MqxSOi1bKEquq9LAoHI7dijQ2KjgggVlTF+5snv3qpjJypZKcmpqVEqOK3rqKap+5SvkVFUptHLlM/5MqmuN6eSXLJmhxMCzN37zzcpt3662L3x+ShOO8ZGs9m8f0UkXLn5Or//zrT9Xe7xdp7SeMn1hPi393yWS40oXfPaIr/G1P21X31hWf71C2iupbcXq55TpcY5xdMm6S/QPt/2Drtl1jV685MWTyzIj4/rAb/5SmUJKb9vxHj2qJi15wzs19sOvKbpiv6pf9rLJdUvZgrJbh1X3i216dOBObfvc9Wo5e61ann+2rlu9Us69JT1859V62XGXHpXcAAAAAAAAAAAAAAAAAAAAAAAAsw1NSHBEpUxGxaEhSUayJRWzGZVSKTm1NX5HQxm5kYjcJROTMAtDQyql0vIa6mUCARnHUb6nR8WREZlQSPl9+2RCYalYUDGVUqGzS2N//KO8hgaN/u53arj0UmW3bFH8rLOU37NnYgfFoiQp+ac/KfHSl2rw29/W0A9/qMYPfECjv7taA9+/Qo0f/IACzc1yq6oUXLZMXnW1Xz+OpyXQ3Ox3BDyBEw4rvGZiAmRhaEilBx+UrJUJBSUrqVRSobtbxf5+SVIxlfIxLVBZismkCnv3TqkN//gnip19tkIrVqowPKR8d7fkeQotXz7ZrATAsxdZu1aphx9RKZtRaWBAKhZkggGVkkml7t6j4OLFCrS1ydDwR8X+ftmxUUmSzWRkg0EFojGVikXFVh+d5gdApRj45rfktbYqccEFU+o77u2TrLTshGfW6LQwnFV2+7ByXWPa3btTd4Tu0FsHX6Z9n7hVch05IUdudUheravqoU/IHdwkveZ7MjUdh329ezqH9P/+tF2vOq5dVfuvU6y2TtVNR++70cuWvUw/euRH+uwdn9WGxg1qi7Rq4JZd+vsH/0mb44/oH2N/rTPf8SL97Kv3a8cx56vjuNvV/Zl/VfTUUxVomvjZOCFPkXUNWhQ4VX9+8GfKtuWVvGmPUnd36/jz/kaN92/Wtt37pb7HpMYVRy07AAAAAAAAAAAAAAAAAAAAAADAbEETEhyRkVTsH5CVZPM5GdeVE69SuKnR72goM1ssavzPf1b3v3xGwfZ2xc9+vsbvvVfx005X/1e+opo3vEEjv/qVnHBIsdNO1+AVV6jx/e9T35f/Uw3veY/6v/51OfG4iiPDkqTsww8rctxxSt97r0wwIHmeCn19yu/do/rLLtP4zTdp/K671fx3n5TX2Civrk4mEPD3h4A5w8oo39snx3FUGE9KktzqGg1dcYUkyamuVmjxEj8jAhXFa2hQ5MQTlL5705R6oK5O2c5OlUZGZLMZWSsVh4flRCOyBxpMAXj2oqtXKTk6IknK7++WE42qODykyJo1yjzyiGQcxY4/zueU/rPZrAqDQ3KiURX6+uTE4ipICsZifkcDjqrkrbcqddddav7kJ6d9N9p6d49qW6Kqa33qcV8YSCv1QL/S9/cp3z0uSTIhV79aeJ1cOXrF0perak2TbNHKZgsqDI4ruusT8oq3aDD/PqV+XK/wMQ8psrZe4TX1cmMTWXYPjOvS729Sa3VYn3r5Wv34w/+p9lVrZYw5aj8D13H1+bM+rzf97k1646/foOePnqi7nc3aE+/Rh1d/UK85+WJJ0rqz2vXgTXu14v2fUOayN6v7U/+kBf/9X1Oy1C9YKEnKLi6q6bXHafgX21T7qzGFqjK6P7lUhas+KO/i30pHMT8AAAAAAAAAAAAAAAAAAAAAAMBswK2zcUSlVFqhlStU2LdXuR07ld21W4HmJsmjd818k926VV2XvUfFvj5Fjj9OPZ/5V4WXLlXPpz8tEwyqsH+/8p2dqjr/fA3+4AcKLlmizMMPT2xsjFQqqTQ6Ku/A3aeTN9+sqvPPU2jVKg399Eo1f/RvFVq7Rqk77pQktX/lK1rwpS8qsm6dAs3NNCDBUWVLRXn1dRq/+y5l7rtfwbZ2pe/ZpOLQkKJnnKGOb35DwY6FfscEKoYbj6vl7/9eobVrJElOVZXaPv9vCq1cKUkqJZPK7tip3K6dKgwOyForWyr5GRmYM4KLFslJJFRKp5S85RYFOxbJhCOyqZSKQ4PKDQz4HdF3pXRGoWXLlN+3V9kdO5Xfu1dOLCa3vs7vaMBRY0sl9X3xSwq0t6vm9a+bsmxw37j2bxvRqtNaj9jww5as0lsG1PfNzer+wt0avXaXTMhV9UuWqOn9xyn2sTX6XeRGvXjphVr+8pNV/aLFqrlwiWpfvlSNNf+tSPEWlV7wGUXe9CHFT2lVvntcQz/bqv2fuUP933tIm27ardf9z59VLJX03befLCWHNDbQp/aVa476z2JBqUX/WfxHLRxu1NXhm1RVW6P/Pve/9faTL5lc5+SXLVUoGtBtt2bV8IH3K3nDDRq96qoprxOOxRWvrVN/124F2+JqfM9GVb90qZ6Xa1GvrVP/ri2ym//vqOcHAAAAAAAAAAAAAAAAAAAAAACodHSTwJEZo8LgoIJLlshtaJTNZlRMp+W6rt/JUGbZ7TukQkGx887T6O+uliTZQlE2n1dw0SJlHntsolYsScWiisPD8uobJEmpTXcrfvbZSv7pTxq/7TbVX/ouDf3vD9X7H19W44c/pOixx8prbFT1K16hUjotr6FBxqE/EmaOTaflRCIKrVgpY4xye/Yodvrpqn3jGxVet05uJOJ3RKDihFeuVMe3vq1Cd7eceEzBBQskTTQoyY4lZcJhOa6r0uio3HXrVMpkfE4MzA3BlhYVVq+WV5VQ/PTTNX7nnQoU8jLBkAqDQyoODUn19X7H9JlVYXBAbnWNqtetl5Wd+EyKx/0OBhw1o7+7WpktW9T2b5+TEwxOWfbQzXvluEarTmudtl0pXdD43T1K/nmfioMZudVBJV60SNFjm+TVhifX+879X1eqkNLb1739kI1L0lUfkjb/VDr3H+Sc+V5FJEXW1qv6oqXK7xtX6v4+/eGuPfr7h3cpYRxdvqFDHQXp0UfvkyQtXLPuqP0MSrmixm7co7Eb96jNxPW1s7+sqrMWyASmf3cMxwI69RVL9af/fVQDb3+RIsdep+5/+Yyip5yiwIHGmJLUcswK7X/sEUmScYyqzmjXK6vP1A9/cLd+7azRJb/8W5VqnqdAx/SfLQAAAAAAAAAAAAAAAAAAAAAAwFxFExIckXEdyVqZYEjF/j6ZSERuJCI3FvM7GsrMTSQm/mNLE+NCkhMKSZIyjz6qxIUXKvPAA7LptNzaWhUHBuQ1NMitq1PqjjtV+5a3qO7ii5XatEkmElHH978nJxZToLV18nUkya2qKvuxYf5xqqtlgiEF2lpVSqcnmt54nkqFIg1IgCfh1VTLq6meWgyGFDxmmQLj41LJykQjckIhOXyeA0dNdNUqJUdGVBoaVHDRIqlUUimVkhdqlS2V/I7nP8eRZORUxVUYGJBTFZdbXa1gW5vfyYCjojgyop7PfU7htWuVuOiiKctSozltuWWflp/YrGjiYHOSQn9aY7fuVWpTj2yupODihKovWKzI2vrJ73OPG0gP6HsPfU/PX/B8rahdMVG0VvrdR6R7vied+RHpzL+eso0xRsH2uH7SNaB/zIxqZV1M/9FUr/iDQ+q9f1Bbhn+vWLxWNfGW53z8Nl/S+F3dGvtTl4qjOUU2NKj6wqXyakJPut3qM9r00M379Oef79RrPvVp7Xn9a7XvI3+jjm9/S8ab+FNY+6q12nbX7UoODSpeWydJ2riqUeGA0Te9Y/XO/G3KfvMDSp/1BVWdvVDGo1kmAAAAAAAAAAAAAAAAAAAAAACY+2hCgiMy8bi8+nrlu7vlxGKS48htalJ42TK/o6HMQqtWKnb66UredLMaLnu3+h77spK33qrqV79aIz/7mYzrKHbG6Rr+2c/U+P73aehHP1L/5Zer4X3vlVdXJ+N5Cq1dq8YPf2janbuBcgtUVSlXWyMzNCQnHJGV5ASDcuM0WAKeKScekzMUUDEYlDFGcly5NTUKxON+RwPmFLe6WsX6eskYlYaH5TU2ymtuUmjBAr+j+c6pSsiJj6g4WpQbiUrBoJzqmonPJGCWs9aq+9P/rOLQkDou/7qM605ZvumaXSoWSjrxwsWy1iq7Y0TJW/Yq88ig5BhFNzYqfka7gu1HPi9/9d6vKl1I68MnfvjxnUpX/61097ekMz4gveDvpm1TKll97ppHdPlNO/SCVU366huPUyzkqZTKa+TuPdr/te1aElunni/crWBHlSIbGhVeUSuvMfK035v5vpRSd/dofFOPSsm8gosTqnvDSoWW1jyt7R3H6Kw3rNDPvrBJt/85rxP/6Z+0/2MfU++/f1HNH/uoJKl91RpJ0t5HHtLK086UJAU9R2cub9KtO0/Q96qr9faRa9V3w+lKbT5TNS9dpvAxT2//AAAAAAAAAAAAAAAAAAAAAAAAs1VFNSExxnxb0kWSeq216w7U6iT9RNJiSbskvc5aO+RXxvkkumqVUpKcWEw2nZZTU6NAR4ffseCDQGOjWj/7r8ps2SJbKKj9P7+ssT/8QaFVK7Xg8stl02klXvFKqViQCQRUdcEFKiWTcmtq5dXV+h0fmCaycqWM56k0PCy5nkxNtSIrV/odC5h1ouvXKx0MyR0ekopFOXV1Ci9Z4ncsYM6JrFolBYMqxmKyrW1yY1G5jY1yo1G/o/kuum6tUqGgvOERyZbk1tQofMwxfscCjoqhK36g0d/+Vo0feL/Ca9ZMWda7e1Sb/7hHq09pkbdzWL0/fkT5/eNyYp6qzlmo+GltcquevAHk7ftv18+3/lxvXfNWLa1eKpVK0rWfkO68XDrtvdJ5/yQ9oWlIJl/Uh35yn65+sFtvOXWR/vGla+S5jiTJiQa0t7RdxVJeG9/5CiUyTUrf16eRq3ZoRJKTCCq0OKFAS0xeQ0RuPCAT8mSLJdlMUYWBtPLd48puG1ZhICM5UnhlneJntCu0rPoZNxdqWVqtk16yRHddtVOtf3Gi6t/8Zg1+97vyGupV/853qmnxMoVjcW276/bJJiSS9IJVTbpuS48ubzte52fvUFvka+rNrFX/N1MKrahV9QWLFWyj4RoAAAAAAAAAAAAAAAAAAAAAAJibKqoJiaTvSvovSd8/pPYxSddbaz9njPnYgecf9SHbvBRdtcrvCKgQgeZmBZqbJ58nXvSiJ9+gqWmGEwHPnhMOK7p2rd8xgFnPGKPoKhr4AOUQWbpUWrrU7xgVx3ieYqtX+x0DOOqGf/4L9Xz2s4q/4AWqf/e7pyxLDWV0zX8/oFDA0eLHBjT8yIACLTHVvmq5osc1ygTcp3z9ztFOffSmj2pJ9RL95bF/KeUz0q/+UnrwZ9Kpfym98F+mNSDpT2b1ru/frfu6hvV3L1mtS563ZEpjEGut7rv2t6prW6BFpxwvY4wSZy9UYTCj7LZhZbYNKdc1pvQD/UfMZUKuQkuqFT+9TZH1DXIToWf4k5vqxAsXq2fHiG784aM67+KLlRgcVO+/f1GlbFYN73mPVp5+ph668Qbl0ikFIxONnV6yoVWf/s0WHRN4tz5St0VXdPepue0LSp72NY3d1Kver9yr0PIaxc9oV3hFrYzzzJqjAAAAAAAAAAAAAAAAAAAAAAAAVLKKakJirb3JGLP4CeWXSzr7wP+/J+lPogkJAAAAAACYY0qZjPr+8ysa/M53FD3tVLV/6YuSjPLd48ruGtHA5gHddF+/xotWz2sIqvbkVkVPaFawPf609/HwwMN63w3vU8mW9B/n/Ieiw13SLy6T9t0jnfcp6YwPTmtAcseOAb3/x/dqOJXX1/7ieF2wrnXa6z5y643q2bFVL3z3+6c0J/HqwvJOblHs5JaJY8wWVBjMqjSel80WZDxHJujKqw/LqQpO2fa5chyjC969Xr/56n36w3cf1Ukvfo/aPE/9X/0vpe+/X6ve8mbdf93Vuud3v9apr36DJCkRDug1JyzQj+7s1Dsv/Lg+nv+0/n3PHYo4f6XYe7+v5L0ZJe/Yr4HvPiS3NqTIugZF1tYr2JGgIQkAAAAAAAAAAAAAAAAAAAAAAJj1KqoJyRE0W2v3S5K1dr8xpsnvQAAAAAAAAEeDtVa5nbs0es21GvrRj1Ts61XsnJcpft7FGvj+Y8rtH9dYMq89+ZK2Z0uSY/TCVy/T0nMWynjO097HtuFtuvKxK3Xlo1eqIVynKzZ8UItv/LJ03w+lUJX0uiukNS+bss2De0f1rVt26Jf37dPi+qi+/ZcnaW1b9bTX73roAV33jf9Wy7LlWnv2uU+axQl5CraW789RgZCri967UTf+8FHd+btO1ba8Use+eYlSV/6P7J9v1xlLOrT1u99W6+JlWnTCSZKkD52/Qr95YJ9+f/tivfLMf9Un7v6kPtV1u3KXnyDnrL9R6wfeovS2glL39Ch52z4lb94rE/YUXBhXcGGVAq1xefVhefUROSG3bMcKAAAAAAAAAAAAAAAAAAAAAADwXBlrrd8ZpjDGLJZ0lbV23YHnw9bamkOWD1lra4+w7aWSLpWkjo6OE3bv3j3zgTHfHZXbHDN24YOjdotuxi98wGcvZivGLmYzxi9mq6N23XuIw/4hJb1lQLnOMVlrpaKVSla2ZCVrZQ88V8kqdec1ynU9ptL4mOz4iIpD+2Rz45KkTO1yDS27SKm65So6RlnXUbJglc4WJUmLNzTozNctV6Ih8qQBR7Ij+tr9X9NAekDFkT06cdddCuTTSpSsVgWqtTA9Jic7Jrkh6bg3a/iUj+ib94wpmS1oNJPX0HhOD+8fU/doRiHP0TvPXKL3nH2M4qGDzUN2b75Pj952k/o6d6l722OqbW3T6/7hs4rX1R+tn/NRt21Tr+767U4N7htXMDesFd3XqaHrdjn5jEoyylZVydRVK9Lerl0L1ukjhRVKy9Wa9pACxRv19+Nf03HZnPLGqCdSraF4veJVC7XAXa1k+BLlusaU7x6fMkJM0JUT8+TEAnIinkzAlQk4Mp4jE3BU9bx2eUf+fc7E+AUAAAAAAAAAAAAAAAAAAAAAADii2dCE5FFJZ1tr9xtjWiX9yVq78mm8Tp+kSpnR1iCp3+8QM4DjkvqttRcczZ0/i7E7l34PHEv5HPWxK/n+2VtpP/NKylNJWaTnnqcSPnulufdznQlkmqpSxu5MqsTf+XPFMU2otPFbib8XMj095c40E2P3Gk0cx9FSib+nmTJfjvVoHeeMfG8DAAAAAAAAAAAAAAAAAAAAAAA4ktnQhOQLkgastZ8zxnxMUp219m/9zPhMGWPuttae6HeOo43jqgyzLe+T4VjwXFTaz7yS8lRSFqny8jxblXYclZZHItN8NBd/vhxTZarEYyDT01OJmfw2n34m8+VY58txAgAAAAAAAAAAAAAAAAAAAACAucfxO8ChjDE/kvRnSSuNMXuMMZdI+pyk840xWyWdf+A5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKPE8zvAoay1bzzConPLGgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYRxy/A8wkY8y3jTG9xpgHn8a6Zxlj7jHGFIwxr3nCsmuMMcPGmKueZZTLn+V2lY7jqgyzLe+T4VjwXFTaz7yS8lRSFqny8jxblXYclZZHItN8NBd/vhxTZarEYyDT01OJmfw2n34m8+VY58txAgAAAAAAAAAAAAAAAAAAAACAOcZYa/3OMGOMMWdJSkr6vrV23VOsu1hSQtJHJP3aWvt/hyw7V1JU0ruttRfNXGIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg/By/A8wka+1NkgYPrRljlhljrjHGbDLG3GyMWXVg3V3W2gcklQ7zOtdLGitLaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDMPL8D+OBySZdZa7caY06R9P8kvcDnTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBv5lUTEmNMXNLpkq40xjxeDvmXCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDfvGpCIsmRNGytPdbvIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEClcPwOUE7W2lFJO40xr5UkM2Gjz7EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXxlrrd8ZZowx5keSzpbUIKlH0j9KukHS1yS1SgpI+rG19tPGmJMk/UJSraSMpG5r7doDr3OzpFWS4pIGJF1irb22vEcDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzIw53YQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFNz/A4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwF80IQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmuTnbhOSCCy6wknjwmOnHUcfY5VGmx4xg/PIo0+OoY+zyKNPjqGPs8ijj46hj/PIo0+OoY+zyKONjJvh9TDzmxwMAAAAAAAAAAAAAAAAAAAAAMEvN2SYk/f39fkcAnhXGLmYzxi9mK8YuZivGLmYzxi9mK8YuAAAAAAAAAAAAAAAAAAAAAAAA5qo524QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNNDExIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgnvP8DoD5rTiaVWEwKxN2FWiIyHj0xcHsNDGWMzJhj7EMXxXHcyoMZGQ8R15DWE6QUz2A8ikMZ1QczsqJevLqozKu8TsSMOOK6bwK/WkZY+Q2ROSGOfcClcjmi8r3p2WzJbn1IXlVIb8jAQAAAAAAAAAAAAAAAAAAAAAAVBxmR8E3ub1JDVyxRcXhrORIiXM7FDu9XW6EYYnZJbdnTAPf36LiaE5yjBIvXKT4qa1ymICKMsv3jmvgR4+qsH9ckhQ9pUXV5y2SWxX0ORmA+SC7a1QDP9iiUjIvuUY1Fy1V9MRmOQHX72jAjCkMpDX0y23Kbh2WJIXX1Knmpcvk1Yb9DQZgimIqr+QtezX2xy7JSm5dWPVvWa1ga9zvaAAAAAAAAAAAAAAAAAAAAAAAABXF8TsA5qdSpqDhq3ZMNCCRpJI0el2n8vuS/gYDnqFiOq+hX22baEAiSSWr0Wt2KX+gCQRQLrZoNXbrvskGJJKUuqNb2d2jPqYCMF8UkzkNXvnoRAMSSSpaDf9quwrdnA8xt6UeGphsQCJJmS2Dyjw66F8gAIeV35vU2A0TDUgkqTiY0cg1u1TKFf0NBgAAAAAAAAAAAAAAAAAAAAAAUGFoQgJflFIF5XaOTKsXhzM+pAGeOWutsp2jSj80oHzX9OY5BcYyyqyUySv76NC0enbbsFJb+lVM5X1IBWC+KCbzKg5MP/cVHm84B8xBtmSVeWhgWj1zmPMxAH8Vhqafo7Lbh1XiGtlX3f/8L+r94pf8jgEAAAAAAAAAAAAAAAAAAAAAAA5BExL4woRdBdrj0+pOLOBDGuCZy+9Lqu/yB5R9bFhec3Tacrc65EMqzGdOyFNoWc20uhsPaPAHjxx2kjQAHC1O2JVbM/3c50S5tsPcZRyj0NLqafXg4oQPaQA8mcP9rSG4MCEnwnnKT0P/+78a+MY3/I4BAAAAAAAAAAAAAAAAAAAAAAAOUdYmJMaYZcaY0IH/n22Meb8xpqacGVAZSumCosc3TZkIFD2+SXLoi4PZIbd7VCpYpR/qV+zkFjlRb2KBkarOXqBAa8zfgJh3jOcofma73LqDTQDCK2pVGMpKJavRP3apyJ3eAcwQWygp/rx2mZA7UTBS/Iw22WLJ32DADCrli3Ki3pTrvuDCKprRARXIuEaRjY2Tz514QJF19SqlCz6mAgAAAAAAAAAAAAAAAAAAAAAAqDxemff3M0knGmOOkfQtSb+W9ENJF5Y5B3xmJI39sUvR45pkgo6MY5TZOiwVmKiKWcKYiX+LVqO/3z3ZiCS0rEaBlpicoOtvPsxLwZaYmi7bqMz2YRUHMsp1jSm1qUeSZDwjI+NzQgBzl9HYjV2Kn9oquUbGMUpvGVBoea3fwYAZld4yoEBrTOE19TJGyvelVRjI+B0LwBPYbEmlsZwS53XIlqxsrqjkTXsUXd/gdzQAAAAAAAAAAAAAAAAAAAAAAICKUu4mJCVrbcEY80pJX7bWftUYc2+ZM6ACuLVhxU9r1eh1nQdrNUEFWqI+pgKemi2UlO8Zl1sXlgm6srmibLao5M17VffGVQp1JPyOiHmulC3KiQU0/IvtsrniZD1x7iI50XKf9gHMF15tWNETWzT2x67JmlsXUqCZazvMXU7AVdVZCzTwvS0Hi55R45kb/QsF4LACbTHle1LK7hiZrFW/fJncRMjHVAAAAAAAAAAAAAAAAAAAAAAAAJWn3LOR88aYN0p6m6SXHqgFypwBFcA4RoGFVUqc16Hc3qTc2rCCC6tkogwHVLb0Q/0a/PGjMmFPiXMXqjCSVSlTVGxjo4KLaUACf2X3jKn/m5slYybG51BGpWxRsWObGJ8AZpRxjcLLa+S4Rrm9SXl1YXktUZmA43c0YGY5RtUXLlGua0wm6Ci0vEZuHU0NgErjxAOqvmiJcrvHVBzNKbggLq8+7HcsAAAAAAAAAAAAAAAAAAAAAACAilPuJiRvl3SZpM9Ya3caY5ZI+sHT2dAY8yFJ75RkJW2W9HZrbWbGkmJGFYYyGvrxoypliwo0RZXrGtP4bfvUeNkGuYur/Y4HHFZhMKOhX2yTrGTTBY1cvUtudUj1b1ujYFvc73iY52yhqLEbumQzRUmaHJ/VL1+q8Mo6n9MBmOuKybyGfrZVxZGsAo1R5TrHVBrPy3t7SC6fQZijCsNZDf30sYmx3hSVzReV2tSrxndvkLck6Hc8AIcodKc09JPH5FQF5cY8jT4yKCfiKfC+4+TV0DgIAAAAAAAAAAAAAAAAAAAAAADgcWW9Nbm1doukj0q658Dzndbazz3VdsaYdknvl3SitXadJFfSG2YyK2ZWKVNQKVWQilb5/eMqJfOSJiawApWqlClMNnh4XHEkq+Iw/ZDgv1K2qPz+5JRacSSr/J7kEbYAgKOnlC2oOJCRCgeu7cYPXNuNc22HuauUKUyO9UJvSsWhrCSpmMz5GQvAYTz+viyN5ZTvTkklq9J4XqVMwedkAAAAAAAAAAAAAAAAAAAAAAAAlaWsTUiMMS+VdJ+kaw48P9YY8+unubknKWKM8SRFJe2bkZAoC7c6JK81OrXoGHkNEX8CAU+DWx2U1/SEMeoaeXWMW/jPiQYU2dg4rR5clPAhDYD5xq0KKrSydlqdazvMZV4ipEBbfGrRkbx6xj1Qabz6yLS/gAXa4vISIX8CAQAAAAAAAAAAAAAAAAAAAAAAVKiyNiGR9ClJJ0saliRr7X2SljzVRtbavZL+XVKnpP2SRqy1v5+pkJh5bjSguteuVKAtJkly4gHVv3m1Ak3Rp9gS8I8bC6ru9SvltR4Yt1UB1b9ltTzGLSqAMUbxk1oU3tAgGckEHFW/eLGCHVV+RwMwDzhBVzUXLlFw8UTjIxPxVPv6FQoeOGcCc5ET9VT7muUKtE80InFiAdX/xWoFmhn3QKUJNMdU/+Y1cmKBieftcdW+ZrmcqOdzMgAAAAAAAAAAAAAAAAAAAAAAgMpS7tkWBWvtiDHm0Jp9qo2MMbWSXq6JhiXDkq40xrzZWvuDJ6x3qaRLJamjo+NoZcYMCbbF1fjO9SqM5uSEPXk18/cOxIzd2SPYXqWmd02MWzfqyeXO2YzfCuLVR1T32hUqnrdIco282rCMY556w3mKsYvZqlLHbqA5pvqL16o4kpUTdOXVhv2OhApUqeP32Qq2xdV4yXoVRrNyIp68aq4N56q5NnbnG+MaRdbUK9AeVyldkJcI0YAEAAAAAAAAAAAAAAAAAAAAAADgMJwy7+9BY8ybJLnGmOXGmK9Kuu1pbHeepJ3W2j5rbV7SzyWd/sSVrLWXW2tPtNae2NjYeHSTY0Y40YCCLbF53YBEYuzONo+PWxqQTGD8VhYn4CrQFFWgPkIDkqfA2MVsVclj1w17CjbHaECCI6rk8ftsOVFv4jsNDUjmtLk4ducjrzqkYEuMBiQAAAAAAAAAAAAAAAAAAAAAAABHUO4mJO+TtFZSVtIPJY1I+uDT2K5T0qnGmKgxxkg6V9LDMxUSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmE/KeutXa21K0icPPJ7JdncYY/5P0j2SCpLulXT50U+IciqO55XrGlN+f1JeQ0TBjgR3D0fFyu1PKrd7VLZoFexIKNgel3GM37GAKWyxpNzeibFqQq5CixIKNMf8jgVgnihlC8rtSSrXNSY3EVJoUZW8+ojfsYAZVcoVldszplznmNxEUMFFCQUY90BFKgykle0cU3Ekq+CCKgUXxuWEyvpnMQAAAAAAAAAAAAAAAAAAAAAAgIpX1tkWxpjrJL3WWjt84HmtpB9ba1/0VNtaa/9R0j/ObEKUiy2UlLxlr8b+2DVZC6+uU+1rV8iNBnxMBkyX25dU39cfkM0WJwquUeO71iu0uNrfYMATZHeMqP/bD0p24rkTC6jx0g0KNEf9DQZgXkg/OKChKx+bfO41R9Vw8Vp5tWEfUwEzK/3QgIZ+8ujkc68xooZ3rGPcAxWmMJRR/xVbVOhOTdZqX7tCsROafUwFAAAAAAAAAAAAAAAAAAAAAABQeZwy76/h8QYkkmStHZLUVOYMqACFgbTGbuyaUss8PKhCT+oIWwDlZ0tW+f6U0pv7DzYgkaSi1dgte2WL1r9wwBOUckWNXt852YBEkkrjeWW2DqmUKfgXDMC8UBzNauR3O6fUCj0p5feN+5QImHnFsZxGfrtjSq3Ql1Z+X9KnRACOJL9/fEoDEkka+e0OFUayPiUCAAAAAAAAAAAAAAAAAAAAAACoTOVuQlIyxnQ8/sQYs0hTpktjvijlS1LpMPVccXoR8IEtWaUf7NfAFVtUGMhMW14azUn2MIMY8EuhpNJYbnq5P62R63armJy+DACOFluwKqWnNzwqZWmChLnLFkqHH/eHqQHw1+Ga8pUyRdkC3+kAAAAAAAAAAAAAAAAAAAAAAAAOVe4mJJ+UdIsx5gpjzBWSbpL08TJnQAUwIVeBBfEpNScekBMP+JQIOKgwnFV2x7CGrnxMhZ60gm2xaevET2uT8Vwf0gGH50QDip/RPrVoJK8mpPFb9ynXlfQnGID5IewosrFxas0zchNBf/IAZeDEg4oe3zS16Bo5ccY9UGnceEDypv4JLLKxQU7M8ykRAAAAAAAAAAAAAAAAAAAAAABAZSrrbAtr7TXGmOMlnSrJSPqQtba/nBlQGUpjOUVW18urCyu7c0SBlpjCK2pluWs4fJbvGVf/dx9S9Lgm2fzEXbHTDw0o8aLFSt3bK1soqersBQqtrPU5KTBdoKNKVed1KLWpR07YU/S4Jo1v6pEkFQbSPqcDMJfZdFFu1FPs5BalHxmUVxNSZEOjismc39GAmZMvya0KKnZKizIPD8o9MO4znSOKrKrzOx2AQ+T6Uqp+8WKlH+hXYSijyMo6mZgn5awU9jsdAAAAAAAAAAAAAAAAAAAAAABA5XCeepXnzhiz6sC/x0vqkLRP0l5JHQdqmGecgKuxm/ao0JdWeGWdbL6kkWt3yQRdv6Nhnhu/p1fFoaxUsjLBiY/IXNeYxm7oVKAtpvq3rVH85Fa50YDPSYGpbKGksRv3KLcnqdjJLXLrwhr5/S4VelKSJK8h4nNCAHOakXKdY8psHVJ4Ra2csKeR3+6QEyprz0OgrEzYVXE8r8xjQwo9Pu5/t0NeNChbLPkdD8Ah3EhAI1ftkAm5Cq+oVWb7sAp9aZlQWf4sBgAAAAAAAAAAAAAAAAAAAAAAMGuUa1bghyVdKumLh1lmJb2gTDlQIUr5ohIv6NDoDZ3K7x+XCThKnLtI1li/o2Ees0Wr3M4RSdL4pl4lzu3Q6PVdsrmiZKTIugYFGqM+pwQOr5QtKL9nTMWhrMJLqlXoHpcKVjJS/Ix2BRdW+R0RwBxmsyVFNjYqefMepe7ukRwpdkqr5Bq/owEzxjhG4SXVyu8enRj3ksJr61UczqiUK8qN0NwAqBS2ZBU9tkmp+3olO9GgL7S0WjZfkkJ+pwMAAAAAAAAAAAAAAAAAAAAAAKgcZWlCYq299MC/55Rjf6h8biKkoTseU/zUA5NTS1ap+3oUPbbR72iYx4xrFNnQqFznmEpjOY3dslfx01oVaIsp0F4lrz4sY5hMjcrkRAKKrGtQ8ua9Gvn9LkWPb1Lk2CaFFlUpuKRaTsD1OyKAOcxNBDR+T4/Cq+vlRD3JGGUeHlDs5Ba/owEzy3MUaIsrvLZBxkjZnSMywaiccLn6fQJ4OtxYUIWBtBLndshaqTiaVXE4Kyca8DsaAAAAAAAAAAAAAAAAAAAAAABARSnrrZmNMfcbYz5ujFlWzv2i8nj1YdW+YrnGN/Vo7IYupe7pVe3LjpFXG/Y7Gua5yNr6iWY4Riol8ypliwouqVagIUIDElQ04xjFTmlVaEWNVLRK3dMrSQq0V9GABMCMc2NB1b1qubLbhjR2Q5eSt+5V1fMXKNAU9TsaMKNCixNyEkGN/bFLo3/olAm6ip7QzHUjUGGCi6oUWlGr0T92aez6ThWHs4qd0irj8F4FAAAAAAAAAAAAAAAAAAAAAAA4VLlvz/wySa+X9FNjTEnSTyT91FrbWeYc8JkxRuEVtWp673EqjeflVgXkJkJ+xwLk1YZV86rlip+9UMZIXn1ExitrvybgWQs0RFT/ptUqDGVkPEdeXUTGZWIlgPIILqhS42UbVRzJyYl48upoLoe5z40HVX3+IsWOb5YtluTVR+QEaf4FVBo3GlDinA5FNzbKFkryasNywuX+kxgAAAAAAAAAAAAAAAAAAAAAAEDlK+uMC2vtbkmfl/R5Y8xySX8v6d8kMUtrHiqMZJXfM6bCYFpeS0xBz5EbDfgdC/NUYSSrXNeYio+PxwVVjEfMOrZole9NKb9nTCbkSlYKNEX9jgVgniim88rvG1e+Oym3NiK5Rl41TeYw9xX60sp2jkpFK5WsAm1xGUMTMKDSFIbSynWNqZQqyC4oKtheJROg4SQAAAAAAAAAAAAAAAAAAAAAAMChyn7bV2PMYkmvk/R6SUVJf1vuDPBfMZXX8K+2K7NlYLJWdV6HEucslHGZBITyYjxirsjuGlH/tzZLpYnnTjygxnetV6A55m8wAHOeLVmN375fo9funqyFVtSq7vUr5MaCPiYDZlZuX1J9X39ANlucKHhGje/aoNCihL/BAExRGEir/zsPqjiQnazVv3WNImvqfUwFAAAAAAAAAAAAAAAAAAAAAABQecrahMQYc4ekgKSfSnqttXZHOfePylHoTSnz2JBip7XKiQZkjJTZOaLC+kYFmqN+x8M8U+hJTWlAIkljf+xSdEOjAk3PbDyW8kUVetMqZQry6sLyasNHMypwRKVcUaPX71bsxBY5VUEZI2V3jyq7c4QmJABmXGEgrdE/dil2Squc+MS1XXbXqPI9KblLaUKCuSv90MDBBiSSVLAa39QjJ+apOJKTGwvIa4jIeDS2A/xQTOVV6EurOJpVqKNaqcFeyU4sG7l6p4KLEnJjAX9DAgAAAAAAAAAAAAAAAAAAAAAAVJCyNSExxjiSfmGt/Vy59onKVcoWVf2iRUresk/FkYk7EUc2NqqULz7FlsDRV8odZtwVrewzHI/FdF7JG/do7MY9kpWceED1b1ur0MKqo5QUeBKFkiJrGzR+2z4VBjKSpPDqOino+hwMwHxgCyVVn9uh5B3dKg4e+AxaWy+VrM/JgJn1+HeZx5mQq2B7XL1fvW+iOYkjVb9kqWInt8gJcE4GyqkwmNHQL7Yqu3VYkhRoi6nq+Qs19qcuSVIxmZctlHxMCAAAAAAAAAAAAAAAAAAAAAAAUHnKdjtma21J0oXl2h8qm9cYUeaRwSmT9tL396k0lvMxFearQGNETnRqT6bAoiq5deFn9Dr5feMa+9OeyTtrl5J5Df9mu4rp/NGKChyRCbnK7UlONiCRpMzDgzLM/wdQBk51SNnOsckGJJKUeWhApfGCj6mAmRdd3zD1+bFNGr2+c6IBiSSVpJHf7FChJ+VDOmB+yzw2ONmARJr4vlZKF+QkgpKk+Gmtcg/8HwAAAAAAAAAAAAAAAAAAAAAAABPK1oTkgOuMMR8xxiw0xtQ9/ihzBlQA4zrKdSWn1YvD2cOsDcwsry6ihnesU2hlrZxYQNETm1X36hVyI4Fn9DqHG7/5zjHZNBOwMfNKmYJyO0em1Qv9aR/SAJhvTNEq1zk2rZ7nMwhzXHBxQnVvXCmvISK3NqTQ8hqVRqc3VizwPQcou8y26dfG+f1JBTviqjqvQ7GTW2SM8SEZAAAAAAAAAAAAAAAAAAAAAABA5fLKvL93HPj3rw6pWUlLy5wDPnOinkLLqpV5eHBK3a0L+5QI85EtlJTrGlNm+7CcqKfqC5fIjQTkRD0Z75n3aHJrQtNqgUVVMtFn1swEeDacsKfQ8hql7uqZUg+0xX1KBGA+cSKewstrlLqnd0o92Br1KRFQHrZkZSKeqs5ZICcelFcTklsdUnFkatMR7zDXiQBmVviYGmUe7J9SCx1To0BLTE7Ekwm4PiUDAAAAAAAAAAAAAAAAAAAAAACoXGVtQmKtXVLO/aFyldIFhVfXKd89ruJQVjJS7OQWBduZLI/yyWwf1sB3H5pohSTJRDw1vXuD3ETwWb1eoG3ijtpj13dKVnISQdW+dJnccLn7PWE+Mq6j6LFNyu0aVaEvLUmKrKuXV8ekZwBl4BpF1jUo1zmmQv+Bz6CNjXIbaUKCuctaq9RdPRr53c7JWqCjSrWvWa6BHz4imy5IrlHNS5fKa+a9AJRbeGWtQqtqlX1kSJIU7KiSilaDP3xEklR1bocSL1go4z7zBpQAAAAAAAAAAAAAAAAAAAAAAABzVVlnxhtjopI+LKnDWnupMWa5pJXW2qvKmQP+K/SkNPyr7Yqd2CwnFpBxjDLbhlTKFOXShwRlUMoWNfqHzskGJJJk0wVld44o0BJ7Vq/pRjwlnr9QkbX1spmi3Nowd71H2ZSyRY1cu0vBRQlFNjTKGCm7c0S5zjEF26v8jgdgjisOZTT400cVWdegyMaJz6DM9hEVBzISjUgwRxUHMxq9bveUWr5zTJLU/L7jVBjJyo168hqiMq7xIyIwr3m1YdW9fqUK/WmVknml7u3T2I17JpeP/alL0Y2NCjRxngIAAAAAAAAAAAAAAAAAAAAAAHhcWZuQSPqOpE2STj/wfI+kKyXRhGSesfmSVLQav6N76oJiyZ9AmH+KduLu9E9QykyvPRMm4CjYSicd+KBoZVMFpe7umVIOHVPjTx4A84otWtlscdpnkD2jzadEwMyzJStbmP79pZQtyqsLy6sL+5AKwKHcSEDuwoDSjwwq/UDf1IVFK8vfIAAAAAAAAAAAAAAAAAAAAAAAAKZwyry/Zdbaz0vKS5K1Ni2JW0LPQ15TVCYytQdOeH293Fom6qE8nKin+JntU4tGCi2t8SUP8FwdcUwvqfElD4D5xasNKXp805SaCbkKNEd9SgTMPK82pOixjVNqjHugMgWaInJigSm18Ko6eXURnxIBAAAAAAAAAAAAAAAAAAAAAABUJu+pVzmqcsaYiCQrScaYZZKyZc6AChBoiKjxkvUavbFL+b1JRTc0KHZSi5yg63c0zCORdfWSpOQte+XEAkqc26HggrjPqYBn77BjeiFjGsDMM56rxLmL5NaElbq3V4GWmKrOWahAI80YMHcZz1Xi/EVy68JK3dunQFtMibMZ90Al8uoiarhkncZu2qNc55gi6w/8DSLE3yAAAAAAAAAAAAAAAAAAAAAAAAAOVe4mJP8o6RpJC40x/yvpDEkXlzkDKkRwQVy1r1kumyrIqQ7KcRy/I2EeKeWLkqTYyS2KbmyUXCMnwAQ0zG5uLKj4Ka0Kr66T8Ry50cBTbwQAR4lXF1b1+YsUO6lZJuTJjZT7qwZQfl5dRIlzFyl2YoucqCcnxLgHKlWwLa6aVxwjm+ZvEAAAAAAAAAAAAAAAAAAAAAAAAEdS1hlS1trrjDH3SDpVkpH0AWttfzkzoHJkd49q9IZOFXpSih7fpNiJLfLqwn7HwjzA2MNcVUzmlN7cr+Qte2WiASXO61B4WY2MxwRLADOvMJxR6p5ejd/VLa8+osS5HQouTsgY43c0YMbk+9Mav32f0psHFFgYV+KcDgXb437HAnAY2a5RjV3fpXz3uCIbGxU/uUVefcTvWAAAAAAAAAAAAAAAAAAAAAAAABWlrLOSjTFnSMpYa38rqUbSJ4wxi8qZAZUh35NS/7c2K/vokIrDWY3d0KXRP3bKFkp+R8Mcl+89zNi7gbGHuSH94ICGf7VdhYGM8l1jGvjuQ8rtGfM7FoB5wJaskrfu0+jvd6s4lFV227D6vrVZ+f3jfkcDZkwpU9Dwr7cpecs+FUeyyjw4oP5vbVZhIO13NABPkO9Lqf+bDyrzyKCKw1klb9yjkWt3q5Qv+h0NAAAAAAAAAAAAAAAAAAAAAACgopS1CYmkr0lKGWM2SvobSbslfb/MGVAB8j3jsrmpTR9Sm3pUGM76lAjzRb77MGPvHsYeZr9SqqDkLXunFq2U3THiTyAA80pxJKvkn/dPLRas8t00IcHcVRjKKPvY8JRaKVVQvo8mJEClyfekZLNTG46kN/epOMT3QAAAAAAAAAAAAAAAAAAAAAAAgEOVuwlJwVprJb1c0lestf8pqerpbGiMqTHG/J8x5hFjzMPGmNNmNClmlAlMH3om6Mq4xoc0mE8OO/YCjD3MAZ6RiXnTyk5keg0AjjbjOXLC7vR6YHoNmCuM50iHuYY83PUmAH85h/se6Dl8DwQAAAAAAAAAAAAAAAAAAAAAAHiCcs+OGjPGfFzSmyX91hjjSgo8zW3/U9I11tpVkjZKeniGMqIMAq1xeS3RKbXqCxbLqw37lAjzRaA1Lq81NqXG2MNc4ARdVZ+7SDpkHqUT9RRaWu1fKADzhlsVVPVLlkyt1YcVbI8dYQtg9vPqIqo6Z+GUWnBptQLN0SNsAcAvXmtMgQVTe+Amzl8kt47vgQAAAAAAAAAAAAAAAAAAAAAAAIfyyry/10t6k6RLrLXdxpgOSV94qo2MMQlJZ0m6WJKstTlJuRnMiRnm1YTU8JY1yu4eVWEwo1BHQsGOqqfeEHiOvJqQGt68mrGHOSm0tFqN796o7M4RORFXoSXVCjTTAABAeUTW1Mt91zpld43Jqw4quDghry7idyxgxhjXKH56m4ILqpTrGpXXGFVoUUJuPOh3NABP4CVCqn/TKmV3jaowmFZwYZWCHVUyxjz1xgAAAAAAAAAAAAAAAAAAAAAAAPNIWZuQWGu7JX3pkOedkr7/NDZdKqlP0neMMRslbZL0AWvt+IwERVl49RF59UxMRfkx9jBXGc9RaHFCocUJv6MAmIeckKfwslqFl9X6HQUoGzcaUGRVnSKr6vyOAuApeHVheXVhv2MAAAAAAAAAAAAAAAAAAAAAAABUNMfvAE+TJ+l4SV+z1h4naVzSx564kjHmUmPM3caYu/v6+sqdEXjWGLuYzRi/mK0Yu5itGLuYzRi/mK0YuwAAAAAAAAAAAAAAAAAAAAAAAJgPZksTkj2S9lhr7zjw/P800ZRkCmvt5dbaE621JzY2NpY1IPBcMHYxmzF+MVsxdjFbMXYxmzF+MVsxdgEAAAAAAAAAAAAAAAAAAAAAADAfzIomJNbabkldxpiVB0rnStriYyQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgzvDKsRNjzGZJ9nCLJFlr7Yan8TLvk/S/xpigpB2S3n4UI8IH+f6UcrtGVRzNKbgooeDCuJxgWYYk5qFSrqhc15hynaNyq4IKLqpWoDHidyzgqCmO5SbG+P6kAk1RBTsS8qpDfscCMI+UsoUD59oxuTUhhRYl5NVzrsXcVhjNKtc5pnz3uIKtMQU7EnKrgn7HAnAYhdGscrvHlO8dV7CF9ysAAAAAAAAAAAAAAAAAAAAAAMDhlKvjw0XP9QWstfdJOvG5R0ElKAym1f/dh1Tsz0zWal+/UrHjmnxMhbks8/CABn/06ORzty6kxkvWMzkac0IpX9TYn7qUvHXfZC2yoUE1rzxGbiTgYzIA80nqgX4N/2zr5HOvOaqGt6+VVxP2MRUwc4qZgkav3qXUvb2TtegpLap5yRKaKwIVppjOa+SqHUo/0D9Zi5/eqsSLl8gJuD4mAwAAAAAAAAAAAAAAAAAAAAAAqCxOOXZird39ZI9yZEBlye0dn9KARJJGfrdDxbGcT4kwlxXHchr53c6ptcGscvuSPiUCjq5Cf0bJ2/ZNqaUf6FehL+1TIgDzTWEkq9Grp55rCz0p5feN+5QImHnFvvSUBiSSlLqjW4W+zBG2AOCXQl96SgMSSUr+eb8K/bxfAQAAAAAAAAAAAAAAAAAAAAAADlWWJiSPM8acaoy5yxiTNMbkjDFFY8xoOTOgMth8cVqtlC7IFko+pMFcZ4slldKF6fUc4w1zgy0UJXuYep4xDqBMiiWVMtOv72xueg2YK0qH+U4jie80QAU67HWxPfzfJgAAAAAAAAAAAAAAAAAAAAAAAOazsjYhkfRfkt4oaaukiKR3SvpqmTOgAgRaYpJrptTip7XJrQ75lAhzmZsIKXZ62xOKZmIcAnOAVxdRoD0+pebWhOQ1RHxKBGC+cRMhxU5qnlIzAYdzLea0QENEbl14Ss1rjsirDx9hCwB+8Roicmun/r0h0Bbj/QoAAAAAAAAAAAAAAAAAAAAAAPAEXrl3aK3dZoxxrbVFSd8xxtxW7gzwX6A1psZ3rtfIH3arOJBR9KRmxU5olnHMU28MPEPGMYqf2ion6Gr8zm65tSFVn79IgVYmRmNucGMB1b1uhcZu3avsI0MKLq1W1fMXyKOxE4AyMZ6jqrMXyokFlNrUK68xosR5i2hCgjnNTYRU/9Y1St7Upey2EYVW1KrqzHa58aDf0QA8gVcdUv1b12rsxi7ldowotKpWVWe0y43xfgUAAAAAAAAAAAAAAAAAAAAAADhUuZuQpIwxQUn3GWM+L2m/JGYmzkPGGIWWVKvhbWtlc0Um6mHGeTVhJV7QodgpLTIBV07Q9TsScFQFmmOqffkxKr2wKCfsyniO35EAzDNebViJ8xcpfnqbTJBzLeaHYEtMta9aoVKmICfiybicf4FKFWyNqe41vF8BAAAAAAAAAAAAAAAAAAAAAACeTLmbkLxFkivpvZI+JGmhpFeXOQMqRL43pdzuUZUyBQU7EgouiDMJCEdFKVNQrmtMuT1JeXVhBTuq5NWGJYk7XWOOMyoMppXbPSon5Cq4KKFAM72+AJRHMZ1XrmtM+b3j8uoPnH9rwn7HAmac8Ry58aBsoaTsrlHlukblRLyJ83Bj1O94wLxXGMkq1zWmQl9agbaYggur+NsDAAAAAAAAAAAAAAAAAAAAAADAEZS1CYm1dveB/6Yl/VM5943Kku8ZV983NquUzE8UjNTwjnUKL6/1NxhmPWutxjf1aOQ3OyZrwY4q1b15tbxEyMdkwMzL7hhW/7cflOzEcycWUOOlGxRoZgI0gJllS1apO7s1cvWuyVpwabXq37hKbhUNwDA/ZLYNa+B7Dx08D1cH1fjO9TQiAXxUTOU1/KttymwZnKzFz1mo6nM7ZDwakQAAAAAAAAAAAAAAAAAAAAAAADxRWWZcGGN+euDfzcaYB574KEcGVJbsrtGDDUgkyUoj1+1WKVv0LxTmhOJQRqPX7ppSy3WOqbB/3J9AQJmUckWNXt85OfFZkkrjeWV3DvuWCcD8URjMaOS6zim13I4R5Xs4/2J+KKbzGr1259Tz8EhOuc4x/0IBUKEnNaUBiSQlb+xSfiDtUyIAAAAAAAAAAAAAAAAAAAAAAIDK5pVpPx848O9FZdofKlwpVVBgQVzhlXWSpOJIVtldo7LFkiTX33CY1WzByuZLk88D7XGFV9WpVCipOJaTWxX0MR0wgwollZI5RY9tlFsfkTFSZuuwSqmC38kAzAO2UJJxjWKntMmEJq7lUvf3yeZKT7ElMPuVckUV+tKKbGhUoCWt1H29k81IShnOw4CfSod8NwwuSSi8rEbWSipyfgIAAAAAAAAAAAAAAAAAAAAAADicsjQhsdbuP/BfR9J+a21GkowxEUnN5ciAyhJcWq3CYFpjN3RKVvIaIqp5yRK50YDf0TDLuTUhhdfVK7N5QOGVtXIToYPjrDGi+r9YrUBLzO+YwFHnRAOqfslSjf5+t1L39UlGimxoVGhZtd/RAMwDXm1YNS9dppFrdqqUzEueUdVZC+Q1Rv2OBsyo4lhOo9d3avyO/ZKVAi1RJc5fpNHf75aMFFxY5XdEYF4LNETkxAMKHVMjlaxG/9ApSco8Mqi6169UoInzFAAAAAAAAAAAAAAAAAAAAAAAwKGcMu/vSkmH3m62eKCGecZmCkrd1TN5h/BCf1rjm3pUyhf9DYZZzwm6qr5gieJntiu4tFrjd3UfHGd9aY1ct4txhjnJFq0yjwwqv3/8QEFK39+n4lje32AA5gWbK2r0hs6JBiSSVLAau6FLNlvwNxgww3Kdoxq/ff/k9Wa+O6V8T0rhDQ1qePs6Bdvj/gYE5jmvLjzxXlwQV/qB/sl6fm9S43fsly1ZH9MBAAAAAAAAAAAAAAAAAAAAAABUnnI3IfGstbnHnxz4f7DMGVABigOZabXs1mGVUkxUxXMXqI+o+sVLZILutGXZrcMqjTPOMPeUMnllHhuaVs/vS/qQBsB8U0zmVRycfn1XGM76kAYon9xhzrO5XaOqvnCJwitqZdxyf+UG8ETB9vhhG/OlHx6UzfDdEAAAAAAAAAAAAAAAAAAAAAAA4FDlnhHVZ4x52eNPjDEvl9T/JOtjjnLrwtNqwcUJORHPhzSYi4xj5NUeYZxFGWeYe5yQp9DS6mn1QEvMhzQA5hs35slNTO8teLgaMJcc7jwbWpaQF2fsA5Uk0HqY9+ox1TIhvhsCAAAAAAAAAAAAAAAAAAAAAAAcqtxNSC6T9AljTKcxplPSRyVdWuYMqADBBXFFT2iafO5UBVT9wkVygq6PqTDb5XtTGr+rW2O37VW2a0yB9piiJ7dMLnfiAVW/aDHjDHOS8RzFn9cutzY0WQuvq1dwUcLHVADmCzcRUu1rlss8fo41UuJFixRoifobDJhhwY6EIhsaJp+7tSHFTmnV+D09St62T7k9Y7Il62NCYH4rZQvKbB+ScaTwqtrJulsXVvz0dhnX+JgOAAAAAAAAAAAAAAAAAAAAAACg8pTtlq/GGFfSZdbaU40xcUnGWjtWrv2jshTHciplCkqc1yFrJZstyOZLfsfCLJbvHlffNzarNJ6fKDhGDZesU82FSxQ/qUWlbEFefURebdjfoMAMKo3nFV5VJycakDFSvj8tmylI1aGn3hgAngNbKCm3L6n46a2SY2Qco2IyL1uwUtDvdMDM8apDqnnlMYo/r102X5ITdtX3nYdkkweuSV2jxnetV2hxtb9BgXkqdV+fhn+xTZIUXlOn6ouWymuMKNgak5vgGhkAAAAAAAAAAAAAAAAAAAAAAOCJytaExFpbNMaccOD/yXLtF5Upu3VImYcGlXlocLJW6Esr+JYqGc/xMRlmq8y24YMNSCSpZDX6xy41vG2Nggur/AsGlEkpV9ToHzqV2zU6pR5anFCgOeZTKgDzRWEgrdHf75ae0FMuur5BLs0XMMe5kYDcjoAkafSGzoMNSCSpaDV2814FF1bJuHzPAcqpMJTRyNU7J59ntgwqs2VQ9RevpQEJAAAAAAAAAAAAAAAAAAAAAADAEZStCckB9xpjfi3pSknjjxettT8vcw74rDiWn14bzckWrUy5RyXmhFIyN712YEwp4EMgoNwKJZXGpr8PiuMFH8IAmG9soTStAYkklXKHKQJzWHH0MOfi0axsycq4PgQC5jFbtLLZ4vR6bnoNAAAAAAAAAAAAAAAAAAAAAAAAE8p9K+Y6SQOSXiDppQceF5U5AypAeGXdtFr89DY5IWbm4dkJLa+dVouf0SY3TFcbzA9ONKDYGW3T6qGl1T6kATDfeLURBRbGp9ScWECBxohPiQB/RNbWT6vFT22TE+B7DlBuXk1Q0WMbp9RMwFGgOepTIgAAAAAAAAAAAAAAAAAAAAAAgMpX1tn51tq3l3N/qFzBRVWqf/Nqjd60R4HmqMIrapkoj+ck2FGl+reu0cjvd8lmioqf2X7YSaDlVswUZFzDxFOURXR9o2SM8nvHZGUUXVuv0IIqv2MBmAecqKe6165U8vZ9KmWKcquDiq5rlFcb9jsaUFbBRVWq+4vVSv55r7zGqELLahReVuN3LGBeMp6rxHmLFOhIKNc5qmIyr+pzOxRojvkdDQAAAAAAAAAAAAAAAAAAAAAAoGKVtQmJMWaFpK9JarbWrjPGbJD0Mmvtv5QzB/znBFwFlyQUSzUrees+FYaycqIBOYsDMq7xOx5mISfgKrKmXqEl1bJFKzce8DVPcSyn9EMDSt62T251UIlzOhRcnJBxGN+YQY6R4znKdSXlxAIyAVdy/A4FYL5wYp4CLTElb92n4mhQ4WNqZYuWazvMK07QU7AtptDiaqUf6JdyRQUaInJj/l6bAvNRKV9Uvjel1L09UtGq6qyFCrTQgAQAAAAAAAAAAAAAAAAAAAAAAODJlHtq8jckfVxSXpKstQ9IekOZM6BCpDcPaPjn21ToSSm3bVj939qs3N4xv2NhlnMinu8NSCQpdX+fhn+5TYXelLJbh9X3zc3K7U36HQtzXPqhfg39bOvE5+qOkYnP1T2MOwDlkX6gn2s7zHulXFHDV+/U2A1dKvSnlbq3T/3felCFgbTf0YB5J7drVAPf26J8Z1L5veMa/NEjymwf9jsWDsNa63cEAAAAAAAAAAAAAAAAAAAAAABwQLmbkESttXc+oVYocwZUgFIqr7Gb9zyhKOV2jfgTCDiKimM5JW964vi2yu9hIjZmTildUPLmvVOLVsruGPYlD4D5pTie19gTP4NKUm73qD+BAJ8UhjLKPDgwpVYazyvfm/IpETB/pe7vnVYb//N+2RINLyoOTUgAAAAAAAAAAAAAAAAAAAAAAKgY5W5C0m+MWSbJSpIx5jWS9pc5AyqAdYycsDutboLTa8BsY1wjw/hGuTmSCXvTyibEuANQBq6Rc5jPG859mG+MYyTXTK975f7qDcCJBKbXop40/S0Kv9GEBAAAAAAAAAAAAAAAAAAAAACAilHumVB/JenrklYZY/ZK+qCk95Q5w5zWO5rRXTsH9fD+UdkKnsThhj0lzls0pWYinkKLq31KBDw7e4fS2tk/rv5kRlv2jWj3wLhMxFP1CxdPWc+JBRRcWOVPSMwLTshT4ryOKZMqTcRTeGnN09q+byyrHX1Jjabz05YNJLN6aO+IugZTRykt/LBvOK2H9o6obyyjkXROO/qSGkhm/Y6FOcINe0q8cOq1nRP1FFqc8CkRMLO6R9O6c+egHu0enVL36iKqOnvhlFpgQZW85mg54wGQFN3QKB3aAMgxip/WJmOM9g+ndefOgWnvYQAAAAAAAAAAAAAAAAAAAAAAgPnOK+fOrLU7JJ1njIlJcqy1Y+Xc/1x3b+eQ/uFXD2rz3lFFAq4+dP5yveGkhUpEgn5HO6zwMTVqfPd6ZR4blhPzFD6mVoGWmN+xgKclmS3o1/ft1eeveUR/dc5y/fyePXq4e0yxoKt/eOlavWxdsxretV7ZrUNyqoIKL6tRoInJp5hZ4aU1arx0gzJbh+REPIWOqXnKz1VrrW7d1q+P/Xyz9gyldXxHjf7lFeu0pm2iKdQDe4b1gR/fq539KVVHAvrsq9br/DXNCrjl7mOGZ6tUsvrTY736mysf0MB4TgtqI3rvOcfon6/aooaqkD73qvU6bVmD3zExy6VzBd2Yzaj+wg7V9WWkiKeqlXUKNHNth7ln0+5Bffznm/VYT1LxkKePvXiVXnFsm+LhgIxrFD+9TcH2mLI7RxVojiq0tFpeIuR3bGDeCSyIq+myDcpsHZYtWYWX1yi4oEp37RzQx3/xoLb1JlUV8vSJl6zWK49tUzhY1j+R4VAV3EQXAAAAAAAAAAAAAAAAAAAAAID5pqwziI0xNcaY90v6Z0mfMcZ8xRjzlWewvWuMudcYc9XMpZydRtI5ffkPW7V578RdfNP5ov71d49o0+4hn5MdWWE4q+JYXoH2uMIr6mhAgmellCkos2NY45u6ldk6pOJ4viz7vb9rWJ/4xYM6rqNO1z7UrYe7J3oqjeeK+ujPHtAjfeMKL6tR9QVLVHVGO+Mb5eEZmbCrQGtcbl1ETsh9yk229SZ1yffu1p6htCTpns5hfein92twPKfBZFYf+sl92tmfkiSNpPN634/u1bbe5IweBo6uHf1JvecH92hgPCdJ2jOU1peue0yvPmGBdg+k9I7v3q0dffxO8dzc2zWs/3fjdiWLJRUawhqJebpqa696RtJ+RwOOqv5kVv981RY91jPxuZnMFvR3v3xQ93UNH1zJSCbgKrgwLrcuLBMJ+BMWmOeMMXISQQXaY/IawpKk/pGMPvWbLZPXs2PZgj7+882699D3MMqPJiQAAAAAAAAAAAAAAAAAAAAAAFSMct/m9XeSbpe0WVLpWWz/AUkPS0oczVBzwf7hjG7Z1j+tvnsg5UOap5brHlf/NzardKBhhAm5anzXegUXVPmcDLOJLZY0fke3Rq7eOVmLndqi6guWyAnP7MfbA3tGJElr2xP6rxu2TVu+a2Bcx3XUzmgG4Ilyu0fV983NUmFiEp9bH1LD29cr0BA54ja7B1PKFqaekh/tHtP+4bSMMdreNz5lWbFk1TWY0upWTsWzxZ6h9LTfce9YVokDk+LT+aI6B1Na2hj3Ix7miP3DGf3b+g5VXdslSYpJOndJQpm1Wan6yJ9BwGyzfzit+7pGptV3DaT0vOVSKVvQ2PWdSt66b3JZ4kWLVHXmAhmvrD1AgXmvOJbT0M+2Kvvoweas0VcvV/dIZtq6uwZSOm1ZOdNhCpqQAAAAAAAAAAAAAAAAAAAAAABQMco9Cypsrf2wtfY71trvPf54OhsaYxZIeomkb85sxNkpHna1vGn65OH6eMiHNE8t/WD/ZAMSSbLZosbv6vYxEWajQn9aI7/fNaU2fnu38r3PvflOrlBUrlA84vLW6ok7ae8fTmtxfXTa8qaq8HPOADwTpVxRo9d3TjYgkaTiQFbZndMnSh+qJhqYVouHPMXDnqojAdUeZnlDVWWeW3B4DfGQjJlaiwZdFYsHx8rhxgHwTGysiaj6lv1Tau7OUVWPFXxKBMyMqkhAC2qnN9ZpiAclSYW+9JQGJJI0el2n8gPpsuQDcFC+e3xKAxJJyly9U+8/edG0dR9/D8MftCABAAAAAAAAAAAAAAAAAAAAAKBylLsJyRXGmHcZY1qNMXWPP57mtl+W9LeSSjMXr7LtHUrptw/s0zdv3qHbtvVrPHtwUueC2pg+8sKVigbdydp5q5u0oT3hR9SnVOibPgkv35OSLTL1BE9fKVeUDjNmSpkjNw95KuPZgn7/ULf+4pt36OLv3KUbH+tVNj/99U5YXKv17dX67eb9eutpixU65M72rztxgVY0x7Vp95C+e9su/fyePdrZl3zWmYCnwxZKKgxMv6t7cST7pNutaK7SW0+dOhHzUy9bq0X1MbXXRvQvr1gnzznYweLSM5docDyr79y6U3fvGnzSZj0on+19Sf1s0x5977Zduq9zSIXiwculZU0x/e2LVk4+d4x02fOX6Zf37ZUkveOMxTqmqarsmTG3NIWDKqWmNxxxsnxGYG5ZXB/T371k9ZRrv5cf26Zo0FPvaEal9GEa75Ss7DO8Pn1w74j+9/bd+vGdnXq0e/S5xgbmjFyhqE27BvWdW3fqF/fs0a7+8SOue7j3YylV0JmL6xR0D76HX3PCAq1rq8y/ncwblr8FAQAAAAAAAAAAAAAAAAAAAABQKbwy7y8n6QuSPqmDNzq1kpY+2UbGmIsk9VprNxljzn6S9S6VdKkkdXR0HIW4laN3NKP3//hebdo9PFn711eu05tOmZg43p/M6jf37dF/v+lYlazkOY66RzNKRCrzbr6R9Q1K3983pRY7qVnGNUfYYm6by2N3Jnm1YXkNYRX6DzZeMBFPgfrws37N23cM6NIrNk0+v237gH74rlN0+rKGKestrI3qG289QQ/vH1OhWNKPLj1Vg8mcaqIBLayNaGf/uD7xiwe1rXei+ciCmrCueOcpWtIQf9bZKhXjtzK40YBiJzVr9NrdU+qhxU8+oTIRDujDL1yhCze0qnc0o0X1Ma1qmWhIkc4VddeuQX3qZWtUFQ6oUCzp91t6JGN0+U07ZIz0jbecqPPWNM/Ycc2kuTJ2t/WO6Y3fuEN9YxMNZ1zH6PvvOFlnHDPxuRUJeLr49MV6/opGjaTzSucL2juU0auOX6BIwNVjPaMaSeUUD5X7shDPViWOXac6IG95jQpbhw8WXaOegFFxPKfaWGVek6L8KnH8PlPnrmrS995xkrb2JFUVDmj3wLje+u079aHzl+svj1soJ+pNacrj1oXl1oWe9uvf2zmkN1x+u7KFiYZS8ZCnH7/7VK1rqz7qx4Knby6M3bng5q39euf3757sWbGwNqIfvPMULaqPTVvXa4xIrpnSuNIsq9bPtvboy284VgPJrGqjQW1YUK3Wmmi5DgGHQxMSAAAAAAAAAAAAAAAAAAAAAAAqhvPUqxxVH5Z0jLV2sbV2yYHHkzYgOeAMSS8zxuyS9GNJLzDG/OCJK1lrL7fWnmitPbGxsfHoJvfZlv2jUxqQSNJnf/eI9g6lJEk7+8bVkIjo1m2D+usrH9Cnr9qiVK6orsGUD2mfWmhptapfulQm4skEXSVetEjhFXV+x/LNXB67M8mNB1X3F6sVOqZGMlJgQVwNF6+VVx95Vq9XLFl977ZdU2rHd9Rqd/+4svmDd6/fPTCuP2/v10g6r+ctb9D5a1t0fEetXrCqSZlCSW//7t165/fu1vr2al161sRH3J7hjO7vGn6WR1rZGL+VI3pck+JntUueIyceUO3rVii4sOpJtymWrHKFkta3Vetlx7Zr48IahQKuJGnPUEot1WHdvmNQn/zFg/rfOzr1/BWNqokEJE3MFfzs1Q9rKJWb8WObCXNl7N65c3CyAYk08Tv98h+2KpU7OAF+a29S//q7R/Su72/S9//cqXS+qGjAUWNVUCuaq7RvOO1HdDxLlTh2tw9lNHhKk9w1dZKRnIaw3Nct113jaW3tHfM7HipIJY7fZyrgucrlrcZzRWULJZXsRAOor9+4QwOOVH/xWnkL45KRtKhK3S9o15bhp/e9zFqrK27fPdmARJKS2YKu3rx/ho4GT9dcGLuz3XAqp3+9+uEp/Sq6htJ6YM/IYdfvdErKvmKpTENYMlJwbb3uPSauOzqHNZ4tqGSlR3vGlMwWDrs9yogmJAAAAAAAAAAAAAAAAAAAAAAAVIxy3/L+IUnPuCuGtfbjkj4uScaYsyV9xFr75qOarMKlc8VptWSuMDk5LRZ0FHCN/ufGHZKk4VRen75qi77/9pPLmvPpcqMBVZ3Rrsi6BslaudUhGWP8joVZKNgaV/1b1qg0npeJuHIPNEd4NhwjxUITH4sB1+gjL1yp23cM6t+ufVQ3be3XB89brv5kTpddsUlj2YI8x+gfX7ZGrzthoUIBV1v2j+rib9+pQmliAtUv7t2rl25o1dq2hB7aN6qRNJPbMLO8mrCqL1ii+GltMp4jtyr4pOvvHhjX927bpV/et0/LGuP62xet1ElLDjaEch2jGx7u0527BiVJ93QO67GepL78+o2T6/Qnc8oWpp+jUD5D4/lptZ7RjHKFkqJBqWswpYu/c5cGxyeaxfzp0T71jGR00cZWffRnmyVJK1uq9N9vOk7HND150xrgSGJBR998tEed40m9+PnN2j6a1pU/v1dfePVGpQ5zHQvMZjv6kvridY/q/gOND05fVq//ftNx+vffPybHMco0hPXjxSHVL4vpz/uHdc3P7lVVOKBfv/cMLaqPPelrl6y0d2h6Y6h9w5kZORZgNskWShpMTm9+N5aZfi3UN5bVpVds0r6RjN6wrlXL1lXrzz0jekGiSmevatLHf75ZhZJVIuzpuIU1WtNWXY5DwJHQhAQAAAAAAAAAAAAAAAAAAAAAgIrhlHl/RUn3GWO+boz5yuOPMmeYlZY1xRUOTP11XbiuRW01YUmS4zi68u49U5ZbKz3SXbl3ns/3jCu7Y0TZXaMq9D3j3jSY5/K940rd16vx+3pVHM7Kqws/pwYkyWxB93YO65XHtcsx0quPX6Af3tmpPz7aq/FsQQtqo9rWO64P/eQ+jR24U3ahZPUPv3pIj/VOvM+29iYnG5A87uoHu/X8FY1yjLR+ARPbMLOK43lltw0ru31Y+Z6UiunpEzIfly0U9aXrHtO3b92lwfGc7to1qLd8+w49esh5YzSdn2xA8rhktqCh1MHXfetpi9RcFT76B4On7aQltdNqF5++WDXRiSY0OwfGJxuQPO7h7rHJRmaS9Gj3mH54R6eKJSaA4tlJZovaundU717VqhMdTy+tT+jtG9o1mMppacOTN10AZptf3rt3sgGJJN22fUBb9o/qkxeuVlMirPGBtM4MR3Si4+l1ixu1trlKI+m8dvaNP+Vru47RX5yyaFr9pRvbjuoxALNRU1VIbzlt8ZSaY6Q1rYlp63YOprSjP6XXrG7RhQ3VOsHx9KaFDWqPhvTvv39s8nvbaKagj/9is3pGaPTjK5qQAAAAAAAAAAAAAAAAAAAAAABQMbwy7++XBx7PmrX2T5L+9NyjzC4rmqv0g3eeos9f86i29Sb18mPbdPHpixUOTPwK07miGuIhDTxhknEk6PoR9ynl9ibVd/kDstmiJMlEPDW+a72CbXGfk2E2yO1Lqu8bm2XTE81ATNhV47s2KNj+7MZPKlvQ5Tdt11eu36ZF9VF99IJVqokE9OO7uiRJf3n2Mbry7i6FAo56x7JTtrVW6h7JaH27FA9Nf7/VxYIKeI6+ffFJWt9OExLMnFK2oNHrOzV+277JWtV5HUqcvVDGm95zbN9wRr++f9+UWiZf0rbepFa2VE3WwgFHmXxpynpBz1FjPKS/OLVDrztxoYwxR/lo8ExsXFCjb771RH3h2kc0nM7rHWcs0UUbWieXx4LTL/c8x0yb63njY3364HkFJZ5DQyfMX5l8SZ/dsFDRazolSVWSXrcwruG1UXXU04QEc0euUNQfH+2bVt/em9QJHbUqjGbl/m6XmneOSpp4L/zbizr0ptHHFAs/va/fZ61o0GdftU7//cftch2jD523QicvrjuahwHMSsYYveGkhXKM9L+3d6opEdJHL1ildYf5nhUNunr5qmZdkg8ocN1Ew9aEpNAFi7SkPqqdAwcbofaMZtU/nlVzNY31/EIPEgAAAAAAAAAAAAAAAAAAAAAAKkdZm5BYa79Xzv3NNdXhgN57zlIVilJDPKSFtdHJZY6R3nhKhz79m4d04Ia+WlgX0dLGypz0OX5392QDEkmy6YJSD/TRhARPS+r+vskGJJJkM0Wl7ul51k1ItvYm9ZXrt0mSdg+k9NmrH9EnX7JaklQTDWgsk9e+kYyGU3k1J0LqGT3YiMSYiTvW37lzQOGAq7VtCT20b3Ry+d9ftEbPX9HIpH7MuEJfekoDEkkau6FTkXUNCrZMPxcEXUdVYU+jh7yXJCl2SDOdSNDVxacv1v/cuGOydtrSejVXhfT516xXcyKstprIUT4SPFOhgKv1C6r1L69Yr3yxpNaasPqTWd2yrV/RoKtVLVW6aH2LrtrcPbnNO563RNdt6ZnyOs9f0ah4qNz96TBXtLqOArfs16Eti5yupNpzzCrG3BL0XD3vmAZt3jsypb6kIS5rpfy+pPI7R6csq7m1W585b6WWNx28Vu0ZTev+rhH1JbNaWBvV6tYqNVZNNECoiQb1xpMX6YVrWuQYo9pYcOYPDJgl2moi+sC5y/WmUzoU9tzJ71mZfEGb945oR9+4IgFX69qr9Vfr2xS4cvuU7bN/6NKlz2vXx/+0dbLWkgirmu9rPuN6AQAAAAAAAAAAAAAAAAAAAACASlHWmabGmIsk/bOkRQf2bSRZa22inDlmo0e6R/V3v3xQd+8akiSFPEf/8+YTdM6qJknSWLagaNDVx168SsOpvEKeo0X1MWVzxSd7Wd8U+lLTa71pH5JgNir0Th8/+cPUnq6BZHZa7doHu/XmUzv05+2D2j+SkST96t69+uD5y/Wf12/VaLqggGv07rOWqn8sq0u/v0lFa/W20xbr1ccvkOcarW5NaEN7tUIBd9rrA0dbKXOYz/uSpjR8OlR7bUSffPFqffTnmydrx3XUaHXrwVPyWLqglc0JfezFKzWcyisW8tSaCGv/SEYf+un9CgccffttJ+n0YxqO+vHg6esaHNdf/fBePbBnYkJ8POTpr1+4Qv/0my2SpHNWNurM5Q1a2ZpQoWhVEw0onS+qvTaiR7rHJEkrW+J60ykdchzj23FgliuUVBrPT68f4TMImM1OP6ZeN2/r04N7J5qNnHFMvUbSeY1l8yqWpq9fGs/rrCX1qopONBMZGs/qM799RL++f6J5mOsYffpla3XRhlZVRw82HKmPh2b+YIBZyBijpgNNex5327YBffAn92k0M9Fgb0VzXD8+b42mfUsslLShqUoB1yhftEpEPL3n7GUKe055wuPwLE1IAAAAAAAAAAAAAAAAAAAAAACoFOW+3f2XJb1K0mZrmWHwTDy4d2SyAYkkZQslffH3j2pde0KNVWE1VYX1hWsf1UlL6hQJuipaq8tv2q4vvHajj6mPLHZii7Lbpt49PHpck09pMNtEj2tS5uHBKbXYCc2SpGLJylorz316k8i29yYVcB2FPEfZwsFZoz1jGX3xdRt17qpmdY9mdPWD3RrLFvTVG7bpDSd1aEVzXPtHMkpli/rKDdtUKE18pH33tl2SpCvecbJOWlx3FI4WeHq8+rCcWGBKEwC3Liy37sgTmF+6sU0L66N6eP+omhNhHbewRs2JgxM622rD+rdrH9GxC2sVCTrKF0v6xs079IHzVkiSMvmSPn/to7piQbWqwtw93i937xqabEAiSclsQdc/3KtTltTpjp2DumVbv168vlWfvuph1UYCeuMpHfp/f9qus5Y36IPnLZe10kmLa3VMU5WPR4HZbjzoKLGyVnrk4PWqHCPVh4+8ETBL1ceCWt4U17mrmmXMxHe1h/eP6sRFtQo2RyfGfung193I+gbFGiKTz+/fMzLZgESauH798vVbtbo1oeMXBQXgmdkzmNL3b9892YBEkh7rSarXk6pC7pSmfG5bTNftHdJ7zl6mkpVyhZL6xrKqi9H0xw+Lzu1XpC6nEn8iBAAAAAAAAAAAAAAAAAAAAACgYpT7Vq9dkh6kAckzN5DMTavt6B+fnGTTlAjqQ+ev0J07B/XV67fpl/fu0wfPW6G1bdXljvq0hJbXKvHixTIRT07UU/VLlyq0rDKzonLYfFG5vUk5MU/VFy6RE/VkIp6qX7JEgWNqdOfOAb3vh/ford++U9c+2K1kOn/Y1+kZTev6h3t0/cM9evl/36q//dkD+usXrlRDfGLS59KGqL76xuO0qD6mc1Y16cXrWvT/2bvvKLuu8v7/71Nu73On96KZUa+WZMu9yN0GDInpHUKAhJKEBEhIIKR8fySEEEgILfRiunvvVZas3qf3dmfm9nbK748ZjzwegWVZHsn281rLy7r77rPPPlenaq3ncz591VK8To1M3sS2wa1r/PvdR9A0hYGp7IJ1xNL5l/W3EOL59Iib6LtX4GwIgKrgXBKm5K1L0QO/v6DS69LZ0lLK+85r5trV1dREvPO+rw57+cTWNrb3TPLV+zr49TODfPSSVrb3xOb6dIylSD2n4FMsvt7JzIK27ok0NZGZgvfVtWGKhsWbN9aRKhiMJfO84+wGnuya5H8f6sKlqyyvDi72tMWrTMY0sc6rxrGmFDQFrcxD4G1L6UTOD+LVp70yyFUrq7hpez9fufcoiZzBWzbV43VpqGUe/G9filbmAU3BvbYMzyV1qA5tbvnjPduNJ/Ok83K8CHEyMkWDnon0gvabe2OE3rEMvdY3c3+8NIJyTRO638H3H+/lvx/oYCSe44b1NaiqchpmLrxlBRQNkH8mFEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHOGPoir+9TwO2KojwEzFXo27b95UWexyvOknL/grbLllVQN1tgvLMvzidv2sXHL23lgxc0M5ku8I+37mdZVZC6Eu+CZU83K1Ugu38C37pybCB/dArPshLwOk731MQZyjYs0ttHmb65E2xQQ04ib16Ko8KLHnLxTN8Ub/nWU5iWzUVtZXSMp3i6Z5L2ygCbm6PUzx4H48k8n/rFHnKGhUNTSeUNUnmDrz/QwevWVnNBaynr6iNE/ceCG8JeJx+8oJlrVldhWjY1YQ/be6cA2N0/zTktUZ7ojM2bb2PpwmNWiJeboiloETeBxhCFoRSJu3qIvLEVPew+qfF6JlJ87KfP8N5zm3nf+U2kcwb/cvtBPnPNMr77WC8AV62spNQvb44/ndbVRRa0nddaOndeeuP6Wj7zm720VwT44AUtqAoMTWX45js3UOp3sqI6hKJI4a14aWwUYhMZqhMFAufVYMTzTO8cpez8mtM9NSFOOU1VqA67edOGWtorAqTyBj/b1seewTi/+tA5RBM5nLV+9OVRcp3TpA5P4Sn1ougzGaAt5X5UBazn1NyvrQtTHfacpi0S4pWtJuThwvYyeh7vndf+xrZyph8ZxBN242mJUBhL0zmcoGsszRdfvwLbhrsPjKJJAMnpJyEkQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcQZY7FDSP4JSAFuwLnI635F29AQ5nPXLecr9xwhkTO4oLWUP7mgGac+80bt8WSeqUyRv7/lwLzlRhO5My6ExLZt0ttGKPalKPal5tpzy6bxb5bCO3F8xfHsXAAJgBUvMPnDA5T/+XoAHjkyjmnZNES9tJT7+dJdh+eWXVkT5Nvv3EhlyM3B4QQPHZ3g9Wtr2N47Odcnni3ygyd6iXgdXLa8csH6FUWhNnLsWFpbF+K/3rKOf7rtAO85twnDtHi6Z4qI18HnX7eSZZWBl+mXEOL4bMMi+fAA2V3j89rzPQn0tScXQjKcyDGeKvL/nnM8AWQLJgAXt5fxoQtbcMwWVYvTY119iL+7Zhn/fs8RskWTa1dXsbmphN/uHKQy6MbjnPn7OTya5PBocm65y5ZXMjydZWVN+DTNXLya6IZN2dNjFAfTFLsTAGiAe2UpNJzeuQnxchiazvFf93csaPdnTazbeskWred0TpFZEsZXM3N/uKI6yFfevJbP33yAWLrAmtoQn75qKS3HCZ4UQrwwn9vBH22oYzyZ5859Izh1lY9cvIRI0iBzcIrsc/o25EwSep4/++muubb3nddEQ9S36PMWx9gSQiKEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCnDEWO4SkxLbtyxd5na8KIY+TLc0lrHjnWVi2TdCt01h6rEgm4nPg0BSK5rHCjbYKP36ndjqm+wfZhkW+O76gvdCfhM1Vp2FG4pXAShXmAkieZRctrHQRyjw4tJki+6tWVvL9570Be99ggkMjCSpDbuK5IgDbeyc5v7WUn27rn9d3fX3JH5zHcDzLQ4fHuWPfMOe2lPL9927C79J5y6Z6RpM5/C4dTVEYSeSoDLpxOc68Y1C8Oll5g0JvYkG7MZY56THdmkZbhZ8jo8cCoxyaQtTn5Cfv34xbVyn1u056fHFqBD1O3nteE+e3llIwbVyawh37R/i7a5fTWu6nYFp4nRqZ2fAYgJqwh6Jp4XdLJpw4NaIODUYWnm/0jHEaZiPEy6884DruuVXLmdjPDSABsMBOFeY+OjSV85aU8t9vW088W0RTIeRxzF/EshmazqIoUB32oCjKy7o9QryS5A2TkXgOt0OjIjgTthf2OPjjDXXcsK4Gt0OjscSLsn9qwbLKSIZVa4Lce3QCgOZSH+HnHX9CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBCvZYsdQnKvoiiX27Z99yKv9xVv/1CcxzpifPexbsaSeS5sK+NPLmjmnJZSAFRF4a+vXMq3H+lmJJFjRXWQ92xppOQMLA5XHRqelaUUh9Lz2l1LwqdnQuIVQQu7QFfBOFbUqXp1tNBMAf35rWX8531HcWgqOcNcsHx+thi0pdSHrioMTGXxOnWuWFHBPQdG8Tg0/uLyNtbVh3/vHPKGyVfv6+Cn2/oAeOjIBD99up+fvH8zQY8Dt0PjgUNjfO7mfYwl81y1spK/uqKdplJ5q714+akeB57lUVKPDc1rd9YGTnpMr0vjvec28cMne9k/lKAy6Ob95zfh0ODt33mKrcsr+eOzarl0WcVLnb54CVJ5g9t2D/Evdx4ilTO4ZnUVYa+TL99zFIAfv38Tf3VFO995tJuBqSxtFX7ed14zdx8Y5QPnN5/m2YtXi4yqEF4Sxjj8vILvyJl3LyrEqbCk3M/fXbucrz/QMXdufevmeiYVmzKvjvWcAB7FoeIq8cx9tm2bm54e4F/vPDTXFvE6+NWfbqG5zM9YMsePnujlfx/uQlcV/vzSVv7orFpKfHI8CdEbS/Nf93fwm52DRLwO/u7a5Zy/pJTP37Kfew6OzfVbUxfmR5cuXbC81hrmwPRMwN7yqiAfvriF2hLvos1fCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDiTLfYISQfAT6lKEoBKM622bZtBxd5Hq843RMZ/vXOQ9j2zOcHD4+jqyrLq4KEvE6iXieDeoY3rq9BVRV0VaXE56R89q3AZxrvmjIK/UlyBydBAd/mKlzNodM9LXEG00s9RN+2lKlfHMHKGKh+ByVvWYoemdnHV9WG+MWHzmFn3zRXrqjkjn0jc8sG3TqtFTNBIEsrg3zvPRv5+5v3873He/jwRS18+KIllPic1Eb+8Fvm+2IZfv5039zn2oiHrcsr6ImlCXudHBlN8qEf78C2QVMVHJrKE50xckWLljIfTl17mX4dIUBRFXxnV1EcTpPvioMK/vNrcTac/CW2tsTLvoE4l7SXc8nScgB8Tp1c0eYjFy/hzn0j3LpniDW1IUoDZ+b15rXg0FCComXzV5e3M5bMc2A4QcBlUR1yMxTP8R/3HOVjl7Zy/ZpqNFVB1xSmM3kcmsLSqpMPqRHiuXKKTe6cSlzxPOZIBjQF5yV1HLENSkeTtFbIviZeXfxuBxubIrw730A8a5ArmLSU+Tk0lcW6pIaKB4ewUkVUr4779S0cyucJT0JdiZfheI7/uv/ovPGmMkUODidoLvPzwKExvnp/BwB54F/uOERdiZerV1Wdhi0V4sxhWjbfe7yHX+4YAGAiVeBjP9vF996zkXsOjhF067xxQy0+l07RsBjzaYQuqSP30ACYNmq1j+S6Uhq64c9rgpR4XayuCeHQ1NO8ZWLuH7uEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCHHaLWoIiW3bUn14ksaT+QU1GfcfGiWWLhBL57nn0ChlAReKouBzalSGPKyuC5+WuZ4IPeqh5MZ2jMkcqAqOUjeKBDSIP0BRFDzLojj+bB1mqogWcKKH578NfnVtmNW1YS5ZWk5rhZ/f7hxiRXWQP72oheaymRASVVU4r7WMX35oC5mCQWnAhet5+17PRJpDIwlURWFZVZC657wZ+9nD8JzmKGvqQvzwiV6+9UgXH7mohfNby3jzxjpu3T3Mn17Uws27h/jdriE0VeFDFzbzgfObCXudL+vvJF7bHGVeSt6xDHMyh6Kr6FEPin7yRZV9sQyT2SIepwbYqIqCjc3Hfr6LomnxjrMb6J5IE88alMoVftEVDIt7D47yZFeMiWSe22fDlzY3lbC6JsTm5ii/2TnIZLrA6toQJT4HewYTPNYxQXOZj09ubV9w/hPiZLl0lUPFHI4LK6lVNHCo3Dme4Is/2MeScj9ff+s62isld1C8uiwpC1Ab9nBkNMUjR8Z5sitGU9THHsVE3xylyeOiotLHJ+47zFPdU4Q8Dv7zzWtZWnn8i2bBtDBNi5u2Dyz47o69wxJCIl7zxpM5fvXMwuOjczxNxOvgzy5p5esPdBBLF/A5NdorA1x5fjXpxgB9oymenk4Tmkhw7eoqSnxOKoJuCSA5U0gIiRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQghxxljUEBIARVGuBy6Y/figbdu3LvYcXolKAwuDC6pCHkJuBw8eHefrD3SiqQo3nlWLU/PQMZbkujXVp2GmJ05166h+B4pDlQASgVU0oWiheh3H/z5vggJ6xI0ecf/BsepKvHxyazvvPbcJj1ObV2RfMEx0VSXicxLxLTyuDg4leOu3n2QqUwSgOuTm++/dRGtFgLqIhxvPquNnT/dzXmspX7rrMACf3NrGM71TfP3BTiqDbv7+umXcc3CMQyNJYOaN3V9/oJNNjVEubC87qd9HiBdiGyZW3kL16iilHlCVlxRAEs8U+MlTvTzdM0WmYPKmDTWMJXL86M7Dc32++1gPX3z9CkoDrj8wkni5HB5J8MmbdvGxS1v5wRO9c+1PdU+yri5M0bQAeN95TYS8TkJeJ0sqAlyxvIISv/ydiVOrvsTH4eEE/oCbkN/Fo10x/u2+owB0jKX497uO8J9vWTcbaiTEq0c6Z7Knf4q8YfHtR7pxairvO6+J162pxq8ofOzXe9jWM8UFzVEag26+eNtBvvPOs/jIJUv4/55zTQ17HYzE8wzFsyyvCrCjd2reetoqJO1LCK9Tp6HEy97BxLz2kFvnwxct4b8fnAkgAagIutnbEWNlZYCuTI4R06A/nacnlcfj1LiwvVwCSM4kEkIihBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQpwxFjWERFGUfwU2Aj+ebfqYoijn2bb9N4s5j1ca27ZRbTinpYQnOicBUBX46yvbificHBhKEHTrfOzSVnYNxNl/aJQL28oYmMzQUOo7zbM/vuJ4htzhKTLbR1DcOoELanG3R1CkCOg1x7ZtCr0JEvf1YcRy+M6qwLu+HD08EzRiZorkDk+RemQAxaURuLgOd3N4XriCYVrEs0UCbh3ncwJHwt5jISMTyTz3HRrlp9v6aSr18a4tjaytCy+Yz8+3988FkAAMxXM80RVjIlXge493s6Y2zBdet4KBySwAm5tK2NE7xUNHxgEYjufY1R9nW/fkgrGPjiUlhES8LPL9SZIP9KF6HTjKvWSeGUXxOQheXI+rKYSiKS9qvNFEjjv2DbNnIE5TqY9zl5TSGPXwzYe7FvQ1LZsXN7o4VbpjaepLvBwcTi747pGOCa5cUcEFb1zF/YfGuKCtDMOy+e3OQe47NMoFrWW8aUMtzWX+0zBz8WqUK5qcXRrA3Zkgt7OPCwMOnn7zRj75VCf3HJngoaPjTGUKeJye0z1VIU6ZkXiOW/cMcfPuIRpKvPzl5e185d4jRE3wPzOOuT/Gv5YF8byjlfxTI2i9Gd7ZVoWaKnLligq8To17D4zSEPVxQWsZn/3tXtwOlTdvrOfm3cPEszP3pOVBF5evrDzNWyvE6Rf0OPjM1ct453e3UTRnQitW14Y4NJJkQ0OEidRMAMm/XNzK5oSFP1HA058h9Mw4dsHiovWlHPVr/Hr/ML/YPsjbz2ng4vYySnwSznbaSQiJEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCHHGWNQQEuBqYK1t2xaAoijfB3YCEkLyBxRNi+mcQU3Yy6evKqdoWgCYto2qKpQHXPzlFe186c7DJPMGALsH4tjAJy5rQ1XPrPJw27TIHZwkfnv3XFus9wCl71mJuy1yGmcmTofiSJrxb+8FY6boKHF3Lyjg21hJcTSNMZFj+jcdc/1jPfsp+8BqXM0hADrHUnzv8W7uOzjGWU0lfOjCZpZXheb6Hx5JsKN3ioGpLP/9YCcAu/qnuWv/CL/58BbaK4NzfU3TYs9AfN78XLqK36Xz1m8/iW3DXftHCXscfPrqpQCc1VjCfz/YMW+ZzvE0q2vDc8Ekz2qInpmhQOKVrTieYeLbe0FV8J9TNe/cOtG1l7IPrcHVEPwDI8xnWTY/frKXr94/s1/vHojz6NEJ/vbaZayrj/C2zQ38xS92k8qbAPhdOtmiQdDjOLUbJl5Qic+JU1NpKV8YJLKyOohlw5fvOcpbNtUykcrz+VsOsKt/GoB9gwkePDLON962nno5N4lTIJUrEjw0Ter+fgCMMcj3JPjSW5ey9sgEa+vCBN2L/eghxMvHMC2+82gX33pk5rq7ZyDOw0cn+O7bN1D/1Dj5/aMAqONZij0JghfWkjg8hfupUTwW3FKu8y93HWZFdZCHj45z295h3ra5gaNjKd5zbhO/+fAWDg4n0FSFZVVBuY8UYtbmpii/+8i5HB1N4XfrlAVcfOPBTsqDLgIunfMbSzivN4vSlcBzfQvx5zxL6relqb68jgcOj5MrWuzsn+bz1y/nXVuaTuMWCQDbkhASIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOJMcToqAcPA5OyfQ3+gn5jl1DUODMX55Y6Bee3ntES5dnU1pQEnBcOeCyB51rce6eLNG+uoiXgXc7ovyJjOkd4+Or/Rhnx3XEJIXoOKI5m5ABJnXQDPiii2bTN9Sxd2zsBMFecvYEP28CSu5hDTmQJ/+Yvd7Jwtqr951xDbumP8+k/PpTrsoXMsxVu/9RSvW1u94PjJFEwODifmhZAYts0N62von8pw+fIKllUFsG3Y1j0592Lm8oCLGzfWEXDprKsPM5UuUBFwM5LIzY3zRFeMH71vE/uH4nNv475+TTVrauWUJ0694mgGO2/iWV1Kdu/E/C9tyHdMvagQkqF4lv99uGteWzJvMDSd4z/v66Ctws8XXreST960m2tWVaEoiry4/DRZXhVkVW2ImrCbNbUhds+GKDVEvWxoKOH/Hu9mJJGjvTLIQ0fG5wJInnVgKMEzfdMSQiJOCUfGJLttZH6jaaNO5lhbF+IzVy/D75awIvHqMTid5XuP98xri2eLhAs25oHYvHYrY6D6HISubiL1+BDZHWO4Lqwgb1g80zc91y/o1ufuF5vL/DSXLQyZEuK1TlUVlleHWF49c6xMpQuc1VTC/zzYyUcuXkJ1EZT7hghcUocxllmwfPTgNOc1Rbl3NjDy6w90cs2qakoDrkXdDjGfWSwgdwlCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxJlhsUNI/gXYqSjKA4ACXAB8epHn8IrkcmgL2zQVBWgrD7BntvD4uZyaSs4wF2F2L5KioroWbo/iUE/DZMTpYmYNCv1J7NxMeI7i0nAvKyF+Zw/BrQ1kd4/jagkdd19R3TNtfZOZuQCSZ43E83RNpKgOe9g7OE0sXaBg2jj1hfuXph5r2z8U578f6GBjYwnvOLuBHz7Ry30Hx3jLpjpqIx4AQh4HH7igmX+/+zC5osWNG+vY1BRhY1OEv7hpN8++vPnC1lLaKgL89iPn0j2RxuvUWFIeIOSRsipx6qmz506txI0Ryx2nw4s7t2qKglNTyRvWvHZFmfn/kdEUAJ/Y2kYsmcMwLaYzRSpDnhc/efGSpHImQbcDr1NnTW2Yi5eWY9uQzBXRNYWDw0mqQm6e7pki4D7+Ld9wPEsslSfql8Jb8dKoKthODZgfHqboKv/4+pWsqgmflnkJ8XJRFQVdVSma85+3cpaFT1PmQvaeZWcM8j1x/OdWk7i/n6y18Dkt4HawqankZZ23EK82EZ+TllIf48k8P3yyl29cvRxXSwgt4sLKGAv6K26NTPHY8efU1bn7XHH62Kb1wp2EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCLEoFjX1wbbtnwJnA7+e/e8c27Z/tphzeKVaWR3CoR2rjFEUuHp1FZZlc8feYaJ+J+XPe3Pv2zY3EHAtds7MCbBsPGvKZmJoZikuDb1MCthfS7K7x4h9dx/GZA6txI1neZTMjlHgWAFSvjuOe1nJ/H3FqeFunynOdOkq6nEKxtz6TEhJYbb48859w7x5U/28PlGfkxXVQQAGpjK867vbuO/QGFOZIl++5wjjqTwjiRz/ce9RygMu3A6Vd57TwDce7CRXnJnfz5/u5+M/301rmZ/ffuRcvnLjGr73no186Y/WUB50Uxvxcn5rGRsaSiSARLxsHJU+9BofqkfDu7583neKW0OLvLhwiaqwh09sbZvXVh5wkS8eKwy0bBsFyJs2bqfGgeHESc9fnLyHjozxvw938fGf7cLj1FCAkEenPOBmcDqLz6nREPWSzhvs7o9zQWvpvOW3tEQZS+ZxahICJl46BfBtrpzXpvodaF6dJzpjmJZ9/AWFeIWqjXj40IXN89qqQ262TaXwnVs9r12v8GLE82hBF4XeBMHL6zmrPjKvT1XIzXA8Qzw7P8hHCPHC+qcyXNhWxuB0lp7pLN71FZhTefSwC8X5nPscBZwbynmyZ3Ku6YMXNEsY2xnANOXcJ4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKcKRYloUJRlCuAgG3bv7Rtexi4ebb9bYqijNm2fc9izOOVKlso8kTnOJ+6cimHhhMUTZtVtSH29E9zbkuU+w+Ps64+zDvObiCWLjCayLG8Okhl0EV58MwL9rAtCzORJ3RlE8ZEFsWpovodILWprxnGdI74nT0ApB4bInBBDXq5l1znNACKpoKmgGmTfmqE0JWNGNN5tJALd1sEZ7UfgMZSH+89t4lvP9o9N/bW5eUsKZ/5fkVNEJeuMpEqsKtvmr+8vJ3O8SRLygNctqyc5rKZfp1jKSZSBa5bXcXjnRNzY7l0lWtXV6GpCv/z9g2MJXLE0oUF2zMUz3H5ikpW14YBmEwXGJzKUB5w49CluF+8vLSQi9K3LaMYy1LoSxK6qhFjIjdzbvU5sE+i8P+G9TXURjzcc2CUqN+Jx6Hx3w92AlDmd1Hqd/FEZ4w79o3QWu6Xt8efJk/PFtAWTItf7hjgqlVVuHSVZZUBbtoxwKeubCeWLlAb9vKpX+3hbZvr+fBFLXSOp1hfH2EkkeP81lICEpIkTgHFqWEXTUJXNlKcyKJ6dFSXhm3ZFIsmk+k8ZQH36Z6mEKeMoihcv7YGh6ayZzBOdchNwO3gkY4YV25qJHR5A8ZEFi3oxDZtrGSBwlAavcSNMZKh0uHnE1vb2D8YpyrsocTr4FuPdLF1eeULr1wIMSdbmAlbq4t4+PBFLaxxOLAKJsXhNLZhEbi4HitZwDYs9KibcZfKWzc3MJUusKI6yNq68OneBAFYpnm6pyCEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiFmLEkICfB647jjt9wG/ASSE5A9QFZU1dRH+7nf7qSvx4FBVbt49xH/88Ro8DpUbz6qjfzJDa4Wfrn0j2EDAqXNRW/npnvrxqQqOCh/ZAzEK/UnQFHzrK1B8i7U7itPNNm3sgjXzwbJJPjiAGnbh31JN4s4e0ttmgkdSjw5hTGTJHpoi8oYlOMq988Zx6Rp/elELZzdH2TcUp7U8wIaGCGGvE4DlVUF++oHNfPuRbnonM5T6nbxt8wocqsLhsSQPHR4j7HWSLZh8YmsblmXPZeH4XTp/cXkbP3yil7aKAH/z67380YY6qkNuhuK5uTmoCtREZsJ+DNPi0Y4JPn/LfgancrxhfTUfvmgJDVHfy/6bitc2vcSD6nFgZUxy+ybI9yUA8K0tR/O++ICJsNfJ5SsquXxFJV3jKX63a4imUh8rq0NcuaqSP//pTsJeJx+/rI3mUh+hk1iHeOnOW1LGzbuHOXdJlHX1EX76VB8Fw+KPzqrlTRtq+c6j3TzaEeN/376BH753E994uAvLsnjnOY1kCwbr6yOsqQud7s0QrxIOn45e5iW3d4JCfxIb8K2vwNYUDFshnilKCIl41Wkq9XFRexnZgsETXZO0VwbY2FTCM9kCG50K6mAKc18OV0sYR4UXY9c4vg3lxO/swVOzhO8+2kVVyMOO3ili6QJv3VSPzynPREK8GKqqsL4hwud+t4+/uXIpxbxJYTCJlS7iWREle2ASYzyDFnJBS4gdqSy9sTR1ES/rGyKsqJZ7oTOBLSEkQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcQZY7EqnLy2bY8/v9G27RFFUaQ6/3nMTBEra6D5HKhuHZdDozHq49NXLeWu/aOAzaevXkpTqQ9VUQh4dL5w6wHed14zm5tLcDk0Ai6dsuCZWeiph1zkMzFczSFcDQHQVBSnih5yne6piUWih134NleSfmJ4rs3OFHG3hdF8raSeGKIwkKLkbUtR3Tpq0Inmnn+6OjKaZN9gHNuGlTVBLltesWA9iqKwvqGEr9aGKZgWXqdOPFPk3+45wvce7+Fz1y7nK/fu5K8ub+dXOwbom8zw2WuWcd/BMf74rFq+dn8HLl2lYzxF0bT57a5B/uqKdv77wU7Gk3k8Do1/esNKWsv9WEWTyeEU2/aPMp4sUDAtfv70AJYF//SGlTh17WX/XcWZzUwXsXIGmt+J6jr1+4Pq0VFUcLWEcNYHAFBcOqr3pV3qG6M+nJrKxy5Zwr7hOO///nYAEjmDf73jIN9651msq4uQL5rsG4pzeCRJxOdkdU2Imoj3BUYXL8X5raXcsL6GljI/X7rr8Fz7dx/rIex1sqEhwoVt5ZT6nWxoLGFzcwmxVIGpyQwOpwN0FdOy/8AahDhxEZ+buCuNsyUycw5SFRSnRk86z3/ed4RYKsfnrluBrqkveV22ZWPG86CAHj4z73fFa4dlQ8TnZE1diDv2jjCazPH561ewO+Sk5ep6qtAo7I+R74oTurKR7L4YaAruKh9fedNq7JRBfyJHzLaI+p1MZvK04D/dmyXEKWGmC1g5Ey3gRHW+PM9Dg5NZgm6dr755Hf929xGq19Wx6mCMwAW1GBM59Aovvk2VZCJOfj04xXA8yzvPqWdLcxk+t4T+nCkswzjdUxBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxKzFqrhwK4qi27Y9r6pAURQH4FmkObwi5LvjTP32KMZoFldLiNC1zaQDDn65o58V1SGuX1OFQ1eYShfpHE8R9jp4rCPGhy9awtfu7yCVn/mJ/S6dH7/fxZq6yGneooVUh4a7rYTM3gnMeB7FreNdEcVRKsXqrwXFkTS5jmmc9QFUr4Ps7nH0ci+Bi2pxVgdwVgfwrClDURUU/fiFyvsG47zlm0+SfM7+/pMPbGZ1bXhmHabF4ZEkPbE0UZ+TZVVBwl4nAAeGE3zv8R7esK6a8WQORVGYSBfom8wA8N8PdPDhi1uoCLr57mM91JV45or0MwWTf7/7CG/aUEtdxMNF7WU0l/kxJrJM3t1LYd8E7wi6uPqSpXxsWxedsQy/3jnIn1/aSl2J7N+vZfnOaaZ+24ExnsW1JEz42mYclac+g8vZECR3YJLieBZUG097FGfNSytknsoU+OGTvXzm6qV88+Hued9ZNvRNZphKFXiyJ8ZHfrJz7rvVtSG+8fYNVIflMv9yqQp7+KfXr+Rvf7tvwXf3HhzlS29cxb2HxrhpRz+ra8MksgZTHVOEHhnCHs1CrZ/JrfXUtEdPw+zFq03eMNmez7PWoaCM5bEKJlpTkGeyBSwbfvnMIH960RKqXuI5wUjkST81QvKhARRNIbi1Ae/6cjSv4xRtiRAvTrZg8o+3HeSqlZX80Vl1LCn38ZV7jtI5kQbAqSvc8q7NlNf5ST86hBp0Enn7MhwunRV7pinsmWCp34l6eT3fHprk1t3D/PMNq2gu86OpymneOiFOjm3b5Dunmf5tB8ZEDldbmNA1zTgrTu39r2Fa7B2K86W7DvOpK9rpHE/x7QPDfPPGdvLbRsC0cJ9VyW8m4/ztL44C8OaNddx7YIy1dREJITmDWEbhdE9BCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBCzXvqryE/Mr4FvKYoyV3Ey++dvzH4ngOJ4hqlbOvCuKiNwSR2uphDTd3RRTBd5omuSf77jEF++5whfvPUQ/3b3EbpjGRyawqqaIEdGk3MBJACpvMHNu4dO49b8frZhkX5mjMz2Uey8RbE3QfzOHsyUFJ28WpnJApk946R3jDL+zT3Eb+1i6udHSD89QviGJUTf2o6rPjjXX3VqvzeABOB3uwbnAkhgZn//1Y6Buc/3Hxzl+q89ykd/spO3fOsp/vn2g0xnZvavyUyeT1+1FFDYNTDNF163gobosYCQqUyRf7/7CANTGXRVoX8yy9LKIM/WgKbyBt97vIf6qI/mqA9jIkv8zh5yeyfABj3qpt5Q+NGF7fzjhUtoKfPhcbw8b/0WrwzFsQzTd3bjXVtO4JI6nPUBpm7twsoU5/WzDYviWJrCUAozd3JvAi8OpYnf1YOdMTBjeSZ/eRRjPPuS5u916iytCrBnIE5F0L3g+6DbwXg6zz/ccmBe+56BOAeGEi9p3eKFKUBtZGGoQ0uZj7HRFPVF2BzxkyuaZMczlDw1SmD2PiPQXoJ6fz9TY+nFn7h41emPZQhmTHK39WDF85AxSN/czaUlAQCqQm7czpd+PcwdmiR5Xx8YFnbeJH5rF/mu+EmNZWaK5Hvi5DqmMKbzL3lu4rWprsTDlpYot+8d4T/vO0rXeHougASgYNj0DifIPzKE96wKPO0lmKMZCl0zASTYYCULGL/u4M21JQwncuwfSvDI0fHTuFXitcy2bIpjabKHpygMpbCL1oseoziQYuJ7+zEmcgDkj0wz9aujmNniCyz54jzWMcFoIsfAVJYjYymcusKXzm4i+9NDKKaN5neSvruXav1YUNXPt/dzUXs5fpeEV51JLPPknn+EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCHHqLdZrX/8W+CLQqyhK72xbPfAd4O8WaQ5nPGM6j2dplMT9fWABmkLw0nrIGVyytJyfPd1P4jmF6csqg4S9TjY0RHjg8MIite6JzCLO/sQVJzKkHhkEyyY7fWzexaE0WpvzNM5MvBxswyL58ACpJ4YJnFuNlTm2D1uJAvFbuyj94Gq0F3E26o0t3Le7Z4s9h+NZPvObfaiKQmPUy0Qqz03bB7hhXQ1Lq4KU+lx89jf7mM4U+dy1y/nsb/Zx7eoq2isCHB5NHpubZfPXVy7ln24/yM+29fGZq5fxRFeMfNHkPec2cU51iMQD/WDZ5A7EAHAvK0FxaiTumTnNXeLRueLGFZQGXCfz04lXCTOex9UQJHFvL9iArhK6vAEjnsfpnSl+NNNFko8MkHp45tzoWhIm/PolOEoXhkv8PlbeIHFvL3bWILtvYq49e3QKR+XJv3Xe49T42KWtfPAH2/n4ZW387e/2Ydsz362qCVJf4kHXYDK9MEjqueFY4uXRMZ5mS0uUHz/Vx8RsmFfY6+Cz6xvI/6YDezKP4tJQSwJ4nCqOlgiJ+/pm9kVNIXhZ/UwIWPnJ7yNCADh0hcaRHPmsQe7A5Fy7a2+M1dVBPr61jYj3pd3n2aZF5unRBe3ZPeO428KozhO/mTCmc0z9roP8wSkAtLCT6LtW4Kzyv6Q5iteeypCHP7u4ldbyALv7p3Hq88N2HJpCq6Hgbo+Q3TVOcTAFgF7mIXhpPYl7+2Y62lA2VeB7W5fzo/4J7t4/ys0fPU/uI8Wiyx2aJPaTg2DYoEDommb8mytRTiBY0bZscocnKQymZpZ/jmJfEnM6j+Y5NeEfo4kcf/WLPfzddcsBuHPfCF96/Ur8e2IULOYFVC1LWZQFXIwn89g2uHQVzykIxhKnjl04tQE1QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQ4eYsSQmLbtgH8jaIonweWzDZ32LadXYz1v1IoCiQf7J8JIAEwbZIP9BNuXsnr1tYwksjx4OFxPA6ND13YTGXQRdd4mlt3D/H6tTU8cnRi3nhv2lC7+BtxAqysAZZ9/HbxqlMcy5B6bBDFoWGbC9+ibeVMMBfuD8czlS6wfzDOpcvKufvA/CLkP95YB0AyZ3BWYwkrqoMcHknSUu6nvSJA3rB427ef4prVVUxnimxuKuH+Q2Ok8gY/397Phy5o4bzWUganMmxdUcGFLaX4XDpnNUYYmMpSHfbwlo31uBwquqaSPTxJ8t4+fJsq0QJOzEQBZ12AxN29c3Oyswb2Pf1YDWFUz2JlPokzUerRoWMfDIvkQwO4WsNzTYXeOKkHB+Y+5zumSW8bJnRlE4qqnNA6rLyJnTMXtmde2rk1UzBI5Qz+7JJWPA6NH753E53jaRyaQsDtYGAqS23EyxvX13DT9mPboKsKS8qlmP/lljdM9g7G+Y8b1zIwlcW0bDZXBin+shN7Mg+AnTeZ+vlhou9dSeyh/pkAEpi9zxgg+v6Vp28DxKtGRdBD6jjnGztt8MXXrcD/EgNIAFAV9Cofhf7k/Gafg+JwBke1D/UEiuQB8r2JuQASAHO6QOrRQSJvaEXR1Zc+V/GasqmphKjfyYXtpZimjaoce9xRFYWwU4OsNRdAAmCMZzHjBbSwC3N65nytKAreO3u5cGs1v9s1RCpvSAiJWFTGZI7JXxw5FiBiQ/y2LlxNIZw1x7+vs4omiq6iKArGRJbYjw8SvLh+QT/FpaG6Tl3wRzJnMJbKoyo2/3Ddcv7j3qM0uJyQXXg/rOctPLPXh9qwhxU1oVM2D3FqWJaEkAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQZ4pFrYqfDR3ZC6AoyjeBDy7m+s90Vrp4LIBkll20IGfwX48cYUNDhDduqMGy4Gfb+lhbF8Zta3zr0R7+88a1fOSiFm7aMYAC3HhWHU2l3oXrsGzi41nMokkg6sZ1it5C/GIobg1XS5h85/Rcm+p3oIZOQXGqOGNYBZP80SmMyRxYM0Xwmt8JKvP288D5NWi+F94P0wWDr953lP97vIeL2sr4yMVL+MX2fmzgzy9dwnlLSgGoCLioDrn58j1H5pZtjHp52+YG9g8l2Lq8AoCqkIftvZMA2Db8z0OdhDwOvnT9Cs53u0n+/Cj5Wj/tdQFa8wp6HhyWjabNFCYXh9IAZPaME7y4jvidPdjGwpCV4mAKK1uUEJJXmdR0nkyigDfgwB9x/8G+Vn5hUb6VLmI/J4yp0J9a0Ce7d4LARXVo3hM7T6sODc/aMpL39h1rVMBZ6Tuh5Y/Htm1+s3OQz/5m31zbhW1lNJV6uX3vCGPJPH9/3XJK/S4+evESvA6dXz4zQF2Jl89evYzlVcGTXrc4MVUhNz8YTPDF2w5RX+LFoan4VlWzceJ5OW82WKnCsQCSZ5sLJspxgsGEeLF0VcHdHiG3d34onntZCV+9v4NPXtH+ktehKAq+9eVk94zPhS6pAQea30mhP0mhP4nq0XA1h9Ff4NxsDGcWtOW7E1gFE01CSMSLpKoKrRUBuifSPNUd4x9ft5LvPtbDeDLHFSsrcdQEyHUOLliuOJJGL/VgTudx1PgxEwWsRIFNThe/O6+NMlX2RbG4zEwR+/nhoDaYyTwwP4TEiGXJ7BnHTORxVPnBtFG9Ohg2hcEU7qUl5A5NzvUPX9eMXuI5ZXOtCLp45zn1DEzlePDwGP/4+hWUuHXcS0sWhFXpS0JM7O7knJYo7zi7gaBbns3ONLYpobRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxJnidFZenHUa131GUn1O0FV4TpCB4tGxfA4e75zk8c7Jef2vWV3N2roQ162u5I79IzzdPcnlK2YCFn6yrQ+PU2NZ1bE3/OYzRfY/MsS2W7oxDYvqtjAXvbWdyEsoUD8ZqlvHvTSCVuKi0BVHr/Dhag2jnkAQhXjlKPQkiP3wIK4lYVxtEfJHpkhtGyF0dTPZfRNYGQP/udV4VkRPaLyO0RT/93gPAA8eGWfPYJwrV1TwjrMbWVY9E3RgWjZ9Uxl+sq1v3rI9sQyZwkxRUypvUBOeCSA5v7WUn27rn+vn0BTO0pzEvn8AR60fK2sw+eNDwMyxGLqmEWd9CGMkjeKcKQq1cybp7aMEtzagHafg2dUSQj3BEAnxyjBweIp7/28/6ekC3qCTy96zjLplv38/1gIuUJgX/qCFXPP2C718YWiUo8qHlS2eeAiJR0cv8xC4pI7s/hiqW8ezMorqP/lLfd9khn+67eC8toeOjLOhoY2xZB6AmrCHXNGkPurjb69dxp9c1IzXqRHySLDUYqgOe9nSEuV3u4bom5wJVRjMFdnsd2Cl5r9RXnHroCtgHNsZVa+OJYW44hTomkhT7nMQurKRzL4JsGw8K0tRgk4cukp16NQUnjvKvQQurcfOmSjKTGBf4oE+Ije0MvXLo/jPq6EwliG8tRHlD4SJ6DX+BW2u9giqHA/iJaiPejk8muQfbzvA5csrKfGV8vCRcX4advPmlhC5g/Of51ztERRdwdUUwoznST81jOLSKI5kiLg08o8M4r62GUWTMBKxODS/EzXgwEo+5x5CVVD88+/rrJzB9K1dWBkDPepm+tcdqH4H4de1gAK5AzE8q0oJbm3ANi1czSGcDac2nC7gdvCGtTV8/cFOnuia5ImuSb51/Uo2Fm2Cl9WT3R9D0VU8q0sZ0GzevLGOQyNJPvKTZ7j1o+exoib0wisRi8YuFl+4kxBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghFsXprGYaO9GOiqLUKYrygKIoBxVF2a8oysdezomdLrYO4WubUFwaMFMYHHnDEiyvypLyhYWSIY9OPGvwx2fVMRrPEUsX+Om2fn66rZ9YukB3LD2v/2hPggOPDbF2ax1nXd2IP+xi1719mKa1YOwXMpbIMTydxbbtF+78PFa8gJU2UH0O3MtK0Cs92FkDOy1FJ68mmX0TAOQ7pnFUePGdXYXqVDEmsoRvWELZh9fg31yF5j+xoIJUfv6bkSfTBX6yrZ9M0QRgOlPgvx/s4J4DoxSPs087dZWw18HgZJb3n9/EWzbVc+nSct6+uY6r2sv47vUrufOKFZjbRgDwLC0hs310ZtmmEIFzq8nsmSD18ACTPzmEMZLB1TxTuGaMZ0k9OkjCMHGcVw2aAoAWdRO6plkKml9F4hNZ7v/+AVrWlbPhqkaWnFXO/T84xPRY5rj9s6kChmUSvKIRxTFzyVX9M0X6tmHO9XPWBXA2BOY+q34HrqYQhZ7kgjF/HytjkD86jeJUcbVFcNYHQFEojGQoGhZD01km04UXtb2ZgkmmYC5oL5oWYa+Dz1+/grFkjtRsyI+uqVSFPBJAssgM0+JPL2rBpavoqkLMtlGvbpw7FwH4NlaS3jFK8LKGefcZ4TcsITWdx7ZsrLxxUtd1IQCKhkWiLw66gqs5hKs5DKpC/uAkHzi7EccfCAR5MVSvA1etn9QjAyTu7SP50ADu9hLy3XFK3tJO+qlhVBRyHdMYUzmsonXc/Trr1tDWlM2ERAFajY9MtR/rBY6BbLLAWG+C6bGMHC+vQSPxLCPx7IL2+ESWsd4EtR4XdREPuaLFzbuH+N7jPXRNpKnxulEDTjyrSueWcS0J42wMYiWLJO7pJb1tBFQIX9uM6tIojmfIHp3GmMov5iaK15BEbGa/TU0f28fUgAPnlU1zAaGKU0O7pI5YuohVtLAKJoX+JNkDMXIHJ3G3hsk8M4Z7WQn+C2spjqTxn1cDCmT3TpC4rxc96sHVEkZ1aKd0/k90TrCtZ5KG6LFQ1UDahKKJmTdxNoVwLY2AbXN0NMV3H+vh8c4Ytg3J3My9q2nZDE5liKXkODvdLNt44U5CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhFgUp7My/mpFUYK2bSdOoK8B/IVt288oihIAdiiKco9t2wde5jkuKiuWJ3d4isgbW7GLJoquknion9AbW3n/eU184dYDc8XgV66spDrkoabEwx17hrlmdRU7+6fnjXf58op5n9PTeZrWlLLr3n7MokW0xs/ScyrJJYv4wq4TmuN0psBte4b5yr1HyRQM3r2lkbdurqcm4j3h7VR0leSD/WhhF44qH8Z4FmMiS/lH157wGOLMVZzIkjs0iaIeK35PPTKIGnTiO7uKwAW1qCdRiNwQ9RLxOpjKFOe11Zd4AHi6Z4rvPdbD+89v4vVra/j1zsG5fhGvg9U1Id68sY4nOmOscjqpH8/gSKU5u7IU018ku20CU1fRZgvubMsGG1DA3RYhcVcPgUvqSD7YD0D66ZGZt3tfVo8VcNIznKH7kWGaVkVxbqlBAzKmjdOG6En8juLMlI0XWH1pHTvv6iOTKOAJOFh/eQPp6Tzh8vnnwXymyJO/7WTT6lLSTwzj3zITUGPlTKZu7qD0PSvn+qpuDUeVD3drBNsGu2CSuLuXwGX1Jz45XcEYy5DdPY6rOYSVNyk8Oojvmia+cOt+fv70ANURN/9w3QrOW1KKrr3wcVgVdLG+PswzfdNzbR6HxorqIG/dVM93Hu3io5csIexxnPg8xSk1Es9SFXajqSqfu3Y5yuypdyDigDc00W6p2MkiuSNTFHoTFHsT+M+vwVnjJ985jTGRg74Eqcks6adG8CwrwXtWBY7SE7+uCwFQHXKTAOK3d+NqDIGukn8yjqM+gKop+Fyn7rFDi7jxX1ALlo2iqRR6E2SeHkWPevCsjIKuUOhJkN0/AW4NV5UfLezC1RBEmT33DfQk6epLsey8WlQFBofSdN90lNdV+imtWxj+BzDen+Se7+xnaiSDw6Vx3h+30rqpAscpLqwXZ55YKs8vtg/wPw91AvAnFzbzhrU1lAdcdO8a54EfHaaQNQhE3VzwzqWEvTrTmWMF9c1BL8lHh9ADTsKvb8HKmxTHsmT3TlAcTBHc2oBtWiiqQq4vgepUUVwaWsCBmTOQq6w4lWzLpnffBPd+/yD5tIEvHtmwMgABAABJREFU7GTre1dQ0xYhPpbl7lu6aF0RJejRyRk200Npzqr2M3nTYVxNIRJ3dM+cg5XZZyZdxVnjx84YJB8ewFHhJXjZ7D6tqWhhF4qivPDEXoTeWJoP/mAH79zSiMep0V4R4PBoEtWhkrqvfyZMpTZAvjOHEcuSPq98btnygIuGqJejo0l++GQvN23vp8Tr5FNXLuWqlZW45Jy+aGzbfjYLDNuQEBIhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ4kyxqCEkiqL8BPgQYAI7gJCiKF+2bftLf2g527aHgeHZPycVRTkI1ACvqhAS27DIHZwkd3DyWKOmYJk2ecPkLy5vYzpTxOvUqAi4yBkmbl3jlj3D1Ea8vHtLI7/cMYBDU/j4ZW1sbiqZN77u1Nh1T//c59hgir4DMdo2zQ8r+UOe6Irx2d/um/v89Qc7CXoc/MmFLSc8huLTca+Kktsbw5x967JndSlq6MSCUMSZy8wUmfzFEYq9CUJXNqI4NezZ4BwrXcTdHDqpABKA2oiX771nI1+49SA7+6bY0lLKZ65eSlnADUB/LM3bzq7nW490c/2aKv7skiU8eHiMt25uwONQefjoBP/7cBf/fFEr1Xf2UzQtXOfWMP27ToKX1WOMZEAB79VN5I5MYWWMmYI5XaU4nJqZhKKAdWxO2b0TZPeCfVk9j93Zy9mva+axX3XOm3d/T4Ir/2QVTpcUs70aqLrC9tt6yM8WFmeTRbbd2s3rPr52Qd/J4TQHHh1m0/ISzHie5EMD8763i+bcnzW/Ey3gJHFP37w+rvrgic/NqeE7t4apnx0id3hqps2rY0Y9/PDW3QD0TGR43/e385sPb2F1bfgFx+yOZdi6vAKfS+fxzhhLyvx8/LJWRuI5on4n/3rDanpjaaYzRTzO05lr9to1OJ0jW7D4m1/vnWtbXx+hOuzmtr3D7Lh2LZl7eue+s5JF0o8P4XxTG2aySKE3SaE/iavGjzGaITmaIdcdp+xdK1C9UvYuTlzE78LREiH+5Cj5rvhMowLuTRVM5IqkckX87lOzT9mmTfL+frDs+e1FC73Ci6KppJ8awZjIEriwlulbuvCfU4WiKLiaQgAEom6GuxMMdx/LQ6xuCzMxkDxuCEk+U+TBHx9iaiQDQDFv8sAPD1FS7aNydkzx6vXA4XH+9c5Dc5//vzsPE/U6ubQ6wt3fOTATxAAkYzke/uEhvvbmNXzhnsN0jqc5tyWKEwXP5iqSvzhMbu8EAI66AHqph+JAiuJAam5sV0sY07Dwn1cNqoIxmYXawOJusHhVmxrNcOc392MaMw826ekCd31rH3/06Y0kJnP4Ix623Tdz3+p0a9z43uVM/+IIAHrQiV20yB+dwrOqDDtn4moLk++K42wMgmVTHEpTHErPrS/67uWnfBsGprIk8wY/f7qPD1+0hAvbS7lqVSVNNQHsugCF/uTcv6v4LqrlmUQcVYENDSV87tpllAdcfPvRbn7wxMw90lA8x8d/vouobxPnt5Wd8vmKFyYhJEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEmePk0gBO3nLbthPA64HbgXrgHS9mAEVRGoF1wFOnenKnk23baEEnint+UIF3bRn4HPx/dx7mya5JbGA4nuMLtx0k4HZwYCjBM33T3Lx7iHsPjvKWTXW8bm0N7ZV+gh7nvLEyicKC9Q4emiafPfFij0eOjC9o+9UzAySzxRMew5zMo2oqwa0N+DZXEtzaAKqClcif8BjizFQczVDsnSnmTTw0QODiWvwX1BC8opGyD63B+SICFY5nTV2E771nI4986mL+950bWF59rOg36nfx1fs6mEwX+N7jvfzkqT4+cVkb33mkm72DCX7y1Ey4Q7umzwSitEXI7pnZn+1na5htSD85TOiqJmzTInRNE1qVb64Qv9CbwN0emTcnxe/AUe5Fd6gUCxbP139gkmxy4bEnXpmKeXMugOS5bYWcuaDvs/20gBM1OP987G6PgPN55/sNFfgvqkVxamhhFyVvXYqjdmEh/O9jZoukd4wQurIR/5ZqAhfW4t9SzVT3FEH3sYAQ07LpGEv9gZGOeap7kv9352EKhsWHLmymtcLPV+49wjN90/zjrQf5h1v2E/W7CLglgOR0KfU7ebwzNq/tnJYot+8dxrZh2q/B88KfvOvLsQ0LRVUo9CeB55wHgWJvkuJE9mWfu3j1yQ4kCZxXM3P+Obea0BWN5LePUqJrHBlNnrL16GEXvk2V89pm7qFtHBU+Cr0JjLHMzI6tgJ01QFHI7j12H1veEKCmPTz32eXVaV5TxsDhSY4nkygw1rNwGxLjcqy8Ftyye2hB2217h4lPZOcCSJ6VnMjR05+krSLAn1zQTM6wGBhJYRYMQpc34j935hrtWVqC8zjXeXdrGCOWBYeGOZXHmspjmwvvMYU4WanJ3FwAybOyySLp6TzToxnqV5bg8s3c27WsikIsi501UJRj9wuFviSKrqB4dXwbK1CDTgo9CdxL5wehqrPPSqdaic+JqsBEqsC/3X2YeNbAoSno/WkcNX4Cl9bP/FvD5Q1YmSLLoj4+dGELn9zayqraMD2xNDfvWnhc7xmMn/K5ij/gOTeglikhJEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEmWKxq4YdiqI4mAkh+Zpt20VFUU54YUVR/MCvgI/Phpk8//sPAh8EqK+vPyUTXlS6SujKRnJHpzEnc7iWhHE2h3CHXXz+dSv5q1/u5p4DowB87NJWWsv9PNU9UyhZFXLzlk31pPMGHqfC8erUPAHngrZorQ/vcdp/n4qAm3dtaaTE68C0bTRFoWM8hUN/UX+PZHaNgwqqW8fKGmBD4ILaEx7j1eaVvu+a2SK5g5NYqWNhNHbWIHFXL4pTpfQDq3DVndwb3G3bZt9Qgn2DcZy6ypraEEvK54+VzhUXFIzF0gUOjSTpGE+xubkEt1PD7dAIe2YCRWzDQnHMFOZbmSJa1I0Zy2HEcsRv78Z7dhXu9hLc7SUUR9Jk94yT75jGf14NvhI3he44dpmXVIWXx392hLVb6wmVexbMP1rjw+V5dQc0vNL33xfDE3Ci6eq8wk1VVfAGF55HQ2UedKeKrSkEt9aT74hjjKZxNoZwNgbn9r9n6WE3gUvq8J1VgerW0fwnfm4GQFGwUkXid/SgeHQwLOyiheviWj588RLSeQNdU+mfzBCcPQ5ecHsdGmc3l3B+axmJbJG2igANUS9HRmdCTI6MppjKFPG7T2y8M82rYd+Neh24nhcyEs8UWFMb4tJllTyeyfH6G9vIbR/FTBZwt5WACtmDMbI7ZwIZnA1BjNH0vDEUbbFz6sSLcabuu4qikLinZ+b8pinYORO90ovboTFZWBjWdNLr0VT859WgenVyByfRSty4GoMYqQKJu3soDs7sz55VZeSPTs/ODezn7NeBqIfVF9dR0xrBsmxsy+apW7q44MY2bMtGUeff27p8OoFSN8mJ3Lx2X8h1yrbrteJM3X//kLqShfd41WEPnuNc/90+BznF5ra9w7zrnEbObYlSEvVQiOXI3Ns3E5hj2thFC2dLkJJ3LCf16ACYNu7lUbIHJ/GfX8P0r46CZeNqDQMn/qwlXj6vxH33eDxB57xAEQCHS8PtcxAq83D3t/ez6qJaVE2hrMILs4GjVsZADzlBU8C0yTwzBrpC9O3L8W+pZuLbe/FtrMS3pZpC1zSO2gD+c6vRj3P8vFTNpT4+fdUy/un2g2QKJj9/up9/vWElalYh+eQwqAqqW8PKGuhVPlavrONgLM3QdI7eWBqnrlERcjGemh+EGva+Mu9pXw1sS4I7hRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQogzxWJXxv8v0APsBh5WFKUBOKFXzc6Gl/wK+LFt278+Xh/btr8JfBPgrLPOso/X50ylKAooM28Kdi8vARRUl4ri1lBVlaWVAf7huhWMp/KU+JycVR/B49TRVYWrVlaysbGEf7njIEVzZrNL/X389ANn01pxLKzBG3TQsr6Mzmdmi47dGhuvbcb1Igptzm2N8te/2kfn+EwButuh8o23b8DtOPFdSfE7cNT4KQ6msDIzb7t1r4iiHaeI77XilbzvAuQ7ppm66Qju5VFcLSHynccOa2djCL305AvPdvRO8dZvPUVhNlmnxOfkpx/YTHtlEID9Q3H+5Y6DrKgKzVtOVcCaray7fe8wX712JRVDGcoKNumgk9yRKUJbG4gPpUk/NUzwknrMRIHiSBrP6jI8y6OoTg0AV32Qsg+tJt+XJD2VJ+1wMNkcxhVwsu22HgoZg9HxDEqDl/qzyujbPnOMOVwa697QjNv36i5me6Xvvy+G7lRZf2U922/rmSncVGDdFfXozoXFwZFKH9d+dA2xyRwRl46rPYKrNTxTnK8oOCLuef3zvQmSD/RhjGfxbqzEu7YMPexeMO7vo7l1/Fuqmf7lUezszLlVcahEGkN86ftPYlozfzUbGyM0Rk/sjfRbWqIMTWf50l2H59rOby2l1HfsfF0wTl2wwGJ7pe+7O3qn+OET3VzQWo5LV8nPhuM8cGiUv7pyKZ+8aTeWDXc3RvjcOc1UKCpkTRSHipU2cNYHcDWFUINO4rd0zY3rWVf2ks7b4uV3Ju67ecPEVeUj71SxCxbM5pJ5zq7i/u4Y5zRFT+n6HKUe/FuqcbVFMKfzaD4HTn8YxQZF13A2BLBzJtn+JFqJe6YQvcxL9kAM15IwqlMjUuWl78Akh54YRtUUVpxXTeeuMcobg5RU+eatzxtwcfHbl3L71/dgFGeOtVUX1xKt85/S7XotOBP33xdy3epqbt41RCI3c30NenSuXlVFWY2fs65pZPttPQComkLjVXWMB1XedU4jT3TG6JpIsW7rSmrrAmS8+tzzD4CrKYyjzk/o2maMWBYrXsC3uZJc5zTu1jCOci+Oci+KJiEkZ4JX4r57PJFKL+e+qZVHf3kUbFBUhYve1o7To7Lv4UHWXV7P3gcHyGUMrnvXMhxlHrQSN+ZkjtTjQ4SubCTfl8TOGvjOrsLZEETz6JT96RqKg2kUp4r/7Er0Uu+CQKdTxeXQuGxZOQG3zsB0lqBbpybsxhHQURwqdtGaO9a859bwkV/uZjQxEzhSEXTxw/dt5k8uaOETP9+FMXuP3Bj1srY2/LLMV/wez0nCsc1X7jOFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPFqs9ghJLfYtv3VZz8oitIHvPeFFlIURQG+Axy0bfvLL+P8Tit7tqDRTBVRFBvV6UFRVUbiOd73/afnimYAoj4nN3/0PGoiXjbUh7n/0NhcAAnARKrAY50T80JIOraPoekql7xzKaZhU8wb7Lq7l9r2CA6XdkJz7BxPzwWQAOSKFt9+pJvNTVE8zhMbw5zM4WoO4WoOYUxkcVT4sDJFzGQBzf/aDSJ5JbKKJsbUTDEaQO5ADN+Wapy1AYoTWdytEdztETTPyYVwFAyTbz7cNRdAAjCZLvDwkQnaK4OMJ/N8+MfPMJrIcUFrGdUhN0PxHABOXWV1bQhFgbDHQUN/GvWJERKaMhM4kipgJAqUvH0Zha44aAq+c6txlB4r9LRtm55YhtFEjvKAC3+5j19958BcrZQn4KD1rAoqV0SY8kB/PM9dSpbL39CAZthMqhZ/+cAhvt8YpMTvegm/tDhTpCbzdOwYY+O1TZiGjaYrdOwYo7a9hFCZb0H/mrYI2VQBYjmMkZngJS3kxFkXRHUduwQXh9NMfHvv3HUgcWcPVqpI6KqmEy48tjIGuYOThK5qpNCfQnFrOMo8xHqmCbh1pjMziQBP90zRNZ5mSXngBUYEh6by/Sd65rU9cnSCT2xtA0BTFSqCbgzTQtfUE5qnODX6JjO893tPk8gVuWRpBR+/rJWh6RxF0+KCtjK+eOsBZmtqebhnist6dvC1N6+lbjxPY8SNXTDwrC3DzlkY41kCVzZgTuZxNc1cn9UTvC8Q4lk942kcfXHKLq2nOJ7Fzhk46wLkDk2S9FtYTae+Xl/zOxfcO7qq/JjZIvnuBPmDMQKX1qOHXVg5g+QD/ZjxPKXvW4m7NUIhazJ4eIrVF9diWzYdO8ZITeVZcV7NghASgNr2CH/8mY3EJ7K4fQ5Kqnw4PYv9OCVOh01NJXzjHRvYP5TAtm3qS7zs6J1keXUQuz1AmaseR8Em7VD4++1duJ0af31FO997vIeWMh+TR+JMGTbR82sxp3OYqSLOWj/5rjjO2gCx7+/Hu6ECLepGscFRG6CQLpKv9OJvCJ7uzRevMrpDY/kF1VQtCZGOFwiUuIlUeYkNpOjdG2O0K0HrxnKq6wM4tg2T1FVCVzVSHE5jTudRA07CNyxBc+nzQkacVX6cVYsTzFQwTL7+YCe/3DEw13Z5WxntlpvgZQ0UxzPYORNnnZ/sZAanfuw+dTSR5469w/icGl+5cS39Uxk8To1V1SFW1ISOtzqxGAzjhfsIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEGJRLHbV3K+A9c9+sG3bVhTlZ8CGF1juXOAdwF5FUXbNtn3Gtu3bX5ZZngZW0SR5fx/F/hTOxplCs0JPL/5zqxldG50XQAIQSxfom8xwTkuUTU0l/Hz7wIIxn79MtNbPwz89wpFto3NtK86vRnOceOF490R6QVvneIpMwTjhEBJFU0g9Moji0dHDLvKd09imjf/8mhOehzi9bMPEmMqT3R8ju3cCLXisADj9+BCKSyNweQP+s6te0noMy2ZgKrugfSQxEzQyOJXh7OYoZQEXO/um+dSVS4lni4Q8GhdEArjSBk+8YzOHU1m0W/uxAUybxD29qH4HkTe24lkWxbuydOE22jb3HBjl4z/fRaZgsqE2zJevWo7To5Offat2Nllk74MD1KyJsnlJlMFnBrj76Dh3Hx2fG0dVIF0wKXlJv4Q4U7h9OvGxLNtu6Z5rU1QFT+D3B+14/E4sh4qqK2BaKE4NR4lnXp/CaHougORZqSeG8J9bjR5xn9jkNAUzWSB+Zw96mRe7YJLZPorjsjoKxvyxx5P53zPIfDnDJPe8ecHM8dFa7udjl7Xy9QeOsqo2RFXIc5wRxMulL5Yhnp0Jlrlr3wibW6Ls6J3EtOGi9jKGZ8+TzzWdLVCugKUrFEcz5A5PYc2ezxSnSvnH1uOIyt+jODmpgkm9x0H8lm60sAvFpZHdH0Mv9xJ3KMc9l7xcNI8D7/IonvYIUzd3kN01hhE7dkxkdo2BruB36WQSBXbe3TdveW/g+KF4iqIQqfIROU5AiXh1S+SKfPHWgyRyRTwOjaNjM6GMa+sijCfzfOr+w/P6u3QVfTZEbDyZx9nkwrQgcW8PatCJ6tGxswbuZSXku+NgQ2b7KIpTRS/1oAadfCNo4+/P84ml0UXfXvHq53BolD8v4Mbl1XG4NXLpIgceHWbpu0IUBmb29cneBM46P2gqXr8D/SRDJk+VsWSe3+4cnNeWyBsobpX4HbPXIadGdv8E+vk1ZPLmvL6HhpP0TmY4MpqktcLPRKrAlpYoq2vDOHQJ1ls09rGAMsuUEBIhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ4kyxKCEkiqIsBVYAIUVRbnjOV0HgBaurbdt+FFBeqN8rmaIoqN6ZQp5CT+JYu0fH69JQFbDs5/aHoEenN5amO5bh/ec1gQL//UAHvZMzoQ3nL5kfrFDVEqKkysvkcAYAb9DJsi1VqOqJ/bSmZVN9nCLzrcsrKPEdv1jzuNvq0nDWBSj0JylmZwpNfOdUgfvEQkzE6WVMZknc14de4iFxTy8A3nXN5I5MgTm7k1o27lPw1navU+cd5zTw6V/vndd+cXsZk+k8KgrTmQI/f7ofgDv2jXBOcwn/s2UJqW/tIzM7nw1vaiXh1rALx4rPrFRxQejDs+KxLMP9SYqTWb569QqcKFh9GR741gHWXV7PU7/rmquXqt9SwTAG+aEEIY8DRZlXS8U1q6ooD7pe8m8hzgzhCi/n3NDCY7/omGvb/LomwuXe37tMcjSDsXOU9IOzYVEqlLx12bzwG/U4xY6qS5tJsTlBtgq+jZVM9ycxxmbO86pXx1/lnxdCoihQFvj9+2QyV+TQSJJYKk9txMP1a6q4efcwYa+D162tIeJ1sL4+TP9khn+5/SDvOqeJTN7Atm0U5VV9qT6jBD3HbuE2NpWQzhl8YmsbE8k82aLJ1mUV3H3gWOhYa7mfLT4foVQGLVmgOPS8UDH7VX6jJV52jVEvzpxN0e/AnD4WdOTbXIXVO4LzdBR1KwpW2pwXQAKAqjD1s8Ogq7zxgyv46Vd3w+y1e9VFtdjYFPIGTtdi5zWKM9VoPM+hkcS85zGAoeksS6sCC/pft7qKmrAHh6aQyBnUt4ZRkwbuFVFy+2M4yjxoYTeJe/vwbaycW84uWBSH0ii6Sp9V4PL68Mu8ZUIcYxk2m69v5rFfHOWy1zfhShUoKMycH20o9M0EkihnQEiH16lRW+KhZyIz11bqceBZESV/dGruOqS4NHxNIWIPF+Ytv7mlhHsPjWJYNgeHkwDs6p8mkSsQ9Z9gAKA4tYzi6Z6BEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFmLVZlXTtwLRAGrntOexL4wCLN4YxmW/ZcwQyzteKKcyasoybs5k8vauHrD3TO9X//eU1EfU7+896j/HQ2gEFTFf7fG1fxwyd6eO95zax7XtHaaHeCqiVhWjZUgG1jFC1GexJUNIVOaI6pXBG3Q+PPLlnCD57oJZU3uGplJVtaoi+q8NwYz+Ko8eNqi2AlC2hhF4X+JHaqCH+gMF6cfsXpHOmnRsjsGCNwSd1ce+qRAUJbGzCTBdSgE3drBGe1/yWty7RsuifStFf4+fRVS/n2I914nBp/dUU7tREPt+8Zxu/WuWv/6LzlNpUFyfyu61ggChC/rZvQ1U1M/+roXJsWduGomT/HfLZIbCTDfd89QDFnsP6KBnb+upcV51fz9P0zARIHHx9m47VN6B6dftvg152j3GiW8N6vP0Z91Munrmjnu4/1MJHKc/nyCj65tQ2XLgE7rxbJqTxdu8bZfH0zRtFCd6j07o3RvK6MSLlvXl/TtOh6ZhxtOofz2QASAAumfnUUZ40fPTJT5Oio9qNF3ZjPKZQPXtWEHjrxc2IuXSCzc5TQFY0YiQKKrqK6NMz+JFetrOTWvcOU+l2899xGIr7jv70+kS3w5XuO8r3HewDQVYWvvnkd9WEPYb+LbzzUyUSqQEPUy7u3NHL73hGCHp0/+eEO/u7a5VzYXn7C8xUvzZIyPx+8oIknOmJEfE6yxSx/8sMdcwXyX33zWgDuPjBKY9TL/165AqM/RfbBftRNlegVXozRY4W7/kvrUcNyDRYnL+p3kZgYx7e5CgwLK2+ih11knhnlY9c2c+/gNK3lAUr8Jx5c91IpqkLg3GpyB2JzaX6KQ8VR6iHz9Mz9g9Kb4Lw3LSGbMtB0hf6Dk8RvybLqwmqqWyM4PRJEIqBoWVzQVsaDh8fntVcE3aysDvHvf7Saf7njELF0gYvby1laGURRFP7jxrWMx9JM7JukvTWM6tQIXlaPGnLN3ZeqXh3Fo2PPhjOiwPiqErq2dbGk/KXdTwtxosb6EgwcmuLgY8Ocf2MrobEM+fEs3rXlZHaOzfVzLY2gl/3+8L3F4nPqfOKyNj55027M2fP7R89uJHlnH6HLGzGTBVAVVI9OcSLDO86u56btA6iKwp9dsoTasIeiOT9V6JKl5di2RLItquekd1qmhJAIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEGeKRamqs237d4qi3Ar8tW3b/7wY63ylsXMGqSeGCF3TjBkvoGgKikvDmMwyHNLZ1TfNX1zeRt6wcOkqu/qm2DeYmAsggZnQhn+94xBfeN0KdvXFOa+1FI9z5q/Ysmx69kzQszc2b71VS0KsurAWRX3hYhu3rlAwTEaTOd64vgaPQ8MwbYqm9aK2VfFopJ8cBk1BdetYmeJMIdMZ8EZlcXx20SKzf4J8V5z8kSkAFE0FFbDAjBeI39mDXuah7AOr0IIvrZA9XzT59TOD/MMt+8kbFssqA3zrXRuoL/FRNAz2DSX5x9sO8qELWxYsW+dzYiWf86ZrXcXdGkaLuil930ry3XG0kAtXcwhH1ENiIsP0aBYU2PfQIG6/g8R4lnWX1/P0rd34wi5iQ+m54eJjWbbd0k1pnZ/HGnQuWVXJ/z3WQ8G06BhL8T8PdXL96mquW1PNmroQbocUL7+aTI+kGT4aZ/ho/HntmQUhJFPDGe75vwNcfW0jKOBujaBF3RT6khQHU1gZAyIzffUSN6XvXkm+expzKo+rOYSzPvCi5ubUNfIhF/E7e1A8OhgWdtEi9PoWSvNOPnLxElI5g6Jpkc6bxx3j0EhyLoAEwLBsPnfzPv7lhlV85Mc7Kcye73tjGb79SDdvWFfDcDzHWzbX8xe/2M3NHz2P6rDnRc1bnByvS+cjF7Vy2bIK7j80xo+f7JsLIAH485/t4paPnsv7zm8inygw0ZWkdPZSb8RyBC6owYwXMKZyOJpCbN81jjOWY/XFdQRK3Kdno8Qrnup1MH1LN4pDRXGoWBkDd3sEW1P45zsOsrwmQIk/uqhzcjYEKfvQGvKdU9hFC73MS2bnsQCzYm+SzmSR4Y5j53VFVVh6TiWjvQnqlpYs6nzFmaloWlzUVsZ4Ms/+oQRuh8p7tjThcahYts2u/mmuWllFyOvgyc4YX7z9IDYQdOtcXl/KPXcdoK7GD70JMrvHCFxSPzOwAoW+JOHrWzDGMhi2TaLKy95khgvbyviPew7zD9etpD7qRdfkWUm8PNKJPImJLH37YkyPZhjcP0m5YVIcTqNXeAld34IxnkGPevCsjKL9njC7xXRwOMG/332Ej13aStG00DUVv67iiLiP3QubNnbBxPOmVh7vjPGecxsBuHRpOT2xNG/ZVMcvtg9gWDZbWqI0Rr0v+t82xKljGRJCIoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKcKRatOt62bVNRlK2AhJAch+pz4DurEnMyR+7IFIpDw7u6FEelj5FEnsc6YzzWOT9A5NJlFQvGmUgVKJo233yki83NJXN9jIJJqMILzwshidb4TyiABGA6Z/Kz7f24dY0tS2YKSJ/ommQ0meO6NTUnvK2KohC4pI7UI4NY6SJa2IV/SxWqUzvhMcTiKoykmfr5YVxNIfSoG3M6T/qZUYKXNZB8cAC7YKIGHERuaH3JASQTyTyHRxN8+jd759oOjiT52M928R9/vIZ7DowymsiTNyz2D8U5u7mEJ7sm5/oOF00c1T6KQ2n0Ug++zZWkt48y9aODeDdX4d9ciRZyMTWWIXNkiru+uY8V51Wz96FByusDZBIzASaqplLImRAv0LByYcF0SX2AC5f5GU3mear72PoTWYMfPdXHhsYIm5sXt9BavPw0XUXVFKznvDldURW044QopSaz2JZN0aERvbaZ7J4J8jvHcLWE8a4rQws55/V3lHlwlJ18gIfqVHE2hiiOZykOpEAB74ZyLLdGPFvE73HgdqjctH2AoNsB7QvHGEvmF7RNpApkC+ZcAMmzBqezlAWcqAo80RmjMuRmMl2QEJJFFPI6SGQNdE0lmTcWfD8Uz5LMFamydBQFsgqUXdNM7kCM6Vu6cDWHcLeXMJQqMjKQZnLbGLpTY/N1zadha8Qr3XSmgO7S8J1dRXrbCHbRQK/w4l5aQl++SN6wGEssPMe83BRVwVUfQNEhfk8vqceHcDWFCF7ZSOLuHpzLSoj9pmveMpFKL1PDGYJlbib6kwSiblze0190L06fyXSBf7ztIFeuqOSSpeUYps2te4dorfAzmshzcDjJjr4p7OeEQR0cjvPezQ0UEgaRKi+H98a48JI6Enf3oigKilMleHkjuYMxpn/bgbs1zMSaKNf+bAfF2fsMr1PjJ9t6CXudvPOcBoIe5++ZoRAnb3IoTXIiR7jCy+CRaUb6k1ibK3GHXWh+J6mH+lH9TvQKL4rr9AcsHhlN8lhnjL7JDF++58hc+7Xv2EiwKYQ5nac4nAZVwbe5ipxbpXM8TedDXTg1lXNbohwcSbKzb5oPXdSCqsCe/jhfu7+TdfURquRe9rSwioUX7iSEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiEWx2BUkjyuK8jXg50D62Ubbtp9Z5HmccRRNxTZtUo8NzbXFh1KUvn8lfpeGU1PnFYAHPTpVIQ+qAtZzit2WVgbQZjNFDg4njoWQFE3K6gOEyjzEx7MA+CMuatojJzzHgEtnS3Mp33yki+29U3Ptb1x/4gEkwExRfiyL/9xqUBWsdBHbtJlXtSfOCLZhURhKURxMgQ357jiha5op9CcxYzlSTw4TuKQOZ50fvdSLHnpxASSTqTyD01k0VaFvMoPHofGFWw9w1aqqBX17Yxme6p7kkY4JyvxuAO49OMYHL2imvTLIoeEEnzu7ieqUgevSUhJ39eBdV0H89m6Y3bVSD/SDbTNU4ubIo8PoTo1cqoiiKhSyBhODKdo2VTDanQBmAicKWQNVU2cKkkcyAHhDDkKrInzm1n0srw6yqamEbc8JIgFojPpe7M8tXgFUp8q6y+vZcUfvXNvay+rQHAtDSLyzx4Nl2yTu6cXOmQDk9sew0kW8GxYGSb0kRQtsG73Ug7u9ZKZpNI1i2jzcMcFE6lhh3+8LCinxORdcV5ZVBQi4F94u+F06y6qC/PWv9nL9miouaS9nz8A048k8q2pClAZeWiCReGEHhuIMTmcYT+apL/HSN5mZ+86hKZR5nSSyBkenM0Q6kqzfUkXyrh6s1Myb5nMHJjFiOVzn15CYvTc4+Ngwqy6qwSt/f+JFiqUKlFs2VrZI4KJaAMzpHLZpE9A0oj4nJb7TE6BgTGaZ+M5+rPTsvn9wEnM6T+iqJvQqH6vPq2b7PX0A6A6V5edVk5zMkUsXiY9nefCnh7nkHcsoqZJr+2uV16GxtDLAbXuH57WXBVx0jaU4uznKBW1ldI2n+e2uQc5viPDZFbWYHUlcJW7WX1DD47f3YOsq7pVR1BIXJW9dxtSvjmIlZ67P2X0xAiMZ3rOulm9u7wdgfX2EfUMJnuyaZG1dhPNaSxd928Wrl2XZDB2dJjaQxOHW8IVcBKJuzKKFszmIM16YeZYCzHiB+GAKPejCs/z0BS3migb/ftdhlteEqI14uHFjHUXTQlNV/ChgWjMBWMtm7oXNnIGmKtx+2XLCHgfTfp3BosWSMj+HRpIcGknOjX39mmoCZ0DIymvKc/4NyDKKp3EiQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR4rsWusNgy+/8vPKfNBi5Z5HmccayMQeap4QXt+e44hWY/H7+sla890EGmYBJ063zysjZMy+Lvr13Bf9x3hOlMkbYKP395RTsdozMBCpUh99w4RsHC4dJo3VSBosyklKiagtOtnfAcx5I5zmoM0zFezv2HxtBUhRvW1dAQ9b7IjQUFBcWhYZsWWtBF7ugU3vXlL24c8bLLHZki9sMDBLc2zDTYkLy/D//5tSiqgl7pxVnjRw+7//BAx3FgKM6f/XQn57SU8kzvFB6nRtDtoHM8jUtfGOhQGXQzMJXl4HCSay6v4oHDYwB88+EuygMubr5xA+aPD5HOGqQ1Be/aMmyHOhdA8qz0UyOklkXxhV0Md8aBmWMBIDdbmF+/ooQj20bYcGUDT9/ew867e1l+QQ2rttYxmM6T82r0GQVqIx4ePjrO31y5lEzBYN9ggqBb5++vW8HyquCL/k3Emc8qWgTLPJzzhhYKOROnW8Pjd2AZ5oK+JVU+zrmhhYhHo5Cb/32hJ4E5lUfzOE7Z3FSXRr43gR6dCRhRFND8TtSiRXXYw0SqgMeh8aGLmnEfJzQFYDpd5C8vb+ebj3TNXVfetKGWomnxts31/PipmSJ9VYGPXtzCP9x8gKjPSdTv4jO/3Tc3zuvXVvP561cS8p667RPzTWcK/MVNu1lbF6bE5+A95zbywyd66ZpIU+p38ueXtOJ26YwlczwzOM1bV5bhNm3yqfkFnsZoBg8KRnEm6MwfcaE7TvzeQIhnuRwqdtFG0VUUVcG2bPQSD+kDExTq6/nyjasZS+ROy9yKE7m5AJK5tuE0KAqxb+9j2euX4H1LG5n4TBhE184xVl1Uy54H+ll2bg2Tg2l23NHDxe9ciq7L8fFaFPU5efeWRr7xUBed4ykCLp2/vKKdoekM5QE32aLJD57sYWNjCTduqOHjpRGyPzoEQAFwtkc469I6CskCeokHczSL6cjPBZA8y5rIcsnmMr5JP41RLxe0lfHPtx8EoGM8JSEk4pSaGkkzdHQKy7QJuHWMoknTmlKWt0Uwtw2Rs5UFy2R2jZ3WEJJYusiDR8bpnUzzV1e08xc37caYTc9bc80Klu6MzTwHGhaKpmIl8riHMwTvHcACQk6VyFvb2W0X+dCFzXz30R4KpsXGxghXrapEWbjJYpHYRuGFOwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQYlEsagiJbdsXL+b6XklMw0T1OyE2vzhTden43Do/eKKXd29pRFUVCoaFU1fIFEye6Z/ii69biWHZWLbNr3b0s7ExwiVLy3HPK5JUyKcNnB4Nl8eBokA2WZh78Wx8PEM+Y+ALu/CFXMedY7Zg8pV7O3jb2fW8fl01qqJwaDjBUPzFFZQqDgUrWSCxe3z2s0roumak4ufMYqYKTN/SCTYUBlO4l5eQOzCJlTFIPthP6TuX424vOamxk7kin7t5P53jaa5fW8OB4QTvOLuB3+0eBOCBQ2O8e0sj33+iB9sGr1Pj01ct5bO/3Ydp2TxweJy/vLydm3cPgg0fu6wV71CaRNaYnbxNZscYwasWBuSofgeZVJGx3iQ1bWEOPTHCaE+CxtWl9OyZYM/9A9Qui7D59c3YAQeX/vlqMvE8g/kC+YBKV8Hi0YNjPN4Z44b1NVzUXkZ12M1/vnkdRcPC59KpK5lZby5dJBnLoTtUguUeNO34wQ/ilcPh1IgNpGb+7NJJx/MkYzki1ZUL+upOjVUX11I4NMmCkjpdxbasUzo32wJ3S5jp27qxZ48FR7UPd3OIf7ygFduhMmGb3HdojPHwsRnliyYdYylGEzm8Lo3vPNrNDetq8Lp0+mIZfvRkL/9x41qOjCb5i61t+N06TaU+fvREDz6Xzt9c1c5Hf7Jz3lx+u2uIt53dwMbGkztHiBd2cDjBwZEkb91ch41CMmfwkYuX4NAUusbTOHW4a/8IPbEMPpdOr9NiU9BB/vkDqaBpx8LJ1l1ej9O92Bl14lWhYGKOpjHjBTI7ZoLC0FVCf9zK05NpSvwu3A6N+ESWfLqIL+TCFz7+PeepprqOc/1VFazMTDBJ6u4emt+/ir6emSC/YFk1j/2qgxXn15BPFynmTbp3T3BOsog/IiEkr0Ulfhd7BuP8+SVLsLHRVZWvPdDBVSsrmUgVGUtk+filbXzl3iP87u1nYX3/0Lzli4enKFlXTtHvQI9lST46QPCiuoUrUqC+0s/X3rKWRzpifOmuY+PUhj0v92aK15hkLEcmUcQXcrLz7l6a15RTt7wEa/8EVtLAUbnwWUqLvPjwyVPBNCziY1nUgsFHtjQTjbr55sNdcwEkAF/Z2c//rqojcXfvXJv/igYy20fnPtsFC3vnOBONHoans3zlxrUULQvTtPnGA518/e3rF3W7Xuts4Nl/BbJM43RORQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQz7GoVaaKooSAvwcumG16CPiCbdvxxZzHmUixbDyrSyn0J2G2kEYNONDLvSwp8/OuLQ38vzsPA+DQFO74s3PZPZTE7dD4s5/txLahMujmIxe3sKwywMNHY+QNc258l0cD20LXNZKxHKqmEIi6cbhUjmwb4cGfHKaYMwlE3Vzx/hVUNIUWzLFgWly/tpq//e2+ufCSxqiXz16z7EVtqzGeRQ04CW5twDYtUBRSjw/hXhaF01PTJI7DLlqYiZmggtz+GO5lJQS3NqAGHLjqg+jlC4vSTtREqsD2nikADHMmiKFjLMWqmhCPdcR4pm+avGHx8UtbqSvx0jGW4rGOCVZUB3mqe5Jt3ZPsHYjzia2tvHF9LVG/i6k7uxeuyLJRo26sZ8N9FPBcUsfh7x7EKFq0rC+jui1M794YrRvLOf9tbcTTRaY0myczGey8wg+f6mVFdYibdw8RcOl8Ymsb+4ZmTlm37B7iH65bweXLK3E55hclT42kue8HBxntSqBqCmdd3ciqi2txex0n/buJ08/p0aloCpKazFPImTNF9BEXxZzB1EiaSKVvXn+HQ8PwOnC1hMl3Ts+1+8+uRHGc2lAa27BIPjqE/+wqUBUUBYx4nmxnnO2PDWMZFk1X1TM0lSXQPnP5LxoWP9/ez9/fvB/bhs9fv5w3bqjlu492Y1g2Ya+DP7+kFcO02NwcxbJtfrF9gA9d2IymaWxqiuDWNfLGwkCVVE4KCV8uHWNJYuk8m5sjTGUM+qcyxFIF7j80E/zQVuHnn1+/kq8/0MW/X7WCqcE0dsImE7FxL4+SOxCbG8u3oRJLnzlHhco9VDYFT9dmiVc4J5DbOY6zPjB3j6eoCsmJDPeOTvLhi5YQGC9y03eeppA18EdcXP7+FVS1hF/2uellXjxrysjOBuAB+DZVzh0LVt7E5dYpqw8wcGiKfMZg5QU12Bb0HZgEoLTOT3wii6qpeIPOl33O4swS9bs4pznKh3/8zFxbS5mPeLbI/qEE7z23kc/+dh83rK/FbYJZXHhdNDMG3RM5ViyPgGGT70ngWVlKdt/EXJ/ChnKeGk/ySHeMEq+Tojnz0HXVqkpW1y58PhPipXC6NY48NcLm1zfTtqkKBchMF/CmDYyxDL6NFeQOTmLP7s+KS8O7pnTR55lNFdh1bz877+7DtmxqW0OUXxxgaDo7r1/XZIbuOi9N717O8ECCytogRkcc4/lBr/E86byD7liGD//k2DH9z29YSW3k5J9xxUtjmwtiG4UQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIcZos9qvuvwvsA/549vM7gP8DbljkeZxxtKALy7BmijbzBmgq2DZa0InTqXNhaxlRn5OxZJ6mUh9hn5NUrsjhkSQfu7QV07KJZ4v87Ol+3n1OA36XTt1zCmhcXgfugJMj20YJl3sxixaj3XFCpR7u/b8Dc6EiyViOe/7vADf81Qa8gYUFlo8eHedTV7QTzxZxOzTSeZPCcYrs/hBHbYD4bd08t2QocFk9+nHWJ04fLejEt7GS9JPDAOQOTpI7PEn5n67F8byghRejfzLD0HSGpqiX7lgGl66hqQpPdMX422uW0TGWYjSRZ/9QgtYKP/Fske8+1gPA289u4KzGEsYSOc5uLuGcllKifhcAhbrAgnWldYWH14Q51+fBU7RIFG1275+kaW0ZR58eZccdvTSuKeXiP1nBSNFgj1Ek47FYH/ZTPV0glijw/rV1HEnPFK4l8wb/df9R3rKxnqqQm3NaorSU+dG1+WESpmHxzN29jHYlALBMm223dFPRFKR+efSkfztx+oXKvYz2JEhO5nB5dVJTOYyixY47esililz/8XWU1vjnLeMIu9HLPLiaQ1h5A9WtY+YM9NCpTV3SvA5868qI39Ezr928rIFcqgjAkd/18MH3tjM5G1LVOZHi87ccuwZMZ4o8cGiMj1y8BNO2yRct/vehTr7+tvV87f4OVAXec24Tqgp1JR58Th3DslhZHWTfUGJunQGXTmOpFHG+XDrGUgxN53jX2Y0cGEnyi+0DXNhWxscva8W2Z8JlErkif3veEvb+4Mjc33/Z5fU0BRwEtzbM7YvFRJ54xqRqSYiatgiafmrDccRrRyjqJb6hjOz9A2T3HgtV0N7azptsBcd4nvt/eBhrNmwvNZXn7m/v501/fRa+sOtlnZvmdRC6thnv2jKMiSx20aLQk6A4kgFmAkm0kJPSEjeBqJup4QwTA0n23D/A1EgGp0enZX05v/vyTlo3VXD+jW0SKvYadOnScr5y41oOjSTwODSSeYPvPtrNO89pZGf/NLqqsqEmxNhAmvI6P2Z/am5ZxamiRt2U+hwcPDBJ7ZIQ+Y5pPKtL587JqTI33+scQ48Z3L53hC+9aTUNUS+KotBW4cfrXOxHd/FqlprOc+ipEZaeU8WTv+mkbVMlnoCDQNSNf3Mlk0emSD7QT+DiOuyihRZw4moOvaTnwJM12p3gmTt75z4PH43jKvXwtk31fO3BTt6/oZ6NIR8RXScxnmNHUKNDKZLvHeMdVeEF4yXbwvzHfQd50/paLl1WQTpvsK4uzAVtZYu4VQJg7iEEsAwJMBRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghzhSLXcnUYtv2G5/z+fOKouxa5DmckRRVwbemnMwzo2T2TqCFXYQubcBR5aMnluat33mK6Uxxrv+v//RsQh4Hw/EsX7n36Fz7312zjKjfyfWrq6ktOVYAnprK8/ivOmhZXw6A5lBJDeaJj2efW/cBQHwsSyaeXxBCUjAsrllVxd/9bj+qolC0LC5uL+f81hf3NmRXrZ/o25cxfXs3VrqI75wqfGdVvKgxxMtP0VQCF9SgKJDeMTqzT17TjKPa/8IL/x49E2ne/X/bGEnk+NQVS/m3uw9z0/Z+/uaqpfxsWx9fu7+Dz1y9lBKfi+6JFKW6hgeFAw0Rnuyd4kdP9uLSVT533TLeuKEOgGS2SNdEiqfH42y6up7S3THUvIVjYwXDRZtgFqZqXTx8UwfTIzPRN7VLI2y6rglvxEWHVeCJsQST2QIBj4NLa0t44Jv7KeZnQhrcPgfXvrONX+wYIJU3mMoU+e5j3fzk/WezJOpnejSDWbRw+xxkkwUcHh2nS6Nnd2zB9k8OpSWE5BVOVRVq2iJ4g04mh9JoukrnM+NMDc8UsvfsmVgQQqJH3fg2VpJ4oI/iUBrP8hL8Z1ejuk/9JdizthyrYJF6bHBm/LMq2LZ9dO5727LRMiahipkAlIlkHtM6dhEYnM7hcqj8533HriufuKwVj0Plo5csQVcVHKpCz0SGm57uJ5Ez+PIfreHLN67ly/cc4YFDY6ysDvHZa5bRVHry5wrxh3kcGvsGEzhmA5DKAy4eOjLOQ0fGURT4/964mqJp4x7NzwWQAGy7v5+a9yzHOjJJsT+FsyWEsrKUkN9JpMqHqiqna5PEq4BL1yi0R3CbNvknR1C9OtrFdWRRKP3/2bvreDvuOv/jr5Hjet39Jjfu2qRJkzR1L6WF0uK2yBos7P6WZVlYlmUXL06xttAW6t5U4+7JTXLd7bjLyO+Pk94k3MIibVrg+3w88sg9c0a+M9/vmTNzHo/Pe5xWson8ZADJKxLhLMlo9nUPIQFQPVbUmYXv4GxfjGxPFKXIhnNJBa5FFUinP082h4XKZh/+CidFFU6MRB7ThC2P9WCacGrXGI1zSymrc+OvOP/F+MIbx2ZRmFHp4WubTtIfLtxDlXlsVPvtxJJ5Pr+6lVpN4djuEWqubMQeSJPaMoRSbMd5cT29Yym8xXb2bxrAtrGeMo+NXE+UfFpDXV7JN44NMqvOz/88cxKAgwMRnj02xkQiC8APbl/MJbMq38hDIPwFGe+N0b51hIpGL4subcDjs+HzWvCVO7G7VIpvaSP24gCpwxN419djbytCtr0xQTjjvbEp0wInwmxcOp2265ykt47jbrLhr3fh0QwkSSHutTMSSdNllai/tAFl+zAYkFlSTqjcgWnC3bv6kSRYO62U965qwvUG7Z9QYOr5/3smQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRDOi/NdZZGWJGm1aZpbASRJWgWkz3Mb3rSMZI78SAJbkw/ZqSLZFCRJonMsfk4ACUAkpWGYJjctqcMwTNJ5nXKPjUROQ5Ulfrytl4+ub6Xa7wAgn9WIjKfZ99SZJwj7yhxY7MqUdjg8Fmyv8nR3h1WmczzOxzZMA9NEliUm4hmKXX/Yk+Ali4JjTinWJh+mVniqsiQKn9+U1GIHvqtacF9Uh2yRkV9lXPw+Aokse3tD9IdS9AYLYQ3ffrGT96xuwmVV8NpV/unSNmqKHKRyOv2hFIsUC5W7JzAn0ny51c+hSyv5+LPt+J0WvPZCO/K6wX17BwincthUmZueO8XbF9RwQ1Uxux7oJpsqPE25zGohHsxOtmfwRJjBE2Eu/dAc3CfihA8FuOzSBnqPBujuz00GkCiqTP2cEmwpnTveMo+jE3G8divz6/xM8zvZ/Xg3B58fZOX1zRx5cYhYII2sSmx45yzKGz30Hwudcxy8pY4/6vgJbx65jMbOR7pIx/LkMhpjPecWRUbHU6+6nJnXkWwKtlYfhmaAbrwu7VN9NqRF5SQtMqpDZcuj3STOGvsApUV2QpZCsX2134HDopDOF8b8/XsH+MCaJt62tJ6eYJK2Cg8uq0IsUyjClyWJ50+Ms7atnFhGY3a1F5ddwe+w8PWb5xNM5vHaVRIZjcFwiiqfA0Wc319zM6u8DIY7WD+jnK89d4rbVzZOXgtU+ez4HRbKPFYGJibOWU5RZUzNAEXG1upD1wziw0ncTaoIIBFeE7/uGOOiWaXkap1IikSZofLS3SdIRrIsv7Z5yvw2p4r9D7yOfC3YGryU3DYLM6+juKyvOo8FcI+lSL40AMCGpeUcGUhy6lCA0HCS3Y/1cM3fLsBTbD+PLRfeaDOqvHzpxnns7QtjmCaprM43n+/gnmsWsO1Hx5nzgTmsrnWRuf8kit+O88pmTvZGKc3o7H2sh4omH+WNXrY+1Yu3zEF9s4/gRJq6gSQbDQc7h+OkcoXv5BmVHnZ2BSdDSH62vZcNMyrE96rwJ9PyOrFA4WeYwGCCxcsrsB+dQO+Pk2jwoF7ZjHNBOba2IpAklNchOO8PUVQ5NfCppMZNzzMDtC6rQFlVQzyQ5oWft6PnDTzFdhbf0oq9TOFEJMn2bB5ppptLZlWwazzGDx45wocvakGSwCLLrJ1eRoVPnMvfEGcl4hqa9gY2RBAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRCEs8nneXsfBr4tSVKvJEl9wB3AB89zG96UtEiWyLN9WGo8yA4V2aqQPhpAj2axKFODQrJ5neFIhkxOZyyWwe+wEEhkmVvt4/1372drZ4BIKnfWEib1s4vPWUd5owfFIjP7wurJabIqsfTKJiy2qUOjwuugwuvApsjs7Q2RzGosri+mqcz9R+2z4rIUCuZFId2bmqRIqD7bOQEkmbxG13iC/mAS86zCoVcMhdMcGogwEkkzEc/w/Ze7+KdfH2Y4kpmcJ5jMcccLnfx8Rx9um8p/P32Sl04G+PgvD3KB20nl0wOYoynQTeSTYZaejPOTty/ixkW1jEYzdIzFefnkBAvL3Fxsd3CTYeW+9TPYUFfM9ns78RTbmXtRDSuua8buVJm+tOKcNjbNLyU0mODES0PMXFnFjoe60HMGyUih0NNiV1h5QwvjvTF2PdBF0bjG0pTKjJBJpVZ4Ivf+Z/ppmF1Mx56xyUI+QzPZ80QPCy+tx+ZSz9leeaP3Ne0b4fyLjKUIj6SonVVEy6KyKe83L5g6LT+RInlgAkuxA9mqoPpsxHcMo6dfn6d9d+4bZ9O9HYwMJJi/rg5ZOXOOnXtRDTaLjCJLbO2YwG5R+O47FlJ0+vNd5rYxu8pHqcfKiuZiZAkePTzMaDTLd17qZDyWYe30MkqcFu54+0LWTCslmMihyBJ2i4rbpvDg/kEu/fpmNnzlZf732ROMRUXW2Gut3Gvnm29biMsq8+9Xz+bunX38eFsPsXSeljI3+/pC9HRFaZ5bes5yS9bUYBuKYy0pjEVbqRN/KE1y7NXDcwThD3VqLMGH7zlITAGvamHrfacmv1d7Dk0wb13t5LyyIrH+tplvWECXbFUw0jrJ/WPEtw+R7YsVQnpOy3ZGiD/Zg5HSMFIa2tZhZjV7sblUnB4rkbEUgYH4G9J24Y21oM7P/Fo/p0bjhFM5fnzbEnq2jFDV7EM9FkA7FgTNRA+kST7YwYzZJbx890mKyxzMme5n7fwSrru+hRlzSziycxSLUyU0lKTj5WGWWhx4HSqXz6nk4ECES+dUTm7Xa7MQjGd/R8sE4fcTHU+jawayLDF/VSW23SPovTEwTHI9MSJP9ZDpCJPaP07mRAgt+MZey1W2+Kibdea3DIfHQu2MIoZORrBaFPS8wZ4netHzhXN4PJThyCM9HOoKMaPKR7nXzvf39fP2X+7Hoij8/cXTODoUJZLMs3paKbNrfG/Urgln01+feyNBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEP5w5/WRtqZpHgTmS5LkPf06dj63/2amRTPY6zzEnu6dnKZWOLHNKKKu2EFbpZuTo4kzC0gwu9rLeCzLndt6eGD/ECtbSrh4ZgW6buKwKBSf9WR3XYdZq6tRVJm+o0G8JQ7mXFTDRH+CsgYv6xo9ZBIa7mIbY70xkpEc9t94MvxoNEsgmcMiy7RVefHYVY6PxFjZUoLL+sY+HVk4f/qCSf7nmZM8cWSEYqeVL1w3h6ZSF1V+Bz6Hhc2nJvi7+w6yZlopG2ZWkMho/HhbL7phUuG1TVnftfOr+eKT7SxrKsGa1rh7Tj2uwQTxvHHOfFpvDM+SUppKXZS4rPztvQe5fn4VLSEdy+5xdKAUqJlTQvkt0+k5HuLU7jF85Q6mL6vEU2Jn2pIKJgZizNtQTy6V5/jWYaDwAOZ8VmesN8aCi+sZ6Yoy84Iq9j3VSzqeZ+X1Lex8pAstZzBrdTW9R0Pks4Wn1BdXu+k5FAAKwSVLr2gkMJhg/1P9XPiONmQkXG4rxdUu7C4Lwp830zSpnVHEjge6aF1Szrz1tZzYMYqiSiy7upnqaf4py+ixHNp4itSukclp7lXV6NEciuO1HRO6btB9YAIAxSKTSebZ8K6ZJEJZHB4ruqaTjufZO5bkv546QZXPzo/ftZTHP3YhwWQWTTfoDab40lMn6Q0mWdVSyrtXNXJiJMbtKxvZ3ROkfaRQdG9VZP7lihlUeuyUuAuf7b29YT776PHJ9nz3pW4qvQ7eeUHja7qfAtQWOcnkdR4/PMy3blmAZsCPtnTz9/cd5I51Mzl2XxfqzCIWXdrA8W3DGLpJ0zQ/+v4xYrvHJtfjXFKByybCwITXxtrpZTzfPk46b2DRDaITZwrXA/0JZqyo4uJ3zSQZzeErd1Ba/8cF2b0W8oE0gR8dRo+cDu2ToORds3G0FQrdk/vHpixjGYqz9m1tDJ0MUzuzCF0zpswj/OVzWFXWTC9jzfRC8Fg0nqUvrbFyYz3ZB06dO7NhIk+kWXVZPT7DRH+uj1din2pr3NR8ZB7xjMbmXxaWS7RH+I8rZ3Hv/kGeOhriKzfNA0CRJZY0FXHbj3fxg9uX0FDiOl+7K/wF0nUD1aaw+uZW6rw2EocmJt+T7Ar2Vj+BO49OTlPLHJS+Zw5qkf2NaC7uIhvLr26iaUEpWtbAW2KnfXvhPs7htRAanRqmFhxKctm1DXzhqRNMJLJ88tIZtI/E2NMb4oaF1Xzn1kVY1alhr8J5dlagqaFrb2BDBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEE423lNjpAkqQT4LLAaMCVJ2gr8h2mawfPZjjcjSZJInC6keYU2lsKI5BjMwtrp5WyYUcFoLENjiQurKjMay/L5x4+TyhXCEHZ0BYkkc7z3wiYqvXby+pnCSFWVeOnuk3hL7cxfX0cykiUZyeKvcPD8T9pJx888dXbW6iosjqlDo3Mizg82d+N1qNT6nfQFkyRzOpfMrqDc+/sVJCXiWSIjKTLxHP5yJ8XVLmRF/mMOmfAGGA6nuHtnH48fHqHMY+NDa5v5zyfbCSVz/MPG6UyrcPPRew5Q7rFxxdwqPnzPfj6yrgXdKBQXPXlklE9e2sbdO/uIpPJcPb+atioPd+3Mc+W0MuaN5chtGUTa2DBl25JNAYtMf0+E5voiVtT4uLzCD8+2nzNf9mgQZ4OPzn3jAIz3xgkNJVl5QwuVzV6a5pfy4j0nqGj04i6yEwtkUNRCAb6WMwiPJpm/oQ6rQyUdz+PyW4lOpNFyBpUtPrKpPO3bhll6ZRMA8WCaoion4ZEUCzbUse/pPrKpQgHVQHuImZfUserqJmwWEdTzl0BWZBRNZ/2NLWRSGsGJNDNWVtK2vJLyBu+rLmOkNXI90XOmJXaN4FhQ9lu3o+V1QsNJ4sEMTp+Vkmo31tPnZfP050mSzwRHZPM6VlVGUWRq24oY64lhc6mMdETZ91Tf5HyeEjsb3jWTeLjQnpFohh9s7uLLN86npsjBvr4Qn37gCLnT3x9bOwNkNZ23LKpBkpgMIAHI6QYP7B/k7y+eRiydx+uw8OKJ8Sn7cv/eAW5aUotThFW9ptI5nS8/fZJUTqPa5+Cn23s5PhLn/Usb6H5qAMMw6T8WIjCQYNqScvwz/EiSSaY9dM56UvvGKD49Fg3d+KO/k7OpPMGhBOl4Hm+pneJqN4oqvt//2lhVhX+9YiYvtI+xaEkTLr+V5OmQj9lrqjn43ACxwJlgkmlLy1l320ws1temEDybzhMcTJCK5/CWOij5HeMw1x87E0ACYELs6V7UKhdkdZxzS8kPxDFSZ4qi1WIHex/vITSaYsV1zdjd1ldZs/DXxDBMMlmN6Ssq0QGLy4KRKNxX2Vr9WOs9qEU26kyIPNR5zrLaUAJjOMFLT/ax8JJ6dj/Wg7XUzne39HBiLM6sKi8+h5V/vXIGmgE/2dbLYDjNrp4QtX4HiriHEv5ILp+N0FASj11BNgEJOJ0F4V5dQ3LHyDnzaxNp8kOJ3zuERMvrBIeTxINpnF4bpTVnrmP/GBP9cR78yn4M7UxgxbKrmhjuiIIJDtfUdXtL7ThdFg4PFa55v/hkOw0lTiyKTHcwxbx0Hp8DEUTyJmJquf97JkEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQzovzXRF8L7AZuPH061uB+4CLz3M73hCZnM6evhDHh2N4bAoL6ouYVe0rvGmYGJmpT341NINgMs8PNnfjsCgUu6w8fGCI/75xHqZpTgaQvKJ9NM6tK+r50ZYevn7zgsnp6USezOl/472FIvLpy8pJRfPnBJAAnNgxytyLaqH43CKjVwrIY2mN4+kYAEVOC+pZhfC/TcdojJ6ROByM0LGr8GR5SZa49H2zaVlU/n8uL7wxklmNgwMROsbiKLLE8eEYmzsCALxtWR1ffvokWc3g05fP4NsvdvKOFQ28b00zyYzGpuNj6IbJgf4IF04rZUtHgCNDUfpCSW5aXMeaaaUcG46Sy+rce/EsaseypE8Hh+THktha/GS7IpNtsV/RiCWt87aOFJYJg79r9cNYmpgxtd25xLkFTOVNXhSLzEt3n2TplY3kMzpDJ8Osess0xnpiDHdEmLakgo69Y3Ttn8Dlt7HuthnIsoRqUdBOf85q24rY+1RvoVA5mKFuZjFd+ydYeUMLux7tBkmaDCB5RefLwzQuc1FTWYJNtb1mfSOcP1ktS2+sF1VTKBl0MrPcSX4oQbY7SnWVk0y5k1T8txfNmdqrDFLNfPXpFEJGTu0e48W7TkxOW3JlI/PX1zLRn+DIi4MYpsm8dbWYpVYePjzCc+3jLGko4sZFtbQtr6T74AR6zqTncOCcdceDGVKRHPazCi739IZJZDWKVCsDoRSSBH9zUQtWVcY0obHUSS5voBvwyUvb2NIxwc7uQpBFfyiNy2YhmdPwOiw0lbmm7M/0CjdWUSj9musPJdnUPkaR08I7L2jk+EicWr+da2ZVsnnTmTCYVCzHkZeGaHDL1NX6pq7IBDNvcHhbH507A/jKndQuLmNY1ilyWvHYLdQWO7D9jiLdXFpjzxO9HHp+oDBBgkveM5tpSyte690W3uQ8dpV0NsclC2Wy6Rwrr2vlpXtOoOUN7G7rOQEkAB17xll0WQOlNZ4/edu5tMbex3s5eNY4vOjWNloXl2NzWKbM/2rX3XoiT/rgBJIJ8W1DuNfWkto3jjaeQrIrWGvcWE5EALA5LWy57xTX/t0CnF7x/f7XaF9fiLt29nFbcyUTHREylU7qV1bDpj68lzSQ7YqSaQ8hO1RMA8xXGXOSCfmsjmmYWB0q7tl+up4Y4MJppaxuLeXwUIQyl43vvHSKcKpwz9Y9keCxw8O4rApNZR5ay93ne9eFP3PxUIbwSJKWRWWkjwRwLa0kuXsU9wXVWKpd6Kn8lGWM3/jd4bfJJHJ07Btn872nJoNNFl3awOIrGrDa/rifnwZOhs8JIAHo2DdGw5wSQMLptTFrdRXHtxbCUyw2hQtubOVILE1TqYueQBKvQ2XjXBtOZ5zW6jQ7OgP8cGsvy5qKuGVpPdMq/vTvIeEPZ5pn+lXPixASQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQXizON9VwcWmaX7eNM2e0/++APjPcxveMFs7xjk8GCWcyjEczbL5VID2kcKTebHJOOaUnruAKqH6bRQ7rcgSpPM6Q5E0hgl+p4VkdmohkN0io8gSb11SR+6sAndZlSipmVocbrxKEbwkS8jK1GARp0Xm3asaJ19bFZmPrW/Fay8UduqGyYG+EI8fGubpoyOcOL1vo5E0d+/qp85UJwNIoFBo//IvTxIPZX77QRPeUJuOj3Hrj3aRyOp85pFj9ASTNJY6ATBMyGoGLWUu2kdiLGsqYUlDEU8dGeapYyPopwuKtnQEmFnl5R3L65lW7uai6WWUeWx84K59PHZohPV+F0VP9WGEc8jOwlhKHw6g+Kx4L2nAc1UTw1fVEy+yUfJUP0Y4i63VR+yZPvKjSSyVznPaLLstRLOFce3wWFh1UytN80rZ+0QvAJJUGNumCfuf6WPJFY1UtfhoWlLGstvbWHJzKy3XNnAkk2b+VY1EJ9KU1p4p7nzlk3FixwiqVWbxZQ3YXSpr39aGwz21yFmS4OneJ/jm/juIZCKvVdcI50kwHeTr+7/OTY/dRLR7DK0zQuZ4kPSRAEYyT74zimXzAEWuqX3/CsVnQ/qNp79bG7yT4/03RSdSbLn31DnT9j7Ry3hvnEe/cZCewwH6jgR57JuHGOmKkdUM1raV4XVY+K+nj9OXz3HVx+ZT3uDh1SKiTODwYGTy9bq2MmyWwpw+h4Wv3byA+/cO8PXnOhiOphkIpRmNZYhmCgWpl8+ppMbvAODKuZWEU1mKT+/L2ull1PjPBFi5bSrvXtWEKkJIXhPDkTQvnxxnT0+Ind1BGoud+BxW7BYZj03lv26Yx0A6S3mz99wFJWio8uAosiN7zh13aoUTxWNly11djHREObFthJe/f4wSTWK0PcyxR3vY/kQP/b2R39qu4HDiTAAJgAkv/eLklMAJ4S+fJGdJOTbzL7vfRTAd5OiWQTa8ayZr396Gv8LxKguA9CpnqkA8Szj1hxUjB4eTZwJIAEzY/kAXo92xV53fWuPhNzftmFtKctsQiV0jOGYWE3u6F++Gejwb6vGsriE3lCCf05FliXQ8R2g4SToxtVhf+Mu3pzfEbXfu5rFDI8hpna79E6hWhc3bR/C/eza5wTjZrgjOBWVEn+ghczyIfWbJuStRZZKnr5dtXivz3jWdkBX+cWMbmm7y9NERVreWUuaxccvSev71yplsnFWBz2GhayLJUCTDPTt7ODwQYTCcegOOgvDnKjqRprLFh6fYTn4ogRbJ4ru6Gcmtkh9J4pxXdu4CioSlYupvCa9mpDvKjge7JgNIoHDPFRpOTr7WDZPxWIZEdur5M5PX2dIxwdefO8U9u/o4NhRBM80p88myRNuKCgzTYOfDXRRXudj4nllc9I42VlzfTDKtISNx+8oGyj02/vFqlWcin+InPZ/gn3a8i5hlN4lslju39vK+n+9lICQ+Q28E0zjzm1baFNeNgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgvBm8cc9ivaP96IkSbcA959+/RbgifPchjfEaDRNKK3xjec6yOmFgASfw0JruYuZVT7MpIbis+FcXEHmZAi1yI5jQRlaPMtILsunLpvBT7b1MhrLsKq1BLsqU+G1ceXcSp44Mjq5nX/c2MaTh0eIpDXWTDsTamJ3WJi1uprjW0cIDiVweCyoVgVfmROX30Yykp2cd966WopepcjI77LSUOLkHy+ZTiZv4LYplHttVPgKBed7eoJs7gjw8IEhFEXipsV15HXQdYPGUhf5+NQio3Q8TyKawVNsn/Ke8MaaiGf44pPtTCt301Di5IaFNeiGwVXzq1nRVMTC+mJa3jofE5Nyj52tHRNE03kW1RcRTGS5dFYl6ayOz2khldPJ5HW+cN0chscSNKsq1799CfTFsQ4lyZqQaQ/i3dhA9KkeMCG1fxzZZyV9QwtdkRR1aQ09q2OpcZPrLRQUpw9N4L2kEaUkTq43hlLtIttWTP70eJ63ro5dD3czZ20N2VTh6fPpRB5/hZPIWIpULMeuR7tZfF0zd/eNU1PkoLbUycunRqgoTlFR7GbBu6djUVQ2vHcWw+0hWpdU0LGnEKbTcyhAaCRJ/axijrw0xOLLG3B4LKTPGusNG1x8eeQ+xlJjLCpfwobGtee5J4X/y1BiiIHYAB6rhxnFM1BkZfK9I4Ej3N1+NxXOCopG7FgqXcSPBc9Z3khpKInfXixvpDW8G+rJHA+SH0tha/ZhqXDCq4RAAaQTGlp+6nvhsanFkYFDQfaQYE9vGFWW+ODaFgKJLB5FITaSYNqySk7tOvMd4a9w4iuz89yDhTE8v9bHwvoi9vZGmF/no30kzmA4TeD0/qxqKeVnO3o50B+ZXMffbZjGOy+oxzAl6vwOfE4r3RNJZlb7aC338Mv3r+D4SIy8bjKj0iOeLP8niGVjdEY6AfCr9bzzR4cZCKf52PpWXjwxzt+sa+Wrz56iezzBLz+wjM7xJP/80BG+uH4GpbpJoC+O3WVhwcV1BI+GaF4g41lTS+ZUmPxwEmuDF2u9Bz2SZdbSCuqqC9/9A8NJ9PEsXQ/1Tralb+cYN/zjQiRZIjCQQMsbFFe5KKlxk3mVEIZcWiOb1s7LcRLePGTrKN/Y+b8AbMs+T1lyCc/88BgAsy+sprjKSWjkzLmsbnEZw1qeV6IZAvEsjx4a5okjQ1wyX6W5QmJ2eSM2VSWUCVFiL6HYUfyq205Fs1Om5dIawaEElU1ebL8R/GStcVPyrtnEnu5FT+Rxzi3FyOno0cL5T3ZbwYT8WJL4CwNIFhnfNS24BxK0rajk6MtDlNS4SMVylFT/qUdO+HOS1w0O9odJ5XT+dc00pFzhO3voVISaGcXoQKY9hOy2oAULYYu5vhietbXIi8rJnAojl9jJzypl++M92JwqqSKNJ/v6eWRfnP++cR6fvXoG47Esn3vsGJfMquSitjLSOZ0FtX5imRyBRJ6nj41y8YxyTo7FyQ0ZVPntrGsrnwzcE4Tfxu5UyaTyWGXQZ5WQOR5EtqsoRVZS+8ZxzivDtayS9PEgis+GZ20tlqr/O4QkFc8SHEySf5Ww1FfO0X3hMAeHe+kZz3JyqBBWt7SxGN3U6Y/10xUIMBJy0FpWTJHLSiSdp6bZi2qV0XJnro/nra8jPJYiHsgyc1U1W3/VOfmezaniu6qWE6E0dlXhX6+p5mvtHyGSjQCQ0TP87/7/4L0rvslXHs/QF0xxeDBCXfG54ZbC68/Uz4yVoEUEwQiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjCm8X5DiH5IPAPwF2nXytAUpKkfwBM0zS957k950Ve04mn82w6NjoZQAIQTec5MhTj4lmVSIpMctcIiteGY1YJeixH9Iluim+ZgQR8+8VOrppXTbHbyv6+MD3BFOOxLK0Vbr7cNpdgIke514bTotJS7sFhUcjpZ54YrOV1DNOkoslL47xSdN1AUiTGe6Osv30GA+0hImMpGuaUUlTlQJKnFq8VOaxYFQnDMJEk0E0oc9twWlVSWY3Dg1G+81LX5Pxf3XSKSp+dGZVu7tszwNp1M5EkOPtBxmX1HvJyhv5YP/Xe+tfl+At/nLxucsPCGsbjWb626STvWd3ML3b18dLJCWwWmU89eJgPr23lof2DVPsdNJS4+K8nT/DhdS08e2yUX+zuY3lzCXfv6OMTF0+n2ZQpj+Rp6U+jj6VQy5ykD03g2NgAgJk3SO4dw3tpI0Yqj1FkZ9itMGHoEMmiVtjQASOjYSk/XSBmQuyZXiy1btwX17P3RJj2u09S1eJjxbXNyBYZLW/QeyTItKUVHN86zNGXB1mwsR5JksjndYqavaQ8MpVjESpLxqly+qhv3MUPj32fVaUXMrPqoziVIrb9qpPFlzWSTebxltoZ743hK3dSUu2ia/84AIeeG2DxFY0kQhlS8SzFc1WCRQPcmLuRPWN76Ix0swERQvJmkcqnOBY4xt6xveimjkW2cDJ0ko0NG/HYCsEZJ0MnAYjn4uT8BhgmKKdPgGdT5d+6HdkiE3qiG1uLH8fsEnIDcTKnwjh+8ynzpykWCXeRjUT4TEG9apGx2JSpM0uQOl3oqRkm332pkx+9cwmbOsZZKdtomltCeb2bgfYwZXUeamf4CY2n+NbbFnJqLEHneIJ//NUh3rqkjmKXytPHRil2Ws/agHlOAAnAD7d0c8/7lvPJXx9mOJLm+oU1vHVJ3eT79SUu6kv+70JV4XfrDHfyYv+L5MwcEhJWeT8fv2wBn/xlGhOwKDLbOgP891vm0j2RpD+Y5oUTE6TzBp98rp2n372CYHuEXFrjyMuDbNxQh6zIhJ/owdrkK4zF4QSxZ4IUv3sObekcxsshANpq3eC3ntOeZDjLSHeMfU/1ER5JAoVxee3fL8Rb6kBWJIyzPhdFlU7cRbbzdryEN4dgdmTy75/0/JBPXFLGktASxrrieErsNM5rZbwvzkR/jNoZxWyKxWg/PkZVsYNSj53nTozxwIEerlg5xA9PfINsR5ZKVyWfWf4ZHu58mO5IN59c+klsFhs5LUeFq4JGbyOKrGB1qlPGob/CSTaZf9VQBkmVURt9+G6cRmrXCOljgckAEoBXFlFLHRTd0oYeyaAFUtRM97H/mT5sDgszL6jmuR8f5y2fXiIC9f6KdAVHKC0b5NPXq0wPypzcNcriyxvpPxZAkl0odgWlyI6RyCOd9d0df3kQtcyBa1U16Wo3x14eonVxObWz/Rx17KJbvo+/v+Z2fryth09d1sZQNMOnLpvBru4g7/zxHi6cVsp1C2vANDFNk5uX1DIay5LI5RmLZXjhxDhVPjszq3xv4NER3uwMw2SsL0bb3FL0SBbJKuPd2IBSbEMLZ5FdFhLbh1GK7YXfJRI5TM045/cBXTfIpvJYHSqqemaMG5pJNl24V4oFMpPTFVVGsUucDJ7ijoN3sHnoZdbWrOWqFVfTEVTIqR0cCx3i+4e/T97IU+up47PLvsT24zaGIhnaKtys//BcBg4HyCXy1Mwu4cTWYeZeVMt4T5yyejer3zqNgeMhfOUOnC1e3vnoIfxOC/9yxQzcnlEC6cA5x0E3dSQ1wvvXleLxhJAdPYQzDorsRa9/JwiTzg4hWeoafANbIgiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjC2X571fTrwDRNj2masmmaltP/5NPTPH+pASQAE/EMqioxFp/6hPaxWKE4R5cMPBfVoQXSJHePkjkRwlLjQSm101Tmoq7YyS9293PHC53s7A7SVuFhW2cAVZbpD6XRDJOH9g9hmCaPHx4mlslhmCbbOgN0jsdJxfPseawX1VLoclM3SUfzxIJZ+o4EyaTyVDR5MQyD1FkFmGc7PBThK892EE7lkYD9fWH++cEjhJM5knmN506MT1nm5ZMTuKwKHeMJFFVm5fUtODyFJ9GX1rlZdFkDPaluOiOdU5YV3lilp588/eCBIa5bWMt/PHacQCKHTZX58dZerp1fw5efPsHxkThNZS7ueLGTDbMq+P7L3WzvCrKsqYQvP32StW1lLEgalD7UjTucI3NgAvv0YtJHCoVgeiyLpcYNgDaeIvZML1qtm01Kni/t6qEoqbN2VwBz2wiuZZXowQyWSheS9czpSxtLkbEotO8aA2CkK8rOR7vR84XQn8hYCkmCuRfV4C6yM9wdIVliIdTq4B1PHGIoHWWeF7SXFI7cGWFN5grumf0It+Y+zv67xxg6ESE2kSEezLD9wS4OvzDItKWV9B8P8fK9p6ibXUJFkxctb3BwUz9qQ4aGG1Q+P/pPfHrPJ/nOoe9QbCtmun/aee5F4bcxTIMdwzvoi/dxZOQo9ak2GsbmURVpZSAwPDlfvacQjpTSUhz39JDpi+JaXnXOupQmHwnLb4SSnE2ScC4sJ9sZIbl7lPxIEu/GBgzDeNXZtZzOgo31+CsKYTsuv43l1zXj8lk5u45ekqBlYTmZs542b5gQT2sMRdL4a91MDCTo2DtO9XQf3go7m+/rwDShQrXw3LExTo7FedcFjWi6QTpvcHI0zsJ6/+T6MvmpbUzmdPK6Scd4gmRO5+5d/fxiTz95/dX3R/jj9MR6eHHwRb536Ht899B3eWnwJYr8Eco9Nl48Mc60CjcL6/1s7wpyaizBsZEoqiLxxevn8Kv3LycTybH3iV4OvzCIt9SJ2h1By+Sxzy4h1xMtjMXBBK4VVWimjjGYmNy2MZjAGkhjd1vOaVM2lZ8MIAHQ8gZ7nujBXWLn0vfPwektBJcUV7tY87bp2J3nLi/8ZRtPjSPJZ5+PDL7c8QWs09LMuKCS0Z4oOx/uwtANSms9WKwKa+ZV0FDiZCicJpXT+Pn2Pq5frvC9Y18mqxeum0eTo3x1/1d5y/S3cOusW+mJ9fDhTR/mg899kJseu4mne59GMzQyyTzr3jHjnHE4Z00NxdWuKXc8pmky3Bnhie8c5uUnetB185wAEse8UjJdUWwtPrKnwkSf6AZZRvXbcblszFlTS810Pzse7iIVy5FN5V//Ayy8KQzEBviP3Z/k33Z/lBfG7yQbyBAYTGBzqpTUuClyqsQf7sK9sgpTM5BtCrLrzLlQC6ZRy530HA8yc1U1PYcCRANpvrzny1zbei0P932HtbNNOseTOK0q9+4ZYFaND1mCZ4+P8ZNtPSRzOsFkjr5gmmKnhXROp2ciQaXPTsdYgl/s6iOcfPX7OUHQ8wbd+wP4VQk9nEEbS5Hri5FpDyHbFVxLKkACPZQpXCsMJbDWnfmpJjSSZPMvT3HfF/bw/E/aCQzEAcim84x2R/CWOpi3vo6iqleuY62se8cMToZP8p+7vsC0olY+ueSTRHIRskacLeHv0x4+wh0H7yBvFM6lg/EBvn34K3QGgtQU2bGpMi9NRGCeD/eaCjAMRjqjpOM5yhs8HHlxkO4DEzTOKwEJNvUFSGQ1/v2qmdQWOdA1Fz7bueE8EhLzayp4IfYZftjxz/zT9g/xyc2fZDgxjHD+mLo2+XezmsQ09N8xtyAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAI54t6PjcmSdJ7TdO886zXCvCvpml+7ny243wzgVROZ+PMCg4PRs95b0lD4Um7UsZAi6Qpeut0tEAaxWPFzOuYaZ2MpvFvV82ieyJJIqfRVOIkms5x2ZxKvv1SJ7G0ht9p4SPrWnFaFD64phm7ReFXewdY2VLCSDTN4iI3kgSHXzzzdNmyBg82h8qJnSPUthUz2hUjMBTn0vfPfdX9CMRzBJM5frq9d3Ka3SKTzGl47SpNpU6GI2kGw+nJ96v9dgwTVrUUk89oSLLEyuta0DQDq00hHc8SUUPs7NvGmto1qPJ5HZLC7zCRyPLQgSEANMMgpxtc0FLKpvZC0IciS8QyGhe0lLCtMwhAldeGwyLzT5fOwGVTuOPtC2lSVWz3doJdRY8XCiJNTUeyKZhpjeSuUVzLK3HMKsG0K3TKBu2JJP/22HHefUEjJSfDGCmNXCpeeFL3JQ1gV/C9bSa50SS5jEZclkjHfqPY0gRvhQObSyWb1Di2ZRiX38bKm6dxx9EBkt0jTC9z87k105mrOHn556Ok43lWXNfCnof7mbOmhoPPDOCvcJKMFAqhR7qiNMwpoe9okG2/7mDRZQ1Ex1OMDoRputRFmZLnVPwk96f3w1HoT/RPNueZvmfY2HDZ691twu9pID5ASkuxqXcTbzHfz6m7YkAaSDPtgjJabspjc1jw2rxcWHMhW4a28B8d/8Vdq39GZdyJ98ZpaKEMaVliIJzlVPB5VpYuocXfMmVbRlbDSObxXtKAmTeQLDKpw+NYat2v2jZFVeg9HKC80UvLonIyiRwnto9w4c3TueCGVsb742BCeYOH/U/1cOuyav7j5Q4AZAn8Tgu1RU46oimsWQ1fmYPRrhh9x4L4y514fTZe/tYh/m55BfnpHv7pqeNUeG1cMquSKp8dm0Xmfaub+MXufrwOC06rQip3piBwzbRSrKrE6tZStnYWwoQe2DfIR9e1UlvkfM376q/VkYkjHAkcmXx9aOIQx4LH+JuLrubfH2tnWrmHhhIXBweiLG7w01zmonsixa7uILMkK+HeOE6vlVQsRz6rYZbZMKN5LJUu7NOL0CNZlGI72ngSKTA1JM3oi+EvdzCaKBQEW+0KVvvp72gJvCV2simN8GgKI2cQGIrTvLAMm9NCLJDmiW8f5vpPLKa83jO5zsh4isBAHF0zKalxUVrrmbJd4c/XgfEDSBLcOO1GHuh4AACPxUPcFibWoWIaUFLroX3bCHaXhWXXNuP3OOiYSDKRyOKPWagtdmC1909Zd1eki5SWwqW6+OWJX04WqueNPJ/Z9hnmlMxBz1s5vn2YC2+ZRi6tk4nnUCwSumbSfzRI47xSVIsCQHAoyaPfODgZVmZdUs6ca1qw5XXUIjtgok1kyI+nSB2cAArhERjQOZKi92hwsm2ldW5ScRH48Jfu5GiMcCpHX24nR4KFc/O7yj9EkeJm1mqVrgMThIYTzLy4Fn0kSWL7MN4N9Zimif+GVvRwFj2WxVrjQc9qIEnsebyncI2pydy5+G7euecWPrnsk2TScQZHUtQXu2gpcxNN5VnUUMSWjgB7esNcPqeKYpeV3kAKr13FaVVwWFUOD0SYU+1DAja1j/HWJXVv7EET3pQUVWLW6iokwyS5ewTXsiqs9R7C958i0xHBs6GeopvbCr9JeK3Ymv1YSh0ApBM5nvvpcSb6CsEjnfvGGemOcsMnFjHWE6Nr/wQVzV5kWWLG8kocXisWm8rhFwcIru7gwMQBVlav5K72u1hVtYp4Ps624W3MLp19ThvLneUMJvp573QbD+4O8OnLZvDr/YM0l7polC2MRpNYbAqpWI6TO0cpaygEW+18pJvm9TVU+hzc94EVjETTBIbjeJwKH5r3Yb6x/+tk9AyyJPOu2e8ilY8wnjoTpLprZBd7Rvdwbeu1569D/soZ2rnfn/lEGKu39A1qjSAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIrzjfiQ8bJEm6EXgvUAr8GHj5PLfhvJNM0HWTar+dD69t4ZGDQ9gsCjcuqqXa7yAyNoLVsJDaPU5q9ziSVcHM62CC/7aZ5GWTsVAKSTIp91iJZ3VsisQPNndz85J6bBaZTF7nBy938bWbF5DVDMo9NiLpPH933yEAvn/VXJZe1cSRlwaJjqfxVzix2hR85Q4WXlLPSGeUokonsy+sJpd+9ae5F7usyBIY5plpl8+pwqpIxEdT3GD3cEmdDcdqN1/Z38upQJILp5UxHs3wz1fMxBjMgARDp8IYuomvzIHdbUFWZQ5NHCKZT055QrHwxslqOmUeG4PhNIosAxBJ5Shz22kudTO9wsPH17fisCpU+uy8dUkdoWSGd69q4vNPHOcj61r5+nMdfO2i6fhyOkigeKwApA4FcK+oIv7iAADJXaNIpQ6OXlDOBx85wkfXt2KYkEzmsIwbvPJ85GxXlGxXFPuSCp462MP05VUceKYPXTOoaPKy/Jpmjm8dJpfRqF9ZQcypUXtDA9axHKlwBku9myFF55Z5pSgTWUqLfWx/qAvtykpq25xkswomGi2LPLj9IRZdaiUWsFBU5aZr/wRDJ8PM31CHt9TBeG+MeDpO3dIiYvko2ZhOrFOhtmgmM5pm8pnjn5pyTEdT4snabxZpLY1maKxwraH73sQ573Vsn2DuqjqqWvzsGd2DJEn8zfy/wTANnkltYqmyhoHHdZLhLE6/heorJL7b/U2yzve8agiJmdPJnAyTORk+d3reYPuDnVjtKrUzilAsMqoqIytQM91PIpKj70iAkho305dVIElZ7K4J6mfpJKNudjzUhWGYlJ3+fNpUmc9cNRNFkrhnVz8fmlvL4mYvyUiOse4YCy+up7zRy0h3DEM3ObV9lHrDpMprp2MiwYfv2cd/3ziPQwMRDg1EeMeKBsrcVj512QwePTRMTyDJhdNKWdpYjM0iY7fI3LSkll/tHaTMbcOuKq9fh/2VyeY1jgaOTpl+LHiMj864HVkCqyrhsiik8zpfefYUn7tmNp999BiPfWAle390gkw8x/Jrmzn68hCBgQT62hrMVJ74CwMggWRRME+Hy/jfOm3KttRWDwt8Yaz2evpO5amoLSYZyVLTVkTdzCJCw0kcHisVTV4M0+DgswPks+c+vT40lJgMIQmNJHnkGwdIRQrFpqpF5uqPLyAVyzF0MkRpvYfatiJ8ZSLI5s9VX6yPnJ6jM9LJRxZ8BM3QyBt5/nnHp7lnwSNER1IMd0RpW1FJzXQn4dEeMFSm213csX2YS+ZU884VjSSU5JR117pqqcjXkeqV+EDs3yhvcRN3TfCDgW9zOHSI4eQwVZ5p1M8qoedQkEwiR1WLD9WqsOOhLmZeUI2/wjkZfBMYjE8GkAAc3zvOiQMT3PyvS/FWuQn+op304cA5bdBGkngubWBWq8b4QJxUNEd5g4dpSyp4/qfHecunl+Ipsr++B1k47zTdYMepAJZwnlRvnHrvfP5n9re4a+xHGMd8ROQUrYvKOb5lGF+5AzmawwD0cJbYpj4ALFUulGI7eiyLmdGx1HmQJIlsSuOCG1o5tnWYWVTxjQXfZdDspsJVwvcODfOJjW1k8gY2VSGULJw7XVYFmyqT1w3sFhmHVWFzxwRtlV4aSlz8aGs3f7thOr/eN8CK5mLqi11v4NET3owi42lMw8TUDBzzykjuHEF2Fn4WMtMasce7AZAsMmUfWTAZQAIQnUhPBpC8IhnOEhxKEBpOMnQygqfYjqzIqFaZjr3jOL1WZl5Syq2HvgXAwYmDlNhLmFc2j8FEISDVptiodFbygcaPMMMyj4mOJHkpT5FUwbTyABlNx2dXaVWtjHdE6T40zlUfbSEVCeK5woKi2hnu0phzfRPF9V4smRyHBsLUFjvZ3hVizZwMPznyY26ffTsAqqSyqW8TLsvUz8fJ8MnX/qALv5Whaee8zsdDIoREEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEN4EzmsIiWmab5ck6WbgCJAC3maa5rbz2YY3gmkayBJ47Cp+h4VL51SiSBI1fjv12hjpmIrVUYbssWLEc5NFwZJVIe+z8MMnOlg/s5yGEheyBIcHoyxtLGJ+nZ8fbume3M5tK+rxOVTmVnsZiGR45tjY5Hu5RJ6xoTQrrmsmm9IY6YgiyRKbf3mK0jo3jfNKCY8keer7R7nyI3On7EMymyOT1/n05TP5xa4+xmJZLp1dyexqD1owx4ktw1S3+nG5rRh5ky+ubOWwmSeT1wnEsxS5LADk0xrOIhtun41MIo/NbWEkO8zyquW4Le7XuSeEP4QJvHNlA1986gThZI6r5lbSXO5mcUMxP9rSzb8/eoyPrW/lrh19vH1FPf/15Ak+sKaZbzx/HLdNZTyWJZjMkXepSGV2zIkM+bEUjnllpA9PkOuL4b2yCS2RZ0w2sdZ7GB+Msrq5mGqfnSqfncNjccxZdTCWOqdtermTeCiLqRsgFaaN9cQIj6ZoWVjGtNUV9OS6GAsOUVNaxXjVID7VgzdpxW3YCfWG0XMDJAwrzbMnePGn32PZNTcSGh4GvYq+Ay+w9+FuPCWlLL7yBhy+LJd/uI5cKovFlkexSBRVpnEX2Qh1HUdWJUr9pcjeOBIOHMEKfrroXmL6GEY0jWSR2ZzeTZOv8bz341+rVDyHBDhOB9/8pipXFc/0PEOLOpu+swrRX5FNFQriKlwV3Hn0TjYPbgbAqTpZNXsDjXP9KKqCpmnk5CAAnZHOV92WWuwARQL9TIKTWuYgZYKvzAESdB2cwO5U2f1YDxfc2Ii/Io6pDzDrAhfuEj96PgB4sDlMdE2nosHk8g9WsPXXUdpaivhGxQK8dhWPTeVdP91DIqtTUeRg8y9OUVrvoX5WCYHBOPuf7WfplY2T7Rg9FOTStaV0TCQwTBiLZWgudVHksvKtFzqJpHKsaytnQZ2PhXV+7BaF+mIHmm7yXPs4H1vfik2V+fTlMyj12P6InhJeTSSVZ0XVCvaM7Tln+rLKZdgUmWf+bg2d4zGOj8Z5+ugo18yvpi+UQjdMJM0kEcpgGiY7HuyiZXE5LYvKyfqtFFW5kLYOYeaMyWsN2WuFEgtqiwetq1BYbGny0DWyl+H9Hcxesx63M0g6NoCvtJR5F3l47md95DOF5V1+K5d/cC42p3pOCImsSrj8NnRNR1EV+o+HJgNIALS8wcHn+knFcoz1xAAob/Ry5Yfn4vSJsfTnqNJZyXBymEMThzg0cWhyeqmjlGxa4/BLg8xfV0dRZYzIWA82hxW7qwyl5ySfXVyD5MwSjcdw2cr48NwP8d0j3wPAoTr47PzPc/ieEJGRNABd20LMvaiGv/V8Ds8yhWK7C2e1C1M3GekKIysyqXgePa+z+i2t5DI6qWiOcT1GKpbDOOt87PRZaV5QhmKRyaUL5377zJIpIST2WSVIqoxpmDTNL8PushAaSbD9oS5MwyQdy4kQkr9AR4ciFMV0tJSOu9aDrIDWXc2/zfsihw+PMW1DMeHxFIoq07rIia3KhXbkN8ZOWxGSXcVI2pBtKqm8gZbTKW/wsOvRwr1cJqHhGi9l3kwvh0fghgVeNMNA0w1UGY4NF86T77ygEZdVpn00QWOJE49DZU1bGaORDM8eGyWcypPOa1T57PQGkiKERJgim9LY/XgvtTe1YGv0YilzovhtIANnXRKrZU5U77nfx7IMCzfWMzEQZ/BkuHDDCORSGrFAGpffSi6jY+h5hjsilNZ7KGqwMSh38fPZD2LmJdRSnf859QUS+QSqrKLKKrlcnq9U3IkZk9j6QCfG6dRT+aUo7/3YPPojad4zt4LYyBDF1RIr6hwcfPpeYhPjNMxfiK+8irZlVWi5MIneDoqQWFtWwwtjKSq8NgaCKWLZGD84/INz9ucd9ndMOT6t/tbX9HgLv5tpnBtCoiXCv2VOQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRDOp/MaQiJJ0jTgb4EHgJnAbZIkHTBNM/W7l/zzVlPiYbg7gNduoabYTpXfjlWVmFckYcTh6MvPER0a5bIbP0bi6X60QBrFZ8N/fSsTDpW3L6/nH+4/hHa6GGdDWzkXTivh1hXVfGBNPYcGEmiGSWOJC6uqMK3CzZNHxyh1W7lqXjV+h4UF9UUc6U2y9f5Oaqb7aZxXiqTAgo317H2yl9HuQmHb7AursdiUKfuQTOdxWBW2HR5mQV0RpR4r+/pCrJleSiaWxdBMXvj5CQBUi8z6d86k2mUhnNcp9djYdHSMqyuKKap2c+CZPoJDSepmFVPZ4icQG+eyxstQ5KnbFd44xU4r5T4b33n7IsZiGcrcVh45OMxwJMOWjgAfW9/Kl585SUuZm+1dQTTDRJYlMnmDljI7igx2i8xILk/ZRTWUbR8lfXgC+5wSit45i2hWI2SVyXktGHGNnT85SVGlk08sqGX0SJQfb5hNYDCBXOtBml2CdjwIioRlSSWBnI5pmHTsHWPh6TEMkEtrWBwKWlLH1qNi0WWcFp1abTpun4WJ/h5ynjGOPv9LMok4My9cx77HH2LhZVez78lHMHSd5kXLmOjrxl1cwoJLrmTrvT+jbeVqtFyOgfajLL78GrbedxdLr76Bnb/eQioaYfXbbufJb30XLZdl2vJV1M+ej5Go5PB9dzHW3YGsKCy49AZmNLW9sZ36VyARzdB9YILDLwyiqDILL6mnfnYxzt8IyPDZfFzccDFaCqLVMSLD6cn3LDYFR0nhfFTtqqbJ20RPrAeAdzW+j/ZfJEjFQpPz21wqt9/wXppr6161TZZaN8U3txF5rAsjnketdOK9qpkHftZObCIDQHmDh0WXNeD0Wcmne3nkB18Fs3DOL6lr4OL3/g3HXn6OI889g2ka1M6aw6q3voPlN3l46FgfTo8Huyrz8KFhEqeDILKazoKN9ex+vIfhUxEA2pZXMnTyTHGfq8jKiWR28rVuwn880c7H1rXykXUtPH54hEqPndWtpWQ1A90wsSgyp8YKYRWj0Qw/uH0xbeUiROq1kshq5A2D+eXzWVC2gIMTBwFYVL6IeaXzyJOizOGjpdzDs8cLxevJnIbbVrikyykmzQtK6do/ga4ZnNo1ChJc/pF5bE6nufDmNmKPdqNHs6ilDpyXVvPMPd9kzVvfiW15MYahs/vFB1FMCy1LlvPY176EoRcKRD2lZcy5aCNLr5jO9gdjODwWXH4bY70xFl/eyMu/OAlAZbOXlkXl7HmiF1mBhZc0oOW0KfsaC6TxljomX4/3xgiOJEUIyZ+pYnsxKS3Fsspl7B7dDYCExCeX/BOybsVf4cTtn+DhL3+JXLpw6V8/dz7Lr78Z0zB47rv/S2RkGNViZdWt76L1gi9zMtGJS3Vhi3qJjAyes73j20aYv76ORI+JGcoTd8RIhLIsWF+PapfZ82gvrUsr2PSTdszT19ALL6nHX+FEscj4K5wUVTrxVzhp3z6CJIHLZ8Vf4cLe6se9tpbE1iEwTZyLKlArnFjKnXhlmfatxyaL5AGqp/kZ74tTVu9BkqTzdMSF11teM7DqYLMqvPhkx2RAWW2bn7qZxUxbVoGhGfQenmDje6p5+a6vEKlvY/Gqy8nuCoJuYptbjKXRQ34ggWRVMWwQNWCkM0oymkPLGyy5opGu/eM0zi3FHypifCTAmlllyJrBLKudbFbjnlsXEzJ0ilxWNN3gorYyKrx2/u7egxweik62+e83Tier6Uyr8EzeOwrC2RRVwu5SOdkVY1qJHatVxsjpFL1lOtEnezASeSy1bopumIbsPPNz0XhfjG2/7mSsJ05ls5dVN7ay4+EuaqcXYXNZ6D0aZOnljfQeC5CJ55m1uprKVg95M8/AY35ePlW4ZrG5VD77/v9mi/EM3aFuHljxBBbdzuHdA5TWeVh+TTP5nI7do+IrddKxY4QZK1zs+OWd9BzYA5LE7LUbKK1vKuyPopKOR1EtFnY9fD/jPV0AuPxFbPjYp7mnG06Mytw646Pc2f6/k/tzY+uNuC3uyWstWZK5uvlqqpxV57E3BFPLn/M6Hw/9ljkFQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQTifzmsICfAY8BHTNJ+XChV6/wDsAWaf53acd4FkFquqktMM/A4LubyJQ5UYGhnm8KanAHha/gYb3/oRLLINS5ETS6mDeqAnkORrNy+gYzyO3aKwcWYRGXmEzsxhNp3axIziGayvvQQz42cinsVjc7K8uZgKn42f7+jj21fN4YWftpMIFwrNT+0eIzic5MK3TgNg+TXNaHkdRZWRpEKICEA6Gaf/8CFObH8Zp8/PrBUXsrDOjyTL6IbBmmllTCt3oo3kObV7bHJftbzBrke72fCBWUhShGwmxux51WihPM/94Bj50wXyvYcDpOM55l69gF+0/4LFFYtR5fM9JIXfpshlI5Mz+NsHDvHJS9v4n2dPccOiGrZ3Fp7ubgKpnI7bphLPFIoyVVni71Y2McfuoNSq8O63LUWO53FYLUzMLqV4TRUpDR79STuLL2tg16PdLL60gZ2PdmNzqNRML2Lb/R3M31DHnke6cfmsRIYS5NMaF7y1jfGBOEf2TTBjZRU2l0oskKH3cICV17Vgc1uQ5RyyHCWXDLHnoa+hWCwsu/YtjHV3UdbYxOa7f8wFN72d0NAAM1atpWvPTgDsbjexiXHq58xnoq9QIDdrzXp2PHgvpmngKSlj54P3suiKa9nz6ANIkoykKMQmxpi1Zj0Hn3kCLZdlxgVrSCcTHH3pWTylZYx1dwBg6Dr7n/wV1dNnUF5Vcf4786/EkfEjSKeK2HJvx+S053/azqXvn03r4qnHXULiU7v/gS+85X/pfVpl7FQcX4WdxTfVMKr2MzjaTSwX48rmKymyF5HX88zKL2Z7bPic9WSTGsvsy5lWUUNwsJ/xvkJgSXljM56SMgaOH2Hg2GEW33IVqmlF9lrY9nT/ZAAJwHhfnHgoQ/NCDwee+sZkAAlAdHyUyNjI5HcFwODxo5zatZ056zYyK3GI/z1ZTW8oxddvXsBgOMWe3hDzq31s29LB8qsL53hfmYPhjihDpwNJJFmi/MIqHn/+OACt5W4iqRwA33qxk09cMp33XNDEvv4QFV4bdSVODMOgN5hkZ3ehQHBOjRenKlHpd/4pXSecFkhkeOxwH29ZWMf3jj1GmbOMD83/EAAd4Q6e7HmS9bXr2XRqP3PL5rJ+gRWbpYJD/SlcVpX3XdgE2SxFlS4a55n0HQng9FmZt66OdDKHL5DhmJxk9q2tkNJI5qL84o5PkYyEcRcXUzt7PslwkFP7t7Pu3R/k8KanJgNIAOKBCXQtT8+Bp1n3jhsY6z5IcPAU+dRSKlqmsf4dKplkAm+pnyObRwmPZMmmNYZOHuLyD81l5Q0t6DkDLW9w6PkB6meXcHzbuZ8nQzPO6zEXXkMSyJLM9a3Xc2XTlaS1NJWuSmrdtRztjbNkYxVb7/nKZAAJQP+RQyy49Cr2PPJrIiOFsaDlc7z80x9w1b98Bs3XQi6dwmLRsLlUsskz49HQDCRZIhnOEhpJkormqGr28cR3j3DR29tYdk0zj33r0GQACcCBZ/u56qPzOL59mLkX1QCw5b4z3xnbH+jCW+KgZVE5vksacS2uwMhooErILiuyXaW4xs3622ey67Fu4sEMtTOLqG0rYt/TvTTOLcFdZH+9j7RwniRzGmUOKzse6ZsMIAEYPBlh2rJKXH4r0fE0lc1+xrv3ER4eIjw8xNzLLyeYjyIB3adeZlblGkrK6rH7XATiAyRHh1HkvTTNbaSmbRn7nw3SvLCcoZNBbC6FC30uEok8g88PMdYeAcBVZGPpbW18e2cvn7lqNlX+QoDTV2+ez57eMEPhNCVuK+UeO8FklueOj/G1m+e/AUdNeLMLjyaZu66WyGiSqMdCsd8GdhXK7JR/bCFGWkP12s4JIIkF0zx+xyHS8UJgxNCpCIlwlg23z2T4VITAQJxL3j0LTdNZfGkD+ayOrEiYukRiTJu89oTCdfPhTUNceuPVLM9sRM4oxGNpZl7gR5JVXrqnB0+xnRkrKolNBKlqnmDgyKFCAAmAaXLspee4+H1/Qzw4gaFrtCxZwXhfz2QACUAyEqbr5WfxNW8kbrdSaqzkiyu+T8YYp8Tpx2Vx0BnpZEXVClZUrcCiWCixl+BUxTXt+WTkc+e8jiVGKH2D2iIIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIwhnnO/FhmWmaMQDTNE3gK5IkPXqe2/CGWFZuIRUcQ1c1TEcpPzkR4YLaaka7CoWP89ZextJpVxH/eTfoJtYWH/6rW7BWuphX6+fQQITGYicOm4psifB4x2MMxAdYXLGYRD7Bf+7+HP++4kssq5xBfzCB06rwzec7ASg3FI4k8iy5shF/hZNEMMOhFwdIJ3LYXCpazgAkJFnC4baQzxt0DbaT6RnB7S+macESTMPAzOe4oU5lb8pFTjNoLnNR4bEz2pGcsr/R8TSKplH+wCWQDDDxrg5i0dxkAMkrxnpiVEQNQpkQ8UCGQH8SLadTVGbBE+ohPzyEUlaGtbUVW2Xl695PwhkD4RRf3XSKOVVOVpSk+cBSPw0lEte3lPPIqRTXtKjU2+ooddtpK7bhNFowgxmsNQ7yg0nknI5xIkxy7ygZE4pn+hgMdNF96hAXXHc9R7aMkc/oGIaJLEss2FhFKhrDU2LDX1Eo/vKVO9HzBsMdEQ7uHaOkxo27SCYdC3HxuxvBjGGxWEgnxjC0PMc2P4/L56fvyCGyqSSrb3knW3/5c2ZeuI4DTz2KarPhKSmlatoM6mfPp3XpCoZOnaCiZRpLr72RdDRG/dz5yIqCv6qGhrkLMEwTxWqltL6RsoZGWpaswFtahrukhPXv/jCuIj/e8gpsDifu4hJGuzpQFIUjLzw75ZiGhgeA5ee3I/9KdAVPsrl/MxXbllM7s4gZyysxDDj80mAh8Kg6QGNJPZ6JbhjYAR3Pol/2OUZTo/xq6Bdcu+4mZlzcSFiaoNt5FGfGyR377+Ajiz6CRbbw02M/JZqNcsf8HyHLEsZZRe2SBA0ldeRGJnj8m19m+vJVAMQmxiltaEZVLSyZfSWxe7oxUhpKsZ3Flzeh2jT8pUm0vE486CQymsJbKpOMnPsE8LLG5slAm7P1HNjLnPWX0PX0g/zyS99C1XOAhlJs4+YyB4lYHws3etnx0BDxYBYkWPu2Nmra/GQ1A0uRlQnF4H0XNtNc6qLIaeEjv9g/uf7hSJqr5/upKXawvy/MoaEox4ai3Li4jqeOjLJ2eikzqrzMqfa9Pp36Fy6jZRhODhNIBdg7tpcyRxnDyRG2BDYzcmgRi8oX8fldn2dT36bJZdbXrSecC/PjY3fyvrnv494T9/KxtrfzeXeQtHcddUUzCGsd9O2QqGzxcvG769ByBodeGGHZ1RX4m7L49RKiPz+Fkcij+Gzc9ndf5VTvDnTDoLiqCn9ZORe//yM43B68ZWWMdXeeE0SSS6fJpeLYnUlKa0uwWJp5+e7v03bBGloWLwPTIDo+xKJLGhjrGUXP2fCU1ZAMd4Bh4CsvQrEYbLjdDlKYxZeVcWJ7jNBIEqffSlGVC0PXiYyNYmg6vsoKLFbbG9FFwh+oVC2mkSLy8Qzu4mKO0ceSRDnSeIyK4RPk5i0h0N8LgGqz07p0OclwGIvVxkjHySnry4wHmWmrY+tdP2Jn+hkWXXYN7pI2Nv14EIDmhWUMnghRP6uYwFACm11FkiX0vEHvkQDT7BXk0tqU9aaiOaYvqcTmUlEtCld+dC7BoQTZhEb3wQAnd43SOK+UVCKHFEwTf6gTPZZD9ljwXtwAskS1W+GSa5oI5wxO7h1n58Pd1Ez3M94XJ53IU1bneV2PtXB+mCaYeYPAUGLKe/FAhnAgxYKL61AtMlvvPjOGU/EYaomd2ro5tE5fTvSJbtLhAbIuCyXXNZIrytK8aCn+iiry2Rirbiph39NRWhZXcGLHKPWziij3quw7HUACkAxnGdo5yscvLILoIKg+UKy0WuO0LqogEouRTUbYF8iyoizHTdeV4iAAYRPsPkgEwMiCpxKcxTB8CA7eA8EOWHArNK8DV8nvd2C0LCTGweKG8SOw76eFaW1XgKsUymeBJINqBVcZ6HlIjIFqBy0HigXcZX9i7wh/DC2YpsKmoDpV8FmJPdNHKp5D9lrxXt/KiCSRTWrYIll8ZXZMoxAwGh1PTwaQ2JwqpXUeFFXCXWxn+vIKZEWiffsI05dVko5nScXyODxWTANigcw5bbDaFcKjSfQcOD1WMAKkwkcZbB+mqKKaDe+cSTYRJRU9jNXhpKxpGgeeenjKvox2drLk6rdwavc2kCVi46NT5+k6xfuu2EDGVoSsg6TUk477yYVTqH43PZJCWkvjtDiRkFAlFYfF8boce+HVpXMJzr6TCMWHaX7DWiMIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIwiukQhbI67wRSfon0zS/fPrvm0zT/NVZ733RNM1/ea23uWTJEnPv3r2v9Wr/KCNdpxhqP0Y+k8YwDFSrjdqZc3AVF3Nq+xZ2PHAv7/vEdwj/4twCTOfSSnILZXQ9D4ZBLp3G6nCQ8slsntjGlqEt7Bvbh8/m4/ZZt9Psa2Zd3QYGgjEeOjjKN57vpK3CzffWz0KSJY5vHWa4I0JpnZsLb5lOPJDh4HP91LYVo+UNVIvMxECMpVc1IckxUqEgT3zzf0hGwgBYbHau+cT/I+BpwMAgltZYVukjEc4QGU1y4Nl+ImOFIqPKFh+XXW/FlTwGWo5A5XUEB5M895P2c/ZRtcjY3jbExurL2HxXJ/WzinH5bHTsGWPF1Q24j7yAZLNhqiqeDetRXa7z02m/P+m1XuGbZeyeGo3R3XWKWW6ZWCSO2+8jHgxgtTtwOD3ooQzFtXVkxqK4i4qJPtSNrcWHHs6SG0ngWVtH/Pn+c9aprPQxKHVgdThxFpWi53XymRROn59gfxcOrxdXcSmJYABvWSWZRAxD1/GUlBEeGcJfUUl0bAS728t4XxdaXqO4ppaRk+1MX7madCKBzeFAkgBJJjo2gquoGLvbg6Hr6LkskbEx/JVV9BzYCyZUz5hJeGSY0roGNC1HLpWmuLoWLZdFUS1Y7A5y6RQuv590LIqkqFgsFlLxGE6vj2QkhGEY2N0eoqMj2FxuPKVlZJNJxvu6CQ70kY5F6T20n8v+5pPMXL36jenQqV7zsQtv0Pgd3MtLRoIZntlEO3Si42mObx1GUWXmb6jF5lSxNWn0ZDpZ17ENtvwP+Otpf8d9HB86BdsqGT2cAsBiU1j9/nq6Hcf4wZEf8NkVn+VI4AiDiUEssoWb/LczfCjBoecHJjc/Z20NMy+oYujkFooqqzENA1lRMU0Dh8eHx/ARurMdzgouUYrtZNbIvHT/j6hpm0VFUwv+ylb2PB3B7dnDsZeempy3qLKGeRdfxst333nObs9cfRFtF16Er7SCfDZDPpVCsahYnS4yySSPffWL5DMZ1rzjgyBPR8uZjHRHmb++jnGXyWOHRqnw2tjbF+YDFzbx9/cd5m3L6qgvcWJXFfK6gSRJeGwKXocVRZbwOSyMxzOoskxzuQu/w/o6d+5v9Wd97u2OdvNo56PUeGr4/qHvM71oOnkjz86RnZPzVLuqWVe/jnva70GVVOaXzucD8z/Itw58k6PBo8wrnYfL4iKUDvHN5g/jivQTLZlPX28nleUNDJ84zsGnH0NSFK74+CfxukpwKV4iPz+FmTcmtyO7LbhvbWRo6AQ15TMgrIEqoftMejoPUNHcimKxICGTCAawuVyk4zEwwTB1Rrs6CoFNus5Td3yF+jnzmbH6IgxNQ7XZyKVTjPd0Yeg6jfMXYbEXztG5TIbNd92JxW5n9dvfjaI6sDsd5DJxkpEo2+77GdOXX4jFbqO4poHq6W3YXS7y2QzBoUGyyQS+ikr85X92AWV/1mP3t4mHQ3Ts2MLQqROU1NRhc7momjYDi2oh8q73oI2NUXzHDzhwai+LrriWZCSCy1eEiU5wcABFUfFX1ZBJxslnM2QTCVxFxTg8XmRFJRWL0HdoP57SMqqmzaZjTx7ThNBwgqYFZZQ3uNj/3ADltV52P9ZDTVsRcy+qYduvO4kHzxTAy7LE5R+ey4t3nyAVzdG6tJzqVj8nd41S1eKjdmYREhID7SGmzyomd/8pzLOCTCSbgntlFXoyT64vjn1WMUqtG6wKumGSVSTSWR2bXaWk1o3VbplcNp/TMfTT3wNSYSDIsoRqVc5XN70W/iLHr5bX0fIGkmlimIX7E4utkNUZGkuw74k+RjqjtC4tI5fOI1sk6meWMtwRpGmuQmRsGFlWsHs8aNks7qJivGop+kiK2PMDGLHcmY2pEt53t/LQ979IdHSYKz7+CUzDRFIs9B2V8ZUXkwincVVY2f2rvnPa6Smxc9O1Qzh2fglWfBj2/hiycbjon2HHt6FqDlTOL4R+2Fxw9EFYeBvICpx8Ck4+Cb46uPJ/4b7bIBs7s/JLPg8XfPz/PljjJ2H8GMjWQqjJA+8tpLVMrucLoDpg9Ah0boINn4XIQOHay1sNS98HJ56A5R+CaZeAxf6ndN0f4i9y7P5ftGweLZTBTOqg6YQf6MCzuhYjlSexcwTzrIBQyaGSWltLIm9iscmM9sQYOhHGW2Zn4cYGnvj2YWatrsbhthANppm+rJL9T/ehZXVWXNvMeF+M8YE4VS1+dj/Wg6GbtC4po3FeKdHRNBaHgtNrJTyapKzOi9WeRZbjTPT3YnW4sNjtuIuKiE5M0L75BUY6TrD4qutpXriE8NgIRi5PSV0j+VwaTJN8Jotqs2LqBlo+TyYRwzQMkCUG248z1H6U9e/8AIrVSi6bwdAK5/IDTz1K76H9eMvKWffeD3FfZhOqoqJICksqlzCrZBblzvI3qst+m9fjvu31/yHw99C97ymaH7tl8vVTjbdy+bu+8wa2SHiNvS6/OQiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAivP/U8becW4Mun//5n4FdnvXcZ8H+GkEiSdBnwDUABfmSa5pde60a+HpLRKIlwkNDQIEdf3IRpGhTX1OErr0C12yita+D2/7kD7UByyrKZ9iDeldMZG+nkwFOPMnD8CKV1DSy77iZUh8S+sX0ARLNRvnXgW3xj3TdQZIkiBT6ysISPLK0gbCgQM3jxrhMEhwrbGDoZYWIghq/UReuico5vGyE0nKSmzU/bikpMI4SqWOk/dngygAQgn81w+Lmn2XDF9Uh5DWuZndGJMLlUCoslx6obHSjWUrb9Ksyyq5twjf4COp7GuOU+tDENh9dKw9wS+o4EJ9d5wVuaaV2wlHw6xcZ3VaJpbl66u4uWRWWkkgbGwSOkHnmQottvx1pfh7pgwevbYcKkWp8Fh8eJx/Tg1YqxWtx4w06sVS6S28ZRXC7ygyHM8TTZOgkjmUctc5I+HEAtd5IfnTqm5X6dlhtXko5FMDGxWG1Ex8ewOqzUzp6LlsvhcHtQFBWLzYbFXoqey2F12HCXFCOrCp7ScrKpBI3zFhEY6MPt89MwfyHhkWF85RWEBvtxl5RhGDqZZLIQYDI8VCh8x8Q0DXKZDN7SMpAkTMMgHgxQXFXNcPsx8rksEtC+9SVmrV1Pz/49WGx2nF4/R198lpVvvZWjLz1HWX0j2VSS/qOHWH3zbTzx9f/GXVLKgkuuZPM9PyEeGKftgjXUzJzNkeeeYeMHPkZRVeN578e/BkYuyxz7IuyojMWD7Hm8Z/K9Lfd1sPG9s5DyCgPxAcKL3klR72bwN5HRsyyWV3HUGGbJFeWYpwuP04NQU9nKO1reiYnJotKFVLur0QwN4ipjPVGWX9OMxQZ2l0Tv0RhaPo7d6WKivxdT1znw1GNkU0lmrF7LBYtuOieABEAPZSj3z+TCW99dKEJXrSg2nTW3VJJLX4GJzGD7AW7+zBfIpdO4Skrp2L2N4VMnAFh0xbWUN7dgs9pJhAIkggGGO04gSRJV02bgr65m/bs/xJPf+h9e/MkdrL71X+k9IjFrdTV2t0pRfIKP2YbJJnSuXjaNa+85wLQyN+9vkDBCQ0g5kIqL+c/DaVa2ljK3xoEnEUaSdBqbSs5r//6lSefTfGXPV5hXNo9ELkEil+CymoupjMDnve8ARcERTmGpqkIPhXhf9XLC7iaO7w4T7Zf57NLPc5/nLjJyjmuKLyd3sJsH/vf7XHDzrWz+7udQrTYWXHolex97AABJlyn31JN8uB8udp8TQAJgJPIoKZmaojZiP+2cHKtKmYPGaxYyPtHNaFcnNreLxrkLSUbC9B7aD0DVtDZqps/gia//Nzf8y+e55T/+l3wmRTIS4sBzT+Erq2Du+o14ikuJBcZRLBZ2PXQ//UcOUFJbz4obbsbh95NLJZFI8sx3fkx4ZIiKplaWXXsTT337q4WCYmDexitou/xiOl/YzIHHHwbA7vZw/af+jerpM/+wTjD0Qumt8mcV/vCmNt7dQSwwQToWZceOLQA0L17Gyre8Ddfffhz9xRdRzRyzL7qYrn27cXh9yLLEY1/7EorFwvLr3srOB+8lNDxIy5LlLL36RhSbHYfHy+CxQ5zcsRVfeTmVrW1Y7VZmr3UQDSjUz0pyYtsD9OyLM235KvwVVi5+bxNOVw7TmODyDzcgGSaSKpPLKKhWJ5gG626fQTahoSbz+DWDsul+0m4rHTtGaV5cTt2MYiyaQfasABKgULAvS6T2j+O5sIb4y4N4N9STPh7EWudFSebwzSjm6L4JknNL8JbZ0XMmkiKRS+bp3D9ORZMPq13FMAwMHZweK1XTfFht5+u2TAAwTRMtozHaFycVzWF1KMgSSKqMapGRkLC7TfLZLLNWKdTN0HB4kkz09RAZGyURmEZFvY+Hv/wNUtEIAEVVNVzxnn/AMe7EdOXRo7lzA0gANBM5YHDtZf+ApdFNypIkPDyEw+WktGaEktpG8rVOAonQlDY3zfZhq3bCVV+DdAhWfgSKmyAZKISSKJZCsEiwsxAAUjodcnHo2QLtjxZWEuyAvu3nBpAAbPkqzL4RfDW//aDFx2DPD2BoHzReCNGhcwNIALpfArsP5t8K+38KD30ALv4caBkIdcOz/wrr/xXuvw3e/TQ0rPyD+k34/ZimSaonSv5kGMVrJbFzGFuDDyQJLZhGdlvOCSABMNMaZcV2yOoUFdupdVlYWGpHLrZj2GQu//Aceg8F2Pd0H1d+ZB5b7j/F2lva0DSDE7tG6dw7zvJrmtnxUBd1M4qYvaYGm9OCaZgE8wmaF5URC8ZoXeIFM4+WzZJLa9TOnEs2lcRit2FzuLC7fXhKSrDYHGi5DLlsFm9xGZIs071vJ3sefQAkiWXXvoXi2jqGT7bTuWcnoaFCQKDD6+OSD34ch9tNcHiAYy8/T9vKC7E6nUTHRmlYsAhFtdK1byfPfvvrvO1f/oVedRyn6gSTN2MAyV+05G+ci8LhwBvUEkEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQzna+qt2k3/L3q72eurAkKcC3gY3AILBHkqRHTdM8/to18fVhmgbpaIwjLzwzOS00NMDxzS9w0e3vx1NVjaKoyF7blGUtFU4kBbbddxcTfYWi+vHebp79/je59lP/xv/+xvzVUhnJri7UcITwiy+S3r+PojvuJBTLTAaQvMJf7gLdxFfuZMbKSkzdxOZW8ZTacbisAETHxqa0KTo+Svr4ceTmBuIZJ9lEjM33/ITQ0CCe0jIuuu29XPKBmeRTMqnmG6D8EuRIHEOzkU1pzFtXS8vCMrJpjdo2G5KcJ9jXw9GXn2fo+FGq22ay6i2X8MQdvcy5qIaZb7+N1CMPEv75z3GuWP4n9obwh8hGovgyPmIPduNZX0fk1x3IHitmziA/kMCxsYHYpj5srX60QBoA6fSnWY/nsLcVTV1ppYWRjhPs+PUvWHzltex66H5sThdz1m3kwNOPM33lalLRCAPHDrPs2ps4+OwT1MyYBaZJ94F9LLvmRvY+/hBNCxeTikYZOnGMZdfdxI5f/5JZa9ZzYuuLhIaHWHbtW9jyi5/RdsGFDJ88zsCxI6y6+TY23/Nj5l98OYefe5rY+BgXvPVWnrrjKyy87Gq2/PJnJEJBVr31HTz3o28zd8Ol7Hn418QC46y44Wa2/+oXzFqznsObniI8Msz0ZRew/Vf3MPuiiznwzOPomsbcdZew+Z6fTBbNH9/8AoamY3O5ePb73+SaT3weqD1PPfjXIZ3IEdJmM34sQvOCEk7tGZ0yT/+xEMsaarhkcwLd+QIRz3uwTJ9N864ewrUV5DIaB57tZ9WNLex4uJv86aLMGUuaaZyeIfHjOyi99nKsi5eSdaoYugkE6T+ymfHu4zQvXkU8MI2t993Fqptu5alvf3Vy20eef4bVq942pU2SQ0WxWQid6EOSZUY6TzHaeYq6OfOon7uAC972NiL9K3j+J98jNDRI69IVrLntvQwcOYTT50eSJbKJBHpxKZl4jE0/vANDL7T76IubuPLj/4RitTDv4ss59OwTONxZZq1qwl/hRMJE+vTfE+jsBEAtL+epr30Tr2KSfOYZIvfdD4D/lpv5f6tWEbelkR7+NYP3349ks1H8nnfjWrMG1e1+rbvzr8J4epx4PMhGpQrL/hNc3foprAMuwnfdTeToURwLF+J+z3uIP7uJ8E9/Cp/7Ic8/0D25fM+hIO+65a1YS4sY6d3P9kd/TcuS5YXzja5T1TqdgWNHJudvW3oh6edG0UNZZLtauOo6q2ZcssjINguxJwbOCcvRJ9LIQZ1nvvdNVr/tNly+Irb+8mfo+TzNi5bStW8Xx17axOUf/QSrbr6Nif4etGyG3Y/8mnw2y8YPfBSAeDDI8z/+Li2LlhEY7GO08xQAE309PPO9b3Llxz+Jruu8cOd3Jgv5q9tm8OLPfjh5LgU4vOlJGufMnwwgAcgk4jx353d562e+iP33GY+pEJx8Cg7cDZ6KQsF99ULwi/PynyoZiWAYBgPHDk9O6963m4a5Cyif3YZ9/jzyksTRpx5GVi34ysrZ+8QjZFNJVr7l7Wz55c/QclkAOnZtJx2Lsvpt7yYbj+GrqGLR5dcy0tHOnkd+xdJrb0LP5XF7nYRH0hx76TkAuvbu4rpPfZaJzj3se+JhdE1j+srVzFi1lsH2Y3hKSnC4PXjLK7FY7UiaDcvWQdKpQtCIRYKZlzYRz+hsvb+Tq2+fAYoE+lkfGJnCxY4kFT5HJpiGSX44iWN2KcldI3hKnUwvs/PcIz0sv7qJA8/3Uz+zBNM0aF1cwUB7CKfXiqGZIEE6nkNLJCkJHgETZLsd2W4j9uwm8oMDeK+8CktdLRgGpm4gmQbYbKAoyF4vztbW89XNb1r5ZJJ8by9mPo+ZyyGpKtroKNFHH0PxePBecTmGrmNmMliqqzGiUQzVQtg3ndBIGrtbRVEtZFJ54oNJxnonqG1Loao6do8XLZth4NgRdC1Px65tLL7yemwOJye2vzx53gKQJAl33oeR1zAzOhgmklXGzJ0V/iSBkdBIbBoARcLxlmqsDgeP/M/nWX3L7SiWHG45R8KWZsaack5sGQcTyhrdzKk6ijwUBX8DxIYhOgADu6B8FkQGoH4ZhHugZjHsvRPWfhqS43DyiXMPmPQqt9+SDLnU7z7Qo0dgz4/gwk8U1lk5/1XWI0E+A+ZZ+xwdAEcRpMOF6fnCfQPD+0UIyZ8odfQoZiZzOgvGBKeXiYhCcXER0miS/GCcvAmK24oWzJwJjZEkkKVzQ/IUidGhJKbXCscCJLaPTL5lafEhzSvnxM4xJAlSsRzrbp3Btl93Mv/iOrr2jQOg5XUcbguN88sK5zMlg26EqJ0pkY72YrUpBHoDSJLMSz//ERVNLTQtXEJRbR3ZYILdm39F/dyF+CsrSAQDKKqV6NgIJXX1hIYH2fLLn022afM9P2H1LbcDTAaQAKRjUTp2bSc8MoTT50OxWHj5rjtZceMtjPd0kUnEmX/JlSQjIUa7TqEF4yT8CWRJZlE6B4d/BVYnWBxQ3ApF9a9b/wkQT8fPeZ3MRt+glgiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCcDb5PG3H/C1/v9rrV7MM6DRNs9s0zRxwL3Dta9W410siGkHX8qRiUwsphk+2o+VzOFxuLLIVpcyBtcE7+b7kUHGvriGdT0wGkLwil04THx8/Z5pNsdGgliJnMoz/1xcJ3XknclkZRs7AYlOQ5HOLzUzDJBrMoNpkyhs8VE33U1LlIp/RMCWTXDZN3Zx5U9o9fcVqEo88glLXSD6T5rkffYfQ0CAA8cAET3/n66RCIyCBLMvog4NkM6CoMvmszkR/DF0rtMnikNEyGV74yfc59uImImMjHN/8As9+9xtc83cNHNsyjG45U1SsB4J/eCcIfzSr7CCxqdC3SBJGSsNa4ybXW3hasakXigtzQwmsTYWxmxtJYm3yYaY1JFlCLXdOrk/2WpBabTz9na9S0dzKkReeJRkJM2vNejb/4qdYbDYyiTjtW15k3oZLefnuO0nHY1jtDo688Cyz165n6313kU0lsDlddO7Zwaw169n14H3oWh6by8XwqRPMWLWWvY8/hGkaFNfU0XNgL9OWX8Dh557ENAycPh+hoQEa5y/ixLaXAbC73cQmxqmaNoPewwcAcPmLiIyN4K+sYqK/DwBPaRmh4UGsDgfpeOFz7S4uITpWCL7QcrlziuYBTu7cwqw16zENg/BQ1+vRVX/VgiNxJgZibH+gE0mWcfmmBjq5/DaUdJzUM5vIneog9MDD5Do6CP76YY7vGGOkM0rLojKOvDw0GUACcGJvmHDAwNbYRPSf/x3HRBhFlVlyZRkHnvwup3Y8T2RshEwiRGR0GIvVxljP1D6W3RZcKyrPmgDejQ1IVpnI+ChHXniGjl3biAcnOP7y8+x++H7iI4M8+tX/onvfbiKjw+x97EEOPv04M9asx19ZzckdW8kk4jhcbjr37pwMIAEwdJ2O3dvx+EtonL8QJAlfeRmlDR5kGbJpndzpABIAbXwcee8uMu3tBO74NtrEBNrEBIFv3UHmxAlcWpqx//xPsh0dZI4eZfgf/pH0nj2vUQ/+9XGqTj6tbyT74U+R+OFPsNgcjH3hP0nt2YOZTpPavp3Rz30OtbgY27LlHO/4je9vE/r7NEITOTr3bAPA4fGSjIQBiIeCeMvKJ+evqW8j318o8DQNA/eFZwVuSOC9uB7JoWDG81PaqsezlNTUYXO4eOIbX6b/6CGGTh5nyy9/RuvSlZimSTwYoPfwAWRF4cWf/oBkOMTsNesY7+kil0rRc2AP6ViU8uaWyQCSV+SzGaITo0imeU4hv9XpIv0q106pSGjKtInebjKJ+JTpr+rIr+CRv4H+7XDsIXjo/dDzIuSS//eywu/kK69kvLtzyvT+o4cAiUw2QzISori6jkB/L9lUikB/4frWNIzJAJJXDLYfY7y3E13XyKWTWJ12ImMjGJpGLp0im0qQTSVx+YqonTkHAFlWSUXC7Hr4frR8DtM0OLl9M8On2nF6vex55NdkkgmGTh4jmwjj0w2M0wEkhYaAcmwCm1XGW+agbyCO69LGc+ISPRfWkj4SwLWkgvSxIJJdmQwpeeW6KD+aRBqIM212MeGxFM3zytj7ZC8Wq8podxTFIpNNaSBDLqMTC2ToPBpF9vnJHD2CqeUZ+tu/JXr//aS272D0//0/MoePoEdjGMkkWiSKEYthTExghiPo8d9z/P8F0wYHMbO5QrhIKkW+v5/hf/hHki+9ROyxxxj82McxkylktxsjHGHk3z+H3DSN4EiafFZDtSqER5Ikgln2PtlLaU2IbCLAsc0vYJ4OwrO73bRveYn6uQvo2L0dwzDOCT4AWLD6CvRgBjOtYegGhmbgWVt37hhaW0e6/fQ9jW6SPxRj8NhRLvngx3nhJ9/HyIexJILUJQ3KLjJZ/fFqZrzPjv+GOMmZM+Hg3RDqhJHTgT/++kIwSCYEgQ7IRCE2CO4KSAUKd9ruinMPmGmC3X/utMXvBlfJ7z7QydP3n6YBoR5oWFUILzlb01qomAV65sw0uw/yZwWcKJbC/66y37094XdKdXRgRGOY2Sx6YALJYmF41OTgzijGeAozbyC7rOixHPnhJLYGD0Y8j1piJ310As+FNWfGpgTqhbX09MZwSSaZnSPnbCvfFcV1On/J6bPiLbMTGklid1nIJPLISmEcqBaFaUsrOLipD9Umk0+PoWUzGPkcSBKD7UexOV089Z2vFq4NmlrwlFeQT6V47Gtfwl1cgs3hIBWNEZsYJzDQi8XhIDwyROfuHVOOwdCJ47xapu14bxf1c+bRtW83dTPnAnDg6ccoqqphtKuDZ777daavWIVisWDkNeqslTRN9OAd2AW7vw+92yDcVwj5SYxPWb/w2glMnHttpxMjGc3+lrkFQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQThfzlcIyXxJkmKSJMWBeaf/fuX13N9j+Rrg7CqvwdPT3twMk2wyjb+icspbVdPa0PN59GwOPa9hZHXc6+vwX9eC78omit86HVQJLZ9HtVinLG/3eFFldfL1nRd9D8VqJT84SObYcQC8b78d/XQgwrx1tecsHx1PY3Uo9B8N0XM4SO/hAEOdURRFIT0wiJHXKa2rZ9XNt+Hw+rDYHSy64lrq2mbhfcc7UBSZVDRKInRuMEg+myEWCCDLMrIkEX92E9mBQWQV3H4bnmIHiixTNc2DrKhEJ8anhKxExkZIhkZQrQrayeOT0y21b/4u/0uiZzKYmUJx7isPTNcm0liqXIUXJkg2pVBomdZwLiwn0x7CWuPCfXEdudEEttWleN7aRG61wkjrMMcOvwRAUXXNZL9ruRyYJnWz59K9bzcAhm6g5/P/n73/jpPrvO+77891yvSyHbvonQBBsFeRKqSobklWc5GbJMu2bMd3nDv3E8e54/hJcZzkSeK4xbbiJskqtlWsZkuieiFFEuwECaJ3YPvu9JlTruePARdcLkiC5C5my/f9ei25c82ZOb/ZueaUeeH3PazZvpNj50JBjOMQNOr0rl3PyLmgBy+ZpFGtkCl0UR4bBSCZzVKbnsI4zkxTc7arm9K5++NznwnH8wiD4Nzra7/AMGjhJ5Pnxtqbx9rUFPnevplak5kszXqNTLELgOFDB843QHvnP5NPy3X3YM9dDd71594vL49rHJ78QbtRMgpjdr1yNa53fteWzHis29mNa2Jyr3kN05//PEP/+XeY+sQn8W5+NUcfbwc35HvTTJ6tzXn+etPB62s35baOHAUDQX2M0ujZmWWiICAOQ6wxZLt75jyHjWKSO3vpfs92Cm/aSM+P78DtS2KjiGxXN5NnTs9afuLkCSZOnaRVn13PU3d/j+r4KFEYnPtcGJq1OmFzbqNe0GrSatQ4/vijvO6Dv8bUaJKDe4aZHq2TuMA0TAz0U/n6N+aMV77+DVJbt84d/9a35z6JXJTupkfiz/525nZcqRI+K1gsOHECt6sIUYTjzn0OJ+FTnqhTXDUEwLHHHmbrDTcDMHHqBKs2bSGZbW+rx4ZP4PanAJj63CGSW4p0/9i5ufgTl+GuylCfLmO2p+asx3a7OK7L8ccemXPf0UceZGjrZSRSKZLZLJPPaMZPZLI4bjsAbezk8fZrajbwknNDglLZPBiD455/oVNnz9C3fuOs5YxxyOcKPNvqy3aSLswdn6MyAt//vdljQR0mj7ab6eVlyRSLrNqybc746ssup2vVEKXRYc4e3I+XTBJHEVMjZ9l6wy3AhfediXSaOIywcYwxDmGzyYbd1zKwaSvGQhyFREGIcRyufN2bARjafhmn9j8557kOP3AfXiLJul1XcvLJvRx/9GEcz8XW5wbv0IggtkwN12jUIkYTDu47tlF41zYK79lOFESkr+4nrgbY2FK4cwPV+8+CAeOfa8LvSxNVWsRxO5wkaMUz/z/04CjprE+xPw0WHMfguAbfN5g4xkkmCYeHiauzt/+TH/kIxnWxzSZEEeHwCCaVIpqeIhhRg7xtNLHNBnGjiXE9Jj/5qdkLhCHNp/bhpjM09u1j8Hd+h3qYwHEM1oLnOTSqIa1GxNDWHAfvuwton6/5qSSHH7yPOIpwPJeoFeAnk0RhwNqdu2avJmhhfIeo3CI4WcHvy0DCoevtWyi+dTO9799F8/AUwcnKzGNMA84c2IeXSBBHIZWJMYhCfBzKUYnp3Ai/+dSvc6R+kAkHmDoOrRqs2gmJDJROt8NGCqvh7KPtUJJHPgWv/H/ge78H/dvhpg+dP5gHOHYPvPUP4Jqfga13wu3/bzs8JDP3GGaWns3guLDvi3DNT8Pdvw8/9jHY/WOw823wlv8BfhbW3QT3/O/2Y7o2nPvjnDtWGdzd3h73bIW117/Yt1qeqVIhrlWJSmVMIkmcyPDgD6ZYs70bawzGdWgemSJ1WTe2GRGVW2SuW0X5ntNkrxskdgzFd2yl+M6t5H72cr5z/zB+yiNqxhDPXV2z3OKymwZpVENSaY8otEwO12jWQ3be2j4eOfLIKKs2FohCSyIV0qhUiMKIoNkkaDYZOXKI8vgYYbPJqi3bKI2PYMOQ6ZFhgkYdP5mkXi4RNOqk8wVGjx4m193D8ccfpXiB71Ryvb1kisU541uuv4njex/DdV3iuB3U53o+cXQ+eOr0gX3c+cFf5d5/+DvWT5bY8LXfBteDk/dDKt+epzaCcYVILqSJyXboXKvV3ocaZ4LjexU+KyIiIiIiIiIiIiIiIiIiIiIiIiIiIiLSaZckhMRa61prC9bavLXWO/f707f9i3iKuZe3bV/XefZCxvyiMWaPMWbP6Ojoyy/8ZQoaDeKwRffqdex85e0z49mubm5593ux1hJHIaEJcFIuwdkqNozBdwjG6hjPxfd8bn73T8563u23vJLChjX8we1/wG/d9Fv8t1f9NzbnN2KDAJzzb2n1G3dhY4PrOazb1c3rfv5ybnzbJu583056hjJkcgl612bpXpWhOJCmZ3WW8FN/wuQvfgjrgJtIsfXGW3jrv/hN3vEbv81Vd7yB6Xe8G2MMUatJOp+/YEBKtquLdP7pt8xS+t3fImxYUjmfdD5BMu/humCjCC9x4bff9RNc/+aNVP/wv2IyGQb+1f+H5M6dL/9NWaQW29wFaJoG7u4cAHErwi0maJ0ok9xSxMknqN57hsLrN+APZak9MEzkRRTft40j9cf51oMf5VBhLx//03/FYwe+xec/8V/53uc/OhPwMXX2DL3r2k2JTzeeV6emyPf1zxorT45THGhfvd11XTCG6ZFheta0Q3Wic6Eglclxus4140+cOsnApi3YOMZPtpvqjz/+CFuuuwloN7L7yRRHH3mQ7TffCkBpdJT+DZsYPnSAdbuuwhiHY489xM7bXkOjWiGRSlMcWMW+H3yH69/6DgBGjhzm8lfdwdHHHmbztTewass2KhPjDGzacv6PaAw3vePHefAfv0C2u4euwdlhQMtFJ+evccxM6Eh5vE664PPmX97NK961hdt+bBtv/KXd+AmXU//2tzCOA2HY3qEYQ3zqKMVz4QxjJ8oMbpnbxJix5Vnr8j2D683ebh24726616zlqjveQCqbm5nHAK7nEScsnGv+dBIuwXgdExsmK8M4zoV3w25i7rbVSyQwrouXSOAlkowdP8qj3/zKrP3L0y6/7XYc18PGET1rr8VPpuhbl6fQl8bb+4M5y1vj4K9ZPWfcX7OaYGJizrjb1XXBupeaTsxdG4bElfMN6E4mPXchx8GGEY3772PX1tmdwI5rWDsEhx+ZZtNVN5LOFyiPjWJjy5V3vpFEOsMT3/8Wr/+lf87t7/8lujasJv36QUzSJa4GTHz8SeIwxutK0Tg4TW3PMOPjxznWfJLkDX3gObjFBOaOArVkBazFS154PkZhSHFgkEalTDKXf0b57XndqtXYuPsaAB6965+4+Z0/Mes5Nl1zPel8gamRs1z/1nfOjB+49we84t3vpX/jZgDS+QJv+tkP4nz+S9z69vfM7CPyff3c/r5fIpnJvvAf3jjgXCCBxzizm/OXiMV23OD6CS57xSvp37BpZmxo+w6Gtu0gCkO8RIIHvvQ5+tZuYMPuq8n39LH95tvYfM0NjJ84xvrdV816vlve9ZOceOJRbHx+/gdBnZ41awlaTeIoBgOWmHqp3cA8efY0PYNzA+t61q6jWa1Qm54i19NLHMdEQQtvfXbOGYZ/7QBjIw2CRkgi7RLFcNfnD/PUSJ3P/N0BvrVvmkdPVTFX9pG5ZYjS149hUh7FN22i9sAI/uosOAYu7ye/Ns++e87inQsncT1D39octXITL+liY3A9h2wxwbZdeeJyiXZBF5iPxmBtjHHMubvtcy+7BMz3/LWGc38S8/QKLrBSh/Yf3cFJ+ATNiO5VadL5BK7v4iVdXM/QasYkMzkc16VVqxEFId1Dazhw7w+48rVv4NhjD7P9pls5+eTjFPpXse3mWzHGwXE96lEFsi42sPirMjQOT2FrISblEfTGBEGD1vHyrLKCjZazh/eDAdf3yXV1Y6MIi6UclMn7eQYzg1gsBRzY9npId8PxeyFsQa4fXB9aVSiuhbABuQHovwze8t8hjGD1dfCej8Ab/yu8+y/hHX8Ka66FXT8KN3ywHUSy4ZYX/kOvvgbe+odQm4DqKFz9Xjj0rXaYySt/A/oua4ehJPJw7c/Ae/4afuZzcNlb4G1/DO/8c7jj38GmV8HPfLYdarLELKZtrzXnz7fb/zVE7bwNWlmfYKxGckOBuBWRvWGQ+qNjBJN1cm/ezHTKo7G5wAMHp/n7Tx9kOobp8QajJ8qUWhH+htnhXk7OZ3S6RRjEXPuG9YyerJDvSbaPwc99K3PjWzdR7M8A0L8+f27bZ+HctssYg+O4pM4dL9Smp3C9RDvEyX36eNjgeB5eMkEcx2S6umlUq6SyObbdeAuJdGampvbYKxg5fJAr73wTrueBMWy7+VbW7riCM/ufZNdr7uTQuZDLK1/7Rvbfe/fM43M9fRzf+yg2DMi0hmnvVJ7xFZON2z/nQkxkYUxX29vEI08UmLJZvte8g3/xtSf4+b++n4/98BiNQH9/EREREREREREREREREREREREREREREZFOMNbOyfJYdIwxtwD/X2vtG87d/k0Aa+3vPtdjrr/+ertnz55LVOGFRVHI2InjhK0mrufRrFYJGg1yPb34mT6C+gReKkHUDMj4ObyWj21E7QbDtEsjE9CqljAYSuOjlEdHyBS76V69hpFMlVKrRNpLU0gU2NK9hfqJE9hymZH/9DvUH3wQgIFv3kvQiKlXAhIpD5x2A7PjGGyuQS5OUKsZ3KjF1K99gNah9pV+je+z9ht3YXwf4ziYsXEm//KvmP7MZzD5PANf/AfiKOLIA/fz3Y//5cxrvv5H3sHOV7+Ngh+AheDJfZz8tV8j8yu/jv+Gd2Fcg+d7xHFEItUgaNS593N/x/57vjfzHJuuvYHbfuIXSAYB5tBTOIU8ycsvx7/AVY4XgXnv/lwMcxeg2Whw5qG9JM66mEMhuVcMEZabhJN1vMtyxK2Icnmc6dooA+s3cc+XPtW++nsYcuzRh3jVT72fu//u43QNrWZo62U89s2vcuPb382+u79HdXKcV/3UB/jhZz/F1htvYfToEUaOHuZVP/1+vvs3f8WW626k1Wxw7JEHec3PfpC7//7jdA+tYWjbDh7+6pe46R0/xoH77qFeLnHDW9/J3Z/+BFuuuwnX89j3g+/yyvf+HE/+4Duksln61m7g4a/9Ize87Z1MnD7FyScf5xXv+SkOPfBD0oUuBjdvZd8PvsvO215DGLSoTIyxducVnHrqSbqH1pBMZ5gaOcvg5m3UylO4nkcqm2d65CyFgSGwMWGr2W6SK5VIZLOMHjlEo1qle2g1jusycuQw6UKRNVt3M7h90wv/8S+NBelcvtTz9/SxcSojIXf9xV4cx/DOf3UNrXqI47kQQxRHpPMJJt5+B6krduGkMwSlEj0//mOc/Xe/jfcf/5S7vlbHRpZXvHMrT9x9mskzNTzf4cZbs/Q+8Fm8hMv0Zz7Dhk9+gpE/+EPSv/27/OBTf8aRh+6bqeM1730fXWvWEoQh2UKR6dFhwlaLnqG1ZLq78UqGpJOGCPAd4kTM8MRhDj1wP7XJCQ7u+eHMc2298RXc+Pb38JX//T+YOHVyZvyWd7+Xa37kHYwdOcipp57gB5/6GNe88UfYcNW1hM0mD/7TFwDDtW96Gz1r1vHx3/znvOvX/zWFgU00Ih+nNE7Vg3yjQvMzf8/0F78IUUTuzjvJ/eKHSFRLnPzVf0ZcrQLgZLOs+eM/wgYBJz/0yzzd2epkM6z78IfJXHfdJXmPn8OS3vaOffjDjP7P3wOg+30/RzQ1RekfPj9zf/fP/gzZW2/l7G/9O+jpw/ngb3BsNIMbNVhXLJF86Bs03/CzPPVUmc1XRkwPn8BxXdZu3UIUGcqlGq7rkcwkGTl6kK7B1VAKcWowuO0y4qkWjacm8NfliVcZDhy4l73f+TqDW3aw85rbaLUaPLHn24wfP8Zrf/5DtOp1vvwH/504CoF2mNOdv/CrpLI5/GSK6dGzZLt6+P6nPsLEqZP0rdvA9ltuI5Vrh5WdeuoJnvjuN1m/+2p23/56KpPjJNMZHN8n191DvTSNm0gQtlrUzwVFpHJ5Dtx3Dxt3XUnBuEz9v79FetcuYsch2LaZ0HXpvvkm+q+46oJ/4wt66G/g8796/naqCG/8b7Dr7eBfIAxmYSzpuftc4ihi+MghjONSm54Ea8l09RA0GzR7PNJTEXu++DlS+Ty773g90yPDRGFI37oNNKtVHNehNjVFrTRNptg1ExiSSGew1pLKZjl9YB8Dm7ZQm5rC9Xwy3V0QW/Z+5+tMj46w/cZX0D20hrs+/IdMnG5vO1PZHG/4lV9nemSYez79SV7xnveSzhfaTe7+JgaSSWrfOYGtR6RuHGQq5XF43yR963J0DWQ4fWiK3tU5pkdr3PeFI1gLxVVprrhtDQfuH2bb7h7W7+jBb4aYRkTcCImSHkExybc/c4B8TxobW4JmRKE/xdZrB2jVI3DARhYLpJ0WhfpJ7NQU9UcfIXPV1Zz5rd+aFVY08K9/A29gAJNIEjcbOH4CG8c4Pd2kd+zAKxQu/MbMv0U5f+v79hHX6sTlMjZoYWs1Tv+r35i53/g+g7/zn3ALBbCW4f/+P+j5g/9DuZXARmBtDBamR+sce3ScdTvrTA/vZfjIQTZdcz396zfxpd/7L6zffRWrNm+j1agxsHELcRiSORca4qfThK0m2VQXmTCHrUQ4GR8n5zEydRy8mMrYBEPpTbTunYQIop0uex76Il3r17B622U0KhU2r92ALZUp9aa4LzrEqswqjpSOsLmwmZvv/zhsuKm97Ro/BCfvh+wAdG+AJ7/QDhS5/8/htb8Nm1/9ct+aCwuaMLIXauOQG4RMHzz2d3Dvn0BhLbz238LGV4LjLsz6X7pFOXdfjvr+/YRjY5jYElUreKtXc+S4x5FDTbyUw823rcGdbuK4BjIeUdKjaS31IKYy0cRPueS6kxhjqJaaNEoB3//7g1z3pg0M9adJnigR7p/CDGbwrlvF2ekW933hMNbCNa9fz9CWIlMjdUaPlcl2J8h1pUgXfJw938TfupOTlSx9g9NEQevcNjdJbXoKC5x68nEe+soXedVPvZ/e9Rshjvn6n/8xm6+9gdXbL6c0MUr3qiFajQYTJ4+zbteVnNy3l7U7djF24hh+MkmjWiWdL9C9eg3WxjgYojgmmcny6De+wprt7QDTE088xvorrmLfD77DsUcfAsDzE7zuF/8Z3/yrP+NHf/btrE2Mw/f/R/sztO9LsPm10Lu5Haiz8RXtgJ/OWojztkXxReB/+g8f4N/Gn+Eze2/iP215P5PkGLCGXH+Ow2NV1nSl+R8/dhU3b+7tdKny0izNtDQRERERERERERERERERERERERERERERWTIhJB6wH3gtcAq4H3ivtXbvcz2m001BT6tNT9FqNmlVK1hr8ZJpHD+PxRC3Ygyl9tW6bbsLJJ3I4CQ86vUKFoONQhzHAWIcz8daw4g/RRiHpJwUMTHberYBUD91ut14NzFB7b77aTzyCJnbbsW5821Ya4hacfsq344l5U9x1gYY49A7DdRqtA4cYPJvPo4NArp/8idwb70FL4zb9RmDqdVoHT5CePYM7itvpZVK4cSW8uQ4pdFhcj19FIY2UHVSbHDHqJcNxDHR0aPtZnfHoevn3kdyy2b8XI5GvU51epJGaZqx40cZPXqEvvUbWbV5K13ZPPbsWUwuR3rLFnCc5/szd9Kya2h7ppGjRxg9cYTmeIneTZs4+dTjuL5Pvq+fQ/ffw+Zrb6RemqY0Psb6y6/gxJN7Gdi4maDZYPzkcTZedS3DRw6R6+7BT6YYPnyQ9VdcRb1cIoojelevpTIxTq6nl/L4GFEYkO/uZWrkLPnePoJGk2a1StfgIKXREVK5PK7vUx4fo2fNWmpTkzieTzqfY3pkhK7BIcJmkzAIyPX0Up2aJJ0r0GrUiFot0sVuGuVpEukMrUYdLLi+R71UJpXLUy9PE4URmUKB8vg4ma4izUqV8tgYfRs2cObAU+R6ekikM4weO8raHZczcfokXiJJpljk7MEDrNmx89xnNcLxPIJ6TNgM6RlYxeCORRNAAsskhCS2MeOnypTHWhx5dIxcT5KdNw3SbEQYBxJuSOOznyRzzTVMf+5zJLdsIa5Vydx+B9Hp01R+cA/21T9CLdWP2yzTtaZIfbKOGT9DujqMm89R+fZ3SL/hdTg7L8M/M0b1/vvhdW9g5PQxxo4dYaCvj8G+fopreqi5OeqNJn4q1b6Auo0ZPXYEz/fJd/eTzXcTnjxJMDKGd90VBLUKlakJKhPjTJ09Q+/a9aRTGYp9/TSCJmcOPMXU8FlWb99B77oNeH4CjMGGAVOHDjI6NszAth30rV1H0GxircX1PI4/+jD9g0N0Gw+TzeE4Bn9oCCeZBKB88DDxmdNgHMK16+jduI76+Djx0WM09z8FQPKyy3DWbyCZz1Hbs4faffdhUimyN91E5tprL9l7/ByW9LY3GB2l/JWvMvmJT+CtWkXP+99HPD1NODGBv2YNbm8v4eQkXqGADQLcgQEiYsInnyIcHsFGEYmdOwiLXVTLIZk1q8n7kyQnHoOuDZyubebkwTIDG/NgodWIcL06zcopmtUyq7duI5FIMzV2llazjpdM4bgOcRiSyucImy0cxyGKIqIgoDiwitLYKMcfexhrLZuuvo5MsYsoCEgWCkydOkkURSTSKaZHhonDkL61G4hqDWLPwfE8HGPAgJtIUpuaJApaZApFMjj4nk+cSmAxNJp1mtUKp/c+xuot2+lJpmnedx92aIDEug3UvvMdbBSRv/128ldfi3FfRKN7owSHvw2PfxZy/bD1Tlh1JRSHFuy9voAlPXefT6NSoVYuETQaYGMcz4OuFM2wQj9pRoenGDt+FOO52Cgi19tH7+p1tJpN4ijERiFh0CJsBfjJJG4iQRxGuJ7X3u7FEWGzBcbgp1JgDM0M5Mng+0mCZoOgWceGERNnThGHIcWBVYStJuXJSbKFIq6XwE0l8BNpbNzD1EiNQneKQm+SVmSxIURBjJdyCBoRbsLBcWByuIprXFzfIZn1CVsR1akm6XyCKIgJWhG5riT1SkA671MrBXi+wcYQtCK8hEsq62EjS6MZ4hqD6zmkw2lS5bMARFNT2CjGJJM4qSTV732f4NQp8m94Pe7gICaOsbGFOMJJpcBxMfkcme3bL+XbvCjnb6tUIjhxAlotCEKsY4gnJih9+R9xCnnyd7yWOGgRhxHewABUKpjuLqq5tbRCQ9hqv9eucYiCiFYzxMQjRFGFOI7wk0n8RJLpkWH8dJq+9RtplMsk0mnAYIlxXZ84DAiDFp6fJLYxQb2BMRbXT9CsVYmCgEQqTSqVY/L0KY49+TCD2y6je2gNBigkUriNOt+uPcpD4WFev/H1hFFIPpFnZ+jgxnViDLZehjjAGINjI2hVId0F9SnoWg+rr770ISCVUfBTkMxf2vVevEU5d1+u2qOPETcb7fN1IMp0ceYs1AKPRjWkezCDcQ2FnhQYaFRDPN8BA44xuL6h1YxIZ3xarYg4tNRKLYr9aWwck/Jdmq0IN+UShxaMwfMdHM8QhRbHg1Y1xPVciCNSpTMEj+zBKRTwNm2hlc1Ta5XB0p6vvk+zVsXzfRqVCo1qma5VQxjjEgZNTj/1BLmeXgp9q4jCFn4mQ9wKiKOYRDpFq9nA9xMErRbJTJZWo046X6A2NYWfSuEmfFzjEmNp1qo0qxW8RJKg0cDGUTvAJJFk9WWXQWOavJ2g22/ByBPQsxHGDsLg7nYwmZ+FwhoYvLyj7/E5yzKEpF5u8Tv/42e5IzrDh5r/gg3OWd7c/ZeMjX+QD33g3ZzwYv7N5x7j2ESNX371Fn79zu0kvEX7vZBcmEJIRERERERERERERERERERERERERERERJaoJRFCAmCMeTPwvwAX+Etr7e883/KLoSnoOTXrEIc0bALXc/AT/pxFgloN4/t4vo+1FmMu/t/ut8plHN/HS6Wee6GwCda2m8WgHdzQbMLkJHgeYzlLMVkkn2o3kgX1OgQBWItfLEJtGlwP6ybBdZ+zviiKiOt1TCqF53kX9wLCAKIAXB+8uX+bRWZZNrQ9W6taA87NQwt+NkOrUsEag3EtBBY3nSaqt4M9SHjYVoDxPaJmiLGQKOZoTZdwEj5xbCGypLryNMsVcB3AYGxMIpulWalhXINxHGwYk8imadXrGMfBdRyiIMRLJQmbDbDgpdOEtSpuIkkQBZg4JpHJ0ayWcRJJDGCDED+ToVUq4XgesYGo1WwHk1RKOI6D4/qErTrJbIFmrYIxhkQyTdhs4CWStFpNiGMSuTytWgXX84ltjI1jkk+vz/PAGuI4JJnJdfaNe37LIoTkaVO1KTJeFhtbfNu+4jp+ijAMicMQ30aQSGGDACeVIqrV2v8Pw3MNlT42jjHPFXjUakJQAz9DEFuM6+L5z799stYS1+sQxzjpNFG5QlyvY1tNnHweN5PBtlq4hQI2jgmDoN1cn0gswF/o4rWmpwFIFIsdreMFLIttb1QqYRIJ4mYTJ53GOffe2zAkqJwLL3PALXZDZYyKSdCaHieVzJHp7YdWHYwDfrK934yCduO5myC2EDQC/JSPEzWIoxj8NDa2OJ5zfr8d1MFN0u4QdgiCiCiMcQ04vkMctAOV4mYdaxycxLljkyjCRhGxaW+/MZYojEim2kE3cauFjWPiKCKOwE8n283yxmlvf6MY4hg3mTwXtvYsQRNiC8SQzFyS9+MSWRZz9yVpNSGO2s3yrRp4afBnH+s9fV4y3ZomZVJENqIZN4ltTNIkiZ24PZeBhOsSxAGtOCKKIyyWvJchn8iBe+FjzpntfBhCFGAdh7jRIJwuYzIZrONg4nYAnzm3X6DVwvo+xlpMItHethsXzzVElQpYg1/InRv38BMuURhjrcVxDLVSk0TKw3UharUAMH4SL+FCFM06jrZhSNxqtceA2FoMYHy/HcRy7nZs7cUfV8+vRT9/w1Y7qMYE7ffXOA42CHGTCYznQa2EjZqQLGCMQ9BqEUQu1sYYx+AYME77mNSGMSR8XM/B4uAY2mELUdiey35y9sqDJuBA1Ghvb50LnyPVghoJJ0EUR5SbZUJCrLX0pHpoxS1C2w4e8ZyOvMfL1aKfuy9H2GrhuC5Yi4X2+ZcBG0V46SQ2au/7W9VGO5/G9Qgjc+6YwOD7Lo7j0CpXoFnH5Ivtz5GNiEsVTMLDSSax57ZDNNvnRBYgjDCe296uGkPggPE8TBDgGLe9zU0msQkXrCGIW+RSeWqtGq5xiYIGGS9Jw1p8P0EYhTjWUglrWBNT9Iu4z9pPXNR3I80KON7M9x1zWHsuDPbc/6tjENP+3XEgVVxMQajLMoTk8MOj/NY//A73NW5nc/UUH0n/F+7tD/ls88f5+S0f4lU/eRnVZsh/+OIT/O2eE+wcKvBf37WbK9d2dbp0uXgKIRERERERERERERERERERERERERERERFZopZMCMmLtZiagmRZW9YNbbKsLasQEllxtO2VpUpzV5YyzV9ZqjR3ZSlbliEk//4P7+OvTw1zjTnI79z/YTbvHuGBriS/sm6ANx76BX70Z27m5h3XAXDXE8P85mcfZazS4pXb+njrVat5zWX9DOSfJ3hXFgOFkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgsUbq8soiIiIiIiIiIiCyoUiPg//dP+/jYqVFWJQ/zMX6X2lt/hvjgR9g4Adk+ly9v/1O+fO+f8pM/+BWus68kDi2/s3kt99kW/3R8jH/16UcBWNud5tr13Vw2mGd9T4ZVhRSZhEvKd/Fdg2MMrtP+eebvnmNI+S6uo4wMEREREREREREREREREREREREREREREZELUQiJiIiIiIiIiIjIChXXAhpPTWIBrAUL527M/G65wDhAbGeGnnnfmXqL+8bKlIOYUhCxv1znB6NlmtZyVStm3do/JTvWpFTKYWOX/oLHW/cMcmp7gT0Dx/m0+XMOTuxnVWMNq57YQU8rw08bqGQyHHUijo8HfGfiDF8wp1/Sa04YQ8oxpF1nzk9q1u1zy3guaceQ9hxcx2AAg2FtNsFVXVnMTKaJAXP+15kbz848efawef7lLvg8M0Mv4bHPvH1u3S82lsXtSZHcUHiRjxIRERERERERERERERERERERERERERGRxc5Ya194qSXIGDMKHOt0Hef0AWOdLmIB6HXBmLX2jfO58pcwd5fT+6DXcunM+9yFjm97F9vffDHVs5hqgZdfz2LY9sLy+7suBNU022KZuwtpMb7nL5deU9tim7+L8X1RTRfnUte02ObuhSzG92mhrJTXOl+vcyHm71do17dYLOU5sZRrh4Wtf0G+cxARERERERERERERERERERERERERERGRhbdsQ0gWE2PMHmvt9Z2uY77pdS0OS63e56PXIi/HYvubL6Z6FlMtsPjqeakW2+tYbPWAalqJluPfV69pcVqMr0E1XZzFWFOnraS/yUp5rSvldc6Hpfy3Wsq1w9KvX0REREREREREREREREREREREREREREQWhtPpAkRERERERERERERERERERERERERERERERERERERERERERKSzFEIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKywi3rEBJjzF8aY0aMMY9fxLKvMsY8aIwJjTHvfsb41caYe4wxe40xjxpjfvwllPLhl/CYpUCva3FYavU+H70WeTkW2998MdWzmGqBxVfPS7XYXsdiqwdU00q0HP++ek2L02J8Darp4izGmjptJf1NVsprXSmvcz4s5b/VUq4dln79IiIiIiIiIiIiIiIiIiIiIiIiIiIiIrIAjLW20zUsGGPMq4AK8FFr7RUvsOxGoAD8P8AXrLWfPje+HbDW2gPGmNXAA8BOa+3UQtYuIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJyqXidLmAhWWu/ey5cZIYxZgvwx0A/UAN+wVq7z1p79Nz98bOeY/8zfj9tjBk599ipBS1eRERERERERERERERERERERERERERERERERERERERERETkElnWISTP4cPAh6y1B4wxNwH/G7jjYh5ojLkRSACHFrA+ERERERERERERERERERERERERERERERERERERERERERGRS2pFhZAYY3LAK4C/N8Y8PZy8yMcOAR8Dfs5aGy9MhSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIpfeigohARxgylp79Yt5kDGmAHwZ+LfW2h8uRGEiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKd4nS6gEvJWlsCjhhj3gNg2q56vscYYxLA54CPWmv//hKUKSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIickkZa22na1gwxphPAq8B+oBh4LeBbwJ/AgwBPvApa+1/MMbcQDtspBtoAGettbuMMT8N/BWw9xlP/T5r7cOX6nWIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgspGUdQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIvzOl0ASIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiItJZCiERERERERERERERERERERERERERERERERERERERERERERFZ4ZZtCMkb3/hGC+hHPwv9M+80d/VziX4WhOavfi7Rz7zT3NXPJfqZd5q7+rmEP/NO81c/l+hn3mnu6ucS/sw7zV/9XKKfhdDp16SflfEjIiIiIiIiIiIiIiIiIiIiIiIiIiKy4i3bEJKxsbFOlyDykmjuylKm+StLleauLFWau7KUaf7KUqW5K0uZ5q+IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiDyfZRtCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhdHISQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrnNfpAmSuqBIQ1wKcnI+b8Ttdjoi8SOFUExtEuMUkTsLtdDmySITlJrYe4eR93LS27dI5UaVFXAtxcz6OjjNkBbPWEk01sWGM153CeMpnlIVlY0s42QALXncS42rOyeIU10KiSguT9vDyiU6XI/KizGxrAa8rhXFNhysSEREREREREREREREREREREREREREREVlaFEKyyDQPTzPx2f1EYw28wQzd79pOcl2+02WJyEWwQUz9iTGmvnCYuBqQvKybrrdsxh/IdLo06SAbW5oHp5j8zAGi6Sb+uhzd79hGYnWu06XJCtQ8PMXEZw4QjTfwhrJ0v3ObjjNkRYrqAbUHRih97Rg2iMhct4rCHevxelKdLk2WqajSovLDM5S/fRKsJXfLanKvXINXTHa6NJFZWqfKTH7uIMHJCm53ku53bSO5pQtjFOQgi19UblG++zSV750EC7lXriH3itV4BW1rRUREREREREREREREREREREREREREREQuli69vIgE43XGPrKXaKx9xdbwbI3xjz1BON3scGUicjFaZypMfPIp4moAQPOpSaa/dpQ4iDpcmXRSOFpn7KN7ic5ty4MTFSb+dh9RtdXhymSlaR9nPEE0fu4440yVib95gqik4wxZeVrHy0x/6TC2FYGF2p5hqg8Md7osWcaah6cpf/04hDFElsr3T9F4crzTZYnMEpVbjH9iH8HJSvv2ZJPxjzxBOFrvcGUiF6dxYIrKt05AaNvb2m+fpLl/stNliYiIiIiIiIiIiIiIiIiIiIiIiIiIiIgsKQohWUSiiQa2OTusIC61iCbVHCyyFIRjc5vzGnvHictBB6qRxSIcr7eb4J45NlwnmlIIiVxa0fjc44xoukWo4wxZgVpHS3PGag+NENe0z5aFUd87N3Ck9uAINoo7UI3IhUXTzZmwsqfZICacUAiJLA21R0fnjj000oFKZKUY/eM/pvbQQ50uQ0RERERERERERERERERERERERERERGReeZ0uQM5zMj4Y4Jm96q7BSbudKklEnkc41SQ4U8G2YvxVGZysP2cZtzeFSegzvJI52bm7WpN0cVKz50U41SA4XcWG7fnkr8peqhJlGbJBROtMjXC8jptP4A9lcTIXOOxzDU5ah4OytNjIEpytEozWcNMe3uocXj7xop7D603NGfMHs5iEMhplYfiDWeqPzG6OT6zJEbcigtMlolILryfV3l7r2FE6xKRcjO9gg9nhOE5m7nnOc4nqAcGZKtF0C687hT+UwUnqWEMujcSaLM19E7PG/LX5DlUjK8HYH/4RY3/4R+zc92SnSxERERERERERERERERERERERERERERGZN+oEWUScgk/21tVUv396Zqxw5wa8vkwHqxKRCwkn6ox97EnCM1UAEluKFN+wkeSObpr7JtsLOYbut23FzV18054sP95AluwtQ1TvOTMz1vX2LXi96ZnbwVid8Y/sJRxtX2Xe+A59v7Cb5PrCJa9XlofaY2NM/t3+mduZawcovGkj+TvWUf7miZnx4o9sxutLX+gpRBatxtEpmvunILaUHh3DG0jT/Z7teIXkRT9HclMRbzBDeLYGtMOh8revxXgKf5CFkd7VS/XeM0RTTQCcrE/6ulU09k3SOlqi9ugoth7S9aNbyN44hHFMhyuWlcjrTVN82xamPnNgZiz3yjX4qy7uO4m4GVL+1kkq3z2J8R3Su/tIX9FHYnMRN6Wvn2ThpbZ1U71/mLjUAsDJ+aR39Xa4KhERERERERERERERERERERERERERERGRpUVdIItION7AX5Oj+JZNxPUQN5eAlEtUauJ1z71au4h0TvNYeSaApPC6DbSOlRj9k0fI3jRE9r07APD60/irsp0sUxYBN+2RuaoftyeFrYe4hSSJ1blZy7SOTM8EkADYIKb8zRP4P7UDx1dDvLw44USDqS8cmjVWe3CE7I2DpHb24GQ84lqIk0+QWF9Qo7ssKcFYjcZj41T3DGNcQ/bGQcKxOsHpyosKIfF60/S97wqCs1VsGOMPZPAHFPwnC8cfyND/i1e251xscbuTVO4+Tf3BEZxcgvyr1lJ7eITpLx8huaULv1/zUS49YwyZq/vxB7NEE3XcQhJvMIOTvLivjsLROpXvnsTJJ8i/ei3Ve05Te3CE5LYuim/ZTGJQ50aycGxsqT4wTOHO9RBa4lqAjSyNA5N4vWncrMJBZX5ZaztdgoiIiIiIiIiIiIiIiIiIiIiIiIiIiMiCUAjJImKDmOnPHcS24pkxbyBDYkiNOiKLTTTdvop9YlOR1rESjf2TAFR/eIbqvWcY+NWrSQzlnu8pZIUIRmqM/cXj2OD8tt1fnaX/g7txMu1GuHCiccHHEcSgEBJ5keJmhG1Ec8fDmImP7MPWw5kxtydJ/4euelHhDSKd1DwwRfWHZwCwIVS+d4rC6zYQ18IXeORcXlcSr0tzXy4dryeF15PChjGTnz9I/YERAOJyi9JXj1J4wwZKXz1GfIFtuMil4vguyXV5WJd/0Y+Nzx1j5G4aZPorRyBsN+g3D0wx+dkD9L1/F25aQRCyMGwUE47UcLMJyt8+Mes+fyBDZnd/hyqTZUshJCIiIiIiIiIiIiIiIiIiIiIiIiIiIrJMOZ0uQM6z9XBWAAlAOFKbMyYinZdY1w4YSW4s0DgwOftOC8FovQNVyWIUjtdnBZAABKerhJPNmduJTYU5j8tct2ompETkxXC7EvjrnhWC5BpsM5oVQAIQTTSJnjEXRRYzG8XUHhyZM946XcFXaJ8sIVGlRe2h0TnjNojx+lJ43QrHkaXJ7U5iki42tjMBJE8LjpeJpnTMIQvH8V2yt62heWR6zn31R8c6UJEsewohERERERERERERERERERERERERERERkWVKISSLiFtIzBkzvqMmdJFFKLE2T9e7thG3Itz83M+uk/E6UJUsRk567lwwCQeTcmduJ9cX6PrRLe0xx5C9eYjstQOXskxZRty0T8+7tpPcUmzf7knS975duIULNLW7BucZc1FkUXMM3gXCRvzBDH5/pgMFibw0TsLF65m7TTYpj5737sTNzT22FFkK/L4Mfe/bhUld4Pg36eIkdcwhCyu5sYjXl5oz7q3ScYIsgFih0SIiIiIiIiIiIiIiIiIiIiIiIiIiIrI8qUt+EfEGs2RvHKR639mZseKbN+H1zm2gWC5sbImqLZyEp4YkWVKcpEfuhkGC8RrJDQUmPrkPzl0EN7mtC/8CTdKyMnmrMmSuX0Vtz/DMWPEtm/F6zm/bnZRH7ubVpHb0YCOLV0xivJefExbVAwjtBYNyZHnzB7P0/szlRJUAJ+Xi5hLEzZDcK9dQ+d6pmeWKb9iI15fuYKWy3NjYElcCTMrFSczvsZ0xhtxNg9QfHcU2IgCcfILMlf3zss0UeTmiSoBxzEUF0TkZn64f2cLYX++FuH0A6a/Pk768B79PjfKytCU3FXG6EgSnytQfGZsZ73rbFryezh9zxM2wHSSZS2CM6XQ5Ms+8fILcK9ZQf2ICWw8BcHI+mSv6OlzZ/LORJa4uzDGXXCRrO12BiIiIiIiIiIiIiIiIiIiIiIiIiIiIyIJQCMki4qY8Cm/YSHp3H1G5hdeTwl+dxTjLszEmGK/TPDxNXG5ikh6J9XmS6wqdLkvkotgwpnFoitJXj0DKo+dnLycutXCyPol1ebzC3Kvby8rkpn2Kb9pE5sp+okoLrzeNP5S9YNOj1/XyQ6fiWkgwXiNuRNQeOEvzcIncK1aTuXZA83KFcVIeTur8oZ6T9Mjfvo7Ujh6i6SZe97njDFfhDTI/grE6zWPTxFNNTPrcsd3a+T22S6zJM/ArVxOcrYIx+ENZfAXpSAdFlRaNw9NEEw1wwB/KkdxYwPGfvyE8ubWLgV+9imCkjpNy8Vfn8IraT8vy4Hen6XrrFrLXrSKqBO3j39WdDWm0saV5okRwooxtRbhdKZKbinjdyzf0daVKrMkx8MtXLetjhWCsTuUHp4gqLZKbivgDGRLrCgr3vcQUQSIiIiIiIiIiIiIiIiIiIiIiIiIiIiLLVUdDSIwx64CPAoNADHzYWvv7z1rmNcDngSPnhj5rrf0Pl7DMS8rN+rjbujtdxoKzYUTrRJnKt08QjjfANeRuGcL4DonBXKfLE3lBrZMVxv96Lxgovnkz01883G4+dQ3FN20ie8MqnKRynqTNzfq42xd+2x6M1Jj49H6C42UwkLlmgOSGAqWvHMUYyL963YLXIIubm/Fxt3R1ugxZhuJWROt4ifJXjxGVWhjfIfeqtTi+h78qM6/r8gcy+APz+5wiL1XrRJnafWdpHpwCILWjB+M5pDYVn/dxxjEk1uRJrMlfgipFLj03l8Dd3tPpMmYEZ6rUHx6leu9ZiC1efxrjObiFJMZdnsGvK9lyPlaIWxHTXzqM252EZsz0Fw4DkNrVS9ePbFawzqUUx52uQERERERERERERERERERERERERERERGRBOB1efwj8S2vtTuBm4FeNMZdfYLnvWWuvPvezbANIVpJwqkn1njPtABKAyFL5/mnC0XpnCxO5SK0TJbCQ2tFL7eGRdgAJQGSZ/tJhgjPVzhYoK46NLZUfnm4HkABYqD04gj+YBQOVu08TVYLOFikiy1Y40aD8zRNEpRYANogpf+M44YSO7WT5ipsRzSOlmQASgMa+CVpHpztXlIhcUDBWo3rPGYgtAOFonep9ZwmnGx2uTOTFiSYbNI+VML5DY//kzHhj7zj1Jyc6WNkKZG2nKxARERERERERERERERERERERERERERFZEB0NIbHWnrHWPnju9zLwJLCmkzV1mo1igpEarTMVokbY6XIWjA0treOlOeOxGuRlEYhbEa2zFVrDVWwYXXAZJ+0B4A9mCE5W5twfTqqZTWYLJxq0TpUJy80Fef64HtC4QNNZNNXEyfo4uQR4usr7Svf0PIzKrU6XIsuMbUWEY3MDR+LqpTm2C8fr7bld0dyWS8jhguc0zWNzxy6GtZZgvE7rVEXBYbIkRKVW+/h2CZz7xOW5n6nm0WkIFSKwnITlc3NyGYegGc8hMZQlODU3+LTxxHgHKlrBFEIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiy5TX6QKeZozZCFwD3HuBu28xxjwCnAb+H2vt3ktZ26USVQMqd5+m/K0TEFuS27roevsW/L5Mp0ubd24xgT+UJTg9u2nC7U51qCKRtnCywfRXj1J/eBQMZG8cIn/HOrxictZyiQ0FnGKCcKKBN5AhHKnNut8tzF5eVi4bWepPjDH52YPYeojbk6TnJ3aQXF+Y1/U4SY/khgK1ydHZ44UEcT2k58cuw00tmt2+XGI2tjSeGGfiMwfa87D73DzcML/zUFYutyuJW0gQlWaHgCz0sZ0NY2qPjzH1uYPYZoTXl6LnJ3aQWJtf0PWKADi+S3JTkdbR2aEjyY3FF/1cNoioPTrG1OcPYVsR3kCanh/fQWJNbr7KFZlXzWMlJj65rx14l/Hofvd2Ujt6MM7iDL1zu+eenyXW5nELiQ5UIwuheaLcnpMTDUzKpfud20jv6sW4Hc1fnnduT4r0Vf0EwzWah6Zm3Zfc0tWRmlYshZCIiIiIiIiIiIiIiIiIiIiIiIiIiIjIMrUo/iW+MSYHfAb4dWvtsy8b/SCwwVp7FfCHwD88z/P8ojFmjzFmz+jo6HMttmi1jpeo/vAMuZvboQfGc6j+8Cw2Xn7/qN1N+3S9bQsmfb4hPnPTIIl1K7NhdKnP3eWkvne8HUACYKF675k5jT1xPYTY0vf+XaR29lB4/QZM0p25P3fbavyh7CWsurM0f59fMFJj8rMHyFzZR/72dSTW5pn4u/2E5dYLP/hFMJ5D7tVrcYvnGymT27vxB7P0/9KVJLe8+Ibo5W4lzd3gdIXWmcpMM3s02WTiE/vmBEbI0rAY565XSNL97m0Y//zpRf6OdSTWLlyAQtQIaZ0s0zpexrjtpvdwrMHEp/cTVYMFW6+8PItx/r4c6WsG8AbPh0b6a3Okr+i76Mfb2BKM12mdrlD5wSlsKwIgHKkz+bkDRHXN5cViuc3dlyOabjLx8SeJppoAxLWQ8Y8/STBaI6oHBMNVolKzw1XOltxQIHPdqpnbTsaj+OZNOCskpG+5z9+o0mL6G0fJXNlP/jVrcYtJJj65j2C49sIPXmKMMaSv7Cd9RS/e0Pn9jzeUJb374vc/8vJZhZCIiIiIiIiIiIiIiIiIiIiIiIiIiIjIMmU6/Q+mjTE+8CXgq9ba/3kRyx8FrrfWjj3fctdff73ds2fP/BR5iZS+dxJCS+X7p4irAYn1edJX95O5qh83uzyvzhuM14nGG5i0i9+fWYoNQPN+meelOHeXCxtZRv/sEVrHy7PG07v76P2pnQC0TleY/OwBgpMV3EKCrndtI7Wtm3CiTjjRxE17eANpnOSin8sLcolyzd+56k+NE47UqXzvFFGphT+UJXPdKpKbijOBEPMpnGoSjtUwnoM3kMHN+PO+jkVA296LFLdCao+MMf3lw9hGRHJrF8mNBUpfPw7AwD+7msTalRkA1iHLeu5aawnHzu0Psx7eQAYn4b7wA1+C1nCVqX84ROvINE7WJ3fbGmoPDhOO1gEY+PVrSQyunECwS2RZz9+XIyw3CUfqGGPwBtK4uYs7d4sqLSp3n6b8nZNgIXN1PziG2p7hmWVW/d/X4Q9knudZ5CJo7s6z5okyo3/88OxB19D3/l1Mf/UowYkKTiFB9zu3ktreg3EW5NTjRYsaIeFIDduI8PpSeD3pTpd0MTR/L0LzZJnqPaepnQsUzVw7gA1iMrv7SO9avsEcYblFNFrDWvAGMnj5RfXd4UJ88BdV6kdULrP/hhsB2LnvyQ5XI/Nocey0REREREREREREREREREREREREREREOsh54UUWjjHGAH8BPPlcASTGmMFzy2GMuZF2zeOXrspLx+tNU/raUeJzV25vHS9Tf2wMzPL9t89eVwpvKIO/KrsUA0hkmTGuIbG5OGc8sb7doB9VW0x8ah/ByUr7dqnF+EefIByt4fdlSG/vJrEuvxQCSOQSchIe0185SlRqARCcqVK99wwmsTC7YK8riT+YxVu1bANI5EVonaoy9ZkD2EYEQPPgFMHZKv6aHCbl4mS0vZL5Y4zB60vjr87g9aUXLIAkboRMf6EdQAIQVwNKXztK5poBAJy8j6u5LZeQm03gDaTx1+YuOoAEoHFwivI3T0BkIbbUHhzBzfqYVPuz4xaTmPTCfI5EXg4342GSs+dmencfU186THCifa4Ul1qMf+xJwpFaJ0q8IDfltY+ThzK4XalOlyPzKDhVpvbASHt7Gllq9w/j9aRwFlcox7yIGiFRuX1u6eUTJDd3kdrStdgCSFaGDgd7i4iIiIiIiIiIiIiIiIiIiIiIiIiIiCyUTnfn3Qr8DPCYMebhc2P/BlgPYK39U+DdwC8bY0KgDvyEtcvzX3nbejDnmp6tIyXiWrgsG8lbZypU7zlD/YlxvMEMxTs3kNw4NwBC5FLKXjNA/dFRookmAIlNBdK7+wGIpluEI/XZD4gs4Xgdf1X2UpcqS0RUDdrNcM8QjtaxrXje1xVON6k9NEL1njOYlEvhzvWkd/Ri/I5mjkkHhaNzG38b+yfJ3jhI/jVr8XrSHahKlqvWSI3a/WepPTyC15Om8Lr1JLd0YeY5UC8qt2gemp49aMFGMbiG7ndtxy0k53WdIs8lGKtT+f4p6o+P4a3KULh9HcnNXRjnhed9Y+/cbM3m0RKJNTmax0p0v2sbXl5zWRYfrzdN97u2MfGpfRCDk/PJXNnH+MOjsxd8+lxpcHGcKzUOTVH65nHC4RrpK/rI3boavz/T6bLkZbLWUn9kbM5461SF/GvWdqCil85aS3CqQut4CVyH5PoC/lD782MjS/PwFNNfbQdc5m4eInPdKryi9hMdE8//Ob2IiIiIiIiIiIiIiIiIiIiIiIiIiIjIYtDREBJr7feB5+3Ostb+EfBHl6aizrpQs6RbTGCSy695PCy3mP7yEZoHpwBoHZxm7MRe+n/1KhIDi6NBSVaWuBURjtQIxuoU37CRcLKJ150kOFtj4m+fIrWjm+TWLkzSxTajWY81vq5QL8/NvcAVqU3SxUnPnjdRPaR5eIrqvWdxu5Jkrx8kuT7/otZVf2SU0leOtm9Mw8TH99H3gStIbe9+qeXLEufm5oaYef0Z0lcNENcDWmcq+P0ZjLf8jjXk0oqDiMp3TlJ7YBiAVjlg7K/20v+hK0muK8zrupykh1tIEJVas8a93jT9v7CbuBURDFfx+jMXFQQh8lLFrYjpLx+i8eQkAK3KNOMnK/S+73JSm7pe8PH+mhz1x2Y3zvsDaVJX9JFPuwpHkEUpqrQIhmuYjEf/h67CtiJax8sE4w1M2sPWw1nLO9nFEajaPFFi/KNPzJzLVX94hmiqSc97d+AkdD63lBlj8NflaB6eHVCWWJvDSXQ6e/nFaR0vM/rhR2dCLE3Spf+XriSxOkfrdJmxv3oczuVelL52DBtbCq9dP++Bb3JxlmlGtoiIiIiIiIiIiIiIiIiIiIiIiIiIiAjqOF1ETNIhddkzGsUdKLxx47K8+nU4WpsJIHmabUYEZ6qdKUhWtDiIqNx9ipE/epjJTz3FxN/uxy0mqNx9hvK3TtA6Mk3pn45SuusYhTvXz4pOSl/Vj1W/jzwPrydJ5sZV5wcMFN+8Ca8nPWu5xpPjTHzsSZr7J6ndd5bRDz9K61TlotcTllpU7z0zZ7xxeOqlli7LgDeYJbHxGQEQnkP2hlXUHhpm/C/3MvIHD1F7ZBQbq4FOXp5wtE7toZHZg5FdkGM7t5Cg6x1bZ53JpC7rpvHEBJXvn6L8jRMM/8FDNPZPzvu6RZ4pmmzMBJA8zTYjWicqxEH0HI86L315L273+XM9J+fj9qYZ/6u9BMfKlO46TlQL5r1ukZcqnGww8cl9jP2fxxj/88ep3n+W6buOUfraMSrfOUn+lWtmnStlbx7CW7U4wnSCM7U5YZKNfROEY/UOVSTzxQYxyS3dOPnzgTduMYFbSBI1wud55OJiI0v5e6dmAkigvU+pPzkBQHC6OhNA8rTq3aeJy7ND2UREREREREREREREREREREREREREREREXq6ldUnQZa51vILxHQqv24CNYozrULn7DMmt3Xj5RKfLm1/GYHwHG8zuoDCecnHk0guHa5S+cuz8QGwJJxq0jpVmLdfcN0lyW3f7MxrGGM+hebSkqw7L8wonm0STTQqvPz9vqg+cJbW9G687BUBcCyh/88SzHhjTOjZNYk3uotZjjMXJ+DDemDXuJHVl95XMtmK8nhSpbd3Y2GIMlL5+nNzNQ+cWgMnPHSSxPo/fvziahGWJMuCkPeLq7MAE4y7MsV3qsh5637+L1pESxnVona5Qf3wMDORvX0frWInJz+wn8WvX4BaWX6CfLBKec8FzGqyFiwh38gcy9P/ildSfGMfWQ2wQU/r6cQCaR0pEkw2Cs1XczV0LULzIi9c8WqJ5aHrmtltIUrt/GIC4ElB7aITC6za0AyC60/iDGdy0/1xPd0mZC+yOjO+Aq3O5pS4YrRGcLJG5ZhVOov1Gx82IqS8cIrE2h7sm3+EKL5KNiUvNOcPRubELndc5OV/fo3VSHL/wMiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJLkEJIFhEbxtQfH6f++PjMmNudXJb/qN3tSZG9eYjK907NjCU25PEHsx2sSlaq6AJXDjbP0TfqZnwmv3h45nZyWxf+Irm6tyxOcaVF88AUzQNTs8drIXQ/fcvMumr8eRffFOnmk+RuW8PEp/bBufnr5HySG4ovoWpZTmoPjczMiQsK43ZwRP8lK0mWIa83Tf7Va5n+xyPnx/rT+EMLs480jsFg5gY4AZwLB4vLAVE1VAiJLBivJ0X+tespfeXozJi/Noc3kMZJXtypttedonWiQv3hkdl3nDsEiEtzj1NFOiUcrj7//aN1Sl87xsCvXEVifeESVXVxvIEMiXV5WifKM2O516zFH9C53FIXVwKIofLdkxe4d+mEzBjPJXfLaiaOPzVrPHNFH9Dev7jdSaLJc0ElBopv3NQOopTOsC8cOCYiIiIiIiIiIiIiIiIiIiIiIiIiIiKyFCmEZBHxh7KYpIttRjNjuVesxiumOljVwvCLSdK7+/D60oQTDdxCAn9dHr833enSZAXyulPtK2BH5xtIwqkGiS1FWs+40ndyc5HkpgJ9H7iC1ukKXm+KxLoCbi7RibJliXC7U+AAz8iTcnuSOIXz88bJeBReu56JT51vODO+Q2Lji2ve9Nfn6fnJy2idqmJ8h+TmIv663Mt9CbKEeb0pMtevonb/8PmxvjRRJZi57WQ8hTTIy+YkXBLbuuh69zbC0Tpu1sdflyexOr9g6/QGMnj9acLR+sxY+oo+mgcmz92fxi2oMVcWjjGGzLUD7SCR0xXcrI/blcRf/eL2vdkbV1F/5BmBUQaSGwtM7x3H7dH5kSweifWzt+nhaI3EhgKtY6WZseS2btz+xTdvE6tz5F+3nvBsjaga4A+k8dcXMGbphFTIhbldScJHm/irswSnzwflpC7vxetd/N+ntU6UqT44TDTdJHfLarresZXyt0/gr82Ru3GIxIb2587vy9D3gd20jpeIawGJtXkS6xbuOEsugkJIREREREREREREREREREREREREREREZJlSCMkiklido+udW2nunySuBCS3d5Pa1tXpshZEVGrRPDRF3AgJzlSxUQYn4RAPZnESbqfLkxXGZDyKb9xI6ZsnsPUQt5ggtaMXtytJ88AkzSPTJNcXSO7swetK4XWlSG3v7nTZskT4Axl6fmIHk589gG1EuF1Jen5iB15+dnhNakcPvT93ObUHhnGLSTJXD5B4kU3MwYkyU184TO5VazCuofyNE7g9yXbzmhrUViTHdyncuYHE+gL1vWMkNxZJrMsz8cl97fvzfns+9iz+Bk1Z3OIgonloCpoR4dkqcT4BnoPXk8IrLkzIjVdM0vuzl1PfO07z6DSprd0EY3Vaj43h9qTofs9luFkFhcnCiqaahJMNwrEa0ZRDwjU4Yw38FxEkmVxfoO8XdlPdMwytiMSGAtUHh+l61zb8ocwCVi/y4iQ2FMi9Zi2V756EGOJaSPFtm2kdLdE4MElqWzfpnb246cUXABWO1wlH67TOVLCNCCflwtkqiX59xpY6ry9N+ope3GKC5KYiwUiN1PZu0lf04aQW99eerVMVRj/8KDZoJ1Y2npig5+d20vWOrdTuO0v13jPtYKoNRYzv4Pen8RdhyM9KZRVCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIsvU4v7X+CuMm0+Q2dVHYk3u3O0kTnJ5BnKEE3UaT00SjjdIrM7SfHKC1uFp/LU5EkNqlJdLKxyuUf7OSbLXr8L4DnE1pL53jGiqRXC2itebonLPaYJSC+/1SdycGprl4hnXIXNlP4m1OeJaiFtM4ubnziEn5ZHe2Ut6Z+9LWk/UCCl98zjGMTgpj9qeYVonynAI6g+P0v/LV73oUBNZHrxiktwNg+RuGJwZG/hnVxNXApx8YsECImRlCaYaxJNNqg+OkFiXJzhVob53HH8ws6BzzO/P4L8mA6wD2k3muetXPee2VmS+BacqlL99gsT6AtFEnfrj43S9fQt2YxHjmot6DuM5pDZ3kdrcRVQLiCYapHb24vWmMObinkPkUnCzCYp3biB77QA2tLg9KdyUR3JNnvytazpd3vMKJxqUvnIUry+Nm09Q/u4pcreuJtrY0v5iiTOOIb2jF39Vlrge4hYSS+acvXVseiaABAAD0VSL6c8fAsAfzFD57im43SG1qdihKuU5KYRERERERERERERERERERERERERERERElimFkCwyxnPw+5b/lXjjRkRiXR5/KEvrWInEhgJeX5qoFMBQp6uTlcSGMXEYE1cCKt87NTOef+166g+NtpdpRuRfs47GU5OMf+JJ8reuIbm1CyepTahcPK8nDT0Lu47Eujz+qgy1PcM4KY/iWzZT+cEposkmrZNlhZDIDK8rBV2pTpchy0kQE7cicjcO0jg0hdebJnPtANF085KW4fWmL+n6ZGWLmxHhVIPcTUM0Dk3h9qTa836y8ZKf0834uBl/HqsUmV/Gc/AHsp0u40ULJxoUXr+B1rEy4WSD7A2DxPWQOIhYntGvK4/XnYLuTldxcWwYE043sfHsEAt/MEvz4BQm6VK4cz2t42XCiQatQ1N4PSmFBy42CiERERERERERERERERERERERERERERGRZUod9ItQONnAtiLcYhIntTzfIifjEZyp0jw4BUBwuorbnaRny47OFiYrSjjZoPztk2DA60sTjtVn7nML56+cnL1+kOr9w6Qv7wWH9mOA9K6+S16zLF3RdJOoHuIVEjgL0Fzspjz81bmZq2YDNA5OUXz9Bqa/chRjzLyvU5aOuBYSlpo4aU/Ni7IgTNrDGEP5O+19ZHCyQuPAJD3vXdhju7DcJK6GuDkfN5d44QeIzCOLxQYxlbvPAO153zwwRfe7t2HcF7ffDaca2GaEU0ziLtNzQFnebBgTTjbAGLzu1Iv+DCw0tzvF5N89hW1EAASnKmRvHMQkFUGyXES1gKjUws14uIXFe7wbTjQoffsEtT1nKbxhI3gOhHH7TmsxniF32xpK3zg+a77GQUTxDZswzuL6bK1oCiERERERERERERERERERERERERERERGRZUrdTYtIHETUHx1j6ouHsI2I5NYuut62BX8g0+nS5p0N45kAkqdFk03iWtCZgmRFqj4wTPX+syTW5ci+YohwpE44WiO9u4/k1i6S27sJx+pYLMlNBcrfOwmxJb27j9ZIndRlMcZzOv0yZJGzsaWxf5LJz+wnLgd4Q1l63r2NxJr8vK4nqgdU7zkzezC2RKUWTjGBv25+1ydLR+t0hcnPHCA4VcHJ+XS/cxupy3oWXXOwLG0mtFQfHJk1ZpsRUbm1YOtsHJxi8u/3E0038frTdL9nO8n1hQVbn8izxeUWtfuHZ43ZVkTcjC76OWwYU987xtTnDxHXQvwNebrfsY3EYHa+yxVZMOF0k8p3TlL54RkwkLt1NflXrsXNL55wKFsPZgIdnlZ9cJjcbashu3jqlJemdbLMxKf3E56t4RQS9Lx7O8mtXYsusMNaS/X+s9TuOwtA5bunKL5+A8FonajSInfDICbh0DxSmjNfK98/Te7G1Xi9qU6ULhcSx52uQERERERERERERERERERERERERERERGRBqHt+EQlOVpj8+/0zjQbNg1NM33WUOLj4JralwgYxLK5eEFlhompAMFKj8Lr1GN+ldaSEP5Ahfd0qcjevxu9N0/2jW8m/dh3Gc6jeexYiCxbqj45hm6HmsFyUcKTG+MeeIC63Q5bCM1UmPvUUUWV+Q5dsEGO8uZPSpD36fvZyNTOvUHEtYOLvnyI4VWnfrgSM/82TBCPVmWWCsTqlb51g5M8eofy9k4Tj9U6VK0uYDeMLBtss1K4yGKsz/tEniKabAISjdcb/5knC6SZhqUl1z1lGP/woU/90hNaZ6gs8m8hLY4MYLhBIZ17ExA/OHRfEtbB9+1iZqX84yPRdR2nsn1yW54Ky9LTOVJn6pyOMfvhRqnvOEpaas+5v7JugcvdpiC1Elsp3T9E4MNWZYp/TBfZRrkPcUojAUhdONxj/xD7CszUA4lKLsY/uJRytdbiyueJqQO3B4Vm3p//xCIm1Wfp/bhfpy3tJbiri9abnPNa4jr7FXWSs7XQFIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgtD/3x9EQnOzm2QbOwdJ57nRvXFwEl7pHf3zRrzV2cv2GghshBMwiG5Lk/pq8doHpyi/tgYU18+jJvyZpbxelLkrhukda55/5maB6awsTpO5IUFo7V2gM0zhKN1wqnGvK7HSXtkrh+cNWYSLon1eRJr8vO6Llk6wukm4ZlnNWDGlnC8Pf+iSouJv91H6atHaR0pMf3lI0x+/hBRffkde8jCcjI+2ZuHZo8VErg9qQVZXzTRwLZmhzPEpRbRZIPKD04x+ekDNA9PU/nOScb+4jEChevIAnAyPrmbZu97nbyP23Px5zTheB2edUjZOloCC2N/+TjNw9PzUarISxaM1xn7i8eofOckzcPTTH76AJW7T8+cC9nYUnt4ZM7j6o+PXupSn5fXm8ItJmaNZW8axMn6HapI5ktwpko08axzq9ASPntsETAJF68/M3fcP/89hHEdkhvzuF3JWcsU7lw/Z0w6Td8JiYiIiIiIiIiIiIiIiIiIiIiIiIiIyPLkvfAi0kleXwaTWH5ZMV5fGn99Hn9jAcc1GM/Fyfv4A3ObMUQWgg1jqnuGZw9GlmCkRvry3lnDidU56g/ObqxLrM21r0R8AVElwAYRbj6B8Zbf51denAvNAZNy5309ju+SWJej651bZ8Ys4PUr3Gklc1IeTsYjroWzxt1cu+E2GK0TnJgdtNTcP0k03sBdq6ZcuXheMUlyUxG3O4kxBuMacMBftTDHdk7WB8Ps3k/PgOtQ+f7pWcvGlYDwbA1fYXcyz7xiksTGIoXXuwRnqrj5BN5QFn9VhrgVEVcDnKSLk3nu7emFAhDcYpK43A6DqnzvFKmtXc953Cmy0IIz1TnBqJXvnSJ7wyB+bxrjGBLrC7SOlGYtk1i7eELwwukmTj5B4Uc2ExwtEZVa+ENZvIEMnkIdljQbW8KJJibhYFvxrPuc3OI7lnUSLoU71zN2rIQNYrz+NJnrBkisyc5azutJ0/eBK2jsm2h/R7Gzh8SmIsaYDlUuFxTHL7yMiIiIiIiIiIiIiIiIiIiIiIiIiIiIyBKkEJJFxALJLUWah85d7doz5F+15nmb1pYqN+OT3FSk+sMz1B4cwc35FN+yGRvEGF8NdrKwwok6wWidC/XvGHfuYOqybqr3pglH60C7WTR70xDGmb2sjSyNAxNMfeEw0VSTzDX95G9fj9+npueVzKRcMtcOUHs6yMZA/lVrMcn5DyJxcwnqI6NUfngWJ+VSeMNGXF3dfUXzulN0vWMrE5/YNxPWkL15CO9cMIT6GGU+eX0pGk9NUr3/DE7ao/iGTRh//rd1AN5AmvydGyjfdWxmrOutWzBZrx1O8mya67JA/LU5MO3gEBIO/qoscaXF9FeO0tg3gbcqQ/fbtpDc3HXhx6/Okr66n/rDo+0Bx5C7bTWlrx8/d/vSvA6R53LB0INnDWWuGaD20AhxqQWA250kfUXfJaju+UW1gNrDI5TuOg6xJfeqtSR2dGNLAU7Ww1+bV6jDMtA6WSb/qrWUvnH8/PHuLUOLKuQ2OFuleXQaG8QkNnXR/ytXE5WaNA9MUvr6CSrfP03xzZtI7+rFSba/qvUHMovqNcgFWPvCy4iIiIiIiIiIiIiIiIiIiIiIiIiIiIgsQQohWUQSQ1laR0oUXrcBG8UYx+D0JJdlU0ww1aR6zxlqe4YBiKZbTHxiH/0fupLkxmKHq5PlLJxqMPaxJ4nG6uTvWEdw9nzzMp5DcvPc+ef3Z+j7+d0EZ6sQW7xVGfzeucEiwZkK4x95YqbxqfZAO3Si+x3bMJ46SFcqryeNhfPbds8hDmL87vm/6nr1gWEq3z8NQFyJmfrMAdy8T3pH77yvS5aO9OW9DPzaNYTjddysjzeUxU23w2m8/jSJjQVaR0szy6d29OAqPEleguqeYar3nNsGlQMmP70ft+CT2t4z7+tyfJf8batJbS0SlVp4XSm8wQzGdci/ai3lb544v2wxgT+oJl6Zfzay1O490w44OCd/+zoah6cIjpUBCM/WGPurvQz82tX4A9k5z+FmE3S9dQvZGwaJpppEU00qd5/GNqP28922FuPqOFI6xx/M4BQSMwEjAPlXr8PrTs3cTgxmGfjQlQRna+AY/FWZWfd3SvPwNNNfODxzu3zXMfJ3rKPy/VPYVkzxLZvI3bZmWX7nslIYx5C9ZoCpLx1un2+F7fOt5NbiTJhHp7XOVBj98GPYetgecKDvl64kOFOdde42+Xf7cT+4m9TWrs4VKy+OQkhERERERERERERERERERERERERERERkmVoc/yJfAEisK5C7BaoPDkNkyVy3iuT6QqfLWhDRRJ363vE5463TVYWQyIIKzlQJz1QBaOybpPDGjbSOlXC7kmSvHSCxJn/Bx3ldSbyu5w+NCEZqMwEkT6s9NELhtRvwejrfhCed4RWTFG5fR/3xcVonqqR39ZLZ3o3x3HldT1hqUntwZM5488i0QkhWOOM6JFbnSKzOzbnPzSboec926k9O0Dg4ReqybtKX9eCmdIgoL04wXqf+0Oic8eax8oKEkAA4SY/khrnHjblbVuP1Zag/Noq/Jkdmdx9ej4J1ZP6FE3VKzwi8AcAwE0DyNBvEhGONC4aQALhZH3dLFza2tI6XCKeb2CAme90AyQ3L83xQlg6vN03/z19B7bExglMV0rv7SW3rwjizgzu8nvSi29bWHxubM9Y8NE1iXZ7moWlKdx0jfXkv3gUCJmXpSG4s0vXWLVQfGMZ4huy1q0isWTzbzsb+yfMBJAAxNA9OU39weM6yzcNTCiFZQqxCSERERERERERERERERERERERERERERGSZUofpImJcQ3JTkeSmFRDCEVncQoLwmY0YgJPWlJSFZYN45vfWsRKt4yX81VmKb92C/zKDQi40f918EuPr6vUrnd+fwb89s6DrMI7BLSaJJhqzxp1MYkHXK0uf15smf9sa8ret6XQpspQZcIsJounmrGEne+mP7dx8guy1A2SvHbjk65aVxYYxRPZZYxaTcLGtaNa4Sb1w+JhxDMmNRYUyyqLjr8pSXHXhEJ3FzOufGy7iFpMEZ9uhlDaIsZFCBJY64zuktnYt2vCOuBrOGYsmG7i9acLx2edu7gsEn8oioxASERERERERERERERERERERERERERERWabUGS8d4RYSZG8YnDUDvVUZkj0wO1cAAQAASURBVOvznStKVgR/VXZ2KIgFfzCHV3j5QQ3+6hyJjc+44rKBrrdvwc0rBEIWnptLkLt1NXjnr0rvdie1XRWRS8LrSpF7xWpwn7EN6k2RWKttkCxfXneK5LauWWON/RMU37Rx1lj6yj78JRjgILLUpXf14mT9mdsm6ZJYmyMcqQGQuqIPt1uhD7KwUpd1zxlLbixSuGPd3HO3lRBKvJwohERERERERERERERERERERERERERERESWqUt/afJnMMasAz4KDAIx8GFr7e8/axkD/D7wZqAGvM9a++ClrlXml78qS9yK6HrbVqJqCzfrk9hQxOude6Vikfnkr8rQ98HdVO4+hW1FeKtz5K5bhfFefiaTV0zS85M7CE5ViOshXn+GxGo1nMqlk9iYb8/BszWMZ0iszZNYpwAAEVl4xjH4G/P0/PhlBKN1HN8hsV7bIFnenJRH19u3UL3nDPXHxvDX5im8dh1efxp/KEs4XsfJJUiszuE+IwhBRC6NxFCO/g9dSXC6irUWrytJ5e7TuMUE6asGyN40iOO7nS5TlrnE+jy9P3c5pbuOETcj8q9aS2pnD07GY+BXriY4W8X4LonVWX0nttQohERERERERERERERERERERERERERERESWqY6GkAAh8C+ttQ8aY/LAA8aYu6y1TzxjmTcB28793AT8ybn/Lzs2iGkeL1HdM4xxIHP9IMn1eYz78sMRFqPkugL+qiy2FeNkPdp5MyILz0m6eL1pWqcq+L1pzDw2nnnFJF5RV9OW2YKRGvXHx2geLZG+opfUZT0LMk+8XBJvV5JoY4DxDE6y07t5WWzCqSaNpyao7x0nualI+ope/P5Mp8uSZcLvSuN3pYkqLUzCxUl0rrE7DiJax0pU7z+L8V2y168isb6AcXS8KfPL78tQfMtm8revwyTdmUCD5MYiyY3Fi36ecKpB46nJ9vZ5c5H0Lm2fZXGIGyHNw9NUHxzGyyfIXDtAYl2h02VdNL8/M+uz5K/JYZsRTsbXPmGZiIOI1tFz+/ykS/a6xbXPd3yX9M5eEpuKmNjiZM6HUiVW50isznWwOnk5bBx3ugQRERERERERERERERERERERERERERGRBdHR7mRr7RngzLnfy8aYJ4E1wDNDSN4OfNRaa4EfGmO6jDFD5x67rDSPlRj788dmbtceHKH/F68kuenim9eWGifhQgcbVGXlCcfrjP7l48SlFgDNpybJv3Y9hdeuXzRNSrK8hNNNxj/2BOFoHYDm/kkyNw7S/bbNGG9htn9u1n/hhWTFiYOI0jeOUbt/GGjPxdpDI/T//BW4Ck+SeeTmEp0ugeaRacb/cu/M7dqDw/T/0pUkNyzf42rpHOOYlzXv41ZE6WvHqD04ApzbPj88Qv8HduMWOv95kpWt8dQEE598auZ2dc8w/b981ZINTnB8F+YxhFI6r3l4mvG/esY+/4GRc/v8xRWW46YUELns2E4XICIiIiIiIiIiIiIiIiIiIiIiIiIiIrIwnE4X8DRjzEbgGuDeZ921BjjxjNsnz40tK9ZaKj88/axBqD400pmCRJap4GxtJoDkaeXvnCSabHSoIlnuwpHaTADJ02r3nyUY15yTSyscb1DbMzx7bKRGMFLrUEUiC8NGMZXvn5o9GEP9sbHOFCTyAsLxOrVnnfeFZ7V9ls6L6yGlb56YNWaDmNbR6Q5VJDKbjWIq33v2Pt9Sf2K8MwXJCqMUEhEREREREREREREREREREREREREREVmeFkUIiTEmB3wG+HVrbenZd1/gIRf8V97GmF80xuwxxuwZHR2d7zIXXnyBMat/0L4SLPm5u6Rc6DNl1TryMmj+vgBNrkVLc1eWKs3di3Dh3b0sApq/z0Hzc9FbsXM3njs59TXF0rOc56+90ITUJJVLIb7QF7kiIiIiIiIiIiIiIiIiIiIiIiIiIiIiS1/HQ0iMMT7tAJKPW2s/e4FFTgLrnnF7LXD6Qs9lrf2wtfZ6a+31/f3981/sAjLGkHvF0LMGIXPNqs4UJJfUUp67S403mMXJ+bPGcq9ci9ed6lBFS5/m7/PzVmVw+2bPr8x1q/B6NOc6baXNXa83RebagVljbl8abyDToYrkpVppc/fFMq5D7rY1zxqE9O6+zhQks2j+zuX1pklfPftv4fWn8QfSHapILmQlzl0n7ZG/Y/3sQc8hubHQmYLkJVuu89e4DvlXrp096EB6V29nCpKVRWE3IiIiIiIiIiIiIiIiIiIiIiIiIiIiskx5nVy5McYAfwE8aa39n8+x2BeAf2aM+RRwEzBtrT1zqWq8lJIbivR98AqqPzwLLmRvHCK5Pt/pskSWFb83Td/P76b28AjBqTKZqwdIXtaDcUynS5Nlyism6fvZXdQeHaV1eJr0lX2kdvTg+G6nS5MVxvFdCnduILE2T/2xMRKbi2Su7McrJjtdmsi8S24u0veBK6jcdwbjuWRvGiSxTk3zsjg5CZfiGzaS3FBob5+3FMns7sctaPssnZfa0UPPz+ykev9Z3EKS7PWrSKzR9xSyeCS3FOl7/y4q957FJF1yN2qfL5eGVQiJiIiIiIiIiIiIiIiIiIiIiIiIiIiILFMdDSEBbgV+BnjMGPPwubF/A6wHsNb+KfCPwJuBg0ANeP+lL/PSML5Dams3qa3dz7nMqck6rShmdVeKpKcGdpGXIjGUJTG0aV6eS59JuRj+QIbinRs6Xca8qLcizk7XSSVchorpTpcjz6EZRpyeapBwHdZ0n3+fvO4UuVtWk7tldQerk+VsqtZiotqiK+PTk+1cgILju6S2d5Pa/tzH1SKdVm4EjJab5FM+/do+yyLlpj0yu/rI7OrrdCkvqNIIGCk3yaU8BvKpTpcjl4jju6Qu6yF1Wc9LevzZ6Tr1VsRgMU06oXN6eRGUQSIiIiIiIiIiIiIiIiIiIiIiIiIiIiLLVEdDSKy13wfMCyxjgV+9NBUtXpVmyBcfPs3v/tOTVJoh77x2Lf/XHdtY35vpdGkvm40txnneaSAyb+Zrvl3wM/nabazvWfqfSVnaFnKbemSswn/9p6f46hNn6c4k+O23Xs4bdw2S9NWst5gcH6/yv75+gH94+BS5lMe/edNO3nrVarLJTmfPyXL3yIkp/v0X95JwHRKew6/dsY0bNr20hmCRpebF7n+fPFPit/7hcfYcm2Rtd5rffcdubtvWhzE6LxJ5KZ46W+LffX4v9x6ZYKiY4nffuZtXbevHucDnUt9BCEAziLjryWF++/N7Ga+2eN3OVfzmm3ewuT/3sp9bc2yFsHGnKxARERERERERERERERERERERERERERFZEM58PIkx5heMMdvO/W6MMX9ljCkZYx41xlw7H+tY6R45McVvfu4xSo2Q2MKnHzjJJ+87Thwv3ctutk5VmPz8QUb//DGqDw4TlVudLkmWsajaovrQCGN//hiT/3CA1snyy3q+C30mP37vsSX9mZSlLZyoU/7uSUY//CjT3zhOMFqb1+dvhRF//K1DfGXvWayFiWqLf/6ph3n89PS8rkdenji2/M29x/nsQ6eILZTqIf/6s4/xyMmpTpcmy9zZUp2v7znBf9w6xO+T4T/ki1ROljgxXu10aSILKhirU/rWcUb/7FFK3zlBOF5/wcdM1Vr8y797hD3HJgE4OVnn5z+yh4MjlYUuV2RZmq4H/OvPPMa9RyYAODPd4IMf2cP+4dnnfMFojelvHGf0w49S/u5JwokX/rzK8vXEmRL/7BMPMV5tfxd115PD/N5d+2mG0Ut+zmC4ytRXjjD64Uep/PA04VRzvsqVxcjq+x8RERERERERERERERERERERERERERFZnrx5ep5/Dvz1ud9/ErgS2ARcA/w+8Mp5Ws+K9ejJuU3en33oJD9/2yb68skOVPTyBMNVRv/Po9hGu7mjdXiawhs3UnjNug5XJstBVA9pnSgTnCzj9qRIbixQf3SM6X88AkDz8DS1h0YZ+JWr8FdlX9I6LvSZ/NyDp/iF2zYvyc+kLG1RI2Ty84doPtVuZm4dLdHYO0r3e3aQGHppc/zZRistvvjI6Tnjh0aqXLehZ17WIS/feLXJ5x48NWd876lpXrGlrwMVyUoxOt3gx900fPMUAeAdgcsyHnZNEXrnZzsksthE1RYTf7uP4EQ7PKR1rETjqQmyNw1CMyaxsYg/kJnzuDNTDZ44U5o11opijoxV2bYqf0lqF1lOhksNHjoxNWssjC1HxqvsGCoQTjcJRmqU/vEwwZl2UF/raInGwSl63rsDNzVfX43JUnJ4dG5Q2pcfO8NvvGkHa7vnbrsvJCw1aR0rE4zUSG7MM/l3+4mm26EmraMlsjdV6XrrFow3LxnQstgohERERERERERERERERERERERERERERESWqfnqtAittcG5338E+Ki1dhz4ujHmv83TOla01V0pfvTqNWzqzxJGMa5jeOpsiUzS7XRpL0nrZHkmgORp5W+dIHPNAF5RAQ7y0llrqT0wzPSXDs+MFd6wgfJ3Zzfl22ZE63T1JYeQDBVTs37/iRvXk3Qd9p0tscsp0J3VPJZLJxqrzwSQPC04XaPx5DjG4SXP82fKJVw29GbYtbrIxr4sURxjMAwUNNcXg5FSg31ny9RaIb96+xb+5137KTXCmfsHi+kOVicrwRrXo3bf8KyxuBaSn2p1qCKRhReO1mcCSJ7WOlwiuamL8jeO4xR8+j945ZwgklzK4y27B7lssEArikm4Dn//wAm6s4lLWb7IspFNeKwupnjHtWtxHXCNYaTcpDuTIKoGTH7uAMm1+ZkAkqc1908SjtVx1yr8ZyXqziZ4xzVrZp3bfPfACJnExX3PFtUDpr90mPqjY+2B166fCSB5WvW+s+RuXXPBQCpZ+mwcd7oEERERERERERERERERERERERERERERkQUxXyEksTFmCJgEXgv8zjPuU9frPNg5WOAT9x7jHx5uBymkfIc/++nryCSW5hV7bXCBq4UaINI/4JeXJ5poUPra0dljpRbGMTx71hnz0tdz3YZudq8pcmi0wgdfuYn/8k/7CKL2Gt521Wp++62X05tTOINcIs81mWNL88j0vISQFDMJ/tOPXsF/+8pTfO6h9r4o7bv85ftueNnPLS/Pickav/aJh3j4xBQA+aTH//367fz7Lz4BwJVri1yzvqtzBcqKkLFQN8zZ13q6QLwsZ8+x/316OC4FtE6U5zSf51MeCc/hf961HwDXMfynH72C7asUhCDyUqzpTvO779zNr33qIUr1dgjbzsE873vFRsKRGs19kySfI2jEvJyTQlnS1vekOTVVn3Vu879/6lp6LjJQNBypnw8g4Tl2Cca0v+uS5UnHuSIiIiIiIiIiIiIiIiIiIiIiIiIiIrJMOfP0PP8O2AMcBb5grd0LYIx5NXB4ntaxoh2bqHHvkcmZ240g5ve+vp9yPehgVS+dk/NxMrMDVLI3DWHSSzNURRYPG1lsMDvMpv74GLlXrZk1ZtIe/urcBZ/j7HSd7x8Y5e5DY4yWGxdcZl1Phv/zs9fxV++/gY/cfXQmgATgC4+c5onTpZf5SkQuntebInVF76wxf02OcLxBXAvnbT1TtYA9x87vi+pBxH//6lOUG0tzX7Rc7DkyMRNAAlBuhnz/wBh/9tPX8ic/dS1/9tPXsbZbV1+XhVWLY7I3DM4ac3I+5P0OVSSy8Pz+NMnNxVljyS1FWqcrM7fj5tz98JNnynzuodMzt6PY8nt37Wei2ly4YkWWsUYQ8rf3n5gJIAF48myZh09MEZ87NwzHG/hrZ5//pXb14vWmLmmt0jlTtRb3H53g20+NcGy8yuHRKvcdmZi5vx5E/NE3D1K5yHMbG0Szbsf1ELdn9nzKvWI1Xrfm2PKlFBIRERERERERERERERERERERERERERFZnuYl8cFa+yVjzAYgb62dfMZde4Afn491rHSnp+pzxvYPVyg3Q/Lppdfc6eZ9cq9cQzTZJJpukliXxx1I4y7B1yKLi9uVJHVFH43Hzl+R2DZjUpf14PWmqT08it+fJn1l35yr0gMcHCnzix99gMNjVQB2rynyhz95DRv7snOWHSymaQYxxyfmfj7H1EQql5CT8uh6y2Zq6/I0D03jD6TBMVS+d4r+X7xy3tZzZnpuKM9Tw2UqjZB8StvvTjk6Xpsztu9sma89McwXHznDn/z0tQx1pTtQmawkw3FMf9KhcOd6WifKuMUkbk+KSd8wdw8qsjw4GZ/ud22jvm+C5sEpEuvzxOWAyt3nAkYMJNbm5zxu/ALHiSPlJt/aN4p3ucO6HgVHibwYDx+fYu+ZuSGQh0cr+Fv6cXI+tYdGyL1qDcmNRYLRGukdPaR29OCkFIS6EoyWG/zHLz3JFx5pb597Mwl+9Y6tc5Z7arhMuRmSu4hzG68/g9uVIJpqAVC55zTFN2/CtmJaJ8ukd/WR3NaF8eYr/1kWHasQEhEREREREREREREREREREREREREREVme5q3bwlobApMAxphfBr5grT1ljPl14H/N13pWqvwFGmNed/kq+nKJDlTz8iXW5IkbEc1jJXAMJuOR2tTV6bJkGXASLsU3bsTrSVF/eAR/KEf+jnUkBrMkBrNkruh73sd/7qHTMwEkAI+dmuab+0b4wG2bAKg0Ah49Oc2h0QqDxTS7Vhd49fZ+vrN/dNbzbOpVy7VcWl53iux1q/C6UpS+cwLjQO/7dpFYN7f5+aUaLCTnjN2xY4BsUs2bnXTN+q45Y6+7fBWru1Js6c/xv+7az86hAqsVRCILyEt5fNuNuHaqRd5a6o2A44kkvrGs7XRxIgvI602Tv3UN+VvXEJaa1B8dw+1O4uQTFF+3gcSaufvhjb1ZHAPxM3qXr15X5N4jE6R9l5+8af0lfAUiS9upyTr//ktPcPtlA/z13Udn3XfDxh687hR9H7iC0rdOUH94lPRV/XS/fSteT6ozBUtHPHZymi88cppswuWDr9yMxdKdnRs08pbdg/Rl557zXIhXTNL7c7sof+ckrcPTJHd0k9rWjb9K3wWsGHHc6QpEREREREREREREREREREREREREREREFsRCdQ3ngI8aY5qAi0JIXpZWGGGAX7tjK3/1g6NUmiE3b+7hndeuIeG5nS7vJTGeQ/qyHpIbC9jQ4l6g+UPkpfJ70xTfsJH8K9dgki6Of3GfkyiKuefQ2JzxB45N8oHbNhHHlr+9/wT/8ctPztz3+stX8RtvvIxqK2TP0UmKaZ9//7Zd7BwqzNvrEblYbi5B5qp+klu7MJ7BmedwkGzS4/967Vb+8vvtfdEtW3p521VDVJshhbS2451yzfou/s2bd/I/73qKZhhz+/YBUr7Df/7HfbiO4d+8eQdTtZZCSGRBZXwHtzfFbx0+yc7uNONBwK2JPP2NsNOliVwyXiFJ/rY1ZK7px3jOc+6Ht6/K81/fdSX/+R+fZLIWsGt1gR+7fh37zpZ55OSUQkhEXoTJWgvXMewcynPnzgG+sW+EhOvw/ls3cvnq9jlZYnWO3h/fTtyIcNI+xjUdrloutdPTDQB+5fatfPi7h5muB1y3oZtfvX0LH7n7GJVmyO2X9fNLr96C7zkX/byJoRw9795O3Ahx0h7GvfjHytJnrX3hhURERERERERERET+/+zdd5hdV3nv8e9up7fpval3Wbbce+/YxmB6xxACgZsEkgspJLkkQBJISAghEIpNsanGNrZx792W1ftoNNL0enrd5f4x45FGI8kqRzozo/fzPHo8Z51d1vasvc/e55n3t4QQQgghhBBCCCGEEEIIIWagolQnK4pyE/Cq4zg9403/CswBrgD+pRj7OJW5dI2u0Qy/fr2L95zVjMdQ2dAV44fP7ubcORUzNogEGCvMO7JJZoU4KoqqoAVch3zfcRxM28HYr0ioP5HlisU1rNkTnbTsJYuqAOgcSfHPD2+b9N4jm/v56AVt/OjDZ9Iby+J36TSUSaG/KK0TFezUG8vy69f2fRat74rx1Ye28YtPnn1C9ieOTNjr4vYL27h6aQ07+pP84LkOvvv0LgAs2+G+tT1cv6yuxL0Us10sa/Llezdx7fI63AE3RiLH39y7if9+/+ml7poQJ53mP/Q9KEA0nef7z+7iptMaCHh02geS/M29m/jsZfOYU+U/Sb0UYnaoCbm5fnkdX/ztBla3lvOZS+dhWg4PbezlmqW11IbHns0UXUMLzNzvTsSxKVg28UyBmpCHqqCb3miGWKYAjIWN9kYz/NV1izijtZyGMi9+19F/Taro6mG/exCzmGSQCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghZqmihJAA/w84DUBRFAO4C+gGlgNPAd8r0n5OWfFsgd5Yloc39VEVdLOpJ0ZTmY+cac/oEBIhSmFzT4y7XtnDxu44t57RyJWLq1nfHeMLv17P21c1cPHCKp7eNoiiwG1nNHLhvLEQkmzeJmfaU7aXypkEPQZBz4kJfhBiusiZFj2xLI9v6Sfic7GxO4bHpWJaUn1VaoqiEPYajKTyvLp7ZNJ7g4ncUc3oLsSxKFgO8azJL17dS8irs7AmSMirY9lyfRDiQDnTpn0wxfb+5KR2r0tjaX24RL0SYmaq8LuZXxPEduCVjhFe6dh3H5TKWyXsmSil/niWJ7b2oyoK33+mg9qwhw+f28rGnhh+l8biuhC9sSzd0Qy/WtPFrasbcWny3Zo4Ss7U74eEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBiNihWCIkBoChKGPgt8ITjOP843uYt0j5OGWYih6IqEzNoO47D4voQ//eaRewYSNATy/KJi+Ywp9I/o0MP7IKFOZQBy0Gr8KB5Z+6xiOnhzTHlWA76QcaUYzsMD6T45fO7+eW6HnKmzRt7owQ9p/H5X62jYDn88PndXDi/kr+4eiHnz6tgYW0QjzF2qWws83Jma/mkAv+AW6etct+M9Zt6Yvx2TRfb+pLcenoDFy2ooiLgPjn/A8SMZ2UKULBRAy4UVTmmbdhpk8JIBkVXMCq9KEUMqmoq8/GlaxexqTfOUDLHpy+bh9+lEZHrd0k5jsPavVF+8mInI6k8f3blAp7dMcSLu4YBeOfqpoNeh+yciZ210AIGiiYhJeL41IY9nNEc4U/ObKFKUenK5lmXzBBwF+tx4/iYiTyKoqAF5HolTjw7b2EOZ8B20Mqn3pPWhjzcenoDv3ytCxi7n3zn0lrOqgrSPpikLuThtT2j/OzlPbg0hfee3cIZLWUYcq0WJeCYFlbKRPXqqK7ShzRE03me3znEL1/bS3O5n+uW15HImMyt9NM+lJpYrirgprVi7DnNiucxo1lUr45e4T3m+2wx/Ti2g53Mg6FOXGst2+GOF3bTMZRiz0ianYNJdg4mGUhk+fzVC2mr9PPGnigXzK+kscxLY5n3iANI7Nz491iAXulFdZf+nBAl5EjYnhBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQYnYqVlXgL4CtQBAYAF5QFEUBPjD+WhwBK5EnvW6QxNN7UQyN0FUteBeX05vOk8tbfPeZdqLpAgAvtg/zmUvn4TgOY/+rZxYzniP+2B7Sr/aBA+45YSJvn49RKZk14thYiTzxx/eQerkXHHC1huDaVpI+jdYKP3YsR/KlXvKv9nF70OCWa5byuRfa6Y1n6Y1lKVj7ikee3THEszuGuG/++RMBJABBr8FX376c7zy1k0c29bOkLsQXr1vEnKoAAO0DSd77/ZeJZcbO0+d2DvGX1yzkjy6eOyPPU3HyOLZDriNG7MEOzJEs/jNqCJxXh15+dNfEwmCakV9tp7AnAQoEzq8neHETWtBVlH4WLJtvPb5jYlb553cO84WrF9IXy9FaNT2CBk5FG7tjvPt7L5Ezx2bifmr7IH9x9UJ2D6e4fHEN1aGpv//c7hjRhzow+9N4V1QRvKgBo9J3srsuZpG8afGdixZg3dOOnSoQcWk0XVrPVx/fTmvlKmpCnpL0y0oVxu6vn9yLoiuErmzBu6QC1SPXLHFimPEc8Uc6Sb/WD4B7XoTIzfMmPecYusrbT2+kYDmMRDP89ZIGgi/1Y2/fRc1ZNex2xfjAD16ZWP7363u5+xPncFZbxUk/HnFqy/enSDy+h+y2UVwtQcJXteJqDJa0Tw9u6OVL92wcfzXEb9Z08YWrF3LbmU280D7Ma7tHWNYQ5gPnttBQ5iXflWD4Z1uwRnOgK0Sun4PvjJppEagijo85miX5Yg+pV/vRy1yEr52De26EnmiGHzzXwR9fMpeHNvZNLG9oKo9t6ueXr48FQL24a5iakJuffvzsI95f9IEOshuHAPAsqyRyfRt6WWnuccQ0ICEkQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIWaooUyk7jvN3wGXAKuAS4E+AGHA78Mli7ONUkN06Quz3u7ATBayRLKN3byPXmcCtqyTz1kQAyZt++HwHPbFsiXp7fPK746RfGQsgAcjtipF+vR9H/oBfHKPc7jipl3onxlR+d5zkK7388U9f55FNfSSe7Sb5dBd22sTpz1DxYCffuHg+n750Hl5j6qUw6NaJ+KYW7s+rDvC1ty/n0T+7iB99+ExWNZdNvLelLz4RQPKmbz+xk94Zep6Kk6fQm2LoBxspdCdxMibJ57qJP7kXZzxU4kg4tkPyxZ6xABIAB5LP9ZDfEy9aP7ujmYkAkjfd8cJuHOTaXSq27fD09sGJAJI33fNGN5+6ZC5PbRsAZ3IIUr5/fLx1JnCyFulX+og90IF9wO9WiKNRZitYvxsLIAFw8hahR7t4R1sVOwaSJetXdtsIsfvasRN5rNEco7/cTm538a6LQhwo1x6bCCAByO2Mkl47NZcz4NbZ2B3jb89oxftAJ+ZwFjtZwHqiC++uOGU+Y2JZ24F71/aclP4L8SYrlWfk7q1k1g/h5Cxy26MM/WgT5kjpnm2GEjn+4/Gdk9rSeYucafP1P2wlU7C47cwmDE0lkSlgp01Gf7tzLIAEwHSI3ttOoS9Vgt6LYnIsh+Rz3SSf6cbJmBR60gz9aCOFniRDyRw3rqynqdxHfXhfQMglC6v57Rvdk7bTH8/ROZw+on1mtoxMBJAAZDcOkd06UpwDEjOSY8tzsBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQYnYqSggJgOM4XY7j9DmOM+o4ztsdxwk5jnOh4zi7irWP2cwuWCRf6p3Snt08jK4qhA4yW7sy/m8mynXEprRlNg1j56QAWhybgwUt+DqTrKgOsndPjPSrfZPftKE27/DNR7dzzxs9fPDclom3NFXhq7cup7ncN2mVkVSOwUQWl65RF/biP+C8PNj5qCjKjD1PxclTGEiPVRjvJ/16P1Y8f8TbsDMFslumFsHlu4tX/K+rU28bFAW8MpN8yXQMJ6eElMHY7yWaLhDxGjQecC0zBzM4hcmhJdktI1jR3Antq5jdjIyFnTxgLNoO5Vbp7lcdyyb18tT768z6wRL0RpwqcruiU9qym4anBD3Nq/bzyQvn4OmZGobg2TDMlXMrJ7WpckMpTjJzJIvZOzmcwU4VMIczJerR2P2NcpBzwa2rVAfdOI6D7UBTmZfz5lVipfIUeqbeC1slDFIRxWElciRfnvqMn+1N8cPndlHmM/jbezfx0QvacOsqhqbQEPEcdPwc6eU1u3loSltm8/DRd17MHhKkLIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEmKWmJlscA0VRGoFWx3GeG3/9Z0Bg/O2fO46z85ArCwAUVUErc1M4oFhci7jpT4wVoZf7XYyk9hWk337RHOr2m9V1JnE1BMlGRvCuqETRVfJ7E+gVXlQpZBfHyKjzT2nL1vnozya4tSaIGojvmwF7XMwaK8JfuzeKAvzZlQuoCLg4o7mMudWBieWSOZNHN/fxjUe2kzdt/viSudx4Wj0Vfvek7S2uC1HmMxjdLxDgs5fPpy7iLeKRitnoYNc+1W+gGEeeFaa6ddwtIayyPK7WEFgO6Y1DGDW+t175CNWGPQTdOomcOdH20fPbyBYkQKpUukezlPtduHWVnLkvWOSm0xp4dscgH79wDt99up3VLWX43WO3fQcbb4pbQ9GLlk0nTkGWW0Xx6XjmlaFXerCzFpl1Azg+g+byEn0OKgp6uZd8Z2JSs1Y2M++fxfTl2A7maBYsB8/CMtKv9k963z03MuUzvT+eY0NvjBWGlymf1CEX/el94Q+qMnZdF+JkUgxtLLbWPqDdXbpn9oqAm89dPp//+9sNE20Bt046b/K3Nyzhnje6+e3rXZzWHGE4maexIoBW6cEaGgsd0Su9eJdWoIZc2AUL1ZDvH2YqRVfRgsaUZ3zLUKiL+PjJi51kChbff3YXf37lAhrKvfxhYx83r2rgV691TSzfGPGwqDZ4RPt0zy0jt3M8UFdX8C2vwrO4HCueQwu5D7+ymKUkhEQIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCDE7FSWEBPgX4Gf7vf4k8D3AB/w98L4i7WfWUjSV4IWNZLeOgDn2R+yqT8ezqBy3Aabl8LEL2tg7kqY3luX05gjzqwMoB5vGdQZwtQbxra4h+Uw3Tt7CPTeC/4waFJniWxwj95ww7gVl5LaPAqBEXAzMD/OlUQ/BR7oInFdP7OHdEzUieo2Pzfa+IIU39kZ5Y2+Uv71hCYvqQgB0j2Z4Zscglu3w17/bOLHs392/mYBH5x1nNE3qw5yqAD+//Rx+v76HbX0Jbj6tgfPmVZzYAxezgtEQQG/wY3anJtoiN8xBC7qOeBuKruI/v57E43tJPLl34rXeeGRFdUfCcRw+c9k8dg4kGUzmWN1SjktT8EiAVMlUBd386PkOPn/1Qnb0JxhJFVjdUsbjW/t5dfco6/bG+NsbFqPu9/mq1/pwzQmR3xWfaAtf14ZeLsEM4tilvSqBdy4g+0gnmfWDqAGD4DVtVFQa1IVLE0KiqAr+c+vIbBzCKYxV0SteHe8y+WwWxWNlCqRf7Sf+aCeOaeNZWkn4hjZiv+8AQKv04D+zZtJzW860+Oaj27l3bQ+nXbGQswMGdnI8xE5TyJ1ZzRWZLGVBNx5D49YzGjmtKVKCoxOnMqPSS/DSZhKP75lo866qRq8qbcDitctrKfO7+M3rXUR8BpcsrGZDV4x/eXgbHcNj4T3P7hhie3+Ce//4fMpvmc/QHZtxt4XQK70knu8h8UwX3hVVhK9uQS9VUJY4LlrARfj6OYz8dMtEm17rQ6314+ofxdAUMgWwbIemCh+fu2stecvmllUNfOayeazvinJGcxnXLa+joezIQhu9yypIrx/EGsoQuqaV1Eu9pN8YQA25KH/HAtzzIzP2OzpxjBwJIRFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsxOxQohWeg4zu/3e512HOcbAIqiPFukfcx6ruYg1Z86jXx3EkVXcDUGMKr9NANrHtvBb97opj7soTLo5jtPtbO0PsQVS2twaTOv+NuK5Uk8tq+YKdceJflKL2X1fhRNPcyaQhycHvFQ/u6FmANpookc93QOsyJVwP9kNzaQemOA0FWtYDvolV5cTQGCvbFJ2/C5NM6ZUw5APFPg7+7fSPtAiiX1oSn7+9nLe3jbynpc+uTzb3FdiMV1U5cX4nD0iJvK9y0h353AThYw6vwYDYGj2objOGQ2DY+FWQFOwSb5VBfutjBUFKe4sjua5asPbaWp3EvE6+LfH9uO361zVlsFtSEp4CyFuVV+Pnv5fL583yb+6vrF/HZNN//8cD/2eD1cpmChaypeY9+1Sg+5Kb9tIfnuJHYsPxZKcpTjTYgDZRMmuT904PRnALCTBWL37CD0wcXoJby3czeHqPrUSgrdSVDH769r/CXrj5h98nsSxB7smHid3TiEXuGm6o9X4uQtjCofWtg9aZ2eaJb71/UA8H+f2sE/XDSPpYpGpdsgU+7mc09s469uXMIHzm09mYcixCSKrhI4vx53SwhzKINW5sbVGETzGiXtV9jr4uqltVy9tJbXdo/wxNYBFtUF+e+n2yct1x/PsWs4xXlzK6n+7CryXQlG79428X5m3SB6pZfwlS0n+xBEkXgXllP1Ryso9KZQfQaupiB6uYfzU5WYlsN3n9nFxy5oY2tvnLw1FkZ2zxvdeA2NhbUBbj29kcbyIwsgATCqfFR+dBnWSIaRu7dhjeYAsON5hu7cTM1nV2FUH/n2xMzn2Pa+nx1HQmiEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBCzRrFCSDwHvL58v59lqvEjpCgKrobAQQuBI34XAD2xLD2xLADVITe6MjMDO8z+9JS2zIYhQle0oB9QpCfEkdJ8BlprmGrH4apaH6GtUbLj75n9aeIP70bx6tR87nT0iJuLAgY//dhZ/H59L5UBN1cvrWFJfRiAjqEUj24eoDLgosznmrKvhogXTZ2Z55+YnvRyD3r5gR+nR85OF8isG5zSnu+M411YfjxdmxDxjRWd7h3JsJexoIHKgIveWIalDeGi7EMcHZeucdvqJk5vKSObt/i3R3dMBJC8qWDaU9bTIx70yLGPNyEO5M6a5MYDSCbYYCQKpenQflz1AVz1ErQjToz8nviUtsy6IYIXNqIFpt5DAnh0lZDXIJoukDNt/vKJ7SgKfOGqBZwd8POt955OW6WE5YjS03wG2oIyWFBW6q4c1BktZVQF3byxZxRFAeeAe6A3Q9iMSi+pV/umrJ9eO0Dw/HpUX2mDVcSxUQwVd2sYd+vk55Cz2yoo97tZ3hBmXXcMv2tycGimYLFnJIOuHX1ghB50YUVzEwEkE0wbcyQjISSnmv0vOrYNMzAkWgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIQ6mWBX0CUVRFrz5wnGcEQBFURYBycOtqCjKDxVFGVAUZeMh3r9EUZSYoihrx//9bZH6PKMsqg0S3m/GYbeucuXiWlR1Zs6yqYWmFuTpNT5Uj/zBvjh+iqIwpyqAv8IDB5wiepUXZXyceV06F8yv4mu3ruDzVy9keWNkYjl7vJhkKJmnJuSZcv599Pw2tBl6/onZSXVrGHVTi+z1Sm/R9rGkLkTzfrOFKwq868xm+uK5w6wlTjS3obG0PswZreV84qK2Se+d3hwhd5AQEiGKTffqqL6p+YaqXwq7xeymV0wtODfq/CjuQz/X1EW8/NmVC1CUsftKGPuM7Y3lqI14JYBEiCOkKAotFX6GknnecXrjpPduXFk36VwyqqbeExv1ARSXfAcx26iqwsLaINevrMfn0hhI5FhSF5q0zF9dt5ja8LE9J6leDcU19evUQwVPiVls/+AjW565hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQs8fUSsFj82Xg94qi/COwZrztDOBLwOfeYt0fA98G7jzMMs86jnPD8XZyunMsm3x3kkJ3EsWj42oKYFSOFbU1Rnx85PxWLNvBdsZm9G0s85S4x8fOaAzinhchtzMKjM1gG7m2DdVdrCEpTlUF08bOmzi9aczhLOHr2jCHMqRe7psYZ5rnrcdZW6Wf1S1lvNY5yn8/tZOPXzgHXVOo8LtY2RSZUsQkxOGYsRyFrgRmNIdR7cNoDKJ5i3u9U3SN4GVN5HZFcbIWMH6tPWBm8OMxvybI3924hPXdMXIFm6BH5541XfzLO1cUbR/i2GUKFme1lfP5qxaSyBbwuXX6YhkW1QUnlrESefJ7E5ijWfQqL67GIJpPQiLE8QtU+8ld04p9z86Jgkzl9Cqcyul1v5rvS1HYmwDAaAjgqp8a3iTE0XC3hTCaghPjSnFrBC9rRjUOH2xwTUs5l918GkqiQKHMzbPJNKOmRU3QTbZg4XmL9YU4kRzHodCTJN+VRNFVXE1BjOqpgTul5jgOmYLFaU0RXt41zOevWkg8WyDo0VnVFCHi2xcK4Z4TxmjwU+hOAaB4dUIXN6LoxcrmFSeTGc2R70pgxXIYtT5cDUFUj06mYOHS1InA0IsWVPHO777I+89p4eqlNaTzFquaI1yysOqY961XeIncNI/RX2+fuOcJXtqEfpCgGzHLOfuCRxzHOTADVwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIWasolRAO47zB0VR3g78BfDZ8eaNwNsdx9n4Fus+oyhKazH6MdNld0YZ/vGmiSIGrcxN5ceWYVT6qI+4aanwc8+aLlRF4X3nNLOyqay0HT4OesRN5Lb5mONBEapHQw3KrLHi2FjpAmY8T2++wPdf28PtoRD6Y3sn3ne1hqj4+DL0oAuj5shmlo/4XPzrO1dy/7oeHt86gKLA9cvrmFN1ZMXKju2Q705i9qdQXBquxgB6uRQlnYqsVIHRe3aS2zoy0Ra+tpXAhY0oanHLlFz1ASo+tIRCbxrVUDEaA+jlxQ0AKA+4CHp0Xt7VT0XAzd+9bSlL64sXdCKO3u6hFPe80c1jW/p528o6FtQE+OVre3Ec+PD5rZzePHa/YGVNYg91kF4zMLFu4JJGwpe3oBhSgCuOj6GpaAsj+D+8FGcoA4ZKqtJNzLGpKXXnxuW7Egx+bwNOfiyoSTFUqj6xAldT8C3WFOLQ9DIPFR9YjNmXxi5YGDU+tKCL7I5RzKEMasiFqymIHnJPrGMl8igPdcKOKA5jD+VXX93CyOJK/vp3G9nQHePtpzdy7bJa6iNy/yhOvvyeBIPfWw/W2JcTqk+n8hPLcdVOn+Cm9oEkv3p9L89sH+KWVfW8/5wWfv7KHnIFi/ef08qq8fufwkCK/N4kju0QuWkeTs7CzlsYNX6MSjm/ZiIrkWf019snQm0BAte38bDb4s6X9rC8IcwHzm1haX2YlY0R7rr9bH78/G529Cf48PmtnDenAo9x+K9DzWgOJ2+hBl2YwxnM3hSKe99zvW9FFUaND3M0ixYa+55BQnVPQY6z72fbPvRyQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIMcMU7S/kx8NGPlis7R3gXEVR1gE9wOcdx9l0gvZTMlamQOwPHRMBJADWaI78ngS5gMGX79vMxp4Y7zi9kVimwD89sJm7PnEuteGZWTRjJfPkd8UZ/eV2sMcOWitzU/nR5Rgye6w4Crm9CUZ/sx2zL41R5uYzN7Rh/3LH/qcS+d1xFBuMGj+pnIlLUzGOYMbr1ko/f3L5fD55yRxc2tHNRp9rjzL0o40wXoeiVXqo/MgyjAoZ36eaQn9qUgAJQOzRTjxLKjCqijujfK49ytCPN00UjGphFxUfWVq0gtHt/XH+9eFtvN45ymnNZXQMpdjQHePsORVF2b44erFMgS/+dj0v7hphZWOYNXuiPL5lgO+873TK/O6JWeABzIH0pAASgOTTXfhOq5pWRcVi5gr0Zhi+c/PEvZ1a5mbPBdUE3Ma0CFJIrx2cCCABcAo2qdf6JIREHDc95J4IGXEch+Rz3cQe6Jh437O4nLJ3LEDzG8D4vcGO6KRtFJ7Yy3bF5O5Xx4L0NvVspnM4xd9cv+SI7luFKBbHskk80zVxPwlgp02yW0enzf3CUDLHZ+5aw5beBAA7BhK876xmvnrLMkJeF7o2ds7ku5MM/WADdtoEQHGpVHxoKb6llSXruzh+hb7UpAASgNSjnWTPqWRTTxzHge8/u4s/v3IhTeU+zmqrYHVLObbjTIyNQ3EKFulNw8Tua8fOWURumkv0dzv3e673UvWRpegVXlyNQVyNcg9xKnP2DyHZ/2chhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSY4U5YNZOiKN8r0qbWAC2O46wE/hP43WH2+QlFUV5TFOW1wcHBIu3+5HBMGztRmNJuZy06h9NUhzzcvKqBJ7cN0hfP8f5zW+kcTpWgp8WR70mSer5nokgVxkNXOmMl7FXpzOSxW0pWPMfIT7dg9qUBcEZz+HrTODlryrL5TIE7X9jNrf/9Ap+56w3WdI4e8X6ONoBkLFRo90ShEoA1lCW/N3FU25kpZPwe3sHGI6aDYxZ3pmQrbxJ/Yu+kglErlie38/ivqyOpHL96bS9/+ot1WA58/uqF7B1Js6knznefbmcgkT3ufZTCbBi7ncMpNvXE+evrF1MVdNMxlGJZQ5hdQ6lJASTApPCFfY3g5GXW7plmOo5dK5kn8fieSfd29miO0xydnQPT4/PPHJl6rTJHZ+b1ayabjuO3mAo9SeKPdE5qy24ZodC17zxwclOvu07BpiHg5pMXzZlo+/nLe+iOZk5cZ8VRme1j902O7WBFc1Pa7djUtlLZNZicCCBZUhfi81ctZENPnI/e8RqPbu4nmR0LHUmvH5wIIIGxe57UK31YOfOg253NZtP4tQ9yT+vkbSIujS9eu4iWCh+buuP84tU97B0Z+65AVZW3DCAByPekGL17G3baxLu4nNSLvQc812dm7XO9OAb73fdiyzOVEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBi9jiRUyqvLsZGHMeJO46THP/5QcBQFOWg09Y6jvM9x3FWO46zuqqqqhi7P2m0gAv/OXWTGxVwNQRw6SqKAv/7bAfb+hM8uW2AbzyyfdLfus80hf40ViI/pd2KT207FczksVtKZjSHdUAxXH53HNfCskltiqGyV7H52/s2sbUvwcOb+njP919iS2/8xHSs4EzpF4Cdnho0NBvI+D08vcqH4pkcZONqC6NF3EXdj5MqHHTcHaztaP1hYx9f+PV6NvXEebF9mH96cCvvP7sFALeuoSnKW2xhepoNY1dTFT58fivfemwHj20ZYHt/kh8+v5v71vVQsCYXwukVXtSAMbmt1ode7jmZXRZFMB3Hrp0sHPQ+Tk+buPSjC/M6UXxnVE9p859ZW4KenNqm4/gtJjtt4hSmFiJb+wUh6NVeFNfk88KZE+J/N3SzsSfGJQvG/r/omoI6Mz9iZ6XZPnbfpBoagXPrprR7llSUoDcHp6v7vsq66bR6vvrQVl7vHGXt3hif+tkaXtg1BIB1kPApK5rDTs3O57LDmU3j16jyobgO+DpzbhgzYPC9Z3bx0MY+dgwk+faT7fzzH7aSOVgQ3yGYQ/uCn1S/cdB7m/2DbcQpznH2+3EGf0krhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQBziRISQDxdiIoii1ijJW3awoylmM9Xm4GNueThRFwX9mLaErm1EDBnqtj4oPL50IIfndG92Tlk/nLXpjM3fmdkVXD1rE5GoNlaA3YqZSvTroky9juZ1RMqurMVdWovp0XG0hwh9ewh89tHnycqZ9wkJI1KCB/6ypRc2u+sAJ2Z+Y3oxKL5UfW457XgTFq+NbXUPZLfPQvMZbr3wU1IAL7/KpGV2upuBxbTeazvM/z+ya1GbZDoPJHAG3zuevWkBFoLiBKuLItVX6CXsNErnJxZB3v7KXnmhmUpte5qHyI8vwLCpH8ep4T6ui/D2L0AKuk9llMUs5Xg3P0vKp7bU+FtRMj88/95wwZe+Yj1bmRou4ibx9Hu65kVJ3S8wyasCY8tmruFT0in2BT0aVj8qPL0NvC6H6dMwVFbw8x89D2wZ5fucwK5rCAHzm0nk0lvlOav+FAPAsKid84xzUkAu9wkP5exbhaj6+e8pimlvt59KFVcytCrC+Kzbl/Tue341p2XiWTP1ccs+PoOon8qswcaIZ1T4qP7YcV1sY1afjO6uW6Lk1dCayDKcmh4b8fkMve0fTR7zt/QP7sjuieJdO/d7KqPcfe+fFLLNf8Ig9NYBMCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghZir9BG77OkVRQo7jHLbKX1GUu4BLgEpFUbqALwMGgOM43wXeAXxKURQTyADvdmbp9JJ62E3wsmb8Z9ahGOpYwALg0lU8hkbOnPwH7V7X9JhV/lh45kZIjWTxn11Leu0gqk8ndFXrcRfLi1OLXuElcuMcovfsnGjTzq/j8ZEEq86vZeE1rRheg6G8SdacWhDi0k5M8dmboUKOZZN6qQ81YBC5rg1Xg4zvU5W7KUjFB5fgZExUv4FyAgofVUPDu7QcJ2eRXjuA6tEJnFeP0XB8RXKaquA/yOdNxGfw3+9fxarmqcWd4uTxuXTqw94p7W5dRVOVKe2uhgDl7110QseiODXpQTfWnDB+0yG9buzezndBA+vMAhf5p0dQkeY18K+uxbNorKBYCxQ3DEoIAL3SS+DiRtKv95PdEcWo8RG8tGnKfaC7OcToNc08/EYPj+8ZZsP6scdmTVVoLvPxPx84gzNby1APci0X4kTTAi6C5zfgW1EFqoLmn17Xy7DXxVduXsYbe6O8sHNqRm3Ya6AqCq62MKGrW0i+0AM2+E6vxtUSQgtNj88lcezcLSEqP7wUJ2uOBYdkC8wzzSnL6aqCfhTXUaM+gHtxObktI1gjWdAVAhfUk3q1X57rxVSOhJAIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFmp6KGkCiK8nPgjwALeB0IK4ryTcdx/uVQ6ziO857DbdNxnG8D3y5mP6czRVHQQq5JbXVhL39x9UL+6ncbJ9oaIx6W1IVOdveKxqj2ETivnsJQGu/KKrSAC6NaZvkWR0dRFXynV2PUB7BGs2ghF0atnw95Jl/aqj06f3n1Qj7/6/UTbTUhN0sbTtw5pJd5CF/dRuDcBhRDQfO73nolMaupLg1OcHiUuzmM4jPwLqsETcEo96CFj6/IMugx+NMrF3L7na9NtIW8OlctqWFh7cz9HJpNljeGaav00zGUmmj7sysX0Fh28M/VkzEWxalHVRW6ghrxWjfz5s4l7Th8b1s/N53XUuquTSHhI+JEUg0Nz7wIWsRF4Px6FK+OUeVD0aYWwVeV+3iuN8qGnn25nR89v5W3nVaPS5frtCg9LTh9n2Eaynw0lPloLPPxmzVdE6GtmqrwofNaUVUFNeJBPasO15wITsFC88v3DrOJ6tbAPXatLPe7OWdOBcsaQmzs3ndN/aOL59JcfuS/cz3oovzW+RR6U9hZE73Si17lI3BBozzXiymc/YJHZmlethBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ4hRV1BASYInjOHFFUd4HPAj8JWNhJIcMIRFH5m0r62ko8/LM9iFaKrxcMK+Klgp/qbt1XPQyD3qZp9TdEDOcami4m4LQdPjZiK9ZXkd1yM3T24doLPNy4fxK2ioDJ7RviqqgR2SWbXFyuSp9UFnc4soL51dy1+1n89S2Qcr9Li5aUCUBJNNIY5mPH3xoNc+3D9ExmOL8eZWsbikvdbfEKWhZY4R1KNy1bQBDU7nl/BaWN4RL3S0hTjrVo+NufOvPycqgm39712m82D7Cpt4YZ7dVcFZruQSQCHEUVjaG+dUfnctT2wYpWDaXLKxmZeO+zx7Nb6D5JXzqVFAd8vBf7z2dF9uH2dqX4Nw55axuK0fX1KPajhZwoc2fHDaiynO9OJj9c0ckhEQIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCDGLFDuExFAUxQBuBr7tOE5BUabO+CyOXtBrcMnCai5ZWF3qrggxIwXcOhctqOaiBXIOCXG0PIbGuXMrOXduZam7Ig5hTlWAOVUnNlhJiLeiaypntJRxRktZqbsixIzRVO6nqdwPNJW6K0LMSIqisKIxworGSKm7IqaBlgr/jA/sFTPI/sEjtl26fgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIUSRHd10oG/tf4DdgB94RlGUFiBW5H2csnKmRfdommg6X+quFIVjORSGM5jDGRxbZgwVR8exx8ZP4QjGz3AyR/domoIlRSFi9rOSeQoDaex04YTtQ86p6ak3lqE3lil1N8Qpzs5ZxLsTxAZTpe6KECVlxXMUBtPYOeuIlh9J5ekeTZMzj2x5IcQ+8UyBrtE0qbx50PetxNj9sZU5cffHYnpwHIfeWIa+WPao1jMTORkj4ug5NsNB+MWFKpZ18OuPEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCzER6kbd3v+M4//HmC0VR9gAfLfI+Tkntg0n+/dHtPLixj7ZKH3934zLOm1uBqiql7toxMeM5ki/0kHy2GxQIXtxE4Jw6tKCr1F0TM4CVyJN8sYfEM13gQODCBgLn1aOH3JOWyxUsnto2yD/8fjODiRzvOrORT1w0l6ZyX4l6LsSJleuIMfqb7ZhDWfRaP2W3zsfdFCze9gsWT24b4B/u38xQMi/n1DQxksrxm9e7+c8ndoACn71sPm8/vYFyv/utVxaiiFI9CeIPdGC1x1ADBpmrW/AsLicSkLEoTh2OaZPZOkL0dzuxkwXc8yNEbpyLUX3wz0rLdnh+5xB/f/8mOofT3Liijs9eMZ+2ysBJ7rkQM9OazlH+/veb2NAV44L5lXzx2sUsrgsBY4EUuZ1RRn+7A2s0h9EUoOzm+bga5PyajYaSOX752l7++8l2NE3hT69YwM2nNRD2GYdcx7HHx8hvdmDFchjNQcpumYerTsaIOAKOw3evU1k3R+Wm6HZW1dSWukdCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQghRFGqRt/eb/V84juMAdxd5H7OaYzuY0RxWIj/Rls6bfOX3m7l/fS+W7bBzIMVHfvwK2/oTJezp8cltHyX5VBdYDpgOicf3kG2PlrpbYobI7oiSeGIvmA5YDsmnushtH52y3MaeOH/2y7VcM7eCz5/XymsdI/zo+Q4s2ylBr8WpzsoUMEez2AXrhGzfHM4wdMcmzKGxWb/NvhTDP9mMGcsVbR8be2L80U/X0BPLkrdsfvLSHn78gpxTpfb8zmH+8cEtxLMm8YzJVx7YwvM7hw+5vJU1x8Zi/sSMRXFqsvMWiYd2Y7XHxl4nC5i/3Ulq7/S5X5WxL06GQl+KkZ9twU4WAMjtiBJ7sOOQ465vMEl7+whtES+W43DP2h6+/tA2MnnzZHZbiEOy4jmsePHuJ4upczjFh3/8Cuv2xrAdeGb7EJ/5+RqGk2P9NQczDN2xGWt07HVhb5KRu7dijZ+fYmaycwf/PH9q2wD//IdtJHIm0XSBL9+3iZc6Dn1PDGAOphm6YxPW+DNTYU+CkV9ux07LGBFvzXEcYr6xcOiCnX+LpYUQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEGLm0IuxEUVRFgFLgbCiKG/f760Q4CnGPk4FhaE0qVf7SL3Uh+rRCF3Vgnd5JX2xLE9uG5y8rOXQPpicmOF3pkmvGZjSllk3iP+06hL0Rsw06fWDU9oyW4fRq32k1wxgpwv4z6ihYBX4xeWLKX+5HyeR5MrlNTytKQwmctSG5dIkTp7szlFiD3VQ6EvjXlBG6PJm3I3Bou7DHMniZCcX4tnxPNZoDj3sLso+tvZNDRP41Wtd3H7hXDmnSsRxHH7zeteU9t+u6ebGlfVT2nMdUWJ/6CTflcA9J0zoyhbczTPzXkJML1Y8j7kjOrnRgcxAChZXlqRP+8vtiRP9/S4K3Uk88yP4VteQWjOAf2U17nlhNL+r1F0Us0RhMAMHZHNlt45gxfOolV4AzFiO3HgAo/FyL1d2JbmyJcj7rlvKJ/+whYc399EfX0RrZVEe14U4Ko5pk+uMk+tKQM4i9VIvKAqhK5vxrqhC8xml7uKEzuE08czkwJ72wRRdoxkqAm7MkSyY9qT3zcEMVjSLFpg+xyGOjJXMk+9Oknh8D/nuJO45YcLXtUGVFxz4xat7p6zz4IZerl5ae8htmkOZsXDc/dt6U5ixHK5pNNbFNOWANn6JyRTSpe2LEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCFFGxqpoWAjcAEeDG/doTwO1F2sesl35jkOTT3QBYOYvRX+1A9Rt4a31EfAbRA2ZiDXtmbkGE0Rggtys2ua0hUKLeiJnG1eAnt3VkctuSSgb/Z/1EAVFm/RDLPrCY6B/2YI/XFBlrBrlsdTU+Qz3ZXRansHx3kuE7t+CMz9Sd2zJCNJGn8iNL0PzFCQcBUH0GKEwufNYUVK9WtH2UeacW6TdEvHjlnCqJnQMJHt3cT01o6jiaXzP1M7XQn2L4J1uw02PFurkdUUZHc1R+bBl6mYTIiOOjujW0sAsrNnkWeMVb+vvVwnCGoR9twhkvVM9uHcUcyeFqDDBy11ZC17QSvLgRRVFK3FMxG2j+qY/YWtiN4h77rHRMm8RTe1E0lfTaAezk+DPerjgLozk+fkYTv9zcy2g6T5PtQ1NlXIqTK9cZZ/iOTQQubCTxxL5Qh+jv2lEDLnzLSh8sBTCQyJLMFaa0G5qC3z12Hqreqeej4lJRPBLwM9M4jkOuI0b0d+3YqbHfe25HlOGfbuGRVRF2pbK0Vfp5dffopPXmVPoPu13VP/U+RfFoqG4ZI+IIOA76eA5oxsyWti9CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQghRREWpGnYc517g48A3HMf5yH7/Pus4zgvF2MdsZ45kSK8dmNKe64jjc2l86uK5k9rPbiunudx3srpXdL5VNaj7zTyshlz4lk+PYiYx/fmWV6GG9oUh6FVecgPpyTMYK2D1pqbMRK9tHMZXOKBRiBOoMJCeCCCZaOtKUujPFHU/erWX4GXNk9rC17ahVxbvs6KhzMv86n3hFpqq8KlL5hL2TQ0nESfWQCLLH/9sDV//wzbaKgOE9wt6CHsNbjqtfso6hYHMRADJm8yhDIXB4o5FcWrSgi6818+Z9HRhzY/Q51HoHi3tGDOHMxMBJBNtA2m0yFiAT+KJPVixXCm6JmYhoy6Ad1nFvgYVIrfMRQ+OjTdzJEvq5V4Ul7ovgGScPZJjZcDDR85v4/Y7XmNDd/Qk9lyIMamXejEaglNCQwEy6wZL0KOpHMfh7lf28vOX93L98rpJ7/35VQtprRi7/zVqfPjPm3xPFH7bXPQKCV+baaxojkJfaiKAZKJ9OEuNrXDHi3uYXx0kuF94SLnfxdXLag+7Xb3Gh/+syctEbpqHXi5jRBwBx8YY/x4qa8kzlRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQYvYo2tSejuNYiqJcCfxTsbZ5StEUtJALa3jyzJlawGDnUIp71/bwhasXkilYuDSVPSNpBhI5Wt5iVtfpylXnp+pTKzH70gAYtT70Cm+JeyVmCqPWT/UnVxDfm2DXUJJdis3piQKTyoQcUPSpOUta2I1qaCetr0KorqnjUDFUFKMoOWD79mNoBC9swDMvghXPoUU8GHU+FE0p2j629Sc4b14lN6ysx7Jt3LrG/z67i3PmVFAdkkK9k2nXYIrt/UkA/vOJHXzswjZURaEh4uX05jLm7hcW86aDjUVUij4WxalrtNZD7rb5+NImlktlJzaf+/U6vvO+02koK919nuo+yCPP/tdGhymhZUIcKy3oInLzPPxn12FnTPQKL0btAc9sDijqQT6fFWiuDfJvT2xjKJXnpV0jnNZUdnI6LsSbHAc7mceon3ovoVdOj2f2vliW/3m6nVTe4uqlNXz+qoVkTYsldSEuml+Fro3d26gendAVzXiXVmAn82hlHow6P4pSvPtjcfIo2sHvZTPjv87/fGIH37htJdmCjarAkvoQc6qmjuP9aV6D0DWteFdWYSfzY9fsmpn5PZsoAcdBH88bzZjZwy8rhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQM0jRQkjGvaAoyreBXwCpNxsdx1lT5P3MOnrYQ+C8ekb2JGB8Fk0t7MbVGkZTLDb3xtncG5+0znvPbi5FV4tGURXQFBRNkQJocUTsvIXZn8KK59EibqK1bt5x96sA3HHNEuZqysT5A2A0BNBrfRNhNygQvq4N1VfsS58Qh6bX+PEsLCO7bXSiLXhxI3q1r+j7Uj06asiFnTVxChZOzgZX8bavqwp3vLB7UltDxIt2sEJqcULt//88lbf4j8d3AvDAZy84aAAJgF7tw7uyisy6wYm2wHn16DXFH4vi1OQoChsHEzQ6KjlV4dG+KOm8ha6W9j5Pr/HhW11N+rWBibbAOXVkNg4DELy0ES3iLlX3xCykunVUn46Tt8B2cGwbRRsLwdPLPfjOqiW3Kzblmpw7q4b/+9R2tvYlAHAfJFBPiBPNf04dQ/+7Ef/qWrJbR3ByYxX2ilfHu6KyxL0bo6oKLl0llbd4eFM/D2/qB+Db711FwHPAs5499nyoGBqqV5dAyhlKC7tR/QbeFVVk1u+7bhoXNPCDzV0AxLMmA/Ec7z+35S23ZxcszP40ViyHFnbjbg6iyNgQR8lxHNTxr6AKdr60nRFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQogiKnYl/nnj//2H/doc4LIi72dWcs0JU/GBxRT60iguFVdjEHdTkLZsgWuX1fLQxr6JZS9bWM3ct5jRdTrL9yYZ+tEm7PjYH+nrdX4q3rcYY5rMrCymH6dgk3q5l9gDHWMNClS9fT5/dFEb332mgy++uItvXjufpj0pXAWLwNl1uJuDVH5oKfnuJE7OQq/24TrIjN5CnEhGpZfQNa14llViJ8Zn1270o7mLH4aT70oy9MMN2GkTAFdriPJ3LUQv8xRl+ysaw5T5DEbThYm2P79qARUBKd4/2eZVBzh/XgXP7xyeaLtlVQOtlYeeuV0v8xC8tAnPgghWLI9W5sHVGED3GSejy+IUUJ80cT87gJO3Afjj+WHmXjyXBTWl/ezVPDrha9rwLq/CjudRAwbmcAYtZBC8ZAGeBWUoioQpieJwbIfU2gGiv90x9iQMhG+YQ+DsOhRDRdFVQpc1k906gjmSJfKO+WDapPw6//jKbtb1jAVP+l0aZ7dVlPBIxKnK3RKm8uPLSL8xQPiGOeCA6lIx6gMYJyBE71jUhDx8/uqF/NU9GyfaqgJultaFJi1nxnKM3rOD3NaxMEDFrVH5sWW4mycvJ6Y/RVXwLqlACxq4WoJg2jgVHv761d1s7B0Lbgq6dVa3lr3lthzTJvVaP7F72yfaIjfPxX9mHYom9wPiKDgOypshJFbh8MsKIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEDFLUCmjHcS4t5vZONbrfhb6oAu+iycVmQY/B39ywhMsWVfNKxwirW8u5YF4FYe/MLBp2bIfUy30TASQAZm+K3I5RCSERh1QYTBN7sGNfgwOxe9v59KdWsLA2xAvtw+wyHFqvb6EqvK84TnXrRQtgEOJYueoCuOpObBG+Y9rEn94zEUACkN8dJ7c7XrRzYF51kLtuP4fHtw7QPZrhqqU1rG4pL8q2xdEp87n42q0reG7HEGs6Rzl3bgXnzq3A7zr8rZ2r1o+r9tBBJUIcKytTIPZAx0QACYC+I8a7z15MOFT6z2Et4MK7cPL1KnhBY4l6I2YzcyhD9N6dEwEkALEHduGeG564F9DDbgJn101aTy+YvN+rUlnhpSLg5orFNSypl6AEcfIphopnXhmeeW8d5lBKN66ooybk4bHN/bRW+rlsYTVtBwS1FroSEwEkAE7OIv7wbio+uBTVrZ3sLovjpAVdeJdUTrzO5E1uc0O4zENlwM0VS2pYVPfW183CUIbY/bsmtUXv34WrLYyrRu6TxVFw2BdCYksIiRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQYvYoagiJoihh4MvAReNNTwP/4DhOrJj7ORXVR7y8c3UT71zdVOquHDfHssnviU9pz3cnS9AbMVPYqcKkYk4ATBtXweGW0xu55XQpJBanNjtnUuiaeh01B9NF3c+iutARFfeJE6+pzMd7zmrmPWc1l7orQuBkLQq9qSntesY8yNJCzF52ugDmATetDtjJwxcnewyd8+dVcv68ysMuJ4QYE/K6uGJxDVcsrjnkMmYsN6Ut35PCyZkgISQzntelc8H8Ki6YX3VU69mpAtgHXKctBzsl9yziKDn7xpGEkAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIWYTtcjb+yGQAG4b/xcHflTkfZyycgWLrb1xXmwfomu0uEXlJ5NqaHhXTC0S8SyY3jMtixPLjGYpDKSxc9ZB39cibhRj8iVLDRhoEdfJ6N4x6Y9nebljmA1dMVJ5KWgSJ5ZjO3iWVkxpdzUHi7qfdN5kY3eMlzuG6YtnirptcexSWZN1XVFe6RhmMJEtdXfEKUgNGHgWT70GqRWeEvRGiNLRwm5UvzGpTXFpqH5j7F43e2T3hCOpPK/vHuGNPaPEMvkT0VUhZqy+eGbsOas7Rjp38HPKTpvoZVM/g7xLK1B9xkHWELOdFc9R6E+jBgyUA0JoFK+OHnGxZzjFi+1DbO2LUzDtEvVUzBiOjaOM/Wja8p2PEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBi9tCLvL25juPcut/rv1cUZW2R93FKGk7m+NnLe/j3x7ZjOxDxGfzvB1ezurW81F07Ju55ETxLKshuGQZFwX9OHa6WUKm7JUrAKVikNw4Tu78dO23inh8hcuNcjGrfpOX0Si8VH1jCyK+2YScKaBE3+k1zeK4/zjzHprHMd4g9lMaW3ji33/kaXaNjIQ3vO7uZP71iAZVBd4l7JmYbx3LIbhth9Lc78K+uxT0vQm5nFDSF0GVNuJqLd20dSeX4z8d38qMXdgPQEPbwtXesIOJzsbAmgEuXGeVLoT+e5WsPbeGeN3oAmFPp47sfOIMFNfK5Kk4e1dAIXtqIHc+R35NAMVT8lzTSni+wwLTk+iBOGXqZh4r3L2bk7m1YsRxq0EXkbXMYuXsb5kAa15wwZTfNxajxT1l3KJFja18cUPjXR7aydm8MgIsXVPGVW5bRNM3ud4Uohc09MW6/8zW6o2Oha+85q4n3ntXCgpoAbmPssybfnWT0NztQvRqBixpJvdiDU7Bxzw0TvKgRRS92Hq84mRzHYXt/kl1DSUIeg0W1QSoCh37O3v95yU4WcC2IUP6ehUR/uxMrnkcLuSh710LWxjJ89M5XiWdMNFXhr65bzHvPbsJjFPurUzFbOI6DPX45KUgIiRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQYhYp9l/SZxRFucBxnOcAFEU5H8gUeR+nnGzB4rmdQ3zz0e0TbdF0gb/8zXp++clzD1tsMR3ZeYv4o51QsAle1gyOQ3bLCNaqavTwzDoWcfzyPSlGf7Ft4nVuR5TYo52U37YA1dhXsKwoCp4FZVR/ehXxkTS/2trPt+56jXTeoi7s4ccfOZOFtdOj4D5XsPiPx3dMBJAA/OzlPVy+uJrLFtWUsGdiNir0pxj+yWZwIPHUXtwLygjfOAf33AhGtQ9FVYq2r/VdsYkAEoDuWJbvPNWOAty2uombVzUUbV/iyL28a3gigARg11Ca7z69i6/fugJDkyJbcfJk2qOoQRfBy5rAcki/1o9JFZt9Oqc1l5W6e0KcNO62MNWfPg0rmQfLYfCHG3AyFgD5XTGiD+yi4v1LUF377nX7Ylm+8Ot1bO9PcOWS2okAEoCntw/y9LZB3n9Oy0k/FiGmk0ze4puPbp8IIAG465W9NER87BhIcMuqBux0gZFfbMUcGHsWs6I5AufX415YjlHnR/NIoMRM99KuYT78o1fJmTYAly+q5p/evpyakOegyxf6Uwz/dDOMLU5+e5SEZVP5yRU4OQstYDCCw2f/63nimbEgCct2+Iffb+aMljJWNkVOxmGJmchxsCZCSAql7YsQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIUUbErUz8F/JeiKLsVRekEvg18ssj7OOXsHEiyYyA5pb19MMVIKl+CHh0fK54nt22U/N4E+b0Jcu0xCn0pzKF0qbsmSuBgv/fsxiHs5OQCDse0cEwbPeLmzl2DfPWZdtL5sWLO3liW+9b1TNlOqUQzBV7cNTylfddgqgS9EbOdOZQBZ9/rfEeM7LZRFF0pagAJwN6Rqefr+r1RFtYG+ZvfbWTPsFzHS2FjT3xK20vtw4zOwHsEMXPZBYvcuiFyO6MUupPkdsWwRnOU9aYZSspYFKceLeRCr/JiJnITASRvym2PYsUnnxfru6I8u2OIedUBNnXHONCL7VPvLYU41UQzeV7aNTKlPZEt8Pf3bWLPSBormp8IIAEwR7LkOhPgOBJAMgtE03n+/v7NEwEkAI9vHWBTz9Tr5pvM4QzYYNT68CwqR/Ub5NvjYNq46gNoITdDqTw9seyUdXuikqssDsMBa/yRW0JIhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQs0lRKzAcx1kLrFQUJTT+empVrDhqo+k8bn1qXszcKj8VAVcJenR8VI+G76xajFofmTcGUbw6kVvno4Vm3rGI46f6jYmfFa9O4Nw6FEPFHMygGCpoKrmdoySf60b16AQubGTgIMVBb+yJnsReH17EZ3De3Aoe3NA3qX1Olb9EPRKz2f7nkGdJBe65YTJrB4n+voPgBfW450SKFkbSXO6b0rayKcLWvgSJnEk8K4VXpXCw38uq5ghasaPmhDgMRVPxnFGNatqk1w2hhV2U3baAnqEUhlbcQCQhpjtzNEt6/SCZdYMYDQHK378YcyCNnSqQfLEXLehCcU++SA8kcgDs6E9y1dJa3tgbnfT+eXMrTlb3hZi2ynwuzptTwSNb+ie1Bz0GsaxJLFOgwedGcWtoETf+s2tRvTrp1weIP7wb+4IGPPPLUCWMZMZK5kx2HiSk93CBZ2rYTfn7F5PZOIQ5kMa3qgpQUNz7xkFFwEVDxEv3AaEjDRFv0fouZiHHwRq/z83mJJBTCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggxexS1PFVRlApFUf4DeAp4UlGUbymKcthqKUVRfqgoyoCiKBsP8b6iKMp/KIqyU1GU9YqinF7MPs8EjWVeXmof5mMXtKGNF5KX+1185eZllPvdJe7d0dMCLlwNAWL37SK/N0Fu+yjR3+4ApED1VGTUB3AvKgcFQlc0k3y+h/jDnQz9cCPRx/eQ3TbCyM+2ku9MkN02ytAPNvDHC2qnbOdtK+tL0PuDc+san718Pi0V+4IBPnRuCysbI6XrlJi1jDo/vjOqUdwa7rlhYvePX1u3jjD0w43kdh96VvCjtaIxwscuaEUZv1w3lnm5bFE1L7YPM7fKT33YU7R9iSM3t8rPNctqJ72+bkX9jLxHEDOXoiooeZvYg7spdCfJbh5h9Lc7qGmNUO6XoDlx6rALFvHHOok/tJtCT4r0q/1Ef7cTO2uR2TxM6PJmIm+fhx6cfI2eVz0WVjeQyBHy6KxsDE+8d+nCai5eUHVSj0OI6chjaPzpVQtoKhsLhlAUuGVVAxu6o7RU+KgPe9HLvUTeMR/vskowHUZ/uZ3czij5zgQjP9tKdke0tAchjktV0M3VS6d+HzCn8uCBn+ZIhnxnnOhvd5BZO0ihJ0XyuR7snIkW2BfmWB308I3bVhL2jrXpqsLfv20J82sDJ+ZAxOzg2Fjj36wP93eXti9CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQghRRMWe/vVu4Bng1vHX7wN+AVxxmHV+DHwbuPMQ718LzB//dzbw3+P/nXWcgk2+N4k5mEH16RgNAfSQm4aIjw+c28JPX+rkM5fOw6UrrG4t5+y2mTkbtpnIkXyhZ3KjDbn2KJ65kZL0SZx8dt4i35Wk0JskcG4dwYsaiD/aiZOzUAyV0BUt2KZF8rkDCjkcoD3Gxy9o444Xd3NJazl/eXoz1ZZCdvsoRkMAzW8cdJ8n06LaEL/65Ll0jqTxGRptVX58Lplx+1RlJfPku5PYiTxahRdXvR/VXZzxoPkMwtfPIXBuPSO/2Db5TRtyu2J45kSKsi9FgaZyH3959UJqQl629Mb4l4e3sbguyD/fupLygIRelEJzmY+L5lewpC6EadsE3DrNZV4UZWq4l5UqUOhJYsVyaOUejLoAmleuTeL4mdHs1M9s08EZyNB8+vQMTzBHs+S7kzh5C6PGj1HnR1ElFE8cH2s0R3rNwKQ2O1lAr/biP6sORVdwCjZmPIce2ve5ubwhwldvWc4/PbiF7zzVzucun8eHz2ulcyRNddCN3yPXanFyOJZNvieFOZBG9Whj30tEplHQnAPvOrORhjI/fbEMj24eIJ0z+c/3rKJyPNxHL3MTf7gTz9zw2PPjfpLPdeFZVIZqaCXovDgaju1Q6ElSGEijusfG4qtDSVY0hhlK5ni5Y4SQR+dvbljCsobQQbeR3RlF0VXstDmpPf16P8GLmzAqvRNt58yp4Pd/cgHd0QzlfhdtlX4MrajZzWK2cRzs8SGSLWRL2xchhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQoomJXMpU7jvP/9nv9FUVRbj7cCo7jPKMoSuthFrkJuNNxHAd4SVGUiKIodY7j9B5/d6eXzNZhRn6+daJIxj03TNm7FtKezPGFX63j+hX1WI5Dx1CGu17Zy68+eS51Ee/hNzoNOaaN4ppayKHoUtxxKslsGGL0V9snXgevbKbQlwYgcF49iWe6xoqBDzIuMjhs7Inx5esWc11OI/2rduLj7/nPriV8bRvqNCjUrA55qA5No4I9URJWukD097vIrB2caAvfNJfAOXUHDYk4FprPOPS1VSteQf36rhh/d99mAEIenbed1sDf3LCEq5fWUBWUsV4qm3rjfPfpDq5bXouhqTy+ZYDdQ2kW14XQ9yuctHMW8cf2kHpxXxBY6OoWghc2ymewOG6O7aAYU8eRqinsGExyekt5CXp1aOZwhqE7NmMOjN17oClUfnSZBOKJ46cAqgLWvuQD1W+A5RB/ePdEm3temLJ3LUIPugDwu3Xec3Yz586t4MX2IR7a2Me3Ht85sXxjmZeLFlSfrKMQp7Ds9lGG79w88b2EqzlI+XsXTYsgkkze4p8f3sqT2wYJunVuOq2e8+ZVcOnCKlY0RoCxgKnczhh6uRsOcn+juDQJnJohcu1Rhn60Eeyx13qdn/YFfr72zE4uXlDFn1w2j2zBYlVzBI8x9fnfLlg4BRtMZ8p7qCoHexRrKvfRVO4r8pGI2cpxHKzxcWS9OVCFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBiFih2lf6TiqK8G/jl+Ot3AA8c5zYbgL37ve4ab5tVISRWPEf03vZJs/Tm2mMUelP02AUSOYu7X907aZ2hZG5GhpBQcPCtrCa2NznRpLhU9Gop9Jit7LxFoSeFOZJBK/OA7RB7YNekZbKbhvEsLiezZgB0FTtVILcrSvjaNvKd8YlzQzFU9kYMXnpphHe0VpJ+unvSdlIv9+E7owZ388FnQhbiZDP705MCSADiD3bgmR/BqCzidU8B36oaYt37zi3FpaGXF69gdM9IeuLneNbkpy914ndpXL5IiqJLaVNPjD0jab779L7f/d6RNPHsAsr97ok2cyA9KYAEIP7oHjxLKnDV+E9af8XspBga/rPriP9h90Sb6tNRAwaj6ULpOnYIub2JfQEkAJZD7OHdGB9dhjYNgszEzKWXewmcW0/yuX33qP5z6og/0jlpudzOGGZvEj04OaDHY6h89aGtxLPmpPZdQ2kuWnDi+i0EgJUsEL1/16TvJfJ7EhR6UtMihGQkneeF9mEAEjmTn768B4DGiJczxsOu8l0J7Hged2t4LIxPV8EcDwdQwH92HYom4WvTnZ0xiT64i/1zHczeFCuXluE48NS2QZ7aNvaMdd7cSuZVByeWK0SzWANp7IKN6jModCXQyj1YI9mJZYIXNYx9NyHE8XDA0sZ+NB3z8MsKIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEDFLsCrtPAn8G/GT8tQakFEX5M8BxHOdYUgEONkXtQaYxBUVRPgF8AqC5ufkYdlU6dt7GTk0t0LQzJjVVHhQFnP2OusxnTCosnkkcxyG7K0r4ujYKPUkUt45e5saahgWqJ8tMHrtvxXEc0m8MEL1nJ4Hz60k+241nUTl2ZnKBRqEnRfiaNux4ft+MxDakXusnfG0bhb4UBZ/OlqDGF57ZAUBIVSfNMv8mO2ud6MMS+5nN47cY7OzUYiSnYOPkiztTsuJAbk987HzpTaJ4dLSIGzOeK9o+6g8SfHVGaxlhn1G0fZxMs2XsLqident1ztwKgu7Jv5eDjUVsB0eumTPOdBy7iq6Q70sRuqaVQm8K1W+gBQys0Sw1c4JvvYGTzE5Ove+0RrI4BQskhOSEmo7jt5gUTcE1J0zIq1PoS6FF3BjV3oM+61npqdflsNfF6pYyntg2OcCsuXwGhk/OMrN97AI4BQsrNvXe8cBnt1KJeAxWNUV4qWNkUntdeF+YhJ0qkHq9n7LbFhC9r53wlc2Yw1kc08ao9aN4tJPd7Wlhpo1fO29hjU4diz7LQVMVLHvsewBVgerQfqF7o1ly20eJ3tdO8JImtJCL5Is9BC9pwinYWNEcRq0f97wIinqwrxuFOAqOgzWeaVSQEBIhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcQsUtTpXx3HCTqOozqOY4z/U8fbgscYQALQBTTt97oR6DnE/r/nOM5qx3FWV1VVHePuSkMLu/Asq5zcqCoYVT7mVwf4uxuXoo0XSHgNjW/edhoNZTO0EM2x8cyNEHuwg9yeBJnNQ8Sf7sKomKHHUwQzeey+FXM4S+z3u0BVUDw6hd4UuZ1RvEsrJi+oK6hBg4oPLMazpBy91je2fn+a2IMd6HV+Ns8N8PGHNzOcyuPWVRpbI+hVk8eN4tUxKmRG45NpNo/fYtArvSiuyR+3RlOg6LPJO4aKd0EZsYfGr60bh0g8uRej2l+0faxsDPOes/Z9JFcF3fzF1YvwuWZmwf5sGburmyPcsKJu4nVjmZdPXDQHQ5887vQKD6pv8u9Kq/Sglcs1c6aZjmNX8xp45kWIP7ybQleCzLpBEs92Y1R6aa30lbp7UxgNgSlt/jNr0QKuEvTm1DIdx2+xGZVeki/2UOhNkXqlj9QrfbgXlU1eSFXQQlPHm9el8edXL6Q6uK+o/l2rm1jRGDnBvRZv5VQYu1rQhe/06smNCujV0+M67vfofOn6xVTud63+4LktLG8MA1AYzaBoKk7BJv7IbnynVRN7aDeZLSPkOmKkXu3DmIafSSfDTBu/WtCFf3XtlPZQUwhDG/tuTFMV/t9Ny5hXte8zvTCcJflcN1gOVixHriOGZ2kFiSf2knq1b+z7iM7YlO8RhDgm+4WQmI4EOwohhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIWaPolYNK4ryMcdxfrDfaw34a8dx/v44Nnsf8BlFUe4GzgZijuP0HmdXpx3V0Ahf3YKqK6TXDaFXeIjcOBejzo+iKrznrCbObitnMJmjIeKlrXJqUblp2Yyk8nSNZgh6dFor/RhaUXNmisJOjM0OGnn7fPK7Y6h+A1drCCszdXZwMfM5OQunYKN4dez02O84vzdBoK0R3xnVZLeOolV6iFzTNjYztaLgqg9S8f4l5HaOUuhL454Xwd0W4gKPzgOfvYCBRI66sIc5lQHM97rHQhd2RDEaA0RunIt+EgNtTMvGsh3i2cK+c6/Cjz4Nzz1RGkaVj8qPLCN6fzuF3hSeReWErmmdEgZx3LIWZixH2W0LyLVHUTw6nrYwhYEU3oXlR7QJ07IPOna7R9P0x3NEfAZfunYx7z6rmWTWpK3ST31ECvhKrTrk4Ss3L+P2C+eQzpu0VfmpDU3+vTiOQ49jE3jvIgqPdFLYm8A9N0L4+jb0oIQuiOKwsyZl79x3DXK3hMjuihGaV/bWK59krsYA5e9dROyBXVipAoFz6vCfVYuiKKXumpghBuJZ9o5miHgNWiv9aKpC3rRw6RpGtY+qjy8ns20EO57H1RICFRRFIbttBL3cS+CCejAOPt6W1oe599Pns2sohd+tM78qgN8zMwO/xMyi6CrBS8YC59JrBtDCbiI3zsFVX7xQu+O1ojHCvZ++gN3DKYIenTlVAQLusfPDKTikNwwSvq6N9Jp+rFiO8NvmUuhJ4moIYMyNoEfGAn7641m6RtNEvK6Jc1hMH4qqEDivDseySb3ShxZ0EblhDu75ZTz42QvpjmaoCrqZUxnAtX/wnmVjDmeAsTEcvroFxwGjxo85nMHdEsKYH0HzGYfdf8602D2UIp23aKnwU+6X+2VxEI6NPX7pkBASIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEbFLsSqbLFUW5FfgYUAn8EHj6cCsoinIXcAlQqShKF/BlwABwHOe7wIPAdcBOIA18pMh9njaMSh9lty4gdFUriktF26/IwaVrLKoLsegg62XyJi/tGsG0bb764FZ2DaXQVYU/uWweHz2/jaD38MUVJ5tW4SF6XzuoCt4lFZjDGUbu3krVJ1aUumviBFBDBnqdH7M3NWm29+QzXehVXsLXt+FZUo7mmTxOjUovRuXkInoNWFgbYuF+EyK76gJUvH8JdqqA4tHQijTek9kCiqLgdx/8MmnbNs+3D/OLV/dw8YJq/uPxHewdzWBoCn95zSLec1bzIdcVpx53W5iqj6/AzpmofgPVpRV9H1rEjZMxib28G/+qaqy0ycgvtlH2zgVvue72/gS/XdPFKx0jXL+ijmuW1tJQ5qM3mmFdV5S/uXcTg4kcHkPlKzcv520r63DpxT8GcfQ298S465U9bOiOc9vqRi5bVD0lgMS0bB7e1Mdf/Ho9OdPm3Svr+chVS/jV9gHM9V3cojUwrzpYoiMQs0Umb+LoKrHf78J3Rg2OaTN6z06ClzSi6NMvmEs1NHwrqnC1hcG00UJuFE0K0MWReb1zlM/e9Qbd0QwuTeULVy+gNuThjhd3c2ZbOW9f1cj82iBG7VhwQ2bbCNH72vGvrsGzqJx8Z5x8dxLXgkMH9NRFvNRJ0JcoAaPCS9lN8whd1oxiaGiB6fV9AkBDmZeGsqnnhxY0cNUHiD3UgWdROapbI/lCN6Fr5/CToVEe++1uLppXxVltZfzpL9fRG8vi1lW+eO0i3nVWE15Dnt+mE73cS+SGOQQvakQxVLTA2PcJc6oCzKkKHHQd1a/jWVBOdusI2A6xh3bjag4SvnEuiaDOLzb08uAv3uCstgpuPb2BeTVT74G7RlPc8UInP3iuA9uBxbVBvnHbSpbUh0/o8YqZx3EcrPHbXFOxS9sZIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEKKKiVlg4jvNeRVHeBWxgLDDkPY7jPP8W67znLd53gE8Xr5fTm6Kr6GWeo1pnTeco2YLJT17aw66hFACm7fBvj+1gRWOESxdVn4iuHjOj3EvklnnEfr+LxJN70cJuyt+1CFejFEDPJnbBIrczSuLpvQTOqSO9fpDcjijBy5pIPt+Dk7dwNQRwt4SmBJAcLdWlFS3UIZEp8NT2Qb7z1E4MTeUzl87jwvmVeF2TL5cvd4zw8Tte4+IFVfzkpU72jo7NtlywHL7ywBZOa4qwurW8KH0Ss4Pq01F9J66wUVEUvKuqMeN5Es90oRgawUubcLUc/traE83w0R+/Stf4GF6zJ8r6rhj/76alPLF1gP9+up3BRA6AbMHmC79eR9CtkzUtVjWV0VzhO2HHJA6vYyjFe//3ZUzL4fYL2+gazfCbNV1cOL+K5Q1hFGUsUGHXYIr/84u1FCwHgJ++0c1D2wd522n1/OiZ3Ty4oZe7bz+XmvDR3X8Isb+1e6OMmnnOPaOG5Is94IB/dS1mS5CNPTFWNEZK3cWD0oOut15IiP2MpvL8ze820B0d+9zMWzb/+OBWvveBM3jXmc3sHk7z1LYBQh6dmvBYSIK7NUTgvHrij3bi5Cw8i8oJXNCAEXKX8lCEOKRj+V5iOtC8Bp7FFZjxPJm1gyiaQuCiRtZaOdJ5i9Ut5Zw/v4Iv/mYDvbEsADnT5u/u38yiuhDnzKko8RGIAynakY9FczRLfm8S/1k1OAWbXHsU1afjP7sOs8zNY5v7GE7lOXtOBV6Xxp//ah3f+8DqiXvg/niG36/vI+zV+f6zHRPb3dKX4DtPtfPN21ZKEKOYzAFrfEhYEkIihBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSYRYpaDa0oynzgc8BvgMXABxRFecNxnHQx9yP2cRyH7liWurCHlztGpry/ezhVgl4dnpXIE/19O95llQQvbsRKFkg814W7NTQxs62Y+fKdCYbv2Dzxs2d+GYGLGjDqA/jPrMUxbfQyN8o0KuLpj2V5qWOYz929dqLtEz95nTs/ehYXLaiatOyaPVFyps2C2iCPbO6fsq2OoZSEkIiTrtCdRFGh/N0LcSyH5PPduOdG0A8TLrGjPzERQPKm+9b18MFzWyhY9pT3HAf6Yhm+fP9m5lUH+NFHzqSpTIJISmFbX5xousAXrl7I/zzTTjxjAvCtx3bys4+fxZltY4W0PbHMRADJm4ZTeXzj4UodQ2k29cQkhEQcl91DaVosKHTFKbt1PoqikFo7gNKbpj+slrp7QhRN12iazb2Jg7Rn2N6f4JWOEYZSORbXhSZCSFS3jhZyEbqqBc1vkB9IM/SjjVR9bDnutvDJPgQhZi1zOMPwnZvxLKug/F0LsfMm2e4kD2wZ5edvdPPh81rpj2fZPpCcsm7HUEpCSGYwx7SIP7aH9Ov9KF6d4CVN+M+phXIPjw/FcXeO8Hf3byJbGAuK8Ls0/uTy+ewcTFIT9tAbzXD3q3u465W9vOvMpinbf37nEP3xLE3l/pN9aGI6cxys8dtcS3GwzAKafnwhu0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCDEdFDWEBLgf+LTjOI8riqIAfwa8Ciwt8n5OOclsge39SYZTOZrL/cyrDqCpCgDr9kapD9expC7Ehu7YpPXK/dMv1MMczmD2pEn07JncPpSREJJZwjEtMhsG92uA7PZR7IJF1ceXo/iOriijazTNjv4khqayoDZAdfDwhfLpvMnGrhjtQ0kqA26WN0aoDe1bJ5rOs6Erxkg6z6KaIAGPzqaeOL9+fS/xrDlle/e80T0lhMSljZ1/e4bTzK8OsOOAQraAp9iXVyEOz86YJJ/txhzMkFk7NNGe2xXF3RI65Hrq+GfJ/hRAVRQqg26qAm4Gk7lJ75cH3ADsHEjyRueohJCUiKooVAXc9MWyEwEkAHnL5ofP7WZVcxm6plId9KAqYO+XQxJ06xQse9I6QhyP6pCbmp4Y+Y4E+Y59AQ36aA7n4toS9kyI4vJ7dForfOwenpyzGfEZ/G5tNx88t5XvPbOLl3aNUBFw0TOaxacqzHmii0Lv5IDI7I7RQ4aQ9MeybB9IYNkOC2qC1Ee8J+yYhJhJ8qbFzoEk3dEMNUEP82sCeMeD1QqDaexUgfTLfaRf7ptY58zL6/g5EPYaZAs2jWXeKUF7lfJdxLRlWjY7B5LsHU1TGXAzvyZIwD35edsczZFeMxYO6mRM4g91AFB4WxvfeqmdlY3hiQASgIYyL/XhsXvkX7++lx39SV7vHOXstvJJ3x28aXlDGL9bnvHFARwHa/xx2lYdCtkcWkBCSIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEDNfsaclP8txnMcBnDHfAG4u8j5OOfFMgW89voO3//cL3H7n69zwn8/y5LYBAPpiWUZSeSzL4lOXzCGyX7jDjSvqaCmffsVqinbwYafoxR6OohQKfSlG79+Fs3+1+zjVZ4AyNfDgcLb0xrnlOy/wkR+/yvt/8DK33/Eaew4o+jzQ79f18K0ndtAdzfLI5n7++rcbGEyMhSgMJXN8+b5NfOCHr/DyrhF+8Pxufr2miz+56w16YtlJxUxntpbx+asWsqQuxCsdIySzBXYPpfi3R7ejayp+l8bDm/p479nNhPYLHbn19AbcMp7FyaaCcpDwG8WlHXKVgmUT8RosqAlMan/f2c0srAlS5jX4y2sX4jHGxrOiwJ9cNg+vsW98j6YLRToAcbQW14WYV+Ujms5Pea83niVnWgDUhd385TWLeDNvxqWpfPrSedzzRjcAS+qCuDSVWGbqdoQ4UtVBFz7/1KJLxaszki3QGz38Z7cQM0VbhZ8vXL1w0j3ju89sIujRCboNGsu8LGsI0VrpY+9Imu5omu0DSSzX1HvDQ31Gdwyl+NCPXuYDP3iFD//oVW777gts708cdFkhTiW27XD/ul5u+M/nuP3O13nbfz3PT1/aQ64wds+jqAd5BtMUVE3h9gvbWFof4t43uvnzqxbg3+/8e/85zSysDZ6swxBH6fEt/RO/81u+8wLffaqdZG5fAJ+VKmAOZg76ndJItsBHL2hjIL4vVLE+7OEj57eyczDJ+q4YX75vE2e1ldNY5mV7f5KGiJfLFlVPLF8VdHP7RXMo97tP7IGKmcexsceHnaVCIZctbX+EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBCiSIoyjaeiKH/hOM4/O44TVxTlnY7j/Gq/tz8CfKkY+zlV2HkLRVdRxquFt/Un+P6zHRPvFyyHL/5mA0s/E2IomeXKJTUEvQY7BpJ887aVmJaDS1MYzRSAowt8OFLpvInjcEwzwSo+Hc+icrJbRybaPEvKUYMyW+hMZ8XzDN25GWskS/iaVhRDxXlztmEVAuc3TIzrI9qe7XDni50TASIA67pivNA+RHNFM445tu03i412DiR4bfcoYa+Brip8+4mdNJf7+NB5LewaTFAVdLN2T5R71/ZQE3Lj0lV+/sJuPnPZPHKmzcbuODef1sBT2waZVx1gWUOYf31k28S+/+XW5Ty2ZYCHN/cT8up89rL5KDiAwzfeuZJdQykKtkOhYFET9GBaNvohQnfEzHfgtbrUVLdO4Lw6Rn+ZgPEMIMWrY9T6D7nOE1sG+OOfv84nL5rLhfOr2DuS5solNVy0oAqfWyfic/G7tT186brFlPkM8qbNfW/0cP68CgB0VaG53EcyWyDgkWv4yZYzLS5dXEPYa3D/+t5J7121pAZ7PAyqO5phIJ7h67euIOTVaSv3kslY7B6uJuDR0VWFj935Gv/+rtO46bSGUhyKmAXyBRt/S5iEuxcnN1YMjgL+s+soNyyGUnnqIr7SdvIwHMfBKdgohopylIFp4tSRzVtYjk21383Xbl1OfzxL2Osib9oMJ3N86bpFtFX6Wbsnyv/9zQYuXlDJ+89pxa8r+GsjJH+6BSc/fv/q1tDK3Di2M+Ve4vEt/WztS0687opm+c2aLr547eKTerzi1GUXLBRVOWSAaKnsHk7xV7/bwP55l199aAvnzatgaX0Yxa1h1Psp9KQm3vefV09Nc4iHXtrNNUtr+fD5rbzQPszX37GCWLpAQ5kHVYGqgKcERyQOx7EdhmNZvvaHrZj7/dK//eROLltUzektZQBkt40Qf2wP/rNrST7XM7GcWuNDqfHxzXvW88FzW3l25xAAt180h1ja5D8e38lnLpvHV25exhd+vZ6qgJsL5lfy0MZe3n9OE9csrSVbsFhUF2RZQ/jkHryYERzHwZoIIXEo5HKHX0EIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFmiKKEkADvBv55/OcvAvuHkFyDhJAcEXM0S2bDEOm1AxgNAQLn1uOqDzCUmPpH7IPJHPGsiaoq7B5KURv2sGckw/aBFA9t6KU84OI9ZzXjNw4+u/axyhRMXtg5zB0v7MZ2HN59VjMXz68i6D3y4nNrNIvqNwhd0Yw5kkUv92CO5rDiefSwFP7MZOZIBmtkbObXxLPdBC9vxk7kUdwankXluBqPbnbpbMHk9c6RKe2JRI7M1hESz3aBA8ELGxksN3jX917itOYI0XSB1ztHAdgzkuZrD23lfz+4GoD++Fj/zplTwRNbBwBw7Vdc98PnOvj8VQupDrn5wq/XAxBw63z8wjbchsbDm/sBCHsNDF3lD5v6GE3luWVVA6ZlUxv28P3nOvj+cx3cenoDt184h+aKQ4dAiJnHHMmQXjdIZv0QrtYQ/rPqcNWV/ndspwuk3xggfE0r5nAWxaWh+nQye2J45kamLN8fz/LXv9uIZcN3nmon4jOoC3toiHipCY1dixM5k5YKP09vH+T5nUPMqw5w6+mNDCfyLG8Ic8uqBnKmRSJrSghJCTy2ZYCvPbSVSxZW8cVrF3H3q3vJmzZvP72BlgofmYJN0At9sQynt5Tz3M5BPrywDs/z/YS7U/yf+WE2RnQ+ft9GAL73zC6uWFxzTAFjQgyn89T35ghe0oidKuDkbfQKD+nX+/CfXY1pWqXu4iEVBtOkXu8nt20U98Iy/GfUYFRN38AUcfLlTZuXO4a584XdxLMmFy+o4o09o3RFMwwmcgwl89yyqp4rF9cyks5x77oevnDVQjoGEkSGstRsi5HLWoSvbcMpWFjxPKrfIPZgB+7WMHrYPWl/a/dEp/ThlV0jEnAnTjgrlSe7ZZTkSz1oYTfBixpxNQenTTjTaLpA9s2Qy3G2A8PJPADZnVHcbWE8i8qxYjn0ci9mLMeDr3cznMyTNS26oxm+/2wHHzinGa+hc9+6biI+F7qmcd7cylIcljiIfHeC5Iu9WD1JvruoiQfzWb71SufE+0PJse/JHNMi9WIv1kgWczBD6KoWzOEsWqWHjQGNn6/tYiiZ5/XOUT57+TzuWdNNU5mXhzb2AeDWVUzL4Z1nNNIby3LXK3uoC3uZXxPkgnkVLKqT8BFxGI6DNf61q61CIZctbX+EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBCiSIpVwaQc4ueDvRYH4ZgW8Sf2EHuwg0JPivSr/Qz9YCOF4QzN5T4OrPlZVBukOuTGpams3TuKR1MxbZtfvraXRM6kczjN1/+wlSkrHqf1e6Js60swtzpAU7mP7tHMRNjDkVIMjfTr/cSf3EtuZ5T4k3tJv9GPUuTAFHHy7f87tFMF4n/YTWrNAN5llbibQ1NmeX8rfrfBDSvqJ+9DgZuqwgz/eBP59hj5XTGG79iE3p1iNJ1nSV1oypgsWA4jqbHCtMYyL4oyVrRUOx5688z2Qd51ZhMAPbEsX394K6qiYI3PtvypS+byw+c72D6QRB8/hved1cI/PriFVzpGqA65cYDBZJ7dw2muWlJL3rT5yUt7+M5T7RTMyYVyYuay8xbRBzuIP9xJoTdF6sVehn+8EXN0GhQb6Sp23ib20G4ym4dJvdZH/JFOMorCM9sH+KcHN3Pni7tpH0wCkMqZDCb3hVxF0wW29CYYHj9XAAIujSe29vP4lgGyBZuN3XH+5eFthH0Gc6v9fPWhLQwkclQEXCf9cAVs7okB8NS2Qf7j8R1cMK+Sj57fwtVLavC5VDb1xPnHBzbTOZyhfTDFLfOr8T+4G/W1AQq9Kcxneli2Pso7l9UBY4FL2lFep4V4U8Cto7g04g93knqtn8zmYWIP7cbK20TzJlXB6Rk0ZyXzjNy9jeRTXRR6UySf6mLk7m1YyfxbryxOGZt6YmzqjlMzXpiuKgpntpWzdyTD0PhYCXkMHBxyBYfrl9dx37oebqyJUPVgJ/aOKPm9CaL3tuOYDukNQ8Qf7kTRVRR96nX3ssXVU9puWFkvASTihEuvHWT019spdCXJbhpm8HvrKXQnS92tCXVhD5UH3Hd6DJXGMi8Aml8n+XwPiWe6ye2IEn+sk3Rfip5klld3j/J/frGOxjIfC2oCRHwG5QEXLRUBGst8rOkcZXt/ohSHJQ5QGEwz+L8bSb/WT6Enhf+5Xm4paCyvDwGgqQpN5eNhYYoKobExkd02SvzRTnI7RsmZNkmvykgqPzE+dFXlC1cvJJYpTNyX+N0aqgJdoxnuW9dDOm/RPpjkqw9tJZopnPyDFzOK7Tgsy+X5+8FhUGwJIRFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQswaxapicg7x88Fei4MwR3KkX+uf1GanCpj9aebXBPmPd68i5NUBmFvl51/esZIynwsHhWuX16GpCn/YNHl9x4HO4fQR7T+bLpCK5nCcw/+6umNZ/uvJnfzo+d3c9cpevvaHrfTEMljWkYcs6NVevKdVgeVgxfNgOQQubsSo9B7xNsT049gOikfDf07tpHbvykr04/jd3nxaA9cuG9umrir87Q2LUTcOT1lOXT/E8oYwqZxJxGdMeb8mNFZktLg2yN9cv4StvXGuWVqLS1N5rXOUPcNpvnTdIv7hpqX813tXsbguyLvPbKKl3EdvLEs8Y/Lk1gFuOb0Bn0tjKJXDpal89MxmPrSqibte2cNPXurkO0+1c+/abj50XisAv369i/6EFKLMFuZwhuwB48+K5SkMHNm19kRSXRrqBfWggp0s4GQt1KDBaIWbD/7wVb73TAd/e+8mPvSDl9kznKIm5OGi+ZNne1cVaKv0T7xO5S3W7IlOWiadtxhK5ij3ufjMZfNpLPPi0iVEqhSuXDJ2bawKuPmTy+dj2ja7htJs6o3TMZThIz9+le8/28H/e2ALv3ptL9UFBYZzk7Zh7o7ztpYKFAU+felcPBIIJo6R29BIV3tRgi6crIWdLIxdj86rY26ZD7NglbqLB2UOZaYU2Be6k5hDmRL1SExH3dEM33h0Gz99qZOfvtTJNx7dht+lc97cCgDcukpzuY+Q1+CF9kFaKnz0xbPUjObhgMekzPpBXI1BACLXtaH5pwZ5nT+vkg+f24qmKigK3LKqnmuW1pzw4xSnNiuZJ/l01wGNDvmu6RNCUh/x8t/vO4P68TDJyoCL777/DFrLfSSjWZyGAGrAANMe+65BgcEV5TzZPnb/PpjIkcgWeNfqJvwug689tJVfvraXHzzXwQ+f301vTK7900GhP42TMSe16euG+cJZrVQGXHz7vauYW+lnMJEjlTfRz6yBNwOdHLALNtmmAJqqsKguxJ9esQDbcfjmo9v5ygObGU0XOL05Qm3IQyJjoqoKD2/qm7Q/y3bong5Bk2JasxyLLw2P8vZkinlmHjMrY0YIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCDE76EXazkpFUeKAAnjHf2b89fSc9ny6UZWxf9bkEBBFU3DpKjeurOe0pgjxTIHasIeKgBsYC2Uo97nIWzY1QTcjqcmztgc8h/8VW5bNno3DvHTfLtKxPEvOr2fZxQ0Eyw/+a2sfTPL+c1rwuTQsx8GlaTy7Y4BbVjXiPcK6Zc1r4D+nDqPejx0voJW5cbeFUXSZ2XumshJ5ki/3kny6C8/SCiLvmI+TNtGrfbgaAqiuYy9qb67w8Y3bVvK5K+ZjqCrNFT4S/e1TF3Rr5GM296/r5WMXtPGNR7ZPvHXtsloW1gXZPZSiL57l7LYyVjSeQX88yz/ctJSeWAaPrnJ6dYgKl07BdNi9fojLQkFuubaG53tHAdjUE6et0s9nLp1LmcfFf168iP7n+uh6KcqXVtfzWluevEulKujG59L4wtULeW7HIG4Z27OGoipj8V0HFBQr2vT4Haf8GuW3LsAZSIOuotb4yORtHn7nGRSATsfipa5RNvXEuXZ5HX9z4xL+8YEtPLVtkNqQh6/cvIxFtWOF0TnTQlMVvIZG5oDwAF1V+eHzu6kKuvm321aW4EgFwLlzKvjc5fPxuzW+8ch2cubYwHTrrazrGuUvrl5IpmChayqD8SzOIYZpedDN129dwdltFSex92K2KZg2XZbJkhvbMAYyULDRqn0MZiyevWMbdfPCuK5qpqIxgNs7NSysVA51/Z4u13UxPTyxdYDCfs9pBcvh5Y4RLl9UTXXQzXnzKugYStM+kOSShTV0DKVQAOdg94CGint+BPfcCGrYTXwojW1DsMKDNj7uakIevnj9It53bjOOA83lXjxGsR7dhTgEVUExpo5Z5c1wh2ni9KYIv/3gWWRMC2/EjStt88I97Wx7sY8zLmlg3vVzsIYyYNo4dX7u3NXHZy+fj22PncMhj0GZz8WX79s8absjqTy7h9JcvKAURyX2p6hTx5yiKdSkHH598yrUajdff3gbG/ZG+a/z52E+003o8hYc2ybv0ngxl+WRNZ3kCzbdsSx9sSxrOke5bXUTVUE35X4X//rwVv7PFfOxHYdXO0aoDLjpi08OkHgzCFiIQzFtk7ZCAYAG2yQvISRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQohZoih/Ue84zrEnDAgA9HIPwUuaSDy+Z19btRe9xj/xuqncN2W9TN5ke3+SlnIP7z+nhb+9bxPWeHFNS4WP5fWhw+63Z1uUh767AWe8pm7Nw53YtsN5t8w9aOHHvOoA33hkO12jYzMEG5rC379tKQ7OlGUPpTCQZvgHG3EKNoqh4hRsjPoAVR9fhuqbPkWp4shltw6TeGxs7GbWDpJZO0j5BxbjXVRelO37XDqLaveNZf/p1aRf64fxsY4Kg21B3lZn8KvXunhh5xD/9q6VDCXyzKsOsLwhTMdgiu8/u4tHN/fTXO7jS9ctZk5VgNHeNFWKRVPIx0s/2cGyixp449E9ZJNjhSS+MhdXfXAR/6m04zhgOw6mDcu8Xp65cyNvDv2OJ3u46JpmfjgyzE9f6gRAUeBrb1+Oc0BghZi59AovgXPrST7fM9FmNAbQa7wl7NU+4V0J4o/uGZsJ3HbABv2KZqKmw8v37mLReXWEIupEMM786iD/9b7TGYjn8Ls0qkNjAVQdQym++cg2fC6NT1zUxrce3zmxj/PmVhAaDxAYTOToHE5zwfyTf6wCKoNuPnv5fL764JaJABKAsNfg8kW1/PPD2ybaljeESa+oI9gcRN2TmGjXV1byg0093HBGA25DbufEsQu4dSoyNtmfbyOrMhauZzp4T6/BGzDo3DDMaG+KC9+1gGC5h4qGQKm7DIBW6cGztILspuGJNs+SCrRKyVEU+ySz5pS2bMFiJJUl6DX498d2sL0/CYwN/f949yo+fF4Lu1WVpS4VJ7/vGu1bVkXsod2Qs1CDBr2LK3jlsS6WXtzAqquaCZaNjT23rjG/OnhSjk8IAM1nELqqlZG7tk60KV4dV9P0GYeJkSxrHu5k07M9aLrClR9dyuYNQ2x5vhe3X6dGgegvto2FBo5/Dn3wHfO49v51JHJjoXoRn8F/vWcV6fzU89q05cFtOjDq/GgVHqzhfYEO2uoaXnmym1Q0x6UfXcyjm/r5yU3Lyd25FWyHeFcSNAV9TpjfkyZm2qiKwpmt5bzYPsT/uXIBd7ywm+5ohovnV/GVW5azrS9BRcDFY1sG+Oj5bXz94a0T342taAyztD5cov8DYqYoWHnSqoLfcqiwbLL5dKm7JIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEUh03pOE4qqEDivDqPOT3bbCEZdAM+CMvSIG4CdA0ke29LPjv4EVyyp4Zy2Csr8LlyaQjxbwMaLadn80y3L6I5mCLh0FtQGmV9z+ALPwT3xiSKLN215voeVlzURKHNPXjaRJZ4uTASQwNgs4Pes6ebmVQ1HfKzmcAanMFbc8+Z/Cz1JzGgOl4SQzDiOZZN6tX9Ke2bDEL6llce83V2DSZ7cNsjG7hiXLari3DmVVAbHxqSrOUTVH60gtXGIaLpAb7WbLz69naFUnisW13DF4hruW9fNlUtqWFgTYDCR4Y4XdvPwpn4ay7x8+pK5RPvS1Odgw4+3cdoVzTx57xb8ZW6Gu5MTASQA6dE8/VtG+dd3rOCBDb1EPAZbuqKcnlY5MHun8+V+2lYFeebN/zcO/PtjOzizpYxqpJh5NlB0leAlTbhaQmR3jOJqCOKZH0EPut965RPMShXIvj4w9sLcNzhdsTzxjMmqq5pZ93gX1310MTuy+8a436XTVrnvdiBnWnzzkW3cv74XRYGv3LSUf7plGb2xLGGvQX3Ew5be+MTyytS8KnESaapCpmBNarMch5++sHtS24buGBuHM8y7oJaqkXKM/jQ0BXk4meKCimrOai1OaJQ4dXldKq6hLBkAm4mgMHv7CHMWlfHGYIb4UJbYUIada/q58J0LcE+D+z7NaxC5cQ65pRXkOmK4W8O454TRvKXvm5g+blhRxyObJ9/vnj+vgsV1IXb0JycCSGBs6P/zw9v40yvnk3Qgf9t8wl0pnJSJq9JLeu0AjIch2IkCYbeObTtseLKLSLWXFZc2TWwrkzd5rXOUB9b3UhVwc/WyWpY1SFG8OHE8i8qo/NgyMpuG0cJuPIvKMPYLRi21ra/0sfHpboD/z959R8lx1fnff1dV5zShJ+cclLOsLFmWZVnOCQfAJJPTEtbsLjzsLuwuLD8WWNISTDBgY5yjLMuSlXPWKEzOOfR0jlX1/NFyy+MRBoNkyfZ9neNz1NW3bt3quV2hj7+fIhHT0TSd5v3J72ZhRRpy2zgqTDgPSW1e3A4z/mgyHGA8FGdnyyj3LirjWy+eC1wxyBJ1uZdP4Mq7mSHDQtYHphI6NUq4J0Ai28aJVi++keRvUd7eIF9dUQWj4XPBpACqTqJ5nDuuK2HQAP/27CkcFgN3LSzlG8+dSgX2bm0aRpbhh3fNIRRL8KO7Z/PH/d185Zo6dB0K0i3MLc2gIP3yCJoULl+xRJw4yRvibFUlHA5e4hEJgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiBcGCKE5DKi2E3YpmVhmzYxuKF7LMS9v9pH73jyKbCPH+7lK+vq+NjyCkaCceaVZdLjCfGN504zvTCNWcXpHO4c59sbz/DKl1ZRknn+P3MsmkAxKbiyrFTNzUFWJHwjYYa7AxiM8qT2cVVjwBeZtLzPGyEcU7GZ/rrpJFsnt5NMMpJZ+avWFy4fajBGfCiEIdtKrMs/4T1jju1v7rd/PMx9Dx6kdThZwPHkkV4+sbKCL6ypxajISLKEucSFscjJzhP9fPbhI6l10ywGvOEYmgb//GQDFVl2vnR1DUe7PQB8dkUlru4I4c4ALXhJxDR0HRJxDUeGJVXY9FqhoTCUWVg/PR/Jl0DrTmBIP/e+rEhUz8vFXewg2wKb20boGU/2M+SPYlAmf5+Ety/FacI2IxvbjOxLPZQJJJOMwW1BHZt4nDZkmMnNtxENqSy7sxoloeNLTH7y+6sGvVGeP9EPJIN0/uWpk0wtcPHxFRU8fbQPh8XAsD8KgM2kUJF1+RSmvlstrc7iof1dqVAxVYPRQHRSu35fmPufOE5hupVphS6WShZqKt0sqnS/xSMW3olGAnHSzhMqomSYcZe7mG0x0HRgAF3VSUQ1Ap7oZRFCAmBIt2CYY8E+J/dSD0W4TOU6zfzTujqeO548P66blsfTR/uwGBUSmj6p/aAvwul+Pz/f3sZ3rq5nXr4TuyThffj0xBA7CRKvCfM6s2eAKUsLMBiT90Xbm0b42O8Ppd5/YFc7j318EVMKRBCJcHHIZgOW6gws1RmXeiiTDI6FaH1d+KUaV7G6TOiaTkFdBnJ/EPomhgBEnUbGQrEJyzpHgxRn2vjkykpePj2I227m+pkFuB2mi74fwl9Hcpnx5zvYu3eQTFXHVehgTp6d5oODSLJEts2EXYXX/0Il240U5NiQVQ0NnT2tIyyrzkoFkLxqy5lhhvxRyrPsZDstTC1IIxBN4LabxP278FdLaHEsZ2/CXJpGOCpCSARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBeGcQ/2f928Cpfl8qgORV/7u5md7xMA6zgZ9vbSHTliyWOdHr5Xd7O9nZMkKey4rd9OeDPdS4hrvQTvX8HI5v6ebgCx2M9ARYcmsVZvvkoJBYQqM4c3KwxPoZ+bgd5r96f+Q0M5ZpEwueXWtKMWRa/uo+hEsr4YkQaffifb6dkZ+dwJhrR7Kcm2uy04h16t9e1N446E8FkLzqlzva6R4LpV6f7vfxyMFuYgmVn94zh89dVc13b5/BdTPzebFhkC2NQ6iaTvNQgM88fJT3LyoHoMxgouWlHuxp5lTgiGJIVn8Od/rIr0pPbcNsMzDjyiJq5+cyJ9PJrLw0IruGGDwzDoAjw4wkwaKbKxnq8rH7sRa6/9TG16YUM/fsU+pvmV1IXpqY28LFJxsVnMsKwXDu1K64LZBp4ZUHGzn4fAfRQBxXpuUN56TNpJDnmvj+yT4f4+E4iyvd3DSzEF84zrppefzj2lraR4OMBqJE4gn2t4/ywM52njnaO+H7Klxc4WiC/7hpGsuqs5hXmkFdroP10/MntDHIEoqcPNb1joc51OnhzIAfmwgAEy4Ql9UIWRYMrw0hUyTsy4vY+sdmGnb0MntNCWnZVjz9IUznCaUThMuV02rkp9tayXKYyXKY+cHmZg53jROKqWTYjMjSxPa3zClkWoGL/7x5GjPyXGiazomDg9iXFExoZ19cgC8YT73OKXWinC1+D0Ti/GBz04T2oZjKvvaxi7OTgnCZax8LYcm2TlimqjoLri+nfkkBB57vwDo7G+k1v4EoLhOOynR84YkBfEurs/jlznZ+v6+T8iwHAA/uacdmFuemy8VAp48tvz3FnKtL6G/1cfCFDk5s7WHKknwUo0S52YDU7MFcOTGUSV5Twj+8cBKjIvPNG6dx7+Iy0q2TQ8+yHWZsr5krdrOBXJdFBJAIb0pcTWA7G0Li0DQiUXEPLAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjCO4OosLjM6AkNNRhHthiQzxYGa+d5unZC1dE0nRF/lPUzC8lxmZlTks7hrnEAZAm+tLbmjcNBdJ2gN8ahDZ2pRWN9QY681ElWkR17+sQi9PFQnFyXmS+vreWhfV2Mh2JcP7OAZdVZb2ofE0MhJJLBI7qqIRlkwmfGsE7PwpAuwhoud7G+ACO/bsBxRQGhw0MA+DZ34VhaCBIY3FZMxQ6MWZMDa/6SaFzlWM84/eOvf54xqJqOpoMWUxkcCvDfL57hlZYRAKxGhX9YU8MXHz3O51ZXs6t1ZOKYVQ2rSUGRJdRAstCzv8VLyTQ3J7f30tPooXZhHo37Bgj7Y9Qtyqfr1Ciz15RweGMnx7f0YLEbWfGBOjw9yXCUIy91MeuqEtJzrZze3Y+nP1lskohptLzQzftvK6O2MI2PrajAZBBF/gJoURUtkkCxG5EMF764TYupBA4M4lpVjK7pSBJokQTqeATFKBMLJ9j7TDvrPzmddNvkQrxXZTnN/PuN0/jo7w7y6ulnTkkGx3u8PHqwhykFLm6cWcBzx/vZ0HCKr62vR9N1XmwY5POPHE31U5/n5Jf3zqMw480fC4Q3ZyQYo2nQT/zsse65E/2894pSdGDTqUGKMq3cs6CEX+3qQJJgVaWbj8wrQbYZ6RkNMbMo/VLvgvAOkGEzovSFUKrSsc3IQtdBkiWCe/uonunm9IEhdj7WwvpPzmDmVUU4L9PwOV3T0QIxMMoo5ylaFt6d6vNd3DW/hJ9ua00tsxhl8tPMvHBigG/cOI1f7GhjwBfhplmFTMl38sPNLVxflQVpdnY80sSshXkkRsO4ri5FTyTvgaJtXsqnZXEAMNsNTF1eiHQ20UTTIZrQJo0lElffqt0W3qVUXwwMEsobXC9eCmPhOHKtE3PTONFQMlREkiRi4QQHnmtnyoJcQjt7cS4vTJ6DJNBiGnFfjE+tquQP+7owyBLvmVdMUYYVXdfxhRNsPDkAwH/cNI2STPul3EXhNbxDIaYuyic0GMJ8NvA0HlXZ90w7d39lDvFXeog2erDNyj7321KujVfiUd53RTn//twpmocClLptFC63sqA8k/1nQ5wkCb5+/RRyXZfntYjw9pFQY1jOhpA4NY3RWPgSj0gQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBOHCECEkl5H4UAj/1i7CJ8cwFTlwXVOOudhJUYaNNKsRb/jcU7LvuaKEwgwbHaNBnj/eh6bnU5njYEVtDglVw2xQ+OP+LlZUZ5P5Z4JIjBYDkUCc0ulucstcqAkdxSBxenc/sajG68tvnGYDHaNBrAaF2+cVYTXKOC1GEurk4rg3ovnjhBtGCTeMTlweSkD6m+pKeAtpMZXEaBj/lm40fxz9NX93Pari39wFQM5nZr1hAImu63R7wsQSGulWIyOBKKqm0zjoJ6Hp/ONjx/nY8gqynWaG/dHUevcsLKEopjP6h9NoHT7+rdTJXeum8smNpwjHVRp6vVRm21F1HZfVMOlp14Fogv++bTrphuT3wT8WQTFIVM3LofXwMOYZBq78YD2haIKMfDt1y/J54YfHiYUTWJ1GZl1VQjwQx2hWiEdVNFXn8MZO5q4ro7/Fm9pO5Zxs3IUObBYTS+pzcGeKAAYBol0+vBs6iPcHsE5x41xZjDHnws4NNRIn3hsgcmJiCI99eSHz15eha9DT6CEciJOwvPHpf0VtNk99agln+n0M+KJ0e0I8erAHgFN9PtZOyeVEb3LeZ7vM6Dp88/lTE/o4PeDnZJ9PhJBcRN5wjPFgHAmJMwN+VtXmIElwoMND86CfdJuB/71zFtubR0izGKnPd/GDlTUUHB9De7IDtcxJ2rwcejwhisTfSfg7nerzMTeYwL+7b8JyyaJQvLKE0weGKKxOJxHTAInhLh+Z+Q4U44UPZfpbJUbDBHb3ETw8hCHTQtq15ZjL01KhEMK7V+94mGyniY8ur2B70zB5aRZW1eZgkBVyXRYe2NnG7JIMshxmSjKt1NvM/Lw4F9NRD3JHlDXrytCMEtF9/URPeyb0nT4zi2s+Ng13oYP011wbuKxGPrmyki8+ejy1zKhIuCxGDneOUZJpI8spCuiFCyfhixI6PERgZy+yRcG1thxLXQay8dIHKg4PBSmKSvTGdGa+r4aRoRBumwl7monBsWSAZWV9BolNnfjafRPWta4tRdPhxlmFlLttbG0cYk5pBl9dX89LpwbxRxKsmZKLySATTaiYRYDkJTfsj1CYaSHaMEJiIMjy6gxYX8bGR1vwDYcxRlWiZ//uoaPDqfUsSwsYdIHFqNA8FABg3bQ8/v25U6yfns/SqppkQKlRIdN+eYXsCG9PmhZK/duhafTHJgfqCoIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgvB2JEJLLhBqOM/ZYE/EuPwDRVi8jv2og51Mz6RgJ8MmVlTT0eun2hLmiIpNIXGUsGMWsyLxvcRm9nnCqQPxVGTYjcU3/s9s0GBXSc630Ncnsf7YdAFmWWHJ7FWbr5KmRZjfy+71dHO/xsqjSja7r7G0b45Y5hayqy/2r91V2GECRQD03NlO5C8l0+RShChOp4QSBHT2o41Fi3f7UcsmkoMfOPY3dkG9DybCQUDV8kQROi4GxYBRNg7w0C4FIgscO9/Ddlxr57OoanjnWy8JyN5tODTKrOJ2TfclQg9/s7uDzV1XTNBigbTjADbMKubUqm7EHGtD8yTAeuWmcqZ4IH5xdxC8OdRNLaHxoSTndnhCfvbKabz5/OjWuRRVush1mHt7XhV2Wef/qIs5s6eH4lh7yq9JY+fGpvNw1yrPNvXx1/RQKM2ycOj5E7GyQyaw1Jex/th2by8SMK4s5tKEj1bfFaSQjz4ZnIET1vFyioXjq+6QYZNZ8fBpKnoWSTDuyKGJ+V4qPhBl5oAE9mvyuhA4PkRiL4L53Cor1whW/xXWw1GcS3DUxAMCYbePYn5oJ++PULcrHlmHmpDf4hn0ZFZkZRelYjApXf2/7pPeznGY+tbISq0khkdAY8kcYD8UntQu95vggXBj942EkSWIsGOUrTxynfzzK166rZ0llVqrNlDwnbruJqpx8DnWO8Yd9XbgdJq4rdZO/qQc1cPY42jhO2ngMw921l2p3hHeQWELDkD45+M46xY03rpJflYYr28rGXzQk35Dgqg9OoXZB3ls80vPTExq+V7oJHRwEIN4bOHstPgtTgeMSj0641IZ8Uf7zhTM4LAYWlGUyEojy9WdO8s2bpjKtwEXXWJgnj/Ryx9wicorTKDzjQz08jE7yOprBDux31hIvchDvCZzr2CCDSSG3LA1H2uTvz/SidL64poZtTcO4rEaWVLn50Sst3LWgmNo8F3aTQn2BE5fFhFER91LC3yd8YgTfix0AaIE4Y384TdZ907FUpl+yMUXiKr29fg79sZnhjuR9aI/VQPUdFewJhlg9JpORlwzv0VQdS72b0KHBCX1IGWZmGox85YkTfGBxKe+ZX8yJXi//u7mZhRVu8tIs/Hx7G26HiSsq3BSLEMlLLjQYwvBIY+r+KXZiBMUTYcmN5Xi6Amh9QSy1mQSGeyespxc5SHh8KKZzv2cZFJlYQuPxwxPb/uiu2Rd/R4R3PE2LwNnTr0PTicRCb7yCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjC24QIIblMqGPRVADJq/RwgsRIhLFQnP/acIbqHAf5aRYe2tdFXNW5d1EZiiIz4otQm+fAbJCJJrTU+vcuLiPX9cZPx46GErS95smxmqZzeGMX5TOzJrVVVQ2rSSGmamxrOreO3fzmppEuSaStKye4p4/EWARzVTrWaVnIZvHE4cuRrmrEuv34t3RjyLFhKncRPjpMcG8/rrWlBPcPkBgMYa5JJ/3aClr9EX79YjuhqEp1roMHdrZTk+Pg7itKAfi3Z0+xsjabl04O0NDrY019Ll1jIZZWZeE7G/oRTWh8+8VGKrLs3L+ujrVT8wg1ewj4J4Yc6MMR5s3I5BfA9bMK+NKfjhGOq0wrdPHltbXYzQYCkTiqpvPc8X4OdiafPB+IJbjtphJm5bhwZVtoDUaYV5fNPbkVuJ3JAlBnmhnFIGNxGPEOhVHjGv7RCN2nR7nixgp0ILvEQXaJk+wiB8/96BgZ+bZUAAmAmtDY/WgzTVNtFOc5uXN+Ma4LGDohvD0khkOpArpXxTp8qOPRCxpCYrYa0LKt2ObmEDo6jGwx4FiUDyaJWCj53Tqzp5/SWVlI0l8XiFOcYeOaqbm8ePJcMWeWw0QoqvLr3R18alUVLUMBgrEE75lfzB/2daXamRSZmlxRuH+hjAaiPHaohx9taeHaGfkc6x7nzICfMreNDJuJQDTBIzu7UXWda6bmctWUXD798BH+9bopGGQJXYeMmIYWmHgc1QZDOCMiLEb4+9Xlu9CGw7jWlhHY04cWiGOd5sZY6CA0HKa4PnPCORIdtj3USH6FC1fWpS/4TnijhA5PLFxH1YkPhUQIiYDdrGBQJMZDcV46dW6eWI0KX3z0OF+/YQozilwc7fbiHQ6hvub+CgBNJz4cxrG0kNCBQaKt4xiyrdgX5qNFVXz9wfOGkKiazo9eaWFuaQYjgSjfeC4ZspfQdDY2DDCtyMWQP0okrjK3NIPaPNdF/RyEdy4tnCC4t3/S8mjr+CUJIdF1nWPd43jDcZyDsVQACUAsnMBzcIQTjjjXX+Gm/+QYU5cVYLYoGDLNWGdmEz4xgmw34licj+Y00X5mgF/fNpPnWkf4t2dP8aEl5Wg67GkdTfVbYFBwWMRPZJcDw3h00v2T2hNA80SpzLdBOIEWTWCbn0voyDCySca+rJBuh4Fnt/Zz7Yx8DLJEQtPZ1TzCNdPyeOHEQKqvNKuR1pEAGxr6WVOfi0GEOAl/q7MhJHEdnJpGNBa51CMSBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEG4IESFxWVCMsmgSKDqE5bLZoVshxmTItM8FKB5KPnk7DvnFyPL0DoUwGUz0j0a5H/umMkjB7oZ8ke5YWYBUwsnF6FFQ3F8oxHQdOzpZsKvC3UACI5HiYUnFyQ3DQW5dU4RO1tG0M8O02yQWV49ObDkjehRFS0Yx1Tmwjojm8RYBD2uob9u34VLLzEaxr+jF9mWPFQkhkLYZmShFjuJdfvxvthO+g1VmEpdGNLNjEUTfOqXe2kdCvAPa2r4fy81UZRhZX6Fm6893cBNswoBmFaYxo+2tACgnp1MrzQOsX5GPr/Z3ZHafudYiFxXsiAzzHnmhwSySeabN02lacBHOJ6ctw29Php6fSwoy+Cr66cw6I/w613tfGFJBfmyAc0g8XzHCEqmmTuKcihk8nelsNjFFXdU0fByN4nYue/DUIefoQ4/eZVpTFteiHcohCxL3PKluQy0eyf14xsKU3yFm/984TRT8l0sfZPfF+HtTY1rnDfewSAjGS9w8FJcQ4uqaHEN59JCtJiKGkygmhOYbIbU8T7gi5KZY/qruvSEYlTnOshyWtjbNkp1joNZxekkNI1QTOU7Gxv50tW1PH64jx/cOQuX1cCjB3soc9v58tpa6vNFMfSFsr1pmP/acAaAbKeZMwPJYtyKLDuNg/4JATAbGga5qj6X0UCM77zUxOevqmFb4yBr5pZN7lgG5U2GiQnC+cgSENPQIwmsUzKRLQZiI2FI6OSXuvCc55ozHlGJBBO4LuGpMRyMERiLYNRAthknBfWIkDwBoDrHycdXVPL9l5tTy0oyrXSPhUloybCESFxj06lB6pwWZLsRzR+b0IfJaUTXdBS3BWdJMYnxCPHhEEig/Zngg5IMG1dUuCcEQGbYjMQSGuPhOAZZJp7QON7j5dljffzgrtnkON84hFIQzssgIaeZYTg8YbFkvzQBimcG/GxpHGJGYRr+kclF/f7+EMWzHdicRlqPDONyW1Cq0pAsBtRwHOfy5LUwkoQcSnDjYS/6wXHunpdDqCQTl9WIy2LAF0mk+vzsldVk2P66a2Th4jndP066xTD5HsogkZlnR2scI+GLoWRaiLaN41xSgGRWUMtdaP4Yn51Zgm5X+MaN03hofxc9njD3Li6lPs/FM8f6KM+ys6A8k+9taiKS0HjuM0vFPYvwt9OT53qvruDQNKJxEUIiCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCMI7g6g6vUwY3FbSri7Fu6Ejtcw6zY3uNmMKh/nKujo2NPTT742wuj6X6YUucp0W3E4T7cNBnj3eT+dokA8tKcdqUnhwTyfzyzJZUZOT6i8wHqHntIeuk2OEgzGK6zJxF9pBgtfmO+RVpOHInPwkbrtR4Tu72vjWLdM51uPFYpCpyHZgepNPjZVkifDxYawzskECySATafJgW5D7Zj824SLSVQ3f9h5C+wZwXV2aWu7b3IV1ahZpM7IwV6RjzLUhGZJzoKPPS/NggKocB6f6fABcNyOfB3a0E1c10m3JIrZBX4SiDCs9njAGWcZskOn3RvBH4nxkWTkvnRwk12Xh81dVM70wPdm3rpI5NRPjybFzg1yYhyHLygMbzrCmfvL8WVqdzVefbqDMbeN7a6bS9kQ7Q2eLi2+dn01JuvXP7r8sS0xfXEBWsYOIN0bTgcEJ35MZq4rY9XgLZ3b3UzUvh8x8OxbH5CK93LoMnu5OjvnMgE+EkLwDeIfDtB8bpv34CKVT3VTOziYtxzapXSKucmpXPyMt49RVpKG1nQupSbu6FEPmhS0Sli1GEkNhJA0wyMgGmciZMSy5NiJn572sSFjdFrxof1Wf46E4P9zSSn6ahRlF6XSOhtjQMMCnr6xKtYkkVJZWuSl12/ny1XV8cEk5NpOCw3xpilbfiXRd508Hu1OvwzGVdJuR8VCchKrR0Ds5AMllTX7+XWMhfre3g5tmFeK3K+TPyiZ69Fwxu3VxAVGDjCi5Ff5evkgcV0wlcnoM6zQ3AIpRIdQ4yrGYTlZZGrJBQkucO5m6sq04MiZfc75Veps8nNzZR9gfo3SKm+JVxYSfbUu9byxyYMy3X7LxCZcPWZZ4/6JSKrMdvHJmiJJMGwZF4ntnQ0ky7WbMBpnyLDtjsQSO5YX4nm9PrW/ItYHTSKAvhDGcAKcJQ6aVyOlRtDwHxvNcQwLYLQb+9Yap/HpXOy+fGqQm18mymiy++1ITn7myivFQHLfdRI8nRHmWg7bhoAghEf4mslEh7coShtu9qWBU2WlkXJbwnRmjqC7zLR1P44AfsyLjjyQoKZh8nZ0zLYNFC/I49mIXdYvyOfBcO8M1GaQf6sc2IxtkCdmoEDw8iLUuEy2YvBY27+jjvauL+OBLTXzx6lr6x8N4w3HWTstjQflbu4/C+Y34Y2BTcNdlEDvjSS03Ly4kcXoUc4aF0MFBjHk2rNOyQJLAbqSnw0cipmPsDREcj1I/J5sbp+QRU+DGWYW0DAVo6PPRNx7mm8+fTvXbNRoSISTC306PAuBXFbJklVgsdIkHJAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCcGFc8hASSZKuAX4AKMAvdV3/1uveXwk8DbxaxfWEruv//laO8a0gyRK2BfkYCx0khsIo6SaMRU50mxGTLGMxyNTnuZhemEa61Uh+mgWjQcEkS5Rl2blnYQnHur38ZGsr0USyuPwLayaGHYz2BNjzVCvlM7JwZbsIeKIEfVFW3F3L3qdaiQYTZBc7uOKmCszWc4VwajyOjo7NbGDtlHy+8sQJCtOtJFSdJVVuphe+uYINPa5irkrHv60bNFDcFhxLCtCjGqIK+vKh+mKEDg4CEDkzhmNZIYHdfaDqxLp8OFYUYSp0TFjHbFAA8ARjZDuTRcVGRSYcTz7H2BdOMLXAxfPH+/ni1TV8e0Mjv9/byf3X1PHSyQH2tY/xwcVlPPihBeS4zNhM5w5Ruknht8Y4111dhDOi4bXIPDXgIatP456FxVRmO/nlzjY0HcwGmbtmFLLM7cJYptIXjjG6czAVxADQc2CY6Qvy3/AzUAwyReXpJOIq139mJkde6iIe05i5ugiDUebM7n7Ssq1Y7EaObemmep6bFXdVseepDmLhBNnlLrTpaex4KVnkVJTx50NPhLeHSDDOtofPYDAp5FemM9Tpo+PECOs+Ph2rY+IBzNMfZMcjTRgMMjnrS8iqzYBgAmeFC0tpGpIsXdCxadEExjwbocNDhBtGQALrjGw0VcNsNyLLEktur+K5rhFml2X8VX3mOM2Uum10jobQ9XFunl3I6voc6vKcqafHp1kMLChPBg7IsiSKny8CSZKoznWypy0ZaPT00V7uW1bB/3upkfFIgtX1OeSlWTAoMqFogscO9xCOq7x3YQm/39fFoC/Kz7a3kX/9FMqmuJFybVhUHc1houHMGEVdfpxZF+b49Oo1g8EoTujvNoVmE4mmfsyVafi3nr3Gy7TgWldG6IVOErEEK++uY+9TrYR8MTLybay+dwpWh5F4JILR8tYeO4a7/Tz3w2Mk4snr5p7THla8p5rCu+owhuLIdiOmYieG9InjSsRUgt4YRouCzSnm+btJpt3M9TMLqM938uHfHqRzNFloXJ/vZEa2k6HREJ9cVoHFHyN8ZAjX2lL0iIpklNHCCWIjEYIWA2ky+Dd3AaAUOjBMdZP+umvq1yrPsvPFq2tYVpXFs8f7eORAN59cWYUiQziucbDDQ1WOg77xCBbDmwuHFN7dIqE40WACq8OIyWrAVObC+b4pJAaCRKIqozGNXX9oAglu/uIccsveuqAGi1HGYTFyqNND0bQ8lr2/kpObBxjrDVI8003lFXmofRFaDg5RPiuLedeW0d7uZeHqUkIvdaLHVCSLguvacvwbOyf0ndXipSbXwdefOcnVU3L5xk3TyHWJ69dLSdc0ErEYRosFoyIzHkmQyLVTOMVNbCRC1CATSzehb+/BMCcH67Qswg0jxAdCGIudmK4uJd4WJeSPY083M9LjZ9fDTUxbV8pIkQlJkrCZDOxvH8UTik/YdpY4lwt/B+lsCEkgoYARiAcv7YAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAukEsaQiJJkgL8GFgD9AAHJEl6Rtf1U69rukPX9eve8gG+xRSrAaUqA6omFocPBqPIisTy2mw0TUfXdfrGw0QTKr5Igo7REJGERkW2nf+6eTr3P3GcG2cVsKjCPaEf32iEmVcWc/yVbkLeGMvvrGHXYy2YrApzrynFYFQYaB3HMxCisCaDeCxKd8NxDj73JJqmMuOaG2nsVfiHq2qIqRomRWZf+yjecOLN7aguEev241xVArqO5o8TOjaMfW7u3/sRCheQZFRQ0kyoY1FiXX60iIpzRRHGAgfmYieya3KxTnm2ndvnFvHooR6yHGayHCY6R0PU5jppHPTzm90d3Dm/mLVTcylMt/LHj17BSCBKmtXIDTPzkWWZTPvEfgORBDuah3nueB9XVLj50EuNhGMqaVYj37xxOkg6X370OBl2E19dX8/u1jHeV5tH9/Pd7N5yEqNZ4a5769i29fWHFYj4Yn/VZ2EwKpRMcVNYk874YIitDzeSXeQkPdfC3HXp6GoEo2GY1kOP4x8uZuVda/GOOIlqGs1nA1iWV2cxszj9zf8hhMuKdzhE6dQsGvcN0H50hKxiB3WL8vEOhVMhJMFxDwHPGLGIkfKZTjLzRjm248eYrHaq5q9DsWVit174069kkAk3ejDm2bFMcSNJEGkeR8u1sfDGckLeGCO9ATzEGA38+bk/5ItwotfLaCBGeZad790xk/984TQra3P5ydYWQjGVLIeJz19Vw9GucaYXpTG1QDw9/GK7fW4RTx3pxRdJMBKIsenkAL9431zaRoLYzEZO9g5xRWUWsgRfv24KvlCcpqEAX1iTPGebDTJqXKW300/IH6d5/wAAU5cV4h0O/8Xt+0aGCft9ODIysadPDrGJx6L0nGrg4LNPoGkq89bfTMm0mW95sIRw6aQ5zQz7Yqgj4XPXeIE4EW8UR7qZ5gNDxKP9VM/PxeY0UT0/h3h0mM2/+j19TaepXriE+qUrSc/Ne0vGO9juSwWQvOrI5m7iK4uYdWXxeYOiPANB9j7dRtvRYZxuCyvuqqW4PhP5AodKCZe3qhwn3751Ontax7CbFeZYbZx5roPwYJj02nQWXFdGYvsgvo2doEig6gDEryzBxyCjpk7cq/NxpGdizE4js8z9F7YIaVYTy2uyybSZGA3FiCY0/JE4r5wZYXpRGqWZNsbDcSqy/3yYiSC8Vn/rONsfbmKkJ0B+dTrL7qgmu9jJUCDGgW19eAaCoL+mfcv4WxpCMrUgjd0trdxTa2Lw4IucPrKfvJopXHHramLOHIozbOzZlbyWaT86Qs9pDwU16Zzq8qFcW0zQFwW7gbn+GFpwYuiEnmlhTXEa88szmVaQJgJILrHhznaObXqBvqYz1CxaRvHcJRwdUDn8dDsWh5H6RXk43VYyZBnJaiB0eAhzRRquq0rQdZBKnHT2BZEVmca9A8TCCarn5VJQnU7j1l6uv38OAIUZVr51yww++dBhVC05uT+6vILaXOel3H3hbU7Sk/fVwbgCVpBUEUIiCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCMI7wyUNIQEWAC26rrcBSJL0R+BGYHJawLvYFeWZPHW0j288ewpV1/nw0nI+sLiMpkE/f9jfzZ7W0VTbL66p4fvvmclvd3fS74uQn25NvWd1GNn+x6ZUMVHQFyWvMo2eMx52P96aald5Ngyk++QJnvz2v6WW954+yfs+eT93bmxOFW24rAZynOY3tT+mUifaFjX1BHBkiawPTUM2X+rpKLyW4jCSfl0lo787BTokhkJEGiWMc3LY1O3hoX2dZDvN3LOwlNkl6fSNR2ge8nPr3EKW12TTNhzge++ZhScQ4/a5Rfx0Wyu7W0c50DHGf9w8nSsq/nLBJcCWM4N89o9HAdjbNsZ75hUzrTCN/vEwBelm3v/rA/ijCfzRBN94/jRfWlFF/6beVFF9PKrSsrOfvKp0+ho9E/p2ZZ0rOBsfCtFxfIThLj/V83IJ+mNIikReqYvMfDsAsbDKiz9rYHw4TN3CTNRIG/se30t+VQ0ntrwEwFB7K+2H9zP/pn/k6Is+Kubl8MwnFlHotuN2vLnvinD50TQ4sqmL4Hjyiccj3QEOjXdwzcemA9DbeIrn//c7+EeGcWXnMu/6W9nyq5+k1u8+eZTbv/YtIO2Cj002KaStLmH4lydSBc9ymonRYILtz3cAsOC6cqaYbeT8mWLL0UCUf3riBJvPDKWW/fO6Oj68pILP/PEIibPH/pFAjJ9ua+UH75lJhtWIQZEv+P4IE00vSueJTy7mZJ8PWZKYWuBCQsdiVPj6Mw2srs/jOxsbU+3/+9bpHOgYY3/7WGrZN2+YiiTrnNzem1p2ZFMXy++sYfeTLRRUp5NfmY75NSE5uqbRduQgG3/6fcJ+H66cXNZ/+ksU1NZPGF9f42me+K+vp173nGrg5q/8KxWz512Mj0O4DPk1De+8bGxPtRHvP1uAmWFGr06n9chwql3Dtl7KZmRRVG/gmf/3dQJjyevY4c52hjvaWPPRz2B1XvyCYOm8uSESVoeRjoYRFEUmu8SJ1ZkMmIpHVXY91kJnQ3K8/pEIz//4OLf/0zyyi0UB87tNnsvKAzvb+dKiCg492pgKtOlvHGev3MncFYWwqTt1PjbVZxK2xdnzm+8S9vtS/dQtWcG8628lt7ziL27TbFSoynPQcKSX777URDShcffCEhZXZjIeinHttHz+7ZkGbphdxILyDKxGcW8lnJ93OMTzPz5ONJQME+1vHufFn51g9QemJH8r0PUJASTAeYOZLpbmQT+7Wob5QI3C4af+QOexw0DyPNFxeD83/Mt/0t8Wx55+7t4qHlXpPDHK1CuL6JQ0+nWV1cWZNPYEKLcZ0M7uq2RSaMq38PVnTiJJ8PgnFr9l+yVM5h0a5PH/+jpBT/J6dbiznZqONqbd/lH8RXZGe4Ic2dQNgC3NxI3XlRF6vp1om5domxdTVTqNAyGyq9PZ/nBTqt/GfQNMW1GII8OMw2JMLV9dn8Pzn1lK11gIt8NEba5zwvuC8GbJJENIwrHk/bCs/uVwR0EQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQhLeDS12ZVAh0v+Z1D7DwPO0WSZJ0DOgDvqTr+sm3YnBvNS2mEh8IonoiKC4zxnw7ssXAmX4/G473ce+SMiQdWgb9DHojdI2GJgSQAPx8exv/ccs09nd42NE0zJySjNR7IV9sQjGRrkmUTnXjH4vgHQojyRJTluQjK8kCo1PbNgMgSTJIyULk7j2buWv+Lfx+Xze1uU7uXFCMpr+uQukvMLqtZH9oGrHeAHpMw5hrw1ggntp9ObLUZJD9yZkkBkPIFgMRt5nnO0b58mPHU22eO97PHz6ykM/+8Qh94xEA6vMc/N/75lHqtqfazSnJYCQYxWkxkmk3/VXbD8cS/HF/N9++soYqSUGV4FA4Quuwn2um5tMxGmI8dO7J1maDTK3LRmNv74R+uk+Psfpj0wiMRfANJ+f6nLUlaJpOf+s4iZjKzsdaGOsNsuTWKl564CTxqJrs025g/WdnkV/qYnw4zPhQGKvTCNoAhzf8kQU33sahF56esL1YOATaKGCk/dAQS26qxCUCSN4RIoFYKoDkVWF/nLA/hn9shGe/961UEV1OWQXHX34BgNq5S6mfuhyjZsQcMqLHNSTjhQ/uMJW5yPnULOL9QVSgbyzCzqfaQIKquTl4BkNU1KbR44/y6MFu6vNdTMl3IZ8tLD3V55sQQALwo1da+I+bp6UCSF417I+yr91DXZ6T2vwLH6oiTFaV46QqJxl20D0W5FCnlyFfhLVT83lgZ/uEtj/f0c737pjFtzacYcgf4ar6XEozrEQ6PKy7uQKjqhMzyBw9NER/q5d4TOXIxi7WfHgqNfNzU/2M9fXw7Pf+CzWePNb6hgZ59vvf4u5vfhdbWjqKIXkpefK11wyArmsce+l5ymfNRTp/2oPwDtMxEuSTL5/mO9dWUyUpjMUT7A2GqYzFqF+cz5k9/eg6ZOTbyK9MY3ygJxVA8qrm/buZfc31FE+dftHHm1vuwmhWUud7gKnLChjpDmA0K6Q7DERCcaISGHJtJEyGVADJq3RNZ3wgJEJI3oXKsuz8+oPzGWsap+VsAAkkgxoKCx0YXWaUmyqxukwkVJ241UCo4zhhv2/CvVXjnh1klZTjyMjAnp7xBltMSrOauHdxOWum5BGKJXj6SC9fevQ446E4iizxj9fU8vHfHeJn75vL8prsi/kRCG9j3uFwKoDkVXmFDqz+GEowztU3V7LpyVbGBkIAGIwyBVXpb8nY+sbDfO6PR/jqynyGGk+kAkhe5R8dJjzSz2B7GgFPlMo52bQeTgZd5ZQ6kcvtnO714LIYCEVV7nvxFP++rIpaSSHDYqTHBJ/feJpcl5l/vWEq0wpcb8l+Cec32NaSuneSFQOamkDRDdiHQ1yzpgRPMM7e7X2MD4epXZDHsVYfs95bjz4WIRRViWVbafpdI7pJmdR3Z8MoS26rwvGasBqDIlOX76IuX/zdhQtDInmPFIkl56Cihi7lcARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEC6YSx1Ccr6q1NcnWhwGSnVdD0iSdC3wFFB93s4k6aPARwFKSkou4DAvPl3VCR4cxPtMa2qZ88piYvNzeGh/N6cGApwaCKTeW16Tg1GZ/PH5owkMZ4vJjcq5AvdIMIbyuoL3SCBGx/Fh5q4rRUJCMcp0NoxgsihoqorRauWKW+9Mjk/XMRhNeAb7Kcyw8alVVXSOBvn59lbWTs170/tryLRiyLS+6fXeqS7XuSsZZMzFLsiz8/yJfnZu7+F4rzf1viJL3Dq3iOeO9aUCSABODwR4+fQQH15anlpmtxiwW/78IScYSRCOq7gdJiRJonM0yJl+H1+eXUzOC13o4WShXIHbTOzGSm76+V7eM78El8WAL5JgRr6Lz04twjEcw55uTgVFFNZmUFidjkGHaz85g4g/xvhwmIZXerA6TOx9upXZV5cy1hsks8DOYIcPJKic7ULXYagrim8kjKfbj280wszVaWiJdoY7xwFQVRXFYEwW6EsSs9deh9XpRJIDLLgun/42EwbzhQ+buJxcrvP3YjCYFCQp+YD4FAmMZoXA6EiqiA5AjcdxZmVzxXW3kzmURXTHGKASY4CQ7MI+J3dS/38vSZIwFTgwFTjwjYYZbvWy6r11yAaZWCTBiVd6iJTb6I+p/L+XGjEqEr//8EIWVrgBGPJHJvXpiyRwWYyT9ttlNRCIJmgeCjBzPES208J4KIbTYsRinFwIeDl6O8/dztEQv9rZxlVT8lBkiWhCm/B+y1CAHJeZtVNzcViMHOv2UGAw4rQbiL2SzH8zA0uWFTJgUmg5kizgPfBcOyVTM7HYkk+F9w0PpQJIXhUYG6XlwB6a9u5izrobKJ05G5srjcW3342maujoKAYjvpEhEUBykVyOc1eWoNcb4cMvnuIr19Syu2uU6lwnqjdMuQxXfXAKmqojKRJHX+pk9prXzQ1JYvY11+MdHmT0pW6yS8rIqajEaLo4IV5ZRU6u+/RMGvf1E/LFKZvhxtMf4tjmbu763CwiTzUT9Cafbi/bjTjvrsPqNBL2T/w+mO2X+nbq7edynL9/i/llmTT6VVpes2zZulLcp0aIHxwgDkStBux31DA6EsZiM7PotrvQdf3svZWREy9vJBYKMD4yjNWVngoF+0sK0q3sahnhh6+cu3dMaDq/2d3BdTPy+dXOdhaUZWAxifl5Ib1T5q757Dn+VVXT3UyzKwQfaQQgLsG6m6o4eNqDrEhUz88lu+StCVvq7x/in6cD7cdxpGdQMWcBbYf3T2ijKAqubCuHXuxk2opCrv7wVDRNQzYrfH1vK7s7xrh9bhFmo0JhupUvbW5MrTuzKI0f3zWbokwrxZl23k0ux/mraRqV8xaSV1lNLBwmr7gKV7eL2CPtxACjBOturqI3qnJscw8BT5TSWdmcPDZCcX0m+nCEeEzFZJ5875GWbSW/Mv0t3yfh3UUh+TtVLHI2hESLvlFzQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRCEt41LXZXUAxS/5nUR0PfaBrqu+17z7xckSfqJJElZuq6PvL4zXdd/DvwcYN68ea8PM7l0PN0QHoW0IrBnnbdJYjSM9/m2Ccv8r3TjqE6necg/ub2mUZBuw2yQJxQeX1GRicWgYDbIzCk99zTtWCSBy20lu8TJcJc/tWzhDRVsfvA00WDyf5yfurwAk92IrCjULFjMhh//D2F/8k+gGI1c/w//xP+3oZ3hQAy7SeGLV9ei6W/wUcfDIClgMP11n9W71GU7d4FAJM6xHi9f+NMx1k3LQzlbUO6yGviHq2poHQ5wrMc7ab2j3R6gfNJyAE3T0XSdmKox5IvQMx7h+5uacDtMrK7LIZJQeWhfFzZF4SduN4nwa57UPRrF2B1A0+GJwz18alUV33+5mY9OLaLxsXZMFoX515Wz96k2yma4kSSJ/c+1A2BzmVj9wXq2/v4MhdXptB8fIRHTUskK7kI7OaVG0rNDnNr+MCaLjSW33oMsj9DXEcGeZsfT8zLN+3dxxS3JgJ6mPTuZcdU1HHz2CWZdvZ7uk8cZ6e5MDfeaT34Zm/PiFFBfLi6b+asmIBEBs+PC9z3WDhEfRnMps9aUcOSlrtRbM1YWYbIqmC1OjGYL8WgyyKOr4TjrPv0F5DGIHhqb0N34062YS10Y3BcvjMlsM5Bb5uKV358hEdOQJJh/XTmmXDuP7+sAIK7q/GBzMz/OdRKOq2TYTJPOKwvKM3FaFO5bVsEvd7Sh6WA2yHxyZRW/2N7Gh5eWM+yP8qMtrWw6NcjM4jQ+t7qG6UVpF23fLpTLZu7+DVRd53ivjzK3jSvr8lha5eYD9VBkS/Bku4GHj3vxBKLML8vkS48d4xfXz0Bv9xPb0z+hn8SePkrfN4XTuweAZOjYa+PgrGnpk7ZttFjxj47Qc7qBntMNXPvZL1M6fRbP/eC/iYWTT/82mi3c+OWvXrT9f7e7HOdueZadq6fmkKlEuTbfxxXpEr8+4cFnMLCivpgtD54hHlWRJJhzTRlpOQayiktT58yZa9bRc6qBIxueSfV53efup3bxsos25vyqNIK+KEde6mLbQ03oms6sq4rROr1oZwNIALRgnPChQVbfW89zPz6e+o6UTnOTVXQRzjnvcJfj/P1bnQqFqZifQ9uBIUwWBTc6mudcAbIeTpA4Noyh1okimzny4nNEAsl7MYPRxNUf/xwHn3uC3rxZtJw5zZ0LiqnKSYY9RBMq3WNhZAmKM23nAibHuyHqp9RgpC7HxpmhUGp73WNhPrjYxZB/mK6xEDV5rrfuw3gXeKfM3Yw8GzOuLOL4lh4AqqvSUM8GlAGgQ2hjBwULCwjrOnnlb808ioZC9G95isbtm1LLZq1dT25FFYNtybifvMpqbPZ0uk4HmXFlEZFAnJceOAmA1WnkvlvKuGNBMSZZJRgI8P5FpfzPpiY8oTiSBLOK07GbZfyRxHnH8E52Oc7f9Nw8rA4nux75PQA3vv+fSJzwnWugQ+jFDmxXlWJLNzPzqmKi4ThVc3PZ8rvTZBc7mbq0AE3TScux4h0KA6AYZRZcV47NJX6HEi4umThxQI0kz9EmPYqu6yKIURAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRCEt71LHUJyAKiWJKkc6AXuBO5+bQNJkvKAQV3XdUmSFgAyMPqWj/RvocahdTNsuB88HZBVA+u/B+VLJzXVwglQX1cHooMcTrCyJpvf7+ua8Na8kgy6PCH+985ZdHvCeMNx8tMsOC0GrCaZL6ypoX0kwBUV7rNrSJzY1svUZQUgQSKqklXsZMcjTakAEoCT2/sorsvElanQ13wmFUCS3J04DVs38c/r3kfraBhN0/nJ1haW1ZwnWCU8Dj0HYaQRDGbImwEFc0C51FNOeDNahvx89ckG5pVnArCtaZhPrqyi8aVG3ruwlO9takKRJW6ZU8SR7vEJ615Zm5P6d783zLbGYfa0jnD11Dw2NAywpCqLF473s6Aik//d3IzVqPDh6nL+8fET/MNV1ZwZCHDjlFwYDDHJWJgMu5HusTAP7GznM6ursA/HAYhFVI6+3MWctSU4Mi288rszqdVCvhiHN3ZRXJeJ1Wmkv81L9TwX9nQvaz/ipv3IbuLhLHY+/CvMdjszblvHK7/+MSaLlemr14Ik0bR3BwDB8TEKa6fQ23iK0e4ult71fkwWK0c3PjdhqDsefoCymTOwp2cgXESDJ6HvCARHILMiebxJL/r7+41HoOFx2PRVCI0RvqWZSCDOVR+cQsgfw+Yw0d86Tsgbx55uZumd72frg79E1zUKaus4/vIG5s1cD6gTutWjKlpEPf82LxDvcJidjzYng3ZIZu3sf66dVR+Zyram4VS73vEwv93TwU+3tvLDO2fx3dtn0OeN4I8kyE+zoEhgUGSicZXv3jGTUFQlP83CV59q4Mq6HKYXufjGc6c52OkB4OXTQxzq9PDT986lKMNKUYbtou7nu1H3WIhAJEG208z1MwuJRyP8bn4H0sZ/htAoXylZzBc++A1+1xXFE4zy7Run4fCqyHFtcmcJnXggjmcgCMDUpQVY7MbU21mFxSy98/3s/OODAEiSzIIbb+X4yy+m2pzZtY30vIJUAAlAPBqhae9OSqfPujgfgnDZGQvF+Oe5OqV7voH04F6yZ93Df02/Gp+xmid+2Uw8mjzm6Toc2tBBTuk0lr/3Q3SfPI53aIDs0nKOvfTChD63/OZnFNZPw5Fxcc6hkiQhIVExM5uSKW4MRhnvcAg1cJ6n2I+EySqyc9v98/AMBLE6jGQVO7G53tlBY8Ibc7nMuJbkYq9xYZcVjP0BXj971MEQ5mka7cePpQJIABLxGE37djL7mus4IZv55c42drSM8Iv3z8MoS/zvlhYeOdCFLEl8aGk5H19SQGbnRtjwjxD2UFSxkhdu+Dwv9Gbw6Q3Jc/CckgwybSaWVmfROBgQISTCeZksBuavLye/Kp3AWIQMl5Hg69pooQTuHCvNreMYzW/NPfxQd9eEABKAYy9t4NrPfonmfbvILq2geOoMgs3NHNsss+KuGrZtaUq1DfvjjO0cYt1tBsxD+5CHuuk2VeK4aj5tAQOKLHGse5wXTw5x46yCt2SfhDcWCQZo2LY59dqgGYDYhDZaKEF4LML0VUXEwgkMBhn/WAR0GO7yIysSZTOyWHB9BZqmARJZRQ6yCkVImHDxGSSVkCxDLBlCYpYSqPE4BpMIwBEEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE4e3tkiZC6LqekCTp08BGQAF+pev6SUmSPn72/f8DbgM+IUlSAggDd+q6flk8tfUv6j0Cj98H0bNBHiNN8PiH4L4tkDaxON6QYUZxmVB95wouJLNCwmUi22VmSZWbXS2jmBSZO+YXoyhgNSo8dbSPp472pdb56vp6JF3nvzac4YtX16SWWx1G7Gkmtv6hMbXs6vumMtobJL8qjeL6TNSEjqxIxGMq0VAI3/DQpF3yjwxz6MwAT55IFrAvqnBjN51nGvUcgO3fge59ydd162HJ56F4wZv9FIVLJBJP8N2XmtjbPsbiqmTQTCimsrVxiPuvqcWoyPjOPkE6rmqsnZrLS6cGkSWJz6+uYkF5Jr2eEN1jIR473MNjh3q5/5pa/uGRY8wvz+DZY33sbh1ldmk6cVXnhpm5PHY4+TRu7ew3fHfXOL6ZpdheF0Sil7roPdwKwKxcFxW6gt2mpN4Pjsc4uKGTuetKJ+3XULuP6asKQQuy/PY0dj78SwxKHa2H9uHKymGstw2AaSvXsPfxPxIJ+Fl+zwd55Tc/54pb7kSSZXRN4/jLL1K3dCWLZ8wizZ1BfvgE/fG8SdsL+7x4h/3IBjtWhyhEuShGWpJBIXt+BIkouApgzTfAcQMY/s7PvGsvPPOpZNU8YJJCnN7Tz+nd/ROaVc3NofXAfo5teoFFt92FqibIq6xhx0O/Jqj5STfYIXHu1GXIs6GkX9z5EI+oGM0K01cUoao6ikGi6+QokWB8Qrs19bn8YW8X0YSGBjxzrJ+XTg2m3v/mTdOQgL1tYzx1tA9vOM7/3DGT98wvZnvzCJGYlgogeZUnFGd36wh/OtjNbz6wgLp8UQR9ITUO+un2hPm3G6ZwpHucL1QPIv3+46l5KnXtxrT1Gyxc+kNOd+jUKWZ84SABTcNtVtCj5wJwlDQTEV2noCaDotoMMl5XsGkwm5m5Zh22tHT8YyOk5eSy74k/4R8dSbWxOdPwDg1MGuf4QL94Evi7SSRA6d6vI3XvBXs2VK1B2vNDojVfIuRLBnXklrsoneZGTegoRoXuhjOYLDYKa6eixuOTugz7fajx2KTlF5KsSOx7pu3ca4PElJsq4MzE45pUnYFnKExGjp3cMnFME5I0XadhLMA3XjjFF6+uRc4wkf26NqbpGQyPtOAbGZ60ftAzxkh3F5QVM7c0g0OdHp473ofbbqKh14umJ7fx8+1t3Fc2Ak/cd27ltq3Iion1Cz/BY5VOBoKwbnoeDb1eGvq9fG519cXdeeFtzWI34nKb6T41SrrJiUGWzt2EAUq+nYaDQ5gv8vXqa6mxyKRluq6hJhIUTZlB84Hd5NfUYamswGjuJjA++fww1O5DbTyJsvdfoGgeJRUmsmWN9cfLaRsJce/iMp443Mv0wjRqRUjPJRcPh1LXrwBh/Dhly6S52N8foijfhsliIBqM43JbcWSYCXiiDLb7GGz3kZZr5bZ/nIvFLu65hbeOQoKQJCFFkvc7ZlkjHo2IEBJBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEN725Es9AF3XX9B1vUbX9Upd1//j7LL/OxtAgq7rP9J1faqu6zN1Xb9C1/Xdl3bEb4Kv+1wAyasCgzB4alJTxWUm831TMOTZkq/dFrLunYLHJLOxYQCDLPPZ1VXct7yCfW2jqBr4o+qEABKA777UhNVsxCBLVGWfKyQ2mBSyS5yYbecCQ8aHQkxZmk9Gnp39z7ZzaEMHhzZ0ICsSEb+P0hmzJ41zyvLV+OLJAJS1U3NZVOkmrmoTG0UC0LoFShfDivth5VfAXZ0MZRHeNkYCMTadDSI40evlmmnJgI2DnR5+8HIzFVn2VNsH93TiCcX53JXV/OmjVyBJEo0Dfr7w6DF2t43y+OFebCaFsWCcmKoxuySD3a2jAChni9MVWSahJouNYgmNDJuR4UCUjWoMbWYWyCAZZSJL8nnBE+DjKypZWuHmFqeL1kfakUgW072WPds6ab8qZ7txZfbTeewhTm57gcH2ZiwOB77hIWKRMGZ7cr8MZjORgJ+03DyGO9sBaD96kPqlK1N9ndm5lea9OykZf4WM/f+B2xxEVpQJ26teuIodf+pjy4OnCXgmF9YJF8BoM4w0w7IvwfIvwbwPw9GHYaztL6/7l4y1TiiMyz36FWatnhgiNW15IV1nxmjau4Oxvh52P/oH9j3xCK0H9jJl2ZXsevEhWOVASUsW4RuK7GTeUYtykQvk7Jlmpq0o5OALyWP7/mfbcRc5cefZKMqw4rIa+NSqSryROMOBKADBaGJCAAnA/3upkVhCp3HQjzccx203kWk38b2Xmzl0NnzEIE8OmVAkiQFvlD/s60TT3h7ZYW8bus4DO9uJJ5LnX2WsZcI8BZDat5Kryfie72W8O8Bgp4+BkQj6lSXIGcm5qOTYMK2vYP8rPUgSKAaJ3NLJBbnBcQ8v/fyH7Hn0IYIeD/7XFdJnFZeQV1kzab0py68UASTvIjnqAFLX2cv0eR+G9q3g68OebsGRYSa33EV2iTN1zbn78RYy8vLY+8TDvPLbnxMLh5CVicF2U1dehSPTfVHHnV3iJKvo3DWNpupE08yYlxSAQQZFwjQ3l1C6maf/5yjb/9Q0KcxJePdymA2MBWNoOuxqGSGabcG8vBDJKIMMlnk5jJtHScRilE6fNWn90hmzcReWMB6QWF6TjC+JJTTuf/wE66fnT2hr8LRMHkDLy0hRH9+/OoOaXCff3nAGRZGoy3VRLwLAhDcQ8ETY91w7mXl2IkYZ+63VyK7ktalS6CA0PYuOxjEqZuW8ZWPKzC/EnpE5YVlGfiE9p06w5Vc/JauwBN/wIP7xUZbeUY3BOPnnrMJqB+asnORvEGXLIDiKtfk5frPOwj0LS4jGVQZ8EYIxddK6wlssHiEtO5e0nNzUol0bH0a5On3SXAyG4gw2e3nx/07wyu/OsOnXJ5l9dUnq9y1JgoXXV4gAEuEtZ5AShGQJKWZABSySRjwavdTDEgRBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARB+LsZ/nIT4W9msCarIV5bGKyYwGA5b3NTgYPMu2rRAglkmwFjrh2bP8JdC0v412dOsa0pWfRb5rYhSdLk8A8gHFfxhuP8y/p63LZzgQzB8ShqQmP6yiIkOTmm9Gwbmbl2Xvx5Q6qdpurseKSZGz9Xwkh3J1d+6OMcfPYJErEYs9ZehzUtDYfXyN0LSzjYMYbNZCAv7dz+tA4FcCTGyM2sgG3fhuDZQmVnHqz+OgAhf4xETMXqNGE0TQxsEC4fDrOB6lwHp/v9bDo1yMrabL6wpobCdCvTi9LIcZq5YWYBzxxLBuHsbx/j3kWlHOkeZ9gf5WhinH1tYywsTxaSabrOqzkFo4Eo+WkW+r0RvOE45Vl2Np8e5D3zi/nJ1lZ+s7uD/7xhKkW6hC2hE8uyEpvh5nifl58c6aZrLMSKqiy+tqSKzT8+AcDhjZ3MXlOCpuooZoU+s87BcJCpq4s4taUHXYe0HCslU+DZ//kOdUtX0HvmJECqSH6ovZX6patoP3IISZKQFQNqPI7BlCzYH2xrIaOgiEW33cVoTxeFJbkUVU8lMdaKWrqSzPFD3PLR97Htha34hoepnLcCZ/ZCOrd4GekOUb/YjyPj/N9/4e+gJkCNwiv/kXwtScnjTTTw9/dtsk94aWjdwNxZlRR+7BN4PToWu5GO4yN0nBihsKqK7pPHUm0D42O4i0uZuvIq9u9/mqVr78ZpdZEwJDDm21+/pfPvmqqhKOcKLHVNxz+WDLNxZlqSx/M/w++LcWjDxACQk9t7KZ6WyYO3ziJilOjwhijJtLOtaZghXxRfJMHMojTcDjMHO8fwhROMh+LEVY2qHAdVOQ6uKM/EZEiOyahImAwyn1pVyQ82nyuOXlThpnHQDySDiyIJFZtJXHJcKLV5LgyyRM94GLNRAZNjcqPCubQ1BImGEvQ2ebA6TeiqzjgSRTdVYdB0VKuBznCUxe+pwWEzoGmgJiZfW0iyjCzLaKrKoeefYt2nv0DHsSPEoxFyyytp2LYZe3omy9/7IY5seAZN05i68iryq2vfgk9DuFwYTabk9Z5/AApmwtYNsPgz2Dd8kBV37GR0MMHep86FQ8WjKmN9vSx5z/sY6+shOD7Ouk9/gf1PPYpveIiapauYdvV1KIY3f+wIjEfQEhr2dAuK4Y0zF52ZFpbdWUNv4ziaqmMwyux+voNV760lc1Y2ajBByB+j4+QYAG2Hh5m5qpiC6vQ3PS7hnac610nveBi7WSEYTeD1xRlSZPJurUaSJRLWGE0vv0j53PkEPWMsec/7OL75RdR4nBlXXUNGXgGJmJmFLgevBAMsrnRzqs9HTa6DLKeJL19dQ4nbTiyhYbUcmzyAzAoY78KeO4Nnjp0mz2VmdX0OdXkuXFbj5PaCcNZIT4CuE2MMtPiYvqqQ/CluLOvLMZgNjIXijPaHWHJrNTmlzjfddyKuEhyPohhlHOkT731UTad50E/7aJAMq5G6fBfptmRwhCsrm5v/8evsePi39Defpqh+GlOWX0nT3l0svv0ehtpbyS6rIDQ+xnCvndJpbmZdVcyxLT3omo4ry8ziheOYnv9o8jcYRy4s/QKY7BSM7MLA1fzhQDcGWZoQqClcIpJMJBRgzX2f4dDzT9LbeIr0/AJ85nECNUMUVF7BiX0jDG7p5tp76hhv85FzQzlHDgwy1h/i0IudrLirlrH+ICab4W+aq4Lw9zKgEpBkTKqBoCxhUQzEoyJ8VhAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRCEtz9REXwxWdJg/n2w/+fnli3+LNgzJzXVNZ3Q8WE8jzWBqoMikXlHDXnTsynJtPGFNTVE4ioGWaIg3YrVpJBuNWI1KoTj557iW53rwGqUcZit2Czn/rxqXKNhWy/1i/Lpb/UiKxKZBXZGeiYX6UcCceJxleySMjY/8FOmXbkWSYbTO17hqvs+TdOghy2nh1hVl8NV9TmYzhbIH+oY4+N/OMwXl2Vzp/8MFMyGwrmgqxCPoIYD9J4apXn/IONDIYrrMymflU12sSgWuRyl20z86/VTef+v9hNNaGxtHMZskLlrQTHZzmQx2deuq+em2YUM+iKUuW1YjQo/2dpKXNUocycLu3a3jLJ2ah4vNgzgtBixmxSeO9bPZ1ZX860Np/nN7g4+sqyCDJuRDJuJf7thKm19XuaNxpG29YIOkkkheHURcYeR/DQLayuymBNSGG/1oZ8NWEjENA4834FskFj0vkpWGA6h+PuJVRRTMX0BQ20hrM4o/tF2dF0jMDZKxax5HNv8Ir7hYbJLyxnubOfQ80+y5I57kAwKi2+/m51/fJCM/AIMRhOJeIwzO7diMJm5/f5/wTds5pnfjFI6fSaZeYvoaBgjO6RyzX1fpPmol46GEG0nvKnP1DcSfuv/kO8KGvgHYdU/gxoDSYbjj0HVVX9/15Z0qLwSWrckX8sGLLn5FJ++n4Pdn2ew3Z9q6syejjNrB/6RIQDGB/qYtnIN3SeOsWLe3YQfHSCmDyAZZczvtWKtnXwueJVvJEzrkWFaDw9RVJdB7cI8zDYjTfsHOL2rD+9IhNlXlzB9RSE2l/m8fURDcaKhxKTlIU+U7T9pIrvSRWxmOt/Y3sz33jOTf33mFLkuC1lOMwPeCPcsKKXfG6HHE0JRJFbVZmMyyNjNBsyKzMyiNG6cVUhc0/ngknLmlGRwuGscWZboGw/zyIFuAK6bUSACSC6w4kwbv/3QAg51jHGsZxzK85PzveXlZANZgUWfxr8vBkB/i5cpSwtIz7GSq6oEfnsKNB0MMlV31hK3GdjzZBsth4ewOowsu7OG8hlZGIzJoLC0nDzmXHsTB599nJB3nNZD+4kEA4z19nBm1zYA8iqr6Th2mNIZs5EkmbyycjLTRYHvu4mSWY6+4n6kjf+SLP5e8HEIjUD5CtSRLoyWkgnt/aMRiqbMYOtvf4bBZCYWCtLwykvcdP/XUYwmPvjcAMrjrfzsvRmU/pXF4iPdfk7t7meow0deRRoZeTaKp2TiclvfcL3c0jR0FU7v6UeSJFbeU4c7zYTnT43Eu5PXyjX5dtLXlbJzQyfx6ORjq/DulOUwU58WZ9f6MWzNDxLJ+C7+zR2Ew8k5YltaQOXMhex54mHmXnczoXEPJdNmYrE76G44zqkd26hb+nEcWSp1eU48wRhbzgzxnvnFfPmx46ksyzvnF5NWXMTqytVIrZuTCxUjzPsQGKwo4x38712zmV7oojzrPMFUgvA68UjyNwSjWaHUbsT/64bU7xD2NaVkZFvIq87A8CZDQ73DIbpPjTE+FGagzUtehYu6xflkFSbv+Xc0D/OR3x4kcfYe7ubZBXztuilk2pPXswPGTI7W3kjF3JsppZeXf/kTbGnptBzYQ0Z+IWabDVk24D0Spr/Fy2CHj3nrSrHkWKgwHMWx4QNQdz3kTk3+DmFxgWMeysEHuL9E4q6bp3NcquZAxxizitOR3yDQT7jIZAOSrqKqOmabnXnX3cJwVwe7HnmQBTfdQWtLkKwKF/Pn5RB66AzmuIZZhpVLC9l+cJiRviDhYAwdnZL6TNKybZd6j4R3IYOkEpIljKpCQJKxShKJaPRSD0sQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBOHvJqqCL6Z4EMqXQUYZhMfAnguZlSCbUk0CnlG8gwPYJBfBxzqThT8Aqo7nsWaMBQ6WVGaR47TQMRoky2GmNtdBNKGx8dQA37plOt9/uYn20RDzSjP49JVVJFQVoyITiWup7dgzzLiL7Ox6vAV3oR1dg5KpmVjsBiSJVIEbQHquFaPRhNnuYO0nPkdXwzEsDidXfujj9AST4RILy93saR3llTNDzCnJIC/NwuOHexj2R2n2yugON5K3B44/AvZs8PYwfN1mXv7FKcL+OAADbT78Y1GW3VGF6TVP6tY0XRQDXSYWVrh5/rNLaR0O4LIYqc1zkWk30Tjgo2kwgMUoM6XAxcqabE71e+kbj3Cyz4fVqHBVfS4vnRrkYKeHexaW8LHlFRzp9vCtW2dwpMtDvzfMj++ZQ48njMts4EDnGPV5Lp480su/zi9DerojNQ49ppKzox/PVAfra3OYoZvY9XIzxoV5ZObbGesPAmC2Gaie7yLH5eXIjnYaDx3BXdjJ4qvA5S5l8wP/zexrrueKW+4kHo0Q9vtY+4l/IB4NUzJjFrKiEA8FsSoRcsd2Yx45TulHbiVgMnLT579A75kTJDSF/OoZeH25bHmkkfRcG0aTwt6n2wEYaIWRUQV7poXxwYlPwM0sFAX5F4UkQ8kVcOQP4MqHkabkU88l419e96/pO296sn81Djn10LkHPRZiynzHhBCSwxv9XP/prxP29+EbHkRTExhMZlZe/0GCv+9MtdPjGp5HmzB+ejaG9MkBIrFIgh2PNNFxYhSAwXYf3Wc8LLklk/RsL1fcaELVHBx4foC0bCt1V+Sfd+hGpxGn24J/9Nw8lGUJiy35uQy3+ihwmajPdfKjLa387L1zueuXe1PnjpN9Pj68tIx5ZQVoGkwrSMNkkMlymImpKpXZdkYDEaYXJp9gv6I2h6kFLn6+vY3HDvUAsG5aHtfPLPg7/wjC+dTkOqnIsjOnJAOCB2HO+6FsGcQC4CoEs4uyGWk0HRgG4NTOPq66uYLoy13w6uVBIjkXE9eU0XIoGZ5TUGVmtPMoY90B8qtqQFIIB+zULV1HXkUVbYf343RnU79sFX1nTuHp7yWjoAiL00HxlOn4x0ZxF9UQGDXi7WrEWjoTk/WNAyCEdwijBbLq4I7fwob7k9d/wWFw5uOodzPWFUeWJbSzhefV892YzCZWvP/DxEJBdMBstRELR4hEEjQPhwDY2TLyV4WQ+McivPB/J1LHvMF2H+UzswCYuqzwDddVjDKFtRkU1maklvm296QCSADU/iA5pS7ScqykZVnE9aqAruvomkZh22Ok7/4PtNmfIvRSL3r4XEhNaGcf2fdUcOUHPkbP6QZyK6pJzyugr/E05bPnkV06hY2/Gmbl3fk0tHv4/b4uPrGikp9tb5twf/bHA90UpNdw5Yr7kepvAH8fGCwQC4MlHVmNcYM43wpvQkaeDdkgsWBFAdrW7gm/Q0Q3dVL62dmYMixvqk9N0+k4PkLXqTG6To4ByWNxx/FRbvrCHMIGnX9+4kQqgATgySN93DanmCXVZnyhOD/Y3MKWM0PML3KwZk0lK++9j97TDUxbeRXu4lJCPi9pOQXMWh1CkoJkl1o58tIQM++qxrr7FzDjPeDpPPc7ROBPsOpfkMqXY9vxbeq0BOHVD3P3yzrXzyygIF1co1wysowS8+ENaExZsRpNVcmvrkXXdYwWGx0nPNjkTEJ72tFf/W1LA3VHL7NXFHP4wCCls7JJS39z81QQLiSjpBGSZYy6gaAsY5E04pHIX15REARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEAThMidCSC4mgw2aXoTiK5IFwfEwDJ2CylUAJKJRRnt78I+OYLaZzxX+nKXHNVR/HEu2jfp8F/X5rtR7HcMBpuS7+N8tzcwuzWD9zALQdUKxBD/b2so10/NZVZd9bihGhVmrSzAYFdqODOPKsmC2GkgkNBbfVsWB5zqIhRO4sqwsv7MWXfcx0tVBPBImp7yKRDRM98kTWGrnsKGhJ9VvnsuCUZEZDUQ4M5Asxp9qHUfKqACTHazp4OuD2e9lbFhLBZC8qnHfANNXFpJTaqSv2cPpXf34xiLUL86nbFoWFscFCBEQ/i5VOU6qcpJPrvaH4+xtHeW+3x2kPt+FxSCzqNLNrOJ0/mdTE0uqksW+4bjKeCjOytpstjYO84d9XSypdHPt9Hx+uaONf762jpJMG5IkUea24zDJVOc68EUS/N/ds3B1hfC9bhyqN8bNZdk07BmgM5J8t/nAIAtvqmCwzYvFAS73AH1ndrPnqTAdRw8BEBz3YLanEfbtIuQdx+JwcOCZJ/AND7Lgpts5uXUTw53tLLrtLhpe2cRwVwc1C5dgveYDEAzgjPdgTy9GGjqGrW4WTe2ZbH1kgLrFQaatcJGeHSTkbWPetVl0ntAZH4rQ3+xl3cdLCAyHGWjzJQv8risnt9SFcBEYbckiw4oVMNYGcz8IY+1QnvjL6/4lJickImByJF+PdzFacR+9FjNGi4krbrJy/JUeFIPMwuvLySnL5syu02x98JcArLr3PhwO56RutUAcLRiH84SQjA8GyS6JkJEbRlYshPwuSqZa6W8+gXdoCIPRCDIsunEux7cO/tkQkowcOyvvqWXrHxrxj0Yw2wwsvrWKQxs7Um2GT3v43L3VHB8NIElMCK8CeORAD3cvLCbTbuZE7zgV2Q5+vauDQX+EO+YVU5/nwGJUUu2znBa+tLaW2+cXo2o6JZk2bCZxqXGx7GgZ4SO/PciZ+zIwdm+GgjkgKxALEgmpJGwm5t1eSePmXlRVIz3NzOv+xOhRlZgn+bTuzAIrsnQMSMNgNNNx/CBOdzboOvGwg8zCYsYG+mg9vJ/9Tz3KNZ/6PE53FgGPh4GWZpr37WbZXfcy1NHISE8n236/l7zKala890PkVdWgJjR8I2E0VceVZcVoVibvlPC2FldsmLr3wow7oHM3FM2H3KkoRLCnOVh6RxUh3xB2ZxBJGmF8SObQc09QOnMOueWVJGIx+hpPk11Vh9kgE01oNA36//KGgZEe/4TQJYD24yPkVqThGwsT9ETxj0VwZlpwFzqIBOL0t44THI+SVeQkvyoNo/nc8Sra5Jm0DXk4xFUfqKf50DDdpxrJKXdRvygfd6Hj7/vghLeVRFylv8XLia09oOtMn7oY/eYNaOZaEntOTWqv+1U6+46SU1pBLBqh4ZVNzFyzjsa9O+k4doj1n/gQRzcPccdVxcgWA1XZdkIxdVI/MVXjuW4T11sUpJz65MLxTmh8ARZ96mLvtvAOoxhlrv3EDMz+GInXXxyoOpo/DrnJl9FQnJGeAEFvjLRsC0FvjLG+IOk5VvKr0rGnmYlHE4z1h4hH1VQAyau8w2FGevzoeRb6vJOL80eCyeuQbk+IPa2jFKSZ+focA4PNZ9A0DWdmNkarlZGuDvKqaxlsOcPRjc+TV1VN8bSZLL+rij5dpbPuM8QCAazZVtxqN47WJ5OhJONdEBqFRHI7pYMvUZt7CwZFBEldUv5BdHs2Iyf3YpsxG8VoYHxwAACzzc7MqzIxBu0kDvRPXE8HiyKx4PZqEUAiXHJGSSUsGXDKJgKyjFVSiUVFCIkgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCG9/ojL4Yjr6B6i7Fnz9yaJgexbE7HhCUWRZIT46gBpPEPH7CFtCyEb53BNeAcmkoLhM5+06nFCJxFWWVGWRbjOiSBLtIyHmlGSwpDqb1qHAhKdhR0NxRnsChP0xahbkEQ3HMJgUdv6xmdJpmSy7o5pYJMFIbwCTzYCnv5fG3dupXrgE79AABqORwfYWqovKJozjM1dWkeU04w/HWVGTzeGucTRdB6MFdvwPRMaTDdu3I6/9IJkFdqrm5KCqOqBzem+yoKS/zcuzPzxGIpbc/76mcZbeXs3M1cUX7M8hvHneUJy2AQ8udQSz1cF4KEGuHOUn76knODZImtNOhtNEJNBHVbrMFLufX91ahGSyk6mEMDkK+drydBR0bGlZKJEx1lRUEQkH0L1jtIasmCKjDMs2tKjEnOwMQpt7Icc2aSxypoWuUx4G2nxUzMqm57QHTdPxDg2RltWHzWVk8wM/4Ypb7mTvk49MWDc9L5/WQ/sACPu8+IYHycgvIDjuofvkcRbefAe7HvkdsXCYijkLSM/L57kffhtJVpi19nYMQQdth6dRVJdJ04Fepq1wkFMaYvsfHmCsp5uSaTMpnT4Ld76HotocskrqiATj1C3KY8rKIrKLHGTm2ZFlUeh2Ueg6HPgF+JNFa3TshFn3gBp9832FPBD1J0NNTFbw9YKrGMxO0FVC2YuIBdzIsQCHt3dhMMmsuLuWzAI76dnJedt9qiHV3e5HH+KOz3wDJOA1OVOKy4TiPH/I0vhgIzsf+g90LXk8zKuqo2ruvWTkFRANBoiGQxRVTyUa8lK3qJyuNg+jaJjMBsqy7NjPFtEbEzp7n2ylbnEezgwLVpeJVx48Tch3LgwqLc/Gn471srFxiGhCY3l1FtubR3DbTVwzLQ+7SWF6YRpmRWJRhZtPPHSEWCI5ru9sbOSzq6uoz9OYXpSe6tNkUKjOmRy8IlxYY4Eo/9/TDayfno9vqAl3ySIIjYEaZ8S1ki2PjzDcfQpXloWZt5SzfzSAlm0GRZoQeiZZDTiLJNyFFkqmGuk63kJR/TUcfuFppq64im2/ewA1npwzGQWFLLzpDjb94kfousaxTRsonzUP0EjLyWXBjbey76k/kVVSSjwSIRGL0nO6gcf/6+ssv+eDdJ86RW7lAk7t1skqcnHFjRUEvTG8QyHsaWayS53Y0yYH8whvH15zHtmRcdj1g3MLLWmYblrJ3qfbWHGnm6i/k97Gbix2B1ani4W3vIfWA3vx2h043VkEvePEThxhasEcNB2WV2f/2e291qvXkK8lASazTO8ZD0c3dTPWHwRg/Sens/eZNkZ7g9QuzCMR14mGEhTUpGFPSxY0W+oyibaMT+jPWJnOib0DNGzvA6C/1Uvz/kFu+fIc0rInX7sI70wDbV6e+cFRABSDzJTl02g4NUZJdQRzkZ1ET3BCe4NkoG7KEnoHm3BkuimorWfzr3/G1OVX0rJ/D/1NR8kqrMHbF6TUbKShz0txhpVuTzjVh9kg894ZTnKII/lzIRaBvsNgdsCUm+DU01C6+C38FIS3s0gwzkC7l+YDgyy/spigWUGPvib4xiCnfoeIhuIceL6DjhMjzFhVRDQUJ+SNcWZPPwFPlIrZ2cy9ppSeMx4cGWYMZmXSdS+AltDIdVpYVJnJntZzISWSBGVue+rfn72ygluKNY5sehFHppvmvbuoX7aSwNgoueVVjPV0cWzTC8y65jpObnuZrpPHmX7l1WSXVzM8MEpw3IMaj5FbXkF59gKc276dDOkpWwHt22HoFJKu85Fl5XSPBvGG4lTniuvWSyGhG/EMDDLa203VgkUMd7ThGehHjcdIz83H5nKRlmnB4zCiBV4TZiuDo8SJzy2uGYVLzyRphGSJDMVESJJxESc4LkJIBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEF4+xMhJBfLWBeUXAHebmh4EnoPQP5s1GVf5n+3tCFLEvdNsxAJ+omGghhtFuxrMvC93I0eU5HMCq41pUhm+bzdq5pO00CA6jwnnaNBnBYjldkOZAkUWUJRZEaDMQozkgWRAW+EkD9GRr6d9qMjjA+GyC52MWtNCYc3dtJ+fBSA2WtKAB2T1c744AC7HvldapuK0cjcG27nY8uz8YTilGfZ2NkyzPoZ+aiazrzSDG6cVcAjzX5uzRxHejWABKBsGc4sC2XT3Rx4vh1dB6NZYfmdNWCLM3Q8NKl49MimTirnZOPIEE+3vVT8/U3UHfkR1p7dsOiTFO77GVLlKko1FblpIyz7Ivqu3yBl1zAjowB5x8Ow4n70g48hmR1oBfOQDz4AS/8BffcWpIgHfcpNSHt+DPM/TN7ASaRoiMi0b+M/GiCRoZE4Mkw4345zVTH+7T2g6sgOI6Zryzn28wYSMQ2r04Qry0LxFCfjvc8x2HqGsplzAEjEYxjNFtB1ssvKKZ85F4fbTdnMObiLSrA60wDIq6yh++RxACRJJhYOYzCayKusYvejD6U+g8bdL7Lo9g+gayqKUWbGSp3dj36bOetuYKynG0eGm7yqGnY8/FsAZq5Zh8cQRzFYkeQs7IZCzBaDCCC5mCKecwEkgJY9Fb99FpKei1PXkaTzf/aRRIRmTzOnRk+xtWcrtek1rDdmU/3cl6FiFaz5d3DmQaAfdn0fLa2aePXV6JubSY9prJ6ZTVtUZfOvT7H+0zNTIST5NdM4s2srANFQEM/IIHmrS/Bv7YGEhmwz4FxdgmSQ0XUdXdeQZQWAsN/Hjod+mQogARhoOUMiHqW/uRFZkTFZrIz2dOEuLiMtV+XMnmGwKQzlGhn0RVhQnonDYiTgiTLcHWC4OwBA/eJ80nPthHzjQPIYnL4oh5c2nkTT4SdbW/nKNXXIksSUAhePHuwBdGYVp9M+GqJ5KMD/d90UdrUMs6FhEICH9nXxrVtmXMi/pnBWXI2zb2Afz7Q+g4zM9ZXXsyBvAUYlGV4TjKlcWZtDQ58PU1YpDB2EAw8QzZ7P9s6pDHeHAPCNRNj5wGlWfXo6VqsBeU0p/s1d6HENyaLguqqE8cQIs1brKAYDaVlr2fjTH1A8ZRqNe3akAkgAPH29jA8OsOyue9n64C/x9PWSX13HoeeenDD2nLIradjyUup1JODHNzzE6R0vc2bnFlZ+4J9oOx6l+/QoRzZ1ExhLBgZVzMlm5d11WB3nD+gRLn+hkB8OPzhxYcSLS+tk2XsW4Bs5xLbf/yr1li0tnRXv+wgFtVOQFZloKIi7sBh3cQnXmE5zZOgAI8oqmsZmoeoqWdYssm3nDyUx2wxk5NnwDIRSy6rn55KeZ+PQC53MvqaE8YEwsgIhf4zRniBz1pbSdWqUxr3Jc0heRRpXfaCetBwbhiwr5so0oq3eZP+VaZhzbTQ+3T5xn30xxvqCIoTkXeT07v7UvxffVknQE6WgSmL3Ez/gipW3YvGbUL0xkCUci/IJHR9GT2hkrSolFPaw/6lHKZ46g+HOdhSDgVgkQnZpjN1PdrLonlpiVpl/v3Eq//HCaVqGguSnmdn13jSkXf+KVHpF8jvWfxSKF8H02+CZT8G674CnEzJKL90HI7xt+EZDSEhU12YQ2diBa3UJvs1d6FEVyaSQcVs1hiwrAP0tXjpOjFCzII9dj7WgqTqKUWb++nJObO2m7cgwdVfk4R0OYzDLZJc4mb2mhCMvdaW25y60Y3WZsFsMfPOmag72ttLribPtlM4X1hYRVs6wszfBvr59jChDDHStwmyzYTCaGOvr4fALzzBn/U0Exz1oqsqyez7Aiz/+HmoiTtnMuRTU1DM+0Me+J/9EPJIM75Ekmes/8zmcspL8zljdMO1W2DdMvO5G2gcCfPrhI2Q5THztuimsqcvBZhHXH28ln0fFnpZBx7HDzLvuZmKRCCarFYPLxVhfL1PqluN5pAnnyuLk/AwnkIwyjvXlNJwcZckt1Zd6FwQBo6QRkmSMBhMeScZKjP6hvyEMVRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE4TIjQkgulkA/uGvgyY+Atye5rO8wynOf5bq1T7BzyILRakNLJDi2aQN1RYvw7+jFsSgfFAlUHf/WbkxFDgzOyU94DcZUqnId7GoZoXHQT47DzC1zigjGVH6xow2rUeG9C0sACPmjBMej5Ja5iMdUSqe5aTsyTDyq0nVqlIU3VJCIaxiMMu0nhqlfnE/CYmbF+z7Ett/9ilg4hMFsZvk9HyRhsvH7vc04LAb+dDBKUYYVfySOrsMDO9v4wJJyyi1BGGyZMN743PuIR1QObzxXjBSPqux+ooU1n65F0173qGRAlmVUdfJy4a0x6vPjPvJjrA0PwZVfhY3/jOTIBUlCPvRrWP4lePnrSAA1a5F3/D9Y8FHY+T9IwSFY+U/IW76ZLPY6/kekgRNw1b8ibfr/oHQJdO9HbnmZ6K27GH2oD/uCfMInhgGI9wfRYyrOFUWoGWZOo5EWV1NBNW1HBpi7ViEW7ubQ07swWa1YHA4AmvbuZNW99+EdHmSguZGAZwxdkph+5Vo2/vT7zFy7HovdgXdoAHdhCb7hIWQlGQCRV11LZ8MxAGRFYckd76W/pYnNv/w+82+8g7QcIxt/+nPQdaKhZJFzzaIlHNv0AgAzrlpHf0sTxzZtSH6IksSqD3wBTct8i/5q71L6ueNEYN6/MF71ITRNQvfqBKJeMvPtWOzG162is717O/sH9/NI4yMA7OzdyVMWN79Z8zXK9j0AZ54Dkx1e/jpoKrFZ38P/bEeqj8ShQcoXF3DGKBP2x1LLMwpqKZ+9iPYjewCwSw5Ch4dwLisECfSYivfFDtR0jW3PP0gsHGb2NddRPHU68UgE//DQhLGabXbi4Qgnt72Mf3QESIZCrf7QxzGYTGQXxtj5RAzn2gK29HrJsBkZDyeosJowmhXiZ59sf3p3P9Xzcllybx1xTeOUP8xXtjWivub4azLIrK7P4WtPnwTg3sVlbG0apijDRrbTzFgwxuziDFqGAjQPJQOw7Gbl7/0LCuexu283n9nyGXSSf58X2l/gx6t/zLKiZQDkuMzkpVn47Z5OHLILNn0dtAShus/Qvy00sTMdfMMRijQI7unDsbgAFAk9oeHf0o3hShfRkA/vcAuOjAw0NYE9M4vuk8cmjSvs9zLenwwf6W9OBkANtjbTc7oBgOKp08mvqePgs09MWE9WkqFquq7R37wbZ5qZ1v0e5l59NUe3gHcoStvhYWasLKKwJuNCf5zCWyCuaqCfPzyP4Ag2R5xtD04MrAl5x4n4vRjMFjb9/Iep5YX1U6m7eRU/7NvJzr6d3Fl7J7NzZvOZLZ/h83M+j0kxMTdnLm6bO7WOrunMXVeGJEPXyVGyi51klThQDAozVxcTCcYxmmX6mjxkryjC5bYQjyYYORvUBDDQ5qX9+AizriohsLsXyaTgXJ28no73BQjt7Sen3EXvGc+E/fhzYVfCO5MsJ+e50axgshgwmGWG2k7Q13SKZzpa+ci//B+JriBIEuGGERKDyWNyhlJEUBslLSeXudfeyFPf+Qazr7mOlgN7yCmfgmKQMegJ0swy0YTK1VPyuP+adOZla0gvfxHJXQlbvgGhseRAunaDrxeu+RbIRtj5fbj638HsvESfjPB2IUky0XCC0kwzgeEw/u092BfmIxmSv0NIaSYkWcI3GmG4y0/N/FwOvdCRumdX4xqHNnQwbUUhR17qQtN0iuoy8I1G8I+EKa7PpHJONid39JKRb8eZaUVTdTr6e/huw3+yo28HNek1/PPN9/No048pcZXwWNNjeKIePl75ISJeL1ani0jAz9z1N5FTVsHLv/wJ8WgESAZYLb79HiRZouvUCSRFxjs0mAoggeT1xpHNL1NesgxD/2EIj8KxPxK//UG+ts0Aig+AkUCMf3zsOL/90HyuqMh66/8Y72KSpGOy2Vn7qX+g++QJ9j35SOq92z79byQ6g2jeGP4tXdjn5SIZZdAgZjFiMP6Z6w1BeCvpOiY0QrKE0WwhioKVKP6xxKUemSAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIwt9N/J/7F0MsBIkwjLWcCyB5VXAYxtr53svN6JLEaHcnYZ8XxWxC88fxb+vBv6Ub/7YetHAC/kxRo9NsoGssRELVuX1uMVU5TjadGsRiTBaDf2JlVbIYFPANhYlHNQbbfQy2+xls81E+K4uAN0phTQb7nmnj0IYO9j3TRuXsHNJyrESDQXY98ntmrlnHwlvew5x1N3Dg6ccI+f0EYyqDvuSTPe+cX0yO00wwlmBKQTrv/9UBjOEhJGcu2M4FL+j9Jwn5YpP2I+yPE43GSc+1YrJOzMSZvqoQi0Pk5FwqcmAI6+lHky8SUdASULYUmjaebSFBLABF86Bje3KRJQ38/eCugv7jyWWZFTBwIvmery+5rGwJdO1BrbuDeMAJOqiBGEqGJbX9xGgE/5ZuogmNtue7OLOxm7nXFDNvnZMZK1U2/OgbhLzJIuBYOIzRYsGekYnZZqe/pZF9TzxC54mjHNv0At7+PvY99SciwQCHX3iGhTffgSPTTdX8K7A6XfQ1n6Fq/iKiwQA2ZxoAU1espmHry7Qc2MO0VWs48PSj9DWdJOQdJxYO40hPFskbTGbikeT3wZHpZqi99dyHqOscfOa3xMMTi5WFC8yeA65CsGYQnPJRAp44A61ehjr8jHQH8AwEJ63S4++h0dPIyZGTfHb2Z/nojI/yqVmfYmXxShoyC2H67bDl3yEwCJoKrgIiw/ZJ/UjNHkpqM7DYzoWc2FyZuHLXc+1n/51VH/gYksWAOhbB/0o3/i3dBHb2garReuwAzft20Xn8ME/997/TdeIo9oxMapesmrANs9OJp783FUACoMbjnNm9HTWeYNvvf0L1XDvGhM7v93UxFIiy5cwQn3jyOItuqZzQl2ySeHFwjFCWiadah/CE4hPe13SdzWfOhaBMyXcSjKr8z6YmfrSlhR9sbgYJvnnjNAA+sbKSYGRiH8KF8WL7i3x85sdT/31s5sd4sePF1Ptmg0KfJ1mMy2hL8hgNmMJdODImh5dlppuRDRKqN5a61ghs70WLJDBZLJzc9jIWhwPFYAIgp7SMqnlXTOrH5c6m+9QJZl19PVd/4mv0NjZisTtYdNtdLLrtbkxWG6e2bib//2fvvsPluAq7j3+nbC93797e+7266r1bsmRLcu/dFGOaTUtIcGgJeSEEAiShBAihBgzY2Lhb7pZt9d7blXR7L3u312nvHyuuEHICJNgGcj7Po0famTNnzsyZnT27j85vWtqmtmletIyhUyenXuvZDKOdHXTt38Xz3/k8My86F2SjZYz/3YkT3jKjsQynUm60i/7m/BWuQkiM4FASaJnMBdt5i4rZ9ov7z1s2eOIYxclzY4JHTj+C2+bmrxf8NTuGdpDQEjze+Tiv9b/GxFiEjl0jjHTHSIQzHHltgNoZRZTU+ek9EmLn412MdMVIRnLoOZPaGcVs/sUpZq6uYmLgdT4fzgaMKIVOMicmib/cR/zlPjInJlGCTprmlZxX3lfkJFh14eeD8OeraUkpkgQ2p0IqmsVmVxg6lQ9i0nNZLCMf8BR/uW8qgERyKGCAzemifu4COnZu5dL3fJDw8BCldY0YusrcdbXgMvH4IoSTGseGYrz3J/vwZ4aRTj0LqvNcAMmvRHohG4enPgwFVTDZ/WafDuFPUCqeBSxUe/7z10xoJDaf/R1iywCynP8NIjqWxDAsLIsLQkO1rIGsyLgL7NidKie3D+P228mmDQ5v6ufAC320LS1HliWObxnMj833anyg4ON8Y+m32FC/gZ54N8/3Po8qq4Sz+XvvyoJFJKNRug/uo7y5FdM06Ny/ZyqABM4GWCXj7N34OK2LlxPq68U0Lhw/ZFMpLNUNC+6C409AKoSSjfHRpT62nD43rs7qJj0TqQu2F95Y/mIX8dA4Xn+APU8+ct46KQHS2cAnM6WT2DKYvz63DmBg0Ti39K1osiA3F0JvAAEAAElEQVScT0sjS5CSZOwOBzlLwWVpxCfNt7plgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAI/2si4eGNIKngCsL4SZBksH7jP6A7/UAKI5MhFYsAkNESuOaUkD40PlXMu6ISyWfj9WR1g9ZSH5UBF0ORNHVFbubVBtAMk/dc1MjW02NcObMcyE8q7z0awuFSUVSFTEKj79gkLQtK2fdML0uuaUTXTFS7TP+JSVoXlaHnsqSikQsmgzgkk8tnljOZzLGyuZhF9YU4bCqZnMHpsTgfvbQFpyMF3Ydg3T+AZUEmApUr8WecIAG/Nn/JE3CwI7KZpcpaLr6zjYGTYdLxHNXthXgDDuwOcYm+VewuD6a/CjncDUp+UjrJ8XzYQ6QPlLPXZmIUStqB3SAr+eCcVAh8Zfn1po5Zv55cw3swlDqUG+/FiJnI17yL2GsjuEryk9wyJycpuLyB6EgSjPxFolZ4MFwqqixRPd2BTT3N8c3P4y/KTwAeOXOaullz6T1ykD1PPsr6938Yu9vNk//8j1PHUVhRRcO8hZzY9hoAWibNaz/9ISV1DTQvXsP8q+7D7U+gqG4MLYXLZ6P7wF48hUHCw4M4vT6yqSTx0DjpWAxfUTHx0ARn9u5k+c130nv0INNWrOL45k2Y+oVPvE2EJzFM8STcN1R8CFZ9HK10HqmIRs/RCYLlHiyg/2QIp9dGeaOF9GuhTgktgU2xsaZ2Dd848I2p5bOLZ7OmZg2YWj585FfXeSaG6nmdyUQBBxUthdjd54coNM6tIp2Ic+jF71LTPJt5c9eSPnju/u7fUMfzD//4vKr2Pv049XMWMP/y69HSOc7s2YKnsJBFV15PZHT4gl0nQiEiY8Mkw5M43QaJs01I5Qz8Lhsbmko4s3eUJdc2oudMFFVitDvGlfMqyDlU3rm8nv6Nx5lI5AOibllYzanROCW+cwEWqiyz8ci5fRumxfc2d/Pdd8znH6+bSedYnPbZlb+9j4Tf25KKJXx5z5eJa3EA/HY/9y2877wy7ZW+/D/Uc2ENnuM/4OL163jmlxLm2Xtp47wSrHAWucSJe14pqQPngma8yyqYiI6yeNUNBJQSLOCme/8f/cPHsCyL2ZdcxtFXX8LhdjN3w1V07t9N3ewFmDQwfCaGlh7nzN6dnNm7c6rO0oYmVtx6NxN9vXgCfroP7OLMnh1T66umTT/32rIY695Dw9xVDJyIUFDm/kOeRuFN5LIp2FWFWO0lFK37B+h+DYLN0LASRo6imiZz11/F9od/OrWNrKg4XG5SsegF9WWicT43+2/5yomvkzbSZPQMFhaFzkL+fvvfA3Bn7TuZ2Odm5Ex8arsl1zay4/FO5q+ro6jKS2Iyx/4XemmcW0JRlZfhrgjBCg8ldT7cAQfVbQF6j4YY683XUTezCABnYwGZIxOYqfxnuOxWsdcXEO4Is+LmZoZOR/AFnTTPL8Vf5HrDzqvwx0cpdrD8fTMYOTZJaYOfVCxH3ax59BzcDUBGSeOcVkjm5LkQOu/KKiTdwmcLEgtNkEslqZo2napp00nHY/iLfLzyswEqWgrwLrOhWxaNJR6aS73oioXiLTs3Jvl1spIPBTR18Jbmv3sKwm+hZQxcXjuyKuNeWEZq7+jUOs+ySpRCJ4ZuMNYXp/9kiAUb6pFVCVM/90W+sNJNaZ2XktpWTNPEG3SSS+vsfrKLacsrKKr2Eh5OcWzzELUzitj5RNfUtnULA8xYO4sD0X35uuyFfLTxHiq8VWj9E6g2GyW19RiaRnF1HcOnOi44htj4OM0LlnDwxWeonz2PqvYZHHrp2fzvD2ctWLcOW1EcRo7mw2HrVyID1VoPqd/IRw24X/93F+GNo7h96FoW03RhGue+L1/+rr+kqLSa1L4xXLNLSB8+9x3Ks7YWs8RFUZXvrWiyIJwvlw+zS0sSNrcLzVJwYpKOiVBFQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRD+9ImEhzeCzQ6KCwwDFrwL9v5gapW16D38+JQdSKHlstTOnMvxza/gDRZhRFP419dh6SaSKiO5VWSX8rq7MC2JF0+MsqK5mOpCN2Cx+fQ4yxqL2Hpqgo9fPo2qYH4ir5bWCZZ52PtsD9mUjt2lsvDyOpLRHAMdYQY6wufVnYrlUO0OvMEiEpOhqeWBsgq8hUFumO8EC3wuFaeab5+qyPidNr79aifvbKuHsplw8ik4/BAA6SseZGQywOrbWtn6yzMYmonTY+OiW1v44tiPmCEtJxXL4S10UFTlJTKaxDLzT13+tdwA4U3kKSwndckXcD9yJ0x2Qe1S6HoVNnwBhvbDwF6YdiWc3Ahz74QzL8KpF2D+O2Hff4KnFLylWMlJkg1fIPrsCL61TqKvjWKv8GDmkmj9SewVPmzVXrSBBIktA/jX1oJbwbQZhFJDDJ98nqpmC3QHmx98gMLKaiQlf911H9zL/CuuoXHBYnzFJWz9+U9oXrx06hhqZsympK6Bo6+9RNW06fQfOzy1bry3m3TMYN9zYRZcXs++Z3soa/DjLXSy7NZP4AvmZ6a5CwqIh/LvgxNbX2XlrW9n52O/YPh0B4lQiDXv+gDIHjyBClw+D5IsY5nnwiraL7qErPdcQIDwBvBXw+EH0MsWkYxkSUVzdO7LT1ZrnFuCltHRsgZ257mPvApPBR7Vw/ePfh9VVrmy8mranDMZ0QfJGbl88I4kQ6QfqhfCwF4ctuMogRkYkfy1Idlk7AvLSfbFUO2BqbozSY1X7j/J4mvqaV+5huaGhVjHs/jX1WEZ+ft7tivGvDVXsenn353aTlYVJEnC7goy94q7aFhwOcnJ4xx47mmW3XR7vpAkIUkSlmnSftEaJvv7CJRV4qot4TvPd2FXZMp8Tl45Oc5tTaUc2DjM0OnzJ/c3Ly5D91t8f0s371vVSDKrU1/kYWdXiF/sHeBLN87i+aMjxDI6sYw2tZ0k5ed1jieyaIZFwG1jdnUFs6oDCH94R0NHpwJIAGK5GCcmT3Ad1wEwEs1weCDKNXMqwe+BmiXQvwuyMWoP3sN1H36B/tNpJFliciiJP6WR2BbG0Rw4f6zhkPHY/JhPRcho+UnIqk2m8YqFPPC1jzP/8mu59L0fZKy7k4MvbMQTKKRmxhpe+/kZmuaXUDtjASe3Pn9e25sWLmXj1z+Pzeliwz1/TcP8JWi5LLKs0DBvAfufefK88qau07Y4x7z1bRSKEJI/WUVeB0gW/TkvQdNEysSgpBUevxeycZJL2iiqmcuK2yRObn0Nb2GQtuWryCQTNC1YTOfeXciKgmkYyIqCr7iYhXYvP5r9dZ5IbSKajVLsKub+E/dP7XOWtIieXwsgATi8qZ/mBaUkozlUuwvTNFl4eT17n+2htN6Px++gZJaPbb88w0R/AkmCtqUVeAIODMOipNZHeDSJ06HgXVEJ1tk57TLIqkRBqZu+YyFSsRwVTQXseLyTy++Zhctrf5PPuPBWkRWZCQeUTw8w0Z9g78Yell1fT/2c+fQc2s+xfa8wb8EG7DX+qc/93GgSM5bDXuVlxbrbGBg+wald2ymqrMLudJOMjtIw20nP0SgLZtRR4Zf5ybYe3jazit1DbpZc+R3sO74Ms2+Fw78415iFd+fH4pKcnwztLXvrTozwJ8PQLaqKHOQ6wiBL540LbNU+VK+d8f44fUdDtC4q58irA6y8qYUdj3WiZQ1K631MW1rBiz84jq6ZuAvsrL69jRPbh1l8TSOHX+mnpMZHLJyjcV4JB17sO2//vXsjVC6uxCbbuLbiCsqOZAgW1lMYqKY3vJ/w0CAl9Y0kwiHsThd1s+cy0nkKSZbP3pNNamfNZrS7i/DQAMVVtWTiCS65+15ObH0VLZNm/iVraRz8KShzYfgANF0C9SvgsXtwXP9d6oIOeidTALxrRb0IIXkr5NJ4CgJ4g0UU1dRhczionzaPuvLZZI5OgAyWZkxdn0qZm1zQKQJIhD8euQQAGSRsHieamQ8CM5IalnV+CKogCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCMKfGhFC8kbxBsEy8k+lXvt3oKfBVYRVUMP8QAUNFSXIikwuk+Lqj34SJnX0iTS2cs9UFel9Y9irvKg1F05qNAwDn9PGV54/91Tgq2dXsLCukCUNQdor/FPLJUVm98ZutEz+aZy5tM7up7u57H0zpyaV/4q7wI6sSJi6zuLrbubMnh2MnDlFRWs7s9duQJPt2BUZRZYIp3J0J3VmVhWgmxaXzSzHYVNwyAZo6akAEgA8JRgjFh2HR7j4jjZ0zSA+mUVRJTJ6BrtP5fSeUepmFpOO54iMpikscyPL4j/tv5WeTrZRvvpBZjtGyTZcj3NuimQ6jeO6n2NLDpO0F+Fqu5VMMobtmp+QnexH9VdBy4fQcjIFV96NFdOIPd0FqgQmmPEctkVlxDf1A5DcPYJncTmu9iJwyoxEOokkxtn/7JMYuRyzLtnAnicfYcn1t2AaBqH+XmZefClndu+gtKGRYFUNZ/bsoLSukcmhfroPqLSvvJhjr71M7cw5bPvF/SBJrH7b3STDk0wODSArKnMvuwnZVgb0odrOPTU+l9bZszHBRbc20LZ8Had2vsy0FRdzetc2tEya7Q//jBkXX0JpQwuJiJ94JMjOx7px+Wq46NZaLnn3fex96n5kRWbhVTeRSaaIHD2GVJ+jpq72LerJP3OZCBz8OVL72wmPqAyfORe60XVwnLJGP7puMnUnDfcRSIwxvWg6yVySL0z7V8LPOwkPpCktrKLi1kq0lnJs7mJ49r58yE7LZdicGu5rq8iMWqiqjOa20TeeZrQnTmVLkMKy/P3b6bUhyRKRkShGLorTcBM5MkTmSOi8Zje/bRGbOBdCMm/9VSg2G9lUir0b+5h7SQ0OV4bw6M/Qclmu/qtPERroxdB0iqqqMS2L07t3sPDt9/L+5zvRDIsv3TiL4WiahmIPVYVuTgXsJCPnHvUuSeDyqOwdiuO0yfx4ey/Xza2kyGtn2tnPja7xJO+9qBHdtKgKuLh1YQ1VhS6yuonbrnBmNI7PqeJQFWZWFbwhXSpAf7z/v12W1Q0e3jfAnOoCjGQYdfYt0HwJGBqR0qsYHcjRfXgC07AorfOg9MbI9cWRnQr2mvzkTdmtooczONI2Utq58CRLM7EPShRWVLL/2SeoaGmjfs58Vt35LnxFZZzZnwWgc/84lS0NrLz9gxx+6ZfouSwz16wj1N9LLp1mzrorePG7XyU+GWLtXe+ja/8eVLuD0OC545AVheKaOoY7T1KUSVLRWP5GnVLhTeCxKbR601A5B4wM7P0hZONn10V5+clJ5q8vYdE1N2LoGoMdxzmx5RVu/PTnaJi3iNjYCA63l9LGJrRMmsnhAewuN7eUXMEHjnycjy74KKZ17lqVNRtw/tPm0wkNh9uGZUFsIk1JrZ/oWAp/kRO7U8FV46Pv+CQT/fmJo5YFJ3cMs+bt0wB49jtHuPxd7ZjHJ1B9DqRfjUUNi/irA/iWVlBS60e1y5zaNcrEQILwSApXswgh+b+ixOdgbCyFPpJi//N9aFmDo68lqZk2i4qWaciKjOm0mPoaY4FiV0nuGcHnq8FT5CM8NISpaXTs2ErzomXkkknSsQ6a56+ic9cY6pIiPtNcw7Gn+jmsm8TnFLNi3Tfwpw9D2xUQH0XSktD1Cox3wEV/lQ8BbLscKHnjDt40YfQoJMYg2ACqHex+cInxwJ8KLWvQuW+U6mUVJDYP4llSDtavlzCJjqXoOjRB9bQgOx7rpHVRGbmMzsV3tmFzKOiayQs/ODa1XSqaY+vDp1l2fRM7H++kaX4psYk0iiphGmDq1gXtMLOwcWAjfx/8ADk1gqyohM/e83uPHKTn0H4qWqex9KbbcBUEuPIj9xEa7EeSZIqqasikEoQG+miYt4ijr75IzYzZuAsKmLnmUspK/JQ+eWM+IKD7Objh+7DvR/Dy5/LnQDf5u6vaGYpmCLhs6IaJS3398FfhjaMlJ1FsNlKRGNff8SlyhyZxLyhH60mQPhrCNacEW6kbSzeRHQp6gYNgjf+3VywIbxIzHUMGMigoLie6nr+P2Kw0iXAWX1CE0QqCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiC8KdLhJC8UUwTJrvByIKRA1mFoX1gwddechBJa1xqd+EtLOalH3ybd9zzL6SPTJA+MjFVheyzIyny61Y/EMngUGX+al0rE4ksxV4Hp0bjxDI6q1rPTTwzTQs9Z6BlDLyFDoqqvURGU8QnMmRTGguvqGf/830YuonDozJ/fR02p0wmmSCbTFI/dwFNC5agOpyMdJ+hpaQC8+Aptmg+fnwiyjfvmM+xoRjhVA7TMnn3XC/OTC9koue1V5O8JCYzVDQH2LOxB4dbpXVRGYlojvU1G5g8nqBlURmd+8YwTYumeaWk4hqZ3j4UtxtbSfEb00/Cf2kwkuIfn+skmtb50NolfPOJM2yYUcNAOM2xoRgfWruYb246g0O1c+/FS/ja/aepLKjmP9a2UzCmUVTmJvyTE/jW1GBpJpJDwdLyE4WNWA6l0IERzk9kT+4eAcC8xM1TP/kKy266g2R4kqaFS+g5tB8ASZZRVBVD1+k6sIcr/+I+4qEQ+55+HD2XxVNQCMB4bzcldQ0sufE2TPPsxGTLYsvPf0z7ytW0LV9FWeMcknEfHr+DhVfWMXg6zOy11Rx5ZYBlNzTTf2KSVMxCdS5l1Z2zUO0aS2+8g31PP4qey5JNm+haBaPdGbRsiLpZxfQcnmBiQOfQywbNC+6hojHDc9/6J6yzk6X9JeVcdt9nRBDJGyEdBkAaP8bQ6TkoqkxFSwGmbjF8JkJoMEEupeH22qFvB+z6Lpx6Dvf7XuK+WZ9k4lEHsbE0AIlwlq0/6MV/Xzu1894OgVro3wlOP/RuxSx08NgT9Rj6r02ClyWW39g89TqbMlh4RT3BKonjrySRnRd+1EpOBdXlYPqqtei5LBXNbWg5k7HeGLm0zvCZKP4iF4HSQta/7zO4fAYv/Mc3SEUj+X0qKlf/1Se4+H1/wdGkk09cXoqqSCSzOieHY/gVC1m3mLeujj3PdJNN6iiqzPwNtWhZnRK/k1sWVmNTZPrDKdKaycN7+/nZDU3UxMaYTOZ4IeHCqvTRH07xi73nQiM+e/V0MjmD2763i4fev4w5NYE3oFP/b8v19fFJ6zL6yxYxUmqjI9fPS70vsbZ2LWPJMXwOHxUFTq6aXcETB4ewkODgz6BlA7q3lmNHFYLVozjsLyOrNhpmX4rRAfRB5sQkmROTAHiXV5IbSyEpFwZ+WTGdBVfdwKs/+R5j3Z2UNTYTrKzmxe9+Dac3wMyLbufolhjDZ5J4Ak2se///Q5LSPPvNz5MM5+tX7Q7iofy4Jh2P03NoP7Wz5rL67e9m5HQHsqpSWtfA4Zefp2XJcg6/9Dxtyy9ClsVE4D9V86UO5F2PwNy3Qc0yjP5jaA13Y7n8eMwxFmyoJTI2Tiq8k6OvPI9is7HyjruYHBzk5R98e6qessZm5l9+Lb6iEpKRMHosyefm/i0JOUeNt4YqXxVtwTacSv4ebJrnJrjXzSzCW+hg//O9tK+oJJfWGe+L076igoISFwCDJ8PYHAoVTQVk0zqj3TEioykcLoVULIcqgeq2TwWm/YprTjGFBXYOvNjPSN/ZcJWAneEzEYqrvNhd4qvVnxo9FCLb2YmlGziaGrGVlf3WbeyqQomiMKBZaFkDX5ETT6ELu7uVgaMbySSjBANVeLfbMBPaedtKqoyVNfEGC4mHxpmz7gpy2QwFZWXseuIhLv/A5UyOpmh2OXn+2dNT23UfmsBZVEVHyWwuLYnQYo9DcgxqFkPtMjj2KDgKwBn8g5+jKVoWDtwPL3waVn40H3rS+RIUt8Kln4Xy2eApeuP2L/xB5NIay9bXIaU0UGWSu0bOrZSg+H2zObNvBD1rMjEQZ8FldXTuHyc0lKB9eQWpRA5ZksCCwgo3/iIX431x4qEMNqdCbCKDosrIqszAiUma5pcSrPQwOZSc2o3dpZL2RPj03M8w/uw2SurqyKaSWKbJweefZtlNtzM5NIDqdKKl0yiKyjPf+gq6lg/Wc3p9rHvvh5h3+XWkdQNT1zi9awcTfT2suvEm3NEs2eVfwL7vS0jxQRg/AT1b8zsvqGVUKuKFY6NMq/DRF04xpzpwXoir8OYwFA+qLY475iL+RBcA7rmlyK78ODB9aJz02bL2xgLUlsBb01BB+C8YqUlkIIuE7HHTl6vmNutuTng8bP3lIf7h9jmU+kQQiSAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIf5rETLk3UvVC2Pt9OPQgKDZYcDdG2Swi6RgA3sJC+g7tJ5dMovhtuGYWkT4aym8rg//SWuSC13+qepHHzpbT4zx1eAivXSWR02kt9VHgPr9LjZyBaleYf1kd2ZTOaHeU8sYCVtzchGRJnNozytx1+VAEQzPoOTpB4/wiJFkhNj5G98F9uHw+DF1nwZXXYR8doWXrM9TE4lz9wY+RcakMR9OUeuyocQNb0knK5sMTqDuvHZIM8XCGnqMhaqcHyaV1djzeySXvame5cx5WUww9G2Xacg+Dp0z2P9/D6tvb0Id6MBQFPRHH1dDwB+4g4b+TyhpYZx9v7VDzYTivdozz0XWtHBuKoUgSDlUmq5t0jMR57B2LqHPYMQ+Po52OkK33gwX6RBpbpQdtKInis4ME6cMT+NfVEn2uB4z8Pmztfo537zqvDelYFE9hkPHebo5v3sTauz9AOhbBX1LK01//Mkuvv5Xw8CBIEoHyyqntjm/ehMPtZcM9H8Hh8ZBNJvEVFeXLSBLR8XGSsRzBsmoSoTTz1lUTG0+x6rZWkODSd01Hy+oceinN4Bkb7Utr6TzkZcE1n6K8yc+ZfSmOvBameX4p1W0BkKF1cSmmYTHnklqyyQR7n3pwKoAEIDY+wljnKRFC8kYI1AMgJYdoWbQey7DoORpCUWWW39iM3algcyoQG4Ht3wIsWPBO3IbGPNciXhw7c151hmYSHU9DbRk4fBxoXcv+8EmSzYtYVjKNFbYqtjx0Bsu0kCRYdmMjWU8c8AKg2mUObxpg9e3VlLe0IXlsuBeUkto3lt+BBL61taSNFIMdx1FUG6d2bmPDvZ/i1O5RmheUYHcqdOwaoXZGkGlLy4iO7psKIAEorq0jMRkiGY1QaPOT8pWhOLx4Vbi0SkcdGybtqOHMvlHal1Wg2PKT+c7sG2VlYyseu4Gmq0gSKJLERx44wP+b56P0S3+LVFpKEXD92Bjphs+wvTN03vn55xdO8a0755HVTV7pGBMhJH9gqYMHGfr4J3C2t1M7GaK0PEj3pV7ubL+T5kAzPz3xU4aSQ3x0wUe5dWENdlVGd0awNa5hMutgzCgkWBXm2X/7MgCSJFNYXkKJvxa/z40Zz0/gVYJOJJeKEc3ivbiSbEf4vHbodRKBslqu/ugniY2NcuTVFzn4/EYAomOjzFgdZsk1zfhKHNhtUXLpYRQFpi1fxb6Nj5+txeI37dv4OAuvvp7I6DDZZJLOvbtYesOt7HvmCZoWLBYBJH/Kwr0cMhOMz9hAJHmGhqyf9ul/iWRZGOEIhr+WQFDH7jbRSmfRsmwNpmYw1LGfPS89fF5Vo11n0LUcI2c6KG9qIZfN4uzLUFHfwtenf5e0lORk4hhH9L1suPcG9j06QGwiQ+O8EprmlrD/hV6mr6yiY9cwLQvLKGv0UzMjyCv3d2C3K0xbXoGiSPQeC+H02FhxczNuv51Tu0fz+x9PU1/qQi11o4+lAJDdKu75ZWh9cdauqqRjKMHRnaPMvaSWPc/0UNVaSHljwZt+2oX/uVx/P4Mf+xiZQ4cBsDU0UPPtb6EWFaH4zw8kSEayhEeSKHaZsGeYAqsMu0th0ZUNJKNZxnpixPw+5l91G5YRI5tKUnBVI+GHOuDscNA1u5jcSBL3glIO3/8sTp+f8PAAy266g1Q8TnF1I7mcRNuyCoY7or/ZXAYPh1jzjmqauh7NB39ko7D3h2AaUFAN678ArjcwSGFoPzz7MWhcA73bofu1/PJQJxz9JWQTYPdA/UpQX/87rPDWsgwLaTKDMhCHYje+VVXnhS15V1aRscv0HgvTtrSCw6/0M9oVo3paIaZh4fLbiY+ncQXsLLu+iYmBBOGRJM0LSlHtMpIE3kIHsiLRsXOE9uUV9B2fYMk1jRzfOkT/yUlKqtwsubSYlDdBbsyPXFOLrmuYms5oTyfzLruaHb98AJffz9Ibb8fQdU5sfXUqgAQgk4jTf+ww9oaZ3PNakq9cfQt3XnU94ZFh7B4vabcbazyAvvonOMaeRnUGiC95P4fLmuhAQ9ZGmF3fQHuZk3HjMA92PcVzowGub76eBWULkKQLw9mEPzzLBIfNRWbnuSBeI64he+3Ya3zk+vNhX5JdwbOqii7L4A2MWRKE35uRCGMDUih0ukv5aexeCqUUTWaSV3pCXP1vW3nwfctoKPa81U0VBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEH4vYkQkjeKlobQGWi/lvS8exlX6zFlG3bDybeu9PFXzw9jWmAYBja3Cy2Swb2oHHt9AWZGRw06kZwK0oXzd9ENnYqAxWevmc5PdvRxYjjG6tYSbpxfTbH73ISvrG4Qj2exORRGu2MMnp1gPNGfIFjppqjay6yLqzn0cj/xUIbK1gCzL65GknS8wSCJyCSz1q7DsiyS4TAuv5/MxhfI9fZQeMMN+Mf7MVsbKFGyxDsTZNI6g4bFuKuIqsYqSi/7J9j0D5BLoht2Zq8t4pX7T05N8GycW4zHn0BL50hm4khIeP0S01cUUtHUhN1jI73tMJIsY29qwlZWhup2vyndJ0Cxz8Edi2r5zuYuDvVHuHxmOds7QxzoC/OvN86mRFF54q4l9A/EmVXuhUMTqEVOYrtHUAKOqXrSRyco2FBPxm0juX+MgqsbSe4eIXlwDP+NjeiZLKlslGMdO5A9NiA/saygrJyhUye5+J3vJRGaYPrqS4iODdO1bzeBikqw8m8OWVEwDYPBk8dYeNX1nNq1nfo58ymqruXM3l3M3XA1siJjd7rZ/8zjVLfPpHlRFbI8xGDHaZrmtRDq24nLX4DbX0B8MozdXYanwM6VH6ylY1eKklof6UQOy7KRSbiobHFQ1RrEMi26D/dR1VpAx54YqqLg8tlpmlfERG8hk0M2DE2bOhdGMvHmduL/FTYnXPEvSIk4Ho+Dl350fGrV4KkwV35gNh6/E4ZGYPrVkApDepKUaqMnfRqbQ0XLGudV6T37xOL9NoW/3vJJJtL5yXH+lmJcW2UWXVGPYVgoisTJHSOc8Y4yt206zYFmclmd9hUVIEl4AoXo8SyuuSXYqryYKR2lwIHit5ONTxIdzT99vmnhcrRskJM7hvEVOVnzznYcjgmS4Qm09CT+kjKu+Mh9PPONr+AtLKJpwRJe/sG/59saLOLav/k7VDWDJMvoLh+2ZH7S3qyLqzny6gAjXTEKSl3MvbQG1SGTTOf40AMHuHlBNUVeOyubi1iV68F9801EHs6HARTffDO5vg5KvIWMJ7JT5yae1ekN5Sflp3MG6ZyByy6CI/4QjHic5O7dFFx9FbGNz6BWVVG2/GIu0aPcdeCf+czSz5DVszzf8zz1vjpmFU5j7bRa5NQkQ0Vr+eVXv05p3TCK3TZVp2WZqDYbzz3wDd77me9iRXWslIERy5LtjuBdXI7ptHBeXoG2Kz9OcCwr4szoPtxqCZae5cBzTzE5NIA3WMT0VZdQWt+I0+MlFRsgl8jgKi0lHUtiyDKNCxZT1tSCruXwFgRZefs72ff0Y2RTSSpb26mfOx8jp7H85jsZ6TqNns2y9+nH0LJZZq3dkD8PukZkdBTLNCgoK8dmd7zu+RL+uJxITVKgVRA0JLRMEI/LDak4Y//8z+R6+/D+5IckJgbwFAUpKA7mPx+dMo1zF5IIT9J35ADx0LmJyKloBEmSiU+GME2TZHgS1eFkx+MSkgzzNyyiPj0XuR5WvacFl+LE0k0mh5JUtRZy4MVeiqu9BMrdBEpdJCczLL6qnq0PncHpUdn+SOfUvgZOhrni3lnUzyqivNFPdCKDMa0Q76oqzFgOZAlbpYfk/lHsxW7Sm/poX1ZB213tPPNoJ6pNZqI/TkmtD+VscJvwxy+xZetUAIlSUkLJBz/A6Be+iDYwQMENN1Bw9VXYyssZ64ky0BFByxrIioTT6yUX0CmscLP7qW4m+vLju4mBBDNWN6NnHHjVQoxQjqK3T0cbT4NpYSY17LV+clqaGWvWgQXZdAq7y83epx9j4dV3oqg2RscT2IIXhngEq73UJPYiJ0Yh2g+V82H1J8DUoaAWyme+sScs0psff1fNh83/DLIKl3wG3MWQGIHhg/lAFIcPaha9sW0Rfm96LEty1zBW1kB2qmROhnBNC1JwTSNmSkctcCCXuhkaS6NldGQZLr1rOqHBJBMDcSpbAviCDpLhLO4CB1sfPkMqlg8GmehP0LSghPBYirnrauk/OUlxtZf9L/TSsrCMbEpn5upK5q6tQNGzWH2deFxtZKI5AuXlxCfGMVUbNdNnsW/jE8y77CoKyis4vWs7LUuXk5gMIUkyJfUNSLJMWUMTLctWYhkGz9zsx+WVSMez2DxeIqPDJO0OimpqyX3rOzhuvpG004kmz6cQyOb2s2PyEco9FdRwBfdtvm/qHD3b/SzfX/995pfNf4t66f+WZCSMU/Gi/1rmS2LzAIFrm3AvLsc5owgsC1uVl1+OTFAnF751jRWE12GkIgBkLIXPZWqxWRmecP4dvZOLOdB+H99NRLjjezt54kMrKD37+4IgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCMKfChFC8kbKRLHGO5ic/7dY2Ryhvh5My6S1vIKf39KMkZmgpK6e+tnzkWWZ8COn8a6sQg06SR0ex1HnRwuaxPvHcfl8FFXXcmLiBEktSdpIU1nm4jM3FHK4uxK/y0ZFgZPSAhcAXaNRjg4nmO53Ee+KTwWQ/MrgyTAltX5sdoUFl9VhWaCoMjaXiqFlmBwaYMGV1zHR14uh5WhetBRJlpGdTryXriPy2GMU3nIrwYCb7r4U/Scm6T0SAsDmVHDf1kqRqaBc/Q1ITWKqHrr2jLHq1lZyWR3VppBO5DD1KNGxUfqOHiQZjVA3ay6VbdNxejzY7TJWJoOl6yReexWlKIg6d+6b3Yv/ZxW67axuK2FZZYBcJEtDqY+7ioK4PTbSQ1mKCiXcsk6h04ZrJEnswBjW2hqwwAhnsS3zgAyYEH22B0dTAb6ratm3cyOBaRXYVDtPfv/fSEYmmb5qLXWz5+H2F1A/ez7jfd1c+p4Pkk0mkSSJ+nkLMXI5dj/xS4pr6qba2LlvFwuuuh63P4CvuBiH243qcCDJMp5AIYHyciRZprimnnQsQsviFSg2lZ2P/YLxni5Wv/09PPNvX8ETKKRxwWL2PvUoM1ZfipbbS8f2zRRWVLL0htvQsxHaFpeSjkdRHSniE2NExobwBos4+vKDjHc30zR/MeP9PZTXz+b0ni1gwdIbb2e06zRndu8AScJfWvPWdeifs0gfHH6I7LUPcPQ/e85fZ0H3oQkcdRoVlgmZOMSHweYmZ2h89fSX+PhVX+DkI7GpTaZdXEpFTZAj40c4FDpKKB1iTskcPDYPpVYl3QMJJgbOD5RpyBXQPzJCdKdKUY0XT8CBJBvYXW5Uh43ok124ZhejFrnIdkWwsiaOxSUsu/nDyKoLXQvgCQbQMsNsfeg0N/x1NaHBYfqPHSIyOkz1tBlUtExj9qWXY3M62bfxcQBsThdX/eUniI6M0LFzCxLQftEapPoaokPHMHSJuesrScfKkSQJ1SEjKzKyIvHBNY1sPxNib6/Gt+6Yj2f3MCOf+xzelSsAGP3yVyj/+88wu9rPyyfHp471opZiXjw+iixB0GPnLx88wMcvn0ZjifeN6N3/U4xEAjMcZvJH/wmAraYGbWiI1qVLqM3UcmjsEIPJQQC2DW/n6OQxbqu4hjG5hp2PP4KWSb9uvZlkgqs//EkkSSaxcxilwImt1IWkyGROhfFcXEmsJIz3mnLsONFzOWoL5/Lcj7/OkmtvZt09f4GWToEkk00m6NixBVmWaVmyAj2ZY9OPvsuiq66n5/B+2ldcjGqzERsfIz4+Ttf+PSy/9W04XF5cPj97nnwEyzRZcNV1VLbNZ6Szl8XXvp2amW2U1tWTikbY89Rj7H/mcUzTpHXJSpbd8naKqyrfrG4Q/oe8URvdB/did7ooqa0Hm0qs0Efm+An8v/g5I92dFNfWM9nXS/+xI3iLiqmbNZfY+CjJcIi25asIVtWQjkcpqa1HtTsxtByRsVEmBwdweX1Ex0ZYev1cNv24nyOvDlJW70eWZDKuNBEpzfFtw9TPLiZQ5uLKD8wiFsry0g+OY5r54LKFV9Rx0S0tbH34zHltNw2L0GASy7I4uXOEi25tJWdXsE5N4q7yYWZNwg+fQg040SwJM62DBalHT3PtbdPQZRjuiRMaSlBa638Lzr7wP5E+eGDq32Uf/xuGP/23OBcuwH/FFcRfexUjGqXwQx8hPJpi/wu9ZJM6AJWtAeavryWb1pnoSzBtaRHNC+3IsoGWjHNsy8tctPpOkieHyKlRLCzcM4tBhsTOQZQ1AYpr64iNj1PR2oai2ll87d1kUm4mh2PYatL4A15K6r2M9+THGw63ypw1JXg23gZL7oFXvwipSahemD8Abyn4f4/7ZDYJoVOQTUBhAwSqf/s2v6pfS4MzAEvvgT0/yIeTAPjKYfH74MyL0L8LsKBxzblwlPgIhDrB5oLiVnCIccObQY9lMaJZcr1xUvvHcNQXYMRyGJEskTMRvKuqUAocZIfiWEVOLNNi5S0tDJ2Ocmr3KIGysyF2doUze8Y5unmQVbe3TgWQ/Ern/nHW3z2DyFiKRZcUk0sZNE5zYw94SIR1EpEcQ6ciTA4lqZtVjX48Tv1sifh4lnQ8RklDE3omy/Kb7yAdixKsrMbQc2TjMS664y6S4UlO79qG3e2hacESUtEIDrcHPZdjqOM4oYF+SmrrKWtq4fjmTRx97SVa1l1MeWkJyaEBAqUVqHY7cw+VEDxWRc3M2bjLzw8500yNncM7RQjJmySdTuB2+nHNLkEbyd9HzITG5C9PUfyuGeSCkDUd/GzsUWbVLaTO9zvcpwThTaTF8r+zDmfm0KnZuW78QcrrwgzLPSi9KX7yscXc9B/b+cBP9/Pz9y7FLoLqBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEH4EyJCSN4oegYUG+Eln8LMGEz093Bs88skI2Fal6ygfs58TAmSkQg1M+ZgDYBvRRXaUIJcWsdR70d2qGQyKVKxKFo2Qy6TIePN8ETnE1xedzk+h49wJsysxhxKroxE1sSmyIxG0/SEMwxFMiwMerECDpAA61zz6ucUk0lqeAJ2YqEMsixjdylIEiRycVTVxuEXn0Wx27E7XUTHRmiYtwgjFELr6sSzYiVKYYCJvm5kokxbkmHOmlJSCR+jXRmObh6i9JqVFD64DADjjpspKHUz0BFm4GSYwnI3C66sJjE+wJHXXmLdu+/F0HQM02Dg2FGKagsZOpMh8OSTmNEIwbvvxoxG35q+/D9K0038aQt9JEV1jQtZNQmW2rE77WRHkpinU8guG2ZKI5M1ADBTOkrAgRHJktgxRMHlDeT64lhYSG1Odm99jLKWFoY6TqDaHax627tIRSMoNjuv/Od3mX/FtXRs34zT6yM00EfXvt3MuPhS9j71KEtuuBUsi+joKEtvvJ2mBUtweDyodgebfvgdZq5Zx67HHkK125l/+TU8/fUv4SsqZsGV13Fi6yu4PD4OvfQsy2++k/GeLipaptF39CDpeIx5l1/D9od/hsPtxuHxcGTT8/hLypi2fDXPffurzFq7nsjIMJlkgqLqWo5v3sRFt7+TTT/8Dt5gEcU1dbz0g2+z5IZbefkH3yYdzwda9Bzax5IbbiWbStG6ZD1YJW9ll/7Z6i2qpWvtx5ipK6h25YL1NodCQk/Q5XDTaHPCgZ+AzUOscQmyLENRhovvaiETNXAEZaTSNDvGt/H4mceZWzKX+xbdx/ah7cSyMdrqWhhwnMHQTRpm+ygoVYiMmjSUFjFyOs7Op7u44b65jIxPECjzkY3rWDYT19xSzHiOVO8Y9iovFEhYmJQ2FKLabKg2BUWNMm9DOfufHyGbTnJ40/OsvPVtKIpCdHyMM3t3Mnf9lXQf2kcunQJg9dvfTWJygqe//mWw8jf5U7u2c+3HPo3NYWf7wz8kWFnLjIvvQMva8AacpOM55kyeZtqzj3JrJoPjxps4PBIm2NFByYc/RGrXLgBKPvwhMic7+LtblzAay9I5nmT99DIWNhTyWsc4n76ynZ/s6KU3lMJhU/jKzbNxqBeef+G3S2pJErkEfj2HEgxS8ZUvoxYVEXnwFyT3HyQ5bRUfS30JY8jAaozTE+2hOdDMOs8KTn33EXLTZzPR3w/A0OmTrLrjLvqOHJqqv6VtCbYjFiwycLYXYaV1cgMJbJUeJJsCkkWBFST20y6Sev46Uis9XPv+T3DqyDaSkUn6jh1mxupL2Pj1L03Ve2rnNq7+q0+SioSxgLnrr2Dw5HG2PPBjLNNEVhSW3ng74eEhgpVVbPvF/VPb7nzkQdbeHcBXPJ3aGRX4lQk4+SyDITt6NsPCq2+g+8BeTu3cQqC8liU33ILdIa6vP1bDZ05x6PmnCVRWcWTT80iyzLzLr6GqtZ3Al/6JyckJ0rEogyeOseOXPwcgWFWDlklz6MVnAeg5tB9PYZCr/vITZJMJtFwGAIfbRfvKi9n4ja+w5Lqb8fjyyyNjKVbfUUp8ohc9m8VfWsay60t45ts9rLqjgUwiycEXBpm9thrFpgAWp3aPUlLrR7FJABSUupi9sBRVlrAF7ITHM0RH04x2xTi2ZZBr3zODbG8MoyeGe04JyBKJzYM42wrJ9cSwMgZGX4xcZ5SyMjfy8RAp08IM2PEGXG9+Rwi/F/f8+cSefArJ5UIPh6n66r8Se3kT6SOHcTY345ozm9hkimQ4wsV3uMEycHq82Fxu9FwI1WZxzV/WoKWjKDYVPZNDkVQuWnUH+mgaTAsl4ECyK6QOjqOWunGsLKHv6CFqZ84lMRaic98eWpdeRiJqJxlLE6hzYJZDxBil4Jo41Yki0BVKqwqolAbgks9AKgTrPw+qPf/9zlMCBb/H5PxUCF79Muz+Tv61twxu/wVUzfvvt6uYC6s/Aft/DCv/CpLj5wJIIB8yMtkFE6dgyQfgl3flw0re8QRk49C/Bw7eny8z/y5Y++l8eIrwhtDCGbJnIqCZpI5PgAFGJIta5ib2XA/ei6rAssgcm8ReX4DWWMiOJ7poX1ZB574xCgocrL26HsVrI57SCA0mOfRKP063Dcu0LtifLEmEhpIMnpygtdJN+N3vpOi97yEy/1r2v9BHVVuA03tGWXRlPZ0HxmldVIxkZXB5vfhmzcfl8ZCKRUhGI7h8fizLYu6lV2AYOmNdZ3jtpz+c2teJLa9y3X1/i57L0bF9Mx3bNwPQsX0zlW3tVLS0o9ocOL0+LF2jsLyKVDQKlklpfSO9Rw6y4xc/o3bmHG656AYe6n10qm7TMt/orhHOcnr9kAIjlsN/WT257iiSU8Ve7cU0TXr6kuSyaZ5OPcrCprmUB2xvdZMF4TzZcBjLgqHEKmqdFotGjpKol5AdUXIZgxJN4ss3zeEjDxzgs08d4x+vn/VWN1kQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBOF3JkJI3ihaBnzlSJ4iEsOneO3+H2KdndBy8IWNIEnMXLueZCSCnsuhZGQsw0SPZkGWMBIakk0mFY9g6ho5y0SSJcqVAt7Z/k4mc5N8bf/X2Da4jRJ3CffOvpdSeQFQjG5a2CQLl5FBsSRcfjstC8s4vWd0qnkldX46946RTWs0zS9FQqLz4DgltV6KXeAuCOAvKUW12UECm92B3eXC2dxM+vBh1GAh2RnthAcH6Dt2BMs0UO0OamfOJpNw07KoFJwS2NzQdjmWYeL22Rk6FaaswU8uo+NwQtpm56Jb3sZL3/s2I52nKK1v5KI734VsM3jtZ32sv+pmUt/9OhP/9k2qv/3tt6gz/28aD6col3W0njiENfSkhh5KI7UUkt4/hn9dHbEXe1FLXNirvOT64yT3jlCwoZ7Micn86xPjuC+pIJqdYPDUXlqXr2ByeJiCsnIKSssYPHGUpkXLCQ8NsP59H8aSJC6681043R7ikxO0LFmBotoob27DEyikcf5iJvp70DIZBjuOoah2OvfuRM9mSUbCaJk0M9esY/8zT4BlMWfdFWz+6Q+Zd9nVHH7pOQBMMx+YEiivYPDkMQAMLQeWRVlDM0MdxwFoX7maXY8/hKyqODxeeo8cZOkNt7Hr8Yewu1wko5Gz5S7m5LbNIEk4PT50TTvvPB549kmu+/jnGTglE6xxv0m9939HKB1C0ZqoCukkHBqzVlcxcHJyKnRJUWVqZwTpTR6nyFmEUdKGkpoEOYphaPzTzK+y9z/GOZk6jb/YSfvySuxJN+WBJhb6l1JfWM1HNn0E3dIB0GpMllzTgGWOcPjFn3BsUxeVbTNwG+9iYE+C9uV+uvY9z/EtL1M78z6yqSS4JGSnQq43nb/PT2awVXuRJYl0LILN7mDv048x2nWGiuY2ll9/OxISCy6/hhf+4xtEx0apnzOfJdfdjKFpFFXXUtE6jcjwEOXNLex69BdTASQAWBbHt7zC4mtvYvlNd/L01/6JGasvw+aq4tUHTrLihhZCH7gHzPxnUvLVV1nwzW8iz5+HpGkowSIA1LIy1Or8U+i/vqIQz0AUUx5hUnUw7aJGbvnezqndbjwyzN9c1kZ1objGfxeWZdEV7SKSjhDOhakaNSg+3M/EwUO45s5FCRQy/IlPoodCqP/4PV54aGxqW2WLzNff8y0sn0R05y6iI8MMKip1s+dxYssrWKbJ8S2vsPptdzPYcYKyumbsJ2VyZyLozVlkl0pmIJG/FifSOBoKiEyMoezJgn7uOtKHkjjGNY5seoHq6bNYfO1N7H784d84DpMze7bTumwlyfAkLq+PrQ/ej3X22jINg92PPcSNn/4H9jz5yNR2kiRjYXFqx1YufkcrfmkUfn47WmErUd91nNq1jUwiQevyi2hatJTeg3tpv+gyiqsL3+CeEf6nJvp7KaqpY/vDP5ta9up/fpcr/+LjFM+aiTsapqi6loc++8mp9c2LlrJv4+P4S0qRVYXI8DDJ8CSx8VFe/O43aVq4hOZFy3D5CkhMTnDlRz5GYnKSXDpBUZWHpdcV8PL3/5WJvh4AnF4fl937l1x8p42+w09jYdK2uIXohJ3Dr0aQJIn5G+oAuOiWFmTDwt4bI7tjGAwTx/QiXNPz9z9FlUhFc2x7rpdZqyspqvOT3tSLNpDENasYtdRN/OU+kECSJXK9MZythcRe7MWvypilbkbCWbyFDhFG8kdMKS3Ft2ED9sZGnO3t5Pr6sVdVko3FsNfXo4dCWEYOy+hg5HScZCyCjETz4mWMdp3h0EvPcuVf3IfbX0AqHsUyTEqc1WiDSciZOJoC5IYS5PpiOFsC2Ov8pEeiFO7xEd91hvoF7bRdtpIzHQlKqt3UV+mYLp17dv0Df7HgL3D4FPqlDhRZIWZ4KbYXEgBwB+HY4zB6DGbfAoP7IDoAyz4AnmIonQmyfO5AcykY2AuTnfn1knIugAQgMQov/C3c8SA4fP/1CXP6Ycb1UD4TbB7Y870Ly4Q6oWRG/jsgQCYCJ56Cnd8Gy4Ql90DfDtj/n9B2GbRd/r/tRuF16OEMmeMh0kcnkBQZYzKLo6GAXHeUzMlJ/JfWktwzgqTKuC6qJmaXSSU1pq+sxNBM5s4rJbmxC2NzGstnJ3hZPZGcgWVYpGI5VIdKsNLN5FBqap9Lrm3A5bPT1FJJor8f34+fRAr6OPrgGSpbAvQdm8wXlCRmrLQTGniFUH8at7+A2lnzGOk6w6kdW+g+uJeCsgqKqmtZev3NaNkcB557+rzjMw2d/hPHKG9qoWPnVlw+P7KiAhZDHSdYcOX1pGJRdC3HWHcXuq6RCIU4+uqLyLLCwqtvwOl207lvN+s3fJiHyIeQ2GU7c0vmvkm9JGCCFdNQfHZyA3HMjIGsSCBL4FBQ7S5chTLXK9fzl698hH9b+2/ML5v/VrdaEKZo8Rj7rFbSWg13zS6g+GWTkKJgsyWRDYnTe0a55pYWjg1G+Y/NXcysKuD2xbVvdbMFQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRB+J295CIkkSZcBXwcU4PuWZf3Tb6yXzq6/AkgBd1mWtf9Nb+jvy8jA2AlsM53ExsamAkh+pWP7ZmZdsgGX34/L7cWU0qQOj2Ov9iHZFXJdUezLKxnr66Vq2nSiI8OMdXXiDhRSWFPLj7t/zNbBrQCMpcb43M7P8a1LvgU0EOg+Sfv+AzSe6sCo/xTRiQyti8uobAkw0hWluMaLokoEyt0Mn47yzLePoKgyMy6qxFvgxMwmyKQSFNfUodjsSBIYmo6WyTD+1a8CkDnVgWvFUmLjY5i6xtCpE5TWNRIbH2Pmqja2/HKYlkpgwV3QfhNWEvScQU17EFO3UOwypp7C5fXx1Fe/SDw0kT+Wni6e+cZXuP4Tn0WSJTgbGAFgxGJvRs8JZ7l1DW1vCL0njntdkNiLvbjnl5I5FQbAMvLXtD6exrOwDPl0BDOpEX2mG+fsYvzvbCZpROntO4zbH8AXLKb/+DHKGptQbTZkRaFmxhzCwwMEyisY7TqDzeXCXVDAWHcnJXUNxMfHsLlcaNk0sYlRMokEw6dOMmP1JUSGh5h1yWUYuRzIEuVNLcy69HKqWttxuN0YhoGvuIRF195EYUUVi6+/hVwmTbCqhtXveA+KolLV1o6iqiArrL37HmwOJ7lMmnmXXY2u5Vj1tnfj8vlIRsJc9ZcfJ5tKsvbue7A7nCQiYa7+q08SGxtl/hXX4PL5Gek8xSV334OWy5KYDGGzOzi9ewdd+7ah2pyY+qq3skv/LKVHTdITJhP9CdqWltO5f4zL3z+T/hNhVLtMVWshWlZnSBoipaeQXGW0r/s8SDIVvmqkngCz1ziQZAlfkZNNPzk59XT3mmkttF3i5d9ddzNQaPH96DN4bB7imX52P/KvZJIJAIY6jrHpR99k7V0fJh0fx+Fsw13gZ/DEMYpr6rB0i1x/HEmVsZV6yPXFsJW5UWQVl9fHi9/7FqmzoTbDZzqIhb7B5R/8K575t69gGvl7YM/BfRiaxiV338vpPTuYftEaDN1AUV//afRYFoauk07E8RWVMDEQ5vTeNLPXVKPapakAkl/JbtuGZ9lSBj9239S66OOPU/W1rxLwOhi47V2EE/njdVRVoXzhX8/LPakJunDblT9k1/5Z2zm8k2e6nqG9qJ2KiIzr355iYn9+aJN46SU8ay7GOW8eejjK4c7zh2qGbpI4rlPYEGD4TAcAk4P9tCxeRt2c+fQe2k9kZJhkNIK7IEB96zxyD+ZDyDLHQtgqPEimha3KhzaUwExoFNZXEp48eUE7jbiG3eVGVW3EJ8bxBAoJVlYzOTQwVcYyLTLJBJUtbUiqwtp330tyMsS+Zx7HUxCgefFy7C43C666jvlXXkc2GSc2PobL58NbWEQmEmMw68a6+Huk4zGUyCSXvvsDpJMJUpFJYhPjNC1aRiYVZiylYUwmGDt9mlRokqpp7ZQ3t2F3/p4hD4aWnwyvOn6/7YT/ktPr48SWTRcsP71rG4XX3YKsyETGRjB0DXdBgJW3v5OC0nKq2qbTe+QApfVNyIpCNpXE6fXxzn/5d+wuF6lohPGeTroP7Wes6wyr3343bn+QS96lkApHpgJIADKJOLlMhmQkTGigFy2bwRcsorTGQeU7nDi9fhIRBbtLRpIklPE02S2DU9tnj4VwFzm5+kOzUewyTq+N8b44PUcmCRU5yBW6mLG4gvSWQdJH8uNWz5IK0ifyE+t/NS7KDSawhhKMlLgpbixgqCOKw6Pi9tvxl7pxOFUs08RIpVCcTiQ1/1r69dAI4Q1j6TmkXApDB9npxNHWhmPOHKT6JqxAOfpsN9mlGroNbPYo2VAvis2OZZmEBwdoW3YRqViUwspqrvzIfaRjMYZPnUS22WiZsQR9OA2mBRKkDowhORXcc0rRE1lku0zm+eGptqT3jiEV2RjvehZLq8NW34gnpPODhk+zMXqclmArKXuK/kQ/sVyMsKucwNhxCDZCoBZiQ4AERx7Oh3uc2QR2DyQnwF0CRjYfyjZ6GJ7+6LmTsObTF56YgV0QH/3vQ0jSUXjywzCwG1QnXPTX0PHM+WVqlkCgBnKJc8tyCVBskInCtq/B2r+D/l0wcVqEkLxBcn1xzKSG4negDcQxJjOoi8qRvTZyPTG00RTuBaXotX5OdEUprPQw3p/g2JZBLr+rneQTZzDCWQDMeI7kY6cpvLSexnkldO4f59BLfSy6shGHR0HPmag2hY5dI0SPTFA7vRiXtxYiFkUuA103CFa6aV1UhOLQsIw4I6f7SIYnGe/tom3ZKizToLCikpV33MXKO95Jz6GDlNbVISkqnqCPJTfehpbJ4HC7iY2PYllQWF6BpKhc+eGPISExMdCLrmnUzpiFltMoKC1DS6dIRCMUFAbZ/djD6Nn8MW1/6Kcsv/lOug/up9geZHX1arx2L+tr11PvOfvecheDan8ru/HPmmZo+GyFJLuHkW0KRiSLo74AI5LBTOuYjhzjfXFKlss8e+hZYrkYr/a/KkJIhD8qZjLGf+hXoEgpbr54GSf/ESYVmQKbRk1DAR27R1h6XSN/c9k0jg/H+MwTR2kt87KgLvhWN10QBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBOG3ektDSCRJUoBvAeuAAWCPJElPWpZ1/NeKXQ60nP2zBPj3s3//cdOzMOtmcuk0Lt+Fk7lcBQFMXaeqtR10CUs3cTYHkJ0qlgXOtiBmzqB54VKOvfoiOx99cGrbpgWLueua29g8uHlqmYWFYsikjp8g9K1vkdy2neCHP4wpgwSEh5JYElQ0+1GU/CRHX6GDiN/GvPW1+X16VJxeFUMzMXI5IiPDKKoNWZHRdY3a6bPJnd1f9cMPM9bXzend2xk+/atJ0AMMne5g/T0fYaIvQco+C6vlPViuIHZDwuZQGesLo9oULNOidrqP2MT4VADJr6TjMWLjI8zfUEfuC5+ZWm6rqf4DdY7wu1B1g8TJ8wNHjGgONejEiGRBkpBsMpZmEnupD++KSiSHAn6ZOBH2bXqYuhmzGDx5jJK6RoxcjtGeMxSUlnJq1zaKa+qx2e30Hj3EjFVrGe06gzdYhJHN0rlvF+6CAMOnO1BsNoLVNZzasZVZazcQGRqk+8BeGuYtZPsvf87CK67j1M6txEMTlDU08eL3v8Wym27nyKYX6Dt8gOaFy3jtJ99n4dU30Hv4AAPHjlDZ1s6BZ59kxa1v59CLz+L0eqmZMZt9Gx9n+c13su/px1FtNpoXL+OVH32HZTfdwWsbH0ex2WleuIS9Tz/G0htv4+Uf/DuyrDB99Vpeu/8HzFl3OfufeYKxnq78SZQkLn3PBzj4/NNM9PVyVW0dIK7jPyQrq6BlNU7uGGb6RRWUNxTQd3ySQJkLp9fORH+cYIWH6ysvI/TMkzicSSJWBWpLGxWHhhgvCLD/hT5aF5VxYvvweYEe/SdjTGswqN03SOGLL/LID75PVJVw+9JTASS/svymO+jcu5nKtnZe+O43pu5rsqJyz2d/hJU1sFf7sAwT57Qg2YE49tYAo92dUwEkv5IMTxIZGZoKIJlqz7HDpBMxSusaePbbX2X12+7m+JZXmLZiNWf27mQqFUSSmLbiYuIT4/QfPYivqJhgVRWNuozDY8Nm5fhNtoYGYhufOT+cxDSJP/ccRe3tmIlzx6sPDlJ4YCd+Vx2xtI4qS3z2mpkEPSLQ4XcRSof43I7PcU3TNYQzYdZEa4jsPz9bLfnKq1T84z8SfuY5DP3CkBndlJkcilHZOo2B40cA2PXYQ9TOmsMVH7mPif5eOra9Rmx8nJZZS3D4HRjRbD4Mxy7jaAwgORVkt0r6eAi53o3U4oSD2nn7kYpUxnu7mXfZ1YCEJMuU1DUw65INHNn0AuGhQVqWLAdAy+XQMhk6d28nFY9xxQf/Gt0wUFWVPU/+kuEzHcxas56tD/5kqv66OfNZdPUNTA73Mzk0yN6nHgWgsKKK5kXL2PPkL6fKltS+yrq77+XZ//g64eGhqeXr7/kLZq1Z97ud/GQoP2H+wP3gLYdZN0HlvPyEeeF/xVsYxOUruGC5r7gEp9fHeE8nB57fyJwNV1Le0EwsNI7N4WDj179M2/JVHHvtZfqPHZ7abtXb7qZq2kwsy6CgvIJW90rKGprY+uD9XPLue8lFNZxuN9d/8rM89sW/z++rqBjT0Hjtpz+Yuh+O9XRx0e3vxFVQyKs/+R7Lb74TySpHUb3Y4zr6b7Q3ezSEvTHAlkc6ueSd7XQdGGe0J4bLV8z+TYOMdMdZtLwc/2wLTIvM6QjaYAIkkGz5ICYl4CBzYhLT6yA0mGSiP0FkNElJnZ+G2cWYhpn/Y4FlJvHYdXzZEfSBASS7A2QJxe8n23EKIxLGOWsWckEBEmBZFpIkYUkysqpgq63FVlj4hvTpn5pURwdoGmY2C7KMFYuTOXIYyeHA2d6OmclgplKoNTWYoRBaOo01YxnZS6cRTxk4wxLxkMLpvf14CnIUVYbpP3qQGasvJT4xxv5nnmTlHe9k64M/ZtmNt5PLpMkkgrz8g3/HOvvZ6bMV0uCfhZHUyJyexDmtCMWd/25nc7nRExd+/uonYky/ZC0PffaTVE+fybrrb0PNZLnU3sKWRB/V3mq+vPfLXNt8LTlFgcO/gAXvyn/XbLsM0pF8wIcsQ7QPapfBa1+Bhe+CHd+EZR+GzV85f6fS6wTeVC8C5bcELsSH8gEkAHoGJk7Bknth7/fzwU5z7oDyWTB6LB9+AiAr4KvIB5BMHXQ6/3dx62/vWOG/lT59Oj9GsyywLCy3l2jagSssoSoyuZ4ozvYi9NAwsZf78K2oBFVGKXRwuj/B7u8fY966WpxuG4dfGaBhTjFmLDcVQDJFt5BSGi6fnQWX19F3bBKnR+XY1iEa5hRzeNMAAyfDLLmmkfBIks6hJMuub8IwMyy/1ospJVFIk4rEkGWZfc88TnxinFlr1+P0eLCQMLQcPYf3Eygtp6yxEcs0ySTihIcHcfn8qKrKU//6BXLp/PXj8Hi49N0fIDY+xs5Hf4GWzQCw76nHuPqjn+CJL3+eFbfeye4n8mOJFbe8jVfv//7U+3Wk8zQzVl9COhbn/dPfS4YcLtVFdfdr4CnOX8OBGiif+ab15/8pJpCzUAMOcj0xXNOLsHQTW6UXpciJgcTAyTDPlDzBqfApAFzq7xk6JwhvsP6kxEvmQso92/CV3EzT3/wde/r/mhpbjrrpNnqPaBx5dZB562v55u3zufZbW3n//ft56sMrqCgQ17MgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCH/c3upHbi8GzliW1WVZVg54ELj2N8pcC/zEytsJBCRJqnizG/p7cxWRLFlIOhajuLYef2nZuXWSxIqb70DXcmjZDJl0AlupG8uwiL82QPy1Acysjq3CQ2x8lD1PPXJe1Z37dhOInZ8fI0sy8zxt6IMDJLdtB8A2bSayBE6vimyTUVQJQ7ewOVQkWUJxyFS1FVJS66OswU9JnQ9bsYVkt+Nwe7G73GfbK+MLFmN35P+TvOR0ksmkMQ1jKoDkV2Ljo2STCYqqPNidEsbAAOmxKJIs4yt2Uj2tkLIGP+0rS8mkkzjcntd98rvD7aGqLYA+OgpA8K534mwVE9XeTJYKSvHZPlfzaTbZrgjO6UVINpnkrmH8G+pRipxYmknqdIiEK8bzz36HB7/8CYoqKnn2W/9KZGSEwRPH2PLAj6lobOG5b3+NycEBkuEQWx74MdXTpvPS97/NwImjKKrKaz/9IdXTZrDl5/9Jx66teINFvPrj71HR3MrORx7kzN6dFNfWseXnP6Zm2kz2PfME/SeOUj1tBrsff5j62fM49upLhPp7aVmygm0P3U9RdS19xw4z1nWGxvmL2Pf0YxTX1jNy5hSx8VGaFy1j38bH8ReXEhsfJTY+Suuylex96jFcPj+ZZIJ4aILWpSs4+PxGFFXFNAxS0Qity1Zy6IX8U+A9geC5ABIAy2LnIw9S0TINgNBg35vej3/uZBl6Dk+Qjmvouo5ilymp9SArMvFQGneBA4fXTmLTJtIP/JLsgYOE7v855uAgky9tZvfGXgzNxF1gJz6ZuaD+bNrEVlODmUyhdXWjqBIOj+e8MlXTZpCKhDm9axvR0eHzgpVMQ0eXNJwzikjuGyW+qZ/MiUm8C8rImWlkWQZJOq8+SZKxu8/fB4DL50ex2ZFVFVmWyaXT7H3yEQrKyrn6o5+gedEymhct4+qPfhKH20tJXQNVbdNZdtOd2OyFVLYG8PoV7P0nQD3/M8SzYD6Wrl2wTzOXQ+vuuWC50dvDD9+5iG/cPpcnPrSClc3F/20/CefEc3EGEgOYlokiK8i68brlJLeb7O6dtDf/RgiJBDV1droOxQmU19GyeHk+FEqS8RYG6T92hN2PPURsfJyFV1/P9qcewHFpST6RDMh2Rsl2RtD648Re6MVMaCTTYYakLuyzC0EC2a2iXBwgZoUpa2zG0DWe/da/cOTl5+nYsYXXfvpDFl51PVf/1SdxuH10HdiDLMs8+2//TPfBfQQrqhjsOE4mHmWw4zgnt73G3PVXsvPRX5x3KL2H9hOfnMDlK2DfxsenlrcsXsb+Z584r+x4Xw/hkaHzAkgANv/0hyQmQ7/byT/yEDz5IejfBSeegMfeB12vQDbx27cV/ltOXwEz16xDtZ8LI7K7XDTMXYCWTePweBjv6aJ9+cXsf+4pnF7v1MTwoqqa8wJIAHY+8gDjvV3o2RxaJos3UMh4TzfBqhpyqRS6liOXyeDyeqmfuzC/P7eHka4z5wKZzurYuZVULExFyzRGOk/RdWAvmeQkatHrTP4sdpJM5LAsmOhPUD+7iIn+BLKSfwMNdcd44menGNZM0r0xcj1RZK8N//p6UgfHkP12FK8dqrycOTGJnjPwFzsZ6Yrh8to4tWuEiYEE6YRGdDRNZCTN8IBGRC4FRSW9fx8SMPyJTzL2T/9E6Dv/weAHP4TW24sxGcaMx9HHx7ESCfSJCXJdXVjahffu/2vSJ09ipdMYkQhWLIY5EWLg3nuZ+Oa3GP+Xf2Xwo3+FmUwiFwQwQyGGP/23KDMWkEpDaDCJokqM98eJhTKM9sRQ1W6yyTgF5RUoNhsntr5K67KVHHx+I4UVVQyePE5xbQOnd++YCjQA6Dy+F0u20EIpvMuryPVEib3UR/rIOFaJjJG6cJxhBGHw5DE2vP/D9B05SCSbRrIs7Dq4FBe9sV50UyfgCGAaGigOsHvAd/a7pb8qHyDStxNKZ+TDPuLD0PUqzH8HxAYgMXr+Tvu2w9IPnAsjCdTmg018Zfy37F5w/VrozZGH86Ek73gSbvoxlM+G6ABULcwHPjWtgSv+Gfb95/n1KA5Y/D6oXvC7dbDwujK9vRgTIcxUGn1sHGw2xkMKW58dQyp2YUSyKP58sJFrTgmYFoldw6R1k7BDZf/WYfScSXwyQy5jYJkWkgRZw0KyKxfszxl0cnTzIMe2DrH46noSk1miY2lyKZ2Bs8GVumbgK3KRTWrk0jpGbpxcOoWRy4IE3ft3k47HiE+MY3e5cQcKKaioxDR0nv3Wv5KJx1HtdlLhSSYHB5gc6CcdixCfDNG5f89UAAlANpmk7+hhctnMVAAJgGWZHHzxGVqXrWDv04/RvnI1mUScE9tepXHewqlywapq2pav4oVvfw1fzk6Z4mLmiefhuU/AyGFIjsHIEYiI729vBEmSMCVjKnQktqmPxNZBzLSOXGDn6LYoBU0KHfETADgUBxdVX/QWt1oQzvdophkFkyrnPgCCd9xBCCdBScfpmKB2epB9z3WTjucocNv43jsWktEM7vjeLkZjF44JBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQ/pi81SEkVUD/r70eOLvs9y3zx6e0DU3TAItcLsuVH76Pde//CKvefjc3fupzlDa2oNoc6DmN8NgAps3C3uAncHMrwVtbsbcGsFwSWi6L8TqTC3OZNIp0bnLQv6/8BoosnzcRLr7xSSRJRrUpFJS4cHhs+IJO3AE7qXgWVVGIekZJOsJkvBHcVRJJM07KbeIq8BMor8Tp9VJQWkZRTR3Ww/nJoqVf+TKGoaE6nRdMngfQNTsX3dKKXTFJbHqF7Gsvkk3pqDaZQImLYIUbf9CBZIE7EGDBldeft/3cDVfiKapBUSUqvvhFqv/92/iuvgbF5/sDdY7wu0hlYpgL7aDKpPaNUnBZPYrPTvyVfvxX1ONdV81kchhjtZPsBpX9uU30DByh78hB/CVljPf1YBoGNTNmcXrPDmwOJ6l4DNPQaV64hONbXgHAsiy0bIamBYs5seVVAFS7nXQsSs30WXTu2wWAw+MlHhqnpL6RwY78ZCRvsIjIyBC+s38DBCoqGe/tRpJlcukUABUtbfQfzU9w1rX8U+iLqmsZ6ToNgKHlwLIIlJUTGuifapdp6Lj8fpLh/AR3WVbQtRyyok69L1WbDS2bf1q4aVwYJpCMhHH5/FPtFf6wZEUhNJgEYM9TvdgcEt5CJw63SqDMTUGxE9UuEfrGv+Fds4bIY49T+S//zOTPfoZc08jkSP4aGe6MUtMePL9yCTxGBM7eVy3DQLErOD2lzF1/zVSxoupasukUqt1BMhq9oI17X3kc2WOj4LI6gne04V1VBU6Znq5DdO7fw6y1688rv+jaGyksr6Ru1tzzlq+47R3YPR5sDicLr7qBU7u2sfrt7+bxL/8DdreXZbe8jeW3vA13QYBcOoG/tIyqxhb8sg+nquPRw+hP/oQxfxFln/ok/iuvwLduHeVf+AJSsAj/lVdd0Hb/lVeSPXP6guXuhQtYWB/kmjlVzKgsQJEv/CwQXl+xq5h5JfOIa3HSeppEqQ9HW9t5ZVzz56MUF1H68b+hMHaK9XfUUdlSQG2bjw0bnFjf/UdmrAgy2uOhomUOK255GyvveCczly+ndemlXPKej3P9J/+J2tkLaV26ktFMP8nlOr7r6ii8tRW10kPq4Di2Sg/+q+rZ8uxPefXRHzJSMkB8lUZseY7HH/0SsfBYfvuuM+eNL7AsOvfuwu7xMnT6BHpWIzTQh6HrABSUlaPYbMiySt+RgwAoNht6LnvB+cgmk5imcV79kqJM1fXrXm/7XDqN8ToBOhdIjMG2r52/TEtDpBfCPb99e+G/JUngCRZzwyf/H2vuej9r33UP13zsb5FkmXQ0grcwyJz1VzAx0IOq2tBzGtrZyeSv99mZS6cxNA3T0MGy0HM5ambNpqiqBkmWyaZTGIaOaVrMXH0JSBJljc24vBeOFe0uN8lQiEwyQSoaYfDkcSzTxCyVUSrOBT5JLpVsY4BkXEO1y+TSOrFQhpoZQWIT6fPqnEzoHMiYRC+qxnF9M1KBDfecEtxzS0gNxAkVurCA8EgK07DOHqfFWF8c1S6DJWEBhmGSjOY4fSSKUlCA7Hajj49PhfD9SujfvwMSWJkMlqahnQ3jMaJR0oOD/5uu+7NgaRpWOo2VzoBqI/yzn019dgOY8Ti5nh4kh4PsyQ7K/+mLaLKLyeEU6XgOQzdJxzUM3aK0zk3PoW2AhJbJ0HPkADaHE19xCZGRIQLllUwM9GFZJlrm/Oti8PQxUv4UtnofVs7As6KK4N3TGZs2Qd/ECai0IwftU+Ulr42oL8z2h3+GO5AP99B1HdMwMAydIlcRFhbr6tZR7i6nomcbzHsbFDbmwz5KZ4CuQWk7FLeCtxSOPQqzboYzL+Z3Eh2Eab/x+d71KrRcBms+Bavug0Xvhcp5oDr4bwVq8qEiv66oGUqmQc3i/J8ZN0D7lXDLT+D2X+Tblhw/V37WLdCyHi79LHhKfpfuFf4LZjSKmUxiJRJINhum6mTvayHqZxUTyhpQ7sZW5UXx2LA3F1D03plEl1fy3GtDjPTFWXJtA8XVXk7uGMHuVAlWeug7NknGsnCtr5sKLwNQFpYhFzm4+iNzWH1bK3aXSjKaRbXL6LqFzZH/XUK1KSQmM6h2mYJSmUw8hmnq6Nkc2XSS6PgY0tnfD0rqG0iEJ5GQiI2NkpgM4fL5yaVSIEk43C5Gu89QWFHNyOmTREeHLzgHickQsnxhYEo2lcJbWEQqGpkK9hvv6aKwshoAd0GAmhmzefJf/hGnz4czPUHtT28BPQW5BBg5iA2CZUK49w/ddcJZcTOGKRnY630U3txK4S2t2KcF6Bk4zHhPlJblZSwoW8zdM97Lf172n8womvFWN1kQpkTTGs8Y01mt7MKvnAsUSUp+ZAkyfYdYtSrGXb6bGP7hJwFoKfPx47sXMR7PcvN3dnBs6MLfDgRBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEP5YqG/x/l9v1rL1PyiTLyhJ7wPeB1BbW/u/a9n/lqxg6TqKakPP5UiGJ7E7XPiLirE7XeTSClouhctbhqyoDIyeoNBfiVv2giJBgUJOzuILBimtb2Ssp2uqarvLTbCiim82fpPBxCBeu5dZwXaMeBJbVRX2piZynZ2kntmI7X0fw+5ykk3q2J0KdqeCzSGDpSLbIUMCl8eFKckY6GimhqFaZApVCuxl+IqKURUVV1ZDXrcOWZJRCgJomoHN6WbWmvUc2fT8VNtqZ82lqLqWQp8JuoURj5N4/FsUrLmabFrF0EwkSUJWJWx2J6HBXlqXLqeipZVEKIQnGKSwooZMXCHojaEpCpLNjrOt9a3oxTfNH9W1O8XimV98jWXrbqGsuJGJ5CD2DV5io6Ps2vR9Slua2PnIg1S1z0CWZfqPHWFZ7e0ASLKEZZ3/NrUsC1nO5x6ZhvFrQR75t7iuaaj2/MTMX01O03M5bE7X2WX5bTOJOEVVNVP1yopKOhHHc3byZjaRwBMoJBkJo9ry9UVGhimuqWWsp2tq2XhvN5Wt7XRMjKOoKrKiMN7bTftFaxg+fRI9l8Pp9REeHmLaios5tXMbEwO9lDe3MnLmFG5/AZIk07V/D9NWrOL45k0oNhvSb4QBtSxeRu+Rg1RPn0Vh2bl2/zl5K69fj1+hYU4xh17up2v/BHPX1qCoCqpDQZJAcchImRT68DCSooCmgWlixuKYe7dSO+Pd9J1OMXQqwpJrG7EMi4GOMG6/nSVLHchPP4DRWAeAvb6B1Gg/arCKaSuvpnbWAlLRSQorqxjvOUVBaRnljc0XtNER8JLz62SHonjcfnApJMwIRdW1xMZGcbo9rLj17ehajpLaBk5se5UWJJbdfCfTV19CJh4nUF6B0+fDZrPjKyqmacFifMXF+MrK2XDPR4gMDzA52MfQyWMU19RT2TadXE8vjo4zWJaFt7SU8GOP4r77/WQDJUwGAnhb2pFdTvodBdT7A6g11VR+5StEH38MJImC665DralBCQQouPFGYk8+ieRwELjtVpzT/zwmAb4V167X7uXTSz/NZ7Z9hnX16zjhSLHi439N5uXXyB47hmvBAjyrVmFGoyjBIL66OvxWBn/RUZIvb0L/ZSeZe+/gOftD3LDonUjRUty+LL74QQLP3szhpZvZ/bTJpXeX8PKPThAoq6Z9mY1nfvZ3FFfXcem7PoivLYi3qg7LKfH8o/9OeWMLfYcPkopH2PnYQ6y4+U5S0Qiv3f9Drv7oxwkN9F1wHLqu0b1vF4rNhmFoyMq5IWX+fp0PmCqpa2C06wzDp05O3T9/xeZ0UVhRhZbJ4CkMkgxPAjBw/ChNC5bQuXfnVFmnx0vA6UG12afCpABmX3oZ3mDxbz/xkgyK/fWXv06g2h+7P7Zxg2noaJk0lgTBqmpS0RjZRALVYceqKMDK6UxfeTG5bBbTMMilUszdcBWv/uR7SLKEanecFzJTM30W0bFhAhUVgAWWhWWYlDe3kYxGsEwTxWbDMgwKq6q56W8/D1Z+fGFzONGyZyeDShKtS5ZjmiYHX3yGS959Lye2vIKha8RSEezr6rBFsmSiOWK6SWQ0TWGlh9GuGPWziglWeimu9mKZ+bFNYjJDy6IywiMp+k9F0HQTW4kLp8+Gw2kjl9A4M5FBSWjMXlvNqz/tYNGVDQCoNpmGOcVERlMEK7xgWZi6hWGY5LIWyDJIMlYud+H5TSTO/uPs2MowkOx2rGwO6XUCe/7Y/cGvX9M8e43oSFgYkciFReJxJMsEVUUtKCAHGLqZv7xMC7tTwTQtEpMahRX1KDaV07t3MHPtOmavv5zBE8cprW9kpPMUNdNnoedyNMxdyNDZYDyAXDpFJDPGiZ2baGpfRLw3xMEtzzBj9SVYJgRKyxit7aPl0qX5gJO+w2x74KeYuoFpmgSraigIBJHCEXIeG6fCJ2kNtFLsLCZo8xJwhqG0HHJJmHkTjJ+C+hWQjUJyAg49AC0boLA+X2b//bD0Xpg4DTNvhI5noaAaLv17aFgJRQ2gpcBfDQ7v73aup10N730FQp3gKYby2eA+G+LmKztX7lf11S6D970Gk53gLICSdnAV/I+6+Y/BH9O918ppYJlYhgGKjGVBJp0PdUqndEadKoWthSgyTISypE5FKazwUjs9SPfhCWavrWbhlfUoqozqkFlyTSMntg3RdzKMc2EZxbdPg4QGbhXTZ6frWIjuwxMsuqoB07TwBp2M98ZpXlDKrIur2f98L50HxqifWUztjCCpaCb/vjQtZEXB1E1qps9ClmWq22cQHR+jtK7xbJlffXey8l8NJQnLOhtgpuVIJ+K0LbuIvqOHzjsHNTPnIL3OT0Oz165n20P3U1hRRXwiH4JTO3MOlS3T2HDPX2CaBn1HD5FLp7jixpsoH98NqYn8OEGSQbblxwaKLf/nz8Qf1fVrWaguGwc2b6Rp2lLcspdMLslrD/2YJTfewuo76sk53PxN3d/gsL3VP1sKwoV+trOHNHbW2l9ii3Qu1M5QS4Eecj27KYg/BVKO+skfMnr0A5TNbGJBXZD7372Ye366j+u/vZ0PrWnmrhX1+J1/PvcaQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRD+PEi/GRTwpu5ckpYB/8+yrA1nX38SwLKsL/5amf8AXrUs64GzrzuAiy3LuvBRuL9m4cKF1t69e9+wtv+uRrs6Mc8+KdvQdewuL+5AIXrWSTqewOFOY5omqfAkmUQcWVXxBgpxFxYjKzJaLkMukWD3k4/Qd+QgJbX1LL/17cTKFRRZIWtkcakuip3F+MLZ/FPAo1FizzxDeu8+PGsuRrn2HeiSDUmRkKT8RDssiPnHsCQLm2TDsiwUWUEzNTRTw21zU5a0Yek6ViwGuo6ZSqMEC0FVSbqcZOIxFEVmcmiQkc7TlNTVU9Y0Dbvdj5MMkmWRO3yEwY9+FLWyCtenvohUVo3ssJFwxykwJYxcjlQ0ip7LoNgdeAIBsqkgTq+Kb/wUkseDs8SBXHrhxP4/En/wmct/LNduJplk+0M/5cBzT7H85jvY/eQjqDY7sy+9jN2PP8z8K67l1M6tpKIRVtzyNrY88GOmLV9FZHSEkc5TrLrzXWz5+Y+paGnFGyzm1M6trLj1bex58hGcXh/Ni5ax/5knWHztTRzbvAktk2HRNTey7Rf3M2f9FfQfO0x4eIhVd97Naz/9AY3zFmKaJj0H97Hqznex45EH8RUVUz9n/lQ9p3dvJxWLsvT6W9nywI+ZdckGhk93MNHXy+q33c3WX9xPWWMzRVXVHHrpOVbccicd27eg53LMuPhSdj/xS2asvoR4aJyBE0dZftOd7N34GCW19RRV13LopWdZfO3NjHV3Mjk8yNz1V3Ds1ZeoaZ+FYrMxeOoE05ZdxN6NjxMbH2PaytU0LVhKOh7HV1hOUFHwz5r2Vnftr7whs+7f7Ot3KDqEEvaw+6lu+o5N4vTZ2PCeGfmwJcNCP3kYe98JQt/5Dq7585FUFSObpWD9ekY//3ncn/kKe7qLGO1PY3MqrL2lDg8JjOOHUCcHUQOFjH/jG7gWzKf0U5/CnJwkWdqCgYIs5cN2JNNA69rDhGWAZSLbbOx69CGyqSSzL9lAy9KLeOAzH6Np/iJK65tonb4QwxPEyI5jGDrDpztIRSNUT59Fz6H9jHd3su59HyabSZGORjEMDbvLjaegkFw6g2Xq2LI5Mr98lNz0NgovXksyNE4qmn+SsitQgLeoBE8ojJVOIwWDGJrOsLeEkYyFLEHAZcOuSugm+F0q1YUeksePg6YhnQ0DsnI5sNtx1deTOXGCXP8AksOOo7EJZ2vLm9bH/4U/+XtvJBNhJDWC3+anwFmAIxJDy+Qgp6OHQkiSlD9Imw3J7WYgYGCNjfPy6BYeHH+epRVL+eCsD1D3yLth/edBS0NqghH7ch79xmmcXpVl1zWz84lOHG6ZhpkT7HrsR6y47R0Eyio4vvllRs6cYv7l1zDW00mgvJKRM6dpW34RAyePUVxdy8ntWyiqqqZp4VKe+uoX4dfGjJd/6K+ZHB6kun0m/ceOUN7YxAvf+QaZZIKaGbMpbWzCGyjC4Xaz7aGfkopE2HDvX3B693Z6Du2nqLqWJdffimxTSU6G8PgD7HjkAcZ6uiiuqWPNu95P/6EDnNq7g9LaBmbUNGHbs5fcmtXs2f4K0dAE05evYta6K/CXlP5uJ/3Az+CJD5x77QzA5V+C6deBzfkH7N3/1p/8tftfGek8jYVFLpXGMA0cTheOAh9D8iQJLUFtyom/e5hIZTXdB/dR1TaD+OQ4p3ZsZfqqtRx8YSOhgT6a5i9m+uq1xMbHKaqqwZIl7A4n0bFR7G43WjqN3e3G7fOjaRkSBQqluptsOoNp6KTiMcZ7usilUpQ1t6Lnshzf/AptS1fSfWgfc9ddSTqZoKRuOrkUxCd1IqMpXD4bdpfK6b1jlNb7Ka3zEQtlKK7ykoykObV7jMVXN3By1wi17cH8e1SGZDhHKpYlUO7GMsHptTHSGeHU7jFmrKqkY+cwTfPKSMWzNMwpYXIwiWma6Jp1NndEwu+1KImeIHP0KM7pMxj6+Mfh18JFgu97H4729nzIm6ZhmSaSzYbq82NvbcVeWvJmdfMf5fWbPnkSMx7HSCSwDANjdJTRf/j8eWUqvvhF5IICJFli/Dv/QeHn/5nJuI3oaAqX347DrZKIZEnHNGyOSQ6/+COWXn8rPYf3UTVtBopqQ1FtbPn5j2hbvoro6CjTV68h1N/Hye2bUWw22pZdhKHreAoCbH/4Z2QScdqWr6J+znxM3SCbSTF8uoOGOfMZPHmcA889BcD0VWuZuXY9RjZLiWInq1oc9k7iVt0EbH4CFpTGR0HPQioEyXE4+DMYPwmtl+XvZZIEbVdC6DR0b4amNfDal2DpByHYkA8l8VWAvwIq5/9Jhi/9L/1RXrv/G6kTJzDGx/OBRtkstspKTp6yGB2DqrYADreNXEbHU+BAsckMnQ5TUOLC4VZxeu2k4xqqTUJRZYY7o0wOJaifU4LbZyc6kaLr4AROl8q0ZRWY5v9n767D5Crv94+/j42te7JxFyJIcHfXQqE4VGlLqbfflhptqQulQml/FFqkLW2B4lbcgwUSEuKerNv4kd8fZ5MlJEBks7ObvV/XNdfMeXbmnM+ZeebIJM99AqIJm2zSJdmRo7gsSqzYoWF5B6vmtzB6ejVuzifVmaOqPk6Rk8csLiKTXInr5bEtG9O2SbW10t64nvIhw+hsaiBRVk6suAR8n3uv/RnTjziWoRMmkU2nyGcyWLZNsr2d2lGjyaXTdDQ18Or9d2OYJtMOO5rRM/Zgxdw5xEtLWfDc07jZDDOOPh4v7/LK/Xex5/Gn8OQtf6GsdghHf/yzYWBWLocBNK9bwdCKOHUr/41TWgONCyBeAcW1kGqF4bMgXgljD4OiqoJ9zt12uf4L0LR6JdmuLl594G4Wv/Q85UPrOfDD51MzbiJ5J051Sbyg9Umv2Bk7m8L9iN0tk/c44EePMjX9GmeXXsMj0alc88WHAfjzHz7Bhxpvp6I7XGlJxWGMbX2cV4xPMPPKn2BZYbhuc1eWK+98k/vfXEfENtlndCW71ZcyrraYsdVFjK0pprJoCwGK0lcG3YGSiIiIiIiIiIiIiIiIiIiIiIiIiIjIuxU6hMQG3gaOBFYDLwHnBkEw9x3PORH4LHACsC/wmyAI9vmgefeHQRUbNK1cQT6bwTRNyktskl4Fbg4s2ySf8TCtDuxoBNuxMQwTy/dJpZKYjoPneViWBUFALpMiGi8iGffJ+BnSbhrbshmWGEZpvJT0ypXhgPNoNLxCOhDEYiSLy4g4NvgesUwrTraNjB1hvWOCYTCkuJ6YHePtpreJWlFyQQ7P96jySihK5wlcFyOTIcjnMUyTIBIhX15CNpPFzedwc3mi8Tim4xCxyyn3F4HnkvLrIJcnP/8tmm+8CVyXigsvIHLYIXQloMQpwUtmyCa7IAAnVkQu62A7JhXL/g4dK2D0wTDiAIgVfeD7XCC75ICgDdYvXsLbLz7FktkvsueJp7Lg+acpqaymcthw5j/9BDOPOZ51ixaSz2YYOW0Gc5/8HxP3PYh0ZzvNq1Ywcd8DWfjiswwZNxHTdlg9fy6TDjiEhiULiRaXUFRWzsp5cxi7xz60rl0dXgV+6DBWzHuDkbvNoLOliXR7G0MmTGLt2/OpHjGagICOxkaGjBtPe0MDseIi7EiMzoYmKkcMJ9XWhoFJUWUZHesaKBtSS6qtDS/vUlpbQ1djM/Hycix8su1tlAytJ93YSKS0FBODTGsLxUPrybS2YjkOTjRCurWVoupa3I4OAsskYjvkOtqJlpXhtbcTOBEirkums5NodRXZjk6CRBzHjpNsSmHgU1oZpWjPPTAsq9Af6wa7RAgJQPP6DgzfJN2ZxzAMYqUWhu+T+dM1JJ94ksT++1N67DE033ADib1m4aeSFB11FNm5c2n7+z+IHnYM1uHHYybbiXauIzpmDNFx48BxcFetwutopqO2nLgfxUllwou0OzZBUSnuiqV4y5YRGT0Kb2gN7e2dROIJTNPEy7tES4pZu3AB2c5OiiorqaioJt6VJPXqaxjHHI+b6SDd1Ung+yRKy7AcB3v5CqL1wwgsi4xjbbyCfGmiCDORIDNnDh0PPIgRj1N69FHEpk+nZfUqIkVFgEEu2UW7XUplaQzP9WlJ5agti9OZzuEHYbBF3DGoLk1s8j56qRTZpUvD8BHAiESIjhmDlUhs/qYX3i677e1asxazuRl8H0wDTJNMfQkNXop5rfNY0LKASZWTmFg+kanLXsCIlWGUjwLPBcPC9/Ks7BrHS/etJJfx2OeUMViWQVdrBs9txYnmKauuwnJcUm0teJ5LcUUVbj5HJB5+1rbj4HseZsQhcD3AoKullTmP3Ivr5pl+2NGU1tRiR2JkUgliiRRtDWsxgNXz55HuamfifofgZ9IEpoEdiZDq6IAgoKJ+BL6XJ5/NkU52UlZVgxEEuL6P7dh4eRc74hBtbsNYvRpGjiT/xhvkcymKZu5O641/JTJ+PJEjDqNyyjTM2DaEh2Q6YOkTMPcuKK6GsUfAkBlQOmSnfJbvYZftuwBNq5aTz2QxLQujyCYb8XH9PEN8g3iqNQxRiJfR7JaQ6ujEjsVxolECz8ewLDKdHfi+Rz6bIVpUCgSYpoEViRL4PrlUikg0SrSoiEwqSVuxS1O+mXKzmOHLusg88zzp3WewYP4bjN//ICLRGBgGth2hq7WJoooqvHyOWCRGfNly8uvW4wwfDjVDyVcMJZ308H2IJmx838eyLEwvQ+vKNlwjQmldKRiw9PVmFr/SQGV9EZP3G4KbdympjNO8vJ3SuiKsiIkTs8EwCNyAIAArYtLVlAHTwMt7BD4EgU80ElBptGA0rCbI5TGKijCAlptuwl2/nvIzziC2+8wwEBAwslmMRALDsjASCRLTpvXlR9wv+29q+XLo7IRsDj+fA9Mi9/bbtN5yC2ZxMZUXX4QRieJ7LnZVFaTTGNXVpGJD6OryyabyxBI2TszC94EgwDA66GxZQ0llJYGXx/N9YiUlBJ5PtqsTJ15OPpMiXhLHME1M0yaXTgIGPh6+5+Flc5i2hWlaeJ5PV3MTpbW1EAS8+dgjNK9azvi992fE1OkkIy6ZooDa2BhcIw0uDOlcit22DOON22HyCeB7YDmw+HGYcDR4OehYA2MPB3zIdoVBI7lOyHSCEw9fUz0O7AREiyBa0guf2oDUL/vujvByOTILFhBks5DLg22TL6pk2aIsZkkJpZUxDBP8AGzHxHLM8LDCMjFtE9/z8F2Y+9RqVr/dxpDxZUzYqw7DgkxnnliRg+/7rFvUxujdKjAcGydi43o+Xt7DMnycmEM66UEQEC91sJNtmKuXYBhgxBNkHYtkPAq+j2nbGIaB73lhiJ9p4kRipNtacIqLyaVSvPXUYwybOo2ymjqCwMc0TPLZbPdrwbIdDMMgANxsFt/3KKmuxQBMywYCfN8j2dZKSXEc8ilcz8QpqybT1RmGCZXYGPlGalwPMq3gJCCfBMzwu+O5EC+DaBlUjYOyYQX7jN9hl+u/AG2Njbj5DKZpkU+nsSMRIoliSrwOqB5V0Nqk1+ySISQ3PL2Uq+6Zx9+d7zO/ZDVznWn87Av3A3D/375PU+MfuaCjk9eiES4vHs4/V3cQteKs2eePTBu5DKaeCtFiAN5Y1c6/X1nF7OUtLFjXSd7rWb1h5XHO2HMYF+w/itqSPgtMlJBCSEREREREREREREREREREREREREREZNAraAgJgGEYJwC/BizghiAIfmgYxqcAgiC4zjAMA/gtcByQAi4JguADR0v0h0EV76ltDQEWGasMM2ISjW56dUs3k8FLpjCLi3CiUdKdnVjRKJHIB18FMwgCss3NmKaJEYvhbGnwePNiSLdCtBRqJn7gPLNNTRCJYPg+ViyG9Y4Bv24uR2AYOI7T84JcOhzwFism294eDuTbMNCorGyLy/D9gExXFjNiETN96FoLdgRK6z+wvgLbJQcEvZObzdLR0EwkGgUC8rk8iYoScp0pTMPCsg1yeZdoIoqXy2MEBpZt4Oc9TMsIB9IHQDQC6TTYThhsAxglJQTt7WB1j5BzXczqarymJgzbBseBdDpsa2vDMAwoLibo7MSuqMBPJgGwSkrwk0mMWIzA9Qg8F6e8nHxbG1YiEQ52y+dxSkvJt7VhRKNY0Sh+JoOVSODl85iGgWHb+LkcZiRC4HlgGBimiZ9NY0Zi+KmwP5uxBEEujWE5YV8PPIiXb7yqvJ9O4+fz2KWleMkkWDZWLFqoj/C97DIhJABkk2R8B4OAaHo9QS5JNjEMM5MhiMWwPA8zFsNPp7ErK/FaGnGjcYxUmsCycIqK8Do6MGMxrJItDNDtWBcOULSLybg2pmURRCJE3yOgI5NOYRgmbj4g5hibbDffzc3n8V03DI+yLJx4z1W/gyAA3+/T8JoNxwWG0a/H3ezy297A9zFMc7tfn03nySTzxKM+ZusKgmgxQelQPDfAiVvYdhhwRroVIsVgmGBauK6P53pEzYCs74cDm02DvGti4WL4LmYujxmP4+WyBLkcVmUlfldXuN0uKsIGsCz8fB6vsxPDsjDjUYKuJESi5AgwTAuzsxMzkcApKQm3v5kMfi4XbsszXZi+j2lkCWKVGNHwexF4HkB/CnTaVrt8392E50KuKww+MN//M8vnsuRSKeKlpRiGSS6dJvB9YsXFH7ycTDt0tYJtgxXBw8DHwYomwu9REOATbm9Nz4N8DgIXP+NC4GGaEGAQmA544YD6IJ8n8DzMigoiFRXg+7gtLfjROHkX/JyL44CZSWKVlwNgRiLhMYTrEnheuG23LPyci5fP4wcmgWGBaXcHAgRE4k4Y8uf7BEEQfg+y4XcryGTBsSGfD2tyXejeLphVVUS7l9uH+nX/Ta9cCfl8eIzpdJ832RZWURFmURFG93Fd0B2CYNo22fXr8SIJMCwwwbQNfDcgyLkYjo2byhKLgevEsW1wIpGN2+ZsZxrSrURph+I6SFRurCWbSuK5LonS8NwnCAIC38fs3nZlU0ly6TTRoiIisTjvKZ+GfBYicbD73bHkQNKv++6OyKxeTZBOhxOGgRGLkXMtrHgE37CxIg4YBk7UItvSjm24gIkZj2JGIvieTz5vEE04eC1NBJkMQWkl+ZxPcU0Jpm0DhGGMqRRWVRWB65Jbtw4It3sYBoEfnvNjWxgEYEKQzUMkglmc6I4NMDCDPEY2iRGN4cXKsbpf6wY+2XQKy7RIFBfhuzkM38PwcxD4YDqQKCfd3orhZolV1HzgfmUXssv233w+j5fPY1gmRj4gUvw+20MZiHa5EJKGzgxH/uIJxtg+/3XP4aqKSnx/Jt/9wp0AvH3vbZzd+EMOSaWZHYvRYZn8pnEMh3c9sXEe7tjjyJ/xN6JxG9PqOd9zPZ9VrWmWNHWxpDHJkwubeHphIzHH4mMHj+WTh4ylKGr39SoPVv36xxAREREREREREREREREREREREREREZG+UPAQkp2lvwyqkF3eLjsgSHZ5u1YIiQw22vbKQKW+KwOZ+q8MVOq7MpCp/8pAtUuFkPh+wCdvfpknFjTyPWc1H+FLXDKklunpvfjiF/4OQPLFF7nw4Ut5e7jBWRPP4va3b+eTEy9h37//laL4aFwvxoyi+7mj5fs0GjMZMbWS8XvWMmJKJaZl4PsB0biNYYZv3dKmJD9/aAH3zllLTUmULx8zkTP3GoFlKiNjJ9MbLCIiIiIiIiIiIiIiIiIiIiIiIiIig54uoSgiIiIiIiIiIiIi8i6pnMt3/zuXh+et50sHj2Pko/dDKSx1HA7Kl2x8nl1VxVf/5bH+mxdy/L5f5vXG13m5/Q1m7vcFnrzzX8QS1YyLl7Bv4vc8EfsR6xZbLHm1cZNlxUscdjt4GLsfPZIx1UX87tw9+ehBrfzgnnl87d9vcP2TSzhv31EcPbWOEZWJ7VqfTN6jJZmjJZkDIOaYlMQcqoujCjgRERERERERERERERERERERERERERERQCEkIiIiIiIiIiIiIjIA5RtSBFmPIAggADbe09PGFtre8TyCgMAPCFyf9lSeec1J1iazLOxIc//aNhqzLudWlVHzxBomxp9kvRun2baoWRmj6S9vEngBfi5Hadam5rbVNK14nX3ik7klfjdnNB3E/iNOpzJaS9YspT72O8Y0fYvV6bHUF52GZ9QSs4qwTJPmrMfs+5bx2v3LGBU1qXJMHAO+bwa8bCX4e1OGq+6Zx1X3zKMCg3rTosI0iGMQM0wsAwIDfMJbBmgPfDp8n/bAp90PyATBFt9HC6gxTWotixrToto0qTZNqkyTuGEQJbxFDDACMLrv602LMsPofp8By8CwTAzLwLDNcNoOp7FMDLv77+/8m/2uv1kG2Gb3897xN9PoXnD3st7x2Njw2NhCO/S8pptTXxzOT0RERERERERERERERERERERERERERDajEBIRERERERERERERGXBa//U2uRWdvTa/53H5Mikg/OF8Tyy+bSRYtThHSfRlquLL+IM1jkTeZ7K1J14yj2GZmLaDM2o62XmPUXzshZxcdBx3uo/yjZpf8/DY24haMQjGk1u+kP14CFjJbxdkyfoOJx37eepqR4EBLR1Z5i7sYMnaJIszPgClxQ6nHDKCU3xYkszwfGuShaksqzM5GlyftOeT9vMEfpi1YRlgYBA1Dcosk7qIw0TLpNyyKO++L7NMDMMgFwR0eD7r8y7rXJeGvMci1+P5bJakv+XAknf60eg6jq0o2RjyEfgBeGGgS+AF4PoEeR8/7YPnE7gBQff9O6fxPnhZvan+ewdgRK0+XaaIiIiIiIiIiIiIiIiIiIiIiIiIiMhAYQTvcfXDgc4wjEZgeaHr6FYNNBW6iJ1A6wVNQRAc15sL346+uyt9DlqXvtPrfRcKvu3tb+95f6qnP9UCO15Pf9j2wq73vu4MqmlT/aXv7kz98TPfUVqnUH/rv/3xc1FNW6eva+pvfXdL+uPntLMMlnXtrfUcCP13Rw3kPjGQa4edW//O6LsPENbc3wz0frA1BtM67pTfy0RERERERERERERERERERERERERERAaSXTaEpD8xDGN2EASzCl1Hb9N69Q8Drd73o3WRHdHf3vP+VE9/qgX6Xz3bq7+tR3+rB1TTYLQrvr9ap/6pP66Dato6/bGmQhtM78lgWdfBsp69YSC/VwO5dhj49fcXg+F91DqKiIiIiIiIiIiIiIiIiIiIiIiIiIgMLmahCxAREREREREREREREREREREREREREREREREREREREREREZHCUgiJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIIKcQkr5xfaEL2Em0Xv3DQKv3/WhdZEf0t/e8P9XTn2qB/lfP9upv69Hf6gHVNBjtiu+v1ql/6o/roJq2Tn+sqdAG03syWNZ1sKxnbxjI79VArh0Gfv39xWB4H7WOIiIiIiIiIiIiIiIiIiIiIiIiIiIig4gRBEGhaxAREREREREREREREREREREREREREREREREREREREREREZECMgtdgIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiBSWQkhEREREREREREREREREREREREREREREREREREREREREREQGOYWQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIDHIKIRERERERERERERERERERERERERERERERERERERERERERERnkFEIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyyCmEREREREREREREREREREREREREREREREREREREREREREREZJBTCImIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMggpxASERERERERERERERERERERERERERERERERERERERERERGRQU4hJCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIoPcLhtCctxxxwWAbrrt7FuvU9/VrY9uO4X6r259dOt16ru69dGt16nv6taHt16n/qtbH916nfqubn1463Xqv7r10a3Xqe/q1ke3naHQ66Tb4LmJiIiIiIiIiIiIiIiIiIiIiIiIiPSKXTaEpKmpqdAliGwX9V0ZyNR/ZaBS35WBSn1XBjL1Xxmo1HdlIFP/lYFKfVdERERERERERERERERERERERERERESkb+yyISQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKydRRCIv1LLgmdDeD7ha5ENggC6GqAbGehKxF5f+l26GosdBUi0luyneH+R2RHeXnoXA/5dKErkYEm26lzE5Hekm6DZHOhq5D+JtUS3kQGqq5GyOj3MhEREREREREREREREREREREREREREdm12IUuQGSjFc/D/74PTW/DjHNg1kehcnShqxrc2lbCq3+DV26CspFw5Ldh1IFgKr9I+hE3B0seg0e/D+kW2O8ymP5hKKkrdGUisj18D5Y9BY9eBR2rYa9LYY/zoGx4oSuTgajpbXj2t7DgPhg2Cw77OtTvXuiqpL8LAljxXHhs0bIYdj8X9roEKkYVujKRgSeXhIWPwGM/BDcNB34Bpp4KRVWFrkwKKd0Bb98LT/w0nD70qzDxRIiXFrYuka3VsRZevw1e+hMkauCo78CYQ8ByCl2ZiIiIiIiIiIiIiIiIiIiIiIiIiIiIyA5TCIn0Dw3z4K+ngpsJp5/9DSQb4eRrwI4WtrbByvfghT/Cc9eG053r4ObT4WOPwtCZha1N5J3WvAK3nR0OGAZ46EowLNj/04WtS0S2z9rX4eYzwv0QwONXg5eDI64EwyhsbTKwpNvhrsth5fPh9Nv3w6oX4eOPKUxC3t/6ufC308DNhtNP/woy7XDcT8HW4GKRbbLyJbj9wp7pe78AkQTMPKdwNUnhLX8K7vhUz/Qdn4JzboXJJxauJpFt8dqt8L+rwscda+CWM+HSh2DE3oWtS0RERERERERERERERERERERERERERKQXKIRE+oeGBZCogulngWVDsgnm3A6HfAWqxhW6usGpY214RdcNykfBtA9B2wooqYfimsLVJvJOK56Humkw8bgwoKBhfhigM+NsXWFdZCBaPxcqx8GUU8LvdOtSmH0D7P1RKK0vdHUykLQt6wkg2SDVDM0Ltz+ExM1A85IwJKdiNMRKdrRK6S9yqXB7ExAeB28IINnglb/CgVeEn7vIYODloWVJuN0rHwXx8u2bz/x7N2974Y8w9TRwYjtSoQxkr/wNRh8Mow4Ip5c/G7YphEQGgq6G8Pey3U6H6glhIOr8e8OAVIWQSD/w8vIW1rZnOGmGzp9FRERERERERERERERERERERERERGT7KIRE+od4Bex1ETzzG8h1QflIOPp7YEULXdngZUcgURle0XXo7jDhKHjud5BPh4PDz7oRhs4odJUiYX+s3xOe/mU4KHz4LNj/M2Br+yEyIBXXwfgj4dnfgJcLQ4YO+7qOCWTbWVEwbfDdTdudxPbNr3M9PPkzmP3/IPBhwrFw/E+gcsyO1yqF1b4KHv0+zPl7OD31dNj7Y/DSn3ueEyvTdkgGj1QrvHAdPPXzcBs6fG849XdQM2nb51UyZPO20uHh9lkGr0nHw9v3wxM/6Z4+ASYeX9iaRLaWFYWDvgiv3wpz7wi3Z3tdDGUjCl2ZCAAf+sNzAJw4fSiGYRS4GhERERERERERERERERERERERERERGYjMQhcgAoATh8d/FAaQALStCAc96crIhVNcC8deHT6eego8+fMwgASgZTHc+0VItxeuPpGNfHjlpjCABGDVbGiYB7a2HyIDkgE8/4cwgARg/Zuw9EmIFBW0LBmAqsbBwV/etG3S8VAzefvmt/zp8Kr3gR9OL3wQ3vjXjtUo/cOiR3oCSADm3RGGjsQretqO+SGUDu372kQKYc0r8MSPe0KcVr0Ez14Lbn7b5zXx2PD7tIHlwAGfAUshJINaPgUL7u+ZXnAf5JOFq0dkWzgJWD0b1rwaTvvupsFlIv1ER8b94CeJiIiIiIiIiIiIiIiIiIiIiIiIiIhsgUZ9SP/Q1QBBEP5H/uI66FgFzYugcx0UVRe6usFr4nFw8X3hAPB361wHqWaIl23+N5G+1LAgvE9UglME7SvDgeHpb0JxTWFrE5Ft1746vI9XQLQU2pbD4kch1QRlwwtbmwwslgP7fgpG7A3r3oTKsTB8Vri/2B5LnwrvS+vDwaZdDTDvTtj/0wrJGejm3xfelw4LA5CSjbDyRfjQDeFxcP0eMGzPwtYo0pca5oX3kSIoqg2PrxfcB0dcCSVDtm1eQ6bBJQ+EQSZuNtwmD5nZ+zXLwPL2g+H9hv7UuQ4WPgT7XVa4mkS2VroZFj0cPi4fCdlOSLdCy5LC1iXyLk1dWcriTqHLEBERERERERERERERERERERERERGRAUghJNI/lNSFg03seDjYeMaHw4Gd2ztIVHqHE4fRB0Lg97QNmQHTPgRNC2HuHTDxGBgyvXA1itRNgSO+BV3rw8E/tVPC7UestNCVicj2KBsOh38jHMiXaoa9Lob2VRBV6JVsh0QFjD8qvO2oUQdC5ZjwGMiKhINOMx3h8asMbBOPg9EHQdMCsGPhdsh0YPwR4U1ksKkYDft/NgxzalsBM88GzO3fF9dNDW8iG0w8HsYd3hPaUDlW+1MZOKJlMP0sKKmHxrcgVh4GKFeOK3RlIvh+sPFxMusWsBIRERERERERERERERERERERERERERnIFEIi/UNJPax6GVa92NM261JIVBWuJukxZDrs+2l4+QaYfiY8/O2evz17DVxyP9TtVrj6ZHArqYe7PgOZ9p62s24EO1qwkkRkBxTXwYt/gmRjT9vJ10KspHA1iUAYjnfHJ3rC2ewYnPcvMM3C1iU7rmw43PZhCLoHbTpxOO8/ha1JpJBqp8ATP4V1c3ra9v8MmPoJSXpJ7WS4+QzwuwfImzacr+2uDBCRONTvFR4XbhCvgAvuLFhJIhuk897Gx10KIRERERERERERERERERERERERERERke2kEXPSP7Qu3TSABODlG3uuiiuFFS+HI74BH30I3vz3pn/LtMPyZwtSlggAa17dNIAE4KlfQqazMPWIyI5pWrBpAAnAkz+BrsYtP1+kL3huGI6zIYAEwM3AkscKV5P0Di8HL1zXE0ACkE/DsqcKV5NIobWv2jSABOCFP0Krzs+ll7zxz54AEggfv/GvwtUjsi1SrfDkzzZtS7fC+jcLU4/IO2TeEUKSynrv80wREREREREREREREREREREREREREZH3phAS6R/8/OZtgR8O+JT+IVoC5aMgl9z8b/lU39cjsoGb3rwt17XpoDYRGTjc3OZt+ZS+01Jg/uaBVwCZjr4vRXqX70N2C59jTmFmMoh5Wzg/913ti6X3bGn/uaX9rEh/5Ltb/h3MzfR9LSLvknF7QhOTOe23RURERERERERERERERERERERERERk+9iFLmBrGYbxBeBjQAC8AVwSBIH+d/euonoi7HYm1E0O/9O+HQ+vLFoxutCVyTvFy+HAK+C/l4fTk46H+r0gVg4rXoAh0yGSKGSFMhiN3B/2vSzsn4EHpg3loyFRUejKRGR7DJ0Oe38MimvDQdBWBOIVUDq00JXJYGZF4IDLYdQBYFpgGGH/HHdkoSuTHeXE4PBvwMoXIAjCIMQXroNJJxS6MpHCqZkE1ZNh2unhd8IwIVGt83PpPbMugeoJ4bmbYYQBtKMPLHRVIlunuAYO/Tp0rQtDlQ0LUi3h72MiBZbNexsfJ7Pe+zxTRERERERERERERERERERERERERETkvQ2IEBLDMIYBnwOmBkGQNgzjn8A5wI0FLUx6T7wSyofB/37Q03bEt8GOFa4m2bLJJ4LpwKoXIdsJj73jMzvp17DXxeEgIpG+kqiEJY9D41vhtB2D8/9T0JJEZAfEKmDNa7B6djhtOfCRfxS0JBEASuvhv5+FVHM4XVQNU08raEnSCxregjsuCwcSQxh6dPbNMGxWYesSKaTykXDiz+G2syGXDNsqxsLYw6B6fEFLk11EogpevvFd+9RTClqSyDapGAX3fQm8XDg9ZAbs/5nC1iQCZPL+xsepnFvASkREREREREREREREREREREREREREZCAzC13ANrCBuGEYNpAA1hS4HulNTW/DM9ds2vb41dCysDD1yHtLVMHuH4HpH4Y3bt/0bw9+A1qWFKYuGbxWvNATQALgZuDJn0EuVbiaRGT7rX2tJ4AEwMvDw9+GdFuhKhIJvfnvnsHSAMkmmHdnwcqRXjL/3p4AEoB0K7x1D9iRwtUkUmhuDl68vieABKB1CSx7snA1ya5l7h2b71Pn3lG4ekS2RbYzDFHeEEACsG7OpucwIgWSdb13PPbf55kiIiIiIiIiIiIiIiIiIiIiIiIiIiLvbUCEkARBsBr4ObACWAu0B0HwUGGrkl6Vad+8zXch09H3tcjW2dJnlk+FgzFE+lLH6s3bmhdCPrl5u4j0f6mWzdtal246EFqkENa9sYW2N/u+Duld69/avG3dHPB05XgZxNwMNM7fvF2Bk9Jb1s7ZvG1L+1mR/iiXCoOZ3q1zfd/XIvIumXxP8IhCSEREREREREREREREREREREREREREZHsNiBASwzAqgFOBMUA9UGQYxvlbeN4nDMOYbRjG7MbGxr4uU3ZExWiIV0C0FIbuDrFyKB0G5aMKXFjfGJB9t2ocOIlN2yadOGg+M+lR8P47fO/wvnwU1E0Dw4SZ50Kiuu9rkQGl4H1XtqxmUnhfNhyGTAfThulnQ3FtYevqR9R3C2TmOWAYUDsVKseGbdPPLGxNA1C/679TTwY7CkNnQnFd2LbH+WDZha1L+p1+13d3plhp+D2A7v3xjHB/PObQwtYl263f9d+Z54T31RPDG8CMcwpXj/Rb/a7vAhTVwIyPgGmF5yvlI8P2oTMKW5cIkHG9jY+z73gsIiIiIiIiIiIiIiIiIiIiIiIiIiKyLYwgCApdwwcyDOMs4LggCD7aPX0hsF8QBJ9+r9fMmjUrmD17dl+VKL1h5Quw8GFY82o4CHDS8T3hAv2X0dszHFB9d9nTcPfnw0Ga+3wSVr4YBpPM+DAMnxUOyJD+qtf7LhSo/2a7YNlTMP8eSLfChGNhzCFQOaZv65C+NLi3vbu6fCbcv8y/BzrXwvgjYczhUDOh0JX1BvXdgax9DSx7MuybTlF4rDr6ICgaNKFXu2b/bV0OCx8Kb+Wjws905P5QUlfYuqQ37Zp9d2drXw0rnoelT0DXephyEow9CsqGFrqywWbX7L+d62H50/DWPeH0lJNg1EHa9u5ads2+u0HzIlj6ZPg7ZlE1TD4JRh8MkcQHv1b6u53xe1mf/QPMA2+u41M3vwzAxQeM5run7NZXi5b+Yaf83isiIiIiIiIiIiIiIiIiIiIiIiIig89AubzzCmA/wzASQBo4Eugn/+tcekWmA57+NSy4L5xe9EgYaPHhv0KisqClyfsYfRBc+iCsfhluPaun/ZUb4eL7YOS+BStNBpGWJfCvSyGfCqfn3wtn3qgQEpGBqm0Z/PujkGkLp99+AE6+ZlcJIZGBbN0cuOOTPdPz7oBLHhhMISS7Ht+H1/8Oj1/d0zb/Xrj0/sLVJNJfZDvh3i9uuj8+6RqYdXEhq5JdRfMi+PfHIPDD6Xl3wkX3KIREBo5Vs+GeL/RMz70j/H2sToEPUlhZ13vHY7+AlYiIiIiIiIiIiIiIiIiIiIiIiIiIyEBmFrqArREEwQvAv4BXgDcI676+oEVJ72pe1BNAssGyp6BpYWHqka0XL4fZN2za5rsw9z8FKUcGoRXP9QSQbPDkTyHdXph6RGTHrHm9Z8DzBo//CLoaClKOCBDuZ57+1aZtbhYWPVqYeqR3tK2Ap3+5aVvnGlg/tzD1iPQna7ewP35C+2PpJa/8tSeABMLHr/6tcPWIbItUCzz+403bsp1hMIlIgWXzPdvWnEJIRERERERERERERERERERERERERERkO9mFLmBrBUHwHeA7ha5DdpbgPZr1n6UHBC+/hTa37+uQwcn3ttCW5z23KyLSv21p3+97EOg7LQUU0L1veXf7FvZBMoAEW97m6BxE5D32x672x9I7/C38XrCl3xVE+qPA3/IxoI4fpB/IumHfLI3ZGx+LiIiIiIiIiIiIiIiIiIiIiIiIiIhsK7PQBYgAUDkOxhwKlgOVY8FJwLC9oHpCoSuTD2JasN+nNm2zY7D7uYWpRwafUfuDFYFEJZSPDNsO/jLEywtalohsp6EzIFIM8QooHxW2HfxlKKkrbF0yuEUScNg3IFLU02baMO7IwtUkO65sBOx3Wc90cS3UTYPa3QpXk0h/sWF/vEHZCDj8Su2PpXfseWF4XzIkvL2zTaS/K6oOz08gPF+JV4ATh2F7FrYuESDnhWFhJTGHrKtgHBERERERERERERERERERERERERER2T52oQsQAcKwgON/DMuegVUvhYP/xh4a/sd+6f9GHwTn/Rte+hOMOQScInjtZmheCKMPhrJhha5QdmVDd4cL7oCFD0O6BcYfDSMPKHRVIrK96naD8/4Fix6BzrUw7tv6TkthdTXC8mdh6ePhAHzDhFUvwz6XarDpQGfZsN+nw3OPXBKaF4MBdK2H8hFhQKLIYFW3G1x8Dyx4EEpqoWE+JJtg7ZwwoERkRwzfNzzeW/hQOD3h2LBNZKCYcBycdVN4zlJUA+OPgqEzC12VCK4XBo8kIpZCSEREREREREREREREREREREREREREZLsphET6BzcLL/0FXrq+u+EfMOpA+PBfFUQyEDhxmHAUjNgH7v4czL0jbJ99A0w5BU79LcTKCluj7Loa3oK/nwuZ9nD6lb/CObfB5BMKW5eIbJ+mhfDPCyDZGE6/dgucfj3MPLuwdcng5Obhud/BM7/qaRu6B5z7DyipK1xd0ntKhkDVePjL8eBmwrbnfgcX/hfGHFzY2kQKrX6PMIjp1rN62p69Bi55AIZMK1xdMvCtex1uOwd8N5yefQNcch+MUBCJDBArn4PbL+qZfvkvcOkDUDO5cDWJAK4fAFAUtcm5XoGrERERERERERERERERERERERERERGRgcosdAEiADQvgtl/3rRt+TPQuKAw9cj2aV7UE0CywVv/haZFhalHBoflz/YEkGzw+I8g01mYekRkx6x9rSeAZIP/XRUOghbpa61L4blrN21b+yo0zCtMPbJzzL+vJ4AEIPDh2WvBcwtXk0h/kO2CJ37yrrZOWPZUYeqRXcerf+0JIIHw8Ss3F64ekW2RaoX//WDTtnQrrJpdmHpE3iHv+QAUR22yrl/gakREREREREREREREREREREREREREZKBSCIn0D74bDvZ7Ny/X97XI9vPy79Guz1F2Ije9eVuua9NBbSIycLhb2GfkU/pOS2H47pb73nsd88jAlNtCcFm2c8vnJyKDSeCHx9Xvlkv1fS2ya8l0bKGtffM2kf7Id8Pzk3d7Z6CZSIG4XoBpQMwxyeZ1LCsiIiIiIiIiIiIiIiIiIiIiIiIiIttHISTSP1SOhXFHhY8NI7wvHwXVEwtXk2y7qnEwZOambXXToWp8YeqRwWHk/mDa4eMN248DPw+JioKVJCI7YOh0sGPh4w3f6QOugNKhhatJBq+K0TD19E3bimuhZlJBypGdZMrJPdubDfa7DOxIYeoR6S9ipXDA5zZtMy0Yc3Bh6pFdx14XbaHtwr6vQ2R7FNfAgVeEjzccP1gO1O9VuJpEuuV9H9syidoWWdcrdDkiIiIiIiIiIiIiIiIiIiIiIiIiIjJA2YUuQASAaAkc/xNYNRtal0BxHQzbG8qGFboy2RZF1XDm/4NX/grLnoL9PwNuDhY9DENmwJBpha5QdkX1e8BFd8PqlyGfCfvZiH0LXZWIbK+66eF3etVsyHZC7VQYsXehq5LBqGMNrHk1HGw/+USYfw/Ey2Hvj0PFqEJXJ71p2N5w4d3Q9DakWyFRGYYkighMOgHOuB7m3A5TTgLPhbaVkKiGKn1PZDuNPAAuuDPcz0J4TqdzOBlIdjsdyobD+jchUgzDZsHQmR/8OpGdzPUCHNMgapvkPL/Q5YiIiIiIiIiIiIiIiIiIiIiIiIiIyAClEBLpH4IAljwG9325p23S8XDKb8NgCxk4qifA0VfBujnwt9Mg1RK2O4lwUPnwWQUtT3ZBrUvhjk9B2/Jw2rTDAW26QrvIwNS2Av77OWh8K5w2TPjIP6BkSGHrksGlcz3855Ow7MmettP+ADPOBtMqXF2yczhRcOLw0JWQT4VticowmEQhejLYJSrCbV/JULj5DPDyYXvZCLjgjvD8T2RbNS2Ef14I2Y5wOloKF9+jEAcZONbPhX9eAL4XTleOg/P/pRAzKTjX87Etk6hjks0rhERERERERERERERERERERERERERERLaPWegCRABoXQYPf3vTtgX3Q8O8gpQjO8gw4O2HegJIIBzQ+eKfwNd/gJdetvy5ngASAN+Fx66GXLJwNYnI9lvzak8ACUDgw0Pf3HSfIrKzrX9j0wASgAe/AZ1rC1OP7Fy+Dy/9qSeABMJtzoL7CleTSH+SS8ETP+0JIAFoXwnLnylcTTKwzflHTwAJhI9f/0fh6hHZFplOeOS7PQEkAC2LYdXsgpUkskHeD3Asg4hlknX1G6yIiIiIiIiIiIiIiIiIiIiIiIiIiGwfhZBI/5BPbTrob4NsZ9/XIr2jddnmbS2Lw4AIkd7U1bB5W8cqyGf6vhYR2XHvHJC6Qedafaelb2W20A8zbeqHu6rAheYlm7e3Lt+8TWQwcjNh6Mi7dTX2fS2ya2heuIW2xX1fh8j2yKegY/Xm7QpNlH7A9Xxs0yRim+QUQiIiIiIiIiIiIiIiIiIiIiIiIiIiIttJISTSP5SPhNEHhY/tGBgGRIqgakJh65LtN+WUzdtmfRTsSN/XIru2kfuG96YFVnf/2utSKKoqXE0isv1qp4Bhhjc7GrbteRGU1BW2LhlcqieDHd+0bdJJUDqsMPXIzmVFYK9LeqbtaHhcMeXkwtUk0p8kKmHWpZu2mTaM3L8w9cjAt/u54b3lhDeA3T9SuHpEtkVxbc9xw4ZjBoChMwtXk0g31wuwLSMMIfEUQiIiIiIiIiIiIiIiIiIiIiIiIiIiItvHLnQBIgBES+DEX8KK56F5ESSqYdR+UDOx0JXJ9hq1P5z6e/jf92H4LJh8EiSb4K27YdgsKB1a6AplVzFsL7jgDlg1O7wi8ZDpGhApMpANmQkX3gUrX4RsZxhKMuKAnsF9IjuT78Ha12D1q3Dcj8L9ypM/h8knwkFfgEj8A2chA9TEo+Gk30CuA1ItUFoPFaMKXZVI/zHtLMin4bVbYZ+PhyEkzQshXhYef4tsizGHwzm3wppXAQPq94CRBxS6KpGtYxiwx4Xhb5br54KTgBH7QP2eha5MhLwf4FgmEcvC8wM8P8AyjUKXJSIiIiIiIiIiIiIiIiIiIiIiIiIiA4xCSKT/WPEC3P25nunh+8CH/6qwioEqVgp7nAfjj4ZX/wZ3fLLnbxOOg9N/D4mqwtUnu472VXDnZ6BzTThtWnD+f8LBwyIy8HSugbu/AC2LwmnDgLNvhcqRha1LBoflz8LfTg3DSCC80v0F/4HaaWA7ha1Ndq6iGigfDrecCUH3VeNLh4ehSNXjC1ubSH9QVg+Hfg3GHQ5/OwNyXWG7k4CL7wmDAUW2VttS+M/HIZcMpyNFcPG9kNijsHWJbK2mBfCfT/QcM5SPCsNRq8YVti4Z9FzPxzYNIrYJQM71iUcU6CkiIiIiIiIiIiIiIiIiIiIiIiIiItvGLHQBIgC0rYSHv7Vp26oXYf2bhalHek+2HZ748aZtCx+AhrcKU4/sepY/2xNAAuHA8f/9ELJdhatJRLbf6ld7AkgAggAeuhJSLYWrSQaHXAoe/0lPAAlAVwOsfkUBJINBphP+9/2ewcQAHavCcxIRCRkGzLu7J4AEIJ+CV24uXE0yML12W08ACYSPX/t74eoR2Rbpdnjku5seM7Qth1WzC1aSyAZ5L8C2zE1CSERERERERERERERERERERERERERERLaVQkikf3BzYVjFu+UUIjDguRnwcpu351J9X4vsmtJbCCboWg9utu9rEZEdl+vcvC3ZGO5PRHYmLwddazZvTzb1fS3S99xMePzwbunWvq9FpD9rW751bSLvp1X9SAYwNwvJhs3bM219XorIu7m+j2MZRCwDgKznfcArRERERERERERERERERERERERERERENqcQEukfyobBbmdA+SjY43yYcAw4RVAzqdCVyY4qHwWjDuqZtqMw/cNQMapwNcmuZcS+Yb+acjLsfi4U18E+H4eiqkJXJiLbo24a2DGYdDzsfh6UDYe9PwrFQwpdmezqLAeO/B5Ujdu0ffRBW36+7FqKa2Dvj4ePY+Uw/SyY9iEYvk9ByxLpd2ae0/PYjsHUU+HAKwpXjwxMe54P0VKYfmZ4i5bCHucVuiqRrVNSC3t/DEqGhucrk08Mf5Oo373QlYngegG2aRCxw3/2yXtBgSsSEREREREREREREREREREREREREZGBSCEk0j84MTjoCzD5JFj0aHjF8bNuhJopha5MdlSsFE7+FexxAQzbG477MTTOh5s/BM/+Fjq3cMV5kW1RNwNOuw5al8HSp2DWR2Hi8YWuSkS2V+1ucOYN4f5hyWMw7UyYfjaYOmyVnWjlC3DbuXD/l2HckXDo/0H1JDjnVhi2V6Grk74y8xw49Xew32Ww+mVYNwfalkO2s9CVifQfow6G034P446CI78DzYvhv5+FF/4IXQ2Frk4GimGz4KjvwJpXw9tR34Hhexe6KpGtN/W08HeupU9A+yo4489QN73QVYmQ93xsy9wYQpJz/QJXJCIiIiIiIiIiIiIiIiIiIiIiIiIiA5Fd6AJEAPBceOVmePG6cLpzLfzjPPjYozB0RmFrkx1XPRFO/BWsfA7+egoE3VfhfOib4f0Bny1cbTLwNbwJ/760p189fjVES6B6fGHrEpHt0zAP/nkB+F44/cyvwXKg9ptgGAUtTXZRDW/BX0+FfDqcfvF6mHE2XHI/FFUVtjbpW6X1ECmGx3/U0/bvj8J5t8OEYwpXl0h/Ei+F3c+D0mHhtnOD+78KpgN7X1q42mTgWPMK3Pulnul7vwQlQ2HyiYWrSWRbzL8Hnvxp+Lh9Fdx+EVz6IIzYp7B1yaDn+gExxyRiWYBCSEREREREREREREREREREREREREREZPvokvLSP3SuhZdv2LTNy4WDQmXXYDvhFY43BEVs8OIfIdlcmJpk17DiefUrkV3J+jd7Akg2ePH68FhBZGdoXNATQLLBG7dDpq0g5UgB+R689P82b3/j9r6vRaS/W/bs5m0v/AHS7X1fiww8r/xt87ZXb+77OkS2R1cDvHDdpm2BH/7mJVJgec/HNk0idvjPPgohERERERERERERERERERERERERERGR7aEQEukfrAjEy8G0oG5aeFVlgEiioGVJL4uVbzptRWDEfmBHC1KO7CLi5eF9+Uio2w0MExLV6lciA1WkKLwvrQ+PCUwL4pVg6TstO0lRLZSP2rQtWhIep8jgYlpQ1n0eYtowZDqUDIWS+sLWJdIfFVW9a7oGRh6gbadsnbLh4X31hPAGPb8DifR3VjT8zcEww98gNvTnWGlh6xIB8l6AYxk9ISSe9wGvEBERERERERERERERERERERERERER2Zxd6AKk8LyODjILFuA2NOIMH0Zs4kTMeHyT5+TXrye3fDlmIkFk7Fgsy4dcEoqqw8F6O6qkDk6+Fta/CatfhmF7Qt10GLL7js9btlvg+2Teeovc8uVYJaVEJ4zHGTIk/GNXQ094zNYauT8U10HXeph8Ujiws2EePP8HmHIS1E7ZKeshu7hRB8GxPwq3H5l2mH4WDNsbosXh37enr+4E+bVrySxYQJDNEh0/nui4cQWtZ0vc1lZyS5cCEBkzBruiosAVDU6Z+fPJLl2KmSgiMm4s0eHdg9qSTWBYkNjFP5f6PeG4H0Pj/HB/sdtpYdu7BzvLwJVLQ7Yd4lVgOwWsIwkrXyS/ehm5iV/FLC4jsupfWG/fCcdcTbbVJfviQxi2Q3TyJCL1CqIY8NLt4GahpHZjU2bxYnKLFmGWlmIVF+NXfgj7kP2JxDoxlj8Nw2bBxGMLWLRI/5Nft55s52j8cVcRLXOJVtn4uQw5fxjekw/jjJlEZNykQpe59ZLN4b2ONfrOnheSGf4hcmtbwYDoIeVEaxRCKwNEvAyO+xFuR5JcSw5Mk0i5iT18aqErE8H1fGzTJGKFISRZ1y9wRSIiIiIiIiIiIiIiIiIiIiIiIiIiMhAphKSfCYKA3LJluA0N2DU1REaPxjDNnbY8L5mk6Y9/pOuJJ4lOmEB2/nwqL76I8rPO2rjczIIFdD72GOTyYJlYb7xBSclCnLdugulnwz4fh8oxm83bbW4h89Y83KYmIqNGEZs8ebNwk00kG+F/3++ZjpXBmIN7e5VlGyRfeIE1X/kqXlMTxYcfRvGRR2LGYkRrIkRfuxrDy8KR34axR4AT/eAZ1kyEi++FtW+E4SOP/yhsn3cXvPRnuPSBLfYlkfflpsJtRz4VTs+/B+/sf5F54TnySxZgR9LEjCXYux2x9X21l+VWrGDl567AqarETBSRnvM6w6+9lviMGUC4Lc4tXYqfyRAZNRqnprrva1y+gs5HHsZPpwFIv/YaJUcdRWTkyD6vZTBLvvIK6dmzCdIZsG1ySxYTHLA/sY5n4OlfgR2Bw6+ECcf0BO3sZF57O7llywh8n8jo0VsdTpNZtIjs229jWBaxyZOJjBq1lQvMwhM/gXRrOL3gfjj5mu2sXvqdNa/D41fDqpdgwrFw0Oehpu8HqmcXLyYz52Ws8nLWXX0b+ZUrASg9+QRqP/ognptgzVe+SukRR+DncuSWL6fo0EOIjR2Ll86A72EVFQHhNj6/di1WZSXR0aMxnAIGq8iWeXlY+iQ88l1INsDeH4PdzyW9rJlVl19O2Yc/jFVUTMPPfw6+T8X55xOfNhUjfgoxbxGRf10CF90D1RMKvSYiO0UQBORXrCC/bh1WdTXRUaMwbBuvsxMjFsPv6CT79tv4qSR2XR0Nv/wVqWefBcCIxRj56++SmfsW6//wY/A8zOJihv7wB5jFxcQmTcKu7vtj262S7oAFd8MTPw2nD/1qGJYZKytsXYNAal2e1MtzCbrPPXIr4vh770F8aIELE9lK2VSCjpfehkwGDINUIkFpYiQRZRlJgbl+gGObROzwd/2cQkhERERERERERERERERERERERERERGQ7KISkHwmCgM5HHmHtt79DZOhQ8k1N1H39a5QeeyyGZe2UZeYWLcYqKSE2aSLpN+cSnzkTt7WV3PIVRMeMxk+nyS5egmGYEHHAMPCTKXJ1e+EkfwHP/w661sOpvwMntnG+blsb66++mo777sOIxwlSKYZe/UPKzzhjy4V0NfYEUmyQaYc1r0HtlJ2y7vL+8g0NNF772zCA5MgjMQyDdVd+C7umhorzziVd9gksv4nYvOeJJKpgxD5bN+PqCWBH4b+f2bS9ax2sf1MhJLLtlj/XE0ACBBVjaX/iTdb/+nqMRIIgnab85KOpbbseK1YGow7o8xLTc+dSftqpdD74EG5jI2Wnn0Hnk08SnTQJv6ODhl/9mtQLz2MWFeN7LsN//WtiE/p2oHNmyWICz8ewbTAMAs8js3ixQkj6kNfRQX7tWiAc0BsEAbge+XXriT37Xch2hE/81yVw3r9hwlE7vabcqlWs++53ya9aDaaJVVbG0B9dTXT06Pd9XfrNN1lx8SUEuRxBEGBXVDDyhv9HdPz4D17omtd6Akg2ePxHMPEEKKnd7nWRfqBtBdxyBiSbwunXb4XG+XD+fyCxdeE2vSE9dy4rLr6EyKhR2HV1GwNIADruvo+So48jNfsxKs89F7exMfw+ZjN0PfkUXmMjDdf8hiCVouoTn8AqLWH157+A39UFts2QK79J2emnY0b7PvBK3seaV+GWMyHoHoT5vx/gx4fQ+WInNV/+CoZjs+aLXwLfp/rzV2DGYuTXrSfwPLJuBSWTP0ds7RyFkMguq+vJJ1nzxS/iJ1MYjkPdt79NkM/T+re/UvbhD+M2NGKXlhIYBsaSpZSdfjqpF14AzyPIZMis7mL9b2/aOD+/q4v1V/+I4sMPp/XWWxl61VXYVf1wZP6yJ+HOT/dM3/lpOLsUppxcuJoGgcB1cVvaCHwfIxKBIIAgIN/cxvvE1or0H+l2MmvbMACiUQLPg7xLdlUTkYmFLk4Gu7zn45gGUYWQiIiIiIiIiIiIiIiIiIiIiIiIiIjIDlAIST+SW76c5HPPU/Hhs8jOX0Bin73Jzl9AbvJkomPH7pRl+vkc6TfeID5tOs7wEZixGJlFi/EPCQf0u+3t4SBo28IwHbAs8Hx8uwScIsgnYe5/4LBvQPW4jfPNvv02RsSh+rOfxe/owCovp/Oxx0nssw+R4cM3LyQIwHehbARMOCYcaL3gvp6BgtLn3OZmMq+/DkB82jQar7kGTJOqj3+Mhp//giCXo/zss8nV1+P/6ynie6SI77UXdknJB888CDb9bK0ITDoeoqXge2DunNAd2UX5HkSKYNIJEC0lZ4yk696F1FxxBV5bG2ZpKfmVK8iWHUJi+XMFCSHB98ktWUrRgQeAHxB4HmYkgp/JkJ47l+i4cBvvd3QQmzmTzgceJDp6NIbj9FmJQd7FcGwwupcZBOC6fbZ8gXxLK/g+2A6GAQZG+DkAFFX3hJAAzL+nT0JIki/NpujAA8nMnUvgesRnziD5zLPvG0IS+D5td99N1cc/FgYzmCZGJErXM89sXQjJlvb9vgsE270em8glw6CzRFUYiiV9p3lRTwDJBmtegdalfRpC0nb77fidnUQnTiD59DOb/T27cCGxadPwO9oxYlFwPQh8TMchu2QJxfvt1/3dDFjz9f8L+zmA67Lue1cRmz6D+G5TN84vcF3Sr79O+z33EHgeZSefTGLmzHDgtfSNta9vtm1xkz52WSmdDz1I0X77ge9jlpYSmzSZ7PJlGI6DYdv4pkXWrSEaLQoHG4sMMF4qRWr2bDruuQe7ppbSE44nvttuG/+eW7WaNV/5Kn4y/A0gyOdZ993vMuznP6fk2ONw6oaEu2DPxTBMTMchyKSpOP98Wm8Kg0e81tbNluuuX49VXk7b3/9O5rzzKD6gAMfgH+TVWzZve+VmhZDsZH4uG25zne7fmFwXMAh8/f4jA0OurRPDtCASxfA9DMchyObws7lClyaC6wXYlkFkQwiJp22riIiIiIiIiIiIiIiIiIiIiIiIiIhsO7PQBUgPr6MDr7GRzLy3iE6ZgtfWRvK55/Da2nfaMgPPJzppErmVK8EwcFtacOqH4mezABimiWEamEXFYFoYpoVRXBQOki6uCWcSLQU78q75ergNDbTc8P9IPvssTddfj11VtXG+mymphRN+DpOOg7fuCq9WfujXoX6Pnbbu8v4MxyE+YwbAxs+taL/96HjoYYJcjtKTTiS7cCGNv/o1yaeeJbdkCWu/9jVWf/krpOa8QW7VKrxkcsszLxsO+382fFw+Eo7+HjQvhtsvgoe/A63L+2IVZVcx+iA49GvhduOtu/ArJhKpq6PpuutIPvssLX/5C25jI0FRfRg6UABBAPnmZoJ8GOqRWbQIq7QMw7IIMhlabr0NsyhBZOwYOu67DyMWw+vs7NMaDcPALCoKBwJaFmZxMRgabt2XjMCHIMCMRcF2wLYxEvEwmMn3Nn1yydC+Kcr3ab3lVuzaWpxhw2j7xz/BMsOrfb+HwHWJjR9P0+9+T8eDD9F+9z203HgjVvlWhkwMnREGC73TwV+GkrodWJFuq1+Bv58Hv9sX7vosNM7f8XnK1nMSm7eZFjjxPishcF2yCxYAkJ2/gPjuMzd7TmTkCOzaGoxYDCMSwXDsMDDEMIiMHk3LbbfhNjUR5PN4Te8KVQkC3PXrNmlKvz6H1V/6MoYTwS4vZ/33f0Dq1Vd32jrKFkRLN5kMqibR9vI60q+8SnTceAwnApZF8dFHEWTSWMXF4YBi38dMxCGWIDATkM8UaAVEtl/yySdp/PkvcIYMIcjnWf2FL5J5662Nf3ebm/A7OjZ9kefhtrSAYWAkEpiRMJTHMM1w2xiNUnTIwRufHhlev9ly7fp6vNYWAPz2js3+3i+Uj9i6NulVQRAQmCZGUTGYZhjAV1SE0Ut5cyI7nemAmw8fGyZGPI5VVdkTIClSQK7vY1smEas7hMRVCImIiIiIiIiIiIiIiIiIiIiIiIiIiGw7hZD0I4HrEt99Jn46TfN115F69TVKTzwRL5Peacs0HQe7ogLfzUMQEOTz2JU9/3HeKCoKBxtZFgQ+gZvHNM3wSsjF3QOgj75q84E6rkdk7FgqPnIuzsiRVF54QTiY3XXfu5iWxfDinyDZBM2L4OFvQaZtp6y3fDC7ppbyM8/EHjo0HBAPWNXVuGvXABAZM4b0K6+AZVF64gk0/PRnJJ99jvj06TT86GoWH3sczX/6M11PPUXypZdwm5t7Zm5asM8n4JTfwgGfg4e+BevfhHQrPHctPPMb8PKFWG0ZiHKd8PC3w+1Gsgkynfi5LFWXXkpk1CjKP/xhopMmExhRGLX/xpcF+Ty5lSvJrVm782s0IDZ2LH4mTZDPYVdWEHgege/jJVOUn3YqHXffQ/MNfyE6bhxBLhcOyOtLBmBZBK4Hnhd+T1EISV8KDANjwxXh8+F+2Ywnwn2w9Y6wr1gZTD6hT2ry2tooOfJI2v7xD1pvuYXEfvvhtbdv1j/za9eSW7mSwHUxLIvM/PnUfP4K4jNmULTfvlR/6pPk3xXM8J7qdoOL7oE9L4JRB8EZf4LpZ+34yrQshZvPgCWPQbYD3vgn3HEZpFp3fN6ydWomw9TTNm076ItQOb7PSjBaF1F2xCwAMvPmEZs2jcjYsRv/Xnb22bjt7WAYmCUl4Pv4mSy4LkYkQmDZ1Fz2KdJvvhkeN9fUvGsBBvaQIZs0JV9+mbJTT6H9zjtp/suNxKZOIdMdhPJe8g0N5FaswM/lemfFB5nAdcmtWkV+bfc+fvgsKBu58e/5sWdh19aTXbSQ5uuuo+upJ6n7v/8jvvc+GEVh4GKQyWCYFmY0iuE4mA9/DVa/XKA1Etk6XipFdvnyjedeXkcHmQVvE5s6hea/3Ej7XXdRevzxZBcv3vgau6oKs6xs0xltCKTzfcx4HAwTP+8S5HN4XZ3h9yIWA9Ok9MQTie02iSHf/Ao4Tvjy8nKqLrqI9rvvAdsmMnZMn70H22TmOZsGZDkJ2P3cwtUzWNgOBuFPREE+D4GPads69ZABw89m8Tq7sOJxAs8lyOXCY4XSkkKXJkLeC3BMA8c2u6cVQiIiIiIiIiIiIiIiIiIiIiIiIiIiItvOLnQB0sNMJOh87HHiM2eSmDULw7HpuP8+aqZ8cScuNBzlYVdWgWFglZViRmMEfoDX1UVu2TIwLQzHwaqogCAIB0jbFhzyFbAjUL/HZrM14jEy894iv3YtsYkT6bjvfiJjxhC811VBk80w+4bN21e+AKMO6MUVlq1ll5XijBpJ6Ykn4oweTd2VV9L6j39QfOhhtN56K3T/J/b4zJl0Pf0MAOUfOoPmG27AXb+eigsuIPXiizRfdx0lxx5DbMZM3HXriO+xB9Hx4zAiUZxpZ2O+9R/w3xVO8+pNcNAVUD7y3WWJbG7Fi5tO+zn8VJq2f/+b2NSpdD32P4xYnOLDDoaaSUAYmND15FO4DQ0Yjo0zchTFBx+EVbJzBg0ZholVXg7tbWBa2NXVYeBH9zY1/focKi44Hzwfr7UVt7U1DJ7oS7aDEYlgV5QDBlhmuK2XvhMEmNEoQTwRDuK1nTDsI/Dh7L/C8ufAcmD43lA7pU9KMiIO+YYGKi+5BIKA/KrV4AdhWJlh4HV00PXUU+RXrCTwXOwhQyja/wBiEyaw/uofkZg1iyCfp+Pe+xj6/e9v/YKH7Rne/A2BOL2geXEYdvVOa16BtuWQqOidZcj7i5fD8T+BGR+GliVhP67fK+zrfaXhLUoSC3AvPZvm2/5L8/+7gSFXfgW7ug6rrBKruobWf/wDbBsDMGMxjGgUvysJvocZidD5xBOUHn8cmbfmU/vVr7LuqqvwOzvBcRhy5TeJjt80VMUuLaXtwQeovOhCgnw4UNVra99ieX4mQ+ejj7L+h1fjtbVRetJJ1Hz2M0RGjgyDNZYvx2tvx6mvx3lX2Mlg5nV1kVu6LNx9lZfTcvPNtN5yK2Y0Ss3nP0/ZKSdjXXgnrHoJMu14iX3ouus6So49jpIjj8JPpWh/+GHqvv513HVrw9AF0wqDlaLRcFvcMBeWPwujDyz06ooAEHheuE1oa8MeOpQglWL9j39C8qmncIbVM+S73yM2cwZBLotZUkL1xz4GtkXqhRc2CQWJDB/OsJ/9lNVf+CJ+MokRiVD71a+QXbECwzAwIhEgwIxGwoCmaJQgm8XwfWqv+h7xyZOJTtiNiN1BvOQ83Oh4cs1JGq/9PXZVJUO++TWiEyYU7o16P8P2hI8+DKtnh8c2w2fBkOmFrmrXl8tjWDZGLIbtRMLwEdPEiMbC8yNDaSTSvwWZDFZ5GX46jR2LgusRmCZGb523iOwA1/OxLZOIFYaQ5FyFkIiIiIiIiIiIiIiIiIiIiIiIiIiIyLbr0xASIxxJcB4wNgiCqwzDGAkMCYLgxQ946eDg+5QeczSNv/s9fns7mCYV55xDkM3uvGWaJkYkglmUwPADiMQILBM8NwwRaW3BShRhJOJhAIltQwDYNl7NZKySCrC20I3yeRKzZuG1tpCe8waJvffGGVZPkMlsuQ47CjVTYM8LwcuBYYKXh6Lanbfu8r78fJ6Ou+7CiEQwbJvW226j8qILMYuL8fN5/FwOq7Iy7BfdYTZWaRnu+vWYRQnMaJT0K68QnTwZq6SUxp/9jMTee2Mm4qz79reJjBpFxbnn4qdyONN+jlNdgpFuwq6pxso1wppXw4FgFaMK/E5Iv1dUDQdeEV65PPAgMRxn6Drso44i9eqrxGfMJDJmNEE2v/El6Xlv4ba0QBAQeB751avIzJtH0b777pwabQssKxzI7Afh9yoaCS/27bkYjkPTtb8FwBk+nIoLw4HqfcmIOOD7uI2NYcl1dRiRKBBe6Tm/di2G4xAZNqxP6xpMgiAAx8GMRcEuIvB9TNMC24ZEHcw4G6LFfVqTYZq469bRef/9AESnTCG6227h9hlIz5tHfvUaAs+FIMBtaiKzYD65deuo/uxn6HrscYxIhJrPX0Fu7dptL6A3B/LFyuHIb0M+HYa5ZNrhpT+DE++9ZcgHKxkCow+G4ftAcU3fLdfLw9rXIdmEPXwc1cMCyieeAoGHs+JncPDtUD6CfGMj9pjR4TbbdiAShUwaq7IiDOYjoOjAA7ErK8G2ya9dS+3//R9mLEp04kSio0eHx8vv4GcyxGfuTtNvfxeGDZWVUfvFL+B1dGCVlm7y3Mzcuaz50pc3Tnf8979YxcXUfPELdD76KPk1awiyOcxEnMT+B5CYPq0v3r1+Lbd6NR33P0CQSYfHpfE4Bgbk8/j5POt/8AMiI4ZTfOihYf/LduEvWIldWUHTtdcCYFVXU/3xjxPkw4HxRKOQy4WfpWmG94dfCdUTC7y2IiE/m6Xr8cfJLl4C+TyYBvbIkaReegmA/Oo1rLzsMsbceQeRESNp+v3vcRsaACg98QT8VHqT+RUfcghj7vgP+XXrwA/IrVpF5s2niU+eHAaXWnb4PbAs/GQKw3Hw2ttJTJ2K29wMgOHYxF67OqxvwkkU//bbmCSxo83QugSqNg1o6jeGTAvPOfNpKNbvD33B91ywLQwnghm3CAwTwzQwHFsBJDIgGLEYRiKBkc6A42AURzEcG9/zCl2aCHk/wLYMInYYQpJVCImIiIiIiIiIiIiIiIiIiIiIiIiIiGyHPg0hAX4P+MARwFVAJ/BvYO8+rqNfMmMx2h95lKqLLybI5cKBjStXbBzouzMYto1hOwTZXHiF48AnSKYwTBOvvR2vsRF7QjlGEINcDnwfwwlDKbwVc7FW3gP7XQZV4zadb6KI5LPPgmGQ2GtPcsuWkZ4zh6JDD91yIdFi2OcT8I9zwe0OXSkZAmffstPWXd6f29hI2513QT6PXV9P2Wmn4bW00nHPPbgtrdR84fPEpk6l4+7/ktj/AJLPPAuWCYaBUz+M7NKlABQfdhjNf/4zAEUHH0TjL3+FVVFByZFHsvab3yQ6aRKlxx3H2l/8BmdYPeUf+hC5Ze04Q1cRGx8FZxXOqHE4Q4YU8u2Q/qxuGjz5U2hbEU4f9kcy8+bhp1Ik9tyD3LJlpF6ezdA9ZkA+i5vJEWTS4UDj7jFufjqN19m500o0TBO/e3A0QYCfSWNbNvg+gefhDKun+vLPgueDZZKZP5+yM07fafVsSZANB1tHx48Pa0ynCbJZcqtW0XTtb2m/+27MeJyaL36BslNOwSop6dP6BgsjEiHwPHBdDKs7gMS04N+XgOfCkd+CUfv3WT1eMkVir70oOvCAMLTH9fCamsLaAL+jEz+TwbDM8O/5PEE6TXz3PVj3zW9ScsQRBG6epj9cR903v9FndW9RphUe+yH43YMDq8bD6X+EynHv/zrpPW4Olj4Bj14FqSbY91Mw/Wwo7YN9/OL/wW3nQBAOwjNqp+CMPhhevB5O+S2UjwDAd12iw4aRX7ECr6k57OsRByIRrHgMs6KC2NSp5FeuxGtspO0/dxCdMIHigw4iOnHiZgEkAHZdLdmFC6n+7GfD73YkQvvd91B8xBG8O2Ynu2jxZq9vv+suSk85GT/dHbJhGPjpDOk5r+MMH4ZTUdHrb9dAkl2wAL+rC8Pu3i6lM8SmT8MqL8drawOg69lnKZ5QBg9/Bxrn4U3/DWZpWc++1zSwR42EbIbAzYfHCPE4QS6HYZrY5WXwr+/DwV+CCceCEy3gGotAduFC0q+9hlVSih8EmNEYBlB68sm03357+CTXxevooPOxxyg744xwX929/bCKizabZ2TkSCIjR9L55FN0PfEE0ZEjabnhBgLPJT5jBm5jU/idMCC/Zi3BylW469Zh19WRWbSIyJAJmLufB6/fijnuQCIPXvyOc/uhcOFdUDOpz96jreJ7sOypcL/UsQZmXQq7nwdlCt3bmQzAMMOAxsBzwTDAdsKbyEAQi4WhcBUVBOlUeHzp+1jFJfi5HGYkUugKZRBzPR/HNIl2h5DkPIWQiIiIiIiIiIiIiIiIiIiIiIiIiIjItuvrEJJ9gyDY0zCMVwGCIGg1DGOr/me2YRjlwJ+BaUAAXBoEwXM7rdJCMAxKDz+Mhl/8EmfoUPzOTiLjxu3cK8HaNkHg43d1YlZWhYOLuzrxXRcAr6MTw3EgkyFwPQI3j2kYGK6HV1YLL/0JWpfDWX8Jg0S6BfkcJUcdSfr1ObT/926ikyZRcdZZ4eDJLXFzMPuGnkFKAJ3rYNVsGD5r562/vCczHscZNoz8smX4nV00X3cdxccfT/k5H2Ht//0fmTlv0PzHPxLfY3ciI0dQ953vkF++nPKPfIT2O+6g+IjD6Xr0UQzTBNfFLC3FXb8egNITjqfl5ps3Pm781a8xixKUHHMs6753FdFJkyg+/HBWfPprRKdMofS4Y0m99BKRMWMoPuRQgnweZ+gQnBEjMDZcnV4Gr/VzewJIALI5ig7Yn/Rrr2/c/lRecCF+80pYYxCUTCLoHsTdE/JkwM68arHv43UlMW07DHnq6ATfDweNxuMkn30Or60NM5HAbWqi9mtfDYOf+pAZi+EHAflVqwGwhw3Disdp++fttN93H4m9ZxHkcqz/wQ+JjB5N8YEH9ml9g4rrbgwjM0wzDEHIdsKaV+Bvp8HHH4O6qX1Sil1ZQdPNfwMMME2CTIaaL3yewPMwLIvA98KRpN3fJQODwA/AMCg//XTa//tfjEiEyosuIr9ufZ/UvEXpNnjkuz0BJADNi8JpS/uQPrP2Vbj1rJ5t78PfBgw48HM7d7nJZnjg6xsDSABoeCsMQbn4PqjfHT+dJvP222SXLiXo6iLI53Hb2vDaWomOHRsGRtUNwV23nvRLs3Gbmuh66imqL7uMpj/8Aae+nnjbXltcvBmPk337bbqeeAIzGiHf0Ejtl76E39UFNTWbPNfaQqCIM2oUfiZDkEyF751hgO9hmCbumjWDPoTET216fmGYYdBCfK+96Hr0UQAiw+vDvtfVED7HjtD1xBME2WwYoGRbDD/8cLyGRtzGxjDQIeJgFhWDZWHSFc786V/BtA9B3W59uo4i75ZvaMAsLSPwu7drfkDg+yT23acnhIRwF1203340XXcdhmliFhcT5HIk9trzPecdZNLEd5tK46+voepTnyL1wguUHHkUfjZLbvFivM4usvPmUnzIoWTemk+ks4vckiWYZWVEx15MdK/PYT991bvO7dfCksf7XwjJ2tfh5jN6jg8e+yF4eTj8G7Azf4cZ5AIIA0wDHwwjDHFwI5iJeKFLE9kqRi6HmYjjdXZBLkeAgZkwCXwfL5lUCIkUjO8H+AHYlkHE6g4hcRVCIiIiIiIiIiIiIiIiIiIiIiIiIiIi266vR13mDcOw6B5zYBhGDbC1/xP2GuCBIAjO7A4uSeykGgvGiEZJvfoaNZ/7HNm338aqqMCurMRLZ3beMp0IuB5eczN4Pr6bxyotJchkwLIwDCO8Qm0Q4PseVkkJZiQKEYfA6x6Us+ghaF8BtT0Dos3iYjoffgS7ppqK887Da26m+aabGPaLX2y5EC8LrUth6mnhwCTDgNUvQ/vKnbbu8v7sigqGXPlNVn7yU5ix8GrvVjRC85//TNUnPkF00kQwTbz2DjruuYeOe+4Nw2bOP4/4tCsxYjGKjzmG9Jw5JPbfn9RLL2GVlQNgFpdsvDK9392/iw8/gvb//AeA0uOPo/HX12A4DiVHHUXDT35KZMxoYpOnsOKjHyU6fjxlp5xC1zPPYFVVUn7GGZDLY9fVEh07Nhy43w8GjQWeh9vYiBGJYlcO7gHCO1XXehi5H4w9DAIfo3g4nX/6A079UCrOOw+3YT3Nf/kL9d/9Mix/FmZMCbdtjg0YBAYY5s4dlBH4PmSz4YDRWBSvozO86rfv46dSlJ12Ku769XidXcQmTiQzdx5lJ5+8U2varEY3T27RQqKTwsGh2QULiE2Zgu/mqbn8s3Q9+RRmURG1X/sa2SVLFELSy7xkEnK58Irwra0Eno9heASe1x3Y0L1NczPQ+FafhZC4Tc1UXnQRueXLCVyP6Phx5FatDoNRAAwjDIIyjO5gH8A0MR2briefoOy0Uwlcj/Y77qD6ssu2YcEZaFoEuS6oGAMldTu2Ivk0dKzevD3dtmPzlW2zavY7wp+6vXAdzPwIFNds+TU7Kp+GlsUw4+zwuPL1v4Mfhu1h2jD6QLIrV4bb4LY2yGQJ8nmMSDgY2orHSb/5JolZs7CKi+i4735SL7+M29BA1SUX03LjTZSfdhodDz5I5SUXb7GEIJul5JhjyK9eTZBJE50wgeQLL1By7DGbPTc2bTdiu+9O5rXXwgbHoe6rXyHwPALfC7cR2SyGZWHYDkF3cOCgZhBuh2wLwzC720zMqioAnJEjKZo+BhaHASQ4CfItLVSc/WFyS5ZCNEr5GWeQW7cWw/Owa2rxWpoJXBerMoZVWoLlroVDvhIec+RSBVpRkXewLMySYoLOLohEwLIIkimccWM3PqXk+OOwR40ie8cdVF1yMW5TE157B9GJE8mvb3jPWTtDhpJ+9VWcESNwGxspPvxwWm67lfLTTiO/YiV2RTnpVJrsihVE6ofiZzKk586l+JBDyC1bjt9VjTn6cuyxZxN94otQVAVTTwUnDu2roWxYX7xDW2fdm5sGlAG8eD3MugRK6wtT0yBgRqPd+zEbbDsMQ/R8/FSafGcnTklJoUsUeV+B72MYJkGyC6+ri8jIkWDb4Hu4bW2DPiBOCiffHU7mWCamaWCbhkJIRERERERERERERERERERERERERERku/R1CMlvgDuAWsMwfgicCXzrg15kGEYpcAhwMUAQBDkgt/PKLJAgIDZpIm3/+DtFBx+C19pC5yOPMOS73+nd5bjZcEBmvBwz4uAnkzgjRtL50EMQi1F+8kkEuRxmPI6ZSBAQEBgGVkkJzdf/icxrrxHfe2+qP30Z2FEwTLBiPfP3XIKuNkpPPIHOBx+i+brrsOvrqbzwArxUcss1RUvgiG/BM7+CeXeGbeOPhInH9+66yzYp2m8/Rt9yA25jE5UfvZTkk08RnTSRpmuvpeZrX6X6sk+RmjOH/KpwYLddV0fngw+RfPppAIqPOoqyM87AqqwgtttuYFlEJ00i9eILFB92GF3/+9/GK8SaiTh+d//wM+FVsxP77rPxCvalJ5xA03V/BN+n7JSTafjpT7Fraqi48EJWfeKTWFVVVF58EU3X/ZHA96g891wC38euqiIyZgym4/Tpe5dbs5bWm/9G69//gV1RQe3Xv0bxoYfqirg7w6gDoWEuPP5jAPwD/0DpSSfRcfd/6XzoYZyRI6m65BKCZBfUVQJg2E4YitP9eQSZdDhoaCcJXBe7tpbk00/hdyUpOf54/HS6ewBpCY2/uZaifffFLC6m5ZZbqLzwAoJcfqfVsyWGaYFhsvbr/wdA5cc+CpZFbOLEjW0AyWefY9g11/Rpbbu69JtzafjZz0i/8grxvfem6tJLyTc1hVeHj0TCEJvgHf3BKeqz2pzaWhp+8QuKDz0Ew7RovuEv1Fx+OYHnhUEklo1VWooRi4dXss9lMWwb33WJTZtG819uxLBtys86C7etdesWmmqFZ68NjwkCPwwhOftmGDJt+1ekuA72vAie+XVPm2HAkOnbP0/5YL4fhuY0LYRYeXi8925FNWDHNm//IG42DINIvM8gz2QTPPlzePG6MPykeiIccSU88l0wTIK66aTfeIPOe+6l7V+3Y5aVU/Xxj2HEE/gd7fjt7VhVVZiRCM7QobTdcw8dd9xJYs89KTnySJr+3w2UHnM0RjxObMpknBEjtliG4Ti03X47RfvvBwE0/f4PVF/+WbYUlxapr2f4Nb8m89Z8/GQX0bHjiE6aSPL553GGD8dPJvE6u/Db2zAsC7O4eNvfu12NbWMk4lglJRiWhe/7GBGHirPOpPSQQ4hOnkQk83bP82NlWPE4Db//A8WHH0bpySeRW7sG0zRpuuEvZOfOJbHfflR85ByIRDASCYzX/w0L7oDKsTDr0veuxctDtgtipdC8CBoXgJOAut2gdOhOfytk8DBjMQLXCwMcEgms4mLMeByiMep/9lOsykpik6dglZYQmziRxt/9ntjkyUTHj6PrsccoPf6495x3dOIEnLdGE5s6BT+bJfXSSyT22hOvswtnxHDyK1YSmzoFoyhB1zPPEJ+6GyWHHxYex970V3KLFlF08MGUn3UmmanXEBtZTfSxT4Who8V1cM6tMHxWuLBMO1iRMKCkN+TTsH4etK0IA8zqpoXfx/dc2S1sQxNV27dfkq3muy6GaeKuXk3TH67DT6epOP88ig44EK+xUSEk0u8FXV0EgU/geeRXrqLpl7/ELCun+jOfJgC8uiFYiV7arolsA9cLAx9tMzzTiNimQkhERERERERERERERERERERERERERGS79GkISRAEtxiG8TJwJGAApwVB8NZWvHQs0Aj8xTCMmcDLwBVBELxHosXAZDgOXkcnxYcdRsf9D2CVlVJ53nn4qV682vaq2eFgzKYFsPt5MO5DBIGPVVYaDkQyDPADyOcxSkqw64eGg+TjCdZ+6Uu4jY0ApJ59lrUrVjDqk+fj1I+GitE9y1j8KGaqnfb77ic2dixF+++Pn8vRevMtDL366veubf2bsPLFnulFj8KUU2DMQb23/rJNjGVPEL/7HPByFNXNovTyC/HLJ5NbuYoglaL93vuouvQSvI5O0q+9RnzGdJp++zsAEnvvTWzKFBp/8QuCfI6KSy8l8H1qrrgCr6Mdq6wcq7qK3Lp1JPbdl67Hn6D0hBNoufEmzGh0s1oC1wPPIzp5MqnZLwNQevLJNP/xjwS5HJXnnUfDz36OYdvUfvELrL7i8/i5HNWf+DheKo3X1kbZySdhlZVjlhQTGbrzBoIGQUDb7f+k5Ya/AJBPpVh9+ecYdcvNJPbaa6ctd9BKroc3/71x0ozFaL/jn8RnzqDo4EMI0mmab7qJYd/5MozaHcMwMGJR7KFDCPJhsINRPzQczOn7GKbZ+zW6Lo2/+MXGySCbwTBMOu66C6uoiKqLLqLt3//Ca++g9ITjcVvbwOnbnLD8unWb1Nj4s58z9Oof0vHo/zZ9ou+TfvllSo8+qk/r21Xl1qxl1WWXbbJ/za9YQd23rsRraYF8HgjAc8MXDJnZp8EZbksLFR85h7b/3AGuS/kZp4e1mibkUpgRB6OqGj+bAcPAjJVixKIYGORXr6H64x+HIKDrqacoP+vMrVvo2tfg6Z6+SOtS+N/34cwbIbKdg/lME/b+KPguvPwXKKqFY38I9Xts3/xk6yx7Cm45E7zu7MATfwkl9dC5Jpw2DDjyWxDbxsHGq1+Bp38N69+AaWfBHudBxajNn7dqNrzwh57pprdh1Usw+WTye3+Z3IoMyeefo+WmmwDwkynWf+8q6n/6U4JkF1ZVNXZlBWZpKYZlYdkOVZdeQuvNt5BfvYqifffFKg0Ht1dfdhn2ewSCeB2dlBxxOO333IsZj1P1iY+TXbQI86yztvh8p64Op65u47TveVjl5WAY+NkcZsQhiMXwsxnM8vcJYRkkjO6QGBwHM5HAicUIPI/I6NHY07u3l502DN8XVr0AiSrc9espPfYYio88CnfdesxYlDVf/Rp+RwcAyaeeIr9uHfU//hGZOXOId3X32ZYl8NQv4Yw/gfOukIL1c+H538OyZ8N+/d/LIdcV/m3YXuE2rGJk37wpssszDAMzEccwi4EAs6QEs6QYqyhB8cknb/LcwDSp/tSn6HrsMdrvvIv4HnuAZeG2t2OXlW02bzMWo+iAA8i8NZ/41Ckkn3uezkcexU/eRe13v4cZi5F+Yw6JMWPxhrWSW7eO2IwZrPvu9wjSaQC6Hn0Ur7WVsjNOp+PJl4nu9jMikXZiz30Z7vosfOTv8Pb98NKfoWw4HPJVGLl/uL/eXr4Pc26Huy/vaTv4S3DQlyD6HgFu9btD+ShoW97Tdsz3IVG5/XXIBzINg3xjE+u+d9XGtuY/XIdVWkrxsccWsDKRrRSAYZrkly2n9cYbgfA4ct03r6T+Zz8ju2A+iT10niF9b2MIiRXuTyO2Sc5TCImIiIiIiIiIiIiIiIiIiIiIiIiIiGy7Ph3hbBjG34IguACYv4W292MDewKXB0HwgmEY1wBfB771rvl/AvgEwMiRA3CAl2mCZYHvhVfeNk0yb82jZOSWr6q+zRreCgfDTToBhuwGXesxG9/AKimh5eZbKDn0UCCg45FHqLrkYojHsZ0Ipm2Ta27aOEB6g/yqVeSHfBVnz316Bgt1roO7r4ApV1B24om03X477XfdhVmUoPKSS/DT7xGo4uXCQUixMph4LGDA2w/Ckqdgr4t7Z/37sX7Zd5PN8OA3Ng4cNtfPJt40Bz70/xhx7U/JNyeJjBxJ47W/perjH6P8zDMJs4UAw6Do4INo/OWvALCHDCHo7MQeWk9u9Wo67rqTkmOPw89kcGrrKPnEJ8gvX4ZVWkbt175K+o03qbz0Ulpvvpmaz32O9GuvYVgWhuMQuC6G44SLiUTwu7qwKivJr14NrkvpKSfT8reb8draqP7Mp2m58abw8eWfpfm660g+8ywlxx5L6QnHg2kSHT2ayLhxvRo84TY10fbP2zdrz8ybt0uGkBS8/659Pbxa+cRjIVpKkOyg/ENn0HzjTbhr1mCVl1P1sY/hEYOaSQTt7RjxBEEqGX7ujgO5HA3X/Ib49GmUn3UWsYkTe7XE7KJF2EOGUHr8cUTGTyD18mzWf//7mEVF1H3n26TnvE7pSSeB5+OnkkAAQdCrNXyQzgce2Kyt44EHKD3tdJKPPrpJuxHfNa7qXPC+C+RXrNji/tVracFtaMAeMiQcVLvfZ8COwoh9oGxYn9VnFiXILFlM+RmnQxDgNjUTGTWS5IsvUjS6AiMWw3QiGNkoBAFGLEZgmuHg6FiMpt//HkyT0pNOwktntm6hrcvAcmDCMZCogsWPwdInIN0MkeHbvzLlI+Hoq2C/y8COQ1HV9s+rwPpD3/1AqRa47ys9ASQAD34TzvsntK2ETHsYzDBsz22bb9Mi+Ntp4esBnvxJOHj8lN+E35GWZdC1HkqGgpuBUQfA8md7Xr9qNpmT7iT1wmuYxcW0//fuzRaRXbKY6OTJBJ4fhox0dZKa/TL5devouu0xqi+/nIYf/5iSY48ltts0ohMnEKmvf8+SvWQXZqKI8jPPxHAcOh9+mLLTTgtDWD5AZtEi8mvW4nd04Hsuhm1hJBLh9y0axSrZcvBJf9bb/deIRDCdCIHn4nd2QTaLVV6Om0xil3QH3JQMgTP/HIbQYOA/00h02jS8tjbyS5diVVVuDCDZILdwIW5zM15XJ0bHCph0fBhgtPIlSLdAPg6tS8CKQKwcbvtI2BfHHAqzb+gJIAFY/TKsfEEhJANcf9r2GhtCjywTq7ycIJnEy6TxOzoIslliu+2GaVkAOEOH0vCTn1By5JHhuYhlkV2wAO/gg7cYQgIQHTGC2is+R27FSvxkiq5HHqHmS19k3Te/QdUnP0nlRRfhtbVjODZuWzt+V+fGAJIN0q+8QsUF55OeNw8Cn6xlkZv5exIlLdjtq+CBr4dPbF4Ey5+Bjz68Y+FgrUvgga9u2vbUL2DySe+9r6kcCxfcEW4bks0wfE8Yuo37pQGiP/XfwLJIv/TiZu3td9xB8YknFqAi6c/6U9/dyDIxolHa77prsz/lli4Jjyvyeczu365E+kreDwNHHCs8z4hYJjlXISQiIiIiIiIiIiIiIiIiIiIiIiIiIrLt+jSEBNjtnROGYVjA1ozIXwWsCoLghe7pfxGGkGwiCILrgesBZs2a1bejt3uBYVo4dXW0/O1vRIYOJXDzYJgErts7C2hdHgaQPHctuFkoGYI1/jjctnUU7b03LTffDL5P2Wmn4nUlcWIx/NZWsEoxtzTg3DQxa0dC/B0Dl7KdUDYMY/h0Om/+PUX77kvpMceAZdL1v8eI7777lmuzIrDHheGg0Tn/CAff7/tJqJnaO+vez/XLvptsCAeEQThIdv/PhkEPq17CbluOPfpg4iefTHyPPXCbW8guXUZs95lEp04lyGTIzJ0HgFVeTuUF59N4zW8IcjkwDGq+/nVw83Q9+BBVn/g4qy+/HHyfms9dTtP1f6Ls1FOITp1K1ac+hVlWSv2vf0XXM89Q+/Wv0fjLX1L+oTPofOQRgnQaq7w8HKBvhv/B3q6tI79y5caBvV5bG7EZM8jMe4vkM89SfPjhAKy+4vM4w+opP/tszOeex6ooJzZjBtFRo3b4rTPjceyhQ/Gamzdptyp2zStqF7z/1k2HI66E126FTBvGoWfR+odfUnrccRiRCACt//oXQ3/w/fD5vo9BgNvZRZBMgmVilpRQccnFrL3i83Q++j9G3XIzkaFDe63E2OTJGIZB621/x0+nKTnmGCouOJ/2u/4Lno/X0UnXY49jFheTX7mSyksvBc/rteVvDWfE5oFXzogRxGfO2KTNiEQo6f4eDXQF77uAWbyFAAHTxIzHCQwDr60Nu6oK9vowBB44OykAJtUCK1+ENa9BzQQYsS+UDQ8D0eYvILd0GVgWXlsr0YkTaP7j9Vif/wwGBn4uR+cjj+C1tFJ0wP5EJk0iMAzMoiKqP/NpMAzSc97AdLbysLNyLBz1vfB4YNXscPBw+UiIV+z4eppWuF4DXH/oux8o2wXNC3ump58J1RPDPla/B9RMgeLqbZ9v4/yeAJIN3vgnHPrV8LjlP5+EAz8Hq1+Blc/BkBlw7A/hfz8gSNSSPuB3JP/3eLiNtR2c2lrcNWs2mZ1VVY1dV0fg+XiNjTT/7vfkFi0iMn48NVd8jtTrc4jtthuxqVMpOuhATPu9+7aXSmEEAZ1PPI5dVk769dcpO+MM/GQKK5F431VNvvIKuSVL8bu6wywsC9O2MeIxsCzsqiqs7v3cQNLb/deMxfA7O8Pwpo5OTNvC6+wkAjBkSM8Ty0dCST1eZzt22cPYlZWs/8EPiYwaRekJJ2w+Y8chM+8tYmOGw/QvwOu3hf1q6qlhWMG9X4JV3aene5wPI/cNQ0jKhsOSxzafX9tyaFsRbmubFoVhB8P2hkQvbNukT/Snba9TN4T8smUYTgR33TqMWJwgkwHPxWtpwU8mSeyxB2YsBgFUfORcmq+/Hqd+KGZxCWZREV5LC2zh+G8Du6ICu6KCIJuh6PDDyS1dRukxx9L445/gZ7NUfvSjFB9xOH5bWxgA9C5GIoHX1ETxgQfgtbSCH5BbuRqvspLi3Byc06+Huz8XBkZ5eVj7xtaFkAQBrH0Nlj0bnvONPhCGzoR0G+TTmz8/1bx52ztVjQtvbq77WCv6wTUMQP2p/xqAXVe3WbszbDimbfV9QdKv9ae+28PA60piDx3y/9m76zg56vuP46+x9d3bPb+c5eJ3sYs7JIEgwS04lOBWihbqpQVKoXiRtkDxQou7a0JC3N1Oc363LiO/PyZcSBNIgBDoj+/z8cgj2bmZ73znu7OzM5P7vAe9qWmHn1iWRd0ll1Jyxx349pv0PfVP+LHSDfsjom4LWnaoIoREEARBEARBEARBEARBEARBEARBEARBEARBEARBEARB+Gb2SQiJJEnXAb8A3JIkhbFrDgDSbPtF8q9iWdZWSZJqJUnqb1nWGuAAYOV31uHvi6ait7USOvFEYp98jOzx4J00yQ5u2BskGZpXwqSrwEiB6oa6OUhKAZJDI+fcc+wwB9PCiseQACMSQQqFQFEIzjiBzmf+3d1c9k/OxJFYDm0a5PSyJ/qLoPJIqJ1P4OBDaPvnP9EbG0GWCc6YgZnOfHn/3CF45WfbX394Mxz/8N7ZduHrc4Wgz4Gw9g0YdQ6sewta1mz/+YG/h2gLjvwBOPIqcLlHkW5sIv+aq4l+9BFs228DRx5J29//gZVOo+bnkz1zJvE5n2KEI+Scdx5qXh5WPE5g+nQ6n30Os7MTNRii8aqrkDSNvJ9dxtbf/BbPqFHI48aTfc65mIZJ8Z13El+0iPxrr6X5T39CLSxCcjjQm5vRSkvJ1NeDaf/yvWfUKDoefRQA95AhtNx5JygK2WecSdMtt4CuEzrlFNKbt2DGYrhHjsA9bBhaTs43GjrF5yP/iiuoPffc7iAJrVevncIchL3E6Ye3f20XJALW1tUEjzmG1nvvwwyHkZxO8q+5GiuZIDZvHnJODkYsTvSdt4m8/Q6S00nwhBPw7r8fciiE3tBAesPGvRpCIrncmIkE2Wf9BAwTJDDiCZTsEJZl4ps8mfjcORhdYbKOPZZMczMo+7YAzz9lCuGXX8aMRACQ/X58kydjZXTKHn2EyBtvInk8BA6ahmvwoH3at//PHL0qCJ1+Gh2PPd49Lfv000lvqcGMRpEVBcu04KVL7UCHsRdD3wPBlfUVrX5Negbm3Asf3bJ9Wu8D4LiHsNIZso48gthHH2MZOsGjj8GMxQmeOIOtN9xMcslS/NOnEzjwANJ19SSXLUdyunAOHUq6tpbwa68B4J04cc/7ozrtz7S5LYhn/oMw4Wf2eYvwv8OXb58TrnwBek4CJFCc0LDIDnPoPRWGnwl5/b5eu+ouisNVlx16svQZmH4LzLoTmpbZP9vwHjSvRN/vBmId2cReeQs1OwczHqPz2efIv/oqEitWQMY+R9VKSnBVVVJ7wYXkXnghpFJ2oN6hh2C0ttH6wN/IOessPKNG4hkz5isDSMAOQ8OycJSUojc1ETrtNDJ1tbiHf3WhfXzpUpLLlmF2hTEiEbQeRWDJmOk0pFM4evVCzf7/GW72tckKmCZGRydGZyempkJbu30N5fXi6bdtH6tfAJ/ei5XVl3STB6OzE9nnQwkFCb/1Fv7DDiPy6qvdzWafdipKKIiRMeCtX9ohCQCf/Q1MHaqOhN6T7WmmAQ43yCrUfAq9psDiJ3bsZ9l4eP582DJ7+7QDfmMf32RRdC98PVpONkpWFnpHB7LTiWWZWKkUZiSMZZiYySSSy4V32DC0HkV0vfgiOeedR3zuXDukcdRIjM6u3a8I8Awfjt7UTKapiY4nniDn7LOxMhlQVTIbNtLx9NPk//IX+KZOJfree93L5V5wPqmaWhzFxegdHaihIOnNm3EYJqnCwWjvnAcjZ9rnIGB/hvZE3Xx45DA7WBXsgLafvApZpXbYUGfNFwbKA6GKr27PyNify1l3QKLDDt/scyC4g3vWH+FrsyQJ16DBqPl56M0tAPY12YwZmKm9dP9LEL5DlgTxOXPIOfts6i+/AraFR9shntW4By5g6x/+QM+n/yXO14R9KmPYgSOqYv/Xi0OVSRsihEQQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEH4+vZJCIllWTcBN0mSdJNlWdd9w2YuBZ6QJMkBbATO2msd/IGQAC0vn8zWrXhGjgTAaG1DyfkGT4nfJQsUh13kEyyD9o1IB12P4vPS+dS/kP1+ZI+H1KZN5F95BSgqpNKY7e12odKwYRQNGYre1Ymak4uSm4O84i5Y9iTM+KcdBJCOwaf3IFdfTvi99whMn47sdIIik1y2fHtB8a4s+4/9t8NnF+Ilu2DxkzDo2L20/cLXEiiE0edDOgrBcuis3fHnn9xmP/V91h0w5jzkZ87ABRilk1Em/xTT8tP18ivIHrvIEyB02mm0/OUvWJkMWkkJkixj6Rlyf3YZstdLbK79NHkzZReUeUaPIvLOO2BZuKuH0vTrX2PGYmSfeSYdH35IprGR1IoVFN5wA5JDo+SB+4l9/DG5l1xM801/QnI6kJxO9K2NaGVlpDds6G7bO24c4TfeAF0ncPjhJFetJLFoMWpeHkp2iNS6dajBIO7hw3H17/+1h887ZjQ9n/4XqXXrkD0eXAMH4igp+abvhvBV6ufbASSaB1Qnkj+Pzn88Tvbpp2EZJmpREekN62m64UYwTdT8fAp+cR2Sy03uBReALBGfvwBnn964qqqIz5qFtJefwG2lksRmzUZyOpE9HpLr15N/+eV4R49GdjhJ1q7ANWiQHVBiGih+f3eAzb5iJJMU3fBHMo1bkSQJtbAAM5VCDWbh6lmOd/TofdqfHwvF4yH3oovw7T+ZdG0Nis+PpeukVq9G9ngwkyk7IKzuM2jfCM/OhOMfgkHH7b1OdGyET27fcdqGd6FzE7LHQ3rDejswwbIwujpRexQTm/0pySVLCZ16Ko7ycpJr1yFJEnokgpVKQjpFctmy7uZin3yCd9IePgm8dZ19vqC67MLiRAcseBjGnA+BHntvu4XvluaCKb+EVARKR9vnE3Puhei2p8U3r4SOzXDs38Hh2fN2CwZC4WDYun3/YvIvwEiCnoDoVujYtMMiRsFIYp15JFeuRM3JBcsisWw53rFjSNfWUfCL68AwkNwetJJi4p99Rs5pp+EsLaH+qquxkklcgwbhqKok65ijUQsL8E6ciOLZfb/1lhaMSBRn7944+/VFb25Byc5Gcu4iTGWbZF0dqdWrMTo6sTIZkitWoOblIskySiCApesofj/ugQP3fNz+H1P8foz2NixVQfF6SK7fgLO8DKOlBaO+Hvr1g5bV8MiR9n5YdTrOntOIfvgRvv0m0frXe8m7/Gco2dn4xo1D7+y0zwdzc2j68y0U/era7QEkqhMcXvsaZcLP7JAdU7ePUwf/CfyF9rG68kgYcASseQU0L0z9tb1/fjGABOzQxaqjIKfPvh424f8BrbzcDh7RNKx4HEyD1OYtOHuWY0Yi6I1bMfrFUPx+PNVDCb/2Gv6pUzCTKSRZwejs2KP1SKqKb8pkWv/xD3LPO4/wW2+SqakhU9+Ae1g1uRddSPTtt8m/+iqCJxxPprERNScXvbMTTdWQFAW9sRFJVdEKC9Hb28nUNZAe8TMcStReib8Iir46nKnbgn9uDyAByCRg6X/g0JvghEfghYuhZSVklcBRf4Wc3l/dXv18eOyo7kBDnj0bjv0HDDlhz/ojfH2GgZlIUPDLX2GEu+zA0txcjFQKSdr94oLwQ6CVltD5/AsU33YbmYYGJIcD2eMmuWoVWcceQ/Otf8EIR0QIibBP6dvCmLXPQ0gUmbQuQkgEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRCEr2+fhJB8zrKs6yRJCgF9AdcXpn+0B8suBkZ+d737/kkuF5LDQaahHmfv3mBZ6B0dOKw9+2VhM50muWwZsTlzkAMBvGPG4Or3hafLS7IdPlJ9KrSusZ9AH+vAiEuETj+NxPwFGNEoOWeeQaaxEc+4cZh6BmNrE7Kqkl67FtnnA8Mkk6xDUhQsTz7SksfsYruioXaBnubFCvUicICP1nvv6w6g8E2ejPRVFSW5fe0CvWSnXcznK7SDSITvjZFXTbLicmKz56PlXI6n0MC58TEYcab9HgV7QsVkmH1X9zJK7Qe4az8gfdCD5F1yCWqPItSiIoyuLoyOdqxMBtnnI3TKyTT/5TYwDJz9+xM8cQYFv7iO+GfzkL3binolGWvbL9AjK5ixGHJWlh0aMW8eSjCIb/L+NF57LWYkgnPwYAquvhq1IJ/yfz2F3tZGSXU1nc8/T/YZZ7D1j39EdtuHHiWYRbrGfkq2o6In4VdeASD77Jm03HY7VjqNe9gwjEiUxPLlOCsqcPbrh+Lz7dHYSYqCe9Ag3IMGffs3QvhqnmyYfC1kkpCJY6k+sqZPp/Wuu7AyGfIuu4yORx/rnl1vbkZvaUFy2fuCpRs4+/bF0nXMcBjX0CE4++y6GDhdU0N8/nzSW2rwjByBu7raDgzZDSMWI3jijO7jbO7Ms8hs2YJSXIISCqIVFmJGo3S99DJGVxcFP79m74zNl0itX09q/XoklwtXZSVaQQFWLErj736PlUwCILndFP72t6jB4HfaFwHUUAjfxAkkN/YgNudTrM4uZI8HVBUjEgHL3LHYdvY90O/QPQpuSNfUoLe2oubm4Sgr3fVMegoKBkHlEXaRvOKEphWQSSPJMuHXXkffuhUAJTubvMsvR9/aiBwI4Bk1kvZ//QtP9TBQZHwTJ2J0dJBYuXKn1SRXLLf7VF9PYv4CkhvW46muxj1sGGootH1Gpw8mXWVvdypsFxHXfmb3S/jfktcPZjxqv39t67YHkHxu9St2YEjB1wjTCPSAGY/BllnQtgHKx0HJaHufHTwDWtbCiJ/Y3w2f3gOZBImyc0gvW4Xs9iBpGl3vvIN/4gQ7qKyxASwTz/jxKIEALX/+M9H3P8A7fjyx+fNxlJSQPfMszGSS1Lr1qDm5aCUle3xsNGIxLEMH08SMRkmuWYNnxHC0wqJdzm8ZBuk1a9FbWsAyic35lKzDDye1fgOuwYORgyFklxNHr90U1f+IuPr0xoxGMFpbybS1YXZ2YASzkH1+0hs3kujRA3dmpR1AAkiKiRlP4BkxHKOtHSUrCzUvn/jixTgKCjDTaXQslKwAwSMOJ/bxbKj+E+5sHTnTaQeOZFdAXqV9TSUrUFQNLWvgsNug5lPoMRzGXAAH/tYOgQyWwdo37HClcReDotmBB5Zpn1MLwjfgLCnBDEcwYva+nd64ESuZxIzFkFxu0ls2k1rfA1dVFSgq3nHjSCxbjmtAfyxDR29rI93SgiMv7yvXk9q0ifjcuaDrSG4XWnEJWo9iHCUltNx7L+mNG4m89Tb+qVPxT5kCYAcorV2L3tmF3tiIVlhIctlSvOPGo/h86K2tJHMH4PDVwclPQXZvyN2DMB7Lsu85TP016En7sxRpsgOoAIqHw1mvQrQZ3CHwF+y+zfXvbg8g+dzsu2HAdDt0SNjrJFkCLMx0ivSWGmSnAzU3FwkLSdO+7+4Jwu6ZJlqPHnhGjiCxaBFqYQFKVhbpTRtpf+xxvGNGk3/NNai5Od93T4UfGd2w/w9BlWUAHKpM2hAhJIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCMLXt09DSCRJOge4DCgBFgNjgU+BqfuyHz9UkiSBJKHm5oFpgQRKYPfF7Z+Lz51L7Xnn4ygvx0ylaL3nr5Q/9hiufn3tGRQnbP4YHD672LN+IYTKUXP60HLPXwlMm4bT6SQ2Zy6+SRORfX67YDIcQc7LJV1Xj6uv3VamqRm1Rw9MRwBFkkHeVigSKIIpv0CqX0x0bh3ZZ5yBpeugyJjhCOa24vZd6j0Vnjqpu0AQWYWTn/4mQynsJdEPPqbh59d2v3YM6EfZH/+G9tKJ29+nAUfY+9R/cUSX4j/4EjL19eScey7tDz9kF2kCgemH0v7oY2AYeMaMwdm3D0033AiWRfDEE3FU9KLHrbfS9vBDBA45lOSSJUiaCpKEo2dPkqvXAJB19FG03f8AZiSCf9o0lGCQmpkzQdfJnjmTrKOORC0spHjUKMx0Gnf1UDINDRRe/3vaHnwI/9QptP/zEdj2C/nOAQNIzF+AlU7j7NcX1+DBtNx2GwCeMWMInjgDraQEZ0XFHgVPCPtIwWB4+lSItwEgTR1L7NNPyb34IvtJ7x73DrM7Knoiudx2kWYijplKI6kqak4uwZNOxDt6NGpu7k6ryWzdSt0ll6I3N6Pk5tL20EPkX3Ul2Wec8dUBS4Di9dLy8MMEDjgQSdOIfvwJ/mnTcPaqoOHKq1ALC/EfeCD5V11FfN48wq+/gf+gg/beGH1BfNEiamaejZVIAOCsqqLkrjuJz5mDZ/Ro3IMHgSSRWLqM+Ny5BI8+6jvph7ALEkimRfN990EmA4B7WDWe0aPRex9NOhNEViUcUiPytuPpl7Esi+h779Fwzc/tACefjx63/HnXgWChCqg8Et67fvvy1aeRSfmBBnwTJ9L18stYqRRGezuJJYtRQiGCxx9HbO5nuPr2w4yEkTSNdF09/gMP6A75+SLPqFHobW00/PxaUmvXoubn0/HPR8ieeRZ5F1+8veg0uxe8+UsI129f+Kh7wSuK+P4nOX0Q6gktq3f+maxuP4f8OrIr7D9flInDc+eCkbZfax6YfC3JpI/4omXd59nh998ndPRRGOEIWBauwYNxDxmKq19fIp98gnvoUJz9B+Ds25fmW24h9+KL0Nvbabnl1u5VaaWllD38EI6Skq/sZiYcxuzoQML+TMaXLCF42HSMZBIlFNzlMonVq0mtWY0ZixOdPRvvqFHE5i/AXVmJVlqC4vPhHjQISfnqY8CPjdqjB6ktW7AkCe+ECXS98CKe0aMA0Bu3QvH28zY50Q6yCbKC2qMIraICyenESsQxohEkhxOtsIjG636BpGnIXi9tmzdT8ser8K/6ox18ADD1V5BVBrFm+PhWOOD30Pcg6HfwrjuZ2x8mX2eH48Ra7GmuIPSf/h2OjPD/nbuqkuSGDVjhCLLbg3voUCKffIJ3yBCMZBK9vR1Z09BKitGbm7F0HSMcRvb6kBUFvXHrV4aQpGtqqJl5NnpjY/e0/F/+AisWJ1VbS/app4IFWUceQbqmFs+wYQBImoZ74EAsXSfy/vsouTn4Dz6Y8Ouv45swEXSDxKLFaKN74f7kWjjjpT3bYEmCysPhP2dtD/ApHAwH37h9Hk+2/WdPabsIGnH6QRLH2e+KZQG6TuPPr0UrLcVKpzHDXfT4y1/s635B+IGTFIXksmW0/vVeHOXlGK2tKLm5BKYfSt5FF9F0000ETz55j0NsBWFvyRh2qJam2Nf8DkUmrYsQEkEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBOHr29e/3X8ZMAqYY1nWFEmSBgC/38d9+MGSVBXJ6UTJDtkhJIaBEgyCJO92WSMep+OFF8i/+iqSK1ciOV04e1UQX7Z0ewiJZcDg42HdO7DocSgeAYXVmBsTZB16CB1PPIEZi+OdOAEkGdmhgSQhqQpYFmpuDokVy1FzckjXN+AZMhhL9cPIsyGnl72OdAw+/SvkTcQ3bhzNt96Ks1cvzGQSyzC6iwF3afMn24MtwC4qWvAI9JoMiihE2dcyLS003/oX+4WmkXveuRjhCM0PP49/2DV4jM9QN70Ca16B4x6EdW/aT3MHUJ0w4DC0/Hy0/HzMVIrAoYfiqh6G/K+nULJz0LfaT6v2jhtLyx13ApB3+c+IvP02nU89haNfP3LPPw9khdK/PUB07mdkn3EGXS++SNZRRxH/9FMklxujsxMUBVdlJS133QWSRN7PLiOxeAmbjjseR+9eFF1/Pc7evXH174+rf397vePHY3R1IWdlYaXSqPl5KAE/emcnAP5p02i9/wEAso47DqOzk4YrrgQgcOyx5M48C620FNnp3DdviPDlGhd3B5AAWPEOe3+4405QFPKvuXqH2d1jxmIZOkogQLqxESxw9euLaeiEjjvuS1eTXLsW/4EHYkSj6I2NBA49hOSyZWTq63dbiG4mEvj335/2J57ASibxTZmCWlhIw7XX4R4+HPewaqxMhvSGDaj5+WilJWB9ZZPfiJFI0HLPX7sDSABSK1eSWLgQZ1UVxpy5pDdvBkDSVJwDBuz9TghfTpZJbdpE4NBDiX30EUZnJ4lFi5E0lZqHVpBasxZkmezTTiFnvzhq6MuPP+nNm6m/8iqsbeFfZjRKw1VXUfHcczjKy3ecOd4Gs27vfmnmDCTc3petJ52OFY+TNeMEetx0E6mNG0hv2kR6w0ZyLryAxLJlOHv2xGhuIbl+PRIWWn4BRlcXrvJynFVVpFauBMA7aRLe8eNJrVuHZ1g17sGDyNTWETjoINKNDaRra3H22nYu0bZhxwASgA9vtgv7vTsHBAn/Azo2QcsqKBgETcu3Tx97kR2C821ZFix+ansACdihJB016MFj0FveBNMg/tk8vBPGk9q0GdfAgWg9inANGowa8GOZJqlVq+h68SVkt5vwa68ROnsman4BLbfdvsPqMrW1pGtqiM+ZQ2zuZ3hGj8Y7YTyOHj12nG/zZjKNW0GWiS9ZiHf4MOILF+I74AAcRUU7bYYRjZJat45M41YSy5fjrhwApoFn8CBkfwBHr944iwq//Xj9P+TIz8fo1x+zs4v4woV4J0wgOmsWrgH9kQN+HCXjcQbLoXMLUqQOqciD0dqGBeRdcjFGNIprwADC776Ls09f5KatZM+cSaa2BiMSJXjccXTNWo5n+CEo61+wVzrnXhh2OtR8CuMuhWizHZDwZXJ62dc6nweQACQ7YfGTUDz8Oxwd4f87V+/eSKpGpmkrenMzWk4OybVrUfPz0LduJdPWhhIIgKriHTeOyHvv4R09CjMawwh3ocfjJBcvJvzGm6g5OfinHYi7qgqA5IoVOwSQALQ/+BC+SZNIr1uH/7xzydTUEP3oY5AkPMOqcZSVdc8rqSquQYMwurpIb96Me/BgOp9/Hu/YMaBq6EaWfR7SuBiye+5+YxOd8MHN2wNIALYug3jHNx/APlPh41vsexlgf44nXQHazoFqwl5iGEQ+/oT8q67c4f5Vcs0a3EMHf9+9E4TdslIpUmvXkXvBBaRWr0YdPx7F50PNyyO1Zg3uESOQdhMaKQjfBd2078uqsv1/CQ5VhJAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAI38y+TnZIWpaVlCQJSZKclmWtliSp/z7uww+apGnILhdWRkdyu+0QEJcTI5VC+aqwA13HO2w4Lbffjne//bCiEVr/9neKrv9CxovDB4v/BRWToGQEGDqsfB45+zzSW2rInnk26DrIEum6OizTRFJVZM0BioKzZwWptetI1DfgGTECPRLFGnoQFJaAuq1AJx2Djs3IFYeSWLSa3IsvJrFwAbLbg2vwIPRw+Mu3IdYCVUdDfqUdmJLsgq0rtgdbCPuWrmNE7VCY7NNPo/O557sL0GKzQxRccxm+IXkomRaQnXD4HVA/H2QNysdDMgwdWyBUjm/sWBxFRSRWryHn/AuQ3C4848cRn/0pZjIFgGvwYJLLlpNcvgLXwCo8Y8fR8PNrkZ0Osmeejat3b8xkgoLf/85+svaqVVjpFLLfj+z1kq7ZAtiF7rFZs4nPm4ean0/o2ONoueNOjNZWgqecQuCQg1FDITs0oqQE98CBZFpa8B94AB3/ehpHWSmJ+fO7g4AkpxM1L4+uZ58FIPeii7Y9EXwmroGDyL3kYtwDB+7790fYLtll/503AAYdC56+dDz2U9wjRuDbfz+M5hZCp51KxxNP2oFKhQXIfj9qXi7xefOQvV7kYdXbHsn95SRVo+ulF9GKS9CKCul6/gV8++2HtZvlACRZpv2xxwmdcjJKVhZYFpIkYXR0EDj4YPSuzm3HewWw0IqLkQP+bz00/81KJEivX2/3ye1GkiXMWBy9vR05KwvXwCrCr7wCQODwI76TPgi7ZiaTpFevITHvM8x4guAJx5OuqcXo7CD88it2AAmAadL+6ON4xk/AP3nyl7anNzV1B5B0ryMWJ9PcsnMISToKsgrDzwTVQcrsQ+NVdjhU6PTTSK1ZQ/0z/wbsY3XOeeeSWLYMz/DhGK2tWF4PRlMTZjKJs28/rEwGNRSi7KEHSW3ajCSBo1cv0HVMXSfy/gcogQCOslLCr7+Oa9AgLPML3/XpOPQ+AMrGgJEBPQXLn90xYEL435LogFUvw4HXQ7wFmldBTh+oPBJU7du3b1lQOgpye9v7cs0c2PAeRqAcvaUFfWsjqU2b8U2cgKRpqAWFOCp64h0xoruJVG0dkqbhqqrEjMfxH3oozt59sKIRzFhsh9X5pkyh/dHHsBIJtKJC2h54gMg771B8y5/tQn8gsXw5sbmfQTpNpqERLSebTEMjrqpK1FBol5uRXLWK9MaNpDduxNW7F46ePcls3YplWbiGDBYBJLvh6tuH5PJluPv3x0zE8QwdQnLtWpSsIJn6JpynPQcb3oGOOhTJjSlL6E3NJDIZXFVVWKaJlpdHcsVyvGPHsPV3v8czYgSyx0PbP/5BznnnYfWIQGmVfWwyM1A8CjS3HcY37Izdd7KzDoaeBO4QrHsb2tbbwTymAaJYWfgWnOVlJJZnYW7ejHvwIKKffIIZiWKGI6Q3b8bRuw/K8uVEZ8/G1b8/eksran4eqbXrMDs6afzVr/Dttx+ZWJS6iy6i9L77cVUOwEyldlqXGYngnTAeNS+PTEMjcn4BiteLc0B/0jU1O4SQADiKijD698WMRkmtXYt/2jQi772Ho6QYvbkF/Yi/o1p7+B2fjkHnZvvf5eOhx3D7c/T59cA3UTQUznrd/kwmu6D/oVA88pu3J+yeaeKuHEDLHXfimzQRMxym9f4HKPj1r7DS4nxP+B+gKKihIF3PP49n5AhSa9aQrquj4Je/wFVdDRY4epbvthlB2Nsyhn1/SlXsYDyHKhNN6V+1iCAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiDs0r4OIamTJCkIvAC8LUlSB9Cwj/vwgyY5HUiqitqjGDJpzFQKxefHSiTgK0JIJJeLVM0Wss/6CeHXXkdSFHLO+gmZ5i88adtIQ/XJ8PFf7KcNO3yw/zXQIWNGIrQ/+ihqdohMcwv5V1xhFy/LCkY0giMnm9TWRryjR2N0daEW5GPF41j+YvAXbF+HLx+mXY+VBFdviH/6Ka5BdkBD9KOPCc6Y8eUbP+g4+OBG+OAm+3VWCRxxF6iObzOkwjekFhSQfeYZtN3/ALLH0x1AEpg+HbWoiJZ7H6Q9mEXe6Ufi/eBmpKwCGHCEXUT5yR0QLLELLaf+CvodjKO8HDkQoH3FcmRFwX/AgZDRkbft1+7Bg+l69VUA/AdOo+VOuwA+98oraL3/AcyuLoInnYSa14He3Iz/4INw9OyJZ/Rotl5/PWqBXZjrHjiQ1vvuAyB06ik033orViaDd/x4zHAXTTfehLNPb3xTpuLq1xcALS8PLS8P12/7k2ltRc3JIdPQiJKTgxIMkt64AQDf5MnE580jPm8ektOJq7KSyFtvE/vkEzyjRuEeNAjJsX1/TdfUkNq0Cdnjwdmnz5cWHQvfUulYO4BkwOHwwZ9g8K+Rs7Ls8IRVq0GSSNfUknvpJbiHDUNvbib67ntoBfn4Jk2k7R8Pkli4kKKb//SVq7EScbJPP4PIe+8Rm/sZvgkTkDweMIzddjG1cRO5559PdNYsjPZ2MrW15F58MVpZGVJWAM3twugKY6VSqIUF9rG3qwvL5cJKp/favqOEQgRnzECSZTtkyNBRsnPwjB5NfP4CWu++p3ve1rvvpuBXv9wr6xV2L7FkKfWXXdb9Wm9rwzNmDJm6OpRgFv6DphF56+3un6fWrvvKEBI1Lw9J07Ayme5pksuFmpO988zeXBh/GUbDWlJaX9JWDjkXXEDXyy8jOZzEP5vXPWty2TISi5cQfukloh98SPYpp9D851u6Q3xSq1ZRdPOfSMxfQPTDD3ENHoSzXz86Hn8CIxzGM2IEweOPJ/bJJ8TmzMUzejSOkmKsL36OCqpg3Rvw/o32a082HH4n+Iu+5qgKPxi5/WDM+TD/H5A/EMrGQiIMoYq9037jIvjozxBvt19XHglVR5Pyj0VfsxRHeTnuwUMwUymM9nak3l7cgwbt0ITe2oLR0YlWWoYZCdP+yD8p+MUv6XzheQJHHE7Xs891z+seNRJZUYm89679fTBxIrLXQ2LpUhz9+5Nes4bEsmX2ubJpkVq7FtfAgWgFBVipNI6ePXfahExzC6m1a9Hr6nH26YNWXEz49dfxjhuHa+BAPIMH752x+n9MUlXcgwbT9frrpFavwTNsGJLDgd60leS6dWg9e+IcdR5k4jB7HpZhImkqkqIgOR3o7e04+/ZDzS/A6AqTe/55hF95FSMaJXj88WS2bkXqkwXvfeHYFOoFH90KA4+xQ0m+SiYFfabA+zfZ12JVR0GvydBjmAggEfYKragHRlMzemsLrgGVZGprsZJJjM5OtOwQalYW3mHD0NvbSK5ejS8/HyXgJ/LuO+RecgnhV17BSqXIOvoYkhs34qocgLN//53OJ7KOOZrmv9yGlU6jhEL2OfbQoQAkVq7EXV2N4vPt0De3u42kx4Ps8djXdcccjd7SitHWTjpSgOrptM8lJOmrN9JXANWnQlYxbPoQ5j8I+VUQKvvq5XanaKj9J5MESdk7AVnCl5Nl0nV1hE45hcgbbyA5neScdx56ayuWvvtrK0H43pkmksuNd+xYorNm4SgrJeeMM7ASCSRVJXjqKWgFBbtvRxD2soxhh3tqigyAQ5FJ6yLcWxAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQfj69mkIiWVZx2z75+8kSXofyALe2Jd9+KGTnE7UkhI6//U0sQ8/BEAOBCi5917UkSO+fEHTxNGjB8nlKwhMPxSwAxA8I7/wBF/NAytfhrEXgp4ExQk1c8FbgXtYNc6+fck0N5N15FGk1q3Df8jBSJqK0doGvXqTrqvDNaASORDAjMeRPF6s1g2gRe2n2YNdQBdrQW5ah6WPwjRNJLcbSVXxTZmM7PN++TZ01cLmT77wug5WPAcV+4EiioD2NUmWCZ10EkoggJW2i86UUAitRw/a/vEPAGSXi0RtGLP0MpzmOhwrXkQachz0qIaGhVA2HowULH8WegxDzelN7qWXkq6ppeWO25FcLlwDqwjOmEF6y2Zc/foRnzev+4nbroFVJBYsxOzqwn/QNNIbN9D5r3/hGTUKrbCI5htvQnI6KfzNb0BRyfN6MONxex+NRjETSaxMBiUnB9eQIbTcfgcAWccdR/S990gsWoSzX19clZXILheSpuEoKsJx3HHonZ14x49j659vwVFmP8HWVVVF6733ApBz9tl0PPMMRmsrst+PEY6gNzWhlZXhqOhFesN6as45F7PLfiq3b8oUCn/3W1GI8l3wCP+HsAABAABJREFUF8GUX8J/fgKWiWbVU/ibX5NpbET2+5EcGv7yMiLvvofe2kbnk0+i5OaSfcopWBIUXHcdekszqbVrv3I1kstN11tv4Rs/HvewYWDo6M3NIMu77aJ76BCsZApXeztmLEbopBOJfvIJeZdeiux00vrggyTmzQfsz1nRn/5EcsUKWu+9D6OlmdBppxE47HC0/LxvNVSSJOEdP47ac87FjMXsiZqGe/gwYrNnk3XUUWilJQBkauuIfjKL7NNO+1brFPZM9OOPuv/tmzoVS5Ix2tuQHA6sRBKlsBDXkCEkly4Fdv9kbUfPnhTd8EcafvkryGSQNI2iG/64y/ADmlagb15G0zyN8Fv2MU72esj/+bVE3n9/p9kTCxfg6NULvb2dxLJl3QEkAFknnICVTpPctBnXkMFohYXE587F6ApvC9OxiLz9Nt7x43BtC4FIrlmLf/r07SuItcCql7e/jrfDZw9A7yng9O9mJIUfpGgzJLugdAxsmW2fGwyeAQ73t287GYG3fr09gARg1Utw3ENk6tqw0imUrCBGRwex+fPxjhuHs1cvjLY2YuvXI8kyjl69Sa9fT3L9eoyWFvSmJopuvJHM5i2owRDuwUNQ8wuIvP46akkJ7spKOl96Cc+oUXhGjiSztYlMYyPpujrin32Gkl9ActkyvGPH0vX6G7gGDkTNy0Xv6MA9cgSOkpKdNiO1ZjVGRweOip4gy3Q89RShGTOQnA6cvXt/+3H6kXD07oWzVwUSFl0vvUTg8MNQgkGsRILU2rU4N/4LVr+EOuovGAE/ViaDmpsLloUVT4DHgxIMovh9dL72Kr4DDgBdx0wmULJD0LRi+8ri7bD4STj8dog2gTvnqzvXuBieP3/7MXPRYzD2Yuh78Hc2HsKPi1ZSQmrlCpJr1+EdMQK5b19QZPTWVvRoFGefvqTr6lACAXzjx5NYsZxA2XQ8I0bQ9fIr+A86CHQdK5PBikYwk0lcAwZQ9s+Hab3/ATK1tfgPOwwzEiF00omkN23GMnSMzi6SjQ1Ybe1IXg+pjRtR3G7SW2pQQiGc/fqiuLNwlGrEPvsMKxrDWN6Fa9AgLF0nVdeMK/ECcsloyO3z1RupqDD6XPj3T6BpuT2tfoH9+tz3IfsbhlvFO2D92zD3fvDmwfhLoWycCAj6rkgSaiibTG0NgcOmgyyTXL4c3+TJmBn9++6dIOyeoqK3tqLl5ZF11FFImkbX22+Te/ZMEsuW49tvv++7h8KPlG7Y55mqbId6OVQRQiIIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiB8M/sshESSJBlYalnWIADLsj7cV+v+nyLJdlHkh9uHxwyHab3nHlz33Yvi3nWxpuRwgCSTrq1Bb2pCcmgYXWG7UH57S9uevn0jZJXaT+DuOw3F76PlhRdx9euHVlJM5O238YwdA7qOpKjoHR1YpoGjpJTUmtU4ystJrluHd/wErM4mmPM7OOUZ8IQg1goLH4HCUSBJhGacQMttt5PetAkAtagI7W8P4Orbd+eNaF5p92vg0aC6oGaOXaiajoE7uNeGWNhzWmEhOTNnkly7lraHH8Y7YQLht94CwDlgAL6JE2m99z4wDDss57YbcNe9jbzkSTANu1Bzyyw7lOSNa+HMl5HzK3H17kX+FVfScvddJJYsIbVhA/6DD0IrLiG1bh2y0wmAWlhEessWe339+tF6z19BUfBOnEDL7Xcge73kXfZTtl7/B/SGBrJOOAHfhPEU/OpXpFasQHLY4TWBgw6i89//Buwnd6c3bqTr2WeRNI3giTPINDSi9eiBs3cvlEDAXncwiDpiBGUP3E+moYH4smVYhoGk2W1ahoHR2oqkaeRdegktf72X9gcfRHK7KfjNr5EdDhwlxSS3hZBE33+f+JFHkHXoofvs/fvRaFkNnVvsQl7ViaUWo9e20Pynm8G0iy2yzzmb4IwTqL/0pyBJ5J53HumaGpRAACMSRm/vwLf/VxcKWekUrr59ibz1FlpREakNG8g+/TQwdv+0bjUvj7pLL8U7bjyKz0f740+QfdqpRBcswN2/X3cACYDR0UHnM89gdHSQXLwYgOab/4xlmOSec/Y3H6dtYp/M2h5AApDJ0PH4E2QdfRRdzz6LHLBDHvT2th2DIYTvlHvwYLLPPpv4nE/xjB+H0dJK6333g2EgOZ3kXXop2kHTSC5dSmDqRNylvq9sT1IUAtOn46ysQm9pRs3Px1lRgbSr0Jw1b5DUqgm/dV/3JDMWp+PJJwmdcgqx/woicY8cRXLpUoy2NmSPp3u6Z8wYsCxSq1bjrKokvWEDTTfeBJkM3v33x1VVCRa4hw4l/NrrOEpLSW3cQOjkk7H0LxSchhvscKFBx9oBavULoOZTO8RChJD8b2peCe2bYO227MGm5bD5Y8h9A3K+ZcBGqsveX/a7ChKdsOw/kOwkqefR9exjxD6xA+60khKCM2aAaaIEAmw+9TT0xkYAPPvvT+7ZMzGjMZLLl5N1xBFY8TjJ1auR3S5a7rkH2eMm97LLkBQF0zDQGxoxWtswoxHMeBz/AQcgaw7a/vZ38q/9OZ4RI2h78imChx8GkoQZi+HoVYFnxM6hgonVq0muWgWGiZmI0/XKK+ScfTZ6axueypE4iou/3Rj9iMgOB1ppKZm6eoLHH0/bY4+RNf1QZJeb9MZNJIaOxt10I45NT5LJOgwpmUJyOTETCdTcXDuoZEB/jEgUNT+f2McfI/v9pDZvIvfcc+3gsepTINADwo2w+lVoWw8rX7TDRPocAM4vOT43Lt4htAmAZc/AhMu+83ERfhwc+XlIHg/+/SYRfvc9vKNHg65jtLeT3rQZ96CBpJubSMydi5KVhad6GHpjAxbgqhxA53/+g2tAf9LNLWSXn0i6vh5X7954Royg5O670Ds66HzyKbTCAppvvwPF68V/4IEklywmePAhtP7972RNm4YZi9H8l9tIzJ0LQPCUk8k/60Q0dwfuqipS6zegNzfTevc9AGjFxTj/+Gs88VZgNyEkAKnI9gCSzyU6oG3DNw8hWfMavHjR9tfr34aZb0LJqG/WnvDVDAPZ4yaxeAlqXi5WOoMFWHoGaQ+urQThe2cauAdW0f7oYzj79CHT2Ii7uhoznkB2uUg3NeGu+IbHI0H4FjLb7oGpin3d71BlUiKERBAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQfgGdlGJ+t2wLMsElkiSVLav1vm/SJJl9JbWnaYnV67EDIe/cjnLNAkceijIMmYsjv/AAzATie0zyRo0rYTJ10HZGBh1NoR6YiUS5Jx5BnpLM13Pv4BWWoLiD2Cm04CFkhVAkhW0HkVk6utpe/ifWMkUkiyBpEHdZ9C+wV6H5oZACVJWIUpBAak1a7oDSAD0xka6nn9h1xtRsT8MPh7mPwwf3wqaC6b8ApyBbzCSwt7k6tePsocfwjVkcHdIR+Cgg2h78EEwDNzDhpFzzjm0/PUh6p5tIjroT5i5VfbCzSuheASMOgdm3wMLH4X2zTgretLjppvwTZlCav16Mpu3sPWPfyR4/PGopaXkXvZTEsuX4xk71m7HtIs2XZUDSCxcBNiBIm1//wd6QwOhU08hvX4d9T+7nLYHHkAtKEDNzSPvyitw9O2LlU4D4CgtI7HIXj7vssuIvPc+DVdeSc3MmXQ++yyJVaswIpHubVeDQdxVVZTccTu+Aw8g+7xzQdOwUkkA/NOm0fnv/2B2daGVlpL300tpu/8BGq+9Dq2klJzzz+tuK7Ol5rt7k37MfLmgJ2H+g/DxrWRcfWm57bbuABKA9n88iOxwgmniHj4cye0iXVeHZeiYsRhmIoH134XB/02ScZSV4ujZk0xTE/4DpqK3tsJuFgNIbdxE9umnk1i0iPAbb+A/YCpGOEzggKnojVt3mj+5fDnuYdU7TOt49FH0trY9GZGvlGlp2WmamUxiJRI4+/aj66WX6XrpZZx9+yFJ0rden/DVLF0n+tHHNN9+Bx2PPopWUoqzooK2v/+9O+DGSqVo/dvfcFf1o/yGcykcHUFbcu9u25ZUFVffPvjGj8fVpw+Soux6xlAZejSz0+TUunWohYUU/O63qAUFALgGD0bNzsa3/34Y7e0oWVlIHg9KdjbBk07Et/9+6B3tGC2ttD/8T8jY7br696P94X9iGQZKMIircgCZrVvxTZqEsS2sqVtuPxh+Oix6HD66xQ61OvQW8OTs+cAKPyyhclj35o7Tos3Quu7btx1rs9v56FZY9bIdRpLdi+TGrd0BJACZujqSK1aglpUSeeed7gCS4IknouXmUnv+BXQ8+ije0aMxsUjX1BL79FMi775H1pFH4uo/gOTixWilpRjt7XhGjsDo7ET2esk65liMdIZMk308l90e2h56mOBh0+3zF9PEUdEL38RJaDk77sd6ezuJhQsx4wmSK1fS9epr5J57Homly1AL8nFXV3/7MfqRcQ8ZgtqjB6n168k9eyZdL79CcvVqzESCxIYG9KHno654BC0/F1nTMLcdg5SsLDL1dbT/8xFknxf34CHIfj9GRwfBw48gtWkTZuUxdlDiR7fa4UgH3wB5A6BkJLj80LzqyzsWKIEJP4P9roaycfY0fw/7+kkQ9hKtRzHpunq0wkISixZiWRZmVxijox1JlvGOHIlr4ECUUDaptWuxEkm0/HwUfwDf/vuTadyKq3dvzERih9A62eXCUVSEZ9xYUmvW4h0zhuBJJxH9+GOiH3xIavNmcs89h84nn6T23POQNY28Ky4HWabzyadI1mzFsfU91KICtB5FOx6f6+vpeP5lLGMPi6QdXlA0O6hs2On2cX/YaeD6hvcNkl0w644dp5kGbJ71zdoTdk/TMKIxAtMPxYzFQZbxHzAVy7KwxPWH8D9BItPSgn/agWSamnD0LMdRXobkdND16itYX3H/VhC+S7ph36DSFPtY6lRl0nv6/SoIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIX6Du4/UVASskSfoM6K5osSzryH3cjx8syzLRigp3mu6bvD9qdvZXLqv4/aQ3bsAzerRduGxa4HBgmSaSLNshJIEimHsflI6xn9qd7EIaMpn2e+8na9o0rIkWVjpNYvlyAodNx5JltOJiJEWm5a67MbeFM8TnzEFvbcX9iwvtlcvbdiWHFw74DdLmT1DlLGJr1+7Uz/iCBVi6jqT+1+5nWfDJ7dtfr3sbsnvBwGP3fACF74y7qgpXZSXOigpqzzsfM5Wy3zNNwzdlih36AHgnjCfZbJLJOh9HQRhX5CMUxQEf3GQ3tOQJGP4T2P/nyIEi3IMGUf7Ph4ktWIBz40ba/vEPci++iMhbbxM64XhcgwdjhMPoHe1oZWUYkSiOil4AyD4/eksLksOB7A+QWLQYJTubrCOPoPmWWwC7uNjRq4K8y3+G2dkFTicArkEDSSxejN7QgJKTQ+5559H++OM03/xn3MOHU/SHP9hFJNv2UzUUQg2FcJaV4amuxohEQZbRysoIv/aava7jj6P51r90BwdE3nwT/0HTcA0eTHLZMtSion31dv24JKPw/g3dL81Eeoeiyc9Zuk5g+sEoOXlY6TRKVhaJpUuxDBP34MFYmZ1DGL5IUmRSW2pw9e+Po6IC2e3CCEdA3n2hnKxphGfNIuvoo8A0yTQ0IHs8OHv3xuzo3Gl+35TJO+0vSiiEpGm7XdfuBA45mK5nntlhWvaZZ5BasZL2hx7qntb+0EPkX331t16f8NWSa9ZQe+GFOxw3JE3DNWgQyaVLu+czw2Ho3IJn2e/tCdWn7r1O9DkQR/OHO032jB5N+4MPkli4kB633oKZSpPesIH4nDn4px9K3q9+hXtgFeWPPkpiyRKarv8DRjhMwa9/BYZB7kUXgaLQ9dprmMkUqTVrkDSVdE0Nzt590EpKkT1uMs0t8MWCU9OAD/+8/fWmD+3zlyEn7b1tFvYtXyFIClj6jtNVx7drN94BL10MW5fZr6NN8M7v4LgHSb26cxhEcsUKci64gI5HHrVXX1SEpCp0Pv00AHoiwdbf/57iu+8itXIVWUcdhZVO0fnss2SfdiqmYeLq25fUipVIDgfeCROQXU4SixbiGTuO+Lx5oCh2yNQhB2MZJrLLiaNfP9zDhqGFQjv0xzIMEsuWE1+4iPjs2Th69iTnJ2cSfustXFWVeEaORA0Gv90Y/QjJmoanupr0pk10vfEmOWfPJPzGmySfexbP2LFo0w/G538ZR9v7pLz9kGQJCWi5667uax3Z6STV1IS7eigYJpKmoTidUL8c2jfaK2rfCG/9yj4eb5kN6TjEOyG3L7iDO3Yq3gGta+CzB+zgtH6HwvhLoffUbx6cIAi7oBUVoubno+bmENvaSOyTj1FLStDq6tA7O1GDQXxTppBYtgwzFiM+7zOcgwaS2rQJ98CBqAdMtUNNo1EswyBdX4+juLi7fdegQXS99DKeESNovf9+gscdh5KVhVZUSP3lV2Al7aDG2CefYEQi+KdOJfLOOxht7dC1GnfFQOK7CMRLLFiMMS+J6s+H3D5fvZHZvWHa9YAEc++Hjs0QqoChJ3+zQZNk0Lw7T1dd36w9YfcyaRSfF6OzC++E8SDLGO3tOEIhJGWfZSULwjcmyTJY9jW6f/JkJE0jXVuHVl5O1iGHYqVS33cXhR8pY1sYryrbx1KHIpMRISSCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjCN7Cvf7v/98DhwPXAX77wR9hGkhUswyDnggu6i81d1UMJnnjSbovPJU0l09AA2E891NvakDUNK522Z5BlyCTsQrnOWvAVwMizsVIpsg4+iLYHH6Tt/vvpfPZZPKNGYeo6sqpiJhIYnZ3dRXmfS69fjxnpgkEnQM4XCoVqPoWNH2BZFt4JE3bqZ2D6oTsHkAA0rwB3CEadA5OugpJRsOJ5iLXu+QAK3ylJkvCOGUP5E4/jqqoEWcZTXU1slv0ka9eggWjFxbTccSdbb7iZ9g/WEgmeTKzFiT7gFMgqg4NvhI5N8NSJsPhJiLXhqqwk57TTyL/6KpTsbJAkUuvWEV+wkLa//Z30hg24h1aTf/VVuIcOxT2sGsnlAkNHcrtRcnLQtzYCEDjsMNof/idYFqFTTiaxaBHNN95E2/0PYAFKwE/uZZcROOIIkqtWAhCaMYPmO+4gU1uLa/Bg/FOnsvX631N78SVEP/0U8wvhFEpWFr5JkwhMO5DSv/8NM5XCNbAKACuZ6g4S+Fzk3ffwjh9P6LRT0Yp7fPdv0o9RwwLw5sGY82HiFcjB4E4BHpKmIXvc5J3/E7wTJ2LpOs6KnlgZHdnlQs3LtYObvoJlWpBJY5n2e2x0dqLmZGP913u+K2YqiRIM0nr3PbT+9V6Sy1eg5uQie70o2dkETz0Fth3j3SNG4Js6FSWQ9YUNkMi7/HKUQIDUli2E33mHyPsfkG5o+JqDBe7qYRTfdRfOfv3QysspuuEG3EOGEJszZ6d5dzVN2LvS6zfsdNwIv/463vHjd5imhEJoyTX2C1mB4WfsvU7kV+IccwAF11yOtC2oyTlgAL6JE4jPnYuVydD6wN+IvvsObQ88QKaxAUyT+Icf0nrX3eitrWDoBE88kR433UT0gw9p+sMfab33XtoeeICcM88kvWWLvS4LkOXu0B8zHLE/R6aJkUhgxGLQVQOe3C+cD4yEVS9DrGnvbbOw71gW1C+C6lN2nF4wEPKqvl3b4QbI7Qf7XQWVR9iheKYOiU7cFTuH+nknTcTZuxeBgw+yX48ZTeT9D3aaL7l8BR3PPE3b/ffT9dzz5F10EfFFiwgccjB6aytGLIaVySBJEkZnJ5LThaQqpDZtovA3v6HzmWeQ/QGUYBDPuHEEpk7dKYAEILF0KZE3XiezZQuBww/HNbCK8JtvoeTl4Z0wEdeAAd9ufH7EnL0q8I4ZjaO4B10vvIhn5Ej8B04jvWkz0Xc/JDn6L6h6K87yMsxEAjMW777WkRwOME2Mri57/5UgXVeHkhWw96/i4TDpSvsYJUl26Ej/6XYQQqIdmlbs3KG6z+Dd39vXYpYFa16zAyJ77rdvB0b4f89ZXo5aWEhi2TJ8U6ai5uVjNDVjdHSQ3rQJADUrC9+ECbhHjMA9bBiYFt7Ro4nMnmXfM9ANrHQGK56g66WXiS1Y0H1PQQ0EyD71FOKLFpF/xRVE3n+f1vvuI71mbXcAyeeSS5bg7NcPJAmlsAhr8Ik4mj7AUz1op377JoxGyS6w71PsjqJC7wPhw5vtzx3Y15fPnLFny+80aH6Y/POdp/Wc+PXbEvaIJCtIDgeZrVu7p2WamuxjqrT7gEdB+L5ZWKjZ2XbAEmCZhh3Ua5pYegZNBNAK35OMYd/X0hT7WOpQZdK6CCERBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQvr5dJEF8dyzL+nBfru9/kiJjdHQi+bwU/elPYJmYiSQY+u6XlWVkjxe9qQklFCLd2ICrqgpL37as7ATLhM2zoN/BkOiAT/+KPOo+kmvWknvhhZipFLLTSXzhQrwTJyApCpm6ehw9e+60OknTUPOKYNzvwemzJ6YisOwZkB0oPj9KHy/Bk0+m85lnwDQJHHEE3v2+pNgud4D9RPC599vBI/2nw+AZ29sWfhAkhwPP8OFY6TRFN91Ix7//g+KwnxLtmzyZ1r/eC0Do1FNIrd9A4y9+BZJE8MTjCR75ANraR1FrPgU9BQsftcMjiqrBl4d74EB6PvMMma2NOF5/A0nTMKNRksuXk6mtofWv9+IcWIV30kTyLr8cM5Mh/8oraLr5z2ilpQAoPh9GZ6f97+wcUmvWIDkc5Jx9Ns233oqVyeCqqiLruGPJvfRSUmvXgkPDSiRAUQgcfDDNt94KgHfiRJKLl5DetAlHeU9cA6tQg0F7HDTNLt6rria17mDqL78cdhGuo+bl4ejTGyuVxtW//3f75vxY5faDkTNh3t8hGYZjjqbwN7+h6cYbydTWomRnU/CrX6IbBt5+Q5ELw6TWrqXljjtxDx+OZ/gwjM4ulOwc9LY21JycXa7GskyUYIhMfQNqfj6pzVvQSkrB3LOCDq24hNxLLwHDRNI0kjU1ZCkKqbVrsNJpevz5ZjAM9PZ22v7xIIW//x2Ff/wDRmcXnmHVuIYMIblqFTVnzezex7Xyckrvvw9nRcUeD5ficRM4aBrecWOxTBM1yw47cfSqIPbJJzvM6+jda4/bFb4ZOeDfaZqam4tryGAktxsrkUDOyqLHn/6Ig/kw8Qr7+7F4+F7th1LUl8AJhbiGjcLo6CCztYmmP/+5++eZLVvwjBwJQOj0M2i87hcAeMaMIfzaa4Rfeql73txLLia1Zg16YyNWOk3X888ROPZYYh9+CLKEmptDuq4OraiI1OZNeEaPxkokqJl5NkooROi4Y9CLfoncEcftbcPh7wFVx4Bj57ES/gck2uGz+6DHMJjyC2heDcFSKBwKgZ2DQr6WZAe0rIblz9rnEgf9Ad69HjJRPOXFBE88kc6nnwbAOXAggUMPJfLOu2hlZfgPOwy9rR2tIB/9vwKdlFCQ0Cl2aIoZjdL2yCPk/vRSrEyGdF2dHU6RToNpEJszl+CxxyB7fQQOPhgjHAZZxlFRgWvoEFy7OIcGSG7YQHz+AtSCQhw9exJ5+23UvDxktwvv6NG4qqqQ5H2dF/n/i6N/f9xDhmIlkiSWLMFKJvEfeABmMkVs7Vbk/c/CbO1EVjXQvnAOp2lYFpjxOEZXGMnhQG9vs7/vCyuhayHMugPc2TD2InB4Yd4/QJIhq9gOZPQXQk7v7W3WfLpzB1e+AON/Cp6dA2oE4dvQ8vNwDx5M+M038U/eHzORRJLkHQIfJEnCO2I4kiJjJhJkmppwlvcksWgxrkGDMDo7MFMp9OZm4rNnY3Z24hk1CiUQwNm/P95JEwm/9hqeESNw9uqFWrjz8Vz2erBMk4Jf/5pMw1bCjgBKwRm43BmCxx9D57MvgGXhrOxPaFQu0opHoGS4/Vnb3fEv2mTfz/iieBt0brG/Y76uXpPhzFdg9WvgzYG+B0HhzmEpwl4iyyBJ6C3NKIGAHU6Xse9byW7399w5QdgDloXkcpLavBnXgAHozc0oPh9IEo7SYhyl3+A4JAh7gb7t/pSq2N+jIoREEARBEARBEARBEARBEARBEARBEARBEARBEARBEARB+Kb2aQiJsHuSLCM7HUQ/nYPVL4bR1YniD6CVFO/JwjgqKoi8+y6SpqHl5WGmUpjpNAqAZIEn1y7KmXUHePNhzPlgGMhOBx1PP42zT29SGzbinzoFS9exANnhwGhrI3D4YYRfebV7dXk/vRTHgGHgydreB9VlF4E2rwRFRm9uxTVkCD3GjEZSVaRAAEv6koIizW0Xjn5u9SvgyQbF8fUHUvjOSQ4HWUccgXvIENIb1hCbNQsM0y7G8HiQPR7ic+eCqpJ/xeVE3/+AzaecjaN3L4quug9PrgnLn4MnZ0BWKUy/FXpPxVFSjKOkmJK/3kPs0zlgGCSXLet+IrKkqISff4HY7Nnk/uwyOp5/jfwrrkDrWU7wpJNIrluHa+hQksuWYaVTAPinHUjHv/+NlcngGTUKZ7++NN1wI5gm7tGjybvwArLPOov0li1EZ80CwDVoEFqPIlruvBMAz5jRBI87Hq1nOc6KChS/XQyveL14qofS8+l/kWloIPrRRySXLNk2SBL511yNa+BAHKWlopj4u6K67SehA5nKs2i++VaCJ5xA3jVXQzqNpDlAllBcLox4HEmSiLzxBsGTT8Y9dAiZ2lric+fSdv/9BI48ksJf/gIlK2sXK5JQ8/NILFtGurYWJSsApvGVXbNME8swkLxewm+80V3oLjkc5F97LZauo2QFsXSDxKLFyG4XyXXr8R94IEpWFqHjj9+hrfan/tUdQAJ2MET0o4++VgjJ5z7fhz8XPPpoul54ETMcBkAOBAgeeeTXblf4elyVVbiGDSO5aJE9QZIInXEG4bffJu+yyzDjMbxjx+IZPhyig8BIg7/H7otzvya9pYXm2+8g8vbbBKZPRysppuj3v6fx5z8HwDdlCvG5c3H27Wsf27fxjhlDy1137dBW+8MPEzzpZNoffBCATH0Drn79CBxxBJKioAaDxOcvIFNfj+zzIckyRns7qZUryfvZZdRdell3uI9WVkLZBRNwtK61C/2F/z0OHxQMhkwCghXgL4ZPboP8qm/XbscWeOZ0iNtPoKdxMcRa4KAbIdyAWtKbgmt/TnDGDPS2VoxojMTCRSQ3rMfVtx+uQYNQg0Fkv98OEstkANDKyrCA+Lz5JBYtQi0uJv+qK5FcLtofepjAUUdCOk1yzRr0hgZ8UyaT2rgRX1kZsU8+wT91KkW/+y2uoUNRPJ5ddl1vayP63vtY276Tul5+hcAhB9P5zDMETz4Fd/VQtPy8bzc+Ao68PNzV1RiRCImnnyZ43HFE3nkX3/77YcViRN79ANegQcjBLMxkEv9hhxF59VUUvx8zmcRRVkp8wULAwtmrtx0ykonCyhftFcRa4L0/wiF/AkWDA38Hq16G9/4Ay5+Hw/8CZWPteYtH2oElHZth3Zv2+UPhEHFcE74TWkkJscWL8Y4ZQ2LJUlyVA7BMg+TSZbiGDMFZvP3egqe6muT69aj5eah5uaS3bCH20UdoZWUY7W0ouTm03nc//gOmore24hk7Fmd5OZ7qahLz52N0tNNy1ytkn3UW3v0mEfvo4+62cy+5BDknh/SmTaheH7GFC/EMGUxClgkccwzBIw7CalmHI7IAdeEf7MDUf58J530IBQO/eiM92SAr9mepxzAoGwfhRjsc6BsNmhsqJtmf1XgruHZ1LSDsLaZpYqXSaIWFJBYvBknCM6waLKs7IFEQftAkGSuj2yHOCxYAFv6pU+19uWzX53+CsC9kDAsAVbbvoToUBd20ME0Leds0QRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQdgTIoTkB0bSHFimCYZBfN48APxTptjTdresqoJl4qzoSaa+Hq20FDMeA91+oiyqE7rq7GLQSVfahXRrXoN+w9FKSvH5/CRXrMC33yTkQBZWJoOkqmjlZXS99DL+g6aRP3Qo6AaOshI8m+9Gevp5OPgGu/AH7AK8MRfAihdA1zHb2zE6Oki1d6AE/Ci5uchOJ1C+8wZ0brYLUiuPsAuQEh12Ad/+P4eskr0yvsLeJckyzooKHO4E5TdfTjrlQ83PR8nKIrVxEwCBQw6m64UXSa1di5KTQ/D442l/8RNaY1FCUybgKU6g6K3QsMDeJwsHg78AZ8+eOHv2xIhGUQvySa5ciXvECDI1NbinTSM2ezZkMqRXrKS9vQPvhPE4B1TiO/AASKdpe/hhZK9d2KkWFpF5620AvBPG03KHHSwSOv00jLZ2as45F9nrJffii0BRSK1ahW/y/rTeex8AWcceixmJ0HDNNQD4jzmavHPPRSspQXbYITlafj5afj4ld95BcsVKjHAXjl69cFdWIjlEkM53qnmFXeTbazKpSAXu6nqsTAZ9fQNGRwdyVgAlKws5ELBrFSWNwFFHEf3gQ4yODqxUEq20BK24mPBLLxE6cQaeESN2Wo0kSVjpNI7SUjJ1tTj79LEDQaRdF3LEFy+m44knydTVEThsOq7KSqLbQkisdJrIW2+RdeQRyAE/WkEBsblzkWQZtagISVVQ/yskxEqnSa1YvtN6UmvXffsxBFxVVZQ/9SSpVatBAteAATh7994rbQtfTissoOT220iuWIHe2orkdmPGYhh19cRa2/BOmEBy/Xo8zhp48zpIhmHshTByJgR67PmKLAvaN9hF8/4eECr/wo8sEsuXk1i4kNzzz6f90UfRm5vxTJhAwW9/Q+yTTwgcNp26Cy/CUdETSdO6lzU/P8f4AjMW32Ee/yEHk9q8BX3rVlAUjHgcZ0VP0hs34ezdG729HbWoB76pU+l89rnuABKATG09iUQujpbnSKxcRmLJCizLwjtiBM7KSqQv+fwJPyCqEyZcBqtehNeuBM0FE6+EkjHfrt1wI4w+zz5njDbD4ichXG+/VlTw5mMZBunaGhKfzUMJBjGiUchkiC9YgGdYNZmGeiSXm+Jb/kxmaxNKVgAlGKLzP//GSqcp+PnPUUuKab3/AZILF+KqroZ0GrAgncYzZgyy243iDyA5XYROPw33sGE48vO/suup9etJbdgAmTSxBQsJTJtGYvkKAtMPwzWwCnfVtwxoEbq5Bw9Cb24mcNh0Ulu24OzXl/Abb+KqqsIyTVyDBpGpr8c9ZAie0aNwDx2C7PeDBEoohJKVhZVK4Sgrw9IzyM0r7IbLJ0DFfmAZdljBkFNg5ctQPg56TrSDEV64CE79N5g6rHgO1rwOeQPgoBtgzn0w8WeginNEYe9z9OiBq1cvksuWYcaixOfPR83LR3K50BsbdwghAXD16UNq/Qa6nn8e/wFTiX82DyuRwIxGcVdVUXD11XS+8AKRN3+Hd//9ybvichwVFbiHj6Dj0UfIv/ZaYrNn46oaSODggzETSeSAHzMSRa+tRXE4Cb/+Gu7qalIbNuKsqCDyyus4Bw3EJ29Bja6B/a+xj9+RrdC2YfchJDl97eCfdAyaV8GCf0JOHzuYyrK+9Pz8KzWtskNRN7wNBUPg0Jug9Ft+Vwm7JAGWnrGvqxoakVQVJScHywITyQ7RFYQfMgnMaARn794YXZ1oRUX2fVtZRiss/L57J/yI6dtCSDTFDi3VVPv7MG2YuGRxdBUEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRD23D4NIZEk6XDgNcuydp+o8SMlOTSM9g7cgwYSnzcPNb/ALqDZgxAS2eEgtXETzrIy1IJCZJcTM5HEymwrELYsO+Bh8eOw+Am73cEnIGkq8Xmf4ehZgXfCBMxIhPhnn+E/YCqSrGAmEjh7VdD1/As4ysvxjB6F7ASl9gO73SdOgHPfh2Cp/bplNcy6HaZPx4hEQJKQFBkkCbOzCyuZ2vUGBErspw9/fKtduBcohgN+A5p4QvgPnVRYhWeCB0+8FWfwQpofexVn715E330XR2kZ4VdeBSD7zDNoueNOrFQKrbycVNcI9MDxaFkKroYPUT/4E2SVwklPQNFQABSfj8C0afgmT0Y/diux2Z8iaSpaz56k1qzFPXw4iSVL0Ip60PzHP5L9kzPRyspQcnJx9u1Lwa9/RfSjj/FOmkT0vfcwt+1/ao8eWBmd8GuvgaKQfcbppDduIrV+PVnHHoNWXg6mieR0oubn0/bccwDknH8eeksrteeeh2voEHLPOQfXF4qFtcJCUXSyr+VXQusa+PBmjJ6/wTNiBKmNG+2fyRIgYXR1gW4g1c9H7jkRSZJxDx5M5K23kD0eAqNGgdtN+I03MCLRXa9HgnRNLY6SEtT8fGSnEyORwNrFrImVK6k58ydYKXt/SyxaRN7VV+GqqgTdIL54MZmGBizTxEynUYJZaPn5GOEwrj69MeNx9GgULRTqblN2uQgcdTTJFSt3WJdvv/32wiDaXL174xLBI/vc58eNTEcn4ReeJ/Lue3hHjcIyDbqee5bsmTPhnd9B2A6x4aNbwOm3gx32hKHDyhfhpUsgEwdXEE74J0mjmK6XXiaxZDH+yZPJvfhiGn7+8+5zjvisWUiaRtHvf4E06xZKb7ycyPy1+KZOoevll/GMGI6rXz8khwMrne5enaOiJ0Y4DKpK4JCDwQLJMonPm0f2zJlkautwFBejhLKRXU70jg7AQg0Gibe2dreTddRROMrLSXcahPteT9ffHiL69jsASA4H5Y8+gru6+tu/AcJ3Kx2DDe/C7Lvt16kwvPFzyOoBORXfrM14B6x5FT69xy5az+5lnzO+81vw5UHdfHStB5E33yS9dh1qXh6J5cvJ1NXhrh6Kq19/zGQKSZaRJEg3NCK7XahlZcQ++ABX/wGoBfmka2roevVVPEMG4x40yN6cujpkrxfPyJFImkZk1iwCB01DKyvFVzx2t13Xo1HStbXozc1kGhrIOvhgjEgYT/VQ1MJC3LsIwRK+HfeokehtbSj+AJahY2V0ksuW4ejbF72tndi8+ZjpNK5evYm8+SZ6uIvAIYeQadxqf28bJmY8jurLBy0AQ2aAnoYPbrJXUDjEDk3M7Q0f/hnSUTv0cf9rINYOb/8aaj+1521YCK1r4cxXtoc4CsJ3QM3Lw7Is/FMPIPL++yTXrME7ahRGZ9cu55c9brxjxxCb/Sme4cMxUymsZBILibZHH8Xs6iL/6qtIrl5D8w03kHX0MTjKywidfArNt9yCo6ICV+UAMnX1OKoqSW/ahGSa9ucno+ObOpXEwkVILhfht98mcOghpDdsIJzfB9+g0Tjf/ol9DyCnNww5cQ820AFDT4cXL4C1b9jTti6FJ46Fcz+Agq8Z5hRvh+fPs9sAOyDz8ePhvA/sPgl7neRyozc24h48CCQJvaUVZ3Y2pFMgQjyFHzpJxjIMZIcDz/ARoKpkampw9ukDGz6AHtXfdw+FHyl927W8qtjhI45tYSQp3cSliRASQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEYc/t0xAS4CTgTkmSngUetixr1T5e/w+e5HCApiIpKp6Ro0BR0FtbcPTutdtlLcvESibJNDWhhEKk1q3D2X8AVmZbYbDqsgNCBh1nP5FbUiAdxdJ1AoccQvvjT5CpqUHNzyN75kzMVApUFb25BUdFBUpWEDkQQG9uht5l21cca4H2jXYIiWHYTyEGUBQs3YBMGsnpAiQyra249MyXbLwEcx8A1QnubPtp9oseg0HHfqsxFfaR7J4QacA9+yJKjj6LTI/BpFZPwMpkkNxuAIzOTqxUCtnvJzTjBJr/chuYJkpuLjnnnIVnyjQc3jTK+nehsxaKqiFYAoCsaThKS3GcaIfdeCdMILVuPZJDIzb7U4zODkKnnEznSy+Rd9FFOEtLsTI6LXffQ8E11yD7vJjJBLLLCYBnxAhiH38MQGjGDLpefoXMli3IXi/eMWMwWlrJv/bnWLpOcpV9qPJOmkRiyVLic+YgaRqOsnIi775H7LPPcA8bhruqCknT9u24C5COw7L/gMOLM8eB7nYjOxwYyQSy24OVyZDetBH30KFQOwczbxhGOEzb/fcDEDzhBMxEEpJJ8q+6Eq20ZJersUwTfWsjXf/5jz1Bksi74nIka+cYkuSKFXjHj8c1YABGNILR3oG+tYnOp5/GSqfxTppE/lVXogYCSIDe1IyzX18wTDAtUDX7ePpfAgdNI7NlMx1PP4OkKORccAGeUSP32lAK3y/F7cLK6CiBAK3334+kqmQdewxmPA7mf313LvgnDDsDPKFdtrWD1rXwwvngyiI56GpSHcDiRtL1y2h/+GEwDBLz5hOcMQNn//6kVm0/PYt98AFmy08w1b5kGjpx9S5BM+sou/cvpOrbaLrxBvKuuIL2Rx5Bb2zEWVVF8IQTSG/aSM7Ms4h+9DGp1a+Sd/nlAFiGgaXr289V1q7D0bsXliQRX7iQ/J9fQ6amFiUnB6Ork5a77uruS/DEE+3+rVmDlU7T8Z9nRQjJ/4LIVlj96s7T170DlUd+szYbFtnniA4vpCL2eej6d+DQW+DTe8mM/w3Rj2eTqatDDgTofP55PMOHobtcqPn5WJkMsteL7PWg5OQge7w4ykqJvvMu6U2b8O23P3pLM4rfj6TItP/zEbzjxxM643TaH30UZ+/eKD4/iZUryTr4YCSfF2dx8R51Pb1xI0ZHJ67+/fAMq8aMxpBdbvD68IwZi+oV4Xt7mxoI4B1eRXTBCiLvvot35Ai0wgKQFfSWZrJPOZn6Sy4l56ILcVYOQI1GwYLEyhV4hgxF0jQSSxYTOOxwqDoM1r8C79+4rXEXRBpg4/sQLIfxl4JlgKzCZ3+3z2U/DyD5XDoK0aZ9Pg7Cj4ujogItL4/op3PwjhuL0d5hX8tvbbSvz/7rmsVRVkZi0SK04mL0tlYUf4DE0mVYpomzqgp3v7603v8AkqIQOv00MnV1WOkUalER/gMPRAmFaH/oYSxdxzdlCjnnnE2mrh69vR1Lz2DF4riHD6P9kUfJOXsmrffeR+iUUzDDESIrdKxJ9+D67BcQbbbvCRSPBM311RuZaN0eQPI5PWWf93zdEJLOmu0BJJ9LhaFtgwgh+Q5IgCTLxBYswDt8OFgmiaVL7esh6fvunSDsnmSaKP4A8c/m4hpQidHZid7WhmWasOltGHYK+PK/724KP0IZw74/pcl2+IhTtf9O6yIPXhAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQfh69mkIiWVZp0mSFABOBh6WJMkCHgaesiwrsi/78kMlSTJqMEh83jycvfuArpOub8Bj7lzkvoulcVcPpfPf/0FyOJAcGu7hw7Ey2wqXTcN+4va7f4AeQ8FIQ6QJZdIRRD76iOBxx2ImkshOJ4klS3APHoylqijBLIxwBNnjAUDv6MD676J7Z8D+W5btIp2aT5HIoHg9hN+ahWf4cIzWVsxYDEvXd939yFYYdzFoboi1QlYpbJkF8TZwBb7ZgAr7lsMHlomy/kUUB/SYECOd50P96YU033Ufn1cUBaYfSvujj4Fp4hwwAP+0abTe9zfMri48Y0ZSNPNgHK9fA0XD4NA/2QE3/0UrKEArKADAO3o0RjyOlOokdOSBWA1LsAry0WP1FP7yOlLrN9D57//g7N8fZ1UVORdeQGLRYrSSEjL19SjZITJbtgCQe9GFtD7wN8xwGDkQIHjSSQQOPRQ1Jxc1N5eW224DIPvss+l67jn05mZkn4/giSeib92KVlqKs6ICeVvwirAPtG+EyddBJo5TasPQFKIffoCkOXD274/e0oxn9GjMeAxyi8CyiLzzDsET7cAFdIPYnDlE33sPgHzdwNmzJ5Ky41NirXiC2CezUHJyUPPySG/cSPs/H8E3efJOXdIKi9Db22m97z6UUIi8y3+G3tZGzvnnoRUVITmcWIaBkU4jyTLR998nvXkzYIdR5f/iOiRp5wo8rbCQgmuvJXT6GUiKjFZcjLStuET432NmMqRWrSK9eTNKdjaOvn3R29u790Urk6Hz6Wco/M2v4b+/d4M97eL3PRFuAFMnXnkdNb/6K1pxMf5p05A9bor+cD2Nv/4NGAadzz1Hztln7xBCohYUYOoqW371D6y0HWom+3yU3XQZkXc/RG9uofXuuwmdeirOygEgK1jxGJE33rRDy7pZOAcMAEXGNaA/nc89j6QoSJqGe/gw1Oxsci+9hMbrfoEZsU8J3SNHEjz+eDq3Bf90PvssueeeS2rNGgAyTVuxLGuXnxXhB0R1gb9w5+LuYNmu598d07BDHAafAIoD3EGYfQ/Ufgb9p2MMOo3oikYydfWkN28m8sH75F10Ee2PPU7oxBlgmqhFhWjl5chOJ2pZGY7sbGKLFqHk5eE/4EDSW7ZgdHTQ9dJLBI8/DqOzk9js2WTNOAHvmDF0vfAiktOJEgiApuEo2XV41a6ka2qw0nZAn5VKE1+yBPfwYbj798NRVPjNxkTYLYfPQs0O4p8wgcjHH+MZNgwMA6O9HSuVJmfmTKxoDNfoUaQ2bABDxzNwINH330dSVbSyMsxEArJ7QbLLDhkZ/1O78UQHhCrAkwPvXW8fczUPHPBre778KvvvpuVgbSsAdfq+v8EQfhTUQADJH8BR3AN9qx38BRaZxq2k6+pwVlTsML+jrAxHnz7o9Q2EX7WDoySPB9ntxjtyJGa4CzMSIf/aa2m56y48I0bgHjwYKRIhePzx1F5wAdmnnYYc8INhoje34B43lkxNLegZUhs2YnR2Ejj0EDqeeJK8n15K24MPoebn49tvEtF1JvLkO3F0fgbePPtzpRXtZiNd4ApCshNkBQoG2cFUzm9w78DhtcNQ9dSO08V9iO+EpSqYqSSOwkIi778Hholn5AjMVBr25NaXIHzfJECRMSJRIu+/j5XJkHXE4ViGAd58+76mIHwPdMM+11QV+xrZ8XkIiSFCSARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEISvZ5+GkABYlhWWJOlZwA38DDgGuFqSpLssy7p7X/fnh0ZyOuzC9EiU1Pp1WOkMSl4elp7Z/bKaht7aim///Uhv2IizX1/0pmb7SZwADg+0rodJl8O6t0B1w+hzsDIpPEOG0v7Y47iHDCHT2IijuBgzk0F2uVBzcuh85RU8Q4ZitLYih4JYxhcqQ8ZcALl9t3VCgtHnQf5AJNnETCZR/H7Cr70GDgfBI4+wfyl/V7IrYPZd0Lxy+7SJl4M7+xuOprDP5faFcZfA7LshVIGy8gXcm17DUTAS12/PxghU0vHUUyihbPQm+wnwgUMPoeX2OwDwjBmNd8IEmp79DGfpGQQK++B6/gIYMB0qj9xlGMnnFI8HPB6cmgofXAidm2HSlbDqHvS+h6Oe9xOa/nQb7qFDib73Lv4Dp+EaPIjE0qX2fgs4evUiuXIlZjiMEgqRc/55tP3t77T/7W+oeXkU3vBHAscdR+ydd8Cy0JubkTSNvJ9eSuu999H+4INITieFv/0N7pEjcfTogaTu88Psj0/pKHjuPIi3IQH6qGq8EycSfuttUq+/juzx4B46FDnghvJxSA4HoRNPpOvll5FUFTORBEkiOOMEOp/5Ny13343vwANw9uy543oMndxLL8Ho6CBTX4//wANIrd9ghy99cbZYjLYH/0FyyRL7dUcHW3/7O/KvvRZJkel87nkS8+eDopB9xhm4Bg8iXVuLd+IEZK+P2Jw5hF95lcBBB+1ycyVNw9mz/DsYSGFfi8+bR+vdd5NYtBgA30HT0Ap3DiFIrl4NPXtCuN6eoDhg/6vBsYfFbf5CzNJJtD7/CaGTT0YrL6P13vswmptxDqwi74rLabnlViRJQt0W7gSALFP461/Q8ewL3QEkAGY0SmRZI74pU3D17k2mtRUkiYarrwFdR3K5yLvsMtr+/neM9nYCRxyOkpuHs38/JNPECEfwjhtHpqYG54ABZBoacA8bTutT/+oOIAFIzJ+Pd9w4+xhtWaDr3cdrgOwZM0QAyf+CrGL73HDzx5BJ2NN8+dDnwG/WXs2n8J+f2GEkAE4/TLwCNrwHDh/JWDGRd58hPncujtJSCq64graH/0nW4YeBJOGuHobWtw/OL+zremsr0Y8/xtW7D9FPZ5NcshQzkSD/8p/RfOdd5Jx5pn28R8JKpvBOnEimthZXZSV6SwuesWP2qOup+nqSS5bQ8fgTYFnIfj95l1yCaRhoxTsGmehdXVjJJGpengib+oYyzc1IqoqanQ25fdDyYqTWrkPxemi9277sVAsKcA8dSmzhQmRNIzJrFrnnnI0Zi6Hm5eGursaMRHANGYKZSGBEIig9RtjXPyueg47N21c47Q92OI6kwCe3Qc1cKBgCJaMg1gyDjoM1r4KvAPIqv59BEf7fszIZMm1tKF4vWm4uRmEhnU/9i0xdHQDe/fZDb2ndKYREkmUUfwCdetzVQ9FbWnEPGUymvgHf/vvZIaXV1cRmzyZ00okkV62m48kn8YwdC0gU3XgDrff81T42DhlCcsMG1KJCvCOGA6Dle8m0xIkvWIhaUEBi0WIC0w/F6Oig7cGHcPbti+I/HiW+AqV5PlTsD4HdhJAES+HgG2HxE/Z3Su1cKBxi3/f4urJ7wdTfwFu/3D5tyEnis/odkS2wdB1XVSWWriMpCo6ePcE0RQaJ8L9BUdBbWvGOG0dy+TK0wiKwsK9Nxpxvn58KwvdA3xZivlMIiS5CSARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEISvZ59Wx0uSdCRwFtAbeAwYbVlWsyRJHmAV8KMPIcHhwEom8QyrJvrhh0gOJ55RI7H0Lwnu+AJJkcnUN+Dq2xdnZSWy00m6uQlL1+0ZTMMu1Nm6BHpOsqc1LEaqGIkRixKYPp34nDk4ystxDx+GpRvImoYRieIsK6fr2WdRCwsJnnACSCoceQ8EiqFH9Y5P805H4a1fIk17CKOzC/ewYcg+H0rAD6ZlFxLvSqITjBTsfw2YJhhpWPoMjPgJuLO+zagK+4rmtguBe021C41HnAWyimKZeOQYlLsof/RR4osW4ZkwgfisWXYABCAHAnhGjaLlttsBMMeMRg5kk8o9BWfaiXPzLKTsnpA3ANzBL++DLx+O/is8dTIoGrSuQ229nayeh6Dd/Cv0pGIXoIaySa5dQ845Z+MoL8fRrx9qKESmoRGArGOOofWv99qFp1VVBA6bTutdd2Ol04TOPMN+mrgs4582jc7//AejsxOtuAeh08+g7aGH0W+4kayjjyb7J2fiKP3y8BRhL2jbaL/vo84By0AyXWQaGvGNG0t602a04h6kt2zB2a8f5PRBMgwsPYOrcgDhl19B8ngInXACciCApGlYqRRWKrXTahw9exL54ANcvfsg++yiIq1XxY6hDYDe0kJ8ztwdF7YsJIeD1MqVdgAJgGHQ/vDDFN3yZ/KvvprIO++gt7UTOnEGekcn9uOVhf+P9LY2wm+9Teczz6Dm5FBw3XW0/eMfRN96m8Lf/36n+Z1VVXDQTGhcDHoSCqqgYPCerzC3H8bYK/G5Gwm//gbRDz4g6/DD0FtaCb/8Mon8fNzV1XhGjcRfAY7fX4AR13GEVJzMp72ufofm5EAAZ98BtD/1L1KrVuGdMAHZ57W/uwErmaT1/vspuecerHSaTFMTyaVLcfXthyXLpGu24OrTF9njQdI0jGgETJPUihU7dd0Mh5FcLqxEAufAgRjxOI6KCnIvvGBb4bPwgxdrhc/+ZgeDGRmQZPuYnd3767elp2HrcjukTlJg5QvQsgYiW2H0BSTbU8SXrkRxu8k+9RSsdIbWB/5G1uGHo2Rn4xkzBs+QITs1m1y3Ds/QoYRffc0utB8yBEfPctofe5zAIYeAZeGbNg3Z5SS5eTPuvn2RvV5QVcxIZI9DQjI1NXQ89nj3azMSof3xxym47locxT0AsNJpop9+SvOfbkZvaSF44omETjkZR3Hx1x+vHym9pYXO55+n/aGHkTwe8q+4HN/UqTh69kZetIrIm29tn7epic5//wfv6NGEX30V74QJoKhIqkZizRqc5eVgmJjRKEpuLkY4DOVjIdpkB5Dk9oWBx4BlQioMxaNg3RtQdRSUjYMnjrOP2wBrXoej74feU8Gb8/0MjvD/WmrzZtr+9nfCb7yBo3dv8n56KemNG7sDSABiH31E4JCDYfSonRuwTNI1tWhFhag5uZiJBEoohJKfj2fsWNI1NXbIaSqFEgwSPOF4Iu++hxGJEDzheJTsbEKnnkp8zhwyW7YQ++gj1Px8HEVFOApLcCy/Hnn0UcgeN9H33kfJzia9aRP5P/sZqXXrSK3fQHLyz/D2nQ+186B42O43euAx9t8vXrR92vJnYeYbUDR0zwdPVmDEmfa9jfZN4C+0lxf3Ib4bkoTs8ZDZsBFnrwqQJDJ1dbgGDkQyd3/vSxB+EBQFDAPXgEpQVVIbN+Ls3x9WvAgFA8ElgkiEfS9j2Nfk2rbrE4eiACKERBAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQfj69mkICXA8cLtlWR99caJlWXFJkmbu4778IMmyjOR2A+AdOw4ksNKZPatFlyQcPXuSWr8erayMdF0dWn7+9hASh8cu/GzfBLE2u9AmGUGSLcyuMLLfj/+AA0CRCb/3PnkDBoCqkl6/jvCrrwGQ3rCB5ltuoeSuO+3gEYcb5P/ajRY/CZaJlA6jZIfQtzbhKCkBRSZVU4Ozf78v6b9iFxF9cocdQOIObQskEUUo/1M82dBnKrz5S/j0Hnta3gD7yfB1n+EuGYX7xKPxTZxA859vQXY4APBPnULX8y/YTYwdi1ZYQMvtdiCJa+hQ8i88C632AzTPe0jDT4VgGUhf8sHoORHO/wjWvW2/liSU/vvhn/tn9NIDSRx+IJbkJrFoEdF33iV0xhkEpk/HjESQ/T4SixYhORyYkQgAgenTab7lVgC8EyciKQpGaxu5l1yMVlxM+DX78xE84QSab70Vtn3mOp54AjOdpug3v0bStL080EI3WbULej/+C5g6yrQXkVQVZAWtrAxJVUiuWIlvW7CIGY+jN7dsLwTv7KTlzjsp/MMfUHJzcfTsibaLYm8jEkF2u9FbW5EDAZKr1+AZNQqzowN824OYZK8XtbAQfevWHZaXnE5ic+bs1K4kyZjhLjwjR2KlU8g+P67CQtTs0F4cJOGHpOull2i++c8ApID4Z5+Re/FFtNx+B5LLiZKbi3fcOBxlpch+P94xYyG7p/3nc+EGaFoBegryKiH3KwIdVAe6kU3TDZd2H5/aN20i+8wzUQsKiH/2GcV33YWrKID66EQ0AG8uiZzL6Fyn4Zs0Ee+Y0bT/8xGMzk5CJ5/E1uv/0H2MjL7zDnpjA/6DDiLyxhsAmF1dWOk09T/9KWYsZncjP5/C669Hzc4m09iAkp1Dav06XFUDsWQJ30HT6Hrm3zt0XSsrQXY68R04hZyzZ6L2KCX3wgtQs0RR8P+M1nV2UEjpaDuoQVZh/btQNGzPCsy/qH4BfHyLHWwiqzD2InB4wUhj1i4gGR8KGR1nnz7EF8zH6OzEt98klFAI38RJuCoH7NRkcsMGjHAEvb4OJSuLrCOPQG9qIvLOu7iHDkUrK8XVvz9ZJxxPcu1atNwcMk1NKKEQqbVrcQ0aiJncObhqV4yOjp2mZWprkb+wPydXraLuggu7Q/vaH3wQgPwrr9jjsJMfu/A773SH2tHZScNVV1P60IP4xo/HSiV3mj+xdClZxxyN/4AD7CCxBfNxVVZiJRIYnV0oPh+pDevxFRdDKg2BPvZ1StFQ+/zjk9vtgB1PNhx6C6guKJsAnZu3B5B8bs69UHn4dz8Iwo+OkUjQ/KebiX7wAQCpZcuov+RScn966U7zprds2WUblm5gdHWhBPxIDieJFSvxT52K7HTi7t8fJStIcvlyul58EVdVFYklS8g66kj01jbS69eTd9lPqb/iSrKmT8dVWQmyTOT998k++WQkdxD6Hoi74SPk6v2QvUfQ9uCDhI47jta//53QiTOQFJXEqrXI/cpx6/WQSYLm2s2Gp2HWHTtOy8Shdu7XCyEBiDZDossOICmosgOzhO+EJctIkkRi/Xo8gwbaYXQ1tbgGDbav4wThh84w0HKyic6ajbuyEqOzw74/ZZqw7nWoPtEONRKEfUw3LGQJZNm+X+pQ7euHz8NJBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBGFP7evf7m/87wASSZJutizr55ZlvbuP+/KDJDmdyC4XifUb0PLzwLLItLejlZbufmFVRQ2FSCxbCrU1GIkkrv79uosYYdsvxFcdBeveAjMDfQ8Ey8JVVUXbww+hBEMY4TD+/fbDSqWRZJnwW2/vuB7DQN9aDx9vK2ia8DPY72o7lAS6Q0MkK4ns8pNYtQrP0KGg65ixKJb+JaEiTq8dQNJ3GuT2h4ZFMOsuGHDE1x1G4Yfg8/AYfxEMOg7e/+P2fXHsRTgnX0eP228jU1dHYulSUFQsw17GO2YMLXfeCUDolFMwOjupufhKJIeD/Kt+im/JO2hqDKnycMjptev1Z1fYBc+KBhX/x959h9dN3X8cf2vcva/3tuOROHvvHQKEDaWMFiizpYxCW+hugbbQ/aNAW6BAd9l7r4SEBLL3coZjO9573T2k3x9K7BgnIawA5byehye+50pHR7KupCv8/WgO7HwBuqpRux4kY/RpRPPOxZSdRfv9f0VxOWn74x9RfD4ybvkZvq9dAoqCZDKhZmcTqdgJgLmoCHNREa13/tFYtYULkZ0uMm+7lVhNDbqm9xX4H9T9zDOkXv0NzIcJtRA+Jq5MWHwrjP0KWNxIJhVJUYhs3YJlWDmx/bXYJ05AD3ZBZw2ofgJLlgzqJlJRgfvMM/CeeSbKIaEiB+mxOJbCIoLr16N0dwE6kiIPKj43paWReeut1F17LRzYp10nnYji8eC//DJafvd79FAIANnpBFWh8/EnSLa1GR3IMhk/+hGJ7m4RtPA/KN7aSvuDDw1o02MxtHAELBasQ4eSd/99tP/tb3S/+BLxmhpCGzaQ+cMfYsrKMmboqILHL4amrcZrqxcuee6ohW6RHRWDj08vvYRrwXxi1TXYxo1D6d7b915o2M3s/+n96BGjgN5UWkrWL39JZM8erEOHEnhrKdEDISSAEfQzZy4HWxSfDy0S7gsgkT0e/Jd+DS2ZwJSTQ8c//gmA+9RTMWVnIUkSKZddRnx/LaFVq5DMZlK/fgnOMjuun52JkmxFHlJoBE4Iny+SBJOvgjdv6b82KDv5g/cTbIPnrjX+lSTj3C7JMOnroOuEE0XEdq5Gj0bpff45rCNHItsdmHJzsY0be9gAEoBkTw8k4miBIIrXQ7RiF4n2dizFxZiLh+CYPgP7qJEARPftw5SdTXDderRAL1o0gmy1QTJx2L7f63ABV+YhQ7AUFfW9juzafci1u6Hr8cfxX3IxpoyMY91aX1jJYJCuRx4Z1B5csQLn9OlYSgZfN9onTqR3yRKi27cD4L3gQiRZxlY+nNDGjUYgg8kMySS6loSuOsgeB+VnwJJf9HcU6oDFP4chc8HiApPNOD5Huvqn0UUBqPDJSDQ29gWQHKRHo4cNQrSOHHXYPvR4HEtRIZG9lchmM6rPhx6PIVmNIBBraQmyx40ejdD57HM4J02k6+ln8JxxOno8QbRyH9m//S1Nt9wCmoaamoJlxEhi+/djKSiAwhmgWrHseh4pczKxE06g+5VXSLv2Glr//BcckyZhLikhtN+KKd+M2rYbska//8of+rlSLaBYjPseH0TDJvj3WRA+EBaVPhwu+C/4j/BdU/hIJA7sb7k5xKqr0XUdc34+ejIx6BwoCJ9Zuo5sNhGrqSEZCWMfNRodHaI9gNiPhU9HXNNQDwkuPBhCEk2Ia1BBEARBEARBEARBEARBEARBEARBEARBEARBEARBEAThgznej9NeeJi2Rcd5DJ8ZkWCcRHxgIIdkNgOQaGlBj0bRkxqJ5mb0YyiikVQTyVAQc0EhuqxgSktF1w8JRVBUsHsgHoaciZA1FmQVyaQS3VeJ77zzMWVk4Jw2DTUrC11LorhcqKmpg5almA4pun/nj9Ba0f96wtdg/k+Q/IVokQjWkmIiO3YQqazEnF+AnogffgWivXDiL6G3GVb9GdBh2rUQ7nrfdRc+WZFgnETsCOExRzLiTKM4eNS58O49A4uJVv0FWitQbDaspaVk3X477jPPwH/p1wDQosb+paSmgqLQ8/LLIMukXnMNoTUb2X/7YzQvaSNaX4e+6XEjsOZwxUqZo+HiZ6FkIdStNdrcOShlM7Dv+BXevFZ8550NigKAZFIJr1lL4K2lSCYT6d//Hnokguwwit5dJy6k67HHAPCccw5aMEjLHXfQdNvPibe2Yhs9Ct/FF6OkpPQNQfX7kSyWD7bthA9GS8Lsm4niJt7ZhJ5IoPj9gERk2zbibW3IFitYzLDfCDdQs7MHdWPOzSX92msHFIMPIMtINivmoiISwSBqahpaJAIHnjB7KOesmRQ9+STZv/8dGT/7Geg69ddeS9s9fyL9pu/2TWefOpVEQwOyxYL/iitIufpq7BMm0P3cc8d03Bc+fyRFRT5QzDug3WIm70/3YMrPJ7q3EmJxbKNHk/69m4ls2kxw1ar+iauW9weQgFHg/s5dkIgN6LPvOiMWRFIG70+K04lktZJ203eJNzSQtGbDiLMhtYzuFbv6AkjUzEy8p55C3Y030nbXXdRddx3OObOxlJb2j99sNq45ANntJvv3vydeW9v3vuf002h/8CEkoPX/7sS18ARc8+bR+8YbdD/9DFpPD5aiInL/dA9Fjz5A0YO/IsW5DPNr38QUqUS2OvoLg4XPF0e6cd7XDrmO2P3qB/99Bluho9IoMD/xdkiEYeWfYMM/iVlLCSxeRse//k3X44/jXHACaDrW8nLU9HRsY8YctkstFkNPJIlVVaFrGsF33iUZCGAuLMRcVIRt5Mi+ABIASVGQU9KwzFmInJWDOS+fZG+PEYpyDKxlZWT8+EdwIBRASU0l647bUf3+vmkUl2vQfGp6el8IgHB0ktmMKXdweKOakQmAzdaI/4Kz+n5n5qIivF/6EsTjWIcPx3veeUSrq8BkQrLbUbxeZH8KlnkngjcFPZGAB+bAst8YQSTv/d131UDJAlDNxr4/6ssw/6dQvMB4f9Z3jYASQfiYyRYL8mGOH+acXCzl5X2vveefj33c2CP0oqOkpGIZNwHTxGmYyw6c59X+IBNzejq2iZNwz5tLz5IleM88k86HH0EL9JLsaEcL9JLyja/jnDMbNTUNU0YG8aYmY2arBwpnQtMWzM1v4po7A9u4cXQ99zxp11xDvKmJ9vvuo/vpZ4jopdBZBckj3Ds4yOaF2d8DxQyzb4Jp18HYr0JKMcSjR5/3oGQCVv554HmpZQdUvX3keYSPRtNAVjDnF6COn4J5/BRMOTnosowmshuEzwNFRovGsAwfgTJhGtax45EdduPe0rxbIKXk0x6h8AWVTOqoSv/1qVkx/tdPTISQCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCB+QejwWIknSN4FrgGJJkrYc8pYLeOd4jOFTEQtDdw3IKviKQDaCDno7wlSsbKJiZRO+LDsTFhWSNcQDgKSq6IC5IJ9YbR2SxYzidh85uOMQkiIjSRKq12v8bLOBpqMnDyn6VCxGsZwjzfhXS4Isofj8xBsbsJaXgyITXL8OS1kZakoKmT/6EXXf+lZfyIN1aClWuXLgwkPt/T+rdnjnbqThFyGp5Zjz8ohVVYGuo6b4j/xUYnsKPPMN44nhJQuhZSes/wcMO/UYN7jwcQt0Rti9upEd7zThTrUy8dQisoo9SMdSbJszCS59CTqrDzwJ9j16m/p+VFP8OFMmYy0tQ01LR+vpAVnGNmYModVG4b3vy1+m69FHidfXYykrxZRbSPPd/wZZIuUrLqytLyDbrEjZY8BmhJcgy0ahW1o5VLwA1StgwqXwxs8gGcfcuouMvMnEJp1CcMU4JLOF8PbtxPfvJ7JlC7LLife8L2MeUkz3Cy8iKSp6LAayjCknm+6nnwZJIu3b3yawZAm1V16FkpJC+s03EauspOfll0m76SZMhwnyET4+YXM2+9pT2bRewmqTmFCcicPchCk3h/CmTVjKytBCQSQk6KhEtlhI/fpVhN59Fz1uHFvVtDScs2cd9mnxAHTWIJlNJLt7SLS3Yx85CiXFT2T7jsMG4EiKgrV8GLHaWpp/fnNfe7Kjg8BbS8n5y5+JVe7DfeopBN99F9cppxCrq0Mxm1GzMjEXFh3b50z43FH9PtK+fSMNN/XvF4rPh3PuXGzl5fQuXUro3XeNgA9ZIrhmLb6LLya0bh3es882ZmjfM7jjps3QXQeJMD16DhXrOti1qgl/tpOJc5x47U0oqakk29r6Zkn7zncgmaDuG1djLirCMX06rhO+jzVRQfzOF/um85xxOm1/faA/1EzTaP/b30m95ptE9xhj8V10EbLLSe69f8FSWoo5N9cIcFIUSCaRnS6SHR0kW1qxlJWRbO8wAqaA+P79WEeOILRxE8Fly3BMmYh7rB89bQSS3Qe7X4PyM4zrA+HzJ9IFPQ2D28MdH6wfeyr4Co0wh9X3Qdd+sPnAkU5ocwUd//gnYDx3vvNf/yL1umvRdR375MmDgn+SoTChNatBUQmvWUPHf/6DHo3imj8fU04OstuN4vVgmzBhwHwhdy5bd9ip3xckr7iAYUMV2PYu6DqJ9nZkpxP5KMFjss2G78ILsU+bhtbdgyknG1Nm5oBprKNGYi4uJlZ54Fpblkn//vdQPZ4Ptr2+oGSTiZQrryC4YoVxzYYR9uKcMR0Ade+TpGWG8dxxOZpmQsuaRHDFCsxFQzBlZxGvrcM2egyyoqCFQignnE5Nt5fdawL40s2My83EkTYctj9tfP8pOQH2vNE/AE+uEbSw9Newf2V/+4xvw/TrIXfiR1/J3kYItoMz3fhPEABTTg7p3/8eTT/5aV+bY/p0bGNGk//Qg8T270e2WDAVFKLYbYftQ7I7CAydwcZ3OgnUxikfP5J8fwCJgde61pJiEs1NuENhul99Bf+ll9Lx97+T7OjAOmoUqd/8JvH9+7H4U0BLEt1biXPKFGNm1QylJ4MnF7teRXLGdCRNo/1vfyPR3AxAtKKChh/dQtHNJ2Cy+cCdaxz/5SNk6JYtgq88Ac99s/98s/peuPBRGHoMmbfxkHEd9V6tu95/XuHDSSYhM4/meCqb3+1EUSXGz/KTkmwE/QOGnwrCp0GS0YaNo6rJyu7N3fhSixg7xoMn0QyBZuN+ayxoXK8q5gP3hI93DrjwRZTQdNRDgnLN6oEQkqQIIREEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRA+mOMSQgI8DLwC/Ar4wSHtvbquf8AKxM+JzhpYfJtRoCabYOZ3YPJVJK1+Nry2n23L6gHoaQtTv6uTc38wkZRsJ5IkISkqpsxMQmvWovX04Dr5ZPR4Aj2ZRFKUIy5SUhTjKemKgqIqSKqKZDEPnMhkB1e2ET6iJcDmQJIlVJ+P3rfewpyTgx4Oo/h8fcEnjrlzKHj4v0T37EFxObEmNmPe8Jv+PlWrURR00O5XIdqDlAwiqQrNv/pV31uhVavIuv32w69AuAumfAO6aqFhIxTOAHcOhDrAP+SDbH3hY6BrOlvfqmHD68a+2t0apmFPN+d+byyp+d7370BRoWA62PzGk6jbDwmuUcxG4fB7qD4vnlNPQYtGUbxe2h9+GHN+AdHde1C8XuL19SBJeM46i5bf/g6AlCuvpPftdbRs3oRj+mQ8cxTk7gpMpRNAUsCRYhR8nPhLeOQCSMb6n6hddhJS9jgsa35C9hVfJdTjI7qnisjmzVjLh9H2578A4LvsMjJ+8H30RBLbpElEKypIdhpPynZMm0ZwxQrCGzeipqeRcuWVdD32OPHGRtynLDKChXRdBEp8gvbVOFj6Unff65f+VsmpZ5YQ/sVtAES2bceUm4vtZz+AvMkA2MaPp+DRR4lWVCBZLFhHDMdSVDS483gEtj8DS+8gmvZ9ZKsFy5AhoGtooTCOadP6gkwOJ1ZTPagtsnUrkbFjMefnYUpPR01LQ+vtJfTOO0S7u3GddCKyz4siCs7/ZznnzyfvoQcJLF2GKTMTx6xZWMtK0aJR4g2NRCoq6H7uOQAcs2ahOB04ps8AQIvF0IcsQtn034EBYOVnwKMXkjB5WKfcwc61RvhTT1vEuM44I5X8m08nVK+R7Apinz4TOSWTmssuJ+266wiuWE7XY48R27+flCuvwHueg+CKd42+ZQU9FBq4EskkanoGKd/4OrLNRnDlSkKr15D589twzZsHgG3kCPL/9jfaH3oIFBlTbi6YzThmzKD9oYewT5uGpXgIks1GeMNGQmvXovh8uE4+mZan1pJobsF3yiycsxaitr4LkW6wOD/ZX47w8WreAR37jGNv7Zr+dkkCT94H68uZBmfdC1VvGwWd4y4Cmx892Eb3s4sHTR7etJmUa76JpaBg0HuhNaup++Y1ZP/ud7Q/8EBfe++bb+I9/3wkhwP75Mkodnvfe8HuKK8/Wkd3axiAHe0RmuvsLJw3Fq2nl6qrv9lXfG8bOeKIqyGpKtaSkiO+b87NJe/++4hs247W24ulrBTr8OHHtIkEg23cOAoefcQ4x5vNWEeM6D/HjzwX+YVvYW1ai14wh245n/COnXjPPpvu554jtncvzrlzcM5fgJKZxfYmL9tXtgIHvrft7eXcK39Oivte2PIYnPt3qFxifLeyemD+z4zvLocGkIARiDD+YrC4PtrK7VsKzx4IWvAVwtn3Q/7Uj9an8D/DfcqpWAoKiO7bh5qainXECNQDYYiq33/UeaNVVQRdebz8YBVa0ggdWfVqmORJOYw9TOCebfRoovuq8Cw6hdY77+wLGo1s3UrbAw9gzs0htm8fpvwCLBYLkd27sZaVGTOPPMf4bvjOXVin/IhoXm5fAMlByc5OYnI+pqq3YeWfYO6PYfwlYDvM9bHNbRT9vzfw6s3bIH8a2LxH33BWN4w6D5b8YmB70eyjzyd8aLqq0ipl8tZT1X1trz0c4NTLh+DWRaG88DmgWtheaWbHKuPY1dMWoaEqwFlXFOBa/zYMmQkr/2KE4apWmPsDmHDZ+x+PBOEjiic1TEp/4I3lYAhJQhxbBUEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQhA/meIWQ6LquV0uSdO1735Akyf8/GUSy5THY9pTxczIGy34NWaMJpMxnx/KBxTGJmEZHQ5CUbKOwVpIwAhYOFPt0PPQQKVdfjRaJoDgcR16mqiLb7WjhMHo8fiCUxNbXjzGNFdQoaHHQTSCroKokOjtxz59P75tvIjscOGbPQk8YT6CVTSbs48ZhHzfO6KMhC2pfgJbtRkjIGfdAaln/MoJGoZ5ssRJ4bfmgYQZWLMf7pXMGj9+RAjtfgM5q8BfDzhfBmwcjzj7KhhY+KYGOIFuWNgJgsaskYhrJhEbb/s5jCyE5SEvCpCth43+geTu4smDGDUYQyRHIFgvuRSdjGz2KWEMDwTVr4MCTPC1lZYTWbwCMQv7w5s2E1q7FOmoUstNL7Y9+ix6Pk/7tTEymCKrPhUlZhhTuhPMfNvYvMApFs8YYT6oHzA0bMXvziZ75MKH16/vGItlsyGYTTT+7BdnlIuuXv6R36Vuo6RlGN6NH037ffQD4LvwKLb//A3osBkDH3/6O56wObKNGYcrMPPZtJhyzaDjO5hVdAxt1aGjSSPX7SXYYp5d4XR3JYBhyZwEgSRK2EcOxjXifwu6mrfDs1SSGfQViGrLPj97ZgR4KI9tV9GQCxe0+4uzmwxS/2ydPRvV6SbYZARJaKDTwmP+3v+O/6iqSXV2ovsFhPcLnn2K345wxA+eMGQPadV0nunMn0V27+tqCy5djnzYVx4IFhDZupP2vDxDbvx/vmd/FXbgX085/wMhzIRGF1goC035PxbM9A/qNR5N0xrLxb7wWq9kBZgf4R9FTq+E77zza77+/L1ip57nn0Lq6yPzFz8n69a9o+8u9YDKheL0ku7r6+pTMZrRggPYHHuwrPAZQvP37rKSqOKZMxjZ+HCSTOGfOJLqvClN+Phnf/x69b75J97PPYZ88GefcOYQ2bsR/ySVEKiqwlpahF5fQ/vgrJE+aQcq4ImPcwudHtBde/SHkT4FhpxvXA/XrwZ4C064zrgc+KIsH8qZC6lAjaOzdu5FSSrAUnkho9XsmLS7GOnTooC70ZJLOf/8HNS2NyLZtg94PrlpF5i0/w1paOqC9s667L4DkoPaGEIGYH1OkjURLC4HFiwmvX0/h449jzv+AISuHMOfmYs7N/dDzf9FJkoRt+HBshwtvKT3R2P9W30ciZy7Jhm48p55K8+23o/UYx86ux5/AecqpJItGsPOBur5ZzTaVZEKjozFMisUF6SPB7IQ5PzACQRQTxIIQ7QF3Nphs/SF8iYjxnfCjaN8Lj34VYgHjdWc1PHYRfH0peMT+IoBit2GfNAn7pEkfaL5EVzcNt95G6OKf9gWQHLRlRTOlZSqK2TwgIE9xubBPnEBg8eIB1wEAkY0bSbnsUrqfe55oxU4Ut4tkd39gIP4i2P0aTLoc055HsJWfD4oCyWT/NJKEkpIGUi/Ew/DGTyBjBJTMP/xKRHv7f3akgd0PkU5IRo9tI4w+zwjN2vwIqBaY/T3Im3Js8wofmKbD9tXG9zTFJKOaZKKhBNUVAXKHeT/dwQnCMQglzOxc0waAyaqga7rxnatLJz3SZZz/K14wJk5E4M1bIWMklC781MYsfDEkkjqq0h+CbBYhJIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCMKHdLxCSB4GTgPWAzogHfKeDgw5TuM4PiK9sPWJwe3VK1AyFpCS66B4XDqJuIasSIR7Y6im/qcUxmr2DwwOAXpeeQX/1y6Bo4WQmEzIdgdaOILicgO6UfB5aDGPYjYCSHqbINYLtlQkayGyw4EejeJaeAJIEsmubtSMI4QmZI+DCx6Grhoi1jya2t20vFyNL91OZrEH1/CzwJuHFI8i2+ODZpePtA6xIOROhtKTjICTotlGIkuk+/DTC58oWQuRVeohp9RPsCuC02fBlWoj3BOhsbKLtHwXqkl5/458+fDGYkgbBuVnQs4ECLdD2y7j05818oiF5aacHEw5ORQ+9ijxpiYc8+aRqKtDUo3lWsuH0fbnvwDgOvFEWv/wBySTifSbbqL1nvuJ19biOf987GNGIulmLIkKLOY2pKGng2qC7c8aC5IkmHEjJKJYNv6GvJ9cSUxLIbhmLcmODmL7qgCwjR5F1+OPkWhtxVpahv/SS0m0tWHKySFeX48ej/cFkBzU89LL+K+4QoSQfEJkRcaTaqFsUibJhIYsS8RjSSyRDvTowKJD2e0zwmc+iI59xr96EnN+AYmOdojF0RMJdE1DdrlAlo84u230aHyXXELnww9DIoFl+HA8Z5xOZH8d0ZGz2PjmfuREAd7v3070ntvRgkEAeg8e84UvlmSS8KZNg5rjVdVoHR2E1qzFMnQottGjCW3cgjasjNTrNiB174d9S2H2zciuXEYvyMNiU9GSOopJZuc7jSjygaL1WBC0BKSXo4SCyFZrXwCJacQouOCb1Icc9GwPkT11IYVz54Is45gwnvrv3kSyvR3Z7Sb7V79COrj/Hyg+to4ejXXkyEHjl00mOBBohq4T3bOX9gcfwrXwBOyTJxvzSxLe887DXFJMzyuv0PPss0gmE76vfoVgRQ3usRMwJSKf0IYXPhGBFqhaCkNPBsVinGd1HWw+aNlhhDR8EA2bYP+7IKkw+7vw/PUwZC4UzsKbzKPntaV9QTmK34/n7LOI6Waat7bRsr+37zrV6TUj2aygKJiyB4/BUlyM4vf3vdaiUSIVFehdh7/m0bva0ZRA3+tkVxfRqn2HDSGJhhO01fbS3RrG6bGQWuDE7rJ8sO0gfDTuLDjhVph0JYmGbhLblmC22voCSA6KO1PpDpgZf3IBdrcRnNfVHEI1K1iz7bB0OZx8hxGIU78BqlaAKwPq18HUa4ywk2gvjP+aEUzpygZv/kcbe1dtfwDJQcFW6K4TISQCYISZtdUGaG8IoJoU0vKdeNLs7ztfvLaW6M6dyPrg7+4Wm0qyoY6OFW9iGzcO2/DhKE4jPNVWXk68rm7QPGpaGuFt27EOG4p11EgSw6dS2WYn/mo12aVe0gvcKI5UaNkJZSdhi7WSevXXafvzvX19+C86F3P98zBkWn/HTVuOHEKSPc4IBZp5IwSajXNQyUIjhPVYePKM89SYC8CRAamlR73GFz4aWQdPupXRC/LpaQsTCyfwZTmI9oRBPXJYqSB8VsiKTv5IP8OmZNLeEERRZZw+CyYpBqnDoG334JnqN4gQEuETF9c01EPOXyblQAjJof9vQBAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRCOwXEJIdF1/bQD/xYdj+V96kw2I0yjeB5YvUbAQU8jpA3D6bMyZkE+i/+xoy9nJCXHwYhZOX2zqykpg7pU/H4ky9GLFCVFAbMJ2WJBT8RBVkBW0KVDimd0zQggCbYY4+ypR/KHUJwOghU7sRQUABBvasJSVnr4BdWtgycuRTO52J59N8FYArNNpaMxSM22NmackI1t6ZchHsI3///ofe31/qcjKwrec845fL8WN/Q2woZ/gD0VKpdAxigYee5R11v4ZDhcVopHp7D0kb0A+LLsDJ2aic1pZveaZoJdUUomZLx/RxYXLPoNrPkr+IqMp8Fu/LcRkJMzHhbcYhQRH62LoqK+/0Lr14MOvW+82fe+mp5OrLoaANdJJ9L5xBPEa2vxnn8+kZ076X7sMRyzZ2MfN462nZWYi8fhnjsLxbcRpfIx5KyRxtO4W3YY/VW8gDr5arJ/cRs9S5ehB4P0vvEGtjFjafuLEXqS7OggWl2NfcwY7Dd8i8Yf/RiUwYVqstuN4vW+/3YSPhSTWWHk7BxeuX8HyQNPdnX6LJxwfh49BwI9AKwjh2NV9kNwKDhSj30BjjQoXoCaVw6SSmDxEmSrBVNODpLdTmTDRrqffgb3opNxTJky6PhtyszE/7VLsI0ejRYJo6alEdm6jcDIeezZFsGTakOSbWwLFDHyhp8RvuP7gHHMl222j76BhM8V2W7HPnMmlmHDjAADSSK8aROOObPpfvFFOh58qG9a9+mnE9q6jUTkS5iatsKqvxhP2Z5/P7U72uloCAEgyRKzzislxbfXCH3wD4F5P4KMkVis3cRqaoxlO+zEL76Zxl4nDp+FYEBjxZN7mHVeGd50O+rUqRQ++QTJ1lYUvx9zbi66plH4+GPEKiuRnU6s5eWDApdiDQ0E336bwIp3cEydimP6dPRkgtTrriPZ0UFwxQpCa9ciOxxk//53dD32ONHdRtGeHo/T8Y9/kva9m8HhBfl4ZecJHwuLG7yFYHJApBMW3waRLnCmw2l3QW/DsYcytO6F/Ssh1GFcKxbOBGcm5E2GJb/AanZQ8OPvEu2xgjcPy4jRqHn5rH+5mrUvVfd1k1vu48QrRuC/6GIiO7Yju5yYy0pJNDZhvfByYqn5WEYPRUnxkOjoIFZfT3DFO0R37MB+8ukMGeFl3/bevv6GjnFhD+4hvG/PgOHK1sFF75qms/OdBt55cm9f27Bpmcz8cikWu+mDbFnho0rGYe9itFgBWjiCZBq4/a1f+gorl/ZQva0TxSQz5cwhdNQHcPqsSBJsWtqMc979+NJSwZsH4y82gqBe/i6cfT88fgnEjWMw256C0++B9OEgf4Tfs5Y0whRm32SE+ux9A2rXgGoBm//95xe+EBr2dPH83ZvQEsaNBneqldOvH4M34yhBpoBktUAigd8SxuE1E+zqD1WcPC+VztuvxnfhV+h59jm6n34G7znnoGZmYM7NhVGTsP7fP6C+hsSz/yZRXUXajTeSDAbpfvFFbNf+gFde6CXc23FgYXDatWMoyB4PndUQCyGbbPidy7HfcT3xrggmt4o1LwV55waoert/oEc7Z2SNgQsfhScvhWCb0bbjOSOAdeLlR99w8QhsexJevtn47HoL4bx/GMEmwidCUiSGTstm/avVZA3xIskSDXu6yBvmRdJEobzw2We3apRPy2LP2mb8WQ60pM6+ja2MmZsNEy+DtQ/B9G+ByQqSAu17jO9hgvAJSyR1TEp/9rv1QOh5JK7x+vYmcnw2RmR/wHBeQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE4QvpuFRzSpI0/mjv67q+4XiM47hRVBh/CTx9FXQZxb2kD4dJVxAOxFj7UlVfAAlAe32Q7tYQKTnGE4Ud06eh+HwkOzuNCWSZtOuuRbEf/SnGksmEpOtoiTh6bwBd11H8MiQT/RMlE0YR765XjUL8aDcUzkfXNPR4HC0UQlJUSCbRk9rghQTb4JlvQHct3TP+iKpk0ry2iZRsJ6HeGCnZTjo7NGwHCu/se++h4FfX07OhBmwe3CedhG306MOvgBYHSYa5PzKe6O1Mh3Cn8RRx4bgLxa2sfWU/AJlD3GQWe1jzfBVaUic1z0leuY/utjCe1GMISkgtgZN/BVsehfX/6G+v3wAb/wNZ48D2/n8Eb8rMxHPqqeiJBKasTMIbN+E6ZRHBZW+jeNzGNLl59Lz4EmCEk0Qeeww1LQ3rsKG03nUXamYmtvETqP/hbcTq60m//ptYvMWoyTzMigs5WAeTr4LeJsx1z5K66CRiCQ+R7TvQNQ1UFSQJyWQiuHQpwRUryLz1FtJuvAFTZibmoiJiVVV9Y06/+SZMaWnHvuGFDyQRT7JlSW1fAAlAoDNKZ0uYvNu+T3DlWqyluTizoqivXg2+R2HoomNfQMoQsKfAm7eiTX8c5/z5JLs60QJB9HAEyekk8MYbBN54g9RvfYvUq7+B9J6npptzcghv3kJk+3Ykkxm1pJQALsI9bSiKRCKmYbapRHLLkd1utECAtG9dj+I4esGo8L9HkiTcpyyi/cEH0WMx9HgcNSMTNS2Njr/9fcC0PS+8QNp3vwuRdnj9x33tLeHsvgASAF3T2ba8ntLvTIeS5UYAmdnYt1SvF8esWdhnzoCMfHq8mXRVtoAOkWAcl99KV0sIb7px/WHOyoKsrP7xyjK24cOxDR9+2PVJBgI03347gcVLAAi8+SaOExbgv/gSotu3o0UiOBfMx7lgAS2/+x1dTz9NMjD4nC/JEqbq56B85ofcssKnwpkG59wHbXvhrdshETXaAy3wwvUw8ztQOAuyjnBdeFA8AlVvwa5XoLPKuI7Nm2yEmL3xE7B6YPr1WMIdWHwxGFIIebl0toRZ/0rNgK7qdnbS0RAke/w4dF2j5/nncUydRnTul1j+ShsZXg/S5ig53QHSmtfT9Y+/YS0rw1xUSMt3v8WEex4kP8NKd9JNSqqCfdc7WLIKaLr7zr5lOKZPx1IyOMivuyXEymcrB7RVrGxi+Mxssoq9H2YLCx9W8zZ4+bvo854hXrUPxWrFOm4ckY0bAdBnnUb1s8b3sMJRKbi8FiKBGFWbW2lvCDJ0SiadYTs+b57RnyfHCEewpUDTtv4AkoM2/APypxn78NSrjc/GB7X7NXjiEiNABYxQBUmGMRdCSvGH3BDC/5J4NMnaF6v6AkgAetoiNFZ2v28IibmgAN9XLkTZvYGTTp1AU12MqGQjM0sh+eCv8Hz5PNrvuxdLaRnO2bNpuPlm7DNmoJz/DXZXRAj3Oti/M5OJ1/yBsjIVra2Z2Nq1OKZOpbEhRrg33r8wHVY/v4+sG0ZjzpsBHbuhuw6ldAaO3mpwmMDmg61/g2nXQ6AJKp6H/BmQO+nIK6GoRtDqwQCSg5b8EoaeAq7Mw88HRhDlc9f2v+6qhmevhUtfBLsI+fkk6JpOoCOCJ81O074eXClWetvDREIuouE4duenPUJBOLqYZCXQGSQeSdLdGgZAViR6u+PQuxMmXw5PfK3/mJQ/HTJGfIojFr4oEpqGekhAstNi/K+fpu4IP3x6K1aTTMUvPsA9MUEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBOEL63g9Uv4PR3lPB+Yfp3EcPxUv9QeQgFHYUvMuibKhREMJxp2Yj6LKyIpEW12AaKg/KMRSUkLBf/5NaP0GtEAvtvHjsY14/z9Wl+0OSCTRgyH0ZAI0DT0YgvghRT8SEGg2ivCbtkD2HORwJ0gy5uxsuh5/HD2RxHPWmQPDSw4KNEO78QT3pH8YscYEqTlOetoiqGYZu9tMQlYgYyQMXYQkSdjb12AvC8C5fwPLUapJVAs4M4xCVUkGXTMKjUaf/77rLnz8kgmNaNDYBwpGpbL6uX0AlE3OwOYys/yxPZjtKtPOLiZvqB/FJB+tO5AVoxD5vaqXQ3ctWFwgv08fB0iqin3CBOwTJhBvbiY0Zw66pqGkppLs7ETNyCDR1oYejQDgOnEhXU88CYDvvPNo+cMfIB4n9frr6X7pNaK/34l11Ch8F34dOUfG3FGDpfJVpO5qWPZbzJe+RPavf0Wsrg49HqPr0cdIBoNG3wvm0/XwI0R27MBcUkLat28kunsPya5OLGVlWMeMOaZ1Ej6cRFwj0J1g7Al5mCwKkiTR1RIi0JvE0/sIntIu6HkeWnuMGRo2frAQks5q2Po4AIrdSbK1DWJxJECPRTHl5WKfNYvQ8uW0//WveM443Xgq/HvIVguKx0vnI49gP+McEv5JpOW7aKsNIEmQM9QHNhNpN30Xa2kptpEjP/K2ET5/dF0nuncvisNJxz/+iWSx4LvgAuLNzUiqih6LDZjelJmBKVLd3yDJRGMmYOD5O9ARJR7XCIaMAk+bK4k/y47JomLOzib7l78k0BGmbX+SlBwn3c0hJFnCm2EnGT9MINkxilVV9QWQWMrLcS9ciJKWSrKzg65nnyG2ew9KSgppN3wL96mnEtmyBdfCEwivWz+gH7MbSB9nXDEKny+5U6Bxc38AyUHBNuM6b8X/wdn3G9eAR9Ky3SgslyQommM8RX7Dv40QEy0BM26AFXeB1Q2Rblj3EFz8HEl1LJo2eKdJxDQks5lkZyfdzzyL/eKrqNgepWxKFtVb2nD6LARD4PTm4V54AsEVK0DXsI4cQfCBu3H5/WRMmAA9SSzDS7GOHEnO//2ByPYdmAsLsY0dg5oyuGg9Hk0ycnYOFpuKJEn0dkTYubKRWDj5Ubey8EF1VIHZQayqBnNBAfGmJmzDh+OcNRMdiOTmMvEUD6pFJiXbyebFtXQ0BBg6NYvy6dmseHIPOaVlA/vMGgPF88GTC3O+b7RVLYP9q4z9X7EY38Oat4LzA3717aqF56/rDyABWPc3uPhZI9xEVj7CxhD+VyRiSXraje8+7lQrw6ZmkUzqqGaFRCyJaj7yfiKbzaRcfjnhHTuw6L1kVS5Dzc5B29hDx6b1aONGoQVDOOfPp/X//o/Ua68hkTeUmpo4nY1BZEVi/In5VG5uI3NYKWnDfCRqamj53e+J3Thj0PIiwThJXQJVgT1vwMhz4OkrQTtwPLS4YP5PoH698Zm57DXwFxkhpUdzcP60oVB+OiBBbzPo73Oc7aoZ3Nay3QjNEiEknwhN05EVGV+mg2BXlN72MA6fFS2pkThutykF4cPTkdF1nYwhHpoqu5BkiYwiD3pSB2+uca16aCjS/nehtQIyDh/eKAgfl3hSR5WlvtcOs3FM3VbfDUAkrhFPapiUY7v/KgiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIHxxHZe/7td1fd7xWM5nRjIGNSsGt9etwz7pG8y+oJRlj+zuC3jIHebDlzXw6cSW4mIsxYd/qnVjoJHt7dvpinZR4i2h3F+ORbWgupzogBYKIZlU0EGLRtGShxTdKGYjfEQxQ+5k6N6P3LgOPTKUjr//o2+yrsceR83IGLxwm88o/gm0gCyjo+Py29CSOmabSjKuoUs2yJsCK+40ikOzx8H8nx09gARAl6BlJyz4GcSCoFqNcIpo79HnEz4RDq+FUfNy2fj6fhIxowjd5jJh95jZ9EYtSDBhSia1OzrY/nY96cPt5I/wk5GWcuRO08oGt2WMgFd/CMPPhLFfAbP9A43TlJGB58wzjfGNHUt4507skyfT+KMfITsOfK5kGV0z1kGPxyEex1JaSqxqH9GdO7GOHIlt7Fgaf/RTJJMJ38UXYyn5CaoSwpLtw7RvGUpmB7aCsZiuuALbuHFogQAA5qIh9L72OgCeM06n/oYbQVWRrVa03l7cp51G1u2/RLYcpcBa+NCsdhNTzihk2cN7CPUYAQ2ZQ9yUTs0h0DQT59u/HzhD2tAPtoDe5r4fdTTj967r6LoOiQR6LIbnzDMILV8Omgb64VMSEl1dtN93n9FPMomsyNicJlx+C7IiI8kSsiLhP++8DzY+4X+KFgoR31dF99NPA8bxqv3BB8m89RZs48YRWr26b1olJQXr6NGgHVI4q2v47R0g2QYEdoyam01rTS+v/XUbWtJ4Y9SiTFwT4xSm5OPLzES1RpBqm3B4LCRjGqpZJpnQkaT+AqYPSj/weXDMnYv71FOIVe6Dtna6n38ez8mL6OwNkGhspO0v95J+03expNlwjM2m0+VC6zXO/e5TTsSW44Sdz8C4iz70WIRPiSxDWnl/uNxBZieEOqBurXGdd6QQEk2DysXGtDkToHIJ7H4Fxn/NuMac80N6khE2n/lbVnXtJt+ewRRHLoU7X8A1ZyI5Q73U7+rq687qNOHLtBOrqUELBEm9/joixRNJ0V3EwgmKRqfS0Wg81T5ZXEj7d64g7bpraf3Tn0m5/DKC77yDZDaheD1Yhg3DNnw4kqJgSk/HOXv20beFJFG1uY3eAyEBqblOJpxUgCfd9hE3svCBubPAm0+sZj/IMj0vvGC0WyxYf3kvbzy4g3gkyfiTCnjz7zvIKvEyflEh9RWdRENx5l88jHBgYCgUVjdMvhKW/JL6jKFs96TTM+5sSqdewfBoHFN3LdSugUgPFM4GRSWaiLK1bSvv1L+D2+JmRvYMyvyHuVYOd0GofXB7LAgm68e+eYTPJ5vLzPCZ2Wx9q47hM7NZ83xVXxDTtLOLGT0v96hBJKrfj2vmTKOvESOI7N1LZMtWTPn5oOsoKSnE6+swFxWSaG2lZ9wZWMISdrcZq92EosoMnZpJR00zvZVbyExPRwsGSTH1IEnygEvkMfPzsDnN0NgLJQtg08NGgIhigmnXGeeERAxcWcZx31fw/gEkYAShliyE1BJ4527jvkzGSAj3gDvnyPO5Mge3uXOMex/CJ0KRQTUrxMJh3Kk2YuEkLr+VSDCBnhCpc8Jnn9luwmSWQQNXig1JwghFlSGZMgzlcPeEW3cf/4EKXziJ9wSMyLKEw6xQ0dR/b722I8SQtPe5Ry8IgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiB84R2XEBJJkubrur5EkqRzDve+rutPH2M/CrAOqNd1/bSPc4wfK8UMI84xiiUPFq5EuiF7PFpSZ+e7TX0BJAB1FZ2MnBM9QmcDNQWb+M7S77CtfVtf2x/m/IETC09EUlVAR4/HDoSQ6JBMQiJBrDdER1ucnsZc7OW/IrXtWazLfwOppTDvJ4RfXzZoWYFlb5N61VVIJlN/ozsbzvwLPPZVFEnDYlNJJnTsbjOyKh8oONaNp9Af1LARtj0JhbNANQ1aTh9ZgaKZsPjn/W35U49cmCp8omRZYtScHFSzYhRXAHnlfvZtNJ7mOmJmNvs2t9LZGMKdaiWrxMuuJW3UOLopGpVKar5rcPF6wSwoPRH2GKEdONKMp8a/9mOofhuyRhkBNh+SpagIS1ERuq5jLR9GvLmFzNtupeM//8V7ztl0/P0fffuzpbyc8Pp1ALjmz6f17rsBSL32GjoffoRESwuWoUNxn3UmJlca5vZtWOq2oE7/Bu4TTkALh5EtVgKrVmEpKyO6ezd6OGJ87uJxtLjxtPqel18m7cYbMOfmfuj1Eo6su7eNirVNfQEkAE37emhosbE8NYuv5k1Brj0Q3FCyEPKmGj9He0GxHvWYlOjoINqdgjbyD5hzMyEpE9mxg0hnAE4+n7DkwJOaisdh/K79X/sapuzsw/YV21vZ97NstmC2KITjGjaX+UBtvvE0cOELTtcJvP32oObw9u1Ev30pyh+TJNduRB0zkuS1F5HISsWScMPEy2Hd3wBIr7yTRZf9lRXPGZ+L4TOyKJmQznN3bkZL6pgsCqPn5yLLElRb2Ny1gylDx0MSTBaVWCQBMjh9ViTZyI74sCwFBTgXLcIxYTyN3/t+X0iP9/zzCaxahee0U2l/4EESTU1IFgvu4iQEq8j6+c8gFkH1mLBUP4ry6lVw4u2QjH/4wQjHXzQAkgRVy2D69fDu3cY+IKtw0h3Q0wDDzzl6kXdXDSDBjmch3AnDTofCmWCyg78Yimbz0p4nuWPt7X2z5Dty+Ouo6/DIYQpOUnGnpVK7vZeUfBsFc5yozZVUXX4lWrfxNPCU392FK6MALalTv6sTu8eMapbZvaaZ0d+6ES0UQE1LI9nRifu884mWTaY1asaqWkgNJrG7j1zUf5Cu6+xe3dQXQALQVhdg6NRMvOkfLHxN+BhkjILihTgKR9F85319zbb5J7J6I8QjRoCj2aYwYVEBkWCCaCBOzlAfW5bUsmdtCyd/fWTffJFAnLa6XkJNKpZhP+Sejv/w2o4HAJCQuGfSj5jzzl1GMKMv39ivU4pZ3bSaaxdf29fPA1se4B+L/kGZ7z1BJK5MyJ8GQ+YY4TuK2Qg08RV+tO2QiEEyChbXR+tH+MwYOiUTd4qFZY/s6QsgAVj5TCW5w3ykF7j72qKhOG11AYJdUdwpNlJyHZgsxu0h1e/HOXky1rKh2EaOJFpZiZ5IoLjdWIaVk9Rl4kmFUE8Ep89KoDOCR7HhSbeh7a4i/IOfEfnW9WTeeivJWCMnXziZDcu7CIc1Rs/NpmTigUARdyZ0VkO4w3g9/QbY8ih01xmvZRXOuhdsRwm5PFTGcJh0BTxyQX9b8zZ463b40gNgOkLoU/oImPkdWPF/xmvVCmf+GVyHCWUVPh66jqRAOBDrC7FRVAmLXSUeS77//ILwKZNkBcWkEA4ksLmMewo6unFftLsZplwDoVYjXElSjGNdzrhPd9DCF0JC01GVgfdinVaV+q5w3+umnogIIREEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRDe13EJIQHmAEuA0w/zng4cUwgJcAOwE3C/34SfuoIZsPYB4w/NAbwFMOZCoqE43c0hJp5SCBhBD8Ge2ICixKPZ2b6T3Z27ObnwZLIcWaxvXs+v1/yacRnjSLOlIckKeiwGdgcAejIBqkrllk5WPVdFRpGb3o4I6VknMu3UEqwtq+Ht32EquXDQsuSSQtrj3aSaUge+UTQXLnkBScvCFFCAJBa7iqRIyJJkFJw6UmHkl4yitv2rYPerRnHR0Qp5ZBX2LoYFt0A8ZBTYde2HWOCYto3w8ets7KFiZSPl07IYNTeHnvYIVqdKTxvYPRY6G0Mgwai5ubz7dCW6pjNyTg57N7Sy4fX95A33kTvUh9VhxmxTwZsLZ99vBNM0bzdCbdp2G79zsx0ivRALGT9/BJIkYRkyBMuQITBtKo7Zs9ECASxDhxKrr8c2aSKxfZVYy4cTr29AixkBFqa8PGI1NSRaWjAXFuKcO4fW3/wWAPdpp+GcPRNlxVIsxUWYCofjXnQy9smTiO7bR/23bhgY2HOAKTsb2S4KjD8pLV0t9DRHmbCoEEkyjqmh3hjR1jj/aXuCWSfdRmFbtVGwnjXamOnde2DTfyGtHKZfZwRGvUe8pYXGW24l+NZbAMgOO9m//wO61U7X2Vezc30XKTkONu/soHScn7K7/4Rz7Ggk5fDF6OaC/L6fJYsZWZFQVAmzTTXGrUjI7ykUEb54ZKsVc3Ex0V27BrSbhhRx2Y4fM/G8kUy85HK2RCp5vfLHPDz0YUakjoAZ3zZCntBQQu0M0V4n66o5JBLg2PR7Wju+w6h5uaDr+LOdLH9sF6m5LrRKnc5WncKvd+F3eoiFE/R2RLA7zTTt68aX6UDNO/w+HQ/H0YPtmOUIeHJBGXxJqXg8pF51JfsvvrgvgASgd/FiMn/yE5Ld3aR961sE163DIlejmdOp/e0TJFr+DYBlaCm5P7gcZcgE2PUajLlg0DKEz6BgK+x6BVbfD6PPh/X/hLk/hHMeMgKg7H7oqjYC6s66zwihO5KOKuM6csJlxrzbngLzQsidDJkjaAw0cve2hwbMsj9Yz65AHUWtNdgefQTX+p0MGT8FbWUlidyFdLyzpS+ARMnKJubLJhZO0N0aIiXHyY4VDUSCcUbOziHhGIt191pSr74aNT+PZi2T1/+6r293HjIujTkXDsXuNg8aejKeRNdBNSskExoWu8rk04r6ggG2LKmlrU5c434q7D6YczOWuv2YcnOJ19YCYDrxTIZomRSO1ZFlCU+6neotbaTkOtASOlpSY8a5Jbxy/za624xCzmgozsrnKtmxvKGv+9PPvYSSsWU0B5t5veZ1flvxL8bMugHvkl8Z33HKFhGMB7l3070DhtUb72V90/rBISTONJh2DTx5eX8Y07iLjXCSD6t2Day4Czr3wcTLoPyMj9af8Jng8lsJpTuIhY3A06wSD/nDU0jENeLRBJFADKvTTDyaYP2rNWx8fX/fvLPOK2XknJwBoXiq14M6dQrWEcOxlBQTq68ntGMnzslTiUWT1GxvR0vqDJ+ZTVeL8b0wtSAfxw030vPiC1jLyzEX5OOqWMbChZPA5cJTXmB03l0He96A7c/AqHONsBB0oz1zFIw42/i8BFsh0AjefI5JoMX4V5JgyHyj6D/SY9yLMOUcfh7VCsNOg7QysHjAPwTShn7QzS98AHEkdA3MVhXFLIMEJotiBDggghmFz75oNM7B258ms4IkgarKSJKEJqtG8NhjXzFC9MC4dvUVfbqDFr4Q4kkNkzzwOOq0qDTTH37e2ntsQeiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjCF9txCSHRdf2WAz/+XNf1qkPfkyTpmP4KW5KkXOBU4HbgOx/vCD8BlYv7A0jAeOL1rpexzRrNlDOHsOzhXcQOPGXbn+2gdGLaMXWbSCa4ccKNPLXnKRbvX8zMnJnMzp1NNGH8AbEuy6CaIJFA13X0WIyoO5u2miAlE9Op39WJJ82OL89DV28zmTtfgGnXEbGPQnksjWRLKwCy203NgnJKtNjgQVQthUcuQDnzaRzeIrSkRE+7gq7rmB2qESsz5Zuw6s/GH9wXz4cFPwPr+2XH6DD8TFh8G0gyaEnInWSEmQjHXbg3yoon9yErEA11kT88jXCvE8Wk8Obfd/QVlKcXuKir6ETXdApHp9LVHKKuopO0fBdpQRev/nU7SDD1zCGYbSp2tw131jjo2AfPXt1fTFl2MtS8C2sfhBN/AamlH9u6mLOyALCWlqInkyTOPZfIjh1IikJ4xw4kkwomE6acHGJV1QC4Fy2i7cEHAfBdcgnhzZtp+N4PkN1u/Jd+DduIZkx5BZgLCnBMmkTRk08Qb27GvmYKoVWrjQUrChk//Smq3/+xrYswUFBvZ8xJQ1jx3739x9QsB5O/lM8F+gVEalfDawdOQTmTjELb138CNh+0V8Ke1+HKxZA+bEC/kW3b+gJIALRgiN63lyGfcgFar4WcMi/N1T1kFXuQzWaS5ZMxpbuOOE7H1KmYigqJV1WD2YKsyqhmFfQkdq+OyWw8NVn4YpNUlZTLLiW4bBlaMAiAmptDYsoYetb2sKT1XZbwbt/0sYPn6J56aN4CK+7se8827XpQLXT6ZvHGE510t0bwZznQdJ3R8/Ko2tKGrEiMmZtPd3UU33DoaAwiyRKappM33AN6mOqtjaTlOrE6jZCFRCxJ7Y5W1r2yn0Q8yfjJOoWeFVhGLAB3Vt/y9USCaHU1idZWPGefTfczz6AFQ8hOJylXXkHDD3+IHg6DJJFy9TdQurbStk4lceA6BCC6aw+BjRX4e++FOT+AuCiW+lzY/iy8fJPx894UOONPsPIeqHnHaDPZjUCyrhrY8QzkTjQqOA8nGYd4GN7+nXHcnnYt7F0CKcY1QlJPEkkODPJzmpz43MOwd+kklq4m3tJCvHIvAGpVJdYbvk28dCISOuYpM9m0opX2ulqyij2YzAlGzMrmnaeM6TGbUfNyAQh1hFm+rP7QPB32bWxl5Oxs7O6UvrZEPEn97i42vl5DMq4zdmEe/mwHe9c309EQMrq1qUw6vQibc3B4iXCcWN2Y7XHSLjqd/Rs3Yjn7QtZtU6mrNL6qetPtlM/IIqfUS8PebiLBGOXTPJgsCU66agSRgBHy0NEQHBBAArDrxW7M5zl5u/4JLh5+MWsb1xJxZsC062DlnyAeIaklCcQHh9CEE+FBbfQ2wSvf779mBtj4byOYyTHzg69701b45+mQOPDZeflmCHXCnO8d+bMofG44vGYcXgt2t5nUXCdb3qplwsmFbHhtP6HuGMNnZZNe4BoQQALwztN7yRvux5fpGNSn4nLhmDIFB2CfMIFkVxdKm0RHY5AZXyoh2BVFS+hsWVxHeqGLEfO+hKVsIuzeQnTbeizDhhLfsgHXvLlGh4k4se0vEe1sx6bYUKuWGWFVgRZwpBmhOIt/bkwrSVD1tnEucR7DPRN3ljHPgluMkJO3fw/ODCicBUPTQRkcGsnO5+Dpq/oD02bcCLNvMgJVhU+EpGgoqoTLZ8XmSZCMy4R6jEDJWFx//w4E4VOmmJIoJhmn14xqjpKIyyTjMooqEbMXYG58vT+ABKBuDTRtMcKOBOETlNR01MOEkADk+mzUdYZFCIkgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIJwTI5LCMkhngLGv6ftSWDCMcz7R+B7wOejEmT/qsFtNe+iz9TZu76FWCSJP8tBMqHR0RCkuzVCzjH8Lbrf5uf7K76PRbGQ68xlef1yYskYXx32VQAkWUZxu9HDIePJ8hLoVjuxSBib00zRmDRkRaK2ooOUOWONJ/6+80fiX3mEzbd+mdHdblRdpipNY7czyEzHe56I3dsML9xAYNiFbN9Vw4bX78dstzPlrIuwukuIxzCKftY+AKEOY569i8GRDmO+evSVU61GodCCW4yn3StmiHQbPwvHXSLQS95wE8H2dWx69S32rkll9IILqN1lZ8Gl5SiKjDvNhmpSiMeM8Ie0fBdrXzSKN0smprPy6UpUk8zUs4tZ9vAuetsjjDkhn5RsO3JgLCmz/oq3+QXklm1Iu1+FeT+Gt24Hkw3Ovg9Uy8e+XpKiYMrIwJSRAUDhIw8Tq6sjOy+PlrvvwX3iQsKbNqHrOsTjyA47stlMZPNmZIedtOuupe3e+2jr7MQyYgRp112LmpqKOT8fe04O2b/9LdGKCpLdPZiLCrEOG/Y+IxI+ilxHAavWtRKLJvFnO0jEknQ0Bmlv6WVxeDGn+Kf0T1y/FoYtghNug+5asHkhEYWWHQNCSOLNzejRKP7LL6f7+edJtrUBYB0+nLDTTcu2btLz3dg9xvG0cV8XeeVHD5oxFxSQ/+CDRCsq0LILiUZlVHMcSd/P8n//m3BvN6PmL8Kbtgh36rGFUgn/m2yjRlHw2KNE9+xBVlUs5eUEUuwM3TMUr9VLqa+UPZ176Ip1UeAqMGaK9hqF7Yda9We46Gn2V6TS3WoEe7hSrFgdJjobQ+QP94Mk0VbbS84wH6pJIavES7g3it0dYPe7L1C3cxMZxUNpHX4ReSOMz0hjZTcv37cDgLIpmfQkbeyJZJOyL4zHU40tNwc9kaDrqado/s1vIR5HTUsj7YYbaPn9H3Cfdhodf/u7EUACoOu033sfjr/8mlDFPwdtj0hNG3z5Vtj1Cow+/xPZ5sLHKNgO795t/OwfAuMugo7K/gASgHgI3rkLSk+E/SuNYAX1MGEc8TBUvAQ5EyB/Kux+DZb8Ehb9DrxGMEiGI4MLSs6msreOYm8xeizBxEAh6+76N/FohHGXXEDGniqiz72A7ZKvE51yCi1WJ1K2xIbXasg0daKoMj1tYXrawmQUuckfkUJ6gQtZkfDl+dHkHhKNTWjeNEI9wUHDPBhGcVBLdS8Nu7vIKvYiKxKb3qxl+IxsknGdlBwHHQ1BYuEE9bu7mHuhKET91CSisPxO7DUrKLztGuq8pxBZHsDhNRPsiiHJ4M20s/nNWtILJEzqVl750yvYXB6mnHMxKTnGMTESSgzqOh5J4tGdOFQH/9z+T34w8WbSOhohbRjkzwCrC7fFzaUjLuVfO/7FtOxptIXbWFa7jAmZB74WN26GmpWADtnjoKdh0HIItHy4dW/e3h9ActDKe2D8ReDO+XB9Cp8ZTq+Vk64cQWNlNyufrWTK6UPY+nYdpRMy0HWI9MZp3NeDy2+lt6N/P9ASOtHD7M/vZSkogIICLCsbSC9wEeiK0t0SpnpLG540Gyk5Tl65fztDp2aSPv5k5HEL0bsbsNXvILhyFZLVSkegk+Wv76Gpuoai8olMnZRP6oo74Mw/ATqs+guYnTD9OtA1IxykeTvYZkD9BqhdZQSE5E8fFCRI1liY/zPjHsTBc0+gGZ74Gly1xPg8HaqjGl78NgMSpt75I5SfZgSiCp8Is2LBZO0l3L2e5Q8/iSzLTDj1PBLxEsw2FXqawJ35/h0JwqdEjmlYbGH2bl3M9mWv4/KnMuWcS9D0fCIJM86eOuO+VvyQcLG2vZ/egIUvjHhSx2oaGCrnthkBXCOy3bT0RGkNiBASQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE4f0dlxASSZKGASMAjyRJ5xzylhuwHsP8pwEtuq6vlyRp7lGm+zrwdYD8/PyPMuSPbviZ4MkFV4ZR0BILQOpQEtEkyYTG9C+V0FzVjWJSGDE7h3AgdkzdtoXbuHj4xWi6Rn2gnpOKTqK6u5rWSCtOixMUGdlmJREMIskYQSSKQmqui82La0nJcRIJxHCn2UnGE7DrZZhxA8WxKI1lY/npxnvY37ufBdICLim4BFka+PREor2QiLBHH8E7zzxBeuEQkokEr9//e0678VYkKduYbvxlIEtGYalihs2PQrDZ2CZHoiWg7CRYfJvxhPtoD5gdUHLCh/sdfI58pvbdA6x2iVDHarYvfQWAaDDI+pf+zsnX/Ihlj1YT7okxdmE+0XAcp89Kw+6uvuItb4ad1v1GeEzp5Aw2L66ltz3C2IV5VG9pY9MbIYZOyaTdN4aGmnyyciVKZlswSxEcp+dj6t5rFI7lTDA+Q5+gvkCSCROwjR9PoqWRZEcbeiyG4vWipKQQ218DgPv0M2j/299JdnbinDcXNT2duuu/BZJEytevwjFlCmp6Oo6ZM5He8+TR/2Wf5v7rtGah0MW0s4tp3teD2aYwco6TQCBAeXo5HYkIA/agUDvseB48OdDbZByfShb2vR1ct46G73yXREsLsstFylVX0fXYY8Tr61EcDpKxOJlFXipWNeLPdtDZGKR0UiaJRPJ9x2rOycGUnU1ncxBzd4xkvI0X//xrvBlZeDIyWf/SU5gsJqade+HHv6GEw/osHnsBrCUlWEtK+l77gR9P/TH3brmXp/Y8xdj0sfxkyk/w2w6E3+iacb49lK5BTxPtTYdkt0mgqDJNVd04vRa0pE48liRb8+LwWnClWjBbYrz7xP0E2ttIyS2gbX8VL/zxF3z1jjvxpKWzd4NR9F42OYNgZ4Tdq5v6+l5wkovU117DPn0azb+8vW+xidZWOh99DNfJJ6NmGNdF/ssvQzJbSHZ2GmE/URPuk06gdefOAavhHDMEXv0BzP/J4KL5L7DP6r6LooLJYVx/TroSOvYZ++J7tVbAhK9BNHD4ABKArlqwOGDdQ5CMwchzjesCRTWKzwGTbGJR3gLu2f53ntrzFL8v/DFr//5AXxfvvvEScxadSUbh9+ksm0dKnovmql5qtrYxam4u9Xs6Sc02Ake0pE5zVQ9lkzNQTDI5ZT4chV6iUoJEYxNqex15ZQXU7u7p61+SwJthGzDs3o4IDXs6sbnMNFf3UDAihba6XspnZNFc1UPppExqtrXT2RhEMSsffZt/Dn0m9t9YEJo2G9cFPTuI+c7F6YuTUeTG5bey7pVqZFmipz1MWk412956FV9WDh0Ntbz6l19z6vW34Upx4PGrKKpMMtG/n/tybPhTdUriJczOm42qmFDeucfYj0+4FZzpAIxNH8vO9p08t/c5MhwZ/GrWrxjmGwb16+Efp4KsQsYIaN8LBTMhd4IR0Ccp0FUD/qIPt+7KYT5zZgfIpg/X3xfIZ2LfPQZZJV6i4QToxuG4fFoWG16vIWuIl0Q8SVaJl/JZ2ax5bl/fPK4UK66U97010ydjiIc961rwpFrZvLgWgKFTM1n9fBWzzisl1BNj7/pmCkelYisoJpaZibriBbrq63j6r3cR7jWOpbs2bKKjtYMvTzkFmyRD4SxYdS8s+Bm8ew+EO8FbALtfNT4/T38DUkuN84uWgEtfgvTy/oE506FsEehJyJtihADsfAEaNxmfpfeGkES6Dh96Gmw75m3xefFZ2n+1RJzO+gqW/eevpBUUoes6S//1F0765vep3a6Rlp31OUkfFo6Hz9K+e1AsobNn1etsefNl0gqHEO7p5uV7bues791BLJoLtWvghJ9DqNU4b3fsM87jgvAJS2gaJmXg/chMt3F+z/PZSXNZaO0VISSCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjC+zsuISTAUOA0wAucfkh7L3DVMcw/AzhDkqRTMEJL3JIk/UfX9YsOnUjX9b8CfwWYOHGiPrib4yh7nFE807LdeO3OhvP/i8VhonRiBov/2V9ku3edxCnXjD6mblNtqSyrW0Z1dzUus4s3a97krJKzsCoHCoZUFclkRlJV0HVkswlJhkBHhNKJGdRsa8fhMZOW70SXVRhzIaz7O3vOmcSNb11PTDPCUJ6vfJ5wPMwds+7Aqh5SjOTMIDruKvZvbmf2Vy6lvmI7isnEyLkn0F6/D3dGJsmEhm5PQXrlJmMeWYWTf2M8zfhoVJvxZOP5PzX+tfvBVwiRnqPP9z/gM7XvHhCOa+xc8SYAqsnMlHPOp6e1hdXP/oshoyfT252OrMgkEzqxSII5F5bR2xEhrcBFqDuG2WocXuxuC73tEWRFQjUpdDWH8GXaUUwyG16tISXHgcWXwYv/qSUaTDD1jImk+kdjq92Mt+K3qPO+ffTwmo+ROTcXc24u1jw/8aY2HOPKafrdPZiHFANvoHi9JJqMgnvb6DG03nUXyDLp37uZrieepP3Pf8E8Yjjp11yL4vViLshHTU09LmP/NH2a+283HeSO9PL2f/ufKqyYZBZcVUaoO4TD9p4Qm5QSGHMB7F8FBTOMIsaIUXgYb26m4TvfIdHSCoDW20vrPfeQ+o2vE1r1DugaitOJ3hElq9hLS3UPGUUeJBlkaeCTZg8nEoxTsbKRNS9UIUkwbmEvs79yKa37qwn39jDt3K/QUl1JsKsTh9f38W0k4Yg+i8few2kONfO95d+jKWgcf1Y2rKSmu4Z/L/o36Y5041xpTzGK6Q+yuMHqpWCIxM61RpOsSMQjSUonZlC9uQ2zVWHcwnyScY3mmm6CnVEUpZu84aNQzWZaqisZNn02JquVrsZ6PGnpWB1Gkbo3w87uNc39y9Nh5btR5vnCmGr2D1qH2L59ZN38DRSrhuK/lkRLCyQ1FL+PjO/djCm/AOuo0UT3VtHz0kugKPgvPBd7ahRyb4amrcY1iwB8hvddq8cIjFn3kBEiUjQHot2Dpxu6CPYtgxk3Hrmvtt1G8MzUb0IsBFseM/YB75C+SZo79/GdlbfQHGomy5FFx449g7rZsXMrmZdeT9eG5exetZuCMVMYNbecN/6+lwknFxDojuLyW+luDSNJ4PRZmXpGMVnFHgB0TQNZQq+rZfKUMpA81O7qxuG1MOfCMlJy+q9vw4EYsUgCu8dCV3OI4nFpSJKEN93GrtXNNFf1ULW5jSlnDEGSwWr/YoY+fCb2X5sPRpwNmx9lt+vrLH+4P4zB6jQxZkE+WlJjxEwv8ZDEsJlzaa+rYeS8E9EScbpba/B0DCEzz8apF/l464VeettjpA9xkn+KmavXXINZNqOjk+fKY/IpvyZtzd/g+eshtYx47gQeqXiEx3Y/BkCgK8BNy27iv6f8lxGbH4cR54ArE2pXg5aEOd+Dpy7vD0bInQxW74db96wx4MqC3sb+tgW39IWjCEf2mdh3j5Ev047ZpuJNt1Oxqomx8/Op2tKGyapgsalkFLnZnWGjqzlMeoGLOV8ZisNjOWxfejxOtLoaLRTCnJuLmpKCL8PB1LOKCXZGUVWZRFwjmdDwZ9lprw/Q0x6heLybZHQva599G2dKGmUTJxGp3NUXQHJQa+1+uk86C1s8DD31MPws6K4H1Qon/hKat0MiCj2NMP9nsPUxGH4GWDxQ8+7AEJJYCLY/BW//rr9t1neNgFNbyuCVc+eAf4gREHCQYgbfhwz5+Qz7LO2/ssVK7baNzLnocuordiDJMiPmLKBp71aGTPoykVBShJAIfT5L++5Buhait7ONKWefR/3uClJy8vDn5NHT1ojdkwvlZ8Kae43jF0D+NOM7myB8whJJHVUeeH/KYTHuzxak2EkVISSCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjCMTouISS6rj8nSdKLwPd1Xb/jQ8z/Q+CHAJIkzQVuem8AyWfO/pX9ASQAPQ2w5XG09DFUrGpiyLg0UrIdIEm07u+lYU8nBSMOUxTzHsFEkNGpozmx4ETaI+2k29LZ1bGLSDICgKSo6JEwnf/5D1oggOx2kzLnZGRVQpYlisakIssSXU0hPH4PrL4XplxNVaihL4DkoDf3v8m3gt+i0FPY32h1oYw9nwJ9J4sfurevec+alZz6re/T1R7FaleJyW4s064DkxW662D1fTD8zKOvnJ6EzJGw/p9GcWosCGsfglP/8L7bRfj4qSYTdo+X3rZWxp9yBhtffYFQdxcANZs3MOG086jeqtBU2Y1qkhl7Qj4puU5yhvqo39WJy29FNcskYkksdhVdh2goAUDh6FS2LKkDoHRiBqsOPIV72jnF7Hinka7mEO7UQiafNgvnfg1PeifOjOMXyiCnFWPx5WMJ/o2CG+aQSB1NouE0tEAvSmoqejRKot0oAnXOmU3va68Rq6zEPmkSlvJy6m64ARIJTHl55N59F9by8vdZovBhtXe3snNFiKFTMnGlWJFlifrdnbTXBUk4EsRSiozCXdkMnjzjaeqxAORPNR4Nv+dNmGmEQCWaW/oCSPrE41hy/PhPlAh7XaBrdDYF8Wc7cXgtqCaZ9oZecsref/9srOzmnSeNsJRJpxfhSWvhlT/9jnjUOH5Xb1rPjAsuRjWbP96NJHzu1fbW9gWQHNQQbKC2ZQvp9iyIBmH2zbD6fuisAm8+zLgBQs1ku2NMPqmY9Uva0JI6ilkm2hWjYFQKviwHW5fWkV3ipbMphD/bgaZZ6GpupHrTegD2b91Man4hJZOmAVA8Lo0tS2pJJgbX/4V6Ykgl6cT21yA7nWiBQN97prxczFIjCbWYZFs9HQ/9DT0SQUlJIe2661BT0zBlpJP1i5+T8pUzkBo3YDZ1I+ltsG0xlJ8BycQnuJWFj03JAiM8bK8RZEY0AOf+A9p3g66BpkPuRHj4y1A0G7JGHb6feBj2vAHdtUYw3YxvQ9UymHZ93yT7u6toDhlhOMF4ENXjGNTNiDkLeO3e39LVbAQu1GzZwKj5ixh34kK2L29g+jkl7DkQqDNidg6ZJW7szv5CfOnAfz0vvkj8/vsZNWc+k869GGu6D9/otAHLCnRFiIYS+LMcpOY4CXRFCQeiZBa7yR+RgsmqULezk12rmzj12mMLIBQ+IZIEpScR9Iwn3JTOhEWgazq7VjcS7IphsSk4go2Yi/289bfVtFRXAsYxsWD0OHLKx6IldCSThbx8nXNnryaWOommdBvXr/oO1469ls5IJ5Ik4TF7qA42kWaywpSroW03rf58nt7z9IAhJfUkld2VjFBN4CgwPi8F00FSjeP7wQASgLo1ULsK/B8iKCGlGC55DvYtha79ULwA8iZ9hI0pfBZ50uyc8s1RREMJUvNcdDQGKRqTipbUiUeTxCIJzvrueGLhJHaXCcsRQpGSvb10/Ps/tP35z5BMYi4qIuePd2IdOpS0PBeeFAvjTypgzYtVqCaFwlGpbHxzP3MuLCPcs5Wl//hTX187336TM66+cdAyZEXBlFIAyVZ482dw6p1Q/TZMvQYW/xycGTDsVGjYAIWzoWiWMWOoA6zDB3bWtrs/gCRtGAw7DRQVFv4cMg9zvrGnwFn3QfUKSEah8i2YczOkln2YzS4co1giTu7wUbx27x/72vauXcXJ134Hq9OEzZr89AYnCMcgiUpKVi7vPvFwX5vF7mDRdd8jFtFANfUHkIBxj7hxixGCKgifoHhSw6TIA9qumFlEJJ7ktNHZLNvdRl1n6FManSAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgvB5clxCSAB0XU9KkrQQ+MAhJJ9LDRsHt+1fCYkYBSNTqNrcytqXjGL33KE+fBmDiyYPx6baaAg08NK+l0izp9ESauHUIaei60YxsKQlaf3Tn9HDYQC0nh5ie/fh9A9nz7oWsku9xKJJejvC6JIPZn4beptxKFZjLM5csp3ZVHRUAGBRBz8NWUpG2Ld+LVPPuQBJNv6wWdOSNO7dhWJOJR7TiWWMxbL4Zoh0GwU8Ey8zCv9JG9RfH9UCkR4ongcb/w0WF0y4zOhDOO7sHi/zvnYVz//hDhSTuS+AxO7xMvak09CTSYrHdpOe78HuTWXzm/sJ98ZRVJlxJ+bjy7Iz7+Jh9HaGmXJ2ISseqcThNcIVdF1HViSSCUjENQAyiz007O6iqzlESo6TwtGpvPWfvSQTGtllHqaeUYjT58CVYj0+G0A1wfiLMLXuwrT3TcyjG4kPPwvHxLHU/+Q2FJ8ROmEZOoz2++4DwDFjOq1/vKuvi3htLc2//g25f/4TitN5fMb9BWPRdIZOyWTnO43sWm2ENBSPT8PhM5NmSkPubYFlvzUmHn42jDgb9r5uFCF2NkLWaKPgEFB83kHBCUgSJqkZZd9LaOlfJalEcPmtdDYGcaXY6GwO4fRZ0ZPa+461rqIDAE+6DbffQndLMyPnnYDN5UHTkiiqyr71axhzwqKPdyMJn3t21Q5Ami2NIZ4h7OveR1u4DXvjZnjzPFhwC2x/DgpnwsgvQagN3vgZLPwFtrZ3meDdSdlFownnDaN9X5LGfV0Mn55N9ZY2fJkONi2po2RcGiaLQkoOxCMRZl5wCfFYFNVkpnFPBbED1xXpBW7OuWkCPW0hJFlC1/rDSPJLHSRXLcVy3jn4r7yCtrvuBl1HdjrJ+vG3Uff8gUjhjbT9+S+gGZ+ZZHs7bfffj3X0KEwZ6cg2G1ZTM3glWPc0BJqMABJdN0IDhM8+kw3cOZBSYoQkqBZY9xC07DDez5vaX4DZtOXwffQ0QPseGPdV43cP8M5dRhG588C1pKZhP/BeviufTEcmEZcdm9tDuMe4dlRUFYfHT2pBISPmLiARj2MyW9i7dhWlUxaya5WEK9XCqLk5pBe6ySr2YncODILSdZ2uJ54gXmeEp0WWLiaydDHZ//cHGD2wSD3cEyPYGcXiMNFWH6C3PUxWiRdZUVj7YhWFo1Mpn55Fw54urI7j9jVMOAK9s4YmaSab36wkHk1isihMWFTItmV12MwaHVdcgOk/D5NVWkbJpKloySSKycTWJa9hstjoO/plj8Vu82Hf8zqtnQ4uHn4xd224C0VW8Fl8dEe7+cPMO2DlA+ArAlcWVsVKrjOXVHsqbeE2qrqrAHCanDD0VFj1Z6hfD+WnQ/Z42PLo4BVoqfjwK5821PhP+J+WU+ajuaaHxr1dxCJJOhqCeNLt9LZHcKfa2L+9nZLx6ZgsRz4eRbZvp+3uu/tex6qqaP2/O8n+450oNhtmu5lR83Jx5ZjobA3iS3Hh9FlxenXWPPMC08698MCcEslEnO6eLoaNn0zFhjV9fU458xy8iVoI1BvH/Je+A6ffBXVrYfgZRlDI5kdAtRohVyllsP0pI7R02GkDBxxqN/4tO9mY9t27IRmDkoWQPqL/HALGsipehKevhEQUFJMRgDJkHsgDC7iFj5ciyVRv3sjUL12AJBnbOpmIU7tzK6kF43Hao5/yCAXh6PRkkn0b1zLj/ItJxuPIikKgs4NAZwdeWwEk44Nnattz/AcqfOEkNB1VGfi9Oc9v59dfMgIQU51mNtV2fQojEwRBEARBEARBEARBEARBEARBEARBEARBEARBEARBED5vjnf127uSJP0JeAwIHmzUdX3DsXag6/pSYOnHPrKPW/ECI0TD5jOeYg1gT0Gx2UhEE3Q0BBk6NRNZlqja3EZB6DB/oH4YCS1BriuXseljqeutI8+VR3OombhmzK9FIn0BJAfpwV5idg2Hz0Ldrk5kSSJjiJtkQjNCPzoqGWo+l59O/Slb27YSjAX50ZQfkWHPIMuRNXAAkR5Y+xAlk05g+SP/IhLoBcDmcjP3kq9TX5kgmdBIBjpg7FfA7ICeRtj6FIw69+grJ0kgq8Y8U68xXvc0gL/4mLaN8PErGjeJC269g/aGBgAkSWbKWeex/OF/kIjHAPBm5jDlnBsI98YxWRWmnDGE7W/Xs+7larwZdmadV4rmizDl+nQIx5h5YQkVy5son5HFliV1yAf+OD4118metc0AlExIZ/Xz+wAYMSubRFzj2Tu3oJhkpp89hNLJmVhsh39a98fK7ICc8WB2omz8D0rXEizuFIp+fwNxOQPn7JnEGxowFxUSq6pGiwwulgqtXk2ys1OEkHxCMmWN1Q1BIsE4w2dmE48mqd7SRt4oL5F4hJg/jYbZ3yFzxwvIO56BIbONAuDeFpAwihMl41Rozssj6/ZfUv/dmyCRAEki/bs3YrE2wLwfozX3Ivkk7B4zjZXdBLqiaEmd9AJXXyDT0XgzjCCJvHIfybiGKyWNrUteoaO+FjCK5ed+7apPbFsJnzOJKHTsA02jyJPNr2b+is2tm9nZsZMF+QsY4xtG0Yr7QUvCm7fAef+GeBgk2TjvlpwIkgLhLuRwJx50OtR80H3klPmIR5N40+1se7uOyacVsmVJHTvfbWTeRalkFpey4tF/9Q2lfOZcVEt/MENavouUHAenfHMUyx7eRaArSkGpg9GpDUg2E7Zx43DOnYtr9hziLXXEPRLx8HYIdZAMxvoCSPpWtakJLRLpb1CtRvH9mAtASwA6hDs/6S0ufJySMYiHoKMSvPn9ASRgBJOUnw5n3gvurMMHzHTWQqgDbB7orIbKpTDzRjDbQVaMaZq3U/TOvfxm+i9Z0bSa2t5aGq09zPjON4nUt6LHk8RSzVhMbtDhncf+09f9lLPPw2xTmXRaEdklPrJLfH3vRRNRWsOt2E12/FY/AOGNmwavYlfXgNexaILejhjB7ijN1T3ous7QqZnEIgmiYeM6vXpLGxNPKWTiKQVYHeZBfQqfsHjYOK4iga+QbutIdr3VwdCpmTTt66atNsC6l6oYd1IBbqmLbsBsUWjYXUFrjRESIisKs796GVpSwWJX+rrusXvp8WSSak1he/VzXDDsAkyyieZQMwXuAmqDjTD9W7D1CZhxIxoaFw67kFeqX2GYfxhnl5zNW/vfotxfDlXvGJ+LkV+CfctAdRhhTKrZGLskQ7QH8qd+KptR+Hxxei04/Vacfiu7VjUS7IpisqrEIglUs0xXU5i0AtcR54/U7h/UFnj3XbTOThSbDQCrw0T2CDcvb3mc8b6JlE7ORlJkxpywiHce+zfRkHHrx+H1ccKV11HeHWbo9TfTGwrgz8wmIzcLpeJJI8Cq7CTInQSKGSwesKfCiv87sORuWPxzOPNAmFnZydBeCUPm9A/OV2gE+Yw61/i8z/+J8XnpaTCCTuf/tD9gpGMfPHu1cc0FRmjAS9+GnAmQMfyjbnrhKFRVpXDMOJb960EiQSMA0u7xMuurlwG6cX0rCJ9hJhVGzlvIsn8/hJY09tf0wiEUjpmEhAwmO8z9gXE/WFKMkMjc8Z/yqIUvgkRSRz3K/Sm/w0xnKIau60gi5FMQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEE4iuMdQjL9wL8/P6RNB+Yf53F88tKGwdI7oH2v8drshK8+ga7rhHpjjJ6fR8XKRnRNZ8SsbKLBYwshsSgWGoONLK1dyhDvENY2r2V4ynD0A0+CN+flgckE8UP6CwXQdZ30PBfRYAJFlXF4LMaD5RNRyJ9KHJ0HtjzAxMyJ+Gw+bn33VsyKmWvHXsupQ07FY/EYffU0otQso80+hIwhJWSXlQM6rTXVtFRXkppbRLAzCrnZsOUxo4DUPwQmfx1CneDMOPLKSQq4Mo0io94moy29HApnfKBNL3x81M695Cy7Fnv517B7vKTlF7Jnzbt9ASSu1DTKpk5HkloZPd+Davay/pVqwr1xPGk2RszKZuuyevSkTtFEP29pL/FE0yN878wfM9RfRlaJl2B7iNyhXjobg6Tlu6ir6CQRNwrUbS4Tqllh+3IjBGX0vGy62yIs+WcF+SNTyB/ux+W3fvIbIq0MvvYCdNUgPX4JlpRSLLNvwjpHI5Y5heSCWdT/4GfIFsugWS0jhqN4PJ/8GL+gIqZ0VFMPJRMy2LO2GbNNZeIphQR6IhTlFXHlmluJJCJcPGYRF3RPJ6OzxjgO9dQbxxxJAaW/QMO1YAFDnnmaWEMDamoalkwX8is3wt43MU28BySJSDBOWp6L1v29pOU5iYbi6OjvO9a8YX68GXYsdhPRSIJkPIDZamPauRei6zq9ba3sWL6U8lnzPrkNJnw+9DbD8j/A2gdA14ie+Ase7VzD5rbNAGxu3UxFykhm+fKx1q42itWbt8PSX4EzHWbcCCPPgc4aUA8cl0x2TGEfoe4Y7fUBLCVenH4Lw2fmsPKZSrSEsQ/Hoxo731nGhNPORjWb0TWNHW8vYfTCRQOGKCsyhaNSSf+hi0hHL6aOBhQtH/MZd6B6jWNeY46Vu5tfZvGWxeQ5c/nJKbcxpirIeyl+P6bs7P4GXYNIl7E+YFxDLbjlQCCJ8LmQiAE6pA+HvW8Ofr/mHejabwSMnPJ7GHEOmA45h4ZaoHo5tFYY19Szb4K69VB8yFeG1p20547ltxvupD3SDsCm1k10lJ7LttA29nTt4ReFt5MMJAgHeph27lfQdY3OxgY2vPICxRNnUzI+feCwemr488Y/81rNa2TZs/jR1B8x1T8Ky/DhRHfsGDCtOS9/wOvuljDxiBHGZ/eYyS3zsX97OyWTMuhsCDD1rCGsfr6KUE+UsQvzPsrWFT6M7npY8kvY8ojxesLl9BZ+n3CgjoY9XeQO8zFkTBprXqoiLTWOo3Uf3UCwsx1Jlo1ztaYT6Gxn+9tLmHPROGwuY5/d1LKJX62+gx0dO5mcNpaLRl7G/Vv+SjAeJNWWyuL9izmz+EziKZMxjb8E3ZnBM9se4u6Nd/cNb0XdCv564l/JcmYZ3x8zRxqhKTkToKcWRp8PT10BkW5jBm8hjPnK8d2GwueSw2PBnWplz9oWhoxNp35XJyaLjJbQsXhNvHzfFiaeUkjx+HSsjv6Qx3gyzvL65Xgsvdjf06dtzBhkt3tAm9vs5sSCE/nGm99gTup8vindSNO+PbhSUhm36HTQIdTTRev+KkpHDMVXkIqSNwcCLaDaIGscBJuN0JElvzQ6Pfef8M6dg1eqejnkTTLuGfgKB74nK8Z1xJOXGYE9o75svG7YANOuM0LNHCnGtIEWiL3nuiQZN44XIoTkE5WMxWjcs4vc8pGkFRYBEg17KuioqyM1bwIcw3crQfh0Wdi29E1GzFmAw+tHkiUq160mFg5hsmtG4OmO5/uD+NLKYeKVn+qIhS+GeFLDpBw5XMTvMJPUdHrCCTz24xDuLAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIHxuHfnReJ8AXdfnHea//70AEoD6df0BJACxAKy6FykZIy3fzbqXqnD6rPgyHWx6sxaHd3B4weFoukaJt4STi04moSWYmzeXob6hRJPG03stxcVk3XYbqAfyZUwmHJMmYrGpxCJJMovcB4rmE0ZdR+tOUMxURtsJxoNk2DN4fNfjRJIR4lqchyseZlPzpv4BhFqgYCZOfzqyorDyyYdZ+eQjhHt78KRnYLaqxKIJtFA3TPmmUTQ6+nzY+ZLxNOOjUcxGcdDBABKAlp3QXXdM20b4mMVC8OZt0LwVn0Pl3AvmMWzyJHraWgDwZ+cyat6JbHj5eV798+/Y+vof8KV3kjwQIDJidg7vPrWX6i1tRMNxIl1JZkVP4Z6Sv9MRa+fH22+mOmULxaN6OaH4BcaPbGXc3BQcXguqyTg0ZQ7xULuzA4CyyRk07O1i0xu17NvcSvO+bqq3tFFb0UGoJ/rJbw9fARTNhjPugfY9ULsWdch47M5WXJW/pOiWL2MtL8R7wZf7ZpE9HjK//iUUVRTOf1Ja9C4sDpXtb9eTmuvE5jSx8tlKfKlOfr/+93RHu4kmozy471neTM2F9JEQjxoFh8kooA+ocZNUFUtpKa45c7CNGI7cUdFXQG9tfBLZZiUajGFzm8ku82L3WAj3xo46xng0QVt9L4GuCCdeMYKiMWmoJhVdk0nJy2fVU4+x6qlHady7m7KpM4hHIp/gFhM+F2pWwJr7jaJZoJp4XwDJQZvat1GdWW68kGQ4+BTj1DLjvBlsA0+Osa/HQ/Skzad1TxJN0/Gk2VjzQhX1u7uwuUx9ASQAsXCUyWd8ie1vvcHqpx9j4ysvMPbEU9GP8ER6u9uCvzAV1/jR2CdO6AsgCcWD/GbNr3lz/5vo6OwP1HLNqlto8cdJv+5yOPB0ZslqJetXd2DOyurvNB6CfUv7X8cCsPkRYz2Fz4dYEAJtoFigeAHIKgxdBBMvh9RSSBtqBJDEAvDcN6H1kICPnnpYcSe07TZet1YYoTwZ5eDOMdpqV0Owlb12V18AyUHPVj7L18d8HVVWKdKGoQMOj4+VTz7MqqcepbOxnomnnQXEMdv68xijiSj3bLyHV6pfQdM16oP1fGvJt9ibbCTzZz9FPiRQzHfxRVhHjRyw3GBXhGRCI73ATUahm87mEHnlKVisKrU7Otm7roXSielklXix2ETB33G39w3Y/LAR2qTrdJlH8OqDFXQ1h8gs9tDVHKK2ooOi0al4qMFelIbrxAVIWpLM4lLjXP30o9RXbGfE7PkkkxqqArW9tVy7+Fp2dOwEYE3rJn6/7g9cPvJyRqaOREfn4uEX0xvrpa5lK/iG0Bpp4/nK5wcMrzfeS21vrfGiYCaEuyEaMMIcFQts+Gd/AAlAVzXUvHucNp7weaeoMr5MO7FIguxSL75MB/FoEkWRUEwyS/+7i7oD37kOquio4Ma3buRZdSvSOf1BZIrXS8b3v4fidA5aTn2wnp5YDy80PMv+5B5Uk5m8EaNY/czjrHr6UWq2bMSbkYk8bR7K5odg9QNw30z452mQCINsgk3/BZMdUoph53PgzR+0HOypRliIzQeOgWFSbH0Kdr9i/KxrRjBq3mQY81Xj3HFooJk7B6ZcDUNPMc5TYIS3qeIY/UlLSBq+rGzCwV5WPvkIK598GEmSsHs8yIrcdw0sCJ9VCS3CiDkLqN2xjVVPP8qqpx8jq3QoOjK6phthkMPP6p+hdSc0bvq0hit8gSQ0HfUoISQpTuPefHvwONxHFQRBEARBEARBEARBEARBEARBEARBEARBEARBEARBED7X1Pef5OMjSVIGcAeQrev6IkmShgPTdF1/6HiO47jo2Gf868oCi8sILWjZAYko7fW9TP9SCTVb24lFEkw8pZCOxiCapiPLR/5DYQBZktnRvgOH6uCbo7+Jjk5ruBVVMn6VkqriOf00rCNHkGhpQc3IQM4tQF7XSkdjkJQcJ+g6gc4I3gybUaS8+OdIX/0XkzInsapxFbNzZ3N+5pnItd2076tC3tVKwNmO058CTTug5ESUyjANu3YyYu4JqGYzletWE+zqRLXrZJd4SZrCRgGpJwd6mmDmjRALD1qfYHcnnY0NKKqKLz0da/P2wSvdtndwm/DJC7UT1WRaTnmGjs4QVpuFXF+SkVMm8u6LLzNsxhxWPvkI+oECIVlRaN63hWlfmsr2t4O01QXQdXCnWsku9bHqOeMzkVXsYdy0WeR5i9nVtAVbjpVRxaPIf/ZrMOarnPvlhfREG5l8Sg7V23twp9roaAjiSbOxe00zAONPLKBmWzs7320EoHh8GpNPK8KdbkNVlY+86tFElLpAHRISPouP3ngvXosXt8VtFKldWmyEDD1+MZx+N4y7BMtrP8Qy+yZsOevx3nEVyZiOVjiSrt4IwcYY3twEJstxPeR+ISiamUB7jPEnF1CztR2TTWHGuSV0tgSZnTObof6h6OhUdVXxdMtqzhoxCUc0E1q2gCUXEhGjIPlIwp3Gv45UlFgzSAlUk0I8kkSSJeKR5IFCucP3Ee4NUb1lB9Wb12C2OvBmjyBzSDGVG1sYOkll18rlDJsxG4vDSdWmdTTs2snYhacAkIjH6WyoIxLoxZ2WgSc94+PefMJnVeVbA17KkoRNtXFS4Umk2dJoDbfyatWrRu6IyQYzboSdz8NJt8OeN43AjsJZMOkK0BIEs+az8m2dveuN86ndbWLuRcOo3dmBJ83atxxFlUnJ9fHKPX8kJa+AjCHFtNfX8e6Tj3D+rb8+4nB72tvobmpE0zQ66vfT29FO7qjh1HTtHzBdQkuwO9nGCTyH4/bLSYSSmMafhHnY6IEdRgODF9JaAfrhg1CEzyA9CXYfLP4FnHYXnHonrP871K5BG/c1OtLnERrlx6WE8W5/CKmzGrLH0V5fS/W6lXRGT6Bo0kXktLyCtfp1CLYaxeI2L/Wt22moX4knawyxeDfl/nJm5sxER+fturep7q5mb+devjH6G5gjdqKBauKRCONPOYOmyj007NpJelEx3szMAUNuCbewsWUjV4y8AkVWiCQiPFf5HPu69zF87GkUPfkEsf21KG4X5uJiFLu9f3V1nUgoQSJmXBOFe+N0NgXxZdnRdfBm2MkodGO2qeSU+Y7nb0I4aMfA0I/OZB6lkzNRTTL1uzuN31GRB3/G/7N331FyVHf+999V1dU5THdPzlkzGqUZ5SxEkgCRswkOgL02Bq8D67jZ9u9x2uCEEzbYGIwxIBBREkEoopzT5JxnOqcKzx8tC2sFeIMRtrmvc3Q8PdNddevecoWmvp+rknPgq8gDuym65m9pt9o4sOEFShqbKKjKHhM79+/DVziHdEqnJ9lDOB1mZdlK6gP1SEjsG9lHPBFhgdxEIGcRYTmD1+8lnTuD1kmTvi3PcUfsPAJN9XS6xhlMDvF8x/PIvw9aymvIFi8nx+GlL0PDZTDRkf3bH95b/j6oRxD+CFeODUWV6TwwSlljACSJTCobTFZSn0PDgiIOb+2nZnY+0qlQs/ZQO/X+egqL6mi9KZ+yixcTHh9g2qyLcFTVv+V6ZGQskoWV5StpN08yp3Eaz333m+QUFFHVPJtkNMrhTRuxXHwXo+VLKB3ahzM6BNEh+PV1cNWPCM+6m26jkoH+MUrUIGVVJXha10Pm1HcJrjwoXwAvfhGmrEarWsl4ZzupWAxfbhDvyRfObljX1myIjz0nG3jqKYCJbtj5Uzj0OPjK4KJ/gTd+Bs0fgIEDUL3i3RkMAQAznSYVj+EvLGbq0mwu8WDrCZAgGc+QcFhxvMdtFIR3Yioq7Xt2UlhTx4KrbyCTSjLe34vVZkGWzWyg0vLPQ9l8CPVAuB/+y72RILwbMrqBRX778E6/MxtCMhF/5zBdQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQTjXFfG/AH4OfOnU6xPAb4C/vhCS6hXgyMkWkCUmYNbN4AiA3UtBZZz1vzhCQYUXq93C7uc7WXh1zR8NINk1uIveSC+XVV9GibuErkgXsilnCyX15On3SaqKvb4e6rPFQbpunK6Pj44nsVhlkjEtO7msI1sIWZ/WWVW5ionUBIlIhK7fvkRsYIhASRmH968l1trL+R/+GGpOBQwdIjbpY86aqzj48ktkkkkal67AMHTa9wwx3p/gwg/Ww8K7YfQ4NF6RLSzizOLhsb4env3Pb2J1ODB1HZc/yHnn/R2etbecueF1F/wfBkL4X7P56JtyNy/99IfEJidAkph/1Q00Lr2ATFpD17TTASS18xbiLyzm8GsbUSybmHHhdchqTfZvsws48HLPqZ/zkRWJ1x4+ASZUzpqDy2vjF+H9LLjtt8zt3I37mRtwA3mFc6ic+1EShcvoOzFxulkOj4qW1hnriyJJMG9NNWN9UZ7+z30U1viYs7qS3FLP/2hTxxJjjCfHeaXnFSyyhRPjJ3il5xXuab6Hp9uepiPcwT3N92BX7MiyzPTgdCqrV6Je92C2qG30BJz/9+CvQtn0LRx9mxk970GeX+cmPKoCR5i+ooQ5l1bi9Nj+JMMjZBV48ogWTrBzXQdFtTlk0jpbn2jjwg834ow7+eH+HwIwPXc6N9dfj80wskWMRbNAsWYLEfOnvv0KgnWw4gsQH4PIACgWHB6TvpMT5OS7mByOU1STA7z18bvnyEFe+P7XKaqtJ5NOcfjVZ1h6yxdoubiCkc43WHTtzRx8+UUS4TD1C5dgsdpIxqKoup19Lz7LkU0v4wnmMjk4wOq7P03JlHdoq/DXo6QF9v7y9MvKoRN8cd4X+NHBH9Mb6aXUU8qXFnyJSnc13L4Mfncn1F8MW7+b3achG0oyegJKWhhOlNG6exTIHkNbVlVyeFMv4dEkrhwryz9Qz2sPn2DBFdWM9/Uz74pr6T58gIMvrye/spplH/ggmWQC0zCJhdMoFgnHqRmUh9pbefY/voknL5d4KERhTR1Wh4O1X/8an/nER/jb1n86Y9O8WJBHD2IfPQg5lVD2QZD+y/9/8qac3SdTLs0WHgt/GUw9G8g350MgmfDcZ0BPowfrORorZf3/+w6GrqHa7Fzxoa9TGpxCbGSYx7/6FaJj2X11/+uw8urLaPYcBEnGLJzFodGD/N3rf8fn532eoVSYoLOAOn8dPz/0c5BgTfUabmq4iUePPco/Nn0NNWZBt6qkEjEOvrye0sYmlt78QQ6/tuF0of3v2RU7H2j8AD/a/yPiWhyfzcdHZ3yUoD0IgLWsDGtZ2VtubmQ8SSKSIZPSCY8mGOmJMOuCcmQZhjomCY0k6D0+wWWfmIknYH/LZQjvssol0Lbx9Eu7z0m6T+PI7iEKa3yk4hr7NnRx6c1+5NZsiIHy6peIzXuAZR/4EN2H9mePiVXV1M9fjN1loGUMPDYPtzfdzuHRw9y//34A7m38BPYt/Rxe/yIAnmAuCz5xF8mRGK9849v4C4vJr6pl+NVdFC+bwf2dP+KWpluYknPq2OfOheIZsOmb2dcFUyG/EaZfd+a9ZUHTOes+4S+by2sFw6RqVh4n3higrCGIljFIRDOkUxrHtg3QfFH5GcfFfGc+M/Nn8pODP0E3dSq8FdzSeAvTit7+XDwlMIX75t7HE61P8FLXSzxY9P+YccFqwOTo66/i8HqZvvJiHG6D/nQta+17uXPFF8nZ9yuY7CbhKGP9wb10HloLwAFg2tLlrPjQq1hHDyIlJ8BVkA0PmXcnyY6d7N60m+1rnwDTxOnL4cq77qOo70YwtDcbVjg9G2warIbEJOgZ2PJvsOuB7N9jozB0CK68H9Z/BS781z/5GAhnUlU7OQVF9B45xHh/L5IkYxgGZdNmEBntZ9sTcS76sBt/keu9bqogvDUtQ+2cBfSfPMa+l55FtdmIjI9TMb0ZLdUHdaugcxMsugd6doAzCCWz3+tWC+8Dmm6iKm//3xeCrux3kmNREUIiCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgvLO3nxrv3ZFrmuZjgAFgmqbGf02m+GvhCMDr38nO+n7kKdjwj6Bm53KdHImz+JpabA4L6aRGy8UVTAzGyKTfvitG46N8efOXcakuanw19EZ7iafjRDIRopkovdFeOiY73vKziiIDJrmlbsb6ogx1hfEG7eiaDjYvADGrnW/v+jaRdARfzEJl/TTq5i9Gz6Spm7cIV46fiYF+CFTC3l+SV1bJlt/8CtXuwF9cwr4Xn8NqdxIPa8TDabY82UlSzc8W8EcHszN+mm9un2kYtO3eQcOiZciyjGp3UFzfwGAqB2belC1Ili3ZB/YrFv9pxkT4HwnHUmxf+wSxyQlUm51lN3+Q0GA/L/zkfuz5JZTNnAmShMVmI7esgp1P/454aJLI2Ch7n3+EggoNd44VWZHQMgZIECh2ceKNITBh9uoKLBYLb9w/TN6GFlyTJRysmMPQwr8B1YE6uIu8zXdSnniWa68coqjCQrDEiTfXwfhgDICa2fm07R2mdfcw6YROsMhN665h9r7UxWBHCEM33nEbRxOj/OLwL3jw8IN8+tVP89CRhxhLjPFsx7NcWXslPzv0M46MH+GO6Xdw/4H7+aft/8Tx8eM82fYkt228k/9IdnFy3ocYOu8+jH2/hvg4LPscWuUF7DpYSHg0dXpdB1/tY7gz8q6O2ftRPJVgcihOy6oK0kkN1aaw6OoawuMJNvdtPv2+g6MH6Qh3owwfhe5tYJoQ6oWRY5xOaXorNg/sfhDe+DEcfQZJSyNbZLS0yeFNfWSSOhb1rU+lmWSSrv27WHTdzcgWC55gLouuv4VUrJeeI+O4cnxs+vUvkGSFQGkZh1/dAJjYnC7GerqRZZn8ympS8Rh18xfRtusNEuHwn7gHhT9L1SvPKFKL5Nbwrd3fpjfSC0BvpJdv7foWUXdu9jy74GNg974ZQPJ7I8fAX0Ek/uZc8tOWl7L9yTYyKYNpy0vJJHTSMZ0r/nYW3UfHcXjdHHp1A0NtJymoqmFyaIAdTz6Ganeyb2M36767n8f/v9207xshEY1xcuc26hctIZNM4S8sJlhaTrC0gqU33YbSPkFDoOH0ulcUL6Y+HoKln82e36/8Abjzz97+4lmw+hugOrOvyxfD8s+BRYQ4/cXIJLNF3ZGB7H6pZ4vcxutv46XfrMXQs8XhMy+6hLbOUR79z5+y5/mnmbHyIqQ/mLl7y4uvMrz022wr/gyPfu+njLy6m3+f9XV2D+7mydYnOTR2iKfbnkYzNTRD48nWJwG4oOwC/HouI519vPLz+zF0HX9RMR17d3Fsy2s0r1qD1e44o8mhVIjv7v0ucS1++vWPD/yYfOdb7KP/RWQsyXhflL7jE0QnUsy6oJz2vcO4cuz0nwjhCdqZs7qShCj2e+80roG8N49Hql1lpDfComtqUSwyWsZgxooykvE/uB8zTQJFpRx6ZT39J46SX1VNZHSEHU8+BqZOOqFT46vBIlnYNbTr9MeKIq7TASQAkbFRjj39PPpwiOW3foQ5a65G19KkolG8Yya3V97ID/b9gIn0m6F75DedDotEkiFYe/a9ZagfBg5AOv4udZrw18LutuLy24iOJymu9dN1eIzwWJJUNEPTkhLyyj04PNYzPqMZGo8dfwz91D18V7iLTb2bsFvePkgpx57D2ra1HBs/BkDYk0GS4MCGF7B7vDh9frb+7hFi46MUWXw0j9bw/MujvO7+IKOLvsp4DDoPHTy9vKrmOXgLS3jy/gd4dsMJ+tL5mM/flw3giQ4xUrSa7U/97vS1fDw0ycbfPUtyxgffbFThdLA4wFecPS+NHIFwP+x56MzG65lsgGpuPZTN+z/0tvDfI5NJJamZMx/VakNWFOrmLiARCZOOD5CIaBx6vQ/TeIf7NEF4D1ntTmxOJ4XVtTjcXgzDoGnZSvpPHCU01Iv++/N4/97s9cemb4DN/V43W3gf0AwDRX77/9wTOBUmOh4T9yWCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjCO7Oc4/XFJEkKAiaAJEkLgNA5bsO50b8HUv+lWHzTN6H2IvwFLl5+8CilDX5yCpwcer2PGeeV8nbPCOuaRjwdYzA+iNfmJWNkkJBIG2k0Q8OmZItyQ6m370pFlZEVmbxyD6m4hivHhq6b6FYfisNPr0Wh2FPMrqFdfKroQ+zb8DhWu4PiKVMZ7+slHp6kfsEScBdA3hTG+ntZfutHGDh5jGQsysJrb2RyaABvbg3j/TDaEyVp5mB//bPgr4L5d4H25gPO6WQCxaIy3tdDaeN0ACYH+3F4fZirvk26/qMYqTRqVR0Wd+D/NhbC/0o6EWew7QRWh5Plt93BkU0v03f0EBarjdKGJiZ6e7nkns8y3tND96H9pz839/Jr0NJptj3+S+rnzia3rIDcUjeR8STxcHYfKKzxMd4fo2P/KIoqU9tSyNjhDPGEj5Gaq4ldfRHVu74HFQvBYiNQW0NA6+HihW20R6ahKT56j06Qk++kddcwAC0XV7BvYzepmIYnYEfLGEwOxfHlOgiUuLA51NNtbJ9sZ+fgTsaSY/xw/w/52MyP0RnuZH7hfPaPZLfFY/UwkhghaA8yEh8hlAoxp2AOA7EBXul5hSn+Kbitbu557dNE0hE+c/EXqHWVEug38LXcTe+DZz/QPzkUh+nv5qi9/0xmJvDlO9i3oYfypiCZlMaOtR2suK2Oa4PXosoqJiaYsLV/K/HKa3B1A5u/Dd4SWHg3Y2Ytnc93EhpJUDUrl+K6nDf3l+EjEOl/c4US7N/YQ2QsCUD/yUlCI3Eu/HDTGe0ydB1N1/GXlLDvxXXUzJ5HJpnijbW/5bwPfpRjO6JYraMsv+XDDLaeIBEJM//qGxnr6SKdiJNOxOk9dpjCmnp8BYVIkkQiGiERi+Dwev9ov5imSaa7Gz0cRi0qwpKb+6fqcuFcCFTCTY/C8FFITtJnxAi1hSj1lFKXU8fJyZP0RnrpHz9O8cZvwdTLs2Ekv9d4ORROA0OD4BRytOTpP5mGiaLK1DTnsf2pNgB8+Q58hTUMtoUorrVTObMZSZIZbD9J7dwFONxewqOTjPW6ySt3Eyh2s/m3J7n4zipMIxv2VDF9FrKi0HfsCFMWL2P9j7/LBXd8gr+f9nccHT+GV3Uw1VdHYOsP0UMDIMsoOZXZ4mD7f9mnbR6YdxfUXghaAnxlZ79H+PMV7gc9BQVTYfv94CuFnApo/gBRs/T0PjN12Uq8efnEJieonj2P8b4eUrEYLZdczu51TwFQN28hG9a9ii+YR3F9I9279jJ85Ch5axrRTZ0t/VsI2oNMz5tOf7SfExMneK3nNT7dcB+RnhSqPcHcy6+h+9B+FIuFxiXnsX/9cwSKy5AV5YxmD8WHaM5vZkHRAlJ6CptiY0vfFqLp6DtubjqpMTkUR1EVcgqc5JZ56Ng3Qkm9/3QAWyKSYeezHay6U1wEvGdy6+C2p2DkOJgmqqOGpiVxtvyulbwyD7mlbtr3j+BakpsNPPKWwMwbMVEoqm/A5cuh/8QxyqfNxJdfyOTIMG6/h1zFhUf18PGZH8cwDRRJQWlPU1hbj83pou/YEbR0isFjx5h7yZWMdnex+ZEHya+qpap5Dul4giW5M5lS92V8PZPongSKwwGynA1m3PfrbAjJeMfZ95bbvweFM7IhJBf+E+RNeU+6VvjLoNoVVJuM3WWlrDFAMprBMEwyKR1Xjg2n98wQkuH4MKWeUq6qvYq0nkaVVXoiPUymJnFYHG+5jqHYEIfHDgMwM28mFq+b1v17WXrzBxnr7SY8OsLsS64gk4pw+NXNdB/cS+3cBaR0nRdePs7KW98MH7W73BRU1TLa003FjGYMQ6e9J4RtzcP4t/0LyvRrCE+4zm5DeyvJj/8H9qkXQ3wMZAX2PwJtL4MzAIs+BYlJWPF5MHQYb4cDv8l+OFAH8z4KLnHd/G7LoCHJChMD/UxZtAwTk9HODvylZeSWFmOxRug+PE56jXbGfbwg/LlIphNIiszEYD9TFi0hnUwyOdiPMyeANz+feOl8PM9/JhvEN+NGmP8x6HkDipvf66YLf+U0w0RVpLf9e8B5KoQkLkJIBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQhHd2rkNIPg08DdRIkrQFyAOuPcdtODcMDYpmQv0qwITIEHRvBdMgEUkx/8pqTr4xxFhfjNrZ+SRjGlraRPmDEcmkknQfPsjudU8hKwrfXf5P2A0rGUVHlVUssoWMkcHERDM0MkbmbZsjyzKR8QSuHBsOjxVdM1AdCnrLXSjLP41f1llZtpJCVyHR0ShTFiyhY/9u9r7wDHkVVTQuXkEmlQSnHxZ9koIBjWd/8J+oNjs2p5Pug/tZ9oEP09+Rnak2t8yN3ZuAZZ8FxQZ9u6G45XR7LKdmux3uaCNYmkG2WBjr7aawdgoTa9cx9NWvQiaDfcYMir/+NWw1Ne/WSAlvx2Nn3hXXYpomBze8gDsQZPmtd6CoKtt/9wjx0CSSJDN7zVXMXXMNO/TH8OUV0Hv0EAMnjwPQd+wwVbOPsvTGj7Lz2QGcp2bYLqnPYc8LXQDMOr+MQ6/1EQ+ncXqtTMsrIWIWsq/h/5Fr7aH0mZvANOCGX+GvKGb23v8gXHE7E9NdSBJIEqh2C8lYhlRMw+a0MP28UrY/1Yahm5RO8VO/oACX14Y9V2JQ6uW+TfcxM38mh0YPnbHJfdE+5hTOYf/IfiRJQpZkPFYPE6nszPRzCubwowM/AmB11Wr+fc+/IyHxt7P/lkdP/JYjY0dYXLSYO6Y2U1Sn0rlv/Izl5xQ439Uhez9yKi5GQgkaFxXRtmcYq93CvDVVJEIZtsa3cmT8CABu1c3fL/gydtOVneG8YBooKhNaMWt/NkAikj1+Ht06wIpbptC0pCS7AkOH/EZoXAOmiZY2ceXYmLqkGC1tYFFleo6Ok0llZ4k3DJ3+40fZ/dxa4qFJGhYtZ+aFl7D9d49idThoXrWGZDRCfkURvvwCXvjBN1FtNqwOB92H9rPo+luwWK1oWgaHx8tQ+0k8wTwGTh6ncekKTF3/o31ipNOEn32OwX/5F8x4HLWsjJLvfAfH9GnvziAI7w53fvbfyfXkDJ/k4zM/Tn+sn8Ojh5lTMIc11WvwDR0HuydboN6xCZquAsUKsRF45WvZ5di85F/yY+YsD7D79TiyLDH30iq0jM7cSytJJ3UcHpVDr/bRtCxIoDhD555ueo8ewpObz1B7K768AnLLp3N8xyAAkiyx6KoaEpEE7kCQQy+vp7i+gXh4MntcPrUJ7Xt38mSmlb0jewG4s/Y2LvJeyIF927CoFmYX2ygdOIRStejs7ZckCFafg44W/uQmu0DPwO4HoeVWCNZnCy/XfwX3/H9EVhRUm53KWbPpOrAX1WYjp7AYRVUZ7mqnumUesy66lH0vPUvFjBZyyyo4sPFFWndup6plLsGSMmQjjydSYW5suJH2UDZYrMJbwWXVlxHPxJEiNiyqic2e4ZUHHsSXX0AiGqZ9zy6W3fIhXH7/Wc3Od+RT5aviu3u/e/p3tzTeQtAefMfNHe+PkYpr2F0q7hwbA62TlDYGUBSJdEKj99gErhwb89ZUkxTFfu8tT1H2H+A1TEKvjbHgihqGO8N0HR6joNKLblrRG65Fya+GV7+G8/I5mIbBnheewe0PMnDyGHaPl9V3fx5kGJ2Y4KnWJ+mMZK9rKz2VfLviS8RP9JCMRph7+TUMtbdiYGAaJrKiUFzfSH5VDfHQJJGxEfY8/zSrbr+L9N2fZfD888n7209hLS6Gsvnwoech1JsNTyluhrqLABPCA9C9DRQVokPZc8BkT/a4GRDHTuFsbr8dh8dGf+skhVU+bE4V04RUQiMWSmJ3nxn0UOwq5oYpN/Dvu/8d3cxef84vnI9pmm+7Do/VQ62vlqvrr2Zr/1Z2hfaz5OLL2PHEo6QScXx5Bex9/hlmXXwpqs1G/YIlHH5tI7KiMP38i8lkNILFxYz191PVPAddyxAPTfLG3p00r1qDv6iYl3/zBLI0ldlTK8gpPTsspKh2Co5AIbhq4OTLEO6GktlQvhDG27IBPw9fDbHR7AdK58C8O6FrG1QuFAEk54giKdhcLoKlZRzZ9DKyxULdvEVYnS5SiTgOj0p+uRer7Vx/ZSkI/z2q1YHN4cLh9rL3hXX4i0sobZwGyEiyTCYDLP00aKnsuTqnAlKR97rZwl853TAxTbC8Xco54LAqOFSF8ai4LxEEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRDe2Tl5ol+SpHLTNLtN09wjSdJyYArZGtXjpmm+fXLGX7LSuTB0GDZ9MxugEKiG1f8fuAK4cjRe/dVxalrysLtV+k5MUlDpRfovzwj3HTvCwImjlDY2ASYMRLF50lBkJ2Nk+PnhnxNKhQC4vOZySjwlb9scWYF4OIXdqSLJEpGxJE6vFS1/BlaPjdzYIK90v0JLYQvzLU2c2LGVsqbpFNU1IMsKx7ZtoqC2LvsA/Z4HCVsuYP5VN5CIhElGwsw4fxVDHa3YnRU4PCqLrqrG/vxt2SCWUA/4q0B78wFnSZYwdJ3qlnkc374ZTJOq5jlo6TShJ58EXUeyWkkeOMDo/fdT9NWvIlutb7t9wp+eqcqYssQbv3sMgKklK9HSKWRFoWX15ZzcuY2pS87jxPbNHNzwAmVTp9O49Dye/953AHD6cphz2VVMDg1ybMvTNCyZjcvtpro5l3RCw+5WSUQyyBaZeDiNLEu0rKpg25Nt6BkDt9/GtPNqyFy1B19kK4EXvgi3PwMX/jPeoUOsdP+YcPXfk15WwMl9E6dDIOrmFrBvQzeGblLTkgfAyw8eQ1FlZpxXQrA6yIeK/4ZOjuO3++mOdDOWGKPKW0VHuIOrPFdR4Czgle5XuGHKDTx67FGuqL2CFztfxMRElmTsFjujiWzh2qLiRWzq3cSRsSMsLVmK3+7nQxs/zNdavo27x0l0LLvfNy0tJr/Cc66H8a+e0+rE5syw69lOShv8FFT5mBiIUdqUQ/9wP4uLF2Oz2Njev52XuzdyYd4S2PcIxIYBGF3+OonI6BnL3LG2ncrpubh8tmwASfV58Pp3wNBwXrqC4roiEpE0qs1CIpomv9KDK8cGwFBbK627dpBfUYVhGCRjURweL3MvvwbT0BlsPcGUhUvIrQgw3HaC+VddTzw0STIaYcYFq+k/fpToeBxJksmvqObY9tcZ7+uhoKoWLf3fKxJJnTjBwBe+AJKEZLOR6emh/0tfpOKhh7Dk5PxJ+184BwJVBPp3s7F7I8cnsgFPJydP0hho5PrKa7PnVtMEhz8b/FCxCJ65583Pp8LYd36bOZf8O7nzi7HrLnY920XvsWy4kq/AQePCYgbaQlROMxjvDeHyB5h35XWM9/VSv2AxmWSSeDh6epGmYTLUGSa31EMqFiO/qpquQ/ux2u00LF4BksTUZStJJGNUeapZmXMxk/oEMzJFjI8nKZ02C5DoHk6j+BKUVp277hTOgXQ8G4bQfAu8/m1Y/nnY9A0wNALHf8HFN95N2HATGRuh7+hhGpas4I2nfks8NAnAaHcnKz/4US762L2kE3FUu4NpKy4gnUwQm5xgpKudvPp85hXOY//Ifp5uexqAExMn2Dm4k39Y8A+oKQtpI8VIdyuLb7iF0e5OXIEgVrudicF+WgqLz2q2Zmo8efLJ7HlDsbF9YDuPHHuEq+uufttNNU2T0EicTEpHlmGgbRK7S2ViMMaU+YUcfLWXKQuKiE4keePpdi78SNO70uXC/5wkSxRUedn9fBdaWqd+bgGSLNG6e5jyq+7D8/BiMHTkyAB2t4eW1ZcTGhqkcclyQsNDxCfHsbrykCehM9KFRbYwv3A+N/kv49lv/z8MXQNg4ORxFl57E5k6P7GJcWRZpvniNcTDk4RHh/Hm5dO07Hx2PPUYSy5fQ/jR3+BsacF6043ZMKbSOdl/PTsg3PfmvWWwBi74J9j3cDac5PnPZc8FNi/c9BuofItwJ+F9zRt0YHVG8ARshEbiuP12Mkmd2ESKhgVFWO3KGe8v85Tx99v+njJPGVMCU2ifbGfH4A7aJ9spdp99DAUodBXymTmf4d5X7iVtpNkh72BF8VcpbZxGfnUtY73deIK5SIpCSWMTO9c+TsvqNbiD+WDoTAwNsfLWDzLYeoxE2sTmdJGMRVl07c1YrFZeuv8/T6+r69BBrvniP7Poug+w7fFHME0Dlz/Ayg9/DJvLlX1TcgzWfQpkFSqXQNUK6N7xZgAJQO8umPkBWPhJ8JX9aTtdeFuyrGAaBslohLKm6YBEdHyUPK8X0zAIlniYsiQfSZb+6LIE4b0gYzLY3orFaqVy1mwUi8pIVwcV02eRiscwTAVe/Xo21NTqglm3wOwPv9fNFv7KZXQDAIvyzsfOgMvKeEyEkAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjv7FxNK/oU0HLq59+YpnnNOVrveycxAbt//ubr8XbY+TOoWEI6oTHrwnIOvNJDIpymYloQu1slk9Kx2rNDYpom4dERTr6xjfJpM1FUle5D+5hdUISjzM8jxx45HUAC8HTb0ywpXvKOTcrJdzHcE8HltRENJSnASyqdZiQ0SEJLEMlEiKVjeNwu6hcsYfsTj+Ly5RCPhJi24kK0VDo7c+dED77ppbz0kx+gWFQcXi/Ht21m8Q23UFBdSHWzApIJTVdC52YI1mVnHzayxXgZI0NKS2Gx2kgnElTNbEFLp3F6fRimie+qK3EvXYIRT6Dk5BB57VX0iQnkgoI/+TAJb8+ehH3PZQt7G5eeR2hkiCObXgYgUFLK8ls+Qu+xw4z19WB1OCmqb6DnyEFmXrQaq92B1eHgtV89gJ7J5gwdenk9l933FSxWheK6HPyFTjY9ejJbMAmUTwty4o1B9IyBv8hJ3ZwCdj/bRSalEyytYNnNL+KdGMDtdkHNSqyKldzx15ktH6b0gmtIez0c2Qw2p0o8lH2YPrfUw46n20GCBVdWs39DD3tfSuHKCbL6iuu5rPJaHrc/zNq2p/hg0weJpqPsH97PVxZ8Bd3U8Vq9nFd2Hkktyb8u+ldGEiPcN/c+Xu5+maZgEwuKFtCU28QDBx8AYFb+LL6797sA/MPxz3PLxR+kSW1memETucU+rLYzi/uE/7vx2Dhte8ZYcGU1vccm2P18J56gneL6HO6bcx+/OfkbRhIj3N50O8PxYVKJSSwzrgfVDoCRTp61TF0z35zlPTEO+37NyAV/T8qRg91UcHhUOg+E8AYdRMaTVDQFgez7I2Oj9Bw5SFFNHardQee+7cy6+FKiE2O07txObnkluq7TeWCMwsogL93/S1SHA7vLzbEtm1h68+0ceKWP8qkQnRijfOp04qEQ3rx8ktEIkvTH96FMby85N96IJS8PIxZFyckhuul1tJEREULyFyjmLWK47gI6X36cpmATdf46Tkyc4MjYEXrrLOS2bYQZN0AqBIo1mzpWez60bnxzIcNHUFx+DDnJ2DFOB5AAhIYSTAzEqJqRy8k3HqNu3iK0dIpd657CX1RM14G9BEpKKaydC6ROf07XDZAktEwaf2ExsqJki4WjEbx5+Yx2d7Lklg8jb0vTvzdKw6wmgnVD7N7xMpUzW9AzGfqOHia3rPwc9qZwLowZOtGyOZR078DScjvo6WyYwnlfRDE0Gtwy7UYJa7/zNQAsVuvpABKAuVdcy+HXX6a4rgFD12jbs5N5l1/LrnVPYnM6mbrsfFSrgxZ/Cz858BMWFi+kwFnArsFd9EZ7yc+U0n10gkChA4tqZe+L63B6fZzYsRVXjp8lN96KrJx9LE1mktzbci/ru9Yzkhjhg00fZP/IfsLp8Ntva3+U6ESKyHiSniPjBEpcOH1WnB4rsgypuM7u5zvx5TuYt6aaVPyvM3vxL5XDpeLLcxAocnHo9T4M3WTK/EKiCQeedDZ4yfSVMHDyWcb7e/DlF9KxbxeVM2ejOlykk2lki5XzSs9jduFsNvVuItU9fDqA5PeOvP4Ks/OuJREKkVdRRXRynPbdOwmUlDJ4+ADHt25i9qVXYk3r2K02whs34r/pxjMbm4rCngfffD3Wln3deAU8ffebv69cAn1vgGqDvEawOt+t7hP+wthdKg63ii/PyfEdg2hpA8UiYVGdyIqE02s74/2mZHJV7VX0Rno5MHqAhkADl1ZfesZ3EG9lKD5E2kjjUT0sKV2CoSq4g7lsfexX+PILGOvpQtc1imunUDKlkdG+HvqOHyOdiFE2dToDrSeoqi2nOqRzNB6nadlKrA4Xbbu3n7WuI6+/zEUfvZfauQtIxeP48gvwBHOzf4wMwotfhLIFUHcR9O0CXyloCSicBpk4bP8B8Zk3MZJXS9AVxP0n623hj9G0DFoqxYkdW6iYPgvThJ4jB/EXleAvzqVpaQDNlwBy3uumCsJbSsXjWKwqJ7ZvoWLaTEJjo0TGRqic0YLV4UTXk9kAkimroXAGnFwPk12w+N7scUmW//hKBOF/SDOy30up/50QkrgIIREEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRDe2bkKIfnDp1+rz9E631uT3dmZqJuuAlcedG2B9lchMYbNZWfXc100LixCkiVioRTj/VHkP3hIOBmPkU7EqZ+/mP3rn0NLp5m6fCWpWBS7pHB84vhZq3ynIklZkXDl2BjpjTDWFyG3zEM6pTMUHeL50WcodhXzlQVfYTgxTGQyykR3B7MvuYLRnk48wTwUVQVMcPhh/l0kByeYfemVhEdHiI6PUTd/MeN9vajOKOmEhcJqD0z2QP2qbIHPvl/B6m9xYuIEvzryKyaSE3xUvZLoxBjuHD8Wm410MonP4yPRcYDwgw+dbnv+Fz6P7PH8KUdH+G+QZAXFogIJ/IXFHH39FQBmXLAaQ9N45jtfx+Zy0XLJFXhzc3npR9/F0HUKauqom7cIRVVZcPWNtO3eQbC0HHcgyP5nn6KwvhFZncHJPVEWXFlNToET1a7g9tsYaJsEoH5uITueaQcTqmblEih0sfGBVlS7zKxVboqqxvDWXoCkpXBIv6Ry89+gtdzJpdfPp29MI1jiZnwgRialA1A+NUD73hGiEymCJS5qWvLZ8Zsu0kmdabWruf3qOwlbR8jx+ij3ljMQHaAt1AZASk8Rz8QxJZNn2p7hyrorKXQX8m97/o0PNX0Im2Ljjul3YLfYUeQ3i5ozRoafd/wEgOenPY/VFjh3g/c+IlkkyqYGSMU1Cqt9FNX46Do8xisPHaPgNpkDIweQJIkTEyf4wrzP47KVwZbvwkQ7WGy4r7ke1ZY4va8AtFxcjjsnG1ISzyTYdN33+fGhBwinw/xg2i8wxwzsLpWR3gjeoAOAxKkCjnQyQe3s+exf/xypeJzGJctJxiI0Ll5BUV0DqVgUTBOP30ZsMsS8K69jvL+XRCTMlEXLGO7qwO6txjCzhU3uQBBnTg6maWJzuTBM44/2iaWwkOSRIyQPHDj9u+DHPoYSEPvgX5JYJsaWvi387NDPwIQvzPsCnaFOnu14lul507m44mIsJlC1LHt9sf/XABi+Uk6s+mfaGy8gKNupGj5O0LDS22Pj5OZRLNazL/1G+6LMWRVES12AoqpUNc/FX1zKcHsbZU0zkGUZLZM64zNT5hUyPjCK3eUhnYjj9OYgKzKxyUkkWWK4s52eQ4eZaK3ANEG1W0hEIpQ1TuPAhhewqCozLlhFOpU6qz3CXybDMNg1tItDqV6i0WNUBiuZUtbMlNF2OO9L8NJXIBNH9lfQ578HAEmW8QSCp5eh2h14gnkUVtdx8OUXkRULMy5YRXhkmIs+eg+R0WHCo6PYXDa+v+9bTMudxqy8Wfz04E9ZWLyQy52X44r7GY9PomUiqHY7tXPmExkbo27eIoY6WrOBKG8hYST41q5vIZ26bTkxcYJPNn+SUnfpW75f1w1Cwwn6jk8wOZSgbm4ByVgGPWPgyrEyMZTA6sheF4SGE2x7so1L/mb6n7LLhf8jh89KQZWXN57poLTBT1GND4Bw2KAodwqMHieeVimub6BkSiNjvT1UTJ9FJpXC0GVCwwl6j0xw3/JPc6BrMx/2XwOZyFnrUSwqKipJXWdiaBDFYiE6Pkbrru0U1zfQuGQFmXSa1LoXME+2Evz4xwHQdI2MkcGhOmC8A1RnNuTRWwy9u6FrO8z4g7CSxZ+C3p2w/h+y+/msW+G8L4K36Bz0pvCXwOZQ6B6MU9OcT9veYVSbgi8vG1STSWmotjevERyKg9d6XuPI+BEkJLrD3RwePcy3ln/rHdehKioLixcyK28WHaEO3P5cdu58mOW3fJiR7k7SyQTFdQ1omsbk0CD1C5cQHh5muLONnc88gS+/kIKqGsy6GsqNDOFwCFmSsNjsZ6/LZseiquRVVJ3dkHQsGwzbuCYbCNt0NTx51+lgVHIbOHDXelpD7fSO78MbbWdG3gxaClrOXpbwJyfLMslYlMoZLRx6ZT1IMH3lxaQSCUxDxzQlNnZvZHb+bBpzG9/r5grCWSQMDE3HG8xj17on8eTmMeuiS9F1HRkwtQxc+K/gyoVn7smG8gG0boAPvwSls9/T9gt/nTJa9vsiyx8JuQm4rIzHRAiJIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiC8M7OVQiJ+TY///XyV8Gyz8GO+8HU0WbehjL7w0h2P1o6Rt2cfPZt7EHPGPjyHEw/r5RMysDhhujEOEPtJ1FUlVhoguZVl2EYBpiQTsRJaklm5c9i3/C+M1ZZ5i172+bIskx0IkVBhZfYZBpPwE4mqSFraRRJYd/IPvqj/SDB+Y4FJFxuohNjBIqzy+xvPUZZ03QwDDi2DkflHWx67AfklVfiCeZy+LUN1M9fgiSZ2Fwqhi5BZACOrcsGlyz4OEOqlS9u+iJzi+ZSk1ODMmHB0E4V/ptkC5xlCUtBPrmf/CRoGqaWYfLx3+G79FJwipm8zyVnTg7zrrqe1x76KYaeHSd3IIisKBzY8DwAxWXZgiAtnWbhtTcx0HqSQHEJmx/JztRev2AxMy+6BFM36D9+lI49u+jav4em84aZteoCXv15DzNWljHv0ioiEwkqp+dyfPsgWia7v6t2hWCxm13PdQIwdUkxoX4YbIvgLW/FWSahV84nUPlbovER9OQw9kqYO7OCbY90o9qzxb/BEjf7N/QAUDungB1r27M/z87HE7Sz+ecdWF0K01f52JW/my9t/SJ5zjzKPeWsa1/Hp1o+xb/t+TdWlK3glZ5X2Du8lzum38GDRx5kMDYIwMKihdzedDs3NdzEs+3Png4FmlMwB7/d/+4P2PuUzapSPsPJrrVdDLaHkSSon1+IN+jAp8l8dOZHswEeio3XujdxVclFONJRqFpOxu7lt2OPsugjVzO6Syc+rBFokcmfaQVgJD7CYZvCt7b/OxdVXoRNsSEhEZtMESh2o9oUPAE70ckUrhKZ1olscXt0YoyZF67GMAxM0ySTSJJOJTA0DU9uHlo6japYkfGy/je/oLi+EZvLxZ7n1tK8ag2JBGAaWKxWOBU6kkkm8OTmgfn2p1Bd18AEIxQGwyD3k5/EzGTANAive4aca685F0Mi/InsGtzFb47/hmWlywBY176OpSVLGUuO8XL3y7ROtLJq/j9B5RJ45WtQNg+mXMKOghoePrmBy9zXM9JrJZ7bTG1NKc/+x0EkCVouqjhrXbNX+0jFOtFSKUzAolrxFxYTHR+j//gRdE2jbPpsShpsKLJM/fJcwrYRrDEFq8NObGIMi9UGgCRLp6/0+o8dwJffQDycRlFNdC2D1eFgzmVXAhLJaPgtLwrTySSTg/0Yuk5OYRF2l/td6WPhT2vfyD6+v+/7XFx+IR5HEY+ffJzLqi+jPB7C0bsD6i6CgqnES+fj3Jk9J08770IUq5VAcRnj/T14gkG0VBKbMxtyJssykbFR/EUlHN+2ialLz8fqcJI6PsLnAh/m+dhmfj78c84rP4+0nmZp7goS7RlGusKU1Dl4/fmnyauowun1cfDlF6lfsATr21xP7h3ay92z7kYzNJBARmZ7/3Zum3rbW75/sC3EYFsIb66D0sYAx7cPUtrgZ2IwRmmDn/UPHKVkip/mC8vZu74bXTNIJbR3rf+F/zl/oZN963uYtryE6HiSnc92AlA5I0jhmifxPXUpks3FUEcbDo8Xm9PJgQ0vUFhTR1WzlfwKLzl5aU5sXk95RSWZ8RSewgqsDifpRPz0elpWX87udU8w2tPFNV/8Z4a72qmY2UzNnHl0H9rPnuefZsXtd+KqrCK0axeGqbN7cDeJTIKuSBclnhLKy+dSvfLLsPOn2UCFyqWw6uvgzsuuxFsMqUg2+BKgcEY2cK1rC0y/9hz3rPDnSrVZ8ObZySR0yqcGSUTSyBaJVFzn9cdOMO+yatz+bNjHQGyA7kg3H5/5cQyy92YW2UIykzxjmUOxIUYSI/htfko8JdT6aplXOI/v7f0e9zTfwxuju2i+eA1bfvMr8quq8ReXcmTTy8y5/BpyyyrBMBloPY6p6yy89mZ0LUM6mSRpV1n3zf+PZCwKwPkf+Tgnt2/BPHVtLCsKU5etfPuN9RTB0vvAnQ+OALpuIK3+NvKhx6BrCyev+wn7x/azrm0di0oWMZIY4Xv7vsfn5nyOxqAIvXi3SaaUvc+RJFouuRyQyCSzASSZVBrFkqJUruTBIw9y14y7qM55f2QZC385JElhcmiQvIpKgqXlyIrCYNtJcgoKMQyDTDpJa+X51D71Qbjwn2HDP4KWzAYhdW8XISTCuyKjZ8+RVss7h5AEXVZah6PnokmCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjCX7BzFUIyU5KkMCABjlM/c+q1aZqm9xy149yx2GDDPzA5/4sMO2cwORnFM+mlYGQc1epgoD3E7FUV6JqJokh0HR6lujkXgNDwAHpGR1FVBltP0JtOY3d7mBjsZ+lNtxFNhPhAwwcYjg3TH+vHIlm4Y8Yd1Ppq37Y5kgzR8QSBYjeuHBuYoOsmVmzopo7P6qPMW4bH6iEWiuPLK+DQaxvw5ReQjEQpqK5Bz2igp6BiEZl4lAVX3cDJndvoPrSfypktSJKEJ2BloDWJx2+DikVQsxIUFbq20lsxh8trL+eXR39JsauY+TkfweHxnK6plxULkiQhlZYxes+92d+53eTdew9mWszQeK6NjA8w2tPJ4htuxe0PIMkyZU0zaN+zE4DSxml4ArlsfexXAEiywiWf/AyHX3sZgOZVaxjubOfFH/w7Do+XOZddzcV/cy9Wu4PDm17m5R9+g+kXXEpOQSkv/riVurn5VM3MIxXLYFGzD8yX1OXQeXAUgKqZuYRHExzZ3I8kZQNJlLQTySvzXOp1MvYEjx5/lFVVq9jYvZE7r/wYPmcp0y8sZrw/Rn6lh8H2MFo6+1C+3aXizXWw58Wu7PKLc4n26aihIJ8o+izpnAj/vOsfKfeWc3T8KAAN/gbuP3A/FtmCLMmnA0g+2fxJdg7u5GMbPkaeI4+PTPsIT7U+Rb4jn0/P/TQpPYVLdZ2jkXt/mUhOMHkgRlFtDqUNAWRZIjSaIFDsYowefnzgx8jIyJLMlxZ8iRFvLeWrvg7jHQzm1RAkxk+6/5Obmj+IO+bEmaMylBlEjcl8Z9d3aMlv4fop1zOWGEOTNGRkwmMJOvaNnm5DeVOAvKl2tva9zny5kv4TxzANA9VuZ3JwgCU33kY6HieTSmJ3u7G73UTGNTBjLLj6Bo5ueY3Rni4al6wgEYkgWSRkScbudmMa2QOkJEkoFhVTOjuyIZNKMtjWymh3B0gSuQXFOFeuZPS73wXTRHY5ybvnXnEc/QvTFe7CpbpY27oWgMZAI4qs8Pm5n2c8Nc5z7c8xKGkUO3OhcDrMuJmQv5SftT7KLZa7sU/4kNwgZyRObB9h+vISDrzcS3QiRdWs3NP7cNlUP4ocJZNMkoiEMU0Th9uLNy+fiYF+HB4vZU0zSGQiONZEKfWUcfOLV6DICo/Of4hYj4z0BzMtW51uJEnColopqptF2/5sIX5+mZVM0sfWxx7Gk5ePoWlkUinyK2vO2O7o+BibH32Iw69tzLavaQYX3nk3/qLic9Htwv9BOpXkyyV3E+rsRVYs/F3RR+lTInTUTWOqKwj7HobObXQ0rqas1sWCa24kWFIOwLTzLiA2OYFqt2N1ONnz/DN4AkHGB/rwBILkVVRTO28xsdAk4eEhAJS4zLXBCzgUP8HCooX8cN8PudUfYCQUo2J6LulEP3Mvv4YT215nrLebmjkLMPTsjPVvpd5fz5e2fAnd0EkbaTyqh8/O+SyydHYR31hflMH2EIqqYLEq7N/Qw6wLyznwSg9zLqnixBvZ64O+4xP4C524cqzEJtO4fNZ3qfeF/w3VaqGg0kNsMk330XFmnl+G1a6AJDE2oeL78HrMzgEqZ7ZwdPOrGFqG5tVrGGprRZI1ug6P4/F3UtrYRGh4iFQ8immaXHrPZ+k7fpTQ8BD5ldX0nzzO/GtuJBGaZHygj9cf/gWeYB6e3FzyK2vQMxlIZxh/4AHy7r2HocQIn37tG1xQfgEz82aytnUtq6tWUxEeRrF5swGPXVtAz8CND8Pqb0D7q9C7MxtGsvBu6NwMyRDEx7P/a/e9190t/Blw5dhQrQrdh8conRLA6bNhGpCIpiid4qfnyDgF1T78hU5UWeWO6Xfws4M/I6bFkJGxKlZmnjfz9PJ2De7ivk33YbPYsMpWPtXyKXJsOewY2MFdM+5i19AuDE2jIrWExTfeSveh/XQd2EtJQxPpeByr04HLH0DPZLLBpq+ux5XjZ7irkxUeDzlFJQy2Hs+ua90TXHLPZ+ncvweLaqWsaToW1YZpmkiSdLpNY4kxMkYGj+qhrX4FclrBNpYhNDCA1V6Af+HXsS0eImxmGE+MU+mr5BeHfoHdYueGKTfQH+0XISTngCEZWB1O9r6wDofHC5JEPBRi0XU34QoESYRjBEYquK70JiZTk+91cwXhLKZkkldRydbHHia3rJx4KIQnNw/TNLGoKnomiTJeDHPugHQEVv9/8Nxns+du1f5eN1/4K5XS/nshJDlOK5Nx8f2QIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiC8M7OSQiJaZrKuVjPn5XJLlLTbmbIt4DQyDC6phEen8DgJDlF9XiDDnY930nNLC++fJmG+UGMTLa4PJPKEI+EwDSYuvQ8hjrbSYQmaVl9OZNDg7inBFl3Yh2fmv0p0noaWZLRdR231f22zTFNcOXYGWgLESx2MdwZpWSKHwyThw4/RJWviqqcKiaTk5Q4qpkI9VI5o5m+40exu1zZh+kxweaGdBybx8/ejY9TObMFvWEqEhLh8VG0jE730XGK6nLgwG8gOpxtwNQrka0Ouga6uKLmCvqifciyBdVuxzRMTEwUi4IkSZimQd4992Ck00gWhfBLL+G95JJzMGjCGdIaRze9gmmYXPTRe1h+60cYajuJJ5hLeGSI8umzTgeQ5FdW07hkBUdffwWbw8HqT3yayPgofS8cxupwMv+q69n2+COk4jEqZ82hcclyShuacObkkAidZOkNATIpG6/9+jiBYheePDszzy9juCuC3akCkFvmYee6DgBaVlXSvneYw6/3A1A7r4WaZTn05PczM3cmLfkt3L//fp61Ps2qKasorq2iVikh/Mvk6YCTssYAbXuHT/+sWGTeeCa7fNVmZcmtc7ih+iZeG3oFry2bk6SZGlbZikW2kNASAMwtnMuuoV1sH9gOQDQTpXWylX9c9I+80PkCd710F26rm8/M/gzLSpdhs9jOxei9b3jxo+Qp7Hy2g0xKx9BNcsvcFNX6iBXAna470U0dp8XJroFdFNhzKX/1a5CKIF3zY8bHe/ibnPvY8ZNeDCMFQMuaUjqmd9I62crqytVEQ1E2dm8knA6zZuYNdOwfpbTBT26pm7H+GN1Hxqlc4qMv2UcmXUTT8gsYbD1OMh5jzpqrGR/oo2TKVJLxGC5/ALvLSzplwcjYadu5lZqWeRiGTiaVQrFYkCwKkqyhWCzZ8CeyIU2yLGPoOqHhITzBXGQle2odamtlpKuDdCIb9jAy2E/u7FnkffKT2eOoIjO5bh3uiy58bwZJ+F9rKWjBZ8sWjtfk1CBLMmtb13J84jgfnflRXHY/VJ8H+U3Qt5N4bIh53iUEUrlsf66dTEqntN5PdUsuLr+dA6/0cmzbACVT/Ky4eQoObwabSyU+0U0inA0gAZNENIwzJ4d5V1zLcEcbbbvfYP41N9MW3k93rJvVVatZ27aWlJlEkhQUy5uXkxZVBUli6c23U1DdxJGtPQBIikR4dJg5a66m5/BBFKtKyZSm0/vt73UfPnA6gASg5/ABDm7aQHJ+IeF0mKZgEw2BhjMKjoU/D3ljKmPd3RiGhiRp2EJJcnUruk9nb34Vded9gWHVyuttL3OpdTGyrDAx0EfXoX0U1zUw1NFKUV0j6WSC2rnzGe7soHHJ8mwAk2Hg9HgYGBpA1zUUi0psfBynx8enGz7B4bHDfK76yxxc34/daWWwLcT8yxU69+2hcuZsDF1H1zJkUikcbs9btr870s0d0+8gko7gVt10hjtpC7VhVc4MDknFM/QdnyARyTDYFmK0L8qCK6tp2zNM5fRcVJtMsMTDUEeE6ESKwfYQuaUeyhpUAsVvf60uvDeqZubxyi+PMe+yKg691kd0IgUSBEtcBO+aTiadxtAy1M5dgCwrHNm0kablF4ApU1DpxeYsIDo+hp7OXkOkE3EmhgYpnzaLjT/7PslIGF9BEdt++wgLr72RDT/5PotvuIXw6AiTg/1YHQ5mXnQpTgMsN9/M+EO/xPXNf+BS81JcqovB2CDVvmrWd62ncs6HqS+aBloSHDlgaBDqg+nXQ82FsPNH4CmEDf+QLXKGbFiJ3Qszb3zvOln4s+H227FYZcoaghzZ0k/l9CCJiIlhqGDCpkdPoqgyl909g8qaSta2reUDjR/AxDx9Pb21fysLihcwEBvg+3u/z21Nt3F8/Dh2xU5nuJPGYCMXll/IG0Nv4LQ42TG6g0DZTWz7zcPUzllAQXXtqeN/L1Ut89DTaapb5mJoGpIsExkdYc5lV9J//CiLb7iF3331KwCEhgbp3L+HiunNhEaGGO3uYmKgj3h4gsqZs0npKV7reZWj48dYWrSUtnAbDtXB1EgREwODaJk0WjqF2QOpAhuaO4Vu6jzX8RyQvYf72aGf8bUlX3sPR+h9xJSIRyO0XHIlvUcPYhomjUtWEA9NYrU5SElpeo9OUqz76fAfoCPUwcWVF7/jd16CcC5Jksx4fy9zLruS3qOHKZ7SSG5ZBbqm4Q7kMjk0QDoVYLDoIgp/2wLeMljxRdj8b1C+4L1uvvBXKq1nQ0hsfySExGO3EEvr6IaJIr95X91z+AB7X1zHgqtvJL+y+l1tqyAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgvDn752fShX+91wFhJs+QiaZAsNAT6cxDINkLIqWmUBWJC76UICBYw+w+dd/z+513yc62QeAaRjomobN5WHP889gd7kprJtCz+H9WFQVI6Mxt2gur/S8woudLzIcHyahJ7Bb3n42TVmR8ATsaGmDw5v7MXQTi1UhlU6jmRonJ0/yg30/IMeWw1h6HNVmw+72kFdRSbC0PFskbAK6DjUr0TJpCqprGDhxjEwyQe+xI+SVVaClMzQuKiaTTMPcu2D5fbDiC+AMYBoGSGBVrBS7i5EtFixWW7aQ3jRRVCsmQG4uoz/5CeFnn2XsZw/gOe889FjsnAyb8Can6qBiejOmaRAeHWbLo7+kqK6B5lWXZcMRtGxxoyTLNCxezmu/eoD2PTtp3bmNjn17KKypZ9Xdn2b2pVey8+nfkYrHaFyyAsWi8Pz3vs2uZ58kNjGOoWnEJ9pw5Qyx+Lp8EtE0kZEkQ51hyhr9TF1ajCxLmEY2pMfhUUknMkwMxpFliUVX15CK6Gz8jzaad68hL1bOw0cf5uTkSZaULOFru7/G7sxWPnzwBiKXHcRRYVC3MJd0UjsdcFJU66N1dzaQpHSKn+aLytn/3AC1m1by+bx/ZZpvBh7Vw8aujVw35TriWpygPQhAc34z2/uzASSlnlI+MesTDMWG2NaznRn6fL7i+Q6f9vwjff0jHBk7cq6H8a+exSITHouz7MZ6Zq+qYOFVNcy6oBzDNPnOoW/ROtnKQHSAXx/9Nc2FzUQzcZjohOgw5ngHc5wL2fPYAMap/QtgzzO92MM+ZEkmaST5j73/wVB8iISWoCfWzeJrajENk8Ob+9HSBkuurWMsM8L5FedjczjZ9+IzuANBCqtrObljCy6fDy2TQksm0TIZZFkmHkqDaRAoKSUZi9B//ChHN7+KJ5hLw6J8JFlCsWTDHAAsViuSrBAbG+Pnn/4Ym379c8JjI5imSSIWxdAy6LqGrmsYmTRpi0z0jR2E161j7IGf47v0Eox4/G16Ufhz5FbdjMZHKXIVUeQqYjQ+isvi4ur6q1ldtZoHDz2YDeIwdXjlq/DSl8k9sZ55ufM4snkAXTNYfHUtJrDl8TYObOhhybV1WKwyWiZJJnmYF773RQ5u/B2GppGKv3meTScSGJpOMhZh++9+Q3F9A5IJK40VLNTmsTp3DQ2BBtJGCtmioFh/H9IgoagqkgRaOk0qNs61n5/DBR+aSk5RAFdOgE0P/5yOfbtofWMbmx5+AJv7zGLSvqOHzuqLzt07ee7EM3x9x9f56YGfimPpn6HI+BjxiXFM00BLpTAMnVQijlu3s659HTbZToep0R4f5ALPEjpPHMU0DUzTpGHxcsb6eqmYPgunL4cT215nuKOdkoapmIbBcGc7VqeDWCiEns7O2J1JJrA5XYBJmaMUv9WPJxEEU2KoI0x5UwAwcAdziU6ME50Y4+QbWwkUl2C+RfszeoaxxBhb+7cymZrkuY7nmExN4rGeGVgSj6Tpbw1xbMcghzf14fRZmb2qggMv91JUk0PFtACvPnycvS91Uz+vEIDCKh/Nq8pZdE0tdpf67g6E8D/mzXVQNSuX8YE46YTGvMuqmLO6kqoZeUQnE0wM9DA5NE+FsdcAAQAASURBVEgqGuXo668y7byLGOpoxeYOEptMYbU7MDIZDEMH00TXMqQTcUxDp2RKEw1LVuDNL2DF7XeAJLHitjs5vOllDm58kZ7DB3njqd/Sf/wo+kvrCa1dS+D224hlYuTYcuiN9BJ0BNnQvYESdwkZQwNTA8UGBx+HI0/ByRfh8BPQux3qV4OvDBx+cOXContg2Wch3A/J8Hvd1cKfCafXxuRwnKqZuZzYOUT3kXEkZNwBO4ESFxd8cCpjfTEOrx/kauet7Onfy6s9rzKaGGVz72YqfZWYpslwbJjl5cs5NnaMCm8FuY5ckloS0zQJZ8Js6t3EirIVxDIxUmaaWRddxvFtrzPa1UkiGsE0TGRZ5uCr6wkUl7LzmSc4/OoGBlpPEJsYp2JmC1aHE0l68yur4voGkpEwe55by7GtmzBNGO/ro3vfDjp695PS00wLTmM0Ncp4cpxyqRAtkcAwNLR0GkM3yCSTBAwPn3vtcwQdwbP658TEiXM4Gu9fsizh8uZwYMNzBIpLyS0r5+DLL2L3eJEUGUmWcAesbH+yHWlTMY5QDvtH9r/XzRaE02RZQrXZ6T50gKL6BmxOJwc2vIDFakOxqsTGx7C7oux7PczYqiegsAnsObDq69kwsUzqvd4E4a9Q5lQIiar88RASgGhSe/OzySRPf/trnNyxlbXf+iq6pr3dxwVBEARBEARBEARBEARBEARBEARBEARBEARBEARBEIT3Ccsff4vwv6La0VMympYBSSKdiKOadixWK6auU1IvcfT1F5iyaCnVqRSqzcahjc/jy89FkiRMXUPLpJh54Wp2P7eWRCRM5YxmVJsdh2JnNDFKV7gLVVbpDnezrHQZsvT2Dxkrisxwd5iKpgCF1V6sDgsTAzECBcrp94wnx8noGcqdxaTcOsloGIfHiyzLmKYJmKAoYGooioWc/CJ0TSNYUk5eRTU2lwuby8a+DeM0zC+AXT/LPlyvp8FfiaXlZso95UwmJ5Fl+fQ/VAs2pxMtkwHTQHLYCdx6C5n+fqyVlaS6uvCYb1UyKrybTCTKp80gnYijaxlUu53WnduwOp0suOZGgmUVKKpKYXUdnQf2AGB1OFh8/a0c2PgCj//rlwmWlrPslg9jczrp2Lsbf1EJW3/7MBabjblrrub1Rx5E1zRmXXQpqs2Glu5n1sp8gqUqoVELu57vZPmN9cy/ohqHV8UTtOP0WpkYyoYp1M8v4Oi2ASYG4iiqTGldELNb4uO2LzJY38mI2QPA7qHdzCmYw0/af4Ds1jlR0MoFtZcx3TaVoZ+FMfTs/iVbJEoa/OxY2w5kA0/KxorIdxXwvbk/pt04hiRJfHXxVwmnw/zLon+hK9xFgauAwdggV9dezb/t/jeun3I909LzCe828JWCnlRx7a/FCFqg4D0YzL9i8XSCgkofL/3syBlBNStvb+Sm3Jt4/OTjpPU01065lqHYELUF5eAqhEgfmt2DU/eQikfPWq4Wg4SWoH2y/Yzfp20Jxo7HKG0MkF/pxWq3MNoXoXJZEQW5ftqPbWHKomXse/FZMqkk9fMXo2s6smzJFlzqGiYmshVsLiexUIiSKQ0U1TeiKBYOvvwiUxYuITIqMXDyOL1HD+HyB5gc7GfxDbfhKyxk7pprUFSV1p3bab74MgB8BYWER0cwDQNvXgGYEv6bbiK6fgO26mqSR4/hXrny3R8Q4U9GkiQ0483CH83QkCWZ59qeYyw5xieaP0E0HYWJQejcBIDa/hreef/EWP8QTUuKOfhaH+HRBAB9JyaZGIqz4sN1kBlg6EQfsy6+jJyiEgxDJx2Po9qzYWbJWBTD0ElGYyy79UMMtp6k9+h+dj3zJKah07TiUv5lxT9gwUSTUyiKBZvPhaFrZE/XElt/+zAX3PEJqlrc5JV70DMZNj207YxtNA2D4Y42mpadf/p3hbVTOLDxxTPe562rQJM7uLv5bp5tf5bPbvost0+9nYsrLsbv8L8LvS/8T8VCExi6AaZJKhbFLnnJnLq+3dq+lUurLsXjLYSwSrR/GEPX8OUXEBkfRUtlr3f7TxxFtlgonz6LobZWdjz5GA63h5ZLLsflCzDc2YauaUiSxOTQAKUN01CtNjJOiWZ9HuHOJIVVXnx5NlRrFJvTQXHdlOznMgZTl65kpLuTmrkLz2p/T6SHIncRHeEO9gztYUbeDErdpdT5606/J53QGOoMMdYbpawhQE1zHh37R+k9PkGgyEVBpZe+YxNkkjoAkizhy7MzfUUJgWL3WesU/nxUTAtybNsgs1dXsvuFLtIJDX+hk2BxCkmWsbvduHICLLzuJgxdpz5vKb3HY3gDTpASGJgYuo4kyYRHhgkUl4AkkVtZhZbJECgsZutjDzPYehxffgHNqy/njad+Szw0CcDBl19k6m0fJVBWTvLQYbQFNezs3onP6sNj9TAYG6TUXUpQtkPH61C5BJAgb0r2Xmvb96B6BRRMg9YNsOy+7O83fQuSk2DzQm4dTLkUZJFB+n6nqDIunw0tozNzZRla2kC2yOiawbxLq9j6RCvh0WT2zRJ87iP/xG/TD7B1YCt1/joUSUEzNAL2APFMnEg6QlJLosgKqqyi6Rpj8TE+2fxJHjn6CHfPuhsrXtrf2M3cNdfQffgAsixTUDsF0zBoWnY+iUiYZDSCOxBk9qVXsfeFpzn48kuUNEzl/Dv+hk2/fIBZqy7D7vGx44lHcXi8LL7+Fka6O0jFo4wPK2iDGmq1hZScoifSg8fqwWU6SGbCYEJsYhy7y43FakU2IJ6J47P5zuqfSm/luR2Q9yndMEjGo1RMb2bv889gYjJ12UoSkQiYJlo6gd3hpPnC8mwm42AObpeEWWxmQ/gE4T1mGiZ2pwvVbj/jmlVLp06F9mpY1Dj+Qj9dkz6khk8ReOZSsNgACS79Nsy4/r3eDOGvTFrLhpBY/0gIideeDUaMpDL4ToUzn9ixhWQsyrwrr+ONp37LyR1baFi8/N1tsCAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgvBnTYSQvFvC/ci2OjCzRRKSkg37MA0d0zCQ5TgOn49MKlvcpmsaNo+b0NAIkiIjW1SsNjv7d26j+eJLMXQDLZNmuKuDxjlNFDoLWVG6AlmScatuilxFf7RJFlVmqDNMoNhNaDiOrhlIxpu7gCIp2FU78UwSq6pimiaSJGOa2UJKThX4Y5rIFgsWm5XKmS289sufERoaxOUPcN4H/wa7y4OmGdkCuNFjYLGD1Y0smTgtTiaZREI63S8WiwXTMLHaHZi6gWYaqIoFtbQMM6OBRcXIZN6VYRLengQkohGsTicF1bXkVVTRd+ww+VW1vPzz+1l8w60sufF2eo8cREtnZ3Gddt6F7HjqsdNFlcHSMoY723D5/DQsOw+X10fj0vOwWK3sfXEdeibDrIsupffoIfa9uI6yphlUTJ9F266tuHICrLl7OZlUiOikyaFNcZbdWE/7vhGcXiu9Rydw++0c2zYIwOyLKzi0qY94OA0SVDQVcP4FMxmrDPFk329ZWrqUhJbAqlh5ffg1XhnayEVlF3Prx+/Enrah2hTyyj30HB0HwOm1MuvCcnY920E6qaPaFebePJOJYBudkU7CepLecDcuq4d7m+/lS1u+REpPoZs6JdYyvCMKg+NPsmXzPixWG7NWXY8zMue9GMq/al6rj+2v9J4OIAFIRDKM9UZ5IPIAl1ZfiiqrxDNxmoJNlMh2mHZVtmBXsaLbUrj9NqITb85ELMsSY5ZBrqu/Dokzi9ysmgMwGeuN4st3MD4QAwlchhe31Y3FojLS2cGcy67EMAwS4RDJWAQTEz2jYeg6pmlipOO0791FoKiYVx/8KVo6RcWMWbRcciVaRiOdiJFbXklJ4zRM00CWZUa6OsivqkaSJSKjI+RV15BJJVFUlee/+y2S0QgAFpuNNX/7BQDU0lL0aBRLbhBTzGT7F8UiW7ApNkxMJCTsih1FVriy7kraJtt47PhjfHP5N+EPgkpITGAd20FpYx0Oj/V0AMnvxUNprBaVRCROeHSYYElZ9rrEBMliIZNKIcvyqTA0nVQsyoGNLzD/yut4+ec/Or2cAxvWklMYJFBSDqaZDS+RZHy5eaTiMWRFIb+qls79e5h23oXZD0kS0lsUvysW9YzX5dNmUj59Ft0H9wHgKyomOTVAiy/Ad3Z/5/T7vrrjq6iyyjX11/wfe1r4U5DMbHiNrCgoqoppGiiKAkiE02EUSWEyMUlxRiack4OWTqGlUuTkFdB/4hipWBRfXgGGrjHW00OwrJz86hoURaF153byKqrQMxlM0yQRDmeDc5IJfIVFJOMyneujdO4bo2qmG7vjCHvXPYWu69TPW0T9wiVMDg/izglg93jANM5qfywdI5qOMjU4lZqcGvw2PycmTjC/aP7p90wMxek+MoHNbiEVz3BoUx8zzivl6NZ+Zl5QzsRwHOupIj6n10p5U4Bpy0pw+23nahiE/yVfnpPGxUWMdGWL3xddXcNIdxSrU8fh8eLNzWff+mfpPpC9ppt/1Q1Ewznkl/swdZN0LI6eySArCql4HEW1YhoGgyeOUdU8h9DIEJUzmimub+DgxhfZ/MhDzFlzFdt/9+ipFkhoBfmkn38RT0sLE3qUOn8dw7FhMkaGVZWraAg24Nn/GFidcHID5DcAJqQiEB8HRwC6tmTDSI4+DaozG0ACkArDE3fCR1/PhpEI72s5+U4G20N0HRzFl+/EX+RiYjCGzWlBknkzgATAhF1Pd3PtFR9iYcNSjqYPMhIfYTg2TNARxGv1sqB4AQdGDlDlqyJjZBhLjnFJ1SXcsf4O3FY3oXQI3StTUFVDPByipL4BT24erz70U2KTE/gKCll03QcAmHH+xWx+5BcEyyqYtuICdD0bkrbq7s+QCIewqCrDHW1ceu/f8cIP/g1vXj7TVlzAwImjFNY2MFUvp0+dJCdaSqpnmFheD05vDht+8n30dBoApy+HCz/6SUxMXKoLh8VBQsteL1V5q5hbOPecj8n7kWqxIEsyiUiYuVdcC5iEhoeQAEVViYwNU1Azg40/P0oikiFQ5KJSz2XQHqKwyieCSIT3nGxRGO/vJaewmAVX1SIrMl0H9uEvLkNWVAxDR0sn0fQMZhxOdgeZcu0Gcrp/A6YJ0WGY6AV/6Xu9KcJfkYyevc9RLe8cQuKxZ/9bQCT55ncJPYcPYvd4WXzDLRzZ9DJHN78qQkgEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRDe50QIybvFV4IST6AoFtKGgWq1IisKpmFiGDoWVcWXV8BYbw8uv590IoE7J4BpasiyAqaBoekUVNWw9fFHwDSxuz0svPYmtvdsw5ebR6mnNFsobJg0BBvesTkWm0zl9FxOvDHI7uc78eU5mL6iFJk3HzieUzAHi2TBlCUsFguyoiBZThUjY3K6xF+2oKgG/qJSnv3PbxCbyIY2xCbGeeH73+KSe75KMqrD7h9AoBy0NAwfRZpyfnaGZEXFMA0kiwW7y0MyGiEVj2JzurC7PEiqDS0SQXG7MRIJbOXlmLr+Lg2U8HaiZoLw+BglU6Yy2tNFMhJhuLOdQHEp8664DrvbQyYRx19SSkFVDV0H92G1O08HkDSvWsNwVzsnHv0lALllFdTNX8RIZxvLb70Ti2rl5I6tOH05jHZ3YnO5KG2cxuZHH8Lh9bHgqht45Rf3M9Hfz+IbPsCM5XkkQkeomRUgMj7IxR8pBCnJnNUe4mEbLr+OJ6iSiKRZcFUNnQfGeO7fj1DoX8DXLl3KN07+PTU5NTTnNfOPi/6RHx34ERt615Mw4lxSfQlL7miic0sY08gWNDUsLGLnug4yKR2rXWHWheUk+w0C49VMc4LfG8I4+TRdzdeTwcI3l3ydmH4qyCJj0n/8NXqP7ANAS6fY9fQvWX1PJVBzbgfyr5yeMUhEzgwp8uU78ATtfHfqDzmc3E88E0dVVL6x8xt8Zc7nOD8RBcBUrAwZfTTfXM/eXw8TnUhhc1qYf2M593V8HLfVxSeaP0Gpu5TeaC8A+bZ8jFIbRzb307p7GH+Rk6alJdngJcDQdZBg629/nW1LQSEtqy8nFYui2mwYugGGic0epXTKVJ79z2+cbnfXgX14cvNxBwqxuzx48wtIhCZJJxM4PF7KmmZiaDqmYZJJp7LxKJJM39FDpwNIALRUiqObX6UlbhBbvx7fFZdjmzIlW+wk/MWQkLBb7KfPvnbVjizJ7Bvex2s9r3FL0y3ZollfGeRPheEjAJSu+zjyNa8xPGBBkv5g2CVoXJSHkY5jczmygWHpdDZwDLCoKgc2vIBpGDQtX4lpmlTMaCYyNkr3oQNnta915zaWTWlESyWQFQW728tL9/8HiUgYJIlZF19KUc0U2nqOkJtXgs/uY+5lV9FzaP/pZciKQu3chWcs15dfwGX33sd4Xy+6rhFzm9z9xqdZJi07qw2/OvorLq68GLfV/afpdOH/xOZykYxEUO0OAEzDQAJunXorDouDaCaKaViY6O8jNDKM0+dD1zJUt8yl88BeiqYEkQBd09j221+TjEVBkph54WrSySSJSBhd10nFYhTXNZJJJ7G5PYwcsJBX6sXlsWF39rDl0cdPt+nEji34i0somzaDke4uXL4cLKfaB9A+2c7JyZOUOspZ6F5GyJygNXmcw6OHmZU/63QQVWQ8STqhMdEXpe/EJK4cK3NWV3D8jSHq5xfiy3Pw4o8O0bKqArffxoUfaaK4Nuf0ekZ7I4z1xVAsErllHnLynediSIT/gaoZuZgm5FV40DMZKqen6Dt2kpKGRo69/hrdB/YB2Wu6Lb95iGW33Efb3mFqZqWxWFViIY3IQB92twctk8HEpHLWHHqPHebgxheBbPjB4htv5bWHfob5B+fkxqUrePWRB1l45RWYPf2MWOL4rX6qvdUktSSX11xOKDmB/ehaiI/BwnsgFYLBA1CxJBtMkpwEew5oSZjogvJTATq5dTDjxuzvB/aD1Q3ePx5eKfx1Ge2NMNobw6JKBEvd2JwKjYuLOb5jkPZ9I/jyHRRUenF6rWd9NhnNEO5LUxSspbCghCG5h3g4jRadpD6nni39W7DI2UCJjJEhnA6TMTME7AGurruanx78KV0FndyVeyUALn+Ap/7fP6FlsqEgoaFBouPjODxeDN2gsKae/Kpqtj3+KKZpYHO5uOij9/DKgz9m/tU30rBkBe1730BLp5l23oUc2PA88668nlQ0Qv/RI3iDuUwMjnPi1VdpueQKEqEwC666AdM02b3uSeKhSSKjI5xXdh522c5XF3+V8dQ4DsXBrPxZlHvLz+XQvG/pRjZkMTI2wvFtrwOQV1FFYU0dsqwgyypGxiQRydCwsAhJgn0bujn4Si9zLqmkcXExDrf6R9YiCO8ewzAprK3njbWPn/5OtGHRMkxDJ5NKYrHaCA0NUd4Q5NnvdaOoMqpaxjQ1gLV1LYwcg8JpIoRE+JNKnfpeyqr8sRCS7PHzD0NI+o4fpmTKVGRZYcqiZex9/mlS8Tg2p7hvEQRBEARBEARBEARBEARBEARBEARBEARBEARBEARBeL8SISTvlkwCSyyMrLqQZAmL1YYsy0iyjAkoFgVFtaLasrOjW1QVi90GmCiqBV3TkBWF+OQki677ALqWwaJa6dy/F9uFtXxh8xdOr2pG7gwWlizEqpxdNJRJabTtHaFj/wiKRcaVY+OCD00lPJpgrC9CRVGAu2bchVW24lJdyLKMbFGQFBlZsWQL6k0TxWqF05PNKlhUC4lY/PTD9r+npVOEh4dwBepg8Sdh70Og2GDJp1CQUCUVVVZJ62kUWUGSZWRFwRPIAwk0PYNu6KgXXokjPY4+GULxuM8o1BPOjaRFp2TOLF75j/9k+a0fpv/EceoXLMEdCDLU3komlaT74D6mLjsfq93BhXfeDZKEJMlYbDYsVit9Rw8D2YKi+gVLsFitzL/qBk6+sYX2PTuZfv5FFNTUUdLYRE5+IYdf2wjArIsu4fVHH0RLpVh03Qc4+PJLjPV207B4OQU1dWQSCXRfhGQsgjcvj9DgdrY+sp85l19D3WyFZPQgU+ZVUFIfxOVzk4wo/H95PyITiLK+6xkSepzm/Gauqr2KPGce0cQEPcp2WpYVktHr6D48hiRLZFLZ8JuWVRXsebGbdEJDscjUzSunvjkHv6+f+p69sPsXNCkq3df8hBnB6cQzE3Tt33FWn4ZGeoD552wM3w8ySoq6uQXsXNcBwJT5hdicFjr2j4JpUlo1g0TlAKPGMPe23Mu/H/ghsxvuIscTxPQUYMb62S1tpuqDtTiSQbDrRN0D9B7tgRg4FAdX1F6BaZoYpoHT6qS1bZy6uQVoaQOLVWaoPUReuQfIhpD48gtZdN3NGIaBJEmMdHVQWNeI3eXCNAx0PYPdLTPSOXjW9rTt3I6qWqmZuxAjkyEVj5NOxFFUK05vDrKiAOD0+ZCQkEyT8OjI6c/bnC6qWubizc3DN3cJzpkzkSwKI9/5N5ScHIr+5Z+x1YggnL8EqpI9X6aMFBISFtmCIisUuYq4rOYyhmJDkAfIVlj9DTj6DPRsh4olePwScVNh4dU1aGmDeDiNNximbedvObapjfoFS6lbsJhEKIQ7N4/B1uPseW7t6XXvX/88i2/Ipevgfpw+H+5AgNad285ony+/ENPIXrM4vTls+90j2QASANNk3wvrcN8YIBmPMpY8RGRkhNoFi7nu77/GSGc7sqKQX11LYW3dWdvu8HgpaZgKQDwT574593F47PBZ7wvag1hkcSn750B1OLGo1uy1rtWGaWQL4HRdp8JbQTwTJxWPkI7kMD7QR82c+WQSSXQtw+TQAIW1dUwO9GHoBqHhAVouvRJD01BUC4df3UjZ1BkYuoZpGLj8fhRVxeZwYmSc9J8YoazRSuV0iZPbj5/Vttad27HaHYwP9DJptSFLMlMWLeXQ6CHuWn8XX2/6NpEDKhP9CUJjFuZdtoKYJ0b7ZDv17gYObekhNJDAm+eksCaHkil+JofibHuyjXlrqgkUO9ny21ZUu0LF9CDTlpfg8tlOr3+wPcRT/7YXPZPtE1eOlcvvbSZQ5Do3gyP8t2RSOntf6iI2kWLBFVZ2r3uK6pb5REZGzzr+AejaIJmkB+nUtW8iHCIZi1I+bRax0CR2l4fxvl5ad25n4bU3Y5rZgvt0IkFV82z8RSVUzpxNadN0xnq6GOnqYPsLT3PZVTdTrCTQ7QY5thzsip2jY0dZmEygjBzPhooUToe+nVC5FI6ug4V3w7bvw+J7s0Ejs26CA4+BzQvNt8KGf3gzkapyGVzzE/AUnuMeFt4rA+0h1v7hMchv4/zbGtn6RCvVM/OonJELZMNGAsVOJDkbcvp79fMKkBTY/GgrRXU5FNVUcaw9hN2t4i0MMKd6IUetBxiIDlDgKiCSjjCaGOXeWffy3f3f5W9m/Q0nxk/gyc0jOjHORH/v6QCS39v2u19z1d/9A+HhIRR1NgMnj7PwuptPfwdyYONLNC07n62P/pI1f/t5dj+/lsLaejoP7GX+1TdiUVUkScLqygZV5VdWU/rxT9N35CBI4A3mcWzb68y74lpef+RBDNNgenA6kiThsDiY4Z5BY27juRsUAQnIpFIU1zdSMaMFMDF0nejEOEYmgytYip6BwhovpQ05TA4lmLO6ksh4km1PtuHLc1DTkv9eb4bwPqYoCl2HDjDzgtUYhn4qVGcUQ9eRJAktnUa12eg6uJvzbptPZFyl5/gEuS1LKc/ZCzOuh8NPQfWK93pThL8iGT17/rZa/lgISfYeOpLMBvrGJieYHBxgxgWrAaiZPY/d656k6+Be6ucvfhdbLAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIPw5E5Wb7xZDR/XkIidS2QASi4EkySgWBQwTJBlZllGsViwWK96SAuwuN7IiI8sWJEkCKZv6se23v0a120knEyy54Va69dQZq7q89vK3DCABGOmJkk7oBIrcyIqExSKhpXVSCY14OINsgs/qI9eRS4O/gcH4IFarA6Q0FpuNdDyOpCjIiiXbbgC7BzmtoaTSWKw2tPQftEeSsHt8aBkDxvZDzfnZ3x9/HkvtsjffhgSKhCRlA1nSyTiKquI4NTv9aMyB9R++hDYyAopC3r33YiuvQHG+OXu98O5SFRXZiHHNBz6CVFrOYFsrY73dHNjwPBarjflz5lNQVcuRTS+jNUyl5/BB5l9zHfOvvp6Tb2xjor8PAE8wl7p5C9nym1+eXnbDkhXMvfwaJgb6eeUXP8aXl0/9wiWoDifHt7yGaZhoqRT+omImhwYY6+2mcmYLmVSS1x76KWVN0ymbOoOjm1/F4fXRsnoNJY1NRMfHaNu5nYYlyzm5/Uk69++hbsES6uYtZ2IwiRzN4dbqD5HRBrA5JUglsThdSPIwFj2DD52ksZOr/2Y6kaQDRZWxOSxExlOnA0gWXl3Dodf6OLZ1ELd/LuffXE7gsgtxvvARyru28W2lmP5ADa1lQ/QcOXBGn3pzA+d0DN8P4lqCYEmQuZdV0bp7iMIaH1pax+ZSMU0Th6KSm6zHl+thIjVBqbuM1MBe6NmJWX8BmqGhGzqH4wdQZAUlpdDgaji9/PHEOHMK5tAeaielp5BRsDos7FjbDoAvz0HzxRVIp2o8LDY73Yf2ExoaQFIUJElm2Qc+hGlkcOb4kRUZq83O3peepXrm7LO2J7eikmQshmEYdB3cS255JS5HkEQ4xIRh4M7LBjapVhuyRcE0Tapmzab74D7mXnEtnkCQ3c+uZbi9Fb/Tjf3xpzBOtlL0ta+SbGtj7KFfUvjFLyDbbGetW/jzIpPdqSQk3KqbanUKXsmNO+Dm+MRxSEFKS0HxLOjaBvWrYNrVYGTo6nTx2kPZMAZXjo0l1+Xx4ve/TTIWpXbuQuwuJ3uee5pgSQmKVWVyoP+s9Xfu34Mzx8/e55/mui//K4f8QaITY0A2JKS6eQ6maWKaEhZVZbij7axlKKrKzrWPEx0fw2K1UT6zhZfu/w+0TAbTNHAHcrn801/A6cvB7X/r46NTdXJx1cWUect4ovUJQqlQdtmSwp0z7sRusf8pulv4P3K4Pah2O1anC0PLYAKyoqCn0yxOlWGMxyjc1020XqVhyXL0jEYsNEEqFsWZ48fpzSFYXEYqlaDzwB4ObnwRSVHQ0xmW3nw76WQcu9dHIhwCw0CWFTx5+ex4Zoi5l3qJjHQx0DqOr+DsYIVAcSmKqtK26w3mXXEt2594FG99BeOJcb4w/csURCuJ2dJ4ggZ5FW46Xgtx+eobGB8NY+23kwxpBEs9TA7FCY0kaN83Qkmdn+rmPGRLtljfE7Bx0R1NFFR6z1i3rhnseanrdPE/QGwyTe+xcRFC8mem78Qk0fEURbUe2nY+Q8Pi5Rzd/BoV02cSKCmj79iZQUgOt4fyaU6GO9qYGOzH0DVq5y7k4Ksv0bTsArRUEllWWHDVDex48jES0TCmYZBXUcXiG29D1zS8BQXoWoaBE8cASMai4PUwtTNKxA9uj5vB6CALdYma576YXfHSz0B4AErnQyoCCz8O4x2w8ssQGwF7AGbdAsE66NoCO+4H2QKlcyGTgM5N2aASEULyvqBrBnv/6zFoIsVob4SGhUXsfqGTiqZcXD4rw91hCqq9rLytgQMbe4iF0lTNyqOw2sf6B44gSVA+LYBkSniCdlw+G3aHhWCikgnXMEdGj1DsLkZDoyPUQXN+Mx+Z9hHGk+OUe8pJpRIMnjhG0ZSzwz4U1YosybhyAkiKhZGudrY+9iskWUa12Ziz5hoqGpqondGMZLEwY+XFHNjwAqah4y8oIhqayAYBJeLYHQ4MTSMVjWB3uRjt6QLDZN7l1xCdHMebl4+jrICgzaQz3Mm04DQRQPIeMEwDh9fH/vXPEw9NICkKqtXGkhtvw5Qgk7QgW6BudgEbfn4UAE/QzvTlJZx3SwP9bZMihER4T+mZDBXTZrLp4QeQZQVd08irqKRy1hwwORWOJOMN5qFrk+x+LsaS6+vQ3TKaqwzLpm/Byq+AYYD8zoERgvDflday53ur8t8NIdEA6D0VIF3a0ARAcX0jNqeL9j07RQiJIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjC+5gIIXm32L1Y2jah2Oaj2h3omQySLGNRrUiSjGq3I8kyLl8OgeIykvEoqWg0W5CWl3cqgMTE4fWy8NobSUQiOH05DHe209h0Pn6bn4yR4eaGm2nObX7bZqTiGaxOGV++h9xSD9GJFJGxJHaXhdIGP4YODpuDgD1AQk+gyio5Tj8JJYp8qqpeS6WwqFYMXc/O8OkvRwp1kEklWXLjbbz6y5+enl17wdU3gJSTDRlxF8D2H2QfqC9fhGqQnS0cCYPsbOCKRUVXMlgdCrIsY5oGpq4T7Z8gJ3Uq3ETXGfnOd3DOn4dz5sx3e+SEU+RECl/HJMeHBzj62EPMWXMVTm8ODo8PTzAXRbHQumcbiqqSU1gMkkTnvn0kIiEWXH0D0YlxWndtp2HxcnY+8ySQLUifu+YaTNMglYjjCQSxu9xUtcxl3wvPEhkbYfrKiyie0kheRRW+/EKG2lsBKK5vYOtvf40ky1RMb2bzow/h9OUwfeVFvPCDf8eiqsy9/BrKps9kfKCPKQuXUb9gCal4nBd/+E1kRWHOZVcxMTBKKmEjmOPD8tQT2OfNId7VTrqogGR9DV2T/QTLhgjl6Sy+sZSDG0dJxbOzg9bNzefgq72EhhP4C51MXVzMlrWDJGMw95IXKSqRyTn0I/K3/5TAoo8x1HGSdCIBQFltAwUO71t3tvC/liCKwwzSfWiUBVdWk0kbOH028ircZBIao71RzIxE2khT5Crig1NvJ7/vMLATFBXDMJAkiYyRQZEVOJW1dGf1FcxzV2F3FfCtPd+h1F2K3+4n6ohydEs/kgRTlxYjyRKbHzuBYpGZf2UVejLOlIVLMHQdLZPh/2fvvsPsuOt7j7+nnd7P9l612l2tepesYjVbttxtbFwocRxiSgihJiFcSEJyKbk4ECAJHRfccS+yLUuWZPXed7W9t9P7lPvHkdcIGUgA2Qbm9Tx6pJ0z85vym52m8/2Mw+1hqOM0pQ1NDJ4+wbTFyzEQmRjoY9aay6honkH/yWMAWOx2Flx5HbHQJGomTd3cRei6hq6pODxeJFnGyKkIgoCmadicHsb6unEXFLL+Q39FJplA0zQWXHUDZ3a9xgv3/5CN194CX/oyI//yrziWLMFaU4MWCiGWmMXH7zRVV5lMT+KQHbgsrrccRxAEGixN2DtLOfXKOLIlx5wrK2gqFxhQ+hHEfFgZWhbUNNj9xI1idj/aB0B1W5CiajehwR7SiThWp5OCqmoUqy0fHNLdhcMboHHJMg5vfva8eQcrq+g/nt83wyPDXP7RTxIdGwEMnL4AmWSSXCqFzeUml0lR0tDEcMfp89qwe7zEJ/PBJctvvp2uQ/tZcNX1pOIxRElCVix0HdrPmV07aLlkFc2XrMbh8b7ltmgJtvCjDT/iwOgBUmqK2YWzaS1o/W03v+n3zO52IysKFrudbAokWUYQRRDA0DT0SISxr34V/8MPEkvFSScSKFYbnoJCOvbu4rX7foS/tIwlN7yXssbpFNfWo6sqdreHM7t3svyWOxBFkcF4jFQ8hkdTEUSRBVcUkoqcJTI6jGyxIEgihdV1jPXkg6LsHi+ljU0c3vwc1TPnMHD6BE5/gK5QF2PGOAutq+k5NY6a1WhZXo6BQXVrgHg4S7RTI5UI0bykjIObexk8EyZQ5mTpdQ3se6abmZdW4PRYKKh0c8XdM1FsF95WaapOOp6jbVU5FrtM/6kQI11RouPpt7uLTL9BPJTvE1+RnZGONLlMhqq2Wez5+aOsvP2DjPV0Tl3TVTTPwOJwkIpGiE2Oo2Yz546FGZqXr0bXNLoPH6C8uZXI6AhNy1ZgczpJJxIcfP4pUpEwmq5RMb0VQRC45Nb389T/+1ealq5ATKWZ+PZ3WPi5T7MvF2eJr4Hivv2w+G4obIJ0BGLDsP1rcPn/hforIJsANQlqBtxlIMngLoVgA4x3wII74eyW/L3Zhi+Dmn0nN7XpbaTldCKjKRweCw3zi1AsEr0nJkmEsyg2ibnrqjm6tZ9EKEP93EIyKZWmhSUEqux07Bpj6GyUbCpfoOwpsuMttOPwWKhq9ZOM5pgYiCHLMo2uJoqbi3m191WcFieqoXJo9BBtBW0kc0kCrgBCWiI6PoZu6MxefwWHXnwGh9fH3MuvQrHZSMYiOH1+VDXLmd07mXP5VVO/N7Iio+o6T3/3GyhWG0uuuJbWBUvw1NQx1tuFrmk4A0Ecup/Y5AS5dJqCqhpe/O43WHLDexnp7ECQRFz+AFf81ac5KfShiAqLShfR6G98h3vpT1c8PMmM1evQ1NzUOT80MogoCFjskEnqDHflw+fq5xbi9FnZ+0w3ggBzLqsmFc9hdynv8FqY/lRJVht9J4+y9Ib3koxGkK1WMAxy6RSg4woWERsfwestweKws/iaEg5u7iUylqJ+5o0sXncZPrHPDCAx/V5NhZDIvymEJH/sjKXzzzoHTh9Htlgpqq0H8vdy1bPm0nVwH4auI4gix8aP8dW9X+WKuiu4qemmi7gWJpPJZDKZTCaTyWQymUwmk8lkMplMJpPJZDKZTCaTyWQymUymdwszhORiySSQKuYiRSwoGFhsNgwEJFlCVmQUqxUwKKyuJT4xTiISJpfJYPd4kC0WHG43oiQTHhmiffdOvMUlhIYGab5kFRgGn130WRRBoSfag91i/5WLISsSLr8NA51EOEs2peIptOMOWug8NIm7yIJTceK2uDEMA6/iJZ6NIwmg6xqCKGKxO9ANHVGSyGay2Ox2REkkk0yi6xpXfOzTpKIRbC4XNreXXNaKIIjk7LNQZt8CugbeCiy6BoCBgSiICJKU/yOKiIKQDygRBHQBSkokktHoeeuiDg2BGULytvFpNraPDHB013Zmrbuc9t07Ge/tpu3SDaRiEV67/4f4yypZdM0NJCNhkuEwBdU1+IqLad+9g2lLLqF+3kJEWT5XiAELNl3P0VdeIBEOASArFjZ94nO8+tPvExrsp37+IiRFYddjP8NfWkbNrHkkY028/vB96Fr+y/RFNXUMnDoBQMslq9n9+EOo2QyLr3sPux5/CDWT4ZL3vo9Dm59h8MwpFlx1PStv/2A+CEiSiYz2I0oSMVsQadMVGHYP0tAotqzB+Ic+TmFRMb5bbsbefgahupKV164nnrbQsW8Up89GZHQYgKbFpex4rAMMmHd5Nb0no2x7aIKGubfQMK8QLZ7gur/6PJHRQWRBxHrwAMLRYzBv/jvQm3+8nKKLyaEEpY0+xnpi1M0pQJRFoqMpBBEKKl1oqsaZ1ARpNU2xvRDh2U/kJ1YzjKfH+c6R73DnjDsxDIMsWQTg7tO7kPu/Sezunbyv6RY64/2ougqGQcP8YgIlDlLJHFa7Qv2cIk7vHmbvU90svcbF64/cj2KzYbHZmejrY9X770RTcwQramjfvZPZl22iccFysskkravX0bpqLWo2g93tJZNO4ysoAllCj0aIDo+Sy6Rx+vx4ikoQZAkAT2Exw51nyKVT1M5ZQGx8jEwiDoDV6aLlkktp372Djp6ztDY0kDlzBsfddzP6ta/hWrvmHeot0xv6on3ce/Jenu58mlpPLZ9Y8AnmFM5BEATOhs9ydPwo8WwcRVQQe70ceTp/3MkkYfu9naz9UBPuUhfGG6k5mTiMHoeff4jc3C+QTtRidchMX1LCUHsEb0H+OqG6bQ6SLHHohWdYeM2NyIqFdCJGbHyctXd9lJf+65sA2N0eambNxdB1Jof6cfgDTA704Sspo/vwfrb+9AeIksSM1eupnjGLTCLJ0htvYfN/fYvYxDiCKDJr3UbU7JtBCy5/AMVq4+UffBddUwmUV2C1O5m1fiOzL9vEa/f9AIfXR/PyVb9yuzX4G2jwN1ycTjH9zgRJRgAUqxXFZsdid4BhoE6Mo09M4rz9NpK5DJqqIisKdrebo69spnP/bgDGerrQdY1jW16cCrBJxaKsvO2DZJNJwiMjSLKCpChouRy5VJLI2D7CwwO4/AF0TcMXKGD68pUs2HQtmXSK6OgIOx+5n8KqWjLJBEU19TgCAbxqA/X2OWRTKrWzChFFGOoIE5/MUFzroWPfKHVzC7HaJYbORqifU0h1S5BcVmO0O8ql75+OgIDDa8FTYEcQhLfeJqJA44Ji9j7dRTqeo2ZWAXM3VFPe5Hv7Osb0P1I+zU8qlgMD6uevQxBiqNksstXCzkfu45pP/QOjvZ04PD40NR8OFhoeJBkOo6sarkCQdDxKoLwSm8uD1eEgOjrClh/+J96i4vzvAzBzzWVEx8cAg4N7XmfawiV4Cou56Qv/QmoyBCOjpE+cQEim0dEpLpoBkhOSY3D4AejaBoo9HyyiqfniZZsbcJ+/QpIMRc0wfSM8/9k3h3e8BLc++rZtV9M7y2KXmbO+ishoiqNb+8mlNOrmFlI7q4DJoQSvPdhOy7JS7G4LuqZjdykMtoex+xTKZrkpm+5DyxhoqkbdnCJiE2km+hOMdEdoW1lOQaUHNavhTxXhzAa5LdiAYdPZm9xBT6ybw2OHmVcyD4fmwmrYcRcUko5FiYyNcOXHP4skSxx9ZTMFVdWM9fbgKSjEU1DIzDUb6D9xlMjoMP7SciKjIyy4+gYUi4345ASbf/o9Nt3yQcZ6uxGATCpBNpXCW1RCeVML4z1dZBIJmpau4OT2rbSuXks2kSCbTtN79DBV5ZUodjsBr/+d7qI/WYIg4AkUsO2+HyJbLNg9Xib6+1j9/rvQDQNDk4hNpqmfW0TXoXH8JU72PduN3a0wa00lqViO49v6qWoNUljl/pXnYZPpYhEMnfJpzWy7/0cUVFSRSSbQNY1LP/Ah4tEoLr+PyMgAocEBypqmc2RrP9HRFDNWlmNzKhxpd1HZUEdpPIfNDNMx/Z7kzj03VaRff0x0nwtPjKbzQWMDJ09Q2tiEJL/530R1c+Zz5vXXGOk6S2FtHZ/Z9hl6Y70cGTvCpVWXUmAvuEhrYTKZTCaTyWQymUwmk8lkMplMJpPJZDKZTCaTyWQymUwmk8lkercwQ0guFpsb6fCDSBW3YOg6hqGDYSDKMqKsIEgSoiSjqyqJaIRcOo2BQSoSweH24isrJz4xQXFdI0W1DUz091I1Yxa5TBZVzfJk75O0FrSS03II/OovF7sLrGRTKqlYjtcebCcymsLps3DJTdMQRANJkFhXvY7R5CihdAif1UdXrIsCUUQQROyucwVtgoBu6ORSCWx2Ow6vHwyDTCJOLp0GDNKJOEFF4dSuIZqXlaPldBSbFwwDJrux1yx/c8EMEGQJUZKQFAVd00AQEGUFEUhpIghCftpzpEDw4vSV6S1lgRP7dgHg9PkZ7+3G5Q8iWywcfP4p/KVlNMxfyHPf+jdymTStq9ZidTiZ6OvG4fUhSiJNS1didTgIllcSHh1G17WpAJLGhUsprK7h8OZnqZk1lxmr15FLp3j9kQcQRJFF19zEeF8PidAkS264BavDhcsfJJNMEiivBECyWMgkE9icrnyQTzpFw/zFnNm9g+GOM8y5/Co6D+xloq+HOZdfRTaV5OzeXTSvXIO3qJjo2CCWKgVl1XKyhoj7p4+RHk0S7zqO5PDiqKhn7O73YW2bzdr3fJRoEqwOGV0zSMWyYEBJnYfJwQRdh8epaQui6/DMt48B+XEXXtnKjqc6mbtgDb5Gs7jk980j+khJGWwOhfLpfrScwYEXeujYP4ooCsxYWU7jwmIskoWEmsBmqYJlHwdJQZOtHBw9yBeXfJH+WD+CIBDLxPjoKx/jO/M+wuLoEO5kiLWvf5+B+e8jKwgEhCQRtw0DUCwyggCKTaKyJcDw2QjJaJz5V17LeF8P2WSS6ctWMtrdRbCsAkmRKZ/eQmxijJqZc0mGx4mODufDl3SdZDSCr7iUTDqJ1e5ktLuTQGk5oiSRSSaJT4zh9PgwdAN3IEjv0UNY7A6yqRSxyXEkKR9QEp8cx+H10bBwKQ5RQovHUSorsTTUo01MYCST72if/anLqBn+4/B/8EznM1zTcA3lznJOjp8kp+YQBZFX+l7BY/EwmZ4knclgO9B8QRt9x8KUVsjYxXMhZIoNjj0Ki/4Cl8tOzQwPFc3F7H6ii6oWBcnqoLJ1DrlMGkmxMnfj1Uz093J487M4fX7mXHYl3sJibvj7fyKbTpGKRjm57RW8xaVc8+l/YLjjNIlIhFw6xf6nH59ajj0/fwh3IEhBVS3x8ATrP/RX5FIprE4XHft24fIXMPuyK/EWFJGMRek5fAB3QQGz11/B8Nl2jHNhZ0Y2y4xVazn68gs0Lb0EUZTeru4w/Z4YhoGu5sim07iDBWiqSjadxOnxYikrR9UMpLZmtHQawzDIZdJYnS46D+yZasPm8qCrKq0r1zLS2UHZtGbsbjdn9++hZcWldB7YS9ul60iEQ0RHR3AHC3EFA2DoZNMpDMPg9UcfYNmNtyGIIgeef4rhjjMIgsi0xcs5vu1lZq69glwmiFWws/vJs/SdCCErInPWV1FS52VyMMn2hztoXFDE5u+fYNFVtTi8FrSszr7nusllNMqbfISHk+x89CzuoI1lNzRQMT2A1X7hbdVYb4xtD5yZ+rnr0DiOSywU1Xjeln4x/c8V13kY6Yqw+8kuyhpcNC1yExkZZvaGK9jz84fJZdLYXR52/OwntK5ci9PnJx2LoVitpGIRJEnCUVR67no1gNVu56Xvf5sVt36A8b4eMskEZY3TsTqdWB1OYhPjLNh0HSNn29n7xKModjsbP/RxJu/5FrbWFnDYcMgy0UwUj90D42fBXwuVi0AQof1FqFz461dKy+WDSxQHzLkNbF4QJZg4C/Wr3pbtanrn2d0WXv7RyamfO/aN4i204yu2Uz+3kMmhBMpEihkrK3j13tPUzy0CDNSszvHtg2g5ndW3T+fwy70ESlyc3j3Mmg9MJxnNsfPRk6RiOQKlTpbf1MhoVxSb08Icz3Lm+5axO7ONaCjJyFaF/mMjbLhzMaGhbtr3vE5osJ/wyDCljdMwdJ2x7rOcef011t55Ny5/kLKmZmpnz2O0p4uK5hlkk0mall7C/md+DkD/6CC+ympSsQijXWepmT2fbCp/vewtLkbNZXEFgsgWK4WVNWhqjlQsRnhkkMjYCEdeep5sKsnVn/o8pQ3T3pnO+RNmYJCMRph35bVERodJhCZpmL+YyMgQuqahqiqJcAZPgZ3CKjdDHWEA5qyv5sirfTQvLkVTDXqPT2IAxdXmedX09pItVsZ6ulh2020MnTmJzV1PsLySdDxOSXk5I+1nKKiqYby3m4n+PlbcWMzkUAETgzmcXisWu8L4iEY4MsSsVRWIkvhOr5Lpj0BWzYeQWORfvz/ZFAmLJBJLq2SSScZ6ulh03XvOG6d29jwQBLoO7uO43EtvrJePzvko3zz4TV7ofoFbm2+9aOthMplMJpPJZDKZTCaTyWQymUwmk8lkMplMJpPJZDKZTCaTyWR6dzC/5Xyx5FJQPhdRlpAtVmxOF55gAVanG0GUwNBRc9lzRZsqqXgUgGQsQiadRBLy4Rx9J44yePoknoJCBk6fIDQ8QDwXI5wJ80LXC5S5yn5tCImuG+gabPnpaSKjKQAS4Swv/fAEZQ1+DENAkRRcioucnkMQ88XwkmzB5nYjKwqy1YrFakNWFNRsDgCrw4EgSShWG06vF1ewAMVqRRBEREni8Et9ZO2VoGYBA9Q0dk1FFEQkUaLB34AqGQiCgCCK+b+Fc2siCMQ0J9bpTfmVkGUKP/HXiIHAReww0y+T7Q6c/vw21/X8F9krZ8zk7P58wXDz8tXsfPh+cpk0C666ntBgP09+7Z/Y/fjDuIOFGLrBwKnjxEMTrLzjzyltaELNZgDwFpfgCgTZ+fD9dB7Yy+EXn2G8p4tgRRXe4hJmr9/IqR1bOfDsE/SdOIqhG6iZNEvfcyvzrriGkoZpyFYraiaDzeVGlGW0XBaAgqoahjvyBb92l5uJvh6CldVkEnGOv/oS1TPnMDnQx/Pf/n+EhgboO36U5771VU7vfJlYuIdotgt9bgOZDdcy6q1F+cYDpG/4KJbQANW2YS65oQ5d15Et+cNneZOf7iPjABTXeWnfOzK1DTNJlRM7hqhqCbJrW4yovext6Lk/LYZgYHPKxMMZ7G6ZnuOTdOwbBQN0zeDIK/1M9Mdp9rSiGzoiEpx4ArZ9FfvEWa6suxKrZMVtdVNkL2JWwSyun3Y93+x/kcSNP4B0FCHYSMVDH6DugdtRJ8Zw+Kxoaj4gSdcMXH4rNTOCSLKIw+th58P3c2LbK3Ts28Vr9/+IypZWgpVVODxeDATsHi8Dp04hCCBbbDg8PtwFhSg2G4IoYnMXohsapY3TkS0WBFHE6fXhDhaiayp2j48Dzz7BmV3b8RQUouWyJMMhdE1D1/JBP5qao6CimppgMUYySfHffg5D11GqqpALC9/hXvvTNpIc4bmu51hTtYZENoHL4mJz72a+vu/rDCeHmeafRp2vjip3FZfVXYaz4MLwIntAIpwJkyOHYRjEDBephR+H3f+N8sxfsmxWD6KkUT87xOEXvsLz3/xbyqc307hoBa5AEJvLxaEXnsYVCDJ7w5W8/ujPePqer/Dkv/0LoiRj6BrTl63E5nIz3ttFzcy5zNlwBWd/ITDiDT1HD2KxWVGsNhAErC43oiQy1t3Fz7/yJQZOnUCUZXqPHSYRDjN7/RVsu/eHnN65jTO7dvDcf/wbitWGxeHAX1ZuBpD8gcpl0mi5HAXVNSh2O65gEKfXRyqRIIqGYVEwjPx4kD/2YRjYnK6pNpa/53b6Tx1nqOM07oIC+k8c5cS2V6hsaaP7yEGqWtuwudxT146iLJGOxdBVFXdBId7CYuZtvIbuwwfwlpTScslalt50B5s+8Xe4guXMXPshttyfwuHJn6v7TuRD0dSczt5nusmkVFw+K4lwPtgK4NSuYUY6o6g5nVxGA2DgdJihsxGKatzEJtK8et9pJgfjb7ldJgbiVEz3UzurAMWa37fb942inmvL9O4hAB37RwEIj2r0nXZRULOGmlnz2fixTyPbbOx+/GGW3fw+vMUl6KrK5GA/Dq+PgspqBFHCwMBbWIiazaBrGguuuoHo+CjxyQnO7t/Daw/8GEGUyKRTxMMhwkODZNMplt9yB+lYjOf+8x6kS5ZScPfdjPhEvrzry5yePA2aCmWzoPs12PbV/J+SNsj+hlAxQQTJCms+Dyefyk+39SsQ7oZU9KJvU9O7w3hvDACLTaJ2VgHlTX7O7B7GHbATKHESGUsxe101Wx84DUAqlkWxyRzZ0o+W03F4LIx2R6lqCXJm7whWh4zDbWXLT06RiuWfDUwOJXjtwTMU1/nIZjSioylGzyRYoK+kLNpAz6FJNFXnhe9PYnE0cuVffw5XYSGSohAPhQgNDTIx0Meym27j6KsvUVBVTXR0lD1PPMJ4bzfZVBI1m6Gotn5qvVz+AKqaRcvlqJk9H4vdTjadIjY5QTIaxWp3UDVzDq2r1oIoYPd4sLlc+EpKGe06y8y1l5EIh3jpe98mHX/rY7jp4jF0A3ewgMMvPkMmkcDh9XF487OIooSuqSiWLLIiER1PUtroxeW34S2yExpKMOvSSkKjyfyzK01npDNCOpl7p1fJ9CdG1zX8pWUceuFpHF4f2VSKPU8+itXpRJYUnF4foiQTKKtEkmX6T53A4RqmotnOSFcEURIwDAOX10p0Iv1Or47pj0RW+5+FkAC4bTKxdI7+k8cwDJ3Klhnnfe7w+iipb6Tr4D5+cuInlDnL+OCMD1LuKmf/yP6Lsvwmk8lkMplMJpPJZDKZTCaTyWQymUwmk8lkMplMJpPJZDKZTKZ3FzOE5GJRHHDoISRZweJwoNjsIAgoioLFbgdDQ8+pGAIoVisT/X2EBgeIjIxgaDqapqFmszQtXo7d7aZ9904sdgc1bbPxih6Wly9ncdliJtOTKOKFBcoA2XQOxSKRjGRIhDPnfabmdFLxHBj5Qnqn4iSrZ4mn4yCAJMsoFiuy1YpitSJbLEiygp7LF3dIsoxiteEKFiBbrUiygtMfQJQkHB6Zsf4YOiJg5OfhLMSq5ZBFmRp3DV/f93WOJU4jihKSpCDJCrLFAoIAhkH59ACBD36Qwk98gpIvfAFbSyuGahaWvJ10w86cy28HQUAUJWTFQioawXUuDEZTcxi6jtMfIJdOM3jmFFaHk0tueR9HXnqOp/7tX+g5eghPYREntr1MUW0d1W1zQBBoXLiUo1teBMAdLGDFbR9kcrCfLT/6L6paZ1I6rZnwyBAAC6+5kd2PPcjWe3/AvqceJ5tM4HB7ueJjn8JTWMTq99+FlsvhKy5FEEQyqSR2twdBEFHPBZPUzprLmV07AAhWVtNz+AAOrw+n18fB554kWFGJrmk8fc9X6DlykL5jB3nxu/+H9t2PkE61k8qewaj1EXb7QYqz6SMzKJvmxR20kUmq2N0WANSsPrX9FJvE7LVeqlviVDSlqJvtYnQo8bb1358Kw9BBEIiH0oiiMBUI84sGTofwyl5kQUbOpcDqhiUfxuIoJK2l+eS2T/KVvV/hC69/gYfPPMyayjWMpCfIFDTmG0iOw8rPwKrPkfNNx2KXpkJoJFnEYpNxBWxYXTLhkaGpsB1JUVh5+59xavs2nvvW1+k+fAB/SQl2l5voxCiSouAuKMAZDGKx2ZEkGVGUyGXzBfrZZILQ0CDxyQnG+3sxdB1BFLHYrPQcPQRAdHIMTc0BAmO93Yz1dgOg5XJMX7QEb06n6HOfBUkCQaDsK19BDgYvdreYfg2LZMFtcTM9MJ1GfyP3HLiHznAnG+s38qXXv8Q/7PwHPrPtM+T0HN89+h2UWVFk5c3LNbtbIdiYP+YoCYPXH/0ZP/mX/8d9P32Z9sXfIrf+K/iEPqy2Sfb8/AcEyipw+YPsejQfjlNQ1UAyGgGgdeUaXn/kftRMfp9ddPUN7Hn8QV763rd58b++idMfxFtUwvHXtpCMhPEVl16wPr6SMiYG+zm1fSvP3vOVfHu5HOO9XQCMdXey86H7KKispmXFaoY7zuR/b99gGJzauRV/aQVtl264WJvddJEpVhv+sgqsdidWmx1DNxBEAZvTSVbNEQ/6yaQS+WOY1Y7N5UKQJJa95/apNgKVVQTLK1GzWdp376SgsprmS1bjDhYQGuzH5nKj6xpndu3EXVCA1e5g5GwHdq8XQRCw2Oz4SkqxOJyEhxXs/tkce62YF3+Q4OUfx9j52Ai5lEY6kaPn2MQF6zDRH0e25oP9jDcGnvvHG8FTb+g/GaK03gdAOp4jOn5h8aim6TjcFjTVIDaRZvbaSqrbgngL7VOBJKZ3D1EWCZQ6aV1RTsP8IiYG4vSfSiNby3j95wIjnTkWXXsTBjq6rqGrOWSLlWQ0QrCiCpc/gNXuAEGk+8hBcpk0g6ePc3rna+i6zqo77sRit3PguSeRFQvHt75E38mjODxebC43NbPmkoyEYclixlvK+eyJf6U33stgYhBkC5x5Eew+uPTzcMknwFcF9t8Q0GhxwNovwNGHIZa/rsbQYee/w/Dh335jqVmI9EPaDDL5Q+AK2KidVcDMSyuJjqcxdIN5G2vxFNiRbRJNC0tIxrIkwlmK67xMDMaJjqfesi0BEESB2GQaXT//uBgaTpJN5lAzGq///CySLDLeHyc8+GZbWk5n6wNDbHswzYviMSpmzqSgsoqB0ydoXraKnmOHqGxuBUGk69A+WleuoXHhUjoP7qPnyEEwDALllTh9fqoap+PyBTF0HZvTRSoaITY+hiTJTA70MdzZTjIUIptM4nC586EXBYX4SyuomT2P4bPtBMoqGO3qIBWLXMwuML0FDQ1BlJhz2SbG+3roPnyA6ctWkoiEULNZRDlHZCyJ4ckiLwgzY0UZTp8VX4mDTFIlm1TRNR3FJmMA4WHzPtv09pIlmXQ8PnWMCg32s+jqG8gkE+SyWdLJBJKscGL7FrKpJO5gAYIk4nTFaV1RjCAKgMDkUIJUNPtOr47pj0RWPRdCIv1PQ0hUeo8dRlYslE1rvmCcmlnzODp+jAOjB3hv83uRRZk5RXM4MHIAwzDeolWTyWQymUwmk8lkMplMJpPJZDKZTCaTyWQymUwmk8lkMplMJtMfE/mdXoA/WoYO1fNRbHbUbCZfJG4Y6KKOkP+uOQYGAgJqLosrECQ02EegvIpcOo2uq9gcTg7s20Vl60wKa+oQRYmzB/bSVncNZ8bPMKNgBoIhIAlvXcgoSiKSImJ1KsgW8byABACHW5kqHpIlGRGRE+ETBOwBBFlGkmQ0NYeazSDLCgKgqerU9JKiYBUcCIKArmpIViuKRcEdlKls8uPMdoPFA4YGNj9oKlarla5IF4OJQY6HT9LqrESQBERDQtc0ZIsFQRRRbBpDn/r01LzkoiLK/u3rv+9eMv0aFqvESLefFbf+LYotwWUf+TSHX3yS6ctWMtzRPhUaU1BRxXBnOwAzLl3Prsd+RioWpaimjublq9j50H1ouRzByiqSkQgrb/sghq7DuX1v5trL2HbvD9E1FVmxIFusZJIJVt5xJ5HhIboP7UfNZQmUV9C4cAnbH/wphq7jL6tk5e0fIDQ0wMJr34OnsJDLP/IJzuzawcJrbmTrvT/AYncAkI7HcXh9RMdG0M/tw1UzZtGxbzcAla2z2PnQvcgWK4XVNbz+yAMU1dZjdTp59ptfo2H+YtxD/Rx95UVqZ8+jasYsQsMDLLyyGYc7S2WTg/BYkGC5k8oWP30nQyzY6GDnz75KOpF/s3ZV23zql976dnfjHz1VV0nFdKpaggiCQEGFi/G+899mHih1MRQZIZaL4Q0PQLAB9v+IyMzr+Oa2fzxv3L0je7mp6SZunn4zAXsAEMBbBbIdUpMgWUhG42g5jcJKnVQ0jMXuxe52sunDszj9+gC1c+ZT2tCE0+cnPDJMz9FD6JrKmV3bGe/r4fKPfJKq1rlYHHasdidndu9g/zM/n1qGBVffSO28+cgWK4rNhqaq2D0eNE0DjHPhUDZymTTZRAI1p+IrKWVysA+A8mnNaGqOyOQkQm0VmX/6MvbWVoJ33YW9+cLCEtPbq8RZwqfmf4r+WD8AaS3NTU038b2j3yOt5YMMNEPjGwe+wd2z7+afT32ej9zySXzxYlw2J0VVHr7W/mWGEkN8NHc1hx55NN9OIs6T3/kuN/3l7VTu+CLiukXMvXwTwx1nqJ+/EKcvwMRAL+g63sJiAAzDQDsXLlbZ2sZg+ylGOjuQZJmFV99I14HdjPV0UzNrLulEnPr5izizawe5dL6g2OZyUz1rLvufeozeY0doW7Meu9vD8Nl2Vt7+Z7zw3XsAyCQTYMDk0ACC+NYFUUU1tfhLyhjv66H32BFS0QhVbbMoaWxCUSwXr0NMvxeCIKBrGrl0GkEQ0TUVTdMQRbC5PKRiUQzdyJ//JTHfp7JIQVU11372i6RjUTAM4qFJKlvaqG6bTffh/SQiYcqmTWfWustJRsJkE0lmrllPdGICxWqjbt5CbA4n2XQKXdOIjo7SuGgJoSEDNaeh2GSyae3N5RQF7G4Ff4mDZOT8gk930EZoNInLbyUdz/9eTFtYzOFX+pm9tvK8cX3FjqkifVHOt/nLRrujPP/fx6aCTMb748zfWEPFeh9Wx1sHCJreORI6cy4t4tCrYxzfMwJAaChJ2+pyKpsDBMpsWGwKqViMdCaDKMv4iksQZZndjz3IxED+HOwrKWPZe27j4PNPM3DqOIHyCipb2sgk4qy766McfOFpBk4eY8n1t9B1YC9nD+xFsVmZsWY9g+0nifhETkePcSZ8BgGBoC0I2QTEhmHaenjlHyFQB44AJMNQvQyszl+9Yu4SGDhw4fBI32+3ocbbYdtX4eSTUNgMG/4Zqpf+dm2Z3hal9V4io0n2PtM9NWzobITrPjmXqpYAnQfHsDlkZEUkNpHC7rbg8Finxk1Gs3gL7ZzZO0LjwmJO7xrG7rrwGGZ1ykiyxMHNvbReUs7kSIJcSqOq9cKwnIoWH89N7GDNrGUEXB6Kaupx+HyUNjaRCE8SnxjH6Q/gKynD0DVmrF6HoetsvfcHrL3zblx2F+Hb7sD9mU+iVVZhdbmITYxjc7kZ6e4kHY9SNWMWPUcO4Ckqwe52Y3W68BYWIcoyBZXVyIrCaNdZCqpqsLk9F2Xbm341AQFBFOg/eYzpSy/BMAyS0QhOnz9/3hQEguUujho7uXfnD3nwigdZ9d4mYpNp+k+FmLaohEwih6xISIpIMpojGc3i8JjXjKa3iSAgiBJoKm2XrkcUJbqPHqJt9TpESSQxOYHT4yNYXkn34QNUzZiNKIpkUykc3jQVTQVMDlk4uX0Ib6GdkjrvuWASk+m3l9XOhZDI599za4kcsVf7cK+oQHQpdOx9HVlNE0vn6Dq8l/Lm1vwz3l9SO3suh7vvwS7auL7xegBmFs7k6c6nGUmOUOIsufgrZTKZTCaTyWQymUwmk8lkMplMJpPJZDKZTCaTyWQymUwmk8lkesf85lfjmX47kgLRIURRwNB1cuk0I50d9B8/QiI0iZbNISsKgigSGx8nWF5B2bRm/CVlJKNhDN0gk07RMH8xx7a8xODpE5zcvoXypmZS6QSD8UEOjx2myFmEXba/5SLIikR4OIWkiCy6qi7/6uJz5qyvwu6xIP3CF5MFBAwMxlPjCKKIYejomo6WVcllc6hqjtwvhJAoigXZYkHXDTRVxdB1BEGkpM7B4g0BlMwoaClIjuWDSAQBi2hhLDUGwM7BnYiShIBAKhZhvK+HRGgSXdPQ1RSWurqpeamjo+SGhn7PnWT6dWxOhdnrqtn/YobBs0WcPeTA5rsWf2kbqz/weezeEpbeeBuTQ4MU1eT7SrZYSMXyb0WfvmwlW+/9AUPtp3GcKyYKjw6hZjMU1zcyc91lQD7YRtfy+9Wym++gfc9OXv7et9n6k+8hiAJ1cxdgdTppWrKCPU88gqHrNC25hKoZbTz9b//Kjgd+ei7oQ2DXYw9SO2ceocF+lt/8Ppw+H+vu+iiD7SeZvX4jCAKSIiMIIulEHIfHc24Z8sXGpY3T6D12BID6eYs4+vKLiJJEUW09B59/Cl9JKXaPh5d/8B1iExN07tvNw//0t5zZtZVUeD+v3f+vlNf3cMVf+ji754mpABKA3qP7SEd/y4JP06+k6hrBcg+5jEYsnKFpUcl5xeC+Ygel9V4G44M8cfYJ1NQk5BKw+G4yosxkevKCNuO5OJvqNuV/kC2QnIDNn4ft/w8tl6Ww0oXT3ccz93yOF7/7JTZ/9x+IjbfjLXJQ0TIDDGjfs5MTr22hY+9Olt30ZvjM5EAf6VgEh8fGvqceIxaaYP+zT5w3/31PPoqgC2AYSLKMrqpY7Q4MVUWQZGSLldkbrsivfzaHJEtgGJQ3tVDe1IJhGIiixL5nfs7LP38Q8Qt/T3LvPvRU+iL0gOm3sb5mPUvLlmKR8oU+VslKJBM5bxwDg5yeYzI9yZfa/5ZPDP0ZP8l+i+3xV1hQsoAVBUvo3Lr9vGnKm1qICwGOL/g2yViE0e5Oeo4e4tiWzRRU1eAvLWfLj79DLpOh+ZLViKKEKEkEyitou3QD3qIS5m+6jvUf+iuOvvwCZ3btIDQ0wMHnn+LQC09zZtd2Nn7kb1j9/rtYd9dHueZTnwfDoPvwAZbddCvdh/bTsed1ug/vp+vQflpXrZ1aNlGSOPT805TUN5JPY3vTrLWX5wNI+nt56IufY8uP/pNdj/2Mh774OXoPH7xIvWD6fZoc7CcVjRAeHqT/1DHG+7qRJAlRUjAE0DWVVCxKz5FDnD2wl/DoMKHBAXRVxWKz4SspJZtKcmzLZrqPHKDr0D785ZVIioKsWOnYu4sdD97L7p8/hGSx4i0uRpAkbE4nY33djPd1k0nGcfh9JMMhNC2EzRHn0tsaps4JilVixc2NxMNZ5qyrwmJ7M8SvuMaNr8SBLIssva6e8EiSZTc0MNwZpX5uIdn0m9e/skWkaXEJPUcnAJh3WTWB0gtDIPpPh5m+uJR5l9fQtqocq0Om89AYBeXui9wbpt9Kzw7k8Ck8BXZmramcKmTv2D9K63ILWm6EZDiMJMu4fMH8PZKaIxOPTQWQAISHB9FyOQZOHaewpo65l19N54E9vP7IA7zw3XuYteYyCqpq2H7/j7E4nDQvW0EyEiUZDrPyox8lZElNXZvc1nwbTf4msPth3vvh0P2w7h+hYgFYPWD3wviZX79eziIon3/hcG/F/34bZWLw3GfgyIOQS8HgAbj3Ohg99T+bPpfKh5iEe//38zb91iwOmTN788E6ggB1swuZd1k18XCGYJmL2tkFaJrOgk21DHVEqJjux9B1CipcU22c2jXEok11FFS4WHR1HalYlpblpVOfCwIsva6BZDRDJqGiWCXcfhv+EgdjfTFaV5RNnfoLKl1UNQd5b/mNWJIGajbHrHWXY+g6uqaRjseRrRYWX38zuXSa1x/9Gd2H9jPUfpoFV99IaHgQbDaMTIb4l/4ZfzKLlsmgWC34yyooqq6hsKqGk6+9iiCKyIpC98H9xMZG2XbvD9l27w8Z6+kiOj6Wv5758w9jd5nH5bebiEguk0bXdTr27qL36GF6jx3G4fUDBq5AgPImH99o/ypjqTFSWgp/iZPCSjd2t0ImkQ8d2f5wO6M9Ucb7Yxx9tY+uw2MMdoSYHIr/xmUwmX4XmprDU1BI16H99J04ypndO5AVBS2XQ1dVYqEJLE4nB597mqqZs7E6najZLFa7g0Q4zGRfJ96CGPOvrMHhtRAPm/fqpt9dTs2HkCjS+f/dkzo0Svy1AeK7hjizaztPfv3LpIf7aD9xitDQIM3LV71ley/n9tFXnGJ1ug2XJX9d0OhrBKA91H7xVsRkMplMJpPJZDKZTCaTyWQymUwmk8lkMplMJpPJZDKZTCaTyfSuIL/TC/BHS5RBV5FlhUQmw6s//m8m+vMFV6IksfGjn6Sguo5MIl9kY+g6FocTQRTQcjkM3UAQBGKTEzQvW8Fg+ykqps9AtlhxW9ysqlxFKBOiwF6Aw+L4lYtR1uCj8+Aow50R1v9ZK6lYDptTpu/UJKloDtny5heTRUHEKlnRDA3xXGKJYeiIUv4nTdVAy/3CKsrEJsbY+fB9REZH8BQWs/yWOyiq8hBMn4G9/w0jx99cmLVfQqxfzKzCWQB0RDoQRYm+40fY++SjU6PNvfwqWlauwcic/yV8yfGr19N0cZQ1+rjpc/MJj6SwuRW0nI6a1Slt8JGMZCmsaaOsaRaGlmao4wyiKCJKEt6iYka7zgIQKK/EV1zKjgd/CkDT0hUoNgflTS24AwUY5+ZV2dpG96F9xCcnkGSZxdffQmRkmNM7X8sXxxcXY+g6smLBX1bOrkd/BsDCa24kFYuw69EHKK6tx+n1M9rTxZFXXmTxde/hwLNPsvoDd5GOx1n9vrsQBIH1H/oYOx+6j3lXXsNQR/5N87LFSioaJVCeL8o0dB3D0PGXVDDW2w1A/byF7H3yMRAEimpq2fHgvQTKKxAlmV2P/YyWFZfSsW83oaEBRrs7L9ieicnxi9thf4oUDUPXsTpkREnk2OsDLL+xkWxaQxQFEKDryDjJtjgYYFVskI7A7v8k1riCVZWr2NK3Zao5WZCpdFVS7Cw+N8SAAz9+83NFRtPDvPKDe9DOhTJlkgle/M+v4y/9v4z39VDVNpuBU8fJJBO0rFhDNp2mqKYuv08IApKs8MRXvsji628hm0qCYfziGuUDoHSNY69upuvgPgAEQeTSD34ILxAdH8XmdrP85jsIVFSRSSZIRMLYnPmikEQ4lH+LOAaTA308/Z/3cPWdH0RyuTC9O9hlO3OK56BICs90PkMilyBoCzKRnpgaRxIkZOH8y7Tl5cv5+r6vYxgGX136rwwHRvGXllE2bTqKzY4kKzz77Xumxm++ZDUVzTOobpvDiddeoWPP6wD0HT/CoutuprSpmdXvvws1m+XZb30dDIOa2fOw2B3M33Qt8clJDm9+llQsSv+JYyy54RYOvfgMrSvX8tx/fJ0rPvZpLHY7JY3TmRwcYPaGKxk8c4pULEpBZRWuYAEnX9tCy4o1JCIRyqe3otiLuezuv6NjzysYhsbsDVdS3twKwODpk1NBVm/Y8eC9VDTPwOq8MOTB9O4Rn5xkcqCP1x95gEwyAYDd7eGqT/4dFouNaDbL4RefyZ/DS8t58T//fWraK/7q06TjcXqPHWbhVdfTc+wwGAYF5ZUU1zXSe/zw1LEwPjmBxWZHsMoYusbz3/4GsYl8uJ1ssXLZhz/OWHcX+55+HF3VaFq6kkvvuI5kxIqkiLgCVrScjmgR2Xh3G5HxNIpFwuHNB/OVT/ej5zRmr60kNJxk+tJSXD4Fu8tCdWuQTErF7lbIZXRW3DINl99KsNyFy2+7YJsEy5yc3jVEZDSFw2Nh/uU1DLaHEGUzA/JdJxNnfFzg5RetjPd3Y3XIzF5XRfueEeyuLCNdnZzdt5ueIwcprK6jqLae0oZGfMWlnNz+6oXNJeJUtc2macklnNqxFXeggOnLVnHg2Z+z5Uf/xcaPfYolN74Xu8fL9gd+TDISBqBh6XKm3XgF3tJFTA9MZ0bBDAL2QL7RYD0suBO2/l+oWQ4V80HNwNgpKJ/zq9fN5oGNX4EHbob4aD4tYvknoGTm/347Rfrh7MvnD8ulYKIdiqb/+mknu+DlL8GJx8HihrX/B2beBFYz/OFiE0UBiy1/PbH4mno6D47ReWgMxSaRjGSQLSKKVSZY4WTj3W2kYjmC5S5KGnykY1nUnI6vyEF0IoXdreAJWnF4rJQ0+KhqC5KO5fAU2FAsEmpWJ1juQhQFNNVAEMBiU+g/NcG8y2sASMayJCbPMvLE05ydnCBQVsGqO+6keuYchtvP0H34APuf+TnXfPrz7H/qcVbc+kH6jh9BzWVA1yisrEbTVESPB2XNpeze/Rrdp47l11WSWP8XHyOTTlEzaw5D7WeIjo5S1TaLbff9cGqb9B49xMrbPsieJx7hio996m3vExMYggEIVLfNYeDkMTKpJC2XXEoqmg/l01IZRntSWCUrqypXUWgvBMDutlBY5Wa0O8b+53ponF/MaHcUxSYxfXEp0fE0qe4sNpdCz9EJGuYX4w5ceI42mX5XOT1NPDRBy4o19B47jL+kjLKmFgwBtFyO2tnzkRUrDp8Xq82BxeZAUhTGB/rwFhZhdThJhCcQJCvJiER8Mk15kx9vgfnc0/Tby2o6ggCyeH7opxrKAKCF0hza+Qy+klJKy4rpHIlQNq2Z6ctWXNDW4+2P85V9X6ElW0n1/hzGnfn/p2j050NIOsIdXFJxycVfKZPJZDKZTCaTyWQymUwmk8lkMplMJpPJZDKZTCaTyWQymUwm0zvGDCG5aAwobsFqtzA52DcVQAKgaxq7H3+IjR/5JLlUEpcvQHh0BJvLRS6TwWJ3oOs6kqyAoWN1eqlsnYkkK8QmxilsaCBgDTC7cDYtgZbfuCSaZnD2wBhnD4ydN7y6NUhkTKWgwoliVVBEhUg2QigdYo67AUMAUZIRJBBEEUEA/ReK5dVsli0//m/S8RgA0bERXvn+d7j605+H1Mj5ASQA2/8Na8MTlDnL+MKSL+BK2vCk/cyoW0XxnfU8/5N7ULMZDjz/FDWz56GFI1OTWltbsbW1/TYdYfodZFWds5ksXVqaQlUn6LaiGyIun5XySheiICBLQQCKar5EuK8DWbqJQy9tRrHli30aFy5h31OPAdC2ZgOTg/28+uP/QlIU5lx2JQ0LlhKoqCRYXsXJHa8CMOeyTRx+8VnioQmsDieVM2aSjsdZcesHMAyDvhNHAWhYsISRsx2UVDSwaOX1FDU2kJtIsmb9nehumIwPo1ht7Hn8ISpa2jj68gssv/l97Hzkfmat24jT6+OyD/81mWSCy+7+ONvu+yGljdPpPLiPdDyGO1hAMhymZtY8IP97oGvquYKRMAD18xZx4LknAfCVlHFi2ytkU0kqWtpo373jvO1ZUl1/UfvrT5GUsyBbJYRkjlxSJTyc5MzukfPGmbawmNdGtnJHy23Yjr8IjRugYR2yaOWDMz6IVbKyuWczFa4KPj7v41hl65sTp2PntSVIMpNDI1MBJG/IJBKEhgeRFQvj4z0U1dSin3uju93jobC2ntHuTmasXodssZBJJrG5XIx0ncXpD5AITU615fIHSYQmporuIR9M8voj93P1J/8eMPAWFqPmcpQ1NtF1aD+ZZByb04koy7TMWonT8FJ1WQun6nby2mM/JlNciLXB3P/ebWYUzOCe1fdwbPwYs4tm88+7/5lIJoJNsvHZhZ8lZ+RwKS4EBO5su5OZBTORRZmUmuKJ3qf5y+tu4dRzL/L6Iw8AUDd3IbPWXc7hzc8BcPK1LSy98Va8JSXseOin583bYrPx+L98gTmXX0XfudCHhoVLAHjt/h9R2dpGZetM1t75YY5ve4WuA3sBCFZUceSl586FpznY99TjzFyzgUwizo4H70XN5gucdE1l9oYrWfW+DyHJXhRbCZoeY8cjk8g2iav/6iMUVrkRhDcLpHKZC98Ankkl0DT1guGmd5dkNMxwZweeYBFr7/oQdsOBZjEYG+rBgUgmkWCks4OlN97KzofvO2/adCyGw+dj2pLlhAb6KalrRFJkDr34DMtuvoMDz/x8atyCqhrS8RhGSQGR4yenAkgg/0b6+MQkux9/aGrYqR1b8BaXUT1rPU6/hUDxm4EHZ0728upPO87LgZp5aQV2twKCgM2h4ApYCQ0mKFrixV/q4sT2AZ7/z2NT4xfVeLj8L2ZcsD0SkQzbH2rHMAyal5WSSajseaaLjR9qQ7FIv8umNl0EmZTKq69YGO9PUNbow1/ioPPgGI0Li/EWTHBm1yl6jhwEQBAFUtEIx159menLVlDR3Hre+RpAsTlYecMHsCat1FwxA81p8Pz932T2hit57f4fMXD6BLsfexDZYmX5LXew/Wc/Qc1k6Ni5ncY1q5k1Y9GFC1k8A/r2wJIPQ/drsPUr4CqB2bdCqBf8Vb96BcvnwZ2vQKgnH0pS0AiK/X+/oRRHPjQkc/610a8NEsmlYfAAdL2Wn+/iu2HXd+CZT0CwAepW/u+Xw/S/YrHJLNxUy6HNvQx1RvAW2fEWO+g5Os5rD7az+Jo6tvz0NDMvraCoxkMmpRI6NsGhl/rebESAjR9qIzqRJptWsYWzOL1W9vAktxCDoRRnWzdxcPw0S25cSe+RSfwlLlLRLLpuMNIVY6Qrv9/M3eDhtfv+39T1wuRgP5v/+1usu+ujSIrCRH8v1bPmEh4eZta6y9l27w9oXbUGT0ERmWQSwwADHcFmI9PSRPfTj0wtpq5p7Hz4fi557/uY6O+loKqa0Z4uoqNj3PHpbyCnJTJCmv07nmCo4zTJSJjJ/j5c/sDb2icmEAyQZIno+ChFtXW/cN/kRtN11FQCyeJiY91G7mi+47z7M5tTAQFki4ivxEH7vhE23DWD1352hmQ0m29fFFh6fT1Ht/Sx+NqGfDjl/4KhG6iTaYyMhuS3IjmUqc/UcIbcSAIBkIudyD7rr27I9EdLzGaxOlxouQwVza2Iokh0fAR3IIggigQrqomOj+H0+XEGguiqyskdr+IpKCCTSFBUU4usWHA4Ewx2CFjtNqyOxEULIdGiGbRoFtGlIPvyz+rUyRS50SSCJCIXO5A95r78hy6r6Vgk8bx7bAB1Mn+fnQ0nGDpzijmXX0WVpYZ+bYybP3sbgnh+SOJAfIB/2vVPLC5dzF/K17LlpW8z3ttNYXUtXquXInsRHeGOt229TCaTyWQymUwmk8lkMplMJpPJZDKZTCaTyWQymUwmk8lkMplM7wwzhORikawwdhp75wtkkhcWG8Ymxslm0oiygmy1IooSAgIIIlaXCwwDi82Or7iUZCya/8wwsDodSAhcP+368wvlf41guQu7WyEVy00N8xbZGe2N0bF3lLJGL4HSfCHH9499n6H4EFevXocoyWi5GGM9XeiaSlFtA1aHa6qNVCwyFUDyhnQiTjI8CcovFQwLApmay/EmihBkgSusa8n2R9D1NJIhUmqp5dZPfo0ff/mjYBhk02nK//0eYs89j7W5Gecly1GKiv4XHWD6fTjcNYFjNM3KiSxKuYKMRi6loenQmYiS0gxcARvFNgsOtxtvUS3u8Bkqr7uElKuOk9u3IogimqoiiCIuf5CjL7+AIIpc8t73c/C5J9n/9BOs/sBfUFXZSkP9As6e2ou3qBTD0AFYcsMtnHhtC82zV2BzOfCXV1BbO4clV9yMxbCg6BaSzw9iLygg8+I4ucEESokD99wiXLKbG//s/5Bz5pgMDeH0Beg8tI9lN97Kniceoe3SdZw9sBdRkqhsnsHsyzZRUj+Nqz/590z297Hmz+5mzxOPYLHb8RQWMdxxhuq22fQeO4LD4wU4Fxgko+Vy6OeCKUa7ztK4cAmx8TGGz55BkmVmbbgSX3HpO9aXf6xsmpOu4xNUNgfIpFSaFpcw2nP+camyzc/6kvUsdFaD5ygkJ8BTRtAeYCQ5yi3TbuHW6bciCiK6oZPJZRhJjFDsLAa7H9Z+CcrmQCpEOmWQTVkRJQld06bmYbHbyWWzSJLEL5Z7qLkcbpud6hkzKaispqi6lmwmg9XlIjwyzNFXXmD5zXdwasdWhs+2U9owjRW3fpCJgV5+WTISJhkJs+WH/4XN5WbDX36c8NgoGAa+ojIqq1oJFlSQ642j57IIAkwvXkzgL8qxFTkvKCwxvTtUe6up9lYDMLNwJqOJUfw2P1k1i2qofHftdwGwiBYwYFPtJh5qfwhN1xjq7qDr0JvF792H97Py9j+jsKaOse5OgDf3UyF/HQFgdTiJhyaZuWYDxbX1nHn9NQCKa+vZ8eC9tK3ZQDISZudD+bCIhdfeRNvqtcRCk1S0tHHkpecB0LJZBk4dw1NYiK+oZKqgOFhZTUn9NF5/+D6al69C08YJlueobK3CHXRSVO3Er59BiJaCt3xq+csapyOIIoauTw2bv/HqqeOt6d1LtljRVJVr3/u3GJEcRk5HkiQq3NOxqmexOPIFlb943HyDMxDA5vYw0nEaw9ARRJHwyDCzN2zi7P49OHx+wsOD+ErKWHzde9A0lSO5boomI+e14w4WMtp99oL2O/a8xoKrrkbXZELDCUBHz6nYdAeVzX5ioQzRsTSaqnP2wCiz1lRhdcg4/VYmBxIU13qQZYnYZJqdj+XbX7CphtI6H6lElonhOC6/jWxaJTqWQpQENM2gYrof2SLReWgUm9PCwitrUXM64dFk/tcRUCwSTq9Z8PlOi0YlJgbTLLuxgZ5jE3QeGqO03kdBuRNDn5gKIAEY6+6iackl7Hjwpyy69iYyiTjNy1fng/QMg7ZLN1BfNRe1NwGGjpbIkTo6xjW3f4ZIepyr3v9ZvNWlNDUtw8ipDPSfYvrSFRzbshmAVCqOpmtI4i/dP7qL86Ed7S/A+BlY8wWIDUI6BGMnwVMG0q+5tfdV5v/8LvzVsO4f4emPvzmsYT0UtZ4/3ugpGDuVDzqRrHDvNVPnHwoaYeFdsPu7MHzEDCG5yNLJHKlYFneBjUVX19F3MkTvsQmqZgS55KZGEtEswTIHV/3VbKITKaw2GS2rc/Rg/1Qb/lIHbasqsDplAhYHo70xug6P07KsjCXKJiZtp/FkdlLf/jLlJbPoye2kYl4ZTilAImphpCtKoMzJ5GACAEOLTF0vvCE2MU4yEkaU8/t9eVMLiALjvb20rVnPxEA/Npcb2WJhpLODkoYmfP/x74ycbb9gnRWLlfLS6ZQHmkARyM5LYtccJA+PIVW4sefsrFz1PgaTZxnt+vHUPE1vL0MAEDCMN68LdE3FYnciyQrpXJRAUYqr/Vcznhyn2FmMQ3GgJXM4ohnqXTIN729GciuUF7cQTmSnAkggHyLSsW8Uu1shEc7gDtgwDIPceBIjpSN5LcheK1o8ixbPIbpkjLSOnswhuixkzkwSeaYLI6ejlDkJ3NSEUuIkN5pk/EfH0Cbz+7AUtBG8vQU9kUOLZJD9NpQyJ6LVfNT6x060OrG5XISHY0hKvr8FUcrfcwsChq6x8+F7WXLDrQB0H9pP+fRW7C4X0bERJgf7qambjTwkMn+aH8Emg11Bi2WR3JbfOH8tmkHPaBiajiEJiIIAOkg+K3pGQwulEW0yctBOtjvCxM9Oo8eyiE4F/03TkDwWxr9/DD2ef04slzsJ3toMqkFuKA6SiKXUiRz8LULLTO+YrJoPIfllejLfzyNDXWiqSkXzDNwDMvGs9pbPie49cS8GBv+47B9xZmS28G26Dx+gsLoWgAZ/A+2hC8/BJpPJZDKZTCaTyWQymUwmk8lkMplMJpPJZDKZTCaTyWQymUymPy5/EN+MFwShEvgJUALowH8ZhnHPO7tUv4EggrcS+ndTVHXrBR9PX7aCdCyKYrMhyTIOrxcQEEQRxZIvRtQNHdnuQE5nsDoc6JqGbLGCwXkBJIOhJOPxDOGUil0RKXFbqSx4MywkUOrk8g+18frjZxntjlE2zUfj/CJeve80oihMvRVWERX6Y/mCoyFtDEcqx8vf/zbZVAoAUZLY+NFPTbXrChRcUIgviCJutwNs1fnCs1x+2tDyb3EyshDpeJqmVh9GSiXbHcVS4QZBIDeUwO7xU9Uyk5Ges0hKIbGiYkr/adnvqUNM/1sT8QzVo1lyT/cgNvhA1YnuHcG5sASxE9yHRymaWYhSC9l4lFiBndhkhlRyGRZvjgpXJ7d85A4iORvTliyn98ghsqkk/pJyVl7zfgAu2XQHXnchtqSD+H392KvcLJixiexAnKo7/hHJIoEsULuslfTRSdyrKoi/OIDcZEcIa0gBSBwZQE9rCIpEbjCB6FKwzywk8mw3AHKhHceSUkRrGe62EurmLcJAZvUHK1AsUFLfTGRsCJc/SHR8lMjoELLFis3tRrYoLLnxFjCgum0OI50d+EvLCFZWk4rHaFy0jDO7tjNzzWXse/pxZMubxSI7HrqPxoVLaVl5Ke5gIdsf+DHl05rxl5S9/Z35Ryw5rlLZFCA+mcbikAmUOVm4qZbDL/chKSILrqildkYh0+1lMNEB7hLw1YCrmCPjR/Hb/OgRicRkDqtdwVWk4LK76In15ENIPJWQjkDPdvDVYgg52vdnWXT9nex+9PvomoqsWFh7519hc9nIptIMd7YTn5ygpGEaJXWN5wrqfCg2O7HJCQoqqwmWVeD0+VEzGbb+9PvUzZnPwqtvQFfVc28DNxAEcSqMB6CsqYWzB/YAkI7HOLHtFRZcfRN2p5cyqR5jSEWXsmT7YyjFTgzdINMdoWzhNMSq377I/dhghM3HR5iIZ7h6Tjkuq8R4LItNEanw2yj1OX/XbjQBhHopz0Qod1eBM8ih0UOcmDjBk2efRBAErq6/mumB6ayuWM1D7Q9xS9MtDP7w2anJq2bMomrGLHoOH6Souo6W5avo2LsLT2ExWkajaclyTu/Mh43omkZhVQ0ntr3C2X17mLZkGQeefRI1l0Ox2rC7PRx9+QUAFl17EwOnTrDn8YcQZZk1H/wQ6/78w8RDk4z39dCwYAkntr7MJbe8b2pZpi1ayvGtLzNj9Xpef+R+bC43rkCQ1pVrqW2uJ9Z/iN7BCQodWTxzNkGgBoDi+gZu+Ow/sOvxh0nGYsxZPItG4TBMtOaL703vWu6CQi7ZeCv6QA49lEF0K+gZDX0yhTJvBoXRZ6mZPR/D0FFsdnLp1NS0FocDLZMhFYvhChaQDIUoqqnH0FRKG6YxY/U60rEohm6QCIcJ1NXQPrmdmmlz4fk3lyEVjRAouzBkobiugehYjpd+dITJwST+EgetK8qJjCYpbfQzLWAlm9aQFYlcRiVY7kKWBbJZlUCpg8JKNwCaqpNNq1z98dkc3TrAged68RbZWXRVHeGRBLuf7MLpsyJbRHwlDorrPAycDtOyvBwMg+h4CqffylP/foi2VRUoNglN1bHYJKpbC7D/DwpOTb9f6XiOgfYQsiIxe10VB1/oJVDqpG1VBbpmEBpJUtHox19aRiqaD70xDJ2OvbtY9xcfQ9c1dE2jtHEarSsuxSX7sYlOkrtGSB+fAAPkIgeOWYUk94/inlOA0+kgtX0C99pq9ESOaQ2LqZzWxrEtm3EHi0g5BboiXTT43+KYV9QMmz8PS/8KXv0y1F8KJW0weAAcQaiYf/E3WttNUDITUiFQbPlrqtETsHsruMuguBV+dkv+c4DC6bD4w/D6t/I/j7dD2435f3vK33IWpt+doRsMng2TS6skIzkOb+ljwcYanF6FeRurGeuNM9QZZeDUJHMuq2bHIycJlDpYuKkOu1fG6pApriukdXk5mqoTn8zw8o9OER1PUVjlYuGmOgbbw9jdChGpFkGspdCbo+Sp62na9G+Q6Iahx0lMdKIv+RolDXUcfXWAgZNhHF7XBcsrW6zYPR6S0QiyYkFTc5zdt5uCymrsLjfBiioyyQSGrqPYbCTCkwiBIAUzZp4XshYoq+KGu/4PYkpAkGUyJ0M4W4PEXx9CkCWiL/aglDmxNQcpL5rGvPVXU1hV+zb3jgnAwEAURRxuP4rNiqQo5FIpJEUBDHY9/jNKpjXxZfkBrqq/Cqtspa2gjcSeYbRQBj2nYS13ocVzuDDwB+1UfriN9q4opw+NomtQXuOhqs6NnsmR6k1jhHNEXuhGm0xjawvinFdC+MmzCJKIY04hsVf6MHI63o21RJ7tmlrW3GCC8LOdBG9rIXlkbCqARLBIOOYXk+2LoY4mSR4cRY/n8F5eg2t5OcJbBAGY/nio6EiKgsVux+pwYBgGkqwgCAKCAIlohN4jBympn0njojUI0h7sLhcv/ue/o2saC9Zdh7w/h7PFjx7OgayCmiI5nEAqdBDVdSZkEO0y6ZyO2yZT67WjjiXJ9cWJvtyLnlbxrK8GVSe2tR9D1fHfOI3o5l60yTRIAoFbphN+rB09mQ/M1VMqme4Ist+Gc34JyaNjaBNp1IEE6nCSyQdPY2Tyz3glr4WCD85AKTbv9/9QZFUdi3zhscdI5/t/YqIPgNLGJjwTw8QzKrpuTP2/AICmazzX9RwrKlZQ4iwBJxRU1dB9eD8LrroegHpfPQ+dfuitg/NMJpPJZDKZTCaTyWQymUwmk8lkMplMJpPJZDKZTCaTyWQymUx/NP4gQkgAFfgbwzAOCILgBvYLgrDZMIwT7/SC/UqCCDYPdL1GZeFhLrv7r9n+wE9IRiO0rlxDy4rLSUZGMAwDxe7ALUpYnPkvdmvZLIIAsixjsVqRCwsREBBlCcMw4Be+HByKpxmIpDnaHyaj6thkiWSRE0EUqAi8+UXx0nofS66rp/vQOKM9MV75ySkAWleU4ynMv52+2lPNsrJl7BjcwZlUF4WnolMBJJAvWj62ZTP1CxYjyzKlDY0se8/tvHb/j6bGWf6e2yiyJfKFQDfdCzu+gSZaGLGvQknnAAN70EHubBilyIlgERFkCUulG0ERmXfZdeR0ePW+YWrachRUOFEsfyi76R8XOZkj82o+lMZa5yX6Yg+Sx4Igi8R3DmJr8qOnVCIPn8G1tAy1K4p4apKipWWICQuxvipc09xYJhKUzG2CFXegZzRmlVxKcuswnnXVxLb34VjuIrq5B8EmYWvwE3m6C3tbAdrJGOnBOI75xSR3DONeVUH0+R4Q8wU/6VMh3Je60OM5JK8FLZIvBnLMKiS+fSC/3A0+lGIH0We6QDNQat2oc2R6ug5TVFdPKqbj8hdTWFOGbBHRNAeCkCGXSdB5YA9F1bXse/pxVr/vz9n12M9Yecefk4pHqGqbhaQo2BxOwiPDWOwOAhWVjPf1sebP/pKdD99PLp2moWUhZcXTGBvoIlhUQXhk9B3rzz9WFkUhnVCJh7J0vNSPxS4xc3UlG+9uw1fkxOH5haJuyZYPFRFl+uP99GaHqUo1cejHE2SSKpCjcrGLujUiTvu542c2Cs4CKG4DNUXQHQdEOg8FWHLT36FrcSw2H+XT6olO9BAbH2fGyrUo9vwbg3VN49ALTzPUfpp5V1xD4FwR5eUf+RvCI0OUNzUzcPokZ/fvoffYEa79zBfIpgUy6SCXf+STbL33eyRCk1S0tDFj1Vpe+M6b+VvjvV1gOAg6LcQf66bgL2eRm0hibw2ihbOg69jqvRhpDZvL/Vtt39PDMd73/d3kNIO7V9YzHE4xEsvQH0ry1OEh/nJVPSubgjQWeX/LHjSh5eDUM/D0xyEbh3X/CG030x3p5l/2/MvUaMfGj/HPy/+ZeYXz+Picj+OaKKKgYjr9x49isTson97K9p/9BABfSRkFVdUU1TUwOThIsGIG1bOvoLRhOp0H91La0ITd46X/5DEA0vE4czdejc3hwl9axnhv91Q7iVBoaryFV91AaGgIX0kpdrcbq9NF1YzZ5FIpctksFrudbCqFrutMX7aSfU8/xuLrbiaTjOMvLcdTUMTY0AC7n3iO6NgIvqJiri2ZS+BcCIkoSlRpJymrOY1m9WPt/Jd8IbtVhkv/9m3rEtP/XnFNHemuEDn7ueA6S74YTS5yoKdzuNQIq1e3MpDwsOaDH+L1Rx8gMjJMRUsbFocTPZvBV1JKOhbH6nRyePOzzN90Lb7ScvqPHcHmdmPoBt6iYr49/BOe636e/oIebn/fHRx57Ofk0mlmrr2MqrbZFOzcOrUP21xuZq3bxFPfPEIqln8DeGg4yb5nu2laVEI2pbL7qUEa5hYRD2WIjqdw+cNoqo7NqdCyvJREJI3Ta8Plt3L5X7Sx//ke+k+FqJ1VQGGlm9BwAk3VKan1sPe5bjIJFatTZsXN0yhp8JCJqfSenCQRyVI2zU8inGXHox0svroOEMilNXpPTNK0qOSd6Lo/acOdYSYH47j8NjwFdoprPUiKyJ6nukCA1kvKKKoqZOE17+GZe/7vVHiOIIr4SqeRjAjYPf047D7sw1a0gQTR4TEkl4J7Qw1kNBBALnagHp9AUmRCL3bj3VBD5LkufFc3oEYz2EUPszdswlc2H5seYDDR99YhJMEGqF8DE+0w9w4YPQVDhyHYCIcfALsfgvUXd6ONHIfubRAfg5plkInDyDEI9ULHSxAfhXkfgO3/lh9/7BQ0bwLJAlo2P0xXoWIRVCy4uMv6J2xiIE5sIk02pbLjkQ5mr6sknchi6AIvfu84alaneVkpCzbVEptIs+z6Brbef5qXfniCK+5u45L3TCObypEIZUjFc+x5qovcuaL0sd44rz3YzoIraxg4HeLU68MAyIrIZR98iurIFshEYM9/s/+6f+fD2y4HYGn9cubMno9QMZeWTRs58dSbQWoLb7uVTssolUUlrHzfnRiaRt+xw8zZcAXxcAhZsbD/mSeYc9mVWOwO1EwGQRDwlZSx7sOfZMdP/5tkJMzld3wcSZQRnDLx7QMIsoiR1rA3B9EmUliuqgcREjsHkQvslMt1iCkRzPr6t51dlJEUC+6CQkQ5f81gd3uRFAUDg/7jRxElidZlrXz3yHdpCjShhtLEtvbhWlKGZLFiGJA6MoZ9eoDolj6cMwtpdMlMW1eFFLAT39KH+mIIy/UN6EmV0KPtoOUDa2SvjcmfncZIqXjWVRN9sQfyH6GfK9Z/g6CIKEVOMp1hRIeMbZqfTHcUz4ZqYlv70aNZBLuMZ2UF8d1DRF7owdYSRPJYEa1mcf4fKykHitWKt6gYg/x9jGHoSBYLgiDy8ve+CUBoqJut97Yz74pFHH3pyakQ54qS6djwkumOoJS7yJwIIVhElEIHkWe6sNZ4qGoOgCKhxrIohXayk1nU8RSRZ94MyUGH6OZeAGzNARKvD+UDSAA0g9xgHEMzcK0oR5BFlGIHqdMh4lv6QRZxLysj0xXBUHUSh0YxMhqSz4pS5kQdTZE+EzJDSP6A5DQd5S0CkPR0fr+LJSexOpzY3R7ctgkMAxJZFbdNmRr3wOgBJtITXF57+dSwmllzOfjck2TTKSw2Ow2+BjJahoH4AFWeqou/YiaTyWQymUwmk8lkMplMJpPJZDKZTCaTyWQymUwmk8lkMplMpnfEH0S6g2EYQ8DQuX/HBEE4CZQD794QEkmGbAqKmlE6X6HVuo+az/8dqqrjEhIMxFwY+jCK1YbNoeIoq0RXcyAKKIqVZDyGJCtY7A4QBERBOPcmVfG8NxSOxjKMRdMEHBaqgk6ODUZ49dQY4aocgihQ7nNMjVtc4yWbVOk/HcLhsdC0uITWS8qm2rMrdv5m/t+Q3pXmuZ7neU9q9gWrlY7HQNfPraLCnMuupLyphejYKJ6iYopscaRsGDQVRBFW/x1ppQKhX0aUVARRBHSQBKwNXsKPd6BF8gVptuYAhSsbuO/rh9ByOu37Rpm1tpLCSs/F6iXTr6FoYGTzX1Q31HyfW+t9pE5OAGCp8hDd3IPoVECA9KlJbC1B1OEEmc4I3strmXy4Czlgx9rgI/HsWTzrq0m8MoB9ViGJPcPoiRxGLt+2vSVIYv9Ift4lTqKbe7C1BMicOfcmdVHAyGpYKt3kBuP5YZqBYBHRolnkYD70QbBKU295fSM8BcAxuxDJayW9K0RT+Txku4s0MTLJCINd+7F7fNj8AdKxJKrqYebaWwiNJFl6cyOIORZcfQuHnn+KipY2nv+Pb3DJLe/jtQd+zOz1V9B/6gQ2l4tlN95KLDLJ5R/+BAF7KYlHeonHurEjMG/aBqg19+Xft3RCJTaeYt+z3VPDXvrRCTbc2UpZg//8kQ1AccKZZ4k6XFxSeSmnfxI9F0ACoihgU51YQz78BhgH7kMoaIDEWL64t/d13NXLWH/b1zjw6iTHt4cprQ8yb10pnpf+Amb8OVRUgaGTjMXIpRNYHW6W3nArT3ztn9j/zM+59jNfQFc1vEXFeIuKKaisZqSzg2w6TWFVNcGKKsZ6o6hpg0ymhnV3fRFJVlGzEzz5tS9jGPrU6lTPnINOAuLK1AqKkkT02a6pUB5row/n4tL/9XaNp1UO9oV49fQYX9jUigEc7gvjsMrMqvTSUORibXMRxwajdI+n8NttFLit+aUwDAZCKTTDoMxnf8siGNMvGD0Jj3wADB0W3w2v/weUz+fFnhcvGHVz92aa/c2IKYXDj4/TtKiVQPluimrrOLn91fxIgsDs9RvZ+tMfTO0vdvfzrPvQpxjvClPa2ERhTT1j3Z1T7Z54bQvr7voINqeHGZeuJzI6Agf2UtowjdKm6VS1zcJis2NzOsnlcudmI5DLZBjpbGfJje8lPDLM+rs+Rs/RQzg8XjLJJG2r19N38iiz122k69B+RrvOEiivZPb6jZzetZ2Rs+10n+nC3TifVDSKms0QDVlwlawicOqH+QASgPYX4JJPgGK7qF1h+t0IkoTkUohv6UOLnru2awngXFaG3vxeAiMvE9DOQMvV1M7+GslEHCOnkghPko7H0DWdyNgwnmAhbZduYOdD97Pxo5/E6nCQSSTxFBaieF08d+x5AHaO7+a0rYNr77iCTTVXUFsxHUEUue5zX2S8txtNzRGsqCI1oU4FkLwhHc+hWCV6jk3gL3YgySId+0aYd3kN+57tZuGmWvY81YVik6mZGSQ8kkJSRKxOhf5TIZbf1AAIpGI5BEng2NZ+amcVkknkzyeZhMqr957m0jums/1n7TQtLsHqUOg7PoGnwEZoOEk2pYFhkErkGOuN07ig+LxrfNPFNzGYQFMNYpNpJEWisMqdDyAB5l9eQ9fhcYprPGTTxay58/OomXF03YI7WM7+Z8cpb/JTWu/DawTRfRqWAieOeQJqOINokYm83Ju/zhXAvaoCJAH79ACZ7iioBnosi2iTMTSdyubL2Pzjs8y/3k1haeFbL7BigyUfhte/DTYvNF0OAwdgvB1ECcbPXNwQkvF2eOEzMHwM1n0JXvhbKGqGhnXQcg3IFhBliA2fP11yEqyu/N+iDJWLYf6fgdsM3rlYktEsuYxGKpZD1w2Kqj3EQxm2P3wGjHzAjqSIRMfTqFkdUVJZfXsTOx89S2QszVhvFG+hg1xWI5NUpwJI3hAdTyEIwlQACYCa09n6cC833FqNQ++Akhk8Mrxj6vOdI9vZObKdU9k1tDU3s6rlE6TDUYaVMJ2+JP+67wt8qfqTeAbSlDVOZ+2ff5h4OExxXQMHn3uKmWsvQ5Jkdj/+EDNWrSV0YJD23TtoWLSMSz/011isNjzuIjBAj2RRChwIcj68Mv5KH7m+GJAPBfJuqsNIquiaQbo/SsgCRR7729M5prxMCtliweH1IIgSopi/XxBEEdHInwudM+qockcBGIgPMK6lEW0yWiSLXOYkfWoSe0uQ6OYevBtrSewexjrNj2yTSewcJNsdxbO2Cj2poo6npgJIIB8sYqTy52xD06cCSIBzz93e5NlQQ2xr31TQqa05gOfyGmJb+tDPXe8YKZXI5h48a6oQJIHYq/3kBmLYZxXhmF2I7LdhqDrqZApDM5ADdsQ3nlvIwlR4m+kPR04TUex2LHY7ICAIAhgGoighO5xYrPl748qW2ex6KsnAaQepWGRqesEQEKwSSokTAYFsTxTP+nwgjmCXsdZ6UcfTZDojCFYRcl50u4IWSr/Zhl1Gi2amflZKncRe6btgWT0baoi91DP1nMzeVoCtNUj6+ASxrf141leT7YmiTaRxr6pET+bI9kaxVLoRXcp5belZDXUihSAKyEE7RlY39+F3kayqY5HfIoQkpYIkkFDDeAqLEAQBty3/X0Kx9PkhJHuG9yAKIkvLlk4Nq5k1l31PPUbf8aPUz1tIvS9/vdkR7jBDSEwmk8lkMplMJpPJZDKZTCaTyWQymUwmk8lkMplMJpPJZDKZ/oj9QYSQ/CJBEGqAOcDud3hRfj1RyRdiuYshHQKLA6digBaBbV8lWn0PTpeCpFiwub2k41HS8Ti6rmGx2bF7vAiyjMWWL4bRDQ0BAVGSzyuKUDUDv9OCwyLxDz8/htOm0FTi5gfbuzg1FOVv1jchnxtfFAWqZxRQWu9DzWnY3Zb8F+V/QaO/kW+t+RbDyWEoGOfYK+cXQc9cexmyxTL1s2K1UT69hfLpLfkBPbvyb7pGAC0DahosIpIkIkoiAgaCCrLPSmLH0FQACUD65CTy9AD6ueIQp9eKYvuD20X/aAhOCXlOEbndwwjnvsSuxbNIHitaKJMv1iFf6JDtzRd1WcqcRF/qRfJayY0lQTWwtwaJbes/VyCR7285aCN1eCw/nze+IC8KcC7s5I229VgOyWcjN5xEEAUQQJ1M45hVSKYjTPLQKO5VlURf6iE7GMe5qITccAJLtYdsX3QqREXyWxHsMrGt/SilTixeO7GHerE1+bEXBrD21GGd5sNi85Ajg+K1kR6M4LZbUYoCJCfD4Csm+J5qMvEsV3/qa4hShiv/5vPsfuQ+WletYdu9P6Dv5DF2P/4gFdNmsKLiRvRfKHrWzyRxzyq7uJ32J8jps7L/ue7zBxow0hWlYV7x+cNzMZBEOPU0pVULGSi9klD/uZADARZfW8/pXcO0f3sExSqxbF090wrtKC99AULn5nH6WYqGj7L2xgfIvGchVjGJ/JONqO5y+iZh3zPfYfnNt2N3e7C7XOi6jiCIzLh0PYdeeJpkJIynqBhD1xFEEafPT93cBectpqbq6IYBBkTGJWSLjLfAwYJrbmD/04+jqSoNCxbTuGgZ3ftfp23GGuxtBST2DkPOmAogAci0h7HPLMBQ9Td/1/4HnjkyyGceO8qiGj+SKLCjY5yFtQFeOTXK4wf6uWtlHf/1Whd/ubIep0XildOj3DS/klAyy0N7+/jGS+3kNJ3bFlVz18o6ynxmYeevFOrKB5AA2DwQ6YNtX8dTWXPBqB6rB/vAIS6TangsnOHgixmmL/kzSutFhttPA1DaMI3uIwfPC6yZvWETL3z7/5JJJCiorMZfWoanqBhPYRHpeIxL3vsBsskUuqriKy7BX1pO/8lj1M1fxOkd23B4fdjdbrKZDFomQ3FDIxabndj4OInwBA6vF6c/wEP/5zO4CwqJjA0z74prGe06S8vyVTx9z1fAyJ/bJVlm2Xtup2H+YsZ7uvBWT6Pv2FFUNYfD6yPtKGNsTCa28KvUvP5xhNgANG4wA0j+EEiQOjI+da4HSJ+YxD6jALnAA6eewWhYC+4y4v29xEOTKBYrCCKapiMgECivZKSzA5vTjcsfQM1mGevtoWzadAxdI+TKnjfLifQE3+v6Caumrz8XdAfuQBB3IJgfIRlCG+vnXF3oFEEAQRTwFtoJDScQawUMIz8cQFPzI/cdn6BuVgG6pjPcGSab0rj0fc0Mtoc4tfNc8b0AS66pZ6wvRmGVm7Fz10S5jEZkLEXbqgqObOln0VV1tO8bwVfsIDScRFZEDMCqG8hWyQwgeQdYbBK5tIZilRnqCFNUnQ+LcwdtJKNZguVOJgbi2F0Wtj80jiDAshtKSISjTF/iBnJYJTuiKiIFFNAMDE3HWuFm4t6TU0F7GBDb0o+lxovosqCF0khBG3pKzQdNygJ7nx8EwOaRqfX+mmLO4haYexuMngJDywd5xEegbA707ITy+eD6FSEmvyybyt+rOfy/eVzIh2YNHIC2G2H/DyETg9nvBYsTkiGID+V/ibyVULsCurblpyufCyd+nl/GtV+EmkvyYZWmi0aUBSRZRJQF/KUOBk6H8RbZwch/FihzMjGQYPcTnSg2ibkbqomOp5m9vgqH14KhG+TSKqIsIisX9pWsiPl7s18Sm0yTMQpwuErA6sWruC8Yx6k46c8MU1PeQLcywb8f/Hc+PPvDAPQIwzj2neLQc0+x6RN/j8PnQRQlQsOD1M9byCs/+C5tazZwePOzJKMRVt1+J90H92F1OJGtVornliFkBXRNR5AEkASy/bGpABIAdSRJpiOCbbofkXx43kh/DH+T1QzOezude9alqlkEQ8A4F6YoShK6IDBr/RUc840TzeYDFwptJYwJBkU1HiSfFckuo4UzGKqOpcaTDyRpDRLbMUjgPdPItJ+7x5OF/H3QL/WtIApwLh/3lz/LDcWnAhqs9V7SpybPu69Pn5zE1hyYCiCZohlIQRuRpzrR4/nxc8PdqKMJPJfVEN8xmA8y0cG9rgrRKpPYNYTolPFeVoOe0jByOkqpA0M1UENpEEByW1CKHIhW89nYu4msyCgWW/6eywAwEGQJQRBJT06w8vY7ObHtZbxFfhZeaeXAC5O0rVjL0JlTAEwmh/FLxfnnYKKBoIhvhoS0BEnsG8E5vxh1NInv6nqyIwnUpIrkfPN5rJHREB1vhkeo42nkYgfqSPLNYdEs2tnIVNsAqaPjeNZXkz6eDxg2VB2lyo29yEFi+yDZnnz4T244SaYviq3eh+Sxok6mCD/TRfr4BPY5hchBO1oqh2NGIXo8i+ixoMey6LEccpEDS7kL0Xym+7ZK53TsyvmBMIZuYGQ15EI78Z4wxYFGAFy/EELyi/YN76PJ34Tb8uY5vHx6K7LVSvfhA/kQEm8+hORs+CyXVl16MVfJZDKZTCaTyWQymUwmk8lkMplMJpPJZDKZTCaTyWQymUwmk8n0DvqDqrIQBMEFPAp83DCM6Ft8fpcgCPsEQdg3Njb29i/geQsjgeLMB3LIDmhYny+gzSagYzMWq4AgS8gWC2o2QyoaJZ2IkwhNkopGSMdjWBxOEEUMjPxbU3NZdF077y2tVouIYBj0h1J8fN00Pry6gTmVPj65volFNX6ODUQuWDSLXcbhsV4QQPIGl8VFg6+BmrY5XPnXn6Wwpg5/aTnr/vzDNCxcQvtIjJ0d4xzrD2P8YkUngCyDmoGTT8Dzn4PXv4VixEE0UKz5Yks9qyIo4tQX288TyWCxSyDAoqvr8BU6fodO+MPxrtp3z7Hrk4g1AtKyMrJDCdyXVpLpjmCfWQBSft8RLBLqZL7QAd4s8BVk4c3CS1HIF2VmNERnvkBCHUuhlDoByA7EsbcVkD41iWNOUX56UQBZJNsXw9rgQ7CIpE5O4lxUip7IIVhElFInWiRL8sAono21yNNchH0htJkWpKVelDo3wrkv39tbgyQPjOb/PbOA6Eu9CLKAHLQRe6UPyWtFT6iE7j+NlBEI33uGzI5xFE0het9Z9FcjOCIylt0ZXIdUCmQn6egkgiAw5/KrUawObvj7f6WgspZrPv0F5q69CrU/ceFGjaQuSl+9097J/dfptWC1X1jYYvulN/YCkEtDJg7FM/AffgiPNkbptHzBcVVzgK7D40wMxPOjZjRefTrJeMj5ZgDJGyJ9yLFunF4rcrQbxk4wNO3PiU2OMmfDFWhqDl3TSEYjZBJxREmiZvZ8LHY7Dp+PzgN7GTh94tevmJEPjhJFEAQRw9AobZjG9Z/7Ijf9w78w/8rrUDMZ+k6cIG1JYW3yIbktZHsvPK7m+uJEtvVxunuSo/0hcuqbb7PXdYPTwzFePD7Mnq4JIqkcw5E0//J8vjjqvYuqmVbk4q/XNtJc6uHmBZV8dE0joiBwsDfMh+8/gG7Ag3v7UDWdvV2TfG97FwCqbvCj17t57tjQr1/Xd9C74tjrfIti8bObubruSmTxzX1bERWurLmciqHD+CxpAqU2DANO7oyw/ZEYLSuvBkCSFdTsLxRFCgKGoZNJJAhWVrP4upsJDw2RCIdY/6G/Yv1dHyM6Poquq/hKSjm1cxsTfT20rlxLOh6j58hBbG43ssWK1WZn4MxJNv/nN3nmnq9w+vVtCILIqz/+Hpl4gvV/8Tc0LVlBxfQZjPd2U1hTy5ldO85LfxAkKR/+UFzM/CuuJROPExrqJxGaIBUJYeg6BVU1dJ7uZHzZl6F8Hsy66aJt/j9U74p995fJApm3uLZTx1OgJqCkDcMWpL/9FHuffJTJ/l7Co0MYuo4rEKCgugar3YHT68dTWEhxfSM2p5O6+Yuw2G34SiuwyFauqrvqvPZXV66m1lv71ss02YkvvpuFG8vPGzxjZQV9JycoqvFgscuEhpNUtgQY7oqCkC+w95c6mLOhmuGuCJNDSZxeG4PtYbb85CTBche8cRltwOGX+3D5bfhL3rxuFWUBNatje+PaJ6dTUudlvC+Or9gBQr743eKQmb6o5Lff7n+A3i37b0mdD6fPit2toFgl7O58X/lLHIz1xvAVOTjySn8+vEGARVf5OPHqf9H++sOEhw5wZPNPcEguBItEtjdG6ug46dMh9ETuvIL1N2iRDJn2ENYGH9ZaL3pGw8hpCFaJ8EiKYI2Dkho/Z4ZTPLK/j+9s6eCJQwNMxDPnN1Q6CwJ1kI1DdAiKmkEQ8/eZ8f/BOdcw8oElP7sFvncp7LgHooO/eTr9XJGqrxrGTsOaf4CD98J9N8Ljd8GRByHcCxNnYcGfg9UDG78G0zfBX+6EO56CupV/0AEk75Z99zfxlzgRFQG330ZlU4Chs+Gp/dvusiBbJE7syPf5nHVVnNo1hMUuM9kfZ/hshLImPwWVLiRFxOaUaVp8/jFq8bV1CBgXzLeg0ondJeb7eN77uT4464JrmWvrr2ZD9TosgsTMgjb+duHf0h3pZl31On7S+yCF711D1ZJFjPWcJTQ0iKFqTFu4FDWbJRWLIskKiXCIurkL6D12hP/P3n2H2XHWd/9/Tz297tne+656b5YlWZJ7wR1sU4yBEAg9+T0YUiD1SUgBHhJIgBCbgE0zGIOb3C1X2ep91bb3cnqb9vvjrFcWMt02Ntyv6+KSz5yZ+8zMmZ25Zzjfzx2traO8pZXyxibycg7bcnAMByXqBhuM/tRZ61k8laA4mKLYl0JCojXopmf07Pl+37yhjl/VhSTLSJKKbVvYhoFlWuA4SDgs3HIRkbJKHup7iC0NW5DyTUznDfIrKyDiwnEc3N1RJEVGkiQc2yk9o3Bs7KKFGpt9PpErhTRY6SKu1tDcx+cOTBLYXAp8yh+Zxr+uZu66nj86g7aqEuUdXXjOq8cYTp+1+nbORPL9zP2mBE7RmgsgeUl23ySFk0nST5YCSGSfhlOwSfz0JOZkDr0+yMyPTjD1zUNM33mEfE+czM4xsi+OYY7nyDw3ytTth0jvGMVK/UzwyR+IN9SxO8vrVWYD8Bxsy8I0DbAdZEkCWSaTnKF52QpyySTVbW4u/1ATqquBze/9CNGaOo7uewq7WUOr9qFVeHFsB/ml5xrybHDE7GnWMW2sRAG9PgDMnt8AbAenYKLV+wHIHZzEt7oayX06hMLdGqI4ePb5be55HaDXBQhuqi89T/iZvrw1mceYKD3Hyu6ZIH9wCjmgo4bcKEEdig6ph/sxx7JkXxzDShlkdo0x/e3DZF4cO/uZsfCayhkWbv1nQkiKpf8fQY66yBgJAoEYAAF36RyWyp8+ZxWsAvsm9rGiasUZbaiaRsP8RfTu3QmU/n+DKl8Vx+PHX8vNEQRBEARBEARBEARBEARBEARBEARBEARBEARBEARBEH7H3jRDEkqSpFEKIPm24zg/fKV5HMf5KvBVgBUrVvxuf+ms6qC6oJAshY9kp8AslgrEdD+V2cdIhZbi8vvJzExhWyaypFBX1w0OFOQcmqYjAbZjlwoaLAfHLhVlZFMJvIEQfl0hrirUhGQm0ga7+6ewAV2RqIt4qA57fu4qGkWL8VNJBo/O4A3q1HaGiVb7T2+Cy0XnmvU0LV6GY9m4/X6ePT7B8Yk0PpfGSMJhNFlgfVvs9I+cHQd2/Bccf7j0Ot6HXt6FXPkxJLlUHGIjIePgagvPBUO8RKv0svKSJsIVXnxlrlf5S3njekMdu7MsRSO694NMtnyAQt18CLvwN3bhyDLBt3djzhQIX99B6uE+1Ki7FIIQchG8pJnsC6PoNX5yeycwRtLojUGKfUnsrIFW6yd3aIrQJc2kHh8ojTDcESZ4SRN4ZHyBegrHUoSvbCH91DCpJwYIXNIEkkPezBB8e2upiOj8CoinKObz7O15CMmr8PyPvsfqq9/Kjru/T9OCZWxcezNaVxDHKI0s6xSsuWILV1uE3IHSyK+ulhDJh/rQqrwU+1I4ho1/XQ3Jh/txChb+8+pJ3HsSbPAur0QasygfLkdp8qLWNZDLJjHsPKmZCYLRcgy7gL8lQvFA/Ix9qoRtfh/9Lo/fSKWPpRc0cv9/7Z8LaHJ5Veq7I2fPbBVgz7ehdhn0PknDHVeiXv0kj8aLlDcG2Xl/71mLJOJQ/UofrM0WmruDsPYjZB0Pp/Y+wsJN52MZBhIOuttDMZ/HLBbxRaJc9//9AyoasqUw3neKqrYOVE1/pdbxRxTMYgYcFcWVJzk2TqiqBkmWsW0LSdEo5HKsueY60qlpkCwC7eXYaZPsC6NntKU3BsnsGCEWcnHSLfFEcpJVTRGCXp3nT03x3RcGGE8VeO7kFG9d2cB7z20mWygFlVSHXMzkDPYPJbEcB02RiPl0uqpK4S2G5dA7laW9wk/OsJjOFNncVUHUqyNJ8NUnT3LXziFuWNWAV3/jdTneEOfeygWw5oPw3Jchn4RQPSQHWZ1J8fVNX+LpiV1ISJwT7mTJ9/4IkkN4lP9i89XbefA7U6SmCji2Q2VlHVf8yYc5+MyzNC9fxeCh/S/bUHD5fMzfsJkH/+v/sXj9hQTUCNMnB/CUBRk+epi2Fat57q7v4tgW5Q0tTA30oWoaocoqsjPT6B4vlmkwNdA31+zYyePUzVuIWSwwPdxPPt+NNxTHH40SHx1G190YLwtEaVi4mLaVa0lPTzEzMkzDgiUkxkfJJOOU1dTx0Nf+g1wygdsfYPO7P0A+EGZ4/RdwF9xEbBtJlklOTTB+8gT5TIpoTT0Vza2o2iuEDv2ee0Mcuz/LAfcr9O3UCi/a/q+DO8SUu4XtX/8K7avWobrcRKpqyMRncBxwAhCtrce2bdxeH75whPjYKL17dzLee5Lu9ZvoWreBjy3/GBvqN7B3fC/zyuaxomoFQVfwldfJLKDu+BKLQg9S/v5/JT4jzRXi17SFyGcNajvDFPM2vrDO4WdGWH1FCz07Rll4Xh226TDel6K8PoBtOax+SwuDuycIqTLnXtHCs/f3YhZtsski4QoPvfsmgVKY2pq3tHDwyWE6VlUC4A1qVLUEqGgK4A2Wzv2yIuMPu0qhJn9A3ijHb3lDAFUqkk6YdK6uwjAsVl7axNHnR6nvjmLPFgAf3D7Mphtb2P/wV5noO8nKK65hz4P3sfU9HwBNxRzJIqkyaq0fWVNwACXiAlnCu6AU3lc4Fkf2qAQ2N2DnDKyZAlq9H8mtMGNYbHhfM54KDw+fSrJnME59xMtoIoeqynz3hQE+sKn1dICkWSiFfaRGwRuGYA0c2waxdnBeOWTyDKP74JtvAWv2/PzQX0EhBZs+/YsDQqoWgTsMmQmonF/696V7PoDBF6BmKRy9HzZ8ohQ8Eq6ffTP0Si2+6bxRjt1fxhdyUdceITGZw1/mRtFK3+u6q1tRCxblYRdl1T6S03mKOZPutdX0H5ymoiFA7/5JbBs8PpVIlZdC3qR9eTkN86IYBYtIlZfyxiCpqRzrr2/nubtPYBZtgjE3510Rxp0/AScfhcb1LOrfxze7/4hn8uM0BDvosJcz9Uwej27R3hql7MVbWeoOsa5jKwXdy41t15J1TJqbFxIcHaJvxsJyLGL1jSBJeIMhwpVVtK8+h2htHbH6RiQkiqk0ttvF6PGjtDQtx3HJGAMptPogkiaTOzh1xv5xtUdQ/C6cgok5kUNtCmAUfv/DHd5Qx69tISsqGEUURcXlDqPaKo5mYxgGLo+P86211K9pp9rdgkv2MZ4q8BeP9PC2lQ00+XSaolGc4TRKWEer8JE9MIlnfjl2uohvVRWJB3rJ7BwjEHHh7ohQ9Kq4WsKlsLFaP9uTGbQLaun0uCiGXUxVufE7kPOqnHAshlJ5nt8zyZ+3hynsnTxj9bUqH5ErW5m+8yjYpV0ZvKAJxX/2vZ0ScVHsOx0O7O6IkDsw254sIeky5ni21G6tn+JAEiXkRqvykd4+hJ0pBQQUTiawLmwsLb9vEms6j3dNFYpPQ/ZpqIHf3+dnb6hjd5bsmOC89IwWsB3cmg/NcSF7FNLTk4QqqnH5/Di2hWXnKG8w8AZaUFo+g6YqfGX/BIvrwjQpKk3Xd2IMJHG1hskfmsa3ohJMG9mvkX56iNBFzdgFE8mj4l0cQ1IVJJeMVuXDs6QCO1XEsRy0Si/uzqWYU3kUj4oSdeNqC1M4OnPG+kt66brgXVGJ3hhEUmTknwmvmJtXlrCLFrn9pePW3RlB9igk7j2FM/vcoHAiTvi6DqyZPLJXw9UYxE4XMafyIIGkSKhh92v2fQglOcPCrZ7Zl7NzpRC5oreIjUXAVwZAwF16PpPKm3PzHpg8QNEusqLyzBASgKbFyzi56wXioyOEq6ppDbdyMnHytdoUQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE4Q3gjVcR/AqkUsXVfwOHHcf5t9/1+vxKVA/ICjg2SBKM7IGG1aB5YO2HCD3xJxRu3kt6cgrHsfH5ovhGPLgIISHhTfiQBgy8wTDxqSEOP/0Eg4f2U1bfyJILLkXzeCnILmwb/LpC1jAZT+UZTeapDLrJFCwGZ/LUR7w/dxX79k/x4NcOUNEYoJi3ePG+Xq78xFIiVb4z5nN5Sm30jCRJ5E2CLo2MYeFSZRQJesaSLKqfLfgvpM8sRgMYP4JU6YDj4Pbr9PWlaa5w411WgTGawRjOgAS+NVXIQZ2YRy2NKPr7mdfwpjFm+im2vo2mR94Kaz/MdHYNveMxtFgdj9/RUxpJU5VYuLaKJc1BpJk88buPgSTh31CLFFAJv62D7AvjeBaXo5S5ye2fxLeuGvfaGjI5A/9buyjM5MGjkA8qmAWToXSO8pVuclKC8YYB6tq6eeSnX8cXizJ46ACpqUmWX3Ylx3c8y6orr0d2y9iajdvtp7q9i759u+lYfQ5Hn91OTXc301P9LOu+DF9ZNan7+pFmf5DvFK25EWIdq3SwvTRKMoDkU5FdCnKNFyTQG0O4uyLIPg1rJo+7LYxa4cUYyeBx+QmGYwT9UbSAG0MqYDcaeJoiZJ4fxZzM4V/hJROW+cMqM359NC4o48pPLGXoyAyaW6G+O0qsLnD2jI4NB+6Cwz+BVX8EqouaqXu5+l0XklFjnNw9zsxo9oxFvH4ZltxUCi95yaK3lkJIbBtmTmGkJzh2+Bnq5y1kvPcU5Y2NPPGtb1DMZuk6ZyMNCxcTIoJdNLAzBitWXIbpNrFME6MAtungDenYWRNzIosvU6CQHuGnX/47NJeLZZdcQXljG2Y+R/+xI5iFPNVtnYTKK8klEyQmxnE3BZA0Gc/8KMZwCmOodF71rqwkf2IGJaCjSRKD24Zou6KR4xNpfrBziGWNYTJFE8t2+PxblzAUz5HIFnn3OY3815OnUGWZ8WSB/3n6FMm8iSpLvPfcZppjp68TigzvXNvIfftGuPWHp4Mv6qMe3rWuiWTOwKW+ckGTQCnIZtOnYN5bIDMF86+C+CDyw3/N8o4LWZ4aLRV733Pd6WWsIpWP3cC1N3+DVP8ErnCI0JPvQDrv07RfuYoiboIf/zOstIoLH8G6KuYv3oRkwIK/2YI9XcBOG8gBnZycoWP1Oh67/WtzzQ/3HGHD229B93jY/9hDtC5fTbC8nINPPHLW6k8PDhCsqESSFVqWejn+3CRPfuu/AdA9Prbc8n6GDh9A1XQWb72E4y8+x+Ch/UTrGkhNTRIsryRUUclDX/13CtkMAGahQD6d4Mlv/zfp6SlUTWfzLe+nceFS7v33f2H4yKHSh0sSl3/8VjpWn/PafT/Cr8508C6vxBjJYIy81LerRg5qMDyNE24gn81hWxaDRw6y4rKreOy2rxIfG2Xd9Tdx8PGHmBrsp331OTQtWc7o4QPse+h+8unS6O3b77iN+OgIm2/5Yzb7N7A+sRQSDorkoqCnkEI6+s8W4CYHYKYXfaaXxqE1xK78PumhQdy6RbD3O5ht78CoWY1tyRCA9pWLmBnJseYtLZimjW06dK6p4tjzY0yPZKgpb6VpLIO5Z5xY1M2l17TxwD0nKav1o2gynaurUHUZSZYYORknmyyCJLH0ggaal5YTEMWXbziR4j4iM7tB94FZpLm+kjZXlkL5SkbHZbxBncEjMyzY4GXoyD7aVq7l2I5nOPfGdzF87Ci1NfOwJZBdCsZIBksCvTFA5Np28oenybw4hhpzo9X7kSMunIyJY9ko5W4Uv042b6JN52kJ+SEr85ZKN5pl8d87BljVHOXISJJ41mA4nqP2pfu64T2QGoZiCnyVkBqDtq1gmeCJ/vKNHjt0OoDkJc99BZa/G0K1P3+5WBu8/S545t9h/Z/B3m+fPc/oPvBXgxZ4WQCJ8Lvgj7jxR0rnHH/IRWY0TVm2SG7HGIXnhtm6sY5hC+KpIsWcRW1HmJO7J6huCzN6eJoVayrxTObwelTStkOszk+05vSdTLTaT6TKR+OCMkzDxusFfeoAhj4fp7MTO6fgNJ9DWz5DoyJhSl62/fgEUyOlvrY3mOGqy99JeOdnqB/eVQrWufY2WHAVzPRzaPIkD339vwlVVLLxHe/FFw6z9rqbeP7u7yNJEnXd8ylkMgz3HMYsFuh57mkAutZtYstb3gv1ASTHQa3w4FkUIzcbEuVqD6OWeyieSqBV+ZD9GlgOR8ZSlAfcp//OhNeWrOLgIEsyelrHfHISx6PiKBLeTVUUXRaOadGq1LN71CKZm+THu4d4/6Y27t03wtqWKAcliQIWW1dVos3eTykeFUmWkDSZ8FtacSwbNeLCdKuM1XhwKQq3HxgmOxOnqyrAZ7cd5v+9bQnfePQoK5uifOPpU1i2Q8ij8fnrF7O8JYpZEUIdy2KOZkEC/8Y69PoAskul8iNezJk8SkBHrfTiZE3UKm9p3lnepRWoQRcZSkGRdtFCditYlIIgXgoIAJC9KpKmYAyXglxfCiB5ieTA5Ff34xgWoQubST85iKs5jJ02kLwq7vYIep3/dGiV8JpRJBlkifT0FPsevp81m6/HfHKKYspEr/NTvqgeU7HZ/+gj+CNRguUVuP0B8ukMbeogu7M1qIrC//nhfrJFi9tvXkFZV4jKhWUY03nSsoTfsAme30jhVAJzKocS86J4VWS3H9mtIJe50byvHGqqlZ0OpA5d1MT0dB5zIgcyBM5rQKsPUP6BxaiVXpTZMAo15sG7spLsC2Nzy7paS8+9JFVGbwxijGRK4b4SeBbFUAI6xf4USJA/OHuebQ7iGDZ6c4hCfxLjVBKt1occduGkjbl/HctBq/Ci1fiRFHHMvhryhkXUd+YxYedLQTFZuXRPFXCX+orB2e89ni5wau8E8fEc9xceA2BZxbKz2m5ashyA3r27WFJ1KW2hNl4cfRHLtlBk8bxHEARBEARBEARBEARBEARBEARBEARBEARBEARBEATh99GbIoQEOAd4B7BfkqQ9s9M+7TjOfb+7VfolVA2QwCqUitWlQmm0aMsATxg2/yWqKjMzOobu8RFwQrgWBMntGCX74ukffPs31jEcP8Lh7aUfAqemJhk7eZy3/OmfY7ijxLNFyv068byBBJTPFl96dYWQRyVbtF5x9fKZIgOHp7j8I4tJTeWRFRlf2MXkYPqsEJKXZA0TlyqBoxDPG9gOOIBllQYizRUtdFcQRXWVRuh+SaIPWVPQvSrOS6vjUimeSuBfV1Ma/VWRKI7nkOzSqPCKKr9yiIDwuimYNj9KLOBdNxxHTlkUbYe6BplCssi1751PfiqPr9KDqslYfSnys4UK/nNrwLDJ7RxH6Yji3VLP2ECak+kiC65u59knhhjtG2T+uTXs+PYugjE3C8+r4/APR7BMi5UXN5DPysgKlLevxvJA16ZrMQoJutadR//+PQQiUdpWrqN/z25aV64hMT5OU9cyIpU1qKgEouW0Ll+DR/VTVlHPYN9hmucvw/f2JhTbReTGTqyZAkrIBbaDY9hErmvHKdogg29tDcXeBMGLmij2pzDGs7iag6S3DxE4r57MC2O42yPke2Yo9qUInt/A1O0H8a2oIrdrAmMoXdqJEoSuaUWKOuwaH6c+WPk7/EZ/fymqTG17hNr2yC+e0RUA3Q/5ODz9hbnJ3qsa8C5exIYbO7n3S3sxjVIoTddyP+XBmVIAxOa/LC3nDoPqxrHBnhxEfuQfMCOdlNU1svPeu9ny3g9y35f+BZzSefG5H36HhasuIPPUCPmXjcIevKiJjMvgvq/tJZ8xuOBtHXgOTM6NUKwHdd79yS/xvf/8S57+7re45s//lp9+4Z8pZEohDZIkc9nHPkmkrg7N4yYdnyQUqsBJFPCtrkZSZSRFwpjIIkkyyYf6kIMulp3fQCZhko+o3LGjnzt29HPrRV18/uEedvfH+fCWNv70+3v53DWLifpcGJbD/zzdy5VLawl6NGzb4cd7hlk6GzzVVOalKugh5NX4vw8cOWN3D0znCHs1rlpaiyKLoqJfyB2EhjWnX08dB8eEzDjs+w5s/D9nL5MYxFvsw+vug/v+DtZ8EJ78HEyfRHeHqT7vbiYfz4KZJsVxfGuqkYI6uSNjZHeOzzUT2FRH6/y1BG4uIxKoQvXrJKbHGZ04geTx0r5qLWaxgGVaVLd3oWg63es3gu2w/7GHiDU0Mr79FOWNreTiCXbed89c28Vchv2PbuOSD/8Z+Uyavdvupf/gPqDUnxk/eZwNb78FzeWeCyAB6Fi7nl33/4T0dOlvxjSKbPuvL3H1rZ89HUAC4Dg8+j//RU1HN/7Ir1B4L7y2VIn8wRl866qRlNlz0EwByQYijRBuQi6q6B4vlS3tHHziEcZ7T7L66rfy7PfvmDsGdt33Y6aHBmhfvW4ugOQlBx57iLVbbyB1x/G5wlwl7CKwpQFG0lgBHSRwTAdJk0E+B96yE1lJIxkJNFc90ZYYOCbFhk1Mf38Qa6Zvbv2j75xPzq8hSZDPmux/bJAVFzaw4ZJGzOEMhZ1j6N1RzAovub0TSI/187b3L8CxHay0QXW9n+HhDJYmY+RsLn7/QrxhjVC5F1UTxXlvSOlxMDJgG1C1GDk7QdQ7A1M/IFK5koqbl3Lw2UkmBwwCZTEs00BRNWzTopBNk03EcSkuZr7fA5aD7NNQYh4kTQGPQuDiRpychVbnB8Nm5ns9c8eu5FIIbm0gce8p8oDeGESt8HBJY5DLL1uInTPJ+DTuODmBJElMpwvIRppQYgDJKoAeLIWnxHuhrAW8ZRD+BSEiL9FeIQzHHQRF++XL1q2Aq/4TillIj5wdPlm1EMKNUNH9y9sSXlNW1sCczGFnDNwuGSVlkHhuFCXkwr++huJgiqZKH2pXBWnD4fCucbrWVTN4eJr1S2NkfnKS2TsavEsr8MY8ZA9NYhds5LCOnSiiuBTUjIEmS1h5k9RMOVqVC2vSwRhOI2k5cgdKRelIsHFLAw9sG6BhfpRItY8xvZW+BT/B5VPR5QLlPpsAUHSX8+JDjwKQGB/j2AvP0rx4GY/895fntu+x277KhpveTbCikud+cOfc9CPPPI43EqK8vhWfHqCYzFMIZmh42wJ03YOdKjDzvaNzgaehy1pwwhpeXeWpY5NcsaQGj/5meUz2JlbMoqoaTtxA6bdxr6kGCSRdwZkxsRUTSYKASyebzLCxKUpbxMvnHunhgxtb6XS7UWyb/qyBZTnkgUDETeqxAXwrq5i+8yjObLiH5FEJbm2AsMZfPn2C/uksFy6oors6wF9fMZ9EzmBrdyX/su3o3Ootb4xwdDRF3rT5Tmac5edVs8jvwevT0co8pT4GoFX50F7+/CykUPb2eRSOz1AcyeBui5QCGYo2ekOAYn+K/NFpQhc1kxg5iWM6uFpCyN5S38OYzqPG3Mi6wlk5IhI4loNTsPAsKCO7bwLvknISD/aCWbr3TD3aT/kfLcLVEHwNvzwBgNwU+WSSB//zi9zwfz4Hj6fwzIvh2DaKT0PxeHApMvsf3Yaq6VS3d9C9/jzUWAxbC7JKGuBEqJm8YfGfNy2lbzrLI2NpljRGqAi4+dHuQXTL4a1rGjgmuXErColchnlhL7VehVjUg+I5+7ptZorY8SKyX0UNla73erWf8vcvwowXQAIt5kF2qVg5A2smj60pqNHScRc8vxFXa5jCyQR6fQB3WxjHtikOJPEsLkcOaEgBHdWtknlmBCtewNUWxn9uHdZ0DmSJ1OODWNN5UAcJnteA3hLCnMwSv/sE/nU15LcPYY7NBvVIELt5Pu5OcS/3asgbFp6fuedw8qVzYcZMAODTwgDolE4yD955lOFM6Zz2dPfzRF3VDL+YJbw+fEY7kaoaQpVVnNq7kyUXXkpruJWCVWAwPUhjsPE13CpBEARBEARBEARBEARBEARBEARBEARBEARBEARBEAThd+VNUV3hOM5TwJuvglmSS6Ejig6SVPpvSYZH/hqMHEr3O+jbt5v5m89Hww0Z44wAEoD09kGWvPsinrv7O3PTcskEifFRtEgduwcSbO2uwKUoqIrMsyemqA17SBcMFteHaa8M8OyJSSqDbprKfMizheD5tEHr0gqOPjdKMFYaIXPsVIK2FRU/d3NcmoJjSyDZ1Ea8aDKYtkPBsjk+nmLHqWlwItyw7qNIT35ubjkn3IysgMujoblk3D4NijayKpO47xR2tvSDaHdnBLvGhxZyEa7w/LzVEF4nAZfKu5uryd7Rg6sxiO7TyO4eJ3RpM6n7T+EOu1ALQYyxLE6hlC7jWRij2J+i2JfE3R1FThVJ3HaIyOIYq1rDFHeOsW51Jc6iMoqmTfv7F2AnC8ghF/Wb61BUCcmtUhjJ4K0PYMzksUZMGqoqyA2puENhgtH1WMkirtYgmekRvE4lZQ1XY+4rEu1qIv3MMO41OuWnYljJItH5dfiOSGgVCrkDkxiyhN4QJP3MMKGLm0g9Pohe5wdFIn94mtAlzcTvPoJ3SQXp7UMYYxmCWxtJbuvDt6qK9PYh7FQRNeIiu3MM78pK0s8Mgw1KyIWxY/T0TnQg/dAg7hvrqWttpzn2ygE/wuukaiFsuhUeuPX0tLJ2qCuN6FrXEeG6T68kMZHDpVtEJ36KW26DbX9eChVxhTBW/Q1meBOFgxb5o+Polf+Mv36SMlvFF4kwfurEXADJS9SsTPJlASQAqUf6KWteQGI8h+ZS8BcssrMBJABWskhxd5wLb/gw2773HwwdPTQXQALgODY777ubi/7kT0nPTGPkcgz2HKTW20byoT7sVKnAWW8O4l1RiaTL5PZPItX5CQd1pq3To2r/ZN8wGzrKeejQGIZlc2oyy5/9YC8//MA6ToyneMfaRn68Z4iGqI/xZJ7rV9Rh2zYf2dKGS5UJeVROTWTIFs4OvaoJuVlQG/rNv7M/VDP90LAOeu4vvVZcIKtgnx4pnaXvgIM/gkN3lwrHFR2mTwJgLfgjph8ugmnPzZ55boSyd3Yzta3vjI9KPTlEWVM3wWNe8sMjIEH0kma8Lj+90wexTIP6+QvRdDeVLa2EKirZ/8g2ZFlmwXlb8UdjNC5azrFdCuHy5FnH/9CRQyzcfAFlNfU8OhtA8pJcKolZLOINhVE0DcsoHZeBWDnxJx89a7ekpibPmpaNxzGLxV951wqvHStvo/h0kg/2YadL36WrJYRe6QUk0u5q7EyarnM24A4E2f/IAwBIknRGCA2URtief975Z31GrKGR4t7puRAHACtewBzNoIRdGLlsKSFPguyL46Ui3Z1T6E0hlHAIp7+AUwQ57EX22FgzLwvNMx0yTw4SbgsjuxT8YxkaL22icCoOqowecyOvqyDxneN4F5ejlnswJ3JYvUnM8SyOA4WpHFXzytBrQ3SsrhLBI28G0RbofxZOPAobamHPHdD/DCgabtui1rGpuvjfMEaPU37d5fz0f+5g7bU34vL7GDl2lOLKLTgHUmA5oMqE39qBZNqYU3lkVaFwLI6nI0LmqWHUMs8Zx65TsCgOpFArvZhj2VL/uSNC4t5TBC9oRHYp6EdmuHlRJTtHkhwYSvDelhmkyR5w+UFzAAeaN5buMWtX/mrbXL0YQg2Q6D897fy/Af/Pvw88g+Yu/a/rUujZBqcen213CTRtLPW3XKLP+7tkJgtkd45RHEjjagyS70vg5Er9NP+6GpKPDhC6tBklqCNZDgHDYtWiMqxEgbbNdUx989AZ7eV2j+NqChL/0XECm+tJPdCLEtJRIm4kTcYYyeDujODkLeyMSerxgdL900Mv63M4YD89zDkXN3L8yAwS0Lt/EhyJ4zvHaVxQRnVbiFonQaRaR3OfDstx+/wcfIV+weCRg5TVnV343L9vD4VsFgmob1hA7FiU9FOnAFDK3AQ3N5B8uHT8p58aItDYhU9XqQq46Z3M0F0j+q6vObcfx54i7KnArC1QPJUo3at4FKI3dKGPpPHHKjCOZbkk6ZD7dg+tQY07L1qInSyQeuAk5mSORW9pJfNUH4HLW8gfmgbDpnAiPhdAAuDkTIyhNGHbyxVLqtFkhV0DM6iyRF3EjSRJjKXiAFQGXaxuLuOKxdU8cnic7+0cxLIduqsDfOi8di5uDiP9knBFLeZBi539PKvsHfNKz04sG7Xcg17rx8oaxO8+gZ0q9WX1xiDu7ihquRdzIofs1+b6VACyu9SvUCu8GGNZioPpuQASoNSX2TkmQkheD54I08N7uebDnyXkKiPfKGMlCqjlXtRKH1a6gCLrvO9jX0FyyZiTOax0EVdNBGsgRXJA46o2lYU3rcCVKLLoSJoLNZnJIiSSBT4VCWPum0R6eoyKFRVceOdOLm0v55wqB3tXHxO6TOiCJlztYeTZ/mahN0H83pMYA2mUiIvw5a24u6PggDGSIX7PCcypHJ4FMfzn1pG49wTF3hSoMv4LGsl2hYmEPfiWVJBpCZIomFTnTGbuOIw1mQcJfOfU4qrSmP724bkwp8LxOAB6Q4D80ZlSAAmA6ZB8qI/oTV2kHh8EQPZppwNIAByI33uSivoAsvdXCEMTfqHcK4SQ2LMhJMnkBBISXsnPwKFp7rvtIMjgrfJwxeXdRGo93P7jT7Ewu4bHvnUESYbudTVntNW0eDmHnngEyzTojHYCcHjqsAghEQRBEARBEARBEARBEARBEARBEARBEARBEARBEARB+D0l/65X4PeapAASyAoobhg9gGMVwcgBoBcmKWQz+Pxh1Hofdu7sAm5skIyzJ2seLwBtFX6KhoUsw9BMjhVNUQ4OJ3GpCm0Vfrb3TDCSyPHCqWmePzWFM1scrOoy6Xie6rYwsiwhSVDeECCfNs/+MGAmk8OjKrh1GcOCx46M84OdQ4ynisiSxOHhBP/9VC+HRrPcKV1C9qrbsdd9FOvyLzG18QsouowvrKO6FIo5C0eVyO6ZmAsgAcgfncHJW8TqAqhi9OHfOY/hUHikH6dgoTcFye4eR28IUDgex04beLrLSD89jBUvoM4W2agVXop9SZAl9LoA6aeG0Cq9OEWb1P296JVe0vf3knl0AJflkP7uUeREkfyjA+Qf7EUp2qS+exQta5J5pJ/M/b243CozdxxBliTSTwySfnwAvdxD/K5jqBEP2RdGye4cx9MaJvGTk2gxD7lDU+QPTeOZHyP5YB9qpY/CyQTGYBp3V5T0U0Podf7StmQM9IYg+UPTaLWlaTigRN0YIxnUMg/GSKk4WvZrWPECkkvBmj12lYA+V8TsWPZZ+9FKFXDJLlrK/a/PFyf8YkvfDjd+F875GFz2ebjhTihrm3s7Wu2jeVGMmq5K3F3nQjE7F6pgrPm/JMZWk96RIv3UMOZEjuyBLJOPhqgNRQjGKnH7zi66ffl57iWOYePkLdw+jXOua0NK5M+axxhOE9TL0HQ3Ri531vuFbJbUxDiOafHw179ManKM/OHpuQASgOKpJE7ORNIVlJgHSVMwDRv7ZbVqBdNGU0rFdMrskNt9U1lGEnn8LpWIX+OTF3VxxeJqPrq1jXK/TtCrEfO76KoqFbj984NHuWLJmQUqbk0WASS/qYZVkByCSHPp9c7b4IK/LRWO+2KYaz5Mfv5bsedfjdN5Kc6Sd5T6GrMsd8NcMePL2flX6mc42BkTd3dZ6bUDiQd78bXGaKxeQLSmngOPPcy9/+9zTA308eg3/pORY0cYOnqIh7767xSzWYZPeGlZXE51WwNuf+CM5n3hMN5QhOTUBIp69rXdG4rg8vjZ9M73IsmlbmkumSRQFjtr3mB5xdw8L+lavwl/tOwX7U3hdWLKEvmemTOKZQsnE1ipIugBbMXD9jv+hxd+fBc4UN3eBYAsn307ououZFkmUlN3xvTu89+CNZI9a35zpgCKhJOzcAoWTsHGM6/UT/EsKie3dwLZpSB7VHIHJ5Hdamm09p9hzeSxZ/Jknh0B0yH+4xMoPp3p7x7FGM6gyCq+VVVkdo3hmVcGEkiyRO7AFHqtH2M0W+rzPNaPZDlntS+8AVUtgIa1sPZDMH6wdO6FUnikU+rXKTMncPfeT9PUfbztTz+KL1qNJximsrmVvp69c+dW38pKKFjE7z2FOZUneX8vrpoAMz84hqTLmK90zCWKKH597rVj2aXiecvGKVoU+1PoaRO/4VAVdOMqzkB6HGS9FARiW6B6INIC4bqz2n9F0RZ4x4/g8v8HG2+Fd/0EOi/59fddpAmuuw3e8xC8+35467dg3uUQbfr12xJeVcZACmywEgUKfUnMkQxqmRs5oGNO5fAtr0QJ6tiGTf54HDNRJLGtD8d0sHPmmaEGs6xEAUmTwXKwEgVc7RFy+yZQQi4kXaFwKoni13HyJjivfF/k5EyCIZ2J/hQzo1nKagIc3znO8osbMYsWh58eYejoDEefm2TZJdcCoLpcRGvrcc0+/3g5TyCIJxA4a3pt93waFyyhZfkaKrQm7LHTgVPWVL70dxd2AWDnTHomM3z8u3t4vne6FGQlvC4CWgRJlTBHM+T2ToDtELqkhfjdx1H9LuIPnMKaKpB+arh0/CFhTeSI//gE5mQOV0uI3KEpJEXGMW2K/Sm0Gh/m9Nn3VVaiiJYxODCUYvdAnAvnV9E7mSGZN4h4NVrLfdy4qoGLF1SzdzDObc/00l4ZIDIbinB4JMU9e4eYzhbOavtXpQR03G1hPJ1RtKgHvT5Afv/kGX32Yl8STAfv/BieBTGib+vCv7EWV1eEyPWd6E1BJF3GKVrIwdm/t5/xSvcAwmvAF8UbCFJe0YgxmkUOaqhRN3qNj+S2XmRFIf34IHaySPxHJ0ht64e8Q+qnfSTvHyR3IE7inn7aszbBn/RiH4tjHJom9uIEHSfS5B8ZwJzIYRyYwvlOD7dduZB3VYTRHh7Ems5jjmaZ+uYhiv0pAIypHDM/Oo4xkAbAmikwdcdhjOE0xliGydsOYk7kSteGmQKpJwZKASQApk36vlNk+pLctWuQ254+xd17hvivR08w/WBvKYAEwCmlgxsjmbkAkpcUjsfRKn0YQ+mzdpVTtEthbdLPeWYWL2AbZ08Xfn25oo1b/9kQklI/NRmfwOsKs/9Ignu+tAe/IiE7EA3r1HdF6SueJGdluWrzBdR1RXjizh4mB8/8PpsWL8Mo5Bk6cpiOSAce1cOeiT2v1+YJgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIrzMRQvJaUlRQXaD5SqNVSyBpfpyqRQB4vraWtpVrUCQN2ZFQoi5k35kjPypR91yBzEvq5y9i27hOMmcQdmkgSbhUhXTB5KtPnuTkZIZb1jcjIRH0aEhItFb4mckWOTCUKDUiy+hujeRUFn/UhSeoY9sOivbKo7rmiw5eXSFbtPjUD/fz7ef7+cm+ET71w/0cn8hQHnCxrjXKwtog1VU17Padw77Oj9JT/RbilheXR8MyLLLxIoefHWGkN4Uxmjnrc+zsKySuCL8Tdt7EnP2OHLNUEKDGPBij2TOmmZM5tEovsk9jNr+gNN9I6cfqro5SgRqqBHapKMazKEb66WFgdiTU8Szu7iiZF8dKASAhHWMkUyosOjgFgBJyYY5l0ap9FHqTpz9nOIMc1DEmS4WdWq2f4qkkyKUR5gH0+gCFE/EztyXqxhif3ZbZQghJlefef2lb7IyBEiwVhzp5C9mn4eQtFH/pb7XYn8LVGi4to8mlqoyXcXeX4ajiVPuG4QpAx0Vw/l/Dilsg1v7z5y3vKJ3Dg7XgCpLPtaKVe+dG+n2JnTKQxybYuL6NstoGPIHTI09Lkoxa5kbSzzwGtBofSkBj/oYanvnBcdSKs8NLXE0hbMvGEwpRP2/h6YNy1qItF6H7AvQ8/zQAmUTiFc+rVryApMq4zqlhtC+JJIH0sgP1skXVPNkzSW3IjWE7XL+inq++fTkzmSIjyTxuWeHe/cP0jKX53guD1JeV1rUy4MajyeSKJnsHE7hVmZvXNdFU5uWctjK+ctNyOqvEKNy/kdoVGG0XwYJrQfNAYgAe+iushvUk3/pjHqv/IM8Vm/jvqQV81vdpnIXXQbR1bnEldQilTD+zTQnkgI7sPTMIRClzl86BzpmjqNvpIi7Vy55t93L8hWfpWLueI89sP2tVj73wLMWciW07PPPDMda99WNEa+oBiNU3svmWjyDrQUZPHGPR1ovPWLauewGJqRB3f2GYE3vLecv/+Qcu/einqGpfx+qr/wjN5Z5dd4nVV99AVXsHV9/6WaI19SiaxoLNF7Du2htQNTFq9hvBjGP9nHNQDscXJZPMMXK8h/jYCD/5t39g3rnn4Y+WkZycoLKl7YxlVl5xDb7yGhbc/HHOeef7ad94IfPf+VH2SVVIC84OndFrfDgF6/R12HHm+gGSVjr/OqaNMZ5Dibgp9iVRy88uaHd3l4EuY45nUcKuUoiTLIED+WNxCv1JXPOic/P71lSTOzw91z6U+kVO1nzFwmDhDUjzwOK3QseFsPSdsOTGs+eJNELrZuTMBPLUXvYWKilky2hfs4XDzz2Oe2npmHS1hSkcj+OZV0b2xdFSH3cmDw6oETd6zdmBdK7WEMWB5NxrSZORAxpO0cKxHeyCBabNzNPjzHe7kY08tGwGXxnIrlLfYHQv6Gf3I36hWBssfxec9ylo3vDrL/8SbwTqV0HjOgjX/2ZtCK86czqPY9mz924ZrJlCKYTEX+oDKDE3TtFGMmxkVcbJGqhlHuyciawrqJVnnh8llwK2g+RSSiElL3FKh6CdLKBGXNgvnXMVCUkp/ftyarWPvAOKJmPbDoWsQajCQyZeZLw/xfwNtTz/k1Ns/+4xDmyXuPwTf83Gm25h/yMPUN3ehfKy672qu+hatxGAms7uuemRqhraVqzhwf/8AprXjznyCkF/Y6WgSQDv6mo++VgPybzJv27roXf67KAr4TViOziGRb5nZm6SJIE1mcfOm7hbwuT2T8y952oNYyULOPmX3+Mn0JsCULTRKr3kDk3h7oyc9VGu5iD5iIuoT2NjR4z33PYif/qD/Xz8u/u4a9cQqZyBqkjc9kwvfVNZnjo+xT89cIR3rm2aa2PHqWmMVwjo+Y03v2hRmA2QeDlzrHQMajEP7rYw4YtbKL95Ab6lFbjqg5S/bxHIEp6uKHrz2YGPvpVVr9o6Cj9fwbSINbaC6ZB+dhitwguShDmVQ/FoWMkCxcE0dt4shYsB6uwzrZfojYFSAM/LuNsj5PeMnzHNyVs0u3Wih+NnrcdLfz/mdP6MtksTHYzxbCl85GXheHpDgELP2W0FcxafvecAn/3JIf7v/Ue4prsSpzd5xjySLiNJZz83lv0aVt6cCyg+YxlVRg7qpWvGKzwz8y2vPCOQTfjN5Q0Lj3ZmCMlL9ySJ6QkU72YODmToWl3F+fOj+CWJ+GTpuNk1tguAFdXLueA989HdCk/ccXQuzBygYf5CZEWhd98uVFllYWwhe8b3vD4bN8ucmCD99NPE77qLme99j+S2bRT7+l7XdRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQfhDcfaQ9MKrR9HAFwNJni2G1CAxiHHJ59G2/xPS8YdpmLiPdEMTfieMo0Hkug6SD/dhDKXRm4IEtzaS9Vhc/JFPMtF7An9lDfusGP/82AjvcVw0lfn43ouDNMe8LG+MEvZq/PHGFg4OJ/nGU6dY1hjh0SPjtJb7WdNSxt/89BB/c8V86n0uJBmmh7PsfnAAAFWX2frueVimjfIzoQkF0yJdMDk4nCRdOLOo8vZnevmHq+Zz6aJqBmdyPHp0Arcms7wxQn1Y5eB0mvOaysinHJ64s4fUVJ7pgTTr20IUD06f0ZZW9RsWwAmvOlOVUJtCmCcTcwW8xcE0enOQ3J4JJFUGWQLbIflIP/51NShlbvSWEOZYFiUYPqM9SZFxjFLBkOxW5wJnHLv0g3bZ87Jps79xl2QJ2zozFMQxbKSXj+wplYqMZU/pdOYULSSPWiocnl1vazqPVuHFGMmU1nt2W1wtIbI7x8EuFdcV+1MEL2ikcCJBoS+JuztK/vA0skdFCepk94wT2FRPYlsvxcEU3pWVZHeOETy/Cce2ybw4RujSFtLPlEZr9nRH0ZqDxI0CMzNZ6iJnFzwLbwKXfR52/S9WTkFSnbnj/uWk8lZiZeWEo51c+cnPMNJzmGIuR233fByvQuRtnaS29WGMZXG1hQlsqsfRJCRJopi3KEjgXV1FdscoOKDV+VErPNhBnaqOa8llPVz+8U/xwo9/QDGXZdH5l5CcrqUso6LPjgx/6uCLdK9djbXzzBG65QovicUK999+mI5VVeDAwHSW5Y0RrllWS8G0+fj57SysDXJwKInkONy1e5AHD45RFXTxb29dwoKaMPGswZbuSoqmRVXQTcClMp0tcmAwSV3Ew7ee76ci4GJ1c5TpTJHayNkFSMKvJid52ea6GCk5wjnX3oUx1U9B8eCqWcRV3zrFSKKPT1/SRTJvcvszfXym210KzLn8i/D4P6IcvZPoJTcx/VOwkkUkTSawsY7UEwOEr20n9cgAxvBsP2NTPfEHTuGqPx0YI3tVHNtBKvNy0QdvJZMYJxCNsWfbT85aV5fHS/OScu7/8n5Mw2ZqUKZ12XtZfJFCrK6Ce79ylGBZkaVbuzj6zJOc89a3k56ZxhsKU97Yxr7HS0VPoyfSPHAizRUfXcy2/z4EwIorbwU7ieb207GqE7fXT9PiZbztbz6HUcjhC0dQVBFA8kaRlKCuK0Jmx9gZ0/WYgyV7yRdUguUVJCdKhZUjx3voPvc8AmUx2lefw8zIINNDQ9R0dOGLVfO9EwYxv4t8YB5TTW1omkwya/JTPcsVa6rI7RgDWcK3ohLJr2Gni8geDTtl4Rg2xkAKvTFYGq2dUgGkVu6hcDyOuz1C7tgMoctbSD0+gJO38K6sBFXCniqdQ8+qr7QcMCwUj4p/TTVyWKewd3JuxPeX+hxalQ9mpLOCBYU3uEhj6V93AIws7PgquEOw9a8hWEcKL4dDF/IvezV2DB7hw+ubuSAQYtO7PkncSRO+phXHdnAsB8kpJTM4pj3X73SKNsZ4lsDGOjIvjOJYDv5za+fek70q/nU15E/ECV/WipUsgARalRdLlhg+maBg2rRf3YEreQLyZik4RI9BIQ25mZ+3ZcIfILXSizGYxhhK42oOkp3Oz96v1aLV+kohN6aNY9inM8hsB8eyMadyBM9vJPPcCIUTcbRqH4Etjcz8oAcnZ6JGSwFhxmApiLE4mEaJutEqvaSfH8W/sZbQBY2kXxwjdFET6e1DWMkiaq0f1lbjiWioukxZrR/LsKlsCjLUM0P7ikr2PTqAYztEq300L6rAKGpMDmvobi8v/uQu1l57I7lkAiSJqtYONLeL/gN7WbBpK/M2bCGbiJOJT5PPZtn6sb/gqweL/FlHJeahM5856M2h0rVgawPfy2c5Np6ee+/4RBrh9WFLYM8eU9b0bFjM7AEpKRJOvnRfT7b0/MkuWnPhoFAKXdAqveSPJ9Abg6UgqBNxJFkmcH4D6aeGwXHwrajC8mn8x/FRYhV+Pv2jA+Rmn0sAfOu5fr7y9mX8/X1Hzli/gmlj2vbc66X1ESK+Vy8oQXareOaVkX5q6IzpesPZgVVnvF8fQK8PYBsWxliW8DXtZJ4ewnEguKUBV8vZwSTCqy+RNTDUABIKWrkXczyHEnFhpQwkr1oKelKluZA6ODPzEQCbs8KaHMsuPTt72bEH4ACm58xwCQBltr8puxQklzIXxPsS2audFRry0t9OceDMEJxpyeHc9goeOzqO48C39g3xyYYAzrH43DxWqgiKNBe8BoAEwQubSD7cR2BDHcltfXPr4V1aQfbABJFr2kncd4rs7glClzSXnpkli/hWVOE/txZJOTvYRPj15Q0Lt3bm83w7b+I4DomZeSA30h3ROe9d3Yx9fhc+IJkpAvDC6AvU+mup8pWCjNZc2cpj/3uEnh1jdK4uTdM9Xmo759G7ZycbbryZxeWL+caBb5AupvHrv/jc9duwMxlmvvd9kj/9KfmDB19xHld7O2Xvey/Byy5DkkUQtCAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIwqtBhJC8llQ3+KtLhWzpcQiEwRNioqjzF9kPc9m5n2BJWwOtVTUUJjNISBBQCb+lFcd0kFwyjgz3HJ7AdGqZiVWgODCVM/jrK+ZRMG2iPhe3XtSJS5M5MZ7mlnOaWVwX5oXeaf7ikm4ayjxoqsJoIkfBsHmhd4a9gwka51VhFm369k/Nra5ZtHnx3l6qWkP4gq4zNsW0YSRZ4JUULRtdlRmeyjI0kyPq05EkODKawqsr9Exk2NoSIzWVJzVVKi4ZOZUkvqycwHQBayQDikRwSwNa3Wv3o2Xh1yO7VQrzytDTRXIHpgicV0/6qSG8i2JY9QEyO8cInt9A6vFBnIJFZvc4yvmNOOtqkHsTqDEPSlCncDKOu7uM/KEplIAOEhROxEsBH4emS8UGskS+ZwbPghiZ50bAcpA8KvmTCYJb6jEG05iTObQ6P8ZgGt+qKnIHJskfmca7rBQEIrsUZL9Gdu8EgXNqSD7cj5UsoNX5yR2eInRJM8kHeykcj+NbU03m+RE8C2O4WkKknx8heEEj2V1j5A9PEbq8hdz+SbTGIMH2MIWRLJ5LmpENm5xhEXpHF8VkBimgYVWkKfgKTDZPUFPfjVOUcXdFkDWFwmQGy1fk1IzKZ3/wAt9410oaykQQyZtOcgSWvRO3UUHikSm8yyrIvni6yF5vDKK1NIBfRwVq2jupae+ce78wmsb2a4SvaisVJ2sSNqVRhMsbAgDs2zXBkvYQ0Ru7sHNmqZDZr3PXNw6TT5fCebbc3E2s6e1oHpndDycpZOMkpiQWbdhCz3NPMTU0wKjaT3l9BdZADmRQl1ayY/ckR3eXRlje+8gAdd2l0cE/uKGZqYxB3gGfrjAcz/P5h4/x3nNbePBgafv+8eqF/Pujx3nmxOlrxV9e2k1F0MWjRydYUh8mb1r80zWL+Iu793NqMsszJ6b43LWLaCsX5/PfRO9Uhul0gZmcQVVZHeMBL6ZvPpmCSTplMpIoXUfTeYOR+GzBpqyC5gYnBJf+G7gCuOQ0nhtqeOZYgfVtMVTDxht2ISkyocubwXCwDYvk9iFCFzYx86PjAChBHf+GOtAVnn10kP5jCbrW1vHEnYNsvfl8Trz4/FxRnKKqNC1ZS2a6gGmUplmmTc+OBAAXvLca23SwLchna2lYuIKd996Fy+2ha/35DPXoePxnFgiZhsPFf7yQR24/xO5tSQJRN1tubidUcbqg0hMI4AkEXtPvQfj12Y6Df5mb4qgfoz8NMgTOqUCPZLAzKVTJYe217+Xhr/8zlmFw9Nkn6Vx7Lo9+4z8BkBWV8qYWujZfznMzEvNrNFyqzFS6QHd1gILhULBsFAmeNy1WL16AxwHJcXAMG8WnYectlLALczyL7FXRG4OknhgkuLUBYzyL4tVQQjqSKuOq8pM5MEH48laQIfX4AN5FFaSfGsbdGaHYn0L2a3PFo+72MHJQx5wp4F1WyfT3jmKOZkGV8K+tIX+01I9xgOB5jcja2YWiwptAqA62fAZW/REoOvgrmMkU+PKhKF/bfgooFcN/6alTLL5uKUpSRpZ1Xnh6mJqmAAtbQiS39eFbVUV6+xCyT0VyKWT3TeBbXknmhVF8a6rRG4IU+hLIbpWyd89H0mTsokWwKYiVMZC8GmY8h2dxOcePJ8ilDJJjOWzbC5YJxQwEqiAxAFULwTZ+t/tNeEPR6wJYM3ncXREkl4LeGKTYlyT91CD+zQ2428NgO9hZE2MkjRLUKY6m0VtCs0XyDt6VlfjW1+BkTexMgcC5taSeGCR3aIrghU2knx3Gu6wCx3KQVRlHkQlsacDBRq7yEri4GaNgIV3cTGosS1lbiFOSRSpvsOT6NmaOxolV+7Adm0LOxBPQScdLzxvaV1USH8sx1jdGfCTL6ssv4bHbP8dTd96O7vGg6Dqx+qX4fB5aV6zhoa/+B45TOlevue7t7HIqmUxAS7XCs1aRxYtisH8SHLA7wjzrh+yyCLsmEnz7uYEz9l11SITovV6Sqkk44sa3uopiXxLHsEFTkAMaSBLGaAb/yioSD/QCkNs7QfDCRnwrq8i8MEru0Ol7fMxSUGT4La1YqSJ6eZCy9jAAQwWTD9yzn41dlbRV+uf60i9XNG38LpWCWTxjujIb3lDud/GJCzpwv4rXdkmW8K2pwhhOUziZABn862vRG4O/fGFA1hRcdQFcdQE8C2Ol9XWLR7yvl5BH5WhcIaCCf2MdiXtPEtzcgFbhIf30EO7OKI4DasgFEqXzT84sBZXMlM51xf4k4avaTod5ALkDU7g31JJ75PS5SS73kNBlZuZFqOxNlsJLAMmjMlqmc9czp9jcGiOytYHEvafmlvMsLUeu8jI4ncPdGsQ5kQQgf3Sa8E3dGN/rmQsLsdpC3DMep6Xcx2NHS8vfc3CUj9y0Eu9YFis5+7fhOLgaQhQlCVdzCMdx0Gv9KOUeQuc3YYykCV/VVtrevImVKODtiKA3Bom9b2EpcEiB2PwyJElCCepIigiMeDUYlo1pO3h+5jxlZU325g2QW6gKT9DpbgDTwZzM4kMibdoU8nmeG3mOK1qvmFuue201B54Y4vkfn6R1WTnqbLuNi5fx1J23k56Z5pzac/ja/q/x1PBTXNR00au+TY5tM3PnnUz+x5expqdxL1hA+Z9+As/ChWh1dUiKgjk9TW7XbuI//CHD/+eTxH9wF7Vf+DxqNPqqr48gCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCMIfGvEL9deS6obRA/DIZ8AySkXCm/+SSNNWHjuR4rET8FEzyscbwPFKYEizI1Q6SG4ZZIchSeKieVWcmMzyNz89xJHR0kiV37xlJR5FBhl6p3KkCybNMS+L6kKk8hYb28uZyhb56vZepjIFLl9UQ2dlqSB8cCaH16+TSxcJlXtYuKmWSLUPo2AxcGSaQsY8K4SkJuJmz2CcRXVhNEXCsE4P4fmec5pxazLZosXXtp8iXSgV50V9Om3lftrKfewcjVP1MyNbPvyjk3SvqGD5xU14wm7UMo8Y/fINZDhTZBIbp8xLRcyNpEi4Lm4mE9YZqnRhporoHpXUxfW0+t08MZZAc4o8s3+Y5RVB1pd7KKypJqzJqAEdX62fwkiG0FWlkXpdXVEkt0pm1zjhK1rI7BgFGXwbasnunyB0URP5YzMUhzOErmojt3cCz7IKXPPKKIykCV3XQXE4jRx2E2gKYkzn8V3RipUoYKoy/rd24qSLqI1BlKJF3gb31e2QN8lYNsqVbeQsm8KicgLra4mniozWB6lpCLLjySEaF8UYOjZD3+EZ1lzRwrNfP0TH6kqGjsZJTuVYdVkzu/63h7VX1TE6lENRovQPnyRQFkGvkrHyBlS6SKcldB8UDZsXeqdFCMmbjaTA4Auw51vo1WsILP5bCtMSwQsbMadz6GUG7mYfiv/nj4rtqvKTH06Vhj6WAUVBkmxcIS91nToLN9Wy//EhTNOmrcUmVutjeDjLsz88ORdAAqCoMsd3xc9ou6zaR8Yf5cI/+wxjB3YzlR4lurWLU+MKCyoDPPnTXro31NC2thrHcXj+nhPkUgatlX48msxUzmRX3wzLmyKU+Vw0x3zs6puZaz+eM84IIAH44qPHuK1hJV94+Bh/ekEHTx2bZH17jG/cvJK8YRHy6NSERQHnb+LF3mne/T8v8K33rqKjMsDBoQS3P9NHV3WAda1l5A2Ta5bVcdeuQb75bD+3XtzFXbuGkFQd9v4Adn2z1JArCJd/EYIBPvhoL/oTx/nixd2c43GjhDQo2Diyg+zRCGyqJZE28F/WgjOZwylYmDJkXArH902hu5W50bNfuNfg4g/9JSPH9iIrCrVdS5gYCuAP22dti+ZS8AZ1XF6V5FQex9bZ/UiAlpV/gizDwWeydK/zc2L3yNwyqi4TrvAQqfJxzf+3nFzKwO3X8IVcZ7UvvPE0BGzU3bcTKxvG6tyIJBmoFVNI3/0IUrCB8IIPkdPXcvWnPkd6agSXzw9ymA3vqGf85AFiDQ1E6rr5wotT1Ea9FEw3d+0c4FMXd9M3lWUqU6Am7GUsXaCl3MennzzGuZ0VuDWZjko/5QWZfc+O4PVpBAI6UrmPCo9G6IYubLtUIGmnDQJtYbAcHNMiUOvDcUqjuvvOraMwnCZ4STOYFk7WxL2gjNyBSUKXtyAHNNRKH65KHwDl71tYKiLVZHAcPPPLkHQZJexG8Wq/2y9D+O3ISimMBJjJFjg8kmJNS5S79wwzkSoVDpcHXHhDOmmrQFRVsC2HnQ8P4r1coeXCJqzxLKFLmikOp4lc1YYxlUfWSwXyxlgWq2Cit4RxCiZ23kQyZUzLAcdBDuuomkJWl3jqoQH6Dk0D0LqiDPfgQ/DQX4JtlUJSLvonMAvYrjAHB+P0TWWQZInFdWHqIqLP+YdK8Wr4VlRhTOVxsgbu7jKwHSSXglbmQVJljHQRJrO4O6JYqQKh85swJ7OoMS+OBLJHxTFsZL8OpoUS8RC5qYtizmRoIk+8OUxDpY9d24dYfVkzpw5MIckS3oDGU7cdxTLO7Bts/cACnp+IE/HpHMwUqap0s2c6waKWMAtbwxx4bJD6rigDh6cxiza1XRGOPDeKYzsMHvNy2cc+y9Dh3eheL+Hqbsq1JKHd3+I7mbdxyUc+Q5mdwR0uI+OLURzJ8cihQc6fV0k2pNG3NMpEuYYE/LR/iofu7efO962hvNzHXTuHyM+u6+K6EKuaIr+Db+wPU15xMU2CcJmP6LvmYcUL2NhEbugit2+CwNYGrFSR8LXtWDMFZI+K5FbQFpURbgnhFC3kkI73bZ2kU0WIunA5DmqZm96iwWTOYNuRMRRJZm17OY8eGWcqU6C13MeJicwZ6zKRKnDzOU3867aeuWn1EQ/d1UG+cfNKOisD1EZe/fsbLeYl+o5urOkCqNLc3+evS4SPvP6m03kMx+aEY1OryoSvacPOGKVg6ctaKY6Wrv+5Q1OELmslt2+cwsk4wctaKJxMYPan8HR5yVR7kW7oRD40haIrTDX4GTRNai9txD2SxVPhpVDrY1JyoNqD9q55JI/PEAq6eb5Y4Nbv7iJTtPicrnD/e9ZQ9s5uzOk8pkfl8WQG+cQkH//eXv5oeT03Xd2KUrDoc2x2ZLMU15XTJMkUFYn7R+MMxQ3y5ulz96aOCj77/En+7sZOKi0J2aWgRN3YqSJqpRcsByWgo0bcAGhhN1ZbCElTSuGAhoUky3PPeWW/jvoLnpsIv52cUQqU+dmwpCM9cfoKEmb+RVpb2nFOmhijGbAh6NHI5EyeP/kMOTPHhroNc8tJssTaq1q554t7OPDEEEu2NgDQvGQ5T915O337drPk3E1EXBEe7X/0VQ8hMUZHGb71U2Sfew7vmjVUfOyjeJYsOWs+rboaz/z5RG66kfhddzH2t39H7/VvpfFb/4tWVfWqrpMgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCMIfGvFL9ddSMQOP/W0pgATANuGxv8N149K5WYZmR2F1e73gBSOZA0cCXUbz6GhTGbKmxUgiPxdAsrIxQnXIzUzWYGfvNC5NIerTOTScJNZeTsijMpoq8oFv7aIw+wPyJ3sm+dsr57OkLkj7bBhJsMzN6itbMPIWD33jEPm0QbTaS+eqs3+k69U1OisD9Iwm+fJNy7hr5yATqSI3rKpnUW0QlyLz9PGpuQASgOlMkT2Dcc7rjNE3maOrOky40kt8LAuAYzvYqoS3OTQ3oqLwBiLBF/f1c01bJbKqkMPhhdFpOlwhvrOjnxtXN2CaJhnL4kQ8RXWlj1zB5JzOCv72p4fYO5NhRWUQPVtkftjFkSPTtC0pZ9dPe1l1cSMnTsSZmsqxfEsDO3aN43h1OuuD9OyfxFUTIL9vikBLgExI4csvnOLWze30jKWIeDRCrSE0bOSIC0mTsPMmBdOiSpHJKzKKJuMYFsf2TNCyvJIjT41Q1x0h21tkZiRD56oqxo8naFpYxujJJIfvOo7uUVmwoZa+3iSBKi/P39vLqsuasG2HYt5i9RVN7No2wMpLm9j7yADxsSz13VGev2eY5Rc18uzdJ1h+USMvPjCMbTmsvLSJU49PMtQzjKrLfHpTLXnb+eX7XXhjyU3Cnm8BII88h3fqKlzLPwI1m1COfQqOHILQv0Bj8y9sxl0TwEwXcEwbyaWgekrFN7pHZdVlLTQvLieTKOCJedCqPPQ+O0o2eXok7lidj2C5m6qWIKMnSyMYxxr81C6K8cxkij+/e4TKYGNplU8c4wMbW2lWYNnFTTz5nR7iY1k8AY3117fjC7u5+8gQa1rKGU/kiQVcPHRwlD+9oJOBmRyrmqM83jMBQLZonbUtyZw5F0R1bCzNdNbgq0+cYkVTmPesb8Elzue/kXi2yF/cfYCcYeFRZe7cMcB3XiiNgP3sySkeODDK/7mok9UtUUzb5sd7hnEcmxtW1kPq+OkAEoBCEh7/B3xXfZ3FdSFay/34K33sNC1aCiZhn45LU5jI5fn8k/1cUhtlbNsQdU0hALSsRfvKIGW1PqaGMniDOqomk5go8Oj/FvCFu1l2QQODR9OEKzTGe5O0La/g+M7xuVVYfUULFU0BrvnkciYH0mguhRUXN/HCvb2YhsX8c2uo7YwwMZBm4NA00RofG9/WQaSqFPDgDbrwBkX4yJuJNzuE9PxXUIoZFO6ARdfDoT0kVv89/eZqRo4XqWqReeb2MbJJk3BlkYWbNCyrEX+sBtNWyVk+7j94imzR4kOb2/jHaxZyciJDwbLpqgoyHM/hdcmMxHM0V/i5c0c/ly+uBsehvimGpCjs23462GblpU1Uh3R0t4rmUdixfZjhY3HWv7UD27QpJoo8fddxFEXGMm18IRdb3z2PmrYwALZlo7eGwHLQK3xnbK/i01F8opDy913/VJbbnunliZ4JPnReGyGvhipLdFcHuOW2F/mLC7sISCoLN9UxduoQ23/Sx66IzsJ11TTPL8Oq8JBGQm8JMT6d49nvHWPdNe3sf2yAwSNxXN5S/3OoZ4ZQhRezaOGPuQksLaM4lmPkVBJJlmhcWU73fBvpzr8qBZAAWEV46C9wrv4aU94mnj00iUdTKZo2Tx49xicu6KQy6P7d7kDhd0ZSZPSKnx9Eo/l1NL+OmSmiZN2Ag6sjgqwryPqZfblcqsj9/7mfkROJuWn186LkTYd559Zy6PlR6rui5FIGgTI3i7fUs+uBvrl5O9dUMeOGvGnzvRcHOK+zgqeOT7K4Psy+sRT/sHeYz2zupEJVQZFQVIlizqSuK0IxZ9K8uJLx/izDp+ZTzJlUNsvULZxixr2Ed9dVUSxoDB6eQlUlApU5lrb4MZfUMBTPMZMrUtVZjlrh5dvP96EpMl+6YSnLGsK4NIUffvAcjo6m8LsUFtWFxd/M6yhbNBgsqtRnTXDg2Qf6mBrMIKsSF9wyj5qYB4IuZLdMPurCKFg8/0A/Q0fjlNX7abu0kd5MlqBb485Dg2SLJtetqEeXZWIBF+//9i5uWd+MX1cpWhYnJtIMzmS59eIuvvbkSYYTedyazK0XdfPY0TE2d1Zw60Wd9E1niXhL1/cPfnsXt7175WsSQPISxaOh1Irwsjcbt6ZRMPPUhlz0JgpUFiE7VcBThOd/fILVWxvwyBLaykoKhkNuXS0nd45z/OuHqJ8XYcUFZSjDDzBhXMRJR8KzKEyr28XgU6P07pmkuChKx4Za+iWLnX0zfP7hHr76jhWsvu05/mRTKwOD49yz93SfN1u0+OquAcaTeZ7omaRo2WztrmA0WXrm/NWdA/TliyyuC/O5B4+yvi1GS7mPv9zRj2E5dFb6+fNL5/HX9xxEUyQuWlDF9SvqKfe7qK8MIMunA6N/XtiepMqo4dPnUFk8F3hd5Wef3Xhedg0f602ypydOWMsxOvMkocpz4aRJ/ngcgGDIzUAuxZMDT+JW3KyqWnVGm/XdUeq7I7x4fy/d59Tg8qiUNzThDYXp3buL+Ru3cF7DeTzY+yB5M49bfXWuobkDBxn8wAewMhmq/vZvCF977Vww6s8jyTKR667D3dFB/y3vof+W99B0x7dRwuFXZZ0EQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRD+EIkQktdSMQVG7sxploGVmQZKRQ0bOmJnvK0FzyxuCLpVZrIGiZwxN+3G1fVoikQqZ9BVHWLfYJwX+2ZY0RjFxqHMp/PgofG5AJKX/M9TvXzphqUUzdIPkzW3ilSweOjbh3BmwxGmR7I89q0jXPWny/D8zAiVC+vCxPwu+qYzfHRzO3URDwGvzqHhOIYFI/Gf2VZgLJGnKuhhNFHggaFptt7cxeDBGSb6kjTMj9K0MCYCSN6wHC5eWM2f33cY24F3rm2ktsxDMm/y7nOaGZrJURPx0DedpTrk4V8ePMqF86v40e4hrllWx8LaEIlcEV+1l3vHZvDP89MWcaG4ZXp2T5BLFRk7laSQtWiYX8bw8Rn2PTfKqb2Tc2vg6Zlh/vVtjKcLJLIGPeMZnuqfZmVTlDt29PMn57Xx9e0niflc3LqpjbHtgwzvmQKgdUU5Cy9u4q4jIyRaNcJ1bpSUSk1IR/OoJCezDPco7Hm4VOSfSxkc3znOyitbOJLMsqillXDIzdRIhqPPjVDfGeTy99Tiyp+gdeMBMtE16IUhCqsasTMnuOqWMlLZAuffWMf0eJHx/hRDPXEAzKLNiW2DbPijea/7tyj8ljLTZ74uplGe/QeobYfhnaVp/spfqSnV/8qBCm6/Rn139Ixpa69spbotzODhaSpbQjQuiFJeH+SSDy5ieiiDZdm4oi76cwX6p0vBTmPJwtzyX3nyBFe+u5xHbjtEYqJ0bs6lDB657TCXf3QJ//VkL7Yjsa61jD+5YzfvWttE0bSoDrlRZZkFtUEODCWpDLhxqfIZ15M1zVEqgqXrQ1XIzfSRIo/NjNNVHaB3KktnVeBX2h/CmZI5k4Jp86/XLSJZMPn+zsEz3h9J5MkbNkdHksyvCfLAgVFGEgUqgi7ITp7d4OQxjGKRv7i0GweHnX0zdFUF+cbuQW5/rh9VlviPm5Zx5ZIa2isCrO6uIDGeRfeoRKq8aC6VKz++lNR0AUWTqWoNcXL3OJl4kbYVFUSqfczfUItlWBQLFrIs0bWuisxMgWC5h8qmIJquEqlUiVTOhjcshNZlFTi2gz/qRpYlqlvDZFNFXG4Vt18UYL6ZGY6My8yfnhBuIBlez9HMOvoPzdC1tprt3+3BNkt9zvhYlr2PDFDXFaWuK8KpfROMxJS58KOvbz9JV6UfVZHZ1TfN3907yr9et5hU3iTk02gAjo6muGJxDQ4SBU1m/fVttC6vIJso4A+7CZa78YVduGeLJbfeMo9soogkSciqRCFrcsn7F3J85ziyItG5pprK5uDcJsiKjF7284v4hd9vmYLJVLrItkNjAPzrQz1z733phqXEcwZ9yRyfe6GH/7l+CRf88QJO7RxH92jo9X4OzaSpLMooiszz3+0hXOVl7dVtHH1uhMEjcQAKWZOdD/RxwXvn8+K9vcw7twa5wsX39w6xsilK69tbiflc/NVDR9iSHCiFWr5cMYNjWTx0PENzmY99QwlcqkpzzM+RkaQIVBB+KdWnwy8JVPIEdLbc3M3JvZP0Hp6ititKRVMA1aUwHM9SsbKcB3omSRVMlrpCtC+IcFFTgGyiiBbQGJIt/uLew1y0oIqQR0eVJZI5g90DcaqCbq5dUc+pXJ7t8Txta6PURT2M9qRoWlgGDhQyJvsePd0v6t03RbBsPqpLobbWi5EqUMyZJNOlEBR5qkhD1ENrzEc8V+TTPzzAR7a0cfmiWppiXg6NJBmK52gp9zOvOsi86uAv2HrhNeNIFGwHx6ey54cnSU3mWXpBA7pHJR0v8sSLJ1m4uY6p42lkReLJO3twZjM9pwbS8NM+8uvL2NMf5z3rmzkxkWYmU+Tv7zvCv1y3iJjfxdBMjqGZDJcvrgWgYNp87oGjXL2slqhPZ2NHOcsaIly+uJrBmSxv+Y9niPl10gWTvFG6/8kZ9s/bAuEPmCxJxLwqqiyTKVo8MZ1icyzEY7cfITWdZ8+zw9S0RcjECzQvjnHfV/bPLXti5wSWYbNw41XkjqboqvAyM5Dm+d39RGt8nH/LPFIzeYZenODObIIHj5aCHo+MlsJIG2NedvbPnLVO8axB/3SOolU6ZjVFpviy+/jHjkywsLYUOvnU8UkmUgX+eGMrLlWhpdzLB7+9k/PnVXHFkhouWlBFZ5U4N76ZZF4KIZl9xl7MmWz7+gHcmkylu5dRIFxTS4Y+CifiSJpMOOrm8GiSp6aeYVX1qlcMEVl7VRvf+4cX2P1gH2uubEWSZZoWLeXknp3YtsVFTRfxw2M/ZPvQds5vPP+33o7UY48x9Ik/RY1EaPrOnbg7On6t5T2LF1P3lS8z8J73MvTJT1L/la8gyfJvvV6CIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAh/iEQIyWsp0gKuIBSSp6dpHk7YVUR9aT50XhvrW8t+YRMFw8awLNor/fh0hUzRIuDW8eoKQY/GX/74IEdGUwDct3+URz5+LgXT5pUGCJQk0FWJ6mCpGFj3KKSn8nMBJC+ZGcmSiRfOCiEBqA57qA6fGZTi1hQS2SKXLKrmhb4zfwi/pbuC1ooArRWni9JrmsO/cJuFN4bKgIuCYfOJ8zvx6DLpgoVh2bzQO83Dh8f5yJY2PnLnbi6YX8VMpsi5beV0VwWo39LO3/zkEAG3yvvObWE8WeDQcJKHDo/xifM7SHR42FIdIeLTKf74JON9KYoFi3NvaGfbfx0EQJIlll/USCFrokwU+MeOBg59+wRru6Ncu66DXN7knAv8bBua5j3rm3nwwCh1lswze6ZAglWXNTPRn+KBL+ylc16Etg01FGcKbL/jOKsub+bR2w7TsrR8LvBE1WRWX9HCYM8M48cTZA5Po8Q8nOhPMT2cweVV8UV9nDhiobjqqayqosbagXrkTqRCAqoWwt7vwJa/gh//DdE1n+HFAyvP2qf5yfxZ04Q3uLLms6fVroC+Z0r/Pf8qqF78qn9sqMLL4s1eFm+uP2O6x69T23n63Bw2SkFAP2tTRwwjbc4FkLzEthwyM6XjUJIkEtkiAC3lPv79seMsrQ/j1hXec04zbk1BleE/blzGPz1whJOTGTZ3VfDHG1q4a+cQjWVeNEUmXTDprPQzOJN7xWuP8Ksp8+l8ZHMb+4aS1EW8/LxdGfLqjKcK/M/NK5jOFinzuSiaLfxsxI1TvZijxTKKsk2qYKKrKomcwbLGKLc/149pO/zf+w/zww+sI+orLR2Inll05PbruF/WF6hpC5+1Pooqo3tKAQ+N8185aOflfvYzNJdCyPXajS4vvH6kslbshW9D3vttAOx8hsHgFsgUidX6wWEugOQlyck84UoPifEswcVl/PEPdp3xfmXQzXtuf5Ev3bCUBw+O8c1n+/jgea3kihb9U1nWtpYhSaCpMlGfhq4qtC4p/7nrqKoKwbLTx5sv6CJa5aNxQeznLiP84coUTRT5lc/GssxccEHRtHlxIs1n7jlIZ2WA/LRF777jVIfcXL+inmpTQnOrdK6uxrEd+g9On9XezEiGeetr8IV1pjwK9x8Yo6HMRyJnUG9b7BlKkHDX4VZdYJ4OHcMdJuev56EdYzTF/HRU+EnmTXb0TrNottBYEF4NoXIvC86r4ympwBd3nWRTrgLTsnn0yDg3rm7kX548fsb81y2v4xPnd7BvKM7JiSzHx9Ok8yYxv07ArbG4PszTx6eoDXtwazKjySK3PdPLhze3cdynsNT/NDO+c4nHZdLxs++hTu2don1VBY4DB7cP0b6ikvRMHrNoo8sSLQEPN33rxbmQvql0kX984Cgb22Pcsr4J0xLBEr9rqiKhyhLpokWowkvn2irS0wVC5R52PdDL8kuayacNjIKNqklzASQvmRpM48uG+dbz/dyzd5h/u34x05kiFQEXtz/dy4c2t/HZew7y/13YSbpg4tZk8oZNzrD49vP9vG1VPYvrwsiyRJnfhUdXuGBe5VzwFEDQo9Je4X+d94zwZhDy6QwlsgzN5MkVLTKGRdFxUF0y598yj+mRDEd3jDJ/fQ3JybMDm/sPTROt9lPIm7i9Gvm0SdPCGLIi8cQdR2lbXoGRNXjHgpq5EBKfXnqEPxovcE5bjOdOntmfWN8eY99gfO719mOTvO/cZnrGjgFQtGwUWUKRJSzb4ehYiqNjKd59ThMnJ9L8fxd2URV0s6A2SG1EhPC92aTypfDygLt0b/78T06SnMpzXkuAE6PTuP0BvGUhMkDheBytzk9ZWGcGm0xxhHfXvucV2y1vCNC+spK9jwywYGMd/oiLpiXLObT9MUaPH2NV2yrK3GXcf+r+3zqEJPXoowx+5KO4u7qo/8qXUct//n3dL+JbtYqKT36Ssb/7O6b/5zbK3nPLb7VegiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIf6jEUHCvpeqFcOVXwB0uvXYFsa74MlR08c13r2RVU4So/xePTm3YNo4DYY/Gl25YytrWMnpGE6RyFsOJ/FwAyUtcqkIqb7GkLoxbO/Prfc85zUQ9OtFAqUhY96ponrNzaFw+Fc39q+fT1AZdaKqCR1P40HltBN0qEa/GJy/qpDYsCovfrKJ+N6tboli2zcGhJDLwpUePs7a1jLBXQ5YkVFnm8aPjVATd3PZsL8cm0nzx4WN8bGsbH9jYyky2iKZAV1WAd69rYjpTpKBK/Pmzx/hu/wT7O910vqONwNZqvnlkhGhDKaxm4aZaenaM0rNjFKNgsev+PsIVHlRN5vHbDvP8d44x/sAQH+iu5bq2Sv6uq4HpE6Wwn4buKENHZzi1d5Ka9jDBqIfRvVPsurcPKIUwWKZNIWPgCZaK6xdsqmX3Q/1M9KXIpYqMHE8QLHMzPZwBYOkFjex6oI9dD/bxwj193Pf1EY6oF/K1qs+yd/6tJLuuJ3vun8P4YexzPoY2uZtYlXbWPo3ERCHHm079GtjyGVBmv89wI1zwt9C6GW6+Dy79PPgrfmer59IUzm0r5082taLOFkrPrwnyJ+e2ISsS+iuc491+jY+f08Lmjhh90znetbaRurCbdMHiW8/38/mHevj49/bywTt2URbQKPfrfOGti7nrj9fywY0t2I5DdcjD5q4K/vOJE7g1mXeubSLgVmmMimP8N+Vzq7g1mZ/sHUJXJa5bUXfG+zUhNz5dQZUlWmI+UnmT2rAHx7Y54ZqHvfVvQJkNDAnVY17wTyi+CDtOTeNSFaqCLkzL4cBQYq7N/qks2dkRkwXht+Xzeple8XHMDbdCWRuJhuvp2THOC/f2cnD7MLlU8axldLdCrC6AVu7mw/cf4OW5eDetbiBbMKiLeBlJ5FnbWkb/dBbDdAh5NF7om+aKxTVUhzzMrw6iq8rruLXCH4KoV8e2HS5eUHXG9PYKP0G3iiJLzKsO8uWbluHRFHy6ypHRFL1TpXCw953bQkXAxZLmKAs31TE1lKZnxxjhqrOvlZIs8dT3j5FPG3z/xX4+e8U8nj0xRU3YgyJLfOWmZUyFFlC89P+Bazbc0RPBfMtXeHSmksm0wdBMjuFEnpjfhV9XqYn+4vtMQfh1aYrMJQurqQy6kSWYSBd534YWekZT3HJOEy619PxhRVOEP97YQnXYw+auSubXhqiLePC5VJpiPnRNpqvKT3uln9ZyH6blYNo2XVUB0gWTPUMZRsJd1L7wHoKuacpqzw6BCFd5GTmeIDmZp2NVFc/efYL9jw+xe1s/T//gOGSsuQCSzqrAXGjfE8cmsWyIBX55cJrw2jJsh4Bbw1KhpiNMciJP34EpHGDlZS1kk0UKaZPn7j5BMX92f9UT0BgvlIruk3mT/ukcOcPi/RtbaKsMMJPO88/XLsK0HObXBPnKTctY3xajJuTmI5vb+JPz2tDU08/MvLrKpy/p5n3nNlMdcnN+dyXfes9qmmK+12uXCG8y6byF16Xg0RUqAi6G80UWbqpjeiTLzvv7WLihlt3b+rF+JoQPIFLlIz2Tp7w+wJN39nDgiSF2PdjH4WeG6VxdheZS6Hl+jJAhzQWidVUHuHZ5HQdHkkxlinxsazut5T46Kv3836sX8tO9Q9x8ThO6Ujqu0wUTl6rwhbcuZnljhE2d5US8Gv923WKWNYSpi3j4sws62NhRzpqWMpY1hrlwQZUIIHmTSuVNAIJulcnBFPsfG2TBhlqiskS6MEOoogolcvrap1f7KQ+5KSKBo3Nu3bk/t+3VV7Rg2w4v3HsKgOYlK5AVlZ7ntqPIChc2XcgTA0+QLqZ/8/V//HEGP/ox3PPm0fA/3/iNA0heErnpRvxbtzDxxS9SOHXqt2pLEARBEARBEARBEARBEARBEARBEARBEARBEARBEAThD9WvnjQh/Ga6L4PK+RRmBhmxIkxoVUgFG9NxWNYQ+aWLR3w6+4bi1IS8+HSFv7q0G79bZSSew/nZoWCBx46MM782RNCl8l9vX869+0eYTBe4bFEN82sClAVPF6OpqkwuVWDe+hoOPTUMlArgVl3ajG82nOFX4XLpZPMJasMeHjs6xse2tJM3bWJ+FxWiuOdNbXlTlLBXI5E18bhKRQ+yBP9xw1Jmcgb/dO1C/v7ew+wfSvCRLW1kCxZ+t8oXHznOzeua+PLjJ7hqaS37hxJkCyYf3tLGY0fG+ejWDoqmzUymyP8eHeXcthiLmyK0t7uYGUjj8mokJ/M0LYrRd2AKgIZ5Zez4aemH440Lyiir9TN0cJqZ0SwTAymWXdAIQEVTkBfv6wVKxUzP//gki7fUU8yVfpAvK6UCjoEjM5xzTRvjp5KomkI2WaSuM8J432ywj1SazxvSSU3lMAqlwqdgzE3X2mrMyTwbGlroNes5lDSQg+3kpRkWNsTQYoMsXFTN2DdOYcwWTNV1RahqDr72X5rw6nL5Yd1HoPMiyMUh2gqByt/1Wp2hMuTmY1s7uHJpLTnDoj7qxeXAdCbN8osaee7uE3Mjh887twbHkfA8PE4+K7NuQYS9Uynyps2nL+nis/cc4vBoiqBH5Y/ObeWv7znC+zc2o8oyAbfGaDxHzrJ5omeCJfVh/u26xXh0hWTe4EPnteHSRAjAb8OlKqQLFodHUrxlcQ3tFQEeOzpOZ2WA87rKkYAf7R7kHWubKPPrHB/LEPZqTGYcPvr8Qr5w+U9o9ZskPHU8NggHhwe5dHEtx8eSHBvPsKW7gs/cc3Du8y5dWE25uE4Lr6JYfTvHtA9itbydwqSKZQ6x6vJmLNPBE9CZf24NB7fP9jklWHNlC4WsQdav8MW3LeXRo+McG0uzuauC6pCbAyMpxlN5/C6VTNFiY0c5fpeCS5X580u70RWZhqiXoOdX77cKwq9KVWQiPp23rqxnWUOYJ3smWNIQYV1rGeOpAn9/1UKq/C4mMgX+8/ETfGhzGycn0nP3XkXTYtuhMRau9hDyqTz7oyG61lTTtqKCR795GLNoA1DbGSYxkQPg6HOjXHJRLduOTXDL+mZyBYOygJugS2H/cJJc5AKab9qGOz9J0lXB01N+/vXBQ7z33Fb+8YHDLK4P4XOpvGVpDU1lZwc3CMJvq7XCz9ffuYKBeBa3qlC0LNa2lGE7Dlcvq0WWJOoiXoKeUoCfpshsaC/n769cwIOHxniyZ4LPXbMIy7a5Zmkt9x8YZVNXBScnMoQ8Gl5dxXEc7hkOUNvxL2yIKgSKLiqaAoz3lu7TXF6VhvlRnv7+cRZvrWfvwwMsv6gJSSrd6030p8iMZTmvI8aShgiqLPGvD/XMbYOqSER9ov/zu1Yb8nBiMg2mQ2I8h2VYLDm/gWLWIJM38Ufc9B2YYtXlzXgCOt3rqjj8zChQem61/MoW3vXI6X6tYdksrAmjqjId5T68bo0yr8661jJCHh1ZlljTEiNbNIn6dKTZ+/2Xa4r5+NTF3fzxxlb8LlXc2wi/kFtTmE4XKPfrZIsWh2bSLE7KDByeJlrtY6I/TXljgLI6H/XdUQYOTwOgajKLN9cx1BNn97ZSWG6owkPn6ios0yFa7aUw+/xqZjDNjavquXhBNYvrwnRUBugZS2FYNsfG0lyxpHTP2FXpR5Ulvv18H5+4oIOoV6Mh6mVeTYigR2NzVwVjyQKW7dAU87J1XiWJXBEJCLhVPLo2F3YivDml8qVQJr9L5ck7enD5NFZf0cL053eSyk5R0zYPJewCRQLLxlPWT1nfYaCZrwwVqfnf60sBu6E6iHVARTdUzINAFaFyDws21LL/8UEWb6knWu2neekKjj6znQ1vv4WLmy/mjiN38OjAo1zResWvve7p7dsZ+vBHcHd00PD1r6EEAr/1/pAkiaq/+itOXnoZo3/5VzR883YkWWTxC4IgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIg/DpECMnrIdqMK9pME+BPFdBVea4o55fxuTTCHhfbj0/SVeVH1xSMdBFJkqiPeKmLeBicyc3N//jxSebXB7EdCUWSuH55PR5dpmDadFaFzmjbLNooqoKqS2y6qRPTKBXCuXwqtn12wMkvJMkUTYN3r2smlTfxuhT8bpXGmCh+e7NrrTj94+8Kf4FkziCeM5hMF8gVLW5e10TYq9MzlmJFY4Tu6iBPH59EkmBDe4yf7hvmkxd18ZO9w4wlC7zYF+fkZJbljRHu3j3EBze1smtghgcfGOOzV8xDu6ga72xRWD5j4A3pTA2BZZWOSVmRqGwOsuMnp1hxSRNHni0VImXiBRoXlGEULHSPilGw5gJAevdP0rGqkoPbh0lN56loDDDel2LvowOsuqIZf6QUzjMzlqVpYRljp5KMHI/TvDjG9EiGYq7UjiegMf/cWp7/8Uls20FzKay4phV/SOczDx3lfRtauPWe42QNi6ayEbZeVMMin4faci9lNX68v0a4j/AGoqil4os3ME2Vaa88s1AjqcmEqzysubKVYt5C1WRkGRzbxihYHHxsiHnAopVRCqZDa7mfz12zkMd7JojnTG5/ppeJdIGGg14uX1hNImfw30/3smsgTsClcu3yOgqmRcync8H8qt/Nhv+eaYz5eMuSGg6NpDBMm9aYjxWNHRiGg4XDTNbgg5vaGEsVqJZkQl6VI8NJFtSFaIwFuPQ740gSvHNNmOuW17G4PsJ4qkBtxEdNxMNQPIdHV8gULbZ2V/Dx8ztwqaK4Unh1NcUC7B00saw8sfoAQz1xymp8HHsxTueqShoXLmRqMENFUwDHdjANm6Bf4+R0lmX1EbZ2VTCazHNqMoNpOZzXWUHIqxLxapzXVcGShjBuTdzCCK+PJQ0Rjo+lkIAl9WFmskXcqsJli2rminVTBZOrltXxse/u4f9n77/D5Drr+///eab3tr1rd9WrLcuS3HvFgOnNdEw1JCEJENIhPXz5fZIQklBCKMaAjcFgDC64d8mW1Xvb3tv0en5/rLTSaiWr7Wp2V6/Hdc1lzT3nnHnPzj1nzrk99+vURzxEvHbmlLhIZeGtF9aSH85hCbm48MYG9qzvxjTh8nfOI53IEShxsffVXna+OHo86/Y5qA67+cAlDbQNJvG77KQzeR7Y0UN9xM1FcyJAhJb+OM/v7aNjOM571jTwnWf28c5V9ZT7XFQHnSyqDp74RYmcJb/bzmL36fWxqxaU01Di5Yp5pcTSWR7Z2sOy2gALKv0YhsnapggNwx58ThsFE/bu7yfrd9LTZuWWsMnyq2vJ503SiRzpRJaXfz0aTulw2ph3cQVbn2mnem6IZHR0ErbTa+cf37KUz9+3mef39o/VcVFDiLnlGqOYDkJeJ87BBDabieG1Ybqt9LVGsdmt7N/Yy8W3NYIJL/96PyU1PhZdWsnNn1hKciRDJp3ntUSCocSh99tmYXVjhAtPEvTrdlhxO17/2NdiMSjxKaSCckGqAAEAAElEQVRGTs7rtDCUMIhlclQHnSyr9nPwiQ48ASe5bJ7oQJKGZaV07R2hcUUp1fNC5HMFDAuj5+cOK+lEDk/QwcJLqnj51/ux2S00riilbnEJjctLKa3x8dXL5o89p9NuZXVjCQCXzS0bV09TuZ/rFpUDBhHv+LGngNsxIbTP69Tx9GwykhoNrundPkjn3mGu/cBCnB4b2USKWGKAcHUthmFQcsUgtg3/hP3JLZSYK4E/od+sg2AAYl3QuRES3z+yYVcIyhdzSXgBRsDJa9/ZyxWfvZ2Fl13J3vUv0rZtKyuWrKDGV8ND+x867RCS2HPP0faZu3DMm0v9d7+DNTB54c328nIqvvRFOv/8Lxj62b2E3/2uSdu2iIiIiIiIiIiIiIiIiIiIiIiIiMj5QL84PsdK/ac/mWHVnAh2q8GOrhgD8RzLawIMJDM4rRb+9e3LeXBTJ5vbh7lqfhk3Lq5gXrmPze3D5E1z9MftuQKLqib+iDcdz2JzWvGH3bTtHMBiNXD7nBQKTizW07sC5rxKH9s7RuiPp3HZbBgYlOjqwrNOid9JyaE+fGFDmFy+wN7eGF3DKb764DacNis/W9/KvHIvKxtCDCWyvOmCarpHUty2oorqoJs/v3URB/rj1ITczCnx8LstXbzpgmquW1hBMpOnoSFINFXAG3LQtXeYy98xj45dQxTyBZweG8FyN117hwEwDMAATNj+fCcNS0vwhZ2sfXMTT/9kF3bn6ASj4Z4k1fNCLL+2loOb+1l0eRXLr60jk8pRUu0lUOambnGE1m0DuHwOSmp8tO0YZMHaShZfXo3b52D3+m7mr67k1UcOUiiYlNR4mb+mku2/byMVy/J31zWQtFr58i2LeHBLJ3t6YjgjDpoWlVLudxXpHZPzUTKWYfe6Hl753QGsVgvLr63FxGTPKz30t8e47XMrxpbd82I3K1eUUBl2Uup3sbt7hIsaIvzytXaqQi7uWFvPZXNL+YtfbiaTK3DnFU18+ppmbFYLXcNJGkq8LKo++6vUyqjmMh93rG3gmd199MYzBLx2rNbRkBmfw86SmuC4yWIWi4HLZsXntPLxK5tYVBXgqV29ZPMFYukc8Uyebz+zlzevqMGwGOzrjfPVNy+lIuBiUVXgpJMwRc6E3WZhTqmXWAqGyvKk4lmSsQyhCjfZTAGvzSCXyZNJ57BZLVhdVpbUhVlSF6ZjMEHbUAKbxaA27CaRyXFpcwkGcNc1c5lf4cdm1RWs5dyaW+FnbsWJv+uayn0EPXa+8Z4L+dGLB/E4baRzBkG3FZfdgstWYKAzhsNto3FFGXs39FDYZrJwbRW5bJ49r/YAo/v0RVdUs65rhPqIh4qAk/UHBrBbrcyr8HP53NKx56wv8VLic/Ja6xD7emP8yY0LqA65WFoTxOc6tbBLkXNtTqmXuoiHvT0x3rnKwc7uKOlcgWSmQH3Ew7wKP9FUlnS2gM9lJZnO47BbwGMl25klFc8SLHXzwi/2Yh4KTe1tG6GQMymvD9DfEaek2kuk2ovDaaUy7OWrb17Cz19t55ndfVy9oIy3XlhDdchT5L+EHFYV8tAfS+IOOMCEVDzHcG+SdDJHKpZl54tdXHRLA6lYju6DUXpaosxdWY7bgHDBxsr6EDUhNx+6dA4X1IWK/XLkPNNcHiCZLdAfy5DN54EslfPDBEpSvPpwCxfd1ED77kHKav3s39RHLpOnc8/oWFbV3CBzLyrHtqYSi8Vgw6MHWXRJJTULw7z68EFatg2w5PJqyupPLzQponHY81b0UAjJ1odbqGwKsnBtFeQKxFODmKZJSXkpPPQF3C//D/ir4bqv0VWohV8W2GK8m9vf+4EjG4v3Q+926NkOPdugZzu2nfdzuXsY8sD/+xPme8oINmbg15/E6LiOL5phfrn79wzPe5Zg2WJwhw8N2p5Y/MUXafv0Z3A0NlL/3e9iDYUm/e8SfOtbGf7Vr+n5+tfxX38dttLSk68kIiIiIiIiIiIiIiIiIiIiIiIiIiKAQkhmBIfNwsWNJVx86GqXAOmWAlvaR0hksty4uIxbl1ZiMQyW1YYAuLixhFy+AHDCyZp2lxWLFQyLQTZVIDqQon6xE5vNIJPMYbOf+uTksMfJpXPL6I2mMDEp97vP/AXLjGGzWlhQGWBBZYBffPpSdnRG+ee3LeMrv97GQDzLI1u7+c3mTj599Vy+9vBOPnPNXL799D7ypsmdVzQxEE9TG3azqyvKe9bUU+ZzUu53YRom8z7rZddLXbTtGODGjy0mmchy7QcXseXJNjzB0YkVrdsHmLeqgt3rugE4uKWfQsHkug8upKTWRyqeZe6qcvas72H7c52EKt3cdOdSwpUebMdMvr/mjoV07R1moDPO5e+aBwUTq91KuMKD1W7g9NgY7k2Qjo/+sH/exZW8cP9eABZfXk0+nqP7Nz2Eq7z86fVzCNf5cNg0wV/OvZatAzzz010AXHhjPUPdCTr2DBGp8jJ/TQWx/uTYst6Qg0U1ATz+0asilwXcvLx/gDkRN2saIxzoi9M9kuSeOy8hnslR5nPiPI3vBjl9S6qDLKkOksnlsVksWCwnnrizoCrAgkP/fnx7N06bwZ/cMJ98ocDO7igVARd/fdsS/G47ZX4nBmC3WjBOMhlI5GyV+lykLUnSiSwur532XYOEK7wYNaNBC56Qg/hAhlClh3Ctd2y96rCH6vDo5PCheJpMoYDf6VBgjkx7JT4nt62o5qallRiMP/9KJrMM2KzsfqWbjt1DlNb6Kanx8tID+7j2AwtZfVsj2XSe2oVhRgIWXH0WHt/ZgwWDpjIvtWEPF9QG8RwTLuJ12rhsbimXzdVkSpk5rBaD+ZWjoT4LqwMk0llCbieuY/bzvSNJDvQl2Nkb5eH+OLfUlBAsuNj6bDvX3LGAvtYYnoCD8oYgu1/uJlLtJRXP0r5zCMMwCJaNfpc0l/v5ws0L+cPr8zo3m4ZKfE5KfE56rXHSAxkMS5zWHQNceH09w71JquaGcHrsZNN5+vfECJS6GO5LUbcwzJtqyrh5WSU24/WPl0Wm0tKaEAAjiQzdIykyEbAWHKx+YyNun51AiZtENENsMMWSy2sY7EyQimfp3DOML+xk2dW1xKMZPCEHBzb10/NIC00ryuhpifLK7w7i9Nooq5sYKi1yrGgqC4AZy3Ll5+ZjWAzysRzR7CAOS47G7f8M3a/Amk/CdX8NDg/bnvw6sIBArAIzW8CwHzp+9ZaA93KYc/mRJzBNiHZy8IlnaXv6OcoLHQQ9B7FHD2C+9N9ck89wDcD33jC6vMMHkSaoWg6VK0b/W30h2EbHc+MvvUzrJz+Fo76e+u/9L7ZweEr+LoZhUPnXf83+N7+Z7n/6Z2q+9q9T8jwiIiIiIiIiIiIiIiIiIiIiIiIiIrORQkhmqAvqwxRMk319cdoGU9SE3axqKBm3zMmuFB8s9TDck+TAlj6q54YorfNjGDDcm6SQN8+orjK/64zWk5lvcXWQxdVBAFbWhxmIZ7hhcTn7exNYLCY//fhaYpkc3/3gKl7aP0BfLM2bL6ihOugi6HbgdY3fHZXW+Ch961wKBXPcpKLquUEGuhLse62Xrn0j+EvcrHljI8lYlrIGPzXzQniDLrzB0b5YPS/E8mtqyaTyhCvcBEqPf+Vrf8SFP3Li/tt0QRnRgRRbnu4gOZIhGc0AEKn2UsgX2Pj7DgC8QSet2weJDaYpqfURKteVtuXcyecLbH2mHYD6xRGigynC5R6aLijHajNo2zHA4suqgdGL0l72tnljASQAc8v9ZHIFdnVHiaZyLK0JsbwuSNjrIOx1HPc5ZWqc7kTZq+aX4XHYWH+gnzK/iwUVfsr8TprL/VNUocjrM4G+tjgHNvUBMNiZIJ3MsvKmBmx2KzavhbJ6/7h90NFCupK7zED245x/GQV46df76NwzDEB8KEOkysMlb23GBCw2g2DQTbjRT293jBKfk+ZSL9mCSUXARXOZd0IAichsEHDZCZygb5cF3JT6XXhdVja1DdOazlJlWKlfXEohb+KNuBjuSlDZHMQTdLD+oQOkE6NhkQOdcdKpHNXzQlhto59JBZBMb2VlXgoRN10HhllyWTWp+Oi5fbDCTSFnkk7YaLqwjG3PddCxe4hI1VJKanw4rHpfZXoIeBz43XbWHxhkfy5DIGSjPGBl7poKfvPvG1l0aRWpRJZL3tKM1W7BF3JSWufD4bbRsXuIvoMxauaHaNk2wLrfHGDVrXPo3D3ElqfaWXhJFW6fzsXl9fX0JrCbsOLqOsrqRscACskc6fxB3tWwCUdvGt76HVj+jrF1Ng48CywghpX8SBpbyesEihsGBKppePM7sS++gWd+tpu+1hgAVlueyqoCj5Z8lTrT4P3em/HRgy9/AOvO38KGH41uw+aC2ovJ2Brp+96j2OuaqP+/72GLRKbqzwKAs6mRko9/nL7//E+Ct9+O7/LLpvT5RERERERERERERERERERERERERERmC4WQzGArGyKsbDjzH+raHFbyeRNv0MnLv94/2ma3sPb2JrKZ/GSVKeeh8oCL8sBooMeiquCEx1c3lUxoO5Fjr2rs8jqobnbwti9cRF9rFNOE0jofJdW+467v8tipag6devGvwx9xceNHFvPY97djO3S17jnLSnnt9y0ANK4oxWI1eOlX+wCwu6y88a4VVM2dnOcXORmLxSBQ6qZzzzDV80MYFoOXHtg3Fiy1/JparDYL135gIZEqL2X1EwMqjg4UkpnDarWwtrmEtc2nvn8VmUoWi8GBzX1j98sb/JTU+Pj1v28cfdxqcNOdS2m6oKxYJYqcEyN9ybEAEsNisPqNjax7cP9YYMK8VeWsfWszfreDi+ZM7SRMkZnEMAwWV4eoc7t48kc72Lp1AABPwME1H1hIeb0PX8SF1WaMfZ4O2/VSN6tunkOoQoGQM4XFamH5lbX0tIwQHUjj8Tno2jvMhkdGz7Wtdgtr39zEugf3Ex9KF7lakYkMw+DixggXN47/Ln/rn6yktyUKQGm9n0ild+yxlm39PPRfm8lnCwAsuqwKq9Vg34Ze6hZHSEQz2OwK25HXVyiY7Nrej5vR48zDzO7dXBT5XxyWFMZ774W514091hnr5EB0Ny5bgb5cgfzwSUJIjlI9L8w7v3wxfa0xHv7WTxnqSoLnEizJ67g7cj/mK/MIpC/BYjFoWBph9W0uSo1dcPB58lsfxj7yDA1XgGkbxHjoTmi6CpquhoplYHn9QPUzVfLxOxl58EG6vvIVmn71ABaXQtRFRERERERERERERERERERERERERE5man7ZKTOGAex8sWvsfi5bYOPjbRgYJ15JZBqIVHmZv7qSBWsqTxhAMhUqGoO85Y8vZM6yEvwRJ/lcYWxSSHlDgL2v9o4tm03lefonu0glsuesPjm/GYbB0qtqsNkt+EvcvPrwwbEAEoBNT7RhtVlYdGk1FY1BLFYdBojI1HB5bVisR44n5ywvZdPjbWP3C3mTx3+wnZH+ZDHKEzlnLFaDw6dWDUsi7H65e1xgwu71PQx2xItUncj017V3mJZDASQAiZEMO1/sorI5SLDUjT8ycdK01WaM+w6SmcHhtlG7IMKiS6owMccCSADy2QKvPdbCvNWVOFzKU5aZI1w5OnY1f3XluACS2FCKx3+wfSyABGD7c53ULAhjc1rIZQqsfkMjdqdCSOT1bX26nf54hoqwG6fHPtrYsQH7b96K1UjzRP5N4wJIAJ7teBaA2pCLDkzyw5lxj5u5HLm+Pgqp1HGf0zAMyur93PyJG0jHHiFctokv3/lJAAJ39PPWP72IFdfX0bFnmJ/+eztPvjqPIect7P6hycGNl5B/w/9gXPQhGGmHR/8K/udK+NdmuPdDsP57MLB/Uv9GFqeTyr/9G7ItLfT9939P6rZFRERERERERERERERERERERERERGYr/XL/PJc76sfuh0X7U5imeZylRQTA43fi8Tt50x9eyEBHHE/AwQu/2Hvcz1NfW4x0Iofr8EQAkSlW2RjkbV+4iOhAinQ8N+HxbCZfhKpE5HwTqvCy8sYG1j90AIB8buKxZTqRIxXLEjjFq26LzETBMjeLL6tm27MdhCo8tO1on7BMbDBdhMpEZobBzokhPV17h8km89j8Vqqag4Qq3Qx1HQm1uvgNjfhLXOeyTJlkiWMmxAPEhzIESlyUzwkUoSKRyZWO54gPTezn+ZzJimvrCJZ7KKv3F6EymUniw2le/OVesj4rjRWHQm72PgE/vQPTEuCeA800Xn3phPWebXuWKm8VzUaYLX295EdGj0VTO3fS/61vE3vqKQqxGBgG7hUrCL7trYRuvx3DPn5ss7SugSVXXsuG3/2a5dfdxKqKVTzY8is+cdGdVDUHWXXLHNb9Zj9dd99Hx467sTc1Ufvd72EtKQHePbqRkU7Y/xTsewr2PQlbfzHaHmqApqug/lKoXwPhRjDOPGDMu3YtwTe/if7v/i+BW27BtWDBGW9LREREREREREREREREREREREREROR8oBCS81y4wjuhrazBjzvgKEI1IjNLqNxDqNxDOpmlpMZLMpqdsEztwjAenwJI5NwqrRvdj/sjLqIDR65ca1gMgmWeIlYmIucLi8Vg+bW1lNX7ad81SEWjH4vFoFA4EkbiCzvxBp1FrFJk6tmdNla/sZG6RWFiAynqFkXYv6lv3DLBcgXxiJxIWcPEwImmC8pwekfPsQKlbt7w6RW07RhksCtO7cIwVc0hjLOYqCzF5y91gQEclWEWrvIwZ3kp/ogCZmTm8wQdRKq9DHSMD1qqnheiel4Qm91apMpkpjALJo//YAf5nEnaaVAecMGGH8Gv/wDKFtLi+wIDG77NJQsWjlsvm8/yYueLvKHpDTiGfDxGN+m+GIl//EcGfvBDLH4/gVtuxrlgIfmBfqK/f5yuv/wr+r/zHSq++EV811wz7jv28vd8kD3rXuSx7/wn7/vA+/ijJ/+I3+7/LW9sfiN2h8H8jt8S2f4DhkoWsqPpk7h6DOpKjiooUAUr3j16M03o2z0aRrL/Kdj6ALz6g9HlvOVQtxrq10LdGqhaAbbTO5cs/+IXiT3/PO1/8IfMue9erD7fGf71RURERERERERERERERERERERERERmP0uxC5DiitR6ueaOBdjso10hUObm6vcuwOVRaILIqXK67TQsLaVpZRmXv3MeVtvo5ylS5eGyt8/D7lLek5x73qCTGz66GG9odFKG3WXlho8sJlylEBIROTfcPgdNF5RxxTvn07CkhBs+uhiHa3RCpTfk4MaPLhnbR4nMZt6gk7kXVXDBDQ2svb2J0rrRCY8Wm8Elb2mmvH5iyIKIjKpsDLDypnoMy+iE56p5IZZeXYvFcmQCdKjcw9Ira7jinfNpXF6Gy6vxjJkuUuXlug8uwu4cPW7wl7i47oOLiVRNDNIVmYncPgfXfmAR/pLRUB2708p1H1ykABI5ZZueaKNlaz9r3trMQDJLWd9L8MBnYM4V8OGHaG8fDb2rmj9/3Hrru9eTyCW4vOZyGko8ZIFt//M3DHz/B4Tf827mPvIwVV/9KpE73kfZ5z5H4y9/Qe1/fRPDZqft05+h9WN3kt6zZ2x7vnCEK977QVq2bCK0Nc6iyCK+tv5rdOzbRMtHPkrfN/+L4FvfyuL7vo+rLMSv/2Mjm55owzRNJjAMKJsPaz4O774bvrgfPvU83Pb/g+ZroXsrPPIX8N0b4B/r4Ls3waN/BTt+A/G+ids7hi0SofbrXyfT2krnX/wlZqFwVu+BiIiIiIiIiIiIiIiIiIiIiIiIiMhsppnx5zm73cqiS6upnhcik8zjizjxBDQZVORMOJw2ll1dS/3iCNlUHn+JC7ffUeyy5DxW1Rzi7V+6iPhQBpfXRrBMASQiUhwWq4W5F1VQVu8nFc/hDTnxKYBEzkORah9v/sMLGOlLYXNYCZW7sViVDSpyIm6/g9W3NbFgTSW5XIFgqRunQlNnPZvdyoI1lVQ2BUkncvjCTrxBHTfI7FIxJ8DbvnARscE0To+NYJkbwzBOvqKc91q29vP8z/fQuKKUQH2cfMGkoe0BWP0huPVrYLXT0rqVgLuUYHnluHUf3PcgfrufS6sv5dWnfwfY2WFxc+E3v4n/2msmPJdhGPivuQbf5ZczeM9P6P3GN9j35tsJv++9lH3mM1iDQZZfdzP7NqznmR/9L5/58Dv5k/6v8f5fv4+PRK3c8vd/R+RtbwPgbV+4iEf/dxvP/HQX/R0xrnzX/LEg5+OyWKFiyeht1UdG26Ld0PYytLwIrS/DC9+E5/5t9LFIM9SvhbrVULcWSueDZfz2PRdfTPnn/4ief/0a3SUlVPzFn+tzJyIiIiIiIiIiIiIiIiIiIiIiIiJyHAohEQyLQahCV5MVmQwWi0G4Up8nmT58IRe+kKvYZYiIABAs8xAsK3YVIsXl8jpweRVUJ3KqrHYLkWpfscuQc8wwDELlClGU2c0bVMCOnJ6Wbf389ltbKK2ycuOCh3ni7ieAz9B8zYfh2tGwj8TIMF39e1nYdNm4dUcyIzx68FFuqbqW/i/9Jf7fPITjjf/AnuVvx3fVVa/7vIbdTuQD7ydw2xvo/fd/Z/BHdzP0k5/iufhiHE1NrE7nqG7pxfe5v+evKk3+/T0+/unNKX7Ed3jb5kHe3Pxmyjxl3PLJZbz0wD5effgg/W0xrn3/IiLVpzGO6q+ARW8cvQFkU9D52pFQkl2/g9fuHn3MFYSaVVB7MdRdDBVLwVdB5CMfIdfXz8D3vkd+ZISqr/wtFrf71GsQERERERERERERERERERERERERETkPKIRERERERERERERERERkGsqkcmx4+AAHf/8UV5U8xwLbYxhPD7Mh8GWsKZh32ZvHln3lgV9QMPMsvmh8sMj/vPhvJHNJLv2XRxlpz1J516e5IB3mxZ44mfYYzvrASeuwRSJU/c3fEH7Pexm+/37iL7xA8rXXwGajtKqK7ppqOlIj3Pqcj8TaCrZ4evm3V/+Nb2z4BlfXXc2dy+7kkrcsobTOx1P37OSnf/8yy66p5YLr6vGFzyCQx+6C+rWjNwDThIF90PrSaChJ2zp4+l/ALIw+7gxilM2nfF4T/o/OZ+SZn9D9kccJvOU9eNZegeEKgNMHNhcYltGbxQqG9Zj/Gqdfq4iIiIiIiIiIiIiIiIiIiIiIiIjIDKIQEhERERERERERERERkXMll4FMDAo58ukUuVSafDpNPpPBTIyQHe4l3dtJpmM39O5kmWU7ayIjmIYNY+6b6F9+Jw/9Ks1FDS7s2SR9+1tpeXUdW+//CfMcDYQ8GboeuI+W1i38vuc5ftzcxbWvFVg8ZzXl//UFnI2N3P7sfr784Dbu+dUO3v3hC3B5HadUumvBfFx/9qUJ7c1A8749bHrsd+x66TlWxVIsjjTRvdLDS+0v8vuW33N19VW8Yc6tXPb5ZnY/OsSGJw6w6fetVM0NUT0vREmND2/Qgctnx+GyYVgMLFYDi8XA7rRiWF4nAMQwoKR59HbBe0fb0lHo2AA9O6BvJ/TuxDjwHJ5kN56VWWAYtn0Ftp3Ge2dYwWIbvVltR/5tc4EzAE7/8W8OLzh8x/zXC3bPaLjJWNDJ4W0ebrMcfmKwOUdvIiIiIiIiIiIiIiIiIiIiIiIiIiJTSCEkIiIiIiIiIiIiIiIi58rme+GBTwNgPXQ7noJpJeGuw6i/HlbchNF8HX0EWPsPv6dgmvzNm5bws/e/k1XbD+AGrgLgIB1/9DSfuMvKoN8AP1yVauArn/kawbkLx7b9trX13P3UPv6mrZeff/VxfvUPN71+yMcpqGiayw0fv4trP/JJWrdsZMcLz7DnhReoSUfY2mjjuezTPNnx1OjCBnz6A59lZff17N/Uxyu/PYBpnnjbH/iHS/FHXKdXkNMPjVeO3o5WKEByAHOwlcQLT5F84Smy+3dBOophBTAxjNEaDcMk+NbbcTbUQyEPhdzEWz4LudRo6Ek6CrEu6N995H4udXp1n8gNX4HL/mBytiUiIiIiIiIiIiIiIiIiIiIiIiIicgKG+Xq/6pzBDMPoBQ4Wu45DSoG+YhcxBfS6oM80zZsn88nPoO/OpvdBr+XcmfS+C0Xf9063v/l0qmc61QJnX8902PfC7Pu7TgXVNN506btTaTq+52dLr2nUdOu/0/F9UU2n5lzXNN367vFMx/dpqpwvr3WyXudM6L9nayb3iZlcO0xt/edD3z1spveDU3E+vcap6Lu/O7T9U62h2FTH9KoBTr2OKRnvFREREREREREREREREREREREREZHzz6wNIZlODMNYb5rmqmLXMdn0uqaHmVbv69FrkbMx3f7m06me6VQLTL96ztR0ex3TrR5QTeej2fj31Wuanqbja1BNp2Y61lRs59Pf5Hx5refL65wMM/lvNZNrh5lf/3RxPvwd9RrPnxpUx/SrYTrVISIiIiIiIiIiIiIiIiIiIiIiIiLnD0uxCxAREREREREREREREREREREREREREREREREREREREREREZHiUgiJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIeW5Wh5AYhvG/hmH0GIax5RSWvdIwjFcNw8gZhvH2Yx77nWEYQ4ZhPHiGpXzrDNeb7vS6poeZVu/r0WuRszHd/ubTqZ7pVAtMv3rO1HR7HdOtHlBN56PZ+PfVa5qepuNrUE2nZjrWVGzn09/kfHmt58vrnAwz+W81k2uHmV//dHE+/B31Gs+N6VADqI6jTYcaYPrUISIiIiIiIiIiIiIiIiIiIiIiIiLnCcM0zWLXMGUMw7gSiAE/ME1z6UmWnQMEgD8BfmWa5n1HPXYd4AE+YZrmbVNXsYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyLlnKXYBU8k0zaeBgaPbDMNoNgzjd4ZhvGIYxjOGYSw8tOwB0zQ3AYXjbOf3QPScFC0iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiInKO2YpdQBF8C/ikaZq7DcNYA3wTuLbINYmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiBTNeRVCYhiGD7gUuNcwjMPNzuJVJCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiUnznVQgJYAGGTNO8oNiFiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiITBeWYhdwLpmmOQLsNwzjHQDGqBVFLktERERERERERERERERERERERERERERERERERERERERERKSoDNM0i13DlDEM4x7gaqAU6Ab+Gngc+C+gCrADPzFN8yuGYVwM/AIIAymgyzTNJYe28wywEPAB/cBHTdN8+Ny+GhERERERERERERERERERERERERERERERERERERERERERkakxq0NIRERERERERERERERERERERERERERERERERERERERERERE5OQsxS5AREREREREREREREREREREREREREREREREREREREREREREikshJCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIue5WRtCcvPNN5uAbrpN9W3Sqe/qdo5uU0L9V7dzdJt06ru6naPbpFPf1e0c3iad+q9u5+g26dR3dTuHt0mn/qvbObpNOvVd3c7RbdKp7+p2Dm9TodivSbfz4yYiIiIiIiIiIiIiIiIiIiIiIiLTzKwNIenr6yt2CSJnRH1XZjL1X5mp1HdlplLflZlM/VdmKvVdmcnUf2WmUt+VmUp9V0REREREREREREREREREREREREREZppZG0IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIip0YhJFJ0pmkWuwSZZdSn5Hynz4CIFJP2QSKj9FkQmT70eRQRGU/7RRERERERERERERERERERERERERERETkRW7ELkPOTWTDJtIwQe7GLQiqLb00VzqYgFqe6pJyZsT71UheFeBbf2iqczepTcn7JJ3Ok9w0Rf6kTq8+Bd00Vjno/hmEUuzQROQ/kBlMkt/WT3NyHc24Iz/Iy7OWeYpclck6ZeZN0ywjxFzsopAujx6RNASwOHZOKFENuJE165yDxDT04anx4VlbgqPIWuyyZgcxsgfTBYWIvdgKM7t/nBDFsyneWmaWQzpHeP9qXLS4bvrVVOOoDGBaNG5wvCtk8mf0jxF7owLBb8K6twtkQwLBqfyYiIiIiIiIiIiIiIiIiIiIiIiIiIqM0E0qKItMWZfD+3biXlgJOUjsHwTRxLy4tdmkyQ2XaovR+azMURq/kmt41SOR9C/EsK5uwrJk3yfUlKaRy2EJOrEHnuS5XZEqkdw6Q3D6Aoy4AwPBv9xG8rRlnrb/IlYnIbFfI5Bn67QGsLivOpiCYMPTb/UTeMhdrQN+zMrvlhlLkhzNYPDYKqRx9394EhdHH0jsGKPngYtyLSopbpMh5yCyYxJ7vIPZkGwD54TSGy0ohlsFW5sEW0veTnLr0wWH6vrNl7H5qSz+lH1uGa27opOsWMjlyfSnMvIm9xI3Fo+FYKZ70niH6f7h97H5yUy9ln1iBsyHwuuvlk1lyfSkMq4Gt1I3FYZ3qUmWSHX4PC8kcsSdbSe8bBiC5uY+yjy/H2RgscoUiIiIiIiIiIiIiIiIiIiIiIiIiIjJd6FfvUhSZtiiuhSVEn2qDvIk16MBR46OQyetH7HJGUruHxgJIDos+2YprQWRcnypkcsTXdTP80P6xvhe5YzHOOoU0yMyWT2bJx7PkehMkN/aCAe7lZeR6EwohEZEpl+tL4qz3E3u+g/xACiwG3rVVZPuTCiGRWS29f5j+u7dTiGUx7BYCN83BVuoh15MYWyb6dDuueSEMm85zRM6l3GCK2DPtANirvbgWRIg+0Uo0Z2LxOyh5/yKc9a8/6V7ksPjLXRPb1nWeNIQkN5Jm5JGDJNZ3A2BvCBB5xzzspZ6pKFPkdRWyeaJPtx/TCKnt/a8bQpLtSzJ0/+6x0ArPyvLRYx6F+s4Y2b4kg/ftInNgBAD30hI8F5WTeKUHTEhs6lUIicgkM02T2JNP4rv6agzDKHY5IiIiIiIiIiIiIiIiIiIiIiIiIqfFUuwC5Pxk8diJPT0aQAKQH84Qe76DQiZf5MpkpjKOtzezTPxxb7YzwfCv943re0O/2E0hkZ3iCkWmlmlCpi1GtiN+qAGSG3sxs4XiFiYi5wfr6BW08wOp0fsFk/jzHRQSueLWJTKF8iNpBn6yg0Js9DjSzBYY/s0+PCvKxi9oAdCkM5FzzQA4NOHTvbSU6BOtkBs9DyxEMwzeu4t8LFO8AmVmOc74gmE9+bBqZv/wWAAJQPbgCPH13Zim+TpriUwNwwCsxzkmOU7/Plri1e6xAJLR+z3j7sv0ZpomiVe6xwJIAJJb+rGGXGAbfe+N4/ULETkrw/ffT9unPs3QvfcWuxQRERERERERERERERERERERERGR06YQEimO3MRJ8dnOOGZSE1XlzDjnhcd+OH9Y4Oo6LI7xV5zPD6UmrJvtiJOPK4REZjbDNMkcmDgJKNc/sc+LiEw2w2ol0zIyob2g71eZxfLRLPnhYwIMTDCPOdfxX1mLYdOpt8i5Zg278F9VC0z8XALkepPkY/qeklPjXV05Pk/KAM+qipOulz4YndCW2jZAIa0QXjn3DJsV/5W14xutBu5FkROuU8jkSW0fmNCe3j80ydXJVDEzBZLb+ie053qTWINOsIB7WWkRKhOZ3bKdXQDkurpPsqSIiIiIiIiIiIiIiIiIiIiIiIjI9GMrdgFyfrJG3BPabGVuLB51STkzjhofZR9fTnJDD/lkDu/KChxzAhOWswacE9psZW4sbvu5KFNkylicNpxzgiQGe8a1O2p8RapIRM4nFq8Ne62PbGtsXLst7CpSRSJTz+K1Y/HaJ4TtOJuCFJI5Cuk83ovKcTRMPCYVkalnWAx8l1RhK3NjHifwwRpyYvFqDEJOjbM+QOmdy0m82gWGgWdlBc56/0nXc9T6iB+7rebghMBUkXPF2Ryk9KNLib/Sg8VtxXNBOfaaE/dlw2bB2Rwi2zm+JzvrdXwzUxh2C665IWLdiXHt9movFp8Nz/IyHHV6P0Um3Vh4mVnMKkRERERERERERERERERERERERETOiGZbzCI7u6KsOzBAMpNj1ZwIy2qC2KzT84rb9iovvqtriT3ZBoDhtBJ+6zysXkeRK5PprJDOke1KkB9JYws5sVV6sdhHJ+4YhsFBh8GOBjfZfIEmFyyzGhz7CbBVevFfU0f0idbR9Q73PZ9CSGRmM2wWfFfWkN4/TH4oDYBrSeSsJz4PJ7JsaB1kc9swDSUeLmqIUBOeGCQl018ik2Nj6xCvtgxREXCxak6YOSXeYpcls4TVbcf/hiaGfrCNQiIHgGdtJXYFIcksZgs5Cb9zPgM/2o6ZLYABwVsbGQrayC8OY03miOYLBLIFnHZNNhcphng6R8ICtpAd77V1xJ9oBRMMh5XwO+Zj808MqZTZLxXPMNIaJTWQwgjasZZ7qC57/WMWw2bB1RTE1RQ8redyNgZxzg+T3jUIgLXUhW9tFYbFOMmacr7a0TnCywcGyOQKXHxofNdygv6Si6bJdSYoZPLYKzzYyzwn3b7FbsU1L4xrXviU6jEsBt6LK0jt7CfXmwLAOTeEszl0yq9JisuwGFgvLMO6c4B83+h76JgbwtHgxxYuwxZScKTIlDBG992mqRASERERERERERERERERERERERERmXkUQjJL7Oga4V3/8yLDydGrcFstBj/66GouaS4tcmXHlx9Mke2IEbihATNfwLBbsAQUQCInVsjmiT3XwcgjB8faQm+Zi/fiSgyLwc6uEd71rRcZShz5DPzwo6u59JjPgNVtw39NHe4lJRSSOaxhF/ZSBSrI7GDmTVzLSrE4rBgG5JM5yJ/5D93zBZO7Xz7Iv/xu51jb2qYI33jPSko1YXPGeXhrF3/0041j95vLvHz/I6upDZ98oprIyZimyXA8g+fiSgyrgWExSCWyxOIZgh4Ffcns5ZofpvxzF5IfTGPx2em3QXxDD64n2skBOSB6fR2Oq+owFEQick6lBpLE7ttFYX+UHGBv8ON5/yIcFgNnqUfngecpM1cg+lInmUdaxkJLU1fX0LnaQlVk8o+LbWEXkXcvINeTxMwXsJe5sQZ0LiXHt61jmHf9z4tE06OhfjaLwY/vXMPqxpIJy+YGUwz8ZAeZg1FgNGS39GPLcNb5J70ue4WXsjtXkO1NYFgN7OUeLDrGnzFGklm+/PRuGpvdvPPqWoLxHNm2GH3/sxlLwEHpR5biqFRAqYiIiIiIiIiIiIiIiIiIiIiIiIiIHKEQklni2d19YwEkMDpx/D+f2MvK+vC0u+q2WTCJvdRJetcQ6V1DY+2G04b9Uk0CkuPL9SQZefTguLahX+/F2RjEXu7h2T19YwEkcPgzsIeLjvMZsDisOGonf1KGSDGZuTzRx1tJbesf1+6o8WGLnNlVbVsGEvzbY7vHtb24b4Bd3VGFkMwwPSMp/v4328e17e2Ns7V9RCEkMin6+xIUHm0h1pUY127U+6FME9pk9jIMA3uZB3vZ6L40vr0X19Md45ZJ/b6V5MISPDr+FDmnkgdHKOyPjt3PHoySfaKVwdubaFYAyXkr1hkj/VjLuDbH0x1kGwMwBSEkAFaPHescBTbIyT22vWcsgAQgVzD57jP7WVkfxma1jFs2fXBkLIAEwEznGXnsICXvW4TFMfljwdaAA6sCpGek3T0xHtzURanPwRstTowXusYeK4xkSLzajePWpiJWKCIiIiIiIiIiIiIiIiIiIiIiIiIi041CSGaJwXhmQltvNE2uUMDJNAshyRfItkax+B14VpRiOKxkDoyQ7YwVuzSZxgqJLJjHNOZMConRyRmD8eyEdXqjaXL5AtZYFjNXwBp0TslEDJHpoJDOk+2M4aj345wbwswWSG7uI9eXPONtpnN50rnChPZkNn82pUoRZPIFRpK5Ce16L2WyGNkCZn8S15IS7BUeCvEsiY29EJ/Y70Rmo9xgCjNXwAWQP+ag1YR8bOL5mohMLTM6/nNnDTtxzw3jzZqYuQKGzXKCNWU2KySycOwpTsGE1OkdFxcSOfKxDBa3DatfwQwyOfpi6Qlt3dEU+YKJ7ZjhrPxgasKy2c44ZjoPJxj7KmTy5IfTGHYrtpCCRc8XqUPn/RUBF75oBveaSixeO9nuBKnt/WQORjELJobFKHKlIrOUeez/1BARERERERERERERERERERERERGZ/hRCMktcPr+U/3xy77i2D18+B69z+l1p1WK34rukmtxQmtjzHZipHK75YTzLy4pdmkxj1rALw2HFzByZGGTx27GGRydNXD6vlG88sWfcOl+4bh5sHaD7wX2j/WxJCcGbG7HrqtcyC1k8dgI3NpDa2k/0iVYMuxXv2ioczcEz3mZd2MO1C8p4fGfvWFvQbae5zDcZJcs5VBlw8f5L6vnuswfG2pw2C/Mr9F7K5PCGXTjeMo/E8x2ktvZjDTgIXFdPocJT7NJEplQ+mSOxoZuRhw9iZvK4LijDfm0d0cdbx5YxnFZcZfosiJxrzkoficP/nhfCXuUl/lwH5pOtmKsqCFxbjy3sKmqNcu55Sj3E3DbMowL6LB4bjsip94VMW5TB+/eQ7YhhjTgJv3U+zuYghqEJ/HJ2blpSyQ9eODiu7UOXNuK0TwwVcdT4J7R5VpRh8R5/LDjbk2DoN/tI7xzE4rUTelMT7sWlGHYFMs12jaVeqoIuUukcnkUlJB8+SH4kg73WR/CWRgyHRQEkIlNAxwUiIiIiIiIiIiIiIiIiIiIiIiIyk+lXxrPEyrow3/3gKpZUB6iPePi725dyw+KKYpd1Qpagk+jvW0YnfZiQ2jlIcksf5rFXDRc5xF7qpuQDi7EGR0NHbKUuSu5YjO3Q/QvrQnz3g6tYWnPkM7DW42bw3l1H+tmWfqJPt2Lmj73sscjskOtOkNzSDyaYmTyxp9sge+b93eu08VdvXMJHL2+kIuDkhkUV/PCjq5lT6p3EquVcsFktfPSyJv7w+nlUB11c0hThhx9dw6KqQLFLk1nCgUHiuQ6ybTEA8iMZhn97ALd7+gXiiUymTOsIw7/ah5nOjx5vbuilkCtgaxzdv1pDToJ3LMReohA8kXPN3eDH98YmDKcVZ1OQ2NPto6GWJiTWdRN/tafYJUoR2EvcBN67EMuhQFMj4sL1rvmU1Z7acXEumqH/nh1kOw4d8wyk6f/+VnJ9ySmrWc4fK+tD/M8dF7Go0s+cEg///NZlXL3g+KHN9jo/wTc0joaIGOBaWoJ3bdVxwyQK2TzDjxwgvXNw9H48y8A9O8l0xqb09cj0UB1y878fuph/uno+sZ/vIT+SASDbFiOxoQfnvHCRKxQRERERERERERERERERERERERERkenGVuwCZHI47VauW1TB6sYI+YJJyOModkmvK98/cXJGYmMvgevqsQacRahIZgLX3BBln1lBIZHD6nNg9R2Z2Hz4M7CmMULu0Gcg9mLnhG0kN/YRuK5hLLxEZLYoJHIkNvZOaM+0RHEvLDnj7c4p9fLlWxfx6aub8Tltx70Cs8wM1WE3f3j9fN6/tgG3w4rHocNAmTy54TTZ9mMmMRZMcoMpHDW+4hQlcg5kWqIT2lKb+gh/bCm5VB5X0IHNr+NOkWKwOG0EL63GsyhC4oXjnBu+2o3/kmosHh0TnW/888K4P30BqeE0Np8dV8h1yuvmh9Lk+1Pj2sxsgdxACnuZZ7JLlfOM22HjpqWVXNpcQsE0Cb7O+K7VbcN3eQ3uxSWY+QLWkAuL4/jn64VoltTW/gntud4kznoFU54PFlUFiPdnGCyMDwDPdsQx0wprFplSyt0XERERERERERERERERERERERGRGUgzLWYZv2tmXG3e4pv4I3pbuQdO8GN5kcNsASe8TlCN76jPwNEhJWPrl7kxHJYpqU2kmAyHBXuFl/xgely7rcR91tu2WgxKfJpAPVvovZSpYHFaMdw2zGRuXLtVE7tllrNFJk5ct1d6cQSduEp1biNSbIZh4Ii4yZRPDIewVXl1bnges/kd+PynH+BrcVkx7BbM7PhJ+wqzkcnkd5/a+K5hGKd0zm84LVgjrgkBOhbvzBhHlslhO877bbhtWFw6ZhWZEoYx+l9TKSQiIiIiIiIiIiIiIiIiIiIiIiIy82i2hRSFo86HY85RV9q0WQjd0ojVpUkbMnnstT4cTUf3M4PQrY1YT3Eyh8hMYrFb8V9bh3FUmJOt0oNzjq5qLCJTzxZ2Eb69GYwjbZ6LK7BVeotXlMg54JwTwFZ9pJ8bDgv+a+uw2DWZU2Q6cTYFsVUeCSIxnFb8V9Vh2DQsJqfHVuIm+MamcW2+K2qwHyfoRmS6sHodhN88FyxHDtadCyPYq3Wsfj6xVXjwXFxxpMGA8O3N2MITQ/VEZDIYJ19EREREREREREREREREREREREREZJpS4oMUhS3kIvLeheT6U5jpHNagE0eVr9hlySxjC7mIvHshuc44hXQee7kHW8XJJwaZuQK5gRQYo1e3N6yamCYzg7M+QNlnLyA/mMKwWrCWurAFNZlERM4N95JSyu9yk49msLhs2Mo9WD0K/pLZzRZxU/LBJeT7kpj5ArawE3uZJvSKTDf2EjclH1469lm1hl04yhQaIafPsBh4LizHXuklP5jC6ndgq/JicU7OEKuZy5MbSIPFwBZ2YVg1gVkmh3NuiPK7LiDXl8TitmGv9GL1OyZt+7mhNIVUDmvAoXOAacrMF/CuqcK7qpL8SApb2I1doZEiU880i12BiIiIiIiIiIiIiIiIiIiIiIiIyGlTCIkUTa43yeDPdpEfTmMtcRF5x3ycc4LFLktmGVvAiS3gPOXlc0MpRp5oJfFyF1gMfJdX47+8dlInZohMlWx/kpFHDpDa3A82C4Hr67GsrtQEIBE5J7I9CQbu202uM47Fayf81rm4FpZo8qzMavl4luT6LkaeaIW8iXtFGcEb52CLKARMZDrJJ7OkXutl5LGDmNkCrqUlBG9pxF7iLnZpMgNZ7Fac9QGoD0zqdnODKUYebyGxvnt0POLKWvyXVWP1aTxCzp5hMXBU+3BUT24ItFkwSe0YYPDnuynEs9iqPETevgBHjcKmp5P03iEG7t1FfiiNNeIk8o4FOGr9xS5LRERERERERERERERERERERERERESmKUuxC5DzU7YvQf8PtpEfTgOQ70/R/6Pt5IZSRa5Mznep7QMkXuoCE8ibxJ5qJ7VnqNhliZyUaZrE13WNBpAA5AqM/O4AmZZocQsTkfNCIZFl4N5d5Drjo/fjWfrv3k62O17kykSmVubgCCOPtkDOBBOSr/US39BT7LJE5BiZlijDv92PmS0AkNrST/zlLsyCrkwv00dySx+Jdd1HxiOeaCW9b7jYZYm8rmx3gv4fbacQzwKQ60wwcO9O8ofuS/Hl+pP0/XAb+aFD4/ADafp/uI3coMbhRaaUoUBWERERERERERERERERERERERERmbkUQjKL9MfSvNY6xN6eGPlpPpEmP5jGTOfHtRVi2bEfQ8v5JZcvsKcnxsbWIfpj574PmPkCZsHEzJskjjNpNLWt/5zXJHK6CoksyY29E9ozLSPn5Pk7h5O81jLIwT4FDkwnqWyOHZ0jbGkfIprUJDCZOrnhzFgAyZgC5AY0sU1mt/S+oQltydd6yB9nn9s9nOK1lkH298Ywzel9viYykw0nMmxqG2Jn1wjp3Oi4Q6Z1YjBf8rVeCgkdH80kPdHR/ei+3hiFaT7udTKHxyEOK2TzJF6beD6X2jlwLsuSKXT4nPlAX3xWHAcc7sP5gSQc83nMdSXIj2iMdzpoG0ww2BXDTB0zDp/IkdM4vMjUmgX7ehERERERERERERERERERERERETl/2YpdgEyObR3D3HXPBvb1xnFYLXzx5gW8e3U9Xuf0fIstXjsYjF7d9TCrgcVjL1ZJUiSxVI4fv9zC1x7eSSZfoLnMyzfeu5JFVYEpf+58Mkt69xCxFzqw+hz4rqrFUR8g0zJ+gpq91jfltYicLYvTir3KR35w/CQSW6l7yp/75f39fObHG+iNpvE6rPzT25Zz89JK7FZlnRVTz0iK/3h8Nz96qQXThMvnlvJ3ty9lTqm32KXJLGRxW7F4bBQSuXHtBZe1SBWJnBu2Us+ENkeND4tjfN/f0DLIp370Kl0jKdx2K1+9fSlvXF6F067PiMhk2tsb4wv3beKVg4NYDPjo5Y188qpmXJGJx8T2ai+GU5/BmWJj6xCfvvtV2oeSuOwW/vaNS7j9wpoZtx/NJ7Kkdw8Se6ETa8CB79JqHPUBDKsFR52fbHts3PL2ao1HzAbrDwzw6btfpefQOfM/vHUZty6rmpHnzPlElvSuQWIvdmINOvFcWDZhGYvHhsU1PcekzxemafLEzh7+6Kcb+bvLmrnwuOPweo9EzgnDKHYFIiIiIiIiIiIiIiIiIiIiIiIiIqdt5v3SWSaIpbJ85cFt7Osdvfp8Jl/gq7/ZztaOkSJXdmKGy4rvsppxbYHr6rGGHEWqSIplS8cw//DQdjL5AgB7e+P8w2+2E0/nTrLm2UttH2DgxzvI7B8hubmP3v/aiGtJCZbAkX5oLXXhXlQy5bWInC3DZsW7ugLjqAn/9iovtlLXlD5v93CKz94zGkACEM/k+cOfvsbe3thJ1pSp9vL+AX74YsvYhVef3dPHfa+0zYqrbsv0Y3ps+G5oGA2ZO8R9QRlxmybbyOxl5goYdgNbxZEgEovHhveSKoyjJhX3x9L80c9eo2skBUAym+dP79vI7h59V4pMpnzB5AfPH+CVg4MAFEz49jP7ebVlCHu1B3v1kSA2w2XFvbxs/IRsmbYG4hn+9L6NtA8lAUhlC3zx/s3s7IqeZM3pJ7Wtn4F7dpI5MEJyUx+9395MpiOGYTHwrqnE4jsSzmsrc+NaEClitTIZekZGz5l7jjpn/qOfvsbu7pl5HJDc0sfATw714Y29xJ7vwHtJ1ZEFDAi9ZS628NSORcjrO9Af564fb2A4meXBtgG819SNe9x/ec24czcRmUIahxMREREREREREREREREREREREZEZSJe7mwUG4lle3Dcwob11MMHqxuk5WSHXnSDTMkLghoZDk/csJLf04V5aiqVc3fJ80jaYmND27N4+BuIZvM6p6wv5ZJbok23HNJpkWkco/9QKsl1xDIuBrcKLLeScsjpEJks+mWXksRZ8a6vBamAYkBtOk943grM+OGXP2xNN0T2SHl9LwaRjMMnCysCUPa+c3LoDE48NHt7axSevasLnsh9nDZEzl+5PkXiuncD1DZj5AobVQvrAMOmuOMwJFbs8kSmRG0wxeP9uvKsq8SwrHZ1bli+QT2THLdcTTXOgb/wxr2mOHgcvrZm672iR881wMsNj23smtG9pH+Jyqx17tQ/34pLRz2rBZOiBPdirvDgqvRM3JtNKXyzNruMENrQOJlheFzr3BZ2hQuIE4xAHRnDW+nFU+Sj/9Aqy3QmNR8wi3dEUncOpcW0FEzqGEiyunlnnzPl4hugTrePa0ruG8LynAs+KMvLRDLYSN/ajAtqkODqHUyQyeQDWlAfI7hsaPw6/tR97tRdHub4DRaaMoaQfERERERERERERERERERERERERmbmU9jALBNw2FlX62X7MFWAr/NP3ipOGxSDTEiXTclTNVkNXYDwPHa+fLqsJEHBP8QR5w8CwTexwhsWCLezSFVtl5jEMKJhEnxw/ISh4W+OUPm3I4yDotjOcHD/husyvyXLFtqR64sT2tU0luB06/JPJZ7dZyA1lGHn04Lh2x4VlRapI5BywGGAYxF/qGtdc8sHF4+6HvXbK/E56o+NDuyoCOt4UmUw+p42L5oRpfy05rn1ehR/DYpBY3z1+BYvmhs4UIbed6qCLjmOCHGbaftQ0GB37OoZxVJst4sYWcZ/DqmSqRTxOQh47Q8eElJXPsP4LYBgGhtUyod1M53HOUbDadFLmc2K3GmTzJtlCgWxngsyB8f/vAMvE91JERERERERERERERERERERERERERARAvzSdBUIeB1+9fSl+55FJxR+8pIElNdP3apq2Si+2svGTKnyXV2OLzLwf4MvZWVIT4I619WP3Ay4bf/3GpQSnOITE6rIRuK5+XJvhsOBs0qQJmZmO26ftFpxNoSl93rqIh6+9YzmOQxORDAP+/A2LmFvhm9LnlZO7dG4JlzWXjN2vC7u5Y209Votm28rkc5S4cV9RPa7NCDvx1GhfILOXLezCf1XduDZriRN75fgrylcG3Hzt7ctx2o6cfn/+hvnMr/CfkzpFzhcOm5VPXtVEZfBIGN51i8q5qD6MvcKDrWr8Z9O3tgpbicIeZoLygIt/efsK3HbrWNtnr5nLwsrpO+51PFa3ncD1DePaDIcVR8PMeh1yemrCbr72jhVjxwGGAX92y0Lmlc+842SLx07ghmPGHZxWnPXqw9NNY6mXv3/LMqwWg//b3EFiTcW4xy0BO/Zq7wnWFpFJYZrFrkBERERERERERERERERERERERETkjNlOvojMBCvrw9x95xr298UJeewsrgwQ9jiKXdYJ2YJOSj6wmNTOQTJtUVwLI7iaQse9mqbMTqZpsqcnxsGBBG9bWcubL6ghmcnTUOKhoeTc/AjeOS9M6UeWktjci9XnwLWkBEf1zJsEInKYc16Y0o8uJbFp8vp0Ll9gT2+M1oEEpT4n8yr8+JzjDx+uW1jBbz53Oe1DScr8TuaW+XAeNUFQisPjsPHHNy7gA9EUNquFxdUBqoKaaCtTw7AYhC6rwVrmIbNjAKPCg2NBmIACiWQWMywGvrVV2Cs8JLf1Y6/24V4YwRaeGKx45fwyHvrcFezuieKyWfG7baRzBbzO42xYRM5YqdfJf7xnJd3DKUIeO0trgoQOjY2UvG/h6BhEaxTXggjO5iCGTWMQM8XKhiA/+thqWgeSlPudLK0J4HPNvGFN1/wQpR9ZQmJzH1afA/dSjUOcDy6sC/L9j1xM90ia6pCLZTUhXDP0nNm1MELphw/14aAD95LSCQFsUnw2q4XbL6hhfrmfloE4uYCbQG2A3PYBbOUe3Isi2BXEJSIiIiIiIiIiIiIiIiIiIiIiIiIiJzDzfq0vx/XMnj7u/P56MvkCAB+6dA5/dP18gh57kSs7MXuZB3uZp9hlSJE8v7efj/zfOtK50T777ovr+OLNCwl7z114jsVhxTU/jGt++Jw9p8hUsjisuOaFcc2bvD79+I4ePn33q+QKo1fv/MzVzXzq6rnjJvxZLAbzKvzMq/BP2vPK2ekaTvFnv9jEEzt6AQi4bPzwo6sVQiJTattwkg8/tIkSr5OePSkW7QvwtXesoDqkfiezl9XvwLO8DM/ystddzjAMouksX7hvEyOpHADXLCzjH9+ynMrgxNASETl9B/vj3PXjDWxuHwagIuDk+x9ePRZCYi/1YC/VGMRMlM7mueflVr764HYADAP+5W3LedvKWiwWo8jVnR6L04ZrfgTX/EixS5FzpH0wyZ/et5Hn9/YDEPbY+cFH17CsJljkys6MxWnDtSCCa4H68HTXNpjgT+/byO6eGABzSjz834dXM6dUoTEi54Qxs45RRERERERERERERERERERERERERI6mS77OAj0jKb70801jASQA//f8AbZ3jRSxKpET64+l+fIvNo8FkAD8ZF0r2zrVZ0Wmk46hJF/8+aaxABKA/3xyL7t6okWsSk7FxtbBsQASgJFUjn99eBeJTK6IVclsls7l+cbvd9MXy7CzO8pgIsvze/t55eBAsUsTmRbimRxfe3jnWAAJwBM7etnYNlS8okRmmWd2940FkAB0j6T58UstFI46lpWZaW9vnL//zfax+6YJf/HLLRzojxexKpFT88rBgbEAEoDBRJb/fGIP6Vy+iFXJ+eCx7d1jASQAB/oT3Lu+tYgViYiIiIiIiIiIiIiIiIiIiIiIiIjITGErdgFy9kZSOTqHU9itBlfMK8PvsvHM7j56o+lil/a68sksuc44+WgGa8SNvdKDxW4tdllyDkRTOQ72Jya0T2afNU2TwUQGr8OG8xT6VT6ZJdsZp6D+KDNctidBtjuBYbdgr/RgC7nOeFtDiSyDiSyNpV4urA/R0p9g/cFB+qb594tA+1BqQtvm9mFGkllS2TxhjwNDV2SVSRRL5Uin89z75uVEsib9mPxwbw/7ejU5WGa/3GCKbGccs2Bir/RiL3UzlMjgsFnwOEZPuWOpHFs6JgbutQ8mz3W5IrPWlqMCSA5bd3CAVC6PaZoQz2LtS1FI5bGXe7BVeHQ8NEMMxNMcmyWTzhUYiGdoKjuzbcbTWXJ5k6DHcfYFnoX8cJpMZxwzm8de4cVe7ilqPTL59vVNPB7e2DpELJXD6Tv+uFMqmyeRyRP22Kftfso0TXLdCbI9CSxOK7YqL7aAs9hlyVFePTg49u9b5pXxvsYyah024geGcdf4NO4pcs4oEE9ERERERERERERERERERERERERmnkkNITEM4zLTNJ87WdsZbPd/gduAHtM0l57NtmajMr+Tm5dWsKohwq83drCnJ8bbL6qlocRd7NJOqJDOE328lfjLXTgbAuQTWbxrqvCuqpi2P66XyVPqd7CmMcJL+wfGtTeUTM5km5b+OD9Z18oDr3WwsNLP566bx4q60AmXP9wfY8+0j7WF3jbvjPujWTAx8wX9mF/OuXTLCP3f34a92ouZKVDI5Cm9YxG2M/w+qAw4+dLNC9jTG+f5PX3MLffxl7ctmrTPqkyd+RX+cfcDbhtfedMS/vwXW9jRFeVNF1TzntX11Ef0XsrkCHkc/OuyOjIP7ccxJ4g/lePPygP0zSkpdmkiUyrbk6Dve1vID44GdFk8NlJvn8vnn9jFZQ1hrltWyfLaEBGPg5sWV/LTY64+f+z+WkTO3OXzSvnJuvGfsfevaWBH+zCDfUnmr+/DOBgdfcBmUPaRpTibQue+UDlt1SE3bruVZDY/1hbxOqgOnf55Tjqb59k9ffy/x3YTS+f4+JVN3LykkrD33IeR5AZTjDzVSq4zQaZlBMNmofRjy3A2BM55LTJ1ltcGJ7TduqyK8AkCcDa0DPLvv9/Nru4Yb7mwhnddXEfdNDlvM/MFzIKJxW4lc2CE3u9ugVwBAEdjgMi7FpxVEKpMrusXV7C9K8rbl1Ryu+nAeKQNgEEgdlsj9gvLiHgVHCMiIiIiIiIiIiIiIiIiIiIiIiIiIhNZJnl7/3GKbafr/4CbJ2E7s1LQbeeONQ38w0Pb2dg2TMtAgm89vY91+wdPvnKRZLvj5IfS+C6rJp/IYvU5MNN5sv26Evj5wOe08zdvWsKiqtGJNV6HlX9+2/Kx+2cjlc3xtUd28c0n99I+lOT3O3p433deYm9v7ITrZLvj4wJIAIZ/vZfcGfTHTFuUwXt30fvfm4i92EFuJH3a2xA5E4VsntT2AXyXVGGm8hgOC96LKki3n7jvn4zTYeWl/QPc90obHcMpnt7dx388vgeHTQE7093y2iBfumUhTtvood6f3LCAP//lFn6/o4f2oST/9eRevv7ITtJHTeQUORvDnVGMvUP4r6zFTOYwXDb8lT6atL+QWS65Y2AsgASgkMgRHMnw9YYKPrAvReT5boZaRrDbLHz8qibWNkYAcNosfOmWhcedmCwiZ2ZNY4Q7r2jEahkNkvzkZXO4yeeh4tE2lr7ST2hRCY76Q8E/OZOhh/aTT2aLWLGcqsZSL/99x0pKfaOhDVVBF//1vpVnFEKyoXWIj35/PZvbh9nfF+fP7t/MY9u7J7vkk8onsqR2DZJrj2M4LATf0ITFZ2fksYMUMjpGn01W1of5w+vn4bCOnptdNb+MO9Y2YLFMDL3d0xPjju+8xBM7e2kfSvKNJ/bwb7/fTTpX3D5hFkxS+4bpv3s7fd/eTPzVbuKbe8cCSAAy+0fItJ35+INMvpsqQvx4bi3v3JPEly7gv7p27LHcwwfpbRkpYnUi5xOF7ouIiIiIiIiIiIiIiIiIiIiIiMjMY5uMjRiGcQlwKVBmGMbnj3ooAJz1zEPTNJ82DGPO2W5nNtvRFaVgjm/73vMHeMvKmml5RcNCJoc15CT6+OhVirNAas8QpVVeKJ0eV/eUqbWoKsA9d66hYyiJ12mjPuLBMM7+B7ntgyl+valjXFssnWNPd4zmMt9x1ykkJk48MzMFzNTpTfLIdsfp/dZmzEMThobaY/ijWQLX1WMcZ3KJyGQyMwWwGYw82jLWlt47TPid8894m20DCZ7Y2TuubSiRZV9vjMZS7xlvV6ZewG3nziuauGlJJalsnv29cWLp3LhlHtjYwWevnUdz+fH3jSKnIxnL4ivzMPLY0fugIcJ3LCpiVSJTL9cZH3ff0RjA3D2MY2s/WcDWESe9b5jcp1bQXObj2x9cRdtgEpfdSn3EMxaWICJnr8zv4gs3LeRdF9eTKxSoj+YZ+O4WYHTMYfjACMGb54xOki+Y5HqSmOkCnH6OhZxjhmFw1YJyfnXX5QzEM5T7nZQHXGe0rSd39kxo+95zB7h1WRVe56QMk56S1I4Bhn6xZ+x+eu8QwRvnEH2+Y3RMwaEgt9ki5HFw1zVzedOKatK5AvVhD17X8fva7u4o8WNCaO5/tY3PXN1M4wnGtM6FTFuUvu9s5vDgc6Yliv/6egynFTN9pN5CNFOsEuUY+ZEM8Z/twuxJkAWyHXEc9X7cS0tJbunDzBbo6I5RNSdEwG0vdrkiIiIiIiIiIiIiIiIiIiIiIiIiIjLNWCZpOw7Ax2ioif+o2wjw9kl6DnkdvuNMlAh57GNX2ZxurD4niQ3HTPzIFcj1JYtTkBRFyONgcXWQhhLvpASQANitBi7bxMk6LvuJPwu2iBvjmMdtpS6sodML8Ml0xscCSA6LPd1Gfjh9WtsROSMGJDf2jW8rmGe1X3XYrDhtEz87LrsmxM0EVotBY6mXRVUBPM6J75nbbsV+nPdX5ExYPTaSG8eHFpE3yXUnilOQyDniWhQZd9/ZFCK1rX9cmxnNku0Z/Sz4XXYWVQVoLPUqgERkCthtFuaW+1hYGSC1qXfC46ndQzjq/QC4V5Ri9Wvi9UxSHXKztCZ4xgEkAGGPY0Jbqc+B3Xru9sn5ZJboU23jGwuQG8ngXV2JxaN+OdvYrBaaynwsqgqcMIAEjn+u7XHYsBV5fDe9f5hj06+TG3txzQ+Pa7NVKFh6usj2Jsj1jD8Xy7REx94jS4mT9kIe+zT9fwcis4t58kVEREREREREREREREREREREREREpplJ+ZWpaZpPmab5t8Ba0zT/9qjb103T3D0Zz3EqDMP4uGEY6w3DWN/bO3GyyWwQT+coFCb+aPGihjClviMTKQwD/viGBfhc03PigsVnxzjOxOdjgyDOF+dD3z1XKgJO/vjG+ePaltcGWVgVOOE6tjI3JR9YjDU8Gjpir/ERec9CrL6Jk5Nej3G8SUs2C8zyCabqv9ODYTUwbBP7muV1JjidTH3Ew2evnTuubfWcCHPLvCQyuTPe7nQxm/quaZonPEYAWFQVYHltcFzbH98wn7qw+1yUJ5NsOvZdl88x+p13DMtxAnDk/DYd++/ZcDYHCdxQP3bMZ4k4R0/GjmFYTu08J5cvzIrv2NlotvXd2eDw8Y9pHv/4x+KY+B1k2AzMXAHX4hL8V9VinCeTr8+X/htP58jlC6+7zJXzywgcdY5ktRh86uq5OI4TZjpVDIvluONfFpcV78pyjFk+hnA6zpe+e9iiKj9Ljhm/+tOb5lMXObtwj1Q2TyaXP/mCJ3DcMVyHBVulBwww3DZCb5uHo9Z3NmXOKsXsu6lsHvMEX2+GAUaVh/2XVNBYH8J9nO9KEZkkkxS6LiIiIiIiIiIiIiIiIiIiIiIiIlIMZz4z+fichmF8C5hz9LZN07x2kp/nuEzT/BbwLYBVq1bNqsuLHeyL88L+fqLJHCU+ByvqgjSX+ccen1fh5ycfX8tL+wcYSmRZPSfCirrg62zx7MTTORxWC/bj/Aj9VNh8DgI3NjD4s11jbRaP7bz9sfps7rvnSjZfYP2BAf77qb3URTz8+7svYG9vnDklHlbNiVDxOldKNgwD17wwpZ9aQS6exfDZ2RtLY3SN0FjixXmcK9Eej73KhyXooDCcGWsL3tiALeg869c3nan/Tg8Wp43A9Q30/2DbWJvhsOJsHv0uOJP9ttVicMfaBpbUBHmtZZDGUh9zSjw8tqOHRCZPU4mXFXUhSv0zs4/Plr67vy/O/a+28cjWbi6fV8r71tRjsxgMJbNUBlyUB1wE3Xa++d4LeeXgIPv7E1xYH+LCuhCGJkTMSNOx74bCbkauq2PkxzvH2gynlWyVt4hVyXQ0Hfvv6Tj2+9TqdeC/ph7PBeWYJhS8VlydVaSe7Rhbx1bpwV55/MnD8XSOloE4FsNCwSzw3WcPsLVjmLetrOXWZVVUhxQWNV3M9L472+zpifHTdS08vauPm5dWcOuyKtK5AiG3g/qS0c+be3kZsRc7IX/o7TLAeUkVzogLW8hFwWoQT2fxOqdneOtkmk39t1AwSWRyeJ22sWPZjqEkD27q4P5X21lWE+SDl85hac34MbFcvsDB/gSmafLjj63l1dZBEpk8qxsjLK+ZuvGz47E4rQSuq6f/+0efu1lwLynBFtF+/2izqe+eCp/Txv984CJe3j9Ay0CCi+rDXFAXOuPtRZNZntndx7ef3YfXaeOTVzazujE8LnTn8Gcjmc1TF3ETdE8M5HU2BjEcVszMkSCTwPUNOJtDeJaXYdgs2MInHnc7HxWj7w4mMjy5s5dHt3bx/gtqaGwOkts7PPa464Iyhuf42FNqJxBysfws+paInIITBOWJiIiIiIiIiIiIiIiIiIiIiIiIzASTHUJyL/DfwHeAM7+8oowTTWV5bEc3B/sSRHwOov1ZYqkcpglzy48Ekcwt94+7PxV6oike2dLNj146SH3EwyeuauKihsgZbcs5L0TkjkWkdg5gC7twLY5gL9dEVTkzG1uHeN93XqJw6Le9P3qxhW++byW3LqsaWybbnyTXn8TitGGr8GA96urHOzpH+MELB1l3YIDL5pbgslv5n6f38a5Vdfzh9fOoDL7+RKCukSTtsSSN712I7eAIub4U7kURHHMCr7ueyGQx8ya2iJPI+xeR3jWIxe/AvaiEIa+V3zy3n5+83EpzuZc7r2jiwvrwKW835HFwzYJyrllQzraOYZ7e1Us6Z5I3C2xqHwLgusUVU/Sq5GSGkxn+7P5NFEy4ZVklTpuV7Z0jfPn+zQynctywuJw3rajm+88fxAA+cVUzH7+yCY9jsg8BRWCo3EXojkVkdg6Ax06s3suzvcNcHnRQE9aEWpnZukdS/G5LF/e83EJjiZePXzX6fWrmCmR7EuRHMthCThwOJ+Gr60jXB0jtHsRR7cM5L4Q1MD6wK5svsLV9mA2tQ7QMJLhvfSvXL6qkgMn2zih/95vtHOyP81e3LTnj4EeR2aovmuauH7/Kjq4obruVkMfBR/9vHaubSphT4mVpdYCL54Tx1fkp+8RyUtv6MfMm7sUlGC4r+YE0I/Es39razpO7+3jLhbW8aUUVNeHjhwXJ9LGrK8rdLx/k+T393LC4gndcVEtN2M03ntjDj19qAWBHV5RHtnXzy89cRmPp6BjTSDLL3S8d5P/36G4y+QIr6oL8f+9cQV3Yw77eOBvbhmiIeM86XLGQyZPrSZCPZbFFXNjK3CcM/XPODVF65zJSW/swPPbR8YOaqR3Tk+mrpT/O/Rva+c2mTi5qCPPBS+fw1pW1Z73dZ/b08ukfbxi7/9yePn7y8bWsaSwBRs8nf/jCQR7a3MnbL6zFPugjbxr4StzYyzwY9tFjEEe1j7JPLCe5Y4BCLIN7SSmOBj8WuxVLmfad08UjW7v49cZO5pb7+Pfn9/NnlzVRsTBCtjVKstJNbk6AcruN0pyBze3CplBSkXNEnzURERERERERERERERERERERERGZeSZ7BmrONM3/muRtYhjGPcDVQKlhGG3AX5um+d3Jfp7pqm0wiQGk8wX+/fe7KZhQH/FQF/FMeejI0UzT5N71bfzrw6NXuN/RFeWpXb384tOXsrj69K4am49nGXm0hcS6LmwRF2lzCGdzaAqqlvPFM7v7xgJIDvvG47u5an4ZXqeNdMsIfd/bipnMAeBZVUHw5jlYfQ46hpJ85Pvr6BhKAbC7J8YlzSVcPb+cn6xrZdWcMG+/qO6Ez72pbYiP/+AVukZS2CwGX751Ie96QyNupyb5y7lhmibJLb0M/HQXFEysJS4C19ZhLXfzgyf28I3H9wCwszvKEzt6+eVnLmNB5el/f3QNp9jXl+C+V1opmDCnxEN9xEPXcPKkQT0yNQ70JSjzjU6W/H+P7QZgQYWfO69s5uuP7uSihgifvee1seXX/WA9P/jIaq6cX1aMcmUWiyezuAczRO/dhcVnx0znKQwH6fFDR6lXISQyo5mmyT0vtfD/fj+6n93RFeWJXT08dNfllB+MMfSLPWACFoPw2+fhuaAcz/IyPMuPv69NZHL8dF0r//DQdrJ5kzK/k8/fuIB/+u0OPnlVMw6rhUy+wI9fbuUjlzeNTaIXkVH7+mLs6IoCcPuF1Xz32f284+J6frelk/tfbQfgHRfV8qc3LaC8PoCzPoCZKxBf38XQA3vHPq9vub6WB1Nd/PPvdtAykOBv37QYh81axFcmr6d7JMUnf/QK+/riwOh5+/oDg/zjW5fx03Wt45YdTmbZ1RUd239ubh/mn3+3c+zxja3D/HZzF/F0jm89vY+CCU2lHr75votYWHVmQaKFdI7oM+1EHxsNQ8FmoeT9i3AvOH5wr8VuxdUcwqWxsPNePJPj73+znYe3dQOjffuJnT38/FOXUnsW4UjpbJ7vPLN/XJtpwqNbu8dCSDa1DfPUrl5uWFTOJXkr3nt2kcibJAwIvrEZ38WVR4JIanw4anxnXI9MreFkhv95ah9vu6iWHZ0jlPtdvNAX499+v5vKgIvKIQd/m8gx8Fzn6Peg1aDkfYtwLy4pduki5wHz5IuIiIiIiIiIiIiIiIiIiIiIiIiITDOTfUnlXxuG8WnDMKoMw4gcvp3tRk3TfI9pmlWmadpN06w9nwJIAJyHrnz903WtYyELLQMJvvfcfpKZPAD9sTSD8cyU1tE9kuZbT+8b15bOFdjeGT3tbWXbYyRe7gITcv0p8gNphn69l3wyO1nlygxQKJj0RFPE0mf/vnscEyeLeZ02rIZBPpll6MF9YwEkAIn13WTaYwDs7YmNBZAc9sLefpbXjobrPLGj94TPO5zM8lcPbKVrZHT9XMHkKw9uZ2vHyFm/JpFTletLMXjfbg5/SeT7Uwz+fDfxzhjfeWb8fjuZzbOj68z650Aiw0v7+3nP6npuWlJB+1CSX77WQerQd5Gce3arhbkVfp7Y2cvtF9TwzlV19MXSbO8c4Y0rqnlxX/+EdX66rqUIlcpsNzCQIPfQAcx0nnx/ikIsi+O1Pla6XWRyhWKXJ3JWuoZTfOuY79NUtoBlMM3QL/cemVNWMBm8fw+5/uTrbm9fb4y9PTGuml+GzWLQG03zoxcPcuuyKvb0xMZCexxWC1aLrpotciyb9chQVqnPyaVNpYQ99nHL3PtKG+sPDo7dz/UmGfrV+M9r4Il2PnPhaNjkz9a30j74+p9dKZ6BWJpdXdGxAJLDXj4wQF8shd06cV95dNv+Y9YDsBoG//3UvrFxtn19Cb7+6C5S2dyEZU9FtitxJIAEIFdg8L5d5IbTZ7Q9mV0KBZOekRSx1MTxr9aBxFgAyWHdI2n29MTO6jkNA3zHCcf1HtW2uzvGVfPLKc0bBJ5oh/yhD4QJw7/eS7Y3cVY1yLljNQwCbhuxVJa5FX52dEXZ0DpEIpNnX1+cDy6owP1s55HvwbzJwL27yA2mXne7InIWDJ3LiYiIiIiIiIiIiIiIiIiIiIiIyMw12SEkHwT+FHgeeOXQbf0kP8d5pybkJpmZOHlz3YFBuoaT/PCFA9z2H8/y5v98jgdeayeWPrMJEydjsxi47RODHuy20+9G+ejESRjZ9hhmShPZzxct/XH+4aHt3Pz/nuGD313HS/v7Mc3jXxUw25sgsaWP5PZ+ckPH/3H85fNKx4JIDAMun1vKn9y4gHgmh5nKk22fOHmjMDIa3HP0JLbDLAaYh36Zv7IhfMLXMRjP8Frr0IT29iFN1JBzp5DIYmaP+Z4ogCWaPe5+23GcPn8qPA4ba5tK+N2WLtoGk3zploV0DiWxaIJ00TSWenHbLXz8yiY2tA7yzO5e3rGqFq/TSm3Yjec473/AbT/OlkTOjpEukO+dOHnbnzPZ0xtj3f6BIlQlMjmsJzoPSuXHAsDG5ArkoxkybVESG3tI7R0inzgy4bhlIMHP1rfx0JYuukfSfPnWRZT7neztjVMTdlMXcdNzKNzuc9fNpe5QIImIHNFc5uP6ReUE3XYWVPg50B/n64/uornMxx9eP29suU1tQ+QGUyS395PpjsMxh8tmtkCJMXpcbLcaCv2ZhoYSGe5+6SC3/cezbOs8fpCi32Xnc9fOG9fWXOZlYVVg7P6FpV7uvmERv7h2Ed+6cRELynykjhOS9tyePgYTZxaSmo9ODAYuRLMUznB7Mnu0DiT4l4d3cPO/PcP7vvsSL+zto3DU8YPVMLAdZ/9jP855e24oRXLHAInNvWR7JobrHM1hs/Lxq5rGzYF32S1ct6h87H5t2E0ym6fUasE8NlzUhHxsagOvZfL4XHbuunYeEZ+T7uEUqVx+3PGr/zhD7mYyd8JxVhEREREREREREREREREREREREREROb9NvBziWTBNs3EytyejnHYrzeW+Ce2XNkfY0DrEXz6wdaztD37yGt//8GquWlA26XWU+p384Q3z+NLPN4+1lfmcLK0OvM5ax2fxTJwA7WwOYfFqYvT5IJ3L8++P7+G+V9oAGIhn+MB3X+aBz1w2bqIQQKY9Ru93NmMmR8N1bGVuSj6wBHvZ+AmZS6qD/OwTl/Dkzh6ayrz8dF0r7/rWi9RF3HzznRdQNS9EasfguHWsERcA8yt8XDwnzLoDRx6//cIantrZy5KqANcuPPHnKeSxs7gqMGFCVFVQE0bl3LEGHFg8NgqJo0KobBYKAyl++PYLuO0H68aaq0MuFlb6T/s5cvkCL+zt46frWgHoj2fY2RXlb9+0hFK/86xfg5wZt8NKVdDNZ+/ZMNb230/t40u3LMRqgTdfWMMj27rJHZrkZrcavP2iumKVK7OY1WfHUu8n2xId115e6aPebnLXj1/lBx9dw4Iz2P+IFFt5wMUXb17IF36+aaytMuCk4LNjsVvGBYEZLitmzqTn26+NXWnec3EFwVsayTssfOPx3fxs/ZFj4J1dUe66di4/f7UNqwHLG8LE0zmunFfGxY0RDF09W2SCoNvOV968lF3dUe768YaxINYHN3VySVMJV88v48ldvbyzqYze724m35fCf20d2CxwVPCExWOjLTe67h9cN4+6iKcor0dO7Oldvfz5L7awojbIggo/lzaX8Pze/rHH33VxLY2lXqqCbuaW+3hmdy/zKvxcMa+M6tDoOXk+nqVifR/B13oBKDPg/908h7Yyx4TnWzUnQvAMA/tsYScYjO37AWylLqz+ic8j549svsC3n9nHD144CBwa//rfl/nFpy+jJuRmc/sw/bE071tTz/cPLQNwQV2I+RXjj5tz/Un6frSdXOdo+IjhsFL6saU46088Lrt6Tgk/+/glPLajG4/dyrULy1lWGxp7fEVdkJ5omoO9CVZ47RTiR4Xm2AxsQZ3rzySXzy0l6LKBCT9+uYX3rWngN5s6yeQL9FtM6i2MC+SyBhykdgxg9dixV3iLVrfIrHeC4HURERERERERERERERERERERERGR6WxSQ0gMw/AAnwfqTdP8uGEY84AFpmk+OJnPcz5a3RjmfWvqufulFgDK/U7+7NZFfPGoQJDDHtrSMSUhJF3DSZKZHF+8eQGpbJ6g247TZsV6mhPjzFyB9IFhfJfXEHuhA/ImtjI3vitqsDgmXmFcZp+u4RT3v9o2ri2dK7C7JzYuhMTMF4g92z4WQAKQ602S3js4IYQEYGlNkDklHj72/fW8uH8AgNaBJO///joeeu8qjIEUZk8SrAa5S6uIBu24gBKfk6+/8wJe2NvP1o5hVjaEqQy4yBVM5pX7KA+4TvhaQh4H/987V/Ch/32Z7mgaw4BPX9XM4ipNspZzxxZ2EXnPQgZ+spNCPIvhthG4upbYs+2UXFHNl25ZyM6uKCU+B40lXuLp3Mk3eozukdTYpOnDcgUTq8XA45jUwwk5TS/s7ZvQ1jWUZDCZ5XvPHuBPblpAS38Cl93CRQ1hltcEME1TE9tlUpX5naQuriAWz5LrT4HNwH9ZDbFcgSf293HnFU3s7okqhERmrFuXVdJY6uG11iH6Ymlcdhvvufc1vnXjPIKPt2Emc1i8doJvm8vwr/aMm4SeWNeN98JyuoJ2fv5q+7jtZvIFCqbJX79xMctrQpT6ndy4uPIcvzqRmac65GZrx/BYAMlhL+zr53PXzSXicxDpTRHrSwGQWN9N8IZ6Rp488nkt3NaIM5Xk7o+tYXF1QMdG00w+X+Dulw5S5ndy09JKPvR/63j/2gYurA/TOZRkcXWA1XMiuB023A64flEFNyyumPA+ZjvjpA4FkABgQvCZTmo/sXzcOFtFwMmf3rTgjM9t7BVewm+fz9ADezAzBaxBB+F3LsDqUwjJ+ax7JMU9L7eMa8vmTTqHkvxiQzvffXY/AG9YVsVfvXExW9qGqY94uG1FNWXHhH2mD4yMBZAAmJk80Sdasb93IRb78cdTHTYLFzdGuLgxctzHKwJurltYzk9GWui+ppqKJzsoxLIYLiuRt8/HVqZwppnEZbdycWMJ5QEXr7UN8YPnD3DPnatZf3CIXYkMq29vJvebA5jpPBa/A99VtYw8fBDDYSOoEBIRERERERERERERERERERERERERETnKZM8a/h7wCnDpofttwL2AQkjOUsTr5MtvWMQ7V9URz+SYU+KlIuCiJuTC5yzj4jlhsvkCNquFUu/UTHBoGUjws3WtvO2iOtYfGCSbL3DZ3FIODsRpKD31HyqbmTzJLf0YFgP/VbUA5IfTZA6M4F5w/B/Fy+zitFkJuu0MJrLj2j3HhNCYuQKZjtiE9bM9iRNuu3M4NRZActgNiyt53wObuKo+wsVLQyQw+c6WNv6owcPNh/puXcRz6MrXdRO2mTv02RpXm2nyWusQP3rxIJ3DKb78hkVUBd14HFaay7y4Fcog55i92od3zeikZTNbIPpMO4VYFgbTfGfjflx2K8OJLNF0jm++byVLj7r68alw2qwsqw5w9cIKcoUCVsOgczhFyHNmVwqXyVMX8fCpq5pxO6yYmJgmVAZdfOlQUNk//XYHCyv9rGkMkyuYfOruV7EYBh+4tIGLGyI4TzBhTeS0ZAoM/+4A7kUluFeUgQnJTb2YznLuXd/KP799OV59N8oMlS+YbO+K8sMXDzIQz3DVgnIe29ZN23CSO57cwTduW0xsMMX+VIY3OS3kD4UejNtGIoezxEnQbWcgnhn32IIKP9curDhXL0dk1jheWITLbuGq+WWU+ZxknjgSoJcfyRB9ph3/VbXscpgMWmDfSJTfb+9hQWWAkNtO2KOwiOnEYjGoCXtYUh3kv5/aC8APXzyI02ahPOCkudzHUDJDx2CCV1qGuPeVNrx2Cx+4dA6r5kSwHzqHLxwz7gBQiGVxmfBnty7iXRfXEU+PjrNVhSaGnZ4qw2bBs7IcR4OfQjKHLejEGnCefEWZ1Zw2C2GPg55oely7zWoZCyBx2S10DCXZ9OwQX7xlITs6R/jSzzexrDbIOy6qY3H1aFhvbiA5YfvZrjhmpgCncU537BhXVcjNp65pZl9vnFytn0AefGEXtsiZfx6kuBpKvPzlGxbx7J5+vvbILkp8Ti5rLuHrB3v58+vrMZM5Cqk8I48cxMzkyR5n7FVEJpGC7kRERERERERERERERERERERERGQGmuyZgM2mab7LMIz3AJimmTR0KdlJ0TYYZ2t7lJ+sa8EwDD586RxKvA4+enkTP3+1ja89smts2buumUs6m5/0ScUmcMfaOfzFA1swD13Z++ndffzHey44re1YPHY8F5YTfayF6OOtY+0lH14yecXKtNU1nGJvT5Q/vnEBf/HLLWPty2qCYxMrAHKDKTLtMdxLSoh2jw8dcc0Nn3D7XqeNkMfO0FETjUIeB53DKf7v1Tb+76hlY6nchPWPtrV9mMe2d/Py/gFWzQlzw+JKltYEAdjSPsy7v/Ui6VwBgOf39vOvb1/OO1ZNDDERORcsHhv5gkniybZx7alyNyVeJzu7o2Nt2XzhtLdf6nfy4csb+ew9Gygc+g5YURvkHRfVYpqmrhx/jmVyeXZ2RTnQn+CihjB3/XjD2MQ2r8PKP71tGQAWAz59zVyiySzzK/z8wU9eG9vGI9u6+fHH1nDp3NJivASZZaw+O84lJSRe7h7XPuyxcklTCRbDGPc9LzKTbGob4j3fepHcoS/AZ/f083e3L2Vz+xAD8Qw/3d3DhpYhWgYS3LKyBkeNj1z7UZM5LQZxt5USn5O/eMMiPv+zjWMPLa7ys78vxs/Wt7Ko0k80laO+xENt2DOhjlQ2z46uKK0DCSoCLhZV+vG7FQYms1s6O3rMc3AgQZnfyaKqAMFD/X5BhZ/L5pbw3J7+seU/dnkThYLJh/9vHf+9upmjp9AXYlk6Y2n+rauPJTVB/vupfQC8fGCQBza284tPXUZzue9cvjw5gd5omh2dI9y2vIrXWocYSR45d0/nCtSE3JR4Hfz45VaumFvKnx81tvDwtm7+/d0X4nXaqA27KPPYwGB0UOsQx5wAloADn9PG8tMMZ3w9hmFgL524/5bzV5nfxV/dtpi77tkw1raw0ofVMnr+/OYLqqmLeHitZYjL55XwWusQ33lmNJxk/cFBfrmhnW9/YBXLa0PYqyfunzwXlmPxnNrw/sH+OA9t7uLRbV1cNreUy+aWUhlwMafUi8tuY3F1cBJesRRTvmCys2uE4WSWze3D/MNDO8Yee3RbN994z4UMdqWwHjUeD+BepjEBEREREREREREREREREREREREREREZb7JDSDKGYbg59NN+wzCagfTrryIns78vxpb2ET571A/WH9/Rww8/uhqf08YPXzw4bvlvPrmHW5ZWsqRmcn88vqDcz33r28YCSA67d30bty6rHvsB/alwzgmQW1ZKcksfht2K95IqrCFdIXa2ax1I8Jkfv8qmtmEuqAvxpZsXYhhQE3ZzQV2IquDoFLFcNM3AT3aSOTiCd20V7hVlJDf3YlgtBK6vxzHnxJOYKwMu/viGBfzlA0cmIcVSGd64vJp7XzkSzmAxYF6F/4Tb6RpO8pUHt/HS/gEAntvbzzO7+/iP91xITdjDqy1DYwEkh33jiT3csLiCkK6gLUVgGAa2piDuviTJrf0YDivetVW0GSbXLSofCyEJuu0seJ2+fyL9sTT/8rudYwEkABvbhtnWOYLdZhkL6JFz4+Gt3XzuJxtYURvimgVl466sHc/kiaZyhD12bllaxW83d+FxWGk5zpWzf7a+VSEkMinygHNpKQxnSO0axHDZ8F1WzV6zwFtW1jCv3EdFwFXsMkXOyNO7+sYCSA675+UW/uSGhXzlN9tYUOHnVxs7+PiVjZSWeEjd3IDx8EGybTGsAQe+y2sYHk6xpd3klqWV1ITcbGobJpnNM5jI8K+P7MI04YOXzuHxHd3EUjm++8GLWdlwJHivUDC5/9V2vvyLzWNtn766mbuumYvHOdmn9SLTg2maPLipkz++90hwz4cvncPnb5iP321nX1+MeeU+3rCsmn19McIeB7u7o2xoHT1X89oteC6rJv5yF2bexL2ijIOlTt47p4HP/3TjuOcaSebY3jWiEJJpoHs4yRfu28RTu/so9Tn40s0LuW5hOb/f0QOMBu5d2lzKl+7fzCXNJfzytfZx6xdMeHZPH8/v7eMf3rgE194RQjfPIfpsB4VoBkeDn9CbmrG6tO+Uc+P6xRX87BOXsLVjmFKfkwvqQlgMuLQpgttu5RuP7wFGw3l/+ML4Md7BRJZndvdRlwPLui58V9YSf6kTM5PHfUEZ3lWVpxQIOpzM8Gf3b+b5vaOhTa+2DPHY9m4urAtz67IqLp+nc8LZ4OX9/fxiQzvNZT5+cExfSucKtPbHWRXwYK6qILGhBwzwXFxJrtx9gi2KyKQ49n+oiYiIiIiIiIiIiIiIiIiIiIiIiMwAk/2L+78GfgfUGYZxN3AZ8KFJfo7zTtdwil8dM6kCRie+3X5BDaYJb1xeRVOZD8OA7Z0j9MYmP/vFYbNgMvEHk6cTPgKQT2YZenAfFrsV/zV1mLkCyU292Ms9OCq8k1WuTEOvHBxkU9swAK+1DvFa6xDXLyznA5esxO2wji2X60qQOTgCQPzFTuw1PvzX1OFeUoq9ynvcCRbpbB6HzcKenhj3rm/hT29cgMtuIZ7Js7s7SnnAxdtW1vDw1m6qgi7+/A2LWFJ94jCTXd3RsQCSw15tGWJXd4yasAfrcWqwWQ1O79MgMnmSiQyJx1qwwOi+NVsgubGX0PISmiu8+Jw2FlX5+cJNC1hYdeK+f6zWgQTtQ0nsVgO3wzLh8VQ2z/qDAwohOYfaBhP8xS+3YJpw19XNDCQyfPbauSQyeX66rpVYOscDr3Xwd7cvpWs4xY9fbmFJdQCbdeIeymGb+J6KnImBwSSF3x3A6rKN7oMyeeIvdVG2qoxsyIG+IWVmm3gOZLMYhH12/vGtyyj1Ofjehy7G57TRMZzE2RXHHXTimh+mEM8y8ngLFr+DjisrWFQVZE1TCf2xNHfds2FcuNe961t535oGvv3MPv78F5u55+Nrx8LtDvTH+dtfbx1Xwzef3MtNSytZURuayhcvUjQtAwn+6qhwSYDvPX+A21ZU0Vji5Qs/30Q2Z5JI5/nVpg5S2QKfvXYubYNJPrqsGvOhgyT9dryXVGNYDVI7B6ia46M/VzjuOIbmh04Pm9tHeGp3HwB9sQx/ct8m/uqNiyjxOXhwUyfvW1PPr17rAEYDmmyWicezdpuFXN6EwTTGc12MuGx4VpRh8djIdsaJxTIEC+Zpj2eJnAmX3crqxgirGyNjbTs6R/jQZY3c9eMjgdMF08RynLGm2rAbc+8w6R2D5LoSeFdXYtgtFLJ5rIEjIbjZXAHDAJt1/Gcimc2ztyc2FkBy2PbOKDcuruTzP3uNX911GZVBBVHMZAPxNI9t76Yy6GJHV/S4+7eVAQ/xe/diK3Xjv6IGTEhu68c2NwjVpx9WKyInocMMERERERERERERERERERERERERmcEmNYTENM1HDcN4FVjL6E/s/sA0zb7JfI7z0Ugyi9NmndBus1gIe+z8wXXzeGpXL7/e1AnA2sYIQbd90uswgYsaIvxyw/+fvfsOj6O69z/+npntVbsrrXq3mm25d3oH0wwhISEkBHIhN/2X3ttNv+n1pgdCCpBA6N10bOPeZNmyei+rsr1N+f2xtmwhQ0gwmHJez+PnQWdnzszuzk5jvp8zOD0SuCTBZYtL/73CDdVAT6iokQSZvuh0s55Wj/MaC681A5PJWW17BsMkMuqMEBIjo8+YJjsQIzsQw7GgYFYASc94nHt3DfFgyzAnzQlwZmOQPYMRdg9E+Mz5DfzwkbbpaecEXXzhwkYMzcDrMM8qzJhp9jZtNyvYLQobOkIEPVYcFoVERpt+/QOnzcHrsMyaTxBeDZJqQEIlE0qS6T2yb3Uj0VDk5jPnN+BzWijOe+mFRZu7xrnh5m1MJbKYZIkPnjEHszLKnoFcmJAkQYHbykQ8c9zfj/DCoimVaCrLN9bNY89ghJ8/3o6mG+S7LHzi3Hq+ff9+VtX4uWf3ICurAyiyxJrafJpLPTzaOjJdYCtLcMXS8hP7ZoQ3DEU30JIq6cE46c7wdLvLyBUIu6yzz2UF4fViZbUfq0kmrR45R33Higr8Tgun1Qd5um2MD/xlO9G0itNiYv2ZTaRaxkm1HCn2lUwqk5E0mq4DCgbSjAASAEWSpkPyWoejTMYz0yEkkWR2xvIPmxLHYOENLJpSiR91vXXYZDyL1ZSiO5TglLoALpuJVDb3+9ANKPbacGYMjKyGNq4Re6p/et5kIktSUrju5Cp+ur59uj3fZaGh0PXKvynhX5pIzN6vffv+/Tz5ydP52Nn1yLLE+v2jXLa4hDlBF0UeGxs7j+xvzYpEfdDFzRt7QNXBACOpEt80ND1NZ4mdsWiCixeWiFA+4YSYTGTY2TcF5MKd1y0qoSTPxnvWVPJ/T3ZOT1fosRKKpUlOZjED2lSa2NO5oGpzuQvDMEhlVZ7rnOD3T3chyfDek6tZWR0gldV4bP8of3y2i7cuO/Z1nyTBaDTNRDwjQkhe57Kqzlg0zfIqPzdt6OYjZ9Xx9Xtbp193WU04FBk0A3UkQXQkMf2aRRMpXILwihA/LUEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBOF17LiGkBxSCiiH+j5VkiQMw7jjFVjOm0ZJno0zGoPcv3doulBNlmDdohIq/A50IzT94DrApq4J9vSHWVzhO67r4bSaqPTZ+dwFjeweCKNqBksq8yj9NwraARS3BfdJJYQf6D7SKIGlTIy4+Ea3oNw7q23d4lJ8zwvuMAXtSDYFI3Wk4Mw2N4Dis03/PTSVZP9wlI6xGGOxNK1DEfYMhCnyWDmnqZCH941w965BPn1eAzdt7GY8lqGxyE13KMGvn+rEZpb55wdOoqnYc8x1bSh0saLKz+buCTx2E9efUoPdLLO5a5wfPnIQr93MR86qo28iwUQ8w4IyLz3jcTKqhuUYoUGC8EqzeawoKwpR7+8+0iiBucrDRT97drppXomHr1w8l1hKZU7QRUXAecz+xqIpPn7bLqYSWQBU3eAn6w/y7cua+eJdeyl0W7lmTRWRZJZllcf3eCO8uBKvjQ+dOYdUVucn6w9Ot4diGf7yXC9fuqgJl9XEr57spMBl5ePn1HPb1j4ebR3hC2ub2NU3hcOicOmiUpZU5J24NyK8ofjynYwvL0R7uPdIowR6iZN8l/nfCkAShNeaBWV5/PyqxTy4d5h4RmNxeR7PtIX4yDl1DE4l+eitO4lnVK5eWUG+20rMZ8UmA0dlhmhLguTl23Bac2GRc0s8BJwWxo8KEXn7igoeax3ltPoCRqMp4pkjIY0leXbKfHb6jwr1s5sVyv2OV/z9C8KJUuy1UVvgpGMsPt1mNcnUFjjYPRChtsDJKXVBDMPArEhkNYNnDo6xZk6AQr8TeW4A/egwIIvCflUlz2FlU1eSj51Tz+7+KYo9Ns6fX0R90bGvDYVXV01+7vqkNM/O25aVkdUNSr02bBYFv9NKOqvx5YvncteOQb73UBuNRW4+v7aJloEwNovCyXPy+db9ucJ7xW9HKnJgDB8ptpe8FnYnU/zo9v3MK/HQ+AL3BATheEtlVdqGYwxHUvidFgYm43zxoibMisymznG+cvc+zp9fxMfOrmPfUISqgBOH1cSPHjnIsnObKN45sz/XmlJks8KWtjHe88ct0+1PtYX46/UrGZxK8sm/7wYg3zXGKXX5PH3wSFb4koo82kdjlHht5Lusr8ZHILyC4hmNMxsL+fWTnZxWH8RqkvnShU081zWBz2mhOuBk0izhqfWidhwJjZQdJiyF4nxSEF5R0r8R4C8IgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIrxHHNYREkqQ/AAuAFo6UXBmACCF5GVTN4P+eaOfza5vY3Z97SLi5zEs8o5LvtrGhI1dUs6DMy1mNQbK6gSwf/wcbY6kM9+wZ4m+b+6gKODApMvftGeLak6pYWuX/t/qyLw6CLBHbMIjstuA9pxJLqQgheaNbXJ7H/1w6j/998ABpVeNT5zawrMrPwFRyRgGlucBB/nubia7vJTsYw76gAOeqYmRLLtyjYzTG9X/aSmcoV4xW7rfz4TPn8KNHD/LtBw5w07XLCbqtPHUwxN6BML+4agmbOsZ5oGWYe3cPsbDMy5mNQQ4MR3FYFCqPEcJQ6LXz1Uvm8mjrKAUuK9+8v5V3r67k9890ARBOZvnOA/spzbPzgdNr+NJdLQScVt61uooCtwghEU4MZ3MBkgHZ54bBpmA/s5wPPX1wxjQtgxHaRmJ88c69+Bxmbn7vSuaXzg4IGo9l6J9Mku+y8LZl5ciyhFmWsFsUPnluPYYBpXk2nFYThR7brPmFV47XYWFRWR7bjwogO6x9NEaZz87u/ineuqyMSxeV0hWK0zOeK7z8xn2t1BY4qfA72Nw1QUORm4AoOBOOA90wiFS70U8pwbV3HBxmQosCfPyRVq47pQarWWFeyex9jSC8HiSzGl+5qwVFkbCbFR5qGcYw4PzmIorz7Fy1soKmIjc/evQg7aMx7vI7+PlFc8jfGUKPZsksCDBZ6eKkyrzpPqvznfz0HYt5YO8ww+EkC8vz2Nk3xfrWUT51XgMOi8KGjnHml+bmCXps/N/VS9jYMUHveJytPRN8+eJ51BS4TsyHIgivgoDLyk/fsZifPtpGTYEbj93E8ko/VrOJr97dwpcumstj+0fZ2j3Jp85rZP9whFRWY2mFj5Sqs6vKQYNdwd42hZZvwziphMd29rDAIvHPHQOYFYm6oJs9/WG6xxMsr/JjNYtruRNtfqmX3797CRMJlc//cw9ZLZfG2xGK85Ez63iua5x9gxHu2DEAwP7hKN+6v5WGQhdfvngu//vgAZxWEx8+cw63tQzx6YurkbeOonWEyZY6aa92ccuGTv77tFraR2MA1BQ4RZio8IpKZzX+vKmXb9yXC8iRJPjV1Uv5y6Yellb6uGvnIAAP7h3msdZRGorcvG1pGbsHIqxbXMr39vTz5fMrCOwMQVbHfVoZtoZcGOhfN/fOWt7u/ilu3zYw/ffjB0Z516pKTqrNZ3vvJNX5TlTd4I7t/fzf1UsJimv6172uUIzWoQg7+qaoDboAiW/e30pDkZuWwQi3bumjOt/JX9+yEFPAhr5/ErnEif20MlyF4nxSEF5RhnGi10AQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQ/m3HNYQEWGUYxtzj3OebniRLjMUyfOO+1ukRYe/eNcgP37YQRZY4o6EAkyxRF3Tx4/UHMQzw2EzUF7pYUR04busxEknTN5ErYu4ePzKKbM9R//1SmTxW3KeU4VgSRDLJyNbjvSkKr0Uum5l3r67ijIYgoViar93Twrce2I/HZuJrl8xjbXPxdNGXtdyN+Z2NGGkN2WFGOipY58G9Q9MBJAB9E0liaZWvXDyXB/YOY5JlPnTmHK5YWobHbsZhUbhpUw9j0TSrawLUFDhn/FZ+f81yllfPDtKZW+JlbomXnzzaRiytosgSaVWfMc3AVJKRaBrdgNVzAnjsYlsWThyHz4bjtHK0ZUWgSHSFk2zqmZw1XVbLbceTiSy/fKKdH1+5aFbRnd9lobHIzRVLy/jhI20kMhqyBB8/p545QSc2s8JYNM33HjrAHR846VV5f8IRbrsZq0me1V4XdDGVyPJUW4hfvHMJAaeVjYfCyg7rGIszHs9Q5nPQNhJjtQghEY4HA/rSKp/c0clF9UHGkxkefHAvWc3AMAx+81Qn379iIeZjbLeC8FoXiqUJxTJktJnngROJDJ+5fTeKIvHWpeXTxexdEwkuvXcP37lkHufUFTAaTzEZz+JNZvE5LdPzS8DDLcMEXBaeODCGqhsoskSxx8YX7tzLp89vmJ52a/cEH79tJ70TSQo9Vv73LQtYU5v/qrx/QTiRynx2Flf4+NGjB0mrOuc0FfKp8+oB+NWTHSyv8jMcSfGt+1tpLHJz2eJSeicTOC0mPnNfC9UBB2fXBTg4lYDnujhpToDBcAqArGawbygCgNtmIpzMEhQhJCdcVtVRdfjug/unA0gAfvd0FxcvKObbD+znwubiWfMdGInxXNcEfqeVUp/Mjc92k1I1PnTGHFznVvK3JzvZNDBF+xODvP/0OfzwkQOksjqKLPHVi+fytmXlIoRGeMV0jMX51v2t038bBhwYjvLUwRALy/NmTJvRdPYMhNnZH+Znj7VTF3SxtrmYK9bv45ZrVrCgxIPsME9P7zjGdqtIEq7n3Wu9eVMPX183j1++cwk947lrwmtPqqLM55g1v/D6I0syqp7bZ96+vZ85QRe6Aa1D0elpxqJptkeTDOcrJBd4OGthMfklnhO1yoLwxnf8xwkQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQhFfN8a4C3ChJkgghOc503eC6k6sAMCsyDqtCiddGc6mXqUSGCr+Dtc3F/Pm5XgwDvHYziYzGp2/fzXgsfdzWYzSa5uS6glntp9fPbnupFKdFBJC8yWQ1nXhaZXd/mKDbhiRBJKXysdt20TocnTGtbFZQXJYZASQAW44RqrBnIMzgVJK3LSsjpWoossyiCh81BS6KvHY+fV6uiHPNnAB/OfRbgdyyP3vHbibiM38rGVUjo2pA7iF9gLaRGIueVxzisprQdKgKOPjA6bVYxejJwmuA4jSj2EzYLQrnzy+a8ZpJlsg/KnRid3+YeFqb1UfQbeObl83nN091kshoeO1mZEni+w+3ISEzOJlkV3+YT57bgNsm9uOvttoCF6FommvWVHF4F+l3WvjM+Q3sG4zwwTPmUOCyEs+oOKwK0vMKH86fV8STbWOksrO/e0H4T/RMJBhPpCnNs3Pj9n7uaR0lqxm4rCY8dhM7+6aIZ9QTvZqC8B+xmWcfTxVZwu+woBtQ5LFNhzUepuoGf9raxzMDUzy6f4yn2kO8/Tcb2dMfBqBvIoHVrPDRs+pIZ/XpotF1i0r444ZuJAlWHgrJG5pK8v4/b6d3IgnkwiE/8JftdB8VyicIb1Q7e6f4zoMHpsMgH2kd4f49w3zy3AbaRmJUBpzTwWwfPnMOqq5T4LJOB6d2jSf47bY+nugYp3U4QncowdxjFFyfM7cQkywqRV8LdvWH2TMYIRTLzHotklKZSmSJp1UK3DOD9KoCDpqKPLSNRLl/zzDRtMr7Tq2hMuDA47KwpLGAfSNRLl9Sxi+faCeVzW1Tmm7w5btbaB+LvSrvT3hzGoum0I2Zbaqe2wYTGY2C5wVD1hY4mUpksCgyB0djjERSXL2yguKgc0YACcDbV1SgHLX/UmSJJRU+PnJW3YzpXFYTyyr9mBSZ2qCbFdUBEUDyBlKV76Akz4bLaqI+6Kbc5+D5h7UL5hcxGkkxmVL5/jOd/GZDF5u6xo/doSAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgvCmdryrhm8iF0QyDKTJjfVlGIax4Dgv503l8QNjFLot/Orqpdy3e4iMpvH+0+bgdZg5OBolndWxmCROnpPPqpoAw5EUfqeZcFJlMpEl8LwH2f9THrsZn8PMB06v5R/b+pEkeOuycuoKXcelf+GNaSKWRjUMgm4bU4kMN27o5hePt5PVDJZW+vjoWXX8+NGDAHSH4rNCPgD6JxMcHIlhVmQailxcML+IJw6MzZjmpNp89g1F+O3TXQDUF7r4xVVLqCt0A3BhczFBt5WDo7MLizrG4kwlsvidVuJplQ0d4/z2qU7Misz7TqvmnLmF/Pm5Xh7eN8wnzmkg6LbybHuIxiI3HzunHptF4ZrVlQQ9tuP86QnCy1PosXFWYxCP3cz9uwcp9Ni5cnkZY7HU9DQXNhfjtZuPOb/dbGJusYd3rfYxEknjd5qZiGfpmYizuWuCixaUYLcojMcyFOfZX6239aYWiqaRJAi4rPzXKTW0DExxRkMBU4kM47EMN27o4bT6AjKazk0buzmtvgCX1cQ3L53P75/tYiyWZu38YsyKTDSVJatp/PrJDlZU+2ku9WJSjnc+nfBmMRZLMxnLcOXyCoKeUTa0h6gvdHPZklIOjsQ4szGIzSS2L+H1qchrY1WNH7Mi8ci+EYq8Nt6+vAK7WeYzFzSgagaxtMrD+0ZmzHdmY5DBqdwxt8Bl5f+dVc/ft/XSO5HPN+5rIRTLUOix8dnzG8GAtKYTTWUp9dn59uXNzC3xAjAwlWTseeGS8YxG51iMyoAD6flJU4LwBrLrUHCPRZExKRKJjMYtW/q44/2r+d27l7GxY4wfXbkIn8PMLx7v4Jn2EIos8bVL5s3q69y5hYzHs/jsZj51XgO3bOklllK5dFEp80u8+I/TvRPh5dk3FKZvIkFd0DXj+t1ikkims7xzZQW/fbqTT53XwCP7RtjTH2ZVTYArlpbx5bv28olzG+ibiDO/NI/GIjd/ea6X27b2saDEw8+vWkxWM/j9M10zlvnu1VXs7gvzWOsoC8u9LCr34XmBayRB+HcNTiUZi6XId1lmhOu4rWYCTgt/fa6XT53XwEMtw+wdCLO6JsCVK8rZ2DHB9afWoOk6mzrHufnaFbgdlln9L6nI49YbVvHg3mEkCc6fX8Sich+qpnPLDatY3zpCnsPCWY1BMprOV+9uoW8ywduWlrOq1o/XPrtP4fVHkSRMEvzkyoXcv3eY/UNhvvuWBfz6qU5GoynOm1eE22oCSSKezoVDbuuZ4vLFZQyHkxR5xT0dQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE4YjjHULyB+BdwB5AP859v2lVBhxMJbJ88K/b0Q4Nm/lQywh/fM9yTIqEaugUemw0Frv5/sMHpudrLvVw3UlV/7L/6ESKkc4w4VCKgnIXwSoPNufsYou6oJtoMovNLPOFtU0ABFwWFh4jNEIQYimVh/cN88NH2kirOh88vZYyn306cARgW88kpXl26gtdtI3EyD9G0VfrUIR3/2EzY9Fc4eWKKh/fWNfMVSsruGVzL5ArsCjz2fnBI23T87WNxPjH1j4uXFDCP3cO0DeRYN3iUpZV+mYtY26xh4AzV3TxXOc41/9p6/Rrz3aE+PN7l/OZ8xt4rnOCzV3jnN0UZHVtgKcPhvj1kx38+O2LkSTY0x/GZVOo9DsxNIPRnggjXRGsDhNFtV58Rc7j8+EKwkukpjTmyRYKTU6uOHs+ht9MwgRfvbsFgDMbC3jHigrkFxj13WNTqA26+MHDR35bi8vzuLC5iFs29/H5f+7hF1ctxm073qcTwvNNJjLct3uQnz3WjiJJ/L+z6zl/fiHnN5dwz65BPnbbLuYWe7CaZL7z4H6+fdl85gTdbO+dIqPq2MwS31zXTN9kgls295LnsPDRs+r42K27iGc0FFniL+9dyarawIl+q8LrVMBh5sm2ECfX5XPpohLOn1eISZawmRVkYH6pl8hkmv7+CcJjSfLLXBRWH/ucUxBea6wmhZPm5JPnsHBqXQGJjIrPaWZrzxR7BsI0l3pYWRPg8iWl3LVzEN0wuLC5mCKPjS/euRdVN7CZZb5y0TxOrcknOZLiy3XlYFXolTW+/8gBLm4u5oL5xfhdlllFoD6HBatJJq0eucSWJdg/EmVnf5i3Ly+nRISBCW9AO3onsZtlvnp6PYUZIGuQyTPz3FSEgMvK2XMdnNkYpHc8xp829fJMewgATTcYmExyw6k13PhsNxlN5/pTqmkocnPv7iF29EzRVOLhw2fOwazIOMyKuK/xGpLvsvLAnmE+e0Ejf9nUQ0cozjfPbaTJbGWyLc4ZpW6q1s7lR092cEZDAdeeVM3Ovkl6xhP86MpFPLh3iCuXV1AZcHDzph6ePhhiKJyiZTDCvXuG+dblzRS4rNPhTlcuL2dbzwQ3beieXocvrG3iv06pFiFPwnEx1B/FO5zlx4tqiTpkbusc5fS5QQ4MR/jChU3cv2eI3zzVwbtWVfKh0+egGQY7+qZoG4nyTHuICr+DD585h6FI+pghJCZFZlmVn2VVfobCSQYmk3SMxajOd7KqJsCqmtw1XutQhLf/ZhOJjAbA+tZRvvuWZq5cXvGqfh7CK0ORJRa6XQy3hTnb7CBpMlFT4OQT59RjMcns6JmkPOAgnlJZVunjj892s6TCx7MdIcr94jxSEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBmOl4Vw33GoZx93Hu800lMxwjuXccNZTE3pyPtdpLhd/Bjt7B6QCSw/7wbBc3nFqD02wildX486aeGa/vGYjQO5GgMvDCwQeJSIb1N7UycGByum31ZbUsPqcC6XlF6VlNZ3tvrrDjH9sH0HSDk2oDfPniuTQUef6t96kls2SH4uiRDIrPhrnYgWwRRexvBHpKJTsUJzkaJxDPUOez83jnBD969CBXr6qcNf2mznFOayhgfomXuSXuGa9pusFNG7qnA0iuWVOF06Lwm6c6OH9+EVcsKWNj5zi7eid5+lDB2dHyPTbe+bvniB4a4fPR1lG+dsk8vrVuHo+0jlDgttM5FuWLF83F67Cg6QY3HlV4dNiW7gneWhLgLWEDNakxrCl8eWs3e0eiyBIcHInylXv2cWA4it2s8PkLm1hhtfHob1rg0M/W6bNy6f9bjK/Q8TI/YeH1KBtKkmodJ9MXxdboxzonD5PnlRlpPTMSRx1JIJlkxlMqj/62BePQdphf58VxSpAfX7kYs0mm3OfAaX3hfe9oND3r2LKjb4rJRIYbTq0BYCicIpHRcNlEkMAr6ZmDIb54Z8v035++fTd5jqWcO6+IloEwP3rbQmJpFU2H96ypwmM38/V793FwNMb1S8u4piSAeeMIVUUO5p4yh5ZUmk/fvme6P003+MUT7SyuyMNqVk7EWxRe5wbCKbrH43xidTXaSBxZMxg1S4SdOg/uHebTZ9Sx+e/t9Owdn55n+UXVLLugElmR/6NlquNJkgcmyXSHsdb5sNXlYcqzHa+3JAjTBqeS/HT9Qe7YMQDAJQtLOKk2wE0bu0lkNJ5pD9EVSnDF0lLObCjAZTUzFkvzxIExPnzmHA6MRLl/zzCZqRRLTFbiWUi4rGx6cgCHWeL/Lm/CO5REfnyA8RIH6TofleXe6eVX5Tv56sXz+Nw/j+y3r1lTxX27h2gZjCBL8NGz6kSxvHDCGKpOpjdKYtcYkgz2hQVYKjyz7in8O7pDca75w2Z+flEz7fd00BnNAiBJcO37m7GaFVRN5749Q+i6wRMHxpAl+MTqalY4bBQ5rOxXs8x76wKsJpmO0Rif/PtuANpHYzQUu7l1cx/beqcwKxIfPH0O155UjdchzmlPpP7JBK1DEeaVePjOA/v5zluacRkQXj/Mxs7I9HTNF1XywysX8Ksnu3i6bZT31hfhnUijbRqjvtTLVCzL9vgUlQEHDksRFy6Q6A4l+P0zXfRNJHj/6TX89LF2phJZSvNs3Lqlb8Z6/PCRNs6bV0jFi9xPE4SXIhxK0nJLB9FQcrrt/727kfc8upfJRJa/bu5jaaWP716xAFXVuX/vEI/vH+WLq6q5qK4YeX4Zdw5OklJ1dg9MUV/kfsFl7eyb5IY/bWM0msYkS3zm/EauWlkxfc2/q29qOoDksJ+ub+fspkICxwgFfiHZ0QTJfeNkh+LY5waw1npRXLPDUYRXV2QgznO/3YeazYXWmSwywXdaCaRVCvsTzLcpxIostCRVaiZVnrxkIVm/lctu2c66RaUneO0FQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRCE15rjnfqwX5KkvwL3AOnDjYZh3HGcl/OGlB1LEPrtXvR4rrgmuXMM76W1dCrq9KjXQbcVm1mhdyKBYRgEXRbcVhOJjEoqq8/qM/m8h8ufb3wwNiOABGDzvV3ULC4gLzgzLKE7FMdlM3Pr1v7ptmc7xrlzxwCfPt/9kove9LRK9PF+Yk8d6cd7SQ2uVSUvq0hJOPGMrE5s4yCRh3KhBbXAF1YXMZlS2TMcxX2MsIPmUi/vXFlBVcBJnsNCRtUYCqewmWVcVhPbe3Pb54XNxbQMhNENgzlBNz969CBNRW7ec1IVd+8c4Pz5xTP6lSTAYDqA5LC/bu7hqxfPI71nmCcOjHLp4hL8zlyxhSxxzECGK0sD6H85QEbLJTkEd8I3Lqzk8vv3ckZjkB880saB4SgAyazGjvZxlK7sdAAJQHwyzUhXRISQvAlpkTTjf96HOpwAILk7hHN1MXkX1iCZ/rPC+xeS7o0Q+u0ejEPHAznfxppzK3j2oV4AQgfDFM3zMuw0c868ohfsJ5nRiKdVZFmaPv4cLZXV+eKde3nX6krOaggSS2cJIgr/XymGYXDLlt5Z7XftHOTceUWsrPFzy5Y+HmoZIc9h5vMXNPLn53o4OBqjudjDVVjhni6yAHvH8eXb8J86+/sfi6ZRdR0rIoRE+PclMxo/Ob+J/Id6YTRXZBk0y4xeWMm584tQYtqMABKAbQ90U7csiK/o3y/w1eIZJv7eRqY7V5Cc3B3CvqgA3+V1yBaxDQvH1+P7R7l9+8D033ftHKTc7+BjZ9fzwN5htvdO8mDLMGvmBGgbjrKpa4L20RgA9+2Bd6wo53/OqOesjhiJx0eQAKcicfb5VYSm0njv70GPZNAB795x5IzOmNdCgSc3Kr0iS1y+pJR5pR729IeZSGR4fP8oLYO57f8vm3q5amUFQbc4FgsnRronQuh3e6avf2LPDVFwwwKsVd4Xn/FFdIXiZDSdeH+c5KEAEgDDgN0P9lBV76NzKsknbtvF99+6kOYyL9fMLeKs1iiM5Y43cy0y4Uuq+Vv3OPfvGQLg6lWVFHqsPNQyzLbeKQCymsGP1x9kSaWPU+sL/uN1Fl6+7lCc3z7dxeVLSjl3XiEFbguWUJaDRwWQAOx/pJ9lNR6yqs5/zyvBvmWMxJ5DwaQt43iKHTxc48CWZ+Ub97WyvMrHBfOLOWduIRlN54G9Q9x6wyqiKZXBqdSs9UhmNTLa7OsgQfh3pLIaw93hGQEkADvv6eLSxUXcuD0XfpPIqPRNJJmIp/n7tn5uu3A+wft74dA9qLeVOBmoMTOCMWsZh00lMnzujj2MHgrxVXWDb97fypLKPJZW+l90Pf+dO7HqZIrQH/aiTeWWk9w1huecCtxnzA6zFl49yYxK77ax6QASADWrUy8pZB7oBAOygHXrKGdcWE34nk4AzA4Tvz63Cbu4fhIEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRCe5/hWP4OdXPjIucDFh/5ddJyX8YaVHYxPB5AcFn2kh+Y8O82lXn585UI+elYd71xZwS+vWsKHzpjDb5/u4r//vI2bN/Xy/StyI/we5raamBN0vegy1czsogotq6MdI9DEbpHZ0x+e1f7wvlFizwt6eNFljiVnBJAAhO/vQn3eQ/nC6092LEHk4Z4ZbbZNw7x3bgmabmCzyJx2VFGXz2Hm/51TT4nXzs6+KZ5qG+Vzd+zlzB88ydqfPMMzB8e5qDkXLtJY7ObceUV47RaeODBKud9BdYELSZL42w2rOGduIesWlUz3PbfIjc08+yH6dYtKufbGLWzoGGc0mua3T3Xx40faSKsakiRxzZoqjq6bWFntg4NT08UfhwX3h1lZ5WdhmZct3TODfPKsZtLRmb9lgEzypf9OhDeO7EhiOoDksPimIdTx47vP07Ma0cd6pwNIAPRQigKrgnLUsUHWYTgyu9DusJ19k7z/L9tY+9OnuWvHIF+9eO6M1712MwGnBVU3+OOz3Uwms5hEsdErSpIkKv2zQxrK/bni9PbROE8cGOPspiDvXFnJRDzL5q7cfunqxiLMO0Iz5tNDKeqk2YFL155UhdNqfgXegfBmUOy1URhRpwNIIBdOVrB7nOo8O8nk7OOirhkzCuX+HepocjqA5LDkzjFxPim8Ih5sGZ7Vtr1nkgf2DnHO3CCHsxgn4hny3dbpAJLD/rGtn9O9Tozeo9o1A3n7MMU+K3okM2N649khnt0xxJ07BnjywCi943EGwykGJpOYFJlEWpsOIAEIeqzYTaJ4VDhx4puGZgQwokN8x+jL6tNhVbCaFIz07GDVZDTLgaEo+4cifP3S+WzoCHHevEJWmq0wduQ818joeHaGmON3YAC1BU7SqsZwOMXGzolZ/R4YicxqE15djkOhoJV+Bzazwpfv2kcmNXsbyKY1dvdMcs3qSjzhLMm9M8931aEEpwdcbOuZpKHQzZbuSTpDcU6pC9BQ5GZppZ9bt/ahGwZNJW5czwsjPW9eIV778c5tFt5M9vRP8eG/7qBvNDHrtXRCxWc/ct116cJS/ryph70DET56UjXF28dn3IOSBuOUpwzmlxwJduoai/HAniEe2jtMz3icyXiG1qHorGX1Tx45N15YnofjqLAJm1nm6+vmcevWfj53xx4e2z9C9Bjn7EfLDsWnA0gOizzejzb5wvcYhFeeWZZJP+98srDKg9ESet7x2SDbF0UJ5ILr9ITKnOEU5T4RmCwIryTDeOEQKUEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEF4rTreT9T/zjCMZ49ukCTppOO8jDesYz2MaGgGAYeVMp/Onzb28GTbGACXLymlfSTKqQ1BrlxeQVbTmUpm+e5bmvnOAweoKXDyjhXl1BS8eAiJr8iBxW6aEY5QMS+AJzB7FG1VNShwW2e1L67wYj9G2MML0RPHCGJQDfSUCGh4vTFUHXUsiZbMokcyaJE0swZmNcCpGzgsCssq/VyysJS24SjJrEZtgRObWeYTt+1iMJxiUbl3epT58XiGL921l9++eymtw1GqAk6+dX8rQ+FcYcODe4fpGoszt9hNMquxqCyPb65r5r0n15DRNKoCTlqHIrisphkhOU6LidTzCp7v3DnAWXODVPqdLKv0cdv7VvPIvhGq8h2UeOxIrVOz37yms7g8j3nFXmoLnHSMxadferB9lO+cVMmeB3qn2yQJvKWzQwSENz5DP/aD5sf7+XMjo5MdmV3gpKRULHaFZFTH6jQxamgU2uzTr4diaXb3TdEzkaA0z85dOwd44kDuWPPHDd2c3RTkE+fW8edNvdQF3ZzRWMCBkSPFTWPRNHkOy/F9M8IsVy4v5587Bkhmc0WYbquJixaUEIqmsZpkrllTRV3QxUMtw7is5un9kiJxzI1tKp7hsxc0cvfOAWJpjetPqebsuYWv8rsS3kjMJglLQiX9vHZlIo2W0rAGrNicZlJHBe6V1OXhyZ99zvlSvOC+9QXaBeHlWFnt5+mDMwvc5wRdPLB3mL0DEWryncwJuih0W/HYzbitJqJHnX9qhoElq/H8qx19Io1FmR3kZegGkUSWLz/QymcvaOQzt+/mmjVVfPfBAwAUuKx84tx6vnX/fmQJPnN+I267CJESTgzDMDDUYwRK/YchU4fVB92sqvGj51tBYsZ1Zv6SfH77XDeprEaZz8FtW/uZE3SxNAPPL59XJtJUefO5dk0VkZTKzZu6WVLho6HQzcbO8RnTVhwj9E14ddUFXXz5oiZ0A752zz4AOjNpzDaF7FFhJCXzfUhOM6ucdoyJ6Oz7EOTCzlJZHas5F8i4o3eSyxaW8O4/biaeyfX1x2e7ueX6Vfzlv1bww0cOcmA4ysl1+QTdVr7zYBtfurBJXOsI/7ae8Tjv+sNmphJZzi3xISsS+lGhIvUnF/Pt9iEgd0yXNJ3PL69godcJk2liE1Oz+nSoBqWHgqb3DUa46nebmErk9niFHiu/v2Y5c4JO2kfjM+Yr8R659m8q9nDLDav4+9Z+BiYTXLWygk/9fTfj8Vx4xd829/Kdy5t5+4qKF3xvxzzXNoxj/QSFV5HJJFO1opC+liMBW7IswTG+L0M3kI4Okh1OIBkGuYOtIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIOTIx7m/n73ENuEYLMVOJOvMMA/3GeV0JtNMxDPTASQAZT47pzcGuXVLHz9Zf5BfPtHBdx7Yj0mWOa0+H90wKHD/66LOvKCDSz66iMr5ARweC81nlHHKlXWYbbPzaexWE6pmsKDsyMibhR4rly0uw6S89E1Jcpqm36dkN2Gt8WKp8iC7RWHH64mR1YhtGWbklzvI9ESZuOUAWjiD7JpZACk7zVTV+Pn25c3csX2AR1tHKPXZOKMxSEXAyZ6BCE+3h1hdG+Cx/bnRsk2yxMfOruPceUX84JGDXL6kFJtJng4gOezASJT+ySRX/noT23sncdpMNJd5WVrpJ+CyMrfEwzcvm8/lS0o5tS6fj59Tj3qMB/BdVhPbe6a48tcbaRuJsazKz/87u46DI3GuuXELPQHrrGfxbatKGIim+MTfd/GFtU0zgngWV/jo9UjUnFWKy2clv8JF/dtq6MhmEN58zIUOFN/MACfHwgJMxwh7ejkUpxl7cwEoEpYqD+aSXBGlqzYPSZIINuRRfEklLZEEAWdufxtLZfnfBw9w3U1b+do9+7jh5m04rCYWHrWfX79/FIuicGpdAVlN51dPdjIeO7Itu2wK23unjut7EWZbWJ7HHR9Yw/euWMAP3rqQ29+/hqqAg/99aD9fvruF3zzVyaf+sRuf00L/ZIJ3r67EYVG4rX0UbX5gRl+yx8LWeJJNHeN887JmbrpuGe9aXUXAOTtoTBBeKpMsYy12IVkUrDVeTAW5gkdbc4AnekM83jdBw5W1lMzz4fBYmHdKCae/swHrfxicYAraMRXNHLHbWu/DlG9/gTkE4T+3trmYuuCRcMeafCd5DjNj0TT5LgtXLitnVbWf/3uyk8/dsYePnl03Y/4L5xdjDszeNm1NfswlTmTHzGuv7JIC/tw6DEBXKI5uwOBUigJXbj89FkszEknzx2uXcdcH1rCmNjCrb0F4tUiShGt1yax2x9KXF27mc1r4xrr5VM7xsuY9jfhLnbj9NmrPLePJRJy7dw1yRkNw+hpyKpHFWTI7hNXanM/n7m9l90CYBWUe5pd4kQy4sLmYPMeRY9A5TUEWHXUOLJwYbpuZ5jIv61tHp9s2hyKseW8TRfV5ODwWylcVMv/UEs7QFSK3toFJxlbvm9GP4rfx1GSMVTV+9g6EAVhUnkfvRHw6gARyWX03bujG57CgSHBKXT7beib55RMd3L6tnwPDUV6LROjaa1vHaGw6IOTHW3tYfV0T+VVunHkWqk4rptWp85kLGlnbXMS1y8q4JCmzKCMT/dsBkltHsDX4ZvVpP7R/G5pK8rfNPdP9A4xE0jy+f5QfvHUh3kPn1pIEHz2rjqZi94x+rCaFnX2TTCSy7B2MTAeQHPaDh9sYjc6893Y0c5ET2Tnz/N21pgRTXu7+htg2T5wRq8G8y6rxBu14g3bKVgSJzn3etiSBpcyNOpacbrI1+AlNJREE4ZUjSSLkRxAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQXj9mZ008R+QJGk1sAYokCTp40e95AGUY88lPJ+50EnB9c3ENg+jjiZwLi/E1uBHG5gilp45brZZlolnVMaiR8abV3WDP23sobnMy9lNhXjtL+3rLazycM57m0gnNFw+W26kxGMo89kp9dmYE3dxVmMQ3QCHRWFOcHahz7FMxNJE0yr5k2k851aiRzMYukGmJ4q51Ik2lcbsO75F+cLxp6dV0l0RtEiG8N0dWKq8pA9OAhDfMoLnvErim4dRRxIohQ4862q5tX2En6xvn+5jaWUev7p6GQVuK8mMhtUko8i5bWwykeXdqyu5bWs/A4cegn+qbYzvv3XBrHWRJAjFMswr8bB/OMKCsjzSWY2sbpDvsuJ3Wjl7biENxW6+c99+fv5YO29bVkZjkZv9RxUTvWt1FXfvHOCqlRVMJtLEUyrdE3H+uKELgC9s7uJ/11ZT1B7BrIF9UQHZ9ik+63DzkbeW0ZpOc/N7l5PMaITiGXZ2T/J0zwThjMpnrmvg0f2jfPHRfXxubdMr+dUIr1GmPBv575lHfPsomc4w9oUF2OcFkM3H5/AYT6mMx9P4FQUlYCVvbTXJlnFknw33aWVoqsry65sYSKTYH0pgNytUF+QCStrH4ty2tW9Gf7dv6+fDZ9axqz9XrGczKeS7rNy5c4A5BS4uaC7CMGBusYd5pR6ebBsjndWpzndSGcj1q2o6BmD+NwKqhH+tqdhDU7Fn+u+t3RPctrV/xjSHv7+frm/n25c30zeRYNDnoijfjrMjjF7ipLPIRs9ImMZiN5f9cgOrawL839VLyHNYUDWdoUgKsyxT5BXHZOGl03UdxSzhObuC5L5xzKUu3KeXo06luL6ugv+6fTfGgmLKVvi54p1NOL0W5JexjzC5rQSuaiKxc5T0wSls8wI4mvNRjhGkJwgvV02Biz//10q290zSNhJlLJrm54+147KaeEdTEebuKO6OCOfXlzFW6WJTNMG7VlawrXeKVTV+DCCuauSdU0lswyB6Iout3oepwIGezMKV9VhaxmE4QajazZ2xOG2jMSAXlpfKaoxEUhS4rYzFctd/7aMxtvVMcMOptUQzGvNKPHjtItRRODEs1R4C184jtmEASZZxnVSCtcLzr2d8ESORFAeGo2xoD+FzWkgs9ZBvt/CtLT30TiRxWhRiaZXSPDtmWeLypiIy28Zwn15GbNMQRkbDPr8Ac76Nty0rx2qSqTZkflESRBqMMzml8pO1c9kbTdFc6qW51IvPKX5DrwUTsQyBQyEHi8q8vHtFBX3xDJWXVHD/zkF2ptOsPjAFeTb0yRTZgRi2eQFMBXYyvVHM5W5GKl14Eklu39aPbkBNgZN1i0pY3zrCafUF9E0k6J1IcMOpNdjMCjv7p3jswNisdZlMvLaCRNN9UeKbh1DHU7hWFGGt86E4/7NAN+GVY7ccudaPprPcNzxBbyEU13j4becQaVXjOrvCB0+vpWgyS/JvBzBOLgXNQB1JYG/yY5vrJ9U6gWw34b2wBoqc/GNbP4+0DBOKz94uDwxH+fBZddz74ZPpnUiQZzdTG3RiM888N97RO8megQgApzUUzHjNJEu8c2U5D7eMMB5Ls7zaz6LyPByWI32Y8+3kv3c+iS3DZAZiOJYEsTUF0MIpEnvHSe0NYa3z4VhUgLlgZmCgcHxl0xqKSULTDExmmVBG5Vsb2ljbFMQw4JZd3Vy7soJT39GAsXUESZawzw2AScptX22TOBYHUSeSWCczcOh+jiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiDAcQohASyA61B/Rw+xGAGuOE7LeFOwlLnxlbpAN5AOFWa6bCZqC1wosoR2aETJrT0T1BW6Z80/Gk3hsvr59gP7+crFc2kq/tcj+fYfmGDf04NMDCWoXVJAzaICAqWzg0UkSaK5xIssSXSF4hTn2VlWkUeh58WLlHXd4NmOEF+8cy894wn2vG0ZyT0hlDwryZ25Io9MT4TU3nEK3r8QkwgieU1LHZhk4q/7cZ9RDgag6kiHRm83Mhrh+7uwz8/HekoJvx+YIDg0yb27hwi6rcwv9dIznmBbzxTdoTj7hyK0DIb55LkNOKwKTUUevnxXCx67eTqABOCkOQFSWZ1vXTafP2/qZd9QrmDissWlBN1Wir02Htw7DIbEnzb2EM+oXH9KDZcsKiHfZcVrM7O9d5KMpvOXzb1cu6aK8+YVoekGDktuFNjPrW3kR48c5LdPd7Gy2s/7Tq3BODSAa0cozhX37+Xdy8r4iMdL+I52OPRbtO+bYN5pZcTiaZLDMRbW+rCHJMIjBuXLitncMc7+iTifvaCRBaUvrxBPeP0yFzrJu6AaQ9On9+3HQ+tQhK/fu48NHeP84YqFLEsahB/snn49tX8C/5X1dD3Yi91rZe2yIKEqH0Xu3H42kVFn9akbYHBk9OL3nlzNnzZ2U5JnZ/9wlHt2D/E/l85jTtDFsko/37q/lfmlHn77ZCcfP6+BA8MRfvd0F/GMyrUnVXNSbT4uEQpw3KVVjY6x+Kz2w9/feDzDWCRFhd/Bc6EohgSrzy3D6zDzp8cOsqsvzFA4N8L1xs5xOsfiFHo0fv9MJzdv6sFlNfG5C5q4cEExTqv4/oR/zaLIZLuixJ46EoyTOjCJ+/QyLDGNr88tp6DMy8EtI9z38C5qlgRpWFGI92UUJ5qDDrznVmGcdXz3rYJwLIUeG+fPL6LM52Bb7yRfv3Q+S8u95G0YQd02SgagJ0KgxcLCteXYzAoLK/L47oMHOK8mH5+iEN0wiH1hAbJNId0VJrq+F//VTZx9x3bWLSph7doKrr1pK+FkFoA8h5nFFXn8aWM3p9bn87V79k2vz6LyPH71ZAc3b+pB1w2WVPr4yJlzsFvEPlt49clmBXuDH1udDwDpBYJNX6rhSIqv3LWX5lIvtflOmsxW2nYOosajfGFRJXePTFBW6OLGDd387LIFuOI6eRkdbTxJen8S57IiJLNMqm0S2Wsh4LdgS2j47u8hG8n9vpw9ERqXFVJ/RinFovD6NSGj6mzuGmcslubK5eXcsKCcke0hum7ppHJ+AE+ZwtXzS7GZJLQ7O5EO3TtKbB0h0xfFsTAf+9JCWmwGm0bDxDMq71xZybtXw8BUkn1DEVw2MxPxDAvK8vj4ufX86JE2OsbirG0uYl6Jh5bByPT6WBSZ6vyXFrr7asgMxgj9ZjdGVgdgojNM3qW1uFaXnOA1Ew4bnEqyuWuCtKqxqsbPps4Jir02avKdWM0KE7EMy6p8FHlsPLBnmDUleZgn0yQNQDmy34w+0Y+l0oPn/Coc8wKY8h3s6J3kk3/fxXUnVVFf5GZbz+SMZZ89txCAcr+Dcv8Ln19ntdz2s6LaT0OhG7tZIZnVALju5Gr+sX2A/skj9+N++vZFXLKodEYflhIXlkvnTN/f0FIqE7ccJL0/t06Z3ijJlhD5752PyW39zz9Q4ZiiEynat41wYNMIviIHtUsK0A2Y77aTzGrcumtwetrP3r2XZ9+zGjQDI6UxdWc7GOC5oApLiYvE7hDqeBL/gvwT+I4E4Y3PMIx/PZEgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgvMYclwolwzCeBJ6UJOlGwzB6ACRJkgGXYRiRF5/7zUPTDXrG4yQzGmU+O17HsUfZlSRp+uFzVdMZjqQIJ7N89oJG/vhMF4PhFCfX5eOzWzitvoBlVT7Sqo7drGCW4ddPdaHpBqr2rx9uHOqY4sFf7yWdyBWijw/EiE6kOO0dDSimmcWc+wbDvO8v2xmLpnFbTSSyGnMKnNx47QqK8+wvuIy2kSjX3biF7KH1MVxm7PMChO/vmvn5RDJkR+IihOQ1ZjicpCsUx2U10eh3EnmsFwDJJIMEmf4o3gtrSLVN5kJJNINkS4iuUhs/39iNRZH5/lsXsLVnkq3dk8wr8XDN6gp2D0zx9Xtbp5dTne9kbXMRX7tk7oziyetPqeHgSJQv3rk3NyrrqgretaqCsVgGqyLz5+d6aB2K8tkLGvny3S3T8/3PvfuQJDi7KUi538n7T69lW88kTcUe0qrO4wdG+cKFjXzytt38dN0C7t4zOF2Q/1zXBMsq/VT6HfRMJAAwDFgdcJN8qI+j8hnQp9I4gftv3s+Ki6p59I/7yKZzBRyh/hi1p5Vw62icZw6GuO2/V79C35LwenE8i+Qn4mk+8rcdHByNAZDRdBLbnzd6t2aQHUsyORint2WS/n0TlF1WyVZpklU1AaoDTgo9VkYi6elZ3rminLqgmy9e2ESx14amGdjMMilVx++00DuRwG5WuHvXIOtbR7jh1BrcNjPfur+Vc+cX8Z4/bj6c0cOmzgl+/a4lnDev+Li9byGncyzOgeEIQbeV0WiapmI3b1taTtBjxWKS+cd/r+K+PcN84/79mBUJq0nh50+089nzGyjx2nlw78isPu/Y3s8fnu0GYDKR5dO376Ykz87JdaIgSfjXnBmD+MbBGW1GUkW2KoSG46QiKk/c2EpsMre/GR/oYqwnyrnXzcX8MoOKRACJ8GqRJInmMi/NZV6mEhn27R3FtX10xjRGNENRBv7YPs7aBUXM8TtYGVeIpDQsZS7iG478Tmz1PnRF5k9vWcQ7btvBmtp8vvuWZrZ0T2JRZGxmmR8/cpDvvmUBhmFgNckossHblpXTPhojreok0io+h4VfPdnB2U1BllT4cteTgnACvNzwkcN29U3RM55gdU0AS1Tjqdv3YRw6wRzrjfGeK+fQ7ZL49Ln1OMIqz93TxZqzywkuDDL1z4PEnhnIrY9Zxn12BV+6aRO3ntWEcSiA5LDs9hHyTy6dtXzhxNjcNc4De4cJJ7PEJ9KYHhslFct9Z+MDcWoWFyDJsGJxAVS40ZMqSsCGNp5CHUkQebiX1EnFfLq1j0+f18A/dwwwGklz165Bllf58DutPNQyDMCegTAbOkJcuqiUjrFOHmoZ4TPnN2I3K2ztmaTcb+db65qpC752Qkiyg7HpAJLDIo/3YZufj8l97PuLwqtnIp7hM7fv5umDIWoLcvegrj+5mmha4+v37mM8nqGh0M3bl5fztXv38b3L5uMKZUDVc0HUsoTsMKEfuj+b6YlgXhrElJ8LFOkO5QIonVYT/ZNJ3rGinDu2DyBLElcuL6fM98L3ZY+2qCIPp0XhjIYCvvDPPXzyvHqe65xgOJKiKuCYEUAC8K3797OmNp/8Y4SJHD4HzwVAzQxFUYcTqKNJEUJynGmqzo6HetjzZO44Nz4Qo691gkVnVyDJcNPbl6AZBjaric0DUyytzCPaGcbaGZ7RT3zTENZqL+poAufK4ln7FkEQjg9xXSYIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiC8nh3vYZK/LUnSfwMasA3wSpL0Q8Mwvnecl/O6E0tl+dvmPr7/8AHSqs7Cci/fv2IhdYXuF50vo+nkuyzs7g9z86ZeLl5YTMBlBSR29E1S5rPzg4fbpqf/ysVzsZpyBWtNxS/eN8DEUHw6gOSwAxuHmX9qCcFK74z2g6MxxqK5wtFoOjfPgZEY7WOxFw0haR+LTQeQAAyNxakIOpGcZrxrq0E3kBWZVE9EPJj5GrO9Z5LP3bGHAyNRrCaZ/7tiIXMPPZee2DmK56wKIk/0E9swiPfCGrJTKSazGn0+M596uh2A5dU+7tk1yCOtuQLNfUMRKgMObtrYPb0cl9XEimo/Syt9bOwYxzCgxGvDAJJZjSfacsEKqm5w04YePr+2CYdVwWe30DoUJei20nWoIONof32ul119U5xaX8AZDQWMh1PkaRIVfhcXBvKwT+n8b2Ml2369jxqHiR+fWs/P9/eT1gzyDIkb37qIobEkE6EkzjwLi0s9xBiY7t9al4e10oNukll2eilIxnQAiWKSWXJKMQGPhV83NPDdbT3sHQizsCzv+H9RwpvSwGRyOoAEYDyeRTLLOFcWIbssKE4zmCWQJOavLOa5R3uJT2XIV2V2j0RZVROgOM/OH65Zzg8faWNLzwTXramiIxTnw3/bAUBd0MW7VlXyqyc7iaVVqgIOvn15Mw1BFy6riVhaJeCyMhXPUO6382Tb2HQAyWG/faqL0+uDWM3Kq/nxvOFFklkMw+Ab6+Zz3+5BFlX6iKVUfnB7G3aLwucuaOQfW/sByGoGWS133A6nVIq9M4/Zy6t8FHqs3Latb9ZytnRPiBAS4SXRDZDdFtxnV4BmIJtkUt1hkGUiY0ksDvN0AMlh3btDhENJ8sv+9TmrILzW9E8mcdpMoEg4FxcieyxIEmQGY8TNMifnu1itWGg+aQ6b7+yi3TTO8hVFWMrcqKEkpoANU8BOfChGTIZPnVtPWtV5sGWYZEalOt9FNK2SUjWGwymq8p3cdN0KHm4Z4aGWYbrHc0F5ZzUV8ssn2jEMeKotxDPt47xzRcUxi4UF4fXguc5x2oajLCjL46/P9fLxiuLpAJLD2p4YZHK1jzOqA0Q7ooRHkyTCGbAqeC+uJTsYQzLJWMrdpMwSvzu7kWqfA+tZFUgSGLqBkdGIbxshkVURMagnXjKj8bunOlleE+Avz/Wy9vRGumIzQ2O6do6xbG0VJFRMfhvJ1nEczQUYuo4Wy0KtlwdDEX7y9oWMRNKcP78IkywxkciwuCKPnz3WPqO/0WgahyV3jaLpBt95oJWzm4Lc9+GTKfLaDt17AzWcRg0lka0KpgIHsvUEXdccdb9MdphwLi9CsihoUykUmwnJLELZTqSDI1E2dIzz/tNqUGSZz9+xl/edVsNvn+4kdSjgoSLgmL7mqrbbSHTHSA3GcJ1cSvSZAdynlqEnVHRNI1vgZOvOEG6PiTyvlUJPbk+lyBJ37hygJt/FtSdVoRvw4N5h3rKk7AXXTZ1KoY6nkK0Kcwtc/OP9q/mfe1qZTGT5+r2tzC/1kO+0Ej90P+tokVSWrPYvAiqOdS/XJCGZZFIdU8gWBVOBHfllBg8KEJ1I0fL0zODHdEJF13TQJQqzEsmoSjadodlkIZPVUWWJwCmlSGY5t5+QJDAMTAE7lkoPkiKRHY7D/IIT9K4E4Y3LMP71IAGCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiC8Fp1vJ/+nWsYRkSSpHcC9wOfIRdG8qYPIdk9EOab97cScFqoK7TRNhzjx48e5IdXLsRqeuEChkxWAyTKfA4SGZW/bc49rP75tQ2c1VTIdTdunTH99x46wBcvnEs8o5J+CaMYHiv0QzZJx3yA3GqaXdAgS8duf/40AF67mTlBF/vTWQK7Rwm8tZ7JO9vRDhWk2ubnI3tFsdxrRTiZ4YePtHFgJApAWtX56J17ePT8ZrizA3UsSXzbCO5TS0kH7dw6MAleMzdvGqDnUFGkJMHFzcXcvmMAkyyhHioe03SDRFpjdW2A0+sLKPfZ+fH6g/xjWz9nNwVpKHLz9hUVuK0m/rald9a67R+KcO68QkYiaRRZIpnRcB+jmCHgsjASTfOJv+/in+9aQVN3Fq9HJrJ3lP6xJHXLC9m1PvebSidUrFtD/O+6Jtq3jzG1eYLhlMKOh3pw+ayUnVlOR8sEFUsKSW8bwb6oACOrE3k0t37leRbMa2vYfGjZ515ei+25QfRwBoAvzPcTconyNuHliyaz7BuKEEllsZpkrCaZukI3N+3s57K18wnf3Yk2kQLA1uBDdpkp6pji3MtqefDv7dgtCnbpyPFhXqmXn1+1hHAqw+7+MD9ef6Q475JFJXzlnhbynVaq8h0cHInx6yc7OKMxyLUnVdE+GsOiyPRMJLjhlBqGwqlZ62uzKMesSRJenkq/A7vFxB3b+3nL0jLaRqL88ol21s4vZkV1gPbRGD6nZTo07DCzLFEZcHDdSVW0DkdZWOZlXokHv9NCdcBF38SRka9rC5w0l3mfv2hBODanQt66OUz98+D0uZ29OR/Zb2Hf7WPMO6V01iySBLIsdhDC65PbaqJNMqi8vI7U432oY7n9p22uH7/VxBmbxkk/OYpZhlNXl7C5bYrkVBolo2Epc6GnNSJP9BJfEMRsVijxWTk4EqNjLEZ1vpNCj43fPNXB+fOLKc6z4bAoNJd6iadVdvZN4bSaOG9eEVu6J0hldfxOC1X5Dj719934HWbeubJS/L6E1529A2GuvXEL31g3n4lEhgKXBbfTPGs6xSJzbkMQly6RONS2f+84+dUuLCYFU9CBhIGWzJLZOkxjV4QMYJQ4sTX4iT7eh+wy41k3h5TX8qq+R2GmdFZj/3AEXTe4fEkpNz/XiyRBhc9B1/OmlRUZTTUw/Daitx3ANjcAioRsNWGu9mKt93HKqIOfrD/I/XuHAVha6eOa1ZX0TiRQJAn1ecXAylG3s3QDqvJdNBZ7UA7tPzODMcb/1II2lbuudywvwnteJYrr1d9uLGUuJJsCOrjPrCDySA9GWoNHe/BeUI1zVRGyRYQ8nAiabjCVyPCFtU1IEnztnn3UBZ1U+B3TASSQC5L0OSxctaAUZ1Jnz54JgnVeUm2TuE4qxVB1JKvCpMPKwb3jTI0maeudYjyTYd2iUtYtKuGJA2NcsaSMv2/rp+PJXCjptWuqqC1wHnPdMv1RQje1oEdzoT6uk0qoO6OcPMeRfevegQgAly0pxaLIZI4KHbn2pKrpAJQXYsq3Y19UQHLn2HRb3iW1TPx1P1o4d13gWFaI97wqFLfY574csiwhmyT0zPOCDSQJQzdIxbJkkirDXWHKm/xYshK+QgeJf3agp1S8F9YQfbwP/VDIk3NVEXpGw7Gs6AS8G0EQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBOG17Hg/nW6WJMkMrAN+bhhGVpIkMdwX0Due4KNnzSH/0EiqiiyzZ2CK8ViGkjz7C843GE4RimUo8lj5/Nom7t09xFQiw+JyH+1j8VnTJzIaVpPELx/v5r0nV3P6i6xTLJIir9CBJ99OJHSk6HjhmeXkl7pmTR9wWjh3biEP7xuZbrt6VSVzXuBBdwBdN7CaZL592XwcFhNDkRR4rDga8omt75suUgVI7Q1hn+vHUvTC/QmvnuFwio2d49jNCgvLvVxclc982YQig+nyOai7Q6hOE+1uhXt6RrlxYy8Bp4X3n17LLx5vx+ew8O7Vlaw/MIbNrPCjK3OjEXeH4mztnuB7Vyzgjh0DfPuB/RR5bFx7UhW3bOnjoZYRQGI4nMRtNbGgzEvbSGzGus0r9fDx23ZRne/krUvLuGVLH26bmRKvjRVleTjNJh7pGOOcuYV8875WFpfmMfDsCMOtk1RcXM2B54apW15I9+4QAIpZZuXF1Yz1R5loC9P1zBDL1lax/aEeABacUcbGOztAgsLr5mHKs2KxK4TvPVIWpU9lMHaOUr0gQDah4eiaQj0UQAJg3jtB3cLgK//FCW9ohmHwVNsof36uj2KvlV9etYRoWmU4kqK+wEli99h0AAlA6sAknrMr0CMZnL0RGlcUkhe0U23MLOa0WxTsFjsbU+Mz2rOazifOqSfPYcYwcoEBm7smMSkyP3usnf8+rYZyv51ibzGLK/x0jMX49VOdpNUjRUvvO7UGy4uEbQn/maI8O7v7p5AwsJlkJEni0+c18qeNPezsC7Oy2se1J1XxtXv2Tc9T7rfjc5jZOxChbTTKB0+vpXUowvrWUU6pK+AjZ8/hua5xXFYTX183n/FYbp+9oT1Ec6kXt312EbAgHGbTJOKbBmec2yX3hLDU+0hGMkTHU+SXuwj1HTmmN59Rhif4wufBgvBaNRXP0DMRx6RIZNsj0wEkAIrHSvSujlxhOIAO2rODzDujgp2tE6xYXEBqxxiy24zjnCqeW99L5fx8vKMGm9tC7B2IsHcgwhP7x7j25Cp+ur6dr10yD00ziKc1Tq0PsqI6QHcoztfuaWFj5wRziz28dVkZ//dEBzecWsOdOwc5eU4+1QWzr+kE4bVsT/8UVy4v595dg5zdFGReiYe+iQwWm0ImpU1P17SqmL23d7DonEryy1xYHSZGeqLEVhWRL0GqdQJzpRvJYULtikzPlx2MYyn3oHgsaJEMiQ2DZII14BHHohPlua4JRiMpDF2ntshDU5GHPLMJt9uCr9jJ5NCR+16Na4oZbJ+iqdlP3pUNpPaNk+mJYF1WiK3Sg6LIbO2dnA4gAdjWM8n8Eg+ra/y8dVnZdLAvQEOhi5PrCtjSPUk4meGdKyo5pb5gOoBEz2pEHu2ZDiABSGwZxj43gL3J/yp8OjOZC50U3LCA7EicyIM9R44zBoTv78JS5cFa4XnV10uAHb0T5DksfP3eVi5dVMIvr1pERs/dV5MkOJx9s7N/il+9bTGW4RR7H+un+aQizG4LpqCd9IFJ5KADtcLNxHCCvn0TnPL2ej67pYNLl5TQNhLlq5fMY/9wlKyqc+68QsaiaUrz7DSXeXFYZ9/i11Mq4fu7pgNIAGLPDmJr9POeNVU8vG8E7VBYsNUkU1vg5M//tZKfrG+jdyLBVSsqWLe49F+GmskWBe95VVhr80gdmMQ+309yz/h0AAlAYusI9nkB7E2B4/CJv3m5AzaWX1jNxn92TLd58u1kUyrufDs2l5kt93cz/5RSQv1R5visqI/1oidUbPMCJLaPTgeQAMQ3DZN3VSNjDoWKE/GGBOEN7lgDAAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjC68XxDiH5NdAN7AKekiSpEoi86BxvErVBJ4ZhcHA0Sk2+i0Qmy6qaAE6z/KLzmWSJzd3jLK/0YzPLXLKwGLfNjG4YBN1WrCZ5RrF3bYGTdFbn8iWlNJW4X7hjNYtk6MQmU5z2znqGDoYJh5KU1ufh8FpQMyoW+8zRKaeSWa5cXsY5cwvpm0hQXeCkPM+O3/XCI2IOTiVwWhQymsGX/r4LVTf40im1GIqZTH9s1vTqaOIYvQgngtdu5j2rK3FYTZSaTJyyN4wxGCcFIEvYrqznszu6KRjIclZTkM3dkywsz6NnIsF/n1bLnKCT//rTNsyyzGcvaOQXj3ewfzhKocfKly6ayx3bB3j6YC4EpLrASVrVed+pNXSPx7llSx9Xrajgl0908PtrlvFkW4ixaJqFZV7WLS7FapJ5/+m13LNrkFAszafOayDPovC7c+ax64Eesqk0F55Sy/qRGLoBZ1YF6H1wCABdyxVYpOJZHB4L4bEkzaeVsnN9H/4iJ9FQLsDBMHLTunxWJocT6JpB4+oinryrk0xK5cKTi2d9ZmpvlIXr5qCmNfT7Ome9rkylZ7UJr4DEBOgquN54oS+9Ewm6xxNs7Bznr9evYGv3FD96tA3DgOuWlNHUOXsb08IZZIcZfSDGgrfVk4ir4JCO9BeK47aZmBN0UeixYZIl1EOFSM0lHsZiGSZiGfxOM/1TKc5qDNI9nisGvGP7ACuq/FQGHLhsudCg2963igdbRoinVNYuKGZxed6r9vm8mcSSWd61uoqOsSgOq4n5JR7ed/N2klmNVTV+Tqkv4OaN3fz07Yvom0zgsJioyXfycMswK6r91BW6uG1rH1aTwiULS1BkibnFHn519RIUWeK7Dx6gZTB3Chd0W/nfKxZwesMb7zclHD+2jM5U3+xzO208SWmjD03TWX1ZLVMjCcZ6o5Q2+ilv9GF6KSFFqTBkU7n9uijiEV4DtvRM0D4ao9HvQOsMz3hNdpjQI5lZ83gcCjVz8og+0I3JbyM7mCG5O8Tpb2/g1t+2oGZ03n5ZFc/0TJBWdaJpFYnc9n7fniFkCX71VAffWNfMqpoA1QVO3rOminesqGQonCSZ0Sjx2jEMqA446ZlIiBAS4fUjHSMVD2ORdbx2M4oiE0tryFmdnz7bzpcuqqMoYaDGsuTl29m/aYhQX4xlF0gMdYQ5891NTPRFcPVHibdPYS5xog7FkZTZx4zsUAxTgQMtkiHbGyUZzdBKmKZi7wl4429uk/E0RipMmSWDx1/Er5/u4vz5xZTWBEE3qF6QT8PKQqZGEviKneiqzuLlNcT/dgA9nsUUdCC7zChuM4ojF5a3o3dyxjJWVvsp9zu4aWMva+b4+c5bmtncOUFzmZfT6wuoLnDxxQubeLR1hCfaxlANg1gySzStcfX8YrSu2bc01fHkrLZXi6XEBbI0I9zhsGO1Ca+80XCK1qEo8/zwlgYLa+rzSWd1vnLPPt6zppIPnTGHnz3WzlsWlXB1VSGhrRNEwmnKm3zkJ7IkH+xGsiiYS52gaqTJne6e8vZ64tE0/316LXfsGODkunzSqs6qmpce4qEnVdI9s7dhbSrN0iVBbr1hFY/tH8VikjmjIci8Ei+SJPG7dy8npWr4HJZj9HpsJp8N1/IiXMuL0CJpwnfPviemhk7cb+eNQpIk5p5cgrfATs/eEHaPFZfPis1pZmIwzobb21l8TgWtG4eYsySIw6qQGs197uagg1TL+Kw+teE4Dskg7rPjPEaYzXGRjkImDs4gyC/+/0IEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRCE14bj+mSpYRg/BX56VFOPJElnHM9lvF5puoHDaqLM5+DBlhE8djOXLnISDo0xsqeHeGSKgvJKCmvmYLYeCfUwKzLLqwI8czCEIkvs7JvEbTPzsbPqSGZUPn1+A398tpv+ySTzSjxctaKCwXCSnz/ewYMtw/z+muWU+x0zV2bsAOz8G9Lcawn1ZdnxcC9VCwPkl7h47u5OZFniis8sw3LUYMDxlEoqq/NQyzD37x0iz2YhnlH50ZULMQxj5qhu4x0w0Qk2LyXxcfzpFNGMj0KPBYfFzAq7lcxgDGulh+Se0IxVMxU6X4mPX/gPFHnt5Dks/OCRNm47Zy7G4JERiNENMnd18Jm313H9nbuJJrNcuKCEmzZ0YzMpfH3dPB5pHcEw4OKFxfx5Uw+dodz8I5E0bSNRHts/CsA5cwuxmWR++EgbAB67iU+f18iegSnmFrvZNxRh3aJSqgIOQrE0X7tnH5AryvjwmXMIjU9RluijKBohqrvwF7np2p0hNZZiXV2ApnwXjQUudhdMMTmUQFYkZFmif/8kJ71lDiNdEUwWhUQ4g9mqUFjtZbgzgprRsDnNSLI0HVzizLMxNTIMEqStJp5f0mat9WB1j7BNtVFX5YF9EzNeNxU877coHD+JSRjZC1M9YLJB32bw10DzW8BZcGQ6NQNDu0BLgwHkVYDv9THe68RgP5MHDrAgkeB7pwcwSxI/XX8QiyJTGXBgtZmwVFlJ7hybMZ/itaAnspibAjx5ewfzTitlTIOdfZO8549bmErkRsF9x4pyLl1QwqfPb+T3z3QyEkljM8sUuK3s6Q/zdHuINbUB7BaZYm/uOGU1y3hsJiyHArUkSWJhuY+F5b5X98N5ExqJphiPpZmMZ3l43whVAQfJrMYZDUHyHGb+3y07+Z9L5vFUW4hd/VO8pd5OIrSfS2wqJXIKP4Oc0aizMV7CDTdv4w/vWYZZkfnk33fzX6dUTweQAIxG0/xz+wCLy/PwPr8QLR2FkX0QG879ngqawPzC4WTCG1fGJmOtdJPcO7OwzeS3M2+ZlR1PDXDPT3dx4YeaGTgwhdtvxem1Tk+XTacY6WxnrK8HpyePojn1eHx50LsJOp+EqW4I1MHiq8Fb+uq+OUE4yuBUgs6xOH/Z1MvXL5mLPCcPxo4U1eqxLIrXOrMYXIKUJOFKZEjHsmSOGoE+tXmYgnI3Qx1hwrsmuOHkan72RG50+8OXWMVeG3sHwnSMxXnPHzdz74dPQZIMvn5fK/2TR5Z9w6k16IbBooo85FcisCcdg7H9EB+DvMrcb3KyC6b6wGSFQC14Zgf1CW8i4YHc/QAkcBVAZAAkGQoaX3jb6NsM67+GLZvmkgVXEapdya8Tdr71wH4+eW4DH1jqxRFtxWwxyCspZscj40THc78vk0Vh+0O96LrBpVc3oD47CECmK4JkVXCtKibFzGsyc6mL5N5D9yEq3Pz42S5OnVcoQkhebbqGM7SL5U4YGZ5ismcvH64pZntogmTCgeKxsP2hHsw2BX+JE5NFITqRpNamoMdz+1B1NAGjYJgkHJVeJJPMwrI8/rFtAICVVX4uWVjCF+7cC8DGznFsJpl/vH8N80tz3/fAZJLr/7SN3olcIO4De4d5+/JydvRO0dof5ju1eaT3Pu++VYGdE0lxmlH8NrSJ1Mz2POsLzCG8UgzDYE9/iHX+Plw2M9XNLka6NpJOZ/nlWdUMJoY42dbLu9/hY0wvpH/7JAUVLuIuM6XFTtJ35473RkYj0xWBrgj47bRuGKZueSEmp8Ifnu2mOM/Gl+9qoWc8zmfPb8JsemkhDrLTjLXGS/rg1Ix2xWdlNJrmmfYQT7aNUeC2srzKj26AIoHdomC3vISgwBdarsOMtd43696EuCd2fNicZmqXBMkrsrP9oV7CYwl6906QTWtALlTZ0A0CpU5iZhlrkQNtOEF2KI6lwk2mNzqjP8kkoz7Wh2HthYIC8FUev5U1DOjfCvvvhT23wby3wIr/Al/V8VuGIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiC8Io4riEkkiQVAt8CSgzDuECSpLnAauD3x3M5r0eqpjOVyBBNqSyt9OUKyuJhnv7bbxk+uH96uvM/+DHmnXrW9N8FbitPHcw9tH3zpp7p9jMbCzApMoZhcP3J1ai6gc2icHAkOj0qZttIjNahyMwQkuRU7uHfipWksgreYG4T6N41TveuXNFoxVw/Nqd5xvons1nSqsa9u4cAmEjkRvf+zgMHWFkdIOA6VOww0grhftBVePqHyG0P4ADOMVlZuu6vbDfqKI9B7IkuAlc3kR1J5ApHAMfSINYqDwCGqpLp70dPpbGUlqC43S/j0xf+E0PhJA+1DPGztzZSp5mIP+91PalSYMpy85U1qIkp7jo4yadXWplf5mP/+AjrypNUOUu5sDqfcKOHDaMRvMYUwxk7SwIp6s7z0hq2cPEchad6U6w+J0jQKbNjVKdYHeSclUGiS9zI6QiGM4g1O8kTU5N8/CQ/pbY0PUk7cx0R7GP72fqnv9N+aL1ql53Cme96B5vvGSA6kaKw2MmGO/ax8pIaNtzRzr5nBln9llpanhpk1/peTr9qDool9zsIjyaZe1IJNpeZ1g1DrLioml2P9REocyFtBi2rYbGbyCRVDvZEmLuwAHX3GBhgKrBiazah7nuIk7OdTK76FNnRJFooCRI4VpdgKRfb8SsiMQmPfhm2/yn3t80Lb70RZBt0b4B5lx6ZdnBHbh8VHQaz/VAYiQ7+qhOx5i9qfChGfDKN3W1Bkib5+/98nkR4CgBZMTH3k19h3eIS5hd7UQ2dpjwnlrBGdiiOOpLbr9qb88mOJZH9diJFTkaeHWa5x4qqpfn6va3TASQAf9vcx4oqPyZZ4kNn1lKb7wIknmobojjPTsBtxaTItAyGObOhkI+dU4/LqjCZyBJ0i4K3V1w8BMkwZOOw7y6qB7cTaHon+vwGtGwWQ8pwRl0eH1/jxZMd5+NLyykxD/E2czvheRXc8dvfsW8oV5iLJHHZB95HzcaPcHZ+Pbuv/x+eGJ9EMzn46fl51HknKb2wkKG4mzxdRrYqdKVTZFV9xirpsTBq6zPIvY9hWPOIB31kJ3txlVdi97z0bULXdGRFjIb8erdvKsGSVcW5c7tDgQyOpYWooQTRjMFoTxSzTcFkVuhpGadxddGM+due28CDv/jh9N/FdY1cfP11uJGgoB6c+aBYoOWfsPqDR9IZjqJrOuMDcVLxDC6fFV+R60XXWdN0FLHtCf+mZFZDkaEy30EokSXakIetJzId2JfNZDGfHcB4YBQ9oYIi4V5bRctggjlOBfdpZRiaTmJ3CD2SQYpncRy69rI4zTSXeXngw2uoloYxy1k+XB8kYpiIGOW4FBVJz5JKDGHIJj62RGbDaB5lTp0Kp0ZXMsG7FrnJJsYJelMwNpE7L4qP58553MVHgiAmuiGbyBWaWl5CEGQ6Cs/8GJ7+fi7wbfUHoXQp7L0dNDV3vpUIgb8aLG5QzJBXDpkkRAdzv19dzbV7y16ZL0d49STDkAqjaway2ZTbJiKDMNWLYRhMUk08YsfmaiSw7cvIoX1w5c0QmHOkj1QUxttz2+IZXwZ0zGY7RWT58lL47NIqJhNp7vnxr9kfyt0TkWSZ06/5NM/dLaHrBuFQEl+Rg/GBOOlIBisgmWXszfkoeVZkmwlro4/0/kkAzJVuZIuCHs2i5Flpb/bx4H172T8e54L5RbPD1oRXzmgrUjrO5ie2s23949PNC86+AP/iSzh8uzKb0hjpjDDSGaGg3IURz87qyghn0FUNxSRzXkOQkkskIrpBSNe4bWvf9HTNpV5OayigKxSnociNWZHZPxyZDiA57I7tA/zXKdX88okO0tfVYhqOoYZSuWydk0qwlJ3Y63rFbcH/tnrGb27NBbIoEt6LajAXiVDfV1s2GuKMgjhS2slE0sY/f/YDwqMjAEiSzGUfvAFPXh1pw4sVhcmhOAe3jLDq0hqy8SyWQ4G3RzMyGpFQEpvThBKwsmDSycWNQVKJLDdt7OGqFZXUBl/8HPcw2aLgvaCa8dA+tMk0SOA+vQxTsYs/PdXOr57snJ72mYMh7vjAGhaU5b3sz0UyybhPLyc7EMtdF0jgWlOCpfylrbfw0igmha6doenwkSPtEnNPLsEbdJDJatgvqCbxjzZSBybwXlSDFs7kwvIkcK4qJt0ZRo+p2DqfItOmQcOFyIEC9MlJFKcdxULu2kvXQZZz53OGkWtT00de4/D2LOX+U89CNgl6BgrnQfE3YMNPc+eUa78PJjOC8KYxe3cvCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCK95xzWEBLgR+CPwhUN/twG38iYPIRkYj2FWZMyKzK+f6iSRyT0c/PNTbNMBJLJiYt5pZxEZG2Xw4H6CVTWYzBZ0IOi28YNH2mb0mVF1Gos8fOzWXYzFjoyyvW5RCap2pEhYNwzCowlC/TGSsQxOr5l87wrcajeg4PZZCFa5Ge3OjYJotiksOqcc0/NGvNR1g3hanfXeeicSTCWyuRCSycHcw8XxUcCAtgeOTKimMUUiFOsGU6pO4LwqYk/14zm/ElQDyWbCXObC5DCTGRoi1dLC2A9+SKarC9uCBRR+4Qs4Fi74z78E4d+mSPCTcz2Ub/sSUtU7iJt8oB55YtYxz4Uv04L/oU8iVa7m44oVacf94PkUDS23oje/lwZpEZGbe3FpBpcvd+FyH0BxTCA9/Cs46aNcFNuAdCCPgsaP074nwcQBmbevysOSHcU6FaZgy1eQC+ZgqGmktoe4+rRPY2y7EanqNAyzxHiinD/d8yB2j5f88kqmhgfp2Po05fNPx2JTWHpqKS2bhtGyOjse6WXZ2ipMZgmvF1avKyc6oWFSJygoMFFWa6O/I8WWe7tYcGY5Lq8Jly3G2neVo8USXHhDPR17wiy/sIpnb2+nddsYkVovKy6rw+kw0dkd5p+/7CW/cgVLT1+DOdyKf62XULKCPZMqT4xF+Eg6S4VTPGR/3A3vng4giS78OKP5l5Ea9GN3mvD5K/FlE2B2wGQfhPty+6a2hyGvApZcA1bPvwwhGU+Ok9WzBB1BZOmVL1jv2Rviyb+1ISsSBRUu8ot7pgNIAHRNpfWBO7jsLR/glu1DOGWVaikM7lJcJ5UAIFtNSFaZbFqjVTPY889Oms8oxWyXiYxl2d0/NWu50ZTKL59o52Pn1PODh9u47uRq2sfi3Lypd3qaj51dBxj86NBxSZLgl1ctpiJfFBS9Yrqegrs/AnMvgV23QGwEeem15A09A+s/CQ4/LHsvfzi9CWnn92DfnfCOW9F33smUbQGDSpjJwwEkAIbBk3fcTfENv8F+13WYw/0sUiWGR8BBFmuyn2X5S3noniFKlxcipzRsA1kGbWOY5rlIRscwkkmk5zbDWAj7sgsI28vY8kSMkc5+8grHOfvaeRQeChZ7IdHxJJ27QhzcMkJJXR6Nq4rwl4jt6PVqqXMMKWLBu64WPaYiKRJaOIWOxIH1/SDBmstreeqvB1h5cRUOr5lUKksmOsXk8ADRsVH8peVMDOSKhYcO7mespwM3bbnwAm8ZxMfA0HJBUonx3D9vGbiKyKrQsTvCs/9oJxXPEqxys/qyWorn5M0KGpkaTXBw6wg9e8apXVpAWaOfVDRDeCzJWH+M+mWFFNV4UV7iKPPCm4tPl5kfkyhM25hntmJGxjijAjmawelT2P7sndgP5lF6bhN6PEMsNk7GNkXdfA+mA2miW0aQLAqulUVk+mNkS1z0PdyLJEs4m32Umaeon2hFsnmgYz0cfATfsvfgi45AbBj6tsKK98LGX/AWxcplqz+I/MwPYc7ZGN5KpM4sOALw2B/hlE/mCj933Qqdj4MrCBf9BLQMPPGt3G9p3uWw7Doo/hfXWqOtuQASxQxnfwUkBW59Z64IFaD1LrjwBxAbgeE90Ho3nPHFXDDFhh+DIx9WvT93Drb46txyraJg/vUkEU0z1hMlOpHCalOw2K1se7ifOfMdVCv34S4tQdUVBvRlPHVrO5HQCDaXmZOv+Dq1fAlT24Ow+D2gZSHSBxt/DgcfBl8NLL6abP8u5MImFH8FUu9GbIXzGR+xER0P0XjSaeQVFSNJMqHenZTPXUXP3gjP/r2dC97fzJZ7u5iKq5QUO3AtLSK2cRBtewpLlQfvWV7a57pJqTK63YSWVgleWcc9PeMc7B/gv8/yMzgho4vi0FeXmmYsnYeruIZT31lFMhal5YlH2f3oA+RXrmRi2EnD6iIObBwGQJIlFp1TgWyV4dmZXYWbfExOJJhjMiHd10XDgUlkn5XE6aVs89jYRZi3LSsnrWr83xMdSMCuviquP7Vmehd2NM0wkA6FnW2JJ7n4fQvRJpJIZgVTgR3Z/Lz7ZRkNPakiO0yzXnulWKu8BD+0CG0qjewwYcp3ICmzA9qEV9DQHsy6SjTlJ6q6SUb6WHD2BfTu2UnPnp0Yhs7T9zxM4ynvJx7Oko6PEuqPAbDlvm7OfEcdznI32b7odJeS3UQ4o7PgzDIsDgW3bnBdVwp920G+WO3hinPnov+bleyWEhfB9y9CnUgiWRXMBXaGYxlu3tgzYzpVN+gZjzPP6wBJQnG9vHtXliInBTcsyC33BX47wsvjLbBz6tvrWf+n1umAg/mnlZJXZMdsNTHUOYXFahAlTMHlJVhUmXBkjLyLq9CGkygeC7LNBCYZa5FOLFxAzD2H+KgXOWzgdgfQbv0H/kWl2LM7ITEBziBTzjySgTkUDOzAZPfBVE8ugM5ZkAv7lRWQTLmbRdkUWByQCudC0U/9NNx+PZzy8VwQHuTOJbUMcPQ+TMr9k/RDgSdHXZfN2HFLIBlHAh5MIkxMEARBEARBEARBEARBEARBEARBEARBEARBEARBEATheJGMYz1x/592JklbDMNYLknSDsMwFh9q22kYxqLj0Pf5wE8ABfidYRjfebHply1bZmzduvXlLva4GJiMk87q3Lihh9u29bL1Iwsxme107tnDAz//HgCXfOILPPWXPzI1PIgkySy7aB2LzrsIm9NJJptFlhU6wipb+7upzJepKwjQHj7IRDLG2LiPm55MMhTO8NVza3h7gwcjmUKyWZmy+IgNxNAyBpMjCVx5Vjz5NnyOXqJGBY/+7gCrL6tFzWjomoHNZSaTUgkusAJgiqtEx0OYTSa8Hh/pRJLuSIa5VT5AIxJNo1isILlyzxjLCtlIFP/QnfDEd0lf/xyGYsIYHmZMzeeen+/i1IuqKRyMYK/3E988jJ7SsC/Mx7wwj5QUxTowwuCHPoRks2FvbiY7OICeSFJ5y98w5+efuC/y2I57lcdrZdsNR2M4H/p/JM/6Pul4FHvCTmx9P9pYEtvCfCyLfWQtKpquo2cyyCYbqZiKbFIwdBPumEbktoPT/UkWGc9ltSTyzJjNMjoS4eEUik1m2wN9WB0KC84s5cCmYQrKXGQyGiV1NswmFavThWKyYxgQnUghyTKGpmFkh2jf/hyGoTPccZD88kqceT6qa9cg7UuiHZxCzrehLQzy7JODVMyXsdpTeAvcKJYA4VGd/AoTsYkRrHYbqupmuDNBsNyN2a6QTWTxe9IYhorV0Mg67ExOaaRiVmRFJpvKvf/4ZJq2zaM0rPSTTWxnx4N/x9B13IECLv7QxwnLHt76t/188/JmLllYcgK/1RlekQqlE7H9psY6yNqLQJUY2B/GbFWYGk4gmyS8BQ7y/ApWUwKrImO0PoCp9SakbBSj/nyyNZdhuEuYcOWKYWRZpsBRgCzJTMSG6IkN0BXp5Ze7fkkkE+FrK77KGUojqtOPKpmx2Ew4tCFIToGnJFfcCyRjuUIiRdXQZRlDkohPhLAZEkomg5yXx1TCit1tRtPjYOjoWYORrgy6LpOIZHB4oujqCIrZjCwr9LfuYfcjuXAnT0GQxedfjNUTIG1z0fHIXYQHernymv9BH8mQ3DWGZFNwLi9CKnTQPZLE6jARD6cxO8yM+hX6eoYYGI9ze2eC8XgGgN+/ZykLrFlsZoXftkSpLXTx0Vt2AuC0KGQ1A5tF5sb3LOeTf99NZygOQJnPzl0fPCkXSPXqeMPsew3DQAuHke12ZGvu80smE0jjE7ljqpYm6TLjkExMZGLYI0kkqw2bTcE53gqyCSa6oeYM0FJgcoKaJKzmc2BnjO0P9zL/lDDP3f67Gcu1Opy845s/QjYraBkbqbiGN2hBliQmh1M48wyQNDBk0vEsalpHNzL07H6WnQ/eTSaZpHbJClaseyvJeIxkLIrTn4/HH6Rvf5z9z4ZY+65yzFIWzewASScVN8joCnaPhmIyMdSRYv2NbdM1RO6AjUuuLcfpBMw2JD2BosXRJDcpnw8dHUcqN7HJ6/3PPnBdg6neXOGSpzhXJPXqesNsu8+ntj9K2lhEctMo6fYpzEEH9kUF6KrOkFXB6rZgNUcwJJXw0ADJWARfUQkP/+ZnJMJT1CxdwdK16zDZrNjdue/XMHQwm0il42RsOg7FjlWxoWkaumyQ1VRUQ0NDxTqZR3wijWEYuPw6hq6j63asTjNWm0I2FUHLpjCbrWy4e4xUNEvTyUXYHBbGeqM48ywEyt0oskTfgSmKa9x48kCJRZEddgwkjPAkqstPMq1gNetYLJCOZ7FYJNSMioYFqxUMs5m0qiADatZANkno6XRu5HBJBknC6bNjcxy7uNPQddSpKfRYDMlkxlxcNF0MfYK9LrZfLZFAHR0DqwVzQQGy6ajczbG23IjtZjuazUdiSiMj2XOfr6SjqyBJBiaThIGEbKjIVjPpTBxJV5EUM4mIBTWjkYxkSKcyFJSZMdtMOLwOpLhKascYqa0hZKcZ17nlGCVmEtEpzG06yWdHMeXb0SZT6AkV31vriLnNDHZFCBab8ejjaE4LIZ9E/qTG5EAUzZKP35fFr/TlQqmqT80VcYb2w8J3wGRPrsjT7s+NTD+0A/bdBWUroHINdDyWC3o47MwvwePfBONIcCWL3w1rvwdm2wt/sC13wd/fDc1XQCYOJhu0/HPmNHPOhqJF4CmE+z+VazvrK7D+a0emOevLsP5/4Jp7ofqU//h7/je9Lrbd40FNJImNxZDMZjBbUEwymm7krp00A4tVIptIohpWZLMMuoEiqciGjprVsdkMkmkTEgY2txltcgrFaUHTFcZGIZ1SsdpNjA/EMXSDsrl+YqEkmZRKQamddAqe/Fsb6aSKYRjMPyVIVbMVk8WCbPGQjGQxW0xAGsPIkk3nrh1NNg2TKY2EjsnmIZNMY7WAhg4GDOxvYaTzIBaHE4fHS35FMxNDCi7vFAc2PUJRTQ2e/ELK8huZvGk/kiRhCjrQwmlM+Va855YxtX4QtT+Oqd6DfLKfNlMXv9z5S/aN72N18Ur+X/P7qMcCiglcxWB/8TC1V9EbcvuNDvQzFY2QX1YBwNb7/4nLk8dz/7yNheddz/aHVSrnB6hsDiDLElaHich4isIaD8mhKM7nRjHSGtLKQu7JpmiqyKNxwyjpjjAASp4V2WkmckYpl/99B1evquT/nuyYsQ4/eNtCllf5ueJXGxiNHB3uW0r7WJTOsTj//MAaGopeeFvIDMQIP9RFpieKtc6H5+wKLEUiYOmQN+S2C0AiDOMHiOc1IUsAEjd96kPEJ0LUrz6FkvomnrjpNzi8eSy75HN48v2M9Q2jKDEkyUbn7iyTwyne8r75sHsMrSuCucSJ+aQSRqJZMoZBwGvB+PN+0A5dLMlgWVCA56JqbC/zunsiluaSXzzLaCSN1SQTTau8o7mYj5cEyD47hGSW8ZxTiX1eANl6vPPLXxdeN9vu2FiC/l0hZEnC4bWgZlTi4SyyIhEohr1P/IP9zzwOQHF9E+ed+z7ST43jObuC+HNDqBMp7PPysa8sIGlKoJgtZNJJTBYbsYkx1FQKdyAfxWLD0IzcOaehYRgGajaLoetYHHloWhKTyQSKnVRkEpMiISlKLhtEB5PZhWSWMdIqJpOEpmlYLDKZuAqaik1Og57rV5IVkKTcteChoHVJljGQIJvNfTuKAmouLF0ymXLzYeTuLWgaOJ2gakgWM0Y6jWw2IZnMSBYZc6AQYqO582Z3MaRjkA6DPQAWey6kD8BdBGoW4iNgcYE9L3fvLxMFZ2Hus4iNgNkJVncuLNDsACTIxsFkBzUJrqLcucWr55W4cBRRbf+h8d/9jtHv/wD/e6+j8FOfOtGr81r3mrjpIQiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIBxxvJ+AjEuSFODQg4mSJK0Cwi+3U0mSFOAXwDn/n737DJPjqvO+/63UOU335JxnNMrRilaW5WyDbbANmAxL3iUuN+zusxE23OzeS1iyAdtg45yTZFmycs7SSJNz6p7OodLzomXJ4zFhwRgb6nNdujRTXXWquup0dXVN/38H6Af2C4LwqGmap37ftv/QDENHnOhHSmd4X53G++vKSKZ1RFXGGwpS2TqTNe/9CLt/eTeK3cHm932GdCLGvqfvZ8bl68mkU0iyQioSRhwfZU2gAMnr5esHvkaxq5iQM8TRxGP81XXvYJN7Dkoiij4xgR4Oo4+MYC7aSHQkjctno6q1AAQYOBvBPqseSQTZJvLsD07icCsYhkkurbHp/a0Ijz1PbEYjT/73f5COxxAlmTW33UFDeQ2NOZXIqIkhS2i5LOMnjzPceZ7ShiZUtRLFEUBtvAXvOzbC0DDpAwfJGQKxhnXYnTJFQTvukhIi918KqEjuGsLjkplw9+MrLqH4pz9De/EF4s89j2PmLFxLLyPb2fVmDCH5kyWlRhmd8zkGXtyKS/HiryxnsKSDksX1DI+e5vB/PM6ia9/GuX27sDtdlDY0cWLb88zbdDWJyATN+vyLbbkWlSB5bWSPjGOrcjFpm2Bo5Bx2l5vuIwdpW72O3hNH6TrgJVRWxJmdO5m9dgNnXzqPlstS0TKT0zu30bBoKaahM97bTePiZaRiUYKV1djsdmxOFwXlFThsbqSjCXJnJwHQB5IIoz2su6WMhB4hPBhGzerYnBJOTxT0AnKpMUzThSdgUt6QxuY0ScUmcfo9DAz0IoginoIQ48dPYnO5KKlrIJfJYi/3kAxP4CswqZ9fhJbNMtrpZvnNt6OrKqIksufxh6mefQtP3TyPYVn/Ix3NP10j8RFsQjGJ/iyGZuBwK0THk5Q2+sGEvrMRFLsfeeAsPf/1X9gaG3Av+ghqXx+u0AaErJNoRiByJofDKeIJ2Tke7SDgdnIgs4sCp4eZ9ho+u/CzXEYjjniKWCiIkUwRGeoiNjZMQXklAXcCV/cxoqHFiKJIPDKBnstRUFZBdHyMVGSC4op6HMFSkkYOPW1D18JEh+OkE3HO79/DwJlT1MyeR8uKjXiDEpKsMNGnE50YJ1RVzex1VzDScY7o6AjzNl3Njnt+gs3pZOFV19N/7CCLN78dJjWSuwbzOyepEnu6G//NzZzYPsDkaApDM7nmE3MoPbWD6u/+D2Yux22338G3xXo+v7oKr5LFiEQAgY+1BkjqKg1BB19pEijqbUd3uDhbVIdmmKxsKqSh2MNzp0YYjmZIq1b//t9ID/aTPXceYnGSO3fiXrkCpboaQbGjT4wj2O3kzp1HD4eRi4vRmhux79hJ8vBhzFwO+QPvZ7hyLrnhIRxFrRSMn0EZP45WOJPO+BxSsQz7n8iPbu30lBIsr6Jl+UokxUb9rEXYbS46jxxgpK+T+nkLyWXSZGMeZKcTURBIRxVyuQyTg4O4AwGS0UmOPvskhq6z6JobGThzio5D+6ieO59QZQ2SnEFNJtj5zOOkopMsvv4m+vvaMQwdp9uLKIuIUn405PCZMewuN4JgcvXHizANEbvbhmkYjE8OEM+50VUVRdVRDAOj4yjZ7vP4Vqyi/7vfR1h9OdLsNvxNLXgLi3/7nT7ZC3u+DYd+lg8MWvYJqF0BRa1/oKP85yXiasB8bJBcV/7SP9cXRx1J4buqFoeiI4nDhAeGsPv8hCqryCSTuAsKuP5zXwFMMokEkyNDeAqC5BIJJJsCooiAgCTJZHvG6Os6T1lTK66CIFo2gyB4ScVtCIJO1pyk73SU6pYUJ7YcxATq5y9Gy9pJCQLpWAxREsmm0sxdW0EqXoyv0ImUM3DWeknpJpmESiKSIVDkZLQvgaF7MA0PpE3SSY1cyoW/WAB0RvsyONwKikNCSIvYXQ60nM7oWA6nW0TNZDGBTFLF6bFhc0qYps5wxyQunw1JSeLzSxQGdGxlZRi5HOmjR0kdOIipqbgWLgRJwkinyZxrRy4szO8PSQLTRPT7sZeW/hGP+JuLmk6jjY1hhCMY0UlMQHQ4SO3di9rfj2vePJylElLfNjIlV2LYIIqApkqkEykw82GMpmmSTqgotgi5xBieUAgTk0wiTu+xI5Q2t+ILFWKzu3CUiZimiaGm0VWJ+FgU+3mR1M4RlGIXeiLH5D3t+N7diGADyZDwrqlEUCREt4wezZLqCaPPEoFOBPsM9KwdORzFLVbw1M/7CQ+mgF4Uu8T176+ipGYFjJ3Jl2eVzoHoAGRj+SLJzCScfx5m3wJ7vwvNmyE5lp/2SlpmagAJwIlfwrKPQ/GvOR96ivMhOoFaOP0olM6ePo8g5ENQyt97aVq0H1xBSIVfPlj5/4eOvpEhJH+yMl1dmJqGqWlkRDenjiTxhNz0nuqncWEJ0dEk9fOL0XIGmqojiiKZlIHLbzDeHmWsL07DgiIUh4SWFRgZVPEEZRRJRB/RSKtOJFPh2NY+Og6O0baynNHuGA0Liiip9TE5lMTptWGYMNiZpKDUxaKraxEEAV8oxeRIL2d3dVC3YDGyEkNXNYwcjPZ0kopGqZjRhs3pIjkR58izT9Cy7HI8wSCmYZISRTKJGJLdgcsfoGXpSuLhCQBkJUtRlYEku1h45TWIooyJiZHI4ZpdhFRgR+1PYKv2Yqv1M3HXeYxUvlhZPR5BnsiR3pDgPTPfw1hqDJfi4nC0nSIpSEEqAo7ufLBP1eI/4tH906bJEg6vh9T4JKIBTfOWovjcaKoKYhAYpefEBD0nJhAEWHFTE4ef6eGyD7fR45M5WGPDLgo8sPc862cUc4WikO2IItglfGurUCfSGAmVwpTOD94xj/+7o3PaNjxxbJBVjYX89H1LeOBQP4d6J9k0s4ScquNQRL7+tjm/NoBEi2QY//EJjIQKQObEONpokqIPz0Hy2P5Qu87yZmCqjAtlEIsQHxvD4wxy+1f+nUQuxj1f+hSVrW3M33wNNqeXoroSUuFeTjz/DZKTEURJYv5V78TmrKVvIEnPQIrlNzUR9kp87bl2Tg3HiaZVfrG2laILAST2Bj/2xgC53jjpbQOI84qwVXp/580Peuz8y9tms7crTDKrURlwsl6TyD7Te3GeyH3tSO+fiaM5+HvvLssfTkbVGeuOce7AKJIsYnfLpGM5Fl1VS2y8h/bdO1h+4+20LllFTkvDSYPA9Q2Ef34p4CZ1cAQ9p5Fqy5KIRdA0FUNTES987hjr7kKUJGS7DQQBXdUwDR1RkpAUBdlmx1dYxLl9uwiUlCFKEr0njhKsqCIZiVBUU0c2laJ61kqyGYV0QsVml8E0ke0S23/RyfzLi6nyRRHDw5j6hXtLJqDn37sRpfwEQURPJDBSyXyQmteD6HYjBgL5YFdZQY/HER12sNsxc7n8NksyRjwGuk7O14sztx9xx9fhso8AAuz8BtSvg0Xvg8c+lQ8oWfnZ/P/b/hkKGmD9V2Dv96F3J7TdAI3r4bFPQ6AaVnwKXvqv/DYu+TDs/yGUzoJADWTjsOxjUFD7hvcPi8VisVgsFovFYrFYLBaLxWKxWCwWi8VisVgsFovFYrFYLJbfx+sdQvJZ4FGgQRCEnUARcNPr0O4S4Lxpmp0AgiD8ArgeeNOHkAx3nM8X1fZ1c+jJR0hNTtK6cg2z1m1CVVVWv/cj6GqOppnLqC5qI9c+iWCvouWTyzFsErqZo//0CZ773jfJD+cHC66+gY+u/xDjRgTDNFhcshjRFLHlDEy3m9jddzN5190gSfgf2URpg5/Ow2O8eE87kiKy8MoaXAU2wv1Jllxbz9afnCaTzBdNtFxWgsslkG1r5rnvfYt0PAaAoWts/dkPCbzjvRg/vQv/t76Jlk7SdfgAis2O0+MhHY8hCKcZ7a4nFc0x//ICsoePMPov/0Lxtr24hjMs3FyDYZNQh5LT9lX64Ch93mNk1RSXvf3dJA4eInv6NNnTp0ls20bFd77zxh04C9gLUcfOURmtQz+fxL/Rj9s5D/VUiqLCSlbccDtb7/4uuUyay264he13/5hZazdy5JnHScdjtN20DJUotiovZs4g/kJfvt2zEewhG0WLa3j0O//Csptu5fkffBvZZmPm6vW88OPvsujat7Hj5z8lk4iz7KbbeOZ//pOW5Zdzduc2BtvPsOrWO3j629/A7nbTuvxy9j50H/M3X8ORp59g9sL12M56pjwVUzUQ4yaPfOsfCFZU0bRkGc9975ssu+k2tvzwO0iyzIIrr+OFH/0P5U2thKqqObtrBwuvuZEjzz5BeVMrqdgknYf2s+rWO9hxz50IgkhpYzOHnnqURdfcyER/H5Isk0nE6T56CABJlll1+/sIlWfpbe+nprXqjT6Kf/Jk1UF0KMvT3z3B9X81D0M1iY/n2P3gUSRJYMHmGgRJILrleQRA9vkZ+Yd/pPond5I5dozx8sU8/+hZRElg+dsa2XbfGbIXChRnLWlkVn2GyX/7W+qvvBz7mmoyhdXoqSwHnrib9t0vXtyOt335/2NCl8j1dnF8y7OMdJ0HwO5yc8MX/4YSVzX05sgcGEKp8eGodRDJJYlHwux98F7CA/nXx/GtzzBw9hSbP/YZnv/B9xi90A7A6ne9n+s+/1WOPv0YBx5/CEPXKKypo+/kMQA8gRCpY+PT9pE+liKb1DA0kwVXVCNIkByJIXj9qCePo/3H1/nCP/4jzlSA2LZtRH76MwAK3vMe3GtW8x9NGsHH78M5bx5kJvE/fieOps/x0909/NXGZraeGeXG+RUUe3+/0Zj/nESOH2b8k3+FNjyMrbmZ4r/8DOPf/CaZk6dwzJtH0Sc/QfrgIca/9S0AXO/7GEbJbIRZa1HsPpwehfFcgOf/+xxazgBiLF7jY15qJ+PyCvq7orh9l46H01fKrHWb2P/o/dzxhf9EPZcgNzxGXeVM6lbP55Ef/TOty9eQnJwkUFLCmV07mBweZPb6zXhDRaiZFFt+8O2L7e365T2seMe76T99gujICOGBfqraZvHUf/87mpqjaclyuo4cwO0vwOn1cWTXdsa6O7nshlvY+pPvXbyembvxSpouW0kmESE1qbHlR/9DLp1Ccbq49jNfYt/Wp+g6dIBgeQUrVm8k9eIOYjfdyPbHfkl2y2OUN89g04c/Saiq+jfvdMOAfd+HPReuJcIJePKzsPnr4C7OF8hbfmfpeAxzVLsYQPIyM6cjSCKugiwHnnyGuvmLUBSFY1uepmX55Rx99klioyPYXG7O7NwGgCCIbPzwxxFlBaffjyRIiC6B8b4eJMXGaHcnQTWHt7AYQ0sQG+0kOtKP7HDSMG8ug+2dOL1+jAuhZYGyCo48+zgVzTNIhCeonbeQkc52QmXzUfo0Mtv6MbIarjlFpKu8SKLIrgfOM29TNX2nJ9A1E1ESOfR0PtRHVkSW3tjArvvPY5omS2+op67Gi3liHHM0havCy4l9w5TPCDLQHkGxy4z1xqlsLaC6LURRlYfB85M4vQpqVkZOJHAPDyO4XGR7ejB0HWdTExP/8z9oY2P4r78eW2MjamcXUlEhRiKB4HQhRCLoY2O4Zr9GEMSfmXRHB2YqBbqONjiI6HSh9fcRufc+RLebgne+Az0eJ1tYj+ndSGrvEYSVm8mkdGITaURRwFPgYHIkxamXBmlZAvu33sPcTVdxZtd2KppbiYcnqJ49l30P/ZJgZRWFldWEqmvpPXaY41ufRVIUNr//0yjRAnxrq8gNJLBV+5B8NvTRDFQKIIkYaY3ki/2gm7gWl+JoCbLnyTtZcOX19J7cT1nTKjw2CPeqFwJI8tSszoHtca5YPIjsr4SDd4LdAxWL8qEk556BOe8AdxH07YFgI8SHQJTzhZGR7ks7THyNWwCeErC5f/2Olu2w7iv5kePVFDRuhJMPTQ00qVsNHdvy877MFcyPMP8y6UJhvq/stz3EltegJZJkz53D1FTMbBY5GOT8qTSZtMnQwRFWb6zB6JykWDWwRbIMJlXi0Rz7H+9i9W0tHN/Wz9C5KIuvqSOXVomOptn1YAcrbmoglNXRdw2S6Y4hFzuxr6um/0wEBCit81HW6Mfls3Hw6R6al5Qw0hXjwJPdtCwtZeBshKIaLyW1XuLjQwy1t9O0dDmSJBMPj5NNJomOjiDbbATLK5AkhUw8zuP/+TUWXn0DNoeDZCRMLp3v/2o6Q7CyEk1Vef773yRxIYTEV1TMpo98muNbH8NXWMyx555CzWW5/bP/jihAfGvfxX0leW0XA0gu7r/BJK2RUraEd/PvHfnrrXlF82ib/REKul4CXzmko/n+G2p4g47qnw/TNDF0HVfKidadRO1P4ChzIdZA7dyFxMdVZJt44ToXmpaU0ntqgsve1sDjHaM8enSIwWjmYns/39fHR+ZXIboVPMvKiG3rw8xcKGI/HSa0oZI5lX72doWnbEdFwMVfP3iMf3nbHP7P1W3ohokkCuiGyZnhGC+cGeWBQwNsaCtmQXUBDkWasrx2IehkyrTRNFo4Y4WQ/IlLGA40dZLu/QeZ2Xw52skE2fgInpYCNt7+MYa6z9G0dCU9x020TIp9D/+Q5GQEAEPXOfjY3Wz8yN8y0p3CtItMKPDc2VG2nbv0eT6OSREgOCTsdX5iz/RcfCy1b5iiv5iDrczz6k37rXRPJPnyg8fpi+SDwTY2F3FNSkF91Xzpk2ErhORNTswZlDUGGDw/SXIyRyqao7TeR2mDn479nbzvy/8NfRrai5M4Kj3Y5/jJdscuBpC8LHtiAsesEsbi3ZiGQSoeY6y7E09BkGB5JcnJMMMd5wiUlhMoyQchxsfHyCSTSIrCpD9A5YxZnN+3m8LqWgrKKjj2/NMsvOp6Djz2AA0LL2P4/GF8JYsQgMhwClkWyWU1Fl9dxws/O8MVt1YSGDqCkU6DpmGaJoIAiBKCzYZgtyEIAqZhIugGWiRM8qWXsFVV4tmwgZF//Cdy58/jXrUK3/XXIQBiIIBgmph6GlGSyQ0OYiQSULYAN8CLX4flnwLFBe1PQbgDGtbBkXvgmb+GtV/OX+uOnoD73g2XfwE6t8CxX0BiGKoug84X4NFPwpovw9Z/gKe/eOnnthvyYag7/x9c+XWQlDe2g1jePMzfPIvFYrFYLBaLxWKxWCwWi8VisVgsFovFYrFYLBaLxWKxWCxvNuLr2ZhpmgeB1cBy4CPATNM0j70OTVcAfa/4vf/CtDe18PAQdpeL+MQY237yfWJjo2hqjhMvPEv77u1Eh4dQ7DYcHg/VRW1ogynkEjdygQP1XBRbVCQTj/PiT39wsWAX4NATD+OZMNg7tJe/2/V3fOPgN2h0VGIaOsbwcD6ABCj45KeQ7RJD56Ic29qPrhnk0hq7H+wAQ0CxSRx9vpe1725l9W0tbHx/G3a3jOI1SWSzxMaGpz2neDRCwSc+gaHm0DJZ0rEoO+/9GQcef4hd993F0Lmz1M9TOPZCP6msjcQLL1D6wzuRRAmbU2bPI53kEiqCLExrW/TaSMYinNn1IvHxAdxf/Y+Lj+mRCGp/37RlLH84mWgEW4eEfjqBZ1kF8ZcGSL44SK49htfwU+Fq4sqbP83y626l5/gRADzBEOHBfhweD0lPAtGrYG8KkD4+NqVtYyKHlLx0+smlUzQsXMLpl7YBoNjtJCNhqtpmc37/bgCC5ZUMtp/BV1RMZGiQTCJOy7JVHHz8YSRFweZyM3TuDM6CAIJ9anEQQDI5ia5pNC9dya5f3kOospq+k8dJRSeZtXYjL937M3LpNEW19ex96D7qFixm9/33EB0ZxuX303FgL81LV3L6pW30nTxO9ay57Hv4l5TUNjDa1cG5vTsJVVZdDCAB0DWNo88+iZpJ4HAOksvFXuejZNHicOT5XnTNwBO0M9IT4+iWPnTVIJfR2fNwJ4lwFt/mzXjWrWPywQdxX7GJzKlTJAbG2bM9BibUzyvi1EuDFwNIAE7smyQ8puFZfTnGN3+MPtCPbkjEJoamBJAESsuIj49z4ImH0VT1YgAJQDaVxKG60I5EER0ySoUHdJPciQmcdi/x8bGLASQvCw/0ER4cmBJAArDnwXtJhscpa55BKjqJYnew/ObbqWjLF6AbuvqaxW6iQ+ayG+rZ9IGZJCdzjPclefJENd0bPofr458HIL1jO9kTJ5j49ncwEgmMRIKJb3+b3MmT1IecIIiMf+vbjH/ve9iKi7AN9GGXRc6PJnjf8lo+tKoemzz9dWeZLp2IEv5//402nH+PLfr4xxj6P18hczKfq5Y5coShr3w1/76vqjg//w+8OD6LJ38+yBP3jrB7rJFUsIaXtqUuFmYC7N+WItzwEVRXCU0LgogX3mcFUcDmSCFnZd79sX/DGMmi9sfJnI0Q39KHuifM5js+w45f/ARdzfL0t/+ToXNnmLFyDZ5gCC2bpn3vrmnPo+f4EcqaWilvmUEmEWeirxdNzQFQWF2DyxdAcTqJjo3QfeQgs9ZuZOd9d025njn63FNkkwlEUeL5H37nYsFx1YxZ7Hnw53Qe3IdpGkwM9PHEL3+GuvZynvvFnWST+SCzwfbTvHj3j1CzmWnbN01iBA7/bOo008wX6U/2vPYylt/aeF8PSCAo0z9amDmdTCpOeKAPNZNh1713Eaqspff4UY488zhlzS0XA0gATNNgxz0/yReaG4CYH207VFVNZetMMokYsbFRMHQ0NUdFcwuhyhpq58wnm0hw5OnH2fPgL9j38C/Z9ct7yKUSzF6ziYOPP0xxfSMHHn8IQZQokGRST3RhJFXQTLRDozhHUggSKHaJVDSHO+Agl9aRX/G8NNXg7J5hauaEQBAoL3QiDiSQbRKK2wZbe5lb5+PQM70Eyzz4i5yEB5M43AondgwQGU1RPSOIL+TE6VHIyD70WAJ9ZBSlqAhnawsDn/8CqX37yXV1M/af/0XmxEn0ZBIzl0NPpdHHRtEiEfRolOzQ0BtwhN/czEwWI51Gn5zENEzUgQFG/umfyZ0/T+boUYa+/H8QbDbMeJzc+Q5c8+eR02U0zcBX6KSg3E1kOB/YJUoCPce2Mnv9Jg489gAldQ1kUykGz57m4OMPERsfxVMQxFdcwuDZUxx66lHUbIZMIk7v6eNIboVsdwxbpRfRLWNiIhU50CNpBFEgsX0AM6NjqgbJXYOYEZWuI4fIJhMMd7Sj5iKklADxSG7a8wyPaGij3RDuhMImKJkFsQHo3Ab1a6F/PxS3QfvTF0Zj/wYUtuRHYxdf8R5t80BR66XfBQHWfRUCvyEsT8/B3u+C4ob1fwNdO+CWn+WLK1uugk3/CGeehMZ10H8gwN5WKAABAABJREFUv0xxG2i5/LKQL9Sc7IGy+VC5+Pc57H/21N4ejGgUM5nETKdRZRdn9k/gDTqYM7cI9ZHzSLEctiIn5liKqpCDUy8NIMkikiwydC6KYpfQsjp2t429j3ZSWu9DVE2053rQuvOfW/TRNOkHz3PZmkqW3dDAuQMjeIN2JkfS5NIaumZw7ELgh7/QSaDExbEX+nG4NRIT49TMmYehaqTjcUa7OnAXBBnr6aTj4F4G20+jqTliYyPoqoooSWQScSRZxuZyMdrVQbCqip5jhxk6d+ZiAAlAbGyUjgN7KK1vZu+D95KOx9CyWRKRcVJHpn72xHiNqk9JwBkM4DsS4e11N1Lvr+fI2BF6c5P5AuHkGBg5iA78oQ7hnzVd13EYTjIHxkEzUSo8iIqMdiaJoirkcmnmrq9i6Q31bP7wLCqa/bRcVsqT4SiyLE0JIHlZeypL4Lp6TJNLASQXuPaN8t65lZT5HBenVRY4KfTY2HJmjDPDcZI5jXAyi2GYtI/Eecd39/Dvz7bzo51d3Pb9vbx0fnrYo2B7jc8/wq+YbvnTomuE+/uY0bKC5PZBJJ8NpcyNmdSoK51HZdtsnB4vjQuLsDkzTPS/1ueNOMHZQZa8o4kvPHmK4Wh2yqOPDETQZxTgnBEieWh0ymNmTifXF/+dN/94f/RiAAnAeCqH6p0ejiAVWEGjb3Zut8Lx7f3MurySte9uZd0dM5h5eQWpeJb5yzejHYsjKiJKuQdBEEgeHkWp9E5rR3TKqFqWdDzGRH8vE329BErL8BUVk4rH6Dy0n0BJGZ5gEC2Xo//MScKD/UiKjMvvByEfsFNQXomazXJm53aaliwnHh5HzWZxeLycful57C4B0wC7W0bN6Yjipb8PDPRkEd1uBECQJERZRpAVBFEA08TMZjGSSYxYFHVwELWvH6W0FKW0jPTBQ6i9vWCaJLdvJ/KTn+Yb1Q24EFyiJ+IIioIejaFH49CyOT/PuWehdmX+5/F28L3iT049u6Bs7oW21EvXtJC/Bq9clP/Z0EHLTP/5zGPQsDZ/LyI+8vsdbMtbkzD9b2AWi8VisVgsFovFYrFYLBaLxWKxWCwWi8VisVgsFovFYrG8VbyuISSCIBwFvgBkTNM8YZrmqwdR/J2bfo1p0ypJBEH4sCAIBwRBODA2NvYai7yxTF3D0HRio6PTHju1/QXsbjemrqOYdgTNJHMuQnxLL7Hne1EHkxgpHTWbIZdOT1s+EZ7grtN3EclGODFxgh3Du5DcbvTwpZFdHbPmIEki5w+OYnPJrLi5kTW3t1BY6SGdyIAATYtL2P7zdl685yzb7j6L2+8gl54kPj6ON1Q4bb0u2YYxOYlhmpiGzokXnpvyeOehfSi2HKIoYOgGckkJckMTumkwOZLC0E2ySRVEAcn3imJ5UcC5rJCOo/sAyKXTjPUnkAKBi7MIr9kN/jS82fougA0n+tn8qOWiTcSI5b9o7b+ihtTRMaIPdaC8kKNqspHZl23IzyfmTylaLsfZ07sZahxCKnf+hjXlj6uuaUiKMmWaaZqI0ssFPPmXvMsXIBHJF6AJooim5nD5AsTH8/stHBtEXDJ1JHe5xkNXVz4c5OUi+UBpOeN93QAYhoGuqpQ1NdN74igAdqeLVHQSX1ExExdCIgpKyxnr6cLmdJGczL/WKttm0Xn4wIW2p5/yIsODjHR38NLPf4Kuhac9/qfgj9l/ddUgEckX65i6yfkDo0iKyNIb6ln77hbKmwP0nQojl5YiSBKoKqEPfIDow49AsJhU9EK/LnIRHkxOaz+tyYiOfB/WI5Pk0jqGNrUwuHrWPNKxKFouS3RkeniT3XAg+x3EnushvrWP+LY+FL8Dh+HE0F77bVLLTS8+zqZT6JqGpuYIVlQye/0VJMbHcPl8FNc1MN7fg2t+EbyiiEP02RACdl667xxbf3Yaf5GT0zuHMAyTM0cTdNlnY2tswn/ttcSf3zJtnfHnt+CcNYvkSy9d2OE60YcfwQyP47ZLtJX7WNdShM8lv+bzeLP7Y/TdVHgE7dDRi78b8fiU924AbWgIpaQYpa6O7kwZ8fCl/jDSl2HCCE0JzAFoWOihL5Jgy51f46Wf/198gQkaFoaQZZFCu5/iYyGi93YQfbwL0WvD0VIAQOZMBCVnyxf1mCZqNsPCq65n1y/vQc/l2H7PnTg900fYdrg9eAuLkGQZw9ARpFdeUgqAid3lou9kPovOHSggm5r+GotPjGECaubStU5xbT2DZ09PmU9XVWLx6UFOXYcPXBxV/NdSnFOLiV4mO/MF+W8xb7brBkEQOL5vC+7Lp+5je70fPZFDz2nMuHxdvg8IAmBwasdW4LXfO9PxGIrdjiBwYQRsgUw8Tmx8lNp5C7G7PWTTaewOF+P93Wz54bfZfs+djPf3kH5FPzF0jbO7XyIZjVAzdz59J45hszsIllei96emrdc8F8Fll1AcMlouHz4yMZDAeNVI4ZMjKXwhJ2uvrYVtfcSfe/n6PYFnVSXmwRFa5oaQJOHisoZukpjIICCQzehEhlJEhlOMDeeIuaswkwkyJ0+iDgzCq/bJ5C9+gVJchDY2hmAaGMkUktebD99ITH9dvdm97v1XU0FVMdIZ5GABkw8+MPVx0yS1ew+mrqEODJDt60cQTGx2ifhEBi1roGZ1DMPE4ZFIREbJpdM0Ll6G0+vj+NZnKKqtY7D9DFUzZ9NxcC+CINJ7/OiU1fgLitEmM4gu+eJ7fmL7ADIydq+X3MD0YuHMsQmqWmchyjIdB/aAmUZQbBRXT79+blhSiGP8ACCApyQ/0VkA6oW+LDvB1KFkNhTUwQ3fAUOD8oX5sJBrvgHvuBtm3ww33wnXfxuu+Gd410PQes1v3s/BerB74aX/gGe/Cv5ysLnz62raBNkYVC6EHf8B1cvg1nvhtl/CnJvhph/BLXfB6i/CjOvg1nsgUP1bHNw3lzfTude4EExkJPPHX8im8AUkME1CdhFHUwGCIhJ7vpf41j4m72vnqpuacHhlNDUf0CDbRDRVJ5fR0HIG3pATj01AH5t6/8HM6YR8Cp2HxwgPJTENAU3VUewymJC7EPhgGCaSImGzS2iqhKewEDDJZdNIssRYTxdaJkPX4QNgmhi6gSiKSEr+voAoikiynH+fMECUJGTFhmGajHRODecDCA8NkIpHp0yLhcemBJ4B5AYSOGYGp0yzLQ2y/4WH8XtCLPHMo7mgmc8t+hxZLZsPIVGcl/7/E/Fm6r8AxA1s1T4S+4aJb+0j9lwPRjyHTbVRVB3i4FM9tO8bQXFKiJKI3SPjc8iYBtwwr4LKgqnHpsTnwNlWOPU+08sMk1K/gx/csYhPr2/iMxuauGJmKf+99TyFHhuqbvCBH+/nqv96iX9/9gy7zo+TyE691v5/W86RyE59f1aKXbgWlUyZ5l1TiRL60+k3bwZvur4LKA47ei6HkBJwzS4itrUv34+f78EI5yivakG2O7jv7z9B1+GdFJRXTmvD75MpafQjOGQGoxkqAo4pjz9wapi9dS7ibQXTzmvAa9wV/+2lc1ODeg73Rxlq9MErAqNFl3zxM6Pld/NG9N3h7hgzV1ZwYns/L/zsDC/efZZUNIepg02zoQSdxLb0En+hj9jWPpSgE8x8+NMruTaWMxEZAAQEQcQ0DUzDAAREUUS221GzGURRRJREHG4PgiShqyq6ql64Zy+gqzmcXi9aLosgCjg8l34OlFZg6CK6biDLIqIkgCBcDCLxBW0Y6TRIEqYgYJompv6KvmqYoNhAkhCcTgSHHS0SwTQMRKcD8xWfoTLHjiH5fJhqDsFuR5AkTE1DtDtAFBFEEeIX7t95yyB5IWhKlKeGRnhLLz0G+WuDlzkLIJd87cde/tlTAqkJ8JaDMvU1bvkz8Vrnb4vFYrFYLBaLxWKxWCwWi8VisVgsFovFYrFYLBaLxWKxWN4iXtcQEuA6QAPuEwRhvyAInxME4fWoLuoHXjk0cyUw+OqZTNP8nmmai0zTXFRUVPQ6rPb3Y3e5MU0DxTF95EhPMESgpBS724MpQ244hT5xaTRXdTCJFk5jd7sJlJRNWVaSZXyFU5/fVw78f+BwIBUUIBfnHwt/55sIIrQuL2XDe2cgIKBrBvM2VpPLGqSiKvse66JlaSkLr6xh9ppKjr3Qj5bLEKyoYNnNt2NzugAQBJHL3vYO7DmN8Le/g+JwYOgvfyF5KsPQaFtZhl3W8KxdQ3rXTiRRwu7KfwF3YDhFdiCBa0Exvg3VeNdW4b+6jlOnXsI0DLyhQryhMvY92oX9hncAoNTUIAX8v/vBeJN7s/VdAMllRwpM7bu2Ki/ZjihG/NIXu/XOJGX+BhS7nb5TJ/IjXU6MEygp5aXH72LXjnuxzQxMaUcI2MCfP/0YuobT56fjwF5mrs6HmWQSMQIlZfSdPE7joqUAJCJhguWVjPV0Ut6cH709E4/hDRWRiExcfJ1ER4Y4ePopcmtknJvKMFa7GC4bIDI5BIB8IehkpPMclTNmTZmWjsdx+fPbKogCgigSHx8jWJYvqtY1FcXuQM1mcHh8F7Y1jjuQL8xQbNNf6zWz5jJ49jRqNsPk0J/mSNp/zP6rqzpNi4oByCRVmpYUcfXHZ+NwK+TSGo0Li2lZVkru/HnSR4/gXrEc0e1G9HnRXniS5svyRWMTAwlKan3T2neRhAtBOHJJfj2xiB13waVCxshQP5LNhprNUFhTO60NSZZJ7HrFW5ZuEt/ejyjJDLSfoWHhkinzz1i1lmBZBfKr+lPDwiV4gkFMXWfOhitx+fy4CoL0HD9CqLKaQE0lmqzj21iDd20Vvg3VuBeWkBPTLLqqirXvnsHpXUNMjlwqvD93Oo287krk8nJs1VW8mlJdjfEa5/nMiZPMLvdTX+hGNUxKvG/NYoo/Rt8V/D7ERfMu/e5yTZ9JkkAUkeubGJmeY8b4QIqyhkv9taTWh9vTzfaf/5jI0ABD7afpObabulkprvtoNennhjBfUWiWPjKGrebS8obx8mMCgZIyRnu6KKqtZ6Srg/j4GPXzFyPbL/VHUZJpXbEaU9cZOncGly9AqLLm4jXDSOc5DMNAFGWK6xoBSE5GKCibGlAhSjLuYAhREqf0dzWbudjWK9nd08NC/KVlrznvNM4AbPhbEF8xMn2oEYpb84X1bzFvtuuG5GSETDKOFjLwXVGDd3Ulvo01SEEHYokd2WHD5QuQnAwjCAJaLou/KH9OlWQlXwT2CkU19Riqimyz54vebHZGuzo48uyTiKJEsDzflwRJZs8D9wKQjk6Sjk8PeUhFJ4mHJxBFCX9xCdWz5+VDczzT37PFgB3BJjHSE8VX6ESSRcZ64vkCuVeonFFAdCxFIKGivaJYXx1KgmEi2CRkWULXTCRZRBBAVkRalpYSGU6SjOYQLwSUpBI5zp9Kgs0GqvaqQJ8L2+XxgGLDzGRAEBAkCSOTAUlEsE0ftf7N7nXvv6IEkoQ2MoJgtyP5p39mEL0ezEwGubyckS99CZ9DJTKSIhXLoeZ0bC4JxS4x0p2kbv5aEPJhd7LNRio6SWpyEm9h0YVrxQIEQcATCk1Zh6Fq2Mo8pI9dKlQ0szrx53tRnHbkgunvlUJQoW7+IiZHhy/sG4PuExPIgTSX3VSL4pAQRIHGpYU0zJKhcV3+nJWJQbgjP8p669XQtSM/EnvfPlj9eai/HNqug7ZroWZpfp5F74cZ14C3BIpnwPzbYdnH86Oz/zZFkZ5iuOWn0HZDfhT40dP5os2KBfDc38CL/woHfgzX/hfUr8mPLh+ohNLZMOvt+W1pXA/NV4Cv/H91iN8s3kznXsFuz58D7PliXCbDzGk16Do2jiSJKGVuMicnLs5vpjX0PYOUVfuwOxUKylyk4yqeAgcujx2nV2G4I4rkVECefh6y++2MdMdIJ1RiEylC5W4mBuPYnDJljQEgH7Y00hOltCGApol4CoLouo4sKygOO/7iUtRcPjxwpKuDUGUVuq7jKyqioKyS6Ngoss2Ormlk00mK6xqY6OslVFFF4+Kl07apvKkF/VWhTScPvYBtbmDKtNxgAufcInzX1uG5ogrhCh8Rf5hT27fg8vlpj5/j6e6n+a9D/0WJuyRfUOwpzhciFzb/nkfqzePN1H8BRKdC+sgYZvpS2EfmVBgzrQMGi66qpajaS2IiQy6lEh1Js0Z2cofi4MsxkXuaK/n2phn4nDJfe9tsWkq9CIqIrdqHYJvah73rqklKAvGMhtchIwBPHBtCM0zeu7yWj919iD1dYcYSWe7a08t4cnogZDKroRtTC4lFh4x/cy2h984kcH0Dhe+fhWdVJYLyet9q/fP2Zuu7ALph4vT5kXw24i/05cMRAEyIv9iHlBbA0HF6fciKwuW3vw/Hy59lBIHlN72TEl853v2jOO4/zwPLGqmz23jbgoqLmaILqwNEBbj+oSNE508NiRYUEVuV93fe/tZSL7I49fr2QC5L8V/Mo+DtTRTc0kzRR+ZgK3vrhTW+mbwRfbfz4Ch7H+mkfl4xC6+sZd7GKsb644z2xPL3NLf3XwqsMUzi2/oQRAFblTd/72h1JcF3zUAPCWCaOD0eQlU1lNQ3kpiYIDI0gM3pomXZKgxDJzw4gKaqlNQ1UN02G19RMYrdgdMfYHJ4EIfHh8sfoO3ydYz3dqPncsxcs4GuI4eYufpKchkdSRIwDQM9Z2DoJuGhJO6AnbKifLip6HTkQ0Zcrvz/gQKkYBApGERUFESPB7m4CNf8+Tiam0ifPZsPZnzFvSvR7QJZRg6FQJQwTQN9fBwUBbmgACnggc5tINuheRP07ckvuOgDcPrx/M92HxTPhHBn/vfKJTDZe2nnX/YROHEh/LB0DsRH8j+XzITEaD7MZMmH4eTDsPlfwD097N1isVgsFovFYrFYLBaLxWKxWCwWi8VisVgsFovFYrFYLBaL5c1Mfj0bM02zB/hX4F8FQWgCvgp8HZB+7YK/2X6gSRCEOmAAeCdw2+/Z5h+c3ekilYjhCRUSLK8kPNgP5Ava5m++FlXXUbOZ/EjCg4lpy2sjKWwzC1h12x3svO8uwgP9uAMFrLjlXRwXe6bMa5gGh6KnmOv3U/iJTxJ96EHSx46RimYprPIQH8+gqTqaZqCqOnanhOIQyaU1jm7pu9SQAG5/BYnJMKZhMG/TVQiShChKiIqM7g+hDw5itztAgFBVDRN9l7bF5Q/g8HgorfMik4GKCtyKjURSxelVaFtRRmWxE5thIpe40GM5RIeAXOTg3GO7qZu/iMXXvp0nvtWPbpjY5y3E8f73Iygyosv9hzlQltekSTZ866uJ/LIdUzcRXTJykZNsR3TavEZE5eq//BLD7WcpKC+nZu58kpEImz/2l4z2dKI2C7jKy9HaE0iVLjLFWUb6TrDhgx+j98RR1r//o4x0nkfNZrniLz5D34ljLL/ldiJDAyQiYa78xGfpOXqIxTfczGjneVLxOMvefivHtjzNhjs+hi1tx4GTuk/O4/iR5ymb0cpjd/87gdIy2lat5eiWJ5m17grUXI7B9jO0LF/F2V07aF66kvKWGXQdOcjs9VdwfMszzFy9nq4jBzi3dxfzN1/DoScfRc1mqWhp4+zuHSy4+nr2Pngv6XiMkoYmzuzazpLrbmLHL35K+96dLLvpNg49+QjZVJKyphaqZ81lx89/AoAg/b6nQsurOb12ypsKmLNOZ7wvQUldgMhgglRMRRBAlEQy8RyhmbPxYCK73GijIwTvuIOBT32aGV91Y+gldB8bZ9nbG/OFleNpRElg0TIPjq5tZIfy50gpFCKX1jizO8H693+BEy88xNC509hcAYpqGpi36WoMzWDh1Tdy9Nkn0DSVunkLMV41yjCAkVTR1Rw9xw7Ttmoty266jfjEGMW19ZS3tGFzu7n2r/6aPQ/+gsmhQRoXLWXm2o0MtZ+j++ghxvt6mHfFNaSiESpaZrL9rh8h22w0fmIhrkIfWjiDIAnIBQ4mRjrJpUy0XDHxcGbKdngLbLhXLiMdLMF7xRXEnnoaI5p/jUuBAN5Nm9AnJ6dtvzijjWtnlNE9niTktiEIwrR5LK8t6C8l8xcfJNHZi97Xj9rbS+CmtzN5/wOX5nnfe0GW0dpPUb0YxvuntlESyBFYVkEuo1I7W0cQRjnw6FMXH1/69ndwdvdLHN/6DOtv/jCFo9NHsDa1fIGOvTFAOJMPadJyWTyhQnRVJREex+XzESgtZ/B8Oxs/+HHiE+OkYlHc/gDbfvJ9UrFJrvrk5zh/YC+GoXPVJz9Lz7EjpGNRyltmYGg6DQuX0HfyKAcef4hrPvNFdtzzE8IDfbj8AZZcfxN2p4uRzg5W3voedtz9Y3RNo33vLla889288OPvXtzehgWXESgpoWnhZZw7uBfIB/xs/MDHcPl+y5Cy+nXw3idg+DhI9nxhccnMqcEklt+JaZqUN7VgaiZyyIkWSSNIEo6mAKZXwCG4sTkcTPT10LZ6PWomzaLrbmLo3FlOvvg8K9/5Hg48/hDpWJSimjpW3HI7Do/3QuCGjYnBQXRNZbSrA0EAUzewO1x0HNxLbCxf7BUfH6OwqmbatjUtWY6kyHQe2kfzslW4fH7szhAZr4IYdGC8fF6URZwrKji+b5jVt7bgcEnsvL+Dle9oQs3qKHYJNatT0VpAaZ2f/tNhpLEUrz7Da+NplKVleG0Smmpwbv8IK25uwtRNAiVOBFFgoi+Ov8iJoRtoWQM1Z2BqGpn2drxXXIFcXIQ2emm09NBHP0LipR24L1uKmc0gVRRgajqS34e9svIPdVjfMgRFRnA6UaqriD3zDMF3vYvU3n0XCxFFjwelvAItEkGprMCzejWpF57DKF0NAiQiGXwhJ1pOZ+l19YSHxgiUxBnvO0AmHqN15RqOPf80y2++nZd+/lNW3X4HvaeOUb9gMT3HjqBm8kE0507uobl8ybTtU4dSCKMGthkBxKNjGIl8aILgkFDm+HHGAjzxn1/DGyrCEypn/5N9lKwswj4nSUu5QqmzDMGtUdK/C7N4FihOzOqlCJFuMDSEwpZ8UaPdCxv+DkINf7idXTITbvwupCP5cCfFmQ9zKp0NiWFwl0DorRfs9FYkhUIYqRQYBno8gejz4T1zlKU1RQhFDZh9r3F/YTBJ8ZIyzuwZYvFVdfSdDTPaE6Og3Mnad7Xy4s/bGY9mqVlTSfr5S0W2trmFGD4bdpdMNqUx2htnxnIPG97bRvfxceaur8Tukjj50gDLbmjA5pBIRnJ4i0qwObJER4cpUEppWHQZajaD0+cnHYty4oXnmLf5WkIVlWz40McY7+3BMPR8KGlBCBMTNZPB5nSSy6SZs34zx194FkEQmLFqLYXVtUz09eApCJGI5ANXRns7Ed/lRnBrKAMicrkLe5UffTyDqRmINhFPYYidD96LIIoUNtTz4OlvAaAaKicnTrCifh3INgg1gfNPNwj1j0mSJDS7SG4oOe0xI60hSTIHnmwHoKzRT6DMze4HO1jd6Cd3OJ/QJ3ZGmeu18eKHluMv9SBeCFSwlbkp+vAcEvuH0cbSJGcUsM9u8tTjJ7n/UD4U1CaJfPnqVnZ3TFDqd5DVLhWuxzIaa8r9bNjYhkM3GVEEvnaohw+tbsDvtE1/Lh4bztbgtOmWP23psJYPJs2BmXtVaKcJaiKLGFBY+c47iI2NsPehe5m1bhOyYkO222iefTmRX/aiT+aDmRxdUebPK2S3JPCXG5tpKHRzpH+SWFplMqXyrYEJPryxkqLOOHKBHe9l5djKf7uAED2toQ4m0CMZpIAdpdzDzAo/P/vAEv7j2XYGJ9PcvrSaG+ZXYgs4sVVYwSNvJaFyD11Hxjm+7dJNg+bLSskkVPSsBq/unjkDUzfQMypKmRtTl9DGUig2kWBpFcnoBKquYnM6CRSXIdsUMEE3dJovW4EoyZgCCIKAQD68WRAE4uFxRFFCcThQ7HYqWmdR0TITXVUxDJHGxetRHEWYaR2HW0HNaDh9dmx2gcxkiuZ3V2Kb6EGorQXjUui5ICsgCpiCgGCa+cAfMR9iYmZziMEgnnXrCP/0Z1OeZ+GnPgUOB6aiYKoq2sgotto6BKcD0WHD5QrDDd/J3xPIJuCa/4KCWnAX5YP9AIrbQE3Ddf8NrhAEGyDSCVWXQbAxH+Lnq8xfE3tLYfQs3LQyP2+4E955D6hZeNcD+ZASi8VisVgsFovFYrFYLBaLxWKxWCwWi8VisVgsFovFYrFYLJa3GME0zd881/+mQUGoBW4B3gHowL2maf7H69DuVcB/kg80+ZFpmv/06+ZftGiReeDAgd93tb+36OgwXUcPk0nEMHUDw9BRHA48BSEKyio4/PSjzNlwJa5eB6mtg1OW9V5fy0+/91ne8bdfI52Ik00msLvc2AoCPBZ+lv8+/N8X56331/P5xZ+n2GilYrSHXG8vZjqDdPkmYnGB8GCS6FiK4c4YhZUeimu9FFZ5Obt3mBPbBi62M2t1BW0rHGQTMR78+t9fLKp72du++Lf4TpzGuWwZYS3HcEc7faeOM3DmJMW1DTQvW0l5y0x8E8dweN2gZUF2MeFewHhPApdfwTOaRtJNEjsHMZIXivDsEgXvaSHrzvLM97uZGMgwd30VzSPPEfnJnfiuvYbiv/xLJO/vPtLnH8jrXnn/Zum7k8MJ0ve1455ViGmCUuwiNxhHj+ZIHxqdMq//tkbijkkyqRQ2ux3TMNF1jWwiwfEXnqPpsuWM93VjGlAxow09lyM+Mc6eB+8lVFFJcjJCWVMLy295F+noJMnYJDaXG7vDiZbLYXO5MTWNZDTMzvt+ztK3v4NT256ncdFyqqUWUlsuvXYci4oYLxkjm4kjiCLpRALZZsNmdzDQfoaK5lYkWUbXNJKTETzBIIrdSToWQ1Jkcpk0noIQkaEBvIVFiKJIbHyM4to6YmNjyHY7Do+H+NgodreHTCKOrNhwBgKEB/px+QN4AkEyyThnXtpG56EDmKaBbLdz/Zf+gdq2tjf6UP4qf5DUiD9G/w13DaKKLhS7TGwsw8RAgp4TYSRFoGZmCE+BA2+pQsCdwh6owEyMk2zvxYzHyZw6TWbVjfSfi5OczGFzSpQ1+HDrEZTEABgqkdNHcS5YwGh1gMpMHUO9GQ481U2w3EFhhUJRTSEdhydovcyBSQy7w46mqhiahtPnw6l7SP2s59Los4BUYEe42k9/10lObHueTDJB2+XrCZSUUtU2h0xKQNcjOFxutFwWyeEkF4vxi7/9ApKicNUnP0/vyWPMXrOBF376AxoXXYaEQlPRQiYf6wDNvLge1/py2oc7yCTL6D8bITyYL/YTRYGV72niMy+dZ0ldkC/X64i6Tu78eRAEbA0NGKJI2h1g8iMfQB8eBkCZOQv1y3/Plb/sxOeU+fZtC1jZ9IaPSP2WPvequspY/zm0/n7sbh/Y7Sjdg5hjYZTSEgSfD0wTVJWMt4w9O+L0npoEAWYsCTFrmYdub4TQuMQj//K3NF22jImBfib6evAWFlE7dwHHtzwDQMviVSx2bULtnVqMHLiuHi2lMmkfRyp00HvsMKd3vsj8zdfi8vl58r//nWv+8kscefYJvMFCaufMp/fkMUrqGhhsP4MoSRTV1DHe34uh6bQsXUGwoorwUD9Hn32K7iMHsTmdbPjQx3F4vOTSaUzTwO0vIJ2IIUoSNqeT6Mgo3lAIQ9cxTYN0LIYnGCIdj5GYGCeTSmJ3uWlZugpfURHJWJSJ3m6yySSBsnIKK6sRxLfUaPNv6b77q7Tv3UUmEqfO2Ub0qe6L0211fpyXFSMYg0w6y0nHO4mNjeItKkZxOJFEifBgP4rDQaCkDNM0cHh9JCbGCZZXsufR+5no6mCstwc1k2bOxiuZs34z8fAEsqzwwD9/dcp2rLr9fbgDAfY8cC9qJs2stRsobWxBEAQcXh8mIEk+RNlDYiKDPpkl5JSRJQEh6GBgJIVsk8kkcyiOfFbjcGeMytYAiXCWbEojl9YoqfMh20WC4xkSz00NBvRdU4dW5cWQBURRRFMNDMMgm9IY6Yxx7IV+FlxRg2nkz9OCKOB1aAROPouo2MgNDODduIHs+Q60sVEcbW0IDieSx42JgCCJ+VG1ZRl7bS3yG3tt/Kbtv6n2dsjlMJMptIkJBJtC5vRpRJsNuaQEfSKMqaooNdVIoRBmNsu4WMZETMLptaGpBmO9cVqWlGBzyhiGiWBOksvEOLtrO6Ik0X/6JDNXr8flC+DwehEAE4HY+AiSLOP2F1Bsr2LyZ+embJut1odzdiFmUCKrJ5ETEoIooXsMzp3dy+GnHqW8ZQZzN97AqV0aJY0+Kpa6iWQnUCQFU1NIDMUolNM83AnLZjZS4FKoCbmRpbfU+e+P6U3bd38f6e5uzHgcU9UwMRFFEbW3l3SwBo+/nMm7z0yZ395SgLihmngki8OjkEmqpOMaPSfGKSh1UTMrxORImkChHadqYE7mEDwKYymVZFpHUUReuOsss9dUEihxMtYTo6jGR6DUjc0uggDHt/aTSuZYuLkWSRIx9CyGNkZiYhxPYSGKYiediHHg8YcY6TxHzZz5LLzyehKRMIrLDYbG/kcfpHHJcrzBEAD+snIEBDLxKKIoYRg6pmGSTSex2R3oukYyEsEwdIJlFUwM9OErKsETDOIccZA+PE6u61KQpu/qWrbs/CGhqhrU1kI+c+LLFx/79IJP88HZH3xjDuBv70+y/8bHJ8g+OUzmVHjKdM+tdZhlMvf8zSlal5XSuqKMI1v6qC73ULB7MF+A/gqutzXinVuEYp+asby/e4J/ffosx/qjfHxtI//3ufYpj1cWOPnlR5ZxejjG+++8tC8+uaSGdwzloO9CQIoAtpubsbUWEHBNDyGx/Fp/kn0XIJdVmejvxq34Sfyk8+K9TQBkAdstpeCX6D5ykEwizv5HH5iy/K1/8XWMp6f2fQQIv7OJR/vDlPgc/NMTp1k/o5jZFX62nhkl6LLxmQ1NzK4MIIm/3a41NYP4i33EnrsULOVZVYFvQzWiXSaZ0choOiGP/XfeF3+i3jJ9d7w/wSP/eZjMhZA7u0tmweYaJFmkotRB5p52eEXQkuiSCdzWhDGuMvno+YshJXKJC+/1NYwl+7A53bgLClBTaTLpBCPnz9Gxfw9LbrwFT6gwHxBiQtfhg/iKinB6vWi5LJOjI5Q1tCLZSzB1E13V0VUDu0tGkU1ENY0cn0DQciDLIAhINhFFSZHTfeS6exEkGaW6CsFmRwtPoEciiIoNbXwcU1WxVVZiKjJ6/wCmICAHAmS7upACfgRBQI9GsVVUIvp9CD4fpmlihsPI5eU46upe9/3/JvWHuN/7+v4B8c/IxA9/yOi//TvB97+fki98/o+9OW92VsK1xWKxWCwWi8VisVgsFovFYrFYLBaLxWKxWCwWi8VisbzJyL95lt+eIAh7AQX4JXCzaZqdr1fbpmk+CTz5erX3RsmPcJ4hPj6GpyA/OqqayTDa1YHd7eL0jm00LVmBEDRQmnyo52IggH1uCK3QYP37PsrOe3+G4nDQdNlK0vEo0WIRRVL41PxPEc1FccpODMPAQYjv7Ooj4HKwtGkpM0rceB12hESCzqNjDLZPAjDWG2fw3CQb399Gw/wiiqu9JCdzeArsBMqcSLY02XRqWgAJQDoRp7C+HrWzC7O6nEBpOUPnzzJjxRo0XaOgtBxTT+LIDcHT34faVaBncRd2kC2+kYH2KI0FCno4PeVL+mZWJ3NkgiNpAy0nMGddJe6ADefCa3C0tuCcN/fNGEDyJ00HjEiW2LOXimvlQie+6+vRxlP5gnYRXEvLONe5jxd+/n1W3vZeOg/spaJtFqGKKgxVZd4VV+PyBwhVVpFJJLC73YiShL+kjBWywtnd26mYMZPmJSvoOLiXwTOnKW1oIjY+xsCZE1TPmsvxrc/SuGgpst3OgiuvBdNk8XVvx4mX1L1DU7Y7c2AM5xVOnvjB1wlWVDFrzQaOPPUYjYuXIcsy2+/6EbPXX0Fl2yxObHuewbOnuOzGW9j70H0UVtUQrKikfc9OBEEkVFlF87JVONwewgMDOH0+hs63c3bniwTLq5i76UpObHuedDxGy9KVSDYbAjDe04XLH6B+4XI0TcNTUExJ/WXYXCVv7EH8MxFM7+dkYQMBMUR0TGPPw5feevrPRFh/xwwcdi/2QAEAgqcQsdZAPXEGuaQY/8QZnDPqORePk7GnyJap1AZbiOdKOT95ni9NPsdY5z3QCf80698YfsKJmtEZOp9g6DzISpS5G6oIDwnEJjxkY0/QcXAf6z/wMQxdp6NjH62blqK+EMbM6Yg+G57rq9ny+A8oq2+irLEFUZHRc1kKyspJJ0101UYmE0QSTXRNwzRSnNn5IgC6qhIZ7Geitxuby8PcDZs5s2s7zfNXkDoydjGABECPZCGu4/IHSMVNVt/azMhEmpHxNHE7/MW2dvon0/RPpvlyXRm53l7k0jIQINfTg1FTx9/tD/PX3/kh0bPncDhsjIQqUN0BSn2DDMcyjMazb+wB/xOgSArlNW1Q84pQohnzAYi/+CL62DiCPV/kKA0epG5NNeYSjbaiNkaVPs5JCYrkGRx+/nuYpkHnwf0sv+V2tt/9Y4LllYz1dF1stv3gTpZ8/m1ISRV9IpsvilsZoidzBndRAQ/8899R3tzGkhvejt3tIZdKEaqoYtNHP8XJF7aw4MrrwTQ4t28PmCZbf/xdCsrKMQyDU9u3Mn/ztVQvno8rUEAyGmG8p4uK1jaK6+qRZIXd9/+c8EAfGz/8SXLpNLvuvQvDMJi36SoEScLtD/DSL37KaFcnt/ztv6CrGvf/41em7K/V7/kgvqJ80I3b58c9a+4f+AhZ/rdEUaSwqJL4E/1Tpue6orgWFqFPjOEOQjSTxdB1Tmx9lmwqRduqtYz39dC64nIOP/0YrStWM9zRjq5qPPKv/8D1X/gq3bKCpNhoXLSUsqZmcukU/zn2Yz5T8j5Wv+v97HnwXtRslhmr1lBSW4/d5Wbmuk9R2RLg/OEEybgbUTAJj2iIkojbJxCbCLP/8UuvE1EW2PT+mdicMppq4A05iUcyqBmdskY/3cfGObtnBE+BnZW3NNF/JkLvyQkuW19FoLWA3JkIAM4FxThnFqIUOC62nUmodBwe5eiWPhS7xGXX1mP3yBiqiWkY2OwQTA1guNyYhoHvmqtxzpyJZ/nyN+bg/YlwNTdPm+bbsAEjkyF94gT6ZBRRkTE1DdHpxNbaStHYJKaZIyeLuH02ZEVizyOd5NI6c9ZW0LiwHJurkmwyyf7HHqC8eQbZZILCympyuSxnd79E0+KleAJBTu14AdPQmbf+agJXVBN/vg90E7nQiXNmiOiTXfhva+Tn//YlFl/7NuoXLiadSFBcW8e6934Em9tJclIkUOImHLDx9n/cP+35fHxtI9/acZ77ZzbSUGx9LrKAs7Z2+sR58/ADEx1hPBurSWzN90Wp2EWmJYgazuIvcRIdThEZTjPRn2C0Jw6A2+9AkOCR/z5GUZWX2WsqmOxNIDslPH472bTGtZ+ai2mabP3pGVLRHGf2jABQN6+Q2Wsr6To2wcxV5ex+sIPWpWVs/0U7nqCNpTe2oKkikaEcZWVOLn/fBxE1GO/vYbjzHIWVNYz1djF07iwLr7kRl99PJh5nor+XyeFBiuvqOb9/L+XNM8hlUuy4+ycsueEmAiWlHHr6cWRFoaptNk5/hoayCjIOBcMwwWBKAAlA4oV+lt14K7ufvJfT5ZcK8xVRYWnZ0j/U4bK8miRgznMgTzjRRtIgCbhWlTIS66akooVNH2hDkEWiwylMzcyXP79GaWoinCXTn6C8IXBxmqYbfHNrB/u78+/POd2Ytlx/JE1G1Wkr8zG7ws/xgXw/udzvhn2RSzOaoD/Tg7ep4PV89pa3OJtdwe4NkU6GcV1XSeqxfoyEiuCQcF5ZRvv5/dTMmYuua8THx6Ytr+WyTIsRE+DsSJwf7OjiipmlrGwsZMvpUXZ3TLCkLsjS+iDVIddvHUACoI6niG3pnTItsWMA19wibJVe3A4Z9+v7pwHLG6yw0sONn13AUGeUXFpDUkTsHgWXS2bvln6WXVdL+qlezLSG6Fbw3JC/js3sHr4YQAKgjaQwJnL0d56kvKmFib5uHG4vit1OoKSUVe96H7qqMt7TxeTwIKGKapxeN91HD9K2cSNhMUZowQz6tTEWySpiycyLbedDS0wEKQhUQCYG0QFw+sFXDoATcLbMmPLctOIicufOoQ4OYibimKaJYFNwzpyJtGQJeiZD+vhxlKIijFwOdWgQPZ5AqatHKi/HUVn5BhwBi8VisVgsFovFYrFYLBaLxWKxWCwWi8VisVgsFovFYrFYLJY/Xa/3N43vME3zzG+e7c+IAMV1DfSdOMqx558GoLC6lnXv+wiJyAQAisPBoS1P0DJnOaULGjAMg5gxgYzA09/5L+rmLyIZifDiz37ANZ/+AsOkqfXUMpGZ4MzEGer8dSwrW86Hf9DHX185g0RGo300wfGBKB9b20hMMy8GkLwsOpYmHs6QSmbRK6KU1hRj84gU+wNkUwrJsJui2gZmrVmPt7AYQYC+0yfxhYrQz3finDWbaCaBaRjMv+IaDF1HVGxE40l60xolHVuh7XoQRBBEHJETOIvmUT2rAUUQyJyf5NXU0RT2QhfFtT7OHxxFy+rUfGEBwQ3r/9BHyfIaRK+CvKoc9dlLBQtGSiUqwM+rbKxZUIfkEMmKEvX6Qmy3Odj/4sPM3XAlR597Et+VhWz54XeYv/lazuzaTjoWRVIUdDUfPrPine/h4OMPsemjnyY1GWHrj/+HdDxG9ay5lDW3sOfBXwDgDgQpbWjm/IE9zF63CcPQiY6O8NQ3/4Orbv0MXn36iK0eT4imy1bQcWAP7Xt2csVffAZBEomNjVLZNguHx4Pd5aF1xeUMnTuDKMlIssx4Xw8z12yg6/BB1GyG8b4eEuEJrvr0F5jo62XXfXex4MrrMXSdgbMnGe3u4Nq//GsMXeO573+T5GS+WKmidRatl7+XnQ8NUVR1HRPDGh1H46y+LUN57R/+2P3ZkWwU9+5DariRjoOvyr4yYeh8lJbLSqdMdgWLea7mKGaZA7tiMJ7bR7AkiKqr6HhQJIWgM8gS5xL+7fJ/4/HOxxlLj9Fkm0GmeJT6eUVoqoGsiHQfGwcE9j/Zzc1fXMRQxwIG20/jCxXy1Lf/L56CEDabk4brFuKQ3Ih+G6OxbuasuwLJZqNixiy0XA5d18jEE9QvnImhG4SHkhi6geJwMt5zgJKGJkKV1ch2O+cP7qVu7gL2PHAPTUuWo2bSCKKAHp0eCGJkdMoX1lEzx4bH7+BIJsPHHp76Vr20PsgBVymBYI7K8f78OT9UzfueGOedS6rolb0c9tXzf59rxzDPYZdF/mpjM9/d3okiTSufsvwePMuXkzpylGxXJ4LbxeS8OtqlAcpCZQwYHezo38G97ffy/Q13Ymr586mm5jj90jZW3fZe1GwGQzcYPp8f7d00DB783j9w3cf+mkR3EtXIMNh9iJblqxAkmZlrNnBy2/M8/l8dbHrXJygqqsLUBE4d3oqay3DihWeZtXYT1bPnIisK5/btIjI0CIDN6aJx8VJGe7tJjI/iLgjRf+YUZY0t7H3w3ovPqaK1jcH207Tv2Un9gsWEKqroOLSPvhPHkBUbmz/+V+y458ccfe4J1r3vo6y69Q52P/gLDE1j7oYraV664o0/EJb/lWBFFenBScyUNv1BQ8cTiiFO7iNRcjX7H/klxbX12BxOdtzzE9bc8QFio8PMWLmaka4OTmx9lvjEOO5AAZlkAm9hIY2LlxGbGCc8NIhSGWJ+5SJUTCSHk+s//xUwTUwBtJxKdMLHyR3tmIYTT8BBKprD6VPY92g3a9/diiiLnN0zPHUTNZPwUJLIUJJUXGXO2koKSlzYnBKTIymal5TiDTkJlLh4/ken8BU7WXVVLXJWQ20qwLeyAodbQQ45EW3SlLYdHoWZqypoXFiCpuoggCDki0clWcDuVDDNcszLFiLarVHoX2+iw4F70SLcixZhZLMINtvF/e/x+VCkbrKjw+iSl2C1j+oPtqE4FBwe28U2mpYso6SugeRkBEGSGO3qIBGeoHbOfERJZry/F28oRGRwgPu//jfc+vF/xrexBjnoQI/nMDM6cqGTVHSSmjnzyGbS6LqBoWqM9XTRc/wwDQuXEp+YpLhlPZM2gSKvnbFXhHzJooBNFllcW0BLiRVAYvnNQg1B1Eof9pYC0E2MpIpkl1FK3UhuhehImj0PdxAsd1PW4Cc8lKTj0Fk2f3QW1316HtmUhmmYKE6JA090k71wfnd4FFa8vYFUNDdlfV1Hx2ldVsacdVUIAtTPLSKb1nB6FeasqWLbT8+iqQaCKLD4xkrCdV3Uxn04fX4MXWPg7GlKm5opaWhCQKDn2BF8hcX0nz6BKMmUt7RRPXse4f4+XAUFzF6/iR333IkoydTNW0B5Sxt1S1YSKgwhnH8G78AJRsuuBNE5bd8YKY1IVy+zrrgKu2+MYXOCAnuQtzXdyMzQzGnzW/4wEmOjxDMRlMUyQWcdpmDS1XsYT6iIXDqFzeNmtCvG/se6Wfa2Rk7uHmLDklIyuy+FkIp+G0Kxi8loFl9Gw+O4dItTeEVOg12e/nllSW2QIp8dj13h2+9awOGeCMOxDPV2O6+O49VjWUx1epCJ5c9bsDhI36lBckoGZbMft+nBtMHBvU9Q1trMaFcH3mAhgpnvjP6SUuZu2Ixss+OuKyQb1DHCmYvtmfOKuOdsPtjpmZPD3Lywkn+6YRbnRhOEPDa6xpKIwm8fQAJgZvQpQRMvMzL67/7ELW86wTI3x2JJXDYb58dTfPnBg2xoLuJTG+sxPTYK3t2KFkmhSlkeuetrrLzm3dgm1WntmKpBQXklg+fO4vL6GOvuonXlaiYG+jn67FOUNDQi2+zINgdaLsvg2TP457fwdHInC4rnk031Mv+lbyPe8K0p7Qriq87BDl/+328gu1zIc+dizpmDmctN+6wkORw4m5tJ6zpGbx/2pibkqmocjQ2IivK/35EWi8VisVgsFovFYrFYLBaLxWKxWCwWi8VisVgsFovFYrFYLJYpXu8Qki5BEG4Dal/Ztmmaf/86r+ctI1BSxvkDe5l/1fXMXLsJQ9dxerzIdieiIHHVJz9H36njrLjyNnJPjxIbzhfQ2yrcSOscXPPpLzA5PITN5cRXVEJWdlHpqkMRz9OX6GdZ2SpsRjl/8aMw4aTK97Z3sqimgFNDMf71prm4bDLiaxRcAEiyiD/koqahesp0u8uNaRqse/9HiY4MMXj2FIauUVzbgM3tIXD99QCUpFP0HD1M5+GDSIqMI1DIXq2EHx0cY/vbP4jrsQ9DKh+0ojdt5p4zSeYuOEFfrJerZq0mcyo8Zb16rZ+TT/eiZvNfhq9sLcAVsIox/1gK3HZO13jw3lCPciaCEXQwWePBH3SwrK2UYwOTbE5IaFv6SJgQkN3c8M4v0hc/wzWf/gKCrHDdZ/8P0ZFh0rH8qMK6qlLROpPqWXMJFJcwa81GcukU3UcP0bricoIVVRSWV2MzHKy5+QPse/YB9jx0Ly1LVzJ73SY0NcdI53kqW9qomTOf4dFO/KF5GBOXijQFp0xWTFI9aw61c+cDMsNdWUIVLmJjo5iGga+omGwyzWh3Fyve8W4ANnzoE2y/+8fsfeg+lt9yO6IkkU0mCZSWkZqM4PQF2PyxLzHam2XzJ75KLhnGXRDANEFE4PLb38dYbze+wmLcBUEGz+5j8ZX1RMdtDJ3Pf7lflP53BSOW31L5Aop2/DuTxUuQ7dK0h20O6WLB8Su5FTc/OfsTrm+8HkVU6In1UOGpIJqdOlr6wtKFLCxdCMBId5SqNo29j14KO5m3oYpQhYsb/2o+ujaMzS6z8KobyKQSrH//R9EzKqFEMekHhsiKAggCvmtKefaJ/6F1+eUkJsOIsowkycxYtQZJFpFkkZJaP6aZL4xXnC4MTaVu/iI0NYe3IEQ8PEHrys2IosbMNRtIRScpnVNFatvU4npHUwHO4ksFHqU+Ox9f28B3X+xEM0waitx8dHUjWU3jxqfHgJfPu6MsqinAY5dI5jT+47l2TDP/SFYz+M6LHdy2pJoZZVYx9OtJUBTcixfxUuEEXbEuamwSTpwcGT9Co7+R8fQ4AHee/AHvWfYueg/tBWCsp4uxni6u+9xXSEUnqWqbQ9+pYwCUN88go0k4GmsQkpM0VISIh8cRTJi17gqqZ82l2FdD7rFRMol8YefimZtJr9LQFQNJllFsdrLpNFd/+guEB/pQHE6cviomh4cwVBWb14eazTB77SbO7tnBylvvQM1k8BUWISkKx7c8g5pJc3bXduZfeR3jvT1APkCl++hB5m66ip6jR7A7XSy+/iaal63CNI388rJVQPRmFyyvYCydg2adbPsrzqGSgC2zH2nrB9Hn34HpD7L0lncT6e/G0HQq22YTKKsgk4gzeO4s5c2tKDY7ks2Gv6iYTDLB9rt+zDWf+RKmoSMX+RixxSgXynlg6Flu8K6l98RRMEGQXGRSVQx3dXP5rS3s+EU7M1dV4A7YOfBkF8FyN6ZpYnfJSMr09wTFIRGs8CCPpXnqf46z5Lpa7E4bil3k7N5hCis9qGkNV8DOyssrEJ/rwUxrmIC6uBT35tppASSvZHfJ2H/FRy9BEBCsAJI/uNcKebHX1mKvrf2Ny/qKivEVFRMZHiIZiwMmiUiY6NgohZXVlNTVE6qqobSxBaXQDSMQvvcs6CYI4F1XBSV2yhtnUNLQwNmdLxIoLaOorgE1l6Ooto4jz32T6vnriKZU/v66mXzl4RNMJHO4bRKfWNfIWDzLZzY04XVa50TLb0exy5iSyMRdJ9En86Eh9tYCAtc3kkmoyIpIeDBJeDAJgCgLJMJZhjuieEMOguUeMLkYQAKQSajomjltXaIgIIoC/WfCzFlbyeRIiq5j46y8uYntv2hHuxDgYBom+x/so+wOnYHCGI5DHShOJ5qWY/DMKdzBIP6iUnbe+zNu+vLf03PsCFoui7uggKq22fhKivEGi8gmE6y89T3k0mncgSBlbbMpKrsQOljSBtv/ndDZZ4it+AlIQv61eIGt2U+mppwPPNFFfVGAty34PMsbQpQHXH+oQ2F5DSZQHKgm/dgg8bEuAMoqK3HMLiGjpsjEbBx5tg/ThPZ9w7QsKyNX5kJyKcj9cTS/nUmnwrYfnqS00Y8ctNNcGwBAlkTev6KObWfHANjXFeb+2xbSORLn7tPD6MDfXz8Tjz1/Pq0qcFFVkD/+uf44aeHCBl7gml+E5LsUTmWxvEx22PFoPuJPdhJP5T+nzZm3CrHczfHdzxMe6Kd27kI2fPDjeEOFZFNJoqMjnD70Ig0bFiP12pEjArQEUas8pB4YBcDvVKgrdPPjnV0Mx7IkshrfuGUuAZcNUzPQolkEUUAucPz67Qs5kQJ29MlL98xEt4Ic+vXLWd56ir12esMpZEnk8qYinjo9StdEiu/OqyH9XF9+Jlngqus+zYjWi39BJandU+8dmQGRVGeYRHiMXDpJcV09vSeO4S8qpmrWXPpOHmPxtTdiAmMDPbStXU+FPcayR74Ak73gLYOb7wRv6bTt+338us9Kkt+PZ+lSWLr0dV2nxWKxWCwWi8VisVgsFovFYrFYLBaLxWKxWCwWi8VisVgsFovl9Q8heQSIAgeB7G+Y98+CIAjMWHE57Xt2cmLb8/iLS1l0zQ0UVdegq1l2/PynzFixGq0jiTacxr2sDMljw8zpSFknPaNjaFqOWO8I46rE3zw9icl5vvfuhUgJL3/zxGlSubGL6zs3muCfbpjFFze3EnDniyQMVadpcTHn9o9enK+k1ockC4SHU9S8xmC/giiQiUfZ+qPvkEvnx4EVJYmrPvV5imvrALA7XTQvXUFl2ywGw0m6UxJj58f4q43NPJ2WWPW2+wlmepGcfsY9LfTuGGOmEUUzNeIFWTzrq0juGgLdxLOynFGncjGAxOWzseiqWhwuq9Djj6mhpoBTSpQxr4QiizQVeygvcFEedLHQbmP0m0cuzayZpJ8eou2Tay4WQhRWVhEdHeHgEw+TiEzQvHQloiSx+/57mL/5WjBNdt13F/7iEmrnLKCkpB7zQIrc2WHKnKXcfOvfcOTscyhuB7LdznPf/ybFdQ1kE3FEUcJdGsK1qpzM9jG07gRymQtldYhjR57j0JOPXNw0T0GIWRs/jaY2UFYHyaiApNhoXbGGx7/xz+TSaewuNwuvvYHCyhqGO9pxB0M4fX72P/oA0dFhcpkMdfOWUD3jZpSIkwAe1LEEo8leTh98kYHTJ1l83ds5/NSjRIYHqZ49F4fHTmzkBULlIdpWLqG0/jeP9Gn5HXhLYN3f4I4M0bQoSN/p8MWiMVEWKKp57ZCMYkcx1zdez6Odj5LIJbim/homs5MUiUW/clW6ZnBqxwCzVldgdynk0hpndg9RO7cQQRij6/ABdj/wczBNFl37NhLhCRYuvRYhZuLbUIOR1RGdErlzceqaF7D9njtpXHQZdo+HRCTMomtunLI+QRAIlXtIRTyMdHeQmBgnl0njDRZSPWce+5+I4wnI1C30gZhAqHXgvqyU5MFRRIeEb301SsmrCipNmFXm48fvXUxa1Qk4FY72R3j7gio+fHk939/RiWlCud/Be5fXcn4sTk4zLwaQvGwypdJW7sOYXodqeR1ohka5u5z72u9DQOCGphtQdZVwNh/gpZsm9qIKNn/is5x68XkEUaJ56Up23XcX473dNC5Zxpr3fAiby4VNs+MYS+NyBcg5K8g6JlBzafpOHqd9704WbL4R42ASI3FpNOTsyQj26iLGRIFw7172P3pf/gFBYMOHPoHTU4dkc2LoCsmhXfiLS3n629/A0HWal65Ay2WpbJvF1h/9D5GhAZbffDsDZ09RWFOHYrdfDKcC0LJZRFFi7hVXXRwlOVDy+hYuWf7wPMUhtMvdCLJI5nQEOeTEu7GKjE1g/Pr7+MZJN+tjdlRHNXKphyqnRu+uraRjk4z39RKqrKLj4F4a5i9hqPMcg2dOcW7fLhZefQOeghCnch0klAEmo5McGzvGguB8ys0mSgoqwCkzMJHj8K58uM3kcIp0XEWxSyTCGQpK3cxdV0k6qXJyxyDzNlTzws/OXNx2m0PCG3QwdD5K17F8Aem+R7u54kMz6To2QfveEURRIJ3IserGBuQdfejpS0X56f3DuGcXIjUXvLE73fKGKygtY+bKK2nf34Wuy3iCKjvv/RbB8jKKaxuQFAXBFIhv7bsUemBC/IU+fHINDcoc2o/u59CTjyBKEhs+9AlmzFyJHBW59pq/wuX14jYSCMC3bpvP4b5JZFFgYDKNxy7TXGIFf1l+e6ZukHhp4GIACUD2TITs3Cj97WGW39TIS788h6GZiJLAws21nNwxQFlDgFRUpbBSoKTOx5x1lRzb2g+AIHAhoMR9MbwEYNbaCkRFoHVRMT5Vp9AtU764BEMUpoSYAJgmBPVi7jz/Td5r24iZSlJYWY2nIMiJbc8z0ddLSV0joqKw+t0fYMuPvsORpx9n+Fw7C665ATWTJlvextnBCHY7NDZUU1z1iuuGYD3cfh/pgSy5nRH8V9aR3DOENpFGmVEAqyvpDSd4z7JadMOktdRnBZD8EXiCIdTdEfSxzMVpWn8SoyfDuNiDzduApIiQ0RnvSzA53MmS6+oprPJwciBJ394RUtEcdrdMYYUHKa6S7o1hjKRAEFhS7ubnH1rKqa4wV6AgPNBJqWqwbnEpjpUVeIpe+5grZW5Cd7Qx+WgH+mQW17xivOurEX5FuK/lz5vbHSD1QD/GK85z2SNhXI1uPAWFnNu7m67DB1j/gb8gHh5n64/+B0PP3/c85HiUVe98N6fOb6N1zvtYWFXBLz60lKFoBlnM39+dXRmgMpljbWsR86oDaJMZ4i/2k9w7jCCL+DbV4FpYjPQrAsokr43Qe9qIPt5JtiuKUuUlcG3Dbwwv+V0ZOZ3cQAJtOInoUbBVev9g67JMNTCZ5vxogkKPnQ+urGNjWwlLPE7k+9rxrLsQPm6YCKpEdfUsDDmLc24R6RPjSB4F5/pSdm25F19JETNWrSM6MszkyDDeYCGSouAtLKSitQ1vQZBAeSXVM+dcWvl7HoP0BHjLwVf2x9kBFsub1atvplosFovFYrFYLBaLxWKxWCwWi8VisVgsFovFYrFYLBaLxfIW8nqHkFSaprn5dW7zLc9TEGLBldcxc/V6JMWGrCgYuk5sbJSGBYs5u/NFyior8FxeQbYjijqQuLhsy9sW02f20es2+dGpNIPRfCDIj3d2MacyQCqnT1nXrAofLWU+/K/4Aror4EC2Syy+po7wYIJAsQsTMExwel475MMdCHJ+356LASQAhq5zYutzNCy6DFl+Rfs+P9UuD+dOjyKKAuFkjqDbRszfTFHjAgBKgH+8oZSzkTNk1RTCniipzizuBcUgCKQOj1Lx9iau+tgctKxOoNRFUZVVZPfHZpNF5lW/dkGtHs9N+V0uduGcEcRI5DADdgRBAMBfXMJVn/ocj33jaxRW17LrvrsormsgHYtyZtd2EAQaFi7BEyqE01n0M/n+b6Q0Ms+MsPCd13Kudx/JyQiSojDW3UXr8svZfveP6TpygKPFT7Lm1g9QcHkFh7Y8jvtMAUeeeXzKtiUiEyhKhCPPCQRLm9n1YDsAdrfMhg/9HYY+TjYFNlcxex/6LkPnzrDsptvYff89F9uYtWYjRTX11NltJJ/r5eVSqZLGckYKyhngJIrdTmR4ELvbTUVLGzvv/dnF5c/t3kpV678Bnt/nkFh+FYcXpcxL5kQPy9/WyMRAAlkR8Rc5MfXX/sJ3hbeCo+NHaS1oZTIzyZNdT7KxZiMhZ+hXriaX1ll0VR2Hnu0hFc3h8tlYeGUtGCbjgz3sf+yBi18wtzmc+IpLcDo85CYjpA5eCoLyrCwnqFSi5bL51wFw1Sc/h2x77XNyMhrhpXvuRNfyxU2dh/az5j0fZOUtMxntPIfDWU7lytUY+yZJd0bxLC/HzOrEnutBDjmRvZdGjW2r8NM3meaLDx5D1U2W1BbwuStaCHrsLG8I4bJJOBUJuyzyb8+cpSec4v6PLkMSBfRXJI4Ueezs747w5LEhvvGOedgV6bc7Vpbfis/uY9/wPio9lZiYnJ88T52vjhPjJwBYW3oLw0f3cfaRuyhvaqVt9Sqe/943MU0DgPP7dnN+327e9ZX/i/HMJPp4jAQxEMB3cz2TE33oqRw9xw5TXFJHfX/ztG2wGy4kJXIpgATANHnxJ99n00c+yVhPHyX1jbQsXcXxLU+j5fL5c2d2vghA87JVlDe3EhkawFdUwvKbb6e4rp6H/+0fp6ynpKGJUGU1Zc2tf4hdaXmDONxeJs+OYyR1vKsr0aM5Ju8/T++6cm595hQQ5YoFIutnlNA97iN7/gimadJ3+iSh8kp23/9zAPpPnmDWuo3UzF1AYXUNJY3NCLJA0F/KL49+l/3D+9lUu4mNqeWkHm6/uP7iMjcLVpXT2xVjYiBB9cwgVW1BFIfE/CuqSUby/XPu+iqcHoVrPzWXjkOjOL02iqq8TI6kUewSC66o5vgLA8TDGaJjadIXrnc6D48xY0UZkmbgmhFCK3GTPjEOWv68qMes/MU/F74iNzNXNRMZSWGaJmvf90ViowPYnCJaLkF2Ip4PlPTbcc4pRJBEMmfDmDmD1PYh6tbPZa/9frRsloBSROb+QcxM/jOd+uIEa943k6/u7WJ/T5jNM0tpK/chSyJeh0yR1yrktfz2zKxOtit28Xe5yImzLX+dW90aIp3IsWBTDQWlLqJjac4fHGHmqgqS0SySLNB/JkJpvY95m6qpnVNIJqlSUOyioMzNlR+ZTc+pCcZ6YtTMLKSiJYDTYyMxnib6WCcvl+PbG/zMW1XOkR2DF7dDEAUkr8mXZ3yVka40/tggJ1/cwuz1mzm1fSs2p4tr/vKviY4MI8oy1/7llxjt6kC22Tj0xMOMdJ7nys/8NX+/Ix/MZt8Z5vFPraSp+NL9A1X3EX/wKHo0R7QzjmtWCOfcQg77JdoKHFxX5WcylcPjkLHL1jXsH4OWzaH3pkAWcM4qRA460MbS5HrjHDz1CCtueTcNi4o58cIAAMFyN4PtEbwFdjoPj6FmddwBG/PWV3PwmR6a63yEf3kcM5e/FhbsEgs/PId5lSEm7jz5ckYlmb3D2AocsOa1Q0gEScTZGsJW6cNUdSSvzQogsfxKRjKHOpAEARwtQZRyN3osR2Ysxva7f8SqW+9g+90/Zv+jDzB341UXA0gA1Eya8f5e4hPj2OL5ewUFbhsFbhv37u/liw8cp67Qjdch8w+Pn+bvrhO5LiuS3D0EgJnTiT7eiVzoxNka/JXbaCv3EHpPG0ZaQ3DKSI7X+08Bl6RPjBO579L1uVLppfDdM5D89l+zlOX1UOZ3cv/BfsoDTr721BnWtRazoqkU7+VVJF4auBSUIwsEb21l8rEulDI33pUVGCmNSGKE+oWLOPzs4zi9fsZ6OvEVl1BQWkZkZJhkZIKimnmY4mvcIw7WArVv4LO1WN46TCuExGKxWCwWi8VisVgsFovFYrFYLBaLxWKxWCwWi8VisVgsb2Gv9zePdwmCMNs0zeOvc7t/Euwu98WfM6kkkiQTnxhnrLcbaaMbxeEisX1gyjLxp3uRb2vmSw/tmTJ9Z8cE86sL+NCqeu7c1YWqm5T7HXx6fRNZVUe1SShSvlAiVOGhoqmAl355DqdXYaQrxvxNNbx4z1lWvK3xtTdWEMll0tMmZxLxfHrJq9hkiStnl7GgpoBUTqfU58Bpm1rMo8gis4raCGRdmCcHMDWDxM5LxUhmJEvd4tJXN215k5ICDhABA1wLihEkkfjOAVKnxvFfUYegiMgFduRCF1Vts3nX1/6T41ueAaB27gIOPPYgAPM2XkXfqRNU1s7EaNemrccYz3DoiUeYsXo9qz74KXbd+W3a9+xk9bs/wLl9u8CEtJxl9OQeju94liU33AwI09pxeSXWvrsZl+9SyEM2qfH8nQMsvqaObHICJXGO6tlzGTp3BrjUzxddcyO9J45SVTOL5AtDU9rVzsdpXreM47uewzDyBU8NCy/j1PatU+ZTsxmGOtopqqn7XXa35bdUN7eIrT89QyqaRdcMyhr9LP8V5zmn4mR24WwG4gMUOAuYY5tDra+WmYUzf2X7NofE/ie6Lo7onorl2PdYFzf81Xy0bBYte6kIPZdO03XkALMa15DtmJzSTmLPMGXvbaFq5mxymQwLr76BunkLf+V6R7s7LwaQvOzUjhcIlJaz5YffBuDGv/wbnIdAj2RJjPVfnC/bE8XRfKlQxKFIXD+vgsvqgmRUgzK/42KAiM+p8J/Pn5uynoqAk8qAg399+xy+8vAJ0qpO0G3jL9Y08I3n2jFMk3AyR1nA+Su33/K/N6twFqPJUXrpBQHK3eXEcjE21W5iU/W1HDnuILXrHkzDYODsKapnz70YQPJKckwiPf6KcAQT0luHqF87l5pAG20LVrNny/001s/FOB2fsqy93IM5OsCrqdkM4/297H3wXgRR5OpPf5FsMjFtvkwihu5wojicyHYbu355N42LlrLxQ5/g+JZnkGSZxsuWU1hZQ82ceRfDqyxvTXoyR/rwKEZCJddzqeg9lMifM25dUk2hR0GRRJpKvPSO+QConjmHvQ9dCrqJDA2w4+472fDBj7Hz3ru4+tNfwNA0asuauLr+auYUzWGm0oL2wMiU9RtDSSpnhiifW4ggCBRWeXD5LhU8Ot02CisvFagHyzw4vQrP/uAUB5/qAcAdsDNzVTmty8s48EQXpgHFNT7UhMrCFaWE/HbMySzx3UNIXhv+K+uIPdeDmdGRglY4xJ8Tp9eG05u/pkylvfScypL6/9m76zi5zvve459Dwzw7s8wrrZgsS5ZlljmmmJ3ESRrmpJRym6R0c5ve3qbtbdM0zInjOGbHzExi5tUyDOM55/4x8q5XsyKL5d/79ZLleebQ7D5z5jlH8/s+owUUXiR+Xhv6bA2jzjceTOZb3oDirlx6K9vL1LZ1khwawNGvUcpPFCTbJYvya/3MbwrRFPGQK5b5+oMbGEwVWNgc4j1z63E7jl3xsDi9KC4d96wI6Wf24F4QQ3VqpJ7dg2tGmMYZEew6D+vWjpIezTO4M0V9Z4hcssjO1SMM7w1G1XSVKz8zl5ZZk0P6QrUeQrWTQxxKQ1mSD+2Y3LYlwexbu1n32gCFTBndUDnz1mbiLS6aQo20BS1e+e1qYq3tjPZWxq/FXJZiNo2qavgjUV6865fsWjP5FtOeNW/SFJ7O7tEchbJF71h+UgiJNVbETOwNzSxbZN8YBGD6rdOJB1xki2XKlo06xXWjOD5y6SRGh4Pg4k7sbAm7ZOFo9eOsiZJ+ZogNzz3JBR/6Ai63zvZVw8Ra/ARjHnq3JmiaGWbbG0PMWNbAi3dvZfb5jShbE+MBJFAJ4cm+OYA6ReBC9tV+vEvr0NwGY9kiZdOmxj85JEHzGYBRta4Qb5crptFaPfhmxCnsTqGoCnrERagxQk1zG0O7dhCM12LbUCpWB9YVslkcLhea5qZ/Z5JBzcbr0Hh8wyANQRfLOqKk8iU29qcYGc2RXZep3sbm0QOGkACoLn3K98LRVE4USNy7dVJbaXeK4p40bgkhOeamxX0s64zyo+e2c/OZzXidOqbfwNydngggASjbZF8bwDUnSn71MKXeSp8yzvGxdvWTZMdGcXq99GxYT7i+kXKpzEt3/ZK5F13GSF+O2g4JZRLiHZEwEiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQp6Cj/Q3kc4APK4qyDShQSQKwbdued5T3c8oznC6cPj+6w0GpkMcR8GKOTRHAkCvjn2JmXgWFxa0Rnt20kU+d34kNuHWNntEcf/SrlVw+p45PntdBR8yHqiq0LYiiGQrDuzN4Ag5GejNYps2aZ/fQPCuC0zO5uKKYy9I+fxGrH/vdpPY5F12C7nCwP7WBgxdgNkQaGYgOU+7PTmpXvVJQdyox4m4it3Qzdu82NL+D1JO70YJOvItqGfn5eijboCtE3zcD14wogWiMeGsHM5dewLS2M2l8/3Qst4U3EMXripDPZYif1U1hcwJHgw8rVya/dhjcGigK2dpu/vLFHLe+94+Y0eCgq7WBBZe+Bxsbw+HkmW0/BmDb668w89wLWPPEIwDMvegygrV12HaRmqYCvnCE1jlRdqwerrwQBWradJ798c8Y2LaBhZdfRceiJYz19xFrbScx0A+KwsD2rYRvqMMsj1T9LHz+KJphoGo6mlF5L0353WL5wvExF4p7uPLTc0kMZFE1lWCtB4dz/7ObT49Mpz3YzmBuEI/uIeQKHXD7pUKZ1ukhwnVecgWTvm0JBranSI8ViLW24YtESY9U+taqxx5i6fW3oFhTFDeWLRxOF9f/6VexbQvDeeBzp6ZN9RoUhnp2jj96/ZH7OK/xRszRycVNenjqcJC6YHV7d62fP7m8m//90AZsG3xOnX947xz+48mtvLR1mC9f1k3Y62Bjf4p/fXQTqUKZszujBNxSoHe0hV1hbui+gf5MP4qiEPfEx59LF8pkhnYx4vEDfQD0b91C8+x57Fqzcny5SGMzVsHcd9OY6SJa0El+R5JIrJbWGQvIxLN4xzyUe7Oggu+8RhzNfmp9TeiGg3KpOL6+Pxojn6qETNiWxcqH72fW+SsqwVBvM+Ps83nlnjs555bbefPh+1ly3U28et9d9G3bzPKb3k+ovgF/pIZgvPZo/ujECaI6dbSYGytdmtTujrh4/1ktRD0OumoD4+01La14/EHquqZP+flo2zaRxmZcXh/uQJCwK8zVnVfTn+nHk3KQyK2uWiccceGbU3NIx2vbNquf6iFU66G2PcCutSNkxgrk0yUijV6WXttJeizHGWfVs2B+lPRzPSQe2I7q0Qlc3ELige0kH9mJd0kdmteBo8F3mD8xcTpYtTvBvzy8gY/ObGD9j3q56APLGEvuoWH2NHS3Cywb27Ip92VQMhrO6SG0iJMZ8fNZ89KjqPnqQs7ySIGGbj9fu2/tpPbuOj//88w23rekhahPinnFwSmqgndpPaW+DHrYRerxXXiX1lEezpO4YxOKW2Pm+U0YnUGmTQszli3Ruz3FcE8aT8BB88wIxXyZV+7fTl1HEMdBCtjtko1dqg5Eczo0bv7zMxkbzqB7IFrnx6lX+rChqdS2d7Dt9VfxhsIEYnGSgwPYloVZLu3NP51iLK0ovJVdpqkKsX0CJBRNAU0Bc/Lnizfo5M1dY/zTQxtY1ZPgstm1fPK8DjrfFmAijg/N0HF0eGHIIvVUD6pHxy6ZeObFWXHLJzEMJ2a6yPSFMWI1brauH0XVK5/fde1BGqaFMBwa5ZJFtMGLvXqoah/loRzuebGqdr3OS0mBB1f28o3frSdTMPnk+R1cO7+xKoxEiAMpW0U8y6MUXk9i1LhJPrYLI+7GZcW44WN/Tc5K0j33bEp6mVwmWbV+vK0D27JJjfro6e3lb7bsJlM0+ZurZ1EbcHHfyj2EPA6+fFk359UGMYYtygOT76XqNSdHGKhdtrBy1fe17SmuR8XR5zQ0zmqLYmgqvYk8iWyRb766k780vFXLmokCvrMbyL91XxQw1RLYNrWd09j62kvMWH4u7kCQF37zC7rOXMbInh6mLz+bwEnS34Q4Zcg/BQghhBBCCCGEEEIIIYQQQgghhBBCCCGEOIUd7dSHK47y9k5bumFQzGWIt3VQ09IOpoqj3lVVKOOeH2PEofKBpS38+MVKsbnb0PjcRV00hN38/fVz2TKYplC2uOeNPfzy1crswb94eRe7R7N86/Yz8DkNnE6D0d4sTq/Ouud6yadLTFtcKfq1zOpvQ6qqSjoxxmWf/hKv3X83ZqnI/EuvxOU58gJL1WMQuKSVkZ+tH3+tjrYAel31F6PFyUvRVNzzYhgtfkZ/tgEAz6I4yUd3QdlG9Tvwn9NIbt0I+c1jeObGaGybiX+Nh/Ldw8QubyO3epjyWILZF55LbuUgtNg4WvzkXhtA9TkIXNFGLgZc80X++Kkh0oUyzw14uPa8boLhyTNvt89fxEu/+SWDO7YRa21n6XtvxuH2sOml51j12EMAaLrODX/+t1x4+wyGdqXoH8pS8ugk0z0MbKu8htcfvJfm2XOJt3cy96LL2LV2LcO7tgCQzA0TaPJg7s5N/BycGn1DW7jggx9Hd/p5zxf+jDVPPszsC1bw/K9+Or6c7nRS1zn9WP5KxF4ur4GrPXjIyxuaQYOv4aDL2SWTqA1zi2XsTSMoc2oIzKuha1Ecf8RFKNbFpZ/4PI9+779I9PehOxwE47U4a3xkXBp2fqL4xtEWAE09YKjT2zXOnIOq/RrLnCjqWXTFVTzxo++NP96++jWuvPmLFLclx2cB12NujMZDP7d6nTofWd7OedNjjGaK1AVd/PPvNvDA6n4AvnrvWvxOnQ8tbyORKxHxOrhpcRO6KrPIHyu13uqADp9T55J5LWy338d93/ga2DZbX3uJpe+9mfiMuexZ+Qo1zZVQnERhAJfCpMIH9/wYY/dvQw860ed46PQsZvfQena4d1N/Vidlu8yOsedYZF1LpL6R93zxyzzyP/9BZmyUUG09Cy+/mqd//oPx7eUzaQZ3bOOyT3+JV+/9DZZlcebV1xPvnMa5t32Yh/77m+RTSRwuDzf/9T9i2zaBWBx/JHocfoLieOnLFlGX1aPsTo8Xoeu1HvRaL0tsJ2e2RXAZE4FKnkCIjsVL2PHm68y+YAVvPvzA+HPuQJBgvJbuZeeQTSZonj13/Llaby2Ww6Q4L0buzcGJA9AVnIcRBFIqlYk1+Vm7o5fhnjTTzqwlnymRGs0Tbw/Q0urC5dVI/Ww9AL5zGvEsrmPku2vIPN+LZ14N2dcGcLYFcXVHKgXv4l1l92iWD3/vJYYzRdb1pvjKrdNQ9FE8Xi+G6iL12C5KA1lc08N4FsUxs2V85zRS6skQfzZK861fwE6VYdXk7fqW1DGrwcvC5hCv7xoDoKPGu/czeSMz6gJcMkvCm8ShMWIewh+YycgP1oGuonoNCi/24V3egLMriIJC+qGdFHelcHUEmHFWA8mz6nD7Dba8NojTozPjrDqKufJBQ0j0iBNnV4jC5rHxNsWpocfcuKNuAtGpC5fru7rp27KZnvVrueD2j7HhhadZ89TjdCw8g5Fd25l1/opJIWuKqhJtbOK9QQ///nKOr1w9i87YxHi31J9h7KFt+JY3kH6qZ7zde0ETWb/B7f/xDMm9hfK/fGU324ayfOdDiyVU7zjTHU7sjEl+4xiBC5op9qZRnRpGnZuGfCeKrqH2Zsi/2o+zN8P8aSHsuJtwk49kX5b1z/cy76JmUCA1UiDUGYKtiUn7cDT5Kfdn0GpcmEN5oNIn/ec18WpPgs/+9LXxZf/23nV4DJ3blrYczx+DOMXZlk0ulSBQHyL9wh5C13ZimxblwSxK3o31bApnv0VgehTmNrD8lttZ9/TjaIbBwsuvQlE05q64hsSwj6G+UeIBF72JHFsG0/zgue0ADGeKdKPh+fkmHBc2k980Nh7sodW4cXaFT+BPYIIedOJZECP7+tvG55qCXuvZ/0riqDJ0BWwbQ1XwuXQ+O6cB50iR7Mv9k5bzzI9RHs1PrNceYHv/G7QvXMzgzu28cs+dXPWlP8Xt99M6dz59Wzdz5tW3UtdRf7xfkhCnvrcCVxW5XyCEEEIIIYQQQgghhBBCCCGEEEIIIYQQ4tRzVEJIFEUJ2LadBFJHY3vvBoqioOkGT/7ke1z8kU/hCLkYvXMTwSvbyb42QHkkj3tmBO/yBp7uT7J6T5I/uGQ6RbNS1Pmvj27i7M4oHTEfUZ+TR9b2jweQvOXZzcPsHs0xo65STFPT5OOB/1o1/t3HNx/dxaLLW3H7q4vgdacTs1hkzfPPsOiKa0CF1Y89XPn/I1QezZN8eDuBi1qwTQtFUymP5rGzZYgc8ebFcaQoCnrIhdHgo7gzVZmkulzpo/5zGkn8bjuYNlrQieo20GtcBBY3Yi+wyLzaT3FXisClrSTu24oWdGIXTDIv9gFgZcsk7tnKtsua2VNy8tFz2lnYHGJ+c4iwt7rP1nVN48a/+Bov/vYOhnbtINLQhOFy07d54/gyZrnMkz/+Djf95d8T7AjwoQdWsX04yzfOdk3a1q41q9i1ZhW6cxrbVjcza1mYjS88y5rnHmfh2ZfjCviwtubQ4k70ZWG8So5VT2XZtTbFzGUuWuYuxxd2cOXn/4h1zzxBMF7L7PNXEG/rOGa/C3HsFXenGPvJ+omGJ3cTO7+JJ1/so2txHMPlon3hYm5p/TrZxBiK6mTX6ldQalUCl7aRe3OQUn8GZ2cIV1doyknd9yeTGOOKz/4+W197hXwmzfSlZzPa10ukoYE9GyrFdrPOuZDc6iH85zVh25Xvt5uZEuX+LI76Qy/MdxoasxsqIS7r+5LjASRvSRXK1AddfGFFF/mSxT/ct46z2qPUh2RG3OPJZWhMW7CAW7/ydTa88Sa204XeMp11WRcdM84m9dgvWHXHTwnXNXDZdZ9De6OElSrinlMDqkJ5T6byZzhP6KYuooUG4k2VMJ6x0hCvP3QPLfMW0DxrDpH6RqYtORunz0espZ0H/+P/UC4Vx4+lY9GZbHjuac648lraF5yBZhi4vJU+F2tu5X3N36CUzxGIxXH5/Cfk5yWOvZ7RLKG+NLUXNGNbNoqqYCaLFDaMsCWkcu60WNU6hUyGl+++g4VXXMsFH/o4W197iUhjC9OWLOPJH32X0d4ePvCP/4KmTy4MVw2NwKWtqB6d7BuD6DE3oSvaD6vIcWR3lqd+vnHSuHjeRU00TA9h2RbuTImx+7aNL5+4bxuh66fhWVJL9qV+3PNqQAEt6JQAknepbUMZhjOVc2FvMs8n71vFp5bEuDWuMvK7DdjFSoFwbuUQZqqId3EttmlTHsphpUuYLycZaR8l/p5mCs8NgWnjv6gZ5/QwLR6Db962gHve7KVQthhMFfjmo5sAWN0zJiEk4rDoLgNHow8zUaA8nMc1K4IWdIIFo7/djJWs9OPCulHMwTzTL2rmnv9eA0BqGJ7ZvZl4WwBf2HWg3aA6dULXdpJ6cje51UMY9T6Cl7dhxA58bnb7A5z13psZ7duDVS5z8Uc/y2h/L4m+Pdz/7//MVb//Z1z5+T9mw3NPoTkcTFt8Fs/d8VPOes9N6BdP5+zOGhx6JeTKtm0yL/dT3JSAgkXg0lbskoVe58E1PcIbO0bGA0je8vL2EXaPZpnlPvQQQ3HkQrFaMmODuDpCJB6Y+Lw16juxsyaWbZJ6sRcrW/l9FVYNow3lUa7roG9rgtr2IK8/vJP5FzWjqgoZr4Hv/CbsNwZAUfCcUUthW4LCljF8yxowVvhRNAWjzosR9/Dk/burjukHz2/nmgX1eJ0SSCMOTU1LK1uefB6/K4j/3CasfJn00z0Er+pg9Debsfeeb/IrhzDGfKTsQRpnzKa2cxrpkREijZ08/N0BTLOf8z48g3W/6eGa+Q385rWJAKVLumpoWTOGlSmRfGQHvnMaAdCjLpztQfSDnJuPF0VX8V/ciurWybw+iF7jInRFO4YETh83PWN5fvD8Dt4zr4FanxNjZ4bM2mECl7SSebUfu2ThW96A6jNQyjr+i5pRNBUzW6S9eTFP3vFdejdtoHHGbNyBIP5IhK4zl7Hw8qvxBOQzUoh3xK4O/xdCCCGEEEIIIYQQQgghhBBCCCGEEEIIIU4VRyWEBPgpcBXwKmAzubTaBqTyfgqqpjLnvBU89r1vceuH/g5zIEfivm24ZkRwtPgpbE3gTpeoDTh5Y9cYb+ydCRugM+Yl5JkojPA6tartuwwVp64CYJkWI72Zqu89rn+ul/kXNeEJOCe1B2viRBqaMUslXr77DnSnk/mXXEmkqemIX7eVLVPuz5F8eMekdves6BFvWxx/iqLgXVJH9s1BsEAxKjNslwazYNqoXgPf2Q0kfrcd/7lNZN8YwLMoTnFLJTjBNm0wbVzTQuRWD0/euA3xnMnPX9pF2GvwviUtUwaQAGi6QcvcBTTMmIVZKjLW38+uNauqlhvt7aGYz+HwO6kNuNg+nGWH6cMbjZMZHhhfrn3RmQzsUEgNFXD62phxzqVsePYR4h0d6D4X+mwNUzGJmjN5/CcjFHNlZp0TYM+6X/L6/Wv3HpODG//q72iaMeso/bTFiZTfOFbVpq4fIRr3MLIniz9SCeHwR6L4I1F2rR+mpqUdczhH4p4tuKaF8SyMU9yVYuy3W4h+bM4h71tTVZ7+2Q8wXG4Mp5PHvv/fnP+Bj9A8ax4D27fSvnAxy9/7fjI/3kF2tDD5GN3v/KPepWu4DJV8yZrUPpQu8s1HNwOwvCsqM8efIJpu0DhjFqvLYb74izfIv7gdqATQ/M+1VzBT19n80nNs2P4ii2aswNkeZOyerZjDE7MelweyWKkS2kO58Rm1Q04vl93yefLpJACBWJx8JsMbv7uPWGs757zvQ6x96nFK+Rzdy84lOTjAZZ/6Iv5oTdUxKopCuL7h2P8wxAkX9Djw9GRIbhib1O5oDTCju3HKdWzLwun14guFeOYXPyLe2s7WV19ieOcOOhadQfuCTxJpmHrsaUTdhK7qJHBhMzg0NNfhnesGdqSqxsVbXhsg2uTDKtnk1gxWrZNbPYj/whaKO1KUh/P4L2xGj0sA07uVx1F9/fWD10f43PULGCtumtRe3JbEe1Y95YEs7rlRsq/2U+7J4prtR+/yE1zYDLaN9rZwyNqAi/X9Ke5+Y8+kbU2rlTAncfg8Z8TJrhxEr3GjKKCHnVjZ8ngAyVvKQzk81j4nRxv6tiSo7wwddD9GzEP4ui4Cl7SiOjXUQzw3q5pGtLF5/HG9bxrlQp6LP/YZbNPk0e/8P0L1DVjlMk/8+DvMv/hyhgYGuW/Q4H1LWyYOtWxR2DoGQHFnqhKUCXjOrMU7Pz7l+9apq7iM6nZxbOlOJ0aNj9RjW8fbHNNCldARRUHBHg8geYvZm8GbMwnVennxt5X1FBS6l9aSzZs8+ehuLrt5Gp6dSTLP7xlfP/3sHsI3TsOzsG58W/F97oEB1Add6Jp6LF6uOE15AkEaFs1GTzoprBnD0eTH2RnCHM2PB5C8pbQzzfybL+OhX/wbPevXsODyq9n0qk0xX7kGGxktUChbjOVKRHwO9iQq12zzYn7UV8ewATtvknp0JwChaztPmgCStxhRN8GrOvFf8M7G5+LIxPxOtgxm+JeHN/LjWxeSe7GPUm+GUn8G96woiq5ipks4OgJkn+8j+/rEPdDsRTC4czvTlp7N/EvegzfUQLhe7tMLcaRyFHmtU+FiCSMRQgghhBBCCCGEEEIIIYQQQgghhBBCCHEKOirfBrZt+6q9f7cfje29W0Qbmtm+8nXSoyMoDg1Hsx/XzAh22ULRVRRDRXGozKrz8Ynz2vnvpyqzw/qcOv9w/Vwi3omiiem1fi6YHuOJjRMFk394STetkcqMk+p+CilcXgN1itnbNV0n3taOZZY5++b3ozuc+Gvi1DS1HvHr1vwOtKATM/G2QnkFtFB1EYg4NTgafMQ/M5/SYJZQvIvUUz3Y5UpogWdBjNSTuyoLKmCOFTBTRbSwE3O0gLK3+1nZMqrPwMqUAHBOD+NsDeBxa/z7xd2EWoLUBg9eYKEbDnTDQW27j1I+X/X8jHMuwBsKo2oaX7p4Gh/4zkv81yvD/O11n6J284skt21g+tLldCw+l9/+yxYCMRc7VufJZpZw9i3LUDQbly+Aw5mnvrMOGz+x5iyN00s4XMO8ds/a8X2Z5SL3/9s/8YF/+Bc8wdCR/ZDFCad6p/jIdOsU9imOG3/K6+DFuwtceJ6GszOEozWAbVq4Z0WxSxaqfugFbumxUZKDA5PatrzyIld8/g+Zf8nluP0BNN2BOTNF5rneScs5Gn2HvJ99tUQ8/OEl3fz9/evG25Z1RNgykAYg4nXwJ5fPwOuU4qITaV5ziHO7anh4XaWP1AVcNLS2Mm3xFzj3ttspmQ5Kzwxg5MpoPgfeM2rHxxq51UOgKOMBJAB2wcQ/5seYVwkV0QyDxVe/l64lZ7Fj5RuM9e3his//AZqmU8xl8QbD+CJSoPRu1xB0MdwaQNsnhKTUGaAjXhmPlksl+rdupm/zBpweLzUtbcw+bwWvPXA35XyePRsq55rkYD+Lr76OhukzD7hPRVPQpigiPhQO1xSF6B6DnauH6ZoXRQs68Z3TiOrSsO3K+8IqlLGKZYJXtKE4dIx6L6oUrr9rdcX8XDO/gbvfrISEzK338VcX1KG5jPGZ5Yt70uTXDFeu6xQFTBsrZ6I4NYyuIK7mZgLRqT+nHbrGp87v4KVtw/TtvW66ZGacM1rDx+01itOHo95H7BPzMEdzlJMlFE1BNSpjUaPRh3t2dHxsUHZPdX489LGeoqvowSO/tm+eNRd/TYznf/kTCtkM/Vsmwn1yqRRGyzy+ctY0anxOLNOkf9tmxnr3EO9qpLQnM/n4O0IATK/1ccnM+PiYCeBLF0+jNeo94uMVh88V8pEsTxTlehfGMZNFFMvmrRsFeq0Hz/zYeP/UfQ4scyIgcXBnisGdKZZe004+XeLNF/pY5FCqAky0yOR7CedMixHxbmEkUwniMTSFT1/QhVOXz3VxeKKNzRRDeUq9OVArY0bFmLjW955ZhxZ0YNug+lwsu+l9aIaPNx/N0rMxPb5czq706yc2DPDVa2bzl3etxrLhmZ4xrm33o6wfm7RfvebkDMJT1Hc+PhdHpjPm5WvXzOavfruagm2jhhz4poX3jkMr910Vp4pdticFkOh1HoItQS780CdwemOM9vmp6wycwFcixOnj/xnPcO/NGq1DI9Se6IMRQgghhBBCCCGEEEIIIYQQQgghhBBCCCEOk1QNn0CBeC25VJJysYjq13HPq8G2bPSwB0UD/0XNqD6DoNvBF1dM5z3zGkhkS7REPLTVTC6Sifqc/K8b5rG5P0nBtAl5HEyP+1DViYCRUNyDN+QgM7Z3tmMF5l/SjMvrYCr+aA3+aA2lQgHN0FHViWKMYtmkZNrvqPBcCziI3NbN8E/WYaVKKA6V0HunYdR6Dntb4uRhxDwYMQ+2beNoCVAezJJ7cxDFqe39oruGXawUuefeHCJwSQuJB7Zj5U20qIvcuhGCl7WSuH8bzq4Qqlsn+fAOFIfK0rMb0MfK5DeMYNR50Q6xqK2uo4srPveHPPGDb5NLp5ix7FwWX3U9qlbpy0vao/z6U8tYvSeJw6GxaNHv0eDXMZwubNvmko84eeKnGwjG3Gx9fZDh3SpLr/Hx2r3/ykjPLtyBIJd/9g/omJdk5xuvsOi8q1l+9Qd4/al7ySbGAEgPD1MqFA5wlOJU4ewKo7h3TcxorEJ5ZgRt3Si+SHWfDNd56VjYhOIzcM4Io/srhUfYNv4LmrCNwwghGR6uahvr70VRFPzR2Hibb1kDxZ40pR0pUMC3vBFHa6V4JFMoYWgqjsMorFNVhVvPbOaM1hCj2RJuQ6Mx7GY4U+SmxU2013hpCsu5+0SrD7r5xk3z2TSQJl8y6Yj5aAhVitIUbwi/rpGda2ENZ3HNr0HzGrC33tOzrI7SWK5qm2pWI1LXQD6TYdWjD/LcL39CuVSkY9ESzv/gR4nUNx7PlyhOAT6XgTWnhnxfluLKIQAcMyN4F8TxBir9ccebr3HXN/4O9s4CHIjVcuXn/pDXHrynanuFbHW/fItdtiiP5kFR0CMuFLU6UO9gatsDeEIOsm8bF89YVs+Ld29l9sIY3jNqKWxLYJdt7JJJbu0w4Ru60EIujOjJWfQpji+XofK5izp539IWCskxrFVP0jAcJJ8eRfMY2JaNsyuEYqhoISdWyaS4I4nTqeHoCFLoCFHjNygNZFAMDT1cHbY3qz7InZ9eztbBNC5DY1rcR9Az9bWbEAdj1LgxatyUk3lya0fQQk68Z9ejOjSK25OVwLyyhbMM7XMjbFs1AoAn4KCuM/SO9mkmC1i5MlrAieo+/HsHvlCE4T27q9rz6TQLFsymIRogm0iwa81KHv3uf5JLJbnw+o9S39aCuT0LCngW1+LsDJIrmbgNnb+7bg43Lk6QL5o0hFw0ht1o7+BzRBw51aXjPruW1F2VwF0UUBwqqt+BlSsTunEadq5M4v5t42NXf9mioa26OF4zNIJxN9vXjTDjpi4Cbg1HXSXkSQs7cTRMDnzqrvXzy0+exRu7xsiXLOY1BZnTEJy0zEAqT7FsURtwYewn2FcIAIfXBXNqyK0cBE1B9TtwdoUwaj0UtiYovVwJRnJ2h6k9o5NCssjs2X7yKYvh3iyRBi/z5sT4ecdSPA6NuqCLmfVns7onQdTrwBf0UkiUKPdmQFXwX9SMcQRhoyeCmS5iZUooHgPdL2OZY8Gha9y0uIlFLWEcto3/bA+FbWOoTq0ShKMoaCEnuUQSdBXKFlrYSWFRLW/+rh/brqF1bg2aoeL0GCf65QhxWkhaw3yzf5CMOnqiD0UIIYQQQgghhBBCCCGEEEIIIYQQQgghhDhsEkJygjVMm8m6px7HLJpYpoWqqSQf2IaZLKLXeghd2wkx8Dp15jeFDritQtnkt2/2cufrPdT6nXz12tmcPz2OQ68US0QbfSy8tBWHW6vMxA3UTlG8sS/DOVFcb1o2L28f4T+f2MxgqsiHl7dx8cw4Ee/hzXLpbAsS/+xCzGQB1aOjR93jxyRObYqiYNS40UNOaj46h2JPGi3kxBwroO0tNLCLJuln9xBY0YLq0QnfMB1zJIdVMol+eDZW3mT0Z+sBCFzcSuqJXeMzGet1HqIfmIVxCLO+6k4ns869kOZZcymXivgjUXTHRF/VVIUFLWEWtFTPKK8oCu3zY0TqvWSSRfZsHiMYU3j9/v9mtLcHgFwywfbXX6G5cTZnuC/GvHOEFk8rLTd8mUce+R8Gd26l++zz8IYjR/xzFSeeo85L7JPzyG4axSqYKHVehnJlus+qIzRFiJJmqHSfVU9hZwLVqTN23zasZBGjzoP/klYU/dAL2WKtbVVtXWeehaZPLgwxYh5iH55DaTiHoqsYNS76M0Xuf2YbP395J501Pj5xfgcLp+jz+9ObzPPvj2/m8Q2DTIv7+No1czirM3rI64vjI+hxsLht4lzTm8hx38pefvnKLrriPj61vJ2uOh/2SJ7kA9sxxwroMTeBS1tRpvgI951Zh6Kq9G5ez1M/+d54+9bXXiJUV8/5t39kUjiZEJZl8+ZYlvvVPLffOo1i2eSu7SPYL2zjA0tbafbCUz/9/ngACUBysJ/k0ABdZyxl8ysvjLcrqkqksWnK/ZTH8qSe2E3mpV5QFPznN+E7uwHNd3jFjOE6L9d9aSF7No2RHM7jdOusf64XTVcJx92M/GIj5kgeANVv4Du7kfymMfwXt5IezWM4NSnOexfbMpjm//xuAw+s7mNJe5gvd2RI5Mr47Qi5TQOUByshOqrXIHzzdGzbJvtCL8VdKdxL68jPjxGJuEjdsYnChlEUl0bwqg4882Kojsnn1oaQezxYSoijQQ+40LwOUo/uIHBZO+mne1BdlQBIABQ498bp1LQG8PgdNEwPE6n3Hnij+7Atm/yGEUZ/vQkrXcJo8hG+flpVEMRBj9XhYO5Fl9K/ZdOk9ulnLachWrmXsWfjOvZsWk8ulQTg8Tu/Q/eZ5zL38hXUTevGDDl5eOsw33pqC4aq8ukLu+iKefnG7zby4Jo+2qMevnbtHM7urJkU4iqOD8c0P9qKMMrGIjhVSpvSZF8bqDypQOCyNlSPgZUpAZB6bBfRT85j+tJaNr7YD4DTo5MJapz9oRloeRO9bKMli6Se3F0JZjy3EbtkwT5ZT11xP11xf9Ux5UplHlk7wNfuXctYtshtS1r4+HkdNEv4ojgAI+KmGHBS2pPFSpfwnddAeTBP6dk9ADjaAmh+B4mfVu51uRW4/JpORtw60UYfik9noD/Bt5/eis9p8JkLOrlqXj33ruplxV1ruH5WLTec20VT3IuvzndY9xNOtMLOJKO/2kh5MIcWdhK+cTqudxhuJQ7MoWvMbAhUxp5vDFDsyeBs9jN61xbsXBlHZ5DiPAX/h9pxOX3kgfRAlq4z6ilky/RuGGX5TdNP9MsQ4rRxSaqPC7M5NjrXnehDEUIIIYQQQgghhBBCCCGEEEIIIYQQQgghDtup843l01AxnyM5NMiZ19yAmS9A2Sbx0HbMZGVG9nJ/ltE7NmGmiwfdVqls8f+e2MyvXt2NadnsSeT5xI9eZe2exPgygRoXwRo3r/9uJ0/9fCODO1Joh/ml9VW7x3j//7zIkxuHWNub5Mt3rOTB1X2H98L30kNOnC0BjBqPBJCchhRdxdUVxr+8kcgt3WgBB9mVgwSuaEOLuLAKJrZl45oVxdURxLu4Dv+yRtzdERSt0h+MBi/FncnxABKAcl+WwuaxwzoWf7SGcF0Dtm0zsmc3yaHBQ143GPfQ0BXiyk/NY/pi73gAyVviLR34tnkwd1WKTa1sGevxBMsuvImupefSteI6VE3ynk4XjjovpfYgL25J8MtvrWbdc734wy60/cyMraoKSslm7K7NWHvP7aW+LMkHtkPZOuT9ZlNJzrr+Vtz+AJphMOeCS1BUlWxyrHqfbh1nkx9HnRdbVfnRCzv42r1r2dif5oE1fbzv2y+yoS95SPtN5Er86a9X8tj6QWwbNvan+fD3X2LzQOqQj10cf6Zl891ntvN3961jY3+a+1f1cet3X4KyxdhdWzDHCgCUB3OM3bMVVddwX1KH6jdQfQah6zpx7i0KG9i6pWr7G55/erzQV4i3bOhL8Xvff5mMDV9+ehPX3fEG339lJz94bgef+vGrJNI5cslE1XpDu3ey5LqbmH7WclAUAvE6rvvyX08ZvgSQWztM5oVesADTJvXYLgpbxt7RMYfrvMw+t5FFl7XQMC3E2Td2ccufL8banhwPIAGwUiXKg1msVJE3HtnFT7/yIr/9l9fp2TCK/bZQFfHukCua/K/713Pfqj78LoOvnd/N9ldeIBpvwi6Y4wEkAFamRO6NAVIP78DKlgle00nRaxDrCpF/bg+FDZUZse28ydgdmyj1pE/UyxLvMuWQA+/SBkq70zhbAuRWvu36yIbU/duYe2Ytc85vOuwAEoBSf5bhH63DSleCI0q704z8aiNWtnTY2+o8YynLbrwN3eHE6fFywQc/RqSxafz827tpPYXM5PfOhpef5sn7f4AS0Xl2xwif/slrvLErwcs7RvnI91/mha0jPLC6D9uGrUNZfu/7L7OhX8a3J4I7GiQVSLDB9zqJkf6JABIAG9JP9+BZEJu8UqHMebdM5+LPzaX+mhaC1zRTSBR55rvrePInG3AN58i+0AuWDaZN+ond5A/jHsKqXQk+/7PXGUwVKJk2P3x+Bz99Yad85osDUnQVR3sQR7OP1BO7Sdy3HXN0YjzpmhYm+0r/xAo2ZB7cTthr4Au7eHLjEF/4+Rus6kny/NZhPvi9l3hlxyh/ddcaRrJF/ueVXVzxy9f47e7RUyqApJwoMPyjtePjI3O0wPAP11Iayp7gIzu99Y7mKO5M42wNkHxkJ3aucl+1uCWBc6PCcHIPRZ+Dta8O8MRPNvLagzvwhpyc/74ZBA4h9FkIcWhMKv/GoSiHfg9YCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQ4WRz1by0riqIpitKgKErLW3+O9j5OF5pu4I9EWPf0E1imWSmQKE8uajBH8uPFwgcykMpz52uTwxFsGzYPTBTjDO5Kc/9/rmS0N0spb7Ly8d288chOLPPQvwT58o4RTGvyMX7rqa2MZQ8elCLenRRdxdkeJP65BYSum4Z7Tg3xz86n7vcXEbi4BT3orFpHj7pABS3kovS2Qs63lPozh30cI3t6uO+b/8T3fv9T/OhPvsDapx+nVDz4e+stnoCDUF0Yp3dyEZ5hOjC3VR9PLNRKqXQ+G57LMZCofg3i1JQZK/DAf61i6+tDlEsWu9aNcv9/riT9tuKifZmJApiTz5vloRz228J1DiYQjbHy0QeZsfw8Fl1xDXs2rUfTDV6997cM7ti23/V6Ezn+5+nJz+dKJuv7Dq3Ics9Yjtd2jk1qy5cstknB0EltTyLHD57bPqktWzQxU0Xsojmp3UoWMVMF1g09T//sQVy3NeA7qwHNYwAQjNdVbT/e3onTffgFyeL0tnUoTdmyaa/xsrpnckjNlsEMPQWd2RdeMqldUVR84SjP//pnWDbc+tWv876/+wYdCxejqlrVPmzTIvd6dZBYbt3IER27021Q1xGkdXaUQMxDaXd1EER5KIfSEeLVB7ZTKpgM7kpz97+9wbCERrzr9CVyPLyuUkT8hSVtvPijDYTq2hjo24aZrB5blvqyOC+rw3dNG+7ZUcKtQfSyRW71UPWyU4x7hTjakkM5fvWvb/L0i/1YtZ4pgxWsTAntCPIWysO5yv2Nt7f1ZignDv366y2+cIRlN9zG+/7+nzn/gx/j1fvu4md/+Ue8/tB95DNp/DUxok3Vt50WXPoeNKeLHz6/o+q5ZzYPMS3uG39cMm22Dsn5/ESxyibDe3ZhWEb1c5kSivNtYwJdRY+4cXoM7tgxyB88tQF32Wb9r7eRGs4TiHkw9wY8vV1+zfAhH8/qPdVhe796dReDqcPvv+LdxRHz4FveiP+WNvQVEaib6NP2FPde7YJJ/4ZR+nck+c4zWyc/Z8MTGwZpDE0OhPj5yzvJlSZf053MzNECVmpyAJVdMDFH5f10LO0czVIazGJPEX5bWDdGOFDLxhd7ee2hnRRzZRKDOR7+7hoSQzIWFeJoMt8K3rclhEQIIYQQQgghhBBCCCGEEEIIIYQQQgghxKnnqIaQKIryeaAfeBi4b++fe4/mPk4n2bFRArE65q64jO3b30T1VhdcKA4Nxa0fdFtuh0ZDqHqmwoB7Ypsje9LsW1+09tleMolDDxBxG9XH4nVoaKpyyNsQ705awImzxY8RdaN5HWgBJ4oydb8x4l6i759JeTiHszM00d7kI3BJK45GH8We9PiX6cumxXC6QKE8dSFGuVTihTt/wZZXXgQgn07xwL//M4PbJoo8UsNDbHzhWV6861dse+MVcumJkIZSIc/grh3sWb+W897/ERRl4tSpugzUcHWQSioH/duy9Lw+BDn5ovHpIjGUIzU0OXAkM1YkcYCiYXWKoB3FpaEFHIe831hbG0uuvZHtb77O2qcfp33hYmJtHbz+4N089F/fJJ+ZumhS1xQ8jupCfod2aB//HoeGd4r1/a6Dfy6JE0dXFFxG9e/Y9Oiw72lXVyjrJdIjIzz2s2/x46/+ASO9PezZtJ5NLz2Hqmk0TJ85vrjD7WHZDbehOw69/4p3h7fGnPv5aAcUZp93EQuvuAZ3IEhNcyvn3/5RwvUNNM+eR8+61dzx939FYT/nMwBUBUeTr6rZ0VDd9k7Ytk2pP4OzO0zgklZcMyLjzzmnh9mweZRSYWKsYZVtxvoklOndxu3QqPFVzoFRSyU5lMcTmsWO9avQWl0AqD4D/4oW/Bc141leR97MMJzuQTUqn6mqU0ePeaq2rfmrrweFONrGBnLk0yW2rhrmV99aDbVeUEExVPznN+Ff0ULwynZUxzu/XaT5qvuy6tFR3+EYUlFVtrzyIo/+z38w6/wVzL/sPST6exnavYua5jb6tm7inFs/SLi+AW84wnnv/z26zjwLVYGAq/pYvE6N/D7XjsEplhPHXiGXxTJNWubOJ1EYGr9L6WgLELiklcBlregxN1rUhep3EL19Jnqscu/L59QJeQyUoYl7WumRPFbEVbUfo8nHaKZApnDwIMi3zvFv1xzx4HFWXxcJsa90YpjB1G529qzijTceRF8WAl2tDJL1yQNltcaFp8aNayTP385v4YtL23j77VW/S6+6zzUt7sM4he7Bqh4dtH2OVwHVI+fcYyldMCl2BdH81eczLeZiZGgPlrlPYJMNgzslkEuIo0kd/8e4U+e8LYQQQgghhBBCCCGEEEIIIYQQQgghhBBCvOVoVxF/Eei2bfvQpxh9F0uPjmCWiyiKgrexBtVt4F1WT+b53vFlQtd2oE9RQLEvl6Hx5cu6+fzPXh+fcPiMlhBzG4PjyzimCDPxhhzoUxQq78+ZbWECbp1kbqJw4w8u7cYvBTviKFI0BffsGoxGP2a6iJ0rU+rL4GwLknx470zWCoRumMZQm5dvP72dR9cNsLgtzGcu6GJWQ2B8W8lcicG+PjY+/9R4W31HNwvOugJHykl5JEfJKPHir39JXbyTsBJnbPMeBndsp3PxUtY9/QTeUJhnf/EjCtkM4foGzr7l/fijMUK19dS0tJIKp8n/fCOYlTef2hViw/bK7MnugIPAFEVM4tTkcGmV743vE+hkHKAgzaj14FlaR/bFvkqDAsEr2zFqvQfdXz6TYcebr5FNJkiPDLPshluxFYXU0CC2ZaFqOv1bN5EaHsLlrS7Crw24+fLlM/izO1eNtzWGXJPeIwfSEvHwZ1fO5C/vWj3edtW8embU+Q9pfXFi1Ifc/PFl3fzVb9eMtzWF3KwzS8w8t4n0U7vH24OXt/Pyi/ex5olHALAti8HtW0j09/PiXb+imMsy+/wVtC1YRKCmltqOTmqaW4/7axInv5l1AS7sjvHi1hGumFPH79b2Y+4dlK6YGacj7iXkDjPrvItomD4Ds1giMdjPI9/+DxZf9V6WXHMDT/74uyT6+4g0NE25D0VR8CypI7tqCCtdmVFdi7pwzayEhdgli/JQDjNbQgs5UZ065aEsKEqlgPkgxY6FrQmGvrcG9oacuWZFcc2OonoNHHOirP6n16rWMSSU6V2nLujmK9fMrlx37S0mXvVkmvNv+zgDhR5qzq/HCLhJPrgdu1TpS/pMPwOB7cSaWnH5fKhunfDVHQx+dzWUK+8TZ3cYLewkvy2BnS+jBZzocfd4cIkQR4vDPdGninmT++/czKVXd+KwbFKP7cLKVM6vuTVDRG6dgR52YSYLlIZyqIaGGnRgjRWwTAsj6pkyWE+v9eA9q57MC3vvbSgQuq4LPXzwextTyWfSrH3qMc646r2seeIRLNNk6XtvYWjnNh797n8xf8VloMCym95PtLGZeFvH+Lq3LWnmwTV9459JTl3lstl13PFqz/gyK2bEmVl/aONjcXRlRkbQDJ3U8CDBmXX4rm+htCqBHnBOXPurEL6pG1dXEM0/EfB40cxavvfsdlSPxpJLm+nsCKIUTFS/g/TmUezU3rFC2MlYo4e7XthJwK0zuz7AotbIfsN0F7SEmVHnY31fpRjf0BS+fFk3Pqfc9xIHN9rXy/3/9k/MvfASYtM6yXhzRGa30b91Cw23ziD5261YqRJqjQvvFe1kfruZbLJEGLgp5iJ+/jT+4olNuA2Nc7pquOuNiXOV16Hx4bPb0Q8xVPRoKI8VKI/kUB0aesyDup97H+XRPOWRPKpbR49NjF/0GjehqzsYu2vL+LKBS1rR49VB2uLomV7nZyRv4s+aOKeHKWzcGziiKxjnhFD0MVStOnDENUWImBDiCNhv/WUfeDkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEOIkdLSr5nYBiaO8zdOW4Xbx8m/voG/LJs6/7sM0zOgATSFwSSu2aaF6Kl/cVvY/pfy4lbvGeHbzEH94aTeFsolTVzmjNUJ9aOJL3bGWANEmL8O7M5UGBZbfOA33FLMi7k93XYBffGIZT28aZCRT5PzpcRa2hA73pWMVyhR3pyn1Z9ECDhxNPvTQOytIEqcmq2hS3J2i3JdF9Rk4mv1VRWl6yIkecmJc30Vpd5rB/1458aQNY3dtYeNljfzkxZ0A3Luyl5e2jXDXZ5fTEHIzlCrwjw+sQy3mmFnbwGjPTtpmL+Ts2TdgvpAib/cw4OkncFsXsxvPwXw2CZaN1xHFdVU9j3/vvxncuY1pS8+mkK28b0Z79/Dsz3/E9LPO4T1f+GNUTYNuJ/ZHZ6MO58llyqzbOMb61wYAWH7TNDxTFOaJU1Oo1sPCS1p4/Xc7x9vmXthEuM6z33XMZBFHkx896MQuWyiGiuLVKY/lD3re2/b6yzzyP//B3BWX8+q9v5n0XNOsuSy84irWPP4ITndl/7ZlU+xJU+pJozhUHM1+rp5XT33QxdObhmiJuDmnK0Zr9OABKADZoknQrfPly7vJFk0cmkrYYzCSKRLySL8+mV27oJGmiIdnNg3RGHIT9RrU2CpGo5fwLd2UB7Moukr2jQHOOPNyNr30LOnRYTrOWMLKhx8k3NBEMZcFYM2TjwLQtfgsPMGghJCIKWkqXDu/gZm6QShZ4m/aaunzqGzFZGl7DSG3A7Nc5vk7fsrWV1+atG5mbIRMIkGkoQmX/8AhR456H/FPz6fUnwVVwajzoIdcWMUymRf7SNy/DWxQnBrBK9tJ3LcNu1gpvgu/d/8F8GamyNhvNo0HkADk1w4T/eAsXNPDKLrKOTdN49Hvrxt/vn5aiJrm6gAocfq7ZGYtd376bLKpIsa8KG5Xmad+8p8k+vtYdvVttK+dPh5AAlBel6LzhjMovDaMFczhaPbhaA9S+/mFlAZyqG4NNIXC1gSpR3ZiZcuggH9FC/5zGlEl7EYcRZE6LzPPrmfdc5WAkJHeLIM2xHYkxwNIAIo7UhS2JbAKJsM/XIs5ksdzRi1WrkR+7QgAesxF9AOzqsL1NLdB4LJWPPNqMNMl9KjrkAL49kd3uoi3taOqGumRYZbfcjv9WzbSt3UTWBZvPvzA+LJXfv6PiATqKe5KY2ZK1LlVvn7dHF7bnSDg1on5nXzvmW388WXdKEBX3MfCljBRn3P/ByCOGafXy45Vb7Lq0Qd57f67cfsD3PixvyFzV9/EQhaM3b2F2s8vnLTu3MYgP/7YEuJ5G9eOFMlfVYJBFbdG5LYZlZAn26ZkqPRtHuVsp85d28dY35vCZWjMbQpNeUwtEQ/f+dCZrNmTJFM0mV7rY2adhNSIQ7P1tZcoZNK88rbr9xnnnE8xmyVVGqHjtgvYs2aETMGkZfUwVnLivMtgnvO0Gr64ogunrvEnv17Jf77/DHoTeTRslng9GL05MgMFHE1+jNr934c4Gop70gz/YA1mogiAd2kdgUta0fYJ2i3sTDL8g7WVzxAF/Bc24zu3Cc2to6gKnjNqMRp8mGMFtKADo84rIWvHWEvEQ2hnEs2lUfbp4//WYDT42NG3hpingYgnRuwGWLthjC2rhwnG3dS2SeCsEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhKg42tVMW4EnFEW5Dyi81Wjb9v85yvs5LdiWTTZZyWwJhONYqSJWqoTmNkBRsLJlcquGcTQFUPYzQ+tbNg9m+OlLuya1LWkL8+0PLSbornw5PBB1ceWn5zG4I0U+Wyba4CXWcvhfLp5ZHzjiWYKzbwwy9pvN448dHQEit81EP4xAFHFqy60eYvSXG8cfG01+am6fiRasLv5SDQ27bFE1aWDZwsqVJzUNpApsHUzTEHKzsmeMX7/Wg1NXufiK95H8/jeYv/hyzKdS48tb2TJWfwHzmcTE7IRFi8JDA3QvWM7CpVfg0QI03z6LV5+9h96tGwBIDg9iWSaqpuF0aMQ6wtABqZEcbUEXdbOiRBo8xJrlC/ynE93QWHRZK00zwqSG8/gjLmKtfgzn/j9OrUyJsTs3Teq/qt8g+qHZVSEkpaFcJRzC0FCjBi/f/WsMp4tiNlu13WxiDJc/yIqPfoZALA5AYVuCoe+shr0zvasBB7GPzeWC7jgXdMcP+/VuH8rwtXvWMZguTGr/7ocW0xGTwvuTWcBtcGF3nAu749z/Rg/2cJ5YUANdI/NyL8WtyfFlywM5llz0Xh779f/QeeZZ2KbJ9jdfq9pmNpVg00vP0zhjFg6XzFwtJlvXlyKaMfE9vINSsRK+EHNqNN4+g1i40l+scpn0yHDVuunRETyhMPMvfQ/RppaD7kuPutGje7dZKFPYkaQ8ksMuWmgRF+ZwHrtgknpsF54FMTIv9VHYOEp+0yi+JfVTbtPKm5SH8lO0l1H0ymzzXYviBGvcjPRmcPsdxFv9eKcYt4jTn9PQWNgSZk1PggcjNjdOC7Huqcp51e3yYQ5W9yVltNInAfRaDzUfno1R68Wo9VIezZPfPIZdtPCd3YCVLZN+oZfUIztxdYZwtgeP6+sTpzeHW+es6zrpXBQnPZonUOMmVu9h9NmeqmXNbJnCk7swR/KgKuhhJ8lX+8efLw/myawcwj3DwkoW0IJOjFoPiqGhuQ20jtBROWZd11l8zY1sfP4ZXF4fhtOJ4XKRSyarlg35ahn6wVrK/ZXxswuYdXkLj2WL5Epl/uvJrQA8t7USpPLv71tIzC/n8hPFGwqTHhkaf5xLJckMDGPss5ydK1dd+wPMbgiSfXOQ0Ud2YjR4cc+MYpsWpZ407jk1pF7qI/t0Dx7AA3x0ToR/GE2xayS33xASgMawh8bwsQ14EKen1PBQVVtmdIRF73kvu1a9QeDyAEVFwZcqojy1u3oDvVmaZgX4sztXUbZstg5luGFRE4UdSQa/vbISrgOoHp2aj8/DUf/OA54OxCqaJB/eMR5AApB5sQ/XrCju7sjEctkSo3dvwbMojuLQUBQwU0VKvenxzwDV0HC2BODgw3xxFBkuB2O/3YxnfhzbslFUhfzqIVrnz2bkB5VgRRU487wmZl3QSLDWSzAm1/lCHE2KXTln2/v+m4YQQgghhBBCCCGEEEIIIYQQQgghhBBCCHEKONohJDv3/nHs/SMOwO0PMP2sc3jlnjspO0xQFcxkkdybg8DEDO52yUQ5QIE7QCpfqmpb1ZMknTcJvu37w4Gom0D0xH6huDySq8xS/zbFrUnKfRkJIXmXKCcKJO6b3AdKu1MU96Rx76eYVws5UQx10qzyqs9ge6G677v2zqi6Z6xSAFooW/zNy3k+/4E/xeeLU2ZygZ2dKVcFnKhunSZfN5mHdmMyiheNC5d/kIdL32Zw13YWXnYVulHdX/0RN/6IfGn/dObyGrTMih7y8laqWNW/rFQJe58iusLuFEPfWT3e7uwMMv+cK3jkJ/+PUF110fycCy+mdcFiInUNlW0WTZKP7hgPIAGwkkUK2xIY8XdWQJctmVUBJABjuer3nTh5zcnYqI/sIb23a3iX1IEJxR2Vwl27aNIybQG3fOXrOL1efvW3f8GZV9/A+mefnLSdtnkL2b1+LYpy4GA08e5UKFm0785iFyc+p+2CCetGoKtSqGi4XHQvO5eBbVsmrdswfSbeUJiG7sMLuLEKZVJP7Cb1+N4gPhUCl7SRfrYHK13CTBRQfRNlzMVtCdhPCInmc+DsClHYPDapXa+ZOB7doVHfFaK+K3TIxyhObwOpAj96o4dndnn40jmXsPnh37J9wxvUtV+FuW1ygJhiqOP/X+7PUupJo4crYWRmokDq8Z2YI5XPXC3sJHBRM8lHdmImqj+HhThSnoCD1jkT41nbtvHMrSH1xOSCeEe9l/TeInnVa1Aem9wf9bgHxbQY/I83xttC13XiPbMeRTu644W6ji6K2QyG00kxl2PbG68x/azlvPnwA+PLKIqK1wqQ7J8cAhB+oZ/Lz6/l609u2XezbOpPVbWJ46tj0RK2vf7K+OOsnSGouidd12hRF1qg+vrbLluYYwWMOg/OtgDJh3dUnlBAcekU1kwOPzNWj3DjxQ0My/WMOEa6zjyLTS8+O6mtZe4Ccokxpi9bjqap1O4NF0uMFSjtTk9adrTOzardCQJug5FMEbehYZs26Wd7xgNIoBKom18/fOxCSHJlClsTVe3mcG7y42wZz5wa0s/uqdz7oPLZ4JoVqVpXHF920cR3TiPJh3dg500AHK0BFGvycrlneqj74kIcEkAixDEkKSRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIU496sEXOXS2bX91qj9Hcx+nE8uyiLW2s+jKa3jziQdQHGqlOHIvu2CSfX3gkGZK64r7qtrOm15Dje/kC/Wwy3alKHUf1hRt4vRkly2sbHXRz1T94i16jZvo7bPGi4m1oJPw+2eQdkw+jV02u3b8/dAWnQhe6EsW+Isnhxl0VIecqD4D9qmR8yyKk3lkcliJ+XySpStu4uKPfYb2BWcc+EUKsZcWcVX1Ly3gQAtN9EWrZJJ6ZOekYJLClgRtdXNQVJUNzz/Nue/7MJHGZvzRGhZf9V6yiQShWBzd2FtgX7YmzVL8FjP9zgvsWiMemvcJ1VEUaK85NoVO4ugrj+TQHt45qd4h81Ifru7w+GPFqRFoqaVp5mxGenaRSybY8uqLXPzRzxCubyAQi7Pkupvo27KZxVddh+F0nYBXIk52bVEPzswU55vRyeelWFs7Z15zA/5ojEhDE+fc+kF0p4vaji5c3sM7t5T6sxMBJAAWpJ7ajWdBHKgEOZipif079s7GPhXVqRG6qgOjsTKGUBwaoRumYRyjwk5xemgMuzE0hW3DWdYG5zDt8hvo37WFwgwLvaEyDlUcGv6LmsntUwj/9muf/Kax8QASAHO0gJkuoQYcaGE554pjT1EUPGfW4Zq5t2hcU/CvaEGv9eCaXhkzWJkSemjytZR7bg2ppyYHl4zds5XS0OQQnqOlaeYc3MEQtm1RyuewTIsFl12FNxwh3t7J9X/2FTSrOsDVTJco5U0Wt4WrnpvTGDomxyoOXayllWU33kYwXkswXktez+C7vgXVU/ldajUuIrfOQJsitFY1NLSwE/fsSgjCOBuS92/DMz9WtY7Tho6YfL6LY6OuYzrLb7mdUG09gVgtZ11/Ky6Pj+d//TOcnsn3bt1zomhzo5X7BSqUFsW4ayRF1O9kLFukLephTkMQ27Ioj+ar9mWOHbugMtWj45wieE/bJ9ha8WqUB7LjASQA5YEspf7cvquK40yLusivGR4PIIFKEKmZKU2+R2XZk4IkhRBHj0T4CiGEEEIIIYQQQgghhBBCCCGEEEIIIYQ4lVVXZxwBRVHuoXparwTwCvAt27arvzH9bmbbrHvmKeZfcjnx9i7MKWZiLfVnoWiC68C/qqXtEb5wURf/74ktlC2b7loff3DJdJyGdqyO/h3TQk5csyLk146MtymGihH3HGAtcTrRg048C+NkXxuYaNQU9AP0AUVRcE0PE//cQqxsCc3nQAs4+L24m4UtIdbuSdIZ97GoJUTIUylOmtsU5A8umcY3H91M2bKZWe8n2BogeGU7iQe3g2Wj+gwcrX7CN05n9DeboGyjuHXsgALmPqczC5o7ZuPprgEgm0wyvHsH5UKBSEMTwdq6o/2jEqcBR72P4HvaSTywHcxK/wpd14URm+jvdt6k2JOuWtdKlLn1a/+b1Y89TGp4mGU33MbuDWtY+/Tj+CM1LLvxtvFlVY+Bb1kDiXu3TtqGc+8sy+9EPODin2+az+d/9jr9yQJuQ+Or185mdkPgHW9THF9Wrjyp6OgttlkpMlKcGpFbujH2KSbrWb+GXCrJRR/5NOmRYWzbpmPREuIdncfluMWppzHsYXR+DHPz5BnTvWfEJz02S2WiTS0sv/V2nC4PicE+1jzxMB2LFh/2Pq10dfCSnSujOFRUr4H/ohYSd28BwDU7imta6IDbM+q8xD46h/JYAdWpoUdlNnBxYB01Xv711oV8+Y6VfOvVEeY2dPLPf3IZRilNOVTEYfoxvG6KGzOUdr/tc14Fo3ZiHFDcmazadnkwR/CKdow6uUYSx4cRdRO5bQblkTyKpqBH3Ciagv/cRoq7kpT7c5SH87jnx8i9OQhUruPZt27ZtLEy5eodHAWqpmE4HLx8z50sve4mMmNj2Nhc8vHP4g1FyIyNYvptUBWwJq7lnGfGKbk0rl/YyO6RLK/uHENV4KPntLOoJXRMjlUcOncgSLSxheW3fpBysYjb5+d3D/wXF9/6SXy+aCXA8QABu0ajD0pW1d1Iu2ShOCbfE1MDDiKNfqY3h47BKxECIo2NNHTPxB+L43C6yCUTWJZJIBZH1Sb3R0fEjXVpC5vbfAxmCvxsQx/zWsM0h9387xvnsbg1QsvecF3fWQ2M7to4aX337Ogxex2qoRG8uJVSXwZzOA8K+JY34mjyT15O1yr3rvdR7sscs2MTh0bzGpQGpvjdDOVQDA27WLlPYDR40SMSeifEMbF3bGJV/ZOpEEIIIYQQQgghhBBCCCGEEEIIIYQQQghx8juqISTAViAG/Gzv41uAfmA68G3g9qO8v1OaP1rDvBWX8vj3v0VycIDrf++vMPZZxj07iurdt7VawO3g8yumcfX8BrJFk+aIm4jXedD1TgTVoRG8sh3V7yC3cgij1k3w8nYJIXkXUXSVwIoWVLdO5rUB9BoXoSvaMeoPPhuxHnLC22bgjnqdrJhZy4qZtVXLBt0OPn1+F1fMqd/7vvAQ8Tqwa7w4p4exc2W0sAs95MTR4MfR7CfTN8zmtS+h7Rig1hPHyk4U0ClODaOmcoyp4SEe/va/s+31VwBw+wPc8OdfpbZj2pH+eMRpRnXreJc04GgJYKWLaGEXjvrJMyCrXgPP3Cjp53ontSfNIdY89DRnvOc67v7G3/HGQ/eMP3fxRz+DwzW5QN49rwa7ZJJ+dg+qWyd4WRvO5sn7OlxL2qP89nPL6R3LE/IYtEW9KIrM5XmqUANOtIgLc+RtOXCagrMjhKM5gF7jwqiZ+PyNtbbj9gfIpZLMvegy7v+3b5BLVkIlWuct5NJPfgGjpnpGeSEcukrN7BpSZZvcE7tAUQisaMHZMRGENNKzm6d+8l1G9/QAEK5vpHvZucy96DKc7sMfB+oRd1WhuRZx4ZoZwXtmHapTw6j1oKgKWo0b7SChflAJdHJ4Dj72FgJA11SunFvP7IYAI5kidQEXcZ/Bqsde59Hv/hfYNigKN33pa7iXRCmtTqCFXASvaMNomPh8ds+tobBpbNK2XXOieObWoOjqcX5V4t1MdWg46iZfkxm1XmIfn0d5OIeia2ghB/7zmrDLFopTI/X4LuzCROCZ4tbRQ/sPjDhStR1dqKrKs7/4Me5AEG8oTMusefziK39KuVggGKvjug/+KeYLScyxAp4z6/CdVc+t4UqB9YLmEDtGsjh0lfYaL0795AtufbfRHQ7WPPkI2954FQCn18u57/swetSLI3rwaxlHjQdKFoqhYpcmUnFUn4GzO4yrJ01h8yh6SwDXRc3UtQRQVbmeEcdOqLae4V07ePi//hWzXLmntPDyq3EHqgNCG2M+fF4HO0ay/MO82v2el1wzwgSv7iD1xG4UQyVwSSuO1mMbDmrUe4l9ah7mcB7FoaHH3Kj7hF2rhoZnfozEPqGqru7IMT02cXCa34l7Tg2ZFybfZ9LqXRitPkq70ri6wwQuakE7hH97EEIcPntv+Igtww4hhBBCCCGEEEIIIYQQQgghhBBCCCGEEKegox1CstC27fPe9vgeRVGesm37PEVR1hzlfZ3yFEWhZ/1akoMDALzxygOctey9WK+ksUsWzs4g/vOaULRDKzwzNJVptf6DL3gSMGo8hK/pJLiiBcWhoR5CUag4vehRN8H3dOA/vwkc2iEVBr8Thl79vlB0taq4TlEVjLgHb1gnpnSy/pknabpsJuXHRjETxcqMyTdPx4hWQh/2bNowHkACkEslef7XP+eqL3wZ3XlyBgCJE0d1qDhb9l8gpKgK3rMbKA3lKWwcBV1BO8PPa2/cy6bXn2fG8vN5zxf/hNWPPzweDtE0a3bVdvSAk8CFLXjPqEPRFdSjVEhfF3BTF3AffEFx0tH9DiK3zWDkF+sxh/KoXoPwDdNwtgdRpii+jDQ0ceNf/T27165m+5uvjQeQAOxY+Tp7Nq4jICEkYj80j0FoWQP+uTWAguabfA5a//zT4wEkAKO9PaiaRtuCRe9of3rcQ/QDMxm9YyNWtoxe4yJ8ywyczROf+84WKagTx15r1EtrtDK2HNq1g8e//+1KAAmAbXPnv32V2/7+/1B7cScYKpp7cr90dUfwLK0j+1IfAJ4ldbhnRSWARJw0NJ8DzTcRLKJ5J/4/evssRn65AStZRAs6iNzcXQmJOkZqmlu5+a//kTVPP8ZY7x7OuOo6Hv3Of1IuFgBIDPbx43/9I97/1f9DTbwR1eeYNOYJehzM8xy7kBRx+Aa2bR0PIAEoZDJsfP4ZZp5z4SFvw6jzVvrirzZgpUpoYSeRm7txNvhw3DodK1tGcemoDgmdEceeoii8cOcvxgNIAF5/8B66zz6Pxu6ZVcsfynlJ8zrwL2/EPS+Gok4+Dx9Lut+J7j/wPS733BpKe9Jk3xwERcG3vGFSEKE4MRRNwbUkRr4vhbk9DbqKttjHYw9+l7NuvJW62m5UjyHjTSGOpfFLQvvAywkhhBBCCCGEEEIIIYQQQgghhBBCCCGEECeho131H1MUpcW27Z0AiqK0ADV7nyse5X2d8sxymZ71E9ksW1e9wshADxfe+DGaps9GD7tQnYf3K+pP5tk2lMHj0OiM+/A6Tt5wD0VT0QIS1vBupqjKSdcHDMNB69wFtM5dAIA5s4iZLqJ5DbTgxLEm+vZUrdu7aQOZTJrdQ3mS+TItEQ+NYQluEIfGqPHgubqB/mf3UCrleePJHzPSuxuAzNgIHQsX0zB9xiFtSwsc3YKkHcMZesZyRDwOOmM+DClSOaU4m/3UfGIeqeEcacVmwO+g5QCzsMZb2/GFI7xyz6+rnhvp2X0Mj1ScDvaM5dg5nMXn0ul0eHG/bSy6a+3KquV7N2/A6fa8o30pqoJ7VhTjCwuxsmW0gLMq+ESI4y2XTGCZ5UltZrlMIZNGa5t63KsHnYSv7sS/vKHyOOKWglBxynB1haj93ALMdAnNZxyX67vaji5qO7oAGO3bMyngCirvucHeHUQ72tk2nKE3kScecNJR40ObIoRNnFjJocGqtv6tmylkMzhcrkPahqIouKaHiX92IVa2hOo3xoMTFF1DCxw8fOStMYzfpdMZ9+IyTt77aeLkls+kySbGqtozY6OHtH7vWI4db42nY5PH07r/5AtR0sMuQjdMw3dhM4qioEdcMo45CZRMi/78GCuT99OxdDGlcoHXn/gBo717mH7uOdRO6zrRhyjEaU/Zm0JiIyEkQgghhBBCCCGEEEIIIYQQQgghhBBCCCFOPUf7G/V/CDyjKMoWQAHagc8oiuIFfnCU93XK03SdaUvPpm/LxkqDotA0bQ7BYLwyS9phFses3ZPk4z98mZ6xPADvX9rC7188nZqDzFgpxOnMLluUhnPYRRM97ELzOUiPjtC/bTO5ZJJIQxOx9g4MY+pCDi3gmDLQIdbWXtXWdeYyfrNmlK/evwHbhhqfg+986EzmN4eO9ssSpxjbtikP5bBylSJ5PTT1edkR9LJ504tseeXFSe2h2nrG+nsZ2LaVcqlIrKWNWGt1HzwWnt08xKd+9CqpQhlNVfir98zkliXNuKUo75RRLFvctWGAv7hrFSGPgy+d0cKFLWHi9X708OTCzlIhz8C2rWTGRulYtIQ3H75/0vN1ndOO56GLU8zK3WN89PuvMJguAPDJ8zr49AWdhPbO7N591jnsXrNq0jqtcxey+ZUXqGluI1Rb9472q4dcEDrwMrZtUx7OY2VLaAFHZR0hjgF/NIbD7aaYy423OT1eBiw3tSUTpzG5EL48nMPMlND8Doy493gfrhAHZOXLlIdzgIIec6M6pg5y0ALO4xYuObx7JwM7tqEqKvG2DjyhME0z57B73epJy4Vq63l4bT9f/MXr5EsWDk3lf984j6vm1aNrUhx/Mok2NlW1dS5eijsQnHL50nAOa+95c9+xrB5ywn6utQ7kzV1jfPQHLzOULqIo8KnzO/nU+R0E3Sdf4IM4+flCESKNzYz07JpoVBSCsfhB1121e4yP/OAVBlOV8fQnzmvnMxd0jY+nD6ScKGAmCqhuA73GhaIcv9Al1dBw1Mo45mRRLJvc8epuduwZ4YaFF2Bm8gyP7SI5OABA4BD6ohDi6LFO9AEIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDvwFGtILZt+35FUaYBM6iEkKy3bTu/9+n/ezT3dTqwLJNQXQMdi85k62svc9ltn6NmV4zcz3aTU3bjO7sB/4XNaL6Df9E8Xyrzfx/ZOB5AAvCTF3eyYmaci2bUHsuX8Y6ZuRLloRyKoqDVuNFcUtAuDp2ZL2MOVYo7tagLzW1UL5MtkX5uD6nHdoIFep2H4I2dPPTD/8v2N18DwBeJctmnv0RtRxdun/+Q91/X2c2ym97Pi3f+Asss0zRzDq3nX87Hv7t+fJmhdJGv3L2GH35kCf4pjk+cuqySiZUuobi0Kfve29lli+zKQcZ+sxm7ZKH6DKIfmImzrbqoznA4OefWD5IaHmJg2xZ0w8E57/sQnmCIu77+t8TbO9CdTp775U+44nN/SGP3zMn7eqvIPlWsFNlH3Uf0OvsTef7gl2+QKpQBMC2br9yzlkWtYeY1hY5o2+L42TKY5s9+s4r6gItvndVJ6PEerCf6GfDoRG6bgWtaGKj0n3XPPMHD//3vqJrGio9+mqZZc9m9dhWqpnHmtTdSP637BL8acbJK50t8/YH13D63nm63k4wC317dw3nTYyzvqgGgY9GZ7Nm4gXXPPA5UQkkMp5Nnfv4jyoUC1//ZV4k0NB71Y7NNm9yaIUbv2IRdNFG9BpH3zcDVGRpfxiqYWNkSqsdAdU5dZC/EoXD6/Vz2yd/HHM6jlCFjJWmcOYdn+hUCQxmm1wcAsC2b/LphRn65Ebtgonp0IrfOwDU9fIJfgXi3sy0bM1nAKpgkH9xOft0IAO75NQQvb68KfTie+rZu5nff+jcapneTGRvl8R9+mxv+/Gtc9Huf5L5//SeGe3aiO51c+MGPYwbr+P3/eIGYz8nnFjQTVhR6elPsaAzQGT/06z5x7AXitSy+6npef/BuzHKZ2s7pzL7wEtSiTTmdR/M5UHS1ct5cO8zIr9523nzbWPadSmWLDO1I8A9L2tleLPHvr+zkP5/YwrldNZy9dwwjxOFwBwJc+onP88B//DOJgX4cbg9Lrr2RbGLsgOul8yX+9t51tIbcfHJhE1vGcvzguR2cNy3GOdNiB1y3sD3B8E/WYaVKKIZK8JpOPPNqUJ1yr/XdaPNAmoff2MNfNsVwPpEB00EoMo+m35tN/9gOytkCxZ4Utmmj17jRPHLPUohjQbFtAGzsE3wkQgghhBBCCCGEEEIIIYQQQgghhBBCCCHE4Tsq30RWFOUi27YfUxTl+n2e6lAUBdu27zwa+zndjPbuYWT3TmJtnbQvOJOGbDvFYgr/ihawbeySRWFXCs/M6EG3NZYr8cK24ar27UPZY3HoR6w8kmP0ri0UNo4C4JoZIXRN5wktaBKnjtJAluybg2Re6AXbxntWPZ4FsarZ40s9aVKP7Bx/XO7Lkn5sN2axEqgw67yLcHq8PPDv/4zT6+Pc932ItgVnYBgHD/5x+/0sfc8NzFtwMXbRxFHn497tY1XLvb5rjNFcSUJITiOl/gyJh3eQXzeC0eAldFUnztbA/pcfyDL6q4289X1zK11i5GcbiH92AVpgoq9ZBZPyYBa/GeLmP/47xpIDOJwuQnX1bHj+aWaedyGrH3+YYi7LjOXnsWvNSmo7OtH39lfb2ltk/6uN2EULxakRuW0G7hmRd/xahzMF+pOFqva+RJ551ROWk86X6E3k8Th0GsNHFoAijlx5JEd5rEDAtOiq8fKZ+U0EH96FbVY6o5UtM/Kz9cQ/vxA97CIx0M8TP/wOnmCIpdfdzMpHHyJc18Bln/4S0aZm4m2daLoUsYmpjeVKfHZmPe1P9WEmR0BVmHt2Iz358vgygZo4l3z8syy+6jpSQ4NsevkFnv7p92lbcAbBeC2716065BCS8liB8kge1a1hxNwo+v6DQ8pDWUZ+sQHe6vuZUqXvf24heshJsSdN4oFtFLYlcLYFCF7ZgaPRd2Q/EPGulertIzDgo/yihaPJR8PMLjK/6WVZwcSZVyl7nOhBJ+WhHMM/24AWdOBZ3gBAYUcCPeZCl89QcYKUR/Okn9tDbtUg7rmx8QASgNybQzg7Q/iW1B9wG7ZlUx7KYaaLaAEnetSFoihH5fgGd2wl3tbOhueexh+t4cxrbmDHyjdYfNV13PLV/0VycACH20Oorp5XdozQFHTxzfmt+J7YA2WLOR4dZ1sNSAjJSWVkz24izS2c94GPUMhmcLg8+AsBBr61kvJwDs+8GP6LWsCyGf75eihPPZZ9i5kpUh7KUTBt0l6dYNCFdz+ht3bJwlo5RPeDu6BsM8drsOjimXzwd2vpSeSOy+sXpyfLLHP2zR8gOTiAZZmousaaJx8l3t6JNzQ5OCdbLLNnLEfZsrl1WowzevJozw2hRF3cfPlsdmeKB9xXOVVg5OcbsFIloNKvx+7chOrScE0Lo54Eoc92yap8NuTK6BEnekju/x5LfYk8X5rThPOe7Tg7gjg7gtg2eFRwdQUw1toM/OINAIxmH5GbujHinhN70EKcjuxJfwkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEKeUo/Ut5POBx4Crp3jOBiSEZApmqcT2la/Ts34NK97/acxEEdeMCKnHd4Flo3p0jEMtgLRhSVuER9YNTGpur/HuZ4UTK7dmeDyABCC/boT89DC+ZQ0n8KjEqaKwLUHq0YlwkdRju1ADjqoQkvJwvmrd4uYELdPnMrxnJ+5AkFfv/Q0A2cQYd3/j77nlK/+LpplzDnoMZqpI4uEdZF/qA0CvcXHu9V1Vyy1uDROWGUVPG1a2zMgdGyntSgNQ2pVm6LuriX9+IUbN1AXD5li+6tvmZqKAmSqOh5CUkwWSD20n+2rlHK7Xuom+byZGbaVPm6bJMz/7wfj6r91/N0vfewvlYnE8hGS8yH5vUZ5dMBn5+XpqP78QPfrOiplrfE7qgy56ExPvJUWB+mD19jYNpPjru1bz/NYRgm6Dr14zmyvm1OE09h8MII6dwtYxhn60DjtXBlXh389twhvxYpmTO6OVLVMeyaOHXZQKeUr5HGdefT1P/fR7mKUS/Vs2sf7ZJ5lx9nlc9ukvcvSGjuJ0E9FU1FeHMZN7iyQtG/czvczqnDlpOcPpxLZt7v2/X6dcqiy7/tknaV+wGH9N/JD2VdidYvgHa7FSRVDAf1ELvnMa0PYT+FUeLYwHkLzFSpcwkwVQYPiHazATlWMpbEkw/IM1xD67AD3oPJwfgRAAGFknmed7AXDPipJ4cPv4c/kndpPzOfCf04iZKKCHnbjnxUg9sQtMG8Wp4aj3SQiJOCFs2ybzUi/pp3twdgQp7kxVLZPfMHLAEBLbtMi+OcjonZugbKM4NCLv68Y94+DBqgdTKhbZtXY16556rHIs6RRP/fi7XPLxzwHg9gdw+yeCAeN+F3+4qAXf73ZPhAFmyxR+s5lygx89JOf4k4Wqajz94++SSyUBuPIDv0/mjl3jn93Z1waw8ibepXXj1zpvsbLlvefTSqBBabByTVTaXbles6aFeKDTw4JZtXTFq++vlQYypH67ZaKPZEo0Pt3H7y1ooikk52Lxzo0N9PG7//rmpLblt9xOqTA55HPbUIZ/vH8dv1vbzx9d0MV7dxexN48BYPfniD2wk/rfm3XAfVmpEubYPuGhNpT2ZFC9DlwdwSN+PUfCypdJP7eH5MM7wAbVZxD94CycLfsPcxVHpi7opna4BPNqwIbk3oBmPeoifF0HIyvXji9b2pUm83IfwSvaUdSjExomhKiwx/+WGBIhhBBCCCGEEEIIIYQQQgghhBBCCCGEEKce9WhsxLbtv9n79+9N8ecjR7JtRVFuUhRljaIolqIoi4/G8Z4sLMukZ/0aALyeEO6ZUdJP7QZrYlbX5EPbKacKB9oMAE9tGmJJe5TWaGXWQkWB9y9tYX7zif2i+VRs2ya3driqPbdhdIqlhag2Vf/Jr6pu06YoLDOa/fT3bKVlzny2vPxC1fO7160+pGMo7kqOB5AAlIfyaC/28/Xr5vDWd/brAi7+5upZ+F0SQnK6KI/mxwNI3mIXTMqD2f2uowWq+6HqNVC9E2EOxR3J8QASgHJ/jtSze7D3Ft4N7dxetY1NLz2HwkSBiJkoVhXl2XkTM3XgWZMPJB5w8S+3LCC0N0jH0BT+7to5TK+dXMCXK5r8r/vX8/zWEQASuRJf+sUbrO1NvuN9i3eunCww8suNlQASqIRBPLkHn1OvGvkpDg1770krUBOjoXsWlmVilkqTllv//NOkhoeOx+GLU1XWxOrNVDXr6VJV21h/73gAyVu2vfkqkYbGg+7GzJUYu3tLJYAEwIbUozsp7ane91u0gAP2qadTXBqaz6A8kh8PIBnfR7I4ZZCZEIckW+lsqt+Ysh9lXujFypXR/A48C2KkHts5XmhvF0xGf7OZ8qj0P3H8WakSmZf6ASgP5TDqPFXLONtDB9xGaTDH6B2bJkLxiiYjv9hIeSR3xMeXTYyx4dmnJh+zaVIuV3/OALRGvcwLeKrCAK1UiczokR+POHpKhfx4AAmAVwlUhYfl1w2juqYey6q+SiijbdtkXu0fDyABUDeN0V2Abz66kULJrNq3OVaYMjDyyo4osxtOvvtp4tSx8flnqtp6N63HF50IZSqbFt95eiu/W1s598ZVdTyAZJxp402XD7gv1WOg+qrvOymGWglFPcFKvRmSv9sxEfaTLjH6m81Y2anP3+LIdcV9OBwaRq2X3KqJ6/jycJ7cywMYTZPv6eTXj2AVDtzPhBCHT9l74pMQEiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQp6KjEkLyFkVRahVF+Y6iKA/sfTxLUZSPHuFmVwPXA08dbMFTjdPjRXdUitPHBvaAXf1lRHO0gJU5+JeA73lzD//00HrO7ozyhRVdfHHFNByaQsR78s3uqygKrumRqnZXV+j4H4w4JWl7Zzmu/L8T/4oWXLMjFPekscvW+HOOJh+eM+Ljj1WvQfCKduZfcSW6w4knWF1U5A4cWqFRqb86dKKwZYzrZtZy3xfO5ZefXMZvPnM2c5tCh/HKxMlOcWqgV390qm59iqUr9LiH4BVtEwXwukr4pmnooYl+XOpJV61X2DQ6XgTij9ZUPe+P1qAZE4VGqt8B+8xaqzjUKYuRDsdZHVHu+dw5/OKTZ3H/F87lljObcRrapGUGUwUeXT9Qte62of2HAohjx8pMMRM2QK6M/8KWib6oKfgvbiG/99fp9Hi55BOfw+2vnpHa5fGiOxzH7qDFKS+JhRp3V7UXXFpVm8NVvZzT7cEXqT7X7cvKlintTFW1m4n9h/YZMQ/Bqzsn9f3IjdNR3DqUTPwrWvCd04hi7D2/K6BOcdxCHIrs3uAuu2CieibGB6pHx39BM96ldZSGsqhBAzXorA5IyJQwpwjvEeKYMxS0kBPFqeFeEMfZGUKvnQgiMZr9uGZUX8e/nZksjoeqvsXOlTFTR96ndcPAHageo3gOcP2mTxFCpXoNkooUgp5MPMHQpMemUgkLURwqvnMb8a9oIXBpG4pPJ3Rt18SdTE0hfOM09GjlusouWRSmCLf1D+VZsyfJYLp6rDBlYKTfQVdriIBbwkTFOxeM11W1hWrr0fWJfjWcKXLfqt6Jx4VSZXy6D2Pv2MJMFshvHqWwPYH5tgAPPeQkfMO0iXsVCviWN5BfN4IWPPH3hctTXJuWezOYWQm9OFYcuorqMaYMFilsS2DUeSe1OTtDqM7939cSQrxD9qS/hBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIU8rR/nbp94HvAX+x9/FG4BfAd97pBm3bXgeV4IrTTShexzm33s4TP/wf3nz+IWYvuBBHS6Wwxy5ZKIZKfkcC1XvwX9PC5hBPbxriZy/tGm/7woquY3n4R8Q9t4bc2iFKuyqF9462AK6ZBy5oEuIt1swwypuDKLqCd2k9yYd3VGZKViB0bSfexXUouormcxC8uhPv0nrsgole40YPu2hrWkhteyf9WzZz59e/gm1Vgku8kShNM+cc0jEY8SlmBu8KoSkK7VkLK2tiuC1s2z4tz1/vVnrERfDyNhL3bh1vc8+PoU/RH95OjbgI3zwdK1uuzNTtmFzcbjT4qtZxTguPF4G0zl2AJxgimxirbE/TWfremyeFQhgxN+EbpjF656bK+0FXCN/UjR6tLvY/XM0RD82R/b9Gn0ujrcbD9qHJ4TxRr4RWnAia14EWdFaFMlgBB5qmEL65GytbQvUZWBpYwYnfU01TC4bLxbpnn6Jv0/rx9vNu/yj+aOy4vQZx6lE8Bv3Laon/bjd2rgwKFM6MU/Tr1O+zbKylnYYZs9izfu142/m3f5Rw3b5LVlM9Okazb3wM+ZYDFVgqhorvzDqcbQHMVAk95ACXRva1fuycOb7dwBVtJO7eiu/cRvTYkZ87xbtTv1sjvKQW4+V+0BS0gAMrV8Z/UQtmooBdMMmvH0WPuTFqPZWAhLdVpakeHe0IA8SEeCc0t0Hw8jbKiQJWukSpN1MJaHJqaB4do86L5jvw2E4P7A3Fe1sQieLS0PxH3qe9oTAXfujj3Pt/vz7eFmtto65z2n7XSft1Suc14nm6B6zK58HwBQ04DxAgKI6/mqZWZpx9Huufq2QPb9+9kpltZ+KdEyf1+C6sTCVsoTyUJXBpG/GWRZipIlrQgRHzjF9vK4aKc0YYZ2cIxamhKGAVTHp0cA9reKcosNdrPQTf007i/m1gg+LQiNw8HWdYxgHiyMy58BLWPvUYpUIeAMPlZtZ5F01axufUmV7r58VtIwB89809XLC8E/8ju8eXcXaF0Ou9FPsyDP9wDeZI5RrPOT1M+L1d6HtDel0zItR8bA6FzWMoikJu7TDOrhBG/eSwiRNBD02M093zY5X7aSrYRfMEHtXpz4i4sNNFXLOiOBp92KaFoqkURjPYjon7lHrMjW9ZPYoq9y6FOPrsvf+VGBIhhBBCCCGEEEIIIYQQQgghhBBCCCGEEKeeo115UWPb9i8VRfkzANu2y4qiyDeK90NRVeZcdCk1Le1QsMhvTeDsCJL83Y7xZYLvaUc7hCLuq+Y38NTGQc7rjmFa4HfpXDwjfiwP/4gYNW5qPjSb8lAOqHzh+VBepxAAibCD3NVttLoMkr/YWAlcALBh7LdbcLQEcOwNddBcOlpL9YzZbn+Alnnzue1vv0H/ts04XG7qOqcRaWgaX8a0bLYOpulL5qkNuOio8aJrlZllHS0BPGfWkX25r7KfqAv/eU0k7tlCbtVwZQOaQs3vzcbVFT6GPw1xPCmqgvfMWowGL+ZwHtXvwNHoQ/Psv7CyPJilsG6E7GsDezcCgUtbMaIu9GClYMjRFsCzME729coyetyNf3kDilYpAok2tXDz3/wjfVs2US4WqG3vora9c/KxaSqeBXGMRh9WqogWdKLXuA8agrNjOMOukSwhj4OuuBeXcfhDg4jXyd9dO4ePfP8VimYl1OeKOXXMbtj/zPTi2NECDiI3T2fox+sqYRCqQvA97eheg/yaETIvTMy27b+oGUfUA2/7VQVr4lz9pT+hd/NGsqMj1BykwFcIgNqAi80xN/3XteMvmJQdGi8lMlwbrw5Z8kUivOfzf0Tf5k1k9vax2o5D62Oa2yB0TRfDP1yDlSqBAv4LmzEaDlxgqRjq+NgAIL95lOwrA5R6M5Xn3TrBqzqIfWoeetyDamj725QQ4976DA17HHTu/QxtiPv4ntbH+Vc102KA+73NOG0da7BAbs0w5kilGFn1G0Rum0Ho+mmM3bUZTBvFqRG+pXu8oFiI401v9FLsSZN8aPt4OI7nzFo8i+IHDSCBynV9+Ma9oXhlG8WhErmlGz1ydAIdOs5Ywi1f+TqDO7bhCQSp65pOoGb/9z2aanzcHR3DuKiegKXQZ5tYhsUKl8GLW4fRVYXOuI+QR+5FnEgun4/zP/gxupefT3Kwn0hDE6GGLpJ3bRsPIAHIvjqAe24M94wITBGsoCgK7plRRn66HnOsEtSgBhxoV7bw510zCU/xe1YdGr6zGtDag2TG8hS9OomoCzkLiyNV1zmN2/72n+jbsglFUajtnEaspW3SMl6nzpcv7+b277xEtmgymC7w07EkX/7YHMyhHGWnRjnuwXZpZB7ZOR5AAlDYOEphW2J8zKAoCq62IHrQSXk4h2tGGD3mRnWc+NAlo95L4JJWyiN5yiN5cm8OApB6bBc1H5mDs13uGxwL5eEc5t5wyOTDe/+tQVMI3dZNqsYgNr8W27QwajxoAfkcFOJYUCb+yUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhDjlHO1vImcURYmy93t1iqKcBSQOtpKiKI8AdVM89Re2bf/2UHeuKMongE8AtLS0HOpqJ5TT7aF17nxKQzlyYwMkH9056fnEQ9txdUcqs0QewLS4j4+e28Ef/epNCmULXVWIeh201ngx9oYmnGw0n+OQCpneDU7Fvnsidcb99Bgayd4MdmGfnCMbzFTxkLajqhr1XdOp75pe9Zxl2dy/qpc//OWbFE0LQ1P43zfM45oFjWiqguZ3ELq6A9/SOqyShRF1U+xNTwSQAJg2Y7/dQuxT807rkJ13W/9VnTqujhB0HNryZqIwEUACYEPqyd2VGY33hpDoASehazvxLW/ALltoUTe6f3KfiTY2E21sPuC+FE3BUeeFukOb7fjlbSN89Acvk8yXURT4/EVdfOLcDnyuw5+t/uzOGu75/HK2DmUIug1m1PmJeJ0HX/EEOp37rrMzRO3nF1AeLaB6DYwaN4WtY2Re7J20XOqpHqj3sEex6a7zj7cHamIEamLH+7DFIToZ+26hZLJ1MM1X7lmLadm4DJVv3rZwv4XdgZr4AQvHD8TZ7Cf+2YWUR3KoLr1SYHmYoSGlvux4AAmAnSuTXzmI64ZpBwyWEkfuZOy/78RL24b52A9eGf8M/cJF0/j4ue3UBV18/KJprO9LsqpQZlrER6umkdmSGg8gAbBSJXIrhwhd3YmzxY+ZLqEFHRg1B77uEyfO6dJ3D8QaK5J6bOekSsnsy/24ZkQOaf23QvEcTT7MVKkSihc9enEOhsNJ08zZNM2cfWjL6ypXLGhgY1+KnrE8M0Iu3A6ND373RTb0pwE4tyvKP14/j6bI6f3eO9n7ry8coWvx0vHH5bECpV3pquXeChfZn/ymsUnLWMkisd483fOnuuVYMZgr8o/PbuE3r/cA0BBy8T8fXMwsCVQ8KZzsffdAYq3txFrbD7jMGa0R7v7ccrYMZPA4NWbW+Xlmxyhfunfi/u6Pb19M29axqnVLPWlYVDupTQ+7TrowM9Wl4z+vkdy6EUZ+un683S5ZjN23lZqPzkFzn37j7xPdd0sDORQgv2byfcrUvdvYdmUzge4YXueJD6kR4nSm7h1UWxJDIoQQQgghhBBCCCGEEEIIIYQQQgghhBDiFHS00yn+ALgb6FQU5Vngh8DnD7aSbdsX27Y9Z4o/hxxAsnc7/23b9mLbthfHYqdW4azq1cFQq6dFK9tY2dKU67zdjuEsf/rrlRTKVmU1y+bP7lzF1sHqog1x8jmV++6J0hj2UFvvR/XuU6igKWihIw8+2D6c4Y/vqASQAJRMmz/59eT3lOrQcDT5cbUH0QIOrHT1e7U8lKsOSjnNSP89MLtkVbflTdinWXXpOJr8ONuCVQEkx8JwusCf3rmSZL5cOSYbvvnoZtb2pt7R9lRVobsuwBVz6jm7s+akDyCB07/v6hE3rs4Qjjoviq5ilawpxhkWuVyZHz6/HdOSoohTxcnYdzcPpPnru9eM96N8yeLLd6xk92j2mOxPDzlxdYRwNPgOO4AEKgFR+yoN5lAU5WgcnjiAk7H/Hq7hdIE/+fXkz9B/fXQT6/Z+htb4nZwzLcYVc+rpqvWjeR2U3xZA8pbSnjRgY9R6cXWGJIDkJHc69N2DscsWdnGKsesU49n9UVQFI/5Wn3af8POqx6GzoCXMe+bVM785xG9e7xkPIAF4evMwT28eOoFHeHycav1X9eo4p4er2g8WalPclaxqs3anDtgPX981Nh5AArBnLM+/P7aZQvn0vo4/VZxqffed6Ir7uWxOHedOi5EpmPzRL9+cdH/3z+9dizFFGJSjNXC8D/UdUwwNa++46e3K/dnT9p7Zie67jgYvtln9+W2OFdjZl2Jj/zu79yOEOHSK/dZ9NrnfJoQQQgghhBBCCCGEEEIIIYQQQgghhBDi1HPUQkgURdGA8/f+ORv4JDDbtu2VR2sfpzPNbeBsC6I4JhdRqj4DLXTwGSyH0gUyxclf2i5bNgOpA88SK8SpTA+7iNzWPR5Eojg1Ird2Y8QqBZxTfdn+UA2mC+T3KbYrmhaD6f2/p/Qad1Wba0YE1XfsAyXEyUuPe0CbXPSmx9zo0er+cjyN5UpsGcxUtfclcyfgaMTxYMQ9KI7JQz/V7+DxoSTPbRkmXTh46JkQ+9OfymPvU1czli0xnC6emAM6ANuycbQHq9rdc2tQfaffLOzi6BvLltg2VB2w05esDhoBUN06rlnRqnb3/NOzmFqcurSwEy28T5CcrmDUnh4BOYWyxdObqgNHXt0xegKORhyIamgELm5Br9vb91Twr2jBaPRNWm7fa37P3Orz6sHOtVunuCZ6afsIyZyMjcXxN5QpVt3f3TqcIT8zPDF+VcCzpA5H2+GFkBzJPbKjYap7Zu7ZUTS5Z3ZMOFr8U/7M7VY/T/aM0ZeYetwqhDh6FCSERAghhBBCCCGEEEIIIYQQQgghhBBCCCHEqeuohZDYtm0C19q2XbZte41t26tt2z7ib+wrivJeRVF2A8uA+xRFeeiID/YkpcfchG+ahhasFP3oNS6it89CDzkPsibUBlwE3PqkNqeuUh88eICJEKcyV1eY+OcWEPv0POJfWIhnbgwzVST9/B4Gv7WSsXu2UOxNH3xD+6j1u/DuEwrkMlTqAvt/TxkNXsI3TUfZ+150tAcJXtGGus92xLuLUeslctsMVH+lsF2v9RC+cTraCS50j3odzKqvLlpqCp0eRaaimhHzEHnfjIlxRtQF17Tzry9s56IZcfxOCV8Q71xD0I2mTg5civmcxPwHH8ceL3bJIr9plOEfrqW4M4n/4hYUQwUF3PNq8C2pQ1GUg29IvOtFfQ5m1Pmr2htD+w8Yc8+I4DuvqRJMpoL3zFoUh8bgf60k9WwP5TEpBBUnnu53EnnfTPR4pS+rAQehazoxC2Vs89QvnnQZGpfMqq1qX9YROQFHIw7GUecl9rF5xD4zn/gXFxG4sBnNUxmvFvsyjN27lcFvrST13MQ51DkthO/cRlAVUBV8Zzfg6j7w77e71lfVdv70GEG3jI3F8Rf3O6vu7zo0laxXJ/rBmcQ+t4D4FxYSuroDPXBo4+zinjRjv93M4LdWkn5hD+XEiQmsdjT5CL23C8VZuUfmnBbCv6IFRT9q/zwh3kbzOtBjboJXd6B6Kn1Ka/axblaIBzcO0hg+scG4QrwbTISQnNgQKCGEEEIIIYQQ/5+9/46ONLvPPM/nvia8gwcyE+nLe0NW0buil2jkRlS3SDXVJOVPnzN9Zk7P7vbudM/Obm93q6fVTqJalBelJiWSomgkel8ky3uT3iHhTfh43f4RSGQiA1lpCsAbAXw/50RVxkWYH4Abr7l473MBAAAAAAAAAABwLZzLP+SqfM8Y858l/ZWklaVEoyh65FpfMIqiz0j6zDrU1vXqT85o8QtHlblzSFbOVVDxZBJXdiH2eH9Gv/Pzd+m3/vJRLdV9ZRK2/t3P3qF9g52TKYCtxulLyelrh4NEfqjyN0+q+oMJSVLrRFm1x6c1/Kt3yBm48gvs9wxk9DsfuEv/7C8fU7npK5d09O9/7g7tHche8jmWayt7z4iS+4sKW4HsYlJ2ar03s+g1wVJTS189rvQtg7Iyjvy5hqo/nJC7IyvLjS+gppRJ6P/zU7fqo3/6sCaXmnJto3/xzht141jnpGpsDX65qaWvn1Dqhr72ccZiS7UfndUvv3K33nvfblkW4Qu4dgeGc/p3P3u7/sXfPKmGF6qUcfV//fyd2vESoQybrXliSTN/8FT7znNzcgZSGvgnt8jOJWT3JWPdJqO3lDIJ/X9/+jZ97IJ96P/2rptech9q5xMqvn2vsq8cVdjwtfiVY6r+9YuSpNbJsryzVfW99yATcRG75HhepfceVPPwgsKar8UvHlXUDDT0sduV3FuMu7yX7b137tCDR2b14JE5SdL77tyhVx8YjLkqXIqdczvCG/35hmY+8ZTCpZak9jm/d7amvvcckFNIqviO9rZWao8VXG67esfukv7pa/fpD753VFEk3Tia18fecEAJh+MCbL7x/oz+0wfu1m9+8pGV8d1/+zO3a/9QTrZlZO+6unAcb6aumT94SmG1nRPeOlFWbrah4jv2ydibe/5nJRzl7htT6rqSIi+UXUrJSvI52yits1XN/P6TMglbmbuHZRK2qsWE/s9vPa//9/tu1fUjjP0AG+1cCIkhhAQAAAAAAAAAAAAAAAAA0IPWe3b8q5f//68uaIskvXmd32fLCSqeyl8/qagVqPqjsyvtiZ05JcauLEjkjTcM6+9+83WaWmpoMJfUnoEMq7lj2/Hn2wEPFwornrzJ2lWFkBhj9JabRvR3v/VaTZebGsoltWfw0gEkFzoXiAJIkjdZk3+2fVthpNzrdykxemV9aqPcMd6nz/36a3Rqvq5i2tW+wawcm8nPW5U/VZd3oiLvRGVV+8ceuF3ZIULL8PK4tqX33rFTd+wqaa7a0mgxpV19mbjLWqX648lV9/3ZhirfO6PBX7w5porQy+68hn2osY3cwbTqz86q9fzCqq/VHppU/nW75A531+cG20/oBVr6yjG1jpVXtdefndsSIST7BnP6vV+8R8dmqrItS/uGssomCI7sJd7Z6koAyTm1H59V/rU75Q5nZGxL7tCVb0sHskn987ffoJ++Z5fqXqA9/RkN5JLrXTZwxd5w/ZC+8Juv0+RSQwO5hPYOZK95fNc7W10JIDmn8v0zyt4/JvcqxsjWk9PfPSGFW5l3uqKoFSpqhap894wkycq6+tRH7lX/cDvUBsDGMtG5EJIo5koAAAAAAAAAAAAAAAAAALh66zrTIoqiN63n620rRtIaK1Caq7wgeHd/Rrv7mbiGbcyY9u3ii3uv8eL6PQNZ7RmINygCve1S2/FuyYgaLaY1WmQS0HZwqb7ouqw+jfVhWUb7h3LaPxR3JWsz7hrH2k6XbIzRk651H7rm9tiY9jkhEDNjjLRGoI5ZY7yiVxXTCd0xnoi7DFyjNbeh1svbhqZcWzeNFa79BYB1Nt6f0fg6jO9e6phj62zRcSmX2lb2ZRMEkACb5Fz4CCEkAAAAAAAAAAAAAAAAAIBe9NJLNV8lY0zRGPPbxpiHlm//3hjT+0vlbgI766rw1j2r2kzSVmI8H1NFQG9y+lLKvX7XqjZ7ICl3hHAexMMdycgZXd3/svePyYlp1WFsX85wWom9qydXpu8ckjNIX8T2kL1nZPXZj5Gy943FVg+2L2c0K2do9bY395odcvpTMVUEnGccS/k3rD6fkm2UvmkgnoKAizgjWdmDbEOBK+GOZWWXkqvaCm/aJbuPz8tW5+7Mysqszp8vvHW3nHzyEs8AsN6MWQ4fiQghAQAAAAAAAAAAAAAAAAD0HufyD7kqn5D0lKSfW77/i5L+UNJPrfP7bEnpm/pl/dItqj8xLbuUVPrWQbmj2bjLAnqKsY3yr96hxGhW9adn5O7MKX3TgBwmWCAmdiGpgX98sxrPzqp1oqzUTf1KHizJOOuaAwZclp1NqP9nr1fjhXk1jywqeX2fUteVZCXsuEsDNkVivKChj96u2uPTUiRl7hhSYjeBf9h8TjGpgQ/erMazc2qdKit100D72MDm2ADdIbWvqMGP3KbaY1Oyko7Stw/K3ZWLuyxAkuSUkhr80M2qPzsnb3kbmmIbCqzJ6Utp8MO3qv7MrLyJitI3Dyp5oChjmbhLwwZzh7Ma/Ke3qf70rPy5hjK3DSqxr3D5JwJYR+3wEaMw5joAAAAAAAAAAAAAAAAAALh66x1CciCKop++4P7/box5bJ3fY8uyUo7SN/YrfWN/3KUAPc3OJ5S5Y0iZO4biLgWQJLmDabmv23X5BwIbzBlIK/eqtHKv2hF3KcCmM7ZRcm9Ryb3FuEsB5A5l5A5l4i4DWJNxbaUOlJQ6UIq7FGBNbEOBK+cOZ+QO83nZjhI7ckrsIEQMiIsVnQshiWKuBAAAAAAAAAAAAAAAAACAq7fey4TWjTGvPXfHGPMaSfV1fg8AAAAAAAAAAAAA6DrGLP+fEBIAAAAAAAAAAAAAAAAAQA9y1vn1fkXSnxhjzi0vPi/pQ+v8HgAAAAAAAAAAAADQdUzUDh8hhAQAAAAAAAAAAAAAAAAA0IvWJYTEGLM7iqITURQ9LukOY0xBkqIoWlqP198uwqav1omyGocW5JSSSh4oyR3OxF0W0DNaZypqHlpQ2PCVur5PiV15GceKuyxA/lxDzaOL8s5WldxTUGJfQXY2EXdZ2Ib8+YaaR5fkTVSU2J1XYm9RTp6+iO3Fm66peXhB/lxTyQNFJXYXZKfXO5sRuLSg6ql1fFHNo0tyRzJK7i/K6U/HXRYgSYrCSN7pihovzEtGSl7Xp8SunMy5pdyBmAR1X60TS2oeXpTTn1TyYJ/cQbadgCT5i832mMOpshLjeSX2FeUUknGXhZh5Z6tqHF5QWG619+e787JcO+6ygG3DGEJIAAAAAAAAAAAAAAAAAAC9a71m231W0t2SZIz56yiKfnqdXndbqT89q/n/8cLKfbuY0OBHbmdSBXAFWmcqmv69JxQ1A0lS+RsnNfjhW5W6ri/myrDdBeWW5v7qebWOt3O5Kt85rdybdqn4wB4Zm5AcbJ6g5mn+c4fUfG5+pS1z36hK794vK8FEJGwP/lxDM3/0lILZpiSp8u1TKr3/oHL3jcVcGbaLKIhU+f4Zlb92YqXN3ZXXwIdukpNnsjDi1zq5pOmPPykFy5Mlv3ZCQx+7XcndhXgLw7ZXf2xKC587vHLfHkxp6Jdvk9OXirEqIH5Bw9fiF46o/sTMSlvm7mGV3ntQVpLzvO3Km6xq+vefVFj1JEnlb57SwD++SelbB2OuDNg+zoWPEEICAAAAAAAAAAAAAAAAAOhF6xVCcuGSuPvX6TW3laDc0uKXjil735jsvKto+bpEb7JKCAlwBZqHFlYCSCRJkbT09RNK7Clc9eR6b6Yub7IqY4zc0aycfiY14dp5kzVZSVuFt+5RFIQyjqXaE9PK3jUidzgTd3nYRvyZupK7C0rsyMk4lupPzqj2o7PK3TemxI5c3OUB1yyoefImqgorLTkDabmjWRln7ZAn70xlJYDknMUvH1Pqxn45RQIgsPH8ubrK3zy5qs07VZZ/tiZjWfImKgqrnpzB5b5MYBk2WfWHZ88HkEhSEKn26FRHCEnoBfImqgrmG7ILSTmjGdlpd5OrxXbhLzS0+PfHVrUFMw15Z6orISSRF8qbrMqfrcvKJeSOZWVn6JPY+oKp2qoAEkmqPTKl3Gt2KLEzv+n1eJNVeVM1WQlbzlhWToFj7Di0TpZlkrYKr97RHouyLTWOLCi5vyQrs15/EgLwUs790dREhJAAAAAAAAAAAAAAAAAAAHrPel1xGl3i37hCURgpc/ewGs/NyZ+sSZJMwlb/B26IuTKgN4RNv6MtqvvSVV7k25qoaOa/P7WyUqhdSmrww7cSFoFrFimSSTta+srxlbbCW/co4gJ0bKKw4av26JSqP5hYacu/ZbfCuq8oCGOsDHh5gpqnxS8eVe2hyXaDkfo/cKMytw+t+fjI7+zvUSuQQrbJ2BxRGK0OeDjXbqSFzx9W/bHpdoNRe7X6W1itHpsrqHkdbefOjc6Joki1x6a18NcvrrTlXrdThQd2y0oysRkbIIwUeWvswy84jq09NaP5//H8yqhk9v5RFd6+l3AcbHnhGscVkhT5m3982zy6qOk/eEpaPuZO7Cmo/wM3yCkR7rvZojBS7v4xLX75qLS8qUxeX1JQaxFCAmwSs3xQYgzjDQAAAAAAAAAAAAAAAACA3rNeyyrfYYxZMsaUJd2+/O8lY0zZGLO0Tu+xpdmFhOycuxJAIrUnRFYfnFDoBTFWBvSG1MG+88sLLsu9btdVT4KrPTS5apJdsNBU/enZ9SgR25SRVH98elVb+dunZCyz9hOADeBN1VYFkEhS5TunlH3NDrkDhCyhd3lnq+cDSCQpkhY+e0j+QmPNx7ujWRl39SlQ7tU7ZLNCOzaJ05dS6raBVW1WxpH88HwAiSRF0vxnDylYbG5yhdjucveNdbRl7x1Zdd+frWvxbw+vaqt857S8C8YzgPVkF5PK3b+6b5qEJXekfRzrzzW08LlDq2KRqw+eXTXGBmxVzmBKzkh6dduOrJyBzQ3+CJu+Fr58dCWARJJax5fUOlne1DrQ5u7IqfK9MysBJJLUfGFBwdza50kA1t+5kQdDEDUAAAAAAAAAAAAAAAAAoAety7J3URTZ6/E625kxRmHd72j3pmrt1dldfsTAS0mM5zX44Vu19PUTiuq+cq/bpdRN/Vf1GlEQrTk5wjtTWa8ysQ1FrTVW7G4Ga7YDG+XCcKVzolaoxM4cqyCjp63Vt8Oar7CxdoifO5rV4EduU/mbp+RP15S5d0SZO4ZkbIKhsDmshK3SO/epOpxR/fEZJXbllHv9Lvkz9Y7HhmVPYTMQZ4LYTMn9RfX/o5tU/uZJyZIKbxxXYm9h1WPCRqDI6zyWDWud22RgPRjbUu51O2XlE6o9PClnOKP8G3bJHclKaocfRGvs+9c6TgC2Gief1MAv3KTKgxNqvrig1A19yt43JjuX2NQ6omYgf6rzeCYotza1DrRZSXvNMLug2vn3BwAbwyynoxkRQgIAAAAAAAAAAAAAAAAA6D3MOu0iF0/skaTMXcOyMm4M1QC9xTiWUtf1KbGnIEWRrOTVb96MbZS5e0StE6uDSNK3Dq5XmdiGnIG05BjJP3/BuTOakV3a3AlB2N7a/dBatSq1M5iSO5yNsSrg5XMG05JlpPD8NtYdz8kuXnobm9xdUOIXblToBbLTHGdj8zn9aRXfulf51+6SSVgytiVFkWSkC+enJfYVX7IvAxvBSjrK3Dao1A197fuJzhgcp5iUPZBSMNtYaTOu1T7eADaIU0qp8MZxZe8bleXaMo618jW7mJQzlpE/UTv/BNu0jxOAbcAdyar0kwcUNQOZpC1jbX7AnpVNKHPHkKoPTqyubZRzzjjYxaSSN/Sp+fz8+UYjuUNsF4HNcm5LbBFCAgAAAAAAAAAAAAAAAADoQdblH4LNkhgvqPiT+2UStmSkzD3Dyt47ImNYmR24UlbCvqYAknNSN/Ur99qdkm0kx1L+gd1KHiiuY4XYbpyhtAY/eIvsYlJSe3J8/8/dIDvLpGJsHmcorcEP3Sy7tNwPd+XU/4GbZOcIYEBvc0eyGvjFm2QV2ttUd09e/T91/WXDRYxjEUCC2Flppx1AovYE3YF/fJOsfLtfJvYVVXrvgZd1XAu8HFbCXjOARJLsfEIDH7hR7s5c+35fUgMfupnAB2wKO+2uCiCRJDvjqv9nb5A7vtwniwkNfPBmOUOZOEoEYmEs0z62iCGARGoH++Zeu1Op2wYkI5mUrdJPHVRieV+BzWUlbJXevU/Jg6X2/Zyr/l+4kVAYYBOdCx8xESEkAAAAAAAAAAAAAAAAAIDew4ymLmKnHeVfs1PpmwcU+aGcvlTHxAoAG8spJlV8515lXzUmI8nuS8U2gQNbg7GMUtf3aeg37lBUD2TlXSa+Y9MZY5S6rk9Dv97uh3Y+ISvNYSB6n7GM0jcNKLEzp7ARyCokZKfo2+g9xraUvmVQiV15hc1AdjFBAAm6WmJXXkO/fJuCSksm7cjJE7CHeCV25DT44VsVlj1ZKUd2gT4JbDZ3MK3+n7tBwduaMo4lpy8Vd0nbmjvcDrkLyi2ZhC1nORwXwOY4/5c9QkgAAAAAAAAAAAAAAAAAAL2HWU1daDtcoB1UW2oeWlTt8Wm5YxmlbxtSgpUYt63WRFX1J6flTdaUuWNIyQMl2dn4QhqMbckdYBVvrC8nn5TyG/Pa3mRVtadm5Z0uK33rkFLXlWQzERRr2Mh+CEReoObxJVUfnpKVsJS5e0SJ8fymhHnZhaTswoa/DXBNvLNV1Z6ckTdRUeaOYSUPFGXn1t5P28Wk7E2uD7hWVsaRlem+YSV/sanmC/OqPzOrxJ6C0rcMyB3KxF0WNoGdXjvw0Zuqqf7UjFqnykrfOqjkdX0E56BnhU1fzWNLqj08KTufUPrOYSV25WRMdwToWq4ti21u17BSjqwLQhqjMFLrZFm1R6cUNgJl7xlWYm9BlssRKLDezm2VLUJIAAAAAAAAAAAAAAAAAAA9qPtmi2DLi6JI1R9PaunLxyRJjWdmVf3hWQ39yh1yBwl+2G686Zpmfv8JhTVfktR4elbFn9iv/Gt3xlwZ0Bv8uYZm/vApBQstSVLjmTnl3rhLxbfulbG7YxISgO2hcXRRs594euV+9ceTGvrY7UruIR0E25c3W9f0J55UuORJau+nC2/bo/ybxrtmsjCwlUR+oKWvn1Dth2clSY1n51R7ZEpDv3yr7GIy5uoQB39++Xxpvilp+Xzp9TtVfPteGduKuTrg6jVfXNDsnz27cr/yw7Ma/pXbldhF2iQuzztd0fTHn5CCdihC/bEpDfzSLUrf2B9zZcDW0qhWZJbDR0xECAkAAAAAAAAAAAAAAAAAoPdwtT02XbDQVPnrJ1a1hRVP3tlqTBUhTt6Z6koAyTlLXz0uf7EZU0VAb/HOVlcCSM6pfOe0/PlGTBUB2I6iIFTl26dXN4aR6s/MxlMQ0CX8iepKAMk55W+cVLDAsS6wEbzZhmo/OruqzZ+qyZuqxVQR4uZN1lYCSM6pfO+M/Hm2w+g9YdPX0kVjqvJDNY8sxFIPek/9ubmVAJJzyt86qdALYqoI2JrmTp+StZw5eS6MBAAAAAAAAAAAAAAAAACAXkIICeKx1nWXrAi3LUVr/d4j0R+Al4OPD4AYrLlPD9ggYXtb63MRcawLbJxLfLSikM/ctrXmmEPEdhi9a61jizCGOtCb1tr2sY8E1t38xNTKH1/5IywAAAAAAAAAAAAAAAAAoBc5cReA7ccuJpV7wy5Vf3RW2XtGJCMZ15Izmom7NMQgsSMrk3YU1f2VtsKbx+WUUjFW1SmsefKm64qCUM5QRk4+EXdJgCTJHc3IKrgKlzzJNsq+YlTujqzCqqcg68hOu3GXCGAbMLal/OvH1dyRk3EtGdtS4/k5pW8diLs0YMP5cw35cw1ZKVvOUFpW8vxptjuWk5V1FVa9lbb863fK7rJjXWCrcAZSytw9rNrDUytt9kBS7khWYSuQP11TWPfl9Kfk9KdjrBSbxR3JyCokFC61Vtpy943J6evu7XC7v9YV1j36K1ZYSUf5N+7W3CefO99oGyUPlDa1jrDpy5+pK6wHcgZSXf95guSXm/Kn60rsLih964DqT82ufC3/+l2yXDvG6oCtZ+HMrLLL6XgWadEAAAAAAAAAAAAAAAAAgB5ECEkXiaJI3qmKGi/OKwoipW7oU2JXXsYycZe2roxllLt/TM5AWgt/86IiL5QsyUo7cktpGZe14bYTdziroX96m2oPT8o7W1Xm3hGlru/blPeOvFCtk0uqvzAvO+MoeV2fEmO5jsd5c3UtfOaQmi8uSJKc0YwGfuEmucME5+DK+HMNNY8syJuoKrGvqOTeguzc+gTZOP1pDX74NtUenZIzkFL5GydVfXBCkpS+fVDFd++XU0yuy3tha/IXGmoeWZJ3qqzEnrwS+4pyCvQZXD0raan28KTCWjtYLPvanXKGNn/CbFDz1Dq+pObhBTmDGSUPFuUOss/GxmieLGv2j55eCRnJvW6n8m8al51ph4C5g2kN/tNbVXtkSq3TFWXvGVbq+v5LnuO1TpXVeGFekR8qdUN/+3zQ3lrng+g93kxNzUML8mfqSh4oKbGnsNLHu43l2iq8dY8Su/KqPTGt5L6iMncMyyQtlb9+QuVvnmo/LuNo4EO3KLmnEHPFeLmiMFLrZHvbaWyj5PV9SuzMyZj2ttPpT2vow7eq+tiUWseXlLlrWKkb+mWc7h17Cuq+Kt8+pfI3T0qRZNKOBn+J/oq21A19Gvjgzao8OCE77yr7yjEldnWOZW2EoNJS88iiGi8uyM66ivxAtcemNfhLtyixK78pNeDK+QsNNY8uqXViSXYhIX+mrtrDU0peX1LxvQfUeH5OufvHlNxXjLtUYMtZml7UuS2zFRFCAgAAAAAAAAAAAAAAAADoPYSQdJHWqbKmf+8JyW9flFj+xkkNfeS2LXkhcNQKtfSlo8rcMyIr48hYRtUfnVVid0GJHZtz4Ty6R2JnTomdOUVRtDJRaDM0Di9o9o+eXrlvUic19LHbO4JImocWVwJIJMk/W1P1kUkV3753pV5/salgriGTsuUOZbp6QhM2l19uae4vn1PrRLnd8L0zyr1xl4oP7Fm3fpIYzcp96x7Nf/aQkvtLsktJGSM1jyyqdWJJzm1D6/I+2HqCuqeFvz2ixjPLqyB/X8rcM6zSew/KSrASMq5cWPO1+OXjytw9IpOwJGNUf2Ja3k39sg+sT+jSlYiiSLWHJrX4xaMrbc5QWoMfvpUV2rHu2tvQQ0ruL8oZzsgYqXWmIu9MVfbB0srjEmM5Jd59+WPd1smypj/+RDukUVL5myc1+E9vV2r/1jsfRO/wFxqa/eNn5E/XJUmV755R8V37lHvdzk09d7saTiml3Kt2KHv/2EqNjcMLahxaUOGB3YrCSGHV1/znD2v4w7fK6tJAFVyZ5vElzfz+E1K43PD1Exr+2O1KjJ8P7HBHsyq9Y9+mjzlcK2+iovI3Tq7cj+q+5j/zooY+evuqAKCg7smfrssYI3swJTtNX94OrJSj9M0DSt3Uv6n9OfJDlb97WpXlMCdJcndklbqhX4tfPKqBD94sK9X+U0MURvJn6gqqnpxCQs7A5gcTbndB7aJzfbWDapM39av57Jwydwxr8EO39MQ2EehFlbmyrOWhECNCSAAAAAAAAAAAAAAAAAAAvYcQki5Sf2x6JYBEkhRGqvzgjBJ7C1vuguCg6in3+l2qfOeUgsWWZKTsK8cU1Ly4S0OMNrOfh01fS189vqotagRqHV3sCCFpHV/seH7zhXlFb9kt49pqnipr9o+fUVhuSZZUeOse5V61Y2XyBbY3f7J2PoBkWeXbp5W9e0TucGbd3ids+nJHMqr+eFL+w5OSpPStg4qawbq9B7Yef6q+alKSJNUenlLu1TuV2EkoGK5cUPeUvm1A5a+fVFj1JNso/9qdChv+5tYx39DSV1bv3/3puryzVUJIsO6iuq/kvpJax5dUf3JGkpQ8UFTkr73vvdyxbv3pmZUAEklSKFW+e0rJPQUZe2udD6J3eBPVlQCSc5a+elzpWwfk9Hf3pPILP3Nh05c7ltXS105IkWT3JZV79Q4FNZ8Qkh4WhZGq3z9zPoBEkvxItSdmVoWQnNMrY2vBYrOjzT9bU1jzV0JI/Lm65j9zWM0X5yVJyev61Pf+A13/ucT62ez+7M81VPn26VVt3pmq0jcPqPbYlMK6LyvlKApC1R6f1vzfHJL8UCZla+AXblLq+r5NrXe782c6z/XrT8yo/x/dqNbhRTWPLyl7z0hM1QFbX32hJnu4/bc+osoBAAAAAAAAAAAAAAAAAL2I69+6SFjvnKQZ1n1txYXSrKyj+uPT7QASSYqk6g8npAsn3QHrLGwF8qZr8hcaUqg1wxnCVmcfTO4vdbSlbh6Q5doK6p4WPneoHUAiSaG09PfH5U1U17t89KjIX2O7FkaKws52f7Epb7qmsHX1wSEm4cg7U5U/VVtpqz81c9Wvg+0jWGqueewhSVHA/hhXyTKqfO9MO4BEkoJI5W+dknHtTS0jCtfuv2EzkD9bVxRuwQNrxMbKupIitY4vrbQ1Dy/Kuyiw4XKiKJK/0FBYu8T54FY8IUTPiNY4P4r8UFGvHSqEUu3Hkysfp2C+qcZzczIphsV6WegFCuudYbaXOsbtFU6pMzjN3ZWTlT0fdFp/Zm4lgESSmi/Oq/7M3KbUh963Mj4237ji50RBKK1xLB1F7RC29nFRO+hy/tMvSMtjIVEj0NxfPX9V74WXb82xKLXDSTJ3DSm5t7jJFQHbS63a0LmoqB2RJz32F7HWAwAAAAAAAAAAAAAAAADA1WK2RRdJ3z7U0Za9b0zG6o2VWq+GkVHrZLmjfWXiKrDOvOma5j75nCb//cOa+p1HVX9hTrnX7Vz9ICMl93dehJ88UFT6jsGV+4m9BWXuHJYkhVVf3slKx3P8BSZXoM0dycjKrV5dPXVz/6oVqiOvvVLw1O88qsl//7Bm/+wZeReEiVyJqOWreXSxo92bvbqJ0Nj6oiBS/ZlZTf6nx9R4ZlbO4OrV0t3xXEcbcDlRM1Aw17nvixqbOwnYKSWVuXd0VZtJ2fKnazr7Hx5R+RsnFFRbm1oTti7j2mod7zynaR3p3B9fSlD3VPnuaU3+9sNyBjq3vbnX7JSxOW1HPJqnyvKXmjLJ1YFS2VeMyiklY6rq2qw11tA8viT5hPz0Km+6pvm/ekHJA30dX8vc0Tm+1kvcHVkV37lPWh4PtAsJld53UHb6/Hll47nZjuc1niOEBJfnzdQ091fPa/K3H9bk7zyq6kNnrygI1RlIK3Vz/6o2K+dKllHxnftkJdr7Cn+xHfx7obDqKagw5ruZnIGUnKGLzvV3ZOVP1uTuyCl5gBASYKOEYaBWM5R94WHmZ381tnoAAAAAAAAAAAAAAAAAALgWzuUfgs0SlJsqvnOv6k/PKgojpW8ZkElszQlnJm3L3Z2Xd2L1pD17jdVegZcr8kOVv3ZCjWfbE3LCmq/5Tz6voV+7Q30/e70q3z0tK+cq/8ZxJXbmO57vlFLqe/91yr9+XFEYyh3IyMq0N592xpW7IyvvTHXVc+xib03Kw8Zx+lIa/PCtqnz/jFrHl5S+fVDZu0dWJuhIUmuiorlPPrdyv/nCgha/fEz9H7hBlmuv9bIdrJSj5MGSag9NrmpP7MitzzeCLcObrGr2z56RQqn60KQKD+yWP1NX62RZqRv7lX3FqOyMe/kXAi5gZR3ZfUkF881V7fYmT1I3jqXCm8bl9KdUe2RK7khGid15LX31hOSHWvrKCTlDGWXWCP8DrpaxjFI39ql1fGlVe/K6zgnxl9I6XtbiF45KkmqPTan4rn2qPz2jKIiUf/0uJQ+U1rNk4IoFSy3N/dmzChu+Cg/sVvPIovzZhjJ3Dilz17CM01tjFU5f51hDcm9RVppjnl4U+aGWvnZCjWdmFdZ9Fd6+R/WnZ2Vso/ybdiuxtxB3iS+LlXSUe80OJW/sU1T35fSnZBdWH1Olru9X89Dq0Kvk9Ve+/8H2FAWhyt86pcbT7RCbqO5r/tMvyh5IK7XvpUMprISt0rv3qzqWVf2JGbnjeWXvGZEznJaTP98/7UJSMpIumHxvZRzZWba3mymseMrcNSx/qqbW6YoSu/NK7MyreXJJyetKchi3BDZMbWFBkRxWgAAAAAAAAAAAAAAAAAAA9DRCSLpE2ApU/f6EvKmakgdKsoy09LWTytw9rPT1/Zd/gR5jp12VfvKAZv/4aYUVTzJS7vW75O7Ixl0atqCg3FLtyZmOdn+qpuy9o0rfOiBZ5iXDHqyUo8TOzjAHK+Oo9L6Dmv3jZ9qraxsp/6ZxuWMEP+C8xI6c+t5/ncKWv2r16nP8mXpHW+PZWQVLLVkD6Y6vrcXYlnKv26nmsUUFMw1JUvrOQSX29PYEPKw/f7Z+fmXqMNLSPxyXM5zRwD++Sc5QRmZ5xXXgajj5pPp/5nrN/OkzihqBZKTiO/fJHc1sfi19KRXeOK7sK0e18HdHVgIezqk/M0sICdZN+rYh1Z+dWwlXTB4oKn3jlU8Cbx49P4Hcm6hqceqY0ncMqfSufbJziXWvF7hS/kJDwUI7WGrxC0fl7srJHU7L3VNYM9Cj27k7c8q9Zocq3zsjSbLyCRXfuU9W8soC/9BdgnJL9eVz/NbRxXaY3sGSsveNKn3j1hhDM46lxMilx8hStwyo/sysWsfaQViJvQWlbxnYrPLQo4KKp/oTa4+P6TIhJJLkDKRVfOte5V67U1bCkbE7zx3d4YxK7z+ohc8dloJIxrXU93PXy+nvvX1HL/Nn6ivn+u5IRq3jZdUentLgR2+T239l40wArk15dkYyjuwL05gAAAAAAAAAAAAAAAAAAOgxhJB0CeNYcnfm5E1U1XxhfqXdHdn8iZubJTme1/Bv3Cl/tiEr5cgZSstKMAEI689K2nKG0vLP1la3L6/CaiVf3qYwubvQ7stzDVnp5b78EoEm2J6MbdYMIJHO98UL2X2pq+6biZGshj96h7zZmizHlj2Ulp1iV4/VrExnfwurnkzKIYAEL0vyQEkjv3mX/IWm7IwrZygt48S39q+VdtY8tnTHCL3D+nEH0xr80M3yp+uSkdyhzJrb2UtxBi+aBBpEilqBLPbfiJmVdiTHkvx2cpl3qiLvVEX5N47HXNm1sbOuCm/fo8zdwwobgZyBtJxSMu6ycI2spC1nMC1/cvkc3w/VeG5O2ftG4y1sE7kDaQ188OZ2eIQkZzgj+yr2P9ieTMKSM5yWd7Kyqt3OXV3fudTYhtQe487eM6LEnoLCckt2KSVngACSzXZunMmfqq1sJ6x8Qu7Fx54A1l15bkbG2DJkkAAAAAAAAAAAAAAAAAAAelh8swKvkDHm3xpjnjPGPGGM+YwxphR3TRvBWEa5V43JpM9PNrMHU0pdf+WraPcip5RS6kBJiZ05AkiwYayMq9JPHpAuWKE1eV1J7o7cur2H07fcl3fkCCDBVUvsyCl50wUrdltGfe87eNUTgSTJLiSU2ldSYjxPAAnW5I5llb5r+HyDkUrvPyinyERcvHzOQFqpAyW5Y9lYA0gkyRij7H2jq4Ke7L6k0jcNxFgVtiI7m1Byb1HJPcWrCiCRpOT+opzR88GTJmkr/4bx2D8/gDOQVukn9q1qy79pXM5w705ethKOEjvzSh0oEUDS49rn+Ps7z/F3rt85fi+wM257/7O3SAAJroiddlV65z7JOf/ZSewvyN2VX9f3MbalxEhWqYN9cgfTMoawy83mjuWUvmPofIOR+t5/UHaB/R+w0cozM5KxdTzYqTc2f1vvaf5rTUXFuMsCAAAAAAAAAAAAAAAAAOCq9MLs5K9I+hdRFPnGmH8j6V9I+l9jrmlDJHbmNfzrd8o7W5WxjdzRrJw+VooE1kNyf1HDv3GX/OmarJQjdywrO5+IuyxAkmTnE+r/6evkTVQV1n05Q2m5I9m4y8IWZWdclX5iv7L3jCistuQMZuReMAEe2EoSYzkN/eod7eNry8gd4/ga3cUdSGvwl26Vd7aqyAvljmTkDrNNRvyMZZS5Z0TujpyC+YbsQlLOaFZWoheGkbAdJPeXOMcHrkFiX1Ejv3GXvKmarJQtZzQrh2CKLcfOuiq954CyrxhRWPPlDKTkjm6voCYgLuW5GUWW0b9tflizUV5nNKB/6f0T/W7chQEAAAAAAAAAAAAAAAAAcBW6fvZIFEX/cMHdByX9TFy1bAZ3MC13sHdXFga6lTFGibGsEmMEO6A72bmE7OuYNIfNYWdd2QdLcZcBbAqOr9HtnFJSTonJv+g+lmsrubsg7S7EXQrQwVic4wPXwph28LU7ymdnq2uf9/fFXQaw7SxNTuuUm9NT4T79a+cTWlBO/97/OT19ZlG37CjGXR4AAAAAAAAAAAAAAAAAAFfEiruAq/RhSV+KuwgAAAAAAAAAAAAAOGdhalHPJjPKqK5S5iF90P4HpdXUH37vWNylAQAAAAAAAAAAAAAAAABwxboihMQY81VjzFNr3N57wWP+b5J8SX/+Eq/zUWPMQ8aYh6anpzejdLxM/nxDzRNL8ucbcZcSK/pu91rpo3Pbu4++FPpvdwprnpqnyvImq4r8MO5yuhJ9F72qm/tuUGmpebIsb6qmKIziLgddqJv777UK6p5ap8tqna0q8oO4y8EG2Yp9d7uJ/FCtyaqap8oKa17c5Wwq+m9vCVuBWmcqap2pKGxt7/0Kfbd7RWEkb6qm5smygkor7nK6Trf13SgI5U0u/76q/L6AjbQ4V9OhZElvsB9TzQr1/bSl9zs/1N8+dkZTZf7GAAAAAAAAAAAAAAAAAADoDU7cBUhSFEUPvNTXjTEfkvQTkt4SRdElZzNGUfRxSR+XpHvvvZdZj12u8eK85v7yeYVVTybtqP/nrlfqxn4ZY+IubdPRd7tT44V5zf3lcwprfruP/k/XK3XD9uyjL4X+2328yarmPvWCvFMVyTLKv2lcudfskJ1x4y6tq9B30au6te+2Jiqa+4vn5E/XJduo+I69yr5yVFayK0450CW6tf9eK2+mpoW/OaTmkUXJSLlX71D+jeOy84m4S8M622p9d7sJap4q3z2t8jdPSqHk7sqp/+dukDucibu0TUH/7R3+fEOLXzqq+hMzkqTU7YMqvXOfnL5UzJXFg77bncKmr+qPJ7X45aOSH8kZSqv/AzcqsSMXd2ldo5v6blD3Vf3hhJa+clwKIjmjGfX//I1KjGbjLAvYkpq1mo5F/WpYSb3T+qHqkaW6FepD9lf0ydbr9ac/OK7/+W03xF0mAAAAAAAAAAAAAAAAAACXZcVdwOUYY94h6X+V9J4oimpx14P14c/VNfsXzymstlcfjup+e9LqTD3myoA2b7au2T9/VmHNl3RBH51ltUJ0t8gPVf7GyXYAiSSFkcpfO6HWqXK8hQHY0sKGr8W/O9IOIJGkINLiF47KO1ONtzBgA0VhpOqPJtsBJJIUSZXvnVHz2FK8hQHo0DpZVvnr7QASSfJOVVT+1klFfhhvYcBFGs/PrQSQSFLjiRk1npuLsSKgk3emqsW/OyL57WwNf7quhc8fUdjwY64Ma/FOV7T05WNSsPz7OlvT0t8fU9gK4i0M2IIWJif0QmaXZDw9YD0uJ3JUtyztN6f0wE0j+rMHj6vOZw8AAAAAAAAAAAAAAAAA0AO6PoRE0n+WlJf0FWPMY8aY3427ILx8wWJLUX31hemRFypYbMVUEbBasNRS1Fx9QXDUChUsNmOqCLgyYc1T/fn5jnZ/ipAnABsnrHlqHl7saPfnCO/C1hU1AzWenulob50khAToNv5UZ6Zt49m5ldBJoFvUn5ntbFtjXwPEyZ/vPMZvHV1UsBw2je6y1jlZ48V5hTV+X8B6mzp+VIfSA3Kzzyljmsq2XDUsIydq6SOv3af5mqe/+vGJuMsEAAAAAAAAAAAAAAAAAOCyuj6EJIqig1EUjUdRdOfy7Vfirgkvn5VzJeei7meZdjvQBeysKznmokb6KLqfSTlKjOc62p3+ZAzVANgurJQrZyzb0W4XEjFUA2wOk7CU2FfsaHdHO/fDAOLl9Kc62hJ7CjIpO4ZqgEtL7i91th3o2/xCgJew1jG+M5qRnXZiqAaXYxc7f1+JXTmZFL8vYL19/9nTqluuMvknJElRZFQzRsZEesWutF61f0D/4asvaqZC0DkAAAAAAAAAAAAAAAAAoLt1fQgJtiZnIK2+nz4oWcshD0Yqve+A3KF0vIUBy5zBtPp+6rrzW0lruY8O0kfR3ayEreLb9srKng/MSd8+KHdXPsaqAGx1VsZR33sPyCTPT+bO3j8qdwdhDNi6jG0p99odskvnJ3Ymryspua8QY1UA1uKO55W+bXDlvpV1VXhgj6wEISToLulbBlYFuzmjGaVvHYixIqCTuyOn7KvGVu6bpK2+9x2UlSG4txslduaUuXd45b5JOyq+a79sQkiAdffVYw1ZClXMPitJCo2j+vLfwIxX179+362qtXz9L59+Qn4QxlkqAAAAAAAAAAAAAAAAAAAviStNEQtjGWVuH1JiLCd/oSm7kJA7nJGxycVBdzCWUeaOISV2LPfRYkLuEH0UvSGxK6/h37hT3kxdVsKSM5SRzWQgABssubeo4d+6S/5sXVbKkTuckcXENmxxidGchn7lTvnTNRnHkjOckZ1lnwt0G6eQVOmnDir32h0KW6HcwbScvlTcZQEd3KGMBj98i/ypuiTJGU7LySdjrgpYzc64Kr59rzJ3DSus+3IG0oT2djE7l1DxJw4o+4oxhU1f7kBazgC/L2C9HTt8RI9FYxp0z6oUtvfjLSepRbsqSYqq0zo4fKP+5U/eov/HZ5/SP/urx/Rvfvp2ZZOMmwAAAAAAAAAAAAAAAAAAug9XtyE2xrbkjmbljmYv/2AgBvRR9DKnL8XESgCbzh1Iy2VCG7YZp5SUU2KCONDt7LQre08x7jKAy3LySYJH0PWslKPk7kLcZeAK2SlH9h5+X8BGqMzN6qt/8F/1l0ckr3i3Roae166qkSQFbkaHk0vtx73wQ+WHb9Qv3r9H1aavf/Pl5/ToiQV95HX79K7bxzScZxwXAAAAAAAAAAAAAAAAANA9CCEBAAAAAAAAAAAAgCu0OHVWn/o//u86XE3poaF36KAXKTP8lMaf9yVJjufqRTehILC08OOv6oXKG1Qcyuhjr9uvu3f36f/84rP6f33+Gf3vf/eMbt9Z1D17+nXrzoLG+zMa78toOJ+UZZmYv0sAAAAAAAAAAAAAAAAAwHZECAkAAAAAAAAAAACArhFFkRSduyMpiqQoUhQu/zuMFIXLjwmj9uPDC//d/loUXvTvKFIUhPIDKQxDhX6oZrOhemVRXrMlY9mSHLW8hpaWFjQ/P6OlSkWBScpYCYW2o7kFT4fOzuuU+2Y9PliUbVXlX/9v9VfPv7BSv+UPqWVNaXYprUz4mB787BFJUt9gSnfeN6o/f+BGHV5q6MtHZvTjs0v6ix8eV8MPV56fsI12FlIaL6Y13pfWeCmj3f1pjeZTyqdd5VOOXNvIti3ZlmnfbCPbWLLsdniJMZJkpHNZJmvcN4agEwAAAAAAAAAAAAAAAADAaoSQAAAAAAAAAAAAALisif/fjxW1gvadaPk/y2EhUdTZtuZjXuLrK/9fJz+tspqSfEXypZXblcst3y6UlAo5mUja4U6rvPd39V+njq581ffzKoUPSHpaX+l39Y+iE7pO/0ov1F6j8vSr9I0vNGR9of3YrKQ3SnqzSaiQMkomjSYUaiIIdWbe05n5ph45NqfKVVRsJFmS7OXbhe1m5etG1vLjfkYJfdAkzz9ojeAS8xJBJufuX+oxTl9Kw79+51V8BwAAAAAAAAAAAAAAAACAOJkoWuer+bqEMWZa0vG461g2KGkm7iI2AN+XNBNF0TvW882voe9upd8D38vmWfe+K8W+7e22n3k31dNNtUgvv55u2PZKW+/nuhGoabVu6bsbqRt/5y8X31Nbt/Xfbvy9UNOV2eyauq3vrqUbf08bZbt8r+v1ffZC/325erlP9HLt0sbWvx367jm93g+uxHb6HuPsu93yc6aO7qpBuvI6NqL/fnn5/btFt/xOrkav1RxHvRvytwoAAAAAAAAAAAAAAAAAwLXbsiEk3cQY81AURffGXcd64/vqDr1W70vhe8HL0W0/826qp5tqkbqvnmvVbd9Ht9UjUdN2tBV/vnxP3akbvwdqujLdWFPcttPPZLt8r9vl+1wPvfyz6uXapd6vv1tsh58j3+P2qYE6uq+GbqqjG/Tiz6LXau61egEAAAAAAAAAAAAAAAAAG8OKuwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8SKEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANjmtnQIiTHmE8aYKWPMU1fw2NcbYx4xxvjGmJ+5oH2PMeZhY8xjxpinjTG/cg2lfPwantML+L66Q6/V+1L4XvBydNvPvJvq6aZapO6r51p12/fRbfVI1LQdbcWfL99Td+rG74Garkw31hS37fQz2S7f63b5PtdDL/+serl2qffr7xbb4efI97g5uqEGiTou1A01SN1TRzfoxZ9Fr9Xca/UCAAAAAAAAAAAAAAAAADaAiaIo7ho2jDHm9ZIqkv4kiqJbL/PYvZIKkv65pL+NoujTy+0JtX9OTWNMTtJTkl4dRdGZDS0eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2CRW3AVspCiKvi1p7sI2Y8wBY8yXjTEPG2O+Y4y5cfmxx6IoekJSeNFrtKIoai7fTWqL/8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACw/WzHQI2PS/rNKIrukfTPJf3Xyz3BGDNujHlC0klJ/yaKojMbXCMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwaZy4C9hMxpicpFdL+pQx5lxz8nLPi6LopKTbjTE7JH3WGPPpKIomN65SAAAAAPplcOoAAQAASURBVAAAAAAAAAAAAAAAAAAAAAAAAAAAYPNsqxASSZakhSiK7ryWJ0dRdMYY87Sk10n69HoWBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMTFiruAzRRF0ZKko8aYn5Uk03bHSz3HGLPLGJNe/nefpNdIen7DiwUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2yZYOITHGfFLSDyTdYIw5ZYz5ZUn/SNIvG2Mel/S0pPcuP/YVxphTkn5W0u8ZY55efpmbJP1w+fHfkvTvoih6crO/FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCjmCiK4q4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQIysuAsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEC9CSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBtbsuGkLzjHe+IJHHjttG3dUff5bZJtw1B/+W2Sbd1R9/ltkm3dUff5baJt3VH/+W2Sbd1R9/ltom3dUf/5bZJt3VH3+W2Sbd1R9/ltom3dUf/5bZJt40Q9/fEbfvcAAAAAAAAAAAAAAAAgC1py4aQzMzMxF0CcE3ou+hl9F/0KvouehV9F72M/oteRd9FL6P/olfRd9Gr6LvoZfRfAAAAAAAAAAAAAAAAAAC2py0bQgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgyhBCAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGxzTtwFYPsKm75aJ8pqHl2UXUoqub8kdzAdd1nAVQsbvponymodW5Tdl1JyX0HuYCbusrANRX6o1qmyGocXZaVtpfaX5I5m4y4LwDYR1Dy1TpTVOr4kZzCt5L6inP5U3GUBGyoKI7VOV9Q8siBjpOSBkhI783GXBWAN3nRNzSOLCpaaSu4rKbE7Lythx10WcE2iqL3/aR1eUKRz+5+cjDFxlwbIn2+oeXxJ/mRNiV05JfYUZOcScZe1LflzDTWPLcmfrimxO9/+XWTcuMsCXrbWREXNI4uKmkF7H7grJ2Oz5gIAAAAAAAAAAAAAAAAAAOuFEBLEpv7UrOY/9cLKfXsgqaFfvk1OP0Ek6C21x6e18JlDK/ftwbSGfvlWOX1MvMbmahxe0OwfPS1F7fvljKOhj95OEAmADReFkao/OqulLx9baXN35TTwwZvlFJLxFQZssNbJsqY//oQULO98HUvDH7tdiXGCSIBu4s3UNPMHTypYaEmSyjqp/g/coMwdwzFXBlyblf2Pf27/YzT00duV3F2ItzBse0HN0/xnDqn5wvxKW+51O1V8+14Zh4CAzRSUW5r7H8+rdWxppS3/wG4V3rRbxiawCL2rNVHR9O89oagRtBvMcQ3+8q1KHeyLtzAAAAAAAAAAAAAAAAAAALYQrvxFLIKlpha/dHR122xTrdPVmCoCro2/0NTiBROuJSmYqcs7Q1/G5gqbgZa+emIlgESSwpqv5tHF+IoCsG34c432NugC3qmK/LO1mCoCNkflwYnzASSS5IeqPTYVX0EA1uSdrq4EkJyz+KVjCiqtSzwD6G7VhybPB5BIkh+124CY+ZO1VQEkklT57ml5M/WYKtq+vMnqqgASSSp/46T8OX4X6G3NQwvnA0gkKZKWvnFSoRdc+klAzFrHjysK6KMAAAAAAAAAAAAAAAAAeocTdwHYnqIgUqRI+TeNS5aRsYy8s1VFfhh3acDVCUNFrfMXj6Zu7FdiPK+w7subqskdzsRYHLaVIJL8UPk37JIcS8ZI/mxDYcOPuzIA20EYydhGudec3wZ5M3VFHsd22LqiKFJY7QwwCMNI3tmq/Lm6rFxC7khGVpJTbyAOwVJT3mRNURAq95odq4KDwoav6MIQIWCT+XN1eVN1GceSO5KRnU9c8XPDirdGG6E62DhBudXenvqh3KG0nIH0mo8L1xrbjSQFnBdstiiSCm/doygIZWxLtcem5E/X2feh54X1zrHOsOJJ4fbo26u2x8NpOf1rb4/RPVrHjunwO96pwV/7VQ391m/FXQ4AAAAAAAAAAAAAAAAAXBFmQiEWdjGpvvcc1Pxfv6io2Q5wSB4syRnigkn0FruYVO6Vo6r8YELpWwcVhaGWvnJckmRcS4P/5BYl95fiLRLbgpVxVHjbHs1/+kWF1faEtMR4Xtn7xmKuDMB2YPclVXrfAS1+/ojCWntCUGJPQXZ/MubKgI1jjFH2vjE1X1hYabMyjpJ7Cpr8nUdXJsHl3zSu/Bt2yUpx+g1sJm+mrtk/e0b+2Zqk9r6q8ObdK+drudfulF248tAHYD21zlQ08wdPnT93219Q/8/eIKcvdUXPz75iRI1nZi9qG133OgFJ8ucbmvvU82odWZIkWVlXgx++VYmduY7HuoNpWcWEwsXzoTiJvQXZ/VfWt7E+Ii+UN1Fd2efJSIW37Ja30JDD7wI9LnVdn8rfONkOOFqWf93ObRH86M83NPeXz6t1fHl7nFveHu/o3B6je3hTU5Kk2o9+HHMlAAAAAAAAAAAAAAAAAHDlrLgLwPYUtQJVfnBmJYBEkpqHFhQusWorektQ8ZR55agKb9sjd3dOjWfmVr4WeaHm//awwlrnCsXAeov8UNVHplYmsUlS62RZ3kx7ZUwA2Gj1J2ZWAkgkqXV8Sf50PcaKgI2XOlBS/wdukDuakbsjq/5fuFGLnz+yahXu8jdOypusxVglsD01np1dCSCRpGC+KX+xqeT+gorv2qfsK0ZljImxQmxXkR+q/K1Tq8/djiypeXTpil/D3ZVX/8/fIHcsK3esvf9J7i9uRLmAmseWVgJIJCmselr65sk1xxqcvpQGf+kWZe4alt2XVPY1O9T309fJTrubWfK2503XtPSlo+cbIqn8rVPK3b9DVsKOrzBgHSTG8xr4pVuU2J2XM5xR309fp9RNA3GXdVlREMqfq8tfaFzzazSPLK4EkEhSWPFU+e5pRQFjv93MWO0/xUdRdJlHAgAAAAAAAAAAAAAAAED32PpLg6Erhc1A3plqR3uw2IyhGuDqhU1ftSdntPTFowobvrKv3Sl3MN3xOP9sTWHDl5VhsgU2Vtj05Z0qd7R7x8taOFtV/tU75PR39lEAWA9RM1DrdKWj3Z8hhARbW9jw1TpTlT2UloxR2PBXTSo/JygTtghsttaJzmNj/2xVyRv61JquKeUxWRPxCFuBWifX6J/TVxZY1Tpb1eLfHVHr+JLSdw0pe/eIErsLMhahOtgYa/VN71RZYdOX7SQ6vmYlbVl9SSWiglrHl9TakZNdTMhK8KeIzRJWPOmiue6RFypYaCoay8nYbC/Qu4xjKX1Dv5L7ioqCsCdCjvyFhirfOqXKD8/KJCwV375X6TuHZaevbrvoTXb+Ta11oqyoFcqkWXOia50LPgyCl34cAAAAAAAAAAAAAAAAAHQRrkpDLEzSVvJgqaPdLiY3vxjgGrROVbTw6RcV1nwplKrfPi3jdG5Skzf0ycp1TsgA1puVdpW+dbCj3S4lVf3eGVV+dJbVFgFsmMg2ax7bOcOZzS8G2ET1J2dU+dYpNZ6cVeOJGTWenZMzdFHol5Gc/lQ8BQLbWOrG/o62xO6Cqt87o/qPJ1X+2glFPkEk2HxWylH6ts5zt8R4/rLPDeqe5v/mRTUPLSjyQtV+NKnp339S/tSVBZgA12Ktvpm+dVDWGhP/ozBS5cEJVb5+UvXHpuWdqmj+Uy+odapz4jw2jt2XlHFXj1NaWVetY4vyzvK7wNZgJeyeCCCRpNpj06r8YEIKI0WNQAufO6zWiaWrfp3knkJHW/q2QZmUvR5lYqOcCyExBEABAAAAAAAAAAAAAAAA6B2EkCAWYbmlxM7c+YvYHUu51+7kIjz0jNapzlWLq49Nq/TeAysX+bs7ciq9c5+sBBcBY+MZyyh735iSN/S1G2yj7H2jap0uS5FUe3iqvRIuAGyAaKklpy+lxL7lCTG2Ufb+sY6Jb8BWEjZ9VR+aXNVWe3xahbfukT3YDh0xaUf9H7hR7giBPMBmS15XUvb+MclIMlLq5n5FQdgOklT78xqUW/EWiW3JWEbZV4yuOnfLv3lciTUmFl8sWGrJO3HReEQQyZupb0ClQFtid0H5t+yW7Pa4bfL6krL3jclYneO4YcVT7eGpjnbvTGXD68R5zmBa/T9/g6xsO6DBLiaUf9O4qg9Nyp8mtAjYTGHdV+2i80ZJah5ZvOrXSuwtKPemXdLy9jd1U78y947I8He17kYwOAAAAAAAAAAAAAAAAIAe5MT55saYcUl/ImlUUijp41EU/ceLHmMk/UdJ75JUk/RLURQ9stm1Yn1ZSVuV759Rcm9B+et3S0Gk+lMzSp2bgAF0ObuQ7Gz0Q6XvHlbyuj5FrUBOKSkr0xurMWJrcAfTGvjAjWoeXVTrRFn1Z2blT7YnlzhDaZkkgTgANoZJ2qr+4IwSe5YnKIaR6k/PKn3bYNylARvG2JbckczKvlaS5EcK656Gf+UOBYstWWlHTn8qviKBbcwpJFX6if3KvWpM/lJL5a+fVOOZifNfH0jJJAjLQjzOnbv58w0Z25IzkJaxLz+B2ErYMmlHUd1f3Z6OdYgXW5yddVV4825l7hxS5Idy+lKyUmv3OZOw5Aym1KquDkG184nNKBXLjDFKjOeVecWIjGUUVn0t/cNxRa2AsUpgkxnXkjOckX9RYNi1nCfa2YSKD+xR9q4RRUEoZyBNADoAAAAAAAAAAAAAAAAAYEPEPdvCl/Q/R1F0k6T7Jf26Mebmix7zTknXLd8+Kum/bW6J2Ah2IanS+w6q/vSsyl87ofI3T8oZzsgdy8ZdGnBFknvyci7sr46l4tv2yE46cgfTSuzIcVE/YmGlHLkjGdWfmzs/KdqxVHzrHi5KB7BhnFJKpfceUOO5ufax3TdOyh3NyB3l2A5bl3Es5V63a1XIlz2QVHJ/SXYuocTOHAEkQMyMY8kdycodychcOAJmSaWfPCA7y6R4xMdKOUqM5eQOZ64ogESSnL6USu85sKotfecQx1zYcMY2cocySozlLhlAIrX7dfEd+yTnfJ92dmaV2J3fjDJxAbuQVHJXXuVvnFT1hxOKWoGSN/Uz/g5sMuNYyr9x16rwO3swreSB0rW9nm3JHV7eHjPW2xvMlR3nAQAAAAAAAAAAAAAAAEA3iXWZzCiKJiRNLP+7bIx5VtJOSc9c8LD3SvqTKIoiSQ8aY0rGmLHl56KHpW/s1/Cv3Slvpi4768gdy8nOMQEIvcHpT2vwQ7fIm6goagXtiW1M+kGX6Oifw1kmmQDYcOmbBzX0a2n5M3XZWVfujqzsLIFc2NqS43kN/9od8iZr7clgY1mCR4Au5BSS6vufbpB3pqqw7ssdTssdy8VdFnBNMrcOyhlcPubKccyF7pPYW9Dwr98pf7Imk7Tbx0cljo/ikLqxX8O/fqe86brsjCN3R052nvF3YLMld7e3i97ZWjskb0dWTh/bxW0jiuKuAAAAAAAAAAAAAAAAAACuWqwhJBcyxuyVdJekH170pZ2STl5w/9RyGyEkPc44lhLjebk7czIWK4Ght0RhJKeUlFNKxl0K0CEKI9nFhJzSQNylANhGjGspOZ5XgmM7bDPuSFbOUIZ+D3Q5p5CUU0gqCiM+r+httlFyPK/keD7uSoBVzm1fjTFKjOWUIOwpdsaxlNiVV2JXnv0fEDN3JCt3pB0SHYWRoiiSMXwmAQAAAAAAAAAAAAAAAADdqStCSIwxOUl/LemfRVG0dPGX13jKmstGGWM+KumjkrR79+51rRHrz19oqPHsnGqPTSuxt6DsXcNyR7NxlxUL+m7v8Bcaqj8zq/rjM0rsW+63I9uz355D/+0eQd1X8/CCqg9OyMollLt/VIk9BS5ovwT6LnpVt/bdoNxS44U5VR+alDuaVfbeUSV2MvEQq3Vr/71W/kJTjedmVXt0Wok9eWXuHlFim57TbHVbre9uR62zVdUemVTreFmZO4eUumlg24RK0n+3hubJsqo/mpA/21DulaNKXt8nO+PGXdaGou/2Bn+urtpTs2o8PavkwZIydw7JHcrEXVasuqnvNk8sqfrDCQULTWVfOabkdaUtv+3Ay9NN/XerCb1AraNLKn//jIxllHv1mJJ7izKOFXdp2EiMzQMAAAAAAAAAAAAAAADoQbFf2WaMcdUOIPnzKIr+Zo2HnJI0fsH9XZLOrPVaURR9PIqie6MoundoaGj9i8W6ifxAS187oYXPHVbr+JIq3zqlmT98Sv58I+7SYkHf7Q2hF2jpH45r8W+PtPvtN09p5o+elr+wPfvtOfTf7tF8fk5zf/asmocWVH9sStO//6Rapypxl9W16LvoVd3Yd6MwUuWHE5r/1ItqHV1S9QcTmv7vT8qbqsVdGrpMN/bfaxX5ocrfOKmFzy6f03z7tGY+sX3Paba6rdR3tyN/vqGZP3xKlW+fVuv4khY+d1jlb5xU5Idxl7Yp6L+9rzVR0czHn1Dtx5NqHVnU3F8+r/oT03GXteHou90vaPia/9vDWvriUbWOL6n8tROa/fNn5ZebcZcWq27pu60zFU1//EnVHp5S8/Ci5j75nOpPzcRWD3pDt/Tfrah1bEkzn3hKzefm1HhmVjN/8JSaxy9elwEAAAAAAAAAAAAAAAAAgPjFGkJijDGS/kDSs1EU/fYlHva3kj5o2u6XtBhF0cSmFYkN4c81VXtoclVbsNiSN1mNqSLg8vy5hmqPTq1qC+ab8iaZYI34BXVPS988eVFjpOaRhVjqAbC9BItNVb51alVbVPflneXYDluXP99Q9UerT03DpRb9HuhC3tmqwsXWqrbqjyfkzxEahN7gna4o8laH5ix9/aT8cusSzwA2RzBbV/O5+VVt/tma/Kl6TBXhQq2TZemiwK3yN04qqLLtAOJQ+cFF6ytEUu2RybUfjK0jiuKuAAAAAAAAAAAAAAAAAACumhPz+79G0i9KetIY89hy2/8mabckRVH0u5K+KOldkg5Jqkn6J5tfJjaEMR0X37VzaYDudKneaSz6LbqAMWtuQ41N/wSwCYzax3Yd7WyDsMWtcU5Dvwe60KX2UXxc0SvWOtezDLscdIG1OyFjvF1irV+DZTheBWJirDXWhbBjXSsCAAAAAAAAAAAAAAAAAIA1xXp1WxRF342iyERRdHsURXcu374YRdHvLgeQKGr79SiKDkRRdFsURQ/FWTPWh9OfUu7VO1a12YNpOaPZmCoCLs8ZSCt739jqtpGM3OFMTBUB59kpR/m37F7VZlxLyX2leAoCsK3YxaQKF22DrJwrd4xjO2xdTn9KuddedE4zkJI7yrEh0G3c0YzsgdSqttyrd8jpT13iGUB3SezMyaTsVW2FB3bLziViqghoc4bSSt8xuKrN3Z2XM5yOqSJcKDGel0levO3YIzvjxlQRsL1lXzW2OhzIkrJ3D8dWDzYJwU8AAAAAAAAAAAAAAAAAepATdwHYnoxjKfe6nXKG02o8N6/EzpxStw7IKSbjLg1Yk7/UlD9ZU+q2Qbk7c2o8N6fE7oLSN/fLpt+iS6SuK2nggzep9viMrKyrzO2DSuzMxV0WgG3AGKPMvSOyCgk1npqRM5xW+tZBuYNMPsTWZWxL+dftkjOUUePZOSV2ZJW6ZUBOiVADoNs4pZQG/vFNajw9q9aZqlI39Sl1Q78MK8+jSwV1T/5kTWHNlzOYkjOS0dBHb1f9iWn58w1l7hhWYl8x7jKxTQW15f7Z8OUMplV8xz4lD/Sp8fyckvuLSt3YT0BOl0iM5TT00dtUe3xawUJT6ZsH5O7Jx10WsC6Cui9/qqaw2pIzkJYzlJGxujvsIbmnoMGP3K7ao5MylqXMXUNKjBfiLgsbLYrirgAAAAAAAAAAAAAAAAAArhohJIhN69iiFr9wRM5AWpXjS5IlOX0pWQn78k8GNpE3U9fsXzwr/0xVkuQMpjTwoVvlDjGxGt3Fn2lo/q8Pyc67CpuBvLMV9f/sDXL6mAwNYOP5Z6ta+NwhOf0pNU+UFSy1VHzXftlZVtnG1uXP1LX4xaNy+pKqHF+SN9tQ6d37mHgLdJmg6qnyvTNqPDsnu5jQ4hePyelPyykQKInuE1Q9Lf79MdV+dLbd4Fga/KVblDpYUmIHIZOIV1BuaeHzh1V/YkaSZBK2Bj98i3KvHFXulaMxV4c1WUbNo4uSH2nur56XuzOngQ/cKGeAcU30rqDuaekrJ1T9/pl2g2008MGblb6hP97CLsM4llL7i0rtJ0gMAAAAAAAAAAAAAAAAANDdWPIVsfBm65r/m0OKmqG8M1WFVU9Lf39c/lQt7tKADo0X5lcCSKR20EP1B6cVsYIdukjkh1r65kmFVU/e2ZqC+aZaR5bUPLYUd2kAtoGg2tL8Zw8pagTtY7tyS7WHp+SdrsRdGrBhwpqn+c8dUlT3V85p6o9OybvguBFAd/AmKqo9NNk+Vj5TVVT3tfDZQwqqrbhLAzp4E5XzASSS5Iea/8yLCipefEUBy1qnKysBJJIUtQItfOGIgjr9sxtFYaTKgxPyTlbkTVSlSPJOVdR4cSHu0oCXxT9bOx9AIklBpIW/flHBEsd26ELGxF0BAAAAAAAAAAAAAAAAAFw1QkgQi7DmK2oGHe1BhYtE0V0iP5R3qtzR3jy2pMgPY6gIWFvY9Nfsq94UE6EBbLywEcifrne0c2yHrSxsBPInO0MUgzL9Hug2a30u/em6wnrnuAQQt6DcGeYQzDYUNvwYqgFWC9fYnnpnqooabE+7UeSH8o53htO2zhAWid4Q+aH8crNjHH6tY7tgqaWQQCQAAAAAAAAAAAAAAAAAANYFISSIhVNMyC4kVjfaRk5fKp6CgDW0zlY1/zcvyu7v7Jfp24dkuXYMVQFrs9Ku0rcOdrZnXDVenFcUEJoDYOPYuYSSB0sd7c4a+1Bgq7ByrpLX93W00++B7rPW5zJxoCg758ZQDXBpQd2XcTuHaxP7irLz9FfEzx7o3J6mru+TFG1+MbgsK2ErfftQR3tqfzGGaoCr0zpb1fynX9DUf3xUc//jebUmzgctO/0pyax+vLsrJ7uQ3OQqgSsQsY8EAAAAAAAAAAAAAAAA0HsIIUE8LKP8W3bL7mtfFGplHBXfuU8mTagDuoNfbmnuz59V7ZEp+dN1Ze4eXtlipm8fVGaNC/iBOBnLKHvfmJI3LE+Gttv3W0cWNfOJp9Q6zSq3ADaOcYyyrxyVO5Zt309Yyr95XEpwbIety0rYyr1qx/l+71rKv3FckbnMEwFsPsso/+ZxmeX9kjuaUf41O2WlnJgLA1ZrHl1Q+esnlH/L7pX+6oxmVHrPfllJ+ivil9iZU/Fd+1bCctydOSX2FFT+1mnCT7tU8mBJqXNjRZaUuWdEYStQFDIpHt1rZWz+sWmFFU/1J2Y0+6dPK1hqSpLc0az6fu4GmeTyvnI4rb73Xycrzb4SAAAAAAAAAAAAAAAAAID1wBV5iIU/29Di3x1R5q5hWTlXUTNQ+esn5O7IyimwcjjiF8zW5U/XJUn1x6fl7swp/8ZxJQ8UlRgvyGJSNbqQO5hW3/sPqvbIlCIvVP2ZWfmTNUmSd7qi5O5CzBUC2KqCpZbmPvWC0jcPKHVTvxREqj0yJWcoo+SOXNzlARsiaPha/NJRuSOZ8/3+8SnJklJ7WV0e6Catk2XVHplS9v4xGcfIn21o/nOH5Y7n5eQTcZcHrKg9NCnvTFVh1V/pr3ItJcY4nkJ3sJKOrP6Ucq/eIdlG/nRdS39/TDJG+dfvktPPuG638afqioJI+bfslqJIjefmVH9qRqnr++WUknGXB6zpwrH5lba5pryZuuxCUsaxlL1rWMndeYWNQHYpITvLMR26lCGpFAAAAAAAAAAAAAAAAEDvIYQEsTCupcgPVf3R2VXtlkuwA7qDuagveqcr8k5XlL55gAASdDUr6aj2+PRK+Mg551YGBYCNYGwjK2mr/vj0qnYrYcVUEbDxjG1k5ROqPzGzqt3KujFVBOBSrKSjYKGpyrdPrbQ5Y5l2wAPQRexiOxAgWDzfX7P3j8VZEtDBMlL5W6dWt2UctqldyiQsNQ8tqHloYaXN7muHOADd6uKx+XMuHpd3BtKbUQ7w8kRR3BUAAAAAAAAAAAAAAAAAwFXjSlPEwhlMK/uq1ZMoMncPyxniolHEL/JDKWEpe9/oqvbMvSNyBumj6HKOUeGB3dIFc3/sUkKJ8UJ8NQHY8uxCUsV371/V5oxk5O7IxVQRsPEs11bhTeOrzqqtjKPUgVJsNQFYW2J3XnYxcb7BSMW375OdJjQI3SVz97CMe37HYlxL2XuGY6wI6OTuzMkZyaxqK75zr8KGr7Dux1QVLiWxKyd7ILWqrfju/bJz7APRvZyhVEcIV+beYcbmr0AURvJm6vKma+2/c6B7GMK6AAAAAAAAAAAAAAAAAPQOJ+4CsD1ZCVuZ24dkF5MKFluyiwkl9xVlpeiSiJe/2FTlmydV+eGE0rcNqvRTBxVWPLmjGSXGC/RRdDV/tq7FrxyXd6aq4jv2KfICWaWkknsKcgl5ArDBnNGMiu/Zr2C2IZN2lNxbkF1Mxl0WsKGc0Yz6f/5GtU6VZWxLzmBKJrn2qt0A4mPlEiq+54C80xVFrVDOSEbOUOryTwQ2kb/QUO2JGeXfPK6oEcikbCUPlgiURNdxSikNfuhmNU+UFS42ZQ+mVfnRhOY//aLcXTn1/dR1ShBG2DWc/rT6f+Z6NY4sKKr7sktJ2QXO09DdrISjwlt2K3VDn7zJmtzhNGPzVyCotFT+3hlVvn1KiiJl7xtT/o3jchib6Q5RFHcFAAAAAAAAAAAAAAAAAHDFuGIPsfBm65r5w6cVtQKZhK2oFcjKuhr+jbvklLggEvFpPDuryg8mJEn1x2dUf2JGfR+4UembB2OuDHhpURSp+tBZ1R+bliQtfumoTMJS/z+6Se5Q5jLPBoCXJ6x5WvjUC/LOVNvHdn6osqTh37xTiTEmIGLr8o6XNfcXz8m4lqIwkoJIhbftUeHNu+MuDcAFWieWNPenz0q2kbGNolao3Bt3qfj2vTKsSI4uUX9qVtXvnG7fcSxJUv9gWhqPsSjgEpz+tJz+tLzJqib/46NS2J5Y7Z2qaO5Tz2voI7fLzrgxVwmpHVg78yfPKGoGMo51wTj8nXL6CORC97LzCaVvGlD6poG4S+kZjUMLqnzj5Mr96g8m5I5klLt/R4xVAQAAAAAAAAAAAAAAAAB6kRV3AdiegrmGomYgRVr5f1jxFCw04i4N21gURKo9MnVRo9R4ciaegoCrENY81ZYDSM6JWqFax5diqgjAduIvtuSdqUqSolbQnoQYRvJnObbD1tY8sihJirxQCtqTb2uPTimoe3GWBeAirZPl9j+CSFErlCTVH51WWOWziu4QeoFqj14wHuGHkh+q8dxcfEUBV8Cfqa8EkKy0TdQULDZjqggX8xeaiuq+FEbtczVJYdWTv8DvCNhqGs/MdrTVHplSFIQxVIMOhB8CAAAAAAAAAAAAAAAA6CGEkCAWVtaVLr7ezjay0k4s9QCSZGyjxO58R7u7MxdDNcDVsZK23LFsR7szkI6hGgDbjZWyZWU6j+PsLKufY2tzhjr3s+7OnCzXjqEaAJfi9K/xWd2RlUnyWUV3MLalxK41xiPGGI9Ad7PWON43aUdWijHebmFlnM5xeItxeGArcnd0HjckxvMyNn8K7gpRdPnHAAAAAAAAAAAAAAAAAECX4MozxMIZSqvw1j2r2orv3idnMBNTRYAUVFpK3zYkK3d+AoXdn1T65oEYqwKujHFs5d+0e9VESndnVsl9xRirArBdOH0pld53cNXktux9o3JGObbD1pY8WFrVz03aUf61u2QcTrWBbpLcW5C76/ykTJO0lX/zOIFB6Ar+QlP+fEPZV46uCnSwB1NK3dAXY2XAS4v8QCbjKHv/2PlGI/W974CcvlR8hWEVdzCjwtv3rmorvmuf3DXC9AD0hiiK5M835M81FAXngy3SNw/I7kuu3LdyrjL3jsZRIi5kLk6CAgAAAAAAAAAAAAAAAIDux3J3iIXl2kruL6r47n0K676sXEKJvQUZm4vxEI/m4QXNfeZFBQstFd6+R3YhISthyx3NMnECPcPOuyq954D8uYaMbeSOZtor3gLAJnCG0yq+54DCcksmZSuxu8AK6NjyrJSjwpt3y5+uKQrbYYtWwb38EwFsKivvqvC2PfJOVRQFkexSYlXYAxCHsOmr9vi0Fr90TFHTV+aVoxr85VvlzzdkbEvuaEZOifEIdCdvtq7yV46r9vi0UrcNqv8XbpSiSM5gWu5INu7ycAHjWkruLVwwDu8qsbcoYxOaB/SioOap9tCklr56QlEQKvfqHcq9dqecYlLucEZDH71d3tmqFEnuSEbOAIFDsYuiyz8GAAAAAAAAAAAAAAAAALoMswIRC2+6ppk/eEqRF660OUNpDX3sDtk5JgJhc3nTNc380dMr/XHpC0fpj+hJ1YcmVf7qiVVtgx++VanrWT0bwMYKqp7m/vJ5+Wdr5xsdSyO/dafcYSYhYutqHl3U3F88t6qt9P6Dyt03FlNFANbina5o9hNPr2rL3jem0nsOEIaK2LROlbXwN4dW7tcePCs77ajwtr0yhn6J7hUFkSrfPa3aY9OSpMYTM2o8MaPBj92uxM58zNXhYt50TTOfeEpRi3F4YCtoHV3U4hePrtyvfOe07L6k8q/eKUly+lKEqncrju8AAAAAAAAAAAAAAAAA9BCWu0Ms/NnGqgASSfKn6/IXGjFVhO3Mn62v2R8D+iN6SFD1VHt4sqO9eXwxhmoAbDfBQnN1AIkk+aH8Wfal2NoaT892tNUemlQUhGs8GkBcvMlaR1vt0SkF5VYM1QBtrROVjrbaw1MKq14M1QBXLqi0VHt0qqPdP1uNoRpcjj/bWBVAIjEOD/Sy+nNzHW21hyYVekEM1eCqRFHcFQAAAAAAAAAAAAAAAADAFSOEBLGwMk5Hm3EtWcnOdmAjRX4o43RuCo1rydAf0UNMwpIznOloZ+VLAJvBpGyZROf+1EqzL8XW5ox07nvdHVnJYoVjoJtYWbejzRlMyyQZFsPmi/xQ3kxddn6NfjmckUnYMVQFXDnjWHIG0h3tVj4RQzW4nEuOw6c4VwN6kTuS7Wwby0mWkT/fkDdbVxQQdgEAAAAAAAAAAAAAAAAAeHmYbYFYOENpZe8bXdVWeMdeOQNMlsfm8ecbmv/bwyp/85TSdwyt+lrxJ/bTH9FTLNdW/g27ZNzzu3ZnKK3EeD7GqgBsF05/SsV37V/VlrlnWM5QZ0ADsJUk9xdlF85PuDVpR9lXjsoYQkiAbuLuyskdz51vsI0Kb9sjO90ZAgFsJH+uofnPHdLkbz8kb6YhZ/SCYyXHUuGB3bIIIUEX82frWvzSEWXuHpbs88c7id15JXbmXuKZiIs7nFH2/rFVbfm37Vl1DAugd6Su75Pdl1y5b1K2sveNqvrdM5r8Dw9r8rcf1uKXj8pfbMZYJdbEOAEAAAAAAAAAAAAAAACAHsJyd4hFuNhSsNRU4a17FAWhjGOpeaqsTNNnEhA2TfXhSdV+dFaSlLqxX4W37pGVc+WOZuWOZWVYwR49pnWyrPwbdimK2tc0hzVfwWJrzRUyAWA9Ra1AzVNlFd62R5EfytiWWqfLChabsrMc22FrChq+Fv/+uNJ3DstKWIoiSYokjiGB7tMKldiZU/rGAUVhJGMZLX33pBK787Iz7KewOaIoUvXHE6r9eFKSVPnWSWXvG1P+DeMylpE7kpE7yrkbulcURqo8OKHaQ1OyCgsqvHm3ojCSO5RWcl9RdjF5+RfB5rONrKxz/lzNsVR/fFrJvUUlCa4Feo47nNHQR26TN1Ftb4NHsssBUUdXHlP5zmk5fUnlXr0zxkoBAAAAAAAAAAAAAAAAAL2MEBLEwpupq/HsvBrPzq9qD14/TggJNkVQ9VR7eHLlfuO5OTWem1P+LbuVu2/sJZ4JdKeg6qn64ISC+dWrXJq0rdT1fTFVBWC7CBZbqj80qfpF7Zk7h5XYwYro2JrCpaZahxfUOrywqt0dzSoxRr8Huok/W1f1wbMd7cF8kxASbJqw6qn28NT5hkiqPjghu5hQ4U274ysMuEJBtaXao+0+HC61tPSV45Kk4rv3EUDSxYKllspfPylFq9v96TohJECPcvrTcvrTK/fL3znV8Zjqw1PKvGJUlmtvZml4KVF0+ccAAAAAAAAAAAAAAAAAQJew4i4A25Od6cy/MWlHVooLIrE5TMKSO5LpaHf6UzFUA7x8l+zTfek1Hg0A68skbVnZzknc1hrHfMBWYRLO2v2eUEWg61jpNcYgEjZjENhUJmHLGe48Z7OLjEOgN1gJR85Q5xiDVUjEUA2ulJW0ZZc6Q2I4VwO2DneN4wt3R1bG5k/AAAAAAAAAAAAAAAAAAIBrwxVoiIUzmlXmruFVbaWf3C+nj4kX2Hj+bF31J2eUuWdExj2/GXRGMkruLcRYGXDtLNdW/k27O/v0Pvo0gI3nFJMqvfeAZM63pW4blDuWi68oYIM5paRKP7l/Vb9P3z4odywbX1EA1uSMZJR5xciqtuJP7pMzQGAfNl7rbFWVH5xR5QdnlH/9rtXnbGNZJffmY6wOuLwojNQ8UVb1h2eUe81OyTnfh92dWSV3M+7QzexcQqX3Hlz1l6DkdX1yd3DMCmwVqRv6ZfedDxsyaUe5+8dkLNPxWH+xqdoT01r8yjHVn5lRUG5tZqnbm+n8fQAAAAAAAAAAAAAAAABAt2K5O8QiaoVSylLhrXsUBaGMY0kmirssbAP+QlMzf/as/ImqrIyj/Bt2ycq5sotJuWM5OWusDAr0isgLlX/DLkVR+5rmsBUo8sO4ywKwTUSW2sd2fihjW/LLLUVNX8q6cZcGbIgoiORXvVX9PvQDKeK8Bug2kRfKuPbqMQhJURTJMBkQG6g1UdH07z2hqBFIkqy8q4FfukVh1ZNxLcYh0BOax5Y089+flMJIVs5V4S3jsgtJWRlH7o6cnCJ9uNuZlKPCAxecqy00FFY8qcDvDtgK3OGMhj5yu7yJqqIwlDualTuU6XhcUPe08PnDajw1u9KWe80OFd6xV5Zrb2bJ2xNjBQAAAAAAAAAAAAAAAAB6CCEkiIU3UVHtB2dXtZmUreTekpy+VExVYTvwJiryJ6qSpLDma+mrJ2SStkb+2d1M/EFPC5uBFr9yTN7x8qp2py8ld4TVbQFsrKDc0uJnD7cnsl0gdaAkpz8dU1XAxvLn6lr64lEpWD2RKHWwT3YuEVNVANbiT1RV/f6ZVW3GtZTaX5IzwH4KG6fxwvxKAIkkhWVP5W+d0uAHb5JxmOyL7hf5oSrfPimF7eOdsOJp6e+Pq/C2PcreMxJzdbgSkR+q8o0Tajw/v6rd6U8rsSMXU1UA1pvTn5LT/9J/W/On6qsCSCSp8v0zytw7osQY24MNQ/gIAAAAAAAAAAAAAAAAgB5kxV2AMeYTxpgpY8xTl/j6G40xi8aYx5Zv/3Kza8T6i7yws60VKAq4GA8bK2oFa7bR99DzgkhR1e9oDuudbQCw3iI/VNhYYx/rdbYBW0Xkhx0BJNLa5zoA4hWuNQbhh5wHYt1Ffqiw5itanmwa1tY4Ryu3FHGIhC4UhVG7/wbnt5lRFCmoeh2PDddoQ3eKokhBZa3fYSuGagBcq6DuKVzjbxtXY80xmmj53BYb51wIiTHx1gEAAAAAAAAAAAAAAAAAVyH2EBJJfyTpHZd5zHeiKLpz+favNqEmbDB3JCPjru5+mbuG5ZSSMVWErc5fbKr8nVMKlloyiYv63j0j9D30vKDWUubu4dWNRkruK8ZTEIBtxS4mlb1/dHWjY+SOZuMpCNgETl9KyetKq9qsjCN3KB1PQQAuyR3JyCTtVW3pWwdl93EeiPXTOl3R3Kdf0NR/eVRLXzkuf7au1PV9HY/LvXanrIv6IxA3b7qmxS8e1dR/eVTznz2k1tmqJMlybeVevbPj8amb+je7RFyj9u9wR0d78mDn9glA9wkqLVUenND0f3tCM3/8jBqHFxSF1xak5wxlZF/0dxB3V07OAOewG+lcOB0AAAAAAAAAAAAAAAAA9BIn7gKiKPq2MWZv3HV0k7DmKaj5srKO7LQbdzkbIooiFd6xV41nZuXPNZS6rk+JfQXJYiUwrI/IDxVUWjJJW1bKUfVHZ1X+2glZGUeFty/3vdmGMncPK3vvqIyzfplMwVJLoRfILiRkuUwsQltQaSlsBLJzrqzU+u5+w5qnub96Xk4ppfwbdqn+1IxMylHhgd1KjOfX9b3Q+4Kap3CLH2cgBlEkdzir7KvG1HhuTnYpqfRtg5LT3cd2/kJTCkPZxaSM3Q35jOglkRcqebAkO59Q8/Ci3JGMUrcOKIykoNqSnU2sfnwUKVhoSlEku5SS4dwHXSpo+Aornqy03dGPe5ZjVHznPtWfmpE/U1fyYEnOcEbyQolzti1lZVurdkjaRm9rw2agsO4paoWa+YMnFdZ8SVL56yflTdfV91MHNfChm7X0teOKGqFyr9+p1I2EN6C7hDVfc59+Qd7xsiTJn22oeWhBQ79yh5xiUqkb+tT309ep/K1TMglLhQf2KLGncE3vFSw1FXqhnGJCxmH7uxn8clPOaEalnzqoyrdPyyQsZe4YVv2ZGSV252VnGBfA9hXUPYVVX3bGlZVZ/z+XBpWWFEay8gkZc23HJLXHp7X4+SPtO1M1zRxtb5+Tu69+O+wUkxr40C2qfOukmkeXlLqpX7lX72A7sFkIIwEAAAAAAAAAAAAAAADQQ2IPIblCrzLGPC7pjKR/HkXR03EXtFGax5c0/5kX5Z+tyR3Pqe99B5XYufUmkHtnqlr8uyNK7i8qua+oxovzqj4ypeS+opxSKu7y0OO86ZrK3zyp+hMzckYyKr3ngCrfOS2pPbHiXN8rvf+gUtf3XfMFwBeL/FCN5+Y0/7nDCistpW4ZUPEd++QOspLgdhZFkZpHFjX/mRcVzDSU3F9U8Sf3KzGWW7f38Gbr8k5W5J2syMo4Sl7Xp6gVKPQCRVEkpjjjnOaxRc1/9lD7OGN3Xn3vPbAljzOw+YLFlhY+d0h2zlVyf0lBpaXFzx9R/8/foMRwNu7yOoQNvz2R58vHFDUDZe8bVf71u+T0cRyKK+fN1LT0pWNyhtJKHijKn21o4W8OKf/AbtUem1LpnfuUur5fxrUUVD3VHppsT0IPpfzrdir7qjE5heTl3wjYRK0zFS387WG1ji3JGUqr7/0Hldxfirusl6V5sqzWsUUtfuGoEvuKSu4vqnl0UbWHJpXcV1CSSZdbRlBptQNIv3FSkpR7wy7l7huTnd+YMJ3WqbIWv3RUrRNlFd62ZyWA5JzGUzMKH9it9E0DSu4vSoE2ZIIz8HK1pqorASTnBPNN+dM1OcWk7Iyr7CtGlb5lUJEl2dcQrBp5gerPzGrh80cUVj1l7hhS/oE9jJltoCiI1HhhTgufPaRgsaXkwZLybxpX/elZLX7luOSHSowXlNxX5PeAbal5sqyFzx2Sd6oiZyzbPu69hmCPtYQtX41n57T4pWMKm4Hyr9uhzL2jV33+F1S8lb9rnH9xqXWyfM21Jsay6vuZ6xU2fFlpV8Zm5HjDkT0CAAAAAAAAAAAAAAAAoAf1wnLfj0jaE0XRHZL+k6TPXuqBxpiPGmMeMsY8ND09vVn1rRt/rq6ZP3pa/tmaJMk7WdHsnzyrYKkZc2UbIGrfmocXVXtkSsF8U1bS3rargfd63+0WoReodbaqhc8fUe3hKUVeqMgL5c81ZJIXrK663PeiZrBuASSS1JqoavbPn1VYbkmR1HhqVktfOa7ID9btPboR/fel+dM1zf7R0wpmGpKk5pFFzf2PFxTWvHV7D2NbOpc0EtZ81R+fVuPZOYWLLbVOlF/6ydvYduu73uxFxxknypr9s2cVLLVirgxXqxv7bhRG7aCFxZZqj06p+eLC8iSL7jy2a54oa+EzhxTVfSmMVP3BhGqPTsVd1rbQjf33Wll2+3Tan66r9siUWseXJLV7fTDT0OyfPqvmiXZb88iCFr90VFErlPxQ5W+cVOO5ubhKxzXYSn33UoKKp7lPPqfWsXa/9afbxw7edC3myq6dN1vXzCeeUtRsn5O1ji6PQcw2JLN8HL0NbIf+K0nNQwta+ofjK2MB5a+eUOPF+XV7/bDhq3W6rNaZiloTFTWen5O7MyeTslf62Cq2kax2H7OSDgEk12C79N3NElS8djDTREXNMxW1zlQUtoL2+MQah+3GWb2NtDLONQWQSO2Qq7lPPq+w4kmRVHtsWuVvn1IUhNf0et2uG/qud7ai2T95RsFi+5y/eWhBtUen2tsrP5QsKVhsaukfjin0tvbYJa5ON/TfjeYvNDX7J8/IO1Vp35+oavaPn5E/31iX128dL2vuk88rWGgqqvta+ocTqj85c/UvZEsmZXc0W+6VH8MGS001T5blzdYveAGjsB6odaosf2EL/v2x20TLKSTr+LcoAAAAAAAAAAAAAAAAANhoXT/bIoqipSiKKsv//qIk1xgzeInHfjyKonujKLp3aGhoU+tcD/5soz0R8gLBYlP+3Na7CNDKOLJLq1d9y795vD1BYxvq9b7bDYJyS4tfOKr6E9NqvtCeZJS8rqTk/qIWP39EufvHVj3eLiXk7sit2/uHXiDvbKVjVbv6E9MKltYvbKIb0X9fmj/bUOStnlTjT1Tlz6/ftt0ZTCvzitFVbckDJSnSul08vxVtt74bzDUUNVZPLArmm/SRHtSNfTcKQuXfNL6qzR5Iycq56/9eYSR/viF/4dr7buvoYkdb9eHJdQ2Iwtq6sf9eK3sordRtq09NU7cOyiokVu43Dy3IW2io/tRsx/NrD03Km68rKBMG1Qu2Ut+9lGChIX+6vqotaoXyZ69textUWvJm6wpb8U1s9s5U2uMsllHy+tKqr2XuHZEzmI6nsE22HfqvJFUf65woXXtkcl1e259raO5Tz2v640+qeXRRM594SktfOaHqD88q9+qdCluB3LHsqucU3jQuZyC1Lu+/XW2XvrsZWhMVTf/e45r+L49p6j8/pvqjU1r43GFVfjCh+lOzSt+++uebPFiSM5xZl/cO6p68iWpHe/3RqS17HNQNfdefrneMUzYPLSixJy9Jytw9Irs/pfqzcx37f2xv3dB/N1ow32gHiV8grHry5176uDcot49vLxc63jy80NFWfXBCQf3qxhzstKvi2/auarOyrhJ7Clf0/OaxRU3+p8fa2/7/+Khqj08pbPmqPTalqd95RNP/7XFN/edH1TzWOUaCDRBFl38MAAAAAAAAAAAAAAAAAHSJrl+C0xgzKmkyiqLIGPNKtYNTOmdwbQFWeo1fh2Vk0p0rnfW6sOErc/ewFEQKqp6cgbSCxYYiVgLDNWoeW1T1wQnlXrdTJtlehTi5r6ilfzguSWq8MK/CO/YqWGjKHckoebAkd50mnHnTNS3+/TElxjpDTey+pEyi6/OesIHW2rabhL3mKpbX/B4JW7k37pQ7kpF3piK7lFJYbmnxi0dV+qmD6/Y+6G1rHmfYRtY69kVsY0Ekb6Kqwtv3yJ9tyM66kpEif31XNveXmqo+OKHyt0/L2EaFB3Yrc8+I7MzVhZ04/Z0Tgt2hjHQVqwkDdtpV7pWjcoczChYacvpS8ucaah5ZlDOckT9Vkyyj+pPTckcyunhqpzOY1uwnnlbY8FV6zwGlbxyQoQ8iRiblSI4lXbTttjJXN3QURZGahxc0/9lDCmYaSl5fUvFd+5UYzV7+yesorPkKFpvtUaRIcoopJd6ye+XzauUTMg6fua0ksSOr5nNzq9qcoYyCmnfVxwoXqz83q8bTc8q+akzlb55UWG5PIo6agZa+elyFN40reaCo7P1j8mcbSu4tKLG3IGMxzoX4hc1Ai3935HzQRBCp8p3TKrxtj+pPTsspJSXbUuGB3fLnG7KLSTkjmZf9uZGk1umy5j93WOkb+ju+Zg+kZCW6/s8TPcusMQZg5ROyC0kV3rpH3kRVla+dUPbekS0bBgNciknZktHqoB5zibEztcc2Gs/PaeFzhxWUW0rfNqjC2/Ze8u8LdjHZ2daXknUN53up60oa+uhtahxakJVzldpfkjty+ePqYKmpuU8+txK2ErUCzf3V8xr6yO2a/9QLK997WPE095fPa/jX7pR9QaAm1hPhIwAAAAAAAAAAAAAAAAB6T+xX+RpjPinpjZIGjTGnJP0/JbmSFEXR70r6GUm/aozxJdUl/XwUbdHlopKWMveOqPbQ+VVac6/dISsb+69p3QWLLZW/flImYcmkHIVLkzJJW9n7dkjrcIE7tp/WibIkqf74tHKv2aHyN08qumDF7dbxJbWOL8keSCn/xvH2BIt1EHqBFv/+mBpPzcpKOUrsKah1fKn9RUsqveeg7BwX725nVtpR+tYB1Z86n5+Vf8NOWescMGUZo8r3z0heqKDqSUF7V8lqtjjHpGxl7hlW7eGplbbca3bKpNnv4uULG77qj02rLskqJBTVfUVeqL6h9Vk9/ZzGc3Mqf/2kJCnypcUvHJXdl1Lm1sGrep3EvoKcofTKNtK4lvJvHpflEsqDq9M8tqjyN0/JzrqqVTwpjGQXk0oeKLZDePxQ9Udm1fdz16vy4ITCpfYEMJN25I5kVXukvU2e+/PnNPSrdyh5hStaAxvB6U+p9O59Wvjc4ZW27KvG5A5f3bbcn6pp5o+elvz28WjzhQXNN17U4D+5RfYmHncE1ZaaLy4oc9ew/PlGe6zFNiufV7uUVOa2QRnGILaM9G1Dqv7orMJKOyDEyrqyi0k1Dy8oc9vQy3rtxjPt8zkr7awEkKwIIkVhJJOwlb1nhHAbdJ2w6ql5eLGjPfJDeacqyr12p+Y//aL+/+z9d3Cc953ve76f2DkAjUAkEgyimJTlIFuyJMuW5TT2zLEnz3jyzDlz5lbtrdrdv/dWbdXW1tbWnnvn3nPu5BnPmZzOjGXJ2eNs2ZatREoUxUyCyOgcnrR/NAWwCcgiRQDdAD6vKtnEDw30l8Wnf/17nn6+n189DLHSLhEw+GvHbvl5g1KT+U+fIFhq4o6kccbSeJcq7W+aBvmP7LvpoCu5cWbSJrYvR/P01X97A7LvnaBxaoHG8QW4mjmWncxSPz6/ZlCMyHblDCbJvn/PcoA5QObRCezBtUNFWlNV5v/yxHKWRP35OTAN+j9xcM33/dj+HGbWXT7/wzLIPjqBYd/8NQfDsYjtyxPbl7+pnwtKLYLidQFDIfgLjVWZGMFSk6DcUgjJRtmmH2mLiIiIiIiIiIiIiIiIiIiIiMj21vW7fKMo+rk3+f7vA7+/SeV0VTDXICg2yT6+h8gPMWyTxslFwqUWpNcnMKFXWJn2zYxRKyRqtW+EdMbSmCk1/8jNi8II5+qu2kGp3WiWff8kZnr18WTnY2+4o+HN8ktN/Lk6jZfazUi170+TvG+Y+ME+zJSNO57BGUmvy3PJ1uUvNIhCyL5/D1HQntvrL80TP1TASq7c2B0Um3hXqoReiDOcxLnJxn0z6eCMpGhcE3YCvOHN87K9RX6IN13Fn29gph2cXSmCxSZB2etcZ7yySHC0gK0mA7lFZsrGzDiEZW+lyYaVNd96iIKQ2vemV43XX5q/6RASZyDJwK8dw7tcJfIDnOHU8lpC5GY4Q0kIIoJrjntnPI27J4uZdih//RLpd43i7Eox+Nt34k9VCf0Qf7ZO6UvnO36XN1XBHU1hKAxHusQwDZL3DeGMpvEX6liZGM5oCjN+4+dPYcOndamyHEDyOu98mWCpuakhJGbCwZ+v4yQc3Imrc/w1r9fY3hxGTK+37cQZTpJ5ZIKo4bd7PcOI8pfOEz/Uf1MhJJEfEHlRx7WD2IE+mqeKRF6IEbeIGiuhpxgQm8zijGcUQCI9JwojsMAeSeFPVTu+d+3xOvSf7sKbqmJYBs5o+qYDqNbiLzYJlpoAVL87Rertu0gcKWBmnPY1M62/N5Q/XcfKxTquR1W+c5nEoQKNcAEAM+Piz9dx9W8hO4xhm6TfNUpsbw5/qYGZcMCA1pkS9q4kdrbz8zh/trYquKP+3CzB45PY/fHlsdfXEM5QisHfuhPvYpnID3FG0jijm/s6M1MOZtImrPkd41Zu9WeNZtrRZ3Mb6fUQEsPobh0iIiIiIiIiIiIiIiIiIiIiIiI3oeshJLLCiFk0X12i+erSyphjYsS23z+TM5YmfrifxomrNzwnbbLv2411E81NIgDebI3qM1fAMogdyNM8tUTrQpmg0qL/F4+QuHuQ+o9mgavH2RN7Mdeh0cxfbLDw1y/j7EphZdzlRrbaD9rN0YVfPYo7nrnl55Gtz0zYNI7PL++cDWC4JkZ85Tj0F+rM/fcT+JfaDUFGzGLgN+8gdhPHkBmzybx7jNa5MmG5fTy6+3O4u7Pr9DeRraR+fJ6Fv355uUEi9c5dJO8ZonlykebJxZUHWgZmXM23cuvc4TT5j+5n4e9Ogt/eUjv9nnGcsXUM4zIN7JEUrQvljmEr4xBUWljpmws8sfvi2H3xN3+gyI/h7skRO9RH8+X23GpmXBKH+1n8h1cBsAtxEncOYBgGTiGBU0gQ1jxmvnyeqBV0/K6w6lN9bpbUfcMYak6SLjFdm9ieLLE9N7+GDFsB5a9fwjBXH79GzFqX87CbYaUdch/dz8JfvYwZs3Ans7TOltrfy7mkHxzDsBQYsZ14czVaF8vL1wBeZw/feJhC81yJ8lcv4M/WSb5tmOTdQ9i5GIljA9Sfn6X2wxmyj0xQ/MI5CCIwIPfhfbh7c5gKkZIe483UqH53ivrJRbKP7Wbpn08RNdvrj8SdA7QuVogdyBPbk8Xui+OOrm+QrhG3wDQgbJ+YVp+5Aly9ZrbOzyWrGa5J7YczHWP2QHwlPM82ybxnjPrJRfo+dqALFYp0lxm3ie3NwTmY+6MXibz2tQx3b5b+n7kdO79yvWCtUHMrH8NwV977m+dKlL9yHn+uQeptwyTuGiJ599DG/0XegN0Xp+8TB5n/7ydW1ixPTGKPpsh9aC/Fp85A1P4Msu8TB7Hz22sjhJ4URW/+GBERERERERERERERERERERERkR6hxIceYlgmiTsGqL8wtzyWfnAM3O3XgBaWW7hjaRJ3DBD5IYZlEjaDN/9BkWsEdY/FfzxJ62y7GTlxbIDsE5M4u1I4IynsXAz7Y/tJPzBK2PRxCgnsQmJdnrt1vkzrfBlvpkb20QmKT59dbvaP3ZbHGdEOotJmDydJ3j9M7fvTy2O5D+/r2CWzeaa0HEACEDUDyl+9gPuzh25qJ21vrkbuicn2DreWiV9sdO7QLTuCv9hg6V9OdezQWv3OFZL3DpN+aIzK1y8tj+c+MIk9cOs7XItEfkhzpkL/Tx8krHmYcZvayQXCqoe1TrvpGoZB6v5h6s/PLs9tZsbFjNm0LlVI3N6/Ls8jcjPsfIz+T96OP1Mj9EPsrEvlmStk37ebKIKw4rH0mdcY/JVjmMn2a8FMOuQ/up+5P31puSnXGUsTlFqU//0CscksjuZm2YL8mRrlL50nfqSf+KF+Gi8vLH8v/xP7sfvX51zsRnmzNZb+5RTpB0bANEi9fRept+3CTDs4w8mOxlLZ+qIwovL1S7gjKRqvLBLVfQDMtEPy2MAN/Q5vqsrcH72w3IRceuosYdUj98RenIEEA796DH+2BqbJ4H+8i7DiYWVcnKEEhgJIpMcE1RYLf/sK3qUKAEv/4zUyj4zjDKfa4SBGe31tDyWxkuuzXr+eM5Ag89huyl84tzyWvG+Y6nencEbT2JmbCxGUm2PELJzxNN7F9jGACemHxrH6YjjjacyMS7DUwM44RE2/u8WKdEnY8Ck+dXb5vR+gdaZE62KlY63ojKWJ7c/RfK3YHjAg/7H9WOn2/Nm6UmX2D19YDmUtPnWWoOaT+8DkmgF9myV+qJ/h/+ke/MUmVtrBHk5iOhbpB0aI7c8TVD3sfAx7cHPX6TtNpPARERERERERERERERERERERERHZghRC0kOCUpMoCMm+f0+7gdw2aZxYIHHXIOS6Xd36qj03Q+37nTsxxvbnSRzsx7C2X+iKbAx/vrEcQAJQf3GO+otzDPzGMexce+c+K+Fg7Vn/Zgp/sQFA1Aiofm+6/boNI9zRFM54BjurnQOlzUo45D64l+RdgwTlFnYhgTOSwjBW5jp/rr7q57zLVcJWgHWDISRh3afy75dW/S7jAwaxyZvfyV62rrDhE9ZWNxAFpRaZRyeIH+onKDax++I4oym978q68JeaVL90kep1fRXJwwM4Q+sXpmCmHdLvHgPAMCDyQkpfOU/fT922bs8hcrOslIO1t33C1nhtieo3L696jDdfJ3ZNg29sf57Cp47QOlfCsEyCYpPqd6cACOsKEJOt6fX1R+P4Aok7BpavbbiT2fYu85vMu1IjWGxS/urFlUEDhv/n+xRAsg1Ffoh3qUL9uTnSD46CYWAYYOZjOLtuLCS0daXa0YQMUPnWZdIPjGL3xbEyLpZCE2SL8OcbywEkAFHdp/S5cwz81h3E9+U3pQbDMnFGUmQf39MOobZNmmdLNE8uEn0ogMymlLFjeVNVnJEUicOF5c8aKt+7QmwiQ/XbUx2Pje3N447pH0R2nqgZ4M/UVo0HxWbH13Y2Rt/P3I53uUJYD3CGEji70svf96aqywEkr6t88zLpd45g93Vv3WmYBs5wCme4cy1kOBbuWPoNfkrWnTJIRERERERERERERERERERERERkC1IISQ+xBxI0Xl6gcXxlt2BnPL0twwzMNXbYNFM23FivvQhAu3HeYNVNnMYNhjbcimtv0vXn6pQ+f470g2PEDxW6uruh9CYr5WDd1veG33f3rA4JSd49iJm4ibdp08BY4/FGTDty7zR2LoYzmsK7XF0ZNA3sQgIr6WDtz3etNtm+DMvAcCyiVmd4gmGv73uilXbxpiod62Vor6NFesGa61Cj3YTbMWQa2H1x5j99oqNZzeqPY+XV4C5bk9Ufx3BNolZI/YU56i/MYWVd0u8cwXQ2f01qOKtfj4ZjKoBtmzJdi+Q9QxSfPEP5yxeWx/t/8fAN/461jhnTtXTMyJb0RtfGNuOa2bWsjMvCp493XLuL3ZbHymq9s9HcsTSlp892jKUfHKU5VV312LXmP5GdwEy7JO4YXA6EfN1aAWZ2NvaGn9WtNbeaMa0h5KpIKSQiIiIiIiIiIiIiIiIiIiIiIrL16O7SHuIMpyj84hHMdDugw5lI0/cfbsNMbr+smOQdg3DtjZmmQfpdoxiGbsqUG2cPJEg9MNIxFjvYhz2Y3PDndicy5H5iH4ZrgQHxOwqkHhhRAIm8Je6eDLkP7W03fRjtAJLU/cM3NSeaMYvs+3a3g3muMhL2pu1wLL3DTDr0feIgzng7LMnMOBR+6TDO8MbPjbJzWfkY2ffv7hizh5M4I+u7s67pWuSe2Etsf679ddKm72duxx1Z3SAk0g32UIL4kULHWPJtu9YMyrEHEwx86ghWrt2Ea+9K0v/zh7Az2y+EUnYGZyBB4VNHsfLtY9geTtD/S0ewuhSs6uxKYe/qXP9k378Hq4u70cvGStwxQPLtu9pXO22D7Pt3E9ubu+Gfd0dTWP2dx2v2g3u7dgyL3Ap7IEHy/uGOsfixAvbg5ob3uSMp+n/u0PL1bXdvjvxH9mG6CkzdaO5EhtxHr792OUrmHZ3XUs2sizO2vudtIluFYRmkHxpbPoczYhb5j+/HHb+514Q7msLqu24N8cSk1hCyLDHYxDD8bpchIiIiIiIiIiIiIiIiIiIiIiJyw7ZfusUWZpgGiSMFnLE0UcPHzLpYCafbZW0IdyLDwK8exV9qYJgGVkY3O8vNaV2u0DpXIrY3hzuRxZuq4oykiE1msVIb/7ox4zbpB0ZJHOon8iOsvtiq3b3Dmo+/WMdwTOxCAsNS7pOszUo4pB8aI3G0QBRGWPnVx9ONsHclGfiNYwRLLQzXxBqIr7lzp2x/7miagV8/RlhqYcZtrJyaHmRjGYZB4q5B7F0pgmITM25jF+LY+fU/9pyhJIVfOkJQas91dl7N5NI7rIRD9vHdpN42TFDxsLIu9lBizUZbwzCI39bH0O/eQ1j3MDMuVnJ7nv/JzhHfn2fwd+8iqvmYaQcr5XatFjsfo+9nbyeYaxA2fay0gz2cUvjpNmbn4/T9xH4yD42BaWD3xd80KNRfatA6X8ZfaOCMpij88lFa50oEiw3cfXmc4SStS2Wd10vPC1s+rQsVWhfLWNkYsd0Zso/vIXH3IGGxhZl2sHelNv1as2GbJO8cxN2dJWr5mNkYVlwfSWwGM26TftcoicMr1y6jVoCZsin82lFaFysYjkn8YB/OJgQ6i/QqZyBB7qN7Sb1zF1EzwEw6REF0U7/DLiQY+LVjNF9bIlhqEtufx92d6XhMUPcIFppgGziFBIatNcWO4ZWZfGyeevXZblciIiIiIiIiIiIiIiIiIiIiIiJyw3THbw+yczHY5s3CzfNlWmdLNF5eoHWhDCakHxwj8/DEpgRIyNbWulBm9g+eJ/JCAIyYycBv30VsdHODbAzDwO5fewdZb6bKwt+fxLtQAdMg894J0u8aVWOpvCHDMLALb31H4qDh03x1idozV2idb8+rqbePYD7q4mzz9xRZm5Vwtm2YmfQmb6pK6Qvn8C5W2nPQ23ZhPDi2IQ1tZtzGVPOi9CB/qUnrfJnyly4QFJsYrkXuQ3ux74+9YZOZlXWxst0LahBZb3YmBpnurz+92RqVL1+g/sIcRBA72Efy3iHsO2IYloJItivDNm947RGUWyz+/as0X1taHss+MUnmPeMYpoE3U2P+L4/rvF62hPqL8yz+3cnlr+3hJP2fPEjxydP4UzWwDHKPT2K9Y1dX1tHtcMLuvzfsNNdeu/Smqsz/zcv40zWwDdLvGqV5poqrYHDZ4YJKi6V/OkXz1aXlsezje8g8MvGmYWbXcgaTb7gG8ebqLP3zqzRfK4IB6XePkXlkHCut88CdwAhbALixYpcrERERERERERERERERERERERERuXHaaku6ov7yPN5MrR1AAhBC5WuX2o3zIm+i9qOZ5QASgKgZUv3OVBcr6hT5IeV/v9huVAIII8pfPN9uyhbZIP58ndZrxZV5NITqd6bwzpW6W5iI7AhesUnt2ZmV97oQqt+9Quuy3vtkZ/EX6pS/epGg2AQgagUs/Y9TtC7ptSCy2Rqnlqg/3w4gAWieXMS7UMZfqHe3MOkZ3nStI4AEoPTFc/gLjfZ5/Vcv6LxetoSg1KT45JmOMSvltI/nqdrVB0UUnzqj9fkOFbYClp463Q4gAfAjKl+7RHxvjvJXLhD5QXcLFOkib7rWEUACUPrSefz59VkzRlFE9Zkr7QASgAgq37hE66yu2e4UkWG1/2BE3S1ERERERERERERERERERERERETkJiiERLrCdExaZ1bv+tW6rBASeXP+UnPV2OuNnr0grHk0TiysGvemq12oRnaMIKJ5do15VU3PIrIJooZPc421nX+l1oVqRLonagYEC43rBsFfaqz9AyKyYVqnllaPXSgTqfdProq8NZru/YjID9vn9S+vcV4/o7WN9J7IjwjrfseYM56hcV1TPUAwrzXJThRWvFUhC9AOUg7LLaJAb46yc0WtNdYDQXs9sC6/vx7QeGlu1XjzvEJIdoyrU6yB5loREREREREREREREREREREREdk6FEIiXeGMZ3B2pVaPDya7UI1sNan7hlePvW1XFypZmxG3cSYyq8bt/ngXqpGdwsq5a8+rw5pXRWTj2fkYzujqOcgeTHShGpHusbIuZtpZNW7nY12oRmRnc/dkV43ZI2ms7OrXqOxM9mASI251jMUO5rHzsfZ5/Xh69c/0az6X3mPlXFJv77wu5i/UccZWH8Nm1t2ssqSHmAkbZ2T1+ZphmaTeNYYZs7tQlUhvsIeSGInO10DsQB6rb32u5RsxE3dy9bp0reu4sk2F6xNoIyIiIiIiIiIiIiIiIiIiIiIispl0d2mP8ebqNF9dxJ+rEzuQx53MYiW2X4OMO56Gd4/SulwhrHgAxG7vW7NJSORaQcPHHkrS99MHKX/5AkQRmcd2E9uf25znr7Roni3ROlPE3pUivj+H3d/ZYG26Frn372HuQpmw1t6JNnGssGYwiewM/kKdxmtF/CtV3MkcscksVmZ9G3/sXJz0w+O0LpYJy1fn1dvyxPZtzmtDepc3XaXx6hJBsUnstj5iezJqMJJ1Z8Zsso9OMH+xc20X25/fkOcLah6tcyWap5awBxPE9vfhKPBEeoA7liH/sf0s/O0r4Ld3Oc48NrFmg1kURbQuVmicXIQwJH6wH3cig2Eam122yLoIqh6tM0WaZ4rYw1fPlQrdm5vjR/qp/WgG73IVAKsQJ3XfEFZ8+11j2emiMKJ1sUzjlUUwIH57P+54GsN44/k0bPgYlsHArx2j9KXzeJcqJO4YIP3uUcx4e62ce3ySuYsvrpzX31HAGdd5vfQWv9yCICTznnHMhEX1+zPYA3Ey7x4D02DuT18kagQAJO8dwl0jmGQ9BHWP1rkyzVcXsQcSxA7kFTbdA1qXyjROLhK1QrIfmKT41Bn8KzUAEncMYA8liO3VdSPZ2ZxCgsFfP0bpi+dpXSyTONZeD1jxN7925s3Wab62iD979fO8PVmsZOda07BM0g+O0zi1RFhsARDbn9/0117YCgirHkbc2pafOfa0SCEkIiIiIiIiIiIiIiIiIiIiIiKy9agDtYf4iw3m/uxFgrkGAJVvXib3kX1kHhzrcmUbwI/wZmtkP7CHyI+wkg7ungx2TjvKyhtrXiiz9JnX8C6UiR/qp/8XD2FlY6tu7N0oURBS/sYlKl+9uDzmTGQo/PJh7EznseuOZxj6z3fjzdYxXQt7OLlpdUpv8cstFv7mFVrny+2Bb14m/cg4ufftwbDNdX0uOx8n/5MHCIotiCLsQgIzqbf6ncybrTH7hy8sh0JUvn6Jvp+9ndTdQ12uTLYjK+2S++g+wpqPYYI1kMBKrf97XxRF1H4wTfHJMyvPPdBuGrLXaadikVthDSbo+8TBdoOXbWKPp9cMf2pdLDP7fz6/HFZS/soFBn7zTuJqBJUtKAoiKt+6TPlL55fHnPE0hV8+gp3tznm+nYuT+9A+vJkamGAlnXUPApTe0DpfYvYPXoBwZT4d/K07ib1B0G3rYpmlJ8/QOlckNpkj99F9mGkHK+liWCvBJTqvl14WegGN4/MsPXmGqO6TemCE1LtHSb1rDNO1MGMWAEO/dw/+XB0zZmMPJzas8bz27AzFfzu9/LVViDP4G3dofd5Fr681I+9q87sBhV85SlhuEYURYd1fvlYgstO54xn6f/4QYdNftR54I/5Sg7k/f4lgrg5c/Tzvw3tJPzi2KgjNHUkx9B/vwpupY9oG9lASK71569LWlSqlp8/SOLmAM5om/9H9b7hOko0QXff/IiIiIiIiIiIiIiIiIiIiIiIivU+dyT3Em6ouB5C8rvSFcySOFrbdDdv14/OUPnOmY6zwqSPY+e3195T14y80mP+zlwir7ZvjG8cX8KZrDP7OnZtXw3yDytcudYx5F8r407VVISQAdn8Cu797O39Lb/CnaysBJFdVvnaJ1L3DOEPruytw7UczlJ4+2zE28JvHiO/vW9fnka3Du1RZ1VRUevos8QP5TW12kO0vCkLKX79E9TtTK4MGDP7Hu4jtXt/GlmCpSekL5zvH5up4U9Vtt2aWrScotVj4i+MEC83lMTPtMPS7d686PuvPzS0HkAAQQvXbl4lNZlc1rYn0On+hTvmrFzrGvIuV9rlSl0JIWpfKzP3RCx1j6YfHyX1gEsPUa2w7qXz3ynIACQBBRO2HM2s21/pLTeb+/DhhuQVA83SR+T97iaHfvXvNhmOd10uval2osPDXryx/XfnaJQzXIve+PR2PcwoJnMLGHsP+YoPS5891jAXzDbzLWp93U/3E/EoACUDUDkmImgGtc6XlYSNmkbp3uAsVivQW07UwXeuGH9/+PK/eMVb6wnkSxwbWnPvsfLwrn38FVY+Fv30Zf6oGtNfoc3/yIkO/dw/OgNY4myJS+IiIiIiIiIiIiIiIiIiIiIiIiGw9ZrcLkBVREK4e80OicHvdoBZ6AdVnrqwar59Y6EI1slX4C/XlAJLXBfONjgbPjRaFUWdj0+vj/vZ6jcr6WmtuJ4yIwjXGb0FQ89acW5tnSms8WnaKKFhjzmoFa85lIrciKLeo/WC6czACf6a27s8VhRGRv8a6ea35VmST+Qur16dhxcOfb6x6bNhYvfN8WPe1ObJsSVEYwVrrjjXm683iTVVXjdW+d4Ww0upCNbKRwvpa8+nqMbh6baHceQwExRbeGvO0SC9rnV99rl/73hWCbsxxkdbnvShqBGuM+Rhu50dC1e9d2XafP4hshjXnPT9c81pcNwWLjeUAktdFzQD/ugAV2UCR3g9FRERERERERERERERERERERGTrUQhJD3GGkxixzp3W0u8Ywc53Z9fgjWKYJvbg6h3W7IJ2xpQ3ZsbsNQZZ9ZrZSHZ/nPiRQmcJaQdnSDsGyhtzhpKYGadjLH6ksO67aRu2id2/eh61su66Po9sLc5ICuzOHd3T7xnHym6vtYV0n+GYWLnV842ZWOP9+xbZuRipt+/qfP6YhTOcWvfnErlZZtxa8yzbjK9esybvHlo1ln5gFMM0Vo2L9Dq7L078joGOMTPl4Awlu1QRmEln1ZjVFwdHl8K2m/Q7R1aNpe7ftcYjr15buH6aNcDcxGsLIuvByqxee1v9cQxn849lKxdb9Tpsr8+79x4gED9aWDWWvHd4VVitM5zU+lPkLXCGU6s+m0i9fVfPfZ5nxKxV1wYBzITWPpvm9RASTbUiIiIiIiIiIiIiIiIiIiIiIrKFrFvnhWEYA2/+KPlxnKEUA79xB4k7B7CHkmQ/OEn6PWMY1vZqkDEsg/S7RzGuafwx0w6JQ/1drEp6ndUXI/VAZ0ND9rHdOAObFwBiuhb5D+8l89hu7MEEyfuHGfi1Y+seJiHbi90XZ+BXj5G8fxh7MEHmsQnyH96L6a7vjd6ma5F9bDdYK3czW30xYvvy6/o8srU4IykGf+NO4of7sYeT5D+2n+R9w90uS7YhK+WS+8j+joYKZyyFM5pe9+cybJPMI+NkPziJPZQkcdcgg795R1cb3UVeZw8kyLx3d8dY+t2ja4YwunuyFH7lKO6eLM5Emv5fOExsX26zShVZV6Zrkf/gJJn3XT1Xum+YgV8/hl3o3rmSO5HGvrYB3oTcE5NYidXhJLK1xfbmKPzSYZzd6fbc+stHcPdkOx4T+SFh3cceTJB+z3jH99IPj685T4v0otALCBo+7p4s1sA1QaSWQe79e7oSqGNYJumHxsh96Or6/M4BBn7jDoUEdllsIkvhV4/i7s3ijKXp/7lDuHsymO7KNXkjZr1haJOI/HjOUJLB37yDxF2Dy5/nZR6ZwLDX9/O8sBUQNv23/PN2IUHuA5MdY8n7hrB1DWUTRd0uQERERERERERERERERERERERE5Kbd8tbkhmF8FPgTwDcMIwB+Ooqib91yZTtUbCKD+9O3E/ohVnz9d47vFXZ/gv6fP4Q3VQXLwJ3IYG9imIRsHUHNo/HKIpWvXSR2IE//zx8iagZYfXGcsfS639T7ZuxCgtz795B+aAzTsTAsbV8nb84dTdP3k7cResGGzu3WUILCLxzGu1LFsE2c8TR2X2/tvimbyzAMYpNZ3PHDREHY3vldZIPYoyn6f+Ew/nQVw7VwJzJYuY2Zg+x8nOzDE6TeMYJpm5u+HhB5I4ZtkrxrALsvRrDYxEg7uOPpNedf07FIHOpfDh5Z74Aykc1m9yfIvW8P6Qd741zJyrjkf2I/3sUyURBhj6Swx9QQvx2ZMZvE0QFiB/vaXzud82nrYpnSv1/En6qSuGeI1P3DxA/kCYpNrHwMZzS96mdEek0UhDTPFCl95QJhxSPz4BgDv3QEb6ZG1ApxdqVwRro3x9n5OJn3TJB8u9bnvcJwTBK3X11rRu21Ztjw6fvZ2/EuVyGKcMcz2EO6Ji/yVrnjGfo/eXBDPs+L/JDG6SXKX7lAVPdJPzRO/HA/VvLmAvUM0yD1tl04Y2mChQZmxsUdTSuYbzOFYbcrEBERERERERERERERERERERERuWnrcVfc/xN4KIqilw3DeAfw/wYeXoffuyMFdQ9/pk7Y8LELCZxtGszROD7P4j++ujJgwOBv30lsUjt/S6fmyUUW//YVgHZojQGDv3UHsb35Ta0jKLfwZmoQRthDSewNaqqW7SlsBfgzNYJKCysfxxlKYpjr35TZeGmepX86tTJgwODv3EXsul3AZWeJwgh/vo6/2MBKudhDCYWRyIZo/HCG4lNnVwYsg6H/eBfueGZDni/yAoL5Bq1yEzsXxx5KYFhqdpTuClsBpS9eoP7c7PKYmbQZ/N27cQpvcG4XRngzNcKaj12I4wxqR2rZeoJis32+ZBjt+bgHQlWbFyrM/eELHWP9P3cI+67BLlUkGyUKI/yZWnu9m3Gxh5PLoSLebI3ZP3qBqBEAUP7COYLFBn0fP6CQBNlSWhcrzP3xixC1v178x1fJ/9QB0m8f2dQ6woa/sm7pj2MPJjCMlesb2zlUeysKSk286RqY7fdn70KF+b843vGYgV8/Rvy2vi5VKLL1GbaJ9RbXFP5SE2+2hmEaOMNJrLS7/L3WxTLzf/rSyrz/9yfp++mDpO4dvunnMeM28X152PeWypRbFEVRt0sQERERERERERERERERERERERG5aetxV7AfRdHLAFEUfdcwjI3pMtwBgkqL4lNnqP1gBgAjZjHwa8e2XfN4UPcof/1S52AEjdeKCiGRDqEXrHms1F9e3LQQEn+pgV9sUfzMa3gXKgBYfTEGPnUUZ5d20ZY3F7Z8Kt+4TOnz59oDlkHhFw6TOFJY9dig7hEsNDBsE7uQuKmmuLDuU1nj9dI8vbTt3kfk5jReXWT+08fBb9/wnnlsgsx7xhVEIusqKLVWv2cHEa3LlQ0JIYm8kMr3rlD8t9PthhwT+j5xkOQ9Qx1NkCKbLVhsUH9+tmMsrPn407U1Q0iCmkfpi+epfusy0N6xvvCpI8QPqBFUto7WxTILf/sy/mwDAHskReEXDnc9VLVxfH7VWOWbl4gf6V8OqJDtoX58noW/fhmC9no3+4FJ0g+OYjoW3nRtOYDkdbUfTJN5eFyhT7KlNE8vLTeiv67y9Usk7xjETGzOuV1Q9yh/+cLytYfX1y3ueAZ/odEOuijENcf2CG+6xtxfvEQwf/X9eSxF6r7V4QXVH8wohERkDa+H+kbNAKsvhpVy3/yHbkLrSpX5P3uJYKkJgLsnS//PHMTub6+hGycXV8/737hE4mhB1/S2nLDbBYiIiIiIiIiIiIiIiIiIiIiIiNy09bhTbcgwjP/5jb6Oouj/uw7PsSO0LlaWA0gAombA0r++xsBvHMNKOF2sbH0ZlomZWH0zuhnTDeqyImwF+Av1NRspzPjmHCuNVxdZ/KdTJO4YWA4gAQgWm1S/P03uw3vV6CxvypuurQSQAAQRi/9wEuf37sHui688bqbG4j+dpHW2DKZB5pFx0g+OYSVvcP43WXPHeUNz647mLzVZ/PuTywEkAOUvXSB+sI/YHgV/yTqywHAtwOsYvpkwpZvhzdZWAkgAQlj6l1PY/XGF2kl3WSZYRse8C2/8WvCmqssBJNAO2Fn851MM/OpRnAE1x0vva7y2RP352eUAEgB/qkr9+DzOe8a7WBkYa5w3mglb53DbjL9QZ/EfTi4HkACUPncWZyxF4mA/hrV6/jVsE8PScSBbS3utfd1Y3AZz845lb6rWEX4aeSGL//gqqQdGKH32LBiQfPsuso/txs7GNq0uWVv1B9PLASQA/qUq4WEfI2ET1f3lcSulMAOR64VNn+r3pik+fQb8CHtXksLPHlq3UPIojKh+d2o5gASgda5E49QS6bcn8Jca7XPL6xiJzZ33ZZ1Er69Tox/7MBERERERERERERERERERERERkV6yHl2Bfwhkrvnv+q/lBgWLjVVj3uUK4TU3BW8HpmuRec84XHOvpBG3cPfocJG2sOlT/tpFZv7LD4kf6u88VlyL+O39G16DP19n/r+fwHBMgoX6qu83Ty8R+drBTt5cWG6tHqv5hLWVuT0KIsrfvNQOIAEII8pfvkDrQvmGn8eM2WQfvm5uTdi4E5pbd7Kg1CKseKvG/YXmGo8WeeuslEv2/bs7xsy0gzO8Pg061wsrrVW9G1ErpHm6iF/W8S3dY/fHyTwy0Tk2nMRIrt3cGayxTgjmG/izq9efIr3Gm6tR/uoFvOnaqu+1zhS7UFGn2J4shnvNZS8D0g+ObVhAlnRHWPWJGsGq8db5Mv5iA2ywBxMd38u8bzfWNYGQIr3OX2iAZbSbz6+Rfd/uTQ11DtdYZweLzZXXYAS1716h+Vr33wN2utALaJ1d/e/gTVWx+6+Z/2yDxJ0Dm1iZyNbQulSl+JnTy+GS/pUaS589TdhaveZ4KyIvXHO93LpYoXWlyszv/wjDvC5c2oDsIxOYjgKnt5xQnyOJiIiIiIiIiIiIiIiIiIiIiMjWc8vb3EVR9P9Yj0KEVTeSA8T25TC22c5moRdQf2WR3BOT+PMNDNfETDprNknLztS6VKX8xfMAVL8z1T5WFhtY+Tjxg324o+kNr8EvtYgaAb5fJ3GsAMx3fD9xx6Bu+JUbYvXF25Ff19xrbPXHMLPO8tdhzaNxfGHVz3qXKiRuMHQn8kMa50qr5tZgsQkTb/7zsj0ZFtgDCfy5a5rZDTDfoBle5K2K/IDW5Sq5Jybx5uqYCRszZuEvNnDH1v9928rHwTbhmkAwM+UQ1jzCkgcZ7bwu3WGYBu6eLNnH9+DP17EyMaIgpPS5sxR+6Qim27l+7GgCvcoZS9O6UCZxuLBZZYu8JUGxhXepQvK+YVpnSx3fi3f5+PXLTZaePEPm0QnCikfkh9h98c5GTtkWrJyLlXUJSteEOpkGBuDN1Vn49AlS7xzFONoOfrILCeK39WEY2+tam2xvjdeWKD11lszD44Q1j6gV4u7JEtub29Q6rP7EqjFnJLUqPK15apHUPUObVZasIWz6uLuztM53htu6uzMY+3L4ExkwDaysC5bmQ5HrBYtrhJK/ukRY9Vad00VhRFjzMGLWDX9eYMYs4scG8K6c7xiP7ctR/NxZwopH+d8vtuf9qge2SeJQv8Kmtygjit78QSIiIiIiIiIiIiIiIiIiIiIiIj1mXbZ/NQzjUcMw/tEwjJeu/vcPhmE8sh6/eycxUzbph8bAbt/4aw8nSd4zhJl03uQnt5aoHtB4aZ7iU2epn5in+oMZSp8/hz+7evdk2Vn8YpPSVy/QOr20MjZXbx8rL84TP9S/KQEkYcPHMGi/Fv2IYKlJ4q5BuHpPfvxwP0ntEio3yBlK0vczty83PFo5l/6fOYR9TYO8EbfWvIn8+h27f5yw6dN4cW5lbv3+NKXPn8Obqt76X0K2LDPpkH73KFZf+3gzXIvs+/ZgJNSAK+srrAfUfzRL8emzNE4uUn3mCqUvnsef2Zj1nT2QoP+nDy6H+Jlph8yjE9SPzytkR7rOn6lR+sI5mqeWqHzzEpWvX6J1sULzbJGg7nc81hlJkfvgJIbTPjW3BxIk7xla/lqklxmuRdgMiIKI+KGrwXkGJO4ZIn6wr6u1BYtN/CtVSp87R/XZGeovzVN8+izBUrOrdcn6s7Ix+j55EDPrAu1zq+zje6g+N4Npm0StkMrXLlL55mWap5YofeGcQnBly2ldKBE1A0qfP0f1+9PUT8xT+cYlomsC+TaDsytJ/qcOLK9TrIE4mfdOUH+pM7jXGUnTmqluen2ywozZWH2xlfdjAxJ3DGBlXYqfOU39hTnqP5qh9PRZgmLrx/8ykS0obPi0LldoXa4QtoKb/nlrjWBTZySNEe+8nubN1lj6zGtM/5cfsvBXL9O6WF71c28kec9Qxxo69cAI7ngG71w73C9qXJ33n53B7osR25vDsHWeuDUphERERERERERERERERERERERERLaeW+7QMwzjw8DvA//L1f8M4F7gTwzD+M9RFH32Vp9jp7D74tQaHpmHxsGAoOJh9ydW7ay21RkJi9iBHPXn5gjLK40fa+2mKTtL7Qft0ITs43vaM8k192aaCRsr7W54Df5CnaV/O403XSPz8ATlL5+n9uwM7u4M/b90GDsXwx5IYmoHbblRERimSeqBEQzTIPIirr/x2HQsso/tpnWu1N7dEogd6sfdnb3hpzETDrHb8tSeme6YW+2h5Lr8NWRrsvviWPl245GZcoj8iDAIKX3hPMZ7d2/6ztmyfZlJm/hteWrPzhCWVprY7IGNWd8ZpkH8UB99P3kA70qVsBFQ+vJ5so9OEFQ97L74hjyvyI1wBpMQ0dHQGZvMUv7CedKPjJM8uhJmZzoWsaMFMhFErYCg2KL6/Ssk7x6kebFMbFw7XUtvap5eYumpM2QeHqf8lQvE9ufJPLYbdyyNuz+HFeteIFRQbVF/cQ57KIk/UyOq+8urb0vvD9tSbG+O/E/sx7tcIfJCKt++RPa9e4ic9holrPlEXtiel20TK7+6sVikl8X2tc/1od2UHjUCEkcG8GZrWHs275zOdCxSb9tFbF+OsBFg52OEVQ8r5xIstkOenNEUQbHJzP/vWTKP7m6HYm6zgO2twHQsnJE0zTNFMo/tBtrhtX6pBRHL154w2tdcRbYTf6HB0pOnaVwNSErcNUDug3ux8ze+DnTGUiTvH6b2/fbca8Qs8j+xDyuxMp+FTZ+l//EazVNLADROLNA6V2Lwd+/GKbz5tRCnkKD/Z2/HX2iAaeAMxAGD+KF+as/OLD8uqvtY/VrDbm0K5RIRERERERERERERERERERERka1nPe4w/b8CH4+i6Llrxn5kGMb3gf8NUAjJDfKna0TVACNnEIURVsKm9vIc7mQWwzS6Xd66CWs+zkgaf7aOd7kKJqTu3wXb6O8oN8ebqeHNVKl86zIAtedmyT62m/K/XyTyQqycS98nD2KlN75pofbCPI0TCwDUn2/XYeVjOKNpnKGkdhuUm+bN1Fj4qxMduSP1F2YZ+k93Y2VXgnXcsTRD//luvJkapmthDyWxUjd2zHuzdbyZKs5AEmc8jXexAgYk7x2CUDst7nTx2/sxEzaNVxYxYxb1E/N4FyvMT9cY/t27sXJqwpRbF9Z9nJEUzlga71IFTEjeN0y0gXOQ6dpYhTj+bB0zDukHRql88zLGM1cY/O07NyW8TGQtzniazGO7KX/lAoQRzkgKd0+W0tNnqX73CrH9eaz4yqm4O5Ak2u/TeHkRKx8jZhmUPncO+7k5hn7zDkw17kqP8ZeazP/1y4Rlj6gZkn1sN1EQET+Qx53IdP2cyZupUfnmZXIf2kvlG5cIFpsYjkn2g5M4uxTQtx0FdZ/KM1PEd2fBNkm/bYTK1y6S/cAkmfe25+Ow6mHELbLv2wMxndfL1uLuzpC4a5D687MQgbs3hxm3qD83h+nauCOpTavFMAycgZW51Eq7DP7OXXjTVYL5Bq2LZSpfvwRA+Uvnie3JYh3s27T6pC2oe5S+eA53PA1RhGEahEtN3IksZtYlLLUwXIvMw+MEVe/Nf6FID4vCiNaFMo0T8xiuBZaxHEACUH9ujti+POl3jNzw77RSLrmP7CP1tl2EDR+7kMC5LmTVX2gsB5C8Lqz5+DO1GwohATDjNu5oumMs8/BE+/OSi+1rK5lHJnAVTrm1Rbo+LyIiIiIiIiIiIiIiIiIiIiIiW896hJDsui6ABIAoip43DGP4zX7YMIw/AT4CzERRdGyN7xvAfwE+BNSAX4mi6NlbL7v3tC5VaByfp3F85QZJKx8jfHgCK7V9migNy6D63Snc3VnihwsANE7M4+7dvJ07pXd4czVm//gFYntymAmbsOLhT9eotqZJv3sUZyzdbljIbnyTfBRENF6aW/7an61T+uJ5EncMtINyRN6CYKnREUDSHmsSlFsdISQAdl8c+yZ3Z/eXmsz/xUvY/XHCmo/dFyd+ez8AjVcWcCd0k/pOZ5gGYd1vN8NfIyy12sehQkhkPVgGtR9OYw+kiB+6Oge9vIA7trFzULDQoPSFc6vHK55CSKRrrKRD9tEJ7IE4/lyDYL5O6fNngXaTWeOlOVL3da4tg4UG5S+d7xjzp6oEFU8hJNJzgnKLsNxuWPZnapS+2D523T3dDyCJ/JBgqQlhROnpsyTvHcJMORC2m/hNx+pqfbIxwnKL1sklWieXOsdrPqUvnSd17xBGzCLyQxqnixgxE/u+Xdsq8Fe2NzvrYqZsMu/dDYA3VaH87xdJv3uUuT99kYFfObqqiX1T68vFMAy48tevENX9ju95szXiCiHZdGHVp3W6SOt0sWPc3pUicbSAmbAhiKg+M0X28cnuFCmyTlrnS8z+wfPt9d7eLLD6/b1+YuGmQkgArLiNtSf7ht83bBMsA4LOC7+Ge2vrTWc4yeCvHcNbaGA4Jk4h0fU1ttyiMOh2BSIiIiIiIiIiIiIiIiIiIiIiIjdtPUJIqm/xe6/7M+D3gb94g+9/ELjt6n/vAP7r1f/fdpzh1TvyxiazmLH1+GfqHZEfknrHCKWnzy6PWX0xrLSa63Yib6pKWGzRODFP9n17KD51BoBgsUnthzMM3L9rUwJIoB2QE9ufp3W+3DHuTr7xzcYib8bKrD5+zZSDmVqfud27UsWfrePPN8h9aC/FJ08vh56YKYeYAp4EsDKrwxjMpN1uyhVZB6ZrkXrHKEv/cmplDso4mImNbfa+Pszp9TErub3Wz7L1GLaJM5Bk6Z9OEXlhe9A2cSfSLP3raWL78h3BY2vN01Z/HFPHsvQgK2VjJOzORnNj7eN4s/kLDarfniJ5zxC1Z2eofvcKAPFjBdKFsS5XJxvFTDqYaYew4nWM2wNxDAMq37x89YGQ+9A+lv71NWL78jiFRBeqFbl5hm2RPDrA7B+/AFeXFUaifT4Xllo0Ty91NYQEwIjbuBNpmteFAd1s0KqsDzNhYQ8l8GfqHeP2QILFL64E31mFOEHNI/IDDFtBXbI1Vb57ZXlu9OcaJI4WaJ3pDOCJ71v/66N2f4LsYxOUPr/ymoodyK/5Od/NMpMOMYVRioiIiIiIiIiIiIiIiIiIiIiISBetR0fTfsMw/nWNcQPY92Y/HEXR1wzDmPwxD/kY8BdRFEXAdwzDyBuGMRJF0dRbK7d3uZM5Yof7aZ5YAMDKuaQfHt9+u5yFUH9xjuwTk4SlFkbcgiAivG6nTNkZoqs7BUZeSPXZ6fZxUW5hDyeJ7c3hDGxuU1DyniHqL83jz9QAcCYyxA/1b2oNsr3Yw0lyH5yk+PTZdmO+bdL3iduw8+vTiBP5V++yDyOq375M7gOTBJUWViFBfH8eZ+jWb3yXrc8eTpL78F6Knz1z9Tg06PvEQTWEyfqJoHFmqT0HlVsYjgUmtC5USN41tGFP6+xKkXnfbspXG+kMx6Tvkwc3LcBM5MdxJzL0/+Jhmq8VIYowkzblf7/Yfu+OOnfLtkfSZB4Zp/zViwAYrknff7gNK939UAeR69n9Cfo/cRvzf/Vye+d3A3If3tcT684oDGmdL2NlXbLv30NQbmGlHdy9OayEGjm3Kzsfo++TB5n/9AnwQzAg+/ge3N0Z+n/uEM1TS0RBhJl2qHzrMvgRhNGb/2KRHuLuzTHwW3fSOL6AYbTXva+vG6JW2OXq2qGEuccnmbv0EmG1HQiUuHsQZyLT5cp2Jivl0veTtzH3Zy8RNQMA0g+NERF1XJOP/Ij6C7Ok3zmC0eWaRd6qqLnyuVJYbmEmbezhJP701ev742niRwrr/ryGZZB65yjOWAbvUgV7IIG7O6NzOFklirr/Pi0iIiIiIiIiIiIiIiIiIiIiInKz1iOE5GNrjL1+J///Zx1+/xhw4ZqvL14d23YhJHYuRv8nD+JdrhB5Ic6u1LZsDrbyMWL7cpSePtu+2dkLMWyTod+9u9ulySaKggjvSgUzYWO4JlErxJ+uUXr6LJkP7CF1/y4Mc3Nvfw+qLTANCr9ylGCxgWEY2EMJ3Tgst8R0LVLvGsXdmyMotbALcZzh1Lr9fmdXCjNpE9Z8/PkGxafPknzHLuLDCQxXu9hKm+lYpN85Qmxfvh1Sk3EhZhHUPTXkyrowbJPksUEW/vIERswiCkIIIgZ+884NfV4zZpN5zziJw/0EFQ8r64JjErYCTM2B0gPsvjiLz54kagZEXrvxKPXuUaxc53melbDJPDpB/EiBoNzC7o/jjqS7UbLIm/KXmtijKYZ+7x6CYhMr4+IMJtoBVF1m9yeIHy1Qf3Ge+kvzGHEbI2YydN9wt0uTDeZOpBn8nTsJyy2srIs9lIQwwnBMqj+cIWoERK12I37y/uFteb1Ntjd/vk5Y9bALcZb+7XQ7cAfAhNiBfFdrC1tBO/QpF2PoP9+NP1fHcK32NTWdb3ZNbG+Owf90F/5cHSvl4IykaF2qMPe3J9vnbF77nK3/5w9h9sB7uMhblXrHCI3jC8tfl79ygYHfurO9DjDAHky2r4O9Bd5sDb/YxACsvhhOoTN0z0o6JG7vJ3G7Qszlx4gUficiIiIiIiIiIiIiIiIiIiIiIlvPeoSQ5IHxKIr+dwDDMJ4BBmkHkfzf1+H3r5VCsOYdW4Zh/BbwWwC7d+9eh6feXEHdo/bDGUqfP0fkh6TfNUr6wTHs3Pbayd0wjfbN8RE0Ty1h9cVJ3FHATO3cm9K3+rH7VjROLjD/F8cxEzbZ9++heaZEsNQg9bZdxI8WNj2ApHl6icV/PoU/W8edzJL/if24o2r8vBE78fi9GVEU0TpfZvGfXyWYaxDblyP30X3r1ljsDCQY+I07qHzrMt6lCrF9OaIgYu4PXsQeTjLwy0ewC4l1ea7tZqcdu4Zj4Y6laZ4rsfD3J/GnqjgTafIfO0BsXLtTbyW9euzahTjZJyZpvDSP4ZjEjxawkutxuvHjma6FM5ImfG2J+U+fIFhoEDuQJ/eRfbi71i/0SdZHrx6/G8UZStL3M7dT/c7U8rFpJmyCSmvVeV5QbFH+8gUaLy9g5WLkf3I/8dv6MSztS98Ldtqxu5aw4VN7bpbi02eJmgGpd+wi857xngpzCBs+scksVsaldbaIPZwi9bZdPVVjN2z347d5tsjiv5zCv1LDmUjT97EDGKZB5dtTlL5wjuz79tC6WMafq5O4e5DknYMYttntsuUGbPdj90a1LpWZ/aMXieo+8dv7yL53gvrxeayUQ/rhcdyx7p3PebM1ik+dpXFiHivjkv/4AeK392FYO/s11gvHbutyhaV/fY3W2RL2YIL8x/fTmqqS+9BeGicWiLyQ5P3DXQ+xkd7TC8fvzYjtzVL41BHK/34RTIPMe8Zxx9O3HK7TnKrQOlOk8s3LBPMN3D1Zch/aS2xPdp0ql51DISQiIiIiIiIiIiIiIiIiIiIiIrL1rMfdwP834F+v+doF7gceAX5nHX7/RWDimq/HgctrPTCKoj+Iouj+KIruHxwcXIen3lytsyWK/3aaqBlAEFH5+iXqL851u6x15y81WPybV6j9YBorHyMoNln825N4V6rdLq1rtvqxe7OCcoulfz4FEYQ1n+KTZwhKTfIf20/6gVHs7OYG73izNeb+7CX82TrQfi0u/M3LBJXWptaxVe204/dm+bM15v/sJYK5BgDN00UW/u4kYc1bt+dwR9PkfmIf8SP91J6bpfqdqfZzT9doni2t2/NsNzvx2PUX6sz/+Uv4U+33XO9ChYVPHycoNrtcmdyMXj12az+cofTFcxjxdqNP8cnT1F6Y3ZTn9mfa7+XBwtW59tQSi//0KkF9/eZaWR+9evxulKDqUfzX1wgWG1j5GLUfTFP6/Dm8y5WOx4WtgKUnT9N4ub2Dd1BsMv8Xx3f0OVKv2WnH7lqa58ss/fMporoPYUT121PUfjTT7bI6eJcqFJ88027O74vjTVVZ+tdTBNWd/X6wnY9fb77O3J8fx79Sa399ocL8X57Am6m1A3O8kOJTZ/Bna1j5GPGD/Ts+lGYr2c7H7o2KwojKt6facy/QeGWR8lcukHlojMIvHSG+L9+1wLKwFbQDSI7PQwRBqcX8p4/jTWn90u1jN6h4LPzNy7SuXhPyZ+vM//lxoqpP8bNniCIwEjZLT50h3OHvkbJat4/fm2W6NonDBQZ/4xiDv3aUxKH+Ww4gAfCnqhQ/e5Zgvn2doXWuxNK/vLqu13Rlh4hCAAyFkYiIiIiIiIiIiIiIiIiIiIiIyBayHiEkbhRFF675+htRFM1HUXQeWI+tx/8V+GWj7Z1AMYqiqXX4vT2n8criqrHa96cJm0EXqtk4UTMgrPmENZ/GiQW8S+0GPN28uXOEzYCg1Bnw4V2s4C90pwnen68TtcLOsZk6wZKa8uXW+fMNIu+642uqir+4zseXF1F7doaw0jmX+gv19X0e2dL8hSZhze8YC4ot/MVGlyqS7cS7VAE/ovnqEs3TRQihdXlzGhC9uToEnc0c3vkyQVGBYtJdUSvAX2jgXa7SOLGwPAeH1evn4ibN688HQ/Dn9D4uvaN1prhqrPb96Z46l3+9kTostWicWMCfqbXX463tdV1FVgQLjeVwhuWxpWZ7DRCurA28K7X2PFzV2kC2ligIV4V6RF5I49QShr0el/bfuqDconFivnMwAm9W65duC5Ya+DOd/w5RKwQDiNrv6c2Ti9AICK+bQ0W2KsO2MOxbDx+B9twblFrgd17T9aZq+PrMQG5WpPARERERERERERERERERERERERHZetbjTuW+a7+Ioug/X/Plm26TZhjGXwPfBm43DOOiYRi/bhjG7xiG8TtXH/JZ4DRwCvhD4D+tQ809yR5KrBpzhpMYdnd2s9woZi6GO5m9btDAHlj995ftx5up4U9Xid2e7/yGAc5gd44BM+GsGjMcEyNmd6Ea2W7MxOrjyHAtjPj63BT/OivlkLxveNV4bE9uXZ9Htra1jkdMAyOu+U5uXfLe1XNQ8q7N2TXZTK4x1yZszNj6zrUiN8vKuCTvHFg1bg/GO742YxZmevWadM15W6RLrL7YqjF7KInhdrcJ/lr2YHLVWPLOAayM24VqZDOsOU9aBphgZTv/3Y2Ejd0fX/14kR5mYJBYY02dONTfhWo6ma615vy61tpcNpcRtzGc1e/P1wfXWP3xNd/fRXY6wzKx13htGK6FEbPwlxrUnp+l9JXz1F9ZIOihUD7pPQbhmz9IRERERERERERERERERERERESkx6xHp8h3DcP4zesHDcP4beCZN/vhKIp+LoqikSiKnCiKxqMo+uMoiv5bFEX/7er3oyiKfjeKov1RFN0RRdH316HmnhS/ra/jpl8jZpF+cAzD6p2GnvVgOhbph8aWg0isXIz8T+xbs+lOthdvpsbsHzzP/KdPEJvMEdufB8DMuBR+8TDOSKorddlDSVLvHOkYy314L3ZBzUly6+zhJMm3dTbm5z6yd0Oa32L7ciTuHAATjLhF5tEJzJzmVllhDybIPDLeMZb7wB4cBYHJOrCHkqTevgtsA8MxSb1zZNMafZ1dKRJ3dzZn5j+6D7tP7+XSXYZtkn73GPGDfWCAmXbIPr6H0As6HmdlY+Q/fqC9O/1V8SP9OKPdWR+LrCW2L4d1zZrBcEwyj06s247z68KA7ON72tcXDIgd7CP1wOiqpmvZPuzBBOn3dK5v0w+MUnzqDOmHx5evM9jDCQY+dQS7X+te2Voary7iz9ZI3jcEloHhmmQ/MIm7t/uBo1bGXbV+id3ehzOa7l5RAoDdHyf34b0dY8l37sIaTCwHgTujqfY5U0YhJCJrccYzJO7qDJTMfWQvhmuy+PevsvBXL1P63Dnm//Qlqs9cIQqjLlUqPS/SsSEiIiIiIiIiIiIiIiIiIiIiIlvPemxL+H8B/sUwjJ8Hnr06dh8QAz6+Dr9/x3AGkwz+5h14U1WiIMIZTuIMb7+mM3+hzsJfv0x8f57MeycIKx7Fp85iDyZ10/M21zpbJKy0dwUsff4csf15ch/ZS/xIAaeLjUBWwib7+B4SxwoE5RZ2fwJnJIVhGm/+wyJvwko45J7YS/LOQYLK1eNrNIVhrO/xFbYCSp8/R+SHZB6eIPJCaj+Yxsq5uMNqAJI207VIPzxO7GAfQbGJnY+3j0c15so6qL8wR/NMkcy7x9pfvzRP1AqI7c5u+HNbSYf8R/aRuneYoNrCLiRxR5Ib/rwiN8Kbrrbfnx+dIKz7VL5xCTPr4v52BiuxEhaWONTP0O/ejTdbx0raOKNprLTbxcpFOjkDSQZ//Rje5fYx7QwncXb1zjWLKAgp//tFWmeKJO4axEzYtM6WaJ5a2pT3IukOM2aTeXSc+O19BEsNwqpP/aV5/Kkaxc+eIXG0QPaDe3HH0lgpBTTK1hLUPIpPncGfrWMPJ8k8NEYURthDcaxkbxzP8dv7ltcv5tX1i53R+qXbDNMgee8Qzkgaf6GOlXHBgPk/O07ijgESdw7gz9RZ+LuTDP/ePZsWHimylTiFBPmP7id59xBh1cMeTOKMpmidK9N8banjsaUvniNxbEAhv7K2KOx2BSIiIiIiIiIiIiIiIiIiIiIiIjftlkNIoiiaAd5lGMZ7gaNXh5+MoujLt/q7dyK7P7HcCGxlt2cgR+SH4Ec0Xlmk8criyrinG/G2qyiK8Ofr+GXvmkFonlrCn6+TvGeoe7WFEUG5hWEaxA/0da0O2d6slAPjaexGgJl2MJ0N2C3eDwnLLfz5Bt7FyvJwWPPX/7lkS7MSDta+fMdY2PAJ6z5mysF0N+D4lB0hKDbxZ+uU//3i8piVd4nCaFOCvay0i3Ww3fAY+SFBxcN0Q8weadCUnStsBDRPF2meLq4M2ib4nbshG7aJO57BysWIwqjdLCrSI8KaR9gKsTIu9tHebFSOwoig1CSs+VS/PbU8bg8rlGq7sxIO0UACK+My+8cvEhab7W8EEfXn54gf6lcAiWxNfkhYbV9L86drlKdrAOR/8kDXSgq9gLDiYcQtrISDYbXXL+54pms1ydpM18YZTmJlXcyUQ+OVhXZg7bMzKw8y2iFeIluVX2ximMaGnTtZaZfE4ULHWOQFaxQSEflBx2O82TphxcPqi2EPJNY9kFq2kqvn/joERERERERERERERERERERERERkC7nlEJLXXQ0dUfDILQhqHvXnZyl94TxRGJF9dILkfUNYqe3VfGb1xXH35Whd04RnJm3sgd5sZJJb1zi5yMJfniDz2O72jZbX9Fum3zXatWPcLzapfGeK6jcvYyYsch/aS/xwQQ34su6aZ4ssfeY03lSV+OF+cu/fgzO8vrvGm0mH1DtHKD55ZmXQAHe3GoHkx2tdLLP05Bla50vE9ufIPbEXdzTd7bJkC0reOUD9udnOsft2bUoAybW82Rrlr5yn9vwc9kB75+LYvpwafqRr3PHMqjVw6m3DmInO0/Gg7lN/YZbS588RBRHZR8ZJ3jeMld5e54OytURhRPNMkaV/ew1/rk7yzgEy793Tk7u8m45F6v5dLF041TGeONzfpYpkMwSVFrVnZyh95QKGaZB+cJTmmRLNk1dDby0DZ9f6nnuJbBYz45J65wjlL1+4ZrB74UredJXiF87ROLGAM5Ii/5F9xCZzXalF3lzrUpnik2donisR25cj8+hujIRFVF8JSkjcOYDdtz2D0GV7Cyotaj+YofTV9vt/9vE9JO4cwEpsfOiYPZjESNhE9ZXg59jtfdh97fVx2AqofmeK4lNnIALDMen/xcMkbteadKeKovbFgAjlkIiIiIiIiIiIiIiIiIiIiIiIyNZhdrsAWdE8U2TpX14jrHpEdZ/iZ8/QeL1pYhsJqx6x/XkSdw9iZlxiB/Jk3rt71U7gsj34Sw0W/+5ke6fNH0yT+9BenNEUVl+M3Ef2kbh7qGu11X44Q+UrF4haAUGxxcJfv0LrQrlr9cj25M3WmPuTl/AuViCIaLw4z8I/vkpQ99b1eSI/JALS7xnD6ovhjKTIfXAv4Vq7c4pc5S82mPuzl2idKUIQ0Ty5xPxfniAotbpdmmxBYRCRfXwP9lASeyBB5rHdhDVvudliU2poBRQ/e4bas7PgR/hXasz9yYv4V2qbVoPI9cy0Te7D+3DG0lj5GOkHRwkWm3gzncdl62yRpX86RVi5ej741FkaLy90qWqRNm+6ujKP+hG1Z2cpfvYMYav31phBsUnzbInMoxNYhTj2cJLsByYxkuuWvys9qHFykeJnzxDVfcKqR+lz50gcKWDlXdzdGfo+fgCroNBb2ZoiP8SIWaTfPYqVi+GMp8l9aB9R03/zH15nYd1n4R9O0nhxHoII72Klfa1jVuvsXuQvtc/1m6evnuu/usTi379C3ycO4u7NYWZdkvcPk7x7CMNWGLNsPY1XFig+tfL+v/TPp2idKW3KczsDCQZ//Rjxw/2YGZf0u0bJf3QfZqz9WvKnaxQ/e2Y5hDLyQhb//iR+sbkp9UkPCtsHQ2joM1AREREREREREREREREREREREdk6FELSQ67fOR6g+swVonB73ZgWVjzKXziHN1UlfnsfURBR/MxpNTxvU0HZI6y2wxb82TrFp89i5eP0ffIgmQfHsDPd2dk9qHlUn7myarx5ptiFamQ78+fqRNc1aXrnywSL63vjedj0qX7rMrVnZ4jtzWH1xyl+/izehcq6Po9sL/58g7DSGYgTLDTwF+pdqki2suari5S/ehFnVxJnLE3lm5eofX+ayA83rYag2KRx4rrQhiBSc6R0VVj1KT51BivnEtuXo/bcHLVnZwjKnec/9ZfmV/1s9btXNvU1JHI9f7YOQec1icbxeYIebKIMah71H85Q+c4UsYkMzlCS8pfPEyzqWsN2FQXRmuf1jVcXSd47jJmwWXryNaJ674XmiNyIsOpR+feL1F6YI3Ygh5VxKX72DP7M5p+v+YuNVdcXolaAP6dzx17kzzcIy9ed6y828S5VMCyD+ME+WmeK1J9f/XmESK+LgnDN9//6C3ObVoM7nqH/5w8x/D/dQ+4j+3AGksvfC0qr18lhZeUzEtmJomv+V0REREREREREREREREREREREZGvQdrA9xB5IrBpzhpIYptGFajaOlXUxkzb+dA1/+mpDqGVg5roTRiEbI/QCmqeWaE1VsLLuSshMENE4MU/2fbu7Wp9hm1h9cYKFRse4ldVxKOvLjK9+qzUcE8Nd351mzbhD/GAf1e9eofbszPK4M5pe1+eR7cWMr3EcGmsftyJvJrY3R+1709SfX2n8iR/ux3Q2b2dtwzExkzZhrXN3eB3T0k1WxsWMWTSOXxOQYxlY2VjH4+z++KqftQcTsM3OB2VrWWutYCZtjE2c22+UlXax+tvneLUfXW2qNsDui/34H5Sty2zPk62zpY5hK+1Q/d40YblF/Gg/ZkrrANl6Wpcq1F6YxZ3M0ji+QO0HK+f59mDyx/zkxjBcC8MxibzOcDSts3uTGVv7XB/DoHlqaXko8+jEptUksm5MA3swSetcuWPYKqw+n9rQMhwL1lgTW/l4+/UWXTsWI/JDoijCMHR+t+NE7fdO/cuLiIiIiIiIiIiIiIiIiIiIiMhWYna7AFmRuGMAM7ly47YRs0i9bVcXK9oYhm2Sff8ejET772q4FrknJjv+7rL1tc6VmP/z41S+eon0w+OYKQdoNwf3feIgztDmN0xcy3Qtcu/bDdbKrZ9WX4zY3lwXq5LtyB5OkrhzoGMs+8Tkmo3Gt8KwDOKH+3FGU1cHIHH3IFZGwTryxuzBBKl3jXaMZR6dwC6sDkYTeTN2f5z40cLy1+7uDO7u7ObWkI+T+8i+jrHYgTzOSGpT6xC5lt0XJ/+TB5bPdwzXJPvYbqJW0PG4xJHC8pr59celHhjddqGUsrXYI2liB/IdY7mP7sfO916wR9QKSD80hpm++jqyTbKP78Fa53W39A7DMEi/Y6Qj4NFM2lj5GGG5hT2UIPf+yU0NRBNZD958nbk/foHKVy/i7s5iv34NzYD0w+O4E5lNr8nuj5N9YrJjLHHnAPZwd6/vydrswQTpd3ee66cfGsNfWgljjh/ux+rB93ORN7Pm+3/KIXHN9YhucoaT5P/DbRhO++NXM+2QfnCMuT97EW+q2uXqpBuMKHrzB4mIiIiIiIiIiIiIiIiIiIiIiPQYpT70EHckzeDv3IV3uUIURbgjaZxd269h0p+vU/rCOVL3D2PYJkQRla9fwp3IYGd04/N2EPkhtefn2n9uBcv/3lYuRvz2fuyBRE80U7qTWYZ+9268qSqGY+KMpXHUeC/rzEo65D+6n+S9Q4RlD6sQxx1Lr/trIKz7FJ88gzOWJn64fdN989VFmqeXiO3Z3BAA2TrMmE32sd0kDvUTFJtYfTGcsfRyo4TIzWi8ukjU8Mm+bzdRBP50jeJTZ3Ans1ibuEN64o4B7P44/mwdM+XgjKUVyCRdFTZ9Kt+6TPK+4fb8GkRUvzNF5Icd79HOrhSDv3Mn3uUqURhu2/NB2VrsjEvfTx/Eu1ghrHrYQwmc0XS3y1qTN1Oj9PRZUvcNY8QtiKD6vWnihwtYSefNf4FsSe54hoFfP0bj5CKG0Q70Db2QzGO7ie3LaR6VLcmfqRHWfABKnz9L8u4hEncMEL8tjzuexrA3P1jHMA1S9w/jjKQI5huYGQd3LKP5tUeZMZvMe3cTv33lXL95pkTUaJB5bDeGAc2zJcrfuET8QF+3yxW5ae5EhqH/dBetqQqGYbSv6w/2RiiSYZvEDvaRfs8YRBA125+PRM0A70oV95q1dBRFBBUP0zUxY/q4dvsKu12AiIiIiIiIiIiIiIiIiIiIiIjITdNdbT3GjFvtXXsNAyO1Pf95DNskrPlUvn5p1bhsfa0rVarfucy18QpRI6DyjcvEjxZIv3us6wEkYdPHm6kRVn3sQpzUfcNdrUe2PyNuXW2ANzBTDsZG7MRtGhhxm/qPZjuGE3cNrv9zyZYVhRHebI1gsYmVcbCHklgpB+ugmo7k1pkxm+ZrRZqvFZfH3L3ZTX/fNx2L2GQOuz+ON1PDn6tjWAZWWkEk0iWmAYax+vznmp27V+bnBvZAHHsoibkR6wWRtyKIwDaxBxLYA717bBqWSdQMqHzr8sqgZWBY3Q/AlI0TVD0iP+T1ixDeVJXaszMAuBNHu1iZyFvjF5uEVW9lIKR9TNsGybuHNjWAxF+o483VMV2rfe6YdIjvy8O+TStBboHhmphJmyiMsDIuURDQeGmexkvzy49J3DvUxQpFbo2zK7XhYWOhF+BP1wgqHnZfDHsweUPXOEzDoPrMFcKy1zF+7Wdg/lKT6veuUH3mClZfjNwHJontzXX9sxPZCBEA+gRURERERERERERERERERERERES2ku2ZcrFFeTM15v/yBP5MDQB7NEXh5w/jDCS6XNn6MhI28cP9NE4sLI/Fj/Rjaof6Lc8vN5n/y+MEcw1yT0xiOCaRd3WXN5OeCCAJ6h7lL19YbgI1XJPCp44S35/val2yfYUtn8q3LlN6+lx7wDIo/OJhEocL6/o8Zswi/a5RFv/uldfva8ZI2Nr5Wzo0Xl5g/r+faDcTG5D9wCTpd41iur3ZTCxbizOWxohZRM2gPWBA6h0jXTm+vOkqc59ur0kAnIkMhZ+9HbuwvdbVsjWYjkXmwTHmzxRX3qNjFnZfnCiMMEyDxvF55v/65eX5OffBvaQeGOnZsAfZOVqXK8z9yYuElXYDZexwP30fP4Cdi3W5stWMmIUzmsK7XF0eS79rFLtfc/921rpYZul/vEawcPU9fyxN+sExGqcWcUZ0LiRbSxRFVL93hbDYwhlJ4U2tzGfZRyewC/FNq6V1sdye/2s+AIm7Bsh9ZD+2rt9uCWHLp/LNy5Q+d/ValG3Q/8nbMTPOSiiCZZA8NtC9IkV63Fqvo8Iv3Ng1XSvjkvvgXhb/7uTKWN7FGU0D7RDKyrcuUfla+zOKsNxi7o9fZOg/3YU7nln/v4x0VxR1uwIREREREREREREREREREREREZGbphCSHlJ7bnY5gATAv1ylcWIe56HxLla1/oLFBmbSIfu+3fiLDey+OP5ig6DU7MlGJrkxrakq/mxtudm3/PVLZB7bTVhuYcQs4of6e+IGWm+q1rELfdQKWfynVxn6j3dhpdVIIevPn66tBJAABBGL//Aqzu+lsPPr10AU1jxqz06Te2ISf76B4VqYSZvmhbJCdgQAf7HB4j+cbDe4A0RQevos8QP5npifZetrXSqTeXicsOYTeQF2f5zq964QP9iHlXQ2tZbqszPLaxIA70KZxslF0g+oEV26I/SC9nv0QgPDMTGTDkufPY07mYUgYuEfX+2Yn4tPnSG2P4c7pvlZuifyA0pfubAcQALQPLFA694S9h2DXaxsbY1TS8T25ogf6icotrD74/jFJlEzwEjq8td25JWa1F+YWw4gAfAuVUjcOcDALx/RNSbZUvz5Ov5ig+q3pwirHukHR9vzWalFbG+W+JHCpgX7hq2A4tNnlwNIAOrPzZG8ewh7nQNVZWN4V2orwQkAfsTSv75G/uP7aZ0pEUURdi5G5QdXiN/ej2F1NzRapBd506tfRzdzTTdxtID168dovraElY8R259f3nDAn6lR/fZU5w+EEd50TdfotqOoHdRvdrkMERERERERERERERERERERERGRm6EujB4RhRHN15ZWjTdPF8lssxASTIPaD6bBMjBTDmHVgzAi/eBYtyuTt6h5oczcHzxP5uGVYzWsepSePouRsBn8zTtwr+7y121hublqLJhvENZ9hZDIhgjKrVVjYdUjrPqQX8cnsk2iVkjxqbOYaYfIC4maAbmP7lvHJ5GtLKx5HU1krwtKq49RkbfCcCyKn30NI25h2CZhxcPZncGwNrfNIvKDNdfVrfMleGB0U2sReZ2B0X6PTjlEQUjUCLD642BAUPOI6tfNz9HV+VmnSNJFYSPAO1daNe7N1LtQzZszXYviF86BbWAmHcJyqx30Y6uxejvyS03qz8/gXa6s+p43VcV+eKILVYm8Nd58nbk/fRF3LIOZtAmrHpVvXAbbxEzaxG7Lb2qoX1j3aV0srxoPFhtrPFp6UfgG16K8y1VqP5ppf13zSdw5oK54kTfwRq+jG72ma8Zs4rf1Eb+tr2PcX6hT/eE0ZsohWOr8rMJw9YLcjiKibpcgIiIiIiIiIiIiIiIiIiIiIiJy03RHW48wTIPEsYFV4/FtuLukYZnEb++DICIstSCISN43jOFY3S5N3oIoiqh+9zKRF9J4rUjizs4dsRN3DGBf3eGvF1h9q3cpdMbTmOnNa+aQncXqazcYd47FsLLrH3qTvG8ITAgrHlEzwEw77QZnEcDKxLCu3w3eXHteFHkr7P54OwSpERBWPDAgde8QUbS5zRaGba25ro5d1/gjspmsvhhWf5yw6hE1AgDSb99FWPGwMy7m9esC08DW/CxdZiYc4kdWX5PolYDJa0VBiBGz2ud1/tVrDQak3jmC6epaw3bkT1WpfO0ysYOr399j+/ObX5DILWidLxPMNWgcnyd1/66Vawh+iGEZuOObO+9aKYf4of5V4/ZgclPrkLfuja5FhXWfsNb+D9vA3Z1VuIzIG7Dya7+OzOytfY7QulCh+p0rpN4x0vm7B+K4Y723zpZ1EAbdrkBEREREREREREREREREREREROSm2d0uQFYkjhRoni3ReHEOgOS9g8QP5rtb1AYIax5myiH7/j3Lf25dLBN5uhFvq/EXG3izdfzZ9s3qrTNFEncMtP9tvYDY7izuRKanmr6ckRT5nzxA8TOnibwQqz9O308ewEoohEQ2hjOUpO9nbmfpn04RtQLMrEv/zx7CyqxvCEnkh1R/OEP28UnCqodhm2AaeFNV2IaBVnLzrKxL/8/dzvx/f5mw3MKIWfT91AGcod4JipKtzZ+vk3r7LgAiL8RMOVR+ME38aAHim3vakbxjgNa5Eo0TC2BA8r5hNSRLV0VBRPKOAbDN5aCw2nOzOHuyuKNpCj93iPm/umZ+/g+3qdFXus6wDNLvGqU1VcE7VwYT0g+N4+7OdLu0VaIwovr9qXYzZxQtvw9507VulyYbIApCgrJHWGphWCax2/I0X11afs+P367gMdk6vPk6wVL7ulrkhVSfnSb7gUnCmo8zmMCdzOFscrivYZtkH53An63jXaqAaZB57wTOJoehyFt3/bUoK+uS/9gBvCtVMo+MQwRG3KL81QvEbst3u1yRnrTW66j/Zw9hZ2Jv/sM/Rlhvh0fXX5gl+8QkYcXDiFskjhaw+3WNbjsK2dxwXhERERERERERERERERERERERkfWgEJIeYvfH6f/pg/jvnQAD7EKip8Ib1ouVi1F/aZ6oFWA4FlErwNmdxsrf2s2bsrmCaovFf3iV1oUS6QfHaJ0rAVB/YY76i3MUfuUIidt7L/jAdCxSb9tFbH+esO5j5WPY6xwGIXItwzJJ3T2EO5EhrPnYWRcrt/7znZV0iB/oo/T0WQzHJAojCCIKv3J03Z9Ltq7YZI7h37sbv9jCTNo4BTU3yPpxBpPM/euLYBkYpkHkhaQfGcdKb/77rF1I0P8zt+MvNNrr6oEEprP91tWyddh9cRZ/NEtQbmHYBlErxMrFMNPtILzY3hxD//luglILK2lja36WHuEMJRn4laMECw2wTZxCoh1212NMxyJ55xDFz5zueB8q/NLhbpcmG6B5ptQObbAMyl86T/xQP5n37cbKuMTvGMBOKmRUtgZ/scH8XxwneffQyth0jdLTZ8m8fzfJ+4cxDKMrtTnDKQZ//RjeQgPTNbELCQyr9+Z/WZthX3ctKucS1H0W/vuJ9vUiwwA/xN2bxYzrPElkLWu9jqzsrV/TtfJxMMC7XMW7XMVwTVLvHMEZTq1D1dKLoijsdgkiIiIiIiIiIiIiIiIiIiIiIiI3TSEkPcZ0LdzR7b2rZFj1yD6+h9oPZ/Cna8QP9ePuzRLVfUioUWQr8BcbtC5VaL621P56pk76oTFqz86AaZB9fDfu7lx3i/wxDNPY9F1kRZxCAjYwlydsBhCEpN45Qu25Way4Rertuwjr3sY9qWxJVja2Lk0TItcLvYDcByepPHOFsOKRetuu9njNw0ptfhCJGbe3/bpato7ID0k/NEbj+DytC2Vi+3LEjxQIi00YTAJg52LYGxBUJnKrrISDNdbb5+phzcNfrJN+cJTaszMYjknqbbu05/g2FHoBpS+fx5+tk/vQXmrfn6b52hJG3CJ595ACSGRL8aaq+NM1aj+a6VxHv2OE1H27uhZA8joz6RDTa2pLu/ZaVNgIyD4xSe0H0/izdWJHCrjjafy5BnYu3t1CRXrYel7TDVsB1R9Ok3tiL9VnpggqHok7BnD3ZDHM7s75snEUQiIiIiIiIiIiIiIiIiIiIiIiIluRti+UTRfWfYpPnsbKuqTeMUJY8yg9fZYoUHvQVtC6XGHm/3gOb6q6PFZ/cY7ac7Mk7hig8KtHSL9tBCuhjCORTRVE1J+fo3FykdQ9Q8T25Sl/9WJ713oRkU0Qlj1KX7pAbE+W1P3DNE8vUXvmCmiNJ0LkhxSfPA2mQeodI2AaFJ88TVgPul2ayLYQ+RH15+aovzBH4q5BYgf7KH/zMmGp1e3SZJ0FVY+o5hGWWxQ/ewa7kCD1jhHciYzCRmXLCWrt0FB/utaxjk6+cxd2XsFksr7a69EzWH3x9jX5covS588R1v1ulyayYwRLTfzLVUpfPIe7uz3nt86V8K7Uul2abKAQhZCIiIiIiIiIiIiIiIiIiIiIiMjWo5QA2XRm2sFwLBrHF5bH4kf6MRJWF6uSGxE2fMpfvUBYbhF5AWbaIay0GybCUgt/ro7dr6YfkW4wXJPkvYOUPn+eyrcuXx0EZ1equ4WJyI5h5WNEfkjt2ZnlsdSDo+BqjSdi5Vxit/XRPLlI89QSAGbSxozr9SGyPiKSdw9R+cYlqt+eag+ZBlZB56fbjX+lRvxIod2sG0TUX5wDAwZ+445ulyZyU4JKi6jmYbgmUSskagXUnp0hef8wTlYBJLL+rP447mSWxkvzy2NmygHT6GJVIjtH2PSpPTdD4miB8lcvUvvh1WsnBsT35bpbnGyoKFIIiYiIiIiIiIiIiIiIiIiIiIiIbD0KIekx/kIdb6aGYZk4w0msbXjTeVBukX3/HhqvLODP1Ynf1ocRs4iaIaS7XZ28keaFMs2zS7TOlQGofnuK7ON7aJ4u4l2pkjg2QOodu7DivTuteDM1/Lk6RtzCGU5hpZxulySyLKh5+FeqhI0AeyCBPZjAMG68ESRs+vhLLTKPjFN/cR4zYZO4cwBvvoFaL+V6Qd3Dn64RVj3sQgJ7KImhxiO5RUHNJ/ehvdRfmCOstIgfLhA2PKKGD11cH/iLDbzpGoZptNfXue23vpYtIIiI7clgZV2ary3hDCWJHcjTvFjG3pXEv1Ij8kPsoSSOQhOkR0R+iDddI1hqYGZcnOEkZqw3z/eCqk9Y80g/NEbj+Dxm2iVxxwBRoIa/7STyQ7wrVbwrNbJP7AHThDDEysWwcm63yxO5Kf5Sk/JXL5J9fJLGywv4Cw3it/WRONqPYZsb+tzL18diFs6uJFZKr5/tKKh7+FdqhLX2eb9ViJM4UsDui9E8XcTZlSK2L0f9xVmSRwrdLlfkhnmzNfzZOoZ7dQ5L9/YcFlQ9GsfnaZwv4U9VsfMxMo9MUH9pDjNuk3z7LtyJTLfLlA0URUG3SxAREREREREREREREREREREREblpvdk9skO1pirM/fGLhBUPAHskReEXD2+7JjQzYbP416/gTmaJ7cnSeHURK+OSee9Et0uT60R+SOtShaDmsfg3r2DlY7iTWerPzRJ5IcUnz+BOZOj75EFik7mebmBvniky9ycvEnntJrTEsQL5jx3AyvT2TcqyMwSVFkufOU39R7PtAdtk4FePEt+fv+HfYSbaoTqV714hflsfUdOn+NRZ+n764AZULFtZUPcoff4c1W9PtQdMg8IvHyZxSE1HcmusuMX8371C7EAeZzxD7UczOKNpjET3Qr9aV6rM/emLhMUWAPZwksIvHcEZ2F7ra+ktYdOndbGCP1fHyrg442mslIu/1KR5pkhsTxZ/oUHxyTMUfuUoC58+Qet8O+jPTNoM/Pox3DE1oUl3RVFE7blZFv/hJETtsewH9pB+cAzTsbpb3BoM16R1rkTYCIgdyBPWPIpPnWbg1++g+uw0ROCMpnBHlHy6VYUtn+bpIoQRjVcWiB3IU3rqzMo5/h0F8j+hc3zZGrzFBo2XF7CyLsUnT+NO5nB3Z2i8vEDyvqENfe7muRJzf/wCUav92okd6qfvpw5gb8Mg7J0sqHmUnj5L9Zkr7QHLYOBTR9vXes+V2+vR+fZ6NPeRfd0tVuQmNC+UmfujF4ia7VCH2IE8fZ84iJ3vjTnMm67SulSBCNzRNM5IivpLcyz90ynMtEPizkGq37qMkSgSvy1P1AwwLGPDw6eku0IUjCgiIiIiIiIiIiIiIiIiIiIiIluP7mzrEVEYUfnO1HIACYA/VaX56mIXq9oYYSMg/Z5xWhfL1H40i2EaJO4aXL75XXpH45UFZv/bc3gXK0TNAH+6hjOYwBm/2rhlgLs3izOc7OkAkqDusfRvp5ebkwDqL87TulTuYlUiK7zLlZUAEgA/ZOlfThFUWzf8O6JmgDOYwC7EqT8/S+PkIsl7BkG7v8t1/KnqSgAJQBix+I+vEhSb3StKtoXQC0k/MErzdJH6c7OYSafdVFP33vyHN0jt+1eWA0gA/OkajZcXulaPbH9RFFH9wTRzf/gCS/98ivm/OM7iP58ibHrEb+vDjNvUfjRL62KZ5Nt34U9XlwNIAMKaT/nrl4h8vX9Ld/lzDZb+5dRyAAlA6fPn8Gfq3SvqxwhKTVLvGsWwDerPzdI6WyL76G5aV2os/t1JFv/+JLP/9TlaF3QOuFXVjy/QeGmB1rkSuQ/vo/bMVOc5/gvz7aZfkR4XVFo0Xl6g/JULJO/fhZWP0TpTpP7iPOmHxnBGUhv33A2fpc+e7rgG23x5Ae+iXjvbjTdVXQkgAQja5/3uRBorH2uvRy+UiR8tECw18Ms3fv1JpFvCVkDpc2eXA0gAmqeWaF3sjfVd63KFmf/63PLac+a/PkfrcoXK1y8BEFY8DMsgtj9PVPepvzCHmXGJ3UQItWxNYaTzexERERERERERERERERERERER2XrsbhcgbZEf4p1ffbNk6/L2uwk8qvs0js+TeWgcDAhKLSrfuET8aKHbpck1gkqLpc+chgiMa/JFSl86T+LYAPHD/cQP9uGOpHt+p76oEeBNV1eNh+XuNUWLXCuorD4W/dk6YSPAusH+oyiMqP1oFrsvTvz2fgAaLy9gDyTXs1TZBtY63sKyR9jwsXK9sXOsbD1hMyBcbNA4tUTm4XEAgqUm5a9dInn3xu7m/kaiIKR5trRqXA3ospH8hQalp852jDVPLODN1PHn6tj9ceKH2u/Tb3Qsti6UiVphz6+xZXsL615HwAMA0drriF5gmCalp8+SvHcYM2VDEFH9/jSp+4eXHxO1QirPTNE/kelipfJW+IsNSp87S+JwgcYri7j7cnhrBOKEFTXRS+/zpmuE5RZEEcWnz5K6Zwgz40AIznga07E27LmjRoA/VVs1HpT02tlu1poPg2KTqBlgWAaZx3YD0DxdpDFTI/n2Eci4m12myE2JGgHe1Opr/MFiowvVrFZ7bpaosRKQErUCmmeWMOIrH8NWvn6J+O199P/CIeyBBHYhgelu3LwvvSGKgjd/kIiIiIiIiIiIiIiIiIiIiIiISI9RCEmPMF2LxF2Dq26ijN/W16WKNo6ZdgibAeWvXFgeyz6+B8NSk10vibyQ4OoumGHdxy7E8ecbEEH9hTlyk/uITWS7XOWNMdMO8cMFGi/OdYzbA4kuVSTSyS6sPhZjt/dh3UQDiGFA8t4hiv92Gl68Oha3sAvx9SpTtgm7EAcDiFbGnPE0VlYBJPLWRV5A5IVETZ/yl1fWeLmP7LupuWw9GZZJ8u4hitft7B4/3N+VemRniLxwdXADENV84rf3Uf7qBaIXrq5JTej75O3Urt2lHkjeOYiRUCOadJeVi2Fm3Haj/FWGY2L39eZ6wR5KELutj+p3p5bHEncN0Dxd7HicP1cnCiIMy7j+V0gPi7yQYLGJmXExYhaNlxeJHcjTPLnY8bi1zqtEek3UDGi8vEDynmFqP5im+r32OsDZkyX97tENfW4r7ZA41k/t2dmOcXtQr53txi4kVp/378lgpBxaFys0XlmZP7NPTBJ5apCX3membOLHCtS+23n+5Oy6wQTnDebPrw5DabyySPaxCeb/7PjyWPN8mdwH9/ZM3bLxomsnYxERERERERERERERERERERERkS1CISQ9JHnXIN6VKvXnZsE0SD80RmxvrttlrTsr7ZB6+y6iVkBY87EHE+1Gee222FOsrEvqbbuofnuKyrcvk3loHIDQD4nf1oe7Z+vsHm06FrnH9xBWmrTOljFck9yH9uKM6kZf6Q3OaIr8f7iN4mdOEzUDnIk0uQ/uvamdMM2kg+GY5D44iT/XwHBNzJSDmXY2sHLZipzhFP0/e4jFfzlFVPexdyXp+6nbMBNaFspbZ6VdsA2S9w0T+SFh1cceSOBOdHe9kDhawJuqUHt2BgyD9LtHie3Pd7Um2d6sfAx3b47WmZXgA8M1sQcTOINJBn/nLhqvLhK1AuK39WEX4mTet7sd0BhExI8WSN4/jGEoIEG6y87FKPziYRb+9mWChSZm2qHvkwd7tlHdSjjkf2IfzTsG8C6VcXdnMRM2c3/8YsfjUm/fpQCSLcjKx4gf6qf8tYtkHhknrHi4ExnCpo937ppz/DGd40vvswcS+HN17EKC7Pt24y80sAYSJO4Y2PDwPsM2yTyyG3+pRet0EcMxyT4xiTue3tDnlc3nDKfo++nbWfofp4gaAc5oir6PH8B0LdIPjRFWPMKGjzOQoHm5Qurtu7pdssibMiyTzEPjBAsNmq8ugW2Se3wPznhvfE6RvHtwVQh66r5dxPf3Mfjbd9I4uYiZtIkdyCuAZIeJopWg0jAKMQ1tyCAiIiIiIiIiIiIiIiIiIiIiIr1P3aY9xO6L0/dTt5F5dALDNLD74xjW9rsZzR3NEFY8il86R+RHmFmX9N2D3S5LrtO+qXcMwzSofn+a+ssL5D+yj9i+/JZs2nKGkhQ+dZRgqYnhWu3Xl5o7pUeYjkX6bbuI78sRtgKsfAwrcfPhIfHb+6l+7wqNs0UMyyD73t1dDwCQ3mPYJsm7BtuNmw2/fbwlFVYjty55zzDVZ65Qe2623Sx8uB+3y4Ffdl+c/McPkHnPOBhX19f29ltfS++w4jZ9P3mA8pfPU39pHnskRf5D+3AGkwC4o2nc0c5G3+yju0neNUgURNj98ZsKIRPZSLE9WQb/492E5RZm0sHOx7pd0o9l5+PY98ThniEAgrpP/j8coPSF8xBGZB6ZIH6wv8tVylthuha5j+yj/JULVL55idjt/ViFOAO/onN82XqcoSQDv3aMpc+eofHqAql7h0keG1heK2zG8xd++QjBYgPDsbALeu1sR4ZjkrpniNieLGHTx87FMK+e98f25yl98Rz+bJ2wEZB9/25dE5AtwxlIUPiFw/hLTQzbwO5PYJi9MYfF9ufI/+QBSl88D1FE5r27id2Wx3BMYntz23LDAbkxEdHyn4MoUAiJiIiIiIiIiIiIiIiIiIiIiIhsCV0PITEM4wngvwAW8EdRFP2/rvv+I8D/AM5cHfqnKIr+l82scbOEXkDrfJn6S3OYSYfEkX7cse3XPG44JomjA7iTOSI/xMq6utm9R9n9CXIf3kf6PeOYjrl8s/pW0rpSpXFiAX+pQeJIgdieLGa861Of7DDefJ3myUValyrEDuSJ78+vucOxXbi1neXtXIzsY7tJv30XWCZWauu9ZmVj+YsNGicXaV0oE9uXI7Y/r2YjWTd2Lkb2fbtJv2MXWAZWamN3cr9RpmMROiaNk0uUv3aR2P48sf057GxvN9PL1uUMJen7xEGyT3gYcQvrDdae/kKDxmtLtM6WiO1vz8kKIJFeEQURrQsl6i/Ng2mQOFpon7v3SJPnjbASNum3jRA/VMCANdffsnU4Awmy753AncjQulDCn61jZWO4I+k3/2GRHhObzDHwa8eIGgFW2rnlkLyg3KJ5eonGq0s4o2niB/twBt74+oIVt7H02tn2vOkq9ZcX8OfqJA4XcPdmsRIOsYkMhZ87RNgIMFM2pqP1p2wtZtzG3bW+1/ejIKR1odyx9nXHMze19rUSDul3jBA/0o8RGVhZrT2lLYrC5T/7oY9j6lqsiIiIiIiIiIiIiIiIiIiIiIj0vq524huGYQH/O/B+4CLwPcMw/jWKouPXPfTrURR9ZNML3GTNU0vM//nKX73y9UsM/s6dq3bK3i7UHL81GKaBnduaTbreTI25P3iesOYDUPvuFfp++iCpe4e7XJnsJH6pyfxfncC/VAWg9v1p0g+OkXti8pYbjdZiGAaWGutlDUHVY/EfTtJ8rQi0j8XkvUPkP35ATe+ybnpxDgoqLRb+7iStsyXg6rH/9mHyH92vhjvZMIZtYuff+LUQ1jwW//lVmq8uAVD7wTSJuwfp+8nbMGM6LqX7mueKzP3hC7y+aXflG5cY/K07ie3Jdrewt8BW+Mi2ELw+b566upb9wQzJewfJf/w2rWVlS7LiNqxDSG7kh5S/dpHK1y9dHZmmOpJi8FePqQF+B/Pm68z+8YuEpRYAte9Nk//4ftLvHAXaIQ4KaRZZ0TxXWre1r53prWsi0n3hNSEkQRh0sRIREREREREREREREREREREREZEbt/7dzzfn7cCpKIpOR1HUAv4G+FiXa+qKsBlQ+tK5jrGoFdA8vdSdgkS2gdal8nIAyetKnztHUGl1qSLZifzp2nIAyesq37qEv9DoUkWyU/mzteUAktfVnp3Bn6t3qSKRzeHP1JYDSF5X+960jn3pKm+mvhxA8rr6j2Z1XErPqH57arkJE4Agovajma7VI+LP1JYDSF5Xe1bzpoi/0KDyzUudY1NVvOnqG/yE7ATe5cpyAMnrip87h19sdqkikd4VRdGaa9+61r6yTiKuCSGJFEIiIiIiIiIiIiIiIiIiIiIiIiJbQ7dDSMaAC9d8ffHq2PUeMAzjOcMwnjIM4+jmlLa5ojAkakWrx73VYyLy5vzFBlFj9Q2dkR923lAsssGicI0DLnyDcZENFAVrH3M6FmW7W/MYjyDywtXjIpskCtY+/qJQx6V0XxRFhK01zqWaapiT7nmjtWzY8NccF9kpojCCNZYPr79mIj+kdaVK80wRf0lhqDvFmnOmH0Kk83+RoNSkeaZIa6pC5LfXt2utfUNPa19ZH9eGkPih1q4iIiIiIiIiIiIiIiIiIiIiIrI1dDuExFhj7Po7YZ8F9kRRdBfwvwH/8oa/zDB+yzCM7xuG8f3Z2dn1q3ITWAmH9IOjnYMmxCaz3SlINtVWPnZ7UfNsiZnf/xFh3Qe7c5rLPDKOlXG7VNn2pOP3x3MGEljZzmMufqyA3R/vUkXyup127NoDCezBRMeYuy+LXdCxuNXstGP3VjlDSazr5tzYvhz143P48/UuVbVz6fhtN7OFTX/1nLw3i1NIdqkqeTM76dj15+rED/atGk/eO9yFamQ9bIfj1xlMYg91zpHunizV70/TPFPsUlWy0bbDsbvR7P44ibsGO8bMnIsznCRs+lS+dZmZ//VZZv/P55n5/R/RPF/qUqU7S7ePXWcoieFaHWPpB8ewcrFNr0W2nm4fvxupdbnCzP/xXHtO/F9/SOmL5wnrPukHRlY9Nnm31r6yPhRCIiIiIiIiIiIiIiIiIiIiIiIiW1G3Q0guAhPXfD0OXL72AVEUlaIoqlz982cBxzCMgbV+WRRFfxBF0f1RFN0/ODi41kN6VuQHBMUW2ffvwZ3IELstT+5D+wh97YS9E2zlY7fXBJUWC//wCmHVo/Kty+SemCR+uB9nPE3fJ24jec9Qt0vcdnT8/nhhwyf1wCjJuwdxRlOk3jWKPZggquuG427bacduWPdJ3jNE8r7h9rH4jl3E9uZ0LG5BO+3YvVVWNsbAp46QeudI+9h/5wjOeIbKVy9Re2m+2+XtODp+wb9SY+HTJ0jeNUjy/uHl4zL/E/sxk3a3y5M3sFOO3SiKqP5gmvqPZsk9MYk7mSW2L0f/z91ObE+m2+XJW7Qdjl8r61L4hcOkHhy9Zi2bpf7sDAt//wp+udntEmUDbIdjd6OZrkXuiUmyT0y2XxsPjDDwK8ew++J4V6oUP3uG13ufw4rH4j+eJKh63S16B+j2sRvWfbLv3038aAFnLE3m4XFwTCJPnzXIm+v28btRwlZA8bNnCJaurhkiKH/1It7lCrF9OQqfOoK7L0fstjyFXzuqta+smyhamXuDKOhiJSIiIiIiIiIiIiIiIiIiIiIiIjeu2x1O3wNuMwxjL3AJ+Fng5699gGEYu4DpKIoiwzDeTjs4Zdt1C4a19s6U+CHuZJaoGVB88jS5D+2F21bvQCwiawsqHsFcA2g3VxQ/cxpnPN0OIzmg15JsvqDYpPS5s9iDCez+OPUXZgnLHsljg9qBVjZVWGpR+vw5rEIcZyBB4+UFgmKL+MF+7P5Et8sT2VDOcIrQC7AyLvXj84SlFgCNlxfIvme8y9XJTuMXmxBB6YvnsfrjOIMJGicWSL1jV7dLEyFqhTRfXsC7UqN1uUJsMgdRRON0keRdCnSU7nKGk8QO5Alm68trWYBgoUlY8SGj8yvZmey+ONlHJki/exTDMjFMA2Cl0f4a/nSdsOphpZzNLlM2kT9Xp/jkGZzRFFbGpfLdKQgiUvcOYbpWt8sT6Yqw6tE8XVw1Hiw2MQ/0kThcIH6w/fmBYXV7/wbZTiKi5T/XG1VId7GY/z979x0nR33ff/w1s73v9d6bTneqqEtICJBoBkw1YNxLXOPu2P45ie3EJYlL4obtOG5gqgGb3oUk1Hs9Xe/9tvfdKb8/VpwQJ2xsg07A9/l48OBudsp39mZnvzOaz/srCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCILwKs1qCImu64okSZ8AngQMwK90XT8mSdJHTr7+M+B64KOSJClAArhJ13X9FVf6BiXZjFhqPSSP+Uh1BqenG/NPLwoeDSZIqxolHitmo3hgWBBezuAwYci1ovqT09MyQ1Gk1+kBe/GZFP4Sg8cCEiiTCZTJBACyy4T8Bi34SWVURkNJbGYDRW7rbDdHeAVpJft3MhtkSrzZvoTBbQZZQvUlUX3Zc6RkMWBwvjGPReHcFEpk8MfSeO0mcuzm2W7OacwlTkKP9Jw27cUCI0E4mwyeU58N1Z9E9ScxeMwYHOfWZ0Z4a5LMMpbGXDJjcVB1Ut1BAHLOK5rdhr0KsZTCRCSF22okzynCKN6sDHYTyfbA6dO8FmTn33aLcyKcJJ5WKfZYsJpmO6tZEP4+sun0+1JnCj41FtiQHa98rI+HkyTSKiUeKxaTuM/1RmXMyd6vyYzEyBADwNLgRbaL63/hrUu2GbFUu2cEkRi8p86VZyN8JKNqjAaTGA0SpV4RCvxWoOva9M+JWATyZ7ExgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIr9KsP12v6/pjwGMvm/azl/z8Y+DHZ7tdZ5tsMuC+uJLMSBQ1kB2l0r6sGHOFC8gW0+zt9xNLqqQUlRyHiYZCF2U59tlstiCccwwuM7k3NDL1u+PoCQUk8Fxajano1X9WeqditI+FkSSJ5hI3lbkzl42lFB49PMo3H2vDazPyyYsakKXsg8MeqwlV0ynLsZEjiknf8kyFdrxX1RF8uAc0HcliIPfGJozeN15hZO9UjD29PuwWI6qmU+KxMr/MjdUsilhm22gwQfdklLSiUei2cM+eQX6/awC3zcRXLm/minkl2Ats5FzXQOCBTlB1JJNM7juaMOaJggfhtXF0KMj+wSBuqwmDDKUeG+dV5852s6bZmnNJHvdNFxyZq93YWkXlh3D2mYocOC6rJvZkH2ggWQ2Yrq5jXFEoJdt3jKcVBnxxJAmq8xyiCFg4ayRJwrGkiGRnAGU0W7Rsbc7FUueZ5ZadEkqkGfQnsJkNVOXaUTSdttEwR4ZDTEVTWI0GzqvKYWl1LrIszXZzhdeYqdiB54oaQo/3Tp9Dc29oxOj689dX4+EkJ0bDGGQJWZIo9liYjKbZ2xcgpaiUemysrMulKk8MTS+8eZhKHLg3VhF+uh90kO1Gcq5rAJuJnsko8bSK22piOBjHF00TSmSIpRXu2DnAvDI3n7+kiZp88Zl4oxkPJ0naJGzLi0nvGgNAdpvxXFqD/DqFNAvCG4FsNeK5vIap3x5Hi6QBcK4pw1T22p/ndF2n3xcnmlQo8VqnA/KGAwl+trmLu3YPYjcb+MKlTbx9QRku2yvfW9U0nSPDQU6MRbAYZWoLHMwp9mA2vv6BKcJr4/QQkvAstkQQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBOHVm/UQEuEUc4mTwo8uIDOVQDYbMBbapx8MbhsJs78/yM+3dJPMaDQWOfnqFXMp9dqQJFFUIwinKXdieG8zmUASg8NMpsiObDl1uhsPJzk6HCIQT1Nb4KSlxE1G1WkfjxBNKnz6ngME4hkASjxWfvf+ZTQUuaaXD8bT7O8P8MX7D+O0GLl1ZTX/dP8RFpR7WF6Tx6+395LMaDSXuPjvdyykqdh91t8C4dwhmQw4lhZjrnGjxRQMHjOm/DdegFRG0Tg2EqRrMsZvtvWRVjVay9x85bJmVtWLIv7Z1DYa5s5d/dy1exBF01lSlcNH1tVyx64BgvEMX/zDYSpy7Kysy8O+sBBzuRM1msHgNmPMFwEkwmtjNJTgoUOjlHit/OcTJxgJJXHbjPz71a1cMb8UwzlQBG7Ms5F3azOZyQToOsYCGwYRFibMgtFYil/6gyy6sASnBkOqih6IoAci1Bc6cVqM/N8LvTx8eBRJgpuXVvKPF9VT7BHnbOHsMBXaKfhAK5nJBJJByp4v/0xh5NnUORHhn/5wmP0DQcwGmU9cWM/CCg8jwST/8fgJYmkVgNp8B99/xwIWVuTMcouF15psNuBcWYql3osWVzB6LaeF6iUzKh1jEcbCSSLJDAUnw0l+8lwXl7SW8NsdffT74jjMBj5xYT1/PDBM50QUi1HmW9fMo9hjw2IURfrCm4NsMeI6vwzrnFy0hIIxx8KkAR7Y3M0Pn+0kpWjML/fwrhVVfOEPhwEwyBL/dOkcfvRsJzazkW9d04pZfCbeMA4NBgjFM9y9Z4hINMktF5dSYjPhLHIwZpWonO0GCsIsM5e7KPz4QhRfAtlqxFhgRTa/tv9Mmsgo/OnACF9/+DiJjEp9oYN/fttcNFXn8EiI23cOABBOKvzzH49R4rZx8dyi6eWTGZXjI2H6fTEKXBZUXeeDv91LRtUBWFTh5bMbGjm/seA1bbfw+tHRp39OxCKz2BJBEARBEARBEARBEARBEARBEARBEARBEARBEIRXTwyVdY6RjAZkixHJYkQ6OZKZruuMR5L8z7OdJDPZEbM6xqP8eFMnQ4H4bDZXEM4puqKRmYgz1hXga892cP7d+1j1fzv46sPH8MVSAExGUnzxvkN84Ld7+fx9h/nsPQc5NBTkts1dfOG+Qzx4YHg6gARgNJTkqePj078fHQ7xgd/uYUvnFABvm1/Cb7b1oWo6FzUXcdvm7unPadtohG8+1kYsrZzFd0E4F0lGGdlsRLZmz+9vRBPRFKmMzi+29JBWs8f40eEwv97Wx1hYfBfNllhK4chQkNt3DqBo2Qfa9/YHePL4ONcsLJue7+BgAADJICFZDMhWI7LFIILMhNdMdiR1hV9s6WEklAQgnFD47L2H6JqIznLrTpHtJsyVLmSnCTWYRn3Jd74gnC3tYxFMqg6aTm9G4Uf7B/nRpi4K3RZOjEV49MgoDx8eBUDX4c7dA2zr8s1yq4W3Ei2jokYzyHYjphLHORNAklJUfvpcF/sHggCkVY3vP91BMJ7h8aNj0wEkAD1Tsen5hDcPNZYhPRxFCaYwFTuw1nlPCyABePLYGC90TfHLrT1oOrz/N3s5OBiiLMfG3bsH6Pdlr11iaZX/fLKdq0/2mVOKxq+29TJ2sh8jCG80SihFejiCEkqdNl0yGTCXOrHWeYlaDWztmOS/nmwnpWSv6w8PhXj0yChLqrKhTaqm85ttvbxtQQkPHRxhMpKasS3h3HRkKEj7eIQTYxEeOzrKWCxDSNXoj6fpCCbwxdKz3URBOKt0XSfjS5AejqK+5Pg3ei1Y67yYy5yveQAJwInRCF964AiJTLZv2jUR4/tPdTARSfHg/uEZ8z/TNs6TR0dJnZz/4UMjXHvbdj5z7yHu3jPIdx47MR1AAnBgMMiR4RCjocRr3nbh9aHrp65TksnwLLZEEARBEARBEARBEARBEARBEARBEARBEARBEATh1XtjVkK/SWXGY/j/0EFmMIpkknFfVo3jvCJG4ynGwzMf+N7dGyCaFOEGggCgxtKEtw4T2zKMQdP5f/UeVq+r5+7OCeoLnRweDNJc7ObwcIjNJwNEblpagSTBnj4/P9nUzcq6PAb8p4cpVObasRpljo+EGAok+I/HT9Dvj7O6Ph+AfJeF4WD2gd8XHyx+qS0dU/iiaRy54nT7VqWrOok2H4H7O9ETCoZcK7k3NWGpdM920/4qRlliPDyzIG979xS+SJpit30WWiUMBuKcGJs5gua2zik+tLaWBw5kixsKXVZ0XSfZHiBwXwdaLIPBYyb3pjlYajxnu9nCm1AspeJ1mBl9WeGuoukM+mM0FbtmqWWn09Iq8QMThB7pQc9oGEsc5N3YhKnEMdtNE95CmiUDc3qTaL4QktXAynX1fHJfH3azEVXT2NcfmLHMcycmuO688llorfBWowSThJ/uJ75/AgD7kiLcF1dh9FhmuWUQiGV4pm1ixvTxcPKMAa0jAVGY+WaSHo3iv7cdZTSOZJbxvK0W+6JCZJMBgN6pKNGkQp7DTN9UnMvmlfC9pzowyDC3xEVdoYMHDoyctk5dP/06fsAXR9N1BOGNJtkZwH9PO1o0g+wy47y+AUdDDilFpWsiSiKtYjMZyKgawcTMe8k7e3y8c3kVe0/2QUZCSfKcFirzbNjfoEGqb0WT4SSVOQ4eOdzNZQ0FfK4wB+uWcVB15CoX1redG9dkgnA2aBmV+KFJQg/1oKdVjMV2ct/RhLnE+bpv++X/vgBwaCjEpy6yUJFrp893+uu5DjOfuucg37thATkOM8F4ms9uaCCpaOQ5LDzTNj5jffGMSiwl/m3wjUJ7SQhJOhGbxZYIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIwlubJEnFwH8DS4EU0Ad8Wtf1jr9yPZ8GfqHrevzk748Bt+i6HnwN21oNrNJ1/c7Xap1/LXm2NiycTsuohJ7sJzOYHSlez2iEHuohPRwlo2oUuGYW/DQUOvHYz40RiQVhtsW6g8SeHwItWzAkdYVYl5JZ35jPTzZ10zYa4aO/38+R4RAAhS4LdrOBu3YPkshkR389OhRieU1udnkJPnVRA8trczHIEjf+fCeHh0N0T8VQNJ1YSqWh0Mn+/gBrTgaSWIwzT6nNJS48VlGw8VaWmYjjv7MN/WShj+pP4r+7HTXyxhmBtm8qxr8/coQSj3XGa80lbiwm0Z2YLVORFHWFMwsoWss87OjOBi41FbmYW+JGmUrg/30bWiwDgBpK4/t9G0pQjPYu/P0KnNk+qfsM33m5DvPZbs4ryozGCD7YhX7yu18ZjRF8pBstNTNITBBeD2o0A4/2ofmyIZN6UsX91CD/tqoWWYJyr53FlTkzlltcNXOaILwekm1+4vsmQAd0iO8ZJ9UxMxhnNrisRlrLZwb55bssbJhbNGP6okrvWWiVcDZoKYXgQz0oo9miXT2tEXygi8xotohzZ7ePJ4+OsW8gwIA/RttYGF8sjc1s4H9uXsR3Hm+nYyxCkXvmvTXrS65lLp9XQkWOCFcU3lgyU3F8t7ehRbPXeVokTeTudgZ6/Xzq7oNc9eNtvPtXu/HH03zszv0kzxCgO6fYTb/vVFH0qro8Dg0E+NcrW8ixnzt9eeHPkw0y/3T/YRaUe3hvTQHWbWOgZu+Tav0R1J1j6Ko2y60UhLMjMxoj+IdO9HT2nKeMxQn8sQv1LIT6Fzhn9jcqc+2EkhnWNxViNxump1fn2dF1SGY02sYi3PrLXTgtRoyyzPYuHx3jYS5rLZmxviKXBZf4N4c3DE07de5Np2aG1AiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiC8PqTJEkCHgSe13W9Ttf1ucBXgJnFCH/Zp4HpB891Xb/8tQwgOakauOU1XudfRVQNnyO0aIZku3/GdNWXxChJmA0y1ywsm55uNxv4/CVN5DpOPdCoqBrdk1GODYfwx1Jnpd2CcK5I9oZnTDN3hZjwJVhc6WV3r58Dg0HMRhmjLLGyLm96FG2DJGExykRSChORJP+wrpZvX9OKySBxZDhE10SUaEohmVGni6t/ta2XFbV5LK/J5UPn17CuMZ+jw2Euay2e3r7dbODrV7XgEQUbb2lqIAEvq/FQ/UnU8BsjhETVdDrGI1w2r4zafAc3nFc+/ZrbZuTDa2tJZUQRy2zJc1ioyXOwojbvJdPMvHNFFXNK3Hzm4gauXVxGkduCGkhNBy+8SItmUENvjGNROLdJkkxTkZOf3LKYn75zEf/+9laKXVY+dVHDORXGpfgSM6alukOoUfE5EP42/miK4WCcjHLq/KpqOr2TUU6MhYm9rMhNjaRQJ192HOpQbTQyGUmTUlXWzymkItc2/fLcEjcXzil4XfdDEAB0XSd+ZGrG9Pgx3yy0ZiaHxcg/XToHt+3U98rFzYWUeW04zEauW1yGQZZwWox86qJ6Ck+GuU5EkhwfCTMazH72IokMw4E4sbQYPf6NQo1kSPeGZkxXfAmmIim+80QbRW4r//ZIG2lV5+nj43SOR3j/6mraRyN0TUZ5YP8wn9/YhMUoI0twaWsx371hPl6bifIcG5fPK+ZjF9QyHk7ii4p7asLsySga3RNRusYjTEaSDAfiJDOvfL5SQ+npIvsX6QmF6ESCp4+PA3BZazFHh8OMh1N0TUS5oOlUv8JtNfKRdbUcHc7eV1vbkM9HL6jjS5c3s7ou/3XYQ+H1EIyn2NXjp98fZ3FlDgXJmfdpMm1+xseiTEVEEKnw5qf6Zx7nmf4I2lkIhZ5b6uY9K6umf3fbjHz5sjnYTAZ29Uzxjatb+dyGRj5zcQPr5xTyi609AJgNMpoO9+0bYnefn4ODQe7ZM0Rlrp2Nc4uQJMixm/jyZXMwGWW6JmKv1IQzCsbTtI2GGfSLEIyzTdNOfY+nU3/d300QBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQhNfMeiCj6/rPXpyg6/pB4AVJkv5LkqSjkiQdkSTpHQCSJF0gSdLzkiT9QZKkE5Ik/V7K+kegFNgkSdKmk/P2SZKUL0lStSRJbZIk/a8kScckSXpKkiTbyXnqJEl6QpKkfZIkbZUkac7J6b+RJOmHkiRtlySpR5Kk60827zvA+ZIkHZQk6TNn7V16iXOnIvAtTrIaMJU4yAxFT5suu82oSPhiKXIcRn58yyJMskwgliKeUpBPxsiMhxIcHgpyYjxKvsPM3n6N+eVeFp1hFG1BeDNJKyr9vhjOvJkjDMrlThZXWykIJqcf5r1r1wBfvnwOx4fDFLktDPjj3LNnkM9tbOJ/t/aQzGigwzcfPYHTauSLlzZhkCQ0HZ4+Ps6H19bxvafb0XW4fWc/X9jYyNLqHJbW5DIeTmKUZT5wfg3hhEJ1np3aAufZfkuEc4zsnBlCI9uNyPZz4ys4lEgzGkrithop9c4c9fvAQIA7dw2wfyBAmdfKpzc0ctPSClKKRu9UBF80DbpOS5n37Df+LS6RVkgrKgcHg7SUuPjiJY2oms5wIMFHbt9HIqPitBj5/o0LcFqNxEwSSIB+ah2SSSaoa39TXJ8gnE4n32mhczyCxWjAF03x7etacduMJM6hoCKDa+Y52VhgQz6HglKEN4aMqtE5FmZvf4CBQAJd13n3ymq8dhOPHh5l0B/HF8sQimf4zIYG5pS4AZBtRmSHCS2WOW19Y6qKboBALIOqwXeunUffVJz6Qic1+Q4K3dbZ2E3hLUaSJCw1btI9p4c9WKrds9SimRZW5PDLdy+hayJKmdeGpsNYKElS0egYj/KRdXWkFBW3zYTZKLOrx8fXHz7O4kovhW4riyq9PHJohLIcG01FLhqKXOKa7Q1Athox5ltRpk4vKFZsRtrGwjgsRkZDSSxGGQmJ966qYnu3jwF/HJvZAMBgIMFUNMVnNzRSX+jg+GiEttEIWzsm+czFDTQUOtnbH+CRw6N0jEf5j+vmsbwmF5PRMBu7LLxFTUVS/G5HHyUeK4VuK4cPB9nXH6ChyMkty6toKHTNWEZ2mECWQHvJhZ5BYjB1qtC+Nt9JNJXtezx0aIQNc4v41jWtRJIKoUSGf3+0jUtai7h8XgmtZR4cZtE3fqMJJxSmToaS37Gzj/+YV8nLIxikEgfbBwPIFiM1+XbmlLixiHOc8CZ1pvuxhlwr8kvC7OJpheFAApNBpjLXjixLr8m2vXYzX7ikiZuXVTIVTRJPa/zXk+30TMW4sKmQaDKD3Wzgp893UZ3vJNdhpqXUzYmxbBhUIJ6htczDTUsriCQVfra5m0+sr+PKBaVous4zbeN0T8T40mVzCMTS5Dj+cgD6idEwn7/vEEdHwrgsRr52VQtvm1+CxSTOAWeDrp+6L5ZKiCAoQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQZglrcC+M0y/FlgILADygT2SJG05+doioAUYAbYBq3Vd/6EkSZ8F1uu6PnMUWGgAbtZ1/UOSJN0LXAfcAfwC+Iiu652SJC0HfgpceHKZEmANMAd4CPgD8CXg87quv+3v2+2/nXii+BxhsJnwvq2WqV8dmx690ragAHOpE1IZDLLE/PIc9vcH6BiPsLaxgAqHCbPBQNtoiEhCwWiQqM6zE0pkcFiMxNMqE+HkaQVrockEkwNhMimV3FInBRVOZIM8W7stCH+1kWACfyyN1SQzFUnRMxXnu0+2ce/NS7CUOZCGsyPJyU4Tx0qt/Gp7P5/d2MiFTQU8eXyCkVCSjvEICyq9LKzMYX1TIQ8dGuH+/YP84MYF9PnifPWPR3HbjHx4bS3fe6qDoUCCEo+VD51fy8OHR/jshkZKvTZK3Faebhvnzp0DrMpxEZ5MYLEbKavy0FTkZGe3n39/tI3yHBvXLy5nfoV3dt884TWRjGWY7I8Q9iVw5VopqHJhO8OD7S8yFdlxXVRJ5NmB7ARZwnttA8ac2S8mPjEa5ksPHOL8hkIiSYV+X4xLW4tZ11hIscfKaDDBnw4Os7o+n7WN2RGQt3X5uLS1GF8sxZwSD71TMaIpBUXVMIrvk7MmlVG5Y+cAiYzC8poczEYj/miKYCJDeY6d2965iP2DQQySRDKjMBFO0ZtM0bShkvRTJ49FCayX17AtEKXWJNFa5pndnRLe0FxWI7F0Go1sOMOcYhcSEroOVuNrU8jzWjCVOrEvKSK+NzsqvGSSsV9SzdRUggKb8TUrOhLe3EaDcfb2Bzk2EqLAaWFRRQ4D/jh37R7gojkF7OsP8OiRUarz7HxkXR3Pt08w4YtRKZnQFZ28K2sJ39cBarZYWF5Vwu5wAs0s01jkZCyUZCiQZFP7BLt7/dy8vJIchxmT+J4VzgLb/ALiByanR483FtiwteTNcqtOCcUzjASTPH50jHKvjQ0tRaQVja6JCBtbikgpGosrczgyHGAsnOTJo+O8d1UVv97Wx4VzCtnSMcmS6lyQYP9AkJFQknAiw0IR4HpOMzhNeK9pwPebY+gnw83M5xXyXwcGiEoS6LC6xMvSja1kYiqtpXksr8rFZTOSVnW+eEkTGU0no6gsqcnl8FCY323vJ55W+PwlTYyGkvz7o200FLloLXHxvtXVHB0Os6PHx+LKHJZU5eCx/+UCX0F4NZSMyuRAhMBoHKvDSEGVG1du9v7A4eEg88o8/PHgME6LkfVzCjHKMoqm0zsZw2k2EE+r9E7FuX//EGaDzK3LKijfUIn6VH82cFKCzEXlbJ06FSiloeO2mjDIEqqm8/TxcZ4+Ps53b5hPdb6d1jIPDYVOGopmhpwIbwxGg8SG5kKailzs7Q+wORJnTaOXTEcQAMlmhPNLufO5E1w0txirUcaRguREAqMskV/uJL9c/P2FNw9TqQPHimJiO8eyE4wyOdfWYzh5D7ffF+Obj7bx1PFxmoqcvH9NDZe2FuOxmdE0/Yz3BvqmYuzrDxBMpFhbkovuT6Nm1OnPjyRLjAQThOJpToxFeOLoGNX5DnIdZoaDiez5t22cYDzNFy9t4pMXNvD08XG+dOmcbJv8MT67oYFFFV6mYmmeODpG71SMz21sIpFS+PdHjzMeTvGRdbXoOnzod3sp9lj52pUtrGnIf8XrxWgqw9ceOsbRkWzISSSl8Ln7DlFX4BB94LNE19XpnxPR1Cy2RBAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRCEM1gD3KVnH/QZlyRpM7AUCAO7dV0fApAk6SBQDbzwF9bXq+v6wZM/7wOqJUlyAquA+yRp+vk0y0uW+aOeHe3ouCRJ58x48yKE5ByhKgrGAhu5t85BGY8jO0yYShwYXGYy8SQ1+Q4+cecBJiLZB9Re6PLxwTU1zCv1EE+rGGSIpzV6p+Ls6PaR5zSzrCYXp9kwHUISmojz7O1tFFW7MZoMdB+YZMGF5VQ0nzsFRYLwSnRdZ3PHJJ+79xC3rqjijweHuWJeCfVWM49eMBdp2ygsLwGjxEQ0xd5ogv94qo2UovGpuw9y2zsXs7q+AIfFwAtdkyiqRr7DSHmOiyJXDVazgXv2DjIazBbb3XBeBf/zbCfBeAabycD155UTTSncvKSCOflOLCq0jUVY6XZQajCx6adHAbB7zMy7sByp0EpCyeAwG/jdjn7u2zvE/R9dydxSUeT/RqZkVA49O0AsmMbusTDRH2Gw3c+yK2owWWZ+paaTCv6RGPZaNzkFTWjhFMYCO8bSv220dU1T0XUwGP7+USojyQxf/dNRWstyeOTwKL1T2QCfTe2T3LKskn+9ai6joQQLKrx0jkfZPxCgtsDJvDIP6YxKMqNxaDDI/HIPg/4ETx0f5/J5JX93u4RXp3syxq+39fLhdXV8+/F2Ns4tptRrxWyUOT4SpqXUTcdYhOW1edTkO9naNcWx4RANLaV43tGIHk4j51oZ9acwKioBx+kPwKuKgsEouonCqxdKqDzbNo7TamRXj59ij5XLWovJM5rwxzOvuJyqqsiShCSfnXAFg8OE54oaLAsKyPiTyAaJ1LEpMvl2JpIKxU25f3b5VDxDLJjCZDVOF4sKby26rvPw4TG+9VgbAG6bkU+trOX8ci+jqQwjoST37x/m0xc3UOgw8tDBEVbV5FES0jBFoxhHoiSK7bhvbSYYStKfyrA1EKHE6URCJxBL47Gb+eRdB6a3+fDhEX7/wRWsrBPXbcJrJxZKkYxmsLvN2FynwhWC4TTWjVUYYhmQJdIOEzFNxzt7TT3NQ4eGeeTQMKqmc8/eKR46NMJP37mYhRVejgyHyHeYGAslWFyRg8VkpDzXxr17h1hSnUtrmQd/LMV4OMl3n+qYXmdLqZv/uWkh9YWi+Ho26bqOpqkYDNk+qJrIkO4NEz84gSHXim1BAab3t5CajDOlqGwNRrlv+xj/snEOF1ZVM3oihJZSmegKMtwZZOk7G/FJsLNrivoiF7IkgQTBuML/bunmq1fMRQPyHGZSGY3PXNzIY0dGSak63ZMxfrypi2hKQZLgh+9YxJULS2f3DRLekF5+XAMMdwYZ6wqhZjQ6947jyLGw7J2NBDQVt8XIsdEIvlgat83EcDDB/27toTHPwQUWC4Yj/TgtRqx5Jvb2B5iMpHj48Ajfv24+897ZhG8kgs8APz7Uz8cvbuTx4+ME4xn29gWozLPxlcvn8NDBEXyxNFctKKWp0MXcMg8GEcT3htc/FcdsNPDtx08AcHlrCepqN66WfKSMhlZg5WAqyac3NPK77f1cUOyl85khcksdqIrGvsf7uOi9cymuEfcthTcHg92E+9Ia7IsK0WIKxnwrxgI7AJqmc/uOfo6PhLnrilZKhuLI7REUh53NZHi+cxKP3coV80uoyXfQNhrGH0+zs22SIpOJpiIne+44QWA0AYBskLj0H1qJOg0cmYwwEkzw403d023x2k381w3zaRuNYDMZeLZtghNjEXIcZm5dWUUyreKPpylyW6nMsdM5EeH2HX1U5Tv57IZGOiaiLKnO4f4DQ7SUuhkKJHjk8CgA/b44H/jtHh782GoWvEIA+mQkzc5e/4zpfb64CCE5SzRNm/45nX7le2SCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCILyujgHXn2H6n3uQ9qVFlyqvLpfj5cvYABkI6rq+8FUsc8482CuqS2dZaGKMviMHsTk95AcLiG8anX5Ndpso+IcF9E7F6ffHpwNIXvS7Hf1cu6iUVFrFbTPRPh7hh892Tb/+TNs4P7550fTvk0MRyhtzOPTsIOmkSkm9l8B4gsLqDBab6fXfWeEtYTKS5MBAkPaxCPPKPFTn27GYDJR4bH/zOlVN5/hoiI/csQ+X1UQglmZ5TR4X1OZRsWsS9dhwdsYTAeQyBw8VG/jlvqHp5VOKxoA/zoAvxrrGQt5Zb2Jgx8NERvsxLFxNWcsSvvVcP/kOMxsacxgKJCjz2vDYTATjGT62vo7fbOvDKEv8/Kr5tN3fQ1GpE2U4iqXCxZ4D2W3lVzipXVjAwScHSMUV8mvdvOuSCg4MBhkKJDg0FBIhJG9woYk4VqeZjt0ThKcSuPKsLLiwguBEgoKK04sWMymFA08NQDxDxVAYbSo5/ZpjRQnet9UiGV9d0b2mqYy0nyAwPoIsGzDb7FS2zMNid/zN+zIZSbG3L8Ca+vzpAJIX3b1ngFtXVGI2Sjx3YoLHjmRHDd3TF2BrxyTfvWE+9+wZ5JrFZaRVDU3X+dZjbVTl2fFF07htRuoLXDitopvxWhsLJZEk8EVTvHtlNd989Dhfv6qFSFLh51t6SCsaV8wvIZTM8NkNDcTSGmlV45dbe7ihuQSeGiA0FJ1en2duLnPnF/DcRBSP3Uy1NUPn7u0MHT9Gy/qLKKyowl1YPIt7LLxRTESy57iX9kU3nZjgl+9ZwvYeP3azkdZy7/RrqXicwNgIw23HmBzoYd76jZQ2Np+VMBKDzURa0Yg/2ouePjUarbSxigmLgcLqM39X+4ajbPr9CcZ7wlgdJtbe0kjt/AIMprMToCKcGzrGI/x4UycAZR4rX19Wx+CTQ2wOD5Jb5mDBtbX84soy0sefw5hJ8JW1G3B6nLA3jLJrjAxAewB1/wTOm+cQjSfIl1TcNiN5Dgs2o8xtm3tO26amw58ODp8WQjLgjzESTNI5HqHAZWFxZc50+KQg/Dm6rjN0IsBzv2sjGkiRU2znwnc3U1zrwT8She4gsedPXUvJdiNc3whFf3u/82/R54txYCCALEmU59ipK3CQSiQoiw/wuTIfRquV5OJS/m1HiEF/nPpCJw2FTp5rn+CXW3u5ZVkl23t8bO/2AbC3P8ChoQBfv7KFd/1qz2nbOjYSpm0kLEJIZtFYdydDJ45hd3swWGxk8iooHofkQ6fOh7Gdo4xdWc1Xd3TRWurh4GCAO65egMGfZvCInwNPDqAoGlUteSzaUMmJxweouLGGJdW5fPH+w5zfUEBDkZNgPM23r53Pv/zpGP/vijkcHvQTz+j87OS5d2evH7fVyPvXVPPDZ7vQdfjxpi6W1+ZQ6P7b72sIbz0T/b2EJyeYGhrA7nRRe94yYiEDB54cYLg9gMlqYP4F5Qx3BokNx9GLzGzunOJHz2X70zt7/LgsRj68tpZ1RjO5jw2QPrnuaqPEf15cx/ueOI6mw7Mdk/wmEGdVXT4GJG5eWcUFTQX86eOraR+LoAPFbgu9kzHevqiUmnwHc4rdFP8d9+qEc4s/nua59glUTefWFVV4oxn0+3uJZE4Vvi98eyVtQwf4xLK5GGMq6aTC3sf6MFkMzLugnP4jPgorXcgGcX0jvDkYrEYMVTOv7wPxNI8cHuV7a+qoeHwwe8EFJI76abmujPHD9+Kcv5pfbwpw3coGvvloG9/Z0MSSsEb33lE6rQYWXVzJwWcHiQVTaKrOgacGqJqXR3Olg/94ov207QXjGTrHo/z45Pn9E+vrsZsNmAwSsaTCbZt76J7M3qsr9Vi5dUUVb1tQxjNt4/zg6U7mlroo9dh44KOrGAokueHn209bv6ZD50TkFUNI3FYjlbk2BvyJ06YXuCxnnF947WUHSMlSkuk/M6cgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCK+j54BvSZL0IV3X/xdAkqSlQAB4hyRJvwVygbXAF4A5f2ZdEcAFTL2aDeu6HpYkqVeSpBt0Xb9PkiQJmK/r+qFXsY1ZI54onUXpRALfyBDoOlJMJfHC+Gmva+EMymgMi8lA4iUFki9lNRvwxdPowB/2Dp32WjKj0TsVP7U+RWfPo32kk9l1jXYFGTjmI5VUXtsdE96yYmmFHzzdwYdv38fuPj97+gNcd9sONn5/C7c938XUy4J0Xo2xUJLvPdXO08fGWVGbx0fW1bKiLpcjQyGccQX1mO+0+bXhGOvysudVSYL3rqrmMxc3UOK1oupgTvjZfdu36d36NCaLlXyjytAf/49vtqa4MbOHov1/4JfnGyg58hCfsh/lZxtySacVfLE0X904h+N/7MXXG8HusTDeE8ZiN5KIZB8crV9cyO6He0nFs5+pqZ4wg5tH+PxFDdn2/D1vrnBOSMWzBRrhqQQGo0zEl2T3I72kEzPPo/6RGHsf66PQazktgAQgtmsUxZeYscwrmRoYIJ2IM9rRTs++PSjpFJP9fX/XvrisRko8VnR95ms6cGIsQiSp8sTRsdNeGwklGQun2Nsf4OsPHSee1hgJJPjAmhpu+vlO3v2r3bz9J9v57lPtBOLioerXii+W4n+39LDxvzdz6X9vIZlRsVsMeGwmjAaZbz9+grbRCN2TMX74bBe9UzG8dhOLKnMYDSXpnoyxvsCF8pIAEoD0cT8OJFxWA1vaRtn5wN1Y7HZySks5tukZOvfspO/QfqKBwCztufBGYTEauO9lfdFwUqF3KsZ/P9PJY0fH0E+ecEY729l+7x3sfeh+DEYjNYuW0nvoAGM9nWetvfpE/LQAEgB93zhKLENwIj5j/nRSYcvdHYz3hAFIxjI89ctj+EaiM+YV3twyqkb05PXTRxZX0flAL/Fw9vvOPxwj0jNC3+//h+bF5+EpKuboYw+gTkyh7p84bT1aJIMhkOKy1hI+uKaWI4Mh3vvrPfzHkx2oZ/hyPlkXRyqj8ujhUW76+U7e++vdHBwMsqPHz3ceP0E0KUZUFv6y4ESCx392hGgge20WGIvzxC+OEJyIo0bSZHad3vfT4gpy8K+/jvt7DAXifObuAwTjGX6+uYd3/HwHn7/vIImxQcodRmwOO4HBPvw7n+I/l0hY9DR/OjDCbZu7uXPXICOhJBlNnw4gedHhoTBTsTSx9My+e+IlRdrC2TU1NEgqFkVTVTp2bGWqr4sSVDLPn96v0JMqRXGVrokoBwaDfGVdIwfv7MLmNLPnkT6UjAY69B/1kYxmkE0SsXiG7d1T/NcNCxgLJbh9Zz/FHiv7+gOMhZMk0hr1hR5u39F/2rbCSQXpJVfwgXiatHqGCydBeAWjne107d7B0U1PIUsSzrx8eg7spXPvGMPt2WurTFJl3xP9VLfmkYpmiKdVfru9DwCzQUaSIJJSqHRbKTjqP30Dik55MEOewwyAJEmEEwo/fb6bHz3XhckgYzcbqcpzsLGlmEtaillQkcPbF5fzvtW1XNBUJAJI3kQG/XHcNlP2Zg5Q5LJQGM6gv+y7LbF9kqrKWiyhMQKjYYZOnDwWUyr7n+zH5jIRmnz196oE4Y3KaTFyQVM+JePJUxdaJ2mHIjSvXkemYx/vqNJIHXmB9yY24zv0NHb7MVrPj1BYZWLnn3qYu6Z0erl4KI1vKIY1pOD6C6HMv97Wi9ko8+zxCYYCiekAEsjed+2divGngyNcMa+U9vEI5Tl2/uPxE2RUncpcG8WemeGTbusrDzKQ57TwrWvmYXlJGPaNS8qZW+L+i++V8NrQtVPnY1U987/1CoIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCILw+tKzhW3XABskSeqWJOkY8DXgTuAwcIhsUMkXdV0fe8UVZf0CeFySpE1/RRPeCXxAkqRDwDHg6r8w/2FAkSTpkCRJn/krtvOa+fNPwwmvq2gwwFhHOzvuv4sLrn0/Nr1oxjy6rmMxyswpcVHosjDxkhCH966qxmE2MuRPUJPnQJZnRhyYjaemJaIzi9IGj/tRkuKhN+Hvp+s6bSNh7tw9iCzB8po8vvtUdtQ/gyxxYCDInGIXzSVupqJpkhmV6jwHmq5jNxtwvsKDso8fHeWnz3fzzWtayAua+emmbm5YUs7H55VSJhuInGGZCq8dyH5GtnZOIUsw4I8zMBnm7R6VRCSMyWqjYu48Xrj7dyy67Cp23HsHEf8U6259P0/+5Hu8mMwgb3uGlZ/4ZyoumkMDRp4djmG2Gkie/DwNtweonp9P76EpMumZhWtjbQHWXlKB3Wx4xdEIhTeOVEKhpMJJy9xczEkF1WKkbyxGKjbz/PpiOM0rhc+cKfzjlcSCfh7+/rdRMtl1duzcyqUf+wy5ZeXY3TNH9Hw1ClxWvn3tPLZ0TFKRa2PwJaNhXjGvhLt2D/D5jU1IkjSjsaaTo+KmVY3hQIKhYJIDR0aJpE4VdP5mex8bmotY3ZD/N7VPON3Wjim++Vjb9O//t62HqxaUMafYze4e34z5Hz8yxtsXZoshTCf7B3k2E8kZc4KuKcyxK5SoaeTcfLbe+VvioSAAXXt2sORt16Ck09SetxRZNrzm+ya8ObhtxjP2RWUpO+32Hf28a2UVsn+Ee7/xFZR0tk/bvmMr59/yXjyFRUz29VJS33RW2ms4w+jeuqbjAJRoGgrtp70WC6YY6Qy+bAEIjscprBKFO28l1bl2Lmst4dEjo7gyOuGXFaVrGR/LrrmRnfffxdRAH+uv/QBOg4eINjPMSTp5GMqyxOXzS+iYiLKzx8eXL2tma+epMFRZgovmFJJSVE6MhTHI8KXL5nD//iHu3z/Mzcsq2NsfoGsyxkLR3xT+gshUgkzq9HsAsWCa0GQci6bPKMQEMBjPbn7tseEwqxsK+O6T7VTl2fnBjQupyLWQGDhCcGyE/Y89RDKWLdZs37GVNe/7GJfNW8jH7zwwvQ7pzyRAbmgu4qnjp0JgbSYD1fn2V15AeF2lk3GOb93E8S3PAdC9bzeVVfMxnOGCKaNorGvM56OLq7GGFXoMEr6R2Iz5hk4EmL+hgkOqwpqGAj5zzyHSavZ6fSqaZiqa7YekFBWbWZ7ur7zUSyfdtKyC8hxxjAivTnhqksd+/F2CY6MAdO/dRev6DTQsW00sdKawOxWXw4SKzooKL++tLSQvoZKwGNgSiSPLnPEGgqRn+9qyBOsaC3jk8AiyBDctq2RdY+HrvZvCOeTEWBivzcz6OYX88eAIsgzyGe45SRoc2fQ05QvmYXPPDI1NxRVi4SQ5xY6z0GpBmD0Wk4H3rKpB3jI84zVJl8i1F2NZfSH7H3+Q4fbjAHTu3k7V/EXIBgPFdQsYs+ajveRasHp+Pp17xsktcfDxtbV8+U/Hpl9zvyyUJJZWcVpMrGnI59EjozPa0DkRpTLXTiKjYjHKaDpMRlOEkwpNxS7+9W0tfOj2vdNfDQvKPbSW/fn7w6vr83n4k2vo98Xx2Iw0Fbnx2F85uER4ban6qX830hUxKIQgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgzBZd10eAG8/w0hdO/vfSeZ8Hnn/J7594yc8/An70kt+rT/44BbS+ZPp3X/JzL3DpGdr03pf97jz5/wxw0V/YpdeVCCGZRclohP2PP0RBVQ2mXAeOFcXEXhiZfl22GzHkWYkEoiTSKv/8tmYODgbpGIuwoaWYZTU5JNIqVbl2JFniw+fX8i8PnXq40Wkx0lTsmv7dap/5584ptmN1iocNhVdP13WOjYRpH4/gshipzrOjaDrPtE2gn3zytbbAybGREAAmg8SXLpvDQwdHeGD/MBLDPHR4lH9YW4s/lubZExPU5Dn44qVNLKvJzQYenDTgj3HPnkGq8uy4rWbu3z/Mogovl+S5KXykn0xNAku9l1RX8FQDC6yE7TI/vGkh0ZTKr7f18aHzaymRoiwf2E5ishKA6gWLad/5AgBWh4OIb5Li+kb6jxw8rbhDU1Vix/egjS7G36JjthooqbdTUg/phIfuAxEWXFiBwShjNM0sXPIU2JDNMvf9wwqaxeiCb3h2l5nF1S6UZwd4sXSzrtaD2WuZMa8r34ZskJiMpCnzmtGCpwo87IsKMebNHLXylQy1HcPqctG4Yg1Gs5neA3s58OQjuAuLiIeC5FdU/U37s7ahgGKPlQvnFLKty8e+gQCXthTTOxXlkcOjWI0GblxSzl27B6eXqcm3U+q18umLG3i2bQK72cDy2hzu2Ts4Y/3jkTNFXgh/LV3XuWfPwPTvdrOBG5dU4o+msRglch0WLmgqYGGFF12HPl+MWErBZDgZPuK08NWLGlEAY5EdZfxU4ZulwcvQ8H6eu+M2zn/n+zHaHdMBJC/q2ruLqgWLmOrvI7eiCqNRdB+FmSwGiY+uq+M7T5yYnpZjN1Gb7+DW5ZVs7/ZhNcj0d55g3oUbMNvsDBw9zGjnCdp3bKV28VLKm+edtfZaq91EjDIopwpB7IsKid3fiaUlH63ciWw+daybbUYcXguxYOq09djd5rPWZuHc4LSZuXFJOblOM7LtVDCTK89K7UIreeUSRqPCWHcHl9z8SXKPekj0jWNfXEh8z6nQA9lhwlLmnP59bomHm5dWsLwmF9D5j+vmsbl9Eg24oLGAIX+Mu/ck+MHTnbSUurloThHrmgppLXVzz94hNs4tZjyUpN0UOe0aUBBezuqaef1vMMkYLQZsCQV9SRHRbafuS0gWA9YK54xlXi9TkRT+eBoJuKCpkKsWljDgT1BuiDI10I/BZJwOIHlR15ZnWPOBZv71gmI0u5tAUqPYY+WiOYU8e2Jier4l1Tm4rSY2thRR4LLw1PFxagscvH91DQ0FZ28fhdMlwmEGjx/hvCvejsFkwmZyYzqsYltcRGTz0PR8kllGLnHw5aoGXvjf48xdU0o6oeDKnXldlVNiJ+Y1EvYnCU5kpgNIACYjKZqKsudJs1HGH8tw07JK/ndrz/Q8uQ4zTouREo+Vdyyt4NpFZa/jOyC82Yx3dwISS6+6DsgGOx7fsony5lbyyuuA04PJPIU2xuJJ2ocSfK2hFO2xPgAcwDVlDkbqTITm5eMcekngjiyRLHewJJbDDeeVs7wul/nla0GCylw7FqMIj3wrMcgS7eNhyjw2fnDjAgLxNK4CB+qOMVBO3eO0ry5m6O5j+H0jrH/3R2esx+owIctnN3hMEGZLc4mb8GKF8MEpeEloj7Uxh9RDfeRfVc7kQN9py/QfPsCFH/gY6ViUC27JJxExY7YZaVhaRDqhEI+ksXvM9PoCfOqiBnb3+qnOt1Ob7+SHz3ZOr2d5TS4uq5F79w4wp8TNM20Tp23nvKocHjwwzIraPG5dUcXjR0aZW+Km2J29/7y2sYAHP7qKrokobpuJ1jIPpV7bn91fSZJoLHLRWCSuFWeF9pIQEm1mkL0gCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCMK5SFSRziJJkmg+fz1Gq5XCgir0LhXX+gpSvSGMuVZMhXb0uEJGg/v2D/GOJZUsrc7lgsZCfrqpkwubCgkn01TlOpgIJ5hT4uLrV85lR6+fQpeZdY2FlHlOFWPYvRYqmnMYbMs+7G4wySy/ug67a2bxvCC8kj19fm795W5yHWY+cH4N33qsjSvml/KTTV3ctLSCmnwHwXiagpPH1dvml3L37kG6JqNc1FzE95/uYGGFl35/nCeOjgFQlWtnd6+feFqhMtdBOJmhZzLGH/YNctWCUkaCCbomojQXOvn04goqRxIk0irJ9gDONaWYiu2kB6Mkyxwk6t28+94DSEh8+uJGAJxm8BzfQt+eFygqugZXXgG6rr3kwfpsob5sMKCpM0eiy6TSqIpO174J1t9awO4//oaH/us4xQ1zuPg978I/Eia3wk3FvDwioTTHN2dHUZSNEvWXVXLdr3Zx09IKir028hzi8/ZG5pAhuHvstGlqTwhzauZx48q1csGtc9jxYDf5V1TjCadQhqLYWvOwtuYjm165KEhJpYgEfJjMFpy5eThyvMw9fz1D7W3IkkR+VQ3ewmJC42O8cOdvuPZLX8fi+OtHqpVliTnFbiiGNQ0F6LrOVCTF5T/MBvR8+PY9/OiWxZTn2NjXH6S+0Mmq2jySaYUfPtvJzcsqqc13EEykWV6Ty65e/2nrF6OFvzYkSaKhyMWOnuz7e/XCUr73VAfvWllFgcvKuqYC2scj/Pcz2YKG1jI3X9zYhHTy3HZ0OMTaXDfRoRgFLXlo1R4yYzHM5U6QJMxqthi5fdvzzLvo9DC91gs2UL3wPAaPHub4C89TvWAxK655B57CorP4DghvBOmMnu2LXtXCtq4pij1WNs4tRtJ1NrVP8q1rWpG0DGa7nYKqWlKJOAVVNVTMbaVn/x6MJjOgExgZJqf09S/0tZS7yH1/C4k942ihFJY6L+mBMFpcIbFnDNu8PKxVbmRL9nLJ4bFwwa1NPP7TI2hatkKpcUUxeeWiaP2tqK7AybauSVSnkfrzS9AiESzWdvY9/EfQdJZefT3v+uoPsPgsRKL9aNEM5nInrgvKSfWFMRTZMbXmYyk89d3ttBq5Yn4pA/44x0ZCRJMKK+vzkJDY3DGJUZaYX+HhG1fN5anjE/x8Szdvm1/CvDIvDUUuNF1nOBjn4FCAy1tLmFfunbX3Rzi35RY7WHZlDbsf7p2etuaGepL+BIbto5gK7LguzN6XMLgt2BYWYCk5O+e6YDzNM8fHUXUdq0nm8nnFDPgT/G57H6vXWogZ5OngyxfVLFxCXkUl+/7wOxYtWoLVpvCIT+InB4b57g0LWFKdw+5eP/PKvCyp8pJWVDRdp2ciyrtXVhGIpfHaTeQ4xXXabEgnE5jMFuZduBGjxYbZZqXUXkdq7xgZixn3xZWkekLIThPp+fkcSqao80E0kGKwzU/jsiLSSYX8ShdTAxEAzFYDTReUcdlde/jYBXUY5dPDQh/cP8z/u6KZf7yonl9u6eEzGxvx2Ix8bmMjBwaClHmtXLWglOYSN29fVEa+ODaEv0J4cgJd16hesBglo1BQWcXSq69nuO04kizjzvNiNMsoaQ1Jllh7VS1FVgNGowWrpKM/NnDa+qThGLWaTLTBizPXRnr3GNiMmJcUoeaY+LfmPPKd2Xu/DUUiZPqtymM1IefANx4+zqcvbqQqz47Zl8Z8STXp/jBaQsFS50XxJVh53S30HzuIwWTEZDGQSWUjdotr3bjybPhH4hTXepHlmUHLgvBm46r1YvxAK/Edo+hpFWu9l/iRKdAgtWmSyz/8OY7tfA6nPZeKsrk4c/IIp6c4tudphtqOUXveClZeO4cDT46SiiusuLoOk93IemceuybDXLO4jHKvla7JGJV5dromolzYXMi8Ug+/3NpL92QMm9nINQvL+NOhYXTg4uYiFE3nHUvKKXSZeaFrEkmS+Oe3NeOxZ0NQzUaZhZU5LKzMmd03UHjVNF099YsuQkgEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQXhjECEks8hktVHePI9MMk4yHEHZm0QyGzCXO0kPRIjvn8BzcxNuhxFZkvnEXQeml/2nS5swSBJ9U3GQwGsz84c9Q1y/pJzWcg+6pjMcTFCac6qw7fgLIzStLKZ5dSmZlIrNZaZ73zjV8/KQJPFgsXBmibTKaChBNKXQMRbh3r2DpFWNm5ZV8N0n21lSncOObh8Af9g3xOc3NrF/IEB5jo08h5nyHBsPHhjGYzMxEUkBsLo+n9ue7wJgXWMBRW4r33+mgy9f1sy/PHSMG5dU8Pud/dy4pBKDLHHHrgG+emkTP2ytwL3fh247VVgRfWEE2WHCel4BXbVOjg4H+dqVrSys8OKLpZEksKRjDO7Jhirsf/xhll9zI+lEgoq589n0m58TnhynsKaO0c52zr/5PQwcOQSAK7+AlrUXkVNaRaXqwGSF7ffcxuRAL2VNc6lomc8TP/k21YuWkF9RxaZf7CWvoprLPnYBEyEnPYkUn3qujWRG4zfb+1nbWMiFcwrP5p9PeI2pSRVUfcZ0LaHOmBYcj7P9D12ct7ECd1IhddyHMcdKeMswxgIbppyZI3YDBEaHeeHu39Gxazt2t4cL3v1Bckoq0BQNm8NBOpkgr7Qci8PB3kf+iG+wj4hv8m8KIXk5SZIocFv5lyvn8sm7DjAeSfPZew/xgxsXsKo2H1XX+b+tPdy8vApNh9/vGmB1fR6/3d7Hv1zZwifu3E/vVByzQeafLm2ipdT9d7dJyLphSTkP7h8mklLIc1oYDiZ4+NAI71lVzcGBAJs7JqfnPTocZlu3j7ml2dFNlxa6CbWHKbIZiDzdj8FtxphvI35wEi2WoeD6GqoXLKbv0H6MZjMWu4NUPMa6d3+Qyf5eHv3hf2K22Vi48QqGTxznyHNPsvod7xJ9B+E0FrPM/k4/q+vzaS1zgw6bToyzYW4xRW4Ld+4aoG65g0QoTOee7Tg8XuqXriSdSDB/w2XYXB5euPt2Vl1/81kJIQGw13pRVZ3EcwOENw2cNkp4pj9Css1PqiEHS46V3BIHlXPzuOErSwhNJLA6TeSVOrE6RbHnW1F5rp3PbJjDvn4/npVO9P4xnv7ZPQBYnS5aWy4g9tgIWq1nepn4/gkkiwHr3FzUefkM9IVZ1HB60ZgsS1TnO0gpKrf+cjeT0Wzf2W018vH19Xzz0RN859p5GCW4ckEpdrOB4WCCD62poXsyyn880c5/37SQ3+8a4DsihER4BUazgQUXVVA+J5doIInNaQIJHKpOIpohMTaFZJIxlbvIjESxVJ29/tyJ0TBuu4mvP3yM71wzj6lYipFggm9cVsuRB37Ggg2XE54cx2ixUFzXSFXrQlwFBaSiUXJKyujeu4tMKsml6y5i0SV1bO2cpMhtoSLHhtduIpDI8Hz7BJe2FPOZjY3EUgpOq5Gl1XlnbR+F00V9PtRMhpySMtq2Pk8mlaRyYzMpIHncT7IjiLnCRWY8jmIz0CLZ8A2FABjtCmEyG3Dn21i8sRIkiCYU0g6Zh0Z8yBIcHgqxrCaHllI3x0bCAPhiaTKKisdq4htvb8VtNVHisTARSXNpSzH5TjM5J8NDRdSY8NcKTY6TSaWpaJlPx46tHOvronr+YhqWr8LicPHc705w0XuaScUVSgpspB/tITGZwA60XFFDJDXz3oKsaKQl8M4rQG/JRzoZDuE9u7smnMP2D/hZUp3Hwooc/vHugxS6LDw0r5rE9lFMJQ4ki4HwswMY82x4LyvGvHQl4xOTrL25EV3TMRhlLHYTx7eNYLYaKax0YbYZ8Bb9/feZBOFcJhlk7PU5KPEUyRfGCD3ZByfzIdRYmsDAOHVNS8jry0fZFkXFh7vAxppLb2HXpgdIxUJ4CoIsv6oWk8WAomg8/9s28itdtK4u5H+293LVwlLKc2x8eG0tdrOB257v5vhwiA+sqWV+uYf/fLKdBeUePruhkcpcBxajhKrpbO+eosBlYUl1LsOBBBPh5Ky+V8LfR9d0kCGmW0ATISSCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCILwxiBCSWSRJoCppnvzZ/3DFB79AXn0uqa4gqZ5sQYVkkpFdZnonQritRj67oZG0qmEzGXjk8CgXNBZQ7LYyFUsTTGS4elEpe/r9RJIKdQVOitxWDCcfTE+nVUrqPDzzq7bT2rDulkb8ozGi/iTplIrTayGnxIHVLgoqBeiZjPKdx09QW+DgwQPDrKrLZySUfeBV0XRSisZkJEVjkYv9A9lp33niBFcvKGVusZs/fHQlvmgafyzN08fHqMqzs64hn5p8O/96ZQtOi4FQUsFuNrCqLpepaJpPXdiA62Sh5e5ePz1TMT6zoporct2od7eTQcJ2cSXJjsB0O7VYhiGLzEdu309rmZtf3FxMZKgLdXCAp24sRZVNbC8oIjAyhKYq7PjDndhcbi79xJdY954vMHxiJws2XkkqFiURjXLpxz5P36E9lNQ3sfXO39C8dj1Rv4+imnomB7IjhtcsXsoLd/2WnJJSLDYbL9z1WwCGTxyjY/tmVn78axwZSuKLpU97P0UIyRubZjdhrHChDEamp0k2I3jMRPxJXLmngkXioRTJWAaHDonnBwFQA9li4sB9nZg+6cDoPT2IRFEUdj5wDx07t51cR5DHfvRdrv7CV9l656/R1GxB0uCxI5x/y3spqq4l6pvEZLOdWkdGZbQrRNv2UexuM/VLCklGM9icJgoqXcgG+S/u54JyD3d+cDnBRJp4WuXQUIj/eOIEdQVOPnVRAwP+2PS8w8Ekc0vcWAwy/3ndfJKKRqHLSl2BA+Or2Jbw6swr83L/x1bRNhIm12nmfo+VYyNhusYjTEVPnWcMssTGuUUUuCyMhlIEp1JY4yrBlIK9wkHaaUINp1HD2WWMhXaSqSglDU2Mdraz6Te/4OrP/z8iAR/jXZ0c3/wsAKlYjF0P3suam97NwScfZfFlV2H3eGfjrRDOUaoGS6pzOTIcZiKSoirXznXNJShTaf6lsQJnkZWRE1vYeudvppfpObCXSz/6GVwFBRzf8hxjXe0YTGe3D6rbjCiB1GkBJIYcC1o0Q3zXKJ4qN8c2D1E0NxeLzUheuZP8ctdZbaNwbrKZDZxXlcPR4RCDe7ZNT3/HF79N/IlR1KkExqVFpy2jp1SkAjuhYIq8EiedXX4MLhMpTSfPYabQne0XeO0m/vP6eRwbCZNRdXR0fvxcNsDv8FCIljIv45EkTrMRj93E1s5Jfr29nwKXhUAs2/ceDSUo8dgQhDMxW424ci0MnfBhdXjJRFLYR2PYWvOJ7RxFz2ike0Mggans7MUwjIaSIEEyo/HZ+w7xzbe3sqzCSakhRtBup2vPduasWc+Vn/kK7du34MjxEhofw5mbyzO//An6yYK+wWOHueTjn+OOnRm+eEkTxR4b/niaQqeZtY0FtI9HSCs6Cyo8zCkW5/TZZLbbUZU0j/3ou+iaRmldM2avnZhRBkUDJXssWufkYpFkkjqETDKyQUJTdQaO+xk47mfhxkqekOJYzUbufGqAmnwHP7hxIQaDhNUo4zAbuaRFIa1oNBW7+MP+QTa3T/HzW89jZV0+ALnOM4dECsJfw+p0EgsGefzH30NJZ6//h9uOseztN1DRvJolK4qRx+KYrEb0jgDKZGJ62XSbH2tzHsnjvlMrNMrI+TaaSrKBUC8GkAhvbYlIGv9IDEXRiIdTLNMtOFM68bTK5zY2UuAy4zTZCG4fJTN66v6NdX4eWx6/kwUXX4asG0hHVLbe3XHaulddW0fIl0DXdGLhNGUvC80ThDcja56D8FB0OoAEwDDXSeexP7F2yS0og9Hp6epkElewmIUrLmHrw7ez6HI7OaUmon4fqXiMBRcVcOT5GOVTGX56aQtDskbXZJTeqShXNhTxg8vmIiU0knEFa66J2uvm86k/HaXPF+fWFVUcGAhQ7LFyXmUOx0bC09eB71haMaPduq7TNhqmYzyK3WygqdhJIJ4hFM9QmeegJl8ECZ0zdI1BrYCL0/9Fg9zPP812ewRBEARBEARBEARBEARBEARBEARBEARBEARBEF4FEUIyi2wuD527tiMbDNjNLsxVbmS7iWRnAFO+DdvCAtREBofZwMOHR4HR6WUrc+2kFI3Dw0Eq8xzYzDITkSS1+Q7Sms69uwdZ11TI2sYCANLRDJqus+LqWjr3TqDrOvXnFZJX6mTgmI89j/SRSal4i+ysvamRiubcWXpXhHNFSlH54bOdPHV8nE9f3MB4OMWObh+XtBbz2+19WIwykgQd41FuWFLB8+2TJDPZh90PDYX47c4+Vtbl8/jhURZWePncxiYPNLz/AAEAAElEQVQUTSfHYeYbjxznY+vq+drDx9jQXITZKPPI4VG+dOkcfrG1hysXlPLTTV18Zk0tX15cif5QL3ZbnIgGoJPqDeG6qJL4vnHQQV9Vwu50gm9e08qiSi99u7aw+de30Xz+egYO7mG47Rir3/Eutvz+V9OFaZ6iMvwjMrsfVll7060ceLofu8dLXqmTjr0xllx2LQ98+4sgSdjdHo48+yT5FVWYrDYkSSIW8ANQv3QlBx5/+LT3zltSijUeYsmQgWUbmvnsU8fRdcSDv28CkXAa6/llmI9MkekKYiy2Y1pVRiCu8MJvDnDFx+eTc3KkWGeuDUmWsJtk9JetR4tl0GLKjKGL4wE/J7ZtOW2azeVmtLMdXdOpaJmHyWJl8NgR2rdvoXHV+VTOX4Cn4FSR80hnkId/eAi7x8y6mxt56pfHiPiSWOxGVl1bT93SAiyWMxf5Z1SNHV2TBBIKkgSpjEoyozEWSvDf71jIZCTFT5/v4uPr66aXMckSCytzuPyHL5BWNSQJvnJ5M5V5NhFC8hprLHLRWJQtlP3WNfP4x7sO0DURYW1TIU8eG6OhyMmXL59DNKESTKTp7g4QfnqUyrl5DLb5mVPjxnVBBck2H+mRGJYqN5YaN7HIICe2baZm0RKQJPY+/ACt6zfQtWfnjDZE/FMU1zditIgiTeF0kizxkTv28Q9r61hS7aXIYiIxFGf7/V2k4gqrry9l/+MPnbaMkkoRGBvB6nQwdOwo59/yHtLJFMGxUbzFJWel3a4yJ/o19aR3jJLuD2Mud2JtzCH0RB8A2kScqpEIqQonB7eN4im0sfSKGsxWcRklgM1sZGlNHunqGnr37WT1296JZcpEcjQOQPzwFO5Lq4nvHUdLKliXFRBxmTnw1ACTA1EMRpm6i8q4fXyKzkCc71w7j6ZiFzu6fdyxa4Bcu4mn2yZO22aBy0IklaFjPMLS6hyC8Qy/3t6PJMH7V1czFU3RUuqmbSQsQkiEVxQPp+k/5kNTQEsp5MsysRMBrPVeHCtKSByZQnaYcK4tw3yWQkhiKQV/PI2uw/vX1PCDpzsYDSdZkukllorTsu5ijmx6ikf/5z85/5b3EJoYI5NK0LxmPX2H9k1f573o0JMP8y9Xf4K+YBJd1zHIMs91TPLFS5pYXpOHySBR4BL9mdkmyTLD7cdx5eUzd+WF1NkXoIwm8FxWTfzABIovibUpB6PXip5Q6GkPUlDuYNW19XQfmCAeSlM9P5/SJi+3397OtQtLeeJTa5ENEqUeK7GUgqbrNJe4uXfvEMPBBP+7tYeUkj1eSjziGBBeO2M9nYx1d6Kk09hcbopq60lEw1TWzKOgqBpvwEh08yDo4GryosSU05ZP9YTwXFMPdiOpYz6MBTa8l9dgqfLM0h4J56LJgQhP/eoYwbE4JouBhRdXoKo6gaEo/29pDSaHkSlJJXMkiPuSauL7xtFSCvYFBZDW0NIK8XAIS04B9lI7Sy6vpnv/BEazgYYlhYz3hbE6zSTjGYLjCcxWIwUVIrBLeHMzlTjJf38Locf7UANJpCYbg0o7mVQSgw+Ul82vDsbItebx9pu+zAs772asq4Pc0lKOPv8M8XCINbf8E0pa58hzQxSuLsJlNHCFy4NpMkWUNDse7CYVV3DmWFh7cyP//rZmjk/GuHfvIJORFF+8pImJSJKDgyGK3Ba+enkzJoPMeDhJkftU32VXr593/99u0qrGBY0F5LvM/GHfMAAOs4FfvW8py2vyzuI7KbwSXdd5VF9OCjNHtQYyioLJKO4rCYIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIJwbhPVwbMoEQ3hKSzi/Jvfg9XjJr5nDGUyjn1BAbLDROjxHmSrkRy7mSvmnSrEtBhlvnRZE9GkwtwSD5GEwmQkjctqptBl5lN3HaRnKkap99QDicmEgjvXxlhPCHeBlZxiO/6RGMlYhu33d5NJqQAEx+Nsf6CL4GR2lERNU4n6fSRjMYS3lslIikcOZ4NvXBYjLouRSDJDscvC925YgK7r/PMVzfzX9fPRNY0f3ryQ225dzJNHxyj1WLlmURn5DjMra/NQdJ0vP3CEqWiaPx4c4ar5pfxqWy+6Dq1lHh45PMriSi/7+v005TrYUODmuWsXc/VwCsvBKXR/dkRsjNkRX1OdQWI7RrA05cJNDcTneLlxTQ3V5gSZgXZ23P0bAHJKyug/tB8lneLAEw+z6oZbWHPTu1n/vs/TeuH7adsRRgc0TSOnxEH1/HzqzyukoMpNYGwcJZ3CXVCIb3gQgBPbtrDkbW9HSaewOLJBE7qmIRkMAFidLi549wexudzseeh28kt6KI5GWV+fz83LKlhQ4T2bf0LhdSDJEvt2jHEooRBfX0GH08L2zcNIQGgiQf+RUyMW55TYufh9c3EW2bPH70sYPBYk88wRjE1WG96i0wvvdV3H5naz9tb3o+sQDfhZcuW1lDbNpWbhEhpXnj89r6bpHN40BMDyq2p44b4uIr4kAKm4wvN3tjPZF3nF/eudjGI2GbCbDBgliUKXheZSF4FYmgODQcbCSarzHQRiCtcsKuM9K6toKXXzL386RlrVTrYXvvloG3t6/YyHk3/V+yu8euvnFHLfR5fz4bV1VOU6+MbVLdy6vIrxUIpQMo1J1SmJ6ESmknTsGmP+BeXIJpnQk72AhH1BAVo8Q2TzEHnVlVS0LqR28VJSsSgRv4/x3m48hUUztmtzulh8xdsxW08v2FQyaSK+KdKJxIxlhLcGkyxx3eIKfvBMJydGI+RpBvY+1kcqni3XcefakGXDjOWMRhPhqSnmrF5L29bnOfrcEwTHR2fM93qRJAkpz0ZyYQHO88vQFZ3Qo72gZuOjJJOMOpHA40/SuKiAg08PEhgV/WLhFF80Rfn88/AUFtNYsZxUZxBzlRuAzHCUyHMDmMqdeG6q45hvO0ktga6BJIGqaHQ8OcjnF1VzfXMJn77nIL/fNcCAP47ZIHP1wjJyHebpbS2uzMEXS2OUZVbX5VPqsRGKZ/jkhfV8bkMT+/sDlHltdIxHyagvj0AThFOmhqJEfCnMdiP5FgPxTYNYqt3Edo+RbPdja83HVGxHthmRjGfntpGu6zx9bIyyHBv9UzG+cEkTDU6N0Ogguqqy509/QEkmufhDH8NgNFFYXUP/4YPouoZsmFnAJxuM5Dos1OQ7cFhN1Bc6eOfySgpcVkq9NhFAco6I+n0U1TZQNX8RZUWNKLuCSBqEHuvF4DJjX1BAZjRG/MAEDEdprHRhsho5vm0Eg0mmuNaNzWmiP57CYpS5eUUVFXl2yrzZ8FCn1YTbZqbYY2NJVQ7PHB8npWgYZIl/vXIuDcVnJ2RHePNLJxMcfe5pevfvxVtYTOOK1bQsWc9lGz5O9UA9RVQSfSobQAKQGYlhrpwZ7JBOKXQaZHxLiujMtUGR/SzviXAuS8UzPH/nCYJj2cC7TEplz6N9mCwGnLk2xrpDjBwP4AoqGF0mIpsGMZc7sTXnET88BRKUt8xDNhjIRAJgSZJbamHRxlzqz8uhbccIZY05RHwJMkkFWYaBo1Nk0uos77kgvL4kWcJan0P+B1txvLuax3f8lK0P3U5gbASlcOb85goXmdEYqacnuPjqf6Bx6Sp2/+l+5qxeh5JKMd65Hf9ojPBkEktIod5oZufdnTi9Vrbc3TF9nyQaSLHlrg5aPU5+va2PyUiKYrcVSYJLW4r55IX1fOmyZr7y4FGuu207V/34Bfb2ZYPRo6kM//VE+/T92POqc6YDSABiaZWvPHAEfyz1+r+Bwl+ko9GnF0//fnzQ92fmFgRBEARBEARBEARBEARBEARBEARBEARBEARBODeIoZZmUTwYpry5ldGudixGO/I6G5FNg8R2jiKZZdwXVkFGJ5bOsLDCQ1Oxi4yqYTMZqC9wEEtpHBkJ0TMZo2cySmuZh3llHr59bQv9vgThRGZ6W2arTCyYZM7KYjIpFUmWkA0SkcDMhxCnBqMkwgpaeojg+CjD7cfRNY2KlvlUts7HYDSdzbdJmCUOi5Er5hczp9hNvz/Gv7+9lXhGodht5Webu1lVl09Frp3/e6GXC+cU8em7D/KvVzZz/ZJyvvdUB0VuK997qoMPr6vl9h39uKwmJiPZ483rMDMZzf6cVjWWVXj5f8tryDcbkXeM4hhPEn5+EFNTLpmRbKFvfN8EnourCG8aRD8ZmmNtySWda2VgJEx0YoR9P/0W89ZvIJ1IIMkySvrU8R2eHGfbPXdgstq47BPfASTWXF+IyWIl7JuiZY2J0c4DDJ9QMcoaMb+KyWIlMjVJ/ZLlAER8k3Tv3cWqG95JTmk5+ZU1dOzazrwLN7L/sT+x+LIr2XbPHWRSSdwFRVgdIOudfLYxj+L6CvKdlrP4FxReD263mUWLC5CBYELF4rWQYzGAfDIgJ5FitKuDqN+Hu6CAokoHhgkJ98VVRDYPoqc1ZJcJ5/llaMmZRRw2l4sL3/dhHvjO19DU7Os5JaXkFJcx0tFGxdx5JwstDRTW1GJ3uTGZzKev5GRRk2yQpwNIpl/SdMJTSWg6fZGRYAJfNI2ETu9kjGOjEQZ8MeZXeJlX6uZDa2v54v1HODwUAuDhQ6PctLQCo0EiklQIveT75kW7+wJ87aHj/Pxd59FQJEbNfS1pms7+fj99/jiHBkJMRhNc3FxMz1SM4yMhPr6oisn9E0xl6xDIpFR2PdxD9QeacV9URWTTIKnuILLDhOvCSjQF8iuq2Hrnb4j4pjDbbOiaRsOyVSdH8s6eS/PKKymd00I6kcA/OoLJaiERDpNJJDj+wvOU1DfiHx5CNsjULl5GcX3DGUMnhDenjKoRjKf5/MYmLmzKR/Erp52DfGM6S666gU2//un0NIvdQX5VNaMdbcgGI3VLV2AwGOnev3t69PizwZ1vI5NWwGpE2TuenWiQcK4qJXkikN2/gQiFVW4MJhn/aAyr04inwHFW2iecu0aCCf50cJC1lTlc9L6PonekSbb78VxRixpNo/qS6KqOsdCGPz6Gkkqgq4PklRyjZU0jsrGIPY8GiY/Fydsb4Ivr6hjWFX7wTCc/uHEB33+qne9cO4+20TAA/b44bquR0WCCj62voyLXgcNiZHu3DwnY2FLE95/qIKlofPHSpj/feOEtLRZMYrLINFQ6UQcjKFMJbAsKMJU7yQxFie0exbG8BEul+6y1yWk1ceuKav7xrgN8fmMTC/NNVJjj+IpLiQb81Cw6D5AIjo6SV1HF1OAAxXUNPP2LH3PpRz/NkeeeRM2c6pMuuvzt3NHh545dA9PTPnh+Deg651WLEeHPFbGAn7atmyiua8Bh8ZJinPiBCdwXVp52/eS6oILwk30gSdivb2DNDfVEfEmMZgNWlxnVrPHgx1bRXPLKx+yq+nwe+cc1DAcT5NrN1BU4MZ2lkB3hzS+dSOApKiG/oop4MMiilkuRohB+uBcAPaNNX6sDaJEMkkHG0uAl1RkEwNicS8RiomvfIEXVHnzDUZaKTDHhJeLhNBNnCJZV0hqgIxtkMimV0a4wXrcJa6OX+MFJACy1HgwuC/GBECWNzYQnxwl2HkZTFPLLKxk8upWVV68kHtMZbPNTPT8fVdEZOOajbE4uFpsRb6EdSZ4ZqCsIbxYGmwlbcQ71S1ey56H7UVIpescO0tS6lPTR7L0BS50HDBJaNNvvlEIqOZ1ubvj0v+GPjlDRMp9oYJym1WZqF9hJxUexWJx4i2zEQmm0l4VFRgMprCr865VzCScyJDMaP3i6k3WNhTitRr5w3yEULbvMeDjFJ+48wEOfWA0S9PtPBaQmM9qM/emejBFKKOQ6xL9JzDpdZ1AvxEqKJBaOD/hZUDMz/FkQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQhNklSZIKHHnJpLt1Xf/ObLVntokQkllkMpsIT8U5vuU5Fi+6jPALfdjnFyBZDaDqxPaOknNdE07JRKELzEaZlKJS6rVhNsiMp9P8dns/3ZNRALZ0TnHFvGLet7qaB/aPsKL2VGGNoui48mzEQinsbjOhyTgVzTkExpIz2uXKs2L3yPiHxunY+QLugiJAp/fAXgBqFp53Vt4fYXbl2M2c31jAWDBFXYETm9nAjh4fgdwM5Tl2fvRcF03FLj66rg4J+Je3zSWWUvjPJzvw2Ex0TUZJqxqyBIqmE0lmKPZYybGbqLKYuP36hchJlQaHhfckDWjbxjDm2Uj0hNGrPaDoZEaiWOtzUCbiqKEUkReGcSwvxlDuZMxm4CdHh2gZMzHHGCE13kcs4GO08wSV8xYwcOQQJsvM0a1rFi5BlgI8838/Yv5Fl9C9fy/5FZVM9vXgHxlm6VXXsuMPd+HOL+TC93+E5379czKpJGXNLQy3HWOirwdNVVl2zY3MXbseTVHwFBVz0Qc+RiaZIJNKYjAaWXzZlWy+41foWvYB4JzSMq790tfwFpWc5b/kW4umakwNRgmMx5ANMt4iGwUVr03xpBJKkdk8iHJ4CgBngQ3H+eVoLjPP/76NphVerNZu7v6X29BUFdlo5NKPfoaq3BYiu8dwrizNPqSeVIntGsVcdeZgjsrWBbzzW9/HPzyEwWjCPzxEOpH9roj6s6MkGkwm1r/3w8gvC4WSZYn568vpP+oDDSx24/Tomi+yu0+Flui6zuaOST537yF8sTS/e/9Sfrypm+FgAsh+r9y4pJybllZMB5C86N69g/zqvUvRdZ0it4Xx8KnQH4MsYZIleqZi3LNnkK9c3owsClVeM+3jEUbDSX6xuZtPb2hkMpJiU/skjx4Z5eq5xXQ9PkBoJM7iSyrpOzyFJEvMW+vGbDES2NmLY3kxklFGT6tEt4/guLIci9XGhe/4MP7hIQ5tfwJVyTDYdoRlV1+HpmmYLFa8xaWMdXXg8HrZ/9iDhCcnWXDxZbgK8qlZsJieA3tw5uQBOse2PEsyFsORU0R+RSkGgyjwfLMr9lhZWpPLNx9tY1GlB6/diCvXSsR/sq+p6wx35HH5P36Rzl3bcOXlUdrQTDTgQ5KNvHD3706tq66R6vmLeTXlGMGJOMMdQUITcYpq3OSW2HF4rZitf/4yJxFJE5pMYDTJeIvs5JW6GIkHiK0spdhhQpuKkzgyhTKZPR+aK1ykj0xR1ugl4ksyYTYQD2coqfP+je+Y8GbQOR7h0soCMv40Xm8pcl4adAg93ot9USGGBQUYC2wkOgLk1peSU1pOaGIcu9vNeHcHsrGHZW+bRyphIjaVIm8kSX69DYAjwyG+f9N87tkzTLHbSmuZhxW1eTjMMhV5Tjy2bB+gtsCJw2Jk04kJ7t07xOXzS7h2cTlVeSIkRzizZCyD0WygvMiGOhiZLiaOPDeArTUfa1MukkXGvrAQg8t8xnVomk5wIk4qlsGZY8WVO/O6CyCTVAhOJQiMxpkajJBX5qS03oMrz3bG+dfWeXnwpmrCvhEK03Y0Q3a9u/90H0oq29e0uT2su/X9VMydj9lmxT8yxM4/3sfln/gcA0cPkYonqF64CooauOOPu09b/69e6GV9UwEjwQSl3jO3QTh7QpMTaJpGeXMrux68l7zry7Ajo0wliJ28fpKsBmS7idBjvejp7LW1Oa0xMhan/6iPhuXF/Hx/H0sb87lpaeVf3GZVnkOcH4XXRXhqgh33/Z5F669kyZorCdzXiW1O7vTrklEGGXhJjXj80CSJ83Xs82oITWXoPBGgeCpBYbUb30iUlrWlWOwiCFo4xWI34sqzzgicNZpkjCaZwHgcZ46FRCwNdgNaXMF1UfbcmBmNoiUyjLRnA26f/t8fk0lmr3WsThdXfvbL9B85SNW8hay4poh42MRkf5ScYgfHXhimYk4uockE1fPyz/p+C8LZZLZaWfb2G6lZuISofwqry83Y2BDlNzVjmILMUJTo1mEAZLsRNZpBT+lY+mT2bnuAqgULKW5oxmIN8+yvbsOZm0fdecupW6CDlqF5lZu27eFT27MZiUo6NpOBrz98HIASj5V8p5kjw6HpAJIXjYWTjIeTtJR6uOG8Cm7b3A2A3TwzBHhxpZd8x5n788JZpusM6gWslQ/ztHYeJ4bDf3kZQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRBmQ0LX9YV/y4KSJBl1XVf+8pxvHCKEZBalkknCkxNE/T4kyYBzVSmRTYNocQXJYsC1vgIkWFmXR+d4hEAiQ5HJQk2+E03XmBoKTQeQvOixo2PcuqKKjXOLyHFkH1RPRFMMnwiw48FuMkkVk8XAquvqMZqN2FxGll9dCzooGQ2jWSa/3ImmRon4ppgaGuDY5mcBcBcUUVhbx5AvRo8vTiqjUpPvoL7ozIX0rySRSdAb6kXTNWRJxmlyUun5y8Uiwtk1EUkSTSj89zMd/MO6Ov77mU4cFiPrGgu4f/8wDYVOLmou5At/OMynL27g24+f4BMX1hNNKeQ7zaQVDbtZps5l5d5bFuOJKxRIMu/e2EpsyzDO5cWEnujHsqGK8PZRHCtKiB/Kjs4pnSxWVwMpZKcJc6WL9EAELZYhGEgyUmpjYCzCR1sd9Ox9gT1bnqN6/mIA+o8cZOX1N2NzuhnpOMHSq65n/+N/Qs1kKKqtp3nNWv70vW+QW1pOYHSE8e4Oahct4djzz1DRMo+Bo4cBqFm8hANPPMyiS67AU1RCSWMzzWsuQEmnmervIzg6wvb7fs/iy69mz0P3k0mluODdHzy57FKOb3luOoAEIDAyzGhXhwgheZ2NdofY8UA3433ZB3mr5+Wx+JIqSuq9Z5w/looxEhshoSQwyAacZidV7qozzpvqDZE8GUACoE0msA1HeL4rRCKqUN2q8diP/g9NVQGobJlPJplA0zQcy4qJPD+IntGQnabs+R2IBv3omoYzJw9JyhaASrJMYXUdhdV1ACTCYQ49+/h0AAmAmsnQseMF6s5bMaOdhbVuLvn4PIaP+LjgnU0Ex+MoGR2jScZkNWB1mug5NElOkZ2QUeejd+wnkcm2eTycmg4gedGDB4a5ZlHZjO1oOvhjaVwWAz+6eREfv/MAk5EUTouRj6yr4759gwC80DVFUlGxm0WX46/V4e8graaRkDAbzDTkNgDQOxVF1WBjSwmJtEqOw8JjR0cBWFDgwr99iPwKO3Z3gks+WIaSUbAkYuiqhnNFtq+hp1RkuxHXhZXIBhN54SKUPSHKKKfi4k+j1RiwFRbiG+ojHQ8jyTJde3Zw4oXNmKxW5l98KQNHDrH5jv/jgvd8CIvdwWjHCaYG+wHILS2nqLaeXQ/ezfyLLicW8pOKJ6mYu5DCqlpUJYYkyzhzcl9x/4U3lgKXldo8O//29hbsZgOaAquvr2fTHSdIxZVsofCyUmIRlfOuqCUVHyMVi5FXWsGWO3592rrGujtIRiOM9Xah5FlJKSnG4+OoqIRTYTwWD/ML5kPUzGM/OUxgPD697HmXV5FTbMfmMOPMt5CKKugaSDKYLAYcHguJaJon//cY/pEYSDD/gnLOu7yK0voc0uUulGCK1PFTASQvjnQs24zMX1/ApjtOMGdlKbFgCle+DadHjCr8VjAVTXJ8JIymQ7nXhlGGoqjO07cfJpNUWbaxgnqDhG1ePomjU8T3jmOucmMqcZA8MIm9JY+G2mXc8f0vEPVN4ikqZt6FG/EPdZFXlT0XJobj9Liy/UebyYA/mmHD3EKaityU5dhfsW1Fbis3LavkxiUVIvRL+Isi/iSxQILSfBuKDokjk7guqiS6ZYjEkSlkt5ncGxsxus98blMyKh27xthydyeqomFzmbjkw62YzDKaqqHpYLYaSEZVooEEw+1BTuwYm16+pNHNnBtdOFxWnCYnGT1DsaMYVcnQu2Mzz/7fbQC0XrSBBRuuoPfg3ukAEoBEOIRvaBCbdwV5FXDZJ/6JeDhCcEJHZTXJlIIjt5ojLwnIu2ZRKRfOKcJ4MigvmszQM66Q1jSGAkmcFgOtZR6cVlHsfzbFwyE0VSE0OU7TeWsYnexm0ZUbiTzRjxpKETswgWtdOcGHe0A5dW2tm2RKG3LIneNh11iY1uoc8p1m9vf7iadVGoucFLpFyIxw9sRDQQ4++SgbbvkYRckKlLE4WlxBtp+6Bo7vH8d9cVX2vkA6e1/AvDGf+3/8Jc6/5WNse0hnzsoSghNxKubkUFzrweIwkVZUzMaZheXCW5PdbWH9rXN49KeHUTPZ82LjsiJko4TJbqCwykUmpVJxXgHyVBLJKBN5dgAAS4MXY64Nd0ExJ7Ztng4gAUhGI/Qe3EvTqgtQM2mMZgWXV2NqUMLuNnPw2QG8BXZCkwm8xXa8Ba/cLxWENwOrw0FFy7zp34MTY8R8fjyuHKK92ZDmF++pZcZiqJE0mYkY81ZfwtYHfk390pVIsgGL00XF3HlsvfM30+sqndNK4/Lr6dgVRpYlLnz3HNI6zFGNPPauZXx9SydfuryZApeFXLuZ79+4AK/dRCCaAkmmZypKrsOMLEvcsrySSCrD3bsH2dXj48uXzeH7T3eQUjSq8ux84+pWXDbRvz0XaBqMkMfb5J3spY6uCedsN0kQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQ3vCqv/ToLcC3gEpgAPhK33euuPP12JYkSX3AEl3XpyRJWgJ8V9f1CyRJ+hpQClQDU5IkfRn4FVAATALv03V9QJKk3wBJoAUoAj6r6/ojkiQZgO8AFwAW4Ce6rv/89diHv4WoCJ5FsiSTjGQL5SVJQgkmsS8uQjLLoOpo8QySUcZsNNBS5j1t2a6xMOaTQQ0vZzJItJS40U/WaPiGYux4oJtMKltknkmpbLuvk+u/vARJlomHUxzZlB29TZIlLn5vMwajiVjQz3h35/R6w5PjDLcdYyx/Lh+8/QAAdQUOvnPtfJbWnKGIeLIDAv2gq2DPg/IlIEm0+9vJaBkUXUFGRtEUCCGCSM4x8ZTKb3f0o2g6RlkiEM+wfk4hmzuyQSFXLijlv5/pYHFlDls6T4aHADW5dv75/FLmF3j4t8Yikkf8mPPtRLcOY7y0mvATfTiWFRPdNgI66CeLiVR/ElOhnXR/mMxoFEtjDqmOAJFNg9ha8/C+cw4Rk4aqRSnTfSS6tjEw5mTvQ/ejaxo5JaXTbd/xh7sorK5lyZXXIhsMXPCuD6KqCiPtxxnv7UHXNApr6hg+cezkEtkRBRPhMLll5QDYnG4mersJjo0y/+JL2fvwA6y47iZ23n83FruDuWvXA2A0mVDSKTRVwe714srLx+72MNLeNvM9DQZfh7+UAEB4BDXio/ugZTqABKDviI+yxpwzhpAkM0naAm1YMw4Mkx6CQ0nUQp3hqgnKSgpnzJ8Zisyc1h1iwZpSPGVOBo8+f1oRR25ZBf1HDlBftYxUIIFzdSnIEnpSRUsqqLrC7V/8R5R0mqVXXce8Czfg8M48l9rcbpKRmduO+n1kUqePfhtLKdy+a4ATg0H+eWMTkz0Rdj/ci35y0MyFF1dQVOvi8duOYLIYWP8PLaTVUwV9pjN8r+g6WIwy5V4bQy8JKFldn8emExO8b1U1i6tzeegTqzk4EOTgYJDbd/YxfrLw85KWIhFA8jc4NnmMtJompWXfR4tm4fjkceYWzMVjMzMVSeGyGjBIEspL/oZjiTTrLsolPPECT/3sKWRZZsM//CPWsVwokVCDKRzLS5CMEnpaQ4umMZTYyGzzT69D3Rkip6qJgb4MgeEwO+77wWltSyfiGEynihh8g33Y3N7pABIA/8gQU/392Fxunv7F/7Ds7Tew+8G72PvQfVz+yc/x9C9+jGw0suLam6hdtARvsQhoeqPzx9Lk2U2EUxnqUu0YE36GOY/175qDktawOY0MtQc58FS2CG7dTUaevO2/uOSjnyYRmTkCrJJJM9XfS65ezVOhZ5ibP5dQOsR4dJxn+p8hmApSH1p4WgAJwJFNw7SuK0NTY3gKrBjNBsZ7QuRXuFAzGhaHiYFjvmwACYAOhzcNUTE3l+p5FsxWI6YCA9KSIsxlTnRFJzMSJb5vHO9VdYwFU8SCaYwmmWRMYWoggrnegNkmznNvZm2jIb712Am2dmbDyM6vz+MbFzWx+bdtKOnsOfjQC6PU3liHOhbDdWH2ukbPqCRPBJAdJnRFRx1McN2H/5nffvsfCY2PERgdIa+iCos1exwXttoYDoapzrOj6jqRlMpkJEV13qsrUBIBJMKrkYimaarxokfTJI/7MFd5iB+YwLm6DGQw5FkxV75y0GhgNMam37e/eAlFIpLh2V+3sf7dcwhPJogFU3iL7ISnkqiKRvvOsdOWH+0IUzFhZUjp5/DkYQrthcz3tpAbNvPsr26jomUey95+I5l0kmQ4RGRqakYbYqEAgx1BTJZSbC4Tmu4hv9KMu1DBZDGQ405zRXAnK95TyN50Db/aMcgn78rew1jfVMB7VlZhNRv46h+P0TURRZbgncsr+egF9ZR6RXjF2ZJJJXDac1lYtQHlQBBrSyGS2UDO9Q3oqo4ylUCNZk4LILEsKmDX5mHKVxQRyzXz3IlJnjiWPcZaSt1c1FzID5/t4mtXtTC31D1buya8hfQfPsBwexsWq4PKohZSnUF0Tc8etzoYcq2o/iSKL0ls7xj26ysY6+kkFBlC7ekGwGiGyz4yDyQds9VIcDxO+64xll9Tx7NtE5zfWIDTIvqaQlb5nBxu/MpSAmMxZIOMxW4g6k9hMMpsu7+LiC/JRTc34nKa0I0S7ouz/dL0RBzJbKBm0XkcevKRGesNT06w+8F78A3207TqfHJKyqhuLSEwBoVVLsb7wuSWOJnsj2CxGrC5RBCj8NbhLSwmZfXSqwSpXFMGmo6e0YhsG8a1spT43nEsdV7yyypQFYWpwX623/t7Lv3YZ3jsR989bV0jJ46y6NJrKW9qxlNoZaAtwL5H+7IvSvDlWxrZ2eujfTzCNx45TjytYjXJ/OuVLdy7p4+O8SgS8M7lVVTk2v8/e/cdLsdV2P//faZtL7f3e9V7b5Yl916xMQabYpohtAR+CSWUfIMJCSGEhAQSSiihGAMuuHfLuKpbXbbKlXR7L9vblPP7Y69lyTLGjoskc17Pc6XdM2dmzsycOzu7d89n+Orlc/nYGVOxDI3qsI/z5tSSLrg0xQPUqN/TE8aYiOJIgxYxRJ3XTWeq5ng3SVEURVEURVEURVEURVEURVEURVEURVEURVFOahMBJD8Gnr+zWhvw40lfvJfXGEQSEEJsO+L5P0spf/cn5lkKnCalzAsh7gZ+KaX8hRDiw8B3gSufbzZwJjAV+IMQYhrwfiAppVwuhPABTwshHpJSHnoN2/C6eekUC+V1lxwaoH3TevZvXE9iaADpeaRHB6mfPrNcQYIR9x++S6bw6Rg1AaT+0gPJ0kWXhpifydVH33nwsvkN5IoOyYKD65UHauQz9uEAkuc5tofnSQoZ+3AACYD0JE/+bj+e45IY6D9mvYMH2zk4kOT58W0HhrP8an0HJbu8/HTeZmvXOG7vdmTXOth1Czz177D3XuShx+lKdKMJjeH8MP+2+d+4Yd0NrOtfx1hh7Jh1KceXoQu6x3IIAfGgSXXYoiHm54Or2vjs+dOpifj4zLnTWdJWQcRnELA0GvwGd1wxh9kb0/i6bVI3H8BXFyazrg/h13FTJQC0sHn4sTDKp6HC/nECC6oRPp38rlE0v0H0skmELm3Gma7zbPsTpJMHGNy/leFD7Wx74G6kJ5ET/fzAlo2seud7CVdWYQWCNMyYhQTu+Y9/ITUyxBM3/i/71j+NppfvIJsaHqJlznyEpmP4/DTPmUcxl2P6itWEq6owLAt/JMr8cy4gXtfAnDPPJVJdw7yzzmPZ266ioqGZ1de8j0Imw9yzzgdgpLuTuWedR7iqhpmnnn7MPo3VT3qDj9qfqbFOOPAYRS1G//7EMZOHOtOU8vYx5U/0PoHreAxttHnsfw6w7b5envz5QTbf0kMmlT+mvtVy7GBM2Rwmk7HLQR2hEMFY/PC0QjbDUMchZMHBrAshrHLf0yImethCFjxyyQSlfI6nf/cr9m9a/0c3sW7KtGPKZq0+k949z7J3w1q69zzLvo3r6N6+mYib4sLJJoXxMbY90nU4gARg2yPdlHIvBFJtv7eT779r4eHp9TEfX7l4Jl+9bA6LWsrbcs3yFuIBg69dMZerljQxtzHKdSvbmNMQY1dvkoCvvF0NsQBL2uIkcvbhAJJTp1by9sXNf3S7lD/O0Az2J/bz9fVf5x83/CPbhrdR9IrYrs2s+ghbu8eYWRdF82zmBPL87KopfP/8SlZq7Rjmfp594gGk5+G5Hp7joCcF7ngBoyaA5p/oiyEDrcKPO1Y8Zv25rUN4rkQzomj60QPeQvEKSrns4edCNxnu6jhmGUMdByjmcriOgzdxrvZch/aN6wjFK8inkvzh5z+ia/cOdqx5kFwq+TruQeXNVsyk0IcOMiVzgHzWIfDol2l1n8SwdDxX4nkcDiABMHw1BGNxdj36ENNXrDpqWZquU8oXSA4Nkhsf40LfqTxy6BFCRoipFVMxdINvb/42w5nRY9rhFF0EoBsa2USJ9GiBQNTHrid68TyJ67j07Bk/Zr7R3hf6tJMplkPSBAgBVlOY8BlNoAvaKn1c+1cLSAxl8YcMOnaM0PXcGJlE4ZhlKm8df9gzfDiAJOwzuGxqLV7CPhxAAlDMOQx7aXyrqxGWhtAEXs4ht3WQyBlNeOkS0vbwFXyHrxeGOw9RzGYx/RZLLqojNMPj7St0Lplfz5TqEFPjAc5oqyCZK9E1ln2ppinKq1JK5qk2BF66hJt38E2L4wznCC2rAw2M6gC+aXG0lwmQS48VDgeQHFlWytkc2j6C0ATjAzkcu/z7IeWxy/AR4O6DdxMWQVY4MzH2j5MaHGTSwiUsueRKBg/sY6Srg85d25m1+oxj5m+dt5xAxGR8MIduCAIRi1LBKQdJ+QSxxz+F1vE4NUNrubCijy+eXsu9727jV+cGuLqxhCxkuWlDF+1DGQA8Cb9a38WWzmNfH5Q3xlDnIQqZDKHxEIVHBnBGC1hVAdzhclhDZm0fXs6hdDBJ9MI2Iue0EH/XDPYUPQ7uHmPzLQcopUuHA0gAdvelGEgW6U/luW/nsZ9nKcrrrXffcxzYsplJi5aw6vxrcVMl7P4sXs4htKKe9JM9BOZWET2/jdgVU0kvKPLb//oy9/3mOzx9z68Z6e6gorGZWG0zrushvfL5tJCxWXJBKzuzOTZ1jHFg6NhQUuXPlxCCyoYQUxfXounQ354kGDMZ7EiRHi2/J7F8GpgCX0vk8Ouw1RQGTeILhGhbuBgov+9advlVXPTJv2bGKaex7PKrmLx4Oetu+y2JgT769+8nWmWz/BIfuilxSi4j3Sl69owzPqiuTZU/L5s7xnjXzVsxmkIYlX60sEloSR2pNV2IgEFwaS2a0Dj9vR8mGKvgrPd/BMOymLZsJVbg6JA7p1ggHLdIjxZ55r6OFyZI2HBLO0urInx9IoAEoGB73HDXbk6bXkO25PJffzjAHdvKf9MzdY2WyiB1UT+6JphaE2FRS1wFkJxghikHj7eIYepEP/05l9IRQXuKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKorxq3+CFAJLnBSfKX4u8lHLRET9/KoAE4C4p5fMDkk8Fng9B+RVw2hH1bpZSelLK/cBBYBZwAfD+ieCTDUAVMP01bsPrRt1G8U3Q376P4c6D+EMRNF2nf98ecqkUViDElvvv4uwP/gUIyqMcn6cJhKGjWS+dE+NJSclx+Ye3zWXtgTGe6RrnnFm1nDKpkq1d43SMZfnUWeVB68GoRbw+yIxldbiuRDcEHTtH8ByPYvbYgflIST6XomnWXJ594tGjJk1duoLFdR7vvW4Kn316lAcOJNlwaIyhTJGRVIHbtvVycDjLjWdmEGu+BrmJwaHdGyCfxJz/95j9BvWpGP/S8t+MRfoZLHWgD2TpGNxKRUMTsZpapG1THBhA+P3ooRBG8MXnAuWNVhPx8ZdnT8NnaOQKNv94xTx+8tRBrl7azB1be1nVGOfM6RU0mzaRGXGM2Q3IlEP21g40n06przygC12AI5HSOzzwvdSZxjctTrE9QfFQktCKerKbBkg90kXkrGZkSFCUBfL+BKnkMHa6RDY1Qv/BPWTGRvEFQwAkhwepamljtLuTvr3PMdbTzZwzz6Vl7nwe++VPDtcb6+2mbspUsuNjRKtrufxvvszgwf34QxEu+Nin6dq1jQXnXsxw1yE6d27jok/8NblUkgs/9ml69jzLlvvvZPGFl9G1cxv1U2fwxI3/i24YLHvbVURra3Fsh6u+eAOe59K1awc9ezYxa9VZzDv7AvaufYJANMaiC99NqVB5XI7lW17iEKz5KvI9j9I4I07jtDi+oAFCkB4tUNUUoph3sALm4Vn6M/20j7ezwFzG3jVHD2LveTbBQM840+a88AVxzy5gNvvxL6ymsL08CNmoD6LNrsLM2Ngll5q2Kax8+zVsuONmsolxhrsOMXnRUjSfQXbPAP4p8YmFQW73CJFzjg7n2PnIA8w941xMn4/kSJ7x/gSl3DBS5glVVnHmdR9hy313UMzlmHPGOUSqa2jfvJYlF13Bhtt+S+v8BSAlrbk8lY1N7Fn7NDOXt+Ita2L9nS8EPWUTLwROjPVkWBjQuecvV9MzkmTOeBfzrPL0d6wMcODi6URDPhwJNWGLD69q5TsPH+ChZwcYTBX5j2sWMbshdnh5ddEAX33bHD6wqg3Xk7RVhYgesd+VP85NpfByOTBNCs89R/WhQ1w8ZQqXTP462/xD7CweIlNMM14YZ/fYbj521kJyw2kyib2Md45TW1PHgz/+D1rnLWCg8EKIjpQexVwWbUaAzNN9RE5vQh5xuSF0gTN6bHiCqDIwrGFitVEu/OT/x/pbbmJ8oI9QRSWnXPlOnvrtr4By+M7kRUsp5bI0z55H544tdO3cDkDz7Llsf/h+hNDQjwgyKRUKGL4XBkN0bHuG5jnz6di+hTmnn/1671rlTZBLJhh5diuG5UPTdZJFyJ/9c5r1QSy/RmLYxu+VWHqRgeU3ySQCPHXrMJd++vNsf/h+Ji1agm4YtG9cR7yxmWWXXcnme29nxvJVJAcGCMZifKLxfZTyJW5O3c/0ium0RFoIBASmTz8qbG/aslq6nh2lbV41miawiy59+xKE4j5c26PgShqmxYlW+dFNDU0TjPZlCMVMxnsTVDTFKf+KiImf50fPC/AkXsbG2z3K0qlRrJYIe7IlTCSZoRzZRBHDpxOvCaIbKuvxZCGlxBkdxe7rK9/RWkpEwI9ZX48ZjwPw9IERbrhkBhe11pJLljBMjdHeDFXN5QGgniuJ1/sIhsfpGnqOaZOWYXek0aMW0XPbcPMOdl8GX1sMoesEIlFyyQRtCxbTNGsOnmMTCA4Sd5ZghIaonV5DsTfHrpvacfIuU09r4G6vwJIZ1SxrDmOWEmCGwR8+rvtOOfG5BQfPdpAFD6cvg5suIXwGWtCgtD+FXhHANzWOdDyEX8eoCmDG/Mcsp5R3GOnNkBkv4g+Z1E+J0jq3CteRaBoc2jkCQtC5a5Tqlgi6LkDAcHea+qkxBg68EDQWils0hXx8tepzJIb7SXT3UsoXaJgxk+mnrKaUzxKuqmbbg/cwbdlK+tv3sfzKq9n58ANUNbcw87SzGOqMsPKKNjKJAnbRY9+mITRNMOe0GoQ3ysEZf0NF6RCF+uX07dxLZZNOf/tequsbqXSK+OwhLp4c4Z4dML8pRrpgc3AkR/tw5s08PH/Wcolx6hunk/tt5+Eyr+ihx33knhnEPy1OsSOJf2Yl0pGIxjD333WIoa5yGEMuVaKQc45Z7o6eBDPrIjy5f5hPnzsNy9DftG1S/vzYxRKTFy+lIlCPfSCDHrWwB7MEFtRgJwpEz2tDOh5azGLY6eHu//2Xo+avnzqD+WdfylCXSbjSo5B2cB1JrD7E48NJto2mKbkeqZcIVVUUKIfL7lnfT01rmKHO1OHynkMp6ue+6DNIIRBC0Fg/nUxyjKWXvZ3q1kn4AkFMvx+nWGS8r4eZq06nceZsNt11K7NPP5vhrg6itXXMOy2Epgt69uxl6FAS5BRyyWpMqxrN0AlETfxB6w15H2QPD+Mmk2iBAEZdHaXOTor79+OOjSFMC2vyZALz5qL5j72GUZTXy/aeBK4HdtbGNPRyaKkmCJ/WhLA0EIKamjYKXoFsapzGyTPRhMaMU09nxqmncfCZTexYcz+G5UO3qhjqThOu8h8T7ueUPExXki0dfVOB4osCK369oYtrl7dSEbLe6E1XXgfDsgKAFjFEjejHBTpHs0yvOzb0XFEURVEURVEURVEURVEURVEURVEURVEURVGUV6T1VZa/Vg7w/JckX/yFxZe7s5v8I4+ffy6Av5JSPvjamvfGUCEkb7Sh/RSyGSx/kJ49u8mnUzTNnINTKCB0rTyoZv9e5sw4HRE0ynddpzwoWAublGSJ/l3tGKaFLxShurkZx/XwWzYl6yB9qS7mz4xw2eLZ2KU4nucxnre5Zlkzw5kituNhWBqLzm3h8d/sQ3oSBJz69ilIyneJF5ool084430zcAojVDY3M/es89j9+BqQkkkLlzB5yQp6rv8L/HPn8m/Xf5ine7KsnFyJmbSxegtcHY4Rn9aI42zFzB09sH947hfZuaaX/ZuGDpdd/IkpDD2+n4ee/gkAwVict33u74g7Em9kGC+fRwsG0SoqCM2b98YfL+Uwn6GzojHADAlyOEfA0Dl1QSvCE1w8p4387hHCzQbpNYMYi2pJPdRJ5JwWvHQJhIXmL59e7IEsVkuEUnca6UiM6gDFAwmiF7SBgOL+BMyIE3/vDGynwKGu3RTTWbKJBDseeYBTrryap393I6ve+R623Hc34YoqaidNBWDP049z2rXvp3fvs4z2dFHdOpmWOQvQTZPzrv8kruPwrhv+mVIuj2FZFPM58skkvmCI1nkLEMJASpcpS5YRjFWgGwau4+C6LsVshnwqSdOsOcxceRo7Hn2AGaeeTmJggNXXXkftpCkgJXaxiOkPoFsmxfFxJi9eRuu8BRTzOfyRMLNWX8C+zVm2PpLhvI+oLwW/IRLd2PWnIA2XKQtrWPPz58p3aAeqW8LMXt1AqXj0F7fHi+PMrJxJPFuJ5x072LBQLAEg82nWjm3n1n23kSgm+NbK7yBbooQiFnkByYLLwS1DLL6wldpJkzFMg8rWNqTrouk6ViAEmkZocS2pP3TjjhawWiOEz2jG8RyEpiGEhmboxGrrGe3NEq6Q9Dw3wEjnY2y++zYATH+ASz/9eeaccR5SulQ0NlHIZNANi/72vay65n1Yfj+6YZAYGuLg5nVse/BeAFrmLmTa0itpfyaNppfvFP+8ybMjVHXs4mBFE2eYBXLPbCbxu5sBiF9zDTNWaGyyG9jTnyFvO0T9Jp88Zyq943ma4gHmNEaP2XdBy2BOY+yYcuWlSdclu2EDQ9/6V9zxMUJnnkno1FMx6xsY/PuvYvf20jhrFvM/99ckvn8jdlUVvrNnsn1KgdbBAE/d9HOa585n/4a1SOmRGhmmfup0+vfvPbyOWLAGKxjCmGuSfqqX4MIa9JgPKSXZzYPEzm8lt6Efb2IgpxY0CE6vJmf3osc9hg5lmLbiVGonTyNSU4dpGbz9S19jrLebioZG7v63b5BPlwc8zTv7fFZc+U6qmlswfX6CsTjzz7mA/RvXMm3FKmaeehqBcITHfvnTw+0LxSuwSwX2r1nLrNVnkBoeYrjzEK7jUNM6iarmN+raX3m9jPX34JZKlHJZRro70Q2TKUuWk6icjX+oh1iVnz/8/N8Z6+lm5qmns+TSK5mzuhIp/Sy+6HIMn4/6qTNZcukVFNJppOdx1nUfxfL5EZqgmMvi2Q66hGsCF5PNx9H8oEnJRZ9qJD9uUyo6RCoDGKaG9CQjveVze6w2gBUwMH06oZjFUEeKWafW8+ivnmPRKQ3UhA1ap8UI1ATY/uQAM+cmqJ7RALpACxq46RJI0HSBCBjI4TzF9gRWa4T07e1MmV2JnrEpbBsiMLMSqv2MZEp4miAU9xGtUkF6Jypp22SfeQanvx+jqRlKRUa+/wNKPT34Z8+i6iMfwVy+HMd2+edV00mO5BntyVDZEAINDu0YYfbqRqpbHCxTUCqm0ByDqbULoeRitkZwejPIoos9kMU/vQJ7JI+/McTbr/kSGRIYNSFyqQS+UJhtD/0Pq6+dTahYQX+pwK7ftB/+eGHL7QdZctUU5njtGNt3QX4UYm0QbYBANYQqINp4fHeockIpDWVxBnLYwzmckTxmXYjsxgF8rRGM2iDCAP+UOIX2cbTqIMLSMZvC+NqieEUHuy+LM15Aj1hoNQG2PtnH9jXd1E6KMGNFHfVTY2y8+xAAmiE45/2zcW0X3dQQAvLZEq4tMUyN5ZdOopR3MH0G2WSRUNykIGxG9u1kvK+XQCyOFQhiBYKkx/dT3diKPxympnUyFU0t1EyehkAyY8VqSsU8TrFE89xq8IrUTvJhFzJU1AYQus7ux+5k6wN3A2AFglz0yemEK6vYt+FpwhWVZMfHefqWGwnHKzntPR/kl5+M8fsDvyfui/OV+vMopEPH87D9WQnGK7Ckj7z/hZAQN1HAqA4SmF1Jfu8Y/hmVCJ+O2Rzmpu9up5B9IXSksjlEyRTHLHd+U4yNHWOcP6dOBZAob7hANEpMq8LpzeCOFzBqA8QunkxmbR++qfHyubU5zGC2k1w2waSFS+jYvgWEYO4Z59AwfTHtW2yaF4Z4ciwJNuQ9l5/ft5eRTIlPnT2NZK5EJKA+S1JemislUxfXsumeDqYsqqF3bwKAXU/2s2J5HSJtI10HNIHm08DQcIfzTJm0iFh1DcF4BUPt+zn4zEZ2PfYwAP5whEs/8wXO+dDH0UwDp1giEImSHOonmxygfkoroz3dPPiD73DqO99DtLqWQKyWXCqCawuEBqalY/p1AmETKQWlvA1CI14bwLBe+bnZTadJPfggI9/7L6TjELviCszmJqyWFrySjXQcivvbKe7di5dOoVXX4GtpxpgIElSU19P8phgl12PcpxHdM45vSgwvY4MnQROgQX7XGLWxJszW6SR/fwBPE9Sd3oSs1jFWmpQKOWauOh9/pJ5ShUei5GGYGo79QsBIKG5RMDWClk7uiCASS9cI+V74c25rZRC/qa51ThbDVKLh0ShGqdH6wYP9QxkVQqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIo/3ddQNsfKX8jdABLgfuBd7xMvbXAtcCvgPcCTx0x7Z1CiF8Ak4EpwF7gQeATQohHpZS2EGIG0CulfLlgkzeNCiF5I/XvJONvxnPGefR/f3h4gO6epx7j7A9+jEmLl/LMvXfStmApXtFD8+loVQFAIgxRHhycGmfwwH50wyDe0IgnXbyYj47CM3zpyS8hJ0amLahewKfmfhXDq+SaZc2k8iVcCaWig+ZKnr61/YWgkYmBlHbeJRi3OO2d09h0TweFrE1lQ5DaVoPkoGSkq4OpS1cwY+VpSCnRDYOwbqJdcD5GVTXpBx/i4fe/i1xyjMTATgLhALGaKvauH8KeN59p/goojJfXqZukEuKoABKAUqaLuqkzWHTBpWQSY4TiFXTs2EJl82lUBiD7na9gtbURuehCCtEY/taWN+vo/dkbTheYXfDI3tZFeGUjmWe68AoOwcW1ZJ7sJXJOC8l7D2K1RCjsTwDlu/8hwEuVMCr9CEun8Owo0fPb0GM+spsHCJ/VjPALXMeB5UHkXBc7ZLJz0x3UTZmK6/Pwch6W38/Ff/k3pEdGCFfXUNM2hcUXX0FlUxON02cz58zzEAJ0w6B1wSKK6TSBSJT06AjS89BNi8RAP5XNLUjp4doOAijmc4QqKji4ZROG5ScYjbJv/VPMP+dC9m14Gs91mb5iFfs3rqNt/mJSw4N0bt/C5IVLOfjMBppmzaN/3x769j1Hw/SZPHP37cw96zycUolD259h+eXvYLyvh9G+HmasWIXrZqlpdqmf0owjj71Ts/LaeK5Hj3Eum/rmsHggSM+zw4cDSABGujMMHkrSsNRPybWwHBtG26nBZczwUXRKx9ydPRAxiVX7OTCwhUG3wPr+DcyomIEnPXI5l0TJY+NDnTRMAcMqMmd1HZ4r2TO2hyZ/NT27H2fr/Xdz9d/9E9nEKLF4JSJoELt4cvmL6boAIdANk3d85etI10UIgV0qkhgcZOdjHlMX5dF0jXf83dcpZrMEo3E23P47Fl10OUMHDzDYvp9tD92LFQiy+MLLSQ32s3d9+Xpk1qozmXv2hSSHBjm0dTPdu7czecnFBCImq6+ezub7ywNGGycFmRnoYPAzX2HKd79LKZcDKYlefHF5R0gPu7MTd3odAz2DrLBy+PwWuZjBnPo4P13bwWVOI3VRH9Nq1Rem/68Ke/eSvONOohdcgDM2ilFVjdPfT2rNGuzeXvR4HO3K6+geDGBe81l8ezdS9ZXvUf+L/2LfjrUUshn8wTADE9cY4/29zDv7fALRGPlUkoapM6kYqSK15SBVfzEP39QYznCe9Po+zLif8CkNuMIletlkvLEiUgJSMv7bvTirdDZtvZ2ll15BqKKqfI4dHmDv2ifRNI0Zq04nMz7KpZ/5Ak6pNPEaIBjv7eXQls1UtbSx5OLLidU10Dp/MV07t/LgD/4TKT0WXXApzXPmsXftE0Sqayhk0kSq6xnv7ebAls3YxQLp0REe+cl/c/VXvk791BnH90ApLyufSuHYNk/8+mdIrzx4ZuejD3HVF28gkEnS2XWA09/zIYKRKLsfX8Od//p1YrX1nHr1u0mPjrB/w9PUTJpCTdtk1vzvjyimU8w981xmrj6T9PAQuVSSeH0DtZOnohsGz905QLwmTNP0IsPt2ygV8tS0TcYfrGKk28EfKhCrBiFC9OwvYpoGpbxDcihHy5wKOneNsPLsZmI7hpHjRWzAMTVmXzWdpAPdf+hn6sw4ljTR/DpoGhiCwp4xnOE8WtjEK7g4owUCPoPU/YeIXtBG8u6DRC+chD9kMObX8VzIpkpU1oXwBc3je5CUY+Q2byb7+BOkH3qIhn//N1IPPEBo9Wr842MY1dWk7rsPraqacUfDKQ7j8xUxLAvpRRCexpLzNfzhIrlkgv6ebgyfj+kNyyj1pjGqgmS39hBe3YRmaOhVftycjW9SlFJHiszjPQi/jvXOGOsfuZ8pS0+hefY8sskS6bE8tS2hY/JNDz49wOLoQcS674DngtBg6fXQuhKEhEQvtC5/5TsgOwx2HsINYLzC/plPQN8WKKTAHyu3QzPALYHph0AV1M8tT9cNMF8UwuOUQNPLP8obxh7KUXxujMy6fvyzKnFHC3gZGy9no0UsigeTWK1RjCof/llVCF0g/AZ2UCfXm8Y8mCR176HDywssq6OiKcw5183iwNZhTJ/Btoe7D0/3HMmmew5xwfVzWHB2M/s3D7L4gjZyqQINU2t58rf7mHN6E+tvf46mWRVUNJg0z7CJVNcQqqggUlFFIZ/DzucJxyrQLJNQRQVTlq1gfKAPfyiCafnY/vD9+EJhZq06nUJ6HA1IDWXZ/fij9Dy3i7rJU1lw3sX07n2WWavPJFZbj25ZWJqf6StOpZjLU0inOPsDf8HD//M91vz0+yz81Pt5uLM86PrO9jv54Xk/Apre5CP258nU/cisQ3BRLcneDEjIrO0neskktLiP8GlNCFOnZAiGRousfPs01t3eTjHrUNEQYvLFrawdTbJ6WhVPt5cDcKfXhmmuCLCtW+OKhSqYSXljZZMpYkYlTk8WL+NgxH3ktgwSXFBD9KJJ5XNrwKCjaxslt0BV0xTmnXMNC867Et3y49gRPCvItoohHtrfz7TaMLds7WbvYDlIb/W0KgSSVdOqmFajApKUl6ZV+YmXPLKJIuNDOWasqGP/psHyRL+OURXAs12EBHSBmyrhZR28godZFSCXGKO6bTKVLW1MW74Sw+8nOz5Ox/ZnmHfmeUghiNbU4TklQrEqTMsHEioam1j5jmtp37SeaHU1DdNn4zo20ZpG0OpIjWtYpsAIGlg+nVLepZBy2Leum0XLBUFGwR8HMwDFFETqQUrIj0G4vnx9WUyS29rOwN/9v8PbO/azn1H9yU+STybRolG8bBazpgazrRVnYBB7927c6dMxWloIzplzXI6J8ta1bFIlly9o4GMPP8dtl87HGyugV/jQ/AZOooCXKoGUCCD9cBdWU4T8rhESdxwgdulkKuubWHrp20FUs3doP/+8Ps8nz5zKgmunsefODnKpEpFqH4uvnsan79/NX50zjf9cs5+C7eEzNL58yWx+ubZ8jW7pGp85dzqBVxHqoxxfw1RSL0YxhUuj3o/wJPsHMzD/eLdMURRFURRFURRFURRFURRFURRFURRFURRFUU5aXwZ+DBw5cCU3Uf5aBIQQ2454/oCU8ovA14CfCiG+DGx4mfk/DfxMCPF5YBj40BHT9gKPA3XAx6WUBSHET4BJwBYhhJiY58rXuA2vm+MeQiKEuAj4T0AHfiKl/OaLpouJ6ZdQ7gAflFJuedMb+mp5HqDjeS5jfb2HA0iet+X+O2meM5dQrIKF51yI257BTZfQ/AYIUQ5RCBj46iJMWrSU1MgQqaFBnGKJqGzkO89853AACcCOkR0kvHZWV52G2dNBtKsbe2gQceE7GB3PYhfdo9bfPLuCYtYlOZTD8Omc/5G5uCUX06djF9IYhkEoVoEQguz4GIFoFJ8/wsgX/pbirl2gaVTdfw+j3V0MHNjH4MF2qltaaZm3kHhDLYWMQ+qqe7DqWpBj41DTQGn76FFtOP3dU4jUFPA8j99/8wZK+Rymz88513+CmkaDgc4IAcch/cAD5DZsoPE/vgMqhORNY6Vz5B4dBA+0oIEzkie4qIb87heOo7Q9vJKLHi7flTX/3Bih5fVkNw6QeryHyNnNSE/i4eJbVY271KQUcEmNDOGZHiF/nFw2TciymLx4GXahQGVTK6mRIUKxOK7rICsredvffIn0yDDTlp+CXSwy3HmQaHUtoz1dRGtryYyOIqVHIZslOTxIvK6e7PgYruNQyGZJjwwRilfgFIv4Q2Hy6TQVDU3ohoXp9zH3rPPxPJdpy08FKfGFwkxbthLTH0AIqGptAyT1U2cgXZfWeQvIpVIEY1FWX3sdmqZjBYNUNjVjBYNUNDRhBYJkkwkyiXF2/eEhGqbNYP457z5OR/Otq/9Ako49GRad30K8JsimAx3H1BntzTD3tFqSXQfw5Yv4yRDJFFhWN52DY5IFZ1UyY0UdUkp8AYNS3sUecPBJh+nSxdcb5kCswH8O3cyVS9/DWH+GKQuSPPHr7+MUi/iCIS76yy/gH/MzMLaPlrkLiNXVM3hwPxWNTVD0cEcLCL8BUiIlCMAIGmTGR7HzeZ749c+xC3msQICzP/gJrEAdps/H7f/8NTzXIVRRyYUf/wxmOERNWxv3/MfvEJrGhZ/4azLjI9z7vW+XB2wA7ZvWc/lff4lFF16OYZrs37iOUExn1Tsmoeuw6qppFB97BLHtHrK/eAAA2deHDIcY+cEPkYVyiIsIBKj7ypdZ3RZj0j98l9K27QAELroY7ROf5jcbu6mL+vnZU4f48fuXccqUqjflmL8VjOfH2T+0m8o0VA/k8bJZhr/73cPTo5ddRuySSyg8swXzC9/gocc17GIaSBOMtnH2J75A2A2SGi4He3Vs38L0lavZev9dAKy79TcsufhyorX1NNRNpfCbAQDc4QLSdhGWTuTURpDgFWyMihDj97bjZe2j2lnha6Rt/kIObN5ATdtkLJ+P0e4uMuOjDLTvY//GdVz+N1/igR/8Bxd/6m/QdB3PcaloaKSQzVDIpKmbOh3LH6CQSdMydyGt8xaSGOzHH44Qq2tg0qJlGKaJ0ASlXI7u53ZT2dxCPp3CH45Q2zaFgQP7kbokG/AIjRZJJ5LYjkN1yyRqWieh6a9i0EUpCyPtgAcVkyEQfy2HUpngOg49z+44HEAC4LkO+zeuZeGFlzC1rhw0s+X+O+nbt4czr7ueULwCTTeQUrLgvIuRUlLKZbnsrz5HMFaB0DQQEI5X0L5pPU/++uec+s53U93SxoIz/Rg+nYd/9BMG2vcBoOk6V33pa7ilfnZvfAa7WKBtwRLaZk0jMz5KMBrHCgQwrBxTFlcTHiqQHS8ebq+0Pbytg5jL66mdFOXR2w6w4rwWKvw6XqKILLjIgkuxPUH0gjYyT/YCIAQgy/MDlHrSyKJD7Lw2snkXx/YY7EwRCJm4tlcO69EAKTG8IgFyiGIBWbLLLw6aDoZePhc7Dlo0ipQSEAjPRWo6QhPolZVYVeq8+zzXcSj19UGxWH4fJjS8dKrcj4JBKJXK5YaBsExkvkDmUDfatR8jcs3Hyemgf+jT2EUP1/YoeUmkl2a4kKGQTjPW281Qx0EmL1pKMZPFFwpi+AMU0ikyY6P4IxEaGqfhdOXRfAbuWIHAlDj5LUP4JkURlo4R9SEdSebxHgBkwcV7Ls/kRcuRnsvkRUuRhBloH6J6UuCYbQyEdPTGeXDBNyE/AlYI7CKMHwS7tnwd0L2pPKCzlAHplUNCrBCkeiHdD+E6qF8I/Vvg/r8tly18N5z+Waic/PI7OZ+EP3wDdt0Cqz4DqT4YPwT7HypPb10JU88ph5us+69yG874XDksZddtEG2EUC10b4TlH4GWFRO/QMprUejqQhYKSM9DGCYlLQADHpQ8rLYohf3jaJaOFrGQhfI1gDOcQ49YaH4dYWmIuI+8LtjyQA9zF1WTf7DzqHXkNw8Sagix8bFehrvStMyqJBA1Oe+DcyjkbHwBg/RogZ2P9TJpfjWVTSF0XaOysQK3mODM91QCOa746yackk1mbIT963cy0tPN3DPOwReKEIxGJ94LNmNYPuxCkVC8glC8EscuYlh+ll12JYmhQbKJcWK1dTi2g9B05p11HlMWL8OTHoFIhKWXvZ1gJIrjOGRGR/CHQux+/FEObtkIwJSlp7DogkvZ9tC9hAvW4e0seSU2DW5kOX4IxCCuPnt4IwX1EHYiCwJiF03CTZYQpoZwJXpzkGzWw7U09mwYYP/GQTRdcP5H5zJSdLAiJt94ZA8rJldz9sxazplZS3NFgGjAIlu0eceSZporg3+6EYryWmgCmXdxk0XsvgwiYGA1hLEHsuhxH1qFn8HUIQKVMSxvOq7rxxeSCCGoNHuJhPfT75/C5MYIN977LA2xSVx36iT8hkY0YBKwdKpCPqbWhvAZapC58tICUQsBTJl4r2EXXVrmVGL6DdzRAlrAANvDsz2k41HqSaNZBvqkIJblQzcMpOshPRd/NAoS4rV1xGvrKRUKCCFI5XNIKRGyHKYrEehC0DR7Ho0zZuO5DnapiBAaum7gemMYOghNR9M0pKsTilTgDwSI1QcYyQPUoJdAkw7YfsKZPLqdK2/UcH/5ulYItGiMlv/9GXge0nWRjoPQDYSv/PrtpVJICYlf/Yrc5s2H90v1X/0l6AbSdcC2EULgFQpohoHV2oKh58CzIdYKhQTkx8vXqf4oJCZugBBvBacAqQHwhcpBKelBKKbLj4UoXw9boXI4X6qvHMAntPJ1sOErB/BFG8FSr0lvBQ2xAN+4aj4HhjK0I5ntj+CO5ih1pxG6RnbbIKGFtciSh92bwT+z4vC8pa40/lAlvf27qZq8iln1MZoqYDBdoLG1gqUfnYUoehghk00DSeqjAXb1Jvnh+5aydyBN0NKZWRfmr86dgetJZtZHmNsYPY57Q3m1hqmkQYwwgs4MPUtFyWPfYPp4N0tRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRTlod37z0pklfvBfgG0Ar0AV8ueObl970WpYrpXzJL+5KKZ8EjrnLupTyhhc97wDO+SOLf1pK+dcvqu9RDk55reEpb4jjGkIihNCB/wbOB3qATUKIu6SUzx5R7WJg+sTPKcAPJv4/seXGyAYaKCSTLzm2yikW8RyXVddeh1uwQQi8rAOORAqB8CQyaCAMQeeOrTxx488Ozzv3rHP54ul/zV8/88WjlnmmPhf6+0jeeiuJ3/wWramRqnOvwrA0glGLXKp0uK50y9+VtfwmdtEhNZzD9Olopob0JIVsllBlJYV0GisYIhCJ4eGWA0iApqeeJD3Uz67HHqJrZ3lgeu+e3XQ/u4sLPvZp1t3eT/11M9EPHiC7fTv+K95FrCaAbmi4TnmQ5pRFcRJ9vaz56X9TyucBsIsF1vz4v3nH3/0j2YSf+n/4NsPvvgJ3fBy7t/d1PUTKy9NcDzdR7jMT2QZ4eQc9ZOKOFRC6BoDdkyF42RQK+8awezNoAYPoBW1InyBHhq2bH6Bh9ky2fu8uojW1VDa3svPhB1j1rvew7tab0HWDSYuW8Mw9d7D8iqt55r47yKdSzD3rXDbdeRvzz72QnY8+xEhXB8suvZKNd97K9FNW0b55Pd27dnDqO9/DxjtuoW3+IlzH4eCWTZz+7g+w/ve/pXHGLPzhCM8++RhnXXc962//HbWTphCurGL3Y49w5nXX8+Rvfk68roHaSZPZ/vD9rL7mOtbd9husQJApS5az+e7fs/Kqa3nm7t/jOg4Lzr2Qh398E0suuYIdax4gPTLMyquu4ZGffJ85Z5xNYnCA3j27ARCaxpnXXc/s1Wey8c5bmbpsFeVQKuX1MtKdon5SlAd+tIt3/b9ltM2rYqQ7c1Sdhqlx7O5uEtd/jKqPfISeW2+l7ms3MPrNfyF0/Zf4w60HKOUdVlw+mUd/sQfPK3f4tml+ltT0UfP4RsI7dvDwz35K2qcxaZ7Ond/6Hq7jAFDMZZGuzcCOdmK1dTz1m+8z1lceYGz6/Hz073+Mkyyi2155gLkEz5MYDSES/f1svuf3OMXyQPhSPs+jP/s+l37mCzz9uxsPb0N2fIzHfvkTLv3MF8h6HtLzmHf2+URrathw+80v/JICSMmepx/nlKvexbQVq+nbtwd/pIZSHjRdQzMEhW///VH7yCsWKO7dcziABEDm8+S3bCV0zjmHA0gA8g/cT83qVfiMEAeHs8SDFl+9aze/+4uVxIIWysvzpEf33s1U/+Juig+uQXzrW2TWrDmqTureewmtXoU1dx57e0PYxRf6dC7lMOyfzFiXxfRTzqB79w4y46OU8jkWX3Q5+zesxR+JEIjG6H52J34RJBKw8LI2xf3j6BV+tODE5Z8Ez/bQ6yUibsCLQkgICNb9/Dec9cGPMNLVyZqffh/pSWaceho1bZPZueZBDmzewFnXXU9qeIix3m623H8XpuXjzA98dCJYJMu6m39NZnyUZZdfxR9+/j+HFz/j1NOZd/b5jPf3khkbZcPtvwMgGIuz8qpreOwXP36h7vJTOeXci3ji9t/Rubd8mSg0jSs///+YsmT5K9v5I+3w4JfKA+Z9EVj5SZh5CTQueoVHT/ljAtE4Tql0THmpkEN6UMrn8FyXzh3bOPN9HyY1NEQgHOWOf/kH2hYsAiE4sPmFEMhzPvRxatomlQe76QaTFy/HCgbZdNftnP/RT2GXygPizvnQx7n5a1/CKRXRDZN8OsWj//tDPLccvte5cxvnfOjj+IIh7vvev7LyHddSUd+IL5jHHjePaa87WsDQNB69aS8rr5jK1if7MP06c5fWYpY8ArVBoue3kds2jJdz8E2LU+ot/34+f12kBQ1KQzmG9iXwLJ0DW4aIVgfQDMGUxTXkUzZ2wcV1XTwXBIKWWh295yAyl0OLx7EPdTDygx8g83mCy5dT9alPIkslpKZDoYAWDOCOjuL09xOcN+8NOKInl/zBg3jZLNg2slhEaBpjN/6azMMPg2lS+f7r8C9YCAL0igpyDz1F8IqrcFecz/hAHk0rD+DMjBYZ7EgRqcyQHd3JYOcBll/2DsZ6u9l4xy2svuZ9rPnp9znt3R9g8FA71S1tPPbLn1DMZQG44L2foi00F2l7CJ9O/tlRArMq8fIOmgQR9zH2m91Htd0dylO3eDKP//pn+MMRll/+fqYvryUUtPGHTAoT52UhYNHFTZjdt0DlNBjYBUO7y6Ef6X7o2wor/gI2/ACWfKBc9tR34IrvlwNHHvwKeOXrFi77Dtz7Ny9cO2z9VXkFl/476Mf+XhzWtwU2/qi8nmd+DvPe8UIACUDXemhYCNt/U65z0zvh1++E826ArRPXNOFaWHwd/OIyuP5hdf59Ddx8nsLevUjbgUIBAn5ywXqevreXM5fXYwhwU0WMCj/F9gTBJbUU9oyRfqyb8OomNEvDNQSlkImtCZ76zT5KeZfZs+LgeMesz9IEffsTBGMW/rDB+R+eyzP3dTBjZR39+5PseryXOac1svvJXhqmxalqCiOdIRw7Bzbohkl2PIUVCLLu1psY6+1hxZXvxHUcNAG9zz3L9jX3s/yyqzD9/nJIlecy1HGIhukzyY0neOSn3yefSgIQildw7vWfZOjQAXY/sYb0yHC5nYEAl33mb/n9N2/gtGvfz+a7f49dKnL6uz9Ax/YteK7DwWc2sOKKq/GHI/gMH02hJnqz5c8aXM+FgZ3lQcijB2Dy6eVwKOV159kSL+/gjOYxKv2IsFkeJG57aBEN14Pxvix71vbjlDxitQFEyGDprCo8T/LD65ZzYCiDJiDoM2iM+Qn7X+Ycpiivs9zYCBHilHrTGPEAbmbiWlgTSFciQ+DXorhuJSPtSQzTY9O9hzjvA7OJ+EeQj32T3AU/ZeXUSn59/SkMpYvUR/00VQRUX1ZesebKIJ1FBynAcyWuI0G6+AIGmqWTfLiTyGlNeEm7HDJt6hT2jxNYEMQulZBAKZuhmM2STSZwSiU818G0fOVQhUQC1y4RjMUxLItiLofnOuiGien3Y1gWmq4TCEcZ7DiIpmnohoFumnTt3E4wFqOivpH+A/tZdNE12IUwruORT5cDGDUh6Ng1gmUJli3WMAY7ysGWrlcO1BNaOcTRdZGeRDp2+X1RsYj0JHokghQg3aPD10d/9D8Ely8Hnx9pO3iFAjg2pbEx7KFhAlUu1v3vg4XvKYf0PfltqJsHZ/4t3PVXYOdg5SfADMNj/1QOHTn/67Dpp9C9HiafCQuvhTs/BcGqcqDfll9AZhBO/UvYfTsEKmDyGdCzBS74OlRPOz6dRHldRfwmi1rL4SJupoQ9kAFNgOsRnF2FM17A7ssiAgay9MI1tRYw8AoOvmiUQLBErZHhvFl1ZEs2rucxrS1O0DJ4tj+FpWtcu7yZyTUh0gWH5ZMrmVoTJhZQrw0ns2EqmSl20IlJLS5NdomNHWPlz71UOKeiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqi/J9MBI68ptAR5eVpx3n9K4B2KeVBKWUJ+C1wxYvqXAH8UpatB+JCiIY3u6GviutAKYvjOHiuTe2kKejG0XkvSy65gmwqieX3k8uPo0VM9LCJl7HxEkWEpaGFLVKDA6y75ejfgd2PrWFyseaostMaVqMHAsihIRK/LQ/irf/q13BdD9Onc8a7ZxCMlQeH+4Llu85L18MfNtBNDcPSsQIGpiVwi0U0QyczNkpyaJB8MkExl0VQ/qJj5J1XY2gahUzmcADJ88Z6u0mPjTDYkUJIl8LOnYQuvAQ756BbgvM+PIdIpZ/55zRRzGTJjI8dDiB5nmOXyIwOs+vxXmQ0frhc8x97R3DljeOaLuacGFAelygsncL+BIGFNSCgeChJYEG5H2ae7iV24STCZzTh1sBgqYt9oxv49Xc/j2ZpPHPP7Yz19dA0ay5b7r2D5rnz2L9pHcMdB5m67BTW3/ZbKhqbGO48RN/e55hzxtk8/dsbsQJB7EKezu1bmHfWeTx9869xHRt/KEz7xnXMOfNcNtx+M4VMmnh9I/vWP8XMVaez9YG7yadT1E+bye7H1zB50VL2rH2cfCpJ8+y57H7sERqmz6J79w7yqSSTFy9j+8P3E6urJzHYT2ZslBkrV7Plvjvxh8KUCnmSQ4PMWn0mm++5HU3XsQIBRrs7D69PSo9YXcPhABIA6Xlsvf8u4o1NACQG+978A/kWVzs5xvY13QCUci6tcyppm1cFlPvtnNMaqGgMoQeChFatYvx3vyN6/YdJP/Qwnu7nmTX9ZBNFpi6pZedjPYcDSAA62wukfXUEly3Dy2Swu7owfDqlfOJwAAlA85z5pEcG2fHoA2TGxw4HkEA5WMnVXIwqP9L2cIbzIMGoDpCXaaT0DgeQHDlPenT4mG0d6+2mmM1g+vxMP+VUQhUVmJYPkMfUfX45hUyGt332azilMLql4QsZCADt6Jd//5KluGPjxyzDTYxT2LX7mPLiM8/QVhmkuSLAcLrI3sE0qYJzTD3lWMPpQXy3PkTx/ofB8/CymWMrSYl0XfTaepKpYyeniyZ7nxlnuKealVe9FysQYP+GtVQ0NHHhX36WeWdeAMJPw4wLSBUrCJ7bCEB+1yiy5IIH7ngRPAmeZLC3HXuuBsYLX3rXG/wk3REqGpsoZjJsue9OPNdFSo+9a5/AFwzhC4WomTSZXY+twXUcNt11G65tM/fs8xnr7cbJF+nd8yz97XtZdOFlPP27Xx21HfvWPUk+lSQYr2DTXbceLp+1+kyevvnGo+tuWsdYYvxwAAmUz7GP/OT7ZJOJP73jXRue/o8XBswX0/D4v0DHU5AZ+tPzKy8rUlnFtOWnHlM+efFyfKEgmbFRitkM88+9kK0P3YsZ8LPp7ttw7BJ1U2ccFUACsPbmGxk82I5dKuGWiniuQ3p0hObZc3FKRTzXLV8/SsmKK98JQGVzK3379hwOIHnes088SqmQp37aDBKD/exY8wD5bIbA1MixGzK9glSmiGnpjPVnaJ1TiWkZ9HZnue2mfezoTJN2JNbkGJFzWzEq/RSeG8Nqi+KMFxA+HaMqAJNjbHmil2LOpnl2Jc+t7Scc99O5c5SxvjRCA6fk4bkedknSO6AhNJ3Cc3uQmQzD//7vyInr49ymTSRuvgUvX0BmMniFPM7gIM54AjeRoDg4+DodxZOXLBYhX8BNJPAKRbJPP10OIAGwbcZ++jPckWE0vx+7q4tCTw85N0hyOE9qJI9h6Yz2ZMkmS/S3J+jf9yTBeJza1snohsHORx9i5qrT2XL/XdRMmkLPsztpnDmLg1s3Hw4gAdi+9iFEWKfYk0aWXAKzK/GyNl7GRoQNXOnAi7Id7FbJH375E1a+/Rr2b1hLITNMOOASKY5yysfqWfrOJqZfFGPlJxop1qXKgxuH94LhL4cjlLKw8zaYei70bIJp55cDQg49AfPfBSP7Yf0PXggggfJd2uWLrh123Fwufznp/vL//mj5bu8DO46t07+9fOf3569NpAep3nJ9KJ9vdRPcEvRsPnZ+5RUrdXTgJVPIbAY3n0MLhtnxxCDVbTFkpR+v6OKmSvhnVSIsjcxTvcQuaCN0SgMYghEEDzzazXM7R8mnHUa6M9RPjTE4XECvOfp9t7B0SpaO6dfJJUsIQ5AcylHMO3i25Lmny30jHPdR1Rxm91O9+MOCbHJ0YjCzi+d5tG/eQHZ8jLHeHkLxCjzXpaKhkWwiwZqf/YAZK1ajWxae65IeHWGo4xCRmlqGOw/S89yuwwEkANnEOJ07t6IZ+uEAEigH+u16/BGmLFnB5rt/z6zTzsIpFtn92CNMXbricL3hrg7OeO+H2HjLb7my9iIADM1gad0SGD8AiU7IDpV/h5TXnW3beLqLURtEmDrS9nBHyq/rVksYiaRz5yiRqgA1LREWnN3Mqe9ro7WlfC7RNEEsYLKkrYJFrRXMqIuo0AblTZXLZBg42I7jFgnOr8XNlLAawzgj5es3WalRMkpoei1P39JONlHCdSRnvXcWdfk/wI1XIVZ+gqmtrTTEgsxujHHmzFpmNkRVX1Zetcq4D6/Gwqj0Ea/WkZSDPbyAxNcUJrex/H7BGSugV/gJXtHE4NABQCIEaJqOY5dASjzXoVTIM3BgP+2bNiA9F384wnDHQfaufYJiLothWtjFAsOdh+jetZPB9v0MHNhPvK785xpfMMT+jetwXYdodQ0b7riFysYmOnesQ9MFTslD0wV2waWYd5i1soED28YYSvlxRkawu3uwOzspHeqgdKCdUmcX9tAQzvg4Xi6HLJaQJRtnZJjkvfdS2ruX8FlnHrVPZKmEVyiWg9qkh7RLuPk8Ugi88XGK2SAEq8thfMVUOWRkcBc8+GWYd1X5WvXp/wSvCFYI0gNw+8dg+nnlFRx6HJ75X5h+PmSHy2Gn898JuTFY8w8w9+3l6/Gu9VBMlD97cI7+7E85+elhi8DMSvSIiZMqlq9pCi52b4bI6U3ktpc/axJ+Hb3SD2GN1rkLyzcs8Gz8lkZDLMCsuihBq/y3wzkNUd65rIUL5zWwoLmC1dNqWNJaoQJITnIF22WcOA3aMFl/hCguU7NZhtNFnu1/iQ9+FUVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEV5y5FSflBKeeufrnliOd4hJE1A9xHPeybKXm2dE4tTglIG1yniSZAI3va5v2Pa8pXUTp7KuR/+OJMWL8MwTexiAcMXJOekMRtCGA1BzJYwZmMIGROU8jnsYuGYVRQyaS5ouwBTM2mNtPL1pf8PTdNwU6nDg8qKvf3oho7reCDgoo/O5dK/XMBFH5uHpmvopoFdcnGKLpoucB0PbWyQ0l33YFoWQtOJ1dURralD91mIdesAiFx5JaVSAcPne8nNNy0fFfVBfLpLbsN6Stk8EtANSShucsFH5rD4vCZcp0QoHj9mOZpuEIpX4toexXVPlZc5eRKBhQtex4Ok/Cn5bIqBQCf6rDDptX3ELp6Eb2ac/HOjxK6eijklgpxsEH5nGywJMpDtpMd3kNvu+gZPP3wTffv2AhCqrCQx2I8vFCI7PgZA7eSp9O19DiiHzgA0TJ9J967tE2U2UnrUTZlGz56JAedC4JSKVDW3MniwHSjf6TqfShKKV5IcGgAgXFlFYrAfoWnYhfIAkKrmlsPzOHb5jvLx+gZGujsBcJ1yWaymjrHecoCElBLPdQnG46RHRwAwTItSPo9h+SjmcgAEY3HSY6MAeM6xIQyp4WFy4+OHl6+8viyfjmOXR/T6gzqj/VkWntfC5Z9eyOWfWcT0ZXWAJPXA/RgNDZQOHiQ0Zy7Zxx9HzFlE/6FyAEQo7iM1euy5tigt5ESf8TIZnM3rCcUr0fQX7ohe2diMXSph+QJkJvrKke755b9iNoQxagNYbVGM2gBapcnB3ZsRCHTz6C+SG6ZFuKLymOXE6xrwhUOYPh/R2nridQ3sePRBZp92djlx5XlCMOeMs0mPjOC5DtlkECTYBadcz3Sp/uGPCF9wAaEzziD079/Fmj2L6Nvedsw6o5ddRvapJ48pN6dPp7kiQMF2ydsu586qpTr80q8JytHMZBYeeOzw8+K+fRiNjUfVsaZMwZo6lYrLLmbWwmODElpnVZAYyLJ/U4r2ba0suvhLLLr4i1RUTGJ4IIgr5xKILWD9HaNsumeEEX0c+yyT4HlNGI0hRMigNJTDSRTRJwd49JYfc9/vvoNxZTXaOTH0iyroaehiZLwb3TToOSL443l9e5+lbvI0KhubCcXiJAb7D097/m7ImqnTOzGv6fcfEzoGkE+nkJ53VHCE6fdTzGaPqVssHDt/emwEu3Ds7+4xssPw3F0vXZ7s/dPzKy/LtCwaZszmkr/6HE2z5tIydz4X/+VnCUTjlIp5QvEK1v/+dzTPmosxcc5LDJT7zEu9dhayGYSmI2T59di1bZpnzSVWW4cnJXahCAI8T1LRUH5bkBkbwTCtY5YldI3xgT4sf4DM2Bj5dBoB5P05jHNa0YIG6AJjcS1dBZdSzsX0Gzglj1DcR+euEQyz/JZpx7oB7rrjIFsTRdJhk1zYJPyO6YRWN6JX+Iie10ou73Ag45AaKSBEeZAdgGN79OwZJxD1IScCr4pZm9Rogb6OPFo8jh6L4Qwf+zqSeewxECDtEsL18HJ59EgYWSzipdKv+fid9Eqlw3dFF4ZOes2jx1Qp7tkLloXd2UnVddchTINcoojnSqSEQtbBsV3ClSbj/eU7sOumiW3baJpGqKKS1PAQsZo6Rnt7kBJSI0cHGCUG+xi2+/DNj6PHfOWfugDFRpdht5uclsZYHUf4dISpoS+LsqdzHb17dmOXyoMS7VKBUHEIzy6RCY2Sn97Hb/z/xUb5GEGvAIUU4EFo4jrBLQGyHC5WTJX/H+8oB4XUzwOvVA5TOJL+EgPYYk3guceWHyneBpoOQ8+VQ0XqX+K9Wd088Mc56mMGI1AOgnre8wEoL9UO5RXzsjlkqYiXyyGEoOTq9HQUMH0Gw1kbmiOET20ET1Jx9QzC57aS9iTdumC40s/9t7YzPpDHH7bQTYEQkB7N09edwbxgEnpb+fpDrw0QvHo6T97XwYKzmwHIjBQo5h0sv4HnSTy3fJ6TUqIberlLihKu7cDEOdyzS9iFPGIiCK+ioYl8Oo1TKh4O33Ndh1wygV0sYvp8jPZ0Eo7HSQwOMNzdccw+SA4OlNfxIuN9vVQ3t5JPp7AC5UCV0Z4uYnX1h+s0zZ5Lx46tjPV00RRq5IK2C/iPs/6DxXufACTkR8EplAcdK687IQTJ3DCObuOfEUeLmPimxzEnRdizfz0du1KkRwrohsbqa6bSPn09vYH2491sRTlM13XyqSTr1tyGiOoEF9cifBr+WRVYM2OM5npxHAu76HDKlVOYvaqO1rkVVFaVCCa3wbt/C1PPOd6bobxFRAI+MiWXfhwCkRSz/Q8y97QmRjID+BfVEFxehzA0AvOq0Nr8/Pwf/4piNlOOjPMATeB5Hq7rUMzlyIyNUshlqJ00Gc0wyI6PMXCwnerWSRhWOYBkoH0/ucQ4/nAIfzQKAjRdw7VLZMZGGOvuorqljcz4OLphIISgc9tGDFPiuRJN1/BcietISoXyNehgbwHh84PrInQdYZpoPn95IyXg2Mh8ATedxh4cxOnrx2puRq+swk0mEX7/4X0SWrUKDB0vn0d4HkLXwXERmoZbLOAVizD9gnLlg49Byynlx8luCFa9sHO7N5avb6EcrndkkEj3xheuh6UE+4jPK+zyZ8YcWAOtq2D371X46VuUUeEnvLyB2EWTEXUB9ClBqj42D60lQHhVI5FzW4ldNAmtwmTL5vvxHBtd+JFmgOqwxSmTK4mFjv4cQ9cEflP/I2tUTkadI+W/PzSLQYrhCqJ4zMwU8Rka3//DAeSLQ0IVRVEURVEURVEURVEURVEURVEURVEURVEURVFOEMc7hES8RNmLv3H1SuqUKwrxF0KIzUKIzcPDwy9V5c3hC4JuEpdJhKahaRq6YbD44rdx7vWfoG7aTDStkk33lcCDYjaNY9n0JvaRMhKkzDFS+jglp0C4oorKpuajFm9YPmJ1DVw59Ur+9Yx/5QvLv4CngVcsYjQ1o1dXAzD2rX9GSg/Lb6DrglzKRroSXRfoliAZGiIYNalpC1NRFyB4cDPj77+K7I9/grtxE6FYjEAkSjAaJaJbROfMIXLRRWQffBDP9QhXVjP9lFVHta1u6nT6D1icfs10dEr4Zswg8dWvgJB4rkBK8IUN0Ax0w8QfjnD2+z96eBC+phuc9YGPsnu9x8JzmjH6D1Lzt1+g8dvfxmo6sbNnXosTpu8ewfIH2PLkPTzWfhPi0ihbdj/As2ITnZX7uOnHX2JfehO/+t5n+f2v/pFt+x7irl98k+ToAKV8juz4GNGaWgCcUglfMIRdKBCIRgHIjo0Rqy0HcuhG+dgnBweoam4FOGKAch/VE2WapiOERnJokIrG8u+E5ziY/gC55DjR6vL6suPlZUvPw5z4AvpQ5yEaZ8wGyiE5AAPt+2iePe/wsnXDYOjQARpnluvZhQKBSJTEQD81rW3lNg6V21jK5wjFKwDo3fMskxYsLrfb5zs6DAKYsmQZh7Y9w/xzLyRe3/J6HJoTzvHsv0YQ5p5eDnC4/0e7qWkJU8o72AUHt+QhBeiGYPTf/h1ZLKDFYjjZDL4ZM/D2bqeupTwwceBgkuaZFccsP6xlkRODcs3WVsa+9DeYWZuzP/TJw0EkPc/twh8KoZsmtZOnHrOMhmkzSekpdrc/SanCIRctMJzqIRSvZN+GtZzy9mvQ9PIdL3XDYPW11xGtrmfpZW8/3J98wRBnfeCj+EMxhITJ8xbR376P5NAAFU3NXPG5rzD9lFVMP2U1V3zu7/BH40igvqKGilofsfoANU0BfKVxfr17mG8NRsh86Wvs/fRX6Zu1mMGCi9HcRP3X/wGzrQ1r0iTq//HrGM3NBJctw5r6wnYFVyxHnzOXqoiPnz3dwaKWGF+4aBYB6+T7gvzx6LuRWA1GW+vh54mbb6Hyfe8lfN556NXVRC+/jPqv/wMIDaOxkbZZUZZd1IJhafhCBqvPjWP94WamzSsPDs6MF9nxhwT7NmapSKwlWunnmQe7iFT5qZscRXoSqYV4+K4f8vs7v8FoYJBcZZ7CfIfxpjFu/dENTF26gmxinI6ubdzyqxvoGn+WJ277X6K1dWi6QVVT6zHbUd06ieVXXk2pUCCbTBCOvyg4R0qcYommiXPvSGcH1a2Tjqqim2b5bslSEozFD5ePdndRP23GUXU13SAWjR9zjp2+/FTC8WN/d4/hi0D1zJcu98f+9PwnmBPtuiFSXQMaRGrqOfO9H+bUq99LuKISXdfBdgnF4iy55G3Yto0QAte2mbX6DIByYM3EOfB5dVOnkxkfBSQS0Ayd4e5OGmfMopTLoekaps+P5zkMHmonUl3D/LMvoHX+QnTj6GXNO/t8LL+fjh1baJkzj+rWNkqFArYn6Mg7aFdNZ2R5A4/tTdDXm8UKGAx2JgnGLPJpm9mrGkiPvTCgTNMF1a1R7v7VXu74/UE2bB9hxBAkaoNs2pfgvkd72La2n+aZcYY60xhW+e2WYWk0zYiTTRQRmgAJpt8gEDaJVhrIXA6Zz6PHju2PvhkzEBKEpiMBYeh4hQIIDUzjmPonute9/2oaCIEwTXBd/HPmHFPFbG1B2jZGTS353c8iPBszYCClRAC+oI5h6gx15GhbsBqh6XTt2s6hZzaw/Ip3MNJ5iIbpM+lv30fL3Pl4rkvr3KNDOIq5LAUvzW9++hXWbryZB+7/b/7n3/6CXbsepePZbeSLaR584kf439eMvCLKfU/8F9ueuI9gLI5h+ojW1FFRVQWOQ8Yv0DWdan81F026iEU1i2j7xdth3jugYhJ0roPxLgjXQcuK8iDIpmUwegDmXAE9m6HnmfK75mnnHb0zMkPQsOiI/afDKR+H4LEBaEdpWACXfw+6N5Tv+u6PlQdVPq9+PsRaYOZF8Ozt5bJABVjBFwZiWuFyv/XHyu0+yZxI515hmSA0hGkhNQ1D2DS2lAe8F/Mu/Vmb0ZBBti7I7u40g4bOo4/28uTdHRRzDrNWNeA5kny6hPQks05toL89ScusCnbtGqW3McL46ib2xAOsfbqPZZdMIpsoctq7pqOZGvHaIKM9GQxTY8riGgCcksdwd4rGaXHQ/ei6gQRMnx/DsqidNA3D8lEzaSqjPV0EohE03cAXCgPl94X+UBjT58O1HWK19RSyOXTdYMaK1cfsg6ZZcw+/3zvSzFNPZ8/aJ6hsaiE1XB7w2zZ/Mf37yyGZjTNnU1HfyL51T7LgosuYM2kJn1z4Sea4BoGn/hU0o3x9YPghcPJdI/wxJ1L/9TyPQDjC/b/9LpvX38U4Qzyz835++P8+RLSqis33djLl9Dif3PEhrl57OYGgnyV1S45rm5Xj50Tqu89zSiUqm5rZ8fj93Pifn6ezbycj9LNt7xpKAZtIbT2ZERcrYFDZECI5ksctlqgK5+Hcv4eZF0Mgfrw3Q3mDvZl9VyCoCVtsTcc40Pg2TN8ooYpWEs4QezrWMm4Ms37tbfzPV65HCEGkuhbpSTwB0vMQQqBpGoZl4Q+G0XWDxOAAmqYRiEYJV1WRGh4q/43DtIjX16MZBoVs9nAoaHn+8t8sqlrbGO48SLiiEtdxkVLSNGcBti3QdCjlbTRDIDTwBcrvZ+qa/MhCAWGaSCEAifTKwerl/zUwTTSfhRYOowUC2CMj4Ln4pk0vf1ZVXU3sXe+i4voP46VSCMtEui7SKQejSSnRIxE0vx9G9pV3XuWUcvgIlF/7jwwDqJgEqb4XnutHhEWEaqCQfOlp+kRIb8VkSPdB5dTydfBJ5EQ8957I9KBJeE41TqtFQk/QPbibe//wX4z6B+hO7eWm//kytldAMwyi9NLtVDK1JkJ15NhrWeWtZ293OZi/UQxS9IUxgGo3xbXT49y7s5/vParC9hRFURRFURRFURRFURRFURRFURRFURRFURRFOTGJ43mXJSHEqcANUsoLJ55/CUBK+c9H1PkR8JiU8jcTz/cCZ0kp+19u2cuWLZObN29+w9r+J420QzFLUeqMFyxs28ZzbCx/AMMfRTdC5FIOUqSxDBuEQDNNgtEodqGA50kkHtKV5MbHeOKmnzN4YB+xunrOuu4jMKUaT3iYuomBQcgM4R/JgOvi9fUx/B//SWHXLuJ/+2WMcy7Ddcp3m9V0gWl6jPpG8aRHtRciUHBx+/vp+/wXcAYHAdBiMVpvuxWh67j5PGQyyFwODBNN18jX1eKUioCgb89uOnZsoXnWXJrnLUMTMeKBHG7RRg4P0/+VvyPy9/+EaJmO50qQEqFr6HoSu1DE9PvIJcfJjo0SqqxidCCEJixaqvNYTgY9EiYwfcbL7+/j56VCcl6T4953j9C+aT13f+ebTFt+CqVCgY7tWzjr/R9h7c03UjtpKrHaOnY/vobT3/0BnrnvTvzhCFOXrmDTXbdxytvfxb71T1HK51l04WWsvfnXLDj/IgYPtjPa3cXqa97Hk7/5BdOWraRUyNOxrbzsp2++kbop04hW15SX/Z4PsuX+uwiEI0xevIxNd/+eU97+LvZveJpiLsfiiy5n7c2/Zt7Z55EY6Kdv/x5Ov/YDrL3117TMXYBh+djz9OOc+b7r2fbg3fjDEdoWLGbLvXey7PKr6H5uF6mhQRZffDmb7rqNGaesIp/J0Ll9K6ve9R62PnAP1S1tRKtr2fXYI6x657vZs/YJdN0oL+e+O1ly2ZX079tDaniIuWeey+Z7bieXTDBl6QoWnn8J+XSaWG0zVQGTQNuk431Yn/e691148/tvV6KLYKaCgYNJnnu6n6WXtBKKTXyBW0xs5PpHKDz6MIXdu6m87n0M/+d3af3ZT+n93OexPvt1/rDOIJcqsfLKKXTtHqVvfxJ/yGTlmREaZA8j//xPmNOmUnvDDbgHDjL8ne/g+Xz4P/Ex7EgYbd8+9OZmUj6TbGIc6bpsuus2SoU8s1efycILLuE3f/8Fll9+FVWtbZSyk6mdFscXyJFPJejevYNwvALT7ycYr+CZe27n7A99HKdQJDM+QiGTJlpTixUKE3YEfZ/+FHZXN4H3Xot+5lkkC1ni9Y0E4xUYpkUhnQQhkOPjBEsu0nWQUlIKhDkQrsND0Bjz4dc1xvI2uqZhGhp1Y3144+X2I8uD3LV4HC8QorR5E25fH8Iy8c2aRXDZMrrzknzRpbHCTyxgvdxheiOc1Ofe5Pq19H/040jbBsA/Zw6Riy9CWhbhVavwkkncQhFN19ACAaiuJnOgn/zGDRTv/B3uyAjxb32PPq2N/VvHqW0NMH9WgponPkj2tH9k06HF7H6yj0s+OZ9csoRTcqmoK7B33R+w/CatCxYzeGAf2x+8j2Vvu4rEwAC6adC7Zzfzz76Aoc5DBKMx2jet47R3fwCkxx9+8WMSA+VLr1BFFZf99d+ClBRyWdxiESEEWx+8l55ndxKrq2fhBZfgC5TDeZ659w5Gu7u4+C//hi333UX//j1Ea+pYfc37CMbjpIZHCIRDPPXbXzLW20NlYxPnXv8pNtxxM107txGtqeeMcy6k2gowUMzx5EN3k02MM2XJcs687noqG5tfbne/oGMt/PodLwyGb14OZ3y+fAdk8YacEl/KSd13/5T+9n2ApFQoIDQNIxQkFbYxpCCeEmQyWTSh0blrG81z5rFv3VN07tzOskuvYPO9d5AeGaZp9lyWXvp2QOILhhCahmn5yKdTCKHheS6+YAjN5wPXwbT8OKUiQtcQaOQS47RvXkc+k6Ft/kIcx2Ho4AFq2iaRSyWZNH8xEhjtjVDVFKGvPUHHjhEapsVpnBGnY8cIdW1RqlvDZMeLuI5HuNLPWH8O3RDE64NkxooMd6aJ1wWI1wXJp0sYls5QR5qRnjSN0+KUii6lvMNwV5p4bRChwbSldaTHChSzNqWii3Qlmi5oa9Px9z6HMzyE2dBA4nc3k33qKQC0UJDGb38bz3ERuoYsFtFCIaTjosdiBBcuQBhvWhDJCdl/c3v2IItFvEwGWSqhWRZ9n/8C7lh5oI9vzmyqPvZxhGWi+f2M/uAHVP/tl0iY9YwNZLF8Ov6wSXq0yFBHCkQGXXuW6uZmUsNDGD4foVgchGDT3b9n8sIlFLJZpixZzqGtm9j9+Bp0w2D+uRcRCIUxAwHW3vJrSvk801ecyqzTzkY3DHqee5Z4XR2m38f2h++n97ndCE3jgo99Gk3XiVRUUSkMSprDQLWJh0fRLeLTLeY+8Z8Qb4WmpZBPgVcEzykPivRFy0EfRgB6N0PNLCim4Ml/g6t/BulBePYOOPR4ebDkhd+AUhayQ+DaYAbLYSJtK//0zh7vguG9UExCsBr8cciPglMoL8fwge6H9ofLg6ubV8DQs7D5p1A1rXy+TfbC1LPLoSZvnhOy774Whe5unJ4ekBI3lUKvqSWrV/DYPUMsubAN15UIAVbAxLA02jcOMHlxLcOdKcb6c8w6tZ5C1iGfKVFZH8KwNBJDeZJDeRqmxZBS4jpyIijMIjNeIFYfALccbhqMmiSH8/TuTdA0I85wV5q+/QkWnN0MAvKZEjUtRQqpccxAAN0wcByb0e4uIlXVDB06SDASxReJEIxG2frAPTilIrNWnYnrueiagW7qDB06SOv8RWTHxxjt6WLbQ/cihMbcs85jxsrV7Fv/NJbfz/aH78e1Syw472Lqp05nwx23sPD8i3nixp9RN2U6p737AxSyaQQCzTB45t47mLR0GQ3zZlGT68C342Zwi+V+qltQNQMMC6afB1bouB3nCW+5/gsw3NdDMZXk6d/dSM+zO4lUVbP6muuonTqLkhYlIzwcLUEsYNEcbTiubVX+z96Sffd5w12d9Dy3i3W3/JpCJsPUZaew7PKrCMSrwAvieR7+7EECxQ70QLwc1FVzbGipckI6Kfvu1q5xIj6dkitxPEnE0gkXJIVMF4//6icMHmwnXtfAae/+ALHaOjxAui6FbJpSNks2MY5TKqHpOoZpkRkfJTk8RLiiklhNHemxEbLJcfyhCKFYHNPnx3VskBCuqqKQzSI9j8RgP9HqWgba96KbBtUtk2h/ZhOnX/sRCrkITslFIvAcF1/AKIeoxk2WL3DROveA6yGRaAjQdTD08vt110UWihOfo0g0fwBnfJzC/v3Er3o7RnMLMpfFy+fBthGWBRNhlzKfwyuVEJqGMEzMmI7/jkvKwXhnfgEe/Ep5J57xedh1G4wdLIf9nfIxWPMP5WnTzgd/tDxdCDjn72Hd9yA3BpNOg1gzbP8ttK0qh5fsuBnO/xo8/i141y9hyllv6PE/wknZf99KxoZHKabG6H1uFxtuv5liNsuMlatZcskVxBuaCBZHoHry8W7mieiN+GDu+P3x+wjfvm0L/7Wpn3uDH+fglBVc3v4IAP/m/TO9c1fx+629fP2KubxvZRuP7hlizZ4h3rawkZVTqo5zy5VX4U37YFlRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVR3kzHO4TEAPYB5wK9wCbgPVLK3UfUuRT4S+AS4BTgu1LKP3nb5BPiy5HZBJSSYAbxMJG+EHqyG8woaTeI40oMS0O6JcDGLhTQNB2fBM1xKPosXOmhaTp2IU8xm8EKBPGqAhjCIO/msYRFXaTu8CpzHR1oPh8yk0Hm82iRKH3hKjRAl4JmfRTh2uAVwFeJ649SSmWRjoMcGqJ04AB4EmvaVLw509GHEyAlmmniFYvoQiAtC7+vQFrEcAoFhKFjGCZS+gn6HLRMH0Jo5NwwuB6MJ7A7DoHfj7FoKVYsimmVvwScz2QoFQtIx8HwB5CuhZSSaHI7YEOoCurmHoeD94q9pb/YW8rmGOo6yFhfL5HqGpxSkVI+R7SmjtTwEIFoFCTkU0lidQ1kRocxAwFMy0dmbJRYXQPZxDi6oWMFQ6RHR4jW1FHIpJGeRzASJTU6TLiiCrtYwCkWCVVWkRkdwR+OIKVHIZMmVlNPamwEXyCAbpjkUkmi1bXkEuNohokvECAzNkakuppSLoeUkmA4RHZsjGA8jlMo4JSKhOIV5MbG8Ecj4HoU02nCdXXkR0cx/H50y0cxlSRUU0shMY7QdaxAkPz4GMHKakq5LNJzCUTj5BJj+KNR3JKNa9sEKuLk0lksvw/puti2QygQwHMFmlPCDJhYrZOO9yE90lsihARgID1AyI7iSdB0kB6YsohMJik+swmjtha9oQGnrxfhumjBIK4A3RfA7urCaZpOToQx3AKhmInji2EIl5A/hzueRNoeRk0lImBQzIJIpcqDwONxvHQamRzFqo7gxmIksi66ZeGWSniuS7CigqGDBzFMk0A0RjCZBmEh0TAnN+N6NnguQjOQ0qXU2YUvGiUyfQZ2OkO+mMNzPXTTIlJZCYAzMkLx0KFy/5wyBSMeJ5vJkE+Og5QEYhUMF2E0a1MRMKgMmozmXJAe8aCF39QI+S1G0wVKrqQqbGEZOgCFgQGYuIstfj/++nqgPDDFGRoCw8SsqX5Tj+8fcVKfe6WUFPfto7B/P5phIEIhBBL/5EaIVGOnM2iehwRkIIA22k+uuha5dx9eVy9GZQV6cxMhvRfHV4MWqUAXAlFMgj+GXfQYTkbI51yicQOLEjYmrjCw/AIvb2OZRfKFcv8yQ2Ecz0Y3TEzTwrFLSCkRQsO1SwQrasglxkgO9gOSaHUNUgh0TcfnrwSfR3ZkCKdUIpsYx3Nsqhqb8PJFbAFC1yhmMgBEa+oo5bOgaeXBSv4ARdvGkR6aruEUi/j8AYLpLNI0KeChF/J4PgMvEkLr6ccNhhDRKBXNbZiW79Xt/IFdMLgLNBOqpkDNHDBf5TJem5O6774S0rFxs2MYuokjBEZuBKnr5aEf+XHwx0jkdfL5AmYghFPMAwLDsihkM2hCQ0oPMxDAtW0My0fJKRKqqsbwQAidbCpBKQBD3hi60DE0gwYZw+obwS6VKPh9GKEwumVhOyU0oeFJiTYRNuO3ouiZBJpr4wkNJ1wFpkmxAHiSQMhD9/mRrsTJpNEcF9sKo5VyiFCQfE6iGRpIF+mCU7AxzPLgOH/EJNGfxQyYeB64Trm7W0GDYt5BQDmUD9BwCRpF/PnR8mA5KAcT+ny4o6N4+QJmQz1S1xETd+4WmoYU5UH0ZlsbZjT6Zh7eE7b/5vbtQxaLMBHuBAKntxdhmeg1NchisXzn80AAADuVwmpqImPVUMy7CCHQDYFjezhFD82QGL4cpinwPAchBP5gGMcpUcxm0cwAnlNCN8rnLc0wyndNFwLD8lPIJHFKNqbPhxAC2y4hpMQIBsCTpIeGKBZyxKrr8EejJI0cVigMaGSdDDHdR1NqEDwbrAjC9IERBDSkbpQHZuZGy+s0/eUwkWISAlWQHwM7X75bvFssD3ouZkBICDdA5aRyMMnQbiikoHo61M555WFMrgO5EfBFXnk4g1Msn3c17VUe2dfNCdt3X4v8wYN4qTR4LtKTiICfkhYgkwEzHsWTGq4EXdfQDUEh7+Dz6+im/kKwkeuBB+gCzXMJVVg4rkAIgZvN4uaL+Nw8nj+IHgnh2KLc/+w8eilPzqrC88DvB2EX0FOj4HnIeCWOp+NoNqVSDl3X0TQDIcCxSxiWD13TcHM5XCFwHJvM2ChCEwRiFeB5IMsvHa5rY/n84Ek8ZHmapuE5JYLxKlzHLm+HlFjBANmxUYLRGLpbwnFKRCti+NIdEKgoD2D2XFzDwsiPgm5CKVf+XZJuuZ8aPrDCUDMDfOHjeownvCX7L8D4YD9SSvLJBIZpEalvImjoYL3pAYfKG+Mt23cBsqk0nuuQHRvBdRxC8QoCkRh5BAVbUqNn0Asp0ASEm+DVvm9RjqeTuu+OpXJYpkHBdulJ5KgLWQTtNJlkAt00MXwBkOC6Dm6piFsqIieeP096HlJ6CKEhhEBKb+IzAoFAHB7VL4SG6fehGRZCSjzpIT2J57rl6YDrSUKxGhABpEd5uuOhG+DkCmA7hEQGLTU2cT1N+f/nrxs1DU0IPM+buD6YWLvnISXo0QgyX0AiQdexWlqQpVL5x/PKr/2ui9B10DSMkIFl95TDSaumQjENyR6oaINAJQw/V15+zazyNfTofghWlYNFxjsgNwqVU8thZcN7y0EmoRoYOwBmCHyhcuheqKZ8TR5vLV9rv3nXwSd1/32rGOtPY/pLZEZH8TyXSGU1rpRUiBRUTzvezTtRvWVDSD7+/cd5umuAO0OfYs/8a7hk240AfCp8GqcX38cjzdN55LlBptWGaR8qf35q6oJffHgFq6aeEJ/DK3+aCiFRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVR3pKOawgJgBDiEuA/AB34mZTyn4QQHweQUv5QCCGA/wIuAnLAh6SUf/Jbj+rLkcqbRH2xVzlZvWVCSJQ/S+rcq5ysVN9VTmaq/yonK9V3lZOZ6r/KyUr1XeVkpfqucjJT/Vc5Wb1lQ0jO/IcHqMjv4F+D/0rX6X/DuY99E4C/j8+m9rl/YPU1TdydFWzvSfC2hY1ctqCBa/9nPcOZInd96jRaq4LHeQuUV0CFkCiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKorxFCCFcYCdgAM8BH5BS5l7jMu8D3iOlTLwO7bsI+AcgChSAvcDnpZRdLzPPWcDnpJSXCSF8wL1ANfDPUsrfvdz6jNfa4NdKSnkfcN+Lyn54xGMJfOrNbpeiKIqiKIqiKIqiKIqiKIqiKIqiKIqivBrJnE13zmWlfhAXQWvzisPTKqwkUmZYe/MgC2aE+ez1SwnFfAD85APLeNt/Pc3VP1zL/3feDN6xtAmfoR+vzVAURVEURVEURVEURVEURVEURVEURVEURVGUPyd5KeUiACHEr4GPA//+p2YSQhhSSuelpkkpL3k9GiaEmAd8D3iblPK5ibK3AZOAPxpC8iKLAfP5bfxTtFffTEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRXuy2LT14wGpjC67UmDr5LJ4aiQNQUUgz6awR7PyT9OxN8IsvPsqvvvRjbvnHW8jtGuHG9y2lMerny7fv5KxvPcZv13ViFxy8kotXcpG2i7Q9pDPx43pIVyK9I36kPJ6bryiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoihvrBti7+GGWAc3xLyJ/9/zOq/hSWCaECIkhPiZEGKTEGKrEOIKACHEB4UQtwgh7gYeEkI0CCGeEEJsE0LsEkKcPlGvQwhRPfH4DiHEM0KI3UKIv3h+RUKIjBDin4QQ24UQ64UQdS/Rnr8FvvF8AAmAlPIuKeUTE8t4TAixbOJxtRCi48iZhRC1wI3Aook2Tv1TO8B4VbtLURRFURRFURRFURRFURRFURRFURRFUU4imXV95HYMg2TipxzUIZ9//HxuhzfxQMqJaZT/OWI+eWTdw2XlAJCvFNI87ti0OIL5wYOMuQH6vrqO6qcaSF+Y52I9x78Mreed0VMZsffQ5TSRGp9Kahwe/c0BhMzxLiPI1cEAN6VKfPHOXXzzzt3UI6hC418IvroNF0f+L16yTLyCOgheVO+F8mPqvVwdIY4uPrzQl17n0VX++LJeWIY4ponHEC9R+OKiiefxS6ZgtUReYiGKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoijKcVEOHPkxHP4iTRvwY26IwQ3Jm17r4oUQBnAx8ADwFeBRKeWHhRBxYKMQ4pGJqqcCC6SUY0KIzwIPSin/SQihH9G2I314om4A2CSEuE1KOQqEgPVSyq8IIb4FfBT4xxfNOxf49v91m6SUQ0KIjwCfk1Je9krmEW/VOyEJIYaBzuPdjgnVwMjxbsQbQG0XjEgpL3o9V/5/6LtvpeOgtuXN87r3XTju594TbZ+fSO05kdoCr709J8K5F956+/WNoNp0tBOl776RTsRj/lqpbSo70frviXhcVJtemTe7TSda330pJ+JxeqP8uWzr67WdJ0P/fa1O5j5xMrcd3tj2/zn03eed7P3glfhz2sbj2XdPlP2s2nFitQFeeTv+HM69J8oxeTVOtjYfj/a+EX33AcrbciI5EfuCatMr98fa9Yb8rU1RFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEV5GTfEOigHj7xYJzckJ/1fFyuEcIGdE0+fBD4LrAX8gDNRXglcCJwCnCml/NDEvGcAPwNuBO6QUm6bKO8AlkkpR4QQNwBvn1jOJOBCKeV6IUQR8EsppRDiGuB8KeVHXtS2LcCHpJTbhRBVwBrKQSf/I6X8thDiMcoBI5uFENXAZinlJCHEWRPllx35+JXsD+OVVDoZSSlrjncbnieE2CylXHa82/F6U9v1xni1ffd4t/f1pLbl5Hc8z70n2j4/kdpzIrUFTrz2wP+t755o23GitQdUm94MJ9I1L7z19i+obXojvZb+e6Jsw5FUm16ZE7FNr9brfe59K+yTV+rPZVtP5O1U1w6vn5O57XDytf9E67vPO9n24/+F2sbX5pX23RNlP6t2nFhtON7tONHOvSfKMXk1TrY2n2zt/WNOxFCIE3Hfqja9cidquxRFURRFURRFURRFURRFURRFURRFURRFUf5Mtb7K8lcqL6VcdGSBEEIA75BS7n1R+SlA9vnnUsonJoJILgV+JYT4VynlL4+ofxZwHnCqlDI3ERrin5hsSynlxGOXl87/2A0sAbZLKUeBRUKIzwHhiekOoE089r/E/K+a9qerKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKMpx0/Uqy1+LB4G/mggjQQix+KUqCSHagCEp5Y+Bn1IODDlSDBifCCCZBax8le34FvAVIcTsI8qCRzzuAJZOPL76VS77JakQEkVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFOVE9mUg96Ky3ET56+3rgAnsEELsmnj+Us4CtgkhtgLvAP7zRdMfAAwhxI6JZax/NY2QUu4EPgP8UgixRwjxNDAbuGmiyreBTwgh1gLVr2bZf4zxeixE+ZP+53g34A2ituvEcLK19+WobVFeixNtn59I7TmR2gInXnv+r0607TjR2gOqTX+O3or7V23TielE3AbVplfmRGzT8fbntE/+XLb1z2U7Xw8n8746mdsOJ3/7TxR/DvtRbeOb40RoA6h2HOlEaAOcOO04EZyM++Jka/PJ1t6TyYm4b1WbXrkTtV2KoiiKoiiKoiiKoiiKoiiKoiiKoiiKoih/fm5I3sQNMYBvAK1AF/Blbkje9LLz/QlSyvBLlOWBj71E+c+Bnx/x/BfAL16i3qQjnl78p9YrpbwVuPWP1LsXuPePTNsDLDii6O8myh8DHnvx41dCSClfaV1FURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFUf5/9v47TpKrvvf/X6eqc5g8szOzO7M5SqtVjoCECCaIZMDGGF8HHLjO+XfNTThc7Ovvvcb2NTYGYwO2MSIJECAhkJBQllbanOPMzuzk0DlV1fn90aNNs5JW0mhndvf9fDxqp/tU1anP6T5dXVXb51MiIiIiIiIXIWe+AxAREREREREREREREREREREREREREREREREREREREREREZH5pSQkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIilzglIREREREREREREREREREREREREREREREREREREREREREREbnEKQmJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIJU5JSERERERERERERERERERERERERERERERERERERERERERERC5xSkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKXHGOMNcb831Oe/74x5mMvsY7bjDE3n/L8c8aY953juu+ZiWHdKWXtxpgnjTFbjDGvPcs6/2SM2fBSYjxXSkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKXogrw48aYtpezsjEmBNwG3Pwiiz6fnwIeAT5wStkbgL3W2qustQ+fsT3XWvuL1trdL3N7L0hJSEREREREREREREREREREREREREREREREREREREREREREZEHb+PmNH9z4+Y1HN35+YzDz94NzUK0HfBr4nTNnGGOWGmPuN8Zsn/nbO1P+OWPMXxljfgjcCXwE+B1jzFZjzGtnVn+dMeYxY8xhY8z7zrZhY0wKuAX4MDNJSIwxVwJ/Cbxtpr64MSZvjPkTY8yTwE3GmAeNMdfOLP8WY8yzxphtxpj7Z8qun9n2lpm/a8/1xVASEhERERERERERERERERERERERERERERERERERERERERERWbBmEo58BlgKmJm/n5mjRCSfBH7aGNN4RvnfAV+w1l4B/Dvwt6fMWwO80Vr7XuBTwCestVdaax+emd8FvAa4A/iL59nuu4F7rbX7gUljzNXW2q3A/wDunKmvBCSBndbaG6y1jzy3sjGmnfpr8l5r7Sbg/TOz9gKvs9ZeNVPXx8/1hbhok5C85S1vsYAmTa/2NOfUdzWdp+lVof6r6TxNc059V9N5muac+q6m8zjNOfVfTedpmnPqu5rO4zTn1H81nadpzqnvajpP05xT39V0Hqc5p/6r6TxNc059V9N5nF4N890mTZfGJCIiIiIiIiIiIiIiIiIiciH7OJA4oyzBS0iw8XystVngC8BvnjHrJuCLM4//lXpSked8xVrrv0C137DWBtba3cCi51nmp4AvzTz+0szzs/GBr52l/EbgR9baIzPtmJwpbwS+YozZCXwCuOwF4jxN6FwXvNCMj4/PdwgiL4v6rlzI1H/lQqW+Kxcq9V25kKn/yoVKfVcuZOq/cqFS35ULlfquXMjUf+VCpb4rIiIiIiIiIiIiIiIiIiIiInJR632J5S/VXwPPAv/yAsucehOQwovUVznlsTlzpjGmFbgduNwYYwEXsMaYPzxLXeXnSXhiOPuNSf4U+KG19j3GmGXAgy8S6wnOuS4oIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyD/pfYvlLYq2dBL4MfPiU4seAD8w8/mngkedZPQekX+Im3wd8wVq71Fq7zFrbAxwBXvMS6ngcuNUYsxzAGNMyU94IDM48/rmXEtSCSEJijHGNMVuMMd8+y7zbjDEZY8zWmel/zEeMIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyLz4KFM8oK86Uz5X/C7Sd8vw3gZ83xmwHfgb4redZ727gPTM5MV57jtv6KeCuM8q+BnzwXIO11o4Bvwx83RizDbhzZtZfAn9ujHkUcM+1PoDQS1n4VfRbwB6g4XnmP2ytveM8xiPnUTFXplKuUcn7TI+UqJU9GjsSLF7dhBt+Sf1Z5lgQWMYH8kwNFUg2RaiWfQLPEk+HKUxXiKUiBH5AreyRaIpSnK4QiYcwGEqFKumWGMVsFTfsEAq7FDMVUi0xyvkaxkAkEaIwXSHVHKVS9AmCgHgqQn66QiIdwasFeJV63YXpCtFEGGst1WKNVHOcYqZCKObiOIZS7rnt1XBDhlDUpTg9s71CDQNEEvW4k40RahUf/yxtqZY9UjPbi8RDGGMo5U9ti0so7NTb0hqjnKthHIjE621JNkWplnwCPyCejlCYrhCOurT1pEm3xOb7LZUzBH5Q7+PDRRINEUJhh+xEmVgiRFtvmmRj9CXV99znJd0eJTtSplyskW6N09iZoKUj8bJinBjMM3m8gBt2aOtJ0dAap1bxGD+WJzteItEUpb0nTSwZfln1y6UtM1ZieqyIV/FxXYdirgpQ/zxEHaoln2KmSiji1PenuSqlXI10Wwy/FmAtuCFDYbpKNBEi2RSltTtJNKH+KAtHpVRj/FiezFhp5rvd4oZcgsBiDDiOg+/5gMFxDbnJMg0tMUJRh8C3ROIu+cn68Uy6NUp2vExuokwsGSHVEiEzWiKejuB7PtFEmHKhBhYc16FSqhFNhInEXaxvsUDg25n5hnRLjObO5Hy/RJesqdEi+ckSxhgAfM9SzFawga1/39Z8vEpAreLT0pXAq1kCz8cJOUyP1tdrbI/hOBD4EIo6lPMeuYkyDW0xKiWPILC096TBQnashBMyBL7FBgHGcSjla8SSYdqXpkk361hR5kYhUyEzViTwLW7YIagFVCs+rmvwfUsp79HUEaOUq1GYrpBoiJBqiVLO1whFHHwPQuH6PjAIAsp5j1rZo6kzwaJlDYSjC+VSklzIJoeyZEYr5CbLxFJhkk1RWrqSxFOR+Q5N5EUVi2UKExUCC145IDtewnEMqZYYtapHOBKiVvXJjZcJx1wWLWvQMZ/Mu7H+LCZsqOQ8poaLGAdaupJUqzUIDLVK/Xymkq8SiYcJAotfC2jrSdHY/vKuaYlcSoaPZJgcLBBPh+v/j+IHNLTHCcdd0i0R4gmd712KslMF8hNVpoaLYCHdGiPZFKG1+6Xe6ERERERERERERERERERERERERJ6z42d3fHHj5zcCfBzoBfqBj+742R1ffCX1WmtTpzweARKnPD8K3H6WdX7ujOf7gStOKXr4+bZxStltZyn721Oefu751j91XWvtPcA9Z8x/HFhzStF/P3Nbz2feR44YY5YAbwf+F/C78xyOnGc2sFTLPuWsz6NfPcjIkSwAxjG86Rc2sPraRfMc4aVtYM8k3/7kdlZf20F+usLQgWluef9qfvC53Sxe3UQ45nLo2TFu/vGVPPQf+0m3xuhc0cjOhwa5/o7lPH7XIRzXYc31nTxzz1GufFMPm+/po5SrcvVblvL4XYdYf3MXk8cLjPXnuPm9q/j+Z3ezdGMrgWfp2znBLe9fxQ//bR9tS1I0dsTZ+/gwN75rBY985SDRRJhlV7Sy9fvHuOatS3nyW0fwawEbb1vCk986zMbbFrP1B8eYHilyw7tW8NhndrHqmg6K2SqD+6d4zUxbulc1EU2EOPjMKDf/+Ep+dEZbrrtjOY/fdRjHMay9sZPN3z3KlW/s4Zl7+yhkqlzz1qU8cdch1t3UxeRQgbG+mbb8y24CzwLQuiTJ2z5yBQ1t8Xl+V+VUx/ZM8p1PbicUdbnubct4/K5D2PpbxpL1zbzx5zaccyKSoUPTfPOvt/Ljv38VT3/nKEe3T5yY97oPrHlZSUiGj2T45ie24FUDABrb49zxG5vo3znBw18+cGK5ja9fzI3vXEkkPu9f63IBmRou8PhdB4klIzR1Jnj23j4qRQ+AeDrMrR9cy73/uPPE8ss3tWGM4fDWMQCufdsyHNfw1N1HTiyz/uYu2npSbLilm1BEicRk/nk1n233D/D0t0/208te283k8Twrruxg6HCmPrBuSYoDm0dpaIsRT0V4bNtBbv3gWpyQqScmS4V58u7DXPaabh764v4TdfVe1kL3miYe+MJebnzXCnY8eICr3ryUx+46SOeKRlJNUaZHiixa3sCyK9rIjJbwPZ9a2ScIYNjNsvyKtnqSCjmvxgdyDB/OEE2EMU79fT7w9AgjR7Lc8t5VbN9+DDfkcvCZUZq7EvRuaKVS9FhxVTvf/5ddlPM1AGLJMG/+xcswBiYHizz0H/vYeNsSdjw0wNRQPanqa35iNZu/c4Rr3rqMkSNZqmWf3g0tPPb1g/WkNEB7b5q3/MpGGlo1ME1emUK2wuD+KWxgiSbCBL7l0LOjtC1J41V9tv7gGLf8xCqO7phgy/f6T6y38fVLWLaxlfxUlUjUpZitEvgBg3unObB55MRyr/mJ1Wy8bQmOY+ajeXKRmB7Pc3T7FI/fdehE2ZobFrF8UzvLNrYSUkJaWeDy41UCHypFj/s+s5Nq2Qcg2RTltp9eQyFT4f7P7TnxPd+2JMmbf/FyJSKReTN+LIvvB9QKAfd+eifVUv3cP9EY4c2/sIFtDw2weHUzD3x+Lze8awX3/fMernj9Eo7tnqRcqvGu37yKlm71X5Hnc/zgND/4592svm4Rz9zbR3a8BEAo4vC2j2yknK3Ru0HnepeaWrlGbqzKdz65nVqlfqyQao5y/TtXEE2GSTWqT4iIiIiIiIiIiIiIiIiIiIiIvFwzCUdeUdIReWHOfAcA/DXwh0DwAsvcZIzZZoy5xxhz2fkJS86HXKZ+N/DpkdKJBCRQT07yxDcOkxkrzmN0l7ZSvsqP7tyPDSxNixIc3z/N4rXNHN4yhl8L6FzZyKFnx2jpSjLWn6dS9Fi+qZ1dPxoklgpTytcoTFdZdU0H2+7vx3ENobDL9EiRVdd0sP2BY/U7v7XEGDmSZenlrex7YpjAr98tvm/nBB3L0gzunaJW8elZ38Lex4dJNUfJjJco5WqsvLqD7T8cIBx1CXxLbqLMqms72Hp/fTBdPB1hfCDPiqva2fXwcWxgae5MMLhvisVrmjmytd6WrlWN9QGmnQnGjs205Yq2eluSYSrF+h3CV13bwbb7j+E4hlDEZWq4yOprO9j+wAB25i52I0ey9F7eyv6nhk8kIAGYGCgwcjT7fC+3zINSbqaPW1h97SK2/3DgRAISgIE9U4z1586prlrV5+m760lwsuOV0xKQADz5rcMMH868pPg8z+eZe/tOJCAByIyVmBou8OjXD5627I4fDjI5XHhJ9Yv0756kvbeB4wenmRgsnEhAAlDK1Ti2Z5Jk08k70R/ZNk5bz8lEeVu/349XO/3wbc9jQ1QKHlMj+v6WhWF6pMjm7xw5rWz3I8dZsr6V4SMZMqMlFi1vYNv9x1h1TQcDe6do7krg1YL6cUlgGR/I4zoO19+xnCe+efi0uvp3TZ5IVrX1/mOsvLqDPY8NsfyKNo7vn6ZpUYLRvhzxdITdjxynmK0QjoZwQg6OY/DKPvufHEHOv+HDGXKTFdyQQ2a0SLXkMXIkS+viJMNHMrT3NnDwmVEAVl7VwY4HB+ha3Uj/7okTCUgAyoUah7aMEoo47HiofiwRjronEpB0rWqkb8cEvZe3sfNHg7R0J3HDhr1PDJ0YmAww1p9j9OhLO1YQOZvp4SJ+LcD3LIHvs/eJYZoWJShMl8mMl3FcQzjisvX7x05bb8eDA9gAjmwdo5ir4lV9SrnaaQlIAB7/+iEyo/qel1emlPN46tunfz/vf3IEvxYwdiw/T1GJnJv8dInACzDA/ieHTyQgAShMVxg/lmfXw8dP+54fHyicdt1T5Hyq1TyCoJ5sdO8TwycSkAAUM1X6dk+y7qZO9j4+RM+GFg48PULvhhZ2PDjAiqvaKU5XObpjfB5bILLwDe6bopSrApxIQALgVQO2PjBAOOqQGdO120tNpeyx86HBEwlIAPJTFSYH80wOqD+InA9BuTzfIYiIiIiIiIiIiIiIiIiIiIhcsOY1CYkx5g5g1Fr7zAss9iyw1Fq7Cfh/wDdeoL5fNsZsNsZsHhsbm9tg5VXhGoNxHKql2qx5+cky1bJ3lrUuPgux73oVn9xE/cdZzw2cSDZGyU2eXpZojJCdqP+w1gYWa+s/ai9kKgC4IQevGhCKuCcGuMdSEQqZ6ul1N0XPur3sc2XBye3lp+p1GwOBZ4nEQ5Ry9T4UiYWoFDyMAX9mcPzZ646cpS0n22dtfYqlwhSmT7alVvFxI86JvhlLnWzr2eo+VXGmzRebhdh/z0Wt6pObqL938XSY/Mz7fKpKcfa+6Wy8is/0aOl516kUPWpVf1b5C/Grlunh2QM8K4XaaQluTt2GvDQXat+dK5mxEoFv6/v2idn7rPxkhXg6clrZqQPpvFqA45hZ6wWBVX98lV3qffelqBS90xJMwcx3fFBPXpZsjBD4tt6f3Xp/fq6f5ybLYMG4DoEf4DgOlcLsvv3cYJJyvkY4FiI3WSbRED2trsC3TI+UiCbDM/EYvKpPuVAjO1k6cZxzKVgo/bdS9HAcsNbiVYNZx7un7u+g/h5G4yEyo6VZdWVGSrhhh9xkmVDYOW2A0XP1PXd8eGK/e7Zjxey5HXfI/FgofffFeLUArxrghh0c1yEzUqyfk9UC8lNlEo0RqiUPe+Z+x0K15OGEDV41qCcyqc3OFet7wWkD7uXCsND6b6189v5Vq/hUCtoXykkLre8COK7B+hYLTJ3lnD0zVsI7y/l/KX9xXhOSs1tIfTeo+lgLjuOcNZFYdqxEujl22jFroiFy2vHw1JAGy19KFlL/vVBkx8v1/6M4y74+M1okHA3h+5fOef98WWh911qYOkvi8GK2etZjBRGZWxP/8jn2X38DlYMHX3xhEREREREREREREREREREREZllXpOQALcA7zTGHAW+BNxujPm3Uxew1mattfmZx98FwsaYtrNVZq39tLX2Wmvtte3t7a9y6DIXAixBzaehIwFnjGNefmU7zYuS8xPYebYQ+26iMcqaGxYB4IYdjGM4fmCa3staTywTjrqMHs2yeE0zANWyR6IhwvRIibYlKaA++KKlO0m15JFsqg/IHT40Tc/6FgBCYQdM/W6By66o1+04BidkGDqUoXdDfTnfC4gmQkwMFOhc3gDUf6zZ0BankKnQtCgOwPixHJ0rG+t3oY+5AAzsPVm3G5rdlufuWD/al2Xx6iagPjA10RghM1aibUm63pbREq2LU9TK/onBxUMHT8Z4oi37p1l6+ezdVHtv6hW8IwvXQuy/5yLRGGHNdfU+fvzANEtP6dtQT3LTdI77oHg6wrqbOwFo7IjjhE7foS1a3nCi/5+raCLEupu7ZpU3tCdo7IifVhaJuTS2x2ctKy/sQu27c6V3Qwt+LSA7XqJ7Zt93qu7VTUyeMtDICZnTko40dyZmJRuJJcNYLA1tsVctblHffSka2uIkGk5PppNoiFAteyxe28z4YB6A5q4EuYly/RhkJhlJ72UtOK7BGAhFHKZGinStajytLscxxFP1+rtWNTF+LMeyja0M7pvCOAY3VD82CIUdVl/XMZOEzQKWSCJEQ3ucZZe3njWhz8VqofTf5s4EZuZ1j6fDhKMuGBg5mmXJ2vqxXThaP5Ys5ao0tMXIjpdZtnH2Md7yK9vwKj7LNrZRq/jE0+ET844fnKb3spb6se7GNhzXcPzA1FnraVtyaZz7XKgWSt99MYl0mEjMxa/4+J5l5TUd1Co+sVSYRUsbmBgokGiIzjo2jafDJJujhMIu8XSEcMwlmgidOKd6TnNngnSLvucvNAut/yabIjQtSpxWFo66xNNhmjsTz7OWXIoWWt8FsBhM2MFaWHVtx6z5S9Y209o9+zu9tfvivCYkZ7eQ+m40GcU4UC5UWXn17Fh6L2ulf88kSze2MbhvmmUb2xjcP026NUYpV0+osPzKhfH5k/NjIfXfC8WSdU0Us9WzXp9dc90ipkcLxFKheYjs0rLg+q6xrLmhc1Zxy+IUicbIWVYQkbmUuesubLVK7oc/nO9QRERERERERERERERERERERC5I85qExFr7R9baJdbaZcAHgAestR86dRljTKcxxsw8vp56zBPnPVh5VaSbEviBT6o5wu0/s45kUwRjYPmmNja9YQmhiPvilcirwg05XPOWZay+voM9jx7nlvetAuqDbdfd1MWeR49z07tXkmiKkp+usPG2Jex7coRr3rqUtsVJRo5mueYtS+nbNcH6W7roXt3E0e1j3PCuFUwMFuhe3cTSja3se3KYm398FdWyTzwVYc11Hex6ZJBb3ruKaDxEpeRx2Wu72fv4MNe/YzlNi+JMDhW48o09HN4yyhW3L2HR8kaO7ZniujuWMXw4w/JNbfRsaOHgM6Pc9J6VFKYrNHUmWXFVO7tn2vLcoNN1N3ex57Hj3PTuFaSa6nel3/j6JRx4ephr3rKUtp4kw4czXPOWpfTvnmDdTZ0sXtvEkW1j3PiuFUwOFeha2ciyja3sfWKYW967qj7ILxlizfWLMI4hng7zxp9fT8fShvl8S+UMoZDLtW9bxuprOxg+lKF7TRPLr2wDA6nmKG/9yEbaes59kNC6m7rYeNtipsZyvPkXLqOhrf6j88Vrm7j5vStp6XzpA4vXXLeITW/owQkZookQt35wLW2LU/zYL11O10zSiJbuJG//9U00dWiwnrw0XSsbaeiIc9Wbe/GqHpffuphQ2CEcddn0hiW0Lk7StbIJgMb2OG/6uQ0c2zdZX3dVI5e/bjEtXQk6ltX3ba2Lk9z0nhUsv6KNhlYlxZGFId0S423/+Qo6ltYTirX1pLjmrUuxAdjAcvWPLWX8WI4Nt3QzfCTDze9dxd7Hh1h3Uye9G1oJfJ+edS2MH8uz9f4+rn/HCpasrydfa2iL8cZf2MDWH/SzZF0zSy9vIRxzSTZFqVV8bnrPSo5sH+PGd68ksJa23jQdPWlc1yESD+GGHWKp8GkJ3uT86VzRSHNnklrFp21xmnRrjFvet4pQxKWQqRAEATe+ewVNixLsfXyYa9+2jJGjGdJtUa7+sV7CUZdQxOGqN/fSuiRFdqrMmusXseqado5sG+eGdy4nlgpTztVo7kzSuaKRlu4k2YkS62/upqE9zsqr208cK77pFzboWFHmROviFMmmKPGmCOGIQ8fSFIFvSbfEiTeEufzWxRzcMsLrf2Yt7b3pE+u84ec2MDmUZ/W1iwg8n3DEJd0a4zXvX01zV/04s2tVI2/68GWzkjuJvFShiOG2D62la2V9v9fcmeANP7eeRGOYxnad18jClkxHCUcccCxdKxu58k09uCGHSMzlhnetIBR1WHXdIlZd23Hie/71P7OOrtWNL165yKvECUEQ1L/LN72hBzfsEI65XHfHcpq7E2RGiyQbI7T2pGaSQoXY9IYeDm0d45b3rTpr4lIROalzVRM3vmsFxw9Oc81blxFNhHBcw+W3LWbp5a2kmmIkUkrkd6lJNyXoWd9U3++G6teCrnnbMjqWpulc0TTf4Ylc1Ky1eCMjAFQPHpznaEREREREREREREREREREREQuTMZaO98xAGCMuQ34fWvtHcaYjwBYaz9ljPl14D8DHlACftda+9iL1XfttdfazZs3v4oRy1wq5stYaylM1Qg8S0NHjEQq+uIrzr85v239Quu7Xs2nMF0lFHEwhhN3dy/nPZyQgxsyVEse8VSYStEDY4jEXMqFGrFUmGrJx1pLLBGilK8RSYQIahbfC4jODMwMR+t3kPWqAfF0mFK+hhtycF1DtewRT0co52s4riEUdakUasRSIarFAGss0ViIcqFGNBHGq/oEviWWnNleLETgW7xaQLwhTClbq7fFgVr51LYYQmGHSvHsbYkmw9TKL9CWdJhytt4WgFrlZFtCIWfWncYXgDnvu7Dw+u+5OLWPRxMhCtNVwlGHRMNLf898P6AwVcEJOZQLNbxqPSFNU8dLT0DynMAPyE9VcFxDqvnkj9WrJY9Svko0HiaWCr/s+i9QF/2+93zKT5XxagHGATuzv3TcejIq47pU8jWstYSiDm7IpVrySDdHKRc9/JpPNBGmWvZmBthFiCUuuf74UqjvzpNKsUa5UAPqP0J3HAOOwfqWSDxEteQRjoWoVX3KuRqhiCEILKGwS6IxOlPmkGyMkh0vUcxVicZDM8cHHm7I4PsQT4Yp5au4YYdqxcev+GAgFHUJ/Jntzpx/haMuycbYicRoF4CLrv9aa8lPl6mWfYxjCGoBNrBYC8mmCL5nCXyLMRBPR7DWUi7U6neSz9YwjiGWCuM4Dm7YUMhXIDDUyj7hmIvrOjiOIdkUxRjq3+eOwfctYMFA4Nf7QmrhHSteTC66vnsuitkK5UINawyOY/HKAcY1WGshgGgqjF8JqJQ9IrF6Uh2vGuDXApzQc/lqLTaoPzKOId0SIxLTHdzPs4u6/2bGC5RyHm7IId4QItWoRHYXkYu67wIUC2XKOR/jWGql+vlUKOzieQGuC8YYquX6+ZKShl5QLtq+W616FDMVHBdKWQ+AVEsUr2pxQ4bAs4Rj9XP+WDJMpeRhTP37Xy4YF23/vVCMHcvWT/VcU/8/ilQIx3FINelz9CIu6r5byBYpTHtYHyIJl+ZFL///CmRBejUu7C2MH29cwLypKQ7cdDMAiRtvZOnn/mWeI1qQLpiL0iIiIiIiIiIiIiIiIiIiIjI/FszoEWvtg8CDM48/dUr53wF/Nz9Ryfny3F3gkmkNOFloQmGXxvbZ70skdnKQeTxVvxN2JH6yLDozCD16Stmp808sd5ZBbKcObIunI7PKYifqPqWe5wa9J194e5H2U7aXnt2WWPL523LqwPqztqX9hdsiC9OZffxs/f1cua5DQ1t9/bkaTOycUuepIvEQkbj6l7xypya3OavnGXAUm9n3i1wIoonwyWOFs4if0p8bW2fvc089Xmloi5++X06f/lnQvvnCYYwh3fzSvvefO7ZtaJk977njyOdztu9zkVdLoiH6spLqiZxPjW1JGtvmOwqRlyeRjJHQGGK5gEQioRPXRc92LPuc586NXuj8SUTOrr2nYb5DkAUo2ZAgqa4hcl55Y2MnH4+MzGMkIiIiIiIiIiIiIiIiIiIiciExxvxX4IOADwTAr1hrn3wZ9dwGVK21j808/xzwbWvtV89h3fcAXwfWW2v3zpS1A98GIsBvWmsfPmOdfwL+ylq7+6XG+kI0Qk5ERERERERERERERERERERELmj+xAQA0Q3rqR3tm+doRERERERERERERERERERE5EJgjLkJuAO42lpbMca0UU/68XLcBuSBx17Guj8FPAJ8APjYTNkbgL3W2p89c2FjjGut/cWXF+YLc16NSkVEREREREREREREREREREREzhdvfByA2IYNBMUifj4/zxGJiIiIiIiIiIiIiIiIiIjIXNuzbv0H96xbf3TPuvXBzN8PvsIqu4Bxa20FwFo7bq09DmCMeYMxZosxZocx5p+NMdGZ8qMzyUowxlxrjHnQGLMM+AjwO8aYrcaY187U/zpjzGPGmMPGmPedLQBjTAq4Bfgw9SQkGGOuBP4SeNtMfXFjTN4Y8yfGmCeBm2a2e+3M8m8xxjxrjNlmjLl/puz6mW1vmfm79lxeECUhEREREREREREREREREREREZELmjc+AUBszRoA/Kmp+QxHRERERERERERERERERERE5thMwpHPAEsBM/P3M68wEcl9QI8xZr8x5u+NMbcCGGNiwOeAn7TWbgRCwH9+vkqstUeBTwGfsNZeaa19eGZWF/Aa4A7gL55n9XcD91pr9wOTxpirrbVbgf8B3DlTXwlIAjuttTdYax95bmVjTDv11+W91tpNwPtnZu0FXmetvWqmro+fywuiJCQiIiIiIiIiIiIiIiIiIiIickHzJycgHCa8ZEn9+XRmniMSERERERERERERERERERGROfZxIHFGWYJzTK5xNtbaPHAN8MvAGHCnMebngLXAkZnEIACfB173MjbxDWttYK3dDSx6nmV+CvjSzOMvzTw/Gx/42lnKbwR+ZK09AmCtnZwpbwS+YozZCXwCuOxcAg6dy0IiIiIiIiIiIiIiIiIiIiIiIguVn8vhptO4DQ3151klIREREREREREREREREREREbnI9L7E8nNirfWBB4EHjTE7gJ8Ftr7AKh7gzDyOvUj1lVMemzNnGmNagduBy40xFnABa4z5w7PUVZ6JdVY1gD1L+Z8CP7TWvscYs4x6G1+U8+KLiIiIiIiIiIiIiIiIiIiIiIgsXEEuj5NO4TY21p9ns/MckYiIiIiIiIiIiIiIiIiIiMyx/pdY/qKMMWuNMatPKboS6AP2AsuMMatmyn8GeGjm8VHgmpnH7z1l3RyQfokhvA/4grV2qbV2mbW2BzgCvOYl1PE4cKsxZjmAMaZlprwRGJx5/HPnWpmSkIiIiIiIiIiIiIiIiIiIiIjIBc3P53CTKZyGehISP5OZ54hERERERERERERERERERERkjn0UKJ5RVpwpf7lSwOeNMbuNMduBDcDHrLVl4OeBrxhjdgAB8KmZdf4Y+BtjzMOAf0pddwPvMcZsNca89hy3/1PAXWeUfQ344Lk2wFo7Bvwy8HVjzDbgzplZfwn8uTHmUcA91/pC57qgiIiIiIiIiIiIiIiIiIiIiMhCFOTyOOk0bmMDAH4mO88RiYiIiIiIiIiIiIiIiIiIyFxav3fPF/esWw/wcaAX6Ac+un7vni++3Dqttc8ANz/PvPuBq85S/jCw5izl+4ErTil6+Iz5qbOsc9tZyv72lKefe771T13XWnsPcM8Z8x8/I87/fua2zkZJSERERERERERERERERERERETkghbkcoSX9uLEYphoFD+bme+QREREREREREREREREREREZI7NJBx52UlH5MU58x2AiIiIiIiIiIiIiIiIiIiIiMgr4RfyuKk0AE46TZDLz3NEIiIiIiIiIiIiIiIiIiIiIhceJSERERERERERERERERERERERkQtakMvjpGeSkCQSBMXiPEckIiIiIiIiIiIiIiIiIiIicuFREhIRERERERERERERERERERERuWDZICDI53HTKQCcZJKgUJjnqEREREREREREREREREREREQuPEpCIiIiIiIiIiIiIiIiIiIiIiIXrKBYBGtxUmkAnGRCSUhEREREREREREREREREREREXgYlIRERERERERERERERERERERGRC1aQywHgpFP1v8mkkpCIiIiIiIiIiIiIiIiIiIiIvAxKQiIiIiIiIiIiIiIiIiIiIiIiFyx/JgmJm04D4CQSBMXifIYkIiIiIiIiIiIiIiIiIiIiFxBjzHuMMdYYs+5FlvuuMabpPIU1L5SEREREREREREREREREREREREQuWEG+AICTTM38TRIUCvMZkoiIiIiIiIiIiIiIiIiIiFxYfgp4BPjACy1krX2btXb6vEQ0T0LzHQCAMcYFNgOD1to7zphngL8B3gYUgZ+z1j57/qOcI7kJCHwoTzJW6SY3WSESc2nrTRFLRF5x9aWxMQgCgoEB/MlJQh0dJDZtmoPA5VLlHe+j2ncEp7kVfI8gm8Fd1I0/NoKTTGEcF396ArdzMcHkOCYaxUSi+BNjuB1d2FwWi8VJNeCPDeO0L8IWC9hqlVBLO97ocZzmNvCqBPk8bseiet3pJrCWIDNJqHMx/sQYxOM4oTD+5Di2eyW5HBjXIRSPUJrIk2hLUStWCTyfaGOC4niOeHMSv+pRK1VJtKYpjueIJCKknBx2fIhQ52K88RGcVAMGM6stRGME46OntCXASTfijw7jtHfW21KpEGo9oy25LOElSwibDIRj0LoSQrH5fjsvWlMjeXITFQLf0tgRp3lR8oVXKE3D5CFwI9CyEiKJE7Nqg4PUhodw42Fs4BNULZGmEKHyAJWWa/H6+vCzWcLd3TiNDfiDfYSbIoRTLsSboHk5GENtdJTa4CBuQwORpUsxoQXxlSsLUeDDxCEoT0FjD1QLUM6B9erzakUIxcEYqOQg1Q4BEImBX4NaCTAQCoNXAeNCywqwPozsqm/DjUC6G1qX15efOATlaWqRDjKlNH6tRkOTS8lLUskVaEhVSTYnIdVxWqhezSczWsL3A7xqgA0soRDEKuNEyxNEehfjtPZgfZ9qXx9+JoPT0EDJC5HP+MQSLqmWMHZoCG/mOCUIhYh1dREUi/iZDEEuj/WqOMkk4c5FhLsWn/e3RC4O1vepHj2CP9JPuDFKuDkJbhwvM0V1ooSTbCDSHMHxpwnCrVSnPbxwkumgiWo5INUUJRmpkJ+q4PmQ8HNEajlMayvBxAROOo2JxzHGEFu6dL6bKy9XrQrDWyGcgCAAAsiNkIlfRTHnYd0QxnExDmAcLAbHMXi1gFgyTFNHAjes3J5yYauOjeFNTmJiMYLRUazvg+vixGL4yWay1Ti1akA0EQIDYdcSK43jehWCSoVwRwdOQwPVvj4cxyfUFMObLhHUqH9uPA9bLBBqSRFd2oNpWDTfTZYFYGooS3ayhrWWhtYILV0N8x2SyEsyPZIjN1nFqwY0tEZobQtB7EWuRYicb74Hw9uhMAbxlvo1htIUJFoh0QY2oOAlmZxwIBQiFHUxdmZdY4glQjS2JzCOObfNlUpU9x/Ay0zjptL16xjGYK0Fa3FCLgFgHAdrLQawnldfzsLMP2AtGIOZiWMmoPr8medOIkmktwcnGp2jF0tk7hSGx5jKhKgUa6RborR0RAjF4/MdlsyTyeNZcpNVMIbGlghNXen5DknkohaUigA4yfr/+7lKQiIiIiIiIiIiIiIiIiIiInJR+uRHHvgg8HGgF+gHPvprn7r9i6+kTmNMCrgFeD3wLeBjxpgu4E6ggXpejv9srX3YGHMUuNZaO26M+QbQA8SAv7HWfvqVxLFQLJQR0b8F7KH+BpzprcDqmekG4B9m/l54xo8CARRGGays5cF/3830SBHjGDbetpgrbl1M44sNnH8Bxb4+8Dyq23cw8md/RlAo4KTTdP7xx2h829vmrBly6Shv38zA730Ut6WFxDXXMPmv/0r7r/4q2Xv/Glut0HDHO5j4zGdo/umfprTtn6n19dHy8z/H+N//Aw1vfSve+DjFp56k/bd+i/FP/SOJ667FicXJfPe7LPr932fi8/+DSM8SomvWMPUfX6Ljt3+b6bv+EhMKkb79diY++1laP/xh8o9+Cm98nOYPfICJf/wUDX/yf3j26VGG+opc+/ZlbP7uXpZe1krgFzmybZybfnwlW764j7YlaVLNVXY/epybf3wVO79+gMxYCeMYrrohzeqGItm//P9hy2Ua3/lOxj/zGZp/6gOUd/wLlSNHaP2Fn2f8Hz5Fw4/9GN7kJMUnn6i35R8/TeLqq3FSSTJ3f5tFf/AH9bYsWUx07Tqm/uM/wPMIL1nCkt99P7HNfwQ3/hq85rch0TLfb+tFZ+jwNHseHWLvY0NYCy3dSW774Fq6VjWdfYXxg/DNX4NjT9SfX/Wf4Pb/CulOCk88weBv/w7+9DQmHqftl3+Z6bvuwoQcOv/vX1H61jcZ/39/h63VCC1aRNfH/xfDf/n/YbNZlvyXnyXeXIVkG6VgFQO/+Vt4Q0MQDrPo93+fxve/HzehH5vLGWol2H4n3POH0Loa1t1xMkFO6yrY8WVItkP7Otj8zxB49UQ3b/yfsOWLsPRGeObzcNXPQHYAnv18vd47/hoe/RuYPAxOCK79eYg0wNq3wfYvweZ/In/5r/Hk1LvZu3kAgM4VDSxZ18Lm7x4l3RLjLXdU6Vg+DF1XAFAu1Nj6g358L2CsP8fgvmkAll7eStuSJF3lKWLf/CYtH3wfuc37Gf3zP4dQiOif/QMPPlSjmK3ihh1ec0c3sc/+H2rbt+K2tND1Z3/K2HfvIXnVlUx+7vOUNm8GIPWGN5C69XXEL1tP7LKN5/udkQtcUC6T+cZdjHz8L+qJzzraWfy//wS3uJXjf/9Nyrv2gjE0f+D9tLz7zUzc+Xlq3Ws43HwLux7ZBhZaF6e45f2ryExaHvr3AzS2x3jtFXnijz1G4uabKT+9mej6ddh4nMK2bSSuuAJjzm1wniwQxWl45l9g8TX1/bEx8L3/xsitX+bAk9NUih4tXUkC35IZLxEKOzS0xtn1yPET53FX/1gvV76xl1gyPN+tEXlZSvv342ezmGiUzF3fINLRTmnnLtymRtx3/Sd2Ppxjz+P7AWjvTXPF65fguIZQpBHztc9Q/sq/0/57v0f2nnuo7N5N43vfS3TN6vpA46YmqFQZ/+Qn8UZHMZEIHb/3WzS96Wac7nXz23CZV8OHpnnm3j6O7pgAYPHaJm54x4rnP4cTWWCGj0yz9/Fhdj98/MR1iFt/ag3d7Tlo6pzv8ETqKgV4+jPwwz+rJxy5+TfgwT+vJzeNNcIdf81I9Gbu/edD5KcqOK5h0xt6aOlOYn1L4Af4niWayLLymg5CYfcFN1cbHWXsE58gc9c3AIhdcQXNP/1BcFxwDJTLEIlgYjEcx8G6IQh8gkoVWyrW849YC0GAxQIG4zj1576HrVSxlTLW8zCRKE4kQvbeLC0/8yFCTU2v9qspcs6m+kY5uLPA5u8eJfAt6ZYYt31oHe3dReJNrfMdnpxnQ4emeeruIwzsnQLq11GvfVsvnSua5zkykYuXLZUAcGL1G0OYRIKgWKwnQNO1WxERERERERERERERERERkYvCTAKSzwCJmaKlwGc++ZEHeIWJSN4N3Gut3W+MmTTGXE09Icn3rLX/yxjjnrLNU/2CtXbSGBMHnjbGfM1aO/EK4lgQ5v2WzcaYJcDbgX96nkXeBXzB1j0BNM1kjbnwuBGoZpl01vLs9/qYHqnficcGlu0PDDB2LP+yqw5qNUwkgp2YYPiP//jEHX2CXI7h//4/KG7fPidNkEuHn51i5K/+htqxY6RffxuT//zPRJcvp3LgAJV9+2i44x2M//3f46bT2HKJ0ubNNL77XYx/8pNYz8NtaSH/wx/S8I53MvHZf8afmiK2dh2Zb36T9OtvI/PNb+IdP07yppuY+td/I77xcoqbN1M9dIiGt7yF8X/4B0IdHXhjY5S3b6fpXe9i/O/+DqehkRGvg6N7sqy7qYtnvttHreTT2JHg4DOjrLqmg50PDVKYrtK5spFdDx9nydoWjmwfJzNW/+GZDSzPPp4lm+imsncvDe94B2Of/CROMomtVik+/TRN734345/8e2ythtvaSv6BB+pJV/7lc/iTk8Q2bCBz1zdI33Ybmbu/VW/LzTcz9a//Cp4HQG1ggOF/ux9/6Rvhsb+BwWfm7w29SFUqHhMDBfY8Wk9AAjB5vMD2Bweolb3ZK1gLW75wMgEJ1J/3PUZteJjB3/t9/Onp+qKlEmOf/CSN73on1cNH8YeGGfurT2BrNQC8kRFG/vwv6P6Lv8AbGmLoU1/HG9iHNznO0Mc+Vk9AAlCrMfLnf05l395X8ZWQC9boXrj7t8CrwGXvhh/9JbStgdE99X3G6B5Yfis89el6AhKAqSPw5Kfg8h+vDyDa9IH6DYGf+Vy9j6+4vZ7YZPJwffnAg6c+A5EEjO6qD0Jywgwlfoy9m3MnQhk+nKWQqdDQFiM3WeahH0ao7Li3PkAJGO3LsvuR4wSePZGABKBv5wTWGvaOt1E4eJziniOM/OmfYms1Yu/5SR55zKOYrQLg1wIe+sYA7js/VH8+OcnwH/8JDW98A8XNm08kIAHI338/teNDFHfswp/54bDIuaocOMjwx/4EW633PW90jKE/+d8Uh009AQmAtUz9x5cpHhpm+u57KF3zFnY9fPzEzbcnBvPsfvg4bUsaCEddMmNltvc1kN++i2B6muKWLWTvvRc3HodajUr/sXlqrbxsg0+DVwQ3DNMDsOXfqVz+izxx7yDhaIhkY5T9Tw8zOVSgoTXO+ECB/j2Tp53HPXNPH2N9uRfZkMjCZGs1glwOWypTO3QYNxJm/JOfJLZ6NSYaZTwXYs/jQyeWH+vPMbh/ikqpRmG6Cre+k+j69ZR37aKyezcmGiXU1UWQL2DcEP7oKJOf+xe80dH69qpVRv78/6PSP8SJg3e55FhrOX4wcyIBCcDgvmn6d0/i6e7UcgEoT0yQGSmz60fHT78O8cMBipUXTtIgcl4NbYEf/E/wa3DlT8MDf3bi/J5yhvK+R3joy/3kpyoABL5ly339FDMV8tMVMuMlpsdKTAwWmBx68f1z8amnTiQgAShv307p6c34uSz++Dh+sYg/NYU/NoafzRIU8thSGVsuYas1/IlxvOFhaoODeP3HqPX1URs4hjc6QpDJEtSqEFiCao1q31Ey3/seQTZLeceOV+PVE3lZymNjTGcMT919hMCvf0nkJss8ftdB8jklrrzUFKcyHNs9eSIBCdSvow7uz8xjVCIXv2Dm/xJMvH5TADeZBGtPJCcRERERERERERERERERERGRi8LHmZ0MJDFT/kr8FPClmcdfmnn+NPDzxpiPARuttWcbRPSbxphtwBNAD7D6FcaxIMx7EhLgr4E/BILnmb8YOHVE38BM2YXFWgiFoDhBtWYYOjj7R2bZifLLrj6oVHDDYbyREWz59HqCQoHa0PDLrlsuTf7EGMWntwAQlOs/Ro9tWE9xS73MVqvg+0RXr6a0Y2d9JTdEUCgS6emheuhQvaipCW9kBKehAW98HIDIipWUd+8+ve71G07UHVRmytato7h1a317QYCtVknecjPHjtT7eCjiUi7USDRGyI7XfzyWaomduDN9rewD0NaTYvjQ7M9cLhuc3pZVqyjv3FWfGQoRFAqEFy+meqQ+kN9tbsYbGsJJpfAmZtpyyjrPteVUpWe34zdvqj8Z238uL728BMVMhcxocVb5wN4pCrnZ7weVHOy7Z3b5safwRsfwJ85ILuZ52Fo98YM3PDRrterBg9hstl71nv34Tit+aBGVXbtnLVsbHDyHFsklJ9N/8rFXhkQLZI9D1xVw7Ml6ee0sP4499iSE4/XBRG4Y8iMn53VtOrnuqfwqjMwMzmlYzPGh2YMfRo5kaV2cAmD0WJkyLVCsfy4yYyVau1OM9mVnrTcxmKdQcnCvuI7qkWM4ySQAQddyshNnfBYtFEmebPbICEEmQ/HJp2bVWz1yGFupEkyOz26PyAuoHZ+9z60eOYpfmP3dUN6zl3BPD5PDsz9rQ4cy1Co+je31H60P9pVxr7iO2tAwpWefxXo+Npev/5C9qIHTF5zpfmhaCn4F0oug7xFKK95ObqpaTzRiDC1dKYYPZ/BqAe29Zz+mnB6bfSwiciHwC4X6IJx0isrBg+C4WAve1BTR5SsYOzZ7vzZ0KIMxhnLBoxZLE7/6Kkoz53HhxYsJ8jn8fB7redhajeqRo7PqqA0NQ/XlJ2GVC5vv+xw/MD2rfGDfFESi5z8gkZfIRONMDc/ePx4/ME2pqgHmsoBMHT352AC1049Zy+nLzpoUvVoO8D2L47pEYiGckCF3Dv9vUXxmdvLl4tatONEY/tQ0BBYTDuNNTQEGWywSeB62WgMs1g+wngfGgOtiwuF64MZgfQ9bLOHn8/WEJhMTRBYvxkkmqRw6/FJeFZFXlR0fJzc5+7rD+LE81ZI/DxHJfPKDMINnOe4d3Dc1e2ERmTPPJSFxEvXfGZ34vwolvRQREREREREREREREREREbmY9L7E8hdljGkFbgf+yRhzFPgD4CeBh4HXAYPAvxpj/tMZ690GvBG4yVq7CdgCxF5uHAvJvCYhMcbcAYxaa2f/QvWUxc5SdtZb5hpjftkYs9kYs3lsbGxOYpwzxoBXg1gToTC09aZnLZJsevmDLZxIhKBWw21rn/mB7imbjsUIt7e/7Lrl1bcQ+67b2Ez88vUAOLF636wcOkxs/XNlMTCGytGjxNatPbGeiUapHT9OeOlSoP6jLrelhSCXw21tAaA2MEBk5cp6PdHn6j50St0zZYdPbs+EQxAKUXrmWbqWROp1+wGRmEsxVyXdUt8nl3JV0q0xbGAJR+t3oJ0aLtLec5bPXMo5GYMxVI8eJbp2TX2mtZhoFG94iEjvTFvyOdzW1nqbmmfacqyfyKpVp8V9quiGtbi5meQjrSte/IW/AM1n/02kw6RbZ38fL1reQDwVmb1CJAnLb51d3n0lbksLTmPj6eWOgxOp1xNq75i1WrinB5OuJ2yILF+Ka6dwgykiK5bPWja0aNE5tEjOpwWx7013nXwcikNpqj4QfmxfPREJ1JONnKlzUz1pieNCEECi7eS88X31+Wdyw9C2rv44P8yiDm/WIm096frAe6ClK0bUTkGsqR5qa4zp0eKJJCWnau5MEI9agv07ifR0n/hBrzNxnGTT7M9izJxM9uC2tOCkG4hvumLWcpHeXkw4hNPUMrs9l7AF0XcXuLPtc0NdXTiJs3xXr15FbXCQpo7Zn7X23hThqHsiWWDH4hjBvh2EOjqIbdgAjoNJ1n/QbmIXxfnhq25B9d+GbsiNgBOB0iR0X01s8AkSqRCN7XGMganRAm09aUJhh6nhIm1nOaZsOMuxiFx8FlTfnSNOMomJxiCXIzJz/kYQEGpqojo4QGvXmYmBob03jQ0s0USIULVAefceYhvq52y14WHcZBInkcCEXEwoRHhx96w6Qh3tEE7OKpdXz0Lqv4Hn0bGsYVZ554pGAq82DxHJQraQ+u5zbLlI41mOGzuWNhANzz7HkkvTgui7DUtOCcgB9/Rz82jhAM2ds7/rQxEHN2SwQYBX9bHBuf2/RWzjxtll69dja1XcpiZwDHgeocYmMODE4/Xz/VAIjINx3fr1XwA7k5AEsIHFOC4mHsNJJgi1NOM2NFAdHsZWK0R6X/b/F8rzWBD99wLlNDaRbJx9Hay5K0E45s5DRJeWhdZ3HTwWPc9xr4i8euxzSUhmrtU+l4xESUhEREREREREREREREREREQuKv0vsfxcvA/4grV2qbV2mbW2BzhCPQHJqLX2M8BngavPWK8RmLLWFo0x64AbX0EMC8q8JiEBbgHeOZMR5kvA7caYfztjmQGg55TnS4DjZ6vMWvtpa+211tpr2xdi0g2/noSk1d/DdW9dRjx9MlnI6ms7aF3y8gfhPJeExGlrpeMP/wBCMz/YDYdZ9NE/In7lWQYjy4KxEPuu29LOoj/4XdymJgpPPkXT+95HeccOEtdcTairi+x999Hy8z+PNzxMqKODyMqVZO++m7Zf+RWCahU8j9imTWTvvpvWX/pFTCRC7dgxkq97Hbn77qP5J38CJ52mtH0bDe94B8WnniJ1222E2tvJP/QQzT/zIapHjhBduYJwby/Z73yXtl/6Jar9/SxpLtKxJM6+J4a55q3LMBhKuSqL1zZz4OkRNt3eQzjqMjGYZ+XV7fTtnGD19YuIpU5+5tZvStLEFKHubrL33Ufrhz+MNzpKqK2NyKpVZO6+m7aPfISgWiOoVolfdSWZu79N6y9+uN6W/n5St95K7r7v0/wT78dpaKC0dRsN73zniW04jY10fviduIe/DVd8ALrP/G65OMxn/43GI7T3pFl2ReuJsmRThKve1Es0fpY7EDsuXPdhaDklIczqN8PSW4gsWUz3n38cM5MYB8eh9cO/QPbee3Hb2nC7u2n+2Z89WVUySccf/RdG/uoTOKkUXb/2k4S6lxOKu3T9yR/jpE4mamj9lV8mtm7dnLdfXpkFse/t2AC3//d6srID34PrfgkyAxBNw8rb60lKBjfDxvefXCfeDDf9Ouz5DtzyO7Dr62ADWPv2+vz998JVH4LEKYk7Ln8vFKfqiU3W3QG1EovtY/SsOTl4rrE9TnNngqnhItFEiNve4BPbcBvEm+qh9jbQs76FeDpCS/fJY5aOpWlCEZcNi7NE4pb4umW0/dqv1hNVffXfec0tkRNJoTBw/ZsWwT131p/GYiz6rx8l98jDJG+9lciKk5/N+FVXEurqIn7ZetykBiqfakH03QUuumYNbb/x6/XPFuAkE3R97L+Q6DKEuk8m/0m94Xbia3tIXX8NqUNPsmzTyYQ+qeYoG29dQmasSLXkEU+HuXptmWh7M257G8mbb6bhzW/Cr1QwkQhRDX47Jwuq/y6+Bqq5eorLWAtc92Fij32UG9++BN8PmBrKs3xjO53LG8iMl4glw6y8qv2087j1N3fR3jt7UJFcfBZU350jTjiMaUhj4nEia1ZTGx+j7Zd/mUp/P97QEO1tlt4NJ48nGtpi9KxvIRwNkWyM4DxyL+UtW0hcfz2hri5ssYifzeEkEvUkqR0dtPzCL+DMJGvCGNo+8otEe7vBme/LUZeWhdR/I7EYPeuaaF96MqlTS3eS5Ve0EomfJfmeXNIWUt99TqytjebOBMtPOW5MNkW48k29pKKlF1hTLiULou8uvqp+7QBg+1fgdX8Azsz/Gbhh4ksv57afWEokHjqxyvpbukg2RIg3hEk1R0k1RUk0hWntfvFz8uQNN5K45ZYTz8O9vSRvuhETi+G2tuLE4jipNG5HO04igZNK4URjmEQCAziNDbhtbYQ6FxHq6iK8ZDGh7i5CizpwGtI4oRDGGEwsTnTtWhpuvZWgUiW+8fK5fNWEBdJ/L1DR7i6aml023rb4RFkkHuKm96yiMaVEVa+2hdZ3k60NLNvYSuvik/vQtp4UPRuUbFnk1RSU6smknZnzS2fm/xZ8JSERERERERERERERERERERG5mHwUKJ5RVpwpf7l+CrjrjLKvAZ8DthpjtgDvBf7mjGXuBULGmO3AnwJPvIIYFhRjrZ3vGAAwxtwG/L619o4zyt8O/DrwNuAG4G+ttde/WH3XXnut3bx586sQ6Ss0NQjWw/MqjOc6yE6UicRCNHfGaex45QNsi0NDUCoRjIzij40S6uwktmkTbvTF71YoL4uZ6woXWt+tHtpDte8IbnM71vcIshlCnd34o8OYdCPGgD81TqirB398FBOLYyJR/IkRQp09BNMTWMfFSTXgjw4S6lhMUMhhvRpuUyve6CBu2yJsuUxQzBNq78IbHarfITMAPzNBqGsJ/tgIJp7EhML4k6MEvZeTyQQ4EZdQLEppPEuio5Fqroy1AdGGBMXRDIm2NLVSDa9SI9GSpjCeJZIIk3aymNEBQou68ceGMekGjHHwp8bOaEsMf2L4lLY4M205Tqijm6CQx3pVnKY2/NFB3NYObKVKkM8QWdJNJJyDcAza1kBsQQ1QnfO+C/PXf8f6s+QmKvh+QGNHnI4XGwycG4bxA+CGoW0tJJoBsEFA9ehRaoPHcJMxsD5+oUqkPUnEG6AUuxxveJhgaprQkiU4nR34+3cTaYkTaXQh1gStKyEUodp/jOrAMdyGRiIrVuAmNKBuDl1c+95aGcb3QXECGnugVoRqEfxqfX45W09KYgMoT9cTk+CAG6onOKsVwAnX72pcK9aTLrSthaAGwzvqyXfcCKQWQeflUJqGsX1QmqaUWMZ0LolfrdHQEqZci1LJFWlIezS2hqHp9KQK1ZLH1HCBILBUSx7WQiQCscok8dJxIku6cbtWEVSrVA4dwp+axrQ0USJFbrJKLBWiodFgh47jj48T6u4miEaJNDVhKxX8bA4/Mw1eDaexkUhbC5EVq8/zG/Kqurj67gIXlMtU9+/FGx0g3Joi2pYGN0RtMkN1NI9JNhBtT+H6E3ihNqpjRSoNnWSqaaoVj3RLjFi4RnG6Qq0SkDIFYuVJnNYWgokJnIYGaGqCSoX48uWYUOhFY7rAXZz9tzhd31fGGyEI6vvO3BAT4Wspl8A3LsZ1cByHwBrA4rgOtYpPPBWmuTN52sBNWZAuzr47h8p9/QS5HIRD+GNjEFhwHUw4TK11CZlCmFo1IJ4OYwyEjCVaHSdczBIUS4S7u3CSSWr9/RjjEWptxJsuYK2DNQ5UKgTZDOHWRqK9nTidK+e7yReSi7b/jh3LkB2rYK2lsT1Ge0/DieRhclG4aPvuc8b7s2SnKvhVn4b2OB3NHqax9cVXlIXu4uq71QIMPgvFcUi0168rFMch1Q7xVnBCTBXTTI1bnEiYcMQFU8/RZ4BIIkzTogThsHtOm/Ompynv3o2fzRFqbgbHEACOMdggANfFOE49GZm1WD+AwAdr6xt9bssGDAZrwBgDfoDFYmbmYQxOPE5k6VLcdPoFY7rEXFz99wI2PTBOZtpQLlRJt8ZoarYkWpV44gVctH23mMuRn7Jkx0oYY2h47rhXLiavxknMwvjxxgVq9BN/zcQ//RPrdu7AGEPh8cfp//lfYOm/foHEddfNd3gLiU7ARURERERERERERERERETkgvbJjzzwQeDjQC/QD3z01z51+xfnN6qLy4IcLWWM+QiAtfZTwHepJyA5SD0Lzc/PY2ivXHP9DmghoLMD5nrsTaJr5s7uK1bMbcVyyYqsXE9k5frZMzZc8TJqu/IsZZtmF112lrrPEsJpP9Vcs2j2Aqs6ZhW1rzr1DnjP3Snz5bTlqrOUnaUtcl609zbQ3vviy52Q7qxPZzCOQ3TFCqJn3YdeRxxg9RkJEboXn2VZiPT2EOnteQlBySUrHIOuV2n/0bx0dlm8CXpvqD+cmZ7zYj+Bj8RDLFreeJY5bcCaE8+cWIz4ZZedeJ6cWeKE5cteZEsir5wTixG74krOPP4Id0P4jGVDQGg5JIDmM+Y1v5TvF7nwJJpgxWtnFWsIsVxKYktP2dGtXTtr/pn7xbrZn5JId/fJx688LLnItfc00q7TJbmAtfU20KbjRFnoIklYPvtY91TNnP3SwcsRamoidfPNc1OZyAWsaUkbTUvmOwpZCBLpNIk0L540XUTmTFAq4sTj9URmgJNIAOAXCvMZloiIiIiIiIiIiIiIiIiIiMyxmYQjSjryKlowSUistQ8CD848/tQp5Rb4tfmJSkREREREREREREREREREREQWMlsq48RPpl43sfpjW67MV0giIiIiIiIiIiIiIiIiIiIiFyRnvgMQEREREREREREREREREREREXm5glIJc0oSEicRP1EuIiIiIiIiIiIiIiIiIiIiIudOSUhERERERERERERERERERERE5IIVlEo4pyYhicUAsGUlIRERERERERERERERERERERF5KZSEREREREREREREREREREREREQuWPaMJCRm5nFQKs9XSCIiIiIiIiIiIiIiIiIiIiIXpDlLQmKMaZmrukREREREREREREREREREREREzkVQKmHisRPPnVhsprw4XyGJiIiIiIiIiIiIiIiIiIiIXJDmLAkJ8KQx5ivGmLcZY8wc1isiIiIiIiIiIiIiIiIiIiIiclZBqYQTT5x4bkIhTDiMLZfnMSoRERERERERERERERERERG5EBhj8i9h2duMMTe/mvHMt7lMQrIG+DTwM8BBY8zHjTFr5rB+EREREREREREREREREREREZHT2FIJJxY7rczE4wQlJSERERERERERERERERERERGROXUbcFEnIQnNVUXWWgt8H/i+Meb1wL8Bv2qM2Qb8F2vt43O1LRERERERERERERERERERERERgKBUwiTip5U58ThBqThPEYmIiIiIiIiIiIiIiIiIiMir4f/+5B0fBD4O9AL9wEd/785vf3Gut2OMeQfw34AIMAH8NBAHPgL4xpgPAb8BNJ25nLV2xBjzMWA50AWsAX4XuBF4KzAIvMNaW5vruOeCM1cVGWNajTG/ZYzZDPw+9ResDfg9YM7fNBERERERERERERERERERERGRoFTCiSdOK3NiMWypPE8RiYiIiIiIiIiIiIiIiIiIyFybSUDyGWApYGb+fmamfK49Atxorb0K+BLwh9bao8CngE9Ya6+01j58tuVOqWMl8HbgXcC/AT+01m4ESjPlC1JoDut6HPhX4N3W2oFTyjcbYz41h9sREREREREREREREREREREREQEgKJdxYrHTykw8TlBWEhIREREREREREREREREREZGLyMeBxBlliZnyL87xtpYAdxpjuoAIcORlLHePtbZmjNkBuMC9M+U7gGVzHO+cceawrv9mrf3TUxOQGGPeD2Ct/d9zuB0REREREREREREREREREREREWytBrUaTiJ+WrkTjxOUivMUlYiIiIiIiIiIiIiIiIiIiLwKel9i+Svx/4C/s9ZuBH4FiL2M5SoA1toAqFlr7Ux5AIRehZjnxFwmIfkvZyn7ozmsX0RERERERERERERERERERETkhKBUAsDEz0xCEsOWyvMRkoiIiIiIiIiIiIiIiIiIiLw6+l9i+SvRCAzOPP7ZU8pzQPoclrtgveLsKMaYtwJvAxYbY/72lFkNgPdK6xcREREREREREREREREREREROZtgJtGIEzs9CYmJxQkmp+YjJBEREREREREREREREREREXl1fBT4DJA4paw4U/5KJIwxA6c8/yvgY8BXjDGDwBPA8pl5dwNfNca8C/iNF1jugvWKk5AAx4HNwDuBZ04pzwG/Mwf1X5QqlRqFyQq+F+CGHBra4oTC7nyHJTJL4AcUs1VCERcM1Mo+8XSYcqGG6zq4IYdKyZsp83AcQzjqUi7UiCbDeBUPG0A0GaKUqxGJuwSexfcCYqkwpVyNcMyFALyaTzwVppSv4YYdHNdQLfnEG8JU8h7GgXDEpVz0iKXChCML+zNjA0shU8ENO8RTkfkO56JWqVTIjFQwxtDQGiOaCM93SCLzqpitzOyHQwQeGAPWWszMPjoaP/tnZGq0QK3sE0uGcMMutbJPKOSQaIxQzFZn7c+KuQqBX687dJZ9XRBYipkKoYhDLKn9oFz4CtNlitkqicYo0XiIUr5GNFE/paoUPeKpMNVy/djHuJCbqBCOuYRcQ2Dtic9hIh0lEpuLUzF5JcqFKsVclcC3OI6DxYIF44ABQpEQkbhLYbpCJB4i1RSb75BFXpC19fMPxxh83+KGHfxaQCji4lV9IvEQtUqNUs7DDRmMMUTiIdywU//+T4fJjZewASSaIniVgHhDmFBoYZ93yYVrrD8LBtp7GuY7FJGXrJCvUJysANDWk8YYM88Ricyt544ramWfwFoiMRdsvRxrMK4Ba2cWZuZ5vcgNmfoxdsgh8C1uCPyaJRwPUS16xJJhqqX6td5EQ3R+GyryKpkczuOVAyKJEE0diRdfQS5axWyZ/FQVxzW0LUm/+Aoi8rLZUhEAJ3F6EhInHieYmSciIiIiIiIiIiIiIiIiIiIXvt+789tf/L8/eQfAx4FeoB/46O/d+e0vvpJ6rbXO88z65lmW3Q9ccQ7LfeyM56nnm7fQvOKRb9babcA2Y8y/W2u9OYjpojc9lqMw6ZGZKLHzwUGmhgos3djKDe9YQXNXcr7DEzkhM15i2/3H6N81wZVv7GHnQ4N0rmgkFHY4tHWca97Sy74nhkm1xGhsT7D38SGuectSjmwbA2NYvKaJnQ8NsOkNvQwdnKYwXWH1dYvY9sAA627sJDtRZuRohitu62HHQwP0rG8h8C19uya4+s1L2f3ocVq7ksQbIux/aphr3rqMg5tHGTmaZcm6Zm5814oF+6PN3GSZnQ8NsOOhQeLpCLe8bxW9G1qUbOhVMHw4w6Gto+x5ZIhILMQ1b11Ke2+K9t4GDQKSS47vBRzdMc6Tdx/mstcs5uj2cYYOZehY2sCqazvIT5bBwPIr2uha2XRiPa/s0bd3iqfuPozrGja9sZfidIUdDw1SKXpsuKWLWtVnYO8UN793FYtXN9G3a5LJ43kK0xUOPTtGoinCa963mp71Lbghh+x4iW0PHGPPo0OkmqPc8r5VLFnfgus+37G4yMI2sG+Sp799hJGjObpWNnLVm3q5/wu7aWhLsOGWLh7/xmE6lqbp3dDC0989yoabu8hPV5gaKnLdHcvxPY/pkTLxdJhw2KVxUZxFyxrnu1mXrOGjGWolj/x0BRtYvGqAXwtwQg47HxqkMF3hdR9Yw+D+KQ4+M0pDW5wb37WCpZe14oS0H5OFJz9VZtcjx4nEQgwdnGbx2maO7hhn2cY2Dm8ZpWd9K61LkhzeMobvBaRb4hzdOc7lr1nMzkcGWXPdImKpMFvu66eYqbLq2g6isRDFXJVr37aM5k5dq5C5M3o0w7G9U2x/YABrLZtu76HnshY6epWMRC4Mw0czjB7JsuW+fmoVn8tft5iV17bTvkR9WC4O+akyh7aO4VcDdv7o5HWB9qUNVIo1gsBSLXrYwBJLhwl8S3GqQjgeIhx1mRjK07woSWasRDjiEgQWvxYAEIm5jA/kWb6pjW33D3DdHctYcWW7kjTKRSPwA45sG+eJbx6mMF1h5VXtrH9NN92rmuY7NJkHw4enObJtnF0PHycUcbnmrUvp2dBMU7vOr0ReDUGpBICJnZ5I2MRj2FJ5PkISERERERERERERERERERGRV8lMwpFXlHREXtgrHj1ljPnyzMMtxpjtZ06vtP6LTbVSo5T1GTqU4ZE7DzDWn8OrBRx6dowH/nUPlWJtvkMUAcD3A7Z+v58dPxxg7Q2dPHznAcqFGm7YYdsDA6y9fhGP33WYicECTR0JnrnnKMs3tfHs9/oY2DvF4tVNPPGNwyxa3sj+p0Y4vHWc5Vd28MhXDpJsijJ2LM++J4ZZe0MXD3/5AIFXH/y586FB1t3QyaNfPUB2rESiMcqW+/pZdc0inv72EY4fmMavBfTtmOB7n95JMVuZ75dqFmstux85zrPf66dW9smOlbjnH3Yw1peb79AuSv27J9h63zEqRY/cZJkH/30f2YkKk8cL8x2ayHk3ejTLvZ/eSfeqZrbdf4yBvVP4tYChg9M8e+/R+gB7x+Hef9zJ1PDJz8jQkQz3fXonk4MFVl69iMJUhce+fojcRJlqyWPrD47hhhxqZZ97PrWDoUMZNn/nCIXpCnsfH6ZW8cmMlPjO329nrD9H4Adsu/8Y2x8YoFbxmRou8p1Pbme8X/tBuTCND+T4/j/v5viBDH4tYGDvFA9+cR83vmslw4cyPPrVg6y7sZO+HRPs/NEgyy5v5dnv9ZNuiTE9WuT7n91FNBHBGMP4sTyZiRIjh7NkRnUHzvkwNVygNF1hYrBAMVslN1GhWvLxfcujXz3I9EiR1iUpDm0ZY+/jw3jVgMnjBe799E6GDmfmO3yRs9r35DCZ0RL7nhimoS3Os/f20dqd4tl7+3DDLqV8lQObRzn4zCiN7Qme/V4fq67u4JGvHAAL8XSEB/99H5nRErWKz55HhygXPUb7cvzoS/uplpVzVubO2ECeJ75xmGK2SilX44lvHtb5slwwyqUy00NFHr7zAPmpCpWixzP39tG/c3K+QxOZM/ufHsGrBDx+1+nXBSYH8wzsmWT0aA7jGILAsv/JEUaP5oimwmRGS+x5bIimtgSHnhmlUqjhVX2Obh8nEnM5sm2McsGjMF1h6/eP0XtZC/d/bg9Dh3SMLRePwQPTfO+fdjE9UqRW8dn7xDA7HxpgfEDHOpea/HSRgb1TPPu9firF+r7vR/+xn7G+/HyHJnLRCmYSjTjxxGnlTixOUFYSEhEREREREREREREREREREZGXYi5uL/dbM3/veKkrGmNiwI+A6EwsX7XW/s8zlrkN+CZwZKbo69baP3m5wc63asUnO17C9wJqFf+0ecOHs+Qmy0QT4Tnfbj5bxCtbqiWfaNIFDI1tiRddD6CcyUCphJ2YwEmliC5des7brWSzWN/Hjo6CMcTXrHmZLZDzrThdYfejx2nsiNPYHmf5pjY6ljVSKVRZvLaJlq4kSy9rJd0SxQ07LFnXTOeKRmoVH8eFcMylZ0MLyza1cXzfNImmCImGMMuuaGXlle0MH8nSvbqRhtYYyze1sXhNE9mJMl2rG2lalGDZFW00dybAwuK1zbQvTVPKVSkXajS0xSlkKixZ20x+ooSxHsXpMrF0BK/sEdQCUu0psqN5oqkQQS3Aq1qSHUnyo3ki0RDGgUrRo6GrgdxwFjfiEoq4lHNVkm0JSlMljDFEkyGKmSrxpgjVokfgW9ItcQqjGWKNcfyqh1/xSHQ2UxiaIpKIUA0cvKpP95ommhclqBQ9jmwfZ7Q/R5fueDinJofy7H9q5GSBgZ/73zdQzAYE1lLMZHAyGUJNTRjHISgWcRsb8aencRoaqB05CuEQNDRRLvnEmtPEGl/8LoTFbJnCdJVEU31AuTGGeCry6jVULnnFbAXjvHg/Gx/Ig4VFS9N0LGsgnq4f6mXHSmz+bh+ReIip4QKv+cnVeJ7P5HAe4xhCEYc3/+JllIs10i0xvFrA1T/Wi+8FbHhdF17ZEo4ZlqxrYeRwhnDM4dafXkO17NPUmWDrfccoF2ssWdNMOV8lP5rBq/lccfsSjIFaJcAYKGXLlPumMZEIxlpCzc048TgA3vQ0NgjA97HVKm46DeEwQTaL29KCEw7jTU4BllBLy6v9kssFpFryqBRrWK+K9QIsYLBYCzgO1oCLhSDAdQJ8z2DiUcpFixs2YAxeLSAUMvUKgwDXerhBmXA0RKi1Ha8WcNtPr8VaSzgawnEMlZJX77PUjyncUD2/49RQkZVXdQBwbPckXSsb6d81SXa8xNRQgenRIt2rm3Bch9xYnrg3DTP1WGtPfg58HxONUm8IWM8Hx2CAUGcnoZnPjtSVjx/HVqv11zIUwpTL4IYwkZlzK2Mwrkvg+5SKCaqVgHK+fhf3QqZCpeDR3pvGBvXXe/GaJp69tw/HMVx+22JaF6fIjZeplj2KuQrlfLXev4KAoGYJx5zn3kYcUx+Q6XuWxo44kaju6i6vjsrYGEE2Sy2cZNfDx1l7QycHnh5h+aY2itkq4ahLMVtlw7IGEg0Rdjx4gO5VjfhVj3f97pVE4yFae5JkRktE4i6v/9A6poYK+F5AQ2uc/HSFVdd0kJsuk58qgwNeJSAUdcBavKolGjVYz8MaB4wDFgLfJxKU8Z0w1nVwrMXagIhb378axwFjYGafZwDr148VQm1tOGfcsVguLuVilcNbx2jsivDO37gar2bxqz5OyJCbLOG4DsaBwGfmONInFDH4HkSiLvG0zrtkfhWmaicSJtz2s2tZvLIJAosfWCZH8tgAAi8gFHHAcYhGQ4QiDtWyRyIdwXFfcU5wkVfMq/lkJ0oAGMfgVXwicUO1ZHHCDmtuaKOU9WnquoxKzsM4hmK2ytChDIvXNFMtefi1gGO7J4mlwjS2x6lVfI5sG2P9Ld14tYDRvhy9l7Wy+5HjLLuijaM7Jli8ppnDW0ZZd3MX2x8YIJasH6v3bR+lM5XH+n79+MDa+vHBzDU3+1zgjoOZOT8iqJ/7YS2EwvXji8Cvnw8YgwmFMNFofXnHIdTWhjHmPL/ScqkoF2qUC1W8mk8sFeKn/ue1YA2+Z3HDDrt+NEC5oKR+l5py3ufgM2NcdusirnrTMnzfYgOLE3IY7csSTbg4rks45hJ7Ff5fWORSFJTqCZ+dxOnXTZ14nKBUmo+QRERERERERERERERERERERC5Yr3g0lLV2aOZv38tYvQLcbq3NG2PCwCPGmHustU+csdzD1tqXnORkQbKWSDxEx9L0rFmhsEMo4s7p5jLjBXw/oJT12H7/MQb3T9PWm+LatywjM1qkZ33r8/74tpbPU5uexo6Nkf3W3eTuvZdQZydtv/arpF7/ehz3hWMtHjsGmSzlrVuY/NznsZ5Hy4c+ROINtxNfvnxO2ylzz424XP2mpRSyFZ7+7lGufEMPex4borUnRcfSBp769hGufFMvB58ZIZGO0L26iafuPsyVb+yhf9cUfTsn6FnfwtPfPsrlr1uM1++z65HjrLm+k2e/38+qqzuwFp79Xh+X37qE3Q8P0rWqiY7eNE9/5whXvrGXfU8O09gep2tlI0/dfZir3rSUI1vHKExXWLSikW0PHMO+vodn75umVKiy8soOtj84wLqbusiMjjA+mOeyW7rZ+fAgSy9rpVYZY2DfFJtun2nLkiSxxBSHnh2bacso8VSY1sUp9jx2nE1v7OHYnin8mk/P+lZ2/miQy1/bzfjAEJmxImtv6GTHQ4OsvKqd0sOTDB3OcsVtS9j1yCCdK5to702z/8lh4qkIN7xzBenm6Hy/rRcdN+KQaomRGS0Rjjq8+/euZs8jY+z80SBuyOGqN/ewaFkTsc3PMP6P/0j6jW+gsn8/zR/6EPkvf4XM175K7Nc/yr7pRRzdnaG9O871b11C12Vdz7vNwf1TbL2vn3DcpWlRgt2PDOGGDDe8YwXLNrURiWmgscydUq7KgadHePa+PkJhlxveuYJlV7QSfp4B7ZFEiDf+wnomh4qkmqI8/vU+yvkaq69bxOt+cg3RVIhQ2GGsL8fx/dMcenaUREOEDa/pJtEU5dCzY4wezdK1qomNty+GAB79ymFGDmfoXNnIhtd0s//pYQ4+M8r6W7qoFGt0LG3guncsI56KsOtHg+x7cpjWxSn6d01iHMPG25YQChueubePgb1TXHd7O83HHmXq7/6G+NVX0f7rv0712DHKO3cCkPnGN3Gbm2n7lV8h//jj5O+/n9TrXkfjO9/J8J/8MdbzafvV/0zDm9+M29h4Pt8OWWCstQwdmOaxrx9ieqzIso1tdCxNn0gGgoFKvkpgDY3tcarFGuWCR3tvioGnR9j7+BCxVJhr37qMaNJl2w8GWXvjIp65p49lm9oIhR26lkcoHR3l2fv6KGarrLupi3hDmGe+20fnikauuH0Jt7xvJY9+9RCOUz+mfu4vQKIxSmG6AkA46hJLhQlNOzPLgamVqRwdxJ8YB9/HxOMQBEz846fxRkdp/PH3kHzta7G1Wn2FcgUTj+GNjeOkUyTWrz+/L/oCVB4YwJ+ehkrlxOtU3rKVqX//N0wiSdsv/RKmsQEqFUJdXdT6j2F7rsB1Ezghp550JuSQaIic9t5Vih7NXXFufPcq9j4+TKIhQm6qRPfaRiYG8/iexXEM2x4YYORwhkXLG7n6zb1Y1xJULVu/389oX46uVY1c/ZaldK1omrfXSC4+1vcp7t5d7/eeh2nwSTVHsNbihAyOO7M/mvnrVX2qpRqJxjCb3riEaDJMcarKY189RLXs8boPrGHHQ4MkGiI0ddQH6ux65DjVksd1dyyjqSNO384Jxvrz2CBg/c3dbP7uUSaHCvRe1srlr1tMIVPCcRyObBuja3UTobCLV6tg/YD+3ZMcPzBNe2+aa29OETv4NE44DBZMNIJxXTJ3f5vSli3Er76ajt/6TWLav128jOHqt/USjbqMHsnz9HeOUMpVWXP9IjqWNYCtHwOnWmL07ZygWvZo7U6x+5HjGMdw3duXseKqdqJxDdSU+eGGHJLNUX7iv11LUA0o5z3GB/I8+70+bGBZd1MXxWyFtp40zZ0JqjGXR798kMnhAquv6WDTG3tp6ji3xNAir4ax/hyb7zlKfqrEVW9exubvHGHTG3oYHyhw4On6ce+1b1tO8+IEruOQbIlRmK6QSEdYdXUHbsRhYsDDDRkSjVGKuQrWWlzXId4QoZSvEU3Urz0EviXRGKGUr5JsjFDKVUk0Rinna2BOnjvFgzzH/+BjNN5xB25zUz25iOPOJJesp5kkqCcowRhMOFxPSGJM/fgnmcRJJjGui5fJQK0GQYCJxQhyObzxcbCWhje/mXBn53y+/HKRqdV8Ro9mKOU8xo/l2PPoENFEiCtev4Tm7gS1ik9uosLKqxfh6JLxJccJObzhw2sJPMiOVXjmnqOMD+Tp2dBC25IUg/umuOrHlrL1B/1sfN0Seta34IaVrEzklbAziUbMGclNTTwGtRq2VqsfR4iIiIiIiIiIiIiIiIiIiIjIi3rFv2YyxuSMMdmzTDljTPaF1rV1+Zmn4ZnJvsAqF7xUY5zG9hihiEPP+pbT5l3z1mU0ts3tHc2tAa9iefhL+zm8dZxK0WNw7zT3fXYXkViI4wemn3ddP5/HeB6Zr3yF6f/4D/ypKSp79jD4279D8cknX3C7paEhHDdE9dBBRv7sf1EbGMAbHmb0//wfyk89NadtlFdHJGQp5SvseXSINdct4uE7D5CbKBOJuGy5r5+VV3fwxDcOMXI4S1NnkqfuPkLP+ha2/uAYR3eO0726mce+dpDWxUkOPTvKgadHWbGpnYe/tJ9ILMTE8QK7HznOqmsX8fCX9lMuegSBZdv9A6y6ZhGPfvUgE4MFkk1RNn/3KMs2tvH0d44wsHeKjmUNPHHXITqXN7L7keMc2jLG0svbePjLB0i3xDh+YJq9jw+z6uoOfvSl/VgfitkqOx4cZPW1i3j4ywfIjpeIxEI8+71+VlzVzhPfPMTw4QwtXUme/NZhlqxrYfv9AxzdPs7iNS31tnQnObxtnP1PjbDiyg5+dOcBwlGXqeEiux4ZYvV1i/jRnfsp5z1sYNn2g2OUcjUmhwo89vWD6Hdtc6+c89hwSxdOyPDeP9jI0KEMT37rMIXpCtnxEg99cT/ToyWmnt1CqKWF/IMPYZqaKT69mYlPfpLwNTfx5P4G9m2eoFL0GDiY4zufPcDkkdGzbm98IMcP/3UvA/unaFqU5OlvH53ZVpnv/8tuhg5mzvMrIBe7ozvGefjLByhMV8mMlbjvs7tO3HX7bLpWNnDo2TGisRA/+tJ+poaKlHI1tj8wwPCRDMVMhX1PDVMpeux8aJBSrsbEYIFHvnyA3HiJY7snqRQ9itkKXtnnwX/fR//O+uejb8cEj3z5AL2XtZEZK/HENw4TS0bYfE8f08MlahWfkaM5WrpTPPmtI+SnKuQmyjz2tYNUyz7FbI3MWIkf3NlPYfm1BLkchQcfYuDXfp3K/gPYSpXJz/4z/sQE1YMHOf6Hf0h02TKCTIbs3Xcz+ld/RXzTJryhIYb/+/+g8PiZOevkUjNxvMC3/nYbI0ezVAoe+54YZnDfNH27JhgbyFHMVLE4eFWfXQ8fxxqIpkIcP5Bhy339lHI1poaKfP9fdhP40LE0zYP/vo+VV3ew5Xv9VAoeD915kKmRIhODBUq5Glvu62d6uEQsFaZv5wQ/+tJ+WrpTXPXmXkaO1k99LntdN0e2jREKOyxe08RYf46e9c0km6JEEyGWb2on1RIjGjOYh7+LrVTAGErbtoPncfz3fp/K3r34k5NM/tNnKTz4IH4+j83l8YtFvIlJvMkJgukMtbGxeX4X5p/N56FUxs/l8ItFKrt3M/aJT+CNjlE7epSh//pfCTIZnFQKb3iEoT/6I/zv3EkkHqKhLUYsEaZtcYqmzgSVskfr4iQABzeP8pr3r+Xpbx8l8AL6dk7QsbSBcr5+13e/Fpy2j+zfNcH9X9hDyHX54b/u5dieKSpFj6PbJ7j/c3vITZXn+ZWSi0n54EGC6WlssYifyeJUilx1dZQj28a4/HWLGdw3xeprFzEw8/fA5lEshtd/aD1u2KWUrfH9z+1mrD/HtW9fxqNfPcjI4QyRqIu18NjXDjE9UqSYrVIt++x7coT+XZMceHqEy167mHs/s5OhQxkqRY8DT4/w5LcOk2iMsuOhQeLpCJWCR3asxPEDU+x65DhHttWvRQzsneLeO4fxFq/BGx7Gz2bxM1nG/t/fUXjoIYJslsKDD3LsV3+N2sjIfL/M8iqJxcNEQiEKUx73/dNOJo/Xv2O33T/AyJEs+58eoaE9zr4nhtn35DBti9M8dffJY8sHvrCX4/un57sZcgmLx3xWXd1O4EOp6JGdKPHQF/eRmyiTn6qw+btHSTXHePSrBxk/lscr+0RTISoFj50/Os6jXztIrerPdzPkElXKVfnB53ZzeMsYV7y+l/s+s5NYKszYsTzbHzh24hrBff+0k/xEheauBJmRIgYYPpJlfCDHeH+OUNShnK+yeG0TncsbGe3LUil5XPbaxUyPFCjlqmy8bQmHtoyy9sZOju2ZZPmmdo4fnOay13RzeMsY627som/XBPF0mPbqMcrbtzPy8Y9TGxrGGx7GGzhGtf8Ytf5+an191AYG8UZG8CYm8MbG8AYHqQ0M4I+P4w0N449PYH0fE1j8ySn8TIbawABgqB46jC1XmP7yV2aSmojMjbGjWXITZSYG8zxzTz156dRwkYf+Yz+Tx4s4jsPWH/STmyhTzNTITZTmO2Q5jxLRKngQVC33fnong/unqRQ9Dm4epW/HBKGIywOf38OVb+zlO/+wndH+F/wvdRE5B0Gpfv3NiZ+e9M+J1X9/EVQq5z0mERERERERERERERERERERkQvVK05CYq1NW2sbzjKlrbUNL7a+McY1xmwFRoHvW2vPlt3iJmPMNmPMPcaYy15pzPMtlo5wZNs48YYI179jOde8dSk3vmsFk8N5yqXanG2nWqkRCrkUpipMDBZOm1fK1ciOl5kaLj7v+k4ohJ2aJnv3t0+f4XlUDx95wW274TCO65D/4Q9nzct8626srx/bL3T5oSn2PlEf+BX4Ft8LWLKumcNbx4H6XbUrRY9FKxoZ2DMJQDwdITtepnlRgvFjOQBau1OMHMkSibkUMvUfdy1Z18yRrfVBs34tIAgsvRtaOPTsycQPtYpP9+om+nZMABCJhShmqrT1pBieGYDf0BZn8niBZFOE6ZF6X+5c0cix3ZMYU6/DWui9vIWDz4yebEstYMm6Fo5sq7fFDTlUCh6LljdwbO8UAImGCJmxEk0dCcYHZtqyuL7tcNSlmK2ChZ51LSdeE78WEPiWng0tHN5yxqBgCxN9U3Py3shJuckyOx4c5Lq3LyeairP/yeFZy/TtnKD1l3+V2Lp1lJ55huaf/Amy3/omAMFl1zPSf/p+sFL0mH6efWNmrERmrETnykaO7Z6YNf/QlrMnLxF5Obyaz86HBmeVP7fvOptKwWNg3xSlXG1WWrfDW8bIjpdZf3PXaftbqN9MuFL0MPWbENOzvoVK0SM3cfqg+dxEmXjqZEalicE8tbJPW0+K/p0TrLqmnYF9s/d1I0eytHYnTzzvO1AgcdON9XaOjBBe1EHue987fSVr8aenMdFovW179hDpXXpi9tRXNHjoUjd1vIDvBaeVHdk2RktXkngyQuBbqiWP/t2ThKMu1aJPsjHKvjO/K2z9buDhmItXDXBD9Q/CoS1jdK9qmrXdg8+MsvTyVgAyoyVKuSpLN7ayfFMbb//VK+jZ0MrG1y/hrR/ZiBsyvOFn13PdHcupFGq0Lk7S1B6jOe2T+N4XyPz930K5hDEOoeZmasPDEJzepumvfR3HdbG1GgQ+QSaDm0wRFAv1u3xf4mylgq3VsOUKTjhM5ut3zVqmvGs3JhqjcuAAWEvhi5/HPHYPDS0RWrqTNHbEae5Msnh1E9e/YwWv/9BarrtjGbWyx1h/jraeNEMHM6TbYvheQGG6SrV09n1kfmYA8qkyoyWmhk4/HxN5JYJCAVsu4xcKGNeBSpnan/42N66cZFGzz4Yb2lh+WZrLb17E8nVJbn77YpLRGuEIYGF6tETgzXyHWpg8XqBnfQtDBzNkx04OjEy3xJgaKrBoeQMDe6dINETITpSplU8/nz9+YBqvEjC4b4pQxKVW8QkCS0NrnPFj+dOWLRdq5CsR/FwefJ9geppaX99py3hDQ1TPKJOLh1er4YQdJofynHkot/+pEVZft4jRvhzDRzJ0LG1g8CzHlrO+y0XOo6CvDzfsYH2L45jZ13+AwX1TdCxtoDBdITNRZt2NXSfmHd02Tn5CyclkfmTGikweL2BMPSGJtbD2hs5Z19OshcmhAhhDJB7CqwUkGiL8/9m77/g6rvvO+58zM7ffi14IgiRYRIpVoiSqW8Wy3ONur0uSdbKpXsdO4iTefbKbfbLZJ9Wb3cRxEsfpxSV2imU7dtwSSZZVqV7YxQqA6Be4vcyc548BQF4CpCgRJEDy+3698CLmzJlzzxC/e+7M3Dm/icQ8HNehozdN75VtZNriqqRI6wABAABJREFULF/fwrY7VtBzRTOZ9jjXvWE1yze00NmX4dZ3ryeRifKGn9hKLO3ypg9dRdTPc9d7VtJ3RYxN6+Gu9cco/96vzb52fWQYW6tjqzWo1aDug+9DvY6tVsNj/1IJPI+gXMGfmMDW6wT5PLZWw0mnMJ5HkM/jRKL4Y6PEN2/Cnxgn+0//RF2JHGUBTY2VyQ6V5r0mnT1epF71ufZ1q3jx6VHciENhSpPfLycWl3otYHK0RLVUb1g3eGCS9t40+YkKxcnwu6ahg0pCInKuglL43Z6TiDeUO8npJCTF098XISIiIiIiIiIiIiIiIiIiIiKNvIVu0BjTBcze2WGtPXKm+tZaH9hujGkB/tkYs9Va+9xJVZ4A+qy1eWPMm4AvA+tP89o/CfwkwKpVq85lN84r1zEkMlGevXc6kYcBLPRuaMGNuAv2OsYYrLV4URfjGGzQOLsjGnfnlJ3M+j5EPNy2NuqnPIXYJBJnfG0bWAgCvI7OOeu8ri5wzjn/zSVlKcauG3VJpCPkJyo4bjgZt1Ksk8hEmBotnVRWI9MevuUd50S9WCqcpG4Di+s5+HVLJBrGd63sE0tFKOdrp7QdpZSrNbSdyEQb2i4X6rT2nJjIbhwTtpcIh7N6zScSd6mVfVw3jLNKIWw7N1ZubDsdYXL4pH0p1GnuSpx4PQPVUp34yfsScfD9AC8atl0t14mnvHn6HQkTlZwklli49/dSspjx63kOxsAj97zIpluXkWyKAbmGOsnmKNR8rF8PkxlYcNs7gH049TKO13JiEua0SGz+v1Uk5oIJYyXdGpuzfr4yWbqW4th7MuMY0m1xhg83xnS6NX6aLcCNOniegxeb+zmbyERxXIdirkY8HaFSbLz53XWd2Ymg1ZKPF53/fTAzHgPEU5HphE+WZEuM7PFiQ5KSk+udPAk5lfGoD5808cc44fHGKZOBnHgcW5/up+dx8kzV6IoVGGO4HC312L1QIvG5MRpLRqiV/fCz24TxGk9GqJbruJ7B9y2JTHROkohYIkK9GsbaTFwlMhHKJx3nzEhkIpQL03FpwIu6ZNri9K5vnaeX7bO/5f79Xo596ENgzGwsO+k0uC7WrxJUK0Ta2+e04LW3YTHgGAgA18HWa2E/3Yvv2GKh49dOn1cYzwVr8bq6qOzd21DHbW3B2gAndeIYMv+7vw6/++vENl5J39/8DbVslsGf/3kqL+zCABHA+ct/wXENgR8eAxoLxgE34uB685/PzBeXGIjEFvzUWy6wJTX2ui7GOOEY4DjgedipScr/6xdO1DGGrv/ycYZ/+3fCMccY7G99CrPhaiLRE/HrRhyMYygXarhRh2jiRKxWy3ViyQh+PSASC5OLzHec7EUcXM/gRZ3ZcyIsBEE4QT845bqD5wHWYoMAE481jIsznJe45iAvz1KKX2stBJZofO64mMhEwnPwpIfjTF9v6M3MqZdpU3xcLpZS7M6KRgn8AGss1lpSLXOvAyQyUcYHC3hRl0jMpZw/kXQ6EndxI7oueqlbkrFLeO4y87E7c85fKYXXTU+9RhCNuVhrw+uhrsGv+ziei2PCxNBtJ12fPVt+qcTR3/lNSo/tJH3nnbjj45SeeaahjpNMhuc+9pT3iZn+EiUIwoOJIDy+MfHp8zXHhMc79To28MNEJIGPk0gQlEo48QROc/NsolM5vaUav0uRGzG4nplNzn6ySDx8v+UnKqRbYgT1AMede81MFs6Si91aFeNE5j2HciMOgR+eA82sn/keSkReOVsOx+JTrynMHC/MrBcRERERERERERERERERERGZjzHGB54lzL+xC/igtXbep54YY94KbLbW/tYF7OIFtWB3PBtj3mqM2QccBO4DDgHfONvtrbVZ4F7gDaeUT1lr89O/fx2IGGM6TtPGZ6y1O6y1Ozo75ya/WCpiySg9VzSTyEzfUGbDCZJX372S6Gkm/L4SkaiHXw9INEXYdmdvw7o1V3eAsbT1nv5mYVurYVpa6PiZDzeUR9esIbZh3jwwJ7YNfKzvk371neHkymkmFqPlXe+8bCcNn85SjN3Mik5ueVP4pNZCtkLHyjRHXxjnih1dGMcweizPio2tjB7Ns/yKFtyIw9Fd42y4oZviVJVMa4xY0uPAkyNsuX05fj0AY0i1xNi3c4ir7lwBQDlfo7UnycFnRtl0cw+Y8Mncy9Y2MXhgkr6t7TiuYfDFSdZc3cHUaIm25SkiMZdDz46y6ZYeqmWfaNwjkYmwf+cw2+4I265VfJo6Eux/Ypitt4fvgfzE9L7smmDdddP7cjTPyk1tjPXn6VnXjBtxOLJrnA3Xh/uSbgn3ZaadmYQV6dYY+3YOs216X0q5Gm09KQ49M8bGm3o4OcwzrVG6VzddqD/fBbWY8duyLMn6Hd04juHRew6x9fbehknBsaTHyk1tjP7yx5j65rdoff/7OPTDP0zbD/8wRCLUv/J5rrkh3dDm6s3NtK2c/2/V2pNi8y09jBzJsXxDS8PEoVjSY+32pfH+lbOzFMfek7muw/a7V+J4JwaTWNKjb9vcJAUz2pal2fHG1digcTKcMbDhhm46+zLs+v4AW161PEyCNq2pI0E8c+JG9307h3Ajho03LWtof/2Obo7uDp9GH0t5JDJRNtzYzd5HBuld38zRXeMsW9OMd9J7Ixp3aVmWJDdent2ud7mhun8/AM3veDv5Bx+k+R1vb0hS5i1fjq3XwiceAy3veTe573433J9EgpZ3vfOs/h8vRUs9di+UjhVpulY3Tky+6tUrCPyA7HCBetWnXvPp29pOx4o00YRHcbLMNa9b1fAZnWqJ0b4ixeixAsvWNZMdLmJM+ETwarHeOBnPwJZXLefFJ4cB2HjTMmIpj6b2l54MHd+6hcS11zZMtG/7kQ9i4nGM42DiCdzODiJ9J02UMYb2D30IggATi2M8D2/ZMvADnOZmYitWvLL/vEW00PHrRCKYZAITjUG9TssH3g+RE+OZ29pKbO1aKJeJX3klkd7lJzY2ho4Pfxi3qQlrLe0/9dMnkiFYS2TvY2y9o5cDT4bHgPt2DhGNeiSbY1gbzBkjr7xpGfF0hCt2dDWUb72tl46VL3+SpiwtS2nsdZqaMKkkTiqFrVQgEqHjox9pqJO49tow9mc+W62l9tUv4LgOzV1J2qevBYwcybHltuUc3TXBmqs78KIuyaYwEWSlGCZcPPL8GFvv6A2TkMRdlm9oaXita17fh3Fh250rGDo4hRd18GvhWLz5tuUNddduayXtTxBZuRK3tQW3pZXmt761oU7zu99NdO3aBfwfk6UUv5FoFIulbXmqMdGXgWtf18eu7/fT1ptmy20rmBgs0tWXmU0CCuGE3vU3dM3TslyKllLszvDWrsXx63iRMOnz6m0dDUnIvIhD9+omqqU6qdYYmdYYj3/j8Oz6m9+xjqYOJdK51C3F2AVo6U5y9d3h+UatUqepI8Hj3zjEdW/om3ONoG15ilK+RrXiYxyD6zkYY0k0RWeTOL9cbiJB54c/DK5L/oEHaPqBNzckVvS6unBSaYzjzCYVwTHguTiJOE5zM25LK048AVicdAq3tRWTiOO2tmHi8XBysTGYTAbH9XCam8k/+CA28On62M/jNTefy3/hZWGpxu9S1L48Q8eKDFtuW445KWlvsjlK2/I0sVSEZ+/tp29rO17EPatrB/LKLbXYdTwHL+KQbo2zclNbw7qtt4fXGq64rot6pU66LUb3Wo1PIucqKIXfQZz6MJXw2OHEehEREREREREREREREREREZHTKFlrt1trtwJV4KdPV9Fa+5X5EpAYYy6Zpxgbe8rTZl9xQ8Y8DdwFfMdae40x5tXA+621P3mGbTqBmrU2a4xJAN8Cftta+7WT6iwDhqy11hhzA/APQJ99iY7v2LHD7ty5cwH27Pzwaz7HD04xeiyPXwvoWJFixcY2HHdhn4QZ+AGT4wUqhYCp4RKTIyUybXFaehJgDcvWnPmmtuKxY1AoUD96lMq+fXitbcSuvJLkNdtf8rVLx45hgwA7MEB5924IAmIbN5G+5eYF2rslYcGzqSyl2K1M5hjeP87YQImWlS2U81XqlSqZjgwTA1M0daepV3wqUyWalzeRHciRbI2DNRTGC7SuaGFqOE806eFGIuSGpmhb1Up+rIjjQCwTJ9s/SdvKFkpTFfxanVR7imz/FC09aSqlOtV8meZlzUwMTJLpSOLXLaVskeYVbWSHiiQyURzHMDVSon1lmqnREl7UJZrwmDheoGNFmkK2irWWZFOMicECrT0pKqUa1VKd5o4kE8cLNHcmqFV8SrkqrT0pJo4XSbVEwUJurEz7igyTI0WiMZdI3CV3fJLWFc0Uxkun7Eszpakq9WqVdHuGyeM5olHoXt1E29olNVHqvGQCWoz4HTueZ/J4iezxAn3XN1MYChg7msd4hs4VGZItAbHBY1SPHA4necdiBJ1deLkpyrt3Y1auI9d2BRPHC2RaY3T2pWledfq/1eixHGP9BYpTFVq6k+TGKkRiDl2rm2hfnj7tdrKgLumx92TWWkaP5hk6NIXrmXAseYk4KxeqDOyfxAaWUq5GpVinuStBpj1Od18T/XsnyA4XiSU8cuNlInGPeNLDuIZ6NSA3WibdGiPdGsG4LrmxMrmxMk0dCVItUcb6CxgDyaYo1oLjGhKxgFhuiPFCjLIfoXlZhsnjeazrkmlL4DgwOVTAtTU6l0WJDeymdvQY0TWrSW7fjp/NUt63HxONUDtyBBONEV23jmAyS+34ELF163A72ik/9zzYgMTWbcQ3bbxAf4UFddnE7oUyNVbi+IFJ8uNlUq2xMBGVAcd1sIElCCxgica88In1fgARF2MN4wN5InGP9t4UxWyZeh3iKY/J4fB4maBOcxOU/CgTx0vUKj7tvWkCP2Csv0CmPU5zZ4KOFWkisbM7P6wePUpx505qx48TXbkKr7sLGwQEuRw4DsZ1MfE4tSNHCXJTRNetw0mmsNgwIY8xmOkEG97KlcQu7KSaJRu/xV27sNUa1GtYx4FCkcqB/ZholOjq1QSVKtRrOK2tUK1SPXCAoFQivnkzqRtumP0/LR49in/wIJXde3CSCaJXXEG5ax0T4wHVcp1ozCWajOB6Do4Lfj2gkK2GY2R7nKbOBL4fYDBMjZbIT1Ro7kzQc0VLGFOyWJZs7J6L4u7d2EIRCC+NmGiU+sgI1YMH8drbifT1geMSjI5QOfAiTipFYvvVsHo9U8PhmDYxVKRSrLN8fTOFiQrFXJWmjgTWWgoTVWxg6VyVASz5bJXAtxSnKixb00R2OIzx1u4kqbYYpVwVL+pRnKxgCJOOBfVwHK5XAwrZMs3NLq1eFm9qGGd6wrF1HIy1+GPj1EdGiK5dQ/K66/DaT5907TJzacZvsUgxW6dWChg7lqdSrNPakyKwkMx45LMVYgmPatmnOFmlqT3O1FgZxzX0rGuhY4XOuy4Cl2TszigdPkwx2oZft/j1AL8WMD5QwAaQbolRKtRIt8SIJj2MsUyNVijnarSvSNHV10Q0fsl8t3ApuqRjF8KE0Mf2TjBxvEDP2maywyW8qEMs4TE+UCCW9GhfkSaa8SiOVbAWalUfgyGWCNfFU5GXfqHTsL5P6dlnKT39NE4mQ6Sjg8qBAxjPI7K8F6bP5QwWay0GgzUmTPDgOFjjYLDgB9PnRx5EIphEAluvY0ul8NzJcTGuQ5DPgzF4bW0kNm/GRKML+L+55Fzy8bsUTQwVKE5VqZbqTBwv4noOLd0JokmP3GiJZCZGJOGSaoqRbtV54WlcsrFb7O8n76cJ6pap0TL5bIVMa4xq2cd1HZq6E0wOl+hZ20RLt5KXXqTOx3dtC3PzxmVo5JOfZPSPP83GF55veCBK/v77OfqTP8XqL3yexPbtp92+9NRTDP/+77PsV34lTOx6adMTY0RERERERERERERERERE5KJ27L9+7wPAbwCrgCPAL6/4rds+dy5tGmPy1tr09O8/DVwFfAP470AUGAN+0Fo7ZIz5EWCHtfZnjDF/BYwD1wBPWGt/4Vz6sVQsZBKSndbaHdPJSK6x1gbGmEettTecYZurgL8GXMABvmit/bXpPwzW2k8bY34G+BBQB0rAx6y1D75Uf5bKDWZyybtkb46US94lk4RELksae+VipdiVi5niVy5Wil25mCl+5WKl2JWLlWJXLmaKX7lYKXblYqYkJEvI0G//DhNf+AIbn3yiobzw6KMc+Y8fZNVf/SWpm2467fbHfvbnyH3zm7T8h/9Az6/9z/Pd3cWmJCQiIiIiIiIiIiIiIiIiInLRmk5A8qdA8qTiIvAT55KIZCYJiTHGA/4R+FfgC0DWWmuNMT8ObLLW/sI8SUg6gLdZa/1X+vpLzUI+djFrjEkD9wOfNcYMEyYOOS1r7TOEWV1OLf/0Sb9/CvjUAvbzspabKGEtWD+guVNP1ZKzUy3VcSMOAPWaTywRoVqu47gGxzHUqj7RuEe9GoABz3PCp8XHPer1ACx40bAsEnWxgcX3LdG4R6VUw4uET8H2awHRhDfbtnEM9Wr4erWKjzHgeA61Sp1ozAufgHme1Cr+afclEnOplGpn3JeZ/ye5OMw8uTiaOLuPxWq+SiFXI9oUIZU68xNU67U6lWKdRCaK4zgL0V2RszIzJrne9PhdrVMp+ziuoVquQwBN7QkwhONzzMM5w7haq/rUqz7RmIs7PdaJXOz8mk+lXMdawqdjGkssEcF1Tz9eFyYrROMuxjH4VZ/AQuCHxwgBFscYAmuJxiLEzvJzRZa2aqVGpVjDBgbHBcd1cB0Hpo+FjbFUinVSzad/qnWt6lMuVCGAVGv8jOOtyEKrVeuUS3WstThAENjZce7kY9RKsYZf97GAwRBLePrMl/OqXKxQq/j4dYgnXIzjEI2f3bl+YbKCcSCeilKr1MFAvRoQibhnfV4ncq4qxSq1cp0ggEjcw3Wd08afDSzlYg2wBL7FWkMk5up4URZVIVfBrwV4ngnPg87wue/7AdVSHeMQTo224fnTzCxpQ1hujcFgwZwYy72IM3vNVORiZa2d/X7DcR2KuQrWgmPAuAaDIZrwwmsLQHa4gOMZ4qko0ZjG+stdEAQUpsoEVYgmPRLpE98p1Ka/P/AiDtVSHS/mkUyf+TsHEZlfUC7hxOden3MSiXB9qXTG7UvPPhP++9yzC985ERERERERERERERERERERWUi/QWMCEqaXfwN4xUlIgIQx5qnp378H/DlwJfD3xpgeIAocPM22X7qUEpDAwiYheRtQBn4e+EGgGfi1BWxfzsH4cA5bh/xYhWfuPUZ+osL667tZtbmNrr6mxe6eLFH5bIUDTwyzb+cQW2/r5dCzo8TTEVq6k+x9ZIitd/QyuD9L4Ft6rmhh14MDbLyph4nBArmJMmu3d7LrwUHWXN1BKVdj+PAUG2/uYe8jQ3SvacI4cGzXBJtvW86LT46QaY+Tbomx//Fhtt7Ry7Fd4zgRl86VaXY/cpzNty5n5HCOwf1ZVl/VwaZbe2jtXthkOpVSnaO7xnnyW4fDfTleYGqszLprwn1ZfVUHlXyNoZP2pWt1BtdzOPrC+Oy+TA6X2HRrD1dc10W69fQTUmXxDR6Y5MlvHWZypMSW25az7pouUi2x09Yf2J9lz8PHGdiXpWddMxtv7mH5+pbT1n3uvn5Gj+ZYtaWNK29cRucqjblyfuXGy+zfOcSuhwZpX55m+90rCQJLfqKCF3MoTlZ5/v4BHNdw1atXkG6Lce/f7WH5hha23bGC9t50Q3vVSp0jz4/x5LeOYDBceeMy2lelWbamWZPo5aJlA0v/vgme+NfDFKeqrL2mi/beFK7nEAQB6dYEXasyDduM9efZ//gwB54cpq0nRd/Wdl54YJBVW9pItcTwYk44idSA6zg4XhkDtPdmNBn6IjZ0KEsQQL0WUC/7lAs1ipMVjONw8OlRNt7Sw8DeCUaO5Fi1pX36s74xdoaPTFEt1tm/c5iB/Vm61zaz5bblLFvTvEh7JZcLay1Dh3NYP7yOZRyHUq5KKVfj2J4JRo/kWLm5jQ3Xd1Mp+1gbYOuW0WMF9j8+TCIT4ZrXr2LFlW36zJcFN3J4Cj+wTI2UqJbrDB2c4viLU6za0sbW23pp7Zn/XH/8eJ6xYwV2PTTI6q3tlHIVOlZkePa+Acr5Guuu7aS5M8HyDa2kz3BeJ3Kuho9N4lct5akq5aLP/seHyI9X2HRLD1fsaLwWNDFUYORwjnotoFKss/uhQZLNUTZc3026Nc6ytU1ENEFdLqD8RJn9jw+z+6FB4pko227vJdUaBQzdfU1zkkENH8nx1LcPM3osz8pNbXT1ZQjTjtgw14hxpv+1YA1BYLGBDZOSTNfJtCfpWduEc4aEjyJL1eRwkd0PH+fAE8N0r23miuu6ePq7RylOVll3bSfWWjpWpCnla7T1pOjfm2XfY0OkW2Nsu6OXTFec9mWZl34huSSNH89TLdXJj1d5/oF+ipNVNt7cw/rru5gaKzM5XCTTFufAkyMc2zVB95om1lzdQVdfE5k2fbck8nLYUhmTOH0SEnuGJCT1iQnqA4MQiVDZuw9brWKiSggkIiIiIiIiIiIiIiIiIiKyRK16meVnq2St3X5ygTHmD4D/Y639ijHmTuBXT7Nt4Rxfe8lZsLubrbUn/+f89UK1K+euXKpRyfnUKj7f+Mxz+LUAgEfueZFqsU7nqszs09lEZtjA8vz9/ez8+iGuf/Nq7v/7vTiOYesdvXz/S/vZfvdKHvnKi5QLNW548xru+9weNt68jOfu72d8oMAt71zHv/3NblZubuPIC+Mc2zXBze8Iy9p6UuTGyux55Dg3vGUN9312D9GkR3Nnggf/6QDXvr6PB//xAPWaz7Wv7+N7f7+PLbf38uQ3jzA1Gt4gNnH8CIP7J3nzh68inoos2H7375ngm595jitvXMbz3+tnrP+kfdnUxrHdExx9YZyb3h6WtS5LUshG2f3Q9L58bg/1avge+/4/7KeUr3LTW9ed1ZOc5cIbPZrjnt97cnZc/N7f76NSrLPjTavnHRfHjuW4//N7GevPA5AdKjJ4YJLX/cQWOlc03kg+2p/jm595juJUFYCJ40XGBgq89j9tJpnRZDg5P3w/4MlvH+HZfz8GwMRgEd8PWL6+hd0PDXD1Xau49+/2zNb/9sEXeMNPbWXieJGJ40WOPD/OO3/x2oYJcwN7s3zzM8/PLg8dmuLmd67DdQ3dqzWBXi5OI0dyfPX3nyYIwud2j/Uf5JrXraK5M4HjGEq5KaJxl5auMClmrVLnyW8fYc/Dx4HwvXX0hXGuumslj371INe9oQ/HMcTSERKZCNZCIhOlXvUZ7c+z/IqWxdpVOQej/TmsNVSKVeqVgIF9k2Fisa3tPPzPB7jmtat49CsvNnzWTxwvcPePbp59qvH4YJ5axeehfz7A8OHcbL2BvVne8YvXkG7RhCI5f8YH8vhVH2stxnWo5Woc2z3BwadHyY2VgTAehw/n2PGm1RQna2SHijzxzcOzbfTvzfLOX7pWSXNkQY0N5ABLdigcD4cOTjE+GF5WnCl7689uJ5FpnPDl+wHDB3Pc+9k9bLq1h6e/e5Qb37aWb/7p81g73XZ/nuve2MfUWJnr3tCn611yXowN5rF1y+Rwidx4hSe+cYj69HWF7//jfsrFGje+ZS3GMZTyVY7tmmDXAwP0XdXBzq8fAmB8oMDAvmxYz8CKjW2LuEdyudnzyHEe/vKL00sFBvdled2PbyGW9hjtz9O58sQ1ruxwka/83pNUinUgPBdas72DrlVhUuaZa57BTNIRawkCS1AP8Ovh+wJjmBot47qGZWt1TCEXl2q5zve+uI/Dz40B4fHz0RfGuOK6bo6+MD597LGaB760n1veeQU7v34I4xjGBwrhWL83yxt+eiuOY2jtSr/Eq8mlpjBZplbxyY2W+c5f7yKohwetD/7jftpXpBgfKJDIRPn+Px5g9Eh4zSA7VGTo4BTb717Jxlt6cJW8SeSsBZUyTjwxp9xMlwWl8mm3rR09CkDmzjvJffvb1IaGiK5ceX46KiIiIiIiIiIiIiIiIiIiIufqCNB3mvKF1gz0T//+wfPQ/pK1YHcuGWNyxpip6Z+yMcY3xkwtVPvyyvmVOtGky8Tx4uxE+xkzCSNETpXPVnj6u0dnl2tln1Wb29n/+DAAXtSlOFll2dpmjrwwDkCmLc74QIHmrgQjR8IkDd2rmzi2a4JIzKU4VcUGlr6t7ezbOQSEyU7qtYDV2zrY+1hY5nqGcqFG74ZWDj49CkAiHZlNQDLj+IuTTA4XF2yfg8Dy7L3hxP2mjjhj/QWaOxOMHpvelzVNHH1hnEjMpZwP9+XkftvAziYgmfH0d4+Rnzj9TW2yuMb683PGxSe/fYRCtjJv/cnR8mwCkhnZoSJTw3OfnjY+UJidlDzj2K4JJo4vXMyKnCo/XuH5+/sbytqXp6kW61z3htXsevD4nG1efGqU1//kFgByY+U5Mfr8/QNzthncP8nkyOmfGiiy1A0dmppNQDJj32ND1GsBtapPULcNnwUTQ0X2PjrUUL9a9pmZ17z/iWGK+RqVYo3Atxgs9XIdY6Ccr+H7jZ81cnGoleqU8zXqNUt+okI85eF4DkeeDyefeVFnzmf9kefHyZ40jpYLNQrZymwCkhlTo6U5xxQiC62Uq2GtpVb2McYyfrxALOHNJiCZcfzAJLVKOLF45nxvhg0sg/uyF6rLcpkI6pZK2Wf0aJ50a2w2AcmM0WN5svOc608MFpgcKeHXAxLpCJVinfGBwmwCkhn7Hx8mO1Qgf5rzOpFz5bpQLvhMjpSwfjCbgGTG0985Oht/kyMlcmNlNt3Wy3OnnKsFdUu17DNyVMcEcuEUpyqz1z9nBL5lrD+PQ3j+crLxgcJsApIZh54eJfDDa7qVQo1KsU69GmCx+PUA61uMMXgRFy/ihhPoLQzomEIuQlMjpdkEJDMK2SrRuDu7fOCJYbpXNzE1WsIGNCTyqdcCxvoLRCIucvmpln2qxToTx0uzCUgAHNdQzFbIjZXxIs5sApIZ2aEihckK+XF9tyTycthSGROf+xAAJxEmAQ7Kp/9OozYwCEDiumsblkVERERERERERERERERERGRJ+mXg1BvOi9PlC+1XgS8ZY74HjJ6H9pcsb6EastZmTl42xrwduGGh2pdXzjfhjcSuO/fpr5GYi+PpqbAyl+MavKhDreLPPjm4XvOJxMKbZZ3pp1zWq/7sk95nZuL6tQAvFuY4sjasGwQW1wvL/HqAF3Go+v7sNvXqibZPvF5wosyZP04db+GeAmcMxJJew77Uaz5e1G3cF9/iuCfvi0u1Xp/3Ccte1MHoSXVL1nzxE4m5p4039zTxNl8789U1jpmNHZHzwXHNifH1ZMZQLdeJxufGXzTuUsieuKH91NiNpeYeLkZiLs48xxUiFws3Mv/4fzoz761aZe5768S2JyaTWDu9zob/zHeMIEufNWBcg6mfOI6tV31iicbjxZM5jsGcND4aTv/Zr6cZy/lmXAdrA4wD2DDm6maepEgmjF1rLZHY3Lj0zjA+irwiBjAm/Dw+zWfkfGOk4zknjkFNeG7uzTOhNxJzZ8/fRc4Haw3GmRk75673Yu5s/LluGLcz171OTfDgOGEyXpELxXGd2WudJ3NdB4sBGo8V5ru+5XhOePZjw7MgZ2Y4twAmHOdPrh+eGp3xnEtkqXI8g3EM9pREpief50diLvWqPzvez2nDNQTzfWDIJc+GB6Vzvoe1NvyuwD35+PYUjmNO+z2FiMwvKJdx4ok55U4iLLOlMyUhCZOxJ6/bES4Pzk3OLiIiIiIiIiIiIiIiIiIiIkvDit+67XPH/uv3AH4DWAUcAX55xW/d9rlzaddam56n7B7gnnnK/wr4q+nff+RcXnepOm+znqy1XwbuOl/ty9lLJqP4NWjtSZFqiTas2/Gm1bR2pxapZ7KUpZpj3PyOdQCUizWaOxMceX6cDdd3AzA5WqKrL8PwoRwrNrViHMPxFyfp29ZOfqJCS3cSL+Jw+NlRrrxpWZiYJOoQS3oceGKYLbf3AuFEznRrjINPj7Lplh4ACpMV2panGNiXZc3VHWBgrD9P74aWhj5uurWHlq65N5O9UsYYrnr1SoxjGDyQZfVVHRSyVZo7E3gRh0PPjLLxlp7ZJCqxlMf+x4fYOr0vtYpPpi3e0ObN71hHumXuU7dkaehclZkzLt789nWkmuf/mzW1x1l7TWdDWd/Wdpo64nPqtq9I0dXXkJ+LLbctp6NHY66cP5m2ODe+dW1D2eixHMlMhBceGGTzbb0NN6+7EYfVV3XwwBcPALBiUyutPcmG7bfctrxhAqfjGbrXNNG2bM4xtchFY9naJuKpSEPZlTf34EVdogkPL+bQfNIxRltPimtet6qhfnNXgkoxnES64fpumjoSpFpi0xOqIZoIJ9glm6OaBH2RiqciYTxEXBJNUSqlOpm2OCs3t2EcQ368TMfKxrFwy+29tK848VmfaI6Saoqy7rrG44eVm9roWNl4nCCy0FJNUbAQmZ5o3NqTpDhZoeeKloZ6m27umU7uAFfe1NOwLpb0WH5KfZFz5UYcojGHrlVpxgfy9G1tb1i/fkc3LcuSc7ZrW5aitSdFsinK+ECezlUZMu3xE8lEp224vpuVG1tPe14ncq4CGxBLerQuSwKWdGtjrN38jnWkpq8FNXclaO5K8sIDA1z7hr6GesmmKG7Eoauv6UJ1XYR4KsL1b1rdWJaOhMe11pJpb7zW2r4iRXtv47WszbcuJ5rwiKc9Epko0bgXJjaZTmzmOBBYS61Sp1quUynVqFd9eta3nOe9E1l4zR1Jrr5rRUNZV1+GyZETE9nXX99NbrxMpi1Oe2+aw8+Nza5Lt8boXJmZk8RELg/J5hixhEPb9DHsDBtY0i0x0m1xskNFrtjR1bDdys1tZNrjNLUv3PdfIpcDWyrhxOd+X2emy4JSec66GbXjgzipFLEN6wGoDw6en06KiIiIiIiIiIiIiIiIiIjIgljxW7d9bsVv3bZ6xW/d5kz/e04JSGQuYxfo6VvGmHeetOgAO4A7rLU3L8gLvEw7duywO3fuXIyXXpImR/PUqwHlfJ2B/VMUsmV6r2yle00TTW26ie0cLPiM0qUUu9VyneMvTnJ01zjLr2ghN16mVvFp7Ulx/MAkXaubKOdrFKcqdK3KMHQoR8uyJEE9YHKkxLK1zYwezZFsjuF6DmP9OZavb2V8oEAk5hLPRBg+OMnyDa1MjpSwvqW5K8HxA1N0r22iOFWlVKjS2Zth6OAU7SvS1Mp1xgYK9KxtpueKltlJHQslCCzDh6Y48sIYzV2N+zJyNEdqel9G+3P0rm9lfLBAJOoQz0Rn92VqtExuvMzKTW30rG0mmvBe+oUvvPMyG3opxe/ZGh8s0L9nnKnRMis3t7FsbTPR+On/ZkMHJxk5kmPkSI6OlRk6V6VZtrZl3rqjR3P078sy3p9n2RXN9KxroaVr7mQ6edku6bH3XFWKtemxe4KW7gS9V7ZRr9TJT1Sw1uI4Dsf2TOB4hhUbWomnXfY8Mkznygy9G1rmTDiygeX4wUkOPzdG4Fu61zTR2p2kbbmSkLwCit0lZLQ/x+Fnx8hPVOhe00Q8HZl9+mxzR4LmzsbxOjdeZnB/loF9WVq6k6RbYwwcmKRrZQYv5uBGXLyogcDgeuHzwz3PoWtVE4573nI/XkiXZfwOH53CrwUEdYtfC6iUatQqPq7rMNZfoGNVhnK+ylh/np51zfRc0UxzZ+MkzbGBPOVCjfH+AqNHc3SuyrBiYystSgZ5oVyWsTtjpD9HvRpAEGCMoVb1Kedq5LMVpkbKdK3O0L2miUqxTr1Sx2Io5WsMvThJsilG39Y2OldpcvwiumTjd+TIJL5vKRfqlHNVysU6k0Mlll3RTO/6FtKtcyeOARSmyowdLXD84CSp5hjGgWRTjJEjOcr5Gp19GdItUbpWn/m8Ts67SzZ2Z4z2T1KvWCqlOrWyz8TxIqV8lb4t7fSsa2m4FpTPVhjrz1HK14hEXAb2ZYklPdp606Raoixb3dyQLFIW1SUfuwC1Sp2juyc4+sI48XSEnnXNRBIu0bhLe8/cRHmTw0WOvDDO2ECejt40iaYoGIMxFowBa8EaZr9rsjYsml50XENzZ5KOFbqOcJ5dFvG7GIpTVQYPhNcDOnrTNHUm6N87QbVUp2NFhnrNJ9OWwFpLujXKxFCJ/j0TpFpi9KxrJtXs0bpMx9RncEnH7vjxHNVyQKVQZ+jFSUr5Gis3tbFyUyvZoSK58QpezCE3Vmb48BSt3Snalqfo6pubQFeWpPNxEKesRa/Qi297O5EVK1j5h5+as2731dtp/aEfpPuXfmnebfs//nFKTzzJFd/5NntuuJHmt7yFZb/y3893lxeTTkBERERERERERERERERERETkjBbybvy3nPR7HTgEvG0B25dz0Nxx4gbf3g1ti9gTuZhE4x6rNrezanP7nHVrr+6cU7b6qnnKtnWctLRsTtn667rntr29a07Zmnle73xwHMOytc0sW9s8Z93J/b7yLPdFlr62nhRtPWc/Cbh7TTPda+bGx3w6VmboWDl38obI+RRLRujb2kHf1o6G8s5VJ35ffVXjuq6+ltO2ZxxDz7oWetadvo7IxaijN0NH79mP0Zm2OJkblrHhhmWzZVfos/+S17Xy3CeKtU8nbepd33rObYm8XJ0vY5w72ZUnjXUi50PnqrM7pzpVqilOakucVVsar1M0XnsQOf86es8+htMtMdInJdFdd+3c614iF1Ik5rH26s55r+/Op7kryTYl1ZXLWLIpyrprulh3zYnxu3fD6c/vOlY06bsCmdW27MQ5Wd8px7Cdq5oartlueVXvheqWyCXJlss4sfkfXuEkEthS6bTb+pOTuM3hMb7X2oo/MX5e+igiIiIiIiIiIiIiIiIiIiJysViwJCTW2h9dqLZERERERERERERERERERERERF5KUC5jEvF515lEgqBUPv222RNJSNy2NuoTE+eljyIiIiIiIiIiIiIiIiIiIiIXiwVLQmKM+eSZ1ltrP7pQryUiIiIiIiIiIiIiIiIiIiIiEpTLOPHEvOuceJygXDrttv7kJJHe5QC4ra3U+vvPSx9FRERERERERERERERERERELhbOArYVB64F9k3/bAd84PHpHxERERERERERERERERERERGRBWNLJZxEfN51TiKBLZ4hCcnUFE5zMwBuWyv++Ph56aOIiIiIiIiIiIiIiIiIiIjIxcJbwLbWA6+21tYAjDGfBr5lrf35BXwNERERERERERERERERERERERFsEGCrVUw8Me96k0wQlOZPQmKtxZ+cxG0Kk5B4ra3Us1mstRhjzlufRURERERERERERERERERERJYyZwHbWg5kTlpOT5eJiIiIiIiIiIiIiIiIiIiIiCwoWy4D4MRj8653EkmCYnHedUGhAL6P2xwmIXFb26BWI8jnz09nRURERERERERERERERERERC4C3gK29VvAk8aYf59evgP41QVsX0REREREREREREREREREREQEgGA6CYmJJ+Zd7yQS1AYG5l3nZycBTiQhaWsNyycmcDOZebcRERERERERERERERERERERudQtWBISa+1fGmO+Adw4XfRfrbXHF6p9EREREREREREREREREREREZEZtlQCwEnE513vJBIEpeK86/zJLABPPjhBOn6QjS0tYfn4OKxateB9FREREREREREREREREREREbkYOAvVkDHGAHcDV1tr7wGixpgbFqp9EREREREREREREREREREREZEZQbkMgImfJglJKoktlubfdmoKgIH+Oo9+9SDjk+EtNH4udx56KiIiIiIiIiIiIiIiIiIiInJxWLAkJMAfATcD759ezgF/eKYNjDFxY8yjxpinjTHPG2P+5zx1jDHmk8aY/caYZ4wx1y5gn0VERERERERERERERERERETkIjSThMQ5TRISk0gQlOZPQlIeHgeg97o+InGXwwcrAPjTyUlERERERERERERERERERERELkfeArZ1o7X2WmPMkwDW2gljTPQltqkAd1lr88aYCPCAMeYb1tqHT6rzRmD99M+NwB9P/3vRG9g3Qf/eLNnhIiuubKV7XRPx6gRgCI4do/jQg9RHRkjffgexa68h1t19Tq+XmygxdDDHkefGiKcjrNrSxoor2ygcPYapVgj6+8k/8AC2WiN9x+0kb74ZNx6nPDZGUCjA2Bilp56i/NzzxLdvJ3H1VSSvumph/jNkSaoeO0bpiSfJP/wwmdtvp3r4MH6xQHzjRooPPUTyhhuoj4xSGxoiee21FB55hPjmTdhyhfL+faRvvZXS40/grViBE41SevZZ0rffRvm553EyGbz2dgo7d5K5/TYq+w+A7xNdu4bCQw+RuuUW6oOD1MYnSF61jcLDD5O4ejvB1BSVo0dJ3XADxZ07ia1dC1jKu3aTetWtlJ9+BrejHbepieLjT5C+43bKe/ZgPI9oby+Fx3bivf2H6D9ap1p3aO9rpv+FEXqubKM0VWX0yCS965poHt1F3JSxlQrlfftJ33ILpSefwNnxKsbpYvBokVVXdTFyaIpo3CXZEmdg7zirtnYyMZgnN1Jk5YY06T0P4mRHSN1+O6kd1y32n/SSNHIsx+RwiSPPjxFLePRtbWfFxrbz9nrDR6YY3D/J0MEpuvoyLF/fTFdf85x65T17KDz4ENG+VZSeew5/bJzEddfixOMUHnwIt6mJxA03YFetxDl2jMKDD+JPZEnffjvRKzdAuUL+vnupD4+QvusuEtdsx/E8Ss88S+6738XE42TuejXxrVsxxpx1//1ikdITT5C//35srUbmrrtI3Xgj1clJqrt2UbjvPgBSt9+Bt3YNkdZWSo/tJH/vv+Mkk6TuvJPUDTe8rNeURjN/g9x3v4vX0Ulix3VUnn+e8gu7SFx9NW57O25rK+UXnqeyew+Ja68htn4Dk/fcg5tJk9h+DXb5akbLGY7sydK+PMWqze20dCcbXmfy6Bhjo3X692YJfMuara0knvk3ant3EfmB9zFWjBNvb6J/3wSVfI3Vm1tpOvY41cceJrH9aoIN2xk8VmFooM6ytU10uqPUv/VlEldfTepVryLa2wtA9ehRCt9/kNILz5O66Saiq1dTuO9+akNDJK7ZTm3wONF1a3GiUQrfewAb+KRvv5341VcTaW1djD+BXCZKzzxD7rvfpT42TuwNb2PM6eLovjyZjjgtnUmwAcl4QGbyEIXvfBvzxvcykE0wcbxIzxUtpFtjHHlmmBXr07SnytTcBIMHiwz1l1m2Mk5XMk/cFqn3D1B8/HFi69cT37aV2tAQjhfBeB7Wr4Mx4Hk40RgmEcfEYridncSn30Ny4VUmJqj392MnJ6kNDhLU6sQ3XknpiSfCcXf7dmJbt1CPphmdinHkhXFaupOsvraH1mWpOe35tYDhI1MUp6pMjZYZO5Zn1eY2okmP4y9OsvyKFvr3TlDK1ejb1k7v+hbi6Zc6VRZZGNWREWoDA9h6HVsuY6tVqNexxlDr6GPKT4HrMbh/kmq5zsqNbYwfz9HRbGmpDWLGholeuQFTrWJ9n5qbYNLrwLceI8fy5MbKrNrQRFemQP3B+6js309yxw4ifauoDw3jpJI4qTTWr2MiEWytji0WKD3xJEGpRObu15C8/vrTThKSS1Mxn2f8WJWjuycoZius2tJOR5dDa1/nabexgWXk6BT5iSrHdo9jLazd3knvhhYcdyFzLIu8tOKRI1RsgpEhnyMvjJNujbHiylZaguOQz5O48krc5sbrBKP9eSaHiwzuy1KvB6y5OoxfL+Iu0l7I5WjwQJZDz45RnKywYmMbTZ1xEukoR3eNM/TiFG29KVq6k8STHp19TUSi5x6f/uQkhUceJX/vvXjLl5O49hrKTz5Frb+fxPbtuO3hNTxrLVgLQfiviUYxrkvx0UcJikUS27djkknAYhwHG1iMY3CSKSq7d1PZt4/k9TuIrFmDtRbHGIK6Hx73+HWw4GbSJK+++pz3SWRGcarK0V3jHN01TtvyFOmWGEMHJ1mxqY3sUJHxgQKrNrfRucylZeXpj3Pk0pU/OsjIuMehZ8eIxFxWbmolmQhI+Vly0W6OH5hi6NAU3WsyLF/fSufKzGJ3WeSiZaeTkJjTXF9wEklspYL1fYzbeIwzvm8QgHWvWkvxqTLH9h6lEwhyufPaZxEREREREREREREREREREZGlzFhrF6YhYx4BbgEem05G0gl8y1p7zVlunwQeAD5krX3kpPI/Ae611n5+enkPcKe1dvBM7e3YscPu3LnzFe7N+Xf8xSzf+ctdTI6ceOLOtW/o45pbm/FfPED/z/4cfjY7u27Zr/0arf/hPef0mrsfHuS7f7VrdjkSd3nTh7bRnilT37eP/p/5CLZWC1c6Div+4JNkXvMaSgMDMJFl+BOfoPjwifww6bvvpvt//irR9vZz6tdFbsFn4S+l2B37y79k+Ld/h7Yf/RFy3/oW9dExOn7mZxj53d+l+Z3vpLxrF5Xdu+n6Lx9n+Hc+Qfq227C+T+GBB+j6pV9k5Pc/SWz9FcTWr2fyy/fQ+dGPMvYXf4HT1ETTG17P+F/8Je0/8eNM3nMPQbFE+4//GCO/9/u0vv/9FB5+mOqRI3T90i8y/Nu/Q+b1r6c+PEzpiSfC1/vd/0Ni+3a89nZy3/wmnR/7eUY//SdEurtJ3XwzE5/7HB3/+T8z8fnPgzG0vu99jP7RH9H6+5/hO/c75Cdr3PDWNTz0TwfYePMyxvoLjBw5cTPZlutb2TD0LSb/5q/o+sVfZOSTnyT1utdz6Kof5JkHx7jhLWt46jtHicZd1l/fzZPfOsK1r+9jzyODFLLV2XZuuTND+o9+gaBSZeWffJrk9u2L8Jec13nJIHGh43esP8/I0Vzj2BZzeeOHtrHyPCQiyY2XuP8Lezn0zNhs2YqNrdz5Q1fS3HEiAUR5/36O/NAP0/GzH2Xk936fYHJydl3nz/8cY5/5DEGhiJNK0vupT9H/kY8S5POzdXp++7fIP7aT3D/8w2xZ7+/9Hm5LM0d+9D+FkzIAE43S93d/R+KqbWe9D/n77uPYRz4aTkAFcBxW/vEfY23AsZ/5CNTrYbnnseIP/gDrOvT/1E+feM1YjJWf+RNSNy5qPrCLeuyd/MpXGfj4x4Hw833qa1+j+Oijs+szr3sdkdV9jH/mT2fLmt7yFpx0iuznv0Bs21WMvPdX2fmdE4dCrcuSvOVnt5NpDW+wLY3lePGFSb73xf34tSCsZOAN7+rEfeTbPFK/kevftoHv/vUuqqX6bDuv+cBa+Nl3ErvpNnZv+SAvPpedXde3PsmWw1+i/K2vk7r5Zpb/3/8D9TpHP/xhyk8/c6Kvb3sr1QMvUn7uOQA6P/YxTDzG8Cf+N8wcZ7guKz75STKvuWth/lMvHhd17F5MSrt2ceSHfoigUCSyYQND7/wVnnr4xJMrW7qT9G1rJxJ1aQ+OExnYz33HriA3Xp6tc81rV5JqifPAl/Zx1weu4PDuLAeeGJ1df8VVLVyd3MXEb/1/s2WxK6+k42c/yuRXv0qksxO3pYUgn8dtagbXwevowGlvx02nSV5zzcWW0OmSid/CU09hCwXG//pvMI5Dx89+lOP/4/+l/Oyzs3VaP/gfGbz2fTz4zwdnyzJtMd72sWtp7kg0tDewb4Lhw1MMHcyx//FhvKjDjjet4eEvH+D1P7mVf//b3Y1j7Qc3sfHmnvO/ozLjkondV6Lw5JMExRK2Ug6T79RqBOUKZvM1PH0ozfINbTzwxX1Uy/7sNre/fwMP/sN+bn1dG6t7qlCtEtRq2HKFo5ErMJEYT3zzCFOjJ65nXH/3Mtr+9BeoHT4EQOsP/iCxq6/Ca22levAgkZUrCfJ5gkKBkU98gqBQnN12xR/9IZm7LrtjgrN1ScZv/95x/vVPnqdcqM2W3f7+DWy+uQs3On+SpqFDk0wOl/juX+8i8KfPTQy85aNXs3LTZX1daqm6JGMXwkQJlePH2fNCnQe+tG+2PNkU5XU/tpnYQ18hsnIlza95zey67HCRo7vGefAf91OvBrPlP/AzV9G3teOC9l9e0iUbuyNHpvjy/32q4bj09T+5hefvH+DY7onZsjVXd7BqSzuZ9hh9W849Psf+5m8Y/o3fBKDjQx9i4gtfwJ848XodH/kZ3NY2bK0afjcRBNggILp6NYO/9PGG7yu6Pv7x8PqUtVgbEOntZeyPP01lz57Z9lo/+EEyb3h9OMHYWvxSCVssYisVjOcRWbHiUk5EcsnG71Lk+wEPf/lFnvr2kdmytp4UPVc08/wDA9z6zit48J8PYAPL7e/fwPr1DvHlyxexx0vaJRm75UKB/t15/vXPnofpr+K9iMNrf2wzTa0RHv7qYQ4/Nz5bf+XmNl7zwU2kmmOL1GN5hc7Hxb2FuXnjMpN/4Psc/fEfp+9znyV57bVz1o/9+V8w/IlPsGHnTtx0Y5LhnR/5DVLf/lvWPbaTvU9m+d7fPsud3/t5Oj/2MTp+8icu1C5caBfVhWkRERERERERERERERERERG58BbyUaGfBP4Z6DLG/DphQpHfeKmNjDGuMeYpYBj49skJSKb1AkdPWj42XXZRmxgqNiQgAXj6u0eZLEQo79rdkIAEYOzP/ozK4BnzrpxRdrjI09892lBWK/scPzCF63nk/+3fTtzQCxAETHzxS1QnJ3E8j9rgQEMCEoD8d75DddfuV9wnWdrKe/cx9qd/BoCTTlPrHyB9221M/cu/ABDpXU5l1y7i27ZRePAhCALi27ZSeOABvJ4eKi8exFarpG+/g8mvfg0TjxMUiwT5PE2vfx3Zv/8iED6Rqj48Qvquu8j+0z8D4Ha0Uz14kOT115P7znfBWmJXrKP0xBNE162j9MyzUK+TuvEGct/6Fm5LC/WRUWyxSOa1d5P9h38IZyMZ8CcmyLzudUx8MXy9nNfB5FiFVVva2PfYEABN7YmGBCQAL+ycoNq9Fm/ZMqqHDmGrVbwfeB/PPjyOG3GoVwOqpTrrru3i+fv7gfAG0pMTkAA8/miJ6FvfSzA5GfZbFlQpX+XZfz/WUFar+Azuy56X1xsfKDYkIAE4tnuC8YFiQ1n52Wfx83lsudyQgARg8stfJv3qcJKlu3IV5WeeaUhAAoQJev7TjzaUTX3nO4z9xV/OJgMBsNUquX/77ln338/nmfruv51IQAIQBNSGhpj6yldPJCABqNeZ+pd/IXHNNY2vWamQv+/+s35NaVQfn2Dk939vdtmJxxoSkADkvvUtYmvXNZRNfe1rJK+/Ptzmrh/gyXuHGtZPHC8y3l+YXZ48nmPkSP5EAhIAC889W6O27VVE0nHG+vMNk48Anrx3iNS73ktw090NCUgADu8rEuwIY7fw0ENUDxygsn9/QwISgKmvfo307beftPxVrO+fSEAC4Ptk//mfqWUb3x8iC6X44IOzE9y9N7+XZ3Y2fs5nh4rE4h7GwAsvRihvuKEhAQnAc98bINkcxXENj33zGNF4pGH9/meyFE1TQ1llzx6CbJbYqj7c5mawFieVIiiXCQpFaseHsLk8QaFI5cgR5MKrT01hK1Xy991H4qptlJ56itqRIw0JSAAqiQ4e+0bj3yg3XmHsWONntl/zGTmap1YJ2P/EMACrt3Ww95HjxJIeUyOluWPtt46QzzbGm8j5UBkcJCgWIfDxh4fx83n8bBa3KUMuSNHUmWLieLEhAQnAc/f107etnSceyuM3d4fjablCOdlBsQjFyWpDAhKAJ+8bJvKW984uT3zxi0Ta2/FHRnAzGWy5jD8+Qe3w4YYEJACjf/xp/EIBuTzUKhXG+gsNCUggHBuzQ6XTbAW58TKHnx+fTUAC4WnK8/cPsFAJlkXORm1igoKfZOc3DjWUF6eqjPYXiG/ahM3lqA0MzK6bGCowMVhoSEAC8MS3jlCvNo7BIufLwL7snOPS3Fi5IQEJwMGnR6kUawwfys2p/3LVBgcZ/eQfzC6baLQhAQlA9h/+kSCfIygWsXUfay1OMknpsZ1zvq8ofP/7+Lnc7DU3Wyw2JCABmPjsZ7HlMtRqWGsx1oLvgzHUs1nqY43X9UReqamREs+c8p3b+GAhTCBh4eCzoyxf3wLAk988QpnkPK3IpSwoVnn63v6GdBL1WsDg/kly2XpDAhKAoy+Mz7nmICJnz5bD80knHp93vZMMkwoHxbnXH4qDYwRulGgmRffqJgInAl6EIJebU1dERERERERERERERERERETkcrFgSUistZ8FPg78JjAIvN1a+6Wz2M631m4HVgA3GGO2nlJlvqewzDu7wBjzk8aYncaYnSMjIy+r/xfayZMmTi6zvm28uXbazI2zr5QN7Jwb3QH8elgWlOZOgrOlEsZajONg6/PfcHy6cnl5lmLs2sDHVqbjIgjjxESjc8qcWOxE2fTEn4Z6xoDvY1wH64fxYjzvRBKEmXai0TDOT3292TI7t2zmNV33RHuOG8alMfNuE0yXuZ4zOzl/vglL1kJgPEwkQlCphGUYbGDDpqf76HoOft2eth2/FkAkfHJdQ+KHS8iixq8Nb9w91XxlC2Hm7z6n3G8st7Uaxph5x/OgXMFMP93bTaUI5okLW6lgT30ta8NJpKe2Vzz9RL057Vrb+P6Z4ToEpbntBKUiuO7c8vnauAgtRuxav05Qrpy0fJoJZ6eOJ9bOjo243pyYg8Y4DKyd/Yw/Wa3qY42DF3EbE5RMq1cDTCKJPc1D8AJ7otzW/fmPA4Kg4egtKJfn7g/hcQaBJty9EkvxuGGpOfl9huPOe+xtrSUIoO5bgnlOi/x6EE5acwz1qo/jza1z8ntitl3fxzhO+F6Y/fHDf+30MhbmeR9fDhY7fgPfBzP9+WktJhKZfyyLROcdR08dfwMbnmtZa2fPUh3PoV7zMa6Zt416zccGmjB/sVns2H0lTBCAtVg7fe5uZ449TPhxbZg3Fv1agDsdxzasFP5gwjbmO+/xLdY7KVlTvR4ee06/vwxAEMz7fgtKpRPHOXJeLLX4ne9z2a8FZ0wmYggTP52qWvb1nPBL2FKL3RnWMu/5VOAH4DjYIGg417MBs9eOTlYr+/OdKsklYCnGbn2eGJxvPD65PDjHALW+f+J6qDHYea4B2HI5HMdnrgcHFmPMvNeebKU8ez5lAzv/NRXfn74mbDAwfSwDYbZq/7I9D3s5lmL8LkU2sPO+R2aOZ/xqgOuF1wzqNR+dAp5/Sy52A/DnSTZWrwWnHX99jVEir9jM9WATT8y73iTCcnvKd2E2sNQnsthkGoC25SkczyGIp/BzU+exxyIiIiIiIiIiIiIiIiIiIiJL24IlIQGw1u621v6htfZT1tpdL3PbLHAv8IZTVh0DVp60vAIYYB7W2s9Ya3dYa3d0dna+nJe/4Fq6k8RSXkPZhhu6aW4OiG+8EhNpfNJ6ywc+QGzVqnN6vc23LW8oM45h2bomgrpP5u7XzNmm+V3vItLSQlCtEuntJbpuXcP6+NatxNZf8Yr7JCcsxdiNrl9P6/vfHy4EFieTIf/AAzS94Y1hUb6At2wZxaeeInXrrQBUjx4jtnEjtcOHiW/aBEDxySdJ3XYbQaGI29oGnkf+3vtoestbwrYdB5NMkrv33tkyW6nitrVRfPRRMq8JY7M+Nkp09Woqu3eT3HEdAOXde0hcdx3+2BjRlSvBcSg8+CCZ178eggATi2JiMfLf/S7Nb38bAM3RErGkx5EXxll3bRcAlVKdTFvjk7H6NjYRHdhD7ehR4huvDGfoPfJvrN3STL0aEE9FcVzDwWdG2HBDNwDGGCKxxoQNW69NUfvGP2IiERLbTs2xdGlYzPiNJT0239rTUGYcQ++G1vPyei3dSTpXZRrK2npStPakGsriW7YA4La3zxnPm3/gzeTvvReA8lNPkbj6avAaPw9a3vde8o8+2lCWun4HbR/8j40dMobMa+8+6/57mQzp19w1p9yJx2n6gR+YU9705jdT/N4Dc1/zjjvO+jWXssWI3UhnJ+0/8eOzyyYanfv5evXVVI81Pkk1ecMNVA8fAcC//1+58vqOxm1SEdqWp2eXmzqmY/WU/AhbtqeIHXqGicEcHSszOG5jhW23dVP80ufw9jxO18rGuG7viRN58SkAomvXEl27hujadXg9je/B1K23UHr66RN9edObcKYT75ys+W1vw2s9P+/VS91SPG5YalK33DybRCm47+us39Y4dicyEXzf4kUdNq0NSA3uIhpv/AzfcP0yqqU6fi3g6lcvZ3Ko8Wm03X1pkn62oczr6sJrb6d8YD9BqYzxwgQXTjqN05TB6+jEacrgJJPEVq5Y+B2/CCx2/EZbWzGRCJm77qJ66BBedxfR1auJ9PY21HP793LV7Y3nT9G42zDWAkSiLq3LEnieM/uU68PPjbJ+RzflXI3WZak5Y+3WO1aQaZt/QoQsXYsdu69EtLcXJ5HAOAavuxsnmcRrbycoFmmKVckOFWjuSuI4jTG6+dYeDj83xtU3tuAVxzHJJCYWJ1oYIeJZEk1RYsnG49dNN3Tgf/ue2eX0a+/Gn5rCW9aDn89DLIbb2kK0r29Okru2//SjuJnGcVoW1lKK30gsRtvyFO4pyb223N5LU8fcY8YZiUyUVVva55RvuX05xpk/gZ5c/JZS7M6wiQTJaIVtdzYey3lRh/beNJUDB3ASCSInnSc1dyZoW57CnBKqV79m5ZzrSHJpWIqxu3xd85zj0kx7nNZlyYay7jVNxFMRWroSxJON17RerkhPD60//MPhgrUY18XEYg11mt/6VpxUEieVxnguuC5BoUjy5pvmtJd61W24zU24qTROMoHb0oJ3yv9v5vWvw6SS4DpYYzDBdAJrG+C2tOC26TrES1mK8bsUZdrjXDH9/cKMZFN09mEAq6/qoH9vFgjPARPupZHUeSlbarHrJNw538tioHdDK5m2KB0rG68vtPWmaO9tLBORs2fLYXIRJx6bd72TDI95Tk3IPzVWxq0UcJqagfDhE609KepunGAqdx57LCIiIiIiIiIiIiIiIiIiIrK0mTM9ZfS8v7gxnUDNWps1xiSAbwG/ba392kl13gz8DPAm4Ebgk9baG16q7R07dtidO3eep56fOxtYju2dYPf3Bxg/XmTN1Z2s3tZO2pmEWg3/6FEmPv8F/NERmt/2NhI33URi/fpzes3xwTz9e7PsfmiQeCrCtjtXsHJzG5WBfigUqB88yMTnv4Ct1Wh573tJ3HIzsa4uSgMD4VMLh4aY+pevU3riCZI33UjT619P8tprF+h/5KK14DNdllLslvfupfC975H793+n5T3vofD9B3FSKWLr1jL5L1+n5V3vovzsswTlEskdO5i85ys0vemNVI8coXb0GJnX3s3kPfeQuvVVBIU8pWeepfltbyP3ja8T27wZJxoj//0HaHnXu8nfey+Rri685T3kvvlNWt7zHoqP7QRjSGzbRvYr99D89rdT3bOX2tgYmdtvI/vPXybz2rupj4xQ3ruXlje/mcmvfY3EtdeCH1B87DFa3vkOpr79HaJ9q/Ba28g//BCRn/5/eOHxSSKZBG3Lkux5bJjNt/QwfHiK4y/mWLslw/LqAZL+FLWjR6kcPULTa1/H5D33EP+R/8yRkQSD/VU23rSMfTuH6FiRwYs6HHlhnM23LufQs6Nkh0ts3N5M26HvY599jLYf/EGSt96C4yxo7qdzcV5maV3o+LWBZejQJKPH8ux+8DixpMfWO3vp3dBCNH5uEyVOZ/DFSfY9NsTA3iw9VzSz4YZueta1NPbLWkpPPUX2n/6J9KtuY/IrX6E+PEzTm96E29HOxN99Frelhdb3vhe7ZjXm0CEmPv95/Iksze94O/Ht26FcZvyv/pra4CCtH/gA6TvvwEQiFB56mPG/+iucRJy2//RjJK/fgRM5+32tjY1RevQxJr7wBWy1SusHPkDqzjuoDw9T2bWbiS98AYDW972P6MYrcdNpig8+RPaLX8QkErT90A+RetWtOLH5b+S8QC7qsbc+Nk7+3nuZ+PzniK67gpa3v52pb36T0pNPkrrpJuLXbMdtamLqG/9K+dlnSd1yC6k7bmfkE/8bt62N5h/4AeprNnNkwGHvYyN0rWli6+29dK5snLw7dnCEkeM1dj88RL3qs+32HtKP3UPtoe8R++ivMDQVI9OZ4YXvD1DO19h0czftQ09R/uJfk777tXDL69j79CRHD9dYdWWGNR15Sn/wmyRvuIHW97yH2BVh8pTy3r1kv/Qlio/tpOmNbyB5/fWM/cVfUB8aJvO611EfHSW2aSNONEb2C5/H1n1a3vdeEtdcQ2zlyvn+iy5lF3XsXkxsvU7h0UcZ/6u/xs9mSf3ML3E018L+J8dp60mxYlM48Szm+TSP7yH3+b/F/elfZveuGuODRVZv66B7dYZn7j3Guq3N9PZAzYmz5/Fxjh0o0rc+yZqeKim3SOmxx8jfdz/xzZtpevObqA4O4rjh5DkLGAtEPEwsjptKYWJRnFSaxIZzO7ZfBJdM/JaOHMHm8tQH+qkPD1O3kLrySia/cg/lZ54l9apbybzmNVQSbRw5GrD7sVHal8XZ9uqVdK+dO2mxWqpz/OAk5UKN4wemGNyfZeMtPURiLv37xll3dTfPf7+fcq7Gxlt66NvWTpOSkFxIl0zsvhKlQ4cIspNQqxJUKgTlMrZaxfE8Sp3rmKonsdaw55HjlAs1Nt7cQ/Z4kZamgGXuMO7EILFNm7CVCtTrlKPNTJk2/MDw4pMjZIeLrL+2g9UrLKXP/hmV3btJ33kHyZtvpnb4ME4mg9vSgg0CjDEEvo8dH2fyK1/Fz+Voff/7ydz1atzm5sX+r1qqLsn4LY6NMzIY8Nz9AxSyFTbc0E3v2hSda+cmGZlRq/qMHplicqTMrgcHCQLLVa9ewept7URi3mm3k0VzScbujOLBgxRo5tj+HHsfHSLTnmDLrT20J6Zg6DixdWuJLFvWsM3QwUkmhorseeQ4tbLPtjt6WX11B7HE+bl2Ia/YJRu7NrAc3T3OM/9+jNJUlfXXd9PZlyGa8Nj90CD9u8PrXL0bWvCiLsvWNhNPnXt81oaGmPrmN5n68j3ENm8i89rXkv3Hf6I+0E/6rruIrVmDxYQJoG0AxgEbYGJxqNeY+PznseUKTW98I057+3QyHwOug/EiOIn47PWTzGvvJnnzLdjp5FSmXieo1cD3sUGAm0yS3L4d412ynxuXbPwuVZOjJfY+cpwXnxyhc1WaZeta2PPIIBtvXs7EYIFjuyfYcOP0cc6a0x/nyKUbu9mDgwwMWF54YIBIzGXr7b2kmw2Z6iiT0Z7we4Z9kyzf0MKG67tZtlbnRReh8/Fd2+LdvHERG//bv2Po13+d9Q89OG/y8/z3HuDoT/wEfZ/7HMlrr5ktP/j0CIM/+WN0rkyz/h8+B8C3//J5Wj7zi3RvXcmqP/3MBduHC0zZPEVEREREREREREREREREROSMFjsJyVXAXwMu4ABftNb+mjHmpwGstZ82xhjgU8AbgCLwo9bal7xzbKncYPZSquUatapPqik+W2atpZrPY6pV8H2iXV1naOHlK+aqeFFDNHbiJuLA96kVi5hSCVyPaHvbnO0qhQLUaphikUhPD+bUx3deni7ZmyNPVp+YwMTj4DgE+QKR9jbq2SwmGgXPI8jliLS3U5+aAsfBJBIE2SxOSwu2VIIgwGtqojY2hpPJQL2OrVbxWlqojY3jpFMQBNhyGa+1NWw7EoFolGBqKmx7cjIsi8UIstmwLBc+gcrLZMK2W1qgUsHWanjNzWFZOt3Y9vS+BMbBL5SJtzdTyU7hRDyM51HPF4m3t7zkvpTHsnjpJLZeJ6jVibU0UR6bxE3FIQjwS1Xi7c34uRwmEsGJx8/8n3zhXRJJSGb4fkC1WMPxnAsygcf3fSqFOrGUh+ue/qnFtl7H1usYz8MvlcJ4qddxIhGcRAKCADeRwC+VwkkRpRKR7u45258aP0G1Csa8rOQjc/ahUADHwU00ToKujo5CEMz57PFzOYhEcJdGLF8SY29QLmM8j6BWB8cQlCu4iTjW9/Gzk5CIY6wlMn3DbFAuE9RqmJP+DrWKjxtxcE7z9PcgCKgWyjixKNGoF8ZgqYSJRLAWAlyCoI4NIOKBcRyCSgUTiWJch3qpDF4MqkUA3HgcJx6fcwxgg4CgUpmNp9nYd11sEIDjQBDMTv7xLt+JxpdE7F5MbK2GXyxhsRjHwbcOxnXDv0QQ4AThMYkNAvA8LAYfD9eETy62dR/HJYzhaBRqNQLj4dQr4HlQr+MmEgSFAiQSOI5DeHplwz+2tVhrsfV6OPHNcYjOcxP8ReKSi9/qxET4N/J9DGDjcUwuh21uhmIxfEp7tUoQSRDNJE871s6o13x8P8BgiMRcjDHUaz7GMQRBQFC3mmi8OC652H0lqhMT4dAHOJ6HcZww7i34Npz4a6tVnFgUgwETwNQUJJI40Qh+rQbTx6AYg288rA0XvaCGdcLx1ZbLmHg8PA6YTsDoxGIEvg/TZZbwj+JEo0vxPGmpuaTjtzxZoF4LSHdkXrryNL/uU6v6uJ5LJHr6czFZdJd07M6o5nJUqwbXBc/WMPEEXuL041pQD6iU60RiLl5E8btEXfKxW6/7VIt13JhDbPr7AWsttXIdDDiuc17i0y+VsYHP9AuG50jT1xaMMWEZs6sBG5YHQXi+FgThNQvHwQRBeOwC08czNixzXQgsmOlywusc1lq8ZPJyOO645ON3qaqUajiumb4mYLGFHDU8bABe0iN26cfeubrkY7eUzRME4Nkq0daW2XMlv+ZTKdVJZKL6zvXipSQkS8Ton/4pI7/7f7jyySfC799OUXz8cQ7/4A+x8s//jPStt86WP/6vhwj+24/RdcNG+v74DwF49GsHqf36x1i+MsaaL37hgu3DBaZBR0RERERERERERERERERERM5oQR75ZoxxgW9aa+9+OdtZa58Brpmn/NMn/W6BD59zJ5eoaDxCNN44Ec0YQyxz9hMwXq5kJjqnzHHd8DXP8LqxVCr8paXlPPVMlqqTnxjlxmJh2Ulx4LaHT/HzmprmlJFOz5ZFZsqiUUgmp8tOSngzfVPYvG2fNGF9tuykeJ1te7rdhrKT257eFxeIxMN9ibWc6LcXi57VvsTbp/sYi55UdqKPkWT4eu55fC/LCa7rkMjELuDruSSbXnpChvG82aeremeIBTeRCJM3nBR3p25/Mic6dxx/udyZMf0U0Y6O+esrlhfczOQXd/pvPDO+AnOSw8zUP3XCTCR25jh0HId45sS4aDyv4W8Zbt14HOKc1I/oTKylzvz+MqcktDk5dk++k/XktkUuBBOJ4DWfiPGFe9514xg633tWlr55E8LMjJGn+Zw8Ey8yd0LxzLLrOqcOtyIX1JkSIJ0YG08Zy046tzrrce6U49nZ7c9ua7nMxJtf/ljrei6up4iSpSGayfByzs4dzyGRPvfzeZFz4Xku3inXtIwxRM9zsjz3DAl6RC52c5JNtrTo9E8aJFrS85a7EZekEpOJLAhbKgOESYXnMZOYxJZKDeXjAwU6gxKRtpbZsubOBINeglp24vx0VkREREREREREREREREREROQi4CxEI9ZaHygaYy7bx9qLiIiIiIiIiIiIiIiIiIiIyIUTVMqYWAzjzH/7i5lOQhKcmoRksECkVsRtOnGbS3NXgrqXxJ+aOn8dFhEREREREREREREREREREVniFu5h4FAGnjXGfBsozBRaaz+6gK8hIiIiIiIiIiIiIiIiIiIiIoItlXHi8dOud5JJAIJCsaE8N5TDqVdwm08kIWnpTFL3EthC/vx0VkREREREREREREREREREROQisJBJSP5l+kdERERERERERERERERERERE5LwKymVMInHa9bNJSEql2bJKsYbNTQHgtpxIQhJLeZBIYWpVgmoVJxo9T70WERERERERERERERERERERWboWLAmJtfavjTEJYJW1ds9CtSsiIiIiIiIiIiIiIiIiIiIicipbLuHE46dd70wnKAlKxdmy3HiZSL0AgNt8IgmJMYZIa7gc5HI47e3no8siIiIiIiIiIiIiIiIiIiIiS5qzUA0ZY94CPAX86/TydmPMVxaqfRERERERERERERERERERERGRGUG5gplONDIf43mYSARbKs2W5cbKeLUwKYnT1NRQP9rRAoA/NbXwnRURERERERERERERERERERG5CCxYEhLgV4EbgCyAtfYpYM0Cti8iIiIiIiIiIiIiIiIiIiIiAoAtl3BisTPWMckkQfFEEpKpsTKRepiExG1uaagba28FlIRERERERERERERERERERERELl8LmYSkbq2dPKXMLmD7IiIiIiIiIiIiIiIiIiIiIiIABKUyJhE/Yx0nkSAonUhCkhsvE7PhstvS3FA33tkCQGloYmE7KiIiIiIiIiIiIiIiIiIiInKRWMgkJM8ZYz4AuMaY9caYPwAeXMD2RUREREREREREREREREREREQACMplnHjijHWcZJKgVJxdzo2VSUWqALjNjUlIkt1tABSPjy9wT0VEREREREREREREREREREQuDguZhOQjwBagAnwemAJ+bgHbFxEREREREREREREREREREREBwJZKOIn4Ges4iQS2WJpdzo2VSbplcF2cdLqhbqo3TEJSHlYSEhEREREREREREREREREREbk8eQvVkLW2CPy36R8RERERERERERERERERERERkfMmqFQwsZdOQhIUi7PLubEycVPBzWQwxjTUzazoIAtUxibPQ29FRERERERERERERERERERElr5zTkJijPkqYE+33lr71nN9DRERERERERERERERERERERGRk9lSCSdx5iQkJpnAH58AoFquUy7UiPpF3ObmOXWTHU0ExqE6riQkIiIiIiIiIiIiIiIiIiIicnk65yQkwP+e/vedwDLg76aX3w8cWoD2RUREREREREREREREREREREQaBOUyJp44Yx0nkaRWGgAgN14GIFIv4rTMTULiuA5+JEl9cmrhOysiIiIiIiIiIiIiIiIiIiJyETjnJCTW2vsAjDH/y1p7+0mrvmqMuf9c2xcREREREREREREREREREREROZm1Flsu48TjZ6znpFIEhQIAubEwCYlTzuP2dMzfbjxFkMstbGdFRERERERERERERERERERELhLOArbVaYxZO7NgjFkDdC5g+yIiIiIiIiIiIiIiIiIiIiIi2EoFAJN4iSQk6RRBPg+cSEJiijncpub5N0imsHklIREREREREREREREREREREZHLk7eAbf08cK8x5sXp5dXATy1g+yIiIiIiIiIiIiIiIiIiIiIiBKUSAE7szElI3HSGoFDABgG5sTKOZwhyU7jN8ychMekMjOQJAovjmAXvt4iIiIiIiIiIiIiIiIiIiMhStmBJSKy1/2qMWQ9snC7aba2tnGkbY8xK4G+AZUAAfMZa+/un1LkTuAc4OF30T9baX1uofouIiIiIiIiIiIiIiIiIiIjIxSUoFAFwUqkz1nMyGbCWoFAgN14m0xIlyOVOm4TEy2TwBoYpTlZJt8YWvN8iIiIiIiIiIiIiIiIiIiIiS9mCJSGZdh2werrdq40xWGv/5gz168AvWGufMMZkgMeNMd+21r5wSr3vWWt/YIH7KkvR6D44/izUitC5GVZcu9g9kqUqewSGXgAvBm4UCiOQWQbdWyCWWezeyYU2NQjHn4FSFtJdkGiDzg0QSSx2z0TklRh/EQafgUoOOq+ElTcsdo9kqapXYWQXDO+CSBKSHdBxRfhZILLQJvth+PnwuKOlD1bsgFh6sXslcvGp5GF0D+RHoDQOrX2w7Cqdx11uBp+BoefBcWHZNujatNg9Enl5ju2Ekd0QSYVjWMe6xe6RyKVnaiD8rKgWIdMFhTFo6g0/MyLxxe6dyOnlhmHg8fB4t3V1eKyTbF3sXsliqBag/4nwWme6C5ZdDc3LF7tXIpecoFgAwEklz1jPzYTX8YJcjqmxMs3pAKzFbTlNEpKWZrx6ifxEWUlIRERERERERERERERERERE5LKzYElIjDF/C6wDngL86WILnDYJibV2EBic/j1njNkF9AKnJiGRy8HxZ+ErH4GBJ8PlaAre9zlYe+eidkuWoOHd8Nl3h5OVtr0H7v/EiXW3/xd41c+G8SOXh+wR+NKPQv/OcDmWgVf/crh83Y+EcSIiF4+RPfDVn4MjD4bLXhze+3ew/rWL2i1ZovZ8Hf7hR8EG4fLWd0HzSrjxp6GpZ3H7JpeWqQHY+Rfwvf99ouw1/wNu/gh40cXrl8jFplaGp78A+eOnnMd9HF71czqPu1wceQj+/ofDZKIQJnZ6z19C73WL2y+Rs7X/3+CLPxROLAbo3QFv/QPo3ry4/RK5lIwfhC/+cPidAUC8Be74Jfj7H4S3fgq2/yA4zqJ2UWRehVH414/D8/8cLjsevOX3YeNbIdG0uH2TC++5f4KvfgSsDZe3/2B4LSGzbHH7JXKJsaUSAE7yzElInHSY/NTP5cmNl+nurYXlTfOPz9H2Zip+iUK2soC9FREREREREREREREREREREbk4LORdmjuAW621/9la+5Hpn4+e7cbGmNXANcAj86y+2RjztDHmG8aYLQvUX1lq+neeSEAC4Y38930CylOL1ydZmp7/MkweDScaP/gHjevu/20Y2bso3ZJFcuThEwlIACo52POvsOurMHZg8folIq/MwJMnEpAA1Mvw3f8FU8cXr0+yNGWPwtd+7kQCEoDn/jGcwD741GL1Si5Vw7vh+/+3sezffx2Gn1+c/ohcrEb3Qm5gnvO439F53OUiCODJz51IQAKQPQx7v7l4fRJ5OQqjcN9vn0hAAuE1iZOvS4jIuTv8/RMJSADKWTh4P6zYAd/4JZh4cdG6JnJG/Y+fSEACENTh3t+EMR3rXnaOPwff/pUTCUgAnvosDD69eH0SuUQFxSIATiJxxnpOJg1AbWKS0lSVdDRMLuK2tMxbP9begudXyI8WF66zIiIiIiIiIiIiIiIiIiIiIheJhUxC8hzwih7dZIxJA/8I/Jy19tSME08Afdbaq4E/AL58hnZ+0hiz0xizc2Rk5HTVZKma7J9bNroHShMXvi8XmGL3ZRp4IvzXmHBy+qmKYxe2P5e5RY/ficNzy8b2Q1MPlC/98UNeuUWPXZlfYXRu2di+cMKRAIrdWeXJ+Y8T/Qrkhy98f+SsXLTxWxqDwG8sC3wo6LjzcnHRxu5SUxrXedwiWFLxWy/ByAtzy4d2Xfi+yJK3pGJ3RnkyPD851dTghe+LLFlLMnYvNqPzvM/G9kPzKqiVoJS94F26XCh+z1Fhnv+zyWNQzV/4vlxmllzslrPzX7eaL0ZE5JzMJCExyeQZ67mZDAD5wXEAkk54bcJrbZ23frS9GYDCcV2vEBERERERERERERERERERkcvPQiYh6QBeMMZ80xjzlZmfl9rIGBMhTEDyWWvtP5263lo7Za3NT//+dSBijOmYry1r7WestTustTs6OzvPbW/kwuveNrds45uhecWF78sFpth9mTa/Lfy3OAFNvY3rIkloXX3Bu3Q5W/T47b12btm6V8PoAWheeeH7IxeNRY9dmV/7urllG94ALX0Xvi9LlGJ3WlMvdG9tLHM8cCLQsX5x+iQv6aKN3+ZVkGxrLEu0QtvaxemPXHAXbewuNS19UCnoPO4CW1LxG03BlW+eW77+NRe+L7LkLanYndG0Aja8cW559+YL3xdZspZk7F5s+m6ZW7bmTjj2aHi9T9f8zhvF7zlqXx8m3TvZqpsg/Yqe4SAvw5KL3ZY+6NrUWOZ40HbF4vRH5BI2k4TEeYkkJE46TEJSGgqTkMQpAeCeJgmJ29QU1h/WAw9ERERERERERERERERERETk8rOQSUh+FXg78BvA7570c1rGGAP8ObDLWvt/TlNn2XQ9jDE3EPZZj5u5FK24AV7zPyCaDm/S3PAG2PFj4LiL3TNZaq64G275KDz3D3DrR6HjyrC8eSW8/wvzT2CXS1fv9fCG3wwnsxkDG14Pbevg9b8OTcsXu3ci8nKtuBFe/5sQD58yyNpXh2N+NLG4/ZKlJ9kK7/g09GwPl9PdcPf/DCf8zJSJLJRl2+CtnzqRdKR1Dbz7L6FdSUhEXpa2NbD5rXD7L0LHhrBM53GXnyvfCNt/KLze40bhpg/DmjsWu1ciZycSgxt+Ata/LlyOZcJj0BU3Lm6/RC41K24I31uRBBgHNr0FvBhEm+A//DVkuhe7hyLzW34NvP3TkGwPl1fsgFf/NyVLvRy1rIQ3/19YdlW4nO6Gd/zJ/EnVReScBMUwmYiTTJ2xnptJA1AayQIQrRfC8tMlIcmESUsq0/VFRERERERERERERERERERELifeQjVkrb3PGNMHrLfWfscYkwReKnvErcAPA88aY56aLvtlYNV0m58G3g18yBhTB0rA+6y1dqH6LUtIcw/c8nPhTfz1SnhT5swEZJGTZbrhNf8vXPdBwMCWd0FxFBJtugH9cpRoghs/BFe+CcpT4MXDm7xT7YvdMxF5JVJtcPN/Diei1orhhH+9n+V0lm2D/3gPTB4LlxMt0LxiUbskl6hoEja+OUyaUJyA5t7wR0Revr5boP0KWHkT+FXI9Og87nLTtQne9Am4/sfCieVdW8CLLHavRM7e8u3wjs/A+IHwGsSyrYvdI5FLT7I1TEi6+W3g1yDWBOUJuP2XINm22L0TOT0vCle/D1ZcH35nkemBllWL3StZLH03wwf+HrJHIdEKnRsWu0cil6SgWATASSXPWM+ZSSoyNonjGNxyDjwPJ51+yfoiIiIiIiIiIiIiIiIiIiIil5sFS0JijPkJ4CeBNmAd0At8GnjN6bax1j4AmDO1a639FPCpheqnLHGuG04mFXkprhdOXJuR7ly8vsjiMwZaVy92L0RkIS3bstg9kItFoiX8EbkQ9PRqkYWR7gp/5PIVTeop8HJxS7ZCcsdi90Lk0uY40LbmxHLTssXri8jL1b4u/BFpWh7+iMh5ExQLADiJxBnrmVgMIhFqE1OkV8YIslnclhaMmf92FbepCYB6dhIbWIxzxttaRERERERERERERERERERERC4pzgK29WHgVmAKwFq7D9CMEhERERERERERERERERERERFZUEGxiInFMK57xnrGGNxMBj+bJdMWx89m8VpbTlvfzWTCf2slirnq/K9drTL1jW9Qn5h4xf0XERERERERERERERERERERWYoWMglJxVo7e/eFMcYD7AK2LyIiIiIiIiIiIiIiIiIiIiKCLZVwksmzquu1t2OnppOQTEzgtrSetq4znYTEq5coZCvz1hn9wz+i/+c/xsAv/tLL77iIiIiIiIiIiIiIiIiIiIjIEraQSUjuM8b8MpAwxrwW+BLw1QVsX0RERERERERERERERERERESEoFA86yQkTlsbbiFLpiNBPTuB23qGJCTpNBiDVy+Sn5ibhMQGAdm//3sACt//PrX+/le2AyIiIiIiIiIiIiIiIiIiIiJL0EImIfmvwAjwLPBTwNeB/76A7YuIiIiIiIiIiIiIiIiIiIiIEBSLOMnEWdW16RYi1RxN7XH80THc9rbT1jWOg0ml8eqleZOQVA8cwM9maf/xHwOg8PAjr2wHRERERERERERERERERERERJagBUtCYq0NrLV/aq19j7X23dO/24VqX0REREREREREREREREREREQEwiQkJpk8q7p+oploLUemyeBns0S6u89Y382kiQRlCtnynHXFx58AoOXd78ZpaqL01JMvv/MiIiIiIiIiIiIiIiIiIiIiS9Q5JyExxrzNGPPhk5YfMca8OP3znnNtX0RERERERERERERERERERETkZEGphHOWSUgqkTSeXyFRHAXA6+w6Y323qYmYKZOfqMxZV3r6adz2diJ9fcQ3b6a8e8/L77yIiIiIiIiIiIiIiIiIiIjIEnXOSUiAjwNfOWk5BlwP3An89AK0LyIiIiIiIiIiIiIiIiIiIiIyKygWcZKps6pbdtIAmP4DAHjd3Wes72YyRIP5k5BUDx0itm4dxhhia9dSffFFrLUvs/ciIiIiIiIiIiIiIiIiIiIiS9NCJCGJWmuPnrT8gLV2zFp7BDi7uz1ERERERERERERERERERERERM5SmIQkeVZ1Cza8faXywvMAeF2dZ6zvNDUR8cvkJ8pz1lUPHyba1wdAdN1agkKB+vDIy+m6iIiIiIiIiIiIiIiIiIiIyJK1EElIWk9esNb+zEmLZ75rQ0RERERERERERERERERERETkZQqKRZxE4qzqTtXDJCSFBx8EY4iuWnXG+m5LC14lRz5bwVo7W+7ncvjj40T7wu1j69YBUH3xwCvZBREREREREREREREREREREZElZyGSkDxijPmJUwuNMT8FPLoA7YuIiIiIiIiIiIiIiIiIiIiIzLLFIk4yeVZ1R/1WrHGo7j9AZMUKnHj8jPW9tlZMcYqgFlDO12bLq4ePABDp6wMgumYNAJWDB1/JLoiIiIiIiIiIiIiIiIiIiIgsOd4CtPHzwJeNMR8Anpguuw6IAW9fgPZFRERERERERERERERERERERACwQUBQKp1VEpJ61adQANuxDDMyQGzt2pfcxm1txdRruH6F/ESFRCYKQO3IYQCiq8IkJF5nJyYSodbffw57IyIiIiIiIiIiIiIiIiIiIrJ0nHMSEmvtMHCLMeYuYMt08b9Ya//tXNsWERERERERERERERERERERETlZUCyCtTjp9EvWzY2XAXCu3AYjA6RuveUlt3Fb2wCI1PLksxU6V2UAqB6eSUKyEgDjOESWL6c2MPCK9kNERERERERERERERERERERkqTnnJCQzppOOKPGIiIiIiIiIiIiIiIiIiIiIiJw3QS4HgJN56SQkU6NhEpLMf/55Uq+9heZ3vP0lt3FbW4AwCUlhojxbXj10GK+7GyeRmC2L9CoJiYiIiIiIiIiIiIiIiIiIiFw6nMXugIiIiIiIiIiIiIiIiIiIiIjI2fKnk5C4mcxL1s0OFwFou6KH1vf+B5xo9CW38draAIjVC+QnKrPl1SNHiPb1NdZdfnZJSPxawMFnRpkaK71kXREREREREREREREREREREZHF4i12B0REREREREREREREREREREREzlaQzwPgpF86CcnkcIlI3CWRiZx1+25rKwDpSJncRHm2vHr4MJnXvKahbmT5cvyRUYJKBScWm7c9G1i+9odPc2z3BJG4y3v+6w5al6XOuj8iIiIiIiIiIiIiIiIiIiIiF4qz2B0QERERERERERERERERERERETlbQS4HgJtJv2Td7HCRlq4kxpizbt9tawMg7ZXJjYZJSPxcDn98nGjfqoa6keXLAagNDJy2vf2PD3Ns9wTXvaEPYwwPfHHfWfdFRERERERERERERERERERE5ELyFvPFjTErgb8BlgEB8Blr7e+fUscAvw+8CSgCP2KtfeJC91UuEN+HoWchPwzJdlhx3WL3SC4m9RpMHAS/DolmKIxCvBWCKtRLYUwVRiGWAWuhmoNkF5TGwEuA40I5C+kuKE2AcaBtDXjxxd4zeSnFLIw8D/UKNK2EzvWL3SORpSd7FIrjkOmGzLLF7s2ZVYsw+DTUCtC0Aro2LnaPZKkojMLkUbBAUCf8hfBzPZoKP7ejenKkLJBaGSZeDI8tAx9qRUi0AE5YRgBBLYy/1tWQ7lzc/opcjPKjUByFwki4HG2CWAra1oKjvLmXtMkBGD8A1ofWtdC66qW3EVlKxg6Ex6XGg/YN0NS12D0SWbr8GowfhEoOvCgEARgTXov16+E1WMeBwILnhcfezvRXV61rwm1ELjaDz0DuOCRaYeX1i90bWUxDL8DUAMTS0Hs9uO5i90jkkuLn8gA4mcxL1p0cLtK9pvllte+kUhCJkHBKTI2WAKgePgJApK+voW60txcIk5DE1qyZt72nvnOE1p4UN7x1LZG4y8NffpHsUJGW7uTL6peIiIiIiIiIiIiIiIiIiIjI+baoSUiAOvAL1tonjDEZ4HFjzLettS+cVOeNwPrpnxuBP57+Vy41+eFwwvG//AJkD4c3Z77+N2Dbe8CNLHbvZKkrjMBDfwgPfxru/h/w2J9Dpgd6robH/gzu/H/g+X8OJyxvegs8+Adw00/DkUfCeNvxY/D934Nt7w4nQ+35l/AG+Ov+E9z+i9DUs9h7KKcz8Aw890V45NPhpIa+V8FrfgVW3bTYPRNZGoIA9n8bvvwhKI5BUy+868+h7+bF7tn8hnbBrnvggf8L9TIsvwZe/5tLt79y4Qw+DV/7GGx7Fxg3nLSWPRrG9TNfCCeqbfwBeN2vQ9vqxe6tXOwm++He34Kn/jZc3vgWSHWECUfW3hmen4zugwf+D5QnoW0dvPvPwzFLRM7OwFNQnoKH/xD2/ms4EfnqD8D618LIHlh7e5hAUi49x3bC438FT30WbABXvhle9bOwUpf75CJx5BH43idg37fDsevaD8L2H4YV1y52z0SWnsJYeM3u+/83vG63+lWw+rYwycjwC9C1KUwqPLwL+m6Bww9B0/IwKWm1GF6TvfVnId292HsicnbqVTj0PfiXj8HEofB7rtf9enhOmWha7N7JhXbo+/D1XwzHu2gq/J7qyrdCe99LbysiZyXI5wBwUukz1vNrAVNjZTbc+PIStBtj8FpbiQcFCpNV6lWf6uFDAERXNb6XI8uXA2ESkvlkh4oMH85xy7uuwHEMG2/u4ZGvHGT3Q4Pc9PZ1L6tfIiIiIiIiIiIiIiIiIiIiIufboj5W1lo7aK19Yvr3HLAL6D2l2tuAv7Ghh4EWY4yyAVyKJo+FN2ZmD4fLpQn4ykfCG/tFXsqRR8IJ6xvfBE/8LYztDyeIPvQpWLEDDt4Pg0/B1nfCvb8JmWXh0+cOfQ+2fwD+/f8LJzO70TABCYSToXb+Gbx47yLumLykkRfCpDJ+LVw+/AA8+dnwqeoiAmP74Iv/MUzUADDVD1/6j+EE+6VodE84TtfL4fLAk/DgJ2FycHH7JYurOAH3fDhMMHXkYRh6Hl68L5zA8dRnwwQkALu/Bs/8/eL2VS4N+78NT/5NmHTEWtj1FYg1wf/P3n3Ht3Ee9h//3GED3JuUqD2t4SVvO7bjmTR7p3GSZifNatq0aUYzmjZJ0yT9Ze+9EztOvPfekmVrb1ESxT0BYgN39/vjoUhRpLfEIX3frxdeBA6Hw3PAw8Nzz93zvc3XQOIgbL/J1MNs3Mzfvwf+8j4zyFJEnll6wAT57LvPBJCA2ZY/8WvTN9CxAbp3TG0Z5dhpf8J8155rHu+4EXbdMbVlEnm2slnT5tx1u3nsOrDuZ9C1cWrLJTJdHXwM7vvqaL/dvgdM//+G35sAkp7t5n+q6VTY8AcT7OMLwPYboXYpPPpD2P/Q1K6DyHPRsw1u+JgJIAFznOv6D5tjE3Ji6dkFd/2XCSAByKfgts9A79anf52IPCfOkAkh8ZU+fQhJvCcDHlTURZ/ze/gqKwnkkwAk+rIUDhwAIDinecx8/vp68PmeMoRk17ousGDxmjoAYuUhmhaXs2+T+hNFRERERERERERERERERERk+pnSEJLDWZY1DzgVODJxYhbQetjjg4wPKpHjQbILBg+MneYWYXDflBRHZpgDD5u/VfPNSZ22z5zUCTBrjRncBlBID0873Zz0DqaeOQWoXwWtj41f9qFBcTI9dW4eP23PHTCkwAIRAAZbRwM9Dkl2myCm6ejItgCYMKhk56QXRaaRZBd0boJAGGoWQzBqBvT07hw/79ZrITc06UWU48y268dPa3vcDJTs2GjqYcWcsc/37lD7Q+TZSnZBuBx23Dz+uYPrzHY+rVDB45LjmDDQI+2+w4TTiEx3yXYTVnakA49MfllEZoK2x8dP2/cgzDoNClloud/03RYz0LkRqheZ4JKGVSZkumyWAqJlZhnqGg3aP8R1dJzrRJTthwMThCgNTND3KSLPmzuUBJ8PKxJ52vkGu83x4ecTQuKvrsKXGgQg0Zshv28//vp67CPe0/L78dfXUWibOAC+ZUMvjQvKKakMj0ybc1I1fW1JUoO551wuERERERERERERERERERERkWNpWoSQWJZVAlwD/JPneYkjn57gJd5TLOe9lmWtsyxrXU9Pz9EuphxrkUoIV4yfXlI/6UWZbKq7R0H9CvM3PQCljebE3sDwyV/9e6F2ubnvDx82bZm57wuZvwP7zBU2jzT7jGNW7OPBlNffqnnjp9WvMIMaRZ7GlNfdyVJSC9YRzalAFKJVU1OeZxKrHT+tbjkEyya/LNPUCVN3DxepML/vAPF2EzQWqYDy5vHzNp9t6rhMSzOm/s45Z/y0miUmKKlqgRlUlh0c+3ys1uzTyHFpxtTdmSJSDrmkGYB8pJrFkE9D8OmvYizP3rSqvz4f1K8cP71xtfbhZJxpVXcPCZdBw8njp9edNPllkWlrWtbdqVKzZPy0umWmbzYQNvv7/XtN/2z5bBNCVrPU9NOWN0OqZ+L/OTlmVH9foEjFxPuFJ8Bxrqk27epuIAbVC8dPj9VMfllEjmNuMomvpATryGMgR+hvTwJQ2fg8QkgaG6GvG4BEb5b8/v0E586dcN5AUxPF9vEhxdlUgZ7WIZpPGntcZs6KagAObO17zuUSEREREREREREREREREREROZamPITEsqwAJoDkt57n/WWCWQ4Ch48unA20T7Qsz/N+5HneGs/z1tTWTjCAVaa3aCNc/l9g+0ennfsRaDp16so0SVR3j4K555vBopuvhnM+CL6guVrmwhfDzpvhlL83g9haH4OVr4WDa2HBhRCthp23wJnvMYNJK+aOvap93QpYeuXUrdcMMOX1t/FkmHPu6ONoFZzzYaic89SvEWEa1N3JUrMULvvi6GPLhpd/0wyin45ql8LiK0Yfh8rg4k9B7QQn7Z+gTpi6e7jSBnjFd2DLdSZ8qm4FLH8FYEHD6sPma4Iz3g22b6pKKs9gxtTfk145dsBk1QIT6lRSb8LOZp85NuDJF4BXfBvKZ01+WWVSzJi6O1OUNkJJHax8HZQ1jU6vX2na99ULoXbx1JXvODPt6u+8C8YGNpTPhlWvB3vKuyllmpl2dRegpAZOvWo0IA9MQELzmVNXJpl2pmXdnSpzzoa5F4w+jtWY34HaZdD2OCy+3IT5dW6Csz9g+m4r5pgQh2LWzLfw4qkr/wlI9fcFqlk2/jjXOR+CKrVtj7VpV3cbVpo+2cODcle+FqpVF0SOJic5hF1a+ozz9bWlKKsJEwz7n3HeIwWamnD6egn4HBI9aXItLQQXzJ943sYmCh3jQ0jadw6CB7OWjg2qqp4VI1oepHXbwHMul4iIiIiIiIiIiIiIiIiIiMix9NzPsjiKLHNJmp8C2zzP+8ZTzHYd8CHLsv4AnAXEPc8bf+aGzHw1c8E7G676iwmDKGkwA0x1VbCplU9Bos1ctc2yzNWqY7XmqpS+EPiDkI2baZkBsHwQjEG6z0zLJcBzIFxpXhOpgkIanLwJAEn1QqjUzFNIQ7TGvDYQBjtglh0dXrbtMydsZgfMsqOHXS2qcg684VfQvR3w4J23wlCnGShaSIFThLdfD8lu875r3mXW7aq/mGnhMnMCaHoQ3vAbU1bLhtrlUNYwVZ++PBuzz4CX/A/074FCBqoXmWkiYgTCJpRh7vkw1GEG89QsGTt4fjqZdRpc8lkzsC+XhKr5MPeco7PsfBr69gCuCZ2KVByd5crkWPhieOOvYWA/BCKm7VC1EOafb+qKL2jqdzAGqX5I95iBa5k45OKmbVlMgz9iAiMOtV/S/eDzgy9s2i2x4baIL2jaOrkEhMshOwj+sGk3gGmnhp77lTNlGsrEzf6H5wEeWH6zjXzNTyB+EHCH27eDcMWFpo0YqTLtzAWXmMGRdcsmvsq7yEzW3wKpHvCHzDYxEAMnZx47RfO/gGf+d3wB0xYPRIb366ohM2heZ/kg1W325TwXIuWQT0LlfLONfcOvYaAFsKBsltnvm3vuxFeQl+PD3HPgVd8z7TK3aLafs06b6lKJPHvzL4A3/saE39oBqFlkApREZLyKOfCGn0PXNtOnG64w7Yja5eAPQLFogkbsALgFeOnXTZ/t3PPN4/M+BqV1o8vLp01ftT9k2hiFtFlmpt+EmOYzYFsQjJq2SKzO7Mu5LlTMhkSH+e2paDb7hJnhfuZQmdknwDJlLmbMvKESE5iW6DDtltJG0wZKtJv3iFQO951HzfRc0uxbulnTrgnGpuRjlykUKYP5F8NV1w4f56o3fRc10zQMWI6teRfDW642+1bRSrMPVH/SM79ORJ41dyj5LENIklQ1lTyv9wg0mdDh6miG5P4OquNxQgsm3q4HmppI3HwznuNg+UaDsg/uGMAftKmfVzZmfsuyaFxYQceewedVNhEREREREREREREREREREZFjZUpDSIDzgLcCmyzLenJ42qeAOQCe5/0AuAl4KbAbSAPvmPxiyjGXy0DPVtj6N3jsh+ZE4NVvMoNAK3Q18SnTuwtu+RQMtsApV8HD34aT3wz9+6BtLZz3UXj4u2ZQsFOEnTfDRZ+Ex35krmpc2ggbfg8XfxKe/L0Z7D1rDTz2Y3jRv8DO2yA/BCteBQ99xwSDdG2C7m1w5nvh4e/AspeZE8Zb7oULPg6Pfh8G9kHtSfDKb8PsNaPlLakzNzmxdG2BXbfCA//PBM4se7m5uuScs6a6ZCLTRyACs04FTp3qkjyz7p2w73645ytmoNDCS+DCT7zw/+m+PXDbf8COG02gxNkfhKVXarDgTGLbJuihbtn45xLtpi3x2A/N4PVT32rCRdrWm6tp3/+/MPtMqF0Kj/8Czv5H2HGTCRlZ9ndw31fh9HeY35R8Cpa9FO77X1jzTnNF7lwSlr/cLP+s98O6n5v2y0mvhsZVk/1JyNHUvgE2/9mEmFmWqTeljSYgIVYHyS7AMgMOH/62eX7BRfCSr5r6JHI8yiagYwO0PW72xfp3Q8U8ExQSiJhBtkOdULMY9twFJ78JnvwdnP52ePSHsPhySPVB5wY47W2w7mdm2/n4z2Hl62DfA2b/LlIJV3zZbE8P36+T49/BdaavYP0vAcvUE89VPZCZ48Cj8MA3TF9EsNT0V9kBDSoWeSqxWlhQ+8KX07cH7vg8bLvO7Nef+T5ouceEXzeshE1Xm/2/h79j+gcH95uAkJPfbF634jXmdY/90Bx7KGuC+79mAiYv/De47iMmuPLM90KwBO79H3N84rIvmv3I1keh+Ww47a1w3YdNX/f5/wIbfmf2Sc/5IGy9zgRuL3wxtD4GV/y3aTPJiaV3G9zySejdaUInrvwy1Cyc6lLJVGhfB7d9xuwblc2Cy/8LSudA9PkFIYjIeM7gIL7y8qefp+Ay2J1hwanPrz0SaGwEoDqUYmBPPwDBBRNv1wONjVAsUuzpIdAwepGLgzsGaFpUgc9vj3tN48Jy9qzvJjmQpaQy/LzKKCIiIiIiIiIiIiIiIiIiInK0jT/LYRJ5nveA53mW53mrPc87Zfh2k+d5PxgOIMEzPuh53kLP81Z5nrduKsssx0i6Dzo3wkPfNFcSd4vw5G9g9x1TXbITVzEH93wZdt9mTsq+8/NmYEU2DtuvN4OE7viCGZQbrjAnW5/8ZnNy9uB+qF9hTuhe9lIz6Kxzoxmw+cA3oPkM2H0nHHgIVrwa7vyiGew5uA923gqnXmVODPdcsP2w+Woz7e7/MgEkYEJr/niVOcFbTmzd2+Cu/zKDhT3PDETY9GfI5aa6ZCLyfPTtgFv+3QSQAOy50wxoHup4/st0CvDgt0wACZjfsnu+ZAZBJ7tfcJFlGth5CzzyXdOGLOZg7U/MQK9kB9z1RTjt7SZ0ZKjTDCK7+79N0FnrI+Z3Y+558NC3YO45cPBR2H4jzDkHHvymee7gY6b9U78C7vwCrH493P91M4hEZq7cENz+WTMoMjMIbU+YcIV9D4I/DP17TfhIdtB872kzyIC998DtnzNXWRc5HnVthcEDsO6nkItDx0bzv7DnTqicB0/8CprPNAN8V7za7LstfSnc/SWzPw+w5RoTTnLH52HRpWZ7Gi6H9vUmgAQgMwB/fb8JPJETS+ta81vtFMDJm/sH1051qUSendQgPPFr0/70PLN9vOOzJshXRI4dp2CCJ7ddZx5n4yZMcslLTCBQvBUCYdNHuOoNJsi66VTo2mwCRE56hem/xjP7hBt+Z9o5pQ3QvQVu+zSsep15n4e/C64DwRikeuFv/2hC1sDsQ677GSy50uwf3PZpWPla0665679MuNr+B02/dz5pAlaL6qM8obSth7/+owkgARPk95f3mlAaObF0bIab/nm07yjRBte+D7qemNpyiRxnnMFBfBUVTzvPQFcKz/WonvX8AoACs5oAKLPiWO37AQjNnzfxvE0msKTQPnr8OhXPMdCRYtbSyglf07DQhKh07Ik/r/KJiIiIiIiIiIiIiIiIiIiIHAtTGkIiMsJnQ8t946dvvxEK2ckvj5irvm/9m7lfzJiBFXPOgj13m2meawaYNZ1qTqoGCEZNoEzVQnOCN0D5bDMQI1wxOoB81mmw735zv5A2f+eea4JJwAxCcosw+4zRAWq2zwwUPdxQBwy2HvVVlxmmY+P4aTtuggENABKZkfr3jZ+26xYY6nr+y0z1wNZrx09PdkO87fkvV6YH14ENfxg/veNJqFlqBn5Zlpm2506Yc665XxwOkDi41lw1G2BgP8TqzBWuG1ebaYMHoKTODBhqWGUGpblF89yBR9RWncmGOmGozXyHhYwZYOgWzW2oywwkLKRH68rhdt5s2ssix6NMv9n2NZ9p9v/mnA1774a65WZQZUn9aDikkxsOj7TN/trsM0f34YpZ81yk0uy7zTl34qDRvt2TtmoyTey8eYJpt0x+OUSej8R+0+dwpJ6tk18WkRNJqge2/GX89GwcfAHTrzz3PLP/Z/vMcz3boWLu8N85ZlrLfabPGWDvvdB8lrkfPwjRwwYGH3wM6of3Ez1v7D5B2+MmoPKQQ/3bh9/fc5cJttz6V4WfnmjireP3FXMJ098gJ5ahjvEhZU5+dF9KRI4KZ3AQX2XF087TezAJQHXT8wwhaWiAQIBoppuSoVasklL8TU0Tzzs8vdA+GqretnMAgNnLJg4hqWkuwR+w6VQIiYiIiIiIiIiIiIiIiIiIiEwjCiGR6cEDqheNn167DHzBSS+OAMHS0e/EFzJ/421QteCIaa0mdATA8pmTvJNdJnwEoJiHUKk5ATwyfHJVsmf0+ZHlHJxg2W2jy7YDowOID/EFIVJxVFZXZrDyWeOnVS+EYPnkl0VEXrjoBCfiVi2EQPT5LzNUasIoJpoe1rZixrN90HT6+OkVc0YD0A61J6sWmDbH4dNK6iEzOHy/zgxiK22AtDk5nFjt+GmHL88XOOqrJJMkVArY5ju0/eavZQMuhMtMwJ4vNPH+SOU8CD2/gQsi014gCpHy0f2/Q/tqiQ5T9zODZnsJo/8fh/5OtF+HZ55PHPbc4aI1x3BlZFqqO2n8tNrlk18OkecjVGr6HI5U0jD5ZRE5kYRKoWbJ+OnBmAmKrFpg+qlhdB+trMkEDYbLoZgz0w7fJ6xaMBpw7Q+bYxSHVM6HRPvo45F2DaYdlBmY+LlD9yvnQ6INqhdDUPsNJ5RI1fh+AsuCaPXUlEemTrgMQmXjp0erJr8sIscpz3Vx4nF8FRVPO19XS4JAyEdFw/M7xmAFAoQXL8bfvoeyof0wbynWkceshwUaGwEotI+2I9q2DxCK+qlpLp3wNT6fTd28Mjr3KoREREREREREREREREREREREpg+FkMj04AILLjIDmg6JVsEpbzFXVJbJF62El3zVDBbr2gKLL4P9D8DSK82J0y33wclvMletrjsJYjWw7Xo46/3mJOxgibnS5Oar4dwPmyvKZxPQsMpctfKs95vBnv17YN4FsPt2WPV6CETMlSZPeiV0PGmuuh2phF23wunvHFvGK740GlIiJ67GU6F+1ejjYAmc909Q1TxlRRKRF6B2OTSfPfrYH4KLPwW1Eww2erZCpXDp58ygokNmnQ4NK6Fq/vNfrkwfp77FhIUcUt5sBvikeuD0d8Cu28yg+pNeBXvvNu2LwQMmcOKcD8Kmq034nZMHtwBnf9C0YeqWQzFr2jFnfxA2XwMrXwsHHjFhbXPOHr3Ktsw8pQ3w4s+Yq5WHy2HuueC6JtQmVGoGExfzUCyYfZVDbD/83TdM+1fkeFQxB6oWg+fAokugcxMsucIES5Y2mH11pwC1S6H9SVj6Uth5q9netq+HeedDuAI6N8KSK2HLtXDOh8z+4un/MDbYZ9Fl0HjK1KynTJ3lLzN16ZDSRjNNZCaoWgAX/OvYkMSmU82+hYgcO6FSuOwLR+zXn2aCJwNRs5+2+87R/b+qBabNkR8y7ZBNfzZ9zHPOho4Npq0y/wLTdgE49yNmfw/M71LlnNFQk6UvNf3jYPYhD+0bAsy/EPp2mfvzzof+vSaA4ox3w46bTf/6RGGrcvyqWwoXfmLstHM+bNrYcmKpOxku+ezYcP1TrjIhRSJyVLiJBLgu/mcRQlI3rwzbnjg45NkIr1hBYf1jlCYPkmla9pTz2bEYvvJyCh2jISQHdwzQtLjiad+/cWE5Pa1JCjnneZdRRERERERERERERERERERE5GiyPM975rlmoDVr1njr1q2b6mLIczHQBsl2c9KuWzQDQZvPnOpSPZPnf7bSU5hWddfzoHsb9O40V3jMp8HJQqzOnOAdqQLXgWzcXFlyqNNcEd72m6tMVsyGZI854TsQgWQXlM+C9ABgQ7gUkp1mgGd+CJyiGTA81GGuhu3khwe6NZpp4XJTrnSfOWm37iRzhXp5Po563YUprL9tT5h6WsxA9RKYd+7kl0Em0/G97RUzoLl3l/kNqF4I9WsgehS29x2boGsT2EGoXmB+RwLhZ37d0aO6eyz1t0D3VnO/pN4MGIsMD5Qf6jSBM5l+c2XqcBkkOqCsAXJJM0+0yrQ3ShsgO2QG34crYajdtIOyCTNwxCmYulmzDGafNrXrPLmOz/rrFKFtPeTiZtvgFkxb1nPA8gOu+c4ty7R53SLUrzTbD4UlzhTHZ9091gYOQKLNbCtDJVBIQqTaBE5GayDTZwbyZuMQiJn/DSzzv1JImX28ZBdEKsx+ZDFj5iukTYBPsts8V7/SbGPlqRy/9bf1MbMPBybQZvYZU1seOdqO37p7yL4HoHc3BGNQs8gEkcjx4PivuzNd9zbo2WkCS0NlkOo2+3/pPtNP7GGCJKPVkGg3+3yFnNmHq5hr2iDFjOlryA1B/KCZHq2Cnm3m9XXLIZ8yxykiVSYwYHAfpPpMuIkdgL6dpq86WmNCtgMxCMXMe8ZqoJAxy61bPjaA4NhS/Z0uunfCYIupX6WNpj+ibvlUl2o6O37rbu9us/0Y2G/CcyvnQ+OqZ3yZzCjHYiN/fJ68cQzk9+1jz5Uvoemr/0P5K14x4TyFvMNP/uk+Tr18Dme/6vlf2CJ5//20vue9ALS97Rtc+qmXPOW8e1/9Gvx1tcz54Q9J9Gb49Wce5oI3Lmb1xU998YR9m3q58bsbedXHTmXW0kkJMJu0BoqIiIiIiIiIiIiIiIiIiIjMTP6pLoDIiMpZ5tasgSfThmVB/UnmJjKdzTrV3ETk+NB0irkdbY2rdKL/8axqvrkdMnvN1JVFZg6fH+ZM++BDkclXOcfcRI6V5jNnQvCsyFObd765icjkqlt+dMMcDv8tOnx/EqBh5ej9I9tFDYf1l6ufQY5Ut8TcRGoWmZuIHBPO4CAAvoqKp5yn58AQrutRv6D8Bb1X7LzzqH73u9izM0fbUNnTzhtoaqJw4AAAB3cMADxjsEjDcPk69sYnK4RERERERERERERERERERERE5Gnp0s0iIiIiIiIiIiIiIiIiIiIiMiMUB0zAx9OFkHTsHgSgYf7TB4c8E8u2qfv4x4m+8W0kB3Kk4rmnnDfQ2EihvR3P8zi4fYBIWZCqxtjTLj8cC1DZEKVzb/wFlVNERERERERERERERERERETkaFEIiYiIiIiIiIiIiIiIiIiIiIjMCM6gCezwVVY+5TwHtvRT01xCpDR4VN6zfjjMpKsl8ZTzBJqacFMpnESCth0DzF5aiWVZz7jshoXldO6J47neUSmriIiIiIiIiIiIiIiIiIiIyAuhEBIRERERERERERERERERERERmRGcvl4AfJVVEz6fzxbp3BtnzkkTP/981MwuwbatZwghaQSgd8Me0ok8s5c9dUjK4RoXlpNLFxnoSh+VsoqIiIiIiIiIiIiIiIiIiIi8EAohEREREREREREREREREREREZEZodDdjR2L4SuJTfh8285BXMejefnRCyHxB33UNJfQsXvwKecJzG4GoOOhbQDMXVn9rJbdsKAcgM698RdWSBEREREREREREREREREREZGjQCEkIiIiIiIiIiIiIiIiIiIiIjIjFLu68dfXP+Xze5/sIRj20biw4qi+75wV1XTujZNNFiZ8PjhvLgCDG3dQP7+MWHnoWS23oj5KOBagc49CSERERERERERERERERERERGTqKYRERERERERERERERERERERERGaEYnc3/rq6CZ9zCi57n+hhwSm1+AJH95SYeatr8DzYv7l3wud9JSXY1TW47a3MP7nmWS/XsiwaFpbToRASERERERERERERERERERERmQb8U10AEREREREREREREREREREREZFno9jVRfSMNRM+t39LH/lMkUVn1B/1962rybOy8kFC9/0GdiegkAZfEMpnw6zTYeGLKZQ3EO3tZtHpE4ekPJWGBWXs29hLJpknUhI86mUXERERERERERERERERERERebYUQiIiIiIiIiIiIiIiIiIiIiIi057nuhR6evDXTRzyseX+dqJlQWYvqzxKb+jBvvth7U+wtt/EhaEC+WQEJ7EIX7QCcgnYcRM88WsAZi2tI4Gf8urwc3qbxoXlAHTuTTB/dc3RKbuIiIiIiIiIiIiIiIiIiIjI86AQEhERERERERERERERERERERF5/np3wa7boP0J6NoCqV7IJ8EfhlgtVC+E2Wtg7vkw+wyw7ef1Ns7AABQK+GvHh5AMdqU5sKWPM142H5/v+S1/jIPr4I7PmxCSSBWc9T6Gmv6OX38vxSknz+fc1y4y83ke9O2m99ZfEdn8c+aeOYT3vXOxLv8CLLniWb1V3dwyfAGbtu0DCiERERERERERERERERERERGRKaUQEhERERERERERERERERERERF5btL98MRvzK13h5lWNgsaVpmgkVApFDKQ6obu7bDjJjNPaROsei2c8W6onPec3rLQ2gpAoHn2uOeevOMAts9ixQVNL2StIDMId3wOHv+FCVC58n/g9H+AQJhSYOlZW9lwdytLzqqnZnYpWBbZyDxu3HwltYOzOHnPl2m8LIH1uzfAspfBS/8Xyp6+TP6gj1mLKziwtQ9Y/MLKLyIiIiIiIiIiIiIiIiIiIvICTHkIiWVZPwNeBnR7nrdygucvAv4GtAxP+ovnef85aQWUyed50LfHXBGpYvyJQyKTyilCLg6hMijmwHMhWALZQfPXLYBTgEgFpAcgEAE8KGQhWjnFhT+B5NLm5EU8qJo/1aURkaMh3gb5FNQumeqSyHRWyJrfZKcIlg/KG8fP47qQHYBgGfgDk15EmeZSfeZqrJEqwAXbD64D4TJTvwoZtelEjoZc0uxLhcuefr58GtyiuVk2OA54RQjGIFQyOWWVydO7FywLqrUPJzNUzw4zoPIZBhKKnBBySdN+tizzG+4BtmWe8zwIRsEfmtIiikyqbBISByFWDzHtU57QCgXo3w3Raiitm+rSiBxdyW64/xuw7mfg5KD5bHjJ/8LSl0BF81O/Lt0Pu++ALdfCI9+Hh78Ly/4Ozv0oNJ/xrN4617IPgOC8eWOmx3sybHuwgxUXNBErf55tD8+DrX+Dm/8NUj1wzofgok+O65c45zWLaN0+wPXf3sDFb1lGtDzI/X/cRTqe59R3XcbgVd8kUvdvVC2Kw91fhu+cCZd9Hk5/J9j2U75980lVPHj1bhJ9GcqqI89vHUREREREREREREREREREREReoCkPIQF+AXwH+NXTzHO/53kvm5ziyJRqexJaH4HHf25CSM79MCy61AQ8iEy2nh3w2I9gsBWWvhTW/xJWvAoS7dC5GU55MzzxW5h3nhlQt/ceWPNu2HIN9O+FU98Kq98A5QrTOabanoSBFnjke2aQ+alvhYWXQMO4XCsRmQlyadh3Lzz0HRhqh1VvgMWXw+zTp7pkMt0ceBTu/xr07oIlV5iT3HvKoWIe1Cww8/TtgXU/h23XmefP+7C5AqdIPm0GOzz0LRNkc8pVUL8SOjaYALrms80+Se+u0Tbd0w2eEJGJFTLQci/c8z9QSMN5/2QGIx25j+8UYP+D0LHR3C9tMH0CAy2w6c8QiMKL/hUWXjwc/CgzWvcOaH0UHvuheXzW+2DOuVCzaGrLJfJsHXwc9t4NG34H0Vo47yOw8FIIKGBBTkCFDOy5G+77KhSzsPJ1JszZdcAfNPNk4iaQZMHF0HTKlBZXZFLsfwie+DXsexBmrzHHDOadO9WlkqnQ+ihs/DPsvh3qlsNZ74cFF011qUReuMwAPPRtEyBSzJnjpWf/I9SveHavj1aZvrbVbzBh5Gt/PNyHe705FvDiz0DjyU+7iHxLC/j9BGePPQa79sYWLJ/F6S+Z9/zWLdEBN/4L7LjRlOHv/whNp068GmVBXv6Rk7npexu58XsbAfAHbC571woaT68jWVtLdus2ePv/wPKXww0fM8ve8ld4xbef8qIKc1ZU8+DVuzmwuY+VF+oYs4iIiIiIiIiIiIiIiIiIiEyNKQ8h8TzvPsuy5k11OWQayKWgbS3c8onRade8C974W1iuDBqZZMkeuPod0LUFLvtPuOGjJhBn951mEN2ln4frPmxOqBvcDxv/BBd/Gm78mDnhHuDOL5ireV32BbB9U7o6x62urTC4D655pwmCAbj9s2agg0JIRGam1kfgT281A5AB7v2KGbRctwqCwaktm0wf3dvg168ydQPg0R9AutcERzhZqJhlToC/4WPmdxvM73XLPfDuOxUmISbs4M9vH20/3PE5uORzZnBk48mmbVHImOfu+k9z1dPL/wt8U74LLTKzHFwLv3vj6OO/vh9e+1NY9bqx87WvN1cFLqmF2WdANg75g3D3l0bn+cOb4e03wPwLJqfscux0PAnXf3j08XUfhtf+RCEkMjNk4rDzFhO4ACb07k9r4c1/hMWXTW3ZRKZC62PmN/qQu75oBg6nek1Ic6QKapdAqg/+8h548x+geuHUlVfkWOvaBjf9G3RtMo8H90Pb4/D6X0HT0w+ol+PMYBvc81XYc4d5PLAPDjxitoNzzp7Sook8b/mU6Yd98Jtmv33l6+DiT72w3/byWeaY64v+FR79oVn2D18EJ70SLvoU1C2buCj79hGcPRsrEBiZ1rEnzo5HOjn18jnEKp5jQKDnwfpfwW3/AU4OLvuiCVZ5hr7A6qYS/v5zZ3NgWz/5TJHm5VVEy8xxjPCKFWS2bDEzVi2At/7VhFTd+mn4/rlw6RfgjHeDbY9ZZmVDlIr6KLvWdSuERERERERERERERERERERERKaM/cyzTAvnWJa1wbKsmy3LepaX0JEZJ9EOG34/fvrOWye/LCL9e00ASdUC6DRXr2LWaWYgczBmTqT3XFh0GWy51jzvFkcDSA5Z+yNTt+XYGNhnvp9DA4gPWf8r6N01JUUSkReoZ/toAMkhT/waerdNTXlkeureOhpAcsiWv5rf4VwSEm0w0DIaQHJIsgt6d05aMWUaO/Dw+PbDE7+G+lXQ3zIaQHLIup+YeiUiz832G8dPe/QHUDhiv2n/IzD/fOjZaa6CXMyYQf7jlnfDsSmnTJ5iATZfPX76xj9PfllEno+BfabNcDjXGe07EjnRbP3r+Gm7bofBVqicC5VzzH7a1r+aoLGeHZNdQpHJNdAyGkAyMm0f9O+ZkuLIFBrYMxpAckhmAPp2T015RF6IYs4EhHzzFLjzP2HOufD+B+B1Pz164WLBGFzwz/DRDXDhJ8xFIb53Nlz9LtNXcITc3j0E588feew4Lvf+bgcllSHWvHTec3vv/r3wq1fC9R+BhlXwgYfgvI886zBiX8Bm/uoalp7VMBJAAhBeuZL8nr24qZSZYFlw2tvgHx+GuefCzf8Kv3yZef/DWJbFkjPrad89SHIg99zWRUREREREREREREREREREROQomQkhJOuBuZ7nnQx8G/jrU81oWdZ7LctaZ1nWup6enskqnxwtPj+Ey8dPj1RMelEmm+ruNOQfvkJWIQ3BUnPfdcEXMGEjh54vZiBYYu5bE2xSgyVgP7uT1GaqKa2/tt+cmHikcBn4w5NbFplxtO2dpgIT/O+Gysz2VwDVXQD8kfHTRn4PLLAD4AuB7Zvgtc/xKphyVE2b+hsqnWBaGXgO+ILjnzsB2nTy9KZN3Z1potUTTKsF64jtc6jUhJB5rvkftPwQmqh/oOrYlPM4N73qrzfx9xjVdyvjTa+6O8z2TdyOCEQnvywybU3LunusTPRbHy4DLMinzF/LZ9ra+ZT662aAE6r+HgsT9WvBxP0YclRNu7prBybuX9B2UGaSYh4e/wV8+3S4+d+gdim863b4+z+YsI5jIVIBF38KProRzvso7LgZvncWXPMe6DUhPk4yRX7PXsIrRq9ds+7GffS1JbngjUsIhp9lH15mEG79NHz3LGhbDy/7P3j79UctWCV62qngeaTWrh37RPlseMvV8MrvQudm+P558MgPzHHoYYvX1IMHOx7tOCplEREREREREREREREREREREXmupn0Iied5Cc/zksP3bwIClmXVPMW8P/I8b43neWtqa2sntZxyFFTMhTXvHjtYNFgCiy6ZujJNEtXdaahmEZxyFQx1mqt2BmOw40Y49W3mil+2H2I1sPkvcMa7zGtyQ1A5b+xyLvsilDVOevEn05TW37plULt87IA1y4JzPwoVzZNbFplxtO2dpmqXQ1nT2Gkv+jjUnzQ15ZmGVHcxJ7nXLBk77Yx3Q6TaDIKraIaqBXDOh8fOs+BiU8dkykyb+jvn3AnaDx+CbTdA5XxTfw536RegfNbkllGmlWlTd2eaJVeMhjaC2d8/94PgPyJcbO45sOcuWHollNSCBSy5cnz/wNIrJ6XYx5tpVX/9QVj1urGhYP4QrHzt1JVJpq1pVXcPqTvJXKH9cCV10Hjy1JRHpqVpWXePlWUvGxsQbPvNftfs00xgc+cmKGbh5DdDslv79jPACVV/j4XqhbD6jWOnLb4CquZPTXlOINOu7jaeCme9/4hpp5hjTyLT3eHhI9d/FErq4a1/NQEdzWdOThli1XDZF+CfNsI5H4LtN8B31sDv3kTh7p+B5xJZbYJQDu4YYN3N+1h2biMLTnkW//+ZAbj/G/CtU+Hh78Kq18OHHoM17wT76J0+E1mzBisSIXXf/eOftCw49Sr4x4dh3vlwyyfgZ1dAqwksqaiPMntZJRvvPohTcMe/XkREREREREREREREREREROQYm/aXcrYsqwHo8jzPsyzrTExwSt8UF0uOBds2A0rf+HtofdhcDWzOObDgwqkumZyIgiVwyX/AksuhZye8/pfQvQ1iteZksJ7t8KofQP8e8IXhDb8xJ9W/5KsQP2jCS+aeC7PPmOo1Ob5VzIFcBl77M2h7HLIJM4Bx1iSdBCkiR9/cc+C1P4XWxyDVY05qrteAPjlCRTO8+Y+w9y7o3wt1y83J8MFyc0VOMIOcz/0wNJ8FbeugdplpW8YmuFK3nHjmnAVv/B3sfwiygzDnbPCFYNGlMNQFr/w+9O2EwQMmsKRZbTqR56XxZHjnzdDygBmAPO8CmHXa+PnqlsNrfgxdW8FzIRACOwSv/jF0bYZwOSx8MTSunvx1kKOv+Tx40+9h/8Nm4NWcc2Dei6a6VCLPjm2bPoc3/gYOPGpCzZrPMn1AIieiplPgHbfA3rtNQHPtMrD84BagfK7ZzuOavv5X/wBKG6a6xCLHVsVcEzwx93zTjq1datrEdcumumQy2YJhE0hTvwLa1puAmqZTTRCJyHSV7IZ1P4d1P4NkJ8xaAy/7P3PBEMuamjLFauDyL8K5H4FHfwDrf0k4dTMLX+bDP3QziQ0Wt/6qSEVdlAvesPipl+MUoOU+2HKtucBEIWX6GS79wjHra7CDQWJnn83QXXdR/+lPYfl842cqnwV//yfY8Hu4/XPw00th+cvh4s9w2uVzue5bT7Lt4Q5WvkjhyCIiIiIiIiIiIiIiIiIiIjK5LM/zprYAlvV74CKgBugCPgcEADzP+4FlWR8CPgAUgQzwz57nPfRMy12zZo23bt26Y1VskUOO+hlXqrsySY7J2YKqvzJJtO2VmUp1V2Yy1V+ZqVR3ZSZT/ZWZSnVXZirVXZnJVH9lplLdlZnsWBxrm9yTNwoZ2HkrbL4adtxigsQWXgJn/+PUho88Ba+Yo/tt51E2O064pB/LLVLwwliz1+BvXGouXhCMge03wcNDndC5GdrXQyFtLkJx0ivh7A+Yi6McY4lbb6Ptox9l9ve+R+mLL376mXNJePi78NC3IJ/EW/hiHm6/jK1dJ/Hmz51DrDx0NIs2vb5YERERERERERERERERERERmXb8U10Az/Pe/AzPfwf4ziQVR0REREREREREREREREREROT44rrQuxNa7oO9d5u/+SSU1MOZ74E174SaxVNdyqeUevAR+tenGDr7szy8v5rZgfWcdUoX0cQm2HyNCR45XLAUapfAaW+DeReYYJVAZNLKW/rii/E3NtLzrW9R8qILsPxPc3pOqAQu+gSc8S5Y93OstT/h3MxdnFxSSee3zmfO695OYNH5k1p+EREREREREREREREREREROXFNeQiJiIiIiIiIiIiIiIiIiIiIiLxAhQxkBiHVA4P7YWCfuXVtgc5NJnQEoHIerHo9rHiVCeiwfVNW5Gcjlyly8BvfJV/ewN2b66mcXc6p7/9nonXR0ZmyCShmwS1CuByCsakrMGAFAtT/+7/T9tGP0v7JT9H4hc9jR6NP/6JYDVz4r3D+P8G26/Ee+iNz2m4j8Mfr8Sw/NKzEmr0GapZC9QKonA+xWgiVgmVNynqJiIiIiIiIiIiIiIiIiIjI8U8hJCIiIiIiIiIiIiIiIiIiIiLTzVAn3P45cPLDt8IRf/NQzEF2EDIDJoTjSKFyqFsGp7wFGlfD3POgav6kr8pzdfdvtzPQkSIVz5PozRCovoryhiRnv2YpJ1/SjM9vj31BuAwom5KyPpWyKy4n/9GP0PPNb+HEB5nzox89uxf6ArDyNZSsfA0Ht3Sw8w9/pCyzkabCLhr7/oB1KExmZP4gRGtGw1cWXASX/MdRXx8RERERERERERERERERERE5MVie5011GY4Jy7J6gP1TXY5hNUDvVBfiGNB6Qa/neVcezTd/HnX3ePoetC6T56jXXZjybe90+8ynU3mmU1nghZdnOmx74fj7XI8FlWms6VJ3j6Xp+J2/UFonY7rV3+n4vahMz85kl2m61d2JTMfv6Vg5Udb1aK3nTKi/L9RMrhMzuexwbMt/ItTdQ2Z6PXg2TqR1nMq6O10+Z5VjepUBnn05ToRt73T5Tp6LmVbmqSjviVB3YXrWBZXp2Xuqch2L+nvL8Ps9m/efqY639YGZt07H5DixiIiIiIiIiIiIiIiIiIiIHD+O2xCS6cSyrHWe562Z6nIcbVqv6WGmlffpaF3khZhun/l0Ks90KgtMv/I8X9NtPaZbeUBlOhEdj5+v1ml6mo7roDI9O9OxTFPtRPpMTpR1PVHW82iYyZ/VTC47zPzyTxcnwueodTxxyqByTL8yTKdyTAcz8bOYaWWeaeWdSabjZ6syPXtTXa6pfv+j7XhbHzg+10lERERERERERERERERERERObPZUF0BERERERERERERERERERERERERERERERERERERERERERESmlkJIRERERERERERERERERERERERERERERERERERERERERERETnAKIZkcP5rqAhwjWq/pYaaV9+loXeSFmG6f+XQqz3QqC0y/8jxf0209plt5QGU6ER2Pn6/WaXqajuugMj0707FMU+1E+kxOlHU9UdbzaJjJn9VMLjvM/PJPFyfC56h1nBzToQygchxuOpQBpk85poOZ+FnMtDLPtPLOJNPxs1WZnr2pLtdUv//RdrytDxyf6yQiIiIiIiIiIiIiIiIiIiInMMvzvKkug4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiEwhe6oLICIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIlNLISQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiInOIWQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiInOAUQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiInKCUwiJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjICU4hJCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIic4hZCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIic4BRCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIicoJTCImIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMgJ7rgNIbnyyis9QDfdjvXtqFPd1W2SbseE6q9uk3Q76lR3dZuk21GnuqvbJN6OOtVf3SbpdtSp7uo2ibejTvVXt0m6HXWqu7pN0u2oU93VbRJvR53qr26TdDvqVHd1m8TbUaf6q9sk3Y6FqV4n3U6Mm4iIiIiIiIiIiIiIiIiITJLjNoSkt7d3qosg8ryo7spMpvorM5XqrsxUqrsyk6n+ykyluiszmeqvzFSquzJTqe7KTKb6KzOV6q7MZKq/IiIiIiIiIiIiIiIiIiIiIjIdHLchJCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIvLsTEkIiWVZP7Msq9uyrM2HTauyLOt2y7J2Df+tPOy5T1qWtduyrB2WZV0xFWUWERERERERERERERERERERERERERERERERERERERERERE5Xvmn6H1/AXwH+NVh0/4duNPzvK9YlvXvw48/YVnWScCbgBVAE3CHZVlLPM9zJrnML0hPPEnB8ehNOxzoSxPw2yyoibK4vgwAz3Xp2L2Twa4OgpEI1c1zqaxvfNpl9g2lcRyP/YM5EpkCjWUhTppV8azK0xHvwMYmlI/hOR5DAwWyQ3lKa8I0zC/HsqzntZ7F/lZ8bgGS7RCIYaW6ITMAVfOh+awx8+biGfA8SDngtwnVx57Xe8qx1d3ehZUEXyiA57m4eQd/aZDiUAE7aINt42QK+EtDOKk8ls/CCvhw0nn8pWHcTAELIOzHSebxlwRxc0VwwI4FcJI5/NEgXs7BzTkEy8Pk41n80QAAhVSeUGWEQiKHL+ADv01hKEuwMoqTyoMNvpCffDxLqCJKMVPAc10CJUFyg1kCpUG8goeTLxIoD5nlRAK4eLjZAv7SMMVkHjtg4/ls3FwBf0mQYrqAZVsQ9OGk8vhLg1hFFwuLgpOkmMwSiIUp5nLgWdhhH4VUjmA0RLGQx8k7hMsrsPIhPBusyiC1lWVT+l0e1+Jt0LUV0j1QOQ8CJVDWACV1Y+fLJqFzI8T3Q6QKyudB/dKRp4fyQ+wZ3EOqkKI2UktnqpPGWCNtyTayTpbm0mbCvjA9mR5qo7Ukcgl8to95ZfMoC03N91ssFBhoPwgpCIdiBCtjkHHBZ0HQJp9x6O5OE4wEKK0OkkkUSacK5CM2e9JZ5teUUBkN0JPMUxkN0J3Ikit65ByHfNFlQU2EzkSevlSe2ZURZpWG2NGTojIaJJ4tMrc6yrxqbb+PqUIGendCshvKZkGiHS+fxC2fA4l2LAvcQIxMdDbBQhw7fgA3UEmgohKrdzfYPqhexIHCEF3FLL5wGR1pU7ej/igHkwexLIumkib6kp1UBirI2x692T5Kg6XML59PQ6wBgP72Nnpb92FZNjVz51FZEoTODTDUCeVzoOlUCE1cH/oOttLX1oplW9TOnU9FXcNkfooyCVoHD1Bn1UKyCD4br8xmoCNHcjBHpDRItNxPNt7OYFc7oWiUstpZ5NIFUgPdhEpKCUZqsIMh2opFisCi+hKqY6Hxb1TIQt8uSPdDxRzTzhSZJJ3JTnYO7iTv5GmMNRLxRaizagnmbfBZ9HsDRJNBgoEQOGAFbRyKeCkHn98PfjOfZVkMpgo4rkc2VSRWESKLS2exwJLwIGHHJT4UppjLUl4OAfqwcLByCdxINUEb7PwQVMyF/BCkB6C00dwvpAEL3ALE6iHdB5k+83zDavO70rkRsnGoWQKNq5/dymfj0PaE+d8rrTfTckNQzEKw1Gz/S5ugfzf4I1C7FLKD0L8XfCGwbbB8ULsMIhXH6BuSY84pjm6DMwMQqwOf39SPSJX5zlM9ECyBSAWpYgWD2TJ8kRj5TBGCNi4QLObwsCkWXAJBH8VcjmA4SC6VIxKzwLYpemFymSKR0gLxrnYs20d5XROphA+/3yIUTZGJ95OOD1BSVQe+Omrqo/iKQMHDK7h4JT7snAeuhxsEn88PjocTgb25fbSn2on4IyyrWkZNtGaKP9wTy+BQH0MH2kn0dhOrqCRSUUcxF8MpOvgDPnxBi2LeI58pEor4cYouPhui0QC2z8JzPXyeRyDox/LbWK5n9oE8Dzxw8y6+qB+CNs5gHi9bBA/8lWH8VWGcRA5nqICvNIDneLiZIr6yIHYsQLE/i5dz8FeEsYI2xXgOy2/ji/kp9mUBsMI+3FRx5D190SC+siDFeA43U8RfFsQe7tfwPA9nIIvngr/CtG2K8RyWz8ZX4sfJFKHo4SsLYfksiokcXsHF8ltgW/hiQdM/Abh5B6/gYkf9eBnH9DfYFnbQNzVf5AmsY/AgeRxC/QUGOtrw+f2U1zWRy5aRSxaJlQfw3CJYNoU8OAWXQMSH50EgZBPwIBL2YXkmJdz1wAWKeYdgZYggw/UZCyvix03lcfMu5B2wLeyI37QpXPAcF39lGFyP4mAOK+TDXxXGsiyK8RxOPI8V9pn+vIEslt/GxcPGwl8dxvLZuHmHYl8GL+/iKw/irwiPWV+v6FJM5LAsC7skgBPP47kungW+cAB8Fl66gK80iB3y47me6ScM+fAFp+oQxPEpOZBloCsNHtg+C2s4Zt5zIZcpYlkQLQ9SzMYpZHuJxsopKa3G5wuailZw8QAcDywI5jZju0Pmd9yyIFCC6zm0+KBo+8k7eXqzvRS9ItWhagpugYpgGUsTvUDR1FPLN3w7VG8B2wLHMW3AaLVpd9raVslz4xYc3HQRO+If91vnFR3cvIvnuFghH85ADgvMds3/3OtacSA70h7wlQTNe7gezmAWLAtfRWjMcTMnWcDNFsFvkRzIUghY2B5E8w5uwKXg5gi5YTzPg7APFx9+B1x7+PcdDxcPp+iRL3j4YgHK66JYtoWTLeIMZLECPjzHHf4wPKyg2b7jejjJgmmDlIVG2gnFwSx4gG1hWeArC+EM5XGG8uC3wPGww36sgG1+L3wWvtLR9ZVjIBWnK58h195NoreH0soqQqUNZJN+omUhhvqyBKN+KhojlJZHntOiPcelOJjFK7pYto3nYtqPnofneFh+29SbgI1X9Mx22fWwQzZuzsUK+nAzBbyCg2VZeHjYAR9ewcMuDUDBxc05+CtCFBN5vIKDXRGCvIuXc0x/R9z81uN62CUBcEw9tSxwCy52yIeXd7FLAnjD/692SQAvVcDzW+Y4YdDGDvlNuyHgG/lfdzNF8IHlM+W3fJZZJxERERERERERERERERERERERmRRTcgaw53n3WZY174jJrwQuGr7/S+Ae4BPD0//geV4OaLEsazdwJvDwpBT2KMj27KMi3UXCX8Mnr2ljS8cQAGfMq+TTL13GKXOq2L/pSW781v+STZrnFp15Due94SpqmucC0D+UwQMODGRJ54vMKg+SL1qsbx3kv2/cxlCuSENZmK+8dhUNZSEiAT9zayYeBHxg8AB4UFqopJBz2PtkL4/ftH/4JHgfl/7DchacWjfha0d4HrQ/CYP7zeCi2uU4hRw+28Pq2ADVC+Hxn5sbQDCG99qfcJd7Gisqo5RbFlbWJf1YJ+knurFCfsoum0Ps9HrskE5Mny4G9vbh3tuD15shfHYjyQfaiKyowUkXKOyNU3rhbFIPtROcW4YVtMlv7KXs0rmk1x7AVxHGro2QeayLskubyWxqAyx8SyrIPNBO6YtmkWvpwssUsZdUkLyvjdKLmsne04GbLhI8vY6h+9qIrakn/1gv+fYkpS+azdC9Bwkvq6JYiJPd3k/Z5XNJ3t9CYFYJTixJ+oluyq+YR+qGA/hKgzC7hPTDHZRe3Ez2vk7coQKhM+oZur+NyOpa3MwghZ2DlF4yh9RjHQRqotg1YYqPd1F68RyyO7uwCy6h5VWkHukkuqYe+nPQmSa6pozUE4OE5paZkyF35YidVUl2Z5ZgUxmFzQkyG3uxI34CF86ia2mB+obqqf5ajz99e+HR78NjPzKPA1F44+9MYEO4HJIdEIhA1ULo2Q7XvtcMmAU47R8YOvt9dAWC2JbNn3b8id9u/y0vnf9S0oU071n1Hr75xDe59+C9ANRH6/nyBV9mbdda7jt4H9v7twNwwawL+MxZn6GptGnSVtvzPLK5AgP79uDvsIhEygg0hUnd1UZ6fTdWyEfZJXMopvLUhPzs2BWnqyTInFVV3PK/mwjHAjS+Yg5X/e1R/u+Np3D14634bZu6sjDr9vWz/sAgH798CesPDPLj+/fieRAL+vi/N57Cun29rNufYNXscq5df5Afv30NpzRXEE8XyDsu5ZEApeHApH0Wx6uCU6AtcQD6djHrzi8ROOUtsO0GWP8LrCu+hO+mj5tBvrPOwL7o3ykZ2IIVqzXTGuvx/vwOrP69UL+Sx1/yRf5rw7d587I386X7/5kPnPwBGmONfObBz7BzcCcAy6uW8/E1H2dv6iD/9eh/kSlmCNgB3rf6fVzUfBFlPUVu/v63GOhoA6B27nyueNtbqb/mNaZd4AtQfOWP6C9dTXJwkNKqaqpmNePz+2ndtpm7fvYDeg/sA6CyaTYv++i/UTdvgVlZ14WBFjOQPVwBmf7hoKBZU/DJy/Oxs3cnc1L1pB49QPrJ0bZdxdJK/vK/61m4pobFp+a48Zv/QyGXxR8Kcem7P8idP/kehZwZzHvaS19D84pLKfOFyRe2U2jdSa5pEaHZp4wGFuSS9O+9k97e7VQOdVG7/WZ4zU9g3nlTtu5y4tjZv5OvP/51Hmp/CIBzGs7hWyd9jWJnisHHOsGC0nOb8JUHSVzfQn5fAl9VmIq/W4BTLJDd3I2/JkJwThle0KY8aDMwkKX3QJJHr9vL+a9fzFyfhz/ezz33Btm7wWxvy6pDvPQdzVT7WyFaaQZytj8Oe+42gWtP/Bpe/B/Qch/ED0LdUnjg/8HrfwFta+GOL0AuYVbi8i9Dx3rY9GfzOFJp5ltw0dOvfDZhlvnYj+DiT0H3Fth1uwmiAqheBKe8xQSMPPEb2HEjLL4MKuePttFOehV4Dlg2XPlVExgnM4vnwbbrINEGD38XQqWw/BXwwDfg7ddD+3q4/2umHgK9r7iZW/82wEnnR9l412Ysy+KkC5rIpvLYPpt4V4b6BWVsfaCdVRfNZu0N26mbW0ZlfYSmpZXsWtfGSeeFue5rX2aotxuApiUrueAt78dzhmjb2sK9v/kZrlMkXFrGOz//fRhycDMOTjyLryFG/sk+kvcdxHOh5NxGfFUR0o+0E1ldy8KFzXzgkQ8wkBvgsrmX8ZFTP8K88nlT+AGfOPoHutj/6GPc/csf47lm0OSL/v4fqF+0mnymFNeDvj1JHruhhbq5ZdTNK6W+MkR1uoCvKoxdEiR/cAi7PER6MIeXcwjURij0ZAgvqyK9tpNcS5zKN5jAyWJPmqF7Dpr55pVR+qLZDF67GytoEzurgaG7D+JlioROqiK8sILErfvw8i5lL5lHoStN5olu7Iif0oubSW/tJbqyluQDbTgDOexYgNIXzSbTMkjJqXUMXr8XN1kg0BSj8nVL8FWESK/tInHHfjzHpeLVi8i3JnHiOUILK8hu7sUK+QgvrcKK+sAFJ5nHF/KTXt9NcSBL9NQ6Yuc04vTnSNyxn9CiCqyghWXZZDb2gg2lFzYTWlSOrbCHSbF/oIWC6xDqynD99/4fiZ4uABoXLeGCt7ybwe4Igz3g99v0d6TY/nAnAJHSABe/dRm+RI4IQNCHl3NIbu8n1FxK8qF2Ymc0kM0UcOtiJB9so+zyeWCZweZOb5bU2k5wPEounIVl2wzddxBcj4rXLib1cDuFthRW0Kb8lQvxV4VJ3ttGdke/qasXzjb1qi9DyfmzyO4awD+3HPvkagI9WZJ3tVLszeArD1L+6kVEllZhWRaFgSz5fXHST/TgZYpE19ST70iS3dJH5KRqwsuryGzqJbd7kMCcUkrOnUX68S7yB4YILSgncnItobllI4Pk5fnraolz0w82kY7nsW2L1ZfMJhDyUTe3jEevb6H3gOnvuviqeiJOkop4Nfl9cXJzPSLLq0g+2kF2az92SYDyK+eDzyJjLyLUdyN+1kHDyWD5WF9agY8wA+kurt51Nfe33Q9AXbSOj532MZ7oeYKhutNZc+fXoGk1xGpNCIkvgInTscB1TEBeZhCqFkCiHepXmD6LcAXYfkj3Qkk9FPOQHYCSBhOkl+4z052C6R8oaRgOv8tApNq8zh/BpE4VzLI817Q9/QpTOF7kO5Ikbt9Pbk+c0Pxyyi6fS7CpBM9xybUkSNx9AC/rEFlRDT7wMg5D9x4kemYDZS+eg798glDTI/QlcwRsC//eBIN/2YWbLuKrClP5pqX4K0IkH+4gef9BLNui5OJmAqfWkvFbxDozDFy/h5IzG0k+1I4d8RNeUkny/jayBZfYuY1YPpv+h1rA8ah44xIKLXHi67qxgjalFzeTTxXwl4XIbOql2JfBOqeJwe40ZRVBCrfuxx/xY0cC2CUB8geHyO0axFcXofzyeaTWduJlioSXVWFF/fjml+PsHCC7N06wIWZ+K1yPkgtmURzMkX60Ezvqp+ySORC0Gbr7IE5/Fn99lJJzmwjMKiE0u3QSvtUTT3sxRfdj67nrFz86rN37DnyRpTx0TYJFa+p5/KZ9nPaSucw7pYZ4wPT7R/w+XDy6k3kA5lRGaKiIjiy3OJglf2CIQnvKHJvym0AxPA/L5wMLCu1JgnPKyLfECS2pJLWuk9ip9WQ29xKcXQpBGwuwS4Mk13VSclo9Q/cexFcWJHxSNcn72ggvqyQ4u5TE3a14OYfoqbXYJQFC88qJ39xCbE0D6Q09RE6qJrc3jpstEllRTXp9N7FzGkk91ollW0TX1JN8oI3Q4krssCmfl3XIbOmj5LwmvLxL+gnTZ1J26Rzy3WkouGS39OEBkZU1FPvSRFfVmuORz/NCGiIiIiIiIiIiIiIiIiIiIiIi8uxNp0sG1Xue1wEw/PdQCsYsoPWw+Q4OT5sZdt1O6LevIPDzy6n+0yv42xUp6kvNyY9r9w3w+IE4fW2tPHzNH0YCSAB2P/Yw3fv2ArC/Z4juZJbbt/fwzl+sZUvbIAHbR1cyx2f+upmhXBGAzkSWT/5lE5mCg1MscN/OHj5x9Ube9cu1XLv+IO39aXBd/LafMq8c2+cjNVhg3Y37Ry5QWMg53PuHnfS1J59+vfY/CFf/A/z57fDb1+Ld9QXsQgor3W+uRj/QMhpAApBPwS2fYmEgQWXQjx2wyWzqJf14N7jgZYrEr9tLdtfg0frk5QUa6Osj/2AXxR0DxE6vJ35TC9gWnuOSebKH2Jp6Erfsw0kW8JUFST3SSezUOobuOkChK0NwdunISYqptV3k9w8RXlbF0O0HCDbFyO2Jk9s5QPikKobubMVfF6XQkSJ/YIjoaXUkbtuPHbTxCi7ZHQPE1jSQuG2/uSJrSYDMhh6ip9UxdE8rTjxHsKmE1GOdRJZXk17XSbEnQ2iRCTcJNJWQ358g35Igelod8Vv2YfnMVeAyT/QQO7OBxK37cPqy+OsiJO85SGR5NckH2sjtGCCyuJL4DS34q8Pkdg6QfqyL6Ek1DP51N166iDtUIHnnQSJLKon/bS/F9jTF7jSZDb3mXPh0kdzN+wl0F6f6az0+dW8dHdwKUDnPDEZwc/C398Gf3gq/fR3c+Z8QjI0GkFg2u5pW8oG1/82rr3s1b7vlbdTH6llUsYiFFQvZ2reVXYO7RgJIALrSXfxm629YXrl8JIAE4P62+3mo46Gjtkqe69HfkWL/5l56W4dwCu7Ic4PpPA/u7uUva/fT3taGnYDgUADXhuyWPtLrusD1zHb1hr2EGkoYumUfi2vCbLynlWyiAEA2VSD5WA9rZlXwzTt28cY1c7hnZw9+22L9gUEAFtWV8KP79o78RqTyDl+4fiuvOGU26w8MEAv6yDsuX7xhK/fu6Oart+7gZd9+gL//0aPctb2LwXTuqH0mJwrP8+hOZNjYsZ+vPPpVXn3963j1Q5/kGysvprt6Pqz/Bcw7H3bdZgbuNJ8Np10Ff3wL1p/fbup6pBSC5VgLLoYlVzB48b/zxSf+H69e9Gr+57H/oamkibpoHfe13TcSQAKwrX8ba7vW8tddfyVTzABQcAv8YMMPSKez7HjkoZEAEoCe/S3s3bYDKuaZeeddxtb9OX7zyX/m2q98nl//+0fZeMfNdO3dRcv6dSMBJAAD7QfZ8dB95kEmDg9/B75/rrld+z7Ydj386EIzwP1QBZRpba5vNtlNvaTXj23b0ZHmJe87idUX1nL3L384Ejiy7NwX8fCffzvyGGD9TX8hn+2mmHUoidSwPzBAT+t9FB/9EV19A3QOpnmiZwNv3foDXrv3N/x9ehOPXvxxuO3TkOwBwHU98tln/3ubTuRo3zVA+65BMkP5o/uhyIyXSOdZt6+PH9yzh/f9ai2Pdj46EkAC8KVVX8DpSjN4zS7yrUNmAFBXivj1e8jvM6EfTn+Wvt9vI1gWodifBdcj+aAZCO9li1SWh6moj9HflmLfxl4692foy9azd8PAaDn6cjx5dydOqg+ycejeDGWz4EUfB2wTANm/BwJhsy92/zfgzPdA93ZY+9PRABKAQnI0gAQgM2BCSoa6nv7DaFtngiZWvQ6e/B24xdEAEoC+3RBvha3Xwpp3mWm7bodolRkUCrD1r9B4Mmz9m1mezBhO0aWvLcmBje30x8O4PbtgqANWvBoe/D9Y807o3Q0t95oAkvLZ9L/yZzyxvYRQNED7zgGSAzmWnFXPxjtbsW2bYMjPUH+WrpYEdXNMEEkuXaRpcQXl9VHW3bSPWUsq2HbfLSMBJADtOzfTu38L2dQQD/7p17iO2ea/6h8/heWAlXPItybItyVxejIM3XEAL+9C0SV5XxtezqEYz5O4bT/ZrX3ccPl1ANy+/3bWd6+fks/3RJTtG+SeX/0UzzX7OZ7r8sAff00hF6dzbxxceOSve3GLHnNXVpPuzVK2c4BAaRAsi0LrEL5IgMTdrVg+GzdVILO1n+CcUtLru8nuGCB6ej14Hk5fxvQl5BwAwnPLGPjjDtyhPLHTTL+GlzH1KNRcSvz6vXh5F39thGJXmsz67pH9+viNLZSc3kDyvoM4A2Zfx00ViN+2j5JT6+j/4w7cpNnfKrSn6L96J7mWOPGbW/AKLr7yEIXWJJkNPYSaS0nc1EL+gBlUHL9pr1mXRB7LgcEb95JvHcJNFkje30a+JUHvzzZh2RaF9iSWZxG/scX8/uwfou9XW8m3JCb4tOWoi3fjWRaVlLP1vrtGAkgAOnbvpHPPduwA5NNFwiXBkQASgMxQAQZyBFqHyB9M4uUcBq/bQ2heOYk7DmCXBHESeQJlIeI3t+Cvi5JvTeBlHci7pB7pAMfsH9lhP0N3t4LjEVpcSfrxbgptKQC8vIubLJJ6sIPs9n5Th5MF4je2EFldg5d3GbqrlcjyanIbugn0ZUncso9ir9kPdOJ5Bn67nYGDpv+kcHCIgT/vIrdzgHzrEIPX7sYXC5r3yTokbt9P+vFunHgef3WEgT/uIL2ui2J3mtQjHSRu20e+IzVZ39BxK5vKc9dvtpOOm/0W1/V48vZWgpEAnXvjIwEkvoBNadQlvM4m9VAHhfYUhbYkyUc6yG4Zrg9DBQau3gmeR7EjTb7u7+Ch70AuQXswRHdugLSTZtfgrpEAEoDudDe37ruVilAFD3U8TM9ln4U5Z5tAuppFUDkHSmZBtMaEldUshdIGuOnj8JvXwPUfhQ1/gB9eAJv/DH98K/z0cth5M/zsCvj5lbDjJvjpZfCTy8z9n11pntt9O/zkErjmnbD9BvjxRbD5avjLe+H+r5vbbZ+BROdEH5/MMM5Qnr7fbCO7tR8v55Dd3k/fL7dQjOfItw7R+9NN5PfEKbQlSdy2HwqeOR4wv5z0o53kdg487fK7Ell+eN8e/u5bD/DE+g76f7cdN23aA05/lv4/7CDTOkTy7lYoema7eet+Wjf0sPbxdnp/sYVQcxnJB9tx+rJEVlQzdFcrXsEFC3yxIMn728Dx8NWEcbrSpB8b7rPNOiRu3kewPkr8hr1Ellfhpgo4t+8nkCpQfKSTQkucQGMJuf0JnIEsueHjZiWn19P/223kdgyQPzBk2jipIrmdAyTubiXUXMrQ3a24yQJuukji1v34SoJYARs3XcRJ5onf0ILTb/piil1phu46QGZLL05SfSJHm5eK43YMcM+vfjK23fuHX1JZl2OgM02yP0usMsS6G/eR7M3yz3/ewIf/8CQP7O1jIF1kX2+Kt/zkUb5z9x4e39c/suzcvgTJ+034o+X3kVrbhZcqYocCZLf2UezJgOOR3daPvzbK0F2tBOpipJ/oNn0TFthBH57rkbjjANFl1SRu24+bLBBZVTO8H+UQXlZF/KYW0152PXNM17MYeqgNf3WEzOZeLJ9FvnWI3J5BIitrSNy2n8jqGhK37qPYlSayuta0sR0PO2CT2zmAmyiQerQTX0mAYk+GobtbcQZzOIk8qbVdkHGIX7+X3N44+b1x4tftwV8Woucnmyg80/FrERERERERERERERERERERERE5KqZTCMlTmehyRhOORrUs672WZa2zLGtdT0/PMS7Ws3BwHVz7PqzB/eZx/CD+a9/LNa8pG5llU9sg+UyanuHAkcMlB/rpG0rj91kUc3mimX7etKqKl6xsIhjw0TaQoeiO/Si6h7JE/TZtQwXe9+vH+eO6Vu7c1s3H/rSBe3b14BQyhPwhAr4g/oBNcnD8APF0PE8mMfEJhz2JFE7PLnPV44F9I9OtjX+Eni0QrYWK+ZDsHvdap2QOAy0hrIANGYfspr5x8+QPDo2bdiKYdnUXsNNQ2G5OavSKLngQml9O9rATeL2CS7C5lNzeOABWyIebLOCviVDoMCcC+qvCFLvSWBE/zvDg3uDcMnK7B0eWARBsLiW7Z3DM+wVmlZJrMcvGMvMG6qPkD5pl2xE/7pAJQSn2mYES/powhc402ODlnZH3y+4eu+zQ/LLRdbHAyzlmXfaY97NLg+ZqgNUR8u1moERgtllXK2jjpArgQmRZFeknTX33PPOeoQXlZLePP9HZ7c48z29jepvy+ps8YtDsBf8Ce++FzddA357R6VuvhcH9ECgBIL7mXXyp9yE29G40j3Nx/u/x/+NNS99EupDmVYtexb7EvnFvt7lvM5FAZNz0tZ1rR+4nensY6GjHKRae1yrtXt/Nn/57LTd8ZyN/+vI6Nt/fRrHgkOjPsH9LH4mWIU6tq8AturjxIlbYR2ROGZlNveOWlW9N4J8VI/tYJ0tW1YzZ7g8eTPGW05p58bI6YiEfc6uibG6PjzzfM8GA/LbBDPGMWa+DAxnqSsNsaU/Qny5w9eMHGUwX2NQe532/fpzrnuygpWf6nhQ85XX3CG0DKe7Z0c3+vhRP9j3En3b9gaJXpOgV+c3uv3BfvscE6VQvhs5N5kUX/DPc/G9QHA5yKKTN4J5Up6nzJ72KRPcW9iRaiPqj5N0888rmMa9sHht7TN2vDFXyicX/wZeav82K3BreMO/NAFSFq7ii6SX805KP42spp2PPznFl7ty7F+acTe9Fv2D33H/lzt//Ac8bPan+/t/+knwmQ++BfViWzYLTzuSs17yRFRdeQueeXXiDB6Htcbj9P0bXYd/9ZjB71QKcR344pr0hxnSruwCkihNug3IHh2heVInrpIl3jQ4Gi1VWkRzoZ/ZJq2hasoyVF1/GWa95I/6ASy5VoC2X4927fsUbu27liYaFWD3baU918rEHP82BpBlk0Znq5KPbfsyBJZdAup/eg0Pc+7vtXPPVx3nkb3voaX36gbgDXWmu/84Grv36E1z79fXc+L2NDHanj+7nIuNMy/r7FPb1p/jpg/v4yi3b6UnmebL7yTHPl/rLSG8Yuw6B+pi5EvHhih6F3gzB5lLyrUN4BQ8c1wQjOC5BvwU2dOyOEwj7yaTH7wK37SuS724zbZmW++HgWujdCae9DVa/GQYPmn0wC7M9rV0GeCas7XDOBAFhXZsg3T9++uGGOszfaI0JFenZNn6e7q2QT4N3WBDQUBeER/d/R7b1/eP3f6e7mVR3jybHcdnxSAd//O+1XP/9Hfzx9xH2xt6KV9oEngOuA7PPNG2QwQN0v+JuHp5zDZt2rKR3d4aqxhg9rYf28y0ipUESfRlymQKVDVF6DgxRVhuhf/j/plhwiZYF6WtLES6B9p2mDlc2zuKMV7yWNS9/DUP9fbiOQz6TAdumfuFiKmtnQ9HDSRfBg8jyKrLbxtfr7NY+IqfUApB6rJNQarRbbEf/jmP7YU6h6VZ/04MDuK7DvFPWcPE/vI+zX/dmfH4/mXicUCxAcmB0W1XMu8xuLsFL5Cn2ZSFgk905gOe4hGaXkts7SKAxRr41gR3ym8AFwFcZwk0VcHPO2F5EnzUSSOI5LozmPY70TwCEFlSQ3TF+v74Yz+Okjgg8czwzzR072csUR/o+RpfZT3hxJekj200uFNqS5DtSeK4HxcMKbWPCIVwIzivDSeTJTRA4klx7/A28n251FwC/nyJFrHyB2rkLePE73sfsFatHnu7Z30J5TZjB7gzZCQZ02+kCvvIQvrIg7lAey2/jps0+dmhhOZnt/aYOOB7RldV4HhQ60ziH7ctbET/OYX23wdkl5FviY97HXxkks338dvDweu4VXYJNJbjxPO4RfcFewaXnYIJcpkD+wBAc0Qed2dhDeEml6QNsG237+MpDY8oKkG9J4PQfn31iT+VY1N3MUIH+tvFhLoGgTeee0e8/WhbEn7ZxekYDH0MLKka2jyOGA5awwE05ULUAkl0kA0HyTp6B7AD92fF1aFPvJgpugc5UJxm/37QBe7ZB9xbo2QH9u0xAefyAafN1bIBL/sMsf+ctpj0YiMIdn4dT3mzmfeAbsPpNpi/goW/DqtfD4D64/2tmnv495njEqjeYcPTubSaE+J4vw4pXwYbfQ8UcE9zacvdR+bxPZNNh21vsy+D0ZcdMc+J5ioNZsrsGxh0hzGzpw/PM7yRAesv4/onDXb+hnS/ftJ3ORJZgqjhuG+f2Z6E/O+51JfuHmBsOQtHDVxYcCfM4fNvqKw1SPGybF1tTT2bzBMfCWpP4G6Pk9icINMQAiIZ8FLf34ysNUezLEDrsuIYdC1AczI1f9829MJgjurpm5LjJ4XK7BwnOKTUPrNF20CFOPI9lWTjxmR9CMh3q7uGcUIR0fJDGJct58TvexzmvfwuR0jKcYpF0wmy3ew8mqWyIApAcyBEN+tnZleRT125me+cQi+tLWFxXwm8ePcATrYN0J7K4mSLOYA4r4CO3L45XcAjNLyfXEscdyg8fn+onMMuE81tBE9rnrw5T6EiZtnN7EjdVwPLbJmDEGq3HXt78tWMBChOEiGU29eAvCZnlHBgy77ez37SzDwsG9vLucACOaeeEF1WQ2dJHeGkV6Y3m+wkvrRrTrxJZXkWhK0Vu/9h2DUBub5xAQ2zCen48mG71V0TkSJ7ncep/3savHt431UUREREREREREREREREREZFJMp1CSLosy2oEGP57KMXiINB82HyzgfaJFuB53o88z1vjed6a2traY1rYZ9S5FQZbIX3EyYW5BE3OwZGHp8+pxB8M0bxi1bhFlNfW43oWXvd+Nv30a+z67meouedH5PZtxXFcFtT7+MQryvnHSytpKAsD8Nf3n0NVSYgnWwfJFMaeTPjTB1rIZrLki3lyTpZiwaWkMjQu5qW0OkykLDCuPHu6Ewxli1i5ITj42Ph17ttjBkcXUlA+e/xHcuZ3efjavSYEwrbxVYXGzeMrDY5f7glgWtXdYXbAxVdp6pXlM5sKJ57Hf+S0RH50PtsaPnG9gK9s+Pt1PKygjZd3sMM+wFx91VcWHLOcYn+WQF107LL7M6PThpddHMzir4mMLjtg46SKI+/npovYpUFwwQqY93MOe83Isofy+CtDY6elDiuXhVmXbBE7Mnz1dtczJ1K6HpbP/ON4jjmRcuQ1I5/JBPW77Pis31NefyuGfyIilXSe92F2llYzsPwl0P7E+Hm7tsKSy6G0kZ0nv4p1XevGPO3hUXALRANRfr/t9yyqWDRuEWfUn0GmMH7wzBVNl9K+aweP3/g3fvVvH+IX//IB7vzp9+lvb3tOqzPQkeKe3+7AKR4KcvB48M+76GpJcN3/e5IHfrqNvde08MCPt2JZPgLl5v8Pi5E6fTi7LISbKmKFfORyRbPdH1a/tIK9Qxm+fvtO/vZkO7OrIpw8u2Lk+cby8ctbUBOjOmbq8vyaGJ3xLGfPr+LWzWMHvBUcj95Ujr880YbnTZgdNuWmvO4epuC4bG1PcO0T7VREgtzbdse4eW5vuw+azzJ1e+55ZmJmEIpHDCjPpyAbNwPK+1uoat/IaVUr6c/1UxIoYXv/dlriLZzZcCZ+289n53+F1B/qOPAnly0/T5G+u5yvrPo/Phn+X9Y8+jpWDZ3Ppjs6mbPylHFlal6xmt7m13H9TbWkkylcZ2zbo1jIkxocpGnpcl501TvIpoZ49C9/5OD2LZx82Uugfb0ZsGRZFBb9HYnzvkB+weUMhebwRNVV/HHHPO7+2y30HNgHmICfXY89zKa7bqNtxzYKhZk/QOL5mE51d4TPHmkPjJlcGiSfK+ILlVA3f+HIdNu2efE/vI9IaSkrL76cA5s38uhf/siTt/6Virosg54Z7JbIJ/jc1p8yVB5m32AbfdmxbetUIUVbaS2dxQqu/9YGtj7QQX97isdv3s8jf91L79ME3O1Z303vgdGBC10tCfZtfPqBSvLCTcv6O4GBVI6+ZJ5bNndy9vxK/umSxZxSe8rI869pfgUWFlbQN/aFlgnmO5Id8VPsN23Skd9Fv232xfwWuDB7WSXFfJFo1B33+nmLbEK7r4HcEDSdAv4gdG2Be78M884zIWxljVDMQ7gc9j8Mls9cmf5w/vFBasw7H8qanv4DqZhvGruD+8GyofGU8fM0nQaRSsbsYJY1QeawQfyH3r9u+dO/3zQ0U+ru0TbQmeLe3+00A+IBt+hx1/Vp4iv+yczgD8P2myBUTvf5P+Whey3W397Ogc191M8ro6d1iIYF5YBp12aSeSrqooSiAXoPJmlYUM5AR4ra4YGR/qBNojdL06Jy0gmYf8qZLDv3RcxZuZonbr6eJ2+7EcuCSFkFl77rg7zsI/9KaVUNjlvEszH7ZrZFoT+Dv3qC36WaMO5w0J49PO8hS6uWHsNPcmpNt/obq6zmpR/6FzynyN2/+CFb7rmDy9/7YSoaGnEdj1jF6L6zP2iTzhQBDzsawPLAXxnG8tk4iRz+yjBezsGOBPBcb2SfyCt42GE/lv+Irk/LGvneD/UFjDx12GMnkZtwv96O+Ef6A8ZMD/vHr6jn4a+NHrHMsOlHOLJcgOW38UX9I30Lo8thdH7HM30SgfGvn7AMM9x0q7sAuA5RN0zbtk08cs3vufsXPyZWVs5LP/yvADQtWQ64VDfFiE7QD+QvCYDj4eYcrKAPr+hiD7cdnITpqxrpK4vn8bJFfOVB09c1zMsV8cVG+26dgdxoX9mhYhbdCfsIDq/nls+m2J/FigZMu2TMjNCaKxDPFSesb1bAxnO8kXkPe9l4FhPW+ePZsai74ViAivrxbblCzqFpaeXI49RAjmA0OmYeZyiHr2L876IVsMHD1MFUL5Q1Ue75CPqCVIYrqYnUjHvNmQ1nYmPTEGsgnOyF1kdN0Ejvboi3Qi4BTt6Ep26+2oTj3fZZOO3tZgH77odZp5kgM2d4nz7RDtHhdRjYByV15v5Qp2nbgmmHlgx/li33QvOZwx/AcJBk12aoXgTbbnzmD1Oe1nTY9lpB34QbFNtvj98HY3ibhDcSohCaW/6Uy+5P5fnFQ/tGHqcD49/IivgpTLDt82rC4Dfv7+VdrOHjBodv45z06LEKAGeoMPGxsPIgbrJggtaHg0GKjofdGMNNm+MrxYHsSFvCcz1zjOTIsvpt7KifYn8OX+n443q+siBO0oRAHNn2MTNYWD4LOzrz2xHToe4ezj/US0lVDbHyCu7+xY958tYbOP9Nb2P+aWdSUlkFQN28MvqGA6ZiFUH2Hhbo/eTBQbIFjzesMcc/Hm3poz+VxwrY2CEfbqY4pl1slwZGgsr8lSHcrIMdC4wcW/OKHlbIZ9oNVWFz3MuyTB0YngcY+d13c8UJj2n5ayI4haI5zlcexBnM4a+KDB8LNP8fh+qa57gj09x0EbskYMoVNXXVzTtj2rBewcWyrYnrqt8273GctimmW/0VETlStuAykC7w2b9tmeqiiIiIiIiIiIiIiIiIiIjIJJlOZ+pcBwyficrbgb8dNv1NlmWFLMuaDywGJkjAmEacormFy8F3xEl/lo0VNSeXvWx1I6c0V5BPp1nz8tdQ0zwXANvn54xXvo7yhkZIDnD7j75D+05zpenBznZu/H9fodB3gG9u/je+t+sD/KX7n/nAy3s4bW6UmrIwHjDReG/PA5w8eTdPypfEKTrEygOc+5pF+IZP2oqUBnjRm5ZQ3VQ65rU98TRhn01HIm+CRprPGv8G1QvxnIIJISmdBZd+3gxIAqicRyLhw3M93IIHQYuS82eNOYndXxshMKvkOX/ccmy4ZCi5stkM4OpOE1pYQW7vIOEV1VgBm9y+OJHVNRS70wSbSrAifjJb+4id3YibKmBH/fjKgqQ39FBywWwzUKbg4q+Lkt7YQ8l5s8CCQmeK8PIqcrsGiKyuwQr7yO2NEz2tjkJnmuDsEuzSAJktfZScPwt3qIAdC+CrDpN+sofSi5rNleQLDoFZJaQ39FD6olngs8zVAoevrhY7swH8tnm/pZXk9sYJLx9el/0JIiurKXalCTaXYgV9ZHcOED21zpxIWRHCCvvMcs5ogKI50dGOBchs7KXkrEbAnCBplwbJ7jCvxT96UrCvIUq65vgMIZlyJbNwXv5N7njV13hj//289t6P8PatP+TJl39tdBt0SP0KyA5y8NQ305NP0BhrHLe48lA5j3c9zisWvYIF5Qt47eLXYltmW7W0cimvX/J6tvZv5aTqk0Ze88EV76d8Z5rBjjbu+dWPyaVMGMOmu25jy73jwySeTqI/Sz4z9srangeJ3gzx7tHwk6G+LGSieJU2+XyWzI6+8dvVmgiBhijuYI7w+bOoXVRJMGpO+q1oipJfVsrevhSN5WF++fB+LlhUSypX5KKl5iTXtfv6+eRLlhEa/o2oLwvxuZefxLfu2MXLVjdyoD9Nc3WEq86ey5a28Vfi9tk2t2/tGheKJeN1D2VJ5R1u2tRBwGezsHzhuHnml8+HM94LvTug8WS8xpOhpB78RwxkCMaGB4EDvgAlO2/l35tezL0H7ubz536eglsgmLe40DuZXyz9BnPtCBf9fYwLXg9XvqeCFacWWG5VMrcmy0nnDlFZlyRa7qNx8TLmnbJm5G0Wn30elY2zuOe2e1l+boySqnL8obFlCUbMAKnGJcvYeu9dtO8w7Zl4Vyc3f+cbdDn1DDWeT+tr7+Fv+xfy81/dz725i3i4vZK7/vAnOnZtZ/0tN3LNlz5L74F93PD//ofrvv7f3PbDb/GHz/4re9dN7ybhiSRTWqDkglljBi8eatv96evr2XxPDxde9S7KGxpZdPZ5lFRWc/uPv0PtnPnc+dPvkejpAqB1y0Ye+uMPObW6mWtW/5jfnvQd3jfrKrqKKRrLIwTssW1r27Ip1p1E78Es6SOu3n5gSz+dexMUixNvg1q3jb+q98HtAxPMKSci12Nkv+q9Fy7kHb9cx6Lw6Xzt5C/yyzO+x+usC3n0jquJnVY3Zq86/XgXZZfNGbOs8Ipq7FI/xb4MvvIQsdPqsYK2GSjn83CKBznl8gaal1fSMD9CTbiTlefVjgwAqp0dZtWcPdjhUgiVQvuTUMiafc39D8Geu6GYxSubbQZyXvgJ2Hmzudr8KVeZwZhgfi9Km+DCfx/dT61dBhd9CiJPPUgPgNlr4O/+D3bfAavfAIUMrHzt6POLLoFoNax4DdzzP2D74JwPQrLbfIi+oHm892540b/CrNNf0PcjkycTz+MecWX4Qs4hE1kIT/wWLv40Xs8OequvoKPDT9sOsx1N9GaJVYSwfRa1zaVUNcXY/nAHp142h3ymiFt0WH1ROYtPL7LsrDwnvzjHq/9lFiXlrZRWtrPyRQUsr4XFZ55NzZx5bLj9ZoqFPMVcjkev/RO9rfso5LPc+M3/Zffah7n7zz82+2gRP3ZZEPIe4SWVYwbt21E/kZOqyW4xgValFzXzx96/AHDZ3MtYUr56kj5ViZRE2XjnLezf9CQAQ7093PSdr1PMZZm3uhrbb7PmpfOwLBMaZpUE4YxGLJ+FE88RXlFNoTeNXRokOKeUzPZ+Ss5vIn9wiJLzZ4ENmY09eDbYpUEiJ48O4sts7qHsirlgQXb3INE19SPPFTpThFaZAffZHQNET6uDwwJHAg1R3KEcpRfOHjMwOnZOI/kDcdPvcIgF5S9bSHhJJf5a0ybO7R4ksrqWbEuc6OqxAwutoE1gVgn+6ghOpoi//rAAAQ8Cs2L4yoNktvQRmldOcE7pmLJhW6a/Qo690lqy+zq47YffJjOUwPNcdjx8Pwc2P8mFb30XtXPnEykp4g/5yKQKnHJp88ig8bKaCFZ1hHymgK8kgK8iRGhBOW6mSKAhSnZ7P9HT68m3DxFeXsXQva1EllebOmRBsHm4v9Y1obnB+eb3O72pl9g5jWP6A4YODhG7ZM6YsKXA7BKcuAmxDC+votCZouCzGCr1U3rR2EDp8IWzubV9kFDIR2hRxbhB/9GTa8nu7Ce3c2BM3c8dHCI4r2zMvJGTa/FXTxCEJs9JpDTIxW9dTuhQUIAFK140i3ymSF1zCc3LTT+A63qkbT/BBaPfQ2ZTr+lDPazdGlpQjh0N4KsK4ZZZtFz2e/axhFwiyqrcHOYW6lhYvpBXLXrVmH6x82adR7KQ5Jymc/hJx73sOvs9kM9AuMy0N90C9O+F1sdgwcXQtg5qFkOizfRV1C4zQSMAvuE+hGDMHE8Bc0zlUNhqIALucEBfqGx0eu1SGGgZu4zKeSbMZPZov4XMXP7aiDl+cJjY2Q34ayKEF1eO3SZZEFlZQ7A+SmZjL/7aCJEV1U+57JDfpq50tP/qFzs7sc87LJTRhsELm9jiFkdCRgCssgBPhOD7m9oorKgk/WS3aRPYUOgwxzgAKLp4BZfAbHOsK/VwB7GzGrGCo/+AvuqwCajMOgQaYjj9WexZJeRK/CTWmPaHV3Rw0wUiK6uxQj68jAlfPzIYKrK6BmaXkutK4asIjQkTsYI+gnNKKXaZsB7P8oidNzaAsvT8WfhnlY6Ez8vRU/AF2XTnLex4+H48zyWTiHP7j7/DyZdeSShWSsOCMkIRP6l4jpMvmU0hYtObHO3bKg35sS2PgbSZtrC2hLDfxvLb+JtLCK+oJtAQxUkXcLNFIitq8AoOhd4M0TUNZDb1UHL+LDLb+omd2UhmQzcl58+i2JvBXxPBzRUp9KYpvWD2yPE3gHxbkvCKaih6YFkjbVkwASXhFdVEV9SQ3txLyfmzSG/tJ3Z2I/gsnGSeQGOM/IGEWYYLXsHBVx02x9xOqSO9uYeSc8xxmczG3pH7AOmNPYSWVpq27uGhOzaE5pXhJPIEm3UcWURkKgzlClNdBBERERERERERERERERERmWSWN1FaxbF+U8v6PXARUAN0AZ8D/gr8CZgDHABe73nmEuiWZX0aeCdQBP7J87ybn+k91qxZ461bt+5YFP+Z5dJmUNZQG+y8Fe7+r9HnXvRvFE97J3Z8HyS7iFefyVB/H/lMhlh5Ben4IIFweHjQrkU6Psi1X/n8uLe48oP/zJtaPjpm2g8u+QkLY6tI5oq0J7K851ePkyuOXkX7i69cwZp6i2Utv2ZgzbtxbB8hJ2YGEA0UyKYKlFSFaZg/fgBabyKDC/xp3UHeuzBO0MvC3z40erLv6jfhnvUBsiVziGS7sJycGfyf7jVX6y6bRUtPIzd/fxMe8I7Pn4GNhTeYp9Cdxg7YBBpihOY9w+C36WfCC3y+EFNadw8z2L6HdE8vmW6HinA9/soIxVQOn+3DCtsUE3kCpWGKuTyWY5mBlYNZ/CVh3GIRci52eZBiPIs/EsKzXLykg10ZopjI4AuFwOdRGMhglfqxPAu/P0igPEx+IIc/5gPPopDKE66OkB/MY4ctbNtHPpEjVB2lOJQDn4U/5Cc3mCVUFaaYKuBaFsFIgHx/CrssQLo3js/nw44EsHMWVsSP5YKbLRCoiJHtHiRUWUI+lcEqmkFKxYEMvlgQz3Eh4+GrDOIOFnADHj6/n2JflkBjFHeggOsV8ZeEKbSlCM4rpdidoZDIEF5SRbY3TqSqks2ew2DAx0tXjQ+9mCJHve7CFNXfji1ssfNcdds7Kbqj4R3Npc38Yt4bqbvuI2bCitfAWR+AYJSt2R5+d/BOVlSv4KvrvjryuouaL+Lvl76J0qFuarMp2usWUxGtoyPVQc7JMSs2i1AmTl/bQ1RF6xh0svhrllLaH+Le3/yS5hWrWH/T38YUr7y+gTd89suU1Ty7q9e17x7klh9uIjNUIBDyES4JkB7Mcfl7VnLzDzaNmff8NywmHD1AXeNcfFkfgYoSiBcodqWxAjb+uij5fQnshhipkI9QuZ9r17ZzcmM5f97WwZ82tdNUEeb0OVX89ck2PnbpYgqux5zKCKXhAKGAzfzqKF2JPAOZPLMqIsR8Ll0pl4Lj8GRrnLPmV7Fufz9g87XbdoyUbWlDCWfNrybkt/nUS5djjbuc9wty3G17uxJZHtnTx3/esJXb/ul81vbey9fWfY2utAlmaIw18i9r/oVLA3V4xQJFx6GXMur9GQLdG+GWT0IxC4EovPR/4eB6ePynUHcSrHo93P819rzxV9yXaeWcstPZ/NuryQwOMvuklZTXNvDgn37D/FNOJ5/JUL9gEdsfvJfBrg4ASiqrecW/fIZdax+ksqmJYDiK5zi079zOYGcHqfgAp175SgpOA6VlCbbedxe71z5CuKSEM1/1BrbcdwcXv+Xt/PlLXxi33pe/78PEqmq48yejIRRnveaNPPbXP+O57ph5X/LBf+Hm7359zLRYRSVXfeWbI1cPnQGOu7p7yN7uIZoc8BIFit1mGxSoj5EpseluSREtC+I4B/H7A2SG4tz3m58z0NHG2a95E4/85Q/jlvfG//wqscoqNtx2E2VVNdgVUZJzw2zp3cJ3nvzOyHwfOuVDPND2AJ+p/Sp3/HTbmGXYtsWZL59P44IYjazHilVD/SoIhBjoTLF7XTeP3dAy5jUvevMSVl04dgCmjDhu6++ECjkKfS34sn2Q6qXLP4/7rvkrC1evpqKhiXU3/IW2bVu46nP/jzK7kuyuQSzbIrS4Ai9kwZBjQkdKg/hqwjhxc7ViC/DCNpZlg8/j11/+GEO9PZz7+rcw7/wraM96NIQK1DBEoq0Ht+8gZUMPE2m7G87/mLkqfN9ueOzHcNpb4f6vw1nvh3Q/zpnvoyuRp8KfJxTw4fMciFZBegDyQyaApHaJGeDZtclcpb5qMVQ2P7vPxPOg/QlI9ULJ8GDjYtoEotgBE2RSPgcG9pgBqFWLzHsM7h8eHOqB7TfT/eOv0H0MnVh19yjr70jxp/9ei3NY30Io6ueSty+juiJDSdThQGeMzJBDcjDH2utbRkNRLVh0Wh0LzqhhMNBDhV1J0Z/D9tkEshl6dm4hFI3R33GQVS++gvTgAP0dbZTX1uML+PEHguzb+CRt2zbRumVsO3jeyafRtPQkHvrTb0amnf/at3PyuVfgOR7kHRNAYdkUu9J4rkegIUa+O0WxPU14UTnUh3gw+xgRf4RdB8rx3BLeef78yfhYn4vjsv527N7J7z79z+OmX/wP72XB6ReRTXnYPshnXHKpAuESPz6fTTjvYLkefr+N5Xl4RRe36OEFbPK5Iv6AD9tv4/M8ioM5nNIAodIgVtGDTBE375KO+WkLuAy0JlkSDUFZEK/g0tYxRI8PNg6kuKSunBq/j+2FPGEsVoVDlJWF8FWFceN58IEV8OEk8tghE7jrKwniqwhS7M7gJPP4qyME6qNYPpviYJZCRwrP8Qg0RKHoUezP4LmQ2z2AHfITnFeGryoEHjiDOTzHwx3K42Ydgs2lBGeX4MTz5PbFwbawIj4oeBTaU1g+i/DyKoKzS0fCLqaB47LuHvLYdddw/29/PmZaKBrj9f/x33S27KZhwTLyuTIyiTyhEr/ZFhUcAmE/tuUQC/qw0y42YPtt3EQeK+LDy7kUPRdKghQyRXyOBz4PXzRIwGdB0cNNm/6LXNRHf6qAXXTxe5AuC7CzPUFdEbI+i2hTCb9au59PnjKHyFABfyzAYMgm158lFgsyVCjSE8/xWDLNvDnl+BIFzqmMYaWKUB7ic4/u5e0XLeSsBWYgf7YlTnZHP266SGRZFW7ewenP4qsOY5cGceN5Cp0pAnVRAo0xcvsTFNqSBGaXEJpTSvCIwOtpbNrX3URvmv6ONJZt4fNZ2D4LbAvP8SgWHGyfTSjmx59JYHUUcDtyBBpj+Ie3Sc5A1oR2lQTwHI9UYZAD/5+9+46T467vP/6asr1f2etdvUun3mXZsi3LvTdsg8EYgsEQCIQfIQUIEHpLYqqxMeDeu9V77/16L7t7t3132u+PkU8WgmASyzJ4no/HPXQ3O31Hs9+dmc/727Ifh9eH0+tDdjiQRQlDFHB4PORkjbyuYBg6smgDw0BE5PXON3ii81muHHUl80tmM3Htd8BTAL5S897Inodg6i3m/YHWTTDhSjj8NMz6MLz2JZh2Cwx3QusGWPoF2PUgJHpg2Rdh+wOQ6jfD9fb8xgwwWfZF2PFTyKfM31/5Rxh7KSDAwFGYcBUcfgZu/q0ZevL+9J4/fv8SWkoh35lAi2SRCpzYK71IXjNgLt+dJHskgpZWcVT7Ebyyee1RNZBL3MgBx/847w0nBrjjF9t5M2vvQ7OruaG2iNhgmkEJvr2rndGlXu6bXo3WnybktrN2KMlXNzWTU3Wun1jKbXXFBCURl9+JI6+A00BUBcjo4JURJAGSZhtaKHAgqaD0p80AiQIn+VPnTDWZJ6npNAsG39jWwj2L6xjqTlEvShQXezBUDY/DhiOv05LJ4ffYCfakkXIaYn2AE4pCtwzCcJ4aQ6C80IORVBBECNYEQIBoZwJNFhnK5MlLIgWySKEGkteOGHRgD3vM9T1//qaO3TcNtDXzuy9/nnwmfcbwRbfeRdmosTg8VQz1ZXB4bEgBiSU/2Yx26qAMum187erJVAddXP/AFop9Tv79mknMqy9CPNXeU/pSKNGMeZ0BAUPVEWURBAE9ryLaJHRFQ7RLGKoOggC6gWCX0NNm+D66gaEa5vd9wwwZ0XMacsiBkdXQsxpiwI42kEHPa9jCbnP+imYGBCbyiA4ZPaciuW1oSQXJ78BIKyCbn01GVjWD9uJ5DEByyWhpBUEUUKNZ5GIXgiiS70oiB+zYqs2wESOZJ9eeAAEcVT60vIqzOoCt1PMuv5N/1t/k8Wv5C3TshHinGc5bNh2cfzVBOefixP/uP3hkede0DKZY9q21ALR+/bLzuSrvmQsfFovFYrFYLBaLxWKxWCwWi8VisVgsFovF8rdO/vOjvPMMw7j5T7y0/E+M/1Xgq+dujd5hDjek+kBXoX4JhMejKjmG5QpwBgj2HUB88oOgpMnctAldUcklEmSGh0EAMZVAtjsI1zWQSyWRHQ7UXO6MRdhd7rMW255optwxAd0wqAg4+O/bG3lmbzeRVI4rppYzpSLAL1Yf4N9HlVDw8BUw5hLzod2O7XDxv8O4hX9ykxRNxyaJ5FUdKRcDJQnX/RKG2s2eCl2FpBWdL7/SztcX2ZENwwwicfjBWYAh2rE7ZeZcUc/OF1v55Zd34PLZWHj9aEomuOhqOkb7q7spaRhNzeRpBMIlf3JdLO8Ow+aj5dgWMok43ceOMv2SVRzZtJZQaQWeQJBjWzfRuPIKmnZtx+5yUVxTx6F1bzBtxWV0HTtMPpOmdmoj+994mYlLlhPt7iDW1c34xcs48MbL1E2fRT6T4sS2zfiLSxgzZwHFRW6qHrwWd+Od0LkD+g7BxV+DR76KK1AJYy+DTd/DM+MD0BQxQ34u/DK0b8fmqyTuWkU8lUH2FNKydS9FNbUIgwKpWBSXP0DXvkNkEnHsLhfHt25i3rU3seE7DzLnmhvZ/dNncAcCVE2YwsG1rzHvulvY8vgjhMoqRgry5153MzufeQLRJjP94svY8dCTzLriWo5u3sBwfy/L7vgIm77/EJIs4/T6GHqiB39xMbPu/zyP7kjxxZXjzvfb+rdJlGhOdpwRQALQkeigqWQU4RseMntOdQTMotnqlZRmohza+wNmhGfwiWmfIK2msYk2Cl2FxDNDzOs7Dmu+Rsk9W6FtG3UvfNo8X9rcsPJb1KQzpOwuvGIJzuYDHI2HScYifzQIIRguxTC0t705giQw7+oG1NwgmUQTQ73dVF46Gbvr7B6maqYUEGnr5uS+bRgIuP0+HC43/qoyTu7YgqtgMZ/aeZL2aOaM6f7tyon8dl8XAFUhN71x83WnTeK7Lx3FIYt84dJxOGwixV4H/ckcR3vixFIK40u93PKzbQBc11jJsrEii0YVk9M0fnTzdNqjaRw2kc5Yhs0nB/nxrTPe6QCSv0klfidFXgcfXFCHpKQQEbl9wu2klBQAHpsHDJAkm1kAHqxFUyQQIpBNwE2PmAU63lIYOGEGkAD0H6bXXoPt2sdokzN8Z9d3+Eb552jbu5v5199C19Ej9Lc0k8+kKaquYfeLzxIsKx8JIEEQGDVrHpHOVpp2bsPQNcYtWELPiWO07ttN46qr6T5xBJvDRqR5GzueWEegpJQrPvOPxPp6GGhr5eK77sYQ7dicLpTsmceioRto+fxIAIk5TEcQRAzODCH5Y8+vpoeHUfP5s4Zb3n31YR/RlsOo+SiB+iAOmx3SLTj6+giWVqGINmKqjy1P/I76GbMRJbPXYlE+++uIw+Oh7+RxfEVhxsyeR3xwkNY9OykoamRS0SS+vvDrtCfakUSJam81T6SfQHaIFFV5GexIjsxn7NxSDAH6WtO4xC5c2c2kxwZRHcW89N8HqZ9WTOW4EJ1HY+Y2TC+iZlIhhmEw3J8hNZxDsoloio6a13D5bPiL3dgdEtGeFKnhHE6PHX+RE0EQiPWlyaUVAkUuQu+9gghLLg0Dh83AJtllPqos2kFTwOGFgjqQTgVjZIZg4Di2oVZ4+QskF32NzWufREnG6TpyCE+oEFE0j+GH/+VTANTPmM2o2fN59UvfA0CUZIIlpfjDJbi8fgoqKymtH40oSux86kkG2lsZNWsel37807z8k++x5fHfUjphInsGvexs6uamBoVx5SFKCsoQsstg5rUgu6H/sNmeabwTNn0PZn7ILLasWYDUthFvcSP50um43fY/vS9E6X/XQ7wgQMWMPz+ea/rp3+Ui8BT95cuyvON03WC4L00ilsXltaEqOrmUij/sxNBByWpomo6AgKEbuIMOcikFm1Piwg9OYPWvj6BkNRxumZmX1rL6oWMUlnuYeVkt/a1D5NIqNqfE6NmlHN/Way7UgEQ0Cy6VI9oeajw1PNv0LHPK51B8MEPAX0iorAJvQQHrH/oF4xYuJlRajqHrHHzjNTqPHKS+cTaFVbVnhZD4wyUouTPbFRufeJDWw7sI14/iyIY1jJu/mD0vP0fjZVfS0Dib3GALfY5ijpfIvL69mU1NEb5+aSXXNhjML42AGIeuIbNwKFT9Lr0z70+iJOHy+ckk4mcMtzmdRLriJCIamx5vGhleUuejclU1PTmFb7x8jLsX1XGsN8FjuzrPmH56VRC/y4ai6dyzuJ6tzVEmlPnxu2Xak2mGMwr1Ni9OQ0AodfNif5LxIRuCJBArcXGiL0FNpR+xxMvG7jjDisq0qiD+ugJc9lNtlpL/+TNeqjv7/CsHnchB55nbeqqt4J70R86RpX+8aE0My2bh51tN+x9Xx3KOOD1nv0eBcAmCKOJwucnE87zwn3sBqBpfQKjUzZEtPVx413jqQ20ousqTyQr+4YkD/Md1U/jNtnb2dgydMb/rZ1aSyWmsmlpGU0eUyZV+fE6ZuGHgstvoOPXde3J1AFEUGBhIEar005/JE/Y5GVPq4zPFHvZ0D6N7BCpDZjunMyficYAiiyRFGzOrw+gG5OwymxWVcNhBTtW4/7LxjAqf3k5nXQDnHwmu/lPs5X81xZd/dfxFbvxFp88FO1uigIZkE5kcitPW6eX1Xxxm/jVB3njo3/EVFuI66Wd4YJBUbICL7rmPYEEpNtnBg5//O0RJYtWn/oET2zbRfugAZQ1jqJ02A13TyOeyiIKI3eXGEEBTVDOERBRptFXTWPwpOpQhutJ96Ms+w+ThAejZC4II8+8DBLPdmU9B7SIYvQKSvXDDw2aAeWYQZn8E3GEon2kG7ukqlEwCb8mp9udMcAbNUL2qn4PdDdlhuOMFM+zE5gBBAi0PU24wlxXvBn+5uYPi3ZDsN9ukAStw8q+J5LHhGvvHQ2ft5d7/03lmXn0hT9w7n32dw3jsEjWFbk7G86hhJx3RNH9/6TimVwUxDIN9aLzUMcx/rW8emf6xQ70cjKS4d2kDqVSaydUCtrZ2wtV1nNyxlfV/EFRVNmoMl3/6iwzrTm54ai8fmFtDVtH53i/3nTFeecCJqsEX1544a53/fsUYvvXqcQAWjCrkI4vq6E/kCbhtGDmVMWOKaIukOJBMM7bMz5RKP3ab2X4JFDjZ1znM0XSGYqdEuCqAN3T2PUbLO00gEC5hoO3MAFyn2wMY6JJBb+lxxgZnEknk+OWdM9nXOYxNFBhf5ifklklkFb5y1WTqijxMLPePBJAA2Eo82P5M2/QdU3Huw8Rc497y//1Um9c9LXzOl2ux/J8cfQGe+ThkYiDZYfk/waTrwV96vtfMYnnHJbPmffj3TvapxWKxWCwWi8VisVgsFovFYrFYLBaLxWKxWM618xJC8r6gmw/kgkDCWc2W9Ws5uOZBEGDqsguYM+oavCefIp/NYmCgqnl0TUOUJNS8jt3pIpNI4vD4mHPVDWz6/UMjsx63YAm+ouKzFumz+4gOJXG6neQ0CHvtfHnVeEQReoYy/OCN48wtNBC2/xSm3WwW17kLYdRyiLVC3Z8OIfG7bMQzee6Y7EFMGGZwSbTFfBAYATQFrfZivA6RnxyS+dh4FdkwQBQRMIgLZehajoIKD8tuH0cureL22/EWGGx46Gcc27LBXNAbL1M3fSaXfvzTuHz+d/QtsfxlVE0nGYlwcO1rzL/+Flb/6r+xOZyU1o9myxO/ZdYV17Lxd78mn80w5+ob2fDIr5h8wQr2vPwssd4eFt18B2t+9d/Uz5hN085tdB09xKJb7uT1n/2YkroGYt2dI+97IjJIX9MJVn3qcxjX/hyha7f5oHp6EIa74Mr/hHQEdBX15sfI53UMV5DI2E8g2BwkyyeSTSWxR7Lsf/0VJi6+gKOb1jEOg6Ob1+P0eCmqquHIxrUsuPE2Nv3+YUbNmsfRzetHtlfJZQmExxLp6jg1xCx2z6aSOL3mA5bZeByn10cyFsHudKNrGkc2rmXUrHnsfvEZ+lubKKquofvYETKJOIIoMveGW3D4AvzblbX4nO9qj+/vHyXj8OS6zxrss/mQRNk8vxmaWZhQMhGAAlcB/zD7H/jenu8xtWgqBc4CGoINPHbsMW4bdxMMNplFvZl+eP5+UE71VqikYe3X6Fj6M17+xc+I9/cx49LLUfJdFJRXEgiXEiorJ9Zjro/scDDt4lVoqm4GK4jiWetpGAZDvT2khmJ4QiEEwYPbn+H1n/2IoVPzOfDGS8y/4VamXTSTfa+bx2jDjDBun4NBBGSHE0mW0TWd5NAQCALHN6+nvm4GKyaW8rMNpx909tglRpeYx7TLJnHRhBK+8sJhPryojvkNBTz9sfn4XTZqCz0IAhzvSyALcPPsEmJJUA343o1TCbhsVAadBD1Oin2nexcdTuc5OZBiUnmAjy1toNh3ZrGd5U+bVh3EaRNwZ3vRDR3DMBDe7NDrzfyNjd+FYA1ytImabf8FN/0Ojr8I674OgQrznLnsi3DFj2DwOPniiTzSVsovX0zyXx/x4pW9FORdAGiahr84TNMuM1RGVRS8BYUMnwog8RUWM+fq63G4Pbzwg/8YWc8tj/+WBTfeRv5UoIi/uIS2A3s58MYrgHlO7zlxjCs/+2XKRo1n4xOPkMukmXfdzax/+Bcj8xk9ez6yw4Gua2Z7wjA3snnXdiYsXsbBNa+NjBssLaOgogpRktC106E+4xctxVtQ+A6+C5b/DU1VObljK6//7MdkkwmKqmq4+O6PUBrZBYJAWgxwqGkYTzBEeniIlr07mHXFNbz8k+/R13yC+hmzad69fWR+86+/jd0vPUs2EWfFR+8jEA7jLSrGpdo4FDtKwB4gYA/w7zv+nW8s+gYD6QGG1SGmXFBFeihHpCtFqNSNrhs4PTLx/ixDlYt4ddsEHCcTjGp0kozm2L+6k5rJhcxaVYcoQtmoAGBwYmcfax46iprXcXhkZq6sZecLrch2kTlX1OP0yLz8wCF0zcATdDD78jpcfjuv//wQ+ayGzSmx/APjqZ9ebIUwvVcMtkL/PjPkTtfMEEVBhLZN0LoRRBkWfArmfgw8hWbbIROFlz9PZMnPiIoVtO59iLHzFtHX0sQoTaV+xiw6Du0fWUTrvt1MXLKcgooqol0d6JpKfKCfxbfeRdvBvWz63UMsuPE2PKFCiqpradm7i72vPE8iGuHCD93Lk1//Z5JDEWZXydzW/zDONb8Dw0AbfQnijNsRos3QuRtmf9gMReveZbaXW9bBcAcUjYH0IP4dP4Brf3q+9rTlPUpRNI5t6WXjoyeYsLCMUKmbLU81Uzu5iIIKNzaHzFB/GpfHxu5X25m9qo6jW3qI9aYRBGi8pIZL7plE9/FhNFVj18ttZFMKXceHGDc/h2FAy74BFt4wBow4s1bVMdSbprDKg9tv5/Heh6ksKuNQ9BBxJU7QHiQX7SY0djJKLsvz3/sGjZddhc3hIBMfZsezT4wU6u1/42Uuu+9zHNu0biSwwh0IUlRZjZrPI8kymno6jHDy8kvY+dwTZOLD2N1m4dq+V19CECV2PvckBeWVLL3nk6RHFfH1RTKVYi/C45+FoTZwhWDRZyFUC4MnoWGJGdpjeceJsszCm+/gtZ/+aKQNWDN1BoFwKUrWht0pMvvyOmI9aYKlLsrGhfjtiT6iqRy3z6vhaG+CqZUBHt/d+ebkAFw4oYQfvHGC/7huCiGPjRk1QVTNwCYKTK30k87r9CVyFDicTCzzs2zcnw7AnV1ntTEtf1w2k6GgvIJwbT39rWZBuiTLzLriWuxONwgCgs3HirsnIskiQ70pkkM5Ft84huKCHFp2mG8dL6G+2KC+2MPu9hgrJ5eeEUIiCjA67AMM/A6ZeQ0F1Ie9BF2nQ25m151ZmF/5R4rJg247dUVnFifPqHnn9oXlvUESIJk3yKVzRAOluPw5lt42DkXJM/OKa9jwljCEcQuX4vT4yGeyiLKdqRetRFMVNv7uIaKnrome3LmVgY5WaiZPJxAuIRmL0LtzG0VV1fiLwuZ3vOEhcqkkksOBPxAg5VfpTvXgQaM+3gUTr4Gjz8GOn5rt74YLzWtqj33AvD5XOgWWfwk2/9AMoba5YcVXzFDAx+80rwP7yuCan4KShSeuNYNHQnVw7c/NoJFn7zILfoPVcO0vQMvBg6vMwBFviTmtZIPH74JEL3iK4er/hoYLTt3TsLyfyZLI9OoQ06tDf3bcipCb0oCLn25sQdNPNzw+urSBK6ZVALChYzN14WJ0Xae4po6i6loG21sBkGw2Zl99I6IsI5OkeyjLwe44c+sLccgiOfV0CO9V0yvYeHKQGdUhdrfHRoZPKPfTGkmP/H373BqWjD27HTOh/I/fU3PZZebWFzK33mrfvJtkm505V93Aiz/6NrpmfmcJ1zUQKq80r4m6MuQSedoH00QzCoUeO7MqAzgcMh67SF3Yj006+36CxWJ5j+jeBy98xmyPgBmI9tqXIDzRCiGx/E3KKOa9Oeueh8VisVgsFovFYrFYLBaLxWKxWCwWi8Visbx/WCEk50rhKOjeA4KNE0eaObD6VXO4AXvfeJ3iO+5kiv4YnlABycggss1GJpMhk8vi9gUIlVeiqQqaolE5bhIr7/ss8YE+PMEQwbIK7G4XdtFOXs8DsKhiEWWeMhpLyxhMZOiOZdFE6BnOIggQTeZ5/kAfxtgAt/pKEV7/Z5AdZs/fhg4feOZ/3ByP085QKk+BMISgK+DwQWoAhtuheBzIbhRDwuOQUHSDnxxx4nPJLGgopCbgRhvOous6mqojiOD0yoiyQGb4dBDFm1r27KSv+SS1U99GL9uWc8ZQlZGQDl3XUXM5Rs2ax4ltmwHz4dlMIk7VxMm07d8DgCdUQKynm4LySvpbzF6Lw3X1bH3id9hdLlJDUTAMaqZMZ8ezT5yxPFXJkxoepqtiAkpZLW6Xg7yeJG9rxKY7iQxCoKScwy+uJlRWTtexteRSSUoaRnPgjVdYfOtdrP7VA4xfuJRdLz5NIjKAbHeQGBxg7LxF7FsFGqgAAQAASURBVH35+VPLUQAQJXGkkF2SzXCQgbYWJiy+gJ4TR4n19owUlHiCQVw+P4c3rGH+Dbey5bFHOLZlA4tuvpN9r79EKhblgrvuofPIISYsWsakpRcRH+xHlGR2P/8sF4+eZAWQnGOFzkKuHX0tT5wwjytREPno1I/ilFwwcBwEoGi02cvqKa1Drdw75V760/00DTfxy4O/ZGXdSjx2P1zyNbMX1eY1pwNITomN/QBPfe87KKcCGE7u3M60FSvxFxXRsn8Xi265k2QsipZXCJaW4fT6yCSH6Ws+wdi5CxGl04WMhmFwcsdWXvrRt1FyWWxOFyvu+RS6lh8JIHnT9mce56rPNiLbagGIdicZ7u9lqLcbty9AYrAfAFcgxOH1a5h2yeUce+EhbrrtIxR6xvLigV6qC9zcNKsKdI1/v2YyNQVuBpJZ/uu2RhRN48YHtvHMxxdQX3y6J9GxpX7GlpoPsFedqnGaUfOnH9APuO001pzd+7flz/M4ZBprCzFO7kOQBCRBQhAEBIS3PNQngM0JG7996k8DahdD1RwYOApjLzMLc7zFsP2/sas5rln5G2ZOmIPf3su/zvgScpPZdjB0nf7WZqonT+PoxrXY7A5i3V00NM6hefcO5l9/C0dOBTn9ofaD+6iZOoPDa19nyQc+zPPf/TqlDWOYsOQCNFVFzSnYXU5ObttE2/7dAIxfsJhld36EdHwYSbZhaBqCIJKMxZi09MKR0JHBjjYmLbuQiz7yd7Tu203Z6HE0NM4mWFrGNZ//Z9b8+mcM9/cyYdEFzLz8amSbdX493wY7Wnnh+9/EMPRTf7fx6i9+xnV3rMLdvYV+T4iNv/0hl9//D6RiUSrGTsBfXMpln/wcJ7ZtomzMeMYtWIKSzeAOBtFUlcW33smLP/gPYt1duPwBgiVlRG0ZMqkMaTXN8ehxbht3G5FshCtHXckz0d9znfMubE6RummFCIKIKAt0HY3RdiiC01vOYGea2atK0LXTRUNtByK0HYggySLL7xxPLq3xxi+PoJ8qLMqlVHa/3MbYuaXsX93JntfambykAk/QQSKSJTWUY98bHYybV4a3wEm0O4WS1Xj9V4e5sWI2wRKrZ+H3hFQ3vPolmHgVeEKw52GonmcGkIAZILnhW2Yv7WMvhXwaskOoRVPozY2iv2MATzBEb9NxqidNpXXfbsI1dSz5wN0MtDYjShJFVTUc3riWC+/+GLGebpRclnw6xfFtGwmWVVA9eRoH177O/Otvw+Y83R5p2rmVKReswO5yIRV6iOZO4jz425HXpRMvo1fMRAiPheo5cORZGLvSDElp22j28L78y3D4WTNsrXs35BLmdz2L5ZRYd4p1jxxDFAXKRgV541fmeS5U6kYQBHIpBbfPzvbnWyip9dNzcohYr9kGNgzY+VIbl9b42fVS61nzdrhtdBztoqQuQF9LnGCJC9kuEix1kc+qtDuPM7VkEj/c+0NW1a9iT/8ellUto7amCkPTiA/0oSkKoiSRiSeQHY6RAJKx85cw9aJLyCQTzL7yOmSHg/TwEIHiEryFRRzasJqFN99BtKsDTVWomjgVh9fDQFsLBeWVJAYHAPCHwySjEQCi3Z107tnBxcuuoDLRivD8Z8wgHzALh17/J7jo38BTBIPHITz+3L9B7zO6pqEpCoVVNVz5mS8S7e7E4XYTLCvH4fESjyqoeR1P0E5xtQ9nUKJN0Vgwuoh4RkGWoMhrR5IEvnP9VJ7a00U6r7FyciltkRTfun4qS8YU4XdZ30ks54aSyyHIMks+cDfRrk7ymTShsgq8BQXo6HgCQeJRndRQBrtLxlfkoqjah9Mt00uWLm0ys+shp2j8yxUT2dwUIex38u9XT+KJ3V24bCKXTi7D45AYE/YxvjxwvjfZ8h43tszH/s44sijTFctSrBpg6EiiTM3kmYQ+XUqspxunz4e3oBADA11XyadTTL7wEtR8FpcvwFBvz0iR/HBfL+6FAVJDUVr37KZi/ATcgSBqPk9v8wkEwFtYhMvrQ9ANxubK6CdJlwt6J1+GIagYY5diG3sBeT2HTVVw6HlGj78c7/5HoXc/bPlPcBeZG6Gk4YVPm+3atPmZTaLHDCSZfIN5nQMg1gJP3QNVs08X/A61wxMfgjGXmAEkAMk+ePQDMOtuM4AEzHsZj94O92yAwoZ35b2x/O2YUhHgN3fP4Wcbmomm8ty1oI7FY4pGXk/ksqSHIjhLnNhdbhbfehexni50TaOgogqXz08unULXdH5w8zT6hnM0FHn44S3TeWp3J/3xPDfMqqTI4+DhbW1cPb2c+aMK2XRikLn1hSweU8S6YwPcOLOSVVPLafwfrs1a3js0XcdfFOby+z9PtKcLu9NJQXkVssOBze4g2T+IzSMztcqPXbLarhbLX51Uv9leeSvDgHjn+Vkfi+UcezOMTX9rGqzFYrFYLBaLxWKxWCwWi8VisVgsFovFYrFY/qZZISTniiBAeCJ6vIfj27ec9fLJ/QeZUj4dtz5EXFNRFQXZ7kB2OBFEEVXJ4faHSAz2Yxg6nlAB/sJiDAwkWSbrNPiX+f9Cd6obn81Hpa8Sp2QWsxX5XCiaTiavk9d0vvnyMVYfM4tvaoISVF1jFtlEm81ev2d/GGyes9bxD1UUeqElaoaWuELmw8JKxny4NzyejC7hsEnkVR1BEEhnNZI5DV3TOVWTiqGDpuggCBRVKgy0Zf/osnKZzP9yx1veKaIu4PR4SeZziKd6f86n0zi8XugDUTR7YMul0/gKzQdu3xyWz2RweMxjytB1RMnsnVq2m8WQSi6Hw+Umm0oCZi+cBWUVOL1e+ppP0H38CKX1o9n8xG9ZeOPtbPjNL5ly4SXseO5plGwGb2ERHYf2M/fam9j21KN4giFivd1gGPiLwxzZsAZBEEcenM/Eh/GEQgz392E7tQ6t+3bTeNnVbHn8ETqPHGDs/MUc27weTVEYNXMuRzevZ+7VN1I+djxNO7ez+LYPoikK2WSSFR+9j1wqRWooxuLbP0j30UPsffVFpl+yip6TxwkUl4Bhbns2mcAlWT0CnWsCAhfXXMyEwgnEsjFKPaV4ZS9ZLQv5uFlMXDYV+o/AmIsBqAnWsK5jHQWuAoKOIAsqFlDiKaEv3Q+ljeaMfeVgc5nnulOGNe9IAAlAeiiGzeVCHc5h6AZ2l5tif5BMMoEAGOigGbz84+9SWFlNuKZuZNpYbzcv/vBbqPkcAEo2w6v/9V2W3nH3WduoKQqyTcXucmLoCRqmpTi0dhflo0ez++XnaFx5JZlEgq5jhxg1ex66ptF1eD+h/ftZNncx1zeWk81qRLMaLx3swWmX6R7KIAhQGXSzozVKOq9xoi/J6BLfOXiXLG+XEG1BCFchCAKGYZif/aKEgACOgFl0MzKyDVxB6NwBSg4jl+LEuHk05SI4r/kBo1NxyrUexAI3wzqUG4Uc2P4Es6+6nqMb1zFj5RWoikLVxCkc37aJWVdeSyIyyNQVlxGPDIBh4PKefTx4giGKq+uYuuIynF4vq+7/PF1HD7HmVw9QUjeKCUsuIDHQR8fhAyPTrHnwp4xfuJSy0eNw+wPIDgfNu7YTLCmjevI0SupHkRqKESguQc3ncbq9qPk8k5ZdNLIONVOmc9M/fx0ll8MdCCLJVlP2vSDS2TESQPKmgbYWInoYd7CaeGQAXVOJ9XQx+8rr6W0+wdFNa2mYPY+Zl1+DksshSTKqptB95BBOn5+Og/u49O8+SzI6gCgIFNRW88Mj/8H08hnohs7qjtV8f9n3+fGeH/PZWZ+lM9FJs7GHacIc1LRApDMBgkhqOMfki8rZ/0oXALpuYHNK2JwSSlYbWd8xs0vIJPNoijESQPKmTELB5jCPtVhPGlXRKazwkoiY7dhodwpd1Smq9BLtTgGg5nWSQzkrhOS9It5thnV07YLquVDRCG2bzh6vc4cZQmJzgTNAtmI5ySGVpl0pGlfdyfrffA+Xz89w8wmi3XYaZs4hEC4xC8pSKZxePz3Hj6GqeTRFYfvTj+H0eBm30M3My642e8I+FS71JpvdgSjLXPixT/Jg35NcFZx41mqJJ15kcPS1+JQBbL5ySEUQisdCtAWhY6tZlDl+Faz+N5hzL7gKzuHOtPw1evN85fLbySQUNFXHHbCTjudwBx0MD2TwFbrAgKIqHyd39Z01D1EWKK3309scHxkWCLvA0KkaV0B6OIcgwFB/hoIKD+5CiX65mURmkHJHOQICWTWL3+5nbedabq6+FhQB2WYW24miiGSTkWQZyWbjko/fjwA07dxGuK6BdQ//gjnX3Mi2J39P46qr6ThyiHHzF2OzOymubcBQVVRV4ZUff5dgaTlTLrqUDY/8ClGSmLL8Ejb+9tcj6z3Q1kyjI48wmDgdQPImXYVMBBxeSPRZISTngKhrGLqOoenYPS7Kx4xHEAUEQQJRxFegEx8Ucfns2D0Su5UtrKxf+Sfnt3JyGSN5fQbYbdKfHNdieSdIkgS6jiCIFFXXgCACOgYgijJKJkNxlQdRFFHzKpJNJJtWcLhtjK4qYfQfzG/R6OKR36+eXgkYgIDTbh3LlrfH7bBhl0DVRZwOESOroWnmNfhor43C8nJ8RcXks1k0VcXQdRBENFUhn0mTS6UI1zdw+We+QDIyyNYnf08qFkUURfN+hdNBLp0auf7r9HjJZ9KoioKuqkg2G7l4AqWznYKZ43kttotCVyFHIkfIqBlmlMzg9bbXqQ3U4g2X8tFRF+A7uRpa1sKCT0HLutMbo6TO3LjUINj/4DtV5ARMvPLMYUNt4PyDaxfZIfjDS7L5FAx3WiEklr+YLInMrS9kZk0I3TCwy2eeo6u89djSUQY72/EXFGF3uimpb8Cs0RXMMHRdI59IccWccWdMe+G4ElRDx34quPqC8eGRMOJPLR+NLJn3XOY1FGH566LrOjoGTq+X8rHjEU4VbQsYGIaBkkwxbBsmraatEBKL5a+Rpwi8JWb42ZsEAfwV52+dLJZz6M0QEiuDxGKxWCwWi8VisVgsFovFYrFYLBaLxWKxWN4/xPO9An/TbA7yziIKK6rOeqmwshokO65jT50qvtDQNAVBENAVhfTQEGouh65p6IaOrqoouZxZjKzpdKd6cEgOKr2VhF1hJEHCJtpG5h/2uTDQMQydm+fU8KkLR/OlVRO4a7oP4aXPQs18WPxZWHg/tKyHWOvb2yaHH3TN7GnQAAJV5sPANjcZ1UASBATBfMZGFM2HMwXBDB8xDHO4YQgEwg5yqSSeYJBwbf0ZiwiVVeAvKv7jy7e8awy7xIyVVwCQHh6isLKa1n27GTd/CQgCka5OKsZPpL+liaoJk5FkmY7DBxgzdwHJWIRAuBS7y8XJHVuZsvxiNEVBkmXcgSDHt2xg2sWrAJiw+AKS0Qh7X32B3pPHWfvgTymurmX9I78iXFNHy95daKqKw+MlERkgVF7BQFvz6fXUdVQlj83hHFlXX2ExhqFjOxXqc3zbZqZetBIEgWNbNjDvupsxdIPu40dYdMud6KpKsLSMlfd9Fl9hEQ0z53DF/V8AwyxEbpg5h21P/p5kNMKmxx7m+e99g0RkgE2/f4hDq1+jr+kkhq4RKC4hk0iw+bHfsPXJ37H9mcdYePPtNGvdRDKRd/9NfB/JaTkUXaHAUUCVrwq37MYu2c0HtovGwJQb4dUvmkXFp5S4SmgsaSTsChN0BKkP1HMsdgyv3Xt6xp4iuPSbIJvHF7IDV+UETle5garkSUWjHN20nsKKKuxuN5n4ELqSR3Y40FWdob4+dE2lr+kEmqqOTBsfGBgJIHmTkssSCJficJ8ZDjV2/mJsTheTl5Yy2Lqa/raTdBzcgyjbGDtvEQNtrSi5LHXTZ+Fwe+hvaQJAHOrlqd2dfPrRA7x6bJC+eJa3Ph8miSJ5TeP5/WaPbS671TQ47wpqMQyDcm85Ra4iilxFlLnLzKL13JAZjvOmfPLUv2koqGN7w1xu2vKPfG7n17lvx1f5fP969lVO4ER/HEEQkFwOIp3tHN20jrHzF6HkcpTWj2LS0guZfsnlBEvLaZg5l8nLVwACHQf3UzN52sg5FkCSZUbNms++V18gWFLKUG8vuWSCXc+bbZq66TNJDw+RHIpR2jDm9LoaBkc2rCE+0MdwXzebH32Y2qnTcfp8SJJMQVklRdW19DadAFGg48hBhvv7zijWB3B6ffgKi6wAkvcQu8t11jB3IIimGyih0bh9AZweL4nIIF3Hj9Awcy6lo8ai5fJoioqmagwP9BFpayOTSJBNJskkErh8XkoaRiPZHTz+T//IPYHrSefTFLuK+ciUj6DoCv86/1/pSnYRdAapLahhONTHce9uCqbIZIsGKV9iQyuNk47nAUjH8xze1M2Fd06gbmoRRVVepl9UTVGVF9kmUVLro6TOf8a2ONwymmoGlviLnEg2kVjv6eK4QNiFKAnEetMjwyRZxO23CkjeM9yFZs+kRWPMz/RoExSPO3u8N4c5A+AIYq+ZhNsvk0urHNvh5IrPfA2H18eUCy5l1Kw5DPf1MtDaQjIaZcdzTzLY3oKmqajZHG3795izrK0nPjiAzemk48hBbHYbkc72kUXOuvI6HD4fiQKDE7ETOEomceBjG2m54Rcj7Y10xUKeaYZXhir5VU8Vjw+N4umhejaXfwDmfgzSUXjtn6DhQmi8y/wiZrG8hSdoBjFmEnlcPhuiKJBNKji9ZnvZV+hCks3jLdaborj6zCLeuqlFuDwyjStrmbionMIKD2PnljJ7VR27X2knGctSVOXD6ZWpmOmhO3yUTsdJ3A4ndsnOQHqA+6bfx6NHH+WW8bdQ7Crm4Y5HUQsc+IqKCZVVMNTXiyjJ5NIplt/9MWJdXdhdXjqPHkIQRRAEJNm85tGyeweiJBHr6iTa3UHzrq2c3L0VNZ9jztU3sOiWO3H5Asy//lYu+dj97H7pWVQlP7I95WMnINtdZlGzM3j2DnP4QXKCK3Bu3pD3PbMQV1NVDA2UfB5dVTEMDVkUcbhEHC7zvX5l6FkqfZX/49wcNgm7fOrHCiCxvAt0JY+um9dcdVVFU3Kg6Ri6zlBfN6IsYRhR7E4J2S6RSyo43TLh6j8f9um0SzjtshVAYvmLeRwy644P8PqRATPYCTAMA4crT/vBg5i3gczP+pFjN58nm4if+kkQ6+5CUxRmX3k9o+csYKC9FUmWGb9gCYIkM9jZjqoolNSPonL8JPynvpe7/UFSw8NIooTSFQXg+ebn0QyNcQXjWN+5HlEQKfOU8eumpzkxaqm50uEJZ4asAkiOM/+2uUA/M/ASTxHkEmcOcwZBzZ85TLKD8Af/l0QJPNZ9B8v/niyJZwWQABQ4XCQjUXLZNIZgoBu6eb1DUVHfbOuIIiHlsHl/7S1EURgJIAFGAkjeXJ7lr5ihY+gamqqj5XOoqopuGOiGgc3hxO50oOoqsmBd47RY/ip5SmDlt8Bxqp0vynDBl8BTen7Xy2I5RzQrfcRisVgsFovFYrFYLBaLxWKxWCwWi8VisVjed6wnm86xfCZD1YQptOzZSSIyCEAgXELFuIngDpMvnAjtfYiyHSWXQ7CJVFVMQsqL2DI28rKNTCaNIAgIolmoIck2kmpyZBmCICAJEk75LQXCkkhDOEBPLE2B287smiCSYOAlDYWjYM/DZ66o/3RBcyqXoivVRdARxJkRGOxoRdc0iiprCLrDEG05VcQ3GmSH+SCdIJHUZAyMkd5PJFHEJgq4PA6SkdypABIDQTRw+SREsYBkNMKCmz7AiW2b6D5+lNKG0YxftAx3MHTu3hTL26LoWU5s38zCm+8gn0kz5+obyKaSZBMJLvvEZ4l2d1I3dQbjFywlERvk0r/7DLGeblz+ADVTZxDv72fFPZ9kuL8Xm93Bxfd+ilhvNxfcdQ+JaARD17n07z6Nms9z+IEfMfmCFRzZuBYAVVHAMHB5fcQHBwCzZ2yAWE83ExZfQPuBfQz39VJUXctgeysunx+H28OxzeuZf/2tbPz9Q+x/4xWW3P4hjm1aR/OeHVxy76fIpZIYhsHK+/6eSGcHsZ4uJiy9kH2vvkjzru0ES8o4sX0zc66+gV0vPIOmKCy48TaG+npo2beLcfMXc2TDGrLJJOHaelr27eKK+79Ay75d9Le1IGoCl9/+OSRdIqFE2fvy8xxb5qBT7eOrC79KqfXw2TlR6iklpaSwi3aOxY6RVbM4ZSdemxf6j8CGb5vhS54w9B0BNY3gCqDoCv+y9V9QdTMY5JLaS5hdMptYNkbIGYJkLxx/FW56BFID4Cmm4OQ65l11LVueenxk+V6fm6vuu4+u9m4inR34CovIxIcZHugnVFLKyS1bWHX73xOyl5HpiOKpKSaTyCOIXmSb/YyiSNnuwOZ0cfG9n+LQutcZ6u2hduoMaqfOQBBguL+Pg2teY+61NzHQ1ko+nUaWbUh2G5qioGRSSKKPhplzOLJxDTUTJtM4aTQ5RSOd19nWHCGn6vicAi6bjKIZ/HJTKxlFY2KZn/Fl/rP2r+VdlI6CvxKvMsi/bPkXelJmOEy5p5wvz/sy3Rf9E65klGDbRoT2rYAOa78OU24gXjWTb574LYqujMxu3+A+dkcOMsUvAj4Up8iN9/87wy3d5IUshl+kdf9edj73xBmrMePSKygbMx6b08nBdW9w8b2for+lCQODynETScaiVE2aQmooRl9LMy7v6fAeQ9cRRIF8Ok2gpJRgWTlDPd0AlDSMxuZ0khoeor+lCU3VsDkKEYQcSi6Lks0hOxzkUin2vfYiyz/4KTIpAacXy3uYvzDMuIVLOXrqc1wQRWZdcS2aqiIXjcKeG2DhzXew/ZnHmHLhpRzbsoHGy64km0iQHIqi5RUMNGS7A29BERgGuUwaJZcjEAzx2gM/Qsll2P7gr5l1/x18bOv9I8u+d+q9rOlYw9HoUW4ccyMralcQ9hXTnm/iC01f4F/n/yvD+TjzrpnLht+d4OjmHuZcWU/bwUGmLizDrYOgGygOiRd+fZSpy6sIlbmZdmEVQwMZ0A38RS42PnYCu1NixsU1OL0ywwMZAOwumWnLq/AEHUS6zfa5KAksuXUMwRL3WfvKcp54S2DW3WbP50PtEKiGypnQtcv8fAeoWQTV88zfdQW2/AD7wvsprbIz7cJq9r3RzprfRLnwjlE8/c0v4SsqpnHllfjDpUg2G9MvvoxsKoWay5JNJuhrPok7EKShcTaGYZBNpSirHEXYUU1o3jVMmH0BOTIIgkjzjq2IE8r4dOOn+fXhXzOrdBb1gXq0mx6m/pUvs8a5nERO5UDXMKumlDGUUcgqKoKvEOqvgvKpZtFlqAbsnj+5GyzvX4UVHuZeVc/WZ5oZ7Egy58p6tj3TTGo4hzfkwOmRifammLq8it7mGMtWjkKZVYLgkUmLAvFojmh3GtEuUVofoHZKEbm0wsldfQRLPLj9djY/cZLJdwW4Y/Wd6IbO/TPu53fHfjfSlinzlPHVRV/lyRNPMio4ikvrLiUjenG5Elx498cY7GjD0HWCpeXoikLrnp2EyisprR+Nms8zdt4i+ptPMnbeIo5t2UDVxMlkU0kchkG4bhQOlwuHx2wwtO7diaZplNQ20HP8KOG6BuKDAwiCwMQly6meNBW7xwfeMFz8NXjuPjj1fYBZd5uBb7IDisaer7fsb5vNZgbLoKNpGgKg6SLoOqLNjqCq+Ioc/KTjOyyqWciY0Jg/N8czqPEcan8aELCFXUh+x5+dxmL5S6hKHkEUUfM5BMEMdtDQkQEll0cSBZRMmlzGgSiJuH12Ciu8DPf3MtjZhihJFFXVvi8DmLWMgtqXRs9pyEUubIVnhxla/ncSOY259QUc7U2euo9g5tlJRpKAEMSdcOPyeRjK9KMp+VNB5xq6rpNNp1CzWbLpFPlMGk1RmbL8YnLplDmerjOqoAjhrWEIp9LGRUkmNRQjEx0EwyAZGWRQGCSRT1DhrSCv52kZbmFe+TySShKH5CCKCnYvXPgv8MSHTs9z2q1Q0HD6b0GEy74Dyf7TwyQbXP4DiJwOqEaU4fLvQz7zZgK6Oe3Kb5vLEUQzIV0Q4JJvQOHoc/dGWP6qGKqO0p9GG84hBRzYwm4E+S8P/Yj0dJPqake22wgUl2AYBrqmYegGYKCrKrLDhpLNUGi0mmE4lvcFQRAxdANdU0AUEAwdQxAQBZF4pB+7x0e5WHJmKPpfEcMwUAczqJEMotuGrcSD6LCOb8v7SHoQDj8HtzwG8S4z6Kz/GAy3QdnE8712Fss7TvvDcECLxWKxWCwWi8VisVgsFovFYrFYLBaLxWKx/M2zQkjOMU3JYwgw84prKR01BkmUiHR1INlkePwO8lc8jG4E0VQFb7CAEq2a9G87wQBE8F1Zh+JXyadTCIKIzeVClEQz7AMDSZDMEBJRwmc/u0fNstAfFD8mEzD7w7D6K5COmA/hzvzgSLHa3v69vNzyMq+3v859tXcz+MgaYt1dALh8fq77f18hbOhmkZvdYxbqeEsASOsimq4RT+dxBpxIIthPPbSpaWYyiQGIgshQX55QqdnzouxwMH7xUsbOX4zN4UCUZALvwwfx32scPh+2oI+Nv32Qxbd9kFf+6/sEikuomTKNzY/9hoU3fYDVD/4USZKYumIlz3//m8y+4jr2v/4y6eFh5l9/Cy98/5tMvuAiepqOM9DawpLb7+aFH/wHddNmYugaLXt3ccGd9wCgqSqSzeztWLbZAeg8coipK1Yy0NZCb9NJaqc10rp3F6IoUjZ6LEc3r2fhjbfTU1LG/jdeYdEtd5LPpMll0qz8xGfJJOKkh2JMu+Ryek4cY+Pvfs2UCy9l86MPEyorp3zsBA6tfR27y00qFiUZjTBh8XJa9uzk8Po1zL3mRrY88VvaD+1jzjU3cuCNVwhX17H0jg/TeeIIC2+9EyWX4eT2rRxev5rL7v0cVRUN6BtTgI7TUcjCC25Bc+7myRPPcXDwoBVC8g5TdIXdfbt5+PDDHIocYlbpLG4ceyMZNYOAgKZrUDIBSidD3AxB4NeXQ2qA/Ce2873d3xsJIAF4ufVlltcsR47LZgiJvxI6tsDR50bGsblCNN61mprps0lGIvjDJRRV1WBzOEhldDRdR1Py2BwOXIEgkdYO5oy5HG1jnDz95KUBuElgzbpuKscEmHvdR9jy2H+N/B+44IN/hyCJ2JxOJi+7GMPQEEQJRBFRkhEEEUEUaNq5lVlXXMOmRx+m8bKrsDtdiLKMAQz395CIxrj4o5+iYtwE3B6z8K57KEPY7+A7rx9nMJlnfn0hC0YXcdH4Eu5Z7GFeQxGlAasI6LxJx+C1f4I597C1Z+tI0S5Ad6qbHb07CNWE+NaJh7hl5VeZmVFAz8OYFbDjZ6R8xbTF286abV7P05Nupdq/EPdxjdTLHTgMcIgO7CuKaBvac9Y0fc0nqZwwifnX30qst4vWfbupb5yFLNt56cffJpOIM/2SVegBjWx8mMLyipFpU0MxMqkE3mAIp9fHrFXXItlkdE3D7nbT13SCPS8/T9WkRob6fCh5N9MvnoDTIzHY3kYiFqevpZnFt36Gk3scHN12iMs/OQ23z35u9rvl/8wdKmDs/EWMX7IMty9AMhIhnRhG13Xy9gCyPU6gtIxld96DpuSpnjQFQZBw+vxIskw2lSSfTqPoeWS7TPfxY8y//laGB/sZ7Gyn+9hhwDy22gaaz1j2f+//bz465aMcjR7l98d/z9TwVHw2H2XuMhRdYTg/DEAuk2fV301hsMMMChk3pRBxaw+pJvN10Wfn4usaePbBo0y9sIrXfnmY2ZfVsfXZFkY1hrnwrgnYHBL+Yhd2h8S1n2skNZTD5bURCLsxDLj8E9PIpRT8RU4KK7yIooDlPaJkglmcONQJ5eqpQkQNrv05ZIfBFYTw+NO9ovvLITMEP7+IYpsb58L/oPruOeTxECz1cO0Xvkpv01Fa9+2mZc9OBEGkeso0Rs+eR2FVHZ5gARd95O+QZBs2hxMD8NmDuAdGk/it2du7o8BBZnyOl3/zA5be9RF+0/0cE40phJwhEvkEWT1Ls93GlnE/4bnjGsW+JC67hN9pfoW3SyIzaoJmAVvhqPOxVy1/RWwOmanLq6gaX0AylsUTdHD5fVPJpBSCxS503aC42gcYTK73k3joMGgGCOBZVkVMgK4TSarGhVDyOvtWdzBteRX108IoeRXDEFj0sWru3X8XuqFT6imlM9l5RlumJ9XDvoF9TCqahNfmxTAM/mnbp/jS7C+TSXbin1BM+nA/LXt3UTd9JsGSMob7eqmdOoP9q19hwsJlxAfNIuTRcxYAIMo23IEAWj5P59FDxPv7cHo9FFXVkhyKoip5imrqKB83gSnLL0F2OPCEQhSUnmq3lE8H2Qm3PwPDneDwmucDuweKxoDdCpM6V3RDQxAFBM0MdLBJEpJsw9A1RNEgo2Z4uvUp9kb2MKt01hmhu/8TZSBN5DdHUHvTAMhhN4W3jccWtt5LyztHlM3PYkm2oWSzgIDN5UQQRdx+H4nIIHaPG5fXjmyX0IrTpIaGefwrXyITN9ueobIKLr73kxRV1+JwvT+OTy2RZ+jFZjJ7zAA4wSVTdNdEHNVWEOr/VTqn8sL+HiZXBhhIZhEl87qR12PDcVRC2glxmhDsIgU31tNHOxhmkLiSzSLbzFBbURTJpVIkh6JIsg3ZZkeUJQwE1HwOQ9PRdQM1lwXRvO+RS6bN6/unruU6K8LUu8zAxqyaJewJs7BiIXk1T7WvGkVXqCqfDR9ZB0Wj4O7XIdoMzgAUjwfZDh9ZawagB6rNz2MtD7ULzfDAUK05TM1C7XxI9kGwxgwO0zUonWAWAfsrzWGCYC4r3mmGjBWPA9l2/t4sy3uGoRuk9w0Qe/y4edNKgOBVo/DMLDkzcOfP6G9r4fGv/D+mXHgJxTV1aKqC3elGU1XUfB5DMHA43eiajmBgBuNkhsEVOGfbZnkvMRAlEVGUyOcyyHY7gmi2IzLDwzg9XnIbjpMvnYnd+fbau+8luaYhIg8exlDMonTvogp8F1QhuazzrOV9wl8BfQfgl5ecHibZ4cOrz986WSznkGZlkFgsFovFYrFYLBaLxWKxWCwWi8VisVgsFsv7jhVCco7ls1m8BYU4XG52PP04yViE8QuXESqrAF1Fcxehp7MYukahr5L0Y93mQ48AOiSfb8N7ew1DUt58gBjQbcLIOIIgICAgGAIhV+jPr1Cq3yxwnvEBsLnNYrxjL6JOvJHOoVYeP/44zzQ9g8/mI9Slc+JUAAlAJhFnzyvPc9GiBkT/qSAFwwCHF0FTyGoSWSVPXtPRDZBEEfsf9JAoCGCIoGR11EwOdAPBAEMQke02DEMAq17zPSEn5ClbPhcjnefgmleZf/2t7HzuSWS7g4aZc9j7ygvMv+4Wdj7/JKlYjAmLlrH/jZeZd93N7HnpOfpaTjB1xaUcXr+a+TfcxkHjdVr27GDW5dew55UXmHftTeQyadxB87g9uWMrMy+/hs2PPkzr3l1MXbGSfa++yHB/H42rrubIhjWMW7CEhsY5RLs6mHXl9QhAPpNh0rIaxs5fxKF1qwmWlNB17ChbHnuEhTffwaZHH8btDzBp2UUkoxEGWpupnzGL5t07GD1nAdWTprLvtRdZcMNtDLS3cmL7ZlZ89D6SsQiiJHP1579MKjlM0qVSN+EGCsQgxDJMWXwh6379CxoaZ3Fk41pCZRWUBepJHG4Z2YdGTsO2z6DhErOHzbcW4VneGYcHD/PFjV+kL90HwIstL3Jy6CRfX/h1upJd2EX7qd5ORbOwWFfNv4Gclvuj78lAeoBS96lznJqBRZ+FHT+FyEkobIBZH8ZhZKkYO+GsaW1uN7nIALlMBkmWkR1Oamomk3r4LcEQmkH8qZOUTSgiNazQ01TAnOu+iKEnEUQv0V4PBZUagihiGDqSzY6mKNhsdgzDIBguYcbKq9j53BOMnruAZXd8mGh3J7LdQcueXRiaxqSlFxLp7qb94D4KK6tw+wP0x7Pc//u9fHhRHR9cUMdgMsdgMo8oQG2Rm7n1RVQVvD+Kn96z+g/Dnofgkm9ydN/Rs14+Ej3C3ZPu5rW21zgWPca3l3ybcfqpY/uCL1EUqOLC6gt5oeWFM6ZzSk6m2yfi6FJIvdz1lnaGgbI6wuRVF3F4w5kPxo6aPQ+XL4CSzaFrGp7CArKJBKt/9QBqLkvN5GmIso3BtlaSwzE8oULqps2kZe9ODq17gyW3f5BsKkU+axYfeUKFDA248Zf48ZfYmH/jWCLdNva8FmPlxyrxBk89aC8Uc2xbGIernG0vpMAwC0iH+tJWCMl7mCRLON0eIp0d7HjyMURZZtqKy7A7XUS7Oygo8BCNGkiShCj50BWVTDyO3eMhGYvicHsoKK8kk0qSHh5iwuILGO7rxRsq4MTWjSPLCdeP4nDuBCFHiCvKLiNvKDzX/QKqcTpMKpKJEHKEMAQD3dApcZewtXsrk0vnEu1OUVjtRcnpOJPqSAAJgJ7IYz8SpbDcAwjoqkE+qyFKAid39TN+YRllDcGR8Uvrzi4Y8gYd52T/Wt4hxWPMn7dFgKk3m0FPnTvxHfgevoV/DzYXPP99CgpG0Zb/NNWTvLTs2Ylh6LTt203bvt1c+8V/wxMK4cib4TSp4SFEUUAY0tH7ciNL0KM5CvMl3PT/vgEOG1LzalJqipAzRF7PE81EUXWVhK2B8eU5HtrSykMfmk1DsRe7TcLntIp6LH8Z2SYRrvETrvnTxd7ZvhSRR46aASQABmTWdFB67Wi2v9jG+PllxAczjJtXSjKaI1ThwVfo5IRyhFcHnyeajQJQ6i6lPd7OBaXLGONuYF10I0eGjnIidoIllUsIOUO0x9tpHm5m9+BOVF1lbjbI+gd/hq+wiPoZs7A5nfQ0HccVML/L5dNpimvqcAcC6JrOqw/8kNlXXkd/ywC+UAHeUAiX14dks2F3uSisrMLmcpFNJtn1wtM4vV5GzZzL1id+R3FNHRMWLSNcW28GEFnOC103r2nZ7E5EUULXdVRVRRBE7tv/UQBaE60klaQZEPk2ZA5FRgJIANT+NOkDgwSWV5+TbbC8P/lChQz392MYBqIsI4giYIBuIMs2fAVFCIIZIB339zPK38CGp386EkACEOvp4sS2zbTu3UXjqmtwejznb4PeBYaqk2+PjwSQABgZleEXmym6axKiw7pF8X9xvC9OJJVnIJHF67CRlwxEScCjGiR3Do6MZ+R1ki92UHRDFdFYD3omjWEYaKpKIjKA3emibPQ4+tuaUPN5VFVBy6Rx+f3Y7A50TUNTFSTZQz6TRpJsOH1edN1A11Qkt5PX89spdIWZWjyVZ5ueZYlrCfPK5vHI0UcQB0R+svwn1JfNBvFUW7ZotPnzVuXTgemn/5btUDnzzHHsHqhoPHOYJEPZVPPnrcqmmD8Wy1uogxliT504fY3MgKFnm7DX+LGX/ulzspZVIa8jem2Awf7XXiQTH8bp8dF15BA1U6YhO5yIkojscqArKqqqIssystMJh56AUcutEJL3CcnhwEglMQSQbQ5EQcDQAAxsLie5VJJdzz1JzaSp1E1r/HOze09RE3liT5wYCSABSG7owjm+AKk+eP5WzGJ5N+USMPNO2PMb6N1vhpLMvRfU3J+d1GL5a6TpVgqJxWKxWCwWi8VisVgsFovFYrFYLBaLxWKxvN9YT/ieQ+lEHE1VUHM5nv32V9EUBYDek8dZeNMHKLv0mxj5DIZuIEoyQg74g3v3hqJDVkfXNRBAFkS65BhG3nw6UhREBEHAEAzeFnchOHyw5cdnDG71FZDIxXih2Sxcrg3Ukmg5uzi/v/kk2rIpiJ5iaN8G+STULsQwDHLYyCkpNMNA13VsooAsmYkihmFgGIK5rhiIEqiagKaZBSbomhlcYrehG29zWyznVKGjkIPHOpBsNuZddwtDPd1Mu3gVBRWVAIyZu4hEdJAJiy8gXNdAf/NJFt/2QfKZNKPnLqC0fhR9rc0svPkORFGiblojJXWj6G9rYf51N+P0+SkfO4F8Js2CG29j94vP0rZ/Dxfc9VH6Wk7gKwxz2Sf/gfRQFH9xGLvThYFBoKQMu9tNx+EDuDxetj/7OGoux+Jb76Jt32667HYW3HQ7W/p7ObJhDYtvuZO9r77IYFsryz/4UbqOHaFiwkTGzF2ImstSWFVNzZTpuPwB6htnk8tl6BVieMaH+XXz72lr6mRMaAwvHXuJf5v9Lzj68xzbuJHs6LFEOlqpnjiJZdfdTalSDYPaWftR68tQJBaa+yz0dgtfLW9XZ7JzJIDkTcdjx+lOdeOyuQADunab573KWZCOmD+AQ7LRGG5kV/+uM6a3S3Zq/bXmH+kovP5lmHiV+TPcBa//M9z6xB9dn2wijqooOD1eEECSZbI98bPG09MqXpfMzpfamH1FHX0tcSKdKrVTg4ybG0bN92LoOrLdARjIdgearuHwepFkmZmrrqKkrp7UUAwEcHp9ZFNJKsaMw+HxIogi2WQCdJ01v3yAi+75BMeisK0lyl0LapElAU03cMgiimaQ13Sctrffy6flHMmYhbscfIbFlYvZ2rv1jJcXVS5id/9uPjjpg/zmyG/oTHYyDhfILkj2Ymtey7XL/4GUkmJd5zoCjgC3jb+NKqmUwSMnEWwVyH/wEWvkzXbGhMUXcHTTOgzdYMLiZWQScfa++gJ9TScY6uuhoKKKKcsv4aIPfxzZbqfryEGObFhDw8w5LLlkFftXv8q4hUtomDkHBAFPMEhy6Cijpi6naXeCpr0pxs/3s+O5Xlx+FyW1PhqmO5hzpZ+CstPFHaIkkBrKkRo680FdUbQSyt7LIh3t9J48zrqHfzEyrP3AXq787JfIphKUyYO45AKygp18JoOmKBgIZriephEf6CeXSuIrKkbXfOTTabyFhciyjfZD+wEoqqll+u030dX/Bj8v/i7ezRpIAtfNW8lBmxkAZhftVPuq0Q2dvJrnc7M+h120c1nZfELGIPF8CQOtCYqqvBjRzFnbofWkCFd4zJA9QBBPB/9l4sq53YmW95Z8Ctb8G9QsgLkfh75DYGjw+J1mmFl4PLkhBU+okqkrLmP/6y+BAWPmLuDE9s0UVdXi9Plwuj043G5y6TTCgHrWYoReDXtaQokM8bnFf8dm70He6HiDyUWTqfBVoOoqG/fEsUkiv/3IXGZUh7D9Bb1yWyx/KS2pYGT/4DuNAflYjtGzSmk/HKV8VABdAyNgkBrKIToMnu5/lAmFpwP6elO9/GzSj5HWxRH7FVaNXsje8S3E3EkckoMH9j/AvPJ5APjtfn6y9ycsHPVvYBgkBgcYaG2mdtoMfEVh1FwOSZYJlVeQjseJD/QT6+nCGwphGKDm8mTTaTzBAkRJxO5yI9qdZGJReg8dYONvHxxZr+ad25lzzY1s+v1DdB87zJWf/RKeQPDd2LWWt4hlYgiGgCCAppnXukRDxNA18ukk7mCIlkQzAIsqFlHkLHrb8861DJ81LN80hL6w3Ao5sLxjelK9SJKMrikYuo6h6YiiDVVRUfM5nF4fos1Nl68NUZCRMOhtOn7WfOID/US6OqiePJ2qCZPOw5a8O/K9KRJr2pELXWe/1plCz6jW/8//o5bBDJMqAvx0fTMfXlzPbw50cceYMoRE9qxxtUiO9OAQQ4PdlNSOwunNk4xFKCivQlcVot0dTFp6EdlkEl1VUXI57Hnl1Hc13QwYNwwMAbJGDl3XUA2VE+lWftXxIEsql/CdXd/h0rpLUXSF7+/+PpfWXUpez/NM0zOs6VjDwysfpi5Qdx72lMVympZSQP2Di2SagZ7649/9Dd0g1zLM8MstaNEc7pkluGeF6W812yxt+3dTPXkah9evYfIFFyPZbGiqhqHriJKAIEvEursolBxmxwCW9wVVUBAEAXTzHq+BiE2CbCaNks3icHoIlVXQ23ySkrpRuAN/HeE0WkZF6Uqgxc4OWtAT+fOwRhbLeZJLwCtfhHGrYMwKSEVg3TfgmgfO95pZLOeEZmWQWCwWi8VisVgsFovFYrFYLBaLxWKxWCwWy/uOVcF0Dml5BdnhYrCtZSSA5E17XnmemHscjo71px5YV3GEvAh/UAQuumUEtwRAf3MT2VRypLd3UTDHFRGRhbf54KJhwIL7zd4CAQQBlvwDAgKSKOGz+wAIOoKEaxvOmrxmynRkNEgOQKofVMUsypfN3gtzqmb25mWYBcMO2VxHST5VPCwABoiiiKa6yGdzZJMJdE1D1zVyqQQ22f72tsVyTsUivRx7+VVa9+4i2tXBpkcfJtrdyZbHHmHHs08w1NvFxkd+Rdexw+x79UW2P/M4icF+1j74U05s3cSJHVvZ/tSjpIeHeP1nP2bvy8/Tc/IY25/6PZlEnNd/+iN2PvsEyViU3S89x/hFy2hcdRVNu7bTc/w4hq7R39pMX0sLubRGqLwRb3g2ObEQTRfY8+IzHFz7GrMuvxYEgf1vvMKS2z9I+djxNO/awUUf+QSzrrwOXdeYfskqRs2ay743XkFTFHRV441f/Bdrf/1zhvt7cYeLOG50sE7YxwPqM3zy5JfZmTzA6p51DOeGCTlC/NPov2diqpx9Lz1Pz4mj5NJm78qx7m4q8w1oexMI8tlF8lK1m2F9iH+Y9Q9MLJz4br+Nf/OckvOsYQICDsmBgICiZs1ex5L9IIhw+OmR8eR4LzeOvZGJBeb74rf7+cLsLzA6MJqgM2iOFKw2A0z2/Q7Wfwv2/Rbsbgid3ZP2cH8fz3/vGzz/3a/z6n//AJvdweZHf4OvvPisT1sp5EB0y2iqzpYnm4gPZphxcTXzr2qgsMILYgBNUVCVPEoui6rmwTDY8/JzvPTj7xDp7iBYVs74RRfAqV5rbXYHst2OpqoYuk7PiaOUjR5L24G9RDrbyShmQWlHLI0kiii6+aC9qutgCNglK+ThvMkOQ9tmsLlBssHJl6jx13Dt6GuRBAlJkLh+9PVUe6t57PhjPHPyGe6dei8OyQHOIGz7Tzj8LBg6Y7f9kuvrVvHdpd/lH+f8I2XuMGP1cnKZFI5CP/zBeUr02FDIMdjRxqwrr+Piez+JZLOz/enHGO7vpaCiCoBoVweGrtG2fzeD7e04vD4W3/ZBJi27iGwqzdSLLsUbKqC4tg5/cTHP/MdXkGUbpQ0VjJ1XSf30YmL9aRovrWHCgjIaGsOMm1dOUYX3jICRYImbhsbiM9axdnIRoVL3OX8bLP976fgwrfv3nDX8+NaN+IuKIZckdOxBbHpmpLf4XCpJtKsTQRRQFYX08BCRni4kSULJ58hnMgx2trP0zg9zxb9+heTVozggtPAhzy24XkujDefQolncL6QYk6wi7ArzxblfJGAPUOAswC6agVJuDCY9eDWlv1zG6E0rGBU+iV0ZQCr3nrW+Qo2fwjo/R7f24vDIiCLop86VwfDZRZOWv2E2N1z4rzDhCnjh07D1xzBwxAwgATj5BmNnhpCkOBVjxrP09g8x5+obiA/2s/+1l0hGBvEGQyRjUZweL26fH6Hy7O849mof+dY4Wm+G7ONdzDWmMaFwAvXBegRDwCE4+PCier51/VTm1BVaASSWc84WciD6/+BYFQUcxW40RUO2ifS1JtA1HadHIjBapMN7jMvqL2M4N8yNY2/ELtr5WPWHkX83CK0Z9LSKtC/N7P0N1LlqORw9zIraFTxy9BHC7jA+u4+EksAW8mN3mefanc8/RfOuHYg2G4FwCXpeIdLZRi6VRLLZ2fbko0y76DIy8SFsTgcOtweXz49uQGJwgFhXOzank90vPnPGpqhKHlXJIwgiPSeOMdjW9G7tWstbCIaAms8z3N+LIElIso308DCJwQG0vEI+lUZAYFrxND7d+OlT4ZJvj2tC4VnDbBVecq2Jd3ITLO9zdtGOksuQGhoy27aSSCISJRHpQ1UVFCVPpL+Vzt+8TGrrYRKRAcYtWHLWfIqqaxnq7SERGTgPW/Hu0JIK0d8eIbNvEEE+ux3jHBtC9NjOw5r9bckoKlubB7lnST0bTgwwkMqTt4MccJw1rq3Ki27TUTIZuo8dpv3AXjLxBAgGBRVmwJ6Sy6Jk0ii5HBgGoiTRc+IY/S0naD+4j1h3J8nhCGsy23lq+DVu3PYhWunheOw4kmjex3i19VUWVCwY+X1++XwA4vk4xyNH372dY7H8CbLfjuCUzhgm2EWkP/L/BkDpSTH4i4MoHUn0lEJyXSexN5qZcclVjJo1j9Z9uwnX1NNx+ACaphLpasdQNWTZhprPE+3qxBMKwdhLoWffu7GJlveAlKSQHIqh5nPINhsYOpHuTvLpDJzqXKJh5hxCpWVkUsnzvbpvW75lmPSufmxvCZZ+k1RgXT+zvI8EKqBorHnfcf23YNcvQctDQf35XjOL5ZxQdSuFxGKxWCwWi8VisVgsFovFYrFYLBaLxWKxWN5vrC63ziFDADQNQZLOek2SbYhGnnhoGlpGJZ/NoiQz+C+sIbGuAz2tInpt+JZWkYzF6W0+hq5raLpm9sgugK7rCAgIgoCBcdYy/qhEL6z/Jsz5qBlAItmhazeh2R9FUiQ+MuUjfGPHNyi0F+CQ3ExdsZKDa15DVzVGz5lPUXUtgp6G3gNQPsMslu4/ClVzUFQDVTPMoBEBZEHAKZvbXljmQ8nE0FUBZLNn+ZykkAuJiH0KuaE0kiThCRWTinuJ9iQpKDu7ONTy7hFEEUm2ARmztzZAUxUkm1kc8OYwXdWwed4Mgjg1nqYinwqmwQBBEDEMA1E0Cw50TUOUbWiqSqSzndL60ex+8RlO7tjKlAsvwe7ygOygZGINvZk4m9P7GFWp0tPfRsNwEeFgKQtuvJ2Da1+j+9hhVt33OTLJOJlEkklLL+Lo5nW8/JPvMufq69n29GOouRyNl11FuKaOkzu2kEkluOj+TzOoxXh1eDNh1xA/b/o5hmFwz9R7WN+1niPRI8wvn88UzwQu8y7lxe9+g/6LJPpaTgLgCYZYeMVtjJ24gOSjrQBkj0TxLq4kubkbVB2x2El6TJ7KUDUzSxaO7DPLO6fUXcrSyqWs7Vw7Muya0ddQ6iylPd1OVSICVbMhn4J4N9hPn1d0u4fBoU5uGHsDOS1H0Bkkp+ZIa+nTC/CVwqrvw+p/gYFjUDQaLvgyeMvOWpfUcIxs0ixuyyYTdB87Qs2U6eRHzu2dGDkNKWDHu7ACyWdDtomoik6g2ElNnZ/s0SiGolNQ6GYoVEc+1Y+mKTicDl7+yXcY6uvBV1RMsKSUzY//lis/+09k0ymUXPbU/y8BQ88Tjw7SeNlVNO/egWHoiJJEQ9iL1yHz0/Ut3Lu0AV3XMQBJEDjSG2fRmCKCnj/+oL3lHMoOw+qvwPYHIFAFy/8Z2rcwnB9iWnga04unjwR4DeWHGMwOEslG6Ep2cVHVRRBrh4v+DV75ArRtwi/KLC6fRsRXg90+A7E/ierzMSi2Ql4lcFEt8bUdGJnT7QybJ8Po2fOxu1zomsb+118CoPfkcZbc/iF6Thwlk4iz9anfM/+6W0AQcHq9xAcGiPV0U1xdQ6wnaTYrbDY2PvIgExZfQFFVDaIoEq72U1zlw9ANxD9TQG93yiy4bjS1k4voOTlMWX2AirFBHG6rMO29TBSFU22GM9nsDkRJhlg3+Mop2P41InO+RCoP+UyKbCpJoKQMl99HJh4nExuiddcOyseOxzBg8+8f5qKPfZKYL0+JUEk2l0HbOXzWckrb/fx4+Y+RRRlREEkraQazgyDAhJK5cP2v4aXPIgx3EtrzNUIzbkervBhjcQXJjV2gg73Oj2NmCfEDESYuLsfpsbHlySYcbplFN4ymsNL8/NA1nUh3iuH+NC6vncJKL06rcPKvX2oQBk+AbAdBgtaNsPpfYe7HIRMze6qWT31GSnbi4z+KTVbpb9lNIFxKfKAfbyhE2ehx1M+YjdPnQ9c0+ppO0Hn4AEXVtdhK7bimF5LbGwEDHGNCAKd72tbBGZG4ePQKUkaan+z7CVeMupKZRS6rDWk5J5ScSqQ7RSKSxVvgpKjCg73AReC6MQw/fhw9nkdwSngvb6A7madibAiHS6ag3E2g2Cw2G0wPUpIpQdVVSmtL0QyNm6tvJNzjZTh38ozlaSeTlCwqpMhVxMaujVzdcDXTwtN48NCDXFp7KeuT21n+yfvZ+POfkRjop2XfLqonTaX94D6cHg+yw4kk6SjZLBd86F6adu9g1pXXEevpIjE4QLS789Q1hQIcLjfRro6R765vJYriyPUTMTsEbVsAAVwBKBwNknWZ7FwTBAGnz8dgRysDrc3INjuKkqewvJLU8BCiJPPwkl9QUVJHoevsUJH/iWNMCOekIrIHBwFwji/AUHTSe/pwjQ2di82xvA9JooRsd5BLpkhGBs1jOJ+joLyCvuaTlI+ZwPbf/5b+liaad2yjddMWLvjgvUxceiGH169GlCQmLrmQwY42dE3FGyo435t0zqjRDGpfBoBc0xDeBeUkt/aAZmAr9+JfUYNoO/u6ueXtS+dUdN1gWlWIQ91x/E6Z2gIPJ5J5ijUB37Iqkhu7MBQduciFe2qYlJBCECU0VWWotxuHx8O6h34FwE3//A0EQUTTNZRsFpfPSz6XAzj9nV4QEESJXxz4BVeOvhIR87ovmMHAYJ7rR4a95XcAEat40XL+yYUuCm8dT/R3x9BTCqJbJnhFA8pgCkEWkINnBl8r/WnQzrwHp+wfJiUMEiqvwB8uJR7p58K7P0Z6OIbN4STW3YEgSmRTSQqrqnEWF8Dj34CpN5uBl5a/eX5HkGxBjq4jR5BsErpm3t9V7A4kWQLd4OSOrex64Wmu/Pv/h8vrxe0PnO/V/h/peZX0nn4yhyIEVtaR3NKNFski2EQCl9djs4KkLe8n7gJY8RXzGmL3HvP+zrIvgq/if5zMMAyi3SmG+tLYXTKFlV7cPquDFst7n268zeeRLBaLxWKxWCwWi8VisVgsFovFYrFYLBaLxfI3w6quOIecLjdD3Z2Ea+pwerxk39KT1ewrryOQa2P3EYXj27YyefnFiKJMYn0n7hklCHYRI6sRX9NOvDHLoXVvMHXFSkRBxEBD13V0Q0cSzAe1Q463WUzhLgBdhQ3fPj1MEEiqSdJKmhnFM/j2km9j12WMFgUMaLzsKgRRJJ/OIIgiaKpZmO/0m9MHKkAUyWY1EEAUBHQdREnAcepBcskmUjG2kONtzeRVlaOZg+zp2IXf6Wdc0ThmOafTsi3Jmkf6MPQ+ZJvIFZ+cRtmo4DvxVlj+F0rCVUy79lq2/OqX5DMZfEXFtO7dzbzrbmagrYVEZJDimjp6Th5j6e0fonXfbvqaT1IzeRptB/ZSUFGJJMu07NvFuIVLOLJhDXaXC7vLxfFtm5iy/GJ2vfA0xzavZ9SseSy65U6coRD97hQxb4of7v06V3uvpMJWwmgtiH1HD/7OXvYceYNRs+ZydOM6lt11D+0H9rL21z9j/KKl7Hj2CYIlZdQ3zkbN59j94rMsuOF2uo8foefkUSqXLWTW0ukcyZzkAwfv456p97BjeC+pwU18csYn+fXhX7OzbyefnH4fHclObvdczo7Hf09T7WYyiTiaqiA7HKi5HH5HIcGTPgxfHtFlQ08p5NsT6CkF38IKjGKRXdtfwDHoZZpjjFU8eo64JTcfmvwhllYtpT3eTkOwgfpAPYqh4BIdlD37YUj2miN7iuCaB2DxZ0HLk5BkDAxa4i1EMhFkUWZMaAxhwqcXEDkBT34Yxq2E8ZfDUAc89RG4+3UomXjGujg9XhweD7lUCkMzsLvcrP7lf1H7qclktwzjmVOKIIvoKZX4G22E753GTV+ajabpeESB6K8PoUXMwg5kkcBto8gGPITKKtj53BMM9fUAMH7BErY/+wQYBsc2rWXsgsX0tzTj9HgRRRF3MEigpIxnv/UV8pkM4boGCiur8Ya8PPSh2XzrleP855ombp1bQ3nIyb+/eJSlY4uRrGP0/Og7ZAaQAAx3wLpvwNyPIwsyfaluWoZbAKgP1uO3+zkSPQLA0ehRHjr6ENeFZzK2aw9c+h8Q7zQL5Y+9hKP+Wwy91HpqIYNUj2vA7guQeLYTz8wSBNupdsbrbQgrA4iixJpfPcD8G247Y/U2P/obGi+7imBpGTani9Z9uzmxbRMTlyxn1wtPA1A9eRozLr2CZGSQWE8X4xYsRs0rlDSMHpmPIAgI0ts7xnwhJ+PmljFu7tlhP5b3JnewgNqp02nZsxPDMAvKREmiYdZcdFWF3DCcXE3H2L/jyS//PyTZRkPjbPzhEiRRYv/a15m24jLiA/3UN85mz8vPER/oZ+YV12D3eUgrScLuMB1qB4b/7CAbySEjpvIMSAPIoozX5mVMaAyl3lJzhI4d0LAcvMXQfwRe/HukC9MEVnwMd2MJqAZSgQPJZWNeQxCAXFqhfFQQm1PCX3i6F9fWgxFe/q8DvPm87bj5ZSy4ZhROrxVE8ldr8KT52e4tAYfPLBjY8iPzfKrlzXF01fzXV0pk2pd57rUqZHsPdZMKaN23m4qx49nz0nPousHoOfMprKzi8PrVSLKNUFk5uXSKrrYj2N0uSq9swBsoRN0XJ7mp+8x1SWvoe4b5QuJLlHhLcRPmvt/t4ZvXTqUiZPUmbHnnaJrOkU09bHj0xMiweVfXM+WCKjxjQsj3TEGJZhE9NtzlXv5UGVyRuwibZONY9Bg9yR7CcjFlex0YfuWscQWbSF+un7Uda7ms7jL8dj/D+WFUXcVj8xDNRmkrHmbR5z6Jc0ijaec2dF0nXNtAPpshEx+mv7cHQ9dxeDwo2Qzp4Rj10xoZ7GjnyKa1qPk8mWSCygmTiXR30njZ1ax98IGRdXB6fYAAhkFD4xyK+16DhBsyQ2Y7bOI1MPl6K4jkHBMFERGQ7Q5sDieJyCCyzcZAeyuFldUc2bSW2qkzKKz9ywJIAIychq3IiW15NQD51jiprT14l1a+w1theT8TBAFPKITUZcPhcTPU14MoSrQd2EtpwxjsLhf9LU0j4w+0t5KMDlI5dgINM+cQ7ezg8IY1xAf6mXf9LYQq/naPT9EujYRq5pqG0eJ5fEsqsVf5cNT4Ea2wyf+ztGJej7fLIsPpPGVBF067hG4YGKpOet8A3gXlIApo8TzJzd0IlwdweX0IgkAunWLLY48AUD9jFoIsk00mKCit4OD6Nyipa8CBgGy3o+SyuPwhBFGmVezjmjHX8FLLS1xWfxnrO9dT7Comp5nXtVbVr2Jd57qR39d3rgeg0FnIGGcYDMMMSLdYziPn6BDhT0xD6U2TOxlj6Nkm9LSKXOrGe20NQ6k+vKFCgiWliPazr0WIbpl0api9a55nxb2fBMNg53NPUjdtFoMdLRTX1CHbHVRNmARATIkTysSgdPK7vamW8yStpZElmUC4hGRsEE1RSA7FUBWFoupaMsk4Q73mdYGjm9fTdewIs6+6Dqfbc57X/I8zdIP0vkEEhxmgMvxyC+5pYaSpxUgFTjyNJdZ9MMv7S6wNnrgbaufDqOWQHIAX/x4KR0HVrD85WdfxGM/9cB+6al5grp1SyNJbxuEJWp0EWN7bVM0KIbFYLBaLxWKxWCwWi8VisVgsFovFYrFYLJb3G6uy4hyyu1wYhkEunWbV/Z+ndd9uUrEo9TNmU1BeDmt+gKKuJBmLsOXxR6i/fzq2Mo/ZI/spnvlliOUK9TNm0nFoP+HaeuoC1ZyInUBRFCRJoshVRG2w9u2tlCDCwk/D6n8zi+oEAeZ+HJthYBgGhmBQ7imnWAzRx0FURcElneqR0jAQRRFycSgaDemoOT9/BYg2koqGiIBNNB8ykwUBWTrz4cwesYOOXAcHIgeQRImsmiWrZUn0S+x9vXdkPFXR2fJUE6s+MRW70zpMz5dx8xbhCYVo27OLxbd/kGhPJ+lMkpWf/CzN+3fTeMU1JIeixAb7WHX/52k5sJuyhjHUzZzNQGc7Kz/1OdqPHCBUUk75+Al0nTjGxR//FN0nj+P0elnxsU/RdnAvRqGbwQp4cegpkokEH/d+iO+P+Vea3lhH/cTRrHnwAeZffwvHNm+gdNQYhnq6yaVTDLa3cnLHVvKZNIIoEigpZaivh2h3JwtvvoN0fAjdIRK6dDaxfDvZgIe9sYNMCE/gW+Fvkhk4zH9MvIfUcAfuxBDLK67EKJlKfshGjrG8+qPv4vR4ySTiABzbspEZl15Bf1MTYXcNmcFuMpkBvPPLib/WBoAayZI5OkhMTOIpCdHbdJJ89uwiPMs7Q0fHITqYVDSJxpJGknkz7EkURaYOtMHceyHVD7ITJBtkhs1CdODokUeQBIlUPgWAoikYGLiktxT5pqOgpODAY2cuOB09a13iA/3MueoGNj/+yEhxZEFFJft2vMKU4kUk158+t7uWliAXugicOl8mt/ecDiABUHVS67rY1P801dOno+ROvyZIEuqpvzsOH2DyikupmTyVpp3bESWRcP0ocskko2bPp7RhDLVTp4/0rDy9OsR9F44imszz+x3tPLA+xiWTSpleHfzfvQGW/7vUwJl/5+LQsoYjPjt20Y6B+fmcVtLs6tuFeqoQfkbJDJ4++TS7+3bxc/c4gm2boGgMpPpRZ/8rw48OnzFb5WgCz7wK1HovyQ1vORbnh3nl6QeomTodgIG2FmqmzqBt325zulwWl9+P7HQS6+6ktGE0ZaPHsOE3vxqZh9PjYePvfs20FZeZYSOiiGw3cPne2z13Wt455aPHYugaKz/x97Qd2IvN4aBu+kzy2TSyzQa6RnbCDax7/Dl0TUPXNI5uNovQrv78PxPr6aK36TiSJHNo7WvUTmtEyWaJdLZTu2A+XhEcsoMmvQmpMYh2JA6nHtIWnBKS30EoZidfoaPrOm6b+3QAiZaHtg3knWVk7WNwqhJ2w4CePQiyiL3kjxd2ONw2HH9QFJmM5Vj78FHe2uHf0c09jJtTSsXYtxkIaHnvOfQkdO2CC/4frP6KGVamZs3XPMVmGImuwuYfwrJ/pKlvCqmhfoIlNvzFpcRWv0Ksu5Nxi5bhcLkprK7F5nCi5vM0NM4hHhkg2tVBcW0DzoCftJggOTRE6aha2Hv6M0AudKJnVexbknzzA18j7stx3y8H6Y3n2HBigJtmV5+f/WP5mzTUl2bTEyfPGLb16WaqJxZSVOnDUejC8ZYAplxGIZ/WcPps2OzSGdMFHAEqvZUICFQnS1C2tWGbJmCv8ZNvi4+Mpyz28Xz0aVbUrGBq8VRi2TjFyHx/8sdRevYQzCYRIm/gnHA1vYYLf2Exh9a9QT6dYu51NzPU240nGKR17y6G+nqZe82NpIdiALTu28X2px5l1Ox5lNSNIp/NUDe1kUS0nxX33Efn0UP4i4oJ19RzYscWlt7xYYLhEnJdL+JMR+DYizD7I/DcJ6B8GoTHn7udb8ElOUioCmo+x4HVr9IwYxbpTJr+1mbCtfUceP1liiprUFUVWX7714MMzSCxph17pY/hV9pANYPRBIeEe3LRudocy/uQ3+4joiVQshl2PvM4tdNmYHO6iHS0Uz1xKv2tLWdNk4gMgiAy0NGGks0yes58RFGkbmojvtBfHrjzXmWoOloij2CXkDw25CInnvnlpE4Fr6kDGZS+NMpgGnuF9zyv7d+GQo8dw4BERqHI50AWBVTdIJ1XEZwOBFEgsbZzZPzAqjp2bn4Rb3EhFeMnkk0lqW+cTdnosZQ2jCbS1UE+lQRBZPolq8gMx9FU9VReSABRlsk6DOJCPy7dxYcmfYi0mqbUXcJ4fx2vtL/Gv83+R2wGpNJR7hhzA4WCnUwmyoWFk1leNo+a394Gd75gFuhaLOeZ4JCIv9aG0nW6AwG1N83QoQ5+/6t/wuFyc9knP0dVzUSkEhdaX+b0xDNdHHpyNRPnLacwWIEi5BBFiT2vPMe4+YtQcjnc/iBKLoemqrilAqhfCrUL3/0NtZwXoq6jZnPEB/o4tnUjNZOnISDQdfQQpfWjeO2nPxoZ19A0mnZuoX56I5XjJ53HtT7NUDW0hILokBHdMmokw9AzJwlcVIPgkDByGumdfQg2kaKPTLECSCzvP9lhyETgyHPmz5tS/X96kqTCht8dHwkgAWjdH2FgUcIKIbG85+mGFUJisVgsFovFYrFYLBaLxWKxWCwWi8VisVgs7zdWusO5Zhik4zGiPV1UjJ2A3eUmER1EyCfA4aO0ZgwHV7+GYejkY2m8AS/+i2rQMyqiWybXGscoFfEECzAMA0EUMQyDKm8VsiRT5i1DFv+CtzHeBdsfgIX3g6GBZIejL1A2diVRTxABAVEQ0RUNMJDtdgThVJCIKCBKMuSSoOagY5tZ2D/6IhBEEmkFuyxik80HzUTp7AfOVF0lq2YRRZGQM0QsG8Mm2kgPq2eNG+lOkc9oVgjJeVQQDFMw9wKmzr3grNfGz19y1rCxcxacNWzMrPkjv09bfumpYafHK20I8kjbaxRnZO4ruZPDr79KLtHKtldfoLRhDMe2bgBA18wCokhHO9MvvZy2A3s5vH41c6+5kc2P/oYdzz7B9EuvoLCyCmwS4Zp6xEIvTtmJ1+5lrq5hk2zMr5iPTVXoHmoi4Swm3HOILAaSbyxZrQh9yMGz3/4aM6+4lkx8mEwizsSlF3JsywYSgwNUlk9gnNaIdKqeTk8pZI5E8F9ci55R0Xw6bT372ffKq8S6u5h28fXIdqsQ/1wp95XTOtSKpmtktAySIKGjU53P0VM+ia58BbqSZWykjaJ8lrdWjr/Z43pKSVHkLmI4N4wsyCTyidMLCFSBKwSZ2OlhzoA5/A/sfeUFeptP0LjyShAEHG43NZOn4ysswjOmHGOsgp5QkEIOkvZh8tk0jlO9GmpDubPmZ8Q1fKFidj//NItvuwtRktA1jWwygbegkGQ0QioWpfPAfmxOJ/UzZqJpBtGuduxuD8s/fB92m3TWfFNZhc5YmqoCN6PCPlRdRxQEbNLZPXpa3gWhOjPQyzDPcYY3zNFZd+HUIjx67DGW1yynPlBPT7KHrT1bkQSJi2ouIq2kGc4NM5wbpnfunQSPvQ4Hn4DRK9A1sxf4P6S1p7DXBXFOKCTZMYAQlGiLHqWn6RjVU6dhd7k4sW0T4+YvZv4NtyEIAr6iYpxeH5GONryFRbzyn9/j0o9/ZiScyR0IUtowhuZdO0hEBtj21KMjyxu3YClFVTXvzn60nHeSzY5uGIxfvJRYdxeD7a24A0FyUgaiTSgNk4kPnv0AdmJggImLl+MvKmbPK88zZu5ClHwOlz9AuLaews5NVNgE+iqmMrV4KgOJKFXLq81jXBAQZJHE2g58l9bQ4GvAaXeeWfQg2RmY+2M2vRSle3OW8tpGFlxwK8XBDIPpQdribciiTF2gDr/D/z9uYz6rkkmcHSyWTub/z/vPcp5oKpx41QxmVE4FjyR6oaAeos2w8+dw0b/CsZfMtkCojr7d5veWof40guBg4uILkGx2wEAQBIZ7uxkyDMYtXIyazZEeilE5fhK5TAYtn8cWDDHU000z+xlz2yyU9iSCTcJQNDOMUocSuYyU8f/Zu8swuc777uPfA8O8zExarZiZLEsGmRni2HGoSRxoQ23aJG2ftknTNqkDDZNDZju2ZEm2ZBDLYmml1TLz7OwwHHhejLzyRlLsxGydz3Xpkuaew3M0c+bM/f/dI3z/bhcbD0Zo7A/S7Y9QnPHuHA3Z8N6TiChofzJ6qa6ni2H+1EDbOC89dJqRzjCFU7w0XJGDNUegwFkwMU2Bq4ACVwHRxlH8QPTwMI75eVirvWgJFaVQ4gllC6VSKeWecpq6PHhUnRXP35H+/1azHgQJPaOKLrsXi2AmMDhAdmkZ3rx8giPDODOyiIdDVM5dAMDLTz/OdV/6GtHxcUa604GQLft203ZgH968Albf+3HQIR4OkV9VSyQYQBcFpq1Zz8mXtnFky9OUVJaxalEV0oFfpMOH1FT6PcAIIXlLyYKGIAiM9vZQt3g5qpLCajaTU1qBrmv48guJjgdIxaLIrj//2fwKNZIi0TqGMhwj0TKOe3UxejJ9rSBn2zAXut7ivTJcTERA0CEyNkbtkuUT902LpjSQjEdRkrFJ03ty84gGxymomcKpnc9TNXcBCCKl02eSX137DuzBWyM1EiW0vZvo4WHkDCveqyqxVHqxVnmRHCa0qIJok0kNRYkdHUa7tJxz71gY/lKCIDC1wM3pwRA2k4QsiZgkkebhMKtNCtYpGQjm9LWmaDcRO+WnpH4GbSf2k1lcimwys/im2xjp6aa36SS6lr43IcWjJKJRhrJSRNUooijSEehgbfZsyp7/D+pMDtSp1xA/tRFHsBeqL4XHPs0aVwGIebD/J1zhKoDy66HvAEvcMyEehIc+kr6uDvYZISSGd4eUhjoWP6dZTIpIkkQiGmHj//4nd37jf1GWyNgS+aQCUWJyhCMHn+TKmz6LdFgh8UAf1oYMll5xB93dJ9BUFclkovXAXipmz8ebX4joD8FV94PXCJi8WBQm4/RIEgNtLVTNXYiaSmF3e9Kh05wJKQMQBPIqq9O/Qb3S9g5LDUUZ39pJ/MQocq4N34ZKMEug6ASf78G1vAhd0UDXMVd6sRQb19uGi5C7ADKrYbT5bJtkSv/mcwHJhMrYYOyc9mjQuL9sePdTNCOExGAwGAwGg8FgMBgMBoPBYDAYDAaDwWAwGC42RrrDW0zXQRAkBHQG2pqx2Oy4s7MR9SSqyY2mqiy/4x66TxzBU5xL6PcdoOoIsoie0jCXuujpbKb14F7ql61GR2ckNoIgCIiqSMgfYkrmlNc1wlQimiIulGEpXot1x3+nC2wARAlsPmoyqukMdqJqKqFYABAw22yADgjIJhOiKIKqw1gH2DMBARLjqKKVmKJhNUlIYnrHpfNsk6qrjCXG8Fq82GQbITFd7O/JsJ0zbcWMLGxu0znthvcXIaIytyOT5kNHaCkN0rpnF9nX30IiEkEQhInO78l4DIfXRyQwRiQwxpSlKzm160UObX6K1R/+OCa7HVdWFnnFFQiSRCAeYCA6gCRI9A72IiHRGerkyPARan01/PjYT7il9hZmexrIEjPQBsc5tWsTVrvjzAifwkToQ8fhAyy+8Tbi4xGsRwQSfWNY1p8NFkn1hEn1hJEXeBg09dI/2IrN6ab+5isRTGXYXeZ36vC+79lMNko8JfSEe1A1BVlJ4fN30eOazTH/Me5v/m8GIgNUeir5t7mfpz7kn5i3xlfD9w59D0mSsMk23GY3SS1JWDk78iXuQtjwv7DlHyDQBZ4iuPT/pTsX/gmHz0dkzM/exx5EEEVW3/0x3FnZOGUfwd+2oqe0ifd2qdCONOXsR7Cl3EOI7knL0ytNtG3ZT2TMj2Qysfz2u+lpPE5weJhL7v0Ez//yxwQG+zn63DOs+uBHGO3pQlVUAgN95NfUEU2p5w0hcdtMKDqYJBGzLJJKaMiiSIbTOE/fETlT4MZfktr9Xdpn3kQ4fzr/b/83uLnuZopcRTzYlA71uKLsCr67+rscGDrArr5dHB85DoDL5MLVewDmfDBd0DPSjJQ7gLk4n2T3qzqzyiIgEHqyHdvCXPy+UbqPH8aVlQ3AkS0bWXLTnZzc+TytB/ejKCnqFi8nFg7x3E9/QCoeI6e8kmW33kVP4zE2fPbLjHR3kEok2PXgb5h12Qaadu+YWJ1kMiH9BSPXG977ErEoZpuVwdZmEtEokiSRjMexud2QMwXn6GFqFizh2LYtk+bTBZ3C2npCY6NUz1/MsW2bScZi1C1ZgSAIRD3ZWJ+8mVzAW7yQI2u/Tqw/SOpEIH2JqukgAFEVfTiBUJS+plQ1lZSWQgnB0w+MEDkT9tTbFuNpv5N1901jV+MuemM9PNr3INOzpvP3C/+ePEfeBffR4TWTW+FmsC040SYI4M2xv8lH0/C2kWSovQJ69oPpzPeRo3+AS74Gxx6GvoNw4Bew6u/B6oOyJVSPj9B1wg86mKw5WOz9HN6yEVVJUb9sFePDQ5Q0zODE9mfx5OahaToh/yh2rw9Pbh7Ht28lo6AQXdehBCIHhtCjqfT5DMjZNiKOKGYxha7rXD3PBLqJoVDSCCExvGlcmVZsLtOkYCWLXcadZZ003fhQlD/ef4RkLB2+031ijJA/xsglB7iq8moyxCzsbjMmq4waS6GOxhBsMnpMIbJvAASQcmwcLOkjqsfxmD2IqRwe2t/DhxbmohfMQeh4EUw2Wtb+ExGzFU1LkuG2U1hbT3BkCEk2EfaPkorHGOnupPPoQXz5hSy95U5c2TkMt7fiyy+c2GZNVfH3dhMaHsLm9hALBokE/AiiSGR0lPH+PpLRKIIocmz3XubOLMQL6YBV2QLu/LfhFbjIyVZ0TceVkYG/t5vWA/twZ+fQsPISdF2nbslyUskkqnJuWO2FJJrHGHuiFef8PEIv9BDc0glngnEz7zBCZQxvMlFCiURx5+Qy0tlG0+4dWJ0upq9ZR9jvp3BKPXOuuIb+liYyC0twZWYRGhkmHg1TOWcBCAI5ZeW8n8q3tJTK+OZO4sfShdPKcIyRn58g55MzkdxmRn/diCCl74cAWKdmInmMexBvlvoCD71jMVpHIvgjSQ51jTElz4Upx8HYb5rS35ckERQNx9ICBrqOIpnNaKpKeGyUWChELDhOKhFHkmRAR4nHiQbG8GbmkNATKJrCnNw5DOophlZ+ngp/D64H78Rhz4TFn4bDv4HICDiyYbQl/W9dA0cWvPif6UDzV0gm0BTQNBCNQFzDO0t0mrHPzSX8Yu+k9rgpMnEtEo+E6W06iaapPP6zf2fRDbcw1NrGzIXr4NkI6plwv/iRUSwJL3E9wrHnN1NQO4XShhkoqSSBwT6yykvBaVxrXkwUswtd95NXUU1fUyOdx4+QWVTMlCUriQWD1K+8hNh4gJKGmRzb9gxmmw3ZbEZRFOR38L6qFlcIPNFConU8vR/9UYZ/dpycT85EzrOjDEQJbk1fbwsWiZy5F76XZjC818QjKRKRFFanCYv9NfooOLLgsm/AM1+CkdPpx5d8Lf074gVYHDKlDZl0HJ0cOOTwWt6ErTcY3lqaEUJiMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBgMFx2jOvQtpusagiiADqIknQk10JFkM8qUa1C7U4THRklEo8T8ITzry4ns7UcZiWGp9mKp9JJvFejrOMVgWzPeomJiaozjI8dRdZWGzAZa/C1UZ1b/2e0Y7Ajy4u+aGOoMkV10CytWXknujrsgGYElnwWTHZNkospXReNoI8HoKJZUCpPFiqYqiKKAKMvpSsvC2dD+IuTWQyqKnkrSIZUQjqfwnumQk9I0XNZzTy9N1xhLjFHsLEbVVZxmJxbJQiSYZM5lpRzb3kMyrlI0xYcv30EypmAzCuPfMXElztGRoxweOkydr46R+AjxVJwidxHNY82Ue8oJJ8ME4gEqvBW0BFoocBagaAr9kX7qMupoH2/Ha/Fikkx0jXdRn1VPd6gbs2jGY/WQERLY8+STzLj0cpp2vQSQDrsBuhuPseiG2+hvbuLos8+w9JY7aT2wj5Z9u6lbtZpr/+lfSJl0JJ+Dnmgfo+II39/9K+bnz+cnx37CksIl7OnfQ0JJsLRwKb9v+j2fmvUptrZt5ssV9zHDOpWxzk4kT4LnfvFD8qvriEfSARTN+3Yza/0GDjz9OH2nT1I1dSHTF17C2K+bAIgdH8F9aSnh3X1oUQXzTC9t4WMc376NxTd9hK5TFvxDAmXL7bw08CKl7lIqvBXvzAv5PucwO6jNqIXmZxkfHuNo/3RObG9BlO18fs2/s8n5e54d3MzjPS9QUHtrusgQMItmLq+4nK5gFyoqPeEeRmOj3FhzIx3jHZR5ytIjmD35Kai/GpzZ6SKKP34asmrS74Gv0rByLSdeeA41lUIURRLRCHse/T13fuI/iSbTHdlfKbhRe6NowRQ40x0LzSUufDfWML6xHS2hIE1z0TZ+mMjYmdAUHRLRCPFoBAGByHiAoikNzLvmBjw5efSdauToc88giCJTV6zB6cvCbj7/mMJ1+R6ah8KMhgREUUDVdGaVeLHIxhjE7wjJBPVXsdfl48W+lzj48jepyahBFmXm5M5hccFiAFoDrfyy8Zfk2nMnAkgEBL5SeweF5jzIngJTroQnP4k03IS44RGE5wPozRHkLBuOBfmEXkgH3cQPjZB9UzGNo89SNX8x7uwcgsNDPP/rn1CzcCnzrrqe/U88QvvhA/SfPkUqng4zGWpvxWyzU7toGZFgAHdOLvFQiFX3fJTeUycIDPRN7Na8q67Hk2t0QL9Y6LpOeGQYVUlhttpJJZLpa2BBwOXzwdAgQmyM4oabSCUSnN6zE7vHw6x1V5KMRhFlCZvTxeFNf6Swbiomq5XOY4eZvmYdQXM+GbnTaJ93N/udTvKFFPKiDCRFJH5qFMlnwbmogMi+ASweAXuRl5OjJ/ndqd9x0n+SLxb980QAySuq5uTS+Ow4Q3tcOGzT+Mf18/l19PvsH9jPhsoNF9xPi83Eqtvr2P6bUwy2BbG5TKy8vY6MAiMY4j2t/mpoeRZ69sGsO+HwA7D1H2HG7bD6KxAZht4D0L0fbv0dxfUZzFpbQuPOPhxegXjYRdmsOQgInNzxPHaPlylLV5JXVUNX4zGKp0wjo6CQZDxO066XyCwqQU2l8OblEzs2hnt1MdH9A6QGopjL3dhn53Ja6ePg6EFcZhcm0US5p5win1GMYHjzuDKsXPaxaWz71UkCgzHc2VZW3zkFd9bkUKXAUGwigOQVyajGGusGdnyvh+BwC0V1PpbeVIUpHif0XBfutaVEDwyS6otgLnFjWZVLV2I/JtFEja8GSYhy/aoejoV347vki/RF7qRzvJPa5BgFpgL6In34o6MUWmx4cnKxe7wEh4do2b8HBIGpK9cSHhtFks0MtbYw3N3BaG83C6+7hSNbN5JKJKhfvgpvbj52r49kLMb40CCpeByLXeXYti1Mv2Q9TbtfwuJwIAXaYO6HoGsvXPPD9CjGhreeACaLlaHOdqauWEMk4Kfz+BGmr15HeMyPOzsHUXr9308iLw+gxxTUUBLHgnyiBwdBFvGsK8Vc5n4Ld8RwsUok4niyczj27DPULVlBIhLm2LYt1C1ZTjIaxZOTS3B4mO7Go+RV1eLweLHaHYQYQtd0AoMDZFusr72idyE1nCTVH0GLKshZNkx5dtTxJPHjkwsp0XRSQ1Hs07PJumsqY0+2ovrj2KZn476kBPE8oamGv47VJDG/PINwUkHTdFqGwgyE4iT0CO61Z+5dxhTss3MQ7SZiveNIVjPxcAizzYaSTGBzu0nF46QSCdC0iX87xpMciRyhwlPBSHyEhJpI36PyZqPc9Qg2yczBru14Zl3NbP1GKkQ7bP4yWD1w3U8gdypc/l/w1KdBU0EQYclnYPM/wE2/gizjc9fwzhJEAefCAvSkRmT/AKLdBPNt7H7uFxPTmG12kvEoXUcPMffKq9n/5CPYPR4WzLiamNo/aXmJpgCl66ahCxpDHa0c376V1fd8jPbDB8hrmAry5IL21HCU1EAEQRIx5TuQfe/NzwbD+QlWN4IwhmSSCY/5aVi1lvHBfroaj5JTWkHDijWc3PkCL/zmZ2QVlbDkpjsZHxogPDqC922+r6qnVJIDUdTRGKLTPBFAMkHRUUbjZNxcy/jGdhLNAUy5drxXVWLKOneQCYPhvWigbZwXftvESE+YnDIXK26tJaf0z3yfHOuCxz8OFSuh/qp0SPyWf4TsOiiad95ZkhGFvAo3yZhCX3MAi11mxupilMTrD+E0GN4pihFCYjAYDAaDwWAwGAwGg8FgMBgMBoPBYDAYDBcdI4TkLaaqCkoyCYKALJtBEBBEEVPPTrRUGFGaxkhnO7kVVVhtDsaf6MDekImtIYtkZ5Dwjl60tWZyK6rx9/YgmkTu23YfUSUKgCzK3L/qfqq5cIfdsD/Oxu8fJRpMAjDcE+HpJ83cePsDuAJ7oPFxqFwNGWUA9IR6yBbspJIJJFkmEvBjsdkxWa2Ikggl8+HSf02PamhxIeROg5CIThuyJKDrYJZkavPO7ZijaAoOOV2oKSDgMrlQNAUBaNozQP3SAmSzxEDbOF0nRpm26sKjBRneetu6t/H1XV/n0zPv45Hmh+kJ9fLRho/w1R1f5Zbam3mh+wX2De7jczM/y9f3fJ01RasJxsf5Y8dTfG7mZ/jGvm9QnzGF+sx6ftH4Sz498z6+f/j7OE1O1peu4192/wvfyPgsAOHRETy5ecTDIYIjw+SUVzLU3kr7wf0su/Uuuk4cpbPpODOuv46YVSVqSvHd1l9R6avkBzt/wGfnfJb7D97P2rK1/PLEL+kIdnBFxRW0Blq5s/5OHm1+lAVZc5lvnsZU2YctaCOhBHjh1z9lwbU3oSoK/S1NLLzuZnpOHme0uxOz1caSm++gonIuyqZRFGcEwZQeuTXVE54ontDKJA4f2ELNohWElBp2PBQmlQgBkNBjJJeN8K97/pWfrvtpOtjC8NZo3UabfBdHt6YDP1QFmp8Osv6Wa9kmbGXf4D42VGyYCCERBZH+cD8IoGs6Rc4irFK6o/cDjQ/wpQVfQo6OQjwAB385eV3R0XNWn1dVwy1f/yYdR4+gJMGbm4eaShGLh8+ZVjCJCOazo72KFhnHnFys1V4iYwE2/uy/6T11AoD65WtIxqIc3vw0tYuWYbbZCA4Ncvz5rXSfPMaK2+/B5nIxc/2VCLqAyW5DkATMFwgVcVpkbp5bQudohFhKpdBnx2N7jRHdDG+ZYCJIa6CVB079hp19OwFoGmviwOABvjj/i3x2+2fRz4yR7bF4+NysT7OhcgOj4X6KrZnUWHMhoxxECaZeB/kzGEgFueXFe5hSUMc/L/oHxCMRxp/pACUdgiO5zUhZbmrW3spor8LqD32O6FgfodFhVEVh0/f+GyWRYNb6KznxwnOTtren8RiLb7iNl596jJzyCnoaj2N1unBlZrHwuluIBMbwFRRSNW8Ronj+c1BVFERJQhCECx4XTVPRdZD+guJTwzsnlYgjyjKDba04MzORZBlJNuHMyCSjqAyyPwvDJ7GMWdA0jblXXkMsHKL96EHKps0iMDSA05dBYX0DFpsdXdeoWbCEvtOnMNsdjF7/EA6LSP74aZ7peIbSinuxplRcy4tRw0mCz3ahJ1UcukzPeA/3brmXYDIIQFtmMwhOXhlq3p1lI5VQObVrAEiPbnnqkRQ333kXh4Z3/tkQEoDMQicbPjmDcCCB2SbjMgqE3vsyK+CW38BoazoYat6HYKwd2nfA72+dPGp7IojDl8GCayqoWZiLv/cU/t5unF4fuq4zY+1lRAJjCKJAz8kTTFm8HEEQGR8aYteDv+GKT/8d7YcO4PD6cGcXoIyIxDe2Y5uaiXVKJsneMInmAG6TmZ81/oxQKsR9s+4jlAzhK/YBZe/UUTK8D+VXernu7+YQDSWxOU3Y3ecG3Wiqdk5bw/JCdvy8A/XMdUXPqTEibUE8sRRoOuMb27HVZ2KtzSDVF8afHEPVVDKtmdgkGz858RN29O7gx5f8mLHoKIXmPMpyS+gMdbFzfCeFjkL2Du3hZs/lnH5xH+7sHCRJIreyGldGJpqqYXU4kEwyL/3hVxTV1pNXXsXhrRupXbwc2WzGZLGSWVhMJDCGrkNWcQkj3V10nzzO9EvWc2zbZgCW3XQbrmkl6aJomxcyK9PBq4a3nKALBIcGqV24FFVVsLnc+Pt7EUSR0Z5uCmqmYLa9vmJGXdeRMqzAONGDQ8iZVhyL8jHlO3DMyn1rd8Rw0ZJMMqIgUjV/EbqmYnO5sHu8tB3cT25FNYIg4vD58OUvof3wATzZOcTDYaLBcTzZuXQeO0TtwqXv9G78xdRwksCTrcReGbldgMzbp2AucSE6TGjh1KTpRauMIApYazPI+bgLPakiuU0IRgjqmy7XY2NBWSbPnRpkbpmPU30hRJdIeGcvtunZiBaJ2Ck/ckolt6qKEy9uw5uXjycnj5Z9e6lesIiYNYimKChq+l59MhpFCAWRdYGW0dPUZU4hmAhR4MjHhAmvzc2zXc/h8ZSyqfM5fhTp4YfLv0X5B54AV8HEbw3k1MHyz4OmgGiCE4/CcBMEe40QEsO7gpxhxbuhAteKInRR5/TRPQx1taWfM5lZcO1NdB07QiQQoLvxKWoWLcVstRGNB/nTK0fRbkKymrDY7ZQ0zCCzsAR/bw/FUxqI+kcht3hi2mRPiOGfHEOPqwBImRayPtiAKduO4f1BEgQkU/r7SeXc+SipFHlVtQy1tWBzudE1jVgwyPyrricw0M9wVzupeJy6xSve9m2NHh1h7KHTADiXFSJYJPSEOmka0SJjzneSeWc9WjiFaJUR7UY3A8P7Q3AkxtPfO0o8kr6eHeoIsfEHx7jhS3Nxei8QDBwPQHgQjv5hcnt46ILrkc0iJ3b04cu1M/fyMlIJleMv9rLslpo3aU8MhreOaoSQGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAwGw0XH6B30FpNkE2oqhSTL6WJbXUeWJWyHf0dkyq0IKXBl5WCx2xGtJswFDqKHhyfmd19Wxumeffh7usitqCKhJicCSCAd6vHw6YdZVLAI6QLFvsHR+EQAyStioRTjA0Fce/4dTDZw5kw8Z5ft5Jmz6Ej1oGsakfExNEXB6nSnRysEyKpK/zmjygafX1dLx0gUiyxSnu3Abp58eum6ni4+smUSSUWIKlEKnYWouorDZ0EQBQ4/2w2AKAusvrMOSRYxvDNGYiMc7zzIV10fQd3SzUfmXUvfSCPWfYN8K/Nz9Dx3lMXzlrMiXITwUiffKv08HbsOUDqzlhmKh/i2Nv5tyqdpP/gyBbUZ/LN4L8Etbfz97A/TcfAAWTGd/7B9AptkRbZYaD98gBV3fIiRrg6Ob9/KrPUbqF6wmEg0iJTnJWPqcoZVPy8lD0MUvnPwO9w77V5+fvznZFgz6Av3oegKxa5iNrVvQhREEmoCAYFscxb/Uf9PDG/di8WTIBJN0NPTwvhQugBZNpsBUFMpek6eYNENt9G0+0VS8RjuzBzkYYFkIEn02AjOxQWEXugBQIsqpIIxUqIZ2TaX/jYzp/f2TTqOgfYkhUuyGYoNcXTkqBFC8hZSSlfR/FjwnPZEm5kSXwkzs2cynjw7gp8syaS0FLIkMxAZwGf14TK7SKpJnut+jo+XrCNT18HqTXcmfIXFDZ5zA5IEQSCvshqbJ4vWA/tRVZUVd9yD2WVHqBWJN41NTOtcXADiuQWOktuC05rFlfd9gdG+boLDQzTv350ObBBFDm95GoAlN98JwPjgAEH/CLqqIskmQEBNpfDlFfzZYyWKAuXZzj87jeGtF4gH+J8D/0OOI2cigOQV/ZF+OsY7+MyczxBOjJOZSjLfV0+1pxJGmkCRQLCBuyAdQAIgipBVzeDQEUbjo+yI76S/eICcPnEigAQBHPPzGB8N0Sy2E9rlJbopxZWfKiUeDtJx5BDe3HymLFlBMpEAfXKnQl9BEYIs0998iqySUnpOHmfG2suQzWb6W05RUFtPRkERg23NiJKEJ/vs9UXYP0rrgX2ceOFZsssqmL5mPbnllZOWryoKfU2NHNz4JIlYjNmXb6B46nQsNqMA493MdGYUd7vXi5JIYLbbMFttmCxWJFkGORMcS0E/jtPrQzKZcfoySSXSgXcjHe2IkkRmQRFNe15irK+P0mkz8eTkEh0PEOztRQem5JRTN+VviMoKlukZhB5pm9gGc4mLVEcQLUOeCCAB+OPoI9y2/FO0vZBuK6zx0vmno7QDwpCNOTPnvK79tdhNWOxGeNP7is0LRa96/ZUEvPzTydNUXgKObAAkSURJaiSjQZRUEikl03n0MLLZTO3CpYiSjKYqvPTbX2L3eCmbOYecikpGurvQFIWcsnJa9r/E9Dnr0U5IE4W8gkXCvaYE+8Zebl12Ez9q+ym/O/U7rqq8ikgq8jYdDMPFxOYyY3OZz/tc2B+nae8AFTOzaXvVPQqrU54IIAHwZNuw9IWJto3jXFxI6PluYsfS57Q81cth0sF6Vb4qTgdO83z38zyx8g+Yx3UKpBIS/ijHt28lFY2y7rINWEUP7pZhzHNNdBw5SO3CpcTCQXx5hZza9SKiKFG3ZAXoOpHREWwuFwc2Pk7NgiXIZguSLFMyfTY2lxtN0+hpPEoiGiUy5qd20VJi4RCVcxey+oMzyK+ug9cZdGF4c6lomO0OwoExhtpbsNjsVMyej65p5FVUI4gCkvT6blkqozFMWfaJQkllNE5k/yCZd055i/fCcLFKpVJgt0A4gdluZ6Sjje6Tx8mrqKZq3kI0VWH/Hx+lbvEyBEmiZuFSiusbaD9yiLA/HWg689IrcWZkvsN78pdLDUTOBpAA6DD2eAu5n56Fd0Ml/t+dmnjKXOHGVOCYeCw5TYBxDf1Wqshx4rGb6BiNsmF6Aaa+KIgCkT39QDoQ17mqkJbND1G9YDH+3h68+YVEAqOIooTZZkNLKei6jtlmx+b2IMQVGnpcFNU1IEZldHKJ94ZJJUaJKQqLtTIESWKa5WaGLQF6Qn7KK1dO3jCrD3Z+B1Kxs22SCcTzX4MYDO8EQRKRz4SM1i1aRm5ZBWP9vchmK617dtPdeIwF19zIi7/5OUe2bARAulymsqwBpeNsALVlZTbPPX4/FoedusUrePE3P2fVBz9CaHQEoiY4c3miqzrhnX0TASQA6miC+OkxI4TkfSSgp5AcThKRCIIg0XvqMLFQiLrFy9B1jcGOVvIqqlCSSbKKS+k4coD65Wvoa26ifPZcTKa3531S8ccIPNk68Th6ZBjn0kJCz3VNtFmmZGDKS5+bollCzDACxQzvL8GR2EQAySsigQTBkdiFQ0hc+ZBRAf6z96gRZfCVXXA9oiQwc3UxLz3UTNcJPwBZRU5sTuM62fDuZ4SQGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAwGw8XHCCF5i2UVleDv7UaJJ0AEyWTCZ44ijjahm5wkgjG8efkkY1GUsShyrh1rbQa6qiGYRGKHh8leWEEkOo4zMwtdOrdofTQ+iqZrSJy/05fZJnMm/+QsASxSPN3hd9nfpYNIzphiriIWGkYURUJjo+iKRjIWS4/yKV24Y1mGw0KG4wIdcUgX6OuCjk22cXDwIJqukWXNwuV00X3QT9XsHEwWCU3TkUwijTv6KJ+RjdlqnKbvBFVTWRyvxaRB2KciIODJykVNpbDbXXhychEBT2Y2sXAIi9mKLzcfURdw+7JB1ZElM77cAkRBwO3LRIlGkZHw5eUjSQJWp4+B1mbmX30jSjLBvicfZtGNtyM7rWg2mU7bGE/0v0gtgyw0L+TbO79NmacMt9kNgCiIxNU4VtmKeCYgJ5AIkGPPYTg6TJGziP+q+ie0g0PIdj8lVVNRUin2PPJ7ahctQ0mkR7ZvO/gyM9ZexpGtm+g8eoiBlmbWffzTWFUb1jEL+lg6xEf1x0l0BHGvKwUNNK9IfyDO4cdHaVhRiNly9v9HVrGNyhkqgYHTSM1m/r7y08SV+Nv7Il5kRKuTzDwTw12T200ZOtnWbOoy6kipZzsRZlgzMEkmhmPDdAY7CSQCzM6ZzUB0gGmeahxbvwaDJ2DV38OO/4FQP7jy4NofQkb5ebchFY8z0HyCgeZjVM1biGQyoUdVRIuMe21p+r1dTgeS2KZnT5pXjaSInxwlvKsP0WkmZ3kJe156kJ7Go5RMnc70NetBAE1VcWVl07BqLce3b2XHb3/J/GtuxJdXgMlqI6uoGE9u3pt9eA1vgcNDh3m05VE+Nv1jiIKIpmuTnpdFGYtg4qbewzjj41B9IzQ+Bo9/HF6Zdu0/w/yPTPoc91q82GQbMSVGZ6ibkqoZiDOy0TUdQRII7+nHvNCNrb+XaXcWYXFmkhrpI+QfpaB2CplFxex7/GGyS8upWbSM07tfSm+PycyKO+5msKWJtR+9j2e+998AHNm6CYvdwYo7P8ShzU+RWVjC5h98h3Uf//RECImmqRzc9CT7n3wEgP7mJk7veonb/t9/4csvnNj2gZYmHvqXr6Cf2b/uE0e46u/+gep5i96aF8HwphAEgZyyCgID/UiShKao6JqKr2ByINKIJUpRfQPDnR2oqXSBxbHtW5hzxbWk4nEcbi8gUDx1Gj1NjcxadyXJWJT2wwfIq67Bf6QHJZGgsLYe0ZmNe10pekpDkESUsTjRlwdxN0wOtjnsP8j0ihdZf9tNRMaSeHNtBAYjRAKTA/pcPhtVOaVv8ZEyvGfEQ7D872DPDyAZgbzpsPZrYD5bSGs1KwQG+yie0kB/cxMlU6fjKygiGU/g8GVSMXsBxfXTiI6Pc3LH86y668NExvzkVdegKCqpRIoHvvlZ7v3S/6H2RdF1EAQIbu9GjylMc04FwB/34zK7cJgcF9hYg+GtEYukaD04TOXsbBZcXYGS1JDNIvKrcuwEAZZdUYZwZAg1kCDRFsB9aSm6oiE4ZE7mdLGjZzdXlF9JlpbHmDjOj1f+ECmYRNF1dE3j6fv/kys+9Xlkiw1BhIh/BLvPSyIaoWruQgRRpGbBUl544GfkVVShqSqBgX5G+3qoW7qSfY8/zNwN16LrOpqqUlw3nfyqagAcHi9TV6zhyJaNVMyeSywcIqe0nOKGmdicRiDfO0nXVTKLSgiNDoOu4crIQpBEBFHA7vWmX+ehQXx5+a+9rLhK8LkuXMvOXlPqOmhx9c/MZTD89RQULC4XyZiSDssRRGasvZxEJMz40CDevEIaVq1FVdL3HzIKixju6UKUZGSzGW9uPjaX+x3ei7+OFlXObQunSPZHiTaO4L06fS0uecyYCl3I7gvfJza8NTKdFjKdFnRVY/jxNhxz8xBkIX2tKQrEmvw4M7M58NTjzLj0ckRBpHzWXJr2vIQnO5eMohLUZJLephMkomGyi8vIq6xBVRRUVUUURSwOOzaXi8GONiJjfsYHB5AtFjLyC5CFMFT+yUZlVMDl34KnPgNqKh2kuvSzsOt/IWcK2H2Tp1fiMNoKkZH0vY5XLpR17czfZ6Z7pQ0hHZxuzwBfeTqg1WB4AyRZxmSx4jPloR2J0BBbSP2VS+gaO8mSm+4AUcTpzcCVlcVAUwe5teXIuomQMkZUHGDW+isZH+xnoKWJhdfdTGTMT0HdVALR0Yl16KpGauDcoEllOHZOm+G9SxIlTJKEN7+AgZbTZBaWkFVSSl/zKUobZnJg05MU1dZjc7lJJeI0rF6HKIr88b//jVv/5VsU1NS9LdupRhX0xNlrZy2YJN7kJ+MDU9CjCqLThKnAieQ0wqMM718WuwkEzl5nkL52stj+TB8FZzZc9p+w6fPpIBKbDy75OniKLzhLIqZy7IVeFl5VgZLSECWBaDBJcCRGYY3vgvMZDO8G6qs6G+m6nh6AyWAwGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAzva0a6w1vMlZnF1BVrGOvrQUml8Gn9OHd8DRZ/Gi2nHnWgGV3V6Tx6iOn1lxDa2DZpfmtDJoe2P0Lrob2YLFau+sJXzlnHFRVXYJIuPEKON9fGnMvLePnpjom22WsL8bm7YNnfwuHfQMVK8BQBICgqqXgSs81GeMw/0QFOUxTEN9iZYErGFB489SCCIGCX7fSF+1hVvApK3Tz3y5OTpp2zvtQIIHkH2eMSUkRhx4O/YdZlV7Hn4d8SHBlm6c13svH+bzFl2SoOb3magZbTrPzAvWz67n9RPHU6/t4uWg/sY/ntd7P5B9/Gl19AXmUNx7ZtZvGNt/HsT7+PbDZTv3w1L/z6ZxPr8+UVcOnH7uOwcppvNP0nAJ+b8znWlKzhgZMP4LP4CKfCjMZGqfami8rGE+Pk2nMZjA6Sa8/FLJrZ1LaJr83+CmrvGEWDXo5ueop5V9/A+OAAL/7m5yy47mYAOo4eZOa6K9n76B/obz6FIAosvvkOHB4vkUAASZOR9iokhsK415RMjOad7AyS7AxiX1fCo79pIxFVmLm2mKGOILJFIr/SzUhPhIrpUV749f9M7J/N7WH9l7/0dr18FyXx6G+oWvIPtB0dJ3mm4Mzps1A4xUPOYA4+i48ST8nE9A6Tg+VFy/n2gW/jtXgJp8LE1Tgvdb/El/OWY939h/SE2/4VVn8FiueDMxfcBedbPQAdRw7y1Lf/A9lsYcrSlex++Hcsu/xOvI0OYkfPds6S8+xIfzJ6Wuz4CIHHWs48ipBoCbDqug/y68bPcfTZTUy/5HLaDu4jGY8hySY8Oblc+vGvE/aHUZJOcipqycg3iinfK3pDvTT6GwHY3b+b9WXr2di+ceL56VnTcZlczPRW4cycAd5SCA/AU589G0AC8OxX05/h+TMmmkrcJfzTwn/iH3b+A2E5QqJjnFTfqwobJAHRCqceeYr2TdvZ8Nkv8/S3v4mSSocyiJLE8tvvZucfHmD1PR8jq6gETVUpqJ1Cf2sz3pxcouMBpixdybFtmxFEkboly+k4chCH10fv6ZPkVVTT+MJzVM1fjCzLBIeHObjxiUnHIB4JM9zZMSmEpOXlvRMBJK94+Y+PUT5zDvLbNPqn4a+TWVjM9DXrGOvvRZRkMgqLsDomvyflOHIYD59CEEW6G48hyjLTVq8jlYiTWVRC2D9K9fxFRMbGKJ81lz2P/oHR7s70zM/A7Muvou3Afg5t+iO3fvGbRJ7vmVQkIXksiMMqN5Rdx8Mdj060C1aNoWA/pzaFEESBJTdUMdQZRlXS51pGgYO6+lIyHe/NYlDDm2ysCx77MJidMO9ekMzpQoJXh8l17ycalMmrqOap73wDNZUuMhYliQ2f/TLx0Dh2r5fwSAqr08WSm+9gz6N/YOF1txALBRnubKdqznxi42OMDHYiPRebVORgqfBQYspEFERWFq+kyFlEmafs7T0OhouektTw5NhoPThM68FhIF3re8UXplKzMJfTewaZvjgfy/5+LNUZJNuDJLtCJLtCAMjXFfBE/1Ncn3Mboe1mnjveTnZpBtOu9BFJDiEgEBjsZ83dH0OUTaSSMRLhMFv+739ZfvvdPPFf/28iSfX49q1c+tH7GOvvIaukjHg4zOYffJvaRcuYddkGWvbvwZGRyYKrb6Swrn5SEURx/TRcmVmMDw1hc7nwFRa9bSOKGy5MQKS/pYlDm56caMutqGLFnR9CAGKhIGP9Pa8rhETyWpHcZoLPnk2jFEwi7vVlaFEF0W7cVzK8uWwmG6MD7RzfvoUTzz870V4+ax65FdVY7HY6Dr+MDlTOXUjnscOMDw4wa/0Gwv5hLA4n2aXnDzZ9t5MzrecUZ5orPER29hJvGiN+JH3vLOsj05A9RgDJO0mQRKx1GQQ3dUxqd19bgbPHR82ipQy2NePw+Nj6o+9OPG/3eJm+Zj0HN6bfn52+TOZfcwOCKCFIErqSQjZbsDgceHPz6T99Cnd2Dha7HV3XOblpM9MXrsFiOxuUiiiCxZv+HUJTQJTh+CMw0gzR0ckhJNFR2PEd2H1/+t5HZhXMvSc9X7Af0MGRDRYXxAMQC6SXZ88E2Zp+rv6qdPC6wfAXCI/5Ge5oIxGLkllYjDluIfFoP3rqzD2qQSifP41uuYWskjLKps9E13WsDgf+3l5Ek8yT3/p/LLvtgxx4+nGi4wEAjm3bwvLb72a4q42SaWfv3YlmCfucHMafap+0HdYa79u0x4a3Q1JJEPePsv2XPyI4NDjRvvz2uzFZbTSsWEPn0UN0Nx6jbMZsgsNDDHemfyMe7mp/20JI9KSKnGtHGYxOtKUGIpgybZjqjUBUw8XBm2tj1iUlHNp69nvlvCvK8ObaLzzTWBc8+QmougQaroNkFLb9M+TWQ9G8885ic5lwZ1rZ88Tk/iAbPjXjvNMbDO8mqnr2i6Cq6cjnGTzJYDAYDAaDwWAwGAwGg8FgMBgMBoPBYDAYDO8vRk/8t4HV4SS/+kxnsce+DwPHYOAY6obZWOxOWg/sxZmRRSoYw31pKeGdfWjRFJYqL+ZiF754uuA9lYjT03icry78Kr899VtSWoqrKq9iTs6cP7v+WCjFaG/47OjFJpHx4TCpnkbkYz9Mj8zjyJk8kyCgahomixVHRgbxcJhUKpkeVfANqM2o5aMzPkpnsBMdnVJXKbnOXI6leqhdmMfpfYPomk5RnQ9nhsUYReUdlIrHOLz5aQBsTidj/X1Uzl3AyZ0vAODLy+fkS9vJraym6/gRNFWlsHYKux76La7MLMb6+1CSCSrmzGf/Ew8jm8woySTxcIjZl1/NkS0bJ61vbKCP0NgoaoGJf13yrxwdOcrmjs3kOtIhI+PJcfId+fRH+ilxl+C1eHmy9Unum3Ufv2/6PQ80PsD9C/4Lc1AlcXyQl594lPKPf5qciiq6jh+lee9OgIki9kQkwkhnOwuvv4W2A/uQTWZsDhejPV2EB0epLV1IdKAbgGRvCOeSAiL7BtA1HXl6NgMKVM/LZbgrSGg0PlGYV7con/plWez+wzcm7V8sOE60axAqpr11L9rFrmg+/uEg01cXIwiAIKAkVWLBOMuKlrG1ayvLipZNmqXaV81/LP8PukPdJNQECSXB5ZZ8ih752NmJEkHYdT985AVwZF5w9YlIhF0P/xYAVUnh7+shOh5gxzO/4apbPw97YmhjCUwlLnzXVCE5zhZEqJEUoRd6Ji9Q07FErNQsWsrp3TvY8btfseTm21GSSfY9+TDF9dPIrmygaU+E1R8owZdrdAh+L2kfb8ckps+BI8NHKHYV87HpH6Mj2MHM7JnUZdRR6Cokz5F3dqahMUhFJy9I1yE8PKlJEATWla2j2leNc8yMfaaJmDxCsiuE5LHgXFpAggRmmx1PTi4tL++eCCAB0FSV3qZGrvq7f+Dp73yTeDhdTFw+ay41i5az6bv/BcDyOz/EJfd+gsBAHy3796CkUsxadwWBwQFmXX4l40NDDLW1kFVSiiAKCJIEyuSRs0Vp8nXF+YJGTBYzwhu8/jC8PRxeHw7vhUdsLPOUcdrdT8/xY1idLtRUiqG2FjKKSuhuPIo7Oxeby81wZzumYevZAJIzjj67mVnrr2T/k4/Q3XWcyptnEdzYiTISw5TvwD43l+AzHXzyno9gtzsZjA5S7a3m+Ohxsl2nqVs2k6Ydgxx8ppOlN1WhpnSSMYWCWi+ZOUYAieGM+BjEzvzZ+Z2z7Q03pP9OJUmFRzm24zSiIE4EkED6/fPUzhewOJ3ExoM079tJybQZ5GkqgYE+zDYbhzf/kco5C+htbsSTm09UilB8VTXBbd1ooSSWCg+WGh/awQAfn/FxZmTPoD6j/m0+CIaLnaZqHNraybSVRRx5rpvQaByzVWLhNZUUFWeTc72PKYvycadUgg+cQs1x4JiXR+TQYDpwdGk+0WKRj4SvZP9DCkNd4wD0NAaommnDcuayVRQlXJlZxCMRZLOZ03t2UFhXz6mdz08EkAAkY1GGOlrTRfuCxIkXnmPulddyePPTSCYTDavWMm3NOjILzz/asDc3H2/ua4dZGN4+WjJ5zj2BwbYWYqEQg20t2L0+csoqX9eyJKcJ7zVVjG9sJ9UbRsqw4lxcQGh7N+YSFxa78RlveHMlwkGiwcCkABKA9kP7mbJsJQBWpxtNVWjeu5O6Rcs4vWcn8UiYzMJiCuvqkU3vzYAEU56TzDvrGXu8BS2YxFLlxTY961WBqmmxoyOILjMmnxVBNr7LvRPUcAo1mMQ+N5fooSEEUcA+Lw9dUGnet5v8qloqZs9j76N/mDRfdDwAAgiCiK5rhMdG0/cEBBHZZEaURNSUgiCKmG12TFYbmqqSTqcByWQ6f4i5IwOe/4/Jbdl16YCSV+s9BLtedQ0+2gKt20BJQvE8MNkg0AmjbeArBV8Z6CoMNUJwALKqIKcOcqe+4WNoeG/T4grKaAwQkLNsiBbpgtOGRkfYeP9/0XPyGACSLPPBT/3v2QCSM5RD4xTeUMueTQ+SW15JYLCfB7/2JZRUkoXX38pln/xbQqMjEwEkrzj63Gbqlq7Al1eIy3v23rKtIQvVnyC8tx9BEnBfUoq5zPOmHQPDO0+O6Yz1904KIAHY/+QjXPnZLxEaHSYZj+HNyaOvuYnqeYtoO7AfAEl+e64VlGj6dwnH3FxiR0dIdoeQfBZca0qQc/5M+ILB8D6TiCqEx+IsuKoCJZXuS+EfiJCIprC7LxCuFw9AaAAOPTC5PTx0wfUkowolUzOJjCcY7Y0gmUSmrypC0/QLzmMwvFuor7pXp2g68oUvrwwGg8FgMBgMBoPBYDAYDAaDwWAwGAwGg8HwPvGGQ0gEQVgKVOu6/nNBELIBp67r7a8130WrbAloKai9DFUuAL0Tq91JbmUNsmgivLMP24xsRKtEsiNIZN8AKcfZUbeTkQj1mbP5x4X/CIBNslGdUf1nVzk+FKX98Ajth0cmtU+9di42069h+RdAPlv0q5gEBBES4TDurOz0elwulHgCUTp/b4JIMMFoT5hkTMWXZyejwHHB8JAcRw45fxJ6MtQRwt8XYc760vTjziBth4apX1qIkUHyzpAFhWQ8BoB+plOJyWIlGUu3aZp2wTbZbJ6YVxAENFVFNptRzhRpymYzqcSrRpM/I6Wn+Oc9/8xtdbfxYu+L9IR6+NSsT1HsKubh0w/zyVmfpHGkkT+2/JEvzPsCAHbZzvcXfht9PM6LP/sxpdNmEgmMMXfDtcRDIY5u3cTsy6+aKBDtOXWC+uWraXxxG60H9tHX0sTln/xbXn7qcbb9/Ifc/Hf/hhhPIgfOnnjxRj9ShhXHogLUAifP/rGdkd5eMgoczL28jK0/a5yYVk1piIJOMvYnQQFAKpn4a18Ow+ugZNbT8vsgQx2hSe1VSzJprG0kmAie933JZXZRn/mq4t7TmyEZPvt4wd+kCx2OPQjuAsiogLxzw2R0XUM9E+QgiuLE/wurzYGQFLDU+JAcJpRAAj2pEhiK4u8NI8oi2fkOBPO5hTmS1cS6j32GqcvXMNLdSevLewmODCGKIlXzFlI4JZ8ZqytxZ9rOmdfw7tUZ7KQ/0s8zHc/w8Rkf51eNv+Kptqeoz6zna4u+xpTMKeef0VMIzlwIv6rjumxNjwAcGgA1Bf1HIRXFlDuVWjVJKqUyuLkHa00GrtXFaKEUwWe7cK0s4tZP/judQ8fpazp5zqoS0Qj9zU0TASQAmqJwfNvmiccvP/kIl370PqLBcWoWLSUWCnJg05Msuv5WDm16ip6TxwFYfOPtVC9YzGV/8zkOPP0YfadPAeDKyibrT0YAr5gzj/1PPoz6qrCSuVdehyQbuXnvFznFZZzWXyK3vAqA7pMnyK2qYbCthZr5S4iGgowNDuDLLzxnXjWVQjxzLsTDYVJZScwlLmzTs1BGYoxvbAddx65YKHOWMBAcJCdSyjXCLHxmN+IcjTmuMgBaDw3Tc3IMgKX2KmxiiAx7APKnvy3HwfAuouvQtQuGToG7KF3YeNk306OnyzZ49mv4Z36FsWAD8vFRsjJV5ESMeDh8TpASQDwSBkFg2upLKaibQvfxo+x7/CHmX30DuqriycnD6nTTvH83g60tXPOFfyLREcY2NRPRLpPsDhHc3IFtWhb35NyBOd/5DhwUw8VOSarEwyn2PNZK9fxc7G4LmqIRCSSQZBGby0ymDKm+9PVu9NAQco4d15L0e3ey1kxhpImhRCFZJTpl03PQNB1BgNMHR5lziRVd08goLEIXQNc0BEEgFYthstqIjPnP2aZkLEYiGkFTVJRkgpb9e5h9+VWIsonyGbMvGEBieHfSVBVNVc5pV5UUkWAAQRSxOl//+58gCcg+C9ZaH2owSXBzB3pKQ/jT4naD4c0gigic/2alpqromkb57LlE/H7G+nt58Xe/ZPENt+Hv66FhxSX48gve5g1+8wiSgK0+E3ORCy2hIDpNjP3hNPxpzaSqM/LTYzhm5eJcVohkf2+GrryXCZJAojkAAriWFYIOseMjSA4PvvwC2g+9jK+gcOL+7atpqoogCujqK481EHR0k46m6UiyhKZp6LpOZlERwx0dRMcD+AoKWXjdLZis1nM3KGcKLPwE7P1++vrb5oM5H0zfw8ioODvdaMu58/bsh+k3gSBAfDw9j7sA3PmgJiDYD6OtkFEOdh+M9xghJBc5ZSxO4MlW4ifT15TWaVl4Ly9H9p3n3CQdhPZKAAmAqigkYpFzphNMIqO93fj7ekGAky9tR0klsTpdhEaGyCwpxWw99x5tMhYlGgigaxooCZDTxeyy14rninIcSwoQRAHJazEC+d9vNBVNOfeaNxmPIYoSJouVJTffSTQQoGX/Hl767S/QdY3C2npMlvOfr2+m5ECE4LOdCJLA+KZ2rHWZuFYXo4aSKIMR43w0XFTGh2I0vzwETA4Qmb6y6MIhJK58WPg3UDgHwgNg9UJoMB2SdgGaprPvqTZKp2ZRPiMbTdVpPThEZqExyIDh3U99VViOagTnGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAwGw0XhDVV0CoLwVWAuUAv8HDABDwBL3vimvQ/1H4eMSkhG4eF7UO7YRzwaoXbJcoY62pC86U4skV19E7O4N5Qz9HTbxOOSmbPojPQDYDfZscuvPRKVfJ5R3gQB5JxyWPhx2PltKF8GrjwADkeOU61nEQ8HcXgzUJIJJJMZTVXOW2gXHkuw7VeNdJ8p5BRlgQ2fmklRre91H5rShkxO7epnuOtssfPae+oRRaOT2zvF5ctk9ror2PfkowCYrDY6jhxk+iXr2ff4Q6QSCRxeH/2nT7Lw+lvpOXmc0OgImUUljPZ0MW31Opp2vchAazMlDTPoOn4Eh9eHIIq0H3qZ2kXLOLnj+Yn1mSxW9FwX02PT+UPTH/jo9I+i6RrNY818ZcFX0NGxm+xcW3ktgiDgNDvREikG21vZ8t//Sc3CxVjsDgpq6+k6fpi9jz3IvKuuB6B5327qV6zh0KYn6TxykKIpDSy5+U4cXh/jQwN0Hj1MaGQIm9uN0K2gtkdIyCasdRnET6U7K6v+OPGBML2KxkhvOqBirD9CLJzEYpeJh1PUzM8lOp5k5yNj1K+8nH2P/Xpi/0RJIr+k5G169S5OYmIMpzeLPx1jTHCqPNPxDB+dkT6nXlPRfFj5ZXjpv2DKhvSorA/fffb5BR+H+R+BzIpJs1mdLuZffSOb/+87qIqCJEmIksSC1Tegbhsj+qr+WMnWcXpqfAz2jyPJAgfDApdeWkLgt6fObrdNxlLqxmS1kkrEcWVlUThlKtmxcgpqpqCqCuND7WQVlwJGCMl7RVyJ878H/xcdHa/Fy6PNj3JDzQ1YJSvFrmKqvFUXntldADf9Ch65F8a7SZWuYKD+Pto278DmPUl5jkT2ri+DpsKaf8QfiDFECdnzphHbMzxRfGEqcKCMxEnuHiNeGCSvsprTe3ZMWlX98tVs+b/7J7VNXbWWZ7733xOPo+MBxvp7SSXiiKKI3e2lftkqlGSC3lNnw5l2PfQbAHY//Dvql62gbtESrGaBnAwLXmlywVOeR+Dme2/gdHM/qUSK2voS8rONgrX3E29uPtNWX0rvqUZ0XaO4fiq9J09QOXc+x7ZtoXLuAspnzMaVmY3F7iARPVv4UzVvEd0njiJKMtklZagOSA5GUQ6efee3z80lvHuANWvnUzY8k32/6qWPMBBmyqpcZFOCY1v6J6Z3eM2ERhM8t3uEDbfZsfYcgKI5b+chMbzT2rbDg3elC8Gu+i789kZQzoTlZVYxsP4ZnvhRJ0oyXRCZV+5m7dWlVE7VEe0+Tu+e/P5ZPHU6ssVC0D/MaHcnJdNmULdkOa0v7yW/Zgre/AI0TaX/TCBT3+mTZM9cS+CXp0E9c7EgCpiLXfgfPE3Oh6chGoW7hrfZUHeY0qmZ9LeMc3Ln2ffMaz43CwAlkGDs96cxF7mwVHtJNAdQhqKEhqLIDR4cWixdFJyKMtSRorEn/f3JZJFYcHUFmjmJrMUREJFkGc2uoiRTVM5byI7f/ZK5G65npLvz7AYJAvlVNYwN9pNTVklBdR1WpxNN1cgtryS/pu5tPT6GN062WCibMYeOIwcm2mxuD67MbGat20BkfAwuEPJwPqLbjBpRiG3rPru8hiwwRuU1vAUsqQgOXwa5FVUMtp0NTPDk5uPKzKbr2GEKaupIxRN48wtYfMOtnNr1IrMvu4r3S9Ky5DYjkQ60di4rJN7kPxtEIovIWVa0/UlC27uxlHuQal7/PWLDm0NHxzE/j/Gn2ggNpoOSRbuMs8BDxkgRWUWlDLe3MW31pex97MGJ+URJxmyzo6npBBJJlrE4nIiSeKYYXUCUJMw2OxaHHbvbQ+n0mYiShNOXSX517QU2SAd/K6z4ImgKpOLw/L/DvHth6jVnp8soO3fe/BnpkJHC2WD1QE4dBHogMpq+T+IphFQUwkPpcBNX/ptzEA3vWbHG0Yl7YADxYyPEq7w4F5z/3IiGxs9p6/e3kOPOQQsmJ9qkhR5efOi7LLnpDmTZRDQ4zhWf+QIR/xjDXe0kI2E8ObmIkjwpbK1u6UoAHBm+iQCSVwiSiMkIl37fstrtuHNykc0WlFcF1DesXIsgCAx3tmN1Okkm4vjyC5h/9Q2IkkRwZBiAeDiE1el6S7ZNS6kEt3QSbxzFc0U58VN+4o2jxBtHQRLI/qgR0mu4uJyvLwUCyOcZPODsTC5wF8IjHzrbVn8N1Ky/4Cw2t4kpSwo48uzZ766yWcSZ8dYHDxkMb9Srg0c03QghMRgMBoPBYDAYDAaDwWAwGAwGg8FgMBgMhovBGx1W/lpgFnAQQNf1PkEQ3poeUe8HsRFQU7D9/xG8cztqQiGzoIjNP/gOstlMlXkGzsUFaNEUWkzBlGMn3jJOxbR5CKLA9Esuw5adhU1QkASJbHs2Fd6K11xtRp6D6vm5NO8bnGibsTIb777PQf8+8JaCI3fiuYSaQNM1JNmMmkoxPjyELy8fSTIhyecWwA13hyYCSAA0RWfHQ81c87lZWF9nwVz3iVGWXF9F25ERdE2jbHo2Iz0haubnva75DW8+QVMoKCthzhXX0H74AKvv/igt+3aTiIRZdttdNO3aweKb7qD7xFFGe7tZdddHOPHCs8xYexlDne30nDrBJR/+BCe2P0v1gsVkFpfSfuQgaz/8SU6+tB1Pbh7zr7mJ5r078eTkUjlvIYoEX5z/RWRBxm6yU+wqRhLP7fiVjMdo37+Pkd5ujmx+CovDQUZBEf6+XvqbT3F06yZ0TcNkSXfqDY0MEx0PsODam+g8dhi7x4PV4WC0p4sDTz+OIIhc8fHPk5NRSuolP0kg0RzAPjcX1+pilECClM9Kx0gMJaExbWUhgaEoNfPzaDs8zKxLSwgOx8gpdbP9gVOYLBKZRaXMv/oGWl7ei93toWbhUkzE3+ZX8eIi2lzMnCvRcVxAU9Kdnyx2mfw6F7crt6NqKg7T6xhNzO6DZX8HDTfAeDc8cN3k5/f9H9Rcek4ICUDVvIXoyBzfvpHA0ABX3Pd57CEn6KFJ06njCUrKZJoO/BYlmaB20eWMCXlkf3ga8VN+RKcJa40PU54DVdEwWaw89Z1vkjozQu3hLRu57BOfo/3l/bTs283quz+GbDIKlN8LBqODbO3cio7OtVXXMjd3LmOJMep8dSwtXIpJeo3XsWQhfGgrtDxLV8jL4//97Ymn9tkd3Hzrl8iOHGM8lOLRp04wPrydWSuuYN61V5FsCyF7LeiqRnhHOvCsft1yjhzayrLbPsjpvTvRNY3q+YvoPHqEZbfdRfvhl9EUlakrL8Fky8dssxMPnz2fhztbmTmjjK62XpJJhaKZC9n+wK/Q/yTwR1UVdF3jxIvbyS4p4+D2HeiqxqINMqVzC5DPvF8LTRvJf+Gr5HtLQDLDSy0QvhM2/G86EMjwvmCxOzDbbPQ2NWJzuskpr2TzD74DQH9LE9NWX8pgezPL77iHtkP78fd0UTlvEYV19Rx8+gmu+tu/x+ZyoxLFtrwQ+iIogQSmbBupwSiJxjEyF+bTt69j0npPbh9k1d9UMEsspuuYn4wCJ1lFTvb+sQ1N0RmL5JEvHDdCSC4miQgcfAASQbjyp7Dr/rMBJEDSU8veLSMoybPvaQPtQQYDFVQUDOI35bDmQ3/D8ee3oqsqU5atwmy1YXW5+eP//Hu62BKonLeQ8hlzsNjtuHxZ7Hn0dwCUNMxgoPU0hbX15N4xZaJQTs60Et7RizqeRA2njBASw9uu59QY/c0BFl5dQfvRESRZpHJ2Nr58J8pojORABC2UIn7Sj2N+HubVxSijcaQyB6MFEfJ2/jt4ihhx/Q0jPe0Ty00lVNoPDzO7xkOrOkCBo4BsyYw2rCJJMlnFpSy79YNIJpmVd32Y49u2YLbbmbJ0FbFwCJPZzMtPPMz0tZdxateLFNbWo2mqMUL3e00yRioep2HlJfjyC2g/fIDs0nKmLFlBNDDGxvu/xfq/+Qwm6+svwtIiCqZcO5YyN4o/jpxlQx2Lo47GIc/5Fu6M4aIUG8Hi8DBj3RUMnG6i68RR8quqqVm0jGgwwNFnN3Hgqce47FN/y4nnj2GyWGhYeQmJSHgi2OH9xFzsJPODU0m0BNAVDcljIfRi78TzqeEoViOE5G2nRRSih4fwrC8jNRRFtMmIdhPJQJSR7k7CY6OUTp+FxWZn6S0foPGl7dg9XqatWks8GiWjsAiHL5OpK9ZgttpQVQVBEJBNJkTZhNlqI7eiCrnhdV6nWj3gKYLn/2Nye1bN5McFs2H2B+Dgr9KPXXlQezkkQhDsB0mGrFrImw7RUQgNgNmRDigRJLC4088bLlq6rhM7MXpOe+yk/4IhJJkFxee09fScxL04hyyxDGU0jqnYQVyIsuKWu2nctR2HL4MZl1zGjgd/Td+ZIN54OETZzDms/MC9tOzfTXjMT/X8xbiyssksKkZMxc5Zj+F9LtaHKElc+rH7aHzhOcaHBqlesJicsgoiAT+HNz/F4c1PsfKuD2OyWuk8dhiby012SRlh/yghv/9NDyFRw0lSvWF0ARLN6d91w7v68KwrRxmNIdgk7A3ZmIqMa2jDxcWXa6duUR6ndg9MtE1fWYQ3988MBjN0GJ7/t8ltjY/DtBsgb+p5Z4kFkyQiKWZdWkL3ST9Or4XCOh/R8cR5pzcY3k3UVwWPaK9jzA+DwWAwGAwGg8FgMBgMBoPBYDAYDAaDwWAwvPe90RCSpK7ruiAIOoAgCK+juvvPEwThs8C9pMdPPAbcDdiBPwBlQAdwk67rYxdYxLuTrqdH+VMSEA+Qsmajhkfw9/WQisdQU0ksOW6CT3Ui2GREq0T04BDWaZnYMjx48wtJJRO4bW4Wn6fw/c+JR1OYLBLzN5STiCpYnSaUWAzNkQeObFhy36TpU2oKXVNx+HwMtDUTGfMjm8xkFBYhyucGQpyvY0xgIEoqrr7uEBJBFNj9WCsF1V4Es8y+p9qYserczp+Gt084GGTLL38BwIo7PsSxbZvJr6pB03VOPL+NBdfeQOOL23H4MvHm5XF02zPM23ADTbtfRFUVKmfP58iWTcy87EraD+wnODzEzPVXcvTZTdQvW01/cxOD7c3klFUQ8o/w3E++z9Wf/CRVdSsuvE1jo/SdbiIZi7L5B99mwXU3UzVvIRaHk2hwnJZ9u1hw7U3oZzrBDHe2U71gCc17d9K060U8ufms++h9PP+rH3N6z05mX34VNQuXQkrH1eEgvmsAa62PZFe6wD768iDIAvb1ZWx6sp1oMAWAw2tmyY3VbP1puoNx2bQsjr/Qi9VpPvPYwZ6Hf0wsFKR46nQSkTDbf/EjLr37g2TWzXurXjLDaBtYFjD/CjfJuIogCkiSgH9ojF5zL/WZ9Siqgiy9jo8+SYasKhg8Bn8SpoCuQyxw3tmsThcZBTNwZLmpni9w5NmNLF5xE0kmh5CIDhO9HUcZbD0NwK7uH7Dq7k9TvH4t1krvxHTB0RgjveMMtrVMBJC8sg1Htm4ku6yC489uZc4V15BZaLxnvhdYJStei5exxBiPtTyGKIg4ZAfLC5fjtXpf30IsLhJ9J9j1YmRScyIaoXdMIjurmOGYg/HhIQAOvfA0hSVTcHc7iDeOoqfS57RolxH6FWp989i+99c4PF6mrVlH++EDnHxpG6d2iJRMm8GcDVcjCB503csV9/0ThzY/zmhPK6XTFlE2YzGZJ/6J/OEDIJkJ9/lJJSYHLsnmyaO8th85BAgMtrfy+P9+h+u+nEH5zDOhDyPN6b8DXWdnGDoBWgrEycsxvHdlFJUw2NZMMhojr6KafU88NPHcUHsrroxsjm3bwrC7HZPVRt3iFahKCqvdySUfuY/ouIaYiJH98hcIz/8x47v6EF1mYsdGQNORPGbiJ/zMn5bJ2EicSODstWogEsJSIeLqszHaE6Z5fzqkT5QFersgnjWVUlVDlIzQm4tCKgKBjvS/rW4Y75r8tLsK//Fzv+uExgXs5WUM9ARRlRQZBUXY3G66jh9BMpmYsmTlRAAJQOv+PUxdsQaT2YKqpEAQaFi1FrvHy+HNT7Hg6hsRrTKxk+liOS2UvuaUMqwgGeEKhref3WWirznAYHuQwhovqqrTeWyUuvoMhn9xAltDFoJNRo8pRPYNgCwguS2Mz0iSwTh4ixnPWMlIR/KcZQeGomRFUpTk1UPPHsKBICPxPBwZGbizciidMZtkIk7znh1Uzl1APBKm9cBegsNDLL31Awx2/Ja+0yexOlyIokg8En4HjpDhDUkl0DSVwfYWhjramLJsJUNtrQQG+3H4MtBUhc6jhyhpmP26FqclVFKDUWLHR9DiKpLbTOz4CKg6jkXnLzY2GN4QAdSUAqrGcHcHtYuWERwdpnnvLvKqahBEESWVpPvEURAFxvp6sTqdCJKEzfX+y+6Onw7g/81JbA1Z6JpOZHf/pOdlY1T3d4RgldATKuPPdCB5LehJFS2q4L6jing0gsXh5ODGJymfORvZYmP5bR/E39fLM9//Nr6CQpbffg9WlxtNU5BNZnRNQyD9Hclss5JZVPKXbZAowdRroXsfDBwFQYCp10HPAai6BBxZ6emcObDu32D2XRAZAbMT0NO/FKGn50MHREADXQABEESwZ0JGBcjmN+swGt6DBEHAWuUl2TY+qd1a6bngPDkVlVxy7yfY+YdfEwuHKJ8xB19+Af7RHrx4SbSME903ADpkLMshMDjAwY2PUzl34UQACYAnJ4/Te3ZSOm0mgiBQMm0GgYE+nL4Mxvr7kU0luN+yPTe8G8mahqoojHR1IMom6pasoLvxGFaHE4cvY2K6/U88zLyrricWChELBfHl5dPbdJiahUve1O1RoykCT7cROzSMtdaHqcBJsjOIOpZgfFM7osuM7+YazMXvv+sVg+G1pJLq5L4UDhOxcJJUQkU2nds3AoBEGJKRc9sv8PshgGSS6Dk1Riqhkl/pIRpKsvOhFtZ/tOHN2RGD4S2kqmfvd786kMRgMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBgM719vtLruQUEQfgh4BUH4MPAs8OO/dmGCIBQC9wFzdV1vACTgFuBLwHO6rlcDz515/N4iCOmR+CQzFM0/03EWUvF0oa7JagWTgKXKix5TUMcSSB4ztroMEMDu8RAZDyDJf3luzNhAlMaX+tj3x3ZOvNjL3ifaOLCln+DU+6Dhenj26xAPTEwviiKqqoKuExsfx+XLJOQfxWS1IgjndrSxu88tCi6bnonV/vq3tWRqJpJJpKdpjO5GP7IsUlhnjJL5TtJlG6l4nOh4gMBgHz0njxMaHaHtwF78fd2MDfTTeewwweFBuo4fZbS7i8BgH+2HXiY0PET/6VMMd7YRGh6iZf9uxgb6GO3uZKDlNOGxUZp2v4S/t4em3S/R13QSAEU/f0eusH+U3qaTbP/Fj9j72B9o3ruTqrkLyauqJToe4ORLzzPS1QFA++ED1C5aBsDpPTtJRiMsvfUuLv3ofVTOmc/hLU/hyckD4ODGJwmP+Vmx4YNoJyOo4wkktxk52zaxbjHHTsJhRnvVYLVKSic0EsdkkVh8fQWNO3oJjcYxWdJvqZJJIJWIEw+HaN67k67jR9B1DeX9N+Dtu8voadqPjLLniTYOP9fFoc2d7HuqncGdCisLVvPbU78lof2Fo4l5S9Ojrr6aIxs8Fw78yChwIssyyXgMXdORLGacSwvSRREAsohrRRHSn4ShNL64iej45A6Lp/cOEo+opJLnbncyGiUy5kcQBWP09/eQXEcuX5p/9jJG0zXqMuqozfgzI/WO90DTM3DicRhuAosTvXgRycR5zouUAt17UOXJuXAv73gS6izoyplQHVnAtaKY6KFh1ANBZi2+HHd2Dqd2vshIZzuX3/d51v/NZ5h/9Y1Ex704M/Jo2tvPwa1RFG01xdM+Rn9HHVt+1s9wyb1nRiDuxzF2gmW33oc3twAAhy+DJTffyfFtWya2xVdQRPBMQArAyZeeJzzmTz+ou/zc/Z/1AZCNAJL3E7PFQlZJGVklpXjz8lGSqUnPK0qSkoYZ5FXVkF1SylBnG7FQiPHBfk7tCvDE/5xi6++HiLmnEhMVpFk5qP44aDqCScS5rIjo4WG0XX3MXVYwsVxJFukT2xkx96MIKfz9Z99zG5YXcnrfIJt+3sFo73k6jxvenxzZUHdl+t/DTTDl6klPm+M9lE3PPGc2T7YNPaeOVDJFy77dWJ0uzFYb+VU1ODy+c8KYAJREEl0UcWZkUDZjDj2Nxzn50nYW33QHssWM6DZjm5I5EUAimCWciwtQ/cZo2Ya3nyvTit1tRlU0uhr99LcEmHFJ8USBWvTQEO6VRSCfuQZVdZjnIuVVyYkGoHMno2oZDs+5n99VM73YPC6we2Dn/eieQjRNZaC5ieY9OxhoPU1sPICAwGhPNw6Pl7zKakqnz0RTNdRUClVR8RUU0rx/N0V15x9d2PAu5vAiIDDc1UlJwww0VSW7tJyhjja0M1+849EowdHXN6yuMhxl/Ok2XCuKEAQmrglcl5Zi+nOjVhsMfy3ZRiIcIhGNUlhbjyAI+HLzCY4M4/D4iI4HAEjGYhTXTaVs5mx6TjVSMWsedveFi+Dfi9RQksATraBD7PgIlnIPovNsILVtZjbmIqOQ+Z2gxxQcC/MRLBJqIIEWVbDPyQEJSqZOI7+yhnkbriUeCRMN+Gl8aTuZxSXoukZoZBh/Xw/DHa30NjYy3NFOf/Mp2g/vp/3wfhKx6F+3UeN9kF0DK74AK76Yvtex/0cQD06ezuKCorlQux7Kl0L5MqhYBhXL0/8uX36mfXm6vXwZlC2BnDojgMQAgG1aFnL+2ftipiIn1ikZF5zeZLZQMXsec6+6jgXX3kQqmeDQM3+kdspiovuHUMcSE7/naXtDzFl2JYIooqmTb/YrySSl02Zy9NlN5NfUYbE7yCwqwZGRCbqGrhnFuhcbweJGV1VGe7rJLa9E01SK6qbS13wKXTt7rZuMx3FkZFI2YxYFNVM4+uwzzFx3Ba7MrDd1e5TBKLFDwwDET49hm56F6Dj7uW2t9WLOe8NjjRgM70mBwSjHnu8925fiyTaObuthfOjP3JfzFELetMltJhtklF9wFrNVYvb6UhIxhY5jowx1hMjId5z3/onB8G7z6uARzQghMRgMBoPBYDAYDAaDwWAwGAwGg8FgMBgMhovCX55o8Sq6rn9LEIS1QBCoBf5J1/Wtb8I22QRBSAF2oA/4MrDyzPO/BJ4HvvgG1/P2c+aDqsCqLyPLAjo6mcWlCIKI1eEk2TaObDHhvqQEXQc9rhDe3U8oYwSTxQLoSLLpNVfzpyT5bNaMkkp3bBNEAXH4BOz9v3QoyquK7JNKEnQdf38fWcWlmO12xJFhdFU9bwhKLJJg8Q1VHNrcSSyUoqjWR3apm2RCxWR97VMslVQ58lwXsy4tQTszgoooCnQeH6V06rlFf4a3hzMrh7lXXMXuRx9E13XMNjsdRw4y49LL2fvYg6TicZy+TPpOn2LxjbfR03iM4PAQWcWljHR3Mm31Ok7tepH+5iZKp8+i8+gh7G4PoiTRdnA/dUuW0/jiton1mW02sstrJm1DPBIm0N/Pxu9+i7olKzi9Zyd5lTXULV7B0W2bGWprpnnfbiRZxp2dA8BQeyu55ZXMu+p6epsacWVlI8kywZEhDm58AoDyWXNZestd5JRWYNU9MHK2w3DwuS4c8/KwTc9G9Vo43ujn1C9OMvOSdOiEzW2moMrLaF+Y2ZeWoCZ1BttDADTvH2LBVRW0HR5ixqU3sPP3P5xYrijJ5NUYBXJvqbyZWPzp11JTznZ+MtslHjz9G1YUrfjLl5nbANf8Hzz3deg7BPkzYc0/ndux8FVsLjPLb6uh6/heiuunkRgNI7Ulca8pmehsHtrRizwl/X5uttkwWazYnG72P91JydRsSqZmoiQ1Tu3pR02qzLs8/Vmh62c7J1cvWMLLTz3G7MuvngjWMbw3rC5Zza8u+xUd4x14LV7qM+vJtmeff2J/G/zuNhhOhzVhdsIHnsBaOod5a8Js/c3vJiYVRJGiAg/s3EPW3C9jttlIxtKdZAfaT9M7/yRTP7iGZGcYBIHwrl60SLrYvSivjsz+LFKlKr1ZpwkOD7Ljd79CMplY9cGPk4z7yCxwcmBzJ+gw1HF2E4NyNYXZ9TDciJBRRl+LhdJZH6Xeo5BR4GDvYz8iEhgDwJtfgNXpnCjMA5DNZloP7KO4voGMksVw2Tdg+7+BmoRFn4Lay960Y29498gpq8Tf2004MEbDyks4+twzE8/1NzXizsljoLWZ4NAghVOmEvaPEh7zk1mQC8DYYIzBko9gFwV2nQ6w5uYaGI6BDqHnu9ET6c+D0lw7l1xTwb6dfUy7NptDpna+8fK/8I1V/8XKudUEe5KYrBK9TWOMDaSL6UZ7w3hybJhfx3Ws4T1OEKB6LSRCgABVqyExDkd+BxY3yWl342i3UNqQyXB3+nqvbmE+ibiCv7eHwGA/+dW1KMkEXccOk11WgTe/gMG25kmrySopQzKZ8Hd3IpnMaEqK2iXLiQWDJCIRZIsVNJ3UQAT32lJ0VQMNQtu78WyoeAcOjOFipmk6R57tZsqSfERRQEegosSJ0BUkFT9zrR1OEd7Vj2tFMYIkEC5S2a8fZa5cDZoKa76KFJDpPjXGrEtLOP5CL6mkSllDJrVzfAhZ2TDWASULcez/No6GrwCQiERIxROYzAnG+nvJKa+k69hhbC43BbX1aIoCQEnDdMYHB1hzz8fJKCh6pw6V4Q1QUkkKqmsI+UcZ7e4kr6oWb17+RDFm/dJV9LeMk1/pfc1lqdEUekwh9GIvzmWFAAiSiKXah2g2PssNb4HMChg6TvfJYxTUTKHz6CHMVitVcxcgSmfDdQtr64kExrA6Xaz98CcoqJnyDm70m0MJJIg3+YmdGMFc6sFW50MLJ9NP6hDc3IFjYT6mAidyphU524Zk+8vvZRveOD2hEnquC+fCfJAEBEkk3jyGOiaSV1lD875dZ95/0/di/b099J48wfxrbiIRCSGbTGiaht3rAV1AU1VEUSIyPoYvr/Cv26iMcjj28OS20iUgW9/g3houRnpKJdEZJLJvAEEWcczPw1zsRpAETNl2su6ZijIUQxBAzrEjOf98QI0rM4upK9Yw0tVJfmUNGYVFyIFz59GTGhaznfKZcwmODOPKzCY0mg51GOpoxeZyM33NejqPHcJic1BU38D44ADZpeXIVudbciwM716aO49krJ3skjKi42MMd7aTW1FFTlkliUh4Yrr65atoe3kvvoIiLHaBKz7zRQqq696UbVD8MWKNfuJNfmzTXhVqokNwcyeOBXmYS93pcP4cO5JxL8xwkTpfX4o/bT9HzhRY/w14/t+gYwdkVcOar0HujAvOEgulOP5iLwuvqiCVUJFMIvFIirGBCHkV76/AQsP7j/qqQDXNCFczGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAyGi8Ib6k0kCIID2Kbr+lZBEGqBWkEQTLqup15r3vPRdb1XEIRvAV1ADNii6/oWQRBydV3vPzNNvyAIOW9ku98x3iLY+W3oPYBnxecZEwoI+0e57BOf5dj2rdhrsgg+1Eb8xOjELM51xQzv78Df18PcK69FkP5MZ5cLyMh3kF/lob9lfKJtxoosPK1fh5x6mH4zKHHAja7rJJUkIiJKMoE7KxtNUfDk5KKkUueEkIT9oyixJoZampm5phKbu5Tm/RH6mwPMWPX6ioEkWcSdZWffH9sRhDODyumw+NpyxjduRPJ4sdZPQfb5/uJ9N/z1BEFg+qVXYPP4OLnzRVbf81HaD75MPBxm5V0f5tTOF1h88+30nT7JaG83l9z7CRpfeJYZay/D39dL7+lG1n38M5x44VkqZs8jt6KKzmOHWfexT3Nq5/O4s3NYcvMdNO16iaySUuZccS2ZxaUT6+85eZwDG5/AZLYw1t+LrmvMu+p6BFFitK+bnsZjFNc3AKAqCpGxsYmwk2PbtpBTXsnKuz7Mlh98h+Pbt1I2YzZLbr6DoY42PIUFpCrcELWgPtGPvqoYwSKlC5Z1iOwbQM610+SzcXzPAAD7n+5AEOH6L8yht2kMh8/CnifaqJ6XS0a+A39/hPHBKJrqp7R+gFhwhMs++bd0Hj1MPBxk3lU3kFtR/Y68lhcNXaGo1o1pZ5LUmeJzQYDsxRIFeh4OkwNJkF5jIX9itAUe/Qhc/p9g80IsCI99DO58DPIazjuLqmiMdHWjJJP0nT5JyYp6UiPjBJ/tmpjGVOAgQYzFN95GIhYjGY1SNnMuR7YHOf7SANd/fg7ZJS4yC50MdgQRJJHld9xD64G9JGNR6pevJh4OseZDH6ds2sxz3puV0VHiJ0+ijo5iKivDWleHaDFGUnu3sMpWZuXMYlbOrNeeuGPn2QASgGQYdnwbbvgp1cvXIzozOLR5E3avl/lX3UhecTbMOkCmu4Abv/KvHHj6cUa6u1h47U3IVhtRIUJi78BE+AiA5LOgdEdIto5DK5RW1tDj6ABATaV47iff5erPf43c8gKyipyMdKc7yYuigKbpOLK9cPdGiAdIxWTqBnX++JNWNE1HFKNMX30Pi25IoasJLA4nj33j6xPrli0WfPkFhP0jnNr1EotvuBUWfAzqNoCugbsQxL/82sfw7qP4/en3pZERTKWlWOvqyCotp3X/Hrz5BSy8/hZa9u3Gk5dPyfTZqKkkJ55/DovDwZEtG6lfvpr2wweYmVuAzWVCNkm0n4hQNVXFmWWjrz+Ka1cvvDqEqsRFonEEZ3eYJR/I5t6DH0UURe6ddi8/a/sRH638BK17VSKB5KRtDfnjPPPj4yy/uQZvjv3tPlSGt1veNLBmwE9XQ2QE1nwVbn8EVAWzM5vY0RjFU2I4XC1YnW7MVjuyyUlkfIT+06ewOp10HDlIRmExvacaqZg1n+ziMjRVpefkCQrr6imbOYeB1mb6mk5SPHU6rqwcVCWFKzMTUTZhttiQPBZEm0xwa+fZbRMFRIdRAGR4ewVHorgyrRzY1AkCLF1XSvKPrejhFO71ZRPTqeMJQs91EV9h53+6fsYtdbdQkFMPvkoYbcMm+YgF/bS8HGPq8gIkWcLj07GYgzTuPs1w83HyS+fgm3U1gurFm2smlUggymb8Z0Ip9j72B7KKSwkMDeArKEQyyaz9yCcZ7emkqKYeZ98ASbsTc37+O3fADH8VTVOJhUJ0Hj2MJyeX1gN7mXP51QiixPq/+Ryq5sCV+fqK0gVZRLTLaKEkoW3dAEgZVuzzjaBGw1snEY9SXD+dPY/+nqziUkJjfiKBMby5BRTWTWXaqrX0t57GnZVDNDiOJzsXQRDe6c1+Q7SUSvC5TqL7BwFInA6QGoxgbcgkfix9L1tPaYR39pLziZmYC13v5OZe9ESHjOg0E3qhZ6JNsEiYFzvQVQ1RlpBMZk6+9Dyy2czsy6+mp/EYU1ddypm784iCiC6ArmmYbVZ0TaNm0VJsrr/ytXXmwqq/h13fhUQQ8qanQ0dHToGn4I3vtOGikmgPMvKz4xOPo4eGyP7odCxl6QJu2WVBdv1l90IdHh+OaWd/g0pJUQSTiP6qYnS5wE721AK2/ur7DLe3sujG2xnpbGe4q4OC6joK66aw7ec/xOHLIDg6TPeJo1gcLvKqaggPDeD0ubE5jffHi0Y8TCoZIx4J03pwP768AjoOH2TOldeAIJBVUkbV3AX4Cotp3rOTRCTMlGUryS2velNWr0ZTjD3aTOLMb8PmYheCWURPps9pPamSaB/HvaoE0W7cezBc3Hx5dspnZNF+ZGSirW5RHt7cP3Nv2N8BD94Fl/4LLP8CJKOw+Ytw7Y+gZOF5ZzFZRHRVZ88TbQiiMDFwwWUfv/DABwbDu8WrQ0hU3QghMRgMBoPBYDAYDAaDwWAwGAwGg8FgMBgMhovBG+1V9CKwTBAEH/As8DJwM3D7X7OwM8u5GigHAsBDgiDc8RfM/xHgIwAlJSV/zSa8tbQUDByG/kPw+9vQr9yE2Wrj4DNPUTptBupYAtfqYiJ7+tFTGvbZuQiIVMyehzszCyURRxT/wgJ6IJVQyK/0UFDtIxKI486yYTJp6OV3QddLsOXv0yOAA5qu4bQ4UYJJ3Nk5KMkEsVAQb04euqYhmc6OXpmMxXjhgZ9zaufzE21V85Zhca+lqDYHRdGQza+9vQJQ2pBJ+5FhEtH0yMauTCs+r0Df3Z8HTcNz/fXkfvELSG73X7z/7wXv1nPX6cskc/EMpk4rRLbYKavLQU+pWKx2GmaUYDJbKGooQEkkcTjcTJ2ah0kykze7nIxEDIvdzZTaW5ERcZlNuJY1YLK5qa65AUEDk9XCzPk1mC1W7O5cUvE4fc2niI4H2PLD+ymbMZuhznbqlqwgr6qGvY/8AQQwWdPFSP0tpymdNpPOY4c5tm0zFbPns/yOe7A4HAy2NvPCr39K/Yo1HNr0JJ1HD2NxOam//io+sf9v+ar9K9i2xVGAyN5+3JeWEt0/QGowilzmJtmQhdwfnXQ8Vt1Rx2B7kMh4knAgAUDboWFW3F5JdKwbuwd2/P57BIcGJ+a55O6PMvWSy5Dl928nznfN+duzn5izgjmXlRINJlFTGu5sG7Ityb62fdw25TY0XXvt5bxabAwiQ/DQXX/SHrjgLP6+MH3NvYiCn1QijqhJuNeVEdk3gDIUxVLhxVrjpSwnl9//9xeIBdOdgI9t28zKD34Of5+Ivy896tnsdSVs/XkjmqIQC41jtlqx2O0EBwfJraqmYvY8rI7Jo2gqfj8D//wvhDZvnmgr+M9v4tmw4S/b94vAu+bc/XP8bee2DZ2AZBSbN5OG1ZdRu2QVoihN+ozWNBWb28OSW9Ln7rM//i4Dbc1MW72e6tVzkQ8rKD1hTKUu7A3ZjD/TMTFvqjWMI/fsqHu6rjHQehJPTpS5l1dzaEsHpVM14uF+nD4PDk8C7Pmkggl6v/C3JPsGWPexLzOc9JBR68A/cIpk3MvWH97PrMuuYvnt9xAY6EUQJeweL017dpJTVs5oTxcLr7spfa3jOTuy8nB0mJZAC2bRTESJAFDpqaTQ9VeOvvw+8J44d89QYzFSvb2MfP8HhDZunGjP//d/J/OydYx0ddG8byeB/j4q5ywgq7ScwdZmCuumUjlnPpquUVzfQMv+PWSVlNF+eD/V89bjznYSDw4xPNhFbqmGNbsU182VRLf0oI7EsVR5sVR6CW7uAB3cUQuXV1xOJBXhV42/otxTzs7xF1h/7Y3s+kUnr/SZLW3IZLQ3TPcJP8df6mHJddXv+YLRd5t35fmrxCCUDp5j6z9ONKfueIHsoiCbvvvNiTaby82Gz/4rgx2tODMyGO5sZ8bay9BUDV1TsTgcHHjqcYqmTsNksTLY3oqSTCKbLbgyszBbrcTDIaLjATw5eWiqit3rRTRJ2GfngiAQb/IjZ1hxLCogcnAQa4X3rwqjNLy53pXn7ptMSanseaKNnBI3VqeJeDiFzyqhh9PhZfGTftyXlBDe048WV2Gem4GyUfICeRQ4zhQPmyyMUcIT3zvA1CUFiJJAZDxBXpmFQvFFtj5wio6jhyfWOeOSy6leuIx4OEoiGsGTk4umKhzZ8gzTL1mPIIqIooQzI4OOo0eIBvxMW70W7Vv/Q/ehw1hqayn63ncxF6VDULV4nFR/P6LZjKnw4r1W+FPvtvNXFCUG21uZumINmqaSV1lNeDxAYW4+Q+2tuLOzsbvNr7kcXdMJ7+7HtaaE6IFBUv0RzCVunEsKkF2vPb/h3e/ddu6+QkSk7eA+Zqy9bOJ9anywH6vTiWwys+exB5l75bWc2vUioiBgtjve6U3+q+i6jhZKIsgSSihB9OXBSc/Hj46Q/dHpiJJI9Ogwks+K76pKTPnOCyzx4vFOn7vqeBLH3Fzip/wk2scx5dqxz8tjeKib3qFTVM1dRL/7JIV19cTDYXb8/lcsvflO2g7spWHNpaDD+OAgNo8bly+LQTlAnBSntR6E/l5SSgqLyUJCSWCWzCTVJGbJjCAIVHur8Vq959moBBz4Bcy5C2QLjLbCs1+F637ydh8ew2t4p8/f16JrOqGdvX/SCLGjwxMhJG8GU46drHsaGHuiBWUwirUuA/f6Msy5Dlbe+SG2/vC77PjdL6mev5hFN97Gzt//moK6eqrmLUI2mxFFkb7TpxBFEU1TeP6BH1NYW8+yO+42gkjeIu+2c1dVEkiSzEBrM9NWXYqmqWiKQjIeJ796CjULlnLomT8iCLD4xttxZmS+KQEkr3x+K6PxiQASgMjegfTvFC8PoAxEsdamz2kjgOTd4d12/l5sVEUjI99BVpGT4Gi6L4WuaaiKhslygb4OiRBEh+Hxj01uj/kvuB7JJDHzkhJe+F0Tmpq+IZ1f6cHmNF1wHoPh3eLVISSakUFiMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBgMF4U32rNI0HU9KgjCh4D7dV3/piAIh97A8i4B2nVdHwYQBOFRYDEwKAhCvq7r/YIg5AND55tZ1/UfAT8CmDt37rvvp2/JDDNug56XAdA0DX9/D968fGxuD4o/Tup0ENvMHARJINY4ipRlYVTvwJWZhaqqyOa/vIjC3xfh4OYuJFnE6jQRDQ6CrlN6rY7v+CMw7UZwpUcObhlrIakm0VIKdreH5n27SCXiyGZLetRO6WxHm5HuzkkBJAAt+1/iys+so+XgCHWLX99oxImowv6n22lYUYQogiAIJGIKPceHyc3MRBkeZvyRR/Befx322bP/4v1/L3i3nrsHBw/ysWc/xvy8+VglK5s7N/OFeV/gRy/9iFJ3KbUZtTzY9CCfmvUpHtrzEFbJytrStfzk2E+4p+Eenu95nkA8wJ31d3L/ofu5rvo6mseaaRpr4lOzPsV3Dn6HhJpgSdZCPpB3A+6QxOYffJuF192CkkwQGh1m8Y23sfexBxlsbaa/pQmby82UZavoOnaEjsMHmH35VWQWlzLY1oIrKxs1mSSh6xzfvhVNVQkODbL01juxlOTyb03/w/LxTL5R9nWKT2eRIt0BU4sqjG9sx1afiW1lMbt3DdDyQBN5FR4WXF2BKAnkVXiw2CT2PtlO5/FRZq8rZepSD05fhETwOM//8nssvvG2SQEkADsf/h3l02bhLix6J17Ct8W75fxVa6/m4CPK/2fvvuOkuu97/79Om952Z3tvsLD0JhAIBAKEhHqXHFuWi2zZcWwnLkmcOO3e3JtenN9N7Djusi3LsmT1hioSIHqHhV229za9nfb7Y9DCeoUsGXV9n48HjwfzndPm7Jk5Z858P+8vA+2ncHpUZEUiHddpvriY6xdcTywbQ7f0N7fQUC14iyE5cqbNUwgF5+4EGhvNICt+DjzxA5ZccS1GJkPmiQHcc8K4Z4fJ9cSJPtGJ45ayyQCSVx18+l7qF9yJ83TH39K6IFd+fj4DJ3cxdKqNcFUNqsNBX+sxwtU1ZBLJaSEk2dbWKQEkAIP/+29xL1mKo0KMEn+298qx+7pqV8JL/zK1bcFt4Dk9MmtqAm3gAER7IFgFFYtJZAz2Pfkoex55AFlWWPvxO+k6tB+X18eM5guQjuZQC114FhWjFDmZ+MHxVwc6fm2SRGFFJbse+gXLb/g0s5YnefLb/8qrqQ3hqhouvetP0BI5rHgc7abrSSdOUd48iyd++P+Ij42y4vpbMXWdvY8+yOrbbkfPZulvPU5hZRUzl6/k5V/8hItu+/i0sLXuWDdfe+FrLCpdxL7hfRwdO5pfpyvMtzd8m1nhWW/Vnn5feV8cu0C2q4vhf/wnXLNnTwkgARj627+lftkyCssr8BcWUVLXwEhnB/0njlJcW8/QqTaK6+o5tWcXE0P91C1YTDIaQXO6qJkNIz3D7H30X0lFIwB4QwXM37iZyhUzCSWqyXbGiJ0VruPSHSwrWMKh+BE+1vIx+hJ9PNT2EFXzqtn4h2tI9FgYGYuxvgTte/Of+R37RmlYE6SiuPSd2mUfCu/J49dfBo3rof2ZM22STNbp55UHvj1l0nQ8RjYzjm1aZFMpqufMp/vwQQLFJVTPmU9ksJ/OA3soqW/A6fVRPqOZjn27SUyMc+ln/4DY8DADJ46TSSWRFYXyGbNIx6O4LC+ZtgmslI7/4mrMWJbYk5046j6YIYzvR+/JY/ctlo7rdB4co+vgGPMvqUZRJQKFThKnn891xTBGUrgXFpOb72JL8gXiuTgXlF9AY0Hj5HLG+hLkUgb7nu5G1WScXo0Tu4e4/NYSOg/eM2WdB595goaly9j10H0MnWrj6q/8GX0nj7H4sqsYbD9JKhqhumUe7mCIwvJyqmbNwqe5SO3bD+SvfdMHDuCoqiLX3c3wv/0b8cefQPZ6KfnaVwlcdRWK53VGLv6QeK8dv7lMmqalyxnp6iA+PkbV7DmAhKyq2LZFdNRFYdUbC1+ydZPoox24ZhfimlmIPpAgeyqCZ37x2/sihHfEe+3YfZWRy1IxcxbZZJKR7k5K6hsJlJaRTadoXrWGkc52Xr73bkw9xzVf/Wscp8N030+MSIbkzkGSOwaQ/Q6CVzW85nS2blFw40wCm+qQHAqKVxRQwnvj2I0+3oGzMYT/4mqMsTTRxzpwXVnAiZ3bKJ3RjD9czIlXXgYbLrrlYxx+4RlmLl/FUHsbE/29BItL6T60j6qWefzp+L8zp2gOAWcAGZlKfyUPtT3EqspVHBw9SKWvkqHkEEXuIuJ6nG+u+CYlnpKpGxSogNI5sO0/zrQpGrxWYInwrnovHL+/C/vt2FJFwjU7jDS3CE7/dgVQ2dzChs/8PsmJcbqPHOSxb/0jlmmiqBoun5+JgT4iQwNUNrdg5HLER0eZu24DL/70h8xes47qlnlvw8YK77lj1+3PXxtceBEDJ4+TSSSonjMP0zCQVZm+E8eYv2ETuXSK49u2sumuL573Ko1oluSuQZLbB/BfPPU3KSupE32sg+LPLUDxasheDfkNDCQhvDPec8fvh8zEUIo9T3QhqxJun4N0bAjLsqmdV0RZ/TkCroKVUDIXhg+faVOdUPja182Qv++y69EOlm6uwzJtZEUiOpwmMpSivDH01r4oQXiLTQkhESkkgiAIgiAIgiAIgiAIgiAIgiAIgiAIHwrnO5yyJEnShcDvAY+ebjufYJNuYIUkSR4p35tvPXAMeAj4+OlpPg48eB7reHeVzYeFvweKhiQrpGNRCiuqyCQTeGYVYSV1ktv6SWztwxzL4F5YzEh3B8e3b51WaP5GyadHzTYNi2Qki23ZyIqMhAWzr4aSFsjGiKajJHIJLCxsy2KkqwOn20tRVS1jvd1oLheaeqYjeToRe831mWaG+oUlvNFB4zWXQmGFlz2Pd7Lr0U52PtLBgWd6CJW4MCORyemMkZFzL0R4y8WyMf5+59+TNtLML57Pk11PsqhkEdv6txHJRlhTtYZ7W++lyl9FT7yHweQgl9Vdxg+O/AC/w49u6bRH2rmi4Qq+f/j7ABS5i9g/sp9Lay/lZ8d/RtbMclnpejZ2NxLZdohXHrgXAFlVWXHDrTQsvoCuQ/sZ7mif3K50PIasKJQ1zQRg72MPMdrdycqbf4+Ofbt4+d672f/UY6y4/lYuvfPzrPjMxzkcHuX393+dvWP7We1cTtGvDTKvDOFZcFZRkmmTPjZGSrdoOzgKNgy2R3nlwVNoDgWHUyEylGakN8biS32EKyJ0Hfgh0cEjbP/VT4H8CHO/KZdJY+Zyb9efSThbNjo5Ilk2ZZCO5wNHDDlHSk9h2AZDyaHXW8J03iLY/I9QfDrooGgmbP5n8BSdcxa330HbnizLr7uFl+75MZJXQwk5SR8cJf58D9n2CO55RWTt9LR5c+k0lTO9FNeeGQ0zVOoFSSJYWobL60VRVSqbZ2PoOfpbj0w57oxIBH1gYNpyrWgU8zcCT4T3iarlcPk/gNMPsgKL74AFt+af0zOw7Vvwk2vQd/2QrrZOXrjnpxzd+jw7H7gXU9cx9BzR4UEAGuYtQ9mZwzyWIHNglNhDHWQPRdCqpl5faE1+OjsOACArCiuuuwXV6SaXTpEc62LH/T+bUtkx1tvNcGcrW58dx/yTb/DwK8/z+FMP0TvQS3xsdHI5AJZp8MLd3ydYWsqctZcQHx9l689+SO28RcxYvnLay9/ev532aDtezTsZQAIwlhnjJ0d/gmEZb9WeFt5itq4z9t/fJbFlCxjT/05WIoGVSlLRPJuaeQuQJImyxiZCZRWc3LmdTDKOompkUkkkJPY/9SgjXR043G4yiQlyia7JABLIH2PJiTGev//7pGJRch1nPvNkv4Y5kmZuupHOaCd3H7ubnngPn1/4eZ7te4YXs0+RVhLsfLhjMoAEoLjGT9bOvK37SXiPcPpg0/+B+jX5x/4y2PBXJCYi5NLTz9cOl5NULIqRzbL3sYewsYmNjOD0eNj7+EPMXbeRl++9m/jYCIqqMXPFKq7/2jcxslk6D+1DUlWKa+pIJxJkkknGO/sYv+cYWrGHXG+c+PM9pPYOY+sWvosqkZTz/douCG+Mw60QrvRh6BZ7n+ziyEv9yIqM7D9zH8BKGdiqxP9u/3u+e/i75Mwci0oWTVmOfNYxa+j5+xCKLGMp7mnrtG0LQ9cZOtWGJMmYhk7tnAXseeTXjHR1YBkGkaEBZFlB0RyM9vQgD03NpTVGRrB0nbEf/ID4Y4+DbWMlEgz+5V+ROXjwLd5LwlvChsH2Ewy2n8C2LY6/vBVfQSFOr5eyxlnERrN4/L89hFeSJbyLSsGyyRwZI/58D5kTE7iaC9+BFyF8WE2kJtBzWYxcjrbdryBJEqf27sTjD5JJxJEkGbc/wIKNl3PN176JO/j+C6W1bZvkzkHiz/ZgpQyMoRTxp7txL5oaKqEUuVBLPEiqjFrgEgEk7yGSR0Wr8JFtixB/vof0oVEctQEsN7SsvoRIfx+Kw4GiaaTiUV746Q8IhIuJj46QiceomjWXYy+/QLCklPjYCH8z4+s82vEoRe4i/E4/9524j6aCJnRLp3W8lSpfFdsHtlMbqOX5nuc5PHp4+kY5vLD00zDzsvz9jaIZsPFv4JXvQDYxfXpBOAdJlvCvqvyNRqbe638L6KNpRr93mMRzPcS3dBN/qpuJB9owM/l7HJ5AiJfuvRtFUVl+3S1c/LFPYWQzpONR+o4dAeDo1ucIFJcw3NFOsCQfDn32vQzhgy2aTWDqOToP7mOsrxdDz9G6bSu+UAFGJkNJbR2youAJhlh3x52Eys4/QDy1d4j4lm6spE6uJ46jxj/leWdtAK3QhVrgEgEkgnAWWc7fx7AMm2QkOxmwIMuv09nBFYL134SK0wOohGryvx96zx1o7XAruHwaOx/uYPdjnex8uIPWVwZxv4Hvv4Lwbjs7hMQUISSCIAiCIAiCIAiCIAiCIAiCIAiCIAgfCudbzfRl4E+BB2zbPiJJUgPw3O+6MNu2XwHuA/YCh05v338DfwdslCTpJLDx9OP3HyMHL/0L9O+DC/8A07IJV9WSikygpzOkj4wS3FyPa04Y1+xCgpvryXUnmLXqYkrqGiY7wLxZhRVeQmVTR/5duK6EgC8LkW7Y/h9gGVhYpM00Ra4ibAmSkQilDY0EikvwFxYhSRKSeiZjRtWcFFZWT11XZRX+ggDdR8aAN5ZCYmNTN68I91mFTaV1AfxhF7aeDxGQ3G7k4DlGGhLeFgk9QetEKwBZMwtAla+KtkgbABkjX5Rb7avmVOQUABYWhmVQ7CmmN9ELgEt1EcvF8GpeJjITAJR6S+mN559foy2m8/mXUB1OTF1nzsXrKa5r4PjLLzDS1THZYTc2OkJRTR0Aux++n1BJGevu+Cwb7vwC3lABj/3HP7Fo05XMumgtZQ2N+KuKGa938PFjX6VPHySei7OxfD2FUT8YNnbOInMyQuCyOlwzC3AtLsFcX8tAJIs/fGaE2nCll3Clj12PncA0hlm8QWfHff+XoVNHGe3uwOn1ko7nA3kkSUZ1OKfsx4Vr1uMvP//Oo8Jvp3S/zIJlypSPHkWVKZ7t5pFTj+BS8sfimzJ2Eh74LJTNhTVfhYqF8OvP5dvPQXPKVDaH8YeLueC6m5HSNp6FJXhXlONsDOK/uArZpeJRA5PBDADeUAGbbv8itTUleH+jcEd1OikoLWdioJ/hjnacHi+5TJp9Tz4yefzZtk3kvl8hOV2gTZ3fvWghkiaKgd6X3AFY/ln43Hb4/d2w+Z/ynVkhfxy+/K/g8NJRdTv3ff9XjPT107Zz++TstmXhcOULfmvq5qH3TC3sSe0axL+xhsDmehyNQbyXVjJQ2Iu3pJDl19/C8utuwen3M9rTycwVF5GOx0idFRD2quT4EFVNA+zd8iB6Jl+wb9vW5PPjA31UzZ47+fjle+6msLKajXd+gY/+33/jii99jVBJ2bTlHh07SsgZes0AoQOjB0gZqTe+L4V3lD46SvyJx/MPFBnJMbUjtXvBArTyciRJonxGM5rTRf+J46gOB4suu4q9jz2EJMv4CsNUz5nPkiuuI1xVw2h3J8OdbfiLpxZRxMdGKaquY7Svm0G1m8CltTgbQ3iXleG7sIL4y31wNMmC8AI21W3CoTj4973/ziU1l7C9fztltSFK6wJnts+vUVYfxIqdT76i8L6iaKB58+f75itg67+QiU3QvHLNlMlkRSGXSeP0eNFzWZZdfT3VLfMoqqlF0ZyomkZiYpwLb7iN2OgIiYkxyhpnom3ficPhRHM4qZgxi0BxCbZlATYuy4XemySxY4Dg5fW45+a/DxZ+dDbOBvEdSHjnZOI6zSvK0Fz5a9SmuWGSz3Xju7AC77IynI0h/JdUoxdD0BnkqsarWFe9jhLP1KJ0X4ETX8HU70XLNhRQFN+FPxye0l4xq4VcKn8+9xcVkU2lOLVvNzNWrGLmilXUzl+EJMvkUinSsQjVs1rI/s/3pizD1dJC5uhR4k88Of01HW897/0ivPUkWSabSjH7orVUt8yjfuGifIBnNofTF0B1yqiO334PzEzmSB0dJXhFPa7ZhbjmhAlurifT9Sa/9wnCm5C1smBDX+tR5q+/lMrZc5i5fBW5dBKH24PD7WKst4dQWQWKohEs8vz2hb7DrJyJPpzEGJ8etgZgxXMkd0wNOM11xXDPCRO6tglnUxD/hhqKbp+DGnK+5jKEd5c5lsHVFMK3qgJnYxDfRZU4KnzoEwnio8OEq6p56ec/pvnC1TQsWsrKG28DoHXHS0iSTHRkiFmrLqZ97y7iY2N4kjJBZ5CMkWEsPcZ4ZpwKXwW98V5KPCUk9AQO2UHGzCBLMoPJwdfesOFjkB6HlV+C8oWw5a9hoh1s853bOcL7npUzUUJOwne04J5XhHtRCUWfmY+jOvDbZ34TjJEUdnbqsZnriGJO5H8Xcbg9rLj2ZmRFYaDtBC6/n7Zd2ymfMZuWNeuomj2X2asu5pUH7sVXUEgqFkWSZArKK19rdcIHUCadRFEdKIpK84pV1M5bSPmMWSDnf0ca7ekiNjpCZfMcSuoafqd1GNEsucEkVtrATORIbj9z/n41gCqwoQZnU5DgFfUU3DAD2SN+JxCE31RQ5qG6pWBKW+OSEkKlr3MtP9EBv/oUBCry9xMb1sITfwIjx845iyJLzFtXNTmgAkDdvDAOt7gHLbz3mWcNTmC9xsAsgiAIgiAIgiAIgiAIgiAIgiAIgiAIwgfPefVosG37BeCFsx6fAr54nsv8S+Avf6M5C6w/n+W+J5jZfIeU4WMwchxr41oUVaXn6CGKquuQq1Sij3aglXtBgujjHbhWFNN/opXimlpMc/oo8m+EoZvMWFqCnjGJj2cIV/rwuHKw58cwdhzW/DH4y3DmUvg0H8OpYUpMDyV19UhSvpo/VFaGbYNyVsG8bVnMXbeB4c4OBttOUNY4g7KmZvScTc3cMIr6xkJTskmD7b9up3lFGaqmIMsSkZE0w90J/B4PWmkpBbfdKgro32GFrkLWVa+jUi7jMsc6Zs+fgVt2cYv/WkbkcWqVKubOa0aRFYrlMP3VQ1SpFcyfNxtTNqlUyrmq8HLK1BIWz51DWslRq1ZxwYJFFClhLpi3gLiSojlXTc3NhbS37WX9J+/ixZ/9kEBxKZHBASRJpnxGM2O93Rx54RmWX3sTlbNaGO3uwhMqID4+ir8gzNCpNpIT4+x9/GE2ffZODruHuP2Vr3O7djsAL/a+yH8v/n+Et4KjUSJz+jXmOqLkuqI4G0IMBZ288IuTyLLE3IsrcXpUymeEULQ0mVgv6fFH6TtWztEXn0VWVLKnC+W6Dx+gcely2nZuZ9+Tj3DRbbfTsXcXsdERWpYsZ9aqi1Fd00f8Ft4GDath2GDl9U2M9SZQNJlQiRtFznFp3aU81/0cm+s3v7llZuNgZOHQfdPbzyE2miE6kiJXl8LhdGGYOXLPDCP7HagFThI7BrBNG62hiDUf/SRtO7fj9gVZtfxmMk8NE0kfIdUQpODaRrQSLwB6MkkmmWSkuzPfsf1kK8GSUhxuD5ozX/Cj9/Ux+v/+H0Vf+hIlX/kKEz/9KXpPD54VK/CtXYvi9b651y68t4Sqp7dl46B5Saz6c15+MB88Eh8fo6S2noGTxycn6zy4l5u+9r8JuouJ7+kAY2rnQGMojVLjxNtQjZXIUlu5gEM7tzDQ0Ur1nPl07d/D3Es2cWL7i4z2dDNj+UqOvvjs5Pz5ACYHL//iB1xw7Y30HjkEgCwrqE4nRjbL8ZeeZ87F62leeTHpuE5pQy3VLfngiddzYcWF/Lr911T7p7/+TXWb8Gv+15hLeC+ws1m0mlqyx44RufdeSr7yFcZ/9jP0ri68a9ZQ+rWvovjzf79AuJi6hYsZ7+/l1N5dmLrOiutvYfcjv2beJRvpOXKQsd4eyppm4vR4sS2T4GuE1hi5LFd+6Y/p2LeHilQdkm6SOTGBGc2HqckOjc0jqzhcWclh5zEuq9qEP+Hmj6u/jGVmCZZ6qJ0bxrJsLMOiOOyg0HKQPjGOHHSAbiM7ZKysiexQsAwLSZawbbCzBpJTQQ24UHzimvV9KZeCE4/n/53m8XlJRSJccO1NtO3agScQpGXNJSiyTM/RQ9TMXUDP4QNobjdVs+bg8LhYd+uduGwvmsfF4hVXYqd0kGVYXYumZFh20TWARCQ1hKwoqDjwKH6iygjmeCb/fbDMA4qM4tOQNTEysfDm2YaFPpbBSulIigSWjeRSsA0LSZWxbUAGO21ip3SUkAtHhY9kNMf+p7q47KPNOJHwFzpJPN5J7KkulJATJeAgsbUP6bJiqv3VyJJMlb9qyrqT0SzP/fgYs1eWk8uYJCNZyur9NNqP4tvxf7nupn9g7/EIvcePUbdgMY1LLmCg7QSyolI7dyGZRJyS2npM06TnyCGKa+upmDGL7sP7sUyTkupacsuWEenqRgkGKf2TP8Y9bx7jd9+No7aW9MTElO3RSs89ArHw7tEzGZpXXUxD02JUW8WM60gOiawvh5pzcuFyG2kohSFJqOcYEVofThHf1gc5i+hjp++lWTbRI2MENtW+w69I+DAJOUIMpNM0r7gIjzdEXeMiJFtCkiRsRUbKGFRe2ozlsxke6XzPFRTqIykij5wi2zqB5FQIbq7Hs7AY2XlmOyVVQfY7sFK/cS/asPGtKMe3QoTtvtdJmkz8hV5kr4YadpHaO4StW3Cpk84D+5ixYhVLr7oOI2cgKyrdh/fjDRVy4Q238sqv72XplddTVFlNWcMMUrEo/SdaWdewDpfqokwtozHYyNGxo8wNz+Wlvpfw1/vJWTncqhvLtmgInaOYvnYlPPs30LPzTFvLdZAYBpcI3xN+O300TfSxDjJHx5CcCqHrm3DPKpzyGfZWkRyv8V1MlUGWyPbEUDPQUL6IhrrF2JLNeE8fC9dcgeZ1Ux5sREHGUixqZi1g630/ZukV13Lll79OuKrmLd9W4b3J6XCRmBinumUulbWzKQhVYqs2Ug6spM6G6+5iNN5D+cxZb3rZtmmTOT7GxANtWAkdrdpHwQ0zkQMOzFhucrrE1j4Kbm2meIO4PhaE12OZFuWNIUpqAkSGU4RKvaiajGW+TtBCLgW5BBx/JP/vVZnoOWdJJw123N/O/EuqkCQJWZEY7owRHU5R0RR6616QILwNDEuEkAiCIAiCIAiCIAiCIAiCIAiCIAiCIHzYnFfPPEmSngOm/cJs2/Yl57PcDyynH5Z8Ah7/OigakiTRe/wINfMWsnLTbVijGdIHRtAHkgBITgVnQ5DxXb1EhweZv+Gy32m1Y70Jdj3SidOj4vY76DgwiiRJVN/0JQK5VshGIT2Bx12AR/MwmBqk2q7C5fXRtms7pmnStHQFDvfUQmHbtlDU/OuomDkLRdNQVAWH20HXkSgtKyve2G5xqxRX+9n/dM+U9o03VRC6/Xb0vj6ynZ0458z5nV6/8LtxqS7+qukbJH/RgeLSWdbYTPzlPgLryig7qmFnMyxdPJv48z14lwcp7lfQh1JUXjyL2LM9uOe4CKdryJ6coHZTM/Hne3DUyITdTaT2DRG8vJHEtn7M8XHCSoiqdR/h6LGXGe87cxxMDPTRsmYdhRVVjPf38soD9zJzxUWsuOFWnvvhfzPe14Oiacy5eAMbPv1ZThodPGrt54e7fohu6bjVfPhHkSNMyR4N81QMM5xFq/Sh9yXyK7FAaS5g1yOd+YeWTeehURZcUkA2fooXfvIdZl54ER37d1LScAuZRD58whvKj4g1cLKVC665kdkXreXU3l0cfW4L6267nVBhMZ7ycmSnGBH2nWKmkuzZHqa/rY1AkQvTsDkayVK/Oki8Kc61Tdfi03xvbqEF9RCsgmjvmTZ/eb79HDwBBwNtUZqXKfSfbKXp2gsxmiUyrRPk4vkOwIGNNRzv2o0kQaC4hAULLyX9cP/kMnKnokQf76TwtlnIDoXRvh6cbg+zVq3ByOboOXKQzgN7ueEbfz0Z4mAbJnYuR/qVV5BcLjxLl6Bu3kz64EGwLaTfEvYgvP9kvTWcmv9/Ge4xMHL5Y2u8r4e5azfQeWAvmWQCSZZZcfGNBCcKMDoS+JaXk3j5zLHmbAqhd8VI78+iFjhJHx7DNbOABXM2oEoaO399L8uvuwWXv5iug/vJppLUzl/E3LUbOblrG76CMHPXXcqBpx/DMg1Ux5nPvH1PPMxFt95O79HDRAb7cQcqGe0vonVHnIUbvTQs+u3H5LLSZdw++3aOjx/nxhk38uv2X2NYBuuq13Ft47WTYWnCe4+t64Suu5bh9naM4RGG//VfKfzkJ/CuWIFr3jwU99SArsKySpovXI0/XEw2lWTPYw8SKi3D4XYTGRpEkiSOPL+FwopKyppmYds2qz9yBwe3PE4uk2H2RWsZ7++lsLKa5otugoxE7qFTYFgASG4VJeQg+WQXM2+o4YTRytJTjci742BPoNbo1MwoZMuv2gG4/Y8Wkts7zNiBEbDBURfAv6GGiV934F1USuzZbgJrqkhs78c9pwh9IInkUlBLPHgXlqCVieCn951QNVQug75dk01BfYjqOfM4uvU5SuubCJWVExsbRXU6qZm7gFce+AXFNXVkkglyuSwhtQSzO4la5kTWZSbuOYYZyyFpMr41VShhF66Yh8TT3YQaArjmePHgJ/ncAN7l5SS35T+f9cEU7nlFqCWvM9qqIJyDmdJJHRjGHMkge1TSx8dx1gbQh1Mofge2IuGZX4yV0Ik+3I6Vyocoha5rQit0cslltchPdOKYW0T0mS58qyrJ9cUxI1nMSBY5oLHfeYwTEye4ouEKClxTRwqeGEwy2pf/5/SquH0O2veNUH5tIT4zR3HuJBsuvojIuks4ceQYqXiUjn27WPPRT+ArCNN34ijRwUEG2loJV1Yz0HaC2vkLKayoori2AcXrpezP/ozwpz+NpGlopaUY4+Ok9u4jsPlyMsePY2fysZOuuXNxzZ//bvwZhNdj6ngCBdSUz4aMTeTxdvS+BGqJh9BVDaQPj5LcNQgWaOVeCm6aiaNi6vc42zCJbekifXCU4JUNZE5OoPfn76XJHhXXrMJ345UJHxIuhwtZUSgoqqW0qB5zPIckgexWyfUkiD/fA4aNUuCk/Iamd3tzp7ANi/gLvWRb84FNdtYk8kAbarEbV0NocjrZoxLcXM/YD49M3vlXwi60qjd5T0V496gSzoYg2VNRckkdAP/aKpRSPyuuvYWJvj5cfj+j3Z2UN82i99hhhjvaad22lYWXXcmpvbvQnE7KmmYy3NGO21fMx8s3siX2KCOZEdbVrKN1vJWB5AC3zLqFfUP7uGPOHewa2MVXlnyFueG5r71d/jLY9Ldw7BHIxqD5chg8BIMtUDTjHdxBwvuRbdokXu4jc3Qs/zhrMvHzVpQ75+JqLPgtc795WpkH5+xCssfGJ9sCG2vIDSYxuuMkdgyAaaMWuwleUU+hv4zoU1341hYTebAdW7dwzQlTNKucTR/9AyzNxheZQFHfW+FUwtsnIGn4w2EaGpaiGWr+/n3CJPJgO2Y0B6pM8eV1SNabX7Y+lGTsp8fg9Lx6T4KJ+08S3FjL6I+OTLYrISeOKhHiLAi/TWQoxc6HO9CcCt6Qk65DYxi6RfXsAlz15whKC9VA1QXQe1a4msMH4XNf0zg9CoFiN3se75rSPvfiqnPMIQjvHdaUEJJ3cUMEQRAEQRAEQRAEQRAEQRAEQRAEQRCEd8z59nb76ln/dwE3AMY5phUASlpg2aehbQuWZeMvDFM3bwlkTBLb+vGvq8Z+tVhSkTFOJZi9ai19rUeRld/tzyXLMgDZlEH29AiWmlMGhxd2/Aj8FbDuz4B88ETIGeKwuw//gRE0lxunrDDc20nL6nVTlmtZFraV31anx4uezSDJCpmkSem5OuS8BsuyaVhYxEh3jGQkX0Rdv6AId4EXbBtnYwPZri5khwhzeCdZOZPc04NYo1l8m8qIPdmFWupBH06h9yUIbKwltqUL2aOBaZNtj+K/uIrY091g2ygBB6ndQ3iXl5F4sRcroeOo9BF7qgvXnDCpfcOY4/niMEyb9JYBKtfNBEDPpPEVhElMjLHtlz9j7toNLNp8NQBd+/fy4D/8LxZfcQ2utRvwBb1YhRqvKCf5693/i8/M/wwZI7/c3kQv19Rfw+3Ft2DenR95KrlrEO+KctwtYWxZYsK02HciSvPyMgbaxmhY6CE+coDIoMHWu5/AEypgvD8fQJGKTBAsKSU6PETH3l2suP5W9j/5CLsevp9lm6/lpi//KS5JwltVjVooip7ecXoKRcl/JsVGM5PNDk1lJDVCLpQ715zn5vLDhr+GXf8DfbuhYjFccGc+VOocFE1m/roqJHkYPZvBaTqxC92Eri3EShnIPo1sR5T5F23kO3/6CZZcfg0efCSYOmp75tg4ZjyHHHZTVF3Lk//57yy49DLc/gDVc+ezePM1FNWcCUPRKisI3XQjkXt+gW/9ehwzZ2LpOgU33cTIf3wL78qVqAWhN78PhPesns5eHvvJvbj9Aeat38TOX/8SgO2/uoclV1xLqLSMguIKtJ0mdtggvWcY15wwBbc0ow8kkV0Kxmia1N5hAFzNBcAYmRMTqGUemptXIns03D4/j33rf3HJJz/PKw/cw77HH6Jx6XIu+/wfcmL7y7x8z48x9BwOt5uyxhb8RcXER0fQMxlkRaGi5UY0T4K2fSkyyXyQk6K+sfCQsCfMFxd/kZ54PqDqI7M/AkClrxKPJorz38skn4/0iROEP/tZMAxQVYzRUcxYbFoACUAqFmOivw/N6QDbZtGmK4mNDCMhE66oxuX3UT1nPuN9PSQnxsimkjg8HppXriGbTDDc0c7MC1cz3NFGsLyQg7vjLN5cTzBtYFs2kgTx5/Lnc60tx+b5m7Af7Jtcv9GdoKjcR1G1j6IKLwymSO8fmXw+1xkje3wcz/xiUruHcDWGiD7djX9NJfFnewhsqiX2ZBf+Ei/RZ7opvGkm8muNmiy8d0V7YM614A5Ax4tQPBtfuBCfI0D5jGaMbJb+E8eom78IzeGkdduLLNl8LTY2kiQRDBRjD+awcxayUyX6cPvk6MO2bhF/ppvAplocZV5Q89/zvI3FSHGb3HAKJeggsKkWK20ie1U8c4tQPNq7u0+E96VcTxw7bZI5OYGj2p//zlWXL0L2r61GUgDbngwggdMFnPedIHjHHPSt+e9uskfFnMiS2NZPYGMddtZEUiXSlfDK+ONkjSwl7pJp65flM+f4bNIgm8yvQ5IlWHIHLPsMSu9uYqaPE9u30rzqYppXruH4yy9wwTU34XR7sEyDRZuuwLIsMskkSBKZZJLB9hM4PR5CJWU4qs4U6GTb2/EsXszot79D+NOfyldCKAquhQtwVL6xcFThnSRRVTkLW4fUnuHJgFDvqgqM0TTJVwYnp9QHksRf6KXwpplIav7eljGewUzqpI/kC5Djz/cQuKQGW7eQ/Q5cjUG0UhEGJry9NJeL0rIG9I44OBSwLCRJJr6le3IacyJL/LFOXHcGkN1vf8G5GcthxLIobhU1PP16G8BM6KQPjU5rN4bTcFYICYCrKUTx5xag9yeR3SpalQ/tHMsV3lss00LvSaAUuAhsDGFlTWS3QrYtgq8+QFlBI6d69hIsLcMGsukkdQsWk0kmkGWFtl3bkVWVwfaTzFq1hujIOFVz1nP4oRE2f+xKckoGy7ZYVbEKAIn8ud/G5sYZN1IdqEaW5NfeOFmG5/8OyhdAsBq2/yfkEjD3hndo7wjvZ1ZSJ31w+meY3p98S0JIrJyJMZYGCdSwG8XroOC6JvRlccxIDrXUjW3b6N2JKQG/xkia+Et9eBaV4JpVQOy5Htzzi0ntGSJzZAytxINH9ZAmjd7VBRcsO+9tFd4fTNvG4faiWRpWRkdWncQe68wHkAAYFtGHT6FV+FDe4G+qRjyLGc1hjKQmg0ZepXfHkULOM+dvp5I/fxeJ87cg/DbS6b4UetYkMpQ6q/11fsdweGHVl2DP90/fS5wFF3wWXKFzr0eSaFldQXQkTSaRD4qbeUEpqvMc106C8B5inJU8YooUEkEQBEEQBEEQBEEQBEEQBEEQBEEQhA+F8+oBbdv2nt9oelmSpBfOZ5kfaNk4PPXnkInAgt9D13OEq2spqqzGHMyihJzEnuoCmfwokzYENtfTv/co5U3N2PbvMBwWUFTtxRtykoxkJ9uWrCvEv+MPID0BG/8XuAKTz/XEe/B6vBRunktZLkjGSBMsLSdQPLXAyDJNDF3H4XLh8Hgw9BySLOPyOBntTb/x3ZLS2XrvSWavLMfhUpFlicFTUSb6onifeQb3vLk46+pAemMFy8Jbw0rqZNsiQL5wEsBR6SPbng/zsA0rPzJxmZdcT76oHEXCzpn5sJLTnbRkr4YZzSG51clCTK3UQ+Z0wdDZPHI+2GHfEw+z4obbiAwNMDHQh9PrY6SzA19hGIfHQ6i8Aikbo3TZfH40eD8vHN/O8vLlAOwa3MXa6rU81/McsViEr8l34d4voxe5MU5vU3LHAADSpbU8fv8pypqClDcbTPS8RCpSxq6H7mH59beQSSYwDJ2mZSsAOPbSC6y+7ePseexB+lqPkopH2fzZL6L2DxAIhPDW1KIWvPWjLgpvjFJQxaIlBj2tZ9pkVaJ6TgG1mVqSuSTWm/0cHW2D+z8NjZfAis/D8FG4/zPw6WegcvFrzhIfy9DbOkFRlUztvIWYSR3FrxF9vBPbsFB8Gr41VdgJnY13foGTr7xMJDg07YSsFLmQnfkCdsuyWPPROzi1dxe5dJqGxcuYGOyjfOYskpEJvKEQLq+PwjvuQC0uJv7EkwB4li1l4JvfRAmFQBHF8B80B7c8AUA6HmO8r5cVN9xKx77duP0BXD4fY3291NYvIK0PkOuJowQcOGsCmJEMiZf7wDzTSVD2aVjpMzlyel8CtTCIw+Vi689/RDaVZOcD97Bgw2a8hYV07N1JdHiIrkP7MPQcnmCISz7xRfY8lWHGhV+gtkXDHw4RHXeQiRl0HDwT9iCrEvULit/w69QUjYZQw1uwx4R3khoK4ayvxxgcJLXjFRx1dbgXL0IfHMLKZJBdrinTG3o+4KGsqZnR3hNEhwapmbsAp99PoKSE0Z4uJgb6qJg5m1w6hZnL4vL6GDzZii9cRFFNLdg2Y329OP0XMOeiCnY918PFTUHSrwxOjuAOoPpduCwfUaeCnTUn23MnIyxdX01BkYvc7qFprylzIoJ/fTX6QBLX7EIwzpxTXr1W0geTmIkcVkoXISTvN23PwJa/hNqV+XP+eAds+/8o2PhfRIcHSE6MESwppevgfvxFxcxauYaxvh4iQwNUzZpDwF+MFdGRfQ5s3cQYmf59yNYtzIksaoETK2Pi9gUwjRwZIHsyQvZkBBQJV0sY/6rKd3wXCB8MxnAK27DQKnxkO2OopV5yfXGUoBNjNI2zKYiV0CcDSM7MaCMldKx4vghGLXKDKmOOZ4g92QmyBLZN6mMFlHpLmVU4ixkFU0f3jY+lScVylNT5Ge6MT7Y3LwkS8nVB2z6wTSKFF5PqGKKscSZHX9hCy8UbKK6txzR0xnq6qWhuofvwAVw+H5XNc7BNC08gwP6nH2fmioumvWYrnSa5cyeFn/gE8S1bkCQJ/4YNyF4RRPGepKjIyNiWRa4zOtksuxT03vi0ybMnJybDHDOt44zfewLXjALUsBtjOIWV0CfvpYVvbxEBJMI7QlZV0G1sw8p/b9cUjInMtOn0/mQ+XPRtDiHJdscY/+lxzGgWyalQcH0T7rlFSMrUYkbJpaCWuNF7ElPaFf/04DNJkXHWBHDWBKY9J7y3WUkdVJnUntPfaRQJzHxgtOTVkAfg5M5tlDXOQNU0IkMDVMycTcfeXQx3tlPZ3ILD4+HUnp2MVNexYNPH2f/0INHhFFrER01T1etvwOsJVsOar+V/I5lsq8pfeyeGwTc94EwQXiW5FNRSD7lT0SntSvD8w+uN8QyRxzvIHBoFCTyLSwlcWosadKK2nFl+Ylv/5CACZ8u1R/EuK0MtdGGOZVDOuu+lD6WQQ04sVUYtKz3vbRXePyzbIFBYnL/3pMrYGR1jdPq9AnM8DW8ghCTXG2fsZ8cxxzMELq2d9rzs1VCcKmqpF2e1OH8LwptRUOqhalYBvcfPDBbQsLCIUOnrBKFPdMB9d0DVsjP3Eh/5Mny0FnxrXnOWTFLn5V+epGVVBapDQVYkeo9PEBtJUzlD/L4svLdZIoREEARBEARBEARBEARBEARBEARBEAThQ+e8ekBLklR41kMZWAKUndcWfZAZuXzoR6QLjj6A3TyfwbYTuDw+6ssX4ZpZQPZEJN9RmHzRj1bqITI0QC6dZv6ll/9Oq9WzFnPXVJKK5UhEMhRX+/EGbCTn5RCohLYt0HItuPzolo4qqyT1JP/d8T3KvGWsq14Htn/acm3LJJdOobnyo2gpmoYsSUSGM/jDb7yDm9OjUVIb4OCzvVPaZ88qwllXR/rwEZyNTaC+/aOGCmdILgWt0ofekzgz4vBIGq3Cmy9qeLVtLI2zKXQmiESVMCNZXM35zlJ21kT2algpHcWXL2owxzOoxe5pxZlqyI23oJDkxDgv/+InzN9wOcuvvZndjzxAz5GDACy96nou//Tv8bOxLRxIbOOX7Q/iUByUePKd1PcN7+P2ltu5aeZNXK1shPvHSSsSwc31RB/vACPfKUZtCJL1Kyy5zERRe3nhx/cSrqohNpYfdVlCQlFVjGyWbCpJzbwFdB86wNaf/4ilV11PRWkF0r79FMZTeNatRw2F3r4/hvDGjJ3EV3whq26sYrgzjqLJFJZ76DsRobS5lFguRsbI4HW8iaI0IwO2nS9Mbntmavs5eINORnsS6Nki+o4dYW7zWkbvPTE5MqEZzZF4qY/C35vFUEc74aoaDJ+Ja6Yf48SZQJ+Ca5pQfA4gP6J8/8lWTNPA5ffTcWAPsy9ax8FnnmTHfT+jpL6JSz/zBXwTUdSKCkIfuY3or+5n+O/+Htnno/DjH0fSHG92jwrvcb6C8OT/23Ztp+vQflZcfzNDp9p5/sf/A7ZNZV0zPtuNo8yLsylE9OkuXDNCuGcXkj58OgxKBv/qSmLPnzkPq6VeLMXiuR99d7ItNjZKOh6h/+QxbMtk+y9/xuzV6/AVFFBcO49n7x4lmzIY7pCZv3oe/Z1pXvz5UQorvKy8vpGR7gSeoIMZS0soqZ1+XSF8sMgOB46qKmKPPIKjtha9rw9UFa2iHNs0p02fy2QobZzBoWefQNUcBIpKMA0DsNCcTgbbT+IJBDn03FO0XLSWdCKO2x+ktHEmyYkxbMvi4DOPs/y6W8kkNXY92snSy+uIxLO4vRrW6ZEllUIXkkMm9tApPEtKSW47M3qxUu1l77O9VDYFmVM8fZRYR40/HywVduVHrZWlyZC8V6+L1GI3tmW/I6PdC2+x1OnPxK5t+X8AZfNxOp0U1TSinP4ukoxMoGdzjPZ2M3CyFX+4iNbtW6mZMR/JpWKnDSRNRgk6zoxufJqkyigBB2Ysh29lBdFHOvCuKEct9UyG5UkOhcDFVZPHlCC8WWrYhT6QwhhJoZXnAyPds8PovQnUAhdWxkQtciA5ZOzcWQWUMuBWkdwqkgTGRAb/mkriz/bkn7dsPKsr+PbQ93G4nNQEanCqZwoyDd1k16OdHNs2wMIN1VTOKCAynKJ2hkZt/B60J/4NANOS2PvMIFUt+XDJwVMn2f/Ew8y95FKiI0OUNc3klQd+QUldI9HhIYqr6xgf6GX3g7/i4o99imzqzIjEAProKLm2dnyrVjL6X9/GPW8eyDJGPIbsF9cb70mGji1ZSLKEVu7FnMgH5to5EyUwvYjYUeNHcisYY2nGfnocDIv00VGCl9UTfeLMd3znzEK0Ct87+lKEDy/bskCVkFQJ27YhZ6P4p3/nVsMuZM/0gI+3khHPMX5PK2b09HspazJ+TyslX/TgKJ/6nlBcKqHNDYx+//BkiJ6zKYRWJT4vP0hkt4bid+CaXUjm2Hg+gFQG/7pqbN1EDbkprKwmPj6G0+sjm0yQSyfRnC4UzcHJXdsxczkuvPEjdB7az2BHIwNtEWavLOfl+09y2Wfm4Qu5fvuGnEvFYrjkmzB0BALl4PDBi/+QDwAWISTC65AdCsFNdYx+79DkdayjPoCj5vw/w9JHx/IBJAA2pPYM4awPoC6d+nOnHHBgZYxp82uVPmzDygdP+R1TAv/UIhdooHjdOLwibPLDxDLTpBJRwqEy7JSB7HO85r2CNxKkY6Z0xu87gTme/10i1xXDPa+I9KvHrQSh65pQQ+cfyiMIH0aWZVExI0RxjZ/IUIqCMi+aU8EyXydowcyBqU+9lwiv+/uhy6sRrvSxf0vPlPYll00PFhKE9xrjrOARW2SQCIIgCIIgCIIgCIIgCIIgCIIgCIIgfCicb3XcHvLjikuAAXQAnzrfjfrA8oZhxV3wxJ+Cw48ky6RjMaIjg8gzNSKPnsK7rBQUGUkCM2WQaB1m1so19LUeI1D0u3XCHe1N8MpDp3D7Ndx+B10Hx1AdMlVXNeB7+usw60o4XTyUM3OUeEq4++jdzC+ez1hmjP3D+6kL1E1brm3bZJJJvMEQtmWhag6QJNx+F4nI9OLSc7FMmxlLS4gOp0hMZEGCWSvKcRa6cDQ14WhqItfbi9chCujfSYpbI3RVI6M/OEK2I4pnSSmpPUMEN9eT60uQPjqGb3UliZf68iMCFrlJ7R8hsLaa2LM9YINW5SO1bxj/2mqiT3ViRLI4Z4RIHR4jeHkdsae68qPAAfJ8H6+8+CuaL7yIcFUNlmnRtnsHD/zD39C84iI2/8FX8Rd4GZUHeSx3nO+dvJe75t+FjU3WzJIxMrQUtnB0/Ci/PPFLvj7rj2hIVROjA0yb+PM9BNZW54tDilyMpgaJju5l60+/w4obbiUVjeDy+SipbaCfY7Ruf5GlV9/AKw/cy4GnHqNx6XI2f/HrOGUHvrFhXKksjss342hoQNbe3oIS4Q3SPIx1jvDyg8MES9xYps3x7QPIqkS4ykWBX6Er1kVYdUP3DjjwM3CFYMEtULl0spB8isIGKJoFo8fPtIWboLDxnJshqbBoYw1Hto5SO3cuZjI3GUDyKnMiSy6TQc9kcHk8DA2eQq+tpGRBHU7FhbMsgFpyZoQ1WVHR02lq5szHtm0ig4NIwERfvqPicEcbD//733Pd730ao7WVzKkOfOvW4r3oIjAN9LFR1JJihA+WeZds5OjWZzH1fLiCbVnIisqJHS9NTjPUdwqtqRk3ztNXaxaZY+O4ZhcS2FiLbVo46gLEX+7DTucLJNRSD0qRg9FU95T16Zk07mABp/btwelxs+SKa5BkhYrmhTzx3UFyaRNVk1m9IYA0PszeJ8YBGO9Psu3+dkKlHpbOraX0DYzsKbz/pY8dx9INPMtXoHg8OGfPIrVzJ+4FC7BzOfBODYQyTYN0NEJ5UzP+omIkSWJioB8jq+MJFdC45AIkWaa6ZR5te16hZu4CJgb7GenqpKCsHHcgSN3CpWgeLz2tScb7kxi6xQsPnOK2z8yBwRSSBFbaIP58D1igVp75nJWCGtYFfopsif3P97LwDxfhqA2Q64oBoBQ4cS8sJvrIKXwrK4g91Yl/bRXpAyO45xeT602gVXiRNJnAxlpkpwghed9pXAfbvjW1bcXnSMQsRnviOJwKquaguLYeI5dFUTVaVq/DMk1KG5rY8cR9XH7TH2AeS2PrFsErG5i498Rkga93eTmSW8VM6thZE8mtYusWiZf68F5QhmdeEbYNrhkhHKIQWDgPWpWf3FAKtdCNo9qH3htH9mkoBS6snIk5mkQr9xC4rJ7oo6fyhckSBC6vp28iQ2hdNfKJcbInItg5k8Cltdi6haTJ5NJZioMl7Bnaw+a6zVPWGxvNcHz7AAD7t/TgcCn4Cl14m0bwHfi3/ETNV5BTi+k5PoA76CEQKqC0YQaBoiJAoqC0gud/8j0WX34Ntm2hqCq+ohISY6PMu2QTei5HfGyY8qYZk+s1IxHMyASxZ56l4NZbQJKRNBXZ5yP54ou46uuRZBHq854iK4wnBgm7yvGuKEfvTWDGcqR2DeHfUINrVgGZ06NPyz4N/yU1yJpCbiILxumUahXDAAEAAElEQVQvVoZN/IVeAmurUQpcKEEHWpl3MsRREN5uit9NNDFKoKIQK6EjSRKyX8NzQRmpnafDbR0KgSsbJgN53y5WPDdZkDzJzgcAU+7DtmyMsTRW2kANuXDWByn5wiL0kRSyU8m/d14jQEV4/5I1GSuRy5/fT3/vlxSZ+Iu9BK9q4ERHiqrZ80jFIhRWVjPSeYrRnm4qZs1Gc7mobG7BNHS2/fKnXHjz59n5SJSGRcW4vBpDp+KM9SXPL4REdcFzfwsFdXDquXxou+J43YJdQXiVszaQ/wwbzn+GqaUe1NcIMXs9ZkLHmEgjOxTUIjdI0pkgh7Okj43j/Y0QEq3SixnJ4J5fRPpgfh7JreJfVw2WTXrfCIFLqok+2Xl6eh9KgQvTYzLam8Pjj/5uL1x4X9IVBSOXw3ZKYMjYMgQuqyNyf9vkvQLfxVVv6B6AMZHFGDwTyJhpncDVXEDhR2eDbaOG84NaCILwu4kMpdj5cAeaS8Ff6KL3+AR61qRqdgFl5/o9I1QDTRvyg728ylMIxTPPvSIbZl1YTmw0TTKSv16bfWE5iibuWwjvfdZZySOmSCERBEEQBEEQBEEQBEEQBEEQBEEQBEH4UDiv6jjbtuvfqg350AjWwKovY8cGMXJZKmfPQc+kOXbwBWrKG4k/3ztlctflZYwc6eKCa26kpPZ3292ynC+sT8d10vHTo8BrMqa7ND/S4PybQD3T2fzY2DGubroa27ZpCjVxfOI4mjK9w7xtWagOjcKKKizTRFYUACaGdNxvovN6Nqmz9d6TtKyqoLDCi+aUOblrmNiQif/wYVxz5iD7vEjyawQECG8rZ02Aos/OITucQPU7cS4qxEjlKLx9FrmJFIpHo3B2CD2WJnTLDHKxfOfd8GfmkIukCMyvx0xksSSb8J35NneoBHdGxzZNwp9uITMSw9Kg9eg2IuODBCpK6Tl6GLfPR3nTTMoaGqksdlFQmOOf+n9FR3Ycr5YvXG6PtjO/aD4HRw9y97G7ubbpWi6vv5zNrvWYvxyA5WeSH6y4TmxLN1q9n8OdO0jGJ5joz7/f5NNFaeN9vcxdu5GO/XuYGOinfdcOVn/k43hDRSCFOPRimgsWynjDJbgXL0J2Tu/gbNs20ZE0etbE5bVIToyiOhwUVlRMvkeEt4m36HQgTI7ocHqyWVFkynxlHM8eYtfwLhYnJuDu68/Mt/dH8MknoXLx9GX6SuDmH8Er/wVtz0DDWlj5ByTMEKnuOG6/hr/gTOFFMpJlvD9F1+Ex5q2rwhssI2Onpy1W9qhkjSTBklJCpWVYpomRy9EfPUHdgiVo4anF+e5AkPIZzejZDIauU1xTSzoeo+fooclpooMDZFSF2E9/RtFdn8UcGyfX04Nn8SJwOjEGB1HqxWn7g6SsqZlb/+Yf6TuyH9s0kB1udjxw7+TzLq8PI5fl4Z/+ExdedguzF67JB5HYkDk2TubYOJJDxg7F6LD3MP/WS7FyBjkpw4vP/ZRQTQWB4hJiI8MAqA4nRVX1zLzwU3iCGdw+GUOXaduTYeX1DTiHO1HHelG3P0l6aBaKNrWzbWQohfl6IwcKHyjJl7YiOV1opSVkjhzFSqfxrVmDnc2gBALTptc0B/HIOEWVNcTHRnD7g/iLisG2qG6Zh21Z7H38Idz+AGtvvoWJkTFkRcXh9mDbIEkSDrcbjz9AzewEtS0hQmUym+8qwpZzJJ7tzkcnniY5FchZuD7ZQCw5wbgvyV8d+Bx/W/8fLAvUc7Q9wqxNtXgTer6Yo9CFlTUJXdeEkdIpvH0OtmXjnBHCRoKMgexSUYIO1EI3ALZlEx/PIKsSSCDJEhISpzcYRZVwukWQ2bstlzbQszkkpRz9Mychl0SdaMNpjaPWrMCKRSlrCDLeFydYXEoyFiEdi9C0bAVdB/fSf+I4FXPns+za2+kZOoG32IsmBVGCGuFPzMmPhK3JSA4ZIzaMNZYk/Jm5kLFABixIvnK6WFmT8SwUoWHC+VEDTnwrytFH0lhJndDNzVgZg+CMEHbGQHIqSDZoNT7Cd7RgxXXkoJPH729nqCPGgvVVzFtXg3F4lOT2AfSB5OSy5Y3F+DU/K8pWUBOombJeSZaQZAn79Lk+lzWZuTyIq6mIoaZ9WKZBNhHHPTHI2o8Uk0tHcXpLKEmlSMWjKKrGyZ3bWPfxOzm69TnS0Sgta9ahp9Nkkwnc/gC7HvwlV3/lG1NfbzhM4uVthK66En1gEH1gAPeC+SjBIIN/9dcEN21Cq6h4+3e88MbJMrqeZdTopTBYReFHZmFMZJGdMobXwrGyAs/SMrBstDIv2ulwRtmvTV7LQj54If5CL/511ahFbmIJHTOSJVDkxuESYWDC2yteKCEPjJPT0xSHq8G0kWQZ79JS3LMKMTMGOYdC10SW2b8xbzalEx/LoDoUgsXu877fKXtUZK+GldSntvsdWLpJas8QkUc6wLBQCpyEf282jiq/KFT+gFNCLjJHx8kcHZ9s08o9jKQMJIdGQWUj/cf2ojmdaA4nuXSa+Ogo3oICTr6yDdMw2PjZL6I6wmz6lA6Sgmmk2Py5crCGGWibQFbyH8qSrGBb+XuwsqJgGgaSLCOdfhwoLsXhOiu0pLgZlnwCdn/vTNsFd8LWfwXVDVVL3pmdJLxvaSWeyeuDN0sfTDL2s2MYw2lQJAIbavBeWIGzMTgZQvoqZ93UexepWJZk3MA7sxBPhRf3/GKwbCS/immbZCbijM+J4igpJ3hjE5Jpg0smoUeYiOTQFA9aye820IDw/qQoDryhEB1d+6iqnotDlpCLXIQ/3oIZyyH5VBKqjHz62jURyZKK5ab95qAPJMkcGUEJOjCjucn2TOsE/nXVOOtE4LMg/C5MwyI2ksayXh1vB/SMyXj/WfdBXu9aXdFg7o353xE7tuavcWZdAcq5w9oyKZ2XfnGC+ZdUEyr1YJk2R1/qJzaapnJmwVv10gThbWGc9fueaYnf+gRBEARBEARBEARBEARBEARBEARBED4MRK/8d1JiGB7/GhhZpPk3g57NB5BsfZ7SukZmXLqU7Kko1umgEEdtAF9VEZet/tJ5jdxbVO3D7dcmA0gA5l9SzQu7PKy66jHCu/8CZm4G1YFpm5R4ShhLj7FrcBd1wTqWli6dtsyJoQEkCcqbmnnx7u8THxvF7Q+w7o7P4A44Ud5EB3pdNylvChIsdtO2e4hEJEvt3DCBEhUjMkHsqScp/OhHQYxe/I4bOtXBU//972BbNC5dzu6HH2DJFdfSc+ww8dERFmy8nF0P3sfs1euIjgwxcOI4y6+7mZ0P3kft/EVIwMmd27no1tvZ89iDFFXXECgu4dAzT3PRbbdz+LmnGOvtRnO6WP2RO1h0+dX0HjnIyR0v4Q4EWXvdFdSGUhyXxznqcPNg3/OEXWE21m5k+8B2nu56mrvm30VDqIF9w/tQJYXLyy7F+nE/ZjSLPpzC1VxApjU/irLkVlGXBznwd4/RuGw5SPnjdKyvl8rZc+g7doQd99/DkiuuxeUNYJounL5yxvo1Dj3fR83sEGVr5uLyvnbIjp41aH1liJfvO8maW0rY/8QP6T9xFEVVueC6W1m06QrcfjGy/dvmyIMUNH0aX6FEYjw72TxjQyFd1gH2jezjqvor4IV/njqfmcsHjLxWCAlAySzY/E+QiYIrSG9bnKe/v4tUNIcn4GDDHbOpbgkz1pfg8W8fomVNBbMvKqfjwCiRoRSX3zIT74XlJE+PDI8i4V9XTc5hkUunePz/+2dMw6ByVgsXXHszNtM7bpU1ziA+OsL2+36OoedoWb2ObDJBKhqZnEZ1OHGXlOD88pcY/fdvoQSDOFtakAMBhv/5X/Ctuuh897DwHiNJEmUNTZQ1NIFtM9Jxkva6BroP7aekroE5a9az7Zc/JZtK8tx9/0PT0gvxra4isbU3X7wpg39dNaf6DrLzyV8xOtKNbdl07N8NgLxf4ZJPfg5F07AtkJUStj+Y5IKrKuk59DzPPPbL08fuXGpn3Ebub7+MVF6O/7rrGP/pj1j6F9/lmV90TW6v06NSWj89fEL4YJJkmcyBA0gOB5kjh5EcTmJDQ5T91V8ivUYol9PjpbxxJie2v8T4QB/BklJmr1qL6nDi8vqYuXwVjUuWI8kSctd2ckYhL937M5ovvAjTMJBlhfKmZo6+8DQHnn4c27KoX7iU4tp6ug/uZ+PqO8m9NHb62Jfwr60i/mwv2qowf5f9FpHeCFc3XU0sOcHBRyIAvEIHALVzw2z8ZAvJsQyRoTQDpyJ0HhwjVOZh0YZqqmYVTns9oz1xTh0Y4eSuYdw+jYUba9BzBqqmYJoWlmFjmxZOn4OqmQU43OJr2TstlzEYaI+STuTwhZxkkmFO7hxktDdB9exqypvmILd35YPpdu+gv/UYiqqy5IprCZVXsufRXyPJMmvvuIuBNgfDp2yKa0roPrqDR77/jzhcbppXriY2Msz8CzeSuvOTOOvrKP2Lv0Bxqoz/+gT+NVXEXzjzmRy6thE17H63d43wATA6lCaTyCEpElZKJz6RRRrLcOTFfmwbZl1YRlG1n+PbB+k/GaFyZojGJSUMdcQ4uXuYesAbdKCGXRhjGQDUcg8HCtpoj7bz8ZaPU+KdWkDp8WvMW1vJgWfyQY+XfaYcSUqSS2kYuSw7fvULEuOjLL78anY+eB/peAx/uIg1H/0kRi6DnstRWFWNkctyxRe/ymB7G/0njjFw4hjdhw/hKyxk+XU3EyiZOhq9WlBA2Z//GX1f/sP847IybNNi/Ec/RtI0cR/hvci2kYBTB3axtfXHqJqGbdssuvwqPFqYiUEvTYtLcPmmBnVpxR6CVzUSfbj9zLXs2mqSrwyS3DPEqXIf+18aoLqlgDW3NhP6HYuTBeG3yiWpTAcZTXSxb+tDAMTHR1l1y8fIplKU1M7gV9/qwOFSuOL350+ZdXwgyfN3H2egPYqiySy/uoE5F1Wc17WgGnJRcMMMxn56DE4Xhfk31qKVetAHkkR+3T45rTmRZeL+kxR/ej6yR1x/fpBJThn33CLSh0dPP1bwrqrkVGcc1aXyyoMRFm1o4NjW56lfuJiJ/j7S8SiSpFBQUUXFzFkMtB5l7xMPY1sWNfMWUN40C0VVkWSJdDyBy+dFc7oZ7mzDEwzh8QfpbT1G1awWYiNDZDMZyhqaGO7sYOUNtxIsPX0Od/pg5uUQKAcjkw8eadsC3duh/iKwTai+4N3becIHlpUziTzekQ8gATBtYk924agJ4FlYQurgCOboq9e+Xlyzw5PzDp6K8tT3jhAfy+D0qmy6s4HH//PPKW2YQbC0jPjoCN5QiMjQIDktw/6nH8fl8eDw+GhauoLSxiYwXWjlpe/GSxfeJWY6ApJEx77dHHlhC6ZhEiorp37hEnzhItp27GHhpnxYem/rBE9//8jkbw7r75hNTUs4f9w+0UGuM0ZgQw3RJ7vAyAc/+S+uQi31vs4WCIJwLqlYjv1butm/pQfbsll+TT1VswroPT4xOU3j4mJCrxfcN94JD34eChugdiVMdMAjfwgfq4NA2WvO4vJqLL6slnRCZ/fjnXhDTmZcUIq3YPqgF4LwXmPaZ36/tm0RQiIIgiAIgiAIgiAIgiAIgiAIgiAIgvBhIHobv9MsE1JjsOO/qLro73n8xSPMWLGK2qb5xJ7owrOwBMmhIEmgj6TR+5O4Gs9v5Jtc1mT+JdWkojlSsSzF1X40l8xYX5qdz6lsXHolqpoPVTBtE6/m5YnOJ5gbnktvope+RB9zw3Mnl2fbNrlkCofbyxP/+a+TRfDpeIynvv0tLvuDv8Uy39jIW6l4hnQsx/y1VTz53SOYpzvPHXy2F2l9FbOuvBqjuwt9ZBTZKTrgvJNymQwv/+LHDHe0cdGtt/PSPT+msLKK2OgwfccOs/Kmj/DyL+7G6fEgyTKn9uxk2dU3TIYkBEtK2fGre5h3ySb2PPYgsZEh5l1yKS//4ic0LrmAEzteYqy3GwA9m+HZH3ybVbd8jMFTbdz4J9+k4NSv8OZeYad/BXfu+lfunHcnAGOZMULOEDX+Grrj3Xz74LdZUbqMby34Q6qr12D1pxg53ZE4vX8E1+xCAhtrsb0S7V27yXV0Y9sWnQf2suK6W3ipu5PWbS8yf8Nl1MyZj541cAeqcPqqcPkCpKM5MskJ1t7aSPW8knMGkACM9iR44WetVM8O0rH3KfpPHAXANAy2//JuSmqbaFo2PdRHeIuUzmZsMMPslRVkUzrJSJZwpQ9XrcWf7P8PZhTMYG54DpiZ6fNaxusvW5JBUoiO5XjiO4fJpvLTp2I5Hv/OYW7+82Xse6qb6EgaSYLdj3ZOTpPoiePpTeSPQ9MCSSLxcj+OzSXs/PUvJ1fRd/wordteoLDyI9NW73R7mLt2A3ULFmOZBk6Plx2/umfKNOvuuJOCymqS8+ZR9AdfwE6lMSMRhv/pnwlecw2o04v+hQ8QSaK4YSbXfOUbpOMxJvr7eOAf/gbLyB+Hc9ddippRiJ+cILAhfyxKskRq9xDelvw5+9TeXcy5eD3r7vgMifExNKeLnsMHaN/9Ctd/42946FvDzFtbxXjvKXY99PPJVfcdP8zJsudZ+pWvkD18iOF/+zeKfv/3Sdz/H2y89Gb6EkF8YQ/1C4oIV/jeld0jvPNcLS2Mfvs7uGbOJLB5M9jgaGrCyuZec/pgSSkunx/N7WbeJZcy3tfL+EAfLRevn5xGUU9/dfGGcUXHaV5xEXomg57N4g8XER0eYv+Tj05O37F/N/6iYpKxCHs7nmLVNTdhxXQkWSK5awgrnsM+keSL136RF/te5NH2R6luaGT2ygqObR8AGwJFbqqaCxgfTNHbOs5od4JT+0YAiI2mGWyLcPWXF1J61qiz2bTOiV1D7Hsqf50TGYKhjsNcdtc8BtoiBIpc5FIGNhLppAE2NCwsfqv/BMJvMXgqykh3jFCZh8hQmt2PdZKM5EPMjmztJ1Sa48jz9xEIF9PfegzIX9PtfPA+Nt75BSqbW7CxSIzp+AoCtO4aRJIDOL1FtKxZjyRJtG5/iZY1G/Fl03juvBPJ78PSdYyJLMZwiozMlM9krdKH9CbCHAXhtYz3J4kMJTF0C6dXZaQrgdun8fJ9bZPTjPUlOL59gLG+/Oi+x7cPEmyPMm9dFYmRNHJPjNieFN4LynEv1JAkMDxwUtrOZXWXMZYZm7bevpMRUtEcy66sR5IsLGMESZKwJIkjzz/DwMnjrLjhVl76xU8w9XxAanxslOd/9F3WfPSTDLafxFdQiOp0omoOQqVl7Pz1veiZDAs3bSY+OkKorAKPf3qgmVZWRvFXv4Le24udyRJ75BH07m6K/+iP0Mpeu/BHeHel43F2PfSrKW2B4lKWXnkDg+1RZq8snzaPpMq454ZRQ05yvfH8tezeIcxo/rO74HShcM/RCQ6/0MeqG5rEZ6rwtkikciSjEzz1nW9hW9Zk+0v3/JiLf+9TGKaDOasr8IfdbPnhUa7+0iJCJR4Mw2TP450MtEcBMHWLbb9qo7ja95qhdm+Ga1YhxXfNxxzPIAecOCq9yA4Vc2L6/Q+9P4mZyIkQkg84YziNlTXO3IuyIP5UFzWb6/n1tw8DcGyHj+KqWtz+IDFthNjIEO5AEAmbdDzOnscenFxe96EDBEvK6Dq4j3mXbMLt9xMdGmSw/SSNSy/A0HV2P/ZrFl16Jb1HD5NLp6hbuJgdv7qHuWs30Lp9Kxdce9OZDXQF4Nn/PXWjw40wegJMIx9OUrsKZHEvS/jd2baNMZbGzpgoIRe2bpJti0ybzhzP4GoMUXLnfPThFEgSaqkb1Z//PSoZzfLU/xwhPp7/TM0mDZ767inW3nEXj/zr/8FXUEjzhaspqW8kWFLGkRefZfz07x4Anft3c/kXvkJJ44x35HUL7x0ahQy2vUjr9q2Tbf2tRympa0DP6VS1LCWd0JGVNE/89yGyydO/OcRztG0fIOxW0ZwK2ZMRsGziL/bhv7gKbButwodrRgjZKc7ngvC76G+LTN67BYiPZSlrDFJSGyAylKKg3IOsSJP9Fl6bnf831pb/N9l87nAGI2OQTugcfDYf4BodTjN0Ksbmz88/5zyC8F5hWjaSlD/ETUuEkAiCIAiCIAiCIAiCIAiCIAiCIAiCIHwYiN5J7yRfCVz0R/DEHwNQvOMvuXr91xnxz8AV8qOV2SS29k2ZxT2v6LxXO9wZ45UHT+H2a7i8Gqf2jeAJOqidF6Z1+yDpyy/Ef3paTdLYNbCLa5uuRbd0ZhTM4ODoQdzqmRG5c9kM6USMXDo1GUDyKkPPYepRvAVTR0U+F8uE2FiG5ER2WkeeIy/207ihHC2TwkwkxAjG77DY6DidB/cAoOfyRT1ljTPpOXIIANM0sUyDkroG+k/kCzNlVSWbShKurmW0uwsATyhEbGQIl9dHcmIcgKLael65/xfT1un0eLnskpkUx16iMxzicKicB7ufxLItknqSYncxI+kRvnvou9w480Zu9N5Ao+Sgue8QRXIZ8ad78p2Kg87JQqTMsfH8vzUSz93/PS688TY0lxs9k6Zj325W3/ZxBtpasW0Fp38GHYdNYtszXHCVyisPtpLLGCxYX82ctbW/dZ9FR/LhJ/UL/Wz9yc5pz4/2dIoQkreRWbKAg/drDJzqwOlV8QQcdOwfpWlVmC8u+iIhZ4gyfyWs+jLc+7EzM8oqzNh47gWPHIed34W2LSSXfWcyXORVetYkHdPpbc2PkKanzanTuFVyPXFyPfEzq/RqpHOxaavq2LeHJVdef85N8RWcKUxafv2tNCxZTnJinGBpKUU1dUiShJ1OYyWS2LksxvgY4U9/GmN8DFF+9+HgcLlxuNx4Q4Xc9jf/RGSwH08oRHFNHXJMQh9Kog8kJ6eXHAresjCLN1/DxEAfvnARg+0nsUyTZGSc3qP54qTY6DAA/kIn6ejgtPW273mFhR/9DNauXZT+8R+T7ewg8/STsOUpFv/LPxO8/PJ3ZgcI7x2qStHv/z56dze5rm5cLbMZ/+lPKfvmn59zlpkrLqKwoorI4AC18xdRUtuAy/saI7qGZ2B3vUBhVQ0d+3eTS6UorKiaDIo4W++xw5Q2NnFq/07mV67FeiU+5XmtzEv5aAHr0tdyxYybiY2lCSz2UNEcIjqUJh3Psf3BdtbfPptQsYedD3VMmT+XMRnvT04JIYmNpGl9Zer7xLJsxvuTpJM6weL8dbV+utP5aE+c+vlFolD6HTbaE8fQLWRJIhnJTgaQvMrIRiipbeDkKy9Pmzc6MoSh56iYOZuJoTQj3cM0Lyvj+Z+2UlxTRM3sQiwzzpIrP4PDU0pu/CQqkDt5EmdDI5KW/1vrgyn0wfw1s+zX8C4TYQnC+UtEMuhZC80po6dMJgaTjP9GzYy/0MXx7VM/p6LDaQrKvTTMDKKdjKAPpkjuGJh8Xr6yBNMyOTJ2hIH4ALXJWUSGU3gCDjJJg+hwmsYlpZiGSaDQIjKko2oaei5Lz5GDQL4Q9NUAklclIxPomTTpWJRAuAj7dBGDr6CQTXd9mZGuU2STSZpXrqG4+rW/k8l+P9GHH8azYAFWOo2rpYXQ9deh1VRj2zaSJD5f30sMw2C8r2dae8e+XSy58joalxRjmBaKOvUeUG4gwfjPj+NZUEL82anzywEHsfiZY6t97zBLLqvF7T93iKgg/K7SsSipWHRKAAlAZKAf27ZIxxU6DoySiuXD98YHkoRKPGTiOh0HRqctb2IodV4hJLZtk22LMP6LVqykjuzTKLy1GVdTAUpgeqCzUugSASQfAorfQfZkJF+4fppWF6DrdAgOQPfhBMXVs4gMxiiqqSUZmWDoVDu18xYy3NE2bZl9x45Q2jADQ8+hZ9IMtLVSXFsPksTAiWMUVdVimgY9Rw6yYNMVxMfGkCQJRdNo3b6VqrnryGXAMm1UrZHwNb/E+9AtYFvgLoBld8LO/wbVDR0vQi6ZDyJxTQ8gE4TfxtJNUvuGiT58Clu3UEvcFN42C63Sh9499b6AHMhfLyhBJ0pw+udmMpKdDCB5VSZp4PK18NH/86+MD/QDTlQtQEG5l6H2k9OXMTGBkXmNYGzhA82yTE7tnf47Uc/RQ1x0253c93fHWLTRSe3cwskAEoC1V9ZT2BVl4jsHcc0Jo1V40XsTWPEc8WfyoQnhT8wRASSCcB76z7pGAvAGHex6tBPNqeArdNJ9dAwjZ1EzJ4zbd47vlQX1MP9WOPDzqW3Fs8653kQ0y9Gt/VPaTMMiMpSkpuX8ggkF4e1mWjaaIpMzLMzXCdsRBEEQBEEQBEEQBEEQBEEQBEEQBEEQPjjOK9VBkqRVkiR5T///o5Ik/YskSb+9Uv/DyjJBUWHdN6B+Dcy+klDAyYymcsqbZuFZWIzs0yYndzUXoJz1+Helavk/czquMzGYwrZBc6oYOYtwpRuHlJqcNpaLsaJyBQdHDnLP8XvYPbSb5WXLyZpnivIURcXp8qBoDlTnb3TKlCQyCZXY6TCG38a2bWRFRtGmH4oOt4rq8yA5XbjmzUNSRYe6d5Lm8lBUXQeAquWPw8jQAOHqmqltw4MUVeXf9pIkISsqibFRQqX5Ikojm8Xl9ZFNp3AH8gW6+eenj2zsCxVRsu8f6K1cyBcGn+OJoR3Ec/lOwfeduI875tzBivIVeDUvsfQYq2Ufa44+TemMK8jGikm82EfqwAi+1ZVIZx1T6gVBRuP5gJ99jz/Mqls+Su2CxSQjE8Qn0lTPvR7TWoVlFrNwfQ1LN9dx9KU+UrEcRs7C0F9vpKszPMF8R7RMEopqG6Y9HygWhaVvK9vG4c7/3bNJg4mBFJZlYzp0YnqMo2NHMS0TGi+Bj9wLMzbB/FvgjkehYvFrLzMxAvd9Enb9D0x04kocR1anFjHKsoTTo1AzJ99B8DeLHCVNxreqgskUEFXGv64axe2atrqSugY0xxsrlHN5vVS3zGXWqjWUNzWjOfKfx7ZpoVVXoRSGcTbPQvZ6cc2dizE+jj4y8oaWLbz/qZpGWWMTs1atoWbOfNz+AJIm419TdeZYVCT8l1STy6UpKKugsLKaPY/8mmNbn6PnyEEKK6ry00kS3mAIAH/YjaKFpq2vqKaRuLMapbAQK5Mh8tOf5Z+wbez0G7smED5YjNExJNsmuWsX6YMHSR85SuGtt5A5coTE9u1En3qKiXvvJbnjFVLHjmGk06eP2xmTx63L53vthSsqgeJy9j/1KOWNM1FUlaMvPktRTc20SYuqa4kMDpCOx4i6J9AqzoSaqCUeZJdK7vkeOveNcGr/KKqm8vxPjyMBXYfHOLK1H8u08YddIJ25rp6yOdrU0bllVcbhmn7dqjpksOzJ96AkS6gOGYdbFQEk7wJZk+H0JZ6iTt//xbWlp699p3+99RWGCVfVcODJR5kYlHF5NfSsharJDHWk2fVYlj1POtjxYBojp2C1H2Pi5z/DOWMGSrCI5K5BvCvKzxwLmkzo6gay/afI9va+nS9b+BCQJJAVCev0540kSTh/o9j8XKEc2aQOPXHUQhdK4ZlrVa3Oz35PK2F3mHuO38Onir/Atl+1Y1vQfzLKMz88Rmw0zYkdA8THMhx6cRRZkQEb1eGYfB8piprfwLNoLjemYaK5XEiKgoREtq+P1KFD0NlJcTpH6cAIjj37ybblC6JT+/Yx8cv7iD76KJlTpzCGhgldeRWxRx8j9tBDZNvbMcYnyLa2igCS9yBV0/AXFU9rL6lvxDIVnvj2YUY6pwY2mhmDyIPtGMNpMicm8p+hp0majL2ykkM7hybbSusDaO6p52dBeKs43B7c/umhCG5/AJffj562JgNIABRFPj2fSlGNf9p8voLp9wbeDGMszdjdx7CS+SAeK6EzdvcxjPE0apkX/9qqyWklh0LhDTNQzlVIKXxgSC4F15zw5GPZo+JdXoZuTr3HOdyZo32/Rt8JB+HKapweDyd3bSNcNf27Vbi6lshgP4qq4fL6CZWWERkaQFEUwlU1RIcHUTWNcE1+Om8ohKHnkCSZ8hmzyaYs0rEc0aEUw51xjg40kb31UVjzNVj0UXj532DZp+D4w/lgkr7d0PPK272rhA8ofSBJ5P427NP39Y3hNBMPthHaXD8liMmzrAxH1TnuPZzm9Go43NO/47s8DkrqG5m1cjWqs5b9z0bJZTIEiqcH9PuLilDf4D1f4YNDVTXKGmdOay+taySX1jB1C82l4PRok785FJZ7CceymKfDcjLHxvAsKkE66xj0XPDbj1tBEF5f0W++h07fO9CzJhMDKYxc/vzx6rX8a7IMKJkDq74EtSthyR35f5ZxzlkkRX7Nc4rqEN9fhfc+07JxnH5PiAwSQRAEQRAEQRAEQRAEQRAEQRAEQRCED4fzCiEB/gtISZK0APg60AX8+Ly36oMq1g9PfgO2/jOYORg4CE/+GQwdxkrqRB5sx7OoBP/6GgIba0GWMN5gmMfrKakN4PqNMJN5a6voPT7O6isKceaGJ9vdqptfnfgVsVyMy+svx7AMHmx/EK92VsGmpqF6XKTiMVbf9nEk6cxhtOrmj9J91Gbnwx0kJqaOJv5anF6NULGLwnJvvrjzLMsuq2Tiz77K8N//PfHHn8ASI8W9ozSHmwWbPormcjNwspXmlWvobz1G7bxFuP0BTu3dxcJLryA6NEiwtBR/UTGt215k2TU3kE2nkGSZcHUtR7c+x7JrbkSSJJKRcSpnzaF1+0ssvOxKVMeZEJuZK9ajecq4b92XeDrRTneyl12Du1hbvRaAjJnhH3f/I4Zl8J8XfJP/3XGYppf/k8SKbzCkV5DpyI/kaWdN4s/34FtdSeDSWqQrQ7yw72cYdpamZReSTaXY/dD9zL7oCtZ/+psMnJrB9l8Pcmr/KCd2DuE+PdpVbDR/vCmqzIwl0zsOn83QTQbaI+g5ixnLSokM5ph90XU4vWfeN9VzluDyVb7FfyXhbEpuggUXFUypa1Q1mbJZXn5x/BcUugvzRYhOH8zcBB/5BVz/31CzAuRznA7H22HoyOTD0LH/YM1VRWdCHCRYdVMTwWIPC9fXEK7wkohkp3RgtGM5sp0xAhtq8a+rxn9xFYkXe3FLHmrnL5qczuX1sfCyqxgfyDHaM3VEzje1H/w+Es+/wMg//zOj3/oWw3//95DOkGk/xdj3vof9G6PPCx8eViRH+tg4gfU1+NdVE1hXTXLnIKquksuk2fvogxi5/Lm7Zt4CkpEIABfecCuuYBHz1lUx0B4lEQ1RO3/J5HJdXh8zVlzN8/f14bzmFka+9a3J52S/H/e8ee/o6xTeG+x0muhjj+FfezHhT30KSYL+r32dwT/7c3o++Sn09lOMfOs/6P3SlzAHBicLy9+oQPUMll99PYeefYpsKkVF82xCZZWU1DdNTuMtKGT2RWuRJAmH242z1I93fRWBDTX419fgrA0Qf64HsztO87wwx7YNYBoWTo9GZChN09ISZFVizS0zKa7x4y90snDD1GK8wgovRVXeKW2hYg8LN1RPafMEHBSUeSgo92DkLCzTRpYlPH4HzctFSNm7oaw+iCfomAyZqZgZmnzOV+BEVgtpWbOexZdfhct75rxeO28hmXiMY1ufZ/n1t9J1JEHDwmLG+xMs2jQ1sMQfdhEociMtXUPoD/8YY+kmTK2IzOFxcr3x/LXBJdX4VleijwxhJZOYIyNku3veob0gfBCFSr35YB0LXD6N8qYgxTV+FPXM9W5f2wQzl5dOma92XphMIofamyC2pRvXzIL8vYkNNThmhjhkHOOfdv8Tq8pWEenPYBoWlmVz6Pl8cE6oxIO/yM3eJ7o4sXMUpzeErDqQJJmFl16By+uj/8QxLrzh1sl1SrLM6ts+zsRAP/GxUVKRCQpKS9F7ejETCYzBIQa++RcM/NmfMfCNb9D1sdtJvPgi3Z/4JIPf/Cb9X/kq/V/9Grm+XoyJcdwLF1Jw2234168nuX077gUL35F9LrxJpkmgqJiauQsmm1w+Pws3bma4I45l2ex7shtTN7FyJvpICnM8Q+50MEmuK4belyCwsZaCm2dS8Nn5HGwdJ5c2Ti9LY+7FVUi2CKAR3h5enxdPMMTizddMtsmKwpqPfgLbAk/wzD3YcIWXgnIPAA6XysrrGnG4zhQY1s0vIljsfkPrtQ0LfSSFMZbGPqviy4zmsHPm1GkzJkY0h+JW8a+rpuQLCwl/Yi4lX1yEszH0u7xs4X1G70tg6xaBjfnrTc/SMuJPdtHQXIh8VgDiUEeUeeuqOPjCGIHSSoKl5bg8XnKZNOVNzZPTeUMFlDfNJFxdSyaRIB2PUdUyj+qWefQeP4K/qIS6BUvoOXqIlovWkUkmSEWjLLniWrqPHKBp+SXoGQvLsFEdCrYFWBLj8kwoaQHVeTqI5N9hySfg0H2gOKH9uXdh7wkfBOb49N+S9M44sk/LfyZ+ci7Fn19AcHMdVsZEH01jG68dRB4scrPuY7OmhIcuu6KOZDTLsW39DHfFKKrykcvYuHw+VtxwG4p25lwwZ+16CioqMS3ntEA+4YNN1nzUzFswJZw+XFlNadNMFE1BcypUzSwgWOLh4ltnUtEYZM3ltdid0TMLsSD2VBeh65omj9vQ5noUrwi1EYTzUdlcQEndmYDA+HiaunnhKdPMXF5KsNRz7oVEuuDpP4c9P8o/btsCW/4SRlrPOUuwyM3SzXVT2vyFLgJv8DuBILybTMtGU6TJ/wuCIAiCIAiCIAiCIAiCIAiCIAiCIAgffNOHWnlzDNu2bUmSrgH+3bbt70mS9PG3YsM+kGQVHD5IjUH3jjPtigPJpaAWu0ls7Zsyi3d5Oecrl9aZv66KbMoglzYIlXmQFZi/vhrT1sFxpmNLLBfj2qZraR1v5eX+l1lQtIAV5SswfmPUHpfHi5XLERka5PIv/BGZRByHx4vbH+DAswlMy8Y8R6fNszkcKpZt88yPjrH6lhkkIzlSsSz+Qheu9Aj66QLo+BNPUHDrLTjKz39/CG+Mnsyw72mdpdf8Mb5gGllx07TsEuLjSdZ/+k/IpeNYlsYVX1pOYiLKxR/7I/RsHCMrccWX/oZUJMqKG5ZgGSnSCZPL/+CvySSiVLasRiJLYiLLps//BRMDo8iKi6EOleS4zl93/ZDPLfgcAGkjzaHRQ9w1/y62dG/Bq7r5ZOlKZj/9v8iVrWa0aAXKMFjbIijNRZPbbiV04s/2oM0N0udrpb/9OL0nDtO88mJu/It/oG1Pim0PJJCVLuadHhHWE9CYGEjx8i9PcuG1DcTHs3gCGjUtYYprp49Ue7aOA6M89T/5oIraeWFaVpaz7YF2Fm3+OrIUQVYcTAy5iA+ee/Qr4S3gLiQbNVhxXSOxkTSyIuMNOUlmJrhp5k2MpEbQTR2Xejrw6I10+ladUx5a7iJyWZMLrqzHNGwUVSKXNrFMi8IKL1d/eRGD7REqmwuIjaSJjaXxV3pJv9iL3peYXI7sUdGlHDOXr6T5wtVYpgmyRCYew1cUZNejray8oYVg8et0cDwHc2KCxJYtZxpsm5H/+A+K//DLTPzkbgpuvhlnQ8ObXq7w/if7NIzhFLEt3ZNtkibjLAwTOT6QD9exobShieYLV5NJJpm/4TJ8RWUcfzlFzZwC2vaM0LojzrqPfpzqORuwzByWHWLXYwmMrEnqxCkq/vEfSDz1FFp1Df7LNuGcMePde9HCu8Y2DPyXrMOMRrFNg9gjj571pM3YD35A6LrrGP/Rj4g+/DAFt99OpqsLV23tuRd6NkWjqNDLgk1XEB0eZLSzg/a9O1l928fJpdOYhsHEQB+P/Pvfs+muLxEoLUfVNKy4OeU9AKAWu/EaFhddVnM6hETFMm0CRW4WX1pLWWMQVVMorQuiOhQKyjwMdcYIFrspbwpRWO77jU2TqZ1XyGWfnctAWxS3X6OkLoCeNSis8GGZNrZpIckSvgIXxdWvf50hvD1K6wIoqkQiksXlc7DksloaFhYTG01TMSOELJnERobZ/fB9XPVH3yA+Nko6FkWSZfRshjkXr8e2JC67q4W0lsBX4qDv6AQrrmlgYiiFJ+CgYkaIp757hEsuDxKYeSH21gHMKj+yV0PvTaD3nrk28CxMYidyKOUVMD4GNdWvs/WCcG7+QhdljUFio2mwJYqqfGRSBpd+qoWxviSmaVFaF8Ad0KicGWK0N0lxdf5zLJPQ0Twquc4YyR0Dk8v0bKyiM9pJXbCOy+s2Y7RaONwqtmVPjg5sWfmi4lzWBBte+HmES24vQyKHw+3lqj/6BoaeY/t9P+fKL/0x6UQMb7CAI1ufo7C8gpLaBkoaGvGksxipFGCTOXwIvedMKI97wQJG/+vb2GcFlGaPHsXo62fi5/dQcPNNZI63gmUSuvEGnE2N78xOF94cWSabStK86mKaV67BtvLHUDoRR8/lz4nJaBZjPEP8yS4yR8fwXFCKWuTGGM0H9eZ64uR64hR9eh6uKj8rrmmkrCFILm1iGhaP/ddBNnyihYYFxe/ayxQ+uGxkQKKsaQaXfPIuJEnC6fFiZHNkUyncfoXm5WV4Q05s2yYxniEQzt97LWsIsukz+WtEWZEY60vw3I+Psekzc/EVuM65TmMiQ+zZblK7h5BUmcCGGjzLylA8GrJXA1mCs4vAVAnFky+Al50qjipxvflho4ScZE9MkD0xMdnmaAoRT+ms/8RsxnqTWKZF1exCJMlm5bWNxMdMQqVlSJJEbGSYytlzWbjpCgxDJ1xZQyoaI1xdB3Y+SMzImfjDFZTPnI9pmBSU19O41EEunWPxZTdi2zbJmEHN/BYMPQTYWJaNrEhYp49Xw5Bh5mWguaF3N1zwmXwASdlc6N8LDevelf0nvP/J/ukBDUrYhexSUXwO1EI3ZjJH4uV+4s/3gmXjW16G7+Jq1JBz2rz1C4q4+RvLiI+l0VwKB57tYdejnfl1KRLXfWURF1zVQC7dRi6T4bLP/xGp6AQg4SsMY+RMchkZakQIyYeJkTNIxWIsu+YGJECWZSzbJhWZIFAkseSyWjJJHVmWqGsIUtwdw94zhFzqxYzmJpdjZ00kwD2z4F17LYLwQWPmLErrg9TNLcK2bYIlbkZ7Eyyt9hMbyxAscqHnLIycgcOpvPZCZA0UDTIR6Np2pl2dfh55VSap07Z3iHUfm8V4fwJPwImsSMTH0oB4jwvvbfkQknzIsWmLEBJBEARBEARBEARBEARBEARBEARBEIQPg/MNIYlLkvSnwMeA1ZIkKYD2W+b58HIXwKovwdN/caYtVAuhaiRFxndhBZGH2rGz+dErXbMLUbzn+yeC3tYIOx/uwOFWcbgUjm0bIFjiprjGz6k9Ca75TAuvdodxKA4ebH8Qp+JkXtE8jo0fI5qLsrF245RlWoaRL5hPxJkYyAenjPR0Ub9gGYZpMfvCcnwF5+5kc7ZgkQdFldnyg2OomozmUkgndK64xEI/azozGj3nMoS3nkvKUN/kYN9TMS64qp49T3ThcCk0r6hgyw97WHRpDcdeHkDPpViyqY4tP+yg5aIK+loniI5OsOKaRp75UTv1C4pIJ3QG28e58LpGnru7nZIaP/5wiJ2PjJCves+iaDpzV+QLilJGihJPCcOpYbb2bWXv8F6+OP8urkrpaCd3M770L3n8p/ex9pYqXE9HMaNZ7DoTR7WfXE8cAMmnESuKcnTL81x615cwcj6GOmVO7YORbmNylORdj3Sw+uYmdj3aSep0x85t97fjCTi46osLKPothRqJSIaX7j05+bjr0BhjvQmaLyhmz5O9p1+fjiTpzJkXeKv/TMJZjMJZ7L+3i6HOOJ6AA8u0ySR1GlYW8HzB81zVeBXHxo5xQcUFb3yhnmKYfTUcewiASP0dbLt/HOzxKZPVzCmkpDaAJ+DAE3Tyq3/Yg6LKOD0qDXV+givKzxRyKhL+ddWkpCyD7SfxhgpBgsT4GOUzmhk+dQQj00NstOJ3CiGxEolpbebEBMbwMNj2ZJGf8OEjaTK+1ZX5wDMbkMF/STUxPUp8bJTl194MEhi6jqF7GexwMGNpDYYMa27NBzZlUyatOwZJRiX2PWNi6hKQPz/PXBhE3/I9pBuvQx8apvBzn8MtAkg+tBzVVYw/8wyZo0cpuP1j0563YjFkT/4zTu/uAtMA05w23evxltXjn0gRHRqgqKYOdyDIiR0vo2gamtPJgaceA2DPo7+mpGEmwdIVFBQ48c8JYx4ZA0ByyHhXlBN9vJPS+UWkav0Md8ZoXFxMx/4Reo6NUzkzhG3ZSLJEUaWfoko/My8oe71Nwxdy41vkpnFRyZt6TcI7R5IkiqsDFFcDHS/BC39HjSSDZZHsmUeb52J2PngvRjbLSFcHsqwQHxvD6fVgGQaRoQEqZs3hQO4I2zp30LDtEsYHkvQen8AXcpJNGWRTBk6fSqi2FP2FAczuOKnRNP6Lq4k+1QlmvrO2e6GX2BM/IrD+YrSKCkQfbuF8BYs8BIumX0c2LJr6uKw+BIBlWrzw8xNEB5I0ralADbswxvJBH2qxG7XKj9qr0hBs4L8Pf4e/rv5n9j3VRbOjjOqWQnqOjmNbNsPdMRoXFtO+b4T4WJah/5+9uw6z6zrsvf/deBjnDDOJmWWB2TLHnKTBtqE2bdq0b9M27W0vtPe2F9ok5aRN23DikJlt2ZJlWcw4zDyHccP7xxmPPJZkywJbltbnefx4Zs3Za4P22Wftfdb6rU6V7Y90gw3XfayMzj0vMtR2nNGeTiRJ4siWzVS1zkZWVRRFwRsqgVQG2zSQAGNoeMb2apUVJA4dOm2/8oMDBO+7j9GvfwO1rAzZ48GzfgN6Tc3FOJzCxSZJWKbFUNsJ3IEAkiSRjk5S0TqbfKZ4AVx5ewOprf1kjxQ/rzN7R/FvaiD+TBd2oXg/41lTgVblAWByKMW2n7XPWM3Wn5ykoimA+wyDkAXhQsiajJHLkk2miA0PojqcxIaHMA2DpuVrSUZzDJyMkknmMfIWmkOhqrU4oDAVzfHCfxwlHc/PqHOsN/m2ISTpfSOkdxaviXbBIvZUF2qpG9e8ErRSF8G7m4g+0l68z5Mg+KEWVDGb+lVNdms4moPk2qNTv6u4l5fz7C/aiY1kcLjV4rMz20J3aOx6sgt3QOf6j5eSGBvFGy4hHYty+JUXKGtspiRSzsldTjoPFK/L3pCD1pXl7H32TSGnEtz5pVae+db+6ZARgLnrQsiyhImFoklkUwaKKmMUTILlbtCd0HwjaG7o2goL7ofBfTB4EG767+/lYROuIFqlB8/aSlKvFZ/HSppM6L5WFO+pdkGuPUbiTSGlydcGUUtdeK+pPq0+RZGJ1HiJ1Hg5vKWfrv3j03+zTJu+E1EOvtTHhgfdjHa1kw1HQIJUdBIkUFQNSQleuh0WLkuaEyyjwOCJIwTKis+RYiPDNC5dQXQ0y/ZHOmhZXkbtvDDZfSPkDowBELijkXx/EitV/IbU0RpErxOBYoJwMfUcGefgS33Tv6+4vYF9z/WiqDJuv07brhyWadO8tBS37yz9HbzlsPzXYMe/nCqrWlYsPwunR8O24KXvHsPl0yhkTYyCxV1fWnyxdk0QLhnTPhVCYosH2IIgCIIgCIIgCIIgCIIgCIIgCIIgCFeFC024+DDwK8Cv2bY9JElSHfB/LnyzrlCxfjjxNNz0X2GiE9xhkBSY7MHU5xB9vAPv2iqQQVJk8r0JCmNZ9NoLCy5weou5MPnMqeAFl1cjnzZIRgsYeng6hCSajXJ74+2MZcY4OXmSddXrwIaskZ1Rp2EYWIaJJxDCtm1kWUaRFSRZYuG1NTQujqCo8jltn2XbLLu1nh2PdpDPmliWzfJb61GMjlMvUhT0+voLOg7Cu6OFgswK7kFbE6F9zwgbP9zK8deHKGRNVtxWR9ueMdbc00jn/lEmh1Os+VAjx7YPs/jGGvqPTzJwcpL1D7ZweOsAc6+pJFTqpOvAGNd+pJXDWwcJV3rwXKfRtmeMYFhl8VyTsfxRAH5w9Ad8YfEX6E300h3v5o7QAm6cHCXhXMqrxzsJJztIx+IEXWWkYt0AJLcN4F5ahnN2CMsnkZAnMfJ55l37CbLJMAc2j0wN8oix8LpqmhaXIstQVu9B0tTpAJI3ZFMFZOWdz2GzYJFJzFw2OZmjvNrJinU+jh7O4/YqLF0IIVfm4vzjCGck+yJ4QkPQlZgxoEfzSdzTcg8d0Q4Ojx6mNdxKyHmOM4rFe0F3w3V/DLFe8oHZYEcpr/NR2+RnbCRD19EJCrlTA+cVVWLpzXXse6GXdDyPnDIoDCTx31yPbVpIskRy2wD6HeUgyciKgmWZuHx+bMsiOjTIideeZ841G4Cqd30clFAIFGXGYH7nggXkjh0ncO896LW177pO4cpgTGbJtUXx3zR1Lioy6d0jJFvihCqqkGQJTzBEoLySp//x/6DpTurmfo6RsEkVEQA0p8KaDzXRdXCc9Q+2cGLHCLGRNE1LS2mqt9FGqxj9+jdwLVmCUipmnr+ayR4Pst9P6Fc+WmzDaRoUTsXLOebMIdfVBYBn3XrQNBT/u2zzag7CFRWM9fSQTSXxlUQYOHGU6jnz2f3EL6dfVsjlyCVj2JFOThyQ8Xk0lj80C3Os+LmceLEXDAvz+CT6rCAbPjILVZfpPjjGijsaefbfjnDP7y0lXOm50MMiXI4KGXj+z6DpOrAtSI8zEt5Aom+kGLwIjPd2k00lKWtoxjINNKeLYGU1SXeBE8MnWFG1goxfg0HALrYFAXSnwrp7GnCqKtnuYlCelTZIbhvAd10tsl9DlpOMfuN/kd2/h5JP/goWoKhnmWFVEC6RTLJAqMJNRbmL2GNteFZU4l5afI5gJvLkh9PkzBwhZ4gVTSsIljq5/hNzGTgxydx1VXgCOm17Rlh+awOWZeEK6HTsGWW8P8Etvz6fjn3DjHXtxsgVnyucfH0bDUuXE6mtQ3cVw1IcXh/h6hro6kZ2ubANA8ec2fD449Pbmd6xE9/NNxP98Y9nbL+juYWxb3yd8Kc/PVVi45glgtAuW2YB27YwTQNFUbFME6fXj22DJMmsva+Z6jov44+eChWxCxaJl3oJf3QOyBKyS0Utc6O4io8133jW9WapWA6z8O4CzgThXNjZGIVclsT4CJrThW3b6G4P+UwaWdVJTmZJTJx6juryncrrNs7wDAkgnz11DtumjZXKIzkUZIeKmSmQ3jt62jK59iiueSVIioxneQV6rR8znkMJONDK3EiydJH3XPggyXfHkV1q8VmUZYNhkXyhm8bWIPtGivdBS26qpfPAGKV1xVCGdCyPZUhIsoxkSfjCJeTTaVxeP5lkgrkrGilrCJBNFXB5NZBg8Y21tO0ewR3QWPOhZqpbAtz+xUXsfKyDZDRH87Iy6uaXIMsgyRKmYqE7VCwbQpVufOGp8B1Vh6ZrwROB4SMQmQW3/AWEm96vQyh8wClujcCmBtxLyrAyBmrYeVo4U/boxGnLpfaM4F5Rgayf/Z4sFTv9Op6cyOH2aeSzDtz+ALIiY1kWTo+XbCqJqk+Qz5bQtEQElV5NUrlJAHSnm2JYPTi9PrAhMRX66A07sdIFcgfHppeLP9uNZ20lctCJEnbirPWieESwniBcTInJmf0e5Km2s2lYp9ryEqj623xPHOuFeB/c8Kcw2QW+CsglYLIbyuaccREJmHtNFfGxDKloHiSYe00l6tt87gjC5cKybPSp/j+mmO9CEARBEARBEARBEARBEARBEARBEAThqnBBISRTwSM/A94Y3TEG/OKCt+pKpeowdAi6txVnwckloJCGX3m42LFcV0hs7p2xiPeadz8A/a0qmwO4fBqZRHHgpyRLzNtQzUvfPcbyW+tw+091Xgs4Ajzf/TzxfJw6fx2PtT/GzfU349ffMijUssnEozi9XvLZDLIso7lcgM3EQJLmpec+8DgVzbPryS7mb6xGVmQkCdp2jxBeVByMpJaXU/rl38XRKgYRvZdkh4Pw8rlY//pv1JbX4E4m8Iy8hGvWddhth6n0gCe/DF/PU+ir1iH3DlGqTeK1ryHQ9RTagqWog0cIGu141BspbXsaqWk2jrFefIndeFy3UNj7MrVeDWk8SsJopSfihk4oWAX+bu/fMTc8l6/P/yJGRy8jcgkv/fu/Eqqqxql7uPeBP0aZAFQZjGJPl/TeEQAcD1WRykpkM/XsfKIdp6fAwutr2Pl4JwAHN/fjCenc8cVFHN0ySDqRp2Z2iL7jk9P7v/y2BgJl7zxrrO5SaV1Zzokdp2bplmUJd9BJbcdTVDg1SKTwG0txzb7tIv4LCW8lKzILr6ul6+A4llGcgcnhVgk0K3xl5//jd5b/Dt8+9G0KVuEdanoTzQ37fwSyCp4IAamSTR/+JN7eJObxCerKXCz++GwCb+rEHh/L0n1onOW31mPb4Cxxkt+cIN+TmH6N5FBAlXB6vYCNZZo43B6yqSRtu14DIJeJnddxsBWFst/7MhP/+R2MkRFcS5cSuO9erFQK3y23IDvOMmubcMVT3BqFgRSFgdSpQlUiUFvBaLoHWVFQVI09Tz6KP1LG4MljPPmNv+DeP/+fjHTHcXo0whVuXvtFO5EaL4MdcVx+lcU3zGJyJEXBNAisWEFheJjg/fehB4Pv274K7z8lHMY5bx75kyfJHD1K5X//74x+/esYQ0M4ly7Fv2kTI1//OoH77sOzYT2SpqFFIu96Pb6yKlrXrGOo/SSZeIwlm+5i28PfI5s8dc2dtWYde558FMu0uO6BpUjjHdhmoBg+8iZqiRN9JI2r1s/JthjzNlSz55luMokCqWhWhJBcqSS1eG+25f+B5sYsX0Jcy9O5bzez1m7g2NbNHH75BRbeuAlZVVB1D/5INc3LF9CR6iZjZHiu9xk+e83vM3gyNj3ru9Or0bwogj9vUuhIIPt1rKmQNDOWI/FCD4EHGygMHMcY6KHiL/4HciSCZNk4msRgS+G9lY7n2fbzdu77wgIIuUhtH5zxd+2BeoyMweuDr7OsbBmhiI9QxEek2othmISr6mgez3Do5QGMvEVFk48NH24l4ugh8Mp9+G/6Po//4zYW3XAL7bt3MDHQhzdcQu38Rai6TqiymormFlxeH1ZLC9bRo9j5As558wj/+q8z+cMfYufzuFauJHD//ZgTEySefx7Z5yP08Y+T2b+f4EMPkXr1VWSvj9BHP4JzzpkH/AiXAUnBsiw8/gC2bWPbFrrLhZnPE6r0EKoMIWUt1BLnjHarlSqAbeOaU3JaleEqL5IsFQfaT5m3rgp3QNz7CBefDViWRXxsjEhNLYVsFlQNVdPIJmQ0x6nH7S6fRlnDqWeqnpDOrFUVHH99aLpMliVCU+3MwliG5Kv9ZPaPopa6CNzaiF7rQ6vyYIykZ2yHWuae/lnSZPRqL1R7L9FeCx80StBB/NluModODWrXmoOUNPpZ7ndgGRbbH+tgzqpKbMvCV+IkMZ6lkFOBYuC4UShQWt/IwImjlFTX4lFzbN48SC5jYBaKz2LXPdjCitvraV1ZjsNVDNypn19CRZOfVCyHoihIEiDZIIGEhCxLODwaqnaGwbbl84v/CcJFIDtVHPVnDzvVKj2wd2aZGnGReG0Az6JS1JDzjMtVtwbZ+ZayUJWLmtkh2vYMUd1SQ3J8DMswcLg9dO3bw9yN11M37xxDsYUrhmxIFHI5PKEQRqGAJEk43G6QJUzDRHMozFpWSn4ghRpxYU4FmtoFi+Qr/eib6gk3B1DOdL0UBOGC1M8v4cALfdO/j/TEmbVq5ne9C66tJvimNvdpVCe0PQ/HnwJvGWQmwcjBnLvOukgmZbDlx8eZs7YKh1tFliW6D40TG0lT1RK8GLsmCJeMYdm4pj6TzDc9fxEEQRAEQRAEQRAEQRAEQRAEQRAEQRCuXBcUQiJJ0meBzwFhoBmoBv4ZuPHCN+0K5ArBNb8NL/0lJKc6sVQsBH81skPBd0Mt0UfaYepLe0drEPlNs2Wer9RkjvkbqrFtsAwLh0cjHcux9OZaWleWI0mnZsYsc5exsWYjAEOpIVZVrMKluCjzzJyhzbRMLNsml07RfXAf3lCYugWLkWSFiqbAjBk834nbp2EaFnuf7Zkuk2QJbySE46tfxZyYQFIUJEV0tHuvORobqPjTr2IMDSG73fiXLsRKp1GuXY05MYmsawQW/z5mPI5SsgErFgNJwr/49zCjUeRQiMB1KbAsgku+jDk5iRwMEli7CitfQFnxW0wOdfPz/qf47ui3qe+s58vLvkx/so+lrnrmmdUkhuGxb/2INfd9hGwqycRAP7fc9htkHxskFc7j21BN4qVTg4jdGyrp6IfXnxxj5e3FwRfZVIG+Y5OsuaeJ6HCakmovdfNL6Ng/ysGX+4HiTFOr7moEoLzBT1mDH0U5+wxXZsGi7/gEr/2ineblZcxZU0H73lH8ERfrHmihrCWE/Ud/SGFwEEnX0asuPFBIeGeJ8Qyr7mwklzaQFQlFlbEzGb607Ev87OTP+JU5v0Kp69xDknCFYeGDcPBhSAzhzA7i75uYDhQxuxNIIxkcc8LTi7gDDiYGU0wMFgfMjc8NsXxJKca+UzMX69fX0td3DE8wRNf+PWTiMRqWLGeiv49MvBg+UlJVfX4HwbLI9/biveEGlGAQY2IC2ePBtXy5OA+vcpJLxbO6gtSbBrz5rq2hb+wkPUcO0rRkBcde20J5QxP7nn0SANMwGDzcz+5nhtBdKjd8cg43faSeoX6DZDSL0+Ph9cc6mBxMc8PHWlGrqij76h/jEOfaVU+vrUXSVDIHDqCWlzP6jW9Q+ru/Mz2I3M5mqf/XbyEFAiiBAHrpu7g2v4U/Uoo/Ulw+k8yy5r6Psu/ZJ8ilEjQvX8Vg2wnymTTVc+bT09bJwuNfJT/3C6g1SzH6kkBx4KZrcSmxxzuQAzp2fZC9U20EWZHEbJRXsnwSZm2CtufAyNLX8DEkycVIZzuVLbNYdvuH6Dm0n2wySdOy1aSTlRiWjOZwUiPX0BHt4FfrPwvjsOruJnLpArJSHFypJfJMPHwCyangv6GO2NOdMDVLpHNBCUbPQexskqqvfQ3J60XWNBw1Ne/v8RCuSi6vRqTGAx0xPKsriT3VCWbxuYTeGqTT1091rpr11etpDjRPL+ePuJgYTPHT/7mT8qYAtXNCpBN5NKdGSaWDYMdWGDmEaUs0LFrK8de2sPFjv0rbru0Y+VzxOcKiJfhLTn0GyE4nnqVLyfX1YabT+O++C99NNyG7nDiam5E0Df0v/4LAffeR3rsXrayU8W99CwlwLVmCa+UKXEuXIslvM1ux8P6SZcyCgScYon33DgrZDE3LVmKaBrYto6ULjP7gGIFb6omNdE2HjupNfrRq3xmrtCybjR9p5cCLfSQnc8xZW8Him+re9p5eEM6X5gySSyYorWtgrLeb8d5uKlvnEKmtR3O60T1Olt5ch6wWg5aHO+OU1RUHwauqwrJNdciKRNvuEXxhJyvvbMBX4sAqmMSe6SJ7sBgake9OMPpvhyj/7SX41leTPT6JnSk+b1XL3TiaA+/bMRAuf0rIiVbpoTD1bErSFTyrK3jsO0fJJYvnUWVLgFQsS6DMzew1FWCD5gTd6Wa0u5PhzjbKGpoob2ymkMviKpNZfXcTk0MpsqkCoQoP7XtG8Zc4qZ4Vmg4hAXC4tBm/C8LlyDknTPL1AczxYvCD7NHQKz3EnurCjuUJ3NGEpEinLVfe6GfTZ+ez7eft5DMGrSvLcfsc7Huum1mrKpDVMYxCnu6D+3D7g7SsXks2kcAy0oAIIrmaaLJSDCuzbboP7EVzOGlevgpsCJW5WbapHj2RZ/wHxwjc2US+J4GdMwFQKtx4WkNnDmwSBOGCldZ6ufZjs9n9ZBeFnEnrynL6jk2y+u4mMsk8Lq9ObCxDNm3gPdtzYXcEVn0Otv0dJKa+c6m/Btxnf87tcCuEq7wc3Nw3o3zlnY0Xa9cE4ZIxLRtNLbaNbFuEkAiCIAiCIAiCIAiCIAiCIAiCIAiCIFwNLiiEBPgisAp4HcC27ZOSJJW9/SJXsWg3tL8IN/4ZpEbBGSjOihPtxpQaSGzuxX9jHbZpISkyhaEUxngWvfLCZrHsPDjG4VcGpgfDGQWLSK2X0joffceihN9Uf1OwiRvrbuQ/j/wn45lx6nx13NR0E7qiz6jTKhTwBIIce/VlfOESsukMuXQKy7Rp3ztK3YLwWzfjrCQJVtzewI5HOzENC1mWWHZrPaqWxIrHsBJxrHz+go6BcP4Ulwul8fTOT6r/1CyCaiRS/CFwagCEGp46B0KnOtaqodM72UYCAVaFLPYd7KY73o1LdfG5qgfo2LqF3R0vYRrFjvHy1OChiqYWrJMZAMyJLNnjE/g31YMkYZe6GEsX2PHto2CDbRdnoc8mCwy2RRlsi3Lr5xfQvLSMTDLP0a0D09txdNsgSLD67kbq5p8+s/JbjXTHefwfDoAN4/2dlFR7ufHTc6meHcLpLnaylxwOHA0N71iXcHEYBZODm/sZ7UmgaDK2bWMZNk2rQ2yr3sb9rfdzW+NtM4KX3lGsF8wC3PCnkBrDrP4w+R8kZrzEzhgYoxm0EhcAqi6z6PoaDmzuAxv6O+LMX1+FuykAGRNfvY++4TRWNM/m7/wr1bPmseKu+9n12M8Z7jiJ5nBy/ac/R6Su4byOg6yq5Pv68SxbhpXPo5WVknjxRTEbvIA5mcUYzeC/pR7bsJA0mcyhcSKra3F5fOx47Gc0LlpGNpUkn3nTLNuSAzDIZwye/dfDfOQrC+jYP8BIZwJjavZjgK7Dk8z9wqIzrzw5CmYOfJUgi87zVwNJlnG0tOC/807sQgHPqlVMfve7eNZvQCntxn/9dZdkvS6vE9tWaVyyjHwmzc7HfoGRyzHnmmtxuF3s+OWPqP/Nb+DveQJ54yb8hSrsiSySBIkXe8EGK5qnYkXxmi7LEstvrefE60OU1vpEGMmVKNYDL/9vuP5PMDUfu58/ir8izpr7P8qux36O7nIxa+16yhuaiQ6Nsu+lLGvvbca2bTyahz9c+Yd0vBgnlo5z+JX+YhvEsnH5dRrWlANgZ02S2wfx31gPEhR8OqPxNOrX/4XIpz6Fe+HC9/kgCFc9Cdbd2Yj1aDtJWcJ/w6nnEoQcPDz4nxi2wezQbOaUzGxTxkYzGAWL/uOT9B+fRHMoGHmTusZWOPoY3Pk1osOD1Mydx3hfD1t/9F1qFyyifuFiJgb7mbVm/Rk36e0CeYzBQdJ79hD76U+RnE4in/8ctmGihEL4brsVxXthz1CES8zII2Ez2tuNjY3LH2Coo43GpStQVAVjLAM5k8RLvfivq8G2i0G1znlh1KDjtOrGB5I88jd7sYGmJaXF+3nJxhPQT1+3IFwEdmqcQi5HNplgvLcHf2kZ8bFRqmbNwSioRPsSHNzch2XZWKZNpMbLnDWVaI5iO3JyOM1Id4J566tIRXPsfbYHh1ujIuIke2hs5soMi8JwGveiUsq+uJjCUBpJldEqPGd8PwjCG3LHJ9BrfbgWRLCnAs9TW/tpmBXi+J5RXD6NhdfVMNqTwOXTeeWHJ5Bkidmrw5TVOYmPj+AvLWO4sx1/aTnZdBp3VS2+VJxtP29Dcygce20IWZFoXlLKYHuMUIXnfd5rQXh3tDI3pZ9ZRK4jhjGRBdMm/nwxKD+5YxDvhmrUkPO05VRdoX5hhMREluREjs4DYzg9GsNdCYa7E2z6NQ+J0VE8wTCZRJzBE8cIlleCXcAYH0cteefvHoQrRD6D7nLRsXsHLq8fo1BgcngQb0kpo70Jjr46RN01xecG8Rd68K4vhpJLmkzUrZJTZMSVVRAujfH+FNt/0U7TklJUXSE2muHoq8XviTVdoTAVCDT3mkq8Z2t3x/tg+Eix30dyBFxBiA9CtAvKz/x9nKzILNhYTWw0QzZZAGDWqnI0l3jmLFz+TMtGm+qvYYoQEkEQBEEQBEEQBEEQBEEQBEEQBEEQhKvChYaQ5Gzbzr8xoFuSJBUQ3zifjeqCwf3Q8xroXiikwbZgzl1ImoyVMog/1z1jEc+qigtebbC82E3NMoud3wF8JU7GepMMnIwya3X5dGgCwMLShfzlur8kY2QIOoNnrNOybXKpNKHKavyRMkyjQHR4mIrmuTQtCWPkrTMudybx8RwHX+pj6S112DbIMpzcNUJ4dhLp0ccI3nOPOKuuYJIksbR8KX9b8rckh/s4+cpmuj1H2PboYzQuWUFuaiB894F93PvFP8Od9aAmNN6IpSkMpCgMpHCtLOfpzf00LS5FVmXMgsW+53tYfmsD6Xgeo2DSsqyMiuYAtmWTSxsEytzEx7KnNsYGT+DcBnEMd8VnnJfj/Um2/uQkD3115UU6MsK7JSsyJdUeRnsSmG8KRqioDvN/r/2/+B3+t1n6LHQvHH2k+J/mQdJmgTJ7emb46XXrp2bYjo9mGGiLsuqORkzTxrZtsmNZvJaF2Z+koMvYeRNPIEi4qob+44cZbDvO3PXXsupDDxCqrCJS1/DuwlKm2LaNlc3h27iB+FNPk+/sxLN+PY7GJmzTfPf7L1xRJE0h1xEj1xF7UyG4vSWUN7dQPWceLr+f577599N/bliylskhJ5AEim2JZMIiXOpg4ERsRv3h0mJbwhgfJ/XqNuJPPYlz7lx865fi3Po7kBiEFb8Gqz8PwbpLvr/C+08tL0fSNOKPP4aVzuC/4w7yXV1odXXYloUky+9cyXnQnU56Du3HyOdYcec9xbCIUJhtD/8AbJCGD2GOtrF1fz/zF5TiebnvtDoiIQcPfmEhPQNJjm0fIjmRY8G11ZRU+y7JNgvvE8uETKwYEPn8f4WWW8llaznw3NPc/PnfZvkd9yBJEtGhAXY88lM2fuwzLN9UxlB7jPlTg4PCUikHRiYorS2eG2bBYvaSCPNaAjgse7rNak5kiT/XjdrgZ2fWYrAzzn1f+XNyu7dgJpMiNEF435imxeRQmom+BOVeDWMoPeO5hHJDHV9d8Wc4fSpuzX3a8g73zMdKhZyJ5lDQnQoM7sdyllCoaGGk6wSB8kqq58wDG45v28KqDz1YTCV9l3In20i+8gqRL3yBxEsvMfm97+NeuZLgRz+KXiZycS97soIkyyTHx6mZPR9Jlhjt7kRRVFKxPCFf8Z7cShamBwJLLhX3sjP/204OpqeD8U7uHC6+XoIFG2oIlp9+zgrChbIVHWQYOHGMxqXLkWWF2NgIkizTfXic0lrfjLDGcLUHRT11rTvy6gDj/UlkYO36SjRdQt43gnVNFZJDwc7OvHeXp8JLtIgbLSLOaeHcyD6dxOaZ9zlaU4CaBSX4KjwUcib7nuvBE3RMB+TYls1ge4rKZh1fSSm+cIRwVQ29hw/QtHwV8fFRQhVhVtzRyHhfEkmGULmbfS/0Mn9DFbHRNIFScY4KHyxqyEnBkSTxQs+McsWjIakytmmT74mT2jOMbdh4lpfjqPeTGM+y7Wft06+XZWl64DqApMiUNTYB0HPoIFWz55JPZ8kO9eLdsOG920HhfWVYCrIso7vcROrqsW2b0Z4uZFmhkLcorXLjCDrJUww6f+M8VBr87M9YzLtWIVwpYkgE4VLoPjROLm0UJ6gAVt3ZCBJgMx1AIskSDtfbdKXRnND9KrS/MLPfx6IPn3WRTCLPlh+fYN76KlRdQVYk+o5NEhtOU9UcvIh7KAgXn2m/KYTEEp13BEEQBEEQBEEQBEEQBEEQBEEQBEEQrgYXOvLvZUmSvgq4JEm6GXgYeOzCN+sK5QzCmt8s/pxPFjuiNGwEbxmSV8N3bfWMl+t1PpSLMKtlVWsAb+hUPZpToXVFOaM9CbxBB4p6+mngUB1nDSABsE2TxPgo4aoabGx0lwvN4cBGpvfoRHHA0Tly+TTS8Ty7nuxi91Nd7Hyii/h4BnfEg2vxYmKPPorsFR3trmTx0RH6Dxzk6OZX2PbLX5LPZADoPXKQlhWrASitbMS1X8Z4cQIt4kLST51jki5jNgSIDqXp2DfK3GsqATDyFq8/2sFoT5xVdzVRN78ESZY4vHWAH/3FDurnl6Bqp87/UIWbqtbgOW3zmTqeuf36Gd9PwntDliXmrquacf3xhhzUzAmfXwAJgDsMi38FbBvySdSj38S/ITDjJc65YdTyU9cot19nrDfJjsc72f1UF16HQuDQKNmX+yi0RYk/0k54OI3D6aFh0VKuefBjrLrnAYIVlUwM9OMOBM8rgAQge+gQViJO/Jlnkb1efJs2kTtxHAwD1AvNHRM+yPJZg7wi4Zw/c7ZV9+pKslaKQy8+x9YffYd9zzzB+o98kvUf/RR3/d5XaVx2Fx37kjOW0TRoXlo6Y9Cx26/TMMePbVlM/vCHDHzlKyRf2szYP/4Tvb/zVfK19xY74b7297DrP4rvKeGK56ivx0olcc6fj2f9emKPPgqWRWb/PoyhoUu23sTEKJrDybyNN2JZFqru4OALz5CcGGfJrfcQ1xYg55N4vXDs8ATqosiM5V2LS0nvGsJ4vB2HYRMbyVBS7WHXU90ce22QQl6EOl0xhg/BU18pBiQBStdLrFizANu22PrD/0TRNCRZomb+IhqXrqD38H72v9RHaZ2PdDwHFAMcnG4VI2fiK3HiCztZUO3Ber4HSZaQvafCHpEljLkl9B6fxOnVSG99BcXtoXAJ3w+C8HZSsRyv/7KDgZNRytwqnuXlxUE3U5SQg7gMHqf7jAEkAL6wk1mrymeUrb2vGX9VBK79Q+INHyVYWcWx17ag6RqyrIAEi266lZM7XiOXTr2rbc51dhJ/+mmCH7qb4b/+a7BtfJs2YSsKep0IOftAkBUs06SsoRF5avBKaX0TlmniDjhxlrvRqmcGM/muq5l5PX0TzXH6PbjuUlE0cW8uXBqGpGMbJtWz56JOtRVC5cUQaU/AgaKeeiahORXmrq2aPtcB/GEXkgTr1lciPdOFcXSC/P5Rxn94FP8t9TPWpdf7UcXgY+E86FWe09qh7jWVvPT94+x6sov9L/QSrvQQHUnTe3SChdfVABAbyaLpHgJlFcVABYeT0obiNXqirwdvyIGiSPQfn6Tn8ATbft6ObdsYeYvhrjimee7B5IJwudCqvahvCS4L3NmE4tPJ98YZ/dYB0juHyewdYexfD5LriqFo8nSAD0D34XEWXluDJ+ggm0rg9PqK7V6gcclSUtFJ3G43xujYe7pvwvtL1R2k4zHKm5oBUBSVYGk5YGMZNisWlyIZ1mnXa3NuCb0nJmecY4IgXFzut0xIMdQVY/H1NTPKVtxe//bBlu7I6f0+mq4rfq94Fg6XSqDMzb7ne9n1ZBc7Hutk4GQUt18/310RhPeMadnoU/e24is+QRAEQRAEQRAEQRAEQRAEQRAEQRCEq8OFjkj+I+DXgYPA54EngX+90I26YkW7oGcb3PhnkEuC5oLJToj2Ypo1ZNui+Dc1YKULyE4VM57DjObQLnAGwbHeJK0rylEdCtg2tg1jfUlcPp0VtzdMz872btiWiTsQIDExxsDxo0TqGojU1iOrClWtHkzj3HseyIrMsk317H6qC9suzli7fFM9unMM6uvQqqqKA+iFK1J8bJRH/t9fUtE8i7adrwGgahpIEkY+R+/hg6z78Ceo9DdjPl8MJ4lv7sN3bQ22aWE7VcbyFj29CQCiw2lClW5W3dVIdDhNeZOfunkleKcCfcb7krz8g+MA7H66i2Wb6pFUiVC5m9I6P/4S59tur2XZTA6l8JY48QR1UtHi/PaSBKs/1IT+drNiCZfccEecRTfUFidUlySMvMnkcIrSOt/5VRjtgcwE3PBfIJ9C0j245N3IH7uNwlgeNeTAWe9D8ZzqKKw5Feauq+Toq4NUtgQpD+jkRzMzqs3uHcE7rwZ/WTnd+/eSTsRoXLIcSVawL6DnVmrrVkBCb2hAr67GyuXw33EH2ZNthMJn7/goXNnS8Rw7HuukNuwkqMr4b6nHyhjIbpV8TwLdcLP01jsZ7e1mvLeb5OQEZQ2NDJ48hpE3qJ+/hO7DxSCSRTfUoHmcbPnuMRZcW4MsA5KEWbCwkCgMDDD+rZlNQWN0jGyulOlutHv/E1Z/DnwV7+lxEN57kqbhXLQI2eXCymQIf+xjZI8fR9Y0sm1txTbeJeALhzmxfSv9x4+w8u776T6wF0mWueHXvoAkN/PUT0d56BP/H4skH7/812EO+3WW3tOCPJ5BdqkUBlLkO+MAhBwyuktl9uoKtv60jbZdIwTKXFSKmSmvDKMnYPQoeMumP+vrAip3/s4fsOepx4uzvi9bxZ4nH2Giv5cbfu03KG1qoG33MLNWFa9hg20xjmwdRJYlFl5fQ0NLAPOXbcBUm3VjdbGhqMmMFSxefaYH24Y1N5XiPu4ks38/zsWL38+jIFzFeg9PsPe5HuZfU4HUmSWVt/BvasDOGKDKSBEnBac6I3jsrSYHUhTyJqvuasQ0bFRdJh3NYqFizf0oqaiH7PgAN37685x4/VX6jh6mZu588pk0plHA5Tv3drqdz5PcsgVHczPRn/6M0t/5ElYmi6RpeDZsQK+pfudKhPefkcPI53EHgrTv3oFlGjQvW4VpGkwMJilTZfRaH655JVg5A9mlkT08jnNOGL18ZhhDoWDi9OqU1fsY6U5Ml6+9rxlf+O3v7QXhfNnZOIV8FqfXR8fuHUiKQvPyVZimhZEzcXpUVt7ZOD0q67VH2rmzZhEub/GOqHVlGdGRNGrbJIU31WtF89gFi8jnFlIYSqH4dPRaP6r/wgOqhatP5tgkntXFkGZMC8mhkjk4SmVTgP6TUbwhB42LI7TtHiFS7cN402e57jbRnE46du/ALORpWraKwbbj6E4Xqegk1bOD5LMG4/0p3H4dh0tl99PdrLijga6D44Qr3YTKRXiO8MGhhpxEPjWPfG8SK1VAq/Sg1xQD0TL7R+Et2TrJbQOEPz6XNfc0seXHJwGIj2WYtbocT7ASyzyGr6SU/qOHiI+PUr9wCb5IGYV0HFe9CM27mtiFDNg2Rj5P1/49eIJh6hYswrZtmheWwIs9xEcyp54bmBZymZsnnuiivNFPyVuC+QRBuHjq5oXZ/bRKLlXsf1BW52O0J8Hqu5swChaqJjPYESUZzRGIuM5cSbQX+nbM7Pcx0Q6TXVA294yLKJrMohtreOWHJyhki0HXjYsjb/vcRRAuF6ZloynS9M+CIAiCIAiCIAiCIAiCIAiCIAiCIAjCle9CezS4gG/btv0tAEmSlKmy9IVu2BVJ90DfLujeBpJcnBEHYPmvApDvihcHPKoSmDbY4FwQeZsKz03XgTE6949RUu2lrN7H5HAaCdjw4RZc5zmzjmWaOL1+2ne9jr+0jPG+HkrrGjDzFuMDSZqWlp5zXYmxDB17R1l5Z7Gjs6JKnNw1TLh2GONfvknwwQdBPfOMt8J7Ix3Po+kySBKFvIHLq5NNFpBVCUWVyWcMnB6NfNYszpKpK+RSBRweDSNvYdsWulMlmyqgO1Us08Y0LJxejaG2k4x0thOqqMLl85OORTm2bQtr7/8IOx/7OSNdHSxetYmSSC1RTgBgZwziz3WDLJHeWM1zv+xkzYea0J0K+axJ574xug+O86EvL6WqJThjX+Ljp8IgMokCOx7vBOBX/uvqdwwgAeg6OMYz3zwEEiy9ua44iESC8gY/pfWnD6DLJPIomozuFB3ILrVC3uTEziES41nqF5RgGhbdh8ZpXVHOrJXnFnZgGhapWA5NV3D5dHD44MTTcPyp4ozd/nraZv0TL33/MLIiY5oW1350FnPXVaFMzf4UG8kQHUqz6q5GfCVO0tHcGT9sLdNivK+HbCqJy+en++A+5m64Hk0//wFGtm0Tf+IJAnfeyfi3v42VTKI3NBD50peQJOmdKxAuW9lUHkmScLjf/efhSHeCw1sGqP1QE5n9o2Sg2NaYCgzTFgQZ7+thpLONYHklifFRHG43tmVxdMsL3P3761h592x0p8Lz3z5Kw8ISRrpTjHSnZqwnUjuPsCNzxinQLNV/6hd/NZgiXOxqoVdXk3zhBWKPPgaGgWfjRqSKcgo9vdiFApJ28dt4gfIq1t7/UXY++jM2/+e3aF6xmlV3PUAmGae0sQJvSYJ0fBKXp5/7/2A52YyF6lZJPNOJnTFn1hV0cOcnZnPkwBizV5fTe3SSbCrP+EASt1+fHkwqfEA5p65NnS8X/5MVHO4IzZ/diqTpdO3bxSvf+zYAczdcj6wqdB8epnlpGUbeJJk3SEZzzL2mkvH+JAdf7qO5yc90H2zDIvFiL0jgvruJ8USB5uWleIMO3IkOEs8/j++WTRjDQ+/P/gtXvZN7hgEorfAgTWYpjGWIP90FigSWjeeGOsrXVU6/3jQtYiNpJBl0p4aRN0nFcnTuG6Nz36lZ3Z0ejXkbqxkfcjLeHyNUYXLghZcoq28gn81wYvuruHx+rvvU51C1c7+OZo4ewxwZxZgYxzl3DqNf/wYAvptuwnf7bRfnoAiXnqyiqCo9B/cCoOkO+o8foWnZKqobg8gpg8T2QZAonouGXfz5LU1Mo2By5JUBtv70JAuvraFhYQRkqGwOUtZwniGUgnAOJEVDd7g4uXM7iq5hWxbD7SdpWLoCh0dnrC/B7qd6ZiyTjuXRJYl0Zwx5IMW1t9aR3zpwWt1WLIfz2lqcTcH3aG+EK5Zpk3i5B6aCQzFttKYAs9dUUDUrSC5jcPz1IdY/1IqqKzz/70fwBB3Uzg0x1KGhaTKKqiLLMvuee5IVd97LxGAfY73d1M5bRD5jMtIVJ5sqkEsbRGq8xEczmAWL1GSWbLJAeWMAWRbPooQPBjXsQg2fPsj8TFnRtmlTGEzRMDcED7USH88SqfbQtncEt99Bw/wSDh94jvj4KJ5giLHeHhRVg6ZZOKub3oO9ES4XpqTiDoQ4/MrzuP1BMok4sZFhfJGyYnA6zHhugCzhXF/NrFUVhCs95/39rSAI70x1KKy6s4l0PI9lWvgjLnY92U02ZRCu9DDWl2S0J0Fq8m1CSHQ39O+Brq0z+30s+9RZ15uOF3j14TYWXVeDJEvIisRwZ5zJoTQV4h5AuMwVQ0iK34VbFzChhiAIgiAIgiAIgiAIgiAIgiAIgiAIgvDBcaGj4l8AbgKSU7+7gGeBay6w3iuTww+rPgev/f2pjihz7wJPKYrbgWthhMyBselBwUqJE/UcQhHeTnQ8SVmDj7J6P+P9SboPjxOp8TJnbSXbH+mgfn4JGx5qRXqXHYIlWWa0u5O6hUvQnE7CVTXEx0YJ18zFXyJjFqx3rmSK06sxMZhix2Od02WKJuO5tgbl136N5NYteDZueFfbJ1wciYksx14bpGPvKAuvr+HEjiGCZW48AQcndw+z+MY6ug6MojkUSmt9HNk2yKLrahhoj5LPGNTPj3D4lX7mrK0gOpJhYijJnDWVHH65n/pFEQpZE0WZBKB91+us+/DHefn7/854bzeHsxlW3/MQc+dsJPmjDvILY2iVHgqDpwa9a80BujqLsx3vebaHZZvqSSfyKKpMw6II5Q3+GfszOZRC1eTT9tNf6sLheedB0ImJLC995xiWWXyP7n6qG0mWuP8ryyhvCMx4bTKa48SOIQ5t7sfl01jzoSaqZ4eQldPXL1wcqiYzZ20lmUSetl0jKKrMitsb8YTOrbNudCTNrie7OLljGG+Jk40fbqW2tgx52adg93+AZRKd9yVefjSLbRcDSwC2/Ogklc3B6ZkJXT6dwfYYg+0xlt/WQCSg4Qg7MSey0+tyLS5lJNpLfHSU+kVLiusfHsITCOLwnP9ssd716xn7p39m8oc/IPjgA0i6A8fsWQz96Z9S/6Mfovj971yJcFnJJAt07B1hzzM9qA6ZVXc2UjcvjOY49yZcbLQYvpQBPBVujKH0dFvDMStIwlKYd+2tBMorsG2bsd5uDjz/NEtvvYtcOsX4wCT7np+ksjXA2nub0d0q3pCD5GRuxno8fp1c/wkC995D9Mc/mS5XwmGUwNQ1UlZh0Yeh/XlY/ukLOjbCB4Pe2IhaXk7ks58FSSK9Zw+J557Dt+lWcj09OJubL/o6feEA/vIKlt3xISRZJhOPsfUn32X5HfcQH8ty7Ydn0d8e5fAzAzi8J1l2Sz3pWJ7gkjIKrw1O1yO7VaxYDmvbALNvaeCFxzqZc00l0ZEsm793gsqWAAuuraGqJSA+3z+o/NVQtQwG9hR/t0y45kuomgOrUCCXTLH6voeQJImB40cpZDLMWl5CImZyaEsvFY0hRrriDJyIUt7oZ+PtDdhbevGsLCf56qmBxZJTZXA8x66nulEUCaNgsXBthNYly4g+/DAln/3M+3QAhKtVJpmnY+8ovrCTBWvKKRtP41gYOXWvZdqgSMR1he5tQ8xaVUFyMsuhV/oZaIuyfFMDbbuHGetL0rgoworbG9j1ZNd0/Q2LS4iNZBjtS2IZNonxBCXVNbTt3E7z8tWUNTRhWSbud9E2NdNpMvv3Ifu8xL/3PRyzZxP5/OdBktDnzMbZ2HiRj5JwycgKiqZhWTa18xYAMNzZQaikCvn1IYygE+WN+6epNqt7Wflpz8cmh9K8+tOTYMPBzX1IEjg8Kq3Ly9HfRVtZEN4tW3EgqxoOj4fSugYAhtpOIskKlmURqfZSOzdM79EJADxBBy6XQuypTtK7iuFPSRkC97WSb4ueqlgC18JzD3UWhLfjmBUi+Wo/WPBGipNzWTmbv30Eayoxb8lNtex4vJOmJRGW3FyLWbDp3D+KO6Cz6s5mUpMTSIpCuLqWXY/9nCWb7iQTjyMrMq0ry1B1mdhoBm/QgVGw2P9CL6vubCQdLzBwIkohZ1LZEkTTlffvQAjCBXIvLiX1+uCMMDRnS5DRf9iH+4Y6Dm8bJD6eZc7aSkrr/JzYMUT9fCeqw0nz8lUAjHR1AGDZMorb/X7shvA+kRWNQi5LpKYeX0kpNjbDHW3ULlhGfZkbJIn4wNQ92NQ5lnAobH+4DVmReehPVhKuPP/vCgRBOLv+45Ns+fEJZFlCkiWuub+Jdfe30H9iku5D41Q0BWhZUfb2YUDuElj7W/DK/z7V76PlJnCFz7qI7lBw+zV2P909o3z+xuqLsVuCcEmZlo2mihASQRAEQRAEQRAEQRAEQRAEQRAEQRCEq8mFjpZz2rb9RgAJUz9fUC86SZKCkiT9VJKkY5IkHZUkaa0kSWFJkp6TJOnk1P9DF7jd74/JLhjcBzf+GWz8/+CGPwVJgVgfViyH7NbwbqxGbwzgWV2BZ2kZdtq4oFWmJgqUN/pp3ztC2+4R0rE8PYcn2PqTkzQuijBwMorxLgJD3uArKUWSJZxeH4VsFt3tAUmiY18GI2+iu899wIeqK8zfUDWjbPmt9Uh97RT6+wnccQd24cKOg/DuWZbNwZf62PFYJ01LS9nyoxNMDKTQXSo7Hu+kYWGE7b9sp/foJKEKD9t+3k5VS5D9L/bStmuE6tYQW358An+pi84DYxzZOkDjwlI2f/84SBLRoTT7X+jF5a1AkmWMQp6DLz3L+o98krUP/AqLbnqQSO1ysjsmsPMW6T3DOGeH8aytRG8MoKyrYqLGjzoVHpLPGGx/pIN0osCSm2qpagmiqKcucYPtUR7+X7s49MoAc9ZWTJdrDoXrPz4Ht++dgyqyqQLZVGFGmW3ZpGP50157fPsgr/28ncRElpHuBI/93X5GehLn+88hnANJklB1md1PdRMbzTAxmGL7L9vPabCDUTDZ8XgHx7cPYVk28dEMT/zjQcaG8hDrgxv+C2z8/8gGl06Hj7zBsmwyiVPnRbjaw/yNxWuaqstIeRPPsjI8qyrQGwN4N1Yju1TMeJ7ypuLgeyNf/LmyddYFHQPnggXU/N03cC1dSu7ESWSPh8nvfBfJ6SzOxCZ84PQcHmfz948TH8sw0Z/i6X85xFBH/F3VESwrNs0cErjmluBZU7yOetdXo5W58agy2x9NEayYg23ZlNTUsWTTHex49Ke4fH7SCTfpeJ723aNs/v5xRnsSXP/xOTNCnZbfWo+fGMknn0TSHZR84Qu4V68icN99hD/9qWJH+mu/Atd/FV7/F9j171DIXMxDJVymZIcD9/IV2EaB9K6d6PV1BO67n/SePRiDg+9cwXlQdR1F0dFdbsxCAXcgSOvKNai6n3QsRzKaIx3Nk5jIMtaT5Nl/O0wqmufoWBblhlocTQHcy8vwbqwhubUfO2uidsbQnAq7n+wiNpxG1RXa94zyyg+PM9qXfOeNEi5PsT6oXAzX/wls/IPifdq+70OsG29JCWWNzZiFApZlUTV7LpmkyeuP9ROIuJi1opKtD5+kbdcI6XiegZNR7L4ERl8KM57Hd2MdjqYAnpXlOO5p4dXnerEte/rea7Avi1rfQOCeeyj09WNMRt/fYyFcVfqPTbL5+8fxBBwsWlJKbv8Y2ZOT+Dc14GgN4loQwf3ALF56qotXf9rGWG+CbT9v5+irg7QsK+PVn56k5/AE6View1sGGOqIUTe/OMjG5dOYt66KTKJAIWsiyRJGwcNQ20lmrVlPIZdFkmScHh+B8spz3ubs4SPYyRQT//kdSn/nS+g11WT270dyuXDNm3epDpVwKRSyaE4vla2zMQ0D0zCobGnFbQbIHZkgtX1wxv1T4K4m/DfVIWsz7+syiTxvHvNi25BNGmTecs8uCBebw4giSSoVzbMw8nksy6KipZVMQqGk0sOL3ztO1awgsiqhajI3fHIOSqIwHUACgAXpHYN4H2hFnxPGtaSUyOcWoteJ4FDh4sgPJAjc3ohzXgnOWSECtzVSGM/gDTsA8IWdVDQHSMfz+MsdyLLEwc19JCdzjHQlOPhyllBlNbZpojmdLLrxVnY//kvC1TUAhMo9FHIm/ccn2fdCL/tf6KV2bpjRvgSKWgzdG+6MM9gWfVdh5YJwudHrfEQ+uxDXogjO2cX3UnrfCNiQ3tzLouVlaA4FTVfY9UQX8dEsDncQp8cLSOQzGSpbZpOKxZBV3/u9O8J7TNd1CrkCoaoajHwOWZaJ1NbjD5STerb7tHuwwEOzePnZ3ukA9GxStGsF4VIZm3qea1k2pmFR0RzkwOY+ug6Ok47n6dg3yrHXBrHMt2nHRHuh8+VT/T6u/xNwBWGy86yLaE6FpbfUz/j+unp2CPfbhZ0IwmXCtGwcU2Hsb/fWEARBEARBEARBEARBEARBEARBEARBEK4cFzo1aEqSpGW2be8BkCRpOXChI0q/Djxt2/YDkiTpFENNvgq8YNv2X0mS9EfAHwF/eIHree85/NC9Dbq2zixf/2WsrElq+yCSS0Urd5M9OoEZz6PXn3/n83zOIB3Lk8+ajPXOHByZjudxuFVapjpJvlvB8goW33w7r3zv24z19VAzZwFzN9xDfNJNuNyDpkvnXFdsNMPkUJrVdzdhFMzioM7dI5TNLcE4fAhzcoLQJ5vf9TYKFyYVzXFwcx8AllkcMNm0tJSOvaMAKKpMNlmgenZoenZXt18nNpIhWO5mdCpwI1LjZdeTXWhOhVQsBzbUzQuz59keAGS1lOs++QcceOFHJMZGGO8bpmXVJl5/dIwb63wQjRU3yIbE5l5kn4Z7XTV7+1Ic2dpN4+II6x9qJZcqEChzUdEcxO13zNiXXLrA1p+cpJAz6T0yQWVLkFV3NRIodVNa7yNUfm7ZSZ6Ajr/USXw0O10myRK+t8zInI7nOPBS34wy24bR7gQVjYFzWpfw7qUSWY5uPX1Ae+e+UWrnhtCd2tmXjeVp2zkyo8y2bCbHLMo6NkPb8wB4VgdxuBeTe1NAlOZQpgdxADjdGmvuaaZleRmFrIE/YxD/ZTtKQEcJOUntGMLOmlR/cgHHfvEqAyePUDN3EQ2Lr8EXvrBZjyW52PlLrawis2cPo1/7GgBlX/4ynPtlWbhMGAWTAy/1nlbeeWCM2rlnn03vrcoafCy+qRbFskm80ofs01BLXKT3DGOlDcxNDYz1Jnn5hxKr755P1/6n6D28h7KGVhZc/yDjAx4gChQ/s5MTOYJlLh76k5XExzI4vTrhSjf5vbuIP/MMZV/+MqP/8A84WlpIv/465uQksteNnd+B1LW5uFG1q0E++3tSuLKoFRVkjhzFNkySL7+CGYtR9uXfJbNvP67ly1Fcrou+zrqFCzn00ijHtr2CLMssv+MhZLUKy7RJRXPUzQ+f+qy2i23jEwfGGR3NcOPiCLmDY6R3n/pckGI5PH4Hk4Np2naPMHt1BQde6mNyKE18JE1ZnQ9JEhfaDxxnAHb/+8wyzQW6h4qGGuLD4xx5+XmyySTzr7uNSP1iSuqKsxCbpkVs5NStr9OjQSwHQObgGJImo1V5MRMFcrpMIWfOWE1Do0riZz/HTqXwbdqEMTaKGgpe0t0VhDccf704EH7Xk120fmoOAPnOOPnuBHqNl0I8z0S/g1S0GLZYyBcHGUMx+C/3lrDUvmOT3PKZ+ZTV+7FMi1Q0RzqewzItHC4dywyx6Ob72PnI94iPDtO0bAWr7nkQ3TnzPupszHSa3NGjZA4exL18OSN//b/Rm5tRgkG02lr0mpqLdWiE94Ki4Qs3kpwY59CLz2LZFotvvgeVqUFXlk38+R4Uv44SdqLX+zETeWzLRis51WbwhZwomjxjcLvLp+ENOt66RkG4uFQHZU3zad/9Cke3bEbRdVbc8WE8JQ24Aw4K2eI1c8OHZ1FS7qLEr2MMp0+rptCTZLI+TWBDNWXNwfd8N4QrW74rTu7YJFqlBxSJ2NOd6M1Blt9aTzKaJ58x6Dowhi/spLq5hEe/vm/G8t0HY8xZ00Cm7SQnXtuCv7SUO3/3K5TWNQCgaDJLb6mntM7HUEcMp0cjMZnFF3LSfXicisYADrfKxEAKl0+ntFaELwgfTJIi42wKIiky0cfaiT3dWQzaBTBtNEmidm6Y9qnvTCRFQtHD1C9azfaffYfo0AB1C5ay4MZ7wRYDzK82huWkbsFajm97mpM7tuDyB1lz/ydxaH5S0V7M0cyMe7DcgJNUtPhcweFW8Yh2rSBcMlUtQQ6+6XvcxFiWxHh2xmsmB9PExzKUVHnPXInugaGD0Pv6zPIVv37W9aZjebY/0s6yW+uxLRtZkZgcTDM5mKS8QQQSCpc3w7LQpkJIrDenwgqCIAiCIAiCIAiCIAiCIAiCIAiCIAhXrAsNIfld4GFJkgamfq8EPny+lUmS5Ac2Ap8GsG07D+QlSfoQcN3Uy/4T2MwHMYSkpAU2fgVe/qtTZdf8NkRmoWQVlJADczJHvisOgORSUUvObVDOmUgSODwq6XgeSYK39gXwhBxUNp9/IEJlyyw2fPz3KOQy5NMqyaiBx68hKcyYweedOFwKAyejDJyMTpepuozjGj/uO+8i13YSSXn3QSnChVFUCYdHxYjmkeXioNpcxsDhLl423ijLZwy8IcfMsuyp19l2sROVZdioUzMXF/ImulMhlzZIJwz2PWey9t7fJZNI07EvTT7j4qYNlfBMF45FpRSGTg3WsBIF0jYESl3c/GvziI5k6D8xSbDczezVZ55JO58xpme1AhhsizLYFuX6T8w5pwASy7QYbI9xeOsAK29vZMfjnSTGs+gules/PptQpWfG62VVxunRSMfyM8o1pziPLyVFVnH5Tw810Jwq+Yz5tiEkmq7gDjimO/m+weFzF2cve+G/ARA4+Dfc/PGXefFHPaTjeVw+jes/Podg2czzKDaSYf/zvYz1Jbn9Y7ORNBkzlsecOie0Kg+TKZmS+gdoWiHjDQeQ1PO/3r+ZpKoUurvxXX89nmuuQdZ1Uvv3473h+otSv/DekSQJT8ABJGaUu33vbtCCy6uz5kNNpPsSJHYOYSUK5BPFmTSVsJPEVPvAsmxe+2WUaz/2Carm3MVId44tP4mx7NbQjPpkWSI5mad6VphQxanrn11bi+x0Mv7v/074U58Ew0RyuZA9bob/11+jfe2v8STHkOOdsPrzoFxoM1T4oHA0NuC76SbMiQkwDJAlxv7pnwn/6qfJnTiBe/Hii75OTyDIyrvvpW7BalLxAqmoQipmYBQsjIIF8szAEFWXMU2LsZ4k6WVlMDGz07lzTpiaaI6+45M43Bq5zKkB+JIssf2RDuatqyJQevEDVYRLqHQOLPoIHPjRqbKb/weEGlFlGX/5AjZ98b9h5gskJmQKeRNVt5FViWxqZghDYiKLqzVE4sAYAHbBIt8dJ3B3E3qpi/kbqjiydQDbhsZFJTRUG8g3XI85MUHuxAnM6Lr3cs+Fq1Q+ZzBwIoo7UGwX6y4VPeAAVQLDBssm35NAqfXR96b7J0kCWS3e08ny6YFLiioz1ptkzzPdeEMOKpuDpKJ5FFUhkzRQdZlsOsKNn/1DPD4JTyiMop57OyB78BDG2CjpnTtxr1xB6Ze+hJXPowT8uJYvu/ADI7y3ZAXL1vCVruDGzy7ANCws0wn+N52LgBnPo4SdJLf1k9kziqQrhB5oxTU/wmhfgpO7h1l3fws7HuskmyrgCerc/Gvz8YUvzn2VIJyVrwLGY1TOuoGq2WsxCzb5rIakqNPZnw63SmooRflompGdQ/iur0XSFez8qVAypcyFo9RNqNxz5vUIwgVwLywld2ySwmBqukyZFeSVH5+cDm+65p56RroVJKkYqPfWkLFUzMncDQ8xa83tOD1uKprKZvzd5dVoXVFOsNzFSFcCWZGIjWVoXlLKeH+KdCxHoMxNOj7z+aggfBDJXg1jPHsqgITiM7Vwg4+TXfHp70L8JU6yyQIW5ax58MvYRhbLdlHIKWgO6yy1C1cqSQLD8NC47F4al90CaNiWji1LOBdGyOwZmb4HAzAWFwPK3X6dm351nnjGJAiXUGVLgIXX13Do5X5sy0Y6w7MOJJDlt+nvEG6EW/4Cnvi9U2ULHoDSuWddRNVlFFVm5+OdM8pbVpSdZQlBuDzYto1lg6YW3ysihEQQBEEQBEEQBEEQBEEQBEEQBEEQBOHqcEGjP23b3ilJ0hxgNiABx2zbLlxAlU3AKPDvkiQtBnYDvwOU27Y9OLXOQUmSPpg9MTQHrPlNaFgH0V4IVEPFYtDd2PEM3vXVZPaNku9NoFV6cK+s4EK+vtd0FadHB9LMWVvJ0W2D03+rX1hCcjxHMpi9oM7upqGSjmtYpo3Lq2NZFooi4w6c+6APh0ejfmEJ3QfHp8uW3VJH7vF/Ir97J+FPfgLbFB0032tuv4N1D7Ty7L8eJp3IE67y0HtkgrX3NjPak2BiMEVVa5CBk1FmrS6n+/A4fScmaV5WSvueUXwlLjSnQse+Ueatr+LQy/3IioTbr9O2a4SF19Ww68kuFFXCNCx2PTXE/PVVTA6N47VtzM29YIOVMfCsrCC1dwRJk3FdW0M64qLt8Q5Gu4oD4xxulZW3N55xP+JjGaIjaWrnhWecYwDBsnPrxDncGeeRv92LbUPnvlFmr66gYVGEUKWHQOT0OpxujbX3NPPEPx2Y7pjsCeqUN55/6I/wzpwelXnrq+k5PIFlFg+87lQorfPh9J49gASKHXs3fmQWT/3Lwel/s8rWIJE6Hzg/A7WrYLKLbGgxh56cpHlZGbpLpZAzOLC5j4rmAC5vMRgiOpzm0a/tJZ8tDi6KjaQpv7WB1PZBjNEMjqYAzgURbLdKZXME27YxC7xtSMq7YeULuFetZOI738UYHMS1YgW+G27ATCaxTVOEOn2AKKrMkpvq6D44jmWdOqcbFpa867qyKYPRngRlN9WR3jVMYTCFXufDvaSMLDar7ipeQ8NVHvY+28NwZzEQTXMoWG/6DG5eVkr/iUlq54Vn1F8YHCQ5EkP9mx8SH5jENqM4j76GNxRk5P/9DZIsk9l3BHXNn+NqqYHyeed7WIQPIElRcLS2MPHv/0HypZdQ/H5Cn/g4iedfQG9ouGTrlWUJWfOiaQV0V2FqkLNJpNbHWO+pcB+3X0eSi4PrAdoGkiy9uZ7kK31g2biXl2MMp6n0aTjcKvPWV7H7qS4AWleWk47n2fN0N4mJLDd8Ys506JrwAeAOFQcLLHwQksMQboKKRTA1wCBQ6iI2CsmohaRIOFwSpmlj5kwKOXO63QvQvLAEoz+B77oakq8PYRcsPMvK0Ku9dLXHGOtNsvy2BiQJhrviZEZjZP7+H/CsuwbX0mUYIyPv55EQrhKDJ6M88Q8HWHNPMw6PyrJ1lUQfaydwa2OxrTqWwdESRFldSds/HgCKA+c8AZ2lN9ex+6luYqMZyhv9020FgPkbq+jYV3wv2NhIMvhKnCQnsjhcKi6/jifoIFjqwOV7d88f8oNDZA4dJPrww5R+6beZ/OEPSb60GcfcuZR/5SvopaUX7wAJ7xlVl5Fsm1RcQVM1LNsiljcJf3QOqae7MEYzOOeEcLQEiT1RHJxl500mfnSc4Gd1fvm1fRRyJk6vxuw1FZQ3+qlsCeIVs8UL7xFdl0iaNpmEgqYrSJKNbdpk0waKKlPRFKDEssm92ANAavsg/k31pF4fwhhJozUFcF1fS1lTAEU59yBnQThnEnjXVZHaOQyAZ2U5pkNFmhpf6wk6iNQFqRwvMDmSZsnNdbz8g+PTi/vCTgKlLmxLIjYqUd4YPOuqSmv9eEMOxnqTaI5i6LSsSpTWBzALFm83dlcQPii0EhfhB2cRf657+pmaa1Ep6e4ENXPC+EqcPP0vB8nE85iGTSZeAAk0zY2NjeaU0JwijPdq4/I5gDTZtIEsO5GQQDGRB1LIPh3XggiZI2PIXh3fDbV0pk2W39ZAVUuA2rnhd6xfEITzlxjPMtQRY/mt9cXnHiEHDYsidE2FC0Pxua8n+DaB8JJUDDcumwcTHeAtg8rFxeeNZ+HwaKy4rYGXvntsevKYSK0Xj7iXFS5z5hvfUU59x/zG74IgCIIgCIIgCIIgCIIgCIIgCIIgCMKV7bx6vUmSdINt2y9KknTfW/7UKkkStm3//AK2Zxnw27Ztvy5J0teBP3oX2/U54HMAdXV157kJl5grAI0bTys2Yzlij3fgnBPGd30txliG2BMdaBUL0cLnP9tVSZWHQtYgly6w6q5G0vE8gTIXwXI3T/z9ARoXR6iZG0aSzjDDzzkIlrpIxXLYBYtcroDTq6O7VTT93AdfxobTaLrC6rubMAommq7QeWCMmrs/gu5zE3v8Ccr/+JxPgw+ky/XcbVwU4Z7fW8pQZ5y19zaTSRQwCia3f3ERkwMpAuUu5q2vIpPMc/tvLCI6lMYT0mleWkoymufWzy4gOpLG6dWomR0iOprhxk/NJT6eRdEkbvuNhRSyBrVzQ/QenWS8P8mae5rxqDK5qb4r6V3DqBEX3muqyFW4eeRHJynkTBbfWEvDglJ8YSfljX7ClacPZouPZXj87/czOZRm7b3NpKI5xnqTqJrM2nubiwET56B97+h0ZzAjb3F4ywDRkTR3/faSsy5TOzfMvb+/jOGOGA6PRmVzgFC5+93+E3wgXE7nr8uvcuOn5jLak0CSJbwhByU1nnMaEF6/oIQHvrKcyaE0Do9Gaa0Xb9AJOKFhPTSsJ9oZo+vA7tOWjQ6np0NIJgdT0wEkAGrWJPZiD675EVwLIuT7EsQea8f1K3PIZ00UTSJS7aW03n9RjoHsdBD9+S/wrl+PUlJC9vBh8l1d2KqKlUjgXbfuoqznSnA5nbtnU9kc4P6vLGewPYqiyVQ0BYnUeN91PZODSaSkQWxbP655JTjnhCkMpog+1o73gVlkwxKRWi8nd47MGFS87oEWnB6VRTfU4PRoxEYzNC0LUVJ7ahvyfX0M/fv3ORa4lpNHhqbLl193J5GH/wd2Ok3wIx8h8fzzOGbPxiUCSC7YB+HcfSu9vh7J5aLks5/FSqeY/MEPca9cSeKlzbiWLUOLRC7JeoNlbvqjk1imhaJIhCrcgI3DpbHyjgagGDpl5k1W3dmIrEpUtwYpvD6IZ2U5yBKZQ+OYE1n05gB3fnERqViOhddVEyhzI0vw0tRgvbadw6y8vYFQhZjN/u1cduevtxRabzrjn3xh11R4jUViPIdRsFB1hVzGRNVl3AEHq+5qJJPIM3dxhMx/HkH2aXiWlYEikz0yjlbvZ9eT3USH0wx3nbq+VteUUftbv0X69e0knnsO/513YBsGkioGpl2uLrtz9zyc2FEciLz7qS4W31hLVYWbwuuDxJ7uwr0wgmthhHxPHMkwWf2hJizTpnZumNI6H96wk5JqL2O9CRqXRsinDSYGUoSrvXQfHCM6nMYT1Lnp0/PxhRzEx7L4S1zkcwZAMYzkXQaQ2JZF9sABki++hHvVKkb+39/g27QJ3y2bsHI5HK0tF/0YXakut/M3E00j6ypyTiKTKuDy6hQKNsmAQtkXFmHnTKysycg39s5c0LIpjGco5Ir3W9lkgf0v9OL0anzkT1e9D3siXGqX27n7huRoCt2pk8+YZJJ5HG4Ny4JCIs/KOxs4vn2QmxZHyEy93kobxJ7sxLOqgvw1VezeOcz4d47xwB8un36WIFxZ3s9z1zYtktsGsJIFPKsrAMgcGkON5Vh7bzPZlIFZsGjfO0rP4QkObxng3j9YysaPzCI6kkZzKATL3eguBSORopIBlIQDvBVnXafL66B6to4ky0wMJJFlJ6ZhkcsUKKk+t+evwuXjcr32vt/SB0dQI67pZ2qxJzrQa3z0SxLzNlTzoS8vpe/YVDi2ZKPpKtlUAUWV8ZdqOPJx4OI8/xXO7HI7dzPJArIsoagyubSBokp4vQ4KR8bJ7htFq/Hi21iLlS6Q2TdKnwGdh8ZpL3dz/x/6cbovTmi58MFwuZ2/V7ruw+OMdicY7S4GVY/2JZi3voryRj+paK743WK1l+A7fa/r8ED92uJ/5yAVzbH3+R5W3d1UDGtTJFKxPJNDKcobxGeEcPkypzpKaGqxT5HIIBEEQRAEQRAEQRAEQRAEQRAEQRAEQbg6nO8Ip2uBF4G7zvA3GzjfEJI+oM+27denfv8pxRCSYUmSKm3bHpQkqRI44zTRtm1/E/gmwIoVKz5QX30rXg1kiezRCbJHJ4qFqlQsv0AHXuojkyhQPSuIJ+igbfcI5Q1+HG4VWZHOO4AEwFfiokaWiI1msG0bt99xxjCIt6NoCm27R2jbfeqfVXMoWOMZFN2B77rrwLTOexs/CC7Xc1fVFapnhaiedfqsTQ0LTh8sXD+/5LSyujOUvVliyxb00VdYcN/tuMMBnHEDRVLJvek1xliG9L4RepuCpON5AHY92QUSfPhPVp31nBvpjjM5lAZg+yMdNC2J0LqynPoFJYQrPEjyuZ37snL66+R3mMZT0WSqWoJUtQTPaR0fZJfL+WuZFgde6GOkK0HrqnJkWWLgZJRCzqK8PvCOyyuqTHljgPLGs79WkiQ8QQeqLhMbycwon65Hn3lumKqMathk9o9Ol8keDWfYxYL5ESSJC7oOn7aNuo7/lpsx43Fyx4/hWrgQY2wUo6uL4R//GOcPvo8aeOfjcTW4XM7dtyPJEmUNfsousAOqJEkUFAndtskcPDWbn6QrBOt8lJYWO9P6Qi7q55eQjudx+3S2PHyCbDTNqvtnkRrP4fbrlNV50d4U7JPZv598/UJObkvPWOfeV8a581NfJNB9kFxbO/nOLtSSt/9MEM7NB+HcfSuttBT/rZvI7NxFobeP4AMPYIyOYhsGua6uSxZC4nBpVLWGiA2nyWUNCjmTxFiW+FiWzv2jZBIFFuZMeo6Mk8+Y5NIGx7YNcud11SSe7Z5Rl7MliL85CIDu1nn8H/ZhFU4dflVXmBxMoTlVvGL2yrP6oJ2/wTIPnoAD3ZUiFc2RiubIZwx2PtlF64pydKeK7laJRfN4y10YwxmSrw5MLy8BS9aUs/mRzhn1SrJM7vhxnPPmIakaxuAgud5enI2N7/EeCufqg3buvlUhZ+D0aFM/m+x+upvmz83H0GTsgkV679T9uCwxXutnzzM9tKwoo6Kp2G70BJy0rnDSuqIcgN6jE7z60zYAZq2qYPltDRRyBv6IE3+JiwZVJjaSBknCG9IJlr37gKZ8Tw+ZgwfJnTyJ3tBA+NOfInf8BHY4hO+WW1Av0WfHlehyO38ly2JiKIXTq+MNO5ElmBhIMtReoPLBMHgg15dAcirYbwp4RALbdfqjTFmWihdc4YpzuZ27b5Blic0/PMGC66oJlLpITOToPTqBaVhEanzc8KEm9GiOzJsXMm2y0Rw7jkwy3J0gUOa6qM8ChMvL+3nuSoqMoyVIcnMfyS39p8oXlfL6o53kM8WAsGW31lHImZRUezjwQh+mYVPe4MM0LPY8003TbC+zCntJ79pNIfhJ9Mqzh5BA8X1R1RrEE9BITuZAkiip9uL2iaCdD5rL9dr7ftNrA8QebZ9RplV5WB5yYqsyFbNCVDQFOLFjEIdLI5810V0qmUSBjr2jLF15ZQaUX04ut3NXUWRe+fFJ1t7ThOmQwYZ83kKr8pLdN0qhL0mhLwmAurSMiUPF74ZlRRJN26vQ5Xb+Xune2g4vq/Xzwn8cZdbqCtwBB8nJHHue6ebe319GpObiBaopqkwuZfD6Ix0zymvmnP49vCBcTsyp1BFdKX4HbokUEkEQBEEQBEEQBEEQBEEQBEEQBEEQhKvCeYWQ2Lb951M/fsa2bfNtX/zu6h2SJKlXkqTZtm0fB24Ejkz99yngr6b+/8jFWudlw6niu6GWxAs9YAGyhP/meiTvhc2EbZk28bEMY71JBtui0+WBiAuHR2XBtTUXtt2AN+TEG3Ke9e+FoSFybe0ggaOlBa28fMbf3QGdkmov4/3J6bIlN9XAnh8Sf/pJ/LfeCrqY8etKZU5O4p89DzkjI09A4sUB9Ho/njWVpLYPAiBpMtoNdUzsH5ux7KLragiWu85ady5tTP9sWzbte0bpPTrJrFUV5xxAEhtJUzM7xP7ne2d0qFlyUy2KenoQiRmLkTvZhpmIo9fX42hqOqf1CBfOsmxiIxlioxl2PdE1Xe5wKpiZLIrr7NepcxWQ4fY15VjpAoXrqtm+bQjNo82YDc0TdFBa52O0pziDmiFLlKyvKg5ItgFVwn9zHa5SV3Gw3EXmnDWL+NNPk3jyKdSyMlKv76D0i7/J2De/hZ3NYqfTIEJIrjqhSg+pwSS+62pJvNRbPBeV4rn45raG06NNB09lUnkqm4McejnFS/95HICq1iBz11XOqNsYG8OQZ5ZB8T1p5G3Gv/kt7EKBwH334ZgzByufJ9/eTmFwELW8HEdzM7Lzwt+fwuVPq6hgfO8e7HyB1Ouvo/h8hD7+Mczh4Uu6Xqdbw9kYoJAz+Pn/2cNYX3LG3zPJAoWcVRwoByy8rgZHnZdMuRtjuBiuo5a70WtPdTgPlbsoqfROX+sBFlxbzdaH25i3oYoVtzVc0n0SLp18Tw+5zk5kpwtHawtqOIxZsNny4xNUNAVIjGexLBvLsDm+fWh6udr5YTbd08rYfxzGzhVvkd1Ly8gcGKVcV6ibE6Ln2CQAqi4TNofI9/QU3wt+P4G77sKKRt+PXRauEkMdcTyhYpiekbdYtrEKc8cgvutqib/QU5zCVAbXzXW8snmAQtZg9qqzDzYuZI3p+62Dm/umy+evryLb1gY9PYRDIRwtLSi+dx9AAmClUsR++UtKPvPrjH7t60gOR/Eea84cnLNnn1edwuXBW+Lm4Ks99ByZmFFeN7/YDs0Ppoj+og3/dbXEnusG0wYJArc3Ypa4cLjVGff7q+5sxBMQAWDCe8fh1fGGHLz6cBsrbm8oBuVOaWoOkH+0A3VuGEdTgFxHDADZr5Ou8TH8WrHtu+rOxulwKEG42JxNAbIHxzDGswBo1V4cNd7pABLdpVLZEmTvs72U1HhJx/IMtsfoOnDq2Ws8ohJ/7Rl8N9xwzvdssiwRqvASqvC+7evyfX3k2juQnQ4cra2o4fB57qkgvHdcs0Oka30UeovPAdSIC8WnU3i6C/9dxe8AJAmOvjbM4MnojGVblpehaiKE5Grj9Gos3FjFeH9quq0wb005Fc0BtBrvdACJUuJEbg0Se6kYHLXyjgYcbtFGEIRLqX5BCbuf7sIyit/7WpZNLm1w8KW+Ga8r5C5aNxgAXF6N5bfWs+XHJ6fL/BEnvrC4nxUub8ZbQkhMW4SQCIIgCIIgCIIgCIIgCIIgCIIgCIIgXA0uLOECOiVJehr4MfCibV+Ub5t/G/i+JEk60AH8KiADP5Ek6deBHuDBi7Cey4oxmCKzbxT/DXXYlo0kS6R3DuNoCqC6z3+2QM2hMH9DNS//4PiM8qrWINWzQ/gjl7ZTS669nd4v/haFri4A9JYWav7uGzjeNMN3dChN9ewgjYsjZFMFvEEH/Scmqd94C+GyCOm9e9Eq3n6mReGDyzlnORMP9+Ka4ya1s9ihPd8dB8vGf3M9eDR6x7Ps+Hk7dfPDrLqzkXzWpKo1QHmjH1VTTqszFcvR+8ZgJoniYPsp8zdU4fG/83vKtm26Do7x3L8dweFWWXt/M5ODaSzDYvaaCiqaTw9xyPX3M/Z3f0/8l78srtrlou6b38S9csW7Pi7Cu6dqCvM3VjPy3WMzyqv9CSa/+x3Cn/zkBQUd5PsTjH/rIHbBAkA6MMbND81CqvPPGDgUH8lQ0RSgfkEJ2VSBEp9G7ug4/pvqsU0LJInEi73oDX70dxiUcT4Uv5+y3/kdvBs2ktm7F0nTmPzBD7BiMQIPPShmjL9KTQ6lKA86yGzuw3/jqbZG8rVB8j4dK+yitG7mjH7J8RypaI7VdzeRjOZw+3VS0RyJsSyh8lODiR2zZuHadRSnp5VsqjBdHq72EFleC1/7W5RAAEdrK7LPR+yRRxj8kz8Fq/heKv+TPyH4kQ8ja6Jz/ZVOb27Gf/vtWMkk2DZWJsPYP/4T9T/4/kWp30wkQJJQvGe+tmoOlfkbq3j5BydmlDcuLEF3KcTHspQ3+JEUieS2QfQ6H64FESQJjFiO5LZBnC3FwdHekJNbP7eA7kPjTAym8AYd9B2bJDGRZf/zvcxeU4HvbUL6hMtT5tBhej/zGcypMBDPhg1U/MVfMpnUGOlKMNqdYOnNdfhKXXQfHJ+x7OxVFTgaA5R8Yi65jhiSIpNrjxYHHktw7afns9Wh4HCrtCwvxbPzCeybbgSKIXaxxx4l+NGPvNe7LFxF2nYN07FvjBW3NZBLG8xt8ZP44XHsWB7/DbXTbYNMwEFJjZdrHmihvMl/1vrcQQeqJmNMtY0B6haUoI100vXJj2Pn8wCEPvEJSn/7t1D8Z68LwDYMzHgcxedDmmoTaJWVKMEg0Z/9nNLf+i2sfB7Z7cJ7440onvMLNhEuDyPdcRqXRE4LIZm1qgIjmiN7fIJCf5JkqoDvulqwbSRFxtEcIJozWXFHAxMDKTLxPA2LS2lYKAavC++tif4kgTI3VbNC+CPO6YAnVZOpDOokEnlSO4ZwLYjgv6kO2wap3s/x14dpWBShZUUZ9QtL3u/dEK5QVsEk9mw3jpYgriV68X5mIovdGWfVnY0U8iaaQ+H49iHu/OIijr02SFmDn8H22Ix6mhYEceeWMfpP/0zDd79z0bYve+QIPb/+GczJYkCfa81qqv7n/0KvOj3cVBAuJ2qJi8in5pE9MYkxnsVK5om/2ANAams/niWlKB6dWSvLTgshqWj2k5c9iKcEV5fkZI6OfaMsuK6WSI2Xsb4kS5aUEv/RcdxLy3DNCWPbYKUK5DIGjYsjzFpZTt180UYQhEvNE9C54eNz6Dk6SSFnUFbvwx3QScfy06/xR1z4Sy7ulTsZzdG2a4Q19zSTimbRXRq2ZTM5lKa8QUweIFy+3pioRZuaoMUSISSCIAiCIAiCIAiCIAiCIAiCIAiCIAhXhQsNIZkN3AV8Efg3SZIeB35k2/bW863Qtu19wJlG7N94vnV+IJgWxmiG+PM9p8oksM0L/wLfX+Jk8Y21HH99CE1XmLuuElWXef7fj3Ldx2Yzf8Olm4Et/sQT0wEkAPm2NhLPPofj85+bLlM0mQMv9iErEppTIZcycHhUsoWDmK+9SMV/+TP06upLto3C+8vKaFiJAnbBRNZl3hjClu9NkO9NoN9cz8tPdGFbNsdeG0KSJa65v4XGxaVnrM80Lfa/0MveZ3sIlru55r4WjmwdIB3LMX9jNQuurUGSpXfcrthohuf+7QiFnEkhZ/Lqw22UVHm47TcXEojMfM/kBwaIPfIIsqZPB5AA2JkMg//jf1D/3e+gBkTnsfeCv9TFkptqObZ9CFWTmbuuCqdzktE/+ls869bhmj//vOvOnoxOB5C8If/6EJGFM0M9FF3m4OZT17S6kAOtP0mhP3nqRbKEJMvnvS3vRPH58Kxdg53JMPyXf4kxPo7/7ruJfOYz04M6hatHcjLLc/92hHs/3IoxnCY+3DPj75Jt88u/2cN9X1lOSdWp8AZFleg6OE7ngTEcbpVCxsSybGatKgegMDxM/IknSO3ajXf1am66TmbPETcj/dliaNRdTfiqvNBYNV1nrqODof/636YDSACG/+qvcK9aiXP27Et8JIT3m+Jy4d24kZG/+VuSL7yAWllJ9de/hnPWrAuq10wmSb7yCuP//M8gyUR+4zfwbNyA4j69jVu/IMKyTVmObB1EcxTbxe17R/GGnaSiOXY90UXdwhKqgjrpnTNn+3Ytmdn28EdcODwqJ3cNk0sZ0+UOt0rb7hGqWoKUN7z9oHvh8mFls4z9wz9MB5BIuo51/T1seWKQcG2weG9mw55ne7j2V2ax4o4Gjr46gG3BnLWV2LZd/C9vkXixd2blsoSdMYiPZclnDdr3jnLf528k8cdfInfsGK6lS6n++tfRSs/cvhWEi0F3a2RTBbY/0oHmUFjQWAwfM8azM55DOB6axXh/kpe+e4wH/njFGQOVUrEcr/2ijTX3NnN8+xDR4TT1C0tYfks1Q5+6fzqABGDyu9/Fd8vNeFauPOu25drbmfjOd0lu2YJn7RpKPv1pHK2tqOEw1f/3/zL8V/+L0W98A725mcr/+uc4m5sv4pER3g+yUQCnzvLb6jm6bRDs4rVUcygYwykwim1FM5oj8cLU+SmBPjvES987xlhvEm/IgdOr8coPjhP+vaV4AmJYr/DeMFMpiI1zZOskkizhL3Vy06fnseeZbkrK3EiZU7OlZw6NkTkEyJBYX0PvsQkcLpXN3zvGQ19dicMl7s+Fi882bCRdIfX60Ixyz4ZquvaPMTGUwshbzF1XydafnkSSJJqWRlh6cx3Htg8iKzJzr6lEtTPEn36Gmr/5GxytrRdl26x8nrFvfms6gAQgs/11Uq9tQ7vvPiTpnZ/ZCsL7SfHqmPH8qfbJFElXKGRNFA/oTpWlt9Rx7LVBZEVi7jVV6C4Nshkg9P5suPD+yGWYGEzTc2iM+RurGTgZRTEtkCC9d2TGS9W7moiPZXnlRyd48I9Xojsv9Ot7QRDezsDJKM//x1ECZS5UTaZ97yir727i+PYhRrrjVDQFmLWyDDs2AcGqd67wHMmKRGw0w/Zfthe/c8mbWIbNps8tuGjrEIRLwXgjhESZCiGxRAiJIAiCIAiCIAiCIAiCIAiCIAiCIAjC1eCCejHZtp0BfgL8RJKkEPB14GVAuQjbdlWRXBp6nY98T2K6zLWwFPkCO6PnMgVe/Xkb+bRBy/IyzEIxoGHO2kp0p0LPkQnmb7h0AR/pXbtOL9u9CzgVQuIJOgiUuYiNZKYHcC6/tZ6K+S0on/24CG+4wr0xUU7m6AS+62qIP9M9/TfZrUKZa8brNV2mZlbwrPUlxrPsf6E48DM6nGbHox00LS1l3vrZVLUEzymABCAVzVHImTPKxgdSJMZy0yEkhdFR8t3dxB59jNhPfkLJF75wWj35Eyew4nEQ5/ElZxoWu5/qYnIwNX29O/BiL9l5LiorKykMDFxQCIltWKeXFUx4S7En6CBS62WsN0kuZTAwlqGpyoM5kJp+jXdDNWr40g6Sk3Ud/62bcC1fhp3JolaUI+v6JV2ncHlKx/Ok43mypo3e4CffFZ/+m2thhGTaIJ81Ge1JzAghcQcczFtXyeEtA9Ofz5UtAdwBB7ZtE/3pzxj7u78DILt3L/677uLmBz+MHarAFXCgajObg3Y+T763DzuXm7mBpokxPn6J9l643Diamqj+P/8bY3QU2eNBLbnw2V3T219n4Pd+f/r3/t/9XWr+8R/w3XDDaa/Np/Oc2DlMy4ri58S+53vJZwxW3tnIWG8xLCo5kcWxsozMoTF4IxBQlnC2BE+rr6zOj6rJvPmsnruuip2PdYIED/zhCsKVngveR+HSs5JJMgcPTv/u+tXf5KX9PlKxMcpH88xaWc6JHcVgmnS8wKGX+2laUookwbHXBinkTKpbQzhLnKjlbozh9HRdnhXlZOJ5xt8USJZXfdT9x39gxWMooRCKz/fe7axw1ZkYSOH266i6jJG3ikGLho2jOUCuPTb9Oue8EsZjOSaHiudvJp4/YwjJ5GCKgRMxhtri1C8qobIlwGBbDCuTwxgcPO315ujoWbetMD5O35d/j/yJEwDEfvZz0rt2U//d76CVleGcM5uav/97zIkJZL8fNRi8wKMhvN9sy8IbUunry3Bk6wBNUyFfR7cN0LZb5b6PtFIYy6DX+sj3nnpG5llVQV5XTn1eT+ZIThY/gRMTWSrf+10RrlJWIoEn5CJQliU2kkF3qBx7fRBP0EH17ABWPI9W5aHwpmcA7pWV7Dw6SWI8yxtndTKaI1Qh2onCxScpEu6FEfKdMZi6nZE0GbXSQ/LlAYy8haLK1MwJM9gWwzRNug5M0Ht0gqalZVimxcGX+xip93Prj3+MFgpetG2zUikyBw6cVp7dv5/svHm45s69aOsShEtFCTmRXCp25lQYqWdlBbm8iRXP8erP2sCGpiWl2DYcermflXc0IE0MQ9PFG8guXP70QpKlN9VgWhIv/+A4jYsjmMkCrsWlZPadukfS63wMxwvTzwxS8Ry+EhGwJwiX0uDUs5DYSAaApqVlvPS9Y9TOCTNvfRXjfUle/O5x7v1CM976i7det68YxrnlxyfJpYufI74SJ76w4+KtRBAugTdCR3Sl2M/CPP0rc0EQBEEQBEEQBEEQBEEQBEEQBEEQBOEKdMFTKUmSdC3wYeA2YCfw0IXWebUwCxaTIylyKYOQT0NvDOBoDmJMZtEiLtBl1NDF6XSSnMxx6OX+08prZl+6mdesfB7XsuWkd+ycUe5esWLG75ODKZqWlCLLEtlUAV/YSd+xSVrnRXC4RaebK51e6UFyKNg5k+yRCQK3NmBEs+RUmZiqsOfnHay+u4lUNIcv4qR2TohIzdkHaRp5c7qDPYBRsDixozjY+FwDSKA4+F7VZIzCqV40iirjDujYhQK57m4G/8uf4Vm5gtjPfw6A7HKiLVyMcvuHKcg6jpEu5K6jKJHIuz8wwruSjqZJjSexTJtUNP+W652NpGnI3gsb3OtsDZF4sWdG6Ijv2lpkx8yghfhYhqrWIPULImQSeRxhJ8lqL+FFpRQGU3jnhnE1B5FU+YK251xppaXvyXqEy1MuU8CybJxejc62KHMbAziaAhgTxbaGadkcPzgVAGJDPmOQyxg4vRqJiSyZRIFVdzWSnMzh9utkEnkS4xm8JJn4znem12NOTjL5ne/gnD2L4P33z9gGMx7HNgxS27eTPXgQJRjEjEan/y653WhVbxmEYRow0Q75FIQawB2+REdIeD/ILhd6Xd1Fq2/yJz8+rSz6s5/hXLIULRyC+CDEB8BdAlKE5MQZ2sX2qcbDWF8SQ5cJ3FKPMZEFQA07UUJOJodSpGP56RC9YLmbD/3uUvqOTTI+kMIXdtK+Z2Q6yGxiIClCSD4glGAQ3w03EP3JTwDIlrWQOl4AYLgzji/sZNVdjRh5E09QJ5sscGTrwPTyqi5jSzZqqRvfDbUYAynMWA611E1+JMVksjDjtW6/hhr0QFAE1QmX3vhAkj1Pd7PitgYyyQK2ZWM6FLQyN3q9H2Mii1riwvZpvP5oFwBOr4bLd+YAuzcumZZl07lvbLpc0h04Fi4k96ZAHwCtpgaGD4NlQqgRnKfa5dkDB6YDSN5Q6O4m39WFVlYGgOL1oni9CFcISSI6kkfTHWQSBQ5vOXUt1RwKSqmLXFsU16JSHC3FZ2R6jQ/XghIKqky4ysPEm8IdALxnCMsRhEvFlmXGRwrTzzI1h8JQZ5zOA2P0H5/kzlvrcTUFcM4KY0SL913ZkIOBZ3qm65BVCU9APPMULg1ZV5ADDgK3NlIYSyOpMkrAQUGTaV1Zjm3buP0623/RRsuKctr3jGJTDDA9/Mqp+yQbUPz+c1tpIQMTHcXP+nAjOM78DE4JBPDddBOTb3qeAKBVVpF+bTtaZaUIHBMue5ZbwbexGitZwMqaaGUusjK43RoggT31fnpTGyefMzG84hnt1SZjOeg5Nsa8a4rPPTv3jzFvdhCfDf6b6iiMZVBDTuxyN6/+2xEAHG4V91nuwwThspNLwEQnyCqEm0C7fO7LzIJFdCRd7HdQ4sRfMnPCi/JG/8znw7YNNvQeLQazTZMv7vd4yViO9j0jrLmnicR4FodbQ5IgOpKhvEE8IxQuX8ZUCImmFN8T1pu+TxEEQRAEQRAEQRAEQRAEQRAEQRAEQRCuXBcUQiJJUiewD/gJ8Ae2bafefgnhDYWcwaFX+nntFx3YVrHj7wOfX4B5fAIrZ4JDwT0/gqwr71zZ23C4NJbdXMfz/3F0ukxRZfwRJ5FaH3XzL92gXts0kf0+fDffTOL55wHwbdqE+pYB8Yoms/fZHhRVRncpZBIFvCEH8s6fgpKA6/4YfBWXbDuF95dW7qH0swtJvjZAYTiNIUukW4I89e2j07NAbf9lO26/zr1/sIxgqfuM9RRyBh37xjj22iCtq8o5vn1o+m/uoE5J1bkNWjNNi+GOOL3HxrnmgRZefbgN07CQVYnrPzkHd36cof/5H6iRCNm9e3EtWIDs8WDFYqRHY4ze/yfseXkUbHAHFnPbF+9FcbneecXCeZvoneSZbx8jOpxlw0dmMXAiOv03SZaoq9fxPfQQnHsGzRnpNT4in1lEYksfVsZAXlDCqGUTGs/M6MCoKDIHXuxDViUcLpVMsoCiyCy/rZ6qZeV4L2H4kyC8WWIyy9afnKT/xCQrbm1g55OdBG+pI5Q2UHImqWSBESRO7BtDcyj4Ik4e//v9DHfHqZsXZvmtDXQfGqNz/yhOr0YubWCZNq0rypF0GcXnw4rFZqxTetP1zsrlSL36KiNf+xq+G29i8vvfB6D0i19k/N/+DWNkBCUcpuqv/wq9/k3TCWbisPOb8PJfgVmAioVw37egTMyILLxFegImOlHCp7dnZbeH7MGDaI0OePiTkBgChx//Az9g1soyTuwcmX5tsMyF03Pqtqii0Y8ZcuFwqOSmZqF1VngYSRV48mv7MAsWqi5z86/Np3FxhFCFp9iefa6HxHj2/2fvvuPkuOv7j79mZnvfvd77qfcuF8lFlnsFYxvcAgFs0wMk+QEhAZJAgNBbwGDANONe5F5l2eq9naTrvW/vM/P7Y6Q9nU+yZavYlr7Px+Meup2dtnuj2Znvfj/v7/hdDKcZaA9TWHWMxXvCqRXpM4IRMgmkgsl4r7ic1P79ZDGh19TD6ubcrAc2DSBvlbj+/y1AViRsTjPJ2FiwyKzzK7DYFCRZwlrjRU9rpAfiMJJAmVXIa78zCooUk8z5t0zBW3jka1pBONEyqSxqRiMZy7D2kRbMNgVZlmjdMcQHPjqN5KZ+tJSKapXZsXuUyEgSk0VmwWXVpBMZYGIRkdNnwVfsINgXz02rn1+Ir9SD+z/+g+4vfpF0Swuy00nRV/4V68AT8NB3jKKehpVwyXcgUEOqo5N0c8sR91u2HtzuSCsM7AHFDIVTwVt2Mt4m4RSSJAnJYsFhmxj8OffiKmxFTvI/Op3Y+j6SLUGc84qwNfgx+WyYgGU3NrLqFzuM9gIJ5q6sIr9chNQIp44EmFx2ttxvtGX6Sx3MWVFF2/Yh0kmVbQeCzGj0Y24PYcq3Y6nzMRJJo5jkXPvS0mvryaRUNE1HfhuBuYJwrKw1XlKaTqojjGSRket8rPrrfhLRNADppIrNaaag0s2WZzuYc1EF+9f3HZ7NyIxlZcjKMRTehnuN+/fNvz/4WX8RnPf/oHTOhFklWcZ77TWk9uwhvmEDmM34rr2WxI4d2KZNJbF5C+7zzztRb4MgnBTWCjfReJZMTxRZ1UmmrZBvZ/1jLVRMzWP2igpee2DsXtJsVXD5raAn32StwulI0lQG2yOM1EQpqHQz2BHh1Re7WX5hOdnWEIpZQcuz8tpL3UZbk1nm/Fun4MkX3ycJ7wMjLbDqS3DgOZAkmPcPsOzL74nv840+GD28/lAzuqZjc5q59I4ZlNT7cvOUNvqompFH+8GA9mxWo7DazUBbJDdPxWQfLmv6hO6bLEuM9sXp2R/C5jKTSamoGY2V/zjthG5HEE409WAIiSJLSJIIIREEQRAEQRAEQRAEQRAEQRAEQRAEQThTvOMQEkmSFOB3uq5/4wTuzxljqDs2riNiPJzm0T/s4dovzcNjVZDNxxc+coiu6aQSGRZfXUv3viBWu4miGg8OrwWX30oylsV7kgZg01NpZLudbChE/h13ABDfshnJMn6kT3fAisNrIR5Kk4gYxSdzLyrDse1RCLZDxSKYfdPJ2UnhPcFS7sZ/XSPt2wd59J49NCwowumz5kJIAKadWzZhpKrD9bWEee5gcefkJcXMu7iKvpYQxbVeGhYWHXPHzd4DIR794RZ0Hdx5NuasrCS/3IXXI2ENddH/tR+S3L0b7zVXAxB56ikCN91E6OlnyCy5jM1/78+tKx5Ks+bRDi6v8GB1i6Kok0FTNXa81MVIbwKLTUHNqCy9to7ufUEUk0xJvRfNmiS2eTP2uROLH94OSZGQS5w0e60MjKbp+asRUFM5LcCKf5iGzWkGwOm3EihxMtIbIxExipNnLC+j8W0ch4JwLDRVIx7JYLEpWGwTL+m6m0Zp2TIIwJZnO5ixrBw5YKffmkH2WlGB9p3DTDu3lMYFxTz3+91EhoyCiLbtw4QGEpz1gXpe+ev+3LFcVOPB6bNi8jso/NIX6f7s53LbM5WUYJs6Nfc4sX0HXXfeZTw4/wK0cBiAwR//GO+VVyJ7PDiXLMG5eNH4He9aBy98c+xx3w544Vtw3d3vqdEUhXdZbBCe/BfYeT++i/5E5IlV6BnjOJWsVmyTJ5HYtg2L6sEaMYLJVF8Nqa4mShsvxum30d8Wxl/sxOGx4ArYWXBZNUgSwf44T/9mF1d+djZ5108CYHQwwar/3ICaNa5Vs2mN5363m+u/sgBfoQNPnp1Z51fw6t/353bRk28nNJhg7SMtXPfleccciCacIsEO+Ptt0L3JeGz1oJ19L87lywg1Lqe9KTah+KBhQRGZtEpxjZcLb5/CgU0DREZSlNR5CfbH6WkKUjkjj6QG1lkFOOcUEI2kefbu3Uw/pwxdN+oy4uG0MbS8qDkWToGupiDD3VHceTYiw0kySRWARVfW4qjxYq/y0LFriHWPt1E9PY95l1QjKxKZlMrrD7Ww8uPTMR8WjqppOrvX9FI/t5BkLMNIb4zCKjd1swswWxXMU6dQ9ad7yfT2orhcWGI74W/fHtuh/U9D+QJY9iVS+5qIvvwy7osvJvLUU7lZXCtXYqmtgbbX4L6PQNwoCqJgCtxwL+TVn5L3Tjh5fGVeeppDLLqyloH2CIlYmrJGP94C437JUuLCfGUdelab0D4WHU0x5awSTGYjUKfnQJBoMEXAflw5y4JwzHRVxVfqwe42k4hkqJtTyKan2jjrunq6942iyRJRr4Waj0zGbDUjyRJVms4Vn5lF555RJAm2v9DFmvsPcPUX5lB6WDGkIJwoit2EY3o+9ikBQCI0nEBVNdIHrwMApi8rw+Y0sfCyGqxOM0uvq6fnQBAtq1PW6MsFlryltldg0z1jj/c/A/4aiI9C0dQJxcj2yZPx33YrjgUL0FWV6IsvoCWSWCorSOzcgbmsDNukxuN/EwThJLHYzHim5hEpcpKOpRloi7Lpt3tIxjLsWdPLJXfMYOEVNfTsD+LwWMgvd5FNZTGbtbdeuXBasdlUZl1QgckiUzElQHGtl+GeKG0DSSoXFOMttPPsb3dTOTWPvBovAHpWHCfC+8SWe40AEjBCyDbeDRULYdYN7+5+AcPdMV574EDucTKW4YU/7OGaL87D4bEY08IZFLPMwstr0HUdV8CG2aJQXONlqDtKQYUbi11B048hkO1tcHgszF1ZxZr7D5CMGm3ZTp8V95t8/y0I7wWHQkhMioQiSbnHgiAIgiAIgiAIgiAIgiAIgiAIgiAIwuntHffQ13VdlSTpPECEkLwD0ZGJo54F+xMkIhnsLssJ2048nGbDE+2k41kKqtzERlMc2DTAnIsqObB5AG+hnaLqkzQyu66R6evHdc45ZAcGkMwmnIsXgza+E91QV5Rp55SRSWZJRDP4ix10NYWpr7gIe/DX0PKyCCE5AyRiaV7+237SSZVdr/Yw+8IKqmfkk0pkqJyaR0m9901Hh+3cO5L7fe/rfZitCjWz8plzcSVWm/mY9kHXdLa/1JUb9TMynGTjE23MOLcE5cn/Rl+wgPj69QCY8vMByA4OkiqqpefG/8Yan9hJrK8tTjIcFyEkJ0k6HKajySgOLq7zsm99P4MdEQoq3ahZnZatg0xZmMfMuXPQVfUt1vbWgv1xNj3VMW5ax64Rgv1ximuNjsLhoSRV0/OonplPNJjCV2hnsCOCpupIkqg2Fk6M4ECcrc92cGDTAIESJ0uuraOkzjdunt4Dodzv8XCa7n2jDHRE6NxtnC9lk0RhpRt3np1sRs0FkBwy2hdHkiQWXF5DaCCOO2Ajk1KJjCTwFTlwLVtG5R9+T3zjRkz5BTgWzMdaXT22zfXrcr9nenqw1NWRbm5Gi8UY/ctfwGzGc9mlE15bJppBbrgWpXUVZA/uU/PzEOmBQO1xvnPCaaNvJ+y8HwBb9x8p/vevk9q3HyRQAgGGf/s7ArfcTHzQgrlwJuHGj7GltRF7qJBtzx9AMcsESpy0bR8kFkwz/9JqNq5qG7eJ4Z4YroARfBMLpXIBJIdkUirxUBpfoQOASYuLcedZadk6hMNjQZYlNj/Tga7pDHVFRQjJe03Ly2MBJACpsHGt4HSxc0uU7n0hZp5XTsXkAJGRJIVVHoL9cUIDCYqqPGx5poPISAqH18LWZzvIZjQ0TWegI8LOl7sprPaw+KpaYsEUvQdC487JJrNMzcx8EU4mnHSqqrHt+Q5694eYs7ISLasTD6cpqfdSP78QgEQ0zYt/aiIWTDPYPha6s+Byo3AyFcuMCyGJh1PsebWHdFLF4bXgzbezZ00vnnw7xQevRUx+Pya/31jgke9O3LE9j5LIu4Twk0+CyYRkUsj/9KfJ9vdhKirCedZSlJGdsOHXYwEkAIN74MCLIoTkNBCPpGnZPMhQVxR/sQOL3cSGx1uZenYp5ZMCAEiShPSGAJJ4OMXrDzUTHU2Nmz7UGSFQ4jxl+y+c2SQtyUCHzoxl5aQSWWSTxEh3jDUPHqCgwo2u6zz/+718+BuLsdiNNl5Jlti9pod96/rHravp9V4RQiKcVJJiFM7KisSUpSVk0iqJSAZ/kYPOPSMoZpkdL3dRO7uAXat7yC93ISsSrz/UjCffTu2sQmyut2hXbX5x4rSu9aCrMLAbKhdD6RyQx87p9lmzyPb2kjrQjOu880HXGP7dPRTceSfxDesxl5aguN0n8q0QhBPKZFbwFzvpakqz5rAwUn+Jk/3r+2neOkhhpZv+tjD71vdTVOOh7EbRpnWmiaUsjPSMkl/uZvPT7Tg8FrwFdprW9rF/Qz/n3zKZ/tYI/a1j92GefBulk/wn9HtiQTjhUhHY99TE6a2vvCdCSCJH6oMxkCAZzeRCSNp3DdOyeZCWzUaI+6G2YbvbjK/QQdPaPpKxDKWfaMB3AvctFkzRsXuYxVfXMtoXx+42Y7YohAfjJ6+/hiCcANmDoSOyJCHLEiKDRBAEQRAEQRAEQRAEQRAEQRAEQRAE4cxwvMOEviZJ0k+BvwGxQxN1Xd98nOs97VkdE996b6H9iNOPh8ki4/JbGYpm6G8NHzZdQVN1sumTN6qWlsmgOOwktm4lvnEjksmE9/LLMVdWvmFOiQ2Pt2KxKVjsJprW9uEttCPlHRxtsUCMfHi6G+6OMtQdRVYOBjTosPXZTkwWmQtunULt7IKjLqvrOqHBxIROmZmUSiqRRVHe3ihV2dTEoIpMPIU6PIyuZpEsFvR0mthrr5P3sY8R37ePPSNF7Ns+yKKrJnaOL662Y3NZ39Y+CMfOkuiktMFHeKiPRCSDy29loD3CwGEFlC6rimJyoyUndjxMxjJ07xvlwKYB/CVO6mYXkFd29CJx7Si9qg6fLssSW57twGSRsbst7F/fhyRLLLlWFEsKJ0YmpbLm/gO0bR8CoLc5xKM/2soH/3XBuOLLkjovu1/tyT2WTTLaYSEKWlanryVMfoWbskbfhO3IskQqkUXXdPzFTlRVo3XbEDUHz8myzYZz4UKcCxcecT+VQCD3e/jJJyn8p38i9PDDpPbuxVRYQOGXvoy1rm7sdfX1EXzwIUb/9CdMeX4Kbv0Wru7/QxrZB0XTJoSYCWe42GDuV6X5KawX3kb4mVYSmzaDLBO45WYizz6L6/zziS3+Hqtf1uloijNpcQqnz0poMEFv81gohNmqTNiEpo4dc06vFcUkjwsiMVuVXMd1AJvTTFG1lw2Pt9EymCBz2DWFmtHIZFTM5onbEd4lQ/vHPzbbiXmrGFKrkYeNY2P7i12YzDJ2jwWTWaZzzyj1C4qQZAl/sZPufUHCQ4ncKhxuM01r+0jFs3TuHmGoM8I51zdM2LSm6Wi66KktnBqKSUbTdDY92Y7ZpmBzmHF4LFjtRkGxroGamXg86ppOaYMPq3N84bHJrODyWxnpjRMPpYmHjPt2NaORTauYLG84z5XNhS1/GDcps+DLRJ55lkx7B+6LLiL64ouEn3wKS2Ul/ltvwWbuh942GH7D/1OA/p3v/M0Q3jM0VcfpszLUFWW0L56b7s6zvelyusaEUDAAVRXnVOHU0bNZZCTWP96BxW5i7sqqg0/AYIfRFuH0GdcOh8scqb3pJLbLCsLhJCS2PtcJEtgcZprW9YEOdXMLySRVrA7j836oK5pbxpNnQ7EcQ7tq2XzY9pfx0wqnQvtroFiMUNGRFiicAkXTQZIw5+djnzGDyAsvkNi0GdnlouAznyF4//14r7yC+NatuM8550S+BYJwUhzebgCQjGZwBWy5NrdDnD4rMscfkC28v0i6SseeUQIHQ2nj4TTxsHH/VFjtRjvCNaya1dBFZbfwXqdpUDQD+neNnx6oO/L8p9iRAtS8hXYs9rH2CjUz/vx9aBCMRCRDImK0C0oSmM0ndmABSZIYaI/QuXsUd8BGKp4hnVS56GPTTuh2BOFEO9SWbZJlZAnRti0IgiAIgiAIgiAIgiAIgiAIgiAIgnCGeHvV+RMtBaYB3wC+f/Dne8e7U2eCbFpj1gUVSAc7tdicZmYsLyebObGdz60OMwsvr8ltB8BbZMfmNCEB1TPzT+j2DqdnMkhWG+roKP4bb8R3zTXEt21Dto0vKgmUODHbFNJJNTea7dwLS7C1Pm6Mklg0/aTto/DuG+2P88gPt7D6r/uYvLhk3HOyIuN/i9GM23cM87dvrSeTzOL0jRUCKyaZeRdXYXobxb7hvhGmLi2aML22WiLd0kLkmWfx3WCM4pXYto1k+RT0T/47+3caHfR79gWZenYpHPzv5vBYOPuaSqxe7zHvg/D2ZNI6+RVu/MUOBjsiNC4swnRYgYTdbaas0Uvk+ReQrRPDYPat6+OpX+3kwMYBNjzWyiM/3MJof3zCfIf4Cu0U143/e+ZXuvAXOXKP80qd+ArtZNMakeEkug6zL6zAk//mBXWCcKwiI8lcAMkh2bTGaG9s3LTCKjfVs8Y+57MplenLysevTDKuBWRFYspZ48/B8y+vxum1suWZDtY92sKWpzuYcV45bv+xBSs5FyxEycszHmQyDPzgB+R98pPk3XEH7gsuJN3ViaSMnaODDz7E0I9/jDo8TGrfAbq++gOik79OqPrrxKf8C5p6vJetwmnlDZ3abVu/gev88wjcfDO+a68heN99yC43qaYmogkHHU3Gub1lyyDTl5XlPqsBAqVO3Hk28svHQqjsbjOB0rFrEF+RgwtunYJysJjUZJG58PapeAvt4/bD6bMy9ZzScUWmNpeZ8FCSnn3BE/XqhRMhf3w4WHD+N1n15x5eub+Nyql5uWMkm9GIBVP4ip1MWVJIQZnxmV8zKx+zbewcZnWY8BU7c/czYBQuOLwWrM7xQZMzlpfhDojrAuHkUxTZOOcdlEmqxEIpSurHrmedPitzV44PCjVZZCw2hcVX1WJ+Q6hINq0x8/wKpMPPoyUOIiNJIqMTQ/+oOw8qFuce6nUXkBi1EXrySTyXX87gj36E4vWS//GP4155Ec5qB3LnSzC8D6rPPvL6hPc9h8fC1LNKcp+rh6aVNfjedDmnz8qci6rGTTOZZQrKjx4kKQgnnJolr9yN2aqQTmTx5NvIrzjsGJTgrA804PSOv2+afk4ZbzRlacmEaYJwMrgCVuZeXEUmqRIZSYIODq/Rjlo2yY8n34brsHt92SQxe0XlhOuAI6q/wAgiOcRfDYEayKuDjrWgZWH4AGy4G7b8CVpXQ6gH24wZ+K67jsDtt+O5eCUjd9+NKeAn3d5Bctt2Uu3tJ/hdEIQTz1/sxHNYiFo8nKZyagDbYUF+ZqvClLNKUDJHb3MWTk82u8b0c0oJlDrxFoy1H8myxMLLa3H5bSim8e2dc1dW4/CIUHvhPU6SoXEleCvGppXOhcLJb71sz1Z45fvw4n9BxzrQTnxAk5bVWHBFNXMvrmLeJdXMPL+cmedXkEmObatqet64do3hnqjx/e5hZp1fjsOU4ERy+qzMPXhPGxlJkk6q2FxmPPn2t1hSEN5d2YPBWYoMiiShisAsQRAEQRAEQRAEQRAEQRAEQRAEQRCEM4LprWc5Ol3XRfXHO6SpGl17R5l/aTWaqqNmVXa82En93MITup10MkvT+j4WXVFDNqMhKxKpeBaQuOC2qXgLT17xm6TrpDs6cC1fjhocRbbacC5ahK6O71A02BFh3sXVhIcSJKMZCqvd9LbFaVjxfcxaGOTjOkyF97jhzgiJSAaArn2jLL66loG2CP5iB3XzCskrPXoxUWgowbO/2002rbHp6XZmX1CJySzj8FkorPKMKyaeIB2DVAwivWihPlpGG3jhvk4CJU7O+kA9bTuGkFGZUpPF3b+XJJBubcVcWkLB5z9HZspCnnwsSj1hbE4TiUiGzj0jFFa5WXBZDXnFVopKZFxlxSf4HRMOF1eKadnSSXGtl6lnlzDUGWXuyipjtEBJQlN1gsNpAuXlyA7HuGWjo0nWP946bloikmG4KzIuVORwNpeFxVfVcmBjP/1tEQqr3NTPKxw3sporYOPSu2bStn2YgfYwNTPzKZ/sR1FEgIJwYihmGbNVmTCSttk29nmZSmTYuKodXdNZcHkN6LoRyjPJx6V3zmTb852YzDIN8wtZc/9+RnvjzLqwgks+OYNENIM334bZauKh/92cG21ezWqse7SFwio33sIj/x85nLW+jqo//oHE1m1k+vuQFBOD3/sema4uACp+/X+5eTNDQwT/8oaRk3Wd+NY9jP7pT+ipFMVf/xquSwJIuo7J73+nb59wugjUwpU/gWf/DRKjSFY7jsZiouEoeiyG70M3kOnuJvrCC7gvvwGTRSab1sikVNJJlaXX1pNOZJEViUQkwzO/3cVF/zCNrc924CtyUFTjIX1Yx3RZlqifV0h+hYt4KI3DZ8VXaEeSJo6G2bCgCFmWaN85jMNrxeW3sunJNnqbPZQ3+lDeRkCacBIFamHJp2DjbyGbYMg8NzfS6Z7Xe1l6bT0DbWHsLhNV0/y4Ipvx5kcxrX+AUOM/8uK9e5lzYSW6blxzgE42NbFwwmRWWH7TZJq3DBAeTFAxNUDd3EJxXSCcMpmUytLrjONZMcnklbvY/Ew7JXU+bC4ziWgai8PE/Eur6dwzgtNnZfq5pfhLXbi8E4vfeg+MsuXZDhZdWZtrY7C5zOxd18fsCyon7oC/Gm64FwabQFOJB12M/uwXuBYvZvQvf6Hgs59FDQbRdR3ngjlYN3wBKhZBwSQIdcLUq2HPo6CYYdEdRw4mEd5fshlS8Sy71/Qw7+IqNFVHliVUVTvYXnV0kdEk6Pq443XmeeXkV7hP0c4LAkgmE0PtQeZfWk0mlaVt2xBFNV5qZxegqToms4zpCMEN/lIH5908mX3r+kCSqJ9XgCsgioyFU0OSJEpqvSy8oobBjghOnxWHx8Ka+w+w4qNTiY4kaVhQhNmioGk6illm34Y+Shp8bx1EEqiB6/8A7WtgtBVig9D6KlQvhdF2GGmBvHpoWgW6CtFe6NuB5CzAPnkK2cEh9EQC/80fITswQOjBh8j7xMdJbNmCpaICSRbXzcJ7VyyYYvryckZ6ogx3x6iZnc9Ib5zpy8qMgQF0HUmW6G4axT/P827vrnCKJVMmslmNngNBamblY7GbctcKqXgGxQJLr6uja+8o8XCayUtKqJ1z8gaOEIQTRwdZgbM+a3zuywo4CuAI7aTjdKyDP14FmYPBHqu/Bx95EGqXn9C9kxUJSZLY/nwH2YyGO8/G3JWV40IwC2s8XPX5OWx7vpNkPMuUJUXseq3vYFuHismiMNAWJqX7OZF3m7Fgiv72MIuurGWgPZxrO46MJCiqFp8TwnuXph8KIZGRJSn3WBAEQRAEQRAEQRAEQRAEQRAEQRAEQTi9HVe6gyRJRcB/AaW6rl8iSdJUYImu63efkL07jVnsJnRdZ8NhBfCLr65DVt6ig87blIxlaNkyRPOmwXHTF11Zw+r79nHpJ2dQM+vkBJHoqRTm4iLi69cR37QZ2eHAf9NN8IaOw5m0yrpHWnD5rVjsJlq2DZJf5kSfa4NsQoSQvNsSQQh2gtUNugbpKDgLIT4EZofx90yGjGmJUVBMYLJDfAScBZAOg6aBzWssYw9ANgnZFDgCaJlMblM9+4L07g9SUOXmnA814PK/+bGZCKdJJ4wiJS2rs/lpY4TMyz89i4IjFSGNtEGoA9QMrPkhTL4CnvkKo1c+zbP3tqNpOv2tYQbbI1TPymOWo4XQ//s6ifPOw3/zRwj+/X6Szc2Yr7+VwbSPRGSU/RsHmHleOesfM/4vD7RH0HWYetaMt9x/4fj1tUSonV3Iaw8coGJqgFgoxVBndNw8k2Z5KJs7B0zjzyW6Dpo6sZOU9iajN4UG46z6+XYsdhOBEicdu0doWtfHh766EN9hoQz+Iif+Fc7jfHWCcGSePBtLrq3jlb/sy00ra/SRXzZ2zAX7Euzf2A9A+47h3PTiWh81M/OpnBagrzXEI9/fwqG+gtue6ySTVDn3xkYURaZ1+yBqRhu3bTWjkYxlOFbW2lqstbWke3oY+sUvyfT2IjudFHzus9hnz87NJ1utKPn5ZAfHX6/INht61jjP93/nu2TDEUJ/v5/8O+7AveJCFI/omHtG0XVjBO3YkFGYrqlw7a+NwvaRZmzhDWQb5jDw5JOk9uzBUl1N/p13EPy/H7Dw9v/itUc7AOPc/9oDByasfrQvjs1pZrAjwr71/RTXurn89gqs2QGweZGSIfyKGb9tFBIaxCaDa2JxiM1hJjySJDSYoL81TDycNrab1RF9c99DSmZDdBBcxYCGprkAI4RkpCfGaw8cIL/Cxfw5TtyDD2NZ/WWYdg0M7CHuu4LoaGpCmNk5NzSOe1w3t4B4JM3Tv95JoNSJy2dl5yvdJMJpzr1pkggiEU6JVCzLaw8cwFfkQFM1mtb14cm3oWOckPpbw7x0bxNmq0JxrZfwUILmzYOcW+81zq+xIVCsxn2fzUd/W4bQQIK1j7TktuEtsLPkmlrc2WaIFYMzb/xOWL3gLCQ5mCT4l3shm0F2ObFNamTwhz9E8fsJ3HYrNpogPgyFU2DnQzDtKkhF4MJ/h/xGqFgCDt+pe/OEk0NXkU0ynbtH6dw9Ou4pz0fe/B66c/cIrz3YPO54HeyIUNYoAuqEU0iXyGQl1j/WzPRlZfS2hIgMJ8fNMvfiKmpmjr9O7G+J8PKfmiiu86JrOq/8dT9zL6pk0VW1Rwy2E4QTTdN0Nj7Rhr/EQV9LKBcKHeyPkU1pbHmmY9z8FpvC4quybx1CAuAtg5nXQ/cW6NsByQgM7YMpl8P6X4O/BjxlEB0AV6ERSOIswlK+APuUJQw89yyJzVswFRdT8E9fYOR39+D70IdI7m3CPnXK8b3wbAZGW0DLgqfCCEHRskZQWnwEEiPgKgKbzwhRAWN/M3EIdRlt4oEaGG0z2sA95SDJxj2pxQmOfAh2GL9LMiTDYLYb7d++CrD7jm//hfeseDjFs7/bRXgwibfQjjffTueeEVw+G/s39I+bN7/CxfQF3ndpT4V3TSZDbDRFeCjBcHds3FOTlxYz1BllqDNKQaUbm9PM+sdaKJ/kxyHy9YT3Ax3jc8/sNNoLZAU4yjXDobaFplVjASRgtO2u/SVUnW18t3yidk2H9Y+OtdlFhpPseKmb8smB3DRFkSlr9FNS50XXoWtzJ61bhmjdMjRuXTMW+U7Yfhn7ptO1e4TWrUP4ix25tuMV/zD1hG5HEE607MHvzk2yhCxLb/pduiAIgiAIgiAIgiAIgiAIgiAIgiAIgnD6ON4eHfcAvwO+cvDxPuBvgAgheQvRkSTlk/3Uzy0kk1ax2k107B5i0uLiE7odm9NMab2X7n3B8U9IEuhGYELNrIITus1DdE1Dz2TRMxkCt96KFosSW/s69pkzxs1XMdnPhsckoqMpGE0BMHe5D0t8+0nZL+FtGNgDD98FWhomXw6v/QQWf9IYrSrYDgs+Bq/+AGZ8EMLd0LEWzvkneO3HUHMuSArseQzO/yqs+yXkN4C/Fjb/3pi29S/kN96BxVZJOmmMHK/rUDu7AKfvzUeDHeyMkIiksTpM40ZLlmUJl98K6ZhRWJoYhZaXjE7fq74Iiz5pBJBULIb9T5Oa8QWCUS+aFsytQ9N0WrYMMfWKMtA0os8/j7migpJ//yqhink8+ddOGhca20xGM7RtH2Lx1bWkEyp55U6Ka30igOQUSacltr3YycIrawCJZCw9IYSkuNyKOhok09OLffLk3HSX38rci6tYd1gBpcWmkF9+9F6+sWCadFIlnVSNc9ZB0ZHUuBASQTiZJEli0qJi/MUOhrtjuHxWimo8OLxj581sVj3istl4FJI6is1D3/7QuEAE2STh9lvZ+3of6USG/Ao3JotMNj0WRGIyy3jy7W9rf1NtbaQOHMB75RUEPnwTituNuaxs3DyK203hFz5P5yc+aQRXAabSUvRsBtSDnw/JJCRTZLq66P3KV5BdLjwrL3pb+yK8z7W+ArsfGSvi2vs4XPw9o4hNy0JiFJtvFPeKFbjOPZdMTw8D3/s+vg99CFuqmSXXTiYRSZNX5sTpsxALpsfWLYG/yEEymqFj9whgBF0lOpqw7vsljDTD3Fth9f/C0k/B5nuh7jyY8xEonT1hV6un57Hl6Q70wzrjzllRielYCviEU8Pqgqql0LsFBvaQ7wljsSm5a1KA6jorNG1H8h0Mc0pFwOLAmWnH6nCOvwZVJBRFYtFVtaTiGSw2E0W1XgY7IoARbDLSYxQdte0YZlEsg8Pz5te7gnAiFNd6Ucwywf54btq8S6qxuywAuWvnTEqlc49x/ouH0yw8CxzNfzfaDjrXkZpyE/3pejwFE9ssSht92PV++MU5kD8Jrvs1lMwynoz2w5ofk9YLibRZCT/1FEVf/CL93/setqlTyfv4xwFwz61BefEOWHwHvP4zWHwnjLRA0Qzj3q1kJpgsJ/OtEk4VkxWLJUZRtYf+tvC4p1z+Nz8vtu8yzseHH68msxEMKotgJ+EU0SWZ4korsiLRsz9IaYOPpuG+cfMUVk5sV+htDqJpOj37g7lpLVsHmbOyEqvdfLJ3WxDw5NsIlDoY6horhC9t8DHQHj1imHP5ZD8259v8+qhsDgSqjZ+mp42C44UfN9qUz/tXeOZrUD7fuK72VUM2jn3gHrxXXIFj/gLU4WGGfvIT7HPnkdyxA0t5+fGFkEQHjG2v/blxz9h4sXGt8tqPjN+LZ8Ir/wPecrjg6/DEP0E6ArNuBHc5rP4fsLjgwq/D9vuhax0UTDauU574AigWOOuzsP8Zox198R3GfWs2CTOuh92PwlU/MQLWhNNOLJQmPGiEUIUGEoQGEpgsMg3ziiaEkJQ2+LBmw0Dhu7CnwrvFocTJK7Hj9FknhJAUVnrYv2EAINduABANpvAVie8ZhPc4iwsUs/HZKstGGEk2CfIRrmk7Xoen/hXy6o3vjN8oOQqZJCiuE7Z7bwwIBKNd7kjh6ofuI+0OUEwyanbsuxCzTcH+9r4KeUsuv415l1Tz+kPNuXZC81t8LykI7wXqwe/tZFlCkSVEBokgCIIgCIIgCIIgCIIgCIIgCIIgCMKZ4Xh76Ofrun4foAHoup4Fjlz1Kozj9FvZ+XI3659oZfsLXax9pIWCCg9W54ktTLTYTMxZUZkr5JAkmHZuKYrJGGEzUOo8ods7nK7ppNvbcJ51Nno6jeLzYZs6zdiJwxRUebjqM1Oon5dP+SQvl9xSRpV7H2QTRsclRYQ5vCvSCXj+m9CzyRj1/aX/Bk+JMQJk22qY/WF44ZvG30g2wd4njGkvf8cI/vBXw7a/wPRrjQCS0TajeGz9r6B2uVFEPLCLwMavcNXVEaYtdFJS5+X8WyYzZWnpm44C298W5sHvbuKFP+xl/iXVWGzG/xvFLHP+TdX4Mrvh77fBtj/Bn66FrvVGIVtiFHQVskm00sXEK26n7VsPYpPS8IbNWR0mzKkwBZ/7LAWf+RRFX/g42vT5PP+3LhKRDHa3JXcoD7RHWPtwC06fhcYFxXjyxDF7qhTW+okGU6x9uIW+1iDeAjsFhxX7VM/IozBPJ/TII8iO8b0FJUli6lmlnH/LZErqvUw7t5SrPj+HQMnRz4t2txnFPP6jU1Yk7B5RMCScWhabifJJAWadX0Hd3MIJwUe+QgfewvHHfF6JDd+uH8Kfrofe7RM6tM+5sJKdq3t46d69vPZAM8/fs4dzb2jEbDXOsWarwnk3Tya//Ng7BCd27aLt+g/R/alP03HzLfT8y7+iqUe+VHQuXkzVn/9E0b9+iZJvfh3vVVcy/Lt7cs+by8vJDo2NRDj697+j66Kn4xkj0g+P3AnOPECCwX1gskOsF7IpsNjB5sOUbMd91jxkuw1TXoD8u+4k3dJM8s+/IROKsOPFbl76017mrKjC6jAK6mSTxLyLq9n4ZBt9LSGmLC0BwFdow9r2GJTOMUbx3n6fEVrxwjdh1vWw4dfQu/WIu1tU7eGqz8+hbm4BFVP8XHLHDMqn+E/RmyUcM7MdXvsFFM8iYB3iso+UM3VhHiV1Hs69opha3yjZ/j6krFHoTvXZ0LsNT2IXy2+qx3zYNeiCy2vIpFXWPdLCjhe72fJMBy6fFV/hxGqF4loPFvuJG+FVEN5MfoWLqz8/h0mLiyht9HHRx6ZRO3ssiPRIBW4lNS4s8VbY9SBEetF1iT0D03js3ggDrRFqZufn5g2UOvEVOXANrjYmDDXBo5+BRNB43LYG7cBLxONlxF5+BddZZzF8zz0UfPpTOBcuQJIknHMasfY/BXkNxn3lwn+EdBQaVsDMD0HFfBFAcjqRJLLpDAuvrMmFj0oSTDun9C3DukrrfBOmlU8OiAAS4ZSSkHEMt3LBrVOon1dASb1vXDtCw/xCCqs9E5bLr5h4H1Xa4MNsFdcEwqnhLXAw/9Iapp1bRlGNhxnLy5m+rIzWbUNYHAqTl5Tk2kc9+TamnVv2zkIU7X4jnHrJnUZbsJY1gjpe/5kR4tj8Iky5CppfAMWK1LEae40P2WFHdjnJ+9g/YgoESO3bR3LPblLN+9/5i25/3QjL1g6GB+57CjIx8JQav8cGwVthtHc/81WYdYORkL31z0Yot81rXJOs+hJMWmmsY3CvcS845QrIxI0288mXGb+v/j5MugT6dhjBJDY3vPAtyCTe+WsQ3rNsLjN29/g24bo5haQSGSqnBnLTCqvd1MzMR02k3rgK4TQnZdLUTHFS1uAbdx1QNSOP/EoXvKFZU1YkHG7xPYPwPiDLEKgz2mQlBdBBUyG/bvx8ox3w6g+hZwvIFqhbPnFdU6+d0G/geB1pkAuX3/qm4Wo2JcuSa2oxHfz+z2xVOOvaOuymicElx2vykhLOv3UKJfVepp5TytWfn3NS+2sIwomgHsznMckSsgSq+G5OEARBEARBEARBEARBEARBEARBEAThjHC8vZxjkiTlcbCrlCRJi4HQce/VGSDYH2fptfU0bxkkHkpRPTMfTdPJJFTM5hPX+TwykuSFe/dSO7sAm9OMJEu0bR/C6bFSOS1AcZ33hG1rglQK2+QpRJ59huTuPSg+H4Fbb0F/Q2ciWZYodXVRcpkZPZVGDm+BUCc48o0OwaLY6N0RH4T9Txm/Zw6Oml02D9peNX5XM8ZP8Uwj5AOMv1UyZIwI2b/bmOYqNAJIbD6I9BrTiqfDK98zfk+GKHzpwxQWTEK75n+Q6+e95a7tW99HNq2RTWtsfqadaeeW4cmzUmZrwtf7faSmJujaYBQNx0cgvxEOPGssbHERn/c9IpsGyKS2I//rD+jul5l/cSUbn+oA3ejsefa5dmI/+nfM11yJ+5LldAfzCLVoxMNpAPas6WHpB+o5sHGAZCyTCwIQTi1foZNzrm9g3/o+Sup8vPyXfTTML6J6Rh5IEgNtYRLt3Xgvv3ysh9RhHB4LU5aWMmlR8TEVrnkLHZx7YyMv3duErulIEpzzoQYxOqHwnpOMZVhwWQ2t2wcZaItQOcnNzIo92Ff/2ugQfN/NFN7wItUz82jbPowkgWySiQXHCiJiwRR7Xu/l7A81kI5nyWY0XAHrm4ZEHU7LZBj+zd1o4bER7lN79xJ75RVM116H8sZgILMZx+zZOHwxSEeJ5XkIFxeR6ezCOnUqvquuYuB//zc3v7m05Jj3RTgNJEaNwjBJhtYXwF1qFIi9/nNY9EnQNECDohnYyhtRYyr9//3fpPbtw9rQgO+DH8A8sB5WLGP/pgE69wxz8cen070/CDrs39hPaMAoDKuZmY/ZqnDOddXYn3kEzBeDs8AIHGm4EPY8CqpxPUDXBph5A5jHBwHJikxZg4/Sei+6blzvCu9B0X6IdhvXso4CbE1DzLJIRFrXkXxgI8nZs3Geey6yedAYGb3pSQjUkcmfRdMLvUw/twxZMf62u1/tYcrSEgIlDhw+K1OXlhIocWKxmaiZmU/rdiNEye42M+/iakzmExs+KQhHI0kSxbVeimo8RzwfBUodVE0P0L7TCNtxeCzMP8+HqWcVlM2FtlcJnf0j1v3eeL5pXR/lk/wsuLwGb4GNWDBFXoGMZ9W3xlbauxUifWD3Qec6EtP/jczOZhJbtlDwmc+gpVIM/u8PMBUWUvC5z2C3D8Du16H+QiiaZlyryDJIJnAVIJx+Rrqj6JKJ2tn5WB1jbVWhgQSX3eU5atF7+WQ/BZUuBjuiAPiKHTQuLDqVuy4I6FqWrM1Lx64RKqYFeP6ePUxaVEztnAIkWaLnQJBMMjthufxyN6UNXnr2G03nroCVGcvLxXWicEqpGQ2X30ImZScykiA/7WL+pdWkolmC/TEWXFaDrukkImlevHcvH/jn+Ti9Ewt5j4m3zAi2HmqC/p1w1uegYy1ULYGBPVB3HnSug0mXYtv6bdKV/8zgw4+QbmnBOmkSgVtuIfT44zgXz8Ma2QTuYsirBWfhhPuvo2p7ZeK09jVGm3G4B9pfNa53Qp3GvYHtsACh7k1GG3fnOuPxofZxMEJGGleOPT78uUO/t62Gc74Ia34AsSHwVRzbPgvvG26/jQtuncKTv9yJmjXanUsbfbz4x71UTc9jweU1oOuEhxOM9sdx5lsRJeZnFj2TJZ2B5/6wh7rZBdTMzAdJor81RDyUNr5n+NPB7xlkiXNvaBTfMwjvH4WTwOo0gptls/GZ+cb79/gwtLxk/K6lwVUCF38bdvzdaFuddjXk1zMhkeeN+ncZ4WGhbiP4q2IRWI8elC7JMOvCCrY91wmAySyz9Lp6tDcZRieaMrP1uU5mXVABkoSu6ax/vI28W6pP+Lnb4bEwZUkJkxYWiUBN4X0jqxnXOrIkIUsSmiZCSARBEARBEARBEARBEARBEARBEARBEM4Ex5t28QXgUaBOkqQ1QAHwgePeqzOA3W3hud/upmyyn8IqD/s39FPa6MPqOLGjXKlZjUQkw86Xu8dNn7ykBLvLTCahwkkalF1Ts2R6e3CcfTa+G25ET6fJDg8jmY5w2JkcSIlhpMSoMdqgp9QYFUkHFDHy17vC6oGyeWR880mrU5CX/hBMTrT6hSgeJ1rGgrTo+2B1osUzKA0fQ1PtSPO/i+RwoSbBtPwyVN0O87+L7HShpkzI584C2YU297soHjdqfzeKBSw9jyK/VV8rTSMbHCAyPDZ6ZCKSYcszHVRO8zHd/m2oXQ5b/2j0MtMPhk70boWGi0jZppPJTqP76/+M66KVxJZex3NPhIBu8itcLLqyFrctg2OoBY83iv23v8FcVU3X3lGeunsb084tw+mzEgumCA0meP2BZsqn+Fn+4UbyyyeOcpsZGCDd0YFst2OpqUFxiA6kJ5rVaWa4K4LFZjJGKNNh/4b+cfPMvrWW1KrXsTY2HHU9x9rRL5tSGewIs+DSalRVR1EkBjsi1M9TUZyis6Dw3hCPpHjmN7sY6YmRX+GipM5LOJjE4msi19M22E5oII4kSyy7aRJWh4nIcHLCukL9CQZaw+xa3YPJLFP1yVoy3XHMZWW5ebRMhnRLK2ooiLmsDMvB51JtbaT27AFJwnvllZjLy0CS0FJpkrt24lyw4Ij7n46aSXUlkO02Kn74TUgl0RQX7f94F3rKCEmRbDb8HxCXnGcUVyEUTDFGzQ7UgrfSKFybfJkRclY80xg1c6gJTFacs2aT/+lPkdy1m0xXJwPf/R62adPw/MMSCis9JGMZuvcF2biqbcKmbC4zM88r5+W/t7PyI6/g0w5g2fZX8JZDdNCYSTlYiJffCMrRA/MkSTrRg3kKJ5LNaxRKKFawupBsCunubjznLcN3yUri27chWyzIc26ElheMgAS7HzURZXTARdvOjnGrS0QzlNT7GOmNkzpYfJyMZVCsMgsvr0HTdLJplVgoCUy8dhSEk+lI56NsRmX7i10oJiV3jJqtMg5bCux5MPo8FEwmbq4km27LLdfVNEpX0yjn3NBIy9Yhii7wohbOQeleA94Kkgv+k/TWDpRAFLnsA8RfXkt802bcF61g8Mc/xrFkCXmf/CTm8jI8lWlkLWME/cSHINgJyVFAggUfO6XvkXDquAscdDWF2f1qz7jpgVInqqphYmIIia7ptG4fIq/MTfVMo7hNzagoZnEfJpximoZJzjDal8ZbaEfXdPa+3jtulmx2fAhqPJzi5T834cm3s/DyALqu4wrY8BaOD2YUhJPNZFXY9nwX5ZP9aFmdl+5t4oJbJ5OMZelrCdPXMhYiqphktOzEQN+3RZahcIrxk4xA5RLo3Q5WrxEE6Ck1vgvIJjDn23GedRbuiy4i3dZG//e/T+HnP4caTRHX7dC8BVODTLZ/HZq1AMlmB1kx7gM1HeSD/0qSEVIpS5B3LVywEinWjzmyHXPT7437ysG9xv4VTIGRVuN3i/NguOVB+Y2w78nD3rzDgk88ZUbw9ZGeO3SvWDAJgm1QNN1oZxdOS5VT8/jQVxcw3B1ltD9BIpoBoH3nMO07h3PzlTb4MKuJo61GOF0pEpJkQk1r7Fs//juLyUtKaNs+NO57hlgojabriKtb4X3DW278HI3VZbTZlsyEqnOMz3xXESz8BKAZ/QDA+D73aAb2wD2XGQHVABvvhmt+ZYRTH22zDjORoSQLr6hBU3V0HQY7w5RNOnqHiLRuIjqaYtNT7eOmZ7STFyIsAkiE95NDl8kmRUKRJTRdhJAIgiAIgiAIgiAIgiAIgiAIgiAIgiCcCY4rhETX9c2SJC0DJgES0KTreuaE7NlpLpNSaVhQxL4N/aCDr8hBaZ2PbEZFMZ24TifugI3GRUU0vd6Xm2Yyy2RSWZrW9VM2yU+g9MSPv5aORCCTxVJTQ/S55xn+yU8BsM2YgWPB/IkL2PIgNgCZJKAbIx7rqvG76RhHNhROLLuPxOxv0PX5f8FS1Y21sYHRv/yVgs99jtDPfo9kNuO64AKG7/4xef/wD8ReXU12eAT/TTcx9PPv4rv2WlItLSR37SL/rrsY+vcf4Fq+DD2TIfLCixR96YsMfednqMPDIMvkf+xmAt7JRyg1wujUHepicNTB2qeHKJ1SQuu24XGzTJulwEtboHw+2P1GhzSTDUw29GSURN1n6fzMlwnc6kaLxdGsTrZuHxuZdqgzylBnlKWXlFBW5sE+bSoZk4PelhD7NxodRPet72PRFbVsWNVKKpZFkiXq5hTgK5r4fyjZ1ETXXZ8i09UFgO/GG8n/1F2Y8/JO2J9IgExSxV/ipLclTGgwgdNnIRZM557PL3fBjvVYqqqQLEcvEj9WwYE4O1/qmTB9ytJSimu9x71+QTgRQgMJRnpiwNi5DSA0aQaHxgdUG69g6+phSmq8dOwapqtplCVX1yFJRl/gQ+rmFdK6dRCzVeGc5Q5G77qN0VSS8p//DMecOajxOKN//guDP/gBqCqKz0f5z38O6Az+8lc4zz4bz6WXEnnhBUKPPAKA85xzUJzOCSEkejZLYtcuOv/x02hho/DJdf5yij9+DVZnmOq7f0li937QdWyzZmKfMuWkvo/Ce4wjAFf/DO67xRgB22yHomlG8ZfZAc//BwRqIK/OGF17pBVb7Xwyvb3oiQR5n/g4ajCIvukZNP8yOveMUFjlpnpmHm3bx64pzFaFeDid63A+0BXHGXCiX/ArrFIPvPjfMPdWaHkRimcZI2++ZYqa8J7lKoQL/x061pJxLccUGGH4178m02GEi3iuuhLJ7UIPdiNVnWOMkB4bIuaeRcMCnY1PHFaYIIHLZ+X1h5qpnpFHJmVcZ/YeGOXAhoFxm+3aO0Jpox+rXYQtCu+u0ECCXat7QIeWrYO56YWfnoIjr9YomK0+m2Q0TcXUAJ27x4ptzTYFxSQxZ1khyR/8GwO1cyiYWkWy+Bp6vvh11GAQFIX8T34SyeMluWcPrrPPouCznyU7MoLssGOvy0eObzPCnDb/HmZ8AHwVoJVC+QLwV70L74pw0qkZ0nGVknrvhBCS6cvKjnpujIwk2bSqjWxmfEF8ca0XT54IchBOIUVBs3loXGRHMcvY3WYSkbHm8OJaD9788SG0o71x+lvD9LeOBTwgQVG1h7yyo4/iLggnmtNroXJqYNx3EumkiqbqyCYJLTvWIDDtnFKc/hPYLm9zQ/F04yfUY9xL9WyD5DDUnod136+xNl5FtqcXc2kJBZ/6FGo0Smz1q8Ree81YxbRpOM8+i+Ff/Rv2ObNxLFqEKRAg3dODGgxhqShHdjhIt7UDOuaKCtAh3dkJspPAkm9jc4Zh14PGvUD5AtjzqFH8fM4XjcJmAH8NuIsgfPBzatYN0LXR+F2xwJK74KVvG48nXQp9O4zfG1caxdJmO8y7HV7+H7jhz2AXbYanK0mW8Bc72b9xgA2PtzLvkiosdhPpxNj3DmWT/dicZnCKMJozjWS2oaczVEwL0Llr7F7KYjdhd5tp3TZE67ahsfklqJ9bQKBUXBsIp4n8Bjj/q/DIndC3E5b9M6hZ42BHAT1rfBnxZgnOHa+PBZAc8tK3oX4FOI/8fWsinKZl6+C4dg7FJDPtrDJwH/l7QqvdjDtgIzIyFtTuL3Fgtp28EBJBeD/JHkwhUWQJWZJQjzOrUBAEQRAEQRAEQRAEQRAEQRAEQRAEQXh/OK4QEkmSPgg8pev6LkmSvgrMlSTpW7qubz4xu3f6SsWzhIeTLLisBl3TiQVTtGwfYMpZJSd0O1pWo6DChSyX0LFrGE+enfr5hWTSRs8ATT05o5SoQ0OoiThaPJHrJAyQ3LGD2Jo1OOfNG7+ArwgGdxodjTJpyMbBdnBEIvP4jvvCqaFGo/T/8BdkBwbw33Qjgz/8EbapU0nu3EG6rY2Cz3yGwZ/+FFNBAWooRHLXbvI+8XGGfv5zkGVkl5P42rX4P3wTI3ffjRaPY62tY/DHP8Zz6aUE73/ACCAB0DSG/u/3OM65EGdecW4aIy3GaNhPf4XIwn/j8T+FiYfTqPowC6+oYd/6fnRdZ8FSiTLHPtCysON+oyP4C9+CHfeRWP4HYrtbifzvz9BiMVCU3OtT3ROPf91qw7V0CdmMyubHWmla20fNrHzACLzY8EQrU5aW4M6zUTbJj7/YiSyP7yCnpVIM/fwXuQASgOBf/oJ7+TLMy5adhL/WmSsZS3Ng8wAFFW4cHgvLbpzErtU9DHZEKKn3kl/hJh7LEPn6Jyj/v18d9/aOds7UNDHik/DeYbIcuWOsST5YACFJDM/9T/L2ZGjZNshAWwSAbS90ctYHG9i3ro94OM305WVUTcujpsGGuvZl0j/4DeqAUUjf+29fp+oPvyfd1sbg976X24YaDNL7la8Q+OhHib/yCu6v/xup5mZSe/fm5omtXo1z8aLcYz2dJr55M9HXXyexaXMugAQg+sJLJC9bgdndjG3qNdhmXH/C3ifhfahsHty2yhg5O9RhFHppGdh8L8y7Bdb8yBhJ26JAuAtLsAN7zWL6H3+C5M6dmPLyyL/rTuZmm2i8fQmRmERAd2F1mOncM4KvyMHM88p56d6x41VNZ1FDIaS8erB74Po/QiYBNecaI2OXzHwX3xDhhGi4CFxFZIIWQo89lgsgAQg/8ijORYtJ2aZjizTBzvuITv4Yj/+ul5I6H3NWVHJg8wAWm4k5F1WSjKVZcHkNvc1BoiMpANTMxGuEbEZHDBYpvBfomg5HOBZ12QJF02HZv0Kkl1TQRWGlGU++jdZtQ/iLHNTMLuD1B5sprbYz2WIi+PcH8dzzW/r/4xtGAAmAqjL0s59R8MV/ouDOOxn54x8Jr3oSS0MDxf/0KWyxLTC4D4qmGOf4cJ+x3YqFYLae0vdCOIU0nUQkhdtqYsm1dexb10c6qVI/rxDHUQrCjMX0I96PiXsx4VRT0xqZlgNs2+Jl7spq5l5cReeuEYa6opQ2+Jh6dilWx/gm9yMep7o4foVTTzHLE76TSITTWBwmll5Tz/6N/URHU1TPyMNf4jCuFeQ3KQx+p7ylxk/5AhjaB6OtyK59mPVCwk8+RWLzZhSvF/+HPzz+u4Vdu7DPnImpsJDElq3YZ80itOpJLBUVWGtryfT1kti6DeeSxSg+H8mdu0j39uBatAjZ7mDw0U2Uffl25A/fD4FaSIbhhr8YIWh2P5TONoqhCyZDKgLFM43p/moIthuBlIEakE3G8jaf8RNsgwUfA5Mdov3G79kkfPQZowBbOO2pGRWAHS92seiqOtp2DDHcFaV8sh9Pvp0nf7mTyz/eiIiWOLNoyRS65qS80Y/daaZr7yj+Eid1cwuQjnBu1cW1gXC6Scfg1R9AqAtig6CmjeCvVND4DtjmM/oFmN8kVDIdmzgtm4Bk6KghJEdqc9O0t2iLkyVmr6igY/cIg+0Rimo9lDf6kUT4tCAAoB78fFIkCVk22mgEQRAEQRAEQRAEQRAEQRAEQRAEQRCE099xhZAAX9N1/e+SJJ0NrAS+B/wCWPTmiwmefDujfTH6mkOAMWLaeR+ZhGw6sZ1ZIiNJXr3vAN4CO5VT84gGU7x6337mXVKNYpIprDo5o6/psRiy2UJiy8Q8mtia19DvvBPJ9IbDT1chmwJdM0ZcVjMgK2B1n5R9FN6cGgqR2Gz8/bSkUURpbWwgtnadMS2VAk3DWldHcvduYyFJRk8msTY0kGpuAUB2e8gODiJ7vWQHjVGnzJWVhFetmrDNTGcLuPuhaxM4ArDlD0Zn9O6NBOMe4mFjtKvufUEGOiJUT89n9gKNwlWXQu0yoyP41j/B/udIX/UA6aiJrk99nsBHPkJy337jdY0M41h+PsxYyIySAl55cGwEe1mWKJ0UIJtWGWiPsOXZDtDBnWfDYlNIJ1VS8SzbX+ziqs/PIe8oI9KpoRDxdesmTE+1tuISISQnVH9rmLq5hbx2/wEqpgRo2TqIrMhUTc9jsDNC8+ZBJs9yUV1RgXaoGPI4+ArtFNd66WsJ5ablV7rwFYqwJOG9w1doZ/qyMna+3J2bNmlREf7GfCj8Fdn8Gex4IUrNjAI2PzV2DgwNJHjtgQNc+dlZBEpc2A8WgYa2vULPj/9r3DbS+/ejjo6S6e3NTXOefTb2OXNAU1E8HjCZiL74EurQEG+U3Lcv93t823Y6bv8H/B++iVRT04R5M10dcM4k45rgeKQi0P467HrICKpovBgqFhzfOoVTz19l/IR7IH8SdG+CGR+A7ffDWZ+F9b+BKZcbIXa9m3Douwjcegup/c1ooRCR1a+iDg5i/0iALXv99LWE8RU5qJqWR2Q4yf4N/Tg8VpKxLLJJwl/iJqsVYNJVaLjw3X71wskgSVA6G717A/GNmyY8ne7uwjpjulHgUL2M0KhOdDTF/o392N1mKqflkUmqhIYSbHisFQCTRWbxlbUkImnyyl3IijSucH7uykpsDvMpe4mCcDSefBtVM/Jo3zE8bpqv2AmePPCUkE2rZF7tYd/6fmZeUJ47X7769/2gQ+ueCFOXXAivr0GNREm3tk3Yjp7JMPCzn+O59FJMBQVYG+txDD8ApTONAuRsGtzF4K+FsrkigOQ0l0kkyS9zcmD7KAc2DlA1PQ+zRWHPa7107BqhcloAs3Vic6U7YGP68jK2vzAW9ml1mo56Xy4IJ4seT6BG48xZOYvWrYN07B6hpN5L1fQ8BtojbH2+g4opgXHL+IsdeAtshAbHRlavnpmHt+BNCi4F4STwFdgJlDjY8HhrbtryD08iFkyx8cl2KqcGCJQ46dg9wp41vVROy8OTdxKPU1mGwsnGT/2FyFu3ouTlkXf77cgeN/H16ycskti9G0tdHdmBAZJN+0DXMZeVoaVSJHftwlRQgGSzo8ViJHftxD57Dkgy2ZEREjt2otoqkKvmH7bGOWO/esvHb6xw8tjv7uLxzx0eLlI05Z2/B8L7XjajUjbJz5ZnOkgnVbqbRnF4LLim59HXGmLf+n4AuvaFqZr7Lu+scEppkSgZaz6vP7Qff4mDqul5hIcSvPLXfVx250zcASuRgwGmALVzCvAWiO8ZhNNIdAA6DoaJZVOw5xGoXAKKDRTdCJfOb3zzdeQ3gslqLH/IrA+DI/+oi+SVObG5zCSjmdy0aeeU4s6zHXWZRCTL6r/tp6jGQ9X0PIa6oqy+bz+X3zHtmF6qIJzuciEksoQiSSKERBAEQRAEQRAEQRAEQRAEQRAEQRAE4QxxvCEk6sF/LwN+oev6I5Ik/ftxrvOM0LV3hJnnVaBmNNSsht1toXX7EI0Li0BWUGMx0i0taKkUlqpqzAVH70zzZkwWGbNVITSYIDSYyE23uc1cePsU3Pknp7hHcjrRRkawTZ9O9PkXxj3nPOusiQEkAJpqdDzOZCERB3vAmGYTISTvBsXrxTFvHvH165FtxnGS2rcf+6yZRPr6kK1WkGVSzc24zjuP5PbtoGtIdjvp7m5c5y0n+vzzaJEwpoICssPDKPnGcZxub8fa2EjqsCJ0ALPHDH+9Cc7/Gjz7VZh0GfTuILzoW2StBcBobt5MUuXApn7mzXPBjA9C5zqYPg8+/hLxtjCdd3yRwI03oieTJLZvw7lwAbE1rxHb20zog19i3TMDlE+OsPiqWtp2DuHwWJl1fgUOj4WX/tyEO2DLjQq++ekOZq+oJJNSsTrNVEzyU1B55ONSSybJDgyQ/6lPke7oIHj//ejxOADWmpoT+0cSSMay7Hypm0VX1SEr0NccomXrUC7gCcDl0FGjURT38YcuWZ1mFl1Zw4FNAwy0RyiodFM/rwC76/gKicef86swFxQc974KZy6z1cSCy2qonBpguCeGv9hBca0Xi9cKVTNJRzJ4Al2EhxMoJhk1q+WW1VSd0GAi1+E9lcgQKZuF/tWf48iMkv79T1H7erE0NKAEAphLSgDwXn0VaijM0E9+YuxDTTUFn/k0sTWvYZs9eyys6iDnwrG8ushzz4Kuk9i2HcfChUSff37cvNa6OowT8nGOvrz3CXjoE2OPN94N1/8Ras45vvUK7w5PqfHjLYO+ndCwwvh33q2w/T7j71owGTbdg634QjIuJ+roCI5Zs1BDQVKrHsQ1/y5oCRPsjxPsNz6r566spLTBj6wYI2Q+/9cWLFaZFTfVcLQykHRHB5neXpRAAGt1NZJZhEu83+iZDEgSeR//ONn+fkIPPIB6MLzMWlePJKWhezN4SjH7CgAjWC8RydC0tg8kaJhfyOwVFUhIuAJWFIvMwz/YQjqRZcm1dXQ3jZKMZph5XjkVU488UqsgnEpqVqNl2xCBEieePDt9LSGKaz1Mme/D5R67X89mNWLhFPMvrUY2Sex5rXfceqx2E1IiguL3o3hcWGqqJwSRmEtLCdx6K+rIMLLTiS2gI0WLYaQFLC5wFULhVCOARDjtmT0eevb34M23o2Y0WrYM5p4rrvUiK0cO540FU7h8VuasqKSraRRfsYMZy8rwFYlCTeHUkux2NE8ePU0juPONQsbeAyF6DxjtEKUN5ROWsbssnPOhRg5sGmC4O0ZxnYf6uUVYbMfbNC8Ib49kkrHYTSy8ooZ4OI3DbWGoK0pRjQdd02nfORZM5vBaUE5wYDqAGk+Qbm1Bi8WxVFViLioynlDMKHkFWGtr0RNxMr192OfNI/riS+OWt0+dSuRgu4FtUiPxrdvIdHdjra3FNm0aia3b0JMJFJ8P27TppDraMZcUY/L7sc+cgeL1nvDXJJy5EtE0m59qp3X7EEs/UE/HrhEcXjOhwSSdu0fGzev0iaC9M43scUMakGC0N85obzz3nNmmcO6NkziwcYCR3hgl9V7q5hZgth5nCLMgvKfoUDoXOl43Hm79MwzsgeX/D3zl4KsBy1uEneVPgZX/DfuehNgQ1F8ANeeB/ejf9zk8Fs6/eTL7NwwQHIhTPtlP7eyCN72ukU3Gdw/9rWH6W8PGRAlk5Ti/kxCE08ThISSyJOUeC4IgCIIgCIIgCIIgCIIgCIIgCIIgCKe34+1F2i1J0q+A64FVkiRZT8A6zwjFtV42PN7Kthc62f1qD2sfbqas0Y9iUsgMDNL37/9B2wevp+MjN9Nxyy0k9+9/R9tx59lZcHn1uGmljT50TefpX+9iqDN6Al7NRKb8fMhmsdbW4lg0VmhsmzUT1/JlExdIRiAVhmQYFAvYvZCJGyEkwrtCcbko/Od/xlRURPTVNfg/8mGSe/dimzYdS3U14SefJP8TnyA7MoLi9WKbPo3Qw4+Qf8cdoGlo0RiOJUsIPfoYgY9+FNnpJN3SjHvlSiLPPYfvA9eh5B0swJRl8j9xK7bBx43H2QToOgzuZWjBd3ngxTlsXz1I7ZzxwQxzLijCax2FRZ+Ejz5Lwnchwdeb6fnqv6OFQiAbncPi6zfgXLIU6+TJcNmNvP5UP5qm07F7hA2r2giUODnvw5MpbfDRum2IprV9JKKZ3KhY6USW9Y+10rxlkEkLiyis9iAdXHc2GCTV1U30tdcY/fvfGfzhj2j74PX0f+tbhFetovBznwVFwXfTjdimTz81f7wzSEGFi9BQgrUPN7PhiTYaFxajmMc+hmxOM6X1HvzXX587Ho5HaDDBql/soH3nMHa3mc49I6z6+Q6CA/E3XS4bDJLp70fXtInPDQ7S/81v5s757R+5mWRT03Hvq3Bmc3gs1MwqYP4l1dTNKcTpHSt0iI4mWP94K7te6WH6srJxy5VP8dO+c4TOPSMk4xnWPdrCI7/cx4uv6jy5yY/y77/AffXVlHzjPzD5fFgbGyn88pcwl1cQffHF3HoyrW2kDjRjmz4N+/RpWKeNjRjouvBCHEsW5x7LVuNcm9yxA/uM6blzpWSxUPCZO7EFMmNBZe9UbAhe/M/x0xKj0L4GQt3vfL3Cu69wCky9ChouMjq1ZxJGAEnfDmM0zVQY6+ZvY62uJLFlK0M//Smyw4kaHGXSHD+mwz4zrA4TFruJ1X/bx9qHW9BViIfTBAeSbHhhgGx64nVp9LXXab32OjpuvY3Wa64leP8DaKnUhPmE9y4tkWD0b/fRcdvtDPzXfxG87z7y77gDy+TJlHz3f0i3tRJ/+VWSzkUQG0JxOI3gyMNMO7uUrc93svPlbna83IXDY2Xbc52M9MSIjqZY8/cDJMIZllxTT8OCYmxOEVQjvPtG+2K88Ps9bHmmg+YtA9jdZgbaw8QfeZDQo4+hp9MARIeTdOwa4cV799KzL0hh9fgwxsUri3EXuvFeew1afxtFX/8ait9vPKko5N95J6EnnmDkt78lsXUb1ppKrMOvgMUJ7jKoWAx1K0QAyRmmpDGAJ9+O3T12PpRNEnNXVh61MKx9xzCvPdjM7td6sLvNDHdFx4rDBOEUkhXwzJxMPJymYmoAs22sWNhsVSZcJwCM9MV4/Gfb6W0OYXebad48yDN37yIaTJ7KXRcEFEXGV+hg/eOt7N/Qz4YnWtn1SjdOr4VAmXPcvIuurMV2nKG7b5QdHWXwRz+k7boP0HHLLbR96AZi69fn2ssUrxeTz0f46WcIP/446mgQ51ln5Za3TZ+O7HGTHRjAPmcOks2G99JLUfLySLW3YyoowHv1VWjJFJnePmzTp+G5cAXZUJjMQD8Fn/o0ss12Ql+TcGYbaIuw9blOQgMJ1tx/gExKxeGxMu2c0lxBO4DdbaakxvUu7qnwbpBMMnafnWnnlI6bPnlpMRabwhM/305fq3FtcGDjAM/evZtYULQpCacRNQuzP2wESQNIkhEarWWNINK3CiABCFRC3QWw6A5Y9i8w6XKoXPymiwx3Rlj1ix0Md0exu83sWdPLC3/YQyKSPuoyTq+ZSYuLx02bsawMh0eEBgoCgKoboSMmWUKWJTRdhJAIgiAIgiAIgiAIgiAIgiAIgiAIgiCcCY6358T1wMXA93RdD0qSVAJ86fh36/Q32BVhwWXV7F7Tg5rRmXp2aa7zS3zt64Qfeyw3b7q1leG7f0vpN7/xtkdWDw8ZI64tvqqWVCKL2aoQGUmSSRpFlJHhk9PZ3ex2kzSZGb77bjyXXY732mvRM2m0VArZdYTOlpmEUWA82m6MXqTrRuckZ/5J2T/h2NinTaX6vr+R7uhA9njwXXsdaiyG68IL0EZHkRwOXCsvQguH8V51FWooiGSx4lq+DDUYxJ+XjxaNoEsSVX/+M+roCEpeHnkf+yh6NkvlH/6A2r4LJbQXizuNvP01Y8Mmo+OZptjZscNKPBwjHk5TP6+QRVfWIss6+SVWCuvyMbmmkRkcJL1lB50f/wSB228n09WVew2Kz4caDDLwgx/gvugioiX1QHvueTWjsfvVXqaeXUrn3iT7N/QDsPe1XhZfXUvb9iH6W8OUNPhYcnUdTq+FZHMz2cFB1OERRv74R1xnLWXoZz+n4HOfZeSee8bWPTRE6IknqH7gfiyVlSgOMULzieYtcnD2BxrY8VIXFrtCz/5R5l9aTTat5fIKRkMpfC0tOBYuPO7txYIpMimVTEolOpo6bHoaf7FzwvxaJkNs9Wr6/+e7qCMj+G+8Ef8NH8JcUjK27Lr1hB5+JPc4097O8G/upvS//vNtn/MF4VhER1OgQ7A/jstnzV0j+Ioc9OwP0rS2DzWr4faZ2fHiWECHltVZ/dQQK6bOQTKbyfT3kx0cwn3ZZQTvvXfCdhKbNmKfO4+R3/4Oz9VXUfCZz2Dy+7DU1KC4xwqY3RdewMg996Cn0wz++Ce4V1xIwac/idkSx6J3Ig1vg4IpYA+88xeta6AeoZOxloFoP3jLJj4nvH+YLFA+D/zVMHwA4sMQHYC1vwDFDAs+ij3+Op7LL0OLJ1CDo1gbGnDZE1xw+1RGuqNYHWZSiSybnjSuEVLxLK3bBilr9NPdNEp3U5BkLIPLMlZkmunro+fLX0aLHgz1y2bp+8Y3sM2ciX3a1HfhjRDeidSBZvq/9a3cYy0SYfh3v6PkO9+m8/Z/gIMFkbLHQ+Wvvs/uDRGyaZlFV9aSTmax2Ew4fRZ69gcxmRUmLykmUOpg9d/Gj3rd3xamtzlEaYPvVL48QTiq6GiKQ/UC8VCajpBxzGYXFNP7ta9hmzYN26RGeg6EcuGle17rZdo5pTQuLEbXNAJ5Cvz5Z/Q/9jAAI0DRP32akh/8L+l9+5FkidATq7BPm4p96jRkvw/H0IPg84O/BvLqIb8RLOI+6UyTSWu8dO9eZq+oRJJA03QsdhP2Nyl2b9s5BEAqlqVjl3G8tm4fYvaFladknwUhx2wivK2Z6csb2PBoK3NWVKKpxglVViRUdWIxVnQkCTqEBhKEBhK56fFwBpdPBCIIp5Yn38bsCyrYu7YPh9fCjOXlhAaTlDf6qZ9bSDatYbErdOwapmKKH3fgGAqEj1Fy505Gf/+H3ONsXx9DP/sZeZ/4BJa6OswFBaipJM7Fi1H8fvREAlN5OWU//CGmokJMxSVku9pxzJuDZLVANgVaFmt1iVHInDFCgm2T6402ANkEWgZHhRVz4xzMtZNO2GsRBDCC/XJ06GsOkV/hou2pIRZeVkMmrRqFuhqkkyJw/4yjKMRHE8SCaRZdVUs6YbQhjPTFSEQyR742iKRx+qxvslJBeJ+RFJjxIVBMxueymgXe5oABgWrj5xiFeoIAjPTGGOk1ztPJWIbYcBS7+8jfMSSjWbJpday9z25isD1MIpp9e/sqCKcpVTt4zytLKJKUeywIgiAIgiAIgiAIgiAIgiAIgiAIgiCc3o4rhETX9Tjw4GGPe4He492pM4HFYmLHS93UzilAViQObBpg8hJjhJ3Erl0T5o+vX082FMKc//ZCOVLxDJ17RuncM3qws6PRIWDeJdUAON9GR3c9myXV1oY6PIy5uBhzZSWSdPSOQnomjWPOXDJdnWQ6u7A2NKBGo0iHjV6YY/eBww8c7LBwaL12/zHvn3ByZB1+YgV2LHYFXYO0Q8XhNpMw5WOyKMiSRMqWxe62kDLnIyugmGRSlmJsLhMZWwHoYLGZSJgLsTlNqHaNbFbD5jSTSIIl04+15S8w80Pw6g9g/zOw4GNkdCd9m8eCHg5sGuDApgFmLC9j7sU1AMQ3baL3P76Bc+EC9FSK7EA/5spKMh0dDP/uHvI//o9kBwbRkkncl1yMVOjj8BASAH+xg5YtgxzYNEBpg5/+1jBqVmPNAwcon+Rnxe1TKHRESDxxL8GCAvq/8U3yP/1pBr//ffw338zon/4MgJZMYZsxA9fyZZBVUaNRgg88gOJ0igCSk8RqNzHQHqa41kthjZs9a3oZ6owiyRK6dJez3wABAABJREFUroMOk+YFKJ0xHV3Xjnt7Dq8Vk1kmmxlbl2yScHgtR5w/uXMnXXd9ikMVnsO/+hWSScFz7bXIkoS5tJTknj0TlouvX0/24Ln2VMoGg6RbW0GSsFRXY/L5Tun2z1RaMkm6tQ01EsZcXoGltOStF3qbdF0n1bSP6IsvYj3/g7npXU2jdDWNUjbZS1mjj8H2CADFFQ7CTe0T1hMLptBqptP3ve/jnD2T4V/+ElNJMQWf+eyEeW0zZ5FqagJdJ/zQw5jy8ij64hcnzjdjBlX3/pHIc8+jxeN4LjwfG7uQU8PGqIiSDIWTwXocI8a6CmHpZ+Dp/zc2zWwHqwccIvDstOHMM340DfIbjOuKaD+s+SGm4Wbs5/2V2MbdZPv6sU6eTGbTWvqYjma1o2s6G58cf8yP9MaomVVAd9MoxfVerA4z8XCKyEgKq92ENRRCHRpCsttxfuzTaEsuQnbYCdtlYp1hkCTceTasdhEo9V6W6TNuX81VVXgvu8wYhV1TSbW1gaZhP+983P/vW6iaTFDV6W3fz2BHhJatg7n7q8aFRSy4vIZsWmWoK4rTb6W0wceBTQPjtuUvPnEFnIJwrDRVIzgQR1Mhm1ZJxjLYnGasDpNR93NYzYDNaUYJDYCqku3vh0mNjPRGx61v1+oeAiVOLrypGumlRxk8GEBiqavDc/FK1KSKOZ0meP/9OBfMx7lgPunWNixOJ47JNSguHxQ0Ql6DUYQknJEyySzZjMbGVW0ggSRJ6JpOWb0HmBjuCFAxOUDHzvEBT5VT807+zgrCG+hpFUUxzq/DPTGGe1pzzZi6Dis+OvHz/kjFxHa3GcebBO8IwslitprYv7Gf+nmFaKrOtuc7mbuyiu0vGqHOh65xZVli6bV1R11PKpFhtDeOmtFQzAeTgCXjwkI6VFwsGT9mq4I3z0Gmu3vCehLbd5A60IwaDJItK0P2ejGXlZHcswfH3DnY/H60VBJTcTGWEuPH2IEIDO6DYDt0rodXfgtqBs7+PGx/Aob2wYpvwHNfBVcRLH3pRL2FgpDjK5zY5p9X4mTnS90MtEfGtVH7bqx5F/ZQeDfpqTSZDLRtH6Jt+9C472gnLSqaML/DY3nTUD5BeN/xlILVPZY5IklGWLjNe1I36zBPDA7x5FkxpyPAWAhJaCROpD+JquloKjRvHqR58+C4/6tTlkz8vyoIZ6LswbBNkywhyxLq8X/lLgiCIAiCIAiCIAiCIAiCIAiCIAiCILwPiIqPd4Gm6Th9Vix2E7tf7QGMEQgDJUahhaW8fMIy9tmzkaxvf/Qrp8+KO2AjMpLMdZiRFQlZkZi+vIzCSvex7XM6TfjRx+j9j/+ATAbZ6aDsBz/Ede45R11Gz6romkrwoYcxBQIkduwg76MfBUWZOLPJAt5KqFoCoU6QzcbIyPmNb/s1CyfOcHeUZ+7ehWKSqZwWYOtzRqf0jp3DJGMZpiwtYdPT7Uw9q5SRnhhDXRHmrqxi05PtVM/MJ5tWad81zKIra9nyTAeFVW7sbgt71/ax5Jpadr7cTWgggWKuZ+mK/2RK5mnM530FWlczVH4z+w/YKZ8kMdITG7dfZY1+knv3kuntpfdr/waahp41RhIMr3qSwi98nqFf/BJ1dJTBn/6Moq99DeuKy+jaH6F/yxCzLqhg2wudoIPVYWLJtfU8/eudqBmNKUvtuPxWoqMp0CE2EscR76PrtlvwfehDjP7hj0hmE+qQMQqzbLehRqPIXi/2WTNRg0GGfvoz0HWU/HyKvvL/UPwiTOdk0VSN0gYfax9poXPPCI2LihnqjKIfNgJTSaGG3p1CV49/tElfgZ1zb2jk5b/sQ81qyCaJxVfWsf3FThrmF1Fc50VR5Nz8yZ27cgEkh4z+7T6yw8OEH3+Cwn/5FyyVFRO2Y58165QXZaY7Ouj56tdIrF9v7MOiRZR+65tYKibun3DiqOEww7/9HcO/+lXuvFHxi59jnzEDXdfRUylk2zsbGVvNavQ1h9jxchdqRqOxPInnkhuIDSaZc1EFW5/txGRRWHhFDYOdEdY+3ELd3AIaTYWUVllJhhSQwuOKk/MrXOzeq+Ja9kkafYMAZHv7iG/ehPfaawk9aGTTWerrsU1qJPLkk7ll9VSa7PAwia1bSbW1Ya2rxz5rJia/H/vMmdhnzhzbUHI6DO6FdAQCdeCvekfvwTjTrwPFDDv+Ds5CqD4bCiaDv/L41y28t8iyEUKS34AeC6IXzUFO9GPTHMQUhVRbG4ldu3CvWEH91RfQ350BeWKwXvmkAH0tIRxeCw1zC9m4qhWby8LrDzWjKBJnXVeL6/wVSFffygsvJon+XxNmq8Lci6soqHAhm2US0TTugP2IhUnCe4O5pARLbS2eiy9m6Ne/zt3rFH3t33Dd9lEsN3yMWERl/4ZeOnaPUD+vkMEOI7Dp0P1VXrmLeDjFvg39LL26nu0vdFExxTh+oqNGoN6kxUUU1ZzcIgtBeKN0IstgVwRZhlRcZf1jrQx2RDDbTay4fQqLrqhh/eNt6JqOySJzzjkW0t++BxQFU7FRaFNY5WEXPePWWzUjDzkdR0skAbBNm4pzyVKGfvV/kM0iu92UfOMb9H/3f1CDIcwVFdgXLsBWUwqF5wJGyKmeTiNbjhzmJ5zefMWOscIu3QjMc+fZjM/wN8hmVHoPhFDMMkXVbvrbjHNwUbWHujkFp3rXBQEsFmy1NVjsDopqPPS3hsfd9nsLxl/3DXdH6d43yvxLqtn0dDu6pmO2Klxw21RcgXd2rycIx8OTb6NqRj47XzYCQSTZCE885NA1btWMPMzWI7TjA8GBOC/9uYnuvaNIEjQsLKa4xg0Y3zsA6OjoGmiahpbWQRmhetLMCeuyz5xJurUVNRREDYUwl5eTjsaw1NYQefY54gfbqWwzZlD63f/BWl1tLGh1Q/k8KJ0NhVOhbjlIJtj1APirYe4tsOE3YHbA1b8wCqEF4QQrrPYwZWkJe14zwi2dPiuuPNvY58NhbdQe0S5wxpEsVpxeM4pZRs1oufOrw2vB5jSx+Kpa1j3agq5z8NpgCi6/uDYQTiNWF/grjKDxUIfx2e0ph4JJJ3WzHlOMBRcUsuGFgYODZCgsu7IEc2YsZLW/LcTOV7pper0PXYezr2/AbFXIpNTc/1Wb04zNceRrIUE406gHb3oVWUKRQXvDd9+CIAiCIAiCIAiCIAiCIAiCIAiCIAjC6UmEkLwbdJ3WrQNUTc/DdnBUq1QsQ29LiLrZAcxl5bgvWkHkmWcBsNTU4L3sUkzuYwsMOZxilpl/WTWbnmwjPJTE5jQz/9JqXAEru18NkYhlcvvwZtItLfT+mxH2AKDF4vR8+ctUP/gAltIjd+CVLWZimzYTuOlGdFVDTyZId3bgMh9le8XTwOEHbwXIFqNj0kkeDUk4ukxK5fWHmhnpibH4qlrWPtJCoMRJaCBOf1uYhVfUsP6xVqxOE7qu07lnhDkXVbL+8VY0Vcflt7JxVRvTzill23OdxEIpCqvLWPdICzWz8tm/oZ/QQAIANaOxelWcwk/fSnGpTHjKXTz63c0kIiPMvrCCymkBOnaNIMsSsy4oJ2AJ03bThwnccksuDMRSXg6Kgp5MMvjjn+D7wHXYZs3CWl+PtbqabS/3sub+AwAUVrtZdGUt/mInIz1RRnqiqBnj2N7wRCszlpdjsZvwu1Ws219Cf7rDKJBzOlFHR8FsRrIbI9tGV79K4Ze+SHZgkHRnJ8G//jX3HqpDQwTvuw/PRRedyj/dGUXXYfeaXqYsLcFsVcivcDHal0f7jmEkWWLSoiK8lW5i9681gj2OU19biC3PdzB3ZSWugI3IcJKdr3QTHkqwe3UPV39hLqUNvtz8is83YR2m/HzU4RG0aJShn/2M4q9/HffKlUSefhoAS0017ssuA+34Q1Pejshzz+UCSAAS69YRef558m677ZTux5kmuWcPw7/8Ze6xOjRE37e+Rel//ifB+x8gtm4dnotW4LnsMiyVby8so781xMM/3JILEWnbAReVpXj5T024AjYuuG0KiknhpT/vJRUzRgcc6ooy5ewSeg4EiY6kWXh5DVuf6ySdyOIvcTBpcTGvP9CMpukU31Cb21bo7/dTfd/f8H/4JvR0Gj2bpeO228d2RpJwX3gh/d/5H8KPPpqbHLjtNgo+99mJQSs2N1QseFuv9y25i2HubVB7PsSHwRGAvPoTuw3hPUNXVeKbNzNyz+9RR0bw3/wRXGcvxL3Sj2S2QDaLbc4cBkNpXr2/mYqpAWaeX86uV3pQsxrlk3xMO6uA4T43ocEkr/x1H9mMhiffzrRzStn5cjcv//UA133+qzz3p+Zc0EQmpbLu0RbOub4Bb4EDNasRHkqIEJL3MGt9PQVf+ALdn/nMuHudgW9/G8+fVqFmdAY7Iux9vS+3TPWMPNp2DiNJEo0LixjqjHJg0wDn3zyJ1fftZ7g7imKSmXp2CZ4CB4VVbvLLXFjs4vZbOLVG+mPomk4mA01r+3IBOjOXl/P87/fg8FiYf2k1mqoTKLZh+tGXSMfjlPzXf2KtMUZqN1lkZp5fzs6XutE0ncppAXRd50BTmnqvF9npwH3hCgZ/9KPcdrVIhP7vfIeCz32OdFsbst2O+/wLkAtLD56ftzDy+3vIDg0TuPlmXGefheIV9/5nCl3XsbrMnPXBejY83kYylsGTb2fuykp69ocIlLowW8YKvXoPhHj0R1sBaFxYROX0fAoqXBTXerG7RYiN8C7QdWS/l8hAkslLiskkVUZ6Y1hsRhidyz8WIh0eSvDoj7cSD6UJlDqZf2k1Do+ZskY/viJxfSi8OxSzTDatsvCKGtSsjmKSyCSzzF1ZxfYXO8mmNQoq3TQuLKJnf5C6uUXjltd1nT1reujeO3rwMexb14evwI5sknKhPJqq5wIYZEVC1iSC5OG/+WZG770XdB1TaSmu85ajxWJkg0H0ZAotGkUpKAT0XAAJQHLHDkIPPkj+XXchHx7WLitQONn4AahdDmoWRvYb4STeCsirO0nvpnCmc3gsnP3BBqadW0Z0JEnPgSDNm/qZclYJmZTKSM/Bz4eVVVh94rx/xpFlzDYLi6+qZfPT7SQiGdwBG4uuqmW4K8b+jf0suKwGVdWRJMS1rXB6KpkN9nwjZNxkAV+1EU5yEsmJCIG//ZRLLr+JjGTFFu0n+92fwje/kZtnqDPK3tfG2vpMFpkl19SxcVUb8XAap8/KgsuqUcwihEQQAFTtsBASSco9FgRBEARBEARBEARBEARBEARBEARBEE5vogrq3SBJ1M0t5MV7mw6bBpd8fDpqKIQuS7gvvxzPlVeCqiLZ7EjKxNFgj0WoP87qv+6jYUERDQusZFJZNj7ZxoxlZXTsGmG4K4L/GDq9pzs7c0V5h6jBINmBwaOGkGjxON6LVpDcs4dMdzeOhQtB15GUN+mw4ykVoxK+RySiGTp2jwCQSRt/+4IqN91NRgdzNWuM3JZX7qK/JQyArMhkkiqBUifDPcaIUjaXhchIEqvDRCxoFOgGSl20bhuasM1Q1Eaxv5jh7UMkIhkAtj7XSfkkP/MvraZykhv9od8SXzeCHo+DmkVyONDjcUb/8mcKv/Ql4uvWoiWS2OfPx7l4MYrLRTSYYuOqttx2BtoiDLRFWHpdHesfa2X6sjK8BXZCgwk0VWfb853Uz/SRv/FXpDtbUebMMV7zyDDmslIy3T2gqQRuvw1TWRmZjg5G//BH8j75yQmvKbltO5nuHuRJjUiSdCL+NMJhFLNM48IiXr1vP+WT/XTsHkFRJOZfWg1A244hzGSYdtFFZHp60DMZpKMFIR2D6GiK0Z443c4gkgTd+4K553QdmjcPjAshsc+aibmqikx7+8EdVvBefTWD3/8+YBRoqtEI7isux3PFFaCqYDGTbmuDeXOPuh+ZoSEkRcHk97+j15Hu7SXV1ISuqtgaGrFUVhB9ZfXE1/vKahFCcpJlensnTEtu207kxZcYueceAAb37CG+eQtlP/hfFNexd9Ddt6E/F0ByyJ7XegmUuehrDjHal0CWyQWQHLL3tT7mrqykY1c7O1/p5uwP1hMdTREcSPD6g825kQBH+pJ4nA60RBLnsmVgtWKtrUU2m1Hjccp/9lNG/3gvkt1O4OaPIDvs4wJIAEZ+/3u811yNbdLJHf0wx2SB/HpAhI+c7hI7dhpBOKoR6JTYsoWS//5vvFdfRbavj9ADD2Kuq2N/h3E90rl7hMhwktkXVuD0WXH4LOjJNKv/dmDcesNDiXFFIcmUlAtVy9EhHs7g8KrIskQmpRJrOgCRIJLHg+LxYi0eX8gnnHrpoSEybW0gSUbw1xHudTRdIpXIjvsbb3+hi/mXVlHa6CMVV2nfOcRQp3HdG+xPEB1NGstnNXa8ZIwu/4F/mS8CSIR3RTqeRTbJZNMZevYHc9MPff6nYlk2PN4KGNfVH/zXb+KQE9gmT0ZNJEg1t5NN2fEW2pmzsgpJgr6WEFuf7cRsVai+tJqCz3wWLZ2esO1sX5/RZtDXi/cDH8BSZtznJ7Ztp+O223Ln556tWyn59rfxXX3VSX8/hPcGSZKIB9NseKKNxkVFmK0m4qEUq+/bz9yVlSQjacx59tz8O1/pzv2+b30/AJMWF1Mzq+CU77sgAKBpSGAct3/bT/28QmrnFKBmNHa81EVxjQen1whIGO6OEg8Z58iRnhgjPa3IssQNX18k2oiEd43VbqZ8UoAX/rAHMC6H511azYFN/cw8rwJZkRjti7H6b/uYenYZZZMz2BxjbWnpRJaWrRPbdYODCQLFDtSMxhsHRlezGioSg10x5n7m0ziXLiXVfAAtGkOLxUntP4BtymRQNfR4Aj0aJbFx04RtxF5fi+u88zCXlpLt7weTybiw0Q++EAng4L+6FbQSGFaR452YS0qQj6NNUBCOxmI3UVTtYfMz7bRsHmTBZdW88pd9xufD7IOfDy93k1/pIq/k7Q80ILyP6RDqT7BxVRuTFhVjtikkIhle+VsTc1dUMdwdY7i7NTe7w2OhoEIcI8JpyFdu/Jwi2cFBMju3w87tAMQPPZFM5ebpaw2NW0ZWJF57oJlJi4qw2M0ko2nW3H+Aiz46FXHnKQjjQ0hkWUJ74wW/IAiCIAiCIAiCIAiCIAiCIAiCIAiCcFo6rkooSZKuBb4DFGJ07ZQAXdd1z3GsUwE2At26rl8uSVIA+BtQDbQB1+u6Pno8+/1uy6SytO8cZum1dXTuHUVRJMom+RnuiVLil5EsFtL7DzD0i1+gx+M4zzmbvE984h1tSzbJZDMae14bX+R8qKO7JB9bh3fZZjc69B5WnKf4fEiWN+m4q+vE1q0n092NqaCA0EMPk3fHHUjyOwtUEU4tq12hoMLJQHsUk8X4mwX74+SVu4iOpjAdHP0pNJCgfLKf/rYwkgSySSI6kqRqWh5gHO82p5lUIovjYNFudCSJr8hBsD8+bptOn5nQYJxsWh03vatplJ7mIMXDQ2gbN6AEjHWHHnuc/I99jMGf/pRMdw8D3/42Jd/5Nu4VK1AcRriOGgqR7Rs94rGuZowOMrtW9zD/0mpiwRSjvTGqyjTKC5KM/GwNqCr+G28g/JhE6LHHKfz850hs34GloYHRe+/FqZgI/vVvAMg264Rt2KZPZ/BXv8I5by7eq69+WwECwlvLJFX6mkMsvrqWeCjFaF+czj2j48JBystl1NERkl3deK+44rhCSBxuC4pZRtd15COEQ73xOLNUVlL56/8juWsXaiQK6Az/5m70jBGyo0WjmAoLia9dy8hvf4eeNMIcArfein6kYs6REcJPPMHwr3+NZLZQ8LnP4jr/fBSn85hfQ6q1lc477jQKrwElEKDqr3/BPnMm8bVrx81rnzHjmNcrvDPmIwR52WbNJLlt27hpsdWrSbe3Y5827ZjXnVfiZOHlNWiafrDgoQtZkUAyzn2aquXO5YdTFAn94Md9PJRm79o+TBaZjp0j4+ZzyXGQFYr+5V8IP/ccHR+5Gdf55xP4h9vRwmEkWaH46/+GubwcSZaJveH4AkDX0RLJY35NgnCs4mvX5grcDxn57W9xLlmMpa4OyeUi3XwAs3usA3ywP86mp9qpm1dIbDTJ/JXlB+9ujr4di1nH4bXkiksPsTlNmMwymqqhmKD3rjvIDg8TuPlmHGctJTs4gFOcY9818e3bCT38CMG//x1zcTFFX/0qKMq4Y0bx+ZAlHZNFxp1nG7f8UFeM6GgyFz6SW8Ys54KaDidqjIV3i9lmQs2qmCwKeeUu4gdDJo90UMqyRPSFFxh58F6KvvIV1GSStNnJ1vV2Zp5XyaYn28bNr5hl9EQMLR7HUl83YX2mkhL0bBZLbS22KVMA0JJJoq+8POH8PPyb3+C+4HwUtyi4OxPouo6iSCSjGba/0DXuOYvdhMUxvqnySPfyiiJOrMK7RzKZ0XWw2Exoqp4LxzlE1sauC4/Y7iqJawPh3efyW1l8VS1de0ex2E043GbCQ0k2P92em8cdsKGpGhLjD1izVaG03juhXdcdsIIkoZiM9jJd19E1HUmSct8HeAvtmNxu3Octx1SQT7q1jUxPN9b6OjJ9/aihILaGRvREAvusWUSefnrcNmzTphF66CEcS8+i53Ofw1JfT+CWm9E5GCyYzpANhdDTaWSXC8XlRIvH0VIpFI8Xz4oLMZeUnIR3VBBAPvSdmyQd+fPhHQ40ILx/SSYFSZZIxbNsf3HsutdsU45YvC2JQ0QQTgjF650wzVxVBYf1acgrG/9drSzLpBPZXKDwIcfaj0IQTne5EBJJQpGk3GNBEARBEARBEARBEARBEARBEARBEATh9Ha8XZr+B7hS13WvruseXdfdxxNActBngT2HPf4X4Hld1xuA5w8+fl+z2Ew4/TZef7iFdCJLLJRmzQMHcPlt6MkkejTK4Pe/jx43OvLGVr9K+OFH0LPZt70td76N+nmF46aVTfIRC6VxeC3klx9bIIKWzZB/5x254n3Z6STvk58wRhs8Gl1HsljwXHopjjlz8F5zDdn+fiSL5ejLCO8ZZkVj0RI7FruJ3v1BJi0qpr81THmjH4fHQuu2QWaeX05kJIk7YMNbYGff+n7mrawik9bQ0cmvcLFvfT9zV1YiyRAZTVI+yc+BzQNMX1aG2TpW/D51jhNZU/n7tzfSsz+Iv9gxbn9mn11A5qF7Se7Zi2PuHMAYXTv02KPk33UXJd/+b6offgjb1Kmk29oIPvQQQ7/8Ff1/e4hgSx9zLygbtz6r04TDaxyLuqaz4fFWOnYNM395APdPP0fsJ9/Bf9NNAATvf4DCf/4yrosuQsnLJzs8TKatjeS27ehqNvf/Ir5+A74PfcgI7AFMhQV4r7yC6DPP0P+t/yS5c+fJ+WOdwax2E1anifWPtTLYGWXKWaUcXhuhmGUqZxUTe3UN9jmzkW22o6/sGHhKHCy/qZGKqQEmLy4e95wsS9TNnTgmmqWyEs8ll+C//oPYJk8mOzQ2Wqylrg51ZIThn/8CPWkEMcRefpnI88+hHaEqKfryy/T/53+RHRgk091Nz5e+TGLz5rf1GqKvvJILIAFQR0aIPPkk5vJy7HPm5Kbb587FXF52hDUIJ5JtyhTy77pr3Hkj/867iLz44vgZJQk9lTrCGibSdZ3BjghtO4dZ/3grG1e1sXdtL4uuqmXa2aVUTs5DkmDf+j58xQ68hfZxy884r4zmLQO5xz37gkw7uwy7e6yTbtX0AEUNAcp+8mMGf/pTEuvXo0UihB95hL6vfo3Re/9E58c/TtuHbiC5x7isM1dVUfD5z5N/553Y580DwNLYiKWy8m2/b4LwViTzxGtUyWoh1dGBtbIS94r/z95dh9tRHXof/45t3/tsOe6WE3cPSYCkBJeWlhZK3WiBCrV737a3V95r7Vtv6a3fCi20QAvF3ZKQQJx4jrtv15H3jx1OcshJgAgJyfo8Dw/J7JE1O7Nn1sys9VvvQC4tp3pWST6c59V5ZInyxgKGuuLkdJgyLzBuHcFyF/LB6susFSUY9/6WFRcFULRDt1XTV5bjLXSgaDKKJmPrayPX1YWVSjH885+TPdCMlUyhR6OnZueFY7Isi9S27YT/+EfI5Si45hrMTJrCT980dp/y6r2OQ49hcygUVnkoazzUgWG4O8bcNTXj1qs5FIprvITKxweD1c0pwl8yvl4rCG8VX0BDIl8nnr6ifOxabuomLt/4+/I5i71k/34Xen8/PV/5ClY8huLzEyhxExtOj907vWrWBZXIhSVIHg9KMEjhrbfAq88LCgoo/uIXkSwL19KlY4F56d27J6zPyA7HWF1IOAeYJnaPesS9U+WUAKX1PuzO/HFkWRYjvQkmLywZd48nSTB5iehALpw+lgRmJoev0EnF5PF1xcb5xXilOLmswUB7dMIwsznvqMIXOrFnE4JwopxejZceasPQTaJDKVSbgsMzPrR37ppqCis92F8TDiUrMjNXVeIJHApjLqnz4XBryAqoNhnNLqPZlfyzXwX0rE4uq1PacKhO7ZwxA+f8+Wg1tcheH2gazlmzSe18hfT+fdhqa3Gdd97Y/I4Z01EKCvKhIpEwrhUryB44wMivf0Ouo4PM3n1ku7qQFQXF7SLX3kbkgQfR+/uRNQ0zFiX27HOn6BsVznWpeJbJi0tBgt6WCHVzCsd9XtHkR7OJjuznGtMwcPtseIPjr/vzLq6hoGj8cwLNrlBa738LSycIZzEJgh/5cD5wmHzQcPDGG8cNtFJaV0Bp/aEmLYZuUDV1fN2+YV4RnoITGs9HEM4ar4aOqLKMLIsQEkEQBEEQBEEQBEEQBEEQBEEQBEEQhHPFibac6Lcsa/frz/bGSJJUCVwO/Dtw28HJVwMXHPzzb4FngK+erG2eDulEDrffRtPiEvxFLvScwYzzK7A5FCzTJNvefsQy0ccfp/DWW9BKSt7UthIjGWwOhQWX1RLuT1JQ5CSXNSis8lIx2Y/T88YCQSRZJrl5C6GPfxzLssDQyfX0joUvTMRIJnHNn0fkvvsxRkfxrlmDEgyOdUwSzmz60DCZ//wyl/6fb5FQ/bi8GpPmBUlH01zysSnER9JoDonaqdOJj6RYfeMk4uEMqmJx1c3TiQ+nqJ9eRzKeQzJzXHXzDGJDSXzzQ2TSpRiZLFd8ehrRvhh2zcLevYuXHlHJJHR2PtfN3DU11M60SMUylDrDFLl7Gd63D4DE+hcp+vKXMEbDaOVlKP4ASBLR++8nsf5FHNOmEbnnHgq//1O27LLTdn+SmhkxFl9dz0B7DKdHw1foIBXLUljlyY9iL0FNrYa2bzPqyhVEHngQORCg/Fv/jaXZUH1eZK+P4V/8glxXF/aDo31HH3kU/3vfy8ivf01i3TocM6ZTdNsXUIuLSTlCDAxmUP/xO6ibnyG9Zy/uJUtO5z/rWSeb0QmUull0VT2KKjHcHWfZOxsY6U2gqDK+IiejrYOUrVyBveHIEdrfLLfbhq5bbPx7K8EyN+dd28hAZwy7Q6VpcQkldUeOsHY456xZ1P3lz2T270ey27FPmUL4rruOmC/+5FP4b7ghP3prJoNaVISVzTL6pzuPmDf25JN4Vqx4w/uQ2X3kZTv2+BMU3nIzamkJhbfcnJ/vQDNqIPiG1yscH8XrJfTJT+CcO5fUpk0Y8RhGJIJj6tRxwUXeNWvIDQ4y+JOf4Fm1CufUqUddZ+euEfrbonTsHBmblorl6N47Smmlg9pZQYpqvPn6SIGdC68spn9QIjyYpnxyAG/QPrasJMHMC8rZt7GfyUtKUTUFWZYI9ycwbU6Gc3asz/47rqFWUr/5CVYmQ3rHDjwrVhADjNFRRv5yD7IUJNw6iOqtR9nxELZgkNJv/hPOBQtRg4Gj7IkgHD/n3LlILtdYqB+A75JLSb/yCq7Zs3HOmEF07wBr72lmydX1jPYnwYJguZtc1mDhFXW88JcDXPqBOgpr/XTsieAvcaHZFTIJnatvnYE7O0jfv/0a5dEHufzL/0ayqAnNoeJwqyiaimWaGCaki+oIPLSOTCKHJEkkFMjKJtJIBNV3ovmNwpulDw+TfPFFHKvX4Pjs10hkZYZiObwXLcCz6jqMrIEsQVw3UHUNmxM8ARtLrmkgEckgWSCrMh27hln2rgaGuhPYHAqegIPIYIrShgJK6wsY6U1QMz1E7exCbA7RYUF4a0SHU0QGU0iShJ4zUBWQZQvFbsMTdHDxx6cTG83gCdhxeDTC/UnioxnKGgoosbqwrvsQ2WlLyeUgW2gjG45RXOuitznMkmsaGOqMkYrmCFW46do7im2yh8nnLSP817+SbW2j7J+/iWUY6P39jN55J8EbbsA5eTIAlmmS2bMHxe9HdrswE4fOz8GPfnQsqEQ4+xnZLJGBNDaHOu5ZlZ4zsUm5sfm6947ywE+24w06OO9djQx2xlBtCpOXlFJaJ66fwuljxeNEh9PYCoMEy1yU1vmIDKbwl7hIJ3KkVQ8Hnutm7d0HkGWJBZfVYpomwz0JGuYWUzklgKyI4CXh9AqUullydT0b7m9Bz5mk4zlmXVhJOp4jFc8RqvAw2pdAVmXsLg0LCJS68IWc6FkDU7dY9aFpZJM5LMs6LKhEAqz8wwRMsCRMMx/cKyuQCGcY6U5gd6noOQNwEFyyEq3zALLLhT4wgFpYhK2qkpE77yT0yU/gmjsXLJNsewfDv/oVxV+8jeSGjQTfex2pTZvItrUhqSpKQf6ZnJnNYgwNkd69B8fUKcgeL2YqTba1BUltwXr3tUjHClYXhDcpPprmmT/uJTKQ4rx3NdLfFqVxQTHBMg+RgXw9J5PSWXv3Aa68dS42pzj+zhmZLJFIislLSsllDBKRDKEKD7mMQc+B/D1Wf2sEt9/OlCWlb3jQCEEQjk1SVdIHmim86VNYhomVTpHr6cE+Z/bYPKX1BZx//WTCgylM3cTtt1NQ4qK4Jl+3Lyh2kY5neb1ceD1nMNKTIDKYwuWzEar04HCJdhDC2efV0BFFkVAkCf2wUB9BEARBEARBEARBEARBEARBEARBEATh7HVcrd0kSXrXwT++LEnSXcDfgLFmGJZl3Xuc5fk+8BXAe9i0Esuyeg+ut1eSpOLjXPcZIzacZrgngctjY8P9LQDIisSFN04BzUANhY5Yxj6pEdnz5hugJWNZdq3tRdFkPAE7bTuG0LMmi66sY+PfW3nXl+dR1uB//RXpOs7p0zAzGXLd3dgnNSJZIB0cRWgikqoxctddOCY1IU+bRvyZZwh94uOI8d7eHmSPG+0L/5eH/jpKeaOFzamy/6V+zru2kbW/3I0v5KSkzsf2p7tYdGUdL/9+H5IsMWlBCZse3secd1Sz9dlWktEMcy6qZsNvX2HK0jJ2vzTMQGuUJdc08OSfdqJnTSQJ1nxkLoMv5n8PlgWbH23H5lBYelEhyr/chnHFFRR97WsQjyMHAljJJKlduzCTScJ33UXRzTcz8uvfEPrUJxn+9W9AUQirxbTt6wOg/ZVhOneN0LS4BMMwefFvLUgSNM4voW52ERXlMra9G8i+vAHvZZcR/PCHkZxOzFgMfWiYrps+TejjHyezZw8AamF+NEO9t5fMgQMUfe5zZFpbcEyZinv5eQx0xHjs4QSZBIBGTeNVLJ3uneirFk6ALMuoNpnNj7RTVO0lEckw1BnHG3RgGCbJSJbJ8wKU5nKYudzrr/B1hPuTPH/XPrBgpCfB2nsOUFjhYc0npxMoeWMdJ+0NDeMCUbTy8iPnmTwZLIv262/AGBkhcMP1+N/7PrTKCtLbt4+bVyt9c6OAey64gMjf7hs3zXf1VUSfeRbnzJlkDhwAJJyzZhJ5/HG871j9ptYvvHmy3U78+ecY/e3vAAh96lO4lizGvWQJ2c4O7PUNGPEYqQ0bGf3jHxn5zf9Sc8cfcBzs1Hu48ECSdfceoHyS/4jPBtpidDb7kKUkRk5nxhw3qSf+Snr3Lqo/+UXSGZOnfpc/x01eUsL8S2ux2yXMWJTmtEnXntF8aBPgDTrwl7nZeH8rIOPyTebCf/wvUv/8BSRNwzIMAJTCQiJzr+DpH+0GC0BmyqzrqHvlTzhzOo5JjafiKxUE7FOnUvIP/0B6507MRALH1ClEHngQ38UXk2luxjltGtmWNPHRQdbd24zbb0eSYPe6XlZ/aCrr/9pMJqVjqja2PdOGw21joL2fdDx/LbG7NGwOL76V55N67lniX/4kkL8hKvjO94hVL+DxX+0km87/FurnFtG0sISB9giegANJkoh7NGrLDVTb0evTwsknuVw4zl9Feub5dLfE2Hh/C5YFSLD83Y2kkzmig2lK6gvQMgbP/WwLejbfqHrKklKmrSina88ILVsGScVy+Aod5DIGqVi+4+bu9b3IsoSv0MlAR5RpK4+8zgvCqTDYGeOJ3+ykaVEp+zb2UzuzkNbtg9TNKuKV57pYeHkdLp+Nnc/1ECx3s+uFHtx+G06vjY0PtrLwonJGVT/7/pAPRbW7VNZ8dBob79zBoivr2PF0F9HhFA63xv5N/WCBu8BGndZL9K9/o/ATn6D3m/+MGgziXr4c++TJOGbNRLLlg08zzc3oQ0OE7/0roU/dRK6nBzMexzFjBs7DOgIJZz9LVcmmDXavO/JZVcPBe+ZkLMPTd+zByJmE+5OsvecAgTIXqz44ldLXCX4UhFPO6UILuBlojbHjmW5Um4zbb6d1+xBGzqRuZpC19xwAwDQtNj7Qijfk4J23zcUbcp7mwgtCnqLKJGMZZl1YhaLJZDMGLz/YhsOtYXep7H+5H7tLpXF+CS/e14InaKevOcIVt8yma88o6//aDOTDRRZdVcdwdxxVUwhVeujZN4qkSBTX+Nj9Qi8zzq9g82PtzFldxcsPt7PoyjrW3XOAeRfXsP+lfpxejYs+Mh13IEB6zx5kjxsjHMbR1ISZSmGrqyXxwgtIdjvFt32Bkd/9Hv+730183TpKvv41Bv7zvwCwsllkuz1f9ygsRCkMkevrRy0uQbbZ8s/f7HYRQCKcdP1tUdp3DAOM1VkK+zxsfaIjX8/ZPoSeM1E0mUxKFyEk5xCpwEe0Jc2mh9uxu1QcHo3mTQM4fTZqpofYcF8zoQoPQ11xpi57c8/4BUE4BtPEOX06ZjJJrqcXe1MTRjSCJI8PAiys8lJYlb8HPbCpj1cmqNuX1hdgGRYVkycOUm/ePMgT/7vr4LsPmHlhBUuuahDneuGso78aQiJJKLJERrdOc4kEQRAEQRAEQRAEQRAEQRAEQRAEQRCEt8LxDrt45cH/fEASWHPYtCuOZ4WSJF0BDFiWtek4y4QkSZ+UJOllSZJeHhwcPN7VnFLxSJpkNEP9rEK2Pdk5Nt00LNbefYCM6kMtLcW5YMHYZ5LLReGnP31cIwN7gw40u4KRM4kMpNCzJnaXSu5gh8hkJPuG1mPqOrLXS+zxx8ns20d87Vq08rIjGuyMWyYRx7tqNfYpk9HKSvG/850Yo2Fkh+NN78fZ7kw8dg3NxcbNJrm0QWl9Aftf6qe03kfX3lFSsRw1M0Nsf7oLX6GD2HCa6FCaSQtK2PxYO5pDxcJiuDtO06JSNj/ajmWB22+nZ1+YhvnF7Hi2Cz1r4iqwcd67J9GxJ0ZFk39cGbJpA0/QRckXb8PKZjGHhxj8yU8wR0cZ+Na3cM+eTfiuu1CLish2tB9cSsqnmADJzPjj0zQtmjcP4jvY6cOyYP/L/dhkg6AaJXDpGiq+8x08K1ciOZ0knn+BrltuJf7EE1i5HGY2i+x2AZBYt57Qxz+O7HaReP550vv2UfT5zxP66EdQahvYulMik9DHtt1+IEVYCp6af6zT7HQev5lUjq7doySjWQa7YlRPy3/HsZH02PmtotZJtrcXST7xTt7peA7zNQ2rhrrjJEbf2Ll0Ilp5OY5Zs8b+Lns8+N97HbnOTrItLRjhMEO3/5TwPXcT/MAHxjpyAih+P54LL3hz26usxH/99fn1KAq+q67Cfd55yBIMfOvbJF7cQOLFFxn41rdRz/IR6c+kc6+tpmbsz+G//AW1sIjo00+T2bef2JNPYquqIvy3vwFgxuOktm6dcD3RoRTD3QlcPvsRn5U3+bE7VUb7kux7eZCY4SL00Y8Q+Kf/S0q3sX9jP5ZpYZkWe9b1sfGBVtJpkwN70nTuHsUXcrLkmgZkWWLexVVsffxQPSYZ1dk3FMQ2fTr+972P2OOPA2B/142sey4+1ggXYM/2JMZ5lxN75BEsMVracTmTjt0zleJ0olVXoQ/0k9q+neFf/BLfmjUkXnoJfWAAgILqILKcj8dLhDPERzO4/XYUTSZQ6mL68nJGBrPEhjMMdsTGAkgA9JzJuntbsN36jYOjfOf5r38fxqS5bLi/ZSyABKBlyyB6zgQk2ncOExtNEx/JMtqXeGu+kDPI6T5+VZcLY84KUrEcLz3Y+mq1ESxYd08zhVVe/CUuEuEMmx5pHwsgAdj/8gDppE46kRurt0aH0qRi+WPD6bWRSxtkkjqDHTG694bJpQyEs8PpPnaPRdcNNj3cRvX0EJsf7aBhXjFbHu+gcX4JWx7vYNKCEpq3DNBzIIyiSoz25s89iXCWoc44pm4x0J1mtC81ts5MUuflR9qZfVEV25/qompqkExCJzKQGruuV07yMfTLX+FesoTh3/6Woptvxv/ud6NVlOO77FJslZVj68v19JDctInQhz9M+K67iD/5JPrIMLaaGmwThPIJJ9eZdPxapolmV5AVadyzKrffhiuQf16UTRpEB9PjlhvtTRIdTE20SuEsdiYdu69KO4KEB1LoOQNZldCz+ePYyJm4fDZUuzru/gfygdSJN/gMVjg7nInH7mvVzihk65MdvPRAKzZ7/plZOpEjMpi/1ldNDTLQFmW4J46/yEUqlmPTI+20bju0P6ZpsfnRDtx+O96Qg30b+rAsCJV72PJoBzUzQ7RuGyRQ6qa3JUJBkZP9L/VTNS3I5sfambSwhL6WKF17R7FVVuJduRLnnDkogQCK10vixQ0oRUVIHg+J9esZ/MEP8a66kMzu3SheH2YsRsnXv44aCqIU+DCSCbLd3ViGjnf5CpwzZ5Lr70cfGUb2+ii47LLT9XW/rbwdjt8zyWvrJ6O9SST5sHpOLn9PWT0tiNOrnY4injPOtGM37QjhDeXrt5lk/l7KsqBySpD+tiiWBUNdcWLDaZJRUU84151px+/bmQXIbjexp5/Jt2l47tn884ljvIuwOxVUmzyubm93qciazI7nukjFjrwXjQyleO5Pe8fV/Xc83c1wT/wU7JUgnF7Gwd+PIkvIsoQhMkgEQRAEQRAEQRAEQRAEQRAEQRAEQRDOCcc1DItlWR8BkCTpPMuy1h7+mSRJ5x1nWc4DrpIk6TLAAfgkSfoD0C9JUpllWb2SJJUBA8co18+BnwMsWLDgjHz1LUmQyxhEh9JHfJZO5MjkJNRYjODHPob1vvdhplNoZWXIodBxbU9RJBZfXc/LD7aRTuRwejUWXVHHQHsMJPAVvv4InGY6jSRJJF96Gc8F5yO7PWSbm8EwQDt6o0nLMLCyGYbvuANL1/FdeinOuXOOaz/OdmfisZtJ6Qx15TunvdpQtqDYRffeUQCMg0EMviInIz35+SwLTN3CU2zPN1gHVJtCJqFjd6mkYvmGlJ6Ag8hAHwAzz69k/V+bMXSTJVfXExvJd/SVFYm5i724h/bS981/pvDWWxj6ye04pk0juXlzvpCSBIaBMTqKWlIKQPzZZym44nKSe/ZhDxwKa3hVxcFO+PMuriGXNaieFqSsoQC7S8MyDDIdHYz+9rcoBX6GfvELtJISzGy+3NGHHyb4oQ8zdPvtJDdsINfVSfE//h+cM6Zjq6lBdjrJdnYS6w0z2HFkp+JYWD9i2tngdB6/mYSeP58BJTU+HG6NyqkBunaPIknQuKAEnxTBMW06ZjqFkUyhuJxYhkH6lZ0kt29DdjhxzZ2DvbHxdbfnDtixu1QyyUP/lppdwRM8MvDhjUjt3AlIFLz7WgquvhpMIx8OIstk9+0fN2/4T3dScN111Nx1J+lXXkHSNJwzZ2JvaHjD2zPTaYZ+cjvZjg6CH/4QyAqJF14g19ODY+ZMlEceRe/pAUAJBHDMmHFc+/V2cSade91Ll6JVVpLr6sIYGWH4V7+k9Bv/hBEOk2k+wMD/+w5W9lBjdCubm3A9ubROYZWH/tYI01eUs3ttL6ZpUVJfQLDMTTKaIx5JM315OaZpsf/lPtbd04yeNWlaXEIqlmP/S/0AlDf62fhAK5H+/Pm8Zesgwz1xrvrMFPo7EmRT489pAwMGi//p3zD37GD0zjvzE6vqyew78tyXtWx4pkzGAqQjPhVez5l07J7JtJIStJpa7JOnYCaTjPzpT4Q+8mGyB5rJzZpFoNTPRR9q4uk7m8mmdNx+G3PXVPP07/ew/LpJtG4fBAn8JU7C/YcamksSqJqEoZukojlK//mfMdNprGwG2e0mK9sY6T6yHpCKZ4mNpEnFslimhWGY44JKXpVpayO1dRvG6CjOWTNxzJyJbDuyTvN2daqPX8swSO/aRXLrVmSHA9fcuUdc401JJZ1IHxEsZpoWesbE0C1kWcqHLRxm+spynr1jL4lwhkVX1lE8nGagLYYsS8y5qIq+1si4+evnFWF3i05mZ4sz+dybSxn0t0bxl7jJpnRMIx8q9ur/HR4bdqdGf2uU2EiaqUvL6G0ef7yWTw6w8f7WcdOGOuNMXlrG/EtrkFWZqqlBOnePgASN84vxF2rE+vrQFi/GEYsx+MMfIrvdFN56C46pU8fWY6RSZFtb8a5axeCPf4JvzRqUUAhMA62y4i35js51Z9Lxa+Qkcskci6+uZ9PD7WPX4EVX1mPz5jtpOn0apfUF9LWMP04Lil7/GZZwdjmTjt1XmbrJcE8cy7JY9q5GXnqglUxSx1VgY8GltaiKgaLJGLlDnRydXg1P4PieGwhvT2fisftargI7i6+sJz6awV/qYsb5Fex6oQfTsCiq9lI3q5CNf2+lcnKAvtYoAANtUSomB+hriY6tJ5vSUdR8p92RngTlTX4M3SKdyKHaFIa7EzTMK6JrzyhFNV7atg8xfUUF7TuGxwIB+/cPUZnYgX3SJFyzZyM7nGTb25AcdjJ79+XrDj4fZLPEnngSLAtbbS1mOIJWXo5aXISV07FbFsgSkgUWFlpNNU5JRnbY0SoqxgWkCUf3djh+zyShCs8R0xxejblrqtn2VCembhGq8FDRFCAZzY4FpAsn35l27Fom2Ozq+Ge0tT5qZ4bo2jMyNp+sSOK4EM644/ftTJIk0q/swLP8PGSPl2xLM2YyOS5I+rUcdoslVzfw8kOH2lMsvKIOyzAZ6oyTihk4veOXyab0CZ/tHh5kLQhni9zB1BFNkVCk/HN0QRAEQRAEQRAEQRAEQRAEQRAEQRAE4ex3XCEkh/kRMO8NTHtdlmX9I/CPAJIkXQB8ybKsGyVJ+jbwIeC/Dv7/vhMo72kny1J+hOyMgSRxaORtwFfowKHkMHUDKzmKGY/nR/TLZlHU4/unCvcneenBViYvLkWzq+QyOi/e18LsVVWs+sAUguXu111H/PnnsXI6amkpij8Auo5j2jSMdPqoHSItXUdxuYhsfIngBz4AikLixRdxLz/ejBrhreb02qieHqR9xzCqTQZgoD1K+SQ/+zb2oyj5kW6Gu+JMWlhCf1sU0zCxORQigynq5xTRunWIVCyLN+QgNpLGXZDvcDHSE6ek1kd/WxRDNzH0fMeMDfe30DCvmNqZhZR5Y8hP3Ut8z24ArJwOpokRDmNvzIcu5Lq7sTU2kj1wADOVwjF9Gumdu3B++kt0TPKQ2hJj7ppqtj/VhaGbFFV7KW0o4IW/7Ee1yVxz21xKagsASO/dR/jee5Eddkbv+COhm26CXI5cVxeBG64n+ncJvaeH+LPPUPT5z6EUFKDV1OCYOhU1EAAg291N5803g+agetWX2LdjfEOzN/J7E94cb4GNmhlBdjzTTajCw7p7m6meHmTh5bUAdOwaIVVuw1i/Hq/XS3r7NtxLlpDcvJmOj3wU9Hw4guL3U/273+FomnTM7RUUOnnHR6bx9O/3kIxmcXo1LrxxCv5i15sue25wkN5//w+KbrkZxefDjMawchay242kKIz+4ffj5leKi1DsdmxTp+I8rFPnm2EmEqR37kQfGGC4uXlseuaVV9Dq6vFf9x4kVQVJwsrpSO43v1/C8bHX1VH54x/lO9OYJkjQ+41vIEkSoU99alwAiaRpRw310uwqk5eUsvO5HmIjGeZfVktBsZOB1ihbHu9g2bWNVKgBtj3VyY5nu5m6tAxfkZOefWG2P9XFvItrxoJ2/CUudr3QM279kYEUuf4BJjqb1c8pwjerAaY1YqutIblhI3p8kMLyOoZ6DnXkl2UJj5bGOXMmxvAwclHRyfgKBeEI9ro6HNOnk+voQHG7CV5/PaN334P/mqvJNjfjXriQxsUVpFImiUiOTDLHhvtayGUMDmwaIJvS8fodrP7QVB7/9S6iQ2lsTpUFl9Zg92j4S5x4QnYyzxzATCSw1dYw8N3vUfjni6iY7Kdz9+i48ngCdrKpfMN0RZWQFQmHZ3xARba9g86Pf4JcV9fYtMqf/Bjv6tWn/gs7S0x8jf8tjqamsXk0Kd9R2OZUxwUqaXYFRZVQbTK5jEFJnY/+1kMdLG0OlUQ4A8DGB1ppmFtE9bQQFU1+slmDbFpHliVM06JiSoCZKyuRZRG1JJx6NpdK7VQfmWQOt98OWAfv4fL/jw6lyGUNamcWsumRdoprfdTPLaJlSz5sacqSUkKlLnKZ8Z1nqqYG2LOul4omP1se7aBySmCsnt25e4TRjlGKrn8fg9/7Pq6FCwl96lOgqrhXrEBxHapHZvbtB8ti+I4/Evrwh7F0HRQFrbLiDQUBCmcXmw1MJLY90cm088pQNIVMMscLf95PUflMnB4HdqfG+dc38fivdzLSm0SzK8y9qJpEJEM2pWNznujjTEE4fqpNpqTWR3QozaaH25i6LH8cZ1M51v+tmdWX+VnzkSk8fcd+0on8efn865twiGAy4Qzj9tno2j3CYGcch1ujZ3+YuWtqkKT8O4Xn/rSXOWuq8QYchAdS9B4IUzurkJ794+9z3H47maSO22+nbJKf/tYY1dODeEMOUrEs5U1++tvyz5R79oepaAow0BbF5lQxjfwz4SJnjO4vfRmloICa3/0Wx+QmJLstH944NEi2tRVHU1M+kOSKyzHCEUbuuIPCT32SzJ49eC+5BMekYz/TE4RTIZczsIBZqyp55bluTN2irLEAVZVp2z7E3IuqkSSJyGCKtfccIFDqEmET5xBZhfBAkr6WKPMuqQFgpDfB2nsOMGlBCdue7MTuUvPvF0rFc3hBOGlkGdnjRQkEsXI5HNOmoUciHCsOPRXJ8vJDbUxeUopqU8ildTbc18Kcd1RRPTWIO3RkXd7hVgmUuRjtTR7atCrh9J09YdKC8CrdNFFkCUmSUGQJQ4SQCIIgCIIgCIIgCIIgCIIgCIIgCIIgnBOOq9W+JElLgWVAkSRJtx32kQ9QTkbBDvNfwJ8lSfoY0AG85ySv/y3l9NhRbWmyaYNl1+ZHy8ymDbxBByvf14SWbMVQZEzdQHY48yP3qSqSdnwN1RWbQiahs/2pQx0ZJVnCV+xk00NtlE/yU1B09MZtuaEhhn/xCwI33IC9oYHkxo3oQ0N4zjsPye6Bo5TLzGQw4nEKLr8MMxbHyuXwrl6FZZoTzi+ceTSbwtJrGkiEMzRvHmDBZbVsfaKDxnnFlDYUsOfFXhZdVc+Wx9oBqJkRYve6XhZeUcfmR9uJDaeZtLCE/S/1sfjqBrY90Ul/a4TpK8vZs66PJdfUk0np4zpmWhYc2DSAy2ejJPASVncnkqKMfSg5neS6urC/733IbjeRBx6g+AtfILFxI5F77iH4yU8Q+oev8/xGibYdwwCEB1LMXVNNca2P/tYIG+5rwe5SWX7dJAJFdpKbNqEPDtL/X/+NrbYWK5POby6TRvH7McJhwnffQ/FXv0Liuecxc7n8qJxLlqC4D3XDN1MpUtu3k923H4Cmq7qJVJXS35lCViQWXl5LcY3vrfinO6eYskSo0kPF5HwQjCxLdOwcoWPnoZEE1UXFaOVl5Dra0ft6cc6dy/DPfjbWORnACIdJrF/3uiEkiUiGF+9roWFeETanRjal8+J9zRRV+970qMZ6by9WMokVjYJh5s/3dkf+PGmaSLbD1ifLFH/hCyhe79FX+AYofj/eSy5h9He/GzfdMX060SeewF5TQ/yZZ0CS8Jx/Pol16ym4+OIT2qbwxkleH6mtW0m88MK46faGesq//S1G//hH1OISgh/6II7p0ydcR0m9j8HOKJVTA5RP8jPSk+DFvzZj6CZLrqwnl9LZ+PfWsfk3PtDKkmsa6N0fxrKgY+cwZY1+IgNJvCHHxOVMxnD7/Sy/tp5MxsIyLQZbhpk8002usxMlGMQ5axbG6CiR7/+ApTd9lQ2qm4GOBK4CGysvL8a58ykMtysfuCIIp5BWUkyupYX42rWooRCB97yHzN69YLcju904p01jpCfOK8/1jlvO7lLxFztRNQXNoTJrdRWpaA5DN9j6RCeZpM5ln5lJyZQQxhc+T3r3HlLbt1H48Y+T+f1PmX/9rSSjOYa74yiqzPxLazAMEz1nUNZYgKzKeP12AqXjI31SO18ZF0AC0P/t/4dz/nxUv/9Uf11ve2Y2y/DPf3HkNf6FteNCSOxDLbhCTSx/TyPr/9pMKpYf4XTl+yYTGUoy2pegsNLLnIuq2Xh/C6N9SVSbTEHxYZ3FLGjePIgkDVJUM5OHf7qDYLmbuRfnO25WTw/iLxGdiIS3htHbQ625j+29VcxdU82e9T0surKeXWvz/9/6RAfz1tSg2mQWXVnL5kfasblUFlxWC0B/WxSbEWf+pTVsebwDU7corPIwd00NBzYPYORMNIdCx64ROnYdqmfPWuAh9thjFN12G/rgIJIkoVZUYK+pGZtHHx4mtX0buf4Bgte/j9SmzeT6+nAvW4oSCCIdYyRi4exkyTI2h0IymmXrE51j02VFQrEfesZUWOVl6bWN9Lfkw0t3re0hPprhiltmUTOj8HQUXRAAsIV70Rw+CoqdpBP6uOMYgESMpOKjaXEJml0hndB5/Ne7uPwzs8aeXQjCmUBzqMy/vJYX/9qMJMFIT4KRnsTY596QA82m8uTv9lA5JcCsVZXMWFlB1ZQgT/1+N5mkjidgZ85F1STCaaKDKSqnBEjHcgy2RZm9uormzQNUTwuRjudwFdjQHApljX62PdnBwstr2fxoO9PneXBte4RMLocxNERy0ybs9fXYa2sxs1l0l5NsWxtqSQmSphF7+mnUwkKKPvc5hn/5S4I3vp/Utm3YGxqQZPk0fqPCuWigNcoDP9pGoMw1FjgSKHOhqDLhgRSbHm4fN79qO9mvT4UzmRYZxO5SGe6OM9wdH5seLHfjK3Qw/9Ja9Gw+CFIEmArCSWSa2OvqSO/eRba9HdfChcguN3D00ARZVUgncmx7cnzdvqDYRcXkAHb7ke//MgmdacvL2bu+j6GuOG6/nTmrq8YFHgvC2SJnWGhK/lolSxKmJUJIBEEQBEEQBEEQBEEQBEEQBEEQBEEQzgXHO3SoDfAcXP7wHtFR4N0nWijLsp4Bnjn452HgrBr62xdy8sjPdlBWX8AF75+CnjMY6U1g6CbkcqDryDbtUKNZSUItKjqubQVK3dTOLKRtx9DYtClLStn2RCejfUnC/aljhpCQzYIkYxkGue5uJLcLz8wLyPUP4CwrQ1YnPoRkmw0ME31ggMjDjyApCgVXXolWUXlc+yGcHqEKD1d/fg6Rvjg2l0rTwiKyiRxTzysnFU6iOjQa5haSjqZxhVxkomlkRaZu9jxS4TSugJN5F1VgWRZ1s+eSHEni8juYubIcI6vTMH828b4Ye4scRAbTY9tdfFExmW/8GSORoPjznyO1ZQvhe+6h6LO3MvzLXzH0858T+sxnUNwuJJuN4q9+BcXtRvb5iEQs2n61YWxd4f4kLz/UxoLLaulvi7L0XQ3UTvNj691P6tmt9HzxixR+5tPofX1INhuuuXNJbdlK+J57Kbr5Zob/93/JtrQw8tvfUfGD7+OYOhX5NeE7mdZWBr73PRyNhwIskv/1NRa++3qkq9+Ba3IjwZoQsiIawp9sqipz4OUBvAE7RVUeZq2uZOvjhxoJVtQ7UTY/g72ujqHbf0rxl7+EpevoAwNHrEsfHDpi2mtFB1MMd8UZ7oqPmx4ZTL7pEBLZ5yPX14fk85F67nn0cBjF5UIPj+K78koqf/Y/ZPbuxYzFcUyZgmP6tDe1/olIikLghhvIdbQTf+ZZJJuNwltuxjlrFrFnn2Xwp/9D8PrrARi8/af43/nOE96m8MZYuRxkM/iuvgojGiW9fTuSy0XwAzdiZjIUXHkl3osvRpJlpKNcewHsTo25a2oZah4iPRSmulyiZBlofj+KJ8vax0ePWGawI4q/ND9inzfkYM5FVaDnsF55mcnzy9m76VBn46YZbmwVRfz9d53k0vnfkcOtcdFFNqznH6b5W9/GOX8+pV//Gr5LLsExYwbJzVtYomxBvf4CVDON0r4RE5DtdrSSkpP+XQrC4Wz19SQ3voQSCqIP9BN77DE8y5djxeLEn3kGK5tlyrJ6dq/vx8jlQ3EUVaZhbhHbn+5isD1Gw9wQa/+8n9e2q80k8w3KFZcL9/x52Cc1ktm7D7mtFeulh3jHDReRSMpodhmbzSKbNvDNCCAZBsbWDfDX58je9CkcjY1j6zQTCV7LGBnBymRP3Zd0FjnqNX44H05nptPEHnsMORDAuW89jpmLueSTM8hlDJwuBTMRw10qU1bkQLIpyHaLS2+aSXQoRS5j0Ll7hMqpAbp2HzqXzlpVxYGX+4HxHTezaZ2yBv+p32lBAKxsluS3/okZF10GhctZvqwKPdLKRe9tJDcwxMWXuLBcaWwOiXTAy4b78nXZnn3hsXXMWhpiweXV1M0qJJcx8Je60OwKkYEkxbU+5l9aw7p7msfmD5a5cLRuxXnxxYz+4Q+Y2SyFn/ssjqlTsCRpbHzh1M6dWLE4kiyRWLcefXAQtbgYM5PFVluDcO5RZJlMIktZYwG9ByJj02deWInXf+he29BNXn6ojf6W6Ljlm7cMihAS4bSSVJVUOM1wX5KZF1SMC36unurHEW3mxa0q4f7kuOW69o2KEBLhjKPZFOxuDX+pC2/QQWzk0PPZ6SvK2fj3FizTonPXCMve1UCg1E2g1E1hlYdENIuiSmBaSHIBSGCZIMkgyzKGYVI5JYipmzTMK0TPmkxZVkY2qdM4r4hsMkNgIIJ+3x1ktm0d226urx8znUZ2OHA2NZEyTMjp6COjOObOIdvbQ2bnToZ+8hNCH/kIkYceInDjB0jv3YtjyhT0cBgzkUDSNCzIB55ZFmpBAbJj4rBVQThe3fvy94ajvUk29eYDRwqKnUxbWc6sCyvY9uRh14jpQQJlIqjyXCJbJqqm4fLZSEYPPteR8u9o193bPPYcaqAtSu3sQhTx/kgQTgrLsrD0HDhdeFa/g/TuXbgXLznmMpJkUTMzRPvBAS4AGhcU4y6wHfX5nmqTeen+VqqmB6mZWUg6nuWlB1u55FMzT+buCMIZIWeYaAfbLimyhGGKEBJBEARBEARBEARBEARBEARBEARBEIRzwXGFkFiW9SzwrCRJ/2tZVvvrLiCMY5oms1ZVsf7eZg5sHgTyYQ+1MwuRbX700VEwDIxUCtnnQ3a5UV3H1zjR6dFYeUMTjfuK6T0Qxu23M9QZZ7AjBoBmP/bIa5LfT+n3vkt6wwbskydjbHiRyN1341ywALWsFOk1YQxjy2karkUL6fk/X8N/zdVgmCRf2oj/2ncd134Ip0eur4/4Aw+SePhh7O+/geijj6GVlpKpKCf+0EME3v9+4mvXISkK+uxZxO69F/973kNi5y704SHsq1YR+/Nf8F52Kcm+PtJ79uK45hqi99yDe+kSktksicce54JPfJ6wp45k0iRoDeF4/k7UKy5n9I4/EnngQYq/+hXSe/agh8NU/vR2JFVDLSpEmyCcRx+IojkUcmlj3HRZlujeM8qsZUUkvvuvxJPJfOiEZcHB0bdzHR3Y3n0talER+uAggz/8AYH334j7/JXYqqrQiouP2J6ZSjHw3e8Rf/xxnNOm5Ru453L4rrgC1Wsn/oN/JVFUhPPmz+BauBBJEaMdnlQSTFpYwrN/3MueF/uom13I0nc2kEnqBItU/IkOco+0MPC/T6CWleGcPx/F7abgmncy8K1vjVuVa86c192caldA4ogB017vXDoRW00NpV/5MnpvL445s/Mdz3M6Tq8XNRjE0dCAo6HhTa/39dhrayj/7nfzwVKaDVtVJZKi4F68GK2klOjf/w5A4ac+ha1GdAx9K6T372fkt78juX4drsVLCLzvfeRWrMDKZMh2duKYNQs4GPD1BsiyRGGtn9EXHmDgv/PHeQoo+/a38RXV0feajpwOj41MIoKiysxdU0NxsczQj3/GyG9/y4z/+j6Vl4YYGTHxu3MUJFvZvd017hybTuToHi2gpqU1v61Nm+j6wm3U3vEHbJWVaCUlOGd0YoTDZJq7SGzdiu/ii3EtWngSvj1BODatsBDX0iVYuo40dRrpPXuIPfccjsmTUYuLSO/bh2bs5tILSxly1JDNgs2h8Pxd+0lGs8xdU42VSmJzqWQS40extDnGn/tVnw914QK0qkoyu/eQe/FxHJ1dKKEQ6d27cExqQquooP9b38IYygdf6UNDVP74RygeDwCOKVNAUcA49BsL3vh+1OLjCyQ81yguF4Ebb6TvG98YN92zcgUAqVdeoecrX6Xws7fimDOHzGN/Jf7LX1H4xduQbTbiTz1N+pVXcC1dimfNRcg+HxY+tj4ZIVDipq8lSkmtj4VX1JGMZChr8FM5NcCzf9x7RFk8AdHBUXjraGVleC+6iNijD8CjD5AGJJcL/3/+B8Of+zwAxd/4OrJmQw7WIMsS5ms6C9gDXlRVpqSuYNz0acsrePh/dlBaX8CSa+pJhDN4Q06KCnL4InEGf3wnviuvwL1kKSN//COjv/wV7gsuwH/tu3BOm4YZiZDeuwcrncHKZvFeeCGWZeKcNx97dfVb9A0JZxJJlrG7NIqqvVRODpCMZvEEHYQq3cjWoeufLEsUFDqPCCHxBMX5VTi9bOXluMNhNj/eRVGNl8VX1RMfTVNY5SXQtxVbzsDjtx0RQuLyvbH7OUF4K/lLXXgK7Dzxm13MvejQdVlzqDRvHiB78N7f5lCwOQ+9SvIVOvEVOk9w6y6Gnxli4LAAEiQJ2eEgvXMnrvnzAXBOnUJSz2FmMxhDQ7gWLkINhnBl0oTv+xvFX/gCkfvuZ+RnP8OzehVqUTGxhx/G/773odXVIhkGZi5HxrKQvV5cc+bkg0kE4SSY6Nzu8dvJxnWiw2kWXVlHIpwhWOamYpIXp0dcC84lcjCAMpRi+soKjJyJnjMoqvKw5fHOsQASAF+RA1kW5yVBOFkkTUOrqCS1ZSuRF1/Ec8EFqMVFR23TAPn7T4dbY9EVdSQiGdx+OyO9CVTr6MHQkiwxfWUFWx7vAPLtPSqnBlDtIlBIOPvohoWq5K9VsixhvDaxXRAEQRAEQRAEQRAEQRAEQRAEQRAEQTgrHVcIiSRJf+dgF+yJGmxalnXViRXr7JbLGOzb0MeSa+rJZUwUVSIVy5KMZqlYMA3Z7kDv6cEyDdSiIpzTpp3Q9rwBB5MWFJOKZll774GxzvP1c4oIlruPuawRDiPF46jBIP3//h/kOjry+9B9P5k9e3H+7wzUwMSjeLrmzKHye98ls3cvks1O4IbrRYf2txHLNBn9458Y/vnPKbzlZvr+778j22w4miYx+N3vEfzoRxn8wQ8xo1EKP/1p+v/jPym49lpG7/gj2ZYWir/0Jfq++c94zj+fxHPPkdywkaIvfpHeb3wDx5Qp5No7iD7wAAC5r38BraCAqd/9DrLDhRlaiez347vyKsxYDK2yguCHP3zMBuKZZI7ufWFSsSwLLqlh/d9axj4rayggWO7iktXg2/c8Aw8+hO+yyzAT+RHAc51dOGbMIP3KKwz95HYCN96IVl6OVl6OffJkbOVlE24z29lJtrOT+BNPADD6xz9R/OUvEV+7DrWokJFf/yY/X1sbHR/7OLV3/gnnTDEC1smk50x2r+th0RV16DkTWZbIpnQ0p0zTedVk9iRJX3A+vksuwTFtKraqKoxYjGx3N8GPfYzoww8ju1wUXH016QP7UYoKsU+ahHKU4KdAiYvZqyrHjWI5fUU5/tJjn0snIkkSviuuILNvH2Ymg+X1YVkmWnEJjqZJx/2dvBGKy4Uyafw2zGSKwe98Z+zvg9/5DmXf+u9TWg4BcgMDdN1yK7n2fKZb5N57Se/cSfBjHyXX2YXi840FJb0Zsqbhf+/7cM6bh97Xh1ZWhn3SJGb2ZmnePDjW0N3uUqmbXUhJnY/CSg+FlR4kSaLw1lvwXnIJRniUgsoCKoeGMEYjqJOnE378yIa34TDUzF4Cd9+d36+2NnI9PaihEJKmYa+vB8A1bx6B97znOL8tQTg+rlmz0Pv6yDa34Jg+nVxXJ6nt23EtWACSzNAPfwhAwde+Q4dUj2ZTmLqsDM2u0L5zhBJ1gKVrSnjmr91j6yyp9eIvnfhaYSstxVZaSm5wMH+OT6WwT5uGpKn0f/ObYwEkAMkXX0Tv7z8UQjJtGlW/+AWD3/8+el8f/uuvx//Oa0QnuTfBu+pCrOzXGf7Vr5E9boo/+1mcB8OcMrv3ADD6u98TMC0wTYxwGNXno//f/wN9YACAyN13k2lpwTVvHtZVHyQ23E/XnlFmXVCJw6NhGBaV0wLUzShC0WRmraqkfecwpp6/0XK4NaqnBU/PFyCck2Snk+Iv3oZaWkL0wYewT5pE0c2foe8//mNsnsH//hahW27G19DIvDWVvPxI59hnjQuKCZRNXJ912HQWX1WHnjUxdQuHW2Pj31tYfU0JsS98gaqf/wxUlZ7Pfg4jHAYgfMcd5Do7KfribeQGhzATCWSnC/fs2ZjZbP4+a/qJPecQ3t5atw0SKPUAFr5CB0bOYtcLvVTV1o3NM9qfpHF+Mc1bxtdd62cVnqZSC0KenkrR1xymaVEpqiZj6Cb+UhcHtvRxwZJyjN4OZi0vpmd/ZCzwyeWzUdE08fNTQTidbHaVhvlFeEIO9IyB5lRRVIkDLw+MhZgDLLqqDpvruF4lHZNn5Ur0/gGiDz+MUlBAwdVXEb73r8hO51gICYBz8mTQNKxoDGwaxuAARsSi+LYv0vfNb47VQUZ/93vcy5ahBAP0/dM/Ufpv/4ZaWIiZyWBm0kijo6Rdrvz6BOEkKJ8UwOWzkYzmn5XJssSsCysZ7IpTNSWIzami2RVatg9SUSMCSM41ugE7X+ileloINBmbS0W1qyTCmbF5FE1mxspK8dxHEE4iSdPo+5d/wYzn3wGP/uEP6MNDBD/96aMu4zZGkSyDlx5qw+5UySRzzFpZijs7ApRMuEwubdDfFmXJ1fXkMgaKJhMeSJGO507FbgnCaaWbJpqSD9hRpCPDjQVBEARBEARBEARBEARBEARBEARBEISz0/G2HP1/J7UU5xibU8Xls/Hi31pAAiyQFYnGBflGLI6GemioP6nbNE0LWZVYfFU92aSOdnD0wtcbXUtyOMi2tmFEo2MBJK/K7N1Ltr39qCEkAI7Jk3GIRr1vS3p/PyO//33+L5aFlUziXnUh0cceB0B2OPKjTy5eRHztWgC0khIiLS3Y6mpJ79oFgGP6dIZuvx3Z7c53ujVN3CuWM/yrX4/bnhmJYEajeM8777jKO9gR45k79pCK5ShryI/SjZU/9pPRLLa2V4h//RbMg43M4mvXEnjvdQz//BdE7ruPwAc+gHvZUoxIFOfMGbgWLEAtPHrnpmx7Ox2f/BTuxYtQS0rQ+/rQBwbo/+9vUfyFLzDyu9+NX8AwSO3YIUJITjKHS6NySpAX7zt0PgW45JMzkCQJx9SpOKZOHbeM5HBgDA4Se/llPOevxEylGfrJTwjeeCOdH/0oRbfdRuCGG44WsoW30Jk/l6Z0bE4V1Xb8DYRlmw3njBnHvfzJFH3kkSOmxR55BM+qVagHO8cLJ1+2vX0sgORVmb17MVMpzFgUtbh47Lh+sxSXE9fs2TB79tg0Wcmx8PJachkDSZJQNRl3gY2a6aHxy3o8uObOASC1YwddN9+ClUwiOZ1M+j8/o/fA+G0VVnvZ111EZdNkcvv2ItlsyO43H84jCKeCpGm4lyzFTCZJbtiAVlaGe3EB+vAI8WeeGZvPacTpPjDC7qH02DXF6dWwLyvC0bqLFe9dQHw0g2ZXSEazdO4apWDlxEEkAFpREVpR0djfE+vXk21tGzePEghw+KCBkqLgWbYU56yZWJkMamj8b1N4fWooRPD978d36WVIqpIPczpI9uavZ0phIZmWFmSbhr2piUxz81gAyavSmzfj+titPPWnZmpmhNj+VBfbnz4YQibBVZ+bg6LJxEfTbH6sg0WX1+XPrbJESZ2PUIW4dgpvLVt1NSVf+Qqhj38C2eMGy0LxH7pXt7JZhr77PQr/9y4SMZ0lV9eTOfhsoLjWi8M98YjALlVn1wu9RIdTY3USp1cjIzlxTMr/fpSCgrHOv69KPPcc/muvRbJMtLJy1MJCMi3N2KqqUQJ+bEER1HOuysXjVDb5efqP+8dNX3ldA0Yqher1MtwT52/f3YIkwYLLatGzBp6AnfLGwOuG6QrCqSZZFkVVXh77zZ6DEwALFl9Rg3ngRSKls3jhbx0suqqOXNpAVmWqpwcJHiXsSRBON0/AwUM/3YGeM8eu9as+OJnG+cUko1nsTpXmTYPk0gbzLq5BPtj58GRQCwtJ79uLe9lSzHicwe//ACubxcxkyPX3o5Xk35dINhuuKVPGljPDYZIbNpAb6D+yDrJuHYWf+QyJF9aS3LAB31VXga4jSTLG6Gi+3i/eVwgnSbDMzTW3zWWgPUY2mcFdYOeFuw8QG07nPy93Uz7Jj6oqKJJ5mksrvNWk8DBVUwNsuP/Qu4sl76xn7ppq9KyJZVloNgXLEh25BeFk0nt6xgJIXhV79DECH/jgUZeRbTYCRSaLrqjLv/tzqWhWFhwTPysBsHtUchlj3PtJza4w84KKk7UrgnDGyOrWoRASWcIQ1y5BEARBEARBEARBEARBEARBEARBEIRzwnGFkFiW9ezJLsi5JBXNUtbgR7UptO8cxl/kYtrycrJp/ZRtM9yf5Pk/788HnqjS2CjdpXU+SuoKjrqcZVlIdhuSOvGhItvsp6S8whlA1VC8HvRUCmQFADORRPF6yAEcbGhiJhKor3awfXVaMpXv+AZYppkfqVLXkez50f6sdAbZ5cKMRsdtUra/+eMpFcsy3JugZ3+YVCw/ulRvc4Te5giVUwN4/RoNDRqpb/w7QL4MsowZiZBtayP0qU8Se/wJ0rt3UXjzLbgXzEfSjt6oDMBIJEi89BK59naiw8MUfvomBr7zXTBNMAzMTAbZ54PXdGaVXaLDycmWTubQswbTV5Szb2M/NqfK9BXlJCKZoy4jaxqhj3+M+AsvEPnr3wDQKitBUTATSQb+33fwrFiBrbr6iGXDAylemOBcWj4pQHGN74j5307UgP+IaUoggBmJgAghOWWOeh3VdTJtbXiWLjveDJIjWKbF1ic62f9SP7IsYR2cZhgmhZXeiZexLEb/dCdWMgmahuNTX0Qp8rHw8hDbn+5CViSmLiunryVCf2uauuWrye3bS/FXvoytpuYklVwQTpwaCuJdvRoUhdHf/wHJZiP44Q+RbW7m1bEpDV1n5gWVtG4boq8lQlG1l0kLS4j09aG5ynj+rv35c79hgQU2h0L19CC+kPONlaGiAvfy5SReeCE/QZIIfuiD6H190Ngwbl7F4xHn3hOkBscHJVq6jplKYW+aRKalleCNN9L3r/9K0S23oASPDFWUfT4SngpGe/dTWlcwrq6x6Mo6Suvy1/3h7jidO0fo3DmSP7daFjanynu/vghv0PGW7KsgvEpSFLSifJBiprUV7wUXkNq8GSud7wRpq60lYhawe20zcKg+6yqw8d6vLcLlO3J0dlsuxorrGtjyRBd9zYfOjRsfbmfVBZcgO13I9iOPdclmQx/oJ9PWjr2ultgTTyI5Hdhq61BLS0/htyCc6SRFITKcYe6aanav68WyLKYuKyMeyaLY/QB07hoZGz16w30tyLJE9fQAU5aVncaSC8JBqspgV4xFV9Sx84VusmmDyYtLMS0JKuvYvC5JbDjNi39rGasbuAtslB7j+asgnE6BUjdrPjGDjfe1MNKboHJKAFlRWHv33nHPvvrbojTMLSZwEgN1FJ+P0Ec+SuenPw25/HnfPnUqek836d27x0JIXkurrUXZt3/CzyRNwzIM4GAIoWlgARIWqAqScry5/IIwsUCpm0Cpm9hQgj//1+axOgzASE+CacvLcXo0EjEd/+krpnAa6LKDdDzJjPMr2LuhD5fPhqlbbPx7K5IsIZEP0a+aGuCyz8xC1ZTTXWRBOCtItiOfbUgOB5Jy9N9YNOdk/QN7gcPe/UlQ+rlpHK3mk4nrNMwrxunR6No7SrDMzZRlZWSSp669hyCcLrppoir5QTlkScIU2WqCIAiCIAiCIAiCIAiCIAiCIAiCIAjnhBMatk6SpEmSJN0tSdIuSZJaXv3vZBXubKXaFLY+0UEymmX2qipCFR7W/7UZVT15owi+1uEjGb7acBgglzGOuZw1Oors9QISntWrx33me+c1aHW1J7mkwplCKyqk+MtfBsAIj2KrqyPxwgv4Lr8cJIlsaxvOuXNIv7IT1+IloKokX96E9x3vQO/vR6uqRnK5iD/1JP53vQsrk0Gy21ECAaIPP0zg+uvHbc/W0IB9ytQ3VUZdN9jyeAfP/GHPhI26kuEs04O9SH/4HvbKSgDCf/0bxbfdhlpUROyxx8kcaKbyRz+k6he/xLN0yesGkKT37aP7i18ic7ChuxmPE/7L3RR99lYKb7mFyttvx3/deyj+whfGLacUFuKcNfNN7Z/w+lSbTLg/SdeeUaYtL6dmRohtT3YiydKxlyspoexf/4WSr32NwltvwXvROxj+5S8BsFIpzGRqwuX0rHFc59K3A++ai8c1zpRsNtzLliGLTvCnlK2+Dt+ll46b5rvySvThYSRZwUwkTqyydhjTsoiN5Dshm6aFZeaP4fjI0UN70HWyra0AOG/6Is+2VfPYnd3YXSqTF5fSMK+YPet76dg5QkGhA9+yRdT88Y8UvOvaYzbqFYTTQQ0G8Zx/PoEbrkcJhej953/Bf8P1IOWvGWZPJ9ue6kTRZGavrsLh0Vj7l/1ohSEsfyg/j26NXQeyGQMj98Zb20qShFLgo+hznyN0000Uff5zRB98CH2g/6Tvq3AkyzCI3PtXXPMXUPjpT6OWlxG44XqGfv5zMm1tuJYtGze/+99/zMiwgSTB7nW9dO09VNcoqfOi2fOdFw+vA5imhWVBNqVj6KIltnB6mYkEQ//zP4Q+8QkKP/MZCm+9BfeKFeSyhx2zB+uz6XjuqOcz2etFj6dQlPy50Xnw3Oj0athmzME1dy72yZNxTJ8+brnA+99PfP2L2CrKib+wFsXrRS0uQautxTFlyqnbceGMpzgcWKbF3hf7mLSgmMmLStn/0gBGzoKD9cdkNDtuGdO0iI1kxt2DCcLpIhkGiqay7elOamcWMu28cjp2jpAKp8GySCUOnU9frRukDuuQLghnIrtDoaDYyezVVeQyJuH+JDD+2ZdpWOi5k//8S6utoejmz1D46U9TeOutOGfNYvSOP6IPDOTDrSfgqK3F1tiAZHfgmDn+eWvwox8h9uSTSC4X7kWLQVaQVBULUP1+bJUVJ30fBAHAtKQJ31HoGYPNj3Zg87pOQ6mE00n1uRjtS9Cxc5hp55VTP6eI+Gj+OaxlWpivPpsNZ8QzBEE4iZTiYuyvee4Q+vjHkFxHD5LWDxsoZqz+Y4Geyh5lCVDtCpsebkPPmcxeXUVBsZN19xxAUY/9flIQ3o50w0I9+O5dkcEwxfMZQRAEQRAEQRAEQRAEQRAEQRAEQRCEc8GJDvv2G+CbwPeAC4GPAKJlxeuwTIs576hm4wOt9LdGAaifU4RiO3WddX0hJ8FyNyM9ibFpbr8Nf8mxGz4qHi/64ABGJIJz/nzcy5aSbWvDVlODrb4exfnGRn4X3p48q1dT/ZvfkNz0MkVf/jLG4ABGOkPl7T8hvWs33ksuxoxGyQ2PUPmTH5PZuxetshLvmovIdvdQ+f3vkzmwHyUUwrVkMZnmZsr/+7/ItrWD00HFD39AevcebJUVuBYuxFb+xkc11nWDwdYIu9f1MGVJGSV1PrY/3TVunqnLSgh//XOY0SjFX/0quZ4ecu3tDP3yl5R+4+vYJ01Cq6hAcb+xETz1SISef/hHMrt24brttrHp2bY2Br//AwpvvRXvqgsBUJafR/Xvf0dy40aUYBDXwoXY6+vf8P4Jb4xlQt3sIrr37mfbk50AFBQ7cRfYj7lc5MEHGfzWtwnddBMjv/sdVjI59plz3jy0ivIJlysocuIvdhIeOBRS4g058Be//RuRZ7u7KfvWt8js2QMS+dFmHQ7UgvxozbnBQSRFQQ0GT3NJzy6K10vxP3wVz5o1ZHbtRKuuxojGMGMxtIoKjHj8hNYfGUqRjGRw+WwUFLmYeX4Ffc2RcfM0zCs+NP9gklzawBN04HBrSJqG/7rrSG3dSrxoMvEd+d9KeCBFX0uEoc58+WRVYt4MAyUewbX8khMqsyCcSloohGPuXIxwBEdjA/Gnn6b03/6V7IFmtMmTWVBYw7N/2k/nrhEAypv86NgIVDhQte58sN9BDXOK8AYdb3jbakkJSDKDP/jBYRNVkBWsXO51g9CEE2MmEnhWrGDo9tsBKPv2t5B8PgI3vh9JUXAvW4Z39SqynZ04Z89hX8pPy44Bpq+s4JVnu4kMpNj2ZCeLr67DX3So7lhQ7ELR5HEBDpMWleAJHLsuIginnKKgFhcz9KMfjU2SPR6C7/4YsiJhGoc6C0xfXo7bf+RIwQBqWTm+XIRMaoAtj3Xk16NKTF1WzrBsUNZQC0DZv/9fUlu3kWlpxt7YSHztOjxLFjP8y19hb2zEPm0ajslNuFeuRBbnu3OaJEmEKjxAPzue6QbA6dUorvGCnI/fq2jyjx1vr5p5QSU2x4k+xhSEE6d4PBQUJVE1mZ3P9wDgcGuUTQ5ApIfp5zWw/r7WccuUN/pPQ0kF4Y0LVnhQbcrYube03ofdrZJJHOqQW1Lnw1t48t8FaMXFZJpbiP7974cmqirG8AiZ/ftxTJ484XJqKER6504CH/gAxuAA2a5uHFMmoxYXo9bWofn9SD4f6DkURcGSvNjKy7FVV5/0fRAEALdXpWlekL0vD49Nk1UJy7KYtaoS2SHuEc81lmHRMK+YF/5y6N3FhR+Ywq4XesbNN+uCSuxOcY8kCCeLmUwR+sTHyfX2oQ8MYKutRQkEwDh6mJovpOHx24iHD4WO+IsdeIMTPysBQJKYc1E1Lz3QSs/+MAAN84qQlVM36IwgnC5Zw0Q7eGwrsoRhiRASQRAEQRAEQRAEQRAEQRAEQRAEQRCEc8GJtt53Wpb1pCRJkmVZ7cA/S5L0PPlgEuEochmD5i0DLL66Hj1roqgSgx0xcqkjR0k7WZwejeXXTWL7k530tkQoqvYy7+IaPIFjd5zUhwaRsjkkRSbX1pZvxFtWRqatDa2i8pSVVzgzKC4X7qVLcC9dcsRn3gsvPHLa+ecfMc2zcsWRK1556I++NWveVJmMeJz4YJwtzw3iKfYy/9JaNj3UTve+MEvf2cDudb3kMjozlhZRMrKN3MyZJF54gcHvfpeC696DZ8UKtLIybLW1yLZjNB57jfS+fWQ7Osjs2gVA7JFHKLrtC4TvugsjHCHw/hvwv+udY/PLdjvuhQtxL1z4pvZPeHNM3WLn893MuagaLAtJkkgncgy0R6mfUzThMkYsRuSeewEI33knxZ//HJG/3UfmwAE871hN0c03o3i9Ey7r8tk5/4bJbH2ik77WCMU1PuZeVI2r4I0fS2cqxeshfM89uOfPByA3MIDN40WPRonccy/Dv/gFksNB8ec/h2f16jcc3iO8Pq2khIJLLyEzYzrJjRvRe3tRvF4Unxc9EsE6zni39leGefzXO8kkdTSHwjs+PI3KqUHOv76JTY+0o6gyi66so6yxgFzOoPnlAZ67ax+5tEFRtZfVH5xKqNKDe+UKir/yFToPqza+8mw305aX0zC3CJecwtm/j9z/+yaR2bPxrFpFevsOUjt2oAQDuObOFZ18hDOKs7ERMxIh+eKLOKZOJfK3+7BVVyN1d9M11MCiK+owdBNZkQj3J2nfNcqejVkuuHEKrzzbTbg/SfX0IIFSF0NdcUrrC97QdmWbDd8VV2AZBvGnn0YrL8d/3XsY/uUvcC1ehK3sjYexCW9erquLbFsbgQ9+kMh99xF95BF8l11OrrUFDJNcRzuSw4lWW0OucQ6RtSMMdcaxOVUWX1WPnjNxelQmLSpB0fINruOjGfas62HpOxvYv7GfyFCKSQtLmL2qElU7dQGTgvBGZJub8V1+OcnCQpIbN2JvaqLgqiuRHArnX9/EK8/1EB9N0zCvmOkrKybsJJOMZtj2ZCeJcJayRj+1MwsxDQtZkdjyeAczL8w/EzCSKbLdPehDQ2hl5Qz97Of43/UuBn7wQ/zXXI3iK8A+bSru5ctFkKmAZZq0bB1gytKy/PnUsjB0i+atAzTOLaRl2yBbn+hgyTX17FnfRy6jM/eiGupmT3x/JwhvNSMaZf/LAzQtKkW1KWBZmKbFUEeMjL+e0YEUs1ZVcmDTAHaXytJrGiiunfgZgyCcKRwujWnLyygocmLoFjanwnnvnsS+DX0MdsaomBSgtN7HYHuMqqknN5xWttkIfuiDWLp+2H3SdYz+/vdoVVVHDSGx1dWh7dtHrqMdJAkzncIYHsFIJHAvW4ZzypSTWk5BeD2KXWPWogJUl53mzYP4Qg6mnleOJ2jn5QfaqJ9TeLqLKLzF9HiK7U93M29NDaZp4S92MtwdZ8k1DexZn3+PNWtVFfVzRT1XEE4ui/SuXUgOJ2phIdn2NmwA9XVHXUKLDnDh+5vY+lQPAx1RSusKmH1BGWqkHyidcBk9o9O6dXBce4+B9hjZZO6U7JUgnE76YSEksiRhmiKERBAEQRAEQRAEQRAEQRAEQRAEQRAE4VxwoiEkaUmSZGC/JEm3AN1A8YkX6+xmc6rIisyG+1rGprl8NhZdcfTGLycqPJDkoZ9sJ1TpoXF+CaO9CR7+nx2892sLKShyHXU52elEHxnBMi0UfwGYJlYqhWy3g3ycvaIF4U2ydJ1cfz96Xz9Dv/41kStvZef6Qc6/PsiG+1tIJ3KkEznC/UlqZxcya3kRsY+/m/DAIN53vIPSf/ln1MIi7I0N2Gpq3vT2U7t30/HBD+G/7jpktwszkSS9axfZjg68a9bgv+46nLNmIslidKu3mt2lMmlBCWvvPjBu+uoPTsE0zAk7U0oOB7a6WrLNzRjhMP3f+jbeCy8kdMsteM5blj+/HUVkMMlD/7ODULmbxvkljPTEeej27Vz39UUESo5+Ln07kCQZR9MkLD3fQNLKZJBMk9SOHQz893+Pzdfzla9S9Yuf41kxQcCQcGJMEywL+dUQHFlBUo6vE3t0KMljv9pJ9mDAWS5t8NivdvLery1kxvmV1M8rRpLA6ckH6PS1RHjyt7vHlh/siPH8n/dx2WdmYQuFCH3kw+T2DiE9swPrYOPCXS/0MHeJl4Lf/yPp7vwo9o5JTSRefJGuT35qbF1aTQ3Vv/wFtqqq49oXQTgVXLNnY4yMkNm1G/fSpaS2bEay2aheYPLU/S3j5l1yTQMv3tdM9fQQdpdKw/xieveH2bexn70v9vGuL8/H6X1jYVRWLpsPwrj+feiDgwx+7/vYaqqxcqJx+qlmAbEnnkAJhSi46kqsbBYl4Efv0jD1NFppGckdO9BmzOLFh3sonxwCoGdfmJ59YQBWf3gqLu+hekL3/lG2P92NJEtUTw9SWO3FV+Q45v2VILxVJFVl8DvfwbVwIYEb30+2vYPIw4/Q713Klie6qJkRorjGS+fuEcoaCghVeI5YR++BCJsf7cDp1Zi8pJSNf289bANQ3lBAbmiI5PoXyRzYj2Szk1i7FufMmUQfeIDQRz+KlcthnzEdz3nnITuOHYIqnBskWaZ2Zoinfr9v3PRVH5hMeDDF47/ciZ4zGeqIUzurELtLpW52CJfv7R/8KJwdJJuNulkhnv3T/nHTL71pBg//zysAuP02amcWoqgSpfUFIpxMeFvwhZw8vnYX8ZEMAAsvr0WSoHF+CQNtUVq2DuLwaFz3fxbiDZ7ca7oSDKEPDx92n/Q9rEwGIzyKPjKCGjwy+ET1+VArKzFGRjCTKWyVVSS2bsU1Zzb64CCIEBLhLSZJEsm0RPfeMA1zi0hEsjx/5z4qpgTwlzhxFRz9mbNwdrK7VGpnFbLxgVYUVWbummq2PN6JapOpm1WEapfBygefC4Jw8kiSBFb+3tNMJlE8Hizr2IEJSXsRD92+i+IaH43zSxjqjPHIL3dz7c2TONpTPodbRXOo49p72F0qCy6rPXk7IwhnCN20UJV82yBFljBe5zclCIIgCIIgCIIgCIIgCIIgCIIgCIIgnB1ONITk84AL+Czwb8CFwIdOcJ1nvWQkS93sQgqKnPQcCFNY6aFqapDMKRwZJxHOoudM+luj9LdGx00/Vic5yzSRXC4sQ0d2OA92kJSQ7HYQgQvCKZbt6cEYGSHy9weQFIW0I0j22ptp3ZEEIB7OkE4c+t3kMgb7N/ZT4x0hdOONqMEQWkU59ilTUAOB4ypDbmCA2GOPYcZiRB96iOCHPszQ7bcDYMbjANjrakUAyWnk8tmYu6Y6P8qwU6VpcSm71vdSNT2Ee6LG3aaJd9UqEuvWYyWToOukd+/Gd9VVxwwggfw5M5c26GuJ0tdy2Ll0NPO2DyFBlpDshzqRSA4HqArhO+44Ytb4M8+IEJJTwbKwLAvZpmFl8+c2ye7IN5p9k+Kj2bEAklcZOZP4aIZAqRvXawITIoOpI9bRvS9M564Reg6EqZtVSFGdnys/O5uN97cQH80w/bwSinY/QvJgAIlSWIhn1Sq6P/e5cevJtbeT3rlLhJAIZxRJVXFMn4E+MIA+MIhr/gISGzdSOK+X86+qZuuLEWRFomlRKe07hsACPWvS/srwuPWEB1Iko9k3HEJiq29AkiRGfvO/+Qmahv/ad5PZvx97dfVJ3kvhcNmuLgIf+AAjv/oVo7//AwDOpUuRvV6sbBbLNLA3NpKrn0P7w3tJJQyWXNPAvo196FmTmRdUUDMjNG6dvfvDAFimRfuO/LERqvAw/bwKNLvobCycPpZhkOvtxblgAcmXXiL50ksgy5T97BdseGYE07Bo3TY0Nn/P/jBNiw6N7BseSNLfGqFz9ygAqViOZCTLnIuqaN48iMOjsvjKBvy2OPEn15Lath2topxcdzdmPI6kqRRceSVmNotz1kzc5533uvVs4dxhGgYDHQkWXVHHvpf6AWhaVMJoXwJPwI6eM4GD9/cHP5+0oARf4dv8fks4a+gZncHOOAuvqGP/S/1IEkxaWEJ8NDM2TyKcZdcLPQBMX1nxhuuKgnA6eQIO1nx0OpsebWewI4bNpebrAgfrAwDpeI5EJHPSQ0hs5WX43/VOev/hH8emuZcvJ/nSy9ibmlAXLZpwOTUUImt3IGWygIW9qhLZ6STX04uRSqE4nSe1nILweqIRg3B/knB/cmxaX3OEVR+cQiapQ+gYCwtnnUxOJpPIMXt1FYMdsbHnr3rWZP/L+XpuqMLNzAsqxTMEQTipJFBkJEnCAiRVA8s85hLJpImRM+k9EKb3QHhsejiu4MsZE4YKpuI6FU1+vEE7XXtHCZa5qZkZIhXLnuT9EYTTL2eYaAcH/pAlCcMUISSCIAiCIAiCIAiCIAiCIAiCIAiCIAjnghMKIbEs6yUASZIsy7I+cnKKdPbTHAovP9xGoMRNzfQQ4f4k6+5t5j3/sOCUbdPl05AVCdM41CBA1WScXu2Yy5nxBBgG6DooMhzMe5BUFUk50QwbQcizLItcZydmKoXs9qAPD5Hr6GTo9tvxnL+S0d/+lsJvf58tu7yMPjJM/dwieg5EcPts2BwK2bQxti5JAl9tCZ6ZxTimTD6hcsXXr2fwhz/CVlYGgN7bS/zZZyj6wuexLAvnzJk4pk1DKSg4oe0IJ8YwTPas76V6WohcxmDDfS2UT/Jjc058jrJ0nfA99xD66EfAtPLnNkUlNRxF2vgynnlzkNSJl3V6NVRNHusYByCrEq6CY59L3w7MXC6/32b+9yQpKsgyknZkZyn14G9COEUOCzWSVBXrOEJInD4bqk1Gzx52rCoSroKJO79NNLK8r9BJ245h9qzvZftTXVz2mVnUzSqkpNaHkTNxem1kZlxBZmYjyDKOKVNA0zDC4SPWZSYTb3ofBOFUs5WX4Zg+g0RsPVYmi3vJYmJ3/IbyK6+kdGk5qYopPPyr/eQy+fOiqh0ZOOYJ2HF43vg1QHE6cMyejWf1atB1JJuN4d/+lsJP33TS9kuYmN7VRWrTJoo+/znMVBrZ4SDx7HMUXHUl6UgEM5PFWngBu7dFCZS6GGiPMdKToGZmCEWVCVV6cHrGnyuLa33sfL5n3LTKKQFUmwinE04z0yT2+BPYqqrwLFuGmc0iO+zk9u6hYspyhrvHX5dL6nxjf46H0zz8PzuIDaeZcX7F2PR9G/tx+WwsvLyW+ule6Osi8fiLJF96CXtdHWY8TnLTJtwLF6KWlWHlcjjnzMa9bBmyTXS+Fw6RTBNVk9nyRAe1MwoB2PJ4B3NWV+JwShM/u5qgrioIp4tk5DsVbnuig5qZhViWxZbHOrjwxiOfQXkCdhzut//zAuHc4Q05sEyTmukhJElCkuDwQc5tThXnm7j/eTPs06ZR9IXP5+vqdjuZ/fuJPvQQ3neszgelTxAA7WhsJLN3H2YiAbqOWlREeu9eHFOnkj1wAOfMmaekrIJwNJ4JnhEXVnvZ/9IAS64UwaPnGk02CA8kGe1NUjMrhC94ZDBS5ZSgeIYgCCeZJIGkHXY+liVe7w2L02YdeS9qkxloj6No6hHBxAB2l8qOZ7pwF9ipmR4iMphi7V8OcO1X55+kPRGEM0fOsHAcfD+iyBKmCCERBEEQBEEQBEEQBEEQBEEQBEEQBEE4J5xQyyZJkpZKkrQL2H3w77MlSbr9pJTsLGYYFnMvqma4J87udb30NkeYs7qK4+hj/Ib5S1ysvH4yspzfiKxInH/DZPzFxx5JVvZ5ASkfRCJJWKaBJMv5zumKGJlLOHFmKkX4L3fT+s53knjhBTo+9jGSa9fR89WvYquvJ7FxI86P30qsdDrdrWmS0SzBMjeLr6qjdfsQi66sQ1HzpzJJllj53kaK5zSecABJtrOT7s99nvTWrdinTBmbnt65i8HvfR+tvBzPeeehBgIntB3hxOQyBrHhNP5iF3s39NGydRBFk5lxfgWabeJzlOJ2U3D11Qz9+CcM3X47SaWAPdpcHt9VxvqNJoPNw0fdnr/YxYUfnIKsHDyXyhIXvn/K655L3w7Sr7yS71ly2H+pTZsJ3Ph+pMNGrlcCAdzLlp3Gkp7NJCRJPni9NfMdfo7jWhsfTdO1d5iFl9chq4eO1QveP5lAycTHamGVhylLD4XLKKrMzAsrOLCpf2zaSw+00N8exTSssZG87bW1+C65BN+aNdiqqzHTaXyXXjp+5aqKrbb2Te+HILwVXHNmY2+cBLKElcniPf8C4s88S27D89jad1I56VDH/K69I8y/pIZXW61rdoUl1zQQH02TyxpH2cJ4anExyDJDP/oRQz/9KYM/+AH64CBWOo0eiZyKXRQAfXQU2ekitW0bg9//AcM/+xmDP/gB9tpaHFOnohQWARC2Auxd38/0FRVjoWPNmwexTItQuWfcOjPJHG6/nbLGQ2F0/lIn05aXI53KGztBeAOMWAzP+ecTue8+Bn/4Q4b/538Y/P4PsNdUM2lBCQXFhzq/VU4JUDE5f08THkjSeyDCSE8iH8Bk5UfmPlxRsUL68YdIb99G7IknUTxeZLebyEMP4111YT6ARM/hnD8fz3nniQAS4UiKSqDUhcOlsf/lfva/3I/La6O4xstwb4qFV9SNe3Z14Qen4i86ssOmIJwupsNDYZUX1a6w/6V+Drw8QFG1B4dbY/bqynF1xdUfmoq7wH7sFQrCGcQTcDBteQV7X+xj1ws9zLu4BungOVlRZZa9q+GUbdtWXk5i7bp8veUHPyD60EPIBQVkmpvJtrVNuIwky6glxUg2DcvM110kzQaGgT48jGW8sfs0QThZiirdTF5SOvZ3l8/GnNVVlNT7xoVaC+cGS3PQOL8EPWey+4VePEE75U3+sc/9xeIZgiCcKmPvVSwzn0oiy+OT1V7D49RZ/s6aQ/eiqsSyaxvZu6GPTQ+1jYVUH84XcnLhjVMY7U+ye10vPfvDzL+khmCZ+4h5BeHtTjdMVPlQCIlxjN+TIAiCIAiCIAiCIAiCIAiCIAiCIAiCcPZQT3D57wMXA/cDWJa1TZKklSdaqLOdntZp2z7E4ivr0XMGqqbQsnWQhnlFp2ybyWiWvRt6mH9ZLaZhIcvQvnOIutmF2F1HH73QGBgAWcayLDAPNpK0LCRVRVLE6FzCiUvv2kXfP/0TznnzSGzYSK69HTObBdNE7+/H9smv8OQzOab05kealaR88MT6vzYDMNqXYO6aagJlLoJlHgKlrrFQkuNhZjIkN20i09yCGY0CEH/qKYq+8Hki992PlckQ+uQn8awUp7ozgWVaNG8epLDSQ9W0IKZhYVkW4b4EcPRzqnvFCoq+9CWSbV1sjTfReSAOQGQAujv2c+1XffhCR3Z0k2SJxnnFhCo8JMIZ3H47/hIX8llwPnTNnk3fv/4bZjz/XcheL6Xf+Aa5kREKP30TViYLsgQW6CMjp7m0ZyfLNA9eW6V8EIllgfT6o/SNX4fFjme72PxIB75CB/MvrsGyoHpakOI631GPVafHxnnvaWTqsjLSyRyWafHcnfvQs4c6SOQyJlsf68A0LZac5yT5259h5XQC770O57x5yHY7emcnqCqB668n9uQTqMXFFFx5FZLDcWJfjiCcQo5p09D7+9D7+5FUFa20FK20hOSD97LwincybUYlWUcBowMZXAU2Fl9Vn/9tWBZr795P+SQ/NTNDNC4oQdOOHRwkqSreVReCniP+9NOoJaUUXHEFw7/6Nc45c1DFSN2nRLajg9E776T4K18m8rf7MCIRfBdfjGP6dFS/H1tdLZnSBuJxMHSTTQ+3Meei/CjViirTuKAYl298kELn7hEe/cVOGucXs+iKOizLompaUHQ0EM4I+sAgqS1bCN10E9EHHkDSNAquvgqzuIL19xygckqQpoUakiSRiGaRFYm+lgh//9E2Zq+qHFvPlic6mHZeOfVziwmWuSksUdEfv5/0vn35Tr2miWPqFIZ//Rv87343kqZiGTrupUtxLVwoOtMJEzJNk/2bB6ibU4jdqYIkYeQMBjvjbPx7GwXFzrFnV9XTApTWF4x1gBeEM4GZSPLKc900LSpBsylIkoSv0MEDt2+nsMLDoivqMHSLwkr3WMiTILydVDQFWPquBtIJndJ6L0uuriObNpEkePmhNg5sGuCST83A7jz6O4XjoXg8FH3+c4z+4Q4SGzZgb2zEu2oVgz/8Ic5Zs7DX10+4nFpUhOxyY6XSWHoOraQYSzfQh4bJdndjr64+qeUUhGMydGRVYtGVdZiGhZ412PhgK9VTA+jp3OkunfAWM3I5tj3RwcwLKvAGHTRvHsTltY09Q8imDRRV1HMF4WSzAKTD3oNYVn5glWOEJmQyFq07I+PaUbRuG6J8kp/h7jiWOfGydbMLue7/LCA6lMblsxEsd2NznGjzG0E48+QMC+3VATokaazZkCAIgiAIgiAIgiAIgiAIgiAIgiAIgnB2O+FWEJZldb6mY4kYXu512Jwqhm6x4f6WsWnFtV7s7pPbcPdwo71JevdH6d0fHTd97poaiquPvl3J48F8dVR2Sco32pEkJJsGqmhEI5y4bEcHAI4pU4g88AAAst2OpGloi5ezf8BLPNxPKpaloNiJZlfoORAeWz4+muHlh9qonVXI5Z8pnWgTb0ry5Zfp/NjHCd10E5KmYeVypLZuJb1vH95Vqwh+8hM4m5pOeDvCyaFoMlOWlrLunuaxaZIsccmnZhxzufQrOzGTCeSVl9J5b3zcZ8loltG+5IQhJACyIhMq9xAq95z4DpxJbDZCn/g4VvZg4I/NBjaN5DPPEvnrXw+NFGdZFN56C97ly09zgc9CpoGlKICFdHBEMWSJNzOeWDycYfuTXQBEh9K89GAbAP4SF2WN/mMu63BplE/Kz9PfGiEVG985onF+Mduf7iKb0qkN2OHv+XN27JFHqPr1r/AsW4YSChG+6y7UsjLcK1ZijIwwePtPqPvLX97EXgjCW8tWXoZrwULia9diRqNoVZVEn3gS/5VXkNu9HWnf3ZR89kvs2BOjampg7Hf1qpYtg/hL3Ay2xyiq9qLZXieIxG4n8cJaPCvPRx8aov/b30YNhUjt3Im9qQnZbj+Fe3vuMWIxUlu3YUajDH7v+3jOPx/Z6yX68EN4L14DgFJYSPf2DJYCqk0mFcvx8kNtACy8vJaCovF1AkM32f50/lx7YNPA2PRUPEdZg/8t2S9BOBZTz5HasYPU1q14zj8fS88x/Itf4Ft6OT0Heuk5EBk3f+3MEJseaSOb0jF0C6dXy9cDLNj1Qg+Tl5Qy7+Jqcnt2kY1EyHZ2IjsdFFx+GUM/+zmBG67Ph5XabHiWLcM549h1ceHcpqgKjXOLeOaOfWPTJi8ppWd/GIDIQIqXHmgFwOlRKZ8kQhyEM4vqdtK0oIQX7zv0XHfBZbWYusVAe4yB9hiQf/5bWl+AJyACGYW3F4dbw+5SWXv3ARZeXnvE/U98NEN0ME3RMd4pHC8lGCTT2Yl31SqyHe30/+d/giyT6+/HiEZRfL4jy1tXR3b/AcxIBDObRXY5yfX2Iruc6IODIoREeEtFoya7X+g9YvqUxaWo9mM/KxDOPqpkUD+vmE0Pt7Pgslratg8dMU/l5AAFRa7TUDpBOLtJigyGCXL+3CvJCtYxUhNiGRudu8N07g6Pm77gslqKqr0otonD3WVFprDSS2Gl96SVXRDORDnDRDs4yIEig3GMUB9BEARBEARBEARBEARBEARBEARBEATh7DFxi4k3rlOSpGWAJUmSTZKkLwG7T0K5zmrJaJamRSVMXlJKqMLNtOXlVE0NkU3pp2ybinbkP7UkgaIc+xCwstl8x3MkOHyUH7sdtaDgJJdSOBepoUIAMgf2j3VWS+3Zg+NHf6K18mL6WvMBEbvW9jJ5cSlV04L50ZJfw3GCIT5GPE5qzx5Gfvs7AKIPPUToE584ePyDlUrhWjAfR13dCW1HOLlyGYPh7gSLrqyjuMZL5ZQAy65tYLQncdRljFSK4V/8gvBdf0ZxOiYcVVtRT/Ty+PYjadpYyAiQ70iqaYcaZprm2Ge2mprTVMqzm1JQgCTJ4/4dJFlGUt546JesSGiOIzs1TFQPOBo9Z5CKZVnx3klUTQtSXONl4RV1DHbGxuoqiZyWD6o5aPSOP5LcsQN9dJSiz38OvaeHyD33EH/uOUq/+U1sotOPcIZzTG7CvXgRstOBlcniveACoo8+hiRL2Guq0fQEqz80Fbf/yIAQ1aZg6iYdu0Z49OevMNwdn2ALh29rMp5VqwjffTfxZ55BkmWCH/4Qg9/5Ltm2tlO0h+eubHs7Qz/5CcGPfBgsi9jjjxO59158l1+O/dVgucJyejvTbH+qi8VX11M7M0RhlYcFl9cy9bxSXhO6iSQxYYDkidZHBeFkyezZQ+ijH8FMJIjcdx/RBx/Cd8UVKB4nTDDQdiaZY7A9f+7a/lQncy6qpnF+MaEKN0uuaWDRlXWomoJSUIDssJPavBnP8hUM/+lOAjfcAIaJ7HLjuXCVCCARXpdhmPS3xlhyTT0ldT7KGv3UzAihTdAxd6JpgnC6ZVM5RvoSLLyijqJqL5VTA7j8tiPmszkUZGWCk64gvA3UzS5i+XWTsE3wDFaSJWT11BzbtupqAtddR/iee0hu2AiSRPDDHyb8pzvJtrYedTk1GERyHLxX0w3AwsrlkJ0TBwwLwqkiG7kJpzu9Gun4xJ8JZ6+soRAfSTH/0lpsTnXCc+e5+B5CEE41yWYDWcF69T2LBSjKhGFmr1KOUm8PlrkZ6o6Ty4gxeIRzm25aqK+GkEgShilCSARBEARBEARBEARBEARBEARBEARBEM4Fb7xX68RuAn4AVABdwGPAzSdaqLOd3aXy8oNteAsdBErddO4ewTQspp5Xdsq2GShzUTU1SOfukbFpMy+spKD42A1xrVSa1JYtqMVFmNlMvrGOIqMVF2MXYQzCSeCYPg3fFZcTfeBBiv/hq2RaWrAWrebRewZxem1UTw8y0pvAMi1GehIU1XgpqfVxYPMApp5v4CIrEtOXH//vx0gmGf7Vr0muX4/scQOQ6+gg+thjFN1yC7LXi3P+POyNjfmgBuGMYXeqaHaFzY+2U9EUIJs2WHv3Ad7xoanHXlCSMIaHyd7xc2av+BRbnx8c+6i8yU+o3H3URVPxLAPtMcL9SQqKnRTXeHF5j+yU/nbjaGwk29IK0sEG8aqKo6ER7QPFxJ95BjMSAcC5aBHOefNPY0nPXlpREVpZKXpP99g0yWbHXlf7htfhLrCz9J0NPPW7PWPTvEE7RVWeN7yOwfYYD96+AySYuqyU0jofWx5rR88eGinQp6UwstlD5XS7GfjWt0m99BKO+fOo+tWvsLIZtPJy7PX1b3jbgnA6OadPB0UhsXYdVjqFvbGRxLr1BD74Aez19bgKXCiaRLDczchhYVdzLqqma+8wlZNDtL8yTHQoxTu/OA+n98jOqACK14t3zUWogQBmNoukKoz85n8x43H0oSGYPPmt2uVzgj40hBmNMvK73xP61CexdAPZZsO1bCmKJ39ubNsxRKjcQ/uOYdb+5QDFtV48fjsut4Q3eOSIxLIiM2NlBe07hrEONrhWbTJ1swvf0n0ThKMxozFG/nAHoZs+hZXTkW020vv3EwzamLGigleeO1TXqGjyM9KbpLzJT+euEfScyfp7mwmWu1n1gSmU1B0KH7VVV2Ob1ETok59k8PbbCbzvvWCZ2CdNwrVwAWqh+A0Ir09RZDwBOxsfaKWiKYBpWLRsHWTexTU88ZtdY/M53BqlDf7TV1BBOAq7XUKWJbY+3kH5JD/ZlI7NruD220mEM2PzLX1nAy7f2/9ZgXBucrg1fEUOhjvjlDX46G2Ojn02fWX5hAHRJ4Mky9ibJlF48835EBGbjdgTT5DZtw99ePioy9knN5Ht6cFMJLBMA9nlQquowFZbe0rKKQhH4zbDNC0qZt/GgbFpdbMLad02yPxLxfu0c41NNsimDXY83cmkxSXMXlXFlsc6xj4vrvURrDj6ewhBEI6PvaGBTEsLhHNYABKoJcXYq6rGzTfal2CgPYqeswgVadRN9dK6Ozb2eeOCYnav68Ff6jpldR9BeLvI6ia2gyEk8sHBPUzTGvuzIAiCIAiCIAiCIAiCIAiCIAiCIAiCcHY6oRYTlmUNAe8/SWU5Z2SSOouuqmfzo+1EBoZw++3MXVONnj11o+hYFlRNC1Jc6yMRTuMLOfGXuFCUY4+yJXu9xB55BOfs2bhXrMCMRVGLirGJzpHCSaKGQpR8/ev4r3svugmOH9xBeMRAz+0nNpLG7tKoaPIjKzKmYbH+3mZcBTYWXVFPNq2j2RWqpgQprvEe1/bNXI70K68w/NOfgixT/KUvknhhLQDZAwcY/PGPqfn973BOm3Yyd1s4STJpHW/IQVGVl/ZXhpFkialLy9B186jLyJpGwTVXk962jeQzT1LmLiC46jKGzQCFtQHKJ/mP2nFczxpseridbU92jk2bsbKCpdc2Ynubj9Jtq67Gf+27xkaWtdXVoQYCANT9+S4yLS3IDgf2pibUUOh0FvWs5l6wAMXjIdvahuzzYm9qQisqelPrcLhUllxTT2QghcOj4SqwvalRNQc74/k/WLB7bR9Lrq4nUOpmsCOGrEjMv6gS9dEfYwDanPlY7/4knXoIuxEneEEH6R/8Xwa//33Kv/P/sFdXv6myC8Lp5pwyBa24mPSuXZipNP5rr8VWV4vizdczvEEnqz80lZZtgyRGsxQUOeltDjNzZRUv3t8CwGhfko5dwxQUuSiu8SJPUN+2VVfT+0/fJHfYaN7eiy9m5Pd/wN7YiFZS8tbs8Fku29ND5G/34V5+HokX1jL0458AYJ85E//73gtALmuw49luCiu91M8pomXbIANtMepmF1Izu3TC9fa1RHj+z/tYck09seE0iiJRN6eI4pqjj6gqCG8VfWgoH7gXDjP0ox+PTS/9138hiw3NrrDoijqiwyk8AQeBMhfP3bmPeRfXkIxkGO5OIKsSk5eUEig9skOcd8VybFWVuBbMx0ylsNXVYW9oQJJEpwPhjTF0A0WTqZwcoGPnCGWNBaiazNbHO1j6zgYigyncfjt1cwoJlolOmcKZJ6vLBMrcBMuStL8yzKwLK9n6RCdTl5Vh5EzSiRxV04PUzhD3zcLbW0mtj67dYSYtKqV6eiGRwSS+kJOR3gQHNg8wZ/Wpud+3VVcz8MJ/k9qyZWyaa/EiIg8+hH3KFGzl5Ucso3i9eFddSHrnLozhIdSKCuyNjSiuIwMFBeFUktNJGufWUFDkIjaSxhNwYOgmJXU+sin9dBdPeItlsVHW6Cc+kkGzKWQSORZdWUd0KI3bb6NycgB3gQgsE4STTSssxHfJJWT37kUfGcFWXY1j6viBC4a749z3/S2kYvlQflmVuPIjdVTNKmW4J4HLZyMylEbPmXgCDrIpA7tLBJEI565UzsBpy7/nUA4+AzQsCxnxPFAQBEEQBEEQBEEQBEEQBEEQBEEQBOFsdlytJSRJ+hHkB4+ZiGVZnz3uEp0DJAm2P9XJtOVlKKpCJplj86Pt1M46daMGj/TEWXfPARRVxuHRSEb7URSJohov/uKjN8bVB/rxvuMdmIk44T//Gef06aR37SZQVgplZaesvMK5RfX7URctpHnLAI/89BUWXXloVMDNj7ZTMyPEpEUlPPHr/KjIyUiWF//WjNOjcfUX5xIq8xzXdrPd3Qz97OeooWB+gmkS+dt9FH/1KyRf3oTs8RB4z7txzp59wvsonBqqJtO1exSHR2PBZbUAtL/y/9m76zi5qoP/459r47az7pbdjXtCSEhwh0BxKRVoi0NpgVJ5nqf2q1Ao2tIibaHQIqWFAkWChxgxEuIu6zq743Pt98eEDdtNIIGQhHDerxcvsneunDN7986Ze8/5ni7yynZ/TljJJPH5Cyi48UYSixYh2ymCifXkWRb5Uy79yOP1tCVY9vr2ActWvN3EsGnFh8TAYzUnpz945MMclZU4KisPQIm+mFxDh+IaOvQTbRvrSfH6X9eSiut4Qw4ySRM9bRIq8ODLce3Z8X3agJ8X/HsTY44rZ8aF9ThdKv6wRrrsEvoKcogcfi6vP9MGtAHgCRRy9FU3k/rDbfT+4x+ohUUEZ57eH+AgCJ8HajiM74gjdvt6x/Yoy2Ztx+nVWDM/DXY2ZDCn0ENfRxJZkYi0JXnt4TWc8e2xlNYPvq5qhYUU/eiHxF57nfTmzbhHjsCM9BJ96in0llYRQrKPGK2tRF96iZwvX4yzvoHU6tU4hwzBd/RRqOFs+y/SlsAbdLLqnWaKh4SYeHIVkgT+PBeBXPegfdqWzftvNtLblmTePzfi9mtYpo3Do+3ydy0I+5vZ10fX/feTf+01pFavweztxTNxAmp+Pp3boiydtQ1ZlnAHHCRjGVwejbqJhcx/ZhNDJhQwZEIBlSNzyS3z73I2U8nhwFVfD/X1B6B2wqFAAroao9gWTDq1ilChh1k7vut3NsbwBBwYukn1Z3iPTBA+DdlIs+m9Drw5TiYOr8IbcrD8jUY6t8fQnAqaS2Hbqm5K60JoTjFQUfj88vidNBxWSGdjjEX/2dL/TMG2bLau7KK0Pof88n3/XV/NySHv2muJvfkm6fXrcQ1twDYteh55hJyLLtxlCAmA4vPhPWzyPi+PIOyNVMLg7Wc3kujNZNvb0QyWaXPYzBpKG0IHunjCfiYbKVa900xBRQB/rpvZs9YhSeAJOknFdTYu7eDsm8bj8u46EF0QhE9Oy8lBmzJlt69vX9XdH0ACYBk2783pom5SEdHuFJ6Ag0Cui0zSoGltD2OOLtsfxRaEg1ZKN3Fr2ck4PrhfaFo22ud7fg5BEARBEARBEARBEARBEARBEARBEAThY3zSntCLPvTvnwD/tw/K8oWhqDLhYi/vzdo5kH3iKVUoyr6ZKcTKZEhv2IDR1oZWVIRjyBD0lAmAaVjEI2kADMvG1K2PLmtODl0PPogSCqGVldHz+OOohYXkXnXlPimrIABkkgaRjgTzn9kEQHdznLKGHBrX9gDZUIm6iQWDtkvGdPSk+YmP2/uvZ+h98knyrr4KyeHAzmRIr1tH+62/wTtjBgW3fA9tF4EMH8Xs6yO9YQNmXx+Oykqc1dUfv5HwidkWDJlQwNuPr2Pzsk4AfDlOfOHdzyCo+P04ykpp/+1vcQ0bipVM0fef/1B8660fe7xMIrPLCC49/cnPQ0HYlwzDIp3Idp6NRzL9yz9oB+yJwqoAOUUeeloTAEiSRMXwXIqqg/3rqBMnIjeMZtavFg3YNtFnEAvXEjz8cBLL30eaGKZ3RSfuQoucYg9Ot4aZSJLZuAGjsxOttAxnbQ2SInoqCge39ObNZLZuRcnJIdkXwNAtjB1taoBEX4bgjmC/kTNK2fReB7Zls3TWNlw+lWCeB9Ux8DxXcnKIvvoqanExPX/7O1Y8jnPoUJIrVuAeMRxJGxgIJOwdS9dJrV6No6aGnkcfQw4EcFRX0/fSS4TOObt/vRVvNVFSF6JxTQ8tGyK0bIjg9mvMvGYk8XcXYqWSOKurcZSXZ/dr2fR2Jvu3/2DAQrQ7tX8rKAi7YabTOKoqab/1N2iVlSh+Px1330PlY4+S2dEesCy7/75AMqbjdKvYls36hW2c8M0R5FfsDNcze3tJr9+AGYvhqKrEWVV1IKolHELsHW3Lt59Yz/bV3f1hkh9I9GXbsOI7lnCwktwehk0p4u0n1rNpaceAc1hPZ0MgZUXC0Heb3y0InxvBAjctGyIDnilA9h7DB9frDzM6O0lv2ICtGzhra9B2ExjycdTcMH0vvohWUkLkn//C6u3FUV1Navn7uEeORHbu/r6fIBxIUm4BiWjjgPY2gKxKyPvo+Z/wOeJ0MvLIMuY9vZ5AfjYc2rbpPzcSvRmMj3lGKwjCZyP2oWt0/7JeA69fpaspzraV3UC2T8eMC+uxbNjVEwzbNElv3Ije1ISam4djSC2KZ/eTvwjC55Ft2yR1E9eOxBFlRwiJZYvvvIIgCIIgCIIgCIIgCIIgCIIgCIIgCIe6TxRCYtv2wx/8W5Kkb3/4Z+HjJaIZvCEnh82swdAtNKfM5mWdNBxe9Kn3bWcy9D79NK0//Vm2N5ssU/zTnxI64kQ0lzJgEHJZQw7+XNdH7s/s7aXghhvoeughUsuW4aitJee887Dj8U9dVkEASMYyvPvvzViWTSZpALBhcTsNhxVx2MwaNKdCUU0Ay7LxBBwDOrjnFHkI5A2eof7jpNavJ7VyFb3/+hcAkX88Tf63r6frT3/G7OzEUVVF/jVX73UASaa5mc5776X3n9n9Sh4PFff/Ec/EiXtdRmHPWJbFmgXNTDy1ClO3kGUJQ7do3dhHWUMYh3vwx5wZjSL7/PiOnEHszbeQNI2cCy/EikU/8lhmXx/q+qUEcj30de0caOwLOwnmi06FwsHBF3JSP7mItQta+5fJqkSwwE37lj4M3SRY4MEb3P2AnWC+m9OuHUPH1ih62iRc4iVvF7MbW+bO6/aH2Q437rFjiBYM49XZkF6xGdjMsKnFHHZqOYknHqHz7nuyK6sqZXfcgf/44z513QXhs5JYtIht37ocO5EN5sm79/FB6wyfVozToxIu8tC4pofu5mxbORXTmfPURkrqQ4w5pgzNufNzyVVXR95119Jx2+3ZAJL6OoJnnknH3XfjP/ooHKWl+6V+hyqjrY2O395B/nXX0fPkk2Q2bkTfvp2Cm2/CWVsLQCySIh5Js2lpB+NOqMC2bJAkPAEN4/EH2PbnPwOghEKUP/hAdsCjIjF8Wgltm/oGHK92fP5+r6Mg7EpmzRr8J5yAnc6QWrUKMxAg/6qrUMJhvHEHsiJhmTsHCQyZUIAv7OTwL9VSUhcir9zX/5rR2Unbr35N3/PPAyB7vZQ/+ACeceP2ulxmXx+S240sApYEy2bdorb+625+ZQB/2DUgzMmf5yKYv/ff9QVhfzATSdYsaGXyadUYukV+hQ9ZlrCsndfW4UeU4A05DmApBWHfcLo1CmuCqA4ZI7NzoHz58DDJaIbu5hjhkmzbIdPYSNNNN5NauhQAtbCQ8vv/iKuhYe+PW1tLwY3fpf3Xt2YDSHY8k2j/7W/xHXWkCH0WDlpaqoehU4pY9U5L/zJZlnB61L0KCBYODVZSZ828ZibPrMGf60KSso9tPzByRgnegAhVEoQDoXJkLste2z5g2fCJObRs6KF+ciGaQ8GybBRVZs38lh33/QbHkMTeeIPGG74DejakOO+aawhf+nURRCIcUtKGhW2zM4REyoaQmJYIIREEQRAEQRAEQRAEQRAEQRAEQRAEQTjUfaIQkv8ini7vJU/Awab3OgbM6tpwWCHOXQyW31vpLVto/X+/2NmTzbJo/elPKX9uCsd+dRhLX9lGT2uCsqE5jDm2HIfr44/Z9eCDBE4/DdnrQ29qousvf8F/0omfuqzC54Pe1oa+fTtyMIhtmFjxGGpuLmZPD5LHgyTJ2XCG/DzMSC+SQ0PSNMxIL0puGDsexwZkjwezuwc1N4yVSGIbOkowSFunwoq3m/CGHNRNKuzv9LV2QSuyLHHmd8fxxqNr6O1IctgZNWx9v4v2LX2Ujwgz6dRqPIG9G9SR2bad7ZddhqO6Gq28HL2pCaOtjc4/3k/wtFPxTpuGe+w41PCeB5DoLS30Pv88kqL0B5AA2IkELT/9GZV/fQQ1GNyrcgp7xunWaJhczJuPrd25UILDv1RLZ1OMkiGhQdtILhepVauw4nHyrrgC2zSIvvoaWs1HD2BIrVlD7x2/YsZvHmbZOx20beqloCrAuOPL8QTF4CLh4KBqCpNOq8LpUVm7oJVggZspZ9Sy9t1Wlr/WCGRnMj758lHklvp2u59ArptA7sCBn5mWFvSmJpRAAEd1NZ6gg7HHlbPg35v715FViaAzSWzFOpYUjyG9I7QBYPXcFqqH+Uh9EEACYBg0/+hHVA8fJgIXhIOS0dtLy09/2h9AAmD8/uec+L07WfCf7aQTOnUTC0nGdYqGhHj2t0sHbF85MpfFL21l++puyofmUFi9sz0gaRpqXj6BmTORPR707dtov/12nNVV6I1NGK2taBUVKD4fqTVrMDo7UXJywOFAdrtx19Xtt/fhYJdqasJqa8Noa0PJy0errUFvaUEtKqL9ttvwn3QS/uOP72/HSmr2O9DW97soHhJi64ou3n1u57Xs5K/W0vPII/0/m5EInff+jtI772DbuijbV3cz7oQK1i5oRVFlJp9eTUltaH9XW/iCM2IxMk1NkE5j9vaCrqNVVoIk037b7fiPOw7fkUdiJRNE33oLz7kX0bWulxkX1LPi7SaiXSlqxuZTNjSHWX9axczrx1JUM/A7S3Llqv4AEgArHqftV7+i4sEHUfyDA8p2JdPYSO+zz9L33PM4hw0j97JLcY8cuU/fC+HzRVZlqkbmMvvJDdRNKqSnNcHoo8vYtqqbts29lNTncNjMarwhMSBTODipHgcVw8PMf3YTlaNy0TMGh59dy5q5rcR6UjQcXsSYo8tRFPlAF1UQ9omCygDHfX14/3OFiuFh8sp9aE6FVXNbmHb2ECRJIj5vfn8ACWRDAbv/+leKfvxjZHXvnntIqoqal0fg1FP6n0m033YbamEhektrfwiJ3t1NetUqrHQaNT8fJAk7o4OiIKkKzooKlEBgn74fgvBR5EyGYYcVYgOblnTgy3Ex8shS9LSJyzN48LpwaNPcMiVDQsx/ZhNHXlTPEefVsXJ2M/HeNPWTi2iYUowkSwe6mILwhRQocHPEuXUsf6MRI2PScHgRuc5eUvnFvPTQmgG9Xw4/qxbVMfganmlqouVH/9MfQALQee+9+KYfgXvMmP1RDUHYLx6ZtwUA944QEnnHZ5dl7W4LQRAEQRAEQRAEQRAEQRAEQRAEQRAE4VCxL0JIhL0Uj6Q5bGYN21Z20duZpHxYGEkCPW3i3v144D2it7aCYQxYZmcy9HSZvPzAWipG5NJwWCGtm/p489E1fOm743H7dz14PrE9O1jZNWI4PX99NLtQksi/8bufrpDC50Zq1Sq2X3U1WmkpruHD6fnb38i//jp6n3kWZJnACSfQ9cADhL/+NeLz5mO0tZFzySV0/v73BM84A337NpLLlpN/7bV0/O53+I44Atu2ib76KoU33UjXAw+SvPpWAOKRDMlohnEnVLBleSfekJPDZlazcUkHXU1xAOb8YwNl9Tmc8M0RlNbnoGp73nHXNk1Sa9aQXrMWo70Do6OTwltuIblsGXYyidXbS3zhQsJf/eoeB5DoHR1ktm2j7/kXiPz97+ReccWgdTLr1mH19YEIIfnMFNYEmXByFZvf68DhVqgdX8DK2c34w65B61rJJOnNm/HNmE77r35N4t2FAGgVFai5uViZDOn169GbmlDz8nDW16P4shdmvbkFxzlf46W/rCe/IkDDlCK6m+P8574VnP/DSeQUe/drvQVhd4L5HqadW8f4EytRnTJN63r6A0gAetuTLH1lG0dfMhRF3bOBcYlly2i8+hrMzk5QFPK/fT05F13EkFoZ5bRSVi3swZ/jYNz0XFI/vALnyWfTvj45aD/xSHrQfIFWby9GV7cIIREOSlZvL5l16wcs01etwKEnKaj0o7lUNi/rJNqdItad5szvjGPevzZiZExqxxXQsrEXU8/2xo33Zgbt3zW0gc777iO1bFl2gaYROvscuv7yl+yM3zXVSC4Xkcf+BraNVlZG/revRwkGScTieMaN/azfgoNeYu1azO3bafnR/2BGIqCqFP3kJ8TnziV07rm03347fc89B4Br3Dhyv/GN/m1bN/cSaUsy5cwaNixuB6B+chGB1HY6zIGzVCdXrKCvI8msP68mkzTwBBxUjc7DMi0KKvw49kGgpCDsqUxnJ5nNm7FTKRJz59H9yCNgmgTPPRfF78M9dizRl18mCqAolPz6VxiSg1gkzfLXG6kalUdRTZCmdT04PSqnXTuaoprBA3TNjo5By9KrVmNFo3sUQmKl03TcfTd9/87+DWa2bCE+Zw5VTz6Bs6rqU74LwueVkTbobkkw+fRqFE1m3j83smFxOyX1IRqmFOH2aeQUie9WwsErk9Dp60wx4aRKnF6NuU9vQFYlqkfnUTwkSCqWweXTDnQxBWGfkWUJ1aHg9mkUHFZIy8ZeNixup6DST2FNEEO30BwK6TWrB22bWrac9MaNuBsa9vq4zrp6uh54gMT8BdkFikLOly+m4847cY8aidHRQdvPfk583jwA3OPGknfttVjpNHYyhW0a6E3NuEeOEPcbhP1Gq66icVkPLet7qZtUSDKaYfaT65hwYiXpaAoQzwi+SDJpMHWLqWcPYeuKLrav7qF6dB4ldSG2reiifGgOYfFMQRAOiNYNERY8t4maMfmoDpm181sxRvgJ5kaYdtYQNixpR0+b1IzNJ9KWQE+bKJ6Bz1LM7u7svcj/ojc3ixAS4ZDyi/+sAcDnzN7/VnbkZ5m2mKtKEARBEARBEARBEARBEARBEARBEAThUPeJRkpJkhRl5xwwHkmS+j54CbBt2xbTy30EX46LV/+8lKLaIPkVfjYv6yBc6sPl23UYyN6QnE5krwcrvnO2djkQIB63sW3YuqJrwPrJuL7bEBK6uzBaWpADQfKuvRYMA8nhoO/5FwiecuqnLqtwcDPjcdpuvRWjtZWcC86n4867cA4bRmrlKjKbNpF/3XV03Hsval4eVjRG6v33yb38W3T+/vcgSSgBP5E5c8m56CK6HnoQKxrFOWQIHXffjf+kk4g8/U+Mjg48dgzIdtxa924bTq/K6KPKGH10GbIi88bKtTsLZUPj2h5CRR4qR+TtVX3i8+ax/fIryLtyR1CIbdN5333kXnYp2OCsr8M1ejSO4uKP3Zet66S3bKH1xz/GM2ECkX/8AwDZPTj0wnPEESi5uXtVVmHv+IJOmtf2kFPsQU+ZzPvnRizLJpDrHrRu3wv/ITprFlYqRfirX80uVGTM3j7SjU3Y/3mRlu9/H3Z0nMq96kpyv/ENFI8HJRggE1EwMhYtGyK0bIj07zfemxEhJMJBRZal/tnjuxrjg15vXNtNOqHjCXz8DPNGby8t//O/2QASANOk4/bf4pkwAaUngv+OXzBt3CTsbR0Yc/oouOYa9JROuRRk66rIgH35QxoJRYEPDe7XSkuRHWKQnnBwsiUJz6RJJBYu7F8meTz09lise7dtwLrN6yLMuKCeky4fycIXNrN01jb09I5zXQJ/7uB2glZUROjsszBmzMgGCaoqXX/6E84htfhPPgnJhrZf/KJ/fb2xkd5nniEw8wwUyyK1vRFXedlnU/nPCTsWo+1Xv97Z6d8wMFpbsNMpuh9+mPwrr8TWdVBVZL8frbCwf9uyhjBr5q6iY1u0PxjSNC00vW/QcbyHHUYibpBJZgMfE30ZVr3TDEDdpELCJZ8yTVIQ9oLZ1oYdi6E3NdP95z/3L9cKCuj7z39wjx6Nd+rU/u/wVjqDz6/R1RTHMm02vbczXMTldTD17CFI0uAZuLWK8kHLvEcdhRIO71E5kytW0Pfc8wOWWX19pDdsECEkX2CqKuFxmKx6p5na8QX9y5vXRWheF8EbcjBiRuketVMF4UBQExGwTFa83cS44ysAsAybjUuy11ZZkZgysxaHSwSUCYeORF+GLe8PfK7QvjXK+JMq0RzZqFH3uHH0PPa3Aeu4x48ntWIFrpoaJG3vvvdrBfmEzj8fz6TJ/W2anr8+iuzxoLe2Ent7dn8ACUBy6XvE33kH79Sp6F1dYFpYsTipVatECImw30iKQtOGPiJtCSJtO5/RNa+PMOzwogNYMuFAcJhJoh0xVKdC2+Y+TN3qD0AF6G5JUC1yCgThgGjd1IeeMlm7oLV/WePmJFUjwrzw0AbKhubgDTlZ/vp2hk8vwbmLtr2kaWhlZeiNOwPgURTkgOgmIxw6DNPq/7drR7tfkbP3EE1LhJAIgiAIgiAIgiAIgiAIgiAIgiAIgiAc6uSPX2Uw27b9tm0Hdvynfujf/k8TQCJJUrkkSW9IkrRakqSVkiRdv2N5WJKkWZIkrd/x/5xPeoyDQX65n8O/VEv7lj42LGrH4VKZ+qVaHE7l0+9c18m79tr+0AM1P5+8q67CGxzcOSan2Iv7I2bmNLt7UPLyScybR+c999B533103HUX3qlTkf1ikN2hzoxESCxcBICVSgPgaqgnuWxZdlk6DZaFc8gQkitXZjeSZOxkEkdpKemNm4BsCI7R3pH9/46ZtB1VVaTXZsNFpJceZ/J0P/KOaXPcPo2acQW4fA4s26J8+OABbkU1ez5joJVKkVqzlrb/9wswTex0GiUvr7+Onff+Dts08B933B4FkKQ3baLlpz8j+sorJBcvwUqlkd3ZsIvo62+Q+61vIrmyg4ydQ4dSePNNKB7PHpdX2Hsun8a08+po3xJl26puJEXiqIsbCJcNDAXJbN9O2y9/QXzePLzTptL5+99n/7vnXnr+/nfcQ4fS+tOf9geQAHT9/j4yGzcCILlcBKqK0P7rWq1oMt7Qpw+REoTPSm7p4M/ssoYcLHPPOgia3d1k1q0bvDwWo/uRR9Cbmkg+/wypeXNIvf8+mW3bkJNRxtQmCRdmr4eyIjHlzBpC7iT511/X3xFXKy0h/NWvIjnFIFPhIGXZ+I4/Dmd9HZD9LAh/+WKC4cFt6NKhIZweFV/IxdApxTjc2c8Lzalw3FeHES7adViVo7qazt/9js777qPznnsw2trwTpuG1RfFjA8OEUouWw7Y2LqBnUruu7p+Tll9fQM7+wOSouKZMAGjtZWOu+/Ovrf33ouztnbAeqUNOQybVoxpWGxZ3olhWNRNKMC2THIuugh2DJR0jxuLa/QoPD4Vp2fg9ypZlvAGxTVM2L+sRALbMDC6Ogcsl5xOAqedRu+zz/Z/h+/8wx9wVlWiOVUqdvHdqnJU7i4DSABcI0ZQ+P3v939OO0eNouD665Bdg0OV/pve2Uny/fd3+RkvO8TfzBeZmclQVWqQU+AYdE0FKB8WxukRAXXCwctOxBk13kcg18muJn4uqQvh9IpzWDi0+MODP/sLq/zkluz8juMeNYrg2WeBkv0e5J06Fdnnw2htJblq1Sc6rqO8gq4//rH/uYTe1ETglFOIvvwK6fWD71Mkl+9oe0gyZiyGpGnozc2f6NiC8EnILhfl5YPbN2UNIVwkdrGFcCiT9CSTpweJdScprB78TCtcLJ4bCcKBsqvnzGXlGrz2T4aN8bJ9dTeblnaQW+pl+BElSPLg+ya2aRL+6lfQdoSdyYEA+ddfh21Zg9YVhM+raMro//f0Idn+FfKOvwdrV1+IBUEQBEEQBEEQBEEQBEEQBEEQBEEQhEPKwTYlowF817btJZIk+YHFkiTNAr4GvGbb9q8kSboFuAX43gEs56ficKuMPa6cqtF56GmTQK4Lt38fDWC3IT53HoFTTkb2+rCifaQ3bSI43eSwmdW8+/wWbMvG7deYcUE9bt/uj6uEc0gvWkT4ssvIbN6E3tKKZ8J4Mlu3YcXjKD4RRHIoU4JB3OPGkVy0CNmVHSSWXr8e96hRRFtbkZ1OkCTSmzbhO/JIUsuXg20juVzozU34jjqS2GtgxaIoeXmY3d394R/69m046+pIr19PZsEcQp1tnHzGxWiTDienthhPwEHzuh5mP7WemrH55Jb56GqMAVA3sYDS+tAe1cHoidD1pz+BZaE3NQHQ/chfybvqSvTtjWSamwjOnInviCOQlI8OAUpv2Yre1EjnffeRXrOW4JlnABB96UVyLryArj/eT2rZMszubnKvuhLvhAk4amtRQ3tWVuHTKawKcPb3JhDrTuHwaITy3YM6BVrxOFY829k79sYb5H/3uyQWLkQJBfFOORxMAzsxuDO42d0NZP8m9Acf4qgLbuDNxzeip01UTeaoixsIFYgOw8LBq6gmwPDpJayanR14EyrykFvm58lfLOSwmTUMmVDwkQM9lZwcHHV1ZNavH7g8GCS9I6Tnw2zToPOP92NGIhz+pfMxJ4/EmReicEYhUjJBy3vvETr7LCSnC7OnG6OnB0dZ2b6ttCDsI5IsY/VFcdY34D/2OGzTIL54MeEjT2DkkaWseCvbvgjmu6mfXEQmaaBqCsW1Ic65ZRKxnhQur0Yw373bQf6OmhoKf/ADEgsWYBs6nkmT6P33c/hmTMcxZMig9V0jR4IkIamKCPAh28FfKy1Bb8pe42SfD9nroeeJJyn43s0k3l0IkoRn0kQclRUDtvWFnEw/r47RR5dhWTahfA8Ot0qfqpJcvZrcyy5DkmXS69aBrJAx4LAzapj3r43oKRNFkzn6yw3kFIl2gLB/SS43khpDDQ8MFZE9HqKvvkr+d24g8W62nesaMQLJnT1HS+tzKG3IoWltD5AdKF87Ln+3x1G8XnIu+TLeI2dgJRJoJaWooT0LhEyv30Dvs/8mdN559DzySP9yR309zob6va2ycAiRFQVH83om0IZcew6RyYWse7cNgJwiD2OPq0BRP1FmsiDsF5Ik4erYyPSCJqiuzLYJ324CG3w5Tg4/qxbHLmZKF4TPs/xyHxNPqWTxi1uxbfCGHIw9vgJF23k/1VFZie/II9EKCkGSSC5fTt9zzxH80pmkV63GPWIEkrp3fxuuEcMp/N//ITF3HmZfH57Jk4m/MxvJ7Sbnoovoe+bZAeu7R47AymTAspB9PqxMGm0PQqcFYV+RNI2S+hxKNmdoXt8LQGl9iMoSE2sX952FQ5xhor4/n/HBIPq4GfS0xultz4bJDj+iZJfBJIIg7B+FNQFqx+ezcUl28oy8Mi91Y0JIL8Wpa32FunNOwrIlArlOgoW7DpZGlklv3Yp32lSUcC52Jk3i3XdxjRixH2siCJ+tD0JIbjt3DDnebL8iZcdzDtMSISSCIAiCIAiCIAiCIAiCIAiCIAiCIAiHuoOqR7Rt2y1Ay45/RyVJWg2UAmcAR+1Y7WHgTT7HISQAsiITLt5Np5VPwbYsHOVlyF4fRlsrWlkZ9ESIZxysX7yViSdXYllgZEzWL2qjuDa428EdUk4OjvJymq67Hq2sDDU/j64HHiRw2mkoIljhkKf4fBTe8j0ar7yK+Ny55Fx4IT1PPIH/pJNJrVlD30svkvutb9L10J9QcnJwDh1K77PPknflFXT+/j6sZBLP5En0Pvtv8q6+is577iWzeTP+444j+sosCm66kc77/oDZ04OxaSOhTCfhIWEUv4PuljjP3bMMQ7foaoxRP7mIoYcXUVQdJFzi3aPBHFYySXLpErofeADXyBH4jj6a6MsvY6fTdNxxJ2ppKRV/uA9nXd1H7sfo6SGzdSuN11xLznnnkVy0GAA1PztYz2jvIPneMvJv+DZ6Wzuu+no8hx2Gs7rqU/8OhL3jDTrxBnc/GFstLsY5ahTp998nufQ9ksvfxz12LL4jZ9Dygx9Qfv8fBwxihuxs8nJODlYySWbzFhwnnM78N1sYfXQZ7BhL/t6r2yhtyMGX8/EzwgvCgeAJODninDpGTi+ltz3BttXdzP/XRizL5s3H1uIJOKges/sByGooRPFPf0LjlVdhRiIgy+RdczWOmhr8xx1L5PEnBqzvqKzE7OwEIPnUYwBkJIn8/7yAs7qa0LnnkXzvvR3tlHKQwIzFUHNysHWdTHMzkiyjlZYiyWIAqvDp6O3tWLEYakHBJwvQk8DojeCsryOzdRtKKIR34iSUnlZqx4/H43dgWTbJaIaX71/BjAvqGTE9O/ulL+TEF/r4kBA1HMbo6CCzbRuSqtD+m9vAtgmcegqYJqHzziPy5JPZdYuKCJ19FnIggOIP4Kqo+Ji9H/okr5eCm2+m5Uf/gxWNEjzzzOy1ZONG2n99K65hw7Btm9T7K8i56KJB22tOlbwy/4BlVkbHd8QRWLEoZjyOa8wYjKJq/vP7lQCMOrIMSQbNoVDakIOsiGuVsH9pRUXYqSRaZSU5l3yZnsf+huRwoOSGSb2/nMSiRbiGD0dvaiK1chXBM87A0E2WztqK060y6bRqAHpa4ugfmtF0VyRZxllVtVflS2/dSvTVV3FWVqJv3Ur+t68ns20bal4e3unT0QoLP2nVhUOA7HRixBO4K8tY/FYzsbjNpNOqsS2beF8a0xCzRgsHN62sDL2pCUWxWT6nlUinwaRTs+dwKq4jJoMWDkVOj0blyFwkWca2bNIJg9ceXs34EyuZdGr1zvWGDkNvbCSzaTPO+nrco0fT8+STBM88k+SaNXhGjtyr40qShKRqpNasQfb56LjrLjBN8q65GlvXcU+YQHJx9l6ta+QIvNNnYGXSyF4PtmkiaRqu4cP36XshCB9FT5ssfLUNl8+xs83dGsPQrWyou/CFIvu8GF2dyJNH8NrDa6kYkUvdxEJkWaKzKYpliXavIBwofe1J9JSZvVbbNn1dKVrWdxOYPRs1J4fMiy8guVzk/vEPu9+JJINhoBUVk9m+DbWgEEft4EBpQfg860vpAPg/1DdDlkUIiSAIgiAIgiAIgiAIgiAIgiAIgiAIwhfFQRVC8mGSJFUB44AFQOGOgBJs226RJKngQJbtYGbrGbSSErr/+ijYNkooROjcc2nvzNDdFKe7Kd6/riRLTDixkkCee5f7cldUkHh7Nvnfvp7uRx8jufx9/Mcdi1ZSghWPi06TXwDukSOpfPIJ9O3bkQMBguecjRWP4zv6KMyeCLLXg//EE7H6+giefhpmby+SpuE96iisnh5CF1yAFYuBLFP5979jdnch5+aS+81vYpkmFX99BLOrCyUQxFFdhezKhjhEWhMYerYDpm3D2gWtrF0AF/zP5D0KIElv3Ej7XXfj3DHbfWrFSrxHTMd3zDHE3nwTNS+XwptvQvuYwXSJpUtpu/U3uEcMx+zsxDYNJKcTO50mPn8B4Uu/Ts/fHyexYAGyz0vB97+Ps6zsU73nwmdHDQYp+X8/p+1XvyYxdy6O8nICJ5xA1x/+CEBswQJK77yT5u/dQmbTJtSCfMKXXUbTNdfgGjOWwIkn0tcao32rRfvW6IB9R9qTIoREOKhpToVwiZe3/r6Wts19A17btLTjI0NIADzjxlH1j6eyg+2CQRzV1chOJ+5x49C3byc+Z252JuILL0D2DA5Zk30+ZIeDTGMTzTfeiK3rKDk5GB3/BsvCM348dmUlXQ8+SM8TTyKpKrlXXE7O+eej5uTs0/dC+GKwTZPY22/T+n//h9HegXv8eIr+739xNTTs3Y4sC0dZGdEXX0JvbsYGcs47F9ntZv2idlbNbh6w+srZzTRMKUL90IzgH0eSJHxHHYne1ETfSy+hBIPkXHwRsdffIHzZpRTc8j2CM2dmB66EQshuN5LLhetjgtS+KDxDh5J0eyi77z6MtlaUYJC2X/yS/O98h55HHyW1Zg2+I2cQOu88ZIdjz3YqSVjxGL3Pv4AEOOvrsOqmkuhrBWDJy1v7Vy0eEsIXEm0AYf/S8vOwnQ7Mxkb8p56K94gjkDSN6KuvkX/99fQ8/gSp5ctxjx1L8KwvIbk9xCJpNixqx7Zh03sd/fuqHpNHfkVgn5XNiETomzULO5nEWVtDYtFiOu66G62ykuDZZ+EaNmyfHUv4fLINA1lRSDtDrH+vB9uG5nWR/tdL60IUVO67c1IQ9jUrFsPWdRgyinWP92BbNm1bdn7HKqwOUCjOYeEQ1Lyhl4XPbx6wbOXsZkbMKMHjzz4ncFaUk6mqou+ll8ls3IASCpH3zW/S8+STaGWlOGtrUdy7fhaxO+5xY/FOnUrk6aeRnE5CZ59Net06UFVK7rqLzMoVWOkMamEBSBJkHEihEJKioJWXo4l7CsJ+FI8abFvTC2Tvt32gakgFOb29IozvC8bOZNByc4l068R60qx6Z+A9pDHHVoj7CYJwgGxd1cW2Vd1sW9Xdvyxc4mXGjGPoe+RPuEYMJ3jGGRCP734nlomztpaeJ5/C6usDRSF88UUiYEg4pHwQQhJwaf3LFCkbQmKJBE5BEARBEARBEARBEARBEARBEARBEIRD3kEZQiJJkg94Gvi2bdt90o4H2Xuw3beAbwFUfEFnBZdkmdjs2fiPOxbZ50dvbMTo7sYxdPCv2hNwoDp2ztodX7SYxLy52LqOZ+pUvJMmoXi9tN97L4GTT0YO+InPnQeShOz3D9qf8MkdzOeuo7gYR3HxPtrbLgbLDhk8K5TDPXjgruZSUJ0fP6DXiERo/fnPScybj/v66/uXd/3hD7jHjqXwf36E76ijdlsn2zBIvv8+elMzbb/8JUoggNHZBUD05VfIueACuh9+mMS8eeiNjRTc+F1co8cgOTRSS9/DaGwkvXEjeksL3ilTcI8di+LzfWy5P88O5vP3v7nq6ym7606ir71GYt582u+4AzuVAsBZWYl71CgqH/0r6XXriL78Cp33/g4rGiU2axbB00/D6VeQJAbNbOx0f/zHaeK9ZcTnz8Pqi+KZchieSZP2euCFsG8djOeurevEFy4kMXcektuN9/ApeMaPz75mmpixGIrXi6TufRNOliVyijyDQkiCBZ492t5RVobjv4KWrHgCbMi78kqsTIboyy+jVVbinjCe5OIl/evlXXM1PU89hXvMGKwdHXeNtrb+181ojL5Zr9Lz2N+ydTUMOu+8C2dtLYHjj9/ruh7qDsZz92CT3rCBxmuuBdMEILlkCa3/+3+U3ncfmQ3rib35FnLAj3vUKMxIBEdNDa6GBiQ52za2dZ3k++9jRCLYqRRKOIz38MOxkgniC97FPWECgdzB1/BQoQdZkQct/zhqbi6ZpkZyL/06ViJBz+NPYPb2YqfTyG43nokTPt0bchD5LM5fd2UF7Aifi82ZixmJ0HX//QROORkllEPi3XeR/YPbY5lt20mtW0tyyVLUcA7eI6bjGtqApGkklr5H6IwzkDSN5PJlaI7B30kladftVuHQdLBdex2BAAwf3v+zpeukVqyg/bbb8Z9wAv4TTiC9Zg2ZLVuQXU7UdAa330GiLzNwP3vQjv1vqXXric+bh9ndjXfaVJxDh5JevYbY7LdxjRhJevly3KPH0HnffbjHjSPviiuwLBPvtGmH/Hejg9XBdP5KqorscmG1NeIJVhKPDDwnnW5tN1sKX0QH07n7AcnvBxv0tSvxBmuJ9aQHvL4n9weEQ9/BeO5+Wp7A4EA/f65rUACjc9gwvFMOwzt1KmZXF+133UXe5d8i9tprOKqrkQBHXR1aOLxHx9WKirAMg5wLLwRsoi+/gt7UhHPoMOxID74jj9wHtRM+7FA8f/cXRQGnRyWdMAYsdzoVJNcehmIKn9jBdu5+cI9JVQcP0pYkcLjE/QRhp4Pt/P28S61bR3z+AvStW3FPnIBn8mS03Nz+1/3hwfd1A34JBSe5V1xBZuNG2u/9HVWPPLzbY9iShN7SiquhAa2sDCvaR2LRInL2NgRbEA5i0VS2TeP/0CQxipy9T25YIoREEARBEARBEARBEARBEARBEARBEAThUHfQ9YqWJEkjG0DymG3b/9yxuE2SpGLbtlskSSoG2ne1rW3b9wP3A0ycOPEL+dTbNkycNTUoOWGseBxn3RDMvj5yC50UVgV2zswpwfTz6vAEsrMUxufPZ/sVV/YPxu966E9U/PnP2JkM7vHj6fn73wHQSksJfulL2Ok0aGJgyL4izt2sdEKnaV0P3c1xKoaHB8xANe3sIQTzdh/YYGcyxBcvJrNpE4l58wFIrV5F4JRT6PvPfwDQm5vxjBmzywASW9dJb9mC3tRE49XXkPvNb2J2dWH29BA8YybRl14is2ULqeJi8m/4NrZloZWUYHR0kFqyhLZf/5rw175G9M6X0JuyM9p1P/gQxT//GaFzztmXb9NB53N3/koSZjRKctmy/mued9pUULIfiWo4THTLlv7r3gcymzfjUhyMPeZwlr62c9bC0ceUESr86DCR+NKlNH7rcqxoFIDuP/+Zkttvx1lXh6tucBCPsH8cjOdubM4cGq+6GnbMltf10ENU3H8/SjiH7kcfIz57Np4J4wmefQ7uUSORXXs+W6YkS4yYUcrGJR3o6Wwwg8unUTU692O2/Ih9ahq2ZdF5330AOGpqsDMZin/5S9Jr1mC0tiF7vUSefprkkiX4jj4a97ixJJe+t3MfTieOinK6duxjwPvx9tsihGQXDsZz92CT2bK1P4DkA8lly0ivXsX2y77Rv0z2esn95jfoe+EFQuedh+z14qiuJrNhA9suvQzXyJG4x47FPXYMZm8fst+Pe8RwFL+fqspclr22jWQ0Oxug6pAZMb0EWd6zAMUPc1RUkHPOObT+7OfZzyZNI++Ky+l+9LFsJ/n8/E/3hhxEPuvzt/efT5P7zW/Qcc+9RJ54EhSFvCuuwFlbO2C99IYNxOfOo+2Xv+xPF5P/eD+Vf/8bmAbeyZOQVBU7k8Fz2BSINDH6qHKWv9nUv4/xJ1YSKtyzICfh8+9gv/Ya7e0Y7R24x46h7/nnAXAMGULORRchSRLekJNp5wxh1p9W9W9TPCRIfvneBYymN2xk21e+guRyETzjDOIL3sXo6KD5uzfiqK5Gb2rGNXw4nfffT/jSS7F1HduycI8ahedDoSnC/nUwnb+2YWAlk7isNFNPr2DWoxtgR4kKawLklYugGmGng+nc/YCdSGCbJlqih6kzK3jlkfX953BBlZ/8ChHcLByc5+6nVVwTJFjgprc9CYCsSIw/oWLQ9x9HcTGeyZNJvvceciBA3hWX0/fiS/iOPJLkkiUY3T04t27FUV2N4nKh1dSger27Pa7sdBKaOZOm734Xo6UFAP8Jx5PZuIHUmgqcuwi4Fj6dQ/H83V98QY3DTy3jzae29C8rGxrEL0Uwo84DV7AviIPt3LVtG72jA284n9FHDmH5Wy39r407oULcTxAGONjO38+z9JYtNH3nu2Q2bACg57HHyLvmavKuvpoPJr6pGBZmadBBojcbiqloMqOPyCNy6YPYuo7kdJJ39VVYmcxujyNJElY0mu2L0duLmpuHZRjZlCFBOET0JbPPPoIfCoz9oP1viRASQRAEQRAEQRAEQRAEQRAEQRAEQRCEQ95BFUIiZXt+PASstm37tx966d/AV4Ff7fj/swegeJ8Llq6jlZXR8/gTGJ2d+I6YhnvceDJ6djBH5ahcLNNGdciY+s6BmdFZs/oH4wNgmvQ8/jiuESOwMxnyrr0GTAszEiG+YAGhcw/tUAXhwNj0XgevP7IGgIbDiphyRg1Or0puie8jByLZtk1i2TK2X3oZ4a98BTkYxOrtJfrKLDyTJ5F37TU46+pxjx6FVlQ0cFtdJ9PcTHzOHHqf/TdqTg6YJpIig6qCYZBYuJDcy79F5IknSS1fhrOmGtf4CbTcfDOhc84m9uZbYFnIXk9/AMkH2m+7He/0GWiFBfv+DRM+EcnpJDF/AZ7JkwiccgooMqkVK/sDQgCU3LxB28WXLMV/0dew2+CwM2owMhaqQyYdz2DqFtpu+pGn1m8gOX/BgP1j23Q//DC+Y49BCQUPqcHlwp5Jb91KZvNmZJcbtSAfJRhE8njo/svD/QEkkB3gFn37LdIbNxJ/7XUAerdvJ7F4CUU/+Qm+qYfv1XGNtMm4EyqwLRskCcuyMTLmx2+4G2YkguLzZdsJloXR3kFi8RLCF16Is6KC1IYNbJ55Rn+dYm++Sf4N30YJ5xJ7800ctbUU/eiHOGprcY4YQWrVqgH7d9bVfeKyCV9sSk5oF8tySK1cOWCZFY9j6wYoKo1XXAlkw3Tyrs6GAaWWL8c7dSqpFSuIvTMHNT+fwh98H9fQoWiWxOFfqiXWnca2bSRZYv4zGznxWyPxhfY8IOgDkt9P+GtfA9tGUhV6n3seJRDA6OoSnxN7SO/sRPb56HroT4Qv+TIgIWkqqBqyc+AHdWLlSnr//e/+ABIAKxolPn8+SjCE7HbT8/gTWLEY/hOOJzXsKHo3Jwa0AcoacgbN/C4IB4qdzhB74w1cI4b3fy7rrW1YenbATDKaYev7XUw5owZDt5AVCdUhozrlvTpOYulS5HCY8Jcvpv3Xt+KbMYPYq68CYHR14SssILFoMTkXnE/PX/+KbVuEzjuP5Pvv4xo+HEdJyT6vu/D5Yu4YlGWF8tm2pjt7Tmay52T2vBTXVeHgJjkcWKYBIyezekE7U2buvK56Ag5cPhHaLByaggUejv3acBpXdWNZNoom8/bj6zjy4gaqRg68j+asqyOxeAl9zz2HFY8TPOssMlu34hwyBM/YsWQ2byIdTyBpGunNm1HDYSS3GzU/H2dFxaBjqwUFBE46EdntAUUhuXgx8blzcY0ejdHbixoM7q+3QRA+kqmbpBIWU86sQU9bKKpEOqFj2UnsTPpAF0/Y3wwDNRgiY6pkMtaA+wmKKoHIKRCEz0RqxYr+AJIPdD34EL5jj8U9bBgAesZg2NRiFEXGtm1kRSbd3UvuFZdjZ3QkWabniSfxTpu2+wOZJo6aGuKzZ5NYuhRHeVl2UgpbBDMIh45oygDA79rZrUzZEbRjinNdEARBEARBEARBEARBEARBEARBEAThkHdQhZAA04BLgPclSXpvx7IfkA0feVKSpMuAbcC5B6Z4Bz8JiL75Fp4J41Hz8ogvXITX5aK9JcXy1xsHrOsJOigbFsahGBi9fYP3pSqo4XB24PM772SXud0U/eiH/TMFCYc+IxJBb2pGDvjBNLHicZRwGDMSQXa7QZax+vpQ8vKwIr2gqchOZ/b13FzsWAxsG9nnw+zuRsnJwU6lsNIZlHAOZlcXsteLGS5m4Qtb+o+7dkErAEdfMpTiIaHdli+9ZQt9/3kRo7MDbJveF14g/JWv0HnPPQAk3l2I7A/gP/lkzFiM1OtvIPt8JJYswVFVSWbLFmSXi/Zbf4N73DisZHY2z+grswh/+WK6//Iw8TlzSa1dR+EPf4je1kbkmWeQHA4wTZRQDkZ7e7YwHwoO+ICVSGAb+r75ZQj7hJ3J4DtyBm2/+GV/+JJaUkLg9NP613GPGol78mSS774LZAcZhc89h/Zt3bw3JzFonzXjCin2OQYsM7q6yWzbSuef/rzLARRWNIqkqmS2bBGDy79gEsuWsf0b3+wPpvFOnYpjSC3Bc8/FisUGrW/19mWvrx+ib99OavlyXA31qLm5e3Rcy7RYOms721Z2DdxXyqCoJvSJ6qIVF9Pz6KNEdww+ljweCm/5HpZuoKgqdkYfeG20bTp+ewdFP/sZwZkzMaNR1MJCZFUl58ILiM2ahRmJZPddWYlv+vRPVC5BcNbXEzjrS/T981/ZBZJE4f/8Dz2PPjpoXdvQSey43gNkNm0iPvttin/5S9p+8Qu6/vAHXCNHUvzTn+KoqsQyDBIrVhDT8nn9r2vhv/ra9rQkPlEIibOmhs477iSzeXN2gaYRvugiEgsX4R46dK/390WUXr8erbQUDIOuP94PgBwMUnbP3YPWNbu6sRKDP9OtaBQ1P5/Y7HfwHTkD2edH7+lh1dIYW1f1sPX9ndfQ5NFlFNWIAY/CwSHTuJ2ciy+i/bbbib4yCwDXyJHkfPliACJtCdYtbBu0XWl9DgWVAwfM27ZNcs0arEgEyeVGcrkglcI2dCS3i/yrr6blf/4HO51GcjqxdrSprb4+ZLeHzJYtpNeuJXDaqcheL2pxMW0//gnB00//jN8F4fPATiRQwjn0Jj2sXdgNC7sHvF5anyOurcJBzdZ1ZEUh0gfb1/Syfc3O72qSBMW1QcIluw/SFYTPs63LO1n80tYBy957ZRvlQ3NQ1J0hUlphId4pU7ASCSQpG4Cu5OSghkIYPi9adTX6ho0gS5h9vejbtoMsI7ucJEI5qPn52dDe8nK0UAhHWSmOyipaf/zj/mN4jziC5OLFuIYPx8wvwGhtAacTSc4GrEmqim3b2JKEBMhuN47ycmRNBAUJn51Y1GLBi9uz4b8fUnJJFa7U4La4cGizbRvJ4yEmh1gzb+DvX5KgcmQe4WLvASqdIBy6rERy0DI7k8GKx/t/3rqii8UvDmzTFFX7mLBxBcm33wQg56KLPvpAspx9BmyahC/5MpntjSRXrECtrv7UdRCEg0VfKtvHwef8UAjJjjxj0xIhJIIgCIIgCIIgCIIgCIIgCIIgCIIgCIe6gyqExLbtd9j93E/H7s+yfF7Zho6jvAytpARMC9/0IzBjsV2/qzbYpoXR04n/yBlEn39+wMu+o44m+f5yAiefjOxxg2WDohBfuIjgl760fyokHFCp9etpvvl7SIqCb8Z0uv78F3Ivu5T43HkYnZ2Ezj2HrvsfyM5muWULqRUryP3mN+l64AF8M2ZgZzJE33qLguuvo+vPf8E1bChqfgGRf/2Lgu/cQOTxJ8hs24bkcFBw30ODBvECu162g97RQcv//C/pdesIzpwJgNnZSXTWLPJv+Da2baOVlZFYtJjEO+/Qfsed5Fx4AVg2akkxemMjnXfeRe7ll4NlkVy2jPzrriWxYAHp9euRvV7yr78eJRTEjPRiRqN03HYbksOBtKPDenLJErzTphF/5x0kRUVyu7GTOzu4hb/6FbSion35axE+ISuVwkomkd1uom+8Se43vwGmBbKEjYS5IxACQCsqovS220ivXYMVi+OorUHv6kKSjT06lt7aSsv//C/uUaMwtmwmNPN0kOUBYQzBs75E7z+exjthwj6vq3DwMuNx2m+7vT+ABCA+dy6eiROJz5tH8MwzSK1YMWAb77SpRJ56atC+bNvGzmT2rgD7cGYyK50mtWYNgdNOQ3a7drQTZOJvzyZ45pkAOCrKs9fIOXP6t1OLi0mvW4fs9dL1hz/gnT6d0jvvwD18OJWPP056/XokVcHZ0ICjpGSflVf4YlFDIQpvvpnQzJmY3d1olZW46uqwk0mSS5bsXFFRcFRVYfUODPpJLH0P27Ip/n8/p+Pue0itWIHR3UXzjTeiFhSQe9VVWNV7HzTykWXOz8d/yilIsgSmhaRpdP3pT4QuuEDM7r2H7Hiczvv+QPirX0VSlew1z7JR/uu9sw0DNT8P/wkn0PWHP+x8QZZxDR+OncngrBuCmp8PpoVn/HispsHXTzHZo3AwseJxIk8+Rf6112bbB6qC0d6B7HQCH/m1agAzmSSx4F3ic95B9njQqqpA1+l86E+ETj8N2e/H7Ilg7wjxib/zDqHzz6frj38EoPOBB8i5+GKcQ2oxWluxDSMb+Dh+vPheJAA72rCWhRIKAd0ft7ogHHx2BBwoHg8weICjIBzKdnvrdhcvOIcNJb1uLWZPhOBZZ6E3txCfNw+PJOFvaCCzbj2SqoFhYlsWkiRhWSZ2OoPZ0Y7kcJBatQolHEbxB9Bqa8i/4dtY6QyyppHesJ6+F/6D//jjaf35z8msXYdWXk7u5d/K3ruVZSSnEzMaxU6ns8HTskLo9NP2OMxVEPaaJO9ysW3bIgDni0hWMLq7UEonINoMgrD/OCorkAMBrL6dE7D4TzgByfehoMBdtF1sCwKnnY5nWAOyy0V8wQJs/aOfCeptbdngtXQaV10d6U0bkRXlI7cRhM+TaMrA41BQlZ1tHHnHZEW7mJtFEARBEARBEARBEARBEARBEARBEARBOMQcVCEkwqdjmSZWKoWrvoHom29i9fbiO/JIcMnkl/vRXAp6yuxff+IpVSjJHuxUGjk/n+Kf/4yeJ5/C1nVCZ5+FVlONnUzQ+pOf7hzkrCgU/+xn/TMKCocuM5mk57G/ETj5JJAVtKJCCr/3PcxMmpxLvozR1oYSClFw802Y8QSecWPRp01F9nop+M4NGJEIjrIy3GPHgMNB/vXXY3R24CgpxVk3BCSZvKuvJr1lM+aYGWxpUxlxZA7z/7WpvwyaU6Ggyj+gXEZ3D3pvhPSy5ZjdXSQXLgRAzctF9nqw4gnSa9bQsXYtJb/+Fc23fB//sccSeWY5gRNOwHvYFDofuB+tvZ3U6lUASA5HdhCJYRB7623yv3MD0ddeB1VFcjmx0hk67roL39FH4Z4wgeTixUgOB0pODomFC8m79lqQJLoffZSCm24iNvtt9C1bCZ57DsFTTkUSHc4OuMTSpXT+/j4ymzeTd921+I44graf/xzJ6cR1w//RJpcST7ioeb+T4iFBnG4NrSAfrSC/fx+ZN94gmO+kdIiXpg2x/uVFNX4CvoE9rZLvryA+ezbu0aNIb92G7PFQ8utf0/P3v2PFogROn4nscOKsG4Kjpma/vQ/CgWfFYqRXrRq8PJEgtXo1gVNPoeCW79H7r2eQ3W5CF5yP5PMRmDmTvmee6V/fe8Q0lFAItaBgj48tKzJjji1n26qdgz0lCYZM+Oh9WKZF25Y+Ni3tAEmidlw+BVUB9KYmlECAzvvu2xm+JEmU3nUnssMBgOLzkXvtNWhlpSSXLMXZUI+zvp7uhx8heEY2PCo+ezaZ7dtxDx2Ks6oSZ1XlHtdJED6KGgqhTpkyYJnv2GMo0X5N98OPIAeD+I85BvNDHdI/4B49mtSKFTjKysi97FLU8nLSK1dRdv8fMdraMft68RCjfmI+6xZ29G8XKnQTzHd/svIGgzgqKmj53vf6lymhEBg66Q0bUSeM/0T7/aKwTZPkypW4R40cECwSOPVUtIqKAeumN23Khs/EE+RddRXRV2chB4KEv/xl5FAIo7kZZ3XNzu9URx3FiCmT2b460r+PPbl+CsL+ZLS0IDmddNx1V/+y0MUX4SgvByCn0ENhlZ+2LTuD0CpG5BLMdZJYsQJL15EyOnpTI0Z3N+7x47FNE1nTMCIRin/0Q/pemUXq5VfwHXVk/3cvMxIhvX49eVdfTeyNN5DDYTzjx2P09dH77L/RGxvxHHYY+dddi/LhAT/CF9eOwSpeu5fSIQGaNuz8HC6uDRIq+GSfo4Kw31gW2DYBj04w30lvR7r/pYYpRQQ+YVtQED4Pqkfn8t4r27A+NOv5qCNLkZTBzwrUQABnXR29zz1PavlyXMOHE5w5k/jChejbG7EBvbEpe4/V68ExbBgYJkZ3F1pBAZLPl30GIUnYmTS2ZeGoqwPLws5kUHLDuCdOJPL8C4TOOIP2W3+Dvn073X/6M8Ezz0D2+kCWkRQle89ix/ONxNKlBI47bn+9ZcIXjM9rMXxKPivntu9cFnYS9BjYhhip+4Vj28iaA5/Vgz/XSbRrZ5th2LRiAnn7NtxWEIQdPB5KfvVLIk89RWbLFrzTZ+A76kgkdWe3mIqRuSx+ceuANs3oST7ab/gGtq4D4Dv2WCTtI7rS2DZaXi5GezuJRYtw1NbiHjkSW6QWC4eQnniGsNcxYJmqZO/rGCKFRBAEQRAEQRAEQRAEQRAEQRAEQRAE4ZAnQkgOIZnNW5CA2LvvYus6amEBsblzCZ17DpYEk0+rpmN7jERfmpIhIQL5bux4N7ZlIjkcyLm55F1zdbZjriyDppFYuZK8a6/FaGnBNg0cFRWkNm080FUV9gOzJ4JWWkrH7bcTOvdcoi+9SGr1Ggpvvpnmm27Gf9RRWKkU8XfeoeCW79F8y/dxDRuKo6KS3mefJf+Gb9P6fz9GCYXwHX0U3X/+C7mXX07bo7dip1KEL7mEtp/+FPf1P+CN5/pI9GWoGB7msJk1tGyMEMhzM/SwQkIendTatWS2bEHSHPS+/BL+6dNpueUW8q6+KjuAybbpeuhP5F5+OUZHByChFRWhd3WBaeKeNBHfMUfT/eBDaBUVJBctRjnqKGRfNuCk74UXyLvyCroeeJDk4sVktmyh6Cc/Rm9uof3WWwl96Uv4jj6a2BtvkHf1VWhlZUSeydbRisWx4nHyrrkGJRBA8fsInXM2djqN4vd/5Hss7B+ptWvZ9rWvY6eznXz7nn0WOZxLwY3fJV06lJdes0hGo0CU1Qs6OOrLDYw4onTwjiwLY8lCJpQ1UF5Zw/ZtBuW1HsrLJFq+ciFld/wW1/DhAOitLQBEX3+D0DnnEH/nHZxDhxG+8gpkh4PkipVIXg/hq68W58kXjBIO4zvmGPqee27ActnnJT5rFuGLLiT2xpvkfPnL2JkMiSVL8EyYQM4F5+OdchjJJUtRi4rQykrxTJq01yFHxfUhZl43hhXvNKNpMsOPKKWwKvCR27Ru6uOZO5Zi7+iQu/y17Zz53XGEFZnuRx8l78orMdrbsFNpHNVVAyYRjM2ZS/sddxA64wyMSC+pNWuJvfEmeVdfRdeDD2VX0rT+v09B+KypoRDBmTPxHX88emsrmY0bQVEInHYafc8/D4Czvg5ndXX271SR6bjrbkIXnI+zoYH2X/6KzObN2Z1JEiOfmoUv7KZtcx85xV7cPo32LX0E8j7Z4FNHdRUFN95IetNGFH8AJRSi84EHcA4dtq/egkOW0dNDeu06HDW1uMdPQG9sxFFViVJQgOIe+PuwYjGSGzfiHj4MPS+P/DFjsCWQZBkrlcKKx0lv3oRtZL9TpRQv65d2M+3sITSu60FWJGrHFZBfIQIVhIOD0ddH8v0VeKceju+oI9GbW3BUVSH7fEg7ZlxPxnTKR+RSWB2kqylGXrmf8mFhzK0bsBNJ7FSSnr8/TuyNN/r3m3vlleD1YHf3YDQ2YjQ3Ifv99D7zLHlXXUXn73+PFU8QnzsX3/HHkXfTjZBMofd0I8kSuVdcjuzxopWW4B49+kC9PcJBxrZtJM1BpqWNilGTyK0I0NUYI7fMR26pF0UTobfCQc7nA0VFb2xk5JHjiLQlibQlKKwOEixwIe0I2hGEQ1FBVZBTrhrF6rktGBmL0voQ783ahjfkpLg2NGh9R1UVcm44ez92+TISixaRc8mXsyFlkyaSWbcuGxTicNL79NMk5i/o3zb38m+h5ubBjsG/diqNbeggyciaRmb7NtJbt+IZPRq1tLT/HnFm0ybsTAbbZSJhY5smksuFGY2BbZNcIkJIhM+ObFvUjA7j9Ltp29xLqNCDP+xCl0y84fCBLp6wn0mKjOL3k2ppZdRRE+lt39lmyCvzoaii3SsInwVJkpDcHkIXXphdYNvZySg+1E5XVInDz66ldWMvetqktCEHp8/A861vkdm6FUdlBXpLS38gya7YloUSyqFv1qs4KirIbNuGo6oKDHO32wjC501nPEOuzzlgmWPHc0nDEoE7giAIgiAIgiAIgiAIgiAIgiAIgiAIhzoRQnKIMJJJzO4ukGVs08Q75TCwbPSWFiRVpWVTH3P+sYFggRuXV2PRi1sIFXo4/WsVSL3ZoAbF48W2TFBVZFVFAtxDh9H6s5+h+P1IioIZiVD8//7fga6usF/Y9Pz97wCoRUWknnoK7/Tp9L34IhgGzmHD6LznHpwNDSSXLMFOpfBOm0bn736PkpeH0dqGGYkQOv88uv/8l/7Bb0ZLCzkXX0T3o48CEA/XkliWAmDbqm4a1/ZQ2hBizAQ3fb+4ib5jjqb9N7cR/tpXUcNhFJebvudfyG47dy6BU06m74X/YPX10fHbO/AdeyxKQT7tv/kN+d+7mcJbbkFvbia2di3p9evx7+hkHpszh4Lv3EBqxQoymzbR++/nyL3iChxlZUgeN5F/PI2zpprS22/D7OvDUVND7hWXgySRU1GBresoPh+yezeDjB2OXS8X9rv0+vUDAg7iC96l4Mbv0v7rW7F+/heS0diA9Rc8u4mqUXl4gwM7VUmyQnrbdtweLxXODqryXVhtKaRuFX3rVlp+/BMqHnoQxe/HWTske+zVq1Fzw4TOPx8rk0HWNKxMBld9HbLHg5VMfvZvgHBQkTWNvCsuR29uJrl4MZLDQc5FFxKfNx/fscdip9METjgeO51B8vnwTpmCpDlwjRiBZ+xY/CecgJ1MooTDn2hwm6YplA/PpXx47h5vs/Kdpv4AEgDLslkzp5kxnlUEZ55Ox29/ixIKZQPNli4lcOopmNOnY3Z10XTDDVh9fXT3dBM47XQCJxyP3t5O14MPYXZ3AxA66yzMWAyztxclGNzrOgnCJ6G43SjV1UhuN1ZbO8GLLsJ39NFkNm5Eb26i4957cdbXYbR3YHR2YicSJGa/Q+grX6HjF7/A1nUkVaV9TSsr5sQJl3jZvKyDeCRDqMhD2bAwLq+21+VyVFTSeeddpDdtwkoksPr68J98Mn0vvohn8iRU8TeyW+l16/BMnkz7b36DpKqoeblEX3+dsnvvGbSu5HKher3YmoZWWICVSCDpBpZpoFZUYLa2ktq0Gd/kyWDZ9NVNYOM/u9i4rIv8cj+WafPaw6vJr5hMuFh8pRYOvMyWLbjHjKb99t9mz/9wDn2zZlF+z93967Rv7WPRC1tw+zWCBR7Wzm9l87IOZl5UiJzuxmhvHxBAAoBlogVDdPz5L/iPO5b4/AUU3HQT7bfeSvdfHibnoouQnE5cY8fS99JLeMaORfJ4UAIBJFVDCYdx1teh7u47k/CFJDkcWLEoyXAV8/61GZdPI1ToYf3CNpa/oVNQGSCvTAQ1Cgcvq6MDTINEoJw5/9iIN+TEn+tixVuN6BmL4poQOcXeA11MQfhMyLLE2vmtRNoSKKrMvH9txLZh3YK2XYaQaEVFeCZMIO1w4GpowOjqovsvDxM6+yzsZBKtohKjvR3Z7RoQQALQ8+ij5Hzlq0jqjvBVRcXOpLGiMfS2NuxUEveIkSihUDYQ7cQTib30EmpBPpKm9W8nqSpWMom8416tWl31Wb5FwhecIWnMf2ETkY4UuaU+tq7oItaTZurpZfgLeg908YT9zM7oGL29JOvGMPfpgW0Gy7IprA584hBbQRA+hqYhyRJYNpKqYCsKfOgZx9b3u1nw702ES7yoDpn5/9pIcbWfcZtWY6xfQ/Tll/EdeSSSuvv7frZukGlpxjf9CCSHE1d9PckNG3CPH7c/aigIn7l0IkFXNEVhcOBnlaZkn01mDOtAFEsQBEEQBEEQBEEQBEEQBEEQBEEQBEHYj8SIqUOEbZpYyRRWMoln/DjMnh5sw8RZW4tl2Zh6thNAb3uSXrKD3s2MheT1Q08HtmVhWxaSZWVnBEJC8nhIvLeU/OuuQ29qQpIk1JISMi0tB7Kqwn4iAWZnZ/YHMztrkxIKkdm8ObvMMLLLcnIwOj5YL3v+KIEAxo7B5ZKsYGcyyD4fViIBgOzzY0YiANgMHERvmTatG/voe3UZZl8f8bdno5WU4Jk0iZbv3YLs9eIaORKA5NL30ErLyLvmavTWNrTiIpBk7HSK/O/cgKOkhOabbib8la+QeHdhtjyaBpoGuk7kqX9Q8N3vYnR1oRYU4B4zGsntRs3Lxzd9OkhSfwd14fNLdroGLjAM+l58ieJf/ZImzQsMDCExDXtA4MIHJIeGs6oK27IwmxrRSkuxIhFSq9cAkFq+HKOzE8Xvxz1qJAXfv4WOO+4k/s4cpGCQ8EUXYRsGkqoiyTK2rpNcthyzuQXP2DFoxcWf1VsgHGSctbWU/+E+Mtu3Y6fTGF3deI84AiU3D6OrC6Opiegbb+AeMRLP+PHg8yLvCHJSPB7wePZrefX04Jn7MrEUfbP+jf+4Y8m/7joyW7eiFuRjmxbJ95YhKQpGWxtWX192H03NdP3xj+RefjlWKknO+edjdHSglZZgdHXR++RTWJ1dBE4+idSqVaTWrUcJBnCNHImjtHS/1lf4YnEWFWEXFpLevDk7GaYkYXR2kPutb2GnknQ//Aj+E04gPmcOViKBW9cp+tnPaPnBD0CWMQ2bTNKgdePOwUSmbu3yc2RPqKEgoQsvJLVyJXpzM46KcjJbt5HZvBkzEhEhJB/BTqfp+esjFNxwA5nt25EUBbWoCCU3b9C6jqpqzL4oUjqNpRuAhC2B7HSieDyY8Tj+KVMwYzHsdArUHe1BGzq2RbP/lvjEv2dB2NfsdJruvzxMwfXXk2ls7P/uLgcC/euYRvZ8TUZ1ktHsNUtWJSzLQrbBisV37lBVKfzRD4m9PRsrkcTs6kIrLQPTJPL44xR85zvoLc1IHg+O2lr07Y24GxqwLRvV70cJhXCUV6CGxDVLGEzSjexs0iE3ECMV02mN7fwctcS1VTjI2ZkMZiwOJR6gj3gkTTyyI/hUAssW57Bw6LJtGz1j0dUUH7BcTxu73UYrL0ffuAm9sRHF7yd07jnEZ7+D5PWSc955WOk08TlzBm1nxRPZ72hI2ICk66Dr2fa5YWRDz2QZo6sbLJvwJZegFuTjKC1FCQSwbRvZ7caMxrAtE0vXsU2TwMSJ+/ZNEYQPkdxeDMNGT5mD7hMgPh6+eCwTO5HAVrP3dT/cZpAVSbQZBOEzYlsWEjaWbSOZBsgysm3Dh0LdjUz2mUd38842jW7Y+E88iVTAh6O8DL2pqf/5+G6OlG2T5OaiNzWj5uXhKBHP+YTPP9u2eefvD7PwuX+ytezLVLjzB7yuqTIAGVOEkAiCIAiCIAiCIAiCIAiCIAiCIAiCIBzq5ANdAGHf0Hw+lMICbMPA6osSfWUWsbfewoxEkLAprg0hKwPDHsafWIk37ANdR7JtJNPMdsCxbWxsJNvGPWoUHXfdRfSVV+h7+WU677sPZ0XFAaqlsD+pBQWEzj0HyM4YKWkaifnz8R1zDAC2aSAHAiSXLcN7+OEAGD09aKUlZLZswTV8GADpjRtwjRqFFYuh5mc7qSTeXYDv6KMB8CVa0JzKgGOPOSKP9L/+hpqXh7OhAffYsSQXLcbo6Ojft+R0AtD3/PN0/enPeI84AsntRva4UcJhOu68i/SatdiZTHab+joAep54gsIbb8RZV4fe1ER60yZCF15A7te/hmf8eNzDhqHl5yE7nSKA5BDhHD4Mrbp6wDLfUUfSfutv8PVuHXT+jT+xAl/OfwWXAEYshlZYSHz228Rmv0NqxUpkn4/E/PkAaBUVKDsGhyt+P+FLLqHm2WeofvYZwl/5CnYiidHWjtnRgRWNgSyj5efRfNNNdPzu91jp9Gf0DggHI8Xvxz18OJ5x4wgcdyy+I45ALSpEcjpQi0vIvewyPNOmYju0bEDYATRy+uAQkJriJMlFi7BTKbr+8hfi775L96OP0f3ww4S/+hVkhwMlJ6f/Wv2ByD/+gWfCRGJz5xKbPZvE0vdQ8wuIzppF10MPkVi2jC0XXkTr//4vTdd/m+1XXU2mqWl/VVX4gpIkCVdNDd5x4/Adewy+444n9sYb9Dz+BIFTTsZRUU5q5Sqc9Q3ZwKmODop+/GNs0yQ/X0ZWB7ex3f5P3oZQ83Lp/ec/SSxaROcf76fv+ecJnHoKqTVrP21VD2mp9etx1NTSftttRF99lb4XXyS9fj2O0pJB6yoeN67Ro0HZ0QYwDSRZBknC7OrCisWxLZPoa68RffttvJkOvKGBv9O6CQUE8sWMxcLBweztwzNpUvb83/HdPTFvXn/bFKCgwo+iDbwFNOHESpx2GkmW0MpKUUIh1IICSn71S6xYjPgbb6CEQgBEX32V/G9fj5VO0/mHPyDnhHEOG44Vi6OEwzhHjyZw0on4p0/HM2qUCCARdk/L5iH7zF6CeQPbihUjcgnl79/APUHYW5LPh9nXR0CK4g3+V/tgUgGBPNE+EA5dkiQxcsbgewQNh+9+wK2rqgq1sID05k30PPUUyaXv4Tv2WKyeCMlVq9Byc3GPGIHkHvi345k8CdsGFAXZ5UT2epADQbTiEhyVFRjt7WS2b0f2eXFWVaJv24qzvBzXmDGoZWU4yspRCwpwlJfhGjYM3/Tp5H71KyLoVPhMubwaY6cNDMKUZYmiAgmlIH83WwmHLFVDCefgS7Xh9AycE2TUUaX4w4OfQQiC8OlJtp2dcMW2QZaxLRPbBtvaGShSOTL3w5kkAIwa66LzFz/L3pO9/wGsdAZbUdgdSZLRSktJLH2P2OzZxObM2dHOkHa7jSB8Hix+4RneffYf1B12BEnZRdf77xLr6e5/3aFk7y/qhgghEQRBEARBEARBEARBEARBEARBEARBONSpH7+K8Hkhe73ILhfRhQvxHXkkAKnVq3AOH0Z+hZ8zbhjHste3k4ikGXV0GRXDc7EtCyuVItujV0KybFDA1nWUQID4uwvJv/56jPZ2JFVBCYXQOzsPbEWF/UJSVcJf/zo4HESee47CH/2QniefwtYzhC/9On3/eZGC736H3ueeJ711C3lXX03kX/8i97JLib35FonFiym48bt0//1xwl++GK2slOjrr1Hwwx/S89hjeKdNQwkFif/1d5x44/9jfbOHno40dVUWJb42elMpXKNHIwG9Tz9N3rXX9Jet66E/kXf11ZjdXciBAO7Jk5Fsm9irr6Lm5xF56h/Zc1rOdvSKvvkmhTffRGbbdoy2Ntpvv538G7+Lb/p0tLIyZE07QO+ysD84Skup+MN9JBYvRm9uxj1uHNE338Ls6iJ91884/qZfsK7FR19MYsQRJVSNztv1jtIZ2m+7Dd9xxxE480uY3d103nMvAJLHQ/HPfooaDvevLskyjspKAKKzZ2NGelGLisDQMaNRjI7O7AyYhkHvP/9J7te/hrO29rN+O4SDmSSBYSAHg5BJY8ViSC4XtrH7GYX3h+IhQU69ZjTvvbodWZIYfWQR5q03gW3T9eBD5F52KWZfH5LmQPH7ybS0AuCoqqLopz+h5Qc/zM4YKMvkX3cdSkEBOeefT3r9OpLLltPx298C2cF8kX89s6NNkpVZu5bUypVikJCw3yhOJ/4Z09FKS4jPfofeZ56h74X/oBYV4Ro5kujLL2Mffxxmr03J7bejBExO/1YDK+Z1EuvNMOrIMipG5H6qMqh5eYQuuhArGsNOJdGKS4g89Q9yv3EZtm0j/XcPeQEzFsNsa0PNzyPvmqsx2tpRi4qQ3S5kz64HsytuF7ZpYpsGSBKSZWV/TiRRfF4iT7+M97DJSE4XmWcf56Rv3sj6DQYtG3oZMrGAIeML0By7H4ggCPuT1RvBNgzyr7sOvaUFtbAAsy+K7PX2r5NX7uPMG8ax/I3t9HWmGHlkKZUjcpH6ZGzTQHG5KL79NoyWVjKbt2Q/jyUJvXE73mlTic+ZS2bLFoJnnIH/+OPRuzoBG1fdEBz19Sj/FTwmCLsjyTKyy0XisQc55itXsbHZT/O2FNXD/NRPLcfhFrcqhYObZNuoOSEif7id46+4hQ3b/bQ1ZagdGaBuWoVoHwiHvJK6IKdeveMegSIx9thyimt3Hz4myTJqYSFaaSmuYcNILn+f6Msv4Zk4EaOtHds0cdbWUvHgg7T95lYy6zfgnTYN39FH7QhM37Ejy8TSdexkCkWR8Z94IrLLhZXJ0Hn3PRTccgtmLIbq94v7a8IBY1sWRWo7x5yWx8qVaTwehWH14O1aj1Qz8UAXT9jPbENHcjjRn36Eky+9gbVrDTrbDRrG5VA7pQxFEfOECMJnwdZ17IzeP+GKLcvYyQSqb+c9koLqAGfcMI73Xt1GOmEyamoevpWvo37tqxitbahFRWQ2b8o+19gdTQXTwkomCZxyMvr2RjLbtw+aFEEQPk/6OtuZ8+Sj1EyYzIzLv435k1k4M1EW/OtJjr30CgAc6o4QEtP+qF0JgiAIgiAIgiAIgiAIgiAIgiAIgiAIhwDRs/8QIjscYFm4R47IzlYsy2iGjqQoSLJEyZAQRdUBbNtGUbMd4m3bBsvCjPSCngFZQdJU1Lw8SKXwTpxI2y9/mR28ZxpILjdFP/6/A1tRYb9xlJVReOON5H7ta8huN4FTTsFKJFDCYcJf+xqSw0HgtNOwolGUcJjQBRcgKTKhs87C7O1FCQYJnnUWtmmRc/HFmN3dyH4/wdNPw85kUHJySC5aRM/f/8ZQtwetoprI7Q9in38e4Uu/TnLFSjLr1wGQXLIE/3HHEX31VcyuLjp++1sKfvgDPBMn0vnH+3ENqaXv+efJu/JKrFgsWwHLRsnNza5/z73kXHA+jiFDcFRU4BwyBMXvP4DvrrA/OSor+wNBzGiUzPbtoGmYkQjmD6+iYcrhhC+/nMDhuw86UENB1JISoi++SPTFF/FMnkTxr36F7HHjrK/HWVW1221ltxsrGiX13lKU/PxsWImm0fazn+9YQWbQtGvCF47idmObFmZzMxh69pxIplBzQge0XJpTpWpkHuXDwmCDrEj0nHISbUsWYUWjdNx5F57Dp6BVVNL1xz/irK8nePJJKF4vwVNOwTV0KEZrK2phIY7aWjJbt5JsbyfyxBNY8UT2IJJE7qVfp/n7Pxh0fDPSu59rLAjgqq3F7O1F9ngw2loxozE6774b16hRZLZtx1FaSmzWLMKXX05xSZCSEUXYlo2iffpBp1pZGVg2PX/7G7LTiRmJ4B4/nuSKlXiOOAJHQcE+qOGhRW9sRC0souuBB7CSSZRAACuZpPTOO5Dk3Q/q0dvaUVxOjEgETAskUG2QNA3P6NEo4RyQJDS9AMe6dzn89NPBUYu6D37PgrCv2LqO3tFJev16oi+/jBIKYfb1UXjzzWj5O2dblySJopogBVUBbNPaeb3yl2KXlJBuasLavIX2228n9KUzSSxaTOC00+j91zP4jzuOvGuvQXa5cTbUo7e2oBUU0v300xRcd60IIBH2iqSqIEk4KirQVr/LcH+AYZUaquojEBaDxoXPAd3ANi08Y8agrJzDyJwww0otXN4SArkNB7p0gvCZ05wqVaN23CMAFPXjB9E7q6txVFVhJ5N4D5+Cvn07els7trIa19ChuOqG4JkwnooHH8To7gEJQMr+/4P7ZbaNlUhgGwZGayux118n9sabmF1deKdPJ7VqFbLPl73HJggHiG0YSB1NhNav55hhI8DQSc9dgTR2DNIBDhkWDgBZxujswDt2LPbi1xlbWISeF8MTGIYvZ8iBLp0gHLoUFSvWjZlIIGGDoqAEgwOCihVFprQ+h6LaINg2qfeX07PiPSKvvYYSCGD29hKceTpIu29XSJKE3tmJd9JEbNPCNWwYqY0bP/JepCAc7J78623Mq2tHnu6nuTcKwJD6Wt5/7VkOP+dCPIEgjh0hWpmPCukRBEEQBEEQBEEQBEEQBEEQBEEQBEEQDgkihORQYtuYvX1oxSWkN21CdruygxjVnb9m+b9m1pIkCdnrw4xEQNOyHWMUBcnlBk0jOmcO+ddegxWPI6la9hh9ffu5YsKBJCkKWmFh/88fBHfIHxoAq+yYYVvOz+tfJrvdA/4PIBcVDdq/WlxMYtFizO5u8r/zHcLf+AaOigqab7wR14gRaKWlpNetJz5nLoFTTiH/uuuQAn4cpWUY7W0033QzVjzeP/At+f5yPFOmkJg/n64//5ncb34DKxrNDhCZMgX3uHEoH+poJnwBOZ0kly8n/5qrB1zb9HVr4fDDdruZbdsETj4JWzcw2tpw1tSQ3rSR4MyZHxlAAuCsqcHs7UUtKUECrFgMva0NffNmAHK+fDGO8vJ9WEnh80h2OpHdLsxeCUlzADZIIAcCB7poAANm5wyeeQbOuiEkliwFy8JoayXyxBMAOKoqkXdckyVNw9XQAA07B+MZbe10PfQQud/6FkZHB1YiibO2BsnjIXjqqUQef3znQWUZye3CNk0kRQz6F/Yvz6hRYFnYqRSZrVsJX/p1rGSKnkcfJf/b15NYuBDvEUfgGlKLJEmwj05RSZJw1g0h74rLMXv7kL1ejNZW0mvXZtvsIoRkECuToedvfyP81a9gGybYFrLbjezx7nYbSZLQ8nLRW1uRHQ5swwBdR1JkZH8g2wb94DtVSQlWNIrR3Iyrrm4/1kwQPp7R20t6/Xq8hx9O4KQTsZIplGAA1F1flGRZAnnga5IkYba2kly8GKunByWUQ2r5chwV5eRdczWZLVuQXW4cdUOwUmnsVJrkihWEL7oQp2jDCntJcTqxTQtHRQVGczNGaxuO6irMXhMs60AXTxA+li2BlUigFRaR3rQRubcXNT8fO5M50EUThP1qT8JHPqDm5uKsrSX53nvoTU04KivJbG9EDQRILl+Oqy47GF/x+VB8vo/cl21ZRFauxFFaRvCMmSg+P+ktWzA6OvBPmICjrOxT1UsQPg3Z4QDAUVBI+r2lYFs4KioxEwnsdPoAl07Y3yQbsmmnKvrmzdi6jqQq2QkhBEH4zGgF+RjtbTsCMEGybCRFwVFSMmjd/mcepgmSRP7VV2NG+1D8AZIrV4D9Md9RJQlkGX3rVrTi4uwx7M+gUoKwH7ww+2/cG3wJKSyzct2feGXLFuAExh02ifXvPs3q2W8y4dQz0HZ8D9ANcbILgiAIgiAIgiAIgiAIgiAIgiAIgiAc6kQIyaEkk0FSZDLbt5FcvhzJ5SJw4ok7OrrtnmfkCJKKTGbLVmxsnJXluIYNxWhvx3/4FNp/cxu2bYNp4qiupuC739k/9RG+EJxVVVT85c9EZ81CKymm/bbbCZ55JlgWqfffp+CWW0i8+y5WPIEZi4HTgVZYSOPVV5N3+eVkNmxA0jS00lIA4u/MIe/aa1ACfmLvzCH25lsU/uD7eMaNO7AVFQ4e6TSeUaNp+81vsHUdTBOtuJi866/7yM0s00QNh+n9z4tYsRi2YeAePWqPDqmGw/hnzCCzfXu2s7HDgdHWhv/kk/EffTSew6cgadq+qJ3wOeceMQJJVkhv3YKkqjirqnANG3agizWI4vPhPeww9LY2Ou64E6OlBQDZ68E7bRpWOo2i7rqZqRYUYCWTdNxxJ0oohORyEX35ZXIuvBD3xAnYqSTRWa+iFhQQOu9cuh56CM+kSTh2EWQlCJ8lSdPwjBuH5HBi9PQQefIJlECQgptupOfxJ3CPHk3kmWfwTj0cbR8Hg6hFxXT89rfoTc3YmQyS00nBd79DetUq3PX1+/RYhwKjrY3QuefQec+9oCggSXinTsV79NEfuZ1n1CiSkkR60yYkzYGjpgb3qFHE5s3HisdJr1uLmUjiP/pobMPAjEb3U40EYc9lNm3CPXwYnX/4I1YshqSqKDkhSn79673aT3LRYrBtJJeLvuefp+DGG+l56ilic+aSe9ml+E44HqOlBb2jA8nvwzt6FO6hQz+jWgmHMts0sS0TO50isXQpWCay34daXCK+EwmfD5aVnfW8qYnk+yuQNI3ASSdlByAKgrBbjvJyEsuWkdm6jcSSpYTOOIPEosV4Jk8muWoV7uHD92g/kiyjlZbSec89mJFe7EwG2e8n74rLUXPD4rNEOODUgkISmzeTWLwYyeFAzcvHaGzEPXbsgS6acACooRDJ95eT3rARuamJ4MkngbznIU6CIOw9R2kptq6TWrceq68XtbgYV0PDx4acy14vHXfdheRwYGcy5Hz54o9u49s2Wn4+iUULyWzdht7SSuDEE7DF9wLhc2ht22p+vO5W/KaTp859luVdK7j++T8BUF1VRmxIA++//jLjT5mJpmTP8YwpgmQFQRAEQRAEQRAEQRAEQRAEQRAEQRAOdSKE5BBiZTLIgQCpt2fjPXwKVl+UzNatOGprP3I7yeHAM2YMnjFjBr6gqkTffIu8K6/MDtRXFMyebqxk8jOshfBFpOTk4DlsCl0PPoCxYzb6D3Tefz9FP/kJkstFYv58+p55FkdN9c4ZklUVW9fR29rwzphB/O236bznXnwnn0zVY4+ilZWh+P0HqGbCwUhyOEiuWknuZZdmzyNZxorFMCMR4gsX4qyrQw2FBmxj9PZi9fSQaWpCKyxEGzOG5JrVSE4XssezZ8fVNJw1Nf0/O6ur92W1hEOE7HLhGTcWz7ixB7ooe8Ts7iFw8snIXk/270mSSK5aTfCss3a7jaOslKIf/oC2X/wSMxJBcrvJv/pquh9+mJD7fJLvryB49tmY3V103HU3WnERssu1H2slCDtJioJn9CjU4iK0wgISixbRcdfdqAUFuEaPpu+557B0Y58fVyvIx3/8CUhOB5gWkqrSef8D5H7rm5jRqGjb/DfLIjrrVfJv+DZWMoXsdJJpakIJBj9yM8nhwDN+PJ7x4wcsl90uzFgU1/DhICvE58whdNaXsFOpz7IWgvCJWPEE3Y88QviSS0ACJAk7nUb+mPP/v0luN71PPEHeVVfS+bvf0/H73xM4+SQCp5yC57DDkFUVZ3k5TJ782VRE+MKQFAUJSK1ajXvUKCRVJbVmLYG6+o8dFCYIBwXbRvb7Sb39Ft4ph2HFYqQ3bsQhvuMLwkdy1NbiamjAisUgkyHyz3+Sc/75JN9fjhLOQSspGXQ/bnckp5PgGWcgOZ1g22BD96OPUTphwmdbCUHYE4qMbVl4J03CNgz6XnmZnPPOx06I52pfNLZlIjk0jJ4efNOmobe2ore2olZWHuiiCcIhz1lVhbOqao/XlyQZo62N/G9fj5VKI7ucxBe8+/EbKjJWIolv2jQyTU0YnZ1o4nuB8DnTHG3mG/+5FEybO6bcSpG/hCJ/CdOLWnilEd5te5UZE6tY/cKjdM17Cufo0wHIGCKERBAEQRAEQRAEQRAEQRAEQRAEQRAE4VAnQkgOIbauYyVTuIcPQ/EHUEIhMtu2IamfbBCHnUziP3IGHXfdhRVPAOCdNhXv1Gn7stjCF5ze3k7LLd/HUVVFcslSAOLvvkvowgvABs+Uw+i893cETj6Jnkcfw9nQgG2YAERfe42c886j529/o/fpp/HOmEHRz3+Go7wcZ20tal7egayacJCy02lcw4bR+bvfY3Z1AeAaPpzQ+efTfPP38B19NAU3fHvgAG/TJLNuPUZ3N866IdiGiXvECJBAUsVHqfDFpfh89P7rX6TXrgVAzc8n98orsDMZ2MXsw1YqRWzePHr+8TS5l12Gbds4G+pp/9WvMTo6sPqiYFn0PPJIdgNJouB739vjgUiC8Flx5OejV1VjxuM4KioxujrpuOceCm+8ETLpfX48rbAQZ30dzd//Aeg6AIHTTyf+1lt4JkzIfgYJ/TLNzbgaGui4487sAk2j8OabUPYwKOy/WckkSm4uGAaYFp5Jk0i+/z5OMXO1cJAx43Fib79FzgUX0nHPPf1BjTlf/Qpaaele7UsrKQZJoufvjxP++tdBknCPHIljyBBk0d4V9iHbNLNBJG43amFBdvZo0/jICaYF4WBiGwa2ruOqr995/3XrVviE918F4YtCkiQcdXVktm7DTqUInXUWkWefJXzRRWQ2biQRDOI/5hgkWf7YfSmBAGZflMgTD+5YoJB//XUY7R2fcS0E4eNJmgaWjZKXC4aJ9/Cp6G1tOBsaDnTRhP3NtjGjUdwjRiI5HDjrhpBpbhbBe4JwELItE2d9PR133pVdIEnkXXEFtm3vfhvA7O3DPXIEKCquhnr0llYk8eVWOIiZhkE80o2iarh8fha2vsuNr32HhJngRu/FTBx9dP+6I0OH8QobOeGFqyi30tSVAa98k8SccuDX6KYIIREEQRAEQRAEQRAEQRAEQRAEQRAEQTjUiZEkhxLTxOyNoBYUYMUTSIqCmpeHpHzCX7MsE339dXIu+Uq286+ikF67Jju7oCDsI6mVq4jPnYvk8RCYOZPY66/jHNqAq76enn/8AzuVJLNhA+wIHkmvW0fwjJnEXnuN9Lp1qAX55H/7eiS3G0dVNe6RI1Bzcw9wrYSDmezzoTe3EDzjDGS3C2QZvakZo6Mdo7OTyN/+RvD00/GMG9u/jRoOo5YUYyUTSLKCbesooRwkVcXo7kYrKDhwFRKEA8hKp3CPGoX/hOPBsrCSSdKbNiE5HLtcP71hI6nl75NesYL0ihUA+I87DkdFBUZbG91//SvhSy5BOfssFJ8P17BhuIYN259VEoTdstIpzEgvssuJkhMm/5qrMZMJLMP4TI6nFpeQd8Xl2LqB7HQSX7AAK5kktXKVCCH5EDORQDIt9NZW8q+7DiuTQdJU9I5OZJ/vE+7URN/eiKO8DCuTQA2HkdxuFLd73xZeED6l9MaNKIEgvc8+S/4112BlMshOJ7LfhxoM7t3OLIvg6achORzZ647bRWrrFlyjR302hRe+uCQJ27JwVjAUQlkAAQAASURBVFdl7y/Z4CjKhuAIwueBpKpY8ThqURFWIomkyGiFRYgzWBA+nnvIEIzGRlIrV2LrBqGzvkTXo4+Sc+65pFevRg3n4hk/7mP3I/v9GL2RD7X/NSJP/YOCW27ZD7UQhI9hWUhuF5KsYFkZ1Nwwme2Noq3zBWVFoyihEFYigSQ7UP0BEVAgCAchSVFJLFpE/vXXY6XTyA4HfW+8gfeYoz96w3Qa2e/L/o0rDiSvF6SPD1QThP0tFYsx/5+Ps/y1l9FTSSxs3quPsLy2j0Bc5Trn2Vx44U07N+hroXvR0/ipo9fl4L5AmFy9gYZ1PZxQ5oUu0Jc9DYdfA45PFgQuCIIgCIIgCIIgCIIgCIIgCIIgCIIgHPxECMkhxDbNbMfGviiJJYtxlFfgqK8H+ZN1aLPTafzHHEPXQ3/CaGsDRSHnwguQxCzIwj5kxqLkf+cG9MZGtMICgmeeiez10vK//4f/qKNIrlgJgJVOo4RCmJEIvc88Q8H3biY+Zy4oCq5Ro/BMmIDsch3g2gifB5IsEzrrSzTddDPpldnzy3/ccei2BboOgNkbGbSds74BKx4nNncuajiMe/w4Ym+/jXvc4MERelcXifnz6XvxRVxDh+I/8URcdXWfab0E4UCQVA2jq4vIP/4BgGv4cAIzT8fOZEDTBq2f2baV1PLleA4/nMS8eQBEX32V8De+gXfqVGJvvYXs8+I/9lic1dX7tS6C8LFUFTU3TPK9ZRidnXgPm4yl6/AZhZC46uuIvvwyPY8+CpaFWlxM7te+RvS1V8k579zP5JifR3Yyid7SjOL303H33QA4GxrIu/aaPZpFfZcMA62oCL2lhfS69bhGjkArLUNyOvdhyQXh07MiEcxID1p5ef/57xo5ksIf/XCv92XbNkpODsklSzB6IninTEHWNOxP+nckCLthGwZ2JoPs9Wa/02PjnToV2xIz6AqfEzvOVTuZIrFwIWpBAe7Ro7AtEdosCHvCOXQomU2biC14CyUQIHzxxXT/9a+EzjyD+LvvYtsWjvLyjwz8lVQV7+TJdN77O8zubtA0cr/6VcxIz36siSDshiQhO5wYnR2kVq3G2dCAVlaKLcL9v5Akrw+zp4fksuU4ampwVFSAOBUE4aBjWxb+446l874/YCeTyF4veVddCR/TxpdcLsxIhOR7y3BUV+OoqhSTuQgHnc7tW3n2Nz+nt72NoUccSWnDcO7veZLlyW0cLo/kuzNuoGHU5J0bbHkHnvo6XbELyfW5KLx6CX3zf8pzjW/hHC2zvvh4pA02mba18PhFcOHjoIk+GoIgCIIgCIIgCIIgCIIgCIIgCIIgCIcikSZxCLHTGZRwDvG5c5EcToyuTlzacCR18CDgPaEWFhJ7ezb+Y49FCQZBloi+8Sahc8SgR2HfcZSW0v7/foHkduM/7lh6/voouVdcAYZBat06PBMnkNmwgciTT5J/3bVEnv4n6bVrib7+OsU//jGO6upPPsBU+MJy1tRQ8cD9pDdsJLViBbG33yb66qsASG53tjPwf7HSKWS/H7WggMymTViJOL4jjxrUadi2LCJPPEHn3fcAEHv1NSJPPknlY4/hKC//rKsmCPuVmp+Pnf7/7N13eCTXfeb793TO3cgZA0zOgTPMHGZSJCVSFJXjWtHZa+/KQfY+uw577653vdf2ykG2JEu2lWVbVhYpijmKQw4n55yQgQbQOdT9A0PMgI3hBAJd3cD38zz9kH2mw9uNU9VVp+r8KqP6X/tVybKUPXZckuQMBqd9vCMQUOL559XwG78h43Qq8eyzcre2yr9urcK33666T36CYmeoeMXxcRmnQ+k9exS45lqpUJiV93GGwwpcc7Wc4ZBUtFQYGVHfn/+5Wv7oj2bl/aqVs6ZGJhBUYXz83LroxEk5Q6Erfs1iviBHOKTMc8/JeL3KDwzIu2gR6ydUHHdHh+Lf/4ECGzdO9v/C6Ni027IXZVkqJpLKj8RlXE5lT5yQf81qmVlax2H+Mk6nZIxyp06pmM3KOBzK9/fLE43ZHQ24NE6nHMGAUvv3y7jdEwUQChTRAS6Vp7lZ/k1XK3vmjFJbXlbm4EHVfeQjGvzKVxS99x5ldu1Ses9e1bz3PXJMU9xUkly1tcr3DyjytrfJEQjIGKPRhx9W83/7r2X+NMA0HA45oxGltm6V8XqVPXFC3kWLROWJ+cdIcsWiGt+5U8brVe7MGfmWXfmFIwDMHndzk3q+/wPVfvhDksMp5fOKf/8HirztbRd+UqEoZyyq9K5d5y3jyyTDMo7KcfClF/Sjv/o/cnu9eu8f/analq3Q1/d+XU+d3qJPrf2Ufn3Dr597sGVJz/6l9LM/lmoXaih4q+qMTw3BRv3VHX+lV3tf1e9/41f0DwPfksOxQdml90mHPy5984PS+74muSjgDQAAAAAAAAAAAABzDTP355BiIT9xNU6nU/516+RsaFQhmZJlXdmJ8M5QSE2/97vKHD+ugb/9W43823fU8Jv/Ud4li2c4OeazXE+PCiMjCt28WaM//okkyeHxTPzb8eNyt7TIu2KFiuPj6v3ff6bIA/er+3vfVcff/u3EZFAKkOAKuWprFbzmagVvuF5WLidJcnd3TfSthQtLn2CM8v39cvj9Ct1yi+T1SU6nXn8Cee70aQ3+/eentOX7+pXZt2+2Pgpgm8DGqxS65RYNfenLGvj7z8tZX6/IPfdc+AkOh+p/6Zc08Dd/o2I6rfpf+zU1fub35GxqknE6meCPylYoqDA2Jldzs/zrN8iyJON0yJrFCfqB9esl49Dgl76kke98R3Wf/KSCN904a+9XjYzDoZr3vkfu9nYN/O3nNPzVryl4zTXyrV175S9aLCh38pQ8XV3yr1snq2hJLhdTxlBxvN3d6vjc3yp38qQG/uqvlXjuecUeeodctbWX/VrG4VS+p0e+xYvlX7NGhdFRGZdbhbGxWUiO+cwqFGTcbuX6+uRfvUq+5cuU6+2TcbJvj+pg5XIybo+K6bT869bKs2CBcv39YnI5cOn8q1cpdNNmhW6/Xb61azXwd59TzXveo/iPf6J8f7+Kw0PKnThxwecbh0Oxdz6kYmJcg5//vIa//nXVfeLj8q1ZU8ZPAUzPGIesbE6OcGjiOF1NjYrplCwKVs07lmXJKhZlvB75162Tq6FBhfFxWRbbDECl8bS3q+WP/0hjTzypwc99TuMvvKCWP/ljuZuaLvgcq1iY2AVwuyaW8aYm5UdHZ3WsGLhUxUJBz337q/run/131bW160P/4y/UtmyFjo8e15+//Oe6se1G/dr6Xzv3hOSQ9I0PSo/+N2nF/dInH1N/xqm6oGfyIeub1uu3az+uRadCKiijU/466f6/lA4+Kv3rJ6QifR8AAAAAAAAAAAAA5hpmes4hxpIKo6PydS+UjJG7qUlWPieH98qvOuJdvFjt//cvJybeB4Ny19fPYGJAE1fVkVQcH5czElFhYECpbdsUvvsujT3yUw38zd8q8ra3qf5XflnullZ5urvkDAZtDo25xLd8uTr+7nPKDwzKGQlfcNKm0+dTcXRM7uYmqWjJ094mFfJyhEJTH2hZEwWh9PpmTi7G3OOMRlX7Hz6i8F13yioU5G5peeNCIg6nCsmE6j7xCVmWpWIioezRYwq2tpYvNHClrIntFXdDgyzLkrdrgYqZrIzPN2tv6aqvV/2v/LKiD759Yvu+pYUCbNPwtLer+b/9V9V/6pMyHo/czc1v7gUtKT8yIm/XAqlQlLuxQTJGDr9/ZgIDMyh4zTVa8NWvqjA6KlddrZzh8JW9kMetYj4nT3OTVCjK1dggyZLhCr6YaQ6HjHHIGY7IEQhIkkw8LuNw2hwMuDTG5ZKKBXnaWmUcTrkaGyYK6dCHgUtmHA75N21UIT4iFQqKvetdGv7nf1LsXe9W/Ac/UOTeeyfHjC/E096u5j/8Q9X/4i/OzD4AMFOcDlmZjDzt7ZIx8rS1KR8flc/F78R8Y9xuWemMPO0dk2M6hfFx9rGAChXYsEEL/ukfVRiJy1VbI2ck8oaPd7g9KmbPW9+3tKgwGpccLON2yZ48pcRzzyq1fbvyvX0qJhJyhIJyNzXLt3KFfKtXy7d8uYzbfVmvaxWLyh4+rNT2HcoePzbx2uNjksMpZywmd3ub/GvWyL927eQ4h12KhYIOb92i5775z+o/flSrbrlDd37iV+XyeFQoFvRfnv0vchmX/vD6P5z4PSoWpFe/NlF8JB2X7vmf0rW/JBmjnnha1y+sm/L6a265Q9f93r9qe3dRL5zeosK7fkvObEJ6+DPS9/+j9MBnJX7nAAAAAAAAAAAAAGDOoAjJHOLuaFfhicflrq1VMZ2Rw+eVVbTk6e5+U6/rDATkXLBghlICU/mWL5cjEtHYY4+r4dd+VX3/+880/uSTCt12mxo+/Wm5GurlXbxYviVLZDyei78gcAWcoZCcry8m8jqeBV0yXo+M06ViIStXrEYmHJHndcUT3K2tqv3YRzX4ub879/o1NfItXTor2YFK4L7EIiKe9nYlipaMxyMrk5EzGpGKRXm6umY3IDAD3K2tsvKFc/03FpNxOuVdtGhW39c4HBMns+MNOdxueTo7Z+S13E2NcsaiknFIxpIzViNXTY3cNTUz8vrATHPV1shV++b6p7up6WwxvomJAu76ehmPRx7GAjDDHC6XXI0Ncp1X5NZVXy9nY4ONqYBL5+3uVvLlV+SqrZOVy0nGIYfXO1GwFMAlcwWDClx9tYpjY8r3D6jmAx/Q6E8eVmjzTbIcDrk7Oi76GjO5DwDMFO+CBUo8/YwcweDZ43Q+WePj8l5Cn8bc4u7qUvGZZ+UMhyb6gterYjp9Ses3APZwxWJyxWKX9FhPd5cSzz0rZySiYjpz9hi2YRy3zKxCQWMPP6yhr3xVqVdekaSJwiAdHXIEAioMDim9bbtGvv1tSZLx++Vft06Bq65SYNNG+VaulCManSwQZeVyyvX2Kr17t9I7dii1Y6fSO3aomEhMvKHTOTGGEYnIKhZVGBxUYWRk4t9cLgWuukrhe96iyF13ydXw5sc5LMtSsWCpkCuqUCjK6XLI5XHK4TAqFgrqOXRAPYcOaPDEMQ2cPK7BE8eUSSYUrmvQ/f/pM1pyzQ2Tn+2LO7+orX1b9f/e9P+qOZuRtn1W+vnnpZFjUuf10n1/JjWvliQlMnmNpvNqiU0tyl3f2aWOrmXyFQoaTiX17f3f1vuu/xUpNSw99b8kf0y6608oRAIAAAAAAAAAAAAAcwRFSOYQb0eHYu94SOlXtyo/dETujnb5N1wl10Wu1APYybtokTq//CXFv/MdpQ8dVttn/6+yR47IWVurwMaN8r7JIjrATHE3N6n2wx9W6pWtyp06Jd/aNfKvW1fyOON0qvaDH5Sns1Pxf/93+VatVvTBtzOBE5Dk7Vqg6DseVGrrVuWPDcnTtUD+9evltPnqcMCl8C1ZrNg7HlTylVdUHB6Wd+FC+a/aIIeLXaq5xr9hgyzLUnLLFlmplPxXXSX/po12xwJmlX/lSlm5nJJbtqgwMCDfunXyr18v4+SK7Zh5/o0bJWOUfGmLjMup4A03KriR9Syqg3E4FLp5s1Jbtyq1bbvcTY0K3rxZvhUr7I4GVB1PS4vCt9+uxM9/rsz+A4o+9A65GpsUWL9ODopRo0q56uoUue9epbZtU37/frmbmxS6/Xa5W1rsjoYyc4fDir7lbqVe3ab03j1yNTYodustFKQB5ghnIKDw3XcrtfVVpXfvkquuTtFbbpaXgutlUcxkFP/Ov2vwH/5BuePH5enqUsNv/ZbCd90lT3fXZOENaaKQR+7UaaV3bFfyla1KvrxFA5/7nFQsSpIcgYBMICAViyoMD0uWNfFEt1u+pUsVffsD8q1ZK/+6tfIsWFAyVlYYHVXq1VeVfGmLxn72M/X+8Z+o90/+uwKbNil87z2K3H33lEKsk7mKlpJjWY0NpTU+lNH4cFrjwxklRs7e4hklRrIq5Islz3W6pGJhVPnskKzimFyutEK1zVqwfqmWbFqlJddeLedrxy0sSz979Qs6+tyf6nOeJt3wk/9H6t8z8W+dN0h3/3dpxf0qWtJYf0ojfUntODQkSerd0q/vbh2VVbTkdDnkDbhU0/4OBQ+elrvYoL/a+le6t/teRW/7/YlCJM99VnJ6pdv/C4VIAAAAAAAAAAAAAGAOMNZrB9HnmE2bNllbtmyxO4ZtLMuacnIFZs2Mf8nzue/Sb8tqVr7o+dx/p0OfnjWse+eAebp80HfnCPrvzKiG/jtP/9Zzzbzsu28G/b6i0H9RreZF32V9OSfNi75bqVim3jT6b4WhT1+yOd936Qtz2pzvv7i4Kl3GZyPwrJ94VBgZ0fA3v6Whr/yzCv0D8q1Zo7pPfVLhO+6QcTgu/XXGx5XaulWZg4eUO3NaVjojGSNXfb1cTY3yLVsm7/Llcni9KuSLSoxkzhYLSWtsKKP0eE6ZdF65VF65bOHcC1uWPEMnFTr4gkKHnpc/cVKW0yjVuEzxrpsUb16nhDOmTCKnVCKnYn7qV+byOBSMeRWKeRWMeRWMeuUJuORyO2QcUs+Bgzq6Y6fS4xn5Qk0KRNuVzbiUHs8r40xpX8OLOlX3vNqcx7Uum9H6TEGrMklFi3lJUtHpV7p2g8Zqb9ZQ6CYNJJsUH0hptD+l+EBqMs8+d0HfC2b1K56oFgZ9MgVL+UxemVReifGcvu7PKO3MKL3yv+q63J36le7fVPuymOpe+QOZrf8krfuA9Nb/I3lm5QIEVbewAQAAAAAAAAAAAEC14rLdc1QVnugC0G8x59CngQtj+UA1o//OH/ytMR/R7wHg0rC+BGYWyxTmGvo0XkNfAOY2lvHZZVmW0jt3Kf6d72jkO9+RlUopeMMNqvvf/1uBa6+9ou/fGQoptHmzQps3S5Ly2YLiAynF+1KK96cU35VS/PHdivenND6U1uuv6+T2OuXxu+Txu+T2OORQTjXWftUW96rWsUc1Sw4ouLhXDuXPPqNHxcKTyiecSicCSljtSnoXK9eyQa7mhQq01Mof9sjtkpQvqJgaUDGZVDGZVK4vrv59e9S7d480OqqVPr8auhcq1pJUIbxfI8EBDeT2Kze2X+/IprRgMC+HpKKkU46Ifu5sVW9hqczQvYrnFsg65TybKSe394x89T4dClnKNQTl9TnlMtLhnri8Y0bvr/PL9KWkwtkvwCFZYZceL4zpYCGrtT3r9Hzzo6r96WJ1/Mty+ULv1i0tLi3e9g8qHN8ix9v/Qqbrxiv4qwMAAAAAAAAAAAAAKgFFSAAAAAAAAAAAAAAAAADYxrIs5Xt7ldq+XcmXtijx1FPKHjsmud2KvvWtqv3oL8i3bNnFXyNbVCaZUyaZP3vLKTmaVSKeVWIko0Q8c/a/WaVGs1Oe7w26FG0IqHlhVNFrmxWp9ylU41O41qdQxCFX4oTUt1s68XPpxIvS6VelYm7iydEOqXWjVLtQCrdITpesQk7FY7tlHd8l/+ghhR17ZMweKfd9FQ4aZV52KzPmUirlUCHjlFU4l8XhttTkKaquxVJuueQKFhRybVMkV5SGpLahicf1F50qDHk0ONikTKZdOWupTKRTi2Mt6oo2q9gRk+VyyOlxnC2g4lbBYek/7j+tlwfSUz6/W9InPAH5Qh65l9TI3RKSu8Ev43PJGKn7h7u1e+9prdo+qDPRkB5f9mV96ugnVD+8RE8eeUC7HB26o/BXCn35Pg35Nim97H3yrr5Tkc5Oub1OAQAAAAAAAAAAAACqA0VIAAAAAAAAAAAAAAAAAMyY0R//WNmTJ6VCQaf3DUnFvFQonLvls1JiTCYxKjMel2OoRyY7URTDcnuUX7BSmQfvV3blDRrwBbV/S1H553crny2qkCsonysqny0qnytMKTxSLFgXzOQPuxWMeRWMedXVPKBW6wX5Aw75A5LXZ+RyFqRCfqKwSD4jHR+U9g5K432yho9L1kTBEcu4VQivVqHlQ8qH16kQWC3LXS/LsqSMpLQlq2DJyhZk5W+VVV9Q3NWvE72vKJA/pkjuiEKOPgWDg/LUjyhqcnKY0rx5SaMOh1JOh064XIo7a5V3Ncnt7lTI0aWmbLfCI3nlrVNK5k6pMHBK+YEnpOJ51Uycbjn8EVn+sLLeiH7SsEzfrV+sPYFafXp4n+50jMkd8ckV9MoXccvpd0v5A8qfMiqccchaulShzZslScsX1eqbu3u04cGPKfuTL+qRTb36i0WfVWe6XgsSjVrRu1DPjfypWn1PaUHhx6rd9mlpmxTPNylhNSlt6lVwRJRxtaqn+QNyhz1yuhxyuh1yuhxyOIzW3t4uj4/T2QAAAAAAAAAAAADATsayLnzwvZoZY/olHbM7x1n1kgbsDjEL+FzSgGVZ98zkm19B351Lfwc+S/nMeN+VbF/3Vtp3Xkl5KimL9ObzVMK6V5p73+tsINNUldJ3Z1Ml/s3fLD7ThErrv5X4dyHTpSl3pkrru9OpxL/TbJkvn3WmPmc19N83q5r7RDVnl2Y3/3zou6+p9n5wKebTZ7Sz71bK90yOysogXXqO+bDurZS/yeWotsx25J0PfVeqzL5Apkt3oVzl6r+V+r1cqbn2eaTq+0yz0Xd/oonvYSZU2/d5MXyemTMr5zgAAAAAAAAAAAAAAErN2SIklcQYs8WyrE1255hpfK7KUG153wifBW9GpX3nlZSnkrJIlZfnSlXa56i0PBKZ5qO5+P3ymSpTJX4GMl2aSsxkt/n0ncyXzzpfPudMqObvqpqzS9Wfv1LMh++Rzzh/MpCj8jJUUo5KUI3fRbVlrra81aQSv1syXTq7c9n9/jNtrn0eaW5+JjvNte+TzwMAAAAAAAAAAAAAqEYOuwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsBdFSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB5bk4XITHG/IMxps8Ys/MSHnuzMeYVY0zeGPOu89oXGGNeNsa8aozZZYz5pSuI8vdX8JxqwOeqDNWW943wWfBmVNp3Xkl5KimLVHl5rlSlfY5KyyORaT6ai98vn6kyVeJnINOlqcRMdptP38l8+azz5XPOhGr+rqo5u1T9+SvFfPge+YzlUQkZJHKcrxIySJWToxJU43dRbZmrLW81qcTvlkyXzu5cdr//TJtrn0eam5/JTnPt++TzAAAAAAAAAAAAAACqjrEsy+4Ms8YYc7OkcUn/ZFnW6os8tktSRNKnJX3Psqx/Odvu0cT3lDHGhCTtlHSDZVmnZzU8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUCYOuwPMJsuynpI0dH6bMWaRMeYnxpiXjTFPG2OWn33sUcuytksqvu41spZlZc7e9WqOf2cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYf+ZjQY2/l/TrlmVtlPRpSX9zsScYYzqMMdslnZD0p5ZlnZ7ljAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDZuOwOUE7GmJCkGyR92xjzWrP3Ys+zLOuEpLXGmFZJ/26M+RfLsnpnLykAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQPvOqCIkkh6QRy7LWX8mTLcs6bYzZJWmzpH+ZyWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAXRx2Bygny7JGJR0xxrxbksyEdW/0HGNMuzHGf/b/ayTdKGnfrIcFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAymROFyExxnxd0vOSlhljThpjPi7pg5I+bozZJmmXpLeffezVxpiTkt4t6e+MMbvOvswKSS+effyTkv7Msqwd5f4sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGwxlmXZnQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAjRx2BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgL4qQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPPcnC1Ccs8991iSuHGb7duMo+9yK9NtVtB/uZXpNuPou9zKdJtx9F1uZbzNOPovtzLdZhx9l1sZbzOO/sutTLcZR9/lVqbbjKPvcivjbcbRf7mV6Tbj6LvcynibcfRfbmW6zTj6Lrcy3WaD3Z+J2/y5AQAAAAAAAAAAAFVlzhYhGRgYsDsCcEXou6hm9F9UK/ouqhV9F9WM/otqRd9FNaP/olrRd1Gt6LuoZvRfVCv6LqoZ/RfVir4LAAAAAAAAAAAAAMDcMmeLkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4NBQhAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOY5l90BUB65bEHxvqRkSZHGgDxep92RANtYRUvx/qQyqYLCtV4FIl67I2EGZdN5xftTcjiMoo1+udys74DZkBzNaGwoI6/fpWijX8YYuyMBFzQ6mFJqLKdAxKNwrc/uOJhj8vmC4n0pFfJFRev98gbcdkcCyqqQLyrel1I+X1Ck3i8fywAuA/tvmGssy1K8P6VMMq9QjVfBKGNOqA7n9vGdijYG2McHrsBr2zXGSNEGv9xeDsFiqkwqp9H+tBxOtn2BSsQYMioFYyUAAAAAAAAAAAAAgErAGXDzwNhwWj//3mHtfb5HkrRoY4NueGiJInWcPIP5J5ctaP+LPXrmWweUzxUVbfTrLZ9YpYbOiN3RMAPi/Uk9/a0DOrZjUDLSqs2tuvq+bgVjTPoBZlLfsVH95PM7NTaQlsvj0M3vW6olVzdxIiQqjmVZOrZzUI9+abcyybz8Ybfu+tgqdayotTsa5ojkWEZbHz6hbT87LsuS2pbGdOsHlyvWFLA7GlAW6URO2x8/qZd/dFTFoqXG7rDu+MhK1bYE7Y6GKhDvT+mZb+/X0e1n999uatXVb2X/DdUrnyvo4JY+Pfn1fcpniwrX+fSWT65WUxdjTqhsfcdG9fAXdmq0f2Iff/N7l2rJNU1ys48PXLLRgZSe/deDOry1XzLS8uubde39CxWq4TgcJoz0JfXU1/fpxJ5hGSOtua1dG+9ZQJF8oAJMjiF/ebcyCcaQYa94f1JPf/OAju3kWDcAAAAAAAAAAAAAwF4OuwNg9p3YPTRZgESSDr3cryPb+m1MBNhn8NS4nvjqPuVzRUlSvC+lJ766T5lkzuZkmAkHtvRNFCCRJEva9dRpndo/bG8oYI5JJ7L62T/t0dhAWpKUzxb12D/t1dDphM3JgFIjvUk9/Pc7lUnmJUmpsdzE5LrBlM3JMFf0HBrVq49OFCCRpFP7R7Tr6VOyipa9wYAy6Ts6qpd+cETFs32+78iYtj5yTIV80eZkqAYHtvROFCCRJvbfnj6tk+y/oYoNnU7oZ/+4R/nsxDpwbDCtx/5pj1LjWZuTAReWTub0+Ff2arT/3D7+4/+8V0On2McHLsfhV/snCpBIkiXtfa5HJ/ewXYMJlmVp7/NndOJsn7AsaftjJ3X6YNzmZAAkaaQvpYc/v1OZxHljyJ/fqdEBxpBRfvtf6p0oQCJxrBsAAAAAAAAAAAAAYCuKkMwDR7cPlLQderlPlsXEOMw/050w1ndsTMlRJoRUu1y2oEOv9JW0n9zLiVnATErGc9NORopzQi4q0PhwZrLw2GsyibzGhzM2JcJc03ukdMLQ4VcHJgvfAHPddEXIjm4fVHqcIo94Y/ncBfbf9gzZkAaYGWOD6ZK2odMJJeOMOaFyJeNZDZwYL2ln0i1w6YqF4rTbNUd2lh6bw/yUTed1+NXSi0OcOTBS/jAASowPpScLCb4mk2QMGeWXyxZ0+JXS34uT+zjWPRd86Asv6kNfeNHuGAAAAAAAAAAAAABwyShCMg+0LomVtLWvqJExpvxhAJsFo96StkiDX96g24Y0mEkut0NtS2tK2hu7IjakAeYub9ClUE3punS69Stgt0DEI+OYus3rcjvkD3tsSoS5prYtVNLWsjgqt89pQxqg/CINvpK2pu6IPAGXDWlQTZyu6fffmrqjNqQBZkYgUrqNGYx55WPMCRXMF3QpXFf6e84+PnDpHE6H2paVbte0Lo6VPwwqktvrmrY/NHSEyx8GQIlAxCPH68aQnW6H/GG241FeLrdDrUtjJe1NHOueE545OKBnDlKkDgAAAAAAAAAAAED1oAjJPNC1pl71Hecmx9U0B7RkU5ONiQD71LWFtP7Ojsn7Lo9Dt31omQJMRq56xhitvLFFkfMmTjQvjKhjRa2NqYC5Jxj16vYPL5fTfW4z8qq3dKp+mon4gN1iTQHd/L4leq32nnEY3fqhZYo1+O0NhjmjdXFM7SvOTTYLxDxaf2eHnC52tTE/NHVFtXBDw+R9X8ita+7vlttDIR68scn9t/rz9t+62X9DdatrC2njPQsm7zvdDt3+keUKxijmgMoViHh124eWy3XePv76uzpU1x60MRVQfZZd06xoU2DyfkNnWAtW19mYCJXE4TBac2u7QrXntglal8bUuixmXygAk2JNAW1+39KpY8gfXKZYY+CNnwjMMGOMVt7UWnKsu52xEgAAAAAAAAAAAACADbg07TwQawro/l9fp6EzSVlFSzUtAYVipVc3BOYDX9Ctq9/WrUUbG5VJ5BWp96mmmZPq54ra1pAe/PRVGulJyuEwqmkJKBBhsg8w09pX1Oq9f3C1RvtT8oXdqmkJyuNlsxKVx+lyaPn1LWrqjio5klGwxqealoDM665sCVypcK1Pd398lYbPJJTPFVXTFJz2SvLAXBWMTUxcXndHh/KZgqJNAUXrKfSES1PbGtI7/vNVGmb/DXOEx+/SxnsXqHt9g9JjWUUa/Io1MXERla99eY3e8wdXa3QgJW/QrdpW9vGBy1XTEtSDv7Vew2eSMg6j2uaAAlG2a3BOXVtID316o0Z6EnK4HKppCVIcH6gQE2PIzWrqjjCGDNvVnX+s22lU0xxUIMLvBQAAAAAAAAAAAACg/DiTdJ4IRLxM5ADO8vhcau6O2h0DsyRc41O4hsm/wGwyZuLER4o4oRq43E41dISljrDdUTBH+UMe+ZdwIjjmL1/QrdbFMbtjoEqFanwKsf+GOcTtdampK2J3DOCysI8PzIxQzMcFAPCGwrU+hWvpI0AlYgwZlYRj3QAAAAAAAAAAAACASuCwOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAe1GEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJjnKEICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzHMuuwNcKmPMUUljkgqS8pZlbbI3EQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA3VE0RkrNusyxrwO4Q1SifKyjen5JVtBSt98vtq7Y/PTA7MqmcRgfScjodijb65XQ57I6ENymbzmt0ICXjMIo2+OVyO+2OBMxJuUxB8f6kjDm7rHlY1lB5Cvmi4v0pFfJFRep98vrddkfCHFbIFxXvS6pQsBRt8MvDPhfmkXh/SplkTsGYV8Go1+44qCKsOzHX5PMFxfsYg0X1GR1MKT2eUyDiUajGZ3ccoCqNDaaVHMsqEPUozHKEaeSyE+Opkia2E7xsJwCVhPU4KhH9EgAAAAAAAAAAAABgF85umgcS8Yxe+ckx7XjipCxL6lpbr5vevVjRhoDd0QBbjfQm9eTX9unkvmE5HEbr7+7Q+js65Q977I6GKxQfSOnZbx/QkW0DMkZafXObNt7XxURIYIaNDqb0/HcO6eCWPslIK25o0TVv62aiEipKajyrVx89oVcfOa5i0VL7shrd/IGlqmkK2h0Nc1ByNKutjxzXtsdOyCpa6lhVq5vfu1SxRva5MLcVCkUdebVfj//zXmXTBYVrfbr7E6vUvDBqdzRUgeRoVq88ckzbHzspq2ipc1Wdbn7vEkVZd6JKJeIZvfLwMe14nDFYVA/LsnRs56Ae/fJuZRJ5BSIe3fWJVWpfWmN3NKBqWJal47uG9OiXd08W87nrYyvVvrzW7mioIGNDab343cPa92KPZKRl1zbr2gcWKlzLeCpgN9bjqEST/fJLu5VO0C8BAAAAAAAAAAAAAOXnsDvAZbAkPWKMedkY8ym7w1ST0wdGtP3sye+SdHT7gPa/1GtvKMBmVtHSjqdO6uS+YUlSsWjplZ8cV++RUZuT4c04+FKvjmwbkCRZlrTjyVM6tX/Y5lTA3HNk28BEARJJsqQ9z57RiT1D9oYCXqfn8Khe+ckxFYsTG8En9w1r51OnJu8DM+nMwRG9+uhxWWf714ldQ9r73BlZFv0Nc9vwmaQe+eJuZdMFSRMT6x754i4lRzM2J0M1OHNwRNsePTG57jy+a1B7Xuhh3YmqdfrAyERRnfPHYH/OGCwq20hvUg///U5lEnlJEwWiHv67nRobTNucDKgeI30p/eTvdyg9npM0sRz95O93anQgZXMyVJKjOwYmCpBIkiXte6FHx3cN2hsKgCQpznocFWhy+yJxXr/8/E6NDtIvAQAAAAAAAAAAAADlUU1FSG60LOsqSfdK+lVjzM2vf4Ax5lPGmC3GmC39/f3lT1ihTu0rnYB/6OV+5TIFG9JgOvTd8ksnczry6kBJe+9RipBcrkrpv7lsQQdf6StpP7mHIiSYXqX03WpTLFo6+HLpsnZkByfNlwt999L0HSv9TT+ydUCZsyftwh5ztf+eORQvaTu0tV/ZVN6GNJgNc7Xvvlljg6nJAhLn2tJKjGRtSoTpVGr/PX1wpKTt0Mt9yqZZd2JCpfbdC5l2DPaVPsZg56Fq6rvjQ2nlc8UpbelETuMjFCGZr6qp/1aK8aG08tmpy1Emmdf4MIX5yqnS++6hraWZpmvD/FTp/XeuG2M9fsXou7Nn2u2LRF7jQ/RLAAAAAAAAAAAAAEB5VE0REsuyTp/9b5+k70i6ZprH/L1lWZssy9rU0NBQ7ogVq6EzXNLWuiQml7tq/vxzHn23/Dw+l5q6IyXtNS0BG9JUt0rpvy63Q61LYiXtjV2lf2dAqpy+W20cDqO2pbGS9tZF0fKHmafou5empqn0N71pYURuv9OGNHjNXO2/9e2hkraWRVG5vPS3uWKu9t03KxDxlLR5gy75gm4b0uBCKrX/TrvuXByV28O6ExMqte9eyHRjsC2LGYOdj6qp7/ojHhkztc3ldsgXKv2Nx/xQTf23UgQiHhnH1AXJ6XbIH2abuJwqve9ON57aNs3xDMxPld5/5zp/xM16/ArRd2cP2xcAAAAAAAAAAAAAALtVxRnQxpigMSb82v9LulvSTntTVY/2FbVqPq/YQqjWq1WbW0tOWgDmE6fLoavesmDKiTrtK2rUsihmXyi8KcYYrbypVeE632RbY1dEHStqbEwFzE1Lr2lWtNE/eb+uPaiutfU2JgJKtSyOqf283wB/2K2r3rJALhcTmzHzWpfG1HrehKJAzKO1t3fI6ayKXW7gitW2BnXNAwsn7zucRrd/eMWUbXLgQtqW1qhl8blCdsGYR2tva5eDdSeq1HRjsKtvbmMMFhWtpimom96zVDrbTY3D6NYPLlOswf/GTwQwKdYU0Ob3Ljm3HBnp1g8sU6yRguc4Z/FVjappPtcnalsCWngVE/aBSlDTFGQ9jorD9gUAAAAAAAAAAAAAwG4uuwNcoiZJ3zETl+RzSfqaZVk/sTdS9YjW+3X3p1Zp+HRShXxRseaAapqCdscCbNfQEda7fneThnuT8viccrkdGh1IqVgoKtrACTzVqK41pAf+43oN9yTkcDpU2xxQuI5JE8BMymXyKuSKuuX9y+TyGBXylmqagwpGvXZHA6bwBly65m0Ltfa2rLx+t0I1XkXq+U3A7IjU+XX7R1Zo6PS4HA6jWGNAUU4Ixzzg9rq0/o52LVhdq2wqr3y2qFCtT4V8UU4XhSTwxiL1ft310ZUaOpNUsVhUbVNQ0SbWnahe0Xq/7vzYSg2dTsjhcijWFFCU7U9UOKfboWXXNqm2NahsMqdwvV+1LUGK5wCXwelyaMUNLWrujmhsMC1vwK36jhDLEaaoaQ7qvl9dq5EzSckh1TYHGacCKoTT5dDy65pV3x5SMp5VMOZlPQ7bndu+iCoRzyhU61U+U1Tv0VHFGv3yhTx2RwQAAAAAAAAAAAAAzHFVUYTEsqzDktbZnaNaJeIZ/fx7R7T3+R5JE1cqfssnV6u2hUIkQKTer2DUq30/79GTX9+nYt6Sx+fUPZ9arY6VdXbHw2Ua7k3o0S/tVt/RMUnSwvUNuuk9SxSu5UrswExIjWX10o+OasfjJyVJkQaf7vvFtRQgQcVJxDN64buHtfe5M5Kkmpag7vnkaptTYS4bOpPQI1/YqcFTCUnS0muadP1DixWKsX7E3Of2upTPFPSTv9+pTCIvh8Poxnct1sqbWuXyOO2Ohwo2OpjSk1/fp+M7hyRJLYujuv0jK7iqL6rW0JmEHv78Tg2dntgeWH59s657cBH7S6hoqfGstvzoqLY/NrGfH6736b5fWqP69rDNyYDqMtKX0sOf36V4f0qStPqWNl39ti4FwvwGYEK8P6nH/3GPTh+MS5I6V9XqlvcvoxAJUAGKRUtHdwzqZ/+4R4VcUW6vU3d+bKUWrmuwOxrmOZfbqYbOsLyDLj39jf06umNQktS8KKo7/gPjJwAAAAAAAAAAAACA2cVlaeeBnkPxyQIkkjR0OqHtj51QsVC0MRVQOYZ7E3riK3tVzFuSpGy6oJ9+abfGhtI2J8Pl2vdi72QBEkk6/Gq/Tu0dtjERMLf0HhudLEAiSaP9ab30oyPK5wo2pgJK9RyKTxYgkaThMwlte+yECmz/YhYUi5Z2PnVqsgCJJO3/ea96Do7YFwooo+RoRo9+eY8yibykiWXi6W8d0ODpcZuTodId3zU0WYBEks4cjOvgy302JgKuXLFQ1PbHTkwWIJGkvc/3qOdQ3MZUwMX1HR2bLEAiSWMDab34vcPKZ9nPBy5VPlfQyz86OlmARJJ2PnlKfUfG3uBZmG8OvtI3WYBEmtgWPrZr0MZEAF4z0pvUo1/erUJuYuw4lyno0X/YrXhf0uZkwIQTu4cmC5BIE8c/DmzptTERAAAAAAAAAAAAAGA+oAjJPNB/vPREx+O7h5RJ5W1IA1SesaGMLGtqW2osp+Ro1p5AuCK5bEHHdgyUtJ9mAjAwY0Z6Sk+6Pbl3WOlEzoY0wIX1nyyd+H5iz5CybP9iFmTTeR2fZuJQ77FRG9IA5Zccy2lssLSA4/hQxoY0qCYn9gyVtB3bMaBi0Zrm0UBly6TyOr67tE/3n2ACOirb+UUTXnNq/4jSSfbzgUuVSeR1cppC2MO9TF7HBKto6ej20nGDE9NsOwAov8RIZvJCFa/JZQpKxDlOjMow/fjJIEXXAQAAAAAAAAAAAACziiIk80B9R7ikrWNFrTx+lw1pgMoTrvHKmKlt/rBbgYjHnkC4Ii63QwtW1ZW0tyyO2pAGmJtiTYGStralNfIF3TakAS6svj1U0ta+vIbtX8wKj8+ljhW1Je2NCyI2pAHKzx9yK1znK2kP1ZS2AedrX15T0rZgTb0cDjPNo4HK5vFPvz0w3bgsUEmiDf6SttYlMXkD7OcDl8obdKlteaykfbpxNMxPxmHUtbr02MV02w4Ayi8Y88rhmrof6vY6FYhynBiVoX156e/FgjV1cjo53QsAAAAAAAAAAAAAMHuYhTcPtCyKasPdHXK5nSoWJbfXoe519ZyUAJxV0xzULR9cpqe+vl/FgiW3z6k7P7pS4do3njSXTeU13JtUPltQtDGgUMxbpsSYjjFGy65rVi6blzfgkSxLbp9L7ctKJ7YBuDKNC8JafUubdj55SpIUrvPp6rd1yeV2Tnlcaiyr4d6kjDGqaQrIF2LyEmZPsWhppDepRDyjUNSrWFNALQujWnZdk/a90CtJijUHtP6ODrZ/MSscDqM1t7bp9IERDZ1OqL49pDW3tsnjcyren1S0gYlnmNuCUa/u+A8r9OPP7VAmmZdxGN34zsWKNvk1cHJM6fGcwnU+lgWUWLCqTgvW1ClS55c34JI/7FbHSiZiojo5nQ6tu71dvrBbDmPkcBg53EYtCymMisplFS0Foh7d8oGlSoxktf/nPSoWLV33wEK5Pc6LvwAASZLL7dTV93WrpjkoWRP7iMYpNXVRmBLnLNrYqL4TY6ptDsqypEDUowXTFCYBUH6xpoDe8vFVGjiZULFoyTik5u7ItMXaADt0rqxV56paHd81JGliG2PJpqaLPi+bzmukJ6lcpqBoo5+CwQAAAAAAAAAAAACAy0IRknnAG3QpXOvXM986oGLRktvrVH1HWLUtpVeIB+Yjp9uhFde3qGVhVMmxnMI1XkUb33iCXCKe0QvfPay9z52RNDER/75fWav6NpYrO7k8To0OpHV0+0SBhNrWICfyAjMoEPHqhocWacUNLcpnC4o0+BWKTT1pcaQ3qZ9+abf6jo5KktqW1ej2Dy9XpJ4TdjHzikVLB1/u1WP/uFeFfFFOt0N3/sJKLbqqQTe/b5nW3tqhfL6oWKNfgQjFwjB7altCevtvrld8IK1T+4b1xFf3ybIkj9+l+355jdqWUhQNc1vb0hq9+/ev1vhgWr6QW6Ear3Y9fUov/PthWZbkDbh07y+xLGCqSL1f17ytWz/+3A6ND2ckSas2t+qa+7v53UZVsiQd3tqnkZ6UJGnRVQ1adk2zvaGAC7AsS4df7ddPv7RbhVxRDpfRLe9fpo5VdQpTaBm4bPlcUbueOqXUWE6StP6uTjmcxuZUqCSROp+6Vtfpia/uU7FgyeV2KBTzMmYKVALLUi5T0MsPH1Uxb8npduiuj660OxUwKVLv110fW6WRvqSsoqVYU0D+kOcNn5Mczern3z+sXU+fliSFar1666+sVX17uByRAQAAAAAAAAAAAABzAJcCnweGzyT01Df3q1i0JEm5TEE/+/JujQ+nbU4GVA6H06Ha1pDal9VctACJJPUeGZ0sQCJJY4Npvfzjo8rnC7MZExdxav+wjm4fnLw/dDqh3c+clnV2/QfgzXN7XWpcEFHrkpqSAiSSdODl3skCJJJ0at+wju0cLHkcMBNGepOTBUgkqZAr6mdf3q2RvpQ8PpcauyJqXRxjIjPKIhDxykh68bsTRRckKZvK62f/uEfJ0Yyt2YByiNb71basRnVtIQ31JPX8d84tC5lkXo/9M8sCpspnC3rph0cmC5BI0q6nT6vv2JiNqYArUyxa2vnEyckCJJJ06JV+nTkYtzEVcGHxvqQe/fJEARJJKuYtPfn1fcql8jYnA6pPJpXTM986MFmARJJe/elx9R9nmwbnDPcm9cRXJgqQSBOFax798m7F+5M2JwMw0pfUY/+8V8X8xPJZyBX1s3/co3hf6iLPBMrHF3SruTuqlkWxixYgkaS+Y6OTBUgkaXwoo59/74jyWc5lAAAAAAAAAAAAAABcGoqQzAPjI5mJS3GeJzWWU3I0a08gYA4YPpMoaTu9f0TZJCfq26n3cOnknhN7hpTjhCqgLIpFS8enKThyYt+wDWkwHyTj2ckCJK/J54pKxpnkDnuMj5QWehwbTE+ZjAbMB+NDpcvCaH9aqXGWBZyTSeZ1+kDpPhwTvVCNsum8Tuwp3e/pOz46zaMB+yVHc8pnp+5LFfOWEuxLAZctk8irZ5pxaS4EgPMlRjKTF4t4TS5d4FgtUAESI9nJAkGvyWVYPlHd4n2lRa5OHxxRmnMZAAAAAAAAAAAAAACXiCIk80C4xidjprYFIh4FIhe/QgqA6dW2hUraOlbUyhtw25AGr2leHCtpW7C6Tm6vs/xhgHnI4TDqWttQ0t65otaGNJgPgjGPXO6puzRur1PBqNemRJjvwjX+krZoo1/+CNuImF/Cdb6StliTX4Ew4xA4xxt0qWNFTUl7rClgQxrgzfH4XFqwuq6kvakrakMa4OICUU/JeJnT7VAoxr4UcLl8IbdalsRK2sO1pfuHmL9CNV45XFMP1nr8LgWj7CMBdgvGvHK6XjfG7HMqGGP5RPWKNQVL2tqX18gXdNmQBgAAAAAAAAAAAABQjShCMg/UNAd164eWT5484w24dNfHVipUUzopCMClaeoKa82tbZP3a5oD2vCWzpKT1FBebUtiWnJN0+T9xq6wVtzQIvP6SkwAZs2ijQ1qWxabvN+1pk6dqyhCgtkRawzozo+unJw85/Y6defHVirayEQf2KOuLajN710qh3Ni28MXcuuOj6xQIMxkTswvda1B3fSeJZPLgj/s1u0fWSE/RUhwHpfbqavf2n3ud9tI6+7oUGNX2N5gwBVwOIxW3dym+o5zRWuXX9+slkUUIUFlijb4ddfHz+1LuTwO3fnRlYo1UggKuFwen0ub371EoZqJ/T5jpKvf1q2GztJC5pi/Yk1B3fkLKyeL6bp9Tt31sZWK1LPeBewWawrozo+tlMtzdvn0OnX3x1Yq2sDyierVuCCsdXd0SGcPkUcb/dr01m653Fy4AwAAAAAAAAAAAABwabjMxTzgdDu0/PoWtSyMKjWeU6jGq0g9EzOBNyMQ8er6dyzSihtblc8WFG30M7m0AoRqfLr1A8u0/o4OFQuWoo1++UNMdATKKdYQ0D2fWqN4X0rGSNEmv7x+t92xMEcZh9HCDQ2qawspOZpVIOpRtMFP8SnYxuVxavXNrWpfHlN6PK9wnU/hWoo/Yv5xe11afUubOpbXKJ1gWcCF1bWF9NCnr1K8PyW316lYY0AuDxNiUJ1qW4J64DfWK96fktPlULQpII+X/ozKZIxR99oGvecPrlYyzr4U8GY1dIb1zt/dqNGBtLx+l6KNfib5YgqHw2jxVY2q7wgrNZpVMOahwAFQIRwOo0UbGlTfdo2So1kFox5FKcyGKucPe3Td2xdq+fXNymUKijb4FYhwLgMAAAAAAAAAAAAA4NKVtQiJMWaRpJOWZWWMMbdKWivpnyzLGilnjvkok8wpOZ5VPlOQZXFyAfBGxofTGjqTlDFSbWtQwej0y4zb61JDB1dorjSZZF7p8ZwcTiOraNkdB5hz8tmChs4klIxnFKr1q6YlIKfTMeUxvqBbvm4Kj6A8jDGKNQUUazp3Ynguk9fQmYRSo1mF6/yqaQ7I8bp+CsyG4Z6E4v0peQMu1bUHKcKEeWVsKK3hMwk5nEY1LRP7UbWtXP0dbyw5mtHQ6YQKBUuhGh8FSFDVrKKl1FhO6fGsfGGPZDEmgcoXawzI4TQa7klqfDij2pYAkxOBK5BJ5jQ6kFY2lVcg7KEACaY1NpzW6MBEsTI3hcqAilLIF5XL5JVJ5eTxOVXIFeV0M56MylMsWhruSWhsICV/2KOa1qA83ulP+3J5nKpv51wGAAAAAAAAAAAAAMCVKWsREkn/KmmTMWaxpC9K+p6kr0m6r8w55pXx4Yye+sY+Hdk2IEnyBly6/zfWq6krYnMyoPIMnUnoh3+9TaMDaUlSXXtQ93xytWJNQZuT4VIMnhrXD/56m8aHMpKkxgVh3f2JVVxREJghuVxBO588qef+9ZAkyTiM7vzoCi3Z1MTVklExcpm8Xv3ZSf38e4clTVzJ8u5PrtKiDY02J8Ncd3L/sH74V9uUzxYlSSs3t+q6ty+SP0QhEsx9g6fG9cO/3qaxs9vhDZ1hveUTq7hyMN7Q6EBKP/3iLvUcGZUkBWu8etuvrVV9GxNkUJ2O7x7Sjz63XcX8RPGR9Xd16Or7uuXxl3sIHrh0AyfG9P2/2qZkPCtJalkc1Z2/sFKRer/NyYDqkRzN6tl/OaD9P++VJLm9Tt3/6+vUsjhmbzBUlIGTY/r+Z1nfApWokC9q97Nn9PQ390uWZIx024eXa9l1LXI4OO6BynJs54B+8nc7VSxM7HduvK9LV93dKY+P/U4AAAAAAAAAAAAAwMwq9+VbipZl5SW9Q9JfWJb1W5Jaypxh3uk7Gp8sQCJJmWReL37vkHKZgo2pgMq074WeyQIkkjR4MqGjOwZtTIRLZVmWdj97erIAiST1HRvT8d1DNqYC5paRM0k992+HJu9bRUtPfGWf4v0pG1MBUw2dTkwWIJEmrgz4+D/v1egg/RSzJzWW1ZNf2TtZgESSdj99WgMnxmxMBZTHa9vhY+dth/cfH9PxPWyH442d2Ds8WYBEkhLDGe184pSKRcvGVMCVGR9J67F/3jNZgESSXv3pCQ2cGrcxFfDGCoWitj9+cnJCvCSdORjX6f0j9oUCqlD/8bHJAiSSlMsU9PS3DyiTzNmYCpWkUChq+2Osb4FKNdyT0DPfOiCd3ZS3LOnJr+1XvC9pbzDgdcaG0nr8n/dOFiCRpJd/dFRDpxI2pgIAAAAAAAAAAAAAzFXlLkKSM8a8X9J/kPSDs21cFnqWjQ6mS9r6jo0pk+IESOB8xUJRp/YPl7T3HI7bkAaXK58r6vSBkZL2/mNM/gVmSnIsO3ki7mtymYLSCbYpUDmSY9mStkwyTz/FrMqm8hrpKy10kxwt7Y/AXFPIF3XmYOk+U9/R0WkeDZwzXaGmM4fiymcpmovqk0nmp0wsfk1yNDPNo4HKkM8UdOZQ6W84xXOAyzPdun7gxLgyKbZpMIH1LVDZUmM5Wa8rhlnIF5UaYzwZlSWTzE3bLxPsdwIAAAAAAAAAAAAAZkG5i5B8VNL1kv4fy7KOGGO6JX2lzBnmndrWYElb97p6+UMeG9IAlcvhdGjxxsaS9q419TakweVye5xavLGppL19eY0NaYC5KVzrk9M1dfMxEPEoFPPalAgoFa71y+EwU9vqfPRTzCp/xKPWJbGS9mi9v/xhgDJzuZ1adFXpflTHilob0qCatC0t3VdbdFWjPD6XDWmANycY9ai27XVjsEaKsC2ACubxu7ToqoaS9pbFURvSANVrunX9gtW18oe5BgMmsL4FKlu41ie31zmlzRt0KVTLeDIqSyDiVaxx6naHYb8TAAAAAAAAAAAAADBLylqExLKs3ZJ+V9IrZ+8fsSzrf5Yzw3zUuCCia9++UA7XxGTMlkVRXXX3gpJJxACkhRsatGTTxAQ6Y6RVm1vVvpzJc9ViyaZGLdwwcTKvMdLa29rVtowiJMBMqWkK6C2fWiVvcGJiaDDm1Vs+uVqhGp/NyYBzalsCuvsTq+QNTPTTcJ1Pd398lQIRThrH7PH4XNr83qWTk49dHodu+cAy1bWXFoQE5qLXb4evuZXtcFxc65Ko1t3RLnO2eFjX2notu7a0sCRQDXxBj+74yApFz04Ic/ucuvMXVqquJWRzMuDCjDFacX2LFqypm7jvMNpwd6daFjEpHrgcDQvCuuk9S+R0Txxza+gM67oHF8ntcV7kmZgvWN8ClS3a6NdbPrl6snhUIOrRPZ9arUgdhR1QWQIRj+786CpFGiaOyXn8Lt31sVWqbWEMGgAAAAAAAAAAAAAw88p6aVFjzP2S/kySR1K3MWa9pD+2LOuBcuaYb3xBt666u1OLNjQonysqUueTN8AV2IDpROr8uu0jK7Tx3i7JSNEGv1xuThauFpF6v+74hZW6+q1JORxGkUa/XC7+fsBMMQ6j7rUNes/vh5QezykQ9SgUowAJKovD6dCiqxrV0BlWOpFTMOZVMEoBEsy++vaQHvytDRofSsvtcyna4Jcxxu5YQFlE6v268xdWKs52OC5DIOLV9e9YrJU3tqlYLCpS75fHV9ahSmBGNS6I6KHfvkrjQxn5gi5F6gN2RwIuKtoY0N0fX6XRgZQcToeiDX6KlwOXyeN1ae2t7Vqwqla5TFHhOp98QY7BYSrWt0DlMsZoweo6vfszVys1llUg4lWohvFkVKam7oje+dsbNT6ckTfgVrSBYjkAAAAAAAAAAAAAgNlR7jP7/1DSNZKekCTLsl41xnSXOcO85HA65HA6VEjllU0XKEICvAG3x6m6tsu7Um1yNKOxwbQ8fpeijQE5HEw4tU3RUrFoSZKsglX+XzpgjhkdTCk5mlUg4pm88l+kzs9VAFERikVL8b6ksqm8wnU+BSLnTg6P1PsVqaeforz8IY/8IY/iAyn1Hh2dsu4E5jq316n69nBJ+/hQWuPxjPwht6INTMjHVE6XQ4GoR6MDKY0NphVtooANqlshOzEmYYlxIVS+QqGoeG9SuWxRkXqf/CGP3ZGAqpRN5TXSP1GML9bkl9vLgDSm5/G5FIx6NTqY1mh/StFGvxxOCpEAlaJ49viidfYYI1CpAhHvlGMhlyKTzCnen5LT5VC0kYuwAAAAAAAAAAAAAAAurtxnwuUty4q/7mrQl3wWhzHGKWmLpFOWZb1tpsPNVVbR0pEdA/rZl/com8rLF3Lr7k+sUsfyWrujAXNC/4kxPfz5nYr3TZy4c8NDi7TixhZONrZBvD+pJ7+xXyd2DUlGWnFDi665f6FCMa5YBlyJYzsH9dMv7VImkZc36NJdH12lzlW1et22HGCLXCavPc+d0XP/ekiFfFGRBr/u+eRqNXSWToAHysWyLB3bMaBHv7xHmWRevqBbd318pTpX1tkdDbDF6f3DevgLu5Qczcrtc+r2Dy/XwvUNTLTDpOGehH72T3vUe3hUxmG0/s4ObbirU/4wE+FRfU7sGdQjX9itdCInb8ClO35hhbpW18tQqBYVKJ3IaeeTJ/XSD46qWLRU1xbS3R9fqdrWyyvMDMx38f6knv7mAR3bOTgxHn19i665v1uhGp/d0VCBBk6O6ZEv7NJwT1IOp9G1b1+oVZvb5PVzLAmwk2VZOnr2XIrJ8bxPrFTnCsbzMDcM9yb0+Ff26cyBERkjrbmtXRvv6VIgwtgLAAAAAAAAAAAAAODCyj3rY6cx5gOSnMaYJcaYz0p67jKe/x8l7ZmdaHPXSF9Sj3xhl7KpvCQpPZ7TI5/fpdHBlM3JgOqXSeX09Df2K943sTwV8kU9/a0DGjg5bnOy+enAS30TBUgkyZL2PHtGp/YN2xsKqFIjfUk9/PmdyiQmth8yifxEwaV+th9QGQZPJfT0Nw+okC9Kkkb7U3ryG/uUSeZsTob5LN6X0sNf2KVM8uy+VyKnR76wS6MDrDsx/4wPpycLkEhSLl3QT7+4W8O9SZuToVIUC0Vte+yEeg+PSpooorv1kePqPTpqczLg8sUHUnr487uUTkxsi2aSeT3y+V0a6WOdh8rUf3xML37viIrFiRrxg6fG9fMfHFE+V7A5GVBdDm7pmyhAIk2MRz93RicZj8Y0spmCnvu3gxrumdg2KBYsPf9vhzRwYszmZABGepN65POvG8/7/C7FGc/DHGAVLe1++rTOHBiZuG9J2x87qZ7DcXuDAQAAAAAAAAAAAAAqXrmLkPy6pFWSMpK+JmlUE4VFLsoY0y7prZK+MGvp5qixobQKueKUtnQip8RI1qZEwNyRHsvpzKHSk3RGB9I2pJnfctmCDm3tK2mnCAlwZRLDGeUyUycf5TIFJYYzNiUCppquIE7v4VGlxihCAvuMDaeVz07d98ok8xpn3Yl5KBHPThYgeU2xaGl8kH0lTEgn8jq6faCkvZ+JmKhCiZHM5KTF1+RzRbYBULFeK6h8vuO7hpQeZ38KuFT5XEGHtvaXtJ/cw3g0SqXHszoxTd+gaClgv/HhjPK50vE8joVgLsik8jqyrXTspecIRUgAAAAAAAAAAAAAAG+s3EVIuizL+gPLsq4+e/sDSddf4nP/QtLvSCpe5HF4nUDEK+MwU9rcXqf8IbdNiYC5wxNwqbY1WNIejHptSDO/udwOtS2tKWlv6o7YkAaofv6IRw7X1O0Hh8vIH/HYlAiYKhgr/a2taQ7IG3TZkAaYEIh45HjdvpfL7ZA/zL4X5h9fyC2P/3XrZCMF2FfCWZ6AU82LoiXtNU2l+9hApfOHPXK5pw61OxxGAfafUKFCtaW/x40LwvK+/rcbwAU5XQ61Ly8dj25eyHg0Snn9LjV0hkvapxvfAlBeFxzPY1sec4Db51TL4tKxl7q2kA1pAAAAAAAAAAAAAADVpNxFSL5ljPkdM8FvjPmspP9xsScZY94mqc+yrJcv8rhPGWO2GGO29PeXXn1svqppDuimdy+ROXvujMNhdNuHlina6Lc3GCbRd6tHLpPX6YMj2vPcaR3bOSirKN3ygWVy+5yTj1l7W7vqO+bPiTuV0n+NMVp5Y4uiDefWbc2LoupYUWtbJlS2Sum7lSpc69PN7106WcjMOIxu/eAyxdh+sB19d0J9R0jr7uiYvO/2OnXdgwvVe2RU48NpG5Phjcz1/htt9Oum907d97r1Q8sVawzYGwxv2lzvuzNtfCSteF9Sm9+z+FxRMyPd9K4lirWwPJRbpfZfl8up9Xd0TinS0L2uXs2LmLiLCZXad6cTa/Dr1g8um5y8aIy0+X1LFWtmnTcfVUPfbVwQ0dJrmybv+4JuXfPAQrl9FCGZ76qh/1YKY4yWX9+iaNO5sbKm7rBal5UWJsHsq/S+6w24ddO7Fk8p1Lhqc6saOkoLk2D+qfT+O9fFmgPa/L6lU8fzPrhMsQaOhVwMfbfyZJI5ndw3pD3PndbxPUPKpQtad0fnlCKEnStr1bo4Zl9IAAAAAAAAAAAAAEBVMJZlle/NjAlK+lNJGyWFJX1V0p9allW8yPP+h6QPS8pL8kmKSPo3y7I+dKHnbNq0ydqyZctMRa9qybGsXvrBEQXCHhUKRTmcDsWa/Vq6qdnuaHOBufhDLg99t3JZlqWdT53SU1/fP9m25OpG3fy+ZUoncor3p+QNuFTbEpSn8k/Yn/G+K9nff3uPxrX/573y+FwyDqPUaFarb21TXev8KQozT7DuLYNDr/Tphe8e1pKrm1QsFBWIerVwXb1CNT67o1Uz+u4My6bzGj6T0EhfSkOnE9r9zGmlEzm1Lo3pro+tUoiryc4k+u8lOHVgWE99Y58WbZhYd3r9LnWvr1esMWh3tPmMvltmiXhGP/2H3Tq1b1jhOp+WX9esaINfta0h1bQE5HI7L/4ieM2c7r/jw2k9+g+7Vd8ZltvrlMNh1LIkqvZlFJKcA+Z0351OLpPX9sdPqpC3VCwU5XQ65PI6tebWNtZ71WVe9d2ew3Gd2DOkYsFSIVfU8T1DuueTqxRrYtu1Ss2r/lsp0omcDmzpVWo0Kxmj0f6UGrvCWnNL+2RhX1zUvOi7qbGsnvmXAwpGvXK6HHI4jWpbg1q0odHuaHhz5kX/netymby2PXZSVsGaPJfC43dq9c1zeluevjsH5XMFvfKTY3rph0cn29bd2aFr7+9WJpnXcE9STrdDtc0B+UKeC79QZZuNDayynDTX9Xs/lCQd/Z9vLcfboTKxgwAAAAAAAAAAAICqUu5Z8jlJKUl+TRQTOXKxAiSSZFnWZyR9RpKMMbdK+vQbFSDBVEOnxrXzyVNT2jx+l5q7o4rUcQUf4FKN9qf03L8enNJ24KU+rb65Ta1LarjCvc2KRUvbHz+p/S/2TmkP1/koQgJcpkQ8o6e+uV/J+EQhs9dE63wUIUFF8fhcCtX69KO/3aHkaHay/fT+EQ2eGKMICcoqlynope8f0dCppIZOnVt3+kIeipBgXhk4MaZT+4YlSWODab30w6MKRDx69+9fPZcn7+AK9B8f06kDIzp1YGSyLVzv07t/d5P84aqdDIN5aqQ3pRf+/fCUNmOkjhU1qm8P25QKuLBctqAXvnt48jf7NacPxilCAlyGoTOJKUXLpYnCvp0r6xRr4ngBzhk8nSg5duH2OVXfEVa0nmO1gJ2Ge5J68bvTbMsvr1VdG8cXUT3ifSlt+dHRKW3bHj2hpdc0qbEzwvE9AAAAAAAAAAAAAMBlcZT5/V7SRBGSqyXdJOn9xph/KXOGeSeTzJe0ZVN55TMFG9IA1SuXKSifLa2blEmxLFWCYqGo4TPJkvb4QMqGNEB1y2cLUwo6vCaTKt2mAOyWzxaUHKO/wn75bEGjg+mS9sRIxoY0gH2m2z9KjmVVyLLfhKmmG69KDGWUm2a/G6h02XRpf7YsKcuYESpUPlvQ6DRjZmy7ApcnO83YQz5XVI7jb3id6fpKLl3gWC1QAaZbPi1r+m18oJJlUnlZVmk7+6UAAAAAAAAAAAAAgCtR7iIkH7cs679alpWzLKvHsqy3S/ru5byAZVlPWJb1tlnKNyfFmgNyuqb+qduX1yhUy5VOMHdlU3kN9yRm9MT5UJ1PjV1Tr17r8jgUa+QqdZXA5XZq1ebWkvauNfU2pAEqXy5b0HBPQmNDpRPmgzGvFm9snNJmHEY1zVzBFZXnSvprJpnTcE9CyVEm2OHKjQ+nNdybUPbshCF/2KMVN5ZuizQvipY7GlAWydGMhnsSSidzU9prmgNyOMyUtkUbGhSMecsZD1WgpiUoM7WraNn1zQpGPfYEAt6EcJ1PgcjUvhuq8SrSwPgrKpM/5NHKm0q3XRsXhFUoUAwKuFSxxoDcXueUtoYFYTndZtoxN8xf4VqvnO6px2pbl8QUqmU/CbBbtCEgf9g9pS1c61OknuO/mD2J+MS4WuZ142pvRrTer/DrzgHyh92KNtCXAQAAAAAAAAAAAACXz1XON7Msa4skGWMaJb129PvJcmaYj9xeh2790DK98vAxjfSm1LWmTtfc3y2Pr6x/fqBsBk+N66lv7NfpAyMKRD269YPLtGBVnRzON1d3yRdw646PrNAL3z2sozsGVdca1Ob3LlFNc3CGkuPNalkS04a7O7XzyVNyuh3acHen6jv4+wCvN9KX1PPfOaTDr/bL63fppncv0aKrGuT2TmwbuNxOXfvAQjmdDh14qVfhep9ufu9S1bWHL/LKQPldbn/tPz6mJ766V33HxhSu8+m2Dy1X+/IamdfPggYuoJAr6sj2fj31jf1KjeXUsapWN71riWpbglp+XbNyqbx2PHFSnoBLN75zsZq6WHdibrEsS6f2Deuxf96rscG0GjpDuu1Dy9XQGZEk1bWF9NZfW6unv7lfo/1pLbm6SZvu65LL47zIK2M+yabzGu5N6oZ3LtaOJ05pfDitpdc0a+M9C0oK6QKVLjGS0e5nTmvjvQu0/8Ve9R0bVcuSmG561xKFYhQhQeVafl2zsqm8djw+se26+pY2bfnRUR3fPaQNd3UqVEP/BS4m1hTQ2359nZ755n4NnBxX5+o6Ld7YqG/895fk8TpLxtwwP50+MKzn/u2grn/HIu1+5rSGe5LqXlevax9YKK/fffEXADCrwnU+3fXxVXrh3w+p/9iYmhZGdd3bFyoYpUgQZp5VtHRiz5Ae/8pejQ9n1Ngd1m0fWK76jjc/hhyMeXXvL63Rs/9yQKcPjKh5YVQ3vntJSWESAAAAAAAAAAAAAAAuRVnPejPG3C/p/5PUKqlP0gJJeyStKmeO+cSyLO15tkdbHzmuhesb1L22QWcOjSgZz0rtdqcDZl4mldOTX9unM4fikqRkPKsff26n3vOZTTNy8k5ta0h3fXyVUmNZefwu+QKcIFpJTu4Z0qFX+rTyplYVC0W9+tPjijYEFK7hCk/AawqForY+clyHt/ZLkjLJvH72j3sUqfepdUnN5ONijQHd+uFluuaBhXJ7HPKHuSI9KteU/up1yB+avr+mxrJ65Is7NdKbkiSNDab1w7/Zrvf8/tWqbaFoFS7NwKlxPfyFXZI1cf/EriG94Dykuz6xSuFan657xyKtua1dDqdhsgLmpJHepH7419uVzxUlSf3Hx/WTz+/SO3/7KgUiXjkcRp0r6/TQb29ULlNUIOqWy0UBEkzVd3RMP/vSbrm9Ti26qkGBSKM8QafCdey7ofoc2zWol398TMZhtGBVrTbcvUCtS6Jq6KQQGSpbqMan6x5cpI6VtTr0cp+2PXpCmWRePYdHFWsMaM2tHEAALkXr4pge+M0NyiTzOvhyr3725T2SLjzmhvkl3p/UD/9mh7KpvAZOJNS9vl6LNzZq+fXNCtey7QtUgtGBpB75wk61LIqp/e5aDZ4a10+/uEvv+r1NFGXDjBvuSeqHf7tdxfzE4HLfkTE9+uU9evA/rZcv+OaPwzV0hnXfr6xVOpGTN+Ci2BUAAAAAAAAAAAAA4IqV+9Jb/13SdZIetSxrgzHmNknvL3OGeSWdyGnfiz0q5Is6sKV3sr3ncFydq+psTAbMjsRwdrIAyWusoqWR/tSMFCGRJLfHKTcToypOPlfQ3ud7NDqQ1rafnZhsP7ZzQIs2NNiYDKgsqdGsDrzUW9I+fCZZMiHC5XIqUsekYVSHS+mv48PpyQIkrynkihodSFGEBJdspDcxWYDkNUe2DygZzyra4JfDYbi6JOa00YH0ZAGSybb+lMaHMgpEzhXe8Yc88ofKnQ7VYuDEmCQpl5nYj5Mkf9it5de2UMAJVcWyLO17caIPW0VLR3cM6uiOQQ331GvB6nqb0wEX53AY7X3+jPa/OHWcYO8LZ7TyplY5XQ6bkgHVxRd0K58t6OUfHyv5t+nG3DB/jA6mlU3lJUmFfFEHt/RJktqX11CEBKgQ8YG00uN5Hdk2oCPbBibbRwfTFCHBjIv3JycLkLxm8NS4xoYyM1KERJI8Ppc8vnKfCgYAAAAAAAAAAAAAmGvKfQZpzrKsQUkOY4zDsqzHJa0vc4Z5xe11qra1dEJlpJ4T2zA3eXxO+UKlV/TxBbnKz1zndDqmvcpwbSszH4HzuX1OxZoCJe3+yMyc3AhUMo/PJbe3tFAJ2wm4HL5Q6foyXOeT20fRJswPvmDpJAaX2yGPn8kNuHTBmtJCIzUtQSbJoOoYY9S4IFLSXj/N+ARQqerbS/trQ2dYDqexIQ1QvRhzw3R8Qbf0utWpw2nkZf8JqBjTLqcOI1+A5RQzb7pjER6fk3E1AAAAAAAAAAAAAEDFKXcRkhFjTEjSU5K+aoz5S0n5MmeYV1xupzbd1zVlsmVde1Ati2P2hQJmUajWp1s+sGzKyWJLr2tWXRuFKOY64zBafUubvOdNiow0+LVgVa2NqYDK4/W7deO7Fk+5mnHr0pgaFzBJDnNfpMGvze9dMqVt7e3tqm0pLdoHXEh9e0jd6+on7zscRrd8YJkCYSaWYX6oaQlq/V0dU9o2v3eJoo0UO8Wla+qOqLH7XOEGl9uh6x5YOG2xMKDSLb+uWf7wuYlkwZhHizY02JgIuDwLVtcpXOebvO8LurVqc5uMoQgJcDkYc8N0apoDuvqt3VPabnho8bQFawDYo6Y5oGveNnU5vf6hRYqynGIW1LYFtfrmtiltN79vqaJcRAgAAAAAAAAAAAAAUGHKfTmNt0tKSfotSR+UFJX0R2XOMO80d0f1rt/bpOGehNxep2pbggrV+C7+RKBKda+t17s/s0nxvpT8Ibfq2kPyh0qvKoS5p6EjrHf9ziYN9STkcBjVtgYVqeOkLeD1WpfE9O7PbNJwT1Jun1P17SEFo6VXowfmGmOMllzdpNrWkEYHUgpEPKprC3GVQVyWYNSrWz+4XGtuHVc6kVNNU0C1FLzDPOLxubTp3i51ralXcjSrSJ1fte1BJirjskTq/Lr3F1dr8GRC+VxBNc1BioKhatW1hfTO39mowdMJOZ1Gsaagog2MRaB61LYE9eB/3qDBE+OyipZq20KKNTLpFrgSjLnh9Vxup9bf0aH25TVKjGQUrvOprjUoh7Pc1wkBcCEut1Nrb+9Q27IapcazCkS8qm8Nyslyilng9bt17dsXavHGRiXHsorU+1XXxngIAAAAAAAAAAAAAKDylHu23X+1LOt3JRUl/aMkGWP+VNLvljnHvON0GmUSeQ2cHJclyeN3yeNjsiXmJqfLocbOiBo7Ixd/8EWMj2SUGsuqkC+q/9ioCjlLLUtiauwMyziYZFdprKKlTDKnkZ6kHE4jf9hNERJgGsYY1bWFVDfLk+YzqZzGhtLKjOfVd3xULrdTLYujqm/nCrCYeflcQX1HR3X6YFxev0sNC8Kqaw3J7XVOeZzL7VRTV0RNXW9+OwHzVyDiUSBSW9Ie70/pzMFhxQfSalwQUcviiHwBjw0JgdnlDbjVtrSmpD05mtXYUFrxvqRG+lNq6AiruTsif5jlAKVCMZ+So1md3p/QSF9S2XReTQsi7GujKvkjHrn6UzpzKK7xkYwsq4YiDqgKwz0Jnd4/ouRoVk0Lo2pdEpXL7bz4EwFMsoqW+o6N6fTBYRlj1Lggos5VtRyDwySP36XWxTH1Hh3VmYMjOn1gRG1LY2rsZNsXqBT5TEHjwxkNnR5XfbulaL1fbq7pglniC7rVtqx0XO1yWUVL8f6UCrmCMqm8eg6PyuN3qmVxTHWtFM0GAAAAAAAAAAAAALw55T4D7i6VFhy5d5o2zKCR/qR+/LntGjqdnGy7+f1LteaWdhtTAZXv5L4hPfql3Vpza4de/slR5dIFSZLDafT239yg1iUxewOixOlDI/ren7+qYtGSJLl9Tr31V9epjb8VUHbDPQk98bV96l5Xr+f/9dDkcunxOfXgf75KDR0UIsHMOr57SD/+2x2T94Mxrzbd16WOFbVciR5lMTaU1o8/t12DpxKTbdc/tEgrbmiRP0QBBsx9fcdGtfuZ0xodSOvEnqHJ9vV3dujaBxfK5WJCM6Y6c2hE3//stin72vf/xjq1Lyst8gRUuv0v9urJr+2bvF/THNC9v7RGNc1c0RqVa6Q3qe/95asaH85Mtt350RVaenUzk+KBy3DmUFzf/fOtU8akb3zXYrUtqVGsiYJUmHD6wLB+8Ffblcucf5xpvVqXvPlJ6ADenHQyp2e+fUAHX+6bbFt5U6tuevdiub0UlEJlymby2vvcGb3474d19QPdeu5fDsqa2BSRL+jWg/9pw6xfiAAAAAAAAAAAAAAAMLc5yvEmxphfNsbskLTMGLP9vNsRSdvLkWE+6zsyOqUAiSS9+N3Dig+kbEoEVL7RgZR+8nc7ZRWlscHU5KQoSSoWLG177ISKhaKNCfF6hUJR2x49MXmytyTl0gUd3tqnbCpvYzJg/ikUitr60+MqFiwd3zU0ZbnMpgs6tmPQxnSYi9KJnJ7/zqEpbYmRjJKjWe1/qcemVJhvBk6OTSlAIkmv/OSYBk8nLvAMYO5IjWf1s3/co2DUO6UAiSRt+9kJxXsZf0CpI9sGSva1tz9+kn1tVJ2xwZRe+O7UbdHhnqT6jo3alAi4ND1H4lMKkEjSSz88qqEetl+BS1UoFPXqo8dLxqQHToxr74tnZJ3Xjvkrnyvo4Mt9kwVIpLPbvk+coo8AFWDg+PiUAiSStPvZ0xo4OW5TIuDi+o+P6elvHlDzoqgObumbLEAiTRwvOX1g2L5wAAAAAAAAAAAAAIA5oSxFSCR9TdL9kr539r+v3TZalvWhMmWYt7LnTeg4vy2XZlI+cCHjwxllknm5fU5lU6XLUDKe4eTQSlO0lBzNljSnxnJKJ3I2BALmr/RYTkdeHZDH51RmmuUvNVa6rAJvRiFfnLavFfNFHXqlX1m2e1EGuUzppPlsuqDkSGaaRwNzSyKe1dDpxJTJl6+xLCmfo6gEpioUikpMs35MxrOyLPa1UV1ymYJy04wdZZJsg6KyTbeflE7kpt23AjA96wJj0tlUXqf2jTAuDUlSJpGftp8kRzMqsu0L2C6TmmZdbbE9j8oW75so+Ovxu6btq6kE/RcAAAAAAAAAAAAA8OaUpQiJZVlxy7KOWpb1fsuyjp13G7r4s/FmRRv8crmn/qkXb2xUMOa1KRFQ+XxBtxwuo3hfSvUdoZJ/X3Nbu5xupw3JcCFOt1Mrb2otaW/qjsjlLVfNLQDSxEmPDQtCOnMwrgWr60r+vWtdvQ2pMJcFo16tvb1jSptxGLl9TjV3R+Ty8JuN2VfbGpTLM3WbY9GGhpI2YC7yBlzyh93KpvMKxjxT/q2xK6xog9+mZKhUTqdD7StqS9qXXdcsp4vfbVSXUI1XS65pnNLmdDsUbQzYlAi4NPVtITkcZkrbkk1NcvtZDwOXyuV2au1t7SXt9e0hBcJuuX0sT5DcXqdal8ZK2pdf1yKnkzEDwG7hOr/Cdb4pbbUtwZI2oJIEoxPjbyf2DGnh+oap/2ik9qU1NqQCAAAAAAAAAAAAAMwlnNk0D9S1B3Xrh5apdUlMoRqvVm5u1Zpb2+QPeS7+ZGCeijX5dfP7lkpGOrS1T9c9uEh17UFFG/26/SPL1bmydFI97NexvFbXP7RI0Ua/6tqCuu4di86e8E3RJaCc3F6nrn1gkYzDqP/4mDbe26Voo1/17SHd98tr1LIwandEzEHLr2/RdQ8uVLjOp6auiG545yId2tqn1be0lUysA2ZDfVtI9/3y2nP7XTe1qqEzpPr2sN3RgFkXrvHp9g8v155nz2jdHZ1asKZOwZhXq25u1Z2/sFK+oNvuiKhAjQvCuuGdi1XbOrGvfc393WpbErM7FnDZPH63Vt/SrtU3typU41XL4phuef9S1bcF7Y4GvKGmhVHd/clVauqOKFzn09rb29WyOKqaRvoucDk6V9Xp1g8uOzcm/eAiHds1qI33dclFIXNoomBz04KIrn/HQtW2BhVrCuj6dyxS27KY3dEASKprCWrze5eoe129gjGvFl3VoBveuUg1zWwToXI1dEa0eFOjMsm8RgdSuuotCxSp96thQVhv+9V1auqK2B0RAAAAAAAAAAAAAFDlXHYHwOwLhL1asLpesaaActmiQjGPYpxIDLwhh9OhZdc2q7EzovHhtII1Xq28qUXGYeQLMIGuUoXrfFp1U6valtUonynIH/aoppkrDwN2aOqK6N2f2aSR3qQ8PpdWbW6Rx++S1886FLMjFPNq4z1dWrKxSYmxrLLJnO751BpF6vx2R8M80rGiVpEGvxLDaclIscaAAhGKoWF+6Fxdr3f+zkaNDqTUtiwmf8itYNQrB1f2xgXUtYbk8bnU3B2RjFG43qtQlCtNozo1d0cViHi0eFOTHG6HovV+BcIUgEZlczod6lpTr1iTX+nxnDx+t2KNfrk8FE0ALocv6NaqzW3qXFWnRDyjTCKnxRsbFG1gXBrnNHVH5Qm41bQwKpfLoUhDQP4Q46RAJXC6HWpfUatwrU+ZRF6+sEvRhgCFrVHRAhGPbnn/Mq25pU2ZVEE1TX5tuLtTDqeRx8dpYAAAAAAAAAAAAACAN4+jz/OEL+iWLxi1OwZQVVxupxo6w2ro5Or11cQbcKtpASfvApUg1hhQrJEJFyivSINfkQYKj8A+0Xq/ovX0Qcw/DodRXVtIdW0hu6OgioRrfQrXUngEc0Okzk8BPFQdp8uhulbGPoGZwHYNLqamKaCaJsZKgUrkdjtV3842EaqLL+hW65Iau2MAAAAAAAAAAAAAAOaoshQhMcaMSbKm+ydJlmVZkXLkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCqLEVILMvisjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAhSpLEZLXM8Y0SvK9dt+yrON25AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOcr5ZsaYB4wxByQdkfSkpKOSfnwJz/MZY35ujNlmjNlljPmjWY4KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzBtlLUIi6U8kXSdpv2VZ3ZLukPTsJTwvI+l2y7LWSVov6R5jzHWzlhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYR8pdhCRnWdagJIcxxmFZ1uOaKCryhqwJ42fvus/erNmLCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwfrjK/34gxJiTpKUlfNcb0ScpfyhONMU5JL0taLOmvLct6cfZiAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPNHuYuQvF1SWtJvSfqgpKikP76UJ1qWVZC03hgTk/QdY8xqy7J2nv8YY8ynJH1Kkjo7O2cwdvUbG0pr6ExCxhjVtgYUivnsjoTz0HfLY7gnoZG+lDx+p+paQ/IF3XZHmhMqrf+mEzkNnh5XNlVQrNGvmuag3ZFQoSqt71Yqy7I03JNUvD8lb8Cl2tagfAHWn3ai716ZfK6g4TMJjQ1nFIp5VdMalNvttDvWvDNX+q9VtDTUk9Bof0q+kFt1rSF5/OXevUY5zZW+O9NyuYKGTyc0PpJRuMarmpagXKxbK06l9t9cJq+hM0kl4xmFa32qaQnK6XLYHQsVpFL77oWMDqQ0dCYhp9uh2tagghGv3ZFgk2rru5IU70tquCcpl9ep2tagAmGP3ZFgk2rsv5UiMZLR0OmEisWialtCCtdxHK6cKr3vZtN5DZ1OKDWWVbjOr9qWgBxOtn0xodL773yQyxU0fCqh8XhG4RqfaloCjG9cAvruzMllJn4nkqNZhevOjpHwOwEAAAAAAAAAAAAAsJGxLMvuDJfNGPPfJCUsy/qzCz1m06ZN1pYtW8qYqnINnh7Xj/56u0YH05Kk2paA7v2ltYo1BWxONieYmX5B+u7sOHNwRN//7DblMgVJ0uJNjdr8niUKzN8JITPedyX7+28intHT3zygQ6/0SZLcXqfu/411alkUsy0TZgXr3jI6uXdIP/jr7SrkipKklTe26Lp3LJY/RCGSK0DftUmxUNTe58/o8a/uk87u/mx+71Kt2tzKZOdLR/89z7Gdg/rR57armJ/oUGtvb9c1b+uWlyJNlYi+O0sK+aJ2PX1KT3/zwESDkW774DItv6FVDses7G7MR3O2/+ZyBe14/KSe/7dDkiRjpDv+wwotvbZZxtB/5oA523cvpP/4mL7/2VeVGstJkloWR3XnR1cpwgT0ajPv+q4k9R0b1ff+8lVlknlJUvuKGt3xkRUK1dB/q8y87L+VYqQvqYc/v1MDJ8YlScEar+7/tXWqawvZnKwqzPm+m83ktfXh49ryo6OSJOMwuueTq7VwQ4O9wTAT5nz/nQ8KubPjG986b3zjQ8u1/PqWuTy+Qd+tILlMXq8+ekI///4RSRO/E3d9fKWWbGyyOVlFmo2FsiwnzXX93g8lSUf/51vL8XaoTHP2RwUAAAAAAAAAAABzU1ln3BljHjLGHDDGxI0xo8aYMWPM6CU8r8EYEzv7/35Jd0raO8tx54z9P++dLEAiSUNnkjqyfcDGREB5ZZI5PfPtA5MFSCTp4JY+9R8ftzEVZkP/8bHJAiSSlMsU9My/HFAmlbMxFVC9UmNZPf7VfZMFSCRp97NnNHByzMZUwOUb6UvpyW/sn3Iq6TPfPqCR3qR9oVC1xkfSevwreyYLkEjS9sdOavBUwsZUQPmN9Cb1zLcPnmuwpKe+wboVl2akJ6nnv3No8r5lSU98bZ/ifSkbUwFXppAvauujxyYLkEjSmYNxnTk4bGMq4NLkswW99IMjkwVIJOnknmH1HL7oYRsA5zm+a2iyAIkkJYYz2v3saVXjhSAw84ZOJyYLkEiSVbT02Ff2aHSQbV+gEgz3JvXMv7xufOPr+xXvY3wD5TF0JjlZgESa+J144iv7FO/ndwIAAAAAAAAAAAAAYJ9yX/b7f0l6wLKsqGVZEcuywpZlRS7heS2SHjfGbJf0kqSfWpb1g1lNOkcUi5ZOHxgpae85HC9/GMAm2VReAydLC44k4hkb0mA2JePZkrbBEwllU4VpHg3gYjKpvEanOclxumUNqGTp8dyUghHSxIm8508UBS5VNllQYqR0PZgYZdsS80tqLCurOHXdWsgXlR5n3YqLS41mS64zm88WlU7Qf1B9cumCeg+XFmocOs2kRVS+bCqvvmOl/ZcJj8Dl6TtWWrjnzMG4CvniNI/GfJMaLR1DyCTyUwpAAbDPhcY3GDtGuaTGSn8nsqm8Mkn6IAAAAAAAAAAAAADAPuUuQtJrWdaey32SZVnbLcvaYFnWWsuyVluW9cezEW4ucjiMFm9sLGnvXltvQxrAHv6wR11rSvt8tNFvQxrMpun+pl1r6+QPu21IA1S/QMSj1iWxkvZoA+tPVJdQjVfegGtKm9vnVLjWa1MiVLNAzKOGjtDURiNFGwL2BAJsEqr1ye11TmnzBl0KsW7FJQjX+uR0Tx2WDEQ8CtXQf1B9vEGXFm9sKGlvXhS1IQ1weXwhtxZuKO2/Jdu7AN5Q58rakrYlmxrlcjuneTTmm3CdX8ZhprRFG/0Kxtj2BSpBeJrxDV/QzfgGyiZc55PDOfV3Ilzr43cCAAAAAAAAAAAAAGCrchch2WKM+aYx5v3GmIdeu5U5w7yzcF29ll3XLBnJGGn1LW1qX1F6QiQwV7k8Tl379m41docn7rsd2vzeJWroDNucDDOtoTOsze9ZItfZyWxNCyO65v6FnOwNXCGPz6XN712iuvaJyUdur1O3fXi56piMhCoTqffrnl9co2DMI2likvO9v7hG0UaKRuDy+QJu3fbhFappnug/Hp9Td350pepagjYnA8or1hjQvb+4WoHIxLo1GPPqnl9co0gdxcpwcbGmgO75xdWTBSNDNV7d86nVCtX4bE4GXD5jjFbc2KoFa+okSQ6n0ab7Fqh5YcTmZMDFOZwOrb29Xe3Laybuu4yufftCNXbTf4HL0basRmtvb58sNLFkU6MWXVV6gQDMT7UtAb3lE6smC+RGGvy666OrFAh7bE4GQJooCnRPyfjGasY3UDY1zUG95VOr5QtOjJGE6326+xOrFIxShAQAAAAAAAAAAAAAYB/XxR8yoyKSkpLuPq/NkvRvZc4xr4Tr/Lr1A8u04e5OGRlFGn1yuZiQj/mltiWkB359vcYG03J5nYrWl155DtXP43Npza3t6lxdp3ymoHCdT96A2+5YQFWrbw/rwd/coPHhtNw+pyL1fhnD+hPVp31Zjd71e5uUGsvJH3IzyRlvSkNnWO/4z1dpfCQjj9+laD2TEjA/days07s/s0mp8Zz8YbdCMdatuDTGYdS1ul7v/szVSo/nFIh6mFyDqhZrDOjuj6/S2GBaDqdRpMEvp7Pc9b+BK1PTFNS9v7RGowMpOd1ORRv8cjBuClyWYNSrGx5arFWb22QVLUUa/HJ7OA6HCQ6nQ4uualTDgrAyybyCMY8CYbZ9gUphjFHnyjq96zOblGZ8AzZwOIwWrmtQw++HlU7mFIx6FIjwOwEAAAAAAAAAAAAAsFdZi5BYlvXRcr4fznF5nKprDdkdA7CVN+CmIMU8YBxGscaA3TGAOcUXcssXYv2J6heK+TiBHDPGH/bIz1WLAYVqfBR2whUL1/oUrqX/YG7w+Fyqa2P8FdXJ43Opvj1sdwygqjldDtW2BO2OgQoWqfNLdXanAHAh4RqfwoxvwEbhOp/CdfRBAAAAAAAAAAAAAEBlKOvlGI0x7caY7xhj+owxvcaYfzXGtJczAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICpylqERNKXJH1PUqukNknfP9sGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwCblLkLSYFnWlyzLyp+9fVlSQ5kzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADhPuYuQDBhjPmSMcZ69fUjSYJkzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADhPuYuQfEzSeyT1SDoj6V1n2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYxFXON7Ms67ikB8r5ngAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADeWFmKkBhjfseyrP9ljPmsJOv1/25Z1m+UIwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAUmUpQiJpz9n/binT+wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4RGUpQmJZ1vfP/m/Ssqxvn/9vxph3lyMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOk5yvx+n7nENgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABl4irHmxhj7pV0n6Q2Y8z/Pe+fIpLy5cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYHplKUIi6bSkLZIekPTyee1jkn6rTBkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATKMsRUgsy9omaZsx5muWZeXK8Z4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALk1ZipCcp8sY8z8krZTke63RsqyFZc4xr/SfHFMmkdPAiXGdOTCihq6IFqyuVUNHxO5ogCRp8NS4Dm/r10hPUouualTrkph8QfcFH18sFNV7ZFQHtvSprjWoomVp4MSYFqyu15mDI8qm8lq8qUnNi6Jye5xl/CQTn+XItgEVCkXVNAd0fNeQwrU+LVzfoIbOcFmzzEeDPWOK96R0aOuAXG6HFq5vUNviqFy+cv/cAdUn3p/UkW0DOnNoRI0LImrqisjtderUgRH1HIqrZXFUDZ1hHdjSJ4/XqUUbG9XUFZExxu7owGUZHUyp5/Cojmzrlz/sUdeaOqUTOQ2dSqimOaBwvV9N3RE5nQ67o6ICxfuTOr5rSL6wW4GwR71HR9VzKK7mRVF1rKxVQzvbe5ibRvqTOrV3WD1HRrT8ulad2jeswZPjalteo8buiJq7onZHRJUZ6hlXYjirYzsHNT6cVve6ejUviipaH7A7GnDJxofTGh1IKpsu6sj2AVlFSy2Lo0qN5dSxvJZxIFSNRDyjk3uHdGTbgEI1Pi1YXadwvVexhqDd0YCqkMvkdXLvsA683Cev36XOlbVKjGbVcyiu7nX1sopF1XdGFGtgO2c+GjgxqnQir1P7hzV0Jqm2pTEVckW5fRN9JVLvtzsiAEk9h0Z06sCIeo+MqmVRVC2Lo2peGLM7FirIcG9CR7cPqv/4qLrW1qt9WY0CEe+0jy0WLfUeievgy32qbw8pk8wrMZJRY1dEJ/YMyRtwa/HGBjUuOHeMLZPM6fSBER18pU/RhoAWrm9QfXtoxj/H+HBaJ/cO69iuQbUsimrBqjpFG9lGAQAAAAAAAAAAAACUKves7C9J+m+S/lzSbZI+KomZq7MoOZ5RMp7RnmfP6NAr/ZKkw9sGdHhrn+75xTWK1HFyG+w10pvUd/9iq1JjOUnS/p/3avN7l2jtbR0XfE7PkVH9+/+3Va2LoxofTuvItgFd/45FeuSLu1TIFSVJu589o/t+Za2619aX5XNI0khfUt/7y1eVzxa0/q5O/fSLuyf/bftjJ/TQb29UXdvMnyyECYl4WsOnUnr48zsn2/a+cEb3/fJaLVhVZ2MyoPKlxrJ69Et71HM4Lkk6vHVA1z7QrVP7R3Ry77Ak6ci2AbUtjcnjd2n3tgFtf+KkHvrPG9XUTVEzVJcTe4b0xFf2Td7f+9wZ3fOp1Uoncvr5D46oa229ZEmtS2L2hURFem1d6fY5ddVbOvXSj47o1N4RSRPryOO7h3TXL6xQMOZ74xcCqkwhX9COx05q++Mn9fbfWq8nvrpPI71JSRPjCytvapU34FRNI/s6uDTJeEaJkawe/vxOZZJ5SdKhV/rPjgUw8QXVIZfJ6+iOAYViPv3ocztkFS1J0p7nzujGdy7Wd/78FT306Y2qZxwIVeDQy316+lsHJu/vff6M3vKp1RQhAS7R0R2DeuQLuybv73uhRze/b6mGTie078Ue3f3xVfrpP+zWW395zQUnK2NuGjwzrnSyoKe+sV/DPWf3obb2a9m1zRo6k9ChrX16yydWv2FRfgCzb+DUuJ77t0M6c2ji+MiRbQNasLpON77bo5om9lEhjQ+l9cO/2aH42fGwAy/16aq3dOraBxbKMU0x894jcX3n/2zVkk2N2vnUKQ2cGNd1Dy6asr2w4/GTeujTV6mxa+IY28FX+qYct9jx+Ek99NtXqaZ55rbJ89mCXvrhUe1+5vTEe27p074FPXrrr6xVIMo2CgAAAAAAAAAAAABgqnJf3ttvWdbPJBnLso5ZlvWHkm6/2JOMMR3/P3v/GR3XlR743v9zKucqhELOAAPADAaRlEQlKqulltTR3XYnp+52e2xPe8a+c++dmTWz1sy8Mw7Xbrvddgd3dOdWpAKVA8UoRjAg54wqVI7nvB+KBAkBkkiJRIHA81uLi8SuqlNPgbv22WefvZ+tKMpLiqKcVhTllKIof3zNI10iIpNJ0onsTAKSC8b7IkwORvMUlRAXTQyEZxKQXHDgiW4iwcS7vub0m8Pomk55k5fuYxNYHEYigeRMApILjuzpIZ3KXpO45zPRHyEWSlG7vpizb43MeiyVyDLaE1qwWJajVDLDyVcHZpVpGZ3eExN5ikiI60dgJDqTgOQCTWMmAckFg+eCFFXldvPWMjo9J+X7Ja4vwbEYx/b2zypLJ7NMDERwFtoITSSw2Iycen0wTxGKxexCW9l8YzmJSHomAckFg2cCTMg1lliCpoainHx1EIvdSDSYmklAcsHpN4eJTKXyFJ24HkVDSaYGIzMJSC44urefwIi0o+L6MD0ex+Yy03l0fCYBCQA6DJwN4C22M/qOaywhFqPp8RhHnuubVZaMZZgaijI1EslTVEJcP5LxNIee7plVlk5mmRqKziQ5PfPmMEWVTqaGY/MfRCxZiUiK0ER8JgHJBecOjlLdUsjA6cCc6yshxMILjcdnEpBc0HtyktB4PE8RicVmcig6k4DkgqN7+5memH8+w9n9I+iajsdvZ6wnTMVKH11vj816Tjaj0ds2CUB0OsmBx7tnPZ6IphnvC1/FT5G7jm17Y2hW2VhvmKkRORcJIYQQQgghhBBCCCGEEEIIIYSYy7jA75dQFEUF2hVF+SowCPgv43UZ4M90XT+iKIoLOKwoyvO6rrddy2CXAl3P/ZmPltXmf0CIBaRpcyuoltXR36N6apnZD6qqMu9xshnt3b8A18CFRSeqqqBl5/9c4hrS5/8dZzPyexfi/czXhr5r+3lJ+TuTPwmx2Om6Pv+5IqtjMCozP2ekbot5XGwr9fnbTZi9CFmIJULXc3VbUZR567iu6yDNprgS+ruNBWjv2r4KsdjoOiiKMmeMCnJjE6ph/rEhIRYbTdfnP79r7z0+K4TI0d9lTFrTdNTz20BksxpGk5rrN4tl5t2voZTzw1DS/xUi/95tPE/TpDMkcuZrq3Xt3SfizNyb1t9n7sDM83L9hXnf4yrKxfwu5UIIIYQQQgghhBBCCCGEEEIIIcQ7qAv8fv8OsANfA1qBzwK/834v0nV9WNf1I+f/HQZOAxXXLsylw1loxmwzUrnKN6vc47dRWOHMU1RCXFRU6cJsNcwq23R3DU6f5V1fs2pHGQDjfbmdg+LhNO4iK4qqzHrexrtqMFkWLtdSUaUTs81Iz4kJVmwtmfWYwaRSUutesFiWI6PRSMuN5bPKFIXcjpNCiPfkK3XgK7XPKlMUBX+ta1ZZcbWL6fO7/ykK1K2X75e4vvhKHKy5ZfZlhGpU8Fc7iQaT2FwmMmmNNTfJpYaYy1fqoKDUTseRMexuE8U172gja1wUlDvyFJ0Q105BmYMV20pJRNO4Ci04vLOv1Rpb/TgKTHmKTlyPrC4zhRVOjKbZw5JrdlVSUCrtqLg+eIptRIMJ6jcVz3msapWPyYEIpfWePEQmxJXx+R2svaVyVpnRrFJQ5qCgTNpkId6P1W5i053Vs8pUg0JBuYO+tikAVm0vY+BcEJ/0c5Ydi92Ip9g2535X3foiBs8FKa5x4iuxv8urhRALxeO3Ulgxu40uqXfjLrbmKSKx2BSWO7B7zLPKmm8sx1U0fx1Zua0UgOh0Cl+pnYGzAeo3zL52VFSFmjUFADi8Flrvrp31uMlioLBq9vjzh+UutlG/cXYcHr9N+v1CCCGEEEIIIYQQQgghhBBCCCHmtXCr8wFd1w+e/2cE+PwHOYaiKLXARmD/VQprSXO4rERdKTbdXYO/1s3gmQAldW5WbCvF65eJbSL/CsocPPgnGzn12iBTw1Gad5RTs7YIRVHe9TVlDR4e+Np6jr84QN2GIiqaPAx3BNn9+WY6joyRjGVYd0vlnOQ715qvzMGD/24Dp14fIp3KsutTKzh3cBRXoZW1uyoprr66E4XEbK5CKwVxB3d8bjWn3xzGaFZpvrGCskb5vQvxfhweC/f8wVpOvzHMUHuQ0kYP/joXlc0+uo5MMNwRpHyFl8pVPt5+ro/6jcWsu7VSkiuJ61J1SyFGs4Fz+0ewucys3lFGOpkmncpyw0MNuHwWShtlwaiYy+GxcPcfrOXs/hESkQw7Hm6g98Qkwx3TlDV5aWwtxl1oy3eYQlx1RrOBTXfW4Cuxc/LlQe74/GraD44xORChek0B1asLKCiVPre4fC6flVQiw92/v4bTbw4Tm07RuMVP5cqCOclFhViszFYjNWuKCAcS3P37a2h7fQhNg/r1RYSnEjz4JxspqpIE0OL60LTFj9lmpP3QKE6vhVXbS3EVWd5zfFYIcVHdhmLuMKicemMQq93Eiq0lxCMpVKPKHZ9vRtN17vpiC07vuydeF0tTYbmT8f4Qt/32ajoO566hqloKMBhUtKxG09YSbC7z+x9ICHFNFVW6ufmTK+k6Os5I5zTlK7zUrS+isEzGOkSOu8jGR762gbY3hhjtDrFiawl164sxGg3zPr+03s1H/ngDx1/qZ91tVYQm4oQmEtz62VWcOzCKxWFk/a2V+Gsu3mNbeUMJNqeJU68P4itx0HJzBUVXeVMhs9XIzkcaKa330Hl4jIqVPlZuK52TcFgIIYQQQgghhBBCCCGEEEIIIYQAUHRdX7g3U5QVwNeBGi5JgKLr+m2X+Xon8Arw33Vd/9U8j/8e8HsA1dXVrb29vVcj7CUjFkmgKCo2h0xou4quykxsqbug6zqapmMwqO//5PM0Ldd+qapCNqthMKjomo6u66iXHCedzJLNZLEuUN2/9LNksxqqqizGSftXLaDFWH9j4SQGVcXikB3Zlyhpe6+hbCYLijKrPU4lMpitua6bltVQFGXeBaLZjEYqnsHiMKHKAtL5SN1dJBKxNKBjMCmYTCay5+s1IHX33Un9vUQ2q5FJZdGyGgajYaaNFIuS1N2rKJ3KYjSpoEMqmUE1KGSSGlanaTFe8ywFS77+xqNJ0MHmlAUvS8ySr7uXyvULMmQzOhabEdWgSpt4/VpWdfed4pEkKGBzSJt8nVrW9Xcx0LIamqZjNBly3yfAbDNd0T2PZWrJ111d10ml0mSSOla7CRSkXiwdS77+LifZjEYiksTmssy6z7xESd39gC7MSbgc881lmO8eWyKWRlUVzFbjgs0tuJLPschci1/Mgkyaq/2PTwHQ8z/uW4i3E4uTDBYJIYQQQgghhBBCCCGEEEKI68pCJyE5BnwTOAxkL5Trun74Ml5rAp4EntV1/a/e7/mbN2/WDx069CGiXToSkTTdx8Y58lwfJquBrffVUbHah8k0/84s4opc9ZvEUnevHl3TGeoIcvDJbsJTSdbsKqdpcylOn0yk5xpNcMh3/U1E03Qfm+Dt53oxmFS23l9H5eoCTGZp75YYaXsXoYmBMEee62WkI0Tt+iLW7qrAV+rId1iLjdTdPEtE0nQdHeft5y/2iytX+zBKv/hySP09L5XM0HdqikNPd6Nr0Hp3DbVrizDbJBHJIiV19xoZ7Qlx6OkeJgcjNG0poeXGMtxF9nyHtdQs2fqbjGfob5vk4NM9AGy+p5aalkJpS5eOJVt35zPaG+LInh7G+yI0bvbTcmM5Hr+0h9epZVV3L0jG0vScmOTwMz0YDCqb76ulurkAk0Xa5OvMsqy/i83s75PC5nvrqG6R79P7WPJ1Nzga48TLA3Qfm6Ck3k3rXTUUVbnyHZa4OpZ8/V0uJgcjHN3bx8CZADVrCll3WyUFZc58h3UtSd1dBOLh1Mz9CovNyNYH6qlY6ZX7Fe9NkpCI65kkIRFCCCGEEEIIIYQQQgghhBDXlYXe2iKj6/o/6rp+QNf1wxf+vN+LlNw2H98GTl9OAhIxW+/JCV78wRmCozHGe8M89Q/HGe2azndYQlxz4/1hHv+bowyeCxKaiPPmLzs5/eYQC5l8SSys/rZJXvz+aQIjMSb6Izz9jycY6ZT2TohrLTyV4Mm/P0b7gTHCUwlOvDTAi98/QyKWzndoQszSc3KCl374jn5xdyjfYYnrzHB7kGe/dZLJgShTQ1Ge/04bA2cD+Q5LiAUVGI3y+N+8Tc/xCcKTCY4808tbv+kik8q+/4uFAIbagzz7z6eYGowyNRjluX85xWC7tKXi+hMci/HE3x6l6+gE4akEbz/Xx5u/6iAt7aG4jvSfCbD3u20EhmNMDER45p9OMizjaUJ8IANnL/0+RXnmW/J9Wu6SsTQv/vAMx18aIDyVoOPQGE/83THCk4l8hyaEOC8STLDnm8c5s2+ESCDJqdeGeP5f2oiHU/kOTSxx3ccnePlHZ5keizPWG+bJvz/GWI/crxBCCCGEEEIIIYQQQgghhBBCCLE4LHQSkicURfmyoihliqIUXPhzGa/bCXwWuE1RlKPn/9x7jWNdEtKpLMdeGphT3nN8Mg/RCLGwJvojaNrshCPHXuwnNi2TxpaibDrL8Xnau+6j43mIRojlJTgaIxqc3baOdE0TGo/nKSIh5konsxx7sX9Oec8J6ReLK3PmrZE5ZSdfHZREd2JZCQzHSCVmL7BvPzwmC+nEZTu9b3hOWdvrc8uEWOwCw1GSscyssq6jE4Qn5FpIXB+0rMaJl+eOp7UfGstDNEJc3zRN5+TLg3PKzx2Yew0plo/piTjD7cFZZbFQisBIND8BCSHmmB6LMz0+ezxjYjDCtNzfENdQKp7h2Atz71f0n5EErUIIIYQQQgghhBBCCCGEEEIIIRYH4wK/3++c//vrl5TpQP17vUjX9dcB5VoFtZSpqoLdZZpTbnPOLRNiqTFaDHPKLHYTqlGakyVJVbC5zHOKrfOUCSGuLoNpbl47RQGDcaHz3Qnx7hQD2Oc7T0i/WFwhu3tuPXJ4LCiK9DHF8mGc59xvNKlyrSUum2OettTukWs3cf0xmuaOPRlMKqpcC4nrhKIo8/Zv5ysTQrw3RZm/P2N3W/IQjVgsjEYVRVXQ35Ew32ie24cQQuTHfPc33qtciKtBMSjYnGZgdlIqi22hp3AJIYQQQgghhBBCCCGEEEIIIYQQ81uwmROKoqjAf9R1ve4df94zAYn4cAxGlY131qCoFxcCma0GatYU5jEqIRaGv9qFwzd7gu+Ojzacn9AjlhqDQWXDHdWol7R3JouBunVFeYxKiOWhoMxB7Tu+a+tvr8JTYstTRELMZTQa2HTXPP3i5oI8RiWuRyu2ls5KwKAaFZpvLM9jREIsvMIKJ/5a96yyrQ/U4y6Sc7+4PCtvKJ21oMtgVFm9vSyPEQnxwRRWOCitm90ebrmvFo+0h+I6oagK626tRDVcvE4ymlUaNhbnMSohrk+KorBm19zvU2OrP49RiXzzFNvZuLtqVll1SwEFZfY8RSSEeCdfqZ2mzbPb6pabyvH6pU8vrh2T2cDme2u4NK+1xW6karXcrxBCCCGEEEIIIYQQQgghhBBCCLE4LNg2Grqua4qifAX46UK9p8gpa/TyyNc3MXguiMmiUtbko6jCme+whLjmvCV2HvzjDQx1BImFUpQ3evG/Y2GIWFpKGzw8/PVWBtsDGE0q5U0+iiqlvRPiWrM6TOz61ApWbi1hcjiKv9pFSb0bo1F29BSLS1mDZ1a/uLzRS2GlK99hietMSa2bh7/eylB7AF2D8hVeiqulHonlxeG1cNeXWhjuDDI9Fqe03kNJnRvl0pUTQryHXFu6iaFzQeB8W1olbam4/tg9FnZ/qYXhzmmmR2OU1HkoqXfPSnwnxGJXWufhka+3MngugGpUqWjyUiRtshAfSGmdm0e+3spQexBFhfImn1wvLnMGUy55elmDl9HeEAVlDsoaPFglWb4Qi4bFZmLHo03Ub/IzORihuMpJab0Hk2XBptKIZaqsyctHv97K0LkgZquB8iYvhTKPRwghhBBCCCGEEEIIIYQQQgghxCKx0DMnnlcU5d+TS0QSvVCo6/rUAsexrKiqkpsAX+fJdyhCLDhfqQNfqSPfYYgFkmvv3JRIshkhFpzTZ6Vxs5XGfAcixHtQDar0i8VVUVztkoVkYtlzF9lwF8muwOKDURQFf7Ubf7Vcu4nrn7vQhrtQ2kNx/VJUBX+tG3+ttMlCfFjyfRLzsbnM1K4ronZdUb5DEUK8C6fXQuMmP42b/PkORSwjBoNKWb2Hsnq5XyGEEEIIIYQQQgghhBBCCCGEEGLxWegkJF84//dXLinTgfoFjkMIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCHHegiYh0XW9biHfTwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII8f7UhXwzRVHsiqL8J0VRvnX+5yZFUe5fyBiEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBCzLWgSEuC7QArYcf7nAeC/LXAMQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKISyx0EpIGXdf/F5AG0HU9DigLHIMQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOISC52EJKUoig3QARRFaQCSCxyDEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDiEsYFfr//DDwDVCmK8iNgJ/D5BY5BCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQghxiQVNQqLr+nOKohwGbgAU4I91XZ9YyBiEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBCzqQv5ZoqivKDr+qSu60/puv6krusTiqK8sJAxLGfJWJpsVst3GEJ8KJqmk4yl0TU936GIRSydzJBOZfMdhhDXBV3XpY8glrV0MivnDHHFpE8qlrNsRiMZS+c7DLFEpFNZ0slMvsMQ4kNJJ7Okk9KfFNe/bEYjGZdzvBBXSyqRISPjDQLQz48haDKGIMSiJuN94mqRe25CCCGEEEIIIYQQQgghhBBCCCGWAuNCvImiKFbADhQpiuIDlPMPuYHyhYhhOQtNxDmzf4T2A6P4a1xsuKOa4mpXvsMS4opNDkU4+fIAA2eD1KwtpOXGcnyljnyHJRaRZDxN38lJjjzXh8lsoPWeWipWejGaDPkOTYhFaXo8xul9I3QeHqO03s3626soqpQ+glgeUvEMvacmOfJcL0ajgdZ7aqhY5cMk5wzxPqaGo5x8dZC+U5PUrClkzU0V+MqkTyqWh7GeEG/v7WOiP8LKG0pZsbUEd6Et32GJ61A2rTHYHuDQnh7SiSwb7qimZm0hVrsp36EJcdnSyQz9pwMcebYXXYfWu6qpbC7AbFmQIXchrqqR7mmOPNtLcCRG885yGjf7cfqs+Q5LiOtSIpqm98QEb+/tx2I30np3LRUrvBiMC7ovhFgkAiNRTr02RM+JCaqbC1izq4KCMme+wxJCvMPUcJQTLw/Qf3qK2rVFtNwk96DFlZsej3P2rWHaD41RUutm/R1VFFfJPTchhBBCCCGEEEIIIYQQQgghhBDXp4WaEf37wL8jl3DkMBeTkISAbyxQDMtSJpXlrcc7aT8wBkBwNEbvqUke/Q+b8frteY5OiMsXCSbY848nmB6PA7m6PNoV4r4vr8PqlEVKIqe/bYrnvt028/OTf3+Mh/5kIxUrfXmMSojFKZ3I8NrP2uk9MQnk2tW+U1M88h9aZTGxWBb6z0zx3L+cmvn5qW8c58F/t4HKVQV5jEosdrFQkmf/+SRTQ1EAjr84wFB7kI98bQM2lznP0QlxbQVGozz2t0dJxTMA7H+si/BEnJs/tVIWVIorNtoT4om/OwbnN5je+902dn+hmRVbS/MbmBBXYKg9yJ5vnpj5ec8/neS+r6yjdm1RHqMS4spNDkZ47K/fJpPK7db+xi87iIVT3PBQA6qqvM+rhRDv1HNighe+d3rm56H2o3z0zzZR3ujNX1AiL+LhFM9/5xTjfREATowNMnAmwEN/uhG725Ln6IQQF0Snk+z55gmCozEAjr3Qz1BHkAf+aD02p4z3icuTTmXZ95sOOg+PA5fOy2nFUyzzcoQQQgghhBBCCCGEEEIIIYQQQlx/FmSViK7rf6vreh3w73Vdr9d1ve78n/W6rv/9QsSwXIUmE7QfHJtVloxmCAxH8xSREB9McDQ+k4DkgpGuaabHY3mKSCw22XSWYy/0zynvfHs8D9EIsfhNT8RnEpBcEAulpI8gloVsVuP4SwNzytsPj83zbCEuCo7GZhKQXDDRHyE4Jn1SsfRNDUVnEpBccHrfCKHJRJ4iEteznhMTMwlILjj6Qj/pZDY/AQnxAZx+c3hOWdvrQ3mIRIgPZ3IwMpOA5ILjLw4QDcg5XogrlUpkOLb3HWPUOvSdmpz/BWJJmx6PzyQguSAwEiMwKmMIQiwmwdHYTAKSC8Z7w0yPxd/lFULMFRqPzyQguSARSRMYljZfCCGEEEIIIYQQQgghhBBCCCHE9cm4kG+m6/rfKYqyA6i99L11Xf/+QsaxnKiqgsGgks3MnkQsuxSL68271Vmpy2KGqmB1muYUWxwLeqoT4rqhGlRUVUHTZq/+lHZVLAeKomB1zD1nzFcmxKWkTyqWs/nqudGkYjAoeYhGXO8s9rnXaRabEVWaU3EdsczTd5yvTIjFbt5zvEVFNUijLMSVUlUF8zz9HLNVxqiXI/VdrpVkDEGIxUXG+8TVoBpVVKOClpF7bkIIIYQQQgghhBBCCCGEEEIIIZaGBb3jrSjKD4D/DdwIbDn/Z/NCxrDcuItttN5dM6usqMpJQYVj5udkPE1gNMr0eAwtq73zEELk3eRQhHQiTXVLwazy5p1lePy2Kz6erutMj8cY7wsTj6SuVpgizwwGlQ13VKNcMq/XaFapW1eUv6AWgVgoydRIlPCU7NgmZvMU29iwu2pWWWmDh4Lyi32E6HSS3pMTnHlrmJHuaTJp2ZleXLl0MsvUcJTpiTiZzOKoQ6qqsP62ShT14knDYFIpb/Ry9sAIE/1hdF1/jyOI5cpbaqd+Y/GsspU3lOAtsb/n6zKZLFPDESYHI6RTi+N7IMTlmh6P0XlkDNWgUFA6u65vub8OV6E1T5Hl+ipjfWHCU4m8xSA+mMqVPkwWw8zPigKtd9dgMF0sC03GGe8Pk5DrdrFIrbqhFNV4sT+pGhSad5Zd8XHikRTj/WEigYT0QcUHomU1QpNxJgfDpOKZK359UZVrzvl8+0MNOLyWqxWiEMuG0WzI3ZO7ZIzaZDVQv6GI4FiMycEIGbkmXDa8JXZWbiudVdZyUzkmi4HAaJRELJ2nyIQQl/KV2qlbP/te4qobSt93vE+ICyLBBJFAgvW3zb7n5q91zZqXc72Te85CCCGEEEIIIYQQQgghhBBCCLG8LPTWW5uBZl1mUy8YhdxCuW0fqSc4FsPhseDxWzGZc4s6pkaiDJ0N0Nc2hcGoUr+xmMrVPmwOc34DFwKIh1MERqI8+ffHSSeztNxUzpb760hG05Q1eihr8GKyXH4zFp5KEJ5KEBiO8sYvOkgnsxSUO7jj880YzQa6j44z1B6kbkMR1S2FuHz5W0wnPhiz1cj2hxuZHothMKq4iqyzFrYtN8MdQfraphjtDuEtsVG7rojKlT7ZyVYAud3X1t9RRUmdh8FzAQrKHFSs9GJ35xYZxUIpXvnxWbqPTcy8ZvcXm1mxpfTdDinEHKGJOANnA4z3hZkei1PV7KN2XRG+kvxPvC1t8PLwn22i7/QkiqJgsRt54V/biIfTqEaFj3xtAxUrfPkOUywy02Nx7G4zm++tJTyZwFNio7q54D13tY4Gkxx+poeTrwyi69C42c/2jzYQDSY5s2+YTEpj1fYyShs9mEzLt98iFqfASJQn/r+jhKeSKApsuruGFpeZ0FSCyhU+Shs8KMr8u3tfbZlUlqGOac7sG8ZsM1C3vpj9j3cy3hvB6jBx+++somZN0awEU2JxSsTSnN0/Qus9NcRCKbJpjarVBZQ2eoDcYvrOt3PX52arkfG+MKUNHpo2+/GV5r8PIcQF8UiKbR+pJzyZS4RUXO3CU/T+yXLjkRTBkRgAqlGh/eAYJouB0Z4QRZVOVmwtoajSdU1jF0vHxECY9kNjjPeGKa52YbIYaGgtvqJrLoNRYf3tlUSDKeLhFN4SO94PkPhZCJGTzWrs+GgDwbE4Dq+Z4moXB5/qIZ3KUtbgJR5OsXZXBa5C+Z4teTqU1rtxF9sIjccpqXdjsRnpPDzGSHcIT7GNFVtLKGvw5jtSIZY11aBQt76Iwgon4ckE7iIrHr8dVcYXxPvQNJ3ASJRXf3KWofZp6tYXsfWBOuLhFEVVLipW+nB4lkZiv5GuID0npxjrDuErtVOztlDuOQshhBBCCCGEEEIIIYQQQgghxBK30ElITgKlwPCVvEhRlO8A9wNjuq6vuRaBLVXT4zFe+NfTaBkNh9dCIpImk9bwlTooqXUz2jXNKz85N/P8rrfHuecP11K7tug9jirEtaXrOgNnApx4ZQAtq5NO5nYGPPXaEAajyq5Pr6CxteSKjjnWG+Kpbxxn3a2VvPVY10z51FCUnhMTdB4eY3IwCkDvyUlWbS/l5k+uuKIkJyK/NE3n2At9nN0/it1tJpvVSEYz6Fl9WS5UmxwKc/ylAToOjwHQfxr6Twe480stFFfJYiaRY3OYMZpUxnpDnHptiMpVPnY83EhBmYPJwcisBCQAr/1bO+WNXpySpElcprHeEIee6iE8lVuY2X96itBkghs/1oQhz5NTVVXB47dh6TOSTWm89tP2mce0jM7+x7t54KsuTO+RXEIsL5qmc+LlAc7sG0E1KthdZtoPjZKMpgmOxKjbUDxvMpL+M1OceHlw5ueOQ2M0bCzm+W+3oWm5/JznDozywB+tp7qlcME+jxCXo//0FOGpJAC6Dof39NLYWsz2hxtxL/CiyYGzAZ76xvGZn0+/McwND9Yz3hshEU3zzLdO8fH/awsFZcuv73+9CQxHZ9pFi92Iwahy9q0RPvF/b8XrtzPcOc2Jl/pxeK2cfCX3vP7TU7QfGuXBf7cRp3dpLOAR17dIIMnLPzxLPJzG6jShKHDylUEe+Np6qt9jkVlwLDdWO9I5Tf2GYlB0rA4zx17oB6C/bYpzB0b46L9vvayEJmJ5iwSTPPsvJwmO5HYi7z89RWOrH0WFjbttl70gcKwnxOs/68BkMWCxGzmzbwRviY2Hv96KzSnJyoW4EtFgkpe+f4Z4OI3dbab1nhr2fPMk+vlrv+6jE+x8pJHuYxOsu60qz9GKa21qOMorPzmHalCwu800bCqi91SAU6+e7+MCXUfHeehPNy6KhL1CLFfB0Tgvfv/MJeN9KXQdiiqdFFY48x2eWKQigSQnXunHaDIw1D4NQPexCXqOT1BS72bzfXXYXUujLx0JJji6t5/OI+NA7rqjr22K3V9sxl/tznN0QgghhBBCCCGEEEIIIYQQQgghrpWFXvlXBLQpivKsoiiPX/hzGa/7HnD3tQ1taYqH02TTGrqemwiRSWsAxEIpoqEkZ/ePznq+pun0nJiY71BCLJip4ShPfuMY6BA5v2j5gmxGY6I/ckXHSyUyvPGLDmKhFOmUNudxXWMmAckFZ94aYXoifuXBi7zRshpTw7mdhGOhFMloBsjVp+VGy2qExhN0HBmbVR4cjREcjeUpKrEYTQ5FeOobxxnpDJFNa/SemOS1n54jlciQjGXmPD8RTc8khhLi/WTSWUKTiZkEJBe0vTrE9NjiOMcOnA2w/zfdRKdTcx6bHouRTkl9FxdpWY2poVy/QsvoRAJJtGzu70N7ehntDs37ut6Tk7N+dhVa6Ts9NZOA5IKjL/STzcztqwqRT9Pjc9vrqeEYnUfGFrS+ZtNZ3n6ub1aZltUJjsWxe3ILOrIZjfDk4ji/iPcWC6Vn/p2MZYiFUmTSGrFQingkxXDHNBUrC+h85/XMSGymHRYi32KhJPFwri4nIumZf8fDc/uVl+o+NsFIZ26Bmq/Mgdfv4Mxbs/N1R4MppgavbOxLLE9TQ5GZBCQXdB4ZQ9dz1++XKxbK1dt0MkskkEs+FppMkE7I9ZAQVyoWTs2cE4xmA5OD0ZkEJBf0tk0yNRJF1/X5DiGWkGgw16ZqWR2Hx4KWhTP7Zp/3Y9OpK77nJYS4uqKh89/VS8b7dE0n9j59e7G8dR8b58gzfWjZ2edzXYfR7jCZJXRvITgap/Pt8XeUyT1nIYQQQgghhBBCCCGEEEIIIYRY6hZ6W+///EFepOv6q4qi1F7dUJYH1aRSUOaYtQjfZDFgdZhAZ95JjoqiLGSIQswSmogz3htCy+gMd06zanvpnAQh1S0FV3TMZDQ9s8DDaLqYe8liN7Lu1kqcBfPsUKuf/yOuKzVrCxnvC88q89cuvx2YUvHsTNKpd1IN0sYvF4lomqnhKNlUFk+JHXfh3F20g6PxOYvgB84EiASSeEtsqAZl1gTKqtU+2XleXDaDUcVsNcwp12HRJFo4d3CUdDKL3T23Xq/eUYZtiexUKK4Oo8nA6p1ljPXO7msUVbnoOjrBUEeQqtVz+6mVK70UVjjJpDSMZpXAUJT5zsa6rjPvA0LkUXVzIcdfHJhd1lLA0ef7adhUgrvQuiBx6Mw/fmEwKmzcXU0ylkFVFazSbl8XbC4TRrNK5pIkoQXlDhQll8zhwv/1/JfkcqEuFodsRqNypY+Bs4GZMlVVcHjfu13sO3UxOVlsOom72DZvtZaaLi6HPs9llQ74SuyYbZd/68fmNuf6oZdUvLp1RShzL+eEEO9Dy+oz5wdFIbcSeQ4Ff61b7sUtAyaLAbPNSCqeoaDcMaetvUBRpS4IkU9mqxGr00QicjGJm9NnwWSRzpCYS9d0guNx2t4YAnJzDxRl9il/xZaSmaS5S4Hybucv6csIIYQQQgghhBBCCCGEEEIIIcSSpr7/U64eXddfme/PQsaw3BiNCqt3llHW6AHAV2Zn24P1mG1GrE4za26umPV8RYHatUX5CFUIxnpD/Px/HCI8ldtxKhFJk4xmWL2zDINRxWI3suvTKyht8Fz2MdPJDMlEhvImLwAjXdM0bvaDAlvuq+Po3n7Ge8N4/LMX5zdt9ePx26/aZxPXnmpQsThMtNxUjsGkYrYZ2XhnNSbz8pskaLYbSaeyNG0umVXuLrLlJjuLJS8SSPDSD07z6/99hMf/v2P88n8eZrw/POd5VsfcRUlWhwmz1UBhuZP7vrIutyhOgbr1Rdz08RWYrAudw05crxRFwV1kw/GOxDXNN5bh8S/MovX3kk5n8RTlzv/dR8fZ+kAdNpcJ1aCwZlcFzTeVyyRaMUfdumJa763FeElfY6RzGl3T503SpGk66aTG/se6OLynh/2PdWG0GqhZU8Q7q9f626swGBb0El2I91Xa4Gbno41Y7EYMRpXVO8tIRjMYzQay6YXb0dVoMrBxd/WsMkVV8JU6eOMXHRx6uocjz/UuaEzig7PYjdzwUAO+0tw1d1mjl9XbyzCYVGxOM4GRGFa3iabN/lmvcxdb8RTPTawnRD6oBpWKVT6qmwtAAXeRle0PN2Bzm+Z9fjSYZLhrmqrmiwnLOg6PUVjhYPXOslnPtbvNFMq1u7gMBeX2Oe1i/YZiuo6NEw0mL/s4qkFh+0MNOLwWFAXqNhRRUufBZJbrfyGulNF08fyg6zo1awvnXPtVr/ZhloXty4Ku62x9oI6CcgcTAxEgNy52KZvLRHGlMx/hCSHOM5lVNt9bS9H576K/xsWG3dWShETMq69tir3fPYXrfGLeM2+NcMNHG3D6cn3ppq1+Nt9Xi9G4dOqPp9hKQ2vx7DK/bc78CiGEEEIIIYQQQgghhBBCCCGEEEvLgswiVRQlzPwbOOb2AdN191V6n98Dfg+gurr6fZ69TBgUwlMJTBYDrffUEpqIMzUYpbq5AFVVGO0OcfOnVmCyqBhNBpLxDIlIKt9RLztSdyGdyvLW410kImnG+8PUrCmk9+Qkp98cxldq594vr6WgzIHTd3mLlqPBJOFAgvaDoxx/eYCdjzQyPRGn9+Qklat93PeHaznx6hDpZJZTrw2x+Z4aYqEUgZEYq3eU4a9xkYpllmUCiyu1WOqvooDDbebsm0Osu7USLaszcCZAeaM3bzHli6oqFFU4meiLsOszK7DaTCQTWWLBJPFwGl/J+x9jOVgsdfdaGO0O0XV0YubnWCjF4T093PH5Zoymi+1aQYWT+o3FdL09PlN28ydXzLS11c2FPPrnraQSWewes7SJi8T1UncjwQRvP9/LHZ9bTXQ6Sc/JSdwFNipWeFDV/CdaCA5HsTlN2FwmRntCTI/HWbm9lMZWP8XVLkkGcY1cL/X33Ti8Flrvqqa80cPA6SnOHRglGkzi8dtwF83tpwZGouz7TScGk0pjq5+SOjfD7UHMdgMP/ekmTr02SDqZZc3NFTOJI8XidL3X3Q/KYjPRuNmPltVJRNP0HJ8gOBZnx8MNDLUH8ZUu3CL5ylU+7vvqOtpeHcJkNVC3oZj9j3exansp/lo3g2cDHHyyh3v/0C0Lhd5hsdVfXdMJTyYornZRv9HPeG+IqZEotRuKCI7FKGvwoKPjKbax65MriIST+IrtaBmdeDiNp/j930MsDYut7l5KNSqExuNk0hqtd9cQm04RDSUxGuf2IScGwjz9zROEJxKsv72KylU+Bs4ESCezRIJJ0GH3F5tJJbKgg5bVUaUvel1bqLqbSWnc8fnVjA9E0DI6JouB8b4wJ18ZpHKlD0/x5SVYNpkN9ByfoHZtIVaHiYFzgVwCMpPUw+VoMbe91wOv3042o2FxGFl3exVvPdbFXb+3hsBIFF+JAx2dYy/0E5lKUt7kxe6em8xSfDCLse4qqkL3sQkKyh3UrCkkm9FIxjJse7AOg0nFV+IgGc9gmKf/IJaXxVh/lxPVqDI1GMHjt1GztoipoQihiTiqoTDfoS16y63uhgMJXvjXNuLhNDsfLWHgTIDgaIzDT/fQfFM5K7aU4iu3L6kEJACZjI7DY+HW31qJ2W4kFc8QnU6RTkoyYCGEEEIIIYQQQgghhBBCCCGEWMoWJAmJruuuBXqfbwHfAti8efN8SU+WnVgwxXhfhOqWAjIpjYIyB8MdQeLhNCarAYMxt0N9eDJOOqnj8JjJZrV8h73sSN2FZCzDWHcIgO6jEzS2+tn6QB1mm5GSWjeFVU5MpsubsDPaHeKZb52g5aYKjr84AMBbv84tTisoc1DW5MXuNhEYjgK5BVAHn+rB4TVz8ydXEByN88v/dZjKVT4aNvnJpDVchVaKq12kk1n6Tk7SfmiUmjWFVK0uwGQx4vRZlu1E0cVSfzNpjRMvD1C3/vyKNLNC5Sof3ccnqF1XlK+w8kLTdLJZnYZNxUwNRzn5yiD+WjcVK3zEwpe/E+5St1jq7rUQHI3NKRvunCYVz8xKQmJ3mdn1qZU031hOIpzCU2Kf2e3vApvLjG1BenLicl0vdTcaSNK0pZSp4SgWh4kVW0roPTHJUGcIi91ESV1+Ey5Ep1McerqH9bdXoRpV0HU0DVQVSUByDV0v9fe9pBJZXv9ZO01bSli9owxVVUjGM4z3R6haPXtxQjSQxOY0s+ORBgxGlVgoRfkKL7qm4Cm3sfsLLXn6FOJKLYW6+0FZHSbSyQwmi4GGTX4MJpUTLw9S1uCh5aaKBYvDZDFSu6aI0joPQx0BJgej3PixRlKJLIlwiuqWAhxey0ys4qLFVn+jgSTjfWGqmnNjVWWNXoY6gqTiWV760RmigSR3fKGZ6bE46VSc8iYvBqPCmX3DuIovLzGpWBoWW929VCyYJBJMztRjd7GN/tNTxDfOTpSTSWXZ/3g34YkEAMde6KdufRG7v9CMwaRishhIRTN0vj1G3bpiTGYDsUiKVCKTp08mroaFqLvBsRhTQxEmh6LoGhRWOAmOxahc5WPwbIDpsfhlH2tiIEJBuQOH14KW1aldU8SxF/uobimQZKTL0GJue68HBpNKYbmTokonz/7zKSw2IwaTgdBEgrGeEKt3lnPDgw10HBnPJf29Kls0CFicdXesN4zTZ8FbYicVzxALpYlOJ1mxrZTIVJzgWAy720IsnMRZIP3c5Wwx1t/lJDadIhxIUt7oJZPW8Ne6c337UApfyeUldVuullvdTUTSxMNpAA4+1cOGO6pB13EVWilv8l52EsDrTTyUomqVL7fhRSiFyWKktN5NPCybGwkhhBBCCCGEEEIIIYQQQgghxFK2IElIRP64fFYm+sMMdwRnysw2Iw6vmXQiS1VzIcOdQU68NEAikqZ2XRHNN5blL2CxbFmdRmrWFHLuwCgAHYfH4DA88LX1lNZf/iLleCTFi99vm7P7Tjajceq1IUwWA5/+z9uwuy2svKGUQ0/1zDwnFc8SnU6x79edFFe7sLnMPP+dNowmlQ27q4mHUvSemuTc/lFKGzykE1l+89dvk4pnWb29lNZ7anEX2a7a70RcGZPZQHVzIfsf75pVfsfnm/MUUX5Eg0lOvDLA0ef7UQ0Kq3eWYbYZefu5PrqOjnPH51bnO0SxAArfkUgEoG5dERaHaU653W2mpkV29BNXVySYYLw/womXB5gailJY4WDjnTVUry0iNBYjOBrLexISV4EVLatz+JnemTKH18zaXQu3oF5cn6wOE6X1Hg480T2r/P6vrp/zXINJYeOd1ZgtRo690M/A2QBOnyWX/Mag45Bdr8V1wGgyYDQZeOux2f3sLffX5iWeofYAY70Rqlb7iIdTnH1rhN6Tk9hdZtbdVoXTa5Ed5Rc5Z6GVkc5phtqDM2V2txkFmBqMsnF3NS//6Axrd1XSfzrAsb39OH0Wtn+0gSPP9FBY7sTmMuctfiEAXAU2Bs8G6G+bmimzuUw4PbPbn0QszeC5wKyy7mMTVK324Sqycuq1IeLhNOVNXl7/WTvpRJamLSUUlDoW5HOI69NYb4hXfnKWsZ4w3hI7a3ZVcOyFPtbfXsX+xzvZ+kA9Juvl3/opKHPwxi86ZpWt3FaKzSltrRAfhNVhJDgWR9d0ttxXy7PfOoHJYqD17lre+EUH02Nxys7fXxBLW1Glk/2PdeEuslK+woe70Mqmu6qZGowQmkxy+s0hdB1W7yjDZDbiK5PzvxD54PRZGG4PzurbW+xGHD4ZWxCzOTxm3MVWQuMJUvEMB5/sRlHgY3+5ZckmIAEw2YyExuMcf2mAsd7cNcj626sorpEdDIQQQgghhBBCCCGEEEIIIYQQYim7Lrb4VhTlJ8A+YKWiKAOKonwx3zFdLzx+G3d+qQWLPTfp2OowcdfvtuAptmM0qcRDKQZOB1h7SyWt99TiLbHTfXSCeER2LRELy2g00HpPLcVVuYXzqqqw5b5a/DVXthVgLJRiajiGrunz7n5d3uTF4jChKAqrt5exanspigImq4Hbf3sV7QdzSVBq1xbS9voQAJvuruHUa4MERmIzSVJq1xZx8KkektEMZqsBi8NE/+kpRntCpJOyW22+NG3xU91SkPtBgeYby6lY6ctvUAus58QEh/f0ks1omKwGTBYjNWsL2fpAHUaTgUggme8QxQIoqXOz6a5qFFUBwF/nYv3tVRgM10XXTywB02Nxjr3YR926IlrvqaVhk58z+4YxWwwEx2KYbfnPhegrtXPHF5sxWXP9BbvbzJ1fbMHhlcnl4r0ZjLkEdf7a3CRrRVXYdHcNJbVz+61mu4mSWjehyTgl9R623l+HyWrgzV91kghLn1FcPxo3+6lZcz5pmZJbJFeZp372WE8Yo0kFdNoPjZEIp9l6fx2rd5aTimcITSbyEpe4fL4SO7u/1DLrHHzX77bgKrRQUOHAbDNQWOZkpGuaklo3m++tpfnGco6/PEDt2mL5PxaLgrfUzp1fbMF8vh7bXCbu+t01OAuss55nsZuoWOGdVWYwqthcZka7w+i6TsvN5SgKrNhaAgqc3T9Cz/GJhfoo4joTCyXpPTlJdXNurMfptbD/8S4qVviYGo7RvLOCjsNjlNRe/oJA//m29sIYQnGNi01312AwyhiCEB9EcY0Lh8eMwaSiaTqZlEbLTRV0HR1j5bZSNt9bS1mjl1f/7azci1viLozRxkJpiiocjHRPo+uQzeq55Pd3VNN6dw1TQ1EGzgbe/4BCiGvCW2Lnrt+dPZ/izi+14JGNJ8Q72N0Wdn/+4j0Ek8XA7b+zesknkUzHM5x8bZDqlkJa76llxZYS2t4YJBVL5zs0IYQQQgghhBBCCCGEEEIIIYQQ11D+V/9dBl3XP5XvGK5XiqJQu7aIj//lFuLhFHa3BVdhbjK8yWogm9VwFlhndvG22I1sfaCORDQtOx2KBVdQ5uAjf7yB0GQCo0nF47df0WT34FiM2HQSp89CJJBkrDfEim2lnNs/AoCzwMIND9ZjMucWiLiLbOz6rZW03l2LalRwF9roOxNguCM3EVTXc4tI4uEU8XBuEo1C7rsTC+USOahGhS3313HwyW6SsdxC0g27q2i9uxarw3QVfzvicniK7dz1pTVMj8dQVAWv347RPDcZzVKVzWqc2TcMgMVhZMMd1Rx4vItMWkNRyCWhkAUky4LNaWbr/fWs2FZKNq3hLrZhtUubJBZOIpqm5aYKDjzeTTqZBQXW3VJJNpOloMyJ2Zb/tlk1qDS1luCvdpGIpLF7Lbh81vd/oRDk+q0P/NEGQhPx9+y3+krsdB4Z581fdpLNaLmEJXdV03V0nOh0Ei2roUqCKHEd8BTbufNLLUyPxVFU8BTbMFnyM6TkLbXTcWiMipVeUvEMRVXOmTENk9VAcfWqvMQlLp9qUGnc5Ke4yjnnHLzrUyuYHIhSUu/BYjdy4PEuUoksAKt3lmGyGTHPk3BUiIWmqgoNm/wUna/HDo9lTgISAJPZwLaP1DM5GCV8PoHOtgfrOPh0Dxt3VzPSOc3e77QB4Cq0su0j9ez7dSedb4+z6a4abC4ZnxWzTQ3HOPHywMxYZWOrn6rVBTMJRM7sG6a8yXdFfUyrw8Tme2tp2uwnk9ZwF9qwOmUMQYgPymIz4Syw0Hp3Te6GAmD3mvH47TP9VrPVwNYH6glPJeRe3BI2M0a7tZRUPMP0ZByDUcXuMfP2830ko7l7Siu2lhCajOc5WiGWL0VRqF1XzMf/0pmbT+Gx4Jqnby8EQGm9h0f/YyvRQBKLw4Sn2IaiKPkO65rKpLLUrSvmwBPdF8e476yWjVmEEEIIIYQQQgghhBBCCCGEEGKJuy6SkIgPJ5vRSCezZDP6zIRHyO3EaTAonNs/Qs3aAooqXXQeGef0G8PUrCvKX8BiSUsnMwRH42RSWTx+G3a3ZdbjVqcZ6zsm3eqaTiSYRFEV7C4TqWQWi9U4M7k+GU8THI2x55snSCWybH2gjv2PddF9bIKyBg+7v9iM3WXGW+rA6Z39fkajAW+JfebnlhvLaT84SjKWxuG1YLIYZib195+eomGTn663xzFbc81nwwY/ba8NzSQgARg4E6CxtQSrw0Q2nUVRFVlcuoCyWY1sRkdVQcvq+Q5nQamqQlGVi5GuECu3lfL2c714/DZq1xUz1jPN0b39VK0uyHeYYoEYTCqF5c4PdQxd15keixOdTuLwWPD4l/5kSnF12FxmXvtpey4BCYAOx18aoHFLMQ6vGavT8t4HWECeYjuKEic0HiedyOD12+W8Ld5TKp4hOBpD03Q8ftt7LhiLBpO88pOzZDMakOvXnnlrhFt+awVmq5HASBSL3YTDY5np2wqxWKUSGdLJLGabccHrazKaIZlOo6c1EtE06VQWRYWaNYW88YuOmeelE1n2/bqL8hVe7K7Fc64Rc2UzGpmURiadax9joSTZjMbQuSAltW6MFpX2Q6OUNXoZ6w1hc5qJTaewOIx4/LIbtVgcUokMyVgGTdMxmHP9R13XiQSSqKqCyWpAURRUg0LrPTWYLAbCU0k0TSceSpGKZTAYVQrKHEwN55KUjPWGKKpyYnOZMUrCHfEOqUSGY3t78de4CU8lmBqK0nF4jG0P1mM0q2gZHVeBlfImz8zY5eUyGFWMFgPxSJrodBKTzYBBrouE+EAy6SyqOZdowuHJ3WMwW4ycfmMYj9+G129nvD/MiVcGqF7jI53KziROF0tPKpkhlchgsqhUNPlQDQojXdOoBoWaNYVEAgnOHRjl1s9KMkUh8knX9Nx1alojm9HQdV3uhYh35fRacXqvfqKaSDBBaDyB2Zabv2A0LY7+gdFk4PAzvfjK7NSsKWK0O8iRZ3u5/6vr8x2aEEIIIYQQQgghhBBCCCGEEEKIa0iSkCxx6WSGk68Ose/Xneiajs1l4t4/XEdpvYfp8TjpZJZ7/mAt3cfG6T05ScOmYlyFVlhe6/bFAomFUhx4ootTrw0B4Cu1c9fvrZl3kXwqmSEwHCWdzDJwJsDJVwZpvbeWqcEow51BatcW0XJzBZlkln2/7qCw0kk0mALgyDO9rL+9GqvDSFmjh4Iyx2Xv0u2vcfPon29mcjhCzdoiDu3pobDSScfhMUa7QxSUO9h4ZzUWh5GCCgfuYhvth0YBsNiNbL63luGOac7tH2G0e5pzB0Zx+iysv72a0nq3TFi7xoKjMfZ+r43R7hAADZuK2flo07LZsUxRFJp35hLpmCwGdjzcSGAkRu/JCYqrXNzz+2tIxtL5DlNcJ3Rdp+voOHu/20YmpWE0q9zxuWbqNxTLQnnxvhQll3zhAqNZZffnmznz5ihjvSGqmwuoXVdMWYMnj1HmDJwL8Mw3T5CMZVANCjd9YgWrtpcumgm+YnEJTyV4/eftdL09DkBJnZs7Ptc8K6ndpeLhNOlEdubnGx5qQDXAwSd6cPosNN9YQfeJSVxeCxUrfTh9y6PPIq4/Y70hnv7H40SDKRQFNt9Xx/rbK7HYTNf0fbWMRm/bFCdfHSAZzbBqeynxUBqb08TkcBTTPAv0QxNxkpGMJCFZxC4dqyqpc7H2lkq0rI7RZODAkz34yuzc+LEmrDYzock4N31iBb0nJ5kcjDDZH6G40rVsrvHE4hUJJHjzlx20HxoDwF/rYtenV9J9dJyx3jDljV7G+0Os3FbG2f0jhCcTVDUX4PBayKY1dj7aSHAkTiyUoqDCwcrtpRx8opvxvjBlDR7W7KqUBelijvBUAm+Jg8FzQQrKHKzaXsbBJ7uxOY0YzUbaXh9CUSCdzBIci+H1z99Hnc9wR5Cnv3mCRCSNqirseKSR5hvLLntMVQgBmqYz1B7g1OtDlDd4UY25hCTbP9pAMpZm24P1BEdiTA5FaNhUTFm9l1OvDjN4LkD9xmJWbCnBU3z531ux+AVGouz9Xhs6Ojd+rIl0Msup14bIpLJse6Ceka5pjGaVlTeUzdpEQgixsDRNp/PtMV783mkyaQ2TxcDuLzRTt74436GJZWS8P8yeb54gPJkABTburmbTXTVYHdd27O1yZDIaN39yBVND0dw952oXd/1eJalk5v1fLIQQQgghhBBCCCGEEEIIIYQQ4rolW9ktcRMDUd78ZQe6lssqEg+nefH7p4lHUkSDSdzFNl758VnO7Bthoj/C4T299LdNYbJI1RBX30jX9EwCEoDASIyjz/fN7Ax/QTKe4cizfTzxd8foOzXF4T29NG0p4eTLA5zZN0wimsbqMDHWG+KZb51kajhGMnpxkks8nObwnh7aXh/CW2K/4snyBeUOmlpLqGkp5IGvrKdxUzG3fGYVdo+ZrrfHsbpMrLqhjPu/sp7K1T78tW4A1t9WxYEnuxnuDGI0G3jtp+2MdofoPDLOb/76CBP94Q/x2xOX4+z+kZkEJACdR8YZPBPIY0QLr7jaxSN/3krtuiI6j4xx5NleJvojnH5zmNd+1o6zwMrRvX0MdwTJpLPvf0CxbAXH4uz9Ti4BCUAmpbH3u20Ex+N5jkxcDzx+G+4i28zPuz69ktd/3kHb60NM9Ec48mwfh/f0MDmU33NjJJhg73faSMZy/Qgtq/PKT84yNRTNa1xi8Ro8E5hJQAIw2h3i7P6Rd32+3WPG4sj1Rf21LtLJDG/+spOx3jBdRyd45p9O4K9y0Xc6QF/b5DWPX4gPIhlP8+pPz80kfdR1OPhkN+N9kWv+3hcSRfWdnGK0O8QrPz6HzW1itDvEy98/O28SkoIKBzZ3/hdoiHc3eX6sSgHW3VpFNJAkk9KYHIygazq1a4p4/tunaD80SsUKH6/99Bxn38qNWx14optDe3rIZORaRuTX4LngTAISgIYNfrqPTnDkuT7KGr0cea6P1TvLee7bp+g8kktMcnhPL8HRGEPtQfrapji0p4fxvjAdh8Y4+nwf626rorq5kE1311Jan/9kfWJxyWY12l4f4uje/ly9OTzG4Wd6WHdbFSarkb3fbWOoPcjguSAvfv8MgZHYZR87Fkqy919Pk4jkEtdqms7rP29nUq6LhLgi431hOg+PUb+hmNd/1k5kKsXz324jm9ZwF9toe22Is/tzfRpdg/1PdHHshf5cH+fxbl75yTmScUkgvVTous7pN4cZ6wmz7SMNJEJpXvjX0/S3TTHcMc3LPzqLt8RB97EJDu/pwVtse/+DCiGuieBojBe+m0tAArmEbs9/t43pscvvTwnxYaSTWfb9ujOXgARAh7ef62Osd3HMLbA5TbQfGr14z/mNYV7/WTtOjyQAFkIIIYQQQgghhBBCCCGEEEKIpUwyTSxx4anEnLLASGxmQnFoIkEslJr1eOfb44Qm5r5OiA8jEkySTmbYeGc1Du/FCSl9bVMkYmkCw1HG+0IMdwQZODPF4ad7KG/00ncqtxjT6jDN1MvWu2o48mwvwZEYoYk40WASzzt39lS4Kjtzm21GvCUOWm4s5+N/uYVP/j/b2HB7NVaHCVeBlcoVPm759ApchVZ0XSedyFK7tohzB2YvRtUyOqM9i2Oi0FKVTmXpOTExp3yoI7jwweSZr9RBOpml58TsxcyRQJLQRJw3ftHBr/73EfrapvIUobgexIJJjBYDdrd5piyT1ogFk3mMSlwv7C4Ld3x+9Uz90TLanH5p78lJooEUuq7nI0Qgl7gs+s46refaSyHmM9g+N7lZ78kJ0qn5F8O7C23c9aU1WBxG1txcwalXh2Y9nklrBMdijPVMEw+nZxLiZDJZJocijPWFSMZkEZrIr2Qkw2hXaE55ZJ7xhg8jFk4y2hMiMBJF03Ti4RRTQ1HcRdZZzzv16hBrb60E4NgL/Wy5vw6DMTe85fRZuO0zq7E6zHOOLxaPcCBXdxq3lJBNa6RTGaLTSWKhFJ5iGwajQjyca/su/fcFp18fIizjViLPRjqDAHhL7JQ1eDBaFPpOTVJW76Hv1BSb7qohOBqfSep4wZl9IzRu9tN+YHRWeTycxuIwsu62SgrKHAv1McR1JDyZ4OTLg7PKktEMhZUO2g+OzXn+2f3DTA1HLiuhQTycJjRPwtFIQNpaIa5EJJBgvD/C9Fgci8OIouYW7b7xyw7Ck4lZ4yI2p4npsdnfu/62qTll4vqVTmbpPTlJUZWTTDJLYCSKyTw7iWLvyQnKGr0kY5k592qFEAsnGkzO2TAjncgSnZbvpVgYiUiaoXPBOeXzzfXJh3g4Te9895wnF0d8QgghhBBCCCGEEEIIIYQQQgghrg1jvgMQ726ks53Rrg5S8Thuv5+Klc04fQVXdAxXwdzdR7wlNqxOE5FAEtWgzHlcVRRUdW65EB9EOpVlvDfEc98+RTSYwmQxsOnuGs7sG2Z6LE7zzjLOvTXCgae72fZAPW/+spNNd9UAEAulcPqsTA5GUc7XSU+xjYnBKOlkFl0H1aigZXR6Tkyw9YE6Tr02hL/aRHVLhqmBFzn1SgUVq1qwezwMnT1N74mjuAqLqdvYiq+0/Io+i+NddvMprnbzyJ+30n86l9Ahm9EwmObmeJrv+yauHqNJpaalkIn+2TuylzUu3O7B6XSKkfaz9Bw7gs3lpqxpJZGpSVLxON6yckobmjCZF2ZXKEVRUFQFXdPnlF/w5q86KG/0yCLNZSo8OcHgmTYm+nsoqW+ifMVqHF4vkNupU9NGqW3pQdcyeEtXc+qNDPFwBrtH6ou4PGUNXh79i81M9IVndpG8lKKAosJobwh/lQvVkDt3xkLTjHZ3MtbdgaIaKGtcgb+2Hov96i/GtLnM2D1mYu+YUO70yQ5+Yn7lTV7O7LuYbG7Vdjcrtthpe+VZpoaHqN/QSvnqFkymi21l1eoCPv6XW4iHkhhMc/uDiqrQ2FqC0WwgHk2RzWZ5+9k+jr3Qj65DWZOXWz+zEl+JLEgW+WFxGPHXuhh7R1JFZ4H1XV5x5cbOXzNOj8UxmFTu/0oz6cQQZAdZsTmJo6CU02+ojHTHMJpUTBYDqlHB5jJTs6aAplY/iXgGV4EVp1fa8MXO6bNw0yeLULKDhMZO4/D6sLmrePbZYbY/2ACXNJWXXr/MlBmUmTECIfKleo2XsoYw473tOLxeXAUmimucjPdF8JU4CE3EKap0znmd0aRidZpRDAp6Zvb1uq/Ejq9UzvdifqqqoBoUtHeM82RTWUzmueOQRpOB137azoqtJZQ1evH67UwO9jPe283U8BDuwiKcBQX4axqwuay4iqxzEjw5vVfvXC/E8qBRuyaF1z/BtvszDHc+z+Z7WgiMFc9JqjZfHweQe3NLiMlioLq5AH+tRmL6BJnkFNsf8qFTzGs/mwQdDCaV7PmEZRcSKwohFp7Da56533yByWKQeyFiwVicJsoaPQycmZ0A23UV7lOEJsYYPNMGQDwcIhGJUNWyjsLKKuzuy7uHrqi5+znvzCcvYzNCCCGEEEIIIYQQQgghhBBCCLG0SRKSRWq8t5uB0ycJDA8yNTRIWeMKtHSGVTfuetfJifMprHBy48cbCU8mMZoNJKIpVm4rxeY0Azo2lwlfqZ3ASGzmNc03lVNQLhPexYeTTmcZPBNgoj/MqdeGiAZzi3vTySwHHu9iy/11xMMp/DVunv7HE9RvLObMmyPomo7RrIICo90hbvxYE4NnA0wMhKlY6SMVz5CM5ibsdh4ZY92tlRx9vp+RzmkCw1F2/VYTgYE3efYfvjsTS1XLOppvupVnv/m3GE1mbnj0Uxx87JdMjw6z+ubbqNuwCYf3yhL8vJPDY6G03oPda6b7+ASb7qxh/+NdM49b7EZK6twf6j3Ee1MUhZU3lBKdTuL0WdF1SMXTVK70LVgMfceP8pv/9V8BsLncbHv4E4z3dhOZnKCyeQ3ZdIradZsWJBanz8Sq7aWcfmN4pqywwjErGU4inCab1ud7uVji4pEwL3znH+k8tB+A2g2tRAKTdB0+gMdfyoobdrLn7/+KSCC3s5miqtzz1f8Hs70ar9+ez9DFdcbls5KIpAiNxymqcs5KFLVyeynJRIap4RgGVaW42kUqkaD3+NucffNVdB2qWtby9p4naL75Vhq3bL/q8Tm9Fu74XDNvP99LSW1uwq23xI5P+sLiXVSu9HHDg3Vk0jquAjCaRjj81B50TaOqZR0v/+Db3PiJz9Kwedus17kLbVgdJjburuH1n7fPlFudJuxuMxabEavTxNl9w5Q2ejm6t3/mOcPtQU6+OsjOR5pkQZrIC4vdxM2fXMnZ/SOYrUbSyQw2p2nexfVXKh5JMdw5zZE9vTO7vleu8pJJDBMY7qO/7QSZVIrqFp2Wm8qYHDKw7rZKBs4GWH9rFTaXiYIyByaLDG9dT2zOJOlYN6HxMca6OymuqaOwKsnG3bW88asOdjzcgMdvY3osTjySnvn3BZvurMFdZMvjJxAC9MwAo52nSCeTDLQdx19XT0Prds7tj7H2lkq6j02cT5ZkmrXwvPWeGiqavGy6s4ZDT/fMlPtK7BRVufLwScT1wlVgZfN9tbz1m4vjja4iKxMDUfy1bjqOjM8kolVVhcqVPt5+ro+3n+9D13XSiXE6D71F/6njOHwFmEwmYtNBBk6f4oaHP8mdX2im6+gEqkElEkxQWOGgUK6LhLgiujaEw5PizOuvk4iEqVy9htOv7cFf30J18z30nnIz1h0CIDgWo6Tew2jX9MzrV+0oxeOXPs5SoSgKq3cW0P3266QTcQbaTmJzualYvYbtD9Ww7zej1DQX8uavOnAXWim8CtdXQogPxlvi4I7PNzPcMY3ZaiQZS1PdXIinWNpksTDMFgM7Hm7k+Ev9OH1WshkNo0WluObDzS2IhaZ57p/+DndRMWM9XTRsvoHI1CRv/vxH1K5vZfWNu3AXFb/vcaxOI6u2l3H6zUvuOVc6cM6zIZIQQgghhBBCCCGEEEIIIYQQQoilQ1ZpLFLhwBTn9r9J7boN2NweDEYTYz1d+BsaKSyvvOzjGE0qTq+Vg0/1kIxm8JXaad5ZDoCW1Tmzb5gbP97EWE+IyaEo5U1e/DVujCbDtfpoYhlIxNKMdE3z1DeO03pPLZFActbjug6eYhuarjM9nltIZHOZGWoPAnBu/whb76/j7ef6OLSnh60fqcdiN+LwWoiFU2RTGr0nJwmOxhjpMrHtwdzjvhI7Nlecp//2xzPv5S0tZ82tu3n1R7mkJJvu/QhHnn6M2HTuvfpOHWfrQx9j5yc+g6rOrvfZTJqpoUHCE+M4C4soKK/EaDK96+f2+u08+LWN9J6aJJ3KcOeXWhg8G8Dhs1C3tojCcplEeq0ZTCrZjM6hPT2oisK62ysxLFB7loxFefNnP5r5edO9H+H1f/s+mWSSVTt3oWsa4YkJAsOD+Moqrnk84ckkq7aX4q9xMXguSFGFk4JyB0//04mZ56y9pVJ2clumpgb7ZxKQrL/zPkrrGwlNjOEtLef43j2cevUFtj30Md746Q8B0DWNM288y46PfUV2NhNXzFNkp+f4JDc81MBEf5iJgQhlDR4KK5z0HJ/AaDYQmorj8GoMnm1jamgAT0kpx57fQ9eRA+z6zBeY6O/DX9eAu8h/9ePz27C5zBfPHbdVUrnKh8kj/WExVzKeof3wOJMDEe74HQd7/uGv2HDHPRgtFtKJBFsf/Bj7fvVvVLasw2KbvVDBZDFQXOPkjs+tpu/0FE6vhZJ6D+feGmHtbRUMtU8zcDY478L67qMTbL6n9nwySSHyo79tkuBoHKvDxC2fWYnZ+uHbyc4j40QCSUZ7QjNl9es9JGIDvPKDb6NlswAYTWZWFBZx8yct2FxJPMU2DEYDteuLJAHJdSg8OU7fyWMUV9dSsboFg9HESMc5Vt9Ug+G+OlLxLNs/2kB4MsHUcJSbP7mCqaEoU0NRqlsKKV/hkaRMIq8y6TQTg30YLVYMJhNVLesITYyx75c/4vbPf4XQeIrGTX5e/P5pbv7UCqbH4oQDCapbCqluLsBgVFl7awWFFU76Tk1SWOmkuqUQV4E13x9NLGKKqtB8YzneEju9JyZxF9swGFW0rIaW1dn9hWaGO4MoKDh9FrqPjWNzmRg8F0Q1wNTQAJlUksrVazjzxit0HtrPto9+nFgwSGB4kNi0g7Y3hmbuIazdVYnJKudYIS5XOpEgOjVGcGQQX1k5qqoyOdBH5eoWjj77FFUtW7nzC830t00x2huialUBhRVORrqmGemepnKFj4qVPunbLjHx8DiZVJpsOkNp00oMRhNn33qdLff7uet31zDaPc2ORxqpWVOIu1CSHQiRL6qqYLWb6DwyRmw6hdNnoWmz/4o2hhHiwzKYVKbH45zZN4LRrLL9ow0YTB+uDk4O9NF7/G12fuKzmO0OTrzwDOHJCQAG2k5gMBopa1pJKh7DV1qOt7Rs3uNkkho1awsornEx1H7+nnOFg3Q8+6HiE0IIIYQQQgghhBBCCCGEEEIIsbjJbLZFKhWP0bLrdkLjY/jKK8im05htNpLR6BUdZ2o4yrP/cmpmF8TASIy9323j4T9vRQfKGr2cem2I0GSc+vXFmG0GXIWyY4n4YGLhJNOjcY4834fpfOKHdDKD1WEiEb2466uiKphtRs69NcLqHbmkOANnpqjfUEzb60MERmKcem2INbsqqFzlo6jSid19sV6m4hlMFpWDT/YQm07h8FqoX1+ExW5iarCfTCoFQGXzWkrrGxnv6SKdyCU7MZjMMwlIHF4f6++8Dy2bpfPwQZwFBWQSSVxFRbiL/Zx581We/ce/Rdc0DEYT9//Jf6SyeS1Wu51sNovBcHHRXXhqktDYKBaHg3W3lmMw5pKVNG0uuXa/cDFHx+Ex2g+OAqDpOkef76ekxk3jAvw/aFmNVDwGgGowkk6luP0Lf4jHX0I0GGCo/Qxv/eqnOHwFfPQ//L8UV9de03hsDjOv/vQcxTUuGjYWEw0liQSSFFc5iQZTrLm5gtU7ymQS5TKVPd9Obn/005isVoJjI+jZLPFYhIf/4r8QnpjA7vNRtWY9lata0DUNs93B4Wd72fmIRXYAFFfEbDPStLmEo3v7GOmepmZNIS6fhWMv9ueSkzxYj9We4Pjel7A4HBSUVzLccY4H/uQvOPXyXvrbTrDqxltmFqJfbV1Hxjm3/5Jzx95+Ciud1G8oxiyL7sQlkrE0L//4LJMDEXxldnqPHeC+r32dqYF+XIVFBIYHiYeCNN90K/o89TU6nWLvd9rYeGcNTq+FoY4gsXCKhk3FPPfPbay7rYqCMgdW19ykd+WNXqmPYkElommyGQ2Hx0IslOL575xieiw+89hz/3yKj/9fWyis+GCJFtPJDEMdQY690I+/xoWv1E5gJNeX1tEYOneailXNVK9Zj7uohImBPpLRKCZLhqEz+/GUrqaoqg5fieOqfWaxcFKJOI2btzEx0I+/tp5sJo3BaEDLJDnxyiT+Gjd1G4po2Hgx+Vh1c2EeIxZiNl3TKCyroOPwfqqa15JNp9EyGapb1qGlA6TiToYng+z8eBOHn+nFZDGw6e4aqlYVYHXkzvN2l4XGVj+NrVc/yZ5YumxOMw0b/TRs9JOKZ+g5PsGBp7rRNZ21t1bi9ds59mI/ofEEm++t5ejePmrW+TAaB4kGQhRWVnPgsV+w8e4H6D11nGw6ha+8gkQ4wTP/3D3rHsIL32vjo/9+kyTBE+IyTY+N4iuvQDWoqEYjkwN9hCfH8ZaUUbVmPXo2i6vAyppdlay55HWFFU5abrr2CatFfiiKgtXuIJpK4vGXomUy1G9oJRENk84kaL27dqZvIITIn+BYjD3fPEE6mRvPiwSS7PnmST7+l1twFUqiQHHtZdJZDj7ZzXDHdO7nlMZrP22nsMJJxQrfBz9uKoW7uAS7x4uWzRKenKD55tsoa1qFu9jP2Tde4ZUffpuKlc2Ur1jN6ptuRctmyGbS+ErLsbncABjNBmLTaSYGIygKTAyEsThM+ErtV+XzCyGEEEIIIYQQQgghhBBCCCGEWJxkFdMi5fQVYPd4sbs9RAKTqKqKr6wCXdev6DjT4/GZycMXBEZixEJJVENuwoCiQkmtm3Qyi81pxmKTCW8iR9OyjPf2MDU4gMPnI51IkM2ksbu9RKYmsbrdaJkMyWgMm9vH9NgEqtFC3VqVeDhE7To/4Yl+djxsR8HC1PA4BrOLiqZGjr8ywMptBvTsWXY+4mCs14DNaeTWzxQxPTqIp8SJ0TRJZLIfk7kcs62eTCrFeG8XkUAAd1ERm+/JYLRYMZlH6Tx8DndxMZlUipU33MjZfa9Rs3YDb/z0B3hKSll9060ce+7pmc+mKCpbHnyU1378PTz+UkDnqb/5BdlMhpZbbmf1zlt5/lt/j65pFFXX0rLrdg4+/gsm+rpRFJXOwwdYc9tunN4iDEaVZ/7xb4hMTdJyyx1UrGrBbLPh8PoIT05gttrw19bhKizO33/mMpBOZWcSkFyqt21qQZKQ2FwuNn/kYfb+8zcAnbqNm0lGIgSGB8mkU1StXkPT1h0cfeYJ3t7zBHd86cuohg+/e/y7MihsvKuGEy8PcPKVQQrKHWy8q4ZbPrUSZ4F1VmIfsXxMDQ0w3teDyWKh9f6HcXh97PvFT9j12S+Qisdw+0tBUZgc7OP4C89Qt6GVSGCK43v34PAVcMMjXyMylZAkJOKKeUvs3PzJFUwNR+k5PsGz327DVWBlx8MNmCwqyeg4Z/e9xkRfDwBrbtmNze2hadtOEuEQVoeTRCxG74mjmO0OVFWluLr2Q7ej2XSW9kNzzx1dR8fpb5tiza4Kyhq8H+o9xNIRC6UY7QoBsOXeIuy+3ejpLFani2Q0SkFFFW/+/Mfc/OnPYXXOk5hBAV2Hw8/2cuPHGvGW2Dn5yuBMXRvpCrLtwQYsNiPVLQX0nZoCwOE1s2F3FQajupAfVyxT6XSWvpOT7PtNJ+l4lvW3V1HW5J1JQHKBpumEJuIfOAnJeF+YEy8PYrYaKGlQabnJRzbtAFXFYjficG+hoLwSRVXwlpbSe/wIBx/7OQD++kZu/vQqCkqlP3u9srk8WGw2zDZHbmzB6cTicGEwmbjlM6twF1kpqnDlO0wh3pUOmB0O6ta3Ep6cwOpyYfcVYHN70LJGek5M0LyzHH+1i0f/fDM6uiRyEFed2WZkxbZSqtcUkE5m6W+b4q3HutCyOutvryIwEsXuNtGyQ2O0q5tsOo3RYmHHxz7N+EAf6267k1gkjNVmJzjWz62fNmF3FxA7f/2VTMQZOH0EdA2T9fziQgWMRhMOnw9faXl+fwFCLCLjfT10Hz3MZH8f5U0r0XUNV0Eh2x/9NOHAJFaXi1TSJsmglyHVYKSougaD2UQyFsXpK0A1mXAWFGG2eyQBiRCLRHgyMZOA5IJENE14KiFJSMSCiIfTdB+fmFMeHI1dVhKSZCzKZH8f4alJFBXMdgdaJovJYmH97nsIjg5TWFnN7V/8QzKpFCarlWgwQO/JY+z+0ldRDCpGk5mDj/8Ch8eLyWpjwHyCqpZ1lDWuBAWchVYmBsOYrUY0TcdsNaBew9vcQgghhBBCCCGEEEIIIYQQQggh8k+SkCxCgbERjFYrsUCAZ/7hr0nFc7sBu4qKufvLf3JFx5pvoZrVYcJsMzF6ZJzR7hBNm0tQjQqRQJKXf3SGR76+GYdXFvMI6DtxjF//z//CihtuJDYdpO/UcW797d9lz9//FRWrmrE6nJzd9xo3/9bnefE7/4C72E/5ymaOPvsk2x/9NIef+DEoCi27buetX/7bzHHX3XEfFQ3NvPDt/4OuawDUbdxKw8b7eeKv/iu1G1oZ7dTpPHxg5jUPff3/Zqj9DAd+83N2fuKzvPyv38Jid9C45QYOPv5Ltj70Md78+Q+YHh2h9f6Psn73vWTTKQCmR0fIJJNsvv+jGE0mHL4CCiur6Diwj2w6zaodN7PvFz9B1zW2PvgofSeP03/6BNl0GoDmm27llR98m4rVLYx2dtBx6C3W3nYnp197GZvTxfT46EwCkuDwEKdfe4ldn/kie/7+/8wco6S+kQf+9C/wFF/7ZBjLldGo4q9xM9EfmVW+kLswNW3dgcFg5Miex9EzWd746Q8Y7+0GwGAycd/X/hyHtwiDyUA6kcDiuHY7tyciKV79yVla765h9Y4yshmNY3v7WXdrJf5azzV7X7F49bed4Ff/4z+TSSYBuOsP/pgXvv2P3PPVP+PF7/0T0UBusbvV6eLO3/8jDj3xK4bbz7Dihhspa1rFcPsZTrzwY+768l/m82OI61gyliEeSuHx27jj881kklnCUwlGe4Lo6VdnEpAAuEtK2P/rn9J1oS+gKOz+3a/iKSllvLsTf10jo90duQmwH4JqVClt8DDWG55V7imycfrNYbqOjvOxv9hCQdm1a6/F9cNsM+L0WVh3qwurM042ofP03/3/iAYDANhcbnb/3h/x0r/+M2VNK3F4Z08Q1zWdlpvKGekKcXhPL6l4lo13VmG2mQhNxKlZW0RBmQNVVdj9+WamhmNk01m8pQ5cBbLgQSyMse4Qz/zTyZmf9/26k3v+YC0Wu5FkLDPruTbXB19QP94fof/0FPf9QT26Mk08lCAVj2GxO8imUjz+v/876WQCAE9JKTs/8VnaXnspF2NXBx0H9uH0FVJYWfWBYxD5Y3E46D5yild+8O2ZslU7d+EqLKLn5AQNG4slCYlY1KJTUwycOsGbP//RTNn63fdic7nxlXlZd6uX4EiM6rWFWJ2yuFhcW1aHGasDimvcNGzy4yywYDCqGM0GVm03se9n/8LQuTMAKKrKrs98kcqVLSQiYax2B0/8n/9ONpM7x5fUN7LujnsYOnOSkvoGjr36IgXlVXj8JdjcbrLpDGabjUQ0Aij4Ssvy+MmFWDw6D76Fq7gYq93O0ef3MN7TBYDBaOT+P/mP+ErLMVkdKKokIVluVEXh1Z/+gP62E0CuHd79pa+gaVkyqez7vFoIsVBMVgPK+eTBF6hGBZNFEgKLhWGyGCgoszPeN/set9n2/tO5Mqkkba+9zERfN+O9PdRt3Hz+EZ3psTHKmlYw1tNFcGSI9v1v5h5SFO744pfZ/MDDxMPTRKcDOH2FeEtKOfnSXsKT4wBY7A4+9p/+G+lMEa/86Ayt99ZitZvIZjSOvzTA2lsqKWu4ir8IIYQQQgghhBBCCCGEEEIIIYQQi4rMnFiMdB2T0czJl56fSUACEJ4YZ/Bs2xUdanoiRvONF3clVFSF1ntqMFsMuLxWek9Msve7bTz3z6d48xcd+EodmO2Sm0ZAPBzixe/9E1o2S0FFFX0nj1Hdso72g/vIpJJUrGrh7L7XKKioYqyni0Q0QsPmGzj23NPYXG4SkTDhyQlW7biZw0/+5h1Hz/LWr74zk4AEQDUovPWrH5LNZCipb5qVgARgor+HA7/5Oa7CYkLjY8Smg6zYfiNHnn4Mk8WKrmlMj44AcPjJX9N99DDuYv/M60+98gKnXnmBZCLBR//D/0vLzbfPTKDJZtLouobDV0AyHmOk8xxaJoPZZsdbUsbY+SQSVc1r6Ti8H0VRcRUWMdB2goLKKsa6OwHw+EsZPNtG7fpWTr/+8kwCEoDRrg5GOs5drf8eMY9sVqO4yondc3ExpK/M/qEWR14pu9vDmlt3c8/X/pypoYGZBCQA2XSaA7/5ORWrV+Pxl2K2X9vkKFa7iUxa45WfnOO5fznFC987zVhPaEF/H+Lq0HWdSCBBNJj8wMeIh0Ps/ed/mElAAhAcG8FXVs5w+5mZBCQAiUiYriOHqFm3AYD2/W9Sszb377Huc2RTMYS4UolYmjd/1cnjf3eMdCLLs986yQv/epoDT3RjsWfpO3F01vNdBUUXE5AA6Dqv/+RfURWFTCpJPBJCy2SJXFJ3Pwgtq9PY6sfhvdg2ekvsqAaVZCxDJqURHIl+qPcQS4fDY+GW31qFqzCN1eGi68jBmQQkkGtru94+iLe0bFb5BSaLganhKDVrCympcxOaiPPKj8/x/LdPsf+xLsITCSb6cwlxrE4z5U1eqpoLJQGJWFADZ+fW3bef62PXp1fOWjS58c5qCsrfP0FTYCRKx5Ex+tsmmRqMEAslSaezmKwGtIyOYoiRSSSIBKcwWW2YHQ6OPP3YTAISyCWVDI2NYnd7Z8r6Th4jlZA+yfUqPh1k3y9+PKvszBuvkE4kmOiLYJVrFrGIpZMJ4qEgb/3q32aVH9u7B9WgoigqL37/DH1tk1guY8GYEFeLxW6k/dAob/26izd+3sHhPT1Ep4ZnEpAA6JrG0eeeIptO4SkpYd/PfzSTgARy45daNsuxvc8QC4XwlVbg9BVw+KnfkIhEyGZSxEPTpGIxAsOD+fiYQixKRrOZ0c4ONE2fSUACkM1k2PeLn2A0m1EJv8cRxFIUCU0TGB6cSUACuXZ4/29+hgI4PNLnFWKx0LM6G3ZXXyxQYNNdNWia/u4vEuIqyqSyrN5RhslimCmrai7AaH7/6VxTQ4MkwtMcf+FZ6jZsuphNR4dTLz9PPDRNYUXVxQQkALrOGz/9AU5fAelEHHeRn9D4GMlYbGb+BEAyFuXtZ5/E7jKSTeu8+uOL95xHu0PYXJJ0UwghhBBCCCGEEEIIIYQQQgghljKZCb0IqUYj2XSa4MjQnMemR4av6FiuAhuuAhu+EjuJeAZPkRVnoZVULI2OTs2aQnpPTgJgc5moW1+MltFB5r4te/FwjOnRUQC085PRnQWFMxMms5n0+bICpsdyz9M1DV3XsHu8hKcmADAYTbMWkAHY3B4iU5OzypwFhQyeaZv1fpdKp1IAOHw+QhNjACgoZDMZ7B4vsengrOeHxkeZHOynYcsNdB58aybmhk1bKKlroKSugfDkBK//2/cxGE0oikphxcWEIidfep7tj36aUy8/j8lsyR1Uz72n2WYjHg4BEBwZpqiqhon+3lm/p+H2M7zTh10oLd6bqirYvWZ2PtrE9FgMVVVyC8lNC7/DZCoaJhaanlM+PZZLlJOKRVGUaxtXJqOx6a4a9j/WRTajgQLrb6tCy2rv/2KxaESnk5x+Y4gjz/VhNKlse7CeptaSy9r97FLJaJSpof5ZZYqiUFRdy9Q8C4cCw4OU1DfQe/woiqqgk5u0WNqwApP1/RccC/FOgeEoZ/bl+rGpZJbadYX0HM/1BaLTUNm8htOvvTTz/FQ8PucY8XCIbCaD0WIlk0xiNJvJnO8ffBDB0RgHn+qm+9gEG++sxlVoRdd0wlMJDj3VM/M8g0ll4MwU6UQWb6kdX6l8B5ajbFYjMBRF1zVURUPTdALDA3OeFxgepHL1Wkw229yDaDo1a4p48funuePzzQycDjA9nqvr/loX2YzGeF8Yf437Wn8cId6V1TF38YDBrOKvdXLfV9YyNRQjm9EIjEQZ7pymurngXfu1Y70hHvubozRtKUHLaLQfHKW41sX626qZ6ItQVOlEUXS0bBZFUdGyGVRVJTjPuEdochy3308sFASgYnULKIY5zxPXh1QiPu+5Pp2Is3JHzayEN0IsNjoKiWgELZt9xwM66UQCXc9ithnZsLsGq10WZImF4y60sfORRl758bmZcaBMKjHnedNjI7nx2kSS4Ojcc24yGkY1qKQTCeweD9lshlhoGl3TyOo6RqOJTCpJJmVZiI8lxHXBX9+E2WYnFp47HhwaG0XPamiq9F2XHU0nEY3MKQ6Nj6NrGjaPtKNCLBZGi0rl6gKcPguxUAqn14LHb8Nolqk0YmEYTCoev42bPtFEaCKByWLAV2rHbHn/JCSJSCR371fX0bLazP08hdzYSvfRw6zYduOc18XDIQxGI0aLheDoCAUVlTNzNS413tdDNpth093z3HPOSKIeIYQQQgghhBBCCCGEEEIIIYRYymTmxCKUTWVAUWnatoPx3u5Zj1WtWX9FxzIYFZ76xgn0S3bqadpawtYHanML3hTYen8dmqaTTmbpODzKym2lV+VziOubyeKivnUnHQdewWDKJekYOH2Sug2bOb53DwoKRouFkY52Ntx5L8PtZ0jGY9g9XgLDg6zcfhMdB/YxPTZCYWU1kwN9M8ce7WynbuMWut8+OFPWf+okq3bu4uizT6IaDKgGI1r2YjISi8OBxeFgoreHzR95mN7jbxOdDuDxlzA9PoavrGLOZ7C7PGx76ONM3PsgqXgcX3kFBZc8b/XNt5KIRmg/sI8bHvkEJ19+gfpNmxluP0s8HGL/r/6N5l23U7N2A6dff5meY0dYtfNmTr/+MnaPD4COA29y8299gbd+9W8YzWZQFAbaTlC/aQunXnlhVjz+2vqr9v8j5lINKqGJBG/8vGNW+e4vNC94LE5fIUXVNXPKG7du5+SLz9F630PXPIZsWuP4S/1svLMaXc+dD7qOjlNSLwubryfdxybY/3iuL5BOZHn5h2dxeizUrC26ouPYPB6qWtbRf+r4TNnp119mywOPomlZug4fmPX8htatHHrqNwCsvulWug4fwO7xsvWjn0cxSKYyceWSsYvn9J5jE/hr3fir3TN90JqWuxg62zaT2MxdXIxqMMxa3Fm2YhUGk4nw1AQFFZUoiorT6/tA8QRGY+z7VQfdx3JJ0w480Y2qKtzxhWZUVZ3ZLLB8hZeJgQhv/Sa3k7HRrHLH55s5vW+I6tVF1K4txF00T7IJsWSEpxIMnguQjGV44+ft6Drc/1U/4alx6jdtpevIwVnPb9i0FVeRH29xyZxjxcIpDj/Tw5b76shmNRo3+1FVBRSF6bEYx17oZ/cXWxbqowkxIzwZp+fkJEazgXQyi91tJhbKJXlSVYWt99USmkzy9vP9DJ4JzLyu4/AYD/3JRvy1bgyG2YsitKzG0Rf6sdiMKAqcfnMYT7GNxo1+Og6P0nFojJabc9dmJrOFlCGGoqokYzGatu3gwG9+Put45U2rOP7CswD4yspp2rYDp++DnQNE/jk8Xoqqa5no65kpM5hMePylvP7LISpWePMWmxDvx2yx4PAV4CosIjw5MVNudThxF/lJJQy03FROcCyWxyjFcqVp+sVxIIOCxREARbm4GzrQtHUHiqqQTSdp3LKdUy/vnXUMd3EJFrsDq9NJx8G3qF2/iYqVzRhM55PqqCommx2bW8aXhLigsLKKbDqFxeGc81jDlhtQjUYMRklMtdwYLGZ8pWVz2uG6ja2Y7XbSiSxWm9QLIRYDXYe93zlFPJyeKXMVWrnvy+vyGJVYTgwGlc4jE7S9fskmRQrc/5X3r4OekhL6TulYnS6ymXRu8xVVAR1MVhtDZ0+zaseuufdbmlaRSaVQDUZcBYVM9vdRvnI15956fdbx19yym0xSkXvOQgghhBBCCCGEEEIIIYQQQgixDEkSkkXI4fMxPTpC9doNRKamOPXy8xhMJjY/8AgVK69sMf30WHxWAhKAjkNjbL6nBqfPwqlXh+g9kduFXlHg9t9pxmSRHdkE2D02VtxwH9l0ilMv7+Xmz36Bw0/+GoPJxKobb+HES89x06c+x9vPPEEkMMX63fdy+vWX2PHopzn+wrOMdrWz+YGHOfHCc2x/9JOc2/8GQ2dP4ykppb71LnTdQTaj03fiEE5fITd9+rcprKgmlYhz4sXn2PXZL3D4qd8QGh+jftNW6jduoaxhJXv/5RtMDQ6w8Z6P0PbqS+z42Kdoe+0l+k8dZ9vDn+DtPU+QSaVYv/seVt14CzaXm6rmtfN+RndhMTd9+nfYeNf9qAYjK7bfRCIcYqyrk+GOsySiESYH+1l14z189D/8N/pOHsVdXETF6haiwSCbP/IIR556jDd+9kO2P/ppiqtruferf8YrP/g2do+XFdtvov2tN7A6nez67BcpbWha4P/F5SURTXFu/+ic8r62KVZsvXrJlWKhFKPd00wMRigoc1Ba78Hxjl0LPf4SkrEYt33+99n3i5+QiERo2raD6jXrCY4MLUhdMBhVatcWcejpnpmy0gYPVpuc+q8X6VR29oTD87pPTFxxEhKLzc6Nn/wCz/3TXzM50IvRYmHd7ffQf/o4626/i60PfZwjex5D1zTW33EPBRVVVKxsprRxBaX1TfjKW0nGHbz8kwB3/W45hWVX61OK5cLrt2Oy5Ba3D7UHabmpgue/2zbTTw1Pernnq19npOMMqXiMgdOnuOcrf8qrP/oe4clxqprXsv3jv0UyFqViVQsmiwVFze3Sd6VGe0IMnJ6i+/jErHJN04kEk3hLbdz48SacPgsWm5HH/ubozHMyKY3De3px+iy89tNz9J4s5M4vNWORRSNLUjqVZf9jnVidZs7sG86tGVJAVwsxmzXstfUz7Seazrrd91BcU4ezsAhFvZiQIZPOMtwxjcVhJJPU2P94FyaLgc331rLv150zz3MWWPBXu/LwScVylkpkeONXHcSCKYwWA0PtQTbcUY2igJbVKa13U9rgpffk5KwEJABaRmeiP0JsOkXDJv+sx7IZjcmBCBUrvfScb2+btpRw9MV+qlYVAHDq1UGmhhzc8BEPqtFEIhpCVQ3Ub9pKbDpI26svYjRb2PLgI6QTSXY88knMNjuljSswWWy4CgoX5pckrjqD1cqtv/N7vPGzH+TGCfwl7Prsl5gcMVCxwovXb3/P14/3hxnpmiYZzVDW6MFf58ZkkrEssXBUk5m7v/wnvPyDbzPe00VBRRU3ffpzKAYTe787SDqZ5aE/3TjzfF3XGesNM9o9TTqZpbzRm0vgZHz/Xa2FuBKl9R5+/esjJKO5JJAFFVbu+fKf8soPv00sNE3Dpq207LqdSCBA56G38BSX0HTDTjr278PqdLLj47/FaFcHN336cySjUWrWbSAwOsy6O+5G1zUMRjMmmw2j0URxdV2eP60Q+ZFKZhjtCjHSPY3dZaakzk1RpReH14fF5eK2L/wh+37+IxKRCI1bt7P2trvIptOMdBkoLM939GIh2Wx2bB5fbnzrh98hOh2kZt1GWu97iGzaAnpuLGq8N8RoT4hMSqOsyYu/xjUnyaMQ4uob7w8z1B4kk87iKbLPSkACEJ5MEJqMU1gxN8GUEFdDJJAgNJHAbDegZXTOHRiZ/QQdgmNx5m55MZunuISG1q24C4s5+fLzrL/jXnQld4Bdn/kCh5/6NQef+CW3fu73OPDYLwhPjFO9Zj3r77yPZ77x19zwyMcprqkjFpomEQ2z/dFPc+jJX6Nl0my85yM0bt1ONKhQs0buOQshhBBCCCGEEEIIIYQQQgghxHIjd4UXIYvViruomMnBXjbcdT/NN9+KajBQWFmD2Wq97ONkMxpG09yJag6PmUxKAxTW3VpJJq2RSWdxei0YbTKxTeSkU1kSMQdlqx5l3W6Fkc4Y2x75CxTSTA3r3PaFjzDWG6Vx25epXG1n4EyCjffcQCyiUNf6u1Q3O+g9GeXOP7iJycEIpSvrqduUobCyAC2rYTBo3PI7f4TBkMBoNhMPTROenGDHx34L7eFPYjSZWLXjZmLhMMPtZ3jir/8HVpeLO770ZWweLw6Pl9b7HgQdmm+6lXg4jNXlYt3td6NlM7gKizEY37uJy2Y1xnrCDHfE8ZbYSEaNxCNOdv32vyc0OYzRaKDreIah9gxHnhlDNVaiGpTzi0l2UlhuZ83Nt5JNJvCUV2GxOwCoallHJpnE5nJz06d+G4PRhKvwyhIGiCunazquQgvjfeFZ5Q6P+aq9RzqZYf/jXbMSQ6zcVsLNn1yJ+R0TrXxllahmE6VNK9E1DVU1kElrrNi2E9Vw7RfI6bqOq9DKto/UEwkmsbtMoOQmNovrg8Gg4C2xzanTnuL3XpQ5n6HOIP1nUmz76FdASWBzmTBZLVQ2ryWTVmm+9X4at9yAls1isljIpJKs330P4ckpJocyHHtRI50MApBOZN/7zYSYh7fEzv1/tJ7XfnqOiYEI4ak4t/zWSiYHIxiMKiaLgZ5TKcrqmlHVOCablcJSP96v/yeyqSRGi4XuwwfxlpbjK6vA6SvEYrNdcRzpVJYDT3RTWu/G5jTNmVyODla7EZvbjNVuYqRzes4xgqMxypu8APSdmmRyMEp5o/cD/FbEYhcYjnL2wCitd9eSjOUWcqKDnjGSSBgJdbXRtG0HTVu3o2WzqAYVs6OAgtLz/b50HD2ZoPtMiue+fYq7vtRC803l7H+si3QyS/vBUXY+2kgqnsHps1LW6MFbcuVtvBAfxuRghM7D46zYVspwe5BsWuPwnh4UBRRVofXuGurWF4OuY7EbL34XzjNaVF760Rn8NW5chRfHK0wWI6u2lzF4NoDDayESSKLrEJ5I4Cm2YTSrZFIawx1RnvtOhvv/qAG7x42iKARHR2jatpO1t92JoqpYnT5GOkdw+Eqwe7w4fAV4/b6F/lWJqyiTtGGwWrnjS18hGYtiNFuIThtBV2nZVYDxXRKKpOIZxvvDvPCvpwlPJmbK7/rdFhpbSxYqfCFQdBdZfZJ7vvpnpGJRDEYjmm6iv01j5Q2lVLcU4q/J7Qit6zoDZ6bY+73TxKZT5w8Ad32phdr1RRiNkkBHXD2F5U4++mebGDgTIB5OYbYaObVvjBs//Re4i3TMFgvTEwnqNrbgK6knMj3NqhtdbLrnQWLBAP1tx2ncsgNdMeIrM6OoBmpVUI0KoIOiYLE58BT75w8gFgCjGcyOBf3cQiyk9gOjvPyjszM/F5Q52PnxRvpOZaltsVHatJqP/sV/QctkMFksdB05hMW9Wvqvy5Su2XD4ivjoX/xnMokkRouZRMzCRH8WT5lO78kJXvrBmZnxKUWB+/9oPdXNknBRiA9joj/MUEeQ0HiCkjo35U0eHN6LYxaj3dM88XfHZsY47v3y3M0sFAVUSQgkPoBMKstoT4jhzmm8JTYMRgNjvSEKK5yoqsJo9zSlDV5e/uEZAJpvLKd2fSFOn5XgaGzWseab6/NOmpbFbLVRWF3Lrs9+kVOvvIjJYqFuQys2j5cH/vQvURQVV2Eh5StWkU4mcXi9OH2FfPK//k+S0Sie0jJq1m0kODKMruusvvEWVFXFVVSMajAQCQTwFFnZ9mA9kUASu9ss95yFEEIIIYQQQgghhBBCCCGEEGIZkCQki1TX4f3s+cZfzSp7+C//C3XrWy/7GNl0FqfPQnG16+ICZgU23VWDpmlEAwlMViOJWBqj2YCW1VFRrubHENexVDzLvl93UVTppKyhDm+pg0NPd7Nxdw1n9nfgLKjlxEtBNE2n92SMNbsqiASS2FwmDCaViUGdk/9/9v4zTq7juvPGv1U3du7JCTODHEkQJMAcxEyKilayLUtykMN6V89qn8frtb3hb2+0dz8b5PV6neQsJ1mSFShKTCJFSiQFZpAgkTEABpOnc7ix6v/iDgYYDiQniQSh/r6Z6ds3ddfpqlN1z/mdxxY5+UqLDVf08crjJ+kfT4F+lee/8mf4zQY777yHXXe+jee/+iWe+dLnAEjlC7znF36Zro2bAZh46QUe+O1fX76vv/qVX+QDv/xr9Ayvwc2crT7lZpOq8anst68e36gkFYUMU1CebSEQPPRHr7BpzwAT+xaYPlrl+vdt5Iu/foBdd4zx0qOTWI6Bk/IIvBiIcdIm268fZuZoFTOs0vX8f0EuHoRdH4Qd74bsANmu7uVrOplO0P3rhSRg054BTr1SJvQTkYR03mZwfeG7do2FyQYT+xa4/M4xpCHRSnPgqWlmT9QYGM+vECKZPnKYz/7nX0LFZwUbrnnvD5PrHaTQ+927p29HvjfFq09Mk+t2EVKgNfitiFTuuyfK0uF7izQkl906yvEXF5bEwxKbHtvR/bcceRa/HVKd82gsHOPVr/8+0pBsvPIavvK5v0IrheW43PEz/5IHPjmF34p4xz/fztN//XscfeZby+dI5fJcdvfP8cJDVSzH6NhQh38wwxuLvOv/vZxgqS+qzLZo1Xzqiz6mbdCqRDz65yXu+ulLGBYvIP7qn1Ef+wm++Ad/vuI8d/zUx1h3+Z5/mAhJO2LhVJ3SdIMr376Ox/7i0PJ7A+vypDIW+78xxdpL+2hXA9ysteoca7Z2MX20svzab4ar9ulwceC3I9DQKHkUB9LLQeDtWo2nv/B/WTg5sbxvcWiYO3/q48RaUp5t4ZXKRJ6PXezh+QdOMrq1m9BXeI2Aa969gdpCGyeVCDoMbyowuq2TYNTh9SUOFeXZ5nLCzeyxKmu2dvHqE9MAaA061gysS5LonYzJZbeOsvfe48vnGNlcpFUN8JsRXitcIUICsHF3P/Wyx2hPN/Mn66hYYadMnn/gJHvuWUurFqCUZsPlfXQPdbFw7FVmT5ziwd/7TbRWy+e57aM/y6ZrbkeFikyXi5SddYs3O63ycf7mv/7Kim13/PQ/x7C2U+hbPb57zZB62SNohcwcqy0LkGS7HLZcPUhltk1pqkH3cKdCdYfXh9rCUf7m1355xbbbf+r/QciN5Htd+sbO2mJlrsXU4SqtaoCQgi1XD5DtcmnVAhYnGwys/d6vD3T4/qJnOEum6LD3S8exbIOeoSyNsk2jDHbaZHhjP5bt8sLXKgxvynDg8b/k4JOPLR//6jceZdddb+fYs3vZ/pbb6RnZwOiObd9WIAqAxizs/zx867ch0wc3/xKsvQGM1fOpDh3ezNRLHk/+zdHl16Pbuhnd1oXXCMl1O1QWBMW+iC/+91+hXa8t77d+99Vc+76ffSNuucMbSBwrZo+9wAO/879XbH/Xz/8KqfwwlakmM0drtOsh6YLN1muGsFyD0lSTwfUFbLfzCL9Dh38IpZkGD/7hK5SmmsvbrnrHOna/dRwpE0GHE/sX6R3NsWZrFwJwMxabrx7k0Ldmlo/ZceMwTqbzO+zwnWnXAypzLUxLEngx86fq2I7BI586SCpncclNIzz95QkyRZstVw/x3P0n2Li7nxMvH6VVC9h56xpeenSS8Uu7uez2UR7784PoJV2P7uEM+d7vXKBIqZiDTzzO/b/1CS655Q5O7HuBymyytvfcfV+gf91G3vdv/gNuJsvJ/ft4+A9+m/L0aTbuuYYbfvgj9K9dv+J8PWtGV18kaJGXs7w6kxS/EFKglSbwOs+cO3To0KFDhw4dOnTo0KFDhw4dOnTo0KFDhw4dOnTo0OFipxM5cQHSrtfY9/D9q7YffOLxv5cIiWEmgTQ7b1lDveyhIo2btehZkyEONSNbunj6vgnK002Ugh3XDzG4oRP43iEhnbNYd1kvx56fZ+ZYjZe/PsmWqwfJ9Trc+IFNxKHiLT+yhW9+5gj1ksdLj05y+49tZajPo9p0aDUVW68d5MBTM0wfrfKWD27Gsma49xO/uXyN5+/7Iv3j65YFSADatSqP/PHv8p6PfxxpmDz75c+vurdjzzzJ6PgQeGVAoOwuvEaL2MhQnmmD1qSKGfxaAzfrUigqymXBVz95mPFLe5g6XCHX7eI1QtDQNZDm8NOz9I3lOH2wjFIaIQWhH5Mu2ATtRETCcgyufNs6nvnKBJEfc8Vd4xjZX0BRZtSxycyWsH0NCEI/It2dR7jfXhSlw3cXefIJUrmruO69G5LkHiHIdjlYznevUlnQith1+yi1hTa9ozkWJutcdusocRDz8J+8yg3v30SuOwkIm584tEKABOClr93P+M7dr4sISabgsPXaIR76g/0opVGR4oYf3Ezvmk5i3puJgXUF3vsLe1icbCBNQd9ojmJ/+u90bGW+xTc/c5hNV9h85Tf/M5Hvc937f4QnPvPnnIliDH2PR/7oN7j8np/nuftLLJyaWiFAAolfImUFJ2Pxlh/agugU6u7wj8BNW7jpJBGtd02WRsXj0N5ZqrNt3JzFbT+6jZHUcdj3ZdTlH+aF+15adY6Jfc+TymXJNUyws4ACJImWnk7+d4tQHFl9/ZzNxj397PvaJM2yzy0f2kq95CENgWEKnKy5lOxRxHYkbs7hirvGeenRSUI/ZmhTgf7xPN/64jEAhjYWiCO16jodLg7iKGbtpT0cfnaW635gI/u/cZrydAv0wgoBEoDK9BTV+Wmy3ZLP/uY8e+5Zy96vnOLun8izZmuRfE+KwIsY29HDk39zlFY1IIoUV9w51kk+7vC6Uy97zJ+sIYQAnSRPnnq1xIYr+hnb3s3JV0oYluSKu8bpGUl8x77RHLUFj2t/YAOBF2O7BvneFA/8/n66h9Jku5xV18l1u1z/3o3USx79YxkapSa3fGgzj/3lYZ76/DHyfSlu/sBa1mQm8KdOM3noKNX5uRUCJADP3Ps3bLn2JjI9nbnVxcLxF55Zte3FB7/M2z6+B9M0iCNFfbFNo+xj2pKnPn+My+8eR4VqWZwv3+uy/fphnvnqBJe+ZQ1zJ+vUFtu4WZuuwTROqpP43uF7x8R5bHjfg19m+63/D/29Po3FNiW/AQhqix5RmKwNXP2OdcydqtO/NgsISlNNVKwZ2lB8Xe+/w8WPm7bYdu0g939yP1EQE4eKPW9bx8iWIr0jOcIgZsdbhtFxiQefenzFsX6ziZSS+RPHqcycZv8jD3DXz/4SPaODWPZ5HifFEczsT8RHrvon8Ozvw6feAz/yWVh/M0gJjXmonV5ai9Ag5JJAiUhen8m0XPJNkv+X5nhag1bJ6zNotXTs0h8hIdUFucHv4rfYocNK4lgReBG9Yzlmj1W55cNbMS3JzNEqgRdjOgZCaMpTEysESCApOnDN294JcwvQv/UN+gQdXm9UGPDCA19etf3Ei09z6Z0fZOFkkyiIyRQdrn7nejQKJ2VhGJKFyTpDG4rJnK1Dhw5/LxZONVYIkAA8/8BJ1u3spXc0WVfIFGy2XjuIk7YQQqO0YuPuPnqG0wSewnYNukcyCKHPd4kOFzlhEBP5MUprSlNNIj+m0J8maEcopSn2p3DSJtW5Ng/+4SuUZ1pc/c71PPG5I2y7dojJg2UANu4e4KWvn17+/+XHkv8L/SmOPDsHJLEHgRczf7JB93Ca69+/Ca8RIg1Bvs9FGIK99x4n1+0wvKmI5RgYcQMnWKAVpWi26tz/W58gjiLSheKyAMkZ5o4foXzyCJZt8ze/9ivEUSJGfOTpJwnaLd71Mx/FNjTEIeSHwc2v/DJKx+H0c2S++DG23v0gD312KnnmHGtu/MCmzjPnDh06dOjQoUOHDh06dOjQoUOHDh06dOjQoUOHDh06dLjI6YiQXABorVk8PYlWMdIwMSwL+zWV3fe8431svvpaojDEtP5uiRSGZVBb8HBzFj0jWVSssByDymybZ758nHW7+rjmB9ZjNmYwHJPC+vXLwiX/EOJYgeYfdY4OFw6mbXD1Xf20qy0sW+K3IvY9MsniVJPRrV2cPlShbyzFO//pZlQck4pnKD7zs3Dp+0gf34sYuJorrxpi03YHbElKnmRuvsZtP/FPCX2PwGthGBZ2Ks3lb30HQhhYrkNldoZUJkurvED+5FdZs2Ub5anThF57+d5sN0Xl1BT1yWnk8KUcevoU6a4cE/umqMy1uObdG3jgj/chDcEVd49ztBly+nCFeskjnbcpTTXpGc5SmUuq2Sullz9z6CeJIUKAnTaozbe57LZRjjw7y1XvXMf8qRrZLpur3jHGwb3ztKs+m67s5fiEIgyaDG/UvPDwJM1qwKYdDjtuGCI/Ovz6N+D3G/U5LCOiPFUl05MhlbOXkio1fjv+jocqpSlNNagvemSKDt1DGUz7/CoLlmNQHEwzfbTKkWePMbAuz9j2HqyUwbHn59l0ZT+2G6OVZmjzNnI9fdQX55ePd9JpgvbZ4Mc4ikEIDOMf12/WFhfwW4k9u+k0uZ5eAIY3FnnvL+yhWfFx0tZ5q4p3uPDpHcnSO/J3D+RrlD2OPDeH34qYeHGRkY0mke8DEMfRcnJPulDEzWTx2y0GN6TY81aH7iGHd/7cvyWOQlK5HF6zgd9sUhgYYHR7Dt8TOG5Iu1Enlf2HJQLHYZjYvbnaDdVKIZaqEWqt8ZsNTDeFec6+URQRBz5OOvMPun6HCwchBQPrHO75pxsQWtGq15GyymKcpbs6gzj1DG72rlXHOak08xPHWH/qGxhxC678aQjbYNhLSWsa2mVozsLIFSuOlVJw6c1rqM23efarJ1iztYut1w5imJJGyac83WLX7WO0agFxEGPYJseen+OKu8boHcujIsXpg2WGNxXpG8shZDI2hH6E345wsxam2VHquVhIZRyy3S67bh8l8CKueff6JGeSUwCM77yczdfeQLNSYXHyBG4mS3n6NCNbBjj4rRkyeQc73WLjbhspDE4cbDF/Yo7ddxqkC32oOCYKyzTKFl3O0HL/16HD95LSbIPGos8rj08xO1Hn2vdsoGsoTc9IhpljVdbu7GH7DcNEQcyhZ2YpDqTYsKsfyzHZctUg5dkW1bkWpw6U2ful43QNprntR7eRyp6/8qlhSIr+AYqNA1B6EdbexODPrKc1c5pU/SlyX/84XP2ztHqvIdc/RNfwKGOX7kJomD56mPzAIN1Dw7SbddzlmVXmAAEAAElEQVRsdkUSntaaoN0ijiOEkP9g36TD649pO7zlwz/Jht1XgpQIBN/4608hZMzkwRKV2RaNso+TNmnXQhoVn8iPQSfiulIKtlw9yN57j7P7nrWkMhbP338Svx2ycc8AXQNpRrd3k+/pzH86fG8wbZu3fOSjbLr6BuLAR0vJE3/1KdbtLDI3EWIHPsdfXKB3TYZWLSSVs+kdzWJYkmJ/mkc/dYh03mbHjcOUZ1oYpqB/vCNK1uG7S99Ynvf8/G6aVR/T9rEdk0whR+h51BYWMA0PRcR7f+nfowEVK+ZPHOXFB7+yPN7OTxwjlS9Qmp5i/pSmbzxPOm+T7XKJQ0XYaGCdfhzrhd9PhEH6tsLVPwsH7oWjD4EKoXwC8kPw8udg6nm47mNgpiHdBW53clx7EdoVUBHoGKIgEZ+OgmQ/003ej9pgpSFVTMRPvGpyjJ0GtwBd62HDLcm8sEOH7yLlmSbPP3hyqW/PcudHd/DMfRM0qz4bdw/QXGhTmmpy5dvX4rccPvSrv46dySCEYHHyBPf+z1/DcGyY3tcRIfk+IooC0vkuPvI/fwvTMBCGyczhg8weO0wcakxbkik67LxtBCdtcPBbC0wdqtA/nmPLNYPMWXUGxvN/+4U6dOiwgtBfLRgdBTFhcPZZYbE/RXXe54nPHiEKYm74wCbqi226h7MEXoTtmixONhjb0fN63nqH7wJKaQIvwnFNhDxnDWkpFkBIgdcMMKxkTb9ZCXDSJl4zxGuECCl4/oET9IxkmT1eY/pIlUveMkL54VOcPlRhYF2eTXsGmD1RxTAMFk412HBFHweenAYNlmvgN0MATFsSeondGaYkWrLB2oJH91CG0nSTU6+U2HB5H4f2zjK+vYu+8TxhwU7urx1SmW3x9L3H2XHTCHMn6hx7fp7t1w8ipMn+b5zkkhvUsrDItxOuMudfpqwKy/ud4eTLL1I/fZSeB38mEfW77uP447fSbMeYtkXOUQTHn6TUdyPuTzyLqxTve/9JmgsNbNGg0BWA6P/uNmCHDh06dOjQoUOHDh06dOjQoUOHDh06dOjQoUOHDh06dLigEFq/OSq4CCHuBn4dMIBPaq1/7Tvtv2fPHv3MM6urUr6RVOdnkYZJrruHWqlJ4MWAJmzNYbkumVw3wlfQiFHNEJm3eerxz7Nx9x5mjh5CxTGGZTG4fiMjW3f8na5ZW/R46vNHqcy1EEDPmixxqDi0dxaAHTcNc/UNgtTic3D5D/+DPlfgh7SrLVq1pOqJ6QqKfRl00EQ1W1ApE506he7pwdx6CTqCMFR09V8UycPf9YjmC8Z2Qw++8q+p7/pX6BbgmMR+CKFCZi10M0CkLCLfQ7UjrK4UfrmBm8tSK83jWhkC4RPV2uR6+6mUZsg4BbSr8Sp1csU+/KiJbivc3jz1uXnSmQLahqDcJN3fjQpC4laI259HtSKEKZGGhABkzkF7SRBP6CiIIrRtIsMYIQwwBaKt0LaRCOMo0IaERoDh2igvRHkRdiFNUGoh0xZCCqKGh92VJSg1kI6JcAyCchO7N0d7roSVSWNIA2++RnqoG79aR2Ag8ya16VmsfIpssRfVDggtCKSDa5nkCxKrq/iGNulr+J5E478R9ludaxIGCq8RYpiSfY9OUltooxUMr8uyY7vAKbjYxSJmsbjiWK01h5+e5eE/fhUVJ+PhNe9az2W3jZ5XiGTxZJXa8RrZvEPYDFks+xx6pcQNH9hAfeEkpekjZPIFWvUq6ETkIVUoMjSyCVFXqGaIkbfx81BfiJNraLByIOoapxmh/Rijy0V027R9helIbCLsQpJUGQQBwUIF02sie3tYLC0Q1GvMnzyObafoGV9L7/g6pADLXl2R/iLh4u17/x60GwHNio+btcgWXQDiSPHiwyeZPVZl5+5+RDMk2+9gGgaqFmL0uwgtUa0QmbHQUtOK6vhzdbJGATPv0AzrnJp4iW9+7s+452M/R7tex81kSOWKSENyav8+hJQMrNtAFATk+4fIZPMIy0briNriLNOHD5EtdJHr6cV00njNGkKA12hQmZkm8DwGN2yku6uXar2K1opT+/dx8uUXGd2+kw2X7+Hoc09z8MnH6R9fy563vpPewRFmTxznuYe/Smn6NJfccgdbrr1xWXTnTcJFbbvNapXI90h3dWOdRzQvjiKmDr1KHEVYtsPssSO8+NBXyHZ3c+U734ftpkgViliOizQNglaTxVMnKc+c5tkvfZ5GeRHTdnjnP/8lerOjGMpAWDKplG1JVKRACqJ2iJWxiZvJuIBjgCkRQiMcI9HhiTQKjfQVOlKItEXYCDDTFmE7RGtwUya6HSEcA9IGrYUAaUuasy2srEWrGlDoS2G6EhlqMCWRLWn6CiE0hm2gY41SGtuFsLUksmNI0jmLXPebLjH6orJfb/I0bVKEsUHoKeyUgW0nYkhag1JLRdgN0Epg2tBYmKXdKOGkUwghmTt+hP1ff5hMsY87/8k/o9moUbS6oakQloHyIoy0iY40OlSogkA2NHEU4ZkeKTMDnkZKifJjDNcES6CDxJaNHhe7601nJxciF5XtficCP6a+2MYwwPJiRKgQpkSFCmwJUfK63QhxCzYGAkKFFhodKGINGBLLFGg/RrgGIRpTCnQjQnkRosdFe3EiQGpLlBcjbYlWChRIU6KW+lYja6FiReyatJXCsA1UpIgjhVICpRoQ12lVy3SPjDJ3/AhHnvkWG/dcRWlyks3X34TtpIjjiNBro3Xyw5SmSdhuM3X4AKZl8+o3HyXyPHbd9XYK/QOkC91I28SrVkkVCrj5IqYp8ZotUpkMtvum+l1dlPY7f+IEWmhyVhciEqh6gLANVJ+FUY5RSiERqChGZiyCVkSjFqJSBvmMjY4UoVIE9ZBsxkJbAkdKolIbs8tFhwqURmZtrL400ukIhL0BXJS2C8D8USrkqc6cRiqDvq5RUAItQJgC2jGYEpaS3BCCMIyhYKGbMY2ZFoGEZ78xRd9Ahu07ezBtg/yGItI2iGs+UdlHpkzM3tSKxDnVisAA6awWdIxaIaoeINMmZm7lWkBc8xNfI2cjXZO4HRJXfIRlYHa7K66x4pwVn2ixjbQNzL4UwjYI51rEVR8dKqz+FFZ/hmCuSVT2kFISN0KEKTDyNmZvGiNjEc63iBbaiJSZaEMIgdntYnwbAas3mIvGdtulFjJQ6HqYtH/Roe14CFPgOGlUFNGolPAbDVq1KlIKpGmR6epCIGmWF1mYPMH0oYNc894PgVlMBPm0RhoSLZJkThVppBQYliAKNYYpMSyBlAJ1Zn8RIuMQSYRfKkGqm7ARAhp75igCjcxm0Foj4hjhuiAEwrIQQoIUxNUqMpVCpDMQheggAKXQQiT7GBKRcsEwIY4RS8+9tJQQhpiFAvbIyOveDq8zF439fidiLyIueyAEcc1HSIk5kFrR90VVn3C2mfisXS5Wj4tYEoFWQUxc9RG2AbEiqgQIWxLXfQQCo9vFHsig/IhwtpVcwzbQjoEKYoSvMPM2CNB+nMz1vBiRs4icEG0KjJpGagm2oG20iFRAvnGEVN8YFIYhlQhPxbWAcL6FMARWfxqZ/rsVILgIuShtV1VnmV2oMj9xnDXrLiFtZcEQCA061hCTCOkKTegp/CCmFWpeeXoWrx1yzZ3j9IzlsPLOWbu1DNAa6ZjItElU8pK1h4KNkUnG1ajqEy20kZZE9qZQFZ+46mMUHMxuh6jkoxohRlfym4kW2oicBcHS84uig9WfIlpM/AAjY2EOZjDSFjpWhLMtVCsEQfLbiHSyz2v8lu8jLkr7fTNz+mCZ+35r31IcRsL6y/u49gc2UOxPA3Dk2Vnu/739y++nchY3fmAzz35lAjttEngR264bpmsgxdiO7/z8oTLfolHycdMmvaNvKnHUi852F6cavPzoJDPHa1x+5xjV+TaGKcl1u7z6xDSj27uJvIjDz85x+R1jPHPfBJZjMrajm+cfPMlVb1vHc/efII4UV75tHXvvPY5pSy67dZRnv3oCIQXXvGs9T/7NUTbu7mf+VJ3qXJtt1w1x8pUSzYpPoT/Fmi1d7H98iu6hDP1r8xx4cpqekQy9a3Ic/NYM0hRc956NLEzU2HFZL2lLolMGIoYgihMBFSGSuIUwRpqSuB0hsiaxSvpeGSpMVxA228xMHGTd9ivQXpTEQ2hFdWEOAwMrm8K2XBDQXCxjuDZxFGKYBkIYOKaNNAQaibYkGkXsh4iUCUWLdqNKs7TI7NHDSNNk7Z6r6eof5NShQ2R0nYGBLujb8no39fdisHldgubW/uKXAZj4tbe9HpfrcGHyfeksdejQoUOHDh06dOjQoUOHDh06dOjQoUOHDh06dHjzsjpi+QJECGEAvwncAUwCTwshvqi1fuWNvbPvQBxB5TTVyCIIQlrVCidfepFmpcS6XbvpHlmLackkKTFfIE0K0VREp5tUv3QMHcSIlMlV77mHqeZRDj31DaYPH6Q4OMwV97wLK5vlufBVXl54mf50P5f2XopojrDZ8qFUxj96lHBiAnv9Oq6++TJajNCuBzz95QkWTjWWb/PgkzOsvXYLe9MGW+f3MZ4dp+bXSHsmKgqpz89xYt/zRGHAul276REmNpJnMwNcUjTwGzVKU5OUTp+iODhE98hanvxsg6vfuZ6iVUUvLDD3X36V/P/6baTrUD7d5uDeGa67ZwzvdB1V9vGPVJBpE2dDEXdDkdbkJJTKBMeO0n7hRezxMdzLdpG54vI3sEG/D2nO0bzkX9P4q+MYaQt7XZ7mN6fI3zpG+2uz6FCRvrwf79FJMtcOETwzT7zQRt6YRn6tiXlpGtEAjgZYdxm4X1eY62KEbRC96GO/1SL4RhOr28UYjDCf8kjdOUDzuTlsCeZ2Rf2xGXI3jeA/O0dcD8hcM0T9axOk9wwQzC/iH6mQv30cFluodoy7oUDjG9Nkbxih/fI8qhWRuXKAxpPTZK4exHt5AWkZmH1pmnunKdyzjsqXDmPkbJxNXTQenyR/xzi1B4+CgszVg9QePk72miG8Z6aIyx6pa9PUHjxG5spB2gdmCE7WKNyznsYXTpMqutjDLrXPHgalMbpdineP4x1fpDWeRbRC8iN9b3TLXlSUp5u06gHP3X+Sk/sXlwK3NnDJW0aIn3uK8K/+KzOHDzH83/4bXq0KUmJks8iRESiVaHRv4LG/PL4sQALw1BeO0Vdok1k8hMik8I8dx98yRnNogMGXcvT2panfewzVDOm2JNfdOELkzfLyI19g41XXUZo+zYsP3kfoeWy+5gZu+8A/ITxco/aVCfSSiE/XezaR6o1ozE8yP3GM4aEtGHt9mhN1AGTGovC2dczXj2PkHeqLcxT6+zmx73n8ZpPN195A6Hv4p46SyuapHp1m/fguUqM96HJA66unkK6Jvb6A92oJZzxLUD3K8VwfcVcPx6dqLAYRm/pzTJZbOJZkqJBCCsHJUoverM2pchs/irlmXQ8HZutMV9psHcyzodflqYkqo11pjs03WN+XoSdr0fQVi82AiYUmvTmHvqzDQN7l0pEC8vsz+Pjb0ggavLTwEmWvTNpKc6J6grSVwjVSHK4cZiw3xqW9l7LoLfLywssAXNp3KSPpEb524qusL26ku7WGuWc91mxsc+qV58n29NI9NMzEi8/TNbyG667eQ/2zR9Gxpgak9wygDXCA6r3Hl/2M4rs24GiL4JE6teoiCMjfvZaNw7vp//h6vvZnv8PWG28BrTjwxOOE7Taj2y/hlccf4cnP/AVv/xe/wJGnn6B7zRhSwNFn9tKqlrnszrcRhSGtWoX9X/8cx55/mns+9nPs/fxnmD58gMLAIJZtEfo+UeDzwv33MnXwVQCkNFg4NcHRZ74FQGV2mhP79/EDH/8FPve/fpXQ9wD4+p/+Ps1KmRs/+KNI2UksfSPRWjN18FV68qOIkkHjiRPIVOLbqXzM4n/4FYo//ENMGZqg1SL0PbRSPPonnyTX08u6XVfy4O/+H2rzs4xespM9b38PTioFQpDK54mV4oYP/iil0yfZsPkqzGcjqscOAeBu68Zel0cHCrPHRQcxMtZU7j1O7sY1lB88QWp7DyJlIIRAtaMkAak/hX+wTOv5uUQMaiRD9rphyn9xkPytY9SfmIRL+wlO1UEKUpf0kB7JUvnSUfJXDFD74lF6blpD44tHcLf3Es00EZbEHMpgDmUJXAMVRSCgNNXEsAzsjMH8RINct4M0JNlshZ54Gu0HqHotqTZomUjXxT90mLhcJnXpJYhcDqE1Ol6q4mlbSCmRfX24a9a8cQ1/AdF65RUIQ1QQIgwDVa/jvfwS0nVxtm5DBT46CDH6esHzoKubmjmA346Ym6iQ70sliT/oJEmHBYRoE3pt8v39eI0mXqPKA7/zG9z0Iz9O23Fo16p88y//lJ/573+CrGv8pyp0be+h8cgUzniBxhNT2KM50NB+aZ7iezbh7V3E218CwN5YJF4PtQdOgITMVUNEpTap7b0IRxLNtzEqPpUeD8NapNs/DXYK5g9B+Tj0boKudWC6aK/CpBzlmJ9Fa83m/hwj3ek3tlE6fM9p7X8F1W6BEBDHeIURnv7aPNuuHCJfDwiqPkbOor1/EWd9gXC6iVFwQEJ6Vx+6GRE3QrTSxBUPIQUynySnlz5/FNUMEZak8Pb1eAtNmo9Pk7lqkOiZOcL5Ftlrh6g/PUtm9wCRUvjHqqR29RHMt/EOV0hd0kv505MQJf5v7v3rKNVmEFJSmZ3CdlO06lV6htbgpNO8+tjXKA6PcNmtd6KBzI4uKtNT2Kk0cRQwdeAVnrvviyAFu+64B2lauJkMj/zR7yx/J91dI/R1rUVHCl2KSNkuRkPivTBHoDTuxi68o2Uap07hrC9i9Lv8wfynSJtpLu29lN2Du9+4Bv1+IvRIFbswKwqaiup9xwmnmjjbu3E3FGmfqGIPZhNBA9ug/WoJI2fTdesadDum8cgxgqkGxXdtIH56BvOOcUSoKX/2AIW3r6f+9Un8A2WAZJ1pRzdmf5rwVIO45mON54m6HcKZJtFkk+y2buKKRzDTwh9OY3S5ODMtwkUPNhZwpISJGmbexlqTxT9WxSg4CCkITjcSAQdLImwDayBNcLJOONvEWV/EWVfAyFgEp+u0D5TRXkRqRw86VPin6pg9LuFkA2HKJPG42wYlUDUfHWuihTZR1Se1vQdnXYG46uMdKCFcA2FLhBaEc22EKUht68YayX2/Jn6+vmiXRmmOlMySc7qJFnyEEMi0gX+ynog9BopwpglA+8V5zJ4U6SsHqD90Eh0q7IzFPT+0mfqjk3h/cRCA+LJe0lcMUPnsYeJaAIYgf8c4osvGzDlE002aT04jbEn22mFk0SYONdF8G3c4Q/0bp/GPVLD60+TuHCcq2vhKk57zqN53HFUPsNcXyN0ySv2hEwQn6ghLkrltjJm1GfoDMObaRDNNzOEscjBN/S8PomoBAJlrh3A2FPEPlWnunQFAOAbdP7SF2qOnSF/SS+mrE7C0vuJu7cYez2H2pSl/9jD2mixmd4rm09OgwOxL0fPBbVhDF4VI9RvGfM2j2moSaQNHasZrzzFvXk4hYyN8hXegTP3RUxBrjKJD1/s2EZyuEwgPazhD1suQzxQ53W4R+G3iVotmaQGEQBom6VyBdZfvYeboK1iOixACrUGjMaSB6ThIw6BVrWKYBghJHIZYjkMY+BjSJFXsw7QHiCNJHJlo1U/cUhhGmq//+QG2XjXC1vURojyL1npJ2MFP5keGTP5qhdCaqN1GLCyiozC5x0yGaGFhWZBEtVoYhQIagW42EakU0rERQhAaBnGtRmrbtje62Tr8HYkqHv7RKv6xCvbaAu7GIjpSVL5wFGddgeazs8SlZI3IHMpQuGuccLqJs65A6a8PES8uvdebInfLKPZ4HoDqfccJTtbIvWUNtYdPor0Y4Rjkbx2l/s0prN4UmZuGaR8o0X4qEfN3tnVjD2WoPzq5vO7f9QMbaT4zQ/vFheSGpaDw9nXIlEn1c0fQocLd1o27rZvMQA4lC5SfKiPdEvbaGB3F1O4/QTTfBpI5YuvWEZ6Zb3B92sWcauEMZdCtEMMy8CcbRHmL9GiOeKKGaoXYIzm8rMn+KOBS1yU+USXVlSY8nawxp7b2oCKFf7iM0eWibQlpE9kICSfrWAMZzIEM9lAGI3dBCkO9qQmdAtXZg6xbewWmnyR2E5CINnoRqhkS1wPiSgBaY3W7WC8vcO2uPlSoaH3mEAspk+y7NtD+1gzumhzBZB3vUBl7c5H0jl6qXz6ObkeY/SkKb10HhqDyuSPEFR+zxyV95SC1+yeW1r6yuNu6qT98EgQU3r6e2v0nyN60Bpk2qd13PHl+kTHJ372WyueOLKdkp6/oxx7PgZSEUw3iso+zqUjjsUni6lm/RaOx+tJEsy2Mgo1qR4SLHqmt3YSTdbRIBHeiUhvpWgQna9jrCkhL4h0uY/alcTcViSoeuhklvq4EczARBnLXFrAGOr5Dh++M48LtP76dlx87TWW2xdpLe1mztYt07mxYzOTSnPEM7XrIvkcmuf79Gzl9qIrXCHjuqye4/ce3MXOsyuD6wnmvNXmgxGN/dYjydItUzuKG929iw+5+jCXhqw7fXYLZOYIjh1GxQohETFoohQai7mG+8tkS1bk2V79zPV//s4NEgeLqd6/ngU/up9CfojLT4pVvTLH9hmGe/vIE9UWPq96+jr1fPg4alNJEocJyDLxWUggl2+VSmWsBMLA2x6kDydru4lSD/vE81bk2J/YvsnF3P/u+Nkl1rs3I5i523rKG4/sWKPS57HnbWg7vnaVrOM2Vb1/L4afnSEu45rJe6o+cQm3tJpxqINMW0pK0F9vY43m8AyXSu/qpPT5J/uZR/BcauOsLeIfKmBuLNJ6bI315Pz2nuwnMMv6JWiJIJQVyJumnW0/NYlw5SONb02R29hGeaCMChbW+QOO5WeTWbqKFNhgCeyRH45unics+GILs7WvQIyGVmSmOvvgs7/2Jf0N4rEH9yeP0j3VjDo+yUJ+itxP60KFDhw4dOnTo0KFDhw4dOnTo0KFDhw4dOnTo0KFDhw4XLW8KERLgKuCI1voYgBDiL4F3AReuCEl1ikhIMEza1QW+/In/SrteA2D/ow9xx09/jLGdlyPRECuka6JrHpUvHIFoqUpfO6L8uSOs+bFtfOFwEpBemZnisU/9Ae/6l/+Gn3/h55cvty6/jk9f+X9R9QalP/xD6l/96vJ7Y0/sRZdi2o1whQAJQCpn81LtBf7jC/+Rm0Zu4l9f9a9JRSZSSmoLc3zpf/4qUeADsO+hr/LO/++XEL/8n9j5R39AFPjsf/QhXnzwvrP3ccWV7Lz9Q+z98gS3fWQj7S9/GVEsYqVTNKshD/7BK3zwF3eBFkSzTcqfPrR8bOPJaXo+vA0hI2oPPUjpd39v+T170yaG/9t/7QQJv460dRfNh48TL3pkdg9Qe+AE1mCacLZFON1MxDoePpEkV4SK4PhS4O5DJ5NKbFmL5tMzZK4eovH1SVQrxBrKUnvwBKlLemg9N0tc8clcNUjtgRPYYzn8iRrRXIv8nePUHjiB0e0S1wOCU3Vyt45Se+gEwpQIU+AfrpDa2Uv7lUXC0w0Kd6+leu9x3B09tF+cJzhVJ3/XWqr3Hcdem8c/WiU81Vg+tz2awz9aRTVCstcOU3voBEbRISp5xGWf3M2j1B85hTAkwpQEJ+tkbxyh/tgkAEbeprl3BndHD63n54jLPpkrk89yhrjk0fzGFDJt0XxqgswPr32DWvPipdX0OPrcAif3LwKgIs03Pn2E235sG/mxEZqv7KfrIx9h/hOfQEhJ5obrKd//ACP/7t9x+uMfx/zkffitaNV52/WY5s//Iulrr8XIZml/4v8w/of3EQqf+mOTqGYSfKZDRfzIKewPDHH60AE27LmGvZ//6+XzHPjm17n17o9S/dKx5YBd1QipfOEI3R/axl//xv+gXa/y4//0f1OfWFg+TjVD2vsW6NrRz1//1v+Pt37s5/jif//PhL7H4IbNyWcpdjG+83IapxcYVZvQFY12PEp/eXD5POLJKbp/eCuLf7if4ns2MPjop/nV3uv58Zs28PO/9SRSwL952zb+4+f3s6YrxQ9cPkLGNvl/P/0irSDmdz68m39/7yvsm6wun/Nf3rmZG9YX+dE/fp6funE9P/knz/If37WDZhDza185sLzfhv4Mb9nURxArrlzb/d1p8IuE+47fx97pvWzv2c7nj34ex3DY0bODzx7+7PI+1w5dS7fbzZePJ1WxXMPlE7d8gv/xwm/wntH3c8nTd3PZWxT3/vp/wbRsrn7PD/LF//FfQAh+6F/9Ks0vn1pO/gJoPTNLz4/vYPFPXlnertsR1S8epfCODaQv708SKTTUHjxJ13s3kY6y1BcXyBa7+Opv/i+0TgQQjj23l7d8+KM89qk/ZO74EZrVKt1DI9z3f/8Xoe+x8aprmXz1ZboGh5iZmeLgE49x3ft/hG/+5Z+ycCrpI6uzM3zjL/6E23/6Y9hualmABGDNtkt46m/+asV35jeblGZnlgVIzvD8V77IrjvfRqF/4LvYQh3+vkwdOkDX0Cjx0dZK3+6pxLfLv/tdtOp1FqoLTOx7jktuuZOnv/gZAC699U4e//M/QsVJX3zq5X2EnsfW695C39r1aB2S7+7h5UefZ+t1N5E+5dI4dnr5Gt6rJayBDMIxiCs+OtLoSJHa1kPjsUnSu/ppfmua/J3jaD+m/fIi2ZtGiCo+refmls8Tnm7iT9QwhzLUHj5B9rph6o9OLvsN1lAGrRTp64ZoPT6Fu7GL6kMnyd00Qv1rp5b3yw1mUM/OcswxWb+nnzjU5HvTfO1TB7j1Q1sxLcnM0Sq5Hhe/bWIakDUCVBThHzxEasd2pn/5V4hmZ5fvbfA//ydkNpuIawQhRsolimKkUsS9vRiu+71u4gua5oEDEASoeh0dhqAUpz/+LyBOqp3KXI7BX/5lRCaNbjSoP/0M1jt/hFYjpDzVxEkZtKo+UgqiUOGm5ymd3s/0oVe54u0/QHV2hslXXmbixecY2rSFY8/t5bI738Yrjz7EOz72r5E1RenPDpC7c4xgogaRpr1vnrjiYV3RT+2hkzjrC6h6sCxAAhAsJQnLrIVqhDSfSuy0+pXj5O8Yxyg6NL85Re6ucdz4FMKw4BufgINfPvvh93wULnk/ws4yWtnHMXElx8o+MzWfW7b0M1j4/raNi5n28ePEtSpCKeJaDXPtWl59ukQq72LVAkw0raMV7JFskhAG+BM1cjePJhXgYyCICedbSNegvW+B1KW9IASVLxxd4etWvnCE/K1jYAhkzsbfO0P2phHqj06SvX6YxtMzpLZ2Y49k0a2IxjenloQdT6zwf+tfOEn63b089tk/YuHkBNtuuJk1O3YSxzEP/Pavs+W6G7Esm3q5ROC1EEiiMMBJpYmjiL1f+Mzy53/m3r/h+h/8EKWpyeVtV779/fT1jaMjRXiiRlTzSW3tYeFPX1leY2k+MUX3D22l9vQsradnKbxzPdeOXctHHv4IRafIr9/8v7lisCN++r0m0hKzBTqG1rOzhFOJUEPmigFKn3qVrh/aQu3+Cdwt3TS+OQWAkbOJSh71h06hmiH2ugLtlxYQpkQaktYLc8i8TTTfWhYgAfCPVpIxPIipPzKJDmLckgeGxH9lkfSVA7QeOEE4ndxD7qY1tL52mnbVR9gGuaKbJG0uITMWuVtHCY5VV/gR9liO1K4+Sn91kGgmSU5qPjFN7rYx3G3dLPzOPnSoEJbEyFhUHzxB4e61lP/inLmbY9D1gc3EJY+4HtB+cYG4mqzHtZ+do/tD26h87jBGwcEazmINpqmcI/hQ//okfT+9E2cpwbrD9w4v10Pr+AQ9fdsJJ+pgyUTMTDqJr3n9CNV7j5G/bakvBNKX9ye2tKQphxR4r5YJjlbPObOget/xRIAEINbUvjpB94e3Ec0kotVnKH/2cPJb+eJRcneMU71/gnAyWfMNp5uU/+IAXT+8FTNSlD598GxN51DRfGqa4ESSnK5DReOrE4x9eBvtF+apv5SsSzgbfHhlcVmABEAYgmihvSxAAqD9mMq9x8jeMEzj66dXzEG9AyXSV/RT/uxhdDvCWVdYsWYWzbep3j9B9we3Iu2OqOQ/BKU0z50ssaYrhUAwXvkG8f6v0t60g2LaJq4GSaL5EnHFp/rl4xTevYGF39qHUbDJv209/okag6MbePXVxwDwmg3mjh/FSWXoHRtHxRGzx49iWDa9a8awXJfQ9/FbTYSUpPJ5Utk8Lz74ALnuHvrG17Hv4fvZduPNVGZnqC8ucNU7f5goHkDFmlYtQEWKKNRc8+71PPKnB+npXUPv5Cl0ECRCJBqQAmHZSMdJtgUBOo4QQoBhEkwcJ5icpPi+9+EdO46OIoSUEEZgmuh2m/bjj2F0d2OPjyNTKeJGE3vtWoxU6g1qtQ5/V2IvovLl43hL/VLr2TnS1wyCgqjkYRSdZQESgGi6SXCqQTBZJy77ywIkANFCm+B0g6jiES94eK8sLj/H0H4yb9R+TO2hk2SvH6H+6ClSl/UtC5AAOKO5Vev+tYdOIt1z+i+laXx9ktSuflKX9dF6ZjZZsxjMIBxJ5XNH0H4yEJhDJZzx/LIACSRzxPy2bq6QkvjPDpK5a5zGF4+SvWGEyuePApC/a5zan766fN8tkQitX9HlUP2jVyjcMU7lM4eW++PmN6co3LOO5hNToCF70wjBZIPg2NnxJ3VJL9H6PNmrh5K5QofvGrW5GeYmjjPeewnKj5CWRLcjVCvEn6gjBJjdLq0jZTJXDlL/+iRG3kZ7Mc0zfnBfGn/vLDLW+Ecr+Ett567JU/ns4eUxPppr09w3D4EiriQ+ZGpX/4p5WWpHz7Idu1u7aT03h7ANjLxN7f5EQB0gfVk/ta+ePQ6g9dwc7tZuKvceI3N5P8oxaH5rZnm+ecZv6fqhLVQ+exh3ew/tlxaSZ4m3jyXPLCJF7rYxKl84Qmb3IJX7JpB5GyNjUfn60nO3goNqhBg5i+o5vi5SUHjrWuZ/9yX6fmYnVn9HeLXDt8dra2qLHmu2drPusl68ZkB5pkWxx8JekwgupfKrhZcsR3Jyf4kXHjqFaUn2vG0dQgqOPDtH14iL4zgr9l88XefRPz9IdS7py9v1kIf/+FXSBYc1W7q+9x/0+wwdhrT2fgtVqSQidY6T+IdhiI4iGnKA6lwbyzEIvIjAixneXOTEy8nz47WX9vLKN5K+NZWzqC/5CnGsl/u7MwUVQj8mtSTO1Sh5bLiiH5gnjjRuNhn7y9MtNl85SHEgTWW2hd+MuOLucQ4/Pcvi6Qa7bh/DciWpnEO93GbN9m5SGYtvfek4o9u66HEMWs/NotoRaI1/vEr+9mQOeeZZQ/72MWoPnyBz5RCNvTO4m7uoPzZJakcP9UdOkd7VR/3RU2SvGaL6wAnyt41Re/gkuZtHiWs+cTXAHszQfGqa9M4+ao+cIn/rGN7BEv7hMumt3dQfmyR/yxjBVGM53iH5YjSN+0+R/eBavvnpT/FT/+H3qH7pOMGJJN6p9cws6d0D5G4fex1av0OHDh06dOjQoUOHDh06dOjQoUOHDh06dOjQoUOHDh06vFG8WSLKRoBT57yeXNp2YRL6YFi0SCGlwfyJY8sCJGfY+4XPJJWtLIdUOoc0RBJkHukV++l2hGqsTJCPAp9Wrbpi28e2/QzCsoinZ1YIkADEwsBwBPmeFIX+lQG2V759Hf/91V9LzrHrY1jSwpU2hmky8eJzywIkyc1oXnjgPvr/5/9AmiaN0iL7Hlp5rePPPQ0sMPlqiWY1xtu/n97/9GtI26Ay18JrhkjDBF/TePz0imN1OyI4WUctLlL+4z9Z8V5w+DDB4SPn+bI7fK/QjZDgeGJnOkqCD63h7HJwiY4UKLAGMsuJDhgCHcQY3S7hUlUgmTGJawHCNYnrSUCi2Z9eTjQ699z+uecGrKHMcmJEUsYoqaJ25lizL014uoHM24QLSZCXNZAmOFVfqpoZgwZ7NI9/tLLi3GZvinD2nHvQYHaniJbuG5kkYxhFh2gxObewZFIZ0TaIl4QrrIHkHs4997kEJ+tYQxlUKyKebq96v8M/DonkxMulVdtnj9cobt8EgFHIE544Qe7OO6j81acZ//1PUvqTPwalsAjJdq0MHJRSkLaSxMvWk0/ibN2C2ddHeKqBTJsrknAA0CBailQutyywcC5xxV8RsAsQVwNUM6JRXsTJZFHlcNVx4WwTB4fiwDCnX315WXxh7a4reOnh+1EqxkmlyVHA6c2Q3dVP/bX9qhcTTNYxuh0aj02hSjU+Mqw5PJfYvtLw5X3T3LCxl4nFFpYhOTLfoBUkgexNP1ohQALwW48eRQmDajtkoeHTlbb4ja8dYaHur9jv6FyTQsrik48dIzzPb+P7lenGNJ949hNsKG7Aj32OV4/zljVv4fNHPr9ivyenn2Q8P7782os97p+4n6+992tscrYxuC7LgSceQSvF+t1X8cpjDwMwtHEzfqW5nDx8LqoRrEgKA1CtCJQCcU7F9EihGgEyEozuuJQT+55fFiA5w8S+5xncuJlUvkCrWmHh1IllG+0bW4tpWSAkJ196EQA7nV71+4jCgKDdWnVuFUeYprXq/g252m09U3W5wxtLq1bBaAkaj02u2H7Gt0tdeT16ZAgrlUJKiVer4aSTqqUqVssCJGeYOXIIIQVxGIBObGV48zYEAv/Qyj4JIJxrIhyZJEtojZACmUr8D5lONBd1pAjn2xhdDlHZI1r0Vp3HP1olfWkvOlCwFHB8ZmwPT9WJawHumjzhTAuz14Vz+rbl/WZbiFZINmUStGOiICYKY3qGMtRLHuWZFuXZFnGkUZGm3Qig7SGUBhUTzc2vECABWPyd30VImVQDj0LCmRkwDVSlQjg9/fdqq4uSMES32mjPR1gW5T/7s2UBEgBVr+MfPYJwXfyDByncditBJImDmNCLaDdCytNNZo7VSGVNjj79AJmuLgY3bsbNZHn6C58hXSxSX5wnU+iivrCAVgo7lWbtlsuSJHSlsQeyhNNNrMEMwck6MmsTLSX+uJf0JP7pa2/9VB1r8GwFXx2qpWQyDZFGWBKCGFo1aJdWCpAAPPsH4FVARYj6FLvS83SnbZ46tsjJxeb34tvucIGgqlV0o0ncaCAcl1DbHNtfI11wkHUfHalkfnWyjtmfJjjdwCg4RAttZM5ENUNUK0JIgQ6SfbXSSNtANV7jQyiS99LWsiCCMOXyXMvqdglnmgjbWOqHz86vVpym5CEDwcQLz1IcGErWNLSmNj9Ls1LGSWcJ/TaGZWG7aeaOH6VndIy5E8c4tPebq76D0wdeoWvo7LLQFTe9HZRGtyKINdZIDm//4so1FgWtF+ZxdyUlWhtfn2Q7GwGo+BWen3/uu9A6Hf42tBCJEI7SiXjTEmqpyrBqhrhbumnvm19+LxFzCpd9XGcsERW1x3OoWBEteDhrC/gTK9feAMKpBqoVJWM3YI/m8F5JkpDMgrMsQAIgbYlasnN3ezetZ1eOyaoZgtK0XpxbsT04WUdaxrIAyRmae6fxD5aWEzrdLd00n5/D3dRF68X5FftqPyacahBONZG2sfx7A0AkwhKqFeFu7SY43SA4WV/p28ea5jMzdPjeI4TGb7dgSfxOSIGwDOKyjz2SRdX9pM+snG3DM2toZ7AG0wQnV9qr2e0Sza60IQAiRevp2VWbgxO1RIjHNc+uy525XqDQzYhwtrWiP7bHcviHK6svseDR3n9WGNU8s7Z27ue2DXQQv/ZQ4kUPI22v+Lxn7yNGt6NkjS5cvS7gHaks//Y7/P05NFtjx3AewzBISw/x+H+ndMkvMjBWQAixsh9ZIpxuIpZsIq4G6FYIoYZqhFKKxVMnmDt+lGx3D13DI3iNOoeeegLbTdEzMorWiqmDrzJ9+ABevY4QgrDtoaKIoN2ie2QNLz70VdZs24GKIo7sfZKxHTvZ9/C92K4k8mNs10ApkIZAiGSeP3XCB9tORAWDAO376FYbVasRl0qoShnltdHNFuHMDO1nnyWcniZ96U6i2TmEZSEdB2HbKN8nPHWS5pNPYnR1YY+NJYmdR47QfvZZVLPjJ78ZiBfaywIkZxAKvP2LmD3n7y/D6SbpK/oI51evwUfzLaRr0jrjXxhiWcjjDDpUy09M43oA5tm1svOu+5+oYQ1nV953NUAYAuOc5PZwtoVqK8zus8/mzC53hR+0fJ2pBtlXyoiUiWqEOOsKy8JnImWimtHK+9bQfmmB+GSd1PYewpnmSv9Ag3+kgjWS3Ke0jRUCJADtlxfQrei86yQd/nGoOCaVKSRtZgqIFXo52V0TLraJyj7Oxi7aSyLrzsYi7SVfFRI/2DtYwlqTXRYgAdDx6jmXYRrLz++SnfQKezjXjs/8jqy+FNqLVswDhWucd21ZRwojZxNON5Pj51b/Ds/MNc3ikp8tBTrW6HaEu6Wb1vNzpHf20dybrGeld/bS+NbZta3Upb34RysEpxorbVlpghN1ZNY67/pKhw7nUp5t8Y2/PsyJlxaYPV7jwJOzPPk3R2k2zvafQxuLOJmztXqkIbj05jWYtsHut45z2e1j1BZaBO2IiZcWaJZW/yYaZX9ZgOQMKtbUzjMOdfjH4x05QnR6Ch1FifBItYqq11DNBlrFyCUnV0hBvNTf6VivEBaxU0mbq0hjLwmJCQFyacxv1QO6h5K12tMHy+y6fTS5diNg/NIe5k/WGdlcXH6ctvfe4wxvLnLbj22j0JeiUfbYuKefWz+ylcXTDU7uL3PshTnQgslXS5x6tUyrGlCZaWMqhX+ilsQ1TDaWn2fA2f5aKw0KZNYiLnnIjEVcTkRTVSNc/qtV0t/rSCFTJqoeYPamCKYbGN1uInqmNQiB8iKMLnfZX5KuSVzxV8Q7nIuuR/jNJnHJXznGQCKiUgpWHdOhQ4cOHTp06NChQ4cOHTp06NChQ4cOHTp06NChQ4cOHS4e3iwiJOI82/SqnYT4aSHEM0KIZ+bn589zyOuEViAMpDDQAuIoWrVL5PuoKEJFMWEUJMINeXs54fEMwpaQXp1c6xYKK14PpwYRponyVge2hKUaQgkQmpt/ZAs3/tAmrnrHOt76s5fyauFblPwkgT9jZpJKgkuRE4G3Ougw9DyMbBopJVEQrEocBog8n2yXg2VBevdu4raHVhrDkMuBHhqNOk/gug5VkjgUrA5YUOHFG8RwwdjuOWjJchCtMJOuIpxrYY0kwTfCkiCSSoLW0NnkSUxJXPExe5KgWu3HyIyF9iKMbJJUHpU8zKVKZWfOHc23sF9zvWiuhT28dD1DgBREJQ9r4JwqZ0tiI3IpcEh7yfXQIJaChuKSt1wZ7cy5g8k6zrrC2W0SwukG9thS1eBYJ2IjZQ+zLzk2rvqYfSm0H5/9LIurP8u5WEMZoiWBlPMFK18MvJH2qwX0jGRWbS8OpGmWl4Kh4uR7F4aJDgKEEKhq8p54eS9X3D1OppgEhtuuwU0/uIHgN3/17MliRby4iNlrL9vzCkQSALb2sivI9fSuuhej4KzaJrMWcinAsVWrYvSv3sdZX8TXXpJwtqJPFGit0Eoxd3ICJ5VNYsc0500IIlTgmGitEULgCkU7PLtfuRWSTyWfSWnNYuPstfzzJAm1wpjgTLVtLyTjmFRaIZaxeqiOtWa65hHrVUP2BcEbYbuhCmlFLZRWqKUxVCCI9eq2U68ZYxe9RbJOlvl4hlTWJPSThCLDNImWbMQwLcqVKWTva2xKgMzYqzw/4RhgyCRwfQmZNpFpC2xBefo0Qp7PDUs4n80nbpsg9Dz6xtcB0CyXsNzVlYazxW6CdouxSy5b3nZ47xNcdtfbVuzXt3YDeQWFvv4V26//wQ9/m3u4uLnQ/AatNFppVLC6z9BhkpjJ1DSR54OQxCriqne9HwBpmquOcTKZxKa1JslmB7/dIlIh9vrCqv3N3jQ6VEhnyWcWEJc9jB53WQBNmBKrP0Vc8jDSFuZ5+mZ7JENU9VckGp0Z262hDEbWJpxrYfamkoQ+46zffGY/sy+Fdgxmp5sYpiAKYwxTUJlrkcpZ5Lpd3KyNEAJpCIxmdVkISFo2OlidKKhq5yaQkAitGOZSMsl5+v0LnO+2/QqlEn8wjgBBXK6s2kctJUhqz6P57LMYBhimTKqeisTPNEyJYUGzUkLHMabjAJp2o87c8aMMb9nG6QP7WXf5buoL86zffVXSHEsJYFGpjdmfXvaNVTNc9gFUPcTsW90HWkOZFZWvhSUxCjYqVGhDgCEQroFsnobwPAkMWkPskXwBClP7aKAVxETqwhx738xcUH2vUoBO/mqFGbXp6TOJgpg4YyNMuTy/ihbaWAOZJAGh203ER86M9Tqxu2iuhRACYUlE6jX9sgBhSFQzwOxKRBxUM8IoJP5ztNjGHskmSRCOAaY877xI5m0ClawxLJw6QSqXB5Lx4wxaa9B6ebFHxTFxGNK7ZnzV+bpHRrEcd9m/kEImfaTSaA1G2kT5q9ditBchU8l4kYxbZ69f9VcLXV0sXEj2K4QAmSQGnZu4e0Y4TKZNdBAj3LO2qLwIYZ9dGzuzLuAfqCAMgbM2j3e4jD2aW3U9czCDsA2ipWq+505NXjtNOfe1sOT5161izfmWKfX5+l0pUP45/pEpEtEKSyaiZ689R6jRWq+6L8Q5NydAWOK8cz/VWm3zb3YuJNs9QxyEmJYNpkhEmbRORGzzia8oszaqFSHPSUA/s4Z2hmihvbwGtnzeeoDR7a6+oCkR6dU+s3RNVKgQRtJ/vxbhGqvmcqvW1M6cK22uEEkJpxvY4/kV+6hGiHBXr1Gbg2nCxTb22vyq94RjJGvbS+PNa3HGckh39We7GHg9bNePFNaSDaYIEa1FpPY5faSM1nqFCMIZzL4U6pxORisS21QaKY3EnmFJ7DPZTymFkPLs6zhK1pikQC6JhcZRhJPOoJTCa9RxMhlC38OwTLRWNCslhNRL05lzhB2W7qWn34a2l6zh6WSsEFIujRnJNXQUo6II7QdopTCyWRAC7bVBCuJGA1SMdByMQgEdhYmoyZnnHUKAaSKzK397HVZzIfS9Ol49rkYlD3MoQzjVxB5bPebbYzmiUnBef8AeyREuJPP55ALAa33Wc+b4Zre7QszuvOv+wyvncwD22hxRxUM1z47JZm8KYQqi8tnnbeF0E3tDcfU5R3NEC22EKZL1FEuil9ZxhSHO+3xBB/FyP3ve9yO9fP/fbolW62/jy7zJuBBs91zsdIbF6ROJHxtqhCGTNaczdlZ0MYoO2o+Wx1jVDDFyZ/vvqOJjdruJPZwzDgtjtU2GFQ9nffHshlgnc7Rzj1nqgoNTDZwNRcLZRKDn3GcYq575QbKmbAh0FGP2p4mrAUbPar9l+TmdPue4M7ZlikTQV4qz4mRSrhQbESzZ/3l83SBG2kbnOVuHv5VUzgYNpw9VOPDkDNW5NumCjXPOb8iy4NaPbOO6927g6neu566f3EG6aJHKWTRKHtkum417+vnanx6geziLYa/+zdkpE+c8fnoqt1pg/WLm9bJdHQToMECYFjqOl+ZhIcQKIQSp+mnWbi8QtCMyBQchBTPHqoxf0gPA0efmuOSmRMz24N4ZrrhrHCHgwJPTXP2O9Thpk5cfO836Xb3c+EOb6V+bp9Cf4o6P7qB/XZ7hDQXe+k8uBa255SPb2HrdEJfduobuwTTf+sIx9t57nEN7Z+kZyoJIfOVmxaPQl0YrTeBF5Jb6zepCmxCBPZwlXGhjDWYScZAl2zkzbp/pt8+Inojk0duScsrZsWD5rymTcaToEM60sEdzBJMN7HVnn6nIlElwsoa7sbjcF8u8vSLe4Vzk0j2dt+/VLK1RdujQoUOHDh06dOjQoUOHDh06dOjQoUOHDh06dOjQoUOHi5U3iwjJJDB6zus1wNRrd9Ja/67Weo/Wek9fX9/rdnOrsFOgAkTsE4cR/ePrMV6TYLnrrrdhOi7N8gJeu06MhqxF4a1rzwqRGILiOzZw4vRLK4699Na7+Gb84opt//6FXyMOAqw1a7BGRla81/jVf4s0NHbKJI40xf40o9uK5HodfvmZf7e83/9+/n8TxzFhHKHimA27rzob1bDEztvvZvpjHyeKYnI9fcvJxWfIdHWT7x/iuvduxI2ruJdfTvNTf0gcKQp9KYqDaVSsEGmDzJWDK783mQSKiu5usnfcsfKtfB5nw4bv+LW/mblgbPdcijbZG4eRaRP/WJX0lQOEkw2c8QJGwaH98gLZG0eIqz4yZ2P2p2k9P0f+ltGlCq8KezRH6/k5cjevSRLhSh7uli7aLy+QuXoQ4RoEp+qkd/XhH6vibutG5iy8AyUy1w0TLSTJnEaPS+vFeXI3r0G1wySReDiDd7BE+vL+RBjCMZA5m9aL82RvGAGRJCqZfSnary6S3jOAsCXegRLZG0eIFj2MooM9nqf13Cz528aT6vOxwt3eTfO5WfK3jSVB7PUgqYL8wjyZq4eSirATNTLXD9N+dTH5LCmT4GSd9OVnE+RFyiS9ZyCpXGcIzKHVyacXA2+k/WYLLpfevAb3HGGQ3rEs/eM5Wr/32wAIx0Y4Dt7+/aSvvoqFT/4+hfe+F4D2b/wa+YlvccPbh7n1w1u460Nryfz1/yTYn/S7Rk8PyvPQQYDZI4jKLXJvWXM2eUZA9q61xKJJz+g4xYFhukfODlem4yC6LHK3jy0H+ApLUnzHeoK8Tiq+as3x6X1kbxpJgt0BZ0MBZ32eF751H/MTxxjdfulyddjFyZMMb97Gy488SByEWANporJH+2CZzFWv6VcF2GN54ukm2RuGUa0afzEj2Nh/Noj4zu0DPH54HlMKpBBcta57+b2RLpe0vTLJ6JYt/QzmkqDkTQM5Jstt3nPFMPFrAtVtQ2JKyY9dtxbXWp2odCHwRtjuUGaId214F62ohWu6pMwUhyuHuazvshX79bg9tOOViQx3r72bH/nij/CZ03+JM2iw5dqbADj+/DNsvS75f+rQAWJT4e9SyO6knUTKJH/XOK2X5yncve6s92cICm9bh3RNvFcTQTKZtcjfOY7SiigTs/maGxjdvnPZ/s6w4Yqr2HbDW4jDCDeTpXd0fClhH2aPHcZrNlBRxNDGLWS7ejjwzce46l3vXXGO7TfegplKoWLF5Xe/g2vf98Os27WHbTfcwoYrruT2n/xnXHLzHdz8kZ/mttveTrrZ4vZd13LTXe9k11tu555/8S/ZfuMt//hGeRNyofkN6XwekTNW90FLvl0wOUHz//xfxndexpXveA9+s4HXbvLuX/hlUrk8m6+5YcVhN/zgR7BcF2lYiViHZVHsH0BHEcaWNGb/2fHUHs1hDWeQrolIWxjdLjJn403UyF43jPfqIrnbxoiqPqodYRQdhCGROQtnU3H5PEaXQ3pXP629M+RvGaP1wjzp3f0EEzXM/uSa9liO2sMnyVw7RPvlRXI3j9J+cZ7Urj6CU3WsNVmEKfE3dxNpjWFJLNukXQ8Z296N5RoIAWsv6SHX7ZDJSOzJVxGui9aKqFrBHBiE18wbCh/4ACqOEaaFMCRGsYhqt5DZLLKr67vent9rvtv2K1wXYdtIN4UOA4rvf9+qfZzt21Geh715M4v/6xOkqeNkLLJdLtmiS89w4jtU53w2Xn0HIDi1/2XiMGLHTbcy8cJzbLryWrI9vYSeT3l6inShSBB7y75f9f4JnLV54ka45HcaqHqAs6FI67lZrKEs1pqzCY/mYBqjy1muUJ/a2UtU9ijcsx6z4KIaAdnrR1BZA21nID8C+eGVH6xvG6R7QRpoJ8fxuJ8oVuxcU6A/t1pop8M/jgup7xWZDMJ1kdkcOo4RKuayXQ4TLy0Q5W2iWGH2prHXZBGmQKZNjG4X1Y4ITteTZAZTIPIWMmNhrysgHQPlRxTfteFsQqaA/J1rIWUgTEk42yJ1eR+tF2bJ3rSG9pEy2WuHwZDEjQDhGhTuWYd3vEr2+uEV/q971wChEZIuFPEadeIwROtEYMxJZ/CaDdxMjjiOCdpN+tdtYH7iGGt37Wbs0suWREsS0oUi63btwc3luP0n/ynXvu+D1FvJnOtMon775UVSl6wWKktd3k/r2aSafPaqQSrO2Sqvuwd2f28a7ALgQrJf0zRpyRZIyFw9iFFM+ivvQJncbWP4R6uIrLXCr2i/OI/MWqR2JvfefiWZ40elNsqLsNfnsYczmH0prJGzfa01mE6SNmOFbifJwGfERSERSztXZFKIs0IJ3oES6cte810ZApkxVyU3GwUbYctVgpXuugLutq7l34J3sEx6Zx/e4TKppUSosxcHe00We2hJnPVcsQdFIqxqSrxDZcyeFM55hNlW+WIXAReS7Z5BGAbFwRFK5SnM4SwyZWJkTWTWwh7JJusENyTrZWf8zfbLC2TfsmbZFuJ6iLu9e4VfGy165O8cP5ssLCBz7RCq7id97TlTMuEaWCNZtB/R2pesl52Ls60LFUWIlIG7+ay/6B0qkb1ldEVCsrOxiOxyViT0B8druFu7MXrd5XvRgNmdSq61tHZhFGwK96zHP1gmta1n2deRaZP8neOEVZ/C3WvBEIRTDVKXnu2XZcYif8+6i1aE5PWw3fV9WV45XQGtmIsy6Ct+jO5vfozZE01UHCO7HDLXDi3vL1yDwtvW03j8dPLakhhLArmyYAOa3tFxekfHqcxMU5ufx83m2Hz1ddQW5qkvLiCEYGTrDvrH1yGlxGs0QAgM26Y0fRoVx2y57kaOPfcM2e5eMoUumuUSl9zyVgIPDFMQeBFCQBTG1Bba9I6kGSj6aBWjhUiE24MAFQZokt+cTKUxslnMYhFrzQj2unVEpRLBiQnsDRuw+vqxhofQhkHrxRcRpkXujsSv944cRfk+zoYNFO6+C8M9j9hPhxVcCH2v2ZfCGnuNWFMrpHD72LKQrrtlqX8TkL6iHyyJ9/IC2o9JXd53RiOX1M5e4kaAM16g+I71YIjkOcato8v9GVKQv2WU1r45stcPE841yd46utz3hott0lefHWdl2iR3+xjO5uKykJo1miO1sw9nNE/rhcTftEdzGF0ORt5Be2dFFeKKT2pr94q+193RQ7PbgSv6EyHLnhTeocR3gEQMyuxyV2mhpS7pxRjO0HpxDnvNagEWd1OR4GQdAB0ozN6VvwF7LAemSIRX3uRcCLZ7LpbtsPnq61BmjLAlWpI8x8pauBuK2Gty6DBGKxK/U5D4iTv7lp8Tt/cvkrl2mNbLC2SvP/vs1z9eJb3nHLFmQ5C5rI/0rr5lX7f57CyFd6xHLgnqtw+WKL5zA8KSBCdqOBsKGN0u4WKb3O1jy/t5B8vk7xxfFiKRGYvCnWupP3KKzFVDyJRBuNAie+3wCp8ic9Vg8vs0BdpfEq6MdOLXGgLvYJnUZX2JL797ILnWK4vJ73eJ9v5FrJEcznnEzdz1BYKZBvaai1NM6kKz3zczXb0mW645p8+Wguvft5HiwNm1Mjdv4mYsnKxFumhip0xMx6RrIM3otm6q823u/939CAQ7bhym0LNanKGQj7n2BzasCKXYfsMwua6L07/9drxetmuPjWF0daOjEOE4CMdGZrOIVAoQyNnTXHlpyK3vHSFqtbjrJ7Yyuq3IzLEKd310G+sv7YI45K6f2sGWawYxHYO7f+YSdr91HDttcPOHtnLLh7YmQnsCFk/XmT5SZW6ixosPnUSakrmJGrMn6nztj1/l9IEyW64foHs4y7brhth56xru/OgOuoZTPHvfSXJdDtuuH8ZJm0wfrXDpTcmcrXs4g9cImVzwSO8ZgFgjMyZmX5qo7ONs7lrq4weWYjHW4J+s427rTtYUdg/g7V8ge+0w3pEy6V19eAdLZK4ewjtUJnvdMMHpBqmt3QjbQIcxqW3d+Cdr5G8fI5hq4GwsIlyDuBaQu3kU7UUoL1qOdzhD+rpBorxi99t/ALMnhdG1cr3ZXps7v5Bmhw4dOnTo0KFDhw4dOnTo0KFDhw4dOnTo0KFDhw4dOnS4aBD625W+uoAQQpjAIeA24DTwNPBBrfX+b3fMnj179DPPPPM63eF5KE2CjiiFFlpDdXqKFx+8j0a5xPabbmVsx+UYjoXyA3y/RSbfhWPlkIAuh8R1H6Po0HRa6DiiWSlRX1wgnS/gjvQzJ8o8dOIhHjzxIMPZYX7ikp9gp1qHJTR6aprSn/wx7Rf3kb7iCro+8mEeoI/rB7pw0ybSEPhhwAl1lC8c+QKPnX6MDYUNfPTSjzKaGUVrTdozUEFAeWqS5796L1EQcNkdb6XfcElpRX3DJlwJrWqJFx/8CidffpHBDZvY/fb3II1hBgd8pFfFt/uhWsU3Uyg3g1eL8ZsBQ0MZ8GLCE3Vaz80h02YSQNcPutVCLyzQeOghGo98DXvDRrp+5EfIXnvNG9ee357V5W//kbzhtnsOlYlpjKpAV8KkonsjRAUxZk+KcKaZVA4MFXE9wBpKE0w1MYouQkBc8jCHM0RzbWTaRNoG4Zlq3CUPTImRtQhnmsm5ayE6VpjdLsFUE6s/hfJiVDvE7M8QTjeSIFutiSs+5lCGaLaN0eWgmiHhdBN3Y5G47IMlMLJJBVprKENc8kCD0ZMimm1i9LkQ6qSCd59LNNPC6Euh2xG6FWEOpAlnWxjdDjrSqKXrxQvtpJKsbRAvJpUXVdkDx0BaknCmhTmUQddDdBgjsxaNx0+jTXCv6YOxDIVC8Y1u1jN8120X3hj7rcw3aNciKrNtDEvQ1Z/BTccY06eI52aR/f0o36f0O79D5uqrCU+eIv++9+I99xyVT38amU7T9RMfpf3qq6S3baX5xJM0vv513EsvIXfrbSx+8pPoe25m6L0fRCw0UNrFyHWh/RjSJq1XnsZ/6Vuk3/02GrGBnU5TnZkhCgO6Bocoz86yYeseqITEjQCjy0XlYN9jD9A1OMTeL/w17VqNO370nzHYvyGp8p0yeOGpr1KaPc3W69+C16jjZjK8cP+9+O02173/gxx7bi+nD7zC3f/s/yOrCqh5D3MwS3iqTuuZWUTKJHvdMP5sHbvo4k8+z1TPANPdI3Q58M8/vZ/37xllvuHz6lSNn7ppPQLN1w/Ps7k/x58+dZJN/Rk+ePU4v/XoUY7NN7l1Wz/v372GX/rcS/zwVWM8enCOS0by3Lipj4nFFvsmKzz06hzj3Wnec8UItim5dWs/3ZnveiL0m7rvPV0/zRePfpGBzACGMPjS0S9x3fB1nKyf5JtT32RHzw4+vO3DHK8e509e+RMQ8KFtH2Jnz05+7rGf4z0bf4D51gLv6XoH0ewc+x76CkNbtlHo6+flRx5keMt2Btdvpr1Qpis/RHFshHS6gG5FiKwJLUVc95F5BwwI4nYiZBY5GK6NFzTY/+wjdI2NMDdxjPGduxAIDjzxGHEUsu2GW8j19qJjRbNaRkoTr9nAtCyOPP0krWqFy+9+B6HvJ4WGHRevXsN0HEzbobYwh2U7WKk0qWwOaZroOMZOpxGA12oy8eLzHHn6Cfa87f30r1nHS5WnSHX3w+Q0Gkit28CGgW0U3eLr0mbfRd7UtvudmHz1ZXozo6t8OzHiMP9vf4ni+z9Ao7yAuOwyBJrI9wFJKpdHoyidPkWrUiHb3YM0DKxUKhG/EQLLsvCaDWwnDVIiojypMMYgSTZXKkYiwZREKmDx6HGMtEMu34vluMRRgMREeDqpmBprtBAYKSsJsPVjjKJN6CdJb8Qa0zGQAnQrQqZNRMrAKweYGZO4GSJsA78RYrsm0hKIQBEJWCj5tJWmezizJOan8OoxmaKN1wgBkIbAJEQ+9RCZzetASsL5eUSsEKkUwjQo/fEfE03PUHjve0hdcQWEIVpKdBAgUykwDGQmS3rb1tezmS9I+/VmZlALC+gwRAcBQhp4Bw5Q+fM/Q6YzdP/YjyEcB+V7WGvWEM/MUvvGNyj85M/S1BniWBP5MaEfE0caywmoLxzCcgz8Vou+sXEm9j3Pq48/ysYrr2HtzsuxM1mkEGit6UkPE820aDw1jZG3yd48imqESRVqL0JmLFQQL1VxF6iqD5ZMku4jTdwMka4BpsGy3pPWaAMWLPjLfTP83PYGImgk53jyN2HqOVh7A+z+cbCyaL+Jb2d5vDHETNXnkjUFLh998wnUfA+5IG33H4NWivbL+1GBn1QcFQJhWdQWfRqeQX7tKGnLQkYKaRvEXoxMmwS1AG0ILNfAcE1QQBgjSMQYsCQ4EhFo4nqAkbFQOjm/RBAGMWHKRAQxEggBUwikFER+jG0KcE2E0gih0VFE1PQhK2nqOpWZadKFAs9/5YvMHD3MFfe8mzXbLyFoNTn45OMMbdpKsX8ApRUCid9qYNoOCDAtm9rCPALI9fQSBgFOOo1h21hOiijw6XL60QqEr4gbIbJgoWohzSem0EqTvWaIuBXSenaO9K4+nI1F3r33B0lbaT56yUe5aeRmss7qxKI3mIvOfgGq8/PEUUxaZxChIir7SMcg7hIYdZJKv1KgmjHhdAOZsTDXZMGLk3UJb0lYzJLEtQBjIJUMu15SIV7Vk7ULmbEQpiQu+7T3zRPNt3Ev68Xe2EXt+Vk42SB3yxq8AyXCyQbe9iLuaAHx3Dx6sQ3XDWH6ivi5WYyCQ+bqIRrPzOCuLxJXfLwDJaw1WeyxPKoV4G7sovnMbCK2elkf6V39GHkbf6JG/euTKC8kf9sYqhkSnG4kAq8vzCcCpjv7kN0OQmniWgBC4B8uEy16pHf34+7oQVUCGt88jdmXwuxyUX5M+4V5NJr8zaM4m4pI+4JJeLsobfcMpalJwsDHUg6ukUWESaVrTIluhUl/GiqUikEIoiiEnGTx6AQ2Dl2ja1D1CCNro32V+Jw5k+azc6Qv7UXHGuma+BM1zB4XWbCRQhBM1kGDTFuQMpCmpLl3BmdjEbM3har4yJRJpCEu2gQCMtUA3YxAaazBNK2XF7DX5BCGREUxftFh3hYMthXiSAX/WA1rbZ7q1iLFvjSZZgymQLVCGt84jbOpC6s/jQ4VUclDK427oUBc8ZNEZLFUgbsa0Hh2Fns0i7upKxEEzNpopSFUmL2JHV+AvKls9+XTFVwTVCzo0fN0H/4s9f7bmPZGGB/OJn1pOUC1Iswel7Dk0XjkFGavS+aqIVQQIR2T+fYp6tVFosBHK4Vp2Wg0URCioggnm12uOK+USrQdDAPLcRBCMHP0MMWBQaqzs5iOjZvJUpmdoWt4GIRF/7rLCD0LpTQqTnyZdNYgrDXI2x7m/CkIo6SavVaJPyxl4v+eaRKtUEGA9ny07yMzacy+fozeHlS7jY4iVKUCQSJegpQIIdFaISwbc3CQ9GU7kbb9PWmLC4Q3lf3+bYTzLVrPz+EdKOFu7iJ9xQBWf5pwvkUw2UgEQpRGGIm4QzTdwjtUIn/zKNa6PPGih2onc34zZ2ONZBGGJJxt4s00aRrgOCayEuAUnaQP9yNUEBM5EUcO7GXbthsQSiAtAxyJ9hNfxCg4ICFuhJgFBxXEoDXRoofyIqyeNGiNcE2i+aVnGFWf5t4ZhGMkicMTFVKbu4nKiTBlq9vhxTDgwPEyH8hlMY7XcLf1EJXaGI5Be/8iDGXIbOuh9cQU2otI7ewj6nV5uFznlq4c6pUSqdFcsm+syF43TFwPaD4xjTWSxVmbRzkG0ak6wbEqzto8zoYi9kgWs+cNFVC/qGz3XBZOT+LVa3TlhjBCkfgISkMMRIrkEb1GRTFCC/zJGiJvYnZnCEs+gYQXgoBN3Rm6Y3BMQVwLkdlEUDKu+mgvxsjbBLMthCEwe1x0O07WIOIYKUQyNnsxSuvEnoNErAq9dC+mQJoS1QzRcSIcEs22EK6B2Z+m+Y0p4opP+upBZCoRX9NejDAEqhWD0GgvpvXSPJndg7QPLOKuLxJMN4kW22SvGaL14gJGwcLqyxBXkud43islUpf3IYSg9dwc1mCa7DVDRNWAuOYnvq7WpC/rIyr7pC/pxR7PJ37XhcNFa79vZhZPlqmWItr1gEJfisKQRa6wUqipNNPAtJP1uKAd41Qm8bJDKC1olHy8Zki+x6VrOE0mf36/tXRigUZDUFtsk8rZ5Lot+sffNGtybzrbbb/yCsHpKVAxRInQqJZLcxCtIVZorRG2hfY8RLE7EW+ulZFLQnQxJi2rC9/tptXWKK2xXYugFSFNgeUYSbyCY6CURkcK0zaIlcKyTAxLEgaK0EvW/FN5G8MSCARRFKMaDSzLRLeb2I6g7jmE2kDFGiEEQgqCdoRA0d9rY0VJMRQjZxH5GhwL4og4DpGGQRyGmLadiDy1FCpUGCkLFUVoqdFaY5k2Qi+NMRpkyqRamkVrjZlysC2XdqsGQpLJF9FRjDTMZM3PEEtCOoK4FaCVxsRE2QrfDohUiEQQ2SY9QYHmMzNJ0ZpNXaR29uKuXS2Q+jrwvRgEXpegubW/+GUA7v9XG9nSveX1uGSHC48Lyonp0KFDhw4dOnTo0KFDhw4dOnTo0KFDhw4dOnTo0OFv400hQgIghLgH+ARgAH+gtf7P32n/CyZAp1HC15Iw0gjDQOuYlAkibCGDOio3ihdr4shHIMgWu1edwvc9pJCEccxsI8IPFUNFiHXMor9I3i6wUHUYKSTBwakogHodXW8QDgwyFUgytoHSMN57tkJUpVWhrdpU/So9bg99mbPVaaqtKiJWmMICNBKBnp5GFAq0UzkWWiG2IeixFZHn4bcaZIs9BIbNbCOk6JoMOhH4NYjaNDKj1EOFJaCQslFKEYcxhpAIP0kINbNnA4D9chksG10pY/f2LgeGXIC86QJ0/r74vo+/WEXaJgKIgwi7K0dYaSxV0JZoL8TIplBtHy2WghX9COla6CBCa42RdokbHsJJktJ0rLGKWYJyDWkboEGFMXZXnrBST6pvC4EOYmQuBU0fhEYZgK8QGRvdDgGNSFmoho9ImYhIoWKNlc8SVRqQshCxQocxdneBoFRF2AZI0F6MVcgS1ptJkI0pUV6EmXGJ2h5CCAzHJm55iLSNDpKkDSOdIqq3EK6JBOI4xskVCMrJ96S1RgcRdneRdqmCsCWFnguuctlFI0KyTKtKWSjm2/P0OX1EIqIdtIl1TI/TQ1ZYKM/DyOeJKxWkZRHMz4Nl0TI1VhSjunLYWhM222SzBWrtCiqIaORsvNhjc2oUf24O1WphjK7Bj31kq0U64yTJ8m4OJS1ilSRMxLUaViaDHwYgJens2SDHMPBplsvEKiYOAvrG1tKqVbEcF9t1icIAwzARUhKFAUJI2o0GWiks16HZTqrCSiGQqTSOVqBAmDZmmCQvE7XRmQzRwgKzdh4pII41tm3Q8mMcS5C2LVpBhJCCtGUQRgovilEKpATLlGilqXsxA1mTihejNTiWIFaQdy0KaRsN1FoBodIYUmBI8b0QHznDm77v1VpT8StY0sKLPWQckxUmc3ELU9uEUYusUaBMBYGgSB6lGggdEYsc7ahO3umBoI0WEgHkRZNIm8TSoSTAEBpXCVwVYOPTsPrwgyZWyqUZNcnELmGriZ3NErW8JDEHgZVK4TXqGKaFNA1UnCQY2ek0hgY/9BG2RdxsJdWwHScRg7BspGkgNMTtNjrwsQyT0DXRfoSpIgzTJnZTCMMgrlYRRpIUlOrrQ7cbRLU6SJPAa4FhkBlOqsO1whaxjjGFSaQjcvbqyq5vEt70tvudaLdbCARGW6MtQVsGmLHClFaSG9Sso1seupBHCdBKo+IYw3bQAnSssNJpBBrQxFFMFAToWBGrGJW2qUZlLMPCjwLSRoqUJ4k9D8tNoUwQrkNUb0KkMB2byPMxDBOkQAiBmXGQholut1Fa4dlgCgshJI4yUCom9tsYwsC1U0lHGIbEpomenoZUCpROKi729CDDEKNQwHD+7v2d8n3C+QUwJMI0E7EStRQgrTVaqeR1HCOcpYQQSIQGdBJYbA8OIi3re9KO34EL2n792VlUECCUQlgWOgwR8pzvWAgwzeS79TyEbWMPJJV3aZehVQc7BSqCsElbpQljCKMIw3EIvCam5aKiCGkaRLZEOCZagWs5pAIbLaEVtbCFiTQtZFujXQFohE6qTifVjAXa0MTaJ6o3sKUJKqaZgpalUcqEIIcWgIQgUgxmLXKtE2CmIGiC6aINFx16VOx+lDQJIk131iZ94SSgXyhc0Lb7jyEol1G1GhhGIiRiJv2btKyk75AGoNFhiDk4iPkd5tXB/Dyx5yXiYFGETKUIpCIOfIwwRgoDncvQDts4hoOUMhFEQtLSbQJirEYAlgmOTUokc8HQD5K+S4AQkjgMkKZFGHik8nl0DHHoYy71o0opbMdNfGspOfP7UXGMjiNUEIA0EGfWKQRoFaMME2lITNNG+ICWaGIwJZLEn42IMB0bGWpaVpish4RVsmaOkfzQ69Fk/xAuWvsFCH0fBPitVrJBQ2wLGnGTlEwTKkHTkxgIDDOZf9ixxrGMJEleCwLBko0l9mAqjZYCO9bUBSihKRgSI4IYTdUQCDS2kMRhjDIlhhAYsaKhwTIgZ1sQKRpaMdKVQflR4reaMkkyPiOy4EUI0wClELaBEAIda1QYJ0I/56CjZKyXVlItXoWJQJVWid+DEMvv6ShGK5Zb/8x2IBFTUwppGWilk0Sk1+xzgXBR2y6A73mJKBlQX5gj091L6LWT9jFNVBRjGBK0xjQ0WoNC4mMRIBGxRsYaQwA6SfxqoTE0tIA0GtOQBKFCOJIeaaK0RsUawxLUwxjDNMinLFCa+pItEMRYrknaTXzFSsPHCGKEa2DbJvWan4hIAYFSGKZBrJNruYAtoIWgK2svCUCcJfbCROQ3ZREvrZHBkv0JsbQWaC7b9rmv30S86Ww3jGIWmx4CgdSaYjQHKkDnhgAbwohYaaRlIWKdiJCRZNkpQxN4DQzLQqtEOEfIxG7RS8nrhgFyqb/SakksTKB10q+FOsIyLWIdYkgTQyXiiabtoFSMbSZrpQKBFII4VsgogjhKriUNdJSsH3Pm2kol7wEaTdIsOukupUzOZ0hAJH6/ZYEpEXLJ99camUphZrPn/9IuXt509vt3QYUxwpSr+hIVxmiViEBJy0D5yRgt7b/7mFhq+FiGJOuaVBoedhgRmuC6aUwRY5gWXr1NGMdARIhEYZB3k+cZfivEcAR4S89CtEIEEMUBVsZFqiTBV+mQdiSxTQNfJ89GMoaBHytCpfFJnnsIAV6gcS1BSgl8NJaQWIZAafDimO6ciyMl7XaIYUtascY2JTnXou2F+GFMzrWWhSe01igvQpuSZiPATpm4tonyY7TQmO7rvrZwPi5K2z2D53kYUhKHYSJMJg2Io2T9x0jEmbU0QMdEWlKNDFwzafN2lHTaa3uyWKZcde6oHUC01CcKkv55yT8Gkt+NISDUYC39dWTyjM2W6FglPiUgzySwRyoRFlNLfm3KQgWJQI+ZddCRQkUKwzWJ6v5SArtYFv4VRtKc+oxI0JI45go/NopBSLRSiZ8tRfJbX/r/zPFnfN0zgkPiPN/BBcBFbb/fb4Tz80SlEubAAFax+Hc6JlhYIF4sIbNpnJE139sb/O7yprRdFQT8/9m77/A6rjLx49+Z26uuei+2ZMu9O3FNseM4xekhnRYInaUvLLDAbyssLMsCG0hIQkJJIb04Tuw0O7YT915kSbZ6v7q9l/n9MY5sxYEEsC3Zfj/PM4+kuVPeM/do7tyZc96T6ukZnjHinfvnioKSzZLNZFHNpqPPzvRrSwz6fQSSqaP3iQ0YnE793rGqQiajt+XJHP2uriiQTuuvoyfRU4xGtEQCg8ulX3+eROlAAC2pP0tGVchkM6QSSTLoyUtQQFMUFE0/zysGA6lYHEVVUAxH70e8c52O/gySrIbJZkUxmsjE4xgMBrKqoidsQQVFI5WIoyiq3mbHaCSbyWA0m1CtFgyKfr2jZTKkyJAmhU2zo8azZOwKNtuIJTA745OQPPqlfOaVjsoBmMSpd0bdIBFCCCGEEEIIIYQQQgghhBDijElC8teSBjriNDkjG+gIwdmYhEScS+TcK85UUnfFmUzqrzhTSd0VZzKpv+JMJXVXnKmk7oozmdRfcaaSuivOZFJ/xZlK6q44U53xSUge/odcFpQtOB27FKOPJCERQgghhBBCCCGEEEIIIYQQZ5RROWSQEEIIIYQQQgghhBBCCCGEEEIIIYQQQghxNjhbBwoTQgghhBBCCCGEEEIIIYQQQpx9jCMdgBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIMdIi/gR9baG/axuZdJr+lmaM6WPbid3zIw5ULkAxmtAUA3733PfdTn55FSab7e+KRZweucV2PMX2kQ5DCCGEEEIIIYQQQgghhBBCiJNCOVtHWVAUpR9oHek4jioABkY6iFNAygUDmqZddjJ3/jfU3bPpfZCynD4nve7CiJ97R9sxH03xjKZY4O+PZzSce+HsO66ngsQ03Gipu6fSaHzP/15SJt1oq7+j8X2RmD6Y0x3TaKu772U0vk+nyrlS1pNVzjOh/v69zuQ6cSbHDqc2/nOh7r7jTK8HH8S5VMaRrLuj5ThLHKMrBvjgcZwL597R8p78Nc60mEci3nOh7sLorAsS0wf35+I6XfV3tB6Xv9XZVh4488o02s+9Z9rxfD9SnpPnVNTdl9DLdDqMxrowGmOC0RnXqGvjIIQQQgghhBBCCCGEEEIIIcSpdNYmIRlNFEXZqmnanJGO42STco0OZ1q8f4mURfw9RtsxH03xjKZYYPTF87cabeUYbfGAxHQuOhuPr5RpdBqNZZCYPpjRGNNIO5eOyblS1nOlnCfDmXyszuTY4cyPf7Q4F46jlPHciUHiGH0xjKY4RoMz8VicaTGfafGeSUbjsZWYPriRjmuk93+ynW3lgbOzTCPpbDueUh7xjtF47EZjTDA64xqNMQkhhBBCCCGEEEIIIYQQQghxKqkjHYAQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEGJkSRISIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHOcZKE5PS4d6QDOEWkXKPDmRbvXyJlEX+P0XbMR1M8oykWGH3x/K1GWzlGWzwgMZ2LzsbjK2UanUZjGSSmD2Y0xjTSzqVjcq6U9Vwp58lwJh+rMzl2OPPjHy3OheMoZTw9RkMMIHEcbzTEAKMnjtHgTDwWZ1rMZ1q8Z5LReGwlpg9upOMa6f2fbGdbeeDsLNNIOtuOp5RHvGM0HrvRGBOMzrhGY0xCCCGEEEIIIYQQQgghhBBCnDKKpmkjHYMQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEGIEqSMdgBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQYmRJEhIhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIc5xkoRECCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQohznCQhEUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDiHCdJSIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEOMdJEhIhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIc5xkoRECCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQohznCQhEUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDiHCdJSIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEOMedtUlILrvsMg2QSaZTPZ10UndlOk3TKSH1V6bTNJ10UndlOk3TSSd1V6bTOJ10Un9lOk3TSSd1V6bTOJ10Un9lOk3TSSd1V6bTNJ10UndlOo3TSSf1V6bTNJ10UndlOo3TSSf1V6bTNJ10UndlOk3TSSd1V6bTOJ0KI10mmc6NSQghhBBCCCGEEEIIIYQQ56izNgnJwMDASIcgxN9E6q44k0n9FWcqqbviTCV1V5zJpP6KM5XUXXEmk/orzlRSd8WZSuquOJNJ/RVnKqm74kwm9VecqaTuijOV1F0hhBBCCCGEEEIIIYQQQgghhHhvZ20SEiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxAczIklIFEV5QFGUPkVR9h43L09RlDWKojQe/Zl73Gv/pChKk6IoDYqiLB+JmIUQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEOFsZR2i/DwK/BH533LxvAa9qmvZDRVG+dfTvbyqKMgm4BZgMlAGvKIoyXtO0zGmO+eQJ+SAxCPEAWJxQOH6kIxLiz8ukINQLJhsoCiQj4CiE6AAYzGCwQCII9kKIDYKqgtkBMR/Y8iAZhmwGbLkQ9YLFDZkEZJJgL4BIv768pkEqBo4CiAyA0QIGEyRCR7ftBdUIZjvE/GDP1/+H0MCaA9FBsHogHdO3bcvXYzQ7QVEhHdfXCfeCyX60LOHjtm3S9xcP6HHFffp6ZpdeLlseJEOgZfWyRAbAkgPZ5NH95UGkTy8LKqSi4CiCaL9eFkfhyL6PYjhNg2CXXqdcxe+9TMSrv7euEhho0uu5xXXiOTvm1+ufatDroC3nVEcvzkaxgH6OcRRCMqqfawFSEcik9fqlGCCb0M9vmgZWt36uyWYgndDPv5qmL+sq1c9XoV79fKwoUDLl2P7Cffp+DCYwOSAV1s/pziK97qei4CwBo+mDx584ev402098Pdyvx2F2gaLp/3vOoj+/vVCPXi53mR67EH+P/kP69YTVrX/exwP6Z/w71y5aWr8+yasZ6UjFSPG3QyJ69FyrQDIIBuux82M6oZ+P/tw1gxDimEwKBpr13xUzZI5e0yiqPhXW69csQsTj4GuEbAocpeApHemIhPjrRHwQbNe/tziKwVM20hEJ8d7Cffq9AVXV7yukYvp1rsmh38PKxCEV1691DR/wHoAQ4v0NNB19Bvge95PFucXfCZEeMNqgeNJIRyOEONkGW/Tn32Y7FE0c6WjE2SAR0p+nGW16+wajVf9psOhtLAxm/fn18e01jNbhbRwArLn66xY3BDuOPvMuAy2jL//OsxJ7rv5MMJPSn5mEe8Bo1u+JZ7J6OwqrCwrkeubv1ntAP9a2fMivGelohBBCCCGEEEIIIYQQQgghhBDifY1IEhJN09YpilLzrtnXABcd/f0h4A3gm0fnP6ppWgI4oihKE3Ae8NZpCfZkCnRDOgXhTtj4c2haA3m1cMkPYPxl0slWjD6DR2DDz+Hw6zD/87D5XqhZrHcea3gRFn8Vtv8e8usgpwJ2PQIXfAP2Pa03Xqk6H7bcDwv+AY6s0xN3TLke3v4/mPUx6G+A3r0w9xOw6df6/0EyAs2vwaIvw9bfQul0sHlg75P6tnc9pjeqKZ4M2x6ExV+DQy/pDWHGXwpv/xrmfQY6t0P/QTjv0/py45fpySKOrNdf33I/VJ6nx9mwEhYe3V/BuGNlufAfYd8zeoOcgnF6+Rd9BZpf1ZNOTLkRNv0K5nwcunZA7344/zP6cuMu1RuR7PmTnvxk+X/q80zWkXs/hS7YA9sfhI2/0BsFLv0BTLpabxAOemeMxtWw5ntQNh1mfxLe+E/o2ATlc+Di78DYC/VlWzfCqn+EvgP6vPoroXiKXveF+KBaN8JL39YbA178bWh8FUom640Mo17o3g3Tb4G374ZQN9RfDjNu189PVfNg6wP6eTSThg0/05MqXPULaFkHux/Tz2Hn3QXtW/TzXt8+vX4ngjDzw/p5ds33wWDU6/fBF/VrlGm36Oe8/LF/Of72TbDqn6BnF9RdAku/f6xBfSqun6NXf0cvy6TroGahfs6sWqCX5fikJbEg7HsKXv9XSCf1/c+84y8nLBHiz0nF9WuSV3+gJz274QG9vm5/SD/nL/4GVJ4PPXv0xruBesgbCznSCfqckc3o5zyjVU8OmUnCwRdgxx/0JHcXflNPirT2h1A0CS79d6hbMtJRCzF69eyDgUb9/ymbha5t+vc8VYV5n9c7PnsboWw2eMpHOloxkgaa4fCrsO7HgAqzPgrjlkHl3JGOTIgPpucgNK+BDf8DGrDgC1BzIZRO1TtrCTEaZLPQ+DKs/mc9cfLl/wXbfgsdW6Byvn7fM5aj3wd7+lNQt0y/hyvJGYX4+wR6YbBB/9/r3Qs1i2DRV6FyHpgsIx2dON3a3tafQzS+rD8PXvavUDgVcuXekxBnhdaNsP6n0Pw6FE6AJd+D+uUjHZU4k3XthNf+DcZdAgdX6c/QGl6E+iug4SW9fm37rf58zWCCA8/DBV+HnQ/rAwsUT9LbOyz+ml4vbfl6G4nX/w0CHTDpWpiwQn+OuPsxfZ8TVujPH6ffoj+DdJXq98Rn3qG3uzj4POQf/Qyrv3wkj86ZS9Pg0Mvw+r/rz35LpsKCL0L1gpGOTAghhBBCCCGEEEIIIYQQQggh/iJF07SR2bGehOQFTdOmHP3br2ma57jXfZqm5SqK8kvgbU3T/nB0/v3AKk3TnvhL258zZ462devWUxb/B6VpGoGBfpLRMGGvl1Qijqe4lOJVH4b+/fpCRgvc8bTeKfck6wvG2dsVxBtOMKbAweQyNzbziOSeOVud9Mwxo6Xukk7B6u8Sytjw5c3Bmg2TVVSSmgmHRSGWMmLKhEA1kNAsOMwasbQBYzqMwWgkplmxG1MkMwZIxzGZjcQyFuxqnFRWJZPJYrUaiaaN2LQIGVSSWQN2i0osY8ScCYFiIJE147Aq+rZTQVSjkbhmxWHKEE8bIOol17cJe1k98SOb8VVfQxYVi9lENG3CrgXQVBPprIIz6yXuqEFJRQiF4iQNThw5bkL+AHabmVQ6QzwSJy/fDqoJRcsQGAzQ3+enor6eWCiEMRvHlZdHKpHEToiMYiKTSWMxqkSyVqxahCwGkhnwhPbh3n0vJMP6Mb3zJaiaP7Lv6zGnJOvRqKm/f8mme/TEIce74ymoW6r/3rIeHrxS//1Ta+HR2yDYeWxZVwnc/LDeufLei/RkM+8onw25Y/REDu+XuOHvoGka3s52fN1dOHLzMBiNBHp7UFSFnIIiBnu6SSWTOAqKsVfUUJLjOGWxjJCz59zbdxB+c5He6eeib8H6n+k/t/5Wr5NbH4Cl34PX/lVvpPaOiVfpCT9e/ReYcZue7OiVH+ivlU7Xk0PtfXJoca1gIn0X/5xAIIrDbkYxmQgM+LF58oj4BokGgxSNqSWdSJDNZjGYTJgsFshqpFNJTDYbmVSSwuox2N2eY3F4D8O9F+oJTd5RMhU+8hzY8/SG9g+8q9HtrI9CXh2s/wnc/EcYs/jYaw0vwSM3D1/+6l/CrA//HQd5VDl76u67DHR1Eg8GiAZ8GM0WXHn52PPycbjc77tuLJGmdTBCqzdGjt1EfbGTXMdJ6JjT9Br84Tr99+IpegPZdT8evsyHHgKjA5pfhorzwJanN/AV7+Xsq7+tb+mNraffoid8CnXrHQeOd/1v4Km79N8tLvj4y3qiqONomoavu4vw4ACu/AKiwSAhbz/O3DyymSzRoB+z1YbZZsNotZGKxXDkeEjE4/gCISIWDxmri9pCJ4VuSVh3Cpx9dXc0yqT0hJHWHFj7I5j9UXjx68OXWfEzWP1duOXhY0n9jhoIxuj0x0lrWfIdVkpyrFhNhr86jEBfL+HBQVSTAaPZTCISIeLzYbHbMVoshAe9OPMKcBUUkFNwRiQ5Ozvr776n8eWfTyIaI9Tfi2ow4MjNIycvF1tuwcjGJk6Ws7PuAgS6oOVNfEULSafTJCNRQt4BbG43jhwPrsJiLDbbSEcp/nZndN2NxBKk01mimQyewEFsDy2HbFpPmrz/Gb0z4VHZuuV0zf4+ocEBHJ5czHY7imJA07KgaWiZLNlMGg0NtCyKwYDRaCGvvEK/XyBGozO6/p7posEA/r5eUokYBoORaCCAwWjAnpNL8a7/QT3vTkm49uednXV3sBXthS8xuOR/yGoGgn09ZNIpXHkFGMwWiqprRjY+cbKcnfVXvL++g/DMZ/SE6+8wO+C2J6DmjEgsIHV3tAl0wn1LYcoNsPtRmPkR/Rnh+Z+Cjb/Uk/av+zHYcmHydXri30Vf0Z8npmN64pHX/wOmfkgfPKN3L9z2J3jkFtCyx/Yz9UbSuePx580lYS+FbBbFYEQBAv292Jwu7J48/D1dBPp6sNislJoHKVj/T3Dro6Ohfp95dbdlA4PmGsKDXiIBH868fOxuD/mmCBTVn7r9itHoVLTRGZlGn+JcI6PqCSGEEEIIIYQQQgghhBDnqDMhG8V7Pch4z4doiqJ8CvgUQFVV1amM6QPzdXUSj4TYufpFDrz5OgCu/EIu//y9VD6+SF8onQBv09+UhCSRynCwJ0R/KE51voPaQieqqh8ybzjBt5/ewysH+oaW/68bp3HTnMq/v2Dv0uENEktBmy/GW4e9mFSV+bX5LB5XgKLIs6j3MxrrLuEeeuxTeeaRl8ktS5BfUcmuNatYfOtH2f3qS5gsVsbOmsvW559i7jU3cnjbZuLhMNOXXc7bTz7C1KWX0t/WSn/rYebfcCsbH/8jY2efTzqR4MiOLVxw+528/ftHKa4dh9OTx961r3DhHXey/cVncXhyKZ84me0vPsv8G27l4MZ1ZDMZJi2+iE1PP8zMy66is2E/3Y0N5JaWMXP5Cjz2Ivb0hjmy5nEW3/JRNj7xR0rq6sktLmX3qy+x4KY7aN7aSE5RiIjfR/v+PVz0kU/y0v/+kspJUzGYTDRteYs5V13P3s1bMRiMmG12mra8xYKb7uCl++8nk0ox/8ZbefmX91AzfTaqwcChtzdw4R138vZTj1I0tg5XXj5733gFNA17jodrb/0RpW9+SW/w37VrNCUhOWlGZf39cxIhfYSod2t+7VgSkta3js33tQxPQAJ6h41AKxgswxOQAHRug9olMNh8SpOQNG/bzIs//zHZbIYbv/NvvHr/3fQdbgKgrH4SM5Zdzuq7f4rBaGTBHZ9EO+8iSvOdtHojtPR5sVrsbG7x0RuIM29sPpW5VrqDcRxmE9vbfAxGkswbm8+4Yie1hc6h83gkmSYUS5PrMGEx/vWdQkebUVF3vY16AhKAbAbMdvC36x1zG17U56diwxOQADSsgik3QtQLVs+wjkSMvVgftewduTU0zvgPXvqvH5OKx1ANBhbe/GE6Duylp7mRC+/4OOl0ij2vraZh4zoAXPkFzL7yWsxWG6/99h4sTicLb7qd7S+t5KIP30luSZm+7cHm4QlIAHr2gL9VT0LSvevEMjeshDl3QeX50L5peBKSgy+cuPy238K0m/SkbQIYJXX3ON6ONvoON7PtxWfoO9IMQMWkaVxw+8eIRxP0ZS30BeMUuy30hZKsO9SP1WRgemUOdrOBZDqD3Wyi2GVhMJrk12sPYzWpTC7LIcdmpMMfp8hlIZXJEktlUDVQDQomVcVtM/35JHv9B479Pu1m2P7gicu0vQ3nfQo6PdC5HUpnnpJjJI4ZVfW3/wBUzNW/j+WNhbd+eeIyPXv0BGO+I/p1hLfxhCQkzds2sfJ/f0zZhElMXHQRr/7m/3AXFTN+3kI2P/ME2Uwak8XK4ts/htOTR9g/SG9zEtVoZP0jv8OW42HxZ7/BlpYkxTlWBkIJwok0uzsCVOXbsZsNmA0GqvNsxFNZ0ppGkcvCpLKc03SgBIyyujtCYqk0O9r87G73U5XvIBRLoSlgNRqYX5SiOBkCRdFH8dz39IkbaFoN45aDr4W1e6tIqzbiqQy5DgsOi0oqq9Hpj/PMjm6K3RYWjytgemXue8bS6o3Q6o3ithmpK3ThtBrpOLiP7SufoW7ufDxlFYS9A6y595eEvAMATFhwAel0ipYd21j6yc8Rq6qhZGzdqTxko8aoqr/JGP2umSR8g6z8+Y8JD3oBmLjoIqZcfCm+gMKbhwfpDSaYU5NLVa4Nu8VEbaEDo0EFIJXJ4g0ncFqMOK2mkSyNOMVGVd19h6bhK7qAVDpJX3Mjr9x3N5lUCqPJzOLbPkbZhEk0JJ0k0hp2i5Gtrfp37AW1+VTl2inPtZNIZzAZVHId5pEujThFTmfdjSfSNPYHSaY1QokMW1oGSWc0vl7SoN+PBD2Z3vEJSAonsrf0Tl77t++QSacxmsxc/LFPUVAzBqPJQiIaRstmScZjZJJJUrE4qtGIwWwmEvBRWlePzeU6peUSI2dUnntHuYGBQaI97fS1HMaZl8+mp//EQFsLANXTZjD3ms9QFe2iqTdElz9GoctCbaETy9+QdE/8eaOu7oY66Vv4Y7Rkhjce+hWdB/WBKYrH1rH4to/R3dSI31HMhBKXPEcVo6/+ivcX7ByegAQgGQHf4dGQpOG0kbp7EvmO6EmyTTaIDIBqgLhffz6YikImqU9jFkPjan0d1agvUz4b2jbp83JrYM/j+muDR4YnIAFSA610jP0MmVSWrG+Q0KCXvNJyVv3yv4mFgqAozLr8aorG1LH29/cD4Coo5IYb/5m8wcN8e5uTsYVO5tR4mFmVd9oOz8l2Ouuuz15Hy9ZNrP3DA2QzaYwWC8vu+iLq+Hre+86nEELAc7u6sBpVLp1cMtKhCCGEEEIIIYQQQgghhBDiHKaOdADH6VUUpRTg6M93Mmd0AMdnzagAut5rA5qm3atp2hxN0+YUFhae0mA/iGB/PwaLBV9311ACEoCQt5/Nzz5O/Ir/O7aw9f1HiX+3WCLFfeuPcO3dG/jk77ax4hfreXnfscbEB3tCRBJpXvnyIl74wkJW/cMifvNGE+2DwzvNR4IxggNRBjpDZDPZd+/mfXX5I6gJiLVHCLeEMSc17lnXzF2/28qbjQN/9fbORaOt7gIkNDNvvLKdiN9H9dQZ7Fr9IkU1Y+luaiDQ28P4eYvY/OwTODy5xIJB+luPMOmCi3n7qcdQDAZMFisd+/cwafHFbH72CVLxBHml5TRteYtx5y1g92svEwsFKa+fyN431lAxYTItu7YT8vZTO+d8tr3wNJ7iEvy93Qx2tjNx0YW8/dRjmKw2stks3Y0NuPILmHTBEtY9/CBdTU00btnEhAUXsH3VsyQiESomTGbn6pWUjptAx4G9dDc2kFdeSfu+3VROmkrz1k2kkwlKx9XTtOUt7DkeMqkknQf2UT5hMk1b3sLmchML+okG/ExcfDFbnnuSZDxOYXUNBzesZdIFF3N4xxZioSAVEyaz9/U1Q8kCogE/r63ZQmTBt/WGQo6zc0Tn0Vh//yyDBXLfIzmI57jGRc7jRkS3uvWOlMdTFLDk6KO8v5vFrY90ZvN8oHCymSwDHWEO7+yju9lPMpZ+33UCfb28dPdPSSXi3PKvP+Hwji1DCUgAuhr24+vtJqeomEw6zfqH7iXT30nIG+G7T++myOlmzc4efrexlT9sauMLj+xgd1cIq9HAN57Yzf+80shDb7Xy2T9u542Gft5q9hJJptnaMshdD21l2U/X8o9P7KaxN/SByjiajYq6azmu047BrDdStXkg0g+uo4k+DO/RsTKnErIp/XctCxbnsdci/eAuG/pzYP6/8MqD95GK68lOspkMbz7yEJMuWEIsGGDbymfJKSweSkACEPIOcHj7FtoP7qNu7jwivkHeevJRHDk5tO46rmGt5T06HRktYD4ajz3/xNddZfr/UaQfnO9qNJM75sTlC8aDKp1Ljzcq6u5x/L09dDceHEpAAtCxfzedB/eRDPnJTcH0AidFisrUXDt3zajghinF1DstTHTbmFrgIl9V8RhUfrfhCPesO8z/vtrEVx7bSXN/BI/VyM9fPQQadPniNPaHaeqL0O6LcrgvTEtHkLZ9Xlr3DhAajB8LzHZcA9hQN7jLTwzeVQLJsP457Sp+7/83cVKNqvprcUMyqr//6eSwc+cQRxFEvUSnfpb2BY9wJDoNf9+x71NdbR28/Ouf48jNZe6K63j1/rtJp5JMWLCYTU/9iWxG/2xPJeJsfOwPpJIJnHkFdB06yJGd25iw8EKCfT0cWv0M4wqsvLinm/VNXr711B56B2McbAuwak8P6xr7eX5PNyktiy+a5O3DXvZ2Bk7XkRKMsro7QtY1DHD7fZswGVXuWdvMllYfnb4Yz+/qZH9/Qs8Wa7aDvwU81fpK1hwSE+8gOfWjxOtuJGUvJ+2spKkniT0N050OyrIq+YqRWDzNloZ+WvvCbG72srN5kM7OED39YXx9YbzdIQa9Efp6wpiTWSosJkzJLMlIkoHOPlb/+n8pnzAFs91BMhpm2wvPDiUgATi4cR3FY+pIp5K89sCv8XV3EgsH36uoZ51RVX81QFV4+6nHCA96cRUUYnW6OLD+DfpamilTQ4xxW1lc4WFqvoNKs4kCwDsQZW+zl7ebB/jxSwf51RvN/OK1Jra2DI5secQpNarq7juyGqlEjFQsxpsPP4jDkweKQjqV5M1HHyLkHWCCPUWNx8ba/b24NYW5pW60SBpzJsuOpgGOdIfY3NDP/rZB/P1RQoNR/H1Rgv1RQr74+8cgRr1TWXc1TSMWThINJIj44wR8MaosFmosFqblOriuvpgl1XmEipcTvHM3gTv3EZ74CeKL/p+exBTom/dvvPbAr8mk9WvVdCrJG7+/n2QkSiadxmQ26+drDVLxONlshlgoSCzgJxb0M9jVflLLJEaXUXnuHcUGIwn62luJh8Moqkrbnl0MtLXg8OTi8OTSunsnvYcbGXRNw5OGybl2Uv4kGxr62HzYS7cvSiycJJuVAcz/XqOt7mYsHhSDkbbdOwh5B7A69PulvYebOLJzG+lUgsKsQndvmHjq/Z8LiLPbaKu/4gMw2fXp3Sx/fZuPM5nU3ZPI4tKfnalHE66/86zi3T/D/eAqPTbPYCI09lZaa75N2/zHCOctAJMDtMyxZ3XHGZzyaWLhCKlEDF9XF5UTp7DuDw/oCUgANI3tLz6rfyc4Kp1I0J0pIVp7PV89v4abp5Twnaf3cbD7zL2vdjrrbrC3mzd+fx/ZTBqL3YHd7eG1B39N1O8HIOyP4++PEBiIEgkkCPvihHwx/INR/L1R/P1RgoMx/ANRfD1hwoEYsXCSRCyFvz9KMi7XEUKcjf7hkR186vfbRjoMIYQQQgghhBBCCCGEEEKc495jyPAR8xzwUeCHR38+e9z8hxVF+SlQBowDNo9IhH8l1WhEUfQO4+/W3dhA5EM3YAUYezHhvJkM7t1FKhEnt6ScvPKKoWWDA/107N9DV2MDZeMnUDlpKr6shfZAnJ+sbngn3wGJdJZvP72HyWVuCpxmArEkBlXhn57ZxyUTi9nbGeQLl4wnm9UTjfh6Q6BCeCDFzlfb8XVFqJ6Sx/h5JZSO9XzwggbTrPn1XsKDCQBKiqx854Jx/PStw8T9PTAY1jsZm21/45EUI8EfzdDVrCc2SKeSABRUVtO+bzcAmVQSNI28sgr6Wo52OlYU0skE+ZXVDHZ2AGC2O4gG/FgdTiIBHwA5JaUcPNrZPZ1KDW37wIY3hu0vv6Ka3qPJFbKZDNlMhtzSMgbaWwB9pOTNzzyBzZVDsF/PW+TIzSOTSjP/xluxOp0s/cTncHg89LccwenJQ8tkAHAXFOHtbANFIXt0XkFlNT1Hy6wdHRXI5nITOdoAxOJwEPH7sNgdxMMRFt78YdLJBNlMhsW3fQyD+cQRbHuam2m8+BMULFlEWUXZqMr8dNYJ9+sdyZ3FeufH92I0w6IvQ/OrkD7ascdVBmMvOrZM9QJwV0CwA8xumHsXbL732OuzPg451WDPhYlXw4HnAIiOu5bO0uto23+Ewlg/lcZucktK/2LILXu9vHzP3qFG5tOXVjJ3RQ0W25/vBB8N+ElEIgDkFJfQfeggF33kk9hz9LGSIn4fbXt3UlY/iUBfL5qWpauxk12vxfnPJfX0HvBSvT3Ev8yoZFMmwYM72vm/15r4+S0z6AkO7+x0z7rD3DCznEQ6w5cf20Ugpv+/PruziyP9EX73ifPw2GXk5r9L0WQYtxwaX4bevVC9SE9kNNAEc++Ent0Q7IKyWdC1XV9HUWH+56F9C0xYAW1vQ8UcyBujj2q2/1m46Juw5nugaYRTlmONB9+hacTDeiKZwc52woMnJg3raW5kSlUNqlG/XHQXFlEzfRYA7fv3YnU4yMuvxzD9Ftj16LEVl/wz5B1N9lM+R08iMnBI/1s1wozb9N9jPqieN3yn9ZfDprv1Ud5AT+pz3l2gqkdj7aBl9w78vd3UTJtJWf0krA7H33DgxcmUTqXoaz18wvyO/XspGz+RV3+zj6JqF5MWlbHrtQ68HWFmXlqMpzhG865DBHp7qJg4HbOnhu/NreWu6VV8+oU9hBNpGnpDuKwmFtQWsLllkAKHmYymJ3EKxDQmFtrZ9mADgT49yY4rz8KKL0wnr8wJ5XOhZJr+f7Tp1/Chh6B9E6T1a1ZyKqByLvTug+5dMPtOcLxH4hxx9iqfDWt+AKVTIR2DBV+Ezm36iJKgJylzlxKa8gXW7FtEd0sCaMFi7+DqL80g5TbiHxxk1mVXMdjVga+7i8kXLmXX6hfJZLPMWH4lxbXjMBiNxCMRDr75OplUimQ8Ru+RJsonTMbu8QDQdWAvsyMx5pd7+MnrTdy9dBLeTX2kY3EKZhWQKbPy9ef3ctvUHEqVCB1mN+sO9TGl/D2SoglxCgSiSX68uoGZlbmsbejnwvpCfr32MJ++YCxTKzz819oeLryyHiUR1JOK1V9OPKFy2Hk7A+F8zEYjzS/0Mf3i84g0JDk/1wr+DK2N/RiMBlCAeJqpTUluu6gKi8PIYGeE5GCMTFJj4+sdVEwwkleioSgZFNVMNDBAT9NBEhU1eIqrCPt8GMwmspk0qbhGV+PBE8qRjEVRVJVUIk46mSQeCmFznlsdhEacxQZZDUVRWfHlb9JxYB82l5vcsnJ8XR3EI2HqDYVYLCZ2P99KcCDO7MurObSph8GuKGNmFXJ+dQ7/tPoAeQ4zhS4LuTYTtcXvkRxPiFMhr4Ksv4lUPMaUi5aRiEYpq5+I1enkwJtrCXsHcBdWkGqJcG1BLla7id2vd+AfjOOaXkBBsR2ULB6Lgb63B9i6awBPkY2xMwpJRNOEfHFyCm2Mm1uM02Md6dKKUSY4EGP/+i4ObekdqicGk4LFZiTsS7LnDf1+7IxLKmntipOMZyiqCtOxfwealkvF8icxqVkMZttQApJ3pOIxokE/9pwcDCYzyXgMRVFAgUw6jdFiJhrwY7IVE4+ER6L4QoxKezoC5CYSxH2DOHPzcBcUUTv7PDob9pNJp3Hm5hHo6yWbThMLp9jzhn5fpHpyHmVzi9n0WBPBtjDVU/OZdnEFuSVyn+tskXRWoKZ9OPMLGDtrLvYcD8Vjx/HKfb+kp/kQ486bT9PWPnqPBJlxSSUlY3Ow2CU5rhBnjOLJcME34NX/d2ze+MvA8x6J1oX4IPLHwfwvwpF1MPVG/VnGxKugZw/ULQVvM1TNh5Y3Yfm/Q8cWaNuEd/kTrHzGQGgwCJjJKTBz5Y1PkvvMZfoz85Lp0LNL34eikLCVkw1GyWazWJxOUok4A+2tJ4STiES49NP/gDMvn65DB+jr6Ea17qNxi4LRYuLe5ZNR1NTpPUZnqPCgF6vTxWWf+zL9LUcIeQcoHltHMh7j4NtdGIwG+lpDONxm+tqD1M8rxWhU8HZG2Lu2E4NRZdqSCsKBBA63GaPZgDvfyu7XO+huClA6zsPkRWWUjfPo3+GEEEIIIYQQQgghhBBCCCGEEOIkGZEkJIqiPAJcBBQoitIBfB89+cifFEX5BNAGfAhA07R9iqL8CdgPpIHPa5qWGYm4/1qZTIpsOktOcckJr5XVT8SpxuC6exh0T2f7yhfZ/cpLaFqWvPIKLv30lyivn0giGuG13/6a5q2bANi1eiX1Cy5g+i2foDeYGEpA8g5fNEWnP0aLN8Ln/rhjaP6WFh//uLyebzyxi7tvm02524ZqVIkMJnn5N3tJRPVGx3vXdREYiLPszknYnB+sY3nz5r6hBCQAob44dTF49so0YzfeDqvaoH4FXPI9vSPye4iFQqTiMeyeXIwmaWQ3KljslNVPpvPAHowmvS4MtLVQOq6ekHcAg8mMoqh4O9qpnXs+PU2H0LJZjBYLgb4eamefB1vfJhEO48jNI+L34TiaJMHX1Ulh9Rj6W48Mvd/9bS2UjptAy85tQ/MG2loonzgZb0cbiqqiGoz4ujqZfPEy2vbsQjEYSCXiZNJpcoqKAYiHgpx37YdY94cHqJw8DVdBAa89sBpNy5JbWs7i2z/G3KtvwGAyYbJZqZszD4vDidlmw9fdyZiZc+huPEhooF9PptLRzqQLltBxYC+eohLmXX8L+998ndLx9bxy7y+HNbq/9NNfxGi2kE4e+38oqZ1A56EkG/dFueEf3RTnnpZ379ySzcLh12HlV8HXAuMvh2U/gMIJ77185XnwyVf1TucGE5ROh/zaY68XjIOPPgddO6F/P8y4Q2/UFeoGVwnk1kJhnb7sFT+BGbeRjYfZuT/EW/fcd3Qjr1JQVc2yT32R4jG1GIwnntdCg3He+MPBYaNc7nq1nbEzCymr8wAQC4dIxYafGx2eXKxOF/FwCG97O+dddxNbn3+Ktj07AaieNpM5K65n9T0/1zeqKGiag5bdXnoOB7nyc9N4+6lWgq90ct7FZbzisRGMp3ivsTajiTSprIbJoA4lIHnH7s4AezoDLB4nI5v9XZyFcNX/QvdOCPfp9TbmJ1s1HyUZ1ZMmhHv1ep0MQ3SQbE4lsYyKZszDWmlAifajuitQKs5DCXaSTccJ5E7Ff82z1KSacLiLsOd4iAb8Q7tVFBWbS+9wm19ZjTOv4ITQSsfV4y4sIhWPs/QTn6OzYR/P//Q/ASiuHceYGXPIKy5gQk4VysXf0UdoK5mmJ/JRDfpG8mrg9iegYzPE/OAu00dgS0Xhw8+i5VbT29xI2169AWTVlOkU37kGpXsHZNNQPEVvzAv4e7t58j+/T7BfT+62Y9VzLL3zs8xYfuUpeWvEB2c0mSgeU0tXw4Fh8yunTCOdTBDojzH/+lra9rbhytOonpyD1dHPy7+6j0BvDwC71rzIolvvxGSbTVGela/Mq+Ff1zYRT2bQNA1VUQjG0hS5LGiaBihYTSrxlvBQAhKA0GCCQ5t7mXetUz9XX/trPQlJIgTWPLj1T3pSHKNFvy41WPTEVfM+r48KWD7zdB46MdLyxsCS7+jXD7k1kNXg1kf0Bt1GG1phPYQH6HZfTXdL99BqiWiaTS8coe7yQlrXr+HAm68DcHDDWiomTaXuvPmUjK1j/aO/Z8dLz6MoKpMvXErdefNx5uWTjMcoqR1PLBTEcDTRU+m4qcRCKiWxLF+aVc2hxw7zzodz4KV25txQy3MroG7VTSiBdsZMuY28qltP8wET57JUViOSSFPsthBJZlBQ0DSNTFY/R2sa/LSpiK9OsKLUr4B0jJaKr/P2sx1MmG9g26pWJi4oZffrnUxYUEoikmbnq21MWlBG694B8kodHNrcy3krxtB7JICiqjjcZtAUXr5vLwuudRPq387O3UdIRqPkFJdwcP0bQ/GV1U9kycc/jcXhxGg0Y7KaueD2j9G4eSNte3fzzs0Ts82Ols1istowWSzYXJLIZ0SoBiZdcDEv/OxHQ7OsDicrvvItLHYXimpi1a/3koylmXNFDWsfPkQypt+32v1KO5XT8xlX4GDDkUH+48UDjMl3SBIScdpkshpoWV6++2eEfV5Av5ZdcNMd1EyfhbugkHhYIxHL4Mq3svr+fWTT+jlo16sdTFtaQTaTJeJPcmSnnnwx5I3TeyTI1IsrsTpMbFvViqIozLikasTKKUafdDrD1hdbOLBRvy59p97MWl5FJsfC2ocbhpZ97XcHWfbJyWgDLTz7X/85lHBk6/NPcsUXvk4s1Meyu77Amt/8ksrJUykdN4HQQD8Oj37jMhXXk09rZNHQk62nE3H9PoKmYXPKOVcIgE5flE5/lCJXLk6LgUQ0SjoVY/Wvf042o//fqQYDK778LVSznVd+u49YSL/HqppUXnlgPxG//ixh79pO+ttDrPjCdKySiOKsEM+a6Glu5OW7fzY0z+bO4cp/+Eda9+wgm9UwWw10NwfoPRLkis9OpWJC3sgFLIT461jdMO4y/Zmivw3sBVBQB2VTRzoycaYy22HRV/XnhcmI/oxMNUImDQajnjjbaNWfr2lZuONJiA7SeLCY0OCxe9eBgSSHO8qZ/ZFnIdABl/8XeJsgGYK8sVgzJsJRIyoaqmrFaLYMtdt4h9XpIqekhGQsygs/+yHJ2DvPYJ7jwo9+gy0rs/oz589PO73H6AzlKihkxZe/yapf/PfQfQSApZ/4LNacUjY9e5hJi8vY8GQTl39mCrFQkkwyy5uPNQ4t+9rvDrLszkmsfeQQUy+qIJ3MUjzWTeOWPho39zLYGeaSj0+ioEK+qwkhhBBCCCGEEEIIIYQQQgghTp4RSUKiadqf6y219M8s/+/Av5+6iE6NHFOa/miSvLJypi5dzp7XVoOm4SkuZe7VN2KpnQLMo3f9G7gKirj9P/+HdCSB0+BBC6VIdAXp87fSsmsHi279KDlFxcSCQd56/GGmXz6A25aDQVX0xu9Hlbit5DvN3PfmkRPiWdfYz+yqPPZ2BphfkYPRqOLviw0lIHlH+/5BBrsjlI97/yQkmUyW3ubAifP7otT1/xf4j46acvB5fdT5mx4Es4NkJklHqAMVBa3Nxxu//Q3+3i7qF1zAvOtvIa+s/K861uLkSyVU6hfdSN3ceeQUFXHT939EIhLEYDIz7ZLLScZjfOh7/0EyFkVVVcbPW0QiEuHab36fdCIOwIe+90MSkSB15y8gk06jZdLc/P0fEQsHMVmteqe1ZJIbvvtveNtacHhymbrkUhRV5cbv/js9hw/hKSqhasoMjBYzN37nX0jEY6iKytjZc8mmMhR/YxyqogIaN33/h2QzGbqbGpiy9FIqJk6hp+kQs1dci9Fsxl1QiMVu5/COLXjb2wAoqR3P3Gtu4Ppv/YCBjnYsdgel4yditliYdNEyFEUjGY1yzTf+mXgoiNlm45IJn2Owo51xM+YzduxsVE0lbcsQivu46fv/SWTQSzqdJuL3YTCVs/HpIFpWo68lRHGNdHI76fr2w8M36Y2xAA6tglQMbvkDWP5MQ5uSKfoEBBIBegYbcJgcVLgq9Nfza/Wpezf85mJ920YbpGMw/Ta46md6B3ZXMdRfTqCrk80vfF7fdN14Zl52FQaDgVQiScvO7ZSOn4DdPfy9T8TSQ43OnXkWZi4uJcdkxBZMkBqM0d11iNceuAdfTyfj5y1i/o23kVdWjruwiMu/8DVe/PmP2fHis5TUjmPRLR8mcdX1oChYHE5ioSBGixnVYOC8az/K4V167q54OIW/LzoUQ/fmfq5aVEzWqpJMp7EYVRLp7NDrt51fxf6uAFdMOTGZlsmg0NQXZlZlLg7riFxOnD3cpfp0nFf29bBybxs1JQkgh7Vbsuxsy3DHvAW8uLobfzRJVrOyYmoJ/7GwGvfvl0HmaCcGwDHrk+wr+CLd4Qq0uJHLPvcNVv78P0hEIhhMJpZ+8vPEQkEu/MgnKa0dRyIW4+qvfQctm0UxqBiMJoxmC6rJSCaRJB4J48or4Np//B5Gi4VsOo0tJ4dQXx8BZRKeFz9GfN7X8WVKyLZ0kMmkMagGTDYbqqKSsk8Hq4bF6SIW8GMwGbFk7MSbGzm4YS1l4yfizMsjGYvSb3BRNOUGErEoEd8gFr8PhyeX/tYjQwlI3rH+0d9RO+c8XPmSDGckFVRVkYhFKTvcRNehgwDUzJhN8ZhasjipnhzH27aRPa88zZVf+SbxSJhEOIrdncOEBRfo1wPpNJlUnJrpaQymOFcVWrh26jQyKPRGs6zuC7NiWiktAxGsRgOL8p3kJzU0Y5bIlDwO7x0ciqer0Y+W1VBUBUom69Pxai96VwlmndoDJEa3wvH6dLy6SwDY0NjPPzwZ4F/qAAUqJ7oorFT1htmVZkypIK78AuZefQONmzbi7+3G393FFV/6BqqqcuU/fANVMZBKxDCYzKRTSRRFwep0MuuKqzFZbaSjceYuug4trBAKZzBbDJRkjRx+V3awpvXd3DD5RZS+/QBYtt3DNC0BU6boSdWEOMUKnBbuWjyWH710kC8sqWNnu5/Z1bk4LEYaeoJYjSpOm40HjliZbDFTaTRiyWSpP7+Epm19ADg8FjQNBtrDuPKsTL2gGHdhnNrZxWSSCSYvKsNsVclkzIACZNGyAW7+Th2ZVIrs2AXUzp2Hoio88s/fAMBdWMz4eQtRDQbsbg+pZBx7YSHt+/YQD4fIL69izIw5vPnI75i48AJ6mhowWW1c8onPkldWgdXpHLmDeg5TtCybnn2C6ZdeScXEyWRSKba+8BQD7W2o5lwstvhQ0hFg2O8A7bu9XHJ1BRuODJLV4PBAmKXoiUnT/jipviiKqmIstmN0fbAEu0J8UN5wjIH2Nsw2G8tv+TJGi4WuhgPseOl5bvzuvxEL+GnaGSIVz6AalaEEJO84sL6byz41hed/uWvY/GQ8g6JA8/Z+KibksnddJxPmlWJ1nvmf85l4mnRvlGw0hTHfhrHQJqMz/w3C3gQH3+oeNi+VyGBzmWne3nfC8sloHKshwq1f/CEmo5W0JcWLD/6MQ5s2YM/JYeqSy7jjh/9LVstCJotqNJFOJshms2hoWBwujBY7dreHbDaLoqj6pCoYjAYGuzpw5OZhsdlP1yEQ4pRJeWOk+2OoFgPGIjsGxwc797Z4I3T4YtTm51OmJMlkshze+jbl9ROZunQ5iqLSuHkjjZs3MtkxfuheMIDZahxKQPKO3sNBAn0xrDVn/rlfQDgc5K3HH2HasiuonDyVTDLJluefItDbzfh5iwgOZDmya4DSuhw6Dvjw9UZHfRISLaOR7ouS9scxuMwYi+yoZsNIhyXEyCmZpE9CnCz2XKi9+AMvrmkaXat2nDC/ty0BKy46NqN63tCvuckE0eR+0qkkdkcO2f4EV9/8j3gH24koIVwFhXhKS2nZsY2wz4vJYuWCO+7EYncw2NVB0+ZVXPvVT7BtdQR/b5SSMdL24f048vLpOrifi2+6iwJ3BajQ0XOQ9Y//nks/PQkUGGgLY3WaiEfTWB1GdqztPGE7bfsHKapxoSjg7QhTPfXYABPezgj+vpgkIRHiLKG9e0Q6IYQQQgghhBBCCCGEEEKIESK9hk8lbxMFm++nc+Y3mXnFNYw7fyHpeJyc4hKKasYCEBjox5FXgDO/gD0vv8yk3PmEdjQDEDa04/7QGK75+nfY8Njv6T3chLuwmCWf+AwACgpfvmQcv3qjmWgyQ4HTzKcvHAva0KDZw9hMBgKxNDl2E1pWIwsYTOoJyxmMKgbDB2sIbjCojJtbTMSfoG52EUazga4mP9UTbLC+YfjCTash2EWfPYf7dt/HY4ce4//VfYMjv3xiaFS4A2++Tioe54p/+Doms+WDHWdxSqgGlZx8CztWbSPQ18PUpZexbeUz1M9fTMQ3SMeBfZx3zY1sX/UsFZOmohoMNG3eyLwbbmPXK6vIKykjp7iEPa+vYcGNt3JwwzqMZjMVk6ayY9VzzL36Btr27qJt7y4cnlxmXXENRquVva+voe9wM7NXXMuul19kzMw5pJNJjuzcyrzrb2Hny89TNKYOm8vNgTffYMFNt7HvjVew5Xgorqll5+oXmX/DzfS3HKG7sYG6OfPYtvIZZl52FY2b36K0bvxQApJZV1xNeHCQVx/4Nedf8yG9LBOnoBpNNG5az4IP3c6uV17CU1yCp7h0qCxNWzcx5+KrKTVXkF0fAzJY7UasF1XSvm8321Y+QzTgp2rqDGZfecvQA2KTRRpjnhLepmMJSN5x5A0IdkFh/V9c9dDgIf55wz+zf3A/TpOTb5//bS6tvhSL8ej5p7/h2LbTR0d52vMYXPhNyKsZ2k4sEiaTyTDr8quxuXN49f5fkUrEqV+wmBmXrmD9I79j0gUXUzFxytA6RpPCghtqsbujGOJBHHsHybTHiAAxp4nUeVm8nXpdPbhhLclYjCu/9I+YrVbGzpzDbf/xP6TiMZKxKJue/hPNWzcBUDd3PtOWXc5ln/0KHQfDNG5P4u+JD+33+PO+2W5kVk0uBXk29nUF+OlN03l0SzvdgTjXTC8jFE9z6eQSjKrCsolFrDlwrFPLbedX8+zOTi6fWiJJSE6y9sEobYEurKUv8GDrswAsn3gt9aWXYDYopLNZ3sk/lu+0oA7sG0pAAoAtl0zujdSs7ICMvqBlcRkf+u6P6e5qxeHJo+/Abva9sYaZy6+ks+EADW+9idFspmz8RJKxKNFggPLxEwn095FfWU2gt5udL69k+4vPMnHxxWjZLKlEnImLl3DEa6L01jdpO3iILT/+T7KZLJfc9Xk0shiNZtr27WbfG6+y/LNfYvtD99Ld2IC7sIiFN38Ym9tDUc1YDEYja37zf3jbW8mvrGLJxz7NW08+Ssf+PbjyC7jkri+gKCdes6RTSbKZ7AnzxemVU1iCUcuQU/gJYsEARosFe46HZDzDql+2MPuyNG/+8bdc/0//QioWpaexgdK6epx5Bexf9wazr7yGbSufIeTtp3XvTuasuA6L3UkmlcRst1FoMPP5KSY0m5nyYiNlKMQfaUBL6u/9jEl5mGYW0rCjH4AxMwqJhBI4c6wjeVjEWcCgqgRiKaon5FI/TmHHi38g5qrAYDCSKZlK0+at7HltDarRwNQlyzEYjRiMRp79r38lGYsx7vwFTFx0EWa7g4Ovr6H+/AVkMhk2PPo7+loOM33J5cyuvZzIK3riRqMKOdfUob1Hhzebw4AhMThsnnHXH+GCr4On8rQcDyGunlGGxaSys83PvLF5aBr4IknOG5PP3Jp8DNksS+Iq6ef0Om1SoX75GAaLbYS8cRRVIZVIY7IayCvJEAs14cypobepgR0vPc+cFddjtttQjUZSsTiB/h4Kq8YQ6wrRd6SZnatfQEFh+mUrqJ+3iGQ8Rl5ZBbtWv0gmnSIeDlNWP5HXHvg19fMXs+W5J6maPA13YRG3/OCHZLUsYa+XudfcSE5RCc7c0d3B72yWjCdYcONtbF/1LLtWr8SZl8/Cm+7AaLMTDQ3/zqKqJ96fMhpV4pljd77yHPr3t2RPBO+De8n4kwCYKlzk31qPMd92ikskziUmVcHmcjN92RWs/f39xCNhamefx7K7Ps9gVwfugiIUMpitRgzGE7/DWOxGMlkNo1ElnRr+XUZVFcw2I6m4fp9JNZ75iToy0RTB1S1E3u4BQDGp5H9sMtZaz8gGdgZSjQpGi4FUPDNsfjajYXtXspqZy3JxmgewNxaQbOwnBah2I9d+4p/YveMVxi9YTHhwANVoJBGJEA8FSadTDLQeobupgRmXriAeCZGKxbE4nZhtNlKJOJlkEsVgwGS2YLRYMBiMlNSNp6Cy+jQeCSFOrkR7iIEH9qIdTXpmnZSP59pajO73fz4ViqfJd1rY0RmkvMSIxWanbMJkckvLee2BX5OIRqk7bz61s8/DUwKKAu/0JXuvaxxFAeN7PLMTZyZDMs6Fd3yc/W++zsr//S+sDifzb7wVe44Hk8XBmgcOUD0ln3hYv6/7XtcNo01s3wCDjx6Eo5cw7suqcS4sRzXJsy8hhDjdYuEkvp4oY2cU0N3kH/ba2Jl64v5kIkPEF8doNuDK05+XmMwWqqZMw9vVjblDI/RcC2HNi0WB3EvHkcpRiQeDmKw2HHn5XPzxT7Ph0d/j6+6koKqGhTd/mF0vr6SibhyuvNJ3hyXeg2pQqCqfTOSJNqLBdgCKKoq49nPfRXMYSCUymG0GMqksqqqgAZb3eEZgsZsY6AijqgoGswracfcU5DpSiLPK8QMHCSGEEEIIIYQQQgghhBBCjCR5CnkqWRwoB5+h4tkVmHc8gK1jLaU9L1BkO250s2wWe46brc8/RU3lNLI7wsdey2hEVrbja26n93ATAMH+Xl6++2eo2Qz5DjN7Onx8dH4NX1hSx4ppZWja0cQgRS7MhmNv76LqXL42q5ov1JayIMeJ2WIik87iKbRRVDN8NIzpSysoqvngI5aU1rqZtLiMfeu72LqqBbPVSEFlHqTjwxd0FoHZxdr2tTzS8AhZLUtp1DWUgOQdTVvfJjQw8IH3L06NPJfCnteepWXXdiZdsJQ3//ggBqOJVCJOw1tvMnXppbz5yEPEw2Hs7hz2vPoyExdfzNtPPYq/u5OiMbVsW/kMtbPPY/erL9PTfIiaGbN5+8lHKK6tG0pAAhDx+9j/5usc3raF5i1vM3XJpaz7w2/JpFMYzWb2r3uVKRddwsY//YGQ10tuSRk7X36B+gWL2LbyGfpaj1AxYTKbn32cqslTaXh7PZ0H9zHuvAVseOz3eEpK6W89wpEdW8lm9Ye17sIi0skUh95ez7Qly3nz0YeIhUI4PLnsefUlJi5ewttPPYavq4PiMXV6WWbNZc/ra+g8sA+PoYhsS2zoeGWjaSyNKq27dhIN+AFo27OTXaufYtrFhdjdZorHuk/7+3hOsHmO/W5x4VvwPzQtXMXhdhfBgdifXS2cDPMfm/6D/YP79b9TYb69/tsc8h06bnvvMTK6PR9Mxzq2a5pGT/Mh6mafT9GYWjY89nuSsShaNsvB9Wtp3LSRacuu5Okf/Qv+Hn3E2t6WAJuePYy3Y4Atz/wGS9hEpv24+hROYe+wUVo7YWje4e2bCQ8eOzcqgL+vl86D+4cSkAA0bXmL/pbD+Hq7MNryhyUgKRnrJqfoWAe8uVePYf64HH73VgtPbu8kq2lcPb2Ury8bj6oqRFMZEuksHpuBK6eV8bVLx/PpC8by9UvrOdwfZlJpDvkOSRh1siXTGdLWfbzY8jRZLUtWy7Kq7Slqa9ooz7URPNopwmUxcsmkYtqiwxt5p6d8Ft9aZSgBCUDizS7smova2edhzCZ5+4k/MvmCJRza/Ba9hxvpO9LM2Jlz2bX6RWwuNy27d2BxODnw5uto2Qxbn3+KdDJBJp1m7+trcOTm0bJrB/6eLgY72xno7uPNhx8kHgkz+aKl9LU0Ew+H6Ws9zK7VK5m4+CLefupRuhv1BGXB/j5W3/NzMukkRrOZNb/5Jd52vcNyXmkF6/74Wzr27wEg5B3g2R//KzaXG5N1eAfSWZdfjaugADHyHOYsZa9+gvy+17F1rMWYzdJ+QCGv3EHngU1MWXIpR7ZvYcvzT2FxOOg4sJfGTRuYumQZ6/74W0JePYFI18H9bHrqMToP7kXTNEIDA2SzGbq2b6B/czsDb/WRXNU6lIAEILN/kHFj3CgK1M0uItAX5fmf7cTXEzm2TDpLLJQkc7TRlrczTNPWXlp2DxD2veuaVYijxhU7eeqWuUTaAmxf+Qd83e1oGhSNHUfH/r3sWrOKbCZNOpFgx6rnKKisZtPTfyIRjaBpWQ69vZ6W3dtp3b2dutnnseb+uwEYO/s8ACrKJhF55bgRDbMQffEIxXkWLI7jEnwpMHtZEaYjLw0P0FEERvkcFqdeOp0hFkqSZzdz+/nVfOeS8Swv8HCBxcGHx5eyYnIJN84u59qqfNKvtB1bMQuJV1qZe2EFKNDV6KdkbA55pQ78fQfwlJYRDfpZfe8vGHfefIwWM5lUioG2VnzdnVgdTvqOHCYeDrFt5dNkUinSqSTbnn+KopqxlE+YzLaVz5BKxMlmMux+ZRWhgT4iPh97X19D3Zx5tOzaTmfDflp9cX65J0WqcjLl9ZMkAckIs7gcbFv5NJ0H9gEQHvSy+t5fYDabceSYcHosFFTq38XC/gQFFcO/l9UtKefR/V0AVHiszKr2oGU1Ipu6hxKQAKQ6QsQb/aenUOKcYVWyaNksrz90L/FwCDSN5q2baNryFq6CIvpbDjNhUR65JXZMlmMdvd4x+7JqdqxuZebyqmHzCyqchI8mee5o8DHrsmrMZ0HCz1RXeCgBCYCWyuJ7upFMOPUX1hLvxZ1vY941Y4fNyyt1EPbFGTOjcKjzuqoquHK9ONNuko2BoWWz0TSxDX2MmzOfTDKByWZHAf27fjZDJpnAmZdPeHCQt554mEQ0isXhYLCznf1vvkHEN4hqMJJJpuhvb6Vt7266mhpo2LCORDSCEGeibDJD8OWWoQQkAPH9XlLtoQ+0/oQSN49sbifHaiI40IfRasFoNA7dI9O0LI2bNtC+bzcGg4GpS4qH1h3oCFM1efg16dQlFcPu3Yozm9Ntp3nbJv3evaYRD4d4/cF70TSNaMCLqipUTMyltyVIbqmd3BL7SIf8F6W9MXxPNg4lIAEIvtRKujc6ckEJcRIlY2k6G/0c2txDV5OfZCL9/iv9HWLhJKlk5v0XFOI9hH1x1jywn6d/sh1fT5S62UUoCiiqwtSLKqiYmIevJ8LLv9nLwz/YxGP/vpmGt7tJpTKkkxn6WsOoIRuhla3HRjfSILqmE1vGSiadpqCqioLyStbc8wt83fo97IG2Fl69/24Ka8bw2gP3kE50j9xBOIOoipH41gGywWPfg9MdEaxBC658O0XVbtwFNqxOE0aTSiKcZtKismFJ60wWA2XjclCAWDRFUZWbxu3HBg8ZN7cYz994LZHNavS3h2jc0kvbPi+RQOL9VxJCnFJJGYRFCCGEEEIIIYQQQgghhBCjxJnfknk0K6iH2XfCtgfI2fY/5AAs+irkH2ssrBqNpIJ+2vfuZubE5UBy2CayoRQmZXjHsnQqib+3G2pK+OyFdTT0hukJxDl/TB5jC+0YVdjT6eNrl47nyECEQqeZhSkza3+ld+44AMxdUcPEhSVodpWFHxrHQFuIQH+Momo3hdXOoQfa2WyGyKAPVAVnbh6KcvRBd7gPWtaTHuygT7uOzc8dGYqvZfcATo+ZwjmfQt16rz5TUeCKn4C7hNc2vTa0rMPixOJwsuKL38BktxHxDfLaQ78hEohjdSaxu80n5a0Qf72Qd4DD2zYDkEml0LQsFRMn07JrO6AnXkgnE5TVT6DjaMchs9VOLBggv6KKvtbDAOQUFnPgzdexOByEB70AlI6bwKanHhu2v4qJk2nY+CYA2UyGbCZN2bgJtO3ZCej/K4lohJK68XQ36Z3Y7W4Pwf4+XPkF+Hv0DkgFVTU0bX0bRVVJxvTGj5WTprL9xWcBUBQFk9VGef2kY2VBI51IUDl5Gh0H9gJgsdmJBvzklVfQ39ail6WohAPr38Bid5DsP7FxfaY7RlFpDW37dg7NO7xjC3OvvpXJi8eSW+z4W94K8X6Kp8DEq+DA8/Qtup/nnraRiMaBg7jyray43UOepRfyxkLusZFZ+6P9bOvbdsLmGn2NTC2cqv9RMg3K50Dn1mMLXPYjcJWQiEaIRyKoBpVtLzzN3KtupK/l8Anba9r6FpMuXEIyFsXX04WrsJjm7f00betn9nIz4cF+jBGFE5oa9qdYcsddJLJxuhsPsn3lsxjNxz4Pgv29eEpK2PXyCyfss3XPDhbe9GFQzSz92ET620J4iuwUVDk5sNdLzUVljJmQR+3kfIxGlS9dMp6BcAKX1Ug0kaahN0wynWVBbT41eTYOD8TIZLPYTAbuf/Mw/liapROKuGvxGEwGyWd2spV5bGzdsfaE+dsG1vGVKSv47pUTURWYWOrGbFCI5E4iUzEPQ8fbAGQtZWTfo0OXIRTBvuOPHPbmA/q5r7CqmqYt+nqpZILc0jL6W49QXFOLt7ONqmkzaNu984RtdRzYS/HYOtr37Wb2FdfSsnv70Gtmu97IzWyxsv/oebawuoY9rw7vPJ9JpQj09uDKLxxK3gSQV1FJ4+aNw5bNZjJEAj4+9M//zraVT+Ntb2PKkksZf/5CVFVG2hwVPJUoC75A7jOf1f82Bxk77XNUTPRwaEM+lVOmEejpJtOcQlUNNGxcBxz7zD9e7+EmJl2wFEVRSCeTZFJJqibPIBJIo8bcZA4NnrD7HIeR2ZfX0H5gkKZtQQCatvcxdkYhigI717TTfmCQikm5jJ9Twsq7d5M5OvJ8QaWLyz8zBXe+dPQRw+XZzezd68NiC9Oxfyf18xfTuns7FZOm0n40UdI7LHYH3va2E7bRvGUT8z90K0azmUxCr8+qQT9vmTQzw3rvAFoiQyqZYdZH68n2RiGRpKwkQVHwabSrf4Gy7scweFj/fnXZD/VEj0KcQgPtIba93EpPc4CaaQVMubCcXa+0c2DjsU4Gl3xsIvXzSonHMsc6LhylpbKo6SzLPjEJX3eUvBI7RqtK96EWCipKCQ30g6aRzWSJ+n2YrDaMRhOdzY1MvngZPYebhjo6HK/z0AGKx9adMP/Q2xuYsPBCNj39GLWzzwegZcc25lxzE58usVNV5jmpx0f89TKZNPFAgK6GA8Pma9ksvp4uamePw9ebYvHN4xnsChMciHPe1WMI+xKEB+PkVjkZtKvcnKtQ4LAwd0wuYwqcZJMZki3BE/aX7AwBMjKvOHlURWGwq+OE+c1bNzPzsqvpbNhP9bRZ5BTZyWpZLry9Hl9PhFgwRdm4HMzWFHML88hoVpZ9YhID7WEcHgs2pwlFVQj741z+2alUTjg7kiVlQid+N80MxMnG0xicJ47sLP6yCfNKySm00dXox+Yy48y1oBpUFAMs/9RkBtrDWBwmBlpXUVZcfcL6Wl+SbMxEWklhdblIaRqaBlomQyIaJeL3UVI7jra9uzCZLYR9g3Q3NlA5eSpmq51UMkF3YwOqaiCnqAiryw0o+Hq6KBk77vQfECH+Tlo8TbIzfML8tP+DdbysKXBwz63TsWUTtGzooHLCFJo3bTxhuUNvb2D2iusYO92Bp2g8/t4ohZUu7EVWKmcVEu2PU1LjpmSsG6NJ7nOdLaI+/9B91+P5ejpx5Rdy9VdqGezSWPihOgqr3NjLRncSkkw0jZY4MWFCJpx8j6WFOLOkkxm2r25l26rWoXnzrhvLjKVVQ4neTpbQYJyGTT3sX9+Fu8DGeStqKK3zHGuDIcS7BPpjJGNpnLkWbC697UxPc4D2/fpzkv3ruyge4+bCW8dTUOXC7rZgdRjZ+EQjbXv1thmJSJpXHjzAtflWfN1R1j7cwKVXjcGWfteNvCxo0QxZo558M9jfd0LCwfCgF5srB03LEujrQby/bDKD1vse3417Y2THqEy5qIRkpJMxUw7jbe+ldPwUzLZCLv/cVHqbg6hGhaJqF9FAglmXVWG2GTFZVErHerBYTeSV6olMPIV/27VEx8FBXvjlbrSsXh8qJ+ay9GOTcOSc3ATo8XCKeCSF1WnC6vj77gdkUll6WwI07+zHbDFSM62AomqXnEvFWSOROvbsUNM0qdtCCCGEEEIIIYQQQgghhBgxkoTkVLI4Ycl3YMIV4G+HvDFQOmPYaNWZdBqD0UxhzViSxiRGhWGddgxFNgYGDpywaavLxeTqPBr7gkwtdzOrKod8p5l8p43Ht7ZzyYRippa58UY9FKUUVv5s17D1t65sYcy0Agqr3FAMZbWeE/YR8g3SuX8vhzZtIJNKUj9/MVVTp+PMzYddj8Ca75Ga8zUC8TiqQWH6kkqcuRYaNvfQvKOfOV/4FI68SkhGoWA8lM/FF/NRk1PD+q71vLz0ObLhKFd95VtsfPxhug8dpLi2jss/9xW6D8fxdXZRm+fD6MnBXFODokpH99PJ6nCQU1SCr7sT1aifKkLeATzFJYQG+jEY9YYBYa+XojG1dDceRFEVFEUlGvBTNXUGAJl0CpPVRiqewOrQRy+OBvy48gsIeQcAUBQVi91BbmmZ3pD9nf0NDpBTXMJAeyuGo501I75BCqvHAKBpWQwmE7FwCIcnF4BENILN5SYWCmI0mYfiLp84hWkzluJQPdR/dj6+VB+RgI9gf++xsgx6KakdR9eho2VRVaKBADXT9Q776VQSs81GIhohaYnz7ubApvFuWjfvHDYvp6gYu8dFXqkkIDllHAWw4Eto9VexZ2cFiWjv0Eshb5zDLVbyvP8LBRPhvE9Cfi0A0XSUcmc5neHhnRqtxuNGKc4phw89BN07IOqFwglQOoPuxgZef+heepoamXXlNeSWVrDpmT8xZ8W1J4TnKSnDaNLP+5l0imD/AC27B3AXWskttRMNBEi5Mrz7DGee4OGNp/9A696djJ01l6u//h3cBYUAeDvaCPT3YrCYhxJBHK+kdjyoCiFfP+1xhQVX1tEbydASSuKY4KbaaaGhN8iko43aawoc1BToddQfSWIyqkwpd2FUVcYVu5lUfqxRw/LJJcRTGcpzbdjNchlxsmWyGuF4ijpPHZt6Ng17rc5Tx2AkyesHe1EzaX70UgNfuLiWLy6dBJW/AV8r6YiPlKMew64Qmf7YsZUVULUeesyTMLkzTF98GROq55EOJZk4YRFvvPBbjCYzwYF+KidPY/+616ifv5jD2zZTN3f+CXHmFJXQ09TAhIUX4uvpwubOObaro41g0qkkeWUV9DY3kozFMNtsJGOxYduxudwoin6+1bJ6Y5pUPIbV6dJHFX/XsqV147n8818jnUphsUnCiFFn0rWQWwPJBNrBZyl+eBLJhf9KetZc7J5cBjvaSScSZLNZcksrCHkHhj7zj2d1OMmk9A4MiqKgGAz4ujtxeArpa7dRWOMm865OxhENupv8eIrtxEIpggMxepoDuPIsFHkszJmcy6yJuWgeC95gknFzi2jc0kdxjYuaaYVEgwlUVSGT0XAd7cgnRCyU5MjOfiYscOPMzdevTYtKUNDIKSqh93DT0LKpRBxnfv4J28gpKSEWCpFTXEo6ldSvTxW9fsWyYSwGB2SOfQE0uM08d3iAnT29/HRWP6bV34atRxtzKyrc/AeIDEDRRP27pRCnUGQgSqTRx5RyB/VVLhoa/XQc9HFgYzfOPAuzlldjd5uJRZIMdocxWwxgVCF9rIGs6jRhLbRi8ieJBpLkljhY90gTY6YUoRoNWI4mL1MNBsx2BwajkWgggCu/gFQ8htFsprCyho59wxP/FFRUDX3fO15eeSUD7S1YHA5SiTgAOSWl7FnzwtGkQLczafFFWJ2uU3jkxF9iMBgxmq3Y3DnEgoFhr1mdLvpaw2x44gh1l+ZwX+K/+caif8RosJPOUSiZ5CGSTONC48PVVVh8SVLtUWL9CUzlTmxTC0h1D+8cY63znMbSiXNBJpPG5nafMD+nuASD0URh9Rgy2Syv/PYgsy+vxmhW6TvspW5Wip0vP4qiqpSNm0hfy2HOu/ZGxs89MaHSqaRlNVLdEVJ9UVSLAVOZA6PH+v4r/o2MeSdu21zjRpUEJH8Ts81I9ZQCqqcUDM3b0NTP41vb+e5l9eSXxDD27yabLMNUaCf2rvWVagupTAKjzUI6mUTTsvp3LkXFYDRhttoIeQdQFBVFVbE6nNhzPIQGBnB4clFVIzmFRUSDAeLRKAaTBbPVSsTvo3HLJsonTCWTUlBUhUwyAwYVk1HRE0ymNQwGBbPDiNEoSRbE30bTjjuHmQyYyp0YPX9750jVbsI2KY/otr5h801FH6wD50B7O5FD+wlm0noS9WQce47nhOU8JWWoJiPGHBP5hXam5lYMvVZVm/s3xy9GN6PFQk5RCf2tR4bNtznd2F1uDq5fRfGYOgprxuEqc+C2/XWfjZlwklRnmEwkhbHAhrnUgXIKk9gY3WYMbjOZ4HFJRwwKxtxTdx0hxOni7Qyz7aXWYfM2P3uEqkn5FFaevPsH2azGnjc62LFaT2Qc8sZ5ttnPjd+cc1L3I85cWlYjEkygaRqZZJaew0HefOwQNreZutlFjJ9TjGpUyKSzWB0m4pEUeWUOJswqJE8FY3uImDVGLN9C8/Z+ABRVoXJiLlanmWB/jA2PNwIQTmSw24xosWNJ4hWzCk4DmVAKk9kyNOjA8VSDkXcaNDk8Z0fyzFNOyUKNBXqjw2ar5VYwmsgm23nuv38Amn5cLQ4HN/zTv1AzpZ6a4777vVvZSbidEAsnWffooaEEJADtB3z0t4VwTD15SUjaDwyy/vFGBrsiFFS5uPDW8ZSMyXn/FY8KDcbxdoRIJbPklTqIBpM89/OdQ23rdqxp4/qvz6Ko+sT7NUKciZKZY89Y0lkNk0GSkAghhBBCCCGEEEIIIYQQYmRI77pTzVEA45bB3Duh9mKwD29QmE6lyGYzzLv+Zhw5ObiXVaNY9EZihjwrnqvH4q4oHrbOlIuWUVyrjyw4rsjN5HIP40tyyHfqnXHL3BbGFDh4YkcXd9y/mVQoNeyhMejPr8P+vzw6Vc+hg7z4y5/QuGkDh7dvYdX//ZT2fXug7yC8+d8ARGZ9iZrpDlZ8oQKLM83uNzoorfWw6ObxmNf9AFb/M7zxn/DEx2HfU8TTcSpcFZxfcj52kx2j0cjLv/5fuhr2o2lZepoO8eIvfkJ5nYnda7sZ+NMzHLnueoIrV6Kl038xXnFy2XNyWHjLh1ENRrwdbVRPm0n7/j3UzpmH0WKhY/8eJiy8kMGuDopqxmJzuWna8jYzll9JLBTE6nDgyi/k4Ia1zFlxLdlMmmQ8Rn5lNQ0b32TmZVehqCoOTy4XfeSTdDceZNIFSzGYTPQ0HaJuzjx6DzdRMXEqFruDIzu3MXXJckLeAdwFhTg8uTS8tZ7ZV1xDOqGPTJhbWsbBDWuZveI6UBQi/kGKa8fRsnMbl1x+F46NRlgXJvZMJ85dJpbcdBcmi5X2fbuZuOgifN2dFFTVYHO5ady0kZmXrSAeDmG22XEVvFOW6wDYs+c1DHPdcPRhr6HSRqwigcXpHDqGqsHAwps/TH9bmPYDg2Qz2RMPtPj79R+E311NpnUT3q7oCS8PdkdJF84EmxtaNwzNj6Vj3D7xdkzqsca9S6uWYjO8K7GBpwImXgWzPwZV8/D7/Dz9o/9Hd2MDmpZl28pnmLZ0OYlImMKaWvLKjzUiN1mszL7iGn77lU8xY/mVJGNRGt56g/nXFTH7sipSCTs102cTIYhjXgmoen0yj8nBONZBV+MBtGyW5q2beOuJRxjo7iARjfDKfXez9fmnCPT1UTN91rB95pVXUj11BolQiNShXVR/9wvEdu/lxy83cutvNnHrfZv4/aZWitxWsu/6bADwOMxMKfcwpTyXCaU5GNThDRoq8+yMK3ZJApJTIBBN8dqBXg52BRiXO45yZ/nQaxXOCuo8dUQSGZxWE2+2BHFbTVw2uRS6d8HzX4GHb8K4+484bGnybqrHkK83AFcsBtzX1dIaU3nkpz8nFUwyxb6I+DM9pF8dRHkxzCXLPoWvu5PqqTNQDQacefkYLRZcBUUUjanFmXesY73N5aagshqDyUzp+AlkM2kKKmsoqhkLQOOmjRiMJhRVpXrqDKxOFztffoGFN39kWHnrFyzG6nQT9nmHzq0ABzesY+FNd8BxI/pMumAJBZX6KM4Go1ESkIxWZjtULwCDirL9IeKz/pX2n72IajTyyr2/oGhMLdOWXU42lWL2imswWixDn/lDFIWFt3wEd1EpRpNFr4smE6rBwJsP34fZFSc6PhdDsd74VTGpOC6rwVRmx2A24O+NMGt5Lpd8rIzZl1WRazQQe7SB4OONhJ9sJPqnQ+TZjTjcFpZ/agr5lS52v9bO7tc76WsNsemZZl7/YwMD7zESsjj3RAIJ5l9XS35ZHotv/wTdhxqomT6LjoMHGDNj9lCCPQBHXj555ZUUVo8dmmc0W5h9xTXkFBXR03SIedffTDwSpmO/njzsrVf+RM4NtSg2/TPVkGPBeVEFU3Ps3D4ug6nlDQgfN5qkloXtD8GM26HyPDCemIBBiJNFy2ik9ngxrG5FW9uB8bU2puVZMBtVZi6vYuayKnqPBNE06G8JserXe+nuj+C8vg7VfrROu804r6vj1cebWf+nJpx5Vlz5FmYsK6RqynTioQiOvHyqpsygu6mBTDpNPBzGbLeTX1lNT9MhqqfMoGLS1GEJzxyeXConT6NoTC05Rcful1jsDiZfuITmrZuYfeV1HNywFtVgZOqSSzm4YR3xSJjXH7yHtnclNBGnn9lu58I77hx2vTd21lzyyipwF2rUzSkmrsSwmWygalTmO5hZXcCYQidTyj1MLc/F1BGh7/924HusAe9D+xl8+CDWiflYpxy9blXAubAMy1jPyBRSnLXsLjf55VWUHL03C2AwmZh/462s++MDlNbVk07ESSUyxEIpUNNUTQ7z9H/9C02b36Lx7Q2s++MDFFZV8/qDvzkhUeOpljjsp+//dur/O7/bj/cPB0n74qdsf6YyB57r6/TObICxyIbnmloMVrmncLK0D0b5zOIxbGoLsvQ3h5j0ew1T6WTSXVEc80qH7l2aa1xkxhkwWEwYzBY0lKMJ0vVnESaLhfIJkyifMInpyy5noK2FdCrJ+PMXkltaxmBXJ4lImJziUqomT6eoegwOTy65peUMdnXibW+h82ADrXsH2bKyhb72MK17vfR3ROjvDHN4Vz8te7207B7A2xn6S0US4s9KHgno57BHG/D+fj8DD+0jPfi3n8MUo4rrwkpM1Uc7fhsU3MurMVU4//KKQG/LYboO7WfNvb+gfe9uMukUnXt3UTx23NA9MgCjycz8G25B1VSK402U5Uqy8nOFI6+ABTfdgcF07PlDce048iuqsDhcxEJBtjz3OP7O5r8+AUkkhf+5ZgZ+uw/fnw7Rf/cuonsGTnYRhjHkWMi7bSKGHL1DsmIzkn/bBIyFHyxpjxCjWWgwMWyQGNAThoR9iZO6n4g/wZ7XO4bvJ63hlXvRAvD3RmjZ089gV4SmrX0MdIR59XcHmHxBORPmleLMtzLQGWb1A/vZsrKFiQtLWfrRCUyYXURBX5TMC0eIrTxC8slGLJ1hFt9UxMQF+Sy8sY5ENE13k5+gN8648/R7aQ37vDivG4Pq0j+DVIcJ5/XVRJUwZqsVTcvi8OQyY/mKYXHO/9BtbFv5LHOuuh53/p9PkCGOMVituCYXYxnn0WeoYJ9TjLHEgclk4q0nHh5KQAKQiEQ4smPrUBuYUymVyBDsP/G+RDycOmn76GsNsvq+fQx26YmDB9pCvHTPng98jg30x1h59y5W3r2H1fftY8MTjWx/uXXYeTuTytJyiq+FhDidEqnM0O/JtLQzE0IIIYQQQgghhBBCCCHEyJHWviPM4c5h/Z+eY8oFl2Danybc0o3j/BIUo0ommCTW7qdqynSu/cfvERzow+HJJa+8EmfOe4+O1uOPUJlnY3t7gLvfaEZVwGQ1YHebiR43OpXVacLq+PNvfzaToWX3drTs8IdZu15Zxfj6T2NIxUgu+wnhgcO8/uBvGOxsI6+iikU3f5I3Hu4iEU0xNqdo+EY330tg/FLcJjf/OOvrGFQDgf5+QgP9wxaLBvyEB3uxWM1kBwNoiQRd3/4OlgkTsI4bhzg9AoODbHrqMS7//FdIRCM48wqYumQ58WiEa7/xzwT6erG53Iyft4iI38eVX/omwYE+zFYbVdNmEB4YYPlnv0zY50VVDVz/rR8Q6O9lzIw5xEIB0pk0133rB2RSSV742Y/IpFJ4O9o5/9qbMNvt2FxuxsycQyTo58p/+AbBgX7suR7GzppL2Oflii9+jZDXi8Fk4rpvfZ9gXx9LP/E5In4fWjbLtd/4LoG+XsonTsbtLCS+pg+Oq87pjiimwVyu/tq3CXkHMFmtVE6eRmjQy+Wf/yqRgB+L3UH1tFmEfV6Wf/pLhLz9GK02Vnz5Wwy0txAsCVL0kRrS8SQZS4bBtibmXnMD05ddQTTox+7OYevKZ7jgtk/z/C92ccM3ZlH8V4zoIj6g/kOQiqLlVFEzLZ/+tuEdGQqrXMSKL8blXQ/+YyOZHfQeJJaO8cmpnySrZTGpJlqCLbgtf3mEnEBvN7FQ8NgMTWPNff/Hdd/6Pt72VpZ/9sv4urtIJxPklVWgGo0svPnDtO/fTcf+vSy8+cNEfC14OzsxW43klpVRkFNJcksI10UVoCikusJEV3YybeFytr7yDABte3YSDwQglaHjwF4ADr29nrlX3cAld32BsHcAFAWL3YFiMLLhkYdwO91MKSjA9/3vUfaR7wGQymjcv76F+mI3LquZuqL3b1QvTo9DvUHuWXeYez88i+SAh4srL8Zl1jtBBBNB3GY3LT1RLp1UwnUzy5lQ4qbG5If7boZQ99GNvAT9B7HcuZqiz0wnE0gQT2fZtbmNhjf/j2wmjVPNJX1o+P+J9laImddeQTgVIJtKUzFpKplUknk33EIiHOaKL36dYH8fiqpid3tIxqNcctfniYdCtO3dzcbHH2bJxz5NKpkgk05RNKaWZCyKoqpc+aVvEh7sx2x3cP23/4VAbzdWpwtXfgEWhwPVoJJfXknpuHoifh/OvHyyWY1FN3+YTDpN6fh6SsaOw+aS0avOCNksxANkKhbT99QmHBcvYWCgj57mRlSjCXdRCe7CItAUrv/W/8PX04nd5WHShUuIh8NHE+BYiYeCbF/9PAtuuJXWPTvY9vwzRP1+VIPGmiebuezjk7AbUiTiA7zy6j24C4uYtexSmrce5NX7niCTSjLnqpupV2aixY811NJCSbJHgsRCCdr3D5JXamePL0Hj5l4CvVFmXFLJKw8dYLAzzFX/MAOrQ0ZoP1f5eiMYTSo2Z4DdrzxDX8thltz5GTLpFBUTJ2Ox2fTr3/5ejGYzrsJiktEol3zys/j7eknFYniKSzFaLSRjMYpqXJjtNshqTLloGePPX0hOSSnZaBrH7GIUs0o2kiL4UgvVY3JwXZwHPe/RKTkeYthFrRCnSHogRviV4aMAZ3b1UzAhj4wC6x9r5KI7xnNwYzete73MWl7N/o09uHOtTL5xPLGBGNZSB4/dvZtkTD8P736tHXeel61P30Ogr4d5N97KmOJZzP/QbYQG+lANRuweD4qiEujroaR2HKrBiNlm46qv/BOBvh4UBRy5eSTCYZyFxVz2ua/i6+lC07LklVXg7+ni+m/9gGQyyawrr8VssbL52cfJpI41nD/01puMP3/BaT2eYjhvewsl4yZwwz/9C/7eLqwOJzklZWQzGVIRL/llhZjLbdyk3kR/tP+E9TORJP7nm4edDpMtQTK+OHk31ZNeGkNRFYz5NhSj5F8WJ18yHmXJnZ/F191JMh4jr6QMa04ec6+9EU3Lkk7EMduM2FwmcvLDbH561bD1tWyWgfZW/D1dhAe9wxKLnkqZWIrAi4fhuISkqY4Qyc4wxlzrKdmnajLgmFuCZWwOWiKDwWPB4JBEaifTrAoPvkSarz++i9jRTirBviw5b/ZgLLbjuqACVIW0L46jyEVci+qZ6Q0qmtGE1eVGNZkYaD3Cy/f8nJmXXUXllOlo6TTa0Y5w7qIiFFVFQUHv6aXqPxXwdXaSjETQ0BjsOIJqysFsNbB/XRd1c4to3eulvN6D3Wlmz9p2xkwrxN8TxWwz4co7NfVOnJ2yiTT+l1sgc+wclu6OkGwPYfw76pKpyE7BxyaT8SVQTCrGPBvK+4wyHQ0G8La3cnDDGwB0HthL3dz5HNm+maK68Sz9xGf1+8OpFHllFZjsDmLRCC5vE1TP/5tjFWeWeDBAXkUV13/rBwx2d2K22sgtLSedTpGMxaibcz4NG9YSHhwgFgr+Vfc+Uz0RYruHd7T1P38Yy5icU/aZDmCpcVP0+RlkgglUh+mU7kuI08liN2CxG0lEjw2I4vCYMVlO7vdJg1HFbDOSTg0fKMZoNpzU/YgzTyqZobs5gM1loml7H54iOwMdEcrH5+LriVAyNgez2cCa3+4fSrywY3Ubc66socRpIv3m8M+E8Oo2UlMH6G5YR27xbfS3h8imNbaubGHW8iouuLUQR06KkHmQwMwQ+YWVGJwWDrftJHLQR915C9CyGYwmExMXX0TlpKlEAz7chcVoQGFlNVariTxT8MTCiBOkfBGiz/ZiyLfhWloFmka8wYex1knWpScdebdYKIi/v5eCiqpTGpvdbaZudhGNW/uOzVTAU3Lykoz5uiPEI8OTmkT8Sfx9UZy5lvddv6fZj7fjuGOkKKTiJw5glTruWaAQZ7rkcQNcJdNZHO//ryKEEEIIIYQQQgghhBBCCHFKSBKSU2mgFRI+CLRCsBvcZVA6HXKrhxaxuVxUTphC2+5d1AzUkg0mCa/rHHrdMMXJi8/8Cn9P19C8m7//wz+7S0VRMZsUDnTrnYvzHSYUVWHhTXVEA0ni4TRWpxFXvhWL/c+//bFQCEU9sWGNggJGK8y4ncHii3jxRz8gFgwAMNjRxprf/DeLbv02G57oZdpXv0HhzgeOrewsJidVQH3Qg9tgIuvWMNvtKIqKpg3vSGexO5gxOUn80df0GakU6Z4ekCQkp00iayARi/LS3f/Dkjs/y6sP/Iry+kmYzBbWPvgbLvroJ1n3hwcwmM3kl1fy6v13s/QTn2PjC0+TTaeZtvQyXvif/2TaJZexfdXzGM0mFt7yEVb9338z7ZLL6Dp0kK5DB7jg9o8PdQiLBvxsfPyP+giyN9zC+kd/PxTPrCuu4fD2LQy0t1A1eTqv3v8r5l1/C5uffQK7O4eaGbN49YFfMeuKa9i39hUSkQgLb/4wrz94L9d+/rtY/Cc2RFCSsPH5PzLl4mW07NxOYc1YHDk5eDvb6WluxOpwcHDjOqZctIw19/wC0Ee0n7Z0OUVj6+hubsDb3c6W554knUiw4KY7WPv7+0kn9VFbFFVl/o23YjDa0LIafa0hSUJyKihHz1WhHgprXFx8xwTC/jiqquDMtWIwq2iJMMQDUDZzaLUKdwX7BvZRaC/kra63qHZXs2LMCgIJP7RvBk819B0AswsGGyEehPxazNqJo1UmoxGymQxv/P5+MqkUqtHIFV/4Gn/6f/90wrKxcIiwtx+728G6P+jnyHEfnQPdEVLdxzegAXdd4dCfNpcbg9FELKJhttlIxmIc3rqJqsnTUVQFu9sDgL+nG03L0tt0iKqLlpEZHCTd18dk+/CGN9vafEwrl6QOo0l/OMHBnhD+WJp0Ns2Mohls7NzIPPdiys1jUPzgLnKy6lA/37tqsr7Ske3HEpC8w9cC/QdIFi3EF8vQ3xbCaEoR6OsFwKgZgeH1IRtNE+rq5e1XH2egrYXFt3+Mtj27qJk+m+0vPovd46FuzjwCfT3sfX3N0HoX3P5xmra8BcCLv/zJ0Pyln/gcWjZLJFTJrle9LLihnvbtfXiKkmhaMSZHKeX15QAUVOjXRfvXvcar9/9qWFzl9ROZs+I6zDbb33l0xWmRzUDnDlBUUpM+RfSX30MzWTDPn4uiqHQ37Ec1qOQUl4GmkUoYad62mcNbNzHvhlt4+8lHT9hkSU0tTVveJh4JM2HRhUxYOJ6y8Qn6W70ceus+ug8dBPRr4LzSCrY8d+zaoa/5IPW5k04M0xdn7Kwi1jywn3nXjMWVbyXkjdPXGiIaSrH0IxNY92gjA+0hise4yWQ0fN0RUvEM7gIbiWgSf18ch8dMfrkTm1M6UZ6NQgNxnHlGGt5aw6G31wOw5bknqJoynTce+g1Wp4uLPnoXa37zS/IrqlBUlYG2Fq780jdZ9YufnLC9S+76ArGgH6PFyvYXnmHiBRfz1pOPcvXFXyG7Y/hop5o3jtVZrl+37Hl8+IamfggaX4F0HFxlYLBBKgylU8Eqn+vib5OIpfB2hAn7ErjyrWTTWRyp7LAOnu+wGBWatvZy4W3jScYytO7zAqAaFIqrc9j+Ugul4zyEgkmygeRQAhKAifNtvPyrH5KK6wl23nr8j+x74xWmLrmUQ5s2MH7eQnw9XRRUVLHhsd+fkLB09pXXkk4mcRcUohqNGC1WEtEI/p5u9q99FRQYO2sudreHwEAv8VAYi81GyDu8I8bp6uwv/rzew008++N/GzYvr7yCiz/2GQxGhWjAj6ekDGd3KTlFNjRNQ1GOdQbWklnSg/ETtpuNplHNBsylkmhRnDphv4/Vv/4FIe/wc9SiWz5C6biJmBw2sukMCz9URzSQwNtxmBOGVQcURcHmcmE6jd91tGSWtPfEkYazkZM3wvF7URQFU8HJ68AkjslmNTJAlz+G02LgyWts1CutRLNmAkC6N0qoNzq0vDo2zaEDb7Nj1XOgqFxw20d543f3Ddvm7ldWUT9/MarBSCzkRzWaUABvVwcFFTUE+3uJBvxo2SyZVJJMOo1qMAAaZruLVBqMJgMdDT6qpuQTCybRMhqapjFmWiHJox3D/M2tuCIBKJkKJvnOL95fNpEh4z3x8z8TSr7H0n8dg82EwfbBk5AG+/sYaG8b+lvLakT8g9SdtwBvawsv/+pnJ6zzoX/+dzKuWqSb+bkjHg7x8He+esL8yz7/VSx2B4mYfn42ms0k4/G/KglJNnbi8y4tliabPPWdbw1uMwa33AsTZxeDycBFd4wn7NPbUthcJpweM0bTyU1CYnebWXhjHWse2D80z11oo7DSdVL3I06NVCLNYHeUZCyFyWIkHk1hd5qJR1KYrQYyGY10KktOoQ1PkZ1oMMFgdxQ0DU+JHafHStgXx9cTQTWo5JU6sLn082nElyAaTGK2GRloD5OIpCmocFJam0P7wUH6W0N6kpzjvlrWTHVgMLSTkzOW8Lti1VJZbFYXPU0NJGP3MW7WJ2nYEmDJh+upmuwk6O2nt6mNVCLBlmefYNKFS3Hk5BIc6GPnyy+w6enHhrZVWD2GGctXkEwkUFQDxmyMnL515NTOAKX41B/4s4CW1kj7E6S9cRKHfEPzLdFcsmk7Uy5expsPP0RhzRiSsRj+3m5cBYXEgkG6m/0k4xk8RXZyCm1EQ0l83REUVUHLasQjKYxmAwUVThw5f32WAqPJwHlXj6VsnIdIIInRbCC/3E5hxQc7L4X9cXzdURRVIbfE/p4xGMwGhvJZHqWoCmbbsSvjSCCBrzsCioKrwELUnyQVz5BTZBs22BZA1yE/5101ht4jxyXBUaBiYh6tewZwFdhw5lsI9ESJBpI4863kFttRDZKoWPx/9s46TI7jzP+fhmHandlZZtJqxcxMlmyZ2YmdxGHm5JLc7yDHyd0lufBdcnEujh0zowyymBlX0jLz8EzT74+WZrWWYzs5U3L9eR492qmprq7qrqmurnrf7/unQ1oZs6FUNCswgYWFhYWFhYWFhYWFhYWFhYWFhYWFhYXFu4clQvJ2MdACahSOPQjbfzCWPu8TsPIvwTHmxF42aSo212lEnxu6xke5UEIao70949Ik++837jIMA103KM01DXef+fACtLRBdCDFjgfPoutmhML5V1ZTOiH395aTisWonDaTIy88i66NGa1NW7sBSU9B1RJG+nqyAiQXSEZGcXoi2FwSEhcZtRdMp3fNA/SeGMXts9PfmqJishNvIJcZ6zey/6lHs1mnrroMT24Ro3/9abgQrViWEb2WE8k7idvvZ/WHPk3PuVOc27+HxTffTn/LOXTdYOWHPsbZfbspmTiZvNIy3IFciuom0Hb0EDMvu4JkLErb0UNMXrkWyWY/H/mvk/ZjR1hxx0dpP36Y0omTqZszH0291FjS4fZQ3DCZBTfcylBnO+WTp5GMREjFYsy4bCOSJOP0eGnavZ1pazdw4OnHyC0sBuDUji0sufl2UvE4uq6z4bNfAYeIc0qI1IGLnM8EiBujNC5dSfPh/VTPmEs6HqW/tYNDzz/FgutvZeeD95JbXEzkIue3hoVLsTmdZJIJ9j35CIGCQqasWMOBZ57gwDOPs/iW2zm3bzfu3FxKJ0yi+dB+4iMR5l81E5vbMjF+W7B7oXgGwmg7DqfMlnubiJ43SM+v8LHohjq8kQi4QyA5QE1DrJdabyVDySHuOn4Xk4KT8Ng8nBs9R2PuBNj095BTDjPugOe/BW3bzXMJIqGNP2P60kUcfGVbtgoLrr+VtqOHmX/tzQiCgK5ryI7XiAIoCMSHh3D6/OgX9f2EEcEtiOOMb+QJPk4ffjL7eeGN78Phz+HY0z3MvuL9bL//5wAcePpR5l1zEx0nj6Km0+SVlnPg2Sdx+fyUuf2k+vqwlZWRk+sDotnyasIeDOFSRyiLdw+fQybPa0fVDHJduezt3ctK33pa7tU4N9gKQF6lj8s3jomZ4XiNZ6MgENNCvPLrE7QcGWDWhkq8QTvlk6fTdvQgcT2CX3KOcyy2VfqJps6SW1TC/GtvJh2PgSAg2WTmX3czZ/fuRBRFyqfMwBcK09/WTHFdAwW19ch2R1Z86QLJyAi5JVW0HNdY/cFGjm/tpKvJNAbLLXSzfKqb9hMDyHYbqXgGt99OYc0EgiWlDHV2ACBKMvOuvQ1Rtoza/2Q4+SQ88AG48TcoqgfX9OkkXnqZwBc/x9TV6+g4eRSnxzdOZOzyz36VisnTX1P8TrbZ8YXCOLxeFt30Pvz5BfSfO4wnN4+iepH40KSsCIkvL0x/67lxx3edOYl2owTt48sVKvwkowpOtw1BACVtznUFwYxGefilTqatKkPJaOx+ogXZJrD3KfM36HDLzLmiim33N4EgsODqaiqmBpFkidG+JMmoQiDsIq/Mi2yznvt/yoiySCYxyJk9O7Npkf4+cguLyckvZMPnvkrPuTNc9eVvcWLbZjB05l59A0oqhSjJ6Nr4Oa6h6/hCYY6/8iINi5ZxesdW4sNDUHDpK7l7dgFiXhGMToQN34WjD4KWhpl3QPdhOP0UND0PCz4FEy4HyQ7NW2DCZSC+C/0uE4f4ADgD4Mp5589v8abIpFQGO2NEh1L4Qy4ySZVENEOoxEPPuQhbf9fE/Gtq6G+L0tscoaDYQ1WuA3147BkvOCViqkH19DBn9vVROTUP2SaiZnREUSCTUpEdEpIkkoyp+EKvNjqPZAVILpCKRSmeMJGiugmIsh1ZlkAQcXq8l4iQeHKDDLS1sOWeu1jxwY8RGejnxV+eFzATBFbc8RG233c3Do+XxqUryK+oAQzOHdhL5ryDn8vnp27uwrf68lr8gTjdlwo7unx+RFHEMEwnLAzQ++1ER6FHGKWoJiebV/LZcc/IJ7G3d6wAAeR8y4nd4u1Httlxer2XiJDYXW4iA73keSoBEDlHqNhNKuJn6poNtB87ks0riCJ55ZVUz5qLLxh6x+ouee24Z+YT3zFeyNJWYAmE/KkiiqZAU8hj5/71BpVP30D/VS9jk10gAhf5qcjVXtKyQiaZYPray6mcMZvY8OAlZTrcXtLxOJlU8rx4eIrh7k68OUEi/T2Ioki4spLBjnaUdBJd19E1FVGU8OdVMtQjIIjmu5UoCRgXLXb5wy6GOs39D01yw29Wwfp/gem3vq3XyeLPA8lrxz2rgNjmjnHptuJL5xX/W0Z6u0lERvHmBPGH88d9p6RTiLJM25EDzNxwFe3HjlA9aw45hUVsvffXLL7p9kvKE0QRyWEnhZe3vrYW71Uk2YEky5fsgUk2G7LNxtEXnmPOVdcTLCklNjSALxg6L+r0xtjyXCAJ49Z37ZV+pD/C+djCwgLsHpHe5jQ7HjqLYZjO8UtuqiOv7K0ftQtrA6z5UCO9zaO4/A6K63MIhK132fc66aTKwefbOLK5g1mXVbLr0XPMubySV7Z2kVfmRRQFzu433xHtTonLPz2NLfedZqDNlAfJLXSz8vaJPPtfR4kNmWttxfU5rLpjIv6QCwSy4quCAA6XTPfZUWpmhtFVHdkuYXeOrSOHy13I8iEkqRjNpSPYRYzM2ORfyndiy7Mz47KNJCOjlDWqTJifT+vhFzjxyjmqZszG7nQTHRzA0HXyyipIJ+I43Je+Gzq9Pk5u28z0tZeTiBXi9snYa20QPwuF0962a/7nRDw1jH2CB+34RXIxAug+gb7mE4RKy1n78c/StHs7Tq+Ppbd9kN7mcwx0tpFf4eKJH7XicMpc8amp7HqsmaLaADanxPGt3YycF53MK/Wy7iOTyCn4w8etkd4EOx4+mxWMrJtbgDfXSd4bCJEMdcd55mdHGO45X4dyL+vunEzOq9YYAnlOGhcVc3zrWOCtWesrCBWbe9zDPXGe+dlRhrrj1M0uQMmotBw231Udbpl1H56EIIBxftqjqTo2h8i6j07m0Avt2J0S9XML2XpfEyO9CSSbyIr3N/DKvafJJFRESWDNnZOonTl+Xm9h8V5G1Y3X/NvCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwuKdxhIheTtQFJBsMNIHO380/rvdP4UJ66F6GQCDHe28dNfPaT1ykCVXvZ+qBVNI7xlCkAXcy4s5M7gPwxgzGJiwcOnrRu3N97vY1zJAY5Gfb66fgGFAJqWx7YEzpgAJgAE7HztHYXWAkt8jRKKpCg6nm41f/AandmxBTadpWLQUb14Ycivh7AvYneXnDZHH6icIIg63mzkbcgn2PwFLvwK6xtCUL6KMKMQGU2y77wwARbU+pq0SaVi0jOL6icSGBvDkhvCHC3jyx+dYsfoKlBPHEWw2Qh//OILzNRz6Ld42HJkUvc3NbL/vN8y58jpe+c0vySSTzL36Bp796fez+WwOF5d98vNs/p9fUDt3ASe2bqbz5DEAWg7tY8rq9UQG+jj28iYW33w7z/7s+3hzglTNmMX2+37D5Z/9CoGCwnFiO3OvvoGXfvUzYkODLLnlDl74xY/RVBVfKIwvlEe4spqrvvpXRPr7EESBqpnziQ+PsOajn2Ooqw0lk2Hrvb+meuZcIn29nNq5lRu/8G2kpBftVAzRZ4e5bvrTnbzwy58wdfVl7H38Qby5QZS0afhj6DqGoTPS082EBUtp2rWNoroJKJk0ux6+j/LJ05i98VoOPvck8ZFhlt72QdqOHSY60M+C62+lv62ZTf819vu3OTdx9Vf+Dih6Z27g/yV0BUpmEZ//N5x6uiMrQALQ1xql5+woeY0zse/8D7jqh/DoZ+DYAxiX/wv+UCV/MfcviCtxVE1FRycZ64KKhfDSP0DFojEBEgBDx/7yX7Nwzueorb6aSFIjp7yB/MbZ7HzoXtz+fF745U8RJYnrv/ltqmbMpvnA3uzhk5atxh3IoePEUSqmzsimb3v+XtZe/nHEvSm0SAZ7Yw7ORWEmV6+hdt4CcgoLsTld7Hn4HvrOnWXG+utY87FvkUkMESrJxxvKwxsMIYkSI13tLLxsI+7OHtLf+w/EQIDwFz6P36VSE3RydihFY5GPGWU59EXShL1p8nyWcfJ7gZqwl48tq8FpExkYHWB2/mxir3iJDY6NjwMtUSb0XxTxKVQHsz4I+/57LG32R+hpz9B82BQKy8nT2Hbfj5i6ci1qJs3WZ+7mihu/ALtT6ENp7BMCDBUMsvnX/w2GQdOubSx7/520Hj5A66H9NC5dSWx4iC333MWcq66nafd2RFFipKebwomTmHvV9Wy//+7s6Qtr6ymqa8Du9jJrrc5wzymKqgeZvLQSQZDoa2miqylOfnkRZ/edxjAMnJ4SJEcBV33lr+g6fZJ0PIonECIyYNC0p5f6eYVIVoSq9zaxftj0V6BrcPIJkudqyb3pJjItLSg/+DGNn/kUkf4eDKBu7kJiI0PkFBTh8vkJlZaTSSUpqptAd9OpbJHT1q5n50P3MtzdSeuh/czccCW9LeeYsnwNucVlVE6dwdm9Oxnu7iQVi+DJDY6rUiaZoE/rpGh+Dcq+PhAFPCvKGHHJ7H+ymUlLiskkNVIxU/SuYUERsk2gtzlC9fQ82o4NMtSVoLRhbL6cTqg07emlfFKI1qOD7Hq8mZxCN4YBT//0iCkmJcDSm+ppXFJs9ds/YYa6YxSUy+QUFI4TXtz50O+44f/9A9vuu5sZazfw6Hf/Pvs+dHrXdq768jeZvfEadj9yf/aYsklTCJVVEB3oY/q6y7E5XXhDIewuN3KJG/FKH5lN3ehpDe+CYtzTw+aBgXI48SRMvQlG2uDZb8EV/wZddlOEZNfPoGiGmW+0DQaaIL/hHb1O9B6D5/8Kzm6CwqmmE2n5/He2DhZvSCapsvfpFg4818bcjVUMdcfZ93Qrk5eW4PLZ2PHQWcLlPrrPjBAq8dJ9dpS+1iglN9TiOjaA0hZFynejziogllRwuGXajg1RPTPM5KUlHNzUzmh/knRSYebaCga7YmiqRl6JF5fPRjJqjrOSfKkjw+o7P0kmmSARiZBbVExseITo0CCNS1awua0la13uDuTg8vlIxWOs+8TnAfCH87nsU18kPjJMblExNoeTZbffiZJKk1dQhB6Po7ldbPj0l4iNDGNzOCisqSNY/PvXVCzeGYrqGnB6faRipkiiIIhMWLAU2WFn089/xMo7P8OxrV2c3mWKjExbXYo/7MLjN99bBFnEt7wMNJ3EwX5En52cK2uwF1vitRZvP06Ph/nX3cLj//6P48Yow9AJFZeiJFPomsbmX/8nseFBZLuDJbd9gHWf/AJn9+zE5nBQPWsuGJBfWfOO1l2QBLyLSzAUncT+XkSPjZyNNdhLrN/OnzKqYVDlh9JtP8AomcNQIsieJ0+zcm0l7OpGH0ljr89Bn26ns2kfNbPmAaaYucvrwxcKjxPVmXfNDfS3tSDJMqIso6SSSDYbux69nykr15EYGSKnsJhgSZkpLqYbGEj0d0houg81EycykKRxcTE2p0h+uR/JJqJrGq1HBymqDRAbTtN0MEJw+tfwP/N1c/0tt+L3tNDCwkQQBbzzitBTKok9vYhumcDlVdjfZJT2N4Oua5zds4tnfvLvZJJJXD4/Gz77Fdz+AGomw1BXBweeeRyH28vcq2+g+eBervj813B6fRi6wdJbP8jpnVsonTiZjhNHs+XOXH8lvtw8ohHZEiH5P4QvN8ScK69n50P3ZtOK6iZgqCoOj4/lt3+YZ376PfY8+oApxnzNjTQuW0lOfuEbli3nu8n7wCSGHz2DNpDC2RAksL4SyWlt+1tY/DEkR1V2PHwu6+Bu6AbbHjhD8DPTCITfuvMYusGJrd3sfaoFp8eGktYQnoLrvjbrDZ39Ld5dhrri7H2qhakrSjnwXCu+kJOhngTRwRSNi4rZ9diYQLooibQcGsgKkIA5jzn6SmdWgASg6/QInaeG8S90oaRVfEEnoiRQMyMfBGja24vTI1M5JQ+7U8bps+H02EjFFcobJfY99hL1875M08md1F01h8zLg2j9KeQKD/LiXDLRdkonTaXj+BHsDomnf/RvRAf6AGg+sJfp664gr6yCmZdfTdPuHeRXVVNQXYfD7SGdiJ+vt8i0NetxuL3sejLDQNtJZLvI2g9NpNLZj+C0+u2bwcAgUZbCrY/ZqtiW5rJr84MECgsI5Bfy7E++l81/evsWrvzKt9j18O+QZRur3l/Cy3f30XFymOHeBPkVPhKRTFaABGCgI0bz4UFmrPnDZpsjfXF2PjImQALQtLuXyimhNxyXzuzrzQqQAAy0xWg5MsD0gvJx+fJKfTQsLCJc7iUVU8ktdFNQHUCSzf2zM/v7GOo2+1yw2DPu95ROqOx9ppXLPjaZF399kkxKY+KiIiqm5OEPuaiaEmKoJ8H9/7BnTKRE0dnx0Bnq5xRwdHMnumbw0q9PEC7zEgiPrU9Hh1JEBpI43DZyClxWYAGL9xS6MSY8olkiJBYWFhYWFhYWFhYWFhYWFhYWFhYWFhYW7yKWNdLbgaGAbIPUqOmIOe47A5Ij2Y8nt71M6+EDAGx55NccLynj+i/+Hbqh8tJ9v0CWZRbecCux4SE8OUG8wSAO1++PTimKAgnF4LGDLfzl+kaMlEYqlslGeB+rB8RH069ZRioeR1UyqJrCU//xXfzhfCRZ5pmffJ+rvvxNUOKgKjgCHmauv5J9Tz2SPXb2xmvw5OaR5x2F//lLwCB54+PYHDKZZIpDL4xFqZNlnZYDB8ktKuDM7h1omsbExctx+StZc2cjWqKCwjwPUiiI4HIj5ry2YIrF20NkJMq+J+4DQLY7iI8MUzdvESe3vzIuX7iigiMvPWf+XV7JjgfuGfe9xx9g58O/Q3Y4SMVjqOk0tXMXcPC5JwEY6u5iwvzFODweooODppCCbKO/5RwVU2dw9KXn0FQVf7iAKSvXsuvh+5h1xdVsv+9/GOrsQLLZmHHZRqpnzic21Ifb78/Woaiunm2/+w2NS1fyxC+/i8efy5Jrb+fskb1ETw7R39ps1jEnl6HOdpKRURqXrqS76SSpeAxvMERsaJCB9lamrVmPO5DDzgd/B0Db0UOM9vUwY90V5FfVcuyVTczZeB2HNj3NkRefzQqxXEBJJelrPUP55Alv8Z2yoGAyvPj3oIv0tUYu+XqgPYqxuBau/Rls/Xc4+gAA3s4DPDy4l5lFc/DZfAiIFChl+ONBOl1VhOrP4kyNXlIe0S5cmT4qdn3X/Fz1E3AvY9LSVTz38x+iayouv4/uM6dw+fzZMdybGyQ+OgKCgDc3yFBnG+GKKvpbmxnqbuex+77D1Z/9Jn5vLmdP7EU4207H8SMMdXZQOW0WweIS2o4cItLfx7M/+Q4rPvApelqKqZlTiyfHSbi8knRHB+7d+3BMbMBweND+4uvYSkuJHTuOy27nNxPSHKqZSVHAya7mIe7b28GV04r4zMq6bIQti3cPWRYpyXEwEEvROtqJrhjEz1yab6g9OvZBTYPNDSv/EpQE2D2QiTM6MiZ8MNzbyXBXO52njjN93RUIokBUjDBQ2EztZfNoaTrElrvuGneOtiOHKKypo+fMaU5sfZm5V99AX/NZDj77JFNXX8a+Jx5m0rLVxPp6cOfksvz2DzPa30duUTGe3BCPfvfvWXrbB3nlt//NvKtv5OjLzzPa28Oim97PgaceZu7VN/Dod39KJpk0226zs+R9Xyc2lMPmu35GKm4aZ0qyzLLbv85Ij5+Q5Rj33iYxCKPt5t9H7sdW/0OUkREKv/1t9OEhVCXDUHcnZ3bvIK+8krJJU3nyB99hyoo1BAqKCJdXUlTbQP28xcRHh8krr+TUtlcY7u7MnuLgs09x7V/8Nad2bMEXCqGqCjMvv4oX/uvHZJJJfKE8cgqLGOkxI7vbXW78ZWW098iU3jQBp9dGQjMQMiqz11ci2yTSCYXpq8sI5LuR7SI7HzkLmFP2cwcHqJySh6aON+4a7IwxaUkJrUcH0RSdZFQhnVQoqPTT2xwBA7be30ROvotUXMHptYEoYug6oiigqwaGYEYG94ecZqRDi3eF6HCK2GAK3dAxdIgNp7E7ZWwOkaHOOKrqZNbl1/DMj/4NVTEFoHIKi4gODrD01jvY++TD4wQZMQyOvvgc86+/hUC4gOGeLnyhPIIlZWhKhgNPP46SSSPJMn0t51j2/juJJ0YpKAriua0cARG8EnLOefHFvFqYdjO0bAVRgiVfhBf+FsL1ULsKzrwAqRHTYVPXIBO7tJFvJ/FBePCj0Hfeua77ENx9PXz0ZQjVvrN1sRhHKq4w0pdAzWhINoF0XOPAc21Iskgg382m/z6OKAk43DbSSRUlrZFT4Ga4J47TYwPMiJJbN7UxdXExeQuKObm/n5P3N7Houlo0xYzkvefxZuZdWcPy9zUw0hOnemYemmYgigJOjw1D11n74Un0tUbJJFWK67zM3HAN+596OFtXu8vF6EAfodJydEUlnUpzYstLKKkUS265g9jQALLdQbiyBiWVwpsb4rmf/oCqmbMpqptIYnSYnMJi2o8epuPEUUIlZYQrq0FVsW96idzPfR5XMOfduA0Wr4cgMHP9lSjpFGomgzcY4sAzjzPvmhsZ6Ghl/1MPIrvXZ7Mf2tRB9bRwVoQEzOjvudfV41tdgWiXkHz2d6MlFv8HSaVSeHJyWXLLHUQHB7A5HMh2O1vu/hXL7/gweeVVPPfT7xMbNqP2qpk0L/3q51z9lb+kbt5Cdj/6ACe2vgxAUe0ENn7pG/iCoXes/raQi9yra/GvLEOwWb+dPwemlOQw0NOBMHyO4XX3sPWXTaTiCqc6hiiYGcNhd9PZfwLnoB9d13j+P39IxeRpTFt7OU/9x3dpXLoCwzDIJBL4QnkYhkE6EUcQBBxuz/l14SFqZs2lv/Uc4fJKuk6fwOH1ER3oN9dUoxFmbriFVFwgt9BNUW0AXTewOUQCeQKZtMaJ7d3YXTJuv53uM6Oc3t3LhKsq8adG3/l5rMWfLHLQSe7GGvzLyhBkAcn/1gorD3d18uQP/gVNNee7yWiEp37wHSavXIskyePEJDqOH+Hqr/0/9j/9GMV1Dbj8fhIjIxx/5SWmrr6MsklTiI8ME8gvNN8jhwbR1LfQk93iPY+ipiioqWPRTe8jOjiAO5BDKhpl0y9+zBWf/zpdp08w0t0FgK6p7Hjgt/jD+fhDYUTp9Z1gBVHAWZdL/seno6dVJJ8d0W45zlpY/LEkIhmMVzn4aoqeFa9+q4iNpgkUOLjqi9OJ9CWxu2R8eU4GO+OWCMl7nMR5uxqbUyIZNfcChjrNOayq6OPy+kJOBrvGz29zCtyX7GHnlXkRJDi7vxfJLoFgYHfJFFT6SMYVVr6/gdGBFC6fDYdbxjBg9YcaGeqK43QP4svLIz4yjK5qnG7ZRXh+FanhFJ4CJ+1HX+HoS8+x+s5P4fL5iQ4OZAVILnB40zMsfd+HkGSZc/t2MdTRBrrBuk98nsGOVtSMQk5hEalYjP4OFwNtpkiEmtHZ9tA5Cj9YiSvSC2Gr774RdpeLrlgL8VIPwcZCdBn27XqK41tfZMktH2Dfk4+My68qGdqPHmTS8tUcfeE55lx1Iy6fjZH+JIGwi0xGy4p2XEz3mRFmrCm/JP1idN2gt3mUkzt70BSdxkVFDHZdWlYy8vrjn6EbdJwcviS9q2mE6avH10EQBYqqAxRUmMJ90kViH2pGy5YjCObnV9PXEiG/ws/NfzkXTdXx5jqzAiaSTWK0P4nxKo2G+EgGh9uW/ZxJaaTialZYqqd5lKd+fJhkVEEQYM7GaqatKMXuskwoLd4bXCw8oloiJBYWFhYWFhYWFhYWFhYWFhYWFhYWFhYW7yLWDtrbgd1tOmIGSsFfDJGuse/cIQiZUS5TsSgthw6MO3Swsx3FppCKRkiOjtB56jiCIOL0eknFY8y8bOPrnjqRUZFEgf6YwpcfOMy/bGjEFXCMiz4MIMoC/rzXdnhMxiJgGJzbtwcllWSwvTX73antr1BZ5ILnv4F2wyuUTZlGfk0tWiaDzenEF8yjq0lhctffwspvQawXo2gahmqQimXGnSe/UmfbPY8iShIlDZOwORy8fNfPmX/D1zn4Qop1H51M7z/+I0Yqhf+qqwh96pNv6vJbvDUIooDB+M1MQRB49Q6+IJhOtb+/oIv+Pn+sIAigZ8NJsfvRB5i66jK6zpxioLWZBdffms1nnD+mcekKdj54Dw6Pl0wizlBnB7LDwZKb7+DQ80/h9gd45e7/Zv61N5NJJhBEESWVAsyItPGhIUZ7e2hvPcruZx+kbt6iS9qSjEbQNZWaWXM5+tLzLL7ldk5t20zTrm3Uzl1I7ZyF467JaF8vex57kFV3fpLyxqkceek5yidNwe5y03FivAgJgGhpPLw9+IvgxruQECibGGSgfbxhV2FtDtKBe6CwAo49OHZY224+euN/ElcSDCYHqU1OZfPPmtFU04m+fuoHWZTnxi2IcLGDce1qaNtu/i0IpiMwYBjurJORrhoYhsHxV15EEEWcHi+pWAxvKETNzLmEyqrpO3eSaWs2YHM60ZQM6UQczWbw4gP/RUFVNdvv/y3hiip8oTBHX34eNZ1m2toN7H38IQCOvPAEi27+Gk27+xAkkemrSkmfPIkWjRJ59FEijz1u1lGSKPqHv0d0u4l881u0f/lf+fSBUb5/83TO9MX4ycvnuHZmKaW5v1/gyuLtR1FV9nWdYCDdyURfEZPDDbgkF6mpXgY6xvfp0gkXiXINNsHOH5l/X+irgkBo3Y2AabSVNZ4VIDo0gJpOYXe52fnk70ikRlGVSw3JDENHEMaETIQLg7lhEC6rYMUHP0Z+RRVP/uA7KKkUJQ2NaKrKoeeeYv61N6Jm0nSePEYgXMCOB+5hxR0f4fSurRze9AxT12xgpK8n69ABpkFd58ktCEJjVoAEQFNVzu1/nsK6+v/F1bV4R1CSMPFqOHo/VCzEVlmJ2tNDx8c+RvCO25F6evFUleILhelvbebElpcAOPT8U1z7jb9FVTIcfO4JQMDhdjN93eU0H9z7qpMYxIaHKJnQyIVeGSwuY8ZlG3F4vPhDYS775BcZ6hpGtgtoqg9RKiCnSOXMySH62mJEh1LMXFvBmb29dJ4ewemTmbG6gu0Pn0FJmsaNNoeEoUNRbYC+lgg1M/PH1aK4Loe+FtNg2OGWsbtkkpEMgbDLFCEBdM1gpD9J+4kh1LRO5bQ87E4JTdHJZDSUpIquGWZkw5n5hIotkZ13mqHuOF1nhnG4ZAxD4IVfHUfXzPFy5R0TKa7PYdv9Taz/eBVXfOHrJCOjIIjIdjuy3U4qERubz16EruuIgkRidIRjm18gHY8xYeFS6ucvpufs6XF5d9x/N2s+8mmGXV78w72ILheMqvTHBsjkByjxlUA6Ci/8tTnnuDB3HW2HK/8D+k9DoAwQweYCf9nbfNVexWjbmADJBdJRs16efHD639n6WACQjGVoPzGEYYDDJaNmyEbFdHptpGIKhm7g8tlJxzM4PTm4fDb6WiOEK3z4Qs5sWdGhNCnF4NjBAfraouiqAYJAfDSDN9dBbDjNi78+gc0pMWlxEfufbqO/LcraD0+i6/QIB59vI6fATbDEgy/kRDNEGpevp3zKFJRUGrvbja4qYJjvfrqgk5NfgK7rDHa0seW3v8Lp8aIqCpOXr+bUji0ko+cdNnSDc/t20d10EgBPbpDZl1/NuYN7OfnbX7H6xvdTs369JUDyHkXXVLY/8Ftkux1JlknHzzs7nB/n2o4cZOWd19B8cOyYdFK9pBxBFrFZYl4W7zCCIKBr6rgxSs2YDmmGAUoyxUhv9/iDDINULMpLv/p5NqI0QPf5dbB3UoQEzN+OHLR+O39OdKTdBCbfSIocUnFzbaqoWmLfE0/gCgRo3r9nXH4DiA72o2squx6+D9lmNwWkY1GWvf/ObC5BEBAuWdsVzGc3BtGhAZweD75QHp2nmji924Oq6oTLfPjzXXSeGKZuTj67HmsGARbfUMeTPz6CcX7ebZdVKJ0L/tK3/RpZ/PlgjmHON874RxAZHBi3XgXmnoEvGOLgc0+NSzcMnY7jR0nHYwz3dOEP52f3Dg5vegZRkkwhH4eD6Wsvx+UPmAcmhsAdfFvqb/HeQhAE0vEY2+67G5fXRzqRQNdUbE4XhqHT23z2kmNGerqJDvYTyC98U+eQvDYkr+2NM1pYWLwu3hwHsl1EzYztBTrcMu7AWyvYJ4oCDpedJ//jcFa4omJyiNmXV7yl57F46/HlOUGAxGgGf56L/vYYVdPyGOiIIdvFcXlHehNUTi2n7dgQAAVVforrcvAFnQx3J5BtInM3VtHXFiUVU3nh/pNs+OQUWo8OMdwTp68liidgI1zhxx92oWoaSsaGL+jkhbuOEyz2UD8ngD+/EEEUAANDN+jrOodh6ETbBjj20ibWfOTTDLS1oCnKeCHtLAb+cJj+lnPn692dFVwLlpQzZdU6dj18HyM9XSy66bNcbFo22pckk3Di0nogbIlRvyGCQF55BclIFCEgs//pxzi9YysADo8naw9zMYYOoZJyEMxgN/FRjbxSLy1HBiiqDZBf4af7zPhgKpVT8t6wKr3Nozz8rweye8eJSIaS+lw6T40XFPEGX1/sTxDNva1L6jD199dBlEQ4rz+STiq0HRvi6JZOimoCdJ0ewTBAdlwqqlYxJYTTa0O2vbbgmv/87/Ni06acAjexoVT2s9tvx3N+TE/FFTbffSprP2cYsPuxc5TU5VBcl/O67baweKfQL9p/1F7PHs/CwsLCwsLCwsLCwsLCwsLCwsLCwsLCwuJtRnzjLBZ/FJoOzjy48kdQNN1MK5gC1/4XFE42s2gq+VXVlxxqcziRZJnGZSsB05jxgqNN5YzZr3va1sEEe1uHuXpGCRNLA8gOESWlsOzWCbj95qaqwy2z8n0NhMtfOyqJKAiIskRsaPCS7yID/RiCRGrBl3G4vdjsDpRkks5Tx0mMjmAgsP3BFkZqPwwH74VD9yKdehBBEPCFnOcNIUwM3TTm1DWN9mOHaT18wDTwNFQ0RWfnQ2cJ/vtPzPM++iiZ06cvqY/F24fb62f2xhsA0FQFlz9Ay6F9TFiwZFy+3pazTF6+GoDBjnaK6hrGfZ9KJJi4aBlqOo3T50e22TmzZyeTlq8CwDAMHB4PTbu3UzNrLgCZVBJfKI/240eonT3fzKfraKpKIL+Aoc4OACYtXcneJx4inYgzfD5iXPfZ05RNmoqh69icpjFy6+ED1M5dAMBoXw/F9Q20HNpP/fm2JCKj5BYVA3DgmSdIJ5Mse/+dyHY786+/leu++W0aFi3BwGDiomXj2ucPF4BhoGsakiwTHRxgtL+XWZdfPS6f7HAQKqn6Y26FxZshtwKbQ6Zyah6lE88LNAhQP6+QvBIP8pkHYeAULPycKdRQOpdtq79BT6KXz7/8eQ60H2bv/Z1o6tgG/unDSQaGPXD1T8FfYjr/TrgcGq+Btp3gK4LrfwWFU1EVjcObB6mba47byegI+ZXVyA4Hhm6O4YahM3PDVYRKK5DtYUoappFbVMxwdxc9Z5vwhwuQbHYSI8Po5w0J+lubObd/N8nIKGomg2QbMyi2OV3ouoaum4Yxg20j9P7tt3FUVY4JkABoGn3/8h0ktwd9dJQlYZkf3DKDn242jZxFwRz3Ld5dXmh7iW/s/hD9mdM8cOZ+7JKdv9n5N5wI7qKgwWNmEmDS0iJK6i8SIbnYMO2CEaFhUJCfYdZSN4IokEn7CeQX0nroAIFwPrqmEcgvxOXzc/iFZyisqYVX9YGKKdPpOWM+dycsWELLof0AzLriajQMgkUlxIaHyCQTpBNxzu3fQ+vhA+iamjWWS0RGcXq86JpKJp3C0A1mXXE1pQ2TcPtzmLXhKhbe+D4cbrN9idEB1EyKV5OMDOL2Wcb073kkGSZfC41XgZJEMAz6vvNd0DQcDRMZ/s1vTJG7/bsZaGvJHqZrGkoySdvRQ0xZuRZdU0lGIyjpNJ7c8U45U1ZdZjr/5OUjO1xIdjsDrS0IokRhTR0OjxdNURjuaqL37DFs9mHSiVP0Nb1EOvoSU5YqLLnRi8ubpGq6aQiZiWuINoGlN9VT1hhk4sIiFlxbQ1fTMOFSH7Wz88EwxUIA8kq9lE0M0n12FJfPxuIb6uhtHkW0CfS1RrN1tTklokMp8sv9tJ8YIh1XUDM63WdHsdskJFlEkkU0xeDM3t63//5YXEL32RFig2kkWWL7g2eyAiSlEwPoahddJ5+mbnYrmaQ51nWfOU10oA93IAdvMMRAa4s5L37V+Nm4dCX97c0c2vQ0ycgouqaRSSZwB3IuqUMmlUIQRKIDgyjuEMTjGJqGK5KmfbSdcyPnQD7v7PBqQ+RMAq78oem8piSgeAb4C96OS/Xa6DqINnD4wOY2xTYvXIvB0/DfG+D0s6BmXr8ci7ecoe44mqqjKhqapnN2Xx/e4AVHiTRuvw3ZLpKMZHAHHEQHkyy9uZ50QiWQ5yKTVGlYUIQgCuiaga7rOJwSk5eV4As5ScUVgsVuJi8tYdKSYkom5DJvYzWFtTkkohkcHpmuMyN4cgVWfSDA/KvcNMzVKa5OMti6g56mQ4z0dNN+7BDJ0RHcvgCBcAGjfb1Ikg1dU8eJr6biMXRNwx/OHxMgARoWL8vOVQDiw0N0nzlFYmQEAJcokdix/R277hZ/GM5ADhMXLUdNp7MCJP5wPjnFJRi6Tn5VDUp6zLFAlH6/kK6FxTtNJqFjc7qomDqDVDyWFSAJV1ThzQ0iO+x4cy8VFXF6faSTiUvLS1/6DmRh8YeSUHV+p6/CRxeBsDleCpKdTDJB+aSp4zMLAkV1E1Aymez6papkSMWi2BxO/OF8bA4HLp8fyWZDSadxefyc27eHcGU1icgIxRMm4nB7yCspI1hShtPvJ1wRoqjqKHUzWqieNoQv5wwN80fwh0aYsjiPNR9o4PiWrqwAycSZHnL1U3DlD8AVeCcvl4XFa5JOxLE7nONEecFcgxVEMbvXMO47h4OhznYKqmpIxWPYXW5sDjOfrmkkoxFmX34Nvc1n8AXzzcju8us7dFr8+WBzeskpLMLp9mQF8AGmrFyL3ekiNjhw6TEOB/HRkXe4phYWFoJksOJ9DTg8psiCy2djxfsaEN9iS5p0QmHnI+eyAiQArUcHGe213gne64SKvKy6YyLNhweYurIUQTDFzEsn5NJ2dJAZa8qRZLPD+IIOKqeEaFhQSF6Zl4IqP1vva0KSRYrrcpiyopQDz7ehpDVO7zL3BgY6YvhDTvpaojQs8DHvShv1s+IUlPWjJXYycO5J1ORZVtxWzKy1Nmy2XvyhPERRQlc1VEVBUxRkuwNNUZiycg39Lc2omQw2pwuHx3vJe+rEJSuIDg5SWFOPbB8/P6mft5BdD97DSI9pf2EY40XaCmsCKLYoOCwR6jeDpmaQ7HZio4PEBgepnDYzu5buywszc/34QFSSLFPcMJGu0yeZMH8JouwiWOyhZEIuE+YXkklqeHMdVEw+f08FqJ9XQNmkNxa6O7O3byx4BdB+YoiG+QXkFrrPn1tk7hVV2c+vR9W0PGpmhbN1aFhQSFnjmxPbaz8+zHP/dYyuUyNkkioVU8y2dJ4aZsba8uyeXLjMy5zLq36vAAlAsMjDqtsnYjsvYOILOVl8Qy1tx017N3fAztqPTMKba87TUzHlkgAgANEhayy2eO+gXvQ7VV8jIIKFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhcU7hfzGWSz+KEIVpsOVMweu/onpJOYOQWhMhEBJpambt4i6+YsY7e1F11SKKxswYgqZeIK88irWf+qLnNy2GZvTxaTlqwmVvX4kHFEQiCQV/u3509hEkctq8oieiSDKApd9fDKpqILdJdPfHssaQrwaQZLRNZ3qmXM5s2fHuO8mL1+NoOtEJr4fLZ3myAvPcnL7ZgCOAaWNk5mx5jbI88Okq8BfgiNUx8BAAtkhsvzWCWx/6AzphIqm+QmVlDPY2ZYtP1hSQWzUBWQY7olD8aTsd9rQ0B92Dyz+V6iJNDkFxSy4/la6z5xm+fs/RPeZJpLRCGs+8mlO79pGqKyC0gmNCJLEZZ/6Iqd3bGHikhVUTJ1OX8s5GhYuZbi7k4LKGkJlFXSdPsnaj3+WlkP7cQdyWX77R2g9cpBVd34SI6nh9gTI+8zXOPrKJhbeeBv9rS2M9Pey7uOfQ1UVRElisKONaWs20HrkIE6fn+jgAA63Z0xw5NB+Ft5wGw6Ph/72ViYuXs6JrS9TMXUGExcv59SOrUxfdwWTV6xF13XWfvxzNO3azpyrbmC4q4PuplOUTpyELxRipKeH+cGhYQABAABJREFUwy88S6iklN2P3E+4ooqpq9fjDYbobjpFXkUl/lCY+MhwNjIQQKisgkU3vo9FN72P9uNHcPsCFNU1oKqW0MPbiSAKNO3pZcbacqavLkMUBdJxhZ5zEYorlkL7bqhZATfeTZdk0Gck+eX+75NUk5Q7K4n0XWpYksi4oHoJ3PI7UFPgL0JTHBgfPYLkcyB4TcMaJZqh48QQZRMnMuuKazm86WmOvryJK7/4DU5u20xseIiGhUvIK68iHhkhOqjg9Kg8/u//RCpmOq0f3vQM6z7+OdZ87muc3fIidpeLTDKZrcvEJSsIl1ex8oMfI6egCF03UJQRZKmbORv8ZJJJ1L4+tOilRjPa4CB6Io69poa018sn796f/e6zq+oozrEc+t5NOqOdfHvXX+OW3WiGRsgRYmvnVloiLfwg8l1WTlzDgjlLqQxUEAxLeM7eA2oao2AGXQkXAwt+gyAYhMMBtIFzRDQX3piKpzDComtUfHl+aqd9lpbDB+g4eZzJi1eTGY6y5kOfZt+zj3L4hWdZ9/HP0XxgL5qq0LBwGSO93ZRMnET1jNlIdjvxkWFWfujjgIDb6+PJH3wHp8fLxMXLOfT809m2SDYbomROL8smTWXXQ/ciCCJaJk3HiaN0nDjKsvd9yBwzDQO7y828a25ky29/RePStfhDOZdcn8krNxAIv7ZwmsV7iGA1xPpg/mdAFDFa02gDpjOFHomg9vYSLi7FHcghcZEzRcXUGchOB+WTpyIIIrlFJZzZuwtdU9nw6S9xbv8eepvPUjtnPi6fDxCwORyIskzLoaPsuP8eAPY//SjXfPX/8cT3/hnlgiOnILD89g+z48F7MHSdA888zmWf+iKJyChlk5Yx98pqdFUnE1dBM5hzRSWSTSQ+nGbKijKS0TTpgRSiLLDuo5MZ6UkQLvci2kRWf2AigiTQfHCA8klBXD47maRpiOvy2VhyYx1b7muicXEJAJpqkIplxgVjU1IqybiKklTRdQNRtOYJ7ySpqGIGcdcN4iOm87AgQM00hWd/9A8Yhs7sK66m79wZNv/ml9njnF4fG7/wdXIKilCVNFd9+Zsce/kFdF2jcckKXL4AmWQCly/AjCWXMzrUS8WcWbQc2s+KD3yUl37182xZVdNnMdDRRkH1NBRs2BUFZBsCoKNzbuQs1ckMVC6FllfGKl+/Dk4/A84AlM4BRqDrEKSjkImDmgY1AcjgL4R4Hww1m6JqlYsgNQode80I3EXToGw+uP4Ag/GhFjh8LwTKYMW3QEtDToUpShLpgqZnoPcI3HMT3PaAOTbYveb57W4I1oyJq1i85ahpDSWlYXfZEAWBwa44RfU5LL2pjp2PnKP12CBLbqpn5yNnGeqOkV+Uj9sts+4jk0glVERJIDGaorwxiKpoCCI4XDbio2nW3DmRgbY46biCP+xCEAVqZ+Wz7YEmKqbkMe/KajBgdCCBzdaLoUtoqoFgs/HSXf9JsKiYyEAfXadPAub8d8qqdUxZsRanzwOChCTbcPpSrP/0lzi5bTMOt4e6eQsRJJnaOQswdI3GpavIpNOXRHGtmTWPUGk5OQXXY3viaZKDw691iSzeAwx3dTJ93RWEKyo5t990aq+dMx/Z4eLar/81osOBqLtZsLaczvYok5aWkFvoeberbWEBgCBBMjLKvGtvorRxMq2HDlBYU0f55Gk4PB5G+vq44vNfRUgCksBoZIDoUD+e3FwmzF/MqR1bsmXJdgehkrJ3rzEWfzZUhjz801MCT7Wo/POtk3jpNydpP5Hh6k9/i0w6yZVf/ibHN78IQPXM2Tg8XmxOJ3aHk7Uf+ywnt2/GFwpTN2cBmmaKQAuihCgIGJjvMAtvvA2by4k/rwC728VwdydNu3diczgoaZjEtnt+RX5lDbsefgyH28Osy6+m91wTakZh7hWXU1DmwHVdOZEhFU/ARn6BjiP4GbBb47vFu4uua7QdPczWe3+NbHew8Mbb2H7f3RiGjijJzLvmRvY89iAzL9tI6cTJ5FdWmyJ53jC+3BAFVbXEIyN4c0MYus6aj32G5oP7SAwP0bB4Ocl4jBmXXYmmGwTsSbDnv9tNtniH0AyN+MgoG7/0DU7v2MpQVzvVM+ZQVNeAz5fHqls/TsZIomk6gx2tCBh4gnk886N/Z93HP0dJQ+O73QQLi/8zqGmD5qP9XP6JqaTiCk6fjf3PtjJtxVs7V1fSOsM9lwoTJuOWiO97HckmMmFeIYXVAdJJlSsnTSeT1GhcXIyS1pBkgYaFhahpHV+eE5fXztKb6+lrjfLIvx8AYP+zrVROzSMQdpGMKjjdNsqr/FRU+5FtEoquUdboxeNrZbRPQxBEDjz9GPERc31rpLeLCfMXI4giz/70+wAceOZx5l93C/mlVRiahsPrpbvpFGAgCHDouadYfsdHiQz2s+rDn6TtyEH621qonT0fUZZp2rWNiYuXs/GLf8HpnVuJDQ1SM2se5/bvJhU395tlm528sgpkez9qRie3yE3VZS4O0s5q56TXvF4W45HtTp776Q8wNJWJs5dTMWMGGz//NY5vfRkEgaHuLjZ89ssc3/wiDo+HhkXLcHn9RPp68YULyC2s46rPu3F57eQWuRntS2LoOiX1OcxYW47dKZFT6MFm//1CHRfQXy1mYMDp3X3M3lCBoZtCwMe2dZFf5SdY5H3dsvwhFytvb2T2ZQkQIBB2YXO8sQmipmgcfnHMRuzIy52UNuSy6gMTySv14s9zMXFBEUpGw5/nxOl5/b0E2SYxYX4hhTUB0gkVb64DT8DBdV+bTSqm4AnYswIkAE6vjbxS7yVCJL7gpaKDFhbvFtpFgQlUzRIhsbCwsLCwsLCwsLCwsLCwsLCwsLCwsLB497BESN5OZDv4gua/V5GIREjFY0iyzNM/+jfUdJorbv0S+jMjjPb34KjPIVWbwBfOZ81HP8NIbzcjvT1U+F7fOawyz42i6Vw/q5SheIZoQiFc4ePQCx3seaIFgPxKn+kc9Hvwh/LoPddEIL+AFR/8GAeeegxd15m98RryyirIYGCzO4j29nByxyvjju04fpRZG5LkPP9p6DloJpYtwL/2FzSfMSNyrP/4FDIpFYdLpmr6Fzmx+TlaDx+gsG4q+VWL2PPUqHlYYxBt85NmGaKIrbz8zV13i7cGm8ZLv/oxmUSCVXd+gh0P/o7ySVPRNZVX7v5vqmfNRZJtPP7v/4Rh6NjsTi7//FfZ98TDpOIx5l97M0//2OzbAC6/nw2f+SrP/fR7TF93Ba1HDtBz9gxrP/IZ/EoOHEyij6bwTAkyY9F6Th3ZRvXMOQy0t/Ly//yCsklTWHjjbey4/7ekE/HzDmg6ss1OOhHH5fPj8HhIx+Nsv/9uCmrqWXzz+2k/doR1n/g80cEBnG4PtZ9ewNm9uzj43BOo6TSiJLH6I59i35OPkI7FCBQUcvCZJ0gnEsy75kbO7tmBN3cD5ZOn0Xb0EO3HDlE8YRLVs+YRyC/B7nbx+L9+e9ylC5dXsuW3vyLS30tBdS19Q+c4uf0VVt35SWDiO38v/68gQPmkIDsePJs1GimdmMu0laWgl0N+PQyegUgXw+EqvO4A7dF2AHaPbmflhNvpPRUfV2ROoReCAaAYPa2SPD5I5Olz6BkN35IS3HPSyH4HTo+Nmln5HNrUzrVfuZqyyfOwO3SOv/ISMy7biMPj5vTuHfSeayK/qgacafqaW7MCJBfY/egDXFU7gYlLVlBQU8+h555ksLOdCQuWIAjwxPf+CTANvq780jfwBGw89b2fYhg6S2/7EIWXXYYcCoEogj7mlOmYOBFDksj96EfZrLm5bV45A7E0V04rZkHNpRGaLd5ZRtIjRDIR6nPraY+2s75qPfefvj/7/Ys9z/MizzO/aD5fKPw85DXAaDvtowKPff8fs9HjnV4fczZeiyjLvPBv/5gVsXEHclh0421UTGok7CxkZNMgQmcMb5mbJevfR1yMceDpx8gkE9jsDnrONVE1fTb+cAGiJOINhiiqm0jv2dN4giF6zzWRikVJxaKUKpOZdfnVnNu/B384n9o5Czj68ibmX3czXadPoOs6c6++nlM7tmbb03HyGPkVVfS1nCOTTJCMRtjwma9SNX0Gomzjii98nW2/+w1qOs3sjddRP2/eO3o/LP5IRjth/6+hbA688q/IVzyEY1Ij6WPHkUJBBKeTZFcnc668js4Txxhob6Vs8jTq5y8k2t/Pcz//DzAM3P4clr7/Tgqqa4gNDVI9cy6+YB6ndmyhuK6Bmjnzefif/oYlt9xOfGQke3qX10frkUNjAiQAhkHTru2UNU6h7eghAHY+dC+Lb76D2FAHux8bQBAFFlxdTSatE+lPkYhm8Iec9BwfpDrHjnG4HwC3146/LsCxXb20HB5gyvJSPDl2KqeEcOXYOf5KF0tvqQcDMmmNY1u7SEYVbHZT9M/mkHAH7OcjqZnGYg63DZtTxum1WQIkbzeGAZ17YLAZBBFkB/7AZIYGBBCgoMpPb3OEgmofJ7Y+nhU2CFdUs+vh+8YVlYpF6T13hlB5JQNtbZzcsYXLPvF5PLlBhjrbUTIpgr4i1k3/MOqJKGU5VTilMEaJgd3tomHRMlqPHKR65hxqZs2jv7UFRBUnSQSXC0MQyAg6PYkeFF2BeNz8XU2/Fdp3mcIjmRjs+S8omg6IYHOALwxt26HrgJnn7Itw+fegYze8+HdjDVjxl3DotzB0dizt6p+Y5b8RmbgpZrLlu1A8A57+qlkXAJvLFCRx5cAFYQjDgNPPwuH7IDViCp6UzjGFOhd8CtxvLiqixR+G02snGVPQFA3NIVLeGCQZVZAkgRW3T0RNawSL3Vz24Ul4EiqJTa1kIhmcM/LxzsynpSXKlntPZ8srnZjL9FVl5BZ60BSD0f6kKWzaGuXU7h6KagLkFnrZ93QrAP48J+s+Use5/XvIK61AQycVjdLXfIaaWXM5uX38GsLxLS9RO2cBA63NbLnnLsqnzGTamnV0nTpBaeNU0/HOMIj09zFl5RpO7diK3enk4HNPsurOT3J409NIssyEhUvZ/8zj9J5tQnY4uGLjjQQUFVq3Q/NmyKuHkjkQ7YKWLSA7TWGcxBA4/ZAcAW++mW5zQ6gGAiXv5K37P4XNbmf34w8wfe0GGhYvIz48TPPBvVTPnMdLd/0nN3z0b4i/2EV+X4KyiUFySrzWs9LiPYOhJrC5XDTt2kZOQRGrPvwpZLud5gO7CRaVkuvPRzimoB2OITplQgsLCNTmER0aZNHNt+MJhjix5SVCJWUsvuV28t5AcNrC4s1QnOPiq5dN4OXT/TzVPsANdzYinB0h8T9tCHYJz0w3bk+A+iVLyCkoZKizAyWToe3YIY6++Jy5djowQDwyimEYFNdP5MSWFxnqbKft6GGUdIoVd3yEbffdzZqPfJquU800H9yH0+Mlv7KK9mOHQRDwh02x3nQijpJO0Xr0EHM2Xsfep57iqpvXUZY+A1o3+BaAbxJ07IHWHRAohYqFILugfSf0HT8vljfPFAVu2wEDZ6B0NpTONeegbTth4BSUzDLTNMWcL/cegcKp5rFgpvUchoJJpviev+hdvFMW70X6ms/x0D/+Fcb5tdRULMrGL32DxMgQoiTTc7aJSH8fmq4hAB1HjzG5egnCjjSJVBuuKR46RtpxzQwgSRKDHe3MvuIa1EyGxMgwst2BIIpomQTeWAcMqJBX++422uIdQUvGkWwSe594mOnrNjK39AbUZAZa08QeaoaMhnOqh0ypjiiK9Le1kFNUynB3J/1tLYTKynF6Xt/518LC4q3B5pDIL/Xz6PcPoik6sl1kwTU1SPbXDujyx+L0yZRNDNJ2bHBcuj9kBQr4U0AQBHLy3W8qr2EY2BwymqqPqZIDLYcHyC/3UTslxOQCF/q+XgAcYSc9DoGyCQLJyAVRGi0rQAJQXD8Ru8fL9vv+Z9y5dj54D4tvvh1PMEjHscP4C4pweX2c3rmF/KpqnvvZ95mych3e3BA1c+YzecUaTu/aRriimgU33MaeR+6j+eA+giWlOD1e3Dk5FNdPZLSvl5yCIhqXX4k7t4jLP1mEqunszWzhzoOf4HOTPwK+mv/VNf2/wkh3JxOmLKDC0Yh+LI7ePoJ/XpCVd3wcd06A2OAAz/z4e6z7xOcJFpcRGexHlCXq5i3CnxceV5YsS4SK//j5Qd3sAo690slF+gaUTcxl069OYlwkUDJh3pt7b7I7JPLK/sBAEqKA3W0bl9RxcpjC6gAN883z2ov+MFPG1/p9BvJcBPIuHV+dHhvLbpvAUz8+TDKqIAgwZ2M1eaXWvMvivcPFgkHaq8WDLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCws3kHecyIkgiB8DvgIIAD/aRjG9wRBCAK/AyqBFuBGwzD+NELaqgrEe8HmAXduNllRMsh2Oy2H9hMd6GftzZ/CK4Tw3JyHEVXQogq+HDt90TZ2P3I/gfwCCmrrkeTXv2UOWeLTK2vZdmaQ/mgKzS6ipXQmLyumdlY+gggunx35DYxmUrEYOx+8lzkbr2fdJz5PKhFj273/Q2ndBHSbH0EBTdMYtzt9HkPPIF4QIAFo34Evsptw/RJGulJkRjQ0R4Yn+5/mvrZ7eOTKJ5i29gb629Nsve8shm6QX+lj1vpKRq64BSk3l/yvfgX3zJl/0KW3+N+hZRIo6TSqkiEy0Ifbm0ND42LUeIbG6StwiG7i8WEqPvFXZEbiOPMDqIMpll3xQQxDw0jqXPPxv0SNJDEwsPvcCAOw8YNfRRbthGzFOFZ5yPEVMPLbJtABWcTmdJJvz8W3KA9dVXEFXVR+ZCrpoRg2r4v3f/17GEkNW64LNZamoWEJqXiEzHCMW7/8HfSkgqaqOAJulJEUZSWTcHv8OGNOBobbGepsZ6Szm7XXfxIZO86wH4foYtmGO5AkmfRIDOdlATIjcfxFhZR9ehLpoShTZ61BvFxEsjswJAfpgQyCLJPIjCLJMsuu/gABdz62HA9uj49Y7SCDIx3sfO6+rBBAJp18d2/qnzl2hwwCzFxfQTKSQZQEHG4ZEQUe+zTYvXDDXfA/V1Ew50Psr5jBzPyZzPEuoEivoGFtGC0NAy1x7E6JRTfWESobMzbJtEUZ/t1pRK8N7/xiDM1AaY8iTbAhyCKTl5Yw2pckMpRGy+SC3kG4opKmXduYtfIapk1chRbLIMkO7MUqw2fPjKu/JMtMXbgWe8SO3eeivGEqyegoXadP4snN5cVf/jSbV1Uy7Hv6MVZ88KMsuvl9bL3n12y773+49S++Tfz+Byn8m7+m/9/+HW14GEdDA/lf/xqJEyfoqJ3OyaEUt84rp7HIjyBYjnzvBfLd+RS4C2iLtLG8bDm/Of4blpctZ0/PnnH55hXNIxHtglMvosSjnOjvygqQgOkkoWTSDLecy447AA1zllBbOhcjpWE4XfjXeNFjCpLPjiZB5NwB1t34KeSUjOi2oYoqcWWYpCSiZjIkR0fRNJXdjz7A8ts/gq6q2bKPvvw87kAOtXMWMH3ddahKlFQ8ioBA2aSp1M9bxN4nHmKosyN7jGyzoypK9nNkoJ9ZG67C6TWN1CbMX0zF5Gnouo7bH3jLr7fF28TQOdBVOPQ7qF6G89gPKPjKl+j9l39l6O7fUvAfP+DxR39Hf3sLBTV1FNTU0X70EA0Ll7D13l9n55SJyAjP/Ohfue4bf8twTxcDbS24/AGK6hoIV1Sx6ec/pHHuMnKkAioXTGP+wusQDRHBLqHpClOmryTa048r6EdQRRwuN6lMnLPlEwgECskLleIP5qNrBnd8qQxR1VFTKqLfgRrPIOZ4SUbSzJgVRtBBL/UhOiXU/iRiX5LZ8wqoKXZj99pJxzIE8t0oGZ35cwoQHSJd3XESikF/W4y5G6s4d6ifRdfXUlDlZ7AzRnF9LkpKRbKLaBkdm0Oickreu3zz/g/QfQR2/BRKZ5qCOWdfoGjJd9CNKpS0xrwrq2k9OkBRnZ/dD40J2QiiiHJeUO9iNFXluZ98j5Uf+jh1qsLZvTtJx2MU1TdQWTkTIaLhmuNHn6wi2EW04TRlgQZEn0R4RQmsugPBKyFqAiXuWgRZxJAEBFc+giAg6bBeqmbIGYH7Z5kOlQDr/hG2fR9iPeZnhxe69kDbbpj7UfCETXGQzf8Ma/8ehs7A7p+Pr7yhjhcgAXj5H6FiEeS+jhN0OgY7fgi6Ap37wZU7JkACoCShc69pVD/1JlMEBczI9tr5a9h9CBouh5f+AcrnQ92aN3HzLP5QQiUeyKi4BRAVg+LJIZRYBtFjQ0uq6LKMGFPw2SVGNrXinleILc+NYBigaNRVeqn/2kz0qILoltE0HQ0BIaMhaDrTZucR602hazqNH2okPZrG5bOzcGkR6DqCLKLHFGpr52KzOdATCmqOhssfYJzXxXnq5i6k49gRTu00BcvajuynoKoKm8OBrmY49vLzeHODhMureORf/g7D0PEGQ8SGh9j6u1+z5OYPINvtPP+f/4F2fn6hptMcPXeKdQurzf6qqfDAh6B2tSkwcuIx8+SuXJj/CbNvT1gPTc+aYiXhiRDrhZqV4LEE+95qVFUlPjJEzYy55OVUIkdEfLEA0xvXojoFbvnUP6JFMwTWVoAoYGR0lMEkhqaBTUIfSaOnNSSvDUMzkAIOdAyIq2ijaQS3DKoBmoHotSOHnEge2xtXzMLiTSIg0HXqODmFxXh9QVyKBzEtMLFuCTgk0ieGSLYN4FtSgui3m+OiYuDM9eLMOJm/4Drmr7oOMehAVmVSzSMIgogt32W+jw0mUYdSiG4bcr4L0WZGMtYiGZSBBIIkIue7kFxj/VpXdZTuGNpwGslvx1bsRTwfAVlXNNS+JHpCQQ46kf8AB0d1JI06mES0S8hhF4JDQh1Mog2l0VUdW74LW54bpTeOMpRCdEgYaQ1BEhE8MraQC8EuoQ4k0UbTiD4bhqJjpHXkPCdyjhVl+K1kZkUuoiBwtHMEpS1CYFoI9+QQekRBT6osbbydnS8/QCadoHbuAvrONiEgsPCG2zjy0vPM2nAlsaEh9j7xMBOXrGDPow+MK//E1pcpqZ/Iy7/+T5bc+gG0jIIt6MAwDNRMGpvDiXHRXoGmKoiiBBikkwmM5DA88fkxwbrL/w1e/DYkz2/zBGtg3sfh6a+MnXTOh0HNwIFfj6Wt+Jb5/nnot2NpS75klrv138fSZrwPQnWw6a/G0iZdBxu/ZwqQWfzJo8UyKP1JBEEwx8WLHBm1WAalL4GR0RFcErLPjhw0xz91OIU6mEJwSWCAJ+LlQ3/xY3CKGCMZVD1DVB1hsKWVyTNWUT1vOouX3YJgF9AVHSOuIXnt6KUK2mgG0SEz01iPELCjksY5yYttSMIl+nB7PAzHumnatY2Ji5fjNJohOTb2qdE0an/SHNvD49tg8eeAwFBHByUTGvG7Q9hjNuS4wMgrHfjXVSL5bBeykectQameh6AKbLzjqwTLylFaYwheHTnfjZFUUYfTCLKAnlKRvHbk8Ng84WKyz2+biBh2YUQyaJEMkt+OFHSiDaTMfYpcJ4IkmL8Ht4SR0tDjClKOE3uhB3U0jTacQvTYsIVdCBedS4srqINJ0A30lIbks4+bt1hY/Knh8Mg4vDLLb5tAMqrg9ttQVQO3z/GWnicQcjNrfQXphEJvcwSbQ2LOFVUE3qSwhcV7n+hwipbDAzTt7aO4JkDltDxku4iaGQsckU4qTGsMor3UhmduIYJdQg65qJQEdLsbNVWAbmhIso2Sj07A5feRHI2QW1KMoepc+f6vkhgewRnwk4pG8QZDOERznK4tm4WhG2TSSQpXVaGLOoIuIEgCgiFgCJDqjdJQuwhEcGhuJk9ZRXntNALeMMGCErSkQnhSDc7JE7i/+34K8xU6Ro9zMn6M+zrvZjhtzt/r/FUw2ARFU96ty/0ng2yzUzd1Kd48P2pDGtEuIuY4SPVHUD1p7E4nS26+nZ6mkwy0NuPJDYGuU1Q74U2Vryoa3WdHObq5EwSYsrSEopocJNulNmEF1X6u+sIMjm7uRFN1Ji0tofXowDgBEoCc/LdPHEmSRKavLqft6GDW3Ey2iVRNfef2ygqrAtzwF3OIDCRxuG3kFLiQrXmMxXuIi4VHVEuExMLCwsLCwsLCwsLCwsLCwsLCwsLCwsLiXeQ9JUIiCMJkTAGSuUAGeEYQhCfPp71gGMY/CYLwdeDrwNfevZq+SQbPmk5iR+6DnCpY/49QuRREEUmSwOEkNjgAQM30+YgOmUzTKKNPN4NmgCwSuqaWSHUdI33d4xyNX48Cv4trZ5Zy7cxSNFWn7fggseE06YSCZBNxeQ08Oa9vNOPPC5OKxXjyB/+cTZtz1fU4vR6ciW6iRhBvbpCiuga6m05m8wTyCwhrbZcWmIlTVJLHOWMbKipb2rfwwJkH0AyNzoEebDEvZY0hNn7Gi6roeIIOXMMd+H/5C8RAAPekSW+q7RZvHTbJoHHpCg499xSBYCHLZ0xGezJC3mWVxF7pxnBqBOvDRLd0kL+iguTOAeS0gGuuk8gLbXjnFyF1qCh94F9ZTuTZVlyT89DbVVKne8jfUEXkuTa0BSlTgAQIrKsguqUTOeDAXu4jtr2f3DUVJLb1IePANS1E9J52vItLSO3uRRtJ41tSQvr5OMGZBajbR8m0RfCvqyRyTyvOulx8opvk4R6cQLmvGte1JVQYE9F2RAisO98Wh0qwIUz0lQ7yl5eT2jWInJRxOGXSm+LkzStB2Rkj3ZvAv7KMyPOnMTI6CBBcX85Nn/p70o/3YC/zIWZsJPb1YgdKPGVsfP9XefgXfwcI5OQXvot39P8GDqdMMpIkk1IRBBHZLuGwDZnOu8lh6NwH1avIO3APDQ0bmF/zd2z9RSs9oxl6pVYW3VyF5zoZp9tGaUnBWMGxflIn+hBcMr5lpUSea8VQdBAhcHk13rmF5OS7WXPnJEZ644g2gXO72hjqamfZNR9GOT5M5PlWMECwi+ReX0/DyrVsv/9udM0UdLj89i/hOWBndH8TAK4Z+VQunw4IdDWduKSt0f4+kqMRhru7KKiupffcGXSng/zPf45MTy+lP/spejyOlJeHAISuv558rxdLzum9R9gd5jvLvsNXNn+FvkQfswtnMzk0mdXlq9nUtgkBgTUVa2gMNlIfG4XdP0df/E1Gj/VeUpamKEQG+rOfZ6+9limBxQz96jj2+hxcdbmMPt0CujnPyLmqhor8KYw+ehZtJAOyQGBdJR63n5FENwdffJIZ664gVFpGw6KVeIJl5GsaoiRn+25idITcwmIwRF785U/pOXMqe/5l7/8ww91d2c+iJFFYO4FTO7Zk0wqqahju6cYbHHPyvSBIYvEnRCYOrhzoOmCKDLz8j3jOvUjJPzyIMpxGCYaIDJl9s/dsE71nzbEOAxKR0UuKG+rqoPXwQSavXEN0cIB0PM6OB+9h3orryGvOQ3smyihR7BV+7KVeDEXHVu7DqblwBMqIPteGb1kZkUdacU/PZ2JgAaIkEnuyi2HbMLnX1xPf2Un6lGkwKwWd5FxRxeCvj+NfVc7oi+04anLQRtNokQyeOQXIfhuJPT0ESn2MPnaWwJIS4k+cw1HhR02o6AmFopoAcl0uxfU5jPTEKanP5dAL7dhdMstvnWAKAZ7Xf5LtMr6gwzJsfCeIdkLfMUCHcAMEyvDu/ltqcuqJTvgwqr0Yp8dGx/FRqmeupuvUccAUSWpYvGycA6YoyTg8XuIjw6TiCWSbHQB3STnVJTOJPduOszFE9MV2nI1BtJE06eYIwVsmEHm8hUxbFAC5yIN7Sh6R51oBcE0PI7okRK/dFImKZMgJuchs+B32x681T773v6BqiSmgMOsDZpT45ldgwaehax9ULjaFEwwDnAGID4w5dV7A0C69PvEBU0Tk9eg7YYqVLPwseAsg3n9pnviAKeognO/TnjBI9vFlXxBU6TthiZC8TQgpDVd3jEx3Aluhh/juHtxTwyROD2Ev86MnFVxzC1GHU3jmFSI6ZTJnRxB9dkSvDdEmMvRAU3au619XhaFqRDa14Z5VgBbJYHTG8C8rJfbEWTzTCzBG0iTOjuCaEmb0uVbkfBeOygDRbWfPz38lrrrta5zp2Is/nE+kvy9b36Laeoa7u8gkE9m0PY89yKRlq8grr8TmdJNJxHn+P3+Icd5pOdLfx+Kb3s+We+5i/9OPUtLQmBUgucBIfy9C+xkIhCFQDoIAZzbB8r8YEyFJDpsCO/F+8zdzZhOUzjGFfnLKYfCMJULyNiBrKsM9PcyaezlC0mD4kdNoQylcM/ORQ06SwylElw0j4CC6uQM9mgFJIPfmCai9CaIvtmfnsoHV5eilBoJmEHm2BUdtLunmUZR2c6y1FXtwzyrANTGYdTy2sPjf4rDbGGxvI1xUSWnFBLQhBV0E0WND7UuSbo/iagiijqTR26KkTg9jK/LgbAgyuPko6CDYREIfmET/EydRu831XseEHHxLShn8zQmMlAYC+FaX41tUgjaaZvA3J1D7zWeqc2KQnKtqkHOcGLpB6vggww+MrVX511biWViEYEB0ayfRF9rM8dglk3d7I46qNxZ7zHTFGPjVMfTzUbg9C4txNgZJHRkkvrs7W17w5gmMbmrFMz2f4U1tGEkVBPDMLkQqcCH7HQzddwrnhCCCLJI8ZM4hRK+NvA9Mwl5qvfu9VbjtMgtr85hXmoMykoKUTuJgP/EdXdn7Nffmq9m3+0nO7NmJPy8fu8uNmslQUFnNzod+R05BEYIgoKvKJeVnEgn8efnEh4eQZBvVs+bQfGAvDo+XiinTOfjskygpU9BPEEU8gVxyCgoZ6elm1vzJyPt+DpVLoHmzWeDmf4ZJ18DeX5qfh85Ccmj8Sff+ApZ+dXzalu/A/E+NT9v2fVj8+fFpB34Dy78+Pu3Yg7DgU1A66w+4shbvRZT+BIP3nETtOj+G1gTIva4eOehEGUgydO9JlA5TNNFW6sVRl4trQi7IIoO/OoYgiXjmFxLZ1GbuxUkC/jUVxHf3ow2lyF1cRE54FYkHesnQi3NKHpLXRnxHN2CO+bnX16GNpBndci77Gwusq8An+Bh9qgUjrWGv8BOcVkgkpw9N0xAzA2Nt6EswePcJ1F5zHuyYkEvu1bXIuZZA058LhqZxeudWrvjAV7ApNnAIZFoj5FxRjZHRUHsTpshYTxxnTQ7JXd1ow2mK1lcTe6yL1HAaBMi9sZ7Ic614F5UQeb4VI62df95X4F1YjOgY2+rPdMcYvOs42kgaKceBd0kJo0+Ze862Ug+uyWEiz7YAELiimujL7XjmFyO5ZUafbjaFexwSOdfVMfJg09i51lXiXVCE6JBRB5MMPdKEqyFE5KJnv29VOb7FJYjO95TpgYXFm8LlteN024n0J1EzKsmogT/sxul56/uzmtFY/r56EhEFm0MiEHaSSbzGep3FnxyqorH3qRaObzH3xLqbRmg7PsCaD01i829PkYhk8IWcVE0PI+3oxLO20hyH5xQS29yBrciDnlAxVB056CTdPkzOhCCJlwfInVlA/LEOPHMLyewZIDCnkPhLvQSm5xP5XRtxzcBRn4Mt7EZPaeixDLZSH+njg3hmFxDf14t7Uh5qXxxZM7CVuonv7iE11EnerEKCyRCO4hyiT7ShJ1Qy9JG7wMu1067B75DYnW5iW/fLDKeHkUWZj9Rez+ThbnBbAutvhvziWhwZO4O/PpF9x3ZNC+NZVIySSrP3iYepmj4bb24Iw4Chzjbiw4PUz1v4psrvOTvKY987mP18bn8/V31hOqUTgpfklSSRkvpcSurHAmj5ch30tUbpPWeKIy2+oZa8Uu8lx76VFNcGuObLM2k7PoRsEylrDJJf/s6KRfqCTnxBa+5t8d5Ev1jk1RIhsbCwsLCwsLCwsLCwsLCwsLCwsLCwsLB4F7k09MG7y0Rgp2EYCcMwVGAzcA1wFXDX+Tx3AVe/O9X7A1DTppPW/rtMp6v+4/Cb66D3GACaohIdHqR04iQal65G8jsw4krWGMwsQ2fk0bNUV87k2MubyCks+oOrERlI8szPjtJ+YgjJJqKmNbY/eJbhrsTrHhcdGmLFHR9h7lXXUz9/MSs/+DGCxaVIsghqCkeiG8nhYMmtdzDjsisIlZYzecUaLvvUF8k5c//4whw+CNUD4LK5+PQLn6bAXcAPV/2Qn6/+OXqvkxd+eZJf/8UOHvrufh77/kH2P92KrbYO78KFlgDJu4TbZSdUkM+cK6/DLwbR9kawlXhJt0XRhtO4JucRfaUDyedAj2ZQexO4Z+QTebHdjHgqi2RaI3hm5BPd3IGh6MghF6kTQ7gm5xHf1YORVBEkcxhyVAdInRpGj2RwTgwS29aFnOdCHUiiDiRxTQsTfakd0SmBpqN0xHDPzCfyUjsYBqLPTvrMCK5pYWJbOzHSGrZiD8nDY4a9ejSDPCyg7YlgK/aS6Tjflilhops7zAiGcQWlJ4F7Zj7RF9sRJAHRJpJpieC+0JYL0YoM0DqSKJuH0BMq9go/iX1jDnV6XMFxVGDR1bex9H0fxJtrObC9nWiqzu4nmjm5owdRFDEMg4PPt3PmUBwCZWamdNSMrKokKBuNcuCRbhKjprGPoRlsvfscqYQyXoAE4OSTyHIUz8x8oi+b/RkAHUafOIfSZ46pdodEJqHyu7/ZQ25JBSe2vgwRxXQwPj+0GxmdkcfO4owIXPmlb1AxbSaTlqwkpy8XfSSTPWXyQB/CgMbExcsobZh8SXsnLFjCtnv/h+OvvEjl9FmEyioIhAuQc3JwN0zAPXUq3gULcNXV4ayrQ/K+vcZCFv87ZuTP4J7L7+GG+hu4pmwNDzQ9wIzwDH606kf8cNUPmZI3hcdO3Yc/1ge6iuPob6idPeeSchweD+WTp2U/z5y1nsReU6zEO7vQFDrTx+YZo0+cw1A13NPyz6cZRJ5vRRIl8gOVLLrxffjDBaTiSdy5i3jqR2fxh6u4/HNfoWLqDMIVVay68xM0Ll2JKKfHCZAAHHjmca780jeZsf5KJi9fwxWf/zq6rhIoKCRYUsqim97P2X27cXo8b8+FtXjnCFZB92GYuHFM5CA1gqP7WbzPbiDnufcxed6ljl6iTaZq+vh0QRTJLS5hqLMdSZJxerxsv+836JpGSClE60tl82ZaIwiySOJQP3o0gxZJo4+kcU0MEdvSiXtqmPjObmS/A0EWERwShmagDiSzAiQA2lCKxKF+XNPDRF5sxz0jn8TeXhxVAdTeBGp/ErU/iWtyiPiObtyTQkReasc9PZ/E/j7s5T4ybVEMzSCxpYNYb5IXf32KA8+1ERtOM9QV58y+PvLKfITL/ITL/OQWuC0BkncKNQUOL6QiZv90+CAVQY62kLvvr1DP7QQEjr7SSfc5P4tv/SwFNfV0nDhKxZTpLL7lDsIVVVROm8UVX/gaTbu3M2HhUnIKCtn9yP1sv/9uXKKLTHME0WUK0ukpFcnvIN00gmdWPpn2WFaABEDtjqONppECpohJ8mC/Oa+OKCQO9CH57cS3d6J5pppiCGDWv26dKTpy9kVoet587xQlSEdAckC0B0I1cOhes52NV4+/FrITxFc5UEy7BYLVr38Nh1vM/48/AhULTaGGV1O1FHKrwBWAK38Ia/7WdAi9gCCa54c3Pp/FH02mPQoaqL0JlM4YhqKhp1WUviSiR8Ze4sVQdSSHjJFU0eMK6XOj6GkNwS4x8ujZcXPdyDPNCAggCsg5DtKnh833opfbcU8JE9vbg55QsRV5ib7SgZHRcDWGiG3tvGj+qyFuT1JYXMvsK65l0vLVhErLmXPldeRX1TDS38vExcvGtePE1s04PB50VWH7/XeTjEay31VMnUFX00mmrl7Pyg9+jNr6skuuw5TZk3B0bDF/G4IwJo7zaiEeJQGyfSzd0EBXQNdBy2DxNiDA1HmrwYD47m60IfO57moMEX2+DUdtDkp3nNTxQVOABExB05H0mAAJgKqTaBpGECB1ahhtJA2GkRUgAVC64miDKdLnLhU8s7D4Y7FJGhVTZ1A/aSGZzhh6UkGLKOhxhdSxAVwTgkS3diLnOEidNuebrsl5RF9uz4rwih4byUP9WQESAMlrZ/jhM6YACYAB0efbUPoTxHZ2ZwVIAFInhkifM8dFpTfGyONnx61VRZ5tQemMofTEiW5qGxuPkyrDD55Gi73++KZnNCLPtWado8DU0VM6Y8R3dY8rb/Sxs3imhbPrfBfqEN/Tg+x3MPxAE6gG9hJvVoAEQI8pjD7djJ62HC7fagwMBAH0kTTx7V3j79eTzcxcejlHXngWQ9cYaG/l9M6tqEqGCQuWYOg6szdeS2FNvfn8vIi6eQtpPXKAQEEhkixjc7iYvHwNwZIyNDXN6g/eScfJY5RPmc7KD36cVCLOpOWrqanKo6L3EYgPmnPyC6QjYH/VWtWrn9OGQbYBF1DTIL1qPqur5lzzkouhX5qmvoH4nsWfBImDfVkBEoD02VFSp00Rm+SRgawACWD+regkjvUz+uQ59JiSXfvP7sVpBpFNrbinhwGQ3HYSO8fEf+1FnqwACZjr/pFNreY85qLfWGxrF0pvIltOpjUCoyplxY00799Di2MWhqZh6AbxPT1ZARKA9Klha87yZ4auiUxavgabYTef05qBrcSLnlRJnR0h0xlFsEums/f5vSpbqZd0awRtOA2AsyFIfHs3jtocYtvMfS/g/PO+FaVnrA8ZqkbkxXZzXgy4Z+abYtTn+7lrYh6RZ1rAAEddLsmjA4CA5LcTebEtO5dwTwsTeap5/LmeaUE531+TJ4eQ/Q7i27vGPfujm9pQet5cMA0Li/cawz0JXvjVcSJDKSSbzEhfkk2/PM5I7+vbU/yhxIZT7H68md99ey+Pf/8QD/3Lfv77K9sZuOi5ZfGnS2QgxYmtXePS+tvixIaTVM8IM2t9BWUTg2y++xSO2lySRwZAENCTKkpP3LSjODmEozpAfHeP+R65uQP39HwiL7bhnm7OX9zTxv6PvDQ2n3FUBojt6EbOdaD0JtCjGWx5LhJ7e3FNDBF5sQ1bgQd1MIXSGTPnMaKAnOtAkCXiu801vgvIO2LkjLqoj/Szoa+dv6q8ll/N/zYP1n2Ijxx4gkDXQWuN903i8vqIvtw+7h07eagfbSCJJyeH+vmL2PnQvWy55y623nsXh194luIJjW+6/GNbui5JO761+zVyvjbBYi8bPz2Nm741h5u+NYfGxSXYHG+vqJgoiRTV5DBvYzWzLqt8xwVILCze62gXLWeo+musbVhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWLxDvNfCER0F/l4QhBCQBDYAe4ECwzC6AQzD6BYEIf9drOObI9IJRx8cn6arMHASiqYQCIfpaz6DzeViwXW3INpE1Igy5kxxHiOjQUJnw2e+TF5p+R9XFwOaDw7QfHBMjOFVNsSXoCsZdj3yBP68fHKLijn43JPMXH8Vkm467fm6NnPoeIZTh45xxRe+zqTla9j92EOIyWFY/lXwFcCZ5yGvAZZ8CQIlAFQFqpgansoPDv4AgFn5s7hj6OuXnL/n7CipwVEcgoIt/71/u/8ckQJFVBW72NfRggMXGWLY8t2kz44AYKg6GCCHXSgXnCYEQNWRCtwo550jBKeEHlMQXDLaeQciOeTMOh5o0Qy2Ig9yvpvE+TRDNTdR5Xw3mQuGV7oBuoEccmWNHQVZxEhpSAEH2rDpuCT57KaBpsiYkeRF6DEzkqct3026efRVbXGjdI21xVB05Hw3yoDZFvF8Wy5GznOSPDy+3hejdScJTitDc6iEK6ve5NW3+GMRRIHuU8N0nxnJplVUuU2nA0GAsrlwz80AuCJJ+s9dathnxF7lEJ6Owu6f4Wj4BDpF6PFXRYM1QBvNgDnMkTnvMBQb9rDuk19AG01fcg49ZjooPfL9f+bWv/on3HY/8V83X5JP6U3gmpSHZJNZ8YGPsvOh36Ekk0xZtY7C2np2PHgPgijizQly+We+jMs/ZqCjjoygx+PIeXmIDsebuXwW7zJhd5iwOwzNr3CTv4EP7/suxnlPBgGBX0z5DJx6xowc3LKFSs8o8669iQNPP4YgiMy9+nrsLjfJSISZG67iyEvPY0THxkE9qWad3i5gpLVsxNdsWkZHjyk4vC4CxWV0nWjj1C6VnnODAESGJCbMW0R541T0eBy7w4EcCKDrGt7cELHhwWxZkf5eHC4XlVNnsum/fkRfy1nKp8yguH4iuqax+5H7mXvNjeQWl76NV9biHUF2w7q/h4494C8BX6EphoCAVnsFmr+R6bnFqOoijmzbhTsQYPHNd5CIjDL3qhuQbDbO7t1FIFzA4ltuJzYwyPLbP4wzkIMgimz8wtfpPH4cqe+SbozSn0DKcWQjvyMIiB4b2mga0WsDzGe00p9EynGgJxTU4dSrW0CmPYZ3SQnJiwTFLjzbla442EUc1QFTHG1qnvnbOR+J6kI+tS+JHlOQXsMgrOPUMEpaw25FhH3nCVSYwpATLjdFBdp2wfRbYPt/wLKvocRtqIo5XnaeTtDbbKe4/jZku0gw4ME5bSa6rqNrGrLNzsz1V9J1+hSn9uhs+OzXOfjsoxSW1aMejCOHXSSPDiD67VnHH7nATfr0yCXVUrriyGG3OY/AnHsq3TEEmwiqAYKAkQE91Ig40gYzb4et/wZ9x8cKqV4BHfugbq0pspA/CYqmwZlNINqgfj3YPHDqScithLKFcNNv4OV/gmgXTLkRpt9qijC8Hu6g6dg50gbdB2Hy9XD5v8GOH4KumdfTFYTaNVAywzxm6BxMvQkO/dYcF+Z8GPb9yhRGKZn9v7qlFr8fdTBpRkzNd5NpjyLnuVG640h+O+pgCkdtACOhmmsNgpB958E477B8kbMBAAYYmo7otqGe79OCXTTzGWDLdaJ0x3FUB7KG9K/5XhTJUFg1gX55gEBjNfaX3JzetR0DgTmXX8OZvTuZfcU1nN23G28wxOyN12J3ufDnFzDnyus4+OyTSDYbc668Dl8ojM3lJpAXJnjmaTTRYO0tN7DliWdR0mlmrVhMvdwEiSEomGKuxeiq2Q/TYwIVCIIp8pNJmOI8ORWgpMz/Jdn8zVi89did2KUURsYYe98H9IT5nqXHVGwFbuJ7erLfyUGn2edetWbmKPNiaAZKd8xcK+i+1OlR6YmDwxL9sngLcQbwBEuxCXYyagrBIYFdQBvNkD47gmtyHqJLRr1oLeDCutMF5LCLTNf49QjJ70AbvHSOqqdU0hetcVxA6YzCzHy0qIoeVS75XhtJI0iXLgCrAyn0hIrk/f3Pfj2pZtfMLiA4pddcZ1MHU0g+O2rfpQ6aRkY7/7xhTCTlItKtUfSkgmj9Rt9azj/TL6zDXozal0AwROZedQO7H32QYHEJ866+AW9ePmo6TWnjFHrOniaTTrH2o5/h6EvPkYrHqZu7kMHONmS7g8s++inCajOVtn0QG0LXdGyV8xFfuIWytV9CUBJoA/cjFtSBOIBt+3fNufiyr8LOn4xVZsb74fTTY59lJ9h94ytcPAOivePTJmyAvpPj06pXQLRvfFp+I2iv6rPBagjVvckLafFexdB0UheJil4g3TyKZ15RVozkYpTeOK6JQeLbzs8vzq/9j0MdG6hfPZ99rfmt0hnHWR8ExtbBsusFF+frT2ILB9j31KPszmR43998m5CiZYWqxrWhNYJnVsEl6RZ/mmSSEkV1EyCmg01ATygINtFcowXUoTSCJI7bq7IVuEk3jWTLsOW7iZ7qwFGXkxUmuZiL9x60pErmVc9vLuq7xkWejLZ8N/Fd3djLfBip8XMJ0WvLrme81rnSZ0awFZlO7K9XHwuLPyUEwdzbO/JSx/h08Q0MKv5A0gmFvpbIJenxUUsE9c8BAczOZIxfu0jFNY5u7hyXJhV6yDzZjKPCj9IdR3TJaK9aVzO08++RhmHuRVw0fzEU3Vwj0cbPX0S3jDaayb5zOutNsRPnxGBW8OTCmiGA6DbfXS+2d7iY3KQH0m0EnTkE7//w+C9XfMNcU7N4YxJq9ppfjDqcRhQlqmbMQVNVTm57BYfbw7Q1601hyDfJa41V4musB7weDrcNh9v2Bx1jYWHx9qFd9CzRXrUmbmFhYWFhYWFhYWFhYWFhYWFhYWFhYWFh8U7ynvKAMwzjhCAI/ww8D8SAQ4D6+keNIQjCR4GPApSX/5GCHW8Vsgs8eRB7lfGrY8xB3JOTw5Z7fk1pwxRmr77ajIItCeOMBQSnhOi3U1Y25Y+qhj/PxZSVpRza1D4uLVjifZ2jwJ2TS7i8Cl8oD13TaFi0HAQBR24hDCaIFy3h8H/9A6lYlLu//rnscWW11RQPHIGGjTD7Q5CMQKzXjJYN5Dpz+dqcr/FC2wscGTjCvIJ55Pu8HN8y/vzFdQH6v/w5lDNnyP/SF/FddhmS9/Xr/KfMe6rvXkAUyamZznJjhJQMGUDpjmMv95M8MoAgiyBcEEkImYYTuoFgF9GGUrgmhszIxQkV0W9Hj2aQfKaDg9qfxFbsQemKE9/VjWdeEbZiD45ohtSxQbPs8+dzVAdMRwZRAElAGUjimV1A+swIRua8MU0sgxw0o6pro2nkPBfqQNJ0BHl1s3y282XHzLaM9JvnE0Hpi+OanHc+eriBYJfQhlO4JoVIHRtEj6tIAXvWURRM431bqRel47zD6KuwV/oITq3CHQy81XfoPcN7pf9KssiM1eV0nBgz4BZFgarKFCSLYN0/gL8SSuZAahhXKERhjZ+es+MN/nJDr3J4kByQW4Vt25cwrnyCmN8+LlIRAkg5YyIfuQVuZJvIgecHmbFKQapxmpZnF9kGSH47gscO6TS//cYXKKyqY2Xj7XB8vOOQrdADgJpOc3LrZq760jfRNJUTW17i4X/+GwCmrdlAw5LlON1mXsMwSOzaRc+3/45MczO+NasJf/ZzOGqsaFSv5r3Sdy+hdA4Nko1/W/LPPNbyNIIgcGXV5dS3HoDkECz+EoQnEjzwryycfgcT/9/fYqSjDLY1c3jnNryhENMXz2NmYxjZ7cwWK7jkS+cZLhkkEeMiRwvBISF67eg2gye+f4boRQblggD+PCfp1laGfvZzRh97DFthIQXf+hbeRQtZ89FP8+h3/w79vKPPlFXryKuoIj48RDIySnSwH7vLTcXUGQiiwLQ1G8ivqka2WYZtfwjvyb7rCULbdghUQrACrv0F7L+LlF5B7wtNJHbejaOxgQVf+wxz16xGMBS2v7SHUzu2oqSSTF6+hiu/+A1ku4N4ZIT4yBCapuAJBvGHC0h4DXILnUinveMiGsN5YbEzIwgOCUPRMAwDPaogBZ1Zw13Bdt6po2kYQ9Oz84aLsVf5STePms/z834ZF57ttlIvkt9BpieOXOA2HS3kMSPObL4CN0gChv3SOUjZxFxsloPlu9N/8+pg/b9A8xZw5cKyr8FoOyz+PAw0kVO3hP7OsXujKjptx0ZZfH0eOx5/DE+4kJ0P3nNJsQtvbmTz71IsueF2bD47RiFk2qPYy3xkOmPIueb8INMZx1biIXVyvDOcrdR7PvKwiWATsZf6UHrjIAsYgGAXEJURWPv3kInDjPdB8yumEEn1CrNtdi+UzIKCSZAcNoVWGjZihjcOQOkcWPRZ8OaD4/w8p2S2GX0+twrE14ga/2p8RbDim7D13+HcyzB4BpZ/E66/C+weQDfFHOSLhM+C1bDhX2HpV8yI9ZFOuOpHEG4AV86buXPvKd6TY+9rIOe7UTpj59/dfKSbRnBPDxPr6EbOyzcFHoo9ZIZT5vubU0bpjiOHnGAYiF7beOFF0TRk1+MZ5Fxz7DTSWlbkSR0y35f0uIKU60AbTmff5y5GzHXQqnUQO9GMmNI48NRjAOx97AEOPv0YjctWUjFlHvULlyLZbBi6TioaYdfD9zFpxWqu/ur/IzrYz74nHmbng/diGDpXv/8jnP3yfyGHw1R94ytUfvIWDNmB7/DPEQb7YP13TOGR7d83BXHmfRx6jkKoFpw5MPVG6Dpgvid07jfHBrsbbF5TTCun7G2/X+8U77X+G4+P4rYHsFf6SR40nVxEj9mnJK+N1PFB7BX+rAOm2p/EXum7ZC6baYviqMvFXuojvrcXz9zCS8QabMVe5DzXO9Iui7ee91rfBUAQyCSSaLmqKY5rABkNOccBOuhpFT2pIAfGnokX1tAurAsovQlck0Pj5rXacAo534Xalxx3OtFlw9kQJNY/3mnNXm4+0yW/7ZK1KgSQgk6E11Chlgvd2TH89yG6ZRx1OaSOjjnW6wn1NefQcr4bdSSNrchziRCQ4Pj/7N11eBzH/fjx997u8enudGKWLFuSZWaIHXLADTfM2DTQQJO0TZukTdMmKaTf/JpCmLFhcpgTQwyJmS3bYpZOcHx7+/tjZMmKHLYtw7yeR4/u5hZm7+b2ZmdnPqOK4CVhHcUy8LfBWuzBtI8OchrMsquYVYwE4l7DV5iznMTiYbLLhpM3YhSaxYZmTQIljqrZadq8ng8evBsAk6qSP2os6YXFDJkwicLSIXhOPIakcDXoMdj4JvgKYeQpsOQhmHABZpsDlj6MVvITKDoAPvgzeHJh2pWQPhyql0D7Fhh/HpQcCa4MWPoE+IrF77DdI+q5lfNg2JEw+ecQC0DILwLhjfgpTDgPIt0igFjtEhh+HEy4EBJREYR4y8dQPAumXioOOtQOFe9D0YEw9RcieLr0jfbIc+92FNWEvTxlQNuAdWgyiqJgL08huqV/e685y0WsLYy12CPqFz1t/0a0L1CNYjb1nqe/Wp/dUf3WUuAWwc62o2U6SITi/YKWmNMdxJUosZAYpNve0kHqUBX7cB9djf0H7lqL9t17CLvDnlZ2nV4z79z/GEeddDVGIIaSZCFa3YXqNIMC5hQbWrKN0KqW3ntVsfoAlgJxDw4g2vN8+/te21OT+36bVbsZW0kywS977ksnRADJbYHAFLWvPhKr7+4tw47x6f3qEnpnFDXFNiA4mtZzD8RWmkxka6eoA3wlCJnqHVhXkL6bPa387m+8GQ6yh3mo29gXyKdwVAqe9J17LelMtpExZOB9SXfK3vvdkWW3jzvNzsiDcvoFs/Gk29F20H8gqIC12EusrhvH6DSiVZ2oblF/31bv6D1vA2imnn4Yqgg6aFHFa5qpN+CUoplIBGOoXiuh9W2ivtQQwJzb18fGZNcIr2/Hkp9EqC1MIiiuXWMNAcw5LmK1/etXDlcC1GwwWeDIv8AXj4DZAdOugGgI7AMDYu4tdmfZNRwq1kLPgPsDmk/8tqblF5LkS6F4whRUzYwnPR3N8t0nGBkxM5uNSxr76rIKDD8ge6flX5Kk3S+xXeCRuAxCIkmSJEmSJEmSJEmSJEmSJEnSIFIMY8+9WaEoyu1ADXA1cLBhGPWKomQBHxuGUfpN606cONFYsmTJ7sjm11v1ErxwQd/z/Glw8iPgzgKgZt0aoqEAdevXMeHQE1DiBvGaAB1zNmNEEyg2leQTh+EYnfajshHoiFCzto2Kpc1kFLoZMi6N5J6B7V8nGg6xYcFc5j33JLFwmPFHn8DoWUfiSvYBEGxt4vm//omWqq391pt92dWMiC/omYXeJGY/GXEi5ImZrqs6qzjrzbMwKSbyk/LZ0rmFW0beTvxzH5uWiI5xviwHM6apdF91bu928x58ANeMGT/qfdhFdu4USOwhZfcrEp3tBJZ20/FOJe7D8gkub4aEgWNMGp0f15B0QDaRLR3E2yMkzcim88NqHGPS0DsiRLZ24j68gK4Pq7AWe0FVCK1swXNUEd2f1IjBwSYF+0FZKLl2Im/VYTKbsJX66PqshqSD8wivayMRjOGcnEnXh9U4J2cSawgSq+8m6ZA8Oj+sxj7chxHVCa1rx/OTQro+qsaSm4QpyUywp9OFmmJFPSwZU7NB+OOmrz+WrZ3E20Ikzcil88MqcSydUSJbOnqPJRGMg6bgPWEo5gwnbU+uQUu1o/XMIEcCVI+VlHPLsXxL0J9BstPLLgx++Y3HdOorOli/oB6zVaN0SgYZ7hYUVRMDIzZ9BG0VYHEQ1GysMUpY9ZSfgD+KokDRIW5GHJJFflpO/w1XLYTHjwXVSuTAp2n9QOspAyaSTyjGMTa9X2f0uk1+5r2wkZRshamHD0Ov6Kbj7S0QNzA5NJJPLiHki/DI1T/vXeeoc6/Fsz6JRFMYFHBOy8J9SD5qkoXqtStprNjE6k8+oHzmIQQ7O2ip2krJtJkUjRmPy5fSu53whg1sPelkjFhfxy/HtGnk/uffqM5vPvfvRfb5c+9HVR9x9UdXU+oT1Z11beu49YBbqe7YygF5BzLKNwIt0AqaBRI6qz5fxDsP3tu7vma2cPoNvyM1sJWupgl0z63FXODGOTadjjc2Y8REPcN7/FCwKnS+vkUMGraqeGYXotg1bMOSqaro4P2HVxMN65g0hRmnDKNscjrNt/yBjlde7cuwyUThs//DOqKc1ppq2uvrcLjdpOYVYHMlYRgGNWtX8fHjD9JWU82wqQcw9cTT8GXn7u63drDt22W3eqGo/1pdoNmJp0xi63V/JbZ1a+8iJo+HoqcexpKSRGdUY+OShWxeuoSU3DxS8wqIBoMkdJ2u1hYcHi+xSJgZZ5zLZ7VzuXn+zdxUcj1ln6dCpRgIYStJRk22olhUzJlODN3ASCTo/rgG18wcOt+rxDk5EyMB6AkCC+pR7Brenw4lvLqV0HIx8Nmc6cB9eAFtz23AfWgeXfPrcIxMJVoXgISBfXQq5hwn/tc245yQQef7lSQdmEdgUT22Up8YBKKIoBKO0Wl0GQafv7qFrcvFoJHUPBeHXzgCX9ZefR7e+8tvZyOE28GZBiiiN66igEmjqT7O2gWNrP60FsOAkQem4a9/jU2LFjD9lLOY//xT/TZldTqZedbNmEwuCso9uDM8hDf76Z5Xi7XIS/dntViL3Bi6QWhNK74zyggsaiDSM9u1pciNbVgyne9Wit/9SZmgKZgcZjSvlVhbCEuWCy3diiVJB0eyCKLyxAmQMx5SyyB9BAw9FHxFoO6GAbxr50DdMlAMCHdBRrkY9Onw7fp9/zh7f9n9HvRAjODSJuLNQVS3ldCqFqxDvURrutBS7BiGgWNcGolgnER3TASRbI2gmE2YksyY7GbaX9yIEYqjmE14jipCj+h0vVeJfVQqJAzCG/24Z+XTvage1/gM9FCcWF03tjIfXR9Wo7ot4vGnNaAbmJxmGo+CUHcjC+5+gMknnMIXb7yCHus/UGHGGefxxZyXmXnamYQ6O7AkJWMYCZo2V5CcnYNJValesxKnJ5nS4SOJ3HQzelPPLK2KQsFTj+MYOQIiHZDQRdAhzSoGLlvdoPV8T0J+MXBZj4JqgUDPNgwDNJsIKKsNHLg9SPbJ8rvq4/cYkj8BU0KhY85mYg1BbCN9WAs8RGq6MKc5MFlVAp/Xi8BfqoLvzFLiLWG63q/qrcu6Z+WjpttRTApdH1ZjyXYRawr2Bi+xFHmwj0rBPjylN4iOtNvsk2V3m9r161j17jsceOTZJAJxUBRMdpXo1i5Ca1pxjEol1hoGPUFoRQtamh3H+HQ6P6iGntmpfWeX0/V+JZHNYqCjbUwaSVMyaX1mHYmuGKgKnp8U4Zycgd4Rpe259cSqxYAwx4R03EcWormtGAmD0Lo2/C9s6G2rEutlgmEQWNRIx1tbxPk4yULKOcOx5ru/6fAAiDUEaH1qLfFmUc91HZqHbaiX8No2uufV9W7Pd1oJnR9UYR+Z2q+dzzU9Cy3Njuq20vbseqz5blSvlcDihp42OhspZw/HkrXHtZntE2U33NAJMYisbaPr4xpIGKhuC8mnltASqqW9pZ7u1hYioSBZYyfwi3W/4p6R9xFrruat//6j37bcaRmc/JvfkezzgMkMDq94IdgmArErCsSCIjAJCphUEXDOpIpgIYl4XwC6aAjiof71x2AbmO3iDyAeE8HybB5Qe2LoxyNiWw4xg3u/NHtyX1A9PQbhTrC5++rHehzCHf3T9l37RPn9LmItIfwvbew7h45MxXtMEZrXRrwtRPvLm3rrA9ahXsy5LuwjUlFUhdYn12LE9N62fyOio1hU3EcW0P1pDXpHFNdBOSiaStdHVZAA2+hUNJ+N7k9rRLu/14r3xKFEq7ro+rAaEuKc6D4sH1SFjlcrMGIJbKXJaGVuAs4u/nfb9QCcctOt5I8aS6wlSNvzG4hVdgFgH5eGZ3ZRvyBW+5F9suwmEjpv/usfTDjwBLz2FLCoIiBI3MCI6iSCMfSuKHq7COYVXN5MvDGI+8gC8bghCCbwnV5Gx3tbcU3NpuujahE0UlXwHD0E56QMTOa+oKqxxgCtT68l3hgSZfLwfDre2IIR0dFynDgnZtLxxmaIG3iOHUL3vDrsY1LRkm10vr2VRDCOYldJPrkE/8ubevflPWYIjoliX/H2MP43NmMt8tD1cQ2Jrmi/eovJskfNf7I77JPld3/U0Rxk68pWate1kzfCR8HIFNwpOz+gZX2Fn3ceWE3AHwEFxs7KY/yRBdiTdns7hCy7u0DAH6F6bRublzWTUeRhyNhUYhGdN+9Z2fuZTziygLGH52PqjND6xFrsI1OIVnWJICSKgu6PYMlzEd7QjmN0GoEvG3FOzqJ7YR1JU3PoWlhH0pRsupfU45yQSdeHVRjRBJZhXqx5buJtIUiAlmwlsrUD+6g0gsuaxEQstV2YLBqaTwTBitUHsI9JAxNYcpN660KYFFyH5eIeqWIyxUSQQM0m7v0406DiPXCkQvkJ4PpxfZl+gL2u7G5d8SWZriH4X9rUey/JOTkL+4R0bN/h+vzb6PEEjZs7WPt5AyYFSqdmkTHEjap+h+Dj0u62K/ro7LmdPqUf7MUvarju+eUAPHDuRA4vH/SAqrukf5kkSZIkSZIkSZIkSZIkSZIkSXu+PS4IiaIo6YZhNCmKkg+8C0wDbgBaDcP4q6IovwV8hmH85pu2s0d0coiFxQx9LRvA7oPsceDpG9i+afHnRMMhrA4nmtVKes5QlATQEROzCHus36lT+K4QDYdpq60W+bM78OXmY7b0dX7pbG5iw6L5fPrkwxgJMbtKclYOh5x3MUV5HmjfCvEwpJZCWknvem9teYvffNr/o1NQmHPMm5j9LuKROOqCt+m486+g981C5zv/fDJ+e/2uPegfZq/r5PB9tdZW015Xg9Prw2vPwBRXUFwWjGAMLCYUFIxwHJPTQiIcQ9FMKKoiOis6zRDVMQwDk1UjEYihOMwQT2DoCTHrtj+Cya4RMkEoECfZa0UNxlGsKgldRw9EMCfbCbV0EuzuQLOaIQoxUxTN0OhobsRk0XA6vISi3cQDYQwjgeqw4vNmorjMWMx2iBlYMpLQkiwYeoJYSwgjFMdkV0h0dIDNjGJ2YEQMTC4LiVAMRe05llAcxalBNNHvWEwOM1qqGPCkd0SIt4dR7BokDIxIAs1nRXXvsZ2G98kgJN9Kj0HDavBvZbkvl0s/upLT884hJ1GIbo7xWsvznDnyDI4ecnT/9QxDzJreuBLMLuK+yegRe78y8FWRUIxoSEeP+TGpDiwdOolgvPfcvnHxAj594mH8jfUAmDSNk665BS2iYnba8Q7LxuwUHRw3Ll4AKGAYGEYCi8OBSTGRWVyCxd6/E2Tnu+9Se9XVA/JTNOd1bEOH7pz3cfDt8+feKz64gk9qPumXdmDugbQEW1jXvo77DruPCRkTMKtmQl1dPHXjNXQ0NvRb/tDzf8a4AhPdzhKUSCpK1MCUbIVIgkQwjsmpETfHeOmuPzHj6LNJ9eSiOa0YNoX1K+djtlvIGzEaAzedLWGcHgu+LCfxhnoqjjiy3+80qkrqQw/QbTNjGJCal487NX3AcYUD3URDQRyeZDTzPj/4Z0f2+bJLexU0rwNFIdhqofL8SwcskvfQg7gOOAAAI5GgvbEef0MD4UAnJpNKw6YNNG7ZTFJKChs+n8v5/3cPN6/+Cx9WfwjACbnHcYhzBmWeUjwWD8QSoEIkHCQaC6EmNCLxIErchM3uoDvQTsJhkJFZjCmqiBnr4wkUq4oR0TFiCVSPFSMcFzMh6wkU1UQipmP01EkUu4YR0zFZNIyIWC4RS6CoChj0DlpSvRa0JPHbHwnGaK0NkEgkSMl2DUZH8p1tny+/4e4o/qYQCT1Cd9smXv9/fwHDoPzAQ+lobKB2/ZreZWdf9ktGHHxYv/WXvvMmQ0smokVVMQN9REexqxhxERxHsRronaKOiR1MMTB0FVRRLhUU8XOvG5gsJtQUO5pzu3KTSEDDcmhcI2aczB4rApDsLrEwNKyAjlpwpUN6GThSvn29wbfPl92vSsR04q0hMTBeU0QZ1Ezo4TiaXe27zgnHRRuECYgDmtJ7XtO7o5hsmrj+sZsxemZ0V1NtEElgJEQ51cNxFJOYNd6IJ1BUMIIBTLY4LYZOJBDmo47PyPNk0TXnC7YsXUJyVjZDJkzhizkv9+a5bPqBTDv1bKLBALFImJf/9ifGHDYbk2YmLb+ASCCIKyUFb0YWbouNiiOPxAj1nwU869Zb8Z580m59r3eDfbL8rp33CV+++Sqzz70Kl92H3hlFsZoIO2JYoxYR3EARAyWMeAJURQzINZtItEdIRHVMDk0EMnBbMEyQ6IiKwDo2FRJg6AlUpxktxY7Jtt8NhNwT7JNld5uqVcvYtPhz/PUNHHbKpZhVK4qigNmEEdIx9ARYFYyEjqaJgWRqihUjqIs2X7cVzWdDD8WIt4RQTEpvWY13RNDbw5jsmmhv6Bk0pAd7llVNaGl2TJa+AceGYRCrD6B3RDC5LFhyXL3tFIaeIN4SIhGKoybbvtfgdr0rSrwtjGIxoaXaMZlVYu0h9PYIRtzAnG7vHfAfawmJ9rKojqIqqA4LaopVDFZuDaF3RTE5LRhxHSOaQPVZe+vNe5h9puyG2wIoMYNEVwwjrKMmW2nybyXQ0U5ncxOGYfDFnJcZcsIR/Lr1/7gr7RcMcZbyyesv0FJdKTaiKBx45vlkDi0hr3zUgH0E/G00V1Wix2Kk5OThzczazUcpfcU+U36/ix2dQ/u91hwSgcssJjRPXzt9vCsigvDZVVHv9YdFvdeuYnRExcDcTAcmzUSsOYjeIQL2KTZxbZfojmFymVEUBT0Sx6SZSITj6CaduDlGxfLF5GSUYLU46Ay10RFsBFXh/Qf+y7CpMzjsostwuD0AJIIxYq0hFFPPedaq7vBY9wP7ZNmNBAOsnfcJnzzxELPOuoQhZZNRzSaIi/YwEuI3XFxMgcmqYcQTmKwaJqeG3hFF0UTZMMI68fawuL6LJlAdGlqqQ1y/fYXeHSPeGkIxizqD3hEl0R3F5LKg+WyiXhAU96DRFPS2CIrNhBFJ9KabM5zonVHx/XBoaCn996WH48RbQ+JeWKyn3r1dvWU/s0+WX2nX6moL0d4QxOowk5LjRDMPyvlflt3dqLs9TEdLCKtdw5vh6P3Me+slNpMIVNXTLgeQCHQTXr8RS3kZbbU1uDMyaamqxOH1EOroxJ2Whs3lwWyzondHRXufxUQioRPq6sRitZMggWIomG0iMKsCxKIRFEyoFo1ILEIX3bzY+CrlljKKnIXEI1EqYlsoKixhRPoIaFgJjatEIF9PHnQ1iIDZaeXgSh2Mt3OvK7ubly6mqa6WceNmiQkhLCZMXgstLZXkDB+xy/Yr7ZFkEBLpO3lucTW/eXEFAPeePZ7ZIwe9vUUGIZEkSZIkSZIkSZIkSZIkSZKk/dSe2Av/RUVRUoAY8AvDMNoVRfkr8JyiKBcBVcApg5rD78psg/yp4m8Hwt1dVK1eQXJWLgoG9RvWUbVqOcf88nocQ3b7jCG9YtEIy96Zw2dPPyoSFIUjLrmKkQfNEoOLEB3jNi6czwGnnk08GsWkqkSCAUKBbkidCKnDdrhtPaEPSDObzHQk2hlVnEsiFqP2nkWYMzNwH3OsmNkwHsdckL+rDlf6BtVrVvHSX24mHo0AMGzKdGZdeBlOrx2wE+rqpGnrZgL+djzpmaQXFmG2fsPswjso1pY0BwDfNpdUi7+WuW89QePmTYw5/Ccsfu1Fpp54OotefZ6ErqNqGhOO+Sma2YzNasdT6cf/5vNk3XILNnvPrKp6DPw1KGY7loztBkxm7CjYz9fnKFpTi95SD8nJ4CsAk4bqsYpOm9KeI9AiBssmZfbNnKqaIWcs5IwlWLcAgAc339NvtdMTpw3clqJA1ijxh/jx/LYfUKvdjL+hihdv+z2hrk4AMotLOPrq32DFTTgQYOikqVjsDhK6jmaxsPi9l9AsFjYtWsAZf/4H2SVlALTX1RLs8GNzusTg5ESC2vVrOf66GwfsV01KwjJkCO7ZszESCYxQiM5338XkcHznt04afA5t4OflNDupjleTMBI8vuZxljUt48iiI8lSUzGZBnbwNmkWKD8KF9DV2kLT1i1Et4RIyc0jrbyQpe++QeXypZRMm0Fdw3qa2rYSDQVJSk1j/gtPEgkGSCsYwrHX/paCEdl927XZ0DIyiNfVAWAtK8N29RW89szD+BtEUB13ajo//e3NpOYV9MuTzekS5VjadyXniz9ANVXgPeMMNK8XVBPdn35GeMUK1KSk3sUVkwlfVg4Wm4P6jetp2lqB1eEkKSWFtZ99hGaxggIeq6d3nVdqXuMVXmN24WzGp49nsms0iYZOwl1dWJ1OFrzwDC1VW3uXzykbgWY2M2TiFPJHjiE1d/fUK60OM9nDvLtlX9LOYXNZyHRZqF67ipq1q7A5nIQD3az59ENGHnI4BWPGY3M4SS8qJr1oyID1Y+EgL/z7ZobPOBg9FkOz2oiEAowfO4mI1cLrd/0frbXVADg9Xo6ccTih5kp+kfcRN0+7mYPzDv7mDJpMIrBl9rj+6d1NoEchKbtvFvhdwWyDvMmQt+t2Ie0cJrOKJXP3/N7uOKSYh2AsyKaK+Vg7ohRFk7Gs7ULvGWzZXl9H4+ZNzDj9XBSTQmp+Ian5Rayf/ymfPvkw4486DpPJxBdvvMrYI4+ivb4WxWTCnZZGSm4ecb8fc3Y20YqKvmP2eNBysgkuWYKanIylsBBF3W8Hce7xultbyC0bwYaVC0gkdDSzhebqSoZNnMI8YxnpmUM4pviYHa/s/Zo2B/c3tEVI0k4WCYVpra0mr3w0K754F81iobmqkvKZh9C0tYKU/AK+SFRyRvkZ/Vd00q9tTLWbUfP6n0k1j3WHgUJUhxk1f8dnXUVRsGS7IHvguV9RTZgznN/7GAHUJAvqVwLpmZPtmJP7t5lpPjua7+vb0bQUO9oumEVe+mY2X8/n3jNZbnt9HQ2bNxIJBdE0M+vmfyraqxSY6ZvEUFchJquVvBGjKJk2k0Q8jma1surj90nNLxQBepW+MSf+pkbevOvvpBYUkuRLoXHzJnLLR5E3fETvPQRJ2pV2dA7t99rXnDO1pK8EQcrc7hz5lcmlLVkuyPrmevVdX9zF0+ue5uL8syncqGG2WNlavxI9HsNssbJp8eeMPPRwTr7pVtLyC3sDkACYHGasjv0ySO9+waSqVK5YxuTjT6Gzs5lli97ESIgA43o0hsXpYMjEyXhTdzyruebZrn5rUVHd3y24reoyo7r6ypUp1Q6pfb/D5vT+7c5fFxRM81rRvDt+TbVpqDlJO3xNkqRvl+Szk/QN9Wdp3+NKtuFKHthuMaBesp3gsgo6uqvwb+5i3bxPiQQDlE0/kFj7JlTNTCxJR0u0keYtpKOzkedu/i0AIw85HHdqOoZhkDdiFDml5ZhUFX9jPXPu+juNFRsBsCe5OeCXv+ALYz0PVTw6YP9PDnlS9K2w+6DkJyLwiPSD6LE4bVsqWBoJE4+JOmLlymXMOP2cwc6aJEl7KH27CQXjCRlnRpIkSZIkSZIkSZIkSZIkSZKkwbPHBSExDGPmDtJagVmDkJ1dKmNoCR899gDR0Ee9abMv/2W/ToiDoa2uhs+eeawvwTD48KF7yCkdji87FxI6gfYWiidM7gtUAqTkFYgZEcNd0NUKoUZo2QDRbvAVQ+FMXGYXJcklbGjf0LveicNOxGEWnd5MZjMpl1xC8LPPaLn3XoxIBJPLRfbf/rq7Dl/qEe7u5sNH7u0NQAKwceF8Rk2ZSFGeh3ByKXOfeYIVH7zT+/ph513A6LJUlFgQgu3gzYOuejC7QDNDV6MYmNzdJIJBWFzQWS86rWSNFcEi6ldA81pwZUIsIIJIuDKIBK1Ur15B1rBSmraIwWablnzOqFlHsvzdN9HjcRa98jxl4yYxfEsd0YWL8N37/7DVfQHxEKhWWPMyrHgWkrLg0JvAbO/JQ614nDVWzCbfuAYaV4LNC0ai71gCzQRandRe/0d0vx/FbCbjt9fhmZCNSVOhs67vWDw5u/Xz2u/VfCHON6E2SC0VZee9P4jZmMaeCWPOhLRSsPUFnNENnVNLT+XhVQ/3puUn5ZNs2zmdqPR4nCWvv9QbgASgoWIDNWtX4c3IxOFKYuGi+XQ0NQJiIP6BZ13I3GceBaCjsb43CEn+yDH87+bfoMdivds6/tc39c5ctb1tAUha7r8f4nFUn4+sW/+MJTt7wLLSnuvA3AN5v+p9YgnxmZtNZkakjOCtLW8BEIwHWdS4iMWNi7lr3K+YdsQhvPnYU73rm602skqGiyfxKEnBLSSZNkCKF5ItYDJRMHIsi15+js1fLgJA1TRmnnUBGxcuwJeTR/3GdTRXbqZq1QqcSghL05cQaEFLGUrmDb+j5qqrcUyaiH30GDZuWNsbgASgs6WJtZ99xMwzzwd/DTSvE4PXw53QUS3OvflTIGWoWKG9EuqWQbRLDKIPtYHNA9ljwTl4gdmkHyAehar50LSOhHUsgc8+I1ZTA4qC56cn4D5qNhZrOzRvgLSS3tVaqrZQv3Etaz/7mO721t70ScedhCc1naPiRzFn85x+34mRqSNpj7Sz1dHArEniUqGttppwd1fv+iZVY9iU6Xzy+ENoVivr533Kwef+jKxhpbvn/ZD2Sv6GetbP/5RxPzmOBS88DcCqj94ju7ScmWedT05ped/CsQg0rIBAE/lFWSx4vpF5zz7R+/JPTjqTuosvwX/Rub0BSAACHX42tTdhmVrC0EA1Tu0HDA6OBmH9m/De7yHcAVMug4kXynqotEdobqqh9n/vUrd2DWUHHMzmig2MnnUkFruDaChIzZqVNG7exMk33Ur2sFKaNq3ls6ceBWDD5/MYNetIlrz+EkvfngOIgRFn3PI3aFyN5q8m47orqb7yOtB1TE4n6ddeS+0vryHR0dFznXYNnsnFmMyqqFcoGrizRN1CGnR2t5cv3nyVQHsbIH6vD73gEpJS01hSuY6fJx04yDmUpG8WC4dRNXO/3/xxs48l2NnBktdfZvgvzmCEtwgWPSBmi07KhEQcFBN4ciFz1CDmXtpfJWdlY3U4+PTJvnYwq9NJUnoaVz/nIvD6Nbjv+S/RcJilbz/Zu0zZAQcR6e6AT/4GeVMg0gWqmZqqGOlDiqnfuJ6VPe3DJlXlp9f+hsKkDjAUSCkGkwb1yyAeBneOaBe2OMDqhvatIs2kgb9SfD9UM7RtAXc2mMwi3Z0l5nYONEHacMgaDc3rRfttQhftBuEuyBwh2v8kaTcamz6Wp9Y9xWst73Fjwc+wxlU+eOReEbgH8GXnEo9GcQdDWMNd4PEOboal3SbY0UH+yNF88viD6PE4AE5vMgedezEfPnIPB15y6dcGIJEkSZIka3ExoeYGNi6cy7Ap0/n0yUeY+7/HAXAlpzDpuJP46LH7SSso4sizf0ZmwRAaKjez6qP3ACiZNpOJx/4UU0+Q3urVK3sDkACEujqp/HAuLZPh8ILDea/yvd7XDsk9hKK4Aa9dAatfhuQiOPwWcU3bsgmcKZAxEjJH7sZ3ZO+lqCqB9jbWftbXL2zisSeSMGRgAUmSdkzfLvCILoOQSJIkSZIkSZIkSZIkSZIkSZI0iPa4ICT7k7S8Ak69+S9sWDCXjqYGhs84mNzywb1RH46HaW9r7O0guU08FiXc1TOgs34F0ZBO9eqVzDj9XKLhEJrZTKirC13XIdACoSZ481diQB6IWRJ/ej+2tHxmZM/gwNwDaQm1kOvKxapa8Vj6Aq+oVgvN//0v9HTKS3R3U3/jTVjLyrDkyAF1u0skFKS1pmpAeqBxK7z3a9pOeLNfABKAj//3NPm/OJPkty4UQT7e/z1YkqD8OJh3F8y4Bj67QwySnH4lfPCnvpWLDhJpz5wGw4+HYCts+QRm/wVeu4LAoQ8B4G9soGz6TCpXLqOlaivOZB8HnHYOmMCdno5L1zGK60i+6CSSV94GNUvg0N+LzutLRccc2rfASxfDKY/CUyeLmeMBvAVwwr3w9CmQWiI6znz5OBxyI7z/e2JFJ1L378Xofj8ARixGw61/w/bA37G/f1bfseRPg5MfER3kpV2vfgUtVZ/hj4dI8deQnNDh/T/0nceWPAzRALgyYOovwJ0JgM/qw6E5uGrcVVR1VZFiS0EzaSjbzer6Y8TCYRq268y1zbYByO0NtQybcgAuXwqRQDeqZmb5u2/0dUj2pfaukzFkKKfd/NfeWWrLDzyEnJLyAdsGiDU00HL33b3P9bY2Gu+4A/vYsWg+3045NmnXG+IZwpXjrqQ+UE+SOQmH2cFjq/sChB2QfQD3LL+HWCJG/eb3KK5/n5+efxJrV1fi8iRRdtBs0guKxMIb34Hnzun7TuROhlMeJSU3j0MvvJSWqq0kEgk0s4Ulr73EsCnTWL9gbu++Au2ttG7sIuv9n/WmuWbfSeETDxFraKb1kcdoGjt8wDHUbliL0dWC8tovYNy50Fkj6gZ6TzAdbyGc86LotPjkKdC2SaSbNDjiz/DyJSKA0JG3g03OrLnXWP8GvHABiSlX0fLiIhGABMAw6HjpZXLv+ivqM8eBPRlOfwYKpgEiIMOXb77KlBNPJ+Bvo7O5icziYZRMm4liMjE6dTQ3Tb2JdW3rAMh0ZPLaptc4d8S5PLf+OSZkTMBr8+LLyeOoK35F09bNhLo7MVusfDHnFQwjQXpRMUvffI1Fr73A0Vdfj6bJSyFpx5zeZIIdfjYvXdx7vWN1ukjOymHu049ywm/+gM3ZMxv2hrdEQLu1c8jIHsupv7iAdWsqCXZ1UZyZj/bSaygeD83NDQP209hQize1jDJrGdmuHxAsrHYJvHhR3/PP/iGCPM285gceuSTtPK2VldStXQOAv6GOzCHDWPjyc0w85gQSiQQAqfmFeNNF3TzUuBXDEOndba201dYw/ZSzaK7aQkpuPiWTp5Fc+za8fT0kdJxpIyl88J9Eqhow5+RQd8MfSXR0ANuu0+7A9peLsRdli+vPcDvULBb1jqzRg/COSNsLdvoZcdAsVM1MIqGjmS20VFdis9u5tvACvK7cwc6iJH2tcKCbWCiI1eFk+qlnE49GMFttdLe3YrZaOfbks9E0H7kvXy2CMYJoY5pwgQimoCgw+jTIHje4ByLtl0qmzsCe5GHd/E+wpfrwjB5KytYmoq+LAYdGUxMAB5x2NrFIBLPVSuPmCgw9DvP/DQc7IdINnfW0tZXg9Kb2BosGSOg6n/zvKTLPOBhb9xbRPjf+PHj3RrGAZoPDboaXfgfFh4I1Cda8ClMvg4oPRWCR6VfBujnQthkm/xy2zoWmNaLdeN0b4nt02pPwyuUQahfbdaTA1MvhzWvhvDlyMKS0W2W5srh09KU0h5oxUpKJrGpkxmnnEIuEUTWNcCBAV1srEY+P0JLPcM06pl+gbGnfldB1ajesY+pJZxCPRTGZTCR0nVg4xOEXXY492wWBVjGQW5IkSZK+Qk1KIhAK4svO5Ys5rzD9lDOJRSOYTCrerOzeyYKaK7fQuHIZ03OLaSoZTn1jPbk5+RTPPBiLzd67vR31+2jdsoWSQw+jPebn0jGXUt9dT5Yzi4NSRuL+8FbY2BOYpGU9PHs2HHQ9fHSbSBt6OBz1D/AV7uJ3Yu9nJHRcvpR+bQj1m9Yz1Ng5fRIkSdr3bB+kKK7LICSSJEmSJEmSJEmSJEmSJEmSJA0e02BnYH+XUVTMzDPP45hfXk/xxClYHT9gBuwfIqFDRy2E/L1J1V3V3DTvJhYGlqNZrf0Wd3qTSUpNE0/8lTRsXEPJtBksfPk5Fr/6IvOff5poKEhKViaYVGjZ0BeABMTA5w/+THeonfLUcuq666jvrieeiGNRLVhUS++isYaG3gAk2+h+P/Hmlp3+Nkhfz2lVGDpmzIB0r1N0hgj7B34e8UiEaGuNmH2yq0EEpBnxU1h0v5j51aSKGS5HngQL7+2/ss0jgpIkdEgvEwFIcifBpg8gHsbhNpOUnkGoswOzzU5KXgEAlcu/ZO28j6nL0nkpModYgY0C/+NkvHkK5upFYCREh/SVz/Xfn5GAlo19AUhAzMK59HGIdkPJEbD0CXCmQqAZAi3ElRTijY1f2Y5BvHJT/7SqBf3Lv7RLLQw3cmbdm/x0y9OcF69kecZQMH/lXLpuDhg61CzsTUq1p1LgLiCiR6jvrqe+u55UeyoKO6fDj9XppGz6wBm8c0pF8BB3agZfvvkqc59+DJsziYWvPI+/sR6A8UedQHpBYe86iqKQNayUQ867mKOuuI7C0eMx22w73G+8vn5AWmzLVuKtrTvhqKTdpTy1nKlZUylJLmFY8jDykvLIS8pjRMoIrhx3JfPr5hNLxLCpNqzhDizVnzBk0bUc7XqfgwKPkmHqGeze3QRvXd8/uFjNot5zVFpeIRsXzmPRy88z79knsDidWBxOgh1+AGyuJBK6TqS9qV/+lPdvwO5qJ1G/nkjFZgrzCgccQ9nIYhR/JaQMFbN+L32yLwAJgH8rbJ0HNV/0BSABseyK52DY4eKc3LJuJ7yj0m7RWQ/v/1H8NvrGE1iybMAi8foGUR8ItcOcayDYBkByZhZ6PM78555k06IFBPztNG7ZjNthgkgXDouD8pRykq3JrGldw4b2DVw29jI+rPqQaCKKVe2ruyalpBKPRtj4+Vzm/u9xulqbSSsowupwEQ5001ZbjR6J7KY3RdobZRYPo/zAWTRWbGTu/x5nxXtvoWlmOhrqaNq6hVgoJBbsaoQvHxMDI4cchLLwHrJi6zlkQgoz87MwbrmN2LLlxKqqyM0cOKA+fcIo1nSuZVTqKF6reI267rrvl9HKBQPTvny093slSYNJD4Z7HzdUbKB0+gwsdjvzn3+az196lurVKzEpJhweD0QDuGM1mLcbGLH5y0Ws+OBtDr3gMg449WzSzJ0imFlCB0BpXoV9/i/wjnJjalpCvKl/XQXDIN4Zhw//BMmFsOlDiIfENaA0qBK6ji87h+rVK1jwwtMsevl5VnzwNgWjx2Lq6MTS0onX5h3sbErS14qGQlgcTuKRCPOfe5LFr77IF3NepnDMeCL1dURv/QvW2sa+ACQg2kkjneDwiWB8Xzz29TuQpF3I5nQxbPI0jv3lb8mbNZ5lxiaMVWt7Xw/dez9FI8ew6JUXWPzqi8x79kksdjvJlrBoL13xLBiAM5WcIYXo8diAffibGokpNlHOiw+FtgpI6gnUHA/Dpvchb4oIOpIxQqQvfhDKjhWPF90P5SeIx0sehrKje9IfEO3MCR0++gsUzujbabAVOutE+/OaV3bqeyZJ32aYdxjjU8ppDzTx5JZnyRwylNWffMCiV15g/vNPU7VqOekFhYQrK0W7bbNs59pfKPEwwyZNZenbr7Po5edZ8MIz1G9cjzs1DXttPVnLnpT3kSRJkqRvlF06HKvDicVuZ+7/HmfRy8+z4fN5+Bvq6G7t66sRDIWIPPo4yQ8+zpgvV5P073uxtLb321bu8IGB+tLGjcCV5GWIZwifVH+CYRiMSBlBWqBD1Nu3l4j371ex6T35O/YdWR1OrA5nbxvC5y/9j6KxE1FVGYREkqQd0xPGDh9LkiRJkiRJkiRJkiRJkiRJkiTtbnL67/1ReyV8fi8sewLcuXDk7RiFM3lxw4u8s/UdlthSuOmiy6l45g2621vxZGTyk19cS1JKqlg/0o3PHqelpYlZF15GV3srdpcLT2Y2KT636HwQ6Rq43646Sp3ZXDbvRjxWD3lJeby48UVumX4LbmvfzG9aejqoKuh6b5rJ7UZLlbOB7U5aIswBk/MIdndTu3EjFrudg449goytIpiH121Bs1qJbzeINzUvH3dgoxhUEWgWiSYVYiERZGRbubB5+17fxpkGlfPE422D1J1p4Bez8iixRkouPJHW+cvZuGg+o446Bps7CUciTEZwHQqdHL9mLmrqNKhd3H/bgWZwZ4sZNLdnUvs/d6RC+xbxOKGLQfv25N68akY7Wloa8eb+edecO7jpG+4cmCbtdJUdlVw1/yaC8SAAW7oquebLf/DMhLPJWLBdoJukLPE5Nq6G8uMBSHemE01Eeb3idcamj6Wqq4raQC13HnTnTsmboiiMOPgw2uqq2fD5PFSzmSknnEpO6XAAnL5kDjz7QjYt/pz1n8/l8J9fQSIWIzknj9TcfCx2+7fsYce0zMwBaea8PDSf70cdj7T7DU8ZzvCU4dR21XLGG2dwRtkZBGNB7l9xPxFdnHuvGn0JuR//V6xgJKBhJSgmUM0iLRaC7oaBGw93AJCcncPJJ8+gtbUDPLnY3MmsXLKK5KwcfNk55JaP4os5LzPyuPL+68fDEOnE7LVghEJ4Nm5hzPSDWPH5Z2DAqJkzGKJuBr1cnPMxRHCqr+puAPsOft876yBzdE9e5fl0rxELQpcIhKTGW3CMHUlgQf/fZHN6CmztqeM1r4VgOzh8pBUOYfZlv+TDR+8n4G/HnZbOzIPHYLlnEuSMg9l/4cOGuTg0B0O9Q9ns38y1H1+Lqqjcd/h92M1950xvZhaFYydgcTiJhUNYnS5UVeWd+/4FwMiDj8Dq3E2B/6S9ksPt4YDTz2bI+En4G+vRzGYUVWX5O3MoP/BQnMk9v6mxECiqOL9ljOgJ+GRA+1ZU3dEbAMqIxUhatYbxBx/Oss8+IpHQKZw+lUixhy9q3iXTkcndy+/Gptm4YOQF3z2j7qyBad4CMcO8JA2y5OwcUJTe78EnTz3CYRdfQVttDYaRwJuZRU6JqBdjspDsX8rx55zA2y+8S3d7K+60dI664Fxcyclimc6agTvpaoBEDC3Rgpqait6yXaBMRUFzm2FrT/Arsw0sTgj7d+2BS9/KpKp0BfyMP+p4utvbSOg6nrR0YpEItkVfoJ56JJpJNldKey6nN5nm6i0MmzKd3BGjiEejeNMzUQD3+k2E/X6casfAFfWoOB8ZBrRuhEQCTDI+uDR4Cte8xacuK0ZJUW9avL4e+/sf85PLrqatsQGL3Ua6RyX989+JBdw5YPdCqJVsewfR7OwB2y2fNAFHx2oRDNiaJNriHCm914p01oNviHi8rQ1Yj4l6A4j2hm1ttontApXHw6K9A6CzVgSv3l53o2iTbvlKsGhJ2sUURWGsYWWEOZ9oVgltqpmZZ55PZ3MjejyOw+OleesW8lesQ5uYJ9u59iOqQ6O1rpqDz/0ZnS3NaFYrTo8XJRrHEu5G2/wSFM4c7GxKkiRJe7CM4mHEohE0qxVVVXGlpGK2WnntH7f3W87ncKEHg+LP70ex2dDSUvstk1NazrRTzmLRy8+i6zrDph5Ad2kSv/v4GjIcGYxNG8vkrMn8bu7vuKrsHM7wFUPrV+rW2+49biPrNd+JVYH0omIOu/gXhDo7caWkEguHcREX10vbgjNKkiT12D7wSFwGIZEkSZIkSZIkSZIkSZIkSZIkaRDJXv37Gz0G8/4FSx4Uz5vXwtMn47/kU97c8iYAreFW/lD7T046/VimeScypmgSTo+3bxvJBeTWvUNHLItFr80lvXAIWcXFpGbniAFvsRCkDBWdgo1E33ojTiLPV8Y9h93DqtZVdEW7OHP4mQxPGd4vi9aiIrL+/Cfqb/4jxGIodjvZf/srltyBs4dLu1BSJimBdfx0eAudP70Sc+OXeNf/EzrE4C+f2smJ55/C+699SFt9HXmlJRxy/Gzsn/0aOqpg9Gmw5lXROSVrLNQvg6SejumV82DYEbDhnb79bfkUxp0N8+7qGSRmh6oFMP48aFxFQ6iRObEVTD50EmmHlFOhBPis7m1+ljSc4s9uhsP+KGYR9FeJjuzbBxxZ+xoc8094+ZK+MpkxQgQ52V7tF3DkbVD1OYTawZMHrRUw5gxY/TLmTc+Qde0fqL31XhKBAKgqGVf9DKtW3387Jg3SSnfeZyF9rdpAbW8Akm2aQ83UFxWSsS1BMcGE8+Gj2+DEB/ote0TBEeS4ctjYvpHD8g9jZOpI0p3pOy1/3oxMZl9+DdNOPhNV1fBkZmLqGUiRXjCEjsZGrA4nJlWlfuN6xh91HN70gUFEvg9rSQlpv/oVzXfeCYkEJreb7NtvQ0uRgZz2VrXdtbRH2rl7+d2cMPQELh51MYFYgLHpY5lsz8GUt7j/OW/8uSLIGIgAPKNPh2VP9b1uUiGtrPep0+fD+fZl4ly3ahWjx1yD2TqZqtWrWP3Ruxzziyvxvn9h/0xljgbfEGyhOaScfSKtT71EUflwhh59PI6J4/Et+h1aIg/sqbB1rthf6U/EjMbby58mzplfVXa0mGXNngy+4h/5Dkq7jTcfRp0CS59E/fxO0i++k+rNVcQbGwFIPvk4bJbqvuUzR4NTnJvMFisjDj6M3PJRRLs7cK99Auvb54ugYFvn0rnoft7Ut1LXXcd5I85jSvYUJmROYKh3KBMyJgzISkZRMal5BYS6OqlctYyPHrkPVVUZc8QxlB4gB3hI386dkoZ9oofadatZ8d5bVCxZROkBBzLxmBMwqT2DIt1Zon6bNbqv7mgkIGUIts3P9pwfXwbDID53PpNPvp0xw8x0ppex2tpFRaCSWQWzeHCluDabs3kOp5WehsPs+G6ZLJgugo74K8Vz1QIHXw+W77i+JO1CDa4AMy6/lGVPP0fA344vv4CV8QrGTp9Cpj0dq327ctq+BTJHUzD3j5x15IkELaNx0okzd7vBEp68fkFNRFouaDbMoY1kX3cetbfeQyIQFNdpvzgHa+1LMOJECLaBZhfXsgUH7L43QdqhqB5lkWUjeRUa0boWVIsFwhEyKmtwTZ+EL8n87RuRpEGkahqeCaWseesDlEAMh8dDkisJ6ysfEXrjDdKuvRyb5SuBdxUFbG6IBER717hzZAASadDZssZwyqrnaB16CvYjDyP0jpjpPLpwIVWzhvCuczljfCWMm3c/+LeKsjv6dFj1AqhW7KqFoR47R116BR8/8yShzk7Kpk5h4lAzqtkMacOhZrEYYL9xuzbgYYfDl4+D2dEXeCStDDp6rhUzR/e1caQMFUFKATJH9aWPOQPWv9n/gLLHwYa34JCbds0bJknfJKUY8+f3YI50srnQDCYLDZs3ocdiJCJRxhYORUtOwhZfASnHDnZupd2kxRShJjNC86LPURIGikmhZMRYTB+8ifeAZGjQZLunJEmS9I1UTaNg1FhySsvRdR2r3U5HUwMjDz2cVR+9h83p4qBzLiJdMdNgsWBEoygWC9l/+QuWgoJ+27K73Uz96akMn34gCV3HnZFBU6SF37hUWsOtOM1OHl/zON2xbubUz+OUg36D9tLP+zaQO6V38hhA1OdTh+2md2LvluYxCLabWbZ4AZpmprlyC5NmHozTY4Fnz4AL3gLXzuufIEnS3i+x3X0QPZH4hiUlSZIkSZIkSZIkSZIkSZIkSZJ2LRmEZH/T3QhLH++fltBxdNRQ5iujPiCCKXTFuni08mlK8kb2D0ACkD4cR/sWJqUGKB1+DIZmx52Rh5LSE9Chq1EMBjrxAfj4duiohfITYNLPwGwlz5xHnjvva7OoWCx4jjsO26jR6C0taFmZAzpJSLuBaoYDrsQ6/9+kzf0tTP8FbHGBZoURJ0HeZPJSmjn9qK1E3IdjN4WxfnwVzLwW1rwGlfNFp+/FD8D0q8RA+LWvwxG3wcJ7oPhcsLpFgJDkIpj9VxE8RNdh2dNiuSWPQHcTTLsSr8nKu1vf5Z2t76CZNOKJOBaTheumHwfFs2Dje3DYLfDFo3D4n+CNayHQLI5j8iVitszj/i0GnrmzRbms+UK8tuwpsHnEevnT4PBb4fP/wMzrYM3rsHUeHPp7WHQfrur/UvTvG4n5o6heD9b196G4potB12tfA28h/OSvcsaa3cRr9aKgYNB3E95isuDOmQjH/D8ItIiAC0seFgMl8ib3W9+m2ZiQMWGHA9h3FrPVRmrewHOY2WqjfOYh5I0YjR6LkpSShqr9+J9l1eHAd+45uGbOQG9vx5yTgyXv68+50p7Pa/WiKiq6ofPKplcAsKpWji0+FpenGEadCqmlEAuAxQnZ48HXM5OxZoEDfy0Cfaz4H3jye85RI/t2kD9dBGr69A6YdgVpFU/jNrkYNfsQbEMmYc8uA9ud8OGt0LQaig6Gg38LuRNRp11Aqv153H/5GTpJWMrGYP7sRkgtgMmXQupQOPBXomNi8aGgx2HlsyK4yKF/6Ju5+NTH4Z0bIdgqgliZzODKgpMfAV/h7nuzpR9HNcPUy8EAVr2ArfZZCu++lWhtAyanE4tHQX3pLLFsUqYod3Zvv0140jMgVguL/9Uv3d60lrLiMVR2VvLgygdRUFAVld9P+z3qtlmyv5odTcOV7GPEzEPJLx9NQo+TlJLWF0BCkr6F2WyhcNQ4UnMLOPCsC3H5UtDM2w2O16ww45ew4W2IR2D6lbD5E/AWoo4/idRVr+O+4wp0VzEWewjzlzfjHH0Svvcu5/PpF/DwxmfQDb13cyNTRmJVrd89gylD4dxXoX65CASZUS4GbUrSHsBmsXNVzfX89PSjSNNSeNW/gC2b3+XZ8oP6ByABaN0An90Bky/BlYjjUqKgq6Bsd75OKxO/G2/+GvQoOHxw5O3gr4VJF+Fa+wZF/7iamO5FjdZg3fo/lKzhMPYsqF4ogmC6s+V3ZA9gNplpxc/rjoWcdeCJlJnzCDZXE5w1jny3GSV7zGBnUZK+VYcjxmtD1nFI8nQaiRKIbyZv5jDKz3oI15r/oOgFMPFCWP4MuDJgymXgSAVLpwimNPSwwT4ESYKiA0nuqif5g2uJHXE2a356C61dTay0tfLo1n8SN+JMSC+HcWeJuq4zXQS9G3KwuOaLhzEHqhjucpJ39fnEdROulQ+iOcaK9rghB0MiDunDRSDoaEAETQ20iEB6Ey8S9w6GHSkCkb59PZQeBSWz4a3fiO/J8OPg7d+KtOJD4YM/w7QrYNy54rv12f+Bqongww0rYPbfoHDGoL6t0n7K5oZpl0P1QpxWJ2dvuI5jR81mlmcqWleAdaEGykaORrNO6Wuzk/Z5LquX+2qfYEhJIWdnnkByTKO+vZrccw/FuuAfcOKDkDVqsLMpSZIk7QU0i6W3Y5cnPZNZF17K5BNOQdXMJPlSMHQd+8svEW9qRstIx1JYiLKDwJcmVSU5O6f3eY4lh7gR57HVjxE34r3poz3FaKtehll/gERC1F88eTD3/8R9oLThcOhNkD9lVx/6PsGUM4bCyDxSDp5MJG7CqcWxp5tQXv2dmNCnfasMQiJJUj/6dnFH4gnj6xeUJEmSJEmSJEmSJEmSJEmSJEnaxRTD2DdvVkycONFYsmTJYGdjz9PdDA8c0jez4DanPcWqtEIufvdiumPdAIxKHcUdB95BTlLOwO1Eg9BWIf77igbeFI+EIBaE7nrQY6Kzsdm2iw5qUCk7e4N7XNnVYyJ4jWYHxSQ6jLvSxcB2gHAnhDtEZ/JQu1jG4hSP7T6IdoOhiwHngVawJkEiCvEoOFNFmbQ4wZEstpfQoaseNJsYNB/pBmca4UAzj1fO4d/L/tubtd9PvoGTcg9BtbrF7NZ2D8TCkIiJfLdtBkeKCICiR8CRBsHm/sfiTINgi+gws3057qwTy1iTeradLL43S5+ENa+Kx1Y3lB8vOtBnjhFBTywOMSBuz7fTyy7s/vIbjod5bPVj/GfZf3rTfj/5Bk56/w7U9q1w2J9EkAOzXQzUtTi+fmPS3mTfP/duJ6bHeGbdM9yx5I7etN9M/A2nl52OWTWLQWxtFSJokysTUoYM3IgeE0HCvukc1VErzrmOFIiHRHAmm7vv9c56CPlFR0Obqy+9eSPEusU536RBpFMEO7E6+5YJtok6QyIufhccqeDO7L//7mYxqNjuhWC7OKdbk773+7WH2z/KbjwmyqRi6h2chmoWQaHCnaJ8pRSLweA70rwe7j1AlNvtrL74HX7+6XV0RjsBKPOVcedBd35jcDtpp9o/yu8PEY9Bd4OoEyuKOC+bzKIMJ6Livx4VdV7NDokolYkIVy++nYqOCkAEnHrg8AcoSykb5IPZJ8myOwg6I53888t/8vyG5wEwKSbuPOhOZhXMGrjw5k/g8eP6p1mccOm8/oM09bj4fQm2iuszU89vi2ICIwHRkHhMQnznbF5xfYguvns7qiPt+fbJ8ru+bjGXfPZrWsOtABS5C/nXlFsoNDtEwBlpX7BPlt1tWkIt3DLvZj6u/RQQwVDvOfj/MXn1ezDhHNEmanaK9ilFEUGVjIS4vvHsoJ1V2pPs02V3h/w1EA2wljA///AK/BE/AEO9Q/nn9FspCPhF+XXnioAfCR16gwEroh3AkQKb3oWuBvHbqxjgrxblf/bfRdtrIga2FPHYmiReC3eI9oFErKd9OVW0G4Q6RNtFIt6XHg2Ia8ukLPH7D6KdQtk2uNIQwS73b/tf+d3TRIPoXQ280Pg5ty7+S2/ylSMu4tzWJmxFh0DJ4YOYwT3WPlt2P614k6vm3dAbgPT4Icfwq2Gn47X5wCvbs/YR+2z5lfZ5suxKAGzp2MIVH1xBVVcVACm2FO4/7G5K2uugehH4KyHQDsfeJSZDiHSK+4GDN4HA3lt2mzZArAvsKfCvniC8igkumQuZcoKb/cSu6KOzb3b63M/996NN3PHOegBuPGo4Fx846Pc2dkn/MkmSJEmSJEmSJEmSJEmSJEmS9nzaty8i7VNcaTD7r/Dc2WJwHIiZgLPGMNKbxzNHP0NFRwU21UZJcglpjrQdb8figMxvmKHLahd/rpSdfwzS7qWawZPb93xbsJBtbO6+QermrL50a88A9e0HoXu3287XpZnU/vuze8VuvLmc7TyXKVnTaAw2ku3KZqh3KKrWE9xmW3CJ7QesJxcM3N+OjmVHA0C2Hxht6TmG1FKx7LYgPpFOCPvBVwxm646PT9qlbJqNs8vPZkrWFJo6q8j21zL003tQWytEIJu8yeJPkvZiZtXMKaWnMDZ9LA2BBjKdmQxLHiYCkIAYuJMyVPx9HdX87eeobxsM584Sf1+VNuwrCTvYjsP37QGaXNvVOSzOr19O2vNpZkj/EQOIfUPgoN/Bh3/qSxt9GiN8w3n6qKep6KjAoloo8ZaQ7pSzw0l7AM3cM3houwFEjavhiWNFECYQAdHOmwMZwwEoAO713svG9o3EE3GGeofKgDrSPsVtdXP1+Ks5qugo2sJt5LvzKfYW73jhjBEw7EjY+E5f2mG3QHJh/+VUDdJKd1mepd2n1FfKE+WXsilYj4rCsI5Gsja8CzOuG+ysSdJ3kmpP5ZYpN7KhagbdXfUUJgyKn7sYxp0rzl3bAvdK0t6gp61gOPDUUU9R4a9AM2mUJJeQ4cyAr7k9MICvGF6/WgSmBjA74LzXwWTqH/jZsl3bRG/gU3v/IKjbt+/2tjvbB+5zR20UkjSYLA7UlCEc78lmhD2dusblZCgaw1a8hc0wYNqVg51DaTc7IHUMz468kqpoB15FpWTrQjwplVA+ZrCzJkmSJEkAFHmKePDIB9nYvhE9oTMseRi5SblgSYHP/h9UzhUL/r8yOOFeGHvG4GZ4b+bJhvf+AEse6ks74BpI/Yb7u5Ik7Zfiel9sGX0fnVxQkiRJkiRJkiRJkiRJkiRJkqS9gwxCsj/KngCnPAHNa8UsJTkTemfcKvQUUugp3Hn7SiRER2NJ2gkcZgdj0sfs/nKlx6F6ISx+SAQnOe0p6G4Uj7PHgVMG2xlMTrOTseljIWUkNK0BXYHyEyBrLKSPHOTcSdLOYdfsjE4bzei00YOdle9H1gOkH1IGVDNMvBDSS6FpnRiAll4OqkaBp4ACzw6CjEnSnmJbmc8YAee8BjWLIdwuZo7XrP0WzXRmkunc72drl/ZhHquHiZkTv33BQDOUHwdDDgZDF9+f3Mki0NqPJesieyabm7y0UeQ1qxCPQE4hZI4UQZ0kaS/hs/mY6syH7i6I+eHYf0PuJBmARNqr5bvzyXfnf/8VEwlxHr/wHahZBOEuUC3QsFIEIPH+gG1K0l7MptkYmTWFkSYXNKyA4cdD1ujegOvS/kP15FCaNprSprUiqOKEC8V9C0mSJEnag2Q5s8hybhfgr2ElLH8Gig8RQUfiYciZKIMD/1jBVig7SrR9RrrE+5k3dcB9A0mSpO0Dj+gJGYREkiRJkiRJkiRJkiRJkiRJkqTBI4OQ7G8SOix5ED77BygmMBLgSIGL3oOUr5mV+Ido2QSrX4KKD2H4MVB2LCTLAaPSj9SyCVa/DBUfQNnRolz5Cnf9fmuXwGPHiO8LwIJ/w5nPQcmRu37f0nfTuBqWPgH1yyFvCnQ3wQe3wBnPQOlRg507Sdr/dNbDhndg5bOiY+KYMyCjfLBzJe1OgRao+Ai+fAxSS2D8uZA99ruv37IBnjsXDKPv9/eMZ6F09i7JriT9aP4qWP8mrH4FCmfCqJPFLJFv/1YEUjAMEVDnwnfl+VCSttdeBU/8FLrqxXPFBJMuhoKZP2673U2w6QNY9qQITDjuLDHwU9ozdNbDpvegoxoaV4mBmKE2SMoGi2OwcydJ303VAnjiBDCpcOD1oh4w904YcYJoh5BBF6T9wVfrwMOPgQX3QPMaUf8FESj4hLvB4hzMnErS7tVRA6tfhXWvQ+ow8ZvwxPGiXWPorMHOnbQ7NayAdXPE4O36ZZAxUtynlfeWJEmSpD1VawU8fhwE28RzezIccxd88Si0bYbx50HxwaKPkfTd1a+EpY9BwyoxSZQeFX2p8qcNds4kSdoDJRIyCIkkSZIkSZIkSZIkSZIkSZIkSXsGGYRkf9NRLQIoQN+AzmCrGMC/s4KQdDXB8+eJgSQgOuVv+QxOfBBsSTtnH9L+p7sJXrxQBJkAUa42fwInPww2987fV8tGMQAurQzWvt73fdlm/n/E7D+qnOF20LVtEQMXuxvF88r5MPZMyBwF8/4FQw4Fs21w8yhJ+5N4DObdBQvvEc8r58OK5+CidyC5cFCzJu1Gy/8H794oHm/9DFY+J4LepQ//buuvmyMGZWxv/r+g+FA5u7y054kG4YM/wcrnxfOqBbDqJSj7iXi+bQBmpEsMQJJBSCSpT+OqvgAkIK67ljwIky8WAzZ/CMOALx+HD/8snm+dCyv+J36H0kp+fJ6lH89fKc6Zve1Gn0PBdDH7qzxHSnuLxQ+J/xMvFOeYts3iedUCqFkCx/5LBtWR9m3RILz/R1j1onhetUA8Lj4Emlb3LbfmFZhwPviGyCDl0v4hHoZP/i6CsoL4brhzRKC9RffDkEPAZBrcPEq7T3sVVC8U5QBEvbd6objvJM+JkiRJ0p4iGhB9I0J+CDb3BSABmHoZvHqZWAZgyydw1B0w+eeDktW9Umed6D/VViGeVy2AktmiHbR1E+ROHNz8SZK0x9ENA7OqENMN4jIIiSRJkiRJkiRJkiRJkiRJkiRJg0j2dNvvKCKwwq7UsqFvIMk2G97uu6kuST9Ey8a+ACTbbHpPdMzY2ft54kR49Ch4ZDbMuWbHy5k0MJSdu2/ph2la2xeAZJuVz8OwI8TnpMjPSZJ2q45KWPxA/7TuBmhcMzj5kXa/znr47B/90yJd0LDyu2/DpO44vX3LD8+XJO0q7Vv6ApBs07YJbN6ByypfU7YlaX8UDUCwZWC6YvpxdfjOWph7Z/+0sH9gO4U0eAItAz+PyvkQaB6c/EjSD2Hqie3tSOkLQLLNyudlvVXa97Vv6QtAsk1bxY5nRK9aAPcfBNWLdk/eJGkwtVfC0if6p3XWgjVJBMuT9Z39i6H3BSDZpmGlCMonSZIkSXuCUCd89n+ivv7E8WLyj20UBfRYXwCSbT69Q0zqIn03zesG9pXa8DYUTJP9GCRJ2qFEwsCkKKgmBT2R+PYVJEmSJEmSJEmSJEmSJEmSJEmSdhFtsDMgfX/r29azoX0DVtXKcN9w8tx5331lkwbjzoVF9/WlJWWCO5uWQAvxeJzGaCP13fV4rB5KvaX4HL6B22nbDE3rQDVDxghwZ/e99nU3ynd18BNpl2gINFDTVYPb4kY3dAKxAD6bj/ZIO07NCUBntJNMZyb57nwSRoLKzkqag82k2FPojnVjMkzYzXbawm2k2FII6kHiiThui5u2cBtei5dYIkYoHiLZlkx7pB2X5iJBgq5oF6nmJPyJbsxnPEahv4Gkt39Lx8gT2Zo1ApMRxda+kfZwOyn2FAKxAIZh4LK4aA214rP5iOgRInoEr9VLW7hth8fi0BwoKHQ2rSB15hV0Bpoxq1bMFgd+p4/U7FF0h9tQDLDbk2lz+nD5N9IabiUcD5PtyiYYC+KxeoglYgTjQXKTcslyZg3yJ7jvq80eQ+0l79EabiXDkUGhOQvff0ej21NZd+ivqdj4Ek7NQXnKCLJ8Qwc7u5L0g/jDfir8FTSFmkizpzHUOxTvtsHtkQA0rREzaXnzIb0MzPZv3WZtVy1rWtcQ0kOUeEso9ZWi7JTObsqO6wJyltf9h/KVoHeaDaZcAok44a2fstZioTLQQIo9heEpw0m1pwJgGAab/Juo6qzCPvxwHKNPQE/oWEwWFBQ0k0ZLuJlEdSPJtmS6Y904VEfPLhXMJjPJ1mQykzIH46ilfVVXIzSuhlgQ0kohddiOl1MUMaBse670vseajcZpl1LtSUVrXIZqUrGqVmq6a1BQyHHmEIwHaQg24LP5MCtmqgPVDPUOpcxXhkleS0l7sISRYLN/Mx2RDlRFxWwyE4qHcJldxI04hmHQFeuiO9ZNpjMTwzCIJWIosTDOlHy6j70DZ1Im0WgILX0EbdF2It1byUyEKfIU4bQ4v3+mtv/O2Lww+WLxPd70oWjDSMrYaccv/QCqhfVXLaKmqwbVpJLjzKHoqdPRvkMdVpL2FBtm3UDt1PMASB0xF6fJxpDHfgqd1T3XQ3IgkbRn29qxlQp/BRbVgtfixUDUZTVFw2a20RZsw9RzHW9gEIqHMJs0EnoUr9lFINZN0mmPEOiqw66a0RQz7eFWstNGkGtPhlA7WFzUH/knapQESTOvpHDRfdhSS8DuHcQjl6RdTaHzmo1sClXRGGwk1ZZKjiOH7C8fhSEHwuaPYcxpg51JaXfJmc6Kyz+jLlCH1+ol05FJ3mPHo361/UCSJEmSdpP2UDtr2tbQHGwmNymX4QkLrRPORRl3AfWRelrDrWRe9jEjv3wR86L/7Ph+nwy0/f3sqG1fUcCRBrbk3Z8fSZL2eHrCQDUpGIAuY5BIkiRJkiRJkiRJkiRJkiRJkjSIZBCSvczy5uVc9M5FRPQIAJmOTO4/4n6KPEXfbQPdTdDdCAddD3VfgicPkrKodqRhxIJUB6q5ce6NtIZbUVA4Z/g5nDX8LLKTtgsyUr9CzIISbBPPM0bAqU9CyhDxPLUEciZC7ZK+dUacCL4hO+EdkHanNS1ruOLDKyhwFzAseRjPrn+Wq8ZdxUsbX8KqWjk472AeWfUIcSOO0+zkX4f+C3/Yzw1zb+DEYSdS4a9gbetaLht7GXcvu5sDcw8kqkf5pOYTrp1wLQ+sfIDhvuFkODN4eePLXDfxOp5e+zTJtmQmZk7kyTVPcumYS3l769tU+MXsMIdlTeey817mb6sfZFP1a1zgSeHuT+5mduFsWkItLGlcwlXjruKe5fcwMWMiDrODN7e8ya8m/opHVz9KXlIepcml/G/9/7hy3JW8sukVzCYzh+YfysOrHub8Eeczv3Y+reFWzig7g3uX38UJQ09gS8cW1rSu6TmWfzEzdybxRJyPqj/iugnXcdvC2yj1lZLlzOKljS9hYJBiS+E/s/7DyNSRg/xJ7ruq2qqY1ziPO5bcQSwRw67Z+cO0P3DwtetZ2bSEyz6+Gt3QASj1FHPXjL+Sk1o2yLmWpO/HH/bzYfWH3L7wdiJ6BKtq5cYpN3JI3iF4VSssuhc++FPfCsf8Pxh/Hpi+vhNgVWcVl79/OZVdYtZNs8nM/Ufcz8SMiT8+w94CmHoFzPt/fWmefEgf8eO3Le0dkjLh4N/Bm78Szw/+LXx+N5g03px5KTevebB30Vn5s7h52s0k25J5v+p9bpx7I6F4CIvJwuVjLycvKY+EkcBn9fHQqoeYXz8fgJEpI7l0zKVsaN9AnisPk8mEpmgEYgE6oh2UppQOxpFL+xp/Nbx0cd+sxdYkOOcVyP3KudI3BMae3X+26/ThEPbDITdCzRLWTjqbK5f/i8aPXwLg8dmPc8fiO1javBSA0amj+dWEX/HHBX8kqke5ZsI1NAYauXn+zdx32H1Mzpq8649Xkn4APaHzZeOXLGlcQrmvHIvJwvru9ZR6S2mPthPTYyxpXMKjqx/FwMBn83H9pOv5x5J/cN6I87hv+X1cPvZyPtvyBheOupCPt77B0+ueJmEk8Fq93D7jdqZlTUNTv0fzlScXDrwe3rtJdOg/+Hr46C8Q6RSv506Bkx6E5Pxd86ZI3+pLTyq3zb2BDe0bAJiePZ3LTnuIsZoceCHtHZY2LuX3837fez11aP6hnDT0JLrOfpIxDx8Hw4+T7aDSHm1xw2Ku+/g62iPtmBQTZ5adyQHZB6AbOibFhD1ux2F28GXzlzg1JwE9wNaOrXRGOhmVNopn1z/L6aWnc/+K+7l49MXcvexujh5yNJu7NrO+8hXuOvkeJn75HCvHncKVX/y9917DJUN+yrnBVpJkEBJpH9bpzGBuwzz+uOCPPcF7zFw34TpmjD2TgqdPheJZMgjJfuTTzrX8bu7v6Ix2oioqPxv1Mw47+1nKItHBzpokSZK0H+qKdvHPL//JS5tEG3WGPYO7Z92Nauh83jiP/1vyf7332/847Y8c5csDXzHYPBDu6NvQwb/rH4Bb+mapZZBeLiaU2GbkyRAPQ7h98PIlSdIeSzcMVEXBUEBPyCgkkiRJkiRJkiRJkiRJkiRJkiQNnj1uOmVFUa5RFGW1oiirFEV5RlEUm6IoPkVR3lMUZWPP//1yVEJUj/LQyod6A5AANAQbWFi/8LtvJClDDKKb908ItMD6t2DeP1FVM0E9yD+//Cet4VZAzHD4+NrHWdu2tm99PQ4L7+0LQAJiZvAtn/Q9d6XBSQ/A7L9A2TFw7F1w+J/A6vqBRy4NhkAswB1L7qA51My07Gk8s+4ZypLLWNWyiqquKo4sPJIHVz5I3Ij3Lr+0cSk3zr0Rk2LCoTlY1LCIY4qP4aGVDxGMBynyFPF+1fvMyp/FSxtfoi3cxviM8by08SUmZExgft186gJ1HJp/KI+tfozcpFxqump6A5AALG5bzScdG1jUsoJji4/lgRUPEEvEyHBk8FntZxxZeCRPrXuKzmgnI1JHMGfzHA7IPoB3t75LU7CJ6dnTeXrd05Qkl7C2dS2VnZXMLpzNgysfxGfz0RXtYk3bGo4tPpb7VtyHoii4LC4WNizk6CFH88iqRwjEAhR7inmv8j1m5c3i5U0v0xpuZULGBF7c+GLvzKGt4Vb+svAvdEW7BuUz3B/Uhmv5++K/E0vEAAjFQ9z2+W1UdFfzjxX39AYgAVjfUcGa1lWDlVVJ+sEq/BW9AUgAInqE2xfeTkVHBbRsgA//3H+Ft38LrRU72FKfpU1LewfMAcQSMf679L8EY8Efn2FVg2mXwYkPiHrAoX+As18Ab96P37a09xh5Mpz2JEy+BNq2QncTtWNO5e8bn+m32AdVH7ChfQNVnVX8ft7vCcVDAEQTUf677L90x7oJxUOsaVvTG4AEYFXrKpY2LWV503Jawi0EogG6ol1E9AgdkQ4kaaeoWdQXgAQg0gUf/xWiXzlXmu1wyO/guP+K894Rt8Kx/4b3boZP/kbIk8Ndm1+mMdgIwCnDTmFhw8LeACQAK1pWMK9uHn+e9mdiiRh3LrmTyVmTiSfi3PXlXQRigd1xxJL0vdV01bChfQNFniKaw810xbuwq3bCepimQBOBeIBHVj/Se43UFm7joVUPcdmYy3hw5YNMzprM6xWvc2rZqWz0b+TJtU+SMESnWn/Ezx2L72Cjf+P3z9i4s+CUx2DGr2DDe30BSABqFkL192hHkXaqSCTC21ve7g1AAjC/bj4rW1bSYU0axJxJ0nfTFmzj+Q3P97ue+rDqQ9a1ryOWiNN0xtNw0G/AbBvEXErS1/OH/dz2+W20R8Rgt4SR4Mm1T9IYbCSmxwhEA3RGO4kZMbwWL22RNmq7arFpNoYmD+XhVQ8zPXs6czbPYVz6OB5f8zizC2fz7PpnmZo1lc5oJzctvYvaQ37NrWse6nev4d7NL7Eu0jyYhy9Ju9zm7i3ctvC23vaNWCLGHUvuoCHcCM3rIXfSIOdQ2l02tm3k9kW30xkV1yK6oXPfivuoD9TT6fAMcu4kSZKk/VGFv6I3AAnAH6f/EVVRaQ41c8fiO/rfb194GyuGTINhh8F5c2DGtVD+Uzj9aRhxwiAdwV7KnQnH/RumXgZDDxNBXGxemP8vcGUMdu4kSdoDJRIGJpOCZlLQZQwSSZIkSZIkSZIkSZIkSZIkSZIG0R4VhERRlBzgKmCiYRgjARU4Hfgt8IFhGMOAD3qe73eiepTKzsoB6bXdtd99I+5sOOkhsDihbqmYnfvERzBrZgKxAOva1g1YpSHY0PckHoK6Lwdut3FN/+e+ITD1cjj9KZhwvhx4vBfqiHSwtEkMjNw28H1o8lBWtqzsTds2kGybaCJKWA+T48phS8cWAJIsSbSGW3GZXbSEWgDId+f3DiTr3bZ3KKtaVvVLK/YWs+orQSMKkgpY3PgFAFbVSme0k1R7au/3IN2RTk1XDaqi9g6mH5Y8bMC2h3r7H0vCSFDkLmJtqwi6Y1JMhOIhspxZvcfitrppDjXjMrt6O9AXeAp6B09tHyBomxUtK+Rg6F2oKdjUGwhnm+5YNy2RFuoDjQOWl5+FtDdqCjUNOL+E9TBNwSYRFMzofy4mHoFQG9+kOTRw0E9Ndw3hePhH5xcQneZGnyrqAQdeB2mlO2e70t7DkQzDj4Ujb4XGFQCELI4dBlLojnbTGmod8FosEaM52IzH4mFZ87IB6y1uWMyotFG0h9tJkEBRFEJ6CAODSHzgb7IkfW/tVQPTGldCtHtgujsHxp8tznvTr4TMUXDMXWBS6bC5+KKlr057SukpfNk48Jrqi6YvmJA5AYC4Ee+tO9d21xKKhXbOMUnSThaIBdjSuQXDMEgyJ9EQaMBr96KjE4qHaAm2DFhnQ/sG3FY3/oifYm8xa9rWYFWttIUH1l+2dG7pHbT3vTh8YkDElEugee3A1/0D21ak3aMl0sIXTV8MSF/VsgqHRQYhkfZ8/oifRQ2LBqQ3BBoIxoJ0OlPBmz8IOZOk78Yf8Yugpl/RHGomkogQTUSJ6BFiiRj57nyC8SAOswOraiUYC9IWbsNldrG6dTXF3mIaAg347D6gr220NlBLix5hzXYBp7Zp2EF7hCTtS9rCbQPqr7qhi6CU486FgumDlDNpd+uIduzw/m1TsImYRU7aIEmSJO1+X504xWP1oJpUGoON/Sb2AOiMdva2T5M1Gg67GU59FMqOBpsMpvW9ZY2BvGki0Pn8f8GqF0S/LU/uYOdMkqQ9kG4YqCYFk0lBT8goJJIkSZIkSZIkSZIkSZIkSZIkDZ4fFYREUZQMRVEeUhTlrZ7n5YqiXPQj86QBdkVRNMAB1AHHA4/1vP4YcMKP3MdeyWVxcdKwkwakT82a+v02VDQTfv4pXPgOXDIXSg4nFo/hMrsY7hs+YPFMR2bfE2sSjDp14DaHHDQwLR6BcNfAdGmv4LF6mJAuBkG6zC40k8aG9g2MThsNiAAgJqX/KcSsmLFrdmq7aynyFAHQGRFBQrpj3aTaUwGo7KykJLmkdzsgBqKNSh3VL21T+yZGpozst4+tnVuZlDERgHA8jNvipiXUQk5SDiA6cOYl5aEbOg6zo2/baaMG7G90qjgWi2rBpJjY3LGZ4SniO6AndOyanfpAfe+xdEQ6SHek0x3rJsWWIvLTsZXS5NJ+297e2LSxeK3e7/amS99bhiMDzaT1S0syJ5FiS+GEwiP7pSsoDPUM2Z3Zk6SdIsORgU3tP4u2TbWR7kgXg9u+2mndlQ6ebw7+te38t72Thp3UO3DoO4kFITowoIQk9aNaYNRpAGTWLmdiyqh+L1tVK4WeQlIdqTjNzn6vmU1m0h3p+KN+xqeP701XUHBb3EzOnMzypuUk25IxYSJhJHq/K1Zt4G+yJH1v2WMGpo04CRwpA9Mj3bB9oBCzDcadBZfMxTPiZCZlTux96Zm1zzAhY0JvWd5Wp56QMYFF9WJQs2bSeuvOJw47kRT7DvYpSXsAl8UlrpcU6Ip1kenMxB/yoyoqds1OpjNzQD2mNLmUzkgnydZkNvk3UZ5STiQewWcbWA8Z4h7yw6+nwp1gdcPIge0oZI/7YduUfrRUayoTMib0Pk8yJ6EpGqNSR2FS96hYyZK0Qz6rjylZUwDxe+0yi+uxTGcmTrMTt+N7XFNJ0iDwWr0M8w4bkJ5mT8NismA2mbFqVjSTRmVHJQ5NBJOM6BFcFhf5Sfl0RbsYmTqSTf5NZDuzaQ2JYM3b2kZzXbmkOTIYkTJiwH6ynFm79gAlaZD5bD7cFjeqouK2uAFQFZUMRwb85G+QlPktW5D2FV6Ll1yXGFhsMVlwaOJ+VbojHa/NO4g5kyRJkvZX+e783mtYgM5wJ7qhk+nIRFPE/fZtdRiP1dPbPg1ANCj+pB9GNUPZUXDCPXDeHLjksx33sZIkSQL0BKgmBc2kEE8Y376CJEmSJEmSJEmSJEmSJEmSJEnSLqJ9+yLf6FHgEeDGnucbgGeBh37IxgzDqFUU5R9AFRAC3jUM411FUTIMw6jvWaZeUZT0H5nvvdbsotl0Rjt5fM3jODQH10y4hrHpYwcsF62pQe/owJyRgZa6XeeA1q2gRyHQCK0bwWSGsJ+EOxO7yc4vx/+SG+fdSEuoBZNi4tzycylPKe+/8VEnQ8tGWPE/cbN8xnWQP63vdcOA6oUw95/QvgUmXgjlx0NSJk3BJpY3L6eyQwShGJU2imRb8q54q6QfyWl28uuJv2Zh40JaQi1cPe5q/BE/SZYkNrZv5K2tb3HxqIt5eNXDxBIiiM1EbylDp9zEDQtvpTvWzdSsqczZPIfLx17OPcvuYXPHZo4sOJIPqj7gugnX8eDKB1nSuIRTSk7hxY0vcs2Ea6jsrOSDyg+4cOSFPL76cY4ZcgwlySVs6Jk5c1r6BA5KG8fizCm8XvE6Px/9c+5edjcNgQYOzjuYt7e8zdXjr+a+FfexqmUVxxUfxxub3+C6iddR113H3Nq5nDX8LP637n/MLpzNhvYNvLXlLX4+6uc8tOohXGYXI1NH8vrm17l09KXcu+JeOqOdTMuexhub3+DysZdz7/J72ejfyHll51DcZeeSjCN5wfUpXzR80XssCSNBmj2N306+Hpec1W6XybJlcf2k6/nHkn8Q0SM4NAc3Tb2JYc5C0gqPJhaP8mLlW6TaU7l+1M8ZkdY/8EIwFmRly0pWtawi05nJ2LSxpIfMxJub0bxezDk5g3RkkgRrW9eyrGkZBgZ3HHQHt31+Gw3BBuyanRsm30C5uxzsdjj9aXj1cuiogZShcMLd4Pnmsjs6bTR/O/Bv/GPxP+iMdnJG2RkcX3z8d8tYLARbPoXP7gQ9in7gH4nGfZgcTiz5+Sjaj61eSvsUfxU402DkKbhWv8TvZ/+J/9h8fFg3l2JPMb+d8luGeIagKAq3HnArN8y9gVA8hFW1cvnYy0kyJ6EndHJ9uczMmYlNs1GaXEpHpINCTyGlvlIsJguqoqKaVGyqjSSTBWq/BG8hOHfOINC430+stg6T0yHKuUkOkt7XGbEYUT2HxOFPY6l6CXXDi1B2LEz6GZhUqPoc4lGxcOtGWPKwmAFy0s/A6hGBD7rqoLsRuyeXq8b8ggr/ZuoCdbxS8QpP/OQJ7Jqd6q5qfDYfMT3GAdkHcOn7l2IxWbh2wrUsqlvEOeXncHLJySiKMrhviCR9jdykXEqSS1jSsITy1HIsikVcN5qTMJwGsY4OHh96C7pF447aJ6gMVnPRqIu4Y8kd/GzUz7h/xf1cOuZSntvwHBeNvohzy8/lqbVPoRs6PpuP30z+DcOSBw6U/kYdNbDyRVj2JKSXw7RfgL8a1r4KZgccciPkTPz27Ui7hNVqZXbhbLK1VKYkCojoYeq9kOUrQDWpg509SfpWXoeXU0pOYVTKKEqDbtRQhHh6MnGXA01RSVdkMDxpz+a1eblh6g1c9/F1tIXbUBWVs4afRaYjE93Qsak2bGYbFsVCR6wDn9WHTbPhMrtoCbUwu3A2HquHkSkjufPLO/nZqJ/x32X/5cyyM1lQt4BcVy73j/4zySuWc2fBJVwSu5OtnVsxKSYuHXEBZS1V0N4gAvspiqhT61HAEPcVVIt43FEDzlRIGKAg6uBGz8Abo2cW4G1pikkET08rA4e81yANrmJXMQ8c8C+obyJMjEp3BLs1iWxHlrifJu03hvqGctPUm4h2tJPmN4hZFLrTXGQ6c2S9V5L2IbHmFuJNjageD5bc3MHOjvQNYo2NxFtaUJN9WLL34sB47TXg3wx6DLobwZEqJg2wJkG0W7R9xUKgWUVd26QBCUjoFJhU7jngdv668l7Wtq1jzpY5nF9+Pmm2NH4z6TdsbN9ImiMNf8TP6LTR5DtzIBKAje/Cgn+L/U+8CNw5kDUaZBDO76yxeQ1ddXXEOjqxpPlIi4dwt24CRxqkDgOzbEuQJKmPnkigKgqKCRKGDEIiSZIkSZIkSZIkSZIkSZIkSdLgUYwfcbNCUZTFhmFMUhRlqWEY43rSlhmGMfYHbi8ZeBE4DfADzwMvAP8xDMO73XLthmEM6E2qKMrPgZ8D5OfnT6isrPwh2djjJYwEjcFGzIqZVEdqv9eMWIzO99+n4Q83k+jqwpyXR87//QP76NHgr4FwB3Q3wPPnQaRLrOTNhxMfpNU3lISRoD5UT32gHo/VQ1lyGV67d2AmYmExqNSkQnKh+L9Nw0p4cBbEI31ph9xI59RLuWXBLbxb+W5v8gUjLuCKcVdgUS077w3avXbKaMA9tey+veElfr3g5t7n+Ul53DrpBpI7amnXwzisXpRQG512DxlNG8nbPBcjbxJVmkZz+jBSEtAd6YSkDBxBP+2ahg+NUKSdmCsLT6SLVrMFbzhATI8QjHbjc2XSbjLhMrtIdDfS7UwmRbHSoRhoqkbRqjk4vQV0+rewNXsUmjsXa6iddrMVn2EiGPFjJGXhDHfQpkCyyUok3E7YlU5yJEibEcNtdqKH2ugOd5CSlI3flYLdnY+iKHRFu0ixp9AZ9mPubsLc1UBHoAmfK5uAwwOePJyWJPT2FpJen0f7A49ALIZ90gSs1/6Mbmsr8VAbgUgHed1tZAyZBUNnDeKn+LV22kjWwS6/zZ2NbA1W0RpuJcOeQaGWQfJHN0FnA7Ejb6PZYsGmWvF5h8BXBo2/uOFF/rjgjwA4NAcPZv0K25/uJt7QgMnjIfv223AdfDCKKjsF72H26XMvwMrmlVz4zoWE9TAANtXGvw79Fx2RDtIcaZS7y7Hb7X0rdDVCsFUEe3Clfef9tIRaiOkx0h3p373z++aP4XERsCQy4fc0/O8Lgl8sA7OZ1MsuxXfWWagez3fOw35mny+7/cQj8MavYOnjkDMBig8BRSM85kzaLGacZicea19ZMQyDzf5NVHZswWZ24jS70A0dTdHEn6rx7PpneW7Dc73rHFV0FOcMPwfDMLCoZryREBmtFSIAhM0rOsKabT/qMMIbNlB3/W+JrF2LYrORfv1v8Bx/AqrD/u0r71v2m/Krd3TQ9tRTtNxzL8RiOCZNIvOG67AWDwOLA7bMha56qFkEviHw9m/7VlYUOOwW0fF71YsieCPAjGtpmnIx1cF67KqdFza+wPMbnu9d7dghx3JW2VlUd1eTak8lPykf3dBJc6ShmWRwpx9pvym7gyVhJNjSsQV/2I9m0jArZjpiHfg3rKb43nfRl61EMZtxX34J0WMPosvoIBr2Ywo047C4CEQ7caYOJ5qIodmSaY12ENHD5Fi8lFhTMfkKv3tm9Bi8cyMsuq8vzeKCn38sBiyrFtGGsfcE9tkny2904zLqHniS0OtvAqAefRjLjyvl4NHHkOYtGNS8STvNPll2t2moXU3Hex9h3PUwRiiENrQYx59/R84nl8Hht8CInw52FqUfbp8uu9ur6qhiU8cmLCYLHqsHAwPFUNBMGjbVRmu4FUVRMCkmFEXhhrk3UN1V3bv+7TNuZ7i7iK7KudgBs2Kmy4hRGCim6cY/obe0oKakkP6Ha9maXI89YwRFb/8BS/1y8Tt8xG1isJ2BuF+hx0QdOtIt6tqhNtjwjvhOtW2B7ibw5II7SwyqbN8qApAkZYEzBUJ+8Xz6lWBzD9K7Ouj2m/K7J+tav5Smf/yH6GfzQVVRTj+O+mMnMdNuR7N5oGDat29k/7Nvlt1IiNaK9bT96S/El61AMZvhotPhJ1MoGzITzHvtfVGpv32z/ErfSXD5cuquvY5YbS2mpCSy/vxnkg6btbcEat+vym5g4SLqfv0r4k3NqMnJZP/trzhnztz7Aj+3boLa5RAPwqL7YfgxIjj29KvExAEzr4EFd8OE82D1yzDkEKj9Qkxg0N0AliRY/wadZUfTnTaM5Mzx2Et/Qk1HDTHi/H3J35lbO7d3d5eMuIBLvGMxP/mVa9zDeuroR/x5MOree13ZbWvdTNtHn6L/7W4SXV2oublY/3QdeR2fYCqcAfEwjDppl+1f2qPsipOOjFCxD7ruueV8vrmVhGEwY2gqd5wyZrCztJf9YEqSJEmSJEmSJEmSJEmSJEmStLP82CAkHwMnAe8ZhjFeUZSpwN8MwzjoB27vFGC2YRgX9Tw/F5gKzAIONgyjXlGULOBjwzBKv2lbEydONJYsWfJDsrFXC69dx5aTToJEojfNXFhI4dNPoSlBMfvJR7fCutf7r3jo7+HAX+2cTCx7Bl65tH+azcOyc5/nnPd+1i/ZpJh44dgXvv/MxnuOnX6jbU8pu60d1Zz27gU0Bhv7pf+/Mb/ksFeuFbNHf3QbpJVCxkgxyPLg38Infwd7Mow6GRbeBwf8EhY/IGa0POCX8OkdMOEC2PgOdNbBQdfDJ3/rv3OzHSZdDFvnQlIGrH8LDv4dfPwX0dm8eBZ8+Zgos/P+JWYQnHQxzPsnTLkUVj4HwTY45Ab46HYYdQrULxODQLfle3uuDPj5J6IT+zaNq+G+mZDQ+9IUBX7+KWSNpvud16i++vp+m/GefAKZmR+jtKzpS0wuhJ99IGbu3LPskpvEg1J+17wGz53TP82kwgHXiM5Yh/4eUocOWK0h0MBJr51EZ7QTgMtyTuPwP71HvKmpdxnFbKbo5ZexDi3epYcgfW/77Ll3mz8v+HO/QAsAZ5aeye+m/m6QcrSdV6+ApU9gpI2goWoK/lff7vdy3gMP4Jo5Y5Ayt8fb58tuPy0V8N+JfbNUb3PakzD82B2v07BK/P5uv45igqPvZL0S55RV/8b4Sn+6p4dfwqjkUjFTtisDqj6H7LEiCIk7G9LLfvAh6MEgNVddTXDu3H7pBU8/hWP8+B+83b3UflN+uz79lJqfX9IvzXv66WTedCNKtFvUNa1JEAuITt6Nq/tvYOKFYsDk2DNF3RdEPfKCdyB/Cmtb13LqnFMH7Pfpo59mVOqoXXVY+7P9puzuSR768j5mPLWKxBvv90vP+/ffcFX8AxqW91/h2H/D2ldg0wf904/6B0y++LvvuG0L/GciJOL90095DEac8N23s+fY98qvHqf5mSdpubV/O0Ds1xcTPHQ0U4sOG6SMSTvZvld2t6lfRc2WerouvKpfsjZhDBmXzMBdOw+OuQuS0gcpg9KPtO+W3R/h3a3vct0n1/VLy3Jm8b/hl+B7/sLetOiY69hy+xwSXV29aSaXi6Ibj8OSZMDyp0WAEYCkTDj8NhHkL9gKXXUQDYi2WLNdBA776DbIGivagzNHAooIgB7ugMxRYPeKgCRNa8T9kPThUH4c5E7a9W/KnkmW30FmGAb1//w/Ou57qF966E9XklzqpiilDLx5ou1C2t4+WXaNtloq//r/CL32Rr/0+J03MGzCeGwZIwYpZ9JOtk+WX+nbxVta2HrGmcSq+4K0oaoUvfQittJv7Mayp9hvym6stpYtJ52M7vf3pil2O0Uvv4S1sHDQ8vWDrH0D/JWiz8/iB2D4caJ+bHWBIxVql0DJT2DpEzDlEhGY5KDfiP4S2/pNbM/igks/A98QvtjyHud/em2/lzVF44Ux11L88hX91xt2OARaYfZfIX/KLj7oAfa6slv/xaf4z7msXx8urSAf7103kbb0P+AbKvq4ePN2WR6kPYYMQiJ9J9c8u4wllW0YBkwu8nHnqWMHO0syCIkkSZIkSZIkSZIkSZIkSZIk7ad+7DQs1wKvAcWKoswD0oBTfsT2qoCpiqI4gBAi+MgSIACcB/y15/+rPybTe6p4e5hYSwiT2YSW7kB1mL/3NmK1tf1uXgPEtm4l3tiIlpMCiRi0bxm4YtsO0n4ozTowzeIkrEcGJCeMBOF4eOftW9pponoYPaFzY8n15MeziJpjvOJ/k6De83lt+zyTssBfJR4ndDFo2JkGnT0dylWz6EBu84oO4iBmp+ysE493NMOQ2QHxkAgKsq1sJmLivytDDDIWK4vgJs40CDSLJGuSCEBiUiHek0d3Nqx9rSff0YH7624UnXW2F+7oH4AExGyaPccQ3lgxYDNdH88l7arJaNsHIfFXiePf84KQ7DvUHcwYqNnEZ91WIWZS3YGoHiUQC/Q+L4y4+wUgATBiMWK1NT86CEkiphNvDKJ3x9CSrWhpDhSTvE8vfb2GQMPAtODAtO/LiCWINQfRO6No3p6yqH7Psmj3AhBPm0zXMwM75YXXrZNBSCRBVcX5OBb8Svo3zPQa9g8MWmIkINxB2OUdEIAEIKSHxTLRoDj3x4I9v+EJ0OMDlt9GD8aINwYx4gm0NDua1zZwmdbWAQFIAKKVVftjEJL9RmTd+gFpXe+/T9oVv0DTQqJupyigWkVH7a/SbD11y+3Kq2Gg6w5iFX7Soi4uHXIxD2x5GN3oq2/K6yJpT2AkDFFXaI+gJlnQ0u2YzOr33k5GzAGfLRqQHqmqx7Vt8PH2wn7orB2Y3r71++3YpInryUhn/3T1+7evSLuIkSD4wadYS4fjOeV8FNWBEe0isHYh4SPkbPDSXsCkQp1oO/Cedg7WsomAQqxqNYY5VwRUiHTLICTSoNsp1/89QvHQgDR/xE/0K7+3sbCtXwASgER3N7GwFUtyQtSTt+lqgEQUlCRQNdF+p5r7rhe3tT37KyF3orjG06OiTTkpEyxOsU6gRbQFJxeK+xLB9h90jJK0MyQCAUIfforv/EswF4wABSLrlqCs2kpi9AEiUF4kADu4jJT2PfFAlMgnc8FsxnfezzHnlAEJIppBzDAY2AolSdLeJNbU1D8ACYCuE6up3VuCkOw3Yo2N/QKQABihELG6ur0vCEm0S7Q7x0LgTBd14+Qi4ikHELOPwZRcheaOoIb/I/o1JOJ998l3dL882g0RUX8Px4MDXo4bcSKmHbQLWlzgrxbBBKVvlahvRrHZSLnwF6ipBWDECS54Bzpjoi9MwYyBfVUkSdqv6QkDVVEwFPFYkiRJkiRJkiRJkiRJkiRJkiRpsPzYICSrgYOAUkTU8/WA6YduzDCMhYqivAB8CcSBpcD9iC55zymKchEiUMmPCXSyR4rWddPyyCoSXeLmv608Be/xxWieHQT0+AZqasrAtORkTF6vCMigWqHsGGhc1X+hogN/aNYHyhojAlNsP7Bo1h8pTC4hzZ5Gc6i5N7k8pZy8JDmjx54o3ZXHoyPvRnvBjxGKAxZ+OeZczEN7BgYrJjG4q/ZLmPQzqFksOke40qF1E4w8SQT+8FeKWSib1opgIADVi2HIIbD5I9FJxpO7XWARYMa1sOC/oiP66NPEbJZ6XAQyaVwNB1wNFR+IwCPJhWIfKUPFuo2rxWyXNYv7BoVu+QyGHSnyo9nEgJFtAUZShsLkS8QMm9vzFoiAJ92NfWmOFEguAMCSXzDgPbOPKMPUtal/4oifio7x0q6TORJSS6FluwHDEy6ANa/CuHN6AyZ8VZYzi+OKj+PlTS8D0G6NUex0kgj0BSZBUVBTf1wAmURUp3t+HZ3vbBVjkTWFlLOGYx8+8HwtSducOOxEPq39tF/aCUNP+FHbNOIJAl804H+1QpRFk4LvtFLso1NRdhQQ6uuM+CksegC1axP2smK657b0e9mSL3/XpR7eAjj4d/De7/vS0oZDxshvWKewf3AxEHWLpEzy676kxDuMDf6NvS9lOzIpUGyiM60zRQxaS8oGzQImC9g8O9xN3B+m/aVNRDaIAWqqx0LK+SOxZDn7LWdyu7GUlBDdsKFfupae9t3eA2mvtKPzmH3UKEwuF9hSRd1Os8LqV2HM6VCzSHTqBhEQz5Ei6q3Btt71YzPvpO3NGLHqlQCckDaFgpm5/G7tzQDkunIpcA+sX0rS7hZe00rrM+tAN0ABz1FFOKdmfe9AJHlZJSjDh8HCL/qlW9J9kH40fPFI/xU8OVB0MDSt65/+fdsqvHlw6I3w1vV9ab5iyBz9/bYj7TqaBeesWajOMgKLgj31Uhvun1yIapcdqqW9gGrGmpaO9crr0WPlBJeLQAmqbzp2uwLDjgC3bAeSBteOr/9LsI9O+37X/z2GeYehmTTiib4gj2eWnUm6s39ZV+0GmM0Q226Ao9mM6tQgs0wEEWlaAxvfFQPtNAdgQCwq2mwDTRANies5V08gn2FHQMMqyBkvrhULpotttGyCtBLwFYm6eWuFCEY2+vQf8I5J0s5hstlI++UNBL5QCC4XwdC1jENJnaZiU9vEPbqkrEHOpbS7mGxmrOXDcR9xEuHKVGLLxbnRXODCPjpjkHMnSdKPpXo8qF7vgOAWWpqclGJPo3q9KFYrRmS7CXNUFS1lL7xP68kVfSuiAXFfvPw4orbJtLxrJxHoBLzYh7vwHHALWrgG3Dni3onN29O3wy7W13r6DGWNE/dTgEJ3AT6bj7ZwX5v2+NTR5LoLxX2XbUFMVLMIErjhHUgdttvfgr2RPSML583/R3CFjUhNDLBgHXUmLpsOZcdC8yaYcP5gZ1OSpD2IbhiYeiY1issgJJIkSZIkSZIkSZIkSZIkSZIkDaIfHDCkxwLDMOLG/2fvvsOkqg4+jn9vmV53Zvsu22Bh6UWqgoJYsGCNvfcWS+zRaKK+GmOi0RhrNHaNiSX2gkbBAiLSpC9ley/T+8x9/xiYZd1VUREQzud59tE5t5073Jm55Zzf0bSVmqat0DQtDsz/KSvUNO33mqZVaZo2QtO00zRNi2qa1qlp2kxN0yo3/7fr+9f0y6Elkvj+V58JIIF0x59Yne87luqfobKS7Isv7inQ6Si4/f/QFxSAPRckFQbOTHfQV/RgsMP+v4OSKdtjV9LcA+H01+CQP8Pel8Fp/4Wqw8i35vPgAQ9yYOmBZJuyOWbQMdwx9Q6cRuf227aw/SQVjB+HNweQpKnLwrg8lnRj7sXPwAF/SDf+9jfDhPNg+Ysw7WrIHQZNi9NhIeveh3Gnp4+xde/CjBugZTmUT4NBB8KCB2H8OXDg/8HkS2D2vVC/ML2szppuRDP2dFj6LMy4EbLKoX0tTL443fFz0kVQMA42zYV9r4G6+TD0CCjfLx1CMfP34K1LB6FUHQZLnk1vy1Gc/hyU7wsf3Az/2B+WvZjeHqQ7wZ30AhSMSb/OHwknvQjOEgBMe03AMnXvzHujOJ1kH7sfctWsdMdUSUrXY/oN6YY8ws/HUQwn/QsOuSt9LB3wh3QQzqCZMHAG2Ptv2K1TdFww6gLOGXEOueZcFqtNuG65CZSeDpY5V16JYeDAn1S9RGsI37s16U4fAAmN7peqSXgiP2m9wu5tYsFE/jj1j5TaSymzl3HntDuZkD/hJ60z3h7u6YAEkNLofnkdic6+Ixp/p8JxcPZ7yJUzyD7zBBSnMzPJst++mEaP/kn1FHYjkpQOgzr5RZjya5h9H5z4fPo39ts4i+GEZyFvZPp13gg4+A5oW0WWrYi7hp7DkeWHkm3K5uCCfbh/2Hnk5Y1Kn+Na8iDQAQWjwOQGvR2y+g/Fidb4MgEkAElvjMAnDWiJVK/5VIeDgptvQjKbM2WOY47BOGzYj39fhF2eacxYLPv2BB8oTifZl1yCbNw8TnH2YFBMMOJoUIxw3FPp654pl8LU38DGj9PHe/Oy9PwDJhFRpxOv7wk609pjjG0dzHD3cA4tP5T79r+PXHPuDtxLQegr0RWm66V16QASAA28b28i0dZ3JNTvU5E/DMsl5yE7esKgrDP2xViaDYMPhpHHpTs/WLLh0L9Aw1fpTsWjT0p3ZjA6YNadP+5exeiT4JSX0r89h98Lp/w7HU4i7DKsE2cQ/DLU67w0+GE7uZTs1HoJwjbJHoRzYBm68gkkWno6sSW7ooQabJA7HPTm71iBIPz8Eu1hPK9/8/q/mkTnj7sXVeWu4pEDHmFs7ljyzHlcMuYSTqw6Ebl4Qvp+rc4MqhGDLUn+dVeCvPmxkySRf/UlGKpGQ+18+PSv6cDnI/4Oky8CiwskJf27b82DnCooHJsOr1z8DAydnb7PPPJX6enxcHreIYemzxtkPSRi6c6VQ2en7yFnD9o+b6Ig/AiSqpKKuEl2xTJlidYYuogbqzErfT9Eb/qONQi7EyWnmNyrfkMqXkjK0/P8N14bINqQ3Ik1EwRhe9AXFVHwf/+XDmDbLPvXv0Y/SJyL7Gr0ZWXk3/KHXueoeb/9LfqKip1arx8lb1T63DerHGb8jhRGvMudpII9vzPh1QHizkOgoxr2vjTd7mL69bBpHsy8GYonwgG3pAct+vD38PZV0L6WouzhPLz37czMn0K2KZvjyg7lDxOuw55TBcc/m24DMulC2P8mWP0mnPicCCHZRvYho4m1Onr9O0U3hCFsSbdBmXJhOtxcEARhs1RKQ5EkVFkiJUJIBEEQBEEQBEEQBEEQBEEQBEHYidQfs5AkSflAEWCSJGkssGX4PDsgWln/QKlIklht38CRRPsP7BQMKBYLrnPPwTp9PxKdneiLi3saUKiGdEOYp06F/W6A008ALQXLngdVhyfiYV33OjxRDyX2EgY5B6HKP+oQgZwh6b9vqHJV8cepfyQQD2DX29Epun4WFnYFWiRJvDHYpzyVtKc7iYU6QDHAiGMh4qNe1qgedgCKpFB54tMUJlPpDsATzksfZ2NOhWA7mJzp/0/GYML56TK9BWybR35LRNMBIqopve6oLx10su9VICvpRufhbjDnpANI0NIj0Ic6weyCcWdCKp4eLSbYng7aGX0SJMLpDm6BjvT2Rh6fHn37o/9LbzcehlfPB9vrULFfuqxor3SgTqgTTC4wZ2XeB13RAAr//Beia1aSCocxVAxEb5PS6x51HMRC6fALnWhU/HMLxAJUJ720OrMpyi5jkMGNqXhCOlSmeVl6NKZvUWQr4vJxl3PasNMwq2aMkg7b4KHEGxpRc3MwDBzY0+H4R0r6o33KUsE4qWACnD9p1cJuzKa3cfjAw5lWNA0k0Mk6qruraQ42U2ApoDKrErPuh51ypfyxng5Im2mxVPpY/CGD80kSFI6BwjGYgLL/jCC6aROyyYRh0CDUrKzvW4OwJzFnweBZ6b9tVTIZzngDvPXp461uPkQDsPhpBoa7+f2US/FNfwBbMklC0bM01kFLIkKB0crgkomYNA3M7p5zi34kWvp2qI/W+EjFkihq75xG8/jxlL/8ErHaOhS7DUNlJYpNNAjdneny8yj8051E169Pn+eVl6MfsFWAQfFeEPZD9yZASzdgzxmaPueN+mDI4dCwEPa9Nn0NFuogttjTdzt1CW4+7maiWhS38Rc48qaw20mGEmiRb3SG0yDpj/W/wFaC8SDrutfRGmyl0FrI4KzBFE3cj8C/niNRW4veZEafb0NVI6Avgr0vB/eg9HXl3DshfzQ4BqQ/N5MvBr0V3D+yM4jRAZUHpv+EXVM0Dr1zv9LnpYEYZItraGHXpyuuJDFvVZ/yaE0YTXsWaeaN6XtUgrCTJP2x/r9ng/Ef9T0rSzITCybyUPZDRBNRXKatju99r0nfZ436kFQjymgDzuFDSLS0YMwvwFKUi/Tfc6Hpq/T8jYvBczOc+gqoRkBL36uQpHRAmdEOqSSUTQVZ3Tw9BUjpeZDSrzUtfa9YIx21b8wCizinFnYuLZkiVtP3mUq8MQz7jATdT7vPLPzy6PKzSXQ09ymPNfixjM/fCTUSBGF7ss6YTsUrLxNraEB1Z6MfNBDFLJrK7GokWcZx6KEYq6qINzWj5uVhGDQQWfcLbKdissPgg8DTAK4KtISF2MeNfWZLhI1w5APpdhdVs9PtMobOBn9LeqCBp49ITwNY9RpJRU/1vldQnwxx1ugLceks5FuL0Rks6XkGH5weuCXqh3gIRp0ENhGova0kVOLNfQMhE2EjWEgPpiMIgrCVZEpDkdNNcRMihEQQBEEQBEEQBEEQBEEQBEEQhJ3oRyZMcDBwJlAM3LNVuR+44SfWaY8jm3QYh7oILWzpVa4rsP6o9SlmM6ZRo/qf2F2THm3wrct7F48/m7s2vsSbG99Mr0NSuHfGvUwfMP1H1eG7GFQDBtWw3dcrbF+yRYehMovo2u5e5UqODYyb/zZbF+3ivPfPoyvSBcAA6wD+PvPvVJidYHb2LGy0992Q8RudeFUDuLbqbGbN6bvslo4cpq3KTJu3Y9qq83t/2zNsLgt1wdLn+k6vW9ATQrJlvVvW/Q1qVhbqlKn9ThN2jEgiwjOrnuHBZQ9myn5XdSa/WvgcSucGaF6aDqH5jlGIJUnCberppGAcPBjj4MHbrY5KljEd1bVV2wDFaUCx6bfbNoTdl8PoIJ6M89zq57j7q7sz5VePv5qTq07+QWFeitMAqgSJnoNRNqso9p92LOoHDOjdOV8QtgdzVvpv5avw9jW9Junm3497rzOIuQfxwqpnuHfxvZlp146/lhOHnohO/u7Phn5A3/Ns0zAXsrH/yyNDeTmG8vIfvh/CL5aalYU6YcK3z2CygelbrrkiPph/P7SvTb/WmTGOf4nw6t6z+SqSXPzRxXRGOtm3aF/+sPcfyDHnbJ8dEIQfQbHpkW36dHDZFrKE6vzuzpKRRITnVj/H/Uvuz5T9duJvOX7I8VjLB0L5wL4LVc+Bj//Y83rDh+m/0slQOPan7oqwiwtYEqDKkOjpIS+bVRRz6juWEoRdx8qOlSiFIazLe5ebSqJIa1+HvU4VISTCTpW+/u/ne/YnXv9bdBYsOkvvQkkCVxkA3qiXe7+6l5eqX0pPapP4i+3/OMhb23uZYDtEPFC+77dvzF7wk+oqCDuDlAhhrIBYfe/ySCmESIkRHPZAC30rKRjoQt/Wu9xQIoL3BGF3ICkKhspKDJWVO7sqwveQ9HqMVVUYq6p2dlW2D2cxAHIihWlIiNDS9l6T1XwbOPq5JnUUw6rXewJIAAx2PquYxGXvnEpSS4cTH1p+KNdPuJ4sNp/7SxLY8wERoPVjyGYdxiFZhL/x76SjFub+EQbN7NtmRhCEPVpK05AlCVmGlAghEQRBEARBEARBEARBEARBEARhJ5K/f5a+NE17StO0GcCZmqbN2OrvCE3TXtnOddztSYqEbWoRui2dIWWwTi9GX/IzPGg29LNOSWZdwpcJIJGQOHLQkVR3V/Nx3cc0B/qO0iXs/mS9gnNWOWru5saQioTjkHL0hX077b5c/XImgASgPlDP3Ia5O6qqP45qgqyyvuX2IlqCLXzW+Bnzm+bTHmrvO4+wy9jk3cRDyx7qVXbXuuepHXM8HXudzhf7nM+nbV/RFGjaSTUEXY6ZrBOGIOkVAGSbHteJVT+544ew59jk29QrZAHgr1/9lRpfzQ9aj5ptwn1SFZJx87Fo0eE6eShqVk/H4lgyxprONXxc/zGrOlYRSfQdmUsQdiiDo2+Z2QU6M5u8m/jbkr/1mnTPV/dQ+80ObkCjv5FPGj5hYfNCOsOd6EvsWKcWpUOiAH2ZHcukAqTNo0oJwo8VT8VZF2zk433OZ8WsW4kUj4d4CEN4DuYxzp4ZB1v43L6UzkgnAPMa57G6a3X/KxWEHUR1GHCfXIVsTQc5SQYF14lDUHP6dpfc+pxhWfsyPqj9oNf0vyz6C7W+vt/HGf3dm1ANoBcN7nd3iVSCJ1r/je8wQ6/zUv2vitDsyk6unSB8v2giyj++/gfzdItQtvpt1w2xYzZ+BREv6H9csLQgbC9qtgn3yd+8/q/qdf3fn1pfLXPr5/JV61d4o94fvN1qT3UmgARAQ+O2RX+meexJfWc29BMeLQi/dIqe5EAJparn+JZH23k1+R4bvBt2YsWEnaE12MrNi+6ke3AcpWLzdY4EhvEu9IXivFcQBEH46SRVxjajBF3RlnZGEraZJeiL0787yVQy3ean/mO+bv+aUDwExt7PXNpHH8et61/MBJAAvL3pbdZ0r9lRu7Hbk1QZy/RC1ILN91hlCdsUM7r6p8E1CFTRZkAQhN6SKQ1VkVAkiYQIIREEQRAEQRAEQRAEQRAEQRAEYSfqf6jvbaRp2suSJB0GDAeMW5Xf+lMrtqdIpTSS8RS6XDM5Z40k0RUGnYzObUJS+2bEhOIhNng30B3ppshaRLmjHFn6AVky2YNh70vh854Ripl2NV3JcOblGcPP4POmz3mlOp0nk2/O58EDHqQyS4zis6fRFVjIOX8Uie4oskFBdZuQlN6dcxPJBCs6VvRZdk3XzmuYomkam7ybaAg0kGXIosJZ0XeUTr0J9rsOaj+D5OaRvrPKWF88kkvfPYuGQAMAg7MGc89+91DqKN3m7aeSKZJJDZ1eNCT9uXVHu9HQMCpGJuZMIpgMsrj9K7wFI7nJu5Tli+8CINeUy0MHPMRg1+AdXkdJlTGPzkFfbCMVjqM6DCh2ww6vh/DL5Yl4ejX+A0hqye/sEBRPxdnk3URLsIVi8wAKzAWYjEZMw7PJy7eQDMVRbHpUZ08HpJSW4p1N73Dz5zeT0tKjJV834TqOH3I8ekU0gBN+PsF4kI2ejXRHuym2FlPuKEeSNp9v5A2HgQfAhq06tx9yFziK8DR/kTlWt0hoiT6fjTVda7hgzgWZwLQJeRO4fert5M8qwzw+D5IpFJcRxaT73rpqmkYilkLVyz11FHZ78VgSRZWRtyGk5sPaD7n+k+sz39tXDDuRU7QUxo3/wXn62Vj3KycSD3PLmjt4f33v0IbGQCPrutZR7ihHp3z/8SgIPwe1xEb2xaPRgnEUsw7V3XeE7v7OGc4cfiaJVIJqTzWQPhfxRX3fvqHcoTDmVFj6LHH3IDaNP4UWZzG5xClPRDGo4nx5dxVNRlnQvogNplouOeUCYr4wK2Or+Mfya7jJfBMHlR20s6soCN8pnAiz0bOR8UPG89fIMxx34pHEkjE2yEuYgY0BM28BV8XOrqawh5NkCdMwN3mXjSUZ7H39n0ym0FIaqq73fcslbUu4cM6FhBIhAA4sPZCThpxEobWQIlvRNm23O9Ldp8wT9RAYMLF34ZRfp59TCMLuRtWzwRrm9ZI3OGTkgaiKjk8jHxIkhCfi2dm1E3awQDzAcUOO45Y1d3DUmCMZPn4wES2CKy9KTl7+zq6eIOz2Mm0wDOJZrbBrSSZSaFrf8/EfS5dnJuecEcS7Isg6Od2eY3M7o7kNc7nq46tIaAkALhh1AWcMOpb2ox+gIdRClqRi1tto/XpOn/V2R/ue2ws/Tige4qmW5wiO9TNj2jQCBDHqm5k05yv41T/TwcyCIAhbSaQ0ZElCltKBJIIgCIIgCIIgCIIgCIIgCIIgCDvLTwohkSTpYcAMzAAeA34FLNwO9dojtNX4+HpuAx0NASon5FE5Pg9b8beP+lvrqSWZShJLxGgJttAYaKQr3MWEggnbvlG9GaZeBZWzwFMDjhIoGEVpqAlZkjGpJmRJZl33uswiLaEW/rPuP1w/8fofFngi/OLFU3HWRNayMbqRPCWPQEOAeDKOy+SiNdhKtimbRCrBzNKZLO9Y3mvZCfkTWNSyiNZQKxbVgiqrdIQ7KLIW0RnpRJEVrDorraFWCiwFeKNeNE3DYXTQGmzForMwzD2MQmsh67rWsa57HU6Dk0QqgT/mJ9+aT1uoDQmJKlcVFc4K6n31VHdXE9Ni/O7T3xFLxjip6iQqHBU49U4cRgctoRbyzfn4434SiQSus1+j1VeH25yDpOj5pObdTAAJwLrudbxb8y4T8yfSHGzGpJrQyTraw+1km7IZ5h6GXW+nvqGVQFcEu8HBmvnNeFsiDJzsRivz4VE7GOYeRpF12xrsC9uuyFrE4YVHcLThdOrm+9CbVS7fx0xDqprlnSsz87WF23h+zfPcNPkmFHnHNziUJAldtgno24lTEL5PkbUIh8HRK1ihwl5BQaKM2hUdGK16XAVmdIb0aZ2macypncPjSx/n4rxrWLKwncWxDsYcUELJUDd6t6lXh+JIIsKarjX4oj5uW3Bbr1CHPy/6M0XWItpCbeRZ8sg2ZmNRLazxrEHTtMz3ryBsq/ZQO4taF9ER7iDPnEeeKQ+9oqfOX8cm7ybm1Mxh/5L9aQg04NA7yDPnEd7v10SmnkdSS+LUO7GoFrTWJZgUE3a9HV+sp5O7y+ii0FqYeR1PxnlixRMoKFxXeRPWiIuEIcr6jo0UlBWgz7f0V81+dbcEWf15M3Uruygb5aZqcgHOPPN2fX+EXUugO8LGpe2s/rwZd5GVUTOKyS399hHbG32N+Fqj/KH4L8SNYf7T9iz3Vb/IhEMfJUAKf2A1Cgp6RU+qn4yRbGM2XZEu1nvW44l6yDZlY9VbGeocSpY562fcU0FIa9noZdkHdQS8MUbsW8SAoa5+bxrV+mp5e9273DzwDpSoAZ+hgyc2PsJxg4/LhJBkm7Iz38cNvgY6Ih2Z5ZOpJPFkHOOU82gadRidkU5yTbmU28vpinbxaeOn+GI+4qk4Va4qhrqGimCe3YhFZ+GYQccyTtuHjR92E+zSMWTSPhyQ28wfPv8Dw9zDKLYV7+xqCsK3chgcnDvqXBpaWzgyeSab3g5izbYybGIeG9xtJK3FlO2E+w6C0B/VZUJ1pa//tZRG8wYPSz+oJ+iJMnzfIkpHujFYFdZ1reNPC/+UCSABmFM7h5kDZrLRuzFzT9ZmsGGQDSiyQjgRxmV0scG7AZNqYphrGCW2ElRJzXRyBBjuHk5e0SQ4/Q3w1oG9CArGpJ9TCMJuJpaM8dqmt5iddRLtXyQIdsWZMulQ/IVN4vxmD5RnzsOOk5ty/0ztxz5ajApFe2ezyvc1I4vH7ezqCcJurVcbjPF5VI7PxdZPyKog7CipZIruthDe1jAr5jUQjyYZPbOEkqEu9Kaf1GQLANmsw2Dufe+sOdDM7z//fa9z80eWP8LY3LG0mS0EdflgK8FkKWRi++csbOlp5iUhUWrb9gFahO+2wbOBgDfM1NiRbPjUhy03B+vkQppP+TcFucN2dvUEQdgFpTQNRZZQJEmEkAiCIAiCIAiCIAiCIAiCIAiCsFP91Cfae2uaNkqSpOWapt0iSdLdwCvbo2K7u87GAK/fv5RoMP3Qv6M+gKctxH4nDkFR+wZ9tAfbkTSJ9mg71827js5IJwBm1cy9M+5lSuGUbd5uU3WQaKiQosqh5JZkoagylQYLd+93N0+tfIpGf2Of5Ra3LiaaiGLSiQY6e5LPGz/nso8uY3bFbGp9tSzvWM4146/hxs9uZErhFBRJ4aP6j/jLvn9hdsVs3tn0DrIkc+SgI9HLeq6eezUmnYmDSw/m8RWPc/aIs3nk60fwx/ycOfxM7lt8H8cNPo7nVz/Pes96frPXb7j+k+szjWEGOQdx46QbueiDixiRPYI8cx5vbXqLK8ZdwZ1f3pnpdGzX23lg5gNcM/caphVPY17DPKLJKKcMPYUFzQt4df2rXDLmEq799FoOrzicen89y9qXpffl8xuZXDAZnawjGA8SSUb6vA+rOlfxZcuXNAYaObgsvS9GxciVA38Lq5pRw90YTToU1cD7r60iHk0C6c91xf52HlD/hior3D/zfgbYBuy4f8A9QKm9lJONFzLvuepMWcNqD9MvGtFn3qXtS+kMd5Jryd1h9fN3RWiq9tDdGiKvzE5+hR2TVb/Dti/sHopsRdw/435u/vxmanw1DHMN4//K7uHNP60gEU8Hhow/tIyxB5agN6nU+ev4w+d/4Nbyv7DmmRBsbpfy3qMrOfTikZhtehrXeZAViaLBWSxJzeequVdx/qjziSajvbad0lKs6FzBo8sfxagYuWzcZUQSEZ5b/RydkU5sOhuPH/w4Q91Dd/TbIvwCdUW6+P3nv+eTxk8yZZeMuYQJeRMIx8JYVAtD3UO57KPLMtMn5U9iVvks1nvWI0syC5oWcMmYS0ikEuSYcrhr37u444s7qPPXUe4o59a9b6XAWpBZPhgPst6znt8V/5F1L4TxxlOAieyDnUTz43iaQ70+Dzkl/QcChnxR3vvHCjobg0D6nLpxrYfDLh6JUXyv75ZSyRTL/9fAkjl1QPq8btPSdo69bjyugv7Da7xrU3Q+YyeV1ECycO5hV/OY4y/URtrRPDpcXUUEvXFM5QbOHHI23piXL1u+xGFwcNrQ03AZXdy35D6WtC0B0o29Lx93OW3BNo6qPGpH7bqwh2qv9/PG35cxekYxtmwTLRu9SLJExZjsPiOzRkNxjvCeRc3rAQBUfT6/O+mP1KqrAKhwVHDrPreSZ8mjLdhGjbcGnaojmUwS1+KEk2FcehfPr3med2reyaz3otEXYdfZeavmLVZ0rADSn4N7pt/DAaUH7KB3QtgR9tHN5N37VpNMpM9l2+v8zDrieD7RfYQn6vnBnXS97SGaq714O8MUVDjIr3Bsl048gtAfSZIY7BiMc3klS99rBqC9DupXyBxwyWD8hs7vXF7TNNrr/DSu8wBQNNhJTokNSZJ+7qoLe7i2Wh+v/XUpqZQGEhQ2B4lFEgT9EZylZnLVfFaystcyG30beXT5owCcO/Jc5tbN5dThp6JKKotbFtMV6yKpJZnXMI8KewUPzHyAe2fcyy3zb6E93M6o7FHcPOVm7NY8sOZtW0XDHpAVMHx7WLsg7AoiwTitm3y0bPTiyDFRWOkkaY1wlO0kvvxHG8l4z3nOhCNKyS7L3sk1FnY0k2pieGAynz6zMVPWsNrD9AsnEo1HMegMmfJoKE7Lxp7jqaDSiSNbPI8VhB+jqynIG/cvIxKMA5vbYLSG2O/k3m0wOhr8NFV7iEdTFA12kltqQ1bEYCzCz2Pjsg78nRE+f2V95pldy4YVHHz+CAaN6/+5dTyaoGWTj+ZqD1aXkcJKJ85cMySiEPWDKSt93vwtvFEvnqinT/nqrtXct/i+zOvb9r6Ny8Zcxn1L7uPL1i9xGV3cOOlGBmcN/kn7LPQIxAJM6TqMxe81MnTvAqxZBnxLY1gq7TiMMcx28YxJEITekikNRZKQZUQIiSAIgiAIgiAIgiAIgiAIgiAIO9VPbZG/pbd+SJKkQqATKP+J69wjtNf7MwEkW6z5vIXRMwbgLrL2mT+eiqOqKp81fkZnpJPZFbMptZcST8VpCbYQS8TQq9/9cLqzMcCrdy8mGtq8XQlmXzCIkpEF6BQdB5QewMjskSxsWUi1p5qDSg8iRSrdAcRSLAJI9jDdkW7uXHgnKS3FANsAXtvwGnsX7s37te8TT8UZlT2Kvy/9O5XOSubUzqHOX8ed0+5kdddqFrcuRpVVOiOdnDPoHJ5b/Rw6WYcqqzT4GzhhyAk8u+pZAHLNuazuWs0BJQfw2vrXeo3GY9FZeGbVM0SSESbmT+TBZQ9SaCmkxleTCSABSKQSfNH8BS2hFrKMWbSGWgFwGpxs8GzgiIFH8OLaF0lpKUpsJby+4XWmFEzhi5YvOH/U+dj1drxRLybVhD/mZ1n7sl7vxdjcsTyw9AFOGXoKz695HoArB/6W8Cs5LPe3Zebb//SqdKfTrdR9EmD2iUfz9/V/ZUXHChFCsp1FgnFWfNTUq0xLaXg3JLhyrysJJ8IsaVvCguYFzCieQWOgcYeFkIT8MT58ajWNa7szZeMPKWX84eUooiGjsFkilaDWV4s/5qfIWkSOOaff+cbmjeWpWU/RHe3GkXDz1t0rMwEkAIverqFkmIuCQU66I904DU6UWgdovTvAhXwx3n14RbrTEaDqZQacmj4djCQiZBmy6I72HLMm1YSmpeeNJCPMb5pPMpVkVvksnlv9HP64n9c3vC5CSIRtsq5rXa8AEoCnVz5NsbWYcfnjaA21cvXcq3tN/6LlC2YPnI3T4OTR5Y9y1oizeHb1s5wz4hzCyTDtoXZumnQjNn8bhYFOsrR0B454Mk6tr5ZAPMDvRvyBpY94Mx2AAFa+10rZoDzeeejrXp+Ho68aR26pvU/dPa2hTADJFi0bvXjawuSLEJLdUqA7wrKP6nuVxSJJupoC/YaQdNe18ulzG3vOBTVY/5afqy+5Eatk4suXW6nvas/MP/6UAhx6BxeMuoBgPMgLa17AG/USS8Yy82hovLDmBQ4qPYg1nWuoclf9PDsrCEBHvZ+R+xWz8pMmQr70cbhibiOzzh/BwG90hjB2O6mZ25B5nYilaHwzyZSLprL34XuTZ8kjy5hFZ7iTpe1L8UQ9FFgKUCSFWCJGZ6gTVVJ7BZAAPPb1Y9y///2ZABJIfw7+uPCPjM4dTY6p//Mk4ZfHUx/JBJBsserjVq4743fkmbexk/pm/u4I7zzyNZ0NPb/T006oZNQMce0t/Dzi8TjmmJ01H1f3Kk/EUgSaEgSsvm9ZMq21xsd/716S+QwoqsxRV40lv9zxs9VZEACaqj2Za5/h04qoW9lFV3PPd+fJx1zE+L3GMbdxbmYUdJPa8zzgudXPcXLVyXzZ8iUT8ycyq2IWX7V9RZ4pj1J7Kc+vfp7lHcs5tOJQ/uX+F/6Yn1xTLrZtDRMJdcGaN+Gz+0Bvgxm/hfL9QGfcfm+CIGwnmqax+vNmPn95faYsp8TGIReNRO6w9Lr/ALDioyaKxlmxmUS4zp7EFwywbl5770INOtfEcJd3k6/LTxdpGmvmt/Dpf3rOLbIH2DjskpFYneI7UBB+qPZ6fyaAZIs1C1oYOaOYnAHp7+GOej+v3r2YWCQ9qIQkwRFXjKV4SNYOr6+w+2vd5GXh6xvJK7dnAki2WPZBHWUj3X0CgAE2LGnnwydXZ17bc0wccW4xjoU3Q8OXUHU4TDgXsgf1u91ccy6ltlJq/bWZsjxzHiXWEs4beR6JVILXNrzGvYvv5e8z/86te99KLBXDorOgV/R82fIlnZFOSu2lVLmq0CviOciPVUolb368krJR2QQ8UVZ/ng40XfVpEyP2K2SfYytR9d8eKCMIwp4jGgrRXreJVApkGVRZJpxM7uxqCYIgCIIgCIIgCIIgCIIgCIKwB/upISRvSJLkBP4MLCb92PwfP7VSewKtn6B6RZFIpVJ9JwCKpKCh0Rxs5vCKw2kONvPGxjeA9MjANr3te0cGblzX3RNAAqDBl+82UZATRlc0BIA8Sx7j88ZT56vjsRWPkUglKLAU8Kdpf/pxOyr8YoUT4UyYRzyVbqzlMroyI7NvKXOb3LSEWljdtZpqTzWPr3icCkcFHeEOAFRZJZKMYNPZCMTSI2U7DA66Il1AugM+gMvk4qvWr3rVwWV00RBId25LasnMfO2h3g03bXpbpq4N/gYGOQex0buRaDKaWU9bqK13vY1uxuSN4S9f/oVIMp2nVGYv4/JxlzN9wHQ+rv8YWZI5pOwQJEkikoygyirhRBidrKMyPJovtmq0A7Dsf/WUjnSzcUlP/RSdTFhL16Mr3LXN77+wbcL+GKqub6CHJMMr1a9Q46th+oDpXD7ucgZnDaYz8t0jEm9PXU3BXgEkAIvfq2PwxHyy+um8LOx5QvEQL697mXsW30MilSDfks+90+9lePbwfud3mVy4TC46mwIEuqN9pge96bI8Sx7TcqdjaOndSD23zEbN8o5MpyNId5RTapzkmfP47/r/cuHoC3ly5ZO0hdpwGV2cPeJsnlz5ZGb+1lArxdZirLqewLQNng0/5W0Q9iD+mL9vWdxPJBlBQiKpJXuFjG0RjAeJJWMktSQSEp3hTqKpKFfPvTpzHjHKOZi/GAfC538ncMbr/KvuPR5Y8gAJLcEtQ+4k5O0dppdbamPVZ019Pg8bl7b3G0LybaNgyooYsX53JUkyiiqTSvRu3NfvsRDsoKMpSjzSe15Ng8a2VmzYCXTFek1b83YXebMKeWT5I5myhkADA2wDWNnZMwJ9e7gdo2oknAxvh70ShG+nqDKSRCaAZIsFr2+kqCoLo1kHQCql4Wvtex7i74yyqHYpjzc8yF+n/xUNjdsW3MaHdR8C6fsWt+x9Cw6DA03S+v1NiKfiRBKRPuUd4Y5+y4VfLom+36WKTqbUUkYgFvjWYL7+dDYEegWQACx4bSNlo7Kxu0WYrrD9JUiQIoWik4lHe//2p5KQTH13x4DVnzX1CuFJJlKsW9AiQkiEn5201bWLxa7vFUACsPytFrTjE1j1Vo6tPBab3sYnDT0hkuFEGFVWaQ+14zA4uPR/l2buqZbYSjhj+BmZ+2655lxyzT8wBHjdu/D6pT2vnz8eznwLyqb+wD0VhJ+fryPMwtc39iprr/PT3RRE7uc8R9UpaP0/+hN2Y3JKRumnU7msSJDoKfd1RvjiG8dTR72fzoagCCERhB9B66cRhqxIaFsNIlG7qisTQJJeBha/W0vBQDuKKoIAhO2nrdZHzYpOoqEEitr3HEFnUJGkvs8Ygt5or7AzAF97mI61tThWvpIu+OIhaF0JJz4Pxr5BZy6Tiz/u+0eunXstDYEGKuwVnDPyHG6efzPBeBCbzsb5o8/nyRVPkkgl0CSNCmcF3ZFu7vjiDt6teTezrjun3clhFYf9xHdjz6VDh6LK5JbYWPjmpl7TVsxrYvi0IrKLRVidIAgw99nH+frD94hMuRKb1YwsSyRS/TQwFQRBEARBEARBEARBEARBEARB2EH67023DSRJkoEPNU3zaJr2MlAKVGmadvN2q91uzJplwJHTuzPE8H2LMNn6H0EklUqRSqXYp2gfSu2lLGpdlJmmoXH7F7f3CWb4pmgo1qcsEoZkd+8RvpuDzTy8/OFMp87mYDN/XvRn/NG+nYSE3VeOKYcjBx4JgF7Ro0oqX7Z8yb7F+wKQ0lJYdBaWty9nUsEkAHwxH3nmPGp8NVS50iO1b/l/f9yfaXz+VetXTC2amlm3LMl80fwF0wdM71WHxW2LOWLgEQBEkhGcBidru9YyOmd0r/n8MT+TCyYDMKd2DsdWHkuhtRCLzoKExPym+cwYMAMAnaxDlVViqRhzauZkGstvqWuDv4FIPMLt+9zOr8f8mgZ/A9FkFIfBQYE8gJtH3crvht6CFu779RkLJbE4e3+GSw8w8WrTfwAY6h76Q/4JhG3Q1Rxg2NTCXmU6g4Kr1Ey9P/3d9nH9x6CBVbVS5ijbYXX75oiXkO60+c0Rv4U917ruddy16K7M721LsIVbF9yKL/rdI2eb7XpcBeY+5fbs9HlFgaWAE/JOw+owomwV0qMzqETDiT7LEVYxq2Z8MR8PLH2AmSUzuXu/u/njPn/E6Ldzac51XF/5e4otxexduDcAy9uXZxY/ctCRP3jfhT1TubMcvdz7d3Jc7jjcRjfBeJBkKsnE/Im9putkHdmmbEyqiVJ7Kc3BZs4acRYPLnkw89kBWO5Zx0pXMXRtZHX3Ou5bfB8JLT19deRrHLm9O23ojGqfETEBwr6+58sAzjwzpSPcvcoGjc/Fmdf3syjsHmxuIxMPL+9T5i629pnX3+6nrSmGyabrVS6rEhGTHy3RtyF5NJygxFLWq2x68XTm1c/rVbZf8X4EYgFKraU/ck8EYdvklNh6BTNtEQslSG0+f40EY3Q2+vt0ugdwFZlZF11JZ6STGz69gVpvbSaABNL3Lf761V+xqBZkZAqthdh0vRvXVzgqMOlMKFLvDj+zymaRa/qBHZmFXZozz4TR0vs7c+T0YuZ3fEq1p/pblupfItb3+ioRTZJKiMbZws/DpDNhMhoYe1BJr3KzXY8j20i2Mfs7lw/5+p6DBr/lHFQQtqe8Mjt6UzqTvr/f/EQsiUky87+6/zEiewRfNH3B4rbFmenD3MPY6N3IIeWH8OLaF3vdU63z1yEhMdzdf6gqmgZRP3xLADuxICx4sG959Zxt30FB2IFSSY1EP/d4E/EU9mwjRmvv85xR+xdjcxj7H51A2G1puiTD9imArW4JqDqZvDI73uaeoNFUIkUi1vcaq78yQRC+n81txJH7jTYY0woxmHvuNUT7uy8ciBGLpPB3RYiLz5+wHQS9UdYubCEeSaJpGvYcU69ndkgw9qCSfsNJUskUsXA/vw3ffMRXMw+6N/WZb4uR2SN59tBneeaQZ7hpyk3ctuA2gvF0GKE/7ufhZQ9z0eiLMCgGXAYXkH52uXUACcAdX9xBU6BpG/dc+KawEmLU/sX9XoehQSLa9ztJEIQ90/ovFwAQjUSRJQlVlkh+270UQRAEQRAEQRAEQRAEQRAEQRCEHUD9sQtqmpaSJOluYMrm11Gg73C4Qr8igRgTZ5fTXu8n0BUlp8SGzWWAb2mDWGAvoKa7hkpHJaF4iEpnJQeUHkBSSxJLxnil+hXCie8eHbuo0pFu7LbVNsZMMWM0hXrN1xTs24Dg646v6Y52YzOIETj2FDpFx9kjz0ZD49XqV7l2wrW8sOYFUqkUJww5gdfXv84V467g1epXqffVc9bws3htw2tcOOpC3q15l8Wti7l49MW8uPZFzhpxFjmmHD6o/YAr97qSZ1c/y68G/wqzzsyb69/k2vHX8tyaZ7HqrBwz6Gje3PgWWcYsrptwHSOyRxCMB/nP2v9wyZhLeGPDG6zuWs35o87nX2v+xeyBs8k357OicwXXT7yefyz/B48sf4TrJlxHib2EP+/7Z+7+6m6KrEXMrpjNq+tf5drx19Lgb2BV56rM/pbaSzmk7BAsOgu/GvwrHl72MMcNOQ5VUQkGw9yT/zjr/9vN8GlFLH63luHHmpCk3u2GB+6Vg9muZ6/DSvB1h7BXyrzofQJZkrl7v7u/vSG+8KMFuqIgwX4nDaZ5ow+9USG/3E7CHCSp9TTOqvZUc8CAAyh17LgOvFn5Zkw2HWF/T8OhAUOzsOeI0biFtMZAY5+yVZ2r6I52YzfYv3U5k1XP/qcP491HvybQHUXVyUw7cTCuQktmHn3UxNIPVjNxdjm+9jCJeIrsAVZkY4rmam+v9ZWMdTLUM5Q6fx25plwqHBU8s+IZrsm+je5nYyQTKWTVzR+Ov4d6yyrG543nhk9vwKazccHoCzLBJILwfQY6BvK3GX/jz4v+TI2vhr0L9+a4wceRa8pldddqklqSC0ZdgFk180njJ5TYS7h07KUEogFqvDUcV3kcjcFGyuxlNAYbMatmjqk8BovOgizJJBQLSDJNm0ff3uLVhpd47NijWfavjvRnRi9TNCQLRZH6fB4Gjc/rt+5Gi479ThpMw9puWjb6KBzkoHBIFnrjj76cEn4BqqYU4MgxUbuiE2e+hdLhLhzZfX/Hg0k7qz5dycTDyvnq3RrC/jh6o8Kk48q4rvFCzi38NbJq7tUhvmwfO5o7ilVnRZZkzhp+FvmWfG6fdjt//eqvNAWa2G/Afkwtmsog5yBcZteO3HVhD5SVb2HAUBdL3q9D26pB/OiZAzCYddR83cGC1zYw4bBy1n/Vxl6HlLHsgzoS8RQ2t5GxRxZx17LXAWgINOCL+5iYP5HxeeNJaSk6I528uv5VZEmmzF6GltT4075/4u9L/s6a7jVMyJvARWMuYlnrMq7a6ypeWPsCzYFmDq04lAtGXYBBNeyst0b4GUTDSaYeX0lbjY9wIE5euR2jRaU92IFs/mGdc12FFnQGpVc4TtWUAmxuMWq88DNKyOj0MtNOGEzLBi8muw53oYV4Kk6Zuf/zyS2GTS2gZnlHr7Khexf8nLUVBAAcOUZmnjGUhjVd2NzGPt+dReNsvNL9NJAOhr5ywpX85cu/sN6znokFE9mncB+6Il2U2Euo89dRbC3msIrD0NBIaSkMsoFh7mF9N9xRDUueher3YNABMPZ0yBncex5ZBUtO32VNWdvzLRCE7cbmMlK5Vy7Vi9oyZXqjgj3PSO3ydvY5dhDtdX7CgTj55XZMdh2OrrVgmfgdaxV2N04tSac7xX4nDaFloxdVJ5Nf4aBxnYe8oT2htja3kcET81n7RUumTGdUet3rFQRh28UjCSYdUUFbrY9AV5TsAVbs2cZeWWilI9wseb+u13Ij9i3if0+vomF1N0VVWUw+ciDZ/YQRC8L3CfmibFjSjizL+NojNK/3MOGwclZ+0ph+ZtcRRpIlBo3LJb/c0e86LE4jo2YUs2ROz3GqqDJu/Tfa8cgKfM89M7fJjdvk5qO6j3oFCQIE40FyzbkoyFgW/ROGH40/5seut3N05dEYFAOyJPNh7YeEEqFv2YLwfTxhD3a3E9WgYHMb8Xf2/DvkDDDjzBb3sARBSEtE081u47E4iiyhyBJJkUEiCIIgCIIgCIIgCIIgCIIgCMJO9FN7zb0vSdKxwCuaJobw+iFUvcLnr2xg8IQ88iuMdDUFCHiilI3+9tEyNVnj+nnXc8e0O2gqauLR5Y+S1JLY9XauGX8NuebvHhk4r8LF7Asq+fLdJiJhjTHjNco9j8LbX8CZb4It3Ui+vxGGK52VOPT9N4IQdl8DbAO4cdKNtIfbMakmDik/hFAihNvo5tyR56LKKoeWH0ogHsBldHHK0FOQJIkjBh2BN+rFaXDyq8G/IqWlOH7w8XRHu7HqrBwx8AjiqThOg5Muby3mpf/iUP1gwsEIrvZaLpz2Vwx5I3CZ0p0tLxp9EcdUHoMqqRxecTi+mI8sQxbHVh7LvYvv5bnVzwHgNDg5behpHFh2IKX2UmRJZlTOKCYUTCCWiBFMBJnhmYFNb2P/kv2x6C08tOwhBjoHMrNkJo+teIxEKoFZNXPXpJsYljuWIwcdSdMqH+8/tZqR09MBJCFfjHgkwd6/GsT6RW1EgnEGT8wnu8SMxa3H4JKJpiI49A5Ko1ejV/S4Te6d+U+528ottfPKPYsZOCaH/AoHqaRG0BdDjx5VVkmk0kNCDckagsVgQZKk71nj9mPPNjH70jEsfr+W1k0+KsbmMGJakeiwLmTk9dM5baBj4Db93uaV2/nV9ePxd0UwmlUcOWYkOX18B71RWmq8qDqF+a9swOzQo6gyLZu8jDjdTtWv7LR9lgQVqg5w4yo1cdvw2zhr+FksaV3C2JyxTDLty/t/WUdy86iuqYTGkn+3ctwNB+EutPHKEa8gIZFr+e5zD0HYmiRJ7FO8DyOyR9AYaESVVZw6J1Etyn4D9iOaiPLahteYVjSN2RWzaQm14A93sk8ozF7FBxI0O5hauDeSpDC7Yjal9lIe+/oxOiOdSEicNex09t7/d+RZi3ptN5qM8nz345xz1G/obgmjpTRWf9qEM9/MtBMqWTmvCVmVGLFvEXll3x64Z3ObGLq3iaF7F/7cb5WwizBadJSPzqF8dD8dIjfTUhpNGwIUDnKy8M1NVE3OR2dU0VIpao1raAg28FDDX7nx9Nvp+lQh1BWnaKIJfVWUZ6pf5oZJN2BRLbQGW3Eb3Qw0DOThmQ8TiAeQJZk8Yx5Oi3PH7bSwRyusdHLE5aP58s0agt4oI/crZtD4XNrr/Lz14HKGTMynblUXql6h+ssWRs8cAJJEPJpgYeizzLl3jimHLH0WDoODB5c9CECxrZibJt1EjtFNMpUAJBqCTcwsmcnFYy4mkUzQ6G1kVtnBeKJeJhVMwqq3kmPKQafovqPWwi+RokgsfLuGwRPzsGUbaav1Y7LraMlqYLJ9/A9al6vAwhFXjOGrt2vobAoyZHI+Q/cu6HckYUHYXmxGK2tbO/C2hykZ5iIZS7FuYSujDyzGvORZmHIJKP1f+xdWZnHQucNZ9E4NkgTjDymjsNK5Y3dA2COZ7Ua6W1owWnQkYklmnFbFqs+a8LaFKd0ri9U5n7N441cADHIMYnn7cu7Y5w5SpNDLeqKpKHpZjyIpnDD4BCLJCI8uf5R4Ko5JNfGHKX/AqH6j81ywE145H5oWp1+3rYYN/4PTXgPrVufYqgGmXgmb5kJqczCK0QGDZu6Ad0YQfjhVrzDpyArs2SbWfdlKzgAr42aV4c630lEb4OuPGqgYm4Mt20jTeg8FAx0k7MGf/EBW+IWxuNGrbTS3eMgutqKlNFZ+2oSnNcSQKSMys6k6hYmzy7G6DKxb2Iq7yMr4Q8vIyhchJILwY+iNOj57eTWV4/PJKzfibQvSWuOjYKtz7rxyO4f9ehRfvllDLJxgzAEDaKr2ULM8HW5d+3Un3S0hjrl6HBaHCEUVfphNyzoIeWMs+aCOCYeWUbO8I33feEo+sXCSyvF5FA3+7rA9WZYYOaMYvVll9WfNOHJMTDikGPey63rPuPflkFWxTfUqsZegk3XEUz2DZxgVI9mGLAY/sj/EAtBdS+nk87lo9EU8tOwhfDEfiqRw5vAzyTKIgMAfy2I2UlvdDZLEtOMrqf6ylZZNPgYMzWL0eBmjw/z9KxEEYbeXiMWIR9MhRYlkEkWSUCSJZEqkkAiCIAiCIAiCIAiCIAiCIAiCsPP81DZvVwIWICFJUgSQAE3TNPtPrtlurqspyPBphaz7opWgJ0rF2BwURSLsj6Fz9//PsqZzDTWBGmr8NTy18qlMuS/m45HljzC1aCpG1UgqGiVWX48ky+gHDEDSpTvsKKpMibuVguK/k9Q7Ma56A8Ld6ZV0VmdCSIa6h3L2iLP554p/AmDX27lpyk04jCKEZE+kU3QUWns62zpxApCv5mfK7Ib0R37rhuYWXbqBpFnX02jCpOs7cnyhewiMORXq5pPlbYTxZ1NQsBcYehpYSpJEvqVne1Z9euSpWn8t72x6J1PuiXq4f+n9jMsbR7mjPFPuMrpY3LqY/y57nqnKEOqkMB+aPuTEqhPxRr24jC4eXPYgKS398DaUCHHTort4ccbfsdiLaPi6HgC9SUfIFwNg+ccNDNunEHexFUmCkOJHztGRV7AlVCD9eSnQidFsf04Wl4Fpx1Wy6tNmWjZ6GTgul1g4idopUWGvYJ1nHaNzRtMebme9Zz055m/vRPxjxBoaSQUDqHn5qM6+35E5JTZmnjmUeCSJ0azLhEQIAsAQ1xDOHXkuj339GAA2nY2bp9yM0+jcpuUtDkO/DWC97WGWvF/HlCMH0rC2m9YaH7mlVkbNLOK4BYeBBNOnziSeivH3jZ/z9JCnyVNyWO9Zzx1f3gHA78v+RCLeu/NQMpEi7E93Ls6zfPfo3luLt7eT7OxEcbnQ5YrQEgEcRke/55VvbniTh5c/3Kssx5TDvtYxlLx+RU/hr57glKGncN286+iMpBuGa2j8c9VTjN//74zKHsFpQ0/jmdXPAOmQslOHn0qRmkVHfYB1X7ZituspGe5i9WfNDBiWhc6o8vkrGygZ7kZvSp87a4kEsfp6tEQSXXERiqnveYyw+/q2a6pviseSrF3QQtnIbIwWlepFrThyTIzYr4i3wp8A4Il5qDGvYvXotZgkE+6yCSzqWMHYvLHc8OkNmXWdOvRUrpt4Xb/bEYQdQZYlioe4yCtzkEykMFrSx33N8g7QwOoy8NW7tUw8rJyuliCrPmvCVWBh5IFFXL/ifgBMqonLxl3G0valzKmdk1l3g7+BBU3zme33o3OVE3dXcueqJ1nQuqhXHc6tOoXLJ12/43Za2Ck66v0M3buAtQtaCPljDBybiwQcX3oy6o/InMkvd3Dw+SOIR5MYLbodGj4p7JkCnhjJuIYj28zi9+ow2/UMmZRPOBCnVUqS560HV3m/yxpMKpXj8ygZ7tr8WgQtCTuONctAW42fVZ81YbLqGXPAALpbg9gqJR748l4AxuWOoyXUwgtrXqDeV89tU2/LLF/dXc0Fcy7g8nGXc/PnN2cCyMKJMLctuI2ROSMZYBvQs8GuDZkAklTxVGLZ+yKRQt9dh2T9xj26kilw1ntQ+xnozFA+DXKH/qzvhyD8FI4cM5OOrGD0AQPQGRRUnUJnqJNYOEHZyGxWf9aMpmkMnphP03ovJQVGssJeMInnbHuSYFcCo1VPy0YvjevSYSTjDykj6I/2ms+ebWLSERWMntlzPAmC8OOEgzFG7FvMhq/a8LSFGDDMjSvfQiyY3PLoFlWnUDYim8JBTrQUdDQG+Pi5tb3W42sP4+sIf28ISaKrm0RbK7Ldgb5QPBPembRkMn0/Px5HV1y8U+7nx6NJVsxrpHRENslYivpVXUycXc7aL1qoWd7BmANLcBdbt2ldNpeR8YeUMWLfQhSdgk6vQN4tUHUodKyFwrFQPJFtvZFSai/lmvHXcNeiu0ikEuhkHeeNOo+/Lr6Pe6tmYV/+Eix7gcj4U3lu9XP4Yj4AklqSx1c8zv4l+4tBV34kXcKITh8nEU/x8XNrKa5ysvexg4iG4xga34DyIjBs23EhCMLuK+TzZP4/mUohyxKKIpFMiTEBBUEQBEEQBEEQBEEQBEEQBEHYeX5SCImmad8+VLjwncx2PR8/t5bSEW6yB1ipXdFJTokNk0VPorOT0KJFhBYtwjhkCObJk9EXF6OhISERiAWocFRwaPmhxFIxDIqBeQ3z6Ah3YPfE6Pjb/Xhfew0UBdfpp+E++2zU7Oz0hlUduvWv06cpwlYjC9v0Ni4cfSEHlR6EL+aj2Fbcu/GwIGxv7oHpvx9I0/p/2LolTGQLX9SHrqaJs55sIrL4LUrMZva57CI6Czu5esLVfLzp/T7LdEe76UwEKQDs7nRH/EgwjsVpIOiJ0t0cYsF/N1I2ys2wA3Ix5kvkmkXn+h3NaNHR0eDHkWsi12Rjw+J2gp4o+55cyZHuI8m35PNB3Qc8u/pZphZN3W7bTcVi+N97j5ZbbyPl92MYPpzCO27HOGRIn3lVVUG1bp9Gw1o8TvjrrwnMm4dsMGKZNhXTiBHfv6CwS7LpbZw/6nwOLD0Qb9S73X5v9UaFVFLjs5fXkz/QQcWYHDobAwQ0HwPsAziw9ECiySgGxUBDpI56fz0DnQPR6PlO9avd6AzFxKPJTJmqk7E49H22F6tvIPTFF0TWrsE8fjzm8eNR3emGiKFFi2i89joSTU2oubkU/OlOrFOm/OR9FHZPWx+DWyS1JJrc8x2adJaw3p7Nxq7V7F+yPw6jg/lN8zPTN3g3MbV4X3499tccWnEo/pifEnsJRdYiAPLKHUTDCSLBOPNf3UAqoZFbZmfjkhaMVhVVJwOQ6O6m+9nn6Hz0UbR4HNusWeRedSVaPEHw88+J1ddh3WcfTGPHotjEJdHuQEsmCX+9guC8eegrygl8+hm+zddUWaeeQvY556Dm9A0z0xkUiiqdLH6vFmeemfLROQS6I4QDcU4euD95ljxkZJ5b/RytoVYAJpTuhU1vw6azcfnYy3li5RP4Yj6SqWSf9QvCzqC1NBBesADP+vVYp09HjaXvJ/g6IrjyLSx8cxPuIivlo3PwtYcxmfQ8ftDjdEW70Mt6bv7sZqYWTyXPnMcxlceQ0lKoskqNtwbfsMNxm9xooc5+R/BLaGJUvz2B2ann03+vp2xENjmlNjYta6doiJO2eB3edg/D3cMxqD9stGlVJzprCjuOXorTXucn7I9ROsKdPrf87wb2O2sgkqEE5O+/5S7CR4SdQVEVNi5tp2SYm2g4wUfPrqVkuIuS0UXcMOkGPBEPGzwbeGHNCwC9RklPaSn+s+4/tIZaaQm1cO6Ic9HQUCSF9Z71vF/7Ph2hjt73NTY/c4iNuIT2eR58c54CVcV9uozr7LLMvYPNlYMBE2DABKLV1QTe/pxE6+tYpk7DNHYMilmMDi7seiRJwmTtuVfWHGxGVp0s/aCOslHZIEl8/XEDhYOdKPFWkEfuxNoKO4PFrDL3nXU4881UjMnB2xbii9c3csCllX3m/ebxJAjCj2NxGHjvkRUUD3VRPjqH5g0e2mo0Rs/s++xFb0yft+v0cp9pkpS+7/ddwitW0HTtdcQ2bkTJyqLg/27DOn06kiKuTXe0hMdD9/Mv0PnQQ2jxONYDDiDv2mvQl5Rs921pmkZkxQoC8+ahJZNY990X08iRSIqCrEo4sk1IEig6mcZ1Htrr/JSNykbRy5QOc2E0/7BrQaNlq98GRzGMLP5R9VZlFbPOzLkjzyWlpZAlmVerX0WWZDQp/fzEM+pXfNm2mIZAAybVxIlDTsSgGJAkiVA89KO2K0BnqpX2+iRBT4yyUdmEfDHmPLaSKccORE0FtukegiAIu7+Qx5P5/0QyhSpLKJIIIREEQRAEQRAEQRAEQRAEQRAEYecSTzN3kpwSG4P2ymXdl62ggTPPzKj9i1EUjfbHH6frn09k5jWOHcuAv9/PENcQXEYXOaYcDik/BH/Uz+SiyXSFuxibMxaLzoL/jffx/ve/6QUTCbr++QTGESNwHHpousw9EEafDMue76nMoIMge3Cv+plUE8Ozh/+4nYtH0iMc1i8Eszs9imH2oB+3LmGnS2kpOsIdGFUjEhKhWACXvxOPrxadokOfVYHfaCPLmIUv6kOWZMw6M96oF4fBQSgeIkUKh95BV6QLq95KPBknloqRZciiK9KFWWdON9hJRnAZXHRFuzAoBlRZJRAL4DK68MQ8qJKKUTHii/lwGpyU2EuYUTyDjxo+AuDo/IM4ybQvuTVRokorHgtYdBZCIS+Op98huHgJAFoohO/OuymueBBpgESJbQCyJGeCSNxGN4eWH4rNkk8kESF/uA3jhzrWLWxh0uwKvnx7E9FgeqTP7MEmdG6NLIOL1mArZtWMhkY4ESbblI0ii4ZmPye9QaVqcgFzX1hHV1MQgIHjctAVJElFUyiSwjub3qHYWsxA5w8Puvk20TVraLrm2p7XK1fSctv/MeDhh1CsP3ykoqTfT2zjJlLRCPrSUnR5ef3OF1q8mLqzzobNHTY7HnmE0meexjRSNGD/pTKpJoa5h23XddpzTYw5sJil7zfQssFLywYvI6cXIWcl2KdwH3SPTdoAAQAASURBVPSynmGuYdR4a5hcOBmnwQlhD8PMhZw+7HT8MT8+QwdTThrH0hfaiEeT6AwKM88cijO3d6efRGcnTdddR3hxemTj7meexXXWWeRc+RuSbW00/PpSkpsbzCTa2mj89aUU/+NRDGVlqC7Xdt1vYRfXVQP1X4C3AYr2guK9wNA7vKPKVYVZNRNK9DRmPb/qZHLmPUr3uFNJmpxUF47k4o8vJ6Glf4ePqTyG68dfT0JL4DQ6yTJmscmzCVmWyTZlY9fbSSQThGIhzHozeRV2NixpY9PSDgByS22YbDr83REOuXAkJlu6QW948WI6HnggUw//u++iLy8nuGABkSXp84nup54m/5Y/4Dj6aGIbN5Ls7kZXWIi+tPTnfCeFn0Gio4PIqtXUX3wxitWK4+ij8G11TdX95FOYhg/HMXt2n2UlSaJyUh7NG7101AfwtIYoG+kmp9xC1FGGzruOFe0rGJc7jlE5oyixlfDMqmdIaklmD0yv7/Jxl3PHF3dwcPnBO3CvBaFHorub2MaNAChuNw2XX0FsbXoEYDU7G0NIIit3GBuWtLH3MYNY/G4tnY0BupuDTD56IDkDbDgkPWbVzJK2JTQEGsgz53Hh6AtZ27WWcCLMh3UfMmPADHxRH4FYAAmJi0acy5cfXZyphyzJ7D9g+ndXNh6GxsXQ8CVYsqFkMrjF/YZfmpwsKB+VzYbF7QC4Ci1UTcjm7chnFNoKCcaDPziERBB2pPh7rzBh1qHM/fdGVn/WjCRLjJpRTCIrRE7KBU4R5izsmgoGOhgwzMXqz5szzyQGjc8lO89BWXcZ539xfq/5j648OvP/3eFulrQtIdeUy/jc8fhjfpqDzTy18inKHeWcOPhEzDozbcG29AISSNY8dMc9QeyjGnzvv5ouj8fpfPxJjCNHY581q08doxs3UnvGmSS7ugDoeuJJCm6/HfPkSeizHdC4CBoWpTtgDpgMrrKf5b0ShB8jloyR50hSNjqHdQtbMp+z0dPyMBsiYoT7PUzC60WZ9xZ7HzOT+f/dREd9AJ1BYdoJlcTsXqBwZ1dREHZLTmOMSTOyWDi3m1RSw2TTceCx+Rgt394sxplvYeT0Ir7+uDFTNvbgUpx53x6ClujqovGaa4hvqgEg2d1Nw+VXUP7KyxgHD/7W5YSfR3jpUjr+9rfM68AHH2AYWEHOFVcgSdJ23Vboq6+oP+tstHg6sK/zkUcpfepJzOPHoygyow8s4YMnVjLhsDIWvV1DLJJk0/IODjp7GPacnRusV5lVya3zbyWWimXK/m/YuTg+vJv44ENpnXQeNev+TbGtmNOGnsYTK5/glCGnMMg1iNZQKw3V71Lsa03fj8vpOzCH0L+CrijZU1189Ho7qz5tQpJg2NRC3HkGDMZxoDPu7CoKgrALCHq7ATBYLCRTGrIsocoSCRFCIgiCIAiCIAiCIAiCIAiCIAjCTrRLhZBIkjQEeHGrogrgZuDpzeVlQA1wvKZp3Tu6fttTdrGN8YeWUzkhj0QsiSPXTHaxlWh1NV1PP0PJG68jx+JoyQSxri6i69czcNIknp31LO2Rdqx6K29vepvr5l1HviWfi0ZfhBxP4nvzrT7bCs6d1xNCorfCzJth0Eyom5/uBFo2DUxZ31vneFsb8eZmFLsdfWkpktx3VCAANnwI/zq557W9GM54PR2AIvyiNPobmbfpf9h9cUpyB7OqcxXl+gKWmyHU0cLAnCGsXP8xxZKLpNNKe+smBruqWBOtISdmxJidS13zGoY6hzAv2YItlMKVW8KGllVU2sr5QvGheAIU5JRzz4bHGZk9knxDNlm+FGU5Q1jpXUOpksMqqxFPey2V7qGsCm1ADUTAaWeaYxy3Dr4cX8GpmNsDSI0tdD18N21t7YSPOpLUsbNodigURYwE533SZ/9SdY28t/oNppiG8cLE+5nT/AljzYNJOMx42hvwN9WxMPIJeQkz+10wjlALJLUw+55XSiwYwmAzsNa7AKXGzaLN+1KUN4jV7avQx1OYcwuZZKzCaslCl5u7E/4F9wwFeVGmnVZBsDOBpiSpk9fzWONTHD/keCRN4tyR53JYxWHkW/K32zZjdfV9ysKLFpHo6Og3hCTe1oYWi6XDRSSJeEsLkk6HLi+PeFsbkbo6FJMJMJAIBEh6vBiHDO6zXOcTT2QCSAC0SAT//z7abiEkyWCQWG0dAPrSEhSLZbusV/hhEl1dxBsakC0W9CUlSLptHxWtKdDE86ufp8vu5YDTD8caycLmMlJSkUtDrJbjXDNJeDwEumJIUQvT8/fC4oFAVx3EgxxlmIhdZyRlNhBTIhx9UQWRmILJCBY8RGoC6NxuVIcDgGh1dSaAZIuup5/GfvhhJLs9mQCSLVLBIMF5n9D2xzsp/PNdGMrKfuK7JfwieBvgxVOgdUVP2ez7YK8ze81WmVXJPw/+Jy+ve5kafw3HVh7L+OxRvGVwcf/Kx4mEI8zOcjGzZCbv1b4HwPzG+RxcejAPLXuIak81kwsmc+rQU/n3mn9z6MBD0VIa6zzr0Mt6xheMZ2T2SGacWsXYA0uIRZJomoavNcBRF1Rip4XIRj+SohL84os+u+F/911c559HwG4n8MknkErRdu99GEePJtnRQay2lqbf3kD+rbegGzAACdCSKSRJIpVKosXiSEYDak4OOrv9Z3zDhW2RiESINzSgBUOEly9DX1RE8YMPoEkyXVsF0Gzh/+jjfkNIajw1LIguoOKoYYwI5aNX9UiOGDWGNby09CXmN89nuHs4J1SdQEeog/We9RxUdhCNgUbuXXxvevTJEefyr8P+tV0D0wRha/FAgERbG1o0hiRLSKoOUklQVVLBIG1/vBPL3ntjHDkSDYlEffpc1zBsGKlIhPA/HmXv8y4nNGIkye5WDjg6FyxWjEYZqz5GZNM6AskQ7YYI48I53Jt/CQMdE3m5bQ5zaudgVI2cM+IcCi2FLG5bzBsb32BN1xqmFEzhiYMe48kVT2JUDJw4+FhGFkz87p2pngP/Pq3ntbMUTvsvuCt+vjdQ2O7ij9/DiOmHU3lmJamkhjnRTfKBW5l007nEpSQOg2NnV1EQvlW8owP/62+gfTSPAy6+gWDKhF6nYQ404nfmIZnG7ewqCsK3sjgNTD6ygkHj84gG41gcBpz5JvQmlXG6cTx64KO8sOYFJEnipCEnMTZ3LJqm8WXLl3SGOzl+8PGEEiGumnsViqxw/ODjuX7S9Xze+DmjckaxybOJD30fYlSMmHQmWoOtVBiKGfFB3/uygU8+xTB8eLrzpiSBlu5UkwqFKPjTn0h0duJ/522C8z7BP3cu6PXEi4tQjA5kYyWpYApqapE8CbREikRnJ7LNjuywI2laen2pFBqgmEyoubnf/jxDELaDcDyMQTGQ/PsdDD3sBCrOGEgqCeZ4N9pjdxI79+xd64Gs8LOL19Xhvfcu7Gf5OfikwwnHZMz6JNbYJrrU/kPIBUH46eJrVlIYqOHYSw4gGohjdRvpOO9U4k8+ib6k/7BAvUFhwmHllI3Mxt8Vwe42kVNqQ9V9+0AT8ZaWTABJRiJBvL5BhJDsBOElS/uU+d5+B9dZZ6E6nT9oXYnubuINDUhGE4ay0swzulQsRnT9ejwvv4zidpN73bXoioqQrFZIpQivXImk05FfXs6s80fS3Rpk1gUjQdNw5plx7OQAEoChrqH8c9Y/+c/a/9AabOW4QUcyOZpg/Sn/wqPTk4qHcBqc3LnPnXxY/yH/t8//MbdhLo9/8jgOgwN11IXkLP83ho/+D854C3LEsb4t1MZ2PL+7mJl/eoCQqQJZldF1NeDo7oApU3d29QRB2EUEN7ercBeVkIpqKJKEIkukRAiJIAiCIAiCIAiCIAiCIAiCIAg70S7V5k3TtLXAGABJkhSgEXgVuB74UNO0OyVJun7z6+t2Vj23l6x8M1n5vRsbJLq7KX3pP0QXfUX73/9O0uPBfuihZJ1yCpAeadusmvnX2n/x9qa3AfDFfFwz9xr+efDjFIwdS2TFCsjOxjBgANElSzAMH9Z7w/YCGPmr9N82Ci//moYrriDR1IRkMJB34404jpiNbPzGqByhbphzc+8yX0N6pGIRQvKLkkglaF67hL2eXYCyroask07E9NS/sc6cSdLvJ7TwS9xnn43xuf9iHj0ayWwm7733yLnwQqyvvIGuoADdwAqy/vMS2RdeiO2DOUiAZe+9sT37HK7TTsO9dAmh+QtQ3G5+e8UZhFU3tufnIC9Ziev0MzA+8zLWKVPQ0Ah+PBf3+edhevG/GAcNQsnLw/O/Z8m74nIit95GKBRCUlXcF1yAZLUQeH8OqT8/RPHBB6G4XBgqKohuHs0bAElCNhgY89wiOr94gPxzzuHwFxZgGhFEtlnxvv0OORddhOXVN1Dz89APaiD57/+QfeEF+B//EH0yhXXaVAY/+RRZp52Ge8XXJBqbcBxzNOan/o39kFnE2z6l5Z3fodjt5P32emwHHtj3MyP8dB3VtFrMXDb/MnxxX6a4KdjETZNvYt/ifck2ZW/XTarFRX3LCgv7BJCkIhH8c+bQ+sc7Sfp8OI46CvOE8bT87iZki4Wcq67CMHIE8dWraX7gQZLBII7Zs3Ec9yv8H31E842/Sy937DFkX3ghKX+gz3ZTfv922adYUxNtf7oL/3vpjv22Q2aRe8016AvFiIw7UmTtWhqvvIrYhg2g05Fz6aVknXQiis32vcsmU0meW/UcT69+GoA3+C+KpHBJ9iXsH5pK9oI1dP75bpIeD44DDySnagj6QgUtGKTr47k49tqL7mefpaujA+sBM3EefDDNvzsHyWjEcesttDz2OJFlyzBUVZH/+5sxjx2bGemtd0WSBOZ9ghaLIVutpALp41YyGkFVkVSFSEMDvppackQIyZ6h5eveASQAc34Pgw5Ij169leHZwxmePZyUlkKWZD5r/Izrv7g1M/3JlU9y3sjzsOgsBONBfrPXb7hm3jX4Yunv/w/rPqQ12MplYy/jso8u42/7/w1VVvHGvPxj2T/43eTfkWvJJbfUTjIQILRgAbzyCr7/fYRPUbDuvz9Zp5yCrngAkl6PFusZEdAwcQKSqiOlKOTe9Sc6//EYBddcQ+vttxP+chH68jLyfvtbuh7/J1lnnE6yoxMUhVQ4hKzXg6JAMom+vJy4xYJ52DfO0YUdJrR6dfq7SW8g2d6O97+vEV25EhQF9/nnYRw5kvDSpVBYiCk3l/DSpRjKy4k1NqIv6jkHiCQiLGxdyO0Lb8+U/Wbcb7DGrbz49Yus86wDYGHLQqq7qzl28LG4jW46wh08vuJxALoiXfxh/h/424y/UeWu2qHvg7BnCK1ejRYKkQoESAaD6c64fj+S2YwGxBsacJ97Lh1PPUn3f19FVzGQgr/fT2jhl2h+H7r8AgAiTzyAFIuhqiqpKZNxnXEGqaYAEZ+PzkceRV9eTlHlILqff4GCaJTE0HcZfcVRvBAP4o15eXj5w9w0+Sb+tuRvdEW6APig7gNqfbU8sP8DFNgKvn9ngp0w56beZZ5aaF4qQkh+YUxDh9J+/a+hrAxFp8NXXU3WGaezzrsef8zPqJxRKHx7Zy9B2Kk0DePIkXhffpnYjRdhzM8nsnQp5nPPxewrJnXQwYiYA2FXZrYbKLEbMq9TWoo1XWvY6NmITW/jD1P+QJYxKzNi/IqOFXzd8TW+qI8iWxF/WfSXzLJ/W/I3fjPuNwxzD6M70s1Q91Cag81s9G6kxlPDtAHT6NYCpMYNR25oQNM0tGAQAMXppOPRR7FMmICW3By4q6VAUUGSkHQqjqOOwnnSSXhfeZXmm29G53aTc9WVKFn5JANeAm9/gH36dFpuuYVEezuS2UzuVVeRiscgEkF2ONDicVKxGKrTiW36dNTs7XuPUBC2aPY3U+uvZa/BlXRddwnGUaOId3fjq68n++KLSUT7uYcm7NY0WUHNzyf0xEOYli9Eq6kh2NmJ82/3UReoY5Br0M6uoiDslrTSEvR1dbSfdDhaNEqkoICCO24nFQ5953Imm56S4e5t3o5ityM7HKS8XkyTJxFethzCYRT3tq9D2H70FeU9L1QVSa/HOG4c8g8cbCFSvZ6ma68luno1KArZF1yA64zTiXd0kAyFCC1YgL6sDNPw4bTecivJYBDnccdhnjSJ1ltvTT9/O2I27gsvJGd86Xbey5+uKdhEZ7iTQ8oPodReSrGtGH/Mj6drLUvbljLYNZhKZyWapDEhfwKfNHzCM6ueAcAT9XD9p7/l0Wl3MuXZk6H+CxFCso1UpxMtFMJ37cWYRo8i/MVCkg4H6j/+Aap+Z1dPEIRdRMiTHovPmZdPshYUOR1CkhAhJIIgCIIgCIIgCIIgCIIgCIIg7EQ/KYREkqS/AE9omrZyO9VnazOBDZqm1UqSdCQwfXP5U8DH7AYhJN8UaWlBLSkh9vUKWm65JVPue+MNZLMZf0UemqQRSoR4v+b9XssmtASxeBTb0UdhP/wwYptqiDfU4z7pJHRDeh7+hwMx/J0RdAYFR64ZWZb6rUutr5bq7mokJEYbKvD+7kYSTU0AaNEoLTffjLFqCKZRo3ovmIxCuLvvCmPBH/muCDtLt7+d7I++xjpsDNqQEShZWbjOPhstFsc0JhdDeQWy2YT79NNIBoLoi4vQF+QjGQxknXQiia4u9KWlqOefh2TQ4zz6aOKtbejKSnGffx6SouI47DCMgwYhGQxotV6StR50A4dC+RBkuw33WWeSCofRFxSgLy5GMppwnXIqSZ8XffEAdAUFJH0+cq++imhNLaZhw4g1NCAbDDiOPop4UzO6wkISnZ1kX3ghTTfcgBYO4774YrRx0wiiw1JehWHQIGSzCdepp2b2RZe/eV9OPJFEVyf60rLN+2LAefQxxJua0BJJsk47jURHB+YxY9BGjkTNzsZ9ztkku7sxVlYS37iRyMpVNF1zLSXPPI1lwoSd/U+72+lUJBoDjb0CSBRJYXTOaNZ71tMYaKTeV8+MkhnY9N8f5LBFrLaW8LLlJP0+jEOHYagaQnTtWmI1NcQcBdiffgOjVUfn2SeSCgYpuPWWPh0ZwitW0HTNtZnX3pdeglQKtbCQeG0tLTfdROG9f6X19jt65nnlFWS7HceJJ5DsSnfQ9L74bxRnFq7TT6Pxq696bcN24IE/6P36NoGPPsoEkAD433kX84SJuE4+abusX/h+yXCYtrvvSQeQAMTjtN9zD6bRo7BMmvS9y7eH2/lP9X96r1NLEk1GMW5oou36GzLl4cWL0Z90Lv5gnNSaT7BMmkj7n/+SGXk48H46OMowcCDG4cNou/NPxBsbAYiuWUP9hRdR/tJ/MAwciJqXR6K1NbNu8+TJSAY9kiLjOusslKwsFIeDWM0m1Owc9IMryS8oILFyBd5gALWwEOJxUpIEgQCx2jpAQ19SguJyYRw2LB3gIPxyxcN9y2J+SMb6lm8mS+mum/+r+1+faZ81fsa43HF80vgJgXggE0CyxYrOFcRTcc7LP4biRQ0UtkboKnKRl2enzlNDdOVKdOvq0KsGFJuN0FeLyb74YiS9HmSZZHc3SlExWY+/SDwUx6RG0EX8RNetRQsGyD73HBJtbRRcew1KTg45115L6LPP6bj3Xpquu46CO24numoVWiKBbDSiJZNoqpoZ3TumaejKykgEg6g/sBG0sH2kPB60eBxZ1RH48IN0AAlAMknnQw9T/OKL2A4+iOiaNaSCQdwXXYhcWkp48ZJeISQd4Q4WtS7KvB6TMwa3yU00EeXAsgM5OnUsatBMXIrxWvu/USSFwVmDuf2L279ZJb5s/ZIZJTN+9n0X9iypeJxUIIAWDBFethTZaoNkEhQZAgGU7GykqbPwo8d5423o/e0kWltJtbRgHlqFpmmozixyfnMFSa8X45AqkvEYqsVCsrsbEkkSbW1knXUmusJCIouXkHPhhegGDgQJcmLwvvVGUBXCTQ1EVwQ5J/co/lz3z0wdqz3VfNb8GTN1M8kyZn33DiWjEPb0LRf3G35xTIcfxoBRI9OdeiQJQ1UVcnExYwwh5jR+SIO/gQpn32CZeCyJtz0EGjhyzej0IqhE2PGSBgOOU0/F8atjia1dR6KrC/c5ZyPn51N//AlYBw3GPmpsv8t620NEgnGsTiMWp6HfeQRhR/ui+Qsu/uBihjir+HXFb9jobQJrDVkOBwOdA+kMd+KP+WkONrO8Y3mf5Ze0L2G/ov3INedS0BaneLmKFCrBUL4fWqecDgOZMQhp5iFomgbJJP7//Q/r9P3S10rJJMQTkEqCrJDo7EBSVRSzFU2SkCQZx7HH4DjmaEgm0VIpkp7u9G/BoYfSfPPNJNrbAdBCIVpvv52ie+4mOH8B0XnzMFQORpefT7K9A//cuWQde+yOfouF3VwymcLXFibhVxmoFWA5pBTL1GnENmwgGfBjrKpCzstD1kTHsT2NbLVS9Ng/SDY0EF27Fvuhh2CoGkr3W2+huIZByZZzgwTWLAMWhzg3EITtQW5qouuppzCe/xuSRjtK4zra7vozBX++a7tuR19cTNET/yRZU0ts00Ychx+OftAgDJUiYOjnkgyFia5ZTTIYAjTQNLRkCgkNNS8P85QpWKdPR1dcjCTLaGgEPv0UNI2UxwuKjOJwkOzsJNHRgX5QJeaxY1BdLgBSsRidDz+cvlcBkEzS8eCDmMaNS9/bVxT0xcWgKDRddnmmXp7nn0eSJYwHHUZiQBWxRAzvu3PIOe9sJHnnRFTGk3HWda+j1l9LliGLqqwqvDEvl3x4CXX+OgAsOguPHfQYJtVENBlFlmQCsQCbvJuw6C0YZAMf1H3QZ91LfBuZYnRCxNdnmtA/Q1kFJS/+i1h1NYnWVrLOOY9oTjneUBQlHMdg0u3sKgqCsAsIej0YLBaMVhspQJbSISQpcS0pCIIgCIIgCIIgCIIgCIIgCMJO9JNCSIA1wKOSJKnAE8ALmqZ5f3q1ADgReGHz/+dpmtYMoGlasyRJudtpG7sUSZKQFJXo+vV9pvnfe4/cU08gnmtDlVWcRicd4Y7MdFVSGcUAkPx0PfscvjfeyExzHncchuuuxeOFOf9cRWdjAEWVmXxUBcOmFqI39j4M1nat5dz3z8UT9QDwpwGXUr6uuk+dYg2NfUNIrHkw6UL4aKuOdbIC+SN/xDsi7ExGXwTJmU373ffgPOF4/O/PIVpdTe7VV9N09TXYDphJ0ucnNH8+uddfT9O112EcMQJdQQG+N98k58rf0HzTzahuN5Zp0+h++mncF15I2x/vRIvHyTrlFFpvu61ne6NGkXXiiTTfeCP22bMJzJ1LeOky8q6/nsZrrsUyaSKSwUjgww/JveZqmm+8AV1JKaZRI/G8+G+yL72UlltvRTIYcBwxm85HHsV19tm03/NX4vX1KC4X7rPOQj9xMrXNeua/2E0insKRY2D6jDGk/vUQwXmfkHv9del9GTYM3YAB+F5/nZzfXEHzTTehul1Y992PrqeeytTbdvBBmMaOpe3OP5F12ql0vPU2sa0+wzlXXE6soZGU10tk9WoRQvIzMFjzMQcivcrOGnEW79a8y7OrnwXAqrOSZ8ljUsH3BzkAxOrqqDv/AuK1tekCSaL0Xy/Q/rf7iR95PvPeiRP212G06Jj50Cvk20MYysv7rCeysm9GV+Djj7EdeACe2lrMM2YQ+XpFn3n8772H46ijepV5X3qJrH+/SNG9f6Xz8X8im0y4zzsX09gx27RP38f/Yd+O/v7//U+EkOxAqe5ugp9/3qc81tCwTSEkBsVAtimben99r3KdrENdX5d5rZaXEzvvFv77QgfxSBJr1jj2n5qNZLgfLdLzWfJ/9DHuM85A0ukyASSZunq9xOrqse6zNwMefYSu558nvOgrrPvui2FwJd3PPU9kRc+x7b7wQryvvor7vPPo+NvfCM1fsNW0C9ANHIRiNtF0xW/Q4umRYWWHg+xLLiYViWCdPPl791/YheVWgc7UO4xkzKlgL/7eRV1GV58yt8mNN+rFrrdjN9j7TNfLeorjVvKeWEbgq6cBMAJTr78Sr6+OwK//kO6ED6g5OeTfcgutt91GsrMzvfz0A+k66CIWvdJMKqmRO8DCxLIgofv+lp4+cCAFt91K5OsVpDxedEOrME+ehO3AA/HPmUPK5yfR2oaanY0WTQetJIMhkEA2W4iuX49aUECipQV14MAf8k4K20G8s5NUIIBkNJLyegh9+lnvGWQZOR6n6aqrewKWZJmie+6GwsJes+plfeYYtevtzCyZyc2f30xKS3HjkFuQ5xbRvimILEucPf06MHbRFGgi25TNRu/GXuvKMeX8bPss7LniLS1okQjJrk4kJLRolKTHg760hEQoQodxEJ880UAsksTi1DPjIDu6Tz9DzXYTWv41ztmzabn3PmI1NZl1Ftx+O93//g+6nGy8/30NVJXcq6+m8dLLIJkk5zdXkGhsACQ8L/0H2wEH0PnIo5nlJ40dyRlnHslTLa8B6fDAtlAb1d3VTCyY+N07ZCuAiefDvK06Dskq5I3Yju+a8HNLJBJoNTU0XHoZWig9ErVkNlP89/spKStDJ+swKsY+y/m7Inzx2kbWftECQOWEXKYcNRCb27RD6y8ImqYhxWK0/P73RLe6X5p3800Y99mHZHMrfDOzOZli49J2PnpmzeZrMAMHnzeC/ArHDq69IPTmiXj448I/cmDeLGb5T2b5gx1oqQDZFWbYbzmhihCqrCJLMoqsUGAp6LMOl9GFJEmUtIP/0itIejzpCTodeTfcQLy+Lh1O6nRCMoVktWCePIXggi8wDhmMFk+Q9HSjxeNo8QRoGt5XX8E28wDknGxkXTqUVItF0eJxJFlGUnVEa2uI1tXjOGQWnf94rKdCqRTxtjbCX3+NcchgVJcLLRYjunEj0vr1OI88Ekn9qY/FBCEtEozz9ccNLHqrhlRKI7fURtZsN/5bryW2seear+BPd2IYM2bnVVTYKTSng/hnn9F01dWZ4Ge1sJDCP/+Zwngn1V+28tFz4txAELa3qMdP+KI7+d8nQRKxFHb3VKadNpHU5tD/7SXW3U3ogw/ofPChTJl58mTyrrsWZejQ7botIS04/3MSzc0gSUgGI1o8hhaLoSUSeF96GfdFF5Ly+0m0tkAqhZZIoiXixBsaia5fj2XKZAIffYz/3Xcz68w6/XRyr/wNstFIsttDYN68PtuNbliPfuAgkm2tyGYz4cVL+swTHzyehRuyaF2Yvhc8etJALK1dWAqy+8y7I8xtmMuVH1+JRvr3Z1bZLA4qPSgTQAIQjAd5cuWTXD72clRJJZpIB5Goigoa6BQdbqObxkDv54NZBgckojBAtHnYVprHQ/vd9xBeuBDDrCNoMk1k+Qtr0VIahZVdTD+liqx8EVgvCHu6kKcbiyMLndFESktnySuyRCIlQkgEQRAEQRAEQRAEQRAEQRAEQdh5ftLQG5qmPaZp2j7A6UAZsFySpOclSfpJQzhLkqQHjgD+8wOXO1+SpEWSJC1q3zz63S+KppFKJVGznH0m6YoKaZUDANhUGxePvrjX9Pun/hVJlkm0tPQKIAHwvPQSoY11zH91A52N6XUkEyk+e2k97XX+Ptt6pfqVTAAJwNpkI7qiwj7z6fL6yYKRJBh7Khx4KzgGwIBJcOqrUDjme3Z+z7YrHrt6SUf38+kcIDU3j+jq1Vj32QffO+9AMolh8BBC8+djGDqU8KJFaNEolr2n4HvzTdScHOJNzaR8PmwHHYjnX/9C0utBS5FobcV+2KF0P/NMr+3pioroevIJ0DT0paWElyzFNG4cgXlzIR7HNHYsgQ8/RFdSQrS6mlQwhG3GDDwvvYxstZIK+El2dWE/ZBbdzz4HgGwxE69Pd8ZPdnXR8eCD+BJWPnmvk0Q8BYC3Pcr8BTFSVheGIUMIL16c3pd99sb3xhso2dkkWlo378tBdL/wQq96q9nZdD76DwAUZ1avABKA7uefx37IIel9zNk9O5fu7OPX5h7EAOsA9incB0iP3JRIJWjwN2TmCcQDvLTuJRKpxDatM7xiRU8ACYCmEautg3FT+WhujLA/HZIQCcZ5/8l1RKwF/Y5mpfbzb64rLCTRln6f4mvWoOb2/S7VFReBsffIh/qSEhSHA/usWZQ8/RQD/vEo1mnTkPX6bdqn79NfyMW2BF/8ku3sY/ebZLsd0/Dhfcp1eXnbtHyWMYtrxl+DhASkO8TfWHER+waL0LvcmfnUEy9g7hw/8Ug6hCHQHeWjtzowHnNi7+0WFqZHE5Yk0PUdhUtxpMMfjEOGUHDzzZS9+C9M48YSb2ruFUAC0P3cc9gPPQTFldUrgASg659PoM/NwfvSy5kAEkgHncRra4muqybR3b1N78GeYlc7dr9X7jA4/TWomAH2Iph2VfpP/f7vr8qsSpwGZ+a1XtZzeMXhTC6czJGDjqQ50MzUoqm9ljlzxJmomxpJfbWsV3no/ofJqw1kAkgAEu3txGtrSW3uBA2QnHE0C99PB5AAtNUHWdWRi37sXgDENmwguqkG71tvEfziC6RoFGIxHCccD4DiysL71lugqkg6HZJOh2w2IRuNSIqC4swCWUEy7Jkj3O7s41cyGJB0+vRImYkExlG9wxJz77uXyMoVPQEkAKkUnY/+A322u/e8llz2Ltwbp8HJrPJZPL3qaVJaiipHFebVxbRvCm5eXGPT//y4fIXcteguThhyAqrc0/HRbXQzMf97wheEnW5nH7s/hmQyIak6JLMZFAVkCcVqRUskSQzZi4/e6CC2+Xwg6Inx0ft+YvZcJEXFPHo08ZbmXgEkAB0PPojz6KPwvvY6ANapU/G99RYkkyhuN6lgiKTHS7S6Gut++2WuzbZILfmavcM99xdOHXoq/6v7H97oNuTZShKMPwtm/j59v6FkCpz2KhSM+v5l93C70vGrpVL43no7E0ACoIVC+N55B8luZ1TOKAptfe9B1a3qzASQAFR/2UbN1507pM7CzrMrHbtbSOEwsY0bewWQAHQ88CB5l1+GIa9vSEN3c5A5j6/qdQ32/uMrCXqjO6TOwo63Kx67/QknwjT4G5hpPJzVH7Sjbe7Y0rExhHltEW+sf4NyezlF1iJGuEcwNncsJrUn/MmmszEmZwxOgxPb4uqeABKAeJzAB3PQl1fQ/cyzaOEwmpYi0dYGsShIkAoGSYVCSHo9qUgULRYjFYlgO/BAup5/Hs3rJdHVRbK7i1QkQiocJt7SSmjRl8QbG7GMHIlkNKbPc7aiulwoDgeJjs2/E6qKmpuLkpcrAki2wS/l+N0VtNX6WPjGJlKbPztttX6Wz+8Gi63XfO133wObQ0qFn88ud+y2t9P58MOZABKARFMT0dWrMTmGMuefK3ufG/xzJSGfODfYU+1yx+8vWLSwik8+9JOIpZ8D+zqjLPjaQCorf7tuJ7FxI12PPd6rLLRgQfpZ4h5kRx27seZmYus3oMUTaLE4SY+HlM9HKhBEi6TD6uINDSQ6u0h0dqbPIf0+tHAEz0svYZk8CZB6BZAAdD/zDLFNNQDIdhumfkLDdEVFkEpCMomk16N+o42Mfthw1nbn0Frbcy94yXwfHe2pn+Ot+F6twVZuW3BbJoAE4N2ad/HH+rYLWu9ZT5YxC52io8RRglPvJN+Sj0E1EIwFObHqRFSp5/w5z5zHeNkKJz4HhWN3yP78XHbk926ito7wwoUgScSmHM6yhf7MtVdTtZcVcxsz55OCIOy5gl4PZqcTncGAhoSkaSiyRDIpvh8EQRAEQRAEQRAEQRAEQRAEQdh5fnKLS0mSFKBq818HsAy4UpKkCzRNO/E7F/52hwCLNU3b0vOrVZKkAk3TmiVJKgDa+ltI07RHgUcBxo8f/4t7CqNmZRFtbkY/ZAiGykqi1Zsbs+t0uC+5hPlyF7e9/RuenfUso7JHcd+M+6jx1mA32BnjHoEUTpAKhfuuWNOIYaBuZUufSb6OMEWDszKvk6kkqzpX9ZrnX23vcvhvr0O69vZMJxH3RRdhGDKk/x2xF8I+l6dHuFcNYLD+uDdkD7IrHruyLJPcMirU5s66st1OcssIfpvLFLudRGa+dGMa2WbLNDqXFBUtFksHhWw+PmWzhaTP12t7it1OorOrz7rjzc3pssTW29uqM3oyiWw2k/KnA3Zkg5FUMAiyjBbr6cy+RSDQ9+1tqwvCuNEoHU09605poGkoNitJr7fXvvR6n6w907fu1LxFotuDYrNiqKrCOHJkn+m7g13h+K3IquCSMZdwSPkhhBNhqrur+8yzwbOBaDLaq9Pvt0kFAn3KtHCIqDWXWLh3kEk8miTQHcWZZ+6zjGnUKAxVVUTXrAFA0ulwHHkkrX/6U3oGvR7jiOHoy8oyHTwlgwH3uefR/Ps/ZNYj6XTkXvkbFGv6+1Qxbf/Rvm0HH4Tv3XeJrl4NgHHYMGwHHrDdt7Mr2RWO3a0pViu5N/yW+vMvILX5e8V5/PEYhw3b5nVMLZrKU7OeYr1nPfs0WQn89g6SHR3EL7gAw9ChRFevJqzYtm77DoC/MwozxwFPbq6MguuUk2n7673oiopwnXoKXU88mZnfdeaZ6CsqMq8lRUGxWjFWVfUa6XWLVCCQHpkuHOkzTYulR6tLdHT0mZb0eNCXghYVDfC3tqsdu9tkwCQ48XmIh8DsTnck3wYOg4MTh5yY7qCmpTAqRrL0WRRZi/BGvZTYSxjhHsGsslm0h9sZYB1AtjEbqXFTn3WlgiHkRN8wqqSnOz3SYTgMqkowZQF6/w7Ub4wwbK+9iS35CgAtEibZ2YkkS5BIgCwj6Q3YDplFZN06rPvtR9LrQXFmkezsRHG5kPQ69IMGIikKstWCobj4h7+Pu4GdffyqVitylpNUOIyERNbJJxNZ/nU6dAkwDRlCYPPv9tYSXV0Q6fsdNiF/An+d/lf8MT//XvtvAPZyTqLz874dzLQOA1fvdTXRRJT7Z9zPRu9GDKqBke6RDMve9u96YefY2cfuj6HPzibR0AByFoaqISS7u0kFgyR9XkJJY5/G7UFPlGRVKam2tchGU+YabGuJri4kRcl0pFMcjsy9C8VmQ0vEAYlkdxe6vLz0tdk3DFByuXKvK8k2ZvNuzbts8Gyg1F66bTtlL4RpV8K400FnAr0YJXRb7ErHryTL6Q7o35BobUMmHazXn01L+54rbljcxsjpe+bv6Z5iVzp2t5AUhVQ41Kc86fVCItHv/VJ/ZyTTwWjrsqA3hsWxZwbT7e52xWO3P9mmbH5V+Su0egPQ+7q7a3Uc2yAnFp2F8XnjaQw0EkvGuGe/e6j315PUkpTYStDJOiRJgo6+4aGJzi4kRSbp8aQ70EgSWjQGGsiqSiocQdLpQNOQAC2ZTMeqqrrMcwhJ3nztGE9AIoEWTX+eFJsNJAlJr998b9gPkoT7gvNJdHdjmzGdWGMT0fo61Kws1OwcLNOm9qmj0Ncv5fjdFXQ39z3XrVntZdDYyfB1TzBqsru7V0dg4eexyx270WjvZ1mbpQIBYjFD3/uzHelzA7NdnBvsiXa54/cXLBDuO2BAZ3OEuMXdz9w/3pYAtT7lob7XCruzHXXsarEYWiSSPu+LRkBLl235eVUcdrREMn1eKStoWgpJA9DS9++TKTYXfHMHSIXT7RcUk4mcKy4nsnJlpo2EffZszKNHE21sRJIVEp0d6MrK0JWWZgazUCdOo25933/3zpYwpTshNzeUCNEV6eo7oZ9HMkcNPAqr3spg52D0sp5ALECpvZRoIordYCfLlMU90++hxleDVWdllHsYlbbS3aL9z4783k1u/l5QsrLoCOqB3m1YNi5tZ/yhZZhs22fgEUEQfplC3m5yywaiM5rQpCikkqiynuQ3LxwEQRAEQRAEQRAEQRAEQRAEQRB2oJ8UQiJJ0j3AEcCHwB2api3cPOlPkiSt/QmrPgl4YavXrwNnAHdu/u9rP2HduyzFYCC2/Gv048aSf9utxDZuIhUOoy8vxzJlMhMjHs4YfgbHv308aHDTXjdxVOVRuIwuAMLBJnTFRaiFhSSamjLr1ZWWYsiykFNio6229wgn32zorsgKRw46kqXtSzNloUSI+kon+7zyMvH6epSsLPQVA1HM39MJfjs35hF2LDU3F+cJx9P99DOgKEh6PcH583EcfhhdTz6FFo8hOxyEly3Dfe45hBcvJtHZia64mNimTTiOOhL/u+8SXbcO05gxhJcuRc3NBUkiOH8+tgNm4n9/TmZ7wQULcBx9VGbUKNliJrRoEVknn0x0zRqSwSBqbg6RNWvI+fUlBOfNI1Zfj2HwYKLr1qErTXdaCy1ZgmXqPgQ//QzZYgZZhlTPSEMWp7HPvtqzDcjdbYSWLcd93rmEFy0i0dGOrqSEWE0tjqOPgbffJrJmDaaxYwkvWZJZNrRkKfbZs/H9979Iet3/s3ffYXIcdcLHvx0m55nNebVa5RysZFvOOWEy5oADDjA53BEuvNzBwXF3GA5MMBibaIPBJjjnJMuWZOW8klbanMPk1On9Y6SR1ivZspWl+jyPrd2a7urumdqe6gq/ApsNtIMDRwI33Yh72TKC73sf9srxq+EKx4dNtjGzdCYzSwuBXp5oe4I/7vrjmG1uaLoBj+3oJik6p0wZV3bs9fXYt3WiqF4M/WC6LEu4/LbD5mOvqaHmpz8ht2MHZjqNo2kilt1G1f/8N5Isk21poeP/fZ26//o2+b17sXI5HBMm4Fm8uBCMaufB/RxTjhD46ThxNDRQd+fPybXuBQkcEyaglpSc0GMK47lnz6bx/j+R7+hA8XqxNzUVg88cDZtiY275XKZnw+z7x7cXJ/4O//znRD7+MSIf/QiJcDW81D1mP6fXhq+5huD//g9mKoVSWooSCFD+z19DUlVs1dW4Zs/GiMWw19fjnDoVxT0+8I69thbP0qUM/fQOrEMm63suuIDM+nU4Z89C9vkKk4P2c82dg+T14r/uWrJbtozJzzFlCko4VPj+EM58dnfhvzdhemQ6HfEOfrD+B2T1LDdOvJFrJlzDkpolY7ZbwIIxv+emhUi53cWJawC25eeTCI+vv7rnLzgYZEfXccnjg96UVDowW3fsz8iGvaEB3+WXIXu9EAjA4BCSKhF4+zswR0dwTp+OJMtYuo6EhJnLkl69muif/0zVbbfhmNj0pt4H4ThLpYg/9DCBd7wdCai+/YdonV0gy5gDA7imTy8EyjlkYF/gphuRysvHZeVSXSyoWEBaS7Osahkre1ayJ72T5toLSG8bOxEh4RrhtnW38ZEZH+H8mvM5v0ZMghROPOfMmWR37Sa3bRvJ558n8I53Ym9oQA+Mfy6yu1TsRgYlGCK7Ywfu+fNBUcYEWwzcdBPZll3FIHqpl1/Gf801jPz61+Tb21FChfYJV2AOqVdWFZ/NDpBcLlwTm3m1+2es6F5BpaeS2y+9nabgm7wvekQ99Uylqir+q68i9dJLY9L9V13Jg21PcMWkKw+7X1VzkPatw2PSqqccPmCJIJxQNhv2xkYkmw3rkPYf31VXotdU4D7Mc5I7MH4ikcOj4vIcvi1BEE4Wm2Ljlmm30JmPjXvNV6viC1cRcAYIOAPUB14/YFjyYpPYb383Js27/EKMWAzflVci2VQsTUMtKcGSJPThYVz1DVi5HEYmDYqMJQGaRm5PK+7FiwuBSxQVVBVZlrAMF7LHg+zzkdlWCKTuv/FGqn/4A4yhIeRgEFS1EDzQslCrqpAUFcluw1ZZieOQYKqCcDz4IuPbGMrqPJjbd41JC9x8M5JNTCo910hVVQRuuIGRu+8+JFHCMWUyHv/48uD02nCKuoEgHDO3d/zwF2/IgU0ZH2j1WNiqKnHNm0dm/fpimuzzYW9oOK7HEQpsFRWo5eWY6TSSw1Fotz2kzSq7pxX/tddimRaWoRcC2JkmlmnimDIFfWQEJRRCraxEP7AACmBrbMBeV1v83TV9Og1/+iP5tjZktwfHxCZkp5PkH/6Ad8kSbFVVWKZJ5bf+E723FzOfR508jbLnsrRvGxt4KlB6/BeUOBpl7jLOKz+PNf1rimmKpDApNImvnvdVfrThR2SNLO+Z/B6uarwKAK/Dy4zSGafkfM8F9ob6wsI28Th+9/hA+RUTAthcyik4M0EQTifJ0VEa54axOR1Y5ME0kGUJ3RRBSARBEARBEARBEARBEARBEARBOHUk6xgipkuS9GHgD5ZljVvaQ5KkgGVZ40evvnGebqATmHBgf0mSIsAfgTqgA3inZVmHWb7joAULFlhr1659s4c/5Xq+8lVifxsbY8U5Yzr199yD7HBgWRZdyS7aY+082f4kHpuHqxuvZmbJTLJdXVimidXbx/Bdd5HZvBnX3LlEPvoRPAsW0Nsa5eHbNzHn8lpkGaIDOZbcPAG3b2wgkoH0APdsv4ff7vgtiqTw0Zkf5V2T3kXIJSZ3HMZh1ow5NqdT2c13dxO97z7SmzcTuPFGYn97EPfs2QCk164l+M53EH/8cWy1taglpSSffZbgu95J8sUVyG43zmlTiT/0EIG33Uxm40bMdBrP+ecT+8tf8F95JfmOdjIbNyJ7fQSuuRo9GsUYGCT5yitEPvz3xJ94EuekScgeN8mXVhbyfuZZ5EgER0M9icceI/DOd5J++WX00VH8l19O7KGHCVx3Ldldu9CHhvFdeimxv/wZM53Bd/FFuN/1ftY/18/mFwoDjFSbzJVvCxFIdZJ4+GFstTXYysqJP/MMoXe+g+RLLyG7XDinTSP20MME33YTmU2bye7cia28nNJPfRIlFGL0nnvJ7t6N/9priP31b5jxOJ6lSwm9773Ya07LlZmPe9mFU1d+Lcti69BWHm97nHguzk0Tb2Lz0Gbu2HQHeSPPOye9k7+f8fdUeo8uEIylaaRWrWbgttvQBwYIvec9+N71TrR9bbQPuNi4Icm8yxrY/HwHM5fXMWVpJYoyfnW115PZvJm2d717XHrtz3+G98IL31Re56Cz+t57PKRWrWL0nnvI7t6NGU8UVus2DOruvgu1cSJt24ZpeaWX9i0jhKs9XPCuZoKNdjYPbeZ7a79Hy2gLjf5G/n3pvzOvfN6bPn56/XoGbvse+dZWfFddhXPmDAb+539xL15E6F3vYuiOO8jt2o132VKC73sf2a3bUCNhtO4eRn//eySHg9C73oWtsQHH1Gk4qs6aIE6i7L5FvaledEOnwlOBTRk/ISOjZ9jQv4FH9j1C2BnmmsZrqO/IMvC975PfvRvfVVehvu9tPN7/Ags2JlH/+BiSz0f5l/8J1/z5ZLZuJfbAA1j5PK53vp9Nu+zsfLXwuOFwq1z1znK027+Bva6W4C3vJzcygprLYqurwwIkux3Xaya0JVeupPMjHx13ro1//Ush2NWZ56wpv8O/+S0D3/72mDTZ72fCQw9iKy8nva8NbetWhu64AyMWI/SBD+C//jocbxBQriPewc83/5z1/ev5yoSv03pvnkyiMDl55sW1zL6mkrySocRVUlgtXjhZzpqy+1ZZpsnAHXdgJVOYmQymYaDWNjDQsJyVf20HCyI1XpZeX0Mgtpfs1q2oZWVINhvkcoz87nfo/f0EbrwR+6RJ5PfuxVZeRnLlSjIbNhL56EewNJ3Re+/FvXgR/ssvx0im0Pv7kWwquV27Sa1Ygb25mbIvfgH33LmktBRDmSG8Ni8Rlwhg+jrOuvJrmSaZnTvJvPoqiVWrCX/og0gOB6rPx1CpnVp/7WH3i/anefznWxjpSVFa56NmSpBpF1QTKHlzAc6Ek+asK7sH5Ds70U0To7WV6MOPELj5bViShD1SgmNyM7I0vm1Ay+lsfr6LfRsHCZS5kSSJqcsqqW4Wba2nobO27L6eRCzDxic7aN88Qmwwg9tvZ84HI1Q3RChxl7BlcAtretdgmAbn15zP5PDkcc9lRiZLas0aRu+9FyuTwXvJxTgmTCC7ew+O2hos00Jy2ItBGmW7HUlVMXO5wgRR3cDSNfShIXI7duBZtqwQGBBAkoqvm5ks5PPIHjeWpuGcMRPPgvmn4F07LZ2T5fdUyiRyvPLXVqIDGbIJDZC49JZG3H0t4HKDIpN6aSX+yy7FkmU8k09skOkz2FlZdjPbtmFpGomnniL25FNUfP3r2JsmYKkqqj/Exme62PhUO1XNQWRFZvrFVdRNEs9GZ6CzsvyeyaIvv8qW7Ra7W3IEytwMdyW4+GIntTNLcTYd38DQ6XXrGL339yRfeglHczMlt34C77Jlx/UYJ9AZV3bznV1kdu+CfB5L1wEJaX/frJlIFsbGLJiP4nRh5rL7F5qQQILU+g24Zs5AVlVSr7xCeu06XLNnUfqZz7xhoDpteIR9N9wApolkU9EHBlFKSojc+gkit9wCwEB7nIdu30Q2WWgLbpxdwvL3TR63INDJsmN4B99d+13W9K2h3F3Ovy3+N5ZVL0OVVXqTvRiWQbmnHJtsG7ffk+1P0pfq4+rGq5lXNg+v/egXSjhJzryyG4uR37KVoZ/+FM8//Rtbt5lEBzIESpzY7ApTllZRWus7YccXTisnomNIRKg4C+SzGW7/4Du54H0fIlBWzvV/GeTmOVVEIkF+9sJe9nz7mlN9iqJTUxAEQRAEQRAEQRAEQRAEQRDOUccahORtwLOHBAsJAhdZlvXX43J2x+BMHaAzcs+99H/zm2PSQh/6IOVf+UpxotqKrhV88plPIksylmWhyiq/vurXzCydCUB2dBQrFoNUCrW2FpvfT3QwgWFCNqbTsztKcjRHzZQQFRMD+IJjV0DuTHTy662/xmv3YlkWHpuHtze/nYhbDH47jDNukMObkcvo9O+N0bF9iKrmEInhLFrOIFzloW9PjLJGH9mkTiqapawhQP++GKEKD4ZhERtIUdEUZLA9gSfoQLXJDHUlqJoUYrQniWpXcPkd9LeOUDXBT7QvQaI3TmW5RSjfi7roAnraMqTieUprffS1RonU+NByBvGhFJFGD/374uimhq0hT2OZB7tRSceOURxuG3aXykB7nOpJIaL9KSQJvGE3vXujBGoc2NyQ1zI4bV4Gd6cobwiQS+2/lsYA/XsPuZb+FBXNQYbaE7iDdlSbSv++KJFqHzVTwzg9Kr17YnTtHKZ6UpjYYIbEcIa66REqm4LYXeNX3ToNnFVBSLYObeWDj32QvJlHlVQuq7+Mel89OTOHKquktBR/N+3vqPWNn9A21JWgf1+c/rY4JTVeaqeGCVV4ADASCcxsFrXk4GThvr1RBjuTDLTHKa31UVrnpbslRt30MGX1/jF5x4YydLeMMtyVpKo5SOXEIO79qxzm2zvYd/PbMFOHxPGSJBru/xOu6dNP0Dt11jir773HKjaUpq81zmB7jIqmEMNdCbxBG+6QC10zsNkUOneOoqgyNVNCJEbTDHWkqJkSJhMY5f6+3xNxRRjNjnJB9QUsr15Of1ucti3DmLpJxYQAoQo34arXH3hopFKYqRRqOIxlWeiDgyDLqOEwen8/RjyO5PcjSRKOmhrMfB4jFsMyDKxsFsnhwFZRcbZN1Bdl9wR5puMZPv/c54HCqn422cavr/o1k90NmMkkajhM0szwYteLDKQHqNUDRJSJGD0+MlGNklovpmHhDjiQZZBkCdUmkc8ayIpM+9ZhSmp8yIpEX2uMQKkLX4mTTCKP2+/ANEwkWcICHK79q3RLFnI+S/JLH8Vo21c4t3CYhgfux/4GwSxOU2dN+Y0//TTdn/7MmDT30qXU/PhHKK6DK1RmW1uJqxEMU0LPGWSTebBAy5nY3AqWbmGaFvm0zkhvivJGP06vjWh/mvhImvIpXmRkAgEvWtZgpCfFUHeSsjoftdMjBEpOzWqY56Czpuy+FYNdCQytsPKrBVhm4Q0Z6Ukx1JWkrMFPoNSFYZhYpkUmkccyYbAzgcdvp26yH78tjaXrJEq9vNDyKJlcigm+Bko8ZZQ7IvgjlchOJ9rQEJLNhuL3s2bXc2STo2Ba9OjDmLrGZVNvoLyk7lS/JWeas7L8DvzfD5Bu/hCGbpFN6WSSGpZlIQFDnUn8pS7K6nxEBzJEB1KU1vqLz/eqU0bPGvTti+MNFibz2JwqsYE0maRGWb0PX8hBSZ0fx+n5LH6uOCvLLoAejdL+9x8m8ONfkc8YaFkDPWdgWRIjPUkkWaJqYoDhnjRD3QkaZpZgWRaKIpNNaag2hZ7dhbar0jovoQpPsQ1COC2ctWX3UFpOp2vnKB3bh3F6bFQ0BbE5ZEzDwtRN9LxJPmcgqxJYICmQjuYBCU/AjiSDJMtE+1P4wi4UW2E7rMKi9BYWmAdmQlnIsoTPJxHw6Fi6jmRReKeV/at9SxKyoiC53ZixWDH4iCVJhQ9EkjDTaVIrV2Jls1iGQW5nC8mXXqLh9/finDTp5L+Jp6dzovyeCul4np49UXp3RwlXewiWuuncOYKWMyir95OKZgvtCYpELq1jd6rYnDKyKmG3qzjcEp7kAM7JoqwewVlZdvNdXey7+e2UPfgUuYyJnrdIxrJ4/A5SsRz+sBPTKrQpSIpMOpqjvy1OqMJDpMZDWZ0fp2d8IF7htHNWlt8zWWrtWqK6n/6ondhghsoJfryd6ym/ZBG2srLidp07RuhqGUXLGtRODeEts9O7M85gZ4Lyej8ldT4qGgNveDxtdBS9pwfF78dee/igmqepM7LsWoaBNjiIpWkgy4XKJ4BlkTYd9HdmGehIUd7go6LajtNuMhxV6NgZxRt24vY76Nk9SnmDH9OCgbYEtVNDpOIaI91JKicGqJwYxBNwMNydpHP7CLmMTkWNg74dA0gqlDWG6dk5hKcygr/cQ9fOUexOhZopYXIpDXfAQS6t0bljlJI6H3aHQs/uKGUNPhRVpmdPlIpGP7K8/+cJfmSl8JxYMSGArMj07BklWOqmZkqIUIWHfE6nrzVOx7ZhIjVeXF4bPbujuH12aqeFiVQf7K/bObKTr774Vaq8VcwomcGMyAwWVizEZXv9tuiWkRY+8NgHSOtpVElFt3S+c8F3uHbCtSfyI30rzriyOzLSizWYw/SESUc1OneOIAFVk0JYlkE2qVPVHCJYJgLtngNEEBLhsEb7erj7cx/jqk9+AZfPz5V/6OYds0opLSvhh8/uYd9/XXOqx0ycVQM2BEEQBEEQBEEQBEEQBEEQBEE4esc6Gv/rlmX95cAvlmVFJUn6OvDXY8z3nOW94Hxi06eR3bYdALW6muDb317sTMobef606098Zu5nyBt5JCRkSeaVnleKQUicoRCEDq6kqWsGliWTjeV58q5tpGN5ALa/1MMF725m1sVjB8Q83Pow9+26b0xafaCeKxuuPGHXLZyeWtcP8NxvdzLrkhpW3t9KKppj0Q2NPHbHViYvrmD9E50MdiRY9o6JPPazrdROCTHUlaJ96zBLbm7iiTu3ESp3U1rnY8fLvZx3fSPP/GoHNodC88JyVvxxD3OvqGPFn9tIjuYA2Apc8/HFrP7NHkZ60iy9uYlH79jChDml9LUl6NkVZdnbJ/LMnbswjUJ/uixLVH66hkd+tgl3wE799Aibn+ti/tUNPPe7nVgmzLy4hifu3Fq8Nm/Yxuwbq3j6F7uYvKiCjU93MtC2/1ru2ErN5BDD3Snatgyz5G1NPPnzbQTL3ZTW+9ixsreYT/3MCLVTw7z0x93MvaKOF/+wq3gtm5/r5qJbJjP9guqT96Gdo1Z2r+TKhitpCDSQ1bKUe8r5z9X/OWaboCPIJ+d8ckxadCDNpmc62flKXzGtfIKfaz4xC7ffjuLzofgOrjw02pdiw1Md7N0wBMBO+qibHmbh9Q38+bvreduX5lHeUAhEko7nePrubfTtjQOw+bku5lxWx+IbJ6DYZGx1tVR885v0/NOXwTAAKP3iF3Ec55XYhHOLZVm0rOrj1YfbWHpzE0//cjvhKg+TF5ez9pE25l/dwKN3bMUyC/fPzc91cfUnZvL8b3ez9YUeLvngFKScjZ/v/jkAD7U+xJ8WPsxjP9iOuX8fWeli6dsnAhLhqiNPllM8HhRP4XUJsFdVFV873GBc2W5HLi09Tu+EcC5JaSnu2nIXH57xYZyKE83U8Ng8bBvexrSSaSjuwsDNbT3b+OqKrwLwz5P+g/b7Y2RTQ8V8Ft/URMuaPqYtrcK0ChPl7E6FR368CV/EiSxLbHy6s7h9oMxF84Jyov0ZAuUutKyBapNJDmdx+Wy4gw5yug3vd35K7L1Xg6pS+Z/fPFMDkJxVXLNm4b30EpLPPAuA7PdT9oXPjwlAApD2VGBmNHIpjfYtw8iKRDqWp7zRTz6r7w/ikGCwIwnAthU9TL+gir69cYa7k2x9Dm7+8jzyGZ1tK3poXT8IwI6VvdROC3HFR2aICUXCCTXanyaX0pGwMHQLxSFjaCYbnuyga+coUCi3U5ZU0DS/jL0bBgmWu3nlz63FPDa4Vd72pXlEGr08sP0evrP1u2OO8c1l3+QmZyMAtpISALriXWzLtxEnjsvuol/v5097/0RZ3WQuF0FIBEB9z0fIZ3SSozn2rBvANEwqJgR55S+FsnfBu5vZu2mQjU91suwdE3nqrm14Qg6qJgbIxHRW3LebquYg3S1RaqeG2PjnVvIZvZj/0pubiA9nmbq06kinIAhvmRoMEvzxr9CyJqnRPKN9KSRZZuvzXeTSOpd+cAqvPtpGd0uUGcuraV0/SHVzkPVPtTPn0lqe+dWOYl4un43Zl9bSvEDGL4KTCSfR3o2DPP3Lg2XR6Sm0ByiKRDato2UMVj24l7lX1GHoFnpOxzQsenZHCVZ4CFe6kVUZ1abw/D07WXhtI5YFpmliGRaWBYZh7Q+EVohO0q/KTDqvgpK6N1hJ3Xf4FcAtwyC7YSO93/nvwqr2kkT5//s3HA0Nx++NEYTDMHST9U+0semZrmJaaZ2PcKWHltWFNuWlNzfx/D07WXxjEyN9aYY7EzQvLEdWZEwzQ3mDHzVcjfNIBxHOSmZFCeFf3k0+a6FlDVrXD9I4u5Rda/qZOL+MbEonGc2RTeYZ6U3Rum6wuG/t1DCTl1Qw+byKU3gFgnBmypZP4vlfbCfaX1gAYPvKXuZfNZWqcElxm44dIzx+xxa0XKFvbssLXVz50RmsfmQv+aTBzpf7mDCvlKU3NxEoef2gALZQCNsh4zKEE0tSFOwV4++N2ZTGy7/aQduWQnv/lhd7mbKkgsmLKnjwhxtxuG3MvLiGF36/m9I6H7mMwc5X+pg4v4x1T3TQ1xoDCn1m0y+sYsaF1fz1+xvIpXSWvK2Jx3+5G10zWfaOiTz6q1YkYMnbSnn0p1uK0/83PdPFVR+fQXQgzTO/2oHbb0e1y6x7rB1PsBCsbMOTHXhDDhRFPvizWvjZE7Sj2hTWP9FevC5/xMmNX5xL754oT/+yMMZi/tUNPPvrg3V5x+MqN39pHuEqL4l8gm+t+hatsVZaY62s6F4BwD3X3MOs0lmv+95uHtzMkqolTItMI6Wl8Ng8vNr3KudXnU/A+cYBeYQj6zGGKXPVkR7N89hPtxT7Wzc/18UVH51OOq6x8k+7uezvp+Fwi/4CQTgXpaKF/hpPMIRis2EigamjyDIApgWKCAMiCIIgCIIgCIIgCIIgCIIgCMIpIJ+A/cUyo8fAXldHzR0/o+6Xd1N7553U/+63OJubi69bWFxYcyG/2PILfrb5Z9yx+Q5+u/231PmPPJEnk86j2iRGelPFACQHrHusndhguvh7SkvxZPuT4/J4te/V43B1wpkkFcux6q+FCUBOt434UIa66WF2vdoPgL/ExWBHgrIGH107R7FMi/IJAdq3DuMNOYj2pzE0k/qZJexc1Ydik9HzJrm0TtO8Mra92A2AaleKQTsOGO7LMtyVoqo5yL5NQ2BBpNpLz64owXI3/e3xYgASAJtTob8lgZYzaJpbxraXekAqLICUSWg0zSstHu+AkpoAu54dKVxLqYuBtgSldT66WgrXUtEUoG3LMJ5gYaUsff+1tBwSrAIgWOZmzUP7CudxmGt55a+tJKNj04Tjr8xdxlBmiNs33M5jbY+xfmD9uG2ebH+SVD41Ji02kKFldf+YtP69cYY6E4c9TnwoWwxAckDHthEyMQ1DM9m74eBA4ZHedDEAyQGbnu0kNpgBQJIk/JdfTuOfH6DmJz+m4f4/EX7/LchOMRxdeOv6O6JsfKoTX8TJSG8KQzepnxEhlzaonxVh+0vdxQAkAIZm0rZ5iClLC4M2Nz7VyXVlNxVfr/PXsevlweKAOADTsOjfF2ekL3nSrksQXo9lWVxWdxmP73ucn2z6CXduuZPbN9yO2zZ2gPi+eOH7WpVVIvFqsiltzOstq3rxBBwkozmMvImWM9A1E1mRCnWJFT1jto8NZPAE7Gxb0Y2WNYgPZcimNAY6Cvd+LVMYxJ6TXNT++jdM+PMDeJcvP1Fvg/Am2MrKqPzP/6Tut7+h5o47aLz/T7hmzhy3XTaVJ5cxSEVzuHx2HC6VxEiWxEiWjm0jeMPOYgCSA3as7KVhVmFSg92tYJkWyWiuGIDkgM7to4z0jq2XCMLxlo7lkCQLLW9gWZCNa+iaWQxAcsDOVX2YeuFZbdfqsc87ubROb2sUwzR4ov2Jccd4vvP5cWmv9L7C99d/n7u23sWPNv6IHSM7uGniTViWWJRRKDA0Ey1rMNiZJFzlRVbk4iReh0fF7lLZ9mIPkWovvXtimKbF9AuqsCwY7UuTjucJVXoY6kygZY0xAUgAdr3aT1fLKKmYeBYXTgxZUchljP0TGyUwLdLxPHXTw+RzBt0tUQBcPjvBchfxoQzTz69m/RMdY/LJJAptCUOd4tlKOHmyKY1XH2kblzbSnSKfM1FUhWxGo2leGbtW95MYSpPP6kiyRN30CLvX9GHoFvmMTjalUzs1zGBHAj1vIFmF+CCWVQgabXMo2F0qdpcN1abQu3v08Cd1FCRFwX/jDTQ+cH+hHe2B+wnefDOS3X6M74ggvL7YQJrNz43tWxjsSBAoPRg8avfaAWqnhGnfNky0N0Xd9Ahtm4fIpjRkWSY5mkMSM8bOOXkjj1xSRz5rkMsY9LfFySTz6LlC/TWfM0iOZAmWuccEIAHo3DFCYihDfDhzis5eEM5cw73pYgCSAzY908Vw78E6d9fOkWIAEgAs2Px8F9d9cnYxae/6QWL94m/wTBHtTxcDkBww2pdm87NdWBZjxgrUz4gU+4ZDlZ5iAJIDdrzcS19rnFxKxx2wEx8qjBMoqfXSszuKZVpUTw7RumGgGIAEQMsZpGM5Vv11LwAT55exdf8xJ84/ODbi0PSmeYf/+YD4cJb4UKaYZ8PMEna+0jtmm1xKp39foU9iJDvCxsGN496fzkTnuLTX8tq82BU7t2+4nbu33s3tG27HMA00U3vDfYXXV0Udik2iZXXfuP7WfRuHcHpt9OyJMdQl2gYE4VySScTZ8tyT5LMZUqMHg5DYHE4sScIyDNT9z5GGKfpWBEEQBEEQBEEQBEEQBEEQBEE4NY41YMhaSZK+B/yYQhf7Z4B1x3xW5zhbaQm20pLDvuZQHGwc2EhGPzjoJaEl2Dq0lasarzrsPrIFpiSNCdpwgJYzMAyz+LtTcTKvbB57onvGbDc1PPWtXIpwBjMNCz1fKBsHJoupNqU4KOvAJHbVpqDlx6YpNhk9V9hXkgrpsk3G0Atpiiqja+aYfcYe29yft0w6nh97PLuMfujAsAP5HTieLGHqJhKFQe+FfQ6e4wGqTUbLvuZaDsn70OvT9+8rSYwZGHLwWowx79Oh9LyJdcjfmHBiVHurSetpVFllODtMpady3DbzyubhVMcG+DBN87Bl8EBZPer0/Z9xLqO97raWaWGaB9Mlmw3n5Mk4J08+bL6C8Gbl9cLkYtUujxlEa5kWTq9KPju+XOazBt6QAyjUC1TpYPXQpbrIp41x+2g547D1CkE4Fbx2L26bm57UwSAhhmXwm22/4cKaC/HZCytpV7oL3w0yMujjYylqOQObXcE0LCwsZKkwsEuSJRRFxtDG//2YpoWhW/u/S/ZPKLIKdYbCzDsJy5RwzZ+Hohxr/EfheFJDIdSFC193GwkJy7Awi59xoV4J+4M6HK4ea1rsLzqoqlxYBV4//P3SPEK9QhCOF8u0QALLBNlWeMaTDhcIxCq8ptpktNz4cqnnTRRZ4boJ15HIJ8a0F8wtmztm255kD99f9/0xaVuHtnJJ7SU0h5oRhAMsCsFIZFka09agqDJYhddUu1x8llftciHWw/46qGVayIp02OcuLWcgHaEdTBCOh0Jbl1loI7IOzjtTbcqY+oFlWsWy+NpntANMkzFts4JwopmGWWzrPFShHFqFtlUDbAfKrCQhKzLy/ucZyzrwv8LfgmpTyGd1rP1/C5ZljZmMeajD1TPeDNlmwzl1Ks6poq9COHlM0zrss9+hfQFazkC1K2SSGnanWkyz9j8fmrpZbGMQzh1em5eYlMayCmVI3d9HpthkjP39EoZuHrHOeqSyJwjC6ztcO1zhb+3g73r2MH0eWR3lNQGjjtQnKJx+DvdZqXal2G/72rECB+6vh7vPSpJU7PtXbTLa/vESqv1g24Vql0nHD9cPTLGufWCBFhg7NkI+pK9BUQ/+rNqU4nFfm+ehxz1cXf5A3j6bj1pf7bigI6Wu0nH7vFbEFeGxfY+NSftb69+4ZdotlLgPP3ZJODoShTYtLauPey2X1ZFlCUU9fBuXIAhnp/YtG3n4//6bbDJB355dRGoKC895giEyyQQWEph68TlSBCERBEEQBEEQBEEQBEEQBEEQBOFUOdaZcJ8B8sB9wJ+ALPCpYz2pc4FpmPTsjvLUL7fx6B2b6dg+fNgBA+P2s0x6U73j0vvT/UfcR7GrGHmDUIUbxTb2I5+xvJpQuefgtrLCu6e8mwp3RTFtTukcFlUuOprLEs4i3qCD2ZfVAoVx5XanQsf2YSbOLwMKg108QTt9e2PUTQ0DkBjJEq7yEBvIUFrnBaC/LU7N1BBazsDlsyPJEu1bh2heUA6ArEiFyUSHCFV4cHpsdO8apXF2YVBLJpEnUOpiuCtJ5cTgmO3T8Tylk9wgFVavapxTimUVBuLIqsS+TYNMXlQxZp/u3VEmXVhyyLU46N8Xp3b/tcSHs0SqvcQGM0RqCtfSty9G7bTwmHx6W6PMvLAaKExSfu21zL60Bm9obOAL4fjqb4uTeMbD23d/nv+u/gmLw8vIm3mmRaYVt6lwV/Ceye9BkZUx+/ojTqonh8akeYL24mf+Wv4SJ5Hqsa8Fy934I4WVLyfOLy+mhyrcuINjV2NtmBUhUOJCEE6ULfpaJp1XzmhvmvIGP1BYndXhUtm2ooepSyrG7TNhdgnrH28HYMaF1ayOrQQKk++va7yO6RdWjduncmKAYKn7BF6JILw5eSM/Lm0gM0BOzxV/n14yncvrLydv5smER5HlsYPKmxeWM9CRwBdyoOyfZCfJEoZm0r5tmKb9daAD7M7CJNOmuaXYHAourw27U8VX4sayJGxOFXN/ACARgOTMZHMoOL02vGEH+axOLq1hGibugJP66RF0zcDtH/tdXzstTN++wuqZ6biGrMj4Qg7KGnxjtvOXughWiPuocGK5fDYkScLmVDB0C3fAhsNjw1cy9vmksimAzaWSz+rF570DJFmivNHPvs1DuJ+ezEeG/pX/nfxjylxlTApN4qKai8ZsnzfyJLTEuHOp8FTQGGg87tconJlkRcJmVyip9ZKM5ogPZYptBOlYHtO0mLigjIH2BDX7n9daVhXavQKlLhRVJpvScLhV3AEH0mu+0yfOLyNY7i4G2hOE480wTOxulUCJC1mVUW0yiirTsX0Yh9uGL1K4z1qmRXIkizfsYPuKHmYsrx6Tj6xK2JwykarDt0EIwolgc6rMXF4zJk1WJMJVXlSHgpbVcbhV9m4conlBGU6PiqEZZJN5BjsTVE0KglQI1KjYZNq3DlPRFEC1y0iShKrKyPsn8OqagaHvD4IuQVVz8ORfsCAcI3+Ji/oZkTFpnqCd/CET2JvmldGxfYSGmSVIMgx2JmiYVYLDY0PXDLwRJ/mj6P8Tzi4WFgkrjsOpYnfKONw2vEEHubSO22PH4SrUGfI5g5K68X0OnqADb1j0LQnCmxWp9uBwj12HZ+KC8jHtcLXTwsV40gdMO7+KF/7QUvy9pNZLoFT0550pguXucW2tpmEy86JCvffQsQKDHYli33AurRWf3w6oaPRTPsGPLEvEh7KUVBfG0gzsi1MzpbBf185RJsx5TWAOCRxeGzMvPnDMoeIx27YM0byw0O7RvnWYiQsO/HxwzETb5iEmLRzbh2dzKHhDDuZcXncwnwXlY7aRZYmy/f2BYVeYry/5Ok7l4DW9d8p7mRx+48UwpNf+UVD4Lktr6TfcV3h9I2o/Ws5k0nnj+2ib5pYW2rg8tnFjEARBODtZlsUzd/0El89PWUMTu155idHeblSHA5c/gGp3YEkyGDrq/nZv43DB5QVBEARBEARBEARBEARBEARBEE4CyTpLOyoWLFhgrV279lSfxhH1tkb5y20bxqyuct2nZ1E/441XEXl036N85cWvjEn7wcU/4JK6S464z3B/Asm0SAzl2fxCF8mRHJMWllM3I0xprX/c9n3JPlpjrdhkG03BJiKuyGFyFRg3ROnYnU5lNxXL0bp+gF1r+pmxvJr2LcM4PSrBcg+71vQx/cJq+lpj6LpJ1cQgO1/pYfKiSkb7UiRGs0yYXcrOl/tomB0hm9Tob48zZXElu9b0U97gQ1ZkOneMMO38KvZuGiLWn2ba+VU0zS0jk8yz6ZlOZFmitM7HztV9TF1ayVBHgmxKo25ahB0v92BYJpHFFk/rf+My1w1EVynUTSnB1C16do8ybVkVe9YPEKooDDrbtaafQKmLyZeUknZHocPDzhX9TL/gwLUYVE0MsfOVHiadV8FoX5pkNEvjrFJ2ruqlYWYJuZTOvs2DVDQGmHVJDQ6PjdZ1A7RuGGT6BVXs2zREtD/NtGWVNM0vwxs8LQeKnpClF092+R3qTPDA/64rriQFMPltPv599Au8Z/J7mFc+D8uymBCYQKW38rB59LbG2LO2n86dI5Q1+Jl5YQ3ljePviwf07Imya3UfPXuiVEwIMHlRBZue3Mf0i+upnhREtR0MdDLUlWDL8930tkaZOK+MyYsrCIjADcfDWX3vPRYvdr5IMFlBepfCaF+K2qkRdq3pY8LcEjwBJ5ZloedMtq3oRlZlZl1cg6bpbHmmmylLKqmcHGDE1UNfuo9ydzkTAhOQDYX2bSNsfKoDgMmLKiip81LREBg34VN4Q6LsniDr+9fzocc/hHXIktufnPNJbp1965jtorkordFWdEOnfHgCm5/rJh3LM2FuCYpNIVDiQlJAUWQcbgW338GOl3vZu3GQGRdWk01ptK4fJFzpoXlBGf0dCUqqveg5A1mV0HULb9COsn/inYREpNqL3aW+9pTPROdk+e1vi2GaFvm0TjpeCHaTjuVxB+zkMgZ2h0LPnlEG2hM0zCyhcmKA1vWDDLTHqZrmxzYzRZOjmVzaYN/GQXr2RKlsCjLjwmpK63xvcHThODknyy4UBrP2tyfANLAswASLQpDJXWv66G2NUTs1TOPsUgzNwDQsYkMZtKzB3g2DuPx25l9VTz6j8+hPtxTzlVWJyz4zkWCtk1L32JVUs3qWr634Gk93PF1Ms8t27rvuPiaGJp6kKz+rnJXlt78jhmQVVqhOjGTJZ3T0nEk+V7hXltR5mbSwgu5do8SHMlRMCLBrTT+Tl1QQrnSTiWnsWNVL/fQIydEsgVI3e9YNkE1pTJhbSrDMRVVzCE9ABCE5hc7KsntALBUnN2ph5CwyyTxazsDUYffafoJlThpmlrJn3QBD3QnmXFaHJINlFFanzqU1Wlb14Q44mLSwnFCVm/L6wKm+JOGgs7rsArRvG6Zj2zC+iJOdL/fh9tuYdkE1br8NwzDRcwZ9rQlUu7w/4J6FrMik43kSI1kqmw6W18HOJP6IE6fXjiQBkgVWoQ5iGhR+Lqzfi6/ETeUEP7II0HginfXl91SJDabZuaqP1vUDVE4I0DSvjI3PdJBJaDTNLyMdy+ENOlFsEpYJpmnhDTlQ7QoOl4rTpxKpFM9/r+OsLbtbW3dR6aokny3Ud6P9afylbmKDKSJVPizTIjGaw+2z0b5thK6dI5Q3+GmYVUJZvR+fCEJyJjhry++ZrHvXKFue72K0N03j7BImLiijpObgfTg6mGKoM8Xm57rQsjrTzq+itN7L9hW99O2NUdUcpHlhOSXVXhxu2ym8khPqrCu7Iz1Jtq3ooXNnITDY1KWVeAIOOrYPs/GpDupmRLA5FHa+0seM5dUkR7O0bxlm3pX19OyO0rMnyoTZpUxZUkmg1EVva5T1T3QgqxIT55exbUVPYXGLSSG2vthFWWOAcIWHbSu6sTlUZi6vIlDmZNOzPXgCdtq3DjPpvHIkWaJlVR9Tl1ViaCa71vQz7fxKtJzB7lcHmH5+JVp+f/qySgzdpGV1P+FKD3Muq6W8MUAqlmPvhkG2reimaV4ZDo/K9hW9eEMO5l1ZR2VTsNhfZ1kWbfE2OuIdBJ1BmgJNeO1vHNyiP9XPLY/eMmbxoxpvDb+5+jfj2v9OsTOu7LbH2vHnI+gZk+HuFFtf6AYJZlxYhd2l0t8WZ8KcUsobRNvAOeBEdKyfnYM+z2KjfT3c/bmPcemHb8UdCPDQ97+D3eUmUFrGB/73R6TiCaZ/+0XeXWcwadZMvvnwdjb9vysInNo6iRgUIgiCIAiCIAiCIAiCIAiCIAjnqGMKQiJJUinwZWA6UBwJZVnWkaNhnCSnepDDG3npT7vY9EzXmLSaqSGu+/TsN1wpPZqN8kT7E/xs08+QJZlPzfkUl9Zfit9+5EnzB6SSGcy8hWFCsERMhD8OzrhBDm9FPqujqDJIYORN7C4VLacjyxKSLKHlDexOFT1vIkmgqDL5nI7doWLoJpZVWKknl9Gw2RUs08I0LWwOlXxGR7EVyryhm9idByfpmoaJljdwuGxoOQNJBlmR0XJ64XiaSV+ylx9tvZ0Xul5gbtlc/mnOl6n11RWPp9oVsA7mfeBaFPXg39nhrmWoK8krf2klMZIhXOFltD+NN+hg8duaKKvzFa/l0IHzr3ctp6GzIgjJthXdPH9Py5g0X9iJ9z2DzKmbyYTghKPKR9cM8hkdp8d2VJMh8sk8qaSGx2dDUhUkiUJZO4xDy7Fw3JwT9963IplP8mznszzf8Tw3V70bv9dNXbAOj82LLEEuo2NZoOd1JBlW/LmF8uoQnqADJIupS6qPmLeWNzA0A9WhoKqHL+/CGxJl9wTRDI2VPSv53trvMZIb4b1T3svbm99OhWf8ynIHrPpbK717YgRKXXjCDrwhO26vnbIGHw6PfUw5z2U0LIvi34/DrWLqFkgSmBbIErpmYlkmslT4mFW7iuPsCD5ywDlbfvM5jXy2EKBBUWRUuwRWoe7YuXOEkZ4k3qADw7BIjuawuxRaStfwaM9DXN90PVc2XInTcJHPGsiyjMtvRxZBnE6mc7bsHqBrBtmUhmlZyEggFUI2mbqFzaHg8toLr5sWEhaSJCGrMqoqYxgWf7ltPUOdyTF5Lr6piflX1R/2eO3xdn697dc8tu8xGgONfGnBl5hfPv8kXOlZ6awsvy//eQ8bnuzg2k9PJ1Tpw9BMRvtSeOsUQq5AofzZFHTNQMsaKDYZ07RQVBmbXSGbyqPlDVRVxuGxo+V0FEXG0E0kWTrdn8XPFWdl2T1gpCfJ77+5hiv/YTpl9X50zaS/PU5JlYdAqXt/+5OGljNxuBQkRUbP6RgmmLqBhYSqStidtjHtU8Jp4awuu6Zh8siPN9OxfQSnx8a8q+soqfVid6r4Ik4UVUZV5MKzDYBlkTVzbBhez+7BPYQcQaaXzKDWX43T7sLQTArznaSD/0og7Q89IlFIUlUZxSbaEU6Cs7r8nmqWZZHP6sU+gUwyj2laOJwq2YyGZEkkjTijezRsDoVIlRdFldi3ZYjEUJ5lbxcB+V7HWVt2d63r5ak7dzDj0irmXVaLZUqM9qcJVXlQkFFsErpeCLBut8lomlms4wpnjLO2/J7pNE0nnzZeNzhlcjSDaVpk9Dz3f309S98xgfKGAF27Rnj1wXbe+dUFlDW88fiLM9RZWXZN0yqMI3CoY4Loazmj2Jd7YKyArEjF73YkqTj+QJIO7qfrBpZRGNOg543imActbwBgsyskRtNYhkQmleH+/9oIgMOjUtUcJJvUuOQDU3H77cXxCQfGExztz4c6dJxDPqsjq9Jx7a/bObyTH274IesH1nNexXl8as6nmByefNzyP07OyLL77D3bSUfzXPi+SVgmWIaFaZmoqoIv5BKLPpw7RBASgdZ1a/jr/3yD937zf4nU1PGTj74P0zCYtPh8rv/CV8lkc0z996d5d3WOafPn8fUHt7HuXy8j4j2lAbfFTUoQBEEQBEEQBEEQBEEQBEEQzlHHOir/HuA+4DrgE8AHgcFjPalzwaGDF4ppR9lnE3QGeffkd3Np7aXIkkzYFT7q43q8rqPeVhAOOHQCj+IqDHaxOQ6mOYppyiFphYALhwZmKAZhUOBAqv2QybmvHUgjK/Lr5m2zK9SGa/jG0m8QzUXx2X24be5x2x2a9+EmIx3uWkzDonP7CADRvgwAo70pFl7XOC7vA17vWoQT43D3UiS4ouEKvP6jv9+pNgX1TUyGsHvt2L1HNxD40HIsCCea1+7lhqYbOL/qfExMSlwlY1532xS0nM4jP97EYEdhMnHbuihQmEz8emx2pTAYUxBOQzbFxkW1FzG3dC45M0epq/Tw3xGHkCSpsMLh7mgxrXJigBs+N2fcwN0x3/ue/T+f0rFewslkd9iwOw4fTGxgX5z1T3SMSaueEuKqj13BFZMvJeKKFNMdIgakcIqoNgVv8PW/w11HqNsahn7YlorXu8XW++v52qKv8fFZH8dj8xzVaqvCueVA+XnkR9uKadVTQlz/6dljnqWP9Jzm9Nhxeg7+frj2B0E40STgiZ9vG5N2/WdnU1pbaBuyO23YnQdfU9xiMrFwmtg/uS2b0nj5/lYAZl1SwwXvmlTc5NCAIU7sXOxbzsyy6eP6IkQbgXAukSRpTNvAofVn7/6/BaceYdUrm+jaOTpm37lX1J2ckxROO4pUKBtbn+lh6zM9AKh2mfd9fRGeyPiGJVFbEITjx2ZTsQVefyiMN1ToR0ztyQPw8v17x24gptuecWRZOmwf/qHjDA4dK3DotofbT1WV4oiqQ9scDq0H+0KFRt+R3lQxLZfS2bdxCFmWsKyxxzx0PMHR/HyoMfmcgACsUyJTuO2i24jn4gQcAZyq8413Eo6Kqqi0b+njt19bVUxrmBnh6ltniQAkgnCOiQ30ARAoq8Dh9lDe1Ezvrp1UT5le2EDef383NJT99wfjGBYYFARBEARBEARBEARBEARBEARBOBbHOis6YlnWXYBmWdYLlmV9GFh8HM7rrNc0r2xcZ/Kcy2pRlKP/SErcJW8qAIkgnK0cqoNyT/mYACTHKljmom7a2L+vqklBQuUikM/ppKzBN2bgGMDCaxvfVAASQTgbhV3hcQFIDrA5VBZc3TAmTVFlaqeETsKZCcKJFXAGKHOXvWEAEoD6mRFkZex2866of1NBqQShcXYp8mue6+ZeXkfIHRwTgEQQzlR2p8r8axrGpCmqTM0b1Btsso1yT7kIQCIc1pHunSKYp3Cm8Je6mHZ+1Zi0ULmbcKW45wmnN1mRmX1JzZg0SZaYOL/sDfcVfRGC8MYUVWbO5WMDjsiyxIQ5pafojIRTLVLjxeUbO6l9/tUNeMNiUrcgnE6CFW4qJwbGpNXPjBAoE32NwtELV3nwRcbe32deUoO/5My657tUF+WechGA5DhrXjh+fNisS2rHtY8JgnD2iw/2o9oduANBAK742GeYc+V1zLj4MuBgwBFT1w8GITFFEBJBEARBEARBEARBEARBEARBEE6NY10eQ9v/b68kSdcCPUDN62wv7FfW4OdtX5rLzpd70fImU5dWUvGawS3Hm543GO5JkhzN4Qs7CVd5xCRL4YxnaCYjvUniw1k8QQeRKg82x7Gv/ONw21j+vsm0bRmiY9sItVPDNMyK4DzCCuHCqVFS4+OmL85l15o+4iM5piyqoHpS8IQeU9cMRnpSJEayeEMOIlVeseK2cFrSNYOR3hSJ4SzekJNwpbt4f6ydFua6T89ix8u9uHx2Ji+qoLTed4rPWBBOrvJ6Pzd9cR4tq3rJpXWmLquksun16+O5jMZIT4pMIo+/xE24yiMGiZ7jvCEHV3x0Oql4DkWRCZS4KD/Bz3WCcKziQxlGelPIikS4yoM3+PqTCg6tN7h9diYtrqC0TtQbhLeurMHPTV+ay85VfWhZg6lLKqloLtw7tZzOSG9KtF0JpzXVprDgmgbKGvzs3TBIZVOACXNLsTllevdEySTz+EvdhCtFXVE4/VQ1B7nh83PY+XIvqk1mypJKyhv8h91Wy+kM96RIRXP4Iy7ClR4UmwgYJQivJ1Lt4aqPzyAxksXpVglWeCirP/zfmHD2C5a5ueHzc9mztp+hriQzL6rBMi3atw4TrvTgLxEBDgThdODy2rnk76Yw1J0iPpghUOaipMaLw2V7452Fs0o2rTHSnSSb0giUuQlXeMYFjjgSf8TFdZ+azZ4NAwzsizNxfhm1U8NvahEi4exV3uDnpi/OJdqfQs+buHx2EehIEM5RmUQCl99fXFCjpLaeSz/8ieLrBwKOWIYmgpAIgiAIgiAIgiAIgiAIgiAIgnDKHetM/f+UJCkAfAm4HfADXzjmszoHyLJEZVOQyqbgSTmeoZlsW9HDS3/aXUxb/r5JTFtWhSwGPghnKMu02L22n2d+swP297kuunECcy6tPS5BIfwlLmZdXMusi2uPOS/hxCmr95+0gdymYbLzlV5euHdXMe38dzYz48JqMQlDOK2YpkXLqj6ev6elmLbsHROZsbwa1aZgc6jUzyihfkbJKTxLQTi1JFmisinwhoFHDsilNdY8tI/Nz3UBhfr8VR+fQeNssaLxuSo6kObxn29huCsFgNtv5/rPzsYmJssLp7GhzgQP3b6JdDwPQKTGw1Ufm0mwzH3Efeyi3iAcZ0dqEzM0k+0v9Yq2K+GM4A05mbasimnLqgDIpjRWP7iXLc91A/vrip+YQeMsUVcUTi+qTaF2SpjaKeHX3U7L6Wx6tovVf9tbSJDg0g9OZfKiiuJEGUEQxkqO5nj+nhbatw4DYHMoXP/Z2SIg1TmupNpLSbX3iG0IJTUiwKMgnGq6ZtC2ZZiV9+8ppi1/32R8Yad4Fj2HZJJ5Xv5zKztf7gVAViWu/eQs6qZFjjqPcJWH86oaT9QpCmcwWZFxulXWPtJGYiQHQLDczTW3ziRU4TnFZycIwsmUTSZweo/8DGAeCEKiayiSCEIiCIIgCIIgCIIgCIIgCIIgCMKp9ZaDkEiSpADNlmU9DMSAi4/bWZ0DMqksmaRBPqVhWhCp9OBwn7jVdEb7U6x8YM+YtBV/3E3VxCDhKu9R5ZFrbSXx9DNkd7Xgv/Qy3IvOQ40c/aAL4cyk5QyS0Sw2u4I3VFghW9cMkiM5ZFVCtcnk0joun41sWkcC7E6VbErD6bWhZXVMExxulWxSw+lR0fImpm7h9NrIJPPYHCpYFlrewBt0YnMUJm6mYjnyGR2nz0YupSPLEqq9cDyn10ZiOMsL97YUA5AArH5wL3XTwwRL3aRiORwuFcOwMDQTh7dwDodey7HIbN9O4vEn0Pv78V97Da4FC1DcByfvHXifFFXGFzn24wlHlhzJkhjNIkngjtjxB448ifJYRPvTrLhv95i0lQ/soWZKiEj10d1LTzXLNMls3kz8kUcxc1kC116La+5cZLv9VJ+acIh8ZyfJF14kvXYt3vOX4Vm2DFtl5VHvP9KT5MX7do1Je/mBPZQ3+vGXuPAEHABYlkViOItpWvjCToa7k+iaidOjIqsKWlZHtcm4Aw4y8TyqXcaywNRNTMvCyJvYnIV7qqKOH4yr5Q2SI1kUVcbQTewutXhsQTjR9GiU9OrVxJ98EufEZryXXYqzufkN9xvqjJPPm7g8NoJlbpLRHHreIB3PFwOQQGEQ2HO/20mw3I3Do5JL6bh8dpyeQp0+NpAiGdOwOWRsTgVDM8CSsLsUfCHXUa+gKJw4iZEM2bSGnrOw2WUsQ8cyTCwkFJuCYlcwTYt8xsDhtqGqEppmIisSlmnRtTNanDwEkI7n2fpCNxe+d7KYZCacUtm0RiaeR1YlTN1CsckYmonNpbD5+a5iABKA4a4UHdtGsLBwemzEh7JYpoXLb8fUTNwBlcRwHi1vYHMoKKqMosr4I29tpc58ZyfJFStIr3kVz7KleJYtw15VdbwuXTiDpKIp4iMaWOCL2HAaOaIZ+xHarkKEq8SEDOH0koxlSA7nC89SPpPR1uFiABIo1BWf/10LpV/z4w2JZyDh9JXP6sSHMphGoU6sOhVyaZ1sSj8YgATAghfubSFc5UFRJGRFAiRM00KSJSSpsI0kgyQV6suyImGaoKgyet7AG3ZisysYukliJIssS/giztcNamLmcmQ2bCD28CPIXg/+q6/GNWuWCIQinJYGO+LFACRQ6Ft5+YE9XP2BRtwVoi/tXBUbSpGJa/Tti4s2BEE4SXJ795J45lmy27fju+xSPIsXv+6Yhmh/mpfHPYvuoqzBR1nd6y+CMNqfIh3TcLgUSmpFUKEzQSaRJ5vScHkL/aLZdB7TsIgNZosBSABM3eL5e1p4+5fnYegWpmGCBfmsgZ43cXkVUj/5X3yLF71hGRMEgB2v9BYDkEDh3rN34xDzrxJtXoJwLskkE7heJwiJYR0MQqIqhecEXQQhEQRBEARBEARBEARBEARBEAThFHnLQUgsyzIkSboB+P5xPJ9zwnBvgnzWYKQrxdpH20iO5iir93HheydR3nB0K7G/WdmkjvWaTilTt8im9HHb9iZ6yepZBjIDjORGqPJUMTUfoeMfPobe0wNA4pFHKfnsZyj5xCeQZLEC0NlqtK8QvKZ9yzBOj41F76jHU6Ww+7lRurdHmXdVPZue7qRmSgiAvZsGOe+6RrY830240oM37GDny72cd30jLav7sDlVKpsCbH6+i/lXNtCxfZhcSqN5YTkbn+4km9SonR5i9o3l5Ebh5d/vo3F2CfmMTseOERZe08DmZ7soq/fj8Ki4fHZ0zRx70hZEB1Os/NNudM2kYWYJm57pZPYltfTujdG5fQSHR+X8d06kaX55caV6zdRoj7UznB2m0lNJnb8O0zLpiHfQn+6n1FVKQksgWzIumwtPxxDxD38KM5UGIPa3vxH5n28RO38meTOPI+Vlz5NxWtcPYneqLH17E80Ly7E73vJtVziCvr0xtrzQxe41/ah2hdmX1tIwK0zcN0RPuhvN1Kj2VBNwBKjyHdsEx2xKxzTG3kst0yKT0I4p35Mps3kL7X/3AdAK5xz745+ovfsuvEuXnuIzO7f0JHsYSA1gYZEzclT7qjEtk75UH/VmiOxX/oPM+vUAJB5/HP+111LxzW+MCXR0JCM9SbpbRjH115RVC4Y6k+zdMEjttDCldT52rOzl1Uf2YegWM5ZX43AqrH2snerJQWYsr+HZ3+xAzxk0zS+jtM6HnjdJx3MYmsWuNX1IssTUpZUEylxMmFOGP+LEsiw6Eh0Yoyo7HhukuinM7rX9DLQn8AQdXPz+KdRNCx91AIZ4Lk5bvA0JCc3UsLBo8DcQcYkBncLh5Y08nfFO3H96iuj3fgBAAhj5/b347/whg2EFWZLRTZ1YLoZhGZS4SvCafqKb4dVH2tBzBo1zSpl1cQ171vWz+9UBlrytadyxMgmNvRsGsbtU1j7ahjtg5+L3T0HPG7x0/x4G2xN4Qw6W3NyEosBQVxpP0I7DbaNmSqg40Fk4uSzTom9frFjHNDUTf4kLLWcgqzKyLJFNaZTW+9jyXDe9e6K4fDYW3TABXTfp2DpMbDBD6WEmFvTvi7N7cA+anCNtpEnkEkRcESaFJuG2nZggaYJwqMGOOCsf2EPj7FJaVvcxeVEFW1/sYtqyasob/Qy0xcft07s3isOtkormWP9EO7mMTt3UMFOXVtK6PsP6J9oxDYspSyqomhTEMi3atg3imJQnr2RI62lM00SWZWRJpsHfQKm7dNxx9NFRev7lX8msWQMU6jjeK6+k6tvfQvGIwfbnkr59MXa/OsC2F7uxsJh2fhWTz6sgn80eoe3qzHneEs4N/R0xOraMsOHJDnTNpHl+KTWHWR07Hc+Ty2giCIlw2hrtT/HC71vo3hnF7bcz94o63AEH2WR+TNDnA/S8SbQ/zfO/a6Fxdgn+iBOX30EurZGK5fGFHIW2h64EFU0BenZFCVV6iA2k8QQdJEeyLLi2ke0v9bBtRQ+KKrHw2kamnV9VDOb4Wuk1a+j8h48Vf4/ecy/19/wO16xZJ+ptEYS3LBnNjUsb7kkRT6s4kkkU75kRxFo4fnr3Rtm+ooe+vXFKasZ//n174xiaibw/ML8gCMdO6+mh82MfR+sqBJNOPPYYkVs/QemnP42kHP5vLZPQsF5T9zF1i/69cUzdomLC4cdvdO8aZeX9exjsKLQBL3vHROqnhbG5TtzCM8Kx6dk9yrO/3UkqmuP8dzUz2B5HtSv4wi4Mwxy3fWI4S29rnNhAhlQsS2mNj1V/20s6nqdyYoDFH/gCPbdcRcktt1Dy6U8dsYwdq7SWpj3eTiKfQJZkTMtEMzTKPeWktTR5M09SSxJxFp5Lu5PdRJwRgo4gCS2BU3GSM3LkjTyGZeC3+0npKXJ6joZAA3X+uhNy3sJBQ10J+veOb5ftb4udgrMRBOFUyiaT+OpKjvi6ub993NLyKPvHU5giCIkgCIIgCIIgCIIgCIIgCIIgCKfIsc6Gf1mSpB8B9wHF5Zssy1p/jPmetfJZHVmC+GCWF+/bVZwgPNCe4Nnf7OSmL849IZMRfWEHNqeCljWKaU6PDW947CD4ttE2MkaGl3tf5kcbfoRu6XhsHv4c+loxAMkBwz/7OYHrr8deW3vcz1c49XTNYPXDrbRvKazcl01pbHiki8a5JexeNcDCaxt45S+tqDYZp9fGhic7mH1pLWsfbSOX1pl0XjlrHtrH5EUVbFvRw2hfmsU3TWDVX/dSOzVM544RenZFWXxjIQ3AHbBTOSFIvM0kG9doXlCGaVrsWtPPvCvrWf23vZiGRWChi7WPtnHx+yfjDthJxw6u5K3aZNJRjZ7dseLxyhv9DHYm6Nw+AkAupfPMr3bijTioaY6gGRqr2l4l3pvDZXhJBE1Wde7GUiyGQu3sVrewfXg724e3c+ucW7l76938JH4j7A9AckD8jl+wvfb9/Lr9fj6c+Brt6xIA5DM6z/+uhWCZm+pJoZPx8Z1T2jYPsWt1P1BYXXLto234wg708jyffvnTADQFm/jXRf9KPB9nSmTKWz6WN+zA4VHJHRLAye5U8EXOnAlFiSefLAYgOWDkV7/Gc955SKoIknMybBzYyG2v3saiqkXctfUuPDYPH5v5MX688cek9TS3h2+lfP3YqlT8kUcIf+QjuKZNfd2881mdFfftZvKSCpxeG9nkwc/a5lRwelQcbh/9bXHS8Tz+EicLr23AX+Kib28M04Jl75zIhic62PpCN+WNfrp2jLJn7QB1U8O89OhuZiyvYf2L7YVMDYutL3Sz8LpGdr/ax/yrGljZs5I/bLuP67r+AVVVaVndx1BXEoBUNMejP93Mu/55IZHqN5540Zvs5b9W/xcBZ4DhzDArulcAMDEwke9e9F2aguODQgjntmQ+yb0778UxFGfxz34/5jVjYBB91x4eLG1hZulMfrn1l2S1LF+q+1fivQ4yikG40sOk8yrY9mI3ezcM4vLamHReOTanSjalIUmMGZAeqfHgizj313OaaN0wwOM/28rkxRUMthfqAcnRHM/8egfXfnIWik2mv60wKN3mUGiYeeRBZsKJM9qfIhPPM9qXpmVVH9PPryKfNVBtMu3bRnC4FCbMKWXbiz307okChQmXiZEcvrCD8sYAJdVe3EEHe9YNjMk7PEPlsys+zUdmfoSHWx9mw+AGAN7e/HY+O++zhJ3hk325wjkkncjxxC+2MWFOKWse2sf0C6p49eF9VE8KkYxm0XcZ1M8sYbg7NWa/0hofumbwyl9ai2kd20dw++0MdSdZ8rYJIEmM9KTIZww8QTsjPWmsXomdru1sGdpCWk/zVPtTANT6avm/i/6PSeFJY46T37u3GIDkgOQTT5D/2D/gmj79BL0rwulosD3B5mc7qZwYpG5aGF0ziQ9n8EXko2q7EoRTKZnIEOvLsOahQuDc0jofhm7h8trG1RVLar14gqL8Cqef+FCGzh0jDPckaV5QTuOsElb+aQ8rH9jD0rc1oWsmJbVeFJuMcUgAaE/Qjs0us/imCWSTGsFyN9te6iFQ4iJQ5mKgLUFyNMuEOaVsf6mHsjo/qdEcI70pXD47A+0JNj7dwWhvGsu00PMWr/yllVCFm8bZ4wOYmfk8w7+4a0yapWkknnteBCERTkuhivGBJ+umhdmzrh/7BdWERQySc0oqnqZz2wg7X+ljwtwSqiYFx7UhNC8swyYCkAjCcZVt2VUMQHLAyF13E7zpJuz19cW0+HCG4a4khm7ii7iwORS03CHPol4bscEMiZHsYYOQDPckePH3uxjpLbSxJEdzPP3LHVz/2dmiL/g0kBjJMtSVxMgbhKo8RKq8xAbSPPLjzeSzBjOWV7P2kTamX1jNSHeKrp2jzL+6YVw+lRMD9O+NMtqXYcriCp68a1vxma93T4xVD+7jwr88RWxrK9ENgwx2JPFFnNRMDhGqOD4Bd4cyQ7zU9RI7R3YiSzJBZ5CfbfoZn5v3OTqTnQD8YssvGM4O86X5X+IXW35BWk/zmbmf4Z4d9/Dh6R8GIKkneaT1EW6edDPDmWF+ufWXxbFA37/o+yypWnJczlcYb3QgxfqnOqidFqa3dWzQkQmHeQ4SBOHslk0mcL5OgEpj/xeNqWsoUiEIiS6CkAiCIAiCIAiCIAiCIAiCIAiCcIrIx7j/UmA68A3gtv3/ffdYT+pspmk6uYyBqZvFACQHjPSkSI2OXynteFBsMkvfPrE48N0XdnLph6bij7iK28RzcQwMhrJD/GD9D9CtwiT7q4PLUFPZ8ZmaJuOWBRLOGvFomn3rh8ekVTYF2btuCCh8/IZmUlrvo2d3FADVrpBJaATL3Ax1Fiace8OFibkHVtYGKGvw090yCoCWLwxkl2WJeVfWs/axNl68dxdrHt5HV8soDnchKIIkS+SzBpFqL/37CqvEJGN55l1Zj7/ECYDbb2f5LVPY8GRHYftMYbBYVXOQ9m1jrwVgsLeQT+dwD6MvKbT9ziKslfPiz/ax7uFO1v+ti557bCx3XMXqvtVcO+FaertauE19H+HcYYI16AZbBjezNHQh/ZvG/80MdSaO8t0XjtZob3LcwF2Akd40Ve7q4u+t0VYe2fsITtlJRstg5fOk161j8Ic/ZOjuu8nu3HlUx/P4HVz03snFVYw9QQfL3zf5jJpUZGnjVxG3NE3cz0+SaDbKN175BstqlnHnljvRTZ3rJ1xfHBQIFG6wh2MdIf0QqWiOrpZREsM5FlzdgC9cuD96gg7Ou74R1aHw4h92sebBfTzzqx289Kc9BMs9PHX3djY908X6x9tZ9Ze9zLm8ju6WUcobCoNrJVkiNpyhtN5Pz/4J+YcaaI/TtzfGwMgQX1vxNT444SO0rR8hUOouBiA5wDQsYgOZo3q/VveuZkXPCio8FcUAJAB7Ynu4r+U+DNN4nb2Fc9Gu0V3cvuF2JEvC0seXj7yeZWbJTNb0rqE12so/1v4/dv0qz8bHunj14Tae+fUOSmq8TF5UAUD71mEM3cTpsrHj5V4W3TgBh6dQBwhXelh0wwSe+fUO1j7axrO/2YHNoRAod407rqlbJIazjPamGOlJYmgmoz0JUhs2YKTT47YXTgx9aIj4E0+SHkmi5Q0GOxOUN/hJjuYYaI+j5U2qJgaI9qexLIr1VYCF1zaw9YUunr+nhVcf3kfLmn7ClR6mnV+FrEggQePsEqqbwgxkBvjOmu+wqHJRcf8Hdj/A1sGtp+KyhXNIciRHbCCDrMjkMzqyIpNL64QqPVQ0BEiO5NDzBo2zS0ACWZGYfkEVNpdCYnj880vrhkEWXttIz+4YL/5+F1tf6OaFe1vYsbKXYLmLZJfOPTvuocZXUwxAAtCZ6OSurXeRN/Jj8rOOVMc5UrpwVtI1nfatw5TUeCmp8bL6wb2se6yNp+7aTl9rhks+0jym7eqqT8wY03YlCKeaZEL/vjh108PIisSah/ax7rE2Vt6/h4veP6VYV4xUe7nk76bidItV0IXTSzqe48m7t/H8PS1sea6b53/XQrQ/w5K3NYEF+ayBrEgMdiRYfMME3P5CwHR/iYsL3jWJV/66lxX37ebVR9p44fe7mLK4AnfAgZY16Ng+TNWkILpmMtqbxhdx0r5tmKqJQTp3jFDRFGDfxiGqmoNjzqlj+whGIkHiuefp/5//YfRP95Pv6ADLOnI7liCchkprvSy+aQKqvdD1WjkxQN30CLGhLLmUKLfnGiNfeKaqnxEBS6K7ZXRMG0LzwnKaF5Sf6tMUhLOOdZg+A8s0sQ7pAxvtT/Pg/23k0Z9u4Yk7t/HEnVu55INTDz6LRpwsuKaBHS/3snfjICO9yXF5JkfzxQAkBxi6SXzw6Po+hBMnNpjm4R9t4tGfbOaJX2zj/u+spW9vjPhwhvz+oKcOtw1ZkRjtTeEvdTHcnSIVzbH07ROxuwrPdCU1XmYsr0FRFTq2DZOK58d1pfbujtK9K8aIHuTJX2xnw5MdvPj7XTz4w41EB45Pu3/LSAs7RnYQdoVx29z8bNPPmFU6i4H0AJ2JTh5ve5z+dD+X1F7CX/f8leHsMNc0XsPvtv+Oi2svpj/Tz2BmkDs23cGl9ZeSzCf5xZZfFMcCpbQUX1vxNfpSfcflfIXxcikdb9CBnjeYOL8MSSr0u864sJraqSJouSCcSyzL2h+ExHfEbXSj8GVjaXkUuRCExBBBSARBEARBEARBEARBEARBEARBOEWOKQiJZVkXH+a/S44lT0mSgpIk3S9J0k5JknZIkrREkqSwJElPSZK0e/+/Z/TyMU6PDfMwHUR2p4LNdZjABsdBf1uclx/YQ8OsEuZf3UDd9DDrH2sjlz448DGnFQJEDKQHsCic36zgNN691g6dPSihsW976O/ej62q6oScr3DqaXIOX+nYwArJ0SyBisLkH0UtdHYmR3IESgtpslwYMJGK54orFZu6WVg9Kmvg2D/xIpPIF4M4HMinfmaEllV9Y4LzDHUmsTtVkEBR9h8vmisGHTF1k1cf2kf15BDzr26gaV4poz1JTMPCMq3iYN9Dz/FQkqsw0Cg3bNH5SorSOh/du6Jj/j51zWR4W54qTxUTvPXcsE7G9c/fQ7HZkez2MfnZ/v49PDa8gs5cO96y8ZNMzqRAFWcK1aEe9rP1BO0HAzrst2FwAwYGiXyC1Nq1tL//7xj6yU8Z/J//pf2W9x9VIJLoQJrn7mmhfkaE+Vc30DCrhOd/30K078yZQO6/6krYv2LKAeEPfgDJJiZGnQzRXJTd0d3kjTzm/qAiLtXFaO7gRPeN7iGU5qYx+3kuvHDMKn1HYnMquP12LNNkzcP7qJ0WZv7VDTTOLmHPqwPsXT9ILq0Xt09Fc/TtjRUHVUJhoOxQZ4LKiQEyicLkYcu0cLhtJEez+EvG/835wk4cNgO1t5doLopsB1+pHT1vFINJHcrpPbr6zvqB9UScEXqSPeNee7nnZVJ66jB7CeeyvnRhoOyfYs/CLTeNeU0OBIjXhHAoDrYMbWFWySxS6xxYh37v500GOxKU1BVWoAqUulBUGQuL2GCGTc90MmVxJfOvbmDO5XU8/cvtmMbB/fesHaCqOfTa2ywADreKJ+jA4VaRJLDrSbpv/STJ5547/m+EMI6ZyzH0s5/R/bnPQTyGrMh4Q06SozlsDgVfxIWiSiSjOVSHgqxQrK+GKt0MdiTH3T+7do4y2p9i7hV1LLi6gVxaZ9ujg1xYvhzN1DAZG1hhX3zfSb1m4dxjd6modrnw7HTgGUoCLasDFttX9rD52S5yGZ0FVzcw74o6wpUeelqiY+oCBwTLXKh2eVzQv32bhrA5VdwhG9FclJHsyLh9V/euJpEfG4TRMWECzmnTxqS5ly7F3tBwzNcunDlM0yRY7qZxTilbXxi7OvUrf27FdOV5x1fn8+5/XcjbvzKf6uYzuglQOAsZBvhLXVRMCNC6frCYHu1Ps+6xNm78/Bze/a8LuemLcyitO/KEAkE4VYa6kvTvjY9J2/5SD96QE0WVkRUJCwu7U2XtY200zSst9icMdycZ7T3YBpbPFAJLubwqik3GX+IiOZJDViRsTgVDMwmUukiOFtpmkyNZAmUukqNjg5+FKt1EH/gzXbfeysjdv6Tv3/6Nrs98FiMaJfKRD4+9AFnGd8nFJ+z9EYRjkUxm2b22n5kX1bDgmgYcbhvP/W4nVRODh20fE85ukiIRrvRQ3uhn78ZBWtcP0r8vxtwr6jjvukYW3dh42HZWQRCOjXPSJJRIZExa6L3vwV59cOGCrh0jxA4JFpIYztK6rp8L39PM/KsbqJ0aZvXf9pLP6ATL3Tg84/vPHE4Fm1MZn+4VfW2nWu+eGCM9B/uO9LzJq4+04fKN7dfPZXQ8AQeGVujH0nIGvbujnHd9IwuuaSBU5WGkO0lyNIe/1FUYs/AanqAdVZXZtmJsH1ZyJMfgcVqcJJqNsmt0F1k9i4VF3swzKTQJWZKxyTa2DG4BoCHQQMtoCwARV4SeVA9umxsAE5OMnsGwDPJmvjgW6IDh7DAjmfHte8LxYXPKKIrM+ic6SIxkmX91A/OurEeSwXGU/aWCIJwd8pkMlmm+bhASc3/EK1MXQUgEQRAEQRAEQRAEQRAEQRAEQTj1jikIiSRJ5ZIk3SVJ0mP7f58mSdJHjvGcfgA8blnWFGA2sAP4KvCMZVnNwDP7fz8jeXxOFJtEfDDDxPllY16bf00DgRM04Cyb1NCyBtte7GbdY21sW9HDUE8KLXdwNSCnWgjsUO4uR6LQkfVO9wVYf3iQkd/8lvCHP4z/hhtwzZ1D2T//M+EPfQhJFZ3iZyuv38XE63yFVdn206Q8zZcEsTkUundFmXReOdH+NJEaL06vjb0bB5l5UTW5lI7dqeKLONm9tp+5l9dhmhZaziBS7WHP2n5mXVKLJEvEBjNUNQfxBB2HXX1b10zcPhvtW4eZfkEVqWgOb8iJO2Bnz9oBZiyvZsfKXtY91saW57tJEmfKjUGQCpNDyxsKAzynn1895lpKml04K/b/ki0MElPtCvmsPu4cjDS4bW6a0z6se/4CwOhvf0fpF7+I77LLcJ23kPx/fJaWGUHi+Tgv9D1HZLmJajt4i61o9FPe6D8On4xwKEmBxrmlYwb6hSrcuP12/tJ9/5ht55fNR0bGh5PhO37GoctVmakUyZUr3/B4ubROPqOzbUVP4V76YjdaxiCbHl9uTleuWbOo+9Uv8V5+OZ7zz6f2jjtwn7foVJ/WOSPkCDEpNAm7YkeRCuU2o2cIOw+udPXL3r+w/fNXE7z1Y7jmzKH0H79Exb/9K4rX+4b5e4NOlt8ymdYNg0xdWsn2lwpldesL3TSfV8Zo//iAOfGhTHFl4wPyWYMZy6vZvbYfAJtDwR924nCrhCs9uHwHB9J6Qw48QQcTI3Gyf/4rMyMz2ZnaRsPVLvasH2DO5XVwSECGacsqCVe/8bUAzCufx3B2mCrv+KBn51efj0f1HFU+wrmj0l0JQFuig7/OzKJ/9RO45s7F+a63kb7ty7wot5I1sswsmYlb8aClzHF5aFkDLAmbQ2HWJbXEhjK0rh9kxoXVZBIam57pZN1jbcgK5DPjV9b0BOwEy8fW6ZsXluHw2FBUmYaZJfjCTry92zGiUQa/9z30ETHA90TLt7cz+rt7ANAf+BVOt0JZvQ8tZxAodeGLOMgk86RieSYvriA5kmXO5XVIsoQn6CA+PH4V09hgmnxaZ91j7ax9tI2e3VHyaQOP4sMu25Ff87jd6G88KdcqnLsCpS4ueFczbVuGmH5BNW1bhphxYTW7Xu1H10wOzC/o2RVl7aNtrH2sHSTYu2mQQImL8oaDzyuKKrPgukZSsdxhj6VrBs5qE0VSiDgj415fWrUUv33s848aiVB123cp+fSnCnWcL32Ryn//OopPTNI/l9gddkpqvUgS41YQtiwwMhLeoJOSGh+egAjkKZx+bFaKSJUH6TBR5+JDWSQkSmp8OD32w+wtCKeekR//DGQaFrpu0ji7BJfPht2hkk1peEMOtjxf6E/obY2RjI6vF8QGMuTSGul4jmnLqsgkNeJDWeZeVsfejYM0LyyntzVK7bQwgx1JFt84gZ7d0eL+wTIX1XVOBv/v/8bkm2tpIdeyC/eSJdT85Ce4ly3Dd+WV1P36V7hmzTreb4sgHBeWJjHclWLDkx2sfbSNts1DYIHddeIWIBBOX1I+xsSFZWOC3w53p1j3WDtrHtpXaH8SBOG4s9fWUnf3XYQ++AFcc+dQ/vX/R+QjHxkTiD86ML6fZKQ3TSap0bp+gO0v9aDlDGxOhdkX1+Lxj382rWgKsuSmscHkJy+uIFgmggudaomR8eMNRvtSOL02FlzbAEDr+gGmLatCViT6WmPMuayO+FCm0N9rwaZnO9m9ph/TsBjuSTJjeTXJ0Qz1Mw+2gUkSLLphArGhzOHHFxym3v1WhJwhJocn41SdSEjYZTu7RndhWAaaqTGrtFA33hfbx5TwFACGMkNUe6tJaSkkJGRk3KobRVJwyI7iWKADIs4IEdf49j3h+LDZDbRcoYz074uz9tE21j3WRsf2EfTjVE4EQTgz5LOFOojdeeT6woGAI2Y+VwxCoosgJIIgCIIgCIIgCIIgCIIgCIIgnCLHOurtV8AvgX/Z//su4D7grreSmSRJfuBC4EMAlmXlgbwkSTcCF+3f7NfA88BX3topn3qegItQpYfhnhTnXd+IoVuodvmEDkoJVY6fpDvpvPIxk459Th/DmWFKnCV8ccEX+eH6H2IzAdPEymQYvO027A0NqBUVOJonYisrG5encPbw2DyEJtip+kAef6YEl9vOM8lHycpVlL+/FG/KRWU4SGBmBYPxbs77UCVyxo7qkFk8sYpcKs3CWyoZHI7idMP5t9aSiGaYPa2coegoil3j/E/UEh1NMmVBmEw+S5NVyrYXx64U5C+zs+hDNfQODGJzZ1k+vQEpJ7P4QzUMDo3i9cos+0QNyVgW053nvsFf0jXYySc/8gVKDQ+TFpWTzxhktCznf6KO3oEB8moOe1mGyrJSAMoqgqh2mf62GAuvbaRnV3TMOZTMslM+Ws5AvJdGvTBARB8cZOA738ExZQrBf/kyH2v/OvW99bxz0jt5YPcD/GfbP/O5v/syzczA5/ZQUuPFExQTqI43b8CJqZvMvqQWSQJJksgk89icCnuH9xS3mxSaxDUTriFv5rGjYMTj4/IyE8k3PJ4/4sTtt5OO54tpTo8Nf4nz+FzQSSDZbHgWLcK9cCFYFpIyfqU24cQJOAN8fcnX+e6r3+Vjsz7GXVvu4sHWB7l19q38eOOPSWrJQnCSumpKLroW9VPSmw74VT8jgi/kIBXLUTMlRCap4XCpyKrExAVl9O8bW/5rp4bZt3FoTNrkReU4PArnv2cisiQTLHWTjudZevNEtJzO5X8/jdRoGnQDp91A2vEq2Z/+L7bly/nywi/zjy/+I/++5D8I3hQnpTlZ/rEJaCmTUMRLRV0Ip/voVgNcXLmYi2svpjfZy8W1F/Nc53OF8wtN5l2T3oUii/IrjDUpPIkvzP8CP1z/Q+4ZeIQXfbV84T8/x1/2/Y0LS/LUKrVsGdrCospF3LvjXsoX2elrHZtHaZ0XX8TB1bfOxOFXUKMy866ow1/qpG56hORoFm/IgTfoIFTpHrMSuGqTKW/w4/IqXP+Z2cSGMjg9NnwRJ9mkRnmDDyWfxlrzHKmf3AaAmUpjaWdOMKszlaVpxdnumYf/ijsYxveuD3Px+6eQiuZw+m2U1PionWphGiayIqPaJa65dSaZRJ5cWh93/6yZEipMKjtE3fle7hpeydcWfY2HWh8qpr9n8nuYUTLjxF+ocE6TJInmRRVEqr2kBuPUNtixtDy1ddWoLguHWyV3SPA8T9BB5cQA131qNlpOZ9k7JxIbzGAaFt6Qg2Q6jT/iIVLtZbj7YF05UOrCVWmxNruJW+fcyubBzVzVcBWPtz0OFALu/P2Mv8emHGal4MZGSj/9aUo+8QkR1PQcZVkWNluhHL322crls1FWHjqFZycIb0w1TJyqQajCjaLKGPrBCUORGg/e0JnTPiCcmyI1HpxeG9mkVkyrnRrG5bcxaWkZsiqRjWu4g15qpoRIxfIYuok3XLhn71jZOya/iQvLCFW70HQd3dCZfkk5NsWGoVssb5qMltW5+uMzyWd13vm1BYSrPNz8j/MZ7kkiKzIlNV7ssV4G8vnXnipmPo/iduO75GK8yy8ESUKSjymuviCcUL6Qk7J6HwPtiWKarEh4Qw4crvHBq4SzmxqNYbNFCFV5xtUZSmu9os4gCCeQc/JkKr72NSxdP2zbQ+2UMJuf7RqTVjctzJoH99I0r4xJC8uRVYmq5iCVTcEjHqdhdgn+Ehfx4Qwur51ghYtw5dEFYBdOnIoJgXFpUxZX4Ak4mHtZHbVTw6SiOfwRJ6ZhUTUpiK6ZlNR6sUwTI53hivdPJBPLII0OUDcPjJAMdj8VTQEmL6ogl9Lwl7qQFIm1j7Yz6bwKtr3YXTyerEpEao5PWZgcnsxAZoCW4RYUWeETsz/Bzzf/nItqL8KpOKnz1dGd7Oa5juf40oIvMZwZ5rF9j/HZuZ/lnh338Pcz/h7Jkrh19q082Pog75j0Dj4262PcvfVuNFPDZ/PxnQu+Q7mn/LicrzCevnMzZfWTxqU3Lyg76v5SQRDODlq2ENzV5jzys4C5vy/T1PKo+9tAzNdG8xYEQRAEQRAEQRAEQRAEQRAEQThJJOsYOiokSXrVsqyFkiRtsCxr7v60jZZlzXmL+c0Bfg5sB2YD64DPAd2WZQUP2W7UsqzXnZWwYMECa+3atW/lNE6K+HCGjm0jbFtRGIww48Jq6maW4DtBQQr0vEHrhkFe+tNucimNiQvKOO/6CQTL3OO27U30kjfy9GX6sOcMQv/1a8q//nUwTczePoyhIZSKcjxz556Qcz3DHPeRo6db2Y127yPT0YbdGyBe4WXYjFOnBzE7u7H5/EhI5KIjeCqqUZNZJJuNvGySHh7AXVZJPhEFJGweH5mhflylFejpJGY+jyNcQnqgF2c4gpnX0JQQW1an2f3qAA63jcU31lHiGUQNe+nxajgkG9VRBSkawwoHSY0MAGDUlNFNlColgtrVj5XP42powl9ejZnNkm9rw0xnMAIeUgM9qCW1ZNJOckmNQJkbjzbEsB7ixfvb8ISc1M8I07KqH0WVmHtZJT65F6ffWwhcsbcTDAO9rw9JkkisXEnN979HysyS7ezAGYpgahr5VAJveTVKNInscmJvaEB2nVarX52QUc+novyO9qfYt2mIllf6sLsUZl1cQ0mzmwGjl/5MP7qhU+OtIeAMFAdQRf/2N3q/8tWDmUgSdb/7LZ7589/weP37Yjx/bwtDnUnC1R4uvmXKYQe0nc704WHy7R3ITge2hkYUd6FsZvfsQevqAgtsNdU4m5sByPf0kGttRbbZsE+ajC18yicGnvH33t5ULwPpAbDAacpU9WqYwyMokQhoOsgSkmFgahqO+npkj4d8Wzuy04m98a3fT5LRHJuf7WTTs50oisz086uQFAlPwM7OVX3IssT0yyuIlnbjcNiYGJxIwBkgk8wz3J0in9UJlbsJVXhIPPssXZ/81Jj8a39xJ97zz6cz0clIZgRVVhlIDxBwBJganorL9ubPO5lP0hZvA0A3CxOn63x1hF3ht/QenGJnfNk9E2iGRlu8DT2VomwwjxpPozichQHnDgemYYCWB9PE8ATpjXnZ9Gw3iirTvLAcX9iBz6njyvQjWxaSy4nkcuGaMGHcsYY6E7z4h130tsYIlLm46JbJ1Ew+ctnMbN9O+7vfUwiIsV/pFz5Pycc/fkLei+PsjC6/RiJB16c/Q3r16mJa5LOfwTN/AZZpIFVWwuAgxvAwSnk5UlkZpFKopaXYQyGS0Rxbnutk0zNdyIrE3CvqqGgKMNqbZverfeQyOtOXV2E1RrGcBqqskjNyJPIJIq4IzaFmXOppVRc8l5zRZfetyu3Zw753vRsrXQiUJPv9uL73a1Y+G2WkJ01pvY/l751MeYP/sPt3RbtIG2mcugej386edQP0tcapaPIzY2kZvpHdWKoNI5fBCvqQFTtKLIEZj6OWlYHdjqSqWJkMqCpWNgd2G+TzWLk8SCDZ7DgmNKKGz8jv9JPlrCy/o5t2MZjxoRsWm57pZKQnRaTaw/L3TaKy6ZQ/awjHx1lZdg8Y/t095JdcQ3Qgy9pH9hEfylI5McD511UTDEnYy8XkrTPYWV12D+htjbHx6XaGu1JUTw5SPyOCGcqSdI5gWiY22YbT5iyunG5ZFkjg1DwktspseLQLQzeZtryS2ZfWoLkzdMY7cakuGgONONU3N7HezOXo+/q/E/vrX4tpst9P/X33YUZHMZIplGAQDB0zmURyuoD9/VoOB2SzmKkUSiAINhUkCUuWkQyjGIhQcjpx1NUhO87qINHnRPk93fXtGeaVv7XTszuKL+JkyU0TCJcpROpLT/Wpnc7OyrJrpFIMvfAKqZpZZGIa6x5vJzGcpao5wAXvnkRJje+Unp9w3JyV5fdMlx8cRNu7F2N0FFt1Na6ZM8e8nk1ptKzqY/VDezE0kxkXVNE0J8LWlX3070tQOTHA1HlByuvcqMHgqbmIE++sLbu5jM7uV/tZ9ddW8lmDqcsqmX9lPf6SI7fNZlpbMYaGkGw2zEwG9i9KokQimNEolmmhhIJYmoYF5OwhYkkJ1e0gMaox1JNBtcm0bRnGF3Gy8JoGKpoCSNLxeZszeoaOeAfxXBxJlsAq9IOUuctI62nyRp6UnqLUVYphGnSnuok4I4QcIRL5BA7VQV7PkzWyAPjsPlJ6ipyeoyHQQI2v5ric50lyxpXdfHc3Q7t66MuVsu7xdvS8yeQlFcy+uJpIzeHbZoWz1okYoyOiU5xB+ve18ruvfo4b/vFfaF645LDbtPQluPL/XuSq/id4/9f+hfffvZbf/8NiljRFTvLZjiGiagqCIAiCIAiCIAiCIAiCIAjCOepYg5A8D7wdeMqyrHmSJC0G/tuyrOVvMb8FwCpgmWVZqyVJ+gEQBz5zNEFIJEn6GPAxgLq6uvnt7e1v5TROioH2OCv+uIspSyrBgu49oyy5oQlf5MROTEuOZjE0E0/IgWpTjmqfdGsrGAa5TZvp//a3sTIZZI+biv/4DwLXXXdCz/cMcFw62k7XspvdvoPOT38avacHZJmST3wc3xVX0P3lL4Nh4r/qSobv/AXhD36A1JpX0Xt7CX/gAwz+5CcErr8erbubzMaNlH7mMwz99Ke4Fy9GUmTiTz5F+T/9I8O/+AX2ponY6+uJ/vGPlH3piyS37kBedBH2cJDYt/8Vo68fJRSi5o6fonV30/vP/0LwXe8i17KT9Oo1ALjPX0b5l7/MyC9/RewvfwHAMX06Vf/1bWIPPsjI3b+k7MtfZvS3v8F59Y20BC5g57pRoLAS4eXXBgj2biDVOYDjwsswt7yKMTyMZ8kShr7xb/iuuAKtt4/MunWUfvazDP30pxjRKJLNRtk//zPO6dPo/vRnsE+YgGPCBEb/8AfKvvhFovffT76tDSSJ0Af+jpJPfAI1dNpMqDpuncSnuvwOdiRY9WArE+eVoeUNunaOcP47Jr3uYDI9GiX5wguM3HU3it9P5NZP4Fm4EMluP6pjZlMa2aSG06Pi9B7dPqeL7O49dH/xi+R37wYg+J73UPrpT5Hv7GTw+/9Hes3+v6vzzqPkc59Dstvp//d/J7ttGwDeyy6j7ItfwHGYyfgn0Vlz79XjcRKPPU7/d75T/H4t/39fx0gkGPzf/8XK5ZB9Pko//3mGbr8dIxoldMstRD55K7bIWxtoYhomiZEskiyh2mTyWQN3wAGWhSSBzTF2ZcBUNMfz97bQtnkIAJtD4frPzKas0kbqpZcY/vmdoKqUfPxjeJYsOd0CLp1uzpqye7rTBgYY/MEPiD3wZwAck5rx3/Q2bOVlyF4v+sAguZadeC+5hIHv3ob77/6BXOMc2nbG2b2mDy1rcNlNpYQ6V2MrK0MtrwCnA8+sWeOOlctoZOIaDreKy/f63wmWZZFZv56hO+9E6+wi9J734LvqSmylZ8RkpDO+/Oba2ojefz/Jp5+h5POfJ/ncszgnTcI+axba7t0M/Pf/FO+7ld/8BvLEicipFHIgiLOhHtO0SAxniA9lef6eFjKJPM0Ly5gwt5RwlRefWMX4dHXGl923KrN5M0N3/oL8nj0Ebr6ZwHXXovsi5FI6Tp/tDVfa1DWDrS90s+HJDmZeXI0n4MDpAN+O5yGTIvbXv+FdfiH2SZMxhoYY+sEPsDQNJRik8lvfQotGUSNhzGQK2evBymTIrN+APjBA4oknAHBMnkz1927D0dR0Et6RM9JZWX6Hdnaz8vE+Js4rxx10kBzNUVFtp3Ri2Sk9L+G4OivL7gHxXfvYuimHJStUTw6Rz+jYyVEqD6H19OBoasI1bdqpPk3hrTmry+6hogMpBtoSxAYzbFvRjazIXPep2YSrPK+7n2VZJEayWCb4wg5kRT4u55Pv7ib+4IPEHnwQx7TphD/4AYZ/fifJp58GwDlrFoHrryff0Y4+OIRr7hyUYAhjdJTB224r1kEq/vObSA4n0oFgJPk8Vl7DTKfRensIv/vdKIEzK5jwm3DOlN/TVXrrVjTsdA2qeCJ+LGDT0+3MuqCcxgXVx20i8lnorC27gy09rHi4h+aFFfjCTlKjWcrCFu7cIK6ZM5Ftr/9MJpwRztrye6bK7t1L4vEnGPrJT0DXUSIRqv7r23gvvHDctvHhDJYJLr/K9he6SCd1QhUehrqShMocTLug9rjVdU5DZ33ZTYxkMQwTX8iJoh75c0y++iqplStxNjWRWr8ee2UVFhbOqVOJ3vt7ks89B4Bz/nxK/uGjJG0RnnwoRjKaB6C83sOSpQ4Y6MV/3lxcVaVHPQ5HeEvOyLLbu72fjS/1M3VJFQB9raPMWF6LV/QpnGtEEJJzXNeOrdz371/l7f/yTRpmHX7ht+09ca754Qqu7n+c9/3TV/i732zino8uYtnEkpN8tmOIh1lBEARBEARBEARBEARBEARBOEcd66iJLwIPAk2SJK0EfgN89hjy6wK6LMs6sDz1/cA8oF+SpEqA/f8OHG5ny7J+blnWAsuyFpSexhP59LzBukfbKKv3kxrNkY7lkSyJvn3xY87bSCRIr11L/PHHyWzdipnPj3ndG3ISKHMf9cAHI5dDdjiwRkfp/+Y3C6sYA2YqTd/X/5305s3HfM7C6Vl2jVSK/v/5n0IAEgDTJPHc84z85jfkd+0mcO21DP30DpRgEDOVJrtpE4G33cTgj38MloUSDJB66SUCN9zA8F2/wIjFcE6aRPyRR/FdcgnRP/8FfWAQz6LzMONxyr7yZbDAPbERd36Ekc/+A0Zff+FcRkdJv/oqvV/5KpLDgaTIxQAkAOnVa0ivXVcMQAKQ27aNzKbNjPziLjxLl5J4+mm07h70hZcVA5CoNpmZF9UQJUy8biGSLMPKx4n99HYcQQ8D//IVzEwWJRgi9eKL+K+/nuG778aIRgGwNI30Ky/T/83/RB8YwLN4EaP33otr9izSa9cWApAAWBajv/4N2c1bTvjndiqcyvJr6CYbn+kgVO4hMZwll9RRVZWe3dHX3U8NBgneeCP1v7+X2l/ciXfZsqMOQALg9NgIlruPGIDEMgyyO3cSf+IJUqtWoY+OvpnLOmEsTWPkl78sBiABiP7hD2S6ukm9/HIxAAlAes0a0qtXYShyMQAJQPLpp0mvWs3Z4HS49+Z27qT/W98a8/3a/41vIKkqVi5XSEskGLr9dgI33QjA6D33kN301r9/ZUUmUOrGH3Hh9jsIlrmxOxTsTrUYgCQ+lKFj2zA9e6KM9qeKAUgAtJzBSw/sRpft+K+8krrf/oa6X/0S3yWXHFUAEiMeJ3VoXUXT3vK1nKtOh7J7usts2FAMQAKQ27Wb3PZtxJ9+BiuXQ5IlXPPmEXvgAXLbt5ORvQx0ZXC4VGZfWkuw3M2Kp0YxayeT2bETracHdJ3Mnj2kVq0i/sQTZHe2YBkGDlfhO+GNApAASJKEe/58an7wAxru+wPhv3v/mRKA5Lg5leXX0dBA2Re/SMMf78MYGsJWWsbQz+9ENgz6v/Xtg/fdZJL0xo0Ye1rJ72vDGB0BQJYlJFniiTu3otgk5l5Rh8vnYKAtQSaWO6nXIpx8Z+K91zVrFtXfu42GP95HyT98FFtlJS6vvVCPPUwAEn10lNTq1fvvcTuJ9qVZ8/A+Ji+qwNAskqM5WtYNk7aHyW7dhjE6imWYqIEAg9/9Ltb+73QjGqXvW9/CVlIC+TxmMgH5PLG/PYgSDBYDkADkWloY+d09WPtXmBVOjNOt/HbsTuALu0nFNQbbE4z0pNjxcu//Z++u4+QoDz+Of0bW727P3S/ugRAI7i6lFKlA8RanaIsWLRSKFqc4tLj9gBBcQkKEKMRz7rouszPz+2Mvmxx7CbHLRZ7365VXss+OPHOZm3125nm+D+HGxsGumrCd2d7OXYjfL/NFHTSs8GG1q7Ss8tLTGmLmxy0ENQt6Tw+RlSuJeTyDXVVhEG2P5+7P1S/pxtMeQo+ZjNq3CIAVc1t/cT1JkkjLcuDOcWy1Qbm6x4PW1IS1ooKCu+6i8PbbiC5fngggAQgvXEh09WqUjEwC06dj+ANIVgttd9/dpw3SesedmLEYWnsHJvF7YWY4hBnTMP1+wj/9tFXqvDPbEc7f7ZEeCCBZrHS3RVi10Et7vY+2Gi/5lenM/KABT1PXYFdxp7e9nbvhlhbqVwVxZ7sIeTXaqr10NgZY+n0b0bo6IvX1g11FYTuyvZ2/O7JYXT0dDz0EvfcZ9M5OWu/8B6Fly5KWXdOm8baHWTKzDYtNxdMexu6ysPCrZnraQhvclxGNEvrxR7xTpxKYPRvd5xuQY9qebctz14hECC1ejHfqVIJz5/7izzs10056jnODASSR+noiP/6IhES0oQHVnU7Pu++ipKcTXbEyEUACEJ47l/CKlaxcHsXfEyU1y84ex1ZQPCqHgCWT6Edv03P3bcix6Hr3J2w/tuW5q0V05n7WTEq6nbYaL+21Pnxd0a3SP0wQhB2L1vsc0mpffwCR0TuZoIyJqcU/U2KGyJoRBEEQBEEQBEEQBEEQBEEQBGFwqL+8yAb9CBwADCeeer6MLQg2MU2zRZKkekmShpumuQw4BPip988fgbt6/353C+s9qKLhGIXD0pn3ST2BnvgDpryKtC3eru730/HoY3Q9+2yirODuu0g/4YTN3qYRCiHbbERaWzF/FmhiBALEWn+5Y7KwY9J7egjOnt2nzD58GIHvZgDxjj4YBrYhQwgtXhxfQJIxQyFsQ4cSWbkKADktjVhbO7LbTay9HQBrRUVi4Jmam0dg5ve0/eOu+CYsFgr+cSeSzZYYCApg+PyYmoatvJzw0r4dxdTsbMI/Lu57AIqC1hQfwGQfMYLO554DILROf7HJx1cy/5M6gt74uV0y5EAmpq+OvykrmMEg1qoqoqvjZUp6etI5b62swjftk3gdw/H62oaPwDd1atLPNFK9mpQDkmfaEjafFtHJq3Az96Magp74/2NBlXuj5+FQXBue3XVz+b+dTsOFF4KuA5B27DHkXX89akbGgOxvY+keD4Fvv0kqt2Zm0LVOAMkawdlzyDjrrOTyBQvI+N1vB6SOu5pYS/+frz+fBVPv6UGyrw34iKxcSerBBw1Indpqvbz/8ALC/vggnvJxWYyYks/SGS2JZboaA0RD8fAFxenc6G3rfj8djzxK1/PPxwskicJ/3o37uOO26jEIQqJtsm7Z/AU4JozH1HWwWJBT0wjOnoNaXILPWcTst2swDRNJgt2OLGfVD21EI1Fob4MhVaDrdP77kbWf8apK8aOPkNrPLJq/RLbZwGbb0sMUNoMkyyhpaQTnzsFaVo6S4kJrbk58ZgNknvlHAt9Op/u5+LVKTkmh9NlncIwdSyQYw55ioWpiLrP/rxrTBEkCm8tCdknqzjw7qrCDki0W2IjZtWPd3bTe+Q+8778fL1AUHE+/x+TjKpj7UW2iXVA8MgNp/FBCj9yFraoKraWZWGtL8vaamsA0iLW1ITldmLEY0dqaeDDJzwS+/hr90ksGva0sbBsxTcPmTqFtfhNLvmsGwJ3jYNzBxZgRMVBH2P7p4TDRUJTCoenMer8aAFmRmHxcJVrMgyszEyMYRO/uQXW7B7m2gtA/LRLD1xlm3rQ6IH4O73l8Ja012z48R/f5aHvwIXpeeSVeIEkU3fcvQj8mh4WEFi/GuddeWMtKibW2oGSkg9l3IE6suRmiUWRFQZYkDEXFMEwkWUZyutAam7bBUQm7Ir27G9npRLfKWB2hxGeExa6w5/GVaGFjkGsobGuSaWJx2uho6GLpjHi7Ny3bzoRDS6Gnse/DKkEQtppoU/JnfbSmBqO7Z73rREIxKsZnr73XJ0vscUw50dCGA1N90z6h6eqrE+2RjDPOIOfSS1BSUrboGIRkpmni/eADmq+7PlGWef55ZP/5z5v0jOrn9PYO9O4eJIeDWFMjSmYW9spKJFUlOH9e0vJaYyPtrok406yM3q+IWe+vxtBNkGDPIy4g8/0H0D2ejQrsF3YdEW+A4pGZLPisHn/32v5hG9mdQRCEnYgWjn8HsNjWH0KyJnBEMg3MWG/oqiG+TwqCIAiCIAiCIAiCIAiCIAiCMDi2dITUDNM0Y6Zp/mia5mLTNDVgxhZu8xLgZUmSFgITgDuJh48cJknSCuCw3tc7LKtDpa3OlwggAWit9iYG9WyuyKpVfQJIAFpvvY1oXd1mb1O22TDCEZScHKSfDVySHA7U3NzN3rawfVPcbhwTJ/Qpi6xciXOPPYDewbOSRGT1auwjR8YXME0kmw2tqRFbRQUAht+HkpWF4fOhZGcBoNXXYRs6NL6KYRCcOTOxD1PT6Hj0MVIPP7zPvuUUF6gqWm1tYt019I4O7CNH9T0AXceSn5+ot2PMGABSXfGOQHnlaTQt704EkADUrwzgLxoLqgqmgWS3ozU3Yy0vix+Lz4vys0Fz0dpabCNGrP2Z9O7PPmZ00s/UWl6eVCZsGdUm07yiJxFAAtC8ykMsqm9grYGltXfQcvPNfQYze//vA8JLlgxandaQ3W6ce+6ZVB7r6cG52+5J5Y4JEwj38xniGDtmQOq3K1LzcpM/X53ORIeSNeS0NMzo2naDrbJyQOqjRXW+f6+6T5ukZmEnadmOPuE+lRNycKZZN3n7kRUr1waQAJgmLbfcSlTM/ClsZUntAsA+ZgymYSBJEmYshhEM4JgwHsspZ/Hdu7WYvZ26TBPmTatl9H4F2AjGB8zLMnp3T9+QsViMlpv/jtbRsa0OS9iKHBMngqGj+/yo+fkgx78aSzYbktVGZMWKxLKG30/n0//BiEZJSbcxat9Cfvi4NjHe0TRh+hsr6GkVA4iEHVdk6dK1ASQAuo61q57ahZ192gUNS7oJBk3sY8cSqa7GkpeH0s99ATUvD2QZJScn3oZRFKzFJaj5eUnLOqdMEQN0diGSLBPyRehs9CfKPO0hPG1BJMf6O18LwvbCjESR9RgLPlv7HcbQTeZNq0VNS0P3eJBstng4giBsp7qag4kAEoifwz98XMuIKYXbvC6R5SvWBpAAmCbNf7+FlP33S1rWPmokssNOtL4BNTcXpZ8AMzU3B2xWTF3HNE1MQ0eSJTBNzHAItSB/IA9H2IUp6ekYoSDYnKz6oT1RroV1fvq2CYu0Zc//hB2P4fUSDUTpqF/b7vV2hOlq9oOqYIpwWkEYEJZ+7jtYSkqQ3eufEEZWJH74uG7tvT7DZO7UWmR1/REB0YYGWm65pU8gWvcLLxBZuXLzKy+sl1ZXR8ttt/cp63ryKaK9k6JsLiUrC8WdhhmJoOblIUkSkepqTE3DPm5c0vJqupvyEpNhe+bxw9SaeAAJgAnff9mNetr5yCKMUvgZubuN9lpvIoAE4v3Dgt7IBtYSBGFnpPVOxGWxrz+sSu99Xi1jYsaivWUDXzdBEARBEARBEARBEARBEARBEIT+bFYIiSRJ+ZIk7Q44JEmaKEnSbr1/DgQ2f6oRwDTN+aZpTjJNc5xpmr8yTbPbNM1O0zQPMU1zaO/fXVuyj8GmxwzaanxJ5d1twS3bbld3UpkRCKD7kve1sRSHA0OLImdlkfu3vyYGSks2G/k33oCjn84Xws5BSUkh769/7RO64dxjDzLP/COW0lK8U6eSdd65xDo6UDMzsQ0bhue998i+8AJMLYYRDuGYNAnPe++Tdd658Q7iNbWkHHIIvmmfkH7yb1DS09E7O5P2Ha2pIeXAAxKDQeWUFBy7707B7behBwJIqop97NjE8vYxY3DuMYmUdYJLrJWVOMaPJ/13v8P/9dekHXUUSnY25of/5aBfFZBV7KKzKZC07x6PiWP33fG8+x7ZF/wZYjGMYBDnHnvEj+Xcc5FdvZc5RcE5aRL5N9+Ekp5OcO5c3L/+NaE5c3Dtsw9qQUFiu+kn/wbHOnUWto5YxKCtNvka5+0ID0Jt4oyAn1hL8mzw/V2jtzXZYiHrvPOwFBcnytJOOAFrfj7O/fbt+3s1diyuffdBjkSwVlUlyp1TpuDca69tWu+dmW3ECHKuubrP52veddehh8PxQCTioV/ZF12E5513AXD/+kQcE8YPSH2ioRhtNd7kN0xwpMTrWDQsnUlHl6Oom96M1LuTm3CG379FbRVB6I9z991IPerIxGtLaSmO8eNIPfAgJLsDYjqBGTNJP/U0tJRs9Fjf3luGbpLqBBpqsI0ciaWgEN2bPCt4rLkZw+9PKhe2fyn77Eu4ppasc8/FtNnIvfoqUFWUtDT0ruT2aXjJEoxQCEeqlYw859oO5r2MmEnIF01aTxB2FLGu5M/o2LIf6WxKvsb5eqI499gD2W5HttsxfD6yL7kYFAUA2eUi7/rr0Nrbkex2ZIcD2WbDfcIJ6B4vKQcckNiWpayMzD+ekRTKJuy8ZMOgoy657dda48OSmzxYTBC2N1JMI1jbmFQeCcaI6fFQSWtFBaoYeCZsx0Le5HZrJBjD5lC3eV1i/d0n8HhQ0tNx7r13osw2bBjWqiEYPh/OiRORXS7MaJTsv/ylbxvkuuuRZAU1OwuQkBQFyW6P32NRFOyjk4OjBWFrUFJSMCIRIv7kwaRdTQH0sAgh2dVISHTWJ99nba32YR0yFHtJySDUShB2ftaSErL+dP7aZ8ypqeT97W841kyo0Y9YxEgEVK+hawaxyPpH/OpeL0Y/zzX0zh26G8t2S/d6MUPJAdD9tSU3ha2sFNuo0RjRKJbSUqJtrbiPPhrD58M2bHifiR1sI0fimDCRovQg7iwb0fDPJsQwQc8tRXGsf2C5sGvSfEHa65PvsXY3i2dLgrCr0cLxfkyWDQQSGr0BZ5JpYvROUqMbIoVEEARBEARBEARBEARBEARBEITBsbm9So8AzgSKgfvWKfcB121hnXZ6VrtK1cQc5k6t7VNeNCR9i7ZrKSlGsloxo2s7EVvKy7GsE4SwsRr9jdR6a3GqTioLK7F0+XHsvTfFTz9FrK0dS0E+jokTkaT1zwAk7PgcY8ZQ/tpraPV1yCkpWCsqUZwOyl56kWhtLbLLReqRR2J4PKQeewx6dw+SzUrZAQdgdHeTftppGD4fpixT9t//ond2oWRlkn3+eRi6TumLL6A1NSXtN+Xgg7AOG0b5669jeL1YioqwlpZgjhuHfcwY9PZ23L/+NUbvYGBrRQVqRgaFd9xO9JyzMaJRrOUVWHKySb38QuRjDiUSDpH/nydRerxkZ6oUDElBkSUWfd13/7llaeTfeCO6pwfJaqN0yhRiLS24TzoJMxLBlGTK/vc/9I5OlMxMbJUVSBYLFW++QbS+ASXdTcZvT8MIhSh56kn0ri5khwNrZSWKy7VN/t92JTaHSuXEbOZ/Ut+nPL/STXe4m9U9q9EMjQp3BXmu/ge0aY2NaK2tKBkZWMvKkOTNyudKUHNycE6ZQnDGjLWFkoS1vGyLtru12IcNo+yVl+O/wzZb/NxMScGSm0vBHbcTrY1/NllKSnGMGA5A8aOPEFm1CtliwTZ8OJZ+ZrsXNo/qdpP+61/jGDUarb0NS04uuhbFIiuUPPkEZiSCtaICyenEPnLEgF9P7C4L5eOyWDqjb5BOXkUaQ/fcnWAojMfawTJjEZXBSnKdyeeCaRhE6+rQO7tQ8/KwFhcl3rOWliJZLJja2oEX1srKzWqrCMKGWPLyKLj1VjLPOINYdzey3Y6kqkgOB2Yshmq3kVpSBFYrmbuXYp29mmgotnZ9m0Jamolzj0lgsyE7HNicDpCkPrNbOvfZB3UzrolmLEa0thbd48FSWIglX8zGvS1Em5uJNTejuN1Yy8spuPEGwitWIAVDOA44gNJRo9Da2pEsKj2vv9FnXffxxyUGE2cWuLDYFLTI2o7mFruCPV3lp46f6Ap3UZRSRLm7XHxfEgZV4pxPT4+3c3sH6PbHWlaWdI1TPG2Uj81myXfNfZbNKkrBmlNJ/h23x2eKzc7GOnQojgkT0Ht64mGMFguW4mLMcASyszFCISwZGai5uRjRKBm//z1YLdiqqrDk5AzYz0DY/kgWC8WVTlYt6DtQqGJkCoqyZd/FBGFbUHJySHXWIMsSxjoDFV3pNhxOCefkydgKCwexhoLwy1Kz7Eiy1GewbUqGDdkd47um73CoDqrcVaTZ0ga8LtbS0nhASGzt9zHbiBGgWsi7/nr0zg6MQAAlIwNTNzBKS3AddFB8QUnCUl5OyYT/YPh8KJmZYLMhmSZI8eOTbFaQZCw2K6kHH4LiFINChYHjGjuWtAXJzzuKKl043PZBqJEwmJSsTAqzPaz4WXnl2HQcFaXIGxh4KAjC5rMNHUrqqafinLwnencXluJinBMmbHCdlEw7qlUmFl07wNfmVEnJWP/vqaWgAOuQIURXrkyUSRYL1lIRMDQQ1IICLMXFaA0NiTLJbse6FQKdUvbaEyXdTayzk/QTf40RCSPJMpLdTs6VV6B3dWGaJmpmJkY0SooT1DQTp9tK0LO2X46sSKQVZ2xxfbZEvbeeOl8dqdZUKt2VpFhTBrU+QpwtI4XS0jDdP5vDpHAL+4cJgrDjiYbjgVpW+/rvTei992okTPTe5XWRQSIIgiAIgiAIgiAIgiAIgiAIwiDZrBAS0zSfB56XJOkk0zTf3Mp12ulJksSIvQtoq/VSv6QbSYKxBxVTMGTLZsi0VVZS/OgjNF9/A7HWVmwjR1Jw+22omZmbtJ2fOn7iz5/+me5IN/mOPJ6wn4N+/5M4xk/A1HXSf/MbXJMmbVFdhR2HtbAAa2F8cLgRiRDzeLDk5m61EAJrSQmF/7ybljvuxPB4cO69N7l/uQJbVWXSspKqYh8yBIYM6XdbSmoqjvHjE687gh3ct+A+3l/9PgDp9ek8duhjjMkeigMYm5JGZ3OQphU9SLLExMNKKBxTgD3Vimma+L/8iqarr8bw+5FdTgrvvpuUgw+Oh1QMHdpn35aiIixFRQjbliRLjN6viPZaH43L4/+P4w8uwVFkctVXVzGrZRYAxSnFPHTwQwzN6Pv/Fvh+Fo2XXYbe04Nks5H/97/jPuZoJKt1s+ukuFzkX/c3mm+5hdCcuSgZGeTfdBP2YcO26Fi3pvX9DtuHDcNSWAiS1CfkwlZWhq1s+whR2RkpLhfO3XfrUxbzeJBtNmT72gEK1m0Q/qKoMhMPL6OrJUBbtQ9Zltj96HJyy9NoN1q4fvb1zGufB0B5WjkPHPQAVelVifXNWAzv1I9pvvFGzFAI2e2m6P77SOmdvdhaWUnxI4/QfMMNxNrasI0aFW+rZAxux0xh56SkpuKcODGp/KeOn7jgs8vpCscHP5887GROP/fPfP7sMsJ+DbvLwqFnjSJ7dCaYpeheL3LvNbHovn/Rcsut6D09OPbYg/y/XovidG5SvYxwmJ633qLtH3dhahpqTg5FDz/0i53hhS0TnDePhksuRe/oQLJYyLv+Oty/+hWp68yuTmW8/al7PORcdRUdjzyCGQ6TduyxuH/1q8Ri7lwnR5w/hk+f+YlwQMOeYuGQs0byfx1vce+cewGwK3YeOOgB9inaZ1sepiAkBOfOpeHSy9A7O5GsVvJuuAH3Ccevd6Cbfdgwiu6/n5ZbbkHv7sax++5k/eH3TEwppKslQOtqL7IsUXFQGg91PUSb0cxd+95FSZoYXCNsuuIqF8N3y2DZvG4woWK0G1dFhB9af2C3vN1+eQOCMIgUh4OMiiwOOkbnm0+6iYZ1XOlWDji9gozhInxE2DFk5Ds5/JxRfPHi0sQ5vN+ZVZz1zek0+OMDO48oP4Jr97iWHOfAhoXZqqoo/vfDtNx4E7H2dmyjR5F+4onU/u53SBYLhXfcQerhh20wTG1D9FAINA0lbeADVQQBINXqY+9ji/h+ajN6zCAjz85exxThLOo/IFvYeVmysykY2smIToml871gQvmYDIp3yxABJIIwwByFhRhZWRihEIr7l/tfuLNtHPa7Cj5/vZZIIIYj1cIhp5aTlr3+AcJqRgZF/7ybphtuJPLTT6i5ueTffhvWqqr1riNsPkt2NkUP3E/TddcTXb4cNT+fgjtux1pRscXb1gMBgtO/o+3++yEWQy0ooPjhh3CMGZN4H9NESVkb6OECjjg3jY+f/pGgJ4rVoXLw6SPIyB+8CUnmt83nwk8vxKf5ADh12KlcNPEiMuzi+dugy8tm2PgoHV0mjSsDSBKM2TefwuGb1o9LEIQdnxaJAKBuoD/SmtBjGQMt5AcgZogUEkEQBEEQBEEQBEEQBEEQBEEQBsdmhZBIkvQH0zRfAsolSbri5++bpnnfFtdsJ5feO3DN2x5GViTcuQ5Uy+Z1pF1DkmVS9t2X8jdej88+nJubmK17Y4W0EA/Oe5DuSDcAf848HutHc7Eefzy+aZ8gp6URrakhWlmxVWaWEXYcwQUL6Hz8CSIrV+I+8Ve4TzgB61YI3ZDtdtzHH49j0iTMUAg1P79P+MHmag20Mq9tXiKABKAn0sMDcx/goYMfwmlxkpHn4ugLxuLpCKGqMu4cJ4olPvOyVldH01VXYgSCABiBII1XXU3F229h2wodmoStJz3XyVEXjMXbHkJWZdy5Dj6o+b9EAAlAg7+BV5e+yt/2/BuKHL/Waq2tNF19FXpPDwBmJELz9ddjHzkC+4gRW1Qn29ChlDz+OFpLC0pKCpb8/C3a3ragBwIEvvmWjscfByD7gj/j2nffrfL7KGw8raUFzwcf0vPaa1hLism+4AIcu+2GJEnbrA6ZBS6Ou2QC3o4QqkXBnetAUWS+W/ZdIoAEoMZbwzsr3+GK3a9I1C+yejVNf/1rYgZjw+Oh6aqrKX/jDayFBfG2yv77xdsqXi9qdg5q+paFsAnCpgjF4m3dNQEkAK8vf52DDjmIU67bg6A3iiPVQlqWg0hNDT2vvYZv2ic4Jkwg69xzSDvqKOwTJmAGg6h5eX06Hm+syPLltN56W+J1rL2d5r9dR9nLL21yeKCwcWJdXTRd+1f0jg4ATE2j5e+3YB89BsfYMX2WNUIhgnN/IDhvHtkXXoB9+HDsY8cmhSWVjc6KnzO+KM40K7XGSu794N7E+2E9zA3Tb+B/x/yPPJcYbCZsW1pHB03XXIve2QmAGY3SctNN2EePwjF6dL/rSFYraUcegWPCeHS/H0t+PkpKCjbD4PBj3XQt8yOHA0RjNSzCyqftC/mm8Rt+l/a7bXlows5i8WwmVaQyanQepgmOcCfdy2u5v+4T/n3Iv3HbRftQ2H4Z4TDeqR9SMHosx5+UR1RXsMsRutvn0Ozfg4KUgsGuoiD8IlmRGbJ7HjmlqYQDMWxpMrcuvCkRQALwcc3HHF1xNAeXHjygdZEUhdQDD8T+xutorW10v/IKrXfdDbEYpqbRdM01lA99Kx5MvQnMaJTA7Nm0P/oYRnc3mWf+kdRDDxXfuYQBFfN46Lz5Rsp++1vyT60gZig4pQDRwGoCWgYui7jPuiuJtrUS+/QDdhs7npGjcjCRcES6CLQtg6Lswa6eIOzUQosW0fHkU0SWLsV93LG4f/1rrMXF611eq61Fv/ZsDj3xd+ipuSjdTUSvvpno889hLS1d73r2UaMoffYZYu3tKGlpW20CD6F/jjFjKHvh+fjPOz0dS87WCcuLLF1K2z33JF7HmptpufU2Sh57lND8+XQ8+himppF13rmkHHggSmoqAIVDMzj5r3sQ8ESwuyy4c9YfWjPQvBEvd8y8IxFAAvDq8lc5uOxg9i7cewNrCtuCb9Uyui+6lL0vvYLo7kMh6Cf2weNEDrgMZ5oILhKEXYkWDmGx2eMTX62HbsZDSCTTRAv4ASd6bzCJIAiCIAiCIAiCIAiCIAiCIAjCtrZZISTEJ/cA6G/UnXjysZFsDgs5pZatvl1LTs5md7rwaT4WtS9KvM6L2LAWFuD/4kvcxx2HEY1iBgNEm5pECMkuJLJyFXVnnY0ZjAdydDz0MLG2NvKvvx7JsnXOYWvh+meL1RobiaxahWSxYB0y5BfP74XtC7nyqys5puKY5Pc6FuKNenFanADYnBZy+/k91NrbEwEka5jhMLHWVhFCsh36+fV0UceipGXmtM0hHAvjssY/wmIdHcTa2vsuZBhozc1bHEICoKSkoGziAInBFJw9m+DsWaQecjBIEsFZs5DsdlIPOGCwq7bLMA2DnnfewQxHcB99NKgqnc8/T47TiX3kyG1aF7vTgv1n18YFbQuSlpvVMgt/1E+qLd7pMtbSkgggWUPv6kLvaIfCtYPxLLm5okOuMCh8UR+LOxYnlS/vXs5ejlHIrSsxasNESkpovfdfBD7/HACtoYHAzJlUvPq/LQ5h05qaksqi1dXEOjvFgLgBEuvoQKurSyrXmpoSISR6MEh05cp44GJ9A9Hlywl89hkAhfffh/uoo5LWT82yk5plB6C+uj7p/Y5QB56oR4SQCNuc3tGJ1tiYVK41Na03hGQNS34+67YAwkuW0Hjab0HTEmXH/un3fFpSyJKuJUTr6ohUVyM7HNiGDBHXMeEXmaaJ4fMRmPYJ9tGjIRYjZppklBQTI4ZX84oQEmG7pvf0YHFn0PWfp0k9+BBs0ShYLGQPKac53CVCSIQdijvHiTsH2oPtzG6ZnfR+nTe5DT1QLHl5aE1NeN95p0+5qWnEWlphA/fYTMMgsmoVWn09SmYmtiFDiCxfTv2550Hv4J2Wm24GIOOUUwbsGARB7+zEtcdkIosXo2Y0opomsVCI6KpVhP9RhStThJDsSrTubnSPh8icWVhSU0CSiHR14Thgn8GumiDs1CLV1bQ/8iiOsWOxVVWBJNH53PPkXX0Vss3W7zqx1tb4n8fv71ve3r7BEBIA1e3e5ElhhM2npqejpqdv1W1qjU1IDgcZv/0tst0OioxWV09o0SIaLro4sVzT1ddQ9OCDpB1xeKIsJcNGSkb/59W2VO+rZ2n30qTy9mB7P0sL21q0qQmjp4fOW2/qU+4873dQLEJIBGFXokXCWOz2DS6zJnBEtahERQiJIAiCIAiCIAiCIAiCIAiCIAiDbLNCSEzTfKL371t+/p4kSZdvYZ2EQWRX7OyRvwef18cHXDqzCgj++C4pBx1E+8MPxzvtShI5V16Ba7fdtloARR+xCJgGWAZvthihr8jKFYkAkjV6Xn+DrLPP/sXOV1sqvGwZ9eedlwiLsI8fR9Hdd2EtKwdJSlq+O9zNDdNvoCXQkggaWde+RfuSYctIKv85NSsLyW7HDIcTZZLFgpItZqjbbsWiYMbA4mRkZnJgw14Fe+FQ115XlIxMlIwM9O7utQtJEmrurjlQONbWjv+bbxODtC2lpdi2QhiLsPFirW0oKSm0P/VUIgQp5YADiLa0bvMQkv7sWbAn769+v0/ZuOxx1PhqGGsbC4CakwuyDIaRWEZOS0PZnAHJMQ2MKFjFAA1hE2i9n9uW/jtwpdvS2btwb6bWTO1TPtYooPHqqwl9NwMAJT2d7AsuSISQAOgdHURWr8ayhSEkal7y54yluFgM3B9ASkYGakEBsebmPuVqfvz/Qg8G6Xr2WToe/nfvCgo5l11G1wsvoHd00P3iS6QeeiiyLEEsDLbkLE6H6kBCwlwnk7M4tZhsu2g7CtuekpGOmptLrK2tT7mln+vPL4ksWdIngARAefUDjr/9GE6w7kf1b07G8HoBcB2wPwW33IIlP/+XNxwNgGIDZXOzcYUdlSRJ6D4/6DodDz8cL3M6yb/pRsZnj8eubLgTtiAMNjk9nWhDA85Jk2h/6KHeQpmcq64ida8xg1s5QdhMFtnCpLxJfFr3aZ/ywpT1h0YPBDUrC9nlwggE1ilUUXN/FkgdDYJsATX+bCLw7bfUX3Rxos2SedaZWIcMSQSQrNH17HOkHXkkSlragB6HsOtS0jOwjxlN19NPE/7xp3hZdjZZZ52JvdUDmVt2P0HYsSiygrW4iO7//i9xP8I6ZAg5++83yDUThEEQDYBsTXx2D+iuGhtRUlPXft+0WMi54i9oLS3Yysr6XUfJzgGLpc/9D8nhQMnKGvD6CoNPzc8j59JL6HzqafSuLgDsE8Zj/9l9NYCul18m9ZCDkdRfuJ8VDYKsgmodiCr3EdSCTKudxsTcicxrm9fnvaIU0fbYHqi5OfF+Let8P1EyM5Ez0gevUoIgDAot/MshJEbvtcLhdKIF/UCuCCERBEEQBEEQBEEQBEEQBEEQBGHQyAOwzSsGYJvCNuLX/IzLGcewjGEAfBaeR+oB+9P5zDNrH4qbJu0PPEikpnbr7lyLwMrP4KXfwHPHwo/vQNi7dfchbBapn5mhZIfjlzvYbCFT1+l65ZVEAAlAeMFCAp+9C1/8AzpWJa3TFe6i2lMNwNzWuZw2/DRUKV7PYRnDuHD8hdjUX56RyFpWRsGdd6wN2rFYKLjjdmwVFVvhyIStytCh5lt49ffwzFHw03vEDI2jKo5CIh5UMzF3IrnOXEKxUGI1a2EBhXffheToDSZRFPKuuw5bVeVgHMWgi1avTgSQAGh1dUSrawavQrsg0zToeePNRAAJgP+rrzD9vkGs1VojMkdwaOmhid+ryfmTsav2PjMjW4dUkX/TTaAoQPzzo/Cuf2AtLt74HZkm1M+CN86C/xwOs58Bf+tWPRZhJxTxw5L/g+ePg5d+DSs+AS2UtJhVsXLaiNMSbV1VUjll2CmkrWhJBJBAfIZ7/1df4dxjjz7rS7YtHxhtGzaMnMsvS4SpySkpFNx5B6ro1D5gLDk5FP7jTmRXb6iRLJNzxRXYhg4FILpy5doAEgBdp/Ppp3EfewwAamYmUudyePt8eOZwmPk4eJv67GNh20L+PP7PicCzPGce54w5p99QPEEYaJa8PAruugvZ1Xv+yTK5V1+NdcjQTd6WZE8OB5VTUxmfOx79yZcSASQAga++JrRw0YY36GuFWU/HP+PfPAfqZ29ynYQdn5qZgf+rrxKvzWCQrudf4LCsvQlogQ2sKQiDT7HbcYwbR9fzL6wtNAw6Hn4YtSl5kJog7Ah6Ij2MyhrF8IzhACiSwsnDTsambNtZ3a2lpRTc9Q8ka+9gTVWl4O9/X3s/1t8Gc56Lt8lf/yPUzURrbaX5+hv6DBruevY55P7aMBkZMMD3s4Vdm5qZQayzMxFAAvFA09CCBcgOEbS2qzHTU4nW1PYJRI2uXEl42fJBrJUgbGO+Vpj9n957AGfH7/sPMDMSwfv+2jB1U9Poeu55zJ8FrK7LVlFOwW23xYNIAMlqpfDOO7GuJ7RE2LnYhg0jNG9+IoAEIDx/AWYolDQhj5qVFQ/iX59AO/zwIjxzBLx2BtR+1ye0fyD0RHp48ccXObT0UMrTyoF4yOBFEy5iZNbgT3AgQEuOBdfVl659dupw4Lzlr3SlDUR3PUEQtmdaJIzlF541x/TeEBKXk2gg3k9EN0UIiSAIgiAIgiAIgiAIgiAIgiAIg2MgelxKA7BNYRtJtabyZf2XDMsYxsElByNLMkYwM2nmY2Ix9K5OYMjW23nj7Pig0TVe/yOc8iKMOn7r7UPYLLbhI7AOHUp0xYpEWc5f/oKlcGBnwzTCYcI/zEsqj6ysA/9nUPMN/Pa/4EhPvOe2uil0FdIUaOK7pu9oT2/nnLHnMDF3IqOzRpNuT0/aXn8kWSbtiCOwDR9OrLUVNScXW0U5Um/nEGE70jQPXjg+HkYC8NZ52H91L03+Jv40/k8ALO9eTmugFbva94G+a7/9qHj7LbSmJtSsLKyVlciWgZ+JbXsUXrYsuWzp0kGoya5LAiIrVyaVG8HkIIXBkOfMw6bYEr9XP3X+xHM/PsezRzybWEa2WEj/9Yk4Jk4k1tmBJT8fa3n5pu2odRE8fyzEIvHXH/wFIl7Y9/KtcyDCzqn663gY1Rq10+GMd6HywKRFs+xZjM4azcElBwPwfcv3GPXJX2IiK1fg2nc/mB0fIO/cay9sQ6q2uKqKy0XmmWeSsv8BxHq6sRYXYy0t3eLtChvm2msvKt56k2hjI2pGRvwzvzdoL9bZmbS84fXGwxdUlYzfn4L0zOEQ9cffnHot+FrgkBtBjrcNi1KLeGLhE/xuxO9QZAVvxEuTv2mbD9wUhDVS9p5C+Ztvxtu5GZlYqyqRrZs++6p9zGiUvDz01rWBYNZLziUQDRBZZ3DlGtGG+vVvzDRh7nPw5Z3x162LYcXHcO5nkDd6k+sm7LhMPZZUFlmxgsbWFVQWjx2EGgnCppEctj4zGAOYoRCqLzxINRKELZNuS+eD1R8wPHM4B5UcBMCXDV9ydMXR27wuqYccQsU7b6O1tKBmZ2OrqFg7+HPhazDt+vi/WxbByk/QT/iAWHt70nbMWAzZ7cbweOIFkkTOhRegOEVIoDCwwrXVSWWRFStRnSKEZFdjcTmJrPNMbY3I8uT78IKw05r/Mnx2S/zfrYthxTQ491PIH7jvfUYwmFQWa22FDYzdlVQV97HHYB89ilh7O5a8PKzl5UiS6PayS5AkwkuWJBXHWttQ8vOJ1ffe61JVMv/we6QNhZAsfgs+uib+75aFsOpTOOcTKJw4ABWPS7OmMSZ7DA/88ADHVB7DEeVHYGIyKW8SLotrwPYrbDyL08Wd+XO4+D93Y/EG8WXYubXlFf5lvW+wqyYIwjamRSJY7Bv+bmj03nN0pqQQ8sSfX+qGCCERBEEQBEEQBEEQBEEQBEEQBGFwDEQIiXjysQNLtaZy9R5Xc9FnF9ET6QFg73H3YE9NxfD5EsvJKSlYCrZyAMWS95PLZj4Gw48EZdMHSwlbj7WwgJJ//5vg3DlE6+pxTtodx/jxA75fxeUi9agjkzpqOkeVQXUDdNdA5yoo3j3xXrYzm1v3uZVLP7+UYCzIyp6VHF5+OBNyJ2xyRxtJUbBXVUHVlg84FgZQ3Yy1ASQAsTCTOxv4yOLi8QWPA1CeVs4lEy9BkfuGyEiShK28HNumhiTshFIPP4LgdzP6lKUdeeQg1WbXpGRmknLAAfg/+6xPua2ycpBq1Fe6PZ1Thp/CxZ9djE+LtwnOHXMuwzKH9VlOslqxDx8GDOtnKxuhedHaAJI1vnsQxp0KaQWbt01h52YYMPvp5PKFr/cbQlKaVsqUwilc/+31aIaGKqmkjTkZH6/0WS710MNIOeww1JwcbEOG4Nh9d9TMzK1SZdluxz5KzEK4rVnLyvqdwdRSVBSfET0W61NmGz6c8ldexq7Wrw0gWeP7R2HS2ZARD5DZq3AvptZM5T+L/wNAZVol9x90vxisIAyqrdHOtZWXU/SfJ+j47muCrY14RhVzn/EBlxX/hZTDDsXz6mt9lrcPH77+jXmbYMbDfcu0ELQsFiEkuxhbVvLtSHW/vRheNZkMe8Yg1EgQNoG/Hbu1Fclmw4ys/d6iZGeTVlwxiBUThM2Xbk/npik3/eL3/W1BkmVslZXJ90L8rfDdQ33L9Ciq1INtxAgi6wbpShK2IVWUvfgCwVmzMXxenJP3xDF2zMAfgLDLs+82Ae+Lfe8vuA47CDXSCAxsqLuwfVH9TbgOPYDwokV9yp377DVINRKEbczbBNMf7FsWC8eDxAYwhMRWUQGS1Cc00DZqFGpuzgbXk1QV+9ChMHTogNVN2D4pqamkHnkkXU891afcOWkSacceQ/D7WZiahmuvPbGP2UB70t/eT3tVg4a5AxpCkmJN4eo9rubCzy7knZXvAHDa8NOoShf9G7YXle5K9i0/kN/PuQ7DNLC32fnXgf+iIEU88xSEXU00HMJiSw4hMU2TSMzAblHQjXiZOyeH5pWLIB9iuuiKKwiCIAiCIAiCIAiCIAiCIAjC4NisEBJJknz0HzYiAY4tqpEw6MbljON/x/yPWm8tabY0KtwVmA89SPM11xJrb0fNyaHg7ruxlpZs3R1bU5LL7GnABmaTEbYZa1kp1rLSbb5f93HHEf5pCf5PPwVFIfPUE7Bnh6A1E/xtoFiS1tmzYE9eO+41Gn2NZNgzqHBXYFfFTIM7LTX5Y6dgyYfc9fs3WB1sRDM0Kt2V5Dg33MFwV5d6wP6ETzoJz1tvAeA+6SRS9t9vkGu1a5HtdnL/cjmx9nbCCxci2e3kXnUlttGjtnlddENPCu0B2C1vN1499lUa/A2kWdOoTK/E0c/v4BZR+wkeszhBHojsPGGnIElgdyeX29L6XVyWZA4vO5xhGcNoDbSS48whhyxsl15C52OPY2oazilTyDj9D9gqKkiZIgaH7OxslZUU338fTTfciOHxYCkupvBf9+JcE7r3U03ySqojcV0yTZN8Zz737H8Pqz2r0Q2dcne5aHsIOw175RDyysuo9dZihDq5MfVwStNKiZzpRquuIThrFpLFQvbFF+EYu4GBRLIKFgdEfH3LRejoLseu1pF36Zm0Pfk/zHAY25jRZJ5/OukDOBBNELYaWcVW+xpFN19K8z1Po3d3o+bnU3D7DdgLiwa7doKw2bbJ9/0tIanxewM/o5o9FNxxB01XXUW0uho5JYX8v9+MbehQZKsV+7BtH6Qi7NrcI8rQzjiN7lfegFgM14H7kVkZRhLzN+x6JIn0nBaiRx6Kb+qnIMuk/+YE0kZt++dsgjAo1twDCPf0LVdsA7pb2/DhFP7zblpuuRXD78daWUnh7behuvu5fywIxEPwMn5zEpHlywl89RVYLGSdczaOiRNQMzJwjNrIZ3Ry/+1VLAPXR2HNs7yxOWP53zH/o85XR4olhcr0yk2enEUYOHbVzinDT2FS/iQ6Q50UphRSnlY+2NUSBGEQxMJhXO70pPInv17Nvz5ZzrwbD0PvDVLLyM2nMRwEwDDF90lBEARBEARBEARBEARBEARBEAbHZo3mNE0zdWtXRNh+1Pvq+bj6Y76o/4J9i/YlxZJC+ZQplL/xOrGOTtSsTCz5+Zu0Td3nQ1JVZMcGOi6POAZm/Ds+CxKAJMOUi0ARg453ZdaSEgr/eTdazWoCwRY+M5fxXvsMDppyBoenVlGS1f8sPmVpZZSlJc90vzWYponu8aK4nEiW5BAUYRsr2zs++DzsSRTFDv07DcFWWltWsTi4imBRkMkFk0WHqw2wFBSQf9ONZJ55JgDW0hJk28B2BhWS2YYMofTpp9AaG5GdTiwlJUjytgvjqvfWM612Gl/Uf8GUwikcU3EM5e7yPsuUpJVQkrbxQWR6KAwxDSV1I5uPBRPAlQOB9rVlB98EKWIwv7AekgSTz4Ml72K6y9BzdkfxVSONPWm9qyiyQlV6VWI2wEZ/I3MOKSBl7NXkWjKwVo7Glitmst9VSKpK6mGHUTFqFHqPBzUnG8m6zmdg/jhwl4Knbm3ZwTeCu5CF7Qt5bdlrNPobOXnYyexTtA9umxjUIOwcWgOtfNXwFe+teo8xWWM4ceiJ7F20d+J9W0UFxY8+gtbQgGSzYS0tRVKSQ8wSUvPg4L/DexeuLcsZgZ41HkJhFIcIjtxVKMMOQLN8RcpzDxII+lhp76Yiz0H6YFdMEDaGMwNzv8upj/lQHrsdw+/DTLNB0VYOaxaEQRAxInzX9B3z2uZxZPmRHFJ6yIDPzr3mPqvsciJv6D6rKwsOuRHeOHttmTMLCibgyBlG2csvo7U0o6SlYS0uHtA6C8KGqEWVRE7aC+nQyaiGQmtqBKu/jvzsoYNdNWFby6gkUF5F24hM0n57HDFiBNNMLEWVg10zQdg2UnLhkJvhnT/3LSsYP6C7lS0W3Mcdh2PCBHSfD0tBAWpGxkata8Zi6IEASkrKhu9vCDsda1kZRff9C62+AclqwVpSsul9AJwZcPAN8NoZ8dfpZaDaoHhSn8V0nw9UyxbdB+sMdfJt47e8teItKtwVnDzsZEZnj6YoVQRjbq/qffV8Xvs5aboFMyOETbZRmFo42NUSBGEbi0bCWGzJ1//HvlpFNGZQ3RHAMOKBI5l5eYkwy5ghQkgEQRAEQRAEQRAEQRAEQRAEQRgcIt1B6MMb8XLrjFuZ2TwTgIUdC/mi/gseP/RxMvPysOTlbdL2IqtX4/v8CzxvvYWSnU32+efhmjKl/447hRPh7KmwfBrEQjD0iKROGcKuSXE66ako4PxpN7O8ZzkAC9oXMKtgCvcMP5a0TdxepLoa/7ffElm5kpT99sM5aRJqevpGrRutq6PnjTfxTp2KY9w4Ms85G8fIkZtYA2GryhsFZ34IKz6BYAcMOwKvP4WM/76L/ZtvGTNmNNGTIswyZ3FQ2UGDXdvtmmyzYR86ZLCrsctT0tJQ0jb1yrblfBEft828jRnNM4D4dfbL+i954tAnyHRkbvL2zGiUwJw5dD76GLGeHtwn/go5LQ3H8OHYx45FkqT+V8weCn98H1Z+Bp4GGHoYlEzegiMTdgnFk4mcNI2edz7A98F3OMbvRpbPhR2IdfcQnDsH/zffYKuqImW//bBVrA0YCWkh7ptzH9NqpyXKyprK+M8R/yHPtWltX2HHZsnNJVpfT8cjjxBZtYrUI44g/eTfYCsphz+8Cas/h45VMPRQKN2LpZ1LOfvjs4noEQDmtM7hpik3cfKwkwf3QARhK9AMjRd+eoEXfnoBiLcLPqr5iBePepHStLUzdyspKSgjRmxwW5GaGgLffEN4xQpS9t0H52kfola/RyxnL3wrgnSdeylqZiZZF16Aa489kFRxq2pnF04biuJpJvjQg1h0g/Gn/5YXPB/w+7QiClPEAAxh+9cuFZHx9TcE330GW34+tjNOZU56IwdmDRvsqgnCZmvxt3DRZxfR5G8C4p/9SzqXcOOUG7GrAxMUFq2ro+ett/F++CH2MWPIPvccJKsV31dfodU3kHrwQTh22w0lJSW+wtAj4fR3YPnH4C6CqkMgJ/57p2ZmoGZu3ABjQRhIjREPsU5wvfUZkYWLKNxnCpFjDiRqdWEd7MoJ25ZqwacMJf/9bwh+9gXO4cPg1ONYkedhKLmDXTtB2DZGHgspb8GKaZBeEv/szt42z6CsJZsWEhhatIjuV/5LcM4cnFOmkHHaaThGiee/uxLF5UIZMXzLNjLkMIw/TiW0shnfjAUo7gxSWmM4ciDW1YXvs8/oev4F1PR0si64ANfkPTZrwpN3V73L/XPvB+CHth+YWjOVl45+iSHp4hnv9qgl0ML0RR9yUm0agVffRHK5sJ59OqH9UnE4xPxfgrAr0cJhLPbkeyzRmAFAT1BDXxNCUlCEbMbLdRFCIgiCIAiCIAiCIAiCIAiCIAjCIBEjO4Q+6rx1iQCSNZZ0LaHaU02GmorW1oZss6FmZ//itnS/H8/779P52OPxgtWrqZ87l7KXXsQ5cWLyCpIUDyIp7Oc9YZdX7alOBJCs8V3zDOp8dYyxjUla3giHiXV0ILtcfWa4ijY2Uv+nP6PVxWey97z6GjlXXUnWOeesf0B8Lz0YpPUfd+H/4gsAtLo6At99R/lrr4oZNgdb/pj4H0Dr6sJ702WEZs+Jv66rQ50zl6z7/0q4KDxgAyd2FlpzCwCWgvxBrsmuy9A0Ym1tyHY7albWNttvrbc2EUCyxtKupVR7qjcrhCS0eDH155wLZrxTTPs995L1pz9R/8ADFD/6KM7xG5jxMHdk/I8gbCQ9FKblvscJTp8OxK/9wZnfU/a//+L7aCpt996bWLa79GXKnn0GS1EReiCAv6UGZ8RElVViRgyAWl8tqz2rRQjJLsA0TWItLSBJaK1tNF56GYbXC0DXk08Sa2yk4M47kHOGJQY4rrGodloigGSNJxc+ySElh2zWdVMQtidN/iZeWfpKn7KucBcre1b2CSFZn5jHg+HzgSRRf8GFaNXVAHhee53syy8j+/x/4Pvfq7TcejsA0VWrCJ4zl7JXXsE5YWBnRRYGX2TWbLrvuY/UI49AstrwP/Usf7zwfJb1rBIhJMJ2zzRNzPem0fPU0wAoHi/2735gXNrBBHP9OO0pg1xDQdg8K3tWJgJI1nh/9fucPfZsqtKrtvr+9FCItn/9C9/H8TBIra6O4HffkXH66XQ8/DAAPf/7HwW330b6b34TX8nmgqqD4n96mbEYWmsrktWKJSdnq9dTEDaV2tZN2g8r0TOzCIfDeP/7KvYlS/HfW0Jm8db/XRK2X56uVnjiZTyff4Ft+HDs5eWY0+dhz8wGcctA2FXYUmHIIfE/21isuxsjEEDNzkbuZ7DvuqL19TReedXaZ8f19YQXLqT4icexbuIELcLOQ2vvwIxGseTmbHxQiNVJsFGn/pLrE0Wdzz5P2X9fIbxoMS033QRAFAied16838xuu21SvVoDrTy98Ok+ZQEtwPKu5SKEZDtV56njyFo3nbf/I1EWvmwBlicew7H/AYNYM0EQtjUtEsFiS26XKL191XxhDb23b0WK242zd+IaEUIiCIIgCIIgCIIgCIIgCIIgCMJgESEkQh+yLCf+rUgK3x74LnJUw6zvpun+G/B+8CFqVhb5N1yP68ADkTfQ4SJaW4vn7Xf6Fuo6oXnz+g8hEbY7pq4TWb6cyOrVqNk5GMEgpqahZmagtbWjZKRjajGMgB9Lbh5ae1t8ZkpJQu/uRi0sRO/oANPENmwYtooKtOZmwkuXYhKfUSjW1o6al4vh92PEYqgZGcTa2lAyMzEjUQyfF2tpKc4cCwdn7sVJ7EaqXyezdBiB5nryF7fit/nQu7pQ8wvQOztR3Gl0Pf8C/i++wFpeRt7frsM6dgxGSwuhRYvIvvACjFAY3evFVlZGtLYG/7ffggmG34clPz8euKOo2IYPw1paSrShgdCCBdhHjcQ+YgRdL76I+7jjULKzCC5YgNbUFD+W3FyMgB8jEMRaWYF9+HAkRRns/8pdSnTlykQAyRrOvfYiu0kj6plOzObAcDqQo1G06mokqw1LaQnR6mosefnYRo3EshFBSzubWFcXnrffpuPRxwDIvvAC3L/+dZ8QH2HgRevq6Hj8CTzvvouak0P+jTeQst9+SNaBnyt13TbAuhRZIbJ6NaFFiyEWw1JSguROQ1u1Cr2nB2tJKVJaKrGmJvTubixFxUgWFa2ujsJ7/kmss4u2f8Q71vk++QTn5D3xffzxhkNIBGETRevrEwEka8Ta2wkvW0b7I4/0Kdfq6givWIHu9dJ6190Ev/+eM0aN4NgLr+QvbY/i03wAyFL/vxNbItbRQXD+fGJtbah5+cguF0bADzEdyWEHWUZ2OIi1tGAEg/HfN4sFMxTGVGQkqw0zpqFYrFiGVGHp7Xy2qwsuW4YZDGLGYkiKghmNojU2IVstqAUFGMEQRiCA7HIiOxxoDQ2YUQ3biOEEpk+n8+n/ICkKWeecg3PiRPxffZXYtvfDD8m+6EJslZVJ+1Xk5DaeKqsDcu4Iws+FVq9G7+pCkiRMXUey2TD8fmJNzShuN0p2FqauQySC1tCA7HRiHzsWW0XFRm1fRkaRFGLE+pZvxPkdnD2b5ttuI7piJa599ibjNyfRdt/9oOsAdD7+BGlHHknns8/2XdEwCP4wV4SQ7Ary8sk87zw6H30UIxwm4w+/R0nLIM8hZoQXtn/RmhrS/vAHUvbai1hPD0Z3Dx2PPorx6quk/+H3WE4/HUtBwWBXUxA2WX/3BAayXas1NhKcPYecK6+Mt9NtNpSsLFAUCu+9B9M0kVQVTPB9/TXIcvy1oqC3tyOnpiLZ7finfkzPa68hp6WRc9mlWIcMwYxEQVVQc3Kwl5cP2DEIws/FOjqQPviCzmefRbJYyDr3HJx77knMMDBrm0CEkOxSlNpGMq+4kqw//hHvBx/Q+dzzKG43OeUVGJWjfjEUQRCEzWMaBoGZ39Ny261oNbWkHHoouZdfjq0q+d7eGuHlK8h/8EGM+rr4s978PNTiYqIrVogQku1QrKeHyMqV6MEgkq4T6+zCUlSIaZoQ1QAwMUHTkGQZ3evDMqQK0+fDDIcxtVi8bWm1YGoakqKgd/egFhagpKURa29H7+ig/cEHiXX34D7xRNKOOhIjEMDw+bGWlmAbMQLF5UqqmxEO0/nkU33KzHCY6KpVdPV3H+z7WZscQiJJUr/3pX9pshVh8BQaqaRM3B3b/fehd3ZhKS6ComICb72JW4SQCMIuwzRNtEgYSz/fA1RlTQhJLBFCoioSOcWlEIKYCCERBEEQBEEQBEEQBEEQBEEQBGGQbHchJJIk1QA+QAdipmlOkiQpE3gVKAdqgFNM0+werDruzMrSyji07FA+rf2U6Qe8g2SYxBoa8b3/Ht4PPgQg1tpKw6WXUfbKyxsOEzFBTkme/VN2OAaq+sJWFpg5k/o//Zm0Iw4n1tVNcOZM8v72V5quuQbnbruhpKfj/fBDcq++ipa/34KloADnpN3pfullsi++iLZ7/xWfWR6Q09IoefopWm66Ga2xkew//4nGf92H+1e/IlpdTWjRIvKuuZrmK67Etd9+YJr4v/giUZeiR//NpT+VEn32IXIuv4yua2/DlpJC7NBDaX36abLOP4/2Bx/CPmYMsY4OQrNmARCtrqH+oosouv9+Gi+/nLTDD0fv6SEwYwZ5f/0rTX/7G47x44msWIH3/z4g96qraL31NvSeHgDUvDyKHnqQxiuuJNbYmDiWgjvvoOPhf6M1N5N94QU0X30N7hOOJ1pXT2ju3HilFYWSxx4jZf/9tt1/mgCKEv/TO8jR/asTiDY00nHvfaSf/Bs6/v0IJU8/TeNll2IEggBYSkrIufxy6s8/n9xrryH95JPjgTq7kMB3M2i7597E67Z77kXNz8d9zDGDWKtdi6lpdDz9NJ633gIg1tJCw8WXUPa//26TwI6y1DIOKzuMT2o/SZRNypvEkDaZmnN+h+HxAJB69NHINhuet99OLJdz5ZX0/O+/aI3xWZOzzj8f79SpaHV1OCZOJO+662i9805klwszGMQIBgf8eIRdi2Sx9Ln2ryFbLJixWPLydjsNl16GVl8PQOynpaRf/28uuONk/tn4HCMzR1Ll3rqDg2Ld3bTcehu+adN6KyGR+9drMSJRtNpaLPl5WEeMoOPhhwkvWJg4rsL7/oUJRH78CdvwYcgpKQR//BGHoaNOmBAfiLcLCy5ZghkIxAd72WxIskzTFVdiBAJA/DM++7JLiSxajGPPybTecSeRpUuRXS4y/vAHOp94AgATaH/gAXIuvRT/9OnQe95INhuS2n/w4tjssaRYUvBr/kTZRRMuIt2ePqDHLAjh+nq0mhokiwXdH0By2DEaG2m+7nro7aCaevjhpJ9yMg2XXIoZCgFgraqi6KEHsVf98vWtMKWQs8eczWMLHutTNjR96AbXi6xeTd1552OGwwAEvp1OrLOL1MMOwzd1KhBv80D8e9XP9TeAQ9gJNTXRduediZddT/+H3MxM8vYSgbXCDiAzE236dJquvoacyy6l/b77E291P/Msqjud7D+dP4gVFITNU5VexZD0IazsWZkoO3X4qZSmlg7I/iRVJfvCC2i791+JdoO1qgr3CccDEF21GiMSwfD7sFUNQS0tQbZaMU0TS1YWwZnfgyzR/fLLAOidnbTcdDOFD9yPGY2CJBFrbgEthn2omBFe2Da8n3xC56OPAmCGQrTfdz85V12JY/x4pDwRULWrUUeMJPjRR0Tmz6fntdcB0Ds6aLn5ZqwVFbgm7zHINRSEnVNk5Urq//Qn6L334P/kE4xgkOKHHlzvPQe5ohz/q6/R/fzzibKsCy8g5cQTt0mdhY2nezx0PP0fZIuKmpFB2z33knLooaAq2IpLkN1utMZGoqtX4dx9Et6PPyb9d78l+NXXoOv4Z84gZcreGOEQwdlzSDvyCNr+dR8YBnl/+xvtDz1I1p/+1Od7nue115BVFf/06Wi1tQDkXHEFmWedmTRhj2maifvS6zJCYWS3O6lcTt30Z9G5zlwunngxt8+8PVGWYctgZObITd6WsG1kBmS6n38W73vvJ8py//Y3Ui64YBBrJQjCthaLRsA0sdj6CyGJh8D6IjFsavzfiiThzs1FqjEwRAiJIAiCIAiCIAiCIAiCIAiCIAiDZHudovkg0zQnmKY5qff1X4HPTNMcCnzW+1oYAC6Li6snXc1te9+GYrUhBQJEfvwR3+df9F3QNImuWr3BbVkKC8k49ZQ+ZUpmJvYJE7ZyrYWBEOvpofX2OyAWw1Y1hOCMGTj33BPfp59ihsM4J03C++GHWCsrCS9ZguHxkHrIwXS/8l+U9HR0jycRQAJghEKE5swhsnQpaUcfRdcLL4JhYC0uJjRvHin774/nvfcwNQ3HmDF9AkgAtBUriT77Cmp+PlpjE3pHB6lHHEHX888jOZ1gmGh1daQccEAigGTtyhrRFSvixzJkCIHvvsM5eQ98n3+OGQrhmjwZ7/99gLWinPDSpYkAEgAzEiHw9TeJABIAIxgkWl9PZMWKvsdSUro2gARA12m57TZiXV1b9f9G2DDb0KGk//rXideWklJCc+aQdswxdD37HKWvvELXSy8lAkgAtPp6tIZ65KwsOv79CJEVK/vb9E7N8+47/ZS9t+0rsguLdXTgffudvoWmSXTVqm2yf5c13gb4+95/5/Cyw7luz+u4c9878b3+ViKABMA+ZEifABKAjsceI+3ooxOvu55/nrSjjgIgNG8ekt0OkkTa0Ufh/+67xHuCsLVYy8rIPOvMPmXOvfbEPnIkGb/9bZ9yOS0NTDMRQLKG4fEwPprHNXtcwz0H3EO2M3ur1jG8+Me1ASQApknnE09iKynBUlhI13PPYXR2JgJIoDec6NHHwARLcTFaYxNaYxOWomIiK1cSXqd9sqsyNY1YW1s8KERR6HnjjT4dvbX6eiJLl2GpqECrqyOydCkA9nHjCH7/fdL2wkuWYKusSLzOOv+8+MyE/RiaMZRnjniG88edz7GVx/LIIY9wYPGBW/cABaEfRnc30dWrMUNhTC2K7HTS9s97EgEkAL5p04hUVycCSACiq1YRnD17o/ahyAqnjTiNe/a/hyPLj+Ty3S7nsUMeoyi1/9+HxD5qahIDideILFmCrWLt71XGKadgLSoi59JL+u4zPR3n7rtvVP2EHVc0GiXwzbdJ5Z733ifF6D/0SRC2J2Z7O2333IuSno7W0JD0fs+bbxJb5/uTIOwo8px53H/g/Vw16SqOKDuCO/e9k3PGnoNFGZhrs5qTi+/Tz/q0G6KrVmEEQ5i6gaW0FN/UqTh3252ul1/G8HiJtbWjd3YSqa7GMXFCIjR9XZElS8A0MXw+jFCQyLKlA1J/Qfg5Q9PwvPNuUnl4wUKi1TVI8vb6OFYYKPrSpUQWL8b/xZdJ74UXL972FRKEXUS0ujoRQLJGcPr0Ps+skzQ10/3CC32KOp98ClPce93uRFasQFZkIqtW43n3XUxNwzZkCNa8fPxz5hCcMQMlPR3b0KF0Pvcc7uOPI9bURPer/8MIh3DtPomul19GstqwjxqZeMbvmDgB/7ffYsZ09J7k73PeqVNx7bVX4nX7gw/Gz7WfURwOMs85u2+hLGMbUkXORReCJK0tTkvDOXnyZv0cjiw/kgcOeoCjK47mwvEX8vThT1PuLt+sbQkDL9bQ0CeABKDjoQeRVu56/REEYVemRSIAWOzJISRrHu2ENR2j94UsS6RmZiFhov1sEg5BEARBEARBEARBEARBEARBEIRtZUeZNvsE4MDefz8PfAlcO1iV2dkVphTyq6G/ItrRQSwaJVpTgyU/P6kjhexOnrV4XWpmBs5996Xgn/8kPH8+Sk42rr33xjFSzMKyIzCCQaK9gynWzFRtycsjOCc+aM2IRgFQ8/LQGno7YRkmGAZKdjax1tY+25MdDmJt7QAoGZmJ99fdduiHH/qU9alPKN4hXc3NRWtuAkCSZUxNQ83KItbVGS9TFWS3u8+AeYjPPLTuttXcPELz5vU9ltw8tJ91KFMyM4nW1PQ9FrsdvbOz9/2spGNZl9bYiBEMQmZm0nvCwFDT0sg443TsY8cQWrQIpXeGdclqxQgEkF3OpIHnAFpTM9biYsILFmD4fdu62oPONnRo0mBA27ANz3QvbF2S3Y5aWJiYSW0NJS15drSBUpBSwElDT+KkoScB8eta7bJlfZbp71pnBoPxAIA1ryORPoMrjFCQ/L/fTGjBQkoefwzHRDHLvbB1yRYLWWedhXPiRILz5mMfNhTHpEmo2dlknX0WluJivO+8g23kCDJ+9zskmw1UFWKxPtsZWjKecaPGDkgd9e7u5LKuLkxDx9Q0jHAE3edPWkarq0OSJCSLBTMQAKcj/llWWwvR5N/HXY1kmvHrkiyjWC1Eq2uSltE72rENG0q0uXmdsg6sVVVJy9qGDsG++25o1TU4J0/GudeeGxwsNjJrJCOzxPcbYdsyoxqSJGHGNAy/H2J6v9cYo59rSqypaaP3k2nP5MiKIzmy4siNXkdOTU0qk5xO1OIibCNH4j7heNKOOALJYsE1ZQqlL71IcOZMFHc6zj33xDZkyEbvS9gxyaaJmp0c9GUpKkK2WgehRoKwaYxQiFhLC5LNhtLPTNbWsjJkm20QaiYIW67cXb7NBi+akTDRn93/ADC8XpTsLOgdYGNqWvx7m6aBBJLFjqnFMKIalqLCpLaNmpuLSfy+hJyWJsKhhW1GUtV4YPuCBX3K1ZwconW12HffbZBqJgwW0+8n1tSMmp9PrL29z3v9tYcFQdg61jwT7FOWno7kcK53Hb2np0+wKwCxGLp313tWuL3TPV4kWcGSnZ2YlMTUNCSLBUtGOpGaWmwjhiM7nMgOB5HV1Vhyc5EdTmLt7VhLSpEkCcPj6dNfQc3NI7J8OaamIbtcSfu1FOQT6+hYpyI6utfbbx1T9tuPwgfup+u551HcbrLOOgvHmDGYpknZSy8SmDkTOS0N1557Yh82bLN+Dm6bm0NKD+GQ0kM2a31h2zL6CbYxAsH4fV1BEHYZWm8Iq8XWXwhJvB0S0XScVgUARZJIycxGNiNEQuGkdQRBEARBEARBEARBEARBEARBELaF7XHqLROYJknSXEmSzu8tyzNNsxmg9+/cQavdLkTv7ahrxmKkn3oKKEriPduYMdhHj/nFbdgrKnAfdyw5V19F9p//jHP8+IGssrAVqdnZpB11FACS3QayTHDOHFz77hcvk2Uku53w4sU495gEgB4IoGRlEa2pwT6i72BMw+vFPiZ+zoTmz8c5ZcrabUsSgdmzSTnggN6dq2DpO8um4k5DTk0lsmwZjnHx8yjW1YmlqIhYayvWsjIA/N98S9a55/ZZ17nPPkhK/HIn2aygKATnzsW1775rj8XhIPzjj4ljWSNaW4tr3336Hovfj3306PixzPsB1969x+Kw95nBCCD1yCNRc3I28JMWBoJ96FAyTjmFvOuuwz5+HEgSWkM9tuHD8X3xBamHHZa0jmP8OMKLFmEbNgy1aMMzvO+M3Mcdh5KennitpKeTdswxg1ehXZCakUH+9df1+by1T5iAffSoQauTZLHgPuGEvoWyhPSzGXqsVVWJgCgAS2lpn871tqohuE88kfxb/k7KPvuIAabCgFCzskg95BDyrroS9/HHYy0sBMCSn0/WGadT+vLLFNx6K47Ro7GVlZFz2aV91s844/R+Qym2FmtVVbyNsw7HxImYuo7ssGOtqEDNS/6ak3rEEZh6DN3Tg1qQj+xworW0YC0rRU5NGbD67ihMRUFJS0OyWDBieqL9ui7r0KHo3d1YKyoSZZEVK3CMG4ucsvZnqGRnk3rkUWT+7nfk3XA97mOOxpKVtU2OQxA2hZziAqsN2eVCzcgAVcExafe+C6kqluLipHUHOgjMPmwYaccf36cs79prcJ9wAmWvvELWmWdiKSgAQLZacU2aRM7FF5N5+h+wiwC8XYJitWIfPw41Ly9RJjmdpP/6RCR1R8lKFnZlck4Orv33xwyHQZL6XGslm43sC/6M3M+MpoIg9KVkZCTfbwDUvFwkRUGyWuLhkZKEmpsLqgIWK0gSssNOtHo1mX/4A9I69xcsFeWo+fmgacgpKZhRDWt5RdI+BGEgSJKE+1cnJH3HVLOzsVVVJY1tF3Z+Sn4+WksL7uOORVrneZe1qgrHBPGsVBAGim34cFIO6RvMkHf9dVgLC9a7jlpU2Of5GMSDzdQNrCMMDmtZKVpnJ5G6Olz77w+AbLOhNTcT6+zCtddeyC4XkdWrsJaXIbtcaG1tSKqKrWoIWlNT/PO5IJ/QggWJ/gqheT/E+wMYBobXi3XdkFyLBfeJJ+L/+utEkZqTg2U9z5KV1FTcRx5J2fPPUfLvh3HttSeSxYJsteLcfXdyLrqIrNNP3+wAEmHHYyktjX+3WYd1yJD4dxdBEHYZWjgE9B9CEokZAIRjBroR//IoyxKu9AwkTMIihEQQBEEQBEEQBEEQBEEQBEEQhEEimdtZzzdJkgpN02ySJCkX+AS4BHjPNM30dZbpNk0zo591zwfOBygtLd29tp+Z9ISNF25vx/D5oLuH7jffxFZaghmLYSksxDFpErbS0sGu4vZA+uVFNmIj2+m5G62poe3++wkvXUbGb0+j69nnSD3iCPSuLgKzZ5F97nl0vfQizt12Q7LZ8E39mOyLL6Ln9TewFBVhraig+7//BU0j44wzSP/taQRnzKTtnnvIOvccArNmo7e24j7hBDqfe470E39FtK6e0MKFZJ11Fl3PP4/W2Ihzrz3Ju+EGDI+H5pv/jm3oUNTsbDzvvUfOxRfheeddFLcb+7ixdL/yX3KvvhozpmGGw5gxncjy5VhLSwgtWky0poaM3/02fiyHH47e00Pg++/JPu88ul56CeeECUhOB5433wJFIfuCP5N2zDH4pn5M+yOPxI/l9NNJ//3vCM6YQds995J19lkEZs8h1tJC+okn0vXcc8Q6Okg5+GByr7oSW8V22dl9q5y7sP2ev2uY0Si+r76i9Y47yfzjGfimfULONVfjef0NPO+9h2y3k3nO2Rg+H6F588j5y19wTZ482NUeFJHVq4ksXQYS2EaM2F7PXdiJr71mLEZ46VIiq1ahpKZiHzUKyyB3QtPa2uh67nm6X3oJVJXMc8/FXlVF2733otXXY58wnpxLL6X1zn8QXbkS+9ixZJz+B1puvAnZ5SL3iitIPfooFOf6Zxrchey05+6OSPf7CS9ZgtbQgJqXj33USNSfdTbfmkxdx//FF7TccSex5mYckyaRdc7ZaK2tBGbNJnWfvZHcbvSODjoefAjd4yH18MNJP+1UjGAQ3eNFSUtFttmJ+bxYS0pwjvnlUMCtaLs8f0MrV2GEghg9PaCqyFYr3nffpeftd5CtVrL+dD6Wigr8n35KyqGHEauvp/PJJ9G9XtJOOIGM005Fa2hAUhRsI0ZiKy/bCkcpbGe2y3N3S+ihEOEff0T3+ZCtVkzDQHY46HjkEYIzZqIWFJB79VUoWVl43ngD74cfITudZF98EeknnYSSMrABRrHOLsJLfiLW3oG1rBT7yJHIDseA7nMnttOdvwDBRYuIVlej1deDaWKtqMBSWYlz5MhfXlnYUeyU5+4awXnz6Hj0UQIzZpJ9/nmohYUgyzhGj8Y+fPhgV0/YMjv1ubu9iTY00PH443jefgfZ5SLjD7/vDSuT8Hz0EWkHHID3889xH39cfAC/YYKuE5w3j9SDD0I3QbGoxJqakBwOLCUl6F1d8ZDoaBQpJQXHyJGo2dmDfajbijh/B1nM6yWyfDnhRYsxAgEwTbDbcO25J44xY5Dk7XFeiO3CTnnumppGcN58Op59Bte48ZimiaUgH+v48TgrKwe1bsJWtVOevzu6WEcHoZ9+Qu/swlpRHr8v8bMAgHXpPh/BH+bR9s9/El21Ctvw4eReew3OiRN35vsZO+S5a5omgZkzidbWYgSDhOb+QGTFCjL+8AckRUH3eDDCYRSnA8npQlJVOh55hKzzziNaV4vsdGLJzSW8fAVqVhZyWhqBb78lOGMGmeecg+H30/P22+Rc8RcUlwsjFIoHjBkGXc89T3TlSmyjRpH/95txjhs3oMcqrNcOd+4GOzuJ/fADbXf/E62hAfv48eReeUW8j40I5N3VbLU+OuvYvjp9CuvVvGIZr9xwJSf+9WYqJ+7R572q6z5EN0z+OKWMogwHd364lMW3HEHP6qUc8swyjh6Zxf1nHzg4FY8biHNXEARBEARBEARBEARBEARBEIQdwHYXQrIuSZL+DviB84ADTdNsliSpAPjSNM0N9uieNGmSOWfOnG1Qy52DHgwSnD0bz5tvoWRkkH7ir7CPH48kSQRXrkSSFYyebmS7HfuQIX1mGPwl0YYGdI8XNS8Xy87X4XerP2jb3s5dIxxGa22Nd7KSJIxAECU7C6OrCyxWZJsV3etFycqKD/6UZWSXC72nBzkzE9PnA8PAUliIpCgARJubQdNQMjOJdXYiu1zxmYVCofh2OjuR7HYkVUX3BzC1KNHqGiSbFWtZGZigZGbEQ3JMEzk1Fb27ByXdjRkKYWoxlHQ3sa5ujHCI8Pz5xDo7ce29D4rbHe8sJPGzY7Eg2+zoXg9KZiaGxwOSjKWoEEmSME2TWFMTeiBAZNVqPG+9iWuffeIzKjmd/R6LJTd3e+6cNiAPiben81drbyfW1o6S7sZaVITW1hY/x9LS0Ht6MGw2zNZWUFTkrEzMnh7U7Gws68zIvbWYpklowUI877xDrKuL9F+fiHPyZBHKsPl2+mtvf8I/LcHzf/+0SUIPAAEAAElEQVRHtHo17uOPxzllyoAGJqzL1HWi9fUYoTBKTjaWrCwiq1dj+P1IDgehBQuwFBUj22yoBfkYPh9mJIKS5t6oAf1GNEq0rg50HUtpKcr2e+3cUrvkubs9iTY1o3d3o+ZkIzscBGfNpuftt7DkF+A+4XgcY8cOeB3iszJ2IjkcSFYrZiiMiQmGganF0L0eJFlBdjqQnE50jxfJoiI7nZiApGkoublYt327ers9f/VYDK2piVhnV/xnZbOhd3aCJKG43ZimiSTL8RnVHY61bVa3G/8nn+D/5ltS9tuX1IMPRnG7iTY2ItsdWMtKxSCxncN2e+5uqXBNLUYkjKQomJEIWCyYfj9IMrLTgWkYSKqKGQohp6Rir9w2AXORVavwTZtG8IcfSD3kUGyjR2HJzR2QdvYuYKc8f/VQiIjXi9ncjCTJmAX5OLOzxTV357JTnrtrxPx+Yl1dGJ2dYLEiFeTjyMoa7GoJW8dOfe4OtmhtLb7PPiMwYwYpBxxIykEHoubmojU0YPS2ZRSHAyMUwozFMDUtHj4iSaBpxLp7iHV2YCstRXI6MaNR9HAYxW5HSk2DSAQwQZKQHQ6sRUW72meLOH+3E6H6eszOTpBlpJRUZIntOex5e7DTnrvh6mpMw8DweOL3gVJTcRQXD3a1hK1rpz1/d2SRFSvwTp1KaNEi0o46Ctc++2DJzd3gOtGGBmLBIKbPh5SaipqairWgYBvVeFDs0OdurLMT3evDNA3McBitpQXZ5UJxu5GsVoxAAL27B2QJ2Wolsnw5ckZGvH2oKEhOZ7ydqevx+2q6jpySgpqejtbcgmRRsRQUEG1uxtR10GJIioxpGCgZGahud7/10v3+eOC11Yq1pCS+D2Fr2yHP3UhrK3p3N2YggJyejpqa+ovXJWGnJEJIdmF1ixfw+m3Xc+rNd1E8au0kE5puMPT6jwA4dVIJpVlO7vl4GUtvOxJ/cz37PTyHQ6rS+PefDx+sqoMIIREEQRAEQRAEQRAEQRAEQRCEXdZ2Na2CJEkuQDZN09f778OBW4H3gD8Cd/X+/e7g1XLr0aI6sYiOPcWCJA3u85rA9O9ovOSSxGvPW29R9srLmLEYdWefA4aBZLNhrayk6F/3Yi0q+sVtmrEYvs8/p/mGGzG8XizFxRT+616c48cP5KEIW5lst2MrW2cAeU7v3+vMnq1mZsb/kZq6tmzNwPi0tKRtrttpq79ZuEOmFdUio9pVtJYW6s4+Jx4KAlirqih+5N+oaWl9tp3o7LPugHxZpue11+l49FFQFALffEvBnXdgyc3ZwLFk9FtvSZJQsrNpf/JJPK++BkDgm2+xVJRT9uyzKCkpAz6juLBh4UAUWZaxOlSC8+bReMWVxJqbUdLTKbjjDlIOPCARhKM1NlJ3yqlA/FplKSmm5N//HrCBkeEff6TujDMwo1EA/NOmUfTgA6QdccSA7E/Y+URWraL2zDMxvF4A/F98Sd7115F5+unbZP+SomArL+9TZq+qIlJTQ/NNNyNVjsT8bhaR77+j9KkncYwevdHbjrW30/HU03S/9BIYBqlHHE7u1VdjFR3yha3INE3833xD87V/Re/uxlpZSeZZZ9Jy402JZXrefJPyV17GPnLkFu0rEtIwDbC7+u9gbCko6J3de/2iDQ00/uUKwosWASC7nJQ884xoR6+HoqoEfvyRxiuujM80DaSfeiq5V16B0k9blKIiYj0eGi+/jODM75FdTsyMXCIBDTXqp/PxJ5BsNnKu+AvpJ50k2njCdsveG/QVXrqU+vPOR+/qAsA6ZAjFDz/0iwMdw0ENCbA5t96AiGhzM/UXXoTWO3to4JtvSTv2GGI9HrLPPQfXXntttX0JO67QDz/QctvtWCfvgxmNoM2fQ8Ftt+LaY49fXlkQtgPB6dNpuf0O7Icfi9HVjiLp5F1zLdZ8EbYk7NxCviiqVcFiUzZ53VhXF43XXEt4wQIg3kYIzPiOwrvv7tNmiaxaTctNNxOaOxfJaiX70kvIOPVUlHXuO0dWr6b+/D+hNTQAoGRmUvrMf7CPGLGFRygIWy700080/PnPyHkFWHbbC7N2BWkH7o+SmbneAcvCzikWCuH/9FO6X/kvtsOOQW+ow5aTjnz++dg24hmrIAibJ9rQSN155xNraQEg8PU3ZJ57DrmXX46k9t81Rg+F6HnrLTqfeBI1KwvLbpNJPeZYMrOzRYjEdkrNykLtDctvuPwvaHV1ACgZGRQ9+AB1Z54FhpFYvuS5Z0n52T2p+H0xCauz73lhLS1Z++9NCKKJ1tbScvsdBL75BlSVrHPPIfOMM9b2oxB2WbrfT/eTTxJYuBjLbnsRmz+b9GOPIu3YY1EzMga7eoIgbCNaJAyAxW7vUx7W9LX/junE9PhzTosiY09JRTINolFt21VUEARBEARBEARBEARBEARBEARhHdvbNHB5wLeSJC0AZgEfmKY5lXj4yGGSJK0ADut9vUNrWe3ho8cX8tqds/n+vdV4O0KDVhc9GKTziSf6lJmaRmTVatoffAgzFMKMRDC8XsLz5xPq7Sj8SyKrV9P4lysSA6a1hgaarrqaWGfnVj8GYefg74kw75NaXr9rDu89NJ/6JZ30vP9hIoAEILpqFYEZMzZqe+HFi2n75z8x/H4Mj4fQ/Pl0PPoYRm8QxKaK1tfjef2NPmVadQ2Rlas2a3vC1hH0RVj0ZQOv/2Mu79w/j+r5LbQ+/Cix5mYA9J4eGi+/nGh1NRC/vnU++xyGz4fh82GGQkSXryAw8/sBq2Ng1qxEAMkaHU88iR4IDNg+hZ1LeOnSxOfpGh2PPIrW2jZINYrz1rXTeujFfKXtz9zck1CvvRfPe+9jxmIbvY3ArFl0v/BCokOo7+NpeD/6aKCqLOyiotXVNF56GXp3NwD2USPp+s8zfZYxQyGC8+dv9j60SIzV89t5+94feOPuOSyZ3kQ4sHmdwkI/zEsEkAAYgSAdjzyKERq87wzbs2hTEy233JoIIAHoefVVwsuWrXcdraaa4MzvsU7Zn9jfHuM713F82TaGztFHYZ2yP2YkQts/7iL800/b4hAEYbOZpknP668nAkgAoitX4v/8i/WuEw5oLJ3ZzJt3z+Wte39g5Q9taJGN/+zekOjKlYkAkjW8H36EY8wYGi69jGjvYGFh12VEo/hX1BI46xa+5hC+cxyN9qdbCC5dOdhVE4SNEm1qonv2InwX3MtXkX2ZnXUSoQNOJSTuDQk7MV9niNkfVPPanbP54NGFNK3swTQ3bbLl6OrqRADJGv7PPidaU5N4bWganU89SWjuXADMaJT2e/9FePHivut98WUigARA7+qi5/U3NrlOgjAQvB99hPXcK6g+6Eo+90xmyag/EswfQXR19WBXTdjGIkuX4u+J0nnm3Xzpn8K80t8RmngE0Z99XxIEYeuKLF+eCCBZo+v5F4g2Nq5/nZ9+ovOxx1GHDse44p98n/VrPvzKyqKvGgj6IgNdZWEL+L/8KhFAAqB3d+N5+x2sPwvV737+BczeZ1DRUIxl37fw1j/n8uY9c1gxp5VIaMvui5mGQffrb8QDSABiMToff4LQ/I3rVyPs3CLLVxApH9fbPtyDFftejs+eR2T58sGumiAI21A0HA8hUW22PuWhdUNINJ2YYSBJoMgStpQUZEw0TYSQCIIgCIIgCIIgCIIgCIIgCIIwOLarEBLTNFebpjm+989o0zTv6C3vNE3zENM0h/b+3fVL29qedTUFeO+BeciKzPC9Cgh6osz7pBY9ZvzyytuQZLUSWZk8CETrHdj/S7SGBtD1vmX19WitrVulfsLOZ9nMZr57cxW+zjAtq728//BCIiOTZ8qOrlq93m34usJ42kPoutGnE/sa/i8+7zNAb5P125lddHAfTKvndfDT9CaGTsqlcGg6X726CuOo3/dZxtS0RAdDIxwmsmRJ0nai1es/r7ZYf+eNYaznfBKEfvRzqsQH1wzeOWSaJl1qPqY7E5fbSkttkGkfh4mMnIIR2fiOuYHvvksq8374EUZvRxxB2Bq0pmbMPueU1P8ANdNEi+r0tAUJeDatg3nLai8fPb6IzsYAnrYQn7+4lLofNy98T2tMHqQfWb5chJCsh+Hzoff0JJX3V7aGCaAoaMf8kS8/9dPdEqS7JcjnbzaiHfNH6J0ZNVpXT9iv0dMa3OxQGUEYSGYsRmjR4qTy8NKl612nYVk3nz23hJ7WIF1NAT5+cjHNqzzrXX4Nf3eEnrYgMU1f7zLrG/wrSRKG14vWtHH3E4Sdl6nrdGaOYtGPOpUTcigbm8MP8w28eaMGu2qCsFF0r5eOyv356Sedqom5FI/OYc48E6+SM9hVE4QtFvRF6GkNEg2vHYRp6AbzP6tn1vvV+LsjNC7r5r0H5tPZ4N+kbW9MQIje1YXvs8+TyiOr+ob89NfOCS1atEmBqIIwUHR3DrPqCzAdKYyYUoBpc/L5J0EiTjHL/a7G1DTqsyZT1wjDJueRU5nBt7NMfJbcwa6aIOyaNtAUibV3gGki//4SPp0aoKMxhLcjxDdvVFO9YMP3d6OhGD2tQYLezZsAQ9gykX5CqCMrV2IpLOhTZppm4plsw7JuPn32p/j94OYg057+keaVPf1uPxzYuPvCus+Hb+rUpPLg/HkbeSTCziyChRmrcgibNkZMKcTiTmX6jymEJedgV00QhG1I631ObbHZE2W6bvDjzLXhaWHNQNNNLHK8O6/FakPGJKqJ+x2CIAiCIAiCIAiCIAiCIAiCIAyO7SqEZFfR1exnj+MqiQQ05n5UQ8Oybty5TnzdgzPYVnE6yTr//D5lksWCtbKCtGOOTlreMWrjBoao2dnxv4cNo/zddyj4170o6emobveWV1rY6QQ8ERZ+3nfArWmYeNQcJIulT7lrSnIwSSSksfCLev536/e8cvNMpr++EmP4xL4LqSqpRxyJnJa2WXW0lpTgPumkPmWWsjJsQ4Zs1vaELRcJagQ8YTLyXcybVseS75oZPjmfoCufrCv+Qvk775B2yinA2muSkpqK+/jjk7blnDx5wOrp2nPPpPM4+89/RklJGbB9CjsX+8gRyKmpfcpyLrwQS17eoNQnFtVZOrOZb9+s4YeptThSrex2RBmGYeKz56O4XBu9LfuYMWtfyDK2kSNJP+VkpJ/NAiQIW8JSWIilpAT7qFHIqan4v/qKjFNO7rOMZLdj7HEw0/7zIy/fNJPX7pzN6vntGx0UuHp+e1LZwi8a0DcwWH997OPGJZWlHXccSoYYtNQfNT8f2+jRPytUsZaWrncda3k57pNPZlWjJem9Va1Oyt95G+voUQSHTObd++fx8s0zeff+ebRW/3JQgyBsS7LFgvuEE5LKUw8+qN/lDd1g8VfJs/+umLX+sFBN01k+q4XX7pzFKzfP5PMXl9DTFux3WduQoViKi/uUpR11JNGGBiwlJagF+Rs6HGFXoFrxaC5KRmay6IsGFn7RQNHwDAKyuFck7BiMjDx8ZirlY7NY9FUDCz6rp2BIOkHTMdhVE4TNZpom9Uu6eOPuubx880w+eHQhnY3xkJFAT5TFX/dtO+gxg86mwCbtw1ZZkfQ9J+XAA/vMUi+npeH+zUk4Jk/Gtd++KOnpAFgrK/us1187x/2rE5AtyW17QdjWzHFTGDalkLYaL3M/qsHXGWbcwSX4Q+pgV03YxmI5pchp6bhzHfwwrY5lM1sYvmc+QUm0GQRhINmGD0P92XOTzNP/gLWocL3rqEWFWMrLafUnBwIs/KyeSKj/AIqOBh//9+hCXr55Jm/eM5f6JV0bFbwmbD0pBx2YVJZ21FGEfvypT1nm6acjKQoAP36bfF9s6Yzk0NyWak+f+8ItG7gvrDidOCZM6H2hkHrYYTh23x3nxInrXUfYdYQsmYzYp7hP/7BR+xUTUsW9MEHYlcQivSEk9ngIiRbVef/B+Xz99trJ4dqa/Wi6gapIiTJZAk2EkAiCIAiCIAiCIAiCIAiCIAiCMEhEr7dBYE+1MvejWjp6Zwv0dYaZ8fYqCqrSYZAmzXTtuw/Fjz9GZOUqJJcTx8iR2IcNQ/n974m1t+P7aCqyy0XOlVdgHzt2o7ZppqRQ+v57GA2NdD/3PKamUXDH7Ui9nYeF7Z/u8RCYNYvg/AW4dt+NyKrVoCpY8vII//gjjgkT0BobMcIRbFWVhBYuwj5qJLGuLmJdXThGjya8cBHW8jLMSIRoYxOOiROJ/PQTam4OkqISWbUK5+67EdEkbE47QW/fOtjSXaSdcAKet99GsljIPOssYt09eD/9jPCihYBEygH7024p5ZtXVyTWW/RlA057IYWnnYr/089IOeggrKWlxDra6X75ZVIOOBBLSTGhuXMJfDcDOcVFygEHYhs2lND8Bfi/+Rr7iBHEuruJdXbiGDOG0MJFOHbfDduwofg//wLHhAnYx47B//XXSBYLkZXxYwmvWIlst6FmZeH/8ivUggLSjjpyowN8hI0nqzJaWGfF7PigyWgoxg8f13LoH0egdrnoePBB7KNGUfryy9DbuQwg7bhjiTY04HnrLSSbjZyLL8K5224DVk/76NGUvvgC/hkzkExw7r4b9p8PlhaEDbBVVVH6wvMEpk8nOG8+7qOPxrX3lAHbX2TlKoKLFmH4vITmzMWx52TU9HS806Zhyc8neshpfP58dWL56gUdWGwKmYUuVKuM9/MvkCwqwVmzsY8cCTEN//TvkK1WXPvug9bRQfC7GTgnT8a5xyTso0cju5ykHn44wTlziSxfgf/rr9Fq6wjOmUPKAfvj2mcfLPli4LKQzIxGCf7wA5733sfUdVL23RdTlojW1WErrwDTJNbejvu4Y1FyckGWUDMyCC9fQcE//0m0tha9q4uUX/2abz5poWZhFwBBT5SPnljESX8ZR/6w7F+shyPNmlTmctuQZKmfpX9hW+PGkXf9dbQ/8ABGKEzaMUeTccrJSNKmb2tXoLrdFN5xBy0330xowQLU3Fzyb71lg0Fxano62eefh+vTTsDX5z2nHXxTPyb95rt598UaQr74QIOOBj8fPraI3/x1EqmZ9n62KgiDI/WQg4nWVNP93/8hKQpZ55233oA9SZZwuZOvV8709Yd/tdf6+OSZtYM3Vsxqw2KR2XOKHb29Fd3vR01NxTQMZKeT/DtuJ/D11+geL64D9scIBDE8PViHDMHzzjtYhwxFwsTweol1dWEbOpTIsuWEflyMa/KepB56CNafBZkIOxFZwpFqZd5bqxJFP37dyD4ni3BPYcdgcaeSlu1lxttrz+Gfvm0iI1+cw8KOq7s5yAePLEwEMDYt7+Gz55dw/OUTkBUJm0NNtInXUK2blm+vZmVR9NCDBGbOxPfhR9jHjcM2dAjB+fORrVZ0fwCtpZmUfffFte++GIEAmeedhxkKEfjmG0Jz5mIfPx7JbkfOyCDzT+fHnznoOuknn4y1qgrPl18iW61IsoKhaZjRKJIsI0kg2R04Ro9C+VnAqyBsbUpmFt+/sggtHA8kba/zEQlqHH6OuBe8q7FmZRDTPKyc0wZAJBhj7ke1HH6uOBcEYSBZi4ooeeopArO+B9NESU3FtffeSRMFrMs+YgR5N96Ap15Jes+RZkVWkts94YDGZ88tSfT38LaH+ODRhZxy3R5kFmx8SLuwZZyTJ5N98cV0PvUUpq6TcdpppB5xBPaxY/F+Mg3bkCFYq6pwrhOGn+JOvgfm+tl9MV9XmA8fXdj3vvCjCznuBBcsmoW1rBQMA727h1h7G7bRo0k79hjkjAwco0bi//Ir7KNHY4TDeD7/HKJRDK+XaEMj9tGjkAyDWGcnwVmzsZSU4D72mPizNGGnZM1IZdm7S5L6hx1/SXIYvSAIOy8tEgHA2htC8s3/ltO4oocJx5XD18sA6OkO097oR13n2bIqS2ha/4FogiAIgiAIgiAIgiAIgiAIgiAIA02EkAwCVZUTD5jXMGImgZ7IoNQnWFcPWhRkGa2xEVPTsOblYUSjWEtLKbzzTrRLLkGyWrEWFW3UNsMtLUiqil5bR8Mll0Asnsrv/eADih56kLTDDkteqWM16BHoqYXab0F1QPm+UHnA1jxcYRP4v/0WraEBvbMDPRDEDIcwNA01Mwu9uwfd78eIRIh1dWEtLsbw9GD4fBCNond2YYYj6D4fuseLpCrEurowQyGMgJ9Yt4qakUGsqwsjGMKormaPAw9n2v8aEvt3pVtxR1pIOfQQHLvvhpqZRbSlmdCSJbh22w29x4Nt6BCi1dXU+ZM7gC2b18OQY36FmpEJFgtKZgbhZcuwjxqN7+OPMTQNW1UVsc5OXEOq8E//Fs977+IYOw6jpwfd54dolFjvsZg+L8HvZuAYN5bca64iNPcHAtOno+bl9zkWMxQkvHIFtsoqdI8H7//9Hz2vvELZf1/BPmzYtvwv3OnpMYOahZ1J5R31XuQnnyDW1o7/iy+wffopBf/4B6GfluAYNRJrURH5N91I1rnnIKkqlqKirT6wO7x0Kb7PP0fJyEDNykJ2OjG6e9A9HqwV5fi//x7D50OxWnFOnoya/csD3IWdg+73E/rhB7zTpqFmZWOtrED3+UnZewo6EFu9Gv/nnyM7nPFZ3HLzsKamEFm6lOjyFaQecACOCeNRMzI2fqeeBqidAa2LoGgSlO4JKXn9LhptaKTpuutwTppE1zPPILuc2EeOpOm22+MLqCrhqiOS1qtd3MmY/QuxL5lO48N3kXP1VSjp6cTaWmm76+7Ecj3vvEPuXy7H/9ln+D/7DMcee1D4wP0Ev/+elhtuTCznfe89ss45B9+0afimTcP9qxPIu/lmFMdmzhaqhaB2Oqz6AuxuKN4D8sZAyiAlwAmbLtQDdTPB3wK2NHBkQvtSgoEC6i7+G/TOMul9/33y/notUlSj+6WXSDnoQLTmZmINjUQbPyHn4otpvv4G8m+9hfCPPxFracG1775EZCfVi2r67tOErpWtuJp/BIsFSVXRmpuRVQvIErGOTtSMdGyjR1MxNpv5n9QlBhrJssT4Q0r67aT+S5TUVDJPP52Ugw7G1KJYCguRbesPCBDAPmI4JU8/RaytDTk1FUtu7gaXD61ejd7ZxdBRmSyd3YmuxQdcKhaZMncXnff8GyV9CCFf3wEKQW8Ub30DqZ01EPVDTx34mqB8PyidAs7MgTpEQVgvS34+eddcQ8bv/4AkS1iKi5Hk/q89kiQx5oBiVv7QhhGLXzctNoWq3dZ+HgYXLCDW1ka0uhprRQWdVCRtZ8WcdkamazgtMWSnE72rC9mVghkOozW34NxzL0Lz5+H/aCquffbGCIfpefkV3CeeiN7WihkO0/3qa2Sddy7dL79CcMYMAAKff4H/888p+ts5qHIAogFoXgj2NBh6GBSMH4CfoLAtKYpMw7LupPLaRZ1MOKR0EGokCJvGNDXaapJnwF49r51xBxVvVttPEAZbT3swEUCyRnudD39XmOziVPY+aQifPbck8V5GnpOc0nXCPJoXwIpPIeqF3NGgWECPD5CJyRkEaoL4v5qOmp+PY8xo0k85Gb2jE622FrWgEEOSABM1NZVYdw+YBqauYwQCSIqKY+w4/NO/RanPRHY6QFFwjBuH85F/I5kmhqYRa21DUlVMTQOLFUmRkVQlvp2oBsEgwblzSM3qhs7lULY3hD3QMDt+n8RdBKu/Bkwo2xdiIVj1OWRWxp9RZFXFjzXig/pZUPMNuEsgexhUfwWuHEgvhbrvIW8UhDyQMzS+bVvKwP4HCtuVkDecuC+whrcjjBYMA2K2+11JLOCndlHys4uuRh9M6v++rCDsMILd0ND7eag6oGwfqDowebn2JdC2LH5ffvhxgA4100GPQsV+ULgHuNI3vK+G2VD9DQTa4vffyvYBx4bX0b0ejO4eoqtX45yyF7G2tg3eK4yuXk3Xk0+R/4cLsblUIoF4vwZJgklHlWGxJoeT+LvCSf09dM3A0x4SISTbkJqZifvk3+DsDe2XXS5iXZ2gyDhGjCDw7XRiTc3IioJzwgQARu5TyLLvWxPtX9UiM2xy3wB8b0coKYQv5NPwNHpIi0SIrlqFqWl0v/Jfss4/H62mhu7/vUrWn/5E89+uS6zjefMNCu66m2h9Ax2PPUbOJRejNTRiBgJ0PPpoYrme11+n/JWXNxiqLey4TN3st39YsDMAZA1OpQRB2Oa0SBhZUVBUC82rPCz5rpmJh5eijMiAryHFpiIp0LCyBzV1bd8lWZaI6foGtiwIgiAIgiAIgiAIgiAIgiAIgjBwRAjJIHCmWbHaFaI/64hoc237/45IWxuyIqOtboiHhfSm53vefJOihx8i7dBDke12bBXJg442RDJNJIsV3yfTEgEkAJgmPW+8Qeohh/QdFNVVB7IC7avg9TPA6P3ZzHwETn0Zqg7a0kMVNpHW3kFkxUo6H3+czLPPov2++9C7u8m+8EKar72W9N/8hu5nnyOyYgW5115D09VXk3LgAXg/mkpwxgxyr76K5muvxTZ8OIbPh/e998i57DJabrwRJd1N6mGH0XLf/WT96Xxa77oLMxIh+4pcjjgom245Fyth3D2rsNaHafjHXaQdfTRaUxOh+fPj+7vmGpy774be1YV/+nRSrnwk6Rgyc6x4nn6cyI+LST/5ZFquv4HMs86k/cEH0Ts7yb74YpqvvRb3r39N1wsvElm2bO2x7L8/WuPHBKZ/lzgWs/f3w/t//0fx44/R/uBDyGlppB1xOC3330/W+efRdvfdxNrbE3XIOvdcIsuWEWtrI7RgoQgh2crUSDsZ+XY87aE+5S7Dg+71JV5Hli1Dq6nBBByj4jNJyVYrtvLyAalXZMUKas/4I44xY5BsVjJ++1saLr0MMxgEwPvuuxTccQfeTz9FsVoI/fgTuZdftsGZ2ISdh/+zz2i69q+J17LbTeYffs//s3ff0XFUZx/HvzPbd6VV75Il9w6uGNN7L8GUEFqAQCgJgSSQ9qaRRgghgTRI6Amhk1BC770abIy7cZFtyepd23feP1aWLCSDsS3tSvp9ztkj7d0pz4yuZqfc+9yNV3yb/EsuYfO3v939WfODD1L6179S+9e/0PbMswC0PPYYvn32ofgP12PPzPz8FXY2wv++Dauf7Snb6yI4/BfgcPeZPLRqJZ4ZM2h+8EEA0g48iJbHHuuZIBrF63f2mc+f62ZMOTT85HqARGKzcITI5s29J4xECK35BHtREdHqagLvvUe0qpqGv/+j12Txjg7ioSA4HBCJ0PLIo2Sfdx62iRM/f5v7s/IpeOi8nvdp+XDEb2DKiWDvuz2SYuJx+OAuWPM8ZJbD2EPgie+Cy0fT0j27E5Bsnbbzgw/x7jWXwMKF+ObPx56RiT0rC1teHs0PP0zhj3/Mlp9fTbwl0YG09X//I+/mO0jLdNHe1DsxoNlax+YfXE7x739PtKkJ56gymu69D2dFOZYF7c8/R3pTM9knHM+CK2dR/UkLsXCcovEZ5I/y79JmO0t3LAGgJNjS03doZPNwXR2x6i0Ely+j4447OfLSH9FIDhYmJdMLySpwsg5wRDoxjIxe1cswwO2MQ9UHsGkhrH468cHbN8HBP4b9v5O4rhEZZIbDgauifIemLRzj5+SrZlO1uhmb3aBwbCZ5ZYn/ncCaNQSXLqXuL38l75vfIFpbh6ugtM8yMrKdBF9+mqYnHqHw6p8TCwRwVnhpf/IpfAfsT82vfkWkshKA1iefJPv888j8ylcIrliBMxqh49XX8B95BLGmpu4EJFt1vvsu4eoF2L1V8MyPwOrqFP36H+DcJ6F4xs7vKEm6aCRCbqGbyqW9y3OL3FiWtduTQ4rsbvHKSjLTon3KcwpdSkAiQ5bb2/e5hNNtw+FOlI+dmUdalpuatS34Ml0UjcvAn9OVILTqQ7jjGIgk7nlh2uDwXyYSgQZaaFmXR+0NN3Uv156fT9Y5Z0M0RmDxIvhwEfaSErAsDLsN0+fD5vWBAZEtW4jU1WNLT8NRUEjNr35FzoUXEKmqApstkRg6I5HUIdrSghWLYXo92DKzMF1ODLsDKx4j1thIPBAEwLbXHnhf6UqUesQv4a2/JJ5FTD8VmtYnOjrbnHDYz+CNGxLT5U6Esx6GzDJY+gg89s2eHZVZDlNOgKe+l0hKMm0B/OdCOOAqePXaxL6Y8ZXd9JeSoaC//KE2u4nLafX9QIY1WyxMZq6LtsZgr/L0TD0DkGFgw5vwwFk91+vONPjy3X2f569/C57oet4x4Si4/6yec4a3/5KYZ+Ix21/PpoVw3xnQXts1z03wpZtgxhnbnSWwZAnVP/ghkU2JQS9an3qK7PPOxVZainM7z1MiGzfS+c47GEuWcNhl/0ejq4RozKBkaiFF4/ufx+G24XDZiIR6t/fo77xKBk4sECC8bh2YJobDgRUOY4XDdL79DvV//nP3dC0PP0zZrbfgnjiRgtF+FlyVuI9vGFA0NrN3gj3A5XVgGPS5L+zJz8SqjBAPRGh97HHSDjqIyJYtBN57j6zTv0zjHXf0Wk68o5PwurW0vfhiou1BbR2GzUbr44/3nq61lcDSZUpCMkzZ48F+24c5Qq1JikhEkiEcDOBwJe6Bv3b/KtKyXMw5poK3KhMJuzM8DmwWROrCWNvkwbKbBtGokpCIiIiIiIiIiIiIiEhyqGV0EvhzPex/eu9EBJPmF5FTnIQR8QwDwzBpf/GF7gQkQCJZyAMPYO1CNn3DNLD6eRBmRaO9W2xAonFyPArv39aTgAQSox5/8uJOxyA7L97cQPP99wNger1Eq6tJ239/Wp94AgB7YQGhVavw7LknHa+/AZaFe+pUOt96C3txMaGuEYDS9t+f1v/9D8PtJtbeTryjg/Qjj+zu3G44HMTq60k/5BCabr+VyM++weimN3H98msYbz5D27PPAeAcM5rAokU4x40jsPgjiMXwzp1L23PPYXV2ktW6moycnk7kDpeN6bO8dL76Cv4jjuhen+nzEa2qwrfffrQ++WRi2uIiQitW4J4+nY4330psy/RpdLzxJvbCQkJr13UnIAEwnE6CS5YQb2/Hf+QRND/wYHf5tglIAJoeeID0o47q2ql6MLy72euWMHs/Nw5XT2ffzHwPmQ0rsYK9G/daVjzRiX0QBJYsId7aimfWTMIbKulcvLg7AclWTff8G++UKXhmzKTxrrsIb9w4KLFJckUbG6m98U+9yuItLWBB3qWX0njPv3t9ZoXDtL/xBqF163uVd7z5JuG163ZspXUreycgAXjvH9Cwpt/JrXgcw2b2nAOYZp/zAX+4hvySnl4Vpt1g9vQ4xhvPbJN8zMCyLKxo79HiAIjHeicj6xrluO90cbbthmrt7P9wZyO8+MveZe210LAaGj/ZuWXK4GreAC9fkxit2umDQBM0rgHDlji3/LRt69PWxvCWBXY7VixGtKmpOwHJVi3X/5r9jy9m277PZaPduJa+iRUOE/jwA+LRCOFNmzDcbgynE9PpwDtnDs0PPkiospLc0nSmH1jKjMNHUVCRgWGqI3UqitXWEl6/nrYnnyLW0EDwl9/Fd/2lpF1/MY53noau7+zYE/cx+5DeoxPvdaifjPpnE9cpBZN7L/i166BpB4/NIklkGAb55X5mHDaK6QeVdScgAYisW0e0tg7PlMnEWluJt7eRlRamoLxnFF/TZjBnBgSfTVwbNt55VyLZYjBIYMkSolXV3QlItmq6+9+4xo3tPsZa0SgYJmynL6ZlxWHVMz3HcEj83616erfsA0meeHMzpZ46POk9nS896Q4qCkPENaKjDAFWJEJRfBNef0/nQpfPzoRJ/fQ6FxkiskvSmLRPUa+y/b88gYzcRKIRh8tO6cQsZh9dwaT5RWTkeXsmXP5ET2diSNz//ORF2PwBEd8k6m/5Z6/lRmtrsYJBrGgE97RptL/0EvbMDOxZmdjS0zFMk3DlBjrefY/w5s24SktxFBRA17VV0wMPYsvOwTlqFKbLSXhjJR3vvEO4ckPi/kEsTry9HSsUJtbRDpEIpteLYRoYpkHnwkUw/ojEOcby/0HF/onAPn4okewSIBaGTe9D3qTE+/qVUPMxtFbD8z/tvfOaNyQ6XgO0bARH1755/3aYehI8/7OejtMyIvjatzBtlq9X2dx903DXr09OQJI0VuU6po/pxO7ouQeale8kLz34GXOJDAHtDYnnC72u19th7cu9p9vyMbz2+8Tvx/0RVj3b95zh/Tsh2PsebS9VH/T9Hn31OmjZtN1ZQms+6U5AslXTv+8hsm779+y2PnewOjsJXPt/eH93MRk3fgN/y9rtJhr053rY/8vje5VN2beI7GJfv9PLwIhUVWFFIolnwjYbRCJY4TCNd93Va7poXR3BpYlsqFvvi+15SBl7HFzWJwEJQGaBh7nHj+lVNmt+Os5NyxLZSIyu52amCViJ+1ym2Xtwni5WLA5xC8M0u553Wdt5HqZ7IsOVxxFm/sEZvcomTPXibdSzBJGRJBIM4XC52LS8ibrKNvY6fjROt51AOHH8z/Q6iGDhz/cQC8XpaEkMmmEzDaKD1M5JRERERERERERERETk0zQUS5KMm51PZoGXltoA3gwnuaVpuH2DP/qVAWAaxEOhPp9ZwVDfZCE7KG4YEAziP+LwxEgu2ywn8+STMWyfGh3cMMGK9d/QKNC8UzHIrjGcNqxwOPGm6++3dQShbcuw23sSdGydzm7HCneVGUYi8YNpdjeeMWw2rEh0u8u2QiGscBjD4SDe3t7PssN94g385Vr2+9plhA/an0hDE77OatwfraANoJ+4+9uWXsvetizyqQ70ptmdYMew9d3+bVmRCIbdjuFy4d5jjz6fyy6KxyhsfoJTji+kMVKK4csluziHtj/c3WsyR3k5zoqKQQuru0O8ZYHb3TvJ09ZpwhFwdSXOicV2PrmCDClWLN7vMcyKx8Fhxwr181k4hNnPMKpWrJ/EC/2J9f2Ox7ISnWr64Z4wgfq/3UTmgpNouvvftL/6KtlnnUX93/7WPU37Db/hwB/9gsY6G1HDji9UR/Qv12KceGL3sdBeUIBhGrjGjCbw3vs9KzBNXBMm0PLIo4n1TZ2Ca8IEci++iC0//Vn3ZIbLhZmW1n2MTTvsUJyjRu3YNvfZBxEItfUtj0cTn0nqi0chGkw0bnd4Eu8BqheRdcTZtL/4cq/JPbNnEWtqwj11CobLTaS6mlhDPYHlK8i/4nIiW7b0XUVzC/md6zjpkvE0flKLPdiKc+mLBB9KJAeyQmGMrqQ8ptvd63vfioQhpuP40GFgxePEtzkeb00WZoXC3X/a6KoVTCwLUXLJODo2rSe9KJecyjuxNwUgo7TvcTQWhh09NoukKCsWByuOYXdgGAZW3MKxZR0H7JVH697FRCIW7i2rifzxl93f0VY4jEUin4jRT/KyxHJjxOrrsRcVY8/Oxn/sMbQ89jjZX/0qnpkzCHy4qHta99SpuDKAtf2MBhpoGpDtlkEUjRG79+8css8RdOaMwbIs0lo2YL5RiW3fKcmOTuRzmRUVuJ99joNHZdGZOxbLMkgLVOM3vJ8/s0iKcnsd7LNgLBP2KqCzJUxGvofc0h1MmB5o7FsWagOvC8t09r2vCj3XUp/+ufXjSCSRlNThAJuZ+NwCDKPrnrG9ex4rEklcoxlmV8L1xPIsy8IwDIhbsDW9qWVhBduhIK0nTk9WvzEQak0kwNwqGkpch4Y7+tmeba4Fra7zoHB7IiFJuF33HUYYo7WBsg8ep+iAEwjhwUM7PHYj1gXnJjs0GWRWLEbk2u9z5NevpN1dgI0Ynk2LcVZXABOTHZ7IzouHIdjP9fqnn/FbscT3IIC/DCrf6WeeZugviflW0X6S9oTa+n/msXW1/SRysGIxjM94BucoL8c1aRKhFSsS0weDuGfPxlFWut15DMNg3NwCsop827T3SMflHfz2HiNaLJZoi2AlzvgSz1qNfs9B+xs8Z3vsDht7HlxKyfhM2hqDeKKtuNa8T9tD9+M94ABMp5PMBSfR/N9HyDn3XPzHHkPjv+4m59xzqf3d77qXY7hcuMaOwQAabruNnIsvgrhF5pe+RMOtt/ZM5/XinqJ7IsOVu7SU4o+WctT+Fp1GOi4jiH3hY3hnHJ3s0ERkEEVCQRxuN4te2IjH72TC3EIAQl3fT1leJ5ubA6SX+TEbOvj4lc3MO2EMNtMkGtu5tpsiIiIiIiIiIiIiIiK7qv+hW2TA2R02CkdnMHFeIWWTsvGkOZMSRzwWIxaLk37oYfQa9h3IPOUUDPvO5anxFBZiAeaoUZT86UZ8Bx2Ib999Kf7jH/DOn99fIGD3wYwz+3424cidikF2jaN0NNnnngUkOqKZGRm0v/Ya/qMTjSFirW3Yi4sJLFqEb7/9AAhvqMQ9ZQqRykrckyeBYdC5cCFpBx6I1dmJLSsbHA7aXnyJjBNOSKzIMDB9PtpeeomM448HIB4MYcvNpfOdd0g/NDECZbS2DueYMYRWrsQ7exYAwWXL8c6dm1hOLEbgHzfgfuxmspY8ReB3PwHLwnC7aXv+eTK+9KXEtkRj2DIz6Xj9dfxHHdm1La04SkoILF6Mb999E9uyfj3uaVOJbNqEe+KEXv8fViCAZ8/pGA4HbS++SMaJJ/balm1lnnoKlmFQ/s+78EyevLv+PLJVVgXkjiP7jcsY986JjH3tcDxrniDngq+R841v4Jk5g6yzz6b417/CisUGrQGXe9o0DJeL0Jo12FxOPDNnwqeOp5mnnUrHm28RWr2ajBNPxFlWNiixSXI58nLJ/fqFvcoMlwvT5aLhT38m87TTes9gmqTtvz+Gq/d5gnPSJFxjeo/Ctl054yHjU8k7Rs2H7P7nd44aRfE1v8E5bhy5l1+Oa8IEDJ+Xwl/9Cu9ee+E/7jjyv30FrFhEPlWkPfF3nEvfovD73ye8eRPe+XtTfP3vcU8YT7S2DntuHoW/+iXe/fYj7dBDKb7+91ixOJ6ZM8j5xqUUX399ojPykUdSfN11ePfai/Sjj6bkj3/AioTxzJxB/uUXUXDVVcQ7OojU7sQIwukFsPclvctsDsgoSxxHJPVljoLpp0HzRqhfA97sRIcwK4530x2U/v5n+A44AN+BB1D4619jz8sjHgySff752IuL8M6eha2ggJzzziMeDOKeNAnjU8l9Mk87lfCqFaRHaikKriZ+9aXdCUgwTTx7Jc45HKWlhDdtJB4MEQ8GCa5Yif+EE3GW72SSHBl0tuwsnOXl3eeC3ex2PDNnYPm8pB91FCU33ogz3UXpf6czMXwPxfF3cX10G4zaB9rqoGpx7/mnfAkyywdtO0QGgrN8FPbcXDo/+ADT68P0+QitXYejqZqs9W9TYm0kdN2PiW2p7p4n64wziFRuxHS5cJSV4SgrxZad3Wu5GSeeSDwSwVlWiq2wEGd5BVlnfIVofT3ZXz2X7PPOTZwbXHQhxT+4EHukuv97AZOOG+hdIAPMWVRIxkknEfjzNRg/vxDz6q/T+adrSJs/H+zJuTcm8kW4zTjpRxxOerqB97GbyfroSXImleCbpHNBGdo8aU7KJmUzcV4hhaMzsDtsnz8TwJQT+5aNPxyyynHUv0n2mb3vc5jp6RhuN9jthDdU4pk5k1hrK7G29kSidNOGa/x4PDNmYMvIILjmE6KNTYmEJJZF5kknEVq/gXBXYknXuHF4Z8/GnpdLPBAgHotjetwYLheGxwNOJ/HOjsS9XdOGb84esPLJRDCTjoV1ryZ+L5kNdSt7Aq3YH6oXJX53pkH+ZPAXw14X9d5WhwfMrn1ld4PZ1fF4+mmw6inY+1JIL9qxfSnDgqOsDKrWE/vFZdh/cQGRX1yBLRbGUbr9juwyPDmKi3FNmkTg2v/DdvUFcPVFRJ97DGe57hvIEOcvgpln9S0fd1jv99mTYNY5id/vOQUm9tPZfsaZkJa7/XUV7gnmp9oqzD4fssdudxbnmDHYsrJ6lWWccDyOkpLtzuOZOJHCn/6E7PPP67o38XXyr/wu7nHjth8b4OjT3kMJSAabo6gIwzQx3K5EQhKPB8tmknnqqb2mM32+RNuFL8DpsVM8PpOJ8wopnpSDp7yY9GOOwXS5cY0bi3PiJHLOP59oczOO8gpyzjsPyzQovPrnePeai/+4Yym69rcYLjeO0lJyv3UZ0fp67MXFOCdOIO+738EzZw4ZC06i/M47cE9UgqrhzD16FDmeTvzP3ILnrcfIO+4I7NOmJTssERlEkVAQ055H5dIGph9Ygs2RaLIbCCeSkGR6HQQjMUynidtt4+NXNhMNx7DbTKKxGNZODiInIiIiIiIiIiIiIiKyK4zh+pBizpw51vvvv5/sMIaEzvXrIRgiumE9zQ88gBWJkHnqqXjmz8eZ+xkNf3ZAcM0amh58EP+pp0IwiBGO4J01s/+J69dDqBE2L4SFd4DdA/MvhbGHg8e/S3EMIOPzJ/liUqnuRjetpe2VV2h55mUyTzmZznfexnB5cI0fR+sTT5J50kkEly8l1t6Bb+4cWv73JOmHH06kajPhDRtIP/xwWv/3P7x7740V6KRz0WIyTzyR1mefwTV+Ijavm/bX3iBzwUm0v/EGtswsnGUltD37HBkLFhBY9CFWNIZnzz1oefx/ZBx7LOH164nU1JB+wAG0PPYYaQcdRKypkfbXXsc7ZyYZB0zD9GXQ9t4y2t9cmFj2iy9gLynFnpND2wsvknnqyQTeeQecbtwTx9PyxFNkfOlEgsuWEW9vxzt3L1qfeIL0ww8jWl1FaH3PtsSDQXJOOQaPfSXhjH1pvO+/OMdPxObz0f7qa2SesoD2198gvHYdmccfSdrBB+Mo28FEAYNrt9ddSFL9rVoMTevhnZsSI6PPPIdg+nwCm2pwT5pEcPFHuCoq8M7Yc9BCsiyLwKLFNP3737inTQV/Bs7MDJoeeJB4SwsZJ56I4fdjBQPEW1tJP+IInMXFgxbfMDCkj73RxkbaX32Vpvvuw1FYhG+f+UQqN+I/9ljiBoSXL6f54f9gejxknv5lzPx8HGlptD75JO0vvYRv3/3IOPGEHU9CAlCzFN6+GTa8nuhkM+tcyP3sBrSQGCEQwLAlOtTEo1HMroQ6ViyGYbP1/RmPY5iJRjPRUAhsNmym2d0wZts/3tbl9lpnIABNqzHeuwWa1mLteRbx7Gm0vvkxdX/+C8Tj5F56Cf7jj8f+qcbEn6mtBj5+CBbeCWkFMPvcRCej7NE7voxdN6TrbtI1bYBF94I7HVwZkJYP798BDSth/FFY44/E8hZg2k2smmVErExa319L07/+jS3dR8FlF+AZm4v5yXNYE46jY2OA5vsfIFJTi//oo3BWVGB6vUSamjAdDuKtrTQ//DCm10fmggUYaT4Mm53IxkoMpxMwiDU2YDicuGfPxvsFGzEPQcOq/gZWrSRW30Bo1SrannkWW3Y2mV8+DVthIbGWFuzZ2QQ+WojfWIzdY0DpXFjzPJTPT1ynuNKgvRZWPAF1y2HqAph1thIbpaZhVXcHQ8eiRUQ3bSa4cmVXBw0DMz0dKx7HiidGD2595FGi9XVkfOkkbIUFxFtaMDMzMe12QmvX4Swppu2ZZwit+STRWX+PAuLBGLV3PEJw+UoyTj2ZrJOOx+E3MRtWY21ZDqP2wmhcA4HmRKcmmwtaKmHJg+DwwgFXwuiDwOFO7g4aXMOy/nauXEl42TKaH3oY0+sl8/Qv454wQYkZh5dhWXe3Ci//gOa3PiT9oIOJNzYSb9xC2tzZGFlKNDAMDOu6OyAigUQij1eug2gApp0CrnSIR8HmIGIvou2jGlr+9xSOsjLSDzkYnE6i1dVENm1OJAw2AIuunxZWNIoViSQ6lDqdGC4Xzf/5L96ZM7Dl5GDYHRimiYWVuG9hWRg2O4bTkfjpcmI4HFjxOERjWJEIViyKI9uLN/w+xvJHYN7FEGxO3COYeAyMOxxeuBqsOOzzLQi3w5s3Qv5U2PcKKJ2d2N6WzYl7Cx/8E3LGwYyzEtN5smDqSYlr1Ip9ABO8uTDtpETyksGh+psCrGiUzsWLaXv6GQIffoB37l6kHXYovtmzkx1aKhu2dbfzgw9of+llOt56E/e06fiPPQbf1sT6MlwM2/r7mbZ8DBvfSnzvbX2eX7YPZHzqfHjTQvjkBVjyAJzwV2iuhHf+BtEwzL0ASveCwqnbX08smpj/zT9Dew3MOAMmnQC5209CAtDx9ju0PPoIodVrSDvkYNL22RfP5zwjDHy8lOD6dbinTiWweDHeSZNwTxrW93uHTd0NbdhAtK4Oy2bDcLowYlGscJjAhx/S9tzzOMvKyDztVHzz5u3yurZ9Zrb1dwAj2ITVXA3RTgxHOlF/GVYgSPMD99N49z1458wh6+wzcOfbsX14K9jcifqcPwXDnbbLcY0wQ7LuRmpqaH7mGXz77IsV6CRaWUnawYdg83oGdL2Scgaijc7wbPQ5DD1w9Q9paxlLKDiWc3+7L15/IiH3nW+s4+ePL+Psvcv519sbOGxyAeu2tLFgncVh503h8uffpb12Cy9dew4Od9KejQxI+zIREREREREREREREUl9SkIiAIQrK4l0dGDPy8MwTUzTxJ6ZuUvLjLW0UPn1rxNc/FF3menzUvHQQ7hGb6fDb6A90UA5UJ9otJS5/VGJUsSQbOTwRcXbmzBciQYQVrATMz2beHsLht0BdjtWoB0zLQsrGgXDwDAN4h0tmL4MrFAAiGO40xPLcadBLIoVC2P6Mom3NWK4vYllhwKYaVnE25sxHE4w7VjBxLLjgdauRuQ+4qEQpsuF1dkGgOH2Ee9oIbSpms433yLe3o7vwANxjS7D9KZDPIYVCWGmZfa7LeGNG6j68c+IbtmCs6yM0Jo1ePffn4Jvfwt7ZlZiW7x+rEgIrBiGOx2CLeDwYcUiWNHtb0sKGz5JSCDR4aG1BogTjXup/PqlhJYv7/7Y9PsZ/dCDOEcN7sjEViyGFYthOp0E166F9HRMyyLa0oKrvBzDsjBdrkGNaZgYFsfeeDicaKgYjSY61RgGViRCYP0G7Gk+LNPEau/APbYn2cjW499OiUUg3AEuP3QlCUlpLZsh3Al542l99lk2f+vyXh8XX/97Mo499osvt7MRLCvRQWjw98OwqLtJF2hONKmLBRM/o0HABibgywOHm1hHB1VXXkn7Sy93z2Y4HFQ8cC/ucWPBMCHSSdyRRryjPdFCz27HjEfA4SFcV0dk/Xrizc04x4zBXrJ1RCobREOJpDouL1YkgsOfssnydrdhV38tyyK0eXPivNIwCG3eTONvryXw4Yfd0xT85P/IPv7wRGdE4mB3QjQEjjTA6torBrgzEqOrSyoadnV3MMRjMaItLdjsFobDiRWLg2EjHo0Rtyzi1dWEPlmL4fHgHj820SE4HgGHGyscBMOOYTMgFsPm8RDeXMmGs84nWlfXvQ5HSQnl/7wdR4Y3cSy34mDYweXtmsIAK5ood/jA6e0/2OFtWNbftldfJRKNkTZ9GpZpo+3RR3GWFOM/8sikxiW71bCsu5DoXF7z22tpuvvunkLTpPzee/HuuUfyApPdZdjW3QEX7kicJ2Mkrre27smux0/xmNGVnNTC5nQSD4cT58+GiWVFCVfV0XT33VixOFYshs3nJePYYwmtWUO0rg7fPvvgGluB4fRgmSaGZWHFI4nOyTZX4lzCdCbKDBPDtEEsDA4PWFFM4hgef+I+gxVLJEr59H2SUHsiWFdXR9BAc2J+ez/3YYItYHcnPtv6OyTisLsTP90ZA7e/+6f6mwIiW7ZQf8utZF9ycSJhr2XRfNc/yT73qzgKCpIdXqoalnU31t5O/a234f/yaRimScQw6LjlVrK+cvoXSy4tqW5Y1t8d1rAOTAdklX72dPWrEtf1GSWJRNNW/IslBw+2Jr7D/YU7NHm4spJIejq2cJhoJIInPR1bxva/l8NV1aw/7TRi9fXdZY7SUsrvvQdHXt6Oxzm0DLu6G2lrI7RiBdH29kQCGacTm82GLT0ds5+E+AOiowEineBMp/G/j1Pzy9/0+rjs738jbcZEcKal8iA8qW5I1t2GO+6k9tpre5WNuuMOfPP3HtD1SspREpIR7J/fu5zOjiMpmVTC8Zf1JEe76eVPuPbpFXzrkHH86cU1zB+TQ3sowmk1NtJzPNwaqqKxuopnfnYS6dm7NpDcLtADUBERERERERERERGREcqe7AAk+SJbatj0rcsJrVjRXZb3nW+Tc8EFGLvQOTdSVdUrAQlAvKOT8Pr1209C4ulq4OvL3On1yu63bTINo2vUaTOtp7GWkZ7d9ZmjZ56tZZ60PmU4nBh4e5f1WnbmNmWJz01vz/q2dsA3vOndZeHNNVSedQ7xjg4A6m/+O2W33kLavvsmpu1KPNLftoTXbSDwzjsARDZsAKD1wQfJPv3L2LNze7bFts0h05OI0bA7MFzb3xYZJA4P5FQAEPn4414JSADira2E168f9CQkhs2GYbMRXLmSDWedTbytresDg7K//520A/Yf1HgktZjOxOg2xjaNHzsXLqTy/K9BPJ74zOul/O5/4ZkyJTHPriStsTm6j11DQkZPIrKWx//X5+Pmhx7Cf8wxGF+00783+/OnkdS2A/U4WlPTKwEJgBWJEF6/EffkrtE17U5MwMzovbzAkiVsOPscrGAwUWCzMequO3HOmdM1hW+bWDRK3VAW3rCBjV89l2hNTXdZ7mWXEVq7lnhLCwDNDzxExkkLsHlHZPIDGcFMmw1ndt/vTBvQuWgRlWefgxWJJAodDsrvugvvrJmJ9+6+x8bIloZeCUgAIps3E9lSh6NEo8KPNLH6emp+/BNqtp7zejwU/PAHWPH4Lt2HEhkM0bo6mh9+uHdhPE54zRolIZGRzelLvLbj00d309X7/LrzzUdpeeDB7vf537uKynPPwwqHAai/6WbK/3kX3lmztplr23sk/V2b9RPPtknNPn2fxPWpUeg/69pz2wQj2/6+NWFJf4lLZESI1NQQq61l7X499319++5DZMsWJSEZYSJbthDdtIn1Bx/SXeaZPZtIba2SkMjwkbODiURyJ/T8nlX+xdfj9ideOyBSU8Omb15GaNWq7rK8K79Lzvnnb/d6M1JZ2SsBCUBk0yYiGzcO5yQkw0546VI2bvN8zfR5GfWvf+Hoer42KHw5QA6xzk6a73+oz8ftb7xN2oEHD148khKiLS00339/n/KOd99VEhKRESTY6SMWczF1T2DTwsR3RkYZwUgMgAxvou1IeyiK3WYyaX4R7z6+DnO0iWUYhDs7Qc0cRERERERERERERERkkKllvxBatapXAhKA+r/+jcimTbu0XMPjweins7SZltbP1CI7x7IsQpWVtL38cncCkq4PaLj578S3diD+DP3VScPpxFTH4iHJ9Hp7JcTpLk/isafjnXd7EpAAWBZ1N91ErLMzaTFJ6omHwzTcemt3A0kAq7OTjldeTWJU/bNiMYJr1tDx1luE1q7F2ibmgeAcXdGnzDVmzBdPQCIjhuH2YPYzuqWZnkhgFmtrI/DRR3S89x6R2tpe07Q++1xPAhKAWIymf/4LKxYb0Jhl8AWXLeuVgASg+cEH8R9xRPd7Z3k5Zj/nFSIjWcsjj/QkIAGIRGh+uKdjRXjDBjreepvgylXEu6br91zcNDF92++sLMOTFYnQ8uSTvc95AwHC69YpAYkMCYbbjb2fTuRbzzNFZOfYs3p60jhGjSK4YmV3AhIAolGa7uvbcU8k1VjBIG3PPderrOONN4m3d2xnDhmu4m1ttD7xRK+ywMKFWHomIDKgQitW9kpAAlD/l78S2bx5u/OYaf3cm9A9iyElHg7TcEvv52vxjk46XnttwNcdqamh4913CXz8cfdzX9PhwNHPwBiO4uIBj0dSj+ly4Sgt6VPuKMhPQjQikhSRANMcazkr91LGvHgA3HoI3Lgn/HEawU9ex2k38DoTA9e0BSM4TJOJexeCAbGQSRyTYIeuKUVEREREREREREREZPCpdb8Qj4T7lFnhMOsa1rC8YflOL9fMzCTn6xf2Kks/8ghc48fv9DIlNVmWxdL6pfxr2b+4d/m9rGxcOWjrbn/5ZSrP/xrR6uo+n8VaWnaow7Br7Fj8J5zQqyzviitwlu/EaFySdM5Ro8i59JJeZenHHIMtiX9Pq6O9T1m8pQXUoV22YcXixFpa+5TH2vqWDZTGYCMvV77MzYtv5vkNz1PbWdtnGisapfWJJ1h/0gIqzzufdSctoO3557Esa8Diyjj6aEx/z0iHps9HxoIFA7Y+GfqcxUUU/PAHvcp8++yDe9JEIrW1bPnlr1h/2pepPPscNpx9DsFVq6jtrOWNTW8QbKrrs7xoc3OvBswyPFihvtdB8Y4ODLcbAMPlIvvcc/tNbta9jG3Og+9Zfs+gngeLDKQNLRv47+r/cuuSW3l/y/sEoz3JmWLNLX2mjzU1A9D+1lusW3Ayleedx7oFC2i+917igQDO0aPJ+uo5vebJueACnKN3cNRkGTaseJx4ez/XR+FIP1OLpB57VhZ5374Ctkma45owAdcE3e+UkSUYDfL+lve5dcmt/Hf1f1nfsn6XlueZsSeOigoATLe7d7LpLrHmpgG99yCyW9jt/ZfbbIMbhySdYXdAf8cs23bqiIjsFvFw/+0erGh0u/M4ysvJ/PJpvcqyz/1q97mJpD4rFifW3NynPLbtABEDILh8eeI5wzlfZf0pp1J73e+JNjRgOBzkfO38XgP22PPzSNtv3wGNpynYxCsbX+HmxTfz7Ppnqemo+fyZZMCZbjeZn3rOYC8sxL3HHkmMSkQGzYa3sP66N/tkPEXA8hPb71fwlfvg+BuhcDqBjYvxxtrxNCWeL7aHothtBv4cD6UTswh3WFiGQbhTSUhERERERERERERERGTwqaWT4Bo7DjMjI9EhvovtqEP47aY7WLJ0BbcfdTvTc6d/4eWGli6l4623yfv2FcQ7A4nGw9EohtO5O8OXFLCobhHnP3M+0XiiAZfH7uHOI+9kSu6UAV1veNMmqr73feJtbTjLRoFh9GrUmX3eedh2YJQqW0YGBd+7Cv9xxxKtqcE5qhz31CkYahg8JEVragh8tKTXsSe4ehWNG1dTlJOTlJi8e+8Nf/5Lrw7sOeefj00jJcs2bB432V/9KlVXXtmrPO3ggwdl/cFokJsX38y9K+7tLju64mh+Mv8npDt76mpo/Xqq/u/HEEl0FLVCIap+8ENGT5iAa4Aa5bonT6bi3nsILl+OZVl4Jk/GNW7cgKxLhg//UUfhLCsjvG49tuxs3FOnYM/NpfWZZ2l97LHu6SIbNtBw+x088KVsbl/5T26f/23SHuq9rOyzzvzMRBQyNLknTcRwOnuNsJ552mnY8vPIvfRSDIcD0+f9zGUsrlvM+c+cTySeOCZ67B7uOPIOpuZOHdDYRQbSxraNXPT8RWxu7xkl+PoDr+eIiiMAyFhwEm1PP91rnszTTiVSU0P197/f02k4FqPmN9fgmTkTz/Tp5F5yCWkHHECkqgpnSSnuqVMwt+mMISOD6XKRceKJBBct7lXumTM7SRGJfDHR5haaH3mUvMu/hRUMgd1OrLmJ9qrKAbseEklFr29+nW+//O3u98Vpxdxy+C2M8vcd8X1HOMvLGXXrLXQu/IDI+vU4Ksppf+GFXtNknf4VDMPYpbhFBpw/HdfkyYSW9yT4d1RUYMvKTF5MkhRmZgaemTMJfPhhd5m9qAiyM5IYlcjw5xo/DtPvJ97ak9w948QTcRQXb3eeaE0N0aZm8q64nHggiOlx0/nxx0Srq7HpHH9IsHncZJ93LlVXXtVTaBikHXjQgK0zFghQd8ONRGt6En0033sv6QcfRNoBB+CdOZOK++8juGIFhtOJe8qUAb1mDMfC3P7x7dy59M7usoPLDuaX+/6SDJe+e5KppbORxtdeJPcbl2KFI2AzsYJBwhs34pkysO1pRCTJFt4FT3yXiLuIJxt/AWE3B7YcQtZhXcmMZ59L550v4F1dg/uN64DLaQtGsdsSyY8nzS/CemALccNFSElIREREREREREREREQkCZSERHBVlFN++2003HEnwaUfEz5sPq/v4eK9qlcAeHzN4zuVhCRaVU3g/fcJvP9+d5nhdJJ18gJs3s/uzCdDR9yKc9/y+7oTkAAEogGer3x+wJOQROsbiHeNYNT8n/+Q//3v0fbsc8Q7Osg+7zzSDjpwh5dlz80l/YADBipUGUTRhgY6XnqJjpde6lUeOXA6OdNn4bQNfiIkz7RplN12Kw1//zuxxiayz/0qaYccMuhxSOpLO2B/in9/HQ233Y7p85F70UV49txzUNa9oXUD9624r1fZU+uf4swpZ7JnXk8Msbq67gQkW1mdncQaGmAAG1C6xo7FNXbsgC1fhh/T7cY7ezbe2b07NYdWrewzbefbbxM8eD4AN4Sf4nvXXoXv3mcww1FyLrwA3/z5gxKzDC7XpEmMuvMO6v9xC5GNG0k78ABijQ003nZbzzSTJ+GeOLHf+S3L4t4V93YnIIGe82AlIZGhbFn9sl4JSAD+sPAPzCmYQ7YnG++cOZT+9S/U/+MWiMfJ+fqFePfai8iGDURr6/osL1pTA9OnY8/MJG3fgR3xVVKfZVmE13xC7mWX0fbcc5huN+lHHE7bO+/gPvxg3HZ3skMU+UzhpgY6X3qJzk/dc0ibWE5y0p6KDL6mYBPXv399r7Kq9iqWNSzb6SQkAM7SUkIrVlJ90024p08n77vfpe3ZZyEeI/vcc/HO22tXQxcZcG01G0k/7FDcEyYQWLwY97SpuMaPp72uGs92ri1leOpsrMW39944R48m8MEHuCZNwj11Km1VlaRPH5z7vSIjkauiglF33E7D7XcQWraMjBOOx3/CCZ+ZBDVWV0f7s8/S/uyzvcvPO29An3nI7pW2//4UX/e7xPO1tDRyL74Iz4yBO97GW1ro3KYdzFbhjRu7f3dPmoR70qQBi2FbG1o38M9l/+xV9tLGl/ik+RNmFcwalBikfw31m4i/8Bp1mzb1Ks+84HwyjjwySVGJyICyLHjhanj9jzD2UJ6vvYxNwXam2tYRXNnYa9KAMwt3loE7fSqsg1A0jsNMJGAdMzMP20MGVtytJCQiIiIiIiIiIiIiIpIUKZeExDAMG/A+sNmyrOMMw8gG7gcqgPXAaZZlNSUvwuHJPXUqxdf8hrs/uJ27Kh+kpqpnxJbaQO1OLdNe0ndEIe+8eZhZWTsdp6SeuBXvt47UdfbtfLa72XNzsGVmEmtuJrx2LbW/vx7f/PkU/fIX6qg+gtny8rBlZxNr3Obhvc1Gc4aNaDyalCQkhsNB2vz5eGfOxIrFsPl8gx6DDA02v5+M444j7eCDMWw2TPfgdcIMxoJYWH3KQ9FQr/f2/HwMpxMrHO4uM30+7Hl5Ax6jyO7gmjy5T5l7v31YFFgBwEetKzjP/IT9vzqP78y6gowCdRIargzDwDtrFqU33kC0ro6NF19CeM2anglME0dh4Xbnj1vxfs95B+M8WGQgBWKBPmUtoZbuhDs2r5f0Qw/Fu88+YFndSUbjubnYCwuJbtnSM6NhJEb7FuliGAahXD+BW27Dt/feWOEwtX+8AS4/j4x4GDdKQiKpLZbhwz51MtGly3uVh/M0srSMHJF4hNZwa5/yzmjnLi/bXlQIhkFwyRJCK1bg22cfzKwsvPPm6X6aDAnR7HSab7sdR0E+rkmTCK1cRdvzL5B13+3JDk0GWSwrneaHH8Jwe3BPmUJ43Trann2WtH/dlOzQRIY9z9SplPz2GuKBADa//3On1zOP4cGWkUHG8ceTdsghg/J8zZaZiXfvvWl/4YVe5c5R5QO63u0JxULErXi/5ZJcTfYQaXvvCQ/1TkJinzI4CWpEZJBZFjz/M3jjRphzPsEDf8OG779FLLyCtCklxBrDxNrD2NIS7ZYC4RhelwP3oT+AWxPJrRxtm4C5OJw20jNd1DXH6Gzd9XsuIiIiIiIiIiIiIiIiX5SZ7AD6cTmwbSvuHwAvWJY1Hnih670MAMPhoKRoPDWdNb3KvzTuSzu1PM/UqeRcfBGYiWrmKC0l/7vfwebx7GqokkLspp3TJ53ep/yo0UcN+LqdpaUU//46zPR0AAy7nYwTjsdZnpzGPZIanEVFZP32F5hdDQsNl4v4Dy4hUlaA1+FNamym260OE7JDbD7foCYgARiVPopJWb0bvBX7iin39z6mOisqKP7d7zC6vs9Nn4/i31+Hc9TOj3YsMpi8M2aQ+eUvd793TpiA/+wzaIi0dJdF4hHq4i1kZmw/AYUMH6bLhbO0lIL/+xFmRqIDseF0UvSrX+EcM2a789lMG1+e9OU+5UePPnrAYhUZDBMyJ2A3euesPWPyGeR783uV2Tye7gQkAI68PIqv+x22zEwgcY+h8Oc/wzVu3IDHLEOL/ZD9MKdOpP3FF+l4/XVse88iOm9P/M7P7xwmkmzp2QW4v38Z9vyuY6LNBhefRWys7kXJyJHnyeOMSWf0KrMbdiZm7XoCR9e4cRRefTWGw4EViRBYvJjMBSfhyM///JlFUoBjVDnxn15GtLaWtqefJrx5M+bPv42nYvvXljI8+UsqMH/+XWItLYm6sG4d1vcvwaooTXZoIiOC4XDsUAIS0DOP4Wawnq+Zbjd537oMR0VFosAwyD7/PNzTpw34uvtTll7GHrl79CrL8+RR4a9ISjzSoyC9iPWHTcE2cXx3meOEo/HOnJnEqESSy4rHiQeDWNFoskPZvSwLXri6KwHJ1+DYP/DJokbicYiFl5M+IfHcOVLV0T1LIBzD47Dhcbm6y9xb3oO1rwCQW+AjahjUVfZNNCUiIiIiIiIiIiIiIjLQ7J8/yeAxDKMUOBb4NfCdruITgYO6fr8LeBn4/mDHNlLsVbgX1+5/LTd/dDMmJhfteRFzCubs1LJsGRlknn463rl7EQ8EcI0dg2v06N0csaSC+UXz+dW+v+LWJbfiMB1csuclzMzftUYTsfZ2QqvXEGtsxFFWimvsWAybrc90afvtx+j/PEy0pgZbTg7O8nIMMxXzK8lgSt9rHra//5nw5s1Es9LZVGhnVsmeyQ5LJKVlubP47QG/5e5ld/Pa5teYUzCH86efT4GvgHBVNeFP1oBp4ho/nvQjj2D0pInE6uux5+erMa4MKfbcXPK//32yvnwa8VAIZ3k58bY27s26ki0ZTTxvW0271+CsKWeR4daI9iOJZ+pUym66iWhdLfbCQtxTp2LaP/uSeX7RfH6976+5Zcktu+08WCTZJuVM4h+H/4O/Lvor1R3VnDrxVI4fczyGYfQ7fWjdOsLr12OmpeGaMIHRDz9EpLoaW1ZW4vrsc/6PZOTJHzedxp/+AGv9RizDIFCaQ065ktXI0OGdvgeuP19HbFMVlt9H56g8RhVpBGMZOQzD4JQJp+C2u3lg5QMU+Yq4dMalTM6ZvMvLNl0uMhechHf2LKKNTZheD9H6BjoXLcI1bhy2tLTdsAUiA6cgrYDAfvvjvGk0Rm0DRl4u8XHl+HV/YcRx2pykzdkL/nY98epayM4gOLqIUTlKSCOSagybDd9BBzLq9tuI1nbdF5y86+c1MvxYlkVozSdENlZiy8jENWE85f/6F5HKSkyfF2dFxaAPMLBVhiuDX+37K/69/N+8vOllZubP5ILpF1CUVpSUeKRHaXop7dP3wbq6gswt7dg9XmyjK/AVKTGZjDwdb79D41130fHOO1idnRhOJ+7Jk/EfewwZCxYk9Zo/Eo8QiAbw2X3YzL5t0z6XZcGLv4TX/whzzodjfg+Gwcp3tuBxxgjGavGPKyD+diPhqnbcE7IA6IzEyPA4cDt61ul2e+CBs+Frz5Od7SZKnIYqDfgmIiIiIiIiIiIiIiKDL9V6gtwAfA9I36aswLKsagDLsqoNw9CQdwMozZnGMWOOYb/S/QDwO/1EGxsJNq7Bnp2NPTt7h5cVWruOjd/8JpG1awFwlJdT9te/4ho3dkBil+Txu/ycOO5EDi47GAODdFd6n2miLS3E6usx/X4ceXmfubxYezv1N91E4223JwocDkr/dCPpBx/c7/TOsjKcZWW7vB0yfIRefJWaK6+CeGI0kHFXXE7GV+f1miYeDhPZvBnDbsdRUqLkNSLA2Myx/GjvH9EaasXv9OOwOQiuXsPGiy8munkzAM4JEyj9059wVVRARQVWPE64ciNWPIajpATT4UjuRojsAJvXg23KFAACH31E5QUXEm9txQ4sOGB/Cn9xNa6M1GqcG66qxgp0Yi8qwub1JjuclBOpqSHe3o49Px9bet9z0c8TbWqi9rrraPnPfwEw3G7K/n4zvnnzPnM+v8vPCeNO4KCyg7Z7HiwykHa17vfHNEzmFs3lb7l/IxQLkeXO2u60nQsXUnnh17E6OwHwH3MMBT/6Id45O5fMVEaG2Nr1BK/9M56pU8GKY//vWtKuuhIqcpIdmsgOcX2wguYHHsQ5ejTx1lbS3G5sF42GDGeyQxMZNAW+Ar42/WssGL8Al82F17H7rlEMux3X2LGEK1+i8vzzIRIBIPtr55N78cW9znlira1E6+ow09JwFBTsthhEdpYVj5P14VpCHy8FLNr/cScZJ51E/IwzMLcZ2VpGBvebi2l/4UUcJSXEGhvwjxpF/MwKTI86EIqkkngkQst//0twycfY8/OJvvgSnnl7kXniif0OkCFDkxWPE9m0eZeeZXW88QabLrkUq+v8NPOMr5B/+eV4Z8/a3eHulNGZo/nBvB9wyYxLSHem47TpGjVVlNcZtDz9HqbbTWjDBqINDaRd8xucJSXJDk1kUMTa2qj+yU9pe/pp7Hl5ZJxwfOIcuamZzrffpuY311D/t5vIuegiss48A9M5eMevt6vf5vYlt7OwZiHheBiP3cNehXtx2sTT2K9kP0xjB9oRWRa89Gt47XqYfS4ccz2YJi11AarXtFDka6EJ8OXn0pHeTrS2s3vWYDhGod+FZ9skJJMOg3V3wn1n4Cq9hZgRp7PVR1tjkPTs5CS7EhERERERERERERGRkSllelwbhnEcUGtZ1sJdWMbXDcN43zCM9+vq6nZjdCOP3+nH7/TT+cEHrD/zTNYddzzrzzyTzoU7/udpe+657gQkAJENG2h96smBCHfIGy511+/y99vxMrhsGZXnn8/aY49j/Smn0v7a61hdySH6E1q1uicBCUAkQvWPf0Jky5aBCFt2UarV33BlJVt+8tPuBCQAdTfcSOiTT3qm2byZLVdfzdpjj2PtCSfScPvtxFpakhGuJFGq1d1U4TAd5HhycNgSDTBb/vvf7gQkAOFVq2h/5RUAos3NNNx6K2tPOIG1xx7Hll/+inBVVVLiHklUd3efWCBA7Z/+RLy1tbus89XXCC35OIlR9RYPhWj53/9Yv2ABa489jk2XfYvQJ2s/f8YUtbvrrxWN0vbCC6w7+RTWHnscG79+EcFVq77wcoLLlncnIAGwgkG2/Pxqok1NOzT/9s6DZfhItWNvou6/2FP3L/w6wZUrd+s6vA7vZyYgibW2suU313QnIAFoffJJAkuX7tY4ZNelUv21LIvA4o9w5OTQcNttNN5xJ47cHEIrViQ1LklNqVR3t4rW1xPesIFIVRUNN99M67PP4sjOJrjNPQeRVKy7AyXLnbVbE5BsFamupvrHP+lOQALQeNvthFav7n4fXLGCygsuTNxzPvVU2l5+GSsW2+2xjDQjqf4OhODq1XS8/AoNt99Ow+134J6+B8EVKwivHbrX8UNFqtXd8KZNxOobCK1YQcPNN9P++htgdxBcvz7ZoUkKSrX6O9KE16+HSJTO996j4eabCXy0GKujg3BlZbJDS3lDpe72+yxr8xd7lhWpr6f6pz/rTkAC0HzPvbv9ftyuspt2cjw5SkDyOQaz7sZCIYJLltD21FM03Hwz4bVr8R96KIEPPhzQ9YqkisiWLaw/7cu0PfcceVdcwdjnn6Po5z8n98ILKfjeVYz+z8NUPPgA7ilTqL32Wtad+CU63nxz4OOKR/jFW7/gwmcv5JPmTzh90ulcOedKThh7AssblvONF77ByY+dzKubXsWyrM9e2Mu/hVevg1nnwLF/hK4BkFa9m2jj5g4nvnO8GRk48j1EtklC0hmJ4nXacTt6mvC60jLhtH9C0zrca58higEY3csTEREREREREREREREZLCmThATYFzjBMIz1wH3AIYZh3A3UGIZRBND1s3Z7C7As6x+WZc2xLGtOXl7eYMQ8rEU2b2bTN75JZN36xPt169n0jW8S3qYj8mfp/LDvQ/PO997bnSEOG8O57kYbm9h85VWEli5LvK+pYdOllxL6jEa30fr6PmWxhgYliUhRqVZ/Y80txDs6+pRHGxq6f299/H+0PPwfiMexAgHqfn99v8csGd5Sre6mIisS6TcBWeCjxYmfCxdS94c/YgWDEIvR8sADtD711GCHOeKo7u4+8ba2rtGJe4ts2rHz3cEQXL6cqiuvItbcDEDnG29Qe+MNxIPB5Aa2k3Z3/Q2tXs2my75FrOv8MfDhh2z56c+ItbV9oeXE6vs2NA6vW0e8vX2XY5ThIdWOvaHVa9j0rW3q/qJFO1X3d0W8vZ1QPx0tYv1cz0lypVL9tSIRIlVVtDz6KESjWJEIzfc/QKS6OqlxSWpKpbq7Vay1jZb//IfgkiWJ9/X11P7hD8QH8fgrqS8V6+5QE2ttJbbNvbytovWJsmhLC1U/+j+CH32UeF9bx6ZvXtYrCbHsHNXfXRP88ENaHn44kUAnEqHl4YdxFBUTbWpOdmjDXqrV3VhLC4133NGdPClaVUXdDTcQb9ZzLukr1ervSBNraaHuz38msnEjAOF166n/+z+IbZO4Wvo3VOpuv8+ynv5iz7Lira1E+0nCH63TfbChaDDrbnjtWmp+8QuiNTUAhFaupOm++4jHogO6XpFUEKmtZcOZZxGtq6P8zjvIvfgiTJerz3Se6dMZdfttlP3j71ixGJXnf41N3/42ka7/m90eVzzC91/9Pg+uepDzpp7HUyc/xVVzr+KrU7/Kj/f+MU+f8jS/3f+3hGNhvvHCN7jg2QtY2rCd5Ouv/A5e+S3MOAuOu7E7AYllWax8ewvFYzOIBRtxOFw4XG7s+V6itYHuxCaBcBy3w4bbaevZHw4bVOwLR/0WV9NKYoaJ6WhkxVtbPj8hioiIiIiIiIiIiIiIyG6UMklILMv6oWVZpZZlVQCnAy9alnUW8Bjw1a7Jvgo8mqQQR5zw5ipinxr5O9bcTGQHk5D4Dzu0b9nRx+yW2GToiGyp7jPKnxWJdDfk6o+zrLT7wWx32YTx2AsKBiRGGV7shQXYCwt7lRkOB46SEgBibW20PPZYn/k633lnUOITGUoMhwP/0Uf3KU8/8ECAfkchan30UWL9JAISSUX2rCzSDj+sT7lrwvgkRNO/cD8j5LY/93y/SdtGovCGDRCP9yoLLFr0hRsmOkaN6lPm3WcfbDk5uxSfyEAJb1gPsVivssDixUS2DN5IeLbsbNK6zgm21d//k8hWhs1G51tv9Snv1OivMkTEQ0GCn05iF48Ta2zqfwYR2Sn2/Hyc4z91XWaaifvGQHTLFkLLlvX+PBpNXB+IJFHrs8/1KQssXoyzojwJ0UgyxQOBPs9TrWCQeJuSGoikmnhbW5+kgrH6euLtes4xXOyOZ1n2vDzce+7Rp9w5qmyXYpPhL1pdjRWJ9CoLr1uHPSsrSRGJDI54KMSmyy4j2tTEqDtuxzt37ufOk3bAAYx5/DFyL/sm7S++xNqjj6Hh9jv6/A99UVY4TMfb71B/89/Z/Iuf8+1bTuK5Dc9x1fTL+c6c7+C0OXtN7zAdHDvmWB750iP8cK8fsrppNaf/73R++NoPqe3sGjvPsuDla+GlX8OeX4ET/tSrnVvNulZa6gKMnZhFMNaJJy0jsex8L1Y4RqwlDEAgHMXrtOG29yQhcTu6fp97Ae7iaQCUOZ+huaaTmnW6nhARERERERERERERkcGTMklIPsNvgcMNw1gNHN71XgaBLTMDbLZPFdqwZWTu0Py+/fcn8/QvJx6yGQYZJy8g7aC+HZS6hTpg47vw8cNQ+RaENILokNK4Fpb/D1Y+CU2V3cW29HRMn6/P5LbM7TeqcI0dS8n1v8f0+wFwjh5N8W+uwZ6ZudvDlmGitQpWPQtLH8VhNFNywx+7k47YMjMp+dONuMaMAcB0u3FNntxnEc6uz0Wkt/QjDsd//PFgGGCaZJ19Ft695wPgHDuuz/TuKVP7HcHoC2mrgTUvwNL/Qs3SRCMekQFgOBzknH8+3r3nJd47neR99zt4pk/vf4b61bDscVj5NLRsGpQY7dnZfcocFeX9nl+NRLZ+GuracnKwpaXt2AJiUaj+CLerlsKf/R+G1wuAa+oUCn7wfWxd70VSja2fY4MtOxtbevruW0mv7+Nlfb6PTbeb/G9f0d0Bw3C7KfjJj3FPnbr7YpBhx7DZcE+f1qfcPXVKEqIR+eLs2dn9HoMdn0qGKiK7xp6VRfE11+AcPRoA0++n5Prf4xo7NvE+PR1bP/eKB6QjX0cDrH0FPv4PVC2C2K51fpLhzbPnnn3K3FOn4igqSkI0kkz23FwMj6dPuaNA5wwyglhW4v7+0v/CmhehvTbZEfXLXliYeP6xLYcDe0F+cgKS3W53PMuypadTdPXVOLsSmJs+H0XX/hbXxIn9zxBohnWvJ9q+bP4AIqGdCV2GAVtW33sIZlpad1sGkeHIsiy2/PRnBBd/RPFvr9n+c9d+mC4Xed/4BmP+9zjeuXOp/d3vWLdgAZ3vvfeF4whXVlJz3XWsPvAgKs89ly033sAvw4/winsDZ78QY68LbqL2hhuIBwL9zu8wHZwx+QyeWPAEF0y/gGfWP8Px/z2eO5bcRuzJK+Hl3yQSkJz4VzB7t69c8VY1NodJWa6bYKwDb9c9DHt+4rljtLaTWNyiIxzD57LjsPWci7jtXc15DQPXtBMAmOd9hjz3Jpa9UfWF94OIiIiIiIiIiIiIiMjOsic7gP5YlvUy8HLX7w3AocmMZ6Ryjh5N/pXfpfba33WX5X372zjHjN6h+R0FBRT88IdknXUWWIlRYLbbkCMWgQ/ugmd+2FN28I9hn8vA4d6VzZDBsGUJ/PNE6GxIvM8shzMfgrwJOMvKKPzZT6n63ve7J886+2xc4/s29tnKcDrxH3007unTibW24igs7LcDrggATRvggXOgelHivdOH95zHKb//PqK1tdgys3AW9zTyNhwOcs47j45XX+0e2cw5YTy+efOSELxI6nMWF1P0y1+Q8/ULMUwTx6hRmA4HAL595uMcO5bwJ58AYGZkkHX22Rj2XTjFbK2C/14M615JvLe74Kz/QMV+u7opIv1yjR5N6V/+QmTTZgy3C2dZGcanE/EBVH2YON8JtiTe506Er9wLOWMHND73lCmkHXII7S++mChwOCj8yU80Sl4X18SJZCw4iZb//DdRYJoU/fxnO94ReM1zcN8ZmFacTH8Zvj98j3juntjLKrBnZAxc4CK7yDVhAhkLFtDyn/8kCkyTwi9S9z9Pf9/HZ/4HRvf+PnaNG8eoW24hUlWF6fHgGDUK49Mdd0Q+JfO4I2l94kliDYl7CPaSYvz763pMhgZHQQFFP/kBm777A4jHAcg49ghc5eqgKLK7eaZNpfzf/yaypRpbRgbObTrpOYuLKfzZT9n8ne92J0rLPP10XBMm7N4gOhoSzyw+uj/x3jDhtH/C5ON373pk2PAffSQtDz9EtLYOAHtBPhn7TcWIBsHRNyGFDF/O0lIKrrqcLb/oGVsj+6tn4CxXh2MZQda/DncvgFg48X70QXDSTeAvTmZUfbhGjybv8m9Rd8ON3WUF37sKV3l5EqOS3an/Z1lnfeFnWe5Jkyj/5z+JVldjpqXhLCvrf8JgK7z0a3j3Hz1lJ/0d9jx9ZzdBhjDX+HFkffUcmu76Z3dZwU9+jHvc9tvLiAx1jXfeRcujj5L7zW/iP+KInVqGs6yM0ptvov2ll6j51a/ZcPY5eOfvTdYZZ5B24IGYTme/81nhMG0vvkTzAw/Q8eabYLORfsghpJ14PL+1PcsblU9zxczL+coes2n619003Px32p57ntIb/ohr/Ph+l5nuTOfyWZezYNwC/vDONRQ+/WNsHZ00zTqLrOP+nBicbRvhQJSV79Ywfk4+ZmuIjmgzZUUzAHB0JSGJ1HYSKEkMOJHpcfR6ruJx9jyndrsT7Szb4i6Oy7uW+967luBJ43CnOXZqv4qIiIiIiIiIiIiIiHwRKZmERFKD6XCQ+eXT8cycSbS6GntREa4JE7o7Hu/QMlyuHXt43rAGnvtJ77KXfwMTjoSiPb5g5DLoPvhXTwISgOYNsPJJyEs0+k4/6igqxowhsnEjtrw83BMn7tDo9M7S0oGKWIaTjW/3JCABCHfAy9fgOO1fOHL7H03bM20qFQ8+QGj1GkynE9fECRq1WOQzmG437n4a3bgqKhh16y2EVq0iHongGjceV8UuNsyt+rCnwzNANATP/B+c8xh4lBBABoYtLQ3bpO2MWAgQjcCbf+lJQAJQvxLWvTbgSUjsubkU/fKXhM4+i1hrK86Kiu02ghuJ7JmZ5H/ve2SceCKxxkYc5eX9Hq/61bYF/ncFWIkOxEbrRpwvXwZnPwoZfUevFkklibp/FRknnvDF6/6O6O/7+NkfwTmP9/k+tvn92Pz+3bduGfbcDc9RcdWRhDoS9wXcnkYcNU/B1JlJjkxkB4TaSWt9hIprLiTSHMPmteHqfBd702IoHpPs6ESGHXt2Fvbs/hMwph96KBUPPUikshJbTk7invPuPiepWdqTgAQS1w5PfAdKZqdcB2pJDe5MKP/OYYQ60gFweVtwPn8OlD8HRbrOHEmMlvVktP4T928vJtIcwZ7uwNX0IraO9ZCZk+zwRAZeoBme/kFPAhKAdS9D1aKU+w413W6yzj4b77x5RLdswV5cjHvCBIwv0CZCUtvufJZlz8zEnpn52RPVLu+dgATgyaugbG/Irtip9crQZUtLI++b3yT9sMOI1dfjKCvb/ckTRVJI+2uvU3vddaQfcQS5l16yS8syDIP0Qw7BN38+jf+6m6Z772XzZd/C8HrxzZuHa/x4HCUlYBrE6usJLPmYjnfexepoJ56VT/zYs0k/cQE5cyv48Tv/x7MbnuWbM77J1/a4AADvzJlknnIym7//fdafeRZlf/sr3jlzthtPmenijxvXQkcnN+UXc2vL23xn5b2cMemMXklEVry9hWgoxrQDSwm+sp7OaCuZRYnzHzPNgem1E63tpCUQASDT2/ucI9Pbk2DFZU8kOHlyy2S+Uf4mh/p+z7LXpzDrKN2HFBERERERERERERGRgackJPKZbF4P3hkzYMaMgV1RoBni0d5lVhwCTQO7Xtl1sQhULexbXrOk+1fT6cQzbRqeadMGMTAZMZoq+5bVLoNIBzi3P7qkq6ICV0XFwMUlMkI4iopwFBXtvgV21Pcta1gN4XYlIZHkiQZ7ndt0q181KKu352Rjnz9/UNY1FNkzM7HPm/fFZwy1JxKRfFpnP8chkRS003V/R/T3fVyv72PZTTa9g/OTF+k1VuXYQ5MVjcgXE27H2PASns6H6HXHYcK+yYpIZMQynE48U6fimTp14FaybeLtrdprE9cSIv0JNuFcdD19xuTWs66RJ9iCueV9PFve733O0PnNZEUkMrjC7YlBSD4tRe+72Xw+vDOVGHM42+3Psj5Lf+eQodbES0YkW3o6vrlzkx2GyIALrVvH5u98B9f48RRf8xsM09wtyzU9HnK/fiE5559Hxxtv0Pbyy3S+9Tbtr70G0Z62hqH0fOr9e1I/Zg8asqdAh0nggZW8uPjHbPSv5JuTL+eiPS/otWzfPvtQce99bLzgAiq/dgElN95A+kEH9Q1i8wdw/1nQ2Qgn38ap4w7i4zd/xm/f/S3vVr/LL/b9BRmuDKy4xcevbCK/PJ2CCj8r7t6IhUVWVxISwzCw53mJ1HbSvJ0kJFnbJCFxO2wAVIUyiR72a8qf/R6tr/+G2KH/wObYPftXRERERERERERERERke5SEJAksy6KhqoPm6g6cHjs5ZWn4/K5kh5VcmaMgrQDaa3rKPFmQtXMj0MjuF2gLU7+pnWBHhMx8LzklPkybCTYH7HkGbHq/9wwTj01OoDLyjNqbpn1vpDE6CpsZIyf8PumeMHg1mqCMTB0tIRo2tRMOxsgq9JJd7Os18k7Kyx3ft2zqAvDlD34sIlu502GPr8ALP+9dPuaAHV5EJBKjcVMHrQ0BvH4nuaVpuLwaTTOp0gth9IGw7pWeMsMkmD2T+pVNBNrCZOR5yClJw2ZXQz5JfU3VHTRWd2BzmOSWppGW5d75hfX3fTztZH0fy+6x51dozj+GhvhYTNMiJ/oR/pLCZEclsmN8ecTnXkRDfAzNoVzc9hA5TU/iLZye7MhEUlo4GKVhczttjSH82W6yS304XUPg8VTOWDDMRML0rcr3Bf8gdWCVoSdzFNExR1FfcgZtQT8+Vwe5NQ/jzNSzrhEno4xYxUE0lp1NczAHjzNITtMzeLIqkh2ZyODw5Sfu6y++p3d5f/cbUkhbY5CGze3EonGyi3xkFfqSHZKkkEBbmPrN7QTbP9Ve4tNyxoDdBdFQT1neFPCXDF6wklKsuEVDVTvNWzpx+uzklqThHeltxGTYibW1senSb2DY7ZT+9a+Yvt3/HWrY7aQdeCBpBx4IgBWJ0LB8I28/soaNG+NklGQy7cAS9pzop9a2mTc2vck9K+6kM9rJwevOwHpvHO83rGfmEaOwbXP8dpaWUH7vPWy84EI2XfYtSm+8gfRDDulZ8eL74PHLwZcHX3sGivYkF/jLIX/hX8v+xR8X/pHTHj+N6w68Dt/GQpq2dHL416ZgxSxqtqwDoGjchO7FOQq8BD6up6UrCUmGJ/G8OMvroKkzQsE2xwdX1/PJqGGjc9yJ2NYsYvrae6h8ZG9Gndo7oYqIiIiIiIiIiIiIiMjuNgRaeQ4/m1c28fhfFhOPWgCUTs7i0HMm71oHoaEuowS+/G947DKoWw454+CEP4Ma46WEzrYwr963ik8W1gJgmAbHXDyNij3yEhNMPBoaPoH3/gGGDfb7NozeP4kRy0hSY03l0SfiRIIxwEZ20YEc87WxZAylpAsiu0l7U5Dn7lhG1apmAGx2kxO+tSfFE7KSG9gXUTQDvnQTPPOjxCixk45PfK/YlaxBkmz6ydC0Hhb9C2wuOOiHUDpvh2a1LIvV79bw0r9WdJfNOLyMuceOxunWJVnSuNLg6Gvhye/B+lchLZ/gif/mzRfCLH/zw8Q0BhxxwVTGzy5Ibqwin2PL2hYeu3ERkVAMgLxR6Rx14TT8eZ7PmXM7+vs+3vcKfR/LblGXfiiP3bWMYEcEMPDn7MVxF09iCJ2xykhm2qjMOocn/7ECK24BTsbs8VUOzJiAN9mxiaSoaCTGkpc38fYja7vL5i8Yy56HlKV+sr/8KfDlu+F/304kUC/fD469DlzpyY5MUlQ8rYjlpdfw6gPrAQvwMvvw7zPbV4bOpEeYtHw2TPsLT9+2GsuyABcT5pzHfu5ydvIqTWRosTvhgO9CsAVWPpEYfOTIaxL3G1JUc10nT920hMaqDgCcbhsnXDGTggp/kiOTVNDZFua1+1ex5v2u9hIGHH3JdEZvbS+xrZwJcPq98Pi3oGUTlMyB4/4IPg2gMVJtWtnE//6ymHgs0UZs1JRsDvnqZHwZSkQiw4MVjbL5u98lvHEj5XfcjrN0cJIurfqggZfv2UjIGcH1pSY25i7m6calLH9xOcFYEIB5hfP43l7fo8gaxRsPreadR9ey5v1aDjtvCrmlad3LsmdlMeqO26n82gVsuvwKSv/4B9L33xue+h4s+nfifsBpd4Evt3sewzA4Z+o5zMyfyVWvXsVXn/oqc1oOY17RUYybXUC0Mcjm9lX40rPILCymKdjEqqZVrHUtJWJvpKkycUzI8joBuPuCeTy2qIpR2T13GV12GwBRw06wo4P8M26g/jcfUfTxj4jNn4utdM8B388iIiIiIiIiIiIiIjJyqcfbIAt2RHjtgdXdCUgANi1voq6ybWQnIQEomwvnPQkd9eDN7vXgTpKrYVNbdwISSIzU8vI9qzi13J9oGOEvhsOvhrkXgGlCxqjET5EBFo3G+ODZTV0JSBIaq4Ns3hAjozSJgYkkSe361u4EJACxaJw3Hl7DCVfMwOUZIl0dnF6YcQZU7A/RIPhLwamm+ZICMkfBMdfBvt8C0554v4MJr1pqA7x2/6peZYue28jYWfkUjs4YiGhlR+VPhq/cA21bwJlGwxZ3TwISAAteuWclBRUZ+HNG+PWapKxoOMZ7T6zvTkACUFfZRtUnzTufhKTX93EoMVKrvo9lN7Asi6Vv1XUlIElobQixfkUHWWXqjCOpr7M1xCv3r+1KQJKw9qMWph4UZlR2EgMTSWHNNQHeeXRtr7K3H1lL+dQcckrStjNXirDZYdKxUDIbgq3gL1ICEvlMLbWdvPGfyl5lC5+rYsycYvLL1Yl9JGlvDvHy/euxek4ZWPV+A5P3a6d0kk4aZITIGQcn3wqtm8HhIdUf3FWtau5OQAIQDsb48NkNHH7+1NRPnCYDrmFTe3cCEgCr675x/tb2EtsyTRh3KFzwYiIRT1oBePQcYKQKtId59b6V3QlIACqXNVK3oQ3fHkpCIkOfZVls+fWv6Xj1NQqvvhrv3LkDvs5oOMar96/i6aXPsWzaK1Q6V2PVW7ib3EzOmcwpE05hau5UpudOp9xf3j3fUV+fzrrFdbz875U8eM17zDthDDMOH4VpJp732vx+Rt1+G5UXXED9z7+B9zgDW3AL7H8lHPQDsPXf3mJ63nQeOP4BfvLUL3jRepqFGS+w8MV5ZDY6WTX2PczSbB548FDqAnU9M5VAaNEm4HCe23w/52SdwdTiDKYW9/6+8DgT5yBR005ncxPG6LGEjr2d0CNH4fznadgufhqyR+/eHSwiIiIiIiIiIiIiItJFSUgGWSQUpbm2s095oD3Sz9QjkDc78ZKUEmjrWz87mkOJxA9bn3/aHJAzZnADkxEvGo7TsLmjT3lLbSAJ0YgkX2c/x+ummk4iwdjQSUKyVWZZsiMQ6cvuhJyxX3i2UCBKNBzvW65rgNTgSu/uSBj8pLbPx6GOKJFgdLCjEtlhkVCMxqr2PuVtDcFdX7i+j2U3i0fj1G1o61PesLlvHRZJRZFgjPamUJ/y/u6diUhCqCPSqxM+JJJcBzuH0P9NemHiJfI5Qp1RYtG+1//bJmCTkSESjPZ7fqDnwTLiOL2QOz7ZUeyQ5pq+bTjqN7UTCceUhEQItIf7lHU0h3u3l/i09ILES0a0SChOS13f+7T91SmRoajhlltpvvc+ci68gKwvn9Z3AsuCzgYINCXee7raBe7gQA+f1lof4N+3P89/PLewZfI6in3FXDL+Eg4oPYCJWROxm5/dFHb0nnkUjs3g5X+v5K3/fsL6JfUcdu4U/LmJJOw2r5vyC/fEeO0Zoo0mwTk/xXfodz43LlfMy4w3vsT43H1pOWA57215l3fb1mMWwphsH/O8EykPW5QsrydnZS2Bhib+OL2AVWlt/GXxDdy/9C5+dsAvObDswF7L9bsTbTxCppO2hnoASmZP5LU3fs/c+suJ334s5vn/g2y11xMRERERERERERERkd1PSUgGmdfvYtysfFa9W9OrPKvQm6SIRD5fZoEXDGCbxuJlU7LwZWpkFkkut9fBhL0Lee/xdb3Ki8drNCkZmbKK+p5PjJ9TgMfvTEI0IrJVerYLf56H1rqeJFl2h4k/z5PEqKQ/GXkeTNMgHu858c2vSCctS+e9krrcaQ4mzitk4dMbepUXjNZI65J6bA4bE/cuovZTiUgqpucmKSKRL8ab4WLU1Bwqlzb0FBpd985EpF/puW7cPkevJAyedAf+HF0PyfCTnu0mLcvVK2GVw2Xr7tAmI4cvw0XR+EyqVzd3lxkGZObrnEEkVRVPyOTDZyt7lU3auwi3d4gleJcBkVngwzDolVyvbHIWvgw9f5PP5vU7GDszjzULeydAzyr0JSkikd2n/pZbqPvDH/Afeyx53/52zwdtNbDicVjzIlS+2ZOAZKu0AiiZDeMOg8knQFreDq1v3dJarnvsb7xZ+Bhuh4uf7fUzThx3Ig7zi31Xe9KcHPX1aax8Zwuv3reK+371LvufNoFJo6owHv8WZs3HxCceT/VTYTquvp0iWzmZJ5/8mct886HVdLaFOfXSQymoOImlr7zA0/f8gUPS55Hr3EL7y0+DZWEvLsI9eQqBjjB1znHMbavnlLvj3HZ4I9988ZucYM7khyf+kTR/DgAZXechIZuHtsb67vXteeYx/O+XLZxg+xmOO47B+Mq9UDzzC+0HERERERERERERERGRz6MhWwaZzW4y59jRVOyR6Fzh9jk47NzJ5I5KT3JkItuXU5LGUV+fhrerE3vppCz2O2U8DpctyZGJwKS9C5m8bxGGkWjQvd+p4ykcoyQkMjLlj0rnkHMm4fLawYAxM/OYecQobDad8okkk9fv4qgLp5JXnjjnT891c8w39lBn1RSUXZzG0ZdM7062VzQ2g0POnoxLnQ0khRmGweT9ipm4d2HinNhtY/8vj6dwtM6JJTWNmZHLHoeUYpoGdofJvBNGUzIhM9lhiewQh8vGvqeMo2xyFpBIpHDUhdPILU1LcmQiqcuf4+GYS6Z3J2LPKvJxzCV7kJ7tTnJkIrufL9PFURdN7/5e8Od5OPYbeyjxxAjk9Ng58CsTKO46z/VmODnq4unklKjDsUiqKhydwb6njMPhsmGYBlP2LWLCvIJkhyUpIqfEx1EXTe9pLzExi31PHY/DrXGf5LPZHTb2On40FdMTCQXcPgeHnz+F3DLdR5Chy4rFqP3DH6m7/g/4jzuO4mt/iwHwyYtw/9nwxynwxHehZglMOg6O/A0suAUW3Jr4fczBULcCnvgOXD8B/rUAPv4PRIL9ri8WjfPf/7zC11+8gNeKH2ZewTweW/Aop0w45QsnINnKMAwm7V3E6T/Zi7KSEPFHLoNbDyPeXg+n34N5xt2U3nwHvnl7Uf1/P6bqR/9HvLOz32UtfW0zy96oZtYR5RRU+IkFAmy86W8ctKoK9xv3EvjoI3IuvogxTz7BuBdeoOyvf+H9g8+lxu7l9AtO5ISH3uT2sT9jwZpsHo99wII7DuH1f/ySWFsbmZ7E907Ml0VbfU8SEn+OhymnHsXDdb8gHLLg9qNgyUM7tS9ERERERERERERERES2R0/EkyCrwMsRF0ylvSmIw2kjLUuNbSW12ewmY2fmUzA6g0gwii/ThVMNaiRF+HM8HPCVCcw6ohzTbpCe7cYwjGSHJZIUDpedyfsUUzopm2g4Rlq2G4dTCaNEUkHeKD8nXD6DQGsYl9eO1+9KdkjSD9M0qJiey6k/SCccjOLNcOLyKAGJpL6MXA8HnTmROUdXYNoN/DkaaV1SV1qWm31OHsf0g0oxTUjP9mCYuoaToSO7yMfRF02nvTmEw2UnLUvndSKfp2hcJid9dxbBjgjuNAeeNI0YL8NXQYWfE6+YSWd7GLfPjjdd3xMjVU5xGsdeugcdzSEcbhtpmXoeLJLK3D4Hex5axpgZecRjFuk5bmx2JXiXBJvNZMyMPPIr/GovIV9YVqGPIy6YRnuz2ojJ0BdtbKTqyqvoePNNMk89hcIrL8F460/wwV3QtB482TDvYph1DuROgO213bEsqF0OHz8Mi++Dh84DdybscRrMPAuK9gRg45p6fvfEn3nV/yiudDdXz/sFJ0380u5pE9Reh3/RTRwV+huWL8KSzmNY2HQmU1ZNYsaoCC6fj7JbbqH+r3+l/qab6XjzTfK++Q38xx6L6Uk8g1n62mZeuWclo6ZkM2NKjNrr/0DjA/dT3tJKJC2XrAuuIP9bX8F09twHsSyLu0MByjA5amI+Nred/JNP5eqTT+XwV//NT5f/gW/a7+e0q/7DeZPOxueYTNzMoLlmXa/wJ+9TRPUne/Pvt6/htHF/Ju3hr8HKp+Doa8GXu+v7R0RERERERERERERERjw9FU8Sh9NGVoFGu5KhJS3TBajBrKQeu91GZoFGkxTZSqMJi6Qmt9eB26uEFkOBL9OFT+e9MsTYHTonlqHDZjPJzFd9laHL4baTVahb6yJfhCfdiSddyUdkZHCnOXCn6fpfwOm249Q5g8iQYRgG/lwldpXtU3sJ2VkOl9qIydBmhcM03XsvdX+7CUIdlF11Ej7vaowbpoEVg/L94OAfw+TjwbEDbRUMAwqmJF4H/wjWvQIf/hsW3gXv/oNQ5iReiI/hz55KNmW2sm/mgfzqiJ+T69nF5BrxOFS+CYvugSUPQSyEMe0UjEN+TFk4n6rH1vH+k+tZ9Fwl4+YWMH5OPsUXfwPfvvtS85trqP7xT6j5zTXYp82gIZxOc12Iua4OMldsYv3fqsFmo6OsmOWF2ew74TvknrdfrwQkAB9UNrGsI8iVuImsaMQxI7/7s/0OOJP/zjuOq5+5invnv8Wbtbfj6vg+RiRKS90K4vEYpmnr2oUGB505kecCUf714Q84eupzlC+7E+OTF2D+N2DuheDJ3LX9JSIiIiIiIiIiIiIiI5paPYmIiIiIiIiIiIiIiIiIiIiIiIiICFYsRnDZMtqefpLACw/gtNdRdqAXT3oTxsa/QloB7HMZzDwLcsfv9HpilkFr2jxWlRXwXnBPvNWPMK/jY46JrODwVoOWsnnk5k+Ghg1Q6Af7F0hwGotA4zqo+hDWvwprXoC2anD4YNbZMO/i7tizgKO+Po36TW18/MpmVr1bw4o3q7HZTbKLffgO/jGu8ctwLnkdz9KVuEPNlNoNnIV5eGbNwjN7FtasmfzzFz9kfO5sfGU52HP6Jje7992N+Jw2jsnw0/LUOqy4hRWIEmuLYLhMXGV+fn/MTby4+SV+99ZvaAnWsTCQxn7Vq1nytbMoP/ZkvHvthaOsDJvN5PALpvLWf9088fwxlObM5pCsf5P+4q/g9RsTSWGmnAAV+4Erfaf/RiIiIiIiIiIiIiIiMjIpCYmIiIiIiIiIiIiIiIiIiIiIiIiIyFDW8AnhziCBtiDE4kSrN2JFIxCJYMWiWLEIRKOJsngUKxKGQAvBwBbCoUbMzgbswUY8sSbczjA53ii2vROL7nA5WJW5H5UZe7AxfTyRoEX0jTeJxF4lGosQiUeJxWNE4xFi8ThxK04sFices4jFYsSiiffBeJAOWuk022mzNdPsriFsDwLgyfWxMPNMLhw9lz2rPyJ35RPwzI8SARgm+EshqzyRBMWVBs60RLkVTyQdCTRCR30i2UjDJxCPJOZ1Z8Lo/WHqSTDhKHD6uneZFYkTbQoSD0TxBaLMKvExeWYuVWtbqGkN01bbSXODgekoJ+2gifjG+CnfMxdvWiIhSntTIw3Vlbz5j79hYjLBORv/IaN6/VlC0Rivr67nsUVVnDqnlNI5FdTfuZSmB1YlJjCBeNdmum3MnFTKvWPu5PK2t3ljrYs/H53BzcbHlK9ZQsUbFiVBL7lZJeRkFJKeU8iYPVxsXhPi9g/nUWqfyry8jyj86FHsi+/BwiCaMR7yJuLIK4eMMvBkJvaBMy3xe/HM3V8XRURERERERERERERkSFMSEhERERERERERERERERERERERERGRoezWQ3EGmnDu7PwuaHMbVNvtLLfbWev0sMzpZKnLySa7HYxVEFkFjTu4PLPr5egpslk2fIafNCOdHFsmM317MC53HPtNmMfk3EnYTFtiwhlnwNG/hdZq2Pg21CyD5g3QtB6qPoRQG4TbwbLAtCVenizw5kL22ESykbxJUDAVCqaBafYbYriqnbqbFvcqs+W4GTU5mzGZLqItIcIb24g1BKGhExo6aXtvC21d0z5fdTcNoc04DCd7FxxPwZFTcU/N6bW8f765gV8/uZySTA+XHzYeZ7qbwu/PJdYYxExzYHodWJEYoTXNBJY1ElzRQHxRHReSzzt0ULH2IjLtt2KbUsD7RRt5kQDwSdera//umfj18A/iTHk4Tpvpx5fnomPiRDzBMAWhJTjWPwfRYO8dkFYAV67awT+oiIiIiIiIiIiIiIiMFIZlWcmOYUAYhlEHbEh2HF1ygfpkBzEAtF1Qb1nWUbtz5TtRd4fT30HbMnh2e92FpB97U22fp1I8qRQL7Ho8qXDsheG3XweCYuotVeruQErFv/mu0jYlpFr9TcW/i2LaMYMdU6rV3f6k4t9poIyUbd1d2zkU6u+uGsp1YijHDgMb/0iou1sN9XqwI0bSNiaz7qbKflYcqRUD7HgcI+HYmyp/ky9iqMWcjHhHQt2F1KwLimnHbS+uwaq/qbpfdtZw2x4YetuU6sfeobY/P4+2Z/dJ9br7eVKxLqRiTJCacaViG4enScT1RaXa/lU8n29YHXtFRERERERERERERGRoGLZJSFKJYRjvW5Y1J9lx7G7artQw1OL9LNoW2RWpts9TKZ5UigVSL56dlWrbkWrxgGIaiYbj/tU2paZU3AbFtGNSMaZkG0n7ZKRs60jZzt1hKO+roRw7DP34U8VI2I/axpETg+JIvRhSKY5UMBT3xVCLeajFO5Sk4r5VTDsu2XEle/2723DbHhie25RMw21/antkq1Tcd6kYE6RmXKkY085KtW1RPJ8vFWMSEREREREREREREZHhz0x2ACIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIpJcSkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIywg3rJCSGYdxuGEatYRgf7+D0pxmGscwwjKWGYdyzG0P5x25cVirRdqWGoRbvZ9G2yK5ItX2eSvGkUiyQevHsrFTbjlSLBxTTSDQc96+2KTWl4jYoph2TijEl20jaJyNlW0fKdu4OQ3lfDeXYYejHnypGwn7UNg6OVIgBFMe2UiEGSJ04UsFQ3BdDLeahFu9Qkor7VjHtuGTHlez1727DbXtgeG5TMg23/antka1Scd+lYkyQmnGlYkw7K9W2RfF8vlSMSUREREREREREREREhjnDsqxkxzBgDMM4AGgH/mlZ1rTPmXY88ABwiGVZTYZh5FuWVTsYcYqIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiCSTmewABpJlWa8CjduWGYYx1jCMpw3DWGgYxmuGYUzq+uhC4K+WZTV1zasEJCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMiIM6yQk2/EP4DLLsmYDVwJ/6yqfAEwwDOMNwzDeNgzjqKRFKCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMojsyQ5gMBmGkQbsAzxoGMbWYlfXTzswHjgIKAVeMwxjmmVZzYMcpoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyKAaUUlIABNotixrRj+fbQLetiwrAqwzDGMliaQk7w1ifCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIoPOTHYAg8myrFYSCUZOBTAS9uz6+BHg4K7yXGACsDYZcYqIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiAymYZ2ExDCMe4G3gImGYWwyDONrwJnA1wzDWAwsBU7smvwZoMEwjGXAS8BVlmU1JCNuERERERERERERERERERERERERERERERERERERERERERGRwWRYlpW8lRtGGfBPoBCIA/+wLOvGT01zEPAosK6r6D+WZf1iEMMUEREREREREREREREREREREREREREREREREREREREREREZ1uxJXn8U+K5lWR8YhpEOLDQM4znLspZ9arrXLMs6LgnxiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIDHtmMlduWVa1ZVkfdP3eBiwHSpIZk4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyEiT1CQk2zIMowKYCbzTz8fzDcNYbBjGU4ZhTN2R5R111FEWoJdeA/3a7VR39Rqk14BQ/dVrkF67nequXoP02u1Ud/UaxNdup/qr1yC9djvVXb0G8bXbqf7qNUiv3U51V69Beu12qrt6DeJrt1P91WuQXrud6q5eg/ja7VR/9Rqk126nuqvXIL12O9VdvQbxtdup/uo1SK+BkOxt0mvkvERERERERERERERkF9iTHQCAYRhpwMPAFZZltX7q4w+Acsuy2g3DOAZ4BBi/neV8Hfg6wKhRowYuYJHdTHVXhjLVXxmqVHdlqFLdlaFM9VeGKtVdGcpUf2WoUt2VoUp1V4Yy1V8ZqlR3ZShT/ZWhSnVXhirVXRnKVH9FRERERERERERERERksJjJDsAwDAeJBCT/tizrP5/+3LKsVsuy2rt+fxJwGIaR29+yLMv6h2VZcyzLmpOXlzegcYvsTqq7MpSp/spQpborQ5Xqrgxlqr8yVKnuylCm+itDlequDFWquzKUqf7KUKW6K0OZ6q8MVaq7MlSp7spQpvorIiIiIiIiIiIiIiIigyWpSUgMwzCA24DllmX9YTvTFHZNh2EYe5GIuWHwohw+LMsi2BEhFo0nOxQZYoKdEaKRWLLDEEkZ8bhFsD1CPKbjqQxN4UCUSDCa7DBEhqRgZ4RoVOdF0iMWjRPsiGBZVrJDEdlhsVhXvY2r3kry6PgpQ100EiPYGUl2GCIpLRSIEAnr+klGHive9TxO94+li56ziaSeSChGKKDzedk1kXCMkK4LZQfpfEAkOfS/JyIiIiIiIiIiIiIisnPsSV7/vsDZwBLDMBZ1lf0IGAVgWdbNwCnAJYZhRIEAcLql3glfWEtdJ8vfqGbNwlryR6cz87By8kalJzssSXHtTUFWv1/Dster8ee6mXNMBYVjMujKCyQyIjVWd7Dk5U1ULm2kbHIW0w8uJac4LdlhieyQUCDChiUNfPBsJTa7yZxjyimdlI3DaUt2aCIpr7UhyMp3trDy7Wpyin3MOqqCggp/ssOSJKvb2MaHz1VSu66VsbPymbJvERn53mSHJfKZ6je389ELG6la3UzFHrlM3b+YrEJfssOSEaZ2QysfPltJXWUb4/cqYNL8IjJyPckOS2SHbVnXwsKnN9BU3cGk+UVM3KuA9BzVYZGtAm1h1i6uZ/ELlbjTHMw9ZjTFEzKx2ZKaF19kUDTXdPLxq5tZ/1E9xeMz2ePQMnJLdP94pGpvDrLmvVqWvl6VeM52dAWFY/WcTSSZopEYm1c28/6T6wkHo8w4fBSj98jF7XMkOzQZQuKxOFWrm3nvyfUE2sLscXAZY2bk4vW7kh2apKD25iCr39um3Y3OB0QGRVtDgJXv1rDirWqyinzMPqqcwtEZyQ5LRERERERERERERERkyEhqEhLLsl4HPvOpqmVZfwH+MjgRDU/hUIzXH1zD+o/qAWipC7BxWROn/mA2/lx1kJP+WXGLj1/dzMKnNgCJhrObVzZzyvdnk1umBDYyMgXawjx321LqN7UDsPS1AJtXN3PSd2aqUZkMCZuWN/Hc7cu63z/5tyWccMUMyiZlJzEqkdQXi8b54On1LH2tCoCW2gAblzdxyg/mkF2kjvsjVWt9gMf/tIhAW2Kkyw+e2UBjdTuHnz8VpzvZ+T5F+tfeFOTJv31EW0MQgMUvbKRmXSvHfnMP3F51tpHB0VzbyWM3LiLUGQXg/SfW01LbySFnT8au5HgyBDRWdfDYDYuIhBIjqL7z6Fo6W0Lse+p4JVgQ6bJ2UR0v/3tl9/vH/7SIBVfOpnCsOvvI8BbsjPDCXcvZsrYFSDyP27SyiQVXziIty53k6GSwWXGLpa9u5v0nez9nO/n7s8nTczaRpKld38b//rK4+/2Ldy3nsPOmMHFeYRKjkqGmtrKNx25cxNbhk165ZyVW3GL6QaXJDUxSjhW3WPrKZt5XuxuRQRWLxvnw2UqWvLIZSDzb3bxCz3ZFRERERERERERERES+CLWKHgHa6gPdCUi2CrZHaKzuTFJEMhS0t4RY/MLGXmWxaJz6zR1Jikgk+ZprO7sTkHSXbemkuUbHU0l9sVicj17a1Kd8zcLaJEQjMrS0NQZZ9kZ1r7JIKEZjtc6LRrLG6o7uBCRbrf+ooTu5g0gqaq7p7FNHt6xtoaU2kKSIZCRqrOroTkCy1er3a3X8lCGjoaq9OwHJVktfq6K9MZSkiERSS7AzwofPVfYqsyzYvLo5OQGJDKKW2kB3ApKt2hqCun88QnW0hFj8Qu/7sbFonMbN7duZQ0QGw/ol9X3KFr1Q2eccX+SzbFnT0p2AZKtFz1cSaA8nJyBJWe3NIRa/2Pd8oKFK5wMiA6m9KdQ9uMRWkVBM5+IjVGswwsML+7aVERERERERERERERGRz6bhmUcA02aQV57GmBn5RMNxbHaD1voANody0Mj2maaB020nGk40lJm8TxHpOW7CgQhb1raQW5aG3aERimVksdlNyqZkUzwuk2gkjt1hsmVdCza7/hck9RmGQXqum70mjsayLDAM4rE4pmkkOzSRlGfaDOwOs09DdJu97/l005YO6je2E7csckvSyClJG6wwZQC0NwWpq2wj2BEhq9DX6xzY3s/1lGkzMG06rkrqaGsMULuhjUgwSlZhGnZXP+etBtjsqrcyeOwOk/FzC8gq9BKLWjicJhuWNWCqHsoQYXOYTN63iPRsN/GYhd1hsm5Jvc4BRLpYFuxxcCmBtgimzaCtMcjyN6pxenT/TIY/m92gdFIWJROzup/H1VW29Xv/QIY/02ZSOimL/Ap/d32o39Su57MiSeZOczDryHJsDhMrbmHaDOo3t2PqX1O+AIfbxozDynC67cTjFja7SdWaZmw2VSTpzbQZZBV5GbNnHtFI4rlssCOi9gUiA2xrW8mKPfKIReLd9yd0Lj4y/eDhj3hyyRYmFqYzrSQj2eGIiIiIiIiIiIiIiAwZSkIyAmTkeZg4r4jXH1jdXVY8PhN/tjuJUUmq82W4mL9gLC/cuZxJ84to2tLB8jeruz8/4oKpjJ9TkMQIRQafP9dDZoGXdx5b2102Zb8i0nNdSYxKZMeYpsHEeYU8ddOS7kQKnnQHR319epIjE0l9/hwPe584hte2OZ/OLvKSW9o7wUjD5nYeveFDAm0RABwuG1/69kzyK/yDGq/sHu3NIZ67YxlVq5q7y478+jTGzcoHILvYR+HYDLZ80jPK9awjRuHP8wx2qCL9am0I8tTNH1O/sQ0Aw4BjLt2D0TNzWfdhz6i/0w4oIbPAm6wwZQTy57kJBaK8+/i67rL5J40lXfepZIjIzPfSWN3B8jd67pMddOZE1WGRLptWNPLa/T3XTgWj/Uw7sITicZnJC0pkkPhz3OSWpfHOoz33jyfNL9R14gjl9tnJK0vvVR/Gzsrrcz9JRAZX0dhMnrllCR3NiYE47A6Toy+Zjk2Db8gXkFuWzgfPVNJaHwASnd2Pumg6To+aYElvvgwXMw4bxXO3L8OKWwBkF/mYtE9RkiMTGd7Ss91M3reYl+9e2V1WMMbPjMPKkhiVJEtNawiAYCT2OVOKiIiIiIiIiIiIiMi29AR8BOhoCfPeE+t6lVWtbqa1IUBGvjoayfaNnZmHL8NFW2OQFW9V9/rstftXUTQ2k7QsJV+QkaO9KcTHL2/qVbbs9WqmHVCKN13/C5LarLjFqndruhOQAATaIlStaaZ4fGbyAhMZIibOLySjwEvVqmYy8j2UTMjs09F07eK67gQkAJFQjCWvbuaQ8nQMwxjskGUXNWxq65WABOC1+1ZROMZPWqYbr9/F4edPoXp1Mw3VHRSNzaBwTIZGu5SUUVfZ1p2ABMCy4M2H13DsN/Zg3Kx86je2UzDaT9HYDOzqaCODqKM5TOXHDb3K3n9yPWNn5ZGRp/tUkvraGoLUrG3tVfbOY2upmJ6LL1P3BmRk62gO8dp9q3qV1axrZebho8gpUad7Gf7aGkMsfqH3/eMVb21h2oGl+DL0HTHStNQGeP/p9b3KPvmgjhmHjUpOQCICQO2G1u4EJADRSJylr1VRMiELm1339WTHNFV3dCcgAYjHLBY9t4HSiVk4XLrPJj2CnRHef2JddwISgMbqDlpqA+SVpScxMpHhraM51CsZIEDN2lbaGoJkF+n+hIiIiIiIiIiIiIiIyI5QEpIRIBqOEQvHmXZgCW6fA8OAtYvqCXUqu7t8NofLTtnkbFa/V9NdZpgGE+cVkJblprUhgMtrw+HSoURGhnAwiifdyaT5RRimgRW3WPlONaFANNmhiXyueNyiqbqDcbPzySr0gmFQs66FlprOZIcmMiS4PA7Kp+ZQPjVnu9O0NQaZflApLq8dw4BPPqyjaUsH8ZiFza4kJENNqDOGP9fN+LmFAMQiMZa/VU0sHO+exp/jwZ+jEa0lNYU6I3jSHUyaX4RpM8GyWPNBLabNZMLcQibMTXaEMlKFA1Ey8jyMn1uAZSXuWy1/s7pXsjyRVBYORMnI9zB+zjZ1+K1qImHVYZFYJMbEeYXYuhKcrX5vC631QWIx63PmFBkewsFY4hx87577xyveqiYS1P3jkSgcimG3m0w+sBi704ZhwOr3awjreYJIUrU2BCidmEXR+EywLFrqAtRvaicWjSsJieywjpYwRWMzKJ2cjRW3aG8KsXlVI9FwTElIpJdoOEZHS5jJ+xThy3RhmAaVSxsIdUY+f2YR2WnRcIxIOMb0g0pweR0ArF1URyig+3cjme5OiYiIiIiIiIiIiIh8McocMAL4stwceOZE3nl0Le1NIQzTYNoBJWQWanRZ2TFZhV5M0yAet9jr+NGsfq+GFW9t4f0n1zPtgGLmHjcGr9+Z7DBFBpw/182sI0fxzuPriAQTjcjmHltBRp46H0vqs9lN5hxTwftPrmfNwloARk3NZsK8wiRHJjJ8jJuVz4v/XE5HcxjTNJh+cCmF4/xqvD5EZRV7mTivkA+erSQWiePy2dn35HH4sjR6tQwNuaVpzDqinPeeWEc4GMPuNJl/0jg86Y5khyYjXEaBl3FzC/jw2Upi0TjuNAf7nDyW9Gx3skMT2SFZRV7GzS7gg2c3EI9auNMc7HfKeNIydY4g0lIfZPlb1YQ6otgcJrOOGMUnH9QmkqGKjAAZeW5mHj6Kdx9fRySUuH+813Gj8efr/vFI5M9xs8/J43jnsbX8P3v/HSXXed75vt+9K6fuqs4RqdHIGSSYo0iJFCmKkkhKthxGnrHHcWyP7XPHZ8655849d62569yZOZNsyTkH2UqUKAYxZ4AgQOSM7kbn3FVdOe77RwFFNBsgALKB3eH3WasXUW/XrnrW4tvvfvcbnjcdz2M6DbY/uIyqevV7Rey0ams98fEMe5/pBqB+WYhbv7gKt1dLZ+TqNa+uZmIgwd4fd4NVfk6884lOfCGtmZCZ/FUe7v36Wvb8sJvoSAoMWLuridq2gN2hiSxqgbCHe39qLe/+4Gxl3nbTva1EmvRsthTpqBARERERERERERERkU9Gu+GWAKtU4sjrAySmsudfWxx+rZ9sUidryNWpbQ3y6G9sYeXWWib6E0wOJiu/O/LGIMNdMRujE7lxCrkSe35YTkACkM8W2fOjbgo67VgWiNFzcUa6pyuve49OMj2RtjEikcUjk8rz7vfLC9kASiWLgy/34fVr0fGCZcH7z/ZQzJcAyCYL7P5BF5mETiyWhcHtc7L32R5y5/uuhVyJt797mulx3fvFXoVskX3P9VAslNvXTCLP+z/uoXC+vRWZ70pFi33P91AqlM/OzCTyvPejLrJp9RFkaUtMZXjpL46RTZb/For5Eu8/28OdT3VS1xq0OTqRGyObLrLn6S7y2Q/Hj997pptSXuctL0WWZbHv+XOk4+X52FLBYt9z58ilNJ8gYqfEVJbug+OV12O9cQZPx7AstdVy9TKJPKf3jsD5ajM1lKL74HhlrEPkglKxxNn9Y+UEJAAWnNwzrHkGkeusUChx8JW+GfO2h17pJ59VOy0iIiIiIiIiIiIiInK1dJzLEpBJ5BnpnqZ+WYj29TVkknnO7BslPpmxOzRZIAzToH19LdUNfr7/n/ZXyk2nwapt9Vgli1y2iNvjsDFKkesvGc1SyJdYsaWO2tYAk0NJeg5NkIzmiDTptCKZ34r5IucOj1NV52PV9jpKRYuz+0cZOBll452tdocnsuBl4nmmhlOs2dVIqNbL8NkYA6eiJKNZu0OTTygxlcEwDFZuqyPS5Ge8L0Hv0QlS01mCEY/d4YlcUXo6Ry5dINzoZ+XWOgq5Emf2jZCYylLTrI3AYp/EVAaHw2TVtnqq6r2M9EzTf2KK1HSOQLXaV5n/ElMZTLM8Jlbd4GOsN07vsUnVYVnyUtM56peFqGsPEh0pb8IsFS0KuRKGqTNnZWlIRrOUShardzbMuEckY1nCjX67w5MbLDWdIz6ZoW19hMYVVUyPZTh7YJT4VIaGFVV2hyeyZA13xfBXuenY0YDTZdJ9aJxzR8e5+ZEVuH1aPiNXZ2IwgTfgYvVNDbg8Ds4dmaD3+CTZVB5/lZ4L5UOZZJ6+E5Oz1mtFR1Kw2e7oRBavTDzPWG+Cpo5qWjvDJGM5zu4fJT6RgdV2Ryd2Uc45EREREREREREREZFrY9odgFx/noCL277cQXW9jwMv9nLuyAQ7Precqjqf3aHJAhOo9tC6NgKAN+Di9i+vZnIwyfN/fITn//gwEwMJmyMUub781R7ufGI16ekc+547R2Iyy51PrsYfdtsdmsgVOVwONt3TyrKNNRx9Y5CTu4dZs6uJju11docmsih4gg7ufHI1o+fi7Hv+HIbD4NbHO5SsYgELRTzc/sRqpsfT7HvuHJlknru+2okvpPu+LAz+Kjeb7mmleXU1h17t5/TeETbe1aoN8mK7YI2P277cwcRAgn3Pn8MqWtz5ZCe+kMvu0ESuSrDGyx1fWc3UcJJ9z50jny1y91fXqI8gS16paJFNF9j33DliY2lu/8pq3H6nnolkSQlUu2fdI+58ohN/le4RS5Ev6Oaupzqxihb7nj/HxECC27+8mlCN1+7QRJa09vUR1t/Rwum9Ixx6rZ+WzjBb72/HpcM25Bo0LAux5f42uj4Y4+ArfdS3h7jp4RV4/BrbkJm8fhe3PLZq1nqtmlYdcCJyPXmDTu54cjUev5P9L5xj8PQUux5dSXW9+uJLkaHcuCIiIiIiIiIiIiIin4iSkCwBbo+D6bE0Z/aNUipZJKNZdj99Fquk9O5ybRxOk+0PLiNU52Xj3a3sebqLycEkAH1HJ3nxL46RSeZsjlLk+nG5TT54sZeRnmkAxnrjvP9sD06XbqeyMBTzJY68PkA+WySbKvDBT3p12ovIHEnF8rz1T2fKp9dZ0H98ip7D40SadNLxQuX0ONn7427G+8qJ9ka6pznwUh+mQyvVZGGobvATqHZz/O0hivkSmWSe95/tIRHN2h2aLHEOp8HuH5xlcigJFgycinJi9zBOtzZ8ycLgcpvs+VE3EwPlMbGhMzEOvdaPQ30EWcJS01le/ItjDJ+NATDel2DvM9088PPriTRrc50sHYZpzLpHHHlzAI/faXNkYgeH0+T4O4MMnIqCBZNDSfY83YVD8wki9jIM9j3XQyaZp5gvceytQXKZAoap/rxcPcM0eO9H3aSmc5QKFif3DJOMZXE41cbLTKbDYHIwMXO91g/OYpqqKyLXk8PlYPBUlHOHJ7AsmB7P8M73z+p+LyIiIiIiIiIiIiIicg00q7kEpKZznHpvBLfPycptdbSuCWMAsdG03aHJAlTbGuTLv7uDmuYA+WyxUu50mQQjHpIxbWiTxWt6IkNiKkt1g4+OHfVEmvyk43mmxzN2hyZyRcVCqby502WyYnMtyzbUYDoMeg5P2B2ayKIQHUnhcBqs3FpH69oIhgHDZ2NkEnm7Q5NPKD6RIZss4A26WLW9nqaOaqbHM0xP6L4vC0M2nefUeyMANK6sYtX2enwhFwMnp2yOTJa66fEMhVyJSJOfjh31VDf4GO+Nk1D7KgvE9ESWXLpAVZ2Xjh311LQEiA6n1EeQJW16PINhUB4vay4nYsymCjhcJk6XkkzJ0jE9liaXLlC/LETHjnoCYQ/R4RTxSc2bLEXxqQzjfUk8ASerttXTvDpMPlckrvkEEVsNnJzCNA3a1kdYsaUOl8fBiXeHyWUKdocmC8hYbwLDgNa1EVZurcPtdXBy9zDpuA5skZlS0zlO7hnB5XWwcmsdbWsjGKZBbDRld2gii1oqmqX70Dj+KjerttfTuLIKq2QRG1NfXERERERERERERERE5Grp6K0lwOl2sO62Jtw+Jz2HxvEGXNzxRCf+KpfdockCFQx7CdV+ODHbuiZM27oaug6M8drfnmLnw8tpXRfBpQXmssi4vQ52PbqS2FiakZ5pGpaHWLOrCY9Pt1OZ/0zTYMXmWlZsrqPrwBimw+DWL67C5VFbLTIXfCEXm+9rp+fQGJ6Ai9ufWM3xd4Zw6m9swXL7nKy/vRmP30nv0UkCEQ93PtmpE6xlwXC4TOqWhdhwVwv9x6eYGk6yZlcTjSur7A5NljiPz8ktj61iajjJ6Lk4TSurWXdrk+6ZsmB4/E52PrycVCzH0NkYdW1B1t7ShMurOixLl2FA06pqRro/HC9770fdePyag5ClxRNwcsdXVjN4JsrkYJKVW+twuEzc6ucsSS5PeX7WF3Jz7sgE/mo3dz7RiSeocQURO9W1BbntSx10HRgjk8iz7cFlWJaFw6nze+TqVdd5uf2J1XQfHGd6PM3m+9qwShYOt+75MpPT42DNLY34Am56Do3j8jq5/csd+MMeu0MTWdQcbpNtn2mnVLLoOz5JVa2PO55cjS+gcYqlzLIsu0MQEREREREREREREVlQtMppCfAGXIRqfbzz3TOVsqEzMR777W32BSULXqQ5wLrbmzn13jDt62vY/XRX5Xc//oNDPPZb22hfV2NjhCJzzxdy03VgjPH+BADRkRThJj9rb22yOTKRKzNMg6o6Hy/++bFK2Uj3NI/8+hYboxJZPCb6k+x7rqfyeuhMjIf/9Saqan32BSWfSqTJh9vn5MBLfQBMDiUZPB2ldU3Y3sBErpLT6WDTXS088z8Pkc8WAZgaSmFhsXJrPaZp2ByhLFXBiIeT7w0THS6f+BodSVHXHmTjXa02RyZydUI1XgbPxBg6HQXKdXi4K8bqmxrsDUzEJulEjje+fYrRnjhQ/puobvBx79fXEmny2xydyI3l8jjY9/w5Msk8AFPDKTp21hOo0SbTpai6zkcg7GHfc+cAmBwsjyt86Xd22ByZyNIWCHt45W9OwPk9qON9Ce772XVKQiLXxFfl5id/fgyrVK5IEwNJ7nyyU4nHZBav30Vtc5A3/vFUpWz4bJTHfmubfUGJLAG+kJt8rsjRNwaB8tyI+uIiIiIiIiIiIiIiIiLXRisploB0Isfh1/oBcHsdOF0mpZLFeG/C5shkIfP6Xdz+pQ6+9Ds76Ds+OeN3hgHnDo3bFJnI9TM9nma8P4FhlBM8GQZEh1PEJ9J2hyZyRcViiaNvlRfZuLwOXOcXQvYcVHst8mllkjkOvNSHaRp4Ay4wwCpZREdTdocmn0I2VeTomwMAON0mLq+DYr7ExGDS5shErl4ylisnILnQfzUNjrw+QGIyY3dosoQlpjLlBCQX1cvxvgSxMT1XycKQjGUrCUg8ficOp0liKktsVHVYlqbYaJrRc/FKm36hLFTrxe1VHnxZWmKjaTLJPE6XidtbHns7u3+MxGTW5sjEDqnpHEfeKI8ruL0OnG6TUsFiakjjCiJ2Gjg5BVZ5vO9CW3349f5KAleRqzHWG8cqWThcJm5fuc976NV+MsmczZHJfJNN5Tn8enm9lstTnp+1LBjumrY5MpHFLTGZ5fjbQwB4Ak5Mp0E+WyQ2prnbpcwwlJxfRERERERERERERORaaAXoEmCaBuFGH5vubiUZy+Jwmrg8Dtw+ncIin44v5MYbcOEJuiplnTc3Emnyk0sX6PpglMZV1QSqdcqfLA4Op8nqmxqoaQ6QjGYJVHuIjqV1OposCIZhUF3nY9mGWtLxHKZp4PY5K6e0icgnZ5gGa3Y1YBgGqXieQLWb0Z7pSrIfWZhM0yAQ9rDu1mZy6QKlkoUv5NZzlCwoDofJqu311LUFScZy+Kvc5X6AQwstxT6mc3a9TExmVC9lwXA4TBqWh1i1vYFkNIPb68Sy0NiALFmmw2DXoytntOnH3xnC5Va/WZYep9vBri+sJJ8tUiyUCFR7OPb2oPo5S5TpMAg3+Fi1rWHG/KzLo+l5ETt5g64ZbbW/ysPEQBxT3Xm5Bi6vg5sfWUGxYFHIFfFXexjpjlWS8olcYDpMgmEPa3Y1kUt9OM/gDao/IHI9maZB69owrZ0REtEsHr+LYr6o8bslzrK0NkZERERERERERERE5FpoVnMJ8PhdbLqrlef/+AgX5lI8fieP/NoWewOTRcEwDbbe1073gXFaVldTKpZ470fdABx4qY91tzdz15OdlROARBayYI0H02FU6jhAx/Z6ghEl2pH5zzQNOnY28OwfHqJULHcIXB4Hj/yq+gMin1axYDHcNU3/ialK2aZ7WmnpDNsXlHxqgbCHO59YzU/+/Bj5TPkkVNNh8Oivb7U5MpGrV9sewHPYOaP/unxzLU5tChYbVdd58QZcM+vlplr8YT1XycJQ3eBj7a3NvPntU5WyUK2Xtbc22hiViD0K+SKn9o5w8KW+Sln7+hp2fWElkSa/jZGJ2MPtdXDw5T6yqQJQnj958Bc2UFXnszkysYMv5GbHZ1fw/J8cqSSCdvucPPrrGo8VsVPjimqe/eahGW31w7+8GYdLYyVy9Wpbgux5uot0PF8uMOBzv7gJj8/18RfKkuPyONj24DKe/6Mj5LPn5xmcBo/+muYZRK6nUK2XZRtqefs7ZyplkSY/625vtjEqsYuBkoSJiIiIiIiIiIiIiHwSSu++BBRyRQ691s/FydyzqQIj3dP2BSWLSlNHNV/+nR1suKuFs/vHZvzuxDtDREdTNkUmMreSUzlO7RmZUXb2gzES0ZxNEYlcvVLJ4sQ7Q5UEJAD5bJH+k1Mfc5WIXI2pweSMBCQAx94axDC0oGmhGzkXryQgASgVLY68MUCpWLIxKpGrV8iWOPHu0Iyyc4cnmBpK2hSRCCSncxx/e3BG2bkjE8THMzZFJHJtcukCH/zk3Iyy+ESGqSGNf8nSExtNc+jlvhllfccnaeqoxuPXBkxZegbPxCqb2gGsksXxt4ew9Ay5JBULRY68NVBJQALlfsTQmZiNUYnIcPfstvrI6/0UC8WPuUpkpsnBxIcJSAAs2P/COXLpwuUvkiWr/8RUJQEJQKlgcWL3ENbFi7hEZE7FJzO8/2zPjLKp4RTTGoMWERERERERERERERG5ak67A5Drr1S0SMfzrL21iapaLxgG4/1xMsn8lS8WuQqmadDUUT1rkcTKbXXUtYVIxrKk4zl8IbdNEYrMjUK+SDDiYe2tTXD+pIxT7w1TyGthosx/lmWRjGVZe0sTVXXl/sBEf4JULGt3aCILXiFfYs2uRqrrfWAYTA4mOLt/jGJem4wWunQ8R01zgI4d9ZRKUCqWmBhIaHGwLBjFQgnDNNhwezO+kBvTNBg8E6Wg9klsVMxbeIMu1t/egmEamCacfn+UQk7PVbIwFAsWhVyRTfe04g24ME2D/lNT5FWHZQkqFi22PbgM02FimnB2/xiTQ0lQd1mWqHQix8qtddS1h8CyiE9mGOtNUCxaOJSXZ8kpFSE9naNjRz01LUGwLGJjadIJJTUXsVMmkWf55loalleBZZGYyjLeF6dUBIdWz8hVyqYLtK2L0LI6TKlkkY7n6D85RVGJx+QSUtM52tZGaOk8X18SeWJjaaySheFQMnuR66FULGEBWz/TjsvjwDANeg6Nawx6idNwlYiIiIiIiIiIiIjItdEyiiXA7XNy25c62P2DLk7uHgagdU2YZRtrbI5MFpvqBh+RJj9Twyk239vK5GCSvc90A1C/PMiDv7CRSGPA5ihFPrnqBi9bP9PO7qe7KOZLOJwmu76wkuoGv92hiVyRw2Fy0+dX8O73znJyT7k/0NIZZsv9bTZHJrLw+atcTA2nOPXeCADNHdXc/pXVVNX5bI5MPq3Omxtxe528/9w5rJKF2+vg/p9fj8PpsDs0katSVefj7q+tYf8LvUyPpwHo2F5PIKIEkWKf6jofux5dyTvfO0s+W8Q0DXY8tJxwg+6bsjAEwx7u/fo63v7OGeKT5dNTV+9soKZZY16y9GQTeY6+MUAuU8QwDbY90E6gxk2kSWNlsjSt2FTHez3dlXmR2tYAt32pA7dX07FLkcvj4JbHVrH/+XOc3X9+rmxZiA13tdgcmcjStmJLLeP9iUpbHWn2c8dXVuPyaLxPrl5zR5jhs9O8d74eVdX5uPOpTnxBjbnJbOtub+bIa/2V+hKq9XLv19diOkybIxNZvIIRL/d8bQ1v/tNpMok8GLDxrlYiGr9bmpTvSURERERERERERETkE9GM5hIx3BVjYiBReT1wKsrUUMrGiGQx8ld5+NwvbWLjXS24fU4GTkUrvxs7l+DUnhH7ghOZA7lUiT0/LCcggfLJ8u/9qJt8qmBzZCJXZ+hMjPH+D/sDg6ejREfUHxD5tM4dnWSsN155PXQ2hmkauH3aZLTQOZwmH/ykF6tUPhsrlyny5rdPk4hmbI5M5Oq4PA4GTkUrCUgAzn4wRnQ4/TFXiVxf+VyR957pJp8tnzpZKlnse66HjJ6rZIEoFkuc3DNcSUACcGbfKKnpnI1Ridx4yWiWl//6OLlMuT23ShYf/KSXHZ9dTjDitTk6EXtER1MMnJyqvJ4YSDJ4JmpfQGK76fE0Q2djlddjvXGGzsQ+5goRud6mxzP0HZusvJ4aStF7bLIy/idyNZKxHF0Hxiqvp8fTnNk3QrFQsjEqma9yqQJn939YX+ITGY6/M0ShULQxKpHFLZ8psv+Fc+UEJAAW5SSqaY1Bi4iIiIiIiIiIiIiIXC0lIVkCCvkivUcnMU2DljVhWtaEMUxDi9zkuqhtCXLXV9cQn5i5MdNf5SaTzJPPaUJXFq5kLEshVyIY8bB8Uy2hWi/FQolkTBuNZP4r5ov0Hp0AyidsLd9US6jGOyNhlIhcu1LJ4tzhcTx+J8s21FDbGgTQJqNFIhXLAhBu9LNsYw2+kItkNEs6nrc5MpGrk03ly5sgDWhaVUXb+ggOl8nkUNLu0GQJS8dzpON53F4HyzbUUNcexLIgOZW1OzSRq5JJFhg8HcXhNGlbF6G5oxrDgNioEjzK0pKK5yjkiizb+OFzEKANPbKkDZ6O4jrfx6lfFgKg9+gk+Zw2mC5V/Sejs57Hzh2ZoKRkByK2GemeLv9ddlTTti6Cw2nSd3yykihT5GpMDpUT/jeuqKJ9fQ1Ol0n/iSmyKY0by2xTw6lZ/YGBk1PklJBX5LrJJPNMDCTL87cba6htDQDMWssmIiIiIiIiIiIiIiIil2fr0dyGYbQDfw00ASXgjy3L+m8feY8B/Dfg80AK+BeWZe2/0bEuZE6Xg3W3NVHMl+g5Ut58fNvjqwjW6jRCuT4cTpPWtRFOvTcCwJb728CCobMxdv+giw13tlDbErzCp4jMP4FqDzc/soLUdI6Rnmna1kUI1XgJhN12hyZyRQ6Xg+Wb61i2sZbUdI7Rc9O0b6hh5dY6u0MTWdBM02DzvW1MDCTpPzFJdYOPdbc24fbb+qglcyQY8XLr4x1MDiaYGk7ReXMjTrcDf5Xu/bIwePwuOnc1EIx4y5sfs0VuengFjctDdocmS5g/5GbDnS34gi76TkwSqvWy9pYmQrUeu0MTuSregJONd7fg9jg5d2QCp9vB7V9ZTY3GumSJcbpMNt7dSv/xScKN5eegvT/uJhjRvIMsXau21RGMeOk7PkEw4mHNrkaKhRIut8Pu0MQmq7bW0tJZXX4eyxS46eEVBMIeTNOwOzSRJat1fYTqBh+9R8pJom56ZAUuj4nLo7Zarl798hB3PLma/uNTZJJ5tn9uOU6Xgcfvsjs0mYfqlwW544nV9B2dJJcpsPOh5QCqLyLXkTfkYsfDy7CK0H9iinCjn7W3NlNVpzGLpcxSLkgRERERERERERERkWti9864AvA7lmXtNwwjBOwzDONFy7KOXfSeh4HO8z+3AN88/1+5BqEaL89+83Dl9eCpKI/82hYbI5LFrn19DSu31ZNPF4iNpjl3PgHOWG+crgNjfPl3dxKq0eSuLCyegJPeY5PlU9KA8b4EtW1BNt7VYnNkIldn9c56XvyzY4z3l09oG+9LMN4fp3FlFb6gNtSLfBJWyWJiMMn+F84BMHouTt/xSb74W9vsDUzmhNvv5NCrfaRiOaDcl+28uQGPz+5HaZGr43CaLN9Yx4/+x0Gs8ydtD5+N8cC/WG9zZLKUBSIeAtVu9v6453xJnP7jU7Sti9gZlshVc7oc1DYHefEvPhzC7j8xyRd/a7uNUYncWKWSxYl3h9j/Qi9w4Tloige+sYFIS8Dm6ETsMzWcYt9zPedfxek7Nsljuj8sacEaL6/8zUXPY13TfObn9TwmYievz8lPvnOmsgl1+GyMB76xAUPJgeQaeDxO3v3eWUrFckUa6Z7mnp9eg8Np2hyZzEdOp8k73z07oz9w/8+tU30RuY7cHgfFrMXBV/qA8vxe/4kpvvQ7O2yOTOygXp6IiIiIiIiIiIiIyCdj64ymZVlDlmXtP//vOHAcaP3I274I/LVVthsIG4bRfINDXfBO7BmeVXZy9+wykbkSqvHymZ9fx02PrqgkILkgMZllcihpU2Qin1xsNF1JQHLBRH+C6GjapohErk02WagkILlgtCdOdCRlU0QiC19iKsPBl/tmlOUzRabHMzZFJHMpOpyqJCC54PT7o0yP694vC8fQ2VhlgfsFB17uI58t2BSRLHXJaHb2vTNbZGJA4wSyMORzRQ691j+jzLLg3NGJy1whsvgkJjMcfHnm30EuXaCQL+FyOWyKSsReyWiWAy/O7OMU8iViYxp3W8qGzlz6eSyX0fOYiF36j09VEpBccOiVPvK5oj0ByYI0em66koDkggMv9ZFJ5m2KSOazgTPRWf2Bg6/0kUurPyByvcQnsxx+Y+a4RTZVYGpYY9AiIiIiIiIiIiIiIiJXa94c32wYxgpgO7DnI79qBS5etdd/vmzoxkS2OLjcDpZtrKFxZTVYFlPDKZweLQaW68vjc+ELuDEMKou5mjuqaVtfQ6lYIjWdw1/ltjdIkWtgOgz8VW7W3tqE6TCxShYn9wxh6nQ0WSBMx8y66g26WH9bc3nBzUiKcL1Pp/2JXCPDNKhtDbBsQy1QXsB24l3dGxYL02HgCThZf3szDmf5+enM+8NqK2VBcbhMghEPa29pAsOgVCiVk0IaqsdiD8MwcLhMOjbUUNMcAMNgtGd6Vl9VZL4yDXC6TVZtr6e25XwdPjeN060TjGXpMAyD9Xc04w24MEyDc0fGGe2J43Do70CWLsMEh8uYdX/Q+MDS5nCaNK8O07YuglWyiE9miI2mMPQ8JmIbp9tB27oIzavDYFnExtIkolkNk8g1cTjNyroHq2SRmMoy1jeteiSX5HQ5aOkM07r2fH9gIkN0LKV5BpHryDDB43OyemcDHr8LgK4DY5gatxAREREREREREREREblq8yIJiWEYQeC7wG9ZljX90V9f4hLrEmUYhvFLwC8BLFu2bE5jXOg23tXC+z/uYe8z3QA0rqzijq+stjkquWAx193qBh+b72vj0Cv9rN7ZgGEalXpY0xLgc7+4kZrmoM1RyqexmOvvR1XX+7j50ZW8890z5LNFXB4Ht35xFeEGn92hySewlOruBeFGPyu21NFzaBxPwMnOh5az98c9fPBiL06XyX0/u47VOxu0+GaeW4p1dz5z+50s31THvmd7KJUs/NVubvtyB3Xt6t9cykKrvzUtAW794ip2/6CLbKqAw2Vy6xdXEQh77A5NbrCFVncvtmxjBEoW7z/bQyFfwu1zct/PrMPlVmLSpWK+1d9A2MN9P7ue/c/3cHb/GADt62sIN/htjkzmm/lWdy9wuBzc9MhK9jzdRdcH5Trctj7Cso21Nkcm88V8rbtzKZcp0HdskthYGgxYd2szkeYAtW0Bu0OTT2kp1N/rxV/l4d6vr2P/8+fYe+H+sC5CuFF9nBthvtbd1rVhxnrjM+bF7nqqE5cOipCLzNf6u1i1b4gwem668ndZ1x7kjic6cbr0d3mtlnLdbVhZxeCZWKUeRZr93PXUmspGd5nfbnTdbV0TZqQ7pv6AzIml3PZei1CNl3u/vo43/vEkyWgO0zTYcn8bkWaNW4iIiIiIiIiIiIiIiFwt23eYGobhopyA5O8sy/reJd7SD7Rf9LoNGLzUZ1mW9ceWZd1kWdZN9fX1cx/sAjY1nKL32GTl9Uj3NP0np2yMSC62mOuuw2my43PLefBfbqClM8zpvSOV300OJvngJ70UCyUbI5RPazHX349KJ/KVBCQA+WyRd75/lnQib3Nk8kkspbp7gcfv4u6vdnL/z63jti918P5zPeTSBQAK+RIv/+VxpoZTNkcpV7IU6+58NtGfYO8z3ZRK5TyJqViOY28NarHxZSy4+mvB3md6yKbKbWUxX+Kd755hejxtc2Byoy24unsR0zR575luCvnyc1cuXeC1vzuheryEzMf6OzGQYLjrwzzEfccnGT330bzEstTNx7p7wUjXNMNnY5XX/cenGO9L2BiRzCfzue7OhUKuyHs/6i4nIAGw4MS7Q6zaWk91vZItLHSLvf5ebxMDSYYuvj+cmGL0XNzGiJaO+Vp3k1NZzuwbrbyeHExyZv8opaLmxeRD87X+Llax0TTdB8crr8f7EvQencCyLnkOjnyMpVx3k1PZGesepoZSnHpvWOseFogbXXfjE5lKIl4o9wfOfjCm/oB8Iku57b0W2XSB95/tJhnNAVAqWRx4qY9MPGdzZCIiIiIiIiIiIiIiIguHrUlIDMMwgD8DjluW9V8u87YfAj9nlN0KxCzLGrphQS4S/SfKCUcM08B0GAD0HB6nWCjaGZYsEYFqD2tubiKTmp2oYeDUFNm0EjjIwpCMZisJSByu8i20mC9VFi6ILAShWh/rb2+htiVINlmY8btSySIxlbUpMpGFKT6RAcqJ1yh3sxnvSyhB1SKRms6Rmi7f5y88S1kWJCYzNkcmcvWSU1lKxfJGGtNpYBiQTRVITqsPK/YoFkv0HCpv+DKMcr0E6D8++XGXicwbpZJFz6Hy5iHDoDLW2qs6LEtEJpmn78QkpsPAMI1KucYTZKmzShY9h8/3cS6ai7v4gABZekYvJCkzzo8dAb1HJ8mmCx9zlYhcTxeSRX103UQ+o3UTcvXGB8rt+8XjGr3HJsleYj2ESCUp3Yz+wETloAgRmXuZeJ6x3nJbffEc7vSE5veWMgslnRMRERERERERERERuRZOm7//DuBngcOGYRw4X/a/AssALMv6FvAs8HngDJACvnHjw1z4WtdGqK73AVAqWrh9DgwTHE6HzZHJUlLTHKj8u2FFiFXbGijkiwycjNK4spqqWq+N0Ylcmb/aQ8fOeuraQmSTeTx+FxODcfzVbrtDE7lmvpAbt885Y4GbYRoEwp5Z7y0WS4z1xhnrjeP2OmlcUUW4Uacbi0A5sc+tX1xFJpXH7XWSmMoy3BXDG7D7UUvmgi/kJhD2sO62ZgzjwrOUk0CN+q2ycATCHqobyknIcukCjvMbI/whl82RyVLlcJgs21hDc0c1Lq+TQq6Ix+8iENFzlSwMpmmwfEsdrWtrME0oFsr9A7WrslS4fU7ueGI102OZysbdAy/2Ul2vPrIsbYZpsHJLHe3rIljWh3Nx3qDuD0tZXWuQLfe34fW7yJ/v9xZyedw+jRuJ2KWpoxpf0DWjrc7nirg8WjchV6+mJcDOh5ZjOozKM2FqOovHr/u+zFbffon+QL6IS/0BkevGG3Syemc9de0hsskCLo+DdCJPqGb2WghZ/Azjyu8REREREREREREREZHZbJ3RtCzrLSq55i/7Hgv4tRsT0eJV1xZgz9NnScfLJ6+YDoNHfm2LzVHJUtO0qpq1tzbSe3SSFZvr2P2Ds5XfNawI8fC/3kwwosXqMn8Fw258QTd7nu6qlK27remSSRtE5rvqeh8P/Iv1/ORPj1LIlzBNg3t+eg2RptnJRQZOTvHM/ziIdf5gmFCNh8d+c7sSkciSZ1kWoz0xdl90X2jqqOb+n1mHL6iN1ItBqMbLZ/7Fel7682OkpnNAeeNx48qQzZGJXL1wk59bHlvFi392tHIvD0Y8dO5qsjcwWdJWbq3nJ396lOhIqlL22X+10caIRK5N+7oanvvWIZLRcv/AMA0e+VWNtcrSMN4X541/OEWpWO5Y+EIu7vn6WuqXq48s0tIZ5sd/cIhM8vxcnNPgC7++1eaoxE6RFj/vP9vNxECyUnb/z6/H4TBtjEpkaQs3+Hjrn06TSXy4buLRX9uKYWp3qly9qlofb/7jaZLRLFB+Jnz4VzbjcKp9l9lqWgLsfa6HyYv6A59Rf0DkuvIG3LStq+G1vztZKatbFmLrZ9ptjEpERERERERERERERGRh0YzmEjHcNV1JQALlU30OvdJHMV+0MSpZagLVHu7+6loe+bUtHHq1f8bvRnvijPUlbIpM5OpER9MceWNgRtmJd4eJjaYuc4XI/LZiSx1P/fubeew3t/HUv7+Ztbc1z1ogmU3n2f2DrsqmZYD4ZJbhrtgNjlZk/pkeT89IQAIwfDZGPqc+9mISG0lVEpAAlEoW7z97Tv+fZcEo5koceLF3xr08MZVl+GzUtphEpsfTMxKQALz7/bOk4rnLXCEyv4z3xSsJSACsksW+53vIZ9U/kMWtmC+y7/lzlQQkAOl4nkwijz+kJL0ig2eilQQkAKWCxaFX+ykWSjZGJXaaHk3PSEAC8O73zpA4v2ldRG68odOxSgISKK+bOPia2mq5NuO98UoCEjj/TPhsD7lMwcaoZL6KjaVnJCCB8jhYUv0BkesmMZVh9w9mzuGO98aZGk5e5goRERERERERERERERH5KKfdAciNkYxmMQxo7gzj8TkZODlFfDJLsWDhcNkdnSwlbp8TT8BF9qKFuABNq6pwuHTClNijWChRLJRwez/+tljIFsGaXa5NRrJQGYZBpClApClw2fcU8yWyqRzLNtaABf2npigVrBkbKkSWqkK+RCFfoqUzjMfvZOBUlFy6QC6j+8JicmFDfF1bkKo6H6PnpklGsxQLJVxuh83RiVxZIV8qJ9IxoLkjjDfgZPB0VPdysVX+/L2ypiVAuNHPeF+cVCxHMa9NX7IwpM9vWvxo/6CQL+LyqH8gi1exYJGazrF8Uy1WyaqMEVyctE9kKUtGs7i8DlrXRMhniwyemiI+maFUtHBoRnZJujBG1LAiRDDsZbgrRjqRV7IDERslolkM06B1TRiny2TgVJTERIZSsTQrSbssLKWSRT5bwO1xYpjXd91BOjF7XK0yruG9rl8tC1Du/FqCplVV+KrcDJ0pJ0NSf0Dk+inkS2RTefxVbppWVZOMZhnpma6MS8sSdYn1XiIiIiIiIiIiIiIicnla8rZErNhci7/aTc/BceITGbbc305tWwC3T1VAbrxgxMOaW5o4uXsYb9DFTQ+voPfYBG//8xmm7kjSsaORYEQnZ8qNMXQ2xgcvniM2mmbjXS10bG8gEL50/auq91Hd4CM2mq6UBWs8VNf7b1S4Ijecy+Ng58MrOfbmIBhwy2OrOLt/lMaVVXaHJmK7UMTDfT+zjtPvjTA9nmHzva1MT2SINOm+sJi0rY3gcjsY6ZlmcijJ8s11LNtQg9evbI6yMPir3Gx7sB0sg54j40yPp9l4VyvNq6rtDk2WsJqWALc+voqJ/iTjA3Fa10ZoWxu57LOYyHzT0lnN7V/umNE/aF8fwRd02x2ayPVlwuZ72zj65gCGYZTHCPaN0r6hxu7IROaFVdvrcXud9Bwex+1zcvsTq/FXuZWgagmrbQ1wxxOrGTgVJTqSYvVNDUSaAgTV7xWxzcqtdQQjHroOjJFJ5tn+4DIiLX5cHq2bWMgmhxIcfWOQvuOTrNhSx/rbmz82Af+n1dQxe1xt072t+EJ6JpTZaluD3PlUJ71HJ4iNpll3WxNVtT6Ng4lcR8GIhzufWkNsLEX/8SlCdV7ufLKTmpbrd2+Q+ctAh6KJiIiIiIiIiIiIiHwSWkmxRBimwTvfPYtVKqd0H+9PcPfX1tgclSxVTqeDmx9ZgTfgxBdys/vpsxRy5VNe3vrnM6QTeW75wqrrfkKRyHhfnKf/6weV07bf/PZpsqkCN31+BYYxu/4Fqj089K838/6Pu+k/MUVLZ5hdX1ippDmyqA2civLq35yovB7pnuZzv7iRhmVKQiISHUnz+t+dpHS+jz0xkOD2r3Rc18XNcuP5qz0ceKmvcrr71FCKVCxL+/oabSSTBaNhWRU/+K8fUCpcaK+SeIMumjrC9gYmS5Yv5OLoG4PEJzNAuW2dHs+wfHMtHp+SPMn856+a3T9Ix3Ms21Cr/oEsaoMnLzVGsIkmJSoVASA6nOL9Z3sqr4dOR/nib2+3LyCxncNhsveZbnLnT1yfHEqy8a4WoNnewESWuLe/ewbKQySM9yX4zL9Yb29A8qkkY1me+6MjRIdTAEwN9zJ4Osqjv7YVb/D6jDE0LA/x+V/dzO7vnyWTLLDl/jbW7Gq6Lt8li4Blsfv7ZymcX5MwOZhkx0PLMLUeRuS6MUyD6EiKw6/1A+V++ODpKO0bdtocmYiIiIiIiIiIiIiIyMJh2h2A3Bgj3dOVBCQXHHipl3QiZ1NEstRV1/u5/SudBMKeSgKSCw6+1EcimrUpMllKJgYTlQQkF3zwYi/Jj6l/da1BHvjGBr72/9zFZ//lRuraQtc7TBFbHX1zcFbZ2f1jOFzqRooMd09XEpBccOiVftJx9bEXk9hoqrLB+ILug+NMj6dtikjk2k0OpyoJSC448GIvyZieu8Qe0ZF0JQHJBQMnp4iNqW2VhSF6if5B1wdj6h/IomZZFkfeGJhV3n1wDJdH+e5FsqkCB17qm1FmWTDcNW1TRDIfTA4lKwlILjj+9tCsvrCI3Di9RycrCUguOPhKH/ls8dIXyLwXHUlVEpBcMNI9TXQsdZkrPj2ny8HKLfV86fd28tS/v5mdD60gGNahFXJpk4PJSgKSCw693K81MSLXUWIyy9E3Z45h5DNFJgeTNkUk84F15beIiIiIiIiIiIiIiMhF5nRlqGEYTwLPW5YVNwzjfwN2AP8fy7L2z+X3yLVzuh0Ewm5W72zE5XEw3BUjk8hhOnSyhtjHNA2c7pmnw7auCdO6LjJrUabI9WA6ZidRcLkdGFc4dSifKZJLFzFNc1YdFpnvioUS8YkMhgGhOt8VT9ny+Gd3F70BnU4vAuD0mKy+qYHqej+ZRI5Te0dweR0Y6mMvKhf6C3XtQZZvqsUqQc+hMT1LyYLicBo43SadNzXir/YQn8ww1juteiy2cThNHC6T1TsbCEa8JKMZzuwbVZ2UBcPhMHF7HXTe3Ig36CY2mqLn0LjqsCxqhmEQbvJR07IM02HQd2yS0XPxS44biCxFhgken4NV2+uJNAXIpvKc3juCy6NEvkuZ6TRx+5zlPkPARXQkSd/xKfUZRGzk9jqorvexans9psOk//gkLo8DU831guVwzvyfF6r1snpHA5YFhXwRp+v6zeV6/ZovkysznSZVdV46djRgOkwGTk4SHU1fcY5WRK4sPpmhkC0SjHhweT8cnzBNA4fLpFScufbMdOqGvxQZam5FRERERERERERERD6RuV4d+r9blvXPhmHcCXwO+E/AN4Fb5vh75Bo1d1Sz4Y4WDr7STy5doG19hDue6MTj06IIsVd9e5BgjYfEZJadD69g7Nw07/2wmwM/6eW2L69mzS2NuHWSplwn9e0hAmE3yeiHpxff9qUOAtWXP6lq6GyUV/76ONGRNNUNPu7/2XW0dEZuRLgin1p8KsMHL5zj6BuDGKbBjoeWs+meFvyhy9f5jXe2cPq9EUql8rkwptNg7a1NNypkkXktXO/n0FAfZ94fJRjxsOvRlVQ3+rTweJGpaQlw8yMriI1n+OCFXgzTYPO9rbh8SkQmC0fTyipu+9JqDr7cy/R4hnCjnzueWI0v6LY7NFmiIs1+7vmpNex7/hyx0WGqG3zc9zPrCDf47Q5N5KrUNPu59fEO9j3fQzKao64tyAPf2EBVvc/u0ESum3Qih9vjZP9PeikVLTp21NOwsoo1uzRGIALg9jq59fEO3vneWbo+GMNf7eamh1fQsiZsd2hio9rWILc8tpL9L5wr9xnagzzwjfWEarx2hyayZC3bUEMqnuPwq/0UCyU6djSw6Z5WHNcxUYVcX+FGPyu21NFzaJy2dRHq20MceWOAD17qpfPmRm75wiqq9awmNqppCbBqewOHX+unmC+xcms9Ox9aTiB8+flZEfl4hXyRsx+M8ea3T5FNFmjfEOGup9YQaQoA5YRUtzy2irf+6XTlmup6H3VtQbtCFhtZlt0RiIiIiIiIiIiIiIgsTHOd3v1C+vhHgG9alvU0oB0t80AmmWfvj3vIpQsA9B+f4tTeEYrFks2RyVJXXe/nsd/YxgPfWE8ylqX32CQAuUyR1//+JGM9cZsjlMUs3Ojnsd/czl1f7WTrZ9r5wr/Zyqrt9Zd9f3wyw3PfOkx0JA1AbDTNs988TGw8faNCFvlUeg6Ocfi1AUoli2KhxN5nuhk8Ff3Ya5pWVfOl393BzY+uYNcXVvLl39lJ44qqGxOwyDyWiud45W+OMzGQBCAxlWX3D7qoqtFi5sUmUO3BE3Bxas9wpf088FIfw6djdocmctUM02DPD7uYHs8AEB1J8erfnCAxlbE5Mlmq8tki73zvLLHRD5+t3vj2KVKx3BWuFJkfMqkCb33ndCWp6Xh/gvee6aqMvYosRoOnY+z9cQ/FfAmrZJWTMYY9NK7UGIEIQCaV553vnWWstzynkYrlePf7ZwEdubyU5TMF3v7OmQ/7DH0J9jzdRTaVtzkykaUrEc1y6JV+CvkSlgVn9o0y3KVxvoXMG3Bx99fW8MA31tN5cyMfvNhLPlsEC06/N8LxtwextPtYbBQfT3PgxV4KuXK703VgjNHehN1hiSxo430JXvrzY2ST5bG4vmNT7H66i0K+WHnP2luaeOTXtrDlM23c/VNreOTXt1JVq3lcERERERERERERERGRqzXXSUgGDMP4I+Ap4FnDMDzX4TvkE5gaTs0qO/P+KOlpbe4Q+0WaA7SujdB9cGzW78YHtPhCrq+a5gBb7mvnzic7WbahFrfXedn3xicypOMzFwdnUwXiE9q8KfNfsVDk5O6RWeXdh8Y/9jrDNGhaVc2uR1dx8yMraVxZhWFq84RIYjJT2Th9QbFQIj6pe8JiUyyWOL13dvvZdfDj20+R+WR6PDNrY3xqOqc2S2wTn8iQSXzk2SqpZytZOKbH0pQKMzexTQ6mSExlbYpI5PrrOzYxq+zM+6MUckp0LgLl5KQXEpBcUCpZxEZnz8/J0hEbS1EqzuwzTAwk1WcQsVH/ialZZaf2jJDLKKHgQhaq8bL2luZLtq+n3huZNQYhciMNXiKh+an3hskoKZnIJxYdmf2c1X1gbEaSa2/AxYrNddz15Bo239NGpNF/I0OUecTQ8hYRERERERERERERkU/k8jutP5mngIeA/2RZVtQwjGbg9+b4O+QT8Fe5aV5dTfv6GkpFi2K+xEjvNC6vw+7QRABwe53UNAUYOltegFHXHmTV1np8QRfR0RThBk0Gi/08ASfV9V46b27CsixM0+DU3hG8gbm+nYrMPdNh0rAiRE1rgGDYA0B0JE1dW8jmyEQWJo/fydpbGqmq94NlkYzlOP7OEN6Ay+7QZI45HCYNy6vIJPKs2dVIqWRhGAaBsNvu0ESumjfowhNwsuGOFkyHicNp0HdiEo9PbZbYwxt04Q24WH9HMw6niek4Xyd1H5UFwht04fY62HBXC06XA9M0GOqK4fZpfEAWr9a1EfzVHqySRS5d4Oibg9QvD+FwKQ+9CIDH56Sqwcvq7Y0YpoHDYdBzeBxfUP2bpcwXdFPd4GPNzR+OJ3QfGlOfQcRGkeYAHTvqqWkJYpUs0vEcxXxJfZpForreW/m3YcD6O1qobQkwNZwEo9wui9xo4UYfbesjtHSEKZUs8tki6XgWp1vtjsgn5QvNbs+rG3yz1kHGxlJMj6fx+F1Emvy4POqHi4iIiIiIiIiIiIiIXK25nln5I8uyfvbCC8uyhgzD+L+An8zx98g1qmkJEG70896PuoHyRvrP/cuN2nAk84bb6+S2L3fww/96gNq2II0rqnjvx91ggcvj4OFf3kz7+hq7w5Qlrrrex7YHl/Pmt09RKpaTkNz+5Gqq6n12hyZyRYZhsGZXE6/8zXGmhsonAzWurGLbg+02RyayMBlG+ZTjk3tGAAg3+nnwG+upaQ7YHJlcDxvvbsFf5WLvMz2UShamw+C+n1mHVbIwTB2fJfNfpMnPvV9fx2t/e4Jsqnyy7+b72vBVaUxA7BFu8HPvz6zl1b89QTZZrpOb7m7FrzopC0RNS4B7f2Ydr//DyUod3nh3Cx5tKJZFKhnN0nVgjDPvjwIQCHu47UsdtKwJY6o/LAJAqMbLHV/u5KW/PEY+UwQDtt7frrHjJS7S5GfT3a28+72zlfGEu39qDaGI98oXi8h10bSyijPvj7D3mfK6iep6H5/5+fU4HEoGsBg0d4SpXxZirDfOTY+s5Mz7Ixx7axAoJ9W7/2fXUVWne7PcWI0rqjh3ZJL3zrc7/io3n/1XG3E6dWiUyCdV1x5kxZY6eg6NA5T72V9bOyPZ1NCZKM/8wSFy6fLY3Y7PLWfHQ8u0VlJEREREREREREREROQqzfVKio0XvzAMwwHsnOPvkE8gPpHh+NtDldfZZIF3n+4im8rbGJXITM0dYZ74/ZvY+dByDr3aD1a5PJ8t8vJfHScZzdoboCx58YkMb//zaUrFcuUslSze+e4ZEpOqm7Iw9BweryQgARjpnmb0XNzGiEQWrr4TUQZORSuvoyMpRnsTs07YksXBwGDvs+UEJAClosXrf3+S6GjqCleKzA+FbIm9P+6uJCABOPxqPxMDSRujkqUsnyvy/rM9leQNAEfeGGByUHVSFggLDrzYO6MOH31jkLFePV/J4jTSHaskIIFyUpKhriiRJr+NUYnML6npLG9953Q5AQmABQdf7iM+kbE3MLFVajrPuz84O2M84a1vn9Z4goiNxvsTM8Z1Y2NpTu8bxTr/dyoLW1Wdj8//ymYe/+3t5DIFpoY/bG8HTk7Rd3zSxuhkqZqezHB2/4fPU6npHPteOEc+W7QxKpGFLVDt4b6fWcdjv7mNz/3iJp78/ZtpWxup/D6dyPHa35+sJCAB2P/COcb7EnaEK/OEpe6eiIiIiIiIiIiIiMg1mZMkJIZh/L5hGHFgi2EY0+d/4sAo8PRcfId8OheSNximUdkYOXYuTuaiDUgi80FtS7CyGPNi2VSedFJJc8Re6XieQr4EBri9DjCgVLBIxXJ2hyZyRcVCkcEz0Vnlg6dnl4nIlY10xTAdBi7Ph0lH+k9Mlu8Tsuik4llKhfN91PP9gGKhRGpafQBZGDKpPJPnE444XCYOV3k4SIkexS7ZZKGy4Pvi+2lCdVIWiGyqUEnoaJqqw7L4TQ2nZtR1gKHTMXKaXxCpyCQLxMfLCUcu7nPr3rC0peK5yniCy+PAdBgU8iXScc13idhl9HziQNNp4HSX2+r+E5NKBrCIBCNemlZVMXhRspkLRnqmb3xAsuRd6CNe/Ew1fDamQ6NEPiV/lZv29TWs3tlAXVsQwzQqv8smC5WE1y6vo/K7xJSez5Yiw7jye0REREREREREREREZDbnXHyIZVn/EfiPhmH8R8uyfn8uPlPmVqjWy5b72vAEXGRTefxVbuKTGXxBl92hicwSqvFW/h2MeNh0Txu5dJ7hs1EMo5yoRMQOgWo3a3Y1EmkKkJrO4Qu5iI2mCITddocm8rGmhpMMd8VoX1vDik11HH9niOhI+fS39vU1NkcnsjB17KjHX+2hkCviC7k5uWeIlVvrcLkdV75YFpxA2IvTZdK+oYaG5VWk4zm8ITfewJw8Uotcd76gi/YNEVo6I+QzRSzLwuN3Ut3gszs0WaJ8QReta8M0d4SxLItivoQv5CasOikLhDfoom1NmPoVVTicJvlsEX+V6rAsXo0rq9jx0HJymQL+Kg9dH4xS0xrAE9D8gsgFvpCLplVVLN9cVzlt2+NzUl2ne8NSFgh7qG0NsGZXE+l4DofLxHSYBKo1pyBil5bVYXwBF8VCiWKxhDfgBsuqHOQii4PD5WDltjrGziedqWsPsnpnI6ViiRO7h2jqqCZc77c5Slkqqht8bHugHafbUXmmyiRzeLVeS+S68QZdrLutiXCjn9R0Do/PSS5TpKrOe+WLRUREREREREREREREBJijJCQXWJb1+4ZhtALLL/5sy7LemMvvkWsXjHgYPBtj/PwiC4C7nurE7dWmOZl/aloC3Pv1tbz5T6fZ9sAy3vnuGUql8klxHr+Tx//tduraQjZHKUuRv9qN0+1gzw+7KmVrdjXi14JhmcemhpL84P/+gNR0Diif8nL7V1bz7vfPsmp7Pe3rIzZHKLLwTI2kePXvTpK8cFqWAXd/bY2S+ixi4QYfD//qZs7sHZ3RD5gcSHDP19fi9WuxsMxvHr+LHZ9bwbN/eKhysq/DZdLSGbY3MFmy3D4ntzy2iuf/6MiMfuojv7bF5shEro7b6+SWL3fw4p8eY3o8XSn/7L/aaGNUItfH9ESaN/7xFFPDqUrZbV/qYOXWOhxO08bIROYXX9DNrsdW8ewfHqKQKwHgdJm0rtXY21IWbvBx0+dX8MKfHoXyNBf+ajedNzXYG5jIEhaq9fDa350gmyonjDJNg0d+fQuGYdgcmcy1NTc1MnByirHeBKt3NrD7B2crv6tu9PPYb2ylSsnC5AYI1XrpPTrB5NCHz1T3/ew6nC4lPxK5XrwBFw0rqnjjH05VympbA2y+t9XGqMRu1oWHMhERERERERERERERuSpzukLUMIz/L/A28L8Bv3f+53fn8jvkk4kOp2YkIAHY88MupifSl7lCxD5Ol4P1d7Twtf99F73HJysJSACyqQK9xyZtjE6WsuhImmNvDc4oO/XeCLERtaUyfw2ejVY2dgJYFpx+f5Qnf/9m7vuZdQQjOu1H5FqNdMU+TEACYMHRNwbw6dS6RcswDAJVHk68OzSj/My+UaIXbcYUmc96Do9XEpAAFPOlWXVa5EaaGkrO6qfufaaHXKZgY1QiVy8xkZ2RgATg3e+dJRXPXeYKkYVprDc+IwEJwMGX+3D7lOBc5KO6D4xXEpAAFPIlTu4etjEisVsuU2DfC71cvNctFcsx3BWzLyiRJW7gVLSSgASgVLI49EofhULxY66Shai6wc/D/3ozX/ztbRx5fWDG72IjKUY/sn5G5HqJDqdmJCAB2P2DsySj2ctcISKfVmIqw56nu2aUTQwkZ/0tytJgoGRzIiIiIiIiIiIiIiKfxFyvEv0SsNayLM2UzjP584sea1sDVNX5GD03TSqWo1RQhneZn0zTIFDtIRWb2ZyEG/24fQ4sy9KJVHLDFfLlBYhVdT5q2wJMDiaJjabJ57QwUeafXKaAw2XOWEx7QTqeI1Dtxu3VhiGRTyKbLtDSGcbldTB4Kko+WySdyFMslK58sSxYhXwR6/zjk8Nl0romTKlozUjqIDKfJc4nT2pYESJQ7WHoTIz4ZFbPVmKbi/up1Q0+aloCZBJ5ivkSKE+eLACFi8YCGldW4a9yM9YbL9dhkUWkkCtR1xYkVOtlpHua1HSOTCpPUXMLIrMkpjJ4Ak5aVodJTecY6Z4mPpWxOyyxUalgkTmfoKxpVRXeoJuhM9FLjtmKyI2Rns5hmAYtnWGcLpOBk1MkozmsInO/ekZs5/G78AWLZJL5GeXBiAeX26RUsjBNjYvJ9XVhDiHS5Cfc5Ge8L0FyKqs5JZHrqFAokcsU8YVcNK2qJhnNMnouPmM8T0RERERERERERERERD7eXC+j6AJcgJKQzDM1LQHueGI1w10xpoZTrNxaT21rgGCNx+7QRC7L5XGw5b42XvnrE5imwc2PrmRqOMnhVweIj2dZf3sz4Ua/3WHKElJd7+P2r3QwOZhitGeaplXVbLyrleoGn92hiVTEpzKc3TfK8XeGqG0NsOGOFtx+J7mLFrZvua8NX8htY5QiC1epZBGu92GaBslolq2faWdiIHF+46n61otZVZ2PuvYgbq+TZRtq6Do4hsNhUsiXKOSLOF0Ou0MU+Vjrb2+maVUVAyemmB5Ps+62Jto31CgBidimqaMaw4SbP7+S6Yk0oz1xWtaEySTz6qvKglDTEsAfcrP9oWX0Hy+3rRvubEHNqiw2wRoPVXU+oqMpOnY0YBhgAcGw2mqRj9p8byvhBj+9xyYJRjzc+WQn1Q3KrraU+UJutn12GZSg9+gEickMG+9qpXFVtd2hiSxZK7fWEQh76D44Tmo6x46HllPTEsDl0djeYhUIe9h8TxsfvNgLwPbPLiOXLvDO987SfGicTXe3UdcWtDlKWcxqWgLc+vgqJgeTjPcnaF9fQ/PqagIRzSmJXC+hiJe7nuokNpam7/gkVXU+7niyidqWgN2hiQ0slEhXREREREREREREROSTmOskJCnggGEYL3NRIhLLsv7NHH+PXCOny2T/C+dIx8snvEwOJlm9s561tzbbHJnIx1uxuY57fmoN0xMZTuweIjaaBsp1eOhslM//6ha8fpfNUcpSYZgGZ94fZfRcHIDJoSQ1LQHW3tpoc2QiZaViiYMv9XLw5X6g3FaeOzzBw7+8mbe/d5ZMPMeW+9vpvFl1VuSTGu2Z5sffPIxVKi9WGu9LcPtXVtO5S39Xi50v6ObBX9jIwMkp3vjHU5XyoT88xBd/ezttayM2RidyZYEqNy/88ZHKyZsTA0kM06BtXY1OfBVbNCyv4vF/u53X//4Uk4NJoPyMNdId4wu/sU2JSGTeq28P8eC/2sCP/+AQhVz59OKJgW5KRYtdj67EUNsqi0BsNMXz3zpSOTl+cjBJ580N3Pp4B6bDtDk6kfnFKlkMno5VNjhPDCQYODXFl393h82Rid0al1fxg//yAcVCub8w3p/AE3DSrEQkIrZ5+7tnuLAXdaw3zgPfWG9vQHJdmabB5vvacHocxEaTjPfF6Ts+BZT7tz2HJ/jK7+0kVKPEYXJ9eAMujr09yPRYBijXu+hoipVb6nD49Vwlcj0YBkRHUhx69cN1E4Onpli24SabIxMREREREREREREREVk45no284fA/wm8A+y76EdsNjmUrCQgueDM/jGmx9M2RSRydXwhN5vuaaNtXaSSgOSCoTMxYiMpmyKTpSg2mq4kILlgcjBJdFj1UOaH+GSWw68NzCjLZYpkknke/+1tPPW/3sz2B5cRqNbJWiKf1NCZaCUByQVH3xzA6dJC0aWgusHH2f2js8rP7BuxIRqRazM1nKokILng0Cv9JCYzNkUkS53DaQJGJQHJBWO9CaKjesaS+c8wDVKxXCUByQUHXuolEc1e5iqRhWVyMFlJQHLBmfdHKeZLl7lCZOlKxLIceKl3RlkhV2JSY8dL3uRQspKA5IIPftJLIqpnMRE7nDs6WUlAcsGhV/pnjZnI4hKq8XLzIyvYcl97JQHJBcmpLFNDyctcKfLpRUdSlQQkFwyeihIb03otkeslPpnlyBuz101MDiZsikjsZKBk0SIiIiIiIiIiIiIin4RzLj/Msqy/msvPk7ljOkwcLpPVOxoI1niZHErQe3RSpx3LguHyOGa8rq73sWp7PYZpYJUsnS4rn0ouXSAVz+HxOT/2tG3Tcel6Zjq18VzmB9M0cLhMmlaFaF4dJpvKc3rvCKbDxONz2R2eyKLg9jnZcGcLvpCb0Z5p+k5M4vI6MQ31RZYCwzBw+8qP0TXNAVZsqaNUKuENzOmjtch1YToNTNNgxdY6Ik0B4pMZ+k9MXraPK3IjOBwfPks1LA/RvqGGfLaIy+34mKtE5g/zfB32BlysvqkBj9/JWG9cY66yaDhcJmtvaSrPKQwm6Dk8gWkaGosVuQTz/PPiis1hqhv8TI+lOXtgdEZ/R5Ymh8vEMGDZxlrq2kOkYlmGu2KVfoSI3FgfnXMG8ARc5LMFktEs3pALr1/zKYuRYRi4PA4MA6zziWgcLpOOHQ043Q6y6bzm0uS6MJ0mhmmwYnMtNS1BEpMZzn4wqnFZkevIMMttfMvqKhpXVZNJ5Dj9/qjW9oiIiIiIiIiIiIiIiFyDOd0pZRhGJ/AfgQ2A90K5ZVmrPuaaPwceBUYty9p0id/fCzwNdJ8v+p5lWf/vuYt6aahtDXDXU50ceKmPk3uGaVge4sFvbKCq3md3aCJXJdIUYNmGGnqPTdKxox5/lZvDr/Zz+NV+tn9uOZvubsFf5bE7TFmAxvvjvPGPpxk6EyXc4OOer6+jbW3kku8NN/rpvLmR03tHKmUrt9YRafTfqHBFPlao1suDv7CRo28MsO/5HvwhNzsfXkFtW8Du0EQWhVLJwht00Xt0gsRUltY1YW79Ygc1Lf5KYgpZ3EzTYOv97Xj8LgwDDrzci8NhsvPh5WQSebxBLVKX+auuLcRdX+vk2FtDdH0wRqTJz91fW0Mw4r3yxSLXSbjJR8eOeoIRL8lolv0v9OL2OahtCVLd4MPl0f1V5rf69iCt6yO0rYlw6JU+0ok8Hdvryed0irosDoZhMNwdI7ZnmIYVIW7/cgeFfJGqOs0riHxUIOzh3q+vY8/TXZzZN0pNS4A7n+ykblnQ7tDEZg3LQtzxZCdn942y77kequq83PalDnwaQxCxxbKNNex7rodCrgSA2+9k62faefq/HWByIEn98hD3/NRaGldU2RypXA9VDT4239fGoVf68QSc3PzISo68PsCpPcM0rqrinq+toX6Z/t/L3Io0+bnvZ9dy5PUBug+OU93g496vryPcoDUGItdLVa2PB39hA4de6Wffcz0Ewh52PbqSOq2bWNIuJCETEREREREREREREZGrM9fp3f8C+CZQAO4D/hr4mytc85fAQ1d4z5uWZW07/6MEJJ9APlvk7e+cITqSAmD0XJx3f3CWbDJvc2QiV8cbcHHv19fymW+so2lVNYdfG6CQL1HIl9j7TDe9xybtDlEWoHQix4t/dpShM1EAoqNpfvwHB5kaTl7y/W6vk9u/3MED39jApnta+czPr+eur67BoxPRZJ4oFIqc3jvCuSMTYEFqOsc73ztDelr3e5G5MDmQ4IU/OUpiKgvAwKkofccnaOqotjkyuZGaV1dT2xrg+DtDlAoW+WyR3T/oYuD0lN2hiXwsp9tk/wu9jPXGAZgaTvHKXx0nOpqyOTJZyjw+F3c81QlYnNk3ilWyyCYLvPq3JxjpjtsdnsgVVTf42fnZ5ex5uot0PA8WnN0/xv4XzlEslOwOT+RTiY6keO6PDhMbTQMw2hPnyJsDrLm5CdPUid0iH5WYzPDa351gYiABwORgkvd+1K2/F8FX5ebU7mGGzsYAmB7P8OJfHGNy8NLzECJyfTUsq+JLv7uDWx5bxfbPLuORX9vCi39+lMmB8t/k2Lk4z33rUGUMWBYXp9PBzoeW87lf3MSdT3ay54ddlTU0I13TPP8nR0hN6/+9zC3Lgv3Pn2O0pzzWFRtN8/rfnySudkbkusnnihx7c5D+E+W5u2Q0y9vfOU0mWbA5MrGDocdyEREREREREREREZFPZK6TkPgsy3oZMCzLOmdZ1v8LuP/jLrAs6w1A2QOus9hoiny2+JGyNPFJTWrLwhGq9bHulhb6T87e4Hly97ANEclCF5/IMDk0c9NlIVciNpa+7DXBiJe1tzRxz0+tZd1tzYRqdHK8zB+pWJ4z+0ZnFlpUFlCKyKcTHUlhlWYekTRwMkomrkQ/S4lVsjj13sis8nOHJ2yIRuTqJSYzxCcyM8pymSLT45fv+4rcCA7T4PT7o7PKR89N2xCNyLWLT2ZmlZ1+b4TUdM6GaETmTmwsPXtOYSRNJqHnH5FLmZ7IkIrNbPsziTzT47PvE7K0JCYzjPbOTLBXKlgfOw8hItdXw7Iqbvr8Cm7/8mqK+RLZj2xITkZzTE/ob3Sx8ld5WL2zAX/ITT4zs787PTZ7/Ezk00pMZIiOzGxT8tki0+oLiFw3yWiWno/M21kWRIe1bkJERERERERERERERORqOef48zKGYZjAacMwfh0YABrm4HNvMwzjIDAI/K5lWUfn4DOXFG/AhcvjYPVNDfirPKRiWboOjOH2OuwOTeSa1bUFK5s8HU6T1Tc10L6+hmQsS6DaY3N0spC4vU6cbpNCbubpxF6/62OvS8VzpKdz+EIu/FWqczJ/uDwmVXVeYqNpnC6T1Tc1Egh7CNUqWY7IXPBVudl8bxtun5PYaIquD8bwBJy4POpTLyWmw6SuPchYb5xIk5+VW+sxTIPqRp/doYl8LLfXiek0qG8P0bauBqtk0X1wDM8V+r4i15vT4yTS6CcVy80Yu6prD9odmshV8QZclf923tyI2+cknyuojygLnjfgZONdLXiDbhKTGc7sG8UwwO2b62klkcXB43cSqvXSsaMep8vBSM80fccn8fj1N7PUubxO3F4HgbCnMobQf2IST0B1Q2Q+8PpduLwOOm9qxBdyk4xm6do/qvZ7CfAEZo6J+UIu1t7SRMmCbDqPx6cxM5kbLp8Th8ukpjnAso21YFn0HB5XOyMyh/KZAvHJLE63SVWdD5fHQSDsJhmdmSjSG1TbvpRZV36LiIiIiIiIiIiIiIhcZK5nNH8L8AP/Bvg/gfuAn/+Un7kfWG5ZVsIwjM8DPwA6L/VGwzB+CfglgGXLln3Kr11cIs0B7v36WnY/3UV8IkNVnY/7fnYd4Qa/3aEJqrvXqvOmRo69NUg+W+TWxzs48voAJ3cPE4x4uP/n1tO2LoJhGHaHuWQs5Ppb3eDjzic7ee3vTlbKNt3dSk1L4LLXDJ2J8tJfHWd6LE2o1stnfn49rWsiNyJcmWMLue5eji/o5u6vruGFPzvKrkdXcvjVfmJjaU69N6y6uogsxrq7EJSKJTLJPGf2jZCO56lrC3LblzsI1ngJRpTo52othvprmAab7m6lmC/h9jk5+HIfpWKJNbc00bYmTKhGyUgWo8VQd6sbfHz2X27k9N4R9j/fg+kw2XxvK/5qLbpd7OZ7/XV7HOx6bBUv/MkRdnx2OQdf6SM+keH0+z4e+Pn1NK8O2x2i2GS+190LGpaH6NhZT8OyKg681Es6nqd+WYjEVLaSoESWloVSdz+OZVlkUwV6Dk+QjGYJN/q57csdOF0m1fXq7y5mi6H+2iUQ9rDpnlbef7aHfKZI69oID/3iJiJNmoe7EeZz3a2u8/HAL2yg9+hkZQxh9c5G/CG33aHJPDGf6+9SEGnyl9dR/KC8jqK63sf9P79e6yiuwkKvu5FmP9seaOfAS33UNAfo3NXIgZd6OfBSH80d1dzz9bXUtihB6mJ0o+tuuN7Hg7+wga4Pxtj/wjkMAzbc2YK/Sn0BuXYLve29HqaGk7z5T6foOzaF2+vgjidW03lzI3f/1Fqe/9ZhrPOZJ1ZsqaWuTe26iIiIiIiIiIiIiIjI1TLn4kMMw/ib8/+83bKshGVZ/ZZlfcOyrK9YlrX703y2ZVnTlmUlzv/7WcBlGEbdZd77x5Zl3WRZ1k319fWf5msXnXQ8x+v/cIr4RAaA6fE0r/3dSRJTWZsjE1DdvVa1rUG+/Hs7+fyvbuHAi71ER1IAJKayPPvNQ8RG0zZHuLQs5PprGAZrb2niK//LTh74xga++FvbueWLqy57ouv0RJpnv3WY6bFyHYtPZHj2m4eZHk/dyLBljizkuvtx2tbX8MXf3Ma+53qIXVxX//AQsTHV1cVgsdbd+W5yMMkLf3KUdDwPwHh/gpPvjdDSGbY3sAVmsdTfhuVVLN9cx5HXBygWSlgWnNw9zJn3R+0OTa6TxVB3TYdJbDTF2f1jWBYUCyUOvNTHaE/c7tDkOlsI9bdldZjP/8oW3num+8Oxq7E0z/3RYeKTGZujE7sshLoLEIx42faZZez+wdlKX3GsN86rf3OcTCpvc3Rih4VSdz9OdCTFc390mGQ0W3l94MVelm2owTCV/HkxWwz11y4T/Qne/d5Z8pkiAAMnpzh3ZEIJ02+Q+V53i/nSjDGE0++P0H1o3O6wZJ6Y7/V3sUvGsrz+dycrz6KxsTSv/8NJUtM5myOb/xZ63XV7nOx8eAVf/O3t3PL4Kvb8sItssgDA0NkYb337NPlMweYo5Xq40XXXMA3S0zlOvTeCVbIoFS2OvD7A0Nnodf9uWXwWets71wqFIvueO0ffsSkAcpkir/7tScZ64yzfVMsT/+4mHvyFDXzhN7Zy38+sw1/lsTliERERERERERERERGRhWNOkpAAOw3DWA78gmEYEcMwai7++TQfbBhGk3F+hZ5hGLsoxzwxBzEvKfGJLLn0zAUSmUReGzlkwQo3+HF5HLMS6RRyJabHlYRErp7T7aBpVTVrb2mibV3kY08pTkxmySRmbiDKpQtMjyuhk8wfpmlQyJUqm98uyGWKTI/rvi/yScXG0lgla0bZeG+ctBajL1mDp6ZmlZ16b4R8tmhDNCJXls8WOfXe7EQ5fccnbYhGZLZ8pjBr7Codz1c2gonMZ8lotnKq6gWj5+KVBA4iC830RIZCrjSjLDGVJannH5HLmhxOzio7s3+UdFx/NwL9Jy4xhrBHYwgi88H0RIZcZubfop5Flw5vwEXb2giFbBE+8kzXf3KKZEz3cfn0rJLFqb0js8rPfjBmQzQii0t6Os/Z/bPnPaIjaRwOk4blVazZ1cSyjbVKQCIiIiIiIiIiIiIiInKNnHP0Od8CngdWAfuAi4/1ss6XX5JhGP8A3AvUGYbRD/wfgAvAsqxvAU8Av2IYRgFIA1+zrI8u6ZYr8QZdGAbULw9R1xZiajjJSPc03sBcVQGRG8/jd+FwmRTz5QXxTpfJii11+EKXTyIh8ml4Ak5M06B+eYja1iCTg4lyWxpUnZP5xRtwYToMSsUPu0yGQaV9TCdyGIbxsUl3RGQmX8jFsg01BGu8DJ6OEh1J4Qu58PjUn16qaluDQLl9bd9QQzDixRcq909F5iOHy6RheYipoSTLNtbgq3IzcDJKbUvQ7tBEgA/HriwLnG6TFZvrcHpMfFXqs8r8d/G4gL/KzfJNtViWhVt9RVmgfEEXrWvCVDf4GT03zXhfAqfLxOtXnRa5nEC1h+oGH61rIiSjWXqPTVLTEsDlddgdmswDF8YQLsxjOd0O3H6HxhBE5gHf+WfRplXVRJoDTPQnGOuLa/5kifGF3DNeO5wma3Y1YqiZljlgmAZNq6oZ7ppm2YYaAmEPA6emaFxeZXdoIgue2+sg0uRnrC8xo9xXVW7XrZJFOpHD5Xbg8mpMY6nTkmMRERERERERERERkWszJ7MrlmX9d+C/G4bxTcuyfuUar/2pK/z+fwL/89PEJxBu9PHQL2/mxDtDdB8co35ZiIf+9SaqG/12hybyiYXrfdz91U5e/duT1LUH6bypkZO7h3nuW0fY9kA7q29qxF/lvvIHiVylcKOfh355M8feGqT74BgNy6t46Jc3E1FbKvNMuNHHHU928uY/nqqU3fr4KnwhF0ffHGD/C+cwHSa7vrCS5ZtrcXu04EbkauTzJXoOjdO+oYZV2+ppXFFFsMZrd1hik/b1NTR3VNOxs4Ez74/Q0zdO580NxCfSVNerbyDzj2kabLm/jfr2ECf2DDF6Ls7KbXU0raq2OzQRoPy8devjHZzZN0rHjgZO7hmikC1R3xbC43fiD+mkSpm/atuCbLirhUK2iL/KzZl9o7j9Tib6E/iCLpwubUCXhcWyLEyXSffBMVrXRFi1rZ5A2KN+rsjHqK7z0rY2QvfBcUK1Xu58cjUNy0N4fNrELuUxhFXbamlcFebku8PkMgW23N9OJpHXPJaIzcKNfh7+5c0cfbM899e0qpqHH9lMuNFnd2hyA9W1BVmzq5FT740QbvSz8c4WTr43zPf/8wdsua+VNbuaCUY0LiGf3LrbmgnVejm1Z5ix3jjLN9XSvqHG7rBEFjyP38WdT3Xyw/9+sHKA1bINNdQvCxEbT3P0jQFO7h4m3Ojnli+uomV12N6ARUREREREREREREREFpA53XFqWdavGIbhABov/mzLsnrn8nvk2uUzRfY8fZbJwRQAvUcnmRhM8pXf20lIGydlgTJMgzW3NFHXHiI+keH5Pz5S+d2b/3Qa02my6e5WGyOUxSabzPPOd08THUkDcO7IBJNDSRp+L0QwrLZU5g/TYbL+9mYaV4SIT2YIhr3UtgboPjTOa393svK+n/zpUR79ja0s31hrY7Qi89/kUIIf/Y+DFHLlxWsndw/TsaOeHQ8vtzkysVO40c8dT3byg/+8n8L5hY0HX+4nkyhw78+s1WZjmZesErz1ndOUiuXT3o6+MYjpMKltDWA6dLSr2MvpcrD53lYizQGe/cNDlfI3/+k0DreDjXe22BidyMfz+l3c9qUOjr05yLvfP1sunMry4z84xJd+ZwctnWFb4xO5FrGxNM/8j0NkknkAzuwbpWmqiod/ZTOGadgcncj8VCyUOPRqP8feHgIgNZ1jvC/BE/9up82RyXwRbvSz8e42fvTfD1bK3vnuGVwek013t9kYmYhkEgXe+PYpEpNZALoPjhMdTdGwYruSYS4hvpCbO59aw4Y7WshlCjz7rcNQHj7j3e93YVmw86EVtsYoC5tVsnj7O2cqSRKOvzNEqWSV5xKcmksQ+TSaV4d56vdvZmo4icfvpKY1iNvn4I2/P8Xxdz58RvvhfzvAk//uJmpbgzZHLHYxDI1riYiIiIiIiIiIiIhcizndYWIYxq8DI8CLwI/P/zwzl98hn0xsPF1JQHJBcipLbDR1mStEFgany0HD8irGeuOzfnf41X5y6YINUcliFRtLVxKQXBCfyBAbTV/mChH7uNwOGldUs3pHI02rqjGdJkdeG5j1vrP7R22ITmRhmRpKVRKQXHD2gzFS0axNEcl8EZ9IVxKQXHDqvWESU6obMj9NDiUrCUguOPrmAMlozqaIRGZyeZwMnYnOKj/8ah+5jJ7vZZ6z4Oibg7OKBy9Rp0Xms+hoqpKA5ILhrmmS6uOKXFZiKsvxd4dnlBULJaaGNAcnHxo8HZ1VdujVfrLp/Ow3i8gNExtNVRKQXDA1lGJ6LGNTRGIXX9BF69oI0xOZSgKSCw692k9qWv1h+eSmhpKVBCQXnNozPKv9EZFrZxgGNS0BOnY00LauBn/ITWIqy4l3h2a8r5gvMTmUtClKmQ8sy7rym0REREREREREREREpGKuj7n9LWCtZVkbLcvafP5nyxx/h3wCTpcDzidzd7rND//t0Ykasjh4Q+5ZZaE6D6ZTpxjI3HG6Pmwzne4Pb6EutaWyAJiGQbDGW/6308B0lNvHYFgn+YlcyYU+s9NlcuGAJLfHgcM1149TstA43R/2AUyngWkauH1OHE7VDZmfLu7DXhgb8Ppdem6SecX/ked701nuxzocqqcyvzmcJv5q94zXpmngC7psjErk2rnO9xGcFz3vmA4Dh0vjXyKX43AZeHzOWeUX979FfOf7uabDqDyDBao9OByqJyJ2unh8r9JuG2rDl7JL3dMDYY/GfOVTuTDPZBhU5pY0lyBy/TidJm5/uT2/eH5Xa3uWJsPQ3IKIiIiIiIiIiIiIyCcxe/b80+kDYnP8mTIHwo0+7nxiNflciUwij8fvxOVzEGny2x2ayJxoXxfBG3SRSeRpXh1m+aYaAHoOTdC4sorQ+Y33Ip9GuNHHnV/tJJ8ukkmeb0s9DsKNaktl/jNMgy2faaO2NUguXcAwy4trV2yqtTs0kXkv0uTnrq92Ep/I4PI6ySTyRJr9VNX67A5NbFbXFmTZxggtnRFy6SKGadC0Sn1Pmb/ql4XYcHszoXpfZWygYXmIQLWSksn80bahBs/zThwOky33tZHLFAlE3ERH09S2Bu0OT+SyXB4Hux5dyat/e4KNd7WQTRVwuExq21RvZWHxhdzc8ZXVJKNZvAEX545O0rYuQnWDnn9EPmpqOMlI9zT5bJH7f24db/7TaeITGQBq2wLUtYdsjlDmk/Z1EW59vIN8toBVArfPQXNH9YwECCJy40Wa/dzxxGry2SLZVAFvwIXb5yDcoLm/papxVTWBiIfkVBaXx8H2B5fhCTg5vXeEhhVV1C8LaTOzXLO6tiC3famDfLZIMV/CE3BSVefVXILIdRKMeLn362uJjabJJPK4vE5M06BO43QiIiIiIiIiIiIiIiJXba6TkHQBrxmG8WMge6HQsqz/MsffI9fINA1y6SLvPdNdKVuxtY61u5ptjEpk7tS2BvnS7+xgYiBBfCLDu98/W/ld8+pqHvrFTfi1sU7mQGw0xeFXByqv19/RDFpoJgtFCfY+002xUALKJ2wtVxISkSsaODnFm98+XXldvzzE1s+02xiRzBfBiJftDy7nR//jIKWiBYAn4ORL/3aHNsrLvBSo9uCrdrPn6a5KWceOehpXVuMNuGyMTORDda1Bvvw7O4mOpfjJnxyd0Xd9/N9up16beWUea10T5u6vreG5bx6mVCr3DY6+McDj/3YHNc0Bm6MTubJkLMurf3uCoTMf5pq/48nVrLutGYdDJ3SLXGxyKMnT//cHpKZzQDkB8MO/vInoaIpAlYemVdXaVCozFIsW+184Ry5dAMDhMnn8t7fbHJWIYMHEYIIT7wxXirbc32ZjQGK3SKOfL/7Wdka6Yrh9Tl756+NkU+W223QaPP7b22nuCNsbpCw4xaLFsXcGiY2kK2UP/etNNkYksvjlM0V2/+DDuZD65UHW3dZkY0RiN8vuAEREREREREREREREFpi5XjXaC7wIuIHQRT9is9hYmvef65lR1nNwnKmhpD0BiVwHNc0BGldU8f6zPTPKh87EGB9I2BOULCrR0TSHXxuYUXb87SGiw2pLZf6zShaHXu2vbOIEyKULdB8cszEqkfkvMZXh7e+cmVE2di6utl8AKBZKHHylv5KABCCbLHDu6ISNUYlcXmw0zQcv9M4oO7t/TGMDMu9EmvyceX9EfVdZcIpFiwMv91USkACk43kGTk7ZGJXI1ZsYSMxIQALw3o+6yZ3fdCkiHxo4NVVJQALlsbeDL/Wz6e421uxqoqrOZ2N0Mh91HRirJCABKOZLHH69H6ukrXAidpoaSc1IQAJw6NV+oqMpmyKS+SDS6Gfdbc1MDSUrCUgASgWLgy/3USqWPuZqkdnGzsVnJCABeOd7Z0kncpe5QkQ+jcRU4o4WogABAABJREFUhre/+9H53QTj/Vo7thTpWCkRERERERERERERkU/GOZcfZlnWf5jLz5O5U8iVZmyMuyCfLdoQjcj1U8yXLlmvC6rrMgcKueIlj8ZQWyoLQcmyiE9mZpUnJrM2RCOycBTzpRkbRC5Q2y8ApaJFYmp225qMqW2V+amQL87YGH+B2jSZb0qly/Rdp9S+yvxWKlikorPraSquTUWyMFyqT5DPFmckhRKRsnQ8P6ssEc1QLJRwuR02RCTz3aX6svHxDCXLwqFtcSK2ueQcslVeXyFyqbHf+GSGUsnC1O1erkE+O3ueKR3PUcyrrRG5HgqF0iUTqmouRERERERERERERERE5OrNSRISwzD+q2VZv2UYxo+4xPZsy7Iem4vvkU8uVOulcVUVXr+LuvYQqeksfccnCTfqJDZZXIK1XlZtq6PrwDgAvpCLNbsaCdZ4KeSLOF1aDSSfXHW9j5pmPzUtQaob/EyPpxk9N024wW93aCIz5LJFUrEsLo+DQLUHAIfDZPM9rQyfnXmicceOBjtCFFkwAhEPtz7eQS5T/rs6s2+UUski0hywOzSZB1weB5vvbePVvzmBv9pN502NON0myzbW2h2ayCVV1floWBEinymycms9lmXRf2KScKP6szK/OJwmOx9awXDXNJlEjtPvj5JLF+jYrr6rzG8ev5PN97Ux3DVNqMZLdCRJ94Fx2tZG7A5N5KrUNAfYcn8bLo+TwdNRhs5EWbW1jmCN1+7QROad1jVh9gL+Kjerb2rA5XFQ0+zH63fZHZrMU6t31HNy9zArttRS0xwkMZVh+eYaHA7T7tBElrTqBh9VDV6aVlQTqvURG00xNZykqk79H4GV2+o58sZg5XWkyc+ux1aRiuUI1XgxTCWRkqtT0xKkti3A8o11lEolzu4fY/XOhso8rojMrWDEw5pbmkhGszSurCaTyNF1YFzzuyIiIiIiIiIiIiIiItdgTpKQAH9z/r//aY4+T+aYN+Dizic6eed7Z9j3XA+hGi93PbWGqlolIZHFxeV2cNuXVxMIe5kYTLB8Uy0f/KSXg6/007mzgV1fXEW4Xhvs5JPxV3m4+2treePbpzizb5RIs597fnotgbAWB8n8MTmU5K3vnKbv6CSBsId7f3oNyzbWYjpM2jfUcs9PrWXf8z04nCa7vrCS5tXVdocsMq/FRtOcOzLO4OkYoVovt39lNbXtAWpbg3aHJvPEii21PPCN9URH0hx6tZ98tkh6Okcw4tHzlsw73oCLe7++juNvD3Hw5T4MA7Z9dhkuj5I1yvwyNZTk8Gv99B6dJBB2s+vRlQRrveq7yoIQafJz6JV+Tu0Zpq49yCO/voWGlVV2hyVyRYV8kfG+BKf3jpBO5Fm+sZYHvrGBppVVuNzqK4h8VOPKKh79N1sZ65nmwEt95NIF1tzSSOPKMNX1ehaU2ZpXh3n017aw++kuug+MU13vY+0tTXaHJbLkBSNe7v2pdbz57VOcem+E2rYAd311Df4qzf0JNHdU89l/tZE9P+yifX0Eh9PBc394GMOAnQ8vZ+NdrfhCbrvDlAXAH3LTsjrMgZd6cThNtj24jDU3NyiRjch14nQ62HJfG7t/cJZ9z/UQCLu566lOHda21M06WlFERERERERERERERD7OnBytZFnWvvP/ff3CDxC/6N9is2wqz1vfOc3QmRgA8ckML/zJESaHkjZHJjL3wg1+7nxyNTd/fgXvfu8smUQeLDj9/igHXuylVCzZHaIsUInJDD/5s6NMDpbbzqmhFD/5k6NMT6RtjkykLJ8p8NY/naLv6CQAyWiWZ791hImBcp31BV1suqeVp/7Xm3ni3+1kza4m3N65ykknsvhkUnle/uvjDJ4+34eeyPDmP53C49GpxvIhf8iDv8rD+8/2kEsXsEoWx94e4sQ7Q1iWVrPJ/DPeG+fwa/0UCyUK+RLv/7iH/lNTdoclUpHLFnnrO2forfRpc7z9ndNU1XjVd5V5Lzqa4rlvHiY6kgJgvC/Ba393klyqYHNkIlc21hvnJ392lHS8PJZ67sgE/SenCNZ47Q5NZF5yuhw4HSZ7fthNNlXAsuDk7hGOvN6PVdKzoMxWyJd4859OMdYbByA2lubZbx6q9BtExB6x8TQv/OkRpobLf4sT/Ule/POjJKayNkcm84HL46Tzpkae+H/cRF1biIMv91XG1Pb8sJv+kxpTk6vTdWCUw68NUCpa5LNF9j7TXWl3RGTu5bNF3numm77j5XY6Gc3x4p8fZXJQf3dLkaF8TyIiIiIiIiIiIiIin8icJCG5jD+9jp8t1ygxlWWka3pGWaloER3V5JosTqbDJDY6OzHEqfdGSE3nbIhIFoPpicys+pNJ5pkez9gUkchMiWi2spDmAqs0+37vC7nxBnQym8iVJCYzjJ2LzygrFdSHltmGumKzyk7sHi4nwxOZR6ySxfHdQ7PKz7w/akM0IpeWimbpPToxo8yy0OZMWRCmx9PkMsUZZfGJDPEJjRvI/HepDXCn92osVeTjXEgmcbGTe4ZJxfV3I7MlJjJER2bOWxVyJWJjSnIuYqfp8TTZ5MykgcloTgcQyAwen5OT7w3PKj+zT2NqcmX5bJHj78yuPx8d/xKRuZOMZTl3+BJjzMM6rG0p0pkRIiIiIiIiIiIiIiKfzPVMQqIc4vOIy+vA4599Wqw3oFPcZfHyhmbX73CDH5fHYUM0shh4/E4M8yO3NwO8l2hfRezg8jrxV81OLqL7vcgn4/Y6cXtn9xu8AbX7MlPVJU6HjzQF1O+UeccwDerbQ7PK69qDNkQjcmkujwN/9ew+rSeo+6/Mf5d69jKdBh6f6q/Mf75L1N/qep/6tCIfIxD2zCoLNwZw6+9GLsHtc+B0zZ6a1ziTiL28fteslS2maVxybYUsXZcbU6tt05iaXJnDaVB3iboSbgrYEI3I0uDyOAiEL7FuIqh1EyIiIiIiIiIiIiIiIlfreq6c+A/X8bPlGlXV+rj/59YxNZSikC9hOgxcPie1rVoUIYtXw/IqmlZVMdw1TVWdl/V3tOALuhg6E6WuPUQwMnuzqMjHCTf4ufWLK3n3+124fU623t+GN+giOprC6XEQbvDbHaIsccGwh3t+ai3P/fFhHE6Trfe34wu5SMVzTA4lqWnWYjaRa+ELubj/59Yz1pfA4TQY64vj8buoUR9aPqJ5dTU1LQGCEQ/NHWGKhRKNK6ooFXW0lsw/629rpliwCFS7KRUt3D4HyzfV2h2WSEUg7OGen17L8986jNPtYOtn2nH7HGTieaZGUkQa9dwl81ekyc/2zy7jg5/0AtB5cyPLNtQw0jNNNl2grj2I06WN6TI/hep93P6VDnLpIqbD4OibA9z5VKcSm4p8jMaVVdQvCxEdSbHl/nZMR3k+LhHLEfFq87rMVF3v544nO9n742423d1KqWjhq3Lj8audFbFTpMnPPT+9lkw8TyFfwukyCUTcmvOTWdbf1sypPSNkknm8QRfbHmzHH/Jw9oNR6tpDVNf57A5R5inTYbLl/jaGzkRZd1szpZKF023S3FFtd2gii1ag2sN9P7eOsXMJiufXSZoOg7q22QmlZPEzdJSiiIiIiIiIiIiIiMgnMqcr4AzDeB/4C+DvLcv6wVx+tnx6pSLs/mEXnN8H176hhs6bGuwNSuQ6CtV4+dwvbWKyP0EuU+Qnf34Mq1T+A2haVcXnfnGTEpHINXG4TDbd00ZzR5hspsCLf3qUXKYIgL/azWO/uY3aFm1MF3st31zLk//uJtLxPK/89XFS0zkA3D4nj//2duqXaWGNyNWwShYndg/zxj+cqpStvbWJXY+uLJ+OKXKR6no/j/zqFg683MueH3ZVym99fBXbHliGwzn7pGMRu/ir3MTGUhx9Y6BcYJTrcE2z+rEyfyzfVMsT5/u0L/75UbKpAlA+qfKLv7X9kqfHiswHLo+THZ9bzvJNteSzRY69NcjLf3W88vsHvrGBtbc02RihyKXFxlL85E+OMDWcAsDhNHnkVzfTtiZic2Qi81tVnY/P/8pmpoaTvPAn6rPIxzNMg7W3NBKq8fDstw5TKpTnq2paAnz+V7ZQXa/N6yJ2sCyL6bF0JZEgwK7HVlbWVIhcUNce4iv/y07GBxK43CbP//ERCrkSAFW1Xh79ja1EmnQYgFxaw/Iq7vu5dfz4Dw5V6s2xNwdVb0Suo3ymVJ6zu2id5Lrbmu0NSkREREREREREREREZAGZ651QXwNagL2GYfyjYRifMwzlEp8PEtEMb3771IzFMn3HJpnoS9gXlMgNEAx7qV9RxZ4fdVUSkAAMd00zdi5uY2SyULm9TppWVdP1wVglAQlAKpaj5/C4jZGJlDmcJg3Lqxjtna4kIAHIpQscfWvAxshEFpbYWIp3vnNmRtnJ3cMkpjI2RSTzXSaZ5/CrM9vZPT/sJjqasikikUsb64vTf3zqwwIL3vjHkyRjWfuCEvkIh6Pcp+07PlHZzAuQSeQ5u3/UxshErswbcNG6JoLTZdJ9cOY4wZvfPkV8Uv1JmX+GzsYqCUgAioUS+17opZAv2RiVyMIQjHg5d2R2n+XMvhEbo5J5y4J9z/dWEpAATA4mGe6O2RiUyNIWHZmZgARg7zM9GtOTSwo3+lm5pY6jbw1WEkkATE9k6D859TFXylJXLJQ49Gq/6o3IDZKMZnnzHy+xTrJf6ySXMktZ5kRERERERERERERErsmcJiGxLOuMZVn/HlgD/D3w50CvYRj/wTCMmrn8Lrk2hWxpxkbkCy5eFCmyWOVzReITszfUZVJ5G6KRxaBUKjE5kJxVPjWkBYkyf1yqPk4MJCkWtYFI5GrkMsVLbrhT/1kuJ5ueXTeskkUuXbzEu0Xsc6l2LBnLkc+prsr8YlkW45dYFD4xoIXisjBkLtHeZlMF8lm1tzL/JKOzx05joykK6h+IXJWJS4wVX2r8WCSfLRIbmz1um7pEOywiN0b2EvPFVskil9E4sFxaIV8kOjy7LZ8eT9sQjSwUqjciN1Y+VyQVn71O8lLjdbL46QRFEREREREREREREZFPZk6TkAAYhrEF+M/A/w/4LvAEMA28MtffJVcvEPGwYmsdzR3V7Hx4ORvvbsUbdBFu8tsdmsh1F6jysPbWpsprl9fBhjtbiDT5tdFOPpFCrsRNj6xg9c4GTMeH09WrttXbGJXITB07ZtfHDbc343CUu3/peI7oaEoLaUUuw+1zcvtXOmhcWVUpc3kchBvUf5ZLq6734Q24Kq/rl4W45Yur8AacNkYlMlukKYBhGjhcJmtuaWLnw8vZ9ehKgtUeu0MTmcEwDNbd1lJ5XVXnY/uDy9h8XxtWSScWyvwXbvRXxgycLpO1tzZx11c78QbVN5D5p2V1mC33t7Hjc8upaw8CsP6OFrxB1xWuFJFkNMv2zy6jYUVoRnnnrkabIpL5zFflZv3tzThdJutuKz+PLd9US8OKqitfLCJXLRXPEh1NXVUCwKp636w+TzDiIVTrvV7hyQLn8bnYcEfLjLKG5SFWbK4jMaWkUnJpF+qNv8o949mrfZ3O8xK5HgJhD6u21s0o84ZchBv9xMZSFPJaKyYiIiIiIiIiIiIiInIlc7ri2TCMfUAU+DPg31mWdWGGfY9hGHfM5XctRqVckcJUBsNh4KzxYZhzl4fd5XZw8+dX8P6zPex7/hz+Kjd3PLGacKM2UcrHK2YKFKNZTLeJs8ZndzifiMNpsv2zyygWSgydibL5vnYOvdzHsbcGWbGljtu+1EFNc8DuMGWBGOmZ5o1/OMnouTh1bQHueGI1+58/x/bPLqelM3zZ6wrRLKV0HkeVG0fAfeMCliWrtTPCHU+sZu8z3ZSKFts/t5xlm2opxDIkR9KcOTbB+y/307Sqmjuf6qS2NWh3yCI3lFWyKExmsIolnBEvptsBQD5fpPvAGG/902kyiTyrttfTumY5PYfHueen1qj/LJdVVevjkV/bwhv/eJKWzgjpeI69P+rm4Et93PHEajq21UEiDxY4azwYTofdIcsSVdsa4NFf30JsLM2hV/o5tSdFS2c1K7fWUdcWopjIU4xnMX0unGElJpHrpxjLUkzlcQTdOEKXfkZatqGGW764ismhJL6gi8Ov93P49X52fG45G+9qxV+lZyuxj1UsUZjMXPbeXttcbm93/7CLNTc1cfj1fk7uHqbrgzHufKqTurbQZT5ZZG5cTTsLkMsUmBpOcXLPMPl0kY6dDWy5t43WdTUYhs6KFbmcfLZA14Ex3vrnM2RTBTpvaqBtXQ1j3dPccn8b1fU+rEIJwznn50HIAlPKFylOZsAsz/9uuLOZSKOfvc/2EBtN07ImjNunJGUic6FUsug/Pslrf3+S+ESG5Ztquf0rHdQ0X37+48MxvVOMnYvTtKqau762hmBYSUjk8jpuaiA1nePQq/1sfaCdZCzL0//1AB6/szwWvL0el+fGtO2lTIFCNIvhMnHWeNWHn6dKmQKda8I0Nvh445luJgeSrL2tmao6tTUi14PL7eDWxzswTIOzH4zRvj5C502N/Ph/HiQdz7H65kZueXQl1Vc4fKI4naWYzGMGXThDmi8REREREREREREREZGlZa5nvZ+0LKvr4gLDMFZaltVtWdaX5/i7FpX8eJrYM11kTkyC06T6wWX4dzXh8M3NSYPFQolDr/bTfXAcgFQsx8t/dZxwg5+mVdVz8h2y+ORHU0x97zS5nmkMt4PqR1bi316P6V54iyHDDX7u/Zm1jJ2L8/3//EHl1OSeQ+OUihaf+6VNuD3aCCofLz6V4dlvHiIVywEw3p9k7497ePy3t182gYNVssicmGTqu6cpJfM4631EvroWjzYbyXXmDbrY9sAyOnY0YGERDHvInYkx+s+nKMVzNEc8fP6J1Tz3/bO89JfH+OJvbccb0AnHsjQUU3mSuweZfqUPChbejbVUf34lrlofY+fivPhnxyrvPbt/jI13t/D4b+/AF9LfiHy8plXVPPab29j/Qi+n3hsBIJPMM3pikoaxFKndQ2BZ+G9qpOozy3BqM4PYwHSYhGq8PP9HRyonAg+ejvHyXx3nsZ9eS+y7pyiMZzCDLiJPrMG7JjKnSVJFLMsieybK5D+fojSdw1HjoeaptXhWzB6f8le52fnQck7uGeblvzxeKX/vR92Ear2su7X5RoYuUlGM54i/2U/ircHyvX1nI1UPzLy3G6ZB+/pavEE33/u/9lHIlwAYOBXlpb88zuO/tQ1vUIl0ZO5dSzsLMNI9zat/e6Ly+vTeEcINPqpq1VcV+Tij5+K89Bcf9k9OvTfCI/9iPWvyBdL/eIJxwyB4RwvBu9twfkwiIFncCpMZYi/0kD40BqZB6J42jI11vPp3Jyme7xsMnoryyl8f1/isyByYHEzw4z84ROn8PPC5IxMUckU+/6tbcHsvP7/dtLKaL/7mNjLJAt6gE88crdGQxSsU8XLrlzrYfF8rh17t5+S7wwBkEnle/svjBCNe2tZGrnsc+bEU0R+eJXs6iuEyqfrcCgI3NWJ+TH2XGy8/9v9n777j7LzuAv9/nnZ7nTu9j3qXLMlF7r3bcewEAqQQSiAQIGwCu+wC+2N/r9397S6wJJSFBLKEBAIEEhI7cWLHcbdcZFmWrK6Rpmn6zO39Kb8/7uhK4xlJLndmVL7v10sv6Z77lHP1nPvc85zyPTkS3+mleKxynW66upnXvDoHXxwmEHVz1f09S51FIS5J0WY/t39yHTseLpGZLvBvf/xG9b2jr45huDRu/MgqtLMEjiz0Joj/02GsVAktOtO20iNjLC9mjrPUORBCCCGEEEIIIYQQQgghLi61Xn7rX95hmjiDYztkdw5XApAAmDbJx/soDaZrdo5cssjRmUlwp08M8dFszc4hLi122SL5RB+lvhQATski8e1jlIcv3jKj6xqZ6WI1AMkpA/unyMYLS5QrcTFJTxaqAUhOKWTK5DPls+5jjueY+vuD2NnKNuZEnvg/HsLKlM66jxC1FKzzEKrzYk0VmPraAex0pezZ8SLaC0NsubaFycEMmWm5D4rLR6k/ReqJATArdYLC/ilyu0ZxHIfpeeo6R18dw7Ksxc6muEjZlsPhV0arrzVDZXmLn9xLw2A74EDutTHyB6aWMJficpeczFcDkJzS2RMi8U+HMScrdQI7U2bq6wcwJ3JLkUVxCTMn85V6aapSL7Wmi0z9/UHMRHHe7RVFoXf3xJz0wy+PzrO1EIuj0Jsg89zJ07/tu8bIvzX/b3smXqwGIDllaihDenr+Mi/E+/Vu77OjJ5Jz0g7tHCWflrYrIc5lcigz67Xbr+OezJN/fRwcwHbIPH+S4rHEkuRPXBhye8bJvzlRKROWQ/rHgzgjWWxrdj+VtM8KURuJsVw1AMkpJ48kyMTPX/d2+wzCDV4JQCLeMVVVUDWVI6+MzXlvcqB2Y33OxrFs0s8NUTyaqLwu2yQfO05paOHPLd45x5y5TjN1QqdsY74wzKZNMQAO7RyRZy8hFpBuaITrvSQn8nPeO/LKKLnU/N+/8mSOqb87gHWqbSVeZOrrBzFlbNlFSVEk0L4QQgghhBBCCCGEEEII8V7UJAiJoihrFEV5BAgrivLwGX9+FpDl8s7DzpXJ7Z0EQIu6UQOVgS3ltw1gfD90t0aw3oOqKzQvCxFp8gHIilrirOxMmcLbJkYqHg3rIh8A4Q7MXvVHVRW6NsRw++S7IM7P5dNQVAVPwKBlRRhv0AAF3L6zryZlTufBclBcGnrMA5qCOVnASl7c3yVx8bHiRZyyjWKo6PVe0BXsdJnGeg/Ny0IYHm2psyjEoinNMwA49+Ykdt4k0uQl2uyb9V64wYvhku+IeGcMj05DZ7D6OtLoQx+bG9wmv2cCx7LnpAuxGDxnPP+4fTotK8I0Nnix3j452XRkUK2oOStexCnZoCvo9V4Ul4qdLmMlzz4pLNbmB8Bwa7QsDxOMeahvD551eyEWWuFgJZi06tPRYh5QIP/m/L/tp9oMfGEXLSvCuH06hlvDJc9gYoGcus++/fn/bPfZYNRDuNFL8/IwmlHpMoo0e9HdUkaFOBdf2DXr9Yot9Wj9KVBAi3lQZ+7/hUMSgPJyZRdNcm9WgulpIRdaqFJmzIEUwTo3/kilbuDyVuoG0j4rxPt3auxDsM5Dy/IwhlvD4zcwpF4jFojh1gg1eGelabpKXbt/wc9tZ8vVYJhanQd1pvyXxySg8IXEzs1cJ2XmOs3UEb2mTazdT6TJJ89eQiyCQNQ1Jy1U7zlr/6+VKOG8LZC7nS3P7UMRQgghhBBCCCGEEEIIIYS4hJ191vS7sxq4H4gAD5yRngZ+sUbnuGQpbg332iiueh/l0SyKoaFH3aj1tYvf4g24uOWjqxk+mmT4aIKGmJcr7uikoUsmbIj5qW4dvcmPOZIFVSF4cztO2aZwOI6iqrh6QmgXYeCO+rYgPZvrOfHmJK2rInSuq2P4aIKXv9PLuutaaeoJyQoI4qyijX7u+Pl1jPYmmRzMsHJ7E83Lw3Mmq59JDbgI3NCGoiqY8QK+Kxopxwuo3lr9BAvxzqh+A/+1raguDXM6j3dzA1aqSNLQCEQ9ZOJFgnUeVK0mMeqEuKDpbxsUDGC0BRjpS/HGU4M0dAZZd10rr/+wn1Le5NpHVpw1YFl5LEvhcBxzuoBnbR3urhCqR+7xlyMrV6bUl6JwOM716+tY1hPiteeHWX9DK2q+DDOTlU9xdYVQ5J4rFkBpJEPhUBw7XcSzNoarK4jqmn1fqmvxs+HGNlBAd6mM96fxRN3g0nBKswfWaoG5g3OFeD/UgIFvayNa1IM5kcO7IYZjOtVJGPNZsb2JQqaMJ2Aw2pukY02Uni31i5hrIWZzdQYwGn3YuTJWpoyxvRnFUOb9ba9r9XPbJ9Yy1pdieiTL2utaaF0ZmTNRTYhaUQNve/7fVI+VLp31Phtu9NKyPExmusjWu7qYHs6w+bYOCcQoxHk0dYdo6AxSyJTZdGs7yYk8+poonnUxyqNZtICB6jNAJpVethRdw70qgn9bE+WJyoRwo94HAYOr2oKMHEsQH8ux/vpWWlaGCdVL3UCI9yvWFuDWj69hpDdJaiLPplvaaVkRIVgn6+aIheHy6Ox4aBnf/cKbWKZNz+Z6mpaFeOOJQfrenGTNjhYau0ILcm7Fo+PdWI9R56E8mkX1GagBAy3qXpDzifdGcWnV61QazaLNXKeCoRFt9rPuulZ59hJigeRSRQb2T3Po5REaOoLc9NOrefGbRzHLNqqqcP1PrMQTmL//V/VXFiTCOSNRU1D9774PuDyZo3gsQWkki2dFBHdPWPpdlojjnH8bIYQQQgghhBBCCCGEEEKcVpPZcY7jfAf4jqIoOxzH2flu9lUU5StUApiMO46zYZ73FeALwL1ADvhZx3F21yDbFwzV0PCurmP6aweraYqhUv/zc/473pfEeJ5XHz1Rfd23d5KHu7cSiMigGzGX6tOJPrCMyf+7H/81LeTeGMeKV1Z0yO0aI3xvTyWwwkUWsMMXcnHzz6xm481tpKYKPPP1w9X3jrwyxsO/tXXBBgKJi1+5ZHHg+WGGDsUBGD6aYLw/TfuaKLox/+AgLeiieCxBeSQLQB7w72iprnooxGJRgwblkQylE6lqmmdzPb2Hpzn2+gS9u8d56HNbaV0RWbpMCrFI3D1hjI4g5cE0AIpXR9/ayHe+8GZ1m+NvTHD3L23AH3YTawvMe5zyRI6JL+/DzpQByL48QvRDK/Fvb174DyEuOLnd4yQfO159HY24eeDn1vHPX3iT6+/qpK7OjT1dqU+rYRe+bU1LlVVxCSuPZZn40j6cvAlA5qUR6n56Db5NDbO2c3l1tt/XzfP/fJTe18cBeHI8z713dlB6sr86sDZ4W8e8gZuEeD+0SGUyTPqpgWqaqytI4Ob2s+5T1+LH5dV5/fF+AE4eSdC3b4qHf2sr4YazB4UUYqG4usJM/e3+aj0w/+YEkQ+umHdbq2yz+4kB4jPtAsNHEmTiRdpX18mK7GJBaEGD8miW0vFkNc27uQE1OLctanokw2N/tpfSTN1h6HCcHQ8vp2V5ZLGyK8RFKxTzcs+nNzJ9MsP3/2Ifhkdj88PLSZ3xXKj6DWI/u24JcymWkqIpeFfWMfm3b4E9k6gqxD65nl1fP0RiLA9U6ga5VDMda+rQZRKyEO9LuWjx8nePk0uUgMqz45bbbdrXRtEkGLBYIC0rInzoP2wjNVkgMZ5j57d6ARg6CIdfHuXh395GrHX+Pob3Q3VpuLuCxL959HSaT6f+52o7zki8P6pHx90ZJP4vs6+Tcnc3x3aNc+LNSR75rW00dMoCUkLUkmM77Hv2JLu+1wfAycMJvEGD+z6ziVyyRLTFT/1Z+n8BjHov4Xt7SH7v9DjLyAPL0GPvri3aShaZ+vpBzNFKUMLcK6MEb+0gdFsXinZxjbcTQgghhBBCCCGEEEIIIcTlpyYjLRRF+e2Zf/60oihffPuf8+z+t8Dd53j/HmDlzJ9PAf/nfWf4AmOXLTIvnJyV5pRtin2ps+zx7uXTpWrH2inlosV4X7pm5xCXHveyCI2f2YLR7K8GIDkl9aMBrETxLHte2HwhN43dIfY+PTQr3TJtho8kliZT4qKQGM9VA5CcMno8WR0sPB9zKl8NQHJK9pURzOnCguRRiLOxpguzApAAFN6cpH1m4KPjUJ2ELMSlTo96iH18LfU/v4HYx9cR+6WNPP7NY7O2Mcs26eki9R1BFHX+QWDl4Wx14ukpySf6MdOlBcu7uDCZiQKpJ/tnpVmJIkwVsEyb5x7vZ6g7jHlzB9zRReznN+Jq9i9RbsWlrDSYrgYgOSX1ZD92rjxn23y6NOu3P5so8tRzw4R+dj11H11Lw6c3E7yxHdVdk/i1QlRZySK5N2bXO0v9aayJsz9XpacKvPnjwVlpuVSJqZPZs+whxMKypgpz6oGpHw1gzVMPjI9kqwFITjm2a5zkRG5B8yguX+ZUYVYAEqgEyrHmaYuaHMxUA5CcsvsH/WQS0m4lxDsRjHoY6U1i2w5rtzWSf252n4OdLWNNyffpcpbbM346AAmA7ZDdMz6nrenwq6Mkz1EfFkK8M1PD2WoAklP2Pj1EWu7FYgEpikJ9e5Cm7hB7nhyY9V6pYDE5mFmQ81q5Mqm3tZXYOZPyqLSVXEisbGne6+RMF1GUSuDS0bc9vwkh3r/0dIE3nph9T86nyxRzJquuaqbhHP2/UFk8zn91Cw2/upm6j66l8TNb8G1reteBQ8qj2WoAkmrenh3CjEvdZClcZOusCSGEEEIIIYQQQgghhBBLrlYzSQ7O/L3r3e7oOM5ziqJ0n2OTDwB/5ziOA7ysKEpEUZQWx3FG3kM+L0wOOEVrbnJpbtr7oSgKuqHSvCJMuWAx1pcC6VwR52E0+SmPz50U4Vg2ju0sQY5q5+2di+FGL/6oe2kyIy4KykyhCUTdxNoCTI9kzztw0bHm+Z7YXPTfH3HxmbcsAh6fTsfaOkZ6E1IvEJcVPehGD1Z+9/OZElbZJtbmxx9xM3YiRTFnnucI4Jj23LSyDXKPv/zY85cHnEpZaOwMMjqS540XRgjVe3l4R+siZ1BcLhxz7v3HKVnnrXs2dYdweXVGjiVIOdC+oX6hsigEWA7MUyQda5776Ol3UVBQVGhZHkZRYKQ3KfVXsWTmK6+OeZa2slMNUAo0LwujGyojx2SCkVg4Z3v+ny9dURRC9R6izX6mTmbIzASiVuQGK8Q7FmrwEmnyoevK/O0EZ/lOisuDXZin/7dooekqwToPda3+Sj+DBC0XoqbqWvwE6tyM96UpFc/fzitETcxThXZ5dbxBA9t2UM8x2f09sZxKf8TbSN3jwuLY818nXVdoWhZmtFfaB4RYKArg9uk09YTIJorvOqC16tJwd4Sg473nYd62QtuRvuQl4sh/uxBCCCGEEEIIIYQQQgjxrtQkCInjOI/O/P3VWhzvbdqAM5eFGJpJu2SCkKgujeCN7ZUVSTQVRQG7YOJZFa3ZObxBF9d/eAVTw1n635rC7dO5/sMraewJ1ewc4tJlNPtRPBpOwULx6gSubUX165gTeVRdRQtffIE73F6D7fd088Mv70fVFK68v4fEWI43nhggNZFnxZVNhOu9S51NcYGJNHq58adWMjWUZawvRfuaKA0dQaJNvrPuYzT68Gyux9XkxzFtFF3FzJTR6zyLmHNxOXNsh/JYFitdInRvN+XBDPl9kwAY3SEmsmVKBZMr7uyic33t6h5CXEy8ARfX/8RKDu0cITVZYN31rZTyJs3LwufcT2/0Erq9E6hMKsm8NEzwpnb0i7BuJN4fLeImcF0rVqKE0eTDsWwUQ0Vt83P9h1cweDBOIVvmiju7aOwK4vbVKh6oELO5OgKgKfg21qM3VMqi0RZA9Rtztg03+th4Sxuhei9DM2V0+73dBGNSTxULS4t58GyI4Wr249gOiqZi5csYjWd/rgrGvOx4aBmOA31vTWFbDtc8tJxYy9n3EWIhGS1+jI4A3rWx6rO+GnLNWw+MNvvo3BClY22MgbemKZcsrn1kOT6pM4oFYjT48G5uqNRLT7VFTRfQ6+f+xofqPbStjjI5mKFrQwy3z8AfduGPSPkU4nxSU3l6d09w9LUxGruC+FoCBFZGcKYK1X6+zKtjGC3+pc6qWEL+q5vRAgZayFWd8KZ3BlnVmCY5kWesL0XH2jqal4cJN0qflBDvV6zNzw0/sZKR40mS43nW7Ggm1hYgJG0dYhH4w26uvK+H5/7xCACrrm4mWOfmle8c5+hrY2y8qZ3G7tqNz9GCLkK3dWKnSzgOKKqCmSjgagvU7Bzi/dODbkK3v+06xQtkPDpur871H15B68pz90UJId69YJ2Hmz+6mqmTWYYOxYk0+Vh7XSv17Yt7jzQafXg31WM0+St9h7qKVTDRZIGsRSWhdoUQQgghhBBCCCGEEEKI96YmM58URXmUedcwrXAc58H3c/j5DnmWfHwK+BRAZ2fn+zjl4tPqvSQePY6dLVde17nxXdlc03MUciavPnqi+nroYJyHf2trTc8h3psLvewaDT4afnEjmZeGcXWFSD52AqdUWb3NaPMT+5l1F2VAhc71Me771U2kp/K88eQg6anKSnMTA2nG+lLc/sl1uDwyQfR8LvTyW0uO7XD4lTHGjqcAmBzMMNGRZvnWxrPuo3h0NK9B6on+mQSIPrIS1aUtRpbFOVwuZbdwNM7UVw9UV9Nxr6kjcH0rjq4yVHZ46dE+AMZOpPBHXDT3RJYus+IduVzK7mKKj2Z58isHKOUrq2JODKTZfFsHdeeY2FwayTD11QPYmZn6e8RN3cfW4m4PLkqeL1aXavlVVAXf9maSjx0n9eTMb76mEGlay6uPnqA0s/Lx2IkUN/306iXMqXivLpaya7QGaPjUJpI/7CO3Z6KSqCvUf3IDnuWR2du6NFZsbeI7f/IG9swKqWMnUniDLsINEtjhUnKhlV/NaxC4qoXJv9sP5kwddUX47A2LgKoqRFv9PPrFN6tpI8cSRJt9hBtlYu+l6kIru2cymvz4NjeSfOx4NS14awd2yZrzvO8Pu9lyWxePfnFPdfLxaG8Sb9DFyu1Ni5ltsUiWuuwqXg095jndFgWEH1iG6p7dzplLFfnx1w4xPVxZCXhiIE3LijB3/Nz6Rc2vuLAsdfm9WJgli1e/e4LDr4wCle/PimUhMt87cbqfL+qm/ufW42qVicCL4UItu3rMQ2k4Q/nVDACKSyX2yfUc2z3OeF8amOlnGEjRvSGGbki/weXoQi2/FyPHcnjt+30UZtpsJwbSrL+hlZVXSr17IUjZnWvllU14gy4GD07h8ui8/nilTj7en6b3jQk+9NvbqWutXTuG3uBl6rHjOGUbAKMrhDJPMGIx22KXXb3+7dcpyISm0v/WFIMHp2XclnhX5N77zjiOw+Rghj0/qqx7NzGQZuhQnM51dYuaD8Wro7i0032HCtT9xGpUqfcviXP1QQghhBBCCCGEEEIIIYQQYi61Rsf5Q+CPzvHn/RgCOs543Q4Mz7eh4zhfchxnu+M42xsaGt7naReP4zjkXh+rDkwEsKaLFA7Ha3aOYs5kz5MDs9Js2+Hk0UTNziHeu4uh7LragoQ/sILCgalqABKA8sksxf7UEubsvXN5dLo31hNu9FUDkJxy4s1JUhP5JcrZxeViKL+1khjPVwOQnDI5mCExnjvrPuZ4juzLI6cTHEg8ehxzWsrXUrscyq6VKZH4t2PVACQAxUPTuFdGGQm5ee57fbO23/2DAfKZ0iLnUrxbl0PZXWxTJzPVACSn7Ht2iPR04Sx7QG7XWDUACYCVKGKO5dCCrgXL56XgUi6/VrxA8cgZz3CWQ/p7x1m9ZfbnfOOJfrnXXoQulrKrKAp2rkzpePJ0oumQeKwXO2fO2X5iIFUNQHLK7h/2UzijfUJc/C608mvlyyR/0FcNQAJQPJakPJQ+537HXh+fk7b3mSEcW4YOX6outLJ7JnMyT/IHJ2alpX88iHmW9oHho4lqAJJT9jw5QLlozbu9uLgtddk1x/Oknx6clZZ8/ATm5Oy2qPhorhqA5JSRY0lyyeKC51FcuJa6/F4sUlN5Dr86Wn0dbfbhHc7M7ueLFykPnLt+I2rnQi27pcEM5aFM9bVTskn/eBDP2wJDTQxkiI+dvZ9BXNou1PJ7MZoazlYDkJxy4MWROf3Aojak7M7l8Rus2NbI9nt7eOvZk7PeKxcsJk/Wrm5gF0xST/RVA1sAlPtT521fEYtbdu2iSXLOdUrTNBMsxrYcRo4lz7a7EHPIvfedSU8X2fvM0Ky0Ys5k6mTmLHssDHMsR27X2OkEBxKP9mLGpW6ymJSZJRCdtzfQCiGEEEIIIYQQQgghhBDinPTzb3J+juM8W4vjnMV3gc8oivKPwNVA0nGckfPsc3GxnVkD0E4xR2rX8aWooBkqy7c2UNfiB0Xh5JE4ml6rODTislCyKI/OHQRpTl3cwRRUbfb3oGdzPfXtAYp5k1LBxOWpya1SXAJUTcEbNFhzTQuqrmJbNodfHkVVlbPuY2fnTjJ2ihZ2XiYaiYVnFyys+NzJQ+VkEY9Xp31NlKFDpyfMa4aCqkrdQFx+NENj483tuLyV3/xju8bIpUooZ7m/O5ZNaXDuQN7y8OIOXBMXFjszN2iDNV2g8YpGtt/bDUAhW2b0RPKsZUuIWpivLJrjeeySheqb/Wyj6SqqprD66mb8ETeKApMnM9UBmUIsBKdoYU7MbVuw5im7ZzJc2pzyWiqYIOVVLAE7b84KpFNNnyfgE1TaZbs2xmjsCgEw3peiVDDlfisWhJ0tz13a1XQq5fYMqqaw+ppmgnUeFAX635pivD89p61UCDGXoiioioIv4mLVVc1EGr0ob4zN2a48kp1nb3E5seaZXGiO5Yh2hMjng3RvjOE4kIkXz9nPIIR4Z1Rt7vdIVZU59e5y0SQ5kccyHcKNXjw+Y5FyKC4XilJ5DjRnAk9ohsqaHS1ousb0cJZIk/d917udkoU5PnechpWSANgXEqc4/3XyanDVgz3075uScVtCLABFrSxMtXxrI95A5Xe+d/f4ord5WPMEfLdzJrYEJl5klcqghCARQgghhBBCCCGEEEIIId6dms6sVxRlJfDfgXWA51S64zjLzrHPN4CbgXpFUYaA/wwYM/v9JfB94F7gGJADPlnLPF8IFE3Fd0UD5fEcnjV1ABQOTeNZG6vZOVwenWsfWcEr3zlO7+4JAJZd0UDL8nDNziEufarfwLulgcwZq0W4ekK4V4RxLAdlnoFdF4O6Fh+NPSHGT6TYckcH431pXvteH699r48V2xu59uEVBOs85z+QuORFGn1c/eAyXvpWL6W8icujcc1Dywk3ec+6jx7zgqbg6gyhxzyUBtKAgxZxLV7GxWVLC7lwr45SPHw60AgKTCRK/OBbvXRvjLHu+lYOvDCML+zi9o+sxtCWLr9CLBWXR6P3jXFyyRKarrLljg6CMe/Zf/9VhcDN7eReGaVwNA4zC9h51teu/i4uPnrD6fqA0erHaA2g+HSSusruJ45jmw6BqJubP7pGJjaIBXVmWVT9Bp7VUYwmH1pgbrlrXh5mx8PLeevZkyTH8yiqwhW3dyCLwYmFpAVceDfVkz8wjWd1FGyHwqFpjAbfOfdbeWUTwToP+18YJjGWq5TXOzoo5k25r4pFp0fcaGEXoOBeEcHOlCj2p9HOUn9sXx3l5KE4rz12AoCOdXVc9cAydJc8gIna0+o8KG4No8mH3uijPJzBypTRo+5Z2+kujYn+NIdfHkVRYM2OFnq2NBBuPHs7lxCiIlTv5aoHerBth/HjSZSiSWxDDN624IBnbd0S5VBcKFztQVAVPKuiqH6D4rEEnk31BD069cCu7/fhOBBt8bHp1valzq4QF71YW4Bwo5fkGRP+t97dRbD+dP0mmyjyyqPHOfhiZd2blhVhbv34WiKN534mFeLdCEQ9XPXgMp7/xyMoqsKOh5bz5lOD7H/uJKqmcM1Dy1l/Yysu93sfsqX6XXg3NZA/MIVnZQQ7b1I4HMdo9tfwk4j3S/Ub+DY1kD84c51yJoUjcdIOvProCVZd2UTTstBSZ1OIS06wzsMtH13DC/98lPR0AVVT2HxbB9HWxf2912Me0BTc3SG0qIdSfwrFraGH3OffWdSMBIIWQgghhBBCCCGEEEIIId6bWod3/7/A/wFM4Bbg74CvnWsHx3F+ynGcFsdxDMdx2h3H+RvHcf5yJgAJTsWvOo6z3HGcjY7j7Kpxni8I7tV1hO7sojycoXwyQ+jOLlwdgZod33EcTh6KM3YiVU07/sYEibG5K88KcTaKohC4qhnflgYUt0r4gWUobo3pvz9M4tFeyvOsZHwx8IXc3Plz67j142tQVIXho4nqe8d2jTN4cHrpMicuKPlMiRf/9RilmZVjSwWLl/71GIXM/CsdA+gNPup/dj2KplQGfrUHiH5oFZpfgpCIhae6NCL39eCeCTqm+g2027rY9fIoAH37pog0+7jro6t56M5OrG8fZeLL+ygcjeNYMvtYXB7y6RLPfP0QuWRldUDLtHn98X5iLX6UeUYkmfECqacGSP5bL3bBJHzvMrSoi+BtnXiWRxY59+JC4mrxE/3J1YTv6UaPeSkcjmNNFfDaVMtSJl5k57d7Kcyz8pkQtWK0BYh+eBXerY34tjVRPJEkt2ei8vs+s/rqKeFGH0MH49XJOY7tsPuJASYG0kuRdXGZUHSVwI3tBG9qpzyYpjyaI3z/crTzTHqPtQU4eTRebctybIfdPxxgol/Kq1h8WthN3c+sxbM+RvFYHDtnUveTq9DPEoRkrC/F0BnBIQcPTBMfyS5WdsVlxqj3Evv4OlSfTuFwHD3moe6n16CdMcHFMm32PDnA9Ew5dBw4+NIIda1+XJ6axq4X4pKk6Sod66M0Bgy2uVU6exMokwVCj6wEVQFdIXh7J+5lshDA5U5vD1D3kdVYmRLFY3G8m+rxb20kVO/l4Isj1QCQ8ZEcu3/Yj1mWFdGFeD+CdR7u+5VNXPfhlay5toW7PrWBjTe1oaqn23mHjyWqAUgARo4lOfjiMI5EZBU1turKpkp5fGQ5R14dJT1dAMC2HF7612NMDmbOc4RzUzQF/9XN+LY2UuxNYiVL1P3kaoxWCUJyIVE0Ff81zfiuaKR4LImVKhH50EqOHE+BA0deHSMzXVzqbApxySnlTV5/vG/WvfeNJwYopBe3f85o8hP7xDoACkfiuDpDRB5cjuqTtpelINU9IYQQQgghhBBCCCGEEOLdqXWPhtdxnKcURVEcx+kH/h9FUZ4H/nONz3PJMceyJB89Xn2dfPQ4WsSNHq3NqoPlosWJvZO4fTpdG2LYtkP/vilGjiVYdVVzTc4hLg96nZfIIysJjLcx+ZX92DMTKLMvj1AeyxH7+Fo078W3AnG4wUewzsO3/nD3rPTG7iClgolpWui6rE57ucsmSpQLswcBm2WbbLxItGn+FVPKk3mmv3EIO1cJVJLfPY6dKhH72FrU97G6lRDvlNHoJ/axdZTjBcaHs+x9dYzJ4dOT3VKTeZY3eUk92Q+AlSgy+ZW3aPj0ZtydsvKWuPTlUiVy6TKrrmrCsaHvrUnKBYtscu6gT8d2yLw4TOaFkwBYqRKloQwNv7gRV2cIRZVllC5niqHhWRVl8m/eojxcGUBe2D+FZzDNjQ/0MDqWY2oow3h/mny6hMd/8dWZxcVBNTT825qwixbJ7/YCYFFk6qsHaPilTbh7Tk+ELGTKnJyZFN+6MkK40ct4X4rUZH7eYwtRK+ZIltQP+qqvE986Sn14PfrqurPuU8yVOXk4QbjRS+uKCNlEkcGD0yQn8nSsXYRMC3EGx3bI758i+9IwAFayxNTXD9L4K1twtc0NLD09nGHtdS1MD2erQaL735pi483ti5pvcXkwE0Xi/3wYaybQYn7fFOXJAg2/sKEaFLeQKTN4YJrOdXX4I26GjyVIjudJjUsdQIh3olyycJcdyj8ewCxW2ouLu8awEkWiv7IJl9dAj3qknUBgTxeY/sfDYFdmu2WeP4miqxSClftxy4owkSYfEwNpBg9MU8iaBCLSFyXE+xFt9hNtPnsQhpHeJLqh0rUxhm5o9O+f4sTeSbbd3Y3LK/12onY8foPuTfUkx3O88M1js94LN3gpFy1KRQuX+73f9wsHp8k8MwRU+vemv3GIhk9vRuuUtucLSeHgFJlnZ65Tskjim0fYcP9ydI/OySNxJgbTLNvSsMS5FOLSkk+XGe9PE27w0rrydFtyarJAy/LFy4c5lWf67w/hzDw35l4fw86XMT6yBtUl9f7FcvrJXKKQCCGEEEIIIYQQQgghhBDvhlrj4xUURVGBo4qifEZRlA8CjTU+xyUpu2tsbtprc9PeK8Olse66Fjbe3M7YiRSTgxm23tVF+9qzT+4Q4mxUQ8NKl6sBSE4pnUhixS/eVVpUTaVjXeU7oaoKOz64HH/YzRs/HODHXz3I5Mn3txqRuPh5gwa6MfunU9UVfOH5B3KN96eYOjhdDUBySvFYAnNmxRUhFkMyWWLn00P86J+OYpYsrv/wSoyZQY0r18fIzEycq3KgPCT3PHF5MDwaV9zRwVhfionBNFfc0Unbqgj+iHvOtlaySOblt31fLAdzuiATiwQA5nS+GoDkFDtVIuzR6N83hT/q5oafXCkBSMSCs/Mm2Z3Dc9ILvYlZr90+ndZVEa778ApUXaF/3xTRFj/hswTYE6IWHMsm8/LInPTc3olz7ufy6lz1QA+tKyL075+iVLS47sMrCTfUJoCvEO+GlSrOvc9aDuXR7Jxtp4YzlAoW/fum8AQMrn2kcs9tWx1dpNyKy405masGIKmmjWQxp063Rbl9Otc+soJy0aJ//xStKyJsuaODcKPcU4U4n7ETSR7/q32kehPViWSnmMcSKDYYMa+0EwgAyiPZagCSUzIvDdPY6OO6D63AcFXaC8INXnY8vBy3rIguxIJrWxnhyvt7iI/mGD6WYN11rWy4sQ39fQSCEOJc3D6dutbTgXG23N5B68oIP/67g3z/z99k5FjiPR3XSpfm79+TMQ0XFCtVIvPi29rBbNAzJYYOT9O+po6W5eH5dxZCvGduv87VD/bQunJ2W3Ko3rOo+TDH83OeGwsHpjHjMl5oMSkzj+eOxCARQgghhBBCCCGEEEIIId6VWgch+SzgA34d2AZ8FPh4jc9xSdLClUmOasiFFq38W4+4anZ8RVXwBFzs+n4fyYk8ibEcr3z3eLWTRYh3S3XNvX1oMQ/KRb5Sw6orm4i1+1m9o5kDLw5z4s1JcqkSR18b5/v/Zy+ZhHQEX84ijT5u+fgaVK1y81RVhVt+Zg2RxrmTNJMTOb77xT3k85UAJIpbQ6/3gqaApqDotf4JFmJ+xXyZZ75+iP3PDZNLlRg7nuLorjE23dJO68ow4WYfqm/uZHjFc3Hfz4V4pyYG0rzy3RMkxyt15FcfPcGqq5upa5u7Wqaiq7jaAyhvC0h1sdd/RO0oulpdTksNutDqKoMZ8zmTXKrEiT2TvPXsSRxZaUssNE1BDcz+fdcibvS3BVhyeXSuvL+H1x/vZ+hgnFyqxLFd47z63eMUc7ODTgpRM4pSbQdTDBW9wQu6ihY6dzuYqitMDmU4+NIIuWSJ0d4kO7/dKxM1xZJQdBXVO3Of1RT0ei+KW5tTT8yli/zwy/s5tmucXKpE/74p9j0zxPZ7u+nZXL8EOReXA8U44/lEoVI+ffqs8pmczPPsPxxmpDdJLlni4EsjZKYLNHQFlyDHQlw84mNZvvOFPQzun8ZSlEo9Rjvd0aYYKobUTcQZqm1G6kx9waOh+nRcfp03nhhg4MA0uVSJ3t0THHh+GKtsL22GhbgMGG6Nnd/uZXo4S3qqwO4f9qNqKqoEjxILxBNwcfNPr8bt02nsDpKeLlTbNk4eSfCdL+xh6j0EDlE0FdWnV+r8MQ/qTOBrRQLqXFAUXUH1z71OZQcy00UOvDDM8T0TWJbUAYSoJZdHJzGen9OW/PZFhxaaMjO2rjpeSFVQDBVFk/FCi0lB6nlCCCGEEEIIIYQQQgghxHtR65Fw3Y7jvAZkgE8CKIryYeCVGp/nkuPb1oQe9WBO5HEsG2OHH9eyUM2Ob9sOB18awe3T6d5Uj6Io9O2dpHf3BMu2NNbsPOLyoTf5ca+OUjwcR6/34r+yGTOeJ7trFN/6GEZ7EOUijHITbfbz4K9vYawvxcEzVqRxeTRalkfITBcJRBZ3ZQxx4VBUhRVbG6nvCFLIlPD4DcKNPtR5BggkxnIUsyYDw1muuLcbJ1PGihfxbm5Aj7nRY7KyrFgcqckCw0cToMBtH1pBTAF7JIu7ycvm61rwNvhQ7+lm6qsHODUnXg27cHXIxCNxeTjw0gjLtjTgDRoMHY6THM/T/9YU665rnbWdmSxS7E2gRb24u8PYRYvszhH0Bi+u1sAS5V5caIwGL8FbO1AMDWu6gFO2MW5qZ3Qky7rrWykVTPrenCQ5nscXdJ//gEK8R6pLI3RbF5N/sw8t6iFwdQvliRzlsRzFgRSu9mB1ZfZi1qSQKeP26/RsqkyIP/HmJKnJAg2dcwOVCfF+KapC4NoW1ICBaqiYkwW8G+vxrK07536Z6SJHXhlF1RW6N9bjDRgMHoyTnMjT2FW7NjQh3gkt4CJ8Xw/5tyYxGn2Ux3J41sfQY7PbjJLjeeIjWTRDpWdTPS6vzsD+KZq7Q/MGNBWiFvRGL97N9TgFC1dXiPJoFm+9lzPnW8RHsri8OiuvimGVbU7M9BVc/YHlS5dxIS4C8ZEcgaib6+7qIpgv47T48W5qwJrKk9szQfD2TvQ6afcVpxntAXxXNqFHPJRHs3jCdbhXRZlKlsilSuiGSvfmelyeSh0hNZnH45fnMCEW0uDBaQy3Rs/mejRDpX/fFPufO8nqq5sxJHiDWCAtKyJ8+He2k4kX+c6f7Jn1XijmIZcqEox5cHne+RAu1acTfmA55ZMZyiNZVJ+OXufBJW0kFxTVZ8y9TlEP48D6G9uYOpnl4IsjbL2zi1C91COFqJV0vMCRV8eINvtoXRUlmygy8NYUifE8DZ2Ld5/Um/2E7+/BSpawEkV8WxrQ6j3odTLuTAghhBBCCCGEEEIIIYQQF75aByH5HeCb7yBNvI3iQPKJPjBnZv8qUP/zG2t2fFVVaFsVoXVlhEM7R8CB9Te24o/IxDfx3mh+g+gHV1IaTIHtMP2Ph6uT1zPPn6ThlzbhXsSO21ryhdyzAo20LA/TuT7GoZ0jDB+Js/WuLlZsa8QbPPcqzeLSND2aY9f3TzB0ME7bqghX3t9DffvcYA36zAqHLrdG/o1xzJFc9b3A9a2wyQFZVU0sAt1Qcft17vyZNbheGabYnwagvG8Se1sj7g+swLMiSsMvbaI0kK6sxNkVwmiQCXHi0mfbDiu3NfLmU4MMH0vQs7merg2xudsVLZKPnyC/Z6Ka5loeJvaz69AbfDJQTFQpuoZndR2TX96Hc2r14jfG6XlkJY/+ay8ur8ZVD/TIhAaxKNw9YRo+vRkrWWT6G4dgpkhmXhyuPK/NTEjQXSqd6+po7A5x+JVRADbd0o6qSV1VLBy93os5lqN4LFFNs+IFjA/6UV3z3yM1XaWuzc+aHS0cemmUkWOJSiCxgEzSFEvDvTpCaTBN6kcD1bTCkTgNn1yPFqq0ueoujWiLj7XXtnJo5wiFTJnlWxswvLVulhfiNM1rEL5/GbnXx0n9oK+ants9RsOnNqHXeXH7DVZf08yRV8fQXSrb7upi6HAcTZeVeIU4F7dPZ+uNbbheGSE3kq2m+7Y3Uf9LmzCafdVgf0IA6FEPWthN6sn+alr+0DTBR1YSa/Oz+upmDu4coZg1WbG9EUVuw0IsuGiLn233dHHwpRHMksWqq5swXBqKNNeJBRZu8KHpKi6PRjFnAnDFnZ3kUiWe+OsDhJu8XPvB5bSsiLzjxV7sbHlWnV/x6nhWRRci++J9ePt1Un06xu1dHH1tjMbuENd9aIU8iwlRY7peaetITxfofX2cUL2Haz+0Atdit8nZDtnXxjDHKuOF8vsgeEtHdXydWFzy3y6EEEIIIYQQQgghhBBCvDs16cVUFOUeRVH+FGhTFOWLZ/z5W8CsxTkudbm3Jk8HIAFwIPPCSRyrdt0fkSYfrz12gvRUgfR0gdcf78clk9/E+6BH3HjX15PbOzG7p85yyO+bXLJ81UKkycuGG9tAga6N9bzy3eMkJ/Jk4kWe+8cj9O+fWuosiiWQSxX5wV/to/f1CYo5k+N7JvneX+wlmyjO2bau1U/nhhgtMc+sACQAmZeGMacLi5VtcZkLNXi56adXY07mMWcCkJySe30cczKPoqu4u8MEb2zHv71ZApCIy8bkYJqn/+4Qk4MZCpkyB1+sTPpYu6Nl1nbmZH5WABKAUm8S1WtgxGRlOjFbsTdxOgDJjPJro9S3+ImP5HjpW73VQeZCLCRFU3B3hsjvn6oGIAHAdsjtHq++jLX66Vhfx67v91XaC6YKvPa9PhLjubkHFaJGzInCrAAkALk3JjAn8mfdJ1jn4ar7l/HSv/YydTJDPl1m//PD9O+fwrFl+LBYfHaqTObF4Vlp5kiW8ujp+2ek0cvWO7t46VvHmB7OkkuV2PfMSYYOTS92dsXlxnJIPz04OylRojxcCZqQHM/zxhMDZBNFkuN5Xv7OcdZe10JQAiwKcVamaXHgxWFcRQvrjAAkALnXx1C9OppXgqOJ2cx4gfQzQ7PSrMk8Rq7MxlvaeelbvcRHcuRSJfb+eIihQ4mlyagQlxFv0MXL/3ac5HiebKLEnicH8QQMdF3GTYiFF4h6uPaRFQA09YRIjuc5/PIohWyZseMpvvuFN5k6mT3PUSqsbHlWkCsAJ29SGkyfZQ+xFKxsidQTs6+TnTPRUyVKeZPBA9O88cTAWfYWQrxXnqBBcjLP4Vcq99jx/jQ7v9WLx7e4QUjM0Ww1AMkp6eeGMOMyXmgxnYrt5Ug3ghBCCCGEEEIIIYQQQgjxrtSqZ2UY2AU8CLx+Rnoa+M0aneOS5pQsFEPFsy6GYqgUDk9jlywqkR1qs2ra8TcmaF8bpWV5BByH+FiOQy+Psurq5ne8kooQczjgFGdPsnR1hdAbvDimhXKRDtgy3DpX3t/D8m2NHN45Uk13+3TW7Gghny4xNZwh2uxHlZUNLxvJ8TzlgsUVd3aiaiqO7XDo5RES4zn8Efesbb0BFzf/zGrME0myCriXR9BjHkoDacojWZkkJxaNpqnohoptVe7V7mVh9AYf5eEMpcG0lEVxWUtM5Nh0WzuargEOR14d49jr41z9gZ5Z2zk4+K9upng8OWtytGPbCPF2pwKQ6E0+3N0hzHgRK1dm9dXNNC4LER/NMXYiRZusSCkWgeM42AWr+lpxaXjW1qE3nQ445gm4GDwwjduns/baFjSj8gzX/9YUy69oXPQ8i8vDqd/QU/dKK16kcDR+3t/WQqZUrb8Gom5WX92MoilMD2eJtQcWPN9CzGI7lZHr1Wd+L6XB1KxybLh18pkSOKCoCquvbiIQ9aCoCplkgUBYAj6IBeKAGjLw9DRgZcsUDk2D5eDYDuWSxZHXRtlye0f1d//oa6OMHk+x6srmJc64EBeuzHSRo6+OseLBHlSfjmdtDCyb/MFpnKJV+V0Q4u0cwLZBBc/KKFrETfF4EoB8ugyAL+xizTUtKKqCWbbIZ0t4/a4lzLQQl7bhI3HaVkdpXRkBxyExnufACyOsvbYFw724E5PF5WnF9kZCMS+lfJkffOmtarpuqKy5toXEWA5FhUijD00/x7pSjoNTttEibjyrotg5k/yhqZoudCTeP8fmbdepTP7QNG6PRuuqCCcPJ8jEi/OONxBCvHeZ6SJ9eyfYeHMbbl8lWOTxNyZITRVo6gkvWj4ce6btcGUUPeqm2JfCHM/J8+Mik2GxQgghhBBCCCGEEEIIIcR7U5NRFI7jvKkoylvAnY7jfLUWx7zceLc0ooXd5F4fwyla+LY04lkVQdHOMajgXepYV8eJNyd57bETADR2B9l4U5sEIBHvi6IpBK5traxgrCmE7+ymeDxB6gd9FI4kCN3Wgavl4pwI5Au58IVcjPQmADDcGlfe18Oux/soZMq88p0T3PhTq1h1VRO6cXEGWxHvjuHR2HJ7B699v49ywcJwa2y7pxuXd/7rH4x6MAHjweXk9k6S3zeJe3kE/3Wt6LKyrFhEbq/BYLrE+oeWk39rivy+CVxdIcIfXIHp0ZEhbeJypWkqB18aoZg10Q2VrXd3MXhwetbA3uKJJMkf9mFO5PGsiuJdFyP97BB6kw+93neOo4vLlWcmuIg5VSC/bxK9wUfw5g5+8PVDZBMlmrpDrL5GJneKxaEoCoFrWigemsbVEcSzro7c6+OU+pLgOPg2N6AFXNS1+OlYV8eu7/dRzJpohso1Dy3DMu1zT3YQ4j3SG7yE7u2hPJwh/9YUesxD5OGVGLFz/7a6vJWmzFC9h7XXtfL6432YJZt9Tw9xx8+vp2t9bDGyLwQAWp0H37YmjGY/hQOV5yz38ghaYPakYe/M66sf6OHIq2Mc2jkKCmTjRbbf240vJE9kovYcx8Gzqo78mxNoIRfhe3rIvDqC0exDVRXW7mjhpX/tpZAtoxkqW+/sxBeWsijEueiGisunY3l1/Ne0kNs9DppC8MZ2ytkSRV1FwkaIt9MjbgI3tKOFXOT3TFAayuBZHUWPuPHGi/gjbjbd0s6u7/dRLloYHo36tgDdm+ql/1aIBdLYHSI5ma+OmWjoDLLhpjbUGo7LEOJcXG6d9jVRMvECbp9BIVtGURWueWg5e340wFvPnkRVFa7+QA/rb2zH7Z1/WJcWcBF5YDnF3gT5/ZNofoPw3d24OoKL/InEuehBF5EPLKN4LEn+rUm0gEH4rm6mHPD4DVZd1cSRV8cw3DLeRIha0g2VHQ+t4PUf9pNNFFFVhY23tOMJGIuaD6PJR/jB5eT3TJB/awr3igjBG9vQ66QNZik4SPAXIYQQQgghhBBCCCGEEOLdqNlICsdxLCCmKIqMsXsvTJvUDyqTG61UiczzJzGnCrU9h+PQt3eScKOX+o4AE/1ppkdyOI50sIj3x708TOzj6wjd1knmlREKh+PYOZPCW5NMfe0AVqq41Fl8X3o21eP26ay6qok3nhygkKmsTmeZNq//oJ/0ZI2/q+KCpWkKr32vEoAEoFy02PW9E+ccmOjYDskn+imdSFZWoNo3SW73WHX1biEWQ12rn8aOIKmnBigeS1Tu0Qenye4cJjmWXersCbEkMtMFnv2HwwQibqLNPsyyzWvf62Pb3acngpZHs0z8zVuU+lLY2TK5N8YpT+QIPbCM2M+sRQ/Ko4+YS2/yVSbVvzmBnTMp9adI/PMRrr2tk4bOIBODaUZnVj0WYjG4l4WIfWId3q2NpH7YjzmZx0qWSD56nMLBaQBWbm/ijR8OUMyahOo91LX42fmtXuKjUk8QC0N165T6kuT3TGBny5QG0iS/24uVPnf7QUNXiHCTj9VXN/PaYycwSzYAukvljSf6SU3mFyP7QgCgGhqBa1tJ/3iA4vHTz/yJx3qx8uXqds3LwnSsjzI+kGZ6pHJfrWvxc/JwgrETqaXKvriEObZD9qURsi8OY2fKlIezJL9/gugHVmA0+slnSrzy3eOoukJjV2WC4q7v9xFtkSCLQpxLIOrhhp9Yib9kk/7xIFaiiDVVIPVkP0qzn4OvjC51FsUFSNFVvBtiJB/vozSYrrQv7R4n88JJOlZF2XBjK689dgLbdmjsCmK4NZ78ygGSE1KvFWKhmCWbE3smiTT5qG8PMDGYJjGWRdUk8I9YXIGoh+s+vAKA7k0xDr8ySiZeaRexbYdXHj1B6hy/B47jUB7NkH15BDtdpjyaI/m9EzimvSj5F++M4ziUR7KV65SZuU7fP4HqQO/uCcKNPtbf0EKkSZ7HhKgl3a1xYOcw2cTp++qbTw2y2L/2juWQeryPUn+lrzn/5gT5fZM4cqteVMrMlZchskIIIYQQQgghhBBCCCHEuzP/khnvXT/woqIo3wWqM1Ucx/njGp/nklM8lgBAb/ShejRKJzNkXhrBu6URzVObyzQ9muPaR1YwOZShlDdZub2JyZMZzJItq2qI90V163jXxVC8Gqkn+ue8Z6bLaBfxqq717UEe/vw2EuNZ9j8/DFRWpdl6VydTw1le/s5x1lzbQtvKSHVVZnFpyqXLlIvWrDSzbJNPlaF17vaJsRzmiSRO3kQLudCiHspjWUrHU1jxAlpLYJFyLi53Hr9BY9RNPF1GDRroMS/meA5zNIeWLp//AEJcgnKZElfc2cVobxJVU1h3XSt7nxnCtk+P+ipP5XG1BzAn89gzQcgKB6cJ39OD0SADQsX87HSJwqE4AIpXx2jyYU4ViHhUfCEXPZu7yaWKlEsWhkuew8TCU1063rUxEo/1nk4LGOj1XrJ7xvFubgClEmRxx8PLiY9kyWfKLLuipxqAUYhasxJFCgemQVVwtQWwSxbmWI7yRB6jyX/W/cL1Xh74zCZGe5PYloOqK2y/p5tsokh6qsDgoTg9mzR8IQkUJhaHlSph50wAjBY/aAql/jRWvIjmraysGmnycf0jK/nOn+wh0uRj/fWtjJ6oBCQzSzaWZaPJquuihqxUkewrI+gxD2rARelkBkwba2biTS5VYv0NbWSTJdKTea64o5PkeJ7STFkWQpzdsk31xL96ALWt0q5bHs6AA9bxJNOpsjzniXlZ8SKYNugKrtYAds4kt2eCptu6qG8P0rO5gXCjl/G+FA1dIfxhF7lkiUijtD0JsRDiY1mue2QF4wNpzJLFyquaGDuRpFywpJ9XLLrlVzQQrPNQKph8/y/2VdN7NtfT0BHk1ceOE2sNsGJ7I/XtwVn72pky2VdGQZtpW8mbmBN5yiczuDtDi/1RxFnYmTLZl+deJ79ls+nWNoq5Mlc/uBxXjcaFCSEqCukykwOZOenZZGne7dNTefr3T9O/b5K21VF6NtUTrkF93BzP45QstLAbLeKmPJqlcCiOGS/gOkc7uKixmegzEoNECCGEEEIIIYQQQgghhHh3at2LOTzzRwWC59lWnEGLugnf10NpMIOdKxO6rRMrV0ap4Yo7bSsj/PCv91cmaWgKfXsnuemnV6O7ZJC7qA3VdfqWotV5COxoodiXIv3UAM41Lbh6QqjGxTkAt67Vj8tbmciUS5XYfHsHr56x6vLxPRPc+QvrWLm9eYlzKhaSL+xGN1TMso3uUjFLNqquzDvBLZMo8Phf7ePqa5qov70TK12qDCi6qgWnZKLocu8Vi0v3GQRv6cAumJhjOXxbm8BxcCIyQVNcnnLJEju/3YuqKVhlm943JtjxweUEoh4AzKk85lgOFAXfpgYUQyX97BCKR0cx5B4uzk7RVBSXim97M4qmUD6Zwbs+hhJyM3w0Tv9bU1z9gWXoUo7EIlODld/84E3tOKZNaTiLqz2IlSziDbrYelcXu77XR7looekqA/unuemnVtG+ZokzLi5Jiq7gXhnBvSxC8XgCI+LGv70JxXP+NoNwgw+zZKOoCptv7WD/8yfJJkooCpw8miATL3DVfT0oqqxiLRae6tJmtYFh2vju6UHRZ5e/UKOX1lURmrpDvPivx9B1Fcu0Of7GBA9FttK6MrI0H0BckhRdJXR3N+WTGaxkidDN7ZRGsigzgcg1TWX/88Pk0yVQYODANOtvaCUY8yxxzoW48Gm6im97E4X9UwD4tvSQfW0My6WxcnudPOeJeSkuDc+aOlwdQYonkhh1HvzXtKAYCuEmH4ZHY9f3+1CUShlz+w26N9UvdbaFuGS1LA/zgy+9BTagwok3J7nlo2tk0RaxJAy3TtuqKIVsmfr2AJNDGfwRN+FGL68+dgKAvr1T7H9+mId/ayvR5tMT1hVdxbO2Dj3qoXg8iRH14L+qGcVvLNXHEfNQNBXPuhh6xF2pB0Q9+K9sJmPaxEfzbL61HW9Q+mqFqDW3X6eu1c/0cBbdqLTDOQ4EonMX0CoVTF781jF6X58AoG/fFEdfH+f+X9n0vr+filsldEcXVrKIOZknsKMFKy/jhRab9BQIIYQQQgghhBBCCCGEEO9NTYOQOI7zBwCKogQrL525IeXFvPR6H5NfeauyEhZQPJYg8sEVNQ3YkBjLsfnWjspES9PG7TPo3z/JqiubZFUfURN6gwf/jhayO0cIXN1C8vsnqssIFA5MEfvkeryr65Y2k+9DIOrhtp9dy5NfOUApb1YDkDR2B1m2pYHJwSyOPUrzsjCheu8S51YshEiDl7t+eQOTAxkKmTJuv05De4BI89wVUOIjOaaHs+DVye4cwZouAFA8nsS7pQFVVuYWi0wNGOQPTmGO5oBKWXSvipBp8RNd4rwJsdhsyyY1VWDb3V0z9WKdQztHSU3kid7chpUvE//2UYrHKivUl04kMdoCeLc04F4WRo/I5Dxxdlqdh8iHVpLfNU7hSByo3HO14wlu/6nVTE0VSE/lySVL+CNzBzsKsVA8q+swJ/IUehOUhyrNNaUTScqDaeo+uhbdpeILuVh7XQvFnImmqxQyZfKZEt6A1F1Fbel1Xrzr60n827FqWv7AFPW/uPEd7R9p8nHzz6wmEy+SS5bYcnsHhlujXLIwXCrJybysHC8Whd7kI3hLB4lvHT3dBnY4jt7ow2g8PTlM1zWuemAZ+58d4poPLKOQLWO4NIp5k4MvjUgQElFTdrZM6sl+nIIFQLE3QeDGNlztAQDS0wXWX9+KZdk4Nrg8Gm89d5LNt3csZbaFuCiUBtIk/uVo9XXh4DTh+5cxljcBUBSZ2iTmcrX6KbX5ST3ZX00rHJjGvSKCosChl0fYeHM7noBBuWDiCRiVQFFCiAUxOZhh211d2Halndjt1Tmxb4JVVzWhuyQQiVgaHr/BTT+9msf+/E2Wb23gwAsj1ffqWv2suqqZ43smCdSlae4OEW70oXp1jGY/yUePV7ctHJii/uc3LMVHEGeh+nSMJh/Jx2Zfp+DPrGX8e30yVkuIBeINuLjlY2sYPpIgny5heHTCDV7qOwJztk2O56sBSE4ZP5EiPpp730FItJCb7KtHsJKV+n3xeBLf9ia0sPS5LAXHcZY6C0IIIYQQQgghhBBCCCHERaWmvZmKomwAvgbUzbyeBD7uOM7+Wp7nUmSOZVE0Be8VTWg+g8LROJnnhvBurEfz1WalklCDl71PHyWbLKHpCmbZ5oafXIWDdLCI2lBdOqHbOvFuiJHbO8mZRcu9PII5XcDKltD8F29nasfaOh757W2ceLPSAe0NGnRvrOflfzs9aKSxK8jdv7yRYFQmKF9qzLLF4P5p9v54qDrBbd11LbSursP19hXSZsq/mjUrq8tvqkev81IaTJF/c4LgLR1oTTKoSCweK1HEHM/jWR/DaPBRHs5QOBonfFXLUmdNiEWXnMzzxg/7ycSLACgKXPvICtLTRXRDoziaxUqUCNzYhlOyye+bpHwyQ/C2TjzLw0uce3GhUxQFPeqlcCSOVufBuz6GYznk905Aosirj56gZ3M91kwASiEWi6vZj3dTPbldY2hRN9719eA45PZOYk7m0Q2VDTe38dK/HOPUOEx/xEXXxpgEIRE1ZxVMMjuHZycqYKdKmPECqt9APcfkL01XWX1NM727J9h0awf9+6dJT+Yxy5V7a6DOI0FIxKLQ/Abl0Sw4oIXdeDfGwIHc7jE8KyKzVjWNNvnwRz28+uhxbNPBth3qWv1suKltCT+BuBSVRrKoLg3vtiZQIL9viuyrowSuq5Q1VVPY89QgtmljWw6KqnDNB5ehqBI8QYjzyb4xjv+qZlSvTv7QNOZYjmJ/in2jObbc0bnU2RMXKEdRyL42huLV8W2qR3HrFA5NV4JDdgZZd10LI8cSJCfylEsWOHDjR1bBuqXOuRCXpmizj2f/4QilgomiKji2w40/tUpGTIgl17wszE/8zpVkk0UOvlQJQmK4NVZf08zOb/VWtws3enng17YQ8Opknj+J0ezDs7oOO2+S2ztBeTyHu1v6MS4UVqY0+zrlTHL7Jsj2pdh2dxfaGe0GQojaSozm2PntXgy3hlm2aejw07Yqgtv7zsZh1iJgRWWcXBnv5gb0qIdif4rc7jGCN7ajSvv1opGAoUIIIYQQQgghhBBCCCHEe1Pr2c9fAv6d4zhPAyiKcjPwZeDaGp/nkqO4NUK3dJDZOYKVKeFdX4/R7KOWXSCFrMnK7U1ohopZsvAEDIaPTLP6qqYankVc7rSACy3gonCwsuo7KoTv6qFwJE7yu71kXx0l+uBy3D0X58AXRVGINPpoX12HZpxgxbYm9j49NPMebLq1A5dH48jLozQvD9PUHZJVsy4hifE8mXiRqx7ooZAt4/EbTI9kSYxmaewKzdo22uIn3OhFMVTC9/aQfXWU/L5J3MsihO/uXpoPIC5riqIQvq+H3O5xCgemcHWGCN+3jHxZJsGLy8/YiXQ1AAmA48ChnaPc8rHVMwng7gmT3TmC4tbwX9NCsTeBCex9bhh/1E1TT5hQTAKOXe4y8QJjJ1KkpgrE2vw0dYdw+4xKgMktDagenewrIyi6iv+qFpSZlc1OvDnJ1ru6CNV7l/gTiMuN6tbxbqpHC7jIvjYKqkLgqmZQoKknzFNfPciZ42qziRIT/Wnq24NLl2lxyVLOmGOhBgyCt3SQemoAczyHZ00d4bu7MZr8Z91f01SaukOoqoLu0rBNG7ff4OCLw+z8Vi/tq6P4Qu5F+CTicqeoCt4NMbSIm+xrY6BAYEcrdr6MFjxdBjPxAuCw4ca2Spm1HPY8OYBbVj0WNaZ4NLxbGirl0Xbwb2/CypnV96eHs2y9q4tCtoRuVMri2PEUG2+UgDhCzKeQKzN+IoVVsqhvDZB5ZhArW8a3sR7PygileJGmZWFirXNX1BYCQAGMFh/urjCZncPYeRPf5gbUgE4w5qFtdR3+sId8plTtc3jlu8fp2VxPQILdC1FzqakCG29px7YqAdncPp3hIwnWXCMB28XSC9V7CdV72X5PNzu/3cuyLQ3sf+50ENdIk481O1o49voYrZ1BfFsbsaYLpF84ieY3CN7UgeqRsQkXFgXftkbMt10nO6CTPpEm3CR9BEIshEy8wOFXR7nmoWXk02VcHo1i3mRyKDOnjh1u8NK9KUbf3qlqWn1ngGjz+w8S4mgQvntmvNDeCdwrIoTu7KamA0LFeZ36765BXBkhhBBCCCGEEEIIIYQQ4rJS6xHO/lMBSAAcx3lGUZSzzxYQVWrQRfybRzi1xE5+7wSKpxnFXbtL5A0YvPHEBMnxfDVtx8PLMcs2MiVD1Jp3Y4zMSyfxbmggt2ec8kgWAHMky+T/fYvGX7sCo+HiXdWhoTPIQ//uChKjWd567iQAG29uZ2D/FPHRXHW7O35+HauubF6qbIoasy0b3VB59dET1bTlWxuwrLlBHAJRN/d9ehNKskjqHw7ilCrbFHsT2IUyvm0SAEosLsWrk35qAHtm4lGpP4WVKeH+4MolzpkQi6+YK89Jy2dK+COVWnGxL1WZnA84ZZv0UwOEH1jOrp2jHHhtDIDG7hD3/NIGmQxyGculSzz9tUMMHJiupl3z0DKuuLMLvd6L0egj9UQ/AE7JJv3MIJ4Hl6MolUFuZslaqqyLy5gTdmE0+6tlEyD97BBGewBfT5hCdp774zxpQrxfmkcneGsX039/EIDANS2kftCHMxMgr3BwGjtfJvaJ9WjnWJnSMm2e/6cj5FIloBIM4tpHlvPqd05gmTKiWCwO78YYxSMJUj8aqKalnx7EaPHj29RQTRs7keKlb/VW23+DMQ+bb++QFddFzTl5i8xMeyVA5sVhwg8uRw9XnndcHp2n//5QtSwGom42395RibAshJjFtmz2PT3Eq4+e4L4PrSD5o9P16NyeCXzbm3DW1rG6NSBBJsVZaUEX/m1NTP/D4Wpa7vVxtLAbvSfM0MFp9j9/eoL58q0NNHQEsSR4tBALIhB189w/HqGYrfSVqJrCDT+5Ctuy0XT1PHsLsTjWXNuMP+Imly5y4s0JADRdZf31rbz4rWPgQENXkNvXRcntqbxvpUqkfthH/c+tX8qsi7dRfTp2wST/tusU+MnVNLQHcHvO3u4lhHjvLMumZVmYl//teDWtrtVP14bYnG1dXp3rf2IVbasmOL5nko51UVZsbaxJgGvdazD9g4NgzowXOprAKVv4ZRyZEEIIIYQQQgghhBBCCCEuArUOQnJcUZTfA7428/qjwIlzbC9mWPEi3vX1GC1+HMtG0VSyu8ew0iX0SG1ChJQK5qwAJABvPXOSNTtkVR9Re66OEA2f2kR5Ik9+70Q13be9CT3ipjSQBrioA5E094Rp6AgyfCzJwRdH8ASMWQFIAF785jHaVkXxhyXUz6XAseHIzOTzU3p3T7Dp1o55t4+2+MknCpQ7Q7iXhXFMG0VXyb0xjpUqoQVci5FtIQCw0qVqAJJq2lSBcjyPGfdQHqvcv4wmH7oEVRCXuMbuUGXJozNmfG68uZ1AxIOdNynsnyR0eyeOU5nMXJ7IUZrM0X80Xt1+vC8172pZ4vIxPZydFYAE4LXH+lh2RSPhOjel0QyhO7uqv/+Fo3HM4wnCjT5KBZNw48VbDxYXr0zGxDocx7O2Dld7sNr+kO9NENvYwIab2tj5rd7TOyjQvCy8dBkWlzTPqgixn11P7vUxFK8OukrwxnagMg/eTBSxEsVzBiEZOZaoBiABcGyHY7vGuebhZdXgYkIsNFd7iNSTAwSua0X1Vprb7ZJFbu9ENQhJIVti53d6Z9U/01MFDLdGrFVieIvayh+aInhzO2gqigJWpkzhrUkCO1oo5k3efHpwVlnMxIvohiqTboWYR3Iiz67v96HpKu6CifG2enRu3wTKuhix1sBSZ1Vc4MypAu5lYdwrIqfbCY7FUdbF2P/C8Kxte3dPcMvHVuOPSn1WiIWQmsxXA5AA2JbDiTcnWHutjJkQFw5f0M3qq5uxLZtCuszuHw7QvSnGoZdHqnX5zu4QxaMJgrd1ApW+DHMqT3kyj2fVEmZezGJnShQPx+dcp8JIhom0ydolzp8QlypFgb3PDM1Kmx7OUsqb824frvey5fZONt/WgVLDIK1mslh5DugKVZ4jdZXc65XxoJpfghAJIYQQQgghhBBCCCGEEOLCVusgJD8H/AHwLSrT+p4DPlnjc1yStKgLu2SRenJmFTVNIXL/MlRX7Qb+OvMsq5lPl7BMWUlL1J6iKri7w6gBA8VQcco2/mtbKfWnyO2qBHFQ3Br1v7ABd0doiXP73mm6yra7u3F79Xm/Y4VsWVaru4Q4jsN8SxQ79tnXLVb9OlrIdXq1eQVCd3SheLQFyqUQ81PnK3OqgjfgYuKv9mIligBoERf1n9yA0SQT4cSlq7EzyP2/uomd3+4lny6z8eY21lxTWXFKMRT8V7aQ+M4xnJnfcFdPCGNZmFLemnUcs2TNOba4fJjFudffMm2ssgWqgqstSOrxvup7/quasercNJZsttzeRbBOAtiIxVcumrhXR7CHsqfbH1SFyCMrAVh1VTOO7bD3x0N4AgY7HlpGU9fF+7wmLmyqW8e7pg7vmjoKxxOEbu8k9UQ/zsz91Wg//2TefKY8Ny1dpnNdDFWt3WBxIc5FURV8WxtJPdGPFa88V6khF+H7l1W3scoOhfTc8ur26cTaZOK6qC3fhnoS3z5WDUSqN3gJ3lyZRGOV7XnLom2dvW1LiMuZWbYr3w/FwWj0wnRhVj06fH8PeqsEmBTnpzf6MKcLs/sJ7u7GZP4+B3/YjW5IH4IQC+HMACSnZBMlbMuWoGzigqNqKhtuakfVVEoFk5HeZPW9dLpE8MY2ko8dxynN9GV0BvFubliq7Ir5GCqBm9rnXCf3igiZgbHz7CyEeK9sG0q5ub/5843rOlMtA5AAqH4D1aOffo6ceQ5Q3VLnWEynLqsz38OXEEIIIYQQQgghhBBCCCHOqqY9Go7jxB3H+XXHcbY6jnOF4zi/4ThO/Px7Cso2xSNx9CYfntVRVI9O+oWT55zY/m7FWv1zJmBsuKkNf1hW0hILR6/zErq3B1QF1atTPpmpvqdoCvkD01jF+VeauFiEG7xc+/AKOtfVoeqzv2Prr2+V1eouIeEGL5Em76y0YMxDuPHsA80d0yG3exy9wVu5vwcM0s8NzTuwWIiFZDT6CdzTjasnXK0Bum5sw+pLVQOQAFiJErm9E0uUSyEWh6ardG2o54Of28pP/Kcr2X5vD4FoJSCEXbbJ7BzGMW1cXSHcKyKUBtOoikL5jKATuqESbZFgPZezSIsPt292XM/21VFCMS/WdJHszhE8q6PoM/WE7Kuj+NuD3PLRtTR0Bpciy0IQiHrQIh4KB6bQwi48q6NoUTfpJ/qwUiUCETfb7u7mJ3/3Sj74+a10b2pAM2QwrFh4er2P/P4pnKKFqyOIe1UUczyHOZ47536tKyJz0jbd0k7kHM9oQiwEa7qAFS9iNFfadjFtSgPp6vu+sIuNN7fN2kdRFZq6QzWf3CAub47lkD84jV2yca+M4OoKYU7msWdW+vWH3XPLogKNEnRMiHmFYh5alocrbbkOFA5MAWC0BfCsiJDZOYJLlUAR4vxUj07utTFUv1FpK2jwkX5qEK+mztvnUN8u7QZCLJSuDbE5aZtubcdw13r9HiFqI1jn4aoHeth2dxcbb26vplumTe71cUDBvSqKqyNIaSCNk7+4x15cahRFIbf79HUy2gOUBtLYBYu1O1qWOntCXLICUTerdzTPStMMlbrF7tu1HPJ7J9AbZ8aD+g0yz508HRVDLAr53xZCCCGEEEIIIYQQQggh3puajKRQFOW753rfcZwHa3GeS5ldsgnf00PpZBpzqoBvayNO0cIuWmg1WgyzviPIA7++mZ3/1ktmusi661tYd33rO1oZNn/kCE65jOr3g6qihsO4wuHaZExckuxiZUJ7aWAAo9FF3ceWU+rLV9/3bW9C9RkUj8SxkgV86/yURg5hNDVhJxKo4Qia34edz6O1tKBYFoqmodfXL+7nKJWwkkm0UAgrlQLbRq+rw0wkUAMBNG9lcKiiKjT1hHjw17ew89u9pCbzrL22hfU3tKFpMmnvUuELubn7UxvZ9XgfQ4fitK2KsP3ebgKRsweacYomobu6MceylMdz+DY2gAJOwTrrPovBTCRQDAPNf3qQRf7ECbAqKzCha3i7uwEoHD1K8egxVK8H9+o1uFplQNRCKY2PYyaSqJqKoygohoGnowPHtjHHxlHcLvS6und9XLtoUjyepHQ4jqIphD+0imzRgkYf5jODc/NxxmQ5IS52VjZLeXwc1e3G1do66z23z+DMO7g5OYmZKOCYFuH7llE4NI1Tsgjd2onqUtl8WztHXh0j2uznmg8sI9Yqq9ZfSgpDQ2Db2OUypNIoPi/e1avPun2kwccDv76FVx49zkR/muVXNLD59k5cXp3CRBbvhhjF40mMZj/+bY2kfjQApoPukglqYukE6zykjicI3tSOXbAoDaZwd4fR6zzYRRMNF1Cp975d7tAh7KkpnLKJUy6heDyo/gCq14Pe3IwRjZ73/KXRUexcDr2hAT0ok+ouZ/kjR1E8lXLmqCpGuBErWyJ8/zKKR+PYOZPADe041rmjNzZ2B7nvVzby8neOU8iabL6tgxXbGxfjI4jLXO7gQdA0FF1H9fkoj+cI39tDaTCNOV3At60JxaPh2A6KqqAoCutvaEPVVN569iSBiJurP7hMApOJmnNMC1SF0C0dFA5Po7g1wvctw8qWqtus2dECisK+Z4bwhVxc89ByGrou/LJYnp7GzmRAVdHr6tB8pwNOFaemsMfGsLNZHFVF0XS0xgY8b3sGFOLdcvsMbvnYGt54coBivIjq0wne2knxeBIrVcS3PoaVKaGFXNV98oODYFb6MxzHRvN6cTVK/eRyZOZylPv7cVQVpxDCf00Liq5SPHG6rUCzHe7+1EZe/0EfgwdP9zn4z9HnIIQ4t9yxY6iGASg4Cmh+P67Y6cAjTT0h7v6lDbzy3eOUCxZX3NFJ96a5gUnE5cHK5ykcO4adzaK6XOiNjbjbK4E+cm+8QfH4cbAdXD09+K7YQnlistIupusYDQ0o+uIEr1EUBV/IzZprmlEU2Pv0EK3dIdRUkcCKCMUjcVS/Qfj+ZRf9AjCXGqdkoUXcuJeFKRyJowVc+O5fhmlbtK5qWOrsCXFBMxMJnHwBvaG+er/NHT8Opomiqjgo+FYsn3dfXdfYfk8PHp+Lw6+MEGnyc80Heoi1LW7frl0wCd/dTWkkizmZx7e5Acd2sPMWRBY1KwJwZLEoIYQQQgghhBBCCCGEEOJdqVWP+A5gEPgG8AoSQPxd0yNupr7bi52rDAgon8zgvaIR1Ve7QQuqqtC+po4P/EaIcsnCF3K9o5U2c0eOgKbhZLPk9++ncOgQ3vUbMFevwrdhQ83yJy48VjZLfs8esi+/gnfLFszREconh/FffRXeK65AC4VwLAs7n8dKpSn1HkNxu8nufBlsC3N8guxLLxH9yEeY+OIXaf+rfwWorgafeW4IqJT3woFpwne3MPSpX0SLxQjdey/TX/kbArfehlYXJfntf6Pu4x9H0XUKBw8S/sAHsLMZ8HpxNTVhZ7NojU0omgqWhd7QgJVIoAaDYJrYxRJaMIA5MYHi9WLncpXBRB4P5eFhtGAQc2ICK5NFi4RJPf44gVtuIfP0MzilEt5NG5n+2tep++hHKZ04QW7PHmK/8AsUDuzHcRxCt9yCGY8Tbm7mnp9ow7RVtPgIua89SjlWT2DHNbhXrlyyaylqJ9YW4LafXUsxa+L26ejGuScSayE3iW/3YqUqkz3Kw1k8a+tQA65z7rdQSuMTFHbvJvXDH+KUS4QffBDftddSHB7GGR8nt+t1AHzbt5ErlaBQIPviS2CWQVUp9vYSuusuXB0dS5L/S1FpZITczpfJ79+Pu7uL4sAggeuvw5yaxpqcoNjejuJyM/zbv40WidD073+bwE03oXo87/gcxRMppr564PTrYwnqfn4DvuURstMFikcTs7b3bZZBb+LiVzjWS+HNPZjxOHp9A6rXS/HoUdRAAMeyUHQD1e/HHB8j9/LLaOEIno0bsMsWgeuXk/jWscpKx1QC80QeWcG1j6zkiju7cLk1DI+sjHmxs7JZCkePzpQHndLBgxSPHsOzYT2u5cuxMhmyb76Jb/36sw4mb+oOcc8vbaSUN/EEDDRNxTFtcq+Okds1BlR++4u9CQLXt6HH3vm9W4iF4mn1k3htjFJ/CqiUUb3ei/eK+SdG5vv6sSbGMcfGsaYmMUdHZwKUajjFIloshqurk/TQEKUTJ/Bu2YLRswzV50VRVaxMBrtQwElnsJIJcMCKT6O4XHg2bMC3efMifnpxIcj29UEiTm7XLuxcDt+VV+K05gnf3Mn0vxyBmcAjpcE04ft6znks3dDo3tRAy4oIlmnPG0BHiFrLvrUfRVGwxobJvfIKWiyG79oPEP/mseqK0+WTGfzXtFTrkwCBqIcr7+th/Q2taIaK22ss0ScQlzLVreNuDZD4bm81rdibIPaxddXXgaiH7fd0s+66lgu6LDrlMvkDB7Dicax0Giefx0EBRUF1udDCYdRggOLRo5SOH8ezcSN6QwN2LoeqG5T789gTE2ReeBHPsmW4Vq/Cs2zZUn8scRGKNvu56adWUxxKYxoqqSf6cEqVQM7loQwYKkaLv7LK/eHD2JOT5F55FQwd3xVX4MRiaKEQ2rtoyxOXhuKxY4BC6eABjJ4N2FmV/L5JoFJXKPYmcK+uI9bs59ZPvPM+ByHE2eUGBiCdJrfvLUoDAzNtFN2zgpAYbp3lVzTStjqKbTn4gkvTXyeWnuM45F57rTJ+QFWxDAMrHqc0OIQWCWOXSpijozjlMnpDA+nnnsdOJLCLBVAU0A30aATN78e9Zg36IiziE4h62HZ3N2uvbUHTFIovj5J6sr/6fuFYnNgn1i94PsQ7p/oNjHpvJUg5UKZyneo/sf6CfRYTYrE5to05OgqahtHUhGOaZHfuZOy//3+UR0YI3Xsv4Q8+BP4A9tgY+V27ULwevFdcQc6yKB89QvLRx/CsXUPo3nvxrFoFQLjBy7UPL2fLHR0Ybg2XR8exbUp9fZhj4+iNDbi6u1G0hat/a2E3iW8fw86UgZnxoJvq0YLy/V9Mp8bHShASIYQQQgghhBBCCCGEEOLdqdXMuWbgDuCngJ8Gvgd8w3Gc/TU6/iXPypRQ3BrBq1pABadokd09hn1bJ1qNO55dXh2X911ceseBYpGpL32J7NPPAJAAQg88gPG7/wljEQZTiKWRfuJJRn7nd4h+7GOM/8//Sbm/H8XlwimXMRNJjNYWkt/5Lu5Vq5j+27/Ft3UrpRPHKR7rJfZzP0fy29+m7uc+ydTf/A2KrmOOH8F/ZQdqoI70TAASAL3Jh3dDPegqwfsfxmiMMPG//zdqKITR1MTUX/81oQcfJPPM0xTe2k/Dv/tNRv7jfwRNI/Zzn2Tkt34b/9VXY3R0kPjmN6n/lU+T27ULc3SM8AcfYvpvv0r0Ix8h++qr1QlO01/9Ko2f+xxTf/mX+K66EjuTJfvyyzR+/nOM/t7vEfnwh5n687+gNDBAw2/8OhN//L8J3HormWefJb97Nw2f/Q3G/ut/RdE06j/9ywz+8qfxrFtH4IYbiH/zn6n7+CcY/uM/rn7GqWiUrq9/Dffy+VfhEBcHu2RhTuVxTAdvzIv6DgYDW5lyNQDJKYWD09h3lSG8+AMbC2/s5uTnPgeWBUDmR0/R9qdfRPV4GPyVX4VyZfDDtGHQ9hd/jpXJMPXlL+PkcgCVFcBWrZIgJDVSnppi9L/8v2SffrqaFnrwAQoHDzL5J1+optX/6q8QvPtuUt/6Fid/47N0fv1r+Ldvf0fncGyHzEsnAVBDLvxXNIKmYCcKALhXRwlc30bmpWEAAjtacK+K1uojCrEkin19DH3mM5T7+gBQvF4aP/85FJcbrVzGzuUoHjmKZ80ahj//+ep+ajhM+xe/QHk8i2dVFFdHEMeB8lCa7CujuFf48Eel7nspKA4OMv3Vr6IFggTuuZuJ//rfyL36avX9yEc+QuRjH8WamqLQ34/3HHU4w6VhuE7XCczpAoqqELy18luZ3z+FOZZDb/Ci13sX7kMJ8Q45pkOpP4XR4sezLgaOg5UuYcULGHWzJ0YWT5zAnp7GTiaxxsawSyUyz7+Ab8c1UDZxdXViNDYy8cU/pbi/0gQU//rfE/vFX8S9fh1aNIo5MoIaCGJOTmBnsyT++ZuU+yuTIxSPh46/+Wv827Yt+v+DWBp2uQzj4wx9+tPY2cozxvTffIW2P/szFI8XLAetzlMJiqeAnStjZcpogXO3jbl9MmhbLA7HNFF0jXLvcYY/97lqetufX1cJQKKAd3MDeswLCpiJPEbMN+sYEixHLCS7aJJ9bRTvpnr0hkrZK/YmKJ3M4F0bm7XthVwWzYkJJv/qS8S/8Q2wbYK33YbR1YUWDKIYOpYDistg4s/+jOJbb1X3q/uFn8d/7bXY5TKKrmOlUviv3cH4F75I6JZbUDUNV1fXEn4ycbHSdBVve5DsaBaj2Y9nVRTHAXMyT+a5k/i3N1MeH8QaHWXoV3612vY67XbT9sUvUvZ40HrOHVxNXFoKQyfBcZj4X/+L/K5dNP7u/0d+fx2unjCe5eFK+RnPYU0XoNmPrmvoYQk+IsT7lkwy8nu/T+nYMQDiX/869b/2a6j19XiammZt6pHnyMte8fhxyidPoigqVrGAGghgOw5KsQRmmZOf+TWcYrGysabR+r/+F6WBfuxcDidf2X78H/4Bp1DAu307Lf/lD3C/w6B3dsHEnMoDCnrMg/oug577Qm6sTInpV0Zmv2E6WFN5WCn9fBcKK2eS2TWGb1sjWqTS9lo4NI05XVjinAlxYSiPjRH/+39g+qtfRfF4aPzNz+JZv4HBX/plsCvBH5P/+q9oba341qxh6DO/Vk1XvF7a/+xPGf78bwGQffZZEt/8F7r/4e+rz/6KquAPV9o/HMch/aMfMfxbv41TLKIYBi3/7b8SuvfeBQtEYqdK2JnyrHEaTsnGzptoS7Rw0eXo1BJ9EoNECCGEEEIIIYQQQgghhHh31FocxHEcy3GcHziO8wngGuAY8IyiKL92vn0VRblbUZTDiqIcUxTlP8zz/s2KoiQVRdkz8+f3a5HnC43i1vBvayLz4knSPx4k9+YEodu7TveCLJHy9DRqXR3W2Fg1AMkpqUcfpXjw4NJkTCy48sQE43/0RwBokXB1kljDZ3+D9BNPUDx4gOHPfZ7cK69QPHQQc3gYV1cnhf0HcHV2Ujx6FADF5cbOZFA8HoqH32LqL/8DRpuColVuP+5lYTwrIqSfHiTxL304xo14Nl8PioJv2zYyzz8PgKujncJb+9FbWyn1D2AlEoQ/8CCTf/lXOMUi3s2biX/ta/ivuYbMM8+Sfe55Qvffx/j/+J8YrS3k9+4lt3MnwVtuZvqv/xrvhg1kX3oJK5HAvXoN2ZdewrtpE9kXXwRAb2ig1NeHq6uLwsFDAHjWrCG/ezeKx4OVzuDk84TuvYfpr329Mhj+zjuY/D//B//VV5P89rdn/X9a8Tj5vXsX/LqJhWOmSyQeO874F99g4s/3MPHVtyhP5M67n6LOcyNXQanJL/C7YyYSZJ59tjoI/pTCoUMkH32sGoAEKqvNpr73PbxbtlQDkACY4+MUpCzXTPHAgVkBSABS330ULRSalTb15b8meMP11df5N9/FNVBAceloUTeBHa1kdo6Q/vEgqcf7KByNo4fchO/upuk3t9L0m1sJ39ODfgFPRBLinci9/HI1AAmAk8+TeerHlX+XTVA1PJs3M/U3fzNrPzuZpNjbi9Hsw7EdUj8aIP3UAI7t4N0Qw85kFvNjiAWUfeEF9GCIxDf/GXNwaFYAEoDEP/8z9uRkZWWsTAbHNN/xse18mcKxBOkfD5J+ZgjPigiunjCqz6iutCXEUlJ0FfeKCK6uEOmnB0j/eJDS8eS87Q9WoYA5OYVTLmMXCpVnr40bUHWD8tAQ+T1v4pjlagCSU6b/9m9RfT6sycoq306piJVOY6fS1WdLAKdQYOqvvoR9akKHuOTZ5TLZV16pBiABwHGY/trfgeJgNPvwbWkg/XylfSy7awzzHTx3CbFYrEIBxTCY+qu/nJ0er9zvQrd3YY7nSD9VqUdmXhjBypTmO5QQC0NR8G1vwpwuVMuhFnRddMHwsq+8SvzrX6+0Yc1MEsIysZJJzKlprHQaJ5+fFYAEYPqrfwdUVrhVXS5wHMyxMRp+8RfJ7txJ6eTJpfg44hKh6Cpa1INe5yE18/0yJ3IEb+nAKZfB7SLxT/88q+3VKRbJPP8cdj6/hDkXS8KxcdJp8rt2VV7mMvi2NqIFjGp7k5Uoorgl8IgQtVTu768GIDll6stfxh4bW6IciQuZnUqhuj3YhTyK242TzWElkmBbZJ597nQAEgDLIvXYY+jNzejhCEZ7G9Nf+QpOoRJIIr9rF5N/+VeV4KvnYcYLTH/zCON/uofxP32D6X86/N4CUigK6HM7nJV50sTSUVQI3thOaTBTeUb78QCu1gCqBB8QAoDUE08w9aUv4RSL2Mkko//PH1A8fryyYNoZIh/8INNf//tqABKo9P9mX34ZY8WKapo1NUXh8JF5z1XqH2D43/+H6v3dKZcZ+Y//ieIZfcq1pmjKnHEaud1jmJPyjLiopHtWCCGEEEIIIYQQQgghhHhPatb7rCiKW1GUh4GvA78KfBH41nn20YA/B+4B1gE/pSjKunk2fd5xnC0zf/5LrfJ8IVFdGqmnBnBMG8WlYWfKZJ4/ufQDBBQFFbBz80/4OFu6uASY5unrO9OJ69m0idxruzDHxlB9fszxcVwdHRR7j1e2m5lUWR4dxeisrPxujo9hdHVhp9PoDY2UBweZ+tIf47+yMsHevSJC5sVhsCsdyHa8RG5fCf+td2DFp9EbG2dlS4/FMMdGK6dzuSvHbWykNFCZyOZZu5b87t2gqtjZLADerdvIvvBC5fiFSmey0d5OqfdY9bPOMRM4wkom0WN1ADiWieKaPRhEi9Zhzgxcs3OVTmLF4533uyEDjS9upb4kuVdHq0tjlPvTZF8bxbHPvVaG3uRDb/PPBIKoDCgO7GhFr1v8yR+KYcwb/cTV3Y2VSs5JtxNJtHB4Tro5Nr4g+bscWen5AxqoPv+s106phF06PXHt1H3pnVAUhcC1Lfi2NpH6UT9O2arUNXIm0984hDldQNFVjAYfRoNv6eseQtRA+eTwnLTS0BCKxw2qgmOW0byeal3hTFY6jZUuUzyaAF0BXan8G7Cy6QXOuVgsudd24TgOim7M/0xj25WACw7YxRKO887WxrKLJskf9GPFC5Xffdsh8+Iw3nV1GC3+8x9AiEWg13vxbqon+/IIOJU6qjlVIP3sEHZpdrA6HAenXAJNQ4vF0IJBSoODKF4vWqwOxePBLsydJOGUy4CClUxV/q2qlaAkificbUsnTsiz0uVE07DTc39PnVQao8HAe0Uj6R8PgmmDAk7RZvpfj0gQB3HBsNIZKBZnB9IBysOHca0MUR7PUR7OVtoADI3szmFKA6klyq24HCmGihkvUB7KVCYkagr5fZPVtteLRebZZ+ak5V7fDYaBGgig+rw4bwuyC0C5jOM4qD4fjqpi53LYmQxWfBr/jh3vKrigEPNxiha5PROgKiiGSnk4izldwC5nUGDeeo6dSKJ4PIufWbG0PJ5Z7bnJ7/0LRrOvck+m8hxWGkpTOBJ/x20OQojzO9VXeyanVKoGihDiTHpLC4rLQPF6UXQDK5NBcbuwC4X5f9MzGRRNwzHNed/PPPUjrKmp8563cGiawv7KdoqhUjgcJ3/w/Pu9neY3CN/ZNStN8eq4OoLv+lhi4ahujdLxBOZ4DsVQQVHIvjYKivz+C2HlciS/+S9z0vO7d2O0tc1OdJx5F4uwkkk8a1a/LXX+75c1OYHztr4Ip1zGGl+48S96s5/Ata2knjodnN3OmcS/eQQzLvWTxSbPXkIIIYQQQgghhBBCCCHEu1OTWaaKonwVeAnYCvyB4zhXOo7z/zqOc75l5a4CjjmOc9xxnBLwj8AHapGni42dKeO7opHQ7V34r2widGcXRosfO3v+lVIWkuJ2YxeL6M3NuLq7Z73nXr0aV3v70mRMLDi9qYm6n/1E9bXq9+Ne1kPh0KFKgla5fRQOHsS3ZUvl3/v349uxY2bQjYJ79WpSj32Pup/+aVwrVpB+4gka/t1vUtizB5wBQndEZ602oDf6CN3djaslSPQjn8V/830EbrwRxe2mPDKCe9UqiocP4505n1MsoEUiWIkEekMDAFY2ixoOg22juNwAmCMj1fKruitp+b178V19deU45TJaJEJ+7178110HQHbny4Tuuxdreho9Vo9WV0f6iSeIfOQjOIUCWiiI4vGQf2N3dZ9Tx84+9xyhe+9523+ojnfjxvd1TcTSKg3MHUxWODCNXTz35AU95Cb6oVVEPrgC/3UtRD+yGv91bUsS6EHz+wneeSeos8+tRaMEb799zvbBO26ndMZK9acEbrl5gXJ4+dGbGuf+vq5Zg52dPYDG6OzEnJio/Lu7G9/Wre/qPO6uUGVV+U0Ns+oaru4wVqp4/gMIcZHxXX3VnLTAjTeihcKoLhfWdJzy2BjhD7zt0UPT8F1xBaXBDKE7uwhe10bwujZCd3ZRGkyjGsYifQKx0LwbN+AU8jjFIkZ7G3pz8+z3r7gCvaEBxzKxzfI7vvZ2tozR6CV0W2flXntXF+4VERS3hh52L8RHEeJdU10aOODdPLteoLjUuW0QpRKKWgmoY7S0YHR3EbzjDvS6KN6NG/GsXo3R0oIWjc7azX/TTdjlMlqsDnN6GsXlwmhswr18+Zz8hD/4EHoksoCfWFxIdLcb31VXVYOYnhK8+y7w22ihSuBP37bTbWT+rU2YKQlCIi4MqmGA10vogftnpU/9zZ8RvKGRUl8K35VNs+6vZnpp23fF5cUumJROZgjd1U3g2laCN7QTur2T8ujcAIwXMs887aju5cvQ62OooSCK4UILhdHqZgdpDdx6K2oggOL1gmnilMrYuRxWMokaCmE0NS3WRxCXqPJYjuCtHQRvasd/TQuhu7spT+ZQ3X7KwyME394vAPhvuAFH2hMuP6kURlMT+sx9x8lmKA3F8aypI3TnTD3h9q7KZMriPEGVhBDviaujHTUUmpUWvP121IbGs+whLmeu5mb0tjaMlhZUnxetLjozyT1L4Prr52wfevABnGIRNeCfs5gAgHvNWtRA4LznzR+axmjxE7q7G/81LQRv6TjbfPnz8qyto/7n1uO7upnQnV00fGoTRpMEw76Q2DmTcrJ4+nrf3E7w5naspPTPCqG6XLhWzO0zcPV0o7ec0W+nKFiWRei+++Zs67/6GrLPPld9rUWjuFe/PShJhd7YiOr3zUpT3O5qnX0h6GE3eouf0M0dp/sNl0ewc6aM01hEyszgRAlBIoQQQgghhBBCCCGEEEK8O3qNjvMxIAusAn5dOT2RQAEcx3FCZ9mvDRg84/UQcPU82+1QFOVNYBj4vOM4+2uS6wuIFnZhZcrkdp+Oru+/qhnFV6tL9N5oXi/5sTG0YJCG3/ws6SefpLB/P95Nmwnedy/ulSuXNH9i4SiqSvQnfxItHCb1/e/T9Lu/S/7gAXzbt5F69DHKQ0N4Nqyn8NZ+HMskcOutZJ5+muhPfQT/jh0Ue4/R8JufRVFV0HU6/uIvsAt5tEiE8MMPQ7mMFq2jeDxZOZ+h4t/eRPLxE9VePy2yCv/1jXR+ZS2lgUFC995L/s03sXN56j/zGZLf/haxT/8yk3/6ZzimhWvFClLf/z6xT3yCiS9+ESsRx71qJekf/YjGz32O8T/6I7Ivv0zkJz5M4p+/iX7Xnfh27CD+jX+g4Tc+S/qZZ0g/9WNa/tt/JfvCi3jWbyBw662Ux8Zp/cM/xJqcQAkE8F9zNeXRMdq+8AUyP34Kz8aNKC4XhcOHCdxyM5mnn8EcGyf2qU+Refpp9KYmYr/0KTzr1y/dBRXvm9Eyd9CYa3kY1XXu+7SVKZF6vI/ikdOrvofu6kK/qQNFVc6x58LwX30VHX/5lyT+7d9wikUijzyMf9s2CkeP0vjvf5vU974HKITuuxfXypUY9fXEfuXTTH/l/6K43TR+9rP4tm9f9Hxfqtzd3cR++ZfJvvB89fc19IEHK/e0ZcsoHT+OZ8tmGj/3OcrDw7R94U/wrF//roOAKZqKUe8llzdJPXk6sIxvexNqwFXrjyXEkvNu2ULTf/59Jv73n2Dn84QffJDAnXcAYE1MoPl9lI4ew3ftDmK/8mkyP/oRWjhSmUzq9eHb3ED8m0dxyjZQqadEP7wSLbj4922xMPzXXcf4//if1H/606RffImm3/kdUo8/TvHwIbxbtxG88w7MXB47lZoTXOHcFMqjWbKvjFZTAje0oTf6zrGPEItPb/RSOByfXS/Y1gSutwWrq6/HnJyqrA7oMtBiMYz2dpxiERS1EjhN1Wj6/d8j/b3vU+w9hu+qqwncfDPlsVG0SBRXZxd2Nove0IA7uo6G3/o8U3/1JexcjsiHP0T4oYcW+dOLpaZ1dND8B39A8tvfxs7lCN55B57Nm/G0tlI0U3jWxbBSJXKvn24jC5YsXI2+JQnmKMSZjPpY5V63YwegkPnxU2jhCOGHHsKxUvh3NFE8kiT32lh1n+CtHTiWg6JJXVIsPNWtE7iqmfi/HAWr0siqeHXqfnL+CTgXqsCNN5H45r9QOnoUqATM9t98M6o/AKqCncthF4q0/Pf/RvK7j1I8sJ/AbbcTuOVmFJcLO5/HSiSwM5WgwnY2i2/dOtyrVi3hpxKXAldniPi/HMFOzwRIUyDyyEr0kB9N11FXr6bhc/+O9OM/AF0nfP/9uHp6cL2DCcni0qI3NVEcG6P1j/6I+Df+gdKxY7g6/ZhjNqknTj+HuddEq/drIcT7pzQ20vz7v0/qe49R6uvHv2MHgdtuRa+PLXXWxAXKf8UVFIaGKv0GkSjm+Di43TiqSsv/+B/Ev/ENKJeIfOQj6PWVRVEUt7tSv7zmGnIvvwyA6vfR+PnPob2D33z3qiiUbVI/6KumaTEP3rV16DHvu8q/6tbxrKrDs6ru/BuLJaF4dALbmkh8p/f0OJiwm+iHZayVEIquE/vZnyXzzLM4uRwAemsrgRtvJHjnneR27cIcGUXxeigfOIBn8yYaPvtZUj/4AarXQ+i++zG6Omn63f9E8jvfxbNuLeH7H8Dd1TXv+VydnbT+4R8y/PnPY2dzKF4vrf/9v89ZNKaWrHSJ9FMDlE6kqmmBG9owMyUZp7GIqkOZ5dFLCCGEEEIIIYQQQgghhHhXFMdZutZ1RVE+DNzlOM4vzLz+GHCV4zi/dsY2IcB2HCejKMq9wBccx5m3N1ZRlE8BnwLo7Ozc1t/fP99mF6TiiSQTX96LZ20Mo9FHeSxL4cg0jZ/Ziqt5aVcqKfYPUJyaRPf7cbJZ7FwONRzGt3o1iuuy7xCryeyBC73sWuk0itsNikLp+HFGfu/3KezdS/QTH0dvaMAcGSFw661ooTCK14OrsxP1HZYNK1cm9aMB7EyJ8mgOc7zSsYyu4tsQw7utCXdXqLJa9wzHcVAUhfLoKCgqTrFAeXwcLRDEHB/DUVVUXac8OorR2loZcG7bGA0NWJP/P3v/GWXZed/3nt9n55NDncq5cw4AGkAjZzAHMYiSqWDJlpOkubbXeK5f3Zl17ywve7zmWh77Xsm+sqxASpZIkQJJEGBAIpEbsRudq7pyPFV18jk7z4tdqEazG7FDNbqfz1oSUbtO2FW1e5+9n+f//z1F1LY2hKoSNJtrDXRC19Ha26PmuFwO8SFXJgxaLbyFBUJFwZudJahW0YeH0dvbEbqOYpof6vWugEvW+XK1H7+XirfSYuW7p7FPRGEiat6k7Td2YrzPalKtkRLFPzlCbGcBLW/hTFaxx8t0/v4N6O1XT0OyPTeHXy4TLC+DECiZLGoui9nVRRgEePPzoChXy4qx19S51yuVcCYmCFstSKUQmobwfUJFQXgeWns7env7Rb+PPVZm8b8eJra9Da09hju7eq3xe/sxLhCyI10W19Sx+3Hgzs0Reh56V7Ralltcwi+XCMpl/EYDoRsI0yBsthCaitbVhTU8zMp3T9E6vkJsVwGA5pEi5tYs+S9e1w1r19zxa4+PY58+jWJZ0UrpQkRFh4k4QaVCWKuBrpPYvx/tA56H7fEyrWMr+DWH5puLhE6A0BXa/9m+db+vu45dc8fupWCPlVn8wzdBgLUtj96VwF1okL5/AKPn3OuC+osv4i4sIBQFJR5HSaeJ33AD7wigxa/VaJ0+TVCtosTjBK0WYauFUDWUWAxUFcWy0Pv70DKZs+fnzs4Pfe91nbkmj197Zha/Gp1nw1YLJZ1G7ezE7OggsD2aby2x8tcno+Nzcw69N4m31CR1/8D73n9JV41r8th9mz0xgX1mDDWbIaxWwYqhplP4S0uo6U0s/flxAJSETmxPAcVUid/UiV64esYApHf1sT92Qy9g6S+O4i40ie1sgyCkcbhI8mA36XsHrth+XAru/Dz2qVMErRbGwADm5s1r1x9euYwzMYHfaETj0KqK0HSsLZsJPA/n+HGciQmCRpOgXsfcsoXUneevZn+N+dgfvx8HzePL2CMlmm8t4S+3AND7ErT/wz0opkbz6FFC3yeo1UBREKkUwveJ7969znt+Vbtmj93msWN4nodmWQQrJZRMP0t/egolYRDfUwBV0HpridxXtmAOZdZ7d6WP5po9fj+uglaL1sQEYaUaLY6RyUIqSfwyNhd/TMlj913Yo6N4KyVCu0UYhCiJOEJRCMMQtb0dq7f37GMnJnDHxghcD3PDMObw8Ad6D3ehTvFP3sJfsQFQcyaxXQWsrTmsTR8mEPu69LE7doOGy8IfvYlQBdbmHEHLo/FmkexnNpC48aqYd5eunI/d8Xul2KdO0Tp5Mrqv374NY+Ds+EVg24Sui5pM4szM4JXLBKUSKApqNouWz3+oWoowDHEnJnAXF9EKBYzBwXPmOi611ukViv/9KPFdbag5C2eigjNRJf/rO4ht/tic8y/HL+iKFiz/3//mDf7mlSn+3Zf28NUD/VfyraX1J5PBJUmSJEmSJEmSJEmSJEmSLsJ6h5AcBP6fYRg+vPr1vwYIw/DfvMdzxoCbwjAsvtdr33TTTeGhQ4cu4d5eXq3TK7jzDRqvLuBO19D7ksT3d2AMpTF7U+u9e/iVCs7MDEJVMfr6oiYiCS7DRMXH4dj1ymXciQmEYWIMDV50wEZg+3iLDYr//S2CmouS0knd3U/9hVm8pSbWtjyZTwyhy2ajS+myTLJ9HI7fi+E3XLyFJqEfoLfHUNPvf+w3Ty7jLTapvziHt9DA3JDB2prH3JK96oIf/Hodd2oKEOh9vaiJq/bf3DV97vWWl3Hn5hCWhdnff8kac1ujJdzZOo1D87izdYyBFLE97RiDKcz+9CV5D+l9XdPH7rWk/JMxwpZP/eV5CCFxoBMRU8k8MLTeu7aerpvj1y+XcWfnQFUw+vtRLOsDPc8tNqk8PkbzSBE1a5K8rYfa87P4yy06/qf1D5e8jl03x+6HEQXlvUXmE0M031jEmayi9yTIfGr4gs0OztQ0fqWMmk5j9PWtwx5ft67Z4ze695gmFGD0nnvv0TyxzNKfHY2Oz7eWcMYqaJ1xMp/eQGzLx6Yw+3p3zR67b/NrNdzZWQgC9P5+1HgUMNI8vszSf38LYzCNtTlL7flZgpZH4tZuUnf2omU/2HWFtG4+9sdu4PhUfjJO6AQ0XpkHVZC4uRs1a5C6rff9X+Aa4szM4C0toeXyGH3Xxc/+sT9+r2Z+w6Xx2gKVH4+DHxK/sZOg6dF8YxE1Y9Lxe/tRk9EYXhgEqyE4DbS2Anpnxzrv/VXvmj52vaUl3IWFaB5NL1D58QRGd4LaS3PgBcRv6CS2t4C1Ibveuyp9NNf08ftxFQYBzvg4QbOJViigd8jz8AXIY/cD8JtN3MkpwjCIxi6Sl2Ze1yvZzP9/XyF0/Ci4MmnQODQHQpB+YID4jZ2ocRna+y4+dseuX3WoPTeNt2zTPFxESWgkb+tBzVkk9snz03XmY3f8Xo38ahVnevpjU7/YPL6MV2yu1b+ZG7NYm7KY2/Ifp3lDGUIifZzJEBJJkiRJkiRJkiRJkiRJkqSLoK3z+78MbBZCDAPTwNeAX33nA4QQXcB8GIahEOJmQAGWrvieXmZK0qD6VycIai7CVHGna1QrDu1br47V0dR0mlhaNihLES2TQbuEK/cpporemyR5sJvKjydI3tJN+bEz4EVzjq1jywSuT9vXd6Ba633akq5nalxHHfpwRV9KXKfy2DFCL0AYKvZomaDpEdv3wVdjuVLURAJ169b13o3rnpbPo+Xzl/x1lZhG5ScThC0PYao4E1X8mkth+85L/l6S9HGnpk1KT40AAryA2rMzZL+4ab13S7pC1EwGNfPhViAOXJ/y42O0DhdBFQQ1l/IPz5B+YBB7vIKWkw3H0tVFK8RI3tFN7WfT+GU7Ot0VWyz/5Qk6fnffecds1Lh7XTTvSldIdO+x5YLf0zviJA50UX9pDm+xCYA332D5G8fo+L396IWru7Bcuj6oySTq5s3nbdfaY4iYhrUtT+XxsbXt9WdnUBM66fsGznuOJF1KiqGipk3K3x8FTYAXUntmitwvX/icey0zenowenrWezeka4Q9Wqb8/VGEoRK6AfUXZknd248wVJK396wFkAAIRcEcGlq/nZWuKlpbG1pbGwBBw8XcnKXygzMACEOh/vIcWldchpBI0iUkFAVzeHi9d0O6BqixGOqW8+/7Lvp10waJg93Un5tBK8SoPjG59r3yY2OoOZP4rqtvHln6aERcI2j6NN9YROgKQd2j8vg4bb8p52cl6aNQUyli27at9258YEpci+rf/BChq9inS1EI1U2d671r16XwymafSJIkSZIkSZIkSZIkSZIkSdLH3rp284dh6Akhfhd4HFCB/xaG4VtCiH+8+v0/BL4M/BMhhAc0ga+FYXjNzQgEDRdjMI3RmySouyhxHa/YxK+66IX13jtJuvyEEMRv6gIhCMNwLYBEzZgkDnYTrK40aG3IoHd+bFaDkCSCqkN8XwdqxiBoeigJHXusQlB3IWOu9+5J15Gg5hLblkcrxAgaLkpCx5mqEdQ8aFvvvZOkq0wIqTt6IQRhqdSem6H51hLJW7rXe8+kq5RfcbBPrZB+YIDQCwmDECWuIWIq2c9uQDHV9d5FSTqHljExh7PUnpomcUs3akpfu1b1yrYMzpHWhVdq4UxU8VZamBszeIvNtRASgND28ZaaMoREuqrpbTHa/+Fu6ofmztkev6kTBFSemkTvTmD0p+TK1tJlEfoBrZPLpB8aJLR9ILqnscerJPbLBhdJ+qi8lRbpBwbfMaZWxR4tk/2ljZgyPEL6gJS4jjdXR+9OENvbHi1MYSiErk/g+ii6HDuQJEm6HghFkDzYjVqwaL66EG3UFFJ3RQHA7kwdO21i9CYRqrKOeypdCmHdxZmpkv7EEEHdRegKBNH1pSRJ1z6/6pC4sevsHExSxz5dJqi5kDTWe/euG0JE/3vtVRxLkiRJkiRJkiRJkiRJkiRJ0uW1riEkAGEYPgo8+gvb/vAd//2fgP90pffrSlPiGoqlUfnR+No2a3sexZIFZ9L1Q8uYpO8boHlyOdogIHlnL+VHz0AQzQRW4xqFf7gbozu5jnsqSR+cktBxiw3qL59tQEre1gOyGVm6wpS4RtBwqfx4YW1b/MZOlJg8FiXpnZzpKuVHz6w17KEJMg8P4dfc9d0x6aqm6Crp+waoPDlJ2PSijaqg7evb0Qvx9d05SXoXasYgfmMH7kyN+mR1bXv6k0OYg2nE21WZknQFeFWH5b8+gTNaWduWvLMXb6WFv3y2KUOJrftQpiS9L6MnidN1NkA3truAv9KicWh+bVvqgQHS9/bLhjLp0lME8f0dlP72NKEbACB0hdxXt6zzjknSx5ffdHHOVGgdXVrbFr+pE603SXxvh7xulj4UrTuB3h6n/NjY2jY1bxHbUUCRYXuSJEnXDS1rkbypC2+6hnOmQuruPuovzRJUo3mI6pOTFH5rF9bm3DrvqXTRdIX4vk7K3xuB1eZ3NWOS+9Lm9d0vSZKuCDWhnzcHk7yrFyHrha4ogbxvlyRJkiRJkiRJkiRJkiRJkqSPQlburxO74VJbsdEtlXRbjNAPsc+Uo5WzgxChKrROLJ9tfpSkdeI0ParLLTRTJXOFCiCN3lTUoFFzaB1fXgsg0XsSxHYWcCaqEILeEUdosllDAtfxqS61UFRBuhBDUa6eCeTQ9sEPST84SOgHCEVQf32exMHu9d416RrWarjUV2wMSyPVZgEQugF+zT17LKoKjdcXCL2edd5bSbp6uAsNnMkqqbv6sMcr2CdXwAuxxyqkHx6kXrZpVl3iaZ142lzv3ZWugF+8b3s3atogsH3CpoeS0Enc0gWAX7bxaw6qXM1MugrphTjmcIbGKwsIXSFxazfCUMELcObqmDL4UbqMPNenUmwhFEGmYOHN1dcCSIyBFNbWPGEQkHlokPLjY/grNvGbu9A6ZLCTdHV4v2sEc0MWtc3CX2qhdyWo/Hj8nO9Xn5kitqMNv+YgFIHWEUeT15fSJSCEwBmvEt/XgZoxCEMIWx726RLx3e3rvXvA2c8ARRGkCxaKDOORrmJ+xcGeqKB3J9ByJrXnZyEIabwyT+F3dr9rAEmj6tCoOFgJjWTWusJ7LV1NfnGcNrYpS/HPjkX3YAe7EbqKEOCtNNFlCIkkrbsgCKksNgmCkFSbhW7IBmHpXJWlJm7LJ5EzseL6Rb2WEILEgW4aby2DH6wFkJibs5hDGZzpGkpKR+9MyNCzjzERQuO1eVJ394GqIAS4cw38qrPeuyZJ14y3z83JnIl5kefmSy2wfdDEufVCry2QuEXWC62HcL13QJIkSZIkSZIkSZIkSZIkSZI+ZmQIyTpYmqkx+toCgQ+qJsj3JOhps0jc3EXlR+NrgQuJW7sJQzn9Ia2f5dk6T3/zBDOnShQGktz8mWGMmEamPU4ye/kaI9SETvZzG3GXmpQfGQFA74pjbsqebdoQkPvyFuL7OxBXUeCEdOVVig1GXlvEafooqiCRMdmwvx0rcXUUF4SA3p08e+wqgsxDg4SBPL9Ll8fSTI2pY8u06h52w6VrU5aNe9sJwxBzQ+ac82j6gUGCMFjfHZakq4Q9WqL4J2+trRYe21XA2tFG6+gSQcOl3PJ49H9/ndqKTapg8cBv7qBnU/ZDvUdlqUm9ZGMlDbLtMXkNc5UKgpDSfIPqcpPiVI1XfjiOogju/OpmNt7YgaZfuPkgbHmgCVL39VN5fIzQiY4lZ7JK5lPDqAkZRCJdXs2qQ7nYRNMVsh1xtPdplBGagjCjYaH0Q4NUn54iqEXNDvrJFRKf3UiyL3XZ91u6/lSXmoy8toDT9BFCYKV0NuSiMQZjIHXe/VPuS5tRcyZ6ZwLVkkOZ0vpbmqlx5o1FfDdE0QT53iSDO/LnXCPohRjtv70Ld6ZO4JwfMp2+p5+lPz+Kv2IDoHUnaPt729ALMmhHunhaZ5zGi7O4LzeAaJXt1AP967xXUF5oUCk2qS63ePF7Z2jVXW54aIA99/YTS8lrZenq4xabLH3jGN5sHQA1Z5J+YCCaxwt514D0+bEKE28t4Xshqibo2ZShZ0tONg9fh4rTNcbeXMRzomOh0J+kry9FUI+CoqvPnL0HMwZT6IU4Wk6G1kjSemnVXEbfWKBecgj8ECOmsmFfB5l2GRAkge8GjB9bYmmyRuCHqLpgeG87bT0XF+Jr9Cbp+J3dNF5fBMDankfoytq4SPWnE7T95k6sjdmL/RGkdRJ6IYkbOin/aJyw6QFgbsoiTBlyJH28eI5PaaGB5wRk2mNXxX285/qMvLrIz/7HSeyGR8dwivu+vp223qsoYF0ItLbY2fFuVZB5eIjQlzUaV9Lbt+OyDFeSJEmSJEmSJEmSJEmSJEmSPhxZuX+FuS2PxYkaYSiAkDCEcrFFZ96i/uo8qXv7IQwRqkLr9Aoxro7VCaXrj+f4vPjIKDOnSnRtSNO1McNjf3QEIQT7HuinYzBFLGWQ605clrAHNWWgpgz823pY+dYpYrsKVH46EX1TQOLmLvxSi+bxJczeFGpGrhZ7PQrDkIWJKt5qwzghNGsOxckqfdvyl+c9gxBvoYG30kJNGmidMRTj3T9OhSKovzh7dkMQUn1mCmtX22XZP+n6Vl1pceTpad56ZpowhExHjFRbjOW5GokQ7JHS2VV2VIXG4UWsHZfn34okfVyEXoAzW8Meq5C6p5/Gm4t48w2aR4qkHxqkdXSJ+E1d/PV/fINmLSoQrRZb/PAPD/PVf32AVNsHaw6ZHSkxdWKFMIiar/u25dh0UyeqXPX7qrIyX2d+tEJ1pcXMiRLLs3Vu+dwGXvjOCD/578fIdMbpGs5c8LnWtjx+zaX+4txaAEl8XztazqJ1qoQ5mJbNRNJlszxb58f/7S1aNZdtB7uJpw3aB1IU+pPvGpwDUdijPpTGPlMmdINoRU4tWpHTX2zgdyVQ36W5UpI+qoWJKt7qeTIE7IaH25NAmCrW1jz26NlrVoSg/OQEHb+9G/UqCZqUrm9Oy6M4VWUtyzGE6mKT5Zk6HYPpcx6r5WNo+RjeUhMlrhE0omtJtc3CW26tBZAAeLN1WiMlCIgen9DRO+IoMnhH+ghCx0fvThLbVSAMo6/duTphGF7xEAS76bIy26Cy1GJpusbhJ6cQAm761BCv/2SSQ4+OU+hLsfGGjiu6X5L0Tn7TxZtvELR8tEIMvRA1m7eOL68FkAD4Kzbecgs1b6FYKlr+/Kb0Wslmabq61uAkBKzMNUjkLLIdMmjqemI3XJamarwz/7m82CTdZpF6aAB7pEJQc4nv70BrswhDcBcbctxAktbR4lSVZtVda0713IDFySrpgiWDpCSWZmpUFptrX4cBLE3VSOUsjNjF3bfp7XGszVmqT0xg9KXWGtX1viSx7W04YxUUU0XvTiJUeSx+3PgqNI8vk7y5a23c1ZmtE7gygED6+GhUbF754ThvPjUFIRR6kzz4D3aS706s634Vp2q89bNp9t7fT+CHBH7Ii4+M8uDf34F+lYypCQFesXm2RkMR1F+bl/VCV9haCAkyhUSSJEmSJEmSJEmSJEmSJEmSPoyrY8blOlKv2AhCFEUQhGHUbRGEeA2P5IEuyo+PIXSV0PGJ7++QyffSumlUXc68UQRgcHeBF/9uFIDbvrSRN346ySuPjdO3LcfGG9oxLI1sZ5y2niSqfmkb1KztebKf3xg1aqzOBabu7ad5uIi3Wuijtcdo+/Ud6O2yiPd602q4hAEoQhCKs5PF9uoqQpflPY8usfTN4xBE75d+aJDkHT3vGkQS2qv7ooAwNcKmR9DwCG15fpcuveJElSNPT699XSm2UDXB8kwDxRCYm7JUfjoeHYuOR/q+QQJPHovS9Sv0Q+pvLFD61qnoOkOsXmf4IV6xSRiEZH9pM62MsRZA8rZWzaW63PpAISQL4xVmTpcI/ZAggOpSi8WJGm29KQp9V9FqXNexRtVhbqREcaqGQHDkmWl6Nmfp2pDhzSem2Hygk2PPzVJeaL5rCIkxmAYBxf/rCACJg924U7W1VSyVlE7ht3dhdMm/uXRp+X7AGz+dpF6y2ffgAC89cob2wRR202Nxskr7QIq23iS6cX4Yid4eJ/vZDSx/43i0EvcTEwQND2GpGENpnJ4ksc71LSSWri2e6xP4AbyjZ0YIWK679P72LtxiEzVlrDXciIRO+r5+gqYHuXXaaUl6h3rJJgyiwFH8aFwgDKFVd971OVpbjMJv7aLy0wmcySqJW7toro65vU0YKkJVmP+Pr8HqPVryjh5S9w+gxmQAj/ThCEPFKzZpHF5EqArCUEg/MEjoBYj3CCe7lGorLRYnqlSWWjSrLm8+OYmqKdzy+Q08+zenePkHY+y+p49XHx9n6viyDCGR1o1fcyj/aIzGS/MACFOl8Fs7MQczOBOV8x7vzTdI3NxJbHvhggFpjbJN8PbnBCEIge+H1Mu2DCG5ztTLNmEYoCgCf3VyKwygXnHo3pan/twsidt6cCerNF5bAKKgMvXrBka3HDeQpPXgrM4titX/pwhBGAS0Gi6xhLGu+yatv1bdJfTPzkUrqiAMQmqlFvnYxZ+3jb4Ubb+xE3emBkQBJOZAem18pPLEBPmvbye+XTatf9y4VRdra37tbxnaHubG7DljY5J0tZsfq/Lmk1NrXxena7z+kwnu/tWt67rYQrPqMLynsLZokRFTGdzTRr3ikL1KQkjCIERrj1H56QTCjOpBM58YWlvMQLpS5ElXkiRJkiRJkiRJkiRJkiRJkj6Kq2PG5TrydvGhUASaqgAiKmKxVFqjZdL3D+JXHRRLJXQDhJxzktaJYankuxOszNYxLI1E1iCZtZg5VaJesunZnCWZs3j6mycx4xp77+9nfqyCGddp70+S67o0jWpqwiB5sAdntkb1qUmEqRK0/LUAEmtnG0ZvkvqheYy+FMZACi1jXpL3lq5+oR8iCKNz6juaKvXY5Wmo8JZbLH/71FoACUDlR+NYm3MY/akLPkfNxUjc0oWSNAjqLmraiBrr0rJgUbr0au9YSRvghocHePPJKcoLTb72OzsJai7p+wbway5qysCdr2Ntz60+t8XiVBW35ZNui1HoT6JdoeYkSVoP7kIDe7SEt9gk/fAQjVcX8BYaVJ+eInVPP9WfTmBuyGBtyNKaqiEEa6tgAiiawLpAw9EvKk5XmRkp4dkBmq4w8vIc22/roVFxqJdtGUKyznwvYHGywvTJEoEX0qq5HH1uloNf2Mhz3z7NgU8PM/r6IpsPdAIQT7/731wxVIyBNObmLPaZMkpMw5msAmAMp7G25Gi8uojbVcccyqDl5erG0qXhNDwm3lpi6y1dvPrYOLnuOB0DKV78u1GG9xawGx5zI2XaepO0D6aw4ucex0Z3ksTtPTSPLKHmLZJ3FQgqDsJSoWKDDCGRLqXw7XExhXhaRdUUmvVopWlzIE1Q92i8vojenSC2t52g6hA0XMJArlAoXR38IArRURQwkhqapeE0XQL/vZ9n9KXI/+o2gpaHGtcRoaA8VVv7fnxvO9WfTKwFkADUfj6DtaOAMpTGmariTFQQuoo5mEa/RONu0jVKgLklh7kxQ+gGKCkDd6G+GopweVWXW8yeLlFebKIogrd+PoPT9Lj5M8M8+63TnH5lgYGdbYwfWVrbn7a+C4+pSdLl5szWsE+VUEyN9MND1J+fwa84lL43SuG3d2Fty9N889zQqNjuAsnbehDahRvtfD8gDEM0QyWeMWhWXcIwlNcy16HACwjDaA443WYRBAGu7UdNiLkYsT3tCAHOZBWtECN+UydBzaF1bBmEwJCf9ZJ0xSmaIJ42sRsuwTvCJkJZryFx9jhQVIGqKRCGBGF4TjDJxRCaQmxbHmFG83Kx7W1roRWxfe3ohRj2yRVwA8wNGdSknGf+uAgV8FaapO7sxa84qEkdv+ycU28gSVe7pXeMYb1t4q0l7LpLPL1+9Vna6iJZ7zw3q4pAUa+iwAkhEKpC6t5+gkZUo2FPVLC259d7z65LoTz1SpIkSZIkSZIkSZIkSZIkSdKHIkNIrjBNV9YK1YMw+l8hBIHnY/QksUdKGAMpQtvHma5hbrm4ZV5d22NhrMrSTA1VU2jvT9I+mEaIq2jCTboqWQmdu391C9MnS0yfXGZ4T4HB3QVmT5cozcfp25bjpe+dAeCmTw7x0vfP4No+2w52U15o0Ky5dA2n6d2aJZ4yL7rIXe9KkP9726k9N4O30Ii29SZRYhqVH0UFOGreInVXL8ZQBr0Qe9dCYOnaEUKU5aRAEISYCY1YQqc026Cy0KK9P0nHYPqSNVkETZdwdSW0d/Kr777isZLU8co2Whj9tztbR+uMocTlSsbSpZcunG1oN+MavhtQXohCmzwvQG15eCU7CsNZbCAMNVqBs2Qz8uoCvh81RdRLNq2GS74rwdxYmUbZIZ4x6BrKkC7E1uvHk6RLwml5uLN1vLEy7pkKrVMrAGQ+OUz5R+NrjZ/ZL27CWG2Gy3XGOfhLm3ju26dJ5kz6d+QZ3NVGtvPd/z34fkBxssrIq4v4XkA8ZfDGTye58ZNDTJ1cJtseJyVDKNZVvWKzMFZh/PASsZRBvWSzOFFl+8Fujj07w/DeAp7ns+XmTlJ5k70P9FF4R4Nkpdhk/K0lJo+v0L8tx+DONtKFGNlPb2Dl+yP4lej6QEkbmEMZKo9H16wokDjYQ/yGDrSUKYPJpItmxDR6NmdRdRW74bH3vnZe+sEZejZn0U2VF/9ulMFdbXhOwMhrC7T3pxjYkSeZs9ZCUvWhNPVnZ0jc1EnjtQVi29sgCKk+M4XeFj8nNGdlvs6Z14vMj1UY3lOgf3ueRFYGQUofkAhRVUGuK05tuYXf8kgXLHQjun8PbQ9hqMT3tlN+bGztaY1XFij8g10QgDBVGT4qrRsFIAhJt8dp1RzsukssbaAZ7z8GpegqymrQY2x3AXuqSuvNIogosKz+8tx5zwmqNs6ZMot/fBhWm95ETKP9d3ZjdJ8Ns/NrLkHdRUlqqHKV9uueYmrUX5zD2pRFmCqtEyvEdxcInQARO/9YtZsuc6NlSvNNDFOlMJCi/V3Cdt9NbaXF7EiZybeWSRUsilM1xt4ocvBLG3n+b0eYOr5C53Ca4mSVnXf2Mn1iBQhp60vQv+3i5kAk6d14ZZvQ9lHTBsovrILtzFRZ/KPDhPZqipQqonGB74/iTtcIWz7mpiyJW7qpvzQLIcT2FIjtLrz3vEMYksyaNCsOdt0jltLRdFU2Ol2HQgSaLsh0xKit2CiqQrYjjrJ6D5Y40En1qSlQBIlbuyn/YHR1wgPs8QrpBwZQkwZaTo4dSdKVUC42adVcWnUXK6GjmQr1ZZuopEKexCUICUERKEIQ+D5CVSC8dEdHq+4yP1bGrji0f3qYsBXNR5ubs4ROQOUnE6AJwpZP6AaYmzJoGfkZ8XEgghDcAGe5ht4Zx6+6+FUbXREcfXaGcrFJ/7YcXRsycnEI6aqV64qft61ncxYjvr5lp4EPKCAQhEGAoiqECHz3KkoQE9HCGHp7DCWh40zX0PIWbstn/JV5aiVb1mFcAW+XycqrOkmSJEmSJEmSJEmSJEmSJEn6cGQIyRWm6QpCRAn8vu0RAIalIlQVdAUUgX26BGGIta0N3PdZRvN9zI2WKS00cZ0Azw0oTkcrHrYPpC/JzyNd2xYna7z4d6PEUjo3fnKIQ4+OUSk22f/QANnOBDd+cojl2RpzZ8q4tk//9jytusvx52fJdMRIt1k89Y2TBH7ADQ8PkMrHsFIGhvnhiyeEEMS25dG74jSPLmGfLmFty1N9YgIAa0sOrTNO+dEzhF5A/JYu0vcOoK3jqhvS5acAYShQNIXA8UmkLeorNq4TIETA0nQNhKBz6NKc89S0iZo18Uv2O3ZCnNOU+YvcYgNrY5bGG4tRQZoAYzCNt9xEbz+/WEOSLkb7YIqdd/bw1s9miKUMqiutte/phoK+IUvjjQW8YpMwCInvbYcwpLS6IvLSRJVYwqBjMIWiCmZHSjRrLk7LBxxmR0oYMQ0rIUN0pI+n0AuwR0q0npvFHi1hDGVIPzRE5fEx6q/ME9uep3VyhdiOPHpPci24T9UVdt3VQ8+WLOWFBpXFJsuz9bON/+q5DUgrc3XG3izi+yHJvEWl2OSVx8a58ZODnHxpjra+JF0bM+cEB0lXVnGyypk3iwhFUOhLsjRTp162SWRN4imD0nyTjfs7yPcl0XSFRsWh0JfCtT1iKYNW3eXpvzzBxFvLAJx5bZGBnXke+u2dmF0J2n51O/bJFRqH5onvaaf2/Ez0xoog88khGq8v0jqyhN6bIHGwG2tj7oqsTC9dm1RNYf9Dg5x+ZZ54xsD3ow6Ivq05Xvr+GTIdMTIdMV58ZJR8d4LuDRlGXl+gUXbp357HsFRWZuv03NGDt9jE6E9R/fkUem+S2JYcbrG5dr1bW2nxw//jMCvzUTDk6GuL7Lmvj9t+aVO00qAkvS+BbmlUik08NyDwAlo1b+34UdtixHa2UXtnGIOAxK3drPztaZzRMkpCJ/eVzVibcjJ8VLryhMBMGdSXWri2j+cFOA2PlqHgND2M2AcbbtdyFvkvb8G7rx+EQE3o6L1J3OlzV5bVOqKxLt7ROxE2PexTpbUQEnuszMq3TuIVW2gdMXJf2oI5KMd+r2thGN3bHF9G6ApK0iDwAkJx4VaLmVMlass2bssjWA1TVDWFfHfifd+qutxkaabO8ednEULQMZjm0KNjbLqxg1x3ghMvzDG4q43l2TrtAymMmEZxqsqdX9tMuhBj1929JLPyvki6tEIvoHl8mdJ3TxPUXMyNGbKf24jeefaYts+UzwaQAPgh9kgJvS+JmjRQEjqKoZL97DCJ27ohDNHyMRTjvec2FFXBbnrYLR/fDRBNHyGiMArp+iIUMCyNynKLwAsJfJ9G1SXTHp3z9HwMa0uOoGzTfGNxrRsueWcv3lKLxf/jDYSukv7EIPH9nagf8BpDkqQPr1VzmB8pYTc8XCdAUX0UVSGRtwiBd7mEkq4zigKqKnCdgBCBgohCxi7R4j+zp0tUl1s4TQ8nqTM0mAZFYA6mqfxkAmGqpB8apP7CLI3XFtD7k+R+afM54ZTSVcrx0dpiOHMNgpEyYRgS31UgVAW1lRapnEW9ZDNzusTA9rb13ltJuqCuDRk2H+jk1MvzACTzJjc8PISmrXNwjhKiagqeHZ2bAcIwJLiaUiD9gNi2PI03V+uFFFCHM3gtn3rJPluHMVqWdRiX0dqn9dV0bEiSJEmSJEmSJEmSJEmSJEnSx4CsWLrCdEtFCBCqWE3ij7aHhIS2hzmUxpmsIiwNYSiEF1G04No+rZpLEITRyloCAj+gsboityS9l3rJ5qXvjQKw+54+nv/OCL4bcNOnhjjzepHZkRH6tuXYcnMnTsun0JcinjV46ZHoOTvv6OG5b58mBG757AbefGKa6ZMrDO1uY+edvRgxjVSbhWF9uNOQlrWI7Wg725QREoU6DKWp/ChaXT5+YweqqbPyVyfQB1Ik9nWgd71/0bz08RMSEq5OEieyFoEfEAQBqhoVfvl+SKNsv8+rfHBqyiD/K9tY/uZx/LKNsFRyX9qM9h5hIsILCR0foy+JX3LQOuIENYfQu4pWX5GuGfGUyW1f2sT223twWh7NisPIK4sACEUhaHkYfSn8FRutECOoRdcErh1w6tA8+x8cpLLUZOrEMhtv7Fi7VjEsLSrICAWVpaYsfpE+lkIvoDVSwj40jzAUMp8apn5oHnukhLkxg7vYREkbtH19O0bv2VW/GxWHpekaTtNDMxRe/sEYpbkG8bSBbqoYlnZO2FW9bDP2RpEQCIMQ3/XpHEpRL7VRL9l4nk/XhgydQ2m5qt06qS61GD+yhNvy0UwVzwsY2JHnrZ/P0DmYJghC+nfkaR9MUim2eOuZGTRDZdvBLiaOLpPtbKGb6loAiaoppNosZk+XWZlv0DWcQY3rmJuzJO/uQyhirbkttrtA/dUF4rsK+GUbb6mJM1ZFjevnHHeS9GEV+pLEkjpdGzIsjFcwLJUgiK6TN+xr5/CTUwhFcPtXN1Geb+C2AoQAzw1Yma3z6o/G+ezXt6NVXeypEpkHB7FHyjgLDbSuBGEQIhTB8kx9LYDkbYefmmbXnb3kPkCjsiQhwHMCAi+EMEQ3NXw/gDDEbrnoXXFie9tpnVhee4q5MYt9agVntAyaIHlXL62jy9R+Nk1sTzvWtjxaRgaQSleIEGiqgqoruK6PpikEQYjbCliZr9M5lPnAL6UYKkbX2Yax3C9tZvkvj+EVW9H16uc2omZMgpp73nP9erTNW25S/NOjhE0PEdPwik2W/vwoHb+7Dy1r4czWaby+gDtVJb6/A3NLTgb2Xg80gWJq6F1xgqaP0Z2AICD0z2+0aFRtAj8k8AM0UyX0Q3w/pF5qvWcISavusDBepThV49TL87QPpNB0lUM/OMPeBwZ45dEx9j88yNGfT9MxmKYvbVBeaHDjp4aJp3WynQkUGcInXSbuXJ3lbxxbC3WwR8qUvjdK7stbcMbK1F+ZR82YZD45TOWJibX7tcAJ0PqSpG7tWQsbEZqK0fnBr3OdlodrB+CHaIaCEFGwqaLK4LTrjaIJXNsncAME0bxwGAR4ztnwG3MoTdD0qD09BYCatwhaHq2jSwCEjo89UkbRVRpvLqK3x4kf6JQN55J0iZWXmlHmXxjNhYRBCCIknjKpl+2LqteQrh1CCHRTxXN8Aj9EaCBUWLvguAj18uo1eRCimSpuy2emZNP15c2EK9E8d+JAJ9UnJgnqLsk7eyEIKT0yirUlS2xPO3pb7KL3Q7o8BAK/4mBtyODO1FGSOmEQRteIiqBestEtlWTWxPcCGfQsXZUSWZO7f3ULe+7tw3MDsh1xkrn1H18SCAxDjUJI/BC06B6Mq6kURwhCL8DoTeKXHfTOOEHNRRFR+cXbdRhhiKzDuIzk5ZwkSZIkSZIkSZIkSZIkSZIkfTQyhOQK03Q1mmAKQkKi1YlDPwQhUGIaIgCtzUJoCqFzcbNiYRCgrE5cq6ZACIFQLkUZhHQ9CMNwLSQn8EN8NyDXHaey1GJ2pEz3piypvMUTf3acTEeMnXf0UJyoMri7QN/WLL4X0r89j2aojB0uMn+mwsDOPGZc57v/4TXMmMaBzw4TSxokMgb5ngRm7INNpmpZi+wXNuEtNWkdXyaoOXhLTQD01eL46lOToAqMgTSNI0XEsSWMoQxmXxIhG36vGaEQUcNCCPGUju/6aLpCqLG2lMWlnkw2B9N0/LN9+BUbJa6h5d+7qCskKmBXk0Z0rreiho7waip8kK4p7wxEaFRtDnxmmFcfG0dVBYHrR8diCEpcI3QDwjDEaXls3N/BT/7kKK7t09abZOutXTT8AMNSCcMQIRSCMMB3o0L5RsVhebaO7wXkuuKkZYGjdBXzyjb26RLOZBWjP4UzVaP8gzNkPj1M+dEzpO7tx9iYxdzTzux0jfFvHCffk6R7U4YXvjuyFjah6QoHv7iRZ791mkbF4dAPxrj/N7ef817VYpNEzqBRcQl8ge+HOC2frbd0MvpakY37O+ndkiOZk6t9r5fqUgPfC0ARKArYDZ9mzWXfA/3MnCqRyJoM7W7DaXm8+vgEYRCy7dYuXvy70bUFsvbc38fNnxsmkTFxWz5zo2U27GuPmhRWqQmDzIODeCtNvJJN87UFtDYLNaVTf2kOc2MGc0MWv+pgT1RRkoZsopcuSiJrksiaFPqSdAymmR+rEE8bKKqC7wXc/pVNtKouTstDEDVDCgGHfjhGs+pSIyQ+WSW2q43qz6dJ3tZL0HRxxqsoloa1MYtmKOy5t48zbxSpLreiNw5DOc4gfXBvjzOEIUZMi8aqBASBoFX3MNtimFuyJG7tpvrEJABGf4rqk5PEb+jA6E/hLjajYIaGS+m7p0nc2k320xsQsklDugIUEaIo0XWhqioIXaCuNji8s6n4ozB6k7T/4334pRbC0qIxYiFI3tbDyrdPnfNYa0sOAG/FxuxPYQyl8asOSlyPxslWbEI/pPjHh9dCTOyRMsl7+sg8OIRQZeX9tUwoCn7TQ81aKJYPqoLQFMQFxqLspgcCfC+gOFWPQs3yFoqmYDfd88ZrXdtjcaLK3EgF3w849fIcQ7vbmR+rkC7EiGdMCKMGSiGiMDRFE2w50EWmPUYsZVyh34J0PfOKzfMmwtyFBo03F6k8emZtmzBVUnf2UntxluRtvSBA6AoEH/3qNvBCDEvFMBSaVRffj1bmlufd64+uqyBAUcXqvZdAKAIhzl6zqkmDxP4OQtun/P1RzKE09snS2e+nDbS8xcq3T2FuzKKkdOovz+H2JjE3ZNHk2JIkXRK+ExD4Ibp5di4kDIj+DSsCIUc9pFVBEBIEUe0EgKZdmuIbtxVdk+uGAqEAAzw7oJwx6OxN0Tg0hzBUgrpLbHcBZ6KKM14hvq8dAqg/N4MxnMEcSkdzgNLVRYCSNCAIUHNmdN/ecNGAV380wfCeNjbs62BxssapVxbZsLdA16YMhinL+aSrixmLQtCvKiH4Qbj6+S0QgGaoa7VCVwUFAtuPzgOKQFgqrNaMvn3tgVAIvQDXvrixRUmSJEmSJEmSJEmSJEmSJEmSpEtNzlpeYUKItTR7K26ACNcKE9SYhl91EaYWNc0LEOFHr1rQTA1FERiWiucGKEKsNRm9PQEnSe8mmbO48RODPP+dkbVVKTsG00yfWAFgYEeeFx8ZBQG77urluW+fRtEUbv3CBg4/NcP8eJmbPjlEtiPOylyd/u15sl0xXv7eGIoQ3PiJIZ77m9P4fsi+B/qZGy0T+CE9m7JkOmMYlhaF9rwLRY9Wi83/8laqz0+jWlFBvLUtT3V11bjUHb00XlvAL9toHXEA3JkaatrA6EvJAs1rgCAq+JofK9O5KU2zFIUvvV38pWrishQYqGkDNf1Bi7hCnLEKzngl2pcQEge7+cWqNG+lhTNdI2i46J0JjJ5kVPQuSYDvB9E1xIdcJTieMrnpU0NsubkTvWJTn23QOrlC/KZOCEEYCkHDI5HQ+fEfH1173tJ0LVrh21RpVV3qFYdE2sCIa2ur8Pz0T48xc7KEldQZ3lNg7wP9tPWcXYXTdX0Wz1SYOxM1QHdtzJBdPRdL0pVkT1WxT5cI3QAloVN9apLY3nb0ngT2SBlrWx6lPcayF+KOV3jmr07SrEaNmtmuGP3b8muv5bkBx1+YY3BPG2deL2I3PLxfCA5UDZVExqRRcWlUbKykgdP0SOZMerfm6NqQJtMuQ3vWUxAKzLiGYkd/u9D3CfyAMITBPW1kC3HMuM7Ym4vUSzZ77+/ntR9PrAWQZDvjpPIWbssnJCSRNejfkefJvzjO/FiZh//hLmKrxd5CU9DbE2QeHFi7dhAxLVrprOFReXOC1B29hHWXxusLmBuzGL1Jea8mXZRkziKZs+gYTNG3Lcepl+cZ3ttOW2+S4mSNRtnFSupkO+L4XkCz6tK9KcOplxe4eVue5uEiqbv6aJ1ewRzMEDoBzngFH1iYrFHoT9C7Ncv4kWWO/nyGbQe7SRfkvZX0wQRhiKIKzJiG7wYgBKouUFQIvOi8rCgKiVu6EbpC/YU50ASxGzoI6i6lvxsBQOuIk7qzF707CWGIO9/A6JUrwktXgBDolgrV6H+j4zZEUZVL0pqoJnXU5LmhD9aOPFl/E9VnplBMhfSDQxgDKQCUpI5aiFH50fja442BFIlbVdy5+loAydtaR5ewNufwlloolhqNj+XlOfxaIxQgDBCqBiZAiNAFgR/wi6OtAijNN3nhO6NYKZ2HfmsHzZrL7EiFM28U2XRDx1qTUXGqSnGyytJ0HStpcOzZGXbe1cubT0yx594+XnlsnB139IAQ9G3PEUvrbNjfTq4r/p7jvJL0QYV+iDNTw5urI0wVozeJdoFQXOUCK0cnbuig9tTkua9n+6AK0vcNUPrBKHjRmVwYCoXf2YPZl/rQ+6hbGs2aQxCAbikEIdRWWmTk9fJ1Jwyj4EcjpkVBqLA2tuvY3lpjsdAU4nvbQYA9UUErWPhlG4DYrgL1Q/OoORO9N0Hl8ejzvg6k7u9H704S1F209hhGbxJFNitL0kdmmCqu7ROG0aIuuqEgFBCq4CLKNaSrTL1kM3emTHmhSdeGDOl2i2T2g31Gh2HI9PESpw7NA9E5/o6vbOZSpJCERItqKJoahVyLMGqiDwRGZ5y2X9+BM1UFRaB3xmkeLmJuzhI4PpUfjxPb24630MBbbGD0pTD6UyiW/Ey4WgglWkBKsLowlSLA0ggDeOA3d9CqOTi2j9PySGQMvvf/e4MHf2sHW27uWu9dl6TLxm64qIaCpl3cWEEoovtEzwmwGx7JnBGVYV5Nn90h2CMl3KnaWr1Q8o5eNE1B0RSSMZVkECLqLkrTw6+7qBe4p5Uujavp0JAkSZIkSZIkSZIkSZIkSZKkjwM587wOoqIzFc/xMa0Aw/JASxK+3VisiNVCA0F4Ed3ziiJQVIFmqOimCgiEBooarVhoWHLSSnpv227rItdl4HtVDnyqnbkxm7beJLUVG8+NiiY7B9NMHV8hDGH7bd288ZNJais2+x8a4PShBZZn6uy5tw9FFbz5xBQ77+ohmbeoLDa56TODJDIWM6dKHH5qis0HurAbRcYOF2nrTbL77l5UXSWZM0m8y6rwekec3Gc24i40aB5dWq3Sib4ndAW/bCMMlcSNnZQfOxMFQNzchbfSQugqRlcCvS+JIgvhP5bCIKS2YjO0ux3f9lFUgRWPinaCIGpuU9T1DfIIWwFa3sLaliP0Qahgny6Bf3Z62yu1WPrGcdyp6tq2/N/bRnx3+zmvVSkuEvg+qbYCqiY/wq8HTstj+sQKbzwxhWGp7Lmvn+5NGdQPcVwriiDbEae51CT0ArJf3IRfdUCAN9+g8vg4ic9sINcdY2UuWik235NACKiv2OiWSqE3gd30qK/YJDMmMydLzJwssfWWLuJpg7EjRap/3eLAp4fo3pRFCMH4m0s8/l+PrO1Huj3G535/L5l2GUQinc+1W9RXVtAti0Q2d0le05mr4UxU8SsOhFD72RRCU0jd20/lx+Ok7h3Analh3tzFfCtAjwssTeHmzw7z9DdPAlCaa7L5pnNDp0rzDXo2ZwFQNYV0IUal2KRRdQi8gJd+MIZdc9mwv53SfJPJp6bpHE6T60qwcX97VDwsratE1qC8oOJ7AZNHl+nb3sbSdB3PDch2xMm0RZ/RqXwMI6ahGSp2w1t7/u1f2ohmqbgtn5X5BqOvFRne3cadX93Cz/7HSVbmGoguh2a1Qiydxkok0fIxMp8YImi4tE6sIEKo/GSC1P0D1F+eQ2+PY27K0DqyhL/cwhzOoMpV4qWLFE+bxNMm7f0p6uUW44eXefZbp+ndkqVvW57XfjzBjZ8cRDdVUm0xFiequAe7UNssvJUWWi5G/eU5Ejd3EXoBwXydjcNp5pabLE3X2bC/QOeGDP3bcpe1sTgIfKrFRYSikGprlyE91wBFgVjSQNGahL5DEMbx3BDPObvSo5YxSd87QOJAN0IT2GfKLP1pFJonzOgef+VvT6HEdZK399A6uYw7X8foS6HL4DvpMhJCoGgKqgqJjIrv2qCY2HWxNlZ2qakJg+St3cR2F0ABNXZ2TFcIqL84e87jnYkqQc1F/MK4stAVEge6KP5fh9cq7rWOOIXf3IGWP7eJ/+1Gf3e2vhpWkjzvMdLVKxQCoSjRGOnb4wdCnDMW9bbAD3nr6Wk6hlLc/pXN2DWXMAiJJTSchsv8mXkCfwXX1pk/Y1OcqtG7Ncdrj4+z76EBXv7eGXbc2YPT8omnDXwvINsVZ8PeAvne5IcOU5Wk92KPlij+yRFYPd1qXXHafm0H+i8EkejdCWJ7CjTfLEYbFDC35Ki/NHfea+rdSRpvLK4FkACETkDzzSJq2sCdruFXnCjkoSf5ng299YrNymyd6kqT9gETXXcx40nKS8FaaLZ0/Qg8H1UVxDMGYRAiRD0KQEWlVXPWQkgA1JRB6vZe4vva8RabFCffInT8tab02O526i/MrD0+tq8de7RM9adng3WyX9xE4kBXFNQzW0cYKnpf8rx/H5IkXZiqKai6shoAIRBEC7pEjczyHH4tsBsuz377FLUVm8Gdbbz4yCj9O/K09STIdSXIdr73WEKr7jHy2gJmQsOue/huwKuPj/PJf7T7ovctDKNj0IoLfC9AUaNFNsTqpbzRnUTLWwQND1bvO83BNJWfTGDtyBO2PCo/GidxazdOUMWdraEPpjF6kvihR315Gc00Seby77EX0mUTgGKphK0oAC/620a1XNWlJtMnSzRrLhv2tRPP6Bz8pY1MHlume1OG2oqN0/LJtsfIyPEu6RpQW2lx6uV5jj47S647zg0PDa4Fn34kYcjI6wt0DGQw4xorc018PyTXnbh0O32RwqaP3pkgtrNttV5I0Dq1jL4jTyZrYJ0uUX/27LV+cFsP6YcHZcDgJfb2OKm8rJMkSZIkSZIkSZIkSZIkSZKkD0fOWKwHlajwLF+mXlrEdxUSCYW4EgdFIMKouCVKwL+42Q9FVzA0gW5ouC0PI6ZDGGA3XBlCIr0vu1bkyJN/zskXnmX/w59hw97N+I7HwI42kjnYekuWRlVZaxSyEjq1FRsjphEGIcszdXq3ZKkUm4wdXmL77d2MH1lm+sQK+x8coFlzePOJKfY9MMCtn99Aq+7S1pcikTOJJQ3mxyp4TkCmI4a+GqYTSxl4jk8iZ66tTCRUBaM7SeHv78JdapJwfOrPz0SFYkBsd4Hai7MQQvymTtzZOvWX5tDaLMIDXdhnyihJHXMojd5x6Sajl2frVIsNFE2hrSdJ/F2CVKSPTgiFtt4EYQC6oSIQCEVEf3tFoChctiagD7yPlorWGQMEKCEIsHa2IYyzIRLuTP2cABKA0iOjmIMZ1LSB3agzdewYTjNaHWVhzKB70xZSbYUr/NNIV9rU8RV++IeH174ee7PIF/7lDfRsyr7vc+tlm+JkDbvpkinESOkCvTdJ6TunEaaKmjVR2yxSnxhCOD6fOtiNE9OZKdmUay6+H5LvSVAr2bTqLkEQfe0HAUszNVJ5CyOm8tqPJwBYmW0wc7rEl/7VTSRzJs9+69Q5+1NZbLI4UZUhJNJ5lqYn+dk3/zsjh14kmW/j/t/+pwzvu5HS3CzVpajpPN3eSa6r+wO9XmB7tEZK2KfLKDGNsOXReG2B1D39VH40jl9y1lZFNm/ooKYpmDGBqglqKza5rjj7Huzn9R+vNnL8wvV4//Y8s6dLCAG3f2UT9bLNm09McvKleeIZgxseGuSl743y0vfOcPNnh5k5XWL+TAW74coAkqtErjNBcbLG4lSNvu1ttGoOtRUbK6GzMF7Fbri09SZp60ly19e2MHl0mVxXnJW5Bp/53T1UllvEUwa6pdI1nKZzOM3xZ2cZ2NlGPG3gNKf56//1j+jZup3BXXtBCKxkio7BDZiJOOZQmsZqUF7oBiimit4Vp/r0FKm7+/DLNvVX5jCHMxgDaRm4IF00w9KwGyqvPDaOogr6t+d54e9G6RhKUV5ocuvnN/DGk1MM7Wrj+JEiu3e1IUo25UfHyHxiCH+lhbA0vGILzQvpHkqTyJqUF5t0DqZI5S9uVXfPdSlOjNOsltEMg1x371pTRG15iVd/+AivPvp3KJrOwS//CrvufZBY8sOvSi9dJUIwYgr10jj15RVQVIQQZDoH8Nzzw5fUZPSZLfSz90+x3QVqL8xACKmHBgibPoHjIeouzRPLEIbonVdPobl0jRHgewFmvMzK7BSKoiAUhXimDSs1QGmxQfYy3fNcaBXU0A8vGCwRegF6VxwlbRBUHACsHW1RA/47Hu4tNHCmaucFjNgjq43+b4eVtMdo+/oOvFILd6aO1mZhDKTQPuCq4dKVJQAUsTrHEI2RhSEE/vljZIalYaU07v6VLQQB6KZCLBMn8GoksjWqiwtMHF5heXaawd33Eku2c+jRM+y6py+6Tu5ORE27msINnxikYyBFW19SXsNKl5zf8ig/NhY1caYMkrf1EDRcmm8tEW7OYnQn1x6rJg2yn99I4uYugoaHVoihdyZIPTBA+ZHRtceJmIbWbhFUnfPeT4lrlB8ZoTVSRk0ZeMtNMp8YJnlbT7R6/QVUFpvMnC6x9WaVVm0ep+ZSmrXJ9w4CMgjiehOEoJkagiaN0hRuq0EQBCiqRiuxiXTb+dcLasJATRh0/O5e3PkmIqai5SyCpkv4jnkOvT1O8/XFc55bfnwMNWuy9KdvrQX1xG/twtqQxSs20TvjGANpGXgqSRcgNIGZ0lCIAiBUXcH3Q4RgdRELeV1zLViZa3D6lUVu+dwwr/1oggOfHub1n0yw5eYuilM1Mu0x2noTZLsSF1wIQDdUbvn8BnzXp30gTbPmEgYBYRhSXWqRarMIgpBW3aVesjHjGukPGAQllCiUYvyNIrMjJXRLY8dtPVjvuAdUTI3krd24i02MsfLatIXRm6Ly43ESN3fhTFbxFhok7+rDPraCM1KGPp1Sc55GpUQil6Nv20650MWVJkQ0F2AHCFVEc04CECHPf2cU34s+uLs3ZKgUm4y8ukC6zWL6ZInnvzNCo+xgxDQ++3t7yXbEWZ6rgwgxYzpmXCOeNgj8kMpiE4gWhfgwgdGu7TF/pkpxukYsodG1ISMDT6TLIvADXv/JJG+sBumV5htMHl3my/+Pm2jrTb7Psy/MsX323NOHawe4tk/HUArP9S84/rFeRExFa49FY2xqCITEdrfjhS2SukHluZlzHl97bob4DR0YfXIO5FKSw1SSJEmSJEmSJEmSJEmSJEmS9NHI2eV1IFBIZlvUy1XCICDwfbzAiwJIVEHghdHqOpp60TUtuqbguQGVpSa+G7B0ZJlsZ5xOXSElFzqR3oPnebzwt/+Dk8//nJ1338/8mdO89tj32Hn3/ehWjJ9/8xkG9uxny0234TQdercmyXYa9G1P06wElItRkUP3piyHHh1DKIJkzuLYs7N0DqUpF5uMvrbI3vv7eeuZGcrFJrd/eRPP/OUJFFVh3wP9HH5qmmTWxIh1MHp6gf7tbfzoj9+iWXXZdmsXG2/sQNUUcl1xhBAYcY1YNoveHsPoSxJ6ASigJDT81YYLLWfRODQPiiBxsIfyD6Ki4+SdfXjFFn7ZxtqWx9iQRo3rq8VlH97cmTKzp0qUF5sYlkZpvsnQnsJFN+hJ51LVaBXiH//JW9zza9tIZ01qFYfF8QqKGh0bqbb1/Z0LTSBUZS0UB1WJGkHUsyf4oOWf97yg7kTHMFCcGMdzW2vFbOCyPDMlQ0iucb7r8/pPJs/ZFoZw5vXF9w0hqSw3+dlfnWTszSUA4hmDr/zOLuyRFbJf2ETQ9HAmq+h9SRRNofz9sw0YA7d2U92Rw4xp1Es2vhuwMlcn352kVXdJtVkM7ynguwEnX5o/530DL2Rpqko8pWM3vPP2y3WunoIf6erg2i1+9o0/YeSVl4Co2fyRf///5mv/27/HadSprizRqlRYmp7E3baTjqENF3yd0A/xlpvYZ8rYp0voHXGCmkv9uZloBeTdBfyKg5LUCeoOxnAG0Z9iYqFBLB1SnK6TypsEfshL3x9j261dDOzMszBWpX0ghW6puC2fni1ZttzSSXGyyv6HBjn+wgzjh5fZsL+dgR15Jo4u88pjY2w72M2bT04xfmSJnk1ZJo8tI4vVry75ngRL0zWWZ2qYcY2uDWmOPz/Hrrt6OX1ogepyi5W5Bi//4Azbbu1ieF+B6lKTmVMl2vpS/OyvTnLLFzcQ+rA8U6drYwbdUjnw6QKP/sf/lTt/5TfQLQu72UQRCm6rxfLUJLvvfwgtH8Palqd5eImg6RLbVaD6zBS5L20m9AL8mgtegH26BCGYQxexCpwkrQoDcJoencMZJo4tAzC8t50XvjtKvifOXb+8Gc8NsBseP/3+GA99YhBrY4bA9rBHSrhzDZS4RuruPrw3FjFaHh2bcwRNj1bNxUp+9JDTyaOHWZocJwxD9FgMz3Vw7Bb5rh5OH3qRlx/5NgC+5/HMX/w3sp3dbL754CX5vUjrIAzx7EXcVh3f9xFBiKpr2PVlEvn0uz5NK8RRs0YUJhbX8asOel8SoSr49SZCUXDnG5hDabyGh4zdlS4XIYCgTnV5nsD3CXwP3bTwnSbNahGnmSHTFnvXBvVLTctZmFuy2CdLZ/cxpqF1xNHaYrT/1i4ahxdxpuvEb+xg+cTyea8RtM69dwuaHqVHR88JK0EI6q8vUHvy7D2quTlL9oubcGfqtI4uoXXEie1oQ82YCFUgtPMb96QrRHk7vGm1uU1ZXe/1AkG9yZzFPV/fSmWhxcJ4lUyXRb69QWlumupSEbteI57Jkm4r8MaPvsHg/q+z8cZOAj/Ernuk2y3MuEb3xgzt/WlUXf7dpcsjdH38sg1A6u4+yj88sxbCVDVU2v/Rbozes01awlAxBtPnjO/H93Wgpgwary6gdcSJ721Hb4uTuKUruv96B60QI2x5JHIW3nKL2O4C7mwNb7mJXji3KdN3A+bHK4wfWWLrzXEalUlCP8D3PfSYxfLsJO0DcZq1OLGLuG6WPl4URSAEuI0FmpUydqtBPJ3BTCRpVOaAdw/b1TsSa4H5fk8SZ7KKtS1Pa/VeLrxAU6U5lKbyk4m1ABJzQ4aw7rH8zePRBgHZL20mtH3cqRrmlhzmxgyKqSJURX5uS9c1TRW0GgHLC3VKc01yPXGyHTHUmILSfO/nlotNmpVogY5sRxzlAuEV0tXBc3w6BlNMnyix7WA3hx4dY/e9fRz9+TSbD3Qyc6rE6VcXGNpVIJ416OhPrS0wUi/bvPLYGKX5Jjd9cojH/8sRNh/oBOD574xww8NDlOcbdAynefXxccoLTTbd2M6WW7qJpXQyhRiBH2ImNTTtArUHYcjcmTKpthhhCGZco7rcwkqfe92gmBpmX4r8L23Bma2h5sy1zwQ1Y+K+NEf6gQFqz8+ixDUSB7pwXi2TzaZp29xD1VmkODlO5/DGy/vLls4RqgFCU6J6Ac8DoSIUCH3Wpo06hlJr9TMAzapL8S9OcOMnB3npe2dwmh5Tx1d4+QdnMOM62c4YhqkxcWyZ/m05lmbqnHhxDgFsv72HA58eIpn7YDUSUyeWadV96qUWhCYTx5cZVMUHDtGRpA+qtmJz+Ompc7Z5TsDyTP0jh5Ak0iZvPjHJyKvRvx1FETzwWzvQzKvn81ioUS1oGITgR+M1QkQLGIX11rnjb6sC+/z6IenSCC9yMUBJkiRJkiRJkiRJkiRJkiRJut7IEJJ1oKoAUSCCoigEQUDwdgiJriLCEMFqg3pwcZMfiqqgBCFzp8scfmp6bXv/zjwP/v2dsuBReleNlWWOP/sMAJmOLt56+qcksjnMRJJXH/07erftRDcMfvAH/4be7TsZ3nsjL3/3f5AsdHDjw/fjNOvku1KkCyYdgykqxSbN1RUF+7bnePXxCQDMmEZ5sUnf1hxjbxRpVl1u/swwz393BIFg5529/PyvT3HjJwf5+d+cwnMC9tzXx9J0nUf/z8Pc8rlhjjwzTXGiyg2fGKRZc0BAz8YsiirI/toOWm8sEN/dRuO1xbUgCGtzluYbixBC/KZO7FMruLN1jOE0fqnF8p9PI3SF9ENDKAkdLWmgxD/YKdNteSyMVXjub0fWtsVSOpmOmAwhucRcJ+DI09PYDY9k1qBWcXjsj46s/Z11U+UTv7NrfXcyCBGagjNajprihtPovUlC52zhgN4ZA0WgdyewNucIHZ9QgJqOViX0XCcqRBBR04gQCoEf0KhVictV4K9dQqBdoHnngzT0zJ4urwWQCAG9wxkUIHZDJ7WXZjH7UujtMao/GsfamsPcnMU+VQKg8eIs1kCamdMlFs5UOPXywtrrbr6pg1339jHy2iJ92/NkO+M0qy6zI2XmRstsvKGDRNZEN1R239vLq49NrD1XUQWFXrkivXSu2sryWgDJ2+77rX9M4Dgsjp9BUVV006K6vERxYuyCISTOTC36v4kqQhGoKYPKTyaIH+hE64zjztaJ7SrgztZR4jrmpiwLdsAP/+B1CMFK6tz3a9t44s+Osff+fnw34Ik/O87tX9nEvgcHeOmRUe79+jaWZ+osjFd47I+OANExfe/XtzJ+eJnR1xa5+bPDTBxdpll10a3omsGwNFzHx4xrtA/I8/XVpK0nSX2zzYJeYW60gu+FbLm5kxceGeXWz22gUXV4/jsjVJdavPjIGRRV8NA/2EmqLcYTf36Mz/3+Xt746TSnXj4bxrT5QAebbvBoHxgilW/DbjYRQuDaLYx4AtU0KM3Nku/pw+hOkvvKZpzJKn7JxtydR0kZ+EtRmI7RHifUFZy5OsZA+oo1MkvXrkTOZPvt3SyMVUlkVq8xV8PBCn0plqbrPP+dETbe1M7Oe/tYrLtkO+MIVcGdawBRcGPlJxOEbkDqnj6CkTLuZBX7xg4YTKO3x1BjH26MobayzMrMdLQAqFAoz83itVrYtRqEIacPPX/ec0ZeeUmGkHycKeA5TYIgQNV0At+LCn9DQeDWgdwFn6ZlTdp+YyeVJyexp6rE93aALgiqDs5YFWNDdJ/lNzz8WhnVUM5pRJakSyX6bC9DGKKs3qcHvo8feJiGw9/9hzf47O/vpW/rlUl/ViyN7Oc2Un9uhsbhJYy+JOn7B9BXm4X0rgSZrug+LAxCEjd3UXvm7BgxInrMO4WOT7Aa5vu22M42qs/8QqPIYpPm64s0Xl8ktj2PElNpHlui+doCatYkdU+/vI5ZJ0KJmslDP0CsBvgKTYHgwsGgy1MNfvqnx7jhEx2ksy3mRsfwXBfdtKiXVlicGMOwLPp37ibd5lAvR3/XoT0FOoZStA+kiCWNK/xTStcbNWmQuKWb1vFl7NHSWgAJROet5pEljN5UFKJ3ukTl6UmEUEjd3Ye5KYtiqKhxnfjuduK72895bXNTltxXt1B9YhJUQfq+AURci+bshCCou1R/OkH8ho610Oh3mjqxwvf/8xsIYHjPAIrSxuzpE9GYhmFiJpI4doVKMUMsKUMmrxeKomDGQkozK9RLy9jNZnT9oKqk2gp4jotmvP/9kxrXiW3NoxViaIUYjTcWUdIGQlcI3xEuZfSnqD8/u/a1uSEThZKsShyIrgG8hej+LgxD/OUmjTeLGIMpEjd1oaZ01KwVzUVI0nUkFHDk6em15n+AbQe72HNfP0eemeHuX9l8wefNnC5RXWrhewGKplAptujblkP7iAtcSJdXtjOObqnolopmqARBiNP0yHUmWJltEPgh6YLFGz+dZOvBrtWA8QzJnIXT8Jg/U2X3PX289uMJVEPBSui89uMJDnx6iEOPjjG8t8BrP5qgvNBk9z29rMw3+NF/PcItX9jAS98bxa577Lq7l/Jik0x7nFTexHMDMu0xXMcnltB55q9Ore1vMmfSPnDhpnwtb63+XwxnqoKw1Ojaf/WzIWi4pO7po/zoGeI3dYIH9R9MkdzdjjYYx2+6H3oMT/ro/MBBCQFdAGpUO6CrQEg8bVBdatG/Pb9WP7P2PC8gWL3mVTUFzwuYPV1mz3396KbGs98+jWGpFPqSnHhhDoiyDI7+fIaOoTQ77+i54P6EYUh1OQo+UA2Fesnl6W+eWPt+qmCR705c9hCS2nKL5bk6iqqQ744TT5uX9f2k9aeogm23dhFLmTTKNqcOzeM5AepFhOE1ys5aAAlAEIQ8/7cjfPqf7b4Uu3xJhGGIMFRC20doq9fZCmjCwI41ULImQclee7ySNtAKMgToUnv7DkdGkEiSJEmSJEmSJEmSJEmSJEnShyNDSNaBECKaZFJUhKqirBarC0UQCiCAwPfXmowDx0cxPlqxSihCAj/kyNPT52yffGuZlbk6sU3Zi/xppGuVbllkOrtYmZki8KOwhIFdexk59AIAg3v289xf/wWKqjG87yZ+/pd/SqrQzoYbDvCDP/jfSObb2PeJzzL68lPEUxr7HrgHz6lww8MpYimNnk0ZZk6XCVbDIrJd8bUmziAICbyQgR05zrz+9oSxwHMCzLiGogimT6yw5eZOTr08z9J0nVs/v4Hnvn0agAOfGeaR//gG+e4EG/YVKDcCdt3YQcxQo0ldVSAsjaAYLV+lZU0ah+ZBFVhb8lQeH0MYCumHhyg/MoI7Wydxew/WlhzCUKPmuvcorG/W3PP+zTWrLitzdQZ2tF2yv5EEvh+tjAKgaQpHfz6zFkAC4No+M6dKDOxcv997GED9zQViG3NonXHwApqnVtC6zzb56N1JCv9gF/WX5qg+M4liaaQfHooKxjQlCh8RCkJVIQhQVAUhwLMd+GiLwkgfA6qmsO/BfiaPnV2pWtEEw3va3+NZkfL8arNw3uKBL2wgZXu4oyUUUyN5Ww+Vx8bQO+NYW3O0TqyQfmBgLYSEECpzdYyMeU4ACcCpQwtsO9hN//YcZlxDYJFus0i3W+y8s4eXvneGky/O0bkhzR1f3oxh6Rx5eopkm8XBL26k0CcbQaVz6aZFMtdGbWUJ3YrxmX/+PxN4HsWpcWLpDONvvErXxs0kslla9Rqe66Dp0Wdw4AXY42Xc8SqhF+BXbKyNWezxCsZgmsarC6Tu7KM63yAMQvT+JPrGDCcXGjz/6NlizlbNpbzYZOddvbz4yBnu+Mom5s9UOPzkNHf9yma2HexiabrOKz8cO2ffAz88p4fv7WJQ3VQJ/GC1Ka+NiaPLfO7395HvliE8V5vujRkQ4Pshi+NV4mmDvq05Tr08z/6HB3j1sfG1xwZ+iBBQXmxx79e3UVtxzgkgATj18gJbb+nl5i9+hWatFgWHITATSXTTRFHjOM2zy6ca3UnUrIm70EBfieOMlQm9EKMrgV+yozCqQgzCkLPlcZL00aiqwg0PD3Hs59PEMyYTby2jrha8xtMGTssDYOTQIiOvLNKzOcMdDw5iVaLiV2GpBHWH0A2wtudxJqo40zXSDw3SeHkOf7aO1pVAa4+h9yXRUx+saDz0AwhDfNdhcWIMVdOIZ7J4rsv4m69z8xe+StfGrbz4t3+19py2vv5L/NuRriRFFYRCoJsWdr2GoqqouoHrtogpPrWV1ruu1Gp0J2n76laCpkdg+7ROL4MHasHCHM7iztXAD7Fn6iimhhLT0PKyYFu6xARACAKMWBzP8yAMCFwf33XQDJWjP59FN6Pxq3x34gMFSV4MvRAn85mNpO4dQFgqyrs0PQpFkDzYAyHUX5pDTRtkPjWM0XPuwIKSMojf3EXtqXeEjigC/BC9N0lse54wCNHaYzhTNYzBFNVnpxGKQuJgN2rWonV8mdapEh3/ZC+GvA+84kJdiRoQwzAKwQ1CiKnnNKu/rVlzOPTDMT7zu4O4rSLFyUU8x8azHdR4gnShHddOE/jRtUIslaJVFxT6kuR7EmTa41f6x5OuU0IIEgc6UdI6zXc0mb3Nr0bXrfaZMkt/fmxt+9KfHaXw27uwNl846AxAjekkbugkti0fjcPqCo03Fqm/PE9Qc7C25EjdP0D1yQmSd/Se81yn5TFxdIk7v9qJqi4zP3KK+TMj5Hv6ePXRR+jevJXhfTeiKcp53U5e1cErNhCKgtbx4QP9pKtbqIT4Tp16aYW50dMM33ATum4SeB6V4gK+69G/44MHqOttMTKfHCZ1Vx/CVDE6E5QeHcWbaxDbXSC2px2CkMqPozGvX1zgW00bawEkasZETehUfjxBbF87iqnTOrYMShROZgxl0FIyXEq6frSq3jkBJADHn59j68FulmdqeBe4hqqVmjhNF1UTaIZGGIQEQUhpvk6hL32ldl36EJI5i9u/tIniZI3SQoNExqBZdejamOHQo2Pc8rkNvPyDMxz8wkZe/uEYN39mmEOPjjO8t51kLjonGjGVRsVhcHcbk8fPzt05TY9kzuLEC3MYqyEnU8dW2HNfH689PkGz5nLblzby5J8fp3M4jd3weOLPptl5Vy9uy0M3FMbfWj5nf2srNs2qy9J0Dd8LiKdNzERU3qWv1g4Z3Qn09hh6IY4zW0eYKoHtY/SnaJ1cWWtir788R/qhweg+8LSBv72FmrcwepNoGRn8cLmFIoxqVIJwLYQgVKLZg1hCo7oEbsvHjGm06u45z1VWQz1jKZ1mxabQn6JZtVmcqACQ70mwMF497z1HXl24YAhJs+Zw7NlZDj06RuCH3PtrW3npe6PnPKZabFFdasGF85fWeK7P7EiZoz+bQdEEO27voWtjBlV9/zGQpZkaj/7nN6kstQDoGE7z0G/tJNP+0cfxfD/Ac3zM1WvqylKTVs0lkTFJZM3zHrs0XaM018BK6BT6U8TT8trncquXbGZHyqzMNkgXYtz6hY2ceHGOQv9HL3ixG+5526rLrQt+dq8fAZqAFoSuj7BUhKGiCJWaXca7pZv4yWX8qRr6QIrspzbIc/Nl8HbQ4i/eJ0mSJEmSJEmSJEmSJEmSJEmS9N5kCMk6UDQFQg1FVVAUlQDwPRe0KJxEiamgRMUqQlHwLyKERNMUbN+74CSKf1VNuklXm1gqzX2/+Tt859/+v1B1HUVVadaqxDM5ygvz0TEL9GzZxtgbrwKw4857efFv/xrf89j30Kd55i/+G7ppcdtX/x4/+j//LUJRuPnzX2Zh5CU0rckDv3kfgbfMgU+lsFsh22/v4fCTUyjq2ck/sfrfqioQIlqlqDhVAyBdiHHypXnMuEaj6uC0fHbe2cPrP5nEdwM23tDOC98dJZE1iGVMxo8sc+vD/WS/sgXnxVmsXQVqT0+t/fsw+lPYp1YASNzURfWpKYKqQ+JgN+5MnfqzM5ibsljbcoQB6HkLrTeJaqoo8bMFwqom1pr43uldFhuVLoIZ19hwQzuvPT6BUMV5hTnABbddSaHjkbihi6DiELY8lLhObHtb1ADyNgH26RJhyye2ux371Aql75xGK8SwNmZXQ0gEbquJ77oksnkQSrTqsnRN69mc5Qv/Yj+nDs1jWBob97fTMXS2gateLlGanUEzDHI9vRhWVJxV6E9y1y930NWdIqWZ2GM2eCGhFhJUHVL39VN+ZJTU/QO0Tqycc52gtMeYK7YwvAtXYLi2T61k06q5pNssKsstKgtN2odSlFbDT+ZHK/z0z47y6X+6l47BJAhBs+IwcXSJ3BVYPUv6+Ejm8tz/2/+EH/zBv+Oz//x/plEuoRkGiVye2tISQ3v38/qPfsiOu+5FM0wUNbom9lsuzkQNb6kBQUhg+1jDGZrHllBTJubGDM5EBRQQuoLem6TkBTQcnyMvLpy3H557dqWtVj36DFdUgaopxNIGjYqLEdNwmmc/32MpHd1cLfa1VAI/RFEEt31pE67t8cV/uZ90IcaO23vQPuK1vHR56aZG/7Y8mqai6QqBF9LWm+DYWIXKUoverTmmT6ysPb5RcdBNhTCA1gUKGwECL42VVlBUjepSkeL0BLpu0DYwhG7FyLR3nvN4f9nGL0aFtkpSp/7sDImDPQhLpfbMFPEb2hEfoGhXkj6IdJvFzZ/bQKNiU+hPUppvsP22biaPrbD7nnc0U4Ywc7LMkc5FbrqpE6ErUWjq6v2M3pOk+tOoAbP6xCSJA120Ti5H4Tl+Fn+lhdcWI8xZGHkTTXv3c2AsnUK3LFr1Ku0Dg3h2FDZVKS6Qae+kPD9H/47d5Hv6+eF/+v+QKnSw4YYDl/k3JV1OilBQVQ03aKCoGhAiCNF0k9BzaVSddw0hARCagpoyUFOg5XtoHC0Sy7bhztYInQA0hdSt3bQmyngVW4aQSJecbmroZgwrkSLwfHzfA0UFIXAdh1s/38XoGw1adQffD7GbLn1b85d9v4QiUD9As7CWs8h8cpjkHb0IXUGNn9/wLhRB8pbuKKzkxVnUlIG5IUPQ7IYAKj+diHJYYhq5L2xk+W9OoXcliO0sEDRdrG051LxF/bkZnOkaRl+KwPUJnQA1IRvsrwRFUwgMBeEFKGkDhLLWGPtO9VITp2Vz39fzLE6cwncdAt+nUSoTBB6+72FYMXTTRAgLK5FFt/JsvCFBvlum4kpXnpa1SB7oRtFVnPHKOd+L745Ce2urq8C/U/3Q3HuGkAAEDRc0BcVQsScqrHzr5FpoSOvECqgCozcVhTKtas6XcSdr7CyoiJzJQnWZJ//yz7jpM1/gtce/z76HPsUz3/gTujZtpq1vEOsd52l3ocHSN4/hzUVjaeb2HLnPb0LLvvt1kPQxE4CiR3/P/p27yHf1YDebeI7N0uRkdO9jmHRvep8O33d45+e9OZyh8Fu7CG0fNWkgNAVxYyehH1J7fpbQ89EKFt7qmMM7x3+tHXkary0gDBWtPY5iKFR+PBEFVymQ/aVNqFkLb76BmjEx+pJrx2YYhARNF8XUogB1SboG+N6FJ3ADL2BgZxvx9PmNwM2ah6IoVJebrMzWSeYsCgNJXNu/3LsrXYRCX4pMR4yl6TrxjInb8nFbHoom8NyA/u15Tr+ywI7bujn0gzF239PLWz+b4a6vbcGwVJpVl1SbRb1kk26LUZyswepcrWt7WEmdVN5iabWWwbA0GhWHvq05Rl8rEoYwuKvAi4+MEs8YqKrgrZfmuffXt3HqlfND1jw34O/+w2sksiZbb+li5LUFcp0JBna10ag45LpixFMmnhCkduTJ5i2C5SbufAP8kNiONqrPTpM82EP1pxOYG7MA1J6dJnFzN+5kFa07jt6ZQC/E5Dj05aIohKthpurbYRhB9PW9v7GdUy8v4Nget3x+A09/88Ta09r6kjRqDgBWyqBnc47pEyV6t2apl6Pt1eUWQ3vaz5nHAOh5l8Wopk+UeP47I2tfL03XcVrnn7fcC2z7RbMjZR75D6+vfX3ypXm++C/203OB627X9qgUW7iOTypvcuy5mbUAEoCFMxVmT6+8awhJaaHBwngV1/Yp9CVpH0itBbQALE5UeOOnUyyMV9h8oJOujRke/69HsOseyZzJQ7+9k+53/E4mjizxwz88vHZ9NLSnwL1f33rB8710adRWbB79w8M0Vo/dSrHJS4+M8vl/Hs2lfqjXKrdoVR18NyTVZkWBwe+41u3bmr3sgcAfhiCEAPACQscn1JTovlJE3/vhX59icEuO7n0d9O1uw0+o+C0P1ZIlvZIkSZIkSZIkSZIkSZIkSZIkrT85Y7EOogXPVIRQVifygyhsQVNQLI3A8REBCE2NJqMdDzhbnDhWHmOxsYgbumSNLBuzGzG1C0+G6qaKGVfp2pBmbvRsUWYyZ5Lr+mCrFLZOn47+wzCwBgY+6o8tfQwN7N7Lr/6v/57y/Cyf+f1/xc//5i/Yc9/DzI+eQlFUVE3Dcx1iydUVnYTAcx0yHZ0sTowRBgE77ryXlx/5Nq16jTu+9us8+zffIPB87v76b/HEH//vOK0Wt37pl2lVFqguFbnv65/Esee486sZilMK/dvaKS80GHltkb3390crT93axdTxqJBCKFGDsOdEBWJW0qBeshGKWCuO2LCvg6PPzWDXPYpLNo/98AR77+xhY18S464+CELUnEnoBiirBZzCUgmqDsKICo+dM2W0Qgy9K075+2fQ2iwSB3uoPj1F6Pmk7h8kEAIR19A6LA58dphnvnmSbEccu+nSrLh0DWeu/B/xGuc5AcN7CtSWWggBO+/oYX703AL0wV1t1Mo2yV9YLcSenyes1QgBrasLPZG4LPuoxHSaby2htSdQcyZB1cUvNtG7z76fX3VQEzqtmkNY9Enc3IVXbOFMVLE2Zgl9n4UzI+R6erESSZamxunZuoPDTz7O1LG32HzzQTbccIB0oeOy/AzS+tF0ld4tOXq3nF+wVZya4Ad/8O+IpVKEIXRt3MK2O+6mVa3QluogPa7hvjRPtaOKtTlH5WfjKEmdzKc2gAapBwZAE+iDKQIlQEnpKP0pKl1JDn93lFs+N0y+O87ybGPtPXNdcYIwZP5MhbE3i7i2z74H+6mVWxTCFEZMJQhCdt3ZS64rzsirCxiWSnXF5uSLc2i6ys67etl4Yztp2RAqrRrefxNf/V/+Da7jEEulcVpNCCGeyeK5DoN79qMZBm29/SiKirPYwBmvENRdwqaHkjLwxsoQhBh9aYQerdIe21XAr7ukf2UbR8craIZKvWSz+UAnrz42DkTXxLqlke9JrBUGvx1Gsvf+PsqLTdKFGBNvLXPzZ4Z544lJqkstMh0xbvzEIGfeWKR9MMXBL2wgDGHLzZ3kuuIoF1ms6xWLBLaD3tGO0KNGTWdhAX9pidD3UXI5rN7e93mV64dbqeDOzaEoCiKTwWhrw5ufB1VF73jvz0YhBD2bs8QzBktTNcaPLNE+mGJpqsbue3rxXJ/50QpWQsexfbqH0yxN11mcrJLrirMyd/Ycme2KYyXrrExNosdixDM50s0GC2dGaNWrbL39bmLpsyuh2tNVvLkGoevTOrWCYmikPzlM5bExYvva0XuSKEm5+p707pqnThHaNsI0Mfr6EELgFYsoySRaNnvB5wghSGQsEhmL7o1ZNu7vYHm2ThAE3PqFDbz62DiBH7L5QCdbbu5i2fFJfmkz3ktzaHnrbNOlAGEooEBgewS2j7k5h1AU7NNlmkeXiO/twJ5XqVgq9SAg3ZYg8wsFxZphUhgYolEu4To2hcEhJo8doXvjFjzPI5HJ0qiUiGXSfP3f/kfMWJxsZ9dl/s1Kl5OiKggRNS8qmkrg+4BAN00UQ0dRooBe8QECF4Ui0Nti2KNlqk9MYm7IoPelcCYrqCmToObhVW20lGwgkC4dM6ahGhl0o0mluohQVAgDFFXFSiSIZ0yMWBpENC7rOQG1ldZ7hutcaUIR77uiqpazyDw8RPK2nij8J6FDEFL84yNrjwmbHpUfT5A40Ima0Kk8Prb2Pb07QeKWLkRSo3WmjDtVJfRDhKUS294mV3S9zISpgq6ixIkCmkSA0FXEalNO4AWUlxq4dpHi+Bnseg2n2aRZrZAqtJPIZnFdl9D3SWRzaIZJPJ3HiHfQPpDHCR1ennuZw4uHKcQL7Gvfx0D6/HmDldYKdafOfGOejJlhMDOIrlzaIBqv1cKfmyNoNAl9D6GqoKiomTRGd/clfS/p6iAUgbUtT+5Lm6k8NYlQBekHBjGGonstJXb+tKcSe/fjzqs5NA8Xqf18GjVtkH5gEL/untPEBhDUXZL39BHUHLwVFcdtUfmbUbyp+tpjOj83yEP/6Pd46k//CzvveYCl6UlShXbcVgszmV27Fg7DkPrLc2sBJAD2sRXsnWW0m66ezwvp4ghAqBbJXBuZzg5ajQaebeN7Lp0bNrI0NUEslX7f13kvakyHdxzfWtYi/eAgiVu6EZogvr+T2tOTtE6XUNM6asbALzuEbvS5oHdZCE1QfWYqCiAB1IyJv9ii9K3Ta69rbsyQ/9o2gpZH/YVZAi/A6EmiZk2M/tQFQ80k6eMkkTFJt8eoLDbXthX6k8TTBhv2FdAvEDAd+iFn3ixy5OnptW0dgylu+/KmK7LP0ofnVCoEi1HQRz6dpv3OHpZnGyxNVaMgcV1BMxRc20fVVXwvwHMCMh0xTh2a595f386JF+fY/9AAhx4dY+vNXUwdXybwA2IpnZMvzrP/4QFe/9EEvVuyTBxdXgtJ0EyV1koUuOCtLhTUsyl6DIDTcNl8oJO3njl7PCmawHd9mlWX/Q8O8Oy3TpMuRON5j/+XI9z4iQ5C9zSLbhUjHsft6mXkdZ/BTQXaDnZD1cFfbkX3AbpC0PDQuxNUfjJO5lMbKD92hvR9A7SOLNE6uoy5IYOaNlF6LM44EyzZS5iqSWe8k/50/5X8U11zRCAQqkCJ6auft2EUHqYICr0pCr3R4hOu7ZHrilOcrBLPmnQMpAn8gO0Hu0kXLHwvZG60jKar9G/PM35kiXrJIZ42SBdiVIrROSzTGWfD/vYL7svo6+eG3Yy9WWTrrV0c/dnM2jZVV0jk3vuePQxDDj819Qsb4cQLc+eFkDQqDtMnVzj67AyL41W6NmTYdXcvh5+cJvBDUnmL3ff0sjhRo1wcZcPeApqh4rkBqTaLZtXle3/wGtVlGwBFEXzu/7aXVFuM5Zk6QRgyfXKFEy/NQQgvfe8Mw/sK5LsTzJ4uU1uxeey/HuEr//oAyaxJvWzz9F+eOCegbezNIsXJXgZ2yrGKj8JbWiIMAvT2Cx93ANXl5loAyduclo+9GvjfHB1FOC6BphHftPFdXqPF8RdmOfHCHOlCjMGdbVhpnXu/vo3n/3aEVt2lczjNrnv7UNXofO65PrELzLOdXDrJir1CSEjOyrE1v/UifgPvLQwF9mgJoyuBGjMJqg7+YgMld7Z+bPzEComsgVV2KP/gDADp+wewtuZQTFnaeyldeBkeSZIkSZIkSZIkSZIkSZIkSZLejZypWAeqphCiowgF3TBRA52x1w/RddsgAH6xhVdsoHcmUPqShN7ZKZDx8jiL9UUQYKkWLb/FiZUT7Gnfc8H3imcMGhWHWz6/gZMvzTN9YoWOwTQ77+oheI+pldpSkWppGcKoQcQSKqbn0Tp1Cmvzuaty1cp2tEKMqpzXUHQhTbdJ3a2TMlLvGp4iXR3s6WkaM7OUFubI9w/w4G/+YxAKX/pX/wulhXke/sf/E09/47+x7ba7GHvj1Whi2bTOmbA3k0nqK8topkmrXsOzbbbcegdHnvox9dIKt37pa7z83W/Rqte4+9f+AU/+6X+iVa1y8Cu/ilOb5OXvTXPHl34Jp9VCiCKf+qcbCLwA1+5g8tgSO+/s4cjT02Q7YiCiFTPy3QmWZ+sXXN0i8EMCL6Te8Hn8r07hOT73fmUz+t39KFNVrP4UrZPL0apFAtSshbtasBHbVaD686iYIn6gi/IPRkERZD41TOk7pwlsn/S9/TjHlugs2XztNzYyMvU6lfISm26+jc7hiysolc4XAJ4XsOf+fjRDJdcV545f3szRn82g6Qq77+0jljYI/YDQ8wgcBzUep3H0KEJRCH0fIQTO2BjV115D7+sjtnMn2nsUSHyo/Qt8AtvD2pLHnaphT0bhI1pngtD1WZmvIYTAqrqUvj+6NuNdfWqK1D19qG1ni857tm7nzOuv0KrX2HTTLbhOi+f++hsATBx+nenjR3nwd34Pw5KF6teSUqsEQNbKnrPd9zxOPPcMO+68l9FXXwYh6N68lTOvvYKKgrkU4p2OAhX8FRtnokrqvn60rIkzXsYrNqOVzXoTuJ0+b73+c3b8ykMUiy7xdIvP/m4fjq1zyxc2cvrQAvNnynRvyrJhfzs//+uTqJoaBTC8WeTNn05x329sw4xVuP/XElGFPT5P/eUozYpLuj3GlgOd1EsOqqZw8qU5sp1xGUIirXEaDVbmZhh99SVy3b30bt2B7wfE0xl8zyfwPHJdPVjJJPZ8jdJfncSdjZp8jKE0Rl8SczgLYUgYgpa3aDVcwoEULSGYLbaildoVBdcO6N2S5vYvbyJvKFjFJooXYGoCa1Oaz//zfcyeXuHeX9uGa/s0qzbZjhhzZ8o0aw4P/P0dVIpNYimDbEeM3q05zJiGeYmaLQLHofbUUyz+p/9M5mtfI37jDdBsEdgtQsdBIAh8H1EqESwtEd9z4XuA60nj5EnCZpPQdQkVBRoNwnqdlb/5FtVvf5v2f/kvSH/yk6jJ916pPdsRJ9sRJ12wqK3YlBebLE3X2Xawi9u+sBE9pmA3AuoVGyOmcerQAg/+/R2MvLrI7EiJ7o1Zdt4Zpzw/QTLfxuL4GaZPHKN363a23HI7z3zjT7jx5s+y/MgpQi8gtr1A9akJ3PHoXB3f30HQ8qg9M4W5OYuWNVH2FDB65Qrz0vncWg3n5EmCam0tFMQvlRCWhRqLU33xJcyebhK33IJQ3jsUyYhpdG2Iil07hzNs3pknnKnjjJTQpmuEPQkqIagHe5geLbHxV7fhj1eI39ARBUC0x3Fn6sR3FQj9gNpz0ygpA3M4Q+k7pyCIGqETn9/IKy+PMbS7wMDOHOW5GVqNOoYVI9vTR+B5zJw8TuD7dG3YjKppJPNtIARhEHDy+WfQdIPtt99Dpr3jfX8u6eqnWzHcVgPNtBCEHP/5U4Cgb/utCLGZtp7UB3wlgTNRBcDYlEVLGbROrcBCE3qSlA4vkn14OArRkaRLQAiB21LwXQ/dMLGbDRRVgzDkyJM/RtMNujYfoLbUHp3L2gw8x1vv3f5IfjGsJFhtDHknr9gk9cAA5UdGztnuztaJ39QJbvj/Z++8w+yozvv/mXp727u9arXSqnehAgIEooMpBmyDbdzt2I7tX+IkLnES24kTO3aKSxzX4ALGgBumi14ECAkJ1Pv2vvfu7Xf6/P6Y1UrLCtzA4OR+nkeP9s6dOTN35sw57znnfb8vqf/ZAwJEzmnBTutk7jlGaFktansM6RRiARX+cKSwijVextVdzJESdkZHbQkjhsIUs0VGju3nyLNPI0girYuWYdsOgihiGQbjPV34IxFCiSpkWSVSXYs/kiRRV4dOmUxxgmxqBDWvc4a9EGO0zPjgftzaLHZNkHEtRdEuMlocxbANdo/v5oJZFzCQGkLJh/ATJBBSiSb/sDkBM5fDGhrCKXj2NIKAYxi4ea9PMLod9GPHCCxYgFxV9Yfe0gqvM6SgQui0evyLkgiCME14JLy2nvILY152eQBJILhipjilNaGhHc6gHZpASfoJzKui8NQg49/fTfKGRdP29XcmEGM+0jft99bMwgqxN87GGixN26/4wADxa2o59z0fxB8Kc2T7VgASDc3Y5on21DVstEPTs9UD6L05Qqvrfu/7UuH1hRqQKY2UqG7roJxLo+VySIpCKFFF354XyIyOEIhGyacyRJLxV+y8gnCi/5ZCKomrO7HLFlJAxtcWo7h9BGOoQGRjM4Utg15yjPyJPj6wpIbC04PTytSPZrFSZbL396A2hbGGirhFE6U+RPHZYdTmMIFF1Si1v13yiwoVXm1M3SI3XsaxXJSARKwm+PJCl6LLOW+bz74nBxjpytE4N878dfW4gkvD7PgpDzE0m31PTn9XRnvyFDP6K/hLKpwKc3QU/cgRHE1DUBQEVUX0+5EiEYRQCCkYRAwGPXG6SYqHDuEMDVF45FGccpnwxo0orS3ULFpETXOY+tkxsqMltJJJoj7kzXkFZPSyReOcODvu7yHZGEb1SURrApx7w3zKBZML3ruY9FCRc94+n4FDGbJjJTa+dT6iLDDSnWO4K8usJUkGDk6w/PxWxvsKSLKAIEAhoxNN+smMlDA0B8dyWHVRG0d2jBKK+xIp12kAAQAASURBVFh8VhNbfnaYREOQkW4vAcey81qoagwxZ3U13TsfxjZlCukUSjmAUS5R1xJDCsLOvS7L1tcihCEcaPSW7RQRp2zh64hT3jNOcFkNpefHUFvCOEULbX8atTmCsW2Y+oYg1Z2z6ZWGGC2OIrgCzbHm1+aB/29A9ERH7DEDozeHGFRQWyPTfGoAFJ/8kokpjnPGNXPIjJZwDJuLPrCY7hfGKed0znv3QsyyBQJUNYReUgg12Rji8EmfJ4ZLrLuyg0BI5siOMSJVfhaf3UQ48XuKo5+iqZ0YKvDUz49QmPDax549KTKjJVZe2Mb2e7pZem4zT//iKI7j0jQvganZ7HlsANtyqG2PsOay2VMCJACO45IZLXP/9/ZSnrRhEvVBVpzfys7NvQB0vTDO6otnMXQkC0Apa1DM6ITjPkzdppgxeDFa8U9z7ua1xM7nyT/wIGNf/SquZVH9/vcTfcNlpxyD+4IKoiTg2CdVfAFU2aV06BDYDogCrmFQ2rsXdd48ZPnEOM+2HXZu7p0Sv8mOlmmYE8Mct9n7xACda+sIhFVq26Nsv7eLlee38chNByhM6Cw+q4nOtXWE4957cWD8ACW7hCIpCAj4ChGO9Izg2hCKq4Sr/EQS/hm2g2EbTGgTRNUoAeXl5zS0Qp7ho4eZGBpgXut6/POqMPvyWBM6SmMIuSYIloMgSrzx47NBjhHOWmRvOTBVRvonB0i+YyGBBcnf+dlUmMnxx+m+uPGtUKFChQoVKlSoUKFChQoVKlSoUKFChQoVKrwsFS/f1wBZFUEIgiiC7XLnv/8LlqGzfsM1FJ8anAqe0Pal8c9LEDn/RBbBrJ5FlVQkUcIvewtkhm0wWhilNjzTkVKWZRzb5dGbDiKIAnWzYmRGSzz8owNc+L5FRBMzF8bKhQK5dBpBEr1s4pKA5oAkCsiCTGloiOBkFsHx/hyiIiBKIq7rkBrME67y4/OfOhDzQOoAuqUjSzLDxWF8oo+5ybmn3LfCa4trmnQdOcy93/oP2lesZqy/mwNPPc7aN76ZwYP7GOk6xlnXv5NVl1yJ4g9wxV//HQMH93LOO9/Poz/6LtUtbQiiiFEqEozFMTWN454UicYmDj3zJACCIKIVC7QsWkL389sppFOcdvnVPHf3ryhlM5z11nfx0P98E0Mrs+EtN/DYj39FbnSUdVe/hWhCQ1bTXP6xVrR8iis+1ka5ILFwQ4yDz+SI1QZYdHYj+XSJ9Vd2sO3ubmK1AZJNIUzdomNVLXsfH6BQsti5uZemzhg1BYPEhe3YjkPozGZKTw8SWJhEIwWSAJaLoIo4k9kQA4uSlLYN4xRNIhtbKDw9iFOYdNjcNU7TGW089+zP2fvYvbzlH79MTUvba/VI/1dSTGkYZRO9aKEGRUa6cmz9dRctC6uwLYdHbjrAuW9fQCAIA5/8e5xikfhVV+KUNXyrVkI+D7KMKAj4lixh7D+/ihyPUf8P//CS2eN/F0Z6ukio1WTuPYo16jmla/vSBFfUENzQ6O3kumjHMjNSbpT3pkhOOp0LgsCvvvxPWIbnYLPvsYe45KN/Tef6Mzn09BMAHNjyGKddcQ21be1/8HVXeO3JaBn68n2IeAG2/YV+WsItxPxekHBuPIM/HOHRH34XgCWbLqRn1w4OPv0EF173UaythWnluWULpSFMbnM3Zr/3nbYvjX9BFRPNE8Qb6jFlh2PP/Zy9jz2IgMCijefTefplqH6HVZdUE46F2XZvN+3LavAFFXwBmdUXtzHSkyccz2KUi5i6BrgEY3423ZDkrm8Mkxsro5cs5q2LEYqOMXToSXp2tRFJnEX1KdrE9EA/I11HsG2b2rZ2amfNfhXvdIXXGtd12f3IZp74yQ+mtoUTSTa954OM9/VQ3dJGVVMLCAJaIY9w1JgSIAEwunP42qK4AuB6GdezuIiJML6IiqtbVAdkBEHAdhwaO6IUszqzmkIUf3IAYzLroLZjlOibOzk2oZFsiiJKMNKloagSik/myr9YQSimkh3TsHQHIeo5zPlDv7v4iJ3PYwwOgiSB44lkoem4jo1r2QjBIA2f/xyubWOPjOAUiwg+H5gmtqYhBoPYuTLYNvrwML76+j/0Mfxpoxs4ZQ3BtnBsB9exccplYuefR3TTJlzTRDtwAEQRMRAARQXLQlAV/LNnti81rVFqWiGXLlPM6BhlczJ42CUYk4hU+zA1i9Pf2MGTtx9GViXqZsXIjpXQSzqKz8ezd9xOz67nATi8dQvtK1Zz0TUfIffjo1OBcOVto8QuaSfbWwAXSjtHiV7QRm5zD8FVdUhJP/7a0MsHSFT4P4vZ04M9MQGCiD06jlRbh2DZOIbnPB2Y14nruJQPHkTw+RBsGzESRa1/+YDG8oSG8cwQ2nOjAOi7xpEbwwTOb2XbQ300zUuQEWDUhbmn1eNmNRTHBc0GSUCQZeysQWhtA7nNPVPlurqNfn83p92wEEOAwYP7MDQNURSnMoGrwSCN8+ZjaBqWphGIxciODCPJCnd/7V+nytr14P28+XNfonHuq5eZsMKrj6QolAsFHMdFchzu+MoXcF2vT9714H1c/lefJ9m4/LcqSwwrOAUTtT2G6JdJ33bQU6sEeGGM2CXtaAfThNc3vjo/psL/ObShISQ1gGPKaKkC2bERko3N3PFvX5ia9xIfuJdN7/sMerkGX0Am0Px7Bu+8zpDiM8Wk5bogru3glGcG68jVAdI3H8A1HSKbWik8MYBT8vbTXhgnfvUcwqc1vOrX/X8RaXIMlL2/Bzvn2QfavhThs5qQQlF++aXPTdXXPQ9v5oIPfJThIwdRA0GkSBR/NEogHCFWW48aDFLOpehLDWCZJkaxiGWalPMZcoZBMJZg6NB+BoUXWHDW+TSG5iAKAvMVQIZzGy/DKjpYho0+4lDQC7gOhBM+2hYlEUQBK5PBKZVwbRvXtMC2cE0L13VwRRFBEDzRQctCcF1c08QuFnFLZQRJRFBV718ggCMI2Kk0gihgZzMILoQ3nPEaPo0KrybSKQRB1dYoNX+2FO2gJzQemFeF8iJxR1uzyNx5FG1fGgANUNtjBBYnKe9JYaU1fHPj6IczXpmzotPsW6dgUnhoAP+CKrS9qantrmbhWg6jx44gKQqtC5fQMHcesqKgF0ewLT+SrCCoEoEFVeRHpouY+GZVRMz/NyHaGrIfHNMgn05RykwQr2/g7v/8EuW8F0x+cMtjnPPOD7Ly4ktftesQZBE54tkiSn2I2KXtYDu4tos8mVhCiqnYk5npBVnANZwZ5ThlC3O4iNocxilZKE1hcg96gb7a3hTFZ4eped/SivhfhdccvWQy1pcnPVREK1jEavyUiyYN7fGXPMY2XB76wT58QYW6WTFGu/MMH8ux6Z0LTpnwAkCSXxRIXeGPgpVOM/qf/4mvuQXB58Po70MKhZHr6jwhb9NEikYRBAEhFEYMBkBWPAFz0yC4dg0AgiLj5HKUdu1CUFV8rkudIlK9LkqhrJBNm8xbU4cvqDAxVCRaE8BxXIoZne13d9M8L8Fz9/Ww6qI2ho9l6dnt0ro4SfeuHFUNZfY8PsjKC9qwTJtQzMfslbXYlsNZb+mke/c46984h+13d7HmDbMZOpqllDNwXZeWBQnal1d7Qg4OnHVdJ/lxDTUg0bm+nmR9EK1oYZsFMsMDWKaBrCgowQCu65AdHUYrFahtDJPLCwwe24uZL9M5/wxCq2sRAzJiQMacKCJ1xLF2jhFcWk3x6AiBxdXkHpi0d/amELaqNL2jiV5piKyRpZmKCMnviyQpmIM5cvd2T20r7R6n6trO37ksWZGobvKEe2uBjuUzfcRejvZlNex+rH9KhKO+I0rfvjTHnh+jsTNOKWew+ft7ueZvVr9sOYIgsGRjM13Pj5+0DeatmznGz6X0KQGS42RHy8TrPL+doaNZnMl1k+b5CbbecWxqv9GuPPufHKR+dpThY579VNUYYuDgxJQACXhiKrOWguKXMDUbSRKntdGKX8If8twjQ3EfbUuS9Ow+YccLAsTrKskzfldKzz3H0Kc/PfV55F/+BTEWI37lFTP2jdcGOOOaOTxx6wkZnBVrw5S+/PeEP/XXSKqAWywiBYO4koTR1YU8mSDNtW1yvWn2Pj7wojKDbP7+XnBh18OeOEkk6WfDtXO59793T9Wrp395FMt0OO3SWd56sWsTlILUBmspp226t2WxDBvZJ1InRBntyWNqNsnmMI1z4/iDCkczR/nOru/weP/jLK1ZykdXfJRF1dPFK49jWxY777uLYzu20bF6LYIqkbu7CyulAd78TPC0OuTlMRzbRvHZyHIBbUd2RlnF7SMVEZJXCOFUKkkVKlSoUKFChQoVKlSoUKFChQoVKlSoUKFChd9IRYTkNSAQ81HKC6g+P927dkwFlTtFa0qA5DjawQlCp59YqFVEBRFPHAQXdFvHJ/mwbM+B2yqXMVMppEgEF/DFYpSyBtmxMgCZk5waC2mdulkzr684kUIUBQRRRJIVJEXBcVzKtknxE58m+d734tbXU8zpIAm4NqQGi2y5/Qj5CY3ZK2pYd0UHibrpGa/68/1YjoUkSoiC6DkCYzOSHsPNqri2DYKAogqEcgNexmPbRvD7CcytCJX8sckOj/Dk7T8GoHnBYrbc+mOqGpvJj4/Rt3c3a664hid/+iP0YpGz3vYuHvjO15m9ai2iKLLs/EsIJ6u59GN/Q9eObWx4yw08+qPv4o9EkRWVzPAQyZY2Un09HFdeSDa1sn/LowDIqkopm6GmrZ3ho4coZTOsvOQKnv3V7VPCJI/88Dsoqo81V17Lr77091Q1tjBnzXr2PLyZpgWLqZs9l8NP30PHaeuwGiwMLc05b6snPXiEtW+oxra9YOZL/qyD7FieM9/SgGMpGFoJNx4nrRmEG/2EWjoRBfAvSmIOFVFbIxgDBQTJczqTqwOUd3nOFYIsnBAgmcR5rsiyMy5iy503M3ToQEWE5BWmXDBwLHjwxr1c8qElHN42iqnbHNs5NrVP3/40tYJBeetWEm+9noGP/T/afvpTivfeS+ZnP0cMBql6xzsobNmCHIkQWLYM48hR5NWrTnlOfWwcQZFxNe0lA78zIwUcx0Jwwc4bUwIkxym9MIZvZQ293c/hj8SoU2aWIwZltL07yGfTDFmlqb7iODvuvoON73gfgwf3U0hP1kFA7+rCzGQQZRnXshADAS/zVyCAUl39u9zeCq8Ruq0zXhpHRiZveXZBRInQn+8n5o9hWw7Dx3R6dz/vfZesQZJknt98t/e5Ooklp8Ca7izuls0pAZLjaPvTVC1q5tc/+VfOf38jTZ0LmLVsBb5wGH8ojCS5zF2tYJQL7Hv8HkQnT/O8KwlEaiikDR675RDBqErDnAAHn3kSLZelrqOT/gN7aOxcyGUfbmGku49odYpQLMpYj0Hb0iVUt7RRSKcwdQNcl3hDPYFwlPG+Hm77/Kcp5zwnG1lRufZTn6GxbRaEX4HMxZYJ6SNgWxBthFDFaefVxhgdxU6nsVIpTwDCdZFqajB8KoauY5k6T//8lmnHFCZSFCZS9O3bg+s4BOJxrHKZqoZmjKMzHbDMsRL+zgRS3E/KcSjlLSTLRdNsdm7uZeDABFUNQdZe2YEkT2YwPDiBa05/R0pPDlJ1VhOP/PQQqy+ZRawmgKyKhCYOY6Gwc6vE3i0jU/uvOK+ZZacFECwTffdupFgUVzdwTQNBlhFkGbG+AS3SSLFgYxkOjmUTi0Lhc5/D19ZG9JKLcV1w8zmcYgkhFERUVEa/+d9YIyPErroSX+c87Mn755gW9vAwSn09rmHg5PPwf1yExDVNT4CkVMI1TcRwGGP/fiZu+SliKETVO9/hiT+KInJNDdbAAMW9+4hfdhnFHTtwbRs9UE3O9OMKIrJPIhCUcVxI9Repbgnx3L19HNk+guKXWPOGduJ1IaqaQ+TGPYfB9GCRzjU1gIUoy1MCJMdJD/YjDbgnMnGDN5Y7nPGyS/Z5bb1rOSCClPRxj/YwC8sLmR+c/0e6kxX+lHDLnhCRa+qIoZA3NhGg+MCD5O+/H9+cOVS9652UEq0UCzKuIOEXZAJ940i9B3EnxUpcF7At5Opq9GgD6W4D/47RaeeyBgv4CyY9e9IEoz5kn0Rde4wHf3qYznV1RKsDRCUBYaAwlW3btWYGrNlZg1xfAbHGRi8WvYBhUcKxbFJ9faihEIqq4g9HUKqqGe0+SnZshMFDB6aV49gWh55+Ap/fj4KAUChiGDq+aBR/XT1ysJJ5+/WOZRh4IxcX1e/nwJbHpgRIAFzX4dAzDzNn9fLfqjw5ohJcWYt2eAL9WOaEAAl4bW13DqkSCFnhFcQVBBRFxhCgnM8Rq6lj72MPcXIKY8e2SPXuZNWlV6IVi9iWCvzpC5EcD1zO3tsNjosYVkhcPRcxIBNYWkP5hRNzMUieY79r2IAX0HNcgOQ4uc29BOYnkSJ/+vfm9Yid06cESI5TfGaI8JzAi+qrzcCBfVS3tFLK5/CHI0SSNYTjccq5HIVMGtu0sHQNvVTCdWxESUJWfOTGxujft5f6OZ34wxGeu+tnrLz0w2hFF0UVEGUJRRFxXLAMG1N30AoGtuWST2mEQxCRS7iGge04CI7XiAu2PaXVK0xeq+C6CIoCooggSQiihOsP4Oo6COA6DkK5jBQOI0c8oUpBUcBxsAaPIZODUA1k+8AyINEGxTHID0GsFXxhGN3nnbR6PuhZSB2GQAKqZkPqCBTHoaoDZB8MvQCBKm9uYegF8Me88scOQLwVTA3iLdCwHJSZAj4VXj0EUcDXGsXX+tKCHvZ4eUqA5DhGV5boea2U96QQfCKJazsxBwrYJQPXnBlkbg4U8M9PTBMhkeaGSWcHefpnt1DdOotEQxMPfe+blHNZREnizOvfxbLzLkLx+wmuqkM7lsHs9ebqAsuq8XXEX5mbUOF1gemAo2fQSnnKWa8OFNKpKQGS4zzz85tpXbIE2zQQJJlQLE4oFn/VrksQBJAlBBn8cxMAJK6eS/qnB3FKFkZ/Hl9nHP1Q5sQxqogYVJCr/ZgjJQKLkuS3DE4r157QMYeLFRGSCtMpjIGW9YxB1/X+1by6a/7p4SJb7zg2FawOsO6q2UTiPsKnSM4Cns9EYcL7lxo4sYZSyuin3B+guilM6+IkvXtO9AOBiEJNS+Rlr88oW6RHijiW17f4QwpVDaHf6rdVAGNwkNgVV+AUipiDgwRWrcLVNMr79yO3tRHZuBG3VEKIRik++BD22Bh6dxeBJUuwxlOYw8OET19PefcexGAAtb2d0rZtBBYvwc5msXM5/PPnEz56hOrzLqUUqiUUjVLX7ombl3IGTfO8tlNWBCzDpqYlwguP9NEwJw5A964Uc1fV8vhPD7LigjZ6dqewLYfmeQn2bRmkujnCeG+exRubSTaFuPL/LaWcNxAUCdt2MHI2Y725KYF0x4Vy3kBSRLp3p9l+dzeda0NEa2pxHBvHtjFKJUqZCVzHxTINXMdBDQbY+qvbMbUyW+/5GYs3nMfy0y7EF/chxX0IgrcWbWV1AkuqKW4dnnav3byBOg7VbdVotsZIYYS68MsLHFc4NU7ZpPjM0LRtbtnCSpUpFwwC4T/emLiqMcRVH19Jqr+I67pEawP87IvbcSyXI9tPzAunh4rUtL58e9bQEeOKv1jOvicGESWBBRuaqGufaYP7w6cQ8xcgURfiovcvZsvPj3ibBLB0e8auvfvSLDijYapdjyb9pIdKM/bLpzSCUZWsVmbZpmaOPe/NUQiiwDlvm0+sxps3VlSJ0984B4Ce3SlCcZWzrptHsjk8o8wKL4Gpwfgh8vfcNeOrzK23Er30EkRl+nMXJ46xYEWc2qbFpPb24SunEDZ/h9q//QSkUqRuv53S1mfxL1pE1Q1vR2jyhI+siQkmbv4JZduH7OvEOEkEt1wwZiT6yac1ChPalADJcXY93EfrbAt37w46zjwbMRDAzpbIjosc2jZMx/Ja6lqjPP9gHyNdJ2yIs67rpHVthE8+/kkOTHhrFU8NPsX+1H5uufQWmiJNM+/ByBDP/OJWznjz29h+5y9YMmvjlADJcUo7Rgl1BsiND5NsnYVj24iRme+KEJTJpcpEkxWRnAoVKlSoUKFChQoVKlSoUKFChQoVKlSoUKHCa0NFhOQ1QFVlBoYmCIVVHPvEApnlmKfc3ynmKTx1iPDp61FEBQTIG3meGHiCB3sfpCnUxPULriee1j3nHVHEGhjALZVwYjHUwKmDdn0BEYb3Qv0Jdf6jE0eJoSAIIoLgiZ1Yho4gCCiqj/JzzzGwaxdNP/ohWjLhnU6WiCYFDN0EF47tGMO1XS547yJkRcLM50GWUcshGt04kijisx0En+Q5u1kOdszFkhSKKYNS3kaqaqX0X1+icO99qLNnU/3xvySybt0r+yAqvCy6bdM4dwHr3nctUlFg4d+eiWs5WJrOWRfcgJXTWLLkPCRVwcyVmfOP30YwQTfKOFioUoBsfoTVZ12Jaehc8dG/JRJMMvsfVpMdGiJ63tXsemozLe1LsC82CUSinHfdB9m/43Ga2xayfOOlxBsbkF0ZSzdp71wJmoMrQyxSz6wlq1i07hxGug7TPH8Jq8+7gh0P3cW8086kprmN7Q/+mtXnXU7P8zvJp8dZef4bePymb9M8bzGi28TzD97DknMvZM+jj5EdGWHJuRew/8nHiNfVk6hv4MhzzzJv/ZlMDA3iujYtnUsR8g61Le2IL0yAKiKGFazRMkpjCHOweLL//glsl5rmdmRFxdRP/Y5X+P2RJJEXHurFsV0OPjNMIDrTSScUU8l+/YtEL7uU1P/cSM3ffYbyjh2M/du/I4aCKG99P6NZlfCb34/1yx9jN3di+kIY/f3Y+QJOPofa1oYleNlXKBRwdR0xHqewcyfW0aOos2fjX7gQC5f0wBC2pWOZJsWJNJHYwpkX7oJplKmd1YbiDyBbQcSgfCIgRwBhRZgDI0epnd2BvmvHjCJs22LHvXew/pq38MQtP+KMq95KRI1BKIASrUMQwRFsJr73baJnnUVh925Ca9cSWLz4lX4MFV4BUqUU20a2sX1kO6fVnUZWz9ISaaFgFnBcB8d1iPliZLQMxTGTXY8OEgp6ziZtS5dzZNszANS2d7DnuYdZtOoM7K0nHGSUpvCLfXCmsG0TQZJRfAHalq+kMDGB4vMcEHFcLFOnd8/zNC9YjOr3g2uQHdlHKB5n41sjuK6DKIjMP2Mj/mAQBIGj27ey4547aJjTSfPCJTz9s5txXZelmy5EEEXu+MoXkGSZZedfTLK5lad/dhMbLrycriMHpgRIACzT4Ln778N521WYVhZF8pxv6kJ1nk30u5Dugif+DV64BULVsO7D0H42NC773cqp8JK4jouh6QhlxwsCA5x8ATuVQnBdso88QvHM0xl49AH8kQj1HXM9wSRnZrA6QE1rG4IoEorF6Bvoxx+Lk5xfPUNMR6kPIVYHeGbrCOFYEUEYwbEMfKFmghEfb/rb+dhmGaM8jKSoOHoMRZGY0Stbtmfz+iQKEzotCxMEQwJ2P5i1rSjBMRINATZc04kgC6h+GU1yEe0iwsozKEyUEFQfsmDhOjaGFMa2XJysjRpS6D84RjjuJzVk0Pr5b2Ad2k9hzz5C8+fg2jbavn0ET1vNwMc/DpbXH4x/47+oev/7UJqbPbtbkXFMGTEYxDFNRLUSsCkqMnbJy4Tmui5mTw+jX/zS1PdDf/MJGv7lnxFjMeyxMYY+83e03XwTdrGA4w+jV7WRHjdQVAkAs+xgGyaiJFDVGEAvZ1l0pp8lZ8/CFWCsO4tWUpFlEUEAQRI4+60ddCyvo5ydYPDIATZd/wHmrd2IaIMrQ2qwB+HYzGt3bXcqQBe87MTh0xvpd7tpibcwWBxkfrIiQlJhJoKqIsiKF2wrSQh+P5mbbiJ/3/3eDsEQ+UADhYKMXrIIxkVsy8FUVcoNixFwUX0iruuilW38fglBEqhuVimcwmBQAxIXvX8xhm4Trw8w2pXH0CwEBB6+5RDlvMnF715IXdKPrzOOIM/MEiwlfBgyiHoRo1wiNzZKorEJo1xCKxYJRKNEqutwHAvXcTn23LOsuPRKtEKB3t3PT+srTENnrK+HfGocLZ+ndvZsJENDGB6jqW2Bl9HOnQyuU8G1BXAcBFlEjPoQAMlXmQ57rXBsGzUYIiarBGIx6jrmsvLSK/jlFz9HccILBrZNg7FMiupYlfccAce0MQcKOGULRO/5OpaDoEhItQECkkB5X2rmCS0HtSWMPlJAQEBO+BBVGcewcUoWYlAG18XRbKSQgiCL2GUTDAcxooIATt5EUETEgIxd9CwIMSjjarYnzms4iAEJQRJxHRfXdhAVadpluK7r1UuxknHxTx0xEkcsG/hCYRaefR4AyeYWel7UVhlamf4DewmEwhhakczIMKIko/h8qK6KXJJxLRdBEXENG0ESEFRvrlSK+XA0y5vnFQTEsIJdNhFcPCNbERFUCVEUvCgde7K+TgqhCqqIFPDGS7Zh4WQNhICMHFaxyyaiIuFoNoIoeO/AJE7ZwnFcpKA89e6djKBIhNY34OtM4JYtpLgfOe6JK8QuaEMKK5R2jiJVB4hfNAsx5kPwSbi6/RJzZg6n/qLCK8Ip2hvXdvGHw3zkG7fiOoDo8sTPf4hp6YiyQiRZTVVTM6Ikk0+P4zgusiyhRqP4gw0gCmjZHLn0OKIk0VZdw5zT1iMpCpahU906C8fswaeCZZkYZQsxWosg1XqP2nVRAwpawUCUBPIjeVStB9fQcTUN17LAtr16LokIgjBZRby2FUPH0XRc00CKRnEtGykRxxodxSmXcYpF730Ih5ASVd49sGz0vSJyVCEk/BQpEoLHvwKJWbDyBnjo8957tPHTsPPHkOn1xETWfdD7DqDtDE9Q5IWfep/P/gQ89wMojEDtQmg7HbZ9D6o7oeNcuP9TcO7fwb1/BZd/HRa84Y/xxP/PY+d0EITfStjIdU7d9rguCBGFgphhy8230rxoCXV17QjZmfurbRHE1gBKSxg7paEsiKIsihERmnjvp76DrzqEIAm8+7PfxNJ08gPjqNEA1ngZx9VxSjaxyzpwSyaCKqE0hJEC8uR1uDh5A2TRE1hzHISAjCAKU+Lovy2u607aLC5OyUH0S4h+GduwcXULKaj8zmVW+O1wBQVRlQn5ElS3zMJxHArpsRn7ObZNdmQYxeeje/fzNHR0Eq9voKZ11kuX7bqYQ0WsjOa1lYDgguCTQAQQEHwigisg+EWwAXlynOQTwXQR/BKYDq7lINUFqX7fEpyiieCXERSRYmKQ0q5xlPoQ0fNbEUMy/s6EJ8ojCNOFVo9f10u8WxX+F5IdhsHtcHgzqCGYcx7MPscTAj6ZTC8M7YD9d8OsjdCyGg7fD44FDctg9kavPr0cfdug5ykojUPremhdB8GXFizPjZWnCZAA7Livl6Y5iZcUIVEDp5gjEF5i+ySKX2b9pY1UNQTpen6cmtYIyzY2EEq8/HzDxGgBf1AmN66jBmRcbNLDBarqK8Hvv4ny/v2YAwOAgCAKKA31XlukqoTXnw6igDkwgCCKkMvhW7gAQVhISNgIrosgy14SHMNAnTOX8q5d5B98kPCZZzJx881ELrwQ0e8n9f3vk3jb20h/9lOEz95IPBgkcPk1lOrDNMyOUsgYDByaYPaKWvxhhaGjWWpaIoiit2ZQyhk4DiTqQ4x256ifHcUyHPwhhTWXtVMumsiKiKHZlHI6PrWI5ItiGN6A78hzYyQbwxiaTe++MXwhmbq2KLbp8uRth2lZGGP+uioEcb03BrRNjm7biur3I4gSoiRhmyaObXtJgABclz1PPEBVWwsLTt+IO2FBysLXEUOO+XBN55RtuOwoJKwEW8YeJxRRMazIZJ8CCBJqtCK299tgmBrYp+gjBQHHMDkuWmpoGggCqu/Vva+xmuCUIEcxq+MPKZSy0wUsj6+XvByyItE8r4rmeS+fRCLZFKLztDoObTsh8r9kYzNVTSFkRWLxWc1070rhuiApM+3S6pYw7Uur6dmTQiuaNHYmsC1nmmgUQPOCBKG4SmNngrq2KB0raylldcJVARIN04WrqxpCXPjexRQzOopfIhSr1OXfiYP3wH2fRKl684yv5JZmnhzawkh5jDmJOSxKLkLNj0P6KIphEFPnMfGpt02t0YqOw9AX/hl9/34ACsPDaHv30vS1r8L+71CaaGX8G99Arqtjzce/yZP3nBBMCp5i7BeMqqfsv31BGffQYeJr1uGkJ7CLfYiRCOVChMaOOPl0mVI+ME2ABGDrHceId3SQ1tP8ddM7iDk+nnO7+fXIQ/Tke2hCAUkGQQRf1PPX1ErMP/1MAtEYZ9/wXlzhFO+/4+ILB2mpW4pRLmHqZaJLk5SfH4NJoTJkkXxVgEe+9ByX/7/lJBsrtsIfhD0pLufMFDuqUKFChQoVKlSoUKFChQoVKlSoUKFChQoVKrw0r3nUhSAIFwFfBSTge67rfvFF3wuT318ClIB3uq47Mxr7dYqha5RyWURJQfX7EEQJX2mE0oRMPKnSMHc+oiTh2DYHD26hpW421siJrA3q7CjluIBuxtFG+gkFQxTtIncdu4vbDt0GQFe2C8GB0xZ+GlvXcfr6GPu3f0M/dBjf/PlUf/ErLDijgf1bTmTXmL++ntoDX4LRZzGv+wWOoOIaBk2aH92vgChg6Qaj/T08/8A9WIbB0nMvpO7eu0hfdgWlRAxwUfwBbE2jlMtw6YcaeeB/RsmndLp2jZMZyhNwszA2RqluLrIsIygCPtsCBNy8gXYgQ3HrEGJAIbKpFUs1ufNrB4jVBDjnhr/E+fkv0HbvZuDPPkjbbbcS6Oz8Iz/B/7v4gyHOPPut5G/r8rKZ7i+gH80Qu2w2mZsPIScD+NpjZLd0ETm7Be2ZUeyMTmRjM/lH+nDnQMwXp3TfILELZ1F6vowppvDPryK4RcS3XmZ5cCPmowVWnH4BhWcG8c2JUzf/erRH06w9+0qK24eRa4O0LV9E+bExTtv4Bkq7xxF6Jc5Z9TaKTw6x9KxN6GIWe7vBuWe+k+IzwwQbqrlk7QfR9+Q5ff21lHeNIY8EueLiv6K8L0Woup6WM+ZCGeauXo2+P43PX0XTutlYWQNfU4R2exFSNMis0GKctIYSimAVS7g5G9/iJILpUnXdPIz+AoFl1WR+fcwLRJ0MrjhOcHUdyrESb/3zL1PwWy9zxyv8Pih+ccop5vC2US750FJ696WmMoj5gjKtC+Lktm0juGoVTi5HaM0ahv7y4yBJ+D7z7zz0lEj5kMmKCGjz3sLRu8eIJiZYvapAonCM1De/CYJA47f+G+vIEUb//T+whoaIvusdBC69jNLBg+Q/83dU3Xo745kR+vbtIRSLUz+nk4a587A1Fynmw86eyJjmX1yNExdRxTB6Po9BidgNc7H6Stglk6wwTk//dhaeeTZmqcyqy65m14ObMUonnGk2XPcOfIEgejHPuz7xdayRMlgy2rZRis8MI/olIptaCW+4HjHqw7fSz8RNN6H87d8iR14+c1GFV5+slqWQGUXxBXE1jSF7gqcGn2JD0wbOiqyCUgkECScgsWHzxdSH6vnUqk+w6+gWlic2kh4o0Hn5WRza+iTlfI5gPE5hIoUvGGK8t5vn0lmWbDwPJa+g1oYwQgZGwECuDWCNlqeuQ50TQ64PcflffIJCOoVWzBOMxhElEVPTECWJUDTOwrM3kR8fIzMyRDDq0Ld3N7Wz2pEUlfZVaymlxwknEvQfOsCu++9i6XkX0zh3Pjvu/TXdL+ygZdEydj14L4/84Duced07sAzdy772y9vYcN07SLbM4tiRA5jFEgvOPAdfMETXzm1kR0fIjI5QHh7HwEI7dADXcRjsaKVl3moawg2/3Q13bNj6LS+gCCA/DA/8HVz4zxCph0gle9sfimXo2GMG2r40xWdP2HZicy3ak09QfOppQn//aSTDpK6jE0svI0gKrmNx/T/9O0a5iF4uoQZDhONViKKIoWkYWgm9WKRtyTJAQIz5UdsiGD15AHzzq/AtqKIomyw43c/+x58gFE8QSdZQ1ZSgts3C0gs4loXi91GcSCErRdRZsyiJ0wMmnEU1TExmSnNsF0OzMcogBFrJdReobYvSPC+BXrY49vwYE0NFWhZUUdMaQfG5bP31MKmBAsnmECsvaKOYzXPg6WFaF1VRzOgs3NDI/qeGqGuLMtZbxKARmmppj9ko5TJSVRXm6OiUAMlxMrfeRsM/fwHXNAEZye8H10WKx1FbWv6IT/n1iRAMIug6gq4jhX2Mfvd7M/Yp791LZNMmSrv3UP9P/4iTy2FEGxgpBAgpDpbpUMroTAyXOfD0EJveMYdAREMSRQQfOLZLKZNHVn00L6hDVnxkxiZ448dbiIXrIGuhPz2CKAjMblmG2wDlxwfRDqSR60Mkz2nBnmNS2j46LSubf0GC7D1dIEBofQNyvR9cnbqcw4BaJF1O89zIczQEG2iMNP4R72qF1ztiVRWuaSIYBo5hINgO+fs3A6CuXIP74c9RIohhmISr/AwcTFPXHuPhHx/EH5I57dJ29j0xTmasxJKNzRQmDERRwO+X8M+vQj+QPulcfqyAgqPpBMMKvoCEYzlTbWU577kLjw6VGB0qEW2O0JL0E72wjdyDvWC7iEGZ8OWtlANlHFcmVlePGgxSzuWoaZ+DYDsYpk5pIo2kKiAIrL78GvRCnrlr1rPo7E34ozEEXBzLxjR18qNj1M2eQyRZi+s6KIoPpSCD4eLoFk7BQKjy4fRr5B/tB9slfFYTYlTFGiqiNIaRkj58DRW7+I+NIMsgisg+hXJuguLEBP5whLd8/st8/yPvAWD+GWdjT+TYYwyypHYJAOVd41jjZVzbQU4GKB9IoyT9XpDRYJHAoiT+xUnKu8annc+/MImoSGRuPYSV0vAvrSa0so78o32Yw0ViF8yiuG0Yc6hIcHUt/s4qcpt7sCc0ope0Y0/o3rxVWCG6sYXCtmH8cxPYOQP90ARKYwi1LYqZKhNaWkNp5xhGX47AshqCS2uQYj6MnhyFZwZxShbhs5rBdCgdTBGYFcfK6d5cQlBBTvpwBQEnY4DrYucMnIKJb04ctTWKkzfQu7K4ooAUksFysSY0BEnENzuGWnFE/6PgOA6WkUMURfKpUfR8Hn8kynu+8T8c3PIYT9x8IwgCycZm7v36V2hbuoLF55xPKFHFoWeeJKCGmS0sRa0OIif8aHsyuIYNkkj5hTGiF81C78rgb4+Tf7yf2Bs6cAdtBEnEzpkUtw7hahbhjS2IAZn8o324ZYvYFXMwurOUdo4iVwWIXTILwSdT2jFCedc4UkwlfFYzxW1DCIpEYF4VpedHCW9oRm2LYA4W0A5OYHTnUGfFCK2tQ50MhHR0C6M3j9Gfx3VAbQpjZTTs3ePI9SGkuIqdNSAkk3hTJ1LMhzlUxO7JkrhqDhO/POIFzisirnlCqCWysQWpErT2qiHV+hECMu5JWYLD6xvI3HEUbIfIxlZc2+GMs99CQclRLGVQVB+WYeBYNv5gGMe2sW0b29Ap6hqCICHIIlVNzUiSjGs7WJZJKTOBqWvsefRBOteezpFtz5BsbkGSZfoP3MEZb343oliP69pIsieeI4rgVx3cVAErk8EtlXG0Mq6uTwVLCqoPwaciKAqCJIFl49oWdiZD4ckt+NrbCa45DaesgW0jhcMIkoxrmpS2b8cuFAjMn4cUi2GUwE0uIlba6QmQTHTDyF6oXQCj++HJ//CER574NyiOeUKm8VYveLpnC8z+9Imbu/XbsPx6eOabMLoPFl3pbR8/BEuu8f7e9l1Y9Ea471PQsg7CNX+U5/6/CSuro3dlMXvzKC0RfO2xKeEjc6SI3pXFKVlIVX5cEbTdKYyuLNHzWgksrUEKvrR4rVIdQGmLYvacJODbGEJO+Iie10L/4AEEE6pSSfSHhvB1xAif1UThiQFwQYqpBFfW4Qzp+OclcG0XpT5E4cF+Shmd0BmN2HaZwpZBHN0metEsQlaYwt1DmL4UkXNacCwbxl3yD/fhaBaxC9oIrW3A0SyKzw6j9+YIzE1gjpWREj60/WmkpI/wukas4RJOyURK+JESftSmMOZggdIeTzDCGvXWGP1zExgDeUrbR5EbQvhaI6CKOBM6elcOtSWMXBfCNyuKUhN8qdtV4ffEBQRJBtcmOzKEoZUIJ2t437dv4rsfeNvUfos2nkc+NcaBJx9n7RvfxMM3fotz3vkBwokqApHoKcs2+gtoB9IIkoCV1nA1C7U5gpnSEASQ4j60wxME5lehHc7gX1BFaccIgSU16McyiH4ZuSmMONk/l/en8XcmKO8Zx84ZRM9pwS4ZRM5pQa4LkPnVEZyyRfTCWYhBBe1AiuDyGko7RqeuSQzK2HmD4s4RjL48ck0QV7cxx0oEl1RjDhZwAbU+jDVRRgwomMMl1KYQgiphDBSQ4z6UtghOwRvT2RkdBJDiflzbRm2MVOrq64X+rfCzd5wQlNv+P/CWW2DOuSf2yQ7BsUfg4X/0Pm/4C7j1etAmRchlH7z5Zph7/kufZ2AH3PZ2yE/6ODz1NbjqW7Dsupc8xDJnCl4bZQvnJYSwAcJhl7mn1XH4pAD5RWc2EvK9dHIJbWKCwFgXrY//hCZfGOGFPMFZl2Gpnahtbac8Jp8uYRkuD3xvN9mxMqIosPKiNjrXV+yE34SVyVDesQPXMECWERQF1zBwTU/ETpBEkCQQJc9ulCQQAARP50YQJwUcLSZuuhn98GF8ixYRf+NVWBMZAitWUnxyC9GLLsIpl7FGhgltOJPc/ffT+LWv4g73ErYtkGSiJY14sITVMBvTJ+JbnARBID1URC+ZzFqSxHFc9JJJ3awIiYYQj/3kIMvPa2XP4yPMWlpNb3eO6qYwYz15RuM+WhaIOLaDILg4lkk4nscXdGjo8ALbJamMIFq84SOtBCMyjm2TGxtF8fkIVSVpW7oMvaQhTgr5CZOCQFd96nM4toUgCPjCUUytxEjXYYLxBL6WEP7GWoSii340S2hlLcVnTwT3CwEZqkSs8jjnNJyFmDbJ/vwo5kAB35y4Z+/4pIrQ72+BPxlDOROyd3ed2CiLiA0+Bo/sIt7QiCAIlDITSIpKIBrDMnTUQIB4bf2rem2hmI8N185l8/f2Tm2ragxR3frKzZlGkwHWXjmb9uXVZMc1quqD1HfEkCcFfBvnxLjkg0vYubkX23JoX15N1/Pe/J7qlzj9jXOonx3j6r9ZhW25hGIq+bRGZrjEwWeHEUWBFRe00r6smkUbmk78tvjLzzcoPol4XcWu+J3JD8O9fwPFMSIrq5mIx7EzGQCEQIDg5ZcSev4IS3rGqVnXhHbkWYxyHnn5GgTDgHIZua4Oa2QEFAVrcHBKgOQ41vAwZm8v/bOXwqPbABBDIWpHt3HeubMZ06OEk0GCssGay2bx7N3d4IKsipz9pg58dTKRKh/59An/nNM2RIktnYV15AhjX/mK50+5YAGxL3yLA1mdqsYQtjVTLEQvW0jFEl/Tr0b+5I04hQILFy/k7D//GAUty4O5x1jkyDTsvAXmXQK2jhjbQCGToX/vbjpWr8WJgRhRcPIn7Irgylp0v0lhfAzHsghX10BQoeq9CzG6856Ia3sUalSuX1eNaRmQHYFYxafh90UY3AHUw9ALwNzX+nIqVKhQoUKFChUqVKhQoUKFChUqVKhQoUKFPxle0xVhQRAk4L+A84F+YJsgCL92XXffSbtdjDf7PxdYC/z35P+ve9zMKPmigeu6lLIjDB06SCmfpXn+QurnzEZUJEaOHuEd//YtEKGUTqMuDePrsjCO5fB1JlAWRtFFDadsMXLwEOF4gkB9gl8d+dW0c3100QdAkhFGRxn65KewJyYA0A8cYOT972LFjT+lZUGCzEiZeI2PaKtKXvg7RATMjEN2tEQ5bxCrCVDbLGPbJrmxEe7++lemHIgeOHqYCz7wUao/9lFEUUKUFca7jnDfN/8TU9eQZJlz3/1Bdj0axjJdXEHEHRyisHs/8iWdILhoWZNAQkFAQN+TJv9gL+BllZ245QDJdy7k8o/UcN930zx7Vzdr3vdn5L7z37iahr5vX0WE5I+IaLjkHxgEF5TaILkXelDbo2gH07iaTWBhktwDPYhRFadsYQ4UiJzdTO7BXlzLQa4JkH+ol+CKWopbh7DGykQvmkXuvm7U9ihmXx7t4ATRC9rI3HUUKe4Hy6X47DCRTa1k7zoGsoi/I07+0X7CGxrJPdjrOTpuaiW3uccr+9lhrJESsYtnkf31MdT22JQDZvTCNjK/PIIUVVGqg+Tu7SaysYXcPd24hk3knBayPztCcHUdpS2DmCMlYpe0k/npYXwdcey0jrY/TeyiWWRvP4KU8ONrj1F85hiRTa3k7upCULyM9YHFScSEj8SbOinvGsdOa/g64lgZDeNQFg5nSbx93mv9WP/XEZEn6FxTx7N3ek47j//0AOe/eyH5lIYoQjJQRrnvZuT6eszBQdSODpxiESkew3/exWzbp1LOl6lti5AbL3N0h5eJcLxssXlE46LTQ8SvuZrx//om7niKwU98EkFV8X/273h6/y6Gv/J52pYuZ9kXv4DplwnG4izauAmtUMAydPRCnmIuR/KqRpyDZcy+Ar6FCdxZKuODvRzbuZ1Ioorc+CgjRw/TvvI0QvEEHevOxO2RuO+//oPM8CAdq9byxk/+Pdvu/AVGsci6a66jd88ucmMjnH7BdZS3jeJGvAyG+QeOt6sw8dODVL1tAakf7iN+3XyUD3+avoNZcmbeCxIKSQxky4RUGUkUCCgSIzmNkE/GclwMy2F2MsBIwSBVNGhJBGmOquwZLhIJyGRLJnVRH4okUDJsUkWT0ZxGxC+TDKk0xAPMqa0Edr6YwZ59FDc/gPjLzVh1tUQuuIDEnj1cd8l62opNlLY+SPb22xECAare+laeWPYDdub30nHTkzQ+uYXQ+QWWnn0hux9Pc9bbP0Wqbzdz1pzB5m/9J0OHDrDmymt56vabObjjKQKRKGe/7d0ce/xZlECAVee9AaUnitVTxNcZx2oRmBgfwLYsStkMkWSS8f4eVF8AvVggUl1DYSJFOJHEMnTCiSSK30/LwsVEauoopMcZ7z7GeH8PNW3tqKqPFRdfTqy2jmhtLbNXr0UUJUq5DO0rTiMQDpMbG+XKv/47AtEYQ4cPkGxpQxQlHMukmM3QGk8w1tfL+muuxyiXCcWriO3pRpjIUDp6GHPJYsy94xjqACz5LUVICqOw69aZ24tjkBusiJD8gbiui6076AfS5B86ybb76QGS71hI6A1Xk1+2mB333sniszeRGRrAdWx8wRDZsVGUgB9ZVrANE9dnU8plkWUFBwfFF2S0u4unbr+Z0699K2U3T2RTgqhTB4JAKjfA3kduo6FzPpFkNfnxUXbccwcA1a2zWHvVmxnYvwd/OIxt27QvX02qv5fA3GqUKzoQD6VxCibWnAQHe/M0LqlmtDfPnNV1jPXkefbOLhae2Yil2xzaNsL6qzpQVIljO8ZwHJfUQJHONXXUtkYo5TxntlR/kSdvP8zcNXXMPa2OrXccY+0Vszm6Ywx/SEaUBEzdy3bvOBK9Qy5zfAqOpiEnZ2aMk2IxxGDIE9MRRMSAH1QVX1vblDPx/2X8HR2U9u9HtB2QRKREfMY+UjiC67qIoRDqrFk4hQJjOYVcWiMQ9aHlTXDhwNNDrLwgTv++e6hpbUUvlajrmMMD3/46RrnMkk0XkqhvJFbfiOvYVFU3Q9okdfMBsLxAhuDaOqwxDeOYF1BhHMt64jTvXUT8DR2UD6TBdgiuqUeK+6h6+0JMUaNgZzECEM4UkESZar2JyHALWpdBtk2nLnEA0SyAkQfbmswsK4ClQyCBpWWxQ/VYhkbA1ZAEwaszoWoop6E8AZEGqF8CZgmG94CehWQn1C347W62WYb+7V554TovosoogKWBEgRfBKJNkD4KSgCq53qBJekuL7AEAUTZ2+4/dSBVhd8Of3Mzuuti5XJIuo4gigiBAG6pBFe+HUvyIdkOkiQyfCxL3ew4D3x/L47tsv6qRTz1i6NkRkqsu3I2meESkiIy1pfHtV2Wr69HSvgQ+/KIjWGstijjExqmZjMxVKSY9VPVFOb5h/qYF5Cobgkz3ldAkgUyIyW6Bwok3z6HMimib21BMAWcgMCEOcbEkX4cy+axH3tiQauvvJbq1jYcF4xiEdd1Ccgxr19xDCRFxtJ1LEkmPz5KOZPBBYLRKIIkIkkS2dEhTF2jqWE+uC6u6WD05LAyOgG5iswvjkzdt+ydx4hf2UH+8QGwHOJXzyXv09hd2EOnv5am3AjICihRqJkLasUJ/VXBcXBNE0lVMUplStkMjmUhKQrv/caNHN76JHq5REKRiY03cKh7mNpqP6XN3QSX1SIl/OhHMvhaIhSeHvLG4n6Z4rZhwhubiL9xjidEIkBodT0owrR2WpREJn56ADtrEDm3hcwdRz0BCEAKqaR+uA8cFynhw+wvUHzGC3ZzCibpWw8Sv2oupR0jGN1e0LI1XsbozhG9eBapm/bjFDxncnOwiDVaInRaPWPf3QUOCKqE2Zsn91APsUtmk779IEzGwYlhhcRVc7DSGnbWm4uwUhoAhScGSN6wkIk7jiDIIoEFSYiq5B7omRJ0EBSRmvcvRW2pjL9ebQytiBwIYuRyFNNpjHIJJRBgYmiQ1sXLeMd/fJv+vbvYOWmT9uzaSduSFfjDYWrb5+DLyKiSHydvYksipR2jRM9vI/dAD2pLBKMnh681RnZzN765cYzeHGpzBCdrkLuv+8SFOC6Znx8GQGkOo+0Zp7zbC9IxBwtoxzI4OZPSdi+Q0imaTNx20DvX/T0YR7NENrYwcdtB4m+ZR/HxAYzJYHxzqIh+OE31+5Yix3zovXkmbj04Vb8RIXbJbApPD6E2hZEbQpQmg9WspdVg2GgHvLlpMawQf8NsxLiP5LsWUdo+gpUqE1rTgH9e4tV+XP/rcF2XzEiJ9FARURQQZRFJEr1gRccln9YRRKhpCCFsGyF24SyMvhzWaBn/4iTWWBlzUtAx/ZMDJN7UidGbJzwrSpEMpq7jAq5tIwgCiAKiIOM6LuLkZ1ywdB1bMMF1KU6k0ctFbNtm0dmbOPjU456gaTzBs3f8jDVXXMOeh+9i+UXvw3EktJKJLyjjU10CuT6cUgnR58cqFDybxu8/IdznuoAApomrGziGjj2RwU6lUBsbUWprMfv7PYErAMfFdUzM0VHM/j78CxYg+Pw4mo7R3Y2uKgQvX4FSN+yJkAzvgtqFngiJWfICU4+T6fXs54w3xsU+KQhZy4AaOvHZsWb+XRwHfwyKo57NXuF3wtFtsvd1Ud45NrXNvzhJ4uq5OFmDse/swilN3uvJNkmO+zBVicyvjiKGVYKLq1+yfDGoIF82C2FvGvdIBrUpjBRTyfz6KK7hEG+JU7P2DWi/HABA25dGaQwRf1snWqGANAL6sQxWSsPsLxC9oI2JWw9NCZ2KksjE7V4bLYZk7JRGbnOP99vyMHH7IRJvnkfmrsNEz28je08X2Xu7sRuCGEdzGI/1E71oFvnH+gmtqZ+a7w0sSJK+6QBO8Xh7LBC7pB2zYJC99SCxC2aR+eURsL3rKDwxQOzS2VipMtZ4GSmqetc95ImUGD05fB0xrFTZE4byV4KIX1FcDTUYJD8ySHZkGNUfwLYsnHyGd331u2y743bC8SomhgYwtTK58VFKuSxzVq9jYmgAQjEO9RTJaxbt1SEWN0XxKzKuZWP05SjvGUdtiSBX+SnvTeG6nlBYeV8KqWAi+mXKe1OorRHyj/Tha49R3j2ONVYmvKERwQVrXEM7lCawKEn+kT6cgkn0/DYmJutRYGEN6RtPLNlnfnaYyKZW5MYQclBFrg2i7U0h1wZQaoO4mk3mvm6CS2soPjOENVIiel4r6VsP4ZoOsfNbmfj5YcLrG5i4swsxpCAoDVPziWJI8a5NFMk91INrnLB1o+e3MX7vbqrfsxSlJvCaPNIKkxTGPLEt96RAXUuDow9PFyEpjsLW//b+Pudv4fDmEwIk4PWPz/0AWk8H30n96skM7jghQHKcx78CbWdCvPmUhySqVSRFxD5JjKRlYRURMsCp7U+1Zy9L1s+lbXGS7FiJeG2QiN9AGTgC7adeO3DHxhj5py+gHzo0ta38xGO0fPc78BIiJC4uz/66i+yYJxTvOC7b7+mmpjVMoqYylns5jJ4e7IkJxEgETBNH08EycR0HZBlsF0fTPIFvx/HsSdednENlSpAkc+utJ/xo9u4lNTZG3ac+RWnLkyjNzSCJuLqOGAph9PYhJRJeQiFRwDFsxGAQ/emnyN34A69cScLf0kLgsqtJrj2TtpYYpqxSLjksPbeFQFhh5/09xOuCDBzyzpsZKVGY0AhGVMb7C8iqiGU5SIqAKEBd6xiFdIliRkQURM8mF0VESUbx+XDsMA9+77/IjgxT09bOgrPOxbFtJFFCEAFBniZGIooivmCQocMHefpnP8GxbQKRKBf82ccwDR0cl3BrFXF/HdHaANoL40h1AXwrqtDEIo7jIOVtUrccmBoTlneNY42ViL9tQUWE5LdAyruUh4rELm2nvCeFGFUJLKhCjgX49ae/wFs+/6888J1vkOr3+sMFZ57DsgsuYfDQfqLJWgSpETUQwNAsBFHAF5RxHQfbdClM6ITiPqpbIgQj6u91fbOWVXPVx1cy1psjEFGpmx0jmvS/kreAaDJANHnq/lvxy7Qvq6FlQZW35GE4pDcVMTSLeG1wSigkEFanlbfxbfNYeVEbgigQq/YjSpX1sj8KZhlKKQD8B75Gwxf+C23fYXBBjEawnnue+AMPknzPe0j/4xexMxkavvd99KefYeLmm0FVqP2rjzP4yU+BaXpzAIIw3a4AxECAkFZLpsOb1wpvPJuJb/wnrqZRV1eHncuRLZeZ9dnPU3vlLHQxgH+8ByXzAqXZc3nDx1awa9dhBE3G3+gQ/NktUH8tQ5/45Il+YP9+xP/6Rxa+9ZMYukM44UeSRWzrhA3RtrgKxSwj/tPXj0/jYu3ZR9sPQhQ/9+cUwlG0YCMjnaPU+cKUkuvofnQr8884C61YIJ8ao5TP0nDJXPw9YA0U8S3y/IWe+tlN7H/yUTrXnUHrkhXUz1+IY5XJ+cdQfX6UchF6Xcb7egknqojV1lOjH4Lait/k78XxuRnbeG2vo0KFChUqVKhQoUKFChUqVKhQoUKFChUqVPgT47VeEV4DHHFd9xiAIAg/Ba4AThYhuQL4keu6LvCMIAhxQRAaXNcdmlnc64jxY2TtEJKskE+Ncs/Xvkwx4y1k7bj7V1z0ob9k1tIVdJ6+AXDJDg5y11f/FaNcIlJdw6IzN7Fw+XloZomRo4d54NtfxzINBEFk/bXX8xeLP8qXdn1l6nS70nuZ3dyKPjg0tWB2HGt0DOnYXuasXYbQotOriiDJiGUBQ3PYcV8vx05y5jzzuk5mLfbTtXP7jIW+3Q9v5sqP/DUaLno+x+bvfB1T94IibMvioe9/kys/8c9kxyKoqkvhoYcIvesD2IqEXrR49q4uLn3XAuyCSXH7CC/G6M3z0OZvc+mH/oJf/kcPysevh+94DkqCJL0ij6bCb4frgJPzFt9c21tOlRN+9KOeg5g7ufCq1AYxBwveQZKAq9vItUHM4aK3KeHD2jmK4JewJ8vztcfIP9J3ohwH/HPjlPekTpzfdPDPiaMd9OqzoEo4BROlOTwV7CNV+bF2jiJGVMzx8mTZUa9swSvDc5RMTtU3QRZwiiaBxUnKu7x6L8d9lLaPoDSH0Y9kwAXfrCi5B3u9TNlpDddwCCxMkn+8HyTBc2YqmIRPb/ScM0sW0fPbyDxwmMimFlzHofD0IK5uT/4gsEcKsLD2lX1Q/8cZjjjE5kusstvY89gAoihiaTbxX/072uOPkDdNUBSq3/c+hGCA8MazGfnCP1P9/vczcWSQ0ee9etOyoIodm3unle3YLgUpQWiy/ht9fWDb+N96Pfc+dDelbAaAQ89sYcGGjeS7DiNIEkeefYaeXTsAiCRruPjDf8H/fPZDnPnWd1K9vo2Dhx6lLjAH13VwLZPDW7cw3uc5oY/39VDb3kFtWzt3/se/YOneQvjuh++nnM+y8Yb30v38c7zw4L2k+3qZv2EjZCzkmiC+JUkyP56eJQa8dlWu8lN8pI/RhUnq58e55wvPISsic9/UwQAmX7h7P5cva6C9Ooxm2mztSvN8X4a/vqCT5/syfOeJY7guhH0y//6mZTx7dIxdQwXm1UW4c9cgX7p6KT2pIv9y74GpbmN5S4ylTXGuXd3Mkub4K/zk/3QpGkVKv74L679uBMA4dozS9ueo+fMPY/3bjehvfhMj//DZqf0Htj9H8ze+QdO3fklm927vmO98m5b3SCQ2XczhA1la522iJXCI6z54PYfzIMSjnPXO9/LCPXciSgr+cITx/h5aFi7lR1/4GOuvvZ6iOkHxhQn8R8PUts3miZ/8gM71Gzj49Biti5aw++EH2HDdO3j85v9h1aVX8MgPvs1Yjyf2E6urZ9FZm3j657ew6V0fJDM6TCgWZ9uvf073zu1EqmtYddlVqH4/kqzwzM9voZzLsfGd7+fur34Jy9BBEDjtDVfTsngJE0MD2KbJ4zfdiGNb+MNhNr3nQ2z+1tc8G0MQWHv5tTSbOsfmzWbnfb8EwPfIfVzxN5+hZcGS33zjlSDEWr0g/GnbQxCI/8HP9f86Q0cOkgw2zbTtXDD68gQbwzx+041suO4GMsNDTAwN0rxgEXf82xeIVtdQN3sOO++/G1wX2efjgvd/BF8ojKz4sCSdho45WLrG0z+7hTPe8nYyqWH8kQiiLFEqZXju7l8hP+Bj4zvey+Fnn546/XhvN/37dhOsSrLr/rs47Ypr2Pf4Q8xavgotn8eQqsnVBOkfz1DeOsyqi2Yx3p/n7OvmUS4YXtAdsO+JQc69YT6Hnh1h5+ZeVpzfSmNnnP7JwMoj20epagzRPK+Kw5P3oJw3CYQUrMlgCctwGDycYcnGJmRVRC9baHkTvWRiaDZzl8dR6utRmpuRGxqwhk4MdWr+/M8RwiGkqir8TSeyuFU4QXDBAsxcDrOrm6obbqD07DaYzJ4uRqP4Fy4E08K/YD4Tt/yU6ne/i8IxB0EAvWhOPieXYFTFLB8gUd/AoWe2sPS8i3n+vrsoTkxw5vXvZMttP2btVW9m8PBBWhYupqFmDrmdPVOB7QC+9jilrQenXZ+r29ijGuZICSnpB9dFEAScgokYkBnsP8pI9yEWbrySCbUJVTR49jtdlCezogkCKB9ewBztaS8QcnQfDO2CQAKSs+HwAygrb0B54itw2nsh1w9P/Dtc/X0Y2O5lnJ10CuXiL8PIHtjxQ+9zqAauuRHaz3z5m6wXvEzvW74K5/4tDO6Enmegb/Kdq1vsZXqvXwzPfgeOPAgLr/DK3+YJTrDsLV47HEjCeZ+tCED9gfhaWjiey9HI5aj58IcY/fJXcKM1GGUL23aoaYmw6+F+wgkfju3Vcb1kkRkp4QvKlPMGvpBKKWdQ1RAiPVTkkV8do5w3qGmO0JYIIBYtevem6HphfOrcG940l3PeNp/R7iyrLmrjuft6OLh1mEUbGmlZUIWhldGKeUxZQ5QkFMNP775dNHR0csdX/gnXcTjjzW8nVlePUS6z//GHyY6Nsujs8ygXckiygiiKjHQdpW3JMvKpcZ791W1TtkjtrNlseMsNHHpmC8PHDjN4cD8f/MqPvTFa2QtGDSysonTSNR+n9MIYweXVlLaPkn+4l6rGBXz0kY+yrmEdn1zwLjqObYGq2ZDtgTnnVYRIXg1EEVGWGe/t4u6vfQVT88Zkyy+8jEUbNxGIxClMjOO6Nnd+bRcdK2tQFyTwCQJOyUSu9mMOFZFrAqiNIYzePP55Ccr7xhFcgYk7jqI2RwiurcfRLOwRfVo7LQZl7Oyko7EgTAmQALi2OxU87J/rZYKfhgtOwcDoz0/bbOcMXMM5IdAwiXZ4AimiTgmN+OcnKD0/iq8j7olFnJSI2ymYmMNFzFQZpSowJUDiXSeYQwWcrEHk7Ga0QxPIdcEpARLw5j+Kz41UREj+CCiBANnhQZ6765ccfPoJAIKxOJd85OM89INvc/b176J+9lzSg/1Tx1imgesKjPd20RKZD5KAGJBxdRtBEXHKXt1RWiKUdoygNITAgeDiavSBglfnTpqiFXwSTv6Ew7x/ToL8433TrlOtDzPx5KFp23DAnczq6poOruOitsdwJrQpAZKpax7XyPTnSIaqMLpz0+u3A+VdY/jnxFFaIuQfPjGf4p8dI/Oroyd2LZhM/OIwybcvxL8giW9WzLOFKsFBvxcDBye4+792YU2+//PW1hOKq9R3xHjoh/vRi14/+JY/m0f5uVHKz40i1wYJn9FIdnM3bvFksQzXEzIQBeycSTYzglbIofj8lAt5sqND+EMRYnX1aIU8hYkJFJ+PQCSKLxjEcRwEQSCUqMLOZ7FNEykcYejQAZZdeCnFTAbVH8B1XArpFGpQAkEkHFOQLA3/8GHQil5gqOsi4ImsIAi4roOXtV7Aq/wCKDKC6yKGgjiFPFYmg9LUiFxVg9k/gJ3JICgKck01anMzTrGIdqyLcDKJ4A8g11TjaBrlchIlfcy7B81roOcp7+9Iw/TA6JbT4Olven+L8qSo3iSzN3rifMe/k9ST/p7cb+EVnk288l0QeXWzl/9vxBorTRMgAdD2pLDObsboyZ8QIAGvTdo7jqCKBBZXU3i8n9KO0ZcVIXmuJ81bv7eVeEDlrjcsQLurHzt7QizG7isRXlbPSb0x5mCR0s4xjGYHnsoSObeF8qS9ebINIUYUrPSJI0PrGijtGJ1xDUZ/HjGmYg4Xkar82GkNSXexnhtBiqpY42X886soveDdB8En4ej2CQESAMelvDeF0hgisKjaW5OxT+owXNCPZFCawpj9BUS/PCVAchz9aBZfewx7QkNqCL/kPavwuyMpKmPHDnPP178ytZbQuf5MVl96JYIosez8S7jts5/E1DXmrF7nCeiaJoIoIqsqRXw0RP185JanqY34+ddrlrJudhLB8sQXpZCCNeaJyygNIfTuHFJUxdcW9QT6NjSRf7gP35w4TsFErglQ3j2Ob24cvSuH2hz2RHIm9Kn1N5hcD7RdxKA8tc53MqWdo6itEdy4j8K2YaLntVLcNkJpxyiRc1pwdRsppmKNlEAUcG0Xt2zhX5SktHOUwNJqCk97816BZTVTon8AgaXVXp2uCU4JkIBntxgDBQRFwujPVURIXmtc2xPvejFWefpn8aR1/dbTYccPZh5TGAFTe2kREuMU59GyLxs8Gk0f5qJ3dfLsff1kRsq0L6tm0UIR2Sy/5DFyYyPWV/8ZeSxFw6p1GDc+gTNnDtKHPviSx9gjI9MESABcXcfs64M1a055TDlvM3QkM2N7/uTxX4VTIigKCCKIotdOCQKuZXt2pCp5YsyWN74XVB+uZU4bQwEIgnAKP5pRrIk0YjhCeMMGcpvvJ3b55YCAtn8/iTe/ieyddxI57zzEQADXMAgsWsxUKbaN2d1NcKib4qdv856/ohBduxb/eRfjxJYy0pNn+aYW9jw2wIIzGjm4dZh5a+s49OwI89bVc+CpIZLNYaqbwjh2Cq0w7onzCQLipH+M67qIsowgihzYfA/ZEU8Ecs5p6zHL3ntiTwviP0lcTwDZ18SWW388tamcz/HYTd/njDe/nVxqFK1UQK8qEapPoLQlsWwDw8qA4dK3dxeLWs+cMedhDpVw0hokK3NnvwlrXKO8YxRNEVHbotipMhO3HSL5rkW8/cvfZMfdv5gSIAHY/8QjNC9cjD8cZvDQPurnSDxwS5HTr55D/4EJJFlk1tJqnr3zGKPdeRBg/ZUdzF9fTzDqe5krOTWKItE4N07j3Pgr+Kt/d2TVq+/y5PX8xv0ViaqGl+g/Krx6RBth8dWw+3bsxtMZ++o30Q8dBkHwhEduuoma//cxhj79aa9NikSwjx1j8K/+aqoIa2CQ5m98A23PHoRkkvg115C5/fap70NnnYlQVUXp1lsxr78YsX0WTi6PFI9jDQ9jjZy0Hp0apfTZvwegvHQhd753GcuKYTqaO7A7U+wa38XN+2/m+0vfRWxgYEY/UH7oQZrfdA25vA2187nwfYt49q4usqNl2ldUU1jUxdiu/pNbVQDMZ7Zx4MjTfKH/+3xo+Ye4aM5FGD9/L0fO+Ty5cglJ03Asi4mRYfr27mLNFdfQdXQHnes2oJWGkLtk9j/5KEvOvZDs6DAP/vwnXPuhj3PPN74y5Vs6d+3pNM5dgD8c5vGbf8AZb34roUVLCZbzEKjMAf/ueE/xRW6wFSpUqFChQoUKFSpUqFChQoUKFSpUqFChQoXfwGvt7dsEnOwh3T+57Xfd5/WFY4PsR1ZVJEVirKdrapHoOFt/+VPswhiK6sMydJ7++S0Ykw4C+fExevftQhRFtEKOR3/4XSxzUgzCdXjq9pvZIE0PuP3+oR9h6zpSPDY9Yx+AJCFEY14WPiWELCkErBCiLJJPadMESACe+eVRRFFEDcx04lL8XsYLWVUoTKTRi9Md0BzbRiuMk6gPEnDLWGNjOJkUoiySG9fo3z+BM5nBUAwpM8oX/DK50WHy6SFqWiKIuiduEVixArmu4qz7x8SSTJRFXoZyQRZB8MQMfHPiJ7aJYI2WUBpPck6VBOy8gZzw6oprec4/rukg+j3HAadkTT3/40EHTslCikxuE4UT+4VfehsAIriGjTiZZce1XO/a3BPHuLaLoMxs7o4vLh7/X5DFKXGV49tERcQ5LiQieuIjgiRM7SeoEo7mfe9OOhpbo2Ws0fIJAZLj55McKryyjGqjXLvlCv7B+BDKm/vYdKWPJvsY2kObwZx0hjJNxr/5TZSGBgiHqf3Em7FaEiTWrqBxtrc4r5ctAuGZbZIsWIiqF0ggRb19y1XxKadhgIa588ilxnnurl/jOs6UAAlAPjXG85vv5YZ//2+e+MkPGOk+TNvi5Yz1dOHYNtGa2ikBkqnf1HWU9NDAlADJcY5s30ohlcIfjnL46S3MXXsGTfMXolslBAGEl2hXRb8EsohTssiOlMinvf7EMh1GnxjC0i2WNcf49QtD+BURSRR4vs/7fR21Yb79+LGp96GgW3zuzn1ctbKFZ7vSRAMKmmnzjYcPc3S0OG3B/vm+LMmIjx881Y1lV+r+cUojgzg/+dX0jaaJUypT/dGPkPnZz6d/57oUnnwSXiTEVfz+N6k59BDK2kM0S7cSu+ctNDz8AZoadX5pPcbf5L7K2ne/lYtO34hRLNCxai17Hn0A8OrKrofupa69g2JmgoNPP45lGsTrG0kP9FHO53BsC62Qo5zPk+7vnwr6BciODJNPjWMZBsXsBIe2bqGUydC90wvAWXjmOZSzXgDSwIF9TAwNsvyiy3jsx9/3BEgmf9e2X/8Mo1QmGI3x5E9+iGN7ASSd6zbw2I+/PyVyhuuy9Y7bMFcsY+fD909dh14q8siN30ErTA8CPSWBGJz/OS8g6Di1C6BxBVS1/+bjK7wsx+1cMXgK284nYdoG8zdsZOjwAZ6751eogQAvPHAvhXSK9hWr2XnfXVMdr6XrPH7zjYx1H8MydWzDxLIsXNelsXOel8VQBMexkWQFx/H62mRTC0OHD844f9++3SiSTMuipfTv20NmaBA1EMQXiZMeKqAXLeatr2f5+a0Ucxo1rVFMw2LL7UfQSybSpP2gTwa1a4XJbSeZ25IiIkoCeumEE+5xf19J9naUFZGWBVUEYyqiIrHrkX78IYVQ3E+y3o8gS/jmz0OMx2n693+j7h/+nuqPfoTWH/+IyAXnE1qypCJA8htQolGCy5YSPvNMWn/0Q2r+4v9R+6lP0vyNbyBVJRBkESESIX7VVTiCSDAk47owdCRDNOlHUSVqWgP07HoG2zJp7FxAIBpl4MA+OtdvYOf9dxGrrWfk2GHaliyjZ/fzOLjTA8AABOGUdqcge8HzlC3MgaJnVyoiyALh6gTP3XMHxXQ/o/1FJnJMCZCAV5deuG8Ac6wX0sdg9CAkWj0Rj6e+ATXzvCzuc8+Hg/fA4Qdh5Ttg7CA8d+MJARIAPXtCgASgOOaJlBSmjwlnMPAcPPIFWHQVPH8LIJwQIAFP2CQ/CHt/AesmAzT23eGJkBwPOnnhp9B8GrzwE6+8Cq8YajRK/E1vouV730MN+1D9MnsfH0SQoG5WBGXSgds0bCTl5PkCL8OqVjRxbJdYTZD0YJFy3mToWJbsWAlZFacJkAA8efthxnpyOK5LNOlnw7VzOPNNc0k2h8mlywgEUFQ/kizjui62ZZLu76OUy+I6DtGaWrRinkA4QjEzwb4nHqFt6Qpkn4ovEMIydMZ7u6mbPYfePbsZ7+2eZouMdh+jZ/fz+CNRBg96Iny57BhIwuQ4VcAp20insI2lsDoVhOKUrKlg0WeGnmFnaQBwPCEfS4PUoRnHV/jDEQQBS9d4+MZvTwmQADx//11khodpXrSIqqZmBg977WCyKcy+58cREj7kKj+u7aC2RRFkEWu8jFIfnJxjUL2+N+bD6MlhZ3QEVZyaF5g6/0mfXzx9dvJnp2ydet7KJ03Vmxf/rlP8Wk/E9OTPgBhQZvYfk+fEPoUjtHBCOALJK3Na8PUkVlafsa3CK4/rukwMDUwJkACUshme+cVtnP/eDzN4aD9qKIzi8+bF/KEwsdo6/OEQO+65g4I1gZ0zsIsmYkjx5ssm7WhrrITSEJqaK7OyBq7tIgYURN+JMaFrOV6g3SSOdor66rinrsMvegdczfLazlPQkylT1G1cbWZ9c4omQmByfHVyvPupHPkdpkRzBFGoCJD8npRyOg/fdGBKgATg4NZhwgk/vXvTUwIksiLiGicCWa3REuZA4ZT3/bjdKsgCplammMnQu283o93HiNXW4w9H6NqxnaFDBwjHEwQiUUrZDH379jB85CDZ0RHGe7sJJ6qwDJ3s6DCN8xeQ6u8lXJVEUlT0UoGlmy4iNHSAyJ6HCD3/IIGuHYiuhaCqCD4/rmkhqD5QfQiyghgIIobDSNVJ5OoapHgcUVUR/T7kZJLgipUEFi5A7+pGqW9AaWrEv2gh6uzZOJqOOTqKf+FCohvPxhgawhweRqqqInT6GZS2Pe8FL7esg6oOmOiCxCy46Iuw5xee2MiGvwQ16tkDVbPh2h9A71ZQAp6w3oobPFG+hmVw5Tdh76+gYTlc8hXv7xU3QLzNEytZ/yGQXutcAH96uPapGhOvjTllH1qyEBUJ4fgY/GUECsqGzX88cAjNdBjOaaRL1jQBEq8AEVeeeQ1iXME6nj3ZcWGy/Ty5bXWN6W00roAYmlkHxIAMzmQbPtnGa4aFGFFxdNsTqzq+1oG3DvGS7bHsjUNPFiibOr3pnCjjVOYKgMBL9gUVfn/KuSzP/PyWaWsJh55+gvTQAIXxcQLRGKGqKgDq586jlM0Qqa5h6MhBEo2tPNyroVs279nQzkCmzOOHxuhLlxD9MnKVH8dyUNsiCLKIOVxEqQt6wiQTOnJN0LNnw4pXPwW8tS1FxCmaiCEZQRGnvptmH0z2F67pePX0RUgRFVe3vfUw08Ee07Anpr9DU/aAyAmBHkXEMRwERZpacxMVEeekei2qkjeeK53iPS96Qq6uZs/4rsIfmUg9rHrn9G2CAHPOn76tfjGs/3Pv79veCXMvnFnWkjdBOPnS52pYNl3MBGDlOz1R3pdATFQReeF+1tuPcMnyEebv+xGR4iBC8qXPYxw+TNV73kvVtVejopN86/XE3/JmzEOHX/o84TBiaKb4ghiLveQxkiRQfQrhSH9YfcljKnj4585FaWlGAES/DzHgR4xGEUOTAgSKghgOIQSCXpsneoIlgiQiyBKCLIMin9KPRm1vJ3HDDchtrST/7IOENp6Nf9FC6j7xN8j19YTWrEEIBsHnQwiFkFuaSX7wg54wChA6ZyNKU5MnQAJgWcQuvoiJf/k82ve/RuPsCJmREsmmMIUJjVhNgGLWIJzwU86ZhOI+Bg5mOLpjDFMrYNuW5xskijiO7a2ruS56sYjqDzBwYO/U5TuOjeM43j/bPun/E/9c26Gcmy46CZAZGgTHxdQ1ApEIpqHjODamVppMJgClXJYnf/ojBPEUdoJIZWz3WyJMzg25poN+JIM56K0PCKKApEj07d0145jxnm78gTCGpmFbZYoZg/RgkYEDEwSjKqM9OVZfMsvb2YVn7+oiNThTPKxChVcc2QcbP+31x9KkQBR4olCKgiBJWOPjUwbh7Dt/TWHz5mlFmP39pH/0IwgF6b38CsKXXUrDF79I1bvfRf3nP0/VBz5A33XXo+3aTZ9S4NG/PJO+tW3EPvyBaeUos9oorpiL+ekPUvinj/Dge5fxraHb6cp5awmr61dzJHMEzdb4UWQXUjx+an9Kn4/c33yY8mc/xo9Gvkzv2U8QeOsg6TV7+Pt9nyITmjk2lFpa6HHGcHH57xf+m8HSIF0LL+Gbh2+kfdlKho8ewtJ1QokEmZEhRFlirLcL09SoaWtnpOsooiQRrkrSu+cF3v13X2TrHbdP8y09vPUp1GCQh278Fme85W1su/MXlAt5yHT/QY/w/ypTj76iQlKhQoUKFSpUqFChQoUKFSpUqFChQoUKFSr8TrzWq8Kncnk7hav9b9zH21EQ3i8IwnZBELaPjf2GIKpXE1MHWcbFQhBlTH1mEIBeKmHrRURJwjZ0xnunB6F3rFqLpCiU8znK+Rc5BbguhVSKL5/1Za6bfx1/ueov+cxp/8Lbf3kUsa6OxNvfPm335Hvfy5e6RfKaju2P4JN9iLKIrEhTzsnTLl+zmRiB9uWrkdUTmTIEQWTFhZcRNAcQEFF8Pnyh6ZklREkiEI5QlzRxXJfwmWcxeM0bEUWwJrPLFjIa+ETCpzdOq4FiVEVtCmPqGqovwGmXteM+fi81H/sYsSuvRJ3T8Vvd/j9FXjd19yQMvUS/dBRpcZjizlFil87GNWykiIKvM05pxwjR89twNBsxJKM0hig9P0ZkYwuu7gUwyNUByi+MEjmrCWwX13K8bbvGCJ/hBdLaeQOlIUR5f4rgqjovw+9oCbU9itGTwz+vCmQBvTtHYHE1dlpDqQsi+CS0fSlCq+txJ51yxZBCec84oXUNgOesLEYUyrvHCa3xRGwcw0GKqmiHJgguq/G2lS2kKr8nsjI34V3XhIZSH8RKaaiTIitmfx5fRwzXcDwhFMHLbByYzKooTAYDlfenCK2um55kKKbgVL3WTe6rw2tZf1NaCsd1GCwO8pX9X6SvdASpKoF/yXShJqmqCrm+HjcZJ6xCfmQzj0W7mHdFknDCx+FtIyw5p3naMTWNfuJ+nfxjjyE1NyO1tRI660xe7HZbM2s2RrmM7FeZGByYcY3DRw/hmAau42BZJlohjyTLqIHgSwSqMRWsdDKqP4CkyIiiiDDpeOYPhekfPoieL6F3TRB6cbsaUVCawlgjJfyrazm8K4V+Uqaq3GgZyYL26sk6bjvsGzrR54zlZ2aTG8iUyWpeGX3pErURP3sGc1SfwknSsh32D+UxXqciJK9F3fX5AojhmVlFBVmCUgnxFAJgYjCIUyjMPEYQmBdppWbrd6a2ddzxUf46MIvPnv5Z8nV+tixyCSaTgIAkKwiCiG15z8+xbSJV1WQmM6bZlkkoniA7Okq8voHc+Ch17R2M9hybce7xvh7idQ1oxQLhqiT5idSL9nCRFIWRY56TbjAap5zLzignnxrDdZkSWwMIRKIU0i8uD4rFmfdgrKcL7RTbT0n72fCezfCGr8GV34IrvgntZ/12x77OeL3ZDa7jYvshvKFxWt8nRlXUxjB9B3eRaGhEDYZQFB+iLDF0+AAAljkzqKCQTqH4/AgIk0G3NlUNjQRjCSRFRRAEZNULNH72l15mLL1UJNncOqOsxs75uHiBofH6BgLxBP5whK13jDB8NMfOB/p46Af7eejG/Wy57SgHnh7CnYxlUAMy9mQAjy/gORQ3zo0RjCgMHspMnWPhhkYiST99B044hi3b1EIxp5MeLNK+rBqtbDB7RTW9e1I88N291M2KYlk2oghz1zUSXrWS8Nq1hJYvJ7hiBVXXXUfNhz5E6LTTEP0z+4Q/ZV7t+ivIMqFVq6j+wAdIvuMdhNacRsjXTfjgPxHa8SnCxc0Ieo7aJpVIlZ/qlgjlgkGiMUjtrDjJlrmIkoxeKuI6LvVz5xGpriEzPEhVUwuj3V2AyFhPF2MjvQSW1kw7v3Yo7b0LJ6HOiiImfGhHMygNYQKLkwg+EVERGe4/gl4qgetSzhfwhVSKp8jMquUt7HIBjCLUL/ScOwujYOvgi0K6C3wRT9wj3uIFeuDA0AvTC7JOkVl1cAcUx2duP5lcv/d/uM5zKh3ZM3OfkT2gFzxRzuPkh8F/UvDF8fOnjrz8+V6HvN7a3hcjRSKEN5xB3aoOZFVk+aYW7vraLjpW1qKVTOasrMHUbECgqTOOXrIIRlUEUaCqMYQgQHqoQF27J0Rp6jb+kIJzqgBQ19OEeu6eXjJjZfoPZEgPFhntybPtzm7u+M8XkH1RFL8fXyiIpKr4AgH84QiCKBKprkEvFLEtE20yCMK2TLR8HlPXkBWVzMgQ/lAYvVSYFlxxnPG+HuyT7IdffPWzoIiIIdnL8D5Wwr+gyhOMOI4sElhSPZVNPriqjnzgRFblw5kjIKmg57wMzqXMH/xcXi+83uqvUS6RGxudsb2QHkeWVSLJOp68zQvecWyXrr1pJtpimLqF4ICvM441oeGfX4WcDKD35IhsaMLozRE+swlE0PaMI6giYkhBPSnISzucIbimDvDmHnyzT7RRdtFErveCyMr70zPG9VLch2s7BJfXTrtutTWCYznItdNt+eCqWvzzk1NCJNrBNMFlNehHM/gXzgyAU1oiqJPvo6CeNLBzJoOpRQGjJ48YlPHNis44PrS67pT3+0+Z11vdBZAVmUJqZr852nUExzQY7+1GFAXUYICmBYu54AMfJV7fwP3//TVs0+SJe26iWF1CbQwjRhQi57ZgjhQJLK1BP5IhsLgaYzBPcHkN+cf6CMxNoDSFEHwSUnRy3D3ZNktxb9629MIY4fXT7Y/i4QnCZ0+f55CTfk/sZvJYx7Axx8oYCT+BxdPrpNIe5c7+NFnDwtcxM5DSvyiJfiTjiQE1nRjjOnljungwoDSFkar+d9m0v4lXo+7qJYv8+ExbThAFMiMn+rNAVCWrjSFGT8zTlHaPE3mRjSpPzq8Kfgk3DMVsBq2YxzYNEvUNuK5LKZchOzZMrK4eFxfbNEj192HpGv5QGHVyrCIIIpKs4A+G6Vi5hmh1DaVshrVvfBPJ2noa1QD26ChSJIrUUI9cXY0UiyGGQkiRMHJ9HXJLM76O2fjmdaJ2zsU3dw5qaytySzNKWyvqnA588+bhmzcPpa0V/6pVVL3rnQihIGpbG0prG745cwiuXUt407leOR0dRC64gPCGM/B1dGCNjhBY2Alv/glcfyssvw7+bAu85wFYcDm87xH48LNw7mdg3Z/BR5+H9zwIC94AV38f/nw7vOHrsOhK+NAzcMOdsPhaeNvP4R13wuJr4G0/gwv+Cda8H877HCTaXpHn/8fk9dD2ytX+aW0LeHVWTvjxnSIremBBFcgi+pEMgl+amvc/FSXD4ujYiQDN7x8eR543vUzfhmoKYnaaLSmGFKQ5IYhLSAsilHePE17vrUPYRRO51rMhjq9VHBdqKjwzSGhtgydEeVJZan0IO63ha41iDheRFlSx5/lx/Oe04Jo2ok/C6MsRXOnZHU7eQE7ObEsDC6sQG8OUXhidZvMcxz83jtHrCfg6toPyon388xJICR9y8qWFW/5UeD3U3ZMxS0VGumbOqxbSKcqFPLZlEK2p44w3vx2jXOKiD/8llmGw5pq389Y7R+ibKGM70BTzns2x8QK65Y231dYokbOaPXEay8HXFsXXGsHRbVzDJriyFm1fivCGJsoH0oRW11PaNUb4jEbMwSK+tig4LvpQgeCK2qn1NwA7q6M0hjwRkpCCGJmeFCC4stZb09uTInRaPaXd44TX1HuJASQRQRVxyxZSwgeWi+CXQRK8Nbml1Wj7UwRXeO9o+UB62vuqHUyjVAdQT2Hr+mbHMAYLM9qG/y283urvb6TpNLj8G9C82pt3v/ZH0LBy5n6LrvH2a1oOyTlw2X94Al+xFq+fbF798udpO8Prt1vWQqIdzvlbr/9+GYyDBwisXUt8wxoi1QGqrr4KqqpwBgdf8hilsZHBj3+c4c9+jtz99zP0mb9j+G8/g1z30mOsQFOY6o9+bNq2yCWXoLQ2v8QRUN0c4bRLZ+E/SSywc00dsZo/XVv5j1V3BUUheNoa1I45KI1NyPX1ng3Z3Iwyqw2lqQmlthaluhq5rh6luRm1uQm5oQGxqgoxEkH0+Yhfe820cms++lGCq1cTOXMD0Y0bvf83bSJ6wQVEzjmH2MUXE73wQqyBAczBIU98JhYjcu01tN7yE1p/cjPVH/sYgeXLqPv0p6j52Edp/MqXSd34A1xdR3v8EdadV0N6qEjnmjoGj2SZt66evgNpFpzeQPeecRae0UjfvhSxugDD3Q6K6kNWVE9YUpQQZc8nQVYVTEOjecHiqet3LMtbNxZERFFCkiQkWfH+STKSJCPKMoHozHY1NpkASBC95C6yrIDr4jKZUEgUKWczuI6DGP//7N1nmBxXmf/976mqzpODNKOcoy3LtpxzTth4AWNyTktYklnjDWwAloUlLrCwhOe/wIIxSzI2xhHnLGcr2cp5cujpWOE8L3o0kmw5YEvqmdHvc10l9VRXVd+n+u7q0xXuipNc0LTX/Jnj2jH1Y7eAzsHc7rqNCRLzGvcalzm+Dacujp/L0T53/vPmaWifRBiGeDEPZ7io4UBXgcZJacLAkusr4exRBCb0Iwr7OK4v41PV+w3Ns+Cir+Je+HlaPvSBkdH5xx4jdcwyjLf7ey7o7sbsq2hXOkU4UDl3YOs730V5y2aG7rufnf/6r2x569sASJ1yEj1miO9sv5r39n6LT3q/pfdrnyL9ib+m/cv/TsN//gcf6fgWb7U/5D257/H9HZVjximv0n+uS9Rx5rQzAbip5156p9TT+I7nnE/53vdS2LIF7+zTWPvh8/jtzpv46br/4Sur/o0+v3Lc96HabuIXnTsyj4nFyH3yrfy6s1JcJbIRPcUe+gm5t+MBvPo0tc0tOJ5XOR/IGFbc9WcWnXomQalEfnCQ5slTSaQzI0VHSoUcneuff9xsqLcH161sn8v5HFEYVW5AJ3+xKKoc8+/fueUlphQRERERERERERERkT1V+xZsW4Gpe/w9BXjuGSAvZxoArLU/AH4AsGzZsuqVLo+noNBLbXYHA6nptE6fieO6ROHui7GWnHUejX/+NP2v+yWxVIbpS45k7cO77yT9xK1/Yv4Jp5Cpb6SmsZmhPS7uNY5DXesEvvLwJ3nvYe9lfv1RvOHblRPZupuW0nLZG0gvO5qgswuvvY3r/Sb+947tDFmX/zjHoxzzyIZZGqMJ1LYkcWPOyAWWAK3Takn5A6S8OK/9zD+w+aknCMolZhxxFFNnToKgQKpnFem6dk687G3c88uf4hcLuLEYJ7z+zdS1tpIsPks+PZ/4nNlM+PSniQpF6iekSWQ8rv7SY7z9X5YRb03R+Mb5BDtzmLhLbGott9/4/5h/winUTZhKrJgjbGnBa2khefjhxJr2PrFhPBk1ubuHRH0NG9c+xsqBOzjj8vfxyON/onZBC80Zl23x1cw64yg271yNe2IMk8lSWFKiJtlIX6ET78I6ihTh9Fo835DzsyTf0E5QCPHObMIULcWoQPqN07BDIbGpTcRKDZTCAjVvnIHNBpi5CWJL6imVC9RcNh07EBAlLJm5UykXy2ReNw076BN5EZnXT8PP+qQvmYId8AldS83rpxN0l8hcOIWot0TohNS+fgb+phyZ86cQdBQICmXqXjeT0so+as6YjL89R9BdoO7SWRSe6CZ9XBv+zhzFTQPU/9Vs8ss7SB3WgtuapLCml4ZLZ5N7uAOvNUXmxHZyT3fTcMlscst3kn+qi/rXz8YfKBLFQrL0EcZGZyGGV6ua+TsxPZGEm6AUVoo9/VPHj7lm4rdo/eQn6P+//yP/8HKS8+fR+Na3QlsrXrQdrrmKqbEkT0/8HI+F91P/pnrawmm46RwnfLANtydJIh7i1QwROYZ1bzuZlcle/uexd/Kbj/wnLVnLosFTWDl81+Ntq1dy5LkXYYNgnxfATz1sCWBwYzE8L0b/zh20TJ+B63oYx2X6kiPZ9ORjI9PPPuZ4GtsnM2HmbDo3rBsZf/zr3kTDhKn45SRLzj6PKAgqF36YEqu672fxlNOJt9bRdPl8/B3D29VJGfIre6g9bzqrOgqUiwF1e9wJdMKiJtYR8dS2fgBirsPhk+u5Y03lZJW2+t2FqHaZ1ZKhcfguzTNa0tz49E6Omd7Ec2+C5RiIew6XLZtCOl7t7sa+VSN36yZMofjxD9NzxVUj47zWVmwQ0vU//8OE972P/MMPj9yBxaRSZE48Ab+rk/La3SeepI8/HnfuLGZm0hDsXeys5c6vM/HNP+Urj36bh3ue4ocnf5cJM2dxxLkX8fC1/0c8mQJjCPwyXZs2MPPIZay441Zi8QS9O7Yx55gTeOja/+Ow08/h6Ttu5bhLL2fd8gf3eo32ufNZdfftHHHuhQz1dtM+e97Ic+HwSY9h2WfKosPpWL+Wwe5OaptbyfbsPhHKGIe61spJvPFUmnKhctHUUG8PDW2T6N+5d3dv1wmRe5o0fxGpuhe+s+BeHAcmH10ZxrjR1m9I1dbx1N03svTo8yrboF19uyk1lBssNVEzXZs34heLhFFIGIRMX3IUK+64BS/2/LuzN0xsxy8VKhfgAm7cY8P9jzH32OMxQLKmllgqw7P33U1/xw4A+jt20DxlGjOXLmPD48sBaJk6nZlLl5Eb6Kdn+1ZmHXUsM45YRn9XDb07Ojj8tCls3aNwCMCspa08etMm5h47kZ5tQ7iew7KLZrD6/u1MW9zE0nOm4XqG4147i/6dOdpmN5BpiBFPeZz7vsUUs2XSDQliCRewhGVLIu3S2JbBL0fMPKKVGYe34sUd3LhLfXOS9D62teNZVfK3bhIMbodFr4V4msTK7xJO/wATw4hCvAnb2EAUBMyYX0v7rPNYt/wuBrs6sTbisFPPYtOKJ5gwYxadG9Yxef5CrI1onzufa77wGT7yHz+n/uJZ5O7bDo4hMa0Od1KahsYkQXcRtzZGbEoNQU+RxtfNBQNOTQzrwsN3Xcu6Rx/kjHd+gGSmhnT9BIayEb3x51+Yv+QoSzLoh9Q8WHcHNEyBunZINkKuE1oXQL63crf1jhUQr4WmGZWLObYu370gbx8XNUw9Hmpf4sL1humV24QNbq18MNuPgGf3vnsd7UuhlN195zuoxFjo3+P1h/shrc8/sXq0G23b3heSSMWYflgzA115LvzrJeSHyrTPbqBlai1zlk2kmA845jUzmbk1y2B3gWmLmgmCiPxAmal1TRhjKOZ8BjoL9O7MUdeSpKYxwdAed7ZumpQh21OkeXKGWNwl21vAdR3aZtfTNquOnesHueH7O3jN38zD8/JYIuYceyLGOJz4hrfw6I1/YPL8RXiJBDXDdyJ2vRjp+gYACkODNE2eSq6/l0x9I/WtE9m6au/CNxNnzcFL7N5+FgYH+dHnPsB7v/DfxKbW4BaSWM/Q9Ob5+FuHsNYSm1RDefMgbjpGamkrycXNnHPra0aWsah5EWxdAammSq7W7l1oYiwbTfnreR6JTC1NU6bRu3XzXs/Vt06kWAgp5esq2xoLjmtwPMOff7+e9ll1zFvSQnNtnJpjJpLPlSECv3UKA0FIurWBsoHGty3C7yviG4hNTFF79jTCgRJRMcQ0J9kRg/6GGDM9D29CmtIRLeR6C2xJOvQd1cQUv4lWx+UZz2IunsGEQkhjUwqvOYW/M0dyUTOJuY3424bwmpOYlIsTc2l68wLKGwcpbx8iObeRxKx6nEyM1g8uofBEF1EhID6rnoa2DH5HjtqzppFfvhOT9Kg5rq1SRCfhEg6UaXjNLPJPdxP2FEkfPYH4zHpa3nsYg7duIjmnEVxD3bnTyT9a+c6oPXMqiVkNB/8NPcBGU+7uEvo+dROe/705ZeFhGMdj8oJFgOGvrvwisVScwc4Sjhty6lveyeYVT+J6HrlEFht3ySQnEk2pIT6lhjC01C1tJTdYhsUtxI2hZnEzJQfcuENsWi0NbRnCgRI2sjgtSWJTMpiBEgSWrXUeQxdNoz4XECY9OtIOj+3o5R1vmo/XU+mTlGtiFNf1kzhvOk5jgu2dOZ49qZXHVm/n3UdMoG56HcG2IcykDMvdkL4tfbTUJvCSMRrfvIDsnzdjCwGZE9qxgcVJebj1cdJHT6DwVDelZ/sJ+oo0vWUB2bu3VYr5zmogc1wb8fbxecHwCzkQuZuqi9M6vZauTdm9xpcLATOWtIz8thnqK1Gw0HDxTKJHh/A3DxGfUYfbnKL5HYvwu/K4mRhOYxJbDvCmpHlm7QPEUymgkSgI6Nq8ibbZc6hpbKJ1+iy6t2xi8vxFxFNp2mbPIdvXQyFbiSNZU0sYBGBg4tx5OKUSUydNxUsmMWGEV/Yx1kImg4nHK/s7PA9bKhH5PrZUJujtIewfwObz4Di4NRlMLEbQ3UPQ2QGuR2xCK25jI7ZcJujsIszncWtqcBvqcWpqMBisjXCSSUwiUbkYPpkkzOewxSJRNguBT/qUY2DyouGV2lD5rbDLngVDHHfvv1P1lWGXuvbdj2v32F+RrN09/Rg1Gra9biZO0+XzyT20k+KaXpJzG8kc14ZXG8dJujS/YxGDt2wkKoakl7biNiaJz6wnyvvEJ9USm/j8i9x2acrEecPRU/j2nyv72a55egcnvmYRc2bX4+V8epMO1+3sp9wX8ME3ziHYmaO5NsH9QwX+5VcrufzICZy9tIkZxPAwNL51PsFAkZoLpkA+IhwqEzYYai+bAZ0+NogwdR5Nb1mAv32oUrx9Yprck500XjaPwDOUTp/GM8/20d1RIHPiBIrnTWViOaLxwhmU/IiaN84j2DhAfxiRfsNcyndtg1JI6ugJDLQm6U4ZwnOnEusrUP9Xcyr9jjCi7uTJEHdxj5lArCVNOeMRtadJdDditg4Rn15HfEotsUkZzB5FUsaq0ZC7e0pkapmycDEbHlu+1/j61glkGpvwCwVOffO78P0429cWcLwm3nrd43RmK8eD39lWSzxm+P3jlcLnJ85uoSlTudjbq0/g1sWJTa7BlkOwVP43lUJh1o9ovGwekR9RN3kG1g9JLGiEyNL8zkWEhYBEW4b4jDpsEGHLEbiG5OHNRLmA9NJWwiGfqBjQ9NaFBDtzRMWQ+OQaonKIUxenbkKacKhM3TnTiPI+DX81h/LmQRovm0dpXT+1Z0zF78hT2jhA05vmk3+8k8iPyBzfTpTzqTltCsUVPcTaM9SeOZX8Y504tXEyx7bjdwxRd+50co90gK0U9wsGS7S8czHxyc8vtjMejLb8fUkTF1aGueeC8aDm+UUWAWicCo1vh6OGL/htPwKmHAc2hOZ5EH+J4huuB/PPrxQj8fMvvf8KiM+ezY5Pf5rytu14jY0EHR00f+AD1H/g/S84T2z+fNr+6XP0/+JqCitWUHPGGTS+6XJShx/2gvMYLLVLJhD/7+/jb9mK29REfEoTqeTzi7HvqX5CinPet4jBzgKJtEdNc4q2Weo3vBzx9jbi7bv7XTaKiEolyjt2QBiC42CtxYQhUbGILRYrf1vAVo7Rx+fNJ33CCUTZIeLTp5FcvBhnH8conqvm1FMprliJv3Ej+AE2DLDDx/HwfYgsJp0mPmUqpRUriIaGSCxeRPO730207WkuOL+dvJPnovfMppQtceG755Hv7OfcN02nVChy3rvnUfYNTS3t+KFLvr+ToOxjoxDPcXBjMTAGP1/gsDPPpXPzBgZ27uCp227i7Pd/hHKhgLURURhho5AoConCyt/YiHI+z/GvfzMP/vYarI1IZmo45c3vYrC7A2/4BgaB72McF2Mq/WobWTJNTbixGH++7kececF7SMyuJxws47Wm8NrS7Nz+DNObl+7/N/sgOJi5m0/kqT1jKsn5DYT9lcJyXnuGFY/fzoylR7P4tLPp3LCOvh2V46Kzjz6WhtaJhGFAQ9tkCkNJYIjJ8xu59zdraZvZQF1rCr+4uxBBsiZGbdPYLyonL8+o6De4MaifTObUBqb89/fp/81viTU3U3fJxfhbt+FNmEDQ2cnmN1zG1B/+gMHfX4vddWMK16Xhda9j60c+CoCTSVNz0kkEO3dSXrMGgNQxy0heciED5Yd59+J3c82aa3g6u4Y/zpzDR9/6URpqK7/lP+h8kL+/9+9HwppSM4U5DXNG/j5x0olcOudSrl17LR999O/4zmWfZ/KyZQQdncTa2yjNnkLn0DaeWXQW/7j8X0fmO7btWNb1ryPtpWlpm8nPz83ykQu+SODHeDyxk690/4RCULmhQMJN0J5pp81/mrp4HZc9+D5+ecT32fr0Uwx27mTxaWex4o5bOeVN76Rz43psFNAybTrtcxdQ01TpQ8XrGpiy6PC9zhsFqGtpBSzlYpHDzjyPetMPtS9c8ExemF+sFPbNdqgIiYiIiIiIiIiIiIjIX8KMHByvxosb4wHPAGcB24CHgbdYa1fsMc1FwEeBC4HjgP+01h77UstetmyZXb58+UtNduB0ra+czDCwme7MPPq3bWX59b8jP9DHolPPYvbhi2m97ypyJ/89xdQ0CgN93PGzH9Gx7lncWIxjX3sZC08+DQv0bt3CLT/8DvmBfrxEgtPf/l6aj1rMoM0x0NfCB3/+GIPFgLa6JN+8/Aja6uL0FUJ++dAWfvXIFqyF+RNr+fyli/nNI1v56DlN2MhSGzYRFCP6dxZ48A/rGegsMGleA8e+ZiZ1O59izYwYD/Q8wuHNh7OweSH5QoImm6XW+JjcDoYSU+gfGKJv2xaG+vqoaWyiaco0JpsOqG+HzqcJSjGC+oUEvb0EsxeS7fR57OZN9GzLMee4CRx13iS8QUvoBDx2z5+ob51Ay9QZtM2a85KreJTY72dmVj1397BlzQpu//H3MY7DrKOOYfn1v+OYi1/HpqeeINffy+FnnsfD1/6axaefRe+O7XSsfYZjL30jD137f8xcejRhELDu0Yc45fJ3sPz63zJhxizSjU2svPM2TnnzO3nilhtI1zfSPmc+j910HSe84S2sue8urLXMPfZEHr7uNxx14WvZtmoF2e5Olp73Gh783a9YeMrpDHZ1se2ZlZzw+jfz4O9+xcwjjiKylnWPPMQpb3oHD//hN7TNnUdNQxOr7r2Dky9/O4/+6TqaJk9lwoxZPHX7zRx/6WWsuOvPZBqamH74Uh676XqOPPdiNq98Asc6zDn2eB654fccdvI5dHdsptA7wMKTT+eRm65l7pEnUvbzdK5fz2GnnsPjt/+R6XOX4GYSbHn6SWrqmti5fS0nvP4tFLIlnJomUm11TGlpqfbbussBOav4YOdvZ7aTh7se5t8f+nf6S/20plr5wklfYG58GpmOfqLBQZxMhp7JDUzacA/upIXwozPBWvJHvpW1x72XncUenul7htZ0Kwsa5/PBmz/EkW1HMqVmCpfMuoTfr/s9v37210Q2YlHTIv722L9lZ+dm0j0hhe5ebGOS2e0L8Xf0Ui4V6dq0kRV33grWMmHmbM541wf4/Zf/leNedzlNk6YQdz3irsfa1U8zae58/FKJbE8X3Zs30j53Pg0TJxFLtmCjAbo2bWSor4eWaTNobJtMf1eKx27ezILjM7jeTlzPo6axmSdu/iNrHrgHL57gzHd/mHkLjsU6lq6dm0immrnhfzbgxRyOv3QWyRqX33/tCdoWNBBb1sy6Qonv37mOj5wxm8Z0nI3dOTb05Pnz6k4+eOpMGtNxvnHrs5SCiIl1Cb7y+iX8+uHNlK2hNunx0IYevvS6JWzuyXHHM13cuqqTyQ1J3nniDIp+xOuPmkJb/X6/i9uY3vaGhQL9jz5E+YGH8Roa8domks8NUF40jcbMJNwNm8nde0+lAMkJJ5BrrqEYsyQeX034xAriM2fiLphH/ZQW3K4nIObADZ+BQh+km+Gir8PDPyKXyNA3/3zq6qYyEDST789RzuXo3bmdpvbJLP/j7zni7PMJyiV2PPsMfTu3s+iU0+nbsb2SW00tBOUS6foGdq57llX33AHWMnPpMhraJ1HKZZlzzAmAoVzMs3Ptszxxyw2Vkxff8i4cz8P1PJ6+/Ra2r1nFuR/8G27/yQ9G+jMnXfZWWqbNZLCnE9f1uOMnP6SYGyJd38C5H/obbv3Bdxnq68GLxTnjne9n7vEnseLPN3P3Nf9LFAbUT2zjkk9exYSZsw/K+7afjOncfTFbVjxFx4a11E9sY9rkw7AxGCz2ctMPtjN5US3zj3KJooj8QB9dG9Yz9bAjuOsX/48oCJiz7HiWX/dbAr9MprGJM95VKchgXBdn+M595XyORCaD43lEDUke2bGcef3NLL/ut5SKBRafeibtCxYRFIv0bN1MGAQ0TGwjns5QzA6Srm/ARhk2Pu0zeX4jsYRH7/YhbAQr792OMYajzp1KfbMHxSKJuhRD2ZBE3OB5EcY4JChihvqJcjmcmhpwXcLOTryWFlILF2JexsnKY9zYzd+eDbDzCdj2CEQ+eCmi1iXk/akE27dTeOxxvKYm0scdh5k4gUJ2gHwYEtiQWCJFtreHWDzO7T/5IYtPO5Oh/j6mH7aUx268jm2rV3DkBZdw4nlvBsfy6F1/5LEb/0Bj22QOO/FsWmZNxw9KPPvgfcxYehTWWu695n/p2bKJ+gkTOeu9H2btIw8y64jjSNTN4k/d1/LwwP38zYSrePpPHZTzIUcc4zA3eTfptnZINsDAFuhZX7n4ou0w2PYozL8AHvsFLLkMhjrg7q/Bpd+DXBfc9RUY2Fq5kPKib0DPWrj/O5Xfq40z4NLvw/QTXnwd+kV45H/g9i/CGX8H2Z3QtQae+VPl+WknwJyzK4VI7v4qbHkAjn43YGD5jyuvffS7K689YTGc8inIHLR+8djN3YMo8EOKQz5hEBGUAwr9BRwsybShWPZ44o7t7Fw3wOT5jUye18BgT4H22Q0MdhepbUpQLga4noPjGtY/3s22NX3MOrKVyXPr6dmWZebSeoq5LogsvTu2Eosn8MslGtsms/2ZVay+506Ovviv8OJxXM/DRpaujeuZvGARhewgq+65Y+TivRlLj+boiy5l7UP3UcgO8swD9wIwecFill38Om790Xc59rVv4O6rf0rLlGmc9+6PkRvKks32MmvBUbihoeDm+Penv8Eft9yAwXDpnEv5wNRzmbJzFdS2QyxVKerjuFV8V4Bxmr+9O7aT7e7gpu99i2xPN24sxvGvexMzj1xGYagejGWwu8QDv1tHPOVx9PnTefzWLZXCOYubyBzXwlDccPOKDv749A6shWXTGzl2ZhNPbh3gA6fO4u9+9xQdg0X+513HsLk3zw/uWs/W/jznLmrnXSdN5961PTy+uYc3HzsTzzX89L6N3PlsNy01cT59znx+/9hWHt7UxwWHtfPRM2azcNKBuSgsHCqDY3ASLmb4DraRH2LDygVSJjI46d1FHaNyCEGESXpEeR+7q1BLetT1Q8Zl7u7SsWEdq+7+M4/+6TpsFNE0eSpnv+/DrLr3Lg47/WzWPwGZuiTGMcSSHg9fv578QJkFJ7QzdVETO9b2MWVhM/f86lmyPUViCZel50xjoCNPXWuKbc/0sfg101lXLnPb6k7+8MR2Ll82lWUzGom5Dg+u7+Ga5VtxHcOHTptFa02CbDHgxhU7eWLrAA2pGN+8fCm/fnQr1z2xnSkNKf75ksU8sXWAtZ1ZFrbX8ZP7N9Kf9zlhVjNvPX46f/fbpwA4c0Er89vquH9dN39/0SJmte4uHhIWfAgtbk28kqelsJK/KQ8bWqK8j5uOYTyHyA8JB8s4aQ83Nery88WM6tzt2jzIjT9YwWB3AS/mcMTZ04gnHRra0nRuyPLk7VsBOONtU9i+5i5mH3kMha4B6lvb8JJJkrUZAsenODREGAYUslnK+Ry5/j6CcgkbhcQSSay1ZHt7sFFEbVMzjutSGMpiwxA3niCRTuPGYjjGUD+xnR6/l1wNfOnprzKzdjqnTD2Vf3/oy5w66UTePu0NNK3pJLV8JbHWiSTmzaus5eE70NooGr7Q0e6qP4UxDlEUDt8x2BnZPhrHgV3TOgaG7/puHQfj7PrfxTgGa0xl/sDHRj5uYTvxKZNx55xYKa43Po3q/H0lbGSJSgFOwntekYyw4GP9CMdz9/qufDm29OX53h3r+NXDW8gkPD58+iwaM3F+8eBmHt8ywNSmFF/6q8OJuw6f+8MKTp3bQrYU8MuHK8fbjpzWwN+cOYf/uOkZPnL6bFrrEkwNuunaspmWqdNYeedtPHnrjbixGK3TZ3Lq295NTVMbuU7L2sc6CcsRiRqPKYtbuOe3a+nfnqd1Vh2HXTSd91z7JO89ZSbfu2MtvTmfuqTH516ziGse3sKGnhyzW2v4zOmzWbF5gDWDBWZPqOHRzX1ctGQSv39sK305n3MWTODiJe20N2cA2Nyb49u3Pcu1T+xgckOSL1x6OMfPasYdPYVHxl3u7rJl5dPc+qPv0LttK8ZxOPKCi1l0ypnEa+vY8nSOzg151j3ayTEXzyQ1PcPFP3mIZMzlXSdO58z5E+jNFfnI1U/wlmOncfER7Rw1fezdrMGGEcZ1sGHlgnYn5hKVAoxrsL7FxAzGcwlzPibm4MQrv8HCoTI2spXvAGsrzyVGZbHzcZu/Y1nukUcoPPII5Y2bSC9bRnz+fNKLF73oPGG5TGn1aqKhIZy6OpKLFuE8t/r+c226D9bdDpvvrxTcXXARzDgN3KrvS3g5xk3u2nKZ4rr1RFFY6ecZB0pF/E2byD+8nNjkyWROPIH0EUfs39cNAqJyGev7lcdBAEGlIFRUKFT6rtZCGGKjCBuGI4+JIghDouwQXnMz8TlzcNMp6N8MG+4mm57JUJgisA42slh2FQYJMY6LF49TGBzAjcXxYolKf2i4CAs2IvQDouH+NsYSRRGuFyMKQsqFHKnaOnzfxwYh1liMNSQyaRzPw3G9SrzG4GHo2LSOO3/2YwI/4L3//n0SbpqO7g30d+1g+pHLqG96gSJEB86Yy93BgX76t26hpraZtFND78A21j35EDOPPAaLQzxVQ3Gwm97tW/HicepaJxJLJinn8+SH4tz7q26WnDWVeMIlKEdE1jJlfiN3X/MMPdtyZBoSnHzZXKYf1kRsdH5Xym5jLn9fCRtFlJ55huLKVYSDAyTPPRe7bj25++7DBj6Zk0/GtE4gf9ONODU1ZE4+mdTChYTFIqU1a7BBQHLePNzaWvzQp7vQTc7P4Tke7Zl2Et7u4uTZYpblnctZ3bua+kQ9i5oXsXTC0r3iKQZFNg9uxmKZWjOVjkIHO3M7aY7XMSdyMalmtlFia3YrO3I7yMQyNCWaWNm7kv5SP491PMZHlv41y8oBuM3cYXfw+Qc+T2e+k4ZEA5899rOc2ng0taUeHqXAP933z5TCMl+e/w/UBQmiMMIvFsn39TD18CMJggAvFsMvlSjnhtj01OM8duN1vPFz/8atP/4ePVs2YRyHpedeSLqugaYpU8n19dI2dwHtiYHKzQcOvgPx4/GgnrD8d5//PL/IHcXbw2v5/H/84GC+tFTfqNn5ISIiIiIiIiIiIjIWVbUICYAx5kLgm4AL/H/W2i8aYz4EYK39vjHGAN8BzgfywLuttS95BG1UHGjLdkMUwsBGbK6PfNsxlP2AvEnRzk4IyzhuEtsym9zgIIXBPoZ6eoglk7TPnY/reuSyWaIwINvVQa6vl1RdPX7jFOIxj5q4QzG0bOkrMFAIaKtPUBd3GSj6TKxNMFgK2d5fouSHTGtO05ktsWBiLS11SfryfQRRQKlUopZGioMBgR+RrI1RrsmydmAtNbEajphwBM4ed7LuGczj2IB6iphCFwxuozDxaArZPPH6RuJRkTgBDG6BzGRMuY8oLFGqmc6zWYft/UVOmFRPUAhpmJjG9cbESTgvZtwfJO7asZGh7l4SNTUQRRTzOWqbWsgN9BFLpjCOQzGbpaa5hcJAP64Xw0skyPf3U9PUTHEoCxaStTUM9fSSaWigXCoR+mUyDQ1ku3tI1dUTBT6lfJ7a5haGenqIZzIYLIVslrqWVnL9fXjxBG7MIz8wQE1zK8XsAI5xiadT5Pp6yTQ2Uy7kiYKQVEMdQ93dpOobCH0fv1Qk09jEUG8PqZpabBRRzA1R09RCvr+XWDI93JbKsguDA7ieN9yWPmqamykN5YisJVVTy1BPN5mmyt3qgnKJdGPT8OvVEwUBpVyOuglt9IeAa2if0Ezmpe7odXCNiyIkAH7os6pnFX2lPiakJrAw3gaZGuhYUTlsXeit3ImlYQakm2DH41AaqlxcmGyCpuE7hUQRft8GNhW7KTgOrTXtbMtupzXTxo7cDophkUk1k0gWc/QUe2iqnUTORhgbMN2tIYri9PUM4rgufrFI6Jepa5lIfrAfLx6ntrmV2ubdF9uGQUBQKhEM52fDxLa921X2KeVLJDIJYntc2F4q+AwVfLblS7TXxskPDpBxI3I93RjHoaaxGd9LUy6GxIyHZ1xK+QAv7hBvjFPO+QzlQ7JuRCzuMlgMcI0hGXPIJDwGCz6RhWIQ4QcR05tSdAyV6Mv7TGlIkY6FdA5ZMnGPgh/QXJNgYm0Sz3XozZUoBxHGgGsM7Q0pPPclTtJ8Zcbftrecg1KWXuoYGBykrTaBUxzALXVhEnWYZD2rSj3kgzz18XpmezWYzpUQS2FbF2J610GuE2omQqYN+jZAUICaVgwu1lr6XYdcGMdJp+j1+2mN6nGsIXAtxrc4gcWJe4SlMhhDGAXE3DhBsYgb8/CLJQAct3JHtGRtLUGpTGNzPWHkkBvMUswNYaOQdGMjoR+AjbAY/EIejEMynSbb20M8lSZVV0ddywQGOrYT+GXCIKKcy5Kub6B1xmwK2UGy3Z0ka2ppbJuEcRyiMKRvx3ZKhRz1rRPJNDRW7z17ZcZf7u5hMNtPmC9CwmPV0DPMqJuB25uhMFgmkYlT0xQnKA9QGBwg9EskamrJ9fTgxuN4sTilfI54Oo0Xi49cXOalUuQpUPQCjHXo9/uxNqIh3kAYhTS7Dbhli0nFyVOk2Wshn83jxQyZhjocx0DnaigNVoo3eBmwldykeSYAxSEfHEiOvot3R5uxnb/FbKVoRlACL15pjRMDDNROrRQnKXRBUIawAIk6KPQTJeoInTi5IEHgxMn39xGvSeMXS7iOSzGbrVyA6Th4sTiJugaGujvwi0XS9Q04rku5WCQWj+O4Hq6XID/YQ1Auk65vwDge1sbxUhn6vE66Sl00xOqZXyrhmxrCEJLB9kpBBDcJfg4IwbrgOJX2JOqwpSxhpg03zOOGRYhsJddTzVDsg+Jgpe8zYREExUo/qTQAzXOhedbLW4dRCNuWQ65n993e/Tz4BXATkKyDhmnQsw5iSWiaDaUs9G0Ed4913jyn8vzBM7Zzd5QI/JByPsBJOkSFXjw/SzwsVor6OB4lLINeEqxDLEwQlS1OOqJAAT/0yYd5gsinLt5E4IckwxDXdfBKDgYoDmaJopBkbT1h4A+ffmoJyiViyVTlxOV8DqwlkakhKJeJJZMEpSKh7xNZS01jE9nubpKN9fg2oFgYoq51Aql4mrINKEdlTDkiSrpgDEPBEJ2FTpJuksWxBmryfeAlINUETdOrvMZHjNv8zQ4MkO/rYbCrk0Q6TUP7ZEr5GGE5wok5GGMJyha/GOLFHVzPIXKgz4aUjSFfDkknXAYLPjHXIeY6FPyQ9toEhSAkFXPJlUMcY0jHHQq+xWJxsHiui+cacqWQuAuOcQgjS8GPSMUcGtIxhkohpSBkVksNaV3A8UqM29zdpb9zJ4OdHZQLBepaJ1As5GloaaVUSBGGEYmkS2gtUVAprICtXPiFNYQxh6BY+U1eHioTi3tYIlzPwS9FBLUuWRtRn4zRl/dxHMPCtlp6cz75ckBN0qMrWyLhucxqzRBGlm39Bay1+KGlJunRXp+i5Ids6ctT9CMaUx7puMe2gSJ2+Bz/sh9Rk3AJInCMwXEM6YRL2Y9ob0iSjh+SuT/qczc/WGKgq4C1YByDcSpBh0GE4zo4HsQThiiEQnYHjmvI9fYQT9eQqqvHDBfn8MslbFi5QzpYRiqAWAtOZRqLJbK2cjGjqeSJjYZreBhI1yTImyypKMRx4uSsT3NoKbkeOcfQHEW45QJdqRpqkk3U5Xoh9Cv750pDkKqr9NPjmUo/0nFgYFtlX16mdXefs29TpfBq/eTKeID+LZXpatuhZsLwdJt37xtpmLp7uqGOyjQN0/bb+zBKjfr8HU38IGL7QIG469BUE6crW8I1hoIfUpeM0VJbubCtd6hE11CJ+lSMHQNFSkHE3NYa0nGXDT050jGXYhBiI0tjPILBPmKpJNnuTkLfp25iG/FMPflei3EsNjQUCz6p+gSDXohfsnghJDIxhsKQ7qEymYSL5zr05crUJj0ycZe8H1HwQ6Y2ppjckKYzWyTuuYRhRNxzaKpJ0Jcvky8FtNYmiD/n2FspCOnKlkjHXZoyiX2tkmoa17nbuXEDg10dxJMpGton46ZS5HtCHNeQ7S0RS7okmhMUbEh3LsBaaE7HMDaiKx9ggelNKVrrUtVuiuzbuM5feRl6NlT21zkeTFhQ7Wj+EsrdsSQMKsVVwlJl/2pQgEQtlPNgXCwOfjlPhIv1faLQB8cjHYswyVoY6qrMW9te2Z/rJcCJ4eeHoNBJLtOC66UoZ7MQWKyNhn8fWBxccoN9FLNZaptbKOVzxBJJGqdOI5VKV2NtjMncLRRy5Hp6GOjcievFyDQ20Tq1sv8xCiP8ckhkLdjKvrAwiLAWSrmgUlzRsYTlyu+yRKZSwBkLhaxPui5O8+SaynQy2o3J/D1UFYMiPYUeamI11Cf3LlC9onsF3YVumpJNHN68uLI/Y1hvvov+gU00+T4NbhLal0B5CApZ6N9A5KQpZdrxnIhC1Ijj+Qz1dhGWy8TTGQY7O4glk3jJFF4sTjKdocYM4cQSUD/pYK+GXcZ8EZJP/9OV/KZ0Kh+P/YK3f/RLtEwc9/uIZDd9QYqIiIiIiIiIiIi8ClUvQnKg6ECbHCQ6SCxj1bgpQiKHJG17ZaxS7spYpvyVsUq5K2OZ8lfGKuWujFXKXRnLlL8yVil3ZSxT/spYpdyVsUq5K2OZ8lfGqjFfhOST//gpfuefxVXeLzh2bsSR77z6YL68VJeKkIiIiIiIiIiIiIi8Cs5LTyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyRthg5GFs659Ze88NRMViFQMSERERERERERERERkbvGoHICIiIiIiIiIiIiIiIiIiIiIiIiIiIoceay1YiKzFRhZr2ev/KIywEdgwGv7bYkNLGEREfkRQKhPl8oS5PGFvL8GGtfiP3E1yThyAzlKcRV6Rj973CS74pwRtyXk4M4/Ezl2C0zwRr64eJx7D9RyM62A8B8dxcEyEE4U4URkTBcNDGeP7mKCMMeCmkjh7DG4yiZuuDI7rYIzZ3VCzr9bvY6R54adeclZjXnK2F1/mK5/7Fc/5KgI2ryJeEREREREREREREXlhKkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiB92D167nkRs3vaJ5J22/mwXP/PJ54+84JkFzdBQAa4sXUUjdyFcKnZz89ilE9hmu+tUqlt768+fNZ4eH6BVFs7e7TvoyQaxmPyxJ9uWCDx3OrKWt1Q5DREREREREREREZFwy1tpqx3BAGGO6gFd2VGL/awG6qx3EAaB2Qbe19vz9+eKvIHfH0/ugthw8+z13oerb3tG2zkdTPKMpFnj18YyGbS+Mv/V6ICimvY2W3D2QRuN7/mqpTRWjLX9H4/uimF6egx3TaMvdfRmN79OBcqi0dX+1cyzk76s1lnNiLMcOBzb+QyF3dxnrefByHEptrGbujpb1rDhGVwzw8uM4FLa9o+U9+UuMtZirEe+hkLswOnNBMb18LxTXwcrf0bpeXqnx1h4Ye20a7dvesbY+X4ras/+M9tx9KaMxF0ZjTDA64xov5zjA6Fu/iueljbdt741U2nQwjcb3dU+K79U5aL/ZRERERERERERERA4l47YIyWhijFlurV1W7Tj2N7VrdBhr8b4YtUVejdG2zkdTPKMpFhh98bxSo60doy0eUEyHovG4ftWm0Wk0tkExvTyjMaZqO5TWyaHS1kOlnfvDWF5XYzl2GPvxjxaHwnpUGw+dGBTH6IthNMUxGozFdTHWYh5r8Y4lo3HdKqaXr9pxVfv197fx1h4Yn22qpvG2PtUe2WU0rrvRGBOMzrhGY0yv1Ghri+J5aaMxprFmtK9DxffqjPb4RERERERERERERMYqp9oBiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiISHWpCImIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMghTkVIDo4fVDuAA0TtGh3GWrwvRm2RV2O0rfPRFM9oigVGXzyv1Ghrx2iLBxTToWg8rl+1aXQajW1QTC/PaIyp2g6ldXKotPVQaef+MJbX1ViOHcZ+/KPFobAe1caDYzTEAIpjT6MhBhg9cYwGY3FdjLWYx1q8Y8loXLeK6eWrdlzVfv39bby1B8Znm6ppvK1PtUd2GY3rbjTGBKMzrtEY0ys12tqieF7aaIxprBnt61DxvTqjPT4RERERERERERGRMclYa6sdg4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiFSRU+0AREREREREREREREREREREREREREREREREREREREREREREpLpUhEREREREREREREREREREREREREREREREREREREREREREROQQpyIkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIihzgVIRERERERERERERERERERERERERERERERERERERERERERETnEqQiJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIIU5FSERERERERERERERERERERERERERERERERERERERERERERA5xKkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJyiFMREhERERERERERERERERERERERERERERERERERERERERERkUOcipCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgc4sZtEZLzzz/fAho0HOhhv1PuajhIwwGh/NVwkIb9Trmr4SAN+51yV8NBHPY75a+GgzTsd8pdDQdx2O+UvxoO0rDfKXc1HKRhv1PuajiIw36n/NVwkIb9Trmr4SAO+53yV8NBGvY75a6GgzTsd8pdDQdx2O+UvxoO0rDfKXc1HMThQKh2mzQcGoOIiIiIiIiIiMioMG6LkHR3d1c7BJFXRLkrY5nyV8Yq5a6MVcpdGcuUvzJWKXdlLFP+ylil3JWxSrkrY5nyV8Yq5a6MZcpfGauUuzJWKXdlLFP+ylil3BURERERERERERERGRvGbRESEREREREREREREREREREREREREREREREREREREREREREReXlUhEREREREREREREREREREREREREREREREREREREREREREROQQ51U7ABn9il1dRIUCtquL/IMPUnjiCdLLlpE+9ljSRxxR7fDkAAoHBsg9+CCDN99C7VlnUVr7LLZUIrlgAUN33kXm1FMJdmwn6Owifcwyhu68i/RRRxIODVFcu5baU08jd/99JGbPBsel8MQT1J59FoVHHsFtbsZrbCL30IPUnnUWxZWrwBjiM2cydPfd1J55BuVNmwgHBkgtOYKhu+4ic/xxhN09lLduIXPCieTuvYfEosUQ+BRWrKT2jDPIP/QQscmTcTJpcsuXU3f22RSefBKTThNvn8TQPfdQe87ZlJ7d1ZaFDN15JzWnnoK/Ywd+ZyeZY45h6M67SB11JNFQjuKzz1B72mnk7n+A+KxZGM+l8PiutjyK29SI19xM7oEHqD37bIqrVgOWxKxZDN15F157O3UXnE9q8eJqv6UiBENDFJY/Qvbmm7Bln7qLLiRz0kkEfX2UVqxk8MY/AVB3/gXE5szGrauj8PDDZG/4E04mTe2FF5I5/niMozpm+0vhqacYuvtuCk88SXrZMrzJk/AaGyk88giFp1eQOe44kocfRv8vr8GbOJG6Cy4gdZi2JyIvJf/oYwxefz1BTzeZU07Fa2/HeC6R7xP1D4Dv47ZNJOruYfCWW/CaGqk9+2xIJIj6+wGwYYjb0ICTTGGSCVILFlS3UbLf2Cgid999lLduJfJ9UosXk7/vvsp299hjSR55JLgOOA7JuXNxE4lqhyxSNYWVqwjzOQhDoqEhrO8TdHXjNTURBT54MWLNzeQfuJ/i6jVkTjqRxNy5+Dt2YNIZvNpabBhgvBiEAWE2S+7e+4hyOeoufg2Z44/HTaer3Uw5iPK9vUQrVzJ4001E2SFqzzmb2MyZpBctqnZoIi9LYds2bHaI8jNryN5yK15LC7VnnAG1tVAqkZw3F6+pqdphioxpNgwpPP44A9f+gSifI3PCiZiaGoyByILjOFjH4KZSFB57nOKqVWROOonEwgVgLWCwgQ9hCL4PjoPX0kJy/vxqN03GMb+zE39wkGDjRrJ/uhETj1F77rk4U6aQmTu32uFJFeTXr8fm8xTuvZf840+QWrKE5KKFuG1tpLU9Ejlg8g8vJ3vnnZTXrSNz0kkkly4lrWMq8gJKmzZR3rYdohCiCGstxlrwPPB9sn++HVsuU3vWWRCPYYtFwIAB/ID8o48Q9vRSd+GFZE44HreurtpNEhEZU6JikcKjjzJw3XU4NbXUXXQRqSOWUHrmGQb/eAPlDRtIHXMMidmzcNva8NeuJXvjTZh0mtrzzsWbOxf/sccZvOlGEvPmUXvuuSRf5PdXeft2cnfdxdA995I5/nhqTjuV+NSpB7HFMh7kt28n2ryZ3D33Ulq7lppTTyG5ZAmJ+fNxY7FqhyciIiIiIiIiIiIist+oCIm8JFsuw9AQXV/9KoXHHgcgd+ddpE8+mUlf+jdira3VDVAOmIHr/0jH5z9P8/veR+eXvkSYzdLyoQ+y/YrP0HD5G+n5/vcpb9jAhM9cwbaPf4Las89m4A9/IP/Qw0z428+w7VOfIrl4MdHgIIN/vIHWT36C7Vd+Fq+5mZrTT6fra1+n+UMfYuc//ws2DGl6x9vZceWVNL797XR9/Rv4HR1M+OQn2P6pT1F38cX0/e/PKT79NBM+eyXbPvlJ0sceS9DVzdDtt9P66U+z/YoriE+fTmrpUvr/7/9o+dhH2fEP/4iTSFD/V5ey46qraHrve+n80r8TDgzQ8uG/ZvsVV9Dwxsvo+cEPKa1dW4n7E5+k5owzGLzuevIPPlhp36c+TXLRIqJslsHrr6f1Ex+vtKWxkZqzzqLr69+g+YMfZOe//CvW92l61zvZ/rdXjqzL/quvZvrVvyA5b14V31ERKDz8MFs/9jcQBAAMXn89U/7ruwBs/ejHIIqGx/+RKd/5NmXjsO1jfzMyf/+1f2DaD/6bzAknHPzgx6HiunV0fPHfKDz+OAC5O+8kc+qpJBYupPe//7sy7o47qDnvXOLtk+j98Y/pu/pqZvziFyQX6ER1kRdSeHoFm9/9bmypBED2ppuZ8JnP4LW34aTTRNlBgh07ifk+Oz/3uZH5Bq79A1O+822iXI4oX8AGPmF3D157O25LM6WuLhLq+44LuQcfpO/qq7GFIq1XfJodV/0dpTVrKs/dcQe1551H8998jLCvj/K69aQWLaxyxCLVUdq8maC/D1v2iXq6CQcHGbzhT9RdeAHljRtxMmkS8+ez85/+CX/TJqDyGaq/7A2kjjsON5OmtHYtsWlTCfv7iYZydH75y8MXbED2T39i8re+Rd1551azmXKQRatXs/WvP4z1fQCyN95I+5f+jcTMmbipVJWjE3kZwpDS44+x85//ZWTUwLXXMvk//oPS1i1EAwPUnnsOxpgqBikythWefJJN73zXHvuv/siEK68Ex0AUEUYRsalT6fj8Fyhv2ADA0K230vCmy6l77aWV+azFlkqVAuvFEkFfHyYeJzFzZvUaJuNaceNGbP8A2/5m977UgeuuZ8q3/5NiMkVy6pQqRicHW1gqQalMxz/8I6XVqwHI3X47teedS+3551OqryfR1lblKEXGn8KTT7LtyisJtm8HYOj222l8x9uJtU0k1tJS5ehktAmLRYpPrwAstlQG1yHKFzCJOG5tLds++and/dFrr2XSV7+Kv30blZJ3hp4f/pAomwUge9NNtH/xCzS8/vXVa5CIyBiUf/BBtnzwQyN/9//yl0z98Y/Y9jcfJxy+aUT2llto/oe/JzEwwPZPfXpk2oE//IGp3/0O2z71qcp0N91M/zXXMP1//5f4tGnPe61waIiOL36Rodv+DFT2IwzeehxTvvlNvIaGA9dIGVeC/n7s9u3s/MfP4W/ZAlSOizW+9S3Uv/0dpGZMr3KEIiIiIiIiIiIiIiL7j1PtAGR0Kw8M4MZiBFu3jhQg2SV/zz0Uh0+ck/HH7+ik+9vfBsAkEwSdndScegqDf/wjAF5rK+V160gdsYTcvfcCkFgwn/xDDxObPInSs89CEFBz4okM/ulGTCpFOJjF5vPUnnMO/b/+dWXZnkvY10ftWWcy8LvfA+DW1+Fv3Urm2GPI3nIrAPFpUyk+/TSJuXMpPPYYRBHpo49i6PbbcRsaCHbuwJbL1Jx5BgO//z0YA2FENDhI7bnn0P9/lddzUkmCjg5qTjmFwT/eUGnLhAmUnn2W5JIl5O69D6wluWgh+QcfxGtvp7RufaUtJ53E4A03YBIJoqFcpS3nnbu7LTGPsLeX2jPPZOD31+61PqNcjsITTx64N0zkZQizWbK3/XnkhLld/J4eBq69dqQACQBRxMB115M6ZtneC/F9hu688yBEe2gor18/UoBkl9xdd5GYOWOvcUM33Uzy8MMAsPk8+ccePUgRioxNufvuGylAssvgH/+ILZexxSJOpobUMcvo/elP95rGFgoUn34aayHKZjHGobhyJeFAf+Xite7ug9kMOYCGbr2V5MKFFFevxt+0aaQAyS7Zm24i7OgADJHvY5/z3SlyqIiGhohyOSgVCXr7iHI5YpPaCbq6KK5cSXHFCoKOjpECJLsM/PZ3xOobCHZ24NRksIUCYU8P/saNIwVIdun+wX8T5nIHs1lSRUGpRP7+B0YKkOzS/6tfUd68uUpRibx8fl8f5PP0/uQ5/ch8ntLatSSmTyfK5/CHL3oUkVdm8MYbn7f/KnfP3YT9A0TZLFGxSJTNjhQg2aX//36NLVYKSo6UAQpCcAxhXz/+Nn025cAo79xJrK2N/l/9au8ngoDsbX9+Xh9Yxj+/p4ewq3OkAMku2Ztvwd+2feSidRHZv0rr1o0UINml/+pf4uv3puxDae06rF8m7OvHYgm6uzFu5RSq3D33PK8/OvCHP+A0NEC5jC0Vn7ct7/r2dwh6eg5W+CIiY15UKtH9ox/vNc76Prm77sbEYnuNrz3nHPquvnrvBfg+Q/fcQ/rkk0dGBZ1dFJ9zzG+X8saNIwVIdik88CDl9Rv2Ob3IvkRAac0zIwVIdum75lfYvr7qBCXj1pbePOu6hqodhoiIiIiIiIiIiBzCDnoREmNM0hjzkDHmCWPMCmPMvwyPbzLG3GKMeXb4/8Y95rnKGLPWGLPGGHPewY75UGYAHAcb2X1P8ELjZeyzETYM9x5nHGw4XKTADr/3josNwueP2zWdMZXxxoCNhhfj7C52sGse42D3LIAw8nrPicFxIIyeP24kFw3W2uc9/7xlD981c88Y9hVXZVz4vLbYPeJmn8t+Ttww0n6RarHW7vMiauPs47MGlWn3cefmKNhHfssr89zt1cv13O2OiOxtH9/Dle2fwUKlk2sM7GvbF0bguWDAYrFRVOkTq9s7rtgw3N2ve4HfNJX3fvi5V7q9Fhnj7J4fAWsrg+MyvLeg8vnZ1+fD2sqnZ+S3IGB5/u8yAD/QZ+wQYuEFfnuEGOWBjAVm1/bv+dszG4WV/UW7tpki8srtY9+TDcLKPmv74n2QPX+72T3+rfRP9NmUA8TaynGIffRzCIN97WKVcc7Avo+h7vpdpb6CyAGxr/189jn9A5Fddu37tVGEsVSOve36zfcCx03Nri/1feVUGL7weTUiIvJ8L3D+ig3D55+nYsw+9xUQhhjP23vcixz323cYOvdCXr7KeQP7yJkoUi7JfnfW1+7krK/pRmEiIiIiIiIiIiJSPQe9CAlQAs601h4BLAXON8YcD3wWuM1aOxe4bfhvjDGLgDcBi4Hzgf8yxrhViPuQFKuvJ/R94lOnkFi4cK/nUkcfTXzevCpFJgdarK2Nlg99EADrB7iNjeTuvpu6Cy8AIBwYIDZ1KoXHH6fmlMpdJcobNpJcsgR/yxaSC+aD45B/+GFqzjwTm8/jNjRi4nGyt91G/aWXjryWU1vL0O23U3/JJQBE+TzehAnkH3qI2rPPBsDfsZPEvLmU1qwhdfRRABSfXkH6hBMIe3uJTZ4Mnjcc44VgLcbzMOk02VtupeF1fzXcFh+3qYncPfdQe/75lbb09RObNo3Ck0+SOelEAErr1pNauhR/2zYS8+aB45B78EFqzz4bWyzi1tdh4nGG9myLtTh1dQzdfgd1F1+y1/o0ySTJww/fz++SyF/Gq6uj7uyzKoV79uDW1FD/nJwFqH/Nayjcd//eIx2H2tNPO5BhHlLis2Y9//v1mGMobdq017jMqadQevZZAEw8TurIIw9ajCJjUfrEE+E5d8iqu/BCTMzDxONEuRyFJ56g8a1v3WsaE4+TOvwwjB9g0mkMkFy4EKeuDpNI4DQ1HcRWyIFUe/bZlNauIz5tGvGZM4jPnLHX85nTTsVrb6/0KWOx591xTeRQ4WTSuJkMTjKB29iAk6mhvGkTblMjyfnzSS1ehNfejtfWttd8dRddRDjQj9fWRjQ0hJNK4TY1Ep8x43nb5+b3vw+3puYgtkqqKZZIkDnxBHD33rXX8IY3EJs2rUpRibx8sYYGSKdpfPOb9xpv4nESc+fib9+BSaeITZpUnQBFxom6C85/3gVHNaeegtvQiFtXi5NJ49TV4z3ns1Z38cU4mTTGi41cF2pcDyy4jQ3En9NnEdlf4u3t+Dt30vCGN+z9hDHUnHUWJBLVCUyqxmlqwps4gdiMGXuNrzntNLz2Nhz9BhI5IBKzZ+G2tOw1rv6vLiU2a2aVIpLRLD5rFsRieE1NWMBracX6PkQRNaec8rz+aP1rLyHs68PE4phUEpNO7/V884c+RKx17/wTEZEX5iSTNL/3vXuPdF1qTjmFKJ/fa/Tg3XfT+KY3PWcBDpmTTyF3xx27Z29oIDF/3+cyJqZPJ3388XuNSy5ZQmKm+gny8hlrScybhzdx4l7j6y+9FFfnEsh+Vh6+Ud/zbsgnIiIiIiIiIiIicpCYau6gNMakgXuAvwZ+Cpxurd1hjGkH7rDWzjfGXAVgrf3S8Dw3Af9srb3/hZYLsGzZMrt8+fID24BDRHHHTqJyCdvVxdDtt1N49DHSxx5LzemnkdZF0Pv9/nWjKXeDnh6G7rmHgeuuo+HSS8k//jgAqYULGfjTn6i/6DWU1q4l6Okhc+KJDP7xj9SecQZBdxfFdeuoO+dcBm+6kdTSIyEMyS9fTv1rL2Ho9juITZuGV19P9q67Kst+6CFMOkVi5iwGb76Z+otfQ2nVasJ8nvRRRzJwww3UnXsu/tZtlLduofb0Mxj80w1kjj+BMJej+PTT1F10IUO33kZ83jycZILcvfdRf+lryd17H25zM7G2NrK33UbDpZdSeOIJbBSRWryYgT/dQP1FF1Fav56gs4vMySeR/eMNZE4/jbCnh+Kza6k791yyN99EcskSsJb8Qw9Tf+lrGbrjDmJTpuI1NJC9685KWx5ejkkmScyaxeANNxCbPInGN15O6ogl1X1D93ZA7r04mvJX9i3o7ye/fDkDv/0dtlSi4Y1vJH3KyZQ7OwnWPEP/b34DBhpe93q8eXOJ1dSQf+ghBn77W0wqTeMbLyN9wgk41b0Ye1xte/OPP0725lsoPPYY6eOOIzFvHm5jA0N33knxiSfJnHQS6WOPpft73yPWNpGGyy8ndcQRu++2JmPJuMrd0cxGEfnlj9B39dWEfX3UnnsO8WnTwPMgDAl6e8H3cSe2Ee7YwcB11+E1NVF/6aXYdIqot6/ybvk+bmMjJpXGJBOkn1M06BAzrvLX+j5D996Lv307URiSWriQ7C23UnzySdInnkjm5JPAcTCeR3z6DLyaTFXilP1iXOVuNeRXrMDmC9gwJBrKgu/j79iBN2ECUamEicXwWicwdOstFFeuInP6aaSOOAJ/y1ac2hqc+vrK3Qhdl8j3sYNZsjffTJjN0nDZZdSccjJubW21mzlajcv8zXd2Eq5aRf9vfkOUHaL+kouJz51L+rDDqhqX7FfjMnd3yW/aBENDlFauZPD6P+I1N1H32tfi1Ndj83kSc+cSa22tdpjyyozr3B1LrO+Tf+QRen/+c2yhSO3ZZ1X6FLv2hRgH47o4qRRDd99N8YknqDnnbFJHHkXltvQGGwaVOyr7PgBeUxOpxYur1qaDQPlbZaXt2wmyWYJ16xj47e8wsRj1r38d3tSppOfPr3Z4o9m4zd382rVQKJC96SYKjzxK+phjSC5ditc2kfSiRdUOT/aPcZu/Y1nuwYcYvOEGSs8+S80ZZ5A+7ljSS0bVMdrRQLk7rLhuHcGOnURYTBgCBhtFGM+FUpn+a3+PLZWpv/RSTDqFLRTBMRhricplhu66i7Czk4bXv6FS2LqhodpNGu+UuzKWKX/3IcznyT/4IH2/+AVObR1Nb3kzqSOPpLh6Nf2/+hWl9eupOeUUEvPnE58yheLKlfT/7vc46RQNr3s9sTmzKTz0EAO/v5bkwoU0vO6vSL7I8dzy5s0M3nwzQ7f9mZpTT6H2ggtIPKdwoDyPcvc58lu3Em3eTPammyk9+yy1Z55J8thjSMyejZfRMeVR5kCcWHVQTri31jLzqhsAePpfzqMm4R2Ml5XRQycFioiIiIiIiIjIqFCVIiTGGBd4BJgDfNdae6Uxpt9a27DHNH3W2kZjzHeAB6y1/zs8/sfAn6y1v36x1xjrBytGo2D4ZF2CAC+Vqm4wo8chcaDNDl8wtudjG0UYx3neOIzBGLN7nLWVO8g7zt7LGZ7/VS8b9hr3gsv+S19vH8t+tW0ZZVSE5BAXhSHGmOflZxAEEEV48fje0wcBxnVHS+GLcbntjXwfJxbDRhFRqYSbSo2MA0bz9kRevnGZu6NdFAQjj40xlYvWdn2/D2/TwiDAGd7GWWvBcSCKiMIQC8R0x2IYp/lrrSUslyvfia5LVC6D64K1uLGYtrvjw7jM3WoISqVKfxB29wmf839ULlf6Ls/Z1/TcfU+7tsf6jL2kcZ2/vu9jtI9pvBrXubuLXy5jdu2vAhzPG9kvJGPWIZG7Y4m1trJfeJgxZqSfYa3dfcZ/FGGHnzPD+5B3TW+txfEOiZP0lb+jROj7RFGEsRYvmax2OGPBuM/doFSq/GYKQ/V9x59xn79jWVgo4Ooz90KUu88R+f7ucxGG+5TWWsLh7/Rd/cl9rjjt4zqYlLsylil/X8Se54TtNT4Mn7edDUolrOMQ2+PGOXuer/WyXu8vnP4Qp9x9AbuOcTiJBI76AqPVmC1Cki8HLPrcTQA89PdnMaFW+5gOMaPiBE0REREREREREZGqnHlprQ2BpcaYBuB3xpgXu9Xpvnam7XNHrjHmA8AHAKZNm/Zqw5Tn8HYdvNvjIJ7sH6M9d/c88Lrr8Z4HeF903K6LfZ+7nOFpX/Wy9xXjvpb9l77ePpb9atsyXo32/JV9c17ghArvBS7KGI8Xa4y23N1VbMQ4zsiJsc4e37mHwvZEXp7Rlruj3Qttv8we4709v8NHZnTG5bav2kZb/hpj8PYoMuPowgR5AaMtd6vBexkFmdwXmEZnSVXXaM3fWCymfUzyokZr7u4Se07xTpFdRnvujiW7igXu87mXu4z9F84hQfn76rmxGLqU7eAbzbn7cn5LyaFtNOfvWKYCJAfeeMrdvY7H7fG/jsyNT+Mpd+XQM17z94XOhdjXPoF99a//0oIiKkBy8I3H3NUxDjmQBgu7b7aTL4VQW8VgRERERERERERE5JBV1WPm1tp+4A7gfKDDGNMOMPx/5/BkW4Gpe8w2Bdj+Asv7gbV2mbV2WWtr64EKW2S/U+7KWKb8lbFKuStjlXJXxjLlr4xVyl0Zy5S/MlYpd2WsUu7KWKb8lbFKuStjmfJXxirlroxVyl0Zy5S/MlYpd0X+MoNFf+RxvhxWMRIRERERERERERE5lB30IiTGmFZjTMPw4xRwNrAa+APwzuHJ3glcO/z4D8CbjDEJY8xMYC7w0EENWkRERERERERERERERERERERERERERETkAMnuVYQkqGIkIiIiIiIiIiIicijzqvCa7cBPjDEulSIov7LWXm+MuR/4lTHmvcBm4DIAa+0KY8yvgJVAAHzEWqvSziIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyLpT8aORxvqzT5UVERERERERERKQ6DnoREmvtk8CR+xjfA5z1AvN8EfjiAQ5NREREREREREREREREREREREREREREROSgKwW7i5CU93gsIiIiIiIiIiIicjA51Q5ARERERERERERERERERERERERERERERORQVgrCkcd+qCIkIiIiIiIiIiIiUh0qQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiUkVFf3fhkbKKkIiIiIiIiIiIiEiVqAiJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiEgVlYJw5HE5UBESERERERERERERqQ4VIRERERERERERERERERERERERERERERERqaLSHoVH/NBWMRIRERERERERERE5lKkIiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIhIFZX8PYuQRC8ypYiIiIiIiIiIiMiBoyIkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJVVArCkcflQEVIREREREREREREpDpUhEREREREREREREREREREREREREREREREpIqK/u7CI+VQRUhERERERERERESkOlSERERERERERERERERERERERERERERERESkikpBSMKrnN7vqwiJiIiIiIiIiIiIVIlX7QBERERERERERERERERERERERERERERERA5lpSAiFXcJI6siJCIiIiIiIiIiIlI1TrUDEBERERERERERERERERERERERERERERE5lJX8iKTnEnMdyoGKkIiIiIiIiIiIiEh1qAiJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiEgVFYOQRMwh7jn4oa12OCIiIiIiIiIiInKIUhESEREREREREREREREREREREREREREREZEqKvkRCc8h5jqUw6ja4YiIiIiIiIiIiMghSkVIRERERERERERERERERERERERERERERESqqBSEJDyXmGsoBypCIiIiIiIiIiIiItWhIiQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIlVUCiKSMQfPNUSRrXY4IiIiIiIiIiIicohSERIRERERERERERERERERERERERERERERkSoqBREJz8VzHAIVIREREREREREREZEqOehFSIwxU40xtxtjVhljVhhjPj48/p+NMduMMY8PDxfuMc9Vxpi1xpg1xpjzDnbMIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIHSikIiXsOrmMIVYREREREREREREREqsSrwmsGwKettY8aY2qBR4wxtww/9w1r7Vf3nNgYswh4E7AYmATcaoyZZ60ND2rUIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIHgB9YYq7BcwxBFFU7HBERERERERERETlEOQf7Ba21O6y1jw4/zgKrgMkvMstrgV9aa0vW2g3AWuDYAx+piIiIiIiIiIiIiIiIiIiIiIiIiIiIiMiB50cRnuvgOoYwstUOR0RERERERERERA5RB70IyZ6MMTOAI4EHh0d91BjzpDHm/zPGNA6Pmwxs2WO2rbx40RIRERERERERERERERERERERERERERERkTEjCC0xx+A5hkBFSERERERERERERKRKqlaExBhTA/wG+IS1dhD4HjAbWArsAL62a9J9zL7PvarGmA8YY5YbY5Z3dXXt/6BFDhDlroxlyl8Zq5S7MlYpd2UsU/7KWKXclbFM+StjlXJXxirlroxlyl8Zq5S7MpYpf2WsUu7KWKXclbFM+StjlXJX5C8ThBGe6+A6hlBFSERERERERERERKRK9ksREmPMicaYtxhj3rFreInpY1QKkPzcWvtbAGtth7U2tNZGwA+BY4cn3wpM3WP2KcD2fS3XWvsDa+0ya+2y1tbWV9sskYNGuStjmfJXxirlroxVyl0Zy5S/MlYpd2UsU/7KWKXclbFKuStjmfJXxirlroxlyl8Zq5S7MlYpd2UsU/7KWKXcFfnL+JEl5ho8xyEIVYREREREREREREREqsN7tQswxvwMmA08DoTDoy3w0xeY3gA/BlZZa7++x/h2a+2O4T//Cnh6+PEfgF8YY74OTALmAg+92rhFREREREREREREREREREREREREREREREaDIIzwHAfXMYSRipCIiIiIiIiIiIhIdbzqIiTAMmCRtfbl7uk8CXg78JQx5vHhcX8HvNkYs5RKAZONwAcBrLUrjDG/AlYCAfARa22IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMg4EIQWzzV4rqEY6HR5ERERERERERERqY79UYTkaaAN2PFyJrbW3gOYfTx1w4vM80Xgi68oOhERERERERERERERERERERERERERERGRUcyPImKug+sYwujl3h9UREREREREREREZP/aH0VIWoCVxpiHgNKukdbaS/bDskVERERERERERERERERERERERERERERExrUgtHiOwXMMQagiJCIiIiIiIiIiIlId+6MIyT/vh2WIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiBxyrLUEkcVzHTzHIYxUhERERERERERERESq41UXIbHW3mmMmQgcMzzqIWtt56tdroiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIeBcMFx2JOQbXNQRRVOWIRERERERERERE5FDlvNoFGGPeCDwEXAa8EXjQGPOGV7tcEREREREREREREREREREREREREREREZHxLggrRUg818FzDOFwURIRERERERERERGRg83bD8v4e+AYa20ngDGmFbgV+PV+WLaIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyLjlRxEAMdfgOoZARUhERERERERERESkSpz9sYxdBUiG9eyn5YqIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjGtBWCk64jkGzzGEKkIiIiIiIiIiIiIiVeLth2XcaIy5Cbh6+O/LgRv2w3JFRERERERERERERERERERERERERERERMa1IIwA8FwH13EIVIREREREREREREREquRVFyGx1n7GGPN64CTAAD+w1v7uVUcmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjLOlYeLkMRcg+cYQhUhERERERERERERkSp51UVIAKy1vwF+sz+WJSIiIiIiIiIiIiIiIiIiIiIiIiIiIiJyqAjCStERz3FwHUMwXJRERERERERERERE5GB7xUVIjDH3WGtPNsZkgT1LLRvAWmvrXnV0IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLjWBBVio7EPAfPMYSRfYk5RERERERERERERA6MV1yExFp78vD/tfsvHBERERERERERERERERERERERERERERGRQ4cfVoqOxByD6xoCFSERERERERERERGRKnFe7QKMMT97OeNERERERERERERERERERERERERERERERGRvwXAREs918BxDqCIkIiIiIiIiIiIiUiXefljG4j3/MMZ4wNH7YbmHpMKOHdggwHZ0UlqzmmhoiMSCBaSPOw43max2eHKIiUolik8/TXHVamLTpxP19xGWfeITJ1DetAlv8mRsPk+YzRKfMhV/y2a81lZsEBJ0d5GYNYvy1q24tXXgefg7tpOYPZtg506IxXFra/G3bCE+cyZhTw9RFBJraaG8aTPxaVMJs1nCfJ74pEmUN2/GmzgRWyoT9vcRnz4df8tWnKZGjDH4O3eSmDWLYPsOTDqFk0pR3rq1Mq6rC4zBbWzE37SJ2IwZRP39hKUy8baJlDdtJjZpElGxQDgwSHzaVPzNm/FaWrBRRNDVRXzWLPyt23BrazCxOOXt2/ZoSwy3tg5/82bis2YS9vYSBQGx1lbKmzfj1NWROvxwEjNmVPstlSoobdxI4amniAazJBctxCQSFJ94ApNKkVy4kCAMMYUCpVWriHJ5EgsXEJ87D0rF3fMtXkRq8WLwPIqrVlF86ilMLEZqyRISc+ZUu4kySvk9PZSefprShg0kZs3Ga5tI4cmniPr7iU2dSpgdJDZ5MlE+T9jbi1tXRzgwSDgwQGzKZNzmZkorV2Fcl/icOQQdHQSdnSTmzCF1+GF4ra2V1+nspPDkk/jbtpGYMwevrY3i008T9leWEwwMEGttxbgepWfWQBSRWLCQ9FFH4qhvI1VWXLeOwsPLCbODxKfPwGTS4PtYazHGIcxmMa6LDfzK/1GEcVxsEGAScZzaOqKBfsobNuK1txGbPJmwvx/juBjXwYYhOA44DiYWwyQSmESC2LRpxBsaqt38Q1ZYLlNcswb8oPKeug7ldesJOjpIzJqF09oC6TT09lJctQonkSSxaCGZZcuqHbrIXyzI5yk9uxaw2EIBWypV8t5Utk02DHAyGcLOLsqbNhGbPAlv0iT8jg7ceALr+xCFmGSSqFjCqavFOA5YsFGIMYZgxw7C7FClz3rkkbjpdLWbLaNcuVzGf+wxiitXVfqGCxfgLl1KSrkjY0R++w7CNasprXkGp66OxPx5ZI7W7nCRl6O8eTP55Y8QdHcRmzoVJ1NDpWNRGezw/wAYg0mlsPkC/ob1uA0NxKbPIAp8CENsuQxRVJk+smAqs9nIVvovjgOui3E9vEntpObPr1q75dCSf/JJyus34G/dQnzadGJz5pBetLDaYUkV5J95hmDDBkrr1uG1TiAxdw7ppUurHZbIuJd//HFKzzxbOVY9ew7ejOmk1Q+QVyEsFimtXo0NQ6zrYoKA8rp1RMUiiTlzIeZRXrOGqFgiefhhZI46ChOPVztsGUXy27YRPruW0prVODU1JBYsILVkCU4sVu3QRA4J1tqR82zi8+fjr9+Av2M78RkziM2YgYkikosXV/YjyLiVf/QxSuvWDZ/zMhtvzhzSs2dXOyyRffKjCADPNbiOQxDZ4XNYTJUjExERERERERERkUPNKy5CYoy5Cvg7IGWMGdw1GigDP9gPsR1ygqEhCAJsRwc7rrwSf9v2yhPGMOlrX6X+wgurG6AccobuuJNtH/84DZe/kf7f/IbSs88y4Yor2PK5z1F79lmEg1ny99/PhM9eydYPf5jkYYcRa29n8Prraf3kJ9j68U/gNTeTOflk+n72M5o/9CF2/PBH2CCg8a1vYce3v0Pj299G39VX42/bRusnPs6Wv/t76i6+mME/Xk/h8SeY+NnPsuVDf03muGMxiSRDt93GhCuuYNvHPkZs2nRShx9G/6/+j5aPfZTtV3wGk0hQf/Fr6PnBD2l6z3vo+8lPCfv7af7AB9hx5WdpeONlDPzu9xTXrGHCZz7Dlg/+E7VnnkmUz5G7975KW/76wyQXLSI2ZQqD111H6yc/wbaPfwKvuYmaU0+j9yc/ofmDH2THj36MLZdpfNvb2PHtb9P4trfSd801+Fu20PrJT7Dl7/9h5KR5b8pkpv/4x8SnT6/yuyoHU2njRja/930E27ZVRjgOEz7zGbq+8Q1suYzb0sLkb3yd7Z++gqCzszKN6zL5m9+g47e/I7j99pH5pv7393Fqatj8zndVLrIAnPp6pv/kf0guWFCF1sloFubzdH/72/T/8hoAmt//fgZvuAF/Vy4aw6RvfJ3cnXdSXPMMiblzyd19F+UNG0eW0frpT9Pz3/9NfMZ0kgsX0v9/vx55ru61r6XtH/4eG4bs/Jd/Zei220aea3zHO8jdey/ldesqOf+3n6HUP0DPd79LlMtVXj6ZZPK3/5PaU0458CtD5AWU1q5l8zvfRdjTUxnheUy86rOVC9/CEMIQv7eXwkMPk1wwn8JTT5NcuIDS2nWkDj+M0PeJNTXR8/3/Hllm+oTjaXzr28jeegtubS1uYyNhfz9uQwPG8/AmtuE2NeJv3EhcF51UTXHlykoxhnIZp7aWrq9/g8LDD4883/Kxj5E89li2/vWHwfcBcBsbmfytb5I59thqhS3yipRWr8aWykTFAsH27UTlMjaXx22ohyjCnTiRofsfoO+nPx2Zp+bMM2m4/HK6v/dfJGbPwUmnyd17L42XX040OIiJx4hKZYxjGPjd7yg+vWJk3rZ/+WcaL7+8Gk2VMcRf/ghbP/ZRolweAJNKMeU/vwXqG8oY4T+ynO1/e+XIPp/Y1Km0//uXVIhE5CWUt2xh8/s/gL9pU2WEMUz4zBWQSkGphPUDiEJsFIExOMkkTjrNzs/908gy4nPnMvGqqwgHs4R9vUS+jy0WK8Wse/tw4nG81hacTA2ltWuJhobw2tvxGhugWCR1xBHVabwcMgqrV9P3058xeP31I+MaLrsM85EPk2prq2JkcrCVCgXyt99O1ze+OTIuddRRTPi7q0gfdlj1AhMZ5worV9LxpX+n+MQTI+Nar7hCRUjkVSmuXEWUz1UK3BmHbVdcQdjdXXnS85h41VV0/PuXIQzBGKZ85zvUnnVmdYOWUaPU2Yn/+ONsv+Izu/cjTJ5E+5e/rMLnIgdJ4fHH2fzOdzHtml/S/Y1vkrvrrpHnmt7zHmpecxH5Rx/VZ3Icyz36KN3/+W3yDzwwMq7lox/FuewNJCdOrGJkIvsWhMN9BsfBcyqFR8LI4rkqQiIiIiIiIiIiIiIH1ysuQmKt/RLwJWPMl6y1V+3HmA5ZQT6PG49TWLV6dwESAGvp/q/vkV62jNiECS+6jPyWLTA4SLB1K35HJ7G2NuILF5CcOvUARy/jTdDTQ89PfkLrJz+BSaVIHX00NgiIslkmf/1rBN09mFSS+ksuIRzoZ9J/fIWgpxfjGDKnnELQ30f75/+VcGAA6wdM+up/EPT2MuGqzxIN5YgKBSZ9/euEPd2klhxBVCoR5XNM+sbXCXt6yJxwAg1vfCPhwCCTv/pVgp4eTDxG7TlnE/QP0P5v/0bY34+1duS12z73OcLsILZUZtLXvkbQ003rJz9JVCgQ5nNM/sY3CHq6SR29DBsGhM9pS91rLh5pS9jbhzWQOflkgr7e4bYMYsvl3W258kqiXI6oWKjE3d1N6oilROUyYWcHrZ/4OP2//R3+pk0EW7eRf/JJFSEZ5cJ8ntLq1ZS3bMFtaMTEY4Td3cRnzyYxfz6FlSvxN24k7O8nMW06Tnsb/qrVxGfOILFw4cjdiqJymdKaNRSeeorG17+e8qZNDFx7LUQRA7/7HTVnnE72pptxamspPvXU7gIkAGFIzw9/xJSvfJmNu4qQRBH9110H5fJIARKAaGCAodtvVxESeZ7y+vUjBUhwHNz6+t0FSACsxd+6Fae2lvz995NetmyvAiQAfb/4BXXnn483cQLd3/v+Xs8NXnstTW95M1EUkTrsMJLz54PrEPb303/NNUz83OcIOzqwrkNsyhRMIkHrJz+JU5MhNmsWwdatlDdsJFsuY1pacABrHOzgIH7HTggjvLY2vKZGkgsXYlz3wK4wGZeC7m6Kq1YT9PYQn14ppuMkEhSfeYbSs88S5fPUX/waeq/+JU1veTNuUxMYg9feXtnWOg6xadOoOetsyA2RmDcPp7aWhssvJ+juxqmpwWltJXP22Qz+7vf0//zn5O9/gPpLXkuspRWTSoIFt74BghAbhPg7dmDile+K4pYt6qNXQZDNEg3lwEZE5TLRjp17FSABGNq6lcxJJ9L+z/9EVCwRnzUTM3Mm+d/8RkVIZEwpd3YRFQoQRoTd3YSDg9hiCbelmaC3l7C3l5rZs6k9/zxqL7wAYwxBRwfW9yEMaH7f+3CSSYLeXuIzZxCfOpWo7IMBp1QCC3UXXkTtay7GSSUJOzoJ+gfIP/000dAQNowwWKJcjqCrG6+9jfQRR+A1N1d71UgV+eUy5ZYWpv7gB5TWrgMs8TlzCNJpyv39xBsaqh2iyIsqrl+Pd/TRTL/ml5Q3biQaHCQ+bRpkMtUOTaTqyps3k3/8caJcjlh7OyaZxAYhuA5EFmOg7Qufx1jAgI0ibBiBXwZjhi/IM4AFx6mMA6b86IeVCzqjCBtFRIUCxnWITZpEceUqrO/jGAd3UjsYhyifJ/fAA7g1NSQXLQLHIdixk4Hrrie5ZInuGCoHVJhO0/Cmy8mcdCJRvkBi1kxMWxvh+vWgIiSHlHDNM6QvuYSphx1OeeNGnFSK+OxZ+Bs3goqQiBww5fXr9ypAAtDzve+RPmYZ6f1cjKy4bh3+pk2Ut27Da2okPmMGKX2+Dxh/cJDy6tVE5TLGcSrFxK2F4bvEYwwYp/LYRmB3zWkx1hJZi4HKsf3BLLEZM0gdthi3tvZFX7fc00M0lB3ez2UoPbN6dwESgCBg8I9/JHP8ceTuvQ+spetb3yR9zDLcurr9vRpkDLL5PN606ZVzTHp6iU+dgpk6ldKDD5GcN095IvIy2SCguGYN5XXrcOrqSC5cSOxlFI+wQUDvz36GLZex1tLw+teROfkkYm1tOFOnkr/5ZqKuLobuvofUkiU48fjzluF3dlJctYqof4D4rJkk58/H7GM6Gb1MTQ2Nb3kzNWeeSWziBLwpUygMDBB1dYGKkMgoFISVPq7nmpHCI0Fk8XTqlIiIiIiIiIiIiBxkr7gIyR7+ZIw59bkjrbV37WtiY8xU4KdAGxABP7DWfssY0wRcA8wANgJvtNb2Dc9zFfBeIAT+xlp7036Ie9RxnMpJEeHQ0POeC3t7CfN5Yi8yf2HzFsgNMfjb39L381+MjG9633uJfeQjuKnU/g5ZxjFbLlN37jl0/sdXqbvoIoIdO8g/8ggTr7yS7X97JeljjsFJp8jefAsTPnMFO/7+H4hPm0ry8CX0//KXtHzso3R88YuYWIy611xMx+c/T9N73kP/1VcT9PTS/P73s/3Tn6bhDW+guGYNxVWrmHjFFWz/zN9Se/rpRMUiubvvZsJnP8v2q64iuXAh8alTGPj9tbR+8hPs/Od/wW1ooOb00+j4f/9D8wc/SN/PfkpUKtP0lrfQ8YUv0PjWtzDwm99S3rSJ1k98nG1XXEHdBRcQdHaQf3g5Ez/72eG2LMPJ1JC96aZKW/7hH4lNnkx66VL6rr56uC3/Bp5H/SWX0PGFL9D0nnfTf/UvCbq7afngB9n+qU/T8PrXU3z22d0ntzkOEz79Kbr/67+IcnmiwcHqvqnyomwYMvCb31Te62G1F1xA2N9P/uGHmf6Ln9P9zW+Rv+++ypPG0PYv/0x5+3a2f/azTP7mN6g77zwAhm6/g22f+MTI3YxSy5ZRd8klDP7hD4R9fbhLKyc6xqZMJhwYeF4sYU8PlErPGRni79j5vGn9jo790HoZb6JCYfcfrkv03HwCbKkMwweuCcPnPR/29uLU11dO1Nx1Eueez+fz2GKJ7v/6r8rFykB85kwmXPVZsjfdtNcdhFo//nF6f/YzGt/xdobuuJPsjTfufu6KK7CpFMlJ7Wy/4jNEuRwA3oQJNL/vvUT5Apljj3klq0EOYUFfHzs//wWyN+3+2TDpK18mNnMmm9/2duzwZyI2dSqT/u2LdH39GyOFekwqxYRPfIKhO+8kseRwknPmVO50P/w5SC5dysQrr6T49FN4g4O4s2dTd/FrKK9fT/7++7HlUuXEs3D358aWy1gDjudVCpxYC35wENeI7GJ9HwK/UtwoCIkK+edNM+ENr2fHVX9HecMGAEw8zuRvfgNPFxHIGGNLpcq2y1qifAFjISqVMI6LDUJsGOHU1WELRYwHPT/+MV7rBJxkguLaddS/5jX0/PcPKD71VGWBrsukL/87vb+8htT8eZX9Do7DxM9eSecX/w1bLtPy0Y+Qf+BBjOfh1NQQdnXS9a3/HImp5qyzaP/8v+I1NVVprUi1Gcch3tvD1k98krC/HwC3oYFJ3/wGtLRUNziRl8HW12N27KDzy1+h8MgjlZGOQ/sXvwAqECqHsNL69Wx+3/sJtleKq5t0momfvRIwmFgMG/hgLSaTwRgHk0hgwwDrB0T9fZViJVE0fK2oxZjKfMbzsGGILZVG9j04iSR+RwfFdetouPhiyuvXg+dBZIGwUgytUMCdNLmyTyOMKoWyXbfSN1KhUzmAzPbtdH7t67v70I7DpG98ndiiRdUNTA6+WTMJHl5eOU6wa9/p3Lm0/+u/VDcukXEuyj9/X1+Uz+9V4H9/KBaL5O68i86vfGVkXO2559LykY+QnD9vv76WVI7h5h94gLCrq9KnTCYrBe1KJawfVGrXOS7Gcyt9vchioxD8ABuGEFX2gwXbttH/61+PLLflbz5G8/vfP3KTiX2+dqGAcRxsqYRJpQj7+543TdjXS6xt93d90NNLVCqhXqdA5Zht3w9+QPaWW0bGTfjsZ8m86XLCgQEVIRF5mXL338+WD/31yHkNqaOOYvLXv0bsJYo92ijC376daddfR/aX19D3v/878lzTe99L5swz2PLWt9HykQ8T+f7zipD4XV3suOrvyN17b2WEMUz59n9Se/bZ+7eBcsD42SzZa/9A749/PDKu8W1vo+6Nl2Gz2SpGJvLC/KiylzTmGjynUoQkjOyLzSIiIiIiIiIiIiJyQDj7YRmf2WP4R+A64J9fZPoA+LS1diFwPPARY8wi4LPAbdbaucBtw38z/NybgMXA+cB/GWPG5fF6G0VEvk9ywfzKnf72UH/ppSSmT3/BecNCAROPEXV20feLq/d6rvf/+38UnnzygMQs45eJxyu5FIbEp08n//DDZI4/nsFbbsGWSqSOPJLszbcQnzOH4oqVRNksNWecQf+vfoXb2EjY10fQ2UXdBRfS+9OfQiyGiccpb9hI3QUX0Pezn4K1eG1tFJ98ktrTTmPg2mvB90ksWEDu7rtJLllC/oEHsPk8mRNPYOD31+JNmoS/ZSthXx+1551H7//+HJNOY4MAf9t26i68kJ6f/AQAt6mJ0po11J57Lv2/vKbSlpkzyT/0MOnjjiN7263DbTmK7E03EZ81i+LKlUSDg9SeeQZ911yD29BA2N9P0NlJ3QUXVNrieTiJJOUNG6i7cHictXjt7XvfXSuK6PvFL6g9/wIwhuSixVV6N+XlKG/eTOd/fHWvcdk//Yn0smUQBPibt+wuQAKVO1l945vUnnUWWMvOf/08fkcHfkcHOz//+ZECJACF5ctJzJgBQO255zB09z0A5IfvpvJcdZe+ltLOvYuLJBYupPHNb3retDq5QfYlPm0a3uTJlT98Hyedel7fIjZlMjYMcOrrMYl45YKdPdRdcD65u+7C37Gd+Jw5ez3ntbYSmzaNnh/9aOQiIKBywX4QktvzswL0/uQn1F10IYkZM/YqQALQ/d3vkp43l4Hf/36kAAlA0NlJectWimtWE+yjWI/IiymtWbNXARKAnV/4IoXHHhspQALgb9lCsGMnwR53LrSFAkN330VULFJ7zjl0fv0bexXiKT7+OOVNGxm86WZyd9+DUy5DuUzTe96NU1eH29pKaf16It+H4RPVnLpa3Lp63MZG3Lo6TCpFbFL7AV4Lsi+xpiac2jqsBZNIEJs6FSeTGXl+4ne/Q2nV6pECJFApItPzwx+SmjmzGiGLvGLxyZNw0mlwDLGJEzGpJG5rC1E+j1tfR/qYZVAoYgOf4ooVJBcupP83v8HJZEgtXoS/Y/vuiycBwpDu7/4XjZddRt8vrwEgc8LxDN54E7Zcxm1oqFxIPJQF1yHo7qbnf36yV0xDt91Gac0zB3M1yCgThSGDN940UoAEIOzvZ+iWW0DFc2UMMEFAef363QVIAKKIrm/9J/mVq6oXmEiVDd1990gBEqjc7Xvo9tux1hL29GALBWwQEHZ1Y8slonwOfB9bLGBicaJCniifI8pmiQYGCHv7CLq78bu6Cfv6iUolomKJoKeH/GOPUlyzhtSCBYQD/US+j9/TTdDbC9YSnzqV9NHLKG/bht/RgfE8EgsWUHv6aZVihCIHSGnzZoorV+7dh44iuv7jq5j9fPG7jH6mu5ue//ruSAESgPKzz1JcvbqKUYmMf4mZMzHP+W2ZOfUUYruOl+wn0cqVdH3nO3uNy958M+XNm/br60hFad06/I2biErlSp+yv5+or48om8X6Ptb3iXI5gp5egs5Ogq5Owp6eSnG6YvH/Z+++4+Mo78SPf55p21er3uUi94YBY1NMb4HQS3q59OSSHCmX5O5+l3Ipd5dLLr2RSwIkkJAEUiCEGnqoBgO2cbdlyep9++6U5/fHSLKEBBhc5PK8Xy+/vHp2duYZ6dmZZ57yffyg/J7L0K23Tthv3w9/NKEdeCqBhgbQNLRQGFksEFq+fNI20TPPIvP442M/J66+GkMFWlVGOG1tEwKQAPR9/3u4GzdiVVdPU64U5fDiDA3R9bX/nLCwSu7ZZ8lv2PCqn9Usi9K3vBXZ1cXgTTdNeG/guuug4D+r9f/iOrxx/cWjChs37glAAnvGBvX2vs6zUQ62wvr1/t96nMGbbsLr7saYPXuacqUor8wZWfDG0DT0kbFejgpCoiiKoiiKoiiKoiiKoijKNNjnICRSyovH/TsXWAJ0v8L2nVLKZ0dep4CNQD1wKTA6O+UG4LKR15cCN0spC1LKncA2YOW+5vtQFKiqwnMc9PoG6r7xPwTmzUUvL6fsfe8lduEFCCFe9rOe66LpBm4qOWHiu/+mh5dUkduV18bL57E7O/0fHAcAvaICp9MfTD466dyorMQeScP1wPPQy8pwenoA/JUuczm0YNCfjAbopaU4vX2T9m2PDlQfSTPGpUl7JK28HLvLz5cQAmwbPRbDHRzw9xOJ4A0Pg6aNrWplvOy+Oyefy0ganvTPpbQUp8fvPNYsC5nNogUCuOm0f7xEKc5o5/LIvsezO7sINM+m8dqfEFqsVjs8lHnpzNQroY38Xd305OuoOziIzOf91/39eLkcXi6HO8XgBOl5VHz8Y4RPOAFcB6u5mfpvfwu9uZna//k6VnMzRmUl5R/+ENHTT0cXEJg/H72igoprriFx0UVETzuN6i98HqOmBrOpibpv/S+h447bv78I5YhgVlfT+MMfEj3vXLSSEortHdR/77sEFixALy+n9J3voLhrF4FFi6n6zGfIb9pE9ec+S3DxIvSyMhJvexuRM8/Ey2bIrnmGqk9/iui5/r4iZ5xO47XXogcC2G2tk47tDg2hBQKT0yLRsWvneDKXw8tmsXfvnvSe09uLkP7kJUV5LdxkclKal0xOCEAyyu7pmRCEAsBu78CorATHwenqmryvVNqvWwjh3zuEQEQi1H3zG7jJJJHVq7GaZ2PW1WLU1qBXVWE2NGDOmokWj6NFY+jB4P47YeU1EfEYWjSKHouCrlP/ne8QWrECPZEgcuyxOP2T7+N2eztyXKAkRTkcCE3zy3okgl5ehtU8B7OhAb2iArOmFqOmBlksQDDo119dD2EYeJkMQtPBnuL5pqMDYZpjg33950H/GUovTeAVCv7EDtdFeJ7/bPYSblIFFzuaabpOsXVyHbLYsgtN2x+xkhXlwBKGgTfFCplOdzcyn5uGHCnKoWGqa7vd3oEwDbxsxu+yEJoffASQRRvp+ivSS+khEOC4CCkRQkPoOgIx0icioWgji0W8TBZZKGKUliI0DS+dxpo5g9CSpQQXLUQvL8fzPPTyckouvojgkiWIeByzsYHIyacc3F+KctTxslm8Kdqw7M7Oyf12ypEvl9vT3zSOOzg4DZlRlKNH+IQTqP/udwgduxw9kaDkisup+PCHserq9utxvGx2yn4Lb4p2aWXfjd5jNdNEOg5IiZfLg+0gNAGe57fTSw+hG+DXJP3g4q6LdF1w3Mn3Y9ed8vnupfSqKkQoiAiHEWXl1H3zG36/blUlFZ+4htCK4zEqK9DLyyn/8IdJvOnqVxzboxxdpuyvykx9DVEUZWoym8Vpb5+U7u7lQibR00/zt51qPOXIfUDmcrhT9AO6w5O/w05vr/oOH0a8VGrCgiMASIk7nEQbWVBEUQ41tutfrwxdYGh+vdJVQUgURVEURVEURVEURVEURZkGxqtv8prtxg9E8qqEEDOBY4EngWopZSf4gUqEEFUjm9UDT7xk//t3qZpDSLixkUI6jV5VSe28eWA7BBcueNVBCmY0Si6ZxKyvRy8rwx0YGHvPqK7GbGo60FnfP+wCOEWw02CEIVwy3Tk6ahlVVZRcfDHDf/gDwrJA18muWUPs9NMZ/M1vEEIgwmHyL7xA6TveTm7tc7jpFEZlJcWWFkre+EZS99xLsa2VwLx5FLZswajyv9a5tc8SOeVkMo/+HREMgBBkn3yS6JlnMPzHP4GhI0yT3Nq1lFx2KYUtW5DFIlpJCYXNmyn/wPvJPPp3nN5ezKYm7NZWrJkzAchv2kjo2GPJrV07NqE4++QTRM88k9Tdd088l7POYvDXvwZAi4TJr19H6TveQW7tWtxUEqOqimJrKyWXXELq7rsptu4iMH8+hc2bMSr91Ytyzz5LZPVqMo884p+Lpk3ovIxdcAEll1+OUVp60P52RyXPhUw/ICEYAzP8mndh1tdhNTdT3L59LE2LRJCeP8HSamoCw5gQbCa8ciVaPA5A9IzTMUZWK4qeeSbpBx7Ys3NdJ7L6FMIjq2OFV6wA08QoKcGzbcxwmODixVAsEly4cM/+ly/HKxQxK/esllX2trcRP/980HWMROI1n6dy9AgumE/9N76BOzyMXlKCZllEjj8WN5lGhsNogBgJ3BQ55WSEphE7/3zcdNov15pGw09/il5Sgjc0TMU112DEY+ixGFoohJSSkiuuoP8n10487tIleC8J9BBasYL8hg2Elh+DCAbHgvcABObNQy9JEDv3PPIbXpy4r/nz0WLR/btinJ0D6YEVefVtlUOTnQV0cAqABHdkRVmhgRUGTcOaOcsPhDZutdnQCSeM1UXGCx9/HIO//OWEtMipp5K85x5KNY3o2WeTHr9KnaZhzmgietpp/vehpASnvx+jpAS9ocEf0CwlCM2/h7gu0nGQUiIMA6u+Hs04EI9hyt4Kz50LQH7XLqTjQoVGzVe+7F+bXnIvHhU7/3xEdTVkh/y/rxX2ryViZLDP66h7KMrBEJo/Hyklhd270R0X6bn+pF5Ng0AAp6MDmc0SXLSY7Jo16NEoelkZxZ07/e+CEBMG5sbOP49iWytGTQ1OVxfZp58metppDP32txR3tVIy+txjGGCZY89mY0wTa8YMKObBc0DX/ACQThGQ/vOUbvrHRfO/Z9IDPQCGeVB/d8qBYRgGsbPPJvvYYxPSo2efha4G/CqHCWvmzEntP9HTT9/vq6sryuEkuvpUhm769YS0yCknI3N59LJyJCDtIkZ5OQiBFvbr05rp4eXzoGtITfjBRqQHnkRYpj+pVDcQAR09EEALBdFCIfIbNyIsk/gb34g1Zw54DkLofr1B0/3nL+ki0dBMEyMRAyMAjg14/mspwcntqcu7RZCAMXI/snOgW6DpftujW9iz7fj37BxoI/UXt+i/9hwwVeDJo43e1ITZ0DCpDh1/w/kIXZ/GnCnTQVRXEzv/fIZuvnlCemDuvGnKkaIcAKk+0HUIv0ofaKoTzBAEE5Dq9a+R8cnttC/LKfj/gvG92jx22mmYTU3ITMYP6l9evvfH2ktGTc1Yn/EoEQwePmMyDjNmXR16WSmeXUSzAkjPRYtF/WcyKcEw0KIG0vXAcRBC+HVKCSD9e7Ng6nE0DY2vevzQnDkA5He1gvTQy0qp//73kK6LCIbAc6n93/9FD1hYFSUgdMgOg+uAcEEYgOa3g0nP/z4YgVc+qHLEsJqaEIHAhCD5wUWL0KtrpjFXirIfjH8u3hvpkcWdopV7t73n+s/YZgijspL4JZcwfOute94XAmv27L3alVFaitXYOOV9wKirBSCwYAHmFEHLrNmzJrcDnnvO2Ngg5dBnNjRgVFWNLaYGoJeXYzTU46lndeUQ5Yxcc0xdQx8JQuK8NJiOoiiKoiiKoiiKoiiKoijKQSDkPq6+JYT4PiPd94AGLAdapJTveJXPRYGHgK9JKf8ghBiSUibGvT8opSwVQvwQeFxKeeNI+s+Bv0opb51inx8EPgjQ1NR0/K5du/bp3A432bY2P0p/axs93/oWhY0bCS5ZQtWnP0XkpJOmO3uvrq8FCkPQvQ7W/hKMEKz8ADSfA1ZounP3cvbLEjaHatktbN9M34+uJffCesre+U4GfnkD0dNOxyvkST/yKBUf+hCDv/kNwYUL0UsTDN/+Fyo/+o8M//nPGGXlBBYuYPDm31Lx4Q+RfvAhZD5P9MwzGbjhBkrf+Q7y69ZRbNlF4k1XM3D9DcQvuACnr4/s009T/v73MXDjTYSPPx5hmaTuuZeKf/wIQ7fcitXYgNnYyPCtt1L+0Y+SuvMuhGkQXrmSwRtvoux97yX71FM4Pb3EL76YwRuup+TKKynubCG/fj1l73qXfy6nnoZn22QeeojyD3/YP5cF89HLyxm+7Xb/XG67Db0kQXDxoj3n8tBDeNkcsbPPYuD6Gyh9xzvIr19PsaXFP5cbfonT3U3svHOo/OhHCMxdMN1/yqnst+WXpr38dr4AQ63wzA2Q64flb4P6FRCIQ/neDToYld+0ie7//m+yTzyJNW8upW95C30/+CHRs84i8d73YG/ZQu83/xe7vZ3Iqaup+NCH2fX+9xM77VQqr7mGwMggh8LOnfR+5zuk7rkXs76emi98nsgpp6jB5vvPEX3tPSB6N8GzN8LOB2HBxbD06tf8/ZhKcfduBn5xHYO//z16LEb15z5L9JxzyK1dS9eXv4Ld1kbk9NOJnXkGXV/6DyJnn0XpFVfQ841vUty5k/DKlVR87KOkn11LsKGB/Pr1fqAry6L0rW8lsHABodowVkUcGo7dt8xmemHj7fDsryBaDce8BWqPg7KDOihYld19MbwbNvzRDzYSLPH/jut+75fvOedCzTIIxcEIIzMDZFpSdH3n59i7WomeejKV/3AxWjTBwJ/uY+iW29AiEao+/kEiC8pJv7Cb3mt/hZfJEL/4IvSycoyKcvJbt5G48goGrrue9N/+hlFdTeUnPgHlZXitbQQXLEBqAhEIEJ4icMUR5sgqv04RdjwAT/0f5Ab8+kPJDOjfQrbsXPLPrKHvBz/ETaUoufgiSq6+mkjPH6FuGWiWP6Ew2wfbH/DL4JIrYckVkFATDQ5BR1bZ3c/yu3bh9fcjI1EKa9eC55J77jkCs5sxamrwsln6f/ITnP5+YuefT/TMM8itWUOgeQ7Dt91Gfv16Kq75J5zuboZu/QOxs88mcvppyEIBLRQGJMk/30bm8ccxmxqp+ewniMyKIoZb/Qm68UYYboFNf4F5b4DcECAhWgV6EFId8OIfwYrCSR+Hmav3TAw+OhyR5Te7fgPpe+5h4MYbEQJK3/lOomefQ3jpXsU0Vg4PR2TZHZXduRN7wwZ6vvVtnK4uomecQfn73kf4+OOmO2vKvjuiy+4B4RRh199xN97PcG8TvT/+GTKfp+TSSwmffDJC1/zV6j2JCAT84NOGAZqfLgsFcBw8TyIcBzx3JKajQALCk0jp+RNKCwW8YhEcBy0aRY+axMSTaFXNMNji56diPmy506+fb7wNao/x2whf/DOseA90b4C2J+GE90F2EJ67ERa8EWashof+x9/Hqg9DIQVP/giql8Lyt8KLt0Hr4357SlkzPPw/UDkfFl0GT/zIfz6dd77f5jBztR/cJDET5l8AsYM2MUmV30NAdt068us30H/ttTg9PcTOP4+y976X8NKl0521Q9kRW3aza9cyePPNJO/4K3oiQcVHP0r45JMIzpgx3VlT9p8jtvy+op7NsPtJWPsrP0DXCe+HhpWT73nta2HXo7D+Vjj3vyDXA0//3A8ocvy7/fb56lfoQ/U8v/3u6f+DVLffpj/vDVB6aHyHsmvW0Pu975N96imsWbOo+udPEzv77OnO1t467Mpudt167PZ2pGOD6yI03Q9k53ljgcDxJAj8BX403T9LCXLkfxyHwV//2h9Hs3w5Nf/+/wgt2Q9tEele6NviT8g3g/iZ0Pz3XAekA2iQbIPnb/Yn1q/6kN+vEVAB81+jw6/sZrM4jz1O7/9+k+LOFsKrVlHx8Y8RWbHigB1TOWQdduV3SslOv8/9uRuhajGs+iDUvUI/fs9m6HoBnrnO/3nFe6HmGKic+/KfaV8LT10LPRvh2HfCgjdSHCzS96MfM3z77RiVlVT/+/8jesYZaObeBy9P//3v9Hzzf/37wNKlVH7yk/TdeCOiUKD6c58lOG9ywEDpOKQf/TtdX/4yTmcnsTe8gcp/+icCs2bu9XGPAId92c08/jg9//st8uvXE1i4kKpPfwqtuZlwbe1By4Mybfbb+Mhx9m3A/V7409p2PvHb57j/06fz1M4B/uUP63j8X8+ituSQHUOt7H8HouwqiqIoiqIoiqIoiqIoymu2P4KQvHvcjw5+AJK/v8pnTOAvwN1Sym+NpG0GzpBSdgohaoEHpZTzhRD/CiCl/K+R7e4GviSlfPyVjrFixQq5Zs2a131ehyu3UMDOZpF9fchsFr2sjEDjq6/eMu0G2/1VX1oegNs+viddCHjLb/zBuoem/d7Ye8iUXSnh4W/gbbob59hPILqeQeDi1axEb/0rbsO5iIEtiHwfXtM5aC1/QVafCLlBtORW3JkXorfehZtYiBAGWt+zuLMuRmv7GzJci4zWo3c8hDvjjWidT4Bm4FUtR2+9E7fpAkTfeoSdwqs/DW3XHXi1pyFSuxGZNryZF6Dt/Auy8jiwC2hDG3BnvhGt9R5kbDYykEDvftxPa38EacWRpfPQdt+H13QBoudZhOfg1a5C33UnbsPZiMGtiFwf3oyz0Vru8M8lP4A2vBV31kXou+7CTSwAYaL3PYs76yK03Q8gg1XIWAN6x4Mj5/IkuEU8owSj8wG0uWfAGf/qr4xxaDkgHRUHvfz2bIK+zXDLe/0VRked/19QOhdmrIRQyWvapZvJ4A4MoMXjyGIRWShgVlcjTBNp2+R37EDm8xgVFWihEF4mg1FZiRacuLqpl8/j9PaiRSIYZWX742yVPY7ca++BkOyE6y+CgW170mafCW/65V6vHPhKpG1jd3cjLAuzas/qhc7AAF4mgxaJ4KbTyHweYVoYlRXYHR14uRxaLAaeR2DWLLxcDnd4GC81gMwMI9wU1oYfo+16CE77LJz1//Yto4/9AO4Ztw8jABd8ww8aEIjt2773niq7r5dThDs/C8WU/3rRpXDHpyA/vGebY98BdcdDvBYy/WCFcTpb8LJ59P4n0VsfhJIm5AkfxB5MIWqXYD7wKZh9BmT6sGOL8WadhxjcBrEGyPSAk0aWL0GWVCNTOYRpIYNByBcQsSg4DnppKWbJa7vXHKaOrPK77X749dUT6w/nfQ0KSahaiNdwCoXdfUjXQaupIfjU16F2mV/uLv0htD8H/Vth+317Pn/M2+Cib6sVzw89R1bZPQCk45Bvb0cEg8i+fn+ehGWhtT+BrJiD5+qAgSjuRjOj/sDfykUwtBMi1egtd6BVzsTOW4hcL2ZjM3ZfL27DmaAH/O9VZhCj6yGMTTfBeV+B7hehcaX/3PmnD8M5/+FP7i2fBbXL/RVjnRz87ct7MioE/MNfYcbJ0/Wrmg5HZvld/wcKs87B3eEPMtZnNBJoewAWXz69+VL2pyOz7ALkM/DUT8gf835kZyeyUECvLCeQ3QJzzpru3Cn77sgtuwdKy6Nw/Rv917Eaiks/hlt9ElgBhOcikX4AMSkQUiJ1HYRA2Pk9KwkXk2CE/cmZrgNWGAppv80iN4gIlSCTHYhIOQy3gRFEy3ViPvO/cMIH4P6vwOpP+hOhA3H/Ge+Z6+CcL8O9n/cnKxcz0PIInPXv8PA3wcnDmf8Gj34H7KxfvwiVwqY7/HM59ytw3xf9Potgwg+W/vA3/PeWXgV926DzOT9Q2skfgwf/G6wInHINPPCf/qSqHQ/6zwin/bNfjznwVPk9FPRspOhFcfqT4Hlo9fUEH/wCnPgBqDtmunN3qDoyy+5gK9z3DfKr/w2vtxdhmoTMHgiEofGE6c2bsj8dmeX31Tz7y73rz//bV+CRb/qv33wj/PYla9hc9mM/MPDLaXkUbrzCD1oy6qzP+/fWQ0Shrc3vUwyFppy4fAg7LMuuMzSE3dvrBxkZNfpaiJHgdh5C0/yFIUbfGxsT5UcjEUJgVFaix/ZT39DOh6B/J0SqQBMgDNAMv35bzPj5SPfAX19Sdt/yG1hw4f7Jw9HjsCy7AIUtW3FzWfTSUgJNKpj5UeqwLb9jPBf+9h/w9+/uSQvE4f33+YE6p7L+Vn88z3hXX//ybcE9m+Dn5/jBQUed+mk489/xHAenuxsRCmFWVLyuU8hv346XTqPH4uhlpXipFHp5OXo4/Iqfc/r78bJZjKoqtEDgdR37MHb4l921N5NPrMJLJhHhMFpNFYHdj0LNciitP3j5UKbDYRmE5Pdr2vjMLS/wyGfP5Ikd/WOvG8te+VqlHFFUEBJFURRFURRFURRFURTlkGDs6w6klDe8lu2FPyLg58DG0QAkI24D3g3898j/fx6X/mshxLeAOmAu8NS+5vtIpQcC6IEAlJZOd1ZeG0OHQsYftDSelLD17kM5CMmRK9kBj30PrZDCmrcOnv22v4Lkk1+C/m3o5Y3w1Nf9AdrrN/mDuMvr4LGvQ9lsdJGBdbegn/5ZfxVJK4oeT8DzP/UHhd//X+AW0SsaYO334Lh3waOfg1QnekUTPP0/MPdcWPskdDzr7/uJ/4GaZVDsgs13wum18OjXIVKJHjTghV/4A88e+DwAenktPPcjOPEj8OAn/MlvFY3wzLf9Du2n7oa+LX4envo6NJ0IGzbDzof94/3961A6C13Lwwu/23MuZhi9JAHP/cQ/lwc+Dk4BvaLRP5fx+tb555Y4DIIBHY4GW6Br/cQJxABrfgZvugkGtkP9a1uJWI9E0CNTrzolTJPQ/JcMnniZACNaMIh1OASBUo58fVsnBiABf/XAge2vvCrRXhKmidXQMCndKCsb+368NBCPPsVgXD0aRY9G4Ynb4a7PTXxzzc9g4cV+AIDXI9UDj73k+uwUYKjVv47UqNVoD3lDrfDsDXDaZ/y/XXZgYgASgBd+B5UL/Mlq5c3Quwnj7/8xcZvhVoQZwHrm3+H0z0GmFzb8EU75BOYj3wQrDxv+APmkP3nskf+FlR+Eu3/vD3YbTTv9c/Dbr/urFZ7z1YP3e1D2n9bHJ9cfnrkOzv9v6HoB7ff/wIR1hIwAVH3Nr4u2PQGRGqhfPjEIyQu/gdWfePmBlopyiBKGQWh0Je7qathyD3Q8D93rYP33oWqR/1oP+KsNtz4Oi6+Ap3/mXw833Ainfw7ria/6k3yfeRiz83nM8yPQtQ6e/83EA77wOz9wVLAUHv2mHwws3Q3NZ8LG2yBUDrEa/5lvPCn9icFHVxCSI49dgBd+R+CW90xMX3AhzHsjmNb05EtR9tbANljzc4L3f3li+tlfUkFIlKPThj/veZ3qwnrs3/17dbDUDxAZLgOEXx+YcQokmuDFP0HlQr/e/MLv/MBkpTP9Z61TPgHta/wgIRXzYes9fh2h5VF/YlPpTNj0F78OkuryV5vXdFj3e78esvZGWHq1X2/o3QQljX7/wmmf8duvN/8VZp0KW+/16xWzT/frHLse8/c5GoSk5RE/MFrHs5Af2rOSPYw8Q37SD0JSTO+Z1FrM+BOywD/fEz4Aj30Xjn0bxNWElqPG4C6s37yZSTWa+eeoICRHm6Fd8OKvCG54Sb/nZT9WQUiUw1uqC565fmKalLDtvon9+R3PwZqf+6/f8jvY9KfJ+1p7I8w5D6IvM4m447mJAUgAnv4/v7+6bNbry/9+FmhsBNUXeNAYiQRGIjHd2Zgo0w9D7SMB9mzQAiCLfoDdQgbcgv9658OTP7vm534d9tBbzEQ5AALz5k53FhRl3w3vhid+PDGtkPSDjr9c39jzv52ctu6Wlw9C0r1hYgASgMd/CMf9A1pp0z6PwQk2N09M2Mv7ilFeDuXl+3RsZZoku+DZXxBs+9DE9GPf5QeyVZRDkOP57Y2GLjB0PxaF6x3w2CeKoiiKoiiKoiiKoiiKoiiTvO4gJEKIdUwd1VkAUkr5crNETwHeCawTQjw3kvZv+MFHfieEeB/QClyNv6MNQojfAS8CDvBRKaX7evOtHKI8AWhgThGt21ARvKeFpvuTLQupPYOs3SKYI9MxR1cOcov+apAT0mwwRlaAl9Lfl3T9FX/An/CpW/5nx+9nbN/auP0EXpJWAGPClNCR/Zkjrz3/tVucuB8z6Hd+v9q5BOKT0yadi7fnXFzbn4znFCYORh9lBP3PKAeItudvP97o713b51hbinL401/mGqRN8d05FOhTfG+N0NTX2L3ep77nWj6epvmDP5VDnxi53gsx8R4/nj5uio8Q/n1AaP59+6X7Gt0G/P2OBqPQLX/lbd0al2b6E8nGbzf6WSPor2yoHH5G65gT0oIT63nj6QFA+HVRPeBPinzpauaaoa4pypFBE355Hn1mGn0Gc/L+98Rz91xzx682Cy95fvKmvv+aYf9aKz3/9eg1Vrp7nrnEy9y7p2ozUA4zAqyXa/tR91TlMKDpfhvTS+kqgI5ylApMEch39B7uFADhP4MZwT3PcsZI/UJofr18NH30mcsI+IEhddOfyKmPbGMERj437n6haX79wQjsmaQ8+sw3tm99z3OhEQSnuOf90ddCTNyvEfSPNWr8M+j458WXvjd27KCfdyMAQrVPHlVerj1atVMffUafa+RLAqCqsqAc7jTjZfrzX9J3O9rPDJAffJnPBF85EOUr9f8pyqFCaH6/ljMyhElK//rvyZH65ci/qZ4jrcjkNmZFUZRDmTbuOX68qe7Zo6wp2g3M0OS0V9qXEVD3f+X1Ey8zHtUM7gkmqyiHGMf12zINTUMfCVjnqCAkiqIoiqIoiqIoiqIoiqJMg30Z6XTR6/mQlPJRXn5Wwdkv85mvAV97PcdT9simc0gJ2UEbz5WUVIcIhvdtgHwunSeXs7EzLkPdOYo5h5KqMHVzSjCs11C8PAc0C1a8F1oe3rN6oBGEuefsUx6V1ylWg3fe1+lLJxjwZhO54m3YOQd3hkE4Cqkhl9Clb0M6LgVbJ7ZcIzVsE7jk7Wh4ZDMQv/pzZIYdjAvfhWFI0klJ/Mr3k0vbcO4HCQYgPewSveLtFLMObq1OOCJIDbuEL3sbbtGh6BhEV/rbBS99O3geuZwgvvDLpJM25kXvQDckmaQkftXHyaVsxPnvIWBBatgjdsU7KWRtvNXXEI74+Y5c/jbsvIMjDSKnjJ7L25GuQz6vE18uSA05/rkIj0wa4ld/huywg37huzBNSXpYEr/yff65nP0hgkE/j5Er3oadtXEdj3DcIDvsYLRYVDbmiZZOMbhI2TeVc/zVpAJxP8jMqJM/DrvXwuK9u1WlBvMUMjbhEotwbIpJyS8x0JWhmHMIBA2MgIYQ4mX/vgNdaYa6/OtjvCKIXXRJVFmkB10Gu7JouqC0JsxAewYzqBMtDVBaEyEUUxOYlNcvmy6S7s9hBQ1cfQnyrWsZHjbIFzVKqyMk+/J42yWRwT40KUgOFAhENIIhi+HeHJqhEYqY6JZGPm0TLw+i6YJMsoDnSHJJGytsEIyY5FJFEtVhyhui6Pp+WK2tciFEKiDTtyftlGugZsnr32e4HM78N/jjuNVtwmVQ1gzls1//fpWDJmvU0Xfug6RzAYLVETwJ5hVvBDs/EhTCIpOzCEX9a7ieFhix+RQuv4DUQIFQ1CRaFsBzJXbRQbvsPGLhHEMXv510WiMUt7De/E9kh4vErvwMUa0Ho+1h3NX/S6CumVz8FGTlIjwziDPnE+gGaLVX+eWop4Dn5tE0gRypwwpNoOmCkoowQgUpOTTNOAkCsYmrqZ34j/6qrbNOhdKZ9J/9S2TFTPJDLoPdWQxHo/T8q5ASwvoQMp9EXn0JbqgKjwC6KRBFC607gxCCYNSkkHPQTA2n6GDnPTzHI1YWIhxX93nl4EkO5HCLLtLzQBcIKfA8iVP00C0d0xC4rsST0p/3EFqFV38sQVFHzBiGez/v30fv/QIc9y5oe5LuOZ9kuPwagmED57L3kRnKk7jiHYhCEjdYiXGaiZQSvVpjuOJzOLZHoiqEYQmKBQ88cIseLP8Z1iqdTNLGtDTy4fdjkqMiNkxiYRB2PTqxfWD8qsrK4cm0YOmb6D/pO3hS4HkeniMZ7MriPd5DoipEKGZiBg2kJ7GLLoal4doSK+S3M9kFB6fgoemCSCKAk3exXQ+34GGFdCKlAQxDDUpXDpCK+XDGvzNQdQ5OXjLUncMuuIQjFvqL/YTiJlbAwJMSO+8SjJiYAZ1izqFYcP25aLZ/XQsEDeKVIYSadKZMA9fx6O9Ig5SYIZ1CxmWgI4OUEC/3n6ukB56U4EkkYmRCJWiahm4JpCdJBj+AceGHiZRYOAUPhETTNDRDIDQxGrEeWfMBXNcD18M8+c2U7fg/gpleWPZmeO7XUNIIx74TNt4OJ7wX7v8qLLoECmkonQmpLjjxo3D/l2HRZf5K8qFSQPgZPeZt8Oi3oeEE6Nvi1xtKZ0K6G5a/Hbbc40/wnH8h3PdF/5ew8BK470t7Xo+uTq/p0LQKNt7m/5xomvjccOw7YNPt/utYrR+oDSBavScQyvH/AM//Bs76AsSqD8SfUDnI7LxDLmVjhfz24KHu7Ej8PIHneqAJdE0gQ8dTfOcukv15ilmHWHmQSJlFpdY23aegHGxl8yl+8AmG3WoGO7IMg33jAAEAAElEQVQUsg7RRIBQ3MJoT8FI/EXPA8+RGAEdO+9imIKSyjCGpeqzyiEqUgEnvH/y83rzmRO3q1kKp3wC7voX+NOH4O23wtpfjQsaJvxxAaOLQ0yl/jj/fp8b3JN2yif9e/OrGOzKUMw7xMpDhF+mv623NYn0IFIZJBKx6O/KYOccrLBBWfUUE6aVQ14+Y1PIOgSjBk7Bw3U8IiUW2WQRoQmCMZPsUBHD0jEtbezejgbFjEMwZuLYHnbBJVJiUcg4uK5HJBEglywiPUkkESAz7E++jyQC9PXoyPj5xONgD3Sh6x5BkSbjlaEbNgFvkKxXirGoHiubIVN1OmamFSu1jcyKL2GmbaygznBfjmLWRSKxszaeN7Ii1Pg6uCnIDBVxHY94eRDH9pDSr397IxNVNU1DIvFciab7AVDsvIPnSSrqo5TXR1WfxTQY7k8z3FVguDeLFTJJVAcJRHTsvPTrB3sxPkFRDgkljXDGv8Hd/zouremV+/GXvRk2/nlPsAfNgKVXv/z2NUshXg/J9j1pZ/4/KKmfcvNssoBT9AhGTfJpG93UiJTs+U6l+rJkUzaGpVFeHyMzXMC1/Wu7bkwc21DMOeTTNlbEIBg+cAu6dG4for8jg25olNWEGejK4NoeJZVhCjmHYMSgkHMQCMobopRUvELQFuXVxapgxfvoOeN6skMOqcE8gZBBaV2YUNYluh9/vdlkgULOQdeFHw9X4Lf9aoALmqnh2R5mUKOY9/sznKJ/Dw+EDfIpfxwOSIpZl2Dcwi26FPMu4RILp/CS1wWXSNyikHNwbY9wiUUuVUQIgRUa2V/EwCm4SE9ihXTyGZdA2MAu+N9JK6STT4+Uu7xf7syATjHrYEUMijnHHwek+f165sizqxnSKeZG+m8cv79GetKvZ8jRdT8EruNhBjTsnEcwZmIFVWDOvWG7/rOWqQuMkbqbq4KQKIqiKIqiKIqiKIqiKIoyDV53q66Uctf+zIhyYPV3JfFsSV9bhidv20k2WaT52AqOObuRmtmJ17VPKSX5rE0x7fLEn3bQvmUI8McMnfOeRcxbWbP3Oyuth76dUD4P3nyTPyjYDMHcc2H2ma/+eeWAaBWnc+dN62k+PkcuWWT3lkFWXz2X+2/aTu2cBIGwwbZnejj5imYeuWUnsfIgtc0lrHuwnRMumsWTf21DCMH8E2tY89cWlp/TyNoHusgMFVlxwQzu+eN2FpxUy2B3lp6dSU6+ag733biNGYvLkRJaXujjlKvn8NDvdlJeF6G0JsLGxzpZdelsHvtzC4GwyaxjKlh7TyvHnT+DNfd0YhccjjmrkSdu28GS0+p54ZFhhrqyrLpsNvf9cjvNx1WRyxTZvck/lwd+vZ2a2SWEohZb13Rz0hXNPPrHFqKJIPXzErzwwG5OeONMnvqr38G98ORanr6jhWPObuS5B7pJD+ZZceFM7vnjduafWMtwT5bukXP520+34zoe0EZlU4w3fGgJ8XLVObxflc32ByxefT3seAiy/TDvfCifA6HE1KuqjOPaHh3bhnj6jhY6tw1RWhvm1DfNo3Fh2ct+pm3jAE/8aTs9u1JUNEY56fJmNj3ZSc2MEuatqiEY2TMYYffmAdbe3UrriwN+goATL52NJuLcee26sU7deEWI0946j798/3mqZsZYcFItc1dUT9iXouytrh3DrLmzBQGU1kaQnqR96xC9u1Kc+c4F3Hf9RlL9eYSA1W+ay2N/2I6UkpMvn8O9f9iIN9KZXdEYpW5ugnh5iGLWJpu2MS3d336kc7t2TpxEVYT7rnuRN3xoKbOXV+77Ccw8Ba6+AbbfD8kOaD4bqhfv+34XXARvvRk23eEHJZm5GmqW7VmhWTlk5dJFHr1lG1uf7vETBKy6ZDat6/upnZsgFAnTtXMYO5+kZ1eKY89rIlxikks7PHbLtrH9zF9VzcLVdeAJnrq7mwUn1ZJNFnn6Ly0AHPeGGcTKAzzy222suHAGwdorefxPOyipDBEtDRLJ6eze3EvLC33Ey4OceFkzcthGSn9gsxnQCMVMhK6hCT8ISXqwQKI6QjShBpAecmacAm/5DWy9B7ID/nOHGYKG46F3C/2X30NqSECvzV3Xrh+p00FZXYTT3zaf4WyMoR6dcNTiqVt2MtiZpX5+KcvPaeSp23ZQOzfhTzAqtZi5rIJCxuHpO1ro3pmkvCHK6qvm0LDg5esbirI/OLZL764UaH6gB10TSMDOuzz+h2307c5QO6eEE944E9f2kELg2R47n+9j65puAuE6Trx4FXMvm4HZ+xxc/lPo3UznxQ/z7L3tNC4sJdWf54k/7WDGknK6IyY1s0swPQ9yeaIlAR64cRODnVkAdFPj/A8uwSm4pPrzDPdmmbGkgufua6OmOcFz97WST9sAhOMWl7zvbMovuxZaH4dgAhZeDHXHTtvvU9l/+ktW4xZdPMfDdST3/3IjyT5/ArcZ0DnnPYsIhHWeu7cNw9KJJCwyw0Xmn1iDYWkMtGdY/9BuFp/WwHBvlkRVhKfv2Ekx7zB3RTXVM+M0LSqjpGqK1Q0VZV8ZJkM152KnXe79xUaGe3OAX3ZXXTqb1IBOWV2Ih369hULGYcUbZxEI6yT78kRLLNo2DbL5yW5CMZNjzm6kpCJE7ZyEClCmHFQDnWnW3tPKlie7CUZNznrXAu75+YsUcw4A0dIAJ185B8d2yQ77Exd0U6OYd7ALHoYpKKuLcu8vNuA5e9oQjj2vicHOLIapEYgYBEIGuqmhaQLbdrHzHoWcg+cIekPvY2H9DqxMK5z6Kb99z7X9ICKpTrjkBzCwEy7/CbQ/57f9da2HC78JrgO5AT+I4K7H4KpfQN82OPsLYMVgYBtc+QtoeRQu+7E/wz9Q4r/fvx1O+KBf/88N+cFLZq2G0lmw+a9QfwLMewPYWTjuH6BqPjSsgo5n4Lh3Q/NZ/mRo1/F/rj0GNv7F33fFfNj+N7j0B5AZhIu/D00nTtefWdmP+tvTPPr7rezeNEhZbdjv+7htJ8n+HHNXVBNNBEhUh8llClTNKGHDw+1sfbp77PMnXzUHc1kTiek7BWU6xMoZGjR58MZN9LamAX8C1uqr51JeF0EicAoOg11ZyuujPHzzFrp3JqlojHLM2Y1Uz4xTWqOCICiHqPpV8OZfw5a7/H64OefAnCnWmpl5GlzxMz/oLya85dew9T7/vj/vPL99/pU0nABvuRm23evXD+ae77fpvQK36NKyvp/H/7id4b4cTYvKWHHhTGqbE2Pb9LUN07ZxiGfu2oVT9Fi4upb5K6t56Ddb6GtLUzUzxkmXNau2u8NM185hHr55C7qhMXNpOc/d18aMpeUEwyYbHm7n2POaGOrJsWNtLydfOYcdz/XQ15bmpMubWffQbuy8y7HnNvHsPa2EoiZzV1az9u5WKhqj1Mwu4fm/+fuLJoKse3A380+sQQjBi492sOzsBnIpmy1PdnH8BTMY7nHZuqaVVZfMoq8tyvZnOzjx8ma6M//Kzj/2cvKVF9DRPcTOb7Rw8hUGZlAnVhZACEFqoEB2uECyP49ru5TV+kFDghGDtfe2MtzjP4MalsbZ71rIcF+enpZhNFOjZlYJfa0psskCjYvLGe7J0b0zSW+rH1BP0wUXf/wYVbYPssxwjq5taf52/YtjsZvqFyQ48dLZuI7H47e1M29FDQ3zS6c3o4qyt455K5TNgs13QeVcmHOuHwT05dQe79/Pt94NCJh7HlQvf/nty2bBO//o3/97t8L8N0DTyZM2cx2P1g39PHzzFuatrCHZn2P7s72E4yanvmkeM5aW09OaYu3du2hZ10+sLMhJlzWD5nLvzzcz/8RqVrxh5lgbcm9bikd/t5WOrUNUNEY57S3zJtQf9pe2F/v564/X4dgel//zcfztho0Mdvl9KIapce57F/GXH77ASZc18/dbthFNWFz08eWU1apng33RHTqVvpYMj/xu61ifb0VjlLPeNR8zVCSwj4v4ua5H24Z+Hr55K+nBPDOWlFM/v9Rf6GeoiJ13iFeF2L1pkMYFZex8oZeZSyvY/EQXC0+pZe19rcw7oYbBzgzJvhxLz2jg8T9tp7IxxuzllTz6+600LS6jYUEZj96ylRmLymlaVMYjt2xl1pIKaucmeOJP25l3QjWhuMWGRzpYdkYDvW0pMkN5Fp5SxzN37qL5+CoKWYfBjjQLTq7lmbt2seDEGga7smSTReadUM2aO1tYeHIdAx1pigWXWcsqWHtvK0vPaKDl+V5KqsKE4xad24eZu6KaFx/tYOHqWjY/0UXzcVW0beynrjlBT2vKbytJFkEThGMWAx1pTrlqLuX10f3xZz2i2SMB5gxdQx8JQjKapiiKoiiKoiiKoiiKoiiKcjC97iAkQogUI4tvjCaN/DyyuJ18hWVrlIMpk8pjmAYD3Rnu/9Wmsb/atmd6EZpGRWMMw3ztK2qlB3Pops5QT3osAAn4i7E8/sftVDZFKa15DZ0GFbP8/2sWwYI3vub8KPtXNlng0Vu24XmS0powW5/upmF+KTue68WxPWrnlPDU7TsprQ3T25amkHVYdlYla+7Y6a/6nrFJDxY49rwmnv9bG5ouMCydwc4si0+t4/n7dyMlxMqDbHysk1nH+J1rniOpbIrx1O07qZoRo33zEHbepWlROU/9ZSfR0gCp/jy5lM2i1fWsvXcXZkBHSkmyL8eysxp47r42kP7Etb62NPNWVrPh4Q7/XGrDbL29m/p5CXY+34dT9Kibm+Cp23eSqA7TvztNIeOw7IwK1ty5i8DIChOj5/LcfW1omh/1f6Azw6LVdbzwgH8u8Yogmx7vZObScrY81TXWcQnQ25qiuyWpgpAcCFUL/X9TDXB8Ff0daR793VYGOjMADHZmufMn67j6X1ZQOkUnfs+uJH+7YSOZIX+ltr62NPdd9yIX/uNSbv36s0TLgmNBGLpbhuncPrwnAAmAhDkrKnnkt9vGApAAJPty9LWliZUH6GlJMXNpBQMdaermqsFGymuTTRZ58rYddGwZYsUbZ/LUX3ZyylVz6N2VwgrqZIcLpPr9CZ6NC8vYuqYH1/ZoPq6SjY91jgUgAb98z15eSdvGfhacVEP3rhQdW4bGApAAdG5L0rjQDxz10G82Uz0zTmR/BFuYudr/tz8FojD/Av+fcljpb0/vCUACIOH5+9qYt6oaIQTdu5IMdedoPq6S1hcHGOjIUFJVwUO/3jJhP5uf7Gb2sVU4RZcTLprFE3/cwZIz6rFC/go+z9/XxqlvmYfreAx2ZamaEWPJ6Q3cf8NGVl4yi5YX+tm9yV91M9mX575fvMhZ71pIX2eaSMxioDNHKGUSSQSQQCjqr5o43J1RQUgOVbNO9f9NIfNiP/Eqi/t/uXlCnW6gI8NAe5rdL/ay+Iwm/vojf6AgQPvmQfJpm9o5Jbi2x+YnurjiM8dhFzwe+s2Wsetv/+40d/10PVf9ywoSaoK8cgANdmbwPA/PkWiGvxIZQnDPzzZQyPqTjDu3DfPgTVs4/a3zSA/m6dmVYvOTXQDkUjYP/HoH8U+upOHM8wHwPEn/39sZ6soyY3E5a+/dCUD1rDi5VJFn79nFaW+ZT7Hg0N+RGQtAAn4AwOfu2cWCk2oY6s5SOSNKNllgoDM7tkrhqGyyyLbNGuWXvBmOefPB+pUpB4lb9JAe6LpG28b+sQAkAHbBZdPjnSw8uYb2rUMcc1Yja+9p5fS3+ffo9ECBR367lWPPa+Lpv+xk9Zvm8rfrN459fvMTXZgBneHeLCddPmfSapaKsq9c18OxobslNRaABPyy2/biAEZAI1ZeT//uDCsvnkX/7hTxihBtGweIlwfZ9Lh/jc0OF3n8D9s58bLZ/iS5ZRXTdUrKUUZ6kvUPd4yVxXDcYvOTXWMBSADSgwW6dyYpqwsjBGSGC6QH8iAE8fIgsZoIz927aywACfhtCIWsg6YLPE+Szzh4rsQMGhiWhuf4x9Y0geNKiq7GYGQV1YvPffVML7584v/jLbrk5T+3cIo+hrkvOd7SK/e8blz5km3P2fO64fiJ780+fdzrM8Yd86KXz49yWMqli9zziw0MtPvtxwOdWe7/5SaWndXIM3e2sPmJLpaeUc9Tf9nJWe9aQP/u9IQAJABP/XkHVTOOIVE1HWegTJfscI7BruxYABIAz5FseqyTJWc2EC6x6G/PUFoT5v5fbiQ9uKfP4bFbt7HigplEy4KY1mvvv1WUAy5R6/9bcOErb1ez2P+37Oo9aXPOefntpzLjRP/fXurcOcw9P98w1tfRumEAp+hyznsXEyv1A5L3d+R47A/bxz6z/sF2QlGT2rkl9LWl6WlJ8bcbNnLBh5dSNUMNeTkcJPty3PGDF8hnbE68rJkn/rQdK2QQiQd49u5dVDbFGOzKsu2ZHuatqmHDw+0MdGY47vwZPPaH7RRzDqsumc3Dv92K9CSLT63j77/fhhBQOyfBk3/egRnQiZWFeObOFkIxE00XvHD/bkoqQ+TTNpse66SiIcpQV46ta3qonhWne2eSnc/3UTc3QfvmQVo3DFA/v5TWFwdoe3GA+nkJ2jYOsOS0OjxXIj2PTY93UtkYJV4epJB12L62h6oZcTQ9NBaABMApemz4ewd1cxJUNMbo2DbE9md7aVxYiidh/UPtzF9VMxaABMBzJX+/dRuXfvJYgmG1EMbBkk3aPP7H7WMBSADaNw0xfFKO0poQMxeVcc/P1nPlZ4+npFL1FyiHgXDpa+tzj1dC/Dw/ANneqpzv/3sFfbvT/PUn66ioj5Lqz7Ntjd+XnBkqctf/reetX1rJM3/dReuGfgBS/Xnuve5FLvroMqQn2fRYF7qucepb5lHI2Nz103Uke/126r62NHf88AXe9G8riFfsv+9lIWf7QdBsj4YlcfraUmMBSAAc2+OFB3az5LR6tj7VTdPiMnat66d1Q78KQrKP0kNFNj7eOaHPt68tTf/uLOGExb725PfvTvPXH68bu9a3rOtHAk7RpWZ2CVbY5Om/7GT52U08f38bTYvKePHRDqpmxnniTztYdlYDz9y5i5UXz2LX+n4eu3UbS89o4Jm7dpFL2TQfV8XWp7sp5lyaFpSxa30/xZzDjMXl7Hyhj2LeoX5+KZue6GLBSTWE4xZr7mxh1SWzeeovAzx1+04Wra4bW+St5flenr6jhfmranj27lZWXjyLNX9tITNUYPaxVTx7t5+XNXe0kE/bNMwv5ck/7xirZy04qZZC1vHPZXE5j/9hOysunOlvc+lsnvjzDk68zP9/xQUzee7eVuaeUE1y5Ht42SeXE4yooNyvxBkZl2XqAmMkCInryVf6iKIoiqIoiqIoiqIoiqIoygHxukfiSyljUsr4uH+x8f/vz0wq+2Z0YsdQb25i2Bhg+9oehrqzU3/wVWiGhi7EhAHKo9JDBYp5d4pPKYeLXNoemyg5OlArkgiQGpkc5I4MMo+UBEj2+QNepCeREsIxa2zApG5o2AUXM6BTyPqTyoJRayyIw/h9J/tzk9NG9u26e443mi8h/EGbgbBBLlUEwAoa5DM2QhO4IxNCX3XfzuQ0Kf3zCcf25HX0XAxLGyv3oZhFeqpzGTeJalR2qLi3v37lIEkN5McCkIyyCy4DXVNfF5N9+bHyMCqXskn1+Wk7nusdSx/qzk6YjDHKsT2S4yYq7dl3bmy1B9fxyGcmX1sV5dUk+3Ls3jToB4hqTaHpAqfgXwuDUYvhcdem8de88dfJ8VzbI9mXR0oIRS2S/ZOvbaPX0OxwcUJwHUXZXwpTXA/zGRsraFDI2uRSNtHSwNh9ONmfR3oSpzh5JZh8xq+LaLpGsi+H9CShqD/Y1nU87LxDJBHALrh4rkTXBYalIT3GApCM8jxJIWuja/7Efrvg4tgS6YFA4BQ9hIBCzpkwoEk5PBTzLk5BjtV9x0sPF8HQ/W3siX/b/vY0lU1RWtb1jZXL8QGgRhWyzoSBhYpyIOQzNlL69VuBwHE8skPFsQAko5J9OQo5ByE0dq3vn7Sfrh1DY68d26OQ8a+V7shr8OsDVshEelDMOVgBfew5abzh3jxm0CTZn0c3NApZh0hi6jpG/+70pDTlCCH8Z240xuqj4w31ZPE8qJkZp3PbEOX1EQxLRxNiQluDEIL+9sykz+9a308+45AdVs/gyv7nuR6aJqZs90n25fzo3CN1P8+VfrvRYIE5x1WNTYYYr5hz6e9S1zvl4MkmixMCJEQSgSnrpZmhAlL693i76OI6kmDERDd1NE1juGfydyCf9usenitxbc+vK480jQlN4DoeuqnhuRLPlWNtxYpyKEv158cCkIyyCy5C7Pl51/p+aptL8Fw5ZZuuY3vYqr/sqONJ/BWfXyLZl8ctuhi63z/hOnKsjjsql7LJpW0yg5OfqRRFeWXD3dkJwdYBOrYOT2jja98y+NKPsf3ZXhadUjf2c3qwQGpgcn1HOTQN9+XIZ2wCEYP0oP93q54Zp32z/7dumF/Kzuf7AIiXB8f6hjV9z1gX1/GQnsSwNHIpv54arwyNtU9VNsXo2DoEQN3cBG0ji1DUzy9l17r+sdc7X+gdO2bLC/4xa+ckxhatqJkdp23jyOvmBG2bBtA0Ddf1+xZc2yU1UPAD+gV0TEsnny5O6p8GSPbm/bq3I4kmAqT6c3juyOuB/JT9EsM9ORzVl3dQObac8u9XzDlIKQiETYQmGOye3EamKMrLG+zKgJx47R0jIZ92aH1xYn+H9CTDvXvaQDY/0UV2uEiyLz8WgGRUIesw1Lt/6wLFrDPWpjhvRR3pgan6UHLEy4Ik+3Nji1wMdk5uA1deG3/cy+TrbGa4gGHse+DHwa7MhGBTAK3r+6mZXYIQYqSfI4bnSVL9eUIxi8GuLLGy4Egbg9/I0NOSpKwuQjHvIkYCT/S3pymp9Bc869g6ROVIkLzO7cNUNMQAaN8yRPVMP33nC300LPAXvOptTVFaHaaQdcYCtu/ePED17BLyaRsz4J9798hx04OFsbETva0pEjVhBjoyxCv84+dSRQxLo+WFPurnl/rnEjXH2voA8lkb3dQY7MoSTQTo2DZE5YwYLev6aJhfSv/uNKl+9az7amzXr8eZmoY+UhYcFYREURRFURRFURRFURRFUZRpsF+WAxVCHCOE+NjIv2X7Y5/K/iNdD096BELGpPdiZUGs4OT0vduxxHE94hWhCQMuAZoWlZGoVqt0HM5CMZOZS8sB0E0NIaBj2xBNi8sAPwCIYWn0tCSpn+d3XhXzDuG4xVB3lopGP5hCsi9HWW1kZHKZ30HavWOYhoX+ZwxTA+EP+Jq5xF/1VdMFmi7o2jFM40L/eJ7rEQgb9LWnqZ7ld5xlk0XiFUHSQ4WxVeT7R96XnsQM+p1l7ZsHmbnU37duaAhN0LltmKbF5RPPZVeSurkj55IbOZeePYEhhntzY5194RI/In/X9qGxPO45l6Gx3914o78T5dBhBQ3/7/YSgcjU18VA2Jh0vUOAFfa3L60Jj9vWXwVrtGN4VD5jM/vYycte1s1J0DKyCosZ0CmpCr2WU1EUAMyARihmkkvZRBIBPEcSLfWvvan+HLWz98SJ69g6xIwl/rWqffPQ2DV4wv6COo2LysCDZH928rVNgGn536EZS8rHrvOKsj+VVIfRXnItrZ4Vp789TTQRoKopRm/bntX86ub4E39KayfWRQ1TI1YeBAHJ3qy/2rzcM/k5XhEiFDXpaUkSilnIkUOOBtoJxSavDKhbGkiJEGJkYJEETQISTRcgBWKkXqMcXsJxCzOsMfvYyknvVTZEKakI47mTB3GbAR23KImWBv3AeALMoDGpDAMEw6/zOUxR9pI+Us/VNc2/PGkaVmjyYEptJOASSKJlwUnvR8fd362ATqI6TN/uFGZAGxvUqOmC/t0pSqpChOMWubRDZWNs0r5mH1tJejBHbXMJhaxLrDxEf3ua2ubEpG3nrFBLxR+pNCHQNH+CT93cxKT3m5f7f/tkf55oaZBssojneYAcKat+mbMLLuH45PtztDSIlBIjsF+aPRVlAtMyEJqgdk7JpPcaF5ZhBgy/johfTqX0J45lhgpEyydfYw1LIxhSK1ArB48R0IiPK4tdO4enbKeqbIohhF9HiJYEiJYGyAznyQzlySYLNB8/uZ4cr/Cvv0Lz68VWyEDT8Z+XPIlu+oGddUOMbK/avpRDnxXUp2w/Hv+cHy0Lkhkukk0WKakMjk3iGZWoDhMpVSv8Hm2MoEZZ3eTVymcsKScYtcgO2wTCBkZAm7LPwbA0jMC+T4ZTlKONFZ5ctw5EDMxxz4fxKerlsfIgdm5PgDShCQKvdwyFctAFRtpZnYI39jqbLBAt89u0Msni2GvPlWP39vFttqP3dteRY/fyfMYeGxOQTRaJje5vuDjWhpYd3nMcf5vg2Otoqf86ny4SGdlPIesQjll79h+1KOYdDEOgmYJ4RZiqGTE0XTDQkUZogtLa6Ngk4/FmLi3DDOgI4dfrmxaXo5sa7ZsHmbGkfFKdBGDeympCcVUvOZjCMYPGRaUT0oTwn4d6O9I4jkcx76j+AkV5jYJj1/s9197xDFOMXW/Hs8aNnYyVBzEtHStoTNmXO9U4y30RLQuOtafcf/0mqmZO3YeyZU03M5aU075lCIAZSyeP41Bem2DEYMYU42EqGqLkp1h877UKTFEHjSQC5FI2mi6IlgXJJgv+eMiR+oduasiRoBKj5S+SCJAdCWY5mmZY2liAj2DExM77+Q1EDOzC6AJq5tgCBLGyIJnhwsj+LHLpkf2NHDdWFiQ78v5oWjQRIJcqThjfFkkEyKdtDHPP8a2g7gc/KwuQHS5MWZcyLR3P8QjHLAo5h1hpkOywXy/KDBcxTG3KOooykeNKNOH/jUzdr7u6niQzNMi1H3k36x64Z5pzqCiKoiiKoiiKoiiKoijK0WKfR+MLIa4BbgKqRv7dJIT4+L7uV9l/oqUhPNujtCZMZdOeDiyhCU68dPbrHuwbKQkhRyY3n/muhUQSfudd46IyVlw4k4AaQH9YC8cCLDurkRlLytn0WCcnXzkHz/UHi89bWc2Lf+/gpMubCcUsMsMFlpxWx5Ynuzn+ghkkasP07Epx7LlNtKzrZ+HqOmqa4+xa188JF82ity1F/bxSGheWseWpbk66vJlCxiFcYtF8XCUbHung5CvnYFg6dsFl4Sm1bHysk5UXzyJeEWSoO8uysxrY/kwPy85qpKopxu4tgxx/4Uw6tgzSfGwl9fNL2f5sLydeNptkf56y2ggzl1Ww8bFOTr6yGSklui6Yt7KajY/65xKOW6SHCiw5vY7NI+dSXhempyXJsec1sWt9PwtPrqWmOU7Lun5WXjSLvt1p6uYmaFpUxuanujj5imaKOYdQ1GLO8VUI4XcCnv3uhVTNmNyBrEyvRHWY5ec1TUhbcGINlQ1TB4xJlIc45pzGCWlLT6/HsAThEsuf0D6ivCFKNlngpMubx4JANCwopWdnihlLSll4Si2aLrCCOqsunU0hWyQUNjn5imZqmksoq508QFlRXk15fYwTL2smmyoSKQkQjltsX9vD6W+dRyBs0rF9mFWXzsYM6qQG8lTPijP/xGoGOjMkakI0H1/pX7eiJisvnkUx7+K5kqHeLM3Lq2hYUOoHoxL+BP1TrpzDlqe7mbG0nJOvnKMGCygHRHlthAv/cZkfQAR/1cA5x1dRVhfF8ySelBx3/gw2PdHJ4lPrELpAGIJT3zRvLHBZSWWIc9+3GM3wJybv3jTIrOWVdLUkkdKfYHfiZbPp2pnk+AtmUDUjhld0GejIIIBQ3OSYsxth3PizxkWlWAGdUNwiEDYor40Qrwj5E1N14Q/+1f3jiUmzSZRDXWl1iOyQzbyV1cxdUe1PPIgYrH7TXAJRg7p5CZyiR/NxEydfHv+GGay9r5W5J1T75dOVhKMWy85qmLDdktPrKVcB6pQDLFYWRGgCI6iDkOiGhhXUWXJ63YTtVlw4EwRohsaCVTVjq6EBJGpCkwKElNVGWH3VXPo60iw7u5HaOQk2PNJO0+Jy5q2soXP7ELEyvx5yytVz/EB+mv/s1XxcJYnKCGZAp5izMSxYffVcClmbxafVo5sahqmx6pJZY4ErlSNPIKIhhEAIjbK6MCsvnoUV1NF0waLVddTMLcEpugz35Sirj2AXXPIpG6EJKuqjVDRE2b1pkObjKrGCxoQAjrqp0XxsJfNOqCEUVZNqlAPDczxKKoOcctWcsbI7b2U10bIAc06oomdnEoCBjgyZoQKJ6hA7nutlxQUzJwzMLq+PoGmCStVepBxEgZDJyotmjU0MKGQcpOex7KwGNMN/jjnu/CbK6yIgJJom0E2NkqoQM5dWUDO7hFDUYvbySuaurB5r+zztLfPQTZ14RZCSqjDxyiDhqEk4FsAK6COBHHQiJRaR0iAzlpSPBZVWlENZSWWYk66cMyGt+bhKurYPA37dY/YxlQgNdF1Q3hjltLfMG6ufVM+Kc8bb52MFVXC0o00wGCBcanHGO+YTjJgIAbOXVzJzWTnxiiCaqRErC9K1fYhjz58x4bMLT6qlrC4yISCkoih7p7w+4gdWH+fES2dT2bQnQHvdvMRYvx34wdOWndHAH7753Fja8nMaKa1TdZXDRWl1mOXnNuI6Hp4rKakM0d+eoWZWCVZQZ8ezPSw5rR6hCbaNjC8Af5GUuSdUAzDck6N2TgLpSeyCS2lNmELGIRg2iST8RVjKG6IEwgZd24dpWlyGYWm0bhhg3soaNEOw47leFq2u84/zbA9Lz2xACNi6podlZ/r9C1uf7vaPL2DbGv/1c/e1ols6pqmz8OQaPNfD8zxq5yRoPrYSiUch73DSFc1+oD9NsODkWurnlZFP2zi2y5LTGogkLLLDBWYfV0n1rDjpwQKrLplNKObfh+aeUMXy85rQdVUvOZhKKiOccOEsGkfaOiMJi7Pe7Y+vipUEGezMsnh1PRUvMz5BUZSpVTTFqJ2bmHDtHVU1K04oEeDEy2ZP6Nutm1sy9qwmNMHqN80lGDUpqQ6x6pLZE/a/7KyGSQte7CshBPNPrGH+iTUITRCvCnDKleP6UFZVU9kYJVYWJBS3yAwVOOWqOVMG8lZem/LGGLOWV9B8XOVYn+/pb5tHSXWQkrJ9/ztXNMaon7+nT0sIWHpmA47t0rc7RXldhFh5kIGODEvOqGfHc70sO7OBbc/20HxcJZ3bhwnFTD8o+3CROcdX0bF1CIBjzm5k65ruya/PamTbmh4Alp3lp2u6YMGJtexa1084bhGKWeRSfn/37s2DWEGd6lkl9LdnWHhyLbs29PvHLQuSGSqy5LQ6dj7fRzhuEY5bZJNFlp3VyLZneiitCVPMuwiBf4z1/Sw53T+XhvmlDHRmKK31t4mWBtEMDU0TlNVFSA3kmb+qhtb1/Zx81RxKKlVg4ldjex6GPrrYhH8hczyP1vXPkx7o56Ff/nw6s6coiqIoiqIoiqIoiqIoylFESH/J7te/AyFeAE6SUmZGfo4Aj0spl+2H/L1uK1askGvWrJnOLBxSsuk8hbxDIeUy1JWlWHBJVIWon1c6YYLR6923lJLMoI1re8QqgkRLJq8ycITa7zNKD6Wy67keA50ZMsNFAmEd15Z4jkcwZpJL2SOrRgnsvEso7qfppoauC38Vn7hFPmsjhIYZ0MinbUIxi2LOQQLBsE42ZRMIm7i2P9E9EDXIJx3MkI70wCm6hEaOZ1h+B1Uh5xKOmeQzDpou0C2NQtomFLcoZh0QYAUNcqkiwaiFXXCRUhIIG+RStn8uzsi5RExyaXts4ryd94+XT9to48+lxBpZzX7cuYwcTwKBkE4ubROImLhFD8f2iJYG0A3NXzE0cch9Jw7IbOhDqfzureG+LAPtGVID/irbNc1xwrGXH9zb25Yi2ZcjPVggkrCIlgVIDxSpaIhOmjwx3Jejry2NEJJAyCRRG8Jz/FW2zIBBsi+L0ATRUpNc0gFd+J25arLcqzmir737qpC16d45TLI/T6w8RHa4QDBqEIxa4IEZ1CgWPIRkZHV4ieeClBCMmeRTRTShYQQ1ghGTYs5FepKBzgzBqIlpakjADOpYIRO34BJOBDAtFYBkL6iyuw+yyQKFrIPQBZ7toZn+SrGmpePYHnbBHdvWczyEJhCa8FcRtDTQwNA1nIIkEPFXtBruzuJJf/UjKSXSBaFDMeei6YJkX55IIkBmqIAZ0NENjfRAnkDYJBQ3cW0PIQSe50/u1wwxEujM/26ZAWPKFQoPU0dd+ZVSMtCRwQhCdthB0wTBmEmyJ4vngBT+hLNC2iaXtokmAmimoJhxcV2XSCJIZqhAaU0Iz4PMYMFfJbM0QN2cBKEpVmBTDoijruyOl+zPkkkWERLQJKCBhMxwgexQgXAiQDhm4thybPVtu+CSHigQCBvUzC6ZMnCpY7sMdmWRnsSwNFxbEimxEJqgkLNxXYmU/qBap+jXJcyQv/qZQPghcT1/X7ql4RQ8f+KmoaEb/mQ8FcAJOILL72BfGl1ouK6H0DQKaccvJ0GNVH8ezfTLhb9acMC/zpZZ6IaOa3sk+/KYQR1dF1hBg/RQAafoEkkEiCaCfnAHNalmOh2xZXdUaigLUlDMOThFDxDoliDVm8cM6eTTNpmhIqU1YT/QkxDkszZW0CDZn0fT/GCm0URQTTQ6tBzxZRdAepKObUMMdGTQTY1EVQgrrOMU/b4iw9RwPQ88iUT49YhxvxkhhF+udYFb9EAbSfMkUhMIpB9sCvyqh+e/L3SBEIJQ1FSBog6Mo6L8Tgc779C3O81wb45wiYUV0hnszOK5klDMwnP9fgbX8ScIV86I4uT8PoJAxMAKCqIJFXD6FRzRZTeTzpFPOhTz7siKzxoDnTlCURPpSZyii9AFdsEjPZAnGDWJlQWpaoqjm6o+exg4osvv4aq/I0VfW4Z8xiZRFaJqRozQS/r9OrcPMdiZxXU9SmsixMsNelqzZIb8trtEdZjyuiO6nn7Eld181qavLUV6oEC8MkQ2WURKSaw0SGogjxHQCYwE6A/HAwgN0gMFYhVB3KJHNlmkpCpEPuNQzNqUVIfJDhdxbJeSihDpwQJSQqws4LdbGBqBsMFgVwYjoBEp8duCw1ETM2iQ7M8RilmYlk6yP0c4bqGbOqk+vz4x9jrht3Vkh/KU1ITRhMDz/HEaQghcx0PTxUjAMw3H8UCCFdDIZ13MoI5haHie9PtEhEB6EoRfB5dSggShC6KJAIZ52PflHZZlt5i3yaUdssMFNFMjWKKR6rJBehTzLrVzEuoZ6ehwWJbfQ1l6KE9faxrXcQlELDKDeaywQWVjjGhpkKHeDEPdOZK9OX+8TnWIbKpIMedQWusHux4NGFzIOfTvTo31DVc2xQhGDszia3bRYag7B0Ck3CDVU8Tz/ODdTgHi5QGKOQchtLFFOqbZEVN2+3ansAv+/TOcMAhH9l8wjPRQgd7WFNnhAqGYCSNtY0IX/pgCXYD02+UMw7+na7pA0wTFvN+3kerPEYxYGJbfTxItC4CUpIeKxMuDeJ706y/lQaQnyQwViJYFcW2PXNomXh4klyn6fXaJAKm+HIGI6ffdZeyxcQ9WyEDAyHEtUgN5ghELKT3svEe4xCI9mCcUtXAcF8+RBCImmaGC31+TKWJZBp4nkZ5EtzTsvEsgbJDP2IQiFrlMkVDUGhu7WcgW/bbwxihmwNhvv/e9cCA6G/dtwP1e+MpfXuTmp1rZ8OU3sKZlgKt+8ji/et9KrPUP8OjNvwTgn264BTN4SFwjlANDdZQriqIoiqIoiqIoiqIoh4T90aIrAHfczy6qAeyQE44GCUeBCqiZVTLp/VxvLyKVwunsBCkxZs4k2NAweUcvs2+ASExFKT/SaLpGImwTGexAEzHQXbxCFl0rI+oNghgZCOOm0LVyoiQRGAjNwnWH0LVyYiIzMhk3gusNomuleHoeWSyi6Qmi3gCaiCE1F1nIouvluN4AQkQQGnjOyL7lEIIgQjPw3OGRfaeQUqDpYTxvEE2UIrUc0nHQjRJiXj+aSCD1IjKXR9dLiY0cD93Dy6XR9HKi3iBChEcG8iQx9Ar/XKSO0AP+uTDuXIworjeATgJPL4ydS8wbQCOG1P1zMYP1GGVlr/6LVqZVSUWYkoq9X9misjFGZeNLJpTPnLydtG0CQ+3UBWy0UBDbtpEvDkKxgFlWjtA1SjwPo7ISsyROZPKlWTmCOUND2G27QROgaWihEFZTEwD5HTtwOjsRuoFWU02wrg4tGKS4ezfF1ja0SBiraQZGaWLKfQfCJk2LK15/5l7yfQiPFPfSGjVZQple4XiAcHz/rQDrFYto2V24w0n0slKEaSJ1HTmcJeJJNMskLtOQ1CiP+t8LYZpURtJg6Ii8wE2nMWtqCDY377d8KQeHlJJ8Wxve4CDe0DBaNIJWWUmgoQFN8yf5CCEor/cnG5SU7/lsSblaBVU5fMTLw8RfY5mVnkd+40bcoSFEa5hcTwCvUECEQni5HJquIwsFQraDVhJHFgqgacgBIBDEcmwkILNZKBaJzW7Gqq87IOenHL7Cw90UOzowdQOzoZ7EzKax98rr9iKA1/wDmDlF2QuxxMi1tXRiesXelF9FmWZCE9TPK6V+Xumrb7wfOP39FHbs8KOfBoLQA5mRofoCkEIgpEQK/IAnE8bxiz0/C+HvY9xnAPD8iZhSMDbBQ+oGQvrpaMJvd2lsRAvsv2dK5ehhBg1q5ySonZMYS6uZlXjZ7b1CgXz7Rtz+AfTyMsLLlx/wPCqHLrFzG1ZvL6FEKeHjjgUgUXVEBzZQlGkXjUqC+m48khhaDaHY5P6S2uYEtc2JCWnxClWXP1wV2tvxMhnKTYPyGgFeloSZxe3rQ9cSVC1fimbs29Co6lnjX+/p1H25OvX4esP417zca+WIZgVNrKBJybhgzyVqbIByBPNsm2LLLmQhj9nYiDc8THH3bvA8jPp6zIoKim1tCMPAmjHjdT+rRxPBV1wQKlEZIVG5d2McAiGDurml1M19XVl5TUzLmDDmKDxz8njLYEQFJtqfchs34nR1EYpEic6cQbCqar8fI5oIEE3sY7vT/q4bqLrGYctxPYyRQPv6SLAkx5Pk+3rGtnnoputYeMrp1C9YNC15VBRFURRFURRFURRFURTl6LA/gpBcBzwphPgj/ojQS4Gf74f9KgeBZ9vkOzqQAwMM/vJXpO68E4DwySdT+U8fV4Mjj3L5zZtp/9Sn0UIhIiefzMANN1D+wQ+QfuBB3FSKxOWX0f9//0fiTW8iv3kLhc2bKX//++i/9qdEzzoLL5Mh/cgjVH3iGvp/9jOCS5ehlyYYvu12qj71KQZvugmjuprQkiUM3nQTFR//GMk7/gqeR+z88+n/+c8pe9c7yT7zLPbu3ZS94x30XXstJRddhN3VSfaZZ6n86Efp++lPiaxaBYZB6q67qPrnT9N//Q0EZs3EmjmTwd/9nqpPfoKhW25FC4eInLKageuvp/wD7yf90MO4Q0MkrrqS/p/+lMRVV1PYtpX8xk2Uf/AD9P/kWqJnnoGXy5N++OGRc/k5wSVLMMrLGPrzbf65/PrXGBUVhJYvZ/BXv0LaNtasWdR/+1sEFyyY7j+lcpC5w8MM/PJXDN58M+Uf+ADmrJmk/3Y/w7fcAp5H8JhjKH/f+3CTwwz8++ep/eIX1PX2KFLYto32z3yWwsaNYBiUXn01xa4uYmeegTV3Lr3f+ja5p58GIYhfcjElV12FzGbp/Ny/4A4NocXjVH7sY4ROPonQnDnTfTqKcliyBwYYuO46Bq67HhyHwLx5VH3us6BpeLaN8Dz6rrue7JNPghCUXH450bPPRnoeUnp4Pb0IywLXZeCn/0f5hz9E5MQT/dW/lUOetG2ymzZhb93G4M03k3/hBdA0St/2NmKXX0Zw1iz0sAo0ohydnGyW7BNPknnkYfREArNpBrgOZl0dxe070MJhMs8/x8CNN4HrEly8mIp//Ai5FzcSOuYY8IaQnqS4bSt9P/oxMp/HqK2l/hvfILzi+Ok+PeUQkXl2Lb3fHl/nvYTSt72V8DHHTHfWFEVRlP0sv3Ejuz/xSexduxCWRem73oU5c8ZYsBHpeeB6SLuIm8lAoQi6H6xVC4WQto0zPAy2jRYKoScSSMfFy2bwcnmErqPFYmihEGgawjQQhgGajhYI4KaSyEIRL5sFXSNx8cUYFfsQuFVRXkV2YAD7scfp+vKX8ZJJ9ESC6i9+kcDppxFUz5lHndT999P5+S/g9vejRSJU/du/Ej7tNAKVldOdNUU5YuV27SJ7/wP0fve7fptEXR21X/0K0ZNPnu6sKQdI5vnnkUUbLWDhaRq4LjKdpvsrX6XY0oIwTco/8hFK3/ZWjERiurOrKIpyxHMGBxm47jr6f/4LcF2afvNrBq+/ntTd9wAQOfVUyt7zD7S9930gBKVvfSsV//gR9ayuHDCZp56i8/Nf8NumTJPyj3wY76yzCKuxfMohzPYkpu6PPTFGFlBxXUk+lSJaVk56oJ/n77mD5+/9K5+++fbpzKqiKIqiKIqiKIqiKIqiKEc4bV93IKX8FvAeYADoB94jpfzOvu5XOTjsvj6EZZF//vmxACQA2cceI/3gQ9OYM2W6ubkcPf/7LYrbtxM79xz6f/pTrKYmijt3kl+/npJLLqH3+z9AhMJIxyH72GMkrricvh/8EC+fx6iqInX33ZRcfBH9112P09tHaMkShm+5ldhpp5H8y1+w29qIrj6FgeuvJ7BoEbnnnqeweTPxN15I3w9/iFFWijs4SG7NGhKXX07v978PUiLCYdIPPEjJZZfRd+21uMPDWM2zSd52G7Hzz2fw5t/idHQQPuEEBm/6NeEVK0g//AjFHTuInXsu/ddei9nQQHFXK/l16yi57DL/XAJBpOeR+ftjJK64wj+XXA6zppbUXXdRctEbGbjhBpyeHkJLlzL0+1uIrl5N8q9/xW5tJXr6aQz84hdI2waguHMn3f/9dX8AvXJUya1bT98Pf0jJpZfQf/31uH19DP/ud/7KrED++edJP/IwyfsfIH7OOXR89nM4fX3TnGvlYPAKBXp/9CM/AAmA4zD4m98QPmYZufXrSd11tz8ZE0BKkn++jeL27XR98Uu4Q0P+PpJJer71LfJPP42by03PiSjKYS737LMM/N/PwHEAKGzZwuCNNyFdFz0WI/P4E34AEgApGf7DH3B7unE62hGex/Dtt2PvbsPu7CC4YAHDt/6BYmvrNJ6R8loUdrZgt7SQeeIJPwAJgOcxeOONODtbKA4MTG8GFWUaFdavp7htK5lHHkULhXEH+nGGhihs2Yo7MIDMZhi44ZfgugDkN2wgedfdBBcuQBaL2B0dyEyG3m99G5nPA+B0dtL5xS/iDA5O56kph5DUPS+t8/6Z/IsvTm+mFEVRlP3OTafp+upXsXftAkAWiwz87Gd4/f24/f3YXV04HZ3YnR24g0MICVooiBCCYttuUg8/TP7FjWiajh6P46XTpB95lOwzz+BlsujRCELXKO7cQeapp8ivX0dx507srm68ZBKnvx8cF5nPgWNDoUD22bXT/FtRjng7W+j8/OfxkkkA3KEhur7wBdxNm6Y5Y8rBll23js4vfBG3vx8AL5Oh60v/gbNjxzTnTFGObO6uVnq+/vU9bRIdHXT/53+R37ZtmnOmHAjFri7/nisAiR8k3Lbp+9GPKba0AH5A6r7vfW9PO7CiKIpyQOWef4H+n/4fuC7Rt7+d/NrnxgKQAGQeeYTsmmcIHXcsSMngr39Nds0z05hj5UiWb2mh99vf3tM2Zdv0fe/7OLt3T3POFOWVOa43FnxE1/xgJI4nKeSyxMoqmH38Sn9DKSlk1bhURVEURVEURVEURVEURVEOnH0OQjLOSNc+avnvw4gwTXRNm7JDL/P3v+ONBFNQjj7uwCCZv/8dAC/nD9QKLl5E9plnAX/QOK5LcN48cs+PDNrRDbxMBquxkeLIYC69tAynsxMtHsfp7QXAmjOH/Pr1/r7zBQBCixeTfeaZPWlSEly4aGxguJQSWShgNTePTd7XwmHcgQGMykrstjYAzPp6ijt2gK77K1y+dN9j57KY3LPP7DkXxyEwbx75dev8czEMvHQas6GBwvaRcykrx27vQIvFcPr9gBGBefPGBi2N7nu87BNP4KqJrEedwk5/ILGwAoSXL6ewcfIg8+zjTxBdeQIiFMRubVVBSI4S7tAQmYcenpTupTPEzj2P7OOPTXovt/Y5rJkzJ6TJfB67p0ddXxTldRodgDxe9umnQUqkbU/9XVy3HhEM4XT3EFp+DAgNNB0RCpFds2asnqMc+qRj4/T1k3tm8jNQfuNGKBanIVeKcmhwenpwBwcJLl4EUvrPd5WVSNtGIimOPHeNl3nsMbRQ2J/gq+vYXZ2Ttilu367quwoAhbY2so9NcZ997vlpyI2iKIpyILkDA+RG2pLH83J5vHweXD9Yr9ANwJ8I4uULFLbvwGlvRw9HMOvrkZ6Hl8mQW78Bmc0SmD0bYZp4uTyFHTuxd7ejaRpGeQXCMMEuIl0XPBdp24hgEK9QxMsXyD333MH8FShHIburE/mSoMFeKoXT1TVNOVKmi9vTi/vSZyDbxu7omJ4MKcpRotg+eUJpcds23L7+aciNcqC5g4MgBEJo/iglz0MWi1O2+xZbJ7dpKYqiKPtfYfPmsdc1H/1Hv//1JbKPP0bswjfu+XmK67ai7A/e8DC5tc9NSrc7JvdjKcqhxHElhu4Pwx/93/UkxWwWKxzmkk/9Gxd89FMADPd0T1s+FUVRFEVRFEVRFEVRFEU58u1zEBIhxBeAG4BSoAK4Tgjx7/u6X+Xg8BwH1/MILlo46b3QMcvQTHMacqUcCvR4jODixQBogQDgrxofnD9/QlpxVwvBefPGPidME7uzE7OpCQAvm0VPJPDSafTyMgDsjg6sWTNfsu+dBOfPm5jW0kJwgX88Yej+hLa2Nqzm2YA/MF2LhHH7+zFqagFwBwcwamvBddFC4Zfdd3HnTgLzxp2LEBRbWwnMnbvnXCwLp6sLs3HkXDIZ9NLSsf8B7N27sWbPnrDv8QKLFqHF43v7a1eOEFZ9vf9CeqSffx5r9qxJ2wQXLya3cSM4LnpFBXoicXAzqUwLLRYjuGzZ5PRIhMyzzxJcsnTSe8EFCyi8NGCCYWCUlaGr64uivC5mbd2ktMCCBQhNQ+j6lN/TwNy5ePkcRkW5H1xKAEhwHIILFqAnSg98xpX9Qmo6RqKEwEi9djxr9mzQ9mesTkU5vOgj9Yvizp1IJFoohJNMgqYhEBg1NZM+E1yyBFkoIAIBcByM8opJ2xg1Naq+qwAgSkunrvNOcU1WFEVRDm9aPI41Z87kdMtCCwYQhuHXvaWH0DU/3bKwGhvQy8pw02mcvj6EaaCFwgTmzAHT9CcXS4kWCGA1NmBUlOPaNu7QELguGKbfloxAWCayUPT3HQiMtTUryoGiV1SCYUxIE4EARsXkOrJyZNPLStGi0YmJQmBUVU1PhhTlKGFUTv6OGXV1aCWqL+VIpMdi4ElAIgEpBMI0CcybO2lbo1pdfxVFUQ6G8YurDN5xB8EliydtE1y6jMy4QNXBRYsORtaUo5AWDk/ZNqWe0ZVDne1JTN0fs6BrfhASx/Mo5LIEQmF0wyA20h+bT6emLZ+KoiiKoiiKoiiKoiiKohz5jFff5FW9FThWSpkHEEL8N/As8NX9sG/lADNiMey+PsKrVhFc/DfyG14EwJwxg9gb3rBP+8627Qbp4bV3UHhxA9LzCC5eTOSkkxBC7I/sKweQHotR/a//QtuHPkz2mTWUXHYpw3/6M1Wf+yz5FzeQuv9vlL373Qz88pcYtbWYM2aQvOMOyj/0Qfp+/BOQHsHFi0jedhvlH3g/vd/9HnZHJ5GTTyZ1991UffpT9H73u+TWryd2wQWk7rqL6n/5FwrbtpN+9FESb3kLQzffTMklF2PWryV5512Uv/999P/fz9DCYQLz5pK8/TbKP/Qher//A7xkktBxx5H8yx1UfPzj9H73uxS2bSV65pmkH3yQ6n/5HMXWNrJrnqbkissZ/sMfqfrsZ8hv2EDqb/dR9g/vZuD6GzBqqrFmziR5++3+ufzox+A6BJcs8dM++AF6v/Nd7PZ2IqecTOqee6j650/T+93vkVu3jviFF5L8618B0KJRKj7yEdIPPkjomGMIjOtsVw6cYns7zuAg9s4WCjt2YNbXEZg3zw/+MGtyMJADIbhkCfE3vpHh226n4s1vwpo1i/CqVWSffBIAo7qakksuodDSwvCf/0Tdf/4n5hQTOpUjjx4OU/XpT9H2/g/4k2OA6JlnUNi+DbOujtjll5F98kns9nYAgsuXE1yyhKpr/onOz38BHAc0jfIPfIDgscf6AywPgGJHB4XNW/CyWez2doyGBvRgkPyWzRiJBNbs2Tj9/eB52Lvb0RMlmI1N2LtakLaNtXQpuC7ecBJ3cBAtGsXp7AChYc2cgZvJYO9qJTCnmfCxx+IMDZHfshUtYFFsafEnEs2dhzs4gN3ZSXDuXPSKCvIvvACeJLj8GEILJwdQU45euQ0byK5ZA7aDOXMGwrKQjgtIpOuB6yBM019pOx7DqK0heu65pO+9FwC9tJTy970Xz/MQtk3snHPIPv7E2HcxtOJ4zKZGZC6PFo8TWb0aLRQCJEN/+AOV11xDYOaM6fsFKK9JcEYTMpclesbp5Nevx+npASCyejXW3DnY3T3kHn4Ya948tNJSwmpivHIUCSxYgDs4hFFTi9B0jIpyvEwWa06zf88vLfWfsR54AAC9ooLE1VeRffYZQitXYpSXg2mReOtbGPrNzQCIYJDqf/9/5NavJ5vP+xOODcOP5ST8AXROXy9OVxeBuXMJH3+8GgB6BLOiUUqmqvMeu3x6M6Yor0F2x06cHdvJb9qEUVpGcOECwscdN93ZUpRDjpFIUPulL9H2oQ/hZTIAxC+6yJ8ELDSk54KUyEIRr1jAy6TB9RDhEIGFCwnpOm5yGKevH6HrGNXVBJqbcdMpnMFB3HQaPRYjuHgJwjCQ0kOzAhAI+EFKQkHcVBqkxHMdcF1CK1ZM829FOdJpDfVUfeaf6fn6/4DngWFQ9dnPoB+kdmnl0BE+9liq/+1f6fzil8C2QQgqPv5x9IaG6c6aohzRzKZGSt/5DgZ/dSMAIhSi+l/+5VX7E7Lr1lHctp1i6y4CM2dhNc8mtGTJwciysg/M+nrs7m6k66FZAqQEy6Lymmvo+Ny/4KXTAJRcfvmUgcf3llcokH9xI87wELguUko0IZAIP1i5lCA0hGWCbVPYtg0tGsWaORM3X/DbwJAT9imzWYptbRiVlURWrMCaofoXjmSFnh6KmzaR37DBD7C4aCHRlSunO1uKss+k45B/8UVyz7+AFgkTXLYMo6yMyBmnk3nwIfq/9p803XQjgfv+RmHjRgCsWTOJnnkGbe95LwDhE1cRXrWS7LNrya17AVkoEjpmGeETTkCoRQOUfRScO5eqf/5nOv75nyfUC8ymxmnOmaK8Msf1MEaCj4z+73qSYjaDFfYX5QvG/ECLuZQKQqIoiqIoiqIoiqIoiqIoyoEjpJSvvtUr7UCIO4G3SimHRn5OADdKKS/a59ztgxUrVsg1a9ZMZxYOG8VkEjuVQgwP4+xqRUoPa+ZMQvuw0kChqwvPcXB37aL9n64ZG2QsAgEafvB9oqeeur+yP932ezSVQ6nsJu+9j/zzz2PU1aJFIniZLCIURDMt3OFhtGgEWSiArqMFgziDg+jxODgO0nXRwmHcgQG0uN/pIfN5RDiMOzSMHo8jNIGbyaCFwniZNFoojDAN3FQKEQ5DLocwLUQoiDvgT2KXjg3SX63AHRxAi8X8werFIiIc8Se7l8TREHjZLCISxksm0aJRhKbjplP+8XJZRDCIZo2cSziCtIugaf65DAyix2PgeUjbQYuEcQcGEbEoQmjIfA4RDuMND6PFxp9LCC+TQbMCFHe1MPi73+MND2PU1tL0i18QmDVzev+oexyQSEDTXX7t7m7sZIrUH25l4Lrrx9Ijp55Kxac/jW4aBJqbD0pe3GSSwvbteLaNHggiDR2nowNZKGDU1oGuQT6PUVWNNWumCs702hz2197i7t0UW3aBpiEMAy0UxBopm4UdO7F3tSAMA6OhEau2Bj0WI791K8Vdu9DjcazGRqympgOSN7u7m45//VciJ6yk97vfRZgmlZ/+FD3/8w3wPCKnnIyeKCW4cCE93/zm2OfM+npi55/PwC9+AbpO/Xe/S9cXv0jFBz9Izze/ibRtALRYjPL3v4/eb38HgPjFF+PZNuFjlvnHGKmbGjU1lFx6Cf3X/hSAxJvfTO755yls2oQIBmm64QbCx7z+QaPT5LAvu4ei3AsvsOtd70bm8wCIcJiqT30SaTt4dhHNNHH6+nH6+rBmNBFctIj2f7qGxNvfRvj44/GyWczaWgiF/DpFOu1/N60Abl8vaDp6aQKkRAQCeIODYJqg6XhDgxjV1YQWLkRY1vT+Ig68I6r8urkcxbY23IEB3N5etFgMva4Oe2CAjn94DwBGVRU1X/4ygaVLsMrLpyWfyn5xRJXdg6E4MIC9cydufz9aIgGahnRd9GAQb+QZzUslkYUCemUlsmiD5/qrzYbDUCwidB1vaBg3lcSsrye79jmK27YSmD0bLRRGIhGmidA0smueIXn77WPHL7n8cqr/37+hv3TV8KPTEVl+0y++iObJkTqvidnUiDswQPSUU6Y1X8p+dUSW3VEDN99M95f+Y+xnq7mZ2q9+lbAKpnMkOKLL7nQptLRQ2LoVoemISNgPDilAetJ/ztI1pOftmbyJBARoAq9Q8LfRNP/9QABc15/DqWv+nE/PQ+g6UtMQQvPb3KQEIZDFot9Wbdto0SjRVaum+bdxQKnyewjI7diB1HVkRwd2VzdGTTVafT2iaBOac3DapQ9DR2TZLQwNUchk0He3Y3d0YFRVotfXIzMZwosnrwavHLaOyPJ7uCvs2EFx927cgQGsxkZYuJDwyES9qeS2baP/Bz8kddddY2klV11F+Qc+QGDGgemHOQQcMWVXOg65nS1gF0E3EJpAui4ylcLu6EBPlBJathSjtPR1HyP5t7/hdHTg5QtI10Xoul8XHZ0cLwRCN9BL4nR89nN7+rmqq6n+/L/jdHZODEFSKE7sX2tspOnnPztg/X5HmMOy7Cbvu4/2az7hP8sAelkZ9d/5DpGVJxzQ4yqHnMOy/L6S9BNP0Pa+94PrYjY0EHvDGxj42c+o/cY3sHfvBtvGWjAfs7ERp2UX0vOwZs0k/fzzBCoqKWzehFaSIDh/Hu3/dM3YIi4YBo0//tGRNLbwcHdYl91MTw+07cbe3YYeL8FoqKe4eTOhc87BCgYPSh6UaXUgBuPt24D7vfD+G9bQPpTjzmtOZfdgltVff4D/uXIZXT/4FMvOPo8z3vUB0gP9XPuRd3PO+/+RY8698EBnSTn41EBSRVEURVEURVEURVEU5ZBg7Id9FIANQoh78RtYzwUeFUJ8D0BK+U/74RjKAWTF41jxONTXwz4EHhlPCoFmGAw/8MBYABIAWSgwdOsfiKxerSbcH+Kcvj66v/Y1nK4uKj7+cbq//BWip5+OMzhI/oUX/LSvfIXgokWYdXWk7ruPio99lJ6vfg2jqpLomWcx9NvfUv6hDzLwP98AISh7zz/Qf+1PKX3nO+i//S+4Q0NUfPxjdH//P4hdcAGFrVspbttGxcc/Tt9/fJnQ8cejBQJkHnvM3+6rX8VsaiK0fDnJ226j4h//ke7//C+0cJjEVVcycP0NlL33vQx959t4mSwVH/8YfV/6ASVXXknm8cdxOjr8fH//y0ROPRUvlSL33HNj5xdYsACrsZHUvff65/K1r6FXVBA75xyGbr7ZP5dv+BPky977XvqvvZbSd7yd5B1/xR0cHNn394mdfz7FnTsobNm65/fZ2UnuhecPpSAkR6T8xo2IUIiBkRXORmUeeYTE1VfjSO+gBSHR43HCxx47MVENLlZGWA0NWC+z6mV4yWJYMrmshBYt2qcAYXursHkLVtMMBn/9awAip51G8rbb/dVbgdBxx1Hc1crg738/4XN2eztaxB/IKwIBClu3YNbVkXn88bEAJABeKoXT1Y1eUYHb10fy9tup+dKXGPz1TWMDMwGcri6EpoOug+sydMstVHzwgxQ2bULm8wzdesvhGIREOQCGfn/LWAAS8FcQzK9fT2DxYsg6eI6DMAysxgbM2bMZ/uOfkMUig9ddz+BIwKrSd76D4PErsLdt86e7CdDjJX7QtFAQdIOIKm9HFD0UIjRv3tjP+dZWOj/xSfIvvjiW5vT0UNyxAxGwsE46aTqyqSjTwiorwyorm5CW374du6MDp6cHmcshbRujqorhP9+GFgwiXZf42Wex+33vH1tNblTt1/8bigW0YJDcixuxGhuQRRu9NIHQdJJ/+cuE7Yf/+EdK3/oWQvuwQq1y6LJtm+FfXDfp755461tVEBLlsJDbtIm+731/Qlpx+3aKO7arICSK8jICM2cSmDkTN5ul9QMfJP/MMxPeL3//+xGxKDjOSIpAi0ZxOjoYuOGGCdvGLriA8KpVuP39FHftorBtG5ETTkCLx8ivX4/TP0B09WrQNTKPPIoWixE6ZhnScUndfz/BX/0So6TkIJ25cjRyOzpo+8AHJ7RxATRc+xNQQUiOKs727XT8w3smtIsC1H3726qfQFEOsMDs2QRmz97r7Z3d7RMCkAAM33or8QsuOJKDkBwxhGEQnjvngO3fGRggt/Y5hGkgHddf1MRxkdIDT/pTAyVYc+fQ//NfTOzn6u6m2NqK09cHnucHzBOC9P33TziG3dZGbv16FYTkCFVsb/cXTxkJQALgDgyQW/usCkKiHNbcXJ7+H/xwrGzHzj+fwZtuwmxoIPvY3xn+458AaPrtb2l717vxUqkJn6/97/+m7wc/JLR8OW5f354AJACOQ/911xNetQrtyF8EQjnA8nfeSc9//feENHPGDBpXnAA1KgiJcmhyPA9T98dWGyOB72zXxc7nsEL+uKxgzF8UMPeS66uiKIqiKIqiKIqiKIqiKMr+tD+CkPxx5N+oB/fDPpXDnKZp4Hn+gIqXcHp7/YnMuj4NOVP2lrRt3MFB/4eRTmMtHsfdsWNiWiyGMzDgp3n+oBotEsUdHgZA6MbYSpNezp8grIUjuKMdIK4/qV2PxycdT4/Hsbu6/DRnNC02sfPZ89DCIby0H+xGCwTwMll/te6iP7hTL5li3yVxiq2tLzleDGd0u5Fz0aNRvGRyz7kUi2iR8NhkZy0SwR15f/y+3cFxeRzN6ksm4yn7n5fL+defsUkL49/LIlSQeEV5VV4uix6L4oxca/V4bMKkfFxv4nV1HGk7IIR/LU4m0Uvie66r47jDw+jRKO5oPUHKqa+bhQLCMJCu619jxwUwszs6kVKqoGYKxc7OSWnu4BCaYeKN3JuFroMn0QKBl6mf9qEFA/7EECGQSKTnIQXgyZGVuJUjmbTtqa9X6RTeSyYMKcpRyfOQjgPSvz56+QKIkRVfNQ3heX76uCCko2Qu79cfYnHc4aTfHiAlCA1ZKEyaoAngjQsupRxZhBAvcy/uwbFtDNOchlwpymtg23vagcYZbfNSFOXlSdvG7e2dlO5lsxjxOHKknRj8Zzh7im2d3l6EYYDr4g4OIgwDEQqB6+EODqFHo/6xijbO8DCh+jrwJLKQx0sm/bqHohxAXi43df02l5uG3CjTSRYKkwKQAEhVFhTlkOPlspMTpVTXbgXwr+fC0EEIhK4jhIXUXLBtwENKCUIiDBN3dMzE+M9nsiPBR6S/D0Ofsh16dKyDcuTxisUpy4YzRb+oohxOZLEwoZ1XsyxkLueP/Ro/pst1puw3GO0D0Csrpxx34Pb1+fVpFYRE2UdT1encwUGwi9OQG0XZO44rMTR/LJQ+8n+h4JdZKxgCwDBNdMOgmFfPLYqiKIqiKIqiKIqiKIqiHDjavu5ASnnD6D9g3fifR9ImEUL84v+z999xcl33Yff/ObdOL9v7LnojSIIESLFKJCVKVKF6LJe4PLYcO3IsOU5xiZ8oxfEvthPHie38LNtyk2RZki1RsiT2JnaCBAuI3nYX2F6ml9vO88ednd3FLotIgGjn/Xrhtdg7d+6cO3vmzKnfI4SYEkLsXXLs80KIU0KIFxr/3r/ksV8XQhwRQhwUQrz3raZZOft8zyOQkuStt654LH3nneFCUOW8ZnR0kPnRHw1/0XWEbVN+4gmS73k3ANJ10DMZqi+8QPz6cGd4b3YGs78f58QJIlu3AlA7eJDojisJSiWM9nYQIrzOu28DQFgmmCblx35A6r2Nj7eUaPE4lWefJfHOdwLgl0oYHR3UDhwkdtUOAJyREexNm/CmprGGhgCoPP888RtvDIOTxGOg65QeeZTUHe9r3IuGiEQoP/EkydvCNEincS8vvkT8uneE9zI9jTk4iDM8jL15c3gv+/cTveoqgnIFva0tvJfHHyf5nvc070WYJqUfPEbyvbcvf0M1jYja3e6ss9etx+juJnLZZcuO69ks1uAQZn/fOUqZolw47HXrKD35FKn3heXm0nIOwC/kqe7bR+p9p1XJdB0tFm0EFJknsmUrlef3kLhx5Y729pYtOMPDABjd3biTEyQbr9ekaeiZTHOBUGTrVpzhE82Hs5/8hApAogBhXjhd9Kqr8CsVMA2EbeHNzeHOzuAcP076gx9ccX7i1lvwxsfREgm0RByzsxMtFkNoGiIeA7Ug+uIXj5P+yEeWHxOCyMZNmD095yRJinI+0TMZtGgULZEEy8Ls7AgDANoWWsRGi8UIfJ/Erbcse56IRjF7epC+R2XfvvA66TR6OoUwDfRsBmvN0LLnGL29WIODb+PdKW8nwzBIfeD9K44nb79dBSBRLgiiv5/UBz+w/JhpYq1Zc45SpCgXDiOdJvsTP77yeE8PIMEwQNdA1wlqVRLvvHnFuak73oc7MYGwTGJXX4XR2Ullzx7QBPEbb8Avl3FGRtBiUZK33IJz8hTe1BR6toXMJz4e9k8ryllk9vaurN/29GD195+bBCnnjNHdTfSqq5Yd09JpzCHV1lGU843V34/R3b382Jo1mL2qT1AJ50xoyWQYTNdx8CvVMHC+aSDiMfRUKhzLKpdJf/Qjy58sBNbaNWjxGFoyFc5dsKxVx9ciWza/bfekvL3soaGVYw9AbOfVb39iFOUMOr2NX33pRWLXXdeYI7ZjyZmCRGN+WPNIJILd6EurHz5M/PrrV1w//clPoMfjZyXtyqUlsmHDio3yMp/4BDKTOTcJUpQ3wPUDDD2c2m/q4bwo1w03ZDPsSPM8047gqo0dFEVRFEVRFEVRFEVRFEU5i4RcZUeuN30xIZ6XUl71Bs67GSgBfyOlvKxx7PNASUr5+6eduxX4O+AaoAe4H9gopfRf6zV27twpd+/e/abu4+0gpaRSquHVJW7VJ9sTR9ffckyY80plZASKRWovvcT8X/8N0nXJ/vOfIP6udxFpBIy4CJzx1c/nU951xsYofv9uqmWXxOVbKT/1FMaGrehOkeqpKRK7rqb6zNOIviFsW1A+fIL4Nbuov/AcMttBpCND5cW9RHdei39wL64ZI7Z2gPIzu4lcdTXy5Alq9YDE1o2Un34Ga8tl6MVZqtN54lddSfXZp9AG1mEJj/KJkySu2Unt+eegvQc7E6W89yDxa6/B3fsiXixDbKCL8nN7iFy1k+D4YZzAILF5LeWnd2Ndth1tdoJqvkriim1UnnoabcMmTKdMZem99A5hRzXKh44Tv+YanBd342c6iHZkqLz4CtFd14T3okeJrx+k9PRuIjuuRo4NU6t5JLZtovLUMxibL8Moz1EZnUTgkbnpeuLXXos4fxZVnZWV++cq/1ZLdcp5B8PUMd08jI+R+7uvUH7yKewtW2j9uZ+Drk5ivb1oaqeUi8FFXfa+UTKQ1Moupq1jWMsnTTg1j3rFRQhwnQDD0jBMHSSYET38P1DJ13FdHztqIIRGreLguQEWNdypOTBN6iOj2H6JoLUXZ2QEMT1G9OZbCHJzyHgab2YaOTlBdP0acn/15zgHD5H98R/DWreOoFLBqQuMRITy3v0weYrE1Tuoj4xQ+OY3iV51FW2/+Au4p05RfeklhKaR/9Zd6C0ttH765yg99RTlBx4k8a53kXr/HUz89n8Dz6PtF3+B5LvfjZ5KnYu3/q1Qefcs8AsFCnffw+yf/RloGpmPfwxzcAgCHxkEyFodfA+RziBbuxGZDHJ+nvJDD0LgE3v/h9HSCaTjARIRiRJoJkZQRxs/Adk2RFsn8WycWtmhnHNIZC1M26Be8TCj4efJrfrYMQPX8ZESNAOK03XMSPj5C3wJhLsdRhImhnHBBeW76PKv63iU83WklGhA4HnIUolgfg5kgNbShpGK4kkbw9YxDA2hCRDhxta+22iSShCaIPADpATd0C7Uv/HF6qLLu6+lVnYQmsB3JYal4TkBpq3h1gOsqI5b86hXPRCgGzqWraMZGl7dJ5IwKc7V8N2AZGsEt+YTiZtUSnXcmheWY1Ji1ebwyg7EEsh6DXFsf7ibt5RYQ4Pkv/NPlB58EGtwkNZ/8fNIz8PP5RCahp8vgK6hRWMgJcK2EJpO4Xvfo/rCC0Svvpr2z/xLIpvVwouGizL/Vvbvx00mCcws0pdEzCpiZoboli3nNF3KGXVR5t0FlRdeQHZ04kfSOBUf0xLYep1Ia+u5Tpry1l3UeRegXnEp5x10A4QAKQRCCISg8U9r/l8CgRcQBGFfggwgPAoCgRSgIZBICKvJyAB0U+B7El3XCAKJbmh4jo8VNahO53F2P0Hp5f1oGsQGe9FTaQIkmpTh5XUNYRiIZBJvfJy5L/xZOLbwUz+F2duLPzeHX6kgq1U020aLRPCKBXBd9EwWkPjFEkKAlkqD5yI1ndRtt2F2dZ6z9/5tcNHn3wtFef9+3JYBfC8gljUJ9r5E/JprznWyzmcXbd4tP/cc2voNVCoampCYQZVET8e5TpZyZl20+fdCV87XqZVd0q0RDNt4/fOfeYZ6NI2X6sSOG3g1SWtf8nWfV606lGcdIkmNRDp2JpL+drlk867vBTiNvjEhBDKQoIEIu70QWuOnCCu4gSeRlRLe+Di+66EPrcN1AizTIxgeIfAlQteAABGJEczNUHn5FfR4jOjVV4WP+37Yp+wHCENH1qq4Tz5K4dvfxmjvoP1f/0o4j8B4/byqXJh5t/Lyy2jrN1Ce9dBNgTi0B6uvl6gKaHqpuSDz71JOzcP3AqKJcM6NNz1N/rvfZe6v/ho9laLzN36d4n3340xMENuxg9zXvw6+T/fv/S6Fb91FbXiUyLvfR+zqnXhjI1T/6S7a/sW/wGhrpfSDHzD7539BUKmQ/bEfJfWBD2CdtkmAlJJayW2OxdkxI+znKDrIQJJoMbFtGwC37uO5fjOtr6VecalXPQxbJ/ACpC9JtETUhiiLLui8WzlyBPfQIeb+/C/w8jna/uD/4rd0Y0YX5ukKAjdA00U4DrwwlVqEfV5CCKJxC9NW474XqLPxQT5zE+5fxcf+5HGils6Xf+4dFGsu2z9/L7/6zj6cv/pN3vuLn+Oyd4WbCP7pv/xpBrdfyft+8XNnO0nK2099CSmKoiiKoiiKoiiKoijnhTM9iv2GOr6klI8KIYbe4DU/DHxVSlkHjgshjhAGJHnyzSXx3JufLIIGpRmHF+4fZfZUmcFtLWy+vpvudZlznbwzJjYwQL1YJNbTQ/Tqq0HTiK5ff66TpfwQ6pEWjnXfwrE902y3+jgcSZCuRYlnbI4cmuRyvZ/hRBKjrNHelmJ/rYftopeJdJZayWVoqI29bgubZBeFbAdz42U2R7t4RUsy4LXiZQY4eWie7XYfB+0kbfU4VnoTx45Pc4XZz9FogljNJNMZ42Ctj8u1fk4mMgTlgN7eLPvcNrbKHmYybRRnq6yPdPJKkGKd304l28vUiTxbrV4OGEm63DQivY6Rk3Nst/o4Ek2SqkWIZ5ffi17R6GhPsb/WzWX0MpnOUCs6DA2184rXwsagi0Kmg9mxEpsj3ezTk/S7LXiZAU4dnGO73c9BO0lrPY6d3sTB/RPEUhbXtq4lpulqdOAMcx2PmdESY4dy7Ht8HCuqs+P2AVr619P2b/8t2dlZtEwGM5VCT77+ZEFFuVDkpyu88oMxDj87SWtvgl0fWEPnmhRBIBndP0dprkaqLcqBJ8c5dWiezqEUm6/rplp2KM7UWXNlK2OH87z80CmsqM4Vt/VzZPcUhdkql93ci9AhcKOMH80zcUyje8MAfakse16usO6qLbTWEjx7/xyaVmDTOwYRXUO4Mx49n/1thrp0zJYsxfkahx87iYgZFKaqjExHaB+4iat39JB9V0DLP//nGNkMmm0T3baN2LXXgpS0/NRPETgOejJJ8rbb8H/5lzEyGYRpMvR3XwEpMbLZc/0nUM4jeipF9p99kuS7byMol5G6jpASqWloug5SUqwa7H16hqMPzZDt8tiwsxN5/SfxHJ8Dz5ewogW6hpKgCTQjAMLAFImWjRx/aZoTL73MTT+ykb2PnmLyeJ6e9Rm23tTDw185QGtPkrVXtPHMd0/QuyFDa1+Clx85ydbre5gdK1EruVxxWz/1qktprk4kYWFaGunOGO1vYCK7cnZMnsjjVD2qRZcgkHiuT9BYKFktpwBJZzrG8A9mOfr8FKm2KDtuH6AwW8GOW2hCoGngeTJckOlLPMdneO8sY4fzdK5Jsev9Q7T1q7+x8vaoFOoc3j1F4AXMjZdp608ycTRP17o044dztPbFae1LMn4kRylXp603wfGXZtjyjm4OPzfJ0BWtJDNR9tw3QqXgsGFXJx2DSWIpCwIo5mq89OBJBra10tIdw/ci7L9vjPx0lfVXb2TrNRnikQCCgNZf+gzZH/8xtHh82e5yQgsndEpNQxMCGQQgJVJKIjt2IACjrRWtMUlYuXhVs31MHinywgMvg4RtN/fStbaH6LlOmKK8QdXudcyfrPDc3Xtxqj4br+2kZ12a9phLJHreBJ9VlGV8P2D45Vl2f+8EtbLLpms66dvSghDgB5LAC/DdgMCTuI6Pbobf2y/eP0qt7LLl+h6SbTZO1UcIQb3qIn2JFTUQQlAp1tE0jUjcZH6yTDxjUy+Hi5OsqEEl72DHDQIvoFIcouu6yznw5AQ7N/TR3auhywCQYf3A8wiCAGEYmGvW0LtrFyIIENFoGOhEiMbPMAQKQQBaY7UohL8bRvizca7R1naO3nnlUjM/XSLntPH83xygNFdjw85O1u7YhNq/+9JUbt/AqWfmeeUHYximzpXvGSDjFugavOACKyvKBWVk3yx77h0hN1lh6PI2Nl7bSffazGs+J5fZwNE906RaCxx8agKn5rP1pm76NmfpHEyv+pyxozkOPDHOyCtztPbGufI9A/RvbjkLd6ScKTMnSxx7YQpNE5gRg9J8jVjKBiSl+RqZjjjFuRq6LogkLfLTVVJtUZyqi5RR2vuTvPTlw+SnKqy7qoO2/k6cmket7OK5AcmWCKU5HX2om0jSpHikRjRhohs65XydaNLi4FPjeG7Albf9M4Y+9ZNEMzH0ROJcvzXKWVZIDHDse6MceW6aeNbmqvduJhO3VF+YcsHw/YCTB+Z55tvHqJVdLr+lnw27Ooi1t9P60z9N+s47EYaBnkoR27kTb34eLZEg84mPN8f2q+1r2ffASUb35mgvFllz+QYyn/kt7HUZhBBkPvpRYu94BwQBVm/vijQUZqrse3yMg09NkGyNsu3mbuIpm+Jcjf1PTFCcrbJhZwdrd7TjOQHP/NNxSvN1tt3Uy6ZrO0lkIyuuKQPJqcM5xg7NkchEsBMmLz98kvxUlbU72rnspl6y3ao1d6GLrV8P69djbb2MsfkI9/3TMLXyDJve0cXA1izHX5zl8LOTZDpj7Lh9AMPS8F1JIMMIZRIQlLEiBl1r0yo4jfK28AKJ0RhXXfjpul74+5IN8Ew7gluvv/0JVBRFURRFURRFURRFURTlknGmg5D8p7f4/F8SQvwksBv4VSnlPNALPLXknJONYxckz/ERhkZl3uGeP3+FejnsHN73+Dj52Sq3/+xWYsmVA18XKnth0b9aLHzBCQLJyw+fZM+9I1zzwTX84KuHMCyd9oEkz3znODtuH+Dpu47hVH2uvmOQJ/7hCFtu6Oalh06Sm6pw3UfW8ehXDzG0vZUTL80yfiTHdR9dx0NfPkh7f5LcZIUju6e49s61PPJ3B4klLdp6E+z+3gmuvmOIx79xBCklV9zaz1PfOsb2d/Xx3PdPUM47XHvnGh772mHW7+zgwFMTzIyWuO5j63jkKwfp2ZBh4niB4ZdneceH1/LIVw6Sao9Sr3jse2yMXQv3Yuq09Sd45tvH2fGeVe7l+m5efvgkuckK130svJfBy1rDhaWHwnt55MsHae1LUJipcfjZSa69cy2PfuUQkYRJW1+C3d89AUBxtsZ3/s+LfPzfXkXnmtUnqilvzvRoiYkjeZ6661jz2H1f3Mcdv7AdoydNZlvXOUydopwdruPz1LeOceS5KQBK83XGjuT45K/vxKl4HH1uit5NGX7wtUPMj1cAOPbCDDMny1z/8XU4MZ+TB3I8+Y9Hm9d84K/2c93H1jH8j7P84O8P896fu4ynv3OM3GT4/CPPTjF9okjf5izP3zPCtpt6CHxJbrLCk988ynUfXUet7PLwVw5z+6e30Z6R7H3kFNPDJQBG988BUM7VGT+W5xO/tpNM5/JdAY306uWjFlmsFxmZzJl5E5WLktHSAi0rJ3m7dZ+nv/kKx16YAcJ8ODVc5PJb+jAsjVRblD33DOM5nbT0xBECAh9AUi95rLuqg3RHnIe+dIDibA2Aw7unmDlV4oaPb+B7f/IyE0fzbLymkxfuH6V9IEl7f5Inv3mUXR9cw7Hnh5k8XuCOf7Gd0myduVMlIgmTatHBjhqkWtU007dbbqpCteCQn63huwG+E6AZGjKQHHl+jLa+JENXtHHgqQkOPT0BhGXt1IkCd/zCdqZGiuFuWEKg6QAmpbk6R5+fZnqkCMCxPdNMHMvziX+/k2TLxdO+U85fh3dPMXY4RzlXp30gyYsPjDJ4WSsvPjBKsiVCteIyvHeWg09OsPP9Qzz1rWNc88E1PPb1w8SzNum2GHf///cSBOHi3efvHubK9/Sz7qp2ivN1HvjL/bQPJgFJpejw1DeP4dZ9AF64f5Ry3uHWn9yMYTaCjnR2nqN3QrkQzI6WeehLB5q/P/a1w7zzxzfRMZhSE3iV816tUqc863DPn73SPLb7uye4+o5BAPq3tp6rpCnKa5o4mufuP325Gadj9/eH8X3JwLYWZCPwiO8EVEsubt0n1Rrh/r/a39zX8+lvH+OaO9cwPVLEMDWyXXGQcHTPNNG4SftAkuJcjYPPTrD5mm5G9s5hRnTS7VH2Pz7G5nd0s/fRU6zf2cnksQLTw0W616f5/p/v58O/ciV9m9SCXeXiUJyuc/ef7SXwwg/PnvtGcB2fWItJKhN7nWcrF5Nqucb4kTxP/MPSPth9vO/nL2NGF7SpwLSKclaMHZnn7j/d2+yz2PvIKSr5OukfixBLrd5HNzVc4IG/3s9l7+zl8W8caR5/6pvHuP7j61YNQpKbqvDMXcc4dSgHhH3OkycKfPAzV9C1Vo0Fn49K8zW+/6cvseX6HuYnKsyeLLLp2i5G988hA0nvxizPfu84W67roVJ0OfzcFFtv6GH/Y2N0DCUZ2NbKfV98Bc8JAHjxgVE2XtOJ5/pE4haxlMXu7x5n2029VEsuB5+eYOuNvcyMlpifLLNhVydP/MNi/nrk745g/swWNvWpACQXu3yuyoEnx3nl0TEAinM17v7Cy3zgX15OtuMcJ05R3qCpE0X+6Y9ebPYRPPb1wyDgilv7gcYYbYMwDMz29vCXaDgGWi05PPBXB5k5Gc4dKOfqzI6WWLOjDSsSzq8CsLq7V3193wt47p5h9v0g/ByV5utccWsfk8cL7P7eCTw3LJv33DdKtewxd6rE1HA4XvfUt47iewG7PjC0ou95aqTAw18+wIarO7DjJg/81f5mHeKlB09SKTrc9pNbFsc9lAvadCXOPV94sdk3NvrKHIXpKoeemQTCfDVxLM/7f/FyPMfH9wOkD1KGQW5rJRfTNpr5VVHOJteXmHoYfETXwrLLdT0MwLAWN3MwbRuvXjsXSVQURVEURVEURVEURVEU5RKhvdULCCF2CyE+I4TISim/9RYu9X+BdcCVwDjwPxZeYpVz5auk5ecb6dk9PT39FpJy9tRrLqaukZuqNgOQLDh1IMfcWOUcpUw5l87HvFvO1Xn5oZNAGJDEcwIGtrZwbE+YPt3QqBZdutammovL42mb3GSFTEesuQCzrT/cbduMhDv8IGFgawtHnw+v43vhDpuDl7U2F9QLAU7Vo3dDhhMvhwuG7ZhBab5OW1+C8SN5ADIdMWZGS8TSFvmpKgA9GzIM751FCHCdgCCQDG1v5fCz4aChbNxL/5YWjr3QuBczvJfONSlOHpgP7yUT3ku6I8rMSDgQ3j6QZOxQDtPWqRQcpITBba0cbaTb9wJ8L1h2LwtkIJuD3Bebc5l/BZIDT44vPygJ/05m8LamRbnwnI9l7xtRmq1x5PnlZYxb85kfrzA9WiSesUGIZgCSBYWZKvnpKoalrfzcAIXpKtFkuGNGpVhvBiBZkJ+uEk1aQLjQeWj74uK6ieN5Zk6W6N/WwszJEuV8+B3SuWbxO2JBveIxP15+82+AcsHm3XOlOFdtBiBZ4FTDerhb9xl9ZZbuDRkOPzuJ7wW4dR9NEzhVn3rVxXN8dEM0A5AsmB+v4DcmtVUKDoYVTkCbHimS6QgXFo3sDa9dr3jkZ6rMjZcZP5qnXvFw6z6luUtvQsj5kH8rBQen5lMtuNTLLvnpChPH8vhewMDWViaO5zFNrVl/XOC5AfmZKr4bIAOJU/OwogbVgovnBM36b/N18g65CdW+u1icD3n31dTKDi89eJKW7jiTxwtE4ibF2VrzZ8+GDJn2GAeeGKdzSfstCCSeG7ZfcpPVZgCSBfsfH0dKwfxEhSCQ9G3OIgOoFtzmRNwFR3ZPUppTO22dr86n/Ou5Hod3T604fuz5aXJTqsxUljuf8u6CwJPNhYZLHX9hhmrFW/kE5ZJ0Pubd8aP55iKLBUd2T+G5Es/zEULDcyWmpSMW+hROO//AExN0r0uTbo8R+JLhvbPohka2O47rBBzePcng1lZ8L2DscI72/iRHnptiYFsrx16cpm9zliO7Jxna3kpuskI8HU6YP/HS7Nv0LihvxPmYfy8UvuuHdWfvtHr1E+PUC/6rPEs5U863vOs7rNoHO7JvjnrFPQcpUs5n51v+vZDNT1RW9Fkce3GG+clX74ctTIf9fYXp6orHDjwxwfzkyvGM4mxtRbugXvaYn7y02rUXUt7NTVaIJixOHZon1RrBqfrMjZfpHArnB/heQO+GLMdfnCaWsnCqHoWZKoPbWzn87BTVotsMQLLg8O4p1u3oaPYjtw+kOPHyLJG4iRUxmDyeJ90Rxal6zJ5amY9efPAkrqPqCOfC25l363mXA09OLDsWeOFGD6XcpTdGpLx156LsnTiWW9FH8OIDo1RLzht6fn662gxAsqA4V8OyDebGSq/yrEWl+Tr7H19et66WXDw3aAYgWXDwqQn6tywPdPrSg6NU8ivTOj9Roa0vQW6qSn6muqIOcXT3lBr3OIPOdb1h8nhhWd9Y35bsirEKzwkoztXwvADfkwRBAELDrfl4bkBZldvK28TzA0w9nDZvNIKQOG44/mBYVvM8047g1lS+VBRFURRFURRFURRFURTl7HnLQUiATwE9wLNCiK8KId4r3sS2pVLKSSmlL6UMgD8Drmk8dBLoX3JqHzD2Ktf4gpRyp5RyZ/tCVP3zjJQQSDDMlW+9Zgh040z8SZQLzfmYd3VDw44bAGiNQQ2n6mHHGscWBjhqPpG4ueyYW188T0qJpgsCTzZ3h3AdHyuiL79O1V+8tr7k2jHztNdbvLYQ4T/PCTDt8Hq+F2BaOlKCvuQ6K6/tvfa1F+6l5mNF9cV7MQS+H2BYWvNezMbjS9+nhWsvZUYuzt0xzmX+FUI0/2ZLReIG9UAt/lFe2/lY9r4RmiFWrUcYpoZh6QhNNMu/05m2TuBLIglr1ccWJuksBFNY8dqNsjESN3Bqi5+xSMxE0zWcqodp62iGhh0zCHyJvlpaX+X6yhtzoebdc0XTtdXr3rpA0zWsmNGo45ggw3wuA4luCIQQCF1D01evoy/d+Wrh87FQPwGw40Yz4IlualgRI6zvi7Cuob3KZ/Vidj7kX6GF7//CT00PyyxNE2EQmsYf0Fql7qabWvPvpmkC6YfX0wzBaq3ghTqjcuE7H/Luq9F0jWhisW2zUB4t/PS9AM8JsKLGqm06t+avWk5G4iaavth/4bsBQrBq2WXY+iVZpl0ozqf8G8iAWHJlXTSSMNBUkamc5nzKuwsCKVfth7DjxhnpaFcuDudj3rWjr5Jv9bB/TUiJpkHgSwQ0+1qXisQN6o1gO5omsOMGbqNvQNcFdszErYVBHTVDIKUkEg+PRWJmo//XpF5dvAbQDHiqnB/Ox/x7wdDEqm1AO2agGaqufLadb3lXaDTHzpaKJMwVQaEU5XzLvxeypf21C0xLf9UxEwDd0vEcf9X6j50wVp2/oRti1bLdvMT6Ai+kvGtYerNeKjTRmK+wOI4VBib3mv3EnhtgRnTcejjPQF/t722HeWfhOU7NC+vYC/+PGY25DD52dGX+iqftZp1YeXu9nXlX6Ku3x3Rz9bErRXk956LsXS0PRxPmG57jaDTGRk+naeINzRvQDbFizE43xKplqBXRVwR4iiTMVb+3DVOjXvUQ2urzFwxbV225M+hc1xus0/Lx0rmGSxmGhoAl474yzGsSNDWvV3mbeIHEaMxR0bRwHoLrhWWbYS4JQhKJ4NZVEBJFURRFURRFURRFURRFUc6et9wzLqU8IqX8TWAj8BXgi8CIEOI/CSFaXvvZi4QQ3Ut+/Siwt/H/bwOfEkLYQog1wAbgmbea7nMlkY4Q+AHp9hida1PLHrvitn46hlKv8kxFeXvFUhbXf3w9ANWiQ0t3nJF9c2zY1Qki3BGie32a6ZEiPRszaLrg1KF51l3VTjnnkGyNYto6x1+YYeuNPfhegG4IokmTI7un2P6uPgDqVY90e5TjL02z5fqwGCjO1mgfSDJ+JMfQ5W0ITTA5XGBgWwv5qSpt/UkMU2N47yyb3tEVBv2Im9gxg6PPT3HZzb1AuFt9Imtz9PkptjWOVQoOLT1xRvfPsX5nB0LA3HiZng0ZZkZL4b0YglMH51l/dQeVQuNeIuG9bLuxh8CTCCGIpazwXt7ZuJeKR7ojyomXZth8Xdfy9zNj0ak+32ec0DSufPfAskW/kbhJ97o0lrDPXcIU5SxKtUW59s61y451rknR2puga22a2VNF6mWXzdd1LztnzRVtxFIWUsL2m3uXfW7suIEVNZqLkDVNsP7qjuXPv7KNsaM5ALbe2MPRPeHuNKatk+mKMbCthemRAu0DSWJJixs+sZ6je6bYdlPPsut0r0/T2hM/Q++Gory+dFuUXR9as+xY+0CSetkl8AL6t7YwebzAZe/sxY4ZGFY4ocyK6qRaIyADZkaLrL2ybdk1Nl7bRW4q3L2wd2OG2cZOXZve0c3w3lk0TTSv3TmUIpm1iaUs1lzeRiJrY0dNMh2xt+dNUJZJt0Wxogap1iiRhElrX4LW3jiu4zN5vMCGXZ2UcnWuvmNo2fOyXTFSrRFMS0M3NKyo0ajLxrBsY0W5O3R5K9luVd4pZ58VMbjmzjVhO+T6biZPFBjc3srkiQJD21s5+vwUvhNwzYfWLGvzVEsu2a4YR5+fItMZJZFdXn+++o5BPMejpSdOImtz5LkprIhBLG3R2rs8b19751pSbdG387aVC5RlWay/un3ZIgvd1Niwq4t0uyozlfNfIh2lZ0O6GbgXwqBmG3Z2EkurQArK+at7Q5pYakkeFXDZO/vQtMUAY7qhIZEITZDujBFNmsvOv+K2fmolh5lTRZyax8DWVlp6Ekwez+O5Adtu7GFqOHxs6w09HH9hhs3v6OLEyzOsvaqdkwfn2XpjD8demGbdVe2cOjSPFTUY3PaGh5EU5bym6xotXfEV9eJdH1iDFVMLlS418XSE7bf0LVsYaUUNejZkVH+QopxFLd0x2voTy47tuH2AtoFXb2+m2216N2WxY+byer6AK2/tJ9W6sr+jpSfBFbf2LzvWtTZFSn2+z1uZrhgtPXE616Q4eWCOga0txFIWI/tn2XZTD07NIz9TY93VHYwdztG/pQUrYjCyf5bL3tkLElpO6+u96r2DHHhqgstu7qU4X8Ot+wxd1sbE8TwtPQlaehKcPDjHwLZW4hl72QJ6TRPseE+/2qToEpBIW+z64NCyY6m2KC3dcSJx1Y+gXBi61mVW9BFc86G1WJGVwUlWk+mMNeeILRi8rJVSrkZbf/J1n5/IRrj+Y+uWHdN0DaELsl3Lv3uv+dAaJo7mlx277iPriK6ySUtLTxwZSDqGUsRTK8c9rvngmlXrAcqFqWvd8r6xI89NsusDQ8vOae2NE8/a6FYYKEo3tWawXjtmqPygvG1cP8Bc0p9gaALXCwM7G9aSICS2jVuvv+3pUxRFURRFURRFURRFURTl0iHkGdhuSQhxOfAzwPuBe4AvAzcC/1xKeeUq5/8d8C6gDZgE/mPj9ysBCZwA/oWUcrxx/m8C/w/gAZ+TUn7/9dK0c+dOuXv37rd0X2dLKV/FdXxqBY+ZkyUK0zXaBxK098fJdr/+4JpyXjnjWx6cT3nXrXtMDRcZP5qnrS9BpeDgOQGptgizp0pku+I4NY9qyaGlK8HceJlki03gS4rzddr7EsxPVojGTTRTkJus0j6QpDBTRTc0InGT2fESHf1JSrk6gS9JtESYO1mipTdOreRRr7pkO2PMjpVJt0fx3IByvk5bT5y58QqxjIVAkJ+p0tGfJDdVwYoYmBGd+fEy7QNJinN1hAgDq8yeKtPWH96L6/ik26LhvXTHcKs+5ZJD69J7CSTFucV7icQMdEtnfrJC50CS/EwVzRBE4xaz4yXa+5KU83UCLyDZGl47kjDpWZ8h23VeLag6K9t1nIv8Oz1aoJRzmDyWx4oYdA6lSLTapNvURL+L2EVd9r4R9arL5PECk8cLpNqjdK9LNyc8zI6VmBsvE4kZlPMOc2NlUm0R0u0x3LoPSNr7U+Rnqowdnkc3NDoGk8ycKhO4AZnOGLopqJVcfE9SmK2R7YqhG4L58QotPXEMW2f2ZAkkpDqiCEBKSVt/imxn+NnzHJ/JEwUK01U0QyM/VSHTGaN7fZpkyyU7OeOSz7vnSq3sMnE8z8TRPNGkRSLTWGivQW6iQiJrYzV2JUQKgkBiGBrRuMH8ZIXifJ3udWlyU9XG5yBGpjPK6IEcmfYokbjJxIkC2c4YQkB+pkpLd5yZkbAe0NafoJSrIyThpCVbI9MZJ5mJnNP35Yd0UeXf/HSZUs7Bc30CL0AG4a7vAK6zEDzPol52mRouksjatPYmKMxWicTDXYuFBgKBpgGahud4VAouhZkqbb0JejZkSGQvqL/xxeqiyruvxvcCpoYL5KerEIAUMuxdEYAE35ek2m3cSsD8RIlsd4LcZPjdXCu7CClJd8aYGi5RK7t0DqbwAp9US5TAD/DcgNmTJQxDI9UeRQaS3HSVatGle22ang2ZFbvIKWfERZl/K+UKs6M1Jo/lCQLoHEqR7YmSalFtuIvIRZl3F+Rmi1RyPpPHCtQrLm19SeIZi+51mXOdNOWtu6jz7tRwgbHDOaoll46BJNGUiQQIIPADAl/ieUFYh5AS0zaYGy/j1Hza+hPIQBL4AUIIZABSBoBAaGEbSkqJrmv4boCUEtPWqZUdYskIpfkq8WyEcr5OJGaCCAM6d6/P0NabeO2EK2/URZ1/LxSBHzBxrMDUcIFK0aFzKEWmO0prlxr7ew0Xbd7NTRfJT9aZOF5ANzQ616SIJQ1ae1XA+ovIRZt/L2QTx3JMjZQoNTa9aB9IkOl87THa8eN5cuMVdEM0xqwD2vqStPYkSbauvunB9GiBubEKM6MlUu0R2vqSdK9Ln41bOhsuybxbytWZHi7geQG+GwBhID6/0T9sWBqu42NaOoEXEARhndZ1AnRdYMdM8jMVKjmHlt54GMTPl3hugNAFAvD9AMPUCfzwmrqp4fthHdswNYqzNaSE3o1Z2geTy4JVKW/IBZl3Z8eK5CaqTA4XiKUsOgZStA8lME3Vn3qJuSDz74K58RLjR/LUKh4969N0DKZ+qEBKlYLDxLE8U8MFElmbRCZCtjtGuv2N9Qk7NY/J4wXGjuSIxM3m5g+Vkkt+ukq95NI+mCTTFUXTdMaP5KgWHbrXpmlfk8I09VWvOz1aZG6shG7qWBGd+Yky5bxD15o0fZuyatwjdEHn3aXGj+aYOJanVvboHEoRz1qU5x2mR4skMjbZ7jgyCAhkuLNjEEgQIIQgkY2ogJIXprNR2XrrE+5fxzv+2wPcvLGN3/3EFQBs/q3v86FBg677/pCf+r0/om1gCIDv//H/5OT+vXz6j754tpOkvP1UQ0FRFEVRFEVRFEVRFEU5L7zlkRIhxHNADvgL4NeklAuhlZ8WQtyw2nOklD+6yuG/eLXXkFL+NvDbbzGp541EurHwth01OV05r5m2Qe/GLL0bsyseG9retuLY4GWtK44NbFt5bKm1V7avOLZm1WuvPDawbeX1lr3ejpWPr7li5eudzXtZ7drKmdXen6K9f/V8oygXKztqMrC1lYGtK8ul1p4ErT2vv4An2Rqhb9Ni+d6/5bXLuNMNrVIuL2VY+qt+hyjK2y0SNxm6rO118+1q2ocWJ473bFien7vXLf6+Wj1hzeUr6wbK+SHdHifd/sYCxK2/urP5/15Umaacn3RDo3td5g32MXS86iO9G1te9bGBH7KuoCivJhaPEdsco3/zq+c3RTmfZVqTZFqhR/XrKheYjsEUHYM/3ML31+sPVRRlOU3X6NmQoWdD5lwnRTkPZNqTZNqTq45vKYpy9nStzdC1NvNDPad7TZruNT9cAJFwfDLFpmt/qKcp51AiY5PIvNU+e1U/Vn54rT1hUKN1V716v6yinO9auhO0dL/5IKKxlMXaK9tXnVf1RlgRg/4tLfRveWN9ygsbp7ye9v4k7f2LQSNXm3+hXDxWHUcbXH2+n6KcS14QYOiLgZ4MTcP1fAB0y2oeN+0Ibq32tqdPURRFURRFURRFURRFUZRLx5kI1/5JKeWxpQeEEGuklMellB87A9dXFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRlIuS60tMTTR/1zXRDEJiLAlCYlgWnuu+7elTFEVRFEVRFEVRFEVRFOXSob3+Ka/rG2/wmKIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoS3h+gKEvTu03NIHnLwQhsRePWxa+CkKiKIqiKIqiKIqiKIqiKMpZZLzZJwohNgPbgLQQ4mNLHkoBkbeaMEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEW52LmBxNBF83dDF7h+EP7fNJvHdcMk8D2CwEfT9Lc9nYqiKIqiKIqiKIqiKIqiXPzedBASYBPwQSADfGjJ8SLw6bdwXUVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEW5JHh+gKlpzd8NTcPz/fD/ptU8rjcCkviui2arICSKoiiKoiiKoiiKoiiKopx5bzoIiZTyLuAuIcR1Usonz2CaFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFOWiFwSSQIKhi+YxXRN4vkQ3TcTS4CRWGJDEdz1M+21PqqIoiqIoiqIoiqIoiqIol4A3HYRECPHvpJS/C/yYEOJHT39cSvnLbylliqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoinIRc4MAAFNfEmxEE3hugGFay87VDRMAz3XevgQqiqIoiqIoiqIoiqIoinJJedNBSID9jZ+7z0RCFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFOVS4vkSCAOPLNA1gRcEGNbyICQLv/sqCImiKIqiKIqiKIqiKIqiKGfJmw5CIqX8TuPnX5+55CiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoijKpaEZhETXmsd0TeD7ckUQEt00w+c47tuXQEVRFEVRFEVRFEVRFEVRLilvOgiJEOI7gHy1x6WUd77ZayuKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoijKxc4NAgBMXTSPGbrACwJ0c3kQEqPxu++pICSKoiiKoiiKoiiKoiiKopwdbzoICfD7ZywViqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoinKJ8fxwX1BD05rHdE2jHiwGHWkeN83wOY7z9iVQURRFURRFURRFURRFUZRLypsOQiKlfORMJkSB2mwZ4QXIgodfctDTNmZ/Et3U39J1S4UqSEll3qVSdIkmTTqH0mco1crFrjZVwZ2qoCdMCCRe1cPM2Hi5OnrUQAiBW3KwshG8ogOmhm5quIXGsbKLFGBEDNx8HTNjE9R8Aj/ASFi4uTpG0gRP4tc8zLSNm6+jxwyQ4JVdzKyNV3DRLA3N0HCLDmZLBL/oIHWBYS9cO0JQ9ZBBgBE3cXJ1jLSNdHwCN8BImng5Bz3euHalcS+FOnrEQGgCt+hgtUTwCqfdS8bGq3hIITGiJm5uyb14AUbytHupehitESq+RDM00u1RNF17/TdcectyU2WKs3XQIJWxSXfGz9i1/YqLO1MFL0DW/bCcbo8hzNf+27qTVfx8Db8clu2y2yYajS47xyvUccfLBDUPI21jdMbQo+YZS7ty4XLqPoWZCpoQpDti6MbrlyVSStzpKs50BS1qIKQkKLjorTY4AX7RRUuZoGv4pobmBMh8HS1mIC2duqERa4kQBJLcVIV62SOSMIkmDJxagFv3kUhMU0NKaO1NYJg6xdka1bJDLGFRr3oEQYCmaWi6wPfC/6c7om/oHhTl1XjFOu5YGdwAETWQUoIAKQUY4Fc89JhJUHXRhABDAyHA8cPyWhLmTVuHalhH0DM2TrGOETHwnQDd1BCArHhoMQMRNXCLLkbMwKu4CFNHegGGFdbTZd1H2HpYfrdEzu0bpJxRUkrmx8tUig7RhEkgQdfCMk0Kie9InGpYRtoRjYgrCYouwtKQVQ8tbhI4PkjQkxb+fFhH0bM20gkISi7CEEgJmqUjNQk+CE2gt0Yw0yo/KT88v+bhTVcIqh7C0JBOEObFmodm68hAgi6QAeCF+RM3AFMDA4TUCIp1tJiJ1AUCiawFYV7O2Mi6T+DLMM86ProVlq3S8xGWEV4rkGBqeFUPEhYVAbGkRao1+nrJVy4RtXINkXfBCfBydTRbx09ZGDUfZBDmKQnSCRCGQM/YoAuCvENQ89CTVvh41UOkLfACgpyDnrbwSy4EEj1lYbRF0ePW6ydIUd6E6nQJKn5YL9XCeqesuGF56oV1VAGgCfTWKLLqEZRc9IyN0RbFLzt401WEJjDaw7zqzlTw58O2mdEeQ2vUN/1CHXe6itA1jI4oemyxvyDwfNyxMv58DS1lY/XE0eyw2z9wfLyp8DtBb4lgtkbx5mt4s1WEpWN2xNAiqw8RLD3P6Iih2TrudIVgvk7gBZjtUcyOOO5kGXeuhmbpBHUfYYgw/W1h+t3JMt5sFS1uht85vsRoi2JkVT3nbKpNlxCeJMi7BFUPoyWC2RVr5g2AIJBMjxaolTxiKYtqycE0daKtYT+oHTVItqjvbuX84uVqeDNVRMQgqHpoRqNcXPJ97xcd3Mky0g3QogZa0sJs1EO9+cbzYwZI2ShzTQIvQPgSEdUb/b067kQJv+AgbB0R0ZttOD1tgYCg4qNZGkHNh6iOKwSBDnbZB18iYgZ+zMAzBJn2lX3UfsHBna4gdIHREVtWtisXj1Khil7xETUv7KOSEnwJnkRKgEY/gN1ou0UMtISBn3MQhobRHkXWfbz5GkITBHUfPWGhtdgEc3WCsht+x7c18niujjdTQZg6enuEoOASFBy0lIWRjeDNVsN8nLURusCbrUHMgLrfrKdY3XG8vIM/V0OLmxgdUTQzbEt6M1WCsht+ZgwN2aibGx2L9RZFuVBNnshTLbjE0hYdg6lznRzlPJSfrlCveVgRA6fqYUUNPMdH1wUg8NwAO2pQq7jYMQPPCRACNEPDqXhEkyb1iodu6phItJKLLLvoKQu/5oEZfhegCzRNIIMAzdDx6z56xMCre+iWHvbB6TrSD9B0Den6aJqGDHzQddAE0g0QlkbgBuG4iBe2WwMp0QCpCaQn0RfGuAMQumj2uRjt0WVtB+WtCfwAd6yENxu2nbWsRdXQ8TyfWsElCCCRtfA9ie8GROImqdYIhZkqbj0g2RYhEjPxvYD8dBUpA6QEt+Zj2jrJlgil+ToA6fZoc+xqNZ7rU5iuIiWk2qOYls7sWInSfB3T0mnri2FF31hfmuuE1wJId0QxXmVuW+AHzI2VqZZdkq0RMu0x3LpPvjH+Hc/alObqICDZFqE87+A5PsnWxn37AYXpKr4XkGqNYkWNcPx8utIcey7N16hXPRJZm1jSpjBbpVZ2iadt4ml7RZqqJYfiXB07opNqjyKEeEP3rFxapB/gTVfxCw5a2sJsiyH0Hz6vuNMVvPk6QdlBz9h4CUG1DoEHbsUjHdGRZRctYUHNw7DDPjs9ofq1zwZntoo3XgYp0VJWOI9ASggAJFKA8EEiQYhwzkAgw3JCC/OF0PVwHExK0DWkF6CZ4U80gRCCIJBopkbg+GhRIxzrEKDFw/aeFjUgohPM19EiBtLUkAUn7H/ww/aW2f7qfbfKxcv1AwCMJeWNoQkqUmJYy8sFoxGExHdVEBJFURRFURRFURRFURRFUc6Ot9xLLYTYAPwOsBVozhyWUq59q9e+lNSmi+AJnCN58t8/Hg5s6ILsR9cTu7rzTQ94zk8WkUB+ss4jXzlIOVfHjhvc/CMb2bCzM5wg/3ppy+WgXCaYn0eLRomsW/em0qJceCpHc+S+vB+zJ4Getak8O0n6jjXkvn0MLW5gr89Q+sEpkrcOkLtvBOn6xHd2kXtwhMR13RQePYU3WyV5Sz9z9w4T3d6GU3apHc2RvmMNc189iL0mjWfrVF6cJv2Btcx96whGNoLZl6T85Bip9wySu/sEQhNEt7dRfHiU5E19FB4axS86JG/oZfb+YeJXd1KfqeKMlkjdPsjsVw4S2ZTFlZLqvlnSH1jL/DcOY3bFMVoilJ+dIH3HELnvHEOLGUQ2Zik+enLxXhyf+DVd5B4YIfGObgqjRdzpKqlb+5m798DivRzJkX7/Gua+dgh7MIUXNajsmQJARA38W/r5/j8c4er3DXHZzb1E4moi8dkiA8nkiQLPfu8EI3tnEQI2X9fN1hu76VqbwcvlkNUqWipFkM8TJBIEo6MIXUek08hiEaOjAyOTWfX6Xq5G7nvHsfuTFO4dRroBCEh/YC3xa7vQXmVSjTtdovLyLMUHRkCCMDWyn9gAV0SXnFMh/91j1A7MA6BnbJK3DxJZn8FIrZwUo1w68jNVnvjGEY69MI0QsP2WPq567+Cqk6WWqh6aZ/7L+8PJigIS1/UQEGAWouTvWaxnZD6yDi1ikP/uMfycA7og/d4h9JhByfGZm6vz2NcOUyk4xFIW1965lie/dZR6xWPjrk4MS6Nvc5b9T4yzfkcbd//5Pjbu6qQ4X+fEizMgYNM1nWS6Yjx91/Ef6h4UZTXuVIXZL+/DmwwnNVr9SWI7O8OF9XET/ACkIPfNIyTf2c/8fcPErmhHApql4QwXsdaksPoSlB4bo344B4TlbubOdcx+8RVStw6Qf24Se02KoOji5erEr+nE7E0w/4+HSezqIn/vMIkbeym9OI3Zl0DWffyiQ2RjlsjWVuy+5Kvegzc3hzs1hTBNhGmGE5t8n3DdiQRNQzoO+D5EIoggCB8LAtDCxSpGZydmInGW3+0LS3VkFDw3fL8MA2o10HWEZUPgIxDhJDAhkOUyQtex164NJ4m9Ctf1Oblvjse/cYTtt/RxePck1965liCQBJ6P58hmGZlqi/CJn9lK4f4Rope1Urh/hNj2NrzZGs5IgeynNpH71hHckyUAjK4YsSvaKdwzDED08jakhOimLAiBl6th5OvIHh/rDAZUUy4u9bExgmo1nAQpBFLTEJ5OfcTHG69i9cQpPT1ObEcH1Vdmsdem8csO8Wu6kdUAL1dD0zXciQpGykJLhgHK5r9xGLywDpF67xDS8yneP0p8VxfefA13vEzy5j6KuyeIX9GOKyW1wzniOzvxciXqR3JY/UlKT4w167/cNsi37h3mxh/ZyND2NrQ30BehXLyKMxXMkkPgBOT+8Qh+rk5sZyd62sbJ18PAXtkIxYdHCUouGILsj2zCmyhTfGgUCNthxQdGyHxqExRdCt8/Hrbnv30M91RY1ppdMWI7u4huacFQAXCUM0hKSXWsCEWPoOw0Jo9b1Bp1Q2+6RlBx8fN16odzmD1x7I1ZSo+cDINwGBptP72N3HeO4k1WALA2ZEjd3Mfsl/Yj6z4AyVv7Sd7ch5+vM/M3+/BnawDYm7JkP7oeIxNB+pLaK7PMf+Nws58i9e5B4jf0gITSD05SfDD83IiITutPbGHuqwfDzxYQ29lJ+n1DKxY1OKdKzPzl3uZ58eu6iGxtpfbyLOVnJsLr2TotP7qZ/H3DxK/qYP6+YWTNb17X6IyhJy3mv36I6JYWEILqyzMAaHGT1p/Z9pr1ZuXNq00WwZFUnp+i/OQ4EP79Wz61GWswiR41caoeLz00yu7vDXP7p7fx0N8eYHqkiG5o7HjvAGuuaGNmtMj8RJW+TZmzFlxZBgHe5CRBrdZs70gaAXyWnicEovFYuDAkCAOrIcN2laaFbSgZBvQT0ShWZ+dZSbNy7jhjJWb+8hXi13RRfXkGb6pRhq5J0fLJjRgtUdzpCrN/dwBvrAyA2RMnsrmFyIYsGBqzf/UKwtSIX9NF4YGRMBiEJkjd2k95zxRmZwx7YxZvokz5qbC8i17ehogaVJ4Of9diBplPbsQ5lqP02BgQlonpO4bQhWD+e8eRdR+rP0n0qg707jjjhXk612Sa9WB3sszsl/bhTTfK9vUZsh/foAI0XWRmxgrEPYksuhDVoeYj634YmKzq4xfruKfKRDZmKD0xjp+vk37/GkqPn8LPO6BB9pMbKdw7TOKG3nBcwvGxBlNYQylKj4Z1C2HptP7kFrS4ycxfvkJQcNCzNonre8jffQJ8idmXILq1lcJ9YT9E+kPrKD4wQuKGHkTEoPD94+GC9YhO5iPryf3j4Wbfcuo9gyRu6KF+NE99uED9RJ7Y5e1hepbUWxI39aFH1QI55cJTqVQY21/k0a8eolp0iaUs3vljm1h7Zfu5TpryKvxiEb9YbAQwDRBBEPaz6/piX7qUCKNRJgUBCA2/VIQgQCQSaI1+YSEE0m8E72j01aNpYd1TCBCCIIDhEx6P/eMxdt4xxIsPjLJuRzuzY2WcqkfvxiyvPHqKXR9aw0sPjtK7MYtb9xk/muOK2wZ4/u5httzQzfRIkeJsjXd/fB2m45O7Z5j4tV0UHxjB6kviFx2QEj1t454qYW/IUn1lhviODorPTRLf1UV+9wTxnV1U9kwSu6KD0r5Z7PVZ3PESesoGAX6+jj2YovLyDPFruig/N0lsayvuTBXpBNgDSSr7ZohubqU+X8MvhGMbhftHkFUPgMTNvSTf1a+CpJ0hzvECc39/gKAYtrEj21tJ3NTLs09NsveRU8hA8q6f2MyL948wN17BsDSuvXMth5+bZOp4kY7BJO/6ic0c2T2JU/NJt0cZO5zj+IszbLuph3rV48hz4RyVzdd1cc2H1pJcpV5ZytV57nvHeeUHY0gJ63d2sP2dfTz61YPMnipjmBo7PzDE2h1tZDtfewyqOFvlqbuOceiZSRCw9YYedn1giMRpr1stO4zsnePxbxxulrG3/vPNHHl+igNPTrDt5l5qZZejz0/RuyFD17o0L9w3iu8FdKxJcsuPbebYizM89/0TBL6kd2OG6z+xnt3fG+Z4Y/x82009eG7AgScnSHdEuflTG7n/r/ZRLbgksja3/+w2utdnmmmaOVnkvi/uY26sjGFp3PTPNrDhmi5MFVDtTXGnpyEIMH+INnjguvgzM4hYDCOdpj48TFAooiUT2ENDq7zGDAQ+RkfHsvmT0nXxZmYQ0eirzvN5s6Qvqbwwzfw/HA6DTeiCln+2kej29jc013JBfaJM7YUpio8s1N01sp/chN2h8/A/HGfX1lbyjXlw5YOjuOONtmxfgpZPbcJsi53R+7rUVYbzFL5+GG+mMddgIEnytn4QAulLCCTSCxCS5iYT+AF+xcebq6JFDYyMTXXfLPZAiqDq4c3XiKzPUtkzRWxHO/VjebSEiZ6yqR6cI76jg8LDoyRv7KX81Dh6ysYaSFJ6fIzYjg6CqkftwByxqzvxC3XqR/PNPgp7TTqcv5NUAWkuJV4gATCXBCHRNYEXgG4vr5vpZpg3fNd9+xKoKIqiKIqiKIqiKIqiKMol5UzMBPpL4D8CfwDcAvwMK+eIKq8hcP1wB5Ncjfz3TzQiqwO+JPftoxjtMewlu+2Mzo/i4DBRmWCkOELKSrE2tZYtbVuWXVdKiaZrVPIuD3/pAJVCGPG6XvZ48G8OEM9G6N2QedV01eZzBKUicmaG3Fe/SvHuezC6umj/7GdJvvs2NEsNcFzM3JJD4fvHCSoe9to0hXuHMfsS1Ifz+Pl6OEn3/mH0tE1QdPCmKiRv7afw0AjC0BC6hjNaJHFDD8WHTyK9AKMlQuH5KaJXtlN+ahxZCyfiFu4dxl6XprZ/jqDoErmuh8K9wxjtUbypCv5sjdS7Byg8OIIWNZFegDtWJnFzGIwEGS5eqD89QXxXF6XHTyEdH7M7TuHeYSJbWqi+ME1QdrHXNe6lN0F9pLj8XlLW4r3c0k/hwVGEriEMDWekSPz6HoqPNO6lNRreyxXtlJ+eQFY9rIHwXhbIqof5/CTrL2vl6buO0TGUZGBL6zn8q168pJRUK1WOvzTDyN7ZxjHY/8Q47YNJYmad6V/8OdIf/jCV556j7Rd+geLffonc176GFo/R+umfp3b0KP7UFK2f/jliO3aseI368QJG0grzs9soqCXkv3sMeyiF9SoLZ7w5h+L9I4tpdQNy3zmG3hLB7g/L9vpwoRmABMDP1am9MoseN1UQkkvc4WcnOfbCNBDm6ZcePEnX2jQbdq4+iSeQAeMTJxH/MB5OEodw4dkTY7T+zDZm//qVZfWM/D8dJ/PR9cSu7KD48EnwJYX7hsl8dD0Uw/qD01hEVik4PP6Nw2y7uZc9945w8OkJdn1wDY9/4wjbbuph5lQFw9TQdC0MQNJ47YNPT3L1HYMYlobnBK97D4pyulPFUxycP4ihGWzf29cMQALgjBax1qTR4gZB0UF64eSg6NZWSo+eJHZl+D2dun2QoObjTlWw1qbxZmrNACQQlruVF6aI7uig8NBIuLj+wVFStw9Su3cYb6qK9CWp2wYo3jNM9LLWMDDau/opPjBC6vbBsD6zJk3hvmFaf3Tzil2JpJSUH3uMqd/7PZzjJ4jffDPZT/0IUtPw5+fBdRHxOLJaY+aP/ghvepr0Rz5C8n3vRbouQtPx6zX0aJRgZhY3Hid22ba3689w3qoOjyCLBaTjEDgOmqZRfvwJ5r/0JbRYjNZf/AWM9nak62J0duIcOcLsF76ANztH+qMfoeWnfmrVCY0Ac6dKPPrVQ/RtbuHlh06y64NDVAoOemPn4qVl5K7b+nGO59ETJpXdk0jHR0ta1J+ZIH5tF85IsRmABMCbqOAP1NHTNn6+TvWlGVK3D5L77nGSt/ShJy1Kj4+RevcgqCAkymmk41DZvx/puuB5YBgITWP+S18mcfPH0VJ9eDOVxmRJSVDxwh2st7aiZ+1wJzYvQBZcAkvDOZ5H29yC3hph/h+PhAFIACQU7jkR5kNdoKUs6s9OkLixl8LDoySu66b03CTRTS1YvQmCikfx4VFS7x5c3i5yA7QnTrHp8jbu+cJebv5cP/uCPQymBtnevp2ooYJDXGpM14cAyk9P4OfCXVojm7PMfekA2R/ZSOX5KdyxUjP4QfSyNoJcPQxAEkBkawuVPVPoHeHOk7VXZsHQcCfKzQAkAO5EBW+uRu1ojoQKQqKcQbmxPBEH3LESWBoiABA4p0qYPQlKj50ieUs/ld2TAES3tVG4fzictA7oSZPqS9PNACQARtpm/ptHmgt5AYoPjhLZ3ELl+almABKA+sF56sfyGFdFcCdL5L5zbFk/ReG+Yaw1KYQQzQAkEAbwKzww0vxsAVR2TxLd3kZ0U0vzWOD45O89sew8oWm4p8rNACQAsu6T+85REtf3NPv5ll635cc3M//1Q+HC557Esu+GoOxS+N5xWn9yq9rN8wzz6h5CCPz5WjMACYCs+eS/e4zsj21Gj5qMHcnx9LePs/n6Lg48Mc70SBEA3wvY/d0TtPbGae9PMPzKHH60xqQ9gi99bN3mZPEkvvTpindhChNd07F1m7n6HDKQBI2OB1MzcXwH27DRhMbmls1kI9lmmtyJCea+9GXmv/IV9FSK7I//OEZbaxhQRGhhMJKFhT2BDBeECsK6j64jNB2JRIvG0JJJ0DWCXI7AdcH3cRIJIlu2YGQXX1O5cAWuT+H+YYQuCApOMwAJhIs6awfnSVwXpbp3phmABMAdK2OvTVN5ZQZ3tEhQdpt9//iNgjmQFB4aJfnOsC8gsqWlGYAEwOyKLy/DKh7F+4YxWhbrF7LuU3psDHtjhtiVHZSfHm/2WRiWjmNp5KfKZLsSyEBSfnaiGYAEoH4kR/1oDmNn19l4+5RzRAgNqk7YJrJ1/JqPLLvUT+QhAKMtSlDzmmNVVn+S+vF8GIAEiGxuofT4GJEN2ea4F0BkU3Z5m8vxwyCQIvx8AMR2dJC/50Qzn0e3tDafE9mYpfridNjOS1oU7jnRrEvELm8PA5Is6Vsu3DuMvT5D7p+OEd3aitkWo/T42Mp6y4Ys+pr0WX1PFeVsyJ1yePBvDuDWF8dCHvzb/cTSFl0qT593Ks89R/3oUfxSGVmvgWGix2IgBH4+B56PFo+BruONT6ClUujJBM7IKHo6jZZM4gyfwOzoBE3gnDqFvWYt3tQkgeNiDw5Q3X8Ae2CAoFrFn5sjeP+Pcv/fjLP5Hd28/PBJfC/A9wJG981x7YfX8vRdx9h8XRcvP3yyGWThubuHufqOIZ7+9jFiSQun6nHywDzXf3wdZtmj8uIU6IKg7OFNV4htb6Py3GRzrCH1nkEK9w+TvHWgWU8pPDhK8ube8Oc7w3kSqVsHKNy/cP4IqVv7wzpFJoLZEaPy7ETYJm2cW31lBkcTRNZmKT5yksSNvUgnaM53WFB69BTB2gj7k8c5WTxJzIxxedvlDKYHz90f/wJVn6tQfGikGYAEoPbyLNHNrZw8nCPwJUPbW9n32Bhz42Ed13MCHv/GEa798FqmjheZHi0xdijHKz8YY/u7einn6xx/cQYramBFDV75wVjz2geemKBrbZptN/auSMvJA3PsfXTx3HjG5pnvHmP2VFh/9tyAp751jGxX7HWDkBx/aSYMQAIgYd9jY3StTbHl+p5l582eLPPIVw4uK2Pv+8t9XPmegTD9EZ1XHj0FQN+WFp6+61jzuVPHi+z+/jDlXI2gUafJTVU4vHuS40vGz/c+OsauD65B0wX5qSqPff0w/ZtbOPTMJKX5Onf/2V4++eu7SGRsnKrHo393iLlGm8FzAh760kFaehJ0rVVl/g/DLxQofP9upv/wD5GeR+vP/zyZj34Eo/W150TVT5xg9k+/QOGf/onYz/w0rTfexMyf/AmV554jsmUL7Z/9LIkbrg9fo1SieM89TP3B/0LWarR++ufIfPzjGG1tOCOjzPzFn1P45rcwenro+o3fIH79dYsBqIDhwjAH5g5Q9+u0RlpJWSk2ZDewf24/x/LHkFKyJr2GIAiYr88TN+N4gRf2X5TCzSloBAPAl+HGVz0JzPY3HhgkyNXCeRgN0gnIf+co2Z/cwrU39uJ96wha1CBw/GYAEgD3ZInqvjnMm1UQkjOl8sor1I9GmgFIAJyRIs5wEbM/gXQbAUiQBJ5EBjIMIOkE4AeYrVGkF4RttK2tSC+g+spsOC/ykVFiV3VSHy7il9ywH/bBEVK3DlB85CSxy9spPjjanENpr00jbJ3KnqlwPsKBuWY9oH44F373N+YhRC9rI7q55TXuTLnYeH7YHje0xaDQhibwJRjm8iAk3z1aJm+k8FQQEkVRFEVRFEVRFEVRFEVRzpIzsX1dVEr5ACCklMNSys8Dt56B614yAs9HGFo46LwweNUgnQC/5DR/P5U/hdAEB+cP8pkHPsN/e/q/8Ws/+DV+d/fvcnD24LLnunUfw9SpFJxmAJIFvhdQnK3ymqoVhOeR+/KXKdz1bWS9jjs8zNi/+TdUnnn2rd20ct5zC3W8sXDxjmwsQjM7YriNCQjSC0CGkySXDoTiSfSMjdsYtBO2TlB2EREDv7F4wWiJ4E1Xl13baI/hnPZ6RkcMpzH4H+44ED7XbSzSEIZA1n30hNVcuKQlTfz5Omg0J2SaHSuvbXbEwsUiy+4lhjvRuBcBeAF6xsZrfFa0iE5QchG2jl9u3EtrpDnheeHaS/kTFdobC0fnTpVXPK6cGUfmjuA7gpFXZlc8Nn44h55KY69dQ/Hee7E3b6L8xBPM/eVfEpTLeFPTTP72bxPfcSWlBx9k8v/336mfOLHiOu5YqZmfl5Hgn1bGLrUwYXipoOQSlBcnci1deLT09YKKGiS8lLl1n6ONXauWOrkkYM3pHj/1OC+PvtCcbL5UUHIWA5A0yLoPfgDa0h2DgjCfO35zQtcCp+Yv2/14fryMbmpEUxanDs0zcFkrkycKK157ZrREpnNxgsxr3YOiLHU8f5yfvfdn+exDn+XvX/kqzpH8inO8mQrC1MLFETLMs1rMxC84aPFwEob0AryZKnrGxi85eI16w1LOyRJWbwK8xXy/8N3ujpfxSw5mRyy8TtoOF3E0Xm/hPG+6SlB2CWreiuvXDx7k5Gd+ifqhw0jXpfTAA8z+xReRTri7YfWll8BxGP+1X8MdHUXWamEgwPvuwy+V8EtFZKWKNz2DOzdHkM/hTE+/xXf4IlCrElQq+LkcslKh+uKLzP7pn4bf8dPTTP7n/4I/n0PEYnjj40z8x8/jnhoL39+/+yq5v/8aUspVL13O1SnN14lnbPLTVeyoifQl1aKDU/WbAUgA2jtjeFOVZt1Yi5v4+TCfGY3HTueOlzHalyxacwNk1QsXWnoSoQmk4yM9f8VzlUtb9egxglwOWS7jFwoIXWf2T/6E0kMPEThWGDSx0b4y2qK4k2W0pIU3V0OLGsiKR1DxQIT5zuiINT8HSxcbhAdA+kFYrjbytLC08DwJZjaCO1FGixhh+ytYvV0UFBySCZPAlxwZHeY/P/Wf+dl7f5avH/w6fqDy+CXHDyfwLrTJIVzMu/Bzad8DgJGNhI83spbZHgsXFA8lkb7EHa9gr0njjBZXvJQ3UcabX/m9ryhvVm12FjNqgRuEk9KFAFPDL4R1xaDkoMWMZW2yhX6nBUZbtNlPtUBPWvhzNU4X1D3qR3Mrji8E3PFL3rJgIQv8XB2/sDzvn/7Zap572mckqHo4w8vbdcLWm/1sy547W0NPWM1+vqVk3Q/r6I3vm9PVR4qr1puVt8gP86VfXNkv4E1XofF3zE+Ff7PejdlV2+iF6RpoAtPWmZ8qcbxwHF/6/MrDv8JvPfFbfP7Jz/Nbj/8WE5UJZmuzTFXD/ouXZ19mtDjKt49+m7uO3MVYeYz/9dz/4uHRh/n9Z3+ffH2xTZf71reY+/M/R1YqeBMTTP+P/4E3PYM3OYU3PoY/dgp3ZAR3eBj35EncyQm8mZkwKOPYOM7oKN70NO74ON7UJML3wwX48zmCQgFneITa/v1n4U1WzgVZ9XGGixjt0cU+/CXqJwpIKaktCTi6wJ2sYLZEcBYCQzb6/pdZ0gfm5x0wlvSVrVK/dceWt+cAvJkqWsRAixvLjkk3wIoZOJXw8yfdgPqRlemsj6ysyygXrlquiLkwTmUIpB8Gg1zoS/JyNfxcfdlYldERXVZHXqj3aglz2ff1anlSj1srvr+X9XH5i88xGq9ptkWRteV1CS1hrjqm4RcdtKiBN1VBT69ebzm97qEoF4rifK25OH5BvexRnl+Zz5Vzq37sGPP/+I8U7rsf9/hxhKaB41B9YQ+Fu+8mKJYQtkXl2Wcp3n0PeksLzvHj5L7xDYz2NupHj1K46y7Mrm5KP/gB1ef3YHV1M/vFLwIgfJ/ZL/4l9po15L75Tfy5OUTEJj8yBzIM2JCfqtIxkGS8MVbhNYI2xTMR8lNVMp0xppf0T/huQPtgkrHGd79pG5gEOI1yeKFfzW8EqFgo46XfaEdKuVhPWWhbekEjSJ9snie9AC1m4BecsM05XmrUmyrhNYQgqHmLczI0EKZGUHCWzXdYysvX+NxDn+O/Pv1f+Y3HfoPPPfw5TuRPnPk/7EVO1ILmnJelvFyd6z4WBnVp7UsyeXzl+Gozf6UtpkeLtPYmqFW85rktPXGmVhmXPfr86mNHw3uXz6XoWpPi1MHcivOKs6/9nS4DyZFVxrCPL2xSsURhprqyjK142DGD1t54c1xZCPDqK/sdRl6ZpWNocdOu9oEUo6+sbMPOj5dJtkYa/6+QXBKQuJJ3KDfGBSsFh/GjK8ca86v0ayivrbJ7NxP/8T+GwZoKBaZ///cpPfLoaz4nqNWY/oM/IP/NbyJdl7Y77mDi//1/qTz1FLgutZdeYuxXf5XKCy8CUH3uecZ/8z/gz8wQlEpM/8H/ovjAg0jXZeYLXyD/919DOg7uiROM/uIvUjtwoPlah+YP8ZPf/0n+zSP/ht987Df5zcd+kyfHn+TlmZf5lYd+hc8/8Xn+05P/iX/98L/GlS6H5g/xxy/8MQ+NPsQvP/jLVHPFZe1EaMyjWKUf7rWsWrcuOMiKj+kH4RhNaxRvtXbuETWn4kyZmR2j9soBnBOrzDWYqiI0DREECClBaAQ1H00XSDdACBCGFs43mA37y7SIjjtZwWiJIL2AoOIhLC1sZ3XE8EsuwjbCYL0lNxybcxfn5bgL8w1Y3m/abOstmYfgrzKvQbm4OY32u6kv9k0ZukYgQV8ShGR0rsJvPzLB3R3vwXNffd6ioiiKoiiKoiiKoiiKoijKW3EmgpDUhBAacFgI8UtCiI8CHWfgupcMzdQJ3AA9bS2b2AggokZ4vMHUTPJunv+953/jy8UB2N2TuzmcP7z8uobA9wIicRPT1pe/qIB4YzDjVdNlWchcnsI99y5/IAhwjh//Ie5QuRAF1DAGw8F8YYRFhTtWwlp6TAN3sozZ19gFxZcIS8efq2F2hIvNg7KHnrKQNQ89GeZlb6qC2RNfcW379NcbL2MNJsNrC8AQuNOLz5WOH06mKToYLeGEAj9Xx2iLQgDCCvO9s8q1nbES1sBq95JcvBdbx5+vYbQv3IuLnrYbgU/CQR13soLZm1h27aX0/gRjjYlGqTa18/LZUHbLnCyfRLMD2geSKx5v7Uvg5AvY69ZTe/llUh/8IIXvfW/FeZU9e4hs307txRdxT55c8bg1kCSohPl5GQF69tXLUyNrh/l3CT1toScXBwbNnpU7CVmDKUTcWnFcuXQYpkb3+syK46vlc4B8Pc//3P0/OVA/jNYoE5sEaAkL9OWZUYsZoGvLJq6LiI6WMMHWCU4LjqbpArHkEsnWCG7Nx3cC2vqTTJ8oku1auRtPuiNKaW5xcsSr3YOinO7xU49zqhTugLY/fwB33cpd0s2OONIJEAv1XSnxCw56S6QZJEoYWjjhZ66GkbIxspEV17HXpKkdzSEsrRkYcOG73exPoqcsaicLmF0xvJkaLPneb57XGUPL2Ggxc8X164cPhwFHlqg89RSyVkNoOka2BXdiojmhaEHhrm+jGQbScSHwCYoF9EScoFrDz6+cKHWpkbUaeB7SdRGmSeE731lxTm3fPrRIlPqRoysey3/rW3ivEszFjptYER237hFJmPi+j2YI7KiBFdXRlpSp4ydLmF1x3IlyWGcoORiZsH7gnCw1669Lmf3JZYvnhKmhJUxkAFIX4c7vER1h6Cueq1zaZLmMdByCcgWh6VCvU37scWS1ijBqCCOc6GgPJPGmKli9Cfx82E4Kih5a3ESLm8hANidFCk0gpQzrAEtpIDRBUHaaZWdQ88PzJHizVazeRDNYI7oIy8TT6r9a1ma+MVHSiywu4vnD5/+QkeLIWX2/lPOLV6+DroEmsJYsIFgIHKbFzbC9PrhYX/SmK+HjjT4zp9E3UT+UQ+gCqy9B7eA89io7VJs9CYz2ld/7ivJmBWNj1AslMLVw8rkE6froWRvnVAktZRNUXPTMYj/BQr/TAnei0uyTWuDN1TA6V7altJhJZMvKHWQX+uf0lNWcsL74gmEQX/20Oq8zVsYaWtkWM1qXn6fHDewN2eX3XfbQIivr4kZXDG++tmpdR1g6ImqADOs5p4usz6xab1beIlNDBnJlvoDw79RoN8UyYZ9TbqpCS+/Kv1+sMSbhuxI/WmemPMMjo4+Qq+ea50xXp3lp5iWKTpGyU8bUTGp+jbuO3kXcjLM+u577R+4nG8mSsTN859h3ODwfjmF48/Pkvvb1Fa/rTU4gPRdZd5B1B1wPPB9cFxwHggC/VkMYOrJeJ5ibh8BHVipIx0GLxRC6TlAsotkWztFjK15DuTBpMYPIxgzuxJLxiCUiGzIIIYhuXVlmmt0J3Lka9sLO5o2+/6WEqTUDRukZe1nwhtX6/a3B1PLg7IDZHcOvessCVpudMUREo17x0KzwOsLSVi3bV6vLKBeuYHIcx2v0V3kSdA2hi0ZbSWC2RjGy9rKxKnes3PyOh8V6b3Pcq2G1POmXHSIbl3x/B7I5RgYg9MV22sJYnztZQYsay74z/Hx9Rd0AwjGNoOphdsfxZlevt5xe91CUC0U8aYVBgZfQDY1IQo3RnW+cEyewOjqx+/qoHz5Mbd8+8Dysvn6MdJry448TlMtENm/BnZjAOX4Mq6+PoFKlfugw9tAQ7tgY3sQEsV27KD3yCNJxiO24ktIjj6JnMgSVCt7EOPHrrqN4//3oiSSWHwaIWugnzk9XaWm0gfRGX4Vb84gmTYpztWZQfr0xppafqtDSHW+c51OXYDfKYasvQVBdHH9eKOOF3mhHLrSnFuovQeOnCI8vnCcMrTmXwZ2oYPUlw7kW/WEbUAjQokazz1B6EtnYkGXpfIelxs0Zav5iP96R3BF2T+4+C3/Zi5uM6dhDqRXHjdYIj345bB+VczXSHSvnkizkr2rJJd0epTBTxbJ1sl1hfirOVsl2r2zP9W7IrJqWrrXL65uF2Vozby4VSb52W11ogp5VXmO1ce14evUyVvqSwkyNbOPzIiXoq/QdtPUlKCwJEJKfrtDWvzK/ptqiVBrBHmJpi/qSzV7MiE6kESjQjhmrvtfxtCrzf1jFe+9dcSz39a8RuK8epMOdnKR4733hL6aJNzaGc9oGQX4uhzsajhkUH3545Wv8/d/jjI2T/9a3lj/g+8vGAb979LvM1eaav8/WZrmp+yYeHHmQ2dpiQJ652hwPjjzI+sx6hgvDdMW72De3j5xVWtGfJWx95Xyh17HaXCK9JYKWMKhrGsLW8aYrq84Zimxe2W5U3pzY+Czzf/vXK/o8AczuODIIkLqG1AQykGhRA98JEKaODCTSCTcYXAhGGpRczJ447nQFYWhoSZOg5mMNpnDGSuhJC+mGwXL1jB2OoUV0ZKOvweyI4TcC3i3NZ816wJJjq7XPlIub1wiAZGhL8oEm8CXo5mIZNF0Kx12n7A781yh7FUVRFEVRFEVRFEVRFEVR3oozEYTkc0AM+GXgauAngJ88A9e9ZGiGTuD5EDfIfnh9c/KjiBpkP7Yeu2/JogxNw/EdxkpjK65TqC/f4cIwdDzfJ5IyuP5j65YN7O58/xDtq0w6XyrwfDANjPb2lWlOrByIVi4ujigTu74dvcWmtn+OxM29uNNVzK4YZnecyp4pUrcNIms+wtSx1qQoPz9J6t0DoAuCkktkSwuVPVMk3tmHFjNxx8vEruqgun+O2NWd6Bmb+pEciet7cE6WsNekMDpiVF+aJnlrf7iAOGlh9SepPD9F6t2DjZ21JfaGDOXnpkjeOoAW0fFmqkQvb6Py8jTx67rRUuGub/FruqgfyxHZ0oLeGqG2f47kO/vwZqqYHTHMniX3UvcRhsBak6b83CSp28J78UsOka2tVPZMk7i5N1wUdapE7OoOagdmie3oWLyXG3qaOxdoWZva1jaO7Z1l6PI2OgZXTi5R3rqaVyNfz/O5R/81m67tIrFkEL+1N0HX+jSTH/8g0nMR0Sh4PmZn54rrGB2deJOTiGgUEV05gdYaTCE1EebnxgI5YWpkP7kRs33l+Qu0jEXmQ+uag8Ra3CTz4fVYvYtlsD2YInZNV3MSsNkTJ7K5BXuVRSDKpUNogm039ZBoWczTHUMp+resnBgBUPEqjJZG+crI3+PekV5cRGxoJG/pp7xngsyH1zUnn4uoQfrOdWBqVBs7X4moQfp9Q/gB1GIG13547eIiYgFXvXewubNVW38CGUh2fXCIYy9M0TkQZ+ZkiWRLhFTb4kSIlu4Y0YRFrey+7j0oyumO5RcXjE1Xp3ks8yLmusXv0/D73UYYIlyAmY2gZWxqx+ZJ3NBDde8MyXf24ZddgrKLvT5D4PgYLRGiV3UsL3e3tuAcyZG6bZDynikSN/ZSOzSPtSaN0RrB6k9ReWKc2K4uakfmSb97gMrzkySu76F+NEdkUxYEpG8bQLNWBo3QUivrAVo6jdB1pAwI6nW02MrvE6OrK/yP3mi6aXoYzEQIMFYuBL3kaBoIgdB1kGD29q44xWhvQwY+emqVRbfd3WjR1QPFtfYmeMdH1nH42Sl23D7Aiw+cxIoa4QRcwbIy8gffOY45lAJDEL28PZzsPV0lenk71ZemMbvjRLa0NK9trU+jJ8xwxzQN4u/oxjlVJP3BtegpiyBXI3lTr1rAo6xKWOZivtcE0jCaZUz50W8jvRr2ugxGe7QR1FRgD6XwczW8uQrogKlhtsfQ4hbRy9sQukDWfbIfXb+srpu5cx1Y4efMnaoQvbKdyp5Jku/qp7J/lsT1PWBoeIUaImaQun2Qyr5ZkrcONIM1aQkT/x097H1mkk3vy/KPM19t3osTOBQdteP7pUQKQVUECB3iV3c2AxeUn5sk/aG1VPfNENmQJbIh25zQWz0wh56xSb1nCGHp1I/kiF7WSlD3Ceo+9sYMetJCz9jYmxfrmfa6DHqLTWRt5lzcqnKRErZN+X/9d3xbx+pPoMUM9JSNFjGIXtaK9HxStw/hTodlJoKw3+m9Q4uTxwNJbHsb9tIFO7og+5H1iwsZdEH6znWY7THiuzoxlwTmie3qbAbxMTtjZD6yrtn+E6ZG5sPrsPqSmF1x0neubQaj9OeqpG4daH620CB5a/+KxWbC0EndNoDR2ThPgEgamANJku/qa15PT1tkPriW2uH5Zj/fQtoTN/XiVz1afmQjImpQP54nfm13czTCaI+Seu/gqvVm5a0xTANJgJaxSDb6aQH0tE36/WswG/XL7nUZhi5vZc+9o1x1+yBWdLFtMXhZK9muGPPjJTADjor9xMwYh3OHV7zeeHkciUQIQd2vM12ZpubVaI+14wYuJ4sn6Yx3UvEqYYD1ehhIUUQimD09K66nJZJhHV/Xw/aOYYDZ+KcbyCAI60CBBE0gYtHGikodqetI10MGPsKyCTxv1XaYcmEShkbyXf1ocas5HrEgemU7dmPBY3Rr6/L6wMawrR67soP0+9dgtEWaff8i0ugjs3VS7x6g/NwksZ2dSC8g+Z6BZj+/M1EmeWt/83e9JULytn6s/sSyMjH+jh6svgTVF8NAl5EtLWhZG5mxMSMG2UbgdiEEsas7F4OiALGrO5b9rlz4ZKkICETEQIvo4QLxmImWsolsyGB2xwncALMz3hyrcsfLmF1xzMZi4PrRHInruqmfLIbjXo1A/9V9M6Q/sKYZpE9LWiTf2U/ynX0Y3Yv168yH1jbzeeWVmbBv2NSoH8uH+TNm4M5USb17oFmXqO6bI/2Btc3XwhBkProeszNO9uMbwgV4dZ/4NV2n1VvWYnap8QzlwpTM6lzzoTXNfj4h4LqPrSXZouqq5xstkUBKiZfLISwTo7UNDB0Z+HiFAkZbK8KyCOp1CHz0bBYpJUGlgt7SgvQ9pO+jJRMEhQJ6aysYBt7sHEZHRxi0v1ZDSyTx52bDY4aOuP+bXL4zwaGnJ9lx+0AzCEkiazN7qsSaK9o49MwkO94zgFP1MG2dbFeMo3umueLd/cyeKtMxlCKWtjj+4jQlTSO6owMtaoAmsNekcSfKxHZ0UDswR+KmXiovhPMXKi9OkXr3AJW9M6RuG6DySuPny9Phz70zpG4bpHZknsSNvbhTZex1aTRbJ6h5RK9op3p4ntRtAzjjJayhFEZbFPdUkdRtA7izVYSlhfMdsottush7e/m7+X9Y8TcYL4+/zX/1C1/95edI3Ny32BYXEL+uG701QrIlrB8e2T3F5bf0YSxZdL7xmk6mhsN+U00X9G3OkmyNYJg6mc4YqbYo5ZxDNGEuC6qR7YqxdsfKOV4QtvVa+xa/rw8+Oc51H123bFOrdVd1kOl8/c11Nl7TRbp98byWnjhDl7etOC/bE2fn+weXlbE3fHI9h5+bpJyrE0vbzevkJisMbFsyjhLRufbDa5dtmlEtumy7sYf4kjkhbQNJgiDArYeB5K/76DoOPzsZvp4muOXHN5NuzOeIJi3e9eOblr3X227qoa1PbaDxw7IGB1ceW7M2bLO/Ci0SQc822muehxZPrDrWqSXDv4fV17fiMXNoCC0WDcvo0ywdB9w/t3/F493Jbk7kT6w4fix/jISZIGNn8AIPgN3Oi7R8atOyOZwtP7YZo/WH23zKSEcbdffGeEnSJPPhddSCGg/+0zHEu/qRgQQpm+1agMjWFqKbW1a/qPJDk5ZFUCqhr40tC44e2daK2Z8ATUOYAj2io1lauHFEREckwqCNWtLGK9YJKi6JG3rwig7SlySu7aZ2LE/ynf24Y0XMjhhWbwJ3qkzqtgGqB2ZJ3NRL9cBc+L393CSRrS0EJTd8/o291I/kmv2ptYPzy/ooVuu7VS5+XhBuImUs2RBFbwQhMczFQGGF6mLgERWERFEURVEURVEURVEURVGUs0XI03ba/qEvIMQnpZRff71jpz3+ReCDwJSU8rLGsRbg74Eh4ATwz6SU843Hfh34WcAHfllKec/rpWvnzp1y9+4LaxeOWr4CAZALF0nqKQv7tF0xx4vjVL0q//P5/8kjJx9pHhcI/u+7/y839N6w4rrzMyUCN6CScynO1YlnLFp7EyQyr72grXryJAKo7X6O8V//9eau7PaWLXT91/9CbNu2t3zPFwHx+qf8cM6XvOv4DmMP3k1C70ZLdqEnLXB9AheMlImXr6NFDYSUeHWJlTJxC3U020DoAq/sYaZM/LILuoZu67hFFzNp4lcdJDpGTMfNOxhJA+n4BJ7ATBq4eRctpoMfEDhgpAy8goMWMRACvIofXrvkIiwdzRC4pfD1vLKD0A30iIabdzGSJkHdRQYaRkLHzTnoCXP5vRTq4URQJF6tcS/FOrplgs4q96LhFjzMlIFf9QANI2bgFOroCQPqPn7FQSQMpvN1om1Z2nqTRM+vHbPOeN6Fc5N//cDnhakX+IX7f4H/cPX/y7WRm8lPVRCaINMRIxOtc+qzn8WfmiL1gfcz+zd/S98f/iGn/tW/ChdxA0ZHBx2/8euMfe5XaP/Xv0LmU5/CWGWRQuD4eLNVpBcg3QA9aWG0Rlfs3nO6erUO4zX8iouetrD7V17br3u4YyVkzUdLWZgdMTRTTXB8FRdt2bua4lyNufEyui5o6Y4TW2U3YwDXd/n8k5/n20e/TdyM8zuX/Tbr/DXEE0liloUsuYisiahDUHHR4iaBLqgFAYYv0Ws+mq1TF5KZWoV9zl6ubb2OWt6lnHdIZC2siE5psgCGjRHR0XWBX6kSc+aofPWvCXbdSk3EyF62jtLJaUQsgRUzMLIZ6nWJaemveQ+XgEsq754JD408xC8/9MvLjv33a36Hjd4QrUYrkWg0nJglRLgLvQZuxcOIm8iqh65ryIWi1JONHWdFuFugoSEa5blIWtRzdYy4iVdz0S0D0xDIqhcG7onr1HMOVtzCLTnhRLFAYkYMNB1kPUBYOkbGRn+V73tvZoZT/+7fU3niieax9l/5FewtmwlKJZwTw9jr1zP9R/8H51BjcZ+u0/N7vwu6Ee703djZW3o+eiZD7PLtCPNt2z3+vMy/1QMHCOoOQbGAdF2E0Dj12c8i6+HOP0ZHOx2//huIiI2wLKb+y39d3FVN1+n7o/9D8pZbXvX69bLLzMkS1ZJDJGEipcS09bBO6km8mk+l4BDPWNhJk5SmQdlFmBpBPUCP6QRuQOD7+AmBXpBIIZkyc2REEtsx0IzGDpZmuChJehLN0NDbIhix86r+eKE6L/PuW1E7MYw3MY70ffxCAau7m/qBA0x8/j8BENl+Oa2f+XeYXQME1SL+fAGCehjMceN6hG2DLsId17wAKSX4EinCxZ1CCIKyixYxQJNIBDgBgRvgRg10P/y/NDU0P8CwDQI/QEgJhoZwJYEMEIaGW/XwbJ2Ts/MYSfg/w7/HE1OPN++lL9HH397xt7TFVk5QV4CLMP8ClJ54AnfddqJo4PgERQfN0ilHdGKejwxAE+GOg3gyDDaWjoAlCObqBE6AFjdAEgYTTRlIJ0AWwzqurPtIXzbba5qt2lXnwEWZdxfkvvUtCs+/SPaXfhWrHiCXlKFUPDAF0gcpw+90oQv01giy7BNUwj5fIxvBr7p4szWEJjDaomiWjp+v4+XCPjejbbG/Iah4uLMVhK41z13KmSjh5+roCQuzJ9F8nvQl3myVoOphZG30lI1fcsLXtXXMtmhzh83T+SUXby5ckGa2xhCmhpur4c/XwQswOqIY6QjufA1vpopm60g3AE2gxQ3MlvDa7mwVb7aGFtXDurgvMVojr1pvPscumrxbz1XAlciCS1Dz0LM2Vmc83Cm9oVKoM3migOcGxFMWhZkaVlQn1RZBNzXcesAJcYgX5/dQ82pkI1n++7P/fdnrfObKz9Ad70YXOr2JXp6dfJaXp1+mUC9wfe/1jJfHeWr8KT6x8RP88Qt/zNc++DU2ZDcAUH7mGUZ+9uegMUne7O0l8yM/AkgIgrCcFwJ0Dc2ywLLQdB3pukjPQ+gGIhZD6Bp6aytaKoU/P08wNw+GDr6PvXUr0Y0b37b3/Ry7aPLva/HLjTLM1JBesGq56Nc8vOkquD5YOkbKQk+FfVF+0cGbqyGiOgLw5mtoUZPAD8ALdzs222MIXeBOV/ALTlhHjujgBfhlN9zRWBIGaLc0ZN0nMDXKToAvIKUJtECCpVG3dRwnQIuUaetaHnjHr7p4MzWELlYt2y8hF2XerRQKVL7xD/C+jxPTNTQnCAORELb7CQjHXQUgCfufvABh62Egx1w93Gm7LYqs+XjzNYQhkE6AFjPRWyL4czWCqoeesTEa/a1+uZHHDQ2zPYpfcPCLLnrCRM9GwnpBxUNPWwhDCz9PUT3MxxUPPW2Hu3IXHfxcHS1mLBsD8eZr+GUX6flhX5UboMfN8Bz9rAw7ne8uyvx7qakfO04h0kZlvk4555DI2kQzOglRJdrdfa6Td7ZckHnXm59n+o//BM2yMDo6kLUa7uQE3nwOq6cHs7MTZ2KC2r59xHbsQBg6pSefIrb9MrRkitKjjxLbuTM8/uijpN73PtzRk9QOHSL9wQ+Q//7d2GvXYrS1UrjnXrKf+hTF++7D6u+jOjED7/4YfjRNfP0gDhaxlE215GJHdXxPIhtjBtWSQzxlUSt7aKaGpgmcikssbVMtOpi2jmVqRAKJqPsQMwicINwcxfERmkA3NAIvQLd0vJqHGTXxqi66bSA9Pwxa7of9b5ovEZog8CWaqeH5sjEGIpr1pfA7J+xr0YQgQCIQaEYYTFAD0ASB41G3PSatee46cRdfO/S1ZX+DP771j7m5/+az+nd+HRdc3q3s309uzx5ab7kTf76OZmqIjEWu7BIEUJqrE/iSVEcE3w2oFT3iGYtkS4TCbA2n6oVzHjpjVAoOc+NlNA1kIKkUXUxbJ9UeoTRXRwhBtjv2mnPByvk6c2NlZCAbwXQijB2eJz9dxY4apDuitPa+sYAcxfka8+Pl133dcqHG3Kky5bxDuj1Kx0CKSrFxL7ogkbEpztUQQpBsi1DJ1XFqPpnOGJmOGJWiw/xYGc/1yXbFSLXFlo2fp9qjVPIO1ZJDui1GosUiN1GlXKiTbImS7Y6hL2kLSynJTVTCe44btPTEsaNvy1jbBZd/X0vt0CFGfuqn8efnARCxGIN//VdEt29/zeflv/s9xn71VwEYvOduil//BnN//ufNx1N3foiWT3+a6IYN1A8fZvhn/h/8mZnwNaJRBv7qL4ldcQXFBx7g5C/9q+ZcxsgVl9P3h3+I2djc4a6jd/EfHvsPy177v7zjv1CTNX776d9edvzf7/r3GBj8zu7f4Zeu/CX+957/zRff+0V2de3Cna0SlFz0pInR8sMFIFlQL9aR04v1cDcmKRcl9bJPtezS2RpBq3sElo7wAuyYidURC8dozg8XfN697/h97Hqpwviv/Trd//B9LD2JAETMaLbJkIT9UZpA+hKERIhwTFg2vkfFwrkaEIgwMK8mGkFzNfAb87A1EfYNm1rYhosYBF7QeE2dIO8iIjpaxAjbXVEdDI2g6CJsPfz+NrTX7LtV3rCz0VB9axPuX8dTx2b51Bee4ss/dy03rA/HT3/xS8/x7AsH+J1N87zn078EwHdeHONf/d0eAP7xnT5X3XHn2UyW8va7JDtZFEVRFEVRFEVRFEVRlPPPmQhC8ryU8qrXO3ba4zcDJeBvlgQh+V3g/2PvruPsqO7Gj39Grvu6a2w3TlwIECS4e4UWWtpCS5Hqr/rUXZ62z1OXpzRQSnGHAAGSkBC3je1m3e26zszvj9lssiRIIclmk/N+vZK794zcc+49d+7MmXO+p98wjB9IkvQlIGAYxhclSaoF7gPmAkXAC8AEwzC0t8vXydpBpyfSY84omOzh91t+z2vtr5HjyOHO0+5kWdky7NajO1N2rLUV4nG01jZSzc0obhfW8eNxTpt2VF9nDBvzN9reTttgE72b38DW0k1O+SRigz2Q0XHk5hNsrsdXVEEiFkKPxnAVlzLYvA9PbgmZTJLkQC/esnEE2/bj9uVgKDKRzjb8VRMItzdjs3tQXE5CbfsJlE8g2tuJIitYA1mEWhrwlVSTCPWjp1K4CooYbKrHW1BKKhknHRrEU1JJsLUBdyAfHZ1oTwf+igmE2htxuvxgtxFubyZQMYFIdzsWixWL10ewpYFA+XhiA72Q0XDk5RNsqsdXXEEyGkKLRnEVlTHYsg9PbjGalibR33NIWbIxFIVIZyv+yomEO5ux2dwoLtfBsvR1Eg72oJUVkj19DiVZFaP9UR7JSROEBKC3v5etka38eP2PaQ23Mi1nGp+d9VkmZ03GZXWR7uwksX3H0EyoVtKBANZolFR9A5LVirWygkR9Pdb8Amw1k7CevJ0KTxYn9bH3/dg3sI//2fI/vND0AgF7gA/VfohxvnEsLF6IVbGyun01P3njJ+wd3Ms4/zg+N/tzLCpeRGOwkbUda1ndvpqXW1/Ga/VyU+1NZNuzObv8bKz724lv2waaZs4u5HaTamgwZ4rLykL2etFDITI9vVhLSpAcdpL79qF4PNhra7FPnDjab82JQtTd/1AwGeTRfY/ym82/IaWnuG7idWTbs/nvTf9NoauQu0+7G6tqHT7+T82ZymdP+ywP7n6Qs8rOwi7b2dK7BZfFxdzCuczImzGq5Ul1dBDfsIFMbx+WwgLk7BzQNfRIFEmWzcF1djvptnb0eAxraSnYh87vNQ1JljEUBVmWUUpLsWVnH8/sn7D1N7ZrlzkQMZVCUhSMeJx0UzOSxYJaUmzOfJnJIAcCkEqRbmzCSKWwjh+Pa87st52V7Z3sHdjLUw1PsXzXci6uupiZuTPpS/RR4avgt1t+y/a+7VR4K7hr1l10Rjt5peUVbpp8E0/uf5InG57Ertr5+NSPc8W4Kwg4Au/8gsJ7ccLW3fcjtncvRiQChmGOIbBZ0fv6Sbe1ovh8WIqLMWQZfWCAVFMzssOBfdpUHMfgN3lj10aaQ80ktAQ59hw0XcNv9/NC8ws8uPdBbIqNGybdwGm5p9EebefeuntpDDUyJXsKX5n3FabkTjnqeTqJnJT1Vzd04m+sJ7l3H0gStnHVNJW72RPaQ7W/mqm5b99RXRgTTsq6e0CsvQNtzx5STU3Ibhe26mp+n36ZcyrOEce0se+krrvvRUuohX2D++hL9OG1etnWu43ldctRZIWrxl/F3IK5KJKCy+KiNdxKQ7CBgD2AJEm0BFvw2DxYFAu7+nZx/aTrmV80H1kyB08Yuk5i504SO3YAEmp+PgwN7JAYHidp/ifLSEgY5mg7c1CIJCNZ1KFgJA70VBojkUAydFAU1Kws7OPHj+bbd7yJ+juKBhODNAWbqIq4kLp7SNXXI6kWrNXVGHm5qMX52NWje//uJHLS1t3Yrl1kWlpIt7WhBLKwVlbyd2M1F1deTLG3eLSzJxwdJ239PdXEd+wg1dhIpqcHS34B1opy7DU1o52tY2nM1t1Mby+JffvQYzEwDCTJHORrnh9Kw/+MdNoc6GuxoKfT5roWK0bKDF4t22wYqTTIEigKejKJbLebE1gY5nI9mUC2WDG0DIamoYfDWErLcEyuRfH5jnlZj5fdfbuJa3GkA9ViqAtZXI/z0N6HeK7xOVwWF7fNuI3Lx12Oy+IavcyOwbobi8Wgvp7U/v1o/f1YCotQy8txThL3Tk9BY67+vpNkQwOJujoMTcM+qQb7hHe+BteTSRI7d5Jq2I8S8KMUFJBpbibd0Ymam4O1vHxEIJNkYyOJnTsxMhnsEycO9zvQUykSO+tINdQje704Jk/Gckg/n75YH/fvuZ+/bP8LEhKXjbsMr9XL0pKlPNf8HPftug8Dg2snXsuZxWfy4N4HGRcYx6q2VVw5/krOqzgPh/rego6chMZ83W0ONmOEImTV95BuakJyubCNq4acHOIOlezsguOWF+G4G3NBSF7b28sH/7SWBz6xgLmVWQB8evlGVm/cxU+mhFn6kU8A8I+1TXzl4e0APLAgztzLrj6W2RKOPxGERBAEQRAEQRAEQRAEQTghvOcgJJIkXQBcCFwL/POQRV6g1jCMue+wfQXwxCFBSHYDZxqG0SFJUiHwsmEYEyVJ+jKAYRjfH1rvWeCbhmGsebv9j/aNtmMtGA3Sn+knmAhiV+1Myp402lk6VY35G23vJJFJ0BXrwqk6QYJ4Ok6WLYuB5ACqomKTbYRTYbLsWQRTQSRJwqW6CCaDBOwBIukIuqHjtXoZSA7gtXhJ6knSWpqAPUB/oh+nxYlu6CQyCbLsWfQn+rErdhRZIZKOmPtOBlEkBYfqGN53OB0GA9xWN4OJQfw2P7FMjIyewW/305/ox2PxkNbTJLUkWbYs+pJ9OFUnkiQRS8eGy2JRLNgUG6FkaERZ3KqbweQgAVuASCaCZmj4rX76k/3DZUnpKbJsZr6dqhMDg3gmTp4z70TuWHxSBSEBSGkpGoONRNIR/DY/Vf6qUcmHcFyc9Mfe9yORSdAYbMQwDLId2eS58kYsrx+oJ5gK4rP6qA5Uj9iuN9ZLNBNFkRTcVjf5znwkSdzXPIpE3X2P2iPt6IZOgatg+HiPBHbZTjQdxapaiaVj+Gw+YukYFtmCy+IirsUxDIMsexY5zpzRLsZYJ+rvW4in4jRHmtENHafiJG2kSWaSqLJKSk9hU2xouoYiK6T1NBbZgtvipi/Rh0N1MC4wbrSLcLITdfc46Iv10Rfvw6JYMCSDZCaJXbYT02Loho5VtmKVrWSMDDo6uqFT4i7BY3t3s2qewk7q+tsb6SWYDhJJR7DKVgqdhfid/tHOlnB0nNR1FyCRTBBKh+iMd4IBlZ5KPA5xTDsJnPR1973IaBkaQ42kNfNcNqWnyOgZ7IodAwOLbEGRFXPQomQGm5KQUGQz2J+BgUt1keXIGuWSnPRE/T0BtIfa6Uv2YWAQsAXQNI2KQMVoZ+tEd1LX3f5YP5FUhIHUAKqsMjln8mhnSTi6Tur6K5zURN0VRoikInTHus3Af7qBIRtIhoSOTiQdwWf1UemvHO1swhiuu7v7dxNNRwnYAifKeykcf2O2/o5VuqHTEekgqSWxKBay7Fm4LC4iqQgNwQYwINueTUyLmX29JAOLZCHflT/aWT/RnBR11zAMdvTuQDM0cp25yLqM1WIV7VUnvzEXhOSl3d189C9v8NBtCzmtzJzE5M77N/HS+jp+NTPJkg98FIDfrqznB0/vAmD57BALr77hWGZLOP5EZz1BEARBEARBEARBEAThhKC+j23bgfXApcCGQ9LDwF3vYX/5hmF0AAwFIjkwYrYYeP2Q9VqH0k5pPpcPHz44eSZYEU5QdtVOubf8YMLQRA9um3s46cANuUMHkPntfgC8Nu9w2qF/H+C2ut82LduRbe7b+vb79tnML4PvkC/FodsM7/uQfB+pLAF74LCy+OzmPr0cfL0jDZY7UlmE48eqWJmQNWG0syEIo+6dgpMdGnjkzduVeEuOVbYE4X0pchcN/63KKrU5taOYG0EYyWF1MDHrP5+1sMhT9M4rCcIYke3MJtuZPdrZEMaYHHcOOYggYcLYZLfZsdvs5Lnz3nllQRjjVEUVgfME4V0q8hZRhLjWEw7KcmaR5cyijLLRzoogCIIgvCW31S36Ohxj7+UegiAI748syRR7Du9i6ra6mZY7bRRyJIwmSZKYkjtltLMhCO8oo5kxTiyyPJymyBK6IaFYLMNpoXh6+O9E6uDfgiAIgiAIgiAIgiAIgiAIR9N7DkJiGMYWSZK2A+cZhvG3o5inNztSRN8jRpOWJOlW4FaAsjLRmUsYO0TdFcYyUX+FsUrUXWGsEnVXGMtE/RXGKlF3hbFM1F9hrBJ1VxirRN0VxjJRf4WxStRdYSwT9VcYq0TdFcYqUXeFsUzUX2GsEnVXEN6djKYDoCoHu83LEuiSjGpRhtNCiYOBRyKJzPHLoCAIgiAIgiAIgiAIgiAIpxT5nVd5a4ZhaEC2JEnWo5CXLkmSCgGGHruH0luB0kPWKwHa3yI/vzcMY7ZhGLNzc3OPQpYE4fgQdVcYy0T9FcYqUXeFsUrUXWEsE/VXGKtE3RXGMlF/hbFK1F1hrBJ1VxjLRP0VxipRd4WxTNRfYawSdVcYq0TdFcYyUX+FsUrUXUF4d9K6OT+n5dAgJBgYyCgWy3Ba+JDAI7GUCEIiCIIgCIIgCIIgCIIgCMKxoR6FfTQBqyRJegyIHkg0DONn/+F+HgNuAn4w9PjoIenLJUn6GVAEjAfWvd9MC4IgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCMJoymg6AKp8cH5RxdDRJWlEEJJQPD38dzylHb8MCoIgCIIgCIIgCIIgCIJwSjkaQUjah/7JgOfdbCBJ0n3AmUCOJEmtwDcwg488IEnSLUAzcA2AYRg7JEl6ANgJZIDbDcMQraYnKT2VItHZCQODJHfVEVu3DmtVNc7583DNmjXa2TvlaOEwsfXrCb/yCu4FC0k1NqInk9jHjye69nWcc+aQ6ekh09OLY8Z0YuvWYa+pRU/ESdY34F4wn9jGTVhKS5EsKontO3AtXkRi+w4UrxclO4vYho24T19Mal89hqFjLS8nunYt7gULSLd3kAkO4pgyhdjra7HPmI4eDJJqa8c56zTiGzZira4C3SC5dw+u+fOJb92KmpuL7HIT37IF1+JFJHfvBpsNa0EB0TfewL1oEanmZvRYHPvECUTXrME5d65Zlu4eHDNnEFu3DltNDUYiSbK+HveC+cQ3b0YtKkayWkls326WZcdOZI8bS3YO0Q0bcC9eTKq+HkPXsVZWEHt9LZaCfNxnnYV90qTR/kiFk1ymv5/I6tWo2TnEN24g1dCAc948rDU1pHbvxrVgAdbi4tHOpnASiNXVkW5uxkgkSDXsJ9Pbi2PmDCzFJcTWriXd1oZr/nzU0hLQdTIDAzgmTMBWXT3aWReOE8MwiO/cSWpfPdE1q/FedBGJ7TtI7d2Dc958rOPHo8eiyFYr2GzIPh+OiorRzrYgHBWppiYir75KfOtW7LW1SDYblvwCpPw89LY2Ii+9jOzz4l6yBAIBpEQSA5BUBUm14KwR54zCqS1WV4cRj2PoOkYyiT4YBAkkVUUOBNB6e4m8vBI1JwfXwoXoho7sdGJEomS6Oolt2ICloBD30rNwTps22sUR3kJs717S++qJrFyJEgjgWrQQORDANXnyaGdNEN6V2M460DIkd+8h9voarOXl2CdPRg4EsFVWovr9o51FQXhXYhs2EH7xRTK9fbjPOhPF4yHy2msY6TTuJUuQrFa0gQGMdAYMHXQdPRpFdrnRk0ncCxZgLS8b7WIIwgkjunUrWkcnyX17Se1vxDlrFkpRIYrbLe5xnYLS8TjppiYSGzYS37Ae28SJOGaehlJagr2wcLSzJwiCIIwyLRYnsX076b5eJAPAgAOPSICBYZjrqj4vibpdJPftxTlrNmphAXokcnBnkmxuAiR27iTT1YXnzLNwzp+PGvAfx1IJRxLduJH4G+tJ7tqFY/Ys7LW1OGfOHO1sCYJwDOjxOLFNmwg//wKK34e9ppboG+twL1iAc9Yski0tJLZtJ/7GOqzjxuOcO4fY62tJNTXhOv103AsXoObkjHYxTjqxHTvIdHQQW7sOPRbDc/ZSlPJynKL/inACymjmCaCqSMNpEga6JKNarMNpoURm+O94WnSnFwRBEARBEARBEARBEATh2HjfQUgMw/gvAEmSPOZTI/IOm2AYxg1vsejst1j/u8B333MmheMv2AnpKIRaITEI/nIomvGOmyV7e5F0ndBTT9H/t78Np1sefZTiX/4CR03NscuzcJjQU0/R+Y1vknXzR+n6wQ/Q+vvJuf122u68E99VV9H3u9+T3LOHvC9+gbbP3IH7jDNI1dcTXbWavM9/jrY778I2cQK23l6Cjz5K7mc/S8cXv4Ti8+I57zy6f/hDsj9xK13/9S30eJzsW26h/e57CNx4Iz2//CWpllby7rmbts/cgffCCxlcvpz4ps3m6915F86ZM0m3tRJ+7nly776bts99HkthIa558xi47z5ybr+Nzq9+DWSZwHXX0f65z5P1kZvo/uEPyfT2kfPpT9P22TvxXXklfX/4I8ldu8x93/FZXIsXk2rYT/S118j73Odou+tubOPHYZswgeDDj5B7xx10fPFLyB4P3gvOp+eHPyL71o/T9e1voUdjZH/sY7Tfdffwe9n3l79S8Y97sY0fP4qf6ElssA0GGiDWB94SKJ092jk67gxdZ2D5chzTptH5jW+Qbm4GIPTkU2R99CPYl55N/1/+Sv4Xv4B0yMwIwiki1AEDjWD3QtY4sNhGLk+GoX0zZJLg8EMmAa48yB4HsgypBHRthWgvKWs1yS1byPT10//Xv6KHwwAE//1vcu+5h/7/+z+MWIzQ44+Tc+dnsVZWorjdtH/zmxR/5U6sdIEzGwqmgtVpvn4qBn37IB0HR8D8LrtyIKvafH1hbOlrINYZJ7F+Pd3f/wEF3/kO3d/7Pqn9+wEIPfU0gQ98ANfZS8l0dSP7faCo6KmUGZREEMaavgYId0ImSVrz0PqF75hB8IDQY4/ju+Jygh3PkXXVlbR//gvDmw0+8C9Kfv0rDFXFyGhITgdGKk183z4c48aNVmkEYVQl9u9HDwZB09ATCeJbtiBbLMguF1htyIODdH79G8PrDz7wACW/+m8zgGVrCz2/+OXwsoHly6n4w6+weRKgWCF3AjizRqNYwpskGhtJbd1Kx1e+OpwWfOCfFP3kJyTcbuzl5aOYO0F4Z4meHtAyhB59lIF7/zGcbpswnqyPfhQsFtRYE0Q6QbaA1QVaClQbZFeb10OCcAKIb95Ay62fQI9GAbBPnEDHz3+BkTZn0Rz8x3JKfvdbMn19ZDo7yfT2oWYFUHNy6Pnzf+O76CLa7r6Lkh9+BYstA4ZhDnyUVdA1UCxm4BLFCukEOLIg2mU+yipEu8FTaK4b7QZPERgaRLrAXWDuL9oF7nyzvSIZAmcORHvBYjcLoSVBsZvbZY8z2z0EYZTEdu4k8tzzxNatI7F1KwChJ57Ae+mlGBjIViuOqVNHOZfC8ZTp7WXg938g9NRTZsJTT+OYMYPcL3we8vNFu6cgCMIpLrrqNdJtbWAYGOkMRjqNkUmbAQA1DUPXkCQJ26Qaun70Y1J79wJmm7P/xhuxVlehDQwgSZIZhESRGbz/n2Q6Osz1Hn2MvM9/nqybP2qu814NtgM6hDsg1GZe0xbNBJv7KLwLJ794XR1d3/kuyZ07AQg9/TS+Ky5HzsoSbWCCMFp03eybEOsFbxEEKt55myP1twh3m/2UrC6zTcLiIPrqK7TecefwZrLLRfbHPkbrbbdT/ugjhB56mIHly4eWPo21qoqsj36E3l//mtDjj5N1y83kffACpEx8qB1R3NN4v9K9vSR37abru9/FiMUAs29L0S9/QcJuxy4mchJOMGldB8CiHGwzkNHRkVEO6e8XTqQJOC0MxNLEUvpxz6cgCIIgCIIgCIIgCIIgCKeG9927SZKkKZIkbQK2AzskSdogSZKYtvRU1tNgdg7eeh/ceyU88GFYfi3Uv/iOmyqqit7Tc8gNN1O6uXm4U4VwfKS7u4cHcMkuF5n2dtynn07oiScAsBQWkNy9G/u0aURXrQbDwD5lMtFVq1GLikjWN5gzZp6+hODjjyPZ7ejRKHokgmfZMgYfeAAAyWIh09OD5+yzGXzoIQCU7CxzlsA5cwi/sAIAa1Ul8U2bsY4bR3zLVshkcM6dQ/i551H8fjI93RjxOJ5zzmbw3/+GoY402uAg3mXLGBh6PdnjId3Wjmvx4uGOn5aiQpJ1ddinTCG6eg3oOo5pU4m+9hpqQQGpxkaMVAr3kjMIPvY4ks2GHo+hRyJ4z1/G4D+HymKzkenuwb10KYOPPDLi/dRDIeJbtx3DT+wU1lUHW/4Bf78c/nUT3H897H1+tHN13KXb2uj745/I9PUNByA5YOAfy1FliYH77yexd98o5VAYNe2b4Y9nw1/Oh9+dDqt+AYnQweWhNnjs0/DAh6B3l/nb/deLzHW3/QsifbDhz/C3i+H+G0gHo/Tf+w+MZGI4AMkBwYcfxnPmmcPPB+79B4rLTaajA9f0GSQ3r4X7b4A/nwfPfMkcWBTtgRe+Cb9fYqbffwO0rIXfLjZfX0sfj3dJOFqaX4cn7kJKpen/y1/NNMMYDkBywMADDyDLClokjDYwiJROkW5vP/75FYT3q2k17HwYXv0JdG0ltXPzcACSA4KPPU72TTeNCLIIYMRixDZsAEVFksznhmFgRN4xrqcgnLT0/n7zujGZRA+HkVUVkNDjcayVFfT/+S8j1w+HSdTVkenrZfDhR0YuC4WI1TVAyzro3Ap1T5hBg4RRZ6TS9P/f30ek6dEYibpdaJ2do5QrQXj3jL4+jGSKgfvuH5Ge3LOXdGcnRn8/6a5W2Pko/ONK2Pg36K+H+hWw/SHoFW2cwglg99PENmwaDkBiKS4muXfvcAASAAyDwfvux1JUhOxwYC0pRnY6CT//PLaqKiSbjcSOnaQamqBtAzS9BlsfgM3Lzecvfhe23Aev/ATW/RYevAn2rzTbG7bcB099Hn5/Bux9Fu6/Ef5wJux9DpZfN5T+NPzzA2abRsNL5j2G5ddA6zr441LYstxsT1jxTdj8D3joVhhoPlJpBeHYa3iFTGsrst02HIDkgNBjj+FdejbJPXtFO9cpxujpORiAZEh882Yyra2kB/tBy7zFloIgCMLJTguHCa9YQaJuF8mG/Wj9fWDoSIqCbLchu5woXi+y2w2ZzGF9ZQYfeABLVpYZXMQwzMB+mcxwAJIDev/nN2Tez72Xrjpz8qGubXDftea9+HuvhPV/hlD3e9/vKSTd2DQcgOSA4KOPvb/PRRCE9y6Tgq3/NNsm/nIB/O4MqH/p7bc5tL/FbxfDqp9D+xbz+Z+Xmft68Ttobfvo+c3/jthUj0bRIhEkhwMjFBruu3ZAqqFhuH8bQP/f/o/U2sfhT+eY7SO99Uer5KemTJpkQwPJ3buHA5Ac0P+nP0MyOUoZE4S3ltEMAFT54LFBMQx0SUY9JAhJKJ4h32sGao5nRBASQRAEQRAEQRAEQRAEQRCOjaMxxdLvgbsNwyg3DKMcuAf4w1HYrzAWhXtAtUKwBV75MehDHegiXfDMl9+5E7Akga5jaNphi/TM4WnCMZROYKRS5t9DEdYli+VgmmEckpY8QtrQekOfKbKMMdShUlIUjFT6rbd5x9dLjcyropgzAgHIill/JAl0cxvey74PSdMPLYumDZVlaD+KerBz/pH2fYgRnfiFoyfYDC999+DxJtpjBjfo3D66+TrODF3HyGSOePw0NM2s05pmdkITTh2JEDz9RTPQCJif/8vfg44tB9fZ9xLseASm3wCv/hQSQTM9k4BHb4Pu7fDcV8xZh61u0A2zrh3hd9lIJpEOueltJJOAYR4zFQUjlTi48sa/mQErWtfDut8NH3fp2wctr0P+ZPP1xQC9sSMRghX/BfEBc+a+4d/eIxx3MhkMQx/63A0z8IJxXHMrCO9ffABW/TcMNkPhdFj5Q3R74PD1dB1Jlo98fphMgiKDAcbQ90F8GYRTmSHLQ98F8/wWJMAwv0eSdPDa7NBtMhmQ3uI7lk5B3iTY+Yg5GLpn17EtgPAuGW95zazroqOkMBZI5rnsEa6/zdmqdaR4EHwlIFvM4AjRHpAUSAyOvB4ThNHQ3whP3j2irVKyHrk9U0/EkWTZbPc0zHNVI5kyr/0P/GbHgtC2HsJd4M4DV655ze8MmO0I9SsgZwJ074TBFvO78dpPofYysw3i1Z/C9OvN8+vXfg7Tr4NkyAxeMv2GofPuX8K0a6G/ARpfgeLZsPZ3UH22Gfzc5oHGV6H+heP1LgrCQcE22Hq/2f71FtdzBpj3R3r3HN+8CaPqSG31gNmuaujQIQLXC4IgnKoMXTdPGw7c381kzL4NxiH/hs7Bj/h7omkYMOI8nSO0qRip9FAb23ulQCoCT30OYv1Dr52CF74O3eJ37N0wjhR07C36RAmCcBz07oHHbjf7QoDZVvfQx8z2iiNJhuHpLx3sb2Ho0PAyrPyBGXQYzGPwml9jxPsP9p87lJYx7xNq2lu2Jx76t2EMBR5oXWdOACe8d63rQNMhc/ix2Egkhu9HCcKJJD3UJ1VVDnbtl9AxkFAO6Y8VTqQp8JlBSBIiCIkgCIIgCIIgCIIgCIIgCMfI0QhC4jIMYzgkvGEYLwOuo7BfYUwywGKF0BFm7ejZBZG3n9FWS2dQ8vLwXnjhiHQlKwvbuOqjmVHhHahuhawbLjWf6Aay10vk1VfxXnABAFo4glpURHzzZlyLFgOQam7BXltLuqkJe20NSBKxjRtxn3EGRiyGEsgCi4XwSy/jvXRo37KM7HISfuklfJdcAoCRTKHk5BBbtw7P2UsByPT0YK2sJLlrF87ZswBI1O3COWcOWl8f1tISUBSiq1bhXbbMHKRmsyLZbERWvIDv8svNfWs6ss9H9LXX8J6/zCxLKIyluIj41q24Fi0yy9LUhH1yLemWFuyTJppl2bAe91lnYsTjKH6/WZYXX8R32WWHlMVF5OWX8V180Yj3U7JasU+berQ/JgEg2Hp4Wt8+iPUd/7yMImtREf5rr8FSWIgSGDkA2nvxRUguF57zl2EbN26UciiMili/GdDjzYKHdKI5sNziPNiB8AA9A6FWszMNQFYlihLBf8UVKH7fiIAjAN5LLiaycuXwc//VV6NnMliKioiuX4/N96YBTV07YKDp8Py1vgEFU4dev+3dllYYbZEuaFkLnVuQbDb8110HgORyoeTkjFjVc/75GLKM7PageL1IViuWgvzRyLUgvHfhLjA0aNsIsgypKPbiHNS8vBGruc88g8GHHsJ//Q0jt1cUnHPmQCqNIYHsdCJJMpLTeRwLIQgnFtnlQnG7kSxWFK8XPR4zr+EcTlKtrQRuuH7E+pLFgr2mFtXjOfwazGLBUZVrnuMoVnDnmOc1wqgzVBX/tdeMTFRVHJNrUfPE+YBw4pO8HmS7Hc9Qu9IBan4+an4BSlYWyvqfwsB+8BSYC1NR0FPmAIeBpiMODhOE4ybSCaF2nBMKYei6PrW/EfvkySNm3wUIXH89qbZ29GSSdHcP6Aaec88lvnUbSBJqQQFWvwG+MrB7zAGJg00QHwR/mXndH6gw7xc4AmawkvzJQ8FyhwbmxPrAMnRLKdIFdp/5d3wALI7D01vXm20GAJm4+dizCwLlsG/FsXnPBOHtRDrB4sBaUoSeSmEpLx+x2LlgAbE31mEryYOgmPH+VKIUFuGYO3dEmrWyAktZKepLXzEHPAqCIAinJNXnwz1vHrbx47CPH4eloBDJZgVJwtA09GQSPRZHj0aRHA7UvNwR23uWLUMbDJrxRyQJFBXJakP2ekesF/jQB7EUFb2PjCrm+fqb78cbxsh7jcJbslRWYike+Rm4Tj8dS2HhKOVIEE5xofbDJ9CI9kK0+8jrx/qgZc3ItIKp0PjaYauq0Qayrz5vZKLFgpKdgx6NIvt8eM4buVzNzUVyHuxm673gXKy9B/tbsOdZSMfesVjCWwh3YgmoWCdOAEUZsSjw4Q8hWa2jlDFBeGuZoUn3LMrBdlrJ0DEkGUk123Izmk40pZHnsQGQOELMM0EQBEEQBEEQBEEQBEEQhKNBPQr7aJAk6WvA34eefxDYfxT2KxwrkT5ztpJIJ8gqFJ92WOfi986AdPJgB/tD5YwHV97h6YeQXU40LUPgAzdiqSgn+tJLWMdPwH/F5TinTTtKeRTeDcnuJVCjot51M8FX36Dg/32J6Nq1ZAYHyP/q/yP49DPk3vZJ4jt3kKzfR+G3v8ng40/hu/pKnK1ziW3aTOH3v0voiSdxzJ2DffIkouvWUfTdbxF67gXUgnzy7r6TyOo1FHz9a0RefQ09nSL/y18g9PyL5N19J/FNm0i1tlLwza8RfPIZsm76MKn6fcS3bafwe98m+PiTuM85G8dp04muX0/R975D6JlnsY4fR+4dnya6bh2F3/om4ZdeRrJZyfvCPYRfXEn+l75AbN06Mv395H/tK4SefoacTw2VZe9eCr/zX2ZZrrwC57y5xDZuMsvy5FM4Zs3CXjOyLEpujlmWVasp+PpXibz6KnoqRf7/+yLBJ5/GUlhE1k0fxl5TM9of68nJc4QOOoFKcGQd/7yMIsliIftjHyP0yisU/fQnBB99jNS+vbjPOgvnokVEV7xI7qc/jWy3j3ZWhePJETBnB25bPzLdV3Lw75LZsOnv5mA4R8Ac5HOAJIOn2DxPMAwYaMLe9yr6nGUkG5rI/8bXiaxcSaa7B8+552CvqSXV2ES6tRXPeedinz4ddJ10RxsFH7sc2+t3jsxHbg2otsPzXTQTuutAVo78HRdOTK48KJoNrWuxdT2NceY5KF4vwQcfpPC73yH8zLMk9+zGfeaZOBcuRIvFUHNzkF0usNtRHI6D+4r2mYMzZdmcPV4CUMyAD5JkBqjJJM1ZtXXNrKvmvMKADM5s8IpBzMIxFBs8WOUKp5uPFgeWTDOl37qdwRc3E9++G+f8eah5+ai5uaglxRR861sEH3oI2eclcN11KHl5GIkEkkUF1bw8t48fP4oFE4RjJDoAwWZzsLHVax63U1FQLUOzxZv/HH4bsYTTnAHWbsO5YCFafx/ICpLFgrWigvyvfZXgo4+h5ubgv+YaNIuKWlKM4vWQe/ddhF9YgZqfT+Dqi7HbOiCdbf5mRPuhcOZovxMC4Mhxw/wF5H/j64QefQzZ58N/7TXI+fk44luBqtHOoiC8LXtBPtGBAQK33IJtwgQiL6zAOnECnjPPQsnORk7VI/XvgylXwM5HzY2sLvN4J0ngLzHPcwVhtLjywOrGseVrlP7q5/Q/8BBaXz+K30/Jr37FwP33oyeTBG68AcnvR0mlkW1Wc7buZJL0YJDcOz5DqnEfpd/+NNaup0GWzLY4Zxb4SsHmMQf25E4yg1VOushsb6g+G9o3mvlQh9qoHIGDwURcOeYsw2AGHckkD0mPmH8faDM4dB85E8wBQKd99Ni/f4LwZq48iPVjl5vQly7FNmEC8bVrSeysw7XkdBwzZyJZLDg33AHX/HW0cyscR7oMuffcQ+SF54mtWo196lQ85y9D8nuQEv3g8I12FgVBEIRR5F56FvGNG8kMDIKqIEnyIe1kBx7M5wXf+Q7h518guWMH7rOXYp8yBW1wEGt5uXkuLstIskz+V79C5KWXSbc047vkYjxnLEAa2A+SArEeM1CvbDHP1/U0KCpomtlvSM8cfFRUQDbvyTizzHt14Y6RBfAWH8+3a8xyug0Kf/ADgo89TnLHDlyLFuE68wzstkFIhM1gjoIgHD+eQvP+hHFIgGBHwDw+DrSAkTbbNRSL2T6hpQ/vb9FdB2XzYO/zI/ftzMEjP4z05U/S//Rq1KxsPOeeQ/CZ5yj4r29iyc4h66MfwVpVSfSVV7BNnIj3sssIPf009sm1eM45G29OM/KO1Qf3Oe5sUB0I75EnH9u9F5K59AWKfvgDgo8+hh4J47/2WqzTp2MvLR3tHArCYTKaeXxSD7mHIA8ds2TFDEISHoo6kucx20aTmgh6LgiCIAiCIAiCIAiCIAjCsXE0gpDcDPwX8BDm8MBXANHT80SUjJsdA+K9sOFvsPV+c+Dvgk/D1Osgp/r9v4YnH3obzJkPF3wGXv+12VHCEYBl34esirfd3Obzgc9HMjsb38SJ+K+6GiU3B0U9GlVV+I/YPKhTziRQfzu+D1yC5KjHW/YqxoK7kNf/Dv81tUgFg/g6nsK44A7kXf/Ee5EPabyE1Pcv9BtuRW57FN8ZUYzpAeSVv0X/0I1I4VfwztiLMe9c5Fe/T+ADFyNJ2/FWrcVYfDfyml/gv24eUnYnvoIXMBbcibzl7/guK0GqSEL3oxjn3I7c8G9858oYtU7k1+5H/8BHkHqfwzu3FWPWeciv/ICsD1yJlH4Db80WjAVnIq/6CYEPnInk2o+v9BWMhXebZbm6BqkwOFSWzyDv/ifeCz1I42Wk/gfRb/wYcvsT+JYEMaZnIb/6e/QP3oAUeQ3vjD1DZfkBgQ9cgKTswFu9DsOZjxxtw/+T3yIVTkYSdfjY8VfB4ntg1c/NjgJ2P5z/fcgALeuhdPZo5/C4sRYVkXP99WjRKNbJk5ESCZTsbIx4HNdMMeDylOTwwQU/gvuuNWfwkSRY+FkoOCSwV/XZMP4887zg9Hvgpe+Zs+koFrjwZ+YMxUu/Di99F5Ih0JI4t30Lx4W/IJ2W8EwvRNdTkD0ZZJXiL3+GzEAHUnY57H4SuW0dUsV8JG+RGRjiwGCiqVdD+QIzTzM/ZAZCAXOm5MozYMV/wUW/MAcSCWODwwfnfgP+9VHk176L8zwX1kW1eC48H+QMtom3gGFHtqlgGOhYQFWx+t404KJpDTzxWejZDbkT4fTPmZ1ctTRY3BDrhme/Yp7Xli+GM74AqdjBgDaSBPE+CLdDsTj2CcdA6wYzoKOWhPmfhI4t0PASLPk8bH0A+6I7yK/ejjHRhTZtMmRPASOGvP0BHPYorp99B8nmw9DiYHGCrCLJMordjjw0E70gnFTaN0PPHujaDkUzwOKAzffBrsfMc/elXwVHtjm4YccjOHc+jD71RrR5d4IrxxyAoShIioIRbMeeb8V91gJz/H6iHwkZKd6HVjYOe0013nNmY1n1AyR9PWSfDs1rYfLl5iCK3Emj+U4IQ6REEKe9B/WCs3Cdfz5SOo2a7kTu2wEVZ4x29gThnfXW4/Im0PyVWIuuw3fDDZDJIJHE8pczINYLVWdBtMcMoDDlKvNaKNgGzhwonDHaJRBOddlVcOmvkR79FO6Xr8K59Hq0ed8Ehw9DtpA/cwaSVUXp3Y2UGAQ1CloCrE5QvEixJIYWRCr1IRltUDoHtIzZlhBsNdsTZn8Udj1t/taXzTeDTGZVQfY42P4gLPwM7HrSPB8+/R547edmkMnFd8ErPzmYvvpXZvqiO+HVn5pBVauXwvNfg1kfhf2vQtkC87tWMB3Gnzu6761wavKXwowbkQaacBUWoGUV41h4FxgGkiKh9mxFfuIWWHTXkQP4CyctpzwIOTrWT9xK4KabMGQZ2wNXQbwHLvop5E8Z7SwKgiAIo0j1+/EsXYqeSmFoGpIsD8UdMUasJw1NFGCbMQ0pnkS26GY7mztu3heRFUiFMJw5SJFuPLddhtS0Gtmnw4rPwOQrYPtDZvvYzkeh5hKoexwmXWyek0+8AHY/ZT7uesoMIFj3ONReClXnmAGFL/wRPHKbeY9PVuCML0Ke+B17V9wOXC3Po375i8jBEBa/G+qfB9/p0LACsidAfu1o51IQTh25E+Hin8OT95hBl6wuWPI5+PsVUL7IDLBk6DDtGnjmK+Y2Z30FHr7VbOuTJCiYarZNdO2EUJu5zowPgLsMZdxcfK/+CM/5c5GMFpjsw3vhL5Ft5n1sS14uzhkzSF9/PYbLhdS/n7xLapGndCH7uqC97mBe86fCjBuP4sRyp6Ci2XD+D3E9dg4s/gKO734Xw2bFZrOBmMBJOEGlNfNc0KIc/O5LugaAMdT/dDgIidc8tiS145lDQRAEQRAEQRAEQRAEQRBOJZLxphvYJ4vZs2cb69evf+cVTyWDbeYNtM33wis/Grnsyj/SWr6AWDpGR7yD5nAzHquHal81U3On/uevNdAGmYjZuT4xAP5yKDkpAwEc9Tt9J0zdzSRJv/R9dpVOp16LUuApIZwKk8kkyHIV0BlpJduRQ0pPE0uGyPeU0Blpw2f1YkgywXgfhd4yuqOdOGUbFquT3kgHxd5yeuM9qMi47X66Im0UuosJJoPoega/M5eucCt5rnximQSJVJRcTxFd4VYCtgBpdCKJAQq85XRF23GrLhTFQn+smyJvOb3RLqyyit3qpTvSRomnjP5kP5Ju4HFk0RVpo8BVSDgdIZ1OkOMpoCPcSo49h6SRJpYIke8toTPSjs/qwZAUBuO9FHnL6Il24pBtWK1OeiIdFHvL6I33HrEssUQ/VdYANU0bsZz1/8Bywt28PCZ3qUej/m7v3k5zpJneeC8FrgLKPeVMNGzw6+lw5pdh9i3gzj2ueRKOuZP32PsW6nrraA430xXrIt+ZT5mnjJqcmne/g8EWGGgEuxeyx5sDhw4VH4S2jZBJgTNgDhzyFJiDgxSLOdtw5zaIdkOg0hz007cPXIUQbIRIl9khx1sBHW+YA4tsPhhoMGcullVz31oSIt3mALzC6Qdn90qGoXcPpONgD0Csz/zeHnj9k8epUXd79kDPLnOgmM1jBguxusy6YHGbs75nV5sdVQ8RSoXY0rWRpnArPpuPXEcukiEhyzIW2YJu6DSGGjEwKPWUoqCQNtJYJAtIoEoqVtlCTX+LOYu2IwD+CsgqH5334eRzatTfd2PTcvPcbvtD5kyQi++BdNQMlCOroGtDA41bzHruKSIjq+xO9bIv1olq81DlqyKajlIfrAeg2leNQ3GwsXsjWY4sJvonMi5r3CgX9KQh6u4xFkqEaAg2kNJSyJKMLMmktTQuq4uUnkI3dNoj7YTTYUrcJViR6Yl2YpdVbJJCPBHE5SvGKlmRVRutkVZimRjl7lJqsJFdOm/kC/Y1mL8tegbzB8BqPuqa2Rk30mX+BrmyzWCsegIUu3le4ckbjbfo/Tg5628kwtrwDhoGG1BllWp/NacZeSDFIX/86OZNOFpOzroL0FNP3OZnW7SehmADsiRT6inFZ/VRock4B/ebs6k6ssxrH0U1j0l6xry2yao2gzgLJ6qTt+4eIplJsql7E/XBepyqk2JXMRbFvOZSULBZbGS0DMFUkIyRQdc0ZFlC0zNoega76iCWiuC0ukmmo0hIeK0e2sItFLmLMQydjmgHZa5C7JKVvZFmfKqDGnsuBW1bwVcMFhckBsFdAJmE+dtu84CuQ6IfPEWABMFmsHnN33I9Aa486N0L3kJABgxzJvdgs/k9G38e5JyyvyWnRP09oXXthGgvu735NEeb6Yh0kOPIocxTxpSOOrNupuNmUF7hUCdn3e1vpVnWaQg30BJqwWfzUemrZGp3g3kMK5wxdC0jjHEnZ/0VTgWi7o41vXugaRUYmPfsXvyWGbRvw1+h5mIzCLArF1Q79O01AwHWPQHTr4c3/gTzPwWrfgmn3w0rf2TeQ3/puwx88BH6AyXEtBgt4Zbh++3VjiKqf78UltwDU64127lD7RBqNV9noMl8jdzjPpHA2Ky7PU0QbjLbLf2l4CyHX08ygzBGeuH875n3cIWT3disvycjLW22LfTugc6tsOle8/sJMPtmYv5ydrl9NKUGycmZRO2el8hGAauLvdOuZn+kmc5oJ7mOXErdpUxpeBUi3QR769i58FN0RtootPqpcebjK5r11vnQdeirNyfXSIbM4MXeIrNvh542+3WcGH2dxnTd3d6znaZwE33xPorcRZS6S5l473Vw1Z+h5LTjkgdhVB2L/pHHtMP9j5/dxW9XNlD/vQuH075374v8fnucl26eQOWE8WxvC3Lxr17jtx88jU/eu5ElqTr+72efO5bZEo4/EYFKEARBEARBEARBEARBOCGo73VDSZIee7vlhmFc+l73LRwjsgWSg7D7ycMWtZbPB2D7wHa+ufqbGENt5VOzp/L1BV9nUvZ/OFtwoNh8zJ34fnIsjKZID6tzivnM2m9wafWlNDY9w7bebXxu9uf4ysufZUHRAmRJ5uWWl7ln9j18e+U9VPmrmBCYwEN7H+LTMz7NT1d9BafFyXnl5/Hn7X/mlim38Lvd/yCcCnNT7U3895qvcc2Ea1he/yj7Bvdx16y7+NJLd3BO2TkEU0Fe73idL8z5At98+S6m5Ewhz5nHU/uf4s7T7uQHr36BXGcu8wrmsXzXcj457ZP8as1f0A2dqydczf+u/iofrPkgf937LzqiHdw24zZ+/vI3ubjqYpobn2Zr71Y+N/tzfPWlzzK/cD4W2cKLLS9yz+x7+M4rn6PCW8GkrEn8e++/uX3G7fx81VdxqA6WVSzjT9v/xM1Tbub3u5cTTAb56JSP8suhstxX/xg7+3cCICHxi6m3szTSDYGy0f08T1K7+nZx3577eKz+4E/SzVNuxj3+WooBdj0BU68/UW7MC8J70hJs4d/7/s0/d/9zOO2GiTfgsrgo873LY4u/1Pz3Vhx+GLf0rZfb3IcPkHDONR+z3rTfwCGngIG3ec0R+/dA8dt0wBHGltwJ/3HH07SW5v92/B+/2/q74bSLKi/irNKziGVi5Dvz+dKrX2IgOQCAU3Xy4yU/ZiAxgF21Y5HNYDUeq4fd2aVMbN9pds5Kho9euQQBzI5/kS7zuJg3yezc3bcXHvnk4esu+Zw5i7tq5/WLv8unt/4azTCnIfrDuX/gnpX3EEqFAPBYPPz0zJ9yb929tEfbuajqIj457ZNU+CqOX9kE4T2IZ+LsHdxLc7gZp+rEZ/OxqWsTC4oWMJgcxMDg91t/z+aezcPbfH7253lm/zPMzJ/JQ3sf4uNTP86+phfM68bNv2dT96bhdb85/xtcmJmGQ3UcfNHsKvOfMDalk6wKbuGul+8inokDkG3P5sdLfsycWBQ4ZQeOC2OFnmZDqI47XrqDtJ4GoNhdzB0z7yDuzGfmyh8iX/QzKBYd2IUT17ONz/KVVV8Zfj49dzq3Tr2VjJFBQsKu2fHb/CQzSXoSPfTGetnVv4tSbylWxcpzTc9xzYRr+P267/KBmg/w6L5HyXfmU+Wv4utv/IBPTvskD+97mK5YF5+Y9gke2fcIXbEuTsuazI8rrySvcxtgmEF5UlGI98Ngk5l2oG91uMM89+7eaQ5utPshk4TG35tBU/MnD63XCT27IVAOgQro338qByERRpu/lC5nNs/svZ8/bvvjcPJFlRdx85SbmTDYaQayFE4JhiOb1xof5vvrvj+cNq9gHneedidTokERgEQQBEH4z4Q6wDAg2mMGNcuZAB2bzXPl+peg5hJY/StYfCfseAgmnG+eU8uqObDd0M3gf1raDN6XSZApX0RvoAjdyHBv3b08tf+p4Zf7+NSP85Fr/oR330uw/yV44q7D83T9faMRhGRsCjVC3cOw/i8j03c/BTM/BKE2EYREEI4nxQL5tbDzEXj1pyMWGT27eLx8Gt/Z+LPhtPMKFvC1UILEed/lyX3/5k/b/zS87JKqS/hozYcpeeJz/KFyCn976dPDy26t+TC35k3BptqOnA9ZhtzxHNYm7il4vyUUhuzu280ftv2BF1teHE77zIzPkHPLCrKbXhVBSIQTUkYzUOWR8Sck3WxPklSzX0wobt6b8DutqJJOSj++eRQEQRAEQRAEQRAEQRAE4dQhv49tFwAlwKvAT4CfvumfcKLRM6DY4M0zajtzsCo2BlOD/Gbzb4YDkABs69vG3sG9xzmjwomgX5b4Qf1DGBiUeErY0rOF+YXzeb7pedJ6mqk5U3m55WXG+8ezrWcbsUyM04tP5+G9D5Ntz6Y33kt/op9l5ctYXrcci2xBkRVaw61cUHEB/6j7BwB5zjzq+us4o+QMHt33KJqhMS4wjtc7Xmd67nTWtK8hoSWYWzCXp/Y/RZGriMZQI6FUiHPKzuGB3Q/gVJ0ktARdsS4uqLyAe3feC4DX6qUh2MC55efywO4H0A2dUk8pm3s2M69gHiuaV5DW00zLncaLLS9S7a9me+92oukoS0qW8NDehwjYAgwkBuhL9LGsYhn/qPsHqqxikS20hFs4v/L8EWU5EIAEwMDge/X/ou/9HGmFt9UR7RgRgATgbzv+Rlu0zXySPQ4sjuB9uwABAABJREFUzlHImSAcPS2RFh7Y/cCItPt3309rtHWUciQIR19jqHHEAB2AJ/c/yUByAJtsY13nuuEAJACxTIxnGp/BrtoZTA4Sy8RIaklimRhxLYXmzgVks4OtIBxNNp8ZgMTmMTtvJ4JH7hx8SIfCYO0l/GT/Y8MBSL4+/+usaF4xHIAEIJwO82zjs/zizF8A8GTDk+wP7j+mRRGEo6E93E53rBunxUk8E6cr1kW1v9octBzroTfeOyIACcBfdvyFD9R+gPt23cf5FeezfNdyLqi8gH2D+0YEIAH4xaZfsn9QfBdOJoOZOP/a86/hACQAfYk+1nauhYI5o5gzQXh3Olw+/rz9z8MBSADaIm3UD9aT0TO0n/VF0Q4hnNC6ol38ZP1PRqRt6dlCc7gZTdeIpqNE0hESWoIcRw6JTIKMnmFS9iR8Nh/L65azrHwZ9+26b7it9PzK89nau5VitxmY/N66ezm/8nyA4eUAG/t3sIuUeZ1m9YBiNQdDGpr5dyYJ6RhgmPcxPAXmeXew3Zx53eYGb7EZbDIVMbdx5YIjAPFBc3tn1vF8OwVhJNVBU6SJv+7464jkJ/c/SUe0wxzoJol2ilPFjmg9v9r0qxFpazvX0hxuBpsYZCwIgiD8h2xukBTzN8TiMgNl+0oh2ApZlWYQi6xKM0CJ3Q+SZJ57KOZAVRTrYY8d538PRVLoiHWMCEACZvvdbl++eT5udYPVdXieXDnHrrwnG9UKgcrD07OqIdxlvs+CIBx//vLDklqmXcVPt/7viLTnOtewr3QmTdF2/rbjbyOWPd7wOO3xLvZPvZS/NY6cFO6Pu+6lMdR41LMtvHstkZYRAUgA/rDtDzRGGsEh2pCEE1NaM7AoIzubSkP9DIyh/i+Dw0FILFglSOkjg5YIgiAIgiAIgiAIgiAIgiAcLe+nt1sBcC5wA3Aj8CRwn2EYO45GxoRjQQfJArM/CvtfNgfMARTPRJIkUnqK3njvYVtF0pFjnrNkMk0mmSEV08ikDXJK3EiSaBwfTQlZoiveRbGrmCmu6VxYcjFTc6aSSekYBtQ6p3J52VXkuLIpshUzEB2g1jWZ6ypvICklmeGZRWt+K1M9M7i2Qmd/dB9TnNM5q+hs5mTNxaV52TC4jimu6SwrvoD5ufMZcA5iV+xMdk7j0tLLqfBV4JLcRJNRat1TuabieqxWlUnuWjryOql1T+X6ihvo0XqY6prBmQVnMdM3C6XMwtbQFia7p3Nu0XksyF5EsVLKattrTHZO48KSi5mSPRk9A5qmU+ucyhVlV5PtClBkK6U/t3+oLDeSJMZ09yya8puZ6p3OtRU69dE9THZN46yis5mbNR+vHmD94FqmuKZzfvGFyJJEiaOcdQOrmROYT0Z3vPMbLrwnRzo+aYY5YAK7H077CDjevkOvYRjEwylUq4LFphAPp7BYFSz29/YTGQ+nkFWJZDRDKpbBkW3D5Xp/sxrGwylkRcLmtAynaZpOMprG6lBRLcr72r9wYgunwiMChIEZ5CiSOjq/z4lYGkPXzfmGJUgnNRRFQrbKSIZEKp4mkwTFLmO1KqQSGu6AjVQig5bSsNgtpBMZkMDutqCqoj4K/7loOjocoOFQkVSEPGcebZG2w5a1hFvwWXyUu8tJG2n6k/1k9AwWxULGW4ySipqdboFMRiOdyGAggW6ABIoio2V0rA6VVDyDxaaSyWgkwikkRcLQwWpTcPpsw78TVrtKLJIiHkxi91iw2iykkxlUVSaj6ThcVuIRc91UImN+N5BQrRKSLGMYxvA5rmqRsb/P3wfh/UvE0qSTGhg6mbQOBhhIuAM2tLSOIYOkG1gdFjAghQ1p3KXE4wqybwGWynYUuxvl4t8QNXKRCmtJaS4sVh1r8wqMabeRyvGT6m3nurIbsVgszPHNx55xkT0xF8OQ2BfZw4udL9AWbiPPmTect3A6PIrvjDDWpZMaiUgSwwAD0NI6kgIYICsyNodKJqOTCKexe6yoKqRTBqlEBovVPD7KigyGeX4gKTJOrxXlTZ3eUlqKSDqCx+rBoTroifeQZcvCwCClp/BYPJxRcgaapmFX7OS78xmMD1LkLMIqWxnnH0epu5Q8Wx5d1i6KXEW0R9uH9z+YHCShJY7vmyccUwktQUekg2mBafzurD+iqBAf1Nga3wgW8bsonPjimThtkTZ+uuinLC5cjCRLaCmDWCyFJBvghJBqRx5IkEpmcLitONyibgsnhmB/DIfk5qHFTyIpEnXRbfQle0kbKSpcVdjsVpS0imHRyLHkIEkSXa4uZGR0dDJ6Bp/Nh8/mI6NnKHYV41Sd+K1+su3ZWGQLPpsPm2LDZ/Xht/kZTJrtvQeEjLQ5eNJTYA6glDBndHdmm4Mp0xEIDZ0LuHKh5lIYbIKePeAtgvL5ZrCRgSZIhMBTCNVnmfc6DANyJ43OmysIQLA/RbVRw6uXrUZRAQne6HiD21+93QxCaS0CT/5oZ1M4TpJakkg6wqorV6EqFiQJOoLdrA+uhZKJo509QRBGUTKZJNRjtiEH8kQAw1PBofeiMynNfExrqJYjPeooqoSuGcjK0KMso7snIOc50TUdzVeKPPN2NA3UukeRC8ahd+1FnnkrWuc+lKsfRO/ciXzFcrSeZtQPrSBjzUF2VqDrCtKFfwBkVDkPi67iy2QzNWsa2/q3Duc5o2eIpmNQtgCi/bDos/DS9w4Was7HxLn3fyJ3ElAEX7wVnvgq7PijeT0080OgJcFXMto5FIRTU/lCyKuF7qHJpqwu4r6iEQG0DwijQyZGxsgcviwVxuHOHZHmtXopdZeS0cz1k/E08XAap9+KphlEexKodgWbS8HhspFJa6TiGWwuy2H3YYT37kCfMr/Vz3OXP4eegUzKoM/ohuzCUc6dIBxZRtdRlZH9piXd7EsjqWa/wYFYCoCA04pVNkgZop+1IAiCIAiCIAiCIAiCIAjHxnsOQmIYhgY8AzwjSZINMxjJy5IkfcswjF+9/danKF2HgWZIDEDPLmjbYA6MLJ4DZXOP/ev7S6C/FfyVcP190LvHnOkkdxIZLYPP6uOs0rNY0bxieBNFUqjwVhy2q1QyQWRggEQ4SF9LE137G8gpLSOvchxF4/+zznP9XREwdAY7k2x4ppHIQJLxs/MZPzuP/Erf+y218B7lOnL51exf4+k26H5lF7dMuYxQSw+pVJKFxZ+ibc0ePjDuXOIDISKDg/y/qk/Svm4Pl5csQEun6d/YwT01H6VrcwPnZU9Ftc+k+/UG7qi9kd7tLSxxVLHMP4OOV+v4xJSrGNzfRUkmwJKC22hbtZsPT7qAaNcA8UiEr1bcRvvru7m64nRSkTjBhh6+OPHjdG6o58L8WYBE7xstfLb2Q3RvbWSpZxLne2bSuWo3t9VeS9/udvKVQpZmf4r2Vbu5peYyQq09pJJJFpSYZblx3NnEB8JE+gf48rhP0LFuL5eXzh8uy+dqbqZrUwPnZU1BtZ9G15oG7phslmWxvYLzfNPpeLWOWydfyWBXF3oozXmFn6Jt1x72trxCavIUimrGi5vFR1mJu2R4QMMBpZ5SilxFcMP9ZocBi33kRloa2jbC/pWEsk9n595s6l7vZvrSUuLhFHve6MKXa2feOT6KIs8glc+Hru3QuQ0KpkD+VCgdmqF7oAn2vwLdO4mWXsSeljxSaZmCqgCbnm1ioDNG+ZRsahYXUVh18HgW7O6kbU8dbn8W7Xt2EQ+HKKmZjK+ghK59dZTUTiVQUEQslGLv+i62vNCC1aEw79IqSmuzCPcm2PRCM41beymo8jHnokpyy8QMSWNWfyM0rTJ/l6uXmoNtVLs5gMZip6R4CnnOPLpj3cOb5DvzKXYVwdYHYKARsseZs2337DJnBB6/DJIh2L8SHH5zdi1HwByY07WD7t4oLY1tDHZ1UTlzNsHuLgbaWymbMp14OERfWwulk6fS39pCLDRITlk1vrwCuhtb0LUY2cUldNbvJRmLUDS+hmTCIBn148nOIqfQTnb5IbPG9OyCfSsg1AEFU81OddFeKJkF+bWHvx8dW6BhpTmoqOoMKJ5lzngsnNRKPCWUuEtojbQOp2XZsyhwFdAX7+P04tN5pvGZ4WWl7lK+W/EF2tftoDMapWj8JCbkFZGOxWhdt4XXkwmKJ9Yid25loLMdb24+FpsN1WpD15x0NuhoGR13wE5Paxh/rpOmHX1MmJPP9lfaKJ+cTeF4P/FICrffRtveQVp39rPgimp2vd5J07Y+/PkOZp5XzoanG/HnO/HmOEgnNXRNp7spwvg5eezf0kPl9FyQDDwBB5m0hpbRMTQzmJTNqVIyKQv7IUGmhOMjGU/TsXeQRDSNJ9tOMpYhEc3QuLWbiqkGFluSVCKGL7+A+MAgrbt24PB6KZpQQyqZxGqzoWVUQr3F5JR6iBq5OL1WGl/vo7uxm/Gz89m5qpJEpIT5l5bzDdeV6IMyuqET1iTyI5PwR8dRv7GHud7pXHTmVcTy+vjjlj8C4Lf5KfOUjfK7JIxVnfuDJKMpUCRURaW/I4LdqaKlDaKhJIOdUSbML2T7yjY69g2SX+lj+tkl9LdH8Oe7iAST2B0qYJBJGexa00lva5iyKdnMWlZOoODgzKcBR4BCVyGhVIhYOkaZt4ymYBNzcmZSZExGSklMLf4UimIhGQ2jWqz0DjbR/9Tr/LHq2/ikApLpOFJzkNIWgy9FryIwvor/7b+f1X1rWVK8hAJXwei9mcJRV+Au4PdLfkeotYXtzz9KPBympGYyNTlFdLbGKBDtQMIJrsJXwT+X/I1ENMqeVS/T19pETlkFgcIS7N4cIv0KCatOS10/e9Z14/BYmHNRJRVTs83gToJwPHXvgoaX6S+6nLRhR0KifW+Qna+1M+9SN5bmVrzBQYrGT8JttWMkDDLJOGCQlNrpqN+LM5lk8YRaZEUhGY2wqPhrGIMGc/K/ijFosLjo66R7EszP/yr0w2k5X8Zmd5LqjjMj9wtE3DovRzcA5r2GKl81OCrA6jSDhuhp8BQzFDbNvIdSMB2koe+LoZv3MyTJDFiCBLoGeZPNYCaGbrYZWD2QN9GcIV4QjrNYKEnbnn7cgTiZRJTuhj469+3BFciirKKKFUufoN02ANYc8z6dcEoocBTwyrLn6d9fT+vObWBA4YRJnJkzF6wiQJkgnBTaNkFPnXnPMasaik+Dsnlvu0nn/kH2re9h7/ou3AEbsy6ooKjcg91vf9vthLEr3B9n56oOMikNXTOQJDMItoR5BizLoGsGhm6gWhTcWRoOVwjIIMuyGVhdMrcwDAOL3U6qZwcde3bh8HjJq6xBC2pIjokYgwa6pYrBXa2EehLkV1lRHWfTuipOXplKd+MUskvchPsTqFYFdyxD0/YuuptC3DDhbq6e1sm3d3+VjJGh0ltJsbsAtv3RvAdZeaZ5Dh7tBm8JlM4F+9tPBCIc1NbaSde+vfS/0EbhuAvJmfUJ8ukw792KYC6CMHqyKuED/4LO7WbfCnceRaqF6bnT2NJzMDCTQ3VQUTSPtCuHMk8ZzeHm4WU+m49STwl5ukSOIwfJkPj2hC+SbwTQkkm0XT1s2vgEA+3tTFx0Os3bmuje30BueSW5FZW07Gimq6Ge7OISvPnjaNoOM88tM+/DNK2GlrUQ6oSy+ZBbA/nimPGfKPOU8fySR4j09bD+4X8iKQqltVPx5xbQr7nIErcjhBNQWjNQ5ZH3EmRdAxQymH2nBmNpAHwOCzYFUsbICXEEQRAEQRAEQRAEQRAEQRCOFskwjPe+sRl85CLMACQVwGPAnw3DOHyq8uNs9uzZxvr160c7GyP1N5mdajf/A1772cH0vMlw5R+gYPLoZS3aTyQVoS/Vx/Jdy1nRvIIidxGfmfkZzi49G1UZGa9moLubTCLGhicfYcfLLwynl02dwXm3fgZf3sjZ3DRNJzQQIxXOEOxNkoik8GTbySpxgiER7Izz5P9sRdcO1sfa04tYct14FPWEHnh81FvuT5S6q+sGm597jpf+8itmnn8JjVs2EurpYvH1H2blP/5CzaIzGOzqoGPvbs788Md45R9/obR2KqrNRv36tZx+40dY8+/78OcXUjh+IttWPMuCq29k87NPoKgWas9YyrpH/sXsi69gz9pVxEMh5l95Ha/e9zemLl1GZ/0eepubOONDN7Py73+metZcUsk4zdu2cMYHb+a1f/6dvIoq/PmF1L32Mouu+xDrH38Ih8dL1ay5bHzqUeZefg07Vq5AS6c57YJLWf2vfzDz/Itp2rqZYHcni2+4iZX3/plJi84g1N1J+55dnPGhj/Hq8r9QUjMFq8PJvjfWcPoNN/H6Q//El5dP0cRatr7w9HBZZFVlypnnsPbhB4bKsppYaJAFV93Aq8v/Ovx+On1+Lr3rGxTXjB+9D3WkY3LX6XjX30g6wtburfx686+p66tjZv5Mbpt+GzPyZqDKbxFnq2El/P1y9JxaVrl/xtY1UXJK3QTyXexd3zW8mqxKXHPnRHI2fgl2Pnpw+0kXwdKvgSML/vlBaF0Hrly2VP+d156Lc/k9M3nyN1tJJ7ThTcomZ3H6dePx57mIDPbz6I+/w8JrP8gzv/kZseDg8Hrn33YXXY37ady8nnM//iUGuhScXivebDu713Xhz3eiWmQyaR2Hx8r2la207R7E6bVy1Rdn4c12HO23+ER18hx7Qx1w3w3QsQlOuwnaN0LNJbD+LzD/U/D81+GWlaxVE/xm0/+wrXcbU3OmcvvM25mnO+H5L4Mzywzu8fr/QKzf7LA275Pw8vcPvo6vBKZeC1Vn0t/Ty2P/epG+liamn3chrTu309faTPXseWRSKZq2bho+xsXDoeFdnH3zp1jz7/tYevMnWfGn/yUeCg4vO+8Td9Cycwfj512NYrFjd6voGQND04gOxjAMCV++h2BPHEM3cAds6KFuZE8OsYiGy2cjp9SNI7ST1As/orfoA4STHty2KDnjS7CVTz2en8qxdPLU3WNgZ+9OfrbhZ2zo2kBNdg0frv0wNtmGqqg4VSc7+3byh21/IKNnuH/G73j0R98mFY8BIEkyV375mzz+8++TiseH0y78zOeIDPSx5l/3sfjGD2N3ubHYnXhyxhHqTaNaZeKRNJIk4fbbCPUnUBQJp9dKsDuGzWnB7rYQ6o3j8tlIJTO07xkkr9xLJqXj9Fpw+qyE+pLIskQimsbptbJ/ay8Nm3qYdX45659qZM7FlVgdKtHBJO4sG6lYBpCQJPDmOBg3K28U3/l37aSqv03be+luDhModJIIpUknNV5/rIH5l9iJ9O2muW47cy65klQ0yrO//eXwdg6vj0vu/CKd+/fh8gXwF5ZjaH60jEGoL46iyvhyHciqRKgnQSKaxpvjQFbMOtnVMMjuN7opmRhg+8qDl82SBMvumsS1ay9hQtYEbp9+OwuKFqCIIExHw0lVd99JX1uE3pYw6YyOw20hFkyRiKTx5thBkkhE0uSUeIiFksRCKfz5TjJJzZxhVTfQDZBliXgohayax0OAdFInGU3j8FhIJzUUVcZiU9AyOpIqg2wgGQYWi0oimsFi7SKTSiEpMhaLhUh/Hzanmzcef5CWHduG8zv1rPMYP38RK/78vwS7OofT5334Q7yYtZsrxl3B1NyT5jzgvTgp629r3Q4e++l3R5xrnn/bXeRVTSCd8AA6sXCGWDCJO8tOQZUPp0cM1BxjTsq6C5CMJQj1dvL8735Fx77dw+nTz7uQ8XMXothKUVSFYJd5TmpzqSRiGfy5Dgqr/aOUa+E/MObrbjqZoW3PIKHeODaXBV+uA5dPITKQRtcNDB2gn8d/+s0RbVJLb/4kueVVpFMJDE3nyV/+aMT11kV3foG+thbS8Tiq1YrN6aJ5+xZkRaWkZgq7V79CVnEJgcIitr34PFPOPJuepkYSsSiBs2bw6557+cLcLzC/cL44xz12xnz9HavqN3ZjGF1YbQatddtZ8+Dy4WVZRSUsuPoGiiZOxpuTM4q5PKGdlHU3EU3QuW8nD//wW+hDs5+rFivn3343xZOm4Q6IgdsniZOy/grvQrAT1vw3vP6bg2nFs+DiX0LhkdsxYrE06x6uZ8er7cNpsiJx0e3TKKvNPtY5fjNRd48DXdNZ/dA+Grf1UTwhQEtdP+VTsmna3kf5lGyad/RTWhNg/9Zexs3KI9wXJqe4CUPLIEkysiojKyqKqmIMRS2xWG088z8/H34Nh9fHsk/cQTwaxtB1tq14lo69B69VZ15wBVml5/DG443MurCCTc82U7u4iHQyw/4tvUQGkgD48h0s/XANqiKZsQINYyhQioGhSYR646STGoFCJ4Xj/KM58cqYq7tdDft47g+/prth33DarIuuYO5ll+H0ifPDU8yYq7+nqvrBen696de83PIyEwIT+OLcL3Ja/mkArO9cz/9u+V82dm2kJruGT8/8NAuLFgKwo3cHweZWslMuehr309/eAkjsXbuKG771YzY8/Rh71rw6/DrVs+ehZzT2bzY/w4JxE5iw8GaadiS4+EYv9n9dAcGDE3hw4Y9h7q3H62041Jitu5H+Plp2buPZ//0FWsa8LlMsFq744jfwZOeiWAP4cpzHPB/CqDoW/SPfe4f7d+Hz/9rCa/t6WfPls4fTfvrHh/jVPhvP3rGAiUVZfO+pOv5vTSO7vn0BS/7rcdTeRp7/+SdRVDH5zUlERJQRBEEQBEEQBEEQBEEQTghvMUL7nUmS9DdgCvA08F+GYWw/ark6WSlWCLeag4QP1b0DuneOahCSLFcWWa4svFEvn535WW6afBMO1UG1v/qwddPJBKqqMjjQz46VK0Ysa962mZ7m/YcFIQn3x0hFNTavaGXf+u7h9MXXjGPcnDwGumIjApAA7F7TydQziskp8RzFkgrv1mB7O+sevhcAh8fDQEcb1bPnUbdqJRgGgcIi6l57mfzq8TRv34quaRRPqmX1v5bjzspmsLODTDJJ9ex5vPHog6gWK1o6RTwc4rQLL2PLc08BYHU4CPV0M2nxmWwfCmjjyc5m24v7KZ08lfoNazEMndyKKtY8uJxAYTFd++vR0mkqpp/Gmn/fj83lIh4OkoxFmXbO+Wx65gkAFNVCdKCfaeecz9YXnhkqi5f+9laqTpvLrtWvgGGQVVjErtdeJq+ymtadB8oymTUPLscdyCbY00U6mTDL8thDKBYLWiY9VJZL2fzck4eUpYtJC5ewY+ULI97PWHCQrsZ9J1IQkpOC2+JmYfFCChwFxPQYXquXMm/ZW2+QTsCrPwVDJ1p9A9ufMAdTlNVms/n55hGr6hmDvs44OYcGIAHY9aQZLCLcaQYgARKVl7B1o3kMG+yKjwhAAtC8o5/IQAp/nove5ib621rob20eMdgDYN2j/+KSe77CpqceoW33PjY8a3bgqllYSO3phTz1P9uIh83ZDOxuC0uun0B0MMVgV4zBrtipFITk5NG90wxAAuAtgm3/glTUnMlmy31mev0zzNu/ioLLf0U4E8ajeCh/4atQeyU0vgpLvwqpmBmABGDyFbD+zyNfJ9gKFgc0v0430+hraQLA5fPT12rW/fzKalb/a7l5vB46xh1q64pnmHvFtfS1NI0IQAKw/olHyC0rp7+9jfVPx5h3WRW5ZR6e/3MdyWiG2RdW8MbTdYT7EgBY7ApLP1zDs78+ePpYs7CQBdO72eG4g7UPxoAMYGP20gyz8lOodjHw9GRXm1PLfy/9bzoiHQDIyGSMDIqkIEsyZ5aeydzCuSiSQtuL64cHxAH4Cwpp2bF1OAAJgGHobHnhaapmzqG4ppbeliYGOtqZddFlJGO9hHptbH6+mUTUPK46PBYWXTOezc83Y+gGxRMCbH1pL8UT/WSXuFl53x4WXlFN8cQAz/9pp/kiEiy4vBpvroNn/7B9uLvJzPPKyCp0oWsGumagpXXqNrYzYV4+8lBfgVQ8TSKaoaclTPXMXCRZ9CE4nvraomhpHRmJaDAFQG6Zi4YNT1MxbRolE2qwuz2suv/vI7aLh4J0N+0n1NmNNyuXYGcLFoeLF/9vF+mk+fvvzbEz87xyVi4/2Nl7yQ0TaN87QO3iYiKDKeo3do/Yr2FAuC3F3y/4Oz6bj2JP8TF+B4STVWQwSSqlY7XLKKrM7tc7mX52KfUbu6nf2MPia8azd10nO15r57Rl5SSjaSx2hb72KHpGJ7fMy5qH9mEYMG1pCRarTDKujQiaM/3sUlp29lNQ7cOXZycZy6AoMnkVXlp2DgBJAvlBFFVFMhQySOxbv45xc+aNCEACsP3lFxg3b+GIACQAm//9ELf94Gfk5IrvwsnGSKfprN9z2Lnm+scf4rxPfpYX/6+FeZdV89wfdwwvq11cxKKrxmF1vOdmTEE4alKJGKGe7hEBSAC2v/gcheMmUTgul0d+0TDi2n3GOaVseKqRcz9aS36lmF5TOLZ2renklfv3DD+vmpnLzHPLUG0K0WAKPWMQ6tpzWJvUpqcf55xbbkNVLbTs3jbiesswdLY8+yTTzr2AgfZWNE1j77rV2Bwu8iuraK3bhq5r+PML2PrCs5RPm0E6mWT/5g3MufQqulbX8ffP/A2vw3+c3gVBOL6CvWHyKyz0t7Ww/omHRyzrb29loLMdf2ExiZiVvDIReOJUkckk2PbS88MBSAAy6RT7N63Hl5+PbLHjdIv2TkEYswbr4Y3fj0xr2wB9e98yCEmkJ86u10e2f+iawWBXbDSCkAjHQTSYZPvKdiYvKWLX6g4mzCtg3/puxs3OY9/6bsbPyWfPuk4qp+fSsKmH05Y5iPSa99FkRUXXIJOKI8kyhq4TKCpmzYP3jXiNeChIsLsTRVWJh8MjApAAbHnuMS767EJkVSbUm6BkUoCGzT2Mm5U3HIBEtcgs/eAk0CGt6Rycx8rAMGD9k/tp3zsImMG0z71lMuNnj+wPJLy1gY62EQFIADY/+zjj5s4TQUgE4QRV7a/m+6d/n/5EP26LG6/t4HXc7ILZfNP5TYKpIC7VRaW/cnjZ5JzJ7KjrpK1+Bw63h5zSiuEglcl4dEQAEoD69WtZeM2Nw0FIOvftYfYlIboaEoT67NgPDUAC8MpPoHQ+FE47RiU/+YT7eqhfv3Y4AAmAlk6za/VKFl/7YRJx7W22FoTRkdZ0LG8K+KboZv+pjGGmdwYT5HnsANhUSEoqmVRaBCERBEEQBEEQBEEQBEEQBOGoez/TU3wImAB8FlgtSVJo6F9YkqTQO2x76jEMkBTQNNCShy/PJI5/no7A7/JT4i1hSs6UIwYgATAMA0k2b8oc0gNhWCaVGvE8FkkgKwqRgeSIACQAax/bT6QviWo5vCra3SrKEdKF40PXdJJDnc2Noc/ZYrMPD+7Vdf2QtNjhaQlzPUmS0DUNWVXIpM0BGKrVSjqZeNM2tuH9HPp6ydiBtKH17PaR6xkGqsVKOml+rxTVQiadQpJkdF07uJ8379tuJxV7U77tdpJD5TvweqrNNlxmSZbRtQyyrAzfoFStNtKJ5BH2fXAQ9AFa+gjffeGoqMqqYkrOlLcPQAKgZyBuBmqQU33YnebNt3Qyg811+IA2i+UtJi9IJyBz8PNUEr04XObgcYv18OOWajUHgYJ57FStdjKpw+tDKhbHGKpbh3ZOrlvdQXQwNTyICSARSdO8o5/axUVDrytmkR2TDv39N3QzYFkmARYnJMND6Ro0vUL5L6cz5TeLKf/v6bD3BbOn3wGHnltYXQe3PZShQSqMljnYkcI45Hf8wLFQUpQRnTAOSMZi2BwOMqn0YctS8SgWux1dM5dtfKYJLaOTjGaw2hUyaW04AAlAOqGx+/VO8ioOBhqrW91BtzaRdS+NPH6uf2mAge7Dj6nCyclpcVIdqKY6UE1loJLxWeOpClRR4a+g1FvKxKyJjAuMIxmLjtjO5nIN/9YfKhWLIltUrHYHyWgEdB1JkjB0jcGu6HAAEoB4OE37nkEmziugry2K3WUBCdp2D5JV6AIDNj7XTDycJrdsqO4asGVFC6HeOMXj/cP72vx8M1UzcpCHAovIsoTTZyWd0jEk83unqDKqTcbusogAJKNAschm0BgJFFVCliWsNplkLIxuGCgWC5JhjBh8eUAmmUS2KuiGjpZJs2tN53AAEoBQb4JQTxyL/eBv89pHG5g0v5Du/SGQJLN+vYnTZac2p1YEIBHeF0WRUBQJI6Oj6wZOrxVd06nf2INqlbG7Lex4rX34GlyxyMRDaXw5DlSrwraXWs3mCwlsTgvZxe4RAUgAtr3UStXMXHa+1k4g34WhQzqtMdAZZcuKFqz2oalZJQnD0M1/ujZ8PXgow9DRM4enpxNJLIjz25ORBsPX74dKxmPomkawJ0FPSxiL7eDnv/O1dnpaj3B+KwijQTKOeL2kZTJoWgZD1w+7dg92x9E1g7Y9g8cxo8KpqL8jyppH6kekNWzqIdQXx+m2IEvmtf8R26TiMXRDR1aUI54DJ6IRcyCkrqNnMqSTCSx2O8bQOfPIvx1k0mlzxnZDJxEK41TFrLLCycvmVFAtFnRNO+L3S9c0dE2jtzkyCrkTRossSSTCh5/DJuNRMAz6W0V9EIQxTUub/94s89b3gmVFwn6Ee5GKRbR/nKwUVcHmUknGMtjdFlJx8/HA82Q8g91lIRlPY3dbyKTS5vm2rsPQPQNDN4b6W2TMc/U33RsBSKeS6IY03DfiULqmYRgaWlrHalfM13Rbhu9dAExaVIhhgJbR0TUdQzPzYBhmkJwDAUjA7B606sF9RIOi38O7daQ2US2TQU+Lge+CcCKzq3aK3EUjApAcUOotZUrOlBEBSIbpEul4AsMwhvudAUfsYwEH+2gcoKVTyLKEKh/hGJGKwBGO9cJb0w3jiH0I4uEwkkUd2edGEE4QKU3Hqh4pCAmkddjQNMBjW9opCZgTldkVmYysHrFNShAEQRAEQRAEQRAEQRAE4f16zxEeDMOQDcPwDP3zHvLPYxiGmMoLINIPoW5oeQP2PAt6GtwFMPGikevZ/ZAzaVSy+F5Y7Q60dAZvdg751eNHLPNk55JV/KYgAIaEIkMydoSBRUmNVDxDoNCFL88xYtnci6sI5LuOev6Fd8fuzqL29AuHnklY7A4at2xkwvxFgDn40unz07GnjvJpMwCI9PWRVVzKQEcb+ZVmEJuu+n2UTp5GKh7H5Q8gSTKNmzcwccHpgDmLj2qxsn/jeiYuXAKYnS7sLjctO7ZRPWseAIlwGG9uPj2N+ymeWAtAf1sLBdUTiA4OECgoAkmiZcdWxs2ah2HoWKw2ZEWlfsM6ahafOVw2i91B05aNjJ+3EDAHQLkCWXTu3U35VLMs4d4eskvLGexsJ6+iCjBnnSibOp10MoHT40WSZfZvWs/EhWZZJFlBtdpoOCTtAFlRKKg6cmAf4RjSMiM7/NnccNZXoWw+rt1/Z9HZZse+veu7mXpmyYhNswqs5BbaIPdNx+fscZBVCZ58cGYBYNn/NPMWZJAk8OY5yD8ksALAaeeVk1VizkCQXVyKrmXIKatEVkZ2LJx69jKS8SgWmx3FMnLmo2Ts8EFO4f4EVodC1cxcAoXieDkm5U4yzwPADJIjSeApgn0rYP7tUDoXrG6Ycytc/Vc462ug2OC0j4A9y3yM9cPsj8OXWuETa0B1mOte9lsoXWDuO7saCqbB1GvJzvFhc5r1xdANrA5zIFA8HMKXl086ETePcdLI08SaRWew+dknyCktQ5JHLpt2zvkMdLQTC5v7Sic1tJTZYcbuthALjgxQBhDqjePy2UakJVMKhv6m4D8GJOMjO98IJ7DefbDnOWhcBf0tkIiY/+JhSMUhlYB4CJLvb6BF2ZTpIzoFde7bM/wbfqjaM84mnUjQuHUjJTVTKJs2Ey2VJtRrGREY54BIfwJ1KKhTOqkNB5DKpMwOXYlIGl03cPkOzlQbC6UwdAOX/2B9NgxQrQqxcApfroNUIsPUM0qwWBT0lIGuGSCBw21l4ryC9/VeCP8Bw4BMCgyDgkovTr8VXTPw5tixOBRiYZ2qWedg6DotO7aTTqWYetZ5I3YhyTK5FVWoFhuyouDLKz5iXYqFUsPBzsD8HTeAUF8CQzeoWVgIh/Rr82TZyKs45DJ6KNgeAJkMhLuhtwG6d0Preuiug4EWGGiFYDvo4jgpmPz5TjMICRISULu4iGTUPI+0OVVScfNvq0Mllchg6AbRUApdMwOWhAfM+qxYZNKJDKnkEQYvHPJbnYxnUFQZl89GJqWTSevseK0fq8OJLMtYrDYsVhtFEybhycrBkz3yHLdw/CQsdieqbeQ5wfRzzsdjDED3Lgh1QaQXQh3QsQPCh8wafGjdP/C3rpvXAUdKP9KjljEHDmVSogPvcaBaLBRUjz/sfHLq0mVYnUPnpaEUNufIgVmJ6OHXQ4IwGhxWG778Ahyekc3f5dNm4vIHaN17+HEk3J8wj7H9CYj2Hq+sCqegZCxFOnF4HUzFMmi6OYs5OuSUVh/WJlVz+llYrDZSyQTFk2oPG4Qx9exlDHZ1AGBzuak6bS6Dne3EgoOUT51JsKuTTCpFzeIzqV+/DncgC09OLqGebk5bdj5qfAC6dsJgKww0Q9tG8xz3SOex7zrtCL/b73ZbQTiK/Pk+ktEonuxsJi06Y8Qyq8OBJzsXh89PLHR4+5hw8pJkhSlnnXNYeuX0WUgW9xHb+wVBGEP8ZVC1dGSaKwdyxr3lJjklHuZcPHKwsi/PQXahCNZ2snJ6rSy+ejwNm3qYfHoxDZt7qFlUyP4tBx9rFxfRtL2PiXML6O+0oKgWFIsVCXPSAKvDjqKq2D1eYsFBpp1zwYjXkGSZQGEJqkXF5c/C6fOPWF4+bSaRQRtZRS4sVoW+tjDVp+XS0RCkcrrZTufLdZjBR3QdPWOgaToYZkCt1BF+r6LBJJkjtBkKR5ZVWHxYG0LFjFm4cvNGKUeCIBwVb9HW4MnOobhmMrKiEu7rJaeswkzPzSWntHzEuoHCImLBweHnDq8P2ZLHzHOL8XlToI68b8LMm8z+SsK75nB5qJwx67D02sVnkYxEcLitR9hKEEZXMq1jOywISXpomcYd920CYHqpHwCbKpGRVHNCSUEQBEEQBEEQBEEQBEEQhKPs8KlWhKOjdz8YGnTvgKfuNjuYX3c/5NbAwjvMjil7noGciTD/U1A2Z7Rz/O71NoJmQXU4OfNDH2PnKy/SvGMLBdXjmX7uReSVV4xY3WpTiYQTeHMcqBaZTPrgjbjsYhfubBvIBks/NIne1gjxSJrcUjeFVb7jWy5hBIfPQV7VAk67yEnDprUs/cgn2LtuDclohMU3fITda1ay6LoP0bx9C31trZx5063sWLmCGeddRFdjA627dnDOxz7N9peeY8KCReSUVrB/8wbOvfUz7HxlBb78AuZcdg0Nm95g6S23sWfNKxiGwcJrP8i+N9aw5IO30LDpDUI93Sz54C3UvfYScy+7mvY9u+hs2MvSmz/F9pefp3bxWeRVjaNp22bO/fhn2PHy8+RXj8dfUETDxjc45+Ofpu61l7E5nMy/6gYaNr4xXJZEODxUlldYePUHaN6xhd7WJs666RPsWPk808+5gO6m/bTUbeecj5tlGT9vIdnF5TRs2cC5HzfL4s3NY+7l19Kw8Q3OvvlT7F7zKpqmsejaD1H32ku4/FnMueRKiidNHO2P9dTRvM4cnJgYhO0PgjMAMz4AOVNh+7/NIA2L7qQquY7Lb7uM7k7wBSQuvrmI/rYwzmwvBWzGs+JHcPHPYdPfoWkNlM6DWR+GZ38EXavgsl/DtgehfRNFmZVc+alr6drTy6Jrx9PXGiUykCC72E0g34ltaGClv6CQS+7+Bp31O7jkri+z/smHiQeD1C5ZStnUGax96J+c+ZEvse7Jg7NxWOwK3hz7YcUsHu/Hn+egfMoE7C7LYcuFMSC7Gj78KKz6hRmw7JJfQucOuPBHsPUBqL0S8iZB1jjY9gDEB+CG+6BzK7z8XSicDzUXwMa/QvMaqDgdxp8LG/8G/fth6lVw9tfMc45Vv4SKxRSUzOXSu7/IhqefoH7DOs679TPsWv0KLdu3svj6D7N/y0b2b9nI+bffxbYVzxALBZkwfzHFE6cQ7O0j2NvNBbffw5bnnyIeCjL5zHOwOFxUz7mWN54KmcUqdmNzmQOaQn0JahYVHVb08qnZ1K3qGH6uWGT8BR6cPuuIoCV2t+WI9V84Ae1/FR6/Awab4IMPwRu/hc5tMPtmaHrNrNuTLgBXAcT7oXAGWOxQNOM/fqmiibVceteXeePxf5OKx6ldshR3Vg4X3/lF1j/xMOlEgqlnn4c3O4+WXds444O3gCxRUlqOJFt5aXkr05aWHTYbfUG1j8Fu8/hrc6poaR1JAqvdvGwqHO9DtUh0NASHtyme4EexyCNmA3R4LGQVu5FkieIJfqwOFQODrCIXuqbj0g1kWcIdsJNT4v6Pyy/8h9JJaN9gDnS0uUFSyE+GUfLOJpKxorpt2N1W5l1aSSqeTyreyIzzLyLY1UnZtBkoFgs7X3kRh8/HrIuuwNB0Smomo1htxCN+yiar9HeMnIHSX+Bk97qDgRLyKjzEQymKxvuRZQND1znvozWE+hI4fTYKq/3485xmIISWtbDln1BzCex4CIKtMGGZee2YCJr/FAvEBkBRwZ0PWhLsPqhYAg5xHXUqcwfsFI73E+qNg24g22QCqgtZlYgOpnB4rdhcKrFQCrffBhJkFTjRMjod9UEqpmTTuK2PTErH7rZgsSrYnOqIAXLugI14JI3VoeL0WmnfO8hgT4zicX78+U4Gu2L0d/nJLTGQZECCwvETCXV3sexTd7LtxWfprN9L+ZTpTFy4BF3XOO/Wz7Bj5QqC3V3ULD6DKTVFyB1bzN8JZ7Z5XlP3qBmMbcYNEOsDZw6s+RWUzoeKxbD7aSicBnWPg2qFSZea2677PeRPAX+JeZ1QtQRa34DiWdC9F3KqYWA/5NWAxQEWl9lmkzth9D7Ik1ygqJRL7v4y6x9/mEQkRO2SsymdPI1HftEIQFaRm12vHzyGWmwKgXwxKEs4MaguN1J/P5fe8//Y9PTjdDXWUz51BtWz5+P0BUjEDu+4XlDlY9PzzUw7Ix8e+Aic+00omX3c8y6c5Dq24u/ZSU5pFb0tB4M+KhYZb44DWZGGY9xpej6Xfu6rrH/s38SCg0xctISy2mkYkoQkSShWOxff+UU2PPEoqXiUmedfgjcvn3g4hJZKkYhFsRg2pixdRjoRJxmLMu+K6wj392L3epl98eUM9nQy9azzsBOl3NUPnZvNc9vBZqi5FGQL7H0O9r8C+ZNh5gfNIKzbHoT6FTDpYnO9TBy2/tNs85hyNUy80Jz5d+sD0PgqTL4SJl0EWgp2PAJ7n4UJF8Dky8zC7nwMdj8F486FKVeIwTrCMVE8PkB3cxotE6Rm8Zl4snLY8/pr+AoKmbr0PHx5BTz60z0suXHsTEYgvH8Ot5v8cRNZ9snPsvHpx5BkmennXEBOeSXP/b6JZbdOHu0sCoLwfmRVwVlfMu/x7HvBPJ+Z9wkoefs+H0XVXi745BR6WiI4PFZyS90UVPuPT56FUVE5PQenfxqD3THO+WgtiUhq+PHsm2pIRFKcd/Nk4pE0lVOLkSUXyUTPUJBqMCQwNB0MA9Vqw5dXwJIP3sz2F5/D6fdz2gWXoVptyIqMYRgs/cit7Fr1Cj0tjVTPmk/VaWeSjNiYdoYDTTNYcu14UokMtQvz0XWonJaNoevIigwKGLqOgYShG+iaGaBEkg7GywYon5KN0xIBRFvNu2HJKuaiO7/I5meeoKd5P1Uz5zBh4ekkI4533lgQhBNPsA32PA3b/gUl82D69ZBfO7y4wC8j6QEUixWnz0fhuIm07a7j+f/5OWffYvZza63bQdGEGqaevYw9a1bhyy8gr6KKmcsuwYgpVJTtQPGeDtfea94DCbXB5KvMe4V2z9tkTngzTfdRUD2RpTd/km0rnkWSJGZddDm5VeNQFBdOjwhCIpx4UpqO9U1BSKShyRd6IknaBuPMr8riM0vNdk67RSYtqYQTIf68YTnjAuO4uOri455vQRAEQRAEQRAEQRAEQRBOTpJx6N3iE4AkSY1AGNCAjGEYsyVJygL+CVQAjcC1hmEMvN1+Zs+ebaxfv/7YZvatGIZ50ynYAvddbw6CPyB7Anz0OTNASaIXXIXgHEODxPqbQcbsvLv1QaI3PoqRyZCIRvG6VKxZhw8yBhjoCqPrBoOdSdY8vI9gd5zCah/zL6+iaHzg+Jbh6JLeeZX/zKjW3UOl4gzu3MymTTYkm0rhuGzqN3RTVusl3K8TD8UonZzDvo29FFY6SKcVBjrDVE3PZd/GPrKLrFhtNjoaBhk3K4eGrUE8fglvtofmnX1UzcyiY18MRU2TW57F/s09lE/2M9CVJhWPU1qTw971PRRNcJOISIT6w1ROzWXfhl5yy+wgWelrGaRqZi4Nmwfw5SrYvS46dvdRdVourXUhbE6DQKGPxm09VE7Lorc5gaYnKRyfQ8OGHkpqPET6DWLhKGW1Oezb0EtBpQMto9DfGaZqeg71G/vJOrQsp+Wwf3sQt0/Cm+OheUcfVTOy6GiIochpciuyaNjcg6LoOJ0qU+Y58BTkorpPuHp+1OsunCD1t6vOvOF/2qfAG4BUHJZfDh1b4fr74B9XHVz3qj/B1Kuhczv84SxzwILVDYs+C63rYOFd8M8b4VMbINEN9ix48CZz4OLKH5n7+NiLkFUJyGBzmYOC30EqmaF5Rw+hyADVNblk0kkU1Ufd6hbGzykmEdF5/ZF6uvaHCBQ4WXDVOJxeC01b+9j0fDNgzmo/cV4BeeXed3i1k9LJd+zNpCAVBYcfml+Hv15odl49/XPmYNh/32IOTK9cYq6z8zFzu0+8Co9+Gjq3HNxX6XyY8zF46h5Y8nnY/hC0bzy4fOIFMO5cko58UrEE5NYS1jwoKoCManMg6XEkVUbLyPQ0RbA67bz2r0bsLoWJc7NwBZy4fAYSMvu3BimakMNrD9QP/77PurCCeCRBX0uc7StbKakJkF/hZdPzLWTSGhPnFlA2OYutL7bSUR/En+fgjA9MpHhCgO6mMK/ct5vupjA5pW7OuGEiBSdPYLKTr+4eEOmGv18JXdvggp/Aut9C3z44/R7Y8FdzsPgBZ3wZai4zAyWEu8FbYP57D8KDA6SiUVSrjVRKYvWDLVTP8uDPtmD3OJDlNLJqAUMnGkqz+YU+xp1WgKEbdDYEkWSJXas7kGSJyUuKySv3sOaReqYuKWbfxm5iwRTzLqtiw7ONeLIc1C4qwuZUeen/dhHuT1AyKUDN4iLsDpU1D9fT2xohp9TNkusnUHjydR4fu/W3bRM88yWoudi8Ntt8H8z6CKz8AZz3HVj5Y/O3f/u/oWA6yDLJaARj7ieJOwpRrA7SyQSKxY6uJUFWSYRl+loSOHxWVKtCw6Yedq/tRLUozL6wgqwiJ6/ct5dQb5ziiX5mX1BJV1OQiaf5cdf9CbbeD55CmPdJqDwTbEMdtru2w+rfwLnfhlg/3H8j9O81ly2+28zfjofMc5ayedC+GcIdMO06aF4N48+Hadcc+/d0bBm7dfcoMXSD1t39vPyP3QQKXUxaUMgbT+zH4bYwblYekiIRC6Ww2VV03aBtzwCN2/oom5xF9Wm52J1W1j3eQF9blNwyDxPnFbD79U5mXVhO0/Y+yiZnk4iksblVjIzB1pda6dofomiC//+zd95xcpT1H39P2b6313u/Sy7l0ntvEAi9F6WIioAgIE1AEfWnCKIUBQUUEaSI9E4IEBJSSa+X5C7X617d295m5vfHJJscFxEUSHHeed0ru88888zzzH732Zl5vt/Pl9kXFGA2awhoaJKMEokgmc0o0ShJ6ZlEwyHCAT+yLCPEQ0ixAPa0TF1kx71Tv+7prIIlPzkwIEGA0/+oBxn7OnThnrQymPlDXQwrUU+EE34JsRAs/RVkDIXimbD1HzD3Nlj2a5h/B6x8AKZeAbvfhrL5elvmJCidDa7cr/vj+jTHpv3WraDXMQ5ZjhALhTA7knnmpxsxmSUmnVxMekESn7xeh7veS0q2nTkXDKVwZPrh7bPBF+XYtN39dNfRL2UhCTGiwSCiJBGN2Gjc3kNmoRN3g48tHzQDMGJGLrGIQmqOnaHiYpJW3QrjL4FTH2TfTZjBkcXRabtKHN66AbY+S9s3aln7Rh3tNf0kZ9mYdkYZriwbWlwlGlFQlX2BhRrYkwVMUhDZJCMIIAgqgqIQ10Q0QJD0cjniQbBnIAgaWtiL4G1DaN8CaSVo3bWI+WNQd7yOUDQZob8V1dOCmF2JFvVi+eQPumjI8T+HZfdAPKz3efbNurhIv/5dwZoCc34ES358YFxDjgdHFmx97kDZ+Et1gdbdbx4oG3UuWJJh418PlBXPhOJZ8PFvDpTlT4RvvgCOjC/3/B85HJ32ewzR1eRFMscRxRiqEkeQZFTVytYP2sgqdlE2NgO7y/LvG/rf49i0XZ+Hbp+IPcVE1O9DiUXxB8yse6WRaWeUU1iR9LnWEgyOeI5N+zX4/EQi4K0HW6ouFHz0YNjukYoSRw37iMRBjcdAlEGLg2hCUONogi42Eo1GEUUJWRQRJBFNVUCUETQVTdUQZBm7WUAwO/SESTG//mwsGtbbBIgEoPptiAXpTTuOiJAKmoYqAKpuJIIg0NcRZP3b9fg9EYpHpTN1epRMZw9ULDocZ+jos93WRlr8SSRlaEQDPiwpafQ2RikqsyI6DJH6/zGOPvs1GEg8qq83bnlWFyDzu0FV4bvv6cLmXTW6aMj2F4iOOJ9I0XxELY6YW4mw+VnMPdsJnPU04f5+LA4HK19uYvKibCCOKLtIf/k4fX19xvVQ9xF0+uC6t3Q/kqzDmvTq6LXdlq20BAqxp4hocT8mswVkEyCTlOxAEL8S1zmDI4uv4kP+Sh3uz39sDQLwzyunJ8oee/AR7u4o4objK3jgg2oevXgii0bpPjbf+9P7fFLbzSknbuSt9vcAePqkpxmXNe6r7KbBV48xQRkYGBgYGBgYGBgYGBgYGBgYHBEcqZ7O8zVN6z7o/W3Ah5qm3SMIwm373t96eLr2OYiG9Ky7vvaBAiQAPdXQsBRGnQNJX8zZtbmvmQgRWvwtvFP3DjE1xsllJzM1ayou25cThK5qKq3eVnxRH03+JnrDvRQ4CxibMZZkW7I+Lr8b1j8OffU47i8CwAm6I/GsGw7Zbmp2EuFgBKvTxIlXVBKPatiTTSSnG9lRjlg8TdD+CinHnY0SltDsIfKzTcSjYdJGmPH3C8QtQQpOMhELRUhOtiH6JCKyn8KTTYQDUezJJrJLZcJCkMJFMkFfFJMzRk6BiSghcopFAl4Q7GFyc03EYiEyK2S8/QIxa4D8k00okTCpLiuyVyRqCpJ/kolYKEqSS0YolwhLAQpOMhHyRbEnK2QXmYhofvJOkAl4I8iOKLl5JmJKiMwyCb9XAHuIvJNMKPvGYto/lpMPjEXwSURkvQ+RT42l4ASZgH/fWPJNRLQgOSX6WER7hLwcE2pMRbPH+EP901h7bJxafgaVGUZmu6+DXVqQ0OhTUaINtNSvJK7GKT31NxTY8sne/RbCnFsPBCCsfFDPFtJXrwfzgh4YoUSg5n0oX6jP4w+UDzzI1KsOvO7aBQUTv1AfzRaZIRNy8XtSUeIatiQXsZDCxBMrMNv0n+YFlw4nElIwmUVsTjOOFAtZRS6GTslGiakkpVuw2IysHEcjMTVGdW81PaEeTJKJnnAPJsGE0+ykr72PrGiIYRUnkJw3SRd2CHbrAiSgi5As/dWBxvoaBgqQADSvpe24O/h43jUs9+5gyqjjWVBxPMXLf6sLpVUvhtK51JhV3uzbQmZ/N8WOEuL9JkZmDadJ2Umzr5khSRXkUYg110qMOPOuKsOsWEHS8MR66bIHSI/nUj6xAKtdZtGVo4lF4lhsEn7Vjyk5Tm6+hdSJBdgFO06bnZLRGWhoWJPMqDGVk74/mmgwjtkuY3Pq9pxd4uL068ftC2Y20aN08lHTJqySFW/MC8CQlCGUp3zqe2lweOlv0QVIAJwZuoMU6M6s+wVIJBM7Ln6eJT3b2L3tAabnTWdMxhgcUQ/Ve9ehaipZ9izq+utY0bqCISlDmJU/i65gF92hbiRRIt2aToGzAFVTkQSJJEsSZflliW7MucBGJBRHlMGn+fAqHgKqF03QyEjKYuLJJYiCiCRDepEDRVEZPjMbVdVQ7CF6vD1MvTIbl9VGzrAhmE0ymgonfncUZquMM82KKAqce9tEgt4oJouMM82CAJz4vUriMRVnmhWr3QgiOaLwtui/7Q0rIHcc5E+Aqtf0IMSa9yHUC7EgdGzThZqW/waLyQYZBVhX/Z542UJ8U39N3N9Mcs2TqDmVqIVnk1dmRZX0uWvMggJGzspDFAVks4CiqSy6UrcJk1UiEovSNXQ3a1tqcaSlU3T6b1A1lXfq30Fyf8TJpScjIWE1Wfm4oJzatT9lSs4Uis+8lzxzKsMfnacLl5idkDUSUHXn8dqlepbVlvWQNwFW3AdDT9BFfgwM9iGIAoUj0jn31kkEfVFks8iiK0cRj6o40y2oUZVoWEFRVSRBoHh0GuNPKwA0oqYwkWg/8789HDWuYrKIxMOQNywFRVEYOT+boBrAkhODmIJNsjD3mxWoioY9yUxSuo3dPbsJx8IoioKKihSXCCpBrL3trGlbw/bu7UzLncak7EkEtSB9XU1sdG+k1d/KSUULmRX1knbwgDQNmtZA5y4YeYYuQpJSBFufHzhwTdXrZFSAKEF3DVSeDfGI/tsk7Xtuo58lXfRkxGn69VeqHXrrjgQRkmOPaAQyhtIX7yRDykA0WYnHBM65ZQKCJCBJIqqiMvei4aiKijPVgsMI1jU4kgj1029NIRDzIsRl7OZkYhEVQRQoHZ8BCiSlSZSNy0BDADTEqJf0Ndcj1H6ot7H3fV1EKaXgsA7F4Bgi1KfblaqQ91wpi761ln51CJIsYE82EQ3FQRKQTZLuIq+BHO8hqf0jaoonscfXSlgJU+AswC7bUVCwSBYkJHxxH1EtStzvRhAENE0jZo1hKhtNOB5BdFUSiQdInnQGdO1hWE452Svvhh3A3Fv152wAVa9D2Vyo1h3hWfdnGH8xrP2T/j7sgUj/wHHt/UBv42C2PKOLXR4sQrLzZV3A5GAaV0HJrIFlrRuhp+ZYFiExOMxkFrkI9vsIh03EIiqiKKABo+bmkyU3giv/cHfR4Osk0oXkykDRBEwWF/FYHLMc57jLhpPWtwr8oyDZuBYwMDjqsVggc/jh7oXBsYQkIzpSsR1U5A64afBWE46HUTVdHcQkmBAFERUVQRNAAE3TEPbFKu6vB+j3AALQ0qHXEQS8ES/BeJD87BLyTSkU73ieWNY4/Kkz0ERJ30UDTYCcIUksurISYkHSdtyL6Y2/weTvHS4RkqOPjmX4iiZjjxYRj0kIXgE5P4zYvhWGHHe4e2dg8KXSGexkd+9uArEAZcllVKRWIAifL4Z6vw9Fo7eRFEsKI9JG0BnqpCfUQ2+4F0EQGJY2jCEpQxL7eMIedvXuotHbiN1kp8xVxqjMUQPabfY1U91bjYpKqauUJl8TTd4mXGYXZcllKJrC6rbVTMqaRGugFYtkwSJZ8EQ8lCaXMi57HCZx37pvXwO9US9rT7idd/qqqLDPZJEpk4rO3foaRX+TvpYXj2De9hTmbU+BYIITfwkbHwYg6YEiHHmT8Z/9JhMWlqGq4EwWcfypQl+rBFj/F1h0jy66/vJ34NuL//sP53+VnioyivMIhsxEI040TcJuk/GpXpIEx+HunYHBIYnGVZKsA936xX0+Y+39IQAykw74C9pMEjFR5r2ODzm17FRWta7i71V/10VINE1P7mBgYGBgYGBgYGBgYGBgYGBgYGBg8B9ypIqQfJozgHn7Xj8FLONIFiExWXTHX0cGyNYD2f1AD8R0fvFM7x2+DmRJpra/lh9+9EMUTQHgg6YPuG/ufZxQcsKX0vU2bxvemJendz3N2/VvJ8pvnXwrF424aJ8DgwCiOHhnUYbuRgj3QPce3ak3fYge3Fc4GavdgqIq+NR+AqqfvYF2Yo0xipKKGJI2ZHB7BocXk4M1Q+fw42VXs7BkIX3hPj5p/4RbJt/CH5b8gfFZ40m2JLO4YTE3TLyBvy79K7mOXCZmT+S53c9x1direHXrqwiCwJnlZ/Loike5dOSlrNq1CnfAzRVjruDBlQ9yevnpNPQ3sKN7BzdNuon7l9zPzPyZACxrXsYtk27hTx/+iSEpQyhLLuPVva9y7fhreW7zczjNTo4rOo4ndjzBd0d9lyU7lxCIBbh4xMU8tPIhzht2Hjv27KC2v5brJ1zP/Uvu57ji4/BGvKxtX8stk2/hofcfYkzGGNJt6bxT/w43TLiBJz56gmx7NpOyJ+ljGXMVr217DU3TOGvoWTy64lEuGXkJa3atoT3QzpVjruTBVQ9yWtlpNPua2dS5CQBJkPi/mf+HO+DmgY0P8KMpP6IiteIwfqjHPnt79+JHpTfYywObHqDV3wqAw+Tg/rn301E8kXE73tUr21KpP+9x/N4G2m0Wkq9cQr4lH9umx0mXbfpc58wcfJCMioOCFYGk/zww0ZliPaidgdvScgdnPhIEgdRsYyH8aGdFywqe3fUscwrmsKJlhR5gW3oSf9n+l0Sd8yvO5YKKM2gLtgFQMOlSAo0r0RyZOM9/HE9fA7mRAPnS4IDMwNDj+V3dS7zfvBSAlazmveQK/jThEtI2/h0Q2JVRwrfX3kmeM4/xkszvt/6Rd894lzcaXueRrY8k2rpo+EWcO/RcznnzLH4w7ge8VP0SHcEOAFxmFzdOvJGy5DLGZ44HdKfGF6tf5MkdT3LFmCv4+Zqf646OwPS86dw57U4KkgY61+8XHzkYi92ExW6izlPH1R9ezaKSRSxpXEKzT8+QbJftPH7C44zOHP2ffgwGXzaODN25ytPEgIQcBzk0tCy8kxs33kt7QJ9D17Sv4awhZ3H20LNJs6TRG+nlo+aP2Nm9k0tGXoIgCJhEE4VJhRQ6C5ElmXA0jIJCb7iXdFs6oViILe4tWOV986kJHtn1CEubdPsXBZHrx1+PQ3bQIrQgIBCKhyhIKuAnq35CIBYAoMBZwO1Tbqcp2sR9a+7j/2b8H2WuMuyyndLU0kHDtbssg7IXpxjz85GLIIKqgCDpNrn/tabq2w6Ftt8zG+TG5aTm/QNW3q9v807A0raSqnm38OD2v3DxyIup6qnij1v+mNj925XfZrN7M1u6twAwIm0EN068kRHyCJwmJ07ZSSAeYFHJIjJsGdgkG4FYAJNk4pSSU/ig+QPu33g/F424iKEpQxk693akrc/qXdLiuqBCou+a/h5AknVBEk+DLrCQXAj9rdC5E1JLdKfmsBcaVurXM8UzoWgGOAZIPBya9u268IMSg+R8/Rx27dbvdzOHg8UJjhzYuwRsKXq7IQ/ULwNHpp4NNtSjZ6TPMoIzDge2JDO2pEOI2Nnh4BlsZ9dOYqYY/rifv275K98f+33u3XY36zrWAfp9zj2z7yEajxLTYkSUCC9Wv8hejy5AZZEsPLTgD6SQSldzFwiQac0krIQJxUOYMeMwOYipMcZkjqEyo5JwPExVbxXlyeU8uPFB2gL6NdDK1pVcN/LbXJ5agtDXcKCTosyARGOaeuB7cDD7v/favrr7f5cEcZ/jnai3I3z6t2v/n8GXj0atEiCiRrh85eXs7tsN6HZzx7Q7qEyrpMHbQKY9k/LkchwWQ4DE4EhDI6hGqPZXc+OyG4mpuvPvyLSR3DrlVqxmK+6gG4tkwS5bGL7yj1jTh0L98gNN5E4A++f47TUw+LxYXbrYnq8dNA37k1OxAyy6G8JDdFE+TYNokJbyWdREPUgmiZSy6dy64lZa/C0AOE1OfjbjZzgkB4FYgBRLCqF4iL5wH+6gm+5QN1bJSro9nZerX+ak0pNY2rSUCdkT2Nq1lVEZo3isfjm/m/59ctc8MrCPoqRfhx/8XlMG1jmUQ/ynywRd3OdThYco+xft8S+u/w0M/gv6wn20+9sRBIGoEuXBzQ+ywa1ndJYEiV/P+jXTM6aT6q6GbGN94H8FxZFLjaeKm5ffTF+kD4B0azq/nftbOjKLSEEg7zD30cDAwMDgyKfV38qKlhU0ehvxhD0kWZL09RJRRuOA6Mj+19q+fwCKqqChoaoqGlrCx2hP3x7ea3gvcYyfTP0JvspTQRQIx2vwRX2kWlMxCSYULY6AQMwWo49e0kYtZLivAZt4tLiaHX72lEzj7zuf5K36txJlP5r0I84rORvrZ+xnYHC00RHo4NaPb034S8mizKPHP8rU3Kmfa/+Pmz/mhmU3oKFhEk3cOf1O6jx1LGteRr23HgCbbOMvJ/yFsZljAdjo3sjNH99MXI0DMCp9FLdPvZ0xmWMA2Nu3lyvev4KuUBfTcqeRaknl3YZ3E8e8edLNLK5bzPzi+Vzx4RWJ8rkFc5EEibvW3cXv5vyOhSULafY14w676R1zOg9tfYQWfwvLgVes6TxVcDfFoD+HEERi2ZW0Tr+K/qwReOMBQKPi1Pvoj/YTH3YS7oAbKbSebFc2SriP3piT+BVLiCgRvJF+UmNRhkVj+rOd0jmH9tE0+HyIFlZ7t3PT8psG2MltU24jrsXJTzbEQg2OPKJxFYv8qe99PAJAq0cXIUlzHFg7s5okoqKMrMW5YNgFpFhSWLbjGeJNZyA3rIS0cjjhl3qSNgMDAwMDAwMDAwMDAwMDAwMDAwODL8iRuEqhAUsEQdgoCML+FZ5sTdPaAfb9n3XYevd5ECWIx8CeBQv/70AgjCDC8T+H/MlfuElJkpBEiWXNyxLOAft5cc+LiYWS/wZPyIMkSnQEOgYIkAD8YfMf2NG9A9QoWFNg6vcH7mx26o7OahSqXoXXrtKV+RffCu/cBO5dxJQYrd5W3GE3j2x9hKs/vJrrl13PLStuYaN743/df4Mvl2ZJ40/b/0xci1OeXM7a9rVMyZnC0qalhJUwE7MnsrhhMaXJpezp3YM36mV+0Xye3/M8KZYUvBEv7qCbk0pO4qmqp5BFGZtso9ZTy0mlJ/HsrmdRNZV8Zz5burYwu2A2b9a9SUyNMSp9FMual1GZXsl693oCsQAz82by6t5XybZn0+ZvoyfcwwnFJ/B01dPYZBsaGs2+Zk4qPYm/V/0dDY1MWyZVvVUcX3S8/j3R4gxNGcqa9jVMypnEsuZlhOIhJudM5p36dyhxlVDdV01/pJ8FRQv4555/kmxJxh/z0xHo0Nve+XdkQcYhO9jr2cuikkWJsRQmFSYW1AEUTeGRLY/Q5Gsiw5ZBs7f5sH2e/yt4o14+aPyABm9DQoAEIBAL8EL1C+Q5C/B668HiYvUFf6M10s21S6/lpuU3ceX7V/Jy/ct0jbuQuowymP8TPaB+7IUHDmB2wIKfwrK79fdjvwm5Y7/mURoczXQFu/jV2l8xJWcK4XiYTzo+4cSSE3m66ukB9V6ofokNnRu4dum1XLv0Wu765C6U3DFcsvo27qh7mVU2Mxd0fsB6ux3K5g/Yt6nytIQAyX529ldTl7lPSGH0BWwKNBFWwswvnM8btW8A0Bps5S/b/jJgv2d3P0tHsIMUSwphJZwQIAH9+7amfU0iSBigydvEb9f/livGXMHDWx5OCJAArGlbQ1VP1Rc6X6vaVtEb7gVICJAABONB/rbjb8T2ZfswOAKIR+HEu8FkA08zZO8TiImFEmJNu9IKEwIk+3mz9k36wn0UJBWQac+kzlPHnMI5/Hjlj7nl41u4aflNuINu9nj20BXswh12c/UHV3Pj8hu58v0r2dW3i95wL02+JnxRH82+5oQACejCOE/vehp3yE1nsJNGXyOZtkzeqnsrIUAC0OJvYXffbuwmO7mOXJ7c+SRhJTygjsFRjKtAD/Qtmak76Lh3wKizddHE8vkHghNtqXrG9OGn6sIaliT9t1+Jgtmu3/MAtG+G8gVUB1spSi4iokZ4bOtjAw755M4nmZE/I/F+V+8umn3N3LDsBu5ddy81/TVcs/SaxDXIrt5deCNeVrWtoqa/holZE/nJlJ/wSs0rdIW6qB59Ooz9BqQPhZ5aaNmoC30MOwlql0H+JGj+BMZfAlv/AR//DiwuaFoNb1yjZ5h/90ew81X458Xw/k/1sn9eBLte//fnsK8J3rgW1v4RfG3Q3wyvXA4f/QpW/A5e/z701kL7JpBM+rH+fho0r9a3L75VP2ZfIzx1CnTt+XI+W4Mvna5gF1E1iiAKrGhdwZyCObiD7oQACej3OX/Y/AeSrcn0hnvpC/clBEgAIkqEP2/7C2/Wvsk1S6/hmg+v4d4N99Ib7mWDewPVfdXs6t3Fx60f80zVM6xpW8PtK2/nrk/u4raVt3HxyIuRhQOBDH+pfp72UWcd6KQoQcFkyBsPez/Uy/zugdftoNtixjD9t0hTIWe0/htlsoM1GdDAmaXXU2K6gGrYpwvmCCKkl38Vp9jAbCWuxtnTtychQAK63bxU/RJdoS5uXH4jNy2/iVVtq2j3t39GYwYGXz9+QSaiRXh488MJARKAqt4qqvuq+ev2v7Knbw/Xf3Q9692beK5iFv1ZlbD/2a0jA2Zco19bGBh8WcgWmHWDLvy2n5LZsN/2LCkgSmwvm841a3/OdR9dx60rbmW9e31CgATAH/PzTt07KCiElBCeiIc8ex6iIGKVrWTYMjDLZv65+59MyJ5Af6SfzmAnadY0dvXsItOWybbeKran5cGwU6Bx9YH+jDwT6j8+8H76D6DqoOtQRwZYkgeOa+QZ0Pep56mTvwddeweWjb8Egp6BZUNPYNDyV8kcyBj6GSfSwOCL0+hpZHvXdtwBN2nWNBq8DQkBEtCvnX+/6fd0BjvB16Rfjxr8TxARRd5rfC8hQALQE+5hadNSXSw32Ep1b/Vh7KGBgYGBwdFATV8NO7p3kGxJptBViC/qo8HbQIuvhVZ/K62BVtoCbbQH2ukIdtAZ7KQn1ENvqBdf1EcgFiCkhIgqURRNQdGUAQIkAPdvvB9fzM/2ru1c+f6VXPfRdVz9wdW0BlrxRPppDbTx01V38sPlN3Lp6tv43ZDx9I48Hdq3HqazcnTRFmgbIEAC8NCWh9jlN64DDI4tdvbsHOAvFVfj3Lf+PrwR77/dtzPYyS/X/jIhojSvcB7P734ek2RKCJAAhOIhHtv6GOF4mHpPPQ9veXiAv+SOnh3UeeoS7z9o/ICuUBcAk7InDRAgAfjjlj9y8ciLeWrnUwPKl7csZ0T6CFRN5e51d7PJvYnz3zyfby+9mtvX/ILTy0+n2FUM6Nf4NVGPvmNKMcF5P+adGVdQ5crgub0vcfVH1/LXqqd4Uu2hq3gav1r7K6776DquWXoND2x6gIhswR3pZk/vHv5vzf9x/bIfcumqH3FPzyf0TL8aRp/3Oc6+wb+iuWgiD21+aJCd1PbXYpNstPpaP2NvA4PDQ1RRscgDEy8IMV2EpL1fT4aZflCyJ5tFRhFkHKKDURmjOCFjPE+2tkLzOphyhb6u+twFsPWfX98gDAwMDAwMDAwMDAwMDAwMDAwMDI4ZjsT0FDM1TWsTBCELeF8QhN3/do997BMtuQKgqKjoq+rf5yOjBHqaoXQeXPQSeNvBlQd5E8B0iMzD/459ifw07RAZ/b5ETJKJ/mj/oPJQPIQv6oPM0dBTDwVT4KzHYNdbkJQNw0+D9GHQWw3rBgbg0b4VOqvotqdgEk3s8exhSeOSxOa9nr28vvd1xmWOQzpU5uL/AY4o291HOBZMOKHvD6rIsmclBGOiahSAbHt2QuxB0zRUTSXdlq471QJmyUwoHsJlduk2BKRaU3EH3QCJhb4sexabOzcPOF62PTsRdB7XDtTbH8AsCiIxNUaaNS0RpO40OfFEPEiCRESJJPZ5v/H9QW1v6dwyYCxZ9qwBY1E0hTRrWmIsFslCMB7EaXLii+ljOXisBwef7Kct0EaGLYPHtz/OjLwZg7YfCxxJ9muVrUSUyAABkv00eZsIxUNoQ08kVDKToKDwpw0P0RPuAXSH8Md3PM7ozNH0y1A45UpMvXUw7Qd6oESoD1JLQTLDqQ+AMwdyR+8LYDQ4GjkcthuMB+kK7Qvu3ZedTBIlwkp4UN398xrABvcG1nWs477Z93HTipuozKjEKlm5fe0v+MfC35JZM1sPPi+e/i8DajRbOhx3J2QMh9jgYE5fzJeYaw+mP9pPmjXtkA4Yrf7WxDhAD1iKKBHsJntibjwYT8RzyL79K+o8dbjMrsT39GD2evYSUkKYJNMXavNY4EiadxN0V0PDKv2619MMJ/9Oz/bevhVO/i20b0P7jMx4KiqapnFK+Sn8bPXPEuW94V4e3vIwV4+7miRzEj9e9WOC8SAAYSXM3Z/czcPHPczu3t1YJMshr2O7Q92IgogsyETVKLIk0+htHFSvzd9Gtj2bbHs2O3t2ElWjWGTLoHoG/x2HxX6zR8Lc28C9E9KHwNzbIdQNpzyg2+6Zj0HzWjjpt+DeDkk5etBm22Y468/QtAb6WuD8v0PdMvC2Qc54fIFqMmwZhGKhQfPnwZkl99Mb7sUsmvnO6O/wizW/IBTXMxWFlTC/XvdrHpj3ACWuElr8LaTb0sl0ZCIJkj7PCkDhVAj1Q+lcEGWI+nURhoqTIBbQAy3jEdjxEiz6DfTWw/q/DjwXqgLeT83nH98LZfMgrfRfn8P2Lbr4yszroXoJFE7WhVr2o8SgaS0IMky4RC8L9UE0qAs+xIK6cInZAYFuaFkPmcM+90d4JHBEzr1fAaF4KGF37YF2ylPK8cf8g+q1+lv1vKqalrg3OphGbyOFSYWJ9xvcG5iaO5VN7k2cU3EO7qCbp3Y+xbXjr+WhzQ8l6nUGO3mr9i3mFs7lw6YPDzRYPh88LSDbdPGdQDeMOAO2Pq8HKOeO1QVJznoMaj/SvyPl88GWBlufg+N+posRde6BU+8H9y44+T7dLo/7mf69nnqVbq8mK6SW6c86jhGORPvtDnUPKmv1txJV9PvzzmAnf9vxN3448YfkOnO/7u4ZHCEcibaroupCy4d47uCJeLCb7DR6G8l15PLo1kf59qhvszUlmTnnPamLQaRXQJ4hZnqsc1hst2gqfOtNXXBPlHUhPk0DQQJLEjG5kOdrX6WuXw/GSbGm0OJrGdRMq78VRVX0bOmShlkyo2gKZsmMN+qlP9KPP+Ynw5ZBraeWdFs6wVgQWZSJKlFEQaTHbNN/V3e9oYt7DT8FbOkw7Wroq9dF/5ILdfHf3W9D5nAYeTqYHHp23/qVMPR4KD9Ov+bMrNAFBIefrAuxRv1QOAmaPoFhi6B8gX49mjlMv14vnw9DF+prKo5MqF2qZw4eeoJ+PWDwmRyJc++RTJ23jpgaI8uWhaqoiTWQg2kPtOvP/jq269+FlMJDtGTw33Kk2a4gCjT0Nwwqb+hvINmazNKWpUzKmkRUiWKW/oN1Y4NjiiPNfg0MPi+G7X71hONh2gPtZDuyERDIsmcRiUeQRAlREJGE/QmRDuwjIOjP7fY9uwP9XpZ/4WoUioeIqTHuWX9PIrmAL+bjrk/u4q5Zd/Fm3Zs0+ZoS9V+oeYmZ6WNY4FWO2mQdX6ftHmptNBQPGSL4Bv8xR+rc2xvqHVTW6GskGA/isrg+c99gLDjAHyDLnsWunl2H/P7U9dcRjocJxoOHfD538Fpxdd8BsZ9D+XOF4iEEUcAbHSyUst+XrSvUxbqOdYl1kqga5bFtj3HFmCt4ZOsjAAfWwNPLqS6agBT10OJv4Z36dwCYkTeDLZ1bkEWZ7d3bE8dY1baKabnTSLeks7p99QDBlVfr3mDenPtYcJStpX0Wh8N2/f/CTrwRL2aTmXg8TpuvjbykvK+lPwYGn4doXMUsf0pcOaqvy7d7QpgkgSTLAd8bu8UEiFTaRiCLMmPX/JmoqvL45LO4atHd+nr9Py7QE45kDT9qr98MDAwMDAwMDAwMDAwMDAwMDAwMDg9HnAiJpmlt+/7vFAThVWAK4BYEIVfTtHZBEHKBwVGt+j5/Bv4MMGnSpK9WrePzkL7PkTDrv18QUlQFVVOZVzSP12pfSyz+A5xTcQ7yZwR1fl7sJjs9oR4KnYVYJEtCwAGgLLmMIte+BaD0fcFpeWMHZhr2unVn+niEQSgRTKIJBNjdO1hXZoN7A33hPjLsGf/1OI5GjjjbBRyimTn5c1javBSzZEYURDZ1bmJm/kxerH4RERGrZGVn907OH3Y+W7u2EogFSLem09jfyKKSRXzQ9AGt/lbKU8qp9dSSadezcW7t3Mq03GmsbV+LRbIgILDBvYFZ+bN4q+4tZFFGFmW2dm3l5LKTqfHUEFfjJJmSqO6r5tuV32Z122p6w73kO/Np87dRlKTbZ3VfNWMyxrCtexsOkwOA9e71zC6YzYdNHybGstG9kdkFs3lhzwsICNhkG1U9VVww7AK2dG3BH/OTbk2nydvEKaWnsKRxCS2+FoamDKXGU0OGTbfVzZ2bmZY3jTVta7DK1oRTz35m5s1MCLfsz7BxrHEk2a9VtlKSVILL6uLVva8O2HZ88fGYBBNp216gevQZ2GU7NZ6aQW10BDrwRr14tRjpeeP0wtzRAysVTPyKRmDwdXI4bDfTlsms/FkICNhlO6Ig0hnspMRVQoO3IVHPJtsGzCUAG90buazyMgCqeqooSyljTdsaemqXkCklwbl/g9qPKDKncVz+HD5sPZBheETyEMos6WAOw8f3Mn78eVgkC8tblnNq2am8uvdV8hx5ZNuzEyJRAC6zi3xHPk3eJs4Zes6g7ECTsyeTbk1PvM9z5FGcVMzunt2JeX4/oiBSmvwZAe6HYHbBbF6ueTmRSehgzhhyBi7zZzssHascSfNugngEIh549So9oBsgpRhOewgyhkH+NEZowUE2dnLZyaRaU+nwddAb6R2QhWg/jd5GBAR6wj2DnDKjapSuYBdRJUo4Hibblo0oiAOulSdlT0LRFER0IZJAJMBxRccN+g0YmzmWmBKjqqeKOQVzSJKTEDQBgy+Xw2K/kkkXaSqe/q/rjL1g34tDZBQbceqB10OOS7wsag7z3O7nGD58OFn2rAHiS8mW5AH3U6A7TYaVMBElkhDT2U9EieCJeFBVlYgSwR1wE1NjfHP4N0m3pjPE2wtLfwUTvgUbn9B3mvw92POuLpSgKmCygXXfvGh26AGb0U+JR3xKGAWAsBfi0X99buCA4Ihk0oNaw4MFfwh7dXE29aBjxEP6Pvt9O/cfPxoctPuRzhE5934FpFnT6A31IggC47PGU+epY3re9EH3OccVHoemalhkC5li5qB2ji8+npWtKweUbXJv4vji4+kMdia+H5/+ngBU9VYxq2BWQoTkuyMuJVewQuYIPZBZicGWf8Dxd8KFzxzYsXy+/v/BzykAhiz4T07FMcWRZr+SKDEsdfCzsln5swY4pFf1VhGODxbrM/jf4UizXQCHKmGX7RxffDyv7X1twLZSVylP7nySDFsGw1OHU++tR9VU2gLtUHnhoRs0OCY5bLabNUL/O5jnL4Ldb+GfeR3r+tclitv8bUzInsBLNS8NqD49dzqyKCeER/aLOgZiASyShWx7NiPTR7LJvYmpuVNZ3rycU8pOIabGsMk2VE1lqCMPGlfoIndShS68sOZh+N4yyKk8+Ggw5vyB/Z16lf53MLN+OHisM67V/w5myuX638FM/o7+Z/C5ORLn3iOZvnAfGhrptnSe2/0ck3InDbp2npU/izRLGihROOh5hcGXy5Fmu9FolAVFC1jXsW5A+dzCuVz34XVMyp1EWAnTH+lPrJ0Z/O9ypNmvgcHnxbDdr54MWwbjssZhk214Ih6qe6spSS5JXG/EtfghExkJgoCIiICgvxbExP+f9gUqTylHQxuwrgK6qHYkHmFb17ZB7dcHWkDK+vIH/DXxddpuYdKh/a+y7ceOALLB18uROveWp5QPKjul7BTSbemHqD2QLHsWM/JmsLptNQAbOjYwOnM0uY7B4tSnl59OijWFmBpjQeEC3q5/e8D2g/0KFpYs5P0mPWGVgIBVsg5IDlOWXEZXsIvK9Ep29uxMlMuCnPDDnJE3g03uTQOOoWhKIhFBqiWVitSKxLa2uJeIEhmQcCYcDzOvcN4gHyaArV1bOXvo2Yeca/f013IsrW4cDttNNaUe0k6KXEWEYroIV0Q9hJ+rgcFhJBJXMEsDRUi0fWvrgahCjsuKIBzkxyLpPjbFcjHUfIBY8z6Lyybzqr+Wi/t6+efPb2X6Kd9iZNceePN6uPxD+B9NFGlgYGBgYGBgYGBgYGBgYGBgYGDwxRH/fZWvD0EQHIIgJO1/DZwA7ADeAL61r9q3gNcPTw8PHzlJOSiqQqG9kAfnPcjC4oXMK5jHfXPvY1rutC/lGGbZTFyJk25N557Z91CQVADAmIwx/HTaTxPv/xWaGgNHNgw9ceAGWypkVBBTYsSV+IDFt/2MzxpPsiX5SxmHwZdDsj2T6bnTmJU/iyUNS7h54s2omkqSKYlTSk/hnbp3uGnSTaRZ0/BFfZxXcR7vN7zPVWOvojy5nDpPHZdVXsaatjWcX3E+YzPHsr5jPdeMu4YaTw0z82YyI28GHzV/xI0Tb8QX8ZHvzGdh8ULern2bWybeknBcP3PImSyuX8x1E64j35FPe6Cdi4ZfxLLmZVw28jJGpI9gR/cOrhh9Bdu6trGoZBGTsyezsnUl14+/HnfATWV6JXML5vJew3vcPPFmAByyg1PK9LHcOPFG0q3p9Ef6Ob/ifD5o+ICrxl7FkOQh1PTVJMZybsW5jMscx7qOdVwz9hpqPbVMz53OjLwZfNj0ITdNvIlsezYO2cH0vOlMzJ6YyGQxJGXIYfxE/zcoSyljYs5ErKKVq8dejcPkQBZlzhl6DjNyZxDt2Y2pZgkZndWE4+FDOkJk27PJsmeRZE46DCP4z+n0hWnuDRKLf7Yje28gQm9/kKq2frY099HuCdHUG6TXHyEUVdjr9lHj9hGJHyJI2eC/xm6yc8ukW2jyNpFsSebmSTezvmM95w87n1HpowAoSiri59N/zkvVAwOBxmeNZ3Wz7ngzIm0E9f31ZNmzSPN3w4d3QM1ieOEiHM99g1tKz+S2od9kSvYkrh9yHvemTSFdicPSX0JvLSM/+Rt/n/QTZmVMYGjKUH4+5SdEwhEenv0w8/LmkWXL4tTSU7ln1j1YBSvzC+eT7cjmB+N+gE22YRJNnDP0HKbkTGFM5phEH9Nsafx27m9Z37Gebw7/ZuIaJcuexa9n/ZoxGWP4IkzMmsiNE29ki3sL3xn1HZwmJ7Ig841h3+Dk0pP/m4/C4MsmrRzcVVB51oEyTyM8exa0rQdvM4UhPw/Me4BLRl7C5JzJ/HDCDzl7yNlYRStdkS7iWpxCZyHTsqdR4Cyg0FlIRXIFJxWdhFXURabm584nz34gE5FJNJFhy8AiWbDIFiRB4p7Z9yScNyfnTOb08tMpTCokw55BWUoZCgqjMkZxQcUFyKKMw+Tg+gnXk2XLYlPnJqbmTOX8ivORBOmACJ+BwSEYkT6Cb1Z8kyQhiacWPMWpxbpYyZCUIdw96256wj2IgkiyJZmfTP0Jr9fot7FW2YpNtg1oyyyaSbGkYJJMWCQLWfYsMu2ZVKZXUpkyFFPDx9C2Cbwt0FsP7VuhvwkaPoat/4DkfEjKBU8LZI2ETU/p92Gjzh3YadkKn86wPPEyyBj62YPNqtSzxtevgNQSKJg8uE7ZXF10KLJPoEQQISnvgGCJbAXRpDs15RuCbkcqTrMTp8kJmn7tYTPpv/u/nPlL0q3pCAjML5jPhcMvxBv1UugsJN+Zz9Vjr8ZldiEJEqeXnc74rPE0+5oHtD0+azxLm5aSacvEIlkAEv+bRBMVyRWUJ5WzsHAhpc5SvlP5Hf44+0HOl3IQmlZD2Ad9jaDFIX8cyPav+/QYfElYRSslzhIenfcofz/+75Q5y1hYtJBFJYv427a/JeoNSx02aL40MDjcSGYTUSXKuUPP5bYJt/HbGb/l4oqL+fHkH5NtyyYQC1CZXkmNpwaTaEISJHLsuURixj22wVdHNK7Q3Otjr9tLVVs/W5s97G7vp6nbjzr6fJBMOH3dnFl6JkNcQ8i155JmTSMSj3DLxFsoc+kBcBcNu4g5+XNwyA4yrBmkmdOIaTGcspN8ez7JpmQ8YQ9TcqYwPG049f31XDHmCta3r+cH437A2ra13DXpNkb5+0E0Q3cNtG8HSxIUTIHkz15fMDA4GkmxpuA0O5GQaA+1k2/P5/H5j3P7uNv5wegfMDtvNt8b8z0kVdLvl2wph7vLBl8TyfEQYzLGcMnIS7h21LX8YfYfuGncTYxKH0VNfw1J5iSsspVks7E2amBgYGDwrxmZPpLR6aNRVIV0azoLihaQ78wn15lLgbOAgqQCipKKKEspozylnCEpQxJ/5anllKWWUZpcSklyCSNdI5mVPYsfT/kxw9OG4zK7mJk3kx9N/BEiIimWFFxmF8nmZKySlRRLClbZyqiMUYP6VWpO1UUHDf4tZeYyfjP7NwP8r+6YdgccMdIRBgZfDiPTR3LP7HtItaQiCiInlZzEZZWX6QnL/g12k51bJ9/KrPxZAHgiHs4beh6ReITLR19OkikJSZA4d+i5nDHkDAAy7ZlcOOxC5hfMR0AgzZrGT6f9lGLnARGSqTlTuXb8tVglK6/tfY1fzPhFIsHVmIwx3DH1Dkalj+KSkZcwJXsKALmOXG6efDOv1LzCrLxZXD/+eqp6qgb0VxIkMm2ZXFZ5GY+f8DjFyQeOmWvPxSJZSLWkJsqsspXlzcuZkDWBdGs6dtlOniOPyysv59vDvk04FmZuwVxcpoEJWIqSytnd7v0iH4PBp5DUCBcOu5AFRQu4d/q93DvlXu6YdgeFzkKC8SBhJYxVsh7ubhoYDCAaVzHLA936hUgo8TrdOXCt36vqokc55MLHv4WUIqITL6Mt0MYnG9/H09HOqjfegRPugrbNsPHJr3wMBgYGBgYGBgYGBgYGBgYGBgYGBscOwqGyYhwuBEEoA/bLvsvAc5qm3SUIQjrwAlAENAHnaZrW+y+aAXTF9A0bNnyl/f0q6XW70aIRvD1duOtqkEwmcsoqKKwc/YXa8QcjqJpKdyBOklUm0/XvgzcC4QDRQADiCqF+D72tLaiqSlp+IQXDRw6qr6oazT1ekgiTKoYg0IGw4xXY+z5a5giEqVdC2VwiSoQOXweeqIfHtz/OspZlAJS4Svj5jJ8zMfuoDEQT/n2VL8aRZLvV7VXEWnrob2wmq6ScYL+HSDhMak4O3U2NpOUVEA2HCPT3kVlQTHdLE0npGWiaRn9XB9klQ+hta8HmTEI2m+lpaya7bCj97g4kkwl7kouupkayS8vx9/WgxGK4MrPoamogo7CYcMBP2O8jLa+A7uZGUrJyiMdi+Pt6yCwqobe1BXtyCqIo0eduJbt0KH0dbZisVqx2B93NjWSXDcXX04mmgTM1je7mBjKKSgl5+4mGQqTm5NHV3EBabr4+Fo+HzMISulsacWVkoKoHjaW9FavTicmkjyWnbCj9nW5EWcKelLxvLGX4+3qJ7xtLY+MuomYNe1EOoyumfq4sH18TX7rtwpFjvzElRru/HU/Ug6Zp5FhzSLGnYGnbDNWLoXYpK078BZosccfKO+iL9CEKIpeOvJRTik9BlmWGpH5x0Zi+jjb62lrpbKgjJTMbZ0YG7vpaIgE/2aVDQBSw2p1kDxlCd2MDPS3NaJpGVmk5WcX/maNWOKawpMrNL9+qoi8Q5fxJhXx/XjlxRcVuFclOsuMNxZAF2NjkIdUms8vt53dL9tDtj3LSqBy+PaOEum4/wajKI8tq6fJHOG1sLj88roKSDMd/1K+vmKN+7g3FQnSFuhARCSthfFEfa9vWUugqpNnfzPTs6dy78d6EiNHYjLHcNOkmLl18KcNShzG3cC7P7XqOB0dfzdQtr8KI0yCjAq15HcK259FOvAe8rdC4Evyd+CdeT1dAIhqJ4el0Y3Mlk5ZfSCQQQFXimCxWuhrr0VSVrLIhRAIB+tpaSMsrQNEU+js6SMsrwGyzIVss+Lq7UONxbK5kBFHEZHciKHH6OtoASM3Np6+zHUdyCrLFSn9HG7LJjCM1DU1R8PX2gKbhysxCVRSSs3JIzdWFJbxdnXQ11aPEFTIKi0jN1cWnBARUTUXVVHKcOZ/LYekI5Ki33c+kYRW0rteDxHe9AY5MmHE9JOWiaXE6rGU8trKF9Q193H3OKPItKr311QQ8vaTm5aOpGu66vUiSREpOLnZXCl3NDfh7uskoKsWZlo6mqUiy7lTxx6a/MTpvLFn2LGJqjBRLCgBWyUqmPRNv1Iv4Kc3F/dkBNTRkQSYYDyIIeuYrFZVgLIjL5MIkmigwAuQ+zbFtv1+QjoZ6JEkk1O+ho64GTdXILCpFkERMOamE5DiqoEJMxdGnosTiyCYTHnc7SjxGcmY2oiyjWcysbP8Ye3YmTrOTPb17KHAWkG3PJteeRfGy+9EKJ4GvFUE0QfV7aBMvg+rFCP3NMPtm2PZPsLigZBbEw6Bp0LIeiqbpQiTN66D6XUgrg7m36yIhqx7UfydGn6+LB2UO+/eDblgJax+BnNFgsoM1GTY8AWocxpwH1hTIGA6LbwWzA2bdAP3Netb7lGIYcTrULoUp34PimV9nhiXDdv8D/FE/PaEeBAT6o/04ZAdRNUpMjWERzahoCIKAoij6/5pCXIvTHezWgzAFiQc2PTDgWuY7o77Dpq5NjHFVMoJiJEEETUMQJRQljiiIaAKIspmwtw93bQ2y2UJ22RBisSg9jQ2oqkJWSTmpaUmYUzKxu1L/zUiOeo5J+/WFIgQ7Wulra6a7uRFXZjbpBUWYrVa+s+E6GvwNpFvTuXXKrRTaRjAqp+Sw9tfgP+KYtN399PX3EOv309NUT3dzI8nZOaTlFWBxJhHq7ycejRALhZDMZkwWKyarjXg0jLerE1EUsTgcqJpGbnkFztS0wz0cg4EcdbZb7e4nGlPpDsTY0uzhzx/XIQDfmFrEhKIUxtoCdNVVE+jrJaOolKSMDAREVCWOpqlEgkG6mxqwOByk5uUTj8ZA0xBlCTRQFRVBFEAQEBCQZBnJZCIaDultqCqiJGBymLHYwmSFfBALQsQPagxUFULdUHkOZBgCzV8xR539Hs14uzvxdLoRAG93F87UDCRZQonH6G5u2vc8uBxbciomqwWXJYpFCUPuF1vj+x/hmLXd/u4ugn19uOv3EujrIaOohKSMbPx93aixOI60dNILCrEnuf59YwZHKses/Roc8xi2e5TRGeikP9KPIAiIooioiaioiME4SpcXNRIDNLR9qyD6agho+z5ps9VGf5cbf28P6flFmO124rFYwhAEAEFAjcfpc7ejaSquIcV4UhQ8EQ+/3/x7Wv2tAJxZdjrXl55Oau4kJOlre8a7n6POdut767F7VfrdbgKeXrJLhxAO+OlqqEeURMomTcXr7qCjbi8mi4WsknJki4Wwz4szPeM/9iEwOCI56uz3P8EdcBNRImTbs7HIli+0bzAWpCvUhd1kJ9OWSSQeoSvURSQewSSZyHPkIUvygH3afG10hjoxSSYq0ysHtalqKu2BdjRNI9eRiyfiwR/zk2ZNG5CYKBAL0B3qxmlyomkagXiALFsWNpONj1s+5ublNxOKh5BFmTun3cmpZadikgb7K/ijftY2ryY74KCno4V+Uxg11cpE+yhivgBKPEZSegbxWIzOur3EYzGyikvx9fXi7+kms6yc/2v5A3mphcS7TmZNdYxbFg1nZkkKWamHzXfnqLbd7tZmvJ1uOhtqESWJnPIKUnLziUVCxDWF7Lzif9+IwdHMV+Ef+ZU63FfeuZgLpxTx01MP+Gk/ds23uTtJTz4ye2gGT393amLb1S89wTsbsnl0VDWL9v4cFv2G+hEncvprp3MB87G9U4c1ycU1f3kW/nYy9NbB9VvAZCQBOML5Snx7DQwMDAwMDAwMDAwMDAwMDAwMvihHlAjJl8mRuND2efF0utE0jd7mRt64/25UJQ6AxeHg9Bt/TNGosf+2DU3TaOnx0RNSWFffy8sbW0lzmPjurDLmDctElsR/uW8oGCTU30+gr4fFf3oAb5f7oOPfTtGocQPqt/X6AYG3dnTw52V1rLxhEmYtBqFuPHIGaelZibqReITeQC9+xU93qJvhchnRUAB/Tze+ni6caRlklpSQnJH9xU/c4eGoXmj7LKJxhV0rPuKDRx9k7MKTaN2zi97WFmZ/8zI+fuYJhk6dQcjXT/PO7cy79HJW/OMpcocMw5GSyp41K5j1jW+x7rUXcaalUzx6LJsXv8W0sy9k+9L30DSNsQtPYs1L/2DCyadTv3kDvp4eZp5/Ecuf/RuVcxbQ09pMR20N8y69nI+feYLi0eMRRIG6TeuZc9G3Wf3Sc6TlFZBVUsaOj95nxnkXsXnxm5isVoZNn836N15m8unnsGfNCiKBAJPPOJeV/3iKMcefRHvNbnpamphz0bdZ/vQTDJkynbDfR/PObcy95HJWPv8UOeUVJKWls3v1x8y68FLWv/EyjpRUiseMZ/PiN5l69gXs+Oh9VEVh3AmnsOal5xh/0uk0bt2Et6uTmRdczPJn/6YHgQLO9AzOv+MuUvPyD/Mnm+CYFiH5TGIh6K0HWzoNSghPzEN7oJ0USwo5thycFieZ9szPbCISDNLd3IC/twdXZjYZhcV4u9y46/ay+E8PomkqF/z8N7zz0G/x9XTrOwkCJ//gJta/+QpzL/4OH/zlYTzuDvIqhlM+aRr25BTS8grIKCrBbLXSWV9LX0c7Yb+XlJw80vIKSUrXRWyUeIzupkY87nZiZgc1fhHJ10NRpouwz0tckOmQU3m7LsKl04tx9wfRBJGfvb6TRy6ewOV/38DBP/9njc/n/En5fPPxdQPKz5tYwK/PGo1J/te/GYeJY3LubfI20exrJsmchC/iI9OWSUugBYB8Rz6ekAd/VCXJ5KA32E2avYACk4vWrl4UwURuTg6+YJhOdxtYXWxsCXHjRDMhRWTp8y+QUVDEmpeeSxxv5LyFaEqcoVOm8+4fHyAW1jNnSCYTp1x7C2/c/2sAJp56FrXr1+JxtzPj/IsRZZntHy6m393Btx9+Al9HGx53O2abnZTsXJ77yY3YXMmccMW1vP67XzFq/kL62lpp3VOFIyWVCSefwYrnngQgKSOTWd/4Ftvef5cF37kKQYD6zRuIRSIIgkjVxx9y2g23k112zAQqHZO2O4BQP/g6QLaDFkWRbXSFRLSAH39PF0o8hmw2EwkGcCSnYbbZEWUZf28Xb/zu12iaCsDCK37A1g8W01m3N9H0zAsvIXfoCOKRMPbkFDRNw5emO6RZZT1DkSRKlLhKMMvmQ3bP4L/i2Lffz4m7oY6wtx8NeON3dxGLhAGQTWZOuvZmelubSS8qIeTpIyU3D5PVihJT6G1rwmSxYkty0d/ZgcXmwJ6cTHdrMylFBfQkx5AlGZtkx+uVyBE0QtEYK5vCuFzJdPd5OKEyB7c/TlQVybFrDC8tgngEokGwp+oiQGocEAFVzzof7AFN1QVJTPuyeYW9EPWDK++LDT4aAn8HOHMhHgIEiHpBiettmaz6PCCZwGzX9wl5QLaCEgHRDOav3aHJsN0vAVXV+O2SPTy7tpHr5pdRZFfIKwRBUoipMWJqjLgSxyybicbDOM0uJFHCHXQjCALZtmxCSoiYEiPXY0eNK0iyhKoqgIgSj2GyWEFTiQQDvHHfr9FU/TfBluTi+Muv4c0H7gZAlCROuf5WkjIy8HV1EQ2HcGVkoaGhxKJoKiCAKEqgqWhAyOfFbLWSVTqE5MysfznOI5Bj0n773B1s/+Bd1r/xcqKsYEQlsy/6LoIssp06MuwZrK6SqOvU+MGCIZRlOg9jjw3+A45J291Pb1sLG995nW3vv5soK588jUmnno3JbuX13/ySUfOORxAlCkZUEvb7WPLYQ4T9PgBcmVmMnLOA7uZGFn7vB9hdyYdrKAaDOapsV9M01jf00huI0umLcOfrOwdsf/WioWx+4j762loTZfO/9T2yhw4DVcPX3cnbD/0u8fwyKT2Ted+6HG9XJ2abDVEUiUWjiKKEKEnEYzFMZgsWhwN7sotoKISqaCjxGCGvl6ziQnLzsnWxOUEAQdKvTa3JIB5xz5aORY4q+z2a8XZ30bqnCpvTydt/+B1TzzqfzOJSgt5+Vjz7JL6eLr2iIHDS1TcQi0YonTQNV8oxL6D3n3JM2q6ianQ3N/DOg7+ht60lUT7n4u9QWDmGZ2//ISPnLKBi+ixKxoxHko9KwWWDY9R+Df4nMGz3GCAaCrF58ZvEomFAQNC1Rw5ExQq6EElqTj5b3nuL9r17EvvOvOASzDY7sXBQrydKCAh88uo/iQQDAIiSzKk//BHWJBe9aQqdoU7SzC4qrAVMun8bT393ClNKv/YELEed7fa0NrNl8VtsWfI24048lbxhI3j/sYeIRcKkF5cy89xv8OYD9xx4FupK5qQf3Eg0HCHk6SNv2AiySsq+sv4ZfK0cdfZroKNpGk3eJjqCHWTYMih2FSOL8r+su33pEt7/80MAZBQWM+n0cxFFkT1rVjB06gyS0jN468HfEPL2AyCIInMv/g7Ln3kCTVU54arriCRl8tOP+9jVGUIQ4IlvTWL+8MPmS3nU2m5bXwB/9Vbeffg+4tEIACaLlTN+9FPS8gsJ+wNIJom0nC+4XmpwNHHUiZAM/ck7XD67jFsXDU+U/enyb/L7zG8Q0UTOHJfHgxeOT2w799lfsWH7eP6Z+QxTY6vghio0s4OFLy0k02Nh0gf6KfjB317A4t4IT50Ki34D0676Kodh8N9jiJAYGBgYGBgYGBgYGBgYGBgYGBwRHHpFxOCwIkoSsUiELUveSQiQAEQCAZp2bP1cIiTtngCiKLGyxs3vllQnytc39PHXb01i7rB/HXQTCwWRTCaad25LCJDsP/72D9+nYORoPZhnH2ZZwheJ895ON93BKMPvWp3YtmhUkEcvPnAsi2whNzkXgHR3EvFwmLqNn7D6hWcTdaaceR5Tzzwfs81Q2z6c9Ha4WfvC0wA4UlLpbmqgbMJk9qz+GE1TySgsYvWLz5FVWk5L1Q6UWIzCyjGseek5HKlpeLvcRENBhk45lQ1vvoJkMqGqCgFPH+MXncbmxW8BYHU46WtvY9iMOWz/6H3QNJKzstm5/EPyR1RSt2kdqqKQO7SC1S8+R0pOHl1NDcQjEcomTOaTV17AbLMTCQYI+bxUzjueLe+9DYBstuDt6mT0ghPYuuQdAJypqXQ11lM6bhJ71qxA01Qyi4pZ/eJzZBaX0rp7J0osRtGosax56TnsySn4erqIBAOMPeFkNr71KpIso6kqgb5exi86lS3v6WOxOZ30trVQMW0WO5Z/yMFqDv6ebtr37jmSREj+dzHZIFvPFlCyr2gc4z737rFImI1vvzZAzOG473yftPxCNr37BpqmYktLo7Ox7oAACYCm8cmrLzD9nAtp31uNKysH2WIlZ0hFQpABYM4l36WwcgyfvPI8e9etAXSng0Xf152SAfauX8tbv783YWMV02dTOm4SK/76e4L9HgCcGVnMO+VKrnpmI3/91iQ+qe8lqqjUdwf4tP7YuzvauXBSwaDy17e0ccPCCvJSjPn466DIVUSRqyjxfneHl4g3iVtf2sb4Ag9nTsjnhhe2Ar37atTwx2+O528r+9jQ5OHxS530BGK0e6y8V9XMrnYff1wOv5vlIC0lJTFX7SclM5OGbZtp3LYlIUACoMRi7N7nAFPzyWq2LnmHCSedxrrXX2Lz4jcZMXMuw6bPRrY56G2o460H70GJ69crBSNG8Y1f3cc/7riJ+i0bKagcnRCKat1TRcDTR39nB0npGfh6uvF1d9Gxt5qyCVPorK9ly5K3cdfWALrzx6wLL2Xze29xwpXXDrj2MDiCsSXrf+gB679+ZxffHSaxd/0aWnftIL2gmO1L30tUn3fp98gbPpJ1r72cECABEARxgAAJwLrXXuLMH/0UVVWIhEKYLGaiPQ72eu3Mqcgg22XMVQZfPd0tTUSCQeypqWxZ/HZCgAQgHotSvXYFaAIpObm8/5eHkU1mTr3hNnz9fcT8Ad5/7CFmnHcR25cuwdfTRfnEKYw94RS2L3mftEWXsKrZy4Mf1Aw67rULHDy0rIMhRfl4AgqyJLCqwcdPSgHZov8BWJMG7UvSIZwSrS7974titkHavsyL5n2CJvaUgXVsnwqktu3bvl8AxeCopNsf4cUNzYwvSuWN7W7mVmRy7et1XDajBLNsY+luH1lJVkblO/GFrby8sYXLZpaQm1zGj1/dwcPfSOYH/6jjV8fnk5EaRDabad1VRUHlKCJ+P7LVghqPYXUmsfqFZxNO96ALiHQ1N+BMS8ff24OqKGx9/x2mnnn+AGGSE6+6nu7mRjRVxeJIwmy1Eo9F2fj2a4lrZFdmFmff/gvS8wsPx2k02Ievu4tN774xoKxl1068XW6S0tLYWp3FH1frAfNJFplzJxYYIiQGRwyRcIhgfz/bPlg8oLx2/VqGz5hDuqOIE668nsV/vJ/jr/gB3c2NtO/dkxAgAfB2dRINBWmp2kFHbQ1l4yd93cMwOEboD0fRVJVIXGHJzo5B26We5gECJADr3niZk6+9CbPVxpqXnx/w/NLX04W/r5dYOIQSi2HaJ0QS8vUjmcyIokg4FkUQBQRBoM/dRiwUQokriJJIPBYls7QC2WQE0hsc2/h6uultbcHb3YnJYsFksdJRW4PZaj0gQAKJ58HHfff7BLo6DRGS/zHCfi89TQ0DBEgANrz5ClmlZYw+fhHbP1hMemExSWkZRnCxgYGBgcEXpre1GVWJI0mf7falxGMDBEgA1r3+EidedR29rX40TUPTYoR93oQACYCqxNm+dAmRUJBJp53LNa/GiSrdgL7+Xd8dOBwiJEcd3k43W5bo/iul4yawZ83KxLrCqdfezJI/PzTwWai3H3dtDZklZfR1tJGUYVwnGBgcbgRBoDi5mOLk4n9b19PRzkdP/TnxfvRxJ+JISWHVP59m9PyFWOxJtFXvSgiQAGiqSvXalRSNHkfj1k2sev5pyidN4/aKEm6LWGjrj9DQEySuqJ+ZdM5gMCZvJ9VrVyYESED3+apZu4qZ37gE2WJGPWibgcHhRlU1YoqG5VPJwmLRCA5JIxKHzCTLgG1toSZgPCbvXph6AVicCMC03Gks8b3DRHIREPD39WApnQ3Fs2DlAzDxW7oPpYGBgYGBgYGBgYGBgYGBgYGBgYHBZ2CsTBxmvH19eNztNO/cTuP2LXi7uhBEEU1RCPn6B9UP9g8uOxQmWaI3GOP59c0DyuOqxrbWz25DlGREUcTT0TZoW29bM0o0NqAspqjIokhRmn1Q/ZI0xyGPocTjyLJEoL+XtS//c8C29a+/PMgJwuDrR4uHCfv0AAl1n9OD2e4g5PcOKLPYHYT2BVLsDx622OyE/X5AF09Q4nEk2XQgq4DVmnBgOdCOPRGQkSizOQb1wWK3J8r2H9NktRINBQE9A30sGkEQxISIz6H7bSf06bYdzkS9xFjsdsKB/dl+JJR4HFE2ocRi+8ZiO8RYHIR93kHnNBIMfvZJNzgq6G1rYc3L/xhQtuzpxwESNpWSkU0sFBq0b8jnRbZaiYVD2JKSGDplRkKQZz8rnv0b/e1tCQES0J0OPn72b3TU1dCyeycfPP6nAUEi1WtWoCqxRHAlgL+7k9TuapKsMrVd/oQzgss6OBAkP8WmZ6j9dHmqFZvJEH44XHR6wzT1BvGG49x34Rhe3tQyqE406Od385J54ew8Mk0KE2w+js+I8PMF+fzjrHzeuyCP4SnigLlqP6qq4khJJej1DGo35PVg3xcYEY9GEGXdgTESCGBLciGKEuUTJrPyn08nBEgAWnbtoG+fY31PaxMZBbojjqooiTr9nW4cqWmJ977uLkxWC8F+T0KABHTnj+p1qxBECSV24BgGRw/13QFQFAKeXja+9Sol4yYNECABWPn831FiUUKfssN4PDqovVgkjKoqoIEoaAiCiEXU50KbydBWNPh6qF67Ck1VMFvtA3539xPs78ea5ETaF3gZj0VZ/eKzZOTmk5ydjWyxsP7NVxg+cw4AtRvX0dVYT2pWFskmjbiiDnIqApAlEYssYtr3e64BecmGU5DB14fdIlGUZqfTFyYvxYaiaggC2Mz6tWJ/KEpushVZEunyRchLsSFLIt5wjBS7CV84RqbTQqZN3JcfTMDb0wno1ySiIO0LeNAIHepeyu/H5jogcBPs9wxIM6YqCqtffJbMknIAeloaadqxhd7W5gHfVW9X54DrbIPDgxKLJu6pDyYWCePMzGJS/oHnS3kpNqxm4/GlwZGDIIj6861Pq3gC8WgUTQOzzc6ia27EaneQP7ySoRNnIEoD76193d3Yk1MOOecZGHxeLJKEigAIhxRrUmOD76vCfh+qoqBpDAh42U88EkFDFyhF09cKlHgcTdXQVFV/1qsoqKqCLFsQRAnZbEYUJeKRMPGIEbhhcPShqSq9ba207N5Jd0sTfR1tuOtr6W1toau5keaqHTTt2EpvRzvttTVoikLBiFFUzj2Os277GZJJJhLwDxCp3E/I79O/R4rxbOt/DlU75JwY9vtR4yrTzrqAb971ALlDhxGLRHDX19Gyu4rAIeZmAwMDAwODQxEJBVFV9d/+/av1FgBVVVCVOKoSJxzwD6oX8nkxW6yseeFpLps8MNGRy2aID34egj4vlz/8BN/81f2YD/KjAf0x6aH8SsL+AKIkgyCgKuqg7QYGBkcukWAgcR+QUVRCclYOFoeTsM+HIMnYkpyEfYPn27Dfj9Xu2Pfahz05hS0vPslFI/XkA0kWmbb+wT5IBp+Nph16ng14ehFFGSUeRdU0Ohsb9EQUIcOvz+DwEt33u28+yF9A0/TnC/s1iA4WIekL99EX1ZNMRlQJxlyY2DYtbxohKUYwT68f9PTpG+bdCv4O2Pr8VzkUAwMDAwMDAwMDAwMDAwMDAwMDg2MEw4v/MKGpKj1tbfh7Otn0zuu8dNcdvPSrO1jy54dQY3FMVisjZs8ftF/JuImfq31ZgPwUM49cNIHXrpnBny8en9hmlT87oFyJRYkrMQorRw/aNmTqDEzWT2WwFgQ0VeXsCfm4rAcCQDOcZuYNz+JQKPEYoiTqznafcr7UNNVwwD8CkC1Whs2YDYAoSsgmM03btzB08nRAd0S3Jblor95N8eixAAQ8faRk59Lb3kp2qR781dVYT96wEURDQRwpaSAING7fwtApejuSLCNKMvVbNlIxbZZ+cA3MNhstu3ZQNmEKoAe+O9PS6WyoI3/4SEDPIJFZXEqgr5fU3HwAWvfspGTshH3iJDYEUaR+83qGT5+zbywistkyoA+JsdTspnjUOH0sfb2k5ubR19GeyCzTWV9H/vBKYuEQ9uQUEAQatm5i6JQZibFIskzD1k1UTJs54HwKgkhmSemX9wEZHDZCXu+gYCMlFkOJx6iYrttwe/UuMotLEYSBP7OV845n+4dLyCopp2HLJlRVGZDZCPTfh/1iOAcT8PQRC4dp2LppQAblRL98g8siHU2UZzkYnu3ijLG5vH7NTIbnJLHx9vlct2Aok4pTkUSBGxcOwxuKMirfldhXEgXuOGUkqQ7z5z85Bv81kbhCbaePXe39lKVbmVKSxjvXzaI/EOWbUwoHLCb//cwC5DWv8vL/3U68cRe7nn2IN355K11b1+J+/wVWP/BT3v7NzzBJAm17djF06oyBxwoG6GqoS8yzB1MxbTa7VnwEQNHosbTvrQZg+Ky5ZBSVEPD0oUQjhxQs2y8UVT5xKtWfrMJktenCEfvIHTKM7qbGxPvssiF6puVDBGp42tsoHTcRk8UyaJvBkY8sCcwdlkHYpwe5KfHBwcbxaAR/Tw9jjl80oNyWlIzJMvCas2zCZN3pEpBNFjQ0WiImitPthrOrwVdGNKawt9PH5qY+mnsDtO/dg2wy093cMGheBaiYPotAXx9713+SKPN0tIEgEgkGsTmTiIVDCXEngGg4RGphKbLVhkkWuXbBkAFtnjI6lw0Nvdx4QgWapmIxSXR4Q8yuyPjqBm5g8CmcFhM/OnE4ezv9TCxO5aPdnVw2owRvKEZVWz8nVuaSl2Kjqq0fsyRw/uQCtjb1sbczwM0nDOPhj2q58YQK1rbr4maappFXMRxBEDHZrESjESRZJh6LUTn3uEHHz60YTldDXeJ95dzj6GlqGFCnv9ONKApIZjP25GQURaHvENcqnQ21X/r5MfhiJGVmkj+ickCZxeEgJSeX1c8/zTCXypTiZGRR4PLZpQzNTDpMPTUwGEw4Ds70TNILigaUJ6VnkJSRiQCgqVSvXcHrv/sVLVU7sDjtnPOTXw4Q/8wsLqHf3UFaXv7XOwCDYwqbWcYqiwzPdnLFrFLe/+FsXr16Bh/8cDZLr59Oak5u4h5qP8NnzsVsc6AJDLoPEwSR5KwcTGaLLkAqScQiEazOJGSzGclsRpJNWGw2TFYb8VgEJR4b8Gd1DhZDMTA4komEgmx69w2e/tG1vP3gvbTs3M4/fnoLz9x2PS/d9VO6mxp48/5f09feRvWaldRt/IRX7vk57z3yIN1NDbz0yzuIR6LkDRtBcmbO4OfBcxfQ1VSPIzWNhm2biR9CiM3gGEUUSS8oQpI/NQ/PmI3F6aBtzy4+ePxhfN1dVK1YSmf9XvyeXrZ/uAT3Qfc+BgYGBgYGh6K7uQk1HkdVVFRFQVXVfcKBusivjoAgCNiTUgatt5RPnEI8EkU2WzDb7FgdzoRPxMGUjp9E6+4q+trbuHhCDktumE1Flp0TRmYzLNt4XvN5yB85hrbqXbz6m58T9Poo2udbA9CwZROVc48ftE/u0GFEg0EsNjv2g4SZDQwMjnxcGVmk5OYxZPJ0CkaOQpRNaIrC8Jlz6WtvpauhjoKRlYP2K580lcbtWwAYveBE/H09xMIhSpxxxhUmU57pRBYNN98vitXppGziYH+YYdPnEAr42fbeO8RCISKhACFfP+76WvraB68rGRh8XSRESKQD3/f9Sf+Ufa7+B/uNVfVUIYi64JxHzoT8CYlt03KnAdBXovv9+feLkJTMhpwxsPaRQ4qtGxgYGBgYGBgYGBgYGBgYGBgYGBgcjKAdow8SJ02apG3YsOFwdwNvXw9KJErA00dPcyOxcIi0giIyiorRNGjatpllf3+cyx54FASBkKcPk9WKhkDE76V55za2vr8Yk8XCpNPOpnT8ZBzJn73I3NjlwxdV2NDYxx8+3Is3FOOs8flcOLmQ7/59A3++eCJTytI/s43e9jbCAT+169ey6d3XUeNxKucex+jjF5FbXjGofkuvD03TaO2PsrczgCQKDM1yMqkk7V8ew9PZScDTwxu/u2tAZmKL3cE5d/zykMc5AhH+fZUvxpFiu5FggB3LPkh8NrlDh9FStYPUvHw0VcPj7qBgxEha9+wiKS0dk81Od1M9BSNG0bG3BovDjis9i7aaXeQPr6SnpRmAzKIimnfuIGdIBf6+HqLBINnlQ2mp2kF6YRFKNIqvp5u8YSNp2bWT5KwsJJOJ3pZmCkaMor1mDzaXC3tyCu7aavJHjKa7sR7RJJOam0/r7ipyhw6jv9NNPBYlu7SclqodZBaXEgn4CXr7yR06jOadO0jLy0dDw9PRTsGISlp378KZmobZ4aC7oZ6CylG4a2sw2+y4MrJoq95F/vCR9La1oqkqGcXFtOwbS6Cvl0gwcGAsBUWE/D62vvcWNlcyI2bNJ7usnMKRg8V9DhNfuu3CkWO/XyV97W08fdv1xMIHsow4U9M572e/xtvZSdPOrexeuZyFV11HNBhg3WsvEvL2M3LOAnIrRhANBsgoKmH3ymVowPYP3xsgKmJLcnHytTfzyt0/R9MOCJTkDh3Owquu45OXn6e3tZmuxnoAcsorWPj96xEQEEUBJRbntd/+H77uLhZcfg1a4UjqAiJbmj28uKEFq0ni6nnlTC9P4++rGjhvchHJFpHeoILFJFLfEyQSUxiem8S4Ql2k5AjkmJx7a7v81HX52ba3mzmjc/nDh3tZsbeb4nQ7N58wDEVViCkar25uwx+OcWteK2tfeIaMohLSC4rYs/pjbEkuRsyez6Z3Xk+0O/fi75CUkYW/r5t+t5vqT1aRmpvHjPMvQVPihIMBTGYL3U0NBH1eSsZOBAF6GutJzs3H5nAS8vuQTSaSUjNQUUEUQRDobW7ig8f+QOggG77g5/cSj0WQLWa2vb+YkjHjWfX805ROmsKw6bNBg7d+/xuiwSBjjl9E7tBhdDc3kTd0GK/+5hcDzsmY4xYx7ZwLSUo/ZgLtj0nbBWivrSbo6cPj7kCSTWQWlyKbLaztMzNW6uSdh+9jzPGL6GltZdpZ5yGbTCAIRCNhTCY9kE0TROKRMJGAD9EkIwoS7TW72bNmBekFxYycPR8lFkMym/VscQr4LKmMyHUhHplz1bHGMWu//4q6Tj/t3jAPvF/NhsY+KvNc/GJkmF0fvs1x374S0WTBvXcPG99+DU1VGXviKVidTlzpmdRuXM/QKdOwJ6chSCJqLIYmwIrnnmLMcSeSlJFJPBLC0+HG4rAjp+ey2yeTl2KjOxBBVaDdG8JlNSEK4LDIuGwyUUVDQiA72UpxuuNwn6Kjhf852/2q0DSNXe1e6rsDJNtMBKNxNE1AlgRUVSOuaphlEUXV0NBAA0XTsJkkFE0X9Um1m8lVepG1mO58q6qYbTbUeBzRZEYAVCWOv6ebph1bURSFCSedhhpX0dAI+72Y7UlIJhk1HiUejePrdlP18VKUWJwhU6bRvreaSMCPyWrDmZLK+jdeHjCO47/3AzJLysgsLD4ahM6OSfvtc3cQ9HpIy83H29OF2WIn5O/HkZbB49//FvMuvZySCZPZHTBTkeUk02U7rP01+I84Jm13Pz2tzcSjMazOJCSTibCvH0EUkS0WOutrcSSnUb95PevffBlN1Tjuu98nLS+fLUveoXbDJ4xecAKRYICyCVMYMnnaoOBkg8PKUWe7Td0BgtE4Hb4I97y7m90dPsYXpfD7BWl42lvIKS3XR6UJSCaTLoYnCijRqC6E6/Ph7+3GbLHhys5CEESUWAx/Xy9qPI4gCAlBSdm0T4hEkvH2dBLo60uI6wqCQGZJGWXjJ31lYzX4txx19nsk0LxzGy/8348BmHb2hWx469VEcAeAPTmFMcefhDMllZDfx6p/Pg3A9HO/wbrXX0KJxcgfXsn0c78BkozdmYTJaiUWDmGyWFBVlWgohGyx8NxPbuKCO39NdtmQQ/blf5hj0naDPj8Bbz92pxNFiRPy9mO12/F2d2FLSWP7knfY9O7rFI+dwJDJ01jx7JOc9IMb2fbBYkbNW0hh5RhsSUZw91HAMWm/Bv8TGLZ7FBOLRtjwxstoQFZxKdFwCDQAQX8mtw9BEEAASZKRLRY2vf06PS1NDJkynSGTphHy9u+rLaBpKma7HZvTBQIIkohssuprORoIIiiCiXjQj2pNQrLZyEk9LAKER53tNldtR7ZYsKdmEAsGAA3ZkcQrv7gNTVU5+bpbaNy2iW0fvofF7mDyaWeTmldAT2sTSWmZFI4chSh9dqIpg6OGo85+Df4z3PW1NO3Yiq+7k4rps+ltbcHqTKKnpZHMkjKc6Rn0tTSz7vWXiAQDjF14Eha7k/JJUwj7/ciyCa+nl81vv87IOfMxWayk5RWQnJV9uIZ01Nqup6uToKcPe3IKkWAAW1IyDVvWUzRmPE/88Cq0eIwTr7oeV3YOmqKiqQqCKFI0aqz+O2pwLPBVfJBfmcN9ly/C5Ls+4JdnVHLJ9BIAgt5+HvneRfx1yFUEFYHnLp/KjCG6D9Vftv2Fp1c+R1PTzdzp+pDv/Pj+RFuxcJgFj88gx5XHtLdh3qWXM/GUM/WNW5+HV6+Ei1+GIYMF0QyOCIxJyMDAwMDAwMDAwMDAwMDAwMDgiMDwcP4KicdixGNxgn29vPfIg3jc7YCeUfCU628hf3gloixz8T2/x9vVSe36texetRxHSipTzjyPvBGVjMzKpXL+icRCIcIBH0o8/pnHdPcHMckCTR0hfv5GVaL8xY0tJNtMPPudyVQWpP7bvqfl5uHv72fswpMpmzgZNMgsLsVstR6yfkGa7ghXmA7Tyj5foLCqxLElJXPi93/Isqf+Ql97K8nZOcz/1hVHiwDJMU3Q7yejsJj2cAhFURAEEclkRhBERJOAJMsIgv6/KIpIkoQomQCQzWZEQUKUJSTJhICAbDajKgqIMqLZjCAIyCYTcdmEIIq6E7wgokkmRElGEEAy6dtESUbaF6ysl+1rWzbrjjMmE4Ik6XX39Us26wFter9NCIKAKMsHtltM+likg8ZiMiFKErIsI+5zqJHMZgRRQpBFJNmUqKcqCqIoIZv1QDnJbEKMyAiihGQy0dfeisnu4JRrb2HL+++w8h9PMvublx1JIiQG/yGpuXmc9aM7Wfzo7/F2dpBeUMSJ37+etNx8JEnGnpFB5ewFKPE4OUOHk5pXgABYnC4ETU2IKbjOvpB+dztFo8ay9IlH6WtvJTUvn3EnnEJyTi4nXHUdK557kmC/h9yhw5n9zcv44L7fEDOJTD37Aja8+QrDps8mf3glrTu3s3nxmwBMOOUMTv3hbfS2t9CweSORzRswzb2QZ9Y2ARCJq9z97m5+f8E4ctNsPL22kfvOG8twk+68NPEzxKMMvjoicYWaDj//WN/Ez04dzk0vbmdzsweAxp4gN72wlQcuGIvbG+KMcXkU2KHlpXcAyB0yjNqNnwCQVVJGW/WuRLuCKGJxOulsqKO9Zhc5Q4Yx+fRzSc7MYtXzf2fY9NnEImGC3n6aq7Yz9rhFVK/5GFdmNoH+PmyuZPasWk7hqLGk5xXQ09bEutdfIhoKMvHkM0AQOf57P6CjtgZnRjoFw0YR9Hr45JV/klsxjNHzT8DqcnHGj35KNBwGTcVks3HeHXchSiKiqF+KZhSVIooiF/36AfraW3nvsT8wbuHJVM5biMUxMMg+EgoSC4dxJKcgGNl+jgg6avfirtvLx08/QSwSBnRRuTNvvZMZ2SaUaDLHX341FoeTaCjE6n8+w5gTTiYlOw9ZNqPGFZAk1GgEUZZwpGYACoIgAxKVc48nu3QIJosZTTahaGBOSiXLccQHjhsc5XhCMe58fSe1XX4AorE4bks24046g/rNG6mYOYfcimGcPvIONEVBlGQUVUXUNEbOmY9ssSCIEA36Cfn81G9ez8STTiceixIPh1FVlZXPP0VueQVjTjyFLc0mwnGVvGQrH+3uJKZqzB+WxZTSNGTJmO8MDj+CIDAyL5mRef8++2Y4prCr3UtPIEIkrmKVJTxRBV84yNLuOAuL7bg8bbr4iCiQlldIPBKip6WJtLxCbC4XlfMXoikKsWiUSCCA2WbFZLYgSQIhrweT2YSmqaTk5DHtnG9gsloJePpIycolFgmjaRr+3h5GzlnA7lXLEUSRcSecQvPObfQ0NxCZOJXSMeO/hjNn8GlEkwmbKxU1FgNVRVViKNEoSjjE6IUnU7d5A6UTppDuMBsCJAZHJCaLFUdqOv7eHkI+L5LFwlsP3M2kU88iq2wIOz/6AG9nByk5efQ0N+Lv7caZls70877BpNPOQhAlrA4HyZmHLXDA4BgiFIsTiClc//wW+kO6WIhdVAl0u9n89msUjRrDiNkL9Oe1koQIxONxBAQURcFkMZOSnQuoxIJhEDQEUcSZmopksiKgIQj7MqoLAmgasUiY5IwsZJOFcMCvP+d3JpE/bORhPRcGBv8JfR3tideapg4QIAEI9ntwZWbhrq3BepAghKooKDH9O+fKyMRsd+Lv7UKNRpBtdqw2G9FQCGdmFjuXfUDxmPHEQkE87nZDhOR/BHuSk5DPg7YvAYVssbB1xUeUDq8kHg4xbOZsNr37Os07tlI+aSop2Tn4+3rJKi2nv8tNqqfPECExMDAwMDgkQY8HJa6AAB11e3GkpuFKz8RkscG+BBcmmx13fQ0CAlEBhHCIBd/5Pko8hmyxEvH7sDiSkEwS0XAEURSIhsNoahxHchqCJKEKApIA8ViceDhCT2s1Hz/zN9ILiphyxjmQajxX+zzYXSko8TiyLBNRFAQ0gr1dnHLDrTiSUnCmpZFTPpQhk6aBKGKyWlFjccomTMGe5Drc3TcwMPgPyC4tZ/eq5biysokE/KTk5PLq3T8nu3wIztQ0bK4U0krKOeW6WxFEiEejqKqCJut+daokY3G6mHnhJbTv2cXbv7+X0268HVdmliGM8QVRzTbi4XZUp4KqKAiiQnp+EbFQGG2f6G5z1XbGFRQTU8NogoCqaUSCAayOwyK2ZfA/TlTRr+XM8gHfgP3Pqs4ulXhmr8qI3APXBzu6d3CmovEHoI3CAW0F+j3kdVupcbUy2VJIwNN3YGPl2fD+nbD2EUOExMDAwMDAwMDAwMDAwMDAwMDAwOAzMURIvkKC3n5kSaa7qT4hQAK6I+Oal5/nzB/9jIIRo1DVONVrVrDpndcB8PV08daD93DpfY8gChDo62Xze2/TtH0LmUUlTD3rfIr/RaCMIAiYJIntLf2Dtr21rZ1vzSj+3P13JuuBRa6Mzycq8kVJy80jEgphtts55Ye3Eg34sSa5yCwq+UqOZ/DFiKvg6ezA29VJa/VuklLTad65lXCgDIvdQc0nq3BlZtK2Zzf25GTSC4qo+WQVyRkZuGtrUOJxikePY++GtdhTUuhqrMPb2YnFbqd+03rMJhN+j4f2mt04UlJo2rYFJRpFEEXqNq3HlZFJ2+4duLJycGVkUr1mJUkZmbTX7EE2m8gdOpzqdatxpqfT2VBLyOdjyORp1G34BKvDiaejje6mRmwuFw1bNoKmEY9GadyxVR/Lju2Ei31YnUlUr1mJKzOL9prd2JxJZBQWU7N2Ja70fWOJxSgeM37fWJLpbqzH4+7AandQt3kDkmwi6O2nbU8VjtRUmnZsxdvppnziVHpcyaTm5qHE47gysw73x2rwJVFYOZpv/up3hHxeHMkpxCIRqj9ZhberE4vDyYY3XyYSDDJ6/kJKxk9m9QtPM2ru8WSWlrPfbdhitZJVXArAhf93L0FvP2arlbd//1s+evLPXHLfnzjzR3cSi0awu1J4/757aGtrZOrZF/Duw/cx+5vfRlXidDc1sPRvjyb69uHjf2LRNTciW2207anC19PNaSecytQC+KQFTJKASRL5pL6Hcybk88ela7nlxGEUpzsOMVKDr4suX4RQPM7Gxl46/bGEAMl+oopKjz9KqydEKKpwzrgSIsWltFRtx+NuJ72giGC/B09nBwXDK+nYWw2Apqo40zL48PE/ocTjNO/czqxvfIs3H7ibsQtPYufyD8kfPpJN77zOzAsu5qOn/sL0c7/Bin88xanX/4i3/vBbTrziOmKRMO889FtURWXE7Hl0NzXy/l/+yEk/uJmelmbS8gtA03jn4d8RCfiZ/60rUJQ4kWCA9r172LLkbWZdeCkNWzZSv2Uj6QVFTDrtbGwuF/1dbmx2J1uWvE3bnl3kVgzn3B//kt2rlvHCL24js6iEWRdeSm7FcFp27WDFs0/icbczcu5xjDvxFFKycg7DJ2ZwMP7eblp2bk8IkABEggFqN3xC+aSpFAyvJCk9g2VP/ZncIcNwpqYiiiJ7Vi9nz+qPmXDKmexe+RHdzU2UT5rKkMnTsNgdiJJMTnk58WiEzUveZui0GbidxfQFY4yQYqQYIiQGXyFub4hufzghQPKjGRnktm7AVKXiz8wib9gIqld/zM5lHyDJJirnH4+AQEpOLmtefp6Qt5/KuceRVzECi8NB47ZNlE+ahqYobHzrNboa6yifPJWTrrmRJY89xHt/eoDv/eRXpOXlAzC5NP1wDt/A4L/GapIYXzRQADWmqDy6rJZQWCHUWodVipGaV0DY52XZU3+hcsFCnClpRINBNDR8DfUkZWYRCQYIevrY+PZrgMCY404gq2wo9Zs2YLHb2PHR+8QiEcYvOg2T1Yq7toas0nLWvvJPRs5ZwMg5CygdN5G+jnasDofejiCQO3QEvt4ektKM79vXjaoohPp7Wf/REmrXf0JKTi5TzjwPa3IKY44/kZo1K9HQCESUw91VA4NDEo/FaN+2ibUvP0+w38OIWfNYeMW1PP/TmzntxtsZOfd4dq34kOZd2wGwJbmQzWbsrhRseUYwscGXh6pqCIDHH+bEEZk094ao6Q7w4wlm3r3/Lk6/5Q52r/iIl399JxnFJUw+7RzsruR9+6rEQkFCfh+xSAQlFiUejaJpGiarFSUeJxoMIEomrA4HmqahRKNoaAiShMlsRrZYyS4tx5GSiisj8/CeDAOD/xBH6oFrVknWhdDRDiS0lS0WosEgyVnZxPeJjgBIJnPidV7FcPramjHbbNhTUuluauDDN17W7wvnHU/F1JnUbdlCZnEpjpR/nyTA4NggFAoR8fvY9sFidq9chj05hWlnX4gjPZ2I34+qKCSlZ2B1JiEKAr6ebmxOF+3Vu0kdnY/VYT/cQzAwMDAwOEKxOBwggCiICJJIxO+n0+dDFAUEUURVNZIzs9n49mt42tsG7Hv27b8g5N3nSyQIpOUVsGPpe5SMmYA1yYVkthMJhXRxQkHC5/Oy4a1XcdfVUDBiFCddcyOv3P0z3HU1nHXrz8kfNuIwnIGjC9VkRo2GWfPCM1SvXUlyVg4TTj6d5Jw8YjE9qFgQBDIMPykDg2OKjMJi+jraMFlthH0+0guLad1dRevuKsw2G8NmzGHYtFkE+j188tqLnHjltWx+4yWqPl6K3ZXM5DPOpd/dTmZJOYWjxrL+jVdIzSskfd86osHnQxY0FCXOkkcepKe1mZJxExl3wskIosi5d97NS/93O5nFpcTjMTQ0NE1DFARMlkMn6TMw+KoJRfV1MZv5gFt/LKJfL1w4zMYNF04n1XHgmdSOru1cEejlD0B/3DygrYCnj5J2B1WlPtpKtYEiJLIZJn8PPvoVdO2BzGFf3aAMDAwMDAwMDAwMDAwMDAwMDAwMjmqMdMpfIaKoL/qHg8FB24KePuLRCKLJRNjno2r5hwP3lWVkWSIWirD86SeoXrOCsN9Hc9V23nrwN7TvCy7+NIqqEldUMpMGB2UWptlw2Q48oA70h+jt8tFe62HHx62sfa2WmvUdeDoD/+XIPz8Wmw1ncgrZJWUUVo4xBEiOJGJR2nZXsX3pEoZPn83SJx+jv9ONyWxh/esvUTF1Jiufe4r2mt2k5RWw+oVnKB49lg1vvUrtpnUUjhzF8mf+qgt6fLKa3SuXUz5pKkufeBSz1Up3cxPbP1zMsOmzWfrEo4T8PhQlzsa3X2PYjNkse/qvdDU2kJSWztqXn6ds4mTWvvw8TTu2kF02lBXPPUne0GFs//A9qteuomTsBD568s8kpWfQsmsHO5d9wNCpM1j610dRFYVgv4fNi99k+PTZfPTkn+nv7MBstbHutRcZOnUGK//xd9p2V5FeUMiqF56haPRYNr3zOrUb11E4cjTLn/4r6QWF7F2/ll0rlzFk0lQ+/NujyGYzvW3NbPvgXYbNmMPSJx7DXVtDyOdlx7L3aa7aTk75MErGTSRniLFgcyzhSE4ho6AIW5KLlqodbHnvbZxp6Sx59Pf0trYQ6Otl7Sv/pHnHFkbOXcjyZ56gZu0qAv2eQW3ZXclkFBThyshi9kWXYbJYefqmq3nuJzey4Y2XCft9KDZ9sVAQBJRYjLDfS8nYiVR/smpQe3tWf0xqZjblk6YBEOkNcOfYcXxy5Uz+MK2C340p45yiTALBGNkuKw6zoUl2uLHKEpIo4LKZsJnEAb/X+7FbZNIcZrJcFmSTmWHTZ5GclU1z1XbKJ03F6nDS79azbSelHwj+iUciKPG4/kYQiEXCqIqCxeEks6iE6rUrAVDicVKyc2jfu4ec8go6G+pIzytAUWIsfeJR+jvd+Hq6WPfai+SUD0U2menraKOnpRFRknjvsT/Q09xI6biJtNXsJuTz0tPSxIrnniR36HC2fbCYXSuXEfb7aN29k8V/vJ9oIIAoiCz922PUbVq/L4OywpqX/8HW999NXPu8dNdPaa/ezUu/+inte/cQ8nnZ+NarrHv1xQNjMzhsqKpyyLmtv9ONKEp88not/e5egv39NO3chiibcNftZc1Lz1ExfRbLn/4rLbt2Evb72LnsA7a89zYtu6uIhkNEw2FMFhvOlFRE2UJUUZFFAYtk3MYYfLU4zDJ2s4xFFplcmERGzTLaN67C6nTiSs+grXo3a19+Hl9PNx53O6uef5rkrGze+v299DQ3Euz3sP6Nl2nfu4fG7VvJGzaS5U//lXg8Ss6Qofq14tL3Wf/Gyyz4zpX4urvoaWlCVfVgt972ALtWtbH1w2Y66vtR92U9MjA4mtBUjc4GL7vWtFG7qZMdHzZzfHIS3xmWS6RhF65MPQvgWw/eS97wEZhMZkJ+H71tLXQ3NaAocXpbW4iFQ3z05J/xdnXi7XKz8vmn6WluxOpwsOK5p+hrb8Pf28OK555EU1TqN2+gZt0acsqGsvGtV9m1chlrXv4Hq194Bn9fL4IogqahxmPEo9HDfZr+JxFUlfWvvcSOpe8T8nlpr9nD27//LYHuLhxJKZSOm4gSs2BrDbPurToatnezc0Ur69+up3FHN9GQcf1ncPgIh0J4Otp4+8F76W5qINjvYePbr7Fn9XJOvv42GrZsxOp0IEkSkUCAcSecQnJWNrLJSvPuADUb3TTu6GbvRjd7N7pZ/3Y925e3ULPBzd5NbrZ91ExTVY/x229wSKLhOE27elj/Tj3bPmqmfksXpq4o5Zj4/vACflRewFNzR+Ku2srYE09m7cv/YM++dYWWndtZ/Mf7iQQCqKqKKOj3VPFYjHgkTCwUIhYO0+9uZ/eq5XjaWpFkE4G+bqpWLKWrqZ54LEo8GqG/o10PnNm1k4YtG7A6DXEdg6OXnLIhDJ0yA4C969cw4eQzEtsEQWT6Od9g07uvk5yVQyTgT9St3fgJ4xedBkByVi69bS0oqkp/RzuL//TAgfvC11+iZt1qxhy3kImnnU04lMza12qpXt9BT4uf2s2dbHqvkYbt3YT8xrXpsUQ8EmHP6hVsevs1gv0eupsaePv39+Jpa6O/042AQFJaJuNOOAV/Xy8j5yzAZDETj4RJyc4jKe2rSRBhYGBgYHD0Y3U4KR03CUdaOjZXMma7HbPVhmgyIUoyJrOFSCjA7Au/hXyQcNqIWfPQVBVVVf+fvfsOk6s8D/7/PXV6296btOoNgRCi92qMgQCOG+52XBO3JI7bG8dx3jexY/sX9xoncS9xo/cqhBAgod5X29vs9HLa749ZVloEBhtJuyvuz3XNBTpz5sz9nLn31Oe5D47j4LourmMTb2jC9Vx8wSCK4uF6DoqnYBXz3Pb1f+fg5k0Usxn2PP4o93z/G6y74Q2UcjmSA30zuBbmDlNT2fi7X/H0nbdQyKQZ3LuL27/xZcZ7e/CHwhzYMsr2R/vZs3GIp+85xKGdYwzsS3Jw6ygbbz3ApjsOcnDrKNsf6WfPpiF6to3RtzvJjvUDrP/tPnY8MsBYf3ammymEeI6WxcsY6+0BVcF2HM688fUY/gAA5UKB7PgY5WKBW//jC1z9kU+w+7FH2Pi7X1XOHQ4d5NavfpFEUwsP/M/3OfXKa8hNjONYcs74p0r3HeL3X/oX+nZuo5jNsOOh+3j4J/+FoirE6xuo7ZxHQ/dCwENRFFRNJxiLo+nSh0rMjGeLkAQNbWqaPVmExO/3Ux0+3Cd8KDdEdaqP1sJw5bPW9ML++YkktRMmzYEmdjQmyaWS097ntLeA5oP1XzseTRFCCCGEEEIIIYQQQpwk5Ir5caQoCpZVpqa17ainpy0+5wKCsThOuYSq6vjDEYq5wzeG11zzF2i6QTY5yuDe6QVHirks4/29NM5fcNR3VgX9DKXzLG+O0lUTYt9opaCIT1f5q/PmEQscvhBtWS5WzuPRX+1hYG96avppV3Vw+lWdKKpyzNaFmHtU1WPXo5WB6a7r4FgW7ctXsWfj+sr7uk4xl6V16Qp6tjwFQDAWJzU8RFVzC0P79wJQ09bOnscfxQwEySbHAWhfvooN//sLABzbwnUcOlauZvdjj0x9v1UsMO/U09m36XEATH+QXHKc+nnd9O/cDkCsvoHtD91HOFHNxGDlKT5NCxaz/lc/QVFUrGIBz3PpXHUqT915y1RbbKvM/GXr2LPxMQA0w6CYzdCyZDkHn3kagFA8wcTQAInGZoYP7gegtr2T9b/8CYY/UBls7Xm0L1/F47/95RFtmT4Yatf6h1lxydUkWl+DYwWOxU8jZplCJkM2OUZ2fIzBvbuPen/bA/dw9Yc/QW4iies6pAYHCMXiL7i8lkVLecO/fInkQD++YJBgLM7E0AAXv+2vmBgaxAwEqWnrQFVVXMeeeoLtkYKxOFapRDGbwQwEyST9PHnnTpoXxjnrL+bzs89tZD+w6i+7+dxrllPzPIWrxIlVE/FRF/Hz1rM6CRkqH7l0IZ/6zdap9y9cVEs6X8bQFM7oqgageeESrvnoJxk7dBDNNLn+E58lNTSEoqpc/aG/JzM2gmNZRGprqeucx/D+veB5aFrlZrWqqpTyOfzhCNnxscq/C3n8oTCjBw9g+oOEq6ro2fL0UfEefOYpGroXEq+rJz08yHjfoanjnFCiCgDD52fHQ/cD0LJ4Kfd87xvTllHK50gODhCurmZiaGBqeuP8haz/1U+mzWuVioz19x61jX3mvjs5/dobiNc1/FnrXRwb/lCY1iXL6d22Zdr0hWecjaKqbLz1IM0L59G56jR2rX8IVVHZcs8dU/NZxcK0zx3c/CRdp54OHiiqgm2XqWlrZwI/pq7h1zWaErJPFcdX2G+QCBq85/x5BEsT9P7Xw3SvXcfeJzZQP7+bg5s3TZvfDAQY6Tkw7ZwPYPuD97H2uhvxBYLkkmN4jotuHu74vf/Jjay69CoAdMNP745xwgk///vFTRQyladsK6rCqz+wkpZFVce1zUIcawN7U/zu/3uKta/u4t4f7qBhXpxw3EfzogS66cexLdIjw7iOjaIo5DNpDJ8PXzDIgac3seTcC9mzcT2pocGjlt2zdTN1HV1HTd/6wN0su+BSNvzm55xx/WvZ/9RGdj36ECsuuYLx/j7MQBDPdYnVN6CZJpHq6hOxKsQRHMcmn5pg76YN06bb5RLj/b3Udc7HDNfzwI/2M7Q/w+IzGzm4ZT/DBzNT8559w3xWXNiKosh1KzEzxnp78LzpRUK2P3gfS869kNEDUTzXI9HUwqs//HECsTiq6ueO7/WTS/ZywRsWsfneQ7QvreGx3+yb+nxde4Tq5jDVzWH+8NXNXP6uZXSuqEWII+3aMMT9P9o59e/q5jBtS6to6Ipy53e3YVsuvqDO0jMjxBsaeeq230/7fCGTJjUyRG1bB54CqqaD6+HYNoVchtzEBIVUivrOeVPXcg9sfoqWRUsJRmPY5TIDe3ejKBCtqSUQjeK6LpnRYapb2k706hDimAjFq7jkne9j5SVXkE+niFTX0r3mDAqZNP5wBFXXidbW4dg2C9edQzGfZdFZ5+E4NuF4FZ2nnIYZCKBqGq2LlrHp1t8cdV74zL13suKiy1HVRm7/VuX6cceKGnYrwxx4enRqvtWXtbHm6k50XUPMfbnxEbY9cM+0aZ7nMtZ3iERTK54CZ9zwl4BCMJ4gGImSz6Y5/brXUtvWPjNBCyGEmDOaFy4mEImSmxjDdTzwXJ49AlFQQAHV0Ln27z9DdnwMMxDAFwoDClqxgALggWaahGJxDJ8Px3FQVQXFA0VXSY8Ok5vs3/Gs8b5eqpuaAKZd5xYvrJTNsuvR6Q8VcSyL1PAQqaEhtj9SoK49wqbbezjvtQvIjpYIRE1u/eYWXLvyq5p+jQtvXsym2w5S3xmjeUGc3u3j7HxsCIBF6xpYc1UH0ZrgCW+fEOL5xerqufht72FisI+qxmY8x+K6v/80EwMDmMEQ0do69jz+KAB2Ic+2B++dvgDPY2JwgNzEOKV8nsVnn084Ifcz/lTJwX7Khel9EQ5t20J2bAxUhUvf+b7Dp/Ae+IJBqpqaT3ygQkzKlSt9ooK+w9eGSvnJ/t/B6fv5LaNbuDqbw1QrSVy0pt+zyE0kUVD4y/k38m9bvsSO8v7pXxaqgZWvhad/Ahd+svJvIYQQQgghhBBCCCGEeA4pQnIcheIJSoMDRGsbuOK9H+KxX/2UXCrJknMuZNGZ5xIIh5kYyWGGw6y99kZu/8aXpz6bT2dwPRfd9KHpOo49fdCt6Q9gOy76c54C7zM1gqZKQ8Tk325Ywe6RLCXLZX5tmHXzDt+MyqYKaLpKaiQzrQAJwJN39NC+rJqGzqMHtotXDs0IEojGyIyNoKqVGxvFXJZgNEZqaHBqWimXJVpbD1QGtFem5QhEKk/AdB1nMoctDF+l0EG5UMAfDlPIpI/4TJZANEY+NXHE9+WmCiyok7leymapbm6dilNRVcrFAmYwBFQGLhn+AFaxMPVkgmfjTo8MP6ctUSYG+6e1JV7fWFnu5NNAKwP0w4fbYhi4R7UlQiGdmlrOkQKRCAe2FNn+UJKm+Wni9dLxYzbzPI++bB9Fu0hdoI7ebC/Vvmr6C/3Yrk1jsBGf7iNZSlLlqyJjZfA5OqquYZXLz/vk10A0jmEYQOVvxPD7XzSOqqYWqppapv0boGFepfhUpLqGnY88yO4Nj7DgjLPZtf5h7HLlyQe66WPhunMopFPkUkkufMvHePQ3eQD6dk6QGj58g33/3b1c+9HVR32/63ocHM+RLdrEgiqZgkeubFMTMkgVHAqWjQcYmkpDxEe65LCgPoKpq0ctS7x0p7YnCJkqe8cKnD0vyvfefBo9Y3kSIZO6sA/H8zA0hYNjeXyayki2xEDaR1XDUvymhurTCMaaGM6WyeBR292EbbnkFYWL3/YeHvvNz+nZ8jRmIECkto6B3bvQDJ2l513E/f/9PYq5LLphUNXUws5HHqSquZmd6x+kqvnogUTBaJzM2CjRmjrK+TxG8+GCEJXtp4frWIQnC5K4to1mGDiWNW05ZiBQGTx6RLE22ypj+PxYpeK0eQ3f0X87/nAEffLvS8yc5oVLcB2HtdfexDP33oGiqpz+mhuJNTbz1N2VAcPFnJ9EU3OlYJfrEIrHSY8MPe++U/f58BwHDxcPBUXRQTPwxavRPIXu+ogMOhYnxJKmGJ7n4eVMHggGp44pFRQCkennSo5l4Zs8Hj1SIBrFKhbx8LAtC1XXK53AJxn+AKqm0732LFJjYVQtRy5nTRUgAfBcjw2/3085ZpAq22gapPMWmqZSsh1s1yNo6Hieh2lodNeFiQelA7iYWY7tsumOg7QurmLXhiE8D1oWJdj6YB9mUKNl8RpUzUY3K+dVqqpimCa6rlMuFvGHIziWhaKqRKqP7vQWjMaedx8SjleRSY6h+3xTxx2BaAxFVbnore9m892307FyNae+6lrUWIhNo0/h03wsr12Oqsix7ImgaTqqoWP6A5QL+WnvGT4/Wx8YJVYXZGh/5RgiUu1n+yMD0+Z77Lf7UZqD5AxI5iyqQgZ+U6NsuYzlyih4RAMmI5kijbEA2ZJN3nJQgXjQ5FAyTyxg0l4V4MBYnmzJZmFdGE1XOTiWpyZssqghQjQg21JxNM9xMP1HF8QLxmJoulEp4PtElsxYC7WtYe743vTi0htvOcA5r+3mzu9umzZ9+GCGjuU17N00TPOCBE/cepBUWKM67qe1KkgyV2LHYAbLcfAbBr3JPD5dZVlzDE1V2D+SBUUhmS9TF/GzqCFCMm+xtS+F50FT3I+iwKFkgbBPx3JcskWbuqgf1/MoWg5Fy6Uu4qNo27QmQsyvC8tx9yySHivw6K/3Tps21pdl6blN7H96FHuyk3kpb1PdugTHSqJqGq4z/QmYhs+HpwCeh4dX+f/JJ71qug4KFLNZ/KEwhs+HGQhQzGamCncFo1GK2QxWqYRpWZX7F4ZsL8XcFohEaV9xygvPsGDxUZMOjOXYN5pDMxWKtsO8+QtwbAszcPT1/2AsjqppPPLrkalpde0RNvxu+uCPJ+88RGxRnGHVJZkro6kKy5pjFCyH7f1pDE2lKRGgqyY07cm3YnbSDZNANDbtARRQub8brammZ2uZwf0ahUyZ4QM5LnxTK6n6WjaPF6kpjxHxG+wdyQIKXTVBljbF8BlSoEYIIcRhVU3Nf9ZA6cE9OylkK+eQhVSamvYOcslxDt+u8/A8D908+r6coqigqDR1LyLe0PI8SxfPpWoqvsn7C0fSDQNN1xncmyIQMfHcynr3hTW2Ptg/VYAEoFx0GNybwrFdAmGD4YMZFpzeMFWEZMf6QeafWidFSISYZULxBKF4Ytq0lkXL2DGQZm+2hBGt9KXQdWOqv9yRDL8fu2ShAJ2nnEYwGj1BkZ88nu3bd6TKtSyDlkVLZiAiIf64/LNFSMzD3fqfLUJiPqcvwjPDT/KGXB69+zLUzR5F+zlFSFJJFEXlhmWv5dubv81ddTv5W9fCUI/oY7XufbDpP+Hx78L5f3ucWiWEEEIIIYQQQgghhJjLpAjJcVbV0Eg+myWYqKKuvRPHtrmlz+V9/7WPt5+tcO0pTcScDHVd83j1hz/O0L69BCIR6ud141o2gXic1Vdew+O//eXUMjtWriYbquWWLQO8elWlU8FAMovtegxnLQ6O5Qn5NObVhLjptKMHDh+aOERCrUUB7LJ71PuO5eJYzzPdcRlK5UiXXHqTBQqWW+n41hz/k9eL53mUsyWUgoObtVA0FbNNBpTOJpoR5rSr38Chpx+luWkRV77tQ+RTKVrmL2X/zk3U183j1e/+OyaGBmhdsILG9gUkEo1c9/7PMHJoL60LVhBPNBEKxrj+A/9I//7ttHYtI/L6ajRPY9G7P0HP7qdpaV7KZW/+IFa+wJrzXsO+nZtoaljAVe/4CNnxcVq7l9LavYKa6lZe895PMNbfQ9uCFdQ0dBANV3P9+/8Pgz27aJu/nGikBp8e5Pr3fopDe7fS2rqU0Jvei1d2WLnmMvbvfPKotuzbuYmGui5e/e6/Z2K4n9buFTS0dpNINHL9+z/NUO8+2rpXEE80EgrEuP79/4e+fdto61pG5A3VKK7K4nedS8/uzTQ3L+byN3+QYjaLqfnIllJ0LTqdoV6FcCJHIVea6Z9V/BF5K8/v9/2eL2z8AgurFrK2cS3nNZ3HL/b8gh9s/QFFp8jZzWfzzuXv5Pf7f0+6lOaOg3dgqiY/WvE1Fp91LomGJkLxBLmJJFApkrPm6uv46ec/ybxTT8cfiZJobHrZsda2dZBoaCQ5OICiaVz7t5+CAkSj1QSqq/AyFoqq0PKupWQOFWhfNMyuTZVO7tYR2/1i1uLAUI7R/hQhU2OiYNEUD3DrM4N864F9XLqklouXNPL5W3YwmC6ypiPBRy9byKd+/QQXLGlnz3AWRfF4/emtpApllMkBT/URPwsbIkT8UhziT2FoKstbEiyf7LPXVXf4vV2DGd70/ccYTJWoDpn87eUL2TuS45Il9YxmSygFi9aqIPtGM/h1hVjAZCxbpjdZIBYwiERcshe3cPV117Jh4knOet+7sXpHMXx+NMPgivd9mNTQEOe87q0Us2ku+6sPkk2Oc97r30K5VGLrfXdNDRLVTR+LzjwXMxCkkMvStHgp8boGIjW1ZEZHOPD0E7QuW4nnenSuPo19Tz7O03feyunX/AWP/uLHU21qWbKccKKKieFBlp53EVvvu6vS1vUPcdqrr+PRn/9oat7WpSuobe+krnMew/sPD7q64OZ3yBN/ZgHNMFA6alhSfxFrLroWL2ODpuDVGOx94gAAxbxNNhlmyTkXgudy+jU38Nsv/jPJwX6aFi6mf+f2qeWtfc2NmKEwhmGCoqCbJh3LVuAPHV3gQYjjSVEUlrUkgATO69/KPd/+D85709sYObifrlPXcHDLkxjBEG/9p6+i5DwURWHe6rWk9g/RPH8hXsFB8WsUvSJ6SeFtn/4mqqbQ3LiIlWdezgP/+0PijY0YgQCNC69gzxMpFp/Z8LznYvl0mbF0iaFiibFcmc6aENv7JqgK+UgXbfqSBZY1R+kZz9M7nuf8hXUkQjIYVMwc1/HITZSobgpPdbD3XA/Tr1MuOKRGo9R1WkSqobq1nfGBfqJ1DRRzORzXpratk4E9u2hftgoU2PHIA9ilyvmU4Q/QsfJUJgb78IcjFLOVYhXBaIxL3/IBdMXgwle/HVyP0y65Hi3vVWqdVZksXnQOnuWiRA3+z7bP8fsDv8fUTN605E28dtFrqQvWvUCLxLEUCEc584bXcd8PvzM1rX5eN1XNLRza4U0NpIdKLgEoqkL3yho6umNEq3yEwyae4+HEDEq4aI6CrWp0RPz4dA236NAWC2JpsDQSRHVcXMdjWPXYnCtyen0EJW2xKB7A8EAtu/TnS8R8Ok2KSrInw04c6uIBmhQNRVfQYj7sZCUPVb+Gm7NAU8F1UUMGWsjESZdwCzZq1EQLVM6HPNfDThbB9dATfjzPw0mWUHQqA0psD0wVPeZDURTsiSJu2UWZLAygxX1o/solXHu8iGe7KAENr+BU/t/U0BM+FE0K6ZwIgXCYmrYOYnX1pIYrg31QFNZee1NlO6VVkxxIY1sutn30Pr2QLaObGqvOaqCpPUogbKKrULZcVFMlHtDAr6GUXRpMneRogb58mRgqK0wD1THIWQ6eonBorMC2VJmOqiCZssVtmwc4tzHGUz1pJnJlPvXbZ/jwWV2cUR3B5yr8ft8oK+JBSpZFNlemULD4/EP7eevZnfzvxkP8zekdxLI2eb/Km7+/gS/euIq1XZXzLddysIfzeC5o1X7ciRKe5YCuovp1FA+cXBkt6kNP+LGSRdx0GTWkY8ggqGPCtT2son3UdFVVyKfL06bd9+MJrnx3M6/5wCeJBWsJRKKohoanKVB2QVdRPA8ClcI6Y8UCvkAQfyhCoqGJkZ4DjBw8QFVLK4vOPI+Rg/sYPdRDrK6B2rZOFFWhlM+hKAqx+gZidfUnajWIVxgna+HmypX9bPjw+c2z+1a36KCaKmpQxy1UCu7oCT+K9uL3mXqTefaN5PAbKtUhEy1v43dgHBfHp1UKMbkeyYEsubKDEzHoTxcpWi5tVUHyyQLNqkYZGJ+wyFW1UpWyWLrkPBo/1E16YoTGpm5UVUMNaZiOjxvfvgTXA/wqPhQWLk6QGsoz0p/n6Q2D5FNlbMulKqLTretYCvhyNlFVIRoLMpwvMzhRoBWFieEClq4whEPBhY5EAGeihAcEdZWgqVeOO8oOTqZM3nXJ5i3waSRCPrSchaKr6FEfalBuFR8Poepazrj+tdz61S9OFV+O1dVT09rO7d8bJD1UpL4zim/ymNEuu9hu5RpxxGdgqPC9h/ezrT9DW1WQz1+3jHVdNahqJb8928EaK+HZTuU40PMq1+MAxan8Py4ougqOW/m346GYGl65cr3CtVywXJ6tlaoYGtguatjAs1y8koMSMyv7/bKLVu0Hy8UrO2CouGkLDBVcDzVogO2gmBq44DmV/Q1lBy1q4hZsPNtDCRt4WQs08GwP1dRQAzpOuoRiaOgJP27RxsmUJ79HQ1EUFF1BT7x4gXchhBAvrmH+QkqFAvn0BJ5dOb80g2HK+Sx4Cp7iggeRqmq6Tz+L3Rse5sZ//DfqQk24pcp+IvzeDiYOQkPXTLdm9vOHIvzlv32VUKGyP1RDOlueeYREVYKhAzqGX6OUt9BNFcf1MBSFQqZ81HLy6TLBmA/X9bBKDhx5yOuBVTr6GoQQYnZa1FgpJjIWXMGTVdU8dc8dnHHdTfzhK/86de4Qra0jEI2y6tIraFqynEg8PoMRz12JhiaaFy/l/JvfScKowys5qGEDO+i9+IeFmAH5cuX6Vsg8XIS0lK/01XruA1FKO2+hxnFg9RsxtziUnnPpOJccJxiLETRDvM68lK8rv+Z7W77Lu1a++/BMtQug+zJ4/Ntw1gfBOLHn3Z5t41kWnuOgBoMoqtznEkIIIYQQQgghhBBitpGeZSfARBk8NH6+s8yX7t49Nf0r9+ymvTrA9ae2AlDX3kX36WdO++z44ADdZ5xNXcc8xgd6idbUEm9q5+zv7aQu4mNxYwS/ruJ5LgfHS3zgJ0+SzFee9nvBwlo+etkCljTFpy1TV3Uy7gQhJ0K8LoAZ0CkXDl+Fbl4UJ9E4vXO453kcSmYYzzl8/b593Lm90sm+OR7gizeunOqQ/lKU0kXcko2Sc8jc30txxziKoRI+r5XAKTWYVdIxfTYoGzZNzUtp7q3FW28RX91NdkcfvpDB/PJyyg9lqTm3g/A+A5+pMs9dQfHhMaIXNeLv9TBdmBdeTm79ELFLqzEH56NmXDpalpJb308kHqFrYjHe4zZtyxaS2dCHP+Jjfn4Z9sMFqtbNJ7OrF9OvM99ZTunhFJELWgkeVDEVhXn6cgqPjhC9pA5fn4NecOmqXU7u8QGiFyfoHFuIknRo715CdkMfwViQ+dmlOI+WiZ862ZagTnd5OeUHs9Sc1054r46pK8xnBYWHx4he3ITvEJi2x7zIEW0Z6kbNunS0LiH7aD+RWISuiUV4Gxxal1faEl7XSHkiQ+mn/VSbGpee00ipVQaCzmbbxrbx2fWfBeCc5nP4ypNfoTPayTc2f2Nqnof6HqIh2MDa+rV89KGPAlB0inxkz2f50imfpZzOcPl7P8R4fy92qURNWwfhmjrOes1NROvqqW3tmHra+8ulmz5q2zrwHJdQKoDjWuj+IJlbD1DcNoaiq4TPbSEQ1DnFp9L12m7u/d1+EvWHt7Eta+t5aiTNP/xmK9esaqJsOyxrjvP/3bMHgOtPbeNt/7kRx63cgH/8QJJ//sN2vnHzmVz8xQf58KUL+Pc7d+HTNS5f1sDHf7WF3OQN0detbeWjly6SAdDHyK+f7GMwVRnweM2qJsZyZc6cX80X79zFI3vH+Py1y9jcm+JQMs91pzQznrf4m58+RTJvcd7CGHrjDzm1fhVv2vBuFBTeu/K9FBoKfHPzN8nbecJGGM/zeG/4vdyfvJ/tw9uxHItwOkxID/HPf/cPuAMTeK5Lw7wF1HUc7lVYKuQZ2b+PS9/5AZIDvVilEo3di3BdB89xefWHPs74QB+RRDVX/83fM9Z3iFA8TqKxGTMQwHUcEvWNtC5dTnp4mHhDI9UtbbQsWspIzwEi1bU0zO8mWl3Lqz/0cQb37iI3kaSuo4uGru6Z+knEcxycOMDp3koy9x+cdmz31k+fzvc+swHTp7H1/lFqWhtYcpaGaihc93efYfjgfuafdgYrLrqc3ESSeEMj/lAY3fShKKBqGnUd86SzgZhRW3qT/Gw0wY0f/RDjg300dLQT8Ee45iOfoDExn/yDQ+SfGAYFQusaaFo8n4mf78YayKFGDOJXdeGoHqUdg2hxH0ZLBNWnce6Vb6Ls2YyMO2z43VbOe90CHBRK5tED5mpW1/DF+3fzmlOaKVke2wYydNaEGc+W2dI7wVjOojbio7UqxGP7xmivDpIIVc3A2hKiwvBprLighfX/u48Fp9fz1F2HyKfLeHhUN4cBuPv7Q5z72gYufMu7SQ70oqoqicZmPM8DFcJVVaiajqIoXPORTzJ26CAoCrG6ejwPalo7uOSd7yc7Poqq6SxafDbkPdxiCSddRm8IUnpshNz6AfAguLoOozVC6td78M2L8alL/pbHBh9juDjMt7d8m/nx+VzZdeUMr7lXBsev0778FF794Y8zeqiHUCxOdWs7A/v8uK5DtNqP4dMqAyoAM6Bx4dWdxDMlTE1B9RRKjw9VBihmLbRMGbMlDP05AkuqyD7Sg9WXI3FDN4qu4oymSN3Xi5uzCM2P86Zzmpn4yR4U1yN8TjOZ+3pxM2Val1ehdyUo3rEHrWCz4Oouio8OM7QjiWJqRC5oobgvRWBRFbkNg9hDebSYSfjsZooHUoRW1jHx2724WQujJUzium60uI/cYwOk7z4Ejkv8+m6KO5LoCR/2eHHq3C20thG9OYxXsHBSZVS/RvbBPty8jdkZJX7NfMoH06RuO0D0wtbKoOysRf6pYQDCZzYRPqcZPXpszjfFHxeta+CK932YkQP7Keay1LZ3EG9qZ+8TBZ68fS+rL29H1VRCMR+qquC6hzu1r7qklWCmzJLWCIqh4Y4XKO6ZwGwMkX1kgLpzmrF60/gaIqR/sI3qa+bhZW3cooOdLJJbP4Bnuyw6v5XFhkHmzkN4lsvZ13ezumBg3zOIGtSxqsPccv1qvAf6KO3rx/Fr3HheC4X1w9hjRVae3Uxhb4p1nY2MKhrfWDuP3D2HsEcKhOM+fnXFMv7m7t18vTFCMGeT3zRM9sE+PNvFv6wGvSZA9t5D+BYkCJ/RQOrWA9gjBfSmENGL2kj9di9OqoxeFyR6eQf+rhiqX25FvBzhKh/z19Sze8PQ1DTdVClkynSdUkfP1vGp6ZquErUT5O5Pkk/2UK4JELu6i8wDvZT3plACOrHLO1ACOrVKC+F51SRTA3iei+vYROvqUVQVz3HxPJdwdTWqplUGwjxbRFwBfzhCffs8KSwujovSgTTjv9iJM1pEq/JT9RcL8HXFcPIWuQ2DZO7uqWyTllRjtkRQNIXUnQcIr2sifE4LeuSFr0lu7U/x5u89zki2RFPMz39fuAjzrl7sTJlYQ5B9p9Xw9Fiezj1ZnCeG8CsK3un13JPLcm9Pku+c003zgwNEzm4mv3GQalUhsKyGzIN9eAWb8DnNRI0Y2Z8dwrNdqt64hMzDvRSfGa1csz27iZICTs4mWHKo3zHO5Re2sLUvi2XbND8wjO4phKr9KD4NqzeLsitJ+9Jq5jWEyP1yG9nJtrd0xxmJGZSf6cefLaOaOpknhsh4HqE1DShBg+y9h1CjJrELW0FTSN29E2eihF4bIHxOM2ZLBLMpfAJ/3VeGQDBI/fxuXvPRTzJycD/+cJjatk5u+8E4xYnKwOK2pdU8eftBdEMlVh/guh88huV4rG6L89cXd/P5a5fxmq89Ss94ngd3j9IcC9BRG8YeL1LqSWMP5vBQKoV3PK9SIExRUf0apX0p/AsTFHaME1hSTXb9AOG1jeQ3DmK2RVHCBoqioIYM8puGCK6qI/twH4qpEVpdR+b+XnwLEhi1ATL39Vb+3pZWY9QHMVsipO/pIbislsIzo/gXV1HcPQGuh29ejPzmEcJrG8k82IdeHcDXFSX7YD/hdY1Yw3nMtgjFnUnKB9JEr+ykuGOc8r7K/qn6dYsoHUjhpMrknxyunMudUguaitkUInhKHapPjimEEOLl8gUC+AKBo6aP9BzAth08PFTT4NRXXcPFb30/HCow/qsdOKnKMUTimnkEF8t9m5fCMw38+0uM/37b1HnysqtPJ5twKG4v4boeta0R9mwcxhfQKeUdFq5tYGh/etpy2pZWc/9PdlLfEaW6OURqJD/1XqIxSKzu6N9TCDG7VTe3cuMnP8fAnl1Utc/jNR/7FKM9BzADQRKNTeSzBWxnNdlRiMRnOto5Sq3lNe/5JO5AgfFbt0+dC8dfPY+CmycQkz6qYnbJT94XCx5x3lvO5wDwBQ/n61hhjFP6t1PwhQh0X4Kp3srkR6fkJpIE4wkA1lWt4dYnb+eb6re4pONSumJHVJI7833wn1fD5p/CqTcfp5aBNTRE9sEHST20gcLuPXhD/SjZ1OEZNA29uhrf4kUET1lN9PLLMDs6jls8QgghhBBCCCGEEEKIl0Z66ZwAhqaRLJSnCncc6ZG9Y1NFSJ6PE4yjB+OM2wH+Z7+fW24fwfN2c9niWj5x1SImSg67hrKM5cq0JgJ86KJ5fPJ3OwC4d+cIVy1vnFaExHEdDN1gR3IHi7UVBGI6l71jKZtuP8h4f472ZdUsObuJYGT6oIWBiTymqrFjcGJaO/omCnz/kQOsbI3hN15iOjkeqqKQf3KY4vZK52iv7JK58yBGTUCKkMwS6UKKwNPjWHtTRC9rJ337AbQqP27BorhtnMhFbaRuO4BiaCh+jcKGQcJnN5O5uwe35GCcUkf6rh6Cp9aRe3QAe7RA9LJa0rcfxLcgUelgeDAzueyDGI0h7LEipV0TRC9pJ3XbAdSQjgIUNo8SOb+F9B0HwfXQEj4y9xwitLaR7AO9OOkywVPqSN9xkMCyGvJPjWD1ZYle1kH69gOYbRHKhzKU9qWIXjrZloQfr+gc0ZaDKIaKGjDIPtBL+OwmMvccwi3ah9uyuo7c+gHskcLUsn3dcYq7n21LZZpeH6x0At01AVB52uADfeitzTP6m4o/7kD6AAC6opOzcrx1yVvZPr79qPke7HuQi9svnjZtX2Y/3xz9Mf9y7r8A0LHilGnv17W2HZ+gAWswT3FPCq07TOHpEYpbxwDwLJfM3T0kblpAcfs4iZiPq/5qOcOHJgjFTepW1bBJK3NwT5alTVF+81Q/X7ppJb/bPDC17L5kYaoAybOe6k0xMvn0pT3DWVoSQW7fOsiq1vhUARKAHz12iIsXN3DhInma/MvleR5P9BweTBT06SxujLD5UIpH9o6xvDkGwNfu38sP3rKGXMnmy3ftmSpKtrJD5fs9j3JF56VMlCY4u/lsFlQt4CtPfoWslQUgXa50ZHuw70FOqT+FRwcfBSBnV25m31d4nOtPv56GUMNR8fkCQVqWLAOgY+UpR70P0MWaF25g5wu/1bZs5bR/x+rq5QnLs9QZkdXk7h846tiuqjbAa/56OZvvH+DSty/lyTt6ePBnGTqWV7PorEbqulpRcfFFNMLVHnjgi5rUt8VmuEVCHHb3jhG2jZT4n4Y/cG/yXsqjZXRV555L76K8LU3+8SMGgsb8TPx2L/ZQpQOwm7EY/9kuat62jHx/Fi3qI7d+gPAZ9eBq+HwGB54Z4qwb5hOtCfDzPUOsq6/l7LcsZtvtPZQLNm3rGrgjk+HRfeNcvKSBWFBn30iOuojJeL6E40FLIkCmZFPtuoxmS+TL8tRDMfM6ltdgl12SQzlOuaSVPZtGWH1ZG5mxIqGEjzVXdTJ0oICiBDACi0mPl3nqnnFWXdyGP6wzOpCloTNMMe+y5d5erGI93WsbKWQ1tj7Ux+lXzyMSN9HNIrGwCY6HV3Yo92awcxae55F7uH8qnvzGIaJVftSEj9LeFEqwn99d+mvW3nIWAJtHN0sRkhOkSBFFDxOqXUykaSm5kRKOoxGMlKhuMigVLC5/1zKevKOHPU8Mc+U7lqHd24OxuBoMjfLBNHrMR/bBXoKr6/Fsl/zTI4TOaCC/cYjy/jThs5pQAHs4T/q2AzB5WmM2hkj+ZCdewSZ6cRupW/aDU3kz0BQh/Zu9ABgNQeyeDNaOJFA5r0/ffpDE9d2k7+nBSVYKBDqpMuk7DpL4iwWM/2QnTJ4/Wb1Zkr/cReSCNtK3HwRArwlQ3p/G6sugBfVp527Zh/qIX9+Nm7VQ/Vrl+sdkzOX9acr7U0z8Zi+BFTUUtozimx8n/8Th/U/2wT6M+iD6aUcfr4tjb4gx9pg9zF+0iGo3jmorlHIK0RqPVZe0kRopUN8Vo1y0ueRtS3nqroNkxkt0raphXmcMZcc4JQV8jWFSt+yfvFY1eW1sJI9ZHyJ1+wF8ixMU905gNoTxSjbZB/umYlBMjfTtBwDwzYtTemoE+0DlvM7N2yRshfKGQUr7Kp14vWIlh5+9dpW+8yDRy9pxHupnWUeUzC0HcFKVc31nooT7yz1ce04d+ZKNfjBD5p5DU99d3DJK6PQGtCo/epWfid/snfpscFVt5W/MqhyL2MN5Ur/bi/rahfjb5Rj/5dANjbVXdxKMmOx+fIhobYBF6xrRdBV/SOOcmxaw+Z5DoMBlN3WT+dkuvMme52rEJPdwP+W9k/lQsJn49R4SNy3AGi4QaAtTfdpaAHaP72bb2DZMzeSZ0Wf4yc6fTD1hW/EUaoI13LzkZraPb+ftzW+f1vldiGPFThYZ+69tuLnKtS1nvMjof22j/v2rsIYm9+2TilvH0CIm9kQR/4Iqsg/0YTSE0Fc///Wjku3w1Xv2MJKt7Mv/dk075m/3404eD3iDeboeG0Y9rwVr6lzPQ3l0kBsvbmFtQ5TwLQfxr6wl99j0ewUAKKAF9Mq+HDBaI5T3pShuGa0syXLJ3NtL/PpuMvftJnJBG57t4dx7iJVvXoy7dRxrR5LgJe3knxzGbI1Q3JUEBczm8NRyn217KGJSZ/vJbR7FOL2B9F09U+/nHhskcl4LSkDHTZdxUmWyD/fjTV7DtUcKZO7qIbimHi1mokkx6WPKtm02FLewrHo1nfUL8WyPiYECfl8ao1pl6TlNjPfnqGmLsPrydn68ewBrMg839UzwxMEJzppfxWvXtPLjDYfYO5KlaFf2r6WDKbIP9+OfF0f1a+SfGMJsj6LX+Ck8M4ae8KOYGoXNo5idUdJ39RBYXEXusQHcnIXi01ANFTdnk3m0n9DpDaTvPIhXcoheVrk/hwf++XGSvzj8cI3iM2NoMR/ZDQNoIZPCtjFQFcoHK8erz/4tRC5qI3X7AbA9/OsaSd9+EL0mUCmkV3Qqx7cH0vjmxSjtSlKePF4xm0JkHunDbAyT33j4WDf/xDCR81tJ3XIAvTaIf178RP2MQgjxilPb1jH1/7c/08fdWyf4x9Nsxn6xC2/ymrM9UiD5891UvXkJyGneizKGXcZ+Nv08Ofmr3VS9fjGjepl1r5nH0P4U666dx55Nwyxa14Be5efM6+ex5b4+NF1l1cWtpEcLnHXdfDRTJV4b4Mk7eghEDBrnx1lxQQs1zVJUToi5qKqphaqmFgDqmpsJVHezY+MAW34yTrQuwKmXtRNskmsvf65UdIjoWC3JXz53P7aL6rctk/2YmHXy5cqDJIOGBkCqlOJ/J+6ipytFUbV5tuTY+r23cGm+QGrlTQQ0A58GZRc81yWXstj2cD9Dh5bgeSH+59PrMcwwZ+47m9+2PcJnHvkMP7j8B6jKZEG5jnOgYTk8+lU45Y0w+YAgz/Mo2AWCxp+/DfLKZVK33ML4z39FcdNGFM+jbITJhpopRJZRqonjqgaJxjAt7SZmbozitq2M3P8AI1/6EsE1a6h573sJnbH2z45BCCGEEEIIIYQQQgjx8kgRkhPAcV1MXaOzJsTW/ulPq+ioCf3Rz6qqR7HkUvJMbtk6gueBX1f5xFWLSBddfvhoDz9/ondq/k9fvYRzu6t5YHdlIMNAqjhteZqqYTs2YSPMtfe8incsfgfXdf0F579uIVbJpRRO01gVPyoOQ1VRVIV9I7mj3nuyJ8lotkxL4vnTqVi0yFkWI1mb0UyJ0xsieDmH4o7xo+Yt92cJrqz9o+tEnBhhK0hp+36g0jEWD3ztUUq7JyozeB7YHmZHmPLkU1gUU8XN2+h1QcoDlVzRYj7s0WGUgI6TrgxIMFvCU4MXnu1sYbZHKWweqUxzXHA9zNYoxb2T36cqeCUHs7VSUARADek4qTJazMQeKwCg1wUoPDMKKnilyo0ZsyNG9uHKQA3PnmxLW4TinuQRbXEx26OUD6Qm26Lh5iz02gDWYGUQqRb3YW8aRvFpuJNFGMzWyBFtqXTe9XVEKTwzdtQ6NUdlMOhsVhOoAcD2bAJ6gN/s/A1vWvGmo+brjHViO/ZR05dULznuMT4rmSvRmyzg1z1qBkuofg0zHiS5/eBR85Z7s5idUYpbR/kJRfZMFHnt6+fzd7/fSn+qSEsiwGntVWztT5Mq2HTVhLmbytO0I4Gjt+uJoEHAqNxwrIv4SebKtFUF2TWUOWrezb0TNMf9LGyIHuM18MqiKArXrGxmw/7KNitkauiqyt7JfXJ3fZjhbAnPA9fzCJo6O4/4PQYnoDnUQtkpoys6fdk+BrODLEgsYOPQxmnf1Z3oZvPo5unfj0LcHydsSOc18cK8nDtVgORI5b4sdWc3cea1AWwbzn1dN1bJQTNVPNfDCOiouoquKigoBKImhqnNQAuEeGEb9o/TkyxwRXw+tx24DQDLtQhgktp1aNq8aticKkAyxfWwxwqYHTHKPWk8x8OzAc9F0VROu7SN9X0TvOt/n6Qu4qOxPkTUr2Nc0sD8RJB/vW83Gw4kiQZ0/IZK2XYJ+nR0VaUpFmBgosjWvhSvWtUEwLzaMFUyeEzMAoGIyfLzWyhkyyiawqpL29F0Bd3QKOYsFBVcx6PkuPRPFEnniixeleDB3gl6BwpcOK8GL+SjoJc59w0LwfE4mC9TLDssvK6TPstmvqmRaA0QKCuQt3ELVuVJ2YuryD12dCHY4o5xAktryD3UR3H7OJFzDheKbIscv8KBYjrbscn70jiGQ53bQm1bkHLJI5DQmShNMGT1o7oGa25qw3T9+C2PTMbCHi9itEUo7Z0gsLwGszky9YT34vYxFFOjuLtyzKzGTNycVRmAf0RdRcVQ8QqV8znP9aYKkMDh6xMAZnuMwpaRo2NPlXAy1rRpnuXi5KypAiTPcvM2pT0TRywzSml3ErMzRvGI6c+y+rM4WQujNjAtZlQFZ6IyUFqvCeBMlCj3HH3+lX96hJAUITkhdHQS/gTX3vEa1jWu42OLPk5AC1LdGaSmLUzZK9OXc7hz6zCXLqxn2Q1dlEouZc/Dy1to0cp+2smWUfTKtTQAsyNK/qkR9JoAuB6BRdWU+7JYg7lp+VW5xlaa+rfZFiFz7/RjEj1mkt6VPCr2Z69dVf7fxWwJ406Up4qITL1XdlkRDlDlM8gfOjrfiruT+DpiqEF92mcVTZ32twTgJEuVwj3tL7pqxYuI1QY56/r5rL6sDcd2SebKmLqKX1OJVPlpWRSn5LkwXJgqQAKVa7qZ+w8dtTw3Z4NSKZz3rIARQNd0gkaQkBmi7E7PjZZIZWBM2AxjanLMKY4Pe6I0VYDkWV7Bxk6XKe1PHTV/ac8ERmMIvTZAcesY+c0jhF6gCEm2aLOpZ2Lq33WuMu14AMAbKRIuODz3mxJ9OeiOgeNN3SuA6dtWLWJijx2+LxdYVj2tcOWzrN4sRmMY61AGoz6I1ZfFLTo428bRoj7s0QK+jhiF7WOHlztePGo5pT0T+I0EgaWVfcZR7+9PYTaFKe2dAIWpAiTPctJl8MCZKEsRkmNM1VTivjhX3nkxN82/ifcu/Gtq50W44j3LKsX2TYVSrgrdrzFQttj/VGna5w8l81hOgsWNlWvrazurqQqZuAUbJ1VGNTVKk4U8zPYopZ40ik/D1xEl9/hQpdD+tjF83XG8gj2Vs77uOOXeDGZzuHIfLG9P3X+Dw/cD1ZCB9dzrG1SK3/g6Y1MPC4ic30LmgV7QFLzi5H2TyfuHymShEzh8LBxcXT+1TzLbomTuO7x/MtuilPZOTN0DPFK5J43RGMIazEkREiGEOEEOjhX52ZODfGpe89TA7Wc5qRJuqgSNcu/wxTjJwvOfJ6dLLDyjkUyySHVLGEXzmL+mDs8BFI9Iooa2pVUoqoKqqXiOh+u6mAEdVVU5/w0LyactQnEf/qAxM40TQhxTe4cz7EjlOfv8dpad1ozuV7nuG/dz5dp5fOCibvyG3EP/U/Vl+2hKRo7ej6XLOBNFqP/j/XaFONGeffhX0KeRLCa5+bab2W/th0Vwwy038uULvsyS6iWMbvgaBlC97v0A+DUFS4tyyzc2c/CZJJ7ngecSjheobg4xuLdE1LiKtbtrubvzf/jpMz/jL5e/tvKligLr3g+/fifsuRMWXEZfto8P3PMBdiV3cV7LefzLOf9C2Hzpx31uscjYT3/O6De/A+PD5P01DLVfgXbG+bRetJqFnVH8IYN8usyBzaNsua+PzYM2p13ZwWmf78AZGiR9yy2M/+A/6XnzmwlffBENn/wURr08CE0IIYQQQgghhBBCiBNNnekAXgkcXBRcblrTSvSIAd0tiQBndFb/0c9Wh4M4rkdTzODz1y4nETT49htXo2kafanitAIkAP96+04+eNGCqX93Pk+RE9u1SfgSfOjUD/GFp7/AGb86nXNuO4Ov9Pw/9Be4YVV2HMqWzYL6yFHvndFVTV3Y97yf6xvNMJgusHukwId+9jRv+v4GcCodz/SawFHz6/HnX4448VTDQKv1A6DolU2FM1Ga+t2ebxqKAiq42TJ6ovJberaL4tPwSg7qZOcHJ1NGm3xf0Y5YTvVzl108/H2qAkplwI9eVYkLF5gcrKFFKh1k3aKDGjbABWUyn58vbjt1xDTt6O+rtEXByVpok3npWS6KX8OzHJTJv2UnfURbjlwn1f6j1qkWk6dTzGZLqpdwbvO5QOVGdG2klkVVi1havXRqnrAR5i1L38Lu1O6poiUAXdEuzm0594TEuX0gxW+e6ueOLX30pyx2Tz61U1EV9Nrn2a4m/JQHc+h1QbaO5rhlxxA5PPoni1StbkuwbaDSpb46bBIP6NRFKjldtlwuW3p4EJuiwN9evohD4zlaqwKYukrBcvir8+cfVfQKQFdVfvRYD+5zBuOJP91Fi+t507p2NFXBcT0UYEFD5Qbvtv40DRE/qgKKVxlMsaL58CNbfv9kmtd2/Q2/2P0LPrD6A+xP7WcgP8DF7RdTHzw8IKMp1MS5zeeyrnHdtO++aeFNLIwv/ZNuKItXHsVQn3cbpCV8uJ7L+uzDpM0CT43n6HUc9uVL7MgUuKcvya5MgVhNkGhNQAqQiFnprPk1jOfKLImvoT16ePSsp4BR95zjO8+bOk48khY2Dh/veh6oSuXYUVV48y+e5t0/38xE3uIDFy2gdzxH2fY4kC5wIFNgw4EkigLvOnceYZ/GofE8TTEfAUMjU7Joige4YU0rLYkgAxMFzpxfzfw62WaL2SMQNvEHDIIRE1/AQNNVQjEfwYiPcNzP9vEc28azJC2HzWM5Ouoj/HbrIDtTBb7w6F5SwN094+wulrhv/yg3/PdGrv3h47zxx5t4cizJ74d/i+VZeJqCYmqVJ3EP5jDqjt4vGQ1B7IHK4EyjNgCGAsCixCIWJ1adwLXyyubTfZXBrjgMKYd4MvcEe9nGBza9m4ey9/APm/6Od61/C5fdcRHv2PhmhsiCAlrIQPEqhTgUTcWePNd3C3bleoPD1HUFz3JR/frUefqzFFWZuhr67LWAqfeO+Pe06wNH0EIGyvNcTVX9z3MM43roR+wnnl3mtOsoR9DjfrSwcVRcuIf3LV7JwS07h6+LHMFsPfqanTg+FEWhylfFO5a/g0cHHuXae6/mirsu5ucD/8Pfb/kQA1oPD/dM8P2NPTw8MMEte0f50B+28sttg6RU8GwPt+igmBqe7aL6jrh+Ve0/fH0pWcQr26hRs3Kta9KR19hg8trUc3LCtd2pv4dpsR/xN/Hs35EaNOA5fysoUN8QxvTpaFVHX6/VawLYE8VKwZwjl6kqR3+noaLJgKhjRlEVglEfQ7bNQNniy4/u5ztPHqLfs9mUzLJ1Is/Gscp281lOqvT8+TCZe4rviHsWkRaq/dVEjAhtkTaW1Sybei9khHhV56tIW2nOaT6HhpAUPhLHhxrQ4bnbEwVUn45ee/Q1dr02gFOyDxd1annhfWIsYHDJksPXwwr682y3/BqWefQOP5fwkbIPF2qY+hs6YjvoFmy0yOFtnj2Sf/7rJVU+nGQRrco/VVjKUkGt9eNOFqyyJ4pTn60s9+giIXptAAwNayCHnjj6+KBy7FG5bqto6rRtQ2WGyn0QNSDXY441VVFpCDRw08Kb+Omen3LuH9Zx4W1n8ZuRn3NA3c3Kf72fX+wd5vP37WI4W+Z1a1qnfb67LoxPV3lkzwhvWNvGKa1x6qJ+FENF8Ws4BQu9pnLc4EyU0KMmakCfPEb24+Zt1IgxdW/t2ftbzkQJLe5D9etT9/SenQcO57NbtNFiz3MM0BDCKVi4uck8TU7uYxyvcj7G4eNqz3anjpOfPQY+cp/kpEvTjmGcVAlP4XmPdfXqymefLyYhhBDHR2O8sj3WQkefzymG+rzXwcXR1BdYf2pAR1EUolUBqhpCJGrDRKsCxGoDlXtmtSGqmyJUNYSJ1wZJNFT+HUkECMV8BMI+qpvCUoBEiJNIrmSzbzTHqV+4j9O//iCr//1+DhTg6/fvZftA+sUXII7SHGp+3v0YuooakO2nmH3yZRtNVTA1lS9s/AK9mV7eXbqKGzYvRFM03nzbm/nQvX/N+f27GKvuohxbzOZ7D6HkNcpGM/27U6y6qJXXf2Yt5fSP6FqZ5fJ3Lueav55PKf3fnOlbQ2N6Hl987Mvc9aunKWYniwAvuw7ibXDv5yhYOd5157sYyA3whsVv4OG+h/nkw5+sFDZ5EcXRCXb/45fYdub5jH7+n5mww+w6669x/+k/OedHn+Oyz1zNknOaqWmJEE74qWuPcvrVXbzhn9bRvaaOx3+/nzu+/QxKdR3Vb3sb8+68g9oPf4jcgw+x71WvIn3HHcf5FxBCCCGEEEIIIYQQQjyX3BU+AZoTEXrHMrQnfHznTaexZySLoap014VZ1ZZ40c+31UZIZvNcstjPwoYILXE/KDCRLx81b77skCs7GJrCW8/qZHlz9Kh5WmIt9KZ6WVG9gq9d9DX6sn1U+auYF59HQ+T5Ow43V4U5MJxmQX2Ivzi1hV9u6sXzYEF9mDesbcN8oWr7ikLRcfnC7TvZNnlDrGw5GKpC+NwWyr3ZqadrGU0hjGapMD9bjDkusYvbcH6yC6s/V3my8K4ksau6KB/KUNozQfDUOvJPDBM6rR41bFB4ZpTwWc1kH+xDMTW0Kj/5p0aInNtC+q6DeEUboylEYfMo0YvbSN16oPJEv3lxirvGiV3VhTWYo3wgTWB5DYUtowRPqaO8P0VhxzihtY3k1g+gRX1oMZP85hEi5zaTuecQngt6XZDCU8NEzmshddsBnIkSZluEwrZRYld0krp1P1Z/Fv/iKorbx4m9qotyT4biniTBU+vJPzFEcE1DpS1bRgmf3UT2gT4UU0WrPqItdx7ELdgYzeFKWy6ptMUazuObH6+sp1d1YQ3kpp5qo7WFOWCo/PGyQ2Im1QXr+OzZn2XX+C5yVo6GUAN92T4+ufaTHMwcpOgU6Yh2EPFF6LQ7+coFX2G0MIqu6nQnuk/IwItkrszDe8b419t38vN3ncFf/c+TnN4Y5UPRCGweJXJ2M+WDmcPb1YYgem0AxYHCmnru//kTvPu8LlonC+csaogwvy7MH7YM8Pq1bagKfOWePfzV+fOoi/goOy7vOa+LV69sZCxbpr0mSGvc5IE9Sf728kWMZ0t89+bTSOXLXL6sgaF0kb0jOXy6ytvP7uKeHcMULJui7RA05ZDj5WiI+fnkVUu4+cwOtvROMJYtc0prnCuXNXDLM4MUbZePXLqQH23o4fVntPOxyxfysV9spj9VpGy75FNdfGDFZ0gWx/jGxd9iOD+Ijs4XzvsCB9IHUBSF9kg7/ZlBllYt5xsXfYOB/AAxM04xX8VDW4OcUu+hPc+AMiEAihGtcmx3KDv1VF2jKYTZFGZ/8SBdkVUUyiatCYVsyUZzYbTs4HlQtt0XWboQM+uChbU8uneMm78xwP+85/OMlQ9iuzZD+ij1y2sobBubenp8ftMwsSs6mfj17sqgXCB4ah1K2KDcnyW8rhGjOYTiU1E0BVeDm8/s4IayQ0dNEA04d0EdluPSUVPHYLrEZ69ZRl3URyygky85XLiojrBfx9RVGuN+bMfDZyg4LixrjtIcl8J3Ym4Zz5fpTRZoivvpqA6iqwpffd0p9CULXLeqBU3xmFcXxvNcLlhYy8rWOAMTRRpifprjflq5kF59iE63GQI6atTEy1iYCxLknx7BSVYGdaphA9+CKnL/vR10hcglbWzz9vB/z/m/1Ps7qPd3zvCaeOWoD9dTtiw0r4DjOtSH6inaRf5uzd8xkBvgn876JzLlDJm8jl1oYMgxmX9xGwwXcCZK+JdUU9w7gV7jx2wKkX18iMg5zZQPpAmf3czEb/dSeHIE/Yp21IhRmX/bGACFraNELmojc2cPpQMpAitrKTw9AoA1ksdcmKC8M0lx99Hn9UZLGHuiRPicFjJ390y1J3haPeXeLMHT6shvHK5MVCB2VRdGU5hcfRB7KE9pX4rY1fNI33aA6KXtlA+mp87d9PogWrUfDw97tFC5BrMzWVmWqmC2RvDNi5F/aoTwOc3gemhREydduTaoRU2CK2tPxM8ngPZ4Oz0TPVzRcQVr6tcwUhghYkZwPIfzms9nZKyGR/bs4YMXLeCWLf1ct7qZvzitBcvx2FIqc4ZtE4r50aI+/AsSOFkLoyVMcWfl2lhpzwSBFTVk7u+l6i8XAWAP5jAagliDeXA9vLKD0RLG6s1S2DxC9LIOUrfuB6dyAGL1Z4le3Mb4T3eCXZlmdkaxxyoD0X3z49gjeTzXg7oAkfOaydx9aKqNkfNbiDRHUFQFX2fs8HdTKVzhX1hF6vf7cLJlYpe2kbrlAMBkjjaRfbD/8LIuaEWrl+OTYy1TtIkGDfYMZ/nxgSTNMT/ruhLkyh7PpEpwZiM8PABA4ZlR4td1k/zFrqkc8S1KoPg0tLgPKzZ90MXq+tXsndhLR7SDD5/6YYbyQ9iuTX2gHheX9mg7K2tXnvA2i1cOozZA7MpOUr/fNzUtelkHRk0AxVTRG4LYz26TAjq+rhi4Hun7etHiJsHlNS+0aHRN5c1ndbB9MM3GA0l+sm+ET6+px3t8qDKDAtlzm1FqA6hhA3dyMIaS8PFMQOGOXcN8/JTayr2C8yr3CuzhPL55cUp7J/AsF8/zpmLMbxym+k1LKB1I4xUqRVL0uiBa1EQxNLSIiZux8LqijOoKrKymri+H51YKMoTWNmL1ZfHKLp7jHtV2f3eCQpUPe/MIvoCOlvBNO/7V64LkN1WOTzzbJXx25f7NsyLntKA3htCrji6UIl4+q5jg9Qtfz3kt5zGcH6baX01NoIY3fbOf8xbUsrariv93+04uWFxPU6wy0FtV4LrVLaxuSxDQVd56dhdtVQEaJovcK7qKry06mU8KTrqE53oEllVjJ0s4qRLBU+tJ39dL9OwW8k8NEz6radr9rdBp9ThZC3uiSPis5mn336zBHL4FCUq7kuB5GI0hrIFc5bt9GoFFVSi6wsQf9hG9oI3UXQeIXVq5/+akKvfkSnsnCK6uI79peOo4p7Rvgtirusjcc4jIBa2kbt1fub92xDFMYcsosVfPw82U0WImTqpyrKtGTbSED63Kh9kiRVeFEOJE6aoJ8ZazOlCjJqEzG8k9MjD1XvSyDrxqGbz9UqgJk9C6RnKPTl9/do3cOxdCTJcru5RtF/s5D/nxPBjPHd1HVLw4025AjUFoXRO5Rw9fr4xd3gFVsh0Ws0+6YBPx6+xK7uK3e3/LzUtvpunuLBG9ifde9Wn+/sG/x9l5C+22zSb3ZjZ89CEc2yWUUBkmxRXv6KRlyXzy6RSu4xCKV/qmB2MJPGeYzmUpPrfwM7ztkTfx3V3fYv+913FK6ziNue2Yg1XUNj7Fb/9uFQdX+Pnswy2ctmGQ0NI1fLPnLm5/8mdcdsqNABRzFvlUmXy6THa8QHLjFtwH7yC2/V50p0i6egnOdR+h68aLOGN+/HmLlx/JF9C55C1LqW2N8PAv95D/8lNc+Z4V+EN+at7xDqKXXELfRz9G3wc+SOEtb6HuQ3+DYsixqBBCCCGEEEIIIYQQJ4LyUioUzwaKolwOfBnQgO94nvcvf2z+0047zdu4ceMJie1EK1sOo9kiPeMF3vyDxylahwduzqsN8bXXryaZL7OiKUbQf2wvtg6ncqSLDv2pEiXLoaM6SHfD0YVOnjWSKrBvLM9N31o/bfozHz4PHQ8yDvZoAcXQ0GsD+P7IE+pmqWM+Gnu25G7PWI6v3buHmzpraXBAj5hguVhlm0DMTzlVgoCO5kE5Z+Gv9mOlymCo6LpKOVPGV+XHzpZxFAWfX6eUKmEmfDh5G8f18IdNShNFtKgJJRfbdvBHfZQnSighHdUBq2DjT/gpp4tgamiqSjlXxl/lx06X8TQVw6dNLtuPk7NwFQ8zYFCaKGHGfDhFG9txCET8le+LmGC72CUb/5FtAcpZC3+VHys92RZDpZx+ti0WrgJmQK8sO+HHyVvT2qJHTJyyQ7nk4IuapEcL+AI6/71vhLNXNnLOglkzKOi4VBKYLfl7stoxmOb3mwf4j3v28J03ncrbf/gEANcurudNC+rpbo+ilzzskQKKrqFV+ykN56AuwMZ8kYCh01kbJJmzKdkOIVPjtq2DOC7ctX2Iv79iEW/+/uPTOjWsbInxf69fwbVfe4SC5UxN76gOcvOZHcyrCbFvNMcVyxrZN5qlf6JA30SBX23q48BYng9fsoD3X9R9rFfFSbvtfSm29afY2p8mlS+zpiPBWN7CcTwCpsZE3iIW0IgFTRRPYSBdJOLXifp1RrNlAoZG0XZQFYWQqWG5HrmSzSN7xrh0aT07hzM83ZPi50/0TvvOBfVh/vMtp9MYlwEJL9NJnbvZiSz6uH3EsZ2fUT+oqsI379vPDzYcImBofPfmU8mXHAxDZTRToqM6xKkdVTMdvnhxJ3X+vpihdIHtAxkc16Mu4kNVPGwX6g2VeJHKvldV0GsD2JaDans4ySJq2ERNmDhjRVRDAwUUvwEajJcsLv7h42iKwhvXtfOjDT3ceFor33pgH5+4ajF1ET8943n8hopfr3y2uy7M2i4pa/cnekXn7lywpS/Fg7tGcDyPvmSB7vowSxuj/HhDD6d1VJErO7ieRyJo0DOWZ+dQhnt2jEx93tQVvvH6U+mM+GhUVHA8vKKL57qoIQNnpIDnehh1QZyJIm7BRq8OkkvoPDGYJezTWdkSJ+SflR1OT9r83TOcJlu0Gc2UaUn4Cfg00gWHQtkhU7IJmRoulac/+nWVqoBJXcnFZ3vomoLiVgbSeq4HpopbdlEMFVQF1QU7VcKNGih+DdMGN2fhWS5uzOSWwSQX1sVRsmXMKj9e2cXJWZTDBk5QI5JzsHM2dsIkaOpoEyVUszJQ3x4tgKGg6BpuuoTiq+SNGpwc9DtSwMla6NV+jPoQiq5iT5SwBnN4jovREALHwxotoPo0nEwZBVDCBnrUB5qCnSyC7U4ONvYw6oMYDSGcnIU9kMN1PVRTxXM8vJyFYqgYTWH0xNFPjJ9BJ23uPmv93lF0TaU3maerNsTG/eOc3lVNtmhTFzFJFR0m8iWCpkHPWI5IwMBxPXy6RnPAoLbs4vcUNF3FzVooPhXX8ih5HkbYgJKD5oKDix40KivU9iqD4T3QEj5QwCs4eK6HXh8Eu1LERg1olVwzVKy+bGVayECP+bCTJRRdAb2yvTQaQuhxH9ZIHnt0Mn8TfsyWMOoR28XyYA5rMAeOh1bjx81YuAULLWxCUIeSgzNRQov5MBpC2EN57IkiWsyH3hDEiM2q/Pxj5kzujmWLbNg3Rl+qxD/9Yfu09/7w/jNRLagvOJgZCzWoowR1FE/BmSih+DUUvwYO5HwqdwxMcM0pzYR8s3JfKF66OZO/L4VbtrEG80dsW4Kokzlqp0pY/Vncgo0aMVFNFbfkHN6uvYR9Yrpg0TOex6er1BoaznAeNW/jRH2U4yZNNSHssQKZ3gy256HWBdlbKlO0HJZUhfBPlCnnLdBV+geyGAmTGCp60SFQEwBDxUuWwAO12kRxFZyxIoquVoorTJTQYiZWqkxeV7CqfIy5Lsl8mQWGgTFRxoyYYDmomoqTs0h5HlWNYdRkCbdoo0ZNikGNpKHSqusU+rPoPg2l6KDqKnptAK/kVApQ+VQsx0P16xiehzNRQg0ZaDETo65yzDKDTqrcPdL+4Sw+XcF2PTzPpWB79E0UURVoSfi57EsPsaQpyj9cuZioX2c8b6EANWETTQG/qdFa9fxFN8ojOZzxSo55eOB4U7+jZzuV41XLRfNpeJYDqorrOmimjpu30KI+XMutHHdO3g9QdBWvaKNVBfCKNm7RQUuYOOMl3LKDXhuoHI+4LqqiYGctNL9WmS9k4OZttKhR+XtUlUpsJQetyo+Xs3BdDy1k4OQsVF3FyVtoURNV17AnSqgBDb0hiJexsbNlvJwFioIS0lGoFPDRo74T9Ou9ZCdt/oqTnuSueEn6klkOjBU4NeDHTZZws2W0hB8lYbKtYLG6/cUfunSMzbncXb93lJUBH16yVCm0lfCjxA16XJcFjbHj9r1iVppz+StOrD1Dae7YNsQPHjnIcKY0NT0WMPj1e86kq3bGCvLN2dx9bN8YbTGTqoKHM1Ge2o9R6yNQJQ/Ke4U4Hv0jj1uH+/f+aBPbB9LMX/4jto5t5ZbrbuF3n/kM/kiUs276ELvWD7Bwx82EGOXnhe8y/7QmFq1r4J/ueZq7tw7w27/sYN6ppzNycD8//Nj7edVf/y0L152D53l85U1/wcpLr+T8N76Nz97/KX6x/3/5/P/46TyUwVFNyvWdzD/zCZKBPF/UV/OO9Q0w1AsTg3z0bRq2Bv/v+walQBO5YOVBbUY5QyRzCH95Ak/RKC9dR/zmt9Jy+enoL/RQyxeSHYZShj27Fe78r4MkGkK8+oOrCEZNANxymeF/+b8kf/QjAqeeSvO/fxGjru5Y/wSziTwlTAghhBBCCCGEEELMCnOiV6miKBrwVeASoBd4XFGU33qet21mI5sZpqFh2y61YZ1/v3EVn7tlO73JAsubo/zDVUv43O+38oGLFx7zAiQAdbEQdTGYX//S5rdcj6Cp0VEd5MBYfmr6si/cz3+87hRetaIJuuLHPE7x8sUCBouaonzxqUP0Jgu87vRWvvXgfl69somhXUU27B/nr86bx3cf3s+6edVovQq3bx3kgxd38z/re+iqDdGaCPKzjYf464u7+c1D/fgNjbVd1fznI/t517nzeHjTKGPZMq9Z1cy3H9zHTWta2bs1y5a+FG87p5PvPrifCxfVUTjgcP/OEd530Xx++MhBljZFqQqZ/PrJPj506QJ+dt8hasI+ljZF+e/1B/nARQu4c/0QRdvh0iX1fOeh/bzlzA6e3NzLgdEcr1/bxrcf3M+rVjQysqvEY/vHec/5lbas7azG6FO4bcsgH7ykmx+t76G9JkR7VaUtH7y4m9893I+pa6zrqub7D+/nXefN45FNo4xkSlx3SgvfeWgfo9kyZ86r5pIl9WzZM0pnbZgVrdKJRLw8sYBByKzcpIsFTcI+nWzJ5tfbh/j19srTOr//ljVsGEtx365hXrOqme88tJ+RTIlzu2v45NVLaIwFObI/U6pg83e/2szekRwbD4zxxRtX8c+3bGcwXeTU9gQfu2whX7ltC5981WK+fv9eDo0XWNoU5W1ndxI0NWoiJp11YepjfhQV7tg2xH8+cgDXg0sW13PNqqaZWFUntQX1EUYzJeqjPkYyZVw8dE3l/962gy19aVoSAT5+5WLi/krn7L5knnLET95y+Op9e1jTXsVX79s7bZlvWtdOpmBTLDvMr8Uc4BIAAQAASURBVDu688qihgixoDxFQvxx//P0IFv7Mwyn8rz7gm7++edP8do1rfxyUy9b+9O0VQX49NVL8RkqCgol26GtKkirPG1XzAH10QD10QCDqQJ/2DLAZ3+/ncuX1vOXp7eiqRq/PTjEr5/sQ1dV3nluJ0ubonxz036uWN7If916kHec08X/d89uon6DT1y1mH+5dQfbBzN01oR407p2fvtUHx+8qJtvP7CP9184n0UNEbb2p6iLmCRCBq4HrgvLW+R4Upx8FjVESOZKHBzNEamPEA8Z7B5O87q17ewdzdGSMCiWXXRNZUlTjPbqEI7rcf+uUWrCJm8/pwtNVfg/d+zkjHk15Es2LfEANREfn/vZFvaO5FhQH+YTVy0mGtO54acbsZzD/QO/9cZTZ2sBkpObB33JIk1xP5mSQ7bskCrYPNkzQVPcT13Ez+dv3c7ekRyLGsJ86NKFbE6XqI/7+cmjh7hr+xBhv86HLl5AKm/x73fv5t3ndZEqWFy4qJa7e0f42cZDuB5cuqSOG05r5f/cvo3eZIGIT0d51WKuWdmM33wJnSCPKJhr1AX/6Kx65OhBkXrchx6fPv2PLceofv5jIz1iVgrEilkh7NcxNaiP+HFdj+Utce7dMULUr5EuBinZLoamoCgOD+wZ5Q+bBwj7dd5+diff2DVKMl/mQ5cs4LeP9xM0Na5f3cLf/OppRjIlEkGDf7hyMf9+5y76UkWWNUd5z/nzOaOriqrQHx94azZO7zyvdcWnXXs1X6AAtFEbxKh94bw0G0KYDS+9Y74em3UDhE861WE/jfEgDbEAN69r58cbDqEolfP7dMHB0BSe9Gx+sqOPO7dVrhl95NIFxIMmTtFlcVOUrYNpdg2mOX9hHf4/tVO4EMeZaur42qLQdvR7esz3srcz0YDBsuYjzq+qjt4G6tUBEkfsl6eVg6wJYTkuG/aN8buJNL+8pxdNVXjtmjbMiTSntsfZl87xrQf2kbcc/vk1y/n+o/t5pj9Ne1WQN5/Vwbdue4ZzF9SypiOBOWLhAZ/87TOkCzaNMT/vPLeLnzx+iHee28WX797FF29cRXtzBJoPb8tDR8Tle4FjiBfa9ovjr+Q4pEsOHgr9EwXaE0HKtstnf7+N/lSR1W1x3nvBfOIBjU/+ZitXrWjih48e4COXLqQ14Wd+/Qs/BMKsDUHtCRo013L8v8JsPSJPwz4MZECgEELMBpqiUGXChlyRf7pzG7uGsnTVhPjEqxZz4aKX2GnoFa69SuOeQxn++ZYd9E0UWNUS4++uXFQpPC6EEEeI+DTWdlZTE/bznYf2sWsoy7yaEJ9+9dKZLEAyp3XX+nnsQHqqb+2K5hgfv3IRjfky7VKERMxCyVwZXS/y6MCjfGzNxwgqYTITDeRyK/jVvz7BvODjNER3MHrKP3Hzq85F0yrFSGuiQQqan1wqCUBquHI9OFpbKdKhKAqRmloyA/2Mffe7XPGD27j1dS7/fbXBv9b/K3tLbfTsz/LzyEf4fHorN6Zaub/hDejtGiGfzcXpR/jBvJ9x61VdXP2kQnR0K4quo0aimKvXETvzdKKXX4ae+BML1NllePKH8Ni3YHQnAPNVneblZ3Lnrsv51b85vPqDq4hWB1BNk4ZPfZLA6tUMfPKT7L/+elr+/d8JnnbaMVr7QgghhBBCCCGEEEKI56N43nErzHzMKIqyDviM53mXTf777wE8z/v8C33mlVDtP5svYjkufakyecuhNmzSmyzSUR2gtXp23HzqGc2C57J1MMdf//QpSrYLwFUrGvjQxQuYVzfnOz/O2Wr/L8WG/WN89d49XLqkAVWFfSM51nRU8cTBJA1RP7GgwTN9KU7rqGJ7f5qQX6MlHuCJg0lOaU/QM5bHdT0W1Ed4bP8Yy5rjTOTLjOfLrGyJs37fGN31ESzHpTdZYE17gg0HxmhNhPCbKjsHM6zpqGJLb4p40KQuavL0oRSr2xPsGc5iqAqdtSE27B9nVWuCoVSBnOWwtDHG+n2jLG6KkS/bDKWKrG5P8NjeMTpqw2gK7B3NcXpHFU/0JGmI+IgHTbYc0ZagT6OtKsjGA+Oc0pbg0HgO260MkFu/r9KWZKFMMltiVWuCR/eN0V0XwfFcesYLmLrKM30TvPnMTtoSQdqqg+jajD5N8LmOS7X02ZS/J6uHdo1wx/YhXrWsnj2jeT7xv88w+aBC3nFOJ6e2xXmiJ8V3HtrHF29Yxbp5VeTLDvUxPyHz+QdXjudKTOQtqkIm8aDJ1r4UubJNbdhHyNQ5NJFHxSNoGuTKNgoKqgqtCQO/6Sd4xHJLtkPPWB7b9WirCh6vp+ie1Nvel2o4XWQiV8LyPPAUUDzyZYeAoaGrCo7n8v7/eZoLl9Rxekccp/JgS1QF/u2OXewfzQHQHA/wxRtX4jdUepMFYgGDz/1hO9sHMwDUhn38f395CmfMq/5j4YiX5qTO3cf3j/HMQJqv37uXsAnfeNPppPIWEb+O47oYqoaiergueJ6CoSmV/bIqD/CYI07q/P1TrN87ytfv38f9u0boqg3yT9csoypoki1XBnuOZks83ZtCVxVQ4MyuGizbZd9ojlhQJ523aKsOkS/bNMUC5C2bmN+g7HjYjkvIr1G0PBTPmxoMGgkYNMSkYM+fSXJ3jhjOFJnIlXE88GkqJdvBp6uV409FRQNUtXI843outgt4Hoau8sCuUebVhkCBgK4RCxpM5EvUhv1kyw5hn46pwsaeFB//9Zap4+e3n93JTWta6a6ftdcmTtr83T2YIl20GcyUWFQbqjzhXFXIl2ws16Nsu6iTxwjRyXOKgu2io6DrCrmyg6YqNMX8jOfKjOXKBAyd6pDBUKZEPKiTzNk4rkfQVDF1Ddv1mMiXqQn7WNIkRZ2Os5M2d59Vtl229SVRFRVDV/DpGrYH+ZKNonhkiza6phI0NXyaQs7yUBUIGBrpokXEp1OwXUqWSyxgULQdVAWSOYuo30BRPGzHo2C71Ef9dFaHMPRZdV3pZDXncncsUyRXthnPWTieR9SvoysKRdvhgz95ml3DWQDOW1DLa1Y1URUyKFoetWGTdMnmsX1jvGplI0ub4sctRnHCzLn8PVn0jufZN5rFcT0SQQOfrqGqHpZNpaAklX2AplQKshqayr7RPDVhH1GfjouHh0fA1DFUlVTeQlMVCpZNTdhHoexQF/VTF/XPdFOPl5M2d8fTBYqOw8N7xzijo5pMySHi08hZDumiTcSnkwjq9EwU8WsqyXyZiN+kJmTQVjM77vOKF3XS5q846UnuipekULR4si/FjkPjnLmwnlTRImLqRD2XlpaqmQhpzuXuzsEUftUhW1bJWjbVIZO+Q2nOO/UEVPkSs82cy18xMw6MZEkVLSzHpTkeoDH+xwtjnwBzNnd39KdQbBtb18iWbKqDJsMDac5cJdvgV5Dj0RnluHW4v/xL9zNQeoaG1t/w8ZHPsXtPjpLlEjCznHZaK8tG34piqCjveQy0w/3xvn7PTv7vHXv4/qk5LrjhRjb+/tfc/1/f5T3f+RGBSBTPcbjn3W+j+vGn8BVLhM87jwdfv4zP7/8m/3ruv3J55+V8/emv87WnvsZtTjNNvU+QP/+XuF4XbtkBFT488Wm2l3bzh+v+QNwff/mNHdoGv34nDG6B5tNg6WsgVAvD2+HpH0N2iF3lC3nCexeXf/AcEkcUSS/u2kXfBz5I+dAh6j7yEarefDOKcmx+as/zsIeGKO7YgTM2hpsvoEbCGPX1+JcsQYudsPuL0pFKCCGEEEIIIYQQQswKc6UIyV8Al3ue9/bJf78RWOt53vte6DNyo2326B3LULZdhrIWPWN5YkGD7roQ8+pe+Alec8icvdH2Uu0dzrJvNEdVyKBsuxQsl+qQyWi2RNSv43qQLlo0RP2MZEsEDR1dUxjPlWmI+UnmymiqQtCnM5opUR/1ky5YeHhE/QYj2TI1IYO85VK2XapCBiOZMvGgge26ZIs29VE/I5kSIZ+GqihM5C0aYn7GcmV8moppqIxlK983kbdQFY+Qz2AkU6Iu4iNXsrFdj1iwsuyptpRdaiImI+kSkYCOd0RbRrMlAs/TFl1VCfi0w20pWnje4bZUhwyKlkuu7NBZE2T+7C20I0VI5ijH9dg9lKFvokBXlUlv2qYvWaA24qM+YuKiMJgq0hQP0F0XxndyPsn2pN/2/qkGUgV2DWXxPI+F9REMTWXnUIai5TC/LkzI1BlMFSg5LmXbQ1U8BlIlwKOjJsSq1srTKHYNpknmLQxN4VCygO24dNdHWNESn9H2nURO+tx9pneC8bzFaKZE0KcxvzaI50F3gwz0PQmc9Pn7p3iyJ0lvskDJcuioCVG2HRwPYn6ddNFiolAZ+N4SD6CqMJ4rY2gaeB4oULIcGmIBAqbGvNrwMesUI56X5O5JrGjZ7BvJ4bguYzkLTVFwPQ9DUwj7dAbTJXJlh/YqP54HQUNlvOBwaDxPddhHV22QebWz9pwNTvL83T+UJlN2KdkOKuApCiFTZThTZihTojpkUh0yWNU2I4NaxMtzUufus/JFi6F0kWTBomy7+HUVn64ylrfoSxaoDvtojvlY3Byf6VDFSzfnc7dQttk1lKFQdlAUhf6JArqmUh0yMXQFBQj5VApll2zJoTkeOBkKhYuKOZ+/c1m6aLFrMMNQukjEr+PTFDwq19fCfp14QCdTtKkJ++lN5mmrDrKwIULAOC4FnOeakzp3D41mcTyP3okih5IF6iI+WhN+Fsi1spPFSZ2/4qQmuStesolMnr3jRfaN5PDpKp01IZbP3H3DOZm7OwdTHBovMpot0VYVpL3OT3NUCo69As3J/BWCOZ67Oya3wWPZEq1VQRbURaiN+k7Id4tZYU4UIXFyFoXNI5z+u8exok9wbSZO+9gqanzQN/ITVtcs49ToBiL67xgzPo+2+gpCaxowaioPMfnNU3188CdP8ammHt76gb/iru98jR0P3897vvtj8g8/zPC/fYHSzp2kgn6WffVrhNetw3Ed/vIPf8nB9EHObDqTu3ru4rL4RfzdyHUkDr0ZzzMYKv87HpVrx/t9fbyv85+5JnsRf9P8HoKn1GG2R//0fg6uA49+Fe75LPiicPWXYNGr4MjlWAV48At4D36RvBPjwfJfs+JtN9PUHT+8zrJZBv7+42TuvJPwBRfQ8OlPYTQ0/Fnr33Ndips3k779DjK3347V3/+C8/q6uwlffBHRSy7Bt3jx8eznIR1IhBBCCCGEEEIIIcSsMFd6tz3fBbWjLuYqivJO4J0AbW1txzsm8RK1VFcuRHfVw7p5MxzMLDWbc3deXZh5ddIBQryw2Zy/JyNNVVjUGGVRY6WQU2f90fOskId2vCQnU+42xgI0xgLTptVEfH/0389nQcPhAmGr249NbOLYm825u0wK1ogXMZvz909xSluCU9oSMx2GOIFOltw92fgNnSVNLzx4b8UJjGU2m63521n//MVpF5/gOMTsNVtz91lBv0Gn36BzpgMRs85M5m7A1FnZKsep4s8327e9s1XUb3Bax9GF0854nnlXt8vf6PEwW3O3taZyf61jdhc/FDNstuavEC9GcveVIR4JcmokyKntJ0+R2BOduwsbYiyUAmTiGJFtr5irZip3FzXEWCTbYDELea5Hae8EuccHGd8yykP2CHnNR42jck71eax523zK+QP8/LP9LL+ohciTv8PqeCMe55F9sJfs/b2YnTHCpzfQHq/0F9s/nAZgeP8eOvUAh25+M/nHH8dobcV+8xt5eNPDLOqq3NHQVI2vnPslPnXPJ9nYs4GrJ87jHduvwYr7yS/9d8I73k5T07/AG38NZpz6ZIlXP/oUv1Fu5Zxtp7D4sU60Kj/BU+oIra5Drw68YFunjO6B37wHDj1WKTzyqi9BuPbo+YwAXPgJlEVX4f/5O7g8+Sm2fPsR+s/6NKdctQhNV9HCYZq/8mWSP/whw//+JfZdeRVVb38bVW94A1r0xR+O6TkOhaeeInPHHaRvvwN7cBAMg9CZ66h661vxL1mMUV+PEgziptNYfX0UtjxD7uGHGfvmtxj7+jcw2tuIXnklsSuvxNfd/ZJ/eyGEEEIIIYQQQggh5hLF8455YeZjTlGUdcBnPM+7bPLffw/ged7nX+gzUu1fnCBzutq/eEU7LtXSJX/FCSLbXjFXSe6KuUzyV8xVkrtiLpP8FXOV5K6YqyR3xVwm+SvmKsldMZdJ/oq5SnJXzFWSu2Iuk/wVc5XkrpjLjkf/yD+7w73nelh9WQrbxshtGmJwtEivC/usDD+f93P6hm7kYxfU8Z7L1gDw+P/+BPvOf2Jd7SHovgxu+m/QTZx0mdwTQ+QeH8QZL5I14HIrzYVjj/G5xdX0/vB7hItl9Pp6qt/+dhI33cjoYD8//Oj7uOQt72N+w2oK28Yo7kjilR3UsEFwRS2BlbWYbREURYFdd8BP3wDherjmP6DrPLLlLH/xu7/Aciz+o+X/UbPNpLR3AjwwO6IEV9cRWFSFFn3OQ7Jyo/Dwl2HDt0D3wxX/D1bcCMpL+HmsAs4d/4j6+NfJ2LU8o76R6svfwvw1zWiGCkC5t5ehz/8L2bvvRg0GCV98EZELL8S/aBF6UxOKYeBmMlgDAxSf2Up+40ay992Hk0yiGAahs88mevllhC+44CUVMLGTSTJ33UXm1lvJrX8MXBdf93yiV15J5LLLMTs7Kuvw5TkufXuFEEIIIYQQQgghhPhT6TMdwEv0ONCtKEon0Ae8FnjdzIYkhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ4pXMcz08y8ErOTjpMqXRPIWBPJmDaSYOZUjnbMYdj3EX0kqWgdqdbOq4nbGxJQBcu7wJDj6Ct+9+Fj/5H4Rrs7Dq9XDVF/E0A69QwLPymPUZOCVF4end+B5/mtbaMxjxapj41tcpB/3Y591I3YU3oRgGyd8cwEsVCBgRnvrxb0g0BNEiJsFVtQRW1ODriqOoz6l5seBSePMf4FfvgB++GlrXEl78ar65+B2898kv8I6DH+DdZ/4VF151LqHtHoVNI0z8ag8TOJi1ZXy1OXzmPozsetT+e8G1YcWNKJf8I0QaXvoKNQJoV30elr4K3/9+jDMnvkD+1u+w4/dnY9WvJbRgFeH2LhL/9G9U/dVeUj/6EZm77yb929+94CLVaJTwuecSvuB8wuedhxYO/0m/sZ5IkLjhBhI33IA9Okr69ttJ33orI1/+CiNf/gpaTQ3BU07Bt2ABZkc7ZlsbWnU1WjSKGg6jqOqf9H1CCCGEEEIIIYQQQsykOVGExPM8W1GU9wG3AxrwPc/zts5wWEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFeYexUieH/eBKv5OCVXUYsl415B9sD93nmj9b4ua37P9jFFgDawl0E9l3IKnU7jd969tmcCsl8hJEF78b6wiN4nz0bN58HzztqeXpdHVc0dvOtmkX81ylrWRQLcemSV1PamwHXQ1EV1KjJysUXs37zr+lb1sfa17/26MIjz9W6Bv7qEdj0n/DEf8Id/0A78HvAQaGw630UVQUHlXojDOEyOCWUjAOZyiIcr4qscyU553LsDa2waS+KsR894aP+A6tf+kruOAvfBx/C23kbPPSfLOq7Cy35B3gMeAwszyTvJPhd7tvc8MuPEUj2UNq1C3tkFK9cRo1E0Otq8S9ejNnRccwKgeg1NVS9/vVUvf71WAMDZO+/n/ymTRSefIrMXXcd/XspCmowiGKahM46i+Z/+9djEocQQgghhBBCCCGEEMeL4j3PRcmTgaIoI8DBmY5jUg0wOtNBHAfSLhj1PO/yY/nlf0bunky/g7TlxDnmuQszvu2dbet8NsUzm2KBlx/PbNj2wsm3Xo8HiWm62ZK7x9Ns/M1fLmlTxWzL39n4u0hML82Jjmm25e7zmY2/0/HySmnrsWrnXMjfl2su58Rcjh2Ob/yvhNx91lzPg5fildTGmczd2bKeJY7ZFQO89DheCdve2fKb/CnmWswzEe8rIXdhduaCxPTSvVBcJyp/Z+t6+XOdbO2Budem2b7tnWvr88VIe46d2Z67L2Y25sJsjAlmZ1wnSx8HmH3rV+J5cbLtfflm4+96JInv5TmR52y3TX7f8TIb1vVMxzDT3z8bYjgufXuFEEIIIYQQQgghhPhTnbRFSGYTRVE2ep532kzHcaxJu2aHuRbvHyNtES/HbFvnsyme2RQLzL54/lyzrR2zLR6QmF6JTsb1K22anWZjGySml2Y2xjTTXknr5JXS1ldKO4+Fubyu5nLsMPfjny1eCetR2vjKiUHimH0xzKY4ZoO5uC7mWsxzLd65ZDauW4nppZvpuGb6+4+1k609cHK2aSadbOtT2iOeNRvX3WyMCWZnXLMxpj/XbGuLxPPiZmNMc81sX4cS38sz2+P7U8yGtsx0DDP9/bMlBiGEEEIIIYQQQgghZgN1pgMQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELMLClCIoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEK9xJXYREUZTvKYoyrCjKMy9x/hsVRdmmKMpWRVF+dAxD+dYxXNZsIu2aHeZavH+MtEW8HLNtnc+meGZTLDD74vlzzbZ2zLZ4QGJ6JToZ16+0aXaajW2QmF6a2RjTTHslrZNXSltfKe08FubyuprLscPcj3+2eCWsR2njiTEbYgCJ40izIQaYPXHMBnNxXcy1mOdavHPJbFy3EtNLN9NxzfT3H2snW3vg5GzTTDrZ1qe0RzxrNq672RgTzM64ZmNMf67Z1haJ58XNxpjmmtm+DiW+l2e2x/enmA1tmekYZvr7YXbEIIQQQgghhBBCCCHEjFM8z5vpGI4bRVHOBbLADz3PW/Yi83YDPwMu9DwvqShKned5wyciTiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghZpI60wEcT57nPQCMHzlNUZR5iqLcpijKE4qiPKgoyqLJt94BfNXzvOTkZ6UAiRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR4RTipi5C8gG8B7/c871TgI8DXJqcvABYoivKwoijrFUW5fMYiFEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDiBNJnOoATSVGUMHAm8HNFUZ6d7Jv8rw50A+cDLcCDiqIs8zxv4gSHKYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHECfWKKkICqMCE53mrnue9XmC953kWsF9RlJ1UipI8fgLjE0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDihFNnOoATyfO8NJUCIzcAKBUrJ9/+X+CCyek1wAJg30zEKYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEiXRSFyFRFOXHwKPAQkVRehVFeRvweuBtiqI8DWwFrpmc/XZgTFGUbcC9wEc9zxubibiFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhDiRFM/zZjoGIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEDFJnOgAhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcTMkiIkQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEK8wp20RUguv/xyD5CXvI7365iT3JXXCXodF5K/8jpBr2NOcldeJ+h1zEnuyusEvo45yV95naDXMSe5K68T+DrmJH/ldYJex5zkrrxO0OuYk9yV1wl8HXOSv/I6Qa9jTnJXXifwdcxJ/srrBL2OOcldeZ2g1zEnuSuvE/g65iR/5XWCXsec5K68TuDrmJP8ldcJeh0PM90meb0yXkIIIYQQQgghhDjJnLRFSEZHR2c6BCH+LJK7Yi6T/BVzleSumKskd8VcJvkr5irJXTGXSf6KuUpyV8xVkrtiLpP8FXOV5K6YyyR/xVwluSvmKsldMZdJ/oq5SnJXzGWSv0IIIYQQQgghhBBCiFeSk7YIiRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ4qWRIiRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQrzC6TMdgHjlsobylHvSeLaL0RrBbAqjqMpMhyXmMGs4R7kng2e5GC0RzGbJKfHK4jke5b4MVm8WxaditkYx6oIzHZYQ4hXCyVuUezPYQ3n0Kj9GawQ96pvpsIQ44ayhyWNSx8NsDWM0hVEUOSYVYia4JZtybxarP4sW9WG2RdAT/pkOS8xR5YEs5Z4MAGZbBLMxPMMRCfGn81wPqz9L+VAGxVAxWyMY9aGZDkucQJ7nYfXnKjmgKZUcaJAcEOKVxE6VKB/K4CSLGPUhjNYwWsCY6bDEHFI5z8pg9efQYj7MVjnPEkKIk52TKVfu/4zk0WuDmK0RtLA502HNGXa6hHUogz1eRK+bXH9BOf4SQogTRbbDYi6yhif7Vks/WCGEEEKI/5+9+w6P4zrvPf6dmZ3ti94J9t6p3i3Jktxky3GXuy2X2LHjJE7vufc6vVzHSe69tuNuuctdbqqWZVWqkiLF3gASvWwvU+4fCy4IAZRICsQCxO/zPHpEHOzOvgDOzJw55T0iIiIiIlJFSkIiVVHqydD/mafxsk65wDJofv9GQktrqxuYzCpetoRXcDHjNqZtPe9rSz0Z+j+7DS9TKheYBk3v30B4Wd3ZD1RkligcGGXg89vAK39txm2aP7BRC4pE5KzzHY/0r4+SuutwpSyyoZG616/UBB6ZV4rH0vR/Zht+bvw5p+n9GwnrOUekKrJP9TPy3b2Vr+3OBE3vXItVqyRZ84lXdPEyJYxIACt8Zl2hxSMp+j/zNH6p/LBlBE2aP7iJYGdiOkMVeV5usoDvg1UTPOMEZ4VDSQb+exu4PgBGJEDzBzcqqc48UqkDzlgdCFk0/+Ymgh2qAyKzhe/5uMkChmViJaZ3ca+bLjJ82x4Ku4crZTWvWELiJZ1ayDKPeXkHL+dgRgKYp9Bezj7Rx8j391W+Di6uoeHta5SMWETkHOUVHJJ3HSLzUE+lLHppG3WvXIoZ0pSzF+JmS4z+aB+5bYOVssRLF1Lz0kUYAbOKkYmIzA9ursTo7fvJPTVQKYtf20ntdYt1HZZZq9Sbof8zE+fBNr9vA6HldVWNS0REREREREREROYf9aRLVeSeHRpPQALg+qTuO4LveNULSmYN3/cp7B+h77NP0/PPjzL0zV2U+rLP+578vpHxgRcAzyd1zxG8knuWoxWZHbyiS/LOQ5UEJABeukRh/2j1ghKRecMZzJG658iEstz2QUo9mSpFJFId+Z1D4wlIAFyf9H1dOCP56gUlMk8Vj6YZ/enBCWWlrhRF3ZvmleLRNINf3kHPPz3KwBe2UziSOqPjZB7rrSQgAfCLHtnHeqcrTJHn5eYc0o8co/ffn6D3Xx8jdfdhnGThtI/jOx7p+7oqCUgA/JxDftfw87xLziWlgSzpX3VXEpAA+AWX3DMDz/MuEZlJznCe0Z8coOdfHqPvP58gu61/Wsc4Sr3ZCQlIAJJ3HsIZ0jPrfFXsTo23l7+0g2L387eXneH8pOes4qEkjp6zRETOWc5AfkICEoDsQz04A7kqRTS3OH3ZCQlIAFL3duEM6vcnIjITnL7chAQkAOlfdlHSfUxmsanmwY7ec1jzYEVOk+/7lLq7qx2GiIiIiIiIiMicpiQkMuN838cdnjyh0R0p4p8wCV7mL6cvR//nn8E5lgUP8tsHGf7eXty8c9L3eKnipDJ3VHVK5hHHm/o8mKJMRGS6+Y4H3uR7rpcuTfFqkXOXm5z6XpzbNYw/xTkiImeHV3QpHk7iT/EM6Rc0QW++cFIFBm/dSWHvCPhQOpRi8IvPnNEi26mSSTkjp58EQuRMFA8lGfnuXrxMCb/okrzjMPkdQ6d9HN/3cUcn19up+hLk3OPlHFL3d0/5jDZVvRCRmef7PulHjpG+vxscD3e0yNCtz1LsSk/fZxSnaAs7Pr4WscxLzkiBwS/tKCcy96F4YJSBL+543nau73hT1iOvoE0mRETOVW5u6nEeN3vyuRsyzs1M8XvyfLznmfsiIiLTx8tOcR/zyn1lIrPVlP34o0Vt8ChymtJ3383e664n88gj1Q5FRERERERERGTOUhISmXFuukigKTKpPHp+C2bIqkJEMtuUBrLwnEGT4oFR3OeZ+BhaWT+pLH55B1Y4MO3xicxGPhDe0DSpPNAcnflgRGTeMaM2dkdsYlnMBqNKAYlUSWRd46Sy8OoG0ncfxktrga/ITHFHCmSf6Ce8tmFCuWGb2C1qH88X7lABd3Bi8hAvUzqjnWZjF7ZNKote0HrGsYmcjvyzkxOOZB45dtq7Hpq2Rfyyjknl4TUNU7xazjXOcJ7cY32EVtRN+l5kQ/PMByQik3jpEtlHeyeVl45OXxKSQHMUIzJxzCS0vBarPjxtnyFzhzOcn5RM1UsVcYZO3l62akOEN0zs+yg/Z00e9xURkXODEbSwGia2FayGMEZQ081OhRmxyuNlJ7A7YhgBzY0SEZkJRjiAGX/Odbg9hmHrPiazl90am1QW2dCEoQk4Iqclfe+9ABT3769uICIiIiIiIiIic5hW58uMM2yL4rE0NS9fQvbxXvyiR3RLM1azJqhJmTlF4hAjZGE+z0SW4KIEje9cy+gvDuHnHeJXdRLZMHkRqMi5ygiYGAGT+JULyD3djxEOELugFUy/2qGJyDxgRm1iF7dT2DtM4UASuz1GeE0DvqNrkMwvwcUJ6t+4ktS9XfhO+Tmn1JPBjAdBk9lEZoxhm5T6ssQvbsM8P0B+1zCBxjCJly7Cbps8cU/OTUbIKqdffs7GcGbk9LtDQ8trqX/TSpJ3HQGg5rpFhJbXvfggRU5BoGHywvBAcxTDPP22RXhdA3XOclL3dmGETGpuWEJwcWI6wpRZ7vgCwdLRNIlrF5J9sg/DMklc00loaU2VoxMRAGwTqy6El564S/NzF62+qI9oitB0y3qSdxyi1J0hvL6RxFULlMx9njJDVjmB8Indd8bUY3SV9wQtal++lEBNiOyT/QRao9S+fMmUC6REROTcYAZM4pe0U9g/QrErTbAzTmh5HaatJBqnwrAMEtcuJP/sEKVjGYJLaggujCuJi4jIDDGDJolrnnsdTmAEdB2WWcyA2lcsIfN4H37BIbKpGQJG+T8ROWVGMASAXyy9wCtFRERERERERORkNKtMZpwVDhC7oI3Br+wgvLoBwzYpHBwldvHkXWVlfrLbYkQ2NJLbPlgpq331MgINJ09UY9oWkfVNhJbW4XseVjw4E6GKzBpm0CK8oo7Bb+0ivKoev+CS3tpD07vXVzs0EZkHzJCF3RIh81gPkfWNOIM50g8dpek9G6odmsiMMkMBQstqKfZk8HMumUd78XIOTbesx4pM38IxEXl+gfowda9ZxvC3dhNojhBZ34gRCxDsjFc7NJlBdlOEmusWk7zjUKUsdnkHgZboaR/LitjELmgjvKYBMLCmcTGwyAsJr64ndX8XXrI8SdKwTeJXdGBYpz/h2IoFiV/WQWRjE4ZpYEZVl+eLQGOE2lctZeQH+ygeShJe24DdGiO8rhEzpGEikdnACgeofeVSBj63HbxyVohAS5TQwulNFhVaWEPjO9bh513MWADD0sKr+SrQHCFxdSepe7sqZfGXdBJ4gU0j7KYItTcuI3H1QoywhRnUInQRkXNZoDlC7ul+vLxLZH0jpd4sbrb0gvcLKQu0RMk83AOeT2R9I8XuNMaSGgKN+v2JiMyEQFOE7ON949fho2noiGE36Toss1ewM8Hg3Tuw22MYQYvstgEab16jJHAip8kIlM8Z33WrHImIiIiIiIiIyNyl2aVSFX5LiMaPbcbIurhDBYwNTXhK1D0rOSMFnKFceadgz8fLuwQawgTqw/iuR6k/h5cpYSZs/KyDHzAwLXOsLIifd8Eo77bpZRzMWABKHp7rY0Vt3FQRMxoA18cruZgxGy9dIn71QqIXtOJlSgRao/glj0JXEsM08XJO+fNyDr5pYNoWXqaEFbcJNEUxrQDOUA5nuFDeJdDxyseO2uW4wgHwp/hZBnJ4qSJmTXDSz2LVBPHyLng+gaYoVtzGK7g4/Vk8x8OKBHDTpfGfpeBiJoJ46RJm0CTQEtVETDlr/JJHaTCHb0Dj29fiDucxbItYLIDTnwXLwK6fvHOyiMh0Ci6ppe61y3GHCuWFbPVBTd6Rc57v+RR70rhDeQzTxGwI4RdcouubcJMFoue34EcN/LRHfs8wmGCELDAMzBobO6H7s8h08T2f0kAG3xl7HqsL0vyxLXgjRXzPx2oMU+xO4xdcrPoQwc4EhqGOiLnEGcrhpIpQ8jCCFr7rYfjgmwa4PkbAxPc9DAzcTAmzJkh4fQN2ZxwcD9/xCDRFMAImpb4sbrKAVRcq15lMCasuhFUTxOnP4eUcAo1hDNOgNJjDtC0CLVGsWDnhaWkghzuSx7BNfB+smI1VF8IdzONmSgTqQpXFJG7ewe3P4bvlzz+eNNVJFXD6cuVFxiGr/MxmgDOcxy94gI/vgd0cIfCc57ny76IERRfDNrFbokomMYf4joczlMPNOOV6bJnlNoIHvlGuT262VP7a8zCjNg03r8HLOeABZrneF7tT+I6P7/nYTRF818MZzGNGAgSax+p6TwZnMI8VszFrg7gjBcxw+fsnTlh20kXcgVy5/taHsVtjE5KcOCMFnL4MvusTaIng5VzcZBEzaGFELQzAy7kE6kJYdWGKx9K4IwWsRJBAWxRLSS5mnO/5lPqyOIM5DNuEoEmgPUbDu9ZhhiywDDCN8v9FZiHf83EGc7ijBayaUPkebpbrq5t3cPqyeFkHMxLAjATwCiXwDOzmyGnfE08c57DqQtjH7+GZIk5/DkyDQHOkkljSdzycgRxuzsEMmXg5Fyth4+Vd3HQJKx6AgImXLOJ7YNWW7/3ucAEzaGE1hHBHCmAa+KVyQvVAcwQzaBFaWkvLR7ZQ6s1gJoIYloGTKeEMla/vVm0IZ7DcVjHjNoH6CFZ8/Od1c6VyzJ5PoHnsej1aKLdZXA8jZmN4lH/W2hBmQu2HucpJF3EGcviZEmZDGMP18VwP3wPD88ptY8fHCJr4pXJ7w3c9zKCFl3fKY3Ell9CqeuzOBJ7jEkiE8F0Pd6SAU/LK9awuiDdcxCs4Y+2NseetsIWbKpbb5XkHM14eDzQjAQIt5fO1Mn5YE4SCi1fysOI2bqZUjqfgYEbtye2SkTzOaBEKLphA0MI0DY2ziYhUiWlbhC5uIbSyDi9VInp+C26TrUWwp8iK2MSuX4A/7OClikTOb8FrsSttWxERObvMUIDIpW2ER4t46RLRC1pw6wMYASXklNnLbo7S8LbVuCNFfMcjdnk7wXZttCByunzXK//DdaobiIiIiIiIiIjIHKbZvzLjCoNZcFzIuAzdtgd3MA9AeGMT8Ws7CXdM765ucuaKXSkGvrSDQFMEuzVK5uFj4IMZs2l8zzpKRzOM/GAfias7ye8awsuUiF3aQfKuw8QuasXpzVI8mqbm+vLOw+E1DeB65HYOUfuqpQzdfQR7QRyrJkj2sV5qX7WU9ANHcYcLAMQubSN2cTtD39qNX3KJnd9K8u7DxC/voHgoiTOYJ3F1J8k7D+EXPbAM6t+wkkBdiIGv7CS0rBbTNsk+1U/tjctI3ddFoDGM3RYj89AxgotrCK9twBkpEKgNkbzjEImrOsnvGcZLFYld3kHqrsNEL2jF6c9R2DcCgL0gTv0bV5J+4CjZx/vKP8s9R7DbYwTqwmS29lD7yqWkHxz/WaKXtFF7w+LKYiOR6eIVHLKP9ZYXHXXEGf7GLpyBHADhDY1ENjUx8NltNL5tDcFOXV9F5OwpHBhl+LY9uENjbbtNTfhXdRKe5h17RWYL3/MpHEoyevt+Sl1pAMLrGohe0Mrwt3eXk/GZBjXXL8IPGuSfHCC8ur6cNC9h4xcd/LxLsDlW5Z9EZO7zXZ9Cd7KcOHO0hDtawO6MM/qj/RQPJIHyc1ziqgUMfWMXVk2Q+jevIryivsqRy6kqHBglu60fdyBPcEkNxZ4MgXgQIxIgv3uI6JYWil0pwqsaGP3JAQDqXr2U3OEUBpB+4Cj4EGiLkrhyAcPf34fdEiG8sp7Ur7rB8wmta8BuipD+VTf4UHvTctK/6hrvo7ikjZrrF1M8mmbo1mfxiy5YBomrOykNZAl2JEj+4iB4YEQCNL1jLVZjhJEf7ye/fQCAyPktRNY24BdcUr/sKi8SBsJrG4hsacYdLuAM5TEMg8wjJ/TBvHsdoUU15d/F/hFye0Yo7h2heCQFQHBpDQ1vXKVddOcAr+SSebwXiuUEZYGGCF6mBAbknh6g9salpPaOYLdGSd/fTeM71pE/MozVECb3ZB/5HUMAxC7vwMuVyD3RD6ZB3WuXk7zjEF66fKzEyxcT6ogz9J09eMkiANELWvCyDvlnh0hc3Un86k6siE2pP0t+zzDJnx0c71/7jRVEz2/BsEyKR9Mk7zpE/pnyZweaIkQvaCX584OYNUFqrl2I7/mM3n6AQHuU2IVtjP54fzk5UNCi9qZlRNY0qE9sBvmuT/apPoZv21P+O4RMGt6ymqHv7cVLletI/IoO7MU1eCMFQsvrsGJKRCCzh+/75HYMMvzNXfglDwImDW9aSWRjM26qyOjt+8k9Xb63BpojRC9sxbBMkj8/SHBRgvrXrzzle6Jfcsk81svID/eD52OELBrfuRarPszQN56ldKT8rBdaVU/9b6zATNhkHu0leechal66iOQdhwguSmDVhchu7QUfYpe3444WyT8zCEDDu9aR/OmB8fv+ugZil7Yz/K3d5Wu0AfGrFpC4ZiFW1Ca4II4Ztxm9fT/BBQnSDx/DHcoTvbAVL++Q3z5Y+dljl7UTWlGHn3Uo9WXJPtlPcf8oAPbCOOFVDaTuOlx+Nn3ZYvB9knceLl8bbJOGt64hsq5xWv9+cvaV+jIU9o8y+tODhJbWYsYC2C1RnJECXqpIcEkt6Qe7iV++gMyjPUQ3NZP69VFqrl1I8o5DxK/owC+6uKNFctsGsBrDxC5sZeDbewgtqSXQFCbzSA/xl3TiDufHz7fGMNGL2zACJsl7jlBz7UJS9xwhcc1CUrftxXc8aq7pJPfMAARMUnceJrK+cbyd88olDD/aQ/zSDlK/PDJ+T7q6k8RLOrGiNoUjKfI7BynsHaF4eKytuzBBcGktftGh5nqNs4mIzLR8b5rS7hFGf3Zw7DnPpO4Nq8itMohE1A/xQgr9GYq7Rhn96YHKc3L9G1bgb4ooQbKIyAzId6co7Rtl9OcHJ97HVhhEYtFqhycypfzhJOl7j1TGAwLNEepet5LwstoqRyYyx3hu+X/FYpUDERERERERERGZu5TSW6rAx8Ig/cCxSgISgPy2AdyjmSrGJSfy8g4jtx/ASxUJr6wj81B58QuUd8krHkox8v29WHEbL+tQOpohel4rqbsPY5hgBi0K+0eJntdC6t4j+EUXuyVKbvsgkfVNZB7pwcuUCC2pIbu1l+CSWvK7hyuLewAKe0fJPNqL05MhuqWF5N2Hyzt1+lA8nCJ6fgvJe46UF0gAuD6F/aMMfWcPfs4huCBO9sl+wqvqyW0bwEsWCa+sJ/PgMYyASXhVPcmfHiQQD5YXTsRsvLxDqTtN9PzW8uRcwAxblQQkAKWjaYqHkmQf7SWyrpHs1l68dInQ0loyj/YQXFxDYe/IhJ8l+3APxbEJyyLTqdSTxR0tYowlCjqegAQgv30QP+fipvOkftmF73hVjFREzmWF3nQ5+dbQCW27pwdwezMUU/nneafI3FUayZHfOVRJQAIQXtPA6A/2lROQAHg+yV8cItgcpdSVxs+7ZB4+hp938Es+XrqE7/tV+glEzh3F4Sy4Pn7OpdSXIfNEH8XDqUoCEoBSd5pid5pARww3WSR512GK/dkqRi2nyk0XGfreHsyIjTNSoNSXJdgWI7dzEC9ZxG6JkX7gKKEVdWQeOFpOKnphC6W+HFbMJv3ro5X+jMi6Roa/vw8cj8j6JlK/7AKv/M1QZ4L0feUEJMGlNeSfHZrwXJ95uIfC4WR5QXRx7Drv+qTuOUJkfRPJnx2EsUcuP+cwdNseCvtGKglIjKCF3RghdfcR8ruGKwuRAfI7h/AzJbxMkUBdqJIEFsp9MMPf24uXLeGkCgz/aD8U3UoCEoDigSS5HYNn5w8g08rpyeL25kjd20VoSS2Zh45ht8XIPT1AaFkt+V3DhBbXkL6vm+jF7WSe7sMrOnjJYmXCMQZYMbucgIRyvc48fKycgATABytsk7zrSCUBCUD2sT6CCxPgQ+reLkpHM/i+T7ErTfIXhyb0rw1/by9Of678/UPJSgISAGcgR+loGrsjhpcskn2yn1J/lsi6RmIXtDL6w33gliuwX3RJ/uQApV71+c4kZyBbSUACEFpeR/LuscXeAD6k7z8KRZfSsYz+PjLrOIP58QQkAI7H0Ld34wzkKBwYrSREAHD6c5SOZcjvGiSyqZnCvlFyzw6d5MiTlfqyjPxgX6U94Bdchr65i+KRVCUBCUBh9zD53cM4fVlGf7iP6OZmUr88gl9wCS2tJftoOQEJloEZsSsJSEJr68ltH5h4398xhDOYx8uP7cDpQ/q+bkrdJ3zegVHckUL5/0N5sAysulAlAcnxn714OFVO2PL9fbiD+UoCEoDSkTRepoRZEyz/fI5H8o7D49foksfQt3bhDI7HJrNfOSFqiuRd5foXXJSg1JulcCiFFQ/i5V3yOwbL7YwHjhJZ10jy7sNEN5bbvmYkgJcuYUZsctvK51J0S0slOU1oeS2Zh3vAgEB9aOL5NpindDRDbvcwkRXlccPgwgS5p/rxUkUSVy4gefcRDMskdcch8PxKO8fujFM4lMJuiZF9sm/iPWmsXeLmSoz+/AB+0askIAHK7V7XI7dtkGKXxtlERGaaP1KsJNAA8IseI9/fizlQqnJkc4M/Uk6id+Jz8sgP9k2414mIyNnjp0qVRFowdh/73h6MEbe6gYk8D+dYZnw8gHIfUHZrD6Ws2l8ip8MvlSb8X0RERERERERETp+SkMiMMwImfsmjeDg56XulPk12nC28nEPxUHnC6lSJC7xMqbyLcEuU0tGxSX9meeKqVR+mNDap9viERiMcwE2VFz4EmsI4vdkJx7Zbo5MmDwZao+PJPzwfXJ9AY4RST3livGGb+DlnwnusmmB5Uq5ZnjAMYLfFKotzjn9eeHU9uaf7x8t8sJuj4xN9p/hZjjNCViXRQ6A5QulY5jk/S4xi1+RJI86AFrjJ9HNHCmAZ2FGb4qHJ9a7UlyG4oKY8YT2nARUROUuK3kmuQVkMtJObnKM8KB6a+Exj2CZucvIuKu5ouax0LFNemOaV25p4jC9kF5EzVyw/L3p5B3wIrairPM9OeNmhJKFldeV/H0lNep6U2cnLlKDk4Q7msFvHkjo5HnZLlGJ3Cqs2iDucxwiYlWdxIxLAHcpPnYhxrMx3J37vxNfarbEJST4qbx3I4RWfc0x/LMbn8n2KR8bvE+E19WSf7CPQGp2yz6DUn8MZLk4Zs3Msg5t18DIOpm1W+kVOlN81PDkGmXWc0QJG2MLLlPAdD8M28cae1QNj/VfH60BwQRwcHzBwTkiadGIfG0CgJULpOYmdzWhgynpWWdBPuT/BL3m4ycJ4ArXjPB8nWcAvelPWt+KRFHZrrPzvrhRm0MLuiI19yHMOlXVwU+qPmEnuaLGysALK17TSFIu2vZwLRrkfWGQ2cVPFCdcrABwfN1eiNNU9tCuNGbaxaoMA5Pec+j3RHSlMvm6lSnipyc91hX0jlfPFjAQqSRROvHdbcRt3eDwZa2hJ7aTnRijf2+3miTsuuyPjyc9KY9fZ49fy8nELPFepK42fLhFaVkupd/L4Q+louvI5vutXkq0c5+dd3LSu0XOJn3fxMuN11Hc87LYYpb4sbqqI3RaleCSFVRvCGcyX67fjY0YDeKlieUyvL4t34sKlsfE3GG8rmBF7QsLz44oHkwSiNlZ9GKc/Nza2lwKj3L72C265ne2X+0iOf87xcbrj7fnnclMFvKwDhanbHqVjGQJNESXNERGpAjdZrCRdPc7POVP3hcgkbnKK9mbWwc1oN3YRkZngJgtTPgv7aV2HZfZ6bn8/QOFQEj81uW9IRE7Oy5fPGb+oa76IiIiIiIiIyJlSEhKZcb7jYQRNgotrJn3PbolUISKZihkJEFpSC5QTx0z6ftwGo7y42F4QLxd6Ywsvh/OVv6WXdTATNn7ewUqUJwE7AznstuiEY5d6MuXdWE/g9GQIrawb+0ADLIPSQA67rbyowS95GJHAhPe4ySJWY7gcS8gqH/vY+LFP/FmObzpvBMwpfhYfIzj2s5wwGTi8up7ESzoJNJXLnP4cdnvsBX8WgMBzJhWLTAerPoTv+LiOR3DJVNfVGMXuJKFltVgRuwoRisi8EDZPeg3yDH+KN4jMfb7vE1o6sd77Ja+y8O1EVm0IoNxuNAHTKCfUM8EIWjMRrsg5zQgalV3nMQzyu4cJLq6d9LrgkppKosvQohoI6/ybC8xYECNoYo0lJQ12xjECJqXeLMHOBO5ogUB9GFyv8izuZx2sxvDk/gwfGCszrInfO/G1pWMZQlM91zdGMEPPqTcmWLEpnrUsg+CiE+8T5cRsTk+G4MIp2k3NEQL1oSn7YOzOeDlZxEger+RV+iFOFF7TMDkGmXUCdSG8vIsZtyuJms2xZ/XSsTTBRYlKHSh2pTCCJuATaBnvUzqxjw2g1HtCf9YYL1uasm/KsMfrl1UXwrBNrNrQpP41TINATQgjaFb64U4UXJioLBCOX9mBVR/GyzkEakOTRhzMaGBCvHL2mbVBsMaTQZ6sr9KMBPD98v9FZhMrERy7/p0gYGJFbIKdk+tysDOOl3dwR8uTysMr60/9s+pCPDd3qpkIYtaEJr02tKKucr6Uxz3K17YT791uuoRVH658Xdg/WhlnmfDjdMSIbGrEjI6ff1bd+GfaY9fZ4+du+biTYwp2xiFiUdg3jN06efzB7ohT6isnJzEsY8K1AcAIW1gJ9RnPJUbYwozZmDXj9a90LIPdGsVKBCkdyxJclMAdKRBoipTrd8As19maIE5v+bVm9IS/uzleN463Fbxcqfz+5wgurcHJlnCG8+WEJscm32MMqzzm5pe8yueUjmUILkpMuicFFyWoefkSnMF8Oela2JqyrWu3x3AGcgQaNY4sIjLTrNpg+V5xAiMSwJyqL0QmsWqmeE6O2eX5NiIictZZNSe5j8XVXymzVyXh9wlCS2owNO9P5LT4+XIyW7+oBIoiIiIiIiIiImdKSUhk5lkGLhC/rJ1A8/hksciWZgJTTCyT6jDDAWpvXIZVGyS/e5j4FR2VK4YZtwkuTlD3+pV4mRJmOIDdGSf7eC811y0q7wKcdwmtrCP7RB+JqxdihAOUerNENjWRe2aQ6EVtmHGbwoFRYhe3UTyUJLyiDqthbIKuAeHVDcQubMVeECf7RB811y0a24XNJ7i0huzjfdS8dGEl2QgBg9DyWhreuAozZlM8kiJ6fgv5vcNENjZh1YbI7yr/LPm9w0Q3NwOQfaqfxEsX4WVLmGGL4MIEmcf7qHnporHdQEuEVtYRaIliNUZI/uIQhf0jRDY1l3+WC1sxEzaF/aPELmmjeLi8u3blZwFil7eXJwSLTDO7LUqgIYR7NEPs4raJ19VNTRhhi0BNhPjVnVMuZhMRmQ7BhhjxS9snLE6IbmnGao0Qioef550ic1egNkRweR3BReOLZwq7h6l77YrxhbyWQc0rllDsG1tUHLaIX9KOGTIhaGLFgxiGcZJPEJFTZTdEwTIxQiaBlijxC1uxF8UJrRhf8BlclMDuiOMcy2DVhUhcu7C8WF5mPStuU/+6lXjZ8kLIQHOUYm+GyIZGzLhNqT9H7PIO8rtHiF3egVUTJLO1F7spgpstEb9qQWWScW7nIPWvW4Fhm+S2D5C4dmFlwWWhK0Ximk4woHgoSWhN/XOe6zsILa2h4S2rJ/RDJK5dRGb7ALWvWlI5lhkN0PD6VYSW1xHZ3ARAftcQ0QtaKfVky89xJySVCK9vxIjamDEbZ6RA7PIT+mASNnWvWc7gl7YzdOuzxC5sxbCtCcl9QytqiaxVEpK5INAaxW6LkrhmIfmDo8Qv76B0LE1kSzPFA0nCq+opHE6SuLqT7NZeohuaMYMWZsImsrGxfBAf3EyR6AUtAOR3DhG7uK2yGB4DvKJHzXWLKonQMCB6USvFQ0kwIHHdIuyOGIZhEOyMU/OyxSfUa5P6168g0Bwtf39JDZGNTeM/Q3MEuyNWTtazuh6/6DH6g32kf9XN6M8OUvfq5RAYW8gcsqh91dIpF8bL2WM3Ral/46pK0qXCgVES1y4sL7oAMCB+dScEDYIdMexW9cnL7BJoDJfvt2OJSAzbpOHNqwg0RQgurSW6pXn8ta1RAu0xwmsayD41QGhlPZG1jaf8WXZLjLrfWDGegCESoOEtqwl2xrFPuNeG1zQQXlWP3RKl7jeWk326n8TVnRiRQGVcAANwfbxsicim8nWzsGuYyPpGAidcB8MbGsHxSN15hMTVC8vn5DWdExJKhZbWYjWFCS2pIdAYBtfHHc5Xjnv8Z7cX1RBeXo/Tn8MreYSWj7d/7cUJzFgAL1Us/3y2Sc0Ni8cTsgUtGm5eTaBBSR3mEsM0CC2poealizAiAYoHk9gdMUILE7jpImYsQHhNA4UjSWKXtZPbMUjNdYvKbd+XdOIVy4lB3FyJyPExsif6KnWjsHeE2OXt4IMzlCdy4vnWHMFuixFZXU9h30h5POxomsimZqyaIIZlYgTN8pjbWDu7dCxDZEszpe40wYUJnIEckc3l15sxm/CqepI/P0jqzsMMfnkH0Q1NGLZJ8ISkr8HFNWAaRLc0E1yocTYRkZlm1NjU3rh0wnNe/etW4NcrmeGpMGptam9cNuH3V/fa5dhNek4WEZkJRiJI7auWjj8Lj93HvFolqZfZK9AWKfcfHf+6JUr0wjbsKZLmisjJefly0mq/WKxyJCIiIiIiIiIic5fh++fmzuQXXnihv3Xr1mqHISeRP5Zi6NZdNLxhBV66hGFblIZzBJuip7VL3Sww7SsGZ1vddZMFSoN5zLCF7/v4BY9AfYhAXRjf9XEGs7hpByth42UdCBgYVnlXNStu4xVcAMygiZtxMGMBKHn4rocRsfEyJaxoAN/x8Ypu+T2Zcp0INEcwgxZupogzkAPbxDDHdmxL2Pg5p7KLvJcpf16gKYJhGjjDeZzhQvnzHA/fGZtYmS4nGsEHr+TipYpktvYSaI0RWdMAvo+VCOLlHLAMjMD4sd1siYHPbgO3fN0MLq0lvLyWwII4gcZw+XWRAL471c8SxgzOqok4Z2W162yrv/OF73gUh/KMfm838asWguOVdyy0DLyMQ2hpDYG6cyoJwDl/7ZVz1jlbd91kgf6vPEPdq5aNt+0Gctj1YSLrT33xj8xq52z9PVOlwRx9//44iRsWY8VsDMOg2F/ecdgMB/CSRcyYjZ+wYaQAhlHeedo2MczyDvW2kvTMBNXdecL3fEoDWTzHg6IHJQ8jHsAbLYIHnutieOCVPPAh+YuDNH9oM/bs3klb9fcEznAeJ1Us/22DJr7rg+eXF9W6HoZtgVd+rZspYdbY5T6FdAnccp2wGsLYreVd1N1UCbM2CI6Hl3EI1AXLu8cP5PHyDoGGMIZh4AzlJvRRQPke4I4WMAImvldOlGLVBXEG8+Vj1YcI1Jev8V7ewRnI4bseVm2QYneGzNYewqsbCNSHy4s1QyZWXbjSn+EXXfAB3yfQFKV4cJShb+wCyoujYxe2YnfEysmsghaBlgjW7NoBT3X3efiuR2kwh5918FwPM2CWf2Nj9deMB/GyJXzPB9fHjAbK/VQBAz/n4nt+eaGvYZTPA9fDaoyA5+MM5bHCgXJywIBBqTdbLosGsGqDOCPFcjLhpnD5nBnjZorlBexZB6s+hN0awzhhh1BnNI/Tl8N3fYyQiTtcwAhaGGGLwc9tL9fXMVZTmPo3rsLPlDATQey26GzrE3s+50zd9T2f/N4RvFwJMxjA8zzc/vKuf8FFiXK/pwl2WxzT1qKLc8Q5U38BfN/HGcjjpopYCZtAY6RyXfLyDk5/DjdXTpBuRgJ4eQfDB6v59O+JvuvjDGRxx9oDx5NyeNkSpf4chmlgNYUrx/XdsXZnzsUMmXg5FysewCu6eKnytc+wwE2W8MfGGwzToNSXxfDLic8y9x8FIHZZO7FL2wk0hCedi5U2hO/jFz3McGC8vZErj7UE6sOYYZvi4STpR3oINIYJdpYTYAZbouVjjBQxAga+D2bUAt/AS5ewaoOzpS18TtXdmeKmSziD2fK4VH0I/PI4ge955TZFwCiPiwUD+I6LYZbbz2bQwis4mFEbv+TiFzwwywlG/LyLmyph1QTxSy5e3sWsDeKNFPDyLoHmMIYDbtHBDAVwUwUM28IvuOUxwqIHnk/u6QG8kkN0cwuGYWDVh/ALHn7JxUwE8dJFsExwfQa/vAMvM74brWGbNL5nXeW4WOUxQMMyCTSNt8dnEdVfmatUd+WU5XcPkzs0QmRpPW6miJUIkrzzEA1vWEVg5tsSc67uFg4lST/WQ2xTM26mhJUIkrqvm9pXLCbYpuRa88ycq78iY+Z03c0+3Y8zWiDYFsMdm8s4evchmt66FisenJEYpKrmZP1N/bobIx7ACtnlZ/pIgNR9R2h6+/rZ+FwsZ8fZmNt7bi4WeR6H3v0esg8/TO3rXkfH3/9dtcOZL7QLk4iIiIiIiMg5Zs7M/pVzi2mYeAM5Bj69bUJ547vWVSkiORmrJoR1kizqhmVgt8SwW07tWKc89bd54pdWLIgVO72Bv0B9uLLgZ0IMzZNfG90wReEU/GPpSgISgOKBUYoHRml89zqCLSfZMfTUDi3yohgBEztu46Uchr68Y8L3al62mMB5p3iSioicId/xcbqzk9p29TevrlJEIjPA8fCLHsnbD0wobnjnWsJLaie+9mRtRRGZNoZpTP1c1g7ZZwYYvnXX5O853tkPTKbNyZ7zX9AUj0N2c3TK/gGAYPvEemTVTO6PsBsjUy7aDbZOroNmOECwM1H5OlAXIbq+6aThWrHJvSf5sQSvAH7OIf2rbsyYTevvnHfSPhuZvQzLPHk/UsWZLeQK1E6sD8G2GMG28c8K1E993BfqewvUhgnUnnD+LS3/r3AkOWnaqjuQB8cj8jz1XM4+wzRwBrKM/nD/hHKzJkjrBedhJbTIQmY3wzCwmyPYzZOvW2Y4QHBhYop3neFnWQZ2a2zS+IUZtQktnnxfNixjynv+JO3j//R9n9GfHKCwZ2TCS7xM6aTHem4b4riprtehpbWEltZOKjejdiWpygTqLp7zrLiNFZ/8N39RElOPofGcOlQ5K9qmrrvhZXXP/zlj7WhnuJz870R+ycNNloidN6c2rBAROad5RZfMXV1k6BovNMqJ2eSF+SWX3CO95B7pnVh+3aIqRSQiMr/4pcljuUbQ0n1MZjUvWyL1o4n9uoGWKL7rAUpCInKqfKfc7+QXi1WORERERERERERk7jKrHYDMT4GGMOE1DRPKjLBFoCVapYhEXligPkxoZd2EMiMSUL2VWcGM2sSv6JhYaDDl5HMRkelm1QaJXdw2sTBgYLfqHinnLqs+THhd44QyI2Rhq20oMuvYLVGM0MRJeeF1jVhnktBCpArsjvikXtz45e2YSiIgVRZojGB3Tty52awJEmia8d2wZQrBzsSkPecSV3QoAYlIFRiGQeyS9knl0fNbqxCNyOxg1QSJT9Wf2KZ+FRGR2cRunaJfbX0jVp2Sop6KQFME8zkJbu3OOHaj+iVFRGaC3RYFa2IHWezydvWPyawWXjE5MWf8ig6syClvASgiAMeTkJRKVQ5ERERERERERGTuClQ7AJmffMcjfvUCrPoQuWcGCS6Ik7huEbYmqM8JpYEcTl8WwzYJtEUJJObHBBMzHKDutcvJPHiM7LYBggvi1Fy3aMrdj0WqIbKhCd/xST/QjRkJkLh+8bTuCioicjKGZZK4uhMzGiD7WC9WY4Saaxdin2RHVJFzgRm0qL1xKYHGMNmn+gl2jD3TNJ98scx8bUeLzATf9Sn1ZnCG8lhxm0BrtDIZz26O0vT+DaTuOkLxaJro5mZil7ZjBrVb2FzkpoqUejN4BRe7OTovkj8FF8RpumUDo3ccwhstEru0neh5LRiG8cJvllnL93yc3iylwRxWNECgLYYVnVuTiK2oTcObV5G6v5v8zmFCS2tIXLOQQJ0WU80GE64dqSLxyzoIraojt3MQwzQItMUI1Ko9KjJTQsvrqH/jSlL3doFpkLh2IaGlNdUOS+Y4ZzhPqSdTvq63xgjMoQXhhmUSf0knRtQmu7UHqylC7fWL1Z8oIjLL2M1Rmm7ZQPKuw5R6MkQ2NRG/RP1qpypQF6bpXetI/bKLwsEk4dX1JK5agDnHnv9FROYqu73cP5a84xDucIHoBS3lvnVTfesyewU7EzS8cy2puw7j5V3iV3QQec7mKCLywvzjSUhct8qRiIiIiIiIiIjMXUpCIjPOTRcZ+dF+ck/1E2iOEF5VT+zCVkKdWig/FxSOpBj43Db8fLljNrg4QcPNawjMkx2k7aYotTcuI3HtQoyQhWlrco3MHu5ogfRDRwktqcUruKTv6yLYHps356eIVJllUEoWCK2ow00WGfzKDpreu4HQ0tpqRyZy1tiNEWpfuZTE1Z0v2DYsdKUY+O8T29E1NNy8WvdpkWmS3znI4Nd2glf+OnZ5BzU3LKokIgktrMF++xr8gosZtTXBdI5yRgoMf2c3hb0jABhBi6b3bSC0+NxewGuYBuEV9QQ7E/iOhxXXLo3ngvyeYQa/tAM8H4Doha3UvmrpnEtEYrfEqH/tCryXOZjhAEbArHZIMsawTMIr6wkuKl873LTDwOe24SWLAFhNEZreve55k+iJyPRxRwokf3mE4IIE+D7pX3UR7IxjNmuoVs5MqSdD/xe2442OXdcbwzS9e/2cStIXqA9Tc/0i4pd1YARNLWgXEZmFvJJb7odxPcIr6yk8O4zdFiPQGFH/2inwCg65ZwZxRwuEV9VT6k5TPJrBblXSLRGRmXD8XmVGAuWNJR7rxenLUvfaFVgJ9bPL7OSmCqTu68KqD2MHLdIPlOcCqs6KnJ5K8hElIREREREREREROWOa2SYzrnQ0Te6pfgCc/hxOf47CgVFaPrwFKz63JtnPN17JJXXP4crCSYDioRSFg8l5tXjSMA0t+JFZx3dckvccwR3Mkx3MV8oLB0bn1fkpItVT6k6T39o3oWzk9v00vW9DZQG4yLnoVNqGXskldedz29FJCofmVzta5GxxRgoMf29vJQEJQOaBo0Q3NmGdkAzLtC1QIsk5rdiVqiQgAfCLLqM/O0jTe9Zjhs79v60ZVlfuucJNFhm5bU8lAQlAdmsv0fNasJbXVS+wM2RYpvrKZjEzFIAQpO4+UklAAuAO5Mg/O6QkJCIzwPd9slt7cPvz5PrH+27zu4Z1DsoZyzzRV0lAAuAO5sntGJxTSUgADMPQ+LCIyCzm9GVJ3nkIfIBRAEZ/sI/Q4lrs5khVY5sLSn1ZUvccAaB4OAXAyPf3ElqUINCo35+IyNnmZUuM/GgfTk+2UpYbHSR6URuR1Q1VjEzk5AoHkpQOpSidUJb65REa3rxaScBFToPvlM8iX0lIRERERERERETOmHokZca56dLkssE8XsGpQjRyOvyCS+loZlK5M5irQjQiciKv4FI6mp5U7gzo/BSRmeGmJrfxSj1Z/IIGc0X8gkvp2BT36RMSh4nImfNyDl5mir6GKcpkbnNHC5PKSj0ZfPUpyRzj5R3cE5JBVMrTk8tEpoPvepUFbycqdk1uo4rIWeD6JzkHJ5eJnArf8ykeTE4qV50SEZHp5qadsQQk4/ySh5dTv9up8KaYH+UXXLyc+rJERGaCV3BxerOTy9UPK7NYqW9ynS11p/GLmnsjclqcsXPGVdtbRERERERERORMKQmJzLhA0+TdPEKr6rAS2i1ztjOjNpFNTZPKgwsTVYhGRE5kRmwim5onlQcX1VQhGhGZjwJT7HgX2dConUxFON6OnuI+vTBehWhEzj2B2iCB9tjEQhMCDeHqBCRnjd06eVf3yMZGzJjaGzK3mAkbe/Fz+tMMtAuynDWGZRLZMrk9Gl6rHV9FZoIR0Dko08swDaJT1KnIusljeCIiIi9GoCGEYU+cWmbVBAnUhaoU0dwSaAiDZUwosxrCmLX6/YmIzAQzZhNe2zipfKr5qyKzRWjJ5Ll+kc3NGJFAFaIRmbt8t5yExHeUwEdERERERERE5EwpCYnMuGB7jPo3r8IIWwDYixPU3rgMM2hVOTJ5IYZpELu4nfD68uCcYZvUvnKJkpCIzALl87ON8IaxwfOASc0rlhBcpPNTRGZGsCNG3etWYITKbbrQ8lpqXroII6A2nohhGsQubSe87sR29FK1o0WmiRm1aXjTqkoiEjNm0/i2tditsRd4p8w1wc4EtTctwwiWuzRDq+tJvGQhhqUuTplbrIhN/W+swO4sJyQzowEabl6D3abrlpw9kXWNRC9uAwOwDOJXLyC8vK7aYYnMG5H1jUQvaj3hHOwkvKyu2mHJHBZe20jskrHrumkQv2oBoRW11Q5LRETOMYGmCI3vXIdZExz7OkzDO9Zi1SiJxqkINEdpfNc6zEQ5gW6gJULDW9cQ0CZNIiIzwgxa1L58CcGl5aQORsii7g0rsdu1UYTMXsHFNdS8bDEEDDAgsqmJ2AWtGIbxwm8WkQrfccr/95SERERERERERETkTCk1ssw4w7aInd9KaEktXtHFqg1iRbRj7VxhN0VoeMtq3OE8WAaBhgiGqQEOkdnAbozQ8ObVuDfo/BSRmWeGAsQvaSe8sg6v6BGoD2GG9LghcpzdGKHh5uPtaJNAQ1j3aZFpFOyI0/KBjTijRcxIQLuxnqPMcID4ZR1EVjfgOR6BujBmSAnPZG4Ktsdpft9GnNECZsgiUB+udkhyjgvUh6m/aTmJKxeAUd6RW0mcRGZOoC5M/WtXkLiqU+egTItAXYi61ywnfoWu6yIicvYYhkF4VT2tH9mCm3WwEjZWXAk0TpVhGkRWN2B/5Dy8nINVY2PF9PsTEZlJdmuUxnevxx0pYAZNAg2Raock8rysqE3imoVENjWD62HVh7XBo8iZGEtCgqMkJCIiIiIiIiIiZ2pOrQo0DMMCtgLdvu+/utrxyIsTaNDE+rnKDFqY2lFaZFbS+Ski1aZJOyInp/u0yNllRm2CUSU5PdcZhkGgUe0NOTeYkQDByJzqopc5zgiY2C3RaochMm/pHJTppjolIiIzxaoNYdUq6e+ZCtSFQEmTRUSqxgoHsNrUDytzh2Ea2E0aCxN5MfyxJCS+qyQkIiIiIiIiIiJnaq5th/Q7wM5qByEiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKzRyX5iJKQiIiIiIiIiIicsTmThMQwjE7gRuC/qx2LiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIzCKOA5yQjERERERERERERE7bnElCAnwS+CPAq3IcIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMov4lSQkTpUjERERERERERGZu+ZEEhLDMF4N9Pm+/9gLvO6DhmFsNQxja39//wxFJ/Liqe7KXKb6K3OV6q7MVaq7Mpep/spcpborc5nqr8xVqrsyV6nuylym+itzlequzGWqvzJXqe7KXKW6K3OZ6q/MVaq7Mpep/orMTb7rlv/huNUNRERERERERERkDpsTSUiAK4CbDMM4CHwDeKlhGF997ot83/+M7/sX+r5/YXNz80zHKHLGVHdlLlP9lblKdVfmKtVdmctUf2WuUt2VuUz1V+Yq1V2Zq1R3ZS5T/ZW5SnVX5jLVX5mrVHdlrlLdlblM9VfmKtVdmctUf0XmHt/3YSwJie95VY5GRERERERERGTumhNJSHzf/1Pf9zt9318C3Azc7fv+O6ocloiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiFSb40z9bxEREREREREROS1zIgmJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyFT8ExKP+K5bxUhEREREREREROa2QLUDOF2+798L3FvlMERERERERERERERERERERERERERERERERGQWODHxiJKQiIiIiIiIiIicObPaAYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIicMccZ/7eSkIiIiIiIiIiInDElIREREREREREREREREREREREREREREREREZE5yz+ehCQQwFcSEhERERERERGRM6YkJCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJnHU88YgaDcDwhiYiIiIiIiIiInDYlIREREREREREREREREREREREREREREREREZE5yy+VE48YoVAlIYmIiIiIiIiIiJw+JSERERERERERERERERERERERERERERERERGRucs9IQmJ51U5GBERERERERGRuUtJSERERERERERERERERERERERERERERERERGTO8l0XADMUAsepcjQiIiIiIiIiInOXkpCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjInOWXyolHjFAIfB/f86ockYiIiIiIiIjI3KQkJCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJ3uSckIQFw3SoGIyIiIiIiIiIydykJiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMxZvnM8CUmw/LWSkIiIiIiIiIiInBElIREREREREREREREREREREREREREREREREZE5y3fKSUfMUHjC1yIiIiIiIiIicnoC1Q5Azlyh5LK3P81AqkBHXYRlzXEs06h2WCLTIld02NuXYShToLM+yrLmGIah+i1ytpXPvTRDmSILG6IsbdK5N5ccG82xvz+DbZmsbI1THw1WOySZ51zPZ19/mmMjOZoTYZY3xwjZVrXDEpnVnvuct7w5jqnnPJnHDg9mODiYJREOsLIlTjxsVzskOUt83+fAQIYjQ1nqY0FWtsSJBNV1KXPHQKrA3r40Pj4rWuI0J8LVDknmiVSuxN7+NKm8w5LGKIsaY9UOSWTeGs4U2defJu+4LGuK01EXqXZIMkuk8iX29KbJFB2WNMZY2BCtdkgiIiKnzHE99vVn6BnN0VITZnlznGBAe16dqnypPPdlMK25LyLy/E7sI2+IBVmhPvIXTfNrZS7qTxXY25fCMAyWN8c01iByJlwHACMYnPC1iIiIiIiIiIicnmkdpTAM4/XAPwItgDH2n+/7fs10fo6UB0i+8egR/sePnsHzIWiZfOqtW3jFhvZqhybyomUKDp+7/wD/dsduAMK2yWffeSFXrWqucmQi57Z0weG/f7WfT965B4CIbfHZd13IlSubqhyZnIpdPSne96VH6RrOAXDNqmb+7vUbtdhBqurnz/TwO994gpLrYxrwP167nrdcuJBgQIlIRKaSL7l87eHD/K/bd+CPPef919vP44Z1bdUOTaQqnjg8zHu+8CijuRIAb79kEb//slU0xEJVjkzOhgf2DfL+L20lVyrvRPWx61bwwauWEw9rkrXMfgcG0nzs60+yrXsUgHXtNfzn285jWXO8ypHJuW4oU+Cff76Lrz9yBIDaiM0X33sR5y2qr3JkIvPP0ZEcf/H97dz9bB8AHXVhPv/ui1jTriHS+W4gVeDvf/ostz3eBUBDLMgX33sRmzrrqhuYiIjIKfA8n9u3HeP3v/UUjudjmQZ/97oNvP78TmxLiUheSLbo8KUHDvJPP9+F70MoYPLpd17ANatbqh2aiMxC9+8d4ANf3kq+5AHw8RtW8b4rlxILqY/8TBRKLl975DD/88fj467/+bbzeNl6jbvK7HVwIMNHv/Y4248mAVg/NtawVGMNIqfFd8aSkITK8wp8161mOCIiIiIiIiIic9Z0jwj/E3CT7/u1vu/X+L6fUAKSs2Nvf7qSgASg6Hr84bef5vBgprqBiUyDXb2pSgISgHzJ4w++8xS9o/kqRiVy7tvVk6okIAHIlVz+8DtP0ZfUuTfbOa7H5399oJKABODe3f08vH+wilHJfHdoMMMffedpSm65wer58Nc/eIa9fWqvipzM3r50JQEJlJ/zfv/bT3FkKFvdwESqIJUr8T9/tKOSgATg1ocPs707WcWo5GzpS+X5g28/VUlAAvCpu/bybK/+3jI3/OKZ3koCEoAdx5L8dNuxKkYk88X27mQlAQnAaK7EJ27fSSpfep53icjZ8OjBoUoCEoCjI3k+d/8BSq5XxahkNni6e6SSgARgKFPkH376LJmCdmAVEZHZ7+Bghj++7WmcsclJrufz59/bzoF+jfWcil09Kf7xZ7sqff4Fpzy369hI7vnfKCLzTm+y3Ed+PAEJwL/dsZtdPeojP1N7+tKVBCRQHnf9g+9o3FVmt58/01NJQALwzLEkP9neU8WIROYm3ymPOfcc2l8uUBISEREREREREZEzMt1JSHp93985zceUMSXXY29fmp3HkvSM5isJSI5LFRyGMsXqBCcyjXqnSHjQmywwnJ0d9XsgVWB796gGJeWcM9W5d2w0z3B2fOGK5/ns70+z49goyZwWtMwWmaLDIweGJpU/c1QTUmRm9SXzbO8epXsky1CmSPo5iyk8H/pTSmwkAjCaLfJM9yiHBjL4Y7Pf+pL5ykS445I5Z9a0g0VmUjLv8PQJC/qPm6rNCuP3oKOawD8njWRLHJsi8eh0JyMtOC57elPs6kmSK2qymUyfB6dIAHn/3oEqRHLqPM/nwECaHUdHGc2prTFX9UxxX3zqyAg9o+X7oha2icycXT2pSWUPHRicMtHE8Njz4MHB8edBOXcdHZl8rX7yyMjz9q8fGcqyvXuUwXThbIYmIiLyggbShQkL4gEcz6df96hT0p+a/HvqT8+euS8iMnsMZ4v0JidfM3qmKJNT05eaetxV82tlNntw3+Sxhl/vHaDoaExL5HT4TrnfbbC3vGGA7ylRtIiIiIiIiIjImQhM8/G2GobxTeD7QGUExPf9707z58w7g5kCn7//AJ/+5X4cz+fvX7cR2zIqO8sDNMWDtNSEqxilyPTorI9iGEwYCFzWFKU5EapeUGOeOjLMx77xJIcGs9RGbP7hDRu5YW0rAWu6czqJzLzO+siksuXNMZoTQQDS+RJff+QI//KLXRQcjwuX1PMPr9/Eipb4TIcqz5EI2dywroXP3HdgQnlrTYgD/WmWNutvJGff1oND/M43nqR7JEdDLMj/efv5NMSCEybxBC2TjrrJ1xqR+WZXT5I/+PZTbOtOEg1a/MWNa3ndeQvoqI8QMI3KrpIALYkQLbOgHSwy0+pjNleuaOKXu/snlE/VZn3kwCC/840nOTaapyke5F/etJmrVzVjGMZMhSsvUlM8xIqWGHv7Ju6i21kfnbbP6Evm+b+/3MeXHzyE6/nctKWDP3rZajobpu8zZP66fm0r9+6aeL16+fq2KkXzwtIFh+88doR/+Omz5Ese5y+q4x/fsImVrYlqhyanaeEU98UrVjTyqbv28KOnj9EYC/Kvb9Z9UWQmbO6snVR2w9o2asL2hLJnjyX5vW89xc5jSWJBi796zXpu2tJOxJ7uIVuZLZY0Tm5vXr2qmYZYcFJ5yfW4Y0cvf/Ldp0nmHJY0Rfn3t5zH5oV1MxCpiIjIZNGgRU04QDI/nlgtbJu012pu0qlorw1PmvuyqCFCS0K/PxGZqDkeYllTlP0DEzfEWjiNfeTzTUft5HHX5kSIlhqNu8rsdf26Vu59ztjo+o5a/u72nXzw6uWabyNyqtxy4h7PHJvX7UxOFC0iIiIiIiIiIi9sulfN1wBZ4GXAa8b+e/U0f8a8kyk4/HJXP/91z77KoMh/3buXv7lpPfFQeVJiYyzIf7z1PHUyy1lXdFwePTDEp+7aw5ceODjl7n4v1qqWOP/0hk2E7fIlqq0mzL+8eQuN8eoOAg6mC5UEJACjuRIf/doT7O1LVzUukemyujXBP55w7rXXhvmXN22mIVY+957qGuVvf7KTglPODL/14DD/efceCtptoer29KW5eEkjFy6uB8Aw4LVbOtjWneSLDx7E9bSjqpxdPaM5fuvWx+ke22V7KFPkY19/gr9/3cbKgop4KMC/v3ULy5QUR+a5TNHhb3+yk23dSQCyRZc/+952njmaZEVznP/9li3EghZQTjT5qbeeR1vtyZ/ztneP8tlf7eP/3ruXJ48M4+maL3NY13CW7z3exT//fBe/3jvIH7xsFcubYwDYlsEfv2I1GzomLu48OpLjw199nGOj5d3FB9JFPvzVxzkwkJl0fJm9GmJB/tdrN1QWsIRtk394/UbWtE1fQoQH9g3yhV+Pt41/+ORRfrq9Z9qOL/PbtatbePWm9srXr9jQxvVrWye8ZldPki/8+gD/cdceth4couhUb9e1Z7pH+Zsf7qjsZv344RH+9Y7dFEp6vp9rNnTU8ocvX41tlROMLG+Oce2aFn68rby732CmyIe++pjuiyIz4IIlDbz3iiWYY/l+LlxczzsuXYRpGhwazPDtrUf4xiOH+esfPsPOY+XnwUzR5Y9ve5pnj03/OIvMHhs7a/nd61cSGKsca9oS/N71q0jmS/xs+zH++ee7+NFTR+kZzbO3N81vf/0JkrnywoiDA1l+75tPMJTW7uciIjLzSq7H9x/v5mPXraQuWk6sVhMO8E9v3MzSpliVo5sbbMvkd69bScQu9/m3JEJ86OrlKEekiDxXYzzEv755C201433k//iGTaxq1dj6mQrZJh+/YdWEcdffvnYFhoZSZRa7dnUzN24cH2u4elUzJdfjiw8e4t5dfVWMTGRu8ceSjnhj7W7fq96YnIiIiIiIiIjIXDat22r5vv/e6TyelN2/Z4Bf7x2YUNY1nOP7j3fzvd+6nHTBobUmrAQkMiMe2DfIe7/4aGWnlvqozTd/8zJWTeNOqSHb4g3nd3LB4npGcyU66iK01lR/J5ie0XwlAclxrudzZDjLmvaaKkUlMn1CtsWbLujkoiVTn3t7eidPhr9jRy9/nC7SrntQ1ezuSfGWzzyI7/v8/g2ruWJFEwC/2jPA44eHaUmE+O1rV9KU0G4ucvYcG83Tl5q4GKIvVWB3X4q3XryQy5Y1srAhyuJGTUoVGUwVuW/3wKTyQ0NZLlzSwKs3tbNpQS1D2SJtNeHnvcc+3TXCmz/9YGUBsW0ZfP0Dl3LhkoazFr/I2TKYLvAH336Kh/YPVcp+7/qVfOMDl9I9micWsljSGMO2JubTPTaaZzBTnFCWK7l0D+eU+GoO2Xksye9+40luWNdKXSyI7/ksb44RGlugMR1+uXvy5MwfPX2Ud1++mGBg+j5H5qcF9RH+8Y2b+PA1y8GHJU0xYqHxrvddPUne/OmHGM2VADDuhC/fcjFXrWyuSrwHBycnpLhrZy8D6QILtLvqnJKI2KxrT/Chq5cDsKw5xh995+kJu2znSx5dui+KnHVN8RB/8so1vOWihRQdj8WNUWojQY6NJc3bcSzJR1+6gocPDE1678HBLOctqq9C1DITaiNBPnLNCm7c2E6m6LKoIULEtvi7n+zkKw8drrzulRvauGlzx6SE0vsHsvQk8zRUOVG/iIjMP8OZIt998ii+7/OG8zuJBC0KJY/BVAFDWTROyb7+NN/a2lVOVmcaJHMl/vb2nWxeWFf1TXhEZPY5b1E9P/joFRwdyVEbsVnSGMM0db09U4cGs3z5wUO887LFBCyTTMHhX36xi9XtCdo0x0lmqQX1Uf7pjZu4ZFkDg+kiTx4Z4YsPHATg9qeP8bZLFlc3QJE5wh/bVM81xuYWuErCLyIiIiIiIiJyJqY1CYlhGJ3AfwBXAD5wP/A7vu93TefnzCf9qTx/+5MdvGbzgknfW9wUY0nT5AU4ImdLpuDwyTv3TJjEPpwt8eiBoWlNQgJgmsasmxhfG7Wpi9qMZEsTyps0OUTOIc937iXC9qSyVa0JTE0yq6pHDg4xki1hmQaDmSL/fteeCd/f3FlHPKxFlXJ21UeDRIMW2eL4oK1hgOfDf92zj5Utca6s0gJLkdkmEQmwsiXOnr70hPLmsTalYRgsboqxmBdO2nP7tmOVBCQAJdfnyw8e5ILF9ZoELnPOrp7UhAQkAP95z15es7mDLQvrTvq++qhNKGBScMbPBdNAk/jnmF/t6ac3VeCrD48vwnyqa5TPvbtu2hKRbOqs43tPHJ1QdvGSBvWrybSJBQOs76id8nsP7BusJCAB8H341F17uGBxPdHgtHbRn5LmxORkv+vaa6Z87pfZbShd4C9/8AxdwzkAfuua5VimQckd78At3xeD1QpRZF4JBSzWtE1MWP5sT4odx5JAOdH54sbopGTnLUoefM6zAyYrTxhH23E0OaHtC/DT7T3cfNHCSe+tj9rURnSPFhGRmWeasKo1zkP7h/jc/Qcq5f/4ho1VjGpuiQYDdI/k+D/37quUNcSCKKeAiJxMa014VmzUdS6I2Ba9qTz/75f7J5SZ6CIss1ssFKB7OMen79s/oXxthzbJEzllrgOAN9bw9j3v+V4tIiIiIiIiIiInMd2z7L8A/BDoABYAPxorkzNUcn0G0kVyRYcNC8Y7kZviQW65YokWSsiMKrkeI9nipPJUwalCNDOvsz7KP75+I4ETZoT89ktXTJg4KnIuqwkHuGJFY+XrRCjA685bgMbnqys5tpDN9XwG0gUuWDy+a2pd1OZj160gbM/8ojaZXxY3Rvm7122cMGnyPZcv4Y4dPQBkitpRQuS4+miQT/zGBsL2+LPcGy7oZP2C0580NJSe3DYfTBcn7ZosMhecmETkuJLrT1l+oiWNMf72OfegP79xLcubXziRj8wez032CTCUKeJM4/Xs2tUtrGsfv9YuqAvzpgsXKmmTzIhUfnLf2XC2hONW5569cUENr97UXvk6FrT4y1evo0YLnOecouuRzI9fQ3/w5FE+fPXyCffFP33VWlbMsmTPIvNJoTTeJ/Ljp4/y7suWEAqMPw/efNHCCW0UmR+Kjjsh4f9xsZDFR69dUfk6YBr8wxs2saA+OoPRiYiIjPENXr2pnZrI+DjjJUsblBzrNAQtgzdfOJ5kLGAafPCqZdimNpAQETnbYiGLW65YWvnaNOBDVy/DQOOoMvstbYqxuHG8L2BRQ5Tl6uMVOWW+M5aEZGwc2C/NjznuIiIiIiIiIiLTbbpXpDb7vn9i0pEvGobxu9P8GfNKW02YW65Ywn/es483XtDJDWtb8RlbOHGSnTVFzpa6aJD3XbmUv/zBM5Uy04CLl9Q/z7vOLdetbeX2j13J4aEsTfEQq1oTxEJa3C/zQ1ttmPqoze/dsArX83A9KDiudmGpsouXNmAa4Plw68OHee2WDt556WJqIzbLmmMsbtQCXDn7DMPgVRvbWdWa4InDwwxli9y5o5ft3UkCpsHGBWq3ipzokmWN3P7bV3FwMENNxGZVS4La6OlP3H7N5g6+/VjXhLJ3XraEgJJVyhy0oiVOQyzIUGY8uc5LVzezqOH5F9uZpsFNm9tZ156geyRHa02YVa1xQrYm8s8lV69unrAjLMD7rlw6rc/bS5pifPG9F7G7N4Xr+axsTdBRF5m244s8n8uWN2LcyYTFxu+/cmnVkn40J8J84jc28K7LFpPKOyxtirFME5jnpNaaMO+/cin/dsceALpHcvxk2zG+9oFLSeVLui+KzAIrWxPEQwHSBYd8yeP//nIfn/iNDdRFbeqiQVa1JrSQdx5a3Bhjc2ctT3WNVsoWNUTobIjy4WuWc93aFgbSBRY1RFnRokT4IiJSHU2JEI7r845LFhOwDCzTZF9fivZa9aecqs6GKP2pPB+/YRVF18M2DQ4NpumoX1zt0EREznmd9VGGM8XKNThomTy0f4C3XLSo2qGJvKDWRJirVzXTEAsC5cT9rYlQlaMSmTt8p5wY2hvL2O4U89UMR0RERERERERkzprulfMDhmG8A/j62NdvBQan+TPmFdM0ePuli0mEbb72yGF6k1E+dt1KNnVqIadUxys3tGMaBp+7/wCN8RC/c90KNnbWVTusGROwTFa31bC6TTsTyvyzvqOWd1y6hE/dtYejIzneedmSCTsnS3VsXljHl265mE/dtYehTJHLVzRy9apm6scGokVmSjBgsq6jhqZ4kB9vO0Yy7/DqTe3ccvlS1it5nsgky1viLG95cYt9L1xSz2feeQGfumsPJc/jw1ev4PLljdMUocjMWtgQ5cu3XMynf7mPJ46McOPGdt568aJTSkIRDFis66hVstY5bEtnHV9470V86s49JPMOv/mSZVy3tmXaP6elJkyLkihKFWzurOMrt1zMJ+/czXC2xPuvXMbL1rdWNaa6aJCLl6rdMNcZhsFbLlpIJGhx60OH2dRZy3svX8rmhXWYY5NrRaS6lrfEufX9l/Bf9+xlZ0+S1523gEuXNbLwBZLtybmtPhbk328+jy/8+gB3PdvH5csbed+Vy2irKS/qPm/R/En+LyIis9uNm9q5fVsPX3/kMOvaE7ztkkVsUOL5U7a4Mcbvv2w1X7h/P0dH85y/qI4PXb2CaFAb3YiInG110SAfuXYF33j0MNuPJlnUEOWvXrOetlqNEcjsd/GyBjx8/vUXu/CBj1y7gouXqT9f5FT5TgkA1xhLQpJXEhIRERERERERkTMx3aOatwD/CfxvwAceGCuTF6G9NsJvXr2cmy9aSMi2CI/tWjiSLfLogSHu2dXPipY4V69qftGL2EReSFMixNsvXcxrNncQsIxZNTlie/cod+3sJZl3uGFdK+ctrNMunyKn6UB/ml/tGWBnT5KXrGzm4mUNNMbKOymYpsGlyxrZ3FlH0XGpjSrJxWxgWyZXrWzmgsX1dA/nePjAEP/4s2e5amUTFy9toDmhCRQys1pqwrzr0sVsaK/hrmf7uOvZXgyzvPBSi+BEJsuXXJ44PMwdO3qpjdhct7b1lCdxR4MBXra+jStWNOH5Pomwds+WuW3Dglr+9c2byRRdasP2pPtGKldi66Fh7n62l4UNUa5Z3cKqVu0Kfi4I2RbXrm7hkqUNOJ5PzQnXs8ODWe7f28/TXaNcsaKJS5Y10KI2rswRvckcD+0f4sF9g2xZWMc/v3EzjfEQNRHds2X6tNZEuOWKZWzurOPuZ/v4xc5efMpJSy09g4lUxUCqwMMHBvnVngE2LKjlqpVN/MfbziNXdKlTn+q893TXCHfu7CVbcHnVxnZ++7qV1EZsbMusdmgiIiKTNCfCvHx9K/GQxaMHhzg8lGNhfY4F9UqodqoSoQCbF9VjH02yrqOWWHj2zLERkdmlL5nn4QOD/HrvIJs667hqZZMSWL5IwYDJ0qY4qbzDZcsbqdczucxyrufz1JER7tjZCz78j5vWs7otQU1EdVfktLguAN7YGImTy1UzGhERERERERGROWtaRzZ93z8M3DSdx5RxJy729n2f7zzWxSdu31kp66yP8B9vPY+S67OsKUZTIlSNMGWemG2LJZ45OsqbP/0g2WK58/hz9x/gi++9iGtWT//OySLnqmMjOT74lcfY05cG4OuPHOF3r1/JG85fwJHhHA2xIMub4kSCFpGgEvzMNum8w+9960m2dycB+MajR/jgS5bxhy9bjR0oT2A/OpLj8FCWRDjA8uYYYVuT3GR6HRnK0jWcxXF93vPFR3E9H4BP37efb/7mpVywuKHKEYqcfemCw/7+NLmSy9LGGC01z79Q/td7B3jfl7ZWvv7Mffv5zocuZ21HzSl/Ziyk67mcO4IBi2Bg6rbmT7Yf449v21b5+rP3HeBbH7qMpU2xKV/v+z4HB7McG83RHA+xrDmuxdiz3HMTnQ6kCvzON57giSMjQLmN+57Ll/Cnr1pD6CT15FQcG8lxaChLIhRgeYvaxXJ25IoO/3bHHr756BGgXH8vXdbA/3n7BSd9TzJXYl9/GtfzWdoUozGu/l05NU8cHuatn3248gz22fv2883fvIwLFtfjej77+9P0pwu010ZY0hjFMHQ/FDlbSo7HZ361n8/ct79c8OgRNiyo4fPvvugFnw/Plq7hLEeGstRGgixvjil5exU93TXCm/7fgxQcD4DP/foAX3nfJVy5oolM0WF/X4ZsyWFJY4zWKtUXERGRE2XyDn//k2f54VNHAfjmo11cu7qZT968hVothn1Bvck8H771MXYcSwHlvoEPX7OMj9+wWgnIRGSCQsnlP+7ew1ceOgyUrxcXLq7j0++8UH2EZ2gwXeD3vvkEWw+NAOXf6TsvXcRf3LhOz8Uyaz15eJi3fOYhnLF+3s/8aj9fueViLl/RVOXIROYW3xlLQjI2FuIUCtUMR0RERERERERkzpqWGfaGYfyR7/v/ZBjGfwD+c7/v+/7HpuNzZNzRkRz/+47dE8q6hnPct7uf/33nHla3xvnPt53PSu0ILPPEL3f3VxKQHPdfd+/l0mWNhDVwKHJKdvWmKglIjvu/9+7D933+/a69BEyDv7hxLTdfvEjn1Sy0uzddSUBy3OfvP8CbL1zIipY4T3eN8L4vbqU/XcAw4LeuXs4Hr16mCYIybR45MMgHvvwYC+oiLGyIVBa/ATiez3cf71YSEjnn9afy/MsvdlcWGy9uiPDpd13ImrapE4pkCg7/cffeiWVFlwf3D55WEhKR+aAvleeff75rQll/usAz3aMnTUJy584+Pvb1J8iVXIKWyT+8YSOv2dyhCf5zyJ6+VCUByXFffvAgb7tkEavOsM9rW9cI7/vSVvpS5Xbxb75kGR+6ejl12gFRptnBwQzf2npkQtlD+4fY25fm4qWT28VHR3L89Q+3c8eOPgA2dtTyyZu3sLwlPiPxytz29UcOT3oGu+2xI2zqrOVHTx3lT27bRtH1iAYtPnXzeVy/rrWK0Yqc2w4PZfnc/QcmlG3vTrK7N1WVJCSPHx7m/V/aylCmiGnA716/iluuWEI8PLsSzc8Xd+3sqyQgAfB9+Ox9+1jTmuCTd+3hqw8dAsobT3z2XReytl19AyIiUl1PdI1UEpAcd8+ufvb1ZTh/sfpSXsizx5KVBCTH/fevDvCmCxayrFnP+yIy7uBghq8+fHhC2dZDI+zpSysJyRna05uuJCA57taHD/P2SxazRs9aMkt95/GuSgISANfz+epDh6iPBdVHIHIafMcByklIdtYvItCb1w67IiIiIiIiIiJnYLpWXewc+/9W4LEp/pNp5vo+JXdSvheO9z/v6k3z1YcPTZh4LHIuS+ZKk8oyRZeS603xahGZijPF+VJyPY7fbhzP529+tIM9valJr5Pqc7zJfz/H83E9j1SuxP/44Q760+Ws/r4P/3XvPp45mpz0HpEzMZAq8IffeZrRXIlgwCRfmlwf0wWnCpGJzKwnjoxUEpAAHBrK8f/u3UfBcad8vef5ZKY4N/KlqV8vMp+5rj/l/WWqNhDAocEMH//mk+TGzqei6/HHtz3NgYHMWY1Tppdzkr4v9yR/9xeSLpT4Xz/eSV9qvF38/365X+1iOSsc18efomt2qmdvgPv3DlQSkABsOzrKdx7vwp/qICLPkc5PblOm8w7dw1n+6DtPUxyrd9miy8e/9SSHB3U/FDlbyv1xk6/dU43pnW0j2SJ//r1tDGWKQLkd9W937J60EFZmTrY4+XqdKbgcGEhXEpBAeeOJT965m4L6B0REpIpGs0V2nqTP5GR9cjLRVGNjjudrzExEJnG8qfsSNe/tzKUKk+cSej6k8pPLRWaLqfp5cyWPz963j9FssQoRicxRbvlcsmIxPn71x/jYduuk43MiIiIiIiIiInJy05KExPf9H439M+v7/pdO/A/IvtjjG4ax0DCMewzD2GkYxjOGYfzOiz3mXNdRG+Hdly+ZUFYTDuAzPhr1q90DGriWeWNNWw2mMbHsxk3tUw7QisjUVrYmaIhN3LHqFRvaeGDvwISyY6P5mQxLTtGKljitNRN3wLlxYxuLGmIM50o8dnh40nuOjuhvKdNjKFPk0GC52f901wiXLW+c9Jo3XdA502GJzLg9velJZb/eO0gyN/VzWSJi86Grl08os0xjynNIZL5rqw3zm1cvm1AWsS3WtE2969dAukjqOX0iJdenR23ZOWVFS5wFdeEJZS9b28qihtgZHW8kW2LroaFJ5UdHcmd0PJHns6QxxpUrmiaULW2Ksbxl6p2Otx6cXDd/uaufvKNJkfLC3nbJ4kllb7poIYeGchN2zgRI5h3605qwLnK2LGqI8upN7RPKWmtCrGyd+Z3uhzJFdk6RcERtn+q5YV0rxnPGst535VK2d09e4P3Q/iFGpkjALyIiMlOGsyW2dY+ycUHthPJVrXGWNs1822Yuqo8GaU5MHL+9bk0L4YBVpYhEZLZa3BDlpaubJ5QtrI+w4iR9ifLC6qNBFtRFJpRdtryRgDVd+zaKTL83X7RwUtmlyxr4/pNHGcmqj0DkVPljGwX58fFnmUNDL3o5i4iIiIiIiIjIvBOY5uP9KfDtUyg7XQ7w+77vP24YRgJ4zDCMO3zf3/EijzunFByXYyN5ggGTjroI77tyKR11Yb7zWBcrWuJsWFDLp+7cU3n9NatbSISm+08sMjvFghZ/fuNa7n62j0zB5aVrWojYJrEXOAeKjsux0TwB02RBfeR5XytyrlvcGOMr77uYrzx4iKe7RnnN5naSOYefbOuZ8LqGWJCDAxna68KENEFq1uisj/LF917M1x4+xNZDw7xyQzuv3dJBJGhRH7W5cHE9Ww9NTETS8ZwFnSJnqjEeZElTlIMDWTwffra9hz95xRru2dWHZRp84KplXLikodphipx1q1oTk8quWtVEbeTkbdILF9fzL2/axFcfOkRjLMQHrlrGps66sxilyNxkGAZvuWghDdEgX3vkMMuaYrzvyqWsaa+hL5knU3BorQ0TDZbPt+ZEiJpwgOQJO4bZlkFbrdo/c0l7XYTPv+civvbIYR45MMSrNrRz05aOF3zWzxVdepJ5okGL1prxv3l9JMhFSxp4+MDEZA8ddeoPkOmXiNh84jc28P0nu/n5Mz1cvryJt1y0cEKdPNHFSxv41tauCWXXrmkhHJjeSfHHRnIUHE/P9OeYi5fW87l3X8hn7tuPYcD7r1rGhUvqOTKYI2AaExKR1IQDkxbBicj0iQQt/vgVq1nbXsOPnz7KhYvredsli+msj1Ze0z2cxfF8Omoj2NN8nT9RQyzIuvYadhybmODiuYuwZOZsWVjPV265mM/+aj/pgsv7r1zKVSubeOTg5ATSly9vpC5qVyFKERGRsvqYzaHBNFevbmF9Rw1PdY2woaOWN13QqWeKU1QTtnnfFUt55ugoe/vTXLy0kUQooHu8iEwSD9v89U3r2fJkNz/d3sOlSxt56yWLaK/V89uZaogFeceli9jVk2ZXb5ILFtVTE7GpjegaLLPXhUvq+a+3nccXHziI78P161r5ybZjbFxQS91zNhYTkZPzXQcPSMbHE3wNpAosb1ZyLxERERERERGR0zEtGSoMw3gl8CpggWEYnzrhWzWUE4i8KL7vHwOOjf07ZRjGTmABMG+SkBwZyvKpu/Zw2+NdxMMB/vQVa3nNlg7ee8VSbr54Ealckb/76a7KLr/rO2p42yULMU3jBY4scm7Y2FnLT7f3UHQ8aiM29zzbyz+/aTPW85wDXcNZ/vPuvXz7sS5iQYs/fMVqXrdlAfGwBhtl/lrfUcvfvm4jBcclGgzw0L5BvvbIYUZzJWzL4A9fvpp//tmzPHJomNds6uDjN6xiSdOZ7UIu029BXZjzFtYxlCnyjUcO05/K8+GrV9BRH+GvX7OO9395K73JAqYBv/3SlWzoqKl2yHKOaIyH+Lvf2MhHv/4EQ5ki27tHuWFtC//n7VtIhIMEtbhR5onzFtXxjksX8dWHDgOwvDnGb75k+ZTnQKbg8JNtx/jE7TspuS6//dKV3LS5gwUnLEwTkYlaEmHefuli3nBBJwHTwPPh59t7+IsfbKc/VeClq5v58xvXsbwlzqKGKJ+8eQu//bUnyBRdQgGTf3zDJpap7TrnrG6r4a9fvZ782DPKC9nXn+YffvIsd+zspTke4n+8dj3Xr20hGLCIhQP85avX8YEvb+XYaB7TgA9fs5wNC9QulrNjSVOM371+FR98yTIitoVhnLyf6vLlTbxyQxs/3V5OBLplYR1vOH/B877ndGQKDj9++hh/95OdpPIlfmPLAn73+pUsatR18VwQti0itkV7bYi+VJHP3refBXURVrbE+Zc3beaPb3uaguMRDwX45M1bWNSgNqfI2bSwIcZHrl3Be69YQjhgVcbqkrki3328m3/5xW7yJZe3Xryw0nd3NtRFg/zd6zfwgS89Rn+6gGUafPyGlaxtV9unWoIBkytXNnPx0gZ8H0J2ub9g88Ja3nv5Er7wwEEAFjVEuXhpAz9/ppeXr2utvE5ERGQm1UaC/PmN6/jI154gFDBZ05ZgZWuMpc16jjxVy1tiPHxgkL19KTrqo9y/p5+/fPU6Wk6SoFRE5rfFjTE+dt0q3n/VsgnPknJmljTGaKsN88Mnj9JRH+H+vQP83g2rWKpxIpnFInaAq1c1ky04/OCpo/zrL3ZRFw3yP29aT9FxAc1rFTklrotvGOQjtZWiwUyxigGJiIiIiIiIiMxN05KEBDgKbAVuAh47oTwF/N40fQYAhmEsAc4DHp7O485mvu/z9UcO8+3HyjthJnMOf/q9bSxqjHLFiiYitkXEjvC3r93ALVcsoeR4LGmK0RjXziMyf7TVRvhfr93AvoH0KZ8D33msi288egSAZN7hL7//DEsaY1y1svl53ydyrrNMo7K479Lljfz4t6+keyQHwJ9/bxv7+jMA/PCpo9SEA/zNTesJWGdvx045dY8dHuHj33668vVXHjpMR12ED1+zgo2ddXz/t67gyHCORDjAsqaYJq/LtHryyAivO28BkaCFacD3nzzKps46rlql+6rMH03xEH/2yrXcfNEiciWXJY1RmhNTTyZ+unuUP/zO+DX7H3+2i6FMkT995VpNKhR5AeGxNsy2rhE+dOtj+H65/O5d/Vjms3zqrecRCVq8dE0rt3/sKnqSeZrjIZY2xXR+zVHmCc8oz6dQcvm3X+zijp29APSnC3zka4/zvQ9fzpZF9QBsWFDL9z5yOYcHy+3ipU2xSp0SOVtOpf521EX4pzdu4kPXLMdxPZY2xWmYxp0Nn+4a5Y9vG297fPeJbpoSIf7kFWt0bTwH7OtP894vPkrB8Splv/vNJ/nGBy7lps0dbFxQS3+6QFtNWMlkRWbQc6//jx8e4W9+NL6/wol9d2fLloX1/OCjV3BkOEtt2GZZc0zJYmeB5/4NGmMhfu+Glaxpr6F7JMtAqsjf/WQnJdfntg9fxgWLG6oUqYiIzGee53Pvrj5u3NhOIhzANAx+8OQxNi6oO2m/t0x0ZDjHt7Ye4WXr2/CBZU1x/t+9+9iysI666PQ984vIueVU+hLlhR0eyvIfd+3hFRvaMU2D1a0JvvDrA1y+vFH3MZnV4mGb2miQCxY3cN6ielJ5h9//9lN84jc28PrzO6sdnsic4JccfAOywQSMDZsMpgvVDUpEREREREREZA6alhEL3/efAp4yDONrvu+XpuOYUzEMIw7cBvyu7/vJKb7/QeCDAIsWLTpbYcy4wUyR2x7vmlT+dNcIV6xoqnwdCwfY1Fk3g5GduZH8CH25PmqCNbTF2qodTtWdq3V3pp3OOTCcKfKdx7q4fGUNF62AkmPw0yeKbD04rCQkp2mu199kIUlPtoeYHWNBfEG1w5mVFjZEWdgQ5daHDlUSkBz3gyeP8pGXrqC99uzs1nk2zfa6W3JLdKW7MDBYEF+Abb3wbhYP7hucVPadx7p4+yWLqYnYtNdFaK+be38rmWg21t2hTJGvPXKYruHchPLHDg9PWxISx3PoTnXj+A6d8U5CASXcm4tmY/2dbtFQgA0Laqf8nu/7dKe7yTt5BjMWhkEleQLAdx/v5gNXLdMuiLPQfKi7Z9PZuobv689MOIcA7tjZS28yX1lgvaQpNu8XW8+F+nu87QvQGe88pbbvVPpSBX66vWdCme/D/oFMJQkJQFtNhLYatYtnu7lQd58rXUxzLHOMSCBCZ+L0JwMnwjabz1L/7vajI5PKvvt4F++/aiktmnQ/rapRdw8NZickIAHY1ZOieyRHfSzI8pY4y1viAJS8El2p8jV3QXwBQUsL32TcXLz2zia9mV5Gi6O0RFqoC9dN+v5UfXff3jred3e2dNRF6DjH+wTnQt3NlXIczRzFNm06E52YxsTE3qmCy1/9YPuk6/m+voySkJzj5kL9FZmK6u656cQ+mqjRzDcf7Zq0Y/gzR5NctrxpqrfPCTNZdw8NZuhNFUg5A9REHQaTNo8fHuXYaF5JSOSM6Np7bjk+bphzcnTEO4jZ5+5YRjXq7uGhLPsHstz9bA83bA5gGz6m6dM1nFMSEjkt1ai/X3v4MPfu7p9Q9r0nuqdMQjJdY2wi5xK3WMQ3wLDzMJZ75LnPNSIiIiIiIiIi8sKmO236EsMw/h5YB1R66n3fX/ZiD2wYhk05Acmtvu9/d6rX+L7/GeAzABdeeKE/1WvmomjQYkVLnN7kxCy8s37CYP8u6HsWAiFo3QB15Q7wnYM7+Yv7/4LdI7upD9XzN5f/DS/pfAkBc/5m8T9X6+5sFg1afPRl9Tww+AU+f/AeQlaId119C2sTS6sd2pwzK+pvZhB6t0NmABqXQct6CLzwpJ09w3v4qwf+iu0D26kJ1vBnl/wZNyy+QYsvTqIxPvn3srQpRmyO7sIyK+ruSfRmevnc9s/xrV3fAuAtq9/C+za+j5Zoy/O+b0ljdFLZ6rYEYduc4tXTIJeE3m2Q6oH6ReVzLzg5Bples7HuRoMWK1vilSQkTfEg//Myi8trn4LdB6FtI9S0n/Hxh3PD3PrsrXxu++dwPZdXL3s1HznvI0oeNQfNxvp7VpTy0LcDhg5AvAVaN5C1Q/xo/4/4163/Ss7JcXHbJfz+q27hX24frrxtWXN8zt5Xz3Xzpu6eBUO5IW7deSuff+bzlWv4R8/7KB3xjhd97PoTJuqbBvzhZXGuqe1jwbFfgL8Omle/6M84F8za+juwB/p20hNr4L+77+bbe2/DxORta9/Ge9a/h+bo6ScyiwUtOusjHB6amBitXos65qRZW3dPYv/Ifj7x0Cd4tPdRooEof3TRH/GqZa8ikuqFnmcAH1rXQcOL7io/I1Ml3lHb4+yoRt2tnSJ5QSxokQhP/PsO5Ab44vYvcuvOW/HweMPKN/DBTR+cmCjcc8tt2YE9EK6Dtg3lNq3MC3Pt2jtbuJ7L/d2/4q8e+GuG8kMsr1nG317+N6xvPW/C6xbPdN/dPDLb6+6Rod386xP/wV1d9xKyQnx484d546o3UhsaT2IaD1osboyyuzc94b31MbVlz3Wzvf6KnIzq7rmnL9vH57d9nm/s+gYAb1z1Rt579SuJpdJcFDmKicszTifx2T5X6QXMZN1tigf409c5/J8df8ZQ/xDLa5fzD2/9I+IhPYvLmdG1d5bLDpfnLqX7oGFJef6EPXWyi2wpO2Hc8JK2S/jzS/+cpbXn5ry1qvSXRW1+65p6qP0VX93zDTw8Xrbm1YTDS4D6F3q7SEU16u/6BTWTkpBsnGIjlP5sP1945gt8befX8PF548o38sFNH6Q11nrygyePQs92KGXLY6kta6c7fJGq80pFmtekCDsHMPzNhA2fkexZ22NXREREREREROScNd2z2r4A/F/AAa4Fvgx85cUe1DAMA/gcsNP3/X97sceba6LBAB+/YdWESYjrO2o4f9EsHgzpfgz++zr49rvg62+BW98IQ/sZyY/w5/f/ObtHdgMwXBjm4/d+nP0j+6scsMw3dsDgWOlO7um+B4CCW+CzO/4vdmhflSOT05YZhJ/9CXz5JrjtFvjstbD7Zy/8tlKGf3j4H9g+sB2AZDHJn/zqT9g9vPtsRzxnbeqs44LF4/eeoGXyZzeuPau7dM5Xv+r+FV9/9uu4vovru3zt2a/x6+5fv+D7LlveyPLm8d1x4qEAv/mS5QQD1vQHWcjAr/83fPFV5XPvv6+HJ79WXqwk807YtvjYdSuJ2BaWafCFl3q86sG3Uvfj98PX3gTffCeMHDnj4z/W9xiffvrTOJ6Dj8+P9v+Inx/4+TT+BCLT7Jnvldskt90CX3o13P2/eKb/aT7x0CfIOeWF8Y/0PMze4g/YvLC8I30oYPJHL19NLKzJx3JueazvMT6z7TMTruE/O/jC7fVTsb4jwfVry4uiP/GSGO879Eesvef92Le9Bz770nLfhMxOR58stx9/+FF+eexBvrnn23i+h+M7fHnHl3nw2INndNiGeIj/+doNWKZRKbtmVTPrO2qmKXCRqRWcAv/15H/xaO+jAGSdLH/z4N+wo+cx+Pwr4Ztvg2++HT53Q3lybxWct6huwiTlUMDkD1++mpgWPp0TVrUleMelE3fh/Jub1rOoYWLCgwePPsiXdnwJx3fwfI9v7/42vzzyy4kHO/BL+Mw18J33wldfB9//rXLyURE5qf2j+/nde3+PofwQAPuS+/mT+/+CoeEDE153+fKmCX13saDFh64+S313Mmt4mQG+tfNr3NV1L1Aej/rk459k28C2Ca+rjQb5q9esx7bG27KXLWuYcpGRiIjI2fDA0Qe49dlbK+OT39z1TVqadvGuA3/Chvs+xLr7PsKbnngP19b1VjvUOSMc7uUfnvjz8Xbi6D6+uOfviUfyVY5MRKZdPgn3/G15XPC2W8pjFM9Muc8eAM8MPjNh3PDhnof5zNOfoegWZyric96q5ijrFx3mK7u/WukL+9nhH/Jo/z3VDk3kBd20uYPmeKjydVM8yE2bJ2/w8MCxB/jKjq/g+i6e7/Gt3d/i3rH+hykNH4avv608j+fb7y7PaTjy8Fn4CUSqyy0WCSUckkSJu3lihku64FQ7LBERERERERGROWe6ZxhHfN+/yzAMw/f9Q8DfGIbxK+CvX+RxrwDeCWwzDOPJsbI/833/Jy/yuHPGBYsb+MFHrmRPX4qIbbG2vYaO2bq7iFOA+z8JhdR4Wf9OOPhrepdczJ6RPRNe7vouR1JHWNWwambjlHktmR3kZ4fvnFT+zMCTXLP0+ipEJGes9xnY9q3xr30fbv84dF4INSffXX0gN8AjvY9MKj+UPMSGpg1nI9I5r6Muwv95+/nsPJYknXdY3hJnTVui2mGdk352YPLC3J8f+jmvW/m6533f0qY4X77lYnYeS1F0PVa1xlnRcpb+RgO74P7n5Ib7xZ/BsquhaeXZ+UyZ1c5bVM8PP3oFqeQI6+77ADgnTKDsfhS6t0LdwjM69oNHJy9Evv3A7dy85mai9uRdhEWqavgg/PQPJ5Y99gUOLjt/0ksf6LmH/7rpN+kdDrOiJc6aNi2Sl3PPVNfwn+z/CTevfvHX8KZEmL9//Ube05PivMEfExx8dvybxXS5b+IN/w2B0EmPIVXgOvDw/4P8CN7iK/jJ8OSEDHcdvoublt90Roe/amUzP/zIFewfSFMTsVnXXktzQnVAzq7B/CB3H757Uvnh4T1ckDo6XpAZgKe+Dm1/O4PRlXXWR/nMuy5g59Ek2ZKrtsc5piZs8wcvW82rNrTTny6wuCHKmvYayvndx91zePIiix/v/zFvXPVGLNMqJ/u9/ffBO2Ey7t474NjTkGg72z+GyJzVlTyM402cxH4wfZjekf001I/vYr2kKVbpuys45b67la3qXz3XjQwf4GfHJieY3tb3FFcuuHJC2eXLGvnBR65gX3+aRNhmbXsNrTVT75wuIiIy3e44eMeksl8cuYs3R094dswNE37yS9C5GZ7zvCGT9ST34/gT24kHkgfpHTlAfaShSlGJyFnRtxMe/ezEsp/+ESy6HBqWTHr5wdGDk8ruOnwXv3P+79AWUx/MdIjkevj1sQcmlf/kwE+5ec1bCVrBKkQlcmpWt9XwnQ9dxrO9KXzfZ01bDUuaYpNed9fBuyaV/ezAz3jzqjdP6hsGoOsROPbE+NelHNz9t/DWr0Nw8vFF5iqvWMQ3IEuIsFcgDGSUhERERERERERE5LRNdxKSvGEYJrDHMIyPAt1Ay4s9qO/79wPzfvR6dVuC1XNhsXcpB71T7Og5tJ+aVddTF6pjpDAy4VsNGlyXGRYxDNbVLuVo5uiE8sXhF33JkpmWG5pclumfmAhpCnE7TkesY1IdaIw0Tmd055zWmrAmPc+A81rO4+GeiTtNbGnackrvXVAfZUH9DCRlyA1PLnMKkB89+58ts9bK1gREMzC4e/I3k8fO+Lir6icnq9vYtJGQpQXFMgvlk5PbIb5Hkz15ke/KupWsbW3hooXxGQpOZOatrl89qWxT86Zpu4Y3J8I0J8Jw6PDkb/ZuL/dRKAnJ7OIWoOdpAMzRI2xZfh6P8/iEl2xs3HjGh7dMg/ULalmvHeNlBsWDcVbUreDZ4WcnlDdiTX5x9+PgeWCaMxTduPbaCO21szSxtbxoddEgl69oet7XbGjewB2HJy4sPK/lvHICEign8Ro+OPmNucFpilLk3NQYnPy8VxOsocZ1J5XPWN+dzBqx/ChrE0voyfRMKF8cXzDptaZpsK6jlnUdasuKiMjM29yymfu675tQtqV2Oex4aOILjz0JbgkCWrz9QhoCk9t9NcEaEsZ0T9cTkarLTtF3UkhBITnly5ujzZPKVtatJG5rzHDaZIdZF2nnR88p3ty4Htu0qxKSyOlY3BRj8RSJR060qXkT93RNTDy9pWXL1AlIAEa7Jpf1PwvFjJKQyDnFKxUByPphon6BoG+RVhISEREREREREZHTNt2jmr8LRIGPAf8LuBZ49zR/xrzjeT5dQ0nSRZ+jowWGM0UWN0a5aEnDyTuLqylSB5vfCvc8Z0fPxZfTHm/nry/7a37/l7+P53sAvHPtO1lZt3Lm45RTcnAgw4GBDHWxAI7jky64LGqMsrw5Tq7osKcvzWCqQEttmKF0kXDQxLZMhtJFWmrDjGZLeL7PipY47bURhrNF9vSkcDyPRDjIQLpAQyxI3nEplDwaYuWyWDDAytY4ddEgR0dy7OtLEwlamIbBSLZIa22Y4UwJ2zII2xaD6QItNeUd5EMBk339aQ4PZmlKhMgWXRzXoy5q058qUh+1AYtblr6WRwa2kSyWB3w3169mfWIFz3SPMpQpErZN7ED5Z2mtCTOSe87Pkimyp3eKn6XkUnDKP8tgukAkaLGqNUFdVJNwzoqG5WBa4J0woXvxlVDT8bxva4w08leX/RUfvfujlV0qX7v8tVMukhToGs5yaCBDXdSmazhHpuiyuCFKImSAGWB5cxzLnIX3pDnqFUtfwQ/3/5Cj6XKSnM54J1ctuI779/RjGAYrW+IMpPIcSxYouR4L6yMcHsqRK7ksbYyRK5boT5eoiQTY3FlHQ/wsLLytXwzBeHmB0nF1i6B24fR/lswJ6VyJPb1JPN9iw9o3Enrs0xNf0Hbmi4kv67iMVfWr2D1cTm7SEG7g5jU3jy+UE5lNajuhZT30PTNeZgVZX7uclyx4SWUSdyQQ4X3rPsZTh3LEw0UMwyRfdPCBSDDAgYEMpmGwtClK93AOO2CCD/FwAN+HXNHFNA083ycWtDAMsEyTlS0J4mFNYJbZ47KOy1hZt5I9I3sAaAw38pbVb5nyGt41nKV3NIfnl3ciMk2DWDBAyfXIlzws0yAaNDk0lCMWDNBaE8Q0DEwTlrZdzKSpcZvfWu6jkNklGCv/bX7xFzBymNfYLfwk0kpPrheAhYlFrK+7nO9sPcKy5hixUIDu4RyttWEsw2A4U2Q0X6I5EWI0WyIWCrCqLUEmX2Jvf4ZM0aEpFiKZK9KUCJHKORQcD8/3qI0EGc6VaK8J0xQPsbsvRSrvsKo1TsA0OTKUpTEeZEVLglhI11I5dTXBGv744j/mw3d+mLybB+ClC1/Kutjk56Pc+jdztD/FSM6lL1Wg4Lisak1UFhv3pfLs7U2X+6Ba47TVREjlSuzpS5MvOkTGzomQbbGhI4FpmhwcSONjkMyVz42VLQlGckX29aUJ2xbLmmMMpAocHs4Ssix8fIazJRbURQhYBsPZEiXHoykepOB4dNZHp9xVUWan7qEsuZJDvuRyaCiHaRgkwgGG0kWWNMVY3ZYgZJfvu9cuvJbv7v4uh1KHAGiNtvKa5a8ZP1i8FdbeBDu+P/FDGlbM0E8jMnf4vs/+gQyHB7O01y3klpVv4vN7vg2AaZj85ep3UE+cXzzTM3ZtDeO40J/OEw8GSOYdaiM2juuRLbl01EYYyhYIBSxGc6VyYrX2Ggqux7M9KYKWyZLGKCtbE7NzbFBOKhRt5jebL+GxoR2V8agtDetYmtjA95/sojkWJhG2GM05jOSKNESDREMWXcM5fB8WN0ZZ11GLbc18AjMREZlfrl90Pd/b8z260uXFqR3xDl7RcRWM/uPEF255mxKQ/H/27jq8jirh4/h3rmuSmxt3r7t7aSkttMWluOvitrzLsujii8uyuLtrSymFQqm7JE0bd73u9877x7RpQ4rt1jmf5+GhGT83k7kzZ875nd+p0JLNOfmzealS6QKvklT8o8+5ZMZl7ecjEwRhj0ssUALRI8Gd05L7QlzP8EGAvva+TMqcxHf13wHKe8Prhl+HRSdCSPaYuHTGqyy8a82hwq0E2Scb7JxQMEs8VwsHhQ31TiravCDL5CeZGZCV0GOZqblT+XDrh9RsP8fTTGnMLJj5yxvNGNxz2sBTwPTr4daCcLCJhcMggQ89RjmIFh1eEUIiCIIgCIIgCIIgCILwh+2x1vSSJKmBk2VZvgHwAOfuqW3/2VW2evCGZd5cVsOby2oBMGhVPHrKYKb3T9/PR/cLBs1RUrPXvAYaI0z5O2SPBGBS9iTeOOoNqlxVGNQG+tj7iBdoB6iV1R2c88JyhuXZSDDq+GhNPQBGrZpXzx/B8qpO7vuqjGunlfDupxtRSRLHDM7giQVbuWBCAT+Ut7GpUWlQmZNo5OkzhvGveVtYvK2NG6f35sF5ZUwoTkaSYO7GJm6Z2ZfHFpTj8IUBOLJ/GpdOKuSS11di0WuY0juFZ76v4LLJRXy1oQlvMMIZo3N5ZP4WIjEZSYI7ju5HTqKJi15dyYz+aTj9YX4ob+PmmX14aN4WhubaSDTr+HB1PXdOjuPlPpdTG2zEoNKSqs9lY0si9y9URmA+bkgmjy8o5/zxBSze1sbGBhdZNj3nTjaRnuTH5TXw8bIIR/TJ4YG5ZUwoTkIlSXy1vSyPLyinc3tZpvdL5Y5j+pEaJ0ab3eNS+sApr8Nn14C7EfImwFH3g976m6uOTh/Ny9NfpspVRYIhgV62XtgMtn1w0AeXjfVOznt5OU+fPpSH55czf3MLAPFGLY+fOoSFm2oYU5LKtL5p+/lIDx2FCYU8NfUpyjvLkSSJbEsB177WQGnTFuKNWm6d1YctLR4WlrVy17H9ufOzzSyp7AAg2aLnoVMGcdXbawCY0juZu48bQNqeHu3aXgSnvQ0fXw6dlZA2CGY/CtbUPbsf4aAQCkeZu6mJcEzmlo82cOfEmcwqacFS/hHo4wlPvQ1txtDfvb2YHKPSWUmtu5ZEQyIF8QU8PfVptji2EIlFKEwoJNsqAm+EA5QpEY5/Rrk3qVuuhDPNfpSU5L7cOf5OqhzVNHia8YVirKuWefn71dwyqy8pFj1qlYQMXP7Gamo6fAD0TrVy69F9OfXZpZw5OpdOb4gj+qVR5/DxXVkL0/ul0+ENUpJqZU2tA5UkccXUIuKNohG4cGDIicvh6cOfptxRTjQWpTChEJvBxrrWdXQEOsiyZlEQX0Bpk5v3V9YxIjeRVTWdaNQq+qbH0eYJ4fSHeWtpFTfP6s95L6/E6Vees6b2SeEvkwtx+yK8vs7ClWNuI33lgxDxEx10OupBp+7n0gu/qN9x0FkNK1+k6PuHeeG4p6k22nCEOpBkI5+s7uSrtXVcOrmQB+duIcGk5bxxeei1ah6at4WrDi/m5g830O5VRrF66rQhLKns4J0Vtdw4vTf/+Ggjdx3bn0/WNNLuDfFtaQtXHV7MlW+tJRhRQnHPGJ3DtlYvmxpcXDGliAfmlnXNu2JKERdPKsQigkiEP2B42nBeO+o1KpwVqCU1vWy90IW1BMbdgGHp4yDH6BhwAd7UiTQ4Q7y3so6P1yrBk0atmv+cOYysRCOXv76ajdvr0wqSzDx9xlBeXVLN91vauGlGb/7vow1Utyv3CX3T4zh2cAYatYoH5pbhDysBrU+cOoTbP9tEqztIls3IX6f34p2VddhMOjzBCAtKlef6OKOG24/uz/XvriUakzHp1Fx/RC+ueXsNz5w5nKG5oo7kQLe1xY3TFwRJxS0fbeyqi82yGTllRDaPfFPOncf2Z3iuDb1WTbo5nTvG3UG9px67wU5uXC6Z1l06w2gNSl1+JAhbvgRzEhz5AKQN3E8lFIQD10/b2jn/5RVd197PLziBCZnjqfc1k6KNI8Mn8ZcFISb09fPF+kbOG5fHE99uZdbADB76euc7jfPG5bOkop0WV5B/Htefmz5YT12nH7VK4u5j+/PPLzbjCigN5Kf2SeHiCfmMLBAdQw4qqX3p52vnPyNupjLsxqQzk28p4KT/VHLu+Hz0KhWrar089PUWZBk0KokbpvfihR8raXYF6Z1m5dZZfRldaBcd5QRBEIS9qiChgBemv8BWx1ZkWSbbmk1NZy21Jz5DSdtWMn96Bk/fObjTp3CAtlQ64LTE0jgp51hGZ06gLeQgy5BMtioFTPb9fWiCIOxpyb3g1LfgkyvBWQuZw2H2I2De/d97iimFO8ffyZbOLUhIeMNegtEgzb5mUk2izcWeUB00oU8YxQOJBWyNedGq9eSas0k19d7fhyYIv2lZZTv/98EGtrUqA0MVJJm578SBjMhL7LZcfnw+j095nHJHObIsU5xQTGFC4S9vOHMYzHoE5t8KQTcMOAmGnw8qEXwqHFrkUBhJsz2EhCCamAFXMPrbKwqCIAiCIAiCIAiCIAjd7LGW9LIsRyVJGiZJkiTLsryntvtn1+zwodeqKG3xdAWQAATCMe74bDPFKRYKUn67o/0+l5ADRz0I464CtVb5ebsKRwVXLriSFr/S2H1w8mDunXBv98bOwn7n9Ie549NNuIMRhuXa+Ne8LV3z/OEoq2sd3PdVGVk2I3Wdfmo7/FwxpYh/L6zAoldGZ9/R6B2g3hFgeVUnC0pbOGFoJq/8VIUvFKV/Zhz/mreFCcVJzN3Y1BVAArCt1cPry2pocAS4+vBiHvumHLtZ6SyxrdXDJZMKeGrhViIx5ZIjy1Da5ObJb7cRjMQoSrHwr3lbmN4vjfdX1eEORhiet7Mstyx0MTI7nTsn92FxlYsHq9UUpYao6fBx+ZQinl64DZNOgyTBxgYXdrOOsw/38cTGG4iUKo1+T+93Aauq9dvLEs+/5m1hXJGdrzc1dwWQAMzd2MwJQ7M4op8IIdnj1BrodSSkD4GQGyxpYPh918XlTcu5fMHlBKPKSCSnlJzCFUOvIF4fvzeP+KASjER54tutDM5OoKLN2xVAAsp14rFvyrnj6L6c8cIy+qTHkWUz7cejPXRUOCq4+turqXJVAZAXl8/0ITdS+iUcOySTJleQ/3xfwd9n9aa0yd0VQALQ6gny8uIqrjm8mIfnl7OgtJUVVZ3MGrQXrj954+H8ryHgAHMyGBP2/D6Eg8LqWgcqlcTdn24iHJW56VsPn+ady/Fjz2VUUTphczr5+t8/kvpPDT9x5YIrCcWUjsVn9T2LiwdezPjM8XurCIKwZ6UNgDM+AE8z6OPBmgJAKBriqbVPs7TpJwAS9AlcedQ9/GveFu4/YQBRWWb+5uauABKA0mY3yyo7GJFn49Ul1Vw7rYRVNZ1kJhgYW5jE15ua0aggzqilf2Y8//fBeg7vm8roAtGIWThwpJpTSTUrjWY9IQ/PrXuO5zY8B4BGpeHhSY/w9UobowuSqO7wYTVqcfrDBCMxaju8vLuyngdOGsgjX2/pCiAB+GZzCzMHpDN3YxNzN7r4PmEQFw1+E6NGJiEtnyMSRGDVASs+C6bfA6Mvo9MfZWvIx91LrqfJ1wRASUJfbjn2b9z1cQWhaIzjhmSyucnN1hYPvdOtLCpv6wogybIZ8YQivPJTdVd9w4z+aZQ2uUm06HhxcRVnjMrh2UUVXSEjAK8tqeG6I0ooTrHwzHfd5z2+YCuH9UoRAQzCH1LlrOKmRTex1bEVgBxrDreOfIA32o7kxOkzqOvwUhO1MykWz5YWd1cACSh1bQ9+XcasAeldASQAFW1e1tU5eW1JDX87qjfflbd2BZCAUvc2tU8yC0pbujrBD8qK5+O1DbS6lbqOYwZnUtnuY1F5G9dOK+Ghr3fW8bn8EV5eXMXkXsl8s7kFXyjKq0uqmVCSzB2fbeLV80ZiNWr36ucm/G8qWjykxRlYtK29W11sXaef6nYfUVnmm83NpMcZyEjU8MbmN3h41cMAqCX17uvlk4rhxOfB1QA6M8Rl7MsiCcJBoc0T5KYP1nVde+OMGpa6qnli498Jx5T71WPzzyCoHsXLP1Vxy8w+vLuyjvHFyTy1cFu3dxov/FjJ1YeX8PDXW3h/VR1JFj11nX6m9E7hjWU1XQEkoNz/jshLJC/ZQorVsO8LLvx31FrWxCVy6fxL8YSVzkOTMg7nmOFzqGrz0jfd2hVAAhCJyTy+YCunj8rhme8rKG1y8+O2djITDOQkiUEdBEEQhL0r3ZJOuiWdBncDf/vhZla2rADAbrBz+4nv8MAXAc7K0HGyqHb7XRrdbhY0LuGdbc8CoJE0XDHgNkZpcumXKdokCMIhRZKgcApcuAACTjCngPHX/85tBhvJxmSu+fYaKlwVABTEFfDIYY+Qn5C/L476kFbXEWCLO8RLFffTEVDa1AyyD+eawbcwzFqwn49OEH7dt6WtXQEkoLwr+GZzc48QkipnFdd9d1239xKPT3mcgoRfOMf1Vhh+LhQfDpGQ8r5Oo99r5RCE/SUWCSPpZPyyAbPsQxML0xCM/PaKgiAIgiAIgiAIgiAIQjd7Or54NfCxJElnSpJ0/I7/9vA+/lRiyGjUEu3bG43vqt7hp8MX6vrZ5Q/x07Y23lley8KyFjp3mbdfaHRgL+wWQBKJRXhj8xtdASQAa1rXsLRp6f44QuFXuANhNjQoDdd37Yizg8OnVMjm2c1saXYDIAOhaIy0eAM1Hd5uy1v0GqrblWnpCUaqtneY2LHtPLuZ0iZ3t3Xyk8ysqu4EIByVicmQbTOxrUV5waJRq/CFuqdT28w6mlwB1CoJ//Z5+UkmyrZve9eyGLVqhuSnssJjw6VPY0JJMuXNO49hZ1mUYz12hImXy+8nIu+sjH59y3P0zvF223a+3Uxp085G/zvs2plU2Avi0pROEr8zgKTD38EdS+7oCiABeHvL25R1lO2tIzwoOXxhZg1MZ2JxMmadhnPG5nabv7nRRTAqE4rI3UKEhP/NvKp5XQEkAFWuSjzq1SRb9FgNGnzhKDEZshJMVLZ5e6y/qcFFr7Sdfwsuf5h1dQ7mb2pmc6OLcDRGk9PPwrIWvt7YRNVutvG7WZKVvz0RQPKn1uIOkmjWcccx/bnt6H48fuoQjEYT133jYWmHCUn1+0dpbfW1cuviW7sCSABe2fQKWzq3/MpagrBv1bR7mbexic/XNfDTtraua2s3hjjl+rg9gARgTcuargASAEfQwZL2d8iwafGGohh1KtbVOXvsb329i0m9kgHlHnVbqwejTkMoKlPa5CLHbsbpjxCLySSYtF2djgXhQFTuKO8KIAGlnuC2n24lOSFINCbjDkYIRmIkmJRO7zGU+g+dWmJzo7vH9hqdfiq238vUO/zc+r2bGxd4WFzVc1lvMMK6OgdzNzbx4eo61tc5Ce3meVfYRzRasBfQoEpmfv3HXQEkAFscm+iIbSS4vWOvVqMiI95IaZObvKTuz9y5dhOtbuW+IS1eqW/ItZuo7fR1PacnmHU0u3ZeG08clsXVhxdjN+s4rFcyZ4/N5fIpRVx3RAm5diVYsdkV2OsfgXBoWVC7oKuhL0CNu4ZFjfMx6DTcvsjLTd96SLQaCUZiOHZTbxuJylS1e3lszmDuOKYfD544kJtm9KJp+7kYZ9BS3uzpsZ5Sn7bzfvvnfyMalYQrEEaSIBDuOcpbaZOLPPvOwMDKNi8ZCUY21DtxBsRz/oEuGIlhMWrY1NDzHrKu08eF4/NJjTNQ3uJmdVMpj6x6pGt+VI5y20+3Ueuu7bEuOrNyLysCSARhtxocfo4ZnMk100qY2ieF44ZbeXXrA10BJAAfVb7G+L4Rqtt9aNQqNje60apVeLY3dlerJM4dl8dVU5V7kksmFbCl2dN1Td7dOxMAdyCCU9TDHlQ8IQ8PLH+gK4AE4LuG+eRldNDuVZ6DHpszhNuO7sdDJw/iL4cV4glG0Gp2vsYvbXLhC4tnF0EQBGHfWdmysiuABKA90M5n9R9z0ohs6hz+/XhkBxev3NAVQAIQkSM8X3o/3ljrfjwqQRD2KkvK9vYTvy9o6Ovqr7sCSAAqXBV8XfP13jq6P5VgNMgq5wddASQAa9tXsM29fj8elSD8PlmJBh48aRB3HN2PJ04bQt90C2tre9YBf1v7bY/3El9UfvHbO4jPVtp2iwAS4RAlhyNIEvjQY5KDGGLhrnpZQRAEQRAEQRAEQRAE4ffT7OHtJQLtwJRdpsnAB3t4P38aWrWKQChCps3YY16fNCvp8cp0TzDC5+ubuPnD9WwfQI1Thmfxt5l9iT+ARqsMRAKsaV3TY7ro9H/gsZv1TCpOYkFZKwaNusf8ZKsOjUpic6OLowdnsKbWQTgSw6rXUN3u44h+aczd2Ny1vCsQpndaHABlTW4GZcWzts7Zte11dQ5G5Scyb9POdTbUuzh6UAblLR4kCfQaFeUtHs4YncMPW9vwBCIkWXS0eXZ23Gjo9NMr1UJZsweTTrnEra1zMjI/kR+3tncry3VHlPD0wm1doycPzbExZ0Q2q2ochCIx4gwaajt8HNk/ja+ARGsEZ3PPlzlxZqUziFGr3mV/duZubOq2XEnq7wvHEPYNd9i9204WrX7R4GdXi8pbufG9dd2+W84Zm8tLi6sBGFeUhE4lkWDSkhInXkzuKSuaV/SYVu3dQJZtKE3OAEXJFvQaFVuaPfRNj+ux7ITiJBaWKoFf/TLiaPeGOPqJHwGlg8ML5wznvi/LukZJjjdqef2CUfQXI24J/6XCJDMfrW3gP9/vbCD195l9cPtDZCQYCEV6dnb8Je6Qm2Zfc4/pbf62PXKsgvC/Km10cebzy2j1KJ3Zc+0mjhmcQVGyhdmDMpCkXw7dqXZV95i2zbWJIwqMWA0a3IEIE4qTWFXj6LbMmIJE3lhWjVoloVWrGJAZj8MXQq2CUQV2SptcHNk/HUmSaPOEyLaZ9miZBWFPave395wWaCcvRUIKgc2kxROM0uQIkGo1oJYkeqdZcfrCjC2yd3vOBKVz5tBsW4+O+YOyu9/X+EIRPl3bwNLKDj5cXQ8oAxM+PmcIswaJDtb7k0kXpbRzbY/p21xlDMyewU/bOnD5w7S6g4zKT2RdrZNR+XY+WdsAQGmjm5OGZaGSoLzZzcCseNbXOemXEceOjJm6Dj9FKRa2tng4b1wey6s6eW9lHZN7JWPRa/hsXSMAKglunN6b/yzaRk6iuJYKf8ya5jU9pq1rW0m+9jBG5CVS3uJhQWkrA7MSSLH2fH62m7VM7pXC5W+s7grQmVCcxOWHFQLQ6AwwNCeBVTWd3dYbnJ1Au2dn4PP6Oicj8xKp7VCudb5QlESTDlmmq65sV6Pz7aytdXTbXmmji8m9krGbxXP+gc5i0OAKRBiVb+fz9TvrIiUJTh+Vy/99sL6rYe3fTgAZudv63rAXR8BBtlUMYy4Iv9eKqg7OfmEZ3u0h6FP7pNAnU8MHa3vWWwRlBwMy0/AFI4zKT8QdCJNs1dPqDnLZ5EI+XtPQFV6ebNFz88w+PL6gHNj5zuT78u7bTTRrd/s9Ihy43GE3ZZ0934M6Qu30SsvHF4pyzTtriW6vhJ89MJ3/O7I3Dc6doXjDc23EG/f0a31BEARB+GW7dmbdYWPHOgqSfIwuSN8PR3RwCtOzfYkr5AK1GMBGEATF7tqGrGxeuR+O5NCTliCxZcPGHtMbvD3f1wrCgaS2w8fCsja+3t6OVquW+NdJg2l19wzPX928use05U3LkWX5V9stCMKhLhYJg0rGJ+sxEkSOhfDvJqhfEARBEARBEARBEARB+HWq317k95Nl+dzd/HfentzHQSXggqofYPXrsO1b8PXsaPNbkqxGwhFIj9Nxy6w+mHRKyEGu3cQts/uSub1zWXmzmwfnlnV1Egd4e0Ud6+sce6Ike4xFZ2F63vQe04enDt8PRyP8GqNOzV+P7E3f9Di+2tjIFVOKukI2CpPNjM6389ipQwhHY0jA5JJk3l1Zx1WHF2PRa2h0+Jk9KJ0d7zKO6JPK8FwbV04p4vstrcwelEFBkplvy1q4ZFIBpU1uBmUnMHB7B/iLhpr54Agf1yQvZ+4JOsrrmrl2WgkatYTLH2F6v1Q+WFXHZZOLuhrcxhu1HDUwnQdOGkSu3cRPFW2cOy6PlVWdTCxOpnealS83NHLllCJG5yeyeFt7VwAJwKqaTjzBCIf3SeHdFbVcObUYq0FDvcPP0YMzSDOnkGXp3iBfLanJjc+iMNnMN5tbto9W6KZ/ZlxXWbRqiWunFTMoK2Hv/tKEP8RusDM0ZWiP6T06XbgaoexLWPMG1K2ASM/Rig9VpU0u7vxsc4/vliE5NkAJt7hgQj7P/1jFY3OGkGI17KcjPfRMy53WY9rw5ImUt3j4bF0DuXYjN87ozcdr6slLMvLC8Vl8PsPLwmkNfHqcgdOGpfHWijq0aomLJhbw0PwtXdvRqVUsq+joCiABcPrDPP9DBZGoGE1T+O84A+FuASQAD84r48rDSygxusnrWARr3oT6VRD99dF6k4xJ9E3s22O66BQnHAhkWeatZbVdASQA1e0+vMEo935ZSk37rzcc7mvveW6PTJnE+PwcorEYBq2aUfl2pvZOAZTOo+ePyea4tDZeGFLJ0uMCDIlT7jXj9Bo21DsZkp3A7IEZZCUY+aG8lbuPG0DvdBF+Jxy4Mi2ZqKTu1VEF8QUMSMtiU4OTaRkhzohfx/Xpa5hkbaB/hpWzx+bx0PxyzhuXT/8MJYBNp1Zx2eRCMhOMHDskg1H5iYASuHb2mFzGFNi77aO82UOLO9gVQAIgy/C3j9ZT2yEa/e9P+Ul2pmT1vP/NMgxk9sAMMhOMfLCqntEFiRzRNxVQ6iWGZCcAyr2sSavm5pl9WFrZwTGDMyhtcpNpMxGKRvnLYUV8U9rMaSNzKEoxY9RpWF+vdAAZmmPrCiABiMnw7KIKHjllMMWplr1feOHg5qiBzZ/B2regcR2HZU/uscgRudOZXJJCeryBMYV2Fm9rxxeKUpJq4erDizFolethYZKZm2f24f6vyroCSAAWlbfR4Axw1zH9eHtFDcNybUzptfM+4YRhmZh1amYOTCc/yQwoYSUzB2YwtlC5Dn6wqo6SNAvnjM1lSUUb543LQ6dW9tsvI45TRmSzoUH5myhMNjN7UDrNrgA3TO+NUdczmFg4sPRKs+IPhxmQFc8JQzNRba+LvWB8Pm8tq+k2sp/fH4dW1T2wPMWUQqrKAJs+gbVvQ9N65QtSEITdcvrD3P7pxq4AEoBvNrdgVtsojC/qtqyEhE2XzrFDMnhgbhkz+qdR1eblssmFlKRa8AQjXQEkAK2eICurOxiSrdS9Lq/q4MRhWfTb/nyn16i4cEI+o/ITiTfp9kFphT2itYzExo1MyhjXY1a8Jp0ReTbu/GxzVwAJwKfrGslONPL+yjokCY4elM6wXBvpCSIkTxAEQdh3BicP7jFtWNJk3lraRqf319/zCDvZdKlopO5BYhnmTOI09l9YQxCEP4WgB6oXw9p3mJYxvsfsw3MP3w8HdegJBPWMTZvUY3ovW7/9cDSC8Putq3d2BZAAhKMyD8wrZVRBz/uHw3IO6zFtRsZ4pG3fgrupxzxB+LOQIxEkFfgwYCKINhohFIkRi4n3H4IgCIIgCIIgCIIgCH/EHh0ySZKkx3Yz2QmskGX54z25rwNeJAzLn4Nvbt85beTFMPUfoP9jnRjyU620OH0c2S+VAZnxeAIRsmxGStLiupZx+cO0e0PEGzWcPiqH0kY3C8paaXUHf2XL+8fswtmUdpTybe23qCU1Z/U9i6GpPYMAhP2vV1ocb1w4ilZ3EKNWxYnDsghFYiSaddgtenqnxzEoKx5vMIrVoMEXjqCSJGb0S8UXimExqLnm8BJAJjXeiFmn4YopxRw3NJNYTOaoAel4gxFMWhVzRmQTjsocNyQTTaAD+8KbUH/yiXIcwBOzHqelcDhHDUjDv33bgXAMFTC9byreUBSzXt0VzPP+JWPp9IUwatWcPSaXSFRm9qB0vMEoRq2KY4dkcNYLy7uV12bSopZU/PPY/nhCUVQSO8uiV9Pg9DMn7yberLyHem8dcbo4zu99I5pIGq+cX4IvGMGoU3HqyBxCkRgnDM2iwxvCoFWTazehVe/R3Cfhf2TRWfjbqL/xf4v+j3JHOUaNkZtG3kSJrWTnQq5GeP9CqF6k/CxJcPKr0Gf2/jnofczhC+P0h0k06ZhQksTGeidbW70EQlFePGcEGfF6ojG46ajeIoBkD5uUPYkN7Rv4eKty+3Rs0bHMLDqMSZdYkCTIs5tw+sMMyIwjUXYyZPM/UFUuVFaWJELHPs9nV0zFqFFR0xlAlpUAs+l906h3+Oj0hRiQGU9dp49On9JQcF2dC18oSpxRXKuEP65teyBD/4w4JvVKZu7GZra2eMiQOkn84nKkuqXKgpIK5rwBvY78xW3F6eO4bext/HXRX6l0VmLWmrl51M0U24r3RVEE4VeFozFW1XZi0WuY2ieFrS1uNja4qev0YTFo6PSFyMX8i+sPTBrIZYMu4z/r/0MkFmFk2ihO73Mq2pgOJBXRqAySzF3H9ufcNg9qSWJ4dC3aN08iMaZ0chufNojO2S9QG2+nf1Y80ZiM1aAFZK46vIRcu0mMaiQc0IoSirh3wr3c+dOduMNucqw5/HP8Pym0p3HdSB/ad05Dat2sLKzWMvaUdyhPG8LtR/cjEpP51ymDaOwMYDfriDdqiMoy8QY1j80ZTKs7iEajojDJjFbTveN8qztIaHvgWrxRw+ReKZQ2uShr8uAOiI4T+9sxxbMod5TxTe181JKaOb1OZULWCGz6RKb1TcXhC2PSqbAYtEzqlUyrO8isQelEomDQqciIMxKOxRhXaMcbijKhKIlQNErf9Dg8wRAnDcskHI0xsdjOyz/tHOVwxzmhVUuUpFpp94RocgXIs5vRaUT4gvArOqvhzVOhZftImioNY8/7nJNKTuL98veRZZnZBbOZknMYycZk+mZYOWlYJvXOAAkmLfEGDXaznsklSeg1atLjDbR5QtR2+uiXEUeHN0SzK8CU3imYtGqOGZTJ2KIk/KEot8zqw0UT89Fr1fRJtyLLEjXtXsYW2gmEYySYtOTZzYzIs1HT4UOnVpFrN9EvI466Tj8qJGYPysDlD5Ns1aNVS7xxwWhkZOIMWoLhKMcPzcImOrgfFDISTNhMOpqdPi4/rIATh2WhksCs19DoDHDMoHS2tXrZ0ODi7R+D/N8xd/PourtwBp2kmdO4f+ydpLxzLjSvVzao1sFZH0Fuz87ygiBAIBxhS7Onx3SvX8c/x9/FTYtuospVhUVr4aYRNzMyeSChsIrDe6cQjsT453H98QYijC+y88j88h7b2VDv4u7j+3P80Ey0ahUDMuOYUJzMlmY3apVEnt1M0vZQduEg0LAGXjkafcDJZUf+k8bERtZ3bEav1nPlkCuZkTOMmvYorZ4gkgSH904h127ig1X1dHjDPHPmUGQZsm1GcpNEQJ4gCIKwbw3WJHBB4XG8VPEpETnChNSRHJ0xhVfbm+kQISS/mzFo4b4h13P7hqdwhVxkmtO5a/B1BALG/X1ogiDsL7EYrHkdvrwRgImjLuDY3Ol8XD0PUNqGTMicsD+P8JChDjo53ZxDY8owfmxZiUal4ZyS07BrRLsD4cDWvr39zaTiJPpnxfP6khpqO/zsrgXA2Iyx3d9LZE1iUuMWWHI9FE+HY54AS8q+LYAgHACUEBIZH3qMBCGqDDwYiEQx6fZo1xlBEARBEARBEARBEIRDmiTvwVHtJEn6D9AbeHf7pBOAjUA2UCHL8tV7bGe/Yfjw4fKKFSv21e56atkM/x4PsUj36Rd+C5l7PnCj1eHnp6o2QlGYt7GZ1DgDU/ukkGLR0zczfo/v7zcFXNCwCtq2QnwGpA+FuLSu2d6wlzp3HRqVhhxrDlq19lc2dkDb47379vu5uwuHL8RPFe38uKWVcSXJbGly0+DwM64oibGFSbgCYb4tbaXDG6RvRjxLK9oZnB1Phy9Mk8PPiPxEllV1EI7EmNFfGamtrMnN3E1NJJn1mPRq1tc7GV+UxOZGFwaNitR4I0OiG8j//JTuB6OPo/LEr5jfaKDdE2RQto2lFe30y4zHF4xQ1uTmvD5RcoJlqKJB2q29ebUijgHZCayrcxBv1JFo1rGmppNxJcm0ugLUdvp57odKAC6dVEgoGkOrkhiQmcCSinYG5cTj8IVp7PQzvCARtz/Ce6vqKEiRyUgKUZKUwqoKiVSrHrNBw7p6JxMKkyhtctHoCjCxOJmxhUnYzAdkp4290jN1v52/znpoWK0k+Kf0hvQhoP/lDsC7cgQcNHobsWgtZFmzunfa3TIX3ji5+wrWdLj4+0PiBV2bJ8jirW34QhEcvghrajqZ0jeVsXk24sxqftzqwBUI4w1GWV/nINNmYmhuAjazrmtEToBGp591tQ5qO/0sq+ygJNXKrEHp9N4lLGsPO6SvvTsEIgFq3bVISGRbs9FrfqGDQfl8eP2E7tMsKTSc/BXr3WYMGhXeYJSyZjfr6hyMKbDTOz2OF36opCDZjEGr5unvtnHttBKumPIHG1t4WpTve0cd2AshYwgYE/6r8v5JHLLn7rpaB53+MNXtXr7f0sboXDMnpLWR0LkOKegGfycse0YZUTshDy78BsxJv7rNzkAnjd5GrDor2dbsfVMQ4dccsufvH7WwtJmqDh+LtrSRn2xmVH4iGaYYKZ5SErzb8GsTqTb05sdmPeWtHgqSzfRJi2Nbq5c2b5AR+Tb0+nZkKYzXYyUQ0pFkMRCMRNlQ76B3mpU4gwa1pKZ/Mphfnw0tm7ofxMmvQN9j9s8HcPAR5+4Bqs5dhyvoIs2cRqIxUZm4/j14//zuC2YOhzM/BINybxmKRFlf56TTG6LO4ad3mpVmd4BoVCbBrCMWjREN+RllrEXTXkZIl0hrXD9apCSiMZnyVjdqlYofylspSrYyLM/GiLxEEv8kz20H1PnraVGe4xy1xBLzqbOW0BRxEIuqCfptbGhwU5xiocERoH96POFYjOp2L2XNHmYNTEerUfHJmkZaPUFOHp6FSlLx5YYGhuQodQ817T7OGpuLJxhl8dY2qtt9HDkgDbVK4pq312LRq3nytKG8tqSa/lkJrKlxkJFgYEb/NL4tbaG+089RA9IZW2QnWYQu/lGH9rkLsOEDeO/c7tPSB+Oe8zZ1rioIukiPSASMObSoUihvcWHSatGoobTRTa/0OBzeMFqNiianH41aTa9UC+WtHn7c2k62zciU3inM3diMKxDm6EEZTCxJxqAV4Th72SFx7jZ0ePhiQzOLKzoYkp1AbpIJCXj0m63835G9qeisw2AIMLW4iIyKhfDhRd03kD8RTn0LdLupW2srV+oBIkFIGwjpg5TQXuFAcEicv/uCJxhheWUHH66uI9lqYFxREtXtXsLRGMsrOxiWl8gRfVMJR2PM3dhMaaOLowdnsKrGQX2nj+F5iXxb2sL35W1d23zjgpFEolH0+iAqqQlbJEBGRy2SLY+lgWy+q3QxJi8JvVaiptNPepyeYAT++sF6PMGd7xGvP6KEowakUZBs3e2xO3whFm9r59O1DeQkmihOtVDb4WN8URKLt7WzudHFUQPSGVeUhN1y0ISVHLrn7mfXKp0Lx1wOKg0uex711lRkczZmVSpNziBmvYZXFlczsXcKX65vwqxXM6V3CmlxekrS4kSniAPfoXv+Coc6ce4Kvy4ShHfPI+yoonbsJYSNCWS52zGpdTTFj6VatjC64Nff8ewlB9256ypdSNy2T6gvPAynHCIFDUlr38cz6RYs6aIT/J/MQXf+Cv8Fd5NSb+JsgKRipf2E4WftZtq3Km1Kw/6uSYHcsdQecSuSKenX24bsHwftuespW4jlx3vwjjifWq0WvUpLVuMmvIXHkpBV8tsbEA4FB+X5u7SilV5JegJRiZs/KWVKrxSSLDpG5tmxWXq+zwxGgtR2lCFvW0B22dcYqn7YOfPMj6DwsO4rtFco16qQF9IGKPW8alH/cIDZG5Xue66zyEFg/YzpZPdew2DDC1zm+whXKJPXEkaw6pZpB2q7gEOFeGEkCIIgCIIgCIIgCIeYPV1zWARMkWU5AiBJ0tPAPGAasH4P7+vAFvT0DCABCDj3yOZdvgCd3hCt3gjr651UtHgYlJ1AapyeeZuaAfhwdT3PnT1sj+zvD4nFYNXLMO/vO6f1ngVHPw4mpWORWWumV2KvfX9swh+ysKyFRmcArUZNOBLDoFUjI1Hb6WddnYP19U4iMXl7O3MZs0FDOCaj16rRalREZRmDRk0oIrO+3olOLbG0qoNoDGLIaNQq9GoV4aisbFuWUUsSuoi758EEXaijfnQaM2qVipi8fX/RGFqNmlPyfRR9cabSiQlIVes47Zi3WR2Lx6jTIANqlYRBpyEUieEPxwhHZf4xqy/BcBRfKIpapQZZRkbGrNcQjsjoNdvLEoWqdi/DcmykxRtQAeUNYSQpgry9LIbtZdFr1IBEdbuPUKSF44Zm7btf2p+RpwU+uhQqv9s5bfbjMOys37V6giGBBEPC7mfu7prtaVZewh0Eqtu8LKlsp7rdx6iCRIZk24gzKqFPsZjMa0uqSbbq6fSGqG730S8rjsJkE3M3t1DV7mNITgL90qx8uamFkfmJxGRYWNZKr1Qr0YhM/yylscRLP1YSicHz20N95m1q5s1lNbx36Vjyk35fGIzQk0FjoNj2y43PKts8VLd7GeFpp8en7G1FEwuSaEpArZK476tSNjUq19Zvy1qZ3i+V/GQTL/xYRa9UK/+Y1YfD+6T12MevCrjg63/A2jd3Tpt0E0y4HjQHbbiY8F9Sq2FpRTtPLdxGnEHDE0NqMbx1zs4FUvrAiAtg2bPgqqOhtZ2qRhmrQUv/zPjuAVDb2Qw2bAZbj+mCsD9FozF+qujgme8rMOvUnDE6B5UEBS3zMX5xBQBaoHfWaORxjyKprMRkCIRjNDj92Ew6olGZulYrZU1uClPUaKQY9Q4/CSYt7d4wnf4oBq2WQDhMc5ubAmdtzwPxde7bggvCXpBlzYLtfSur27wsr+rgKH8zpp8v6KhiW0MrlQEf4ZhMqytInFHLhgYniSYdDn+YJJOe6g4fDl8YFTAtshjzx3/p2kRc5khMR/wbr9bOd+UBXvyxCoAFpa2krzPw4jkjRGOjfS3ggvm3KZ0yARWQNu4G1iSegU6vJ96gJdGsZ0lFJ33S4wjFZNbVOUm26hmZb+fz9U0kmnUMzIrnrx+so39mPPd8sZnLDivijk830ekLMywnngZHgHu/LKXFrYwa5w5GmNIrmZOGZTGuyM5by2oYkBXPQ19v6Tq0Lzc0cdqoHOZuambupmb+eWx/Th+dux8+JOGA5uvY7TRd1Y/0+fC8rkmx1P4EjniBsuYoCSYdfdKsdPrDNDqDFKWYeejrLRQmWwlFoniCER79prxr3Y/XNnDWmFzeWFbDZ+saeebMYUzv9wef24RDWrPTT5MrgMMfZmlFB5IEI/ISUSMzPM+GQafmwXlbGF1gp2+6lRun92JRWQuzh+TjDkTIsKbA7u41OyohHOgZQtJSCq/M7qp/Ra2Dsz6B3DF7v7CCsAd9V9bCX95Y3fXzhjonOXYT766sA+DrzS28v7KOmQPSeOSbrVxzeDE3vr8Ol1955/f5+iaumVbMhgYXCUYNN0zvzZLKDiQkZubGKPz2/1A3ruza/sAZ/4aSKbR7QiypclGcasUbltnc6OLeEwbQ6grw0PxyJpck0+AIcO5LK3jzwtFkJBh7HPtHq+u57dOdIZU2k5bbj+nHZW+spnX7/c5XG5u5YXovLptcuNv6FmEfiUWVASvGXQUrXwJPM3FAnFqL48T3eWhLkH4ZcRSnWDhjdA7HPP0TO8YN+XhNA/edMACNSqJ/lqgbEwRBEPaDSAg6ytFqzRRULYXVr3bNsg8+G9+wv+3Hgzu46NUydFaR+dYZZO6YOPpSNLHw/jwsQRD2Bl8HfH4dlH62c9oRd8Hov4BKtXNa0NstgATAUL2YYq+TzVIffmp2UNXho7LVS9+MOEYVJJJnt+yjQhxaNLEQ5IzF/P6F9N4xMWcMhoLp+/OwBOFX+Xw+ghF4dnEDMnDW6FyKE7W8saqFycWJu11Hr9FTpDLA3Ft7zvx528f2rfDq8eCoVn5WqeGMD6Bg8h4thyDsb3I0SkBS3v+bpQD+SAiAQDi6Pw9LEARBEARBEARBEAThoLOnQ0gyATOwo+bSDGTIshyVJCm4h/d1YLPlgi0fOit3TjPaILFgj2y+wxvGFYjyzy82s7rGAcCrS2s4e0wuZ47O4tUldXiCETY2uPb9CCSdFbDgru7TSj+D0ZdB3rjfvZlIZydyKIQmORlp15dxwj7R4g5Q2+HnX19v4ZyxeTw8v5zKtp3BC4/OGczCslZW1zq4ZVYfrnprDaML7Gxt8fD1pmZumtGb695Zhz8cxaRTc8LQTPpmxPHcokp0GhUnDM3izs82c+GEAu77qpQOb4grphRx1dtreGJaEpkaA0QCXfsLZ4/lsyo19y/cyN+O6sO176ylb3ocuXYz8zc389XYzTsbwANEQySveZKvpOtZVOnm3HH5XPPOWs4em8dj35SzrVUpS7bNyH+OyuWnGh8PL2vhqsOLueqtNYzMT6SizcPcjc38dUYvrn93Lf7tFdBqlcQL54zgobfXoFFJnDQ8mzs/L1XKMreUus6dL4uvmlpEs9NPanzPBsPCHtK0oXsACcDXf1dS/BOyd7+OrwO0JtD+xmjWSSXKy7bYLi8f+h0HcRn/2zHvA23N7SxeXsG723ysavTw1MJt3H50X84emw9AXaeP0kYX6+pkFpQqfzvPnTWMmz/YSGmzElbx6pJq/nJYITMHpHLbp5tZVrmzw/NJw7LwhtJJSzAQleGtZTXd9t/uDbG50SVCSPYShy/Eoi1tpMTpadJmU6jSdAs/CxQeRUUwDg0uEizGrmveDnM3NvPYnMG8SDVlzW4sei1Juxkt41e1lnYPIAFY9CBy/xOJRK1IBgOahIT/soTCwabNHeL1pcp1YP7FfTG8eQSodUQLZhIzZaNp/A7JnAxAuP/J1EbiaHIHcPkjqJDolxW/Pw9fEH63LS0eXlpcBcB9Jwzg7WW1XD/WivHbf3RbTlu3hFjTBixSfzReD0tbHHglDevrnFS2efhwdUPXsmML7VgNGoLhGJIk8eqSGuaMyKYo2YwnoCO93xyMq57tfiApffZ2UXdPlsHfqXRIPbBGYRMOJH/wPKnv9HH+yysYXWhncGYxRT+b7+93Gj80Qgw/z/9QyQlDM/nHJxu75mfZjFw0sYAmZ4DksJdpBUbMPz3WbRua+mXEGtfTbBvL+jpHt3mNzgCbG130Tv/ZaITC3tVWBmteJ5Y1nqh9GCpXKbolj9Dv+OlskbN44cdKvt688xn/yP5pmHRq4oxarnt3Vdf0JIuOB04cxGfrGonJoFFJdPqUThxzRuZS2+HrCiABGFNg5765ZfRNj2NkfiIZNhPPfr9L3R3Q4Q2hUe3ssPvM9xVM7ZNCmniuF3aV2m/nv83JhPOOIdprJoafbu+2mKp5A76alfzne+V+127WccboXG79ZCOTS5K5ckoxF7yygodPGczfP9rQbV2HL4xql87jLy2u4rBeyeg06r1XLuGgEYnGWFHdiVGn5uJXVxKOKj3X9ZpKnjp9KPM2tTC9bzKXTCzkvrml9Eq10OwKsLrOycjCJBaWtVCQZCIna0TXNuX4HCI5M5FyR6Ex23vutGJhj/pXfngEMoeKe0PhoOHyh7sFPgGMKkzkiQVbu00rb/GAJCFJEJPpCiDZ4fUlNbx6/kg6vCHOeXE50ZjyN3jEDC/q9jIivU9H1sWjqf2KxEW3EJnYl+s+rOtaf3iujfR4A88tquTmmX245/gBPPt9BWvrlNerZU3uHiEkTc4AD8/vfuydvjCd3nBXAMkOTyzYyjGDM8iy9Yj4E/YVlRqGnwdN6yDkJdL7NGSdDU3dVxiXPEx1+Fpe+amac8flccygDM4Zm9cVlhiMxFhd4yAtzoAvFMGkE6MRC4IgCDvFgkGiHZ2orBbUlr3UKd1ghaHnQMAB3z/QbZZuzct40o9ji9ZISZp4t/NbVLEIbPuWaN4RxOL7oO5YhWr580gDT9/fhyYIwp7Wsrl7AAko7Sd7HQnWDIgEwWSDhBxIG0RUl0jMNhBV5zrUTStwGrNZXetgUXkbX25o6trEEX1TefCkQV0DDgl/gDkJlv0HANlWQCR7BlLYhSawm4BpQThALKv1cNErKwlFYwA8t6iSZ84cxgs/VjKtbyqDsn+hHtaUDIVTYds3O6eptZD0s8GvapcpASR6K5H8Y5B1cWiWPoeUOQz01r1UKkHY9+RIFJdO+XsxEkQrQkgEQRAEQRAEQRAEQRD+K3s62eF+YI0kSS9KkvQSsBp4UJIkMzB/D+/rwGZJgVNehYLDQJIgczic/p4STvI/cniCaNQqqjv8XQEkO7y2tIaZA7O6fo7F/ufd7V7ABTU/wcaPoWGNMhIKgN8BrVu6hUd0CXp+16ZjwSCuefOoOulkKmbOovWRRwk3Nu6xQxd+H08gwitLlMRzm0nbLYDEotegDwexqmUGZ8ezeFs7kZgywubXm5pJizNQ1e7FH45i1Kq5YXovftjazuKt7XT6wswamMFr27dt0aup6/QzrW8q765QGuHeviTCxikvEE3uA5IKb8FR1Iy5iwe/a6AgycyGeifBSIyJJcl8vLYes16NJdgK5iTCAy4hPPgaZHsxWnctBinKUf3TeWOpsr9Ek7arM/5Vg+J5Q7MG1XmnMvGh6/lykJ+WNheRmMzI/ETmbmwmNU5PbYe/K4AElE5Na2sddHhDzBqYzqtLqrqVZVevLqnBE+zeQFnYw0LuntMCTuUFfttW2PwZbP0G3E3gqIGF98Gzh8HbZyov1n5Nan849W0lVEqlhoFz4LCbD/iOFb4VK3BddhFDbrmYB6o/48HRymiJD87dQv32c1QG+mbEdwWQALgCka4Akh2e/6ESTzDWLYAE4IPV9WxuciHHQCVJbG9n301M3s1EYY8ob/HgCoTxBCM4jJl4j38V+bCbYeot+EZeyYaSy+nvXMjw+aeQ/+lJfH6Ek5FZv9xp0h+O8kd/W7FojNCQG4j0OQv0VmLZ4wmOuYeWFz+gYuYsqk6Zg3vBAmJhMZLXn4EMxGIyt4wzk9i+EllS4x32KNXvOth2x+c01owhEDceV7/TaRjwF0IxNTa9mnhCOAKh/X34gvC7ybKMLINZp0aWYXCOjaa2DqUx9q50ZnJ0iYx87m4G3Xwhp899houyYswamEZvtZ/rh9pIjVPuJ2o7fBzXy0aTw8fgbKXR9rsr60hPMLKpyUt5/pm4B5ytNBKKz4JT3gBTEpR+AeVfg7N+3xS+oxK+uR3+MwneOx/qV/32OsKfT0clfHPHHzpPSpvcbG31kGzRUaPNJXzS68hHPkj06BcIHHE/m7NOJByF8mYPU/uk8spPyrPdoHQzt46wcVSWgRRCnNK8kvH3X4Pvwgvp4AQi+bO67SfgdeIKRLh08s9jTsR9634RjRKY9TH1q/PYdvun1M5V4R92L4QDRKNytwASgC83NDG9XxrP/9A9MKTNE6LFFWTHsPG7/ip3dBr+OVmGjQ0uwtHY9mV6LrTrpNj2a78gdJPci+iZnxI+/iM6Uv5G5aPLqLn0H3REZxLJO6rbosaYr+vf7d4QkZiMVi2xcEsrnb4wJp0GCeV++ud2Pfei0b1V0SscjMqb3WTZjLy3sq4rgASUjuvzNzeTbTPiCcUIR6MkW/QgSciyEq6sXNdk7P4aqFsOU28l3P9i2iInUXHft1Te8DjOTz4l6myD6sW7vAPYTZ2/s1oJIxGEg4SM3BUY0n36r6/zczFZJjVOz+tLqrttz6KRcPW5n6rnyqm4ez6t4TmE+13M0HgX6XE7A4BXVHdSlGIhEpP5cWsbra4gpU3ubtvf3ZHs7rtid8uK+5cDRNYoohmjcQ1+iqoXKqi4+2tanUciJY0izawEjb2xtIY2T5CpvZO7rbrjvBK/R0EQhD+3qMtFqL6eqM+HHIkQKC2l4ca/su3II6m96GJ8a9buvZ33O5ZY2mCYfBNMvAEO+5tSPw3k6VzUO/5c41D9t7yhCP6RD1I3X8+22z+lflk6geF34PWJz08QDjnBn7Vd0lmIFJ9MqKWT2Oq3YPXLsPwFcDXiH/0I9T/Y2HbbJ9QtiiNw5HvUqjJo84S6BZAAzNvUzKYG1z4syKHDEZIgeyThI1+kNXgSFXfPp+rZLXi3uIkFxXVYODB9trahK4AEIBSN8dGaetbeMhX5lyoJapfCBxfBwFNg1sMw8XqYfg+c9Qkk/2xwE187sZTBuPJvoerZMiru+YbW2t6Em1v3YqkEYT+IRmk1KwFeJlUAbVRpv+gXISSCIAiCIAiCIAiCIAh/yB4dOkmW5eclSfoCGAlIwN9kWd4xxPMNe3JfB4W0AXDKa+BrB0MCGP/7UUCcvjBlzS6c/jCDs+JRqZQGxT8XjcldDdINWhX9MvbCSL5BtzLayeLtIwtLEhz/LAw4Senov+kjyBwG9St3rqOPg6SeHX1+LhYK4V2yhIa/30LO669BKEQsFMbx4YckX3bZni+L8IsMWjWeQIT8RCNDLTFO6JVAFDgiQ0d+/Rb0dz3NLQmJ6C68mA1BHeGQjUFWmbP7JRDW6hlrk2ktTGBWiY365laiMZlQNIZBq2JYohpjLyurnDDUEuXYXgmMSTfQWxfie4uWofESr201M3r4i6QZYry/2ctRbgun9UnAaDHSxyrhLkxgYJzMOf0SqPKDrvAYOjuzaH3wVWJ+P8mXnI151FDMZXqGpOhIiZhZ0mFgqCXGib3iMRl0nOZcRcezyqjyMY8H3WefcsnFF1NWsLMsIa2ecTaZlqIEMvQSBpXMl3VBAuEoBq2K4UlaTL2srHTIDLVEOa5XAhIyGQaJlU4YYVMRHwsCIil+r0kqAY2he0eIXjOVzsCvHgfB7S/jM4fBsPNg4d3Kz51VUP0DXPgNpPTd/bbVGiieBhfMh7APLKkHfABJoKICf/lW0u+9l1ggQKimhpEfvcgNx1zGw4sbiWxPp8pMMHZ1ft4htJsOTcFIjMhuGrdHYzLRGMQbtYQjUU4antXVIRSU6X3SxGjye0skGiMmy1g1MfrWf4Bx4W1d8/wT7yIl1ozlq78Ayg1ZUdPF/GPqq8yqU0bMnlSSTGmj0ggmP8lMUbL5D42oGayuxreuBW3KVCSjifDgK5BUKiJOB+qUDaTcdBOeH3+k7i+Xk/PySxj69t17o7EJB4Qks55rp+ZxQtNjaH5YR2D4ndRddy/Jt/4DQ04OcjRKsKUFTe9LSbQkkexxghaQIng3rydkHIIuM3N/F0MQflNxipXTR+Xw4Zp6QlEZi0HNgkYdQwtnYtq6fXQzSUVo7D+JrNlM2l8uQ20yEWpswPnvRznpr38FrZaIo5M5RU5MQwYjqdVEOzrobyjFY4rnSbWKUDRGLCbjD0f5vtXEY645nH/UuZhMFgbZAvDiEeBtU/aXVAJz3vxdz1v/tZAf5t+mPOuBEuxWtQguXAD2wr23X+Hg8ovnyTdg/+XzMxBW7kFTjDCy4wuiAR2dlVGMQzNR2/pSotWSrYtRb9GhMpo4scBEvuQnWleH67MPMA4fhtYfRE6MQ//0U0QDAbwLv8ObMIZ4zXzlOUGto0rKIhyNEWfofg+cZNHRZ2/UnQi/SHbUE2iP0f7JAuyXXkrSlVcSbm2j9vrr0T/9DGF590EL0ZiMO9Az5DMQjjIiP5GvNjYDEGfQ4ApE+GBVHccPzSLRrKPDq3SQX1HdwRH9Upm3sRmrXsOyynZOGp7NS4ururYXZ+x+X3zeuHzSE3450E/4cwqUbyEWn0OkrQL9wCFkPzeOWDRC/RVXojn3aOLU85VgBpWaanUOsDOcMRyNoVZJhKMy/lCU2QMzWFTexmmjcvj3dxVdy1n1GiRp5z7PGpuHTqPeh6UUDmRRWUajknD6egZ/OvxhzAYN4YgSnTCldwoqwKRTE43JZMTrOaWfBdPn50NbGeGJ9xIuORxLfx3GKbMIbtqEd8kS1PFxaHXtaEtfIWZIQR54Joz+O1KwEzkSQ+UqQ91/phghUzioxBt1/OWwIq59Z2eH3RVVHcwakM6n63aG4eckGpFRAiA0KhVmnRpvaGcD9UsnF1LX7u+6x+jafjQF56JPSP/Xv1BptcRiUTwVlcQ3ruDusf0596udy+6ocvUGo0gq0KpVBCMx0uL19Err+XeVFm/k8ilF3PNladc0q15DslWPzaSlc5frwUUTC8gU9y/7XaxtG752M8H2OjIffghJp6P1qafpKItjo1Y5AUJRpf5dp9k5bohGJTE0x4ZJp8as36Ov8gVBEIQDULitnVgwgNpqBVkm6vMhSRLhmhqa77sPldFE/IknYOzfH9c3CwhVV6MvKsQycSKhmmpUVgsqoxG1xULU60WORlFpNGiSk5HU/8MzpFqHtPF92PDe9p+1cPhtsPwF4ttWUZhfBKTsiY/gkBZVZVF71z/Jeu5ZiEaRZZn6v96E5fEZ+/vQBEHY05KKlPaRQReyrRBPxiU0//sdwk3nEj9jKvaJ6UjRDqJZM4jRgu3SyzCuXYs+Lw/vpgrscZm7Dc0ECEZEh+n/hkGng5S+OL7fiG7kBLJnH4eERMPf/g+VJR7rpEn7+xAFoQeHv+d7MJc/jCRJ5CRqe67QvAleOQbSByvvZVe/qkyXJDj2Gcgd2335zGH4HHba35lHxlNPKoMGbNyE4/N5JF96yZ4vkCDsJxE5QlhW2gWYCKKLKOFTO9omCIIgCIIgCIIgCIIgCL/PHmm5JElSb1mWSyVJGrp9Uu32/6dJkpQmy/Kfd4hkvUX573/Q6Q1xz5ebeWdFHQBTetm5/ej+5NtNJFv1tLp3JrOPLbTjD0c4dnAGxw/NZGxR0v+0791q2bwzgASUVpifXQsZQ2HZM1C3DA6/QxkFZdsCSO0H0+76XZ3T/LV1RINBsp9+ms7nnsf73Xfo8vOwX3oZkc5ONDbbni+PsFtpcQaem5FJ4jefo73zB24++yxcc+diGjiI9qefJmw2k3z88bifeZJBKSmMKC7CdcuHXHXO2Xi+X4wcCTN6zBgc/3yT/qEQk085C3daFrMHRLHcfT0jpk/n1LY2Al+u4R+nn4bjsYcxDRvKcWoN7re+JPH88wnNr0Wl13G92YTrhY+47rxzcX35LSq9jgmDBuH8+zsMOfMMPJtW45f60/Kgcl4mXXopga01OL/+gStPOpHOf73D6HHjOCUYwHfnT/zt7LOJNDTg+vxzAFRmE8lXXoX7m/n43n6bB0qKcf79A6Usi5Ygh4KMGjsWx6tvIodCHHf6uZh69eJIr4zx7usZPu1wTu3oJHD3Km45/XQc772HafAgztDqcL32Ca7XEzFcfx3m0aORdLpf+9iF/0ZKHzjzQ5h3C7RtgX7HwbirYd7fdwaQgBKMVDhVaSC1PdmcsE+5pv1SCMkO5r1wLd0LghUVuL75BmNxCc3/+AehyirMkydjv/RSTqusYPYxBaTHK43PNWoVI/ISyU00Ud2hjMqcGW8kzqjBtcsLzen9Ukmx6Emx6mnZ5ftmRJ6NeKOGNk+Q8ycUsLbWQbJVzw/lbZSkWpgzMofCFBE6sbfk2s1saHAx2NSK8aM7us2z/3g7tml39VinqPVrjh50LoXJFobk2Hjsm3LOGZvH1D4ppFh/f7hONBQi0tREtKWVWGcnjvfeJ9rZSfysWZjGjcP18SdEmpuxzphO5iMPE9i0Cf+2bZgKCzAWJCJpDJCQ/T9/BsKBJS3BwKzcGHEL34RYlFChkaynn8I9bx6OF18i+bJL6Xz5FULbtmGeOBHbKScTcThQaXWYsjIJ1tWjSU5GJb4nhQOcVqPizDE5ZCQYSbbqeOa7Oqb1TeUL30XMMCZiqV6Ab8AttL70FcHSMkJbt2IcNBhJryfp8svxLfgGxzvvoDJbsF98EdH2DlR6HUgSCaNHYq6v4/bRKXzcGCMYiZFnNxONyfTKSOT6r+v59+l5sPyOnQEkoNz/bJu/d0NInDWw+ePu0wIOaC0VISTCTs6anQEkOwQc0Fr2qyEkJakWzDo1w63t6DpDeEO5mIekEw34iTT5iXZ2og4GKUxNQxW14P3+exo+/AiNzYb9kkvQZGcRbW8HlQrnRx/j+uorNIk2DJdcQsx0MrHm9WwZeCOvbDBx7gQNZp2am2b05pvSZkpSrRw7OJO+6f99aKzwxwUcfmJqMzpbIvWXXobKasV+ycVkPvssvrZW4tJSybebqGz3da3TK9VKdYeXk4Zn8eS327qma1QShckWDFoVr543kvdX1XHLrL6srumkos1LZoKRe48fwDebm6ls9zG9Xxr9M+LolWrl/VV13HBEb6ravdwwvYRFW9ooSDZzZP90Pl3XwJgCO8cOyWRSycHxPCjsO+HmZmIaK7jduOfOU+ovi4qwzZlDxv33Edi2DXLHEfO00jnuFm6dq2ZHCIlaJWEzaQmEY+Qnmcm1m2j3BIkBuXYTt87uy1cbmshPMnNk/zQ+WFXPxJIkTh6ezWElyfu13MKBJS3OwA/bWjl+WBY/bmvvNm9GvzRWVHRwysgcsm0m8hLN6HUqqtt9/N9RfejwhRhraEOWJVyDn6Xt3meIuV4g8cILUJlMdL7yCnIkgi4vF2nMWAKpFxF1u+m48nasM2aAbEObmYF3fZCkIUPpijlw1it1cdaM/ymQXRD2tsP7pPDvM4bx+tJqUqwGZvRPpabdR1GKhUXlbYwusHPM4AxC0Rj+UJRV1Z08cOJAvtvSRm2nj+OGZLJ4axv3f1XG5VOKWFbVCcDVYzNQa/xYx4+j7aGHCJaVYR47loQ5pxDQZVPkLgOU+tLUOD2eoFIHO744iRSrnj7pVgZnJ3DisGyybKbdHvuJw7JItup5Z0Ut+UlmBmcnsLqmk6fPGMa8jU1sbHBxwtAsJvdORqWSdrsNYR/xthPQ5aOydBBcvpzOJ59E368v9nPOAbOZiWUBNjTCYb1SSDLriMRgQpEds17L7EHpZMYbKUgWIU+CIAiHsnBLC96ffiLS1o7GbkeWY8ixGCqVGrXNRuPNN2O/6ELUiYmoLRaa77iT4JYtmCdNIn7WTCLt7RCN0fbYY5gnTEQyGZF9PhxvvU24ro642bNIPPNMdDk5/90BNq1H2hFAAsr79SX/hun3wIcXkpQ+Aui3Rz6LQ5nGFyDzgQdovfc+gmVlmMaMIe3OO4g4OoH8/X14giDsSfYiOOMDmH87wYKzaL73RcL19QA4P5+HLE/DdsY5dD70CN5Fi9AVFZF08cU43n8f35IlWDZuZPqxc5iXbmXz9gFlAPLsJkp2E1Qp/Darp5KIy4tp2skEN22k8b77iXk92E4/HUwmwi0taFNEoJZwYJk9KJ35m5u7TTt6UAaVbT6QJBJ/3hSvZROE/VA4Bb79587psgyfXwvZIyFxl3uOjGGo3HHYjrPQeO11xFwu4k84HvPkyaJ9tnBIceqjRHeEkKgDaKNKmHQwLIK9BEEQBEEQBEEQBEEQ/og9NXzStcBFwL92M08Gpuyh/fwpbWp0dQWQACzc0s62Vi+5NiOPzhnMa0uq2djgYmJJMscOyqBvupl4o5acRPPeOaBdO7ztEHQp/5mSwJYPcgxCXjjs76DSgO73HYtKr0OfX0Drfffh/eEHAPyr11B/1VVkP/csmmHD9mRJhF8hxaLkL/wU5xuvEn/FFbTc9U+s0w7H/eWXANhOO5XWp55CDgaxX3A+bY88SsIpJ9PxgvISNfmaa2i9776u7akfvZ/ihzNovfVG1AMGECzfgnve1yRffRXNd96lvNQLR+h85VUSzzuXjmefJeb3YzvtNNoffQzbWWfR9tRTRDo6Sb78L7T+61/EzZ6tdH53OtEYlebuptGj8a9fh/eHH0m+9hqa77gTXUEB0fY2nB9+RNIVV9Dyz39iGjEcTXIy4dpabKeeRtvTTxPz+7FfdKFSlpNPouPlVwjX1nYrS/wJJ6Bxt6Fd9iO+225D3a8foW0VuOfOVcpy111okpMhGqPz1RcAiLa1UXvxJeS+8QamIYP37S/yzyAaBl+HEjAy+HSlM2zEB03rei7rawNDfPfrmObQGBEyFgjQ8uhjJJx4AvVXXoXs9wPg+ugjou3tJP/1Rpx33oXq8cchTmmgUJBs4T9nDeOlxVUs3tbOqpoOnjptGC8trmRri4fD+6Qyo38qj31TzrXTSvipop01tQ5G59sZV2RnQWkrH61p4KVzRzBzYAaxmMxfJheJBu77QEaCkVF5NrTOCuU7d1fRMNDzd6BPSOXB8YNwhoJ8t7mVqw8vorrDR7MrwJgC++/ed6iqCs/336OOT6Dl3vuUF9dAx0svIUcjRDs6iHZ04HjjTeRgEMvh05AkaLrvfjLOGoeh9DE46kHoPRu0vz/8RDiwJVn0NLRrQGuGkBuVPQXXZ5/heONNMh9+iIYbbiTm9QLg+kQJqkm68gqC2yrQhBJRWa2EGhsx5Obu55IIwm8rSLZSkGwlGIqgVatodQcptCWijtgIjryd2mvuJ+ZWGge6v/yKSFMz+uJiYi4nbU88uX0rrTTe9H9kPvYoUloaMa8PlV6HNjmZ6aEwacXFtHtCpFqVjmn+cJTzxxcQCPigYWXPg2pcv3cLrdKCWg+RQPfph8h9lLCHqLSgMfzh86Q41crrF46Cuh8JWYai0ZoJVlWiTkrGv3KF0gk6N4+oy4l/9Sran30OUJ6zGq6/nqwnnyDmchFYv57O19/YOe+668l95iHUtnyc+jQuPSybRLOWPunxFKdYuGB8HhrN/zAarPBfk2Q13m8X0v7MM8qE1lYab/wrmQ8/hKWwEIc7xB3H9OeTdQ0sq+xgXKGdGf3TeXFxJbP6p3P9ESV8uLqBJIuOiycWMLEkGY1aGTl+Qkkysixz0vBsZFlGkpT74qm9U1CppK6fh+YmEo3GUKtVTCCZaDTGpZMKkSRlmQklycRiMVQq1W7LIPy5RYJB5FiMtvvux7diBQD+FSsIbtlC8rXXYuzdi860x2gPqmgI6jhzjIc3l9WSbNVx8vBs3l5ewzGDMzhpWBYNDi/Nbj+uQJTlVe3k2c3cfnRfilOU5/bxRUndzl1B2CHBpEOFihy7Erb0yk/VqFRw9pg84g0aZg/JoNkVwB8Okx5nZFiejcN7K50q1Go1NLXhKbyGhituVDaoUiEHgjTdfU/XPlofepj0u5OJBYOE6+swjx9Hx/PPY7/oQlqfegr7GWdSc9Gl5L/zNjrfOvjsavC1Q9YImP2oEk4uCAegOKOOGf3TmN4vtev6GovJqFQSV0wp7la32S8jvuue4aiBGUQiUW75eCMfrmkAYElFO9cfUcIX6xu5IBt83y7F8f77Skge4PriC4IVFaTeeiu2hBJy7Q6GZNsYmW/j7eW13HxUHwZmxTEk28aMfum/Wa9qt+g5fmgWxw3JRJKkbvc7owvsXeUQDgCyjIRE4223ESovB8D342JCW8pJf+B+emcncrYpjun90jDqVFj0Gh46aSBWoxa9ViO++wVBEP4EXF99RczhRGW1EGltBTmGHIkQiUSR6uuImzGdcFMTmkS78o7F41HW+/hjwk1NxM+aSccLL5J06SWE6uqRNGranngSOaR0rut89TVibjdpd9zx3wXA765dkLMWYhGlo6uoG/5dtFotdVdcSdThAMD95ZeEa2tJu/ufv76iIAgHn1iMaCCIL3EOjne+w9ivP7aTTqL9ueeJdnSQcOa5tD78CL5lywClPrF+82bS7rwT91df4fzgA8xNzdxxw228ub6NldWdjMxLZM6I7K7BhoQ/KOgiMvB8gsvW0vzPndfd1ocfIeWvN6I2mkQIiXDAKUky8sCJA3lpcRUAZ43JpVeahZW1DtrcQYpTfxZKpN1+fYgG6SHkAb+j+7RokGhzC41//WvXpPZ/P4Ok0aIpLNxjHQoEYX8LSVGisvL3YVQF0EaU56RARISQCIIgCIIgCIIgCIIg/BF7pM5QluWLtv//sD2xPaG7+k5/t59jMny5sZk2d4Cbppdw81G98Yai6NUSNZ0BNjZ6KU6LI8G4l0aST8wHtQ62JwMDSpp/fDaMvRyqF8OWr+Hwf2zvfCQrldmOWkjI/tVNqw0GQrW1XQEkO8h+P6HKSswihGSfibS04HrnHeWHaBQ5FCIWCCJtD/uQtDpiTiemUaPwLv4JAI09iXBdHbqCAgKbNnVtS52UhO3UOcS2lIEsYx4zhvZnnwVADoUhHMY8fjyuefMAUJlMRFpasBx2GJ7vvlO2YTYTaWnF0L8/vlWrAdBlZ+P69FNUZhNqWyIApiFDaHv6aVCpiHl9EIthmTiBzjff2lmWYBDvT0tIvfFG/OvXI+l0RB0OTCNH4P1piVKWpGTCNTXo8vMIlpYCYBw8GNnvp/P110k48SSlLOPG0v7c893KYhk/DvfXX3f/QGWZwKaNIoRkb2gtVRo55Y1XwhiSiqF2NfQ/Hn58tPuy2aNg1SuQ3Au8rWBKhrQB++e497BwYyOeefOwjBvbFUCyg3fRIuwXXoB/6VKCVZWYBg7smtcrLY47j+mPJxhBLcHT31Vw++y+eIJKkEWjK8h1R/SixR0gz25kWE4C21q93PrJRjp9Ycw6NW5/BIteKxq472MDs21ETQVKsE7AuXOGyU4sfTAqlUZpCAigtyL1PxGdTk2C2kD/bBvNzgDDchIpSLagUUnQtlV5AW20Ky+njQlg3mXU945K8DuIuWK4v56PdcphXQEkO7jnfY15/Hic778PgOuLL7HOmEG4uhrL+PEEw0kYZj4M7iZoLYOMnecizjqIBMFgA39Hz/0LBzxjcg7uCbdgTUxD8kZxffY5ABGHoyuAZAff0qXIwYuU+wu/D5XVArHY7jYrCAcsvU7DmMIkgh4H2vZaVH1n4i5r7wog2cG/ejX2Sy+h5Z57e2zDt2oV1iOOQNKoiQWDyOEI+kQbNpOOzAQjczc0UevwU9fpZ0lFO+ePzyc79xjSGtd231DxtL1ZVLDlweT/g+/ug4Qc5Zqd3AtS++7d/QoHlx3nyfxblZ8TCyCp5Hd1QB6cbSNi7EOoxkGkvQNZlok5HajNFpAg5nCgLyqk9aGHuq8oywRKy5AsFtzzej6D+SuasB9+GKPkCFJGIpJaCR3RakUTuv1JDgZxff55j+mBTZtR2WwkxufjDoQZmWtjckkSwUiUUDjKLUf1RpIkdBoVk0uSSTTrybD1bHy9o8Pmrh031eqeYSK7TtvdfBFAIvwivx/Z5+sKINkh5nIRbWkhlpqKOdZEgkmmwJLM+GID5xYk4NfE06lJoHeqhdeX1fD8okrafSHW1e18nltU3o4nGOHhU4bs61IJBxmNWkVxqpW/f7SO4wZl8sjJA9Fp1EjEiMjw9oo6JhYnk5lgJjvRhNWg696hPbEQ/5bvu37UFRQQ2Lihx34c772H/ZKLiba2oslVAkw9CxdiHjoMORwm5nIRLN+MLtkHQ8+C9e9C3XL47Fo49t+g1oCk3l7PkKjUxxniwLJLBw9Pq1KvYUlR3jn4HUp9QDS8c3rQpdQZxGeBRg/RiNIBEglUaqVOMD4bxLVb+AN2/ZvYUa+5u/rNXe8T/JEYy6s7u37+cWs7q2sc3Da7L9H69UgaTVcAyQ7B0lKiLS2oEm08PmcQre4QgUiMa6cV0+kLMzArAZ32j4Xj7e5+55eOX9hPLElE15d3BZDsEGltJVxXx/TJRQxTGVhe1cl3Wzy8sbQGdzDCB5eNZWiOGHVYEAThUBfp6MS/YQOEI6gsFiSNGnV8ApJKpQwzIKlQxycAEPN4ugJIdvAvXYrt5JPR9+5NpLUNIhHkSKQrgGQH5yefknTZZehycv74QdoLek7LnwQJ2cROfBldRv8/vs0/oVB1dVcAyQ6BDRuINDVBScn+OShBEP64kA/cjaA1QVy6Mi0SVN6XafRKfUV7OZ41lTTccnfXau7580m67FJaH3oYORDoCiDZIeb1EnPurBv0Lf6RPuEWbh9vwTk1n2VVLnqlxe2TIh6KwonFROrdBLeW95jneOddzBMn7oejEoRfp9frcLhbePLUQQAsLG1iW4uGe78spV96HJdPKe6+QtpA5X2sxqBcjyK7hJHY8iE+s/vyQRn/2p+1NQCcH32EdfoRYLX2mCcIB6OQOkZUVgZHM6mCaMPKs5I/JNqmCYIgCIIgCIIgCIIg/BF7tNeFJElqYCaQt+u2ZVl+6JfWEX6bTtOz4ey2Fg+PnzaEmnYf9a4QRckWshJN5Cbtg0rgpF4w53X45AqlE3FKPzj2SaVhsNEGQS8UTIH2Mph/u/ISLm8iHHbTb4aQxMJhJJ0OldmkBEjsQmU07c1SCT8j6fWobTal8cP2jlreRYtIvupKWjZvhu0Nb6MuF7rM7S8rtk+Lud2o4+MBUMXHY7/gfNr+/Qy2U05W5vu8qOPilMYWu2xHbbN1a6AbdbnQJCYSBNg+QnXU5UJfWLjzQNVqZeR4nQ5NejqxYKDr/JG2dyyLOpVtR/z+rrIQjdL+4oskX/4XNKmpXct1NcDZ3lg36vZ0lcU8ZgxtzzyDpFYjGQxKWTwepSydnV3bVvaXoIxYtAuVeEmzd8haJbBg/q3gqofccXDY35RwA0cNbPpIedE2+W9KCMkxT8HWr5XwpOJpv3ldOlio9Hqlkdr2c7PbPLMJSatFMhhQ7Wa+Rq0iwaQEV/3lsCLKW9x0eEJkJ5qYWJyMSiWRm2Tm83UN/OOTTd3WHV+chH4331PCvqG2F+A4+iXi5l2NylGNbMunZeojzK1P5rRzv0JT/SNY00FrgJ+eAFse2l5H0jutH713NFbxdcKql2DxEzDxelj7FjSuUf5GZj8KmSOUv5l5f4fOSjhmASqLGcnQs8OnOjGxWyMZTaKNmNOlnJexGCp1FD44H3QWpZOyPR+QYOOH8PUtSueiPkcrHdzLvlD2nzd+n3yWwv8uPupEzuyLvPZNyLsQtc1GzOVCpdf3WFYyGECjQdJqkJGUjmla7X44akH4HzWuRb/tW3BUQXJvVIGeQZCSToccDKJOTITKym7z1DYb0UAAVSyGpFYjR2PIMlj0Gj5f38DD87d2Wz7eqOMD9zDO6Hs6cZvfBJUGedzVSLnj9mYplc6cfWaBzgzVP8LQMyF/MljT9u5+hYOLSgXDzoGMIeBphqoflVAxV53Sefg3RvLWJBUSql8DKhUamw05HEGOxZA0GlCBHI2iTrARaen+nKWOsxILR3b7DKa2mGHbPFSmJKVuInukOG8PAJJajdpmI1xb2226Ki4OSa2mrNnNd+Wt/LSto9v8Dy4dy9BcpUNmpuiXKexPMRmVRqt8x/+sg5ek1yFpNEhyGGnFi0gNq2HM5RCXhSXgxJSQw9Ff6dnQ6CPRrOO4IZndQkgAJvcSo28Kv0+f9DgemzOMdXUO5m5qoaLNy4er6wFItug5sn86Q3btyN5aBlvmQkcF9DsOtdXSNSvmcqFOSOixD21GOrFAENQq1AnxmMaMUUb2dTq66nVVqhCEfWDNgCFnQ81iqPgW6pbA1gVK3VvdCqXBu8YIW+fD7EeUDoxVP8CnV0JnFWSNhMGnwZc3QGp/JdTkq/9TAoQHnARf/wP6HgNjr4L1b8OSp0GlUZbzNENKXxh+LpiT996HLvzpWQ1aZg9M5+H5OzswBcJRjk5pIeQ0dP1ddKNWI8eihKtrOPcrB+3e7t8dn19hpV9m/N4+dGE/UJlMynPSz4J3VUYjKinGpW+sZl2dq2t6n3Qrjp+dH4IgCMKhSXl21KLSG5CjEaVOZJfQXP/KlVinTyfS2oL0S+9YVCr0hQXEAv7t9yC7CVOLi0PS/ZeDF6X0R571KNI3t4G/EzKHQdHh8N55SNPuQBOTf3MTwvb7gZ/Tanf77kwQhANUWzl8fSuUfa7UORz1oFJv8d19sOE9ZdCY6XcTTR1P2yvvdltVDgSIOhxKWx6dDslgQA4Eui0j6XdepyWDAV3VXHQf/wvjsAuYOfpy9AYRqv7fipqSQduKymzpMU+d8tvvrQRhfyhItmAelsei8lbqOv20uYPc8UU5MRnGFe1mIKeEbCUMunoxHPkALLxHeSea3AeOfap7GDSA14M6oWc9lNpuF212hENKSBUj0hVCEkAXVQJ6AuHo/jwsQRAEQRAEQRAEQRCEg86e7jX8KXAOYAesu/z35xQNg7sNWkqVRrbtlb+9zm5sbHByzeHFWPXKS6U+6VZOGZFNqtXAqAI7k3ulkJVootkZYH2dg7pO329s8X+kUkHxEXDhQrj0J6JnfUYwfvsIHc5GZURsfzt8dJlSoQ1Q9T18ew+4Gn9103I4DGYLiRde1G26YfAgdPl5e74swi/SxFtIvfw8ACItzeh790YOhXB+8ikp11+P2mbDPHECwc2bMQ4fhqTX4138E3GzZhJpbUWbkY4qLo74o2fT/uxzxBwOkFRoUlJwff4FtjPPACDqcKArKMCzYAEJJxwPkkTU6UKblYV/1SoskyaBVot/9WosU6cSrqlBX1yMymzC/e23yjpA23PPEXfkkejy80i69BIAYj4/2qws3HPnYpszRylLcxOGvsqI7ZGmJloffgS1yYB1yiSCZWUYhw1VyvLjYuJmzyba1oYmLRVVXJzy8lGWUackI+XnYRw/HtcXX2I7Y3tZOjvQFRbi+fZb4o87rtvLSk1mJsaBA/fJ7+5Px9cIH12sBJCA0jH2mztArYdjn4bLlsKlPymdfjZ/Bh9epIzKuvAeePtM6KjeuS1vu9LpIeTdvu1O6GyApg1QvxIc9dBaDs2bwNOyRw4/Eg4R9Pv/5+1oMzJIvvpqJIMBw+BB3ebZL76YaCBI0iWXoC8q+tXtmPUaBmfbmNInleJUKyqVRKtb+X6JM2q5dloJBq1y+zAs18bQHBuhqEiI358WBEpoO+ljYud+hXzSi9jTC/CEYnjsg2D81cr9yDtnwepXYcGd8PIsaN2ycwNVP8D826D3TFj6jBJAAtC+Fd44BRpXwwcXKAEkai1aWrGfdx7IMoaRIzAcdSTaggJQqUg48QQ8333XtenE88/Hu3w5ansSwapKDOF1EIsqYSNf3QS1y6BhFXxyudKAUY4pwUG+NkBW9t/evQO+cICKhlFtmYt6+XNIa15Dpddhv/BC5Xvd5cI4bFi3xe0XXUjE40ETF4/WloBKrUKfmfkLG/9lsWiUoNeLLIvGrsLeFQnt5vs67IcfH1OuWRoDLPoX+qxkzONGd1vMduqptD3/AonnnAOanQ0F1XY7psGDUWk0SpidDGp7IlpbAkWpVo4ZnMWU3slIEnx1UV8qringsv4RLhlmxTL5amLnzydy7ldERlwKlr3c0TLghvl3wBfXK8FRc29Wvjv8nb+5qvAnY0xQnoM+uUJpfLvpY/jkauV++ldEIxGCXi+aBAsqsxk0WlRWi9Ig32xGlmVClZXYL7lYqZPYTpOejr5XLyQJ4o8/vvu8jAyM+YlgzVQaB5d9Ac0b91LBhT8iJssknncumvw85V6ypARNSjL6XiVIFhPfbmlmSq8UxhfZuXBCAVcfXsyL54ygb8aft4pROLBIiTZkrQb7ZZdhGDsW47TDUVksmEaOQJOegWS1ol37NOSMU74rv7lDqbPwtaFq3sCD27PDOrwhIjGZ6f1SkSRQqyQunJDP2EL7/i2gcFDJtBnJs5sw6tQQC/HTealsujSD7y7Io5+mnnDzFnzNFUQb1yr1XmkDYdBpsOpVTIWJmI+ejWHKFKIuF9rMrG4hypJeT/yJJxJpbUEOh3G89z7mUaOwHHYYkY5Oop2dWMaNRB8th8qF0LweYkHIn6AEotYuB3shLH4cCibBmjdAo4OIX3ner1sBb5ys1MUB1C2DJU9B/xOgYTX88DAMmgN1y2H5s9DvWFj3tvLvLV9BdHv4ydJ/Q3Jv+P5+qPx+f/wahD+Z44ZkcdQAJdhOq5Z47bQS9PNvRpuWiByJknDJxcp3g9kMQOLZZ9P+yqtIER+vH5fEXw4rojhlZwcob0g0fD9USXY7tjPPQDegP4YjZ6BJS8MydSqa9HS0G1/jg+NtnDsuD6NWTVGKhROHZbGt1bO/D1sQBEHYB9RmM/GzZqIrLERfUoLKaECORpEDQWJeL7FAgFBdHXIshgyYRo/qtn7iBecTaW9Dk5JCYP0GUKlQpadhPeds1LadQYQpf/0r2rT/MpBXq1cGGzrzE5hxv9IOaMFd4KhG+uBC6Nzy29sQUGdkYJ4wAV2/vsr9QEYGiWediZQswhMF4aAQCcK3dyvvGPRW5Z3gd/fCkidh/TtK+wZ/J3x0KfjbegQQghIIlfPwrajz8rBfcMEuM9TEnXM2MbMZlVkJLEq+6Ay01e9DNIxm2dPoyz/fVyU9JBkDLWgNIYxDBmM66UR0ffooMzQa7Oeei7S7oChBOACkxhkIhqKkWPVdYebHDM5ApdpNcE5HJbx9BoRDEInC6R/COZ/DiS9A5lCCPi/RSGTn8s78xH+DAAEAAElEQVTVGAYMQJOyy72IWo39/PPRxCfs9bIJwr4SVMuEZCXoy6IKoA1vDyGJiLpYQRAEQRAEQRAEQRCEP2JPR6VnybIsetkDdNQqjWBdNUpD84ZVSgPfaXdA4WF/aFMj8xP5+0cbmDMyB4NWRVWbF6NW3a1S+adtbVz99hqaXUGybEbuP3EgEmAz6yhMsqDVdM+bCcfC1LvricpRMi2ZGDSGP15GaxrNLU5WvP08LVXb6DN+Mn1GjCQ+3qQ0HJZ/9mKtahF1sQjRzmpaAi1s6thEMBKkX1I/RqWNQqPWEC4tQ5OXi75XCZmPPEywogJNSgra7Gx0ubl//BiF/56nBW30O+zPPEhwWy22KZOJdHYQaGsiXJRGNC8F3cAMNEcfQcDhIv2JR/FVV6JLTsE49TB8zQ2kPfwgssdL56uvAdDx/PMknneeMupxWippTz2Ot6oC+03XE25rIxQOkv7vJ/FWbsP+9/8jvHET/tJNZDzyL/z1dWjT0zHNnEGgrZm0xx7BX12JxpZI6vgxeKsriKUnI+UmYqhcTuKT9xGqqifp1r8Tamkiikz600/grdpGwtTJRB0O/K2N6AqyUSd6MM8ZgfqoqQQ63aQ/+Ri+6gq0SSmkTp2Mr6metIceJOx2EXfv3Wytr+aH774itV8RA885E1VHh1KWym3Y/3od4fZ2QqHA9rJsBasFw8CB6PPy9u/v9FDVUamEGuyqdin4WiG1tzLSuUqrdPj57t6uRZz9T2DbhMtpd2+hrPpTkoxJ9EnsA51V9N22GG2vGeBqImqMp65zC+FoiIxwGFPWKHjjJGW7M+6DkhlKB4o/SI7FqC/dyNKP3sPT0cbgGbMoHjEG0//wQi/+uGPxLVlC8jXXEK6pJdLagq6gQOnYHIviOWIW9fUuCpLNWA2/b/SCNbWdXP7Gauo6/Vj1Gq6ZVsyzZw7DFYwwb2MzrkCYFOt/8R0idOMMOtnQtoFN7ZtINCQyJm0MNZ4aNrYrHWX72vuSpEtiWcsycuJyqHPXkRuXS//k/szMMaBrWgrzb0Ny1iIVH8Gl469FMhWBuwW+vav7znwd+GtXYbTlEgp6qFPFYOrfyNbb0K56ufuyIY8SPhLe3vE+qRe60peRc08gcNhEKq06qjasJffoI+g3fAy6UITUv/+daGcnuvx8JKNBCRHzdpI6LR3t6ge6b79uORgTe34gW+dDr6Ng5UvKPYX918NzhANAZzWk9IYvrgFACm9GFR9Hxr8eJFRdTdJllxJubCTS0oq+oABVSjKEQkgWK+0vvYTt5JORtod3VTurWdWyinpPPQXxBcTp4ghFQ+jVelQqFW3+Nqpd1Uw2jqDuuyU0lm4md+gwcsaNxmOOkmxOJtPyxwNNBGF3YrEodZs3suzDd/A6HQw98mgKh4/CFBcPjhoIOqFyKxRPA08LGm2I9FmZ+GbdRqixHW1aOnIwiMpsJuR0kP3vfxPYvAmV0agEJ2i0yEAs6Kb13ntJfPh+ygztGNt89Enqw5NzBqLvKEMKtyA5HcqzZfMGyBwOh/0NlcYETWvAlQCZQ/feB9FeDps/7j5t69fK6G/ZI/fefoUDliPgoMpVRTgaxhF0EJEjmDQmAtEAshzDfPa7aNU6NrVvAqCP7CFW/yPOgJOoHEWn1iEh4Q576BvNpnz+AtorKikYNYp+Q0YilZXhW7aMhDmnIofD6FQSMa8PdWIiWU8/RbCsDJXZgr64CFmlIlRTi76ggIz77ydcV4vKYsVYaEfvWgopfZWGv/FZyrODsN9Fq8oJ5RXQcMpxVKxdReb0SQycMIXw1grWpYeZPHIL2fFubuyVzbnP1NLuC5MRb+CJ04cyNMfWY3tOfxiHN0SCWUe8UYzSJux9krODmNeHd/hgVjRX4fd6GHzbzSSnZ6FyuanXeVg77lxsBhtZZ71P71dOgKAb1BqIBChR1QHKc9DLi6uYUJzEB5eOJcGoRZIkMQCn8IdlJBgZGdfJ+ebXkN5+A/RxMOE65TvQ34kWCWIhIo46lhWOZn3bajL6z6LAFc86XYxonJZh992FJiGJjAcfJFRTjSRJ6Hv1QgbUJjP+iqX4V60i7ujZSGYTyVdcCp4WjAPCaJbcA2OvBJVaOaCOCph4g3LvmjNa6azorANzElQshOxRsPlTaNkIke6j/9K2Bfoeo/zbUaOMMAzKfWffY5V/b/4Y+h0PrWU712taB/Zi2PixEmIiCHtRjt3Ev04azNWH+9CoJKRYBSuPvBOTWodx7EiWf/ExASMMvvVvZCalEv7xJ8Ll5RiNQ/G1GPjP92ZOG5VLeryBBoef9Hg91e1eEs26311nKxwc/OvXEZt1FKVGiZbqKnpdeDbFA4cSDYXZ2Gc6hQE/czc4+dfJA2l2BIjKMDpfhJEJgiD8WZhHjkQVF0+kox22h4+ozCZQqzEOHUq0owPJaERttWK/6CLijzmGSHMz2uxs1ImJxHw+VBYLMcBbXMjq5YtxtrXQ//orybHaMMfFYxzUfeAKZ8DJurZ1OANOEo2JyLKMO+xGq9ISr4un3ltPg6eBgvgC7AY7HcEO4nXxONPyqTDEsPWexABNAn0/vkp5f5g/cf98eAcR2dGG9i+XsPH7b2iq3EbxeacT338IkrsNKNjfhycIwm9xN+GIhdgw85+Uh53kaK0M0MSTMvcfPRZVu8pJOmU6DXc/1TVN0unwD+9DW4IPS9UGEqZOIbOokGBbG668LH745iuC33zG4NtvIS0llaXGejyqqxjhaif/m3uUQNehZ4HWuC9LfciQnHU4tVmUNdey1dNK2uQxDLzhGuJiEurERIIBL/r9fZCCsBveQIRgVGZZRT29s6KUZBnIsmRgMxlYVtmOSaehINmMSacBTTxLT3uRTW2biBKjX7STMUl9cC1/l9JFK9m4+EeSc/MZPut40gqLoXUzUbWNjAceILilnJjfj75XCRiNPdt7C8JBLKSOEkFp02qWAmgjIQACYXGeC4IgCIIgCIIgCIIg/BF7OoTkS0mSjpBled4e3u7BRyWBrxM+/ovS8R2UhrAfXABnfAjpvz+rZXS+nRtn9Obhr7cQjclcPqWIccVJAMiyzOqaTq58aw2t7iAmnZrzx+dz6WurcPrDaFQSfzuqD6eOzMaoU37dHYEOXtn4Ci9veploLMpRBUdxxZAr/lhnzc5qOis38d4TLxPwKqNy/fj2azga6zn81FPQGBJ6rnLya0iSCl/Ixz3L7qHcUQ6AWlLz0OSHmJIzBW1GOlXHHIv9skuRAwHCjY3IPj+mwYNRbx81TthH1Aa+7zWa69fexKn9TmV181OUOcvQGXQEq4PcmXknn9Z/yvL25fx1xF95aOW1DEkZgt1o54vKL7h2+LX8Z92NnJUyi8NTUoi0KCNmtj/zjDKa9XMPcGLpNZwz4By+q3uYZn8zlw+5nAeWX4VWrSVSE2FKnylcfsJFXPjjdRRmFiJJEt82fMsNw2/giTXXURRfRO+E3ry75V30Rj3B9iCnxB9LflYe966/mQsHX8gXlffgCXs4f8D5PLTyaub0mcOalq8pc2wvS22QR3Pv48OmL1nYvoybRtzEQyuvYVDyIFJNqXxW8RnXDr+WZ9f9lWGJg5m0OZnq1SsB6Gioo3rzegZffR4XLb+KsweezaK6R2jwNnDl0Ct3lsUbIWVNCs+lPEduvAjT2eNMPTuhYU4CnRlWvKiMQGK0w4RrIT4bWjcTSe7Fd4OOwdm2kftX3N+1WomthNtG38bafnEMf+s8nHNe5736b3m64kOC0SCTUkdygzeb3KHnwMoX4N2z4PxvIGvYHz7spoqtvHvX34lFlQCV+c8+SSQUYthRx3QtEw5F0WhVXR3zf4vaZEKTnIx36VLC9fVE2zuQQyGQ4YOC8dz76RoAZg9K529H9SE9/tcbKrR7glz99hrqOpUACncwwl2fb+a+EwaytcXD0YMy6J1m3f1IC8LvFo6FebP0TZ5c82TXtH8f/m+u/vZqAlGlM45RY+ThyQ9z7/J70al0XD3sai6efzHXDLuGs629lRHHtofxSFvmIkejMPMR0GggGuy+Q0MCkiGOphXP859AJe/XzENC4uSC2Vww4jxSlr+wc1lJIhqfDwVHoK5dBJ5myB1DtOF75i5dSGtNFQCdjfXUbill5oxjCS5ZgmTSkJhZgSpnojLqT+ZQ5WW1LHc/lvgs0O5mdBlbntJBCcCwm79x4QAkQfNGsOVR33sGj7X/CMEgp3sHEL9xI5HWFhJG5qHuP4yG+/5NsKoK2e1G9niQtFpSr1XCS1p9rdz0w01saNvQteVLBl6CWqWmIK6AxY2Leb/8fc7PO4Mfn/83ntZWQPlObt66ld7nn0h9rB6T2oTN+PvPnXAoilan3rMfiXBIaNpWznt3/R15+8hl8555jMOjlzFo2lFK585oFBILlWtl/hTUkSBa51riG14kMOhmnKuWE6hsQj9zOi9bVvFO5VzOHHQmRztSUD3xJJH2dsJVVRCJYD7lRL4IrEQV1ZJtzaasZS29fngKapdA0TSIS1c6agLUr4DProaZD4EuDhrWQFwWWFP2zgfx88C3rumR3U8XDjmyLBMJx9Dq1ISiIVY1r0Kj0vBDww8kGZNQoUKv0VPprKTN18bJvU/migVXdLuXeWDiA7xe+joz8mdQ6ahkY/tGLsk7h28ffRi/2wVAx4d1dDbUM2VwPzz3LMDzzQIkkwlJrcYyYQzpp49ClWjHGm2DzpUQ7cRZt4a6o4/BvKIc4/vzYUhfEoqyMM47DQ6/HaJhCPmUAICUvvvzYxR2yC3gm1eepX6rMmJuR0Md1ZvWM/WSS7hk8c6RIK8cciWPnDmaM5+pocEZ4Mo3V/PhZWNJ3iUEcW1tJ//4eCNr65xMKLJz2WFFrKjuJBCKcljvFAZlJ6BVq3ocgiD8LzqtWrwb6/n47ZeRtzfK/frV55gy5yya7R7a0PHA0geYnD2ZeF085x/3FLmdtYDy7CxpjdwwrZhnfqikb1oc10wrwWbS8fLiStLjjdR0+IgzapnWN5XB2Qm/u05A+POKN2oZ0PIJ0o5gUV87zP0bsTnvEgsE0WiAsI8f8gZz1TeXIcsy9+f+H189vbNO7IvKrRx5+nlo1WEiE/sDoP+/Bwht3IQc3FmvsDneS3lOgGy1lan1NbD8ReUZ3tuiBIZojZBUAsv+AwEHJGQrAe3GROW7OGvEzvclu6sP0JmV724AjX5nPcKu020FO+sMdojLVEKJ+x3/v32YgvA7GXVqSlKtNHoaKe1oJxAJkO2O8OG/7t353VBdyZQTTiPN7yP92afRzz0e96j/EI5GeXlxFf88tj85dhMXvLKSsiY3w/Ns3H50P/plxO/n0gl7RMBDMDWZDx++p+s96k+fvEdnazPGGYPwu6No4opocbdw9+el3DyzN19tbMYdiBCOxRiau5vgZkEQBOGQImk0mPr3+83l/Bs3Un36GaBSobbZiLa1obbbyXv7LbTJyXjiLLz1z78TDSv3y9+98xpjTjyNMdOO6PY8KcsyP9T/wOeVnzMuYxy+qA9v2EuLr4XRaaN5YeMLNHqayDJl8Wbpm8wumM2o9FFsc27j3mX3IqPcm6eaUvnnif9meCiKeKvy2zw2Gx8+fB9+lxOApQ11tNfXMenMcxCRAoJw4AtrTbySVcKzm57pmjYtYzy3DT2duMVPdl9YbyaaC+Z//T975x1mR1X//9fMndvb9t6yu9lN7z0hpJEQegldFBUUxIKKioJi+VrBn6Ci9I7U0AMkQCjpvbftvd69vd8pvz8m2bDfjYJ+6d7X8+zz7D0zc8rMmZkz53w+78+vUJ5/DTnbRd+iCbzKDtYf3MDvx/6Ynq99E3nAi+m2P/L8X/84OO/x+iP3Mu6LK/iF/+9E5Sg51hzuW/B9KvsawfDvB0VKoxPPqGHdY0/TsvM9dn4H93LuxV8mduutGH5zA1YlhdGQFgRN8+mhJxhjT1uAsNpNLPMB7mvZgsVg4cpx3+DV7bW8vNsHwBVzyvn24pEcDh3murevIybrtn0Wg4W7F9+J51CYve+8DIC3s4PmXTu47Df/jyxLJkL7QeJBiVhjE2osBmhomopj8uRPqtlp0nzoyBJEj0pNOcU4xpRutxBP/RPblzRp0qRJkyZNmjRp0qRJkyZNmjQn5MO2wt8MPCcIQkwQhKAgCCFBEIIfchmffhIRPepfoP24Qe0xIh5UbyPeSPIDZ+e0Gjl/SgkvXDuXl781j8tmlpNp0xeYmvrDeCNJgjHdoOCsiUXct76ZQCyFKICiafzy5YMc6QkP5retZxv37b8PWZXR0FjVtIrXml/74O2TE/DWr/G0tw4azh3j4Lp3CPhDkFUJ1UuObzCYiTlm07g6zN57Alwp38A3q74HgKIpPHzgYSLJCObqagpuvhnv3fcQfPEl1GgMx5LFmKurP3j90nwoDMghbql/AoAsSxaHfYfR0EgcdWbvj/WztWcro7JGsbVnK0k1ydT8qbzS/Aq51lzaQ+2EU2Ee6nuJ4E++iiEjA9CjPNh+8l1+2/cIADajjeZgM/NL5rOyfiUaGoIg8Iva33NKx+XsuD/Mtww/54KiS3mr/S1KnaUc8h4iJseYWzyXlfUrAQbrZbVm8OdDDwNgNBjpjHSyuHwxjx9+HIBsa/awtjRGOnm7dyu1mbVs691GUk0yrWAaLze9TLYlm45wB6FUiFm2SYMCJMeIBvwMdLYD4DA5aAo2cXLJyTxX/xwaGkk1iaqp9ER72OvZ+1Fdrv9uskZA7WnHfwsCLP0NdO3SnXM99brz7uMXw/zr4co3aT/vLrJtOdy5984hWdX56mgONXM40kmkYg77Er3cVv/EYF95p3crTwYOotYu1w/QNPAc4T+hp7FuUIDkGNtfepZowE+gP8r2V1p49pYdbHimAW9X+J/kMhzzyJGIVhvhDRuRPR4Cq14hOGkGf9rWzzGtkJf2dLO12ftP84inFAbCCQYiSbr9cc6aWMQ3FlQxvSITVYNWb5S73m3iJ8/toycY/6f5pPlgtAfbuWvvcaOV1eet5pXmVwaddgFicozVLat57sznSKpJtvVsY0zWGP62+290yJFhzuFC05uo4U4I9aBd8iRULtSdd8avgLPvwPLa9bxLmKdbX0PVVBRN4fHG59lYOl537AFUdwWdp2/gtVesPN/9Q+qnrSSeNxtsOfic4wcFSI4x0NmOt7ODRF0d2XMrEMunwpobIREAox2mfXmog1HeWCifC8XToPA9C9mSRXcaalwLc76lR0xO8+knEYTXfgSLf8GrdhuvtL3OKwPvckXybm48zU/TOZVYcxRM8SZyvngJhMO6AInVSuHvf4dpxAgA9nn2DREgAXjk0CNUuiuxGC08W/8sAGWpnEEBkmN0HT6AFEjhiXnojfZ+oGr7eiNsfqGRZ2/ZweYXGvH1Rj6Ek5Hm80TXkUODAiTH2PbSs7pggqsQedZ1tJTfwEvv1PKS90Zao2NJzf0BaAqWbT8m3/UKedct438y1vFoz0sk1SS1ubU8oWwkUZRFqqEBZBlpVA3CitPJcubiT/iJK3EO++rhyCrwtcC2e+DwKhh9XKwMf5vuyJkKQyoKgTbdGTPYpaf7WnVhzL4j0LMfwu+5Z7wt0HsQkrEPdiKyq/WoluNXwEnfhxlfhzNu04XeuvdCzwG9LFUBfzuEjt6DclKvZ6gX/B0Q7vu/XI40nxC+ngibntOflVtfbqKny4OGRjAZRFEVXm58GZfZxfMNz5NrzWVx+WJebX512Fjmrfa3GJM9hs3dm8m15XLQexBrQB0UIDlG45bNhDPcZF92LogiWjSKISuD7CWjEF+6Btb9EdzFkDcKTA72jl3OV/b8mCttT3PzhQpXFa7m/sQG1FnfgJyRulP0qOVotmzdKTrNJ86AmhwUIDlG0NNPX8A3JO3RQ4+C0c8xf5kOX2zI90eXP8aVD+1gT4fuxDG3OpcvP7iNP66p4463G7nwrk1s+xffPWnS/KcEjAq9qdigk/kxdr+7ljpDgDfb3mR6/nTWtq2lyFHEfptDFy+LDoBoROjazTVT7az57nzuu2I644pc/O3tBoozbfx+9REe3dLG395u5KK7NrO73f/JNDLNZ4pYsBdh39ODvzVnMV0Ln2X12hyef6OaI/5JBDInce/+B1A1lcqMSiJ7m4bls3fPNn5nWM328H72RI9gvO5rg3O6SBKO665ljbGOgwMHebz1Vbz5YyAZgWlf0YV/kxHwNEDMB/2HwVmoC5NY3KAkwWCGinnQuVMfV/YegnHnD63E7Gthvz7fy8xr4OBz+v+zvqGnS2ZY+BPofM8crasIbFkgGmH0GR/imU2T5v1pCbYQToXJt+XTtn/P8HfD5nVIX7iIjlIbvpoLebDueIzlSFLme0/u5khPCIDtLT6+8dhOPKH/JSic5rOJnMAbCw9bRz28eT0d/S10R7qJKlG+dFIhHf4YB7pDvLC7i9vfrOenLxygsS/0CVU8TZo0adJ82jCPHEn+jTeCLCN3diLabBT94fcYc3MBGOjvHRQgOcaOVc8R9nqGpLUH27n/wP1MyJ0AAsiqzNN1TzPCNYKEkuBU5zl82fdjTtp+OT+x3ooUsyIIwqANxzF6o70cDrfR5EwLZn0QegP9gwIkx2jYuZX+SHrOKk2azwKtqQD3Nz43JO31rvU01izR5yiOUTID3GUcyMpgd62Jm86Jcf2sRq7u/iMWycr8ovnc0/k0/h9dgf2cFbS1tgwL4NL7zg7m5c4GwBPzsNNig4qTOCZsnObfpzeuDQqQHCPi9+Ed8GD61ldJmgy0Bds+odqlSXNidrb46Y9E6FBfZWf/FgDiSpy/7vl/jBsRGrT9e3BjK3YJ3mh7Y1CA5Ni+KU+YfeveHZJvMhbF09YKBeOwGlpI1u0lsXs3SkcHwddew7V4CYIxLciT5vODLClENTMmkhgEDZOaRBDSIiRp0qRJkyZNmjRp0qRJkyZNmjT/LtKHnN8fgdnAPk3736Hu/4sQTbrzldmti5G81zFYEMCSwfl/28DPzx7HvOocDOIHWyzKdhxfvBqIJHh1Xw93v9uEw2zg+qW1PLurgxynmURK5fqltSRkBVEQUDWNnmAMyABgc9dmABaVLmJi7kSicpT9nv1EU1FsJ4o++L/xt8G+pzDMmDVsk8FoxCAAlmxYeCNMuBjifkI583njrjpCA7qziKcdCsaMYWHtYt7qeRNvwktSTWK3ZJKx4nxs06eh+ANIhYWYigo/0PlJ8+GSFAT8CT8AygkinycVXUjHaXIO7qceNbB1GB0EE7ojWSQV4du+u7jmNxcyWSjjkNxBuEBj9679Q45xmpz443o+Xx/xTbzP2ImF9N/9bVDpzWJq3jRiRAkkjhtpqP/LqNdsMBOVo4iCSEpNDdbn323LsUeYw3S8LbKgIhoMw4QjZFEdkrfD5MCXGOo8BRBOfnAhiTT/BoWT4OQbdOeFqFePvpo5Ap77GtScCgUTwdsI+5+BgQboO0yioAYhs4Rwavg1iaVixOQYCVchB0KtVLorWV6xHKPByM6+nazu28aVxYsZNKuyZvxH1ZZM5mFpJqsNVRV454k62g/ohkee9jAt+zyc870pODKGH5OQFXyRFE6rAbvJiGixkHnRhdhnzUTxB1Dz8/nGa+18a9FI4rKCJArIqsaBziBnTyoelt/udh9/frOeg10hLppewq0XTOC2NxpYta+bBTW5XL+0ljGFTp7++ix2tw5Q1xtm6nuiMqZklVZvBFnVKMuyYTN92EONzx8JJYGsyoO/3WY3nphn2H6emIccWw4AvrgPp8lJQkmQNEjwlTcgs1x39Nl+P1gyEFyl8PzXEXr3w8Kb4NTfox1ehZCK0z3vWyTtDlaMXMHWnq3E5Bj9sX5e793GOZc+BX0H6bMt4YW/taKp+vOwpxmWXPJTakt7MSScwAvD6ugYP5b8qSVITpvuALToRrBk6JGQVRkufkwfR5jdUDIVMsr0Ay/+B/Tug0QYnAW6c94XX4KCcWB2fOjnPM1HgMUFJgfecBdGVzHfmPgNtvdsZ2vvVvb07+FNWwFzy86GrCoc5TIjHrmHlMdDNLMY5+gaBFHXRnyvccQxoqkoqqYSl+ODhq6a4QTjZ0FAlAxomjbEIPafEQslef3+A/S36u8CT3uYtoNezvzmRKzOdESpzyWqCnJsUGwJRdHt9gTxuKGfKOrpBj2Go2Q+wfvaYkM8ur09OZpX7j8unNN5BM78xihKL1upC6E5conlVNPb+szgPkklyeN9r9AyewrnLPgmUkpjh6mLiXYviqoM9veYHNfHOdkjwdsArRtg0qWQioEch4hHd+w0OsAdhGQU7jwJFv4Y9j8LU6/Q23bwBah7FVylcMaf9Gfsm7+AUDeMPRfmfBsKJ/zrc2fLhLnXweobIXe0/l0b6Yf7TwFNhUlfAHcJFIzXx2CaCotv1gVJ1t2qO4bO+JoupDL9Khh1mv5uSPOpJxpM8Nrd+/F26SJNnvYwhYecVF2ST138EA6Tg6SaRNM0AokAqqbiNDpPOJbpj/UzNX8qh7yHjn/HGYZr4xokCdUkkjNJxrXkj6jtezE5UkhCK5TPg7YNMP8HaFmVYDCy/6gBXigVYlffLgQEdkc7CEy9gYxoSBc70xSStkL6TJlEvUcwGUyU2oqRjCbdKVoF0PQ5HEN6/PpRoxkN+nPkf00dmhNupuVMZ7tnGwDBRBBF0+e2FE0jw2ZE0GBvhw9Ng75QEqvJwC/PGku+28KuNh/xlN63frC0hsllmaiaxuHuAA6ThD8u44skyXWaGVXo+tjbnebzgyqoCLbhYwSjxcZc5yLWet5hhEsX2VNUhZiSAHc5ZFZC89to3bsJahbavTE0LYrbKrFsbD4gcNcXpmA1GjBJArKiEYqnaOgLUZFtRzrBMzNNGgBfQsKSWY5wVBC9f/JveeEpEVXxA9DbEmL+ReWDc6VxOY7BZhmWj8FqJpyKoKISV+Jsz/BR9Jcf4RiIIjgc7HZFaWrcglW16uLLVjdc9gxINl1QFAFiA+BrhjNv14VJNFUXBfO2wmVPg7cZFv8cHHnwwjdgzDl6HjGfPkcgWaB0tj4XoKmQPxayqvRxbeFE/f+80XDlG7rIXdwHJqcuyveV18GVXktI8/EiKzKyIqOgIJqHO2qYLDYi2FA0PxmzvkDr48fXDQpcFv7nnHFYTQZ6AjE2NfnItBmp7wvRHYiRkBVyHGYiCYV8l4Uc5/B3T5pPMZqCKAy/ZpJkRBYUErKCrMoUOMxk2IwsGZXHzIpMHBYjHd4IDX1hqvKcn0DF06RJkybNpw3RZCLjvHOxTZ2C4vMdtaEpGtwuScPHIEaLFfF/zXEllAT+hB9FVZAECVmT8cf9GEQDBUop257yEI/oIlj9bVA9ayaWan1N8n8Tk2N0pUKM/JDb+nlEPMH1EQ0SEumxXZo0nwXiShxFG25nFjOa4eoN0LNXn5coGA+uQmKRZhJKYkiQKkVTyLXnsqN/BzeEdnDLkjvQmnYOy9NgNRNVj4sRBgQN2duEJKbnBP9TNEE4oZ2fVlzKDpeHsUIhMvI/OTpNmo+feFJmf6eP6dVG7tz+FotKFzEhdwIJJcGrza8imHv45qLZGAQIJxREURy2JmuVrLiUXCSjiVRiaGAxg9EIZTOQRCP5I/tIBk9F1UyYRk1Cysr8OJuaJs1HjmqEGBas6ILPkqhikcS0CEmaNGnSpEmTJk2aNGnSpEmTJs2/yYe9SlEP7P+vFiABMBp1JxZnAcy6dsgmbfrX6LaP4n/OHc9vXjnIoe7gP8nkX/P6gV5uen4/nf4YeU4Lh3uCXDajHE8owbeXjOQva+v5y9oGbn+znn9saSPLftyRclTWKH5/0u+RVZnJuZO5fPTlLC1bekKnzxOSjMI5d5FbWk5uScmQTbPOPR/3lt/CXyfCPQvh2SthzU34AuZBAZJj9ByMMMexAIBzqs4h06JPZAuShLmqCtvUKWkBkk+QPFsRF1WfC4AoiJgNQ40gcmw5ZJgz2NO/h1mFuiCNJ+ah1FlKS7CF0dmjB/cNJoP8vv1+2ivs/LLrPla3vc7issUAGA1GJFFifed6Tik/BYDCZAWx0NBoPc3bvJyRey5HvEeYlDcJgLZQGzWZQyNZN/gaOLnkZFRNxSpZMQgG1nWuY1nFssG2WAxDjewLbLlkmjPZ27+XmQUzAeiL9VHmLKMt2MaorFEAvDTwOlWnLBxybHZlJaks82BbjKKRDV0bWFq+dMh+oiBSmzmaNB8RRRP1yKkzroKRp0A8ADO/ATXLdYddOQkXPqyLkwzUU9J7iJ5Qz2CfO4bZYKbCVcEIexFZoo05JQu4pPYSZhTMYFnFMuySnRum/QhH6yawZMKky6B42n9W5ZG1WJ1DHd/mXXQ5sbAwKEByjEBfDF93ZFge+zr8PLyxhRd2dfDghha2tejHvfc5aisq4vxppby8t4tHN7dy2xv1PLm1nTnV2cPya+oPc/l9WzEIIj9YVsPsymz++Go915w8gvu+NI3KXBsbmzx4Iwme2dFBcZaTicVOOn1RADyhBH9YfYRlt63j1NvW8f2n9tDujf5H5+e/iRJHCVPypgz+/sbqb3BqxanD9ltWsYyvrvoqAHOK5rCnfw9z8mdQZMqAQy/Ak5fAnsd1h/JAC8LKL+sRgC94SBfgefFaNE1lg9PJ/aqXN9repC/Wx31L7+OuxXfx67m/ZkXF6bqzeONbdLbIgwIkx9j5jo9E4SwyK2oYNW/BkG21c+aTPWY80oRlMOIk3VFo/AX6PVkxDyoXQNUi3Sl+3LnHBUgA3EVQswzGnw8Vc2HMWTBi3n8s8pPmEyAZoeXCe9mfX83ZVWcz0j2SOYVzuG3BbcwpmkOtuwrW3wr7n4L2LZj638BWaieCn7qe44JQIzNGYpWGChPMK55HOBnGZXQxwq07c+6UD5M/bsyQ/cYsXkLEoeEwOXAb3e9bZX9fdFCA5Bj9rSH8fenn1ueOVBxaN8KbP4fHL9IFOtbfBlvuhJe+CzsehGeugL2Pw3PXwEOnw54nIDJASXkRFvtQMaS5Zy7HTJJwzM+B9V3Diju0qQ/F7KI1cyYDBjNN/gbOqDwekT2hJKhwVbDJt5Mf9dzJ9wfu4u3gDuxGO5FkBLvRTq41l2p3hf5N2X8IqhbD2X/TxzIjT4Gx58HES6BlHex7AsJ90L0bFv8MNtwOZpc+Hjr4PBx+WRfG9LdA9y547ioItOviUPuehk136MIm/4r+I/DEpeAuhuZ3wWiHt36tl5EIwZa/Q9wPR17RI9aH++CFa8Fo0cvxt8HrP4PqJbDyK9A53LgyzacTX090UIDkGN2NIQwBCznWHFoCLUzOm4yGxpLyJQiCwJqWNSccyywtX8rjhx5ndtFsEHQjuHiGSGZF+ZD9xp52GnnGFGLpJCwZCrbqIqS8Iv1eMNngzL/o4hWdOxAeOoMyjOTb8llcuphrJ17LT2f9lNGZo9gRbqPflYPQtQst0EXILPHAob/y9de/zhOHnqAr3Ekq1AMtG+CtX8HBZ/X7Zeej0Hf4Iz2v/+0Y3WbGLxraR4pHTaS3SWJx5vLBtFMqTsEpuRiZ58BoELjptNE0eyJ0BxLc+U4jvcEY1y0ZyfoGD/+z6iADYV1g9O7Lp9IdiHP5/Vv5wn1b+cvaBo70hbn2Hzu5/P6tXHj3Jlbu6CCZNjJL858QC2HAQH7tKMw2+5BNo046m+4dKc6rPo+tPVspsBcQToWpdpTo32uPXwjb74N53+MXa9q48K5NXHz3Zu5d34LVaODG5/Zz5cM7+M6Tu+nwx/n+03v44v3buP7pvbx+sBdfJPkJNTrNp5l4SubeLb1EZ35Pj8BrtNITzENVhn7P736zl2tqvwlAZ7gTw6hC3ej8KIIo4po1hrZQG0bRiNvsJqEmWBPZzs78KPtdAcJqnP0D+5lWMI0JmbXkhb264N0bN0HLO9C1Hd7+NUT7wZoFW++BjX8GX6s+rt3xIOx8UBcXifTpBdcs08e3Ey4EWzYcfgXe/o0+n+co0J14Dj4Pr/4Agl26AKbniJ7Xmz/Xx5lZlZBbA3ufgAeWwbu3grfp4zj9adKQZ8/DbXETSUUoGz0Rk/U9Qv+CQO28s+hriGM32hH6D/PyJYXMqcpm/sgczJLId57czbce301SgYW1eTy7q5NL7tnCNY/tZF9nkGsf28XhnhAX3r2RnW3DHYDTfIpJxVHkbLJLKoYkTzz1PEJmmUxLJg6jg0c3DXD1/CpufvEADf0Rrn96DwaDgQKXhf/25fY0adKkSXMcwWDAXFmJberUIQIkAHkjqnBkDV33PenSK7BnDHUkLXGVcPqI0wmlQiSUBJIgsaximR6kxWshHhlqn9G+NYw7mTtsPV0URGoya8gWhgsbphmOK7OU3PLqIWnjFp2FoKUdfdOk+SxQ6ihlbPbYIWnZlmzKO3bpcxO5o6Fm6aAoaqW9GINowG0+vlZtEAw8cvARTh9xOpOzpnL4LR+O7GpM1vesiQsChYtns7lvq/4TgcmClW3WeTT1pwNe/afYMzIYv+jMIWn5lbVEow6q3FWk1BR5lrxPqHZp0gwnISvUFLh5+1CQG2b8GLtkZ0XNCk4pO4VlFcuoclXy5zfr+dMb9aw52MP2tsCwsdqc3Hk0rE8ycemKIemZRSXkluv2NpRMRRy7HMvsZdjmLEwLkKT5XJIyakQ0M2ZBFyExCBpmyTAY0CJNmjRp0qRJkyZNmjRp0qRJkybNB0P4MA2YBEF4EKgEXoWj8rGApmn/70Mr5AMybdo0bfv27R93scd58Tswcpke0S/YoUeZdhaiuEo5/ZkI4aTM1SdXUZtvZ/qIHORkgoGuDmLBIO6cPDIKixCEE0R4ByKJFOf9bROBWIqvza/k5b1d9ATinDmxiJNG5vDQphZeP9g35JgfLx/F10+uAqDJ10RXqAunxUlvoA8hYKFIyiNPjWFsbcZUUYFl9GhEy1CjAW84TkaiV4/6ffA5eP2n+Kf9kPZYFgMDQUrHT6Moz4b10WXD6tx+zh40iwOTxUiwP0Y8lMKVYyXhCPBO6E0Wli5kZNZnMk7KiS/S/4FPvO8eJeXvpNvXSG/YTahPpjS/gFAkQjgRpiA7j4A3ijvTTiweJxqNkZ+bTVdfP1kuNyoaPn+Q4sJcevsHMFokcl3ZRAIJHG4LA0EvaCJ2m4XuPg/F+Xn4QyHQNDJcTuIBhXcebgDAbJOYsKgUNI3schtROUYwGKagIIfePg9uhwvBINDd30e+20VmrA8xFiKSX0OnN0RJQT7eQACDIOJ02unq7acwP5dwJIo/HKSqNIuYpx/JbEIxORjwxinIzaa7z0Omy42KqrelIJfegQHMJhVj0kt//SHcJWWYc0pJpWxD2hIIhUgkZIyZKn9tv5WYGuPKcV+jQJrMhNLhwg+fEB9634VPSf/tOwLr/x8UT4FXf3g83WCEi5+Ax84HQaBuxd34sypY07KGN9reoNRZylUTrqLcXs67Xe9S5iojqSSxGW281vwa3oSXZeXLKLQV8mrLKqblT+OtjnewGCycM/IcJuZORBL/edT0ZHs78UOH0OJxzDW1JHPL8HW109t0gGjAT1HtBFy55UgmM6qiEfEnCA3EsbpMOHOtaLKKySLR1xpCUVScuRbidgNHvFFsSpSsVACryYCQkcuuPpmSTCvjSzKIBxIM9MUwO0R6ZJVgUub6p/fyg6U1fHle5ZA6vnmwl1BCxhNOcN/6ZsYVubhkRhm3v1lPsyfColF5XDC1hK5AHG8kybqGfipzHMytzmHZ2AJW7e3i2n/sGpLnD5bVcu3CoYZVHwKfu2dvc6CZhw88zM7endyQeynVA0bipNidEeBe3yourr2YSbmT+O473+W86vNoDDTiUhQuG/MFKp77lh5h5xglM2Dm1bqT98yvw5HVuuM5sP9Lz7EhWE93uJuzqs/CG/eyuXMzJ9uW4gjngEnBViiywf8OI9qmYIzaMdsksovtJOMKJksSOTkAGjhzs+lvaaSvuZ6CyhqcOSMI9BtwZJqxOk0oioqqaESDSVRFIyPfRsSfQFM1rE4TqYSMZDQQDSaxZZjJLXFgdZpIxmT6O0KEBuI4My3klDow24ZHCfuM8rnru8eQW9azw2QkqSbZ0LmBpkATC0sXUpNZQywVIysVY8yjF4HRTmDpX/HEHRjMTlwZWcQkKK44/pzY2r2Vv+/5O82BZk4uOZnF5Yvxxr3YDDYyLBk8ceQJdvTu4FuVX6MynImnpYWc6irySkYR91r0PuU2Y3VISCYDGfk2RFGguzFAoC+GPdOEySIRC6WQTCLxcIpUQiEaTLLnjXaWXjkWs1VioDOM2W7E4jQS7IvhzLLgzLVitkr0Ngf1cU2GGWeOFUEEX3eUWCiJK8dKQaULs/Vz02+P8dntv1274ZUfQMdWmP8D2P0PXRDpnd+TWv4g8fomFMGF2R7B0nQfgv+ow+JFj6K99Xs65/2FjoZG4qEQpeMnYXIVosQMWOxGvN1RHJkm0ASCnhgGo4grx4ooCYQG4ggkEUU/ciqBLSeX6/Z/H4No4PvTvs8TR55gZ99OJuRO4Aujv4CiKgzEByiyFWHDRlZzF1rIhzu8Bev+e2HudVA4HvY9C5oCpTOgaxeEekBO6BHmy2brYh/L/wCRflj7S12A5BjzfwDv3jL0/EgW+NrbekT5f8bhVboIyfzrof51cBXrgiPvpXyu7mw69hxYqYtmMf1K2L9Sj2z/3vKX/QZmDxXs/Aj57PbdD5FoMElfa5CwL0FWoY1oMEksnCKrwIaqor+3ZQ0NDVEUiAaSGIwiFruRfW93UDoqC4NJxO42k0opGAwikiSiKiqiBIqoYUBAkiTi4RTRYBJrpsRzwX/wjmctl4+5nExTJv6Un85gJy6zC5fZxcaOjVxWfD7BxjZSvX6KqseQk19IfmAzBjkEObXgqYM1NwKgusvxjfkKIUctdiFCVvcbHJqygm5BwyyZaQu20ehvZG7RXARBICJHyLHkcNh3mE1dmxibPZb5xfMxiAZag62saV2D2+zmtIrlzHn7NoTcWsiugro1cMb/A1fR+5zZj5zPZf+Nd+6k15dNMtpPPOxFMplx5pSiKG6MFhE5rpBKqkT8CawZRgzZFg76o9hMIuvrPLx9pJ+qfDuXzChnV7uPu95uxiDCLSsm8rtXD3HtopH8+Nl9g+WtmFrCrlYfjZ7jgjqiAE99fRbTKj413+ifNz6XfReAiI++VARBtdC3vxM50Y/RbECUjDhzSkjG7dhcJnw9ETQVrA4j8ahMdpZMbuANtOwqVnblEMbKQ5tb6AnGMRlEvjp3BM/saCcQk1E0DQ340uwK/vZ2IwBLx+TzlbkVzKrK+WTb//nnM9d3D3YFufqR7dx3+VQqE/tR4gr9hnHEw3oUV2e2BdEo07avEWcm2Ny5ILpRUUgluumq20csEUYpz+Dd1C4WV+iiYpqmEZNjJOQE2dZsYnKMdZ3rKHeV4za7mSZlUt25RxemO8bky6FzO/QdgsqFIBqg4Q1925Kfwzu/Py5+d/INUHsq5I4Co1UXsXvkXOjdr2832kjM+g3xfg3iAcwZSSyH/qqLlsYDcOil4+WOOx/Mbthx//G0sjlw8WNgy/rIzv2nkM9c//08oKgKe/v2kdQSlAgFJLo8RIM+RIOEyZaJxVFMKqFhyRApbLobpXIxa/wlOK1GXt3XjWQQeG53F5GEwnWLR3Lv+iYCMRmTQaQs08rJo3LZ0OBhdKGLXW1+nr56NrnOz53D7+ez74b8bHi9j6pJZiLeXkJeD86cfKyuQgS7kR6xg1jURjyRwS9ePEirN0pZlo3ZVdlsaPDw63PGUZVnoyTT8f5lpfkk+Xz23884qf5+4gcPoni9/9TuIc3ns+/Gj9SRqDuCYDRiGTMGU1nZ+x/0OWGgs522fXsIevqomDiFwpG1mCzWYfvVeetY07qGEnsJdpMdVVOp99WzQD2DuncGmHVWJYKggWhAQAUN5JSXkKcfqysDTcwgaY2juKKkkjEmFk/9uJv6meu7XU0DiFqEsLeHaMCH2e4go7CcaERkxNjhc4+phIK/N4oiq7jzrFgdphPkmuYzymeu//6nJDs6iB86hBqLYa6uxjJ69D+1gfws0ORv4sEDD/Jux7tMzBrN1VlTGP3azyAVBWchfGUNZJbpaxnbH2BP4Rj8WWU8dugx6nx1LClbwsKSkwin4pixUCWPRcRAPNxNb9N+5EScotET8dj9eLs7yLcX43aUACb2RQUybCYWjs7/JE/BZ7bvHuk/RFY8k1B/B0FPL46sXJzZhTTsjFG2xEpKSVGZVfn+GaX5LPOZ6r9Hevw8t6ubxaOzsds9HPEfYWv3VpZmnkG5uQgt6mdvV5D9YTMP7BrgTxdOYlRJiN0De3jk0CMomsL3J/2AmtR4jKKKt7uBnoYDZBaV4CysYuTE2o+k3u+HEggQO3gQubsHY1EhljFjMLhc73/gfzcfxYvzv0btVlUV/nT1WBpzLmQfpawzXc+Gtyr4/tJbmVeTx60XTPykq/h55rM76EuTJk2aNGnSpEmTJk2aNGnSnJB/7i39n9F89M909O+/l8mXQf9heOFq3Sj2KIbqJZw/5sf8+q1ebnp+P3dcOplkPM7OV57nyJaNzL/0CjY//xRjTlpI+fhJAET8PpKxKPaMLExWK5IokuM0cebEIn776iFSR6Ma3vVuE7lOM93+OJfNLCPPaUbRNAyiSCh+PGqJKIgUOYs42FZHjTyRwpFuIt4U8biMOLOK1tNPpvDmn5FxzjmDx8iKSstAhMmZZgj3wLZ7dcGIbb8nw2jTjXlVM5hmgdmpR8M+htGBoyiHZFRh15o2Gnf2D26au6KaqxZf9ZlebPy8oiST+D359O1IUDuthGRQQQ0YqSgr58iWbrKK7ITCKWJhldLRBfS3hshyZmPGyEBHmJKKQnxtUVzWTJw2C4fXt+HIVPC1mykaWYDBKNJV76ekpJC4V0aMmMkpc9LV4Ce3zMncC6rpbQlSPSWXlj0DFNdkoMkCsS6N4opCPK1hXNZMrAYT/W1hsm35SGqKsNGMKooYkiql2YVE+pMYEhZyivW8i4sLSQUUFL/EyHInr/7pV4QGdNGemlnzmXL6ZXQ3xclwZult6QxTUl5IoDOKWXMiJkRU3IxdNImdq1vIU13klDjpbvBTUlpIwidD0ITdbCPekuSmEb+lSTvC3Xvv4DsTfwakHZw+cvytugPD9vuGpispaN8Cc74HG/8fNU9fhTzpC5QuvpEVNSuwG+1sbtvMLzb9ggtqLuBH637Enxb8iW+v/TZxJQ7Aux3v8tNZP2Vsznh+tP7Hg1m/1PQSD5z6AJPzJgMQ9PShyDKunDwMkkSipYX2q75Gqr0dANu3bmB9nxdHhgVHdi3tB30c2BgA9nLJzdNo3jPA1peaB/MfNbuAsScX8fyfdhEP689zs11i/mWjSPh6CL/9JDknnUxSgPpXVzLu7C8RjZmJ9EQwmw24TAbMBiPZLvCFVf5xwRQ6kinW1fXTE4xjlkQmlWZiN0s0ecL8+hU98vvvz5/A1x7ZPqgA//zuLgbCCW4+cwxL/rSOG04dxe9eO0woLjO/JocNDQPDLsfLe7v48twKbKYPe8jx+WKEewQ/mfUTYnv20vWVq/DEdKecUfn53H/n7ZjsCur6P/NE7VcxH3ieiCOXjNYtSPnzhwqQgO5kP+fb+v+WTF2AxOyibflvub3+cbb1bOP7075PKBni77v/zrfybqD9BZWgpw1VVqmemYN1goPKMYXE+zSsLiMhjxeTOcS6x+7HaLGgqSogMvfia/B0FdLVrFL/pO60b7IYOPnSWpxZZtY+fJjQQJyJi0up29pDTqkdd45M2KuSWVTAS3/ZM1jtUbMLmH1uFQfWd7P1xeMRi6cuL2fa8gokk+GjvARp/o/sNJvwxb38buvvGIjrz4L2YDv3zngYNSJiskoMXNlCxNeBp60RQYyz9q+3M2nJcmrnLaS/owOjLYtQPEWpVsZN1TfhFzX8SQGvL44v4kKw2hjhFvnu5O8SU2LYJTsaGrlTxmMI2ti3ppuGbY2DdZp6WgUFI5y0HfDiyDaz9sHD5JY5GXNSIXvf7KB0TDa7Xm8lEdGd86xOI/MuHMnB9V0EB+KUjMpk75P1FNVkkFvq4J3H65h9bhWOLAuv33dAL0SAWWdX4s6zsvqeA4NL9lNOLWf66RVIxnS//VQQaNefjQCCqAuVHXiO5Myf0fnb+4kf1N97GAyU/uo6HJGb9N+du+ieeSd71qt0N+ThzC6jbFIJnfuDZBbZ6WsN48q1kIgpvPXwYVIJXezDmW1h5lkjMBgSpOJtyKkEqUScPauf5faLfoszpwgBkZtGjUEYJRCPyBhVkZAxSKkpA0tnO/v35LN2kwBkkVN0DqfMm0zWnl+B0Qb54wAVIh5ofBtmfk0X9qhZBlvvhuoluhMnmm78GOg4fi4MJxDHcReDyfmvz6HlaMS2ZASUJLhLhu/jKgJV1oVIBo/L0I0w/3f59nRUsY+TWDjJuieP0LCjn3kXjuTw5h4ObehmyrJyosEkJouBgc4IqqySW+Zk03ONaBpMXFyKzW3EkWlhw8qGwfwmLCqh47CPgio3jkwzckJBNIjkVThpr/Oxc3Xr4L6LzjqfSydfDgYZa5aZSCqEyZpCi6kYBCMLKuYiGDSECePZ9UYHPXWgpQTk/Lk4MlwkYyL26hloNZcT9vXj62zl9Xv+gj1jL9XTZ1E989uUu8vJ9qVQEioholS6NPrj/cTlONFUlHfb32V162oANndvZm3bWn4666fcuOHGwXq+2vwqd83/I9ObN0OoF/LHQv+RT4MIyeePZIJ4xI7FIRHo85FVWExvSwNbX3iaU772fVAzsDhMGBVV719JFUkVmea0k5RVcscWMqc6h5aBKKIA+U4rNyyvpdBtxROK87vzJ7D28FBh3gK3ZYgACYCqQbs3xrSKj7HtaT4faBpxWcOWNJJT6sLb6UOUJMJ+L2sf+DtnXHcjcqoQd44VX28UQRJwZVuIpVR6ss9BjHtZUOYiFBNZduFUUjEZo1FEFAUuqsonmVLxmzU6Qwneqx2+sXGAMyYUfnLtTvOpIR5JEfLGUWUV0SCQZxR45pKpKDGNPsYimMFkEknFFUL+BAgycryF7vrN7DxykFgoyBnX/RiTvRxRKKBmRjE4oihymKnqWASDlVhcQ5FTJFzQEm5ld/9ugokgY7LHUJNZQ3ekmzpRocpoG2pNuvdJmP1NXYSk6S04+UfHRUgOvgAjToa61/Tfm/8GU7+oC5CA7qhzTIAEiE/4MW033o3i9wMgOp2U3fxjrDtuhJO+P1SEZP9Kvaz30rYRBhog7IRApx6ROHskSP/dy1Zp/nMa+8LsbvcTSymML3YzvtiNKAoYRANqohRH0se25x4mGgzgzMlh9LxFOLMcCJKGaJAwigZ6yr6BoMJYo4xoljh9YiFaVOW0shxsLhM98RQ3nzmG4kwbXf4Y7QNRSrNsLB6VT7MnQr7LQl1PiCy7GYOYXlP7tKOlgoyaVUh4oJFoKEjuiEp2rHqR0lFjKRo9mzJpJNFEElES+Pq8EfzkxQO0eaOcObGIDl8MbzRFceq/xjckTZoPDXnAS8/NNxNe+9ZgWtEffo/7rLM+wVql+TiI7tlD2xVfRju6viYVFFB2372Yq6o+4Zp9PGQXl5JdXPq++9Vk1VCVUUVXz06swV4UWzYTCuchxDPIOsuNpoFkEhEMSVJRH3Iyzr61q+lpqmfElBmMW7AEt8GNIGbRb+79GFr22ceRYaGvyUNPw2FKx01AScm889DfmP/Fq0nEUoQH4iSTim4zpWnEQklEoy4G7e2KIIgRJLMBJaF/A0oWERQNBJFYOIXNZSSrMC1alubTQ7K1jbZrriHVpK/3C0YjZfffh2369E+4Zv85lRmV/HTWTwn4GnGuuh7zhn8c3xjqhr6DugiJvx223ctEVSZavYRR484hXryMPJMD6wPnEq1eTGDGHSST8Mpde5BTKmZbARl5Viom2Qiv38i42fOIh0IceeN5pp52MQvz3DQHk59c4z/j5Ep5tB7cDALklVdSt3UThdUpRs2diEkVcWbZPukqpkkzhFhSpSTDSnW2mZfbd/DwgUd4aM4/EBMx2vZtIW9EFZOKnQQfvZ/7V1xNR0Kmtms3ta5yps3/E5oA1dEYbTGRl+4+SCqp4MgYS2+7gQWXfjLr82oshufue/Ded9yOM+eb15L9ta8hmtJztWk+GuR4AtWoEcWMWdDfo6KoYTGKxFPK+xydJk2aNGnSpEmTJk2aNGnSpEmT5r18qB7Bmqb94sPM770IgnAqcDtgAO7VNO13H1VZHwoFE6H34KAAiTxyOf6aSxHRuDTPwCV5CVRLJg2yl+66PsonTsWVV8Dh9W/jyMpGEEXCPi+xSBiDaCDi89JVfwS7OxNTYRnXLqhmc/PAoADJMe5+t5E7VowlX42BK4P6oEw8pVCRrS+aaJqGzWijNdjKzOzZIAp0HgqwcWUDsVCKrCI7Jz3xBn1Xr8A+fTrG4mLUeJxgayflJiNgBgQ9iuExUlEIREEUQTDqUQzXHHfmiX5pHQZJJOyNDBEgAdj6UjOFVW7yR7g/ksuQ5j/Hq5iwCgZqp0cI9m8jq6gYoxQn7GmhbLSRhu2ryS2roKiqHH9vIwUVpXi7GjCZneSWmvB1HiSvvIKgx4OccDDQ8iT71hxi3KKlpIqnklAUiqsy8bQfIrOkFKMxTKA3RnF1AZ6OI7iyc8iaaSEabmTU7Ew87XsxmrPIKRbxdR6ioGwE/t5ulLiNgnIrwQEPcgwiPi+O7GxMko9A9xGyS8qJhQKEPEmKR+bi6ThCZkEhJlOKvtZuxi8+hWBfH6XjJiIIAn3NuymoGIGvqwHN5CS35FhbRhDo7wUEnFnZ9NQfYvz8cvy9TUR9Boqrs/C0HyazuARJihD2DZBdVEzT1iDtBw18beENhGKeT/qyfv5JRnTnYk0G8QSvOFGCcBcAWt5EVNt4crr6KKydxMuNL/PLHb9EQEBRFSZkT2Bv/95BARIASZTo6qnnnKJTGZcxmv3+QwAYBANiIElLzy4MkpF4JIScTJEIh0mEQ6ipFKZrvoa9sRlBlunLG4N/X4iaGQVDxEYAYiGF7a+2YLZLyAkVRVZp2u1hxKQc5l5SiTvHwpo7DyMnVZSYn9klFhLnnE/z7h0ATDn1LMxGhf7tvSjTS1jz8BF8PVFsLhNzL6jG5BDYcMcBcke68U9wk7QauOGVQ4zItvM/545jS7N3sC4dvuigAMkx1jUM4InoQihHekOUZFp5eW8X319aw9ii4VEKppVnYpHSTvj/DDWVQvYMYHDYkaxWAg89OmggCSD39sK77+D0/RGSIcithSOvYVV10QREA1izQUlAMgzWDDDa9XSzEyxZ4Cplz8Lv0eJwcvDQQeYWzWWuNJHOLXv5aeZVyANd5BZ1MfvcOYiCQHfDEYpD2XS3vk3+iGoiAyGivgHErGxmnXsRiViE/rZWSkePw99TR820CjydMrUz8pATURQ5hdnWQyyU4uSL7Qiik3ioj6IaC2aLQsgzgDPTgcHYw2nXlCEKMQQJVDlB8+4N5JXmUDs7B7sriaYEEQQPvt4sckszScZieDvbiUfCZOQXklGQdsL7tHDEd4QxtpH8etRPaEt08ZZvIz8t+y3vPtiAtytCyagMZp6dRzQ4gNlmx5GVxaW/upVgfy/JWAQ1lcDb3ozV5UYzWXBIBpJdnRTm5uPxD/BCj4lwlp2pJYWUuO3Dym9o6KVh21CH471vtmM9awSSUSA8kACgYkIOmgIhbwJfT2RQgAQgFkox0BXG0xEm7EtQNSUPBOiq81MzQ48utWtNG9NOryC3zEl/Wwg02PNmO5NOKaN4ZAaddX4Adq5uZeS0PHJK3kfY4X1QIhHk/n5EuwNjbjrq/fuR6vegRsJIubkY7O/pJ4L4nv8FUBUQJeIBG4mGJpzLl2PMyyOyeTO9967EcvnZSN6dRAuX0dvlpGVvIxa7kanLMgj21VFYnUU84qd0lIuwtxlBE1n6FReiwYDRZifq9ZCM1+HKKkDMKyPq8yInE4xZsBjJKNDXtI9ENILN7cZscxALxQg1WckuycMud+PrtXBw0/H3sacrwb7WSk7KGYMIoKbAIB1tl8ag+o0g6GOdsjnw9q/hnDth5tXw+k8Z9GIWJCicBN279d+iARb9FDJOICryXvLGwNjzdAfP6Vfpx9myIXpUgMzihsKJerqnTk/LqgRNAVm//yicBKEeyB0NJZ9dY9NPK0oohDwwgMHlQsrKGrJtoDNCw45+JJOIxW7k0IZuJKN+X0iSQDSYxJ1rJexLsPetDjRN704miwElqXFwfdeQ/Pa/3cmUU8vZ/koLy68eT09TAFlW8PdE2bO2fXC/CYtK6GsL0nHYS+mYLDxtA1RMyqWpIU5WgRWTZQDRkMBoMpFKtlE5wYiqKjTv2o4zezbRUAJFllE1M6qqEgsGMNntrPjpr0nGYpisNuRkgt7GfWiaiiMrm4o+JxPzK+mJdhILhyguns7muIXRtVUkUnE6Et2s6VlLV2Rom1Jqiq3eA0yXLHqf1dShz440HxqaoqDYnJhMBrJLSgj0dJOZX8Rp3/oBfS3NZBZmEvTGUFIa65+qx2yTGDe/mB2vtRIPp8gpdeA4KZ+yLBvXPbkHf1T/NjEZRG5YPoqvPrSdO78whfs3tAyWGUnIZNlNeCNDjbVzHOaPs+lpPi8IYI4LaKqP8EAfmqbhzMpBVVWWf/N7hH0eNMGC1WXHlWMiEZdZc+9BklGZwio3404upmv3AGVjsnnn6cMMdISxOIxMWlJGoC+CxW7C1xuhclExuwNRLptZxmNb2qjJd+CynkBM7H3whBI0ecJIokhVnh23NW3U+1lmoDPM2ocP0dcawmyXmHxKGQajSHaRg/ptvRze3IMATDqllMKqCNGBI7izaomH4oyZO59pp58F+ogSRenHIKZIhEEZ0J+lCQFUJU6gr5u2vXuQLCbGLlpKhZiBZDegxhQiHf1USlbsebn0FJZTYM9DiBz9FhMN+jv0RIgGXbDuvb8RUcJh1FAYTclAHHMFUvMLYLQR3Nc3KEACoIZCBDY1YS2qATQw2ZGrzkcxFyGFDmI4kR5DpB8eWK6XKxrgjD/DxItOLMyX5r8eVVFQVQXJOPw52dwX5qbn97G/M4jVJGIzGrj1wklMqzg67lY0LCE/4xYvxWxzYrZaCPT14u3qILOgCKvTSaBfJhmT2PB0A9FgkvxKF5NPKWPdk/VE/EmceRamXTCSh5p7URu9PL3juJjkuZOL6Asl2NAwwD3rmnnoy9OZNzL34zo1af5DEqIbyZrCaLFgkAzEAwFmn3chyUSCvpZWfD12bG6JQF+MGeOyeeZLU3hsdyfxlILLIuGySOmwoWnS/Ack6o4QXrce59JTMBYWEd2xnZ5f/wbrtGmYiv610Kjs96P4fBgys5AyPoDtQiqG2n0IOZLEYBYxFFTrgVvSfKQo0ShqIIghww2iSKqnB0GS8D+zEi0Ww5CVhfOUJSCIRHbt+uyLkPha9TlYZ6EurPcv922Bvjo97nRuDWRWDNmcSiaQjCYMooHSYD/sfhwqFxNzj8JnCJOM9mNxZ6BpGigiBpMRg0li7MmLqZg4FVduHnUb3kUymykZPZ68vPeZU04DQDQgk1eeic09k0BfD0azmfmXfRmEJC17Pcgplf7WEJoGGiplY3OQRIGdr7XRsL0XQRQYe1IRzmwLmgqiUSC/wsU7jx1ioDOCK8fK3BXVlI7OxGhOBwVJ88kT3b1rUIAEQEul8Nz/AAUlJQiShDF3+LeMEggg+3wnXN/4sNHfIwHEjAwMVusHPs5oMJKDBG2b9bUDew5EvcfnHEBfrhMlUJLY6tdgq18DJhcs/SW4SrBY8lDyLAy0RrC6jVhsJlw5IkXVCmYLjD15Mf6eLkwWKxMWL0NOBkgEZSqcmdCxA4om67aZaT4wcY+X0rETCQ/04e/tZuS0mdjyC1EiPgRrOohYmk8fdb0R3qnvZ9YomUcOPsLTy58m0Cpjc0NeRSURvw93Ti5nfe9GIkE/OfYMUMrh9Z9RNetqeOYrRL7dzd4X6gcDqIR9+lp9d2OAoiwVIg2QUfq+gRjUeJxUTy+ixYyxoOA/blOiqQnv/fdjnzcXc3U18cNH8Pzt7zhPWYqltuaEx/ynz+o0aY6RisdQjBpRzYzJcFSERNAwG4RhtrBp0qRJkyZNmjRp0qRJkyZNmjRp/jWfiRVIQRAMwB3AKUAHsE0QhBc1TTv4ydbsX2A0g1N3Vhw45S4aPQZ2P/Acqqow9bSzGT1pFLI5mxGCCLJM854dvPXgXYOH73tzNRfe/DsEg0BPwxHW3P0XlFQKBIE5Ky4la/oiavOHOjWajSLPLMzEuuVNXGefBbEYsVSIL7/SxoXji5FkqClzo6FRbq3ArBjx98Z46+HDqKrulObtivDuE3Usf+QZQuEuLPVRBJcLi5pEaWkj2u/ANLIc46xrYdX33lO4U1/s8jXpDjsXPqJH3LZlgzMfgyaSiMlD6mu0GJh/cTbRQANHNkVxZGZRUF2LQfpMdMvPPaJgB/Uwq++8jfyqkfQ1Z3Nk0zpmnXcx6x9/iLwRVdgzMnjuDw8y+/xL2PHSc6iKzNiTl7D52SeYfOqZHHp3LZlFxfQ1NzLQ0cbYBUsIDXh49a9/5KRLr+D1e/5K6djxdB05yOFN61hw+Vd5+bbf4czOoXTsBHa+8gJzLriMdY/eh2QyMnLGHLa+8AzTzzqffW++RjQYYMqpZ7Lx6ccoGTuB3LIKDq57ixlnr+DNe/9O5ZTptO3bTePOrSy4/EpefPge8kdU4czOZf/brzNy5lwyC4uJhYIMdLSy9YVnmH3+xbx+15+RU0nGLTiFzc8+waRlZ3Bo3Vp6GuqYdd7FtO3bjdlmo3H7Ztr272H+pV/mjXvvoGT0OLrqDnJ4wzsAmO12ln7922TmRJFTNqzxsk/4qn4+6Q51E01FiStxTJKJTFsuVks14sI/Yd34c+g/hGbJJllxEaptFiKFyLPmI9ZMR+7oQPDFSR4+zPw+F4+PvYVb+59ghKWYbms3ueYcFubNZatvNzaDlb/lfouy2jkYBIE7i3/A7sIWnvW+xRVFF6M09hEwSNRt2UDbvt0AOLNzWP7N77Pyd79g+tnnkz9vFiXZ+bQfEYEQqjI8kqGiJJl2qpGcEgcgk4zFsLozkYx++g/sxlOfYN6KWpw5OfS1NBML2HjpT79FU/UFkn1vvsZZ37+RqskmNj3XiK8nCkA0mOTNBw9x1ncmAdBfH6DYaWRjhsa86hzeqeunyx8jz2kZrIvVOFw8xGGWMBt0w4ZMm5FQXCbbbsYiGZg3MofxxW72deoCXPkuM5fNLEdMR+YchpZKEW9qIrZzJ56//R0pL5e8b34VNRym8OGHMNlsIIgk21pJHthP/9JfoRSfhNUTQluxGDVeh3vnXXSmiugbcwsWux2bO4Oe+iNY3ZlkxPLoG/VH1C6V3JPuwW2yUtDQzG/s11KRP4ZVf/gdpWPH07l/H87MbFx5+fQ1HmH36lVMPeMc1tz1F8647ke8fs9fmXfR5dRt3kBPo+5UnlVUQu2ck1j151s4+/qf4O1sxWy2sP+t7Rxe/zbOnFymnnEeJrNuYL/5uSeJBYPMu/iLvPTQPcipJAgCs8+/mJzyEUT8flQ5xbuP3o+qKJjtdpZceS2r77wdOaEvhqeil2BddirbXlzJzldeBMBss3PuDTdTXDvmE7uOaXQ0VWV6rJKtD/2DYH8vlVNn8oMZX+HIlna8XREAJiwqo3XPW1jsDsI+L47MTF689de48/LJLR/B7tdfAU1DMps55apvYnE4sGdkEgn4yCspZn7rO5SPPx0MIToDIVJanLgSxyyZsRqsyMnhi8SphIKcUrG7zQT6Y0frqqEqKna3ibA3PuyYQG8Mm8tE2JdATigYDCKKrCIndQONeDSFxWGkdlYBRouBrjo/sVAKTdWwZ7zHkVmDeDiJpiioqRRqKgWahqZpKB4PcnsHBrcLzGZQVUilQDSgqSqCUUKLx9FSKQSrDS0eI7xhI7Zx4zCWl6HGYoiZmVgrKj78i/kZJd7bS3L/AWTvAObKKpRYDNXvB4MBwe5AkEvQzliNKElgcaCYTgY0LKPHUHnKBWipJJrRiPvyL6AEAqg2A8HGNrSsWpJNXopq3IyaqfHqX29k5rkXsWXlKmaeewGv/OUW/D26kEFBVQ3jFi+laec2mrZvAcCemcXSr38byWymcdtmCkfW4u/tYduLz9DX3IhkNrPkq9/AIBmx2MMEB2z4lXxSqQjQPaSNrY0qM1Z8BaspCQdfgkQQymfDqNOg/g0onwu9B2D8Cmh8E+Z8W4++VjgJLnhYF/+w50LZTP2Y7j16Hjm1UDrr/U+yLQuW/0E/LhnRv/9WPAj9B48aW+aCvw02/g2W36p/DxaMh5hPL0My68fICZj3XchIj4v/r6ipFPH6ehBFtFCIyIEDOKZMIdXVhWCz6X+CAIkEMb8uymOySiSPfpebrBLJuIzRbCIaTOHKteLOsxLyxgn7ExgkkVRCQTINHw8emz8ASMZlDJKI2S6RiisoR412bG4TmqrRcdjH5FPK2Px8ExMXl7LxmQbGzi/GbBugbf8mSkaPo2X3NjztbUw/63yObF5H5eTpJEJBug53UFw7mkDAz9YXnsbT1gpAbvkI5l3yJeq3bKCn4QhddYcBcBcUsuDyr7LyVz9m7kWXs2fl4+wVRZZ89Rra9u+lbtMWRmZlseiMH6KJww3WNIBEGNwl0LBWF/FJ86GjaiBKIgNtLbzy51tIJfT38cSlpzFuwSloWi8ZuXae+nUdmgYTF5WycWXDoJaSpz0M68G4KH9QgAQgqai8U9fP2CI3T+/o4OLpJTyxTXfe3dgwwI+Xj+LHz+5DPtp/vzpvBGOLh4sopknzfqgGC2rcw5YXV1K/ZQMAVpeb0791PS/ffgunf/t6TPYUzTtfx+p0k1lUzGnX5FO3Nc7BdQNYnCaKR7rZtqqZgY4wAPFwii0vNDL9jBGEfQndiWivlxabzJgiF06zxMUzyhiZ9+9FNm7oC/PNf+zkcE8IgEW1efzqnHEUZ6aNdj+LJGIp3vnHEfpa9euZiMhsfqGJ2edV4ekIcWijPn7UgJziEK/frX/PP/u7n6OkUgiCyMxzL6Ri0jQEUUBTVZLRGKlYlGgoSDwcxCBJGC1W4uEwJpsNURQ5/M5a8kZUMdDRjkGSsDpdmKxWejZtpKBqJIklj1JY91fEUBfRyZfj7KtHPu0OUpllmKN9CEtuIZkzCtFVhiarCAslBFQ0gwXVEyW8dhWBlc9iGTmSrKuuRJ77QzQ5hctgxHXFNzimjqYNDCD7/cSLrgGbDaq/hBpPgCITbZqApbgGvnix/t2lqohGIyJhOPcZSCkI7eswrv0llEyFvNGf4JVM82mku/4IO1Y9j7+vh+lnnIecSuLv7SazsBh7ZhZ9DXVcX2ImZ1YZ8WiYkKef+OaXafKNIewdwKAqqO5MVEVGdAhseOpRmnZsBcDmzuD07/wQd14BdVt6iB6NYF1Sm8UbDxwcnM8I9cXZ+lgdF3yphgse3jqkfs/t6uIHy2rY0DCAomr8v9frGFXgJOc987hpPn2kBPC3t7Hq9j8QCwUBqJk1l2lnnk9emQtNbkAymcgYbSXm7yTPXMhXiwK4csycVD6KTIeJm57fx7ULR6ZFZ9Kk+TdQYjEK77oT04hKxFQS15VfJfzcc0PE309E1OdD6x0gHlexJPtJqQrW93GCjtfXoTpzkTIk4kYjwv46bGNrwZ75YTYpzXuIHThA361/RE0kcJ1/HpaaWhJNjRiLi8n88hVkffObCKqCJkkQj4OmEWtqAk1DkCTUo2tOgiAioKHG4wgGA5qiIGgaSJI+L28y6Qq9qZSeJssIkgQZGYgmE6LFgppKocXjiAYDciCAaLMhud1I9uEi6h8UTdWI9PYhqWEshjj0H4JV39cDEEz+AhRPB6sb5CQpax59PV6i8SQCAqChAQIuEEXESD9ih59kJEJfSyM2dwZZJaUoqZQ+xyLkQPW3QAMpaSHiqyOjsAgllUA4eo40DdoP7GHDk4/oY2yDxJKrvsGWZ5/i8IZ3OPXa70N2em7l/TA7Eng62lh1++9JHn0WjV2whDHzF5NfkcnKWw4yYUEJW1c1s+zKcaQSCt7OMPXbegHQFI19b3cy/5IaNj3fwOQl5QR6Y4ydX8S7j9cT9MR4+7HDnHbNBAoq08Gf0nzyyP1Dg5PZ584h66qrkAcGEICU14tosSB3dWGwO6AgH62nF8XTjyEzi6SmYcs+Lg6hxuMkW9vQFBlTWRmCJA3+KYEAqe5uRJsNY2mpvibyL4jt308qMxOLKJLyekmEQphLSjA4hs+5aZpGMBnELtmRBBHN14qWiOO98FGCeTXE5Bhmgxlb60aK8kZDz37wtyLPv55I/yEcnkZ85efhs9dic5WinfoksaCP7pdWYnW5WXhpDUFPH3Wb1/P644e54Ns/YtVfbiEa8ANQNX0WJaPGYrbZSCZTlFZXkte5B0on/5+v0X8TRquJg++8wbaXVuq2CCYzp37juxSOHc+RdWvIG1GNZDahKaquISMacGSXYDQZsNjTYs5pPn76QnEcZiPqUaHnWC/YMsLUbVjH5mef1Pux0cTSa75D6cSpiF0d9OCmYOFNRDOL4bRbSSYVQp7htjBBT5y4vYA+QyGZ6/4fzgkXQumME9Yj0dqKmkggB8LI9kyMeLBlOBAt//5clBqNkv+bX2MZOxbicZznnU9sz27USPiE+8cOHCCVlYVF00iFQiTq67GOHo1gTAtLp/ngpKJRFAlimDGJ+hhcEjRMBoF4SvmEa5cmTZo0adKkSZMmTZo0adKkSfPZ4rOi9jADaNA0rQlAEIQngLOBT68ICUDRFOJn3kOnz0VGgZP5l32ZVDKBIzOLjs4B8qtyMBqNhMNBtr/07JBDc8pHYLRaCXv6eeuhe3QBEgBNY+PTj3H+yFFELQ3ceVU+KzeKvH4gwKZLKrE4rGgm8N3+Z6I7d5Jx4WU8smQufk+CwD4fLb4EUqFChsmJKImEBuJDHIgAfN1RImGNbJsLTdNQW1rx3HUXzsWLwSgRr6/DMW8+5vPuhsOrwFGANuo0BEs2BLuhcxu89T9oFSeTzF6IJtWRzKvBlW1FMorIR52SFl6WQyzYzlv3P0o04Mdst7Poy1czemwVgpIAgxlcBSClF3U+CcRUlM3PPk48EqZk9Fg2PPkoI2fMGRTYqJ4+m41PPYorN4+wdwBfdyczz7uILc8/hWQyIYgiPY11VEycwqF1byEIIu7cPA68/Qaj5y1gz+uvkIxFKagayYYnH6Vs3EQad2whGvAz+dQz2fDkI2QVl+LpaCPY38vsFZey+dknsDicpOJx+lubmX7W+Wx5/ikURaFk1Fg2PPkI4xcvY8fLz5NKxMkpK2fDk49SNW0mB9e/RTwcomTMODY8+SgWh5PMwiK2Pv8Ucy78AhuffgxnVg5hnxdvVwczz72QLc8/hcFowiBJ9DTUMWLyNDoO7afz8EFmr7iYXa+9xKh5C9jzxqskY1EKR9aw4clHB89hIhJh88onmHDKaexY+WcWX/XjT+pyfm7xRDy0h9tZWbeSfQP7uHLk1UyQZ9DscSEOCGRNfRCLpR/D+o34fn0fud8sYODe+yi67U/03ngTsV27QBBwn3sO5spK8mNx/qBMInz3w0yYPAH7OIHJT/oJLb+EsrnLMXoG8N36R5JNTTgWL2L63LlUvrOT/pP97HzlRaaedvagAAlAaMDD7tUvc/kf/sIjP/oWs1dciluQyBR0Z05N1TCaDYPRB8w2iWDvQSx2md6mTrY8/xRyIoE7v4CFX/oah9a/w0B7K1lFpZx8+VfIK69k6wtPDQqQgB618/CGd5i8/ExmnGFi52qVnqbo0W3aoCM+QN9BHzXLC4kr+vEWo4Gv11hYklnEr3b4sUgiU8sz2NHqHzzmW4uqMRoEsuwmMmwmArEUvzl3HDlOMzmYue+KadT1hpEVleo8ByWZto/q8n9mSXZ0MHD/AwSefhpDTg5ZX/wiwZdeouM7P6b0kYeJHzxEwmpBCQQRTCbE0y/G51dRN/cRr9+OtvVtMi65mLapv+GlW36NpqrMvegLrL77DtA0FnzxSp6/5X9QFd3JeNZ5F+Hr6WbkjDkkY1F8PV3EQkFySsvpOHSAwqoatj7/NHMuuBTJZKK/tZmMgkI87a04s3Pw9XQNCpAAeLs6iPh92DMyCXoHaNy6mcop0zi8/m0ARs9bQCzgx5CVRXdDM76uTqaecS4bnnpUFyAB0DQ2PfM4Z19/Ezank9fu+BOqot8HtbPn884j9w0KkABsee5ximpqBgVIABLRCG/cewcX3vxbrI5/w8gx6tMjM9uydCPSNP9n+tta8NQ1ctIlXyLi92GQJFLxGFWTzRzZrO9jtkYIDfRTt2U9o+aczJ7XXyXsG2Di0uVD3p1yIsG6xx5k0rIzyKusQjKbURJxgp5+DAP93OF5DIBTK07lgOcALza9yOTcyXw963tDxpkA2cUOrC4jnXU+XDm6MUQyLuPKseBpDzH9zBEU12aiKhqiQcDTESa72MGO11r0OtskFFlFEMBkkZCMIvMvqeHIpm56moIUVLqZe341bYe8GCSRzjr/YNlWpxFLqIfAqo0IJiNqKoVoNmNwuRDMZjCb6fz+9eT/6EcINitqKIQSCiFlZxPbuw/v/feDLGOuqSHvhz/ENnUKqY5OBLMJJCOyx4MaCGCfOPGjvbifAaKHj6AFAyAKGHNyQJHp/81viW7bpr/jV5yP/aT5IIDkdhN6eSXWhQuQHA6SjU2g6gbmgRdfInH4EI5TlmI7+ywEo5nQPX+l4LyrMUgJNj71J9x5BfQ01jP5tDM5tOGdQQESgN6mBsacvHhQgAQg4vOye/UqKiZMpnr6LF75y62c8vVvUTP7JPqaG5ETCTY8+ShLr/42b9x7Bwu++D0ScTeG0uHGOyXVdkxuAcKdMGI+GCRd0CN3NGSPBGu2HgnzyGtQv1r/s2XBF56DEScNzcxV9J85XjpyYeSS478TETjwLOx44HjapEuhcr4uOALACCie8u+XleZfkvJ6SdTXgyQhyDLJ7h5sNTV0Xvdd5K4uBIuFvB/8AFNtDWoshis7A1ESiAaS2JwmLHYj0WASR4YZRKianMuhjd101vnILXUyb8VItrzYhMVhJBGRMdskElEZd66V2lkFaBrYM0yMnJaHzW2iq85PoD9K4cgMMgts+Hqi5Fe46KzzUz4um7qtusG8ZDJgsRtJJWXqNr3OhFNOJTzgYd/aNcy58AtE/F5GTp9NIhIh6Okju6SM9oP7EA2GQQESgP7WZtr27cbqdA4KkAAEerpp3rWDgqoatr+0ktHzFrB7zSp2vvoS0846j+rpswn0dmM1uTEpQx2CjKKRqflTwDIAqRic8vNBYdk0Hy4GowE5FeetB+8aFCAB2LPmFUpGj8OWkUU83Mv8y4p559FO5JQ6KEByDE9bmFpteIS2gUiCPKeF3mCC65fWMGNENq0DUSIJmVAsxZ2XT8UbSVLgsjC2yEWW3TwsjzRp3o9oSsbX1TEoQAIQCwbY9OyTXHDzbzj49ptMOOVUjGYLbz14F8WjxjJl+VnUTM+iZa+J1v0exs0v0gV13oOmgSLr4k0FI9w07/ZQfXoRLoeJuy6fSm2+k2znB++zmqbx9Pb2QQESgLVH+ji10cOF00r/7ycizcdONJCkuzEwNFHTv1UajjqnAVjsRnqbDzDtzPN484G/D64raJrK5ueeJG9EFTZ3BoJBxGg2EQsF0TQVQTQQ9vsID9SjKip5FZWIBpE9b7yGZDZjdbmQjEaiAT/9bc0kYlHsGRkE+nroHf8VIhaZ6uY4/pUb0CJNOJcvRy0tAzEXtTmCYGoCg4ggimCQEERB/+YZMYLc736XZF0dPT/9Gbnf+y6K1wuigVRbK6LDiZSXC6qKGovhfehhMs47D8Xvx1hUiBKPIygKsR07ECQjotOBYDQedR41I4giWlJGM89GGDMRe9CHwR3Sx6tKShcgs7j0qMXJiH4zmo86H8UDIFn19Qk5Camo7gAKEAuA0aKL7R37HyAV1/9PxXUH0TSfevpbm3nqlz9BTiaonjaLfW+toXXvrsHtY+Yvwt/TzbSzzqN1/24atm7C191Jzay5dNUdov3APs787o/pa22mesZsug4fHBQgAYgG/Gx74RmWfv07aPIRRs8ZwaGNuiDF/xZUjfgTGBPDxz46x+ewPOEkbd5YWoTkU04yEmHTM48PCpAA1G3eQOXUmZgsuiDYa3/7E3MuvAyTxcrGpx9j5jkX8u6j93Py5V/l5YYYm5p8NPTv4aVvzqXAnRYRS/MpxNcKBpM+J/Wv6G8AkwNS4aPvW1X/nTvyg5UTD+rf6h/gO10aOxa1uYXkju266IQsY5s+HTH7n0e6j/r9BLsi9PeZiIZk7G4jeUoMyRTGeAKnZAClpxMloRJZ/Qzhd9dhGT0K9znnEO8ewFKdFiH5KIgdOEDnD35I9le+jOhygawgd3QgWa1oXh8pj2dQLERVFFBUQENLphAddl1QRNOIbNtOfN8+7HNmY5s6Ff/zL2AuL0cwm4nt3YNj3knEjxwBwDJ+HKLLjamsVLeb6epClSRUvx//E0+i+P24zz8fKT+PgcefQPZ4yDjvPEw1VYipCKbiXAxaRO/vBgtYM1DCYbDaMbiGitwEB6L0NPjx98UxmiXyit0UvnMrorMAxpwNda/rY9fNf4NFN9GSKMUX0RBFCUVOclSBRBcVMZkw2+wkohHefuiewTKyiks56dIr9IAAViuIAmarHX9/LxoaggYIAkoqhUEyEA+HBwVIAFRFZu0Dd7H0a9/ilb/ciq+rnYLKqo+nA3yGUVNJ3nrw7kEBEoADb79BblkFrpwcrA4jns4wNqeJZFzG4pDYt3dgWD5ddX6KqjNRZI3eliCVk46LlMVCKYIDsbQISZqPFS3mJ3aoieCrr6EmErjPOB3r5MlYx084vpPBQM53v0t0/QYGHtDXkgp/9Sv6brmFVHs7RX+7A6Gvl56f3Yzi9SI6HOTfeCNMm4qtMI9Uby/9d99H4KmncZ1+OqYRIwi/tRZTeTkZF16I7+lnCL38MoLNRv4Pf4jrrLMw2IaPm5VIhPihQ4BA9P778ezYiW3GDJzLltJ65VU45s7BvXwZ9a4Yq1tfpzKjiqZAE2+2vcn0/Ol827KMxDMvkairw3r26dSP9nF7+yOMyx7HipoVmDSNnDd+QUPNAh4X/Gykk5/N+BHtL61j7oVL6G2sRzKZef3uvwzWyZWXz+zzLqZpx1a+cvu9vHHPXwYFSAAat22mcvI01j5wNytu+hVth+vImlSJFOkDe95HdVk/dwSPBoc4hpxM8NaDd3HOD3/G2w/fi8lq5ezrf4ooGVAUFZEUvs5m1q0MMOecakrHZCGdIHgTgBqLIYdCIMuIVitSZnoMmOb/TlWeA7PRQJYxiy+M/gKhgRiSsZ/NK58Y3EdOJXnrgbs494afk1FSxku3/IrZF1zCnQfuR9VUfmoXqZySi3dVZEjeRSMz+P363+PKdHHytEuZsvFuyK7WbQreg5ZKIXs8+P0qfqmAcHcKqzNKfqlGfvUHn4vSUikS7e0IefmYUil6b/op8f37sU6cSO53vo0h/z3fd8EekFMkfSHUWJzIPffg2blLf1afuozInj0Y8vKwln28gU5SPh+qz4ehoADJlrZ//Cwhx2KokkYEC9liCDQQRBVzWoQkTZo0adKkSZMmTZo0adKkSZPm3+ZDFSERBGGupmkb3i/tP6AYaH/P7w5g5v8xz48czZFHpGAObpOHrc8/Tdv+PQCYrDbOuO5HGM1mFFlBU9XjTrlHKRs7AYMkEQsHiYdDw/IO+wb4ZesvATiv+nzumvJFrA4JLRii95e/JFFXr6s/l0xg//oeOg77ABANAqd8ZQypihQGjFgcwxWizXYJowQgICYThA8dxH3acnyPP45gsWKdMoVUrw+zOwvO+DNs/DNC9140Rz7Cm7+A5X9AG38Jwf0DhDc3Y+7bjbKoEk2EJV8Zy+bnG1FkFVGM0NPYwIqf/Yaod4CQdwC7OwNvWCZ71RUgWWD2tVC1OG2w+wmgpmL0tzYDIB81VhcNhkGnduVon80sKKK/rXnwOCWVIqOgCH+PHn1TkVMYLVYMBgPRgG4o78rL59BRZ/VjeWcVlQwKnBy7H7KKSuhvadLro8hoqkpGfgHeTv1xIEoSyVgMZ3bOoBOozZ1BaKAfQRRJHXVgzyoqoXnXjiHllU+YTP2WjcfbomlkFhYdd247amDjzisYbEt+ZTWbVz6B2WYfNBx15+UPOt4fy/u99Lc2Y7E7iPi8RAbagHSkzQ+TrkgXP93wU7oiXdiNdsYqU3nn0XriEf1auHKsLLioEv+tt5GxYgXehx4m64YbCK1apQuQAGgagWefo+jPf8b/j38Q3ax7zCcOHSJevB7HwgXEf3cnxkfm0vnd7+lODqNHE7SaGWhpJPOKL5E8uBfJZMbX3TWsjj2NDSCApqoocoqI34vh5dc4afEX2buzj5MuqiQe6iMW8pFT4mLX6ieYuvxs8kdUk1s+glgoiDuvgGg0zPxLr+CNe+9gyulnEwsFcWTlDPbz95JKJBBEAw3b3iS7wIbGKHqbdMMmq/P4c9+Vb8XgtrBhays/m5nNjO2rCa9eTSXw1LKldMrF/OS00TT2RfCEE4zIsVORZWFvZ5DfnjuOTn+cv14ymUklGYN55jkt5KUN4P8pmqLgfewx/P/4BwBydzf9f/wjud/7LuENG9HCYZL1dcQPHkQ0mjB97xesureZRER/9rqzxzNvsZtoYyOHu5pJJeKMnDmXA++uBU0jv7Ka9gN7B5/VAPasHBxZOaz68x/QNI1Z516k10XTGDF5Gkc2rR/8LUoScjKBZDahyjKaog5x+j1Gf2sLmYVFCIA9K4ug53hEIz3CkIbBaKSvuUGvd04esWBgWD6B/l4cWdlDxkFWp5Owd7hxXdg3PM3T1koiEvlgIiShXtj/DOx8COz5MPVLUDwVska8/7Fp/iXRUJCMgkLeuPcOgv19AGQWlbD06m9zznerefmvTUhGFVduPp7WFkTJQHeDbsR7ondn2DeA0WIGVUMwiCiKQtX0mSRjUfxxP+u71vNK8yt8b+r36Ax30hnu5OyMC5l30Uh2v96OvzdKYXUG4+YXYXUasbobMecXUzQyg0Mbujn5sloWXj6KVEJl03NH0I4K8o2YlINoALNVYsqycuq29uLINDPrnCq2v9rMrHMq2fJiExG/3l/bD3kJ9MdYcFkNmqY/XyP+BLmlDmYvcKFseA3NbEGLxRBdLv3eys1DystFcDgwTxiP569/Jfe669BkhURdPeJYI9677x48F4m6OnyPP47rzDOQcrJJ9fWDKCBlZ6P09RPv6MBSUvJRX+JPNYIiI0ejCBqoqkJk7VpdgAT0d/zTz2AZWYOxopxkaxvBN97AufxUtHAELZlAdLro+u53kfv7sc2cibGsDK2hkY5vfgvraWez9YVGSsdI+Hu6qJ0zn96mBkbNmz84Tj6GyWYl2NczrH59zQ1UT5+JYDBgkIwgCKTix42NQwP9KKkUgd4eUgk/ybgNW4VK2eQM2nb5AXDlWpgwWcaw7vcw4QJIhlBtuYhlUyB/zNACi6fCuPNAjkFuLWRWfJineyhmOyz8MYw8BXoPQt4oKJnxHgGSNB8Vck8PaiSKIICaSGAqL6PnZzcjd+ljUS0ep/dXv6L4jr9iyMjAHu7mtCuqWfdiBwc3dbHgslq2rWqh7aCXiUtK2fJ8I95uXbSuq96PryfC2PlFdDf4GTEpl5lnVdKwo5fy8Tlsfq5x0CmyZno+3q4I5eOziYWSuHKsTF1ewf53OwkNxMksGGqMJQgQCyVxuC2ELGbkRGJwvkP/brSQSiQwGI14uzopHjWWeCSMr6tz2DnwtLdSUDXcWanryEGqps2k49A+zEcdhXqb6jGazIQGPIDAy3+5hQWXf5W7FtzJo/WP4TK5WFS2iFQ8AqIRJpz5YV2qNCdAFkSS0ejgmOG9RLxe8iqr2fb808w490KgE4M0XDTO6jRitg2f0lxQm8eDG1r4wbJaDveEWTQqjzUHernr3UYcZonvLB7J2ROLMP8To+E0aT4IRqPxhN8r/S2NqKkkcjKBIAr4e7txZGXTefgAVVNnYLLZmLw0j8ObfCTjMlankVho6FjYIAlkFtgIDsTIKrKTNInkOsxMKf/XEdhPRCyl8E5d/7D0na2+tAjJZxSTVcKeYSbiHzoPpCQVsksdg6KIokFATiYx22wkIkMNzdE0ogEf9swsPVq6IKJpKqqikIzFSEQiyKkU2cWlaGhEAn5ySssI9vdhcTiRk0k87W0YJInMgmIUWUYQRbLjNtyRIJFv3wBHHRRju3aTe911iC4ngsWC5vOjKQoGux0kA6LFCmhoiQRKKIxoMWOuribV3kGqtxdBAMHhILhmDc75JyFYraAoOGbPIvTqq4huF5ENG3CfdSaxxkbUSBTblCkkDhzE9/jjGIuLyfzCZQw8+BDm0hIyLrgAJZQg1urH8foymPF1iHr1OYKaU6H2VHjjF4AGc74NyTBsuB3yxsD0q2DvE9C+GcZfqAv6rf0VZFXDpMtg4+1gzYSx5+kCfeVz9PNtz4Ox5+gigGk+tfS1NCEn9fsqb0QlG5/+x5Dth9a9zZKrrqWvqRGjyYSvWx+b5pSWH99XA1QVR2YmoYHhz96exnoUJUUyGsbm1Me/JxrjSEaRgKIwIsdOs+f4/VvottAfOn7vLx2bT5c/xpTytIPTp5lULELf0fWt9xL2DpBRWIS3q4Oc0nL2rHmFmedeRMjTRzToo6h2NN6udoSY/v7vDyUYiCTTIiRpPl30HoS2DbD9QTBaYdY1UDZXDy7yXjp3QsMbsO9pOPcu8NTB1rtBScLUK/T3bfHkf16OIkPjWtj4Z4j0wcRLYNRZkPPPRQ80rxc1FCSw8lnUaBRTeTnSmWegRCIYMzJOeEyiP0z9gSh713YMpk09tZxRJsioPrEISTKl4r33XsJvrtXzOHSIyPoNFP/1LyfcP83/DTkYJLZ3L+7TT0dLJJD7+0GW0WT56DqC/p0vmE2o8bienpJRYzEMLhepjnbQILx2rS7sCyQOHya6YydZX7yc/tv/jGPBydhmzaL/7rvJ/sIX0EQRZJn+W28FWSbzssuwzpyBFgzS8Y1r4aiwfmzXLnK++U2iW7agRiL07N1L7g9/gJpMor7+LjkXn4YUbkY2FRBa/S7efzyNqaKcrC9ciG3iZASbC1XV6GkMsvaROhRZH08XVrmZu/hO8kNr4O3fwMKb9DFo7igigpve/iiigN72o5N1gigiGiRS8TiOzCzeeeS+IefR29mOkkqhaSqRQACj2YymCZitVgwGoy5OiIBBMmAwmogG/EMCYYAuJC8a9DmZY8EF0vxr5GRyiKD5MWLhEPFQmFgoSfm4bFr3DSBJIoqskl1ip79tqJ1YZoGNI1t6yK9wYbEbkeXj10aUBKwnsP1Kk+YjIdAB+54hFsqk9Qf6MxIg8PTTlN5/H7ZJkyj64630/e73SNOmkjxyhP7bbgPAuWwpA3feSapdt/kyZmfTcfU1KD7dplENh+m5+WZK770X+dATRHutBJ58CmNxEYYMN56/6O/Z+P4DhNa+RdEttyBaLQSefoaen/8cc81IbFOGC+NHN2/GUFREzw9/NOQ9ENu5k4L/+RWt55xL4vARBr5zFvNLT+bBAw/ybse7AFzlPg3PddehhvR7Mn7gIBWXr8A0WuLVllfZ3b+bP578R8gu53sdr9AcasNhdJBsHaB8/ETkRILMohLeuOevg/XJr6ymds7J+I4+G5LRMH3NjcPqHfZ6MUj6XGROWTmhYIhMsy0tQvJvEPH7TpgWD4cwWqwkYzHa9u+mYvI0UFVkVUYQDZSPzeCVO/dx3vVTKKzKGJZH/PBhwuvWI/f3Ez9wAC2VJPvKK3HMn49oSdtLpfnPqc61kpRVuqP9FNgKsAhG/D3D1yNioSDxUJAMTWP+ZVfQ3dJCriOL+488RK4hnwuqvsi4+cUc2tiNZBKZsqwcu9vElo4ttHe244l5yFtyEyWv3aDPd5bNGhRmTvT1EWrsoNM2nm0v1w+WOfakIixuO+7c9xfjUGMxIps2Ed6wEdfZZ9H1wx+heDx63XftouvHP9G/nYqLIeCFgcOw5S7kST+j9xe/GPqs3rWL/N/8BrmpCT5GEZLIpk0M3HcfSiiEsaSUrCu+hG38+I+t/DT/N+R4DFWCmGzGZFBBBoOgYRIhKKe/Y9KkSZMmTZo0adKkSZMmTZo0af4dxA85vxNZVXwYlhYnClM/LBaYIAhfEwRhuyAI2/v7hxv6fdwEB/qRTGaC/X2DAiQAyViUzc8+iabIKMkEFqeLiacsH3Ls4XVvI6eS2NwZOLKGRuYRRBFXbh4rz1zJA8se4IKaFcwsciJaraQ6OkjU6ZOw5jFjCKUsgwIkAKqisfn5JvwpH2pKwZ5pZvSc49GJBAHmnF9N6p4/YLBZUWMxjNnZpPx+Cu+8k/ybf4Zz8SKk3FxYfQP8oRzW/xFZNKIJoh4NsHcfiYYjGGcswL5oEeaR1YgbV9PbGKCz3svsc6tYduUYjBYLU5afSfu+3az8zc2s/vttPPObn9G0Zxdy0Uzo3A7PfBla1n8EV+fTxaet7wKYJInSMfrEudGkR1pt3r2D2tnzATBIRgRRpL+thcLqWkB3rjdarAR6e8gu0R0aDm94l2lnnEM8GsGWoRvFDnS0kV9ZDYBkNAHQ29xI8agxQ9L6WpooqtFFOwRB1J3ROjvIG6Ebl6XiMaxOF7FwCPvRvIP9fWQVl6CpKkazvrDX9568j7UlFY9hOqpQbpCMenTt9ziyqbKMyWol2NdL1tG2qIqCQZJIxKLY3Bl6W9paKaiqGZL3eykZNZbkUUdTJR4Ztv3zwCfZfzvCHXRF9IX5M8vOonWHf1CABCDoidHdHMYydiyGrCxSnZ3YRlYT2bhpWF5qODQoQHKMVGcnBrcugpRsbUHx+5FqavCevZzn17zAqscf4LV778Bqd6DJMjml5cPyLRs3AcEgYTAaMUhGDO2dmLOcWP50HYsn+0j4d/PWA79g09O38fJtP6Nk9HicefnseX0Vz//hl6z++208+9ubERUVd24+4xaeQioRp+PwAZq2baF2zvxhZY6et4BgXy/O7Bx2rFpJ2VHtm3Hzi7C7dQMkySQy+/RSvLE4I3JsnGP0YDptOXk33kjejT/BesYZVHQ38NiWVvJtIhdkxxmv+nmrzoOmaezu8GMQ4J0jfWQ5PpsRxD+Jvit7BgisfHZImpiRgXnUKPK+ex1aKkXGlVeS/5Mbyf3lLzm0NzIoQAIQGEgy4BqJISNjUJTDZLWSiIQH/4+/x8lIEEQy8vJ597EHMBgknNk5mO12JKOJsM+LyWIdfBYKgkBowEPhyFH0NTWSWz4Cb1fnCR18C0fW4GlvxZ1XQNg7gDv3eIQKVdEF1pRkitKxeqSjeCyCMyd3SB6CIGJzZyAZjZisxxepQwMeMguHO+i4ModHKiweNRar8wMKle1+DFb/BPqPQMu78PzV0PSWHkXxM8anbdygJBJ01R0a4kzs6+qg48A+0EKc9Z0ieprqsblcKKqCklIon6AbgElGkz4AfQ8ZhUUkYzHd4FU4+rmiCbhy87mgagWjM0frz6G+3YzMGEmhLZ+iWJikL0RxbQanfGUMtbPykQwKPHkn8ZuuJXTNxYyf4eTkS2qx2I3YMsxsW9U8KEAC0LzbQ4YlyeK8PRQE9zH/tFxOv2YsmU6ZxWfn4zQnBwVIjhH0xBBSCTLDzSy5qIxzLsrglEUi5u2rEc1mhLIqhLGTQZHRUjJyXy9qMIQWjZJ75ZUk6utR4zEEg4jB5UL2DDcgiWzaBKKIlkphsNkgkdTFBjUN7T2R8z4rfNj9V5MVRIsVNRFHtFiIvLtu2D6J+nowmUi1tVH0+9+hhsNomoomSQhGI8W330bF6tfIu+lGrLNnE4uDZf5C1FFT6W+P4O/TyKuo1seUtaNJRmMUjqwdWkY0SmbRcEGY0jET6G9rQVNUEMBgkHQxkqNkFZcOGm1bHQ6UvAhXrf8y5oVeFn2nkjlXF1P9RYlY8A1ofgte+AZsuZP+nOkouScQt3PkQuV8qFn20QqQDJaXD6NOh5N/AKPP/EARaT+rfJqevWo0CqqCGo2B0YgWi5Gsrx+2n1RcjBaPo6kqjngPp57lZsYcBxmWGEvOy2fOaYWYDcqgAMkxYqEUBWU2Zsx34d63howDa5hzaj573mgfEpW9blsvrhwr1r463DtewtTXhMkEo2YXMOmUMion5dLbHKRmht4vGnf2MWpOIbFIkqppC5BTicHxgUEyoqoqVqeLVDJBVlExkYAPuzuTionDjYbzK6uRzMPHoOUTJtO8ewfu/AIiXi8AxaPHsu3Flay568/sfXM1M846n3WPPUB+0EKpoxRfwscN624g02QDyaw7JH/O+DT1XxAw251klQw3FHTl5ZGKxYgGAoN9racpQPXU40bVgigwbUU1m7p8XL+0lopsG/kuM9ecXEV/KMG1C6vo8EYpdFvIsJm4cHopz31jLv+4ahaLRuenBUg+Y3y6+q6OIiu48gqGpZeMGY9oNFExaSqJo2IOJovuLCynUmiqisksMvXUCnatbmX2edUI4vFxcPXUPDwdYUpGZ+LriTJucSnluQ4ml/1nDuZWo4HFo4e/l2eM+PcFTdL8+3wUfdfuNrPgslrE9/SbERNzCPuTlNRm4sjU34vRYJLiUROIBvyD86XHEA0GHFk5gDYoliuIAqLBgNFswp6Zhclqpb+9RR8/ZGZTOXkGnUcOoSkKkslMfmU1FocTi8NBb1MjqBpKMomvtR/zivOGlBd64w1EixW5pxctEUcwSqT6+wABJRzSHTPjeromy5gqypH7+xElSXemjMfJufKrhN5+BzUUQgkESLa3o8ZjaIkkllG1pPr6cJ26HPc5Z2OqqsIycwbFt9+GZcZ0en7+C/K+/S1ie/fR+7vfoyaTJLr6IBWDl76tC/dF+mHL3+HNX0JmOXTt0tckol7wNcOhF+HJS8FdAgON8PZvYf9KsLih7lV47ipdlK9+Dbx8HVQvgfV/gohHFyTZfv+gMMtnhU/js/ejRJSOC5upJ7hWx+YmkvHYkO3v/T/s95JTVk40GCazoHBYHmXjJyIYjTRu34Kq6nPXLfs8TFk2dDw0/qwR3Lz2CBdPL2VBbS5uq5GFtbn87rzxbG32kus08+W5FXgjSbI/o/OxHyWftr5rsdspHTNuWLo7Nx93bj7V02cRD4eIR8KAhsliRUmlMJrNyMkk1qPD1gKXhdz09f7c82nrv+9L22ZYdT307oeObfDMV6Bzx9B9Egk48Cy89WuQ4+Bvhee+ru/Xsw9WfR969v7r92TrBv093LJOn9d/4+ew78l/WTXNHyCZnU3uDT8i/8c3kHXtN4jt2o0WGh705RihqMTetzqGpO16vY1Q7J/H81E6OwcFSI4h9/WRbG7+J0e8p46aRiSQIBmT33ffTzsfV99Ntrai+HwYnA5dZCQaQw3p8+ygockplGAQ2etDi8UhlQJNQ7SY0ZJ64AZBMgw6Mx4jvmcPmqyQf+NPMJZXYK6tpfTuu7DOmY39pHlYJkyg5C9/pviOO7BMnoRgMCC63BTe8gcKfvkLim+/jZK//Q2poICMSy4ezNf30MOYS0pxLF5CpD1IsNtCYP0+fE8/T9YVV+A68yySnR56br2dgfvuI9jhZefq1kEBEoDuxgDeaCYoCV1kRD66FlA4AVkV0MMBHF2TA4w2G1ZXBlaHE7PNgdFmo6hmFPMv+zKzVlzCyV+8kimnn0v+yBpE0YAgClicTpyZWbQd2Icg6ut2oijp5ws9CMExu41jWOwOVEXGnpFJVtFnV+Dy43zuGi2WQfuW92J3Z2Ky2Rg1u5D8ERIrbqgmoyiB1R5k/MICMouOr52686xkFtrJK3cRCSQwWSWa9xyv97TlFWQWnVg0Kc3nj0903KCkYMNfYMcDBDfuHxQgAUDT8D70MLG9e0l2dPD/2Tvv8DiK849/dm+vd92p9y7Lsi333nsBA6aZ3ntLIb2T8gvpJKRASCCU0LvBYIyNe++WbdlW7+XudL3v748TMkKGkMTU3Od59PhubnZmdmc8uzvzvt8361e/JOfee/GsWzeQRVVYRLCmJnEeSiXR7m5iTieq4mJs119HypVXorBYiLa3EwjnE9fYybz356R/5zv0vfjSoKbIgQAxjwfd5Cnoxo/HduONxLyDbbJi8RhdfW30PvwI0ebmofeBQ4cGxN29a9eS5RLY0b5jQIAEIL+LAQGSgbqfepkLLLMBaPe10+xppjG9nHpPEwB6pZ6w14dCkojFooiigqDXiyCIDJs+mzFLz8Fos2HPKwBAqTOQUznUsd2UmgaCjLunm72vv4ycUgyhz59tw7t8GmPXZE8bYotgTktHazIz88obAAi43SgUUkIQt982wZ6tBxk664de70hnJ23f+hbquXMwn3cuaV+7m8xf/pJYKETg4KGP/6SSfCp8UuO3xxslx6RBpzDzVtNbGFKUmFPTT9nN9GO0paIzW4iFQ4hKFZmFRYwwJmxjX2h+jlA4hEonsvTWkSy4djh+dwhH2EmzNyEC9Vrda/QEeuDAU/D4isTaZj+y00k4u4I9bzQNqvPwxjb6uj6afUqwthZRb0CVnU20uXlAgORdou3tRFv7g1C4jsLTV8Cx104/Vx88SLS5Cf/2HR+p7jNB4PBhAuEwqXffTfo3v4nt9tvwvL2OyOfhfT0JANFAgLgk40eNUkq8Z4liHJUCgpHP13p9kiRJkiRJkiRJkiRJkiRJkiTJp80ZESERBGGyIAhfAVIFQfjye/5+AJwJ6/4W4L072DnAkFARsiw/IMvyOFmWx6Wmpr7/50+cdzcoThcds7e5kaDPR8DrJhaLUDh6PDMvu5b0ohKKx01k5pXXEY9EUOn0zL32lgHBA6Vaw9xrb0ZO0/OLXb/g6jeu5ra3b8MddiPAQJQXgJjLRTwyVLW3ryeAxuOjLnASlU6kcnomi26sYual5Zx1xyhsfbV4Xl9NPBJB1OsRs7LQzZ1L9MhR2u/+Go0Xr6T97q/hmfFXOqf+gubxP8OTMYOAOhVmfA32Pk582DIEQJIkWm+7nZ4ffZ/Upi3oNTKOdh8+ZwBTahp+dx8bH38YWe5f2JNlNv3zH7SXXHWqwcffOHOd8hnlszZ2AeRYlDFLlmPNyuHEzm1MWH4+sWiEttojTL/kKhztrcy87FoiwSAKSSJ3+EgOrX+LKeevRFIq8bmclEyYjKe3m5O7tjP3mpuwZmQxevFZ1O3eybDpszGnpdN4YC9jliyns+4EWWXDsOfmc2LnVsafvQKvowed2UxW+TAOv7OWKRdciizLRIJBCqvHcfidtUw898IB8Q9rZha12zYxat4SjLZUWo4eZtSCJTQfOUTRmPGkZOVwfOdWJpxzAc01h6iYMgMEgZoNbzP5/EuIhEKICgV5VaM4/M5aJp9/CZJKhdfRS+mEKZzYuY0RcxeBLNN58gRVs+dTt3cXFVNnYE7PoH7/bsYuPWfAkdSSkcX45ecT6HMx5cLLSDuNAfIXgU9z/KoUpwyflKIKZ8dQoZe+7gAoJeJ+HwqbjYirD03VUONfhcEwZPMZADFxqxT6/xWXL2PT6lcGokr1NNUjaTSMO/s8wqEgVXMWDGz+pReXUTljLs/84OtMvfBy0goKEUZXI9jtxBwOIhqZdY89NDAHynKcnS89g7uzgwNvrR5oQjQcYv2jfyUWi2DNymHXy89xeN1bxAUZS0YWi2//KtkVw8keVsXSO+7GlJpG/f49BD0eNAYjOlOMRTdWUT4lE7/Tz7zz0lk0xkH4jktYvuNF7puTiTo/n+DjT9B05ZU0XXkV/sceR5mXy/dH6Ch74e/0XnYpvuuu5ILj67GEPNS0eXhkayPXTi9Cq/p8OvJ9GmNX1GpQZp6aC9TDK8m850d0/+rXNF68kp4/3E/0xAmiXV04Hn2C7hb/kDL6AiriTc2UTZwKQMO+3ZRNmgZAW+1R8keeihwoy3EioRBVs+cx8/JrmbxiJQGflyV3fJWwz4c1O5cxi88GYPdrLzHlgkvp6+5kzjU30VJ7hIW33IkgKgbqAsgbUY3RnsqsK66js6GOsYvPRq3TM2z6HAAOrVuDOT0DpUZDRnEpeSOq2fnSc8y64voBByilWsOUCy5BazLh7+tjztU3ojEYE+dzYA8zr7huQIRNUqmZe9EVqGuOMW3ZeSj6nUPM6ZnMvuoG1Lp/HWUDTyds++PgtFgkEanJ2fCvj/+M8Vl7bojFojhaW4akd5ysRW0043M5eftvf8Kckc2UFSsJ+TxUzphNenEpx7ZsYPKKi5H67+WGFBvTV15JZkkZUr/TpkKpxmC1EAkGKAmm8tthP+L16c9SaSxHISr4qfVqfNfegvHh75EfqSV+7BB2jQ/hoZ8Szk1DuOt21BdfhPTm0/i7Xax9uIaOE314naEhbQ60d+N/6H4CTz1K+P6fone34LxqBc6VS+HkkaEnL4BSAiEeRdlWi/vmSxHaGhHs6bgq5vLmLiOr1ilpTJ+OXFAGogJEAWSZuCyjzM5CUKmQZZm4z4viNNE4NcOHJ6qSJCIdHQhKibjbjaDRIJzGAf+zzhkfv4KAHI8hqFTEw2G01dVDsigL8iEaRcpIJx6OgCAg6nSED9fQfO21+I8fJ1pfT8/WA+x8s4NX3pTZk7MSqaoaU6oaazpMWnEZsWgMoz0Vv9uFMcU+yCCwdPxkIsEgoxefPfAckFZQRNmUaWSXV9J4aB/zrrsVj6OHY1sTQilGm52Zl1/LntdfonjcRGIGFbccvBpnyMlx/zFOqg7xfy3fY59vN6GyRQPn653xPd7pULK/2fXfX78kH5nP1NyrViNHYwhqNZGubgSNBilz6LuGIIqEDTZqe1J45dUQa1a58bjjCCcOEn/rJaT976CUw4Oc4N9F5XcgbFyN53f34v39Lwhs2YzfHR6SL9TjInj/vXj/ch+e79+NYdcqrLFuFN5eDJFeZlU5SE/xs/CaFIZNkbGlxcjM16NWmJAkNUq1likXXsbxbZuIBEPEYlH0lhTSi0rpaWwgq3wY5vQMisaMH6izcPR4coePxNPbk3gG6n+Gz64YTv7I0fhdLsYsPpujWzaQkpVD4aixA8Kw3Y11Ccc+jZaAw4UUjHPMcYwfTPwulW/eA4+eA89dB67mM9RZnw0+S+NXlmUUksScq27AaEu0RVKqmHbxFZhS04iEgpRPnUE8EmPWpeUUj05j2LQsFt80gjlXVlB9TTleq4IlI7MotOu4Y24pv7uomklFKVRmmnhmVzOZFi3lGcaBOk1aJXr1BzuPJfns8lkau+8ixeOY0zMZu+zcgXUCW24+45adi7uzA1NaOrFwiIySMhztrejMFsypaah1ekyp5oQg6IpS1HqJZbePZO6Vw5h/bSWF1XbKJ2SgM6lYesdI7EVGxhakIJxuneIjIAgCK8ZmMybPMpB29qhMJhcNFXdMcub5uMZu3nAbF3xrPPOuqWTBdcMZNiUTe46epsO9zL1qGPP7083pRdiyc5l/w+2n9hU0WmZdeT1KrRYEEUEUEASQJCWxaASlWotKqyOrtIKCEaORZRlDio39b65i8oqLkYGQ34dSo6Vk/GQigQAl4yeRXlKGq7MdRBF/ecmgtTVBrUZGTtSlVAECgqiAWAxBkkhozyf+ZEFAmZ2DZ+1aZOQBMapQXT26sWMT71KCAKKIuriY0NGjiToEkba7v0rj+RfQ9X8/Q1QoENRqjLNmkfXz/yPmcJL5kx8j2e1IFgvKNBuk968LHnsNCvvFfVt3g73s1MVu2AiZo/ob8T6n5SOvQNGsxOdIAOL9ezDRIPQLTHDwaShfkliL8LT/dx3/CfNZnHs/TtILi9GaEgK3Ib8fo80+6Pe0wmLajx8ho7gUUVQMrF9EQqH3rHOpCQcDuLvbseXkUb1w6cA9wp5fyOhFZ4EsIMsy2eVFzLq0nPFnFVE4JZ0lXxrF7GsqWfH1sZjKzVw8IQ+FKPCV+WW8eOsUvn9WJZkWNRMKrcwblsabhzspsOmpyjJ9glfp88Fnbewq9QbGnXUetn7xPVGhYOzSczFnZCIoFCjVGrwOB8OmzkIQRfweN0ZbKo0H9mLNymFtSwSLTslvL64mzZSMpP1F57M2fj8UTyfsfXRo+om3Bn93HIU9/0h8Put3cGz10GP2P/HhQqAdBxLr+O9l99/BcfIDD5GLClF1ddF26200XrySrh/dg37qFOKhoWvB7xIJx4eEv4nH5EGCEO9HEEVQDN0bE6QPf/d09wbY/nIdT/9kJy/9bi8txxyDhLI/b3xSY1cQRfx79yFodQiCmHjkVPQ/H/Y/OApqNUQjyLKcEPBGpt+bOLEmL57eNEqy2wjs2YMyM4O414vntdeJNjURdzjxbdlK05VX0XT55fg2bCTW00v3H/+YED+RlISbmmj/3vfo+P73iXZ2YbvuukRbVCq8GzbQ9qUvI8RiEInQ9/wLmM89h7jPR6S+no7vfAfXE0/Q9Ytf4j96DNdpHDrDIRmk/ntA/7+u9KV0SpMwZ2Rhy84jvbAEe24+phQ7aq0WpU6HzmxGjsXIqRyBx9GDNTMbe04e5tRUdr74DEGvB7VOR8DtxtHWTFZJOWq9ARkBBIhFo0TCQdRaPXOuuRG1Tg+A1mhiwU130Hb8GEvu+Boq0+fXee8TnXdFBbOuuC4hJgAolEomnncRqfmFtB47QvkEFchdHFz7Gie2biIa9hENdjPlHDXLv5TN/GsrmXVZBfGYTN7wFFIy9KQVGCmuTmXWZeUsu20kldMyMZg/f/tFSf4zPtXnBncr7H4IBBGiQ+0R5VCI7t//AVGlovna64j6/SizTwn4Rzs7UOYnAvvIkQgKixXzxRejGz0axyP/wPX885iXn42Ul0vEHaPn93+i/RvfJNzUjKBSDa3P70eZn4eg09H7wAN0/OAHeNavR45G6fH3cP+++/nO5u8SU0sIitPfowfSFQo0Kj1Zhiwk8T1ilYqh9w9BqSQsnxJg0Sg0KI2ngqw4g04s5YV0nDyBWm+gs/4Es6++kSW3f4VhU2ciKZVoDEZi4TCjFizlmR98ndGLzx4QJRFEkdGLz8bT28PCG+9k50vP0t3UQCTgA7Xx/c353PBpjF2Dzc7sK68/ZYtgtTHnmpvRWFIoGJlY9ykcM45oOIyM0L8WK+JxJO5xGoNySJnhxkYy7r2XeE0NrXfeReNFF9P5/e+jysoC0+e3f5J8OJ/U+K3OtdDuCfHr1U2cU3Ie3zxwNxqrnTnX3DgQjE9vsTL32pvRWKzsfvUFTmzfTNjvY2zaWG4aeROXVlzKCeUh0gpMBLy9eBwnySqNIctRhpsT66IaSYNCfM/7zPqfQcCV+KzXE0MidhqhhnDwIwopiiKdP/sZXffei8J0mjUsUUQ09v9/6TkOwT7gg9+nBEk67X3g40LOzkYVjdF21100XrySzu9+F8OUKUQ6Oj6xNiT574iFgsQVEECNSkq8MypEGW2om2A48i+OTpIkSZIkSZIkSZIkSZIkSZIkSfJezpQFvgow9Jf33tV0N3D+GSh/J1AqCEIh0ApcDFxyBsr9WInHYsTiUayZ2UN+K6geg1KXUE33OxyIShWVs+dTOnkaCqWKcCBAb1MdxvQsLJlZnP2Vb+NzOdGZzCjtZn6w/ydsa98GQG+wlwvWXML6mc+izM5CN3ky/q1biTQ2YjEPbVdBVQppW+8hWD6NQJYGm86KNhqkb9Magi89hbelBVGvQ45G6YuF6XH1IPb1oqtrJNzQkDg3Wwq7trzDng1rQZbRmbcw+9avkZU2HZP6H4gmK6Ig4HrrLeR+ox7/b36MZVglukuuJjSmEklpwd/XRzQy2JEpHovhczkTm5ZyHDRJY8pPA1lS0FVfR97wkeQMH4EcjTH7yutRG4yIokhPSzOuzg6W3fV14rEYKdm5KFQqJEnJtJVXoDWZCfn9FFaPw2CzEfJ4aas9Qkp2Dsu+9A2Iy0w450LUOj3RaJi5196M1mBk9JKzUWl1iKKCZXd9g2gkTHbFcEIBP4IM0y+9Cp3JQprPR8W0mUgqNdNWXolapyetsBhPTyJa5szLrwVBIBIKklZYgtZgZOyyc1FpdcTjUeZfdwsKlYrFt3yZ7sY6BFFk8a1fAsCWm4dCUiYcoVZeidZkIuj3UTx+ElqjCXtuPu6eLizpGRSOHgcITFh+AWqdjlg0OnAuTYf38/KvfkIsGkVrMlN4y1c+3U79ApKpy2Ry5mS2tm/l1aaX+fWY8+hp9g7Kk1tqQHUsF/crr2K74Xrarr2W3L/+Ff+uXUTbE04A2rFjATAtXoz7tdcGjtUMryTSnHBAVBYWoczJIYR8Sjipn9V//A2XffseIpJEVkkF5ZNnEA0H0VttBDxuZl95A462ZsL+AJtXvcCMcy5E63bjEOLEY4M36GLRKL4+55BzdXd3EfL7IS4n5khg6zOP43H0MGrBUhbfdTeSIOFzu9j+/FPUbt1IYfU4zGnpGNLTwaKlJxol6+hGOn/wA96VtnD+/e/YCwsJRcL0PvDAQH29f/kLUloqQkEBrsceB0AOh+n59a+Z+ItfkDp3CnkpOlKNSQPofweFyUTa1+6m+YYbIRbDfsMNdHzv+8SciT4NHjpEx/e+j/Xyy/CvXkXRzXPpeZ8PbIbBi3bkCLJyC5h56ZXsWb2KWDTC1Isu59D6NficTuZccxP7Vr+KqFCgs1hxtLYgqdTsePGZgXImn38JAZeT3KpRzL/hdrob6vC7XeQMq8Jks9PdWE/HyeNkFJVhz8ujeMIkdCYLRlsq8XgMQVQQjUR57fe/ZNiM2VTOmkPFlOnEYzHMKg1Rp5O4QsnUFSsJBQOIosjSu76Bp6cLpVqDzmSCV17DvnghaJQs/+p3CHj6UGl1ODtaKZ04Ba3RREHpMAI/uAfX0aMUf+PrpE1fQEShwGi2kH6ayGGnv/DKhEGO731RKUQp8VuS/wqVRktmaTmtx2oGpReNGY9Gq8Pf5yIWidC4fzeNB/Yz+8prCXq9zL/hdnyOXkRJyYpvVxMOBNAajIgKBbIgIAKhQJDarRvY89pLTDz3IvJGjsLX14fRYmWJaRaHPUexr9pNIBolcvggkcNfB0D92D84OrKcXWte7n9WtbD08uspppsU606knk6yi3JprXuPeJUA+ribEGBauIDeR/5BqKMT23XX0v3r3yCvf5lhE67jyP5Tx4yano4WDwqbDefv/4C6rBTRYMBryeLNp04Js2xb3cG0swopyIshGgwojEY6f3cf9ltvBbUaIlFUubmIVgvGxYvxvP46AAqLBfsN1xMLhxEUChQmE1JmJtH2NqTcXNS5n99Ig2cMSYGoUiOLIsRiGBcuxLd9+0DkHN348ahyc4lHIigLC3E99xy2K64k3NBA929/i37GDLSlpXTddz/Hx93I8UMJrcuAJ8K+rQ6qpvl559FfIiAwccXFqDQaMkvKiYTDpOTkMmr+YrRGI2L/XJI/agwl4yYRCQZQ6/XE4zIKpQJLRlZCfCYeZ85VNxKNhFHrDLQdO0TZxKmEoyG+evAbBPojWoqIBKNBanprmJM7h6hSzfFpvyElbxh7gtkooyIbarsZk289/XVJ8oVGkZYGgQAxfwDJZCIWCJDxnW/T+tW7kQOJMZRy7bXEQyEa23Rse7URAJ8rzBtP+ll2WQnGPidyJIpOCjBmbia715zSeS0fY0XY/Q5SXgYKm41Yby/yoV1k5K2go+mUQJoggLbjOIZlZ9H9618T7exEFEBdtw+NSgkyhAw6dq57muP7ExGRUzKzWXDW+bhvvQPl+HFEb7oBa1YOs666nngsjkqjJR6LIiqUlE2aRiQUwpKeyeTzV1K9cBnxeAyNVk8MmRHzFhHyeBg+ay6xSBSDLQVHSwvzrr8VUaFgxmVXE3D3sfGf/xh0/RxtLdjzCohFwizKm8fswimU7fwHiqatiQwn10LjJrCs/Di78X8WQRCQkdHbUjn7K9/E43Cg1mrRm62EggE0BhOSSk1tQMWT9c0MTzMyOU9LRWkKwXCMtLiMRadCIQpUZZ9a9Gp3BdCpJf5y+TgK7HqUpzEOT5LkTCALAkqthuEz51NYPZZIKIjRakNjTcHvdBKLREAW6DxZS2H1WKpmzUdnseAIC7TV7ybDIJFZVExOWSGRaJxQNIZKEOhzhdAblOj0Z86Qtshu4G9Xjae+x4ekECmy65OCPJ9zRFHAnmPAnpOIcO3xhmjv8mPP0PDrbQ0sr84GATwyOONWqjM1nPv17+Nx9KLW6lBqNIiShADEYjFUWj2iKKG3piCIInI8TjgQIBaNkF0xHL/bxdzrbun/TQZkVDo9XkcvxeMnEw748Pb2cHDtG5RPmYEnGCTFYiHev8ZhXDAfORRCMBoRtFrkQACF3Y6gUibEGONxELTEXC5EtYbQ8eNoh1ciiApkIeG82ffyy6TefjuRtlZQq5HSM4i7XKhKSvAfOIhudDXhEwlHZP/WbcTcHtLu/iqEwkhZWUQ7Ooj5fJjPO5e4z4cy3Qbt/c7OKgNE+p9t3hdNFLUx4Vz1Lu/9XdIMdoh+729Cv/G+Sp8oW2VIrjt8xknJyuGC7/yY4zu2DgjzHtn0Du21R8gfOZrSiVPZ+uwT6KwppOYVMOeqG6jZuJ6Tu3cw+6obqduzA3d3FzmVVYT8fvxxDyPmLaJ47ETi0SgGmx2NzgCxGMvuvBu75MJXko9eJSGKAqSfaksGUPUe8aj3cvNMNc1OP1dOKaDIrkclfT5Fof+nkGX0KXYW3/plPI4eVGoNWquN1iMHySgqJR6PM3rxWWSVVdBWe4RFN9+Fq7OTSSsuRmPL5Lb5arItWrKtH0GAOUmSTxTh9M6v6vfv5wuJ+2CwD9r2gdZymmPMpwQWTsfpflMZQPHBjvZCXR0td38NIol7tX/zZrpDIdJ+9MMPPMacqkallQgHTu3X6UwqTKkf3DYxMxPL+efjeuqpU6dTVjbgWH064rE4+9c2c+DtxLqx3x3mld/tZ8U3xpGWl3RY/TBUJSVoh1dCPIagVoEkIYYjiX6Ox0BUIGgl0GhAISJHYxCNIIgiMYcDUaNBjsvoJk4YFEHduHABca8XVUEBsV4Hgd270E2cRMznIx4I0vO73w3kdTz0EIJKiWnxImJdXQB0//o3A7+7X3kF07nnoC4txbLyYrp//RviXi/hhgaivb3opkwm2tkJoojn9cGiPKHHH6Rw+lc4satrUHqKOQSyHWZ/G+reITL/l7TFC9j8z3txd3dSNGY8aQVFyAjEolEU/WshMgIGq5XuhnpMaekIwDuPPURPU+NA2ZPOuwi9xZrYexZExI42NAYjpvRM9BYLcixOLBomtaiE5Xd/h6DXi9FmQ2u2YCzMRXYeRuk2DnqWSXJ6gq5eDCl2ln/1O3h6e1BIEhqTiZ7GBpoOHUSpVrHqvl8MCOqodXqW3PFV5FgcR1sL2RXDSS/IIBSIEAnG0BpVKKTkuleSTwlRAqUOHHUYp96J88XVA2MXwDBtGq7nnydYcwQ5EqFh4iTyHnkY90svEXO5cL++mrSvfpXu3/yauM9PNMWKKiOd7t8m5ls5HKb3wb+irqig88c/hnjCLqf3L3/BdvPNdP3kJwN1Kex2ol2diMeP49u6FWSZaFsbLbfcSsEzT7NZfYIHDz6IKIj0nfslsnKy0U2ehH/rtoEy9LNno0hPTGTmiy7kB61/ZXnFCi4bdhkPH34YgCMpASZmZRJrOyUwGr/uQv7pXAPAxIyJ5BhyyFz7YxblzGZ1yzrC8TCNehfWUQV4nb3kVFbhbG2h9VgNCpWKwlHjeOXXPyXk95FRXMaYpcsRlRILbroTr6MHlUaLpNbg6mynt62ZgMfNyImL0eiNwFBboiQfjNpoJn/0eFLziwh43BhtNlR6A67mRswZWSy982sYrDai795HZajdFcJgkTHaNGQUDjW8FW02os3NtH/r28jhhM2rf+s2uvwBMu750Sd9ikm+YGhVEstGZTGl2EYoFuLmUbew23eQiSNHc+438gh4PBisNjRmC5se/ztHN60HEs8PZ335WzxS8wiBaIArhl1BiZjKmj/fS9DrQRBEqhdewB2jvsSNB6/lmqprKDLkQ0oROOoSa539tpAn9F6yU0wYrOpBgX2UagXWDP1HOo9IY+OAiLQiKwvLxRfhevLUu5P18stR5OYSCccIG4ajTRuB2HUQKTsb3aRJ+Le9b67OykJ3GhHIjwu5tpa2r3wFORgEILBzF5333EPGL+79xNqQ5L8jFgwSVYiEUaJSJoTTNdoolq5tBIXJn3LrkiRJkiRJkiRJkiRJkiRJkiRJPl+cEatjWZbfAd4RBOFhWZYbBUHQy7Ls+5cHfvTyo4Ig3Aa8ASiAv8myfPhMlf9xYUyx0dnUgCUzk0krLmbXy88TjYTJKh/G6IVnYWlZSzB/LjqzhbDPS9DrRhfREPfHkZQi+958jaaD+wBQaRMRS0omTMG2cDybWzcPqssf8+NtqUeflU/q7bcRmD6d4OFDaHuPMueyEWx+oY6QL0p2uYUpC0xIT7xBUd3rxIo24Rv5DZQpKdgmVxNONSDH46hLStnWuocDf3hkQCREZ7aw6LZbCP7qN0Rnz2DPC/88VX+fi11PPUJWxeWklj5CIWpUhIn5BosBhI/UIL3yDI6pd2IOaTGkpKDW6wn5Tg0XSa3GaE9LRB7sa4biuR9TDyX5MIRIlH1vvoq/z4XeYmHLM08gqdVMOvcidq96kVlXXsfRzRvY/sLTaAwG6vbsZPL5l7D12Scw2uwUjBrDwbffZNT8xex46RnKRk2hcuQMmo4fxOd0suf1lwkH/Ey54BK2PPMEFdNm0XmyFmd720Ba7vARyDK01BwcKDslK4e0giKObtnA5PNXsvW5JzGm2MkdPoKaDW8z/uwV7F39ONFwaOCYkfMWcXL3DnxOx0DZw6bPpvXoYdzdXcy49Gq2PvckKVnZ6C0p1O3ZMXCswWqjcMw4Dq59g4nnXcSbf/4dgigy8dwLeeuvf6R64VIOv7OWkM936lymzKCroQ5H2ynn44C7j67mBjJGj/kUe/WLR4qo5JbqW5iTN4eTrpNkSV4qp2ZwZGsnokKgemY66tf+TrSzi4wf/5hYJEz+o48Q9fnIvu93hBsaENUapPQ0Qs1NmC6/FPWMqYR37kZTXoZkt+Pbtp3c+3+DoJDJ/L+f0efpQ1KqBgkoaQ1GVAYtb/7lj3TVn8ReWMzohct46Rc/TvxuNDF21tkovCILrriVxtr92M5ajqf2ACqtlnDgVHQrlVaHKXWoxVZqfiFqgxGt0Yw1Kwdn//g6tPYNjm3ewPK7v0PN+rXU7thMtF/8Ka2oGGtuIXt9Gn7z8i5WVpg5a+vWIWVLSgn36qFR6Lxvv03Wb3/L+3X8A1u2MPasZf92fyVJoJ80idTH/kb7oW3EAoEBAZJ3iXZ0IFmtxBwOUlu2UzFqEscO+hAVAqPG6dFsfY5oWT5ix0uMa3yO0pW3IUoS/tIx7M3spEep49mel7n0yuWUSFn4ujpJyc5h/5rXUOv1jJ11NkaDDUO2nd1vv4LX5eDg2jfQmsxEw2EiwQClE6cgKiQOrn0DhVLJ2KXnsOPFZzDaU1l8y5fZs/oVpl96Fce2biDo87L39VfY+/orAJz15W+iau8ksnkTkRMnMM5fgCE3B8+ba1AVFpIyeRKBPXsI1dSgHTcOVTiK3N1LBzHWPPF3IqHgwBiumjmXeM0JQjUJcQu5r4/g/X8EIDJzJvIFF360yOC6FJjzXXj26lNphjSwlyY21ZP8V9gLiggFApROmMLxnVsREBgxZwGpeYXIsShGmx21To8oinQ3nOCf3727X3BMRKFUctaXv8WGx/5GX1cHfncfyHDWV77F8W2baDp8AJ8z4SC2e9WL5FWNQojHCQcDKNRqbrPdjlS0Dnh9oD0Ku53e3h52rXtzIM3f52LDqheYftHlGOZMJlrXwqRZFrYi0lbnQWNQMm1RKvrDa7D+7j5ioQjZP/8FSCbUMytQFpfgfWM1VVkuCscOw+0IY7JI2KwysUN7iem0aIZXYr3gfOKhMB2Ooa9Zh3c6KbqogpgoEVcIpF53bSI6o5yImKWwWhAEAetVV2Jevpy434eUngGShCIcgkgEsaiQmMOBunI4mvKyjzb+v+DoKivx1dQgxlQQjyPH4mT9/P+I9vYiqlSIFgvxYBARELRabJdfDgY9vo0b0FQNRztuLMGIhOrCqznxyuB3l7S8OO/8435i0YQDws6XnqF6wTIi4TCGlBTqd+/gyNYN+By9A8eUTpyKpJQoHj+ZF3/wDfKHVzNu5nL0mWa6HY2s+8cDSCoVoxedRevRw3TUnWTKhZdSo27gRHvCeXK4bTjtvnYEQaDcWg6AQtYy/610/nZVEX3hMP12cEn+R9GkpxMEaG0lrpQQlSpkk4nchx4i2tmBwmJBMJkI61M5tHlodODObrANG46otEBcQdUYBamWNHwxLXo9mJUBlMFqZLeLzPvuJ9zUQHD3TqYuTmPTmz101nvRGpVMX5qBeseLKEpLyfzpT/Bt2ULU5UQ7diyyKOLRaeju7R4QIAFwtLdyaP9uiktLiezchfnb3yQai6FQqRDCIRRKJdtffJq63TsGtXniuRdxZNM63N0JZ4ycyhFMPPdCnvvJdxPClpEwmSVljJy/mIb9e/C6nChEBYaUlCGif+mFJaQWFnFi+xbmT7wW5SMLoefY4IvUth9GJUVIPhbicbw93bzw83soGjMOW3YuB95+A5/TwVlf+RYZ6jQUsoagJ8wbtV1sa3ZSXWZDJSk+1Nk206Il06L9BE8kyf8qsiQRcLl4/mffZ9j0mWgNJl57YxWRYIAV37wHmzkHWRFj6oVXEonHaPXJHOnope3xn+Hvc3EQkFRqLvjeT8gqrUDZ7ziUmv7xiINYdCpG531yEQKTfLIICgGnHMPri1GRaebGx3YTjMRRiALfX1LBKEeI7uMnOXpgIz2t/Q6HgsCS27+KWqvj9ft/TTjgJ+DxEI9FySwtZ/xZK/A5HTjbWlBpdQgKiUgwQNDjRms2I8gCxrR0/H1O/E4nkUiYvq5OlGoNhowsfF+5nTS9GUNcRjQYkIMhBI0aQQYZGVGSQJkQK5NjCedQUa8n2tKKlJqKpmo4AHIojOeNN9COHAk6LVJmFqJWQ6SrC0GjRj99GpLFQtvddw+6JqHDh4l7vYh6A4TDiBoNcZ8PQaPFu3EjpgVzoXFLQk1t2DJY873EgSPOTwiRAShUkDMODr+Q+G4rhsB71m7GXgU1LyU+W/Ig3P8eYc45JWoy7lrY/TDMvyex/pDkM01qfiGp+YWEQ0FikQgF1eMI+30oNVqioSDL7voG8VgMrdFENBKmuGICUX+I9vbjjFp0Fp21R2k/XotKq2HdwwmR5/IpM9Gn2OhtbmTC2SuQVCqydH5Q6TFq/n1hmnSzhnRzUgz684SAQHvtETY/+Q+Gz5yHs72V7qYGxs1cjiaiRbIbGDl/CfF4jIzSCojL2HILMFqtCKJI1r+uIkmSTwddCky4Hho2DjipodJD0czB+TJHwvSvwKovw9ofwuUvwJ5/nLpXigoYdzVoDB9cV9aYxH3U+x5hhhl3J+65H0CkqWlAgORdArt2Iff0QNHp9wLUdftZdO0I1j95HHdPEEuGjlkXlaA8eQByZp72GKVKxHTeuagrKgjs2omqrBzduLEoxA+OqOzrC3N4QxvmNC3lEzPwOoPUbGrH0eZNipD8CxRqNebzVhDYuwdBkhB1uoTTezSWeK5TJETzBFFADoZAoF8oTkaVl594HlRKqMtK0U2ZQvhkHdrRo1GXlhBpbSXmdiPq9cS8XmRZRlSp8G7cOKQd/q3bsJaUEA2GkGNDo8B717xF9m9/S89fHyTuTTwjyqEwgb17SbnqaoIH9gMCcb9/0HHB7dsY/SUdkUAKjYcdqHUSk88pICOlE4yTwZwHxXPwhlM49sw/cXd3ApBRXApASloOZm0qMWJ09dQT9HnwuZxYMzMBiIRDgwRIAHa9+iKLbvkSfrcbkInKMq7ODt78y32D8k087+L+YAdNvJZ7jOHpVVwbiCGrTRzUlTDyP+jP/zVi0Th/u+sGhk+azZRllxAKenn9L/fRXV/Hlb/6E6v/+OtBIg4hv4+OE8dJLy6lr7MDU2oa6QVFqLVK1NqkwGGSTxlzDsz9Pqz6Mqr4SdK//W28GzYgRyKYzz4L5xP/RJCkwfNcbi7Zf/g94RMnEvaIw4aR88gjRE6cQNHWTu9rrw+pxrd1K8qsLCItCZuYmMOBbvo00r7xdQL7DyDZbSgsVnofeADjokWYFi3C/fLLiYPjccL19axSrUp8lePcE3ye+3qzsd9xB8EZMwkeOohm5Cg0I0fg/OtfSf/RD+kbXUzboe9T766n2dPMD6f8kJqeGoy2YlLv/SbxTdsIdvlQzZzOyQI1M50Rii3FVKZU4nfVYax5ia+ecz/z8udR03MYmxzHVJzFzt7jTFFYkD1RRo5diKyBusM7CfkTdpIdJ2vpOFlLRkkZJns61oxMwsEAiCIntm+maMx48kZUUzl9FibBDSklH28ff8EIuhxsfe5JfC4HBaPGsOOlZ+g8eZwRcxYy47JrSC8uA1lGEZHpbgxwYF03YxYWIKlFlk+oxpw2VBRSSk/H/847AwIk7xKqrYW4knCbF1GvRDJ/sHBekiT/ihSDGlCTaR5FNaPo7u4i6PUiKFVoTSbWPPA7mg8dGMgf8vtoPXqYxxY8xorXVlCgyGXjo38h6PUAIMtx9q5+ioWl3+e3s35Lpj4T5e6/QdboxFqnpSDxrgec7DuJ3T6G+ZeX0HbUjV6lICYI6It02LI/5P3tPcjveSfrve8+Um68Ed3EiUQ7u5DS05CKinCH9Ox84BBdjQGKKn/DqGlH0Nc8if3OOwjOnEHw0KGBuVruc6Oprj5DV/dfE2luGRAgeZdQbS3xri4oL//E2pHkPyfsDxAVE3tjAyIkuggaQoSiSUubJEmSJEmSJEmSJEmSJEmSJEmSf4czbd2cJQjC64AByBMEYRRwoyzLt/y3Bcuy/Brw2n9bzieJIIqolCr8nj6Gz5xH/ojRxCJhjPY0UlZdAaXz0WQ5IbUUrUaPb3cnva8fQY7EURUYGTtt2YAISTjgT/z5/egUOrIN2bR4WwbVdyw9StW+fbjeeovMH/0I47nnUFffwUZviOJLiqlK1aFzH8FojsDF/4SmrUTUY2i9eCUIApqqKgSVisD+/Xj+9H16th4c5GTv73PRKcSwmkwEDIlNFoVSzeily4mGQux/41WKx8lseK4VpU5HXo6Mcd48PKsGd5v5vPN4o2cXefalaIwmFtxwB2v/9if8fS60RhNzrrmJUNBGeNp3Uem1kDrs4+2oJKdHKRHpX0yX+40eCqvHcXTzOwQ8bpztbdTv3UVO5YgBAQW539hMUqkGjtVZrMxdfgOa3RB9roccXS6aBekcM28kHPAT749coVSrCb+vPqVag7ff8Xig7Pfnk2V8LgfmtIRogyhJxCIRBEEkHo8NlBMJBgaV3VV/kqzyStzdXYSDASLBAJJaTSR0mnPpd4YXBIF4LIZSUhLy+4nHYkgqNZFgaHC7NZrEpvD7iPafa5IzR6atjN6O3bS525iVO4uO5kYmzhxNRXEc2e0i8OB3CR4+jJSRgTI9jXjIi3ZU9cDxffk2TrhO0B44RrwkTqlFZkz1uQjnnDeQxzQmH/b8A/lAI17jORiLq1h6x9288effEfR50ZktLLvz62jsWYT7jSnisRjBvj4AzKkZLF5+O8JWP/FDUWRbH8XzxtDlb+PYtk3MvPw6Nv3zEQIeN1qTmUW3fAlDSiqzrriOTU89SrQ/+vusK67DYLagM1tYfOuXefW3/4e7uwulRsuUCy+l7VgNAY87Id4gCFROn0Xe2CkIZju6Tj8zSu3kZxpQZmcPuY5xfwBVXh7+LVsGpasKCoi9b1MNQJmXeya6738WQaGgxh7k1viDvGn4ecJA8j3GZSgUiTQg8MifKBy5lZIF56AbXU3fd75EqL4e4+RvYdv8I4j4Ma+9k/jk2wnrlvBW1zvUumoB2Ny5Fa2k5f7Ce5BUalRaHUvOuxNxa5C4N4LCGmfanEvYsytxnw64+waaEPL7sKQnTN1j0Shif0QJf58LZ0cr9ft2odbpmHjuhfgcvfQ0N6KQJMYvvwBTWhZdX7+G9B/9CBYuRPb7cT75JKLFimA0EGluJhIIYL3pZnz79xHr6SFw4CDGwnyqxk9m9/pE1KDM4jJGjhyL67obAdCOGUPoWO1AG60XX/zvCTCULYJLn4OTbyeiLuaMg/QRICWNP/5bDGYLGWXlmFPTGbVgCZJKjVqnJx6PYxT68BuNzL7qBnatepEpF17GjpeeIeTzobdYmX/9bUgqNQGPG5/rlFOXz9nLkf6oLe8Si0SQ5Tgy/f9lZIgGY4QnL0KzfRPB3bshGkVQKAgqBJRaLZb0dOQ49HV20Fl/gubaGmIRGa97FNojESbNNBCyNSD09RB/dDuBlbext0FJYZEV6xE34WNdoOhGPyUX+1e+QTweQnXgIHarhfYf/AD/jBkY5s1FX11NPBhEYUwYi+vXNSNKApJSJBaOE4vJ6M1qOn0GNj17HEmlYNI5xeRXpqD8N6LRy7EYwicY4eXzgr6yEgA5GkWQPuR6bv8zvP510Nnw5t2Fct4y6nqM1DznpmpmFhpjK+FgDDkuIwoCBlsYY2o6ar0RQQBnextqvQ4ZGRno6+kaJEACiflTk56BQqFg6rJLKYxXElntxivUYx1vo3LCHIzZdt559G/IyMy45CqMRblYAh4uEi/CorGgElWYNWaeOvoUF1VcRJGpiMc3u1k2MgNRSNwiPKEoM8tSP8armuSzjiY9Hfoj9L1/7IcDUer2d9OyswetQYm7J4BCISBIIgiQV2IjfETAv7cVBDBMziK73ETXSy/iGbWQXTv95FSkkZKez+E1HSg1uVSfOw5t1xFmj5HwFYYxlGcT3rQGUa1G1GlxPPMCUvV4/Lu34vjrQ6jv/Rlrn3mF3MoqAARBxJCSgt5qw9XXh2b2LKItLciCQMjvRY2BeDSGLDMgNPJewqEASs0pgYmw34ekViMpVYT8PlKycxl31gp6W5uwpGeQkp2DHI8T8vsorB5H/b5d/c/Is0krLKZ22yYmrbgYpcECFUtg0/tESPImnfE+S5JAJvG+FA0Hqd22aSDdmp5NGjl4Hz5K3B9lmF3L3xZVsjsUIt+WjP6e5LODIIrEohGi4RAH154SvZuw4HwMx9T07UtE91OPTsNTZmFtcxfjg0c40ecayBsNh9iz6iXSbytB8WHPLkmS/AsMWhWSJGIUBPY3O7luesKxdoLdQEmdl+CqLqzomVZ5PidzD7D9jWeQVGrkeBxZlgn5ffjfMzbbjx/D1dlONBwaeO9SiALhgB+1wYgcB1EhJMQZtFqUWi21OzYzZslyRElB7fbN1O/dhdZoYvrdd9Kj9nOg9wgmlYlScwk7O3dxdWQCvldXobBakcNhwk2NmJYsQcrLRWG3Ez52DOdTTxE6dBj91Cmoy0rp+d19xLq60E2ahKZqOIJaTczlQlBIxH2DHThFvR6F0YgsCMiBIKH6eqS0NARRINrTg6AUYcbXoGAqBN0w5Q7IGgumLKh/B8qWQOH0hIP01LsgpRAyq6H9IEy9E/Img8qYECqx5IK9HOrWweJ7E4IkTdvgvAcToiUr/grZ4z6x8ZDkv0el1oA6IfQhmRLRjpUqFVqjCYBYIErkgBPHm40QjWPK0+Hsa0CXasXnciC+JyL9sS3vAAlxf0EhJvZBlFpIS+53/a8gyzHi0Qie3h62Pf8kpaMns2j6TcR2evBurUdZbKTD1kJMKzNm8VmfdnOTJPnoKCSwFsHFT0DD5sTcljshIdr1fnInwgUPJ/JFI4ljGjdDNJy43+ZM/PC6csYmjqnbAL4uKJwB+VM/9BDRMFTMQ2GxIGg+WMhJkZ5O5FvXM+/iK6FkOBzZR/CHv0Pxgx984DFSejbR9ja80QgZP/4xgaNHkZ3dqEbP++B6JIFpF5YQ8ERorXUgKSUW3zgChSopNP1RUOflov6A/Uk5FsO3Zw99r7yKZDKCQkJbPQrXs8+RfvdXURcUIEejIIogywNr7MHaWiJNTQmxcAR0EyYgh0OgUKDKzRtSj7KggGifGxSK067TK3NycD3zDIFt2xMJkoSquAhDPIbj8ccxLVpE3OvFtGwZzkcf7T9IiSAIGFVBFt4wAq8jiKRSYLRpgDyikRghXxR1xmhi7e10NtSiMRgxpaYjKiTy8qoQd4aINPSAJJI3o4IOaxN9jk7i8cRGSjw6VDAlFomALCPLcsIuQpaJhIbuCTcd3Ic9N5+CaZNZs+uPTM2eAOu/Q+85j6HQJ9enPwoeRw8LV96GvS0V91+PgyQyf/K1bDO8gCzHBuxY3kskFEQUFYCAnLQx+Y+IhGOEA1E0eiWK9zynJzkDjLgArAUoOo8TWL8z8X4uSbheeBEpNRXvunWYzz4L79q1KPPzcT/wIK6nnkIzciSCKBL4yU8xTJuG7Y476PzBD1Dm5CTEG96DKjcXzxtvDkoTdHr8+/YRPnoMv8tFzOUayOtes2ZQXoXZTKWukq3tiQA9bcFOfh18je9GzyaelkrqD39I35o1hI4eJVxfj+O8GfSqPfgiPtQKNRtaNlCVUsXZxWdTWr8dbWYGzCwEbyd7im2sPb6W2SWz2di0EbsmhYmudrjoMdLTKln4/A0sdLdAyAtqI6Nn/xCf04p7t5vQplakNC3Fs8eyTfrnQBAEoN/uLs72F59GUqkZf/YK5t94BwqFAr01hbC3D0GIJ2xJknxkZBkiwQBtx47QduzIQHrQ50EQBUKCkqDkRZKUZBRnkF+Vg97yL+xHJAnRbBmUJOp1ZPz4flwvdRNztiAalFgvKENTZk0GFUlyRkhNTUOMRAgH/CDH8ff1DckTCQWx6+ykadNIEfQ0tSdsyxfe9hV2v7WKnqNHiYf6ONi1l7JgDNXanyUOPPRc4r2tH4vGwpLVy/lz1X3kNWqJdQYQtBK6zFzkaDyx3/wvUBYUokhJSQTYKS2l8bwVSOnpqAoLCZ88iXLldbx1ooCQPzEPHt4eoc85jMXTJPD2QF4eqRdfTN+6dQiyjG7sJxv0TzQNfa8UdDoEXXK/8vNCNOAn0i9Cou63yVKqY2gIEyQp3J8kSZIkSZIkSZIkSZIkSZIkSfLvcKatnH8LLAReBpBleb8gCDPOcB2fK1KyczBFM3C1tyGp1dhy89AqBbjkadDbBvKFW7z0vVx36nuDB6PeSnZZJa21NQPphaPHEifOnWPu5Jsbv0lUTizETsyYSKo5G8vycoLDq9m88zh+i501dUGqs1SkxkXajrmJhTNJCUBmqBtt2VnED+9PFCzLBA8eHKinwFrM0Z53hpyPNxQkq6qKiE7Plb/9CxGfD0dbC862FubfcBu2bD173nRycGM7uSszUebnk/mLe3E+9jhEI1gvuQTVuDGcY1WjUxlw1jehUClZfvd3CLgTDviyrCQcEOjRTyYrLQymjDPdLUk+AinZeYxeuJQdLz8HgEqrTYhw9Bs5REMh9NYU2muPMGnFSlqOHMLT24MtN5/e5kZGzFnI0S0bsNtzUW+HmDMh1BH3R/G/3Mb8C2/i6fu+i6iQkFRq6vfsomLKDHavepFoOIzObKH58EHGn30eXfUnCXjcmNPS6W6op3zydOr27KC3pZnM0vJ+A/kOSidOpfnwAYrHT+TEjq0oVWoUksTJXdsZNm0W+9e8PnAuvS1NlE+eRnpRCZFgEIPVRnvtMaZccAnNhw/i7u7CnptPT3MjI+ct4uim9bSfqCV/5GgaD+xFZzIjiCJ1e3ZSMXUGNRveRhAVSGo1dXt2MmzaLHa9+sLA9RQVCjJKk0roHwdV7l40JWezp3sPTsGNqVtBn9uAIBqxfPn/sOxZg2niWOJaLcr89EHHpmrTiXdqMbblY7JpUTolDh1tRWtUklZgwmTTQkYVLPgJQtCJUWMl0usgN2Dk0nt+STDoR29JwWizE4/LjF68nHUP/xlHUwOplxYiKhRMWXAR8joPcjwhMhHrDcJbDlKWprPghttxtLUw5+qbUGrU6K12XB2tKCQRS2YuK775I0L+hKN+yOshFFKiA6xZhSy94x48jl60JiNqm4VgTwu5VWMYdc5FtPZF+OOePg4/eoKfnafhSIeHPJue9Q1uJk6bgfTqK0S7ugEQDQbUFRWoC/LxrF49YKyhsFoxzJkLkURE2rgvEYlFysjAMG3aJ9a/X0S8YS9KhRKFoKA9XSLjogvpe/Kpgd9t119PuLVt4HvowD7sM6fh//OviNTXI5WUoEmT4Ei/UVreFMSxV2HTpXDnmDu5a/1dROKJqBJl1jL6DGF6jh1h4crbEN7wEY8k5vGYM4S8xsmYc5ZRs2HtoDZWTJnJ239PRG4tGj2O1qOHARg5dxEKpYpz7v4uvS3NRIJB5t9wOwGvB6VaTdDrpfOkl5x7fk7fM4+jHzsW347tGGbMxP3yS3jb27Fedim6ggL876xHodWizi9AodHi272L4dnZ5C89H1mtwZyXT2jdOlSFhajnzMAwdRrO+/6AeuQIjFdfgXrcv7nJrNJB6bzEX5IzjjnFjtFsxdnWSiQSQm+1ojUYiR9+CXMkjpA3gnnX3Ew0HOTcb/yQoMeNLMuY0jKIxaKMXriMtx/+y0B5GqMJtV5PqH/uASidOBVRFBEEEUmtJh6JoFQG6azbjf3WGzFbUohFI3TWHSfidrH09rsRJQlPTyd6i41oJIzGYGbNA/cx8/IJbHqmh8YamHv5THztDoRJZ6PSKcnWhLH7wgSO9YuixGR8GzsgzUDEqsSTOgpnRwDddx4kalNzosGN4aCTeCyOyRYnJUuHJV3HpOXFKNUiWoMKQSEgigKiCNMuLKW70cOavx5m0c0jKBxh/8jXOSlA8uF8qAAJQPkSqN8ER1/BuGACh1tSqTvZw8xLylBqFNjzjAS9YSSlA1EIEA4GWHzLXfjdfXTV1zFsynTs+UWoNBr62tsomzSN49s3D6qiYspMGg/uxWhPw5aZju+t1sQPskxwew9V58ykz9jHwpvvIhTwc+Ct1xmbXkqVbQxlZeXE5RixeIx2fzt3j7sbs9rMySYTuSlhlo7KIhCOYdEpKUrVMzLH8vFcyCSfO94/9puPOji6tYORc7MRRZFIMEbAE8Zk1yAIAqouH/49/UIfMng3tyGkl+Aafx7Odh8TlxUQ9Mc4urWdEbNziITjdHVGiKRXYek9imLbGrxvebGccw6Rnm58GZUcGJZCT32Q/HFVVJ5zMbtP7GTUgiXojCZ0ZgvFE6YQ8ftRKCVcHe00dHVg+/2viYSCqLV6Qj4vGqORWCzCiDkLBiLIJ05QILt0GHtfe3kgqWr2AlwdbSy5/atIKhVNNQfpbmrAnpuPUqNFUgiJqMqCSP6I0Uw490LUWi0ag5FoOEzBqNEo+x1Mqb4cmndC46aEys/YaxIOxkk+FhSA0Z5G/qgxNO7fM5A+bfGleF9shH6/ilhPgKLt3eSvLCPDnBCgCUZiSKKApEg6DiT59Ij4/RisNtILS+isPwGAWqenJGMMwY2nxMlCe7qwZuo5JzPEsS0tQ8pxdrQRj0WTIiRJ/mvyrFq6vSEun5TPxhO9dLqDFGt0xHedEvWKHfZSOGUk+/SvUTFlJiqtDlkUqF6wlC3PPD6QT1RImNMycHd3IUoKJKWSaChELBbDYrUS9vkRFQp8Lie52TlEjSYmn38JMhD0esipkPE6eulurCdY24rVamSGaTQPtD9Bu7+dYDSIIsuAriwX57OrUJhNmM46G1FSEnc48Lz6Koa580i7/XYEhQLH40/Q9dOEMbxoNKKprIRIlJjXQ6yvDykzC+PixXhePxU12X7H7Qg6HbLbjaxSIdlsCCoVwaPHMC1ehLpsOGTMPXUBhy079Tln7OCLWzTr1Oes6sG/Fb5nbaxw+qnP5Ys/Ys8l+TwSafHQ91r9wPdYkx+rwU6b2ERWeSWRUAhRIRGPnXIkGzF3IV0N9RSNGQ/pyb2u/yUi4Qi23AIklZpoOMTI6vnE1rtP/X7SQ5o+hyah9kNKSZLkM0rG8IQYiaQDZEgpAGv+afJVJf7KFoGoTBxTPPvfqytnfOLvI6LMyUY/fTq+jRsH0lLvugvZONSJ7F0UJhPGn/+Jzs4I/o4o+vzJpP1oOpLlw9diNdXjyS4sI9pYhy4zA+Xo0R+aX6VWoDMr0ZvViKKAWq9EpZMGi9Qn+Y8QFAoEQBQEBElJuL4Ox1//CrEY8VtuTuQ5zbuXurSUYE0NquwcIr09KCwWgocOo6msRDt2DFJqKtHu/v1UoxHTgvn0vfIqmooKZGTU5eWEjvUL2yqV2G+7jUhrK+H6OhQpNqyXrCSu0RGcsITA8CXETVq8jhDqshi22Uvw9fgIqG2oU63UO2NojzqIx3wIgpOTezvRGowoNRpkWSYaCBCNhFl6+1cIB4N0N9STWVKO4lCccIM30YZonMDbHaSdm8fBjWsYvWgZvc1NaE3mIfstZVOmEQkFUarV/XERBNLyDRzZuG7QNRo5bxGRbAMXbr2OMmsZ4zxOCPRicB7BXj7lTHflFxKj1YauTSLQ2JNIiMaJbXVTPXMRNRvWMXLOItY/+teB/IIgkllaQcifWC/Vm62fUss/OYLeCM5OH4IgYEnXodEr/6vyupvcbH+5ns56NwUjbYxekE9Kpv4MtTYJGhOUzEUsmUtKyhGar7ueWG9iTSz1619DqijFv/8A6d//Pv5dO4n19SX2yPbvHygiHosR6+tDO2oUxgXz8W/fNiAyKmVmoq4ehbq0lMCe/vVjhYJ4WxvWFefTetddg2xXdOPH03P//QNla6dOQVNRwRIpnXXN6zir+CycQScV1grurHmAn8fPw/XgX4l2dNC7ejWayy5EmZ9Ph6eGBfkLMKgM3DP1HmqdtXgiHmJFM+AvMyGtAmZ/lzFv3ENG1dl0iRLnlZ9HrikXTUH/XkPdenDW0z3tXrzafCLhMFYxndBTJxPq3EC0K4C8XqBq6gL2v3MqqFvpxCnsW/0qANULl2IfNwM5EkQU4shKFdbCYaBK7hP/u2jNZkrGT6bhPXsRABVTZxLwePA2CzQe8VI1I4eUvI82Tyg1GlRFhRhmzcS7PmFba1l5Nb49AnFPv22kN0Lvo0dIv2M0yrSkaEGS/4xwNBF8TyUp8IWj/GVfHxeW6dDpDIyYvYD1/3hwIK8giOQMq+LZE89y6bBLKTOVUfXz3+Jq76C7sZ5RU+eQesm1+Pv6uF2Zg2LVTYMrW/9/UDwHNGYydZn8aPQPyF+rI9qZmJvlQBTfM/Xo082osj/43epdFOlpZP36V7iefAqhfz822tlJtLMz8dmUMyBA8i4ttR7cSyZhN7pQK3OItbVhnTQJKSXlP76G/ylSejrGxYvwvL56IM1+263IFssn3pYk/xnRYICImHim1KgT/yq1UTRCmAgSMZ8Dhf6TH1tJkiRJkiRJkiRJkiRJkiRJkiSfRwT5DBo1CIKwXZbliYIg7JVleXR/2n5ZlkedsUo+IuPGjZN37dr1SVf7H+Pd3o7rhROD0gSliHh+Cmse/yOSSs3YJWdjH15BY6AFURbxy36a3c0YVUZyDLn4PJmMybOyo97B5X/bgSBAjlXLz2eUIbcEqD/QQ9HoVJoO9zB+cR7Fb88gVnIuzc93ENh56lopy0px/+wr+PbXs+OlZwe1adkdd5Ph9hOvHkUsHGbfmtfYv+bUpljx2IlUzLiY+l1O5hatIZK5BNTqgajwoiShyswcyH/grTdY8+DvB9VRMXUBfY7xjF6QT/mkTETxM60If8Yb91kauyd27aKlZh+tx2oYNX8xjQcSkW42PfkPJKWKKRdeSvvxYyhUKjJLyqnZsJbhs+bR3ViP3+WgcMxETKIV5ZvhIWWrlqVR27yd5pqDjJi7kNptm7BkZKEzmTm+fQujFiyhrfYIklLCmplDzcZ1jJy7kPbjx4gEA+RWVXNo/RqGTZuJq6OdxgN7KZ86k6zSCgRRpPnQflqO1jBiznyObt5Aan4RSrWa+r0JZ7iTu7bT29rCmMVnI6nVqDRajm3ZgKhQkFlaQc2Gtxk+cw7dTQ34XE6KxkygZv1bFE+YhM/lpKu+jsoZcziy8W2yyoeDHKfp0AFGzluUOJf0THQWK0c3rUdrMlM2cSrZw0aRln/6CE2fAh/Lf6xPZfweWUVj1I0rvRJjRwY7XmokNc9ALBon4IkwdmEumnA9B61e0rRpDE8dPnDoid2dvPHgYdR6ieq5eWx/jxiUPdfIkptHYEwZHB0tHpdxdfrxuULozSos6TpEhUjLUQcH158go7CX/WteZcqFV6AQQeNSI7/lGdJs/RUFPP377+B19DspCQJLb/8qB995m6LqMax/5MFB+U2p6ZRPu52qWaWc2NXFzldPGbyXjk9j5spy1LrEpok3GKGtL4hWqcCiVXLOHzdzsttHllmDVSvx2zFarB1NKARQDatAX1WF89VXUVqsRFoTzlHK7BwiLheh6bMx1dcSOlaLoFKiHjYMbUXFf9dn/z2f67n36WNP88TRJ7hhxA38+cCf+VLmpYxxmIh2diKlpOB55x2U2TloKsqJ9vaizMqmUW0hpbMJo9lIsKAEl0YHjpM43F4ipgKK87LJsmiRZZm3m97miOMIkijhCrmo6anhx1lXoQvmEnyxY0h7VOdn0OVtZP+brxGPxxg1fzGxSIS9q1+leNxEDCk2Dqx5nYppMwm43eRUVrHu4QfIKCrF4+yl8+TxQeXNv+GbqDNTMAR9KL1etKKScFcnZKejzclHqdGBUkIAFHr9gKhCPBhMRPOSZeRYDFGjocHTyGN7H6I0eyR/OfAAo8zDEGWBTb07+cPcPzAx819ESvzs8bkeu/8Oba4Arx1sZ4G8Cfxhnvn7i4N+t2ZlM+3qW3nlJ98CYNIFl6A3mti/5nXUegMj5i5Eb01h/xur6G1ponjcRIrGTiAeiyFJKpQaFd1NTbz14B+IhkOICgXnfuMHrPrdvQS9iTlXVChYcsfdeHt72PLsP5l64aXoLVaikQiiZMecnsvhDa3kVqSg0SvpbPIQ9kXJyDVg3NxKtHdw1D/V+Aw6bVo2PFmLya4lHIhiTtNSNiGDjU/VMnZxAUe3tTPlvGLW/eMo0X7BH0u6jvwRKWSVWHH3BgCBSDBKNBzH7w4zcnY2qXmmj71PzgBfjPEb8oCjju5gNmv+cYIJSwuIy+DvC1OzuY2KSeDpqqH95DHGLD6bWDjCa/f/asAZwJBiY/HtX0VSqhAVChwtzexZ/TJyPM7IeYuR1CpM9jR2v/QCk/XLiLR6B1WvqDSyet+fcfTfb6sXrKDlZBmiQmDhzSOI6RUYVRIqpUhcBo0y6Zh8BvhijN2PiN8dYvsrdWQUmtEalMRiMmseqmH8sgJEhUh7rZNxgky4afDzqarSRmBMGh5nEFu2kRO7OkjLN3F8ZxeNh3rRmVSo9RJzLi/HLHmJdXUiaHUEJAsv/uUEIX8UURTIKDVRNT2Lvs5tpGTlIcsxVFodfpcLpVrDvjdfpX7vqWu36JYvEYmEsefk9wuRGBBFifYTxzi49g1UWh1jlpyNKIrseuV5wsEgo+YvxpRbzLp6D4W6OJ6db3Ji1/ZB53PWlRcgDpvBt9/sQBJFrp9RyKQiGxrlBxjpBvrAWZdwirIVJyI5fzb4wo1fOR7H2dlBwO3i2JaNNOzfTWp+IdOnX4b32YYh+dPuHE2fQeKtmk4e39FEoU3PNdMKGZ33xXfA+JzzhRu77+Jo70SWo4S8Hg6/8xbNhw8wbPocinsrCdcNjj6oKrOwsfNZcoZVsemfjwz6bf71tzFy3qJPsulJPhqfy7EryzKrD7Xzpaf3M700lR9G1cRrXYPyqApMdJS0Y83OQalSEQ4EEBQKOk7Ucnj9WxhSbFQvXIqoUBAJJRwmFAoJt6MHncmMQqFAEEU6Tpwgq6ycvq4Omg4dIBqNkF9VzYldWzFabaTmF7LthaepmjWPSDiMs72V6hXn4rYLlKWUYWnZB09fRqz0HOSyJYCIIuokprYhu9qJpo4n0u1EdruRMjKINDURDwSR0lKR43GCBw/h+NvfyP71rxCUKuRYlEhDI4JWgyIlhXBDA/qp05CjUeRgAJRKZH8AQRBQl5ehTEv7WPviU+ZzOX4/T3g2t9L3St2gNEEr0ZB/gvSRFSiVSsIBP/tWv4qvz8WwabPJHlaJqJBQ6XTYsz8zewOfNb6QY9ftdBD2+/D29nBg7RtMKFhCdPvgZwXRqCK+VE/2yEoEMSm09znlCzl+P8/4duwgHgwR63MRc7lQ5eYRcTrRT5mMOv1UoIKgL4Kr008sGkdnVlG3t5uj2zsoHGmnfl8Pw6dnUTYhDZ1J8yG1/Xs4Oz20n/Cw7tGjA2mWdB2zL68gq8Ryxur5iHzhxm6kq4vGK68kUt8wkKabNo2c3/4GhcHwgcdFPR6CNTUgg6BS0faluzAtW4Zu4kQElYrA7j0oLBZURYWg0dD145+gLi3BtHAhMbMNb1hDNBLHZFagjHqRTEYQROI+H9H2Nhwpw1n3dD0Tlxex8anjxCJxJKXIlPNLOLSxlWETMzi0sY3qebnUH+kgK7eV+r27sOcVYLBYESQlyHGOb9/CsOmzUGm0vPaHxHr1pCUXUtBQihwY7MCpm59Fh6qZjpPHyK+qJhqNoFRrOLxuDd1NDZROnEpOZRVBjwdEAeIyCCDHZUJ+L0c2riMaDjNs+mwa9++heOEc2lL8jHS1k/vq3SDLRBb8H8opN39c3flhfO7Gbl9jB96H64f0k3JGCm9tfog5195C29HDHHr7TdR6A2MWn43BnoqztRlTahq5lSM+trZ9FnB1+1n3yBHaTiSek7IrrMy5vCIRLOY/wN0T4Nmf7yLgiQykpeUbOeuO6v9a3OQM8Lkbvx+FcGsr4bo6whI8HtjAS73rmGgaQVO4ky+PupPS1jjNV18z6Jjs+36HfvJkRJ0OQaEgdOIEXYd24Y8HaU2XuKf1IX4x7JvktAQRnH2QaqPZHKekLYpktxNubkZQSEhZmcSjUXaHaknpChA36bGNHE9+YcJMdV/nPvacPIglnEaOLYPfN/waoyyyUpyE0RHEm6IhbeRE1rt28Pu9p2wXK1IqqLRV8vzx5/nuxO9wodsNr3311Aks/BlMuB4U7xtTx9+is62TPk0BXfUnOLplI/PmX4+0eajNnO7yPN58+o+EfF5GzF2Er8/JiR1bGDZtNqmFpYjp+eSmmYnFYqjV6jPXYf8Zn9ux6+hoJ+R101Vfx4G1qxEEgbFLzyGzYjgRr5eTB+Ko1Ao6G91MO79siH3YB+HdtQuiUaJd3cT6+tBUTcX51FAhatvVVWjL/7f2MgLeMM4OP8gy1gw9WqPq027S5278BiJRtp7s5a8b65BluH56EWXpRpbct5FwLM7fpwkUlJYMPD+odHrGLllOamEhM1YvBGDHhTs49NbrbHjsbwPlpuYXMv+G28l0vDN4TgOwFsD160CXQpO7CZNTi/dPR3k/lovKMIxOH5J+OvwHDyJYrRAI0P61rxM6cmTgN+XP/8YbrwcG5RclgYu/OxFr+qcv3OPfu5eoy4UcCBDt6UGVk0PU7UY3dizq3E9sfe/jsO39n1HA3Pmn3/OQ72lW93yDm8fV8fVD38Hvl3hUtYifRS/h8I1p6As/uuBpkn+Lz7TDR5IkSZIkSZIkSZIkSZIkSZLk3+dMezQ1C4IwBZAFQVABdwBH/sUxSQCFaeiCu5Shw5Sfw1lf+iYKpRKTPRUAi9HGge4DHGg/SJuvldGpE3lso4endzbxxHUTybJqUUsioWicK8bnYBcVaKtSMNq1dNb3UT4xE5VOg+uiDVhMMbLGxOl79VW8b7+NdvJkggsm09BXh6a3h9GLzqJm49soVRpGzF2I4PES6OpFq5To6+rgwFurB7X55O7tjJi7gFEjfKjW3YtKui8RnWjG16Fo+pBz7GqoG5LW3XiUtOIp7HilnswSM5a0ZESKT4Pu9nbWPvR7YtEos664jgNrVyOpNFizcph+yVU0HthL+/FjlE2Zjs/Ry/41rzFh+fkc27KRSCRM6YQp7HvjVSYtuACVVjXEqCIihKndvplJ513M/jWryB1RTcjn4/A7a0nNL+To5vUY7KloDCb2rn6VKRdcQs2m9YgKibzhI9j/5quMWXYuJ7Zvpa+zg9T8Ik7u3EY0FGL/mtfR6PVMu/gK9r65itJxk3B1dXBi51Ymn7+SA2tXk1M5Ep3Fyrbnn8TndACQVlDEiHmJiDPVC5dRu3Uj4XCQ8knT2P/mKvTWFNqOHcHV2cGEcy5gz6oXGTZ9Nl0NJ2mvPcrE81Zy4K3XyKkcQSQYpOadtdhz8wn6vKx7+AHmXHv7Z0mE5ItD2jDyH5qHePFT+IMyE88upPFwL2qdkopJmYRCUe5o/Bm2Dhs/mvIjnEEnVo0VvzvMpmcS4gml49I5uH7whnBPs4eeZs+gTWY5LnNybxdv/b2GeFRGVAjMuaKCglGpbH+lno6TXsomjCGtOA2Pw0BabgSLNQPn+26FglYiEPKcEiABkGW2v/A0S+78Bse2rB9ymu7uTpSqKK4OP7teaxj02/GdXYyYlUNmsQUAg0ZJmUbZX6zMouEZ3L/+JG19Qdr6YP5rXv506VQWjzglCqWrqsKz+g0cjzwCgoD1qiupKRnLa28d50fLR2Ctrv43OybJ6Wj3tvPb3b/FE/HQ7munvq+ew/ndPBV+ndukCah/9TBxvx/z2WcTPHAQ9YgR/KxDz5OH2nnlttlkZ5tx9Pi48I+bcfnfNZ46xiUTA/zgrEpUkoLxGeORRAnJqSfWoWWSbxmCthuDsYegwKAtRUEpIunVpKUWs/DWLyEIArFYDFEUySgpp7etmd6mRtIKi2k5cpjC0WPpbW7C6+jFOm0W9fuGbqxHw052/Plh+jrb0ZktzLn6NhQlk2mucSC1eygfbSItf6jggqgZatCxpuVtVndtQGu20Rvs5e3gpoHfHjjwAKNSR6GRzpwRcJIzQzga4w/rTvDE9iYy5+dSFDwxJI+zrZVQXGDSios5+Pab7HvtZUYtWMyCm+5EpdOhMZiIRULMve5mIsEgkkZDNBQiHo/T09JEpMPP4fVriIYTznFGm52WmoMDAiSQiKJ14K3VFIwYTVZpOc72Nur27GT0orMxpFg5vKkDg0WD3qrB3xdCqVJgy9LT1+nHkm0YIkIipCQiAs65vIKWY040eiVakyoRrRI4uL6FYVMy2flqA8VjUzm2LRHFxdXpp2x8OjWb21BpFGSXWYlFRRRxGbVO4ujW9s+LCMkXA7URMkfRvq6FolGpCJKIu82PHJdRqkUa9r5B3ogRZMilaAxG1v39L4OikXodvfQ01nPw7TdZcvtXyaqoJLtiOLIsE4/HaTl8iGd++C2smVnExwvQOrh6VZYexSEJpUZLxZQZ5I2opvGoF68jgqs1MVaSJPlvcLT5SC8wAzI+d4imQ040BolwIErAGyEUjCGVmoeIkIgZOnpavFjStHi6AygkBR11bvKrbORX2RBFgVhcpnZHF8Vj0ujoieFo95FVKjN6QR5eZ4iCESm4uoKodTLmtEyi4RDRcAiFUsWJndsoHj9xkAAJwBt/uY/zv30PTYf2klVeiRyLI2nUFI6ZQMGosYBMwO0m5PMx+5pbEBUS9+108NgjJwG4eoyd9BNDI4c7PHG+8WwDDb2JCF2bT/bw2LUTmFaaevoLpzWD9sMjFic5QwgCB956nczKkUxasZLqhUtRqjV4jnUOySrqlYhaiWd2t3Dv6kRk4UOtbtYc6eSFW6YyLDN5/0zyyaPSKOlt6SAciTD5gksZu/Q8JI2K8JZeeN8yp5ihomvbSaLhMJPPX8nBtW8SCQcZueAsMkaM/XROIMkXkkNtfZzo8hGJyextcuIdWYDufbdHZb6RvBHZ+D1hBEWIjpMHECUleouVyRdcQjQSwdXZgaRUYsvJQ47FcPf2YE3PQGMw0d1QR2fDSQqrx+Lt7eGdx/5GLBJhygWX0nashrDfT0pVNQfWrqZs4hQM1hQ2PvkPppy/kto317L0zq+hkCRILQOdHcWhR+HQo4nGFc9DmnIrFFShTCtEW1Z5quGjRxPp6MD59NM4//EooslE1k9/SszppOuXv0LUaLBeshLP5s1oiotJufIKBKUSz9q36Xv+edTDhmG9+CK0w4eTJMl/i2Qe6vgl2lUEgm7MKXYc7S1YMrNZcNOdxOMxJJUKr8NB7bZNlE+Z8Sm0OMmniSgIdNQew5Kdw5xrbyZ+3If7fSIkigwNLfXH0BcXYTV++k42SZJ8EdCMHYv/nXdwPPhXwo2NGGbNJOXKqwYJkHgcQTb8s5aGgz0ALLyhivQCEwpJpLvJQ9XMbKyZevq6g2dUhCQaYVCAAUisHTs7fJ+GCMkXDmVaGrm//wOuF17Av20rxnnzMS1d8qECJACS0Yhh4inB+5w//omuX/wC56OPYVy+HMPkyXTfdx/K8y7HmVENN/8KpRKO1bkxpOqJReMoJCWtnVEMVhuqoISj3UtmcQYdPi1mvcDYRQW0HnMxen5iDS290IjXESKvMgWdRU1OuRW9RU3lOA1d9T4aD+wld/gI4vE4sYCf+j07KRg1Bo3ewPYXnh5Yr+5pa6QodTixpsF2GHGtTF97BzqThYaD+8gfNQaFpGTqyiuJxxJ5W44cwtPTQ96IUfhcTryOXjIKy/D0dlM0ZgLdTQ1seeZxoqEQJRPGs3TVFacqUCg5KJaT6wmRavzUHeM/87jdPUh2FbHm94nFZKUw55pv0HbcRWH1eIrHTEAWBUAg7I+SWTaWxsNu6vYfo2CkncwiM65uPw0HexFkSCs00VbrRK2XsOcYaesXoiwYaSetwHTaYE+yLNPV6KHhQA+xaJzCUXZUOgU9TT6ajzgw2TRkV1jJLv3XDvPxWJzOBjcNB3oRRCgcaSct34Rwmno7G/poP9FHd7OHzGILORUJW43WY07iUXlAgERSimSXWjiypZ2QL0r+CBuZxWbcPQEaD/bi94QpGGknPd9IT4uP+v3dKDUKcsqsuHoCdNW7ySgyk1lsoW5f90D9XY0e3D2BARGSoC9C+wkXjYd7sWboyatMwZqRtEv7T1FlZ6PKzub1+td5YMOTALzsT6z1fmvnD3hywaPkPvRXHA8/jByNknLllegmTEShOyU005uh44Idv8UX8YEHzio6i5/U/YkZOTP4W9ffoA1ogycqfk7all24/vlPRI2GlOuuZXNplG839guIuOB74e+RT0KERO7UEH82n3Z/lHahl5Uzb2OV6R/c0v0HAHLCOfyfZhIPHhgcIOio4yhzcucA8Ns9v2PGsqfIyBwF7lYw5UB65VABEoD04fQ2R+k6VoNaZ6Cvs4OoGBlinCsalEhGLYtu/QrIcWRRwOfoRaXVsfvVF6iavZh2h5nZ922jMtPIo9dOxGZIzrf/CYE+F8/c8y2u/NWfya0ahUKpwtvnoutkLRkl5eRViDQdcaLVq+is7yPgCREORUEWCAdiGFLUpJ1mH19dUEjoSA19L7xAYPdu0r9nQ1CakPuDlAAggMLwqYsffaL0dftZ+8gR2vvn9bQCE/OvqcSSlnzf/XfY2eDkmodP7adurXPw9I2TmVORxu4mJ46GGlp2bGLuTXdQVD0eQZLoaq6ns6MZAQEZGVdrE9uff2pQud2N9TjbW8msWg6Kb0LslGAXU+8CXQoAeaY8nA4nolFJ/D2iXgAx1QcEezgNuhGnhNSyf/Ur+l5+Cd/GjRhmz0YcVUrWyaaB5xeAcYsKMKd+NoJE6EaPxrNhA70P/Y3Q8ePopkzBfsMNn6QASZL/knDAT0xI3Du12sS4UqtjaOSEMFiwpzEpQpIkSZIkSZIkSZIkSZIkSZIkSfIROdMiJDcBvwOygRbgTeDWM1zHFxJltgFNpY1gTcIhXVApsCwtRmXSo7UYB+VViAqq06p5fqvEiS4vj9U7iMtOAJ7f08K954/i/kvH8I1nD3DBiGzCvhj732qidmcXALXbO8koMjFjZRlYTKgskHrrraivuJigEGNfxxZS46k0tu8h4O6jcvocopEwB956neVf+ibmseOJIBANh5HlOO8nEgxRlK+BkvkQ9sHEGyG7+rTnnVVRyf41qwalZVeMo60+hN8TJhIeWn6ST4Z4JErQ4yEaSUSsbD1yGACNToc5PYPKGXPYvepFDqx5nXgshqO1GVdnO/X7dpGSlUPrkUP0NDXw9jMPsvz8u5HXu6G/O9VT7Gx46wmc7a04O1ppqz2KPa+AEzu34e9z4epoA6BozATqGxvo6+rA2dFG4/49pBeV0HRwPz3NTbi7OqnbswOA3tYmAIrHTiQSChINhXC0tdBx/BjZ5ZUc2bSeaCg0cC4Bdx9Z5ZUDAiSQEMWJhsJ0HD9G/ohR1O/bhTUzi9ajNXQ31tPdmDAMU2q09DQ10Fl3gvyRozm66R3isRiujlbajh3Blp1H3Z4d+FxOnO2nPE8jQf/H3m//k9iK4PIXsQY0RJQir/354IDIwqENrSy5aQRVKVUccR0hIkeQ4olbXzQSH4iAo9ZKBL2RIUWHQ7FB313dATY8cYzyiRnoTCoCnggbnz6OPdeIz5VwhA/5Y9Tv78PriuN3HKEhGmfY1MkENyfmYEQQpxlpaxvqLBnwuJFjESTlUGEqe14RfT1gzYoix4cK00eCsSFpAIIgcMG4XA629bGhtgdRgKunFjC+IGVQPnVBAYcWnU/K2MnIwJ37/Gx5swNRgBumF1Oc9uFGekk+GpF4BH80MRcEowmBAwGBza7dHFQdZ8V35jHCVEGxLh9RaWTJMx0EI05+ef4oSvv7oLbT8x4BkgRP7WzmummFFKUaMKlNVIljef7vewgH3AAcBpZfY0U7U0Vgff+8JIBiuoXmlsNsfe6fTFpxMTXvrMXR2kLV7PnsXvXioDqM9lQqps3C70w8c3ScPE72sOE0Hdw/KF8sEqavsx0Af5+L1fffy9K7fkrN+oSx0eG1nZz31TGnFSJ5P73BXtSSGn9k6PzpCDqIxU8/7pN8urQ4Azy1sxmAb24K8/Ti4cBLg/Kkl5RT61UgtTRRPHYCCkmiZsM6drz0HCu+9SNsWTkfWL5SaWXPa0/QcuTQQJrWZCHgcQ/JG3D3oVBJqPUG/H1OYtEoggC9rX0c6Z+XD21oY8H1w/G5wjQc7EGtlfBkGNCc7CPuS/xfEzP1NPWG2PZWMxOWFdJ4qJeQP4paLzH3ymEAhINRJJWCgCdM7jAberOGvW82IssQj8v4XCHUWbqEfbAMsZiMxqCk5agTOS6f1jAzycdH81EHw6ZkgiwTiyYeUtU6BZ4OJ3IshtQfVSzg9Qw5NhTwEw2H6WlqIBqR2bFKIiVLT/HoAGse/B0AjrYW+sxOTCYtcXf/OEpV0eo9wbhlK+isP0H93l0c27qBsWd9g71r+gj5hz6LJEny7xLwRlBpFMSiceKxeGLu0SuRZQh6I0TDMSizIB7qIe5OGNmIdi2dERlBKeLqDLB7dSOR/ufgyecWc3xnB+lFFg5vaOWsO0ax4cla+roDZJdaOL6zC2uWjpJxaRzf0Uk4GENr0EI82u8PISDH48SiEaKh0JD2yrEYIZ+Pg2+9SfPhQzham/H3uRAVCpbf/R2aDx2gueYgnXUJQatFX/4ua44l/l+aNBJzRuUT7Js4RCBVkVFE4z7voLTn97Z+sAhJkk+MWCyGOTWNV+/9IWmFxUgqFR0napm58joKplbg39yRyCgKWM8roVeEP79zclAZwUicI+3upAhJkk+FeCxG0Odh1e/uZc7VN3Jk8wbajh5m0SV3YLGYkF39932rCrfOhS0nl+bDB+ltbqRkwmQklRpn+jAa/CJpn/K5JPnisL+5j2f3tPDl+WX8ef1JDmgFJtnU0Ju49yqsatRVdl7/x3G6Gz2MWeBg4xMPozNbKJ88jb2rXx1U3szLrmXz048NiD4Kokj5lBlUzZ5PS81BoqEQgiACEI/HCHjcqHX6gc8l4yez8YmHoV+oz+PoIRKKIogKRFMWrPwn7H0M6jfAsLNhxPmQUviB56fMyCD19tuxXnghglKJZLMhyzKGmTNBoUCQJMzLz0FKtSNIiXW/lEtWYllxHoJSiSCKH8NVT/K/iDLXiLrcSuhYYm1MUCtQTrYQ3hIEUSTo81K/Zwebn3oMoz0Vc1oGPU0NFIwajQwEPOHPQgTgJJ8YAid2biGlPY+22iOUVU0hIyeLeEv/mrBWIlgUQRFQUecIMjYpQpIkyRlBoVBgnDMHVWkpcY8HKS8P5ftEKFprnfT1+BmzMB9RIWCya9jy/Alaj7oAqN3RSeEoO+OWFZzRtskxeWBf8r1EI0l7iDOFuqSYtK9+BTkUOq3w/UdBO7ySnPv/QLyvD9FiQaHTIYyezKoHjiJ0ekkrEDiyub0/dzeTzyvmwNvNaPRK0gvN1GxqY+qKEt548BBFo1NpP9lHx8lTIlTTLijl8MY2HG0+Jp9TzJqHahgxKwdHq49wwEk8nhgPAgKyLCPH4wS9bmQ5jihJBNyn9kFO7t/JqOsXoexUIPev5YkFWo7UbGDHmucH8mn0erY99yQ5w0dQWD2O7c8/RTiQ2Hfb8eLTLP/qTwkHTLTXCdTv3UXr0cODrklIn079jN+Qf+JxooYMWsqv5rY3Y/w23ZsUIfkI9PV2YKgwo+x6Tz/lawnrQjz/i4Saac1GDdXzc6jZ2EFPS2JN05iioXhsKofeaeXQO60suWUEax6qIRKKMfX8ElbdfwA5LjP1ghJW/eEA8X77gb1vNnHOV0YPBC95L50Nbl741R7i0UTe5ppeyiZmsOW5U2tvNZvbWHh91WmPfy8ddW5e/M3eAbuFvW82ce5XxpBRZB6Ur6fVw9YX6mjtf4au3d5J8ZhUopEY4UAMQTi1N1Y9P4+D61sG5sqD61uYfUUFO19twOtIPEMdXNfCwhuqWP3AoQGbkD3KJiacVcjhjW0c3tjG8BnZWDN1ONsT41wUBSTlKafpo1vb2fzsqQAKRpuGc740GpP9s+H4/HnlXduH9+IOuwmKMdKnTkU/YQIyICqHijJEYhEC0cDAd4PKQDAWHFLmJUe/zkUTL+LLSx4hKsjcefJedtUOFj4PxRJrGUFfmCMvOskut2LN0BMNxzi+s5OzzrmADd3rKbGUcM/Ue9BJOoKxoW2P99tD+qN+woIMuRP+9UUwZSJLNQS9XpSaxHg6tG8tE0aeTfxA/36FKCBP1PLoD+8kt3IEaUUlbH3miQGRKACNMYth9sTzS027h7puX1KE5D9EkpTYcvP52x3XYk5Lx2hPo7uhjumXXIUoSWx89hg9TT4ADm9sY+5Vw0jJ0uHpCSIqRBoOdCMpRVIyBz9PKu02lNOno8zPJ+73o8zKRlXox/ls7cDcZFqYj5T2xZhXZFnG3RMgFoljSNGg0pze5Lz+QO+AAAlAV4Obk7u7GLu44BNq6ReDZ/ptbd7L3zbV85UFZXzj+QMY88s5+vZqHrnzBjJLyggHA2SUlpMzbixy/wCMR2OEA4Eh5URCQTDb4cpXYMsfwdMGE26A0nmD8sWVClRz8wm+chJiiTKVo9OImf6zuUhdVEjaXXcRv+kmRI2GY9vbySg0UTo+HZ8rhM6oJB6T+SxZzBhnzEBdXELM3YeUmYnSYvm0m5Tk3yAQ9iJLiXVYnS4hNqdQyKj637eCPU2fWtuSJEmSJEmSJEmSJEmSJEmSJEk+b5xR60tZlntkWb5UluV0WZbTZFm+TJbl3jNZxxeFvm4/J/d0Ubuzg942L5JJjXVFKfYbRmC7opK026tRF5g+1EDW6Y+wtc7Be33RDWoloigwb1g6a+6cjigKBLwRand1DTq2o86Nu2fwJprRkIIv6iPfmE9fRyflk6Zhsqexd/UrNB3az/izVyDp9WhT04jFopjsqaTmDzYO1luspGTnIBRMgYv/CVe8BMPOSkQcPw2ZJcMYNX8p9G8sZw8bhT5lFF5HiPKJGaRkJI3uPi10xhQqpi8EQBQVA6IIx7Zu5ODaN1BpdXgdvbTXHiV/RCKKhM/lxJKeiaO9lfTCYqDfAf3VP+KZHEZ/bh7+6TIH2t9BZUr0rUJSIiok6vftpmzStEFtaD1aw/CZCwAI+f0YUmx0NdSRXZGIhunq7BgyBntbmigeMx5ZjqPUaBFEkfq9O6mYPKP/XEQklZpoOEJuZRUZJWUACILI8Fnz0BgMyHIcn9OJNTMLZ0c7aQVFg+qIBAOkF5WBINB4YC+lE6YMnItCkmjYv2fIuQiCiCWj4D/sjST/ip54EdhyObShdWBDFyAWidN4uJcvV32Nc4rPIRKJYNfaAdBbVFROywKgqcZB0ejBDomiQiAlc3DEm4AnzLilhbQcdbL79UaaaxyMX1JIJBhjxKxsAMzpWpRqBSabAAJ4PQ427PsnwZkiqqVp6C8v4K03HsScnjngsPEuw2fNJxwMcXL3DuZccxOSKrF5Z0pNZ+T8K6jf78GSpsOeO3iDW2NQYkn/4PmywK7nj5eMYdUd01h91wy+tqgC+2mMwjzBGLOfa2bOc81sOZm4fSsVIoqkY/wZI1OfyfLi5QCIgohW0nLcdZxRqaNwh938ve15vnz0p1xT8y2iaWb+fvV4XrtjOueNyUbdbxwlKYb2hyQKg/qp/aSLcGBwRK1Nb/TRrpYwXllCdJoK79QonTSy9qE/4XM6cLQ043X0EvL70JnMA/fmdymfPI1Da1djy81HEESaDx+gYOQYUrITkR5EhcSkFZdSv2/noOOikTCe3u6BiBWxSJyGAz0f6XrNyZtDT6CHXNPQaBKXDbsMvSoZleqziEIUkPrHozsQ5dvbw4y88JqBZwlzRibzrr2F8XlmMopK6evqZO8bqwCBGZdchc/d9yGlg8muI3f4yEFpHSeOkVdVPSRv5fTZhINBmg7uI6dyBLmVI4hFIzQdDg/ksaRr8feFaTjQQ19XEHuOiX17uuibmIm0pBD1eaXUpWjZ9lbC2KNmcxtF1Yl7RsgXxesIIYgCeZUpdJx0UTwmjZ2v1nNybxcjZuf0GzeKVEzKQK1TkbhRydiy9Ox+vYHh07OSAiSfAuUTMzi4rhkE0JtVKNUKOut9FI2bBwi01BwiFokwfMacQccJgkhafhH5I6sRJQmdOYWgN0JbrYu2WiXVC88euL/v3/UWqhW5MM9IeJqCtrxWIqow7zz2EHteewlne2u/8Y8bQYDU3NO/MyVJ8u9gzdBTt7+bWCSOUiNROj6N3IoUtCYV6QUmepq9+GToHZVGdFYOmnNLaM4x0ticiIAZ8EYGBEi0RiVeZ5C84XaObGlDpZXw9ztOjltSQMifEMcz27QgyxzZ2o4lXUfQp0RQKJHUamLRCEq1moySMow2OzqzZVB70wqKUOv1BLxuWmoO4u9zAVAxdSaddSfxu/vobmxArdcz97pbKBlRxcu3TeOlW6ey6o7pTC/PYMyS5WSWlgMJJ+mJ51zIgUjKu0FhB9D/G9G5knx8SJKELSefiikz6Gqoo+3YEbLKhqGzmVGMMaJbWYBmeTHpt49GU2FDFEAjDe07SZF0KE/y6aDS6TGnZaDSatn67D8pHT8JjcHIm0/dT3thK/oL8mG+kcbME7z4wE/JHzGa/BHVBDxuGvbvIZpZyq92uJJjOMkZRakQaOz188iWBlZOzKORGE3zc7BcVYn96uHoV1bgicqUjU8nFo1jSk281/v7XIiSkrz+tV0EgcoZc7Hl5Q0IkADI8TjphcV01Z9EEES0RhPRcAijPZWQz0veiGqcba3EYzGGTZ/DhicextHWQkpWDj6ng2HTF/HK7w/yzhPH6GnxQNowWPBjuPZNmHn3hwqQvIsgCCgzMpBstlPf09NR2u1IFgvKzIwBAZJ3EdXqpABJkjOKZFaTckEZ9usT+3jKi7N58g/fovnwAVyd7RhSUpDjcUbOW4TX0UtLzUFMqWkMmz4HrcGIu3eoY1uSLy6iQkHpxKlEQ0FUai3rnnmQI+JOxCUWTBcX0V3Vy4mGXaRkFwxyvk2SJMmZQZ2bi7aycogACUDIHyW7zMq+tU3ser0BrzM0IEDyLvX7ewi4z6xgsMGipWxC+qA0URSwJiPDn1EEQfiPBUjeRaHXo8zKQqFL9I3TEcPR7qdgpJ1jWzsG5Y2G4/hcYQpG2jm6tR1zmpbuZg/xmIw1Qz9IgAQgHIjS0+wlp8LKiT0JG56MYjMH32kh4NMhKiR0ZgvxeByFQoFKo6Fk/GR8Tgf+vj6q5swfKEuW46x6/NdI59rQnpuN9vxsahV7BwmQZFcMp6e5EYCWwwfxOXspGT8ZUaFAazQx5cKbCPiM7H/bxck9HmZdcT3WzMSet0KpZPZVN5JSUMor8jReGv0gXxe+zJxnQrT1hZGSz9ofCWtmJmte+BM9Ix1EpioJTRNpS20Aw6n1rqLqVLa+UD8gQALgcQRRqhPvOGqdROsxF5FQDHuugbbjLuS4TEpWYozF32M0Fo/LHN3azuk4ubtrQIAEYNTcPHavbhyUx+cK42jz/cvzOvROy6DAKfGYTO2OjiH5XB3+AQGSgXbs6aZwZCquTv8guwdBFIaINe18pZ7cCuvA98xSCwfXtQyxCXF3B9CZEvuQR7e0UzTqlO3HmEX5mPuFANy9AXa8Uj+oDk9vcNC1T/KfUWotRRIGv5dfNuwy0nQJGV5BqTytAAlApiGTs4vOHvi+oWUD07Kmka5LR3ifS3pxSjG68goimWkMsw/j4rzL+XnB/fwy80F+UvYrhlkSwSOC3ijDJmXh6Q2y+/UGjm5tp2pmNnmqQp47+zn+vvDvVNmryDJksSB/waA6DEoD8f4oW+eUnEOmLvMjXweDxUp2xXAkpQpRoeDkgZ1sr3sJ81WlyDN1uCcFeP2l3xP0euisP4E5NW3AJk0QRcYsPYf/Z++/4+O4znt//D1te8UCi96IDhBg702kqEb1LkuWLMmWe5y4tyS/2ElurpObb5x2ndg3jntRXGSrd0oUxd4bWNF7295n5vfHggtAIFUpUWXerxdfxM6eOTNn9+yZc87zPJ9ntNeBFpz6LZzLP8Tg9SGZzay85UO4C4sIDg8xePI48y7fhCPPRzISoXFZyYzyex7vIpPWQcz6e+m6QHB4tpDDWcwVFVgbG5FdTmzzCvD/yQJ8dzdR8Jl5OFaWICrvfbtUMp7h0OZefv03u/jlt3fy5P87wsTQuZ8TvcfGZx3rOjr7mMGrYzfPFnmxmyXqCp3810eWUF1fR8v6y9A0lb7jRzHZbFS1LWBsrD83ZtryfNQsWT6jDtlsJq+4FEQRKlbArf8N9z0G824Hm29G2VgozWMPdxBZXYq6tozk+gp2D8aYGDn/7yEZz9B3coL2bQP0tI+TiM5eT52dpyfjGXxlDvpPBOg5Ok5wNIHNbSKVzMw652JiKi3B2tRkCJC8B4mlYmhadm7otNo42xtlKTsXSWz7PvTtvUh3Z2BgYGBgYGBgYGBgYGBgYPDe4tyy1G8QQRD+8lXe1nVd/+sLcZ33C+MDUR7+1/1ExrOOvIpZ4oYvzMdrVdAi6WzQ72s4nAmCwN0rKnn88CDqpGFXkQSumz9lHLGbJBKqhq5pMwywZ9HUmQcFQWAiMYHL5KKmpIHH/tffUtm2gGU33U5kbJQ9j/4hJ7YgSgqj/X1suO8T7H/yUXqOHqJwTi2Lr70JZTLAH/ncxsPpeIv8NK25haY1l5GMJelp1zj2coC560ppWF6IdI5AE4N3CF3C5lnMvMtNnNixlQ33fYKjW54nEQlz6c2fwpJ0ccfHvsNQ4BRnTuxm9Yc+wpHNT7Pw6uvpOXKI3vYjrP/Ixznw9OOomRQTiQiirhERdPpOH6Vm8TLmX5HHie1bufSjn+LI888gSiJLrr+FY1uex+byMv/K24hHXCy94T5O7nyKZTfeTueBvQyePsHaD3+UQ88+wfzLr2bg1Am6D++noGoOpY3NxCMRzHYHJ3dsZeNHP83B557E6nKz6OobOb5jK+vv/TjhsVG2PvgLCqtrmLNgMb7yKroO7qXzwF5Wf+heDm9+moVXXU/P0UP0HD2Ubcszj5NJpWhZdx26Vsgl93yZI5t/g7eklPlXXsuJ7S9x6f2f4vDzzwCw9PpbObrlOWwuDy2X3EImk3+Rv9T3JwOng/zxu/u469vLSKdmZwtLJ1UkQWJ+wXwcFkfOoVeSRBZcVoGsSLRvG6B2UQFWl8KJnUO4C6ysuLGG/NKZzokms8TuRztzhrLweIKdj3Rw/Z/Np35pEZqq03FghCseaOHk7gHGevsJDvWw7OrbcJnzSQcTyG4rG+79HD0n9nL1n36ZnQ/9D7FQkJZ1lzJn4RJ6jh5m3d33U1rfRGljG+P9E4x067TvSHL5R1vIL3Nw2f3N7Hm8i67DY/irXSy/bs5rZuZxWBRaStyvWqahyEmd38HJ4Sknm0+tq6E8z3CAvFAoksLH2z6O3+bnue7n+Oayb/J4x+NsKN9AraeWl/peYr5/Ph9r/Ri1eRWQN7uOxiIXNfl2To9OGfY/s76Wcu/U96ROy5znLbSxdFUxdgHsXgsTYY1MkcSBR56kvKUVfTKLz8Fnn2D1HffQdWg/p/fu4opPfI69j/+RRCRM/Yo1VLYuZLx/gPD4GFd86nPsfeyP7H/yUVbdcTdWt5dM0kIqobH7kd/MvGFBQDY7kJQp0YdUQn1dn9f8gvn8y4Z/4eFTD/O1pV/j4VMPE06HubflXjZUbHjtCgwuCuVeG5/dUMs/PnUCgD19UX5iKeHv/uafkDJJ3AV+bG4PyWiUF3e8jGKxsOzG24gFJnj5N7/k6s99+TWvkUml2PS5L7Hjdw+SSsRpuWQjdq+PKz/zBXb94TekEnHaLr0Sd2ERPUcPs/LWuxBEkfK584hO6Jzel3XuFQSoWejnuR8fy9U9eDrIiptq2P1iH8W1Hlw+Cwe2Dky7toakiCgWiVUbKyhSRG69o46M08TJ4xPoOgQnnS/sbjOrbq1FB8xWiRKPh0xGQ5RFjmzpY9UtdZQ3nuOHbvC2I8sCRXM8jHRGKGvykIhlWHVzDSPdo5jzBmnbeCWBoQGqFixGEESOvPgsNpebpTfcRiQwwZyFS4kFgwSG4kB2zXJ6X4Q7vnQL85qvQkhpJBSZp37ejbNAZv6lxThCbp7+j2/lskxCVtTE6nBx9WeqKKg0REgM3jq+Ujstq0sRUyq2tAp2mYzfxu7tA5Q15bHkmmqO7xqiYUkRB5/twV8Nuzf3UbvIj6bqaOrUHEKUBDJpDbNNQFd1RIsAmk5Zo5cdfziTK9d/KsCmT7Zm9xh0ndN7R5i/sRBBDOLKz0fNZChtaCIwNMhVn/0iex59iOGO05S3tNG64Qom+nu57IHPcuDpxwmNDNGwci2iLPPygz/DV17JilvvpH7ZKvJKsgEQhUChyzKtzeXc9PVvERgaRFYUvMUlmHpCSM/1zNgvuWFB2TvzJRi8Jpqu0rbhCpauuwkxBIJFRshXOLprC/7yJsbH7SxZkRWbK3Ba+PIVDXz5Nwdz5+c7TMwtcV2s2zf4gGOx2ZBNJq77wjfo2LOHAks5H7r3bxFdChmnxsljEYZPPsvxbc8D8NKvfkJ5SytXfuEveKhH4J+3jrN8jo+agtnBkAYGb5YFFV7cVoXhcJLvv5h9Rq+7dwmyIqEGkwi6jmyV8Vc6WH7DHI5tH+Xaz3+d7b//FcdffpFlN97O0utuAUFAB7b/7lds+pMvseOh/yEVj7HgymvxlVcSCwbBo3PgyceYs2Ax1QsWE49ESMVjLL/lDqITIbxFHk7u2ErtkhWUt7SSTgoMnHYz3BlmuDNMx4ERbvnqIlz5NlDeH9lgDT5YSA4TkiPrwD5yfJRkLEZl6wJefvBnbPzYZ2lsXYM6kmRh85WkbGmSUgKLw0lkXEaxnMNQZ/C+RdUk3MWlpBJxyqtaWXfJ3YjIyH4Lg6MdhBIjdB8+wJyF6415gYHBO4zJInP4hb7c6+l7IdPRVI2BM0GK57y6be31o9G0qhhJETm1exiH18ziq6ux+l/bp8Lg4nK2jwgCaK9UvZ18LQgCmqYjySKZs/bqV5YF9Mlj08sJQtbucHx7iGXXNbD2rkI6D+6hqm0hgixic3kY6+0GAUobmllxy50ceu5JbC43K2+9C7PZTiYUR7aZaVp5CSODXYz2dFK9YAllTXN58j++m7v+3sf+yIaPfgVPyTpScTi2PUrrJVCzsIAlV1fjK3Vwx7f+nuDIEGabDU9RMfGUzqnhLv6/p6fsJOsbCqgpMBIFvB40RK789OfRRpLIcRnZZiavqYqx/pFcGVESUTPnGIsm+0t2nzZrW53ed2b0t2kk4+e2w6aSM4+LkjDDppy7Z+3V5626rp/T1ptKzA4cPme7yDYtHk4jSSKF1S6GOkMzRE3OkklnbXJnkWRxViKOs9c5W05TNUoavFjsCnkldvxVLiQ5+56unfuezvcsMHj9NPua+f7l3+d7+7/HQHSA2xpuY1P1ptcluGeSTHxy3ifx2/08fPph5rjncG3NtZwYP8FXl36Vh08/TCgV4p7me7isMivGlBbS3Fh8Kwd/M0pHexjIgCBTe78fSkCxiHQcHGWkOwxkRch2PtzBNZ9ro9I7lQDFIlv4s0V/RpmzjMc6HqPB28BllZfxoyM/4pNtn+SGuhtQpNf/rC6sqUcQJURZZv19n+Dw80/jLSojGYjg8voRMwpefwn5FZUsuuYGjr7wLPnllTStXY+vrILwuIftD3WR36AhCLCh0c8cY73wpkllNKwuD2vvvI+Jgez8z1VQiMnuoOfoccaHSiiucTMwKRqWSamg65MyDgKi+Npj4lkEWcRU4oCS1/d96RmN9ECU9Egc0S6jFNuRXbOTSV1shrtCbPn1ydzr7sNjHPCaWXNHPdIrhLYrW310HZ6Zr3LOPMNX8o1y66IyfrOnl8xk35NEgTuWVgDgsZmwFhVwRNe55J6PYXW6SETCPP39f2PxfXdT6izFa/YyGhxi8TU3YHO5OLVrO56iEpbdeBsm+7T+KcmcL3xAU3XMFglFFpEz2fHIDo9BjgABAABJREFU7jSd93mpZjSOvNjLtt9P2Y/nbSxn2bXVOVG16bjzbTz302PEgikkWWSoI0RVq4/KFqO/GFwY4qkYumlShMRmIy0IKLqOMjluJTDBnv+G0oUX8zYNDAwMDAwMDAwMDAwMDAwM3hNcEBES4Fzy1nbgo4APMERIptF9ZCwnQALZAHltOM7wo0fQJw21ostEwUfnohSe33C/qMLLg59YzlNHh5BFgY1Nhcwr8+TeN1kUYqEEDo+Z4jo3Ayensqy48i048mYbLlJaipcGXoJUhgWbrmPfo3+g68BeBFHk2s9/DVdBNkOBOz+fk9sneOHH3+eWP/8bllx3M+GJcY5sfp55V9yNt3BW1eclGlKJh0zklbuZe4mVppUaGTWDI++tZagxeGs4vGYsjjzOHKhn+c1r6TgUpGbJ/VSXuIj/9jSJTDZbiTvfybJN97D16V4WXfslIuMpVApp3ZjPkS2jlDR/DFGCo9ujXDLHxp4noGHlAzgLLAx0Blh2y2Wc2TdB/py7KKpzcvjFcWqXt5KM6ux8NMay6zwcesHP0uu/xPhAHJQCmlfnc/iFUeZd+XlSSZVkqpi1d19Jz6Fn2fyT/wdAcV0Daz/8KQ5ujlDceC++chvHtgVYcfMldBwO4nCVkldyipM7tnJyx1YAyppbWXjVjRzeKrDo6i8QDaZRNT9tl+Vz+MURSpo+iskqIVvcWJwuXvx1Lw3LH8BVYKa/I8iym7Nt8VXfSXGDiyNbxqlZNpdUTGfXkxFu/LwRWHqhyaRV9jzeQSatMdYzQfOq4pkZpQSoas1n29hLhDJBNnk2zTjflW9l5U01zNtYhmKWUMwyC6+oRDFLmK2zHQlSCXWWUn8qniEVz+CvdLHoyir6T04QCSZZcHkVseCNHHv6CVxdTlLt2YD3GCHMl1XgL6+l9+Qhrvj059FUla6D+9jyix9z7Re+js2VdWj0V1bgr6ygvDnJkmsELPascSSv2MH6expJRDKYrTKK+cIINhV7rHz/7kVsOTXKsYEwa+vzWVqdhyQamVUuJKXOUj49/9Pc2XQnVtnKFVVXEM/EcSpOQukQDsWBSTKd9/wSj5UffGQxW06O0D4Y4ZKGApZUeRGnfU9FNW5EUUA2S1yyrhTt6U5UHUKAqdJFuq2Espa7yCudEpxR02le+Ol/Ub1gCRvu+wSyyczVDS10Hx4nPK7x3M+ClDddhz3PTDIhsvaeP8Vkkji+Mw6CgDPPwpEt/ay58+M8/6N/yznGLbjiNiTFx3j/qeyFhGxGr9eDRbawvnw9SwuXoqJyQ+0NZLQMbvOFcvo1eDsQRYG7llVQX+jkheMjNBQ5WFNXQNkrHKTMdjuXfORj/PZ//SW9Rw8BULtkOYVzal/HVXSe++F/culHP4WnsIhUIsWhZ5+k+ZIPcfknaxEkDVG0IEkp8soq0FUdVZM5/MI43kInkB2T88ud9J8IzKq9/2SAeZeWc/D5XhzemXPmhuVFnN47zMZrqzG/1Ed80tlRcCiUrizliQennHBsbhPOfAvxUAqXz8LEQIzgcIzSRi+X3d+Cw2vMdy8G4fEEz0wKz8yZV0DX4TF8pQ4Kq10UVLqIBUvQ9QSqFsdkNTP30iuoX7GaTDpNIh5DEEX2P/konfv3sPKOLwLZNdzKTZWoz/aQ6ghlLyTAJZdXsWPvML6yEry6xtq77uOZ//q/uTFyzV330bCyCZvTEPwyuDAEhmIkR2JY9w4T7pt8zosw9/JqnvxjB3Pm51NY4aT3+DiLr6tGTWtYN/fSfXSctvVlmCwSgiigazrRQApvkZ0z+4apnl/AmX0jeIvtHH6xf+ZFdeg5Nk7z6mLikTSRiSSBYYHwqJniOjM2p4gg6BRUNiCQYv29nyQdjxMYGmTXw79j8TU3oJhNtG64ApPVQnB4iC2/+FG2PYP9FNfW5QRIzofF7qBo2vNj4WvslxhcPDRNJxlJ40haSD41CGedKIstVF86n2P7E9QtnjnXu2puEQVOM88eG6LMa+OSBsPx2uDikYqn2fN4kMrmKHOLVhN/ZogYWQd2ZaGHtCbRuOZKuo/sJR7K7k8kY3GSdh9hIcZfXd/Cyjn5uM+x52Bg8GapL3Tyq48v5/n2YYZCCW5uK6b8aJDRLVPBtZZLykhWOKlbVEBFSx6ppErT2k9S1mhCECAWCHDohac4uf1l3P5CCipruObzXyeT1JCsJqLhGMmoBYvDzPpP/iliRuHk7mF0VUOxyYwNJOk77mXlzVW0bqxElCXsXgcv/aaXRGTKfBQPpxnrj2VFSAwM3uOUVFWx/KY76Tq4G6cvn3jnGGwbn7LzOU0U3N3A/l0jFM1R8RYZgbofJGLBFP3tg5hVEecRM/HhyXWULOC5zs/DD/+eZTd+BLu30JgXGBi8wwx3hWa8duVb8RbZmBicEg4uqHDi8JrZ+XAHVzwwF/kCZLFXNZ3BMyGa1xXSuKII2SzSf3wYBBcFr89kYnCRyCu2Y3UqDJwKUDXXR+ehqeBaySSimCX6TwWoas2n89AojcuLOLN/hFg4jdtvJTg8lTFesUjY3CZ62ydYcFkFY30RJgajNK4o5sCzPWz7/QT+Kjtz5l2F1W2j70SEusVenAU1BIaiBEYl5ixaTmRijEQ0gjPjJfKzTphMQCQX27jszs8RJ8WWB3vJpGUsNjuJaHafsKi2idCojcMvBgBw+izULPSz4PKKXD+3ud3Y3FN7M3YLfH1TE+sb/OzoGGdRpZeVNT7ctvPbMg2mSMUSmAIC0jMJdFUnTRi1MEzeNZXAOACdh0apX1JE+7YpoReTRcrp2MTDaUrrvRzd0s9wV5jl18+h59g4oz1hVtxYMyvgu3lV8TnvpW5xIUe3TO3tHt3az9y1pex/pid3TDFLrzlvFQSB1nWls67bsGz2db1FdrzFNiYGpsZYf6UzNxbve7qb2kV+Fm+qQjZJ7Hu6e4YwyvyN5RyZth/dfzLA2jvqGeqYNpYLkFfioH3bYPY+VhRRUuumoml2EgBnnpnW9WUcmNZmk0XCV2rsNb5VREFkSdES5l46l6SaxGPxvKHzS52lfHb+Z/lw04exylYssoW2gjYCiQCbqjchIuK2TI1NgiAQHVQZbA9PVaLDjv/porLeTzqhMXAqOOs68VB61rFyZzl/tvDP+EjLR7DLdnR01patxWP2vC4RlelY7A4q5s4jHg4Tj4apaV1K/OlhEg8NkJgsc9mNH6cjdIidDz3IshtvBwS6jxwkGkhycvcola0+dI/C39/SZuwjvkWcLgc/+9o3ueLTf0b1gsXous6Df/sXLL/hVhzeOo5tHWDxVVU5EZJ5l5YjmyQymRSKopFOZsUXRnrCFJRfWJ+/xPFxxn52LJdY0FznwXtr/btOiGS8b7Zb+Km9wyy+ugqHZ6avQ+VcH1VtPjoPZp8P5c15VM8zJrpvlPkVXv7nkyt4+ugQug6XNRcyr9yTe99ss9O64XJ++7d/STqZHVkqFixELHTxL03/giIrDPR1ceBf/otLP/5Z2i69ElGSePAvv8Gln/g8hVVzXvMeXH4bG9aUkHyiEx0QgYY6D7bCc+/pBodj7PhDx4xjB57poX5JIf7K2UkFQmNxKpp9uPItpBIZzDaFvuMTBEZi+CuMJAQGb51EOoamZ8dTj81JShCw6TqSmA2ZSRQvgeFjr1aFgYGBgYGBgYGBgYGBgYGBgcEkF0SERNf1fzz7tyAITuBPgfuAXwH/eL7zPqiMD8zcnM8rsSOcnMg5JgJooRTxo+OvKkIiSyKLKvNYVHn+7OmSLKHrKsuvr+HMvhF628cprHJRv7yI3mMTFM/xzChf7irnu3u/y/ry9QQX5bGm5c9IhSPUVLZQWDFzA7p87nz2P/0oP/nyZwGwOJxc/+VvcXrfMDa3BU/B63MkduVbeeHnx2dkyjBZZW77xuLXdb7B24MgCDSvLsGZZ2Z8ME7j8nIEIP3yAEzLDKKNxpEmMrSsK2foTJCiWj9Wd5zQqEbb+koGz4TQdZ1FV+TTfXSc5TfNITyWRLHYaFxhY2IwQdOKSoY6Q6gZE63rShnrj5JXLFG3xEJkrIN1H/Iz3i9S3lyEwxslMibQtr6Coa4w/kovZnuCwFCSyvlXUzZ3GZlkCpuniMFOmZY1FQx1hBFEC82rbNm2LCtnqCvMgitvpq/9MOlE1vEnHo5gcRQwd62Nka4QRTV+rK44wVGNtg1VDHeE0DXIr3BSXOPmms/Oo/vIGLLFSvNKe7YtqyoZ6si2Ze7abFscXpH5l9dSUGGIkFxoMmmNwKTj1mP/cZxbv7mI9Xc3cvSlfiRFpHVdGa5CM8cH26l0VWJTZo9LgijMMIy+0kg6HYtdRpSEbJb3aedbHNOcrASBZ/7rKLqeddK5/q6bSf9upqEt9UIvtpur6D18kF2/fxAA2WTmpq9/G7Ntdj+xu2cbmWVZwuG5MOIj06kucFBtBPS97QiCgNfizb22yNl+lyed/5k+nTkFjlcNvPRXuLj+8wsIdocQtvfnHBcA1K4QvqVFyI1FjPeP07DiEo5v2zx5XyJNq9cTDTrpaZ+gdrEf2ewhMDxCw7JCqucX0Ns+gdNnQRQtBMYS1C5yYXWaEESIhVLEInnc8JX/zVjvAGabG5unmExapHCOC5NFZsFlFRRWvTGjsd1kBGm818izm7mipYgrWopetVxZYwsf/rt/ZqK/F7PNhq+8MifE9ErUjEY6qSJI4K+uw1tcyqP//PcAyGYz13/prwgNpxjuiRIcClHaAB6/gLvAj9WVTyaSpn5pEbJJYsNHGjn0fB81C/Jx5lvxFFoRZQFFkTm5ewizLTvet15ShiBAVVs+kYkELWtKsLnNhMcTOEZjM7Kt6ZE0tkACm8tELJRCMUskImme/VHWcL14UxW7H+sEYPdjXVz7uXmGCMlFIpNUSUaz392xl6ecetfcVseWSRGZ9Xc3kEmpDJzsQ5BkiuuqiQye4pF//jt0LTsXrlu+BquzGF/pBMW1HmrKnYRenibOoAM7B7j0riZskw5jzZdcSlFNHaHRYRx5+eSXV6CYjX5gcGFIxtI8/7PjLGnzofZNCY2hgbhrgDmN3pzDdtOqYvY/2UXHwTGu+WwbR7b0E4+kcOS5WHtHPWf2DZOMZdCdccrWWzAFnLgLrJzZP4LJIqGYJVrWlmB1KCRiGYqq3ZgdEl2Hxll2fTWCBGUNHhAERFlAzWgIepqx3mEmBoOYrD48fh+BgX5++7d/AYDV6eKmr3+b0sY2SuobiYfDeItL8ZWVn6O1r87r2S8xuDhoqkZeQRWZP3ajTssgqA4kcKddzF1XiO8VmQIdFoVLGvxc0uB/p2/XwGAWqaSKrEjke6qIP3ZmxnvpvQGa727i8NFxrv7cXxMPD6KYzRTOqcbhzWPh3It00wYfCJqKXTQVZ9faqd4ww9MESAASW/qIrCjh4X85CMCSa6ooqS2k9/gA3Qd/Q8feXQCIksQl93yCVCJJeGwcm89LfNRMz5E0fSfCjPcP0riyiLb1ZUgmGw6PBcUkEQ8msbkzuPKd+Mrd6JqOIAqsud1CPJKh+/AY3UfHQQdxZpJUA4P3LLLZzPwrr6O4vhVZ0THtVckkpgLgtHCK1PEJBs9kg5Ltr7LvbPD+QzHJSIqfIptAenh06o2MjrYvzs1f+/8wOTz4KzwX7R4NDD6o5JfNXHNu/e0+1t3VxsmdQwyeCVJS56F2sZ8Hf7gbj2ZDTevIFyD212KV6Tk2zsu/PTXj+DWfbXvrlRu8rbgLbGy4p4nj2wfxlTrwFtvpPjKGt8iOrEgsvW4OfccnKKx24iuxM9QRYv3djZzcNcj8S8sZ648ycCpA9bwC3AVW5m0oZ6QnTCSQYPVtdZzaM8SCyyoprHYiSiJWl4Ks6AQG+vCVRIkFLQiyh1RMJb/SyfEdI9g9paTDJ1F3hnICJACZgRjihIanuYD1H3Yz1BHg6s//DbHAEMkYOPNLGe1V8ZWqlNR7aVldQl7xa9vgit1WblxYxo0Ly97Oj/p9idtbTmZLN5lp35M2lEQO6iy/cQ6ndg3jKrBQu8SPu8DC6b0j5JXaaVpRQvuOAfLLHbSsKaG41sN1f7aA/U91MTEYZeN9zRzZ0kdgJMZlH23O7vsKsOCyCkpqPee8l6I5Lq79k3nsfaoLNaPTtr4ch9eM2a5weu8wLp+FljWllDV4z3n+dErqPWz6VCv7nu5GlAQWXFZBUe1s+15BuZNL7mzk+I5BhjqClDV6aVhWTGgszsRADMUs0bSqhNI6D5Iicv3nF3Dg6W6Co3Hmri2lqi2f4ho3+57uIRpMMm99GaX1Xq54YC77n+nGZJVpXVfKYEcQX6mD+qWFWfv2ecSjRElk/qXlOPMstL88gK/UQduGMkMw8AJiVaxYFeubOveVPhTAecVMCmwFDCUSs47HwilS8Qxmm4zTZyE8NrPMuXxvzl47zzJlTzjrv/FmsTqdWJ1OEqcDBI/MFOwJP95N8S11PHvwe3Qe2AdA05oN5FetYOk1bix2GWeelYWicMESEn1Qceb5uOTeT/LQ//42up617zasXEtJ3Xz2PhWkbokfu9tEQYWT5tXF5Fc4SSUz2JwmEuEUZQ1eNv/iOGpa45avLsbpuzDrejWUYuKh0zP8eJInA2QGou86EZJzJTn0lTowW2a7nbt8Vjbe10xwOI6u63j8Nsw2Q0TnjSKJAgsqvCyoOP/zuLShmQ//3T8x3t+H2WajwzTKzugBiGRFocySmVW3P8DDf/83ub5fs3gVFse5hcpeiVMRGXqhd8Yx9WQA87pz22zjkTTaNJvfWWKh1Lnrz8vOeVrWFCMrIqMDEfJK7MgmY+PY4MKQUBOoWnbtf1aEBEASs8/VpKUAgrsu2v0ZGBgYGBgYGBgYGBgYGBgYvJe4ICIkAIIg5AFfAO4Cfgws1HV94kLV/34hFkrieYUitMNtQphIziqbGY7NOvZGceZlr2W2x1l4ZTltG0o5vXeIZ390jGs+O29W+VJHKX+54i/53v7vcWDkAGvL1nL//Psp9swUINF1ncBAN7WLlmK22dB1nYLKWvY9GyG/1E08nMbzOoXMMylthgAJQCqeITKRxP06hUwM3h50TSceSdPbPo6n0IYaSWEKzDbipseTJDXoPTqBK89CcDhGNJjC6jDTf2ICf5ULk03G6lSw2BRO7xlBNonomk5v+wTuAhvDXSHccRs2l4nwaIRM/CjP/fBXoOsoZguXfOQLJCJWAkNx0gkVxarQe2wcu8tEaDRBz5FxwuMO/FXFxMMpgqMao73jOPOsDHcG0VQN2STRe2wCT6EdNJ3DW9IsveGr6No4Tp+ddNrLsW1Rimtkeo5O4DzblkAKm8NM3/EJMhkNX7kDTdXRNI3BM8FspnBdp6d9HLffxnB3GHfcgt1lpuvQGDaPmfKmPHQd3mCSDIPXQBCgqtXHgWd70TSdX//1bpbdXsOVn2gGQeA/jv07T259kvtb7md1yeq3fD13oY1Vt9ax5VcncsdW3FiDd9q4Hg+lclmJBFFA1kRemUtFT2mYZJn65Wupnr8ITVNRzBaiITi1ZwhfqYP8MkO0xuDNI4gCJXUe8j0mhp/pmvV+ciLBtpcHWbypkrmX3kBJQyOx0ASyonDouSdpWuvBV5LHaE+YsZ4o1W35SIpE95FxNFVn7xPduHwWahcXsv2PZ6iam0/9skJW31JHJq2hmCWqWhtBAE0DURKoW1yIIAhIsmE0NpiJr7QMX+mrO64Od4XY+0QXo30RypvycOVbWXn7nzDe142upfAWl3Hw+ThljRoltTYUaRcv/Twr8mSyWtlw/5fxFNUiALFAilggxepb6zi+Y5BjLw9SUuehqtVHT/sEC6+sxO4xsfV/TjM2GcRfXONm0yfbco5F5Y1eJn54ZNZ9SpE0/ioXmqZTt9jPS5OCFqIoIEozJwFn9o1Q0ex7qx+fwZvA4TVT3uSl59jUclWUhJmiiOYgW3/5j4RGhgCoaF1C3bJbuOlr3yEyMYTN7cJXVomoWClvLmG4K0QqNHtNpwWS2KY5VymKicI5tRTOqX0bW2jwQSU0GmfgVACpxYv2ivfUYJLSpcX0dYWpaMmjuMbDkz84jNkmo+sw3h/FlW+l50gn3mI7br+V+qVFpPKD/OTog4wKY1w+9wpW+dZQ2ZxHPKoydCaAK99G+OQEL//uFK3ryyip9TAxHCOv2EYioZKOZtj3TA8F5SLh4edo3/o8ADa3hys+9Q02PvANooF+0ok0jrwSXvptAC0zzuKrqqia14hivmDbVgbvEgRRQJEgdY59sNhogsGJFOmESlGNB1E0FtAG7z5UVadhuZlAZwcWdbZTrajqLLisHEmRsNpfO6OggcHbgTZNLDGHqiNP25g8vXeE+RuzQWLV8z5N0+ozhEaDOLx+wmOD/PH//DW6riErJi77+BfxlVaSV+ogGUmz4+EO6pcUYrYoHHquF6vTRNuGMpyazsRghHRSJRXP4Ct1YHdbMNtU3OtKqV9SyNGX+0EQGOuLGJmmDd4X2F125syfSyaZYXzz4VnvJwdCrL6lkHBg9tzH4P2NAPirRMTTs+cL2niCkuoGFLchTGNgcDEoa/TiK7Mz1ptNHDPeJ2KyyCy+voxMvAzRrPHTr+wGoGpjPgizf8dvhng0Q++x8VnHzxeYZ/DuQhBgYihKJq0RHk/QvKaEgZOBnA2guNZNVWsB+WUO0kkVSRFpWFaYFeGTxJztLBpMEplIkk5mcOdbKax20rSymNHeCOmkiCjCSNc44z1b2fv4/2R9JSxWrvz01/CWVrD70U5ScZV5GxdRP28J6V/3zrpXNZzi9MuDpJMqNqeJ/U+HiAYlWtaUUFhdQO0iK4uurEJWRARj7+Vtx2oyETzHXFCPZ5i7ppSmlcWIkohiliip9TDv0gokWUCURIrr3GiqjmLKBks6PGaKa9zouo6sSNQuLAAhm5yqZn7WQUs6j/gGgKxIVLT4KG3woOvkhDr8lS4aVxShmGXM1te3H6uYZarnFVDRnJe7h3Nx1mbtr3KSSWmYbTKCIFBQ4aRyrm+W7bh4jhv/x1pmtNvuNlNY7UbTpo7V5lmoaps6v7I1n8VXVb8uwQaH18K8DeU0ryrJfdYG7z1EQcTpsmX9taYFvpc35SFKAjaXmUvuauDRfz+YSzJUv6xolhjZ28259mj0hMpETx/XfvEbJMJxMmkzwVErkTGBeDhCJqkRDycZPBNi8aYqShu9KK/y2zZ4dVz5ZVzykY8RCwWRZIVENMpQZ4TWS8qQFQFviZ3KNh+pZIbgcIxYOE0ykmHwdJDCKndOyCYwFLtgIiRaSkWLzJ4DqrFz7OldZPxVLsoavPQez9rVFbPEihtqUM4hQgJgtir4Kw3hkXeCvNJy8kqzoiDm2DAnT3fwi/Zf4DF7+Pbiv0EIJlh1x91kkklEWcZkdRMcfX1rDz2lop9j/DrnvjMgm6VZwk9mu4zJcu6xy2yFxZsq2fd0D2O9ESqa86hdUoigG3NTgwtDQk2iaVlxMbfdRXzSNiJOipAkTHkQGzvv+QYGBgYGBgYGBgYGBgYGBgYGU1yQaA5BEP4BuAn4PtCq63rkNU75wCLKIhMDMRZdWcnhF/vIpDXcRXZMpXZSPeEZZS0tFy4o0eawEh5LMN4fI6/IyY1fKD6vYaTZ18w/rPsHwqkwHrMHRZptGAgM9PPE975LJjllLBclmRW3fZM9T3SRCKfwVzjOa2iejtWpIIrCDDVsURKwOgyDxMVE13QOv9jHnse7WHJNNVt+dQKLXeGKZX7UbQMzykolNjb/4ChNK4s59EIfEwMxVtxUw/M/a8dX6kDN6Gz+2XFW3FjDM/99FF+Zg9BInBM7h1h6bTUv/OI4FruCt8jOjj+cYcnVVrb87Je5+tPJBNt+85+0bvwCx7ePsfyGGl74xXFqFhZwYtcQw53Z305wJI6m6oiyyOk9wyy/fg6bf9aO02fBlW9l31PdLLm6ii2/PkFVaz6hkQQ9R+PM31jNrseHSESHWHJ1NS/+6iSNK4o4/GI/4/3RXFvO8swPj7LpU608/p+HySu2Ex5LcHzHIEuvrebFXxzHZJPJK7Kx/Q/ZjLgTgzEGTgS4+SuL8Fe53oFv74ODKIlYHAqNK4o5uWsIxSyhhlX6TwSpX1rMAwse4P5595NnvTAZ0CVJpGllMYVVTiLjSRxeM3kldiRlyjHF5jbl/m5bX8ZwIIVLEdHTU6GgcrGd8dAwL/z0+zPqr2xdgmzfREWzH8Us4y54cxliDAzOInvMWJrzSByZ5tgqQFiFeDjFWG8UNX2M7b/5zxnn2b1FhCaWUL+kCIfXTCqp0v58HyV1Ho6+1A9knSz6TgZYfFUVO/54hkggwZrb6nPOXWed3HIzAcMvxuBNEhiK8cd/3k9y0ukmONxH9bx8Og6kqWqtYPsfT2N1DtO4ophtvz/Npfd42PXHB3Pnp+Jxtv3m+9Sv+Cw1iyrR1DThiQTx/cPkl9k5+lI/wZE44wNRWi8pZfPPjrPyllq8RbacCImqaZhsU51YMcvYF/tJdYVm3Ku5OY9FPitmq8T2h86QjGdwFVhZdEUlux/rnFF2+vPC4J1Fscisua2e7X84zZkDo7gLrKy5rY4dD2fnbr4yKyd3Pp0TIAHoPrSLsqalbP+jlas+MZfAcJw5C3xkMipbHzzK6b0jXHFjDRaBGVmrrPMKkFzGusbgnUGSJURRICGLmM7RF02VDtbcXk9kIs5zPzlGfrmDtXfUY3WaJvcLssE3obEECNC8qpRidyVfW/Y1AokADpMDq2wlPDzOC79sZ8X1NRzfMUjnwVEaVxQz3BliuCNEzYICImMJbC4zT3z/MLoOZfWwa1KABCAWDLDn0V/StO5j7PijxvyN1Tz5/07n3n/8Pw9zzWfbqJyb/059fAbvEIIg0NtxCF9DHurhmduHCUngpQdPsvq2OhCgpPa1s64aGLzTSBKc2PYssipT652LNk1QR7DKhJIqlnCGgnJjPW9w8ZDzLAhWeYajuOQ1Mxac6q/FtW5kU3buMNqj8txPo4DM4quSvPTLf+eswm4mneL5H/0rlz7wLbqOpJEkgXmXljNwOsiuRzqB7N7n4OkgG+9vZmIwhigKxCNpMmkNT6Edk0UiEUujqdCyppTNP2+nYVkRZquMI88IwDd4fyCbZZTW/Fl2vnRBhvZnnmDRtR+6SHdmcLGQTBle+uUPWb7yZl65K2Ce73/XZbc2MPgg4S6wcc1n5zHeF0VVNfKKHbgLrBzfOUhgMMbhF/qQZJH6pYVY7PIFC043WSV8ZQ5Ge2auhW0uY5/4vYAoCjQuK+bQC72ExhJ0HRqjcXkx9cuKQdPxFttzyYhyIgjidJvClJhC2/pyGpYXIckisiIx2hdhpCuEu9DG6b2j2Jxj7H1sysaRTsR54af/lzlLP83gmaxN4vmfnmbt7XUUt+WT2D44416jokCgL4bLZ2HLgyfRMtm5/dbfnCKTUll0VdXrEmowuDCEo8MI9VbYP3OeKPhMmG0zZwnSK74WSRJnH5sm2DFdcOTVxEdeybn8uByeN7c2e73XlRUpJ3oy/dg56zxPu19Zevr5oiggvsF+bfwO3vuIksjKG2s4uLmX8HiCyhYfxbXu3O+kvDGP276xhMBwDItdwVfiwPIO+yIq+VaQBJgmZiyVWjl99HlO7N3K8lu/yZ4nwkACmGD5DXM49vIA1W35hMcSPPrvB7n+8wsoazD2yt8sHXtfYsfvfzXj2OLrXOx7KsAVn2hBVXVcXisTg1GObxvmzP4RXD4LrZeUcfD5KbEv2XThBIsklwlLk4/E0WkB8AIo70IfMafXwmUfbWasL0o6qeItsuEtsl/s2zJ4BX6bn4+2fpQbam9AERXEmMqvH/wqgaH+GeWu++Jfv676RLcZU7WbVEdw6qAkZMe0cyBJAm0byji1e5ihjhD5ZQ6aVhafP0mVKPPUfx4iHs6mdTv0Qh8TwzHW3G4kcjG4MCTVBKpuwkoCu9nJ2KS+jSRkQ2YSshtSEUgnQDFsFAYGBgYGBgYGBgYGBgYGBgavxoXaHf8iUAL8OdAvCEJo8l9YEITQa5z7gcJiU6hZUMCx7QM0LC+ibX0Zoz0hpDlunJdWICgiglnCfc0czHPcF/TaTp+FqtZ8KlvzX1OZ3SJbKLAVnFOABCAWCswQIAHQ1AyamnWaad8+yNhkANNr4Sm0sfr2bIAJAAKsub0+56RhcHGIBJMceLYn+0LXSSdVwuMJupMa8vwCkAREm4zp8kqOHQ8AYPeYmRiI4Sm0MdKddaKoasun/eUBFItELJRC16Gyxcep3cMAaKqOmtaonOvj5K5soGcmOXvYiIyPIQgJ8sud9J/KXs9bZM8JkJzFV+rg9N5hBAHSKQ1N1alqzefEzqkg0nRCpbd9nOp52YA22SQRC6YorHLTM5mByuG1MN4fxe23znIGU8wSgx1BdE3P3vfubN26ppM525bdQzPO0TSdoU5jOLzQKCaJomo3w50h2jaUUb+0kFN7hvGVOgFwm90XTIBk+jULq9zULPRTWO2elZ3dV+Jg/mXludfbnu1B31iJNDnummo9pJcU0Xf6yKy6hzuP4y4QSSdVxgde3xhqYPBqiIoEi4qQ6z3ZLFRuM+LlVezc2k9Fi4/+UwGCQ92zzhvuOILHr5BOaXQcGCERyVDdls+JHTMdGdW0hprJCuwce2mA8ERiVl0GBm+V8YFoToDkLB0HRymt9xINJjFZZeLhNPKkIFRodGRWHcGhQRRzhvB4Al2H0novx3cMZTPUO7Pz3aGOEMlYhoJKF5HxJHnFUw7Dq2+pw2ydOS82N/pwbpw2f99UjaPZR1G1G2+Rg8vub+HDf72CW76yCG+xjei0gD/FIlHdVnBBPyeDN4a32M7Gye/o5i8vonJuPvM3VgJQWu+gr/3QrHNCoz2YbTLD3RG6j4ySiKaRZYlFV1ZhsSvsfHkA8bIqJLcJhKzog2tjJcLrEGY0MLgQuP1WFlxRwa5tg0iXVSK6JvviAj+u9RX4qzzZTFKLCrn9z5dy/ecXUFzjwV1gZd2dDQjTkkutuKEGz9lxUFQosBVgla1oms5ITxiP3046pdJ5aBQAl8+CM89C3/EJosEUVqeZ4e4wug6iLJCMzs70O3jqOCZzBneBlb7JDGrTad82OOuYwXsfURQ4sXMLg+ZupCYHiCA6TZiuLODU5D5C+8sDJKPvvox/BgYAkqzRc/Qgezc/THyRiliadbqVC63IV1Vz4ti4kcnc4KIj+6zk39uCUpINCFAqnWjryjkw+Wy1eUzMXVuKKApk0iqHXpgKqMikwjkBkrMkohGS0TCyIuH0WfFXOjmyZaYDu6bphEbjSHJ2QmF1KHTsH0XLqGTSKoIgoGZUUnGVyHgSURSYGI69nR+DgcE7jqnei3lFfm6fQFrp4sDhZxg4eYhkxNgz+6CRjscZPHWCXS8/hLjOhWhXQBIwL8onXe5EEIzsvgYGFxOHx0JFi4/qtoJcQoD8Mgen9gxRv7SQtg1lDHYEKax2oZguzN6exaaw5vb6GUHvdUv8FFQYCSzeC3iL7ZzeN0JpvZdFV1aSTmok41nbWfX8gjfs22K2KjkBhch4ApNFRk1rnNg5RDo126cgNDKEzaHOOHbohT6SFS7MC/wgCogOBdu1cxhLqZzYNUgmreUESM6y/5keYkFjzfpOMjE0SJ9+GrnFmd0HcyiI690E1BDxiPFdGBi8FfKK7ZzaN0RZg5dFV1SSimewOhQc3qxvjiAK+Eod1CzwU1rvfccFSADkQhv597Ug5WfvSaq2EaqN0L5rC2omg6bO9As6tnWAuetKObl7mMrWbPK6M/tm274NXh+aqtJzZP+s42M9J3DkmRnpimAyZ30MvEV2Lruvmbu+tZwlV1ez8+EOwmPZtfyc+fl4iy+c8IZoknBfVYWl1Zf14/GY8d3TjFLsuGDXuJDYXGbKm/KYM7/AECB5l+Oz+nCZXSRj0VkCJACpRPAcZ81Gssh4b6zB0pj1uZR8FvLvbUE+z5zXU2gjPJ7A6jSx6KpK3H4rgx2h886RA0PxnADJWXqPTRCdSJ+zvIHBGyWlp8noZmyksCpW5MllkTApa5dQJtfhsdGLdIcGBgYGBgYGBgYGBgYGBgYG7x3k1y7y2ui6fuGkvj8AlDflccXH5jJ4JojFrtC0shhnkR29yI59cSEIIL/JLBPnQtd0AsMxIoEkNpcJb6HtLWfssXt9mG12krEpY5ismBAEJxBCMUtIr/MakiTStLKYwioX0UASh9eMt9h+wbIKGbw5RFHAZJHJpFIznCF3PtfLmVIHa2+rp/d4gIFDYznVclHMlksnVUyW7PAiCFkndEHVc+UyaQ3ZLJGKZ3LnZFIqJqtMLJRCNntm3Y+7sJhoSCadTM+om1dk+FYzGrIskklriNL0uiXSSTXXlng4TTycpm1DWS5bQSalYvdks88JM9oy07lMU/WcU1AmraKYJZKxTK7uTFLDZJGJMtNpxMik8vZQUudh/T2NDJ4KolgkmleXkIylGTwTxFNow2J/Zx0JTFaZJZuqqZnvJziWNZo98ptTNC30k9foo2qpn5d+dpzS2sJZ55Y2zmOkJ01Vq4B8vmwABgZvkNFQmvbxFHVry7H5zDz9ixOkEyp5pQ4ySRVvdc2sc0oaFjLUncRXJiBPCu2kUyqKRSKT1maUPTuOyyYRSTT6rcGF51zZUWRZRJucW2hqtk+efQ5bnfmzyvvKKgmPC+RXiGiaBjqYLBKZlIpskoA0gpDNmJVOZhAlgeJaD5s+3YbHbz2nM43sNOHaUIF90bnn77JJwj2ZCcZiV7j5y4sYOB1AkkWKatzklznf6kdj8BZRpn1HAHPm5XPDFxYQGY+TmreE/U89PKO8u6CK0wfSKCYRVYVUMsNYXwRJEbnpKwsJDsfRzRJ5ba1IgoDsNhkCJAbvKJIsMu/SCopq3Az0Rym/uQ6Hy4SlwIYwbSw1WeTcmgqy42ftIj95JXbCYwnsHhN5xXaUaZkk08kME4MxNE1HVkQyKRVBFJBkETWtoWl6NqhBEBBlAV3VcusfLaNjts8em8tb5pFOKKSTKg7v7CzgVqeRCfj9SmXbYp778X9QUtdEw4LVRCMBhCEXnYey/cRklaaEag0M3mXIZjPVC5Yy2v0gf/ivv6N+0SpKFzfhLHZydNsAJpuMEVNs8G7AXOmi4GNtqPE0ol0hkVS5+tNtaKqGt9iOy5edBwuigGVa9m3Z5EYQRXRtau1vc3vQsZFJZ9A1E2Z7di7xyuBFWZFIqXruN6BYJEBA17JrLUEQ0bXsRq4gGHtfBu8/JJeJYc8Y8ZYhVDXDgSceJzw2SttlNwPvfLCbwcVFsToob2mj6+BeHhroZv7qqzBb7ViL7BBMMds6YGBgcDHRVA0BWHlTLQgC0UCCDfc04a+4sHu4JbUebv36YgLDccxWibwSxztuxzR4czi8Fi67v5mB00Ei4wmWXF2Fp9BG/8kJREl8SzbprE9Ddp6sWCQUk2dWmbzSciKBmXvNikWifyCKrciOalWIx9KYIhmCY0lMZjnn7zAdk1XO+VAYvDM48gp47N++Q3F1HY0L1xGPBjn93C7W3PWlN/1dxMMpJoZiCEI26NfqMPZRDT6YOPMsXHb/XAYnx+al11bjr353iXsJgoCl1ovzw3M4s30Hp48+x5nnd4OuI5vMIDiAKfEpxZL1pTNZsj5uABbHBXHv/UAiShK1i1fQf6J9xnF/VQtHt8VRzCKaBj3t4zg8Zjx+Gx6/DbNV5vKPtTDaE8FTZKNojuuCz9mUAht5tzWgXplCNElIhk3M4AJic7soqJrDSOeZGce9xUWvuw4534bpqiqUtaUIZhmlyHbO+SVk94UXXVnJUEeY0d4wdUsKKap2Y7ad+3dzNsHQdERRMOapBheMhJ4io5uwCklMognLpPC6JmT7ZEKY9BNKhs9XhYGBgYGBgYGBgYGBgYGBgYHBJIaV4iIgKSIltR5Kaj0zjguigOy9cOIjALquc+bACE//8CjqpCjD+g83Ure08HWLhJwLT2ER13z+awycaEdTVSRFxl00hx1/zCrAL7qqEl/p61dnlxUJf6ULKt/0LRlcYOxuMytuquHZHx0jEU3j9lsJDscBGO2LENOgtzdC/4kAq26tpfvIOP2nA1TPy6fjwCjuAiuySWS4K0RZg5fe4xNIiojFrnBqzxBz15ay98kuUskMTp+FjgOjLLqqiu0Pneb0vgzLb3mA3X/4MZl0Crs3j5W3fpIzByQCQ0GaV5dwZt8I3UfHqV9SyImdQyBA0woXdtcgK26UiEw4QdexuU2c2jPMvEvL2flwB/FIGk+hjcBQjOM7BrF7zFx6b1PuHuuXFtJ9eIyBkwGq5+fTsX8UV362LZlU1vle03RK6jxYHAqn9gwzd20pe56Y1paDIyy5upptvz+d+zytToXCd5mx+/2CKIkUVbspqnYzMRjlyR8cZqwvK5BU0ZLHujsbcoEV7xQmq0xRjRt7npm8UjvjfVEO78hmmw1JKvPWl3N8ewcb7vssicg4mqZhttqRzNUceC6CYpHIKzWyRxhcGAqrnGz7XZzNp85w2f3NOeGmrsNjrL2tGk0TWHf3x8ikEpzcuQ1RMuHyL6L/TBwto1EzvwAk2PtEN3PXlbHrkY5c3c48S875Zdn1c3D6Luw8xsAAwFdqJ7/cyWjPlPG3eU0J3cdGmdPmp6zRRvGcDOidLN7kwuTws+auB3j5wR+hptM4ffnMu+JeOg6C3W0iFkpy+MUBmleXoGt6LoNR3dIiJJNALJjC7bdSVOPOiY6dj9c7fxdEAX+VC3+VMRd4NyObJErrvYAXV8HlDJ45weCp4yAIrLz1I9g8ThZsDJNXnMBTWMYj/7KficHs/Lh2kZ9Vt9SdU0jBwOCdxOpQqJqbT9Xc2aIfr4YkixSUOykonx1ck4im2f14Jwee6QHgqk/NnRSCEmhZU8LB53pRMxo97WM0ry5GNknEwmkKyp1Y7AqJaJrhbgttG2/k0HN/QNc0qhcsoW3jNQRHTtO4zIbV5aLjwCiaqufup36ZEZb3fqWsaT5r7roXNZUiroVxFOcTi5aQiE4gCNCytjSXrdLA4N2Gosg0rFxHZGwEb0kpaiaN5DEzOgoVLT7UjIYzz+i/Bu8ORJuMaMuagOwWGbt79lxVkkTaNpTRfXQcXdOJhWWu+NQXCQz2IghwfNsWVt32MeIxBzZXgkQszeEX+mjbUMaLvzyRq8fqVLC6FKKhJLIiMtoToW5xIbI5KzwiSgKiDMGhJCV1HnR0PEbmVIP3GRabgre4nHQqTGJ8lNYNlzPc1U1Z83LMDkOg8oOGK8/J8lvuobSxGV1TQRAw+TwIogeHz9g7MDB4N6GpGid3DfHcT9tzwtcb72+msMo1I1HHhcJbZDcyyL9HceVbcU2KWk8MRHn03w4w1p+1SVfOzWPdhxpwvgmbtCvfysRgFLvHTNslZZza08/qD32cbb/5b9R0GofXx/r7/oTR7jgLNmYQZStj/Waq20pJJzMMdAQJDMUZ6gjRtqGMke4Qc9eWkklr2D0mooEp8cAVN9YYwr/vMN7iUjZ99qsER/qIpUKY8mwsvu5+rE43ZusbD2gPDMd4+odHGe7MihaU1LnZcE8T7gLbhb51A4P3BO5864yEA+820qkkYz3dhEZHcFQUkD6YAF3HZLWx8eN/yr6n0zPKz7+0gs2/amfJVdXserQDxSxR1fbG7D0GM6lfsQrZaiEWmEAURRAVEtFSZFOC/HInJ3YOsPXBM0iKyOUfbWHO/AKsThNVrflUtb69n72oSIjvsD+bwQcDq8PFFZ/4HN2HD5CMx5BlBW9xCQUVVa+7js5Dozz1/45kEwGKAuvurKdhefE5kwgB2JxmqtvMVL+OMctdYMVf5WS4c8oHaO4lpbgLjf0Sg7eOrmlZERLNjE2YmYAzQ9Z+l5j8n1T0XFUYGBgYGBgYGBgYGBgYGBgYGEzDECF5nxMcifPsj46hpifFE1Sd53/WTkGF8w2JhJwLk8XCrj/+lnQyG7hZ0bqARVd9GIvdQ+EcI8Dy/UDNggLsHjOBoRhVbT6igRTppIrHb8Vf7cJf6WSoI0Q6qbLpM21ExhPYPWZqF/tJp1Q2faqV8FgSh89CfoWTM/uHWXlLDZqqY7HLXPWJuURDKS65u5HoRAJJFtn06VbC4wk8/gb8lQ0kYhHcBX4CwwJzL7FSv6woW/dkOZvLTNW8fEQhzMsP/hv7Hj0FgNXp4srP/Dkb720mEkigKBJXfnIusUCK6nn5RINJ0gkVt9+Kv8LJhnsaGeoMkcq1JY7DY8m2JTnVFh3wldjxV7m44QsLGO0JIynijLbEJpKIksCmT7cy3BnC5jJTWu81HMreZnRdp33bQE6ABKD7yDi97RM0r7o4Rlun18KmT7Zi8yjouk734QBqWsVbZKF1fRHb/ucP9Bw5CIDJauWqz/4F6+9qxFtsP2dgiIHBm8FbZOf6zy+g59g4E0MxrvzkXIbOhBAlnWhgHy/+7P/lyq798P24/AsJj8PqW61IskB4PElxjZvKL/mIjCfZ9KlWQmNxZJOEt9DGaE+YD/3VUlxGoJ3B24TDa+H6P22j6/A4o70RvMV2ZEWkqtVHaHQCLbmZ5//7RQAkReHqz32TkvpV3PT1FhKRCJm0DVW1sfxGO2paRzbJ1C8txJFnJhFO03pJKXkldhxeC4GhKOvvbsRf6XpNARKD9zfFNdVc/omvEQuNIEoSRzY/xcsP/gjIZs26/BNfIRZSc+VP7RmmZqGf2kX+i3THBgZvHyPd4ZwACcCWX53kkrsaCU/EKWvMw1fqYHwgyrLrahjpiSDo4C2xoWs6V3y8hcHTQRKxDBUt19Gwcg2ZdIbYxAAPfecv0PXsXsWS62/juj+9gngUPH4rJouMM89wvHy/IogiHXt303vsMAAmq40bvvotRLGCojluHHmWcwriGBi8W/CVlFLW0srT3/9XmMyetvyWuyhbdCVWtw2701jPG7y38BRZue0vFhMPBNjzyE/Y+/A2AGTFxLVf/HMUWwV2n0RBuYtUMoOaUjHZZG74wgImBqOIkojDayadzOCvdCIIAoXVbkRRQMuoSIqEpuroelYYcuGVFeQVO7A6LmwGWQODi00iEuboi49w4OnHgeza8arPfhVPaQkCRibXDyKiCAeefozoxDgAvrIKrv38N3AXuS/ynRkYGEwnMBTLCZAAqBmN5358jPxSB55CI6jfYDa6rnNs20BOgASg6/A4PccnaF75xvezPH4balMeiUiaotrsvkhwpJAbv/b3pGIxTHYvqegwL/3yb1HT2WD1hpXrcHjvIBqSqWj2Ud4EdUvS6Og0rSwmGkgiySKVrXkk4yqR8QSFc1zkFRl9+p1GsYgMnm5n72MPASAIIld+5kvkvUl/rdN7hnMCJAD9J4N0Hhpj3gbjuzUweLehqSpHX3yOZ37w77lja+68lxW33INisZNfUUJ5c4rweBJt0uQYGIxy2X0tRCYSLLt2DqWNXmOv/C0SnZhgy8/+O+ffWjVvIevvXUPbBjtIGlsfPAOAmtZ49kdH8X1ziSHsZPC+IBYK8NKvfoqmZgCYu+FyKtoWoJhf27crOBLnmR8dI5OeSti3+Rcn8Fe5yS97az7nAP5KF6turWO0O8zEYAx/pRNvsR2H2/jtGbx1Uok4KUUjrZuwCVlBxj8vKOfTvUPEyfbfBJPCjKnIxbpNAwMDAwMDAwMDAwMDAwMDg/cMhgjJ+5x4OEUmrVG/tDCXlaXz0CixYPJVRUjG+vrQ1QzBkSGOb9tCOpmgadU6yufOw+pwkorHefHnP8oZaAC6D+2jcdVlJCJ2XEaw0PuCTCpGLHCUjj1bqF++mpGuM4x2d9Gwcg2+0gWkExHGe7YRHBmmYm4bnfu2U97SRjIWYbS7i5pFy+g5vJtMKsXc9Zex4IpWgoO9HHtpMza3G5vLTefBfTQsX8Pw6ROIokReaRlndm3D6vThq1hEzzEob+yg//h25ixYRDQ4TmBogKp5i+g+sIviuno0VSMVjzHccSp37/FwiMPPP0TbpVcydHIvisWKq8BPx75d1C9fM7MtJQvIJKOM924jMDxI5dx52bY0t5KMxxjt6qBmyXJ6juwmk0zhcF+GmmkiHR+gr/15bE4XNreXzoN7aVi+hqHTJ5jo76Nx9Tra1s/H6jREed4JMmmN7qPjVM/Lzxq8BIG+4xMMng7SvKrkbb++mkkzeOoE3UcO0X/8KMX1jVTNW0RoZJD2rVuw2O00rFxDSWszgZ4ggcETOQESgFQ8zr7HH+T6L/85Josh5mBwYckrtpNXPCWEVNHkY+DUaX71l/89o9xLv/wxt/1VG/6aYrz5dgKDAwj6EKd2bWHgRDvFdY24/YU43E6Gzpyi/aUTVLS0EQs0MtYd5MS2LWiaRuPKtSQTcfJKyggODnBq9w4kWaZh5Rp0XePYls2IkkTN4mXomQz2PB8lDc1IkkT/yeMcffFZUvE4cy/ZSElDM4rZCOJ7PzLceYYT27cydOYkFa3zKZxTS8f+PYz3dlO7ZAUmux2T2UIiGkGSFWwuJy1r/Xj8hbk6Og90cWL7i7nXajrNlp//gA/99T9gddUSHoux56kuxvsG2fqbCGpaY81tddQuLiA8liQ8Eic0nuDU3iHsHgtqWsPqNHHjFxZejI/E4F1GQUUBQ51mug4d5MjmJ3PHNVVlyy//k2U3fo10KvvMHjgdZLQvMkuEJJVMMHCiHV3T0dQM7S+/SDqZpH7ZSkw2OxabnWQ8RllTCyaLsYYyeHcSmUjMeB0Lpji5e4iWNSXYXCYczXm5rFflTXkkYmleevAkp3YPo5glCqudFNV48Fd6sNgKGOnq5NHv/kdOgARg1x8epLy5hdHO0xx44giVrfPxlVUwcOp4dg5S30hF6wLKGpre0bYbvD2MdJ3MCZAApOIxtv/u56y6/R7c+TJ2j+FUbfDuJjQ6xPM/+s+cAAnA9t/8nJK6OiJjEu293aiZFLLZgruwCElWCI8M03lwH7KiUNY0l2hggqr5iyiaU3sRW2LwQWS48wwndr7M0KkTlDW3UlzXgJZRkc0mYoFxTu/eliubSad46Zf/zfr7PsnAqZOYLFbMVhuqmiGTVBjt7iIRDVE4p47gkJ2uYwo9R8Joqs78jeUsvLISq8PIsm7w/mTg1HEiE+Pomkb71heRFJm6patyAiSQXTtu/vH32PjAt1BdXrxFF/GGDd5xdF3nyOancwIkAGO93ZzcuZXhztO4/UWUNc3F4SugsKr6It6pgYFBNJjCbJNpXF6MKItkUirt2weIhVKGCInBOcmkNLqPjM86Png6SPPK89ukk7E0wZE4oiTg8duQTVNC6JmEyh//eT/okFdqw2SWKamtpm5pHfFQiF/+5ZQACcDxl19g7vqNNK1YAGQD7QZOnWC0q4PuQyLOfD86Oul4nGhgAm9RCeEhkdHOGPFIGHdBIYIgEguMI5vMmOw2goODdB7ci7e4lOa16ymsNtarF4KRrs6cAAmArms8/6PvUVRTR15J8RuqS9d1uo6MzTre1z7BvA3lb/oeY+Ek4dEEikXG47ciSuKbrsvAwABCoyN0HtgzuSb8wYz3XvrlT7j5m9/m9O69bP31SeZespFEJMypXdvwlpZRu2gF5S1zEQRDyPJCkIrHefEX/z3Dv7XzwF6GzrRTUF2Lmkix/MYakpE07dsHiIfTxEIpQ4TE4F3PUOdphs+c5uTOl3HlF1C3bBWVrfNz70cmxnn6+/+WEyABOPzcUzStvoSKlrbXrD8eTiEI0LahDMUso6kax3cMEg0mL4gISTSYZMuvT+ApNjF/QxXPfG8vFQvLKCh35mzOBgZvlmQ0SlrWSetmbGJ2DTWqePknIcMNatY/IaFPhs4kDRESAwMDAwMDAwMDAwMDAwMDg9fCECF5n2NzmVhx4xzatw1yYucQgijQvKoYq/v8zr/h8XEkWWZ8qJ8//uPfoqlZuf1TO7dx9Z9+JRtYHI8y2t0569zA4DAn9wpUzy/A4TECht/rHHtpM8//6Pssvf4WNv/4+0QDEwCc2buTTX/6FXb87teM9/aw9q57eeS736Fu6UqOvvgcfe1HWPfh+3nkn7+DrmU3btu3vsAt3/xrHvqHv8HhzaNq/iK2/uqnLL/pDp79r/+LrmksuOpanvi//5S7vsXxIuvu/iRPfu8faF67gX1PPsxwx2nW3f1RHvnud6icO48ze3cx2t1J+TkMJKPdXRx7aTNdh/bTvGY9T/3HP7PkupvZ/JMf5Bw/z+zdyaY/+RI7H/oNY73drP3wfTzy3e9Qu2QFx17aTO+xw6y96z4e/ee/z/0W2re+wM3f/Gv+8H/+BrvHy5wFS9j665+x7Kbbefa//i/xcDbzzOk9O1j74ftZcu1Nb+v3ZJBFMUksvKKSQ5v72PVoJwBzFhRQPb/gHbn+UMcZdv7hN5zZuwuAgZMncObl89R//kuuTPvLL3L9l/6cZDxxzjF0pOsMqXjMECExeEcIjQRy49pZNFVlrGeUJ74/wKZP1tF9+CXat76Q66+dB/ZSt2wlitnC0Refyx7bt5trv/ANHvmn/50LJj6xYyvXfv5rDJ46zvM//kEuOO/Y1s2s+/BHObH9JQCOb9vCpR/9FCefegxd11EsFh781tdmjLc3fe2vqF6w+J34SAzeQcLjozzy3f/NxEA/AIVzannkn/537hl6Zu8uVtzyIUa6u6hftpLhjlPYPXmIoojV4cBsy4rqxIKBWXVPDPaRjEexulwMd0U48sLAjPd3PNxBMp5h58MdiKJAy9pS1KRG7/HsPOedEK4yeO/QdXiUdCI863h0YhxRTrPr94MAVLb6KKmdncm49+gh4qEQZpudh//p76atrV7m8k98jr7jR8grq6TrwD7qlq18extjYPAmcb5CZHT5Ddk9ht9t34soCiy+uorWS8qw2BUkWSQWSHFq9zAA6aRKb3uA3vYAFc0+CiqsBEcGScXjs64z3HmGrb/6CQCd+/dQNW8hgijSeWAvnQf2cmL7S1z1mS8YARDvA0LDQ7OOjXV30XVgD6VNc7F7vBfhrgwMXj/h8QCZZHLW8VgwSPfhAwSHh7C5PRTX1oOmMdp5hhd+9sNcufatL7D6jnt46O+/ze1/9R28RW8s6MjA4M0SHh/j0X/+e8b7e4HJNf7yVbRdehXRiQlioeCsc8Z6u1HTKWTFxOHnn6Ju6UoESULLZNC0DKd2bqf9pRdYcNW1+MsK6T0mg6pz8LlemleXGCIkBu9LRnu62P/ko8xZuIRHvvud3HG3f7bKSDQwgckSxeLwz3rP4P1NMpZk6MzxWceHO04z1tfDyR0v07FvN0uuuxmXz2eI2RsYXEQcXjMLLq9g92NdpOIZzHaZxZuqcXiNeYzBuZFNIlXz8hnrmxmwVlLnOe85gaEYm3/eTt+JAAjQsqaEJVdXY3dnfWrOHBhFy2RtaaPdUQD2P9NDcZ2HZDzKxEDfrDpjk74bAL1HDtPbfpjg8CBFNQ0EBvsRJYlDzz5F28YrCY0MAQIndmyladU6QqMjpBMxEuEw3tJyRts72fmH3wDQsW83R154hg99+x/wlVW8hU/KACA8OjLrWCISJhoce8MiJIIgUD2vgIFTM9du5S15b/r+RnsjPPH9QwSHswI5y66fQ8uaUsxWw53QwODNkE4m2frrn3L0xedYdtPtqJnMjPd1XWPg5HG2//aXeItL6TlyICdm2XlgLyde3sK1X/wGpfWGIPuFIBmLMtLVOet4YHAAf1UNkqxQXJ3m0e/1s+iqStpf7s89mw0M3s10H9zPiz+fSjrVvjXrj1je0gpAMhYjPDY667xYIPC66rd5TCy9tppdj3aSiKRRLBKLrqzCkXdhfh/j/VFGuyOMdsOpHVkf3uDmPlrWlM5IsGVg8GZIRCOkZJ2MbsYqZtdsHt3KhE1Az6QxyyJJXckWTkUv4p0aGBgYGBgYGBgYGBgYGBgYvDcwrIbvEjRVIzkWQ0xqZMYSaOEUkseMXGLH5Hvz6up2r5nhzjDj/dnNMl3TObKln+r5BeSXnvscXdcQJIGO/btnBScfePpx6paswOZyU7dsJYeff3rG+xZHIemkiq7pGLy3iYyPcfylF7n+I1/Day+i+YF16EmVZCBKQowQjYQorWzk8qs/iYyJj37je+iRDKqYQbrGRCaa5L6v/RvpsRjpRIKwPs7QmVOsvvpOKsvaUFWVhV/dhB7J0PTp1YhpgWQ8TvPX15AYDpFWk0SlEMd2vsCmu7+A31WBvhgkUSETTXL/1/8dIaqRJo2kKOgxlaY5qzje/jITI/0sWXMjbksBstfCikW3kEzEaP3apejhDHM/dgna9LbEIpRUNrBx08cxCebJtqioQhrpahOZaIrar/wr6YkY6XiCsDbOcOcZVl11J1Vlbai6yoKvXoUeydD8qTVo8TTJYIy4GGbXlodoXLkWpy//Yn+lHwgmBqIMnArkXp/ZN0JVq++C1Z8ejZMeiUFaQ4umkbwWTKUOJKeJ0e7OnAAJwMKrrmX/U48C8Jl/+DnqaCJ7jmSBChPBwSlnMVGSuf3z/wsXXvSjceJ5Y0h+61sa/w0+2GjJDKn+KOpoHMEmI5glMoNR5CI7WjSNFkpR7q7g03/7UwKjg6TScdyiDxERKc+KtiZET/sZTFbrLMGckzteZsUtH8q9rl64hJM7t+YESADQdY688CwVc9tmZAdH1+k/cYz88kpGe7rQNY3+48cobWxm/5OPUtE6b9bcY/cjv6Ni7jwkRXk7PiqDi8Rwx5mcAAlkx8GzAiRn2f3IQ1z2wGdIJxO59xOxGOmhOOmREGhQ7Z/HJ//ih5DWwSKhaRlSwRjmiIWUHsWXzHDX3Q3IbjNqJI3sUFDTKroALV9egDaWQE9ryAvzia4oxGSWsgH0B0YQTCKZiSSyx4RgU9DSKkJGR0upCJLI2QRUks9CZjSBnsggF9oxldgRjCxx7xsyKQ3FkgeCMGM8K6ptoP/klONg16ExGpcWkuwMkgkmEUQBNZKiOK8GTU2hKyKf/PaPyIzEAR2xwAwZHc3SgmiSEKwysf3DCGcde3WQC60oXisGBm+UzHicVF8EXdORHCbUcArRKqNF0ogOBT2jI1hEEAS0YBJEAUQBwSQiyCJ6XEUNJRHtJkSbRF5G4557GkmqGrjNaBMJyi4rQ7HIaGkN2SSidYaIRFJIThM2VePOjzYj6jqpcJqIpnNg7wiaqhEcHESx2HD7CwlOE6KQZHlGNlfIOtyuuOVOOvbtBmCsp5vA4IAhQvI+oHBODRs+9AkaF6yGhE5mNI6giOh5EmJEJ35iHC2hIgighVMIFhml3IlkU0j3RchMJBBdJgRAjaSRCqzo0TRaLIPkNaOOJ0DVkbwWZJ8FxchaaHCBsbt9eIpLuObeL+OyTgb6CAKCKFDlmotoV9DCKbR4Bl0R6R0/QtvqK6ivXYaimUmIMQLqKBtufADOpIgNDqOUOpA85mwfH4kj2hWUUgfypNN7aiBCeiCKIIkopQ6U/Kk5gpbMkOqLoI4lEJ0KplInkjMbMJkJJUn3RtCiaeQCK3KxncxwnMxQDMEiYSp1IHtnC6Hqqk66P0J6OIZgEjGVOpHzLLPrK7SRHoiSHoohyCJyvhV1IoGgZM8RrBKp7jCZ0ThyvhUtloaMjlxkzJvfTnRdJzkYRkjppEfi2bVKvhXVms4JkJzl5I6XaVyxlkQkjNM3W8i3at5C0ok4uqZR2baAM/t2UzSnlkQ0QjIep27ZSvY98TAgcPzlRyhr/DBdh0Jouo5m2AgMLjC6Njk2DZ0dmxzIebPXTOmhKOn+KAigFNtRCrPBC7qqkeqPkBmKIbpM6BkNdSKJ6MzOK7REBsllQvJaEM0yqa4Q6uQcVzg7tkfT2PMcrLv0HtSxJJ/+65+gW0SivaMICsTXBlm04hqkiIigiCStSWJ6GIt99r7WjLG9xG7MWd5nCKJE3bLVJOMx7vjs/0IUJAQR0AXUeCa7r6QDAqinYsTMabTJtZtS6kDxZfv22X6rBrJrNy2SRnKZkH1WMmNxtEgaOd+KUupAkMWp34giYiqb+RtRwylSfZGsDdpvRUAgMx5HdJvRI2nUcArJZcZc5crNJaajJTKk+iPoKRUtmbUla5HsOUqZA9llBOsZvHfZ+ccOMumsjSMZzbDrkQ6q2wzbrsG5EQSBxmVF9B2fYPB0VgyibnEhpQ3nFlXVdZ32bQNZARJAMUuUFduhJ0z48CiSXaG0zI71igrybTL2fCtCRkOQBZJHxjAJMg989T9JjIWIZoKMhnrJd5VR4K4menAEASgUKyiaV4We0khF42huSCVjVN8+P5v8QgNd02i6bQVqLI2azpD0JVAkM2aTDdUzlwXNV5IJJYgkJujqO8hw5xlDhOQCYHHY+cS//wJpLJPbA1P8NkZSA6998jmYMz+f7qPj9B7LBuxWtfqonPvm/CHSiQxbf3OS4HBWMFpTdbb97jSFVS5K6w2RYAMDNZom3R/J2ovzzCglDiTbq/ssBIYGOLrleQDSiQRWp4v7/+J7qGOT/kJ5FsQ8hcFjx8mrKic8MMJN9/45FtGOtchDeiyGPGoi7Ymh+I014lvF5nZTs3gZxya/E6vTxa2f+haWlB2hFySfFbuo8+HPeEGAhlIb4kSCeDCBHs2ApoOS3b8UJAHBJGXXXQPR7N8mMfuM1XVERUTXdeQ8K2ogiRpMIjoVyOhZ+4euQ0pD9JhRx+OI5uzaT/ZYUGPpKduHTcna7TT9vHu3Bh9shjvPsOfRh2YcS8aijPZ05URIHF4vJQ3N9B8/OlVIEPAUvz4BNAGB+nondYVNZMay/VIqsBDVXvvc14Omzt431jXd8Dk3uCAkIhHSsk5KM2GXsj49Hqx02UAdT2NRJBK6lC2cirxKTQYGBgYGBgYGBgYGBgYGBgYGYIiQXDQigSQj3WFiwSSeQhv5eSbEtE5k2wDxvcO5co41pciXVyIq0pu6TiKSoWfS+DydwGCMypbzG6IFnXNu6p4NMJZkhSXX3UxodJTuQ/uQzWYWXnUHvccVFlxehsNrOJq919F1WHfpPWhPBxEWamSGI6R6slngzUDBh+ZR0FeI+mQA69XVhH7bjVJoQy60Ed3djevySiJ/7EeLZgPJnCYzpXeuJfSHTlInRnGsKSX0YBf2ZcWk9gVID8dwX1VN8MEzoIEAuPLtrL/iPiL/041WEUN0mIgeHMB1ZRXhh3qRXCbMNR6iL/cA2QFt/qLLENsUkk8PI68SSewdQg0mcW2sJPhgB7aFfjIjcVLdU23Jv2MuBf0FqE8FsWzKtkX2W1GK7UR3deO6rJLIw9Paopgp/fBqwg91kjwxinNtGaEHO7EvKyK1P5B1cAYsAqy79CMY5pG3F13XGemJEAsm6Tg4W8V/4FSQppUlb/k66eEY4789gbnSReTFKQER67wCPNfXwCu/6cng9M/84y+JPNtNYtpY7Lq8kub1l5OIhNn/1GPc+ulvITwTIRAcyxaQBDzXzkHQQck3HAsM3hi6rhPbP0Lg96dyx8y1HqxzfcT2DBPfN22esbYUe54Lh+Qm/HzPZJCnRM1llQTNRYyMzp5DvBJRyDpWnONGso4Usw5r5NQbJu8Xss6P5yiOpunoxkj6vmN23zjfvFOY7BfZ9/OtpQT/+zh6KtvpRLuCc0M5maEYiAKS14IiKAQePIFtUSHxPUOowRSiXcGxqoTg0104VpUge80EHzyJGpzMYC8J5N3RwPivj2Ob5yczHEPXdUzFDkJPdOK6vAKl0E5ocw+Wei+Rl/sx13lQg0n0hIqp0kV0+wAIkHd3M7bmCyeAZfDOMNobZrQngigJFFQ48RZlg9Sq2/J57mfDrLnzT9j10A9JRCMUVM1h/pX38MIvp8ZIs02myCYz/j8ncCwpIvhkJ8715QQ296JndDw31DDxi3a0WNbJQTBJuDZWEHysAwC50Ia5xoMgZoVtBC0bOCcs9CM7jbWVwesnMxZn9EdHyIzGcV89h4kHT+C+vIrA70/hXFNK7NAw1jY/IiLxw+Og6mjRFJZmH4JNRh1NEH62O1eftS0fPa2SODaBc0M5sZf6EEwSloY8Ut0jyPlWhEI7E8+dxlTuRJwU0tHiGZKT4oAKsHJ9OY4iK7FQmFQ8xqX3f4rnf/x9Jgb6sbk9XHLPx9jyix+fo0XGHOD9SGFlHcWuavRQhvFfHQdVxzqvAO1IBnO1m+iuIayNedkxcrILWBcUIJgkYjsGs2PopRUEn+jAe1cjqZMBws9247u7ifGft6PHJ8dac3as1TMapmLHRWyxwfsNlz+fOz73v9DG06gTKRBBtEiEt/ZjX1lCdGs/ieNTGakX3nIlkcNDqC9E0EhiAuo/tJTgb08RTXUTBWS/DceaUgK/PZk7z1znwXtbA+p4gpEfHILM5BzYbaLg/rkohXZ0XSe6Z5jgH0/nzrO25uO5oRZd1Zh48ERuPEYWybu1nvFfted+W3KRjfx7WpDzZjqzJ88EGP3vw7m1nlxoI+/ORoIPn5mqD/DcWEv4+Z5sYDTZ+bljZQmhp7swt+Rh8tsJP9+DY2UJ0R2DZIZj2RMF8N3bgrXhzWdrNjg/qcEoQkon+GhHbg8UwHNTHWtu+ghbfjf7mavrOrLJzCX3PMDWB39GOhGnpKGJ+uWriYfDnO00uq6hw9Q6Lbe+10HXz26HUbekEHe+IahncGFJngkw+sMj2SAgQMq3UnBfC7Jvqq+l+sKMfP8QejIrcitYZQoeaMVU4iBxYoKxnxzNCjwU24ntmhLFsy30ZxMERNM4N5QTebmfdG/WCd2+rIhUb4R036RTugCeG2qJ7R8m3R8l785GbA434ae6WL7sBiJP9efGRdlvw3dtORb7THNssjvE6A8OoU8GvIsOhYIHWnOCKQbvfcxWhYrWebTO24AeyoAJNEEk1RFAcihZUch4mtjuIRxryhj/zSmYDMKRvGby75+LUmAjcWKCiYdOYV9clFurWecVoEXTM5/JN9ci51kZ/a/D034jFvLvnYuSb0WNpQk8fJr4wVEERcR1eSXBxzpwX19D5sQE4c1TIlWWuT68N9YhTRPP0TWd6M5BdFUnumcI+wI/oae7ptpb68F7ewPyOcRLDAze7UQmkjkBkrOk4hkmBqO48i0I0+wZBu8fEtE0I91hQqNxHF4L/kon1jcwhnkKbVz9qTYCIzFEUcBTaMNkObf7VSqR4cyBkdzrS6+txi8LTPz8WG5t5rmqGvnEOJYaD+lTAUS7AgIkYxnkPAuxSduercxBTfk8Mt0xUsEJtMk5j+hQsgKRk/MX99XVJLeEkFc6ie0dRPaYEZ0mosfGyYzGUUodmEodiHYIH+vBNs9P4MmpdWV1SROC2/WGPlODc2P3FSAOpBj75bGpNXa+lfxb6t5Ufe4CG1c+0EJgKIYgCrj9VszWN5fIIR5J0ztt/+IsobEE58lpZWDwriM8nmCkO0Q8kiGv2EZ+hRPlTfpYTkdLZgg/101k61RSDef6clyXliPIr1K/rueSGhzZ/Awf+/YPCD/VRfJkIFfEvamaKz/9RToO7aJOWYD6QhjHVR5Cv+9BT6gkgZh1MLeWNXjzSLJC85r1hEaH6Tt2hNs+9TckHxogOW0t7rmhBjWQRPJaEFSd5IkJlFI7WixD4tg4SoENTdPQExmUfBt6WiN2aBR1PIGp0oXssyDaFBInxrEvLSb4aAe2ufmEX8iusZzryogdHMFS5yXVG0YNpnCsLGHi6ZOYKpzkfaiB6M5Bws9PrclyexTJzDn3bg0MzuWLNR2zzc7Gj36aJ773Twx3nMZst3PpRz9NfnnV66pftuqkj0YJPnImd8xU48Z11fnPfyPz67xiO3avmVgwhckikYxlqF3kx1Vg7CcbvHWS0QhJRSeVMGMVs+slj2AjZANtOI3FLpLQzoqQRC/inRoYGBgYGBgYGBgYGBgYGBi8NzBSDV4EYqEUm3/WzmP/9yCbf36cwGAYQRTQgqkZAiQAka19OeGHN4PZJlNY7Z51/NU2bEVBQNV1qhcsRhBndpF5G69CUrIG7LySMq7/4je4/Vvf5drPfwezcxENK8qpW+I3nHHeB9jMLtiVyGZhz7PM7ofjKurxKHKhjVR3GD2lYmnwEtszhOhQUEOpnGgHZDOo6gNJ9IkU1raCnKFWcplID0SxNuUR2zM0I5BdtpnI7A9BRsM8x0384AiS10xmJI4ez2Bt8WUDfqdhttpIbckKOYhWmcxIHOvcfCLbBybbYs0530tuE67LK5E1GbV9si092bZYG/OI7R5CtCuokVe0RdPRB1JoEylsbQVEXu6bbIs5J0CSLQjCrhg2k/Mtfx8G52fgVJDf/v1uXvqfk+SXzTbAF1ZfGAep5OkAlmoPkZdn9rn4gREywzHyyyupmrcwd3zfE4/QtvEqtInEDAESgPDzPSgTAid3bWPxNTfiyLinAuEBVJ3YgdFsUL2BwRtEHU8QfLRjxrHkqQCS0zRDgAQg8lIfktWE5MgKNLgur8Rc4SLdH8GqWkjG4rOynNUsWkZoZKqe03t2ULdsxQxhEYDmtRsQhFdMNQWB0oZmRrs7J1+KlDY0MXCinflXXENRdc2sucfia25EVgzn9fcb/qo5uAuLcq91TcfimPm8XLTpBk7s3IrJakVVVbzFZWQOhnICJABaNE1mJI5cYCW6cwA9raIn1Nxcw331HOxLitCiadRQKptdNpomMxyfNe5Gtw3gWFNGbO8QlgYv6d4IkseMnlJJdYVJdgZxrCsjsrUP27wC4vtHsg7BA9Gp7LA6BB/rIBNOva2fn8GFZagjyG+/s4dnf3yMp394lN/9n72MTQaX+atdXHJnEyZbE5c+8G1u/sb/4Yav/DWxkGuGaOP81cVkOkJYajxEXu5HUERQddRgCvvSIpKnAjkBEiDbr3rCyIVZsbHMUAzJrhDZNpAtJ4vED46gjsTf2Q/D4D1PsidMZiSOeY6bxNExZK+F1EAkmzE7oWIucyHKIqR14vuGUQptoJPNuC0IhDf3zKgvfnAUS5MP1xVVCIqEGkxl11fb+rHUe0n1hLOZsJMq5ioX8UOjKEX2GcFwAOmt/QTPhAiPKajpNIIoctnH/4Sr//QrtKy7FJvbg809c++iYu58hjunnNu8xaW4/UUYvPcRIiCIYnZfYDLQ0lTpJHl8AsmuINlNRHcNzdCgUfJtxHYMAmBt9RHZMYBS4kCURMKbezA35ZE4GcgJkADoSZV0f5TkmcA72TyDDwCjPWGEBOihNHpaJTORRItlEEwSWiQ9Q4AEQA9lUNunsqkpxXaSh8ZmzGstdZ6cONlZkicDqKPx7NicmTYHDqZITI6zmbE4ocdnnhc/NEpmKEpmMDpjPLY2+wg92z3jt5UZjJHqm7nnp8bTBB47M2OPLjMUI/2K+gBCT3ZinSZ0rUXTqNE0ol3BVOQg/EL2uSLa5CkBEsjOmx85gxpLY3BhycRSIOhkRhMzBEgg+33NXXrpjGO1i5djstmwOJzouop/zhw2ffZL3PS1v2L5zXfQd/wokskEgkj34QPULFyKw+PFW1yCx1/MyR1bMdvsgEDrpdeTiAqsvLmW5dfXIJveetCPgcFZ1ESG4BOdoOmINhnXZZXY5hWQODlBetr4Et09lBMgAdDjGWIHR1BjKQKPnAGd3N7/dGJ7h7HUeciMxtET6pTgCJP7/tNeo0P4uW4cK0tA1Yls7kVyKNgWFRJ6uhtrW36uaGY4hj6aRs1MDb66qhHe0pcTIAHO+fwweO9jsRVAXANNR9cF9HgaLZwk1RchcWICPa0jF9iIHx7NzYsB1IkkyY4gaiRN4OEzWTvU1ilhdMVvm/VMTpyYyP1GcuXybaR6w0R2DpDqCBKfFHG3NPuI7hzMikoKwozASoDE4TEyQzODMDKjcSLb+1HHE1gbvDPuB7L7z5kBI3uswXsTm8uEKM60b8iKyOCZIAOngxfprgzeTtS0xsHnevjjP+9n88+P88i/HWDHH8+Qmran8HqwOBSKqt34K13nFSABUMwypXUeAJw+C3lmKevjcHbIlgT0RAZtIpndy+sJYyp3kjg2jqXOkxMggcl5zPZBLLVeYvtHMJVly8keS1aARBJwXV1NqjeCtdFH9OV+LLUeYgdGEEwSmdHsfrOlMY/Y/mHQdMyV7py/w1m0/iQOfbafkcEbx2PJJ/xs18w19mj8LfkBmG0KhZN9780KkGTrkSmomO3LYvcYwugG7w2igSRP//AIj//HYTb/rJ3f/cNeOvaPvPaJr4PMSHzWPDm8uYf0a9jtPEXFNK5aB0AyFkUbT8wQIAGy+3PBDIWuKtR9YSSfhfRQDD3xirXs/pm+HQZvDqvLg8dfzMaPfhrak7PW4smOEJLXghpIomV0tFgKLa4iSGI2SdWOASSbglJgR0tkiO4dwtaaXfenukLIPiuR7f1YW/KJHx5F9lpAErL/gMjL/djaCojuGsTS5Mvun4ZTiA6FVHeYVHdkhigkTNujGIyR6n3zfsMG70/8VXNYcNV1M46ZrFbyy2f6dhVUVnHrn/8t9/z9v3LPd/6VplXrkJXXN28QRtIzhEcBUqeDqGOJc5Z/o/Nrp8/Cpk+1svqWWhqWF7Hh7kaWXluNYuwnG1wAErEIKVknqZuxSZMiJNhImgQS6QQWRSKhTu4BpIy9LAMDAwMDAwMDAwMDAwMDA4PX4vyWcIO3jbH+CF2Hx3KvfYV2dFHIZSmZgQZa4hzHXyeKSWL59dVZ1f9w1qm7fmkh/srziyI48nyM9ffhKijkui9+k6MvPkcmlaR57QbKW+bNKCuICmf2qxzaPOWUULe0kHUfqn9Lxm6Di4+eVtFC2QBaXdXO+T6A5DBlg3rJBhCjg2hT0CIzgwgERcwFXopWOSfqcbZu0W5C7QjNOEd0KKgTyam6yWZUVacH9mozld0Fk5g1zAqgTzr2nhVFmdEWARxrygg+3oFzXVm2LXblHG2RZ7dFFtEmgySmv3+uz0kNpyBtZO9+u8ikVHY/1oGW0QkOx2lcXoy7wEpw0vBfUuemvOnCZNXNBJIIkjAj8OcsWjyDv7aWZTfeRlFNPb3HDlPS0ERBZTV6cPYYrqc19LRKYXUNgaEBNNfsoBs1lERLv/nx3+CDi5bW0FOz+8755hlkNNJjccLPZYPD7EuL0AWQRRHJXMfqOyoZPN1OX/sxShub8BSVYHW6sHvzGDjRTuW8hdi9Xq79/Nc4tmUzmqbSvGYDqWSc4poGrvzMFzix/SVESaZl3QY0XWfOoqWIkkT9stVomkrrhisoaWpGkiRu+//9HYeeeYJkPM68y66irLHl7f3ADC4KrvwCrv3812jf+iKDp04gm81c+/mvc2rXNsZ6u6lfvgqr001pYxPxSJTCqho8hcWoB0Oz6lLDKWS/NdufJ+cFgiJmA48Ho6SHotgW+dEiqewcJZGZEdiRqyeYxOJUsgm8J+s5+2xXQylErzk7h4lnECxZ54dXlgPQgkmSoZSR+fU9gqbpHHiud0a200QkTcfBUXylDkKjCZ7+4RGigan556ZP+6hd5OfUnmHGJwXo8ovtqF0hZI8ZNZJCtCtTc1+nQvocDsVqKIXkMOWcjXVVy/ZNVQdNRxBFtNTseYeBwatxdp0l2k2k+yOIDgUtlEK0SGjRdHa9lNZy45auaoiO7Npd1znn+KjFMkS29mFtngwyF7LldE3P1h+etobiPOvHlMpEb4TnH+lk0SYfpR4ZURYx2xzklZbT136UtR/+KL1HD9Jz5BBV8xfhr5pD3/GjJKNRShuaqV64hKKaN5ch1ODdg67paGkVUSC3/s6+kf1PS6lIDoVEKDnzvGn9SrSbUENJlHxrtt+pOkqehczYbAdwNZRCihqBEwYXjnQiw5EtfaxaUoSu6QiiAKqOllSR7MqMwPez6K/YRxCn7T+dRTBLM0R0zqKpGpnx2Y69amByvyylzXCcz52XUGdd91y/LcjuacxspIYWnHl/ks8yQ6A3d24sg2Ce6RishVOINjn7YNHI7tFp555/n+veDd4qOoIuoCXP0Z9iaURRYsl1NzNw8jgVc+dR0tiMruk4ffloagY9oyLJEggi4dFhahYvQ0AgFgzQvGY9JrsdTVURBZnReCdV8xZRUt+Eze2hrKmFuevNyBcg47CBwSvR02pu7HOuLyf0dFdOzEm0yeQ/0IZSZCMzMnvtlRmOo0+KRMLU3v+sa0yOVVoiA5PjO5x/31+Qs0K6ajAJooBgFtFTau54rt6ESmQiSV6xPFmfjnqOecu5xnuD9y7xSIpYQMOs6lnxZiH73BZtJtRoCj2posXTucCzV6KGUugZDTWUzO5zTQ9IPEefFM0yqeBUPaYKJ6JdYeJXxwFwbijPvZedE6RQShzomfPPJaajp1REi4waTqGU2GcIrZ7vHAOD9wqeIhvr7qxn8y9OZPc6RIFFV1Vx9KV+RrrD+D/Zasxv3mcEhmPsfqxzxrEjW/ppWlVCYdWFSW4xHVEUmHtJGd1Hx7HYFaRX7IkIJilnw5u+Zwez11Jn5zGzyk3+71xXRronjBpIIs/xoEZS2XNEYeZ4r+sIioSWyJzTtwNAVI1+fyHQ09qsPQAg529yMTHbFNbeXs8j/3aA5OSzfe66UgrKjSQ7Bu8NRnrCDJyaKRj20oMnKa3zvmUxnXP6Vuicc+9vOorZwpo776WkoZkT2186Zz16UoWMjqiKoM/0VZvOdMFNgzdPYfUc5q7fyERvH+o51t1aOIUgCehJFcEqYa7NQw0lEW0Kuq7P2BvQImkERcoJjJw9TkbPJkMJpTBXONETanYdp6rZ568kZPch9Ml9h0g69/zVEpnX3qMwMHgF1QsWYXU4ObH9JZz5BTSuWkd5S9uschaHA4tjdkK31ySjndvWcZ51/xudX8fCKbb9/jS9x6YEeZdeW82iKysRJSOvqsFbIxmJEDPpJLDgkLN91itkfwcRIYpFlkhkNFDskIq+WlUGBgYGBgYGBgYGBgYGBgYGBhgiJBeFdHzmZuyW353muk/NRfKas8Fq0xy6pTwLSoH1LV2voMLFLV9bTHAojmyRyCuyYba9ukCIr6R08txKahcvO2+54HCcQy/MzIpycucQbevLKKo2MqO8l5FcJmyLC4ntGMw6zUrCjIA0yWNGMEukekI4VpeS6gqhxTJIbhOZkRi2+QXZ7G2T6AkV06SzQvJMEEtDHon28WzdIiRPTWBt9hHdNZg7J9kRwra2jPRAFD2tIdoV0gNRXBsqSJ6YQA0mkQusZKZlmkgPxzDVeEidDmSDIIRs5lhri4/4gREEKdsW8xw38UOT2eU0ECwSqZ4wjjXT2uIxkxmNY1voz5Y925akiqlssi2nA1ga80gcG89mvBeZkcXGtrAQyWUEIb9dZDIaoWkq+7se6aBpdQkLr3Ti8dvwFtmwXqAgcEuth+iuIZQSO+n+KQOEYJaQC2zIikJZ01zKmubOOC/REUAwSTNEIZRSB6JTwea9nlRCRSiabfCzNuZlM2QYGLxBJI8ZU7WbVMeUw42giIgOU1Y4aZqDuJxvRdf1Gc6F0V2D5N3RwGggyc6Hx7G5TFTMXcQNX/3QDIGxmkVLZ127ftmqWcdKGhppWbthZrklK857/2WNLYbwyAeEwupaCqtrZxyrmDvbMWI60aWDswIzTKUO9ISKnJ+dM+u6TqY/iqnSRXogSqo7jKUhDwSIHxnDNr9gVqAkgLWtgNi+YSSXKRuIKQq5wCFzjRvJayF5chxznZdUZwjRoWTHdiH7GzuL1OwjrmnY39SnYvBOo6sawXMEqYUn5xdDHaEZAiQA239/mhu/vIjr/nQ+E4NRBEEgr9CGKmSzblubfcQPjyH7ss/xxJExLE0+EkfHZtRjrnET2TK5lprsR3KhLdvvZAHBKoOqTQU4Gxi8Dkyl2Xll8kwA2/wCItsHcV1SRvLZILLflnWmVEQEq4ToUBBEgVR3GLnQCrqOXGibkYVTsEjZTKyRNHJetk+r4wnkQht6QkUNprAt8JM8E0TPaNmgc0HIOldOC2yQK5z09GQzCe15bIziz7RR3pzPK6loaYVbp15Xz1/0dnxMBhcRTdOIRDO4HTLWuT4iL06OgxkNZBHJYSK6cwBrSz6xPUO5887uCWjRNMmTE1hb8kmPxUEQUIptRPcP476skkT7xIzrmatdyCXGU9ngwpFJawycCqKvKsk+szUd0S7//9n77/i4rvy+G3/fPr1i0Hsj2DtFilShRPVeVrvrrbbjXZcU54kTtziPEydPip384tiO7bjEXtu73q5d9S6qkaIkir0TIHoHBtNnbvv9ccEhQYAUJZIiJd3366WXiDPnNuDMued8y+eLHPWQ2TlMeFHUERQ5K0BX8Mpz2kp9aYI31c9Z1zpr1iiFo2eNYUlADqgErqsm+dPuOfehdUSdLlENpSmI3nvmXIIqIie8jjjvWfa8wvFpZ82764ztDQGUqrnfETGg4ltfTWb7mQqcvuUVToDxOfZBbVGUUu9coUCl1k/+wARWWkeKeTCnCs56WWBOQL1/fTWSK9x32ZF9GsVkCTnudUQUzkpa9CyOIfoUbvzSz847Ti8Z5FI6YKN6Jbx+jemRLDt/cpJ8SidY0Ylt2TQtq+DY20OM9WeI1SxF9Uocfcfgugda0Xy+j/FJXT5rSAEV/4ZqCoenKPWmygIk4Agi5Q9OoNY04V9XTfGcJDTfmkokn4p/XRXZncNl2/9pURMAMaiWEynkuGfOd+e0D+Nsu793aQWlEcdG7F2VwMrplPrTqM2OLeLMwUDUQy5VJFbjzLeiKuHfUEPy8RNz7tNzmcS0Xa4NjJLFUM8M8Y4wZsYA2xFx1A9PIkc8SA0qUkAh/eYQvhUV86qsay1hpKCCf201+kAGrTVMsdsZ24IogCzOEUy3dBP/+irSLzlC057OqFNh/SxO+ykKp31m+yfwratCqQ+gD2TO6uesJc5GinqwBUfcpHhyBq09QvFE8qwOAnLCfQ+4fDKRJJFFG2uQNYmpoRyiJHBkxzDpqQKyKmLqlitC8imjVDRP5wDPbb+CSb7x2gAP/au1TI9lEXQT79I4uT3jANh5oxxP4Kw7BCd+YXYfKQYVrNmCQ6fXMXbJaT/dT5BEx+9h2RSOTBPYUkvxeBLP4rhzDp/s2O1mOS1WLEU9FA5NluMdyogCSuWlxSm5zBKS8a5MkN0xPKf53L341aK6NcznfnMdM+N5VK9MrNqP6nVDCV0+GZQWSIYvZHT0BQq2fFjkuGfO/AuOHU6OffDcGKpIsPqOe1h9xz0UupPz/CVqcwghJOMLV5CPjFAayhC6uWHu+hrwr6m65OdwcYjVdTDS58e3VmVmMDPnM605hJkpIUU9CAKYBcPxRRQdcRE54XU+96nI1X70iTzGaYEYSUCQREcUdaqAd3GM3L4JAptryzYGpT6APppDinnKcTlKrZ/8wQkQQanyLWyjKJoL2m5dXACqmtuoam5j5W13XZHzC34JtTVMqfssG5sslGNyzuXDrq+nhrJzBEgA3n3mFO1rK4lWu2Pe5dIoZLNkNBkLEZ/kvH8TkiOGkxLyeBSRgm6B6ofifGFgFxcXFxcXFxcXFxcXFxcXF5e5uJ7Dq0Ckystdv7SEQNRLerJEIVPCNsEs6sS+sIjUC72UBjNozSGCtzY6AcOXSCjuJXQZznMuhm4tqMZuuhW7P/EIkkjoxnoAsu+NELmvlcyOYYzJPN4VCbTWMPGvL2Xm6R6MiTzBm+vJvDdGeGsDuQMTFE/NELq9icxbQ9imTeDGepSmINEvLCL17Cm0jgiCRyL7/ijhe9vI7hgCVcR/XTW53WNOYu/6anpTJRpurCf3/iihbY3k9oxTGkwT3NZI9u0RgjfXUzgyRbF7BqnGT64hRL5oElJEcnvHCN/bSubNIaSIhm9tlfMs97aiT+UpHHQCaTJvDxO6rYnc7jHnWbY2kHl31HmWgxMUu888ixBQCN/aiKBKRB/rJPV8L1qnk2CS3T1G5L42Mm8NYUwX8a5KwIoEA8eTxOv8+EJu9eXLjcencNvPLcbUbZJjeSRFJFrlpVS0qO2IXNZrqY1BzEwJKxekEJimeDKJUusncm8bynmcbAC2JBL7mS5Sz59CH83h6YgSuKmegf0THNnpJP6IWGx+pJ30i31YBRPf6kq0zihK7UeoRuDymcAyLaaGs8yM5/EGFGK1ATx+RyCkUDLRbm1E3DlM4fAkSrWP4NZG9Iks0c8vIv1SX3mdEbixHmMiR3b3mQRPbGfcThZMNtzbgg3ULYrQf2gKU7fwRzVEUSA7Wz3WH9HIJovOfdQF8J2VRDY1nCE9UUSUoZA18Ec04nX+OWImLi4fBk9XjNAdzaRfG0CQBPwba5CrfZSGMgRvbgDBdipFiQKeRVFSL/QCTuJnsTtJcGsDVl5HiWiEH2gj82q/M++uq0KKqgiKSOCmerLvjhK+p4XMOyMEbqhDjnuRohqFk0m0piCF49MEb2kk++4I0c8vIrNrGEERkZbEmY55COYMhk5MkxzNofkUfGGVUt5AAERZQlZEojV+NDeQ86pRyhtMjWQwDYtFG2uY6Muw7OY6KhqCSDKoHoXB41MUMvMrjxWyBpODGYpZA9UrYRoWk8NZItV+vCsS2LqJVxTIH5kidGcz2beGYJVE8PYmsrNr4+ANdaA64jVS3EPguhpKYzmCN9WDJGKM5QhsrCHzzrAjouOKkLhcBMnRHNmcQeixTrIv9GKVLPwbqymN5wjcWE+xdwatKYylG0h+D9GHO8i8PUzghjqstFNlO3x3C5kdQxSPJ1FqAwRvrmf6B8cByB+aJHRbE9l3hglsrqPQM0Ngcy3mTJHADXUUe5JEHu4g++4ooTubyb07ij6WQ2qPMFMX5MSPT5bvdaHgYJfPBpIskbENwqKCpyuGbdjk3h0lt2eM+Je6yLw7QujWJkfcdFYQVAyqqE0hvCsSzDzVTak/jW9tFXKNn+yOIUJ3tGCM5xCDKqE7mx2BJ9vGt74aqdKH1uyK5LpcPrxBldW3N5KybMLVfuyigSCJWIZB+PZmjKk80YfaSb8+iD6SxdMZxdMRQWsMkXyqG30wg9YRxrM4hiCLpF7tR5AEvCsqUBtDiH6F3L5x5ISXyL1tjkCZTyaUN0i/NoigSYTvbEZrcsRxJa9C7JEOZl7oo3BoEqXGT+TeVpSED9u2qfi5ZSSfOIkxkUdtCOLfWIOoiGR3jSCGVCL3tJYFrE4jiAKBjTVg2WR3DjvfweYwyR8dJ3xXC9ldIxhTeTyLYgRvqCN/ZApjpoR/TaVjzzNtvCsq8CyO4t9Yw8xzp8jtGSNyfxvpNwaxUiX866sJbK51hdauEOZMCSGkEPviIlIv9GFM5fEujRO4vpah4Sy5Y0mCMQ+SKiAgYJQswKnYKskiE/06oiSgeiTa1lZhlkxkReKNHxwn0Rhi4GgSgJGTZ4LQs8ki3XvGkRTRSdgwLBRNxtRNwlU+/CGVqaEsmekinoCCaVpgQazOTyDiivC6fDCCIOBfX40YUsnvHpv3+elqxlpHlPC9raRf7gNBILStEa01jCAJBG+sAwFye8YJ39FEbv8EpVMp1IYg3uUVZN8eJnx3C5ZgE//aEmae6sGYLmJkSkQfc2xqxnQR77I4vhUJMu8ME320AxTRET9XBAJ3NFHYPeYIAodUAjc3sGf/JG2baubcr2dpnFBeJ719AEERCd/RjNY0vzKsyycXf1jFNGwGR3LU1vgdYRtZJLChBmN2vNolk8CmGqys7vjG3h9H9EqE725BbQgiSCLBm+pIvz6IFFIRPBKFo9MUepLEv9xF6vk+9NEs3uUVhG5pRFBFbMN2/G2nK23Pkt05TOiOJnLvj6EPZ/FvqkbQJArHpgjeVE/u3VEKJ5IoVT5C97diWzb5w5OIfsVJivMrxD63iPzecdSGAILHEVkrHJ1CjnuJ3N+GUu2KkLhcGyTHc0wOZimkS4QrvVS2hFHVC4uIZKbzqB6ZyuYgpm6x/r4WvAGF7HTxvMVdMqkCUwNZ0pMFvEGVSJWXWI3r17uW0YsGk0NZsG3ClV5mxvMsvaGOSJUXf0TD1C169k0gKyKFrI7mlQlWeMgmC9iWAIJNKWdSKhqOL0ywCcV95FIlLMPCNG1HdEoWKeYMVI9MMK6RnSlhGTaCCKW8SdYvE1pe4QinH5hEDKkoNQFiX+wi/foA4btbyO0dd+btfRMEb24gv3+CUn8aY6bg+Pq29xO8uYHC0SlCtzeRPzZN+K4W9NEsdsnEGM+jNgURPDLGZJ7gzQ2UBtKE72wm894ogk8h8kAbucNTeLocEXdBFskfnkKOaUTua0Nxx/NloZS18K5MgGmTe9+Jgwlta8L2Xzv+oXDCR9gVE3P5AHIzRSYGs5glk2iNn0jVhx8ztm0zNZwlOZpH88nE6wJ4Ax8ubiA9VWByVkQiUunlvn+xikLGmYeDcS/FQhFZFek/MoVeMIlU+cqCkAs+V6rE9HAGywJRFsindEoFg3idn/jXlpJ6pofiqRRaW5jwnS0fugiVpZ2OF+pFH8vhWRQlcGM95EwOHp8kcl0NnqNTlIYzBG5pILdzGASB4K0NaO2RD3Utl/NjGjbvPdWLvqmaJbc2kHlzyIkL2FyHVO2I7guKSPFUClGRECuccamP5QhsqcO2bey8iVUwCGyuY/pHx5Arffivq6bYm8K3tgpjIg+iQPiuZvJHp0AS8HREUJvDFE8mCWyuJf3aAKG7mimenEGu8BK5rw21MUT8q0uYebqHYs/MGRvFOyPEv7Jknu3WxeXjQBREQnc0kXltkMKRKZSEl+DtzRjqwv7dcIWHx35nHbnpEunpIv6wSiCmnTc2zFhALMoybEzDjTl3uXQKuTQZzXlfB2RnTFUJEbAhKWbRFImCboLqA31+wSIXFxcXFxcXFxcXFxcXFxcXl7lcO17NzxIiBMJeDr0+zMHXncpWr0sCX/mny8nuH8W/sZpgUEMfyWLljMsSjK3rJunpHEbOZmYij14wCFf6qOuMXtJ5wwkv8To/k4NnKrsF456P5Gx0ufYYTxaZjHmJ3xEh65HQtzUi6DajGZ1issTkoJP4Ewgq6JqEUBMgp0nom+uQbJu8JmHd24pt2nRPF6hNlhgYzlJxWxOSX8aoDyIujZPVRIzbmpAUEV0UoCUCqkjfiSS+oEq/ZZG4p5WsR8a4sQ4ZMFQRu9JHXpXQr69D21zH7lcGOPnd49iWTU1LiE13NZH3Sph3NqPPnlvoipJVJcyIhk+TybzYh503mHmqB09XDM/6alKAUOMnp0roW+qQTOdZeKANv24x9Y9HwbQRNIngfa0YEY1ig/MsmdlnUSWBkckiu/7qILmZEvWLotz69cUEom5Q/eVkcihDKW/y3F8cpJhz1PMrGgLc8PkOClm9LMpwIbKpIlODGdJTRQIxjerm8ILVfURNxr+6isxQGrU+iHB9LZYsMINN/uAksVo/wXP+vtmZIqZhYR6fwrOsgsCNHoq9M+hDGQZH8+V+J/ZMsmJbExW/uAI7byIEFZSgK1rjcn56D0zyzJ8fwJ6tyrrsxjque7AVo2hxdNcglY0RjGVxEjfUYp6cYeo7R5x5yydR8XPLnJPIIumpAqVXB8A4E5EuxjxM6iayR+adp0+yaGM1E/0ZJ5EIyKd1JFngxb8+hGXZhCq8dG6o4t2nT9G0LM7NX+4iENEYOj7NC399iGU31fP2T7vL97piaz0b7m9xhUhcPhJSQCW0tQGtPYwxnqfUm2L6OwP41lahrgoiqBL5g5NYWZ3U872zBwmYEZVcZ5TMTBFBk5EzOlJUo+pLixFsKMqgFyzE25oxsVHub8OUIdbUAZJIzrKx8wbCphqKOQOhOYwpgHxPK0ndRLu1Cdmy0WWBoG4jimBbNr6QxrN/foDO66poXh5n7FTaCWY2LHoPTLLmjkYUzd2SfdyU8gb9R6awDJvMTJGZ0Ry3fn0xIz0znHxvjIbFMWbGCkQqvfgjKoIolOcwgCU31GJbFpLiiIjoRZNS3sCKaCi1fvyyiG9xDMG2EWQRrTOCaUPB8BBuCyOIAkqlD3um6My/Aph5HVs3kUIqVsHENi0mv32Y6IPtTvVLF5cPYKw3xU/+5x5KeYPq1hCrbmpgOlXCX+0jHFJAllCXxUEQsGwbywbRIxG8ownbtDFEAdOwsEUI3NFM8FYLWxYRCgb2bCBYqS+NPu6INqZ8CodLNvGxPIIi0rwsTrApxNR3j+Bpj2KmigRva0RO+Di4e4y3fnRGgESaFWJy+eziC3gZzRmkBjK0ravEszLB9HSew/1pmm6sA0FETXhRsfFeX0vJshmcyOPN6njvbiZoQdGwEATw+GT0gTS598cwJgso9QEiD7cjRzWkkIYU+HBB4S4uF0NlUwi9aPL4Px7jxntaCIVkTFNCkgXUSi8mEHioHaNoUpIFxlNOhUvxlgb8ikQ6pzM1kMFf6yfyC8vxBFWkWTHH6MMdhG5vQlTPVKmWQxrBWxrxrasGEeRz7AVKpZ/YY51YGR3BIyHN7rUEQcDTFqHyGyuwSiZSQEWQRdQqP4Eb6hBk8bzfETnqIXxXiyMUIksggRjRmHm2B++SCjxdUYr9aUS/QnhbE1pLmKm/P1yu6uq7rhq1OYzkU4h/eTHmTNEJvF8aB8tGCmoIkitAcqVQa/xkd41QHMoQur0RQZMpdCfJzJR46n/vx+OXueWrXWSmDURZJBR37Fm2bZNLlZAVCUEU0IsmqkekYDhr31u+2oXikWhYGqP/4Jkq6ZpPJhDRyGd0JEXAspz3fS5VRACGTyQJRj385H/uKR+z+vZGTu2bQJQF7vrGcsKVrj/B5YORox4CG2oQJIFS39wqld7lFQBIfoXgljp8K2Z/PksYXI45Ak/Bm+oRFBHfmiqn0rAsgmWhtYcRPTJy2PlOqA0hzGwJTDAE8DzagSoK2JqEaFjIYa0s2CcoIuEvdpE0LPZN5Fl+Xxv5kskLj58kEPGwIjLXDiYHVYI3N+BbU4UgCuX3gMunB1ESqW4O8tSf7qemPcwtD7WiahKiX0KLapi2jQXYpo1g25iAusTZs+V8Et5ZW8DpcWumi/jWV4FuI3pkRK/siEwWDKSgWrYdhO9oJrCpBtuwyO4ccd7BgJUzyLwxSMUvLEcQBMSAgiCKmOkigiqiNgaxCyZiSKXUl2bsL98v24wDN9UTvLkBtdqPHPNg5XTH7rU6AXbrnHWLi8vVJjmWY+hEElEUMA2bQlpn+OgUTcsTc/qNnkqRHM1hmRbRaj+C5oz3XKpEMKqRns7z+nePcecvLDvvtfr2TfLqPxwtV/xeemMtK29tIOpWq78q6EXDEb1LFgnGPOQzOpbh/H0jVT503aTv4BT5dAkEgS2f6yAzXUDRJGRVIj1ZIBDTsC0Y700hzNrQdj3VzZrbmshndUzdwuNXSE8WyCZL1C2KMNKTQlYE/BEPqZEskiQy0jPDwdeG2PRQKzMTOQRBQPNJ2BYkR/NkfBLpkEZsXRWR62sxJZGR8TyaXyH+M4vJJgt0D2XRxvKUYl60sTx1tzbgQ8BURNKyiLmpFlMRCS6OIZo2alsYwbSRYxrZHcPk908ghVW8SyvwralESfic9ZJpo7aGmfzWITKv9qO1RxCqfWhtEbyrKwnf3YKoSYjnEd9x+fBoEZXSWA5LEYh9ZTG2YZF7dxTfplqOvTuCx6dQ0xpG8bjvUpdrl/RUnhf++hDDJxwxUtUjcf+vrqaq+cMJKQ4cmeapP9lXTjLvWF/Jls914rtIYY/pkSxP/sk+UuN51t/TTKTaTyGrOzGQFV6GjieJVvs4snOEtx/v5vO/u4ZsssjIySSaTyFY4aGUNyjlHXESzSfzyt8dob4rSiCmUcwZpCeLyIrIkbeGWLmtkZavLMHKG4h+BfEDRM0WQpZEMkcn8a5IEIhqFLuTGMNZfKsrqTZtfvTfd9PcFaO2SmN6MEvXg+1UNYfm7GVdLh1/RGPZjXXsfrEfz11NdD7WiahIlPpSTH/3GNGHO5h55hTGUJbYzy2l6JEQvDbyDXWYAuglC2ICvkov3oCK1hICAbDAu6wCLBvDssmlSwxPFQivr8G/oQZBFZEkEbkjQjGj4/lCFznLxtMYQjAtJk0b+9gUpgGJh9qJigKWJJCfLiAmWkmrIsm+GXIzOsGYB8uwyKZKBGIeLNMiP6MTSniJ1foRRYHURJ6p4SwI4AuopKcLePwKNjZ63sQXVskmi/jDGrFaZ816ev3kDahOfJtu4QkoZGecQkRGyUQQReJ1fhRNYnIoSzbpCPUZuunsL0UwdRtZE7FMu3w/k4NZ9IKBJ6BSzOsEIh5itX4k1/d9zSNFPBR7xlBqffg3OuKphRPTBDZUL9jfFGDwUJI3f3ii3Lb2riYWXV+zYP9otQ/NL1PMGuW2hsVRQhcoAuficrFMZCcwPM7awi87G/YqKQIGpJQCHkViJq+D4oeSK0Li4uLi4uLi4uLi4uLi4uLi8kG4XsyPmWyqgCSLJJP5sgAJgGnapKeKGO+Ok393vNwuxTxozWGkD6n8fy7pqRzFjMk7T/bQf3gaAFkRueMby2ieDc78KHiDKrf/k2XseaGPvkOT1HVGWX1HE/6I6wz7pFPI6kwNZnnjBydoXBoDG3r2TgAgSgJ3fmMZ4/0ZDr8xzMYHWtn36gCaV6Z5RQXvP9/H2jubOLF7jJkxR2jBF1KpqAvQvXeC94ZzbLivhR2Pn6RtVSWFnM7A4Sk2f66Dt3/SjV50ktyW3lBLbXuEF/76EIGoRm1HhH0vD7D+3haO7BgGoGtjNe88fYp4bYBF11WRnCxQKpjUdEYZHcvTs3eCkZ4Zrn+4nZ0/PknDkhiCINC9Z5zVW2po3VCNuW8c0Suj1wYYH8nx9lM9KJpM66oEu5/rZc0dTXTvGWfR8ji1hybAdIzTdtEk9YPjeL6wiJ/85UFaVyUo5Q36ZoPwJVlk00Nt7Hj8JANHpxntSbkiJJeZUl5n3yuDZQESgIn+DOO9aWSP9IEiJLlUkeO7Rh0n2GyQ4KrbGll/bzPqAknh2eksR/dNsvPx7nLb+ntbCMY13vz+ce76pRVEZ0WYcuki7z3bS33cg/rm8JzziD6ZRQ910Ht0BtUjcd39LSSagsiKBJemDeXyGSAzXXACW89KiD/w2iAd6yspFkxCcT9P/vFe1tzRhDpVwD4txADYOZOpn3QzuTjO1FiO/kNTbL27GWXvOHp/GrU1RGlxnFPHZhAlgU0Pt+ENqLz5w+NkppyA9WDcw6ptDWx6uI03f3CC1ESeUt7AG1ToPTDJeG8KRY3wxveO07o6wZ4X+ubc675XBmhfW0mNW7nH5SNiZkpMfedoucoxONVcvcsr8LRF8LRHKPWlEIaziHEP6o31dPdn2PHjM3P30htqmX5njKHjSQAUj8T1D7eTTRbxhVVkRUSUBLZ/+xgAmx5uwyxZ7Hj8JNbsOqBtTSXNK+PoBRMEJ2lkYjBDy/IK9JKFooogCtzw+Q5e/YejNC2NY9vQu3+CeH2QgaNTNK+o+NABei6XztRIBtuySY7nyE4X6dk7gSSLeAMqxazBkbdH2Hh/C2O9aRqWxrjzG0vZ/VwvuZTOouuqiVb7mOjPIqsiY71pDs++5wUBbvh8J88+c4o1tzex64lutjzWQajCw/CJFG//9MwY3PRQK+0+mdSzp+bcmxzUKJ6awZwqEL692alC6eLyARi6yTtPnaKUd9bEjUviPPe3h7n1a4tBEpjJGkiyhT2bFTN0bIZ3nz7lHCzADY914A+rjHSniNb4efMHJ8rnal4e54YvdpF94RTWVBG1M0ourPH4n+6fexOWTeXecdBtCoen4DDAIIlfWknbuipKRZMjO0aIVPnYcG8LFfVu5bbPKqViCUGy8foVjISPp791hHxap2tjNbZtc3jXOIfeHGLDvS3s+PFJ1t/TwsHXB1m8uZaMVyRe5Wf3830MHksC8MAvL8c/nseYdNYF+kCGqb87TOC2RiK3Nl3FJ3X5tJKeymEaFopHZuODbex+dYCp4RwtKyuI1wc49PoQjUtivPdsL03L4oQTHipbQhx4dZCO9VXsfPyM3aumPULz8hiNS+NUzCafC7KIHJlvOxIEATl8fnurqEiI0YUTIUSfMieBTJCEBa8x75ri3H6xRzqYebGP/KFJlFo/kXtaURI+zEyJ5BMnywIkALm3R/CtSCC1RRBVCdGtqPyxIkc8iH6F0pFppo5Mn2lflSBa7WPjQ2288NeHymOxujXEhvtbsHQby4CdT59kyfW1gGMus02LN75/nBVbG1C9EstvqiMU93Bq3wQV9UGW3FDL5FCGyYEslmkTr/dj207yQc/ecQJRjVCFh40PtLLzJ86aeO9L/ay9s4l3njpF/5FpV4TE5aIRRAHv4jj2PSbpV/pBEgjd1oR6zt76fAlb586B4gXGnuRXkPwKx3aN8ML/PVS2Hy+9oZaOhgD2zpFyX1u3SD1xEu5po25RnN27RpgcyNC4NM7i62soZ6iffS8fMLe7fLJJp/Mkx3Lc+Y1lvPfMKZ7468Ms2VxLIKYhazKCAMWsTv/hKRKNQd764RnhxlXbGmhcrtOwKA6c/90teh0xkrM5+/0d/9oSZp7todidQmsJEb6rBSU2N6FnznnDYM4UHXGds0SrM9sH8C6OITWHnff6R0i+dHH5uMjOFBk8Ms2xXaMAiKLA1q90MTWUJlYbBByBtFe/fZSpIafIiiegcPs/WcpTf7KvfJ5ND7Wx6tY69r86QLTGhz889zs40j3DWz86OWd6P/jaEM3LKlwRkquAoZvs3z7Ijh+dZPnN9Yx0zzA+K1jmj2jc8ysryKdLvPh/D6H5ZZbdWM/27xylsjFIZXOIA9sHaVlVMS8eYutXugjF69jxeDfJ0RzX3d/K7uf6yCaLbH6knaf/ZD+FnM6Wz3Xwyt8fdXwFQFVLiJu/vAhFlXj5W0cQRLjugVZ2/PgkkiSy4b4WXvzbw0iy8+8dPz7jd+jcWM2mB1qJNgR5//k+TNNi+c31vPNCP737J514ip92l69VtyjKrV9bTHB2z2WVTGJf7GLm2R6svIHglVEq/eU1h21YpJ47hZVxxDKLx5MUjyeJfn4R/tWVH98f7TNEJlmE7hnyO4bJnxUzYNcE8NYHefUfjrJ4cw2rtzWWhc9dXK41Rk6mygIkAKWCybtP9XDHLyxDvsi1YT5TYvt3jpYFSACOvzNG16YaGpfEL+oc3e+Pkxp3YtAqm0Mcen2I3oOTXP9IOy/97WGMWdtUfVeUe/75SpKDRV7460PlObZ1dQUrbqnnmT/bj6yI3P4Ly6hqDpFLFxFEgTe+d7x8reU313Pw9SGqW8L4LyHOyy6a5HaOzmkrBKfwLI5T2RTi3l9eydtPdLP/3TFW3tpAxBUguSKIokBtZwTDsKjyy0x/6/CczzNvDiHFPNjLEkwUTWaGcmh+mf6DU9QvjmFbjo1rxS0N+CKeefuzXKrEGz86xvF3xoAz8YLJsRzZZIHKpnDZT7zu7maO7Rqla1M1h94YonFpnKnhLPl0ibu+uZxju0bY/Vwf4PieN9zfyv5XBihkdDY+1Ma7T59CL5pserCV957tRS+Y3P3LywnGPPzkD/eQmykBEK700r62kvee6S2vj7LJIituaeCZPzvApofbiFR7ef4vDmHOfnfW3tXEiffGwIb2dVW89+wprruvlQOvDRCp8rP0hlqe/8uD5edee1czJ94dpaIhgFGyKOZ0YrUBdjx+kq4N1bzxA0eQQtEkrnuglWf+bD/bfnYJnesXFrJwuXawCwapl/qwUiWgv9zuX5FYsH9qOF+2+57mvWd7qe2IEF3AN5BPl9j4YBvdu8eZGs5QtyjK0i21qK4om8tlYKA0jK0671KfNCucL/sIpmxSapGALDKmmxDwg36m+GquZOBT3THo4uLi4uLi4uLi4uLi4uLici6uB/NjxrZsJElwKqycgzEzv82cKmDl9Uu6ZmrSqbgyM5YvC5AAGLrFzsdPkkkWLnD0BxOr8XPTzyzisd9azy1fXUxFnZtM9GmgkNXZ9+oApm5R2RgqB9wAWKZNcjTH4TeGCVd6mR7NkZsp0bamkr0v9qP5ZAzdKguQABQyOpODWcZOpWlfW8m+VwawDJtojY/+Q1M0Lo1z4t1R9KKJ4pHY/Gg7oiRw/J1RChmd1pUJ9r0ygC+skkuVSE8W6FhXxfvP94ENk4MZ3n6ih8VbamhYEuXQG0PoRZOh40laVyY4/OYQhm5R2RSie48j9PP+G8O8sHscHurgZG2Q7TtGGOqeIZss0b62kj0v9qH5ZCzTIjmaw++RsM4SuzhNfiyPZdjEawNlARIA07A48NogbasdB0x66tK+ay7zsW3KQYJnMzOWx/cBAiQAU8NZdj3ZUw4gB9jzQh+T/ZkF+0+Pldj1RM+ctnefPkUg4mF6JEffgcly+0R/hv2vDCDOVo4/GytnEI15ePQ31vLgv1pN84qEI0Di4nIRFPMGudT8NUMuXcLjk3nzBydQPTKlgoFYWGD8jWQx0iV69k1Q3RYmadn0JLyMrqniRNBDynKCGQrpEruf7WXo+HRZgAQgPVlgeiSH6pUQZgtXz0zkywJkuZkSpYLJ5HAWRZMpZOevY3ILrINcXC4WK2/MESApt8+OKyXhI/ZIJ4lfXUPkq0sQav1zBEgEAYJxb1mABEAvmBzbNYo3qHBs1yiGblHKmyy6rgpwgiD2vtxfDlIDOLl7jOx0kcxUEb1gMj2Sw+NTSE8XsS2bfEYHywLBCfLJZ3Qy0wXyWR3btgnFvQvuCVyuPHrBdCo5lZz1qj+ikRzNYRo2wbgHvWCADdVt4dnqOwJtqyvZ+pUuhk5MM96bZmo4i6xKZQEScNYlb/+0m3V3NXFq/wR6ySIY91LMGWcEH2Y5/u4YpVOpefdW6ktR8fWlVP3qGoI31iMF3GrYLh+MXjCZ6D9TCd40bWwbJEVElET0golRdF7wRsni3WdOnTnYhh0/PolhWkRrfBzfNVoWIAE4tX+S/ukCh4MeJjfWkF0a59SpuVXnAVRRwFrgnW+mS4TiXjbc18rnfnM9d//SCleI7DOOKImIgkgxa5BJFlh2Yx2Lr69haiiLIIrse7mfjnVV7Ht5AH9YIz1VQNYkDN0kUuFlfDBbFiARJYGCbqEPzN+/lXpTFAvz9+8uLpeKIAqoXonsdJFcskj7uiquf6SdSLWX7f9wlEWbqnnvOUcIsqolhOZXSU8V8QRUjr09UhZ9ACf50TTscnLctY5S5Sf++U6qf20tFT+3DK3JSfi3CibmxPz1ubnAvtXl40Mfnm8vE8ZyLFpfxZ4X+ueMxZHuFFNDOUzTRJIEmpcnOLV/kpnxPJP9aaaGc7N22F4KWYPx3jSRah9bPtdBoiHI1GAGvWARTng5+vYIRsmpmmrbNi0rKujZO4HmUxAkAVFyDAmWaWPN5h1NDnwyvgMu1w5SQCV4Qz1Vv7qGqn++hsCGGiTvpQn5n4+Z8Ryvfvto2X4sqyLHdo2iicK8vtZ0kWRfCtuyKeVN1t3TgiA4fgLbdcd+5rCKULsoiuqTuP7Rdjbc10I44eX4O2MI2FimSWa6SOPS+BzRc4C9Lw8wfipDLlU8z9kvDrU2QPzLS6j+tbXEv7IEtfaD/bdm3ijb2Oa0uzYsl08I+VSpLEACYFk2O358klLxTMLzcPfMHN9iIaNz6I0h7vzm0nLb2090U90aZXIoO6c692mKOX1OgYTTLOS7cbnyJEdy7PzxSURJQPPJ5T1Ww+IYS7fUcmTHMG/98ASGbtG5oZrdz/eCDc3LKziwfRCARENwXjzE+8/3kUuXSI7mCMY9pCbyZJNFEo1Bhk4kKWR1GrpinNw9XhYFARjtSeENKLzz1ClMw6J9bRX7Z2Mj2tfNxkmY9pmYCdNG0SRnnbFzhPRUoSyAs/j6Gk7uHuPUvknqF8c4uXtszrUGj04zepadWVQlfCsTVP7Kaqr+5VpC2xrniJ7ZJZPiAntQY3T+/sHl8qBIIvoCv3NzOMN4X5qV2xrY9UQPk0MLxye4uFwLzIzn57WN92cofQj7aylvzokhO82HeXeO9pyZ7woZnZ59EzSvqODIjuGyAAnAwJFp/AGFt350co5vt/v9CbJJx49h6BbvPNlDIOYhVOFjx4/PiAIC7N8+QE1beI6/5KNgpuf7Tay0jpU3kGSRpmVxHvzV1XzuN9ex8pYGfK4AyRVj9FSKoWNJlOL8GBp9JMtMQ4gnftJNKlkin9Edu5XoCJjoJRO9aGLo848FmBhIlwVIwLED7N8+gF40STSGSE3mCcYd4ZL3X+ijY30l7z/fR8f6KkeIZEmMmbE8PXvGOfzWXN/z+8/30XldFZZls/elPjrWVWJbNnte7KdjvdP+yt8fZbQnVRYgASduzihZaD6Z/dsHaFlRQS5VYmooQ6TKx84fnyQ1XmD9PS1UtYTK99a+toqZ8Tx60cDjU3j/+V4611czeHSa5EiuHCMETnxd+7oqTu4ep6olxEh3ikBEY6I/Qy6tI6uOLUQvmpzcPUZ9V4zt/3B0wTnF5drCyhuzAiRzOZ/Nv5AtzRGZAsDmvPEwQydm2P4PRzF0i4bFccb70uzfPkh+gTnTxeXDMNI9Q7+RwracOJvTtV8FSaRiBlJaEY8iUdBNUH1QygHwJ6+cYMXvPs/e/uRVunMXFxcXFxcXFxcXFxcXFxeXa5drPupNEITfFwThiCAI+wRB+LEgCJGrfU+XgqKK6LpFKO5BPCdIUUt45/dvCiIGLzHxTBARRNFJhDyH6ZEchQXaPyySLOILaUjyNT+kXC4SAWd8AHOctac/FGWRQFQjGPeQHHX62bYTzOUPa6Qm5zqMFI9UFuHwhTXSs1WKzdlqasG4p3y9FVvrsVIluqp9LIto3PdIG8GwCjYEox5mxp1+gijMuTdTt8jN6Bx8bYhi3sAoWfPOfe6zpCYK9J9Ks/fNYbwBpdzPtp3gIl9IJTV7r1PJImL0HIevCLlZp/W83xOQHMuVHYlxt9r3ZccWLJqWx+a1V7aEKC4g/nEuxawxJ1DrNOcLdMhnSnOCFMARlzrtNBvrOxP0cPocRVGY97aVohpiSMUbUNGuUIC8y6cXf0Qj0RSc0yYIEE74sC3IJov4Ixqp8TylBSpmaR1R6kMKt9xcD0WT3v2TyD6Znc/3cfTdUTS/Qv2iKEffHiUY8zC5kNDPuBOwcLqyUaIhWJ4/I9U+vEGF1lUJ0pN5YjVzq/4JokB4gTWPi8vFIgYUlIb571QpdqbikCCLqHEv3pgXX1AlXndmHEqKSGkBkb/kqFO1Wy+aSLJIbdzDskov991WT0tdYH7QBKAXLQRRwJ5N+E80BCjlDMDGMixsW8AybMIVXoIxjUiVj2iVD0kRGOtLEapwvwtXA2/Q2bcoHonK5hDTw1kSTUFkVWSkO0Uo4cGybURJxNAtLMPCKJmM9aSQZAnTsChk9Hn7qPq2MLfd3URd0WT9kiib72jEKJkU80Z5/ESqfIQqvCRHc8htkfn3tiKBFFDdKmcuHwqPX6F97ZlKpbZlo3gkbMuZiyzLRpQFbMNyEmTOWs4uXV/J3fe2UDFeoEYRqa6dX40qM12i+9AUqZzJqQOTePyys2E8ixIgV5xTDVAAeXZuFgQBX0hF0Vzhvc86sixj6haWbZOdKpLP6JiGxXD3DNbs+9QbVElPFeham6CrMcC21RV0VHgJeGRHKGoW1Ssz0Z/BqJ1fZVpoCi+YKObicqkI2AiiiKmblPIm+YxOPl0in54db7bzn6yKNNT6aQvINGOzfkMVlmHPO59Rsj5RIo2CLCFHPEhnVSQUAwrKrCDJ2cixj14l1uXSsG0btXn+38RqCCHIIlPD85PbcqkSgiiWhUKmR7LYNiAKePwKmk9xbK22s68XBREEgaGTSQzdKq93RVHANGxMw8YybcxZO5pp2KQnC6heZ+xofhnTcGxy9V3zbXsuLheDFNKQLtV/9gEUc479WPPJ3P5QK/ff3sh92+rxnOsnAOS6AIMDGWSPjF4w6T80RXIsj6FbSPJ80RKXTzeKCrLsCPCVcibZZBHdsAhVeIgoErGUTosiUBVQ8IXmjmPbsikVnLXGpSKqzrtbvMgK9VJQRa46x14luO91l08OhQX2gblUqVzdHWB6ZL7PY2owS+CscW4ZNoWcTvPyCvzx+X68QNRDuHLud0WUBEKu7+OqkM/o2DaoHrnss5UUkdqOCLue7EGSxbIP67RgL1Beq8KZmIWzsUy7LFhzdkxEqOJM7IHTPn9MGSWL5JjTxx/RSM0KN/pCZ+IkfGENU7e485E27ttWz/23N3D7w21Yps1YX5qTu8fJp3XGex0Bi9BZMQ9nk5mcLwopBRTksIYgzF2DCB4Z77KKef3VxuC8NpfLgyWAZ2l8XrtZ5WfoRBJ/WMW2bFfEyOWaprJp/hzRvrYS74cQ0veFVBoX+C5EKuf7JM5H62wBKIDSrJDE+eZGvWSV59uzKWTOfNemhrNkpgqIAnPWCgDYs7GQkUvbc8pRbZ4/Ra70IoXOrC9Ur/yhfpcuH42K+gBTw1kKmjzvM7E5xLvbB9GLJr6QSijuQZId35ZpWXgDCus31RCZKJB5a5DSOcJRC83hM2N5AlEPpmGTHM0TnF1rOmNNQC+aiJITz3N6HTLWny4X/zlNKW8gyc5+Lpss4ZkdK7lUCc2nzLYXKS4gmJOanC0mZJ9Z9yRHc4TiHmwbChmDnY+fdL5bAnPs16mJAv6ISqlgIs7GAxfzRjlGyLnvs2I2Z48tFQxkWSSbLM4Z19MjznVLBZNizhWauNYRgypy1Tnz8wVsA4GoNs+2oWhSedyfS3J23h4+keTIjmGmh3NMDWYpZN31kMtHp/fAJD/8b+8xJHjxFJy9uU+ZfQmLEhUpm7THwKtIFHQLFD9Weor8nj18951+DMvmB+8NXMUncHFxcXFxcXFxcXFxcXFxcbk2+SQoRrwALLNtewVwDPjNq3w/l4Tm0wATG4utX+3CG3ScAUs3VSNP5Ane0oAwmzAsJ7xE72+bE9T9URBlAcswCZ2bEAQ0Lo0t2J6enODAqy/y5B/+N95/9kmSo8Pz+rh8uvFHNFpWOAEop5XpASqbvVx3j8TgwR9Q03KYhi6ThsVRAEzDCcZNjueoqJubHFzMGVQ0OI7pif40Ne1hwBHmARg5OUPDYifgvLrGR/VAitKzp9B3DCG+1EcipxOv8zM1nKVqNrGhmNPxn+PwTU/kSDQGsS0b1SPNO7esivMcvL6QgiSLjJ91X0bJxONXmBnPE599lgNvj2JsrEWcvabgkdDubKFvMDPnWc6mflGU8b40Wz7XUb5vl8tHMOyjbXUlzSsqQHCCANbc0YQ3qBCJf3CwQiCqzZsDRVkgcq4j7fT1oh48/rnBhqpHIhh3nMDNy88EbUUqfVQ2+/BXG4TvbkGYHY9SRCN8dwuSzxUfcfloeHwKt3y5i4pZEQaPX+H2X1hGrNZPIK5R1RIiOZqjoiHI/oNTeG6uh9lEB6XWj9oYpPBcL8LLfSwNq3SsTXDw1UFCFSrX3euhe9f3Of72D9j4gJdivkRte2TePVQ2BTF1p7Lxki01pCbyiKLAjV/sdBL5FYkN97aQS5VYsqW2LETiCSjc+Y1l84RJXFzOx0R/H2//+Hs89b9+n2M73ySfSiF5FaIPdSDPBnQLqkjk4XaU84wrj1/l1q8tKb/PZVUitkDl1/quGKIoEIxq1IRU8t89Sv7FPsw3hij+8Dh3PNQ29wABvEEFy7QQZQFJEujeN0G83rkPSRHBtpFkgUUbq8lnShiGRXVrGGyBGz+/iOh53jcuV5ZYrR9PQCFeGyAQ1WhdnSAzXcQomdS0hWnoijF0LIkogeaRkBQRf8RDdqZEZrqA5lMIVXgIRLVyJXdvUGHDijjSi33kXunHermfxPEpwn4FT0ChujXAxgc8ROJvE6/ZzYZ7vEhNQXwbqstrU++KCrwLBGC6uHwQgiiw9MY6Wlc5a9Fju0bY+qUu9KKJrIiIooAkC4iyiDeglPd3dW1hFnklhJf7yL82QPZHJ2gumbQsmZsIXNEQYMUtDahemaM7RlB9Mtc/3Ibmd2wVFY0B6lcliH6+CynmrIsFTSL2hUUoCwQQG7pO/6H9vPiXf8Irf/sXDB07gm3NF3py+fQiaxIev0JlU4HpwReZOPUT1t0p4vE7+6vJgTSLNlTSaNuYT/eg7xim+FQ39ptD1DSeeYcXsjqhhJeBrIHUFXPmUwHUFRXMaCK+kLvncrn8+CM+bMueFebNkp14jf59/4g/OEhDlw+jZCKrIjfe2YT1ZDf5Z09ReHWA0g+PsfW2hnmi1KpHIlr5yd4fSR6Z6INtyLNJmIIiEnmoHWUBgSCXj4dSX4pSdxLfqkR5relZEsNqDtGzb7xs8z2bSKUX27TQdScRoL4riqQICAJkU0WSo1n8EY1IZQlL30fP7r9jsm8XK7ZGUDS5vL6wYXb9cfonJwFBVkVCcQ+FrE4w7mH93S0c2TnCurubqO2IfBy/FheXj0QgqhFKeNh6dzO+Nwcx3xjEfHOI7Mt9BO9pQZgd+1KFF+XmenxRg9z0Hjyel4gmTtC+xoOiSQsKmLt8uvGFvAiAbemYeh+jJ37C0OEnWbYsQP57R8k9e4rCy/1kv3OEW+9unnOs6pHwBGR84Y8/EVHyK0Q/twhpVlxf0CSijy1CqXLf6y6fDEIVnnl+4IqGAJ6zRKtq2sLzjmtaHqfn/fHyz96ggj+s0bYmgabNF56K1wW46YuLiFb7yv1v+epiKprcghRXg2Dcg+KRKOT0sphMTWuY3oOTwNxYgXy6NMc3LJ+OzVnAz+8LKWUf2UR/hurZsTPak6Ku02kf6Z5ZUFTPNCwaZtvHe1PUlM+TLp9noj/NHQ+1om3vx3xzCPONIXyvDxAWKa/ZR7pnaJi11Q2fnCmf82wuthDK8IljvPbtv2EmPI16+nsgCgRurkd14xiuGKIASr0frdOJqUEA7+oEdkSjrjPCWF8K1SO5BRxcrmmqWkJseritPGc2r6xg2U11COLFiy0qmsTmR9rK72HVK3Pr1xYTX6DwxPloWBxjxS31iKJQ9s85c2N0Xl+vXyrHf53N2d+15uUV9B6cdMRGzll7y6pITUfkkosKCQGF0J3NCLMC7VLMQ+j2Jo688zpP/uF/49Drr5CZnrqka7hcHLEaP7d+rYGsPIK6MQazY0huDDIV8ZBJFtn6lS4s08IbUinlTZqWxtF8MlFZwPzpSdLP9JD8aTfjf7qXUn+6fO6FxHScOX4GUYTq1hATA05soS+kohcMgjEPhUwJURZm7WjOmJwZn1v0LVzpJTdTBCDRGGR62BE/q2gIMDMreFbTFp4nXgJQURcgOZabXec4Nrqa9ghjfelyMQNw1hvxWj/eoIJedMRMEg0BkqN5QhUecqnimXsvnhHLLPcXzqylNL+CoVuEK71kksVy34auGCPdM4QSXgILCLu6fDgK2Qwn33ubp//4v/PW9/+B8d6ey3p+0SsTvqN5jm0gdEczQnDhOVGSYOtXu8pFePwRjVu/vhjFs7Ag6kLzc9PyOIGoK4Dq8tF556kevEGFpGeMcMaxYwVmh6wgSyRSkPIaaLJIwTBB9WEM9nDkS1+jf9qZT9855b6TXVxcXFxcXFxcXFxcXFxcXM7l0tQtPgZs237+rB93Ao9erXu5XEQrQ+Smp+jZO8yd31iGUbIIi5D+20NIUY3A9bUgCZjJIvOiZD4CgZCHgdEpgjGN6x9u452nT6EXTKrbQqy5ownVM9c4XCoUeOM73+LQ6y8DcPSt16h9o4sH/s2/xReKXPL9uHwykFWJ6x5opZDVOf7OKNc90Mr+VwdoWpJl+9/9z3I/RXuW277572hfV8mRt4ZZf08Le1/qZ3o0x5ItNRzZMYJt2SzaVENNm+OYfufJHjbc14qhW5x8f5z19zSz96V+WlYlqFsUIQAUhuZWDCq8McjWz3XyzLePkZ0psmhjNUd3jXLdfS3sf2WAmfE8vrDKok01+IIqL33rML0HJ1lzZxP7Xxlg7Z1NFPM6x3eNct39rex5oY9izqCyKUh9V5Q7f3EZr3zrCHrBpGN9JUd3DrPu9LMMZ1lyQy1H3hrm2R+d4MYH2ohFVUomPPv4SZbdWMf0eN55lnub2ftiP6WCSU1biOseaMUbUAhVeOdVGnK5dEIVXgaPT7PsxlpW3FIPwLFdw8hKDEn+YJ2tWK2fLY918tYPT5AczeELqdz4xc7zCiR4wyK3fG0xr3/3GOnJAoGoxg2f7+Twm8OsuaORus4zwQ2VjUGWbTEpDIwi7pXwr69GkEWsrM70D4+jVPtREm7yuctHo6IhyAO/uppMsojmlcvVI0IxL9c/3Mbr3ztOaiKPN+bhpffGueULXXhFgeKeMVLPnSqfx9gzRsWqBJlkiZu+EODZP/kP2LaTFCGIz3Dz136T5HiRrutrOLpzBICO9VXEav3EanzUdq5B88oYusV197cQjJ+Z66LVfu76xeWkJws0LothGjYerzynmqCLy4VIjg7zw//vd8hMOYHCR97czg0/83XW3/8Iam2AxDdXYiYLCB4JOX7h92yiMciD/3I1EwNpcukSpYLB+nubef+5Pgzdom5RlMYlMaZGsizeUot1bArOqtyDYaENZWhdWUH33gk0n8y6u5vxBhU0n0wxb6D5ZGYm8mg+GcsCWRHAtonVBdB8EkbRItEQRBAFVI/iBtdcRURRoH5RjMxUAV9UJdEcwNJB8YiAgGXZiALYs/+pkgCCwJEdw1z3QCu5VIlg3EtmpsiNX+jk7Z92s3xDFfbbc4UbrYkCxnAGT7WXFVslfvrffw+nnDwcffN5Kv/f/0LNfZ3O/s+2kePei65M7OJyLpFKH9t+binpyTySJBKq8JJOFpgZzeEJOqKL/UenqW0Lse1nl/D6d4+xeFkMc/vcaj76wUmW39NKz6EpZEVk7d3NhBJewgkNU3eqBW//9lGWbK7lxi8swjYtEo3BsrhT4pdWYs2UEH0ycmzhwPnBIwf5wX/6nfL3Yc9zT/H53/0v1HZ2Xdlfkss1gyQKFDPDPP1Hv4tRdIJQj771Mrf+/K+x4YE29r7Qx52f76T03SNzjisdmyZ6XTXr72lmz4v96EWTbKoIAYX3xvK0banHF1JJaRKxBkcYz8XlSuAPq0xnx3nhz/8j+XQKgKM7tnPTV36Jnr0SN3+5i/BEDiN7VkVHG6z3Rll9az3vvdCPokksv7kef0Ql8SlIVFRrAiS+uQJzunhR63OXK4dt2WTeGiK/dwKlPkDwlkYApLAKCS+rtzXiDapkposMHJlGVkVW3dZIKO5UZtVLOumpAvWLYti2jRB3qqAefH2IGz7fyLs//VMGDu0D4MSuN2nfsJmlN3+FQtapNHj9w21oXgnLtrFM2PtSHxvub8Hjl2lYEqNhNnlDL5o0LY8TinvKVV9dXK5FfCGNO7+xHGvXMHrpjJ1AH8wiVGex7mlFkQSKgsCJo+OkRl7myBuvAHDy3Tepbuvk1p//10QSkav0BC5XE9WrMN53iif+x38AwB+JsiS4HvuspC1MG61nhtaVcbr3ThKIaqy9q5ma9jDqJRap+Kho9UEqf3El5kwR0Ssjx92kaJdPDsGYxs1f6mLHj09QzBrE6/xserCNUPyMXyJW62fVtgb2vTqAZdq0rqygeWUFL/zlQecccQ83fqETX0wjHD3/+G9YHOOOby4ll3Sq0Fe6Ig5XjUilj7t+cTkv/c1hhk8kWXlrA6OnUmheZx4dPjnDxgdbKeZ0jr09wqaH29i/fZDDbw6x8aE2dj/Xy/F3Rtk0++/TMQSbHm4nENVYfXsje1/qp5gz6LyumuO7RlA0idZVjr+gbXUlDUti9M/a09bd20LfgUnqu6KU8gZ9h6fY/Eg7pmHRd3CS6x/twDRMMskCyqkURcMuP4utW+hHp7n+kXYKWYPhE0k2PdhGKW8weCxJ+5pKGpZE6T/krOWvu7+VquYPHnsjJ4/zvd/9DQy9xLv8kM51m9ny1S8TqIghx7wIF+FXd/loSGaJmZ92I0c9BG919mfFY9N46wLE6wK88b3j3PbzS4lWu4JfLtcumk9h9bZG2lYlMA2LYNyLon1422usNsA9/3QFmakiikci9CHXmf6IxvUPt7PsxjrAZutXunjz+8dpvqOJYt5g+MQMiiZx/cNtWBZcd38rb/7gBON9aTSfzHUPtFKctdfVL4qy5o5GnvijvWz/zjG2fL6D957uJTWRxx9R2frlLqpbLv3dbo7lybw5hP+62XihtM70D09Q7Epx9K3XOPrWa6y+635u/PLPIcvXfBjvJxpvUOT4zsc5tmM7icZWVm26A38whn9xPZG8xP1L4wgiIDi+Yk9AQZJBEESEt4bmxA7YukXu/THU2WJs8YYAt35tMa9/7zilvLOOaFmZwLJssqkCWFDKG4QqvKy4pZ4jO4ZZua2BvS/1s/GBNva/0s/KbQ00Lo1xe3AJL//dEfJpnUi1jxU31/PmD05QUR+ga1M1b3z/BBX1fhZfX8Ob3z9BoinIjV/sRPMpLN5cw5G3hhFEga5NNSRH83gDCqu2NfL+8320rXG+w7IisvauJt57phcAzSujemUWb67l3Sd7WHx9DcmxPMG4h2U31fHOkz1sfrSdyqYg/ohGNlkkVOFhxS0N7Hmpj433t3L8vVFW39bIwNEp1t/TTLjSiyQLGCWbukVRIlVeJgbS3P7zS/GF3DiJS+X422/x/J//r/LP7z/7JF/49/+VeH3jZTm/OVVg6vtH8S6tQFqZwDZssjuGUGv8KOH5MV/+iJcdj3ez9auLMHULWZHY/dwptn558YLnj9b45u/JVsTLgjwuLh+W1GSe0Z4UGx9s4c97R4jl6gDwKwK2ZTPSl6VixsaQbSRRJ1c0QfUjSjZ9wUpsG9orA5wYy1A0TDTZ9TG7uLi4uLi4uLi4uLi4uLi4nOaT5r34OeC7V/smLgfVbREM3eb17x0nn9a551GnsroUVEEUsLI6+cNT+DdUX5brhaJe3n2uh7V3N1HdFsbQLfwRlVj1/CD35MhQWYBEEEVEUWTo+BGmBgbwLYlclvtx+WQQq/Fz9y8vLzuA29eG+ckf/Ls5ffRigex0D1seu5Ni1kAQoW1tgkLGwBuUWXVbE7ZlE6rwICsSq7f5aF2VwDIsOjdUUcjoqD6JRZtqMIomy26qxTg5Q+Gce7F1i0BE5dF/s5ZCzjn32jubAGhbU0kho+MNymgIYNlOcv50Ec0vs2RzDUbJYvHmGvJpHUWT6NxQhV4w8Uc1PD6FWE2Az/3mOgpZA29QoZQzQIS2NaefxXHKFXM6g0eneevbx2hcFuO2n1uK4pHovK7aeRavRNfGGvSiSSCmXXJVDJcPpmlpBcffGWXPi31O4MD9rVRdZDCAosm0rKggUukln9bxR1TCFxAG8QZ85NLT3PmNZRSyOl6/Qi6vs3JbI5EqH9JZSROmUWL3Mz/k+o2fw8qbWBkdKaphJovYRRPbcKtfulwaHr+Cxz9/jqntiHLXN5eTmsyj+RVM3cIWBcjq5A9O4l1egVzhRR/JUjgyhWjDY7+9jl0//j9lARIA27IYOvoWJf1mqltDPPxrawCnmkko7r2oykaqRyZe98lPqHO5Ooz39pQFSE6z84f/yKLrbyCcqEIKKEiBi3/PegIKVS0h+g9Nk5nKEgurPPgvVmEBsiZhGTbRGr8jGLJnbP4JsjobH25jxbYGJElElAQK2RLpqSJ9+yfpPzLNPb+8HEmRCMUkJFUkFPe6CdDXMIGY56KEkZJjGTw+maZlcXb++CQd66sIRFSiNQFUv8Ldv7QCLzbp9+ePG02T8Ma97Prxs2XBBUGSaFu5AXO6iF0yUd3gYpfLhKJKxGrOvHdDMS/BqIf0VAG9YKB5ZPa82M+au1q4+5dXoKV10gucJ1Ll5cu/sRZZEfFW++ckBm98QMEf0Tj29ghTw1k23t9aFiABkIMaBM8fPGhZJruf/mn5+wBgmQZHd77hipB8hghX+Tj53kGMYhFRkhAEAdMw2PfSj7jzl/8d9f90JWpOp3TOlkltCaFoEovXJqhfEgXbqT6tajITgxn0gonqlQjGPe5e3OWK4g1odI/0lgVITvPuE//IQ7/535BkP3KqSOac4+ycwaINVTSuSiDYNopHIloduCgR1Q/CzOtYOQPRJyNdpfEv+VUkv/rBHV2uLLaNOSsIpjYEwbQpHJ9GqfETXVNFNlnite8eo3lFnLV3NiFIAppPAltAkgU0v8z6e5rBBlESkTWRfFqnujVMdvpUWYDkNCd2vcmaux8mXFnjiC5KAqIgoHgl9IJJVcsyNJ9MKHZxdgQXl8uJmSlhFU2kkIp4CXvzREOQyR1D6Od+MFXAv7mOYsFAsWxalil89/uvzOkycvIY+fQoglDzka/v8slF8wvsee7x8s+q1wvF+f3sTIlND3ew4pZGZE0kXOFFLlkYM0Xk8NVJzpKCquOzdnH5hBGtDmDoNlu/3OUkWKoSoUovylnCv7IsUb8kSvPKCmzLRtVEbNvmrl9cTjGr4wmpJOqDF3W9eE2QuDvFXxM0dMX43G+sI5/R8YUUSgWT1ESe/kNTWJbNzp9007qqgnsfWkkg4qFjXRXZmRJaQC7HA/giKu3rKtELJoGohuZz9lYbH2hl8eZabMvGH9VYd2cTCKB5JVbc0gACdG6sxNRtZFkklPAyOZjh3WdPEanysmRLDRUNQRZfX0Nm2om7WLypmnxGR//pyXnPYqWKxCt93PMrTpyGrEksu7mO9GQBjyKwYkMVRdPClsWLLoTSu+99DL1U/vnYu2+SSU3x6L/9PVeA5AqTn5nBLphgM7tfK6KPZNFWxhFFgXt+ZcUF4xNcXK4VBFEgXHnpY1XzKmh1H912JcliWbQnWh2gblEUo2iyeHMNhbSOrJ6ZG/dvH+DWr3WRTZVQVAnLMtG8Kl/4nQ0E4x5Uj8x9/2wlu57s4Z0ne1hzRxPxugChCg+ByOUprGKXLOy84cQLRTSMZAG7YKAoZ86/57knWbntLuL1DZflmi4Lk54Y4djO15BVjfG+bl7o+1MAPv///hfqlywr97NyOmbeQPQrSLPCkOOZ0rzzGakzmztFkejaVENtR4RCRkeUnXezLIsEKjwUMjpdm2qRFRHDsGhZUUGpYNKysgJLt2heHidU4UWSRQIRD5/7zSDFnIE/rGKULGo6IgSiGnrBpLYjSiCqUSoY1HVGy3GPADd+oZNV2xoRRAHNK5JLGWzytWIYNo1L42g+ienhHGCz64ke9IKJpIgs2lhDpNJLqWjSuCSGrIkUsyaegEIxq9O8LE4o4XyvHv2NtRQyBopHQi+ZNC2LYVnQujoBwBKhhlDChyBAVXMIQ7dQNIlS3mT5zfV43X3mJZNNTvPm9/4eAElRsAyTQibNaM/JyyZCYps2dsHETBaRQipW1vE/WPrCsY7eoMrmRzrY/VwffYcmqWmPsOnBdgLRhedSWZbouqGmvCcLRBUyUzqSG1vj8hHpPzQFQKxZJDeSp67gBQ38qsSB1wY59MowFYbT17AzlEyLguRHkW0mvGEAbltSxZ++epJjIxmW14ev1qO4uLi4uLi4uLi4uLi4uLi4XHNcEyIkgiC8CCyktvHbtm3/ZLbPbwMG8A8XOM83gG8ANDZeHoPqlUKSRZqWxaluDWEaFhoC2TubKPVlSL/ajxhUCd3SgHgeQ+yHJVThZc22JgYPzpCeKlDbETmvkde2LWRNY929D2HbNrZpovr84AYJXzGu5bF7tgO4kDWxjHmhtoCFP6ThP0upPhBx/u8/xx4riAKRsxzT/gUCKPW6AGlNmlMNTlsSw1sdQFQlArH55/Z5JHJ7xxl99hR2ySRwfS2RzbXI5ziGL6SmH4h6CETn39e5z1LZGKRrUw2qV54TtLbQs3wWuNrj1xdSWXlrAx0bqpAkEc334V9t0Wo/0YvQfFI1ieZlVYycnGG8L01FQ5DqtjCByPy/vW3baP4A3sYY/niA7FvDGO+PoTaHiD7SgXwRSc8uV5arPXavJKEKL6GKuZWDjJkikftayewYJr/PqYgcebAdb0OQkF/BMo0FzmRy1zeXo3ikSxZSSE2MM3ziGJmpCRKNzVS1daB53aC6j8KneeyO9fYwcuIogiAQiFXg8QcoZM+kb1qWCZZ9gTNcGFkWqdFEvIcmMFMlpGUVxG5vQjknwDO/vorC4ak5bf71VXir/ESrzghGTPSnmR7OUdsZYf19LVQ2hRDdNfMF+SSO30ilI7Cw+XMdtK2pZKI/jS+kEa32l9d/tmFhrqsit2vkzIGyiLcuiBzSMA0dRfOw7v5HaGtbC+/m0B9PM/7GXiIPdaC1hi8qWNzl6vFJHLsAgiCUqwkGY14iVX769k8SjHtobA8jV/swRnLl/r7rqrH70mS2D4AA1q2N+NZVI80Kn4UTPjY/3M7q2xpRNQnlw1bmth2xvrPx+ANUtbSx/+XnsG2b6rZOKptbL+3BXeZwrY1fWZEQZYlNj/4MlmViWxaqx8upfbsJV3jR/H7MvE6uKYje60jlhG5rotSbYvKvDiCFNKIPtuHpjCFIztyZaLi4BDGXTxbX2tg9G4G5a9Km5atoXL6K/gM7CVdWU9fUAQKc3S2wuZZAQ4joZb6XYn+a5E9OoA9kUBoCRB5oR7vIpEmXK8PVHLuCJBK8sR59OEvmrSGsvIF3WRzfmsp5Polz7aRGscjIyVOM9XbjD0epbu8kXFFFuML5vGfPwteUFYFEw6VXB3a5NriW596LxZ4V30n+5ARmsohnSZzwHc0ol5Aw51+ZIL97rvBkYFMthppnou8Y6ckJwtXV1C9exsDhA3P6SbK71/s4uCbHrg3mrE+ta/NNxOoakOsDmPvnykEGrq/FV+0nUu3HmC6QfqmP7K4RRE0ifHcL3uUViNo14dJ3uUJck+P3E0yiIUi40odeMPAG1Xn22oqGIAwIDB6bRi+a1HdGqWwOzRFhdbk4rrWx649o+Gd9tr6Q4yt7+F+vYeBoEkkWqOuMkmg8s1c6Own2dDwAC+jqi5JItOrMOkKrOTMn+xaoBA9QUR9k29eWUMwZaH4ZebaS9mlhk9P/zm2soXgiOedY3+oq5/NzEvUDtk3y+8fR+zOOj++B9nk25WI+x8iJY0z09RKqSFDd3kkwXoFpzPcBmrqObX90f8snmY9z7OZKKaL3t5DfOUr65X6kuIfQHc0INSr1bbErem2XTyfX2tx7tQmfFRPhP8fOsWhDNSM9KYZPzBCMe6jtjBA5xydc2RTijl9YRilv4PErl0Us+GykKi+hO5rJ7BjC3F1Aaw0TeaSdd57/i3If27bnFIv5tHK1x65pGFz/6M9QzOfwBoL0H9pP7773sawzv/viqRmmHz+BMZJDbQ4Rub8NtTaAf301xSPTc87nX1M17xoLxekABCLSmbXGRRCMeQie9Yo4vXrx+JRy+0IFi2RFIlZzJpbBt4C5zhfUUDwywZgXURSoWxQh0Ti/YzB6+t7nfq8CEc9FP8unSWTrao/fs7Ftm3BlNavvvI9iNoOsqhilEvYlxNGcixTRiD7aSW73mLN+iTnrF7nq/H/TWG2ArV/popDV0XzyBWPMKhqCTAxkmOjPlPdktR2Ry3b/Lp89+g9PEYhqpBkCAVRDAw0Uy2LH4ycJiTKJGec78r3uvwMeIGN4iMs2kx4nKPzWrkr+9NWTHBqecUVIXFxcXFxcXFxcXFxcXFxcXM7imohYsm1724U+FwTha8C9wK32Bbzgtm3/H+D/AKxbt+6T4S0XQNFkRElAH89TOORUe7dSJWae7kFtCsFlEjaIVPmJVH1wle1IVS1bv/YLvPGdb5UreoqSzMO/9e8vy324zOeTMnY9/gDXPfgYz/zJ/yi3iZJMfdeyCxzlUMznyCWn0fwBfKELG2lLqo5wZwhxfxEmDGjRMBfLCMr5nb3F3hTJH58o/5x5fRAxoBC66YMrRRTzOqIkzhEUuRCiJH5mBUcW4loZv5IsIEpXPqDbH9ZoW1NJ25rKC/ZTvV5W3XYXk719mO/4sGerAZROpbBLJt4l8St+ry4X5loZux8bhsXMc73YeSfQUB/IkM7241nsRCmsuPVOju18Y84hy7beftGVSGzLIjUxDtiEKioRxDNzdmZ6mmf++H8wcHh/ue3Wn/8lVt1+zyU+1GeTT+vYHTl5jO/++9/EKDpVgxSPlzt+8Z8zdqqbk+/tYrK/l7X3PEgwkfjI19CHs0z+3aFyMmhh/wQAscc6QRIp5QxUr4TWGiH2hUWkXuoDIHhLI1prZN75KhqCTtC6y0XzSR6/gYhG+9pK2tc6awDLtChkdFSvhCiLhLY2IAUUcu+NIid8hLY1oswGeq299yEW37CVof2HsIZSmEN5AIyJAhP/9wCV/2w16kXs1VyuHp/ksXsa1SvTuCRG45IzkYvaF7tIvz5I4dg0WkcEtS5A8kdn9lUzz5xCiniQOqKIsoCiSgii8JH3Q6IkseauB+jdtweAypY21t//KM//+f9CLzjfC1nT+Py/+89Ut3d+9Id1mcO1OH6rW9v4yR/8JwoZJwFTkmXu+39+C83vzIWSVyH2SCeZt4Yw0iWKfSmKx5wgX3OmyOS3DlH5K6tQXaGFTzXX4tg9TWVzK4rmQS8WqOtaSnV7J69/+2/Kn6+67V42feVR0i/1YeVNAlvq8C6ruOz3YUwXmPybg1hZJ8FZ7884349fXoW8gGCqy8fD1R67giqSeqG3/HN+3wRSRENrDjuVUGcTH03DQi+aaF4ZQRQ4/s4Onv6jPygfV9ncyl3/7NeQZIVgvIKqliYqW9oY6zlTrb1h2QqiNbUf38O5XHGu9vi9HOgjGSa/dRBm84gKByfBsol9sQvxIn0A56I2h4h9aTGpF3vBtAneXA+1Cs/+79+n/+Decr8bvvg1qjsWse+Fpynl88Tq6onVudWsPw6uxbErqyrr7n2Yg4EXMQ2dt7739/R2vM8Nt/4M0gEdDJvAzQ1onU52l23bZN8bJbtjGAArZzD9g+NIEQ1P++WWMXO5lrgWx+8nHVWTULULJL3VB6ion6s2YZkWpbyJ6pNdoemL5Fofu6IoUNUSpqrlyiSQ2ZZNMW+geCSkBURsZEVCDl947aG1hYk+1kn65X6QBEK3NKK1zE8ENmaKTP7tIay0I+6rD2SY/NuDVP7KKuTZ4kO2ZXHglRd49W/PJLY3LV/FXf/s12heuYYDr75I53XXIykKPe+/y/oHHkH1zE+U/izwcY7dSKyG7I/60fscwX1zssDMMz1U/PLyK3lZl08x1/rce6Up5HRkRbyoAioL+UQWQlGli44X+7DYJZOZZ3rAdP5Uxe4ZLMNk2Y23kmhrYfxUD55gkEjlRVRN+oRzNcduPp1i54/+ke73dpXb1t7zAKIsE6urB0CfyDPxfw+WC6aVTqWY+vZhEr+4Eq01QvTzi0i/3AcCzvu69ZOZoC6IAlXNIaqaXUHhD8O1NPcGojGW33I7z/3ZH8JsKH2kqoaOjZsv2zVsyyb77gilHid23Jxy1i9VbZELHieIApIsIlzEfmqhPZmLy0dltCdFTXuEiZQT5yAJGioljr89hm3a3Py1ZQz+ltNXEJ2YtKkCVAgw6QshC7CqIYJflTg0lLpaj+Hi4uLi4uLi4uLi4uLi4uJyTXJNiJBcCEEQ7gR+HbjJtu3cB/X/pFDI6PTsG2fPC/2oHolbHm0nv3d8bicbjLEc2gJq4x+VYk4nNVlAVkTClb4FA2g0n49CJlMWIAGwTIP3nvgxdYuWICvzldRdPju0rt3Avb/6G+x5/ikC0Rir7riXqta2Cx4z3tvDy3/95wwcOUC4uobb/8mv0LBs5XmrvU/09fCD//lvaVq6inhVIz1vv0f6mQm+9vt/TKSqZsFjiidn5rXl3h3Fv6EaybvwmM2nSwyfnCE5lkOSRRINQapaQwsGCblcu+QzJbr3TLD3pT48PoV19zRT1xm97BVKziYzXSSXKuILqgRiC1e4Mkol3n/uKdatvAdbn1tdSh/KYkwXUX3ufOry8WFMFcoCJKcxp4sUhrOU0jpVHYt45Lf+A7ufeQLbtmlbdxsn90jI2jS1HZELBt3mZmbY99KzvP3j74Fts/a+h1h9xz34I05Az0RfzxwBEoDXv/03tKxaR7hyfoUYl88mB155sSxAAqAX8nTvfoeRE8eoW7yMLV/4CtVtnYjiRw8C08fznFO0nsKBCfI31vPuG0NYlkV1S5hotZ/K5RV4Op0xLPqu+W2Ty8fM1HCG/a8M0HdoisYlMZZvrSdWEyB0WxOB62sRVKmc3JbPZEiODDM12E9VVSvm2/m5JzNszIkCuCIkLlcBpcqP57ZGpI3VKAGV7PePzeuTfX+Md3eOUMwarLu7idrO6CUl4zQsWc5Dv/G7TA32k52eouf9d8oCJABGsciBV19wRUg+xehFg76DB8sCJOBUIdz/8nM0LFuJqjnCCUqlj8h9bejjOcb+cPfck9jOe90VIXG5akhxbvvmv2Vq8DDx+jqe/d//vzkf73nhSTo3b6H2F1aAaSH5VVKTeQp9Kfxh7bKJ2xpThbIAyWmsVAlzuuCKkHyG0Ufmu1Fy740R3FKPFHKERif607z/Qh8j3SmWbKmhvkvjlbOSFQHGTnVzYtcO3vreP7Dkxq1sfOSL3PPP/zWH39xO797dtK29js5NN+Dxu8HiLtcWxkS+LEBymsLhKcyZIuJHrMIrajK+5RVo7WEEG0SfQu++9+cIkADs/NF3WXf/I2z54tfITueo7lgBfHoq/7p8OPSSiTfcyrKtt/GTP/iPAAweP8gP+v4Di9Zs4brHvkBe9CHoFn7Ayurk3h2dd55SX9oVIXFx+ZDMjOco5g2CUc9FCa1PDmXY9/IAA0emaFoWZ9nN9cSqXVudy/lJjuY4+Pog3XsmqGkLs+q2BipmbRSFnE56ooCsSUQS3gsmYUpeBf+aKrxdcRBA9C7sizCmCmUBktNYGR1jqlAWIZkZG+WN73xrTp/e/XuY6DtFZUsra+68lx0//EeMUpFlW28n0XzhGA+Xy4OVLpUFSMqYNsXhDHlJJpzwIrrxKS4uH0h6Ms/Rt0c5smOYaI2ftXc2UX0RIhD5TInMVBHVIxFKeM8bp3alKI6kygIkp9H7MoSuq+SnP/rP1HUtYeMjn0fWXDvelWSyv2+OAAnAnuee4sHf+E9kkhKBKBhT+bIAyWmMiQLGdAGtIYR/dSXeRbELvq8vhexMkexMEY9fIRT/bIqEuVwc+XSqHJt1muToMDOjI9S0XR7fqjVTLAuQlDFt9Il8uQjLuUyPZDmwfZBT+yepWxRh5a0NxGvPbzc2dYuZiTyWaRGu8KJ43Jgcl49GNlkkM12kqjnE0bRjVxNQ8VOkpEtseayDkGeI6RI0jVdxQnPi0oZyRTqBSW+YhGojSyKLa0IcGnZFSFxcXFxcXFxcXFxcXFxcXFzO5pNguftjQANemHUE7bRt+xev7i1dOqcOTPDyt46Uf977+iBdUQ/G+NyEtMvptJgeyfLK3x1h+OQMoiyw4d4Wlt1YV658eBrbskhPjM07Pj01gWkYrgjJZxyPP8CiTVvo2LAJQRAQxAsHROTTKZ7+4z9gos+pvjkzMsyP/+t/4Mv/5X8Sr29c8Bi9UACg9+Aeeg/uKbcbur5gfwA5Nt8hKyd8iBeofjF6KsXel/oZOp5EFAUWb65BlKC6NXLBZ3K5tujZO8Grf39mPn3ij/by8L9aQ0175Ipcb+DoFC/81SFyqRLeoMK2n11C45L4vH6moZOZmsQQDM6dNQVVRPBcmUoqLi7nY8E1hSTQdyzJq0+dYtmNday9aylLt9awf/sAb/0ojW2Pc2znBA//mzVUNZ8/iKf3wB7e/O7flX9++0ffJVJVw7KbtwFn5vWzKeXzGHppXrvLZ5eZsflJFvlUCsXrZf9Lz1LZ3EJg3YUrVX0QC30PpJDK8T3j+EIqvQcmOfT6MKIssO6uZpbfXI/H7659XeaSSxV59v8cZHo4C8CB14YYOjHDA/9yFb6ghhQ4k9hQyOh0v7ePXY9/n/rFSymoGQQtOC+ITfS66wKXq8PwySQv/NUh0lMFEo0Bbl0Sg3MEHo2AwtjRcTLTRYZOJHnkA9YFH4Ti8dC6eh2j3SfoP7QfXzgyr89C7wSXTw/jfRlS4xPz2jNTkySHh6hsbim3CZKA5FMQgypWau7asWTZaLp5UVUvXVwuJ6nJPE/8r73kUiU23V/H5EAf5gI2Kz2fR/LIWJZN995xXv7WYYpZg0BU4/Z/spSaD6gaeDGIXhkE5grtCbg2h884YmD+HkaKexA0x46bmszzxB85Y7imLUwxZ9CzZ3qOONRpTEPHti0Obn8JTzDETV/6WTZ/7ktsfPjzSNInwb3k8llkob2/GFQQtUufG88WPC8tYO/SiwVs0+SVv/k/3PTVf8dzfzHE6ttkNj7UdklCfi6fTEa7Z+g72A9W95x2o1jk4I6XiLZs5N1n8gTjHm7/+aVU1geQK7yYyeKc/tJlEi9zcfksYOgmJ98bY/s/HkMvmESqvNz+80tJXKDoS3amyDN/tp+ZMSdOY/+rgwyfnOH+f7EKb+CDBUxcPnsU8zqv/sMRBo8lAUhN5Bk4OsUj/2YdetHgpb89zNipNJIisvGBVhZvrkX7gLifDxJClzwL7/3OXvcYegmjVJx3rFEsMnz8KNv//q/LbftefIZwZRUbHnj0A5/X5dLQzRKCR8IunJPYLlh87/d2se5u1xfl4vJBmKbF+8/3sX/7IAAz43kGj07z6K+vI1Z7ftGwiYE0L/z1IaaGsiiaxJbPtdOxoRpF/RjtZur8faDgkSgazrpj8MghXvyLP+HR3/mPeAOXr0idy1xKhfy8NtMwKGTSvPBXe3jk19fhX0gAQRYQtTPtV6pwyfCJJM//1UEy00U0v8ytX11M0/IK147gsiClQoHcTHJeeyF9+YQTBFVC8MrzCl2dL5a9kCnx4t8cYuyUY19OTTjz9EO/tpbAAmLpuVSJPS/2sefFfmzLpnlFnC2f6yD8EcWDXT7bjJ5yxn5lc4gdBx3/s2Ur+IU8q+5sQ72hjvxep/0Lb9/NyNeb+eNBGCs543vSGyIhOWv1JbUhfrR7EMuy3TnYxcXFxcXFxcXFxcXFxcXFZZZrvpyCbdvttm032La9ava/T7wAiV402Pti/5y2o++No95UP+cvojaFUOouTxVB07DY/Vwvw7PJRJZhs/PxbsZ65wcW51IzhKtr57UvuXErmtdVWndxECXpAwVIANIT42UBktMYeonk6Mh5j4nV1aN45o61llXrCFVUnvcYrS2CFD/jtBAUkeDN9QjywvdYyJY4+f44Q8eTAFiWzcHXh5ganl8p1OXapZjX2fNi39xGG/qPTF+R681M5Hn2zw+Qm01+y6d1nv3zAyTH5o8b27bp2LCJI4feQOyaG/gQvqcVOea5Ivfo4nI+5ISXwJa573f5uhr2vjeGbcP+7YP0H55k1xM9jHany0UzLMtmtGf+euFsju14Y17bwe0vYVtO2dlYfcO86j3t6zcRqkhcwhO5fNpYfsvt89pqFy1m/JSTqHHg1RcvWbhGqfWjnS1SJUDg7ha6j0wzNZRldLaai2XY7Hqih7Fet8KFy3ySY/myAMlppoayJEfnB7CN96cZPHKQ1Pgo8fpG3nvtpwgb5+7xvKsSyG5lVZerQCZZ4Lm/OEh6ykmeHO/LkAyqc4IoRb9COqSRmXYSGOyLWBdcDPlMmoPbX2S8t4fazsXzPl9+yx2XfA2Xa5fDO4ZpWLp6XnvLqnVMDvTOa5dCKuH725xkm1nEpiAHDkwyOZCd19/F5UqTHMmRmynhD6uM9x1hoq+X2s6uOX00v59oTV25/3N/cYBi1glozEwXee4vDpJJzk8O+7DICS/BmxvmtIW2NaJUuMG6n2W0xhDy2RUpJYHInc3lpInpkVzZttW4LM77z/fRd6hEx3Vb55xHkmXEs4RGDr/+CtnZAHdXgMTlWkapCaAtip5pECDyQDtS6PIKOcTqGlC0uTbexuUrGT5xFNuy0AuTAOx7ZYDs9HzBEpdPPyd2jwEpSvkc/kh0zmfxhibSk464QXqywPN/dZB83iC0rRHO8mvJCS9qs5uM6OJysUwNZXnxbw+jzyb7J0fzvPx3Ryhkz1/oIjmaKwuQnGaiPzOvzcXlNKnxfFmA5DTZZIn0VIFdT/aUky9N3eLNH5xgou/SbWlyhZfgtrkFXoJbG5ATZ2IqQhWVNK1cM6eP6vUSra2j/8C+eec8uP1FilnXrnKlKQp5xE3BOW1SZ4C8bGCZs76oU64vysXlQmSmihx8fWhOm140mRzKnPeYYl7ntX88ztRQttz/lb8/yuTg+Y+5EijVfqTOuX5B6foQvd17yz+PneomPTFftNvl8hGuqkbzz/XF1nQsIjU+iiegMjWUQan04b9+bjxN+M4W5IorGyubTRZ57i8PlP1wxazBs39xgOSoG7/osjCSJLJo0w1z2gRRxB+bX0DtoyJHPUTub5vT5l0eR6lZ2O8wM54vr4FPk5ookBxdeK05fCLJ+8/3YVtOYNqpfZMcffv8scQun21SE3l+9PvvzY8RnmXsVApRFEg0BJjOTQFgWgp+Cqg+Zw4XZguvKpZA3HDW5qNFJ6Zx0hMmgeMvWVYXJlM0ODH+8a4XXFxcXFxcXFxcXFxcXFxcXK5l3EjRq4AgCvOqWBi6xXDOoONXVqGP5RG9EkpNAPkyVbcqZHR69s53WE0NZWlYPLeivOrxMjnQx5Yvfo2Dr76IXijQtflG4vWN8453cfkgVK8PRfOgF+cG2XoC5xfYidXW8+hv/x5vfOdbjPf10LlpC2vveRDVc37RBiXhI/HzK9CHMliGhVrtR7lAMqepWwwenS9UcW5Cqcu1jSiJeHzzqwJpV6j6RHa6SDE3V+VfL5pkpopEKuc62mRVQ9G8BGsqOZJ7h45t6/EpIcSoiq+rEkFw1dJdPl5ETSZ4SyOexXHMZJHpnM7bu0bniC/1HZomVucnNTF3zla0C4tOJZqaOfHOjjltlc1tZbGqeF0Dn/vt/8gb//gtxvtO0bX5Rtbc9cC8RA2XzzaNy1Zw+y/+c3b+8B8BgaU33cLAof1YphMwXtnUesmJbnJII/pYJ/pwFitroFR6SdkQq/Vz8v3xef0nBzI0Lrl8wRounw7k84jcycr89tFTKXwRR3DpxDs7WHX7Pbx78EmW33oLIU8CT0UYT0MIaYH1jIvLlSabLJE9JwH+pZ/28Ng/XYFaMLAtGBjP8+pP5lbt/qB1wcWgqCrxukZmRkfoP7SPTY9+kYPbX8a2LTY9+kUal6245Gu4XLt4Awrp6QA3/MzPsv/l5zBKRRZvuZnJgT6qOzoXPEZPeCnc3IjXsjAlgVPDOfbtGKFqSZyqFjcp0+XjRZp95xdzBv5wggOvPMH1j/4M/mic/oP7qGhs5oaf+TrRGidoPT2ZxzLsOefIJotkpwsLVgH8MIiKRODGOrT2COZMESniQanxIyywLnH57CDHPFR8baljJy2ZKJU+lLNESaSz1rNGyQm0He/LsvKWG1m61Uf3u9sJV1WzePPNvPPED8t9ozV1qB5XpNzl2kcKqkQf7XS+A1kdOeFDrbn8wo/xunoe/be/x+vf/lsm+ntpXrGaSE3trF0DPIEgUEDxSIiSOy9/FvH4FQS87H3hGbZ84St0v/8OY90nqetawtKbH+SFv5ks901PFsgmi1Q2h6n8p6vQR7KIiohSG0COujZUF5eLZWYiD3OX3kz0Z8jNlObFZ5xGOo+tT3LX1C7nQZRFBIGymH+5XXQSKM8lOZ6nblF0XvuHQVBEAtfXobWEMZNFpLCGUutHVKRyH9Xr5daf/SbvPvk4x3a+QWVzK5u/8BVitfVEqmvmnbOioQlJu7wibS7zEQSBac8EwbsiiFkB0S+TV7MMHz8zVsb7MzQudX1RLi7nQ5QEZE2ilJ8bq7OQX+40+ZTO8InkvPaZsTzVLeHLfYvnxVsRprSthlzHJFZaxw6JTBpjvPfU4+U+qteL6nUFha8k0epabv25X2Lfi88y0d9Lw9IVVDa3kE8VKWRKSLKI6JEJbWvEuySOmSoiRz0otX4E8crGdmWSRbLJuYVYLMMmPZkndgVsGS6ffGTNQyAWY8W2Ozm+aweBaIylN92KJKuX9Tq+ZXHk+EqMiTxSQEWp9SP5F76GpIhOIYFz1seSLC3Yf3C2aODZnHhvjJW3NqB53bgJl7m882QPwydnGOlJ0bG+Cv85ORWjp1LE6wPIqkSykAQBSraMnwJIzvv1tAiJaBtoKRUoMa7P+ka0CJssJ2b8+jZnTf768Qk6q+YKCbq4uLi4uLi4uLi4uLi4uLh8VnFFSK4CsiKx9q4mBo9NlwMTVI9EVUsYtS6IWnf5jVeKVybREGTgHNGFYHx+4Jri8bDspm385Pf/I00rV6NoGuN9p1h5x72X/b5cPv2Eq6rZ+vVv8Pyf/69y24ptdxKvb7rgcbWdXTz4679DKZfDF44gSgs7Jc5GjnmQYxcXjKkFFBKNQdKTcxPtY3WuA++ThKJKrL+nmZ/+0d6yI0vzydR3Rq7I9TwBBVEW5iQPiaKANzjfASYrCo3LVvD0H/93GpYsZ9+hl5gc7Oe+X/0NRPWDx7OLy5VA8ilIbREA9vzgOAPHZ+Z8XtUSIpzwcmrvmcA3b1ChuvXCgTid121h30vPkZ2emj0mxNKbbpnTp3bRYh789X/3oeZ1l88WnkCQ5Vtvp23tdeRmkjz5h7/PZP8pwKkkv/K2u8rCNpeCHNKQz6p+HCqaBGMa8Vr/vOqFoYSbYOcyn0i1j87rqjj29mi5bdHGKiJV8wMEwxVeitkGItV1DB8/ykR/H50bN+NtjRNva5vX38Xl48Tjl1E9EqXZ6sDgCOyVVIlIh5MYoe4dx5gNwAFnXVB1GQJ0ZVXjuoceo//gPvr272W0+wTLb7mDZVtvI17XcMnnd7m2aV9TyRN/tIc1d1ZT07EISZY5uP0lEo3NVDW3L3iM6pV567XBeXt4f+jyBlW6uFwM0Ro/9V1RBo5MI8gNRKpqeev7/0BlSxuLt9zMspu3Udly5j3vXWCcqh4JT+DyBNNK3jP7PBeX08gRDfk8IjfxWj+1nRGGjiWR5DOJFHtfniFcuYJ1D2ymfW2MZ/7kD8hMOfYBSVHY8oWvonrdPZLLJwM5qCIvin1wx0uktnMxGx7+F5Ryg+z84d9w5K3XAGhdcz0zE36gwPUPt+G/RNEpl08mrasT7PjRBJ0bb+XVb/0lDUuXs+j6G6hZtJSdT6TLFX/B8WucFkhQq/2oFxDZd3FxOT/+0Pz51h/RLli8IFrto21NgpO7z4hUL95cM6/4gIvLacKVXlbe2jinEnf94iiBmIeKhgCj3ak5/f2Ry2O7kLwyUmvkgn2iNXXc8rPfZNMjX0D1+ctFXhqXrSRaU8f08CAAisfLuvseQZbdkLErTby+gYPbXyI5MkS0ppbR7pM0r7qRE3sS5T5h1xfl4nJBgjEPmx5sZft3jpXbolU+KhrOH1+p+WRCCS+p8fyc9nMTlz8Owo3V+GtiFNJpRFnm0LdfxdT18ue3fP2bRKqqP/b7+iwhShLRmjo0v59Fm7YwfOIYo90nWHbrL+GPGOWxJPkUpPbIx3pvHr+M4pHQz/LVIYDP9X24nAePP0D94mW88Bd/QseGTeRTKU689zZ3b9x8Wa8jKBJaYwit8YMLAYQTXpbdUMuB14bKba2rKohWL7ynqqifX7ywpi2C4sZTupyDaVp07xmnpj3M8IkZTu4eZ8XW+vLntmUzdipFxwbnPZoqpVBlkayoUSckQXLiGgTVmVMFy0CY3a5NGTZp20te9lChjwFQH/XRWuFn+7Fxfn5Ly8f3oC4uLi4uLi4uLi4uLi4uLi7XMK5H+SpR0xHhoV9bw8CRaRRNon5R9ILOsUtF1SQ2PtjG03+2j6qWEJIsIggClc0LG4nrupbwud/9z0z296JqHhLNrQTjFVfs/lw+vQiCQNeWm6hoaCI5Oow/EiXR1ILH/8EBlKrH+6Gra2aSBSwTAlEN8QLVCGRZYu2dTQyfSJJPO87dukUR6js/uAqRbdkUsjqKR0JWXOfH1aa2M8pD/2oNA0en0byOAEm8/srMp5EqHzd9oZP92weJ1wWYGso6gYgLJB0D1HQs4sF//TtM9PciKQqVTS2EEpVX5N5cXC4W27JJTebpvK6aUwcmSY7kAKhoCNC0LI4/qvHg/7OagaPT+IIqdZ1Roh8Q9F7R2MQXfve/Mt7Xg23bJBpbylW/z+ajzOsunz18oTC+UJgH/82/ZaL3FKZpkGhsIVZbd0WuJysibWurqG6PMPGn+ynmnCpaTcviVJ2zVs6nS5QKJr6w6gZAfIZRPTKbHmqnZUWCsb4UVc1h4nV+8hkdURSQzxob1W1hDu0YYtHmb+ALpcE2qW5robqt9So+gYsL5FJFREng5i938cJfHyonv930pU58IRXDMJFliYYlMR78f1YzeHQaT0ClflH0slVeq+3s4kv/3/9gor/PWSs3txCqcNfKnwUqm0Pc/y9WMXoqRfuGMKXsOJ3XbSbR3EYgemZP7uzvbQJRD76QxtYvd/HU/96HOSuMs3xrHbF6P/l0Cc0nI0pulWqXjwdfUOWWr3QxdGKGyaEMt3/zN8lnhrFNk4qGRqI19aQm8kiyiD+iEavxs/HBVnY+3o03qNCwOMaijdWEE25So8vVwRtU2fb1xYz3pRFEgTV3NbH7mV4AcjMlGhbXE6uNcPc//Q0m+nowjCIVDY1UNFxYVNrF5bNIKW8QrQ7z7tMTLL7xy+iFSVRvkNqONgZPFLn/nzdQ1frByRoun04qG0Nc//ASJgeraFq5HrOUJlZXgz9WS3ZmkneePAU4Que3//wSFE3CNC0kd13r4vKRidf5WbWtgT0v9gMgySK3fKVrQTGoUt7Asm08PoUtn+tgyZZaijkDT0AhVuNH0Vz772edbLKIaVr4I9qcuVmWJVbf3kBNe5iRnhnitQFq28MEIh42P9LOE3+0t5xI3L6uksSHjAPKp0vImvSRfRCSLBOIxee0RWvqePS3f4+x3h5MXaeioYl4vSsE/HGg+fxsfuzLDB0/SXpikrZ1NzHWp5JoKJBLlajvjLrrRReXi6BzQzWhCi9Dx5OEEl5qOyIEL1CkyhtU2fqlRWz/9lGqWsJkk0XCVV4qGuYnvn8cyIpanptv+NLX6dpyE9nkNJHqGiqa3CTnj4Pqtg5u+JmfZby3h9quVUhKAtMMcPcvX3gsXQq2bVPIXDi+MJzwsfVLXbzwf8/46jY92PaBMTpnk50pYuqzaxbZ3U9+FmhYspz7/uVvMDU0gOrxUtnSSiAa/+ADrxCKJrPunhbqu2KM9aaoqA9S3R4ui62eS/2iKLUdYTSfgqxIjA+mWX5zvevnc5nHeG+aUsFkxdYGMtNFBo5MzREhSY7lKBVMKpucPVfazOARVdKSRpgsyE6MoqA4Y1EwU+gzzl5t2hQZtR2/dLxwpojbtiVV/N83e0gVdEKey1NMwMXFxcXFxcXFxcXFxcXFxeWTjCtCcpWQJJGatgg1H2OVSkmGjQ+0se/lfgzdYuUt9cjK+Q23iYYmEm5gsctlQFE1ajoWUdOx6Ipdo5Q3OP7uKDt+fBK9ZLJyawMrbqknED2/o7CyKcSjv76O6ZEskiIRr/XjDV64kkByNMeB1wY5uXuMyuYQa+9qovIiFN9drhySLFLbHqH2Y6hGIYoC0Ro/sVo/g0enqWmPEK8LXNCJG69vcIO4XK4ZZsZz9Oyb4NDrQ4iSwNo7m/CHVUAgVusvV/6p64xSdxGiTGcTqa4hUl1zBe7a5bNKpLKaSOWVrfqUHM2x/9UBuveMU90a5p5fWYGeN5BUiVitH2/AWRfYlk3/kSm2f+coqYkCLSsqnOCfy5SI7/LJIxDRaF9bSevqBP2HpvjpH+4hPVWgdVWCjQ+0lgPDgjEPt351MUPHkux+vg9Tt/CGvcTq9PMG3bi4XElMw6L34CSv/+Mxsskiy7fW8dCvraGQLuENKhzbNcZ7T79HVWuItXc2k2gIfqR1wcUSr28kXt94Rc7tcm2TaAyRaAwB9fM+K+UNjr0zws7HuzFKFituqWfF1nrqu6I89lvrSY3n8ARUJEngje8eZ+h4kublcZbf0kDMrRjv8jERjHtZFD9bYLEZgPRknjd/eIID2wdRvTKbH2mndU2iPIYHjyU59PoQM7NVWOsWRd1EY5ergmnYDB5P0r17nMrmEA/8y9WYhkm4wkekysfQ8Wm2f6eHqaEs9YuiJJoqEITzCz67uHzW0IsG/YeneefJHgzdYvVtjQQr6pgaypKeLPDKP/Sx5XMd1C2KuAkUn3ESjUESjUGg2fFjvTfKM/9nL9EaH9u+vhhJk/CHNA6+Psgrf3+UhiUxVm1rIFZzdZIjXVw+6Wg+hfX3tNC2ppJ8pkQ44SN6TiEBQzcZODzNrid7KBUMVt/eREW9n50/6Wa8N011a5gbPt9Z9pe4fPYwSiYn94zz5vePU8waLN5Sw5o7mgidtQf0hTRaVyVoXZWYc2xNW4THfms9ydEcqkcmVuu/aDtwajLPkR0jHNkxTKTSy/p7Wy5rPFEoUekWy7hK+MJhWtesZvh4koGj0xx/dxTVK7Pt60uo7Yi4842Ly0WgemUal8ZpXHrxSfaaT6Z5ZQUn3xsnXOmldVUC1XP1Rca8wRCNy1Ze7dv4TBKvqydeN98ncSVITeQ4+PoQx98ZI17nZ93dLVS1LBxf2LomwWM160lP5vFHNKLVvjlFL86Hrpuc2jPBG98/TiGj07XZWbOEK9zCQJ92BFGksrmVyuZrp/CJP6zRtqaStjUfvN5UNIn/P3t3Hd/YdeZ//CMGy8w8zBhm5qRJm4bblLJbZkhx21/TLWx3u+22KaSQtEnTJG0KScNpOBOaSYaZx8wgWRbr98fx2KOxk4HYlmx/3/PSa6TjK+m58vHVvQees/CMSlY/sY9oOM6iMyuxO9T2LMO17fMDUDo9h6p5+ex8o41oJMqLf7qDmcedRH/AXI/tX2AqkAiSlXTRaPeQa+kDhxk7PpSExE+sJwEW6EnYaE4WAFDU1zX4nhcuLOPXz+/imS2tXLFsbBbLEhERERERERGZSDTybYro6wnTsK2Hp+/cTHt9gO6WIM/ds43da9vTHZrIqGje3cOzd28lHIyRiCVZ/eQ+tq9sOeTzcoo81C4qompu/iETkERCMV7483bWPlVHoCvMrtVtPPh/a+hpC47WbkiG62oJ8sxdW9j2aguBrjDbV7bw1O8309ncl+7QRA5L/ZYuVvxlB13NQToa+njq95sJB2NUzy/QADeZcsLBKE//cQvrnqkn0BVmx+utPHbbBvLKs6ickz+YgASgozHAwz9fR29bCJKwe207L/xlG9FQLI17IJmgoyHAw79Yh7/D1I1dq9t46a87iEbig9t0NQV58vZNdAxchz1952b2bepIY9QylbXXB3j0V+sJdIVJJmHd0w1sfK6Bspk5vPKPXax/1hwTd77exj9/uobe9v50hyxTUNOuHp770zbCwRjxWILVT+xjx+utWCwWCsqzmLakGF+ei0duW8+218y12YbnG3nqjk2EAtF0hy9T3JZXmln3dD2JuFnl8qk/bKZldy8Ol53mnb28/Led9LT107K7l4d+tpbWPf50hyxTUKQ/xvP3bmXdU/WDbZyP/3oD+aUmAUl3S5CHbl1HZ6Np76rf2sWTt2+k3x9Jc+QimaN5Vy+P/mr9YH/bM3/cQntdgFf+vpO1T9XR09rPI79YR3tDIN2hSgZp3t3Ds3/cSrgvRvOOXv71+82QSPLU7zex9ZVmAl1hNq9o4vHfbCToD6c7XJEJy+mxUzYjl+lLiikoz8JiTZ3M1ryrl4d/sY62fX56Wvt59o9b2Lu+g+7m4MDPe3j0V+sIdIfSEb5kgJa9vfzr9k30+6MkEkk2Pt/IxucbSCaSh/X8vBIv0xYXUTE777ATkMTjCdY8sY+VD+3G3xGibnMXD/xkDe31OpeYLDobA9Rt6WTVI3voae2nba+fJ363ka5mjTURGQvh/hhr/lXHmifr8HeGqN/SxaO/Wk/z7t50hyZTQCwS55V/7OKNx/fh7wyxZ30HD/zfarreZGyZzWalqMrH9KXFlNTm4HAd3rqSbXvMd0mwN0IikWTTC42sf7b+sM9ZRNKlaVcPT/5uE+11AXpa+1nxlx3s3diZ7rAkA7XXB3Bl2fHlu6ick0+kP8am51fzxqMP8tgvfkzLHj92l21wAak+QmThpc/uJpc+sJukTBanGf9lifcS8luw22L0JB00YxZiKfAPzaNYXp1HSbaLxzY0j/PeioiIiIiIiIhkJiUhmSL6usO07hs+qH3Dc/UpE+REJqr6LV3DyjataCLcP3oTkHo7+tm3MXXCaLgvpoEhU0hPS3DY77u3vX9wYKJIJotG4mx9ZXgHmRKSyVTV295P0/bulLJgb2TEY3p3Sz+JeOpgnbpNXQS6NSFkqutuDg4byLVnfQd9XUN1Y9eatmHPW/d0PfGorsNk/HU198FBYw+3rWyhu6Wfhm3dKeX9/ihdLTrPlfFXt2n4QMPNK5qI9A8l/+puDRLoTP0ebt3rp6dddVbSpz8QYfNLTcPKm3b20B+IsPbpupTyZBKad3WPU3QiQ3o7+qnblNqWGuqL0tVkjqHdbUGi4dRz1c7GPvydmogrst9I13k7X2+lfHbe4ONkErUbS4qR+rF62kP0tKUmf+xs7KOnVQkhRcbKwX29YPpJKufmDz4OdIVN0mGZktr2Dh9Xs/mlJoJjmJSvryvMxhcaU8ri0QRdTVoIY7Lo90fYveagPtkk1G/RhFuRsdDbFmT7qtaUslhEx1UZH/7OENtfT61/0VB81OvfSMnKtrzcRF+vxjBIZhupH3DLGJ9vy8TUXuenqCobi8VC+cxcAHatMX1t/o42WnZ3U1KTjXUg+Wi/JYrbkkfSYiXXEgCHGwCLwySHtMQDJBMWXM4Y/qSbpmQhAIXdQ229VquFc+eX8OL2dhJK6iQiIiIiIiIioiQkU4XdZcPptg0r9+Q4BxvgRCaynCLPsLL8ci82x+gd5mw2K1b78L8X+yi+h2Q2h2v4cfStykUyidVmwe0bvuKaJ9uZhmhE0s9mtw5bBRPA7hz+ve7yDl9tyJ3l0PFfRqwb3hwn9gPqxkjHWW+Oc8T6JzLW3CPUWV+BC7vDNmLbgK51JB1yiw99fW9zjPAdbDHf7yLpYnfayBuh/mbnu7HZrLhGWAHb6T68VS1FRpPNbsVqG/69b3OaY6vLM7yu2hzWEfsXRKaqka7zXF57StK0/WUi+43Uj+X0jHxstY90visio8I9wnm5y2snEho6hlusFp2rT2HenOHf87klnjHtD7DaLThG+E4YzbEOkl52hw3nm/Q1icjoszlGHidpd+o8W8aezW4ZsX/NNsr1z5sz/Dskt3hsz1lERoNnhLFrriy7+qUlRSKeoKOxj6JqHwDZhW6y8lx0t+xPoG6lvT5ASW02ANFImJA9hgeTYDTX0gcOLwAWp7nGs8RNMiiPPU4wmUVjsogCgth6UxMHL6/Oxx+OsbtDyctERERERERERNRqN0XkFnmompuP44AONqvVwrLzqjVBQyaFqrn55BS6Bx/bnVaOuaAWu330OtZyiz0cd/G0lLKKOXkUVPhG7T0ksxVWZTH3xLKUspnHFFNUpTogmc9ms7LozMqUiUYOl43pS4vSGJVI+uQWe1l+fnVKWc2CAvLLs4ZtW1jpG/a3csZ1c/Dlu4dtK1NLUbWPmkWFQwUWOP26OfjyXINF05cUjXAdVoPVpuswGX9F1dlUzMkbfGyxwBnXzqGgIovlF9akbFu9oICCiuHHRJGxVjU/n+wDru8dLhvLz69Jab/KL/MyY1lxyvOWnF1FXql33OIUOZjDaeP4y6anTBLLL/VSMSsXp8fOSZfPgAPyPniyHZTPyhv/QGXKyyn2cOxBbZyVc/MpHPjeL6jwsuC08pSfn3LlTHKLdYwV2W+k67xFZ1bSsrd3sKxqfj5F1dnpCE8yVOXcfHKKUvuxSmtymHtSacp2C04t13mtyBiqWViA0zOUCMBitbDgtAqatncPlp1w2XTySvR3OFWVzcilsHKoTcxqt3DSFTPHNDGNL8/NKVfOSinLL/NSXKNzickip8TD/JPLsRzQLuDy2qmaX5C+oEQmsYLyLI67dFpKWV6pjqsyPrILPZx4+YyUspJp2RRVju7YspJpOYOT88EsTHTyu2aOmGBYJJNULxh+TbbsvBolgpQU3S39xKMJigfG5VosFspn5dIf8JJdVIzFVkIibo6FAMHeHiLOBK5kHgC59IF9oB3OZgOLBRthADzWJLG4l8ZEIWXWAAl/IOW9l1TnArC+vmcc9lREREREREREJLOp1W6KsNmtVM8v4JKPLaZ1j59EPEHFnHzKZuSmOzSRUZFX6uXyzy2nvc5PPJagsMJH4Sh33lltVhafVUVxbTate3rJK/VSPiN3xNWQZHJyZzk54fLpVC/Ip6Ohj4KKLMpm5o648qVIJqqeV8Dln15G445urHYLFbPyKJ+Zl+6wRNLC5rCy7Pwaymfl0bqnl4LygWO6b/gx3Zvj5Mwb5rLw9Er6AxHySr1KQCUAeHNcnHPjPNrr/IQCUfJKs4bVjeKabK784rE07egiFklQMTt/cDUWkfHmy3dz/ocW0F4XIByMkl9m6qzVZmXpudWUzcildW8v+WVZlM0Y+ZgoMtbyS7O44rPLaa8fuL6v9FF4UPJPd5aD06+dzezjS+lsDFBck03p9BytGC9pVz4rj6u+fCydjX3YnTaKqn3kFHoAk0D3yi8eQ+P2HtxZdspn5VEwQgI8kbFms1lZclYVJbXZ5nu/NLV9y+VxcNI7ZzLr2BL6uiPkFnsoqvZhsVoO8coiU8dI13mFlVlcdfNxdLf04fI6KK7JJivXdegXkykjv9TLFZ9dTludn3h04Dy30sfJ75zF9KXFdNQHKKr2UTo9VytXi4yhoqrsgfPybqKROBWz88gt9nD5Z5cT6AyRXeimuDo7JbmgTC05RR4u/cQS2vYFiEbiFJZnUTgO/QGzjishu9BN884esgvclM/KJbtAidAni6wcFzWLCrjk40to3dOL02unam7+qE9IF5Eh804qI6fQQ8vuHnwFbspn5qotTsaFxWJh/inlFFRk0byrh9xiL+Uzc8nKG902gpxCD5d8bAltdX6i4TgF5Vn6XpEJoXxmHu/41FKadnQTjSSomJVLxey8dIclGaa93g+QkuS5bEYuO1Z5qV5wEltfawGgck6+2b6rmaQFHBaTlCTX0gcO0z9nsViwOBzYbWCzx/AAybiPRqDGFiAZCpGMRLA4TR/JrGIfLruVDQ09vHN55TjtsYiIiIiIiIhIZlISkinE6bFTNbeAqrlaSUMmp9wiD7lFnjF9D3eWg2mLipi2qGhM30cyV06hZ3ACkchEY7FaqJybT+Xc/HSHIpIRPD4n0xYXMW3xob/Xs3JdmjwkIzqculFU5VPiGskYvjw3vrzhExiO5JgoMtZyiz3kFr/1dZcv382sY91wbMk4RSVyeIqqsimqGp5wzOawUj5TiSAlM7h9jrf83vf4nFTPLxznqEQmlpGu80qn5VA6sPqmyEhyijzkHNSPlZXnYubyEmYu13mtyHjZnwToQFVzlYhVhmQXeMguGN/+YKfLTvW8AqrnaTzPZLW/XVbtryLjw53lZMayYmYsK053KDIFubwOahYUUrNgbNvXsgvcSlomE1LZjFwtoClvqb0ugNVuIa/MO1iWX2qShVrtNTg82Tjd/YMLSLZ01ANgx9SrPAJgHzo+WlwunFYbdkc/3liSZCybejycaN8KQDwQwF5grsXsNitzSrPZ2uIf+x0VEREREREREclwWr5FRERERERERERERERERERERERERERERERE0qatzk9hhQ+bbWiai93pJ5nopWGHGyjFZmsY/FlLl7mfTJgE0aWWbnAMJZa0er04LBasVj85fVHARj8uZjg6AUj09qa8/7yybDY3KQmJiIiIiIiIiIiSkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiEhaJJNJ2usCFFf7Usr97e3EQmvo9yexWJJE+lYP/qy9twWASMyDMxElhz5weAd/bs3KwoEFkt0UBiKD5fMdTQDE/YGU95pXnkN7IEybPzzq+yciIiIiIiIiMpEoCUkaxaJx/B0hwsFoukMRmTSCvWECXSGSyWS6Q5FxlEwmCXSFCPaq0V9kPPUHIvg7QyQSOubK5BGPJfB3hggFdI4uRiQUo7ezn0g4nu5QRNKq36/vfRldfd1hAt26hpOJq68nTJ/qsEwi4WAUf0eIWFTnvSJvV6Q/hr8zRDSiv6epLpkY6LvQhAWRSWlwvEe/2pInI7ULy2jS+DARiIbj+DtDREKxdIciAkDQHzFjDNXvJTIqohEd52V0BLrChPqiFFVnp5T3trcSD7/OKe+uZfaxXfR11RGLmIQi7YE2AIIhO8XxbrDZweEZfK41KwtHIkk82s60A5KQLLTuBiDh7015r3ll5r23NvtHff9ERERERERERCYSe7oDmKo6m/pY+dBudq9tp7Ayi1Ovnk3FrLx0hyUyYUXDMXatbeflv+0kGo6z7LxqFpxWQVauK92hyRgLdIXZtKKRtf/ah9Nj5+QrZzJ9SREOl77iRMZKPJpg76YOVty/g/7eCAtOr2DJ2dXkFLrTHZrI29LdFmT1E/vY9kozOUVuTr1mNlVzC7BaLekOTdKkbZ+fl/62g8Yd3VTOzuPkd82iuCb70E8UmUTisQR1mzp48f4dBHsizD+1nKXnVpNT6Dn0k0VGEOqLsm1lC6se3k0yCcdfMo3ZJ5Th8TnSHZrIYQn1Rdnxeiuv/XMXiUSS4y6extwTy/BkO9MdmshRa9zRzYq/bKejoY/pS4s4/rLpFJRnpTsskQmpZXcvK+7fTuteP9UL8jnpipkUVvoO/USZdAJdITY+38DaZ+pxeeycctUspi8uwu60pTs0ERkFnU19vPbQLvas7aCwKovTrppNucZ7TBoHtgtXzMrjlCvVLixHr6upj9c0PkymuPZ6Py//fRcNW7sonZHDqe+eRUltTrrDkikqGo2zd30HL92/g1AwyuKzKll8ZhW+fI13ETlaKcf56TmcepWO83L02utM4o9hSUjaWnF6PCw/fyabnt/Luiehp62FwspqukKd4IOefitFiR5w5oBlaKyXNSsLW0c7kVAzRX35eCru4kthB9nxNsBGvDc12cj+JCRbmns5bXbR2O6wiIiIiIiIiEgGs6Y7gKko3B/l2T9tZcfrrcRjCVr3+vnnT9fQ1dyX7tBEJqzmXb386/ZN9HWHifTHeO2fu9nxemu6w5JxsGNVCysf2k0kFCfQFebJ322ieXfvoZ8oIketta6XR3+1nt62fqLhOGv/VcfG5+u1QoxMaLFYnFUP7WHTC43Eogk6m4I8/LN1dNRrVYupKtAV4uFfrKN+SxeJWJK6zV088st1BLpD6Q5NZFy17fPz8C/X09NqvvfXPV3PumfqSeh7X45S/ZZOXrh3G/3+KKFAlBf+vJ36LZ3pDkvksDVu7+a5P22l3x8l3Bdjxf072LdJdVgmrq7mPh762Vpa9/qJxxLseL2VZ+/eSrhfK3SLHKmetn7+eesamnb2EI8l2LOugyd+u4F+f+TQT5ZJZ+urzax6dC/Rgb6LJ36zkRb1XYhMCuFglKfv2szO19vMeI89fv75s7V0twTTHZqMgkBXmEd+OdQuXL/FtAv3dYfTHZpMQOH+KM/crfFhMrUFe8M8etsG9m3sIB5L0Litm4duXYu/Q/1tkh6tu3t5/Ncb8HeGiIbivPHYPra83JzusEQmrGBvmMd+fcBxfrs5zvd29Kc7NJmgWvf5sVigsDI1UXpveys5xSUA5JaWA9DTao7f3eFuLEkLnWEoSXaDOzfluVavF1s8RqSvBU8iRL5jA3Pz9kK4C0iSCKSODSv0uSjOdrGlWWPGRERERERERGRqUxKSNAh0hGna3p1SFosk6NKgFJGjVjfChKWNzzdosPwkFwpG2fBCw7Dyhm3d4x+MyBTSUdcHB8073vhCI8FeTaiQiauvK8K211IHFyUSSTqbdI4+VfW09Q8bWB7oCtPbpkGRMrV0NA7/3t/0YiPBHk28kKOz9dWWYWWbX2pKQyQiR2ekpLebXmwgEU+kIRqRt6+rJUg0HE8pa9rRTaBD3/UiR6qnLUi4L5ZS1tkUpLddky6mmv5AhI0vNA4rb9zZPf7BiMio83eEaNmVmlQoGo5rvMck0dMeJNA1vF24u02/Xzly/o4QTTu6U8pikYSSFsmU0tMWorct9Zqo3x/VcVXSZqSFrTa+0KAEoiJHqac9RE/r8ON8T5vaw+ToNG7rpqg6G6fbnlLub2slp6gYgLzSMgB6Wsw4r55YL96ki9aolVI6wZOX8lxrVhbWaIxEPEqOM0ROEDocDizxCFZ7knjP8O+GeWXZbGlWQmERERERERERmdqUhCQN7C4rdufwj/7gBjMROXzZ+e5hZTnFHmx2HeYmM7vDSk6RZ1i5L8+ZhmhEpg6Xb/g5iy/fjW2E8xuRicLutOLJHv794fLqHH2qGvH6zAJOt238gxFJI5dnhO/9PBd2p/4W5OjklXqHleWXDS8TyVS5JcPbIfJKvVhtuh6Sick5wne9w2XD7lKdFjlSI11HWq0WHC61LUw1doeNnMLh/VZZua40RCMio83usmF3jDDew6O2ksnA6baD5aBCi8bzyNFxuGwjjg9zqD7JFOJ027AcfFxFx1VJn6wRxgT4Ctwjnt+JyKE5XTYs1uEHeh3n5WjEInGad/dQOScvpTyZTNLb3kZOcQkA3tw87E4XPa3NhINBeixBcpJVBJNWpllbsHhyU55vzfJijZgFLT2WANn90DJQRR25NmLt7cNimV+ew7aWADEtQiAiIiIiIiIiU5haztMgp8jDKe+elVI2fWkRhRVZaYpIZOKrnJtP1gGJJ2x2K8deVIvdocFek5ndYeO4S6ZhtQ91ZGXlu6ick5/GqEQmv9LaHAoOmChqsVo45d0zcXsdaYxK5O3JynVx+nVzUsrKZuRQVOVLU0SSbnmlHpaeV51Stvz8mhEnz4tMZiW12RQc0F5hscCpV83GnaXvfTk6c04oTZnw7nTbmHtSeRojEjkyM5cX48oaqsMOl40Fp1WmMSKRt6ewIosZy4tSyk5+18wRE/+KyFsrKM9i/qmp5zXHXzad3FL9PU01DpeN4y+bjtU21HeRXeimfFZe+oISkVGTW+Th5HfNTCmbeUwxhRVqS54M8ko8LDuoXXjZedXkq11YjkJOkYdTrjxofNiyIgorNT5Mpo68Ei/HXTItpWzRmZVKTC1pUzYzl5zioet0q9XCiZfPUIIokaM00nF+4RmVOn+Wo1K3pYtELEnVvIKU8r7uLsLBPvLLqwCwWCzklpTS3dJMV1MDfZ44PssMAGY6m8FXmvJ8m88HoRAkk7hi3WSF7Gwb+JmnykustXVYLHNLs4nEEuzp6Bv9HRURERERERERmSDUcp4GFouFuSeVUVCRRU9LP95cJ8U12SOuvC4ih6egPIt3fv4Y2vb5iUcTFFb5NGl4iiifmctVNx9HR0MAm9NKcXU2eSXqxBIZSzlFHi791FJa9/qJhmIUVPgortYxVya+aYsLeffNx9LV1Icry0FxTTa+/OGr1srU4HDZOe6iadQuKKS3M0R2gZuS2mzsTiW5k6klp8jDpZ9YQttePxF978soKK7O5t03H0N7XYBk0jwuUGJemUCKqrK58ovH0l7nJ5mEoiofhZU6LsrE5fE5OeO6ucw/pYJgT4TcEg/FtdlYRlqmWETektNj56R3zmDW8hL83WFyi9wU12Zjs2lNiKmoYlYe7/6y6btwOK0U12STW6y+C5HJwGK1MO+UcgqrfPS09uPNc1Jcna2ErZOEw2Xn2IumUTO/EP9Au3Cx2oXlKFksFuaeXEZB5UHjw3waHyZTh81hZck51ZTPzqO3PUR2vovimmycSvggaZJX6uXyTy+lbZ+faCRBUWUWRVXZ6Q5LZMKyOawsObuK8lm5qcd5j47zcuS2vtKM2+egan7qIoQddfsAKKquGSwrqq6lYesm2vbtIeCJUYZJQrLAuQdyzk55vr24GGIxHPEEzmAznqibtYkwYMFTaqGnpWVYLEuqcgF4dXcns0r0PSEiIiIiIiIiU5Na+dLE6bJTOTufytn5h95YRA5LXolXySemIIvFQnFNNsU1augXGU85hR5yCrWKq0wudoeNshm5lM3ITXcokiHcPgfVCwoOvaHIJKfvfRltBeU+CsqVtEEmroLyLArKlTxHJo+sXBdZi13pDkNkUvBmu6hZpL8nMUkKSmqyKVHfhcik5HTbqZyTT+UcjfeYjNxZaheW0aPxYSIDx9V5Oq5K5sgt9ipJpMgo0nFeRkNHQ4Bda9pYek7VsKTOrbt3ApBfXEkiFAOrhcr5C9n68gu8/MJDxGqT9AcrKI32UurugtyqlOfbS8sAyLJYsXS2khfOpSnZRLzqOHyJrXRsGd5vPavER22hl8c3tvCeE2vHZJ+T8QSJQJRkNEEykYREEgCLwzpws2Fx2bBYlTReRERERERERNJDSUhERERERERERERERERERERERERERERERERkTCVjCeKBKNHuEHvWd/DKs/U4HRYc9etZ86O1FLtrsQUh7o+yfd9zZDsK6PnxZnoGnu+Nmf83tq0nWe1gxz4H53WvgmwIthTB+jZsOS5s2U7sJaUA1OYVYduwixlZy4Emts29inn1X6Fm2RoSL9yK9bRPgMUk/LBYLFyxrJKfPrWdJze1sKAiB4fVQkGWE7vNSjyRpLc/SiSeoCTbhcUylCgkGU+S6IsQ7z3wFibeGyHhH3jsj5Doi0LyEB+U1YI1y4HN58Dqc2DLdpr9ynViyxm4n+PE6nNisSlZiYiIiIiIiIiMLiUhERERERERERERERERERERERERERERERERkcOWTCRJRuMkIwkS/TESfVESfVHiwSiJvhjxQIRgZ4i+7jB9PRGCfVGCoTg98STtsSRxwEmEsP8fvNBcD4DL4WXR7LOonD6P1h11zF94GrlnTAcskEiQHY5zwuorWGX9M/G2iwglLVzFcyQSdjpfzIIXtwzFFwuD1UbZ65uxACX+bABue72BbxZ/HfemH+J46uvs2vYYd9QsYIY9lxP3vcbpfT3c5/0M/37nqpT9ddushOKJwcfT3U4u9nm5yOaiKBgjERghuYgFk0Qkx4Ut14WzOtskD8l2YnFYTQIRqwWSkIwmSGMAyqYAAQAASURBVMYSJCPxwc8v0RclHogSa+0h7o9AIjn89bNTE5OYRCUD93OcWD0OLC4rFocNi1UJS0RERERERETk0JSEREREREREREREREREREREREREREREREREZAroeXIvkTo/JJMmaUYiSfKA+yQ56HGS5P7tIgmS0TiJSAJiQwk5Vgdj9CcgnoQ4SaJJCCUgcdB7WwCnM4rd0UAytJ3e3g1UzJ7Lqdd9j2QiwaqH/87rax7h9U2P4HC5OeGm68kuqwCgIxDm/Xf+i31xJ37/B0nGcrk68QJnVa8nvvQDlJ9/BvHeCAl/hHivuUV3n0B448uE3R52Nm+ivKuI53Ie5j29tWSXlnOpu4v3173AZxpeJicRwwr0Wyw8mfgY97pOYJOjnJzQ+dhiuYTi4AZysJCwWHghGuMX7d38Eqh1OyjJc+J22vjF+fNx5pkkINYsp0k0MgqSiaRJStIbId4THtjH8OC+xjr6Ce/uIdkfe9PXsDisWFy2gQQoVrCCxWqFgWQoFuvA/zaL+WUBWMydgqvnYMt2jsq+iIiIiIiIiEhmsySTB6danRwsFksbsDfdcQwoAtrTHcQY0H5BezKZvGg03/wo6u5k+j1oX8bPqNddSPuxN9M+80yKJ5NigbcfTyYce2Hyfa5jQTGlypS6O5Yy8Xf+dmmfjEyrv5n4e1FMh2e8Y8q0ujuSTPw9jZWpsq+jtZ8Tof6+XRO5Tkzk2GFs458KdXe/iV4PDsdU2sd01t1M+ZwVR2bFAIcfx1Q49mbK7+RITLSY0xHvVKi7kJl1QTEdvjeLa7zqb6Z+Lkdrsu0PTLx9yvRj70T7PA9F+zN6Mr3uHkom1oVMjAkyM67JMsYBMu/zVTyHpmPv25eJv9cDKb63J93XbKMpEz7rdMeQ7vfPhBjGou4+htmv0ZLuz+hITKRYYWLFe3CsYzIuXURERERERETSZ9ImIckkFotlVTKZPC7dcYw27VdmmGjxvhXti7wdmfaZZ1I8mRQLZF48RyvT9iPT4gHFNBVNxs9X+5SZMnEfFNPhycSY0m0qfSZTZV+nyn6Ohon8WU3k2GHix58ppsLnqH2cOjEojsyLIZPiyAQT8bOYaDFPtHgnkkz8bBXT4Ut3XOl+/9E22fYHJuc+pdNk+zy1P7JfJn52mRgTZGZcmRjT0cq0fVE8h5aJMU00mf4ZKr63J9PjOxKZsC/pjiHd758pMWS6ifQZTaRYYWLFO5FiFREREREREZGjY013ACIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIpJeSkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyxSkJyfj4dboDGCPar8ww0eJ9K9oXeTsy7TPPpHgyKRbIvHiOVqbtR6bFA4ppKpqMn6/2KTNl4j4opsOTiTGl21T6TKbKvk6V/RwNE/mzmsixw8SPP1NMhc9R+zg+MiEGUBwHyoQYIHPiyAQT8bOYaDFPtHgnkkz8bBXT4Ut3XOl+/9E22fYHJuc+pdNk+zy1P7JfJn52mRgTZGZcmRjT0cq0fVE8h5aJMU00mf4ZKr63J9PjOxKZsC/pjiHd7w+ZEUOmm0if0USKFSZWvBMpVhERERERERE5CpZkMpnuGERERERERERERERERERERERERERERERERERERERERERERCSNrOkOQERERERERERERERERERERERERERERERERERERERERERERNJLSUhERERERERERERERERERERERERERERERERERERERERERESmOCUhERERERERERERERERERERERERERERERERERERERERERERmeKUhERERERERERERERERERERERERERERERERERERERERERERGSKUxISERERERERERERERERERERERERERERERERERERERERERGRKU5JSERERERERERERERERERERERERERERERERERERERERERERKY4JSERERERERERERERERERERERERERERERERERERERERERERGZ4pSEREREREREREREREREREREREREREREREREREREREREREREZIpTEhIREREREREREREREREREREREREREREREREREREREREREZEpbtImIbnooouSgG66jfVt1Knu6jZOtzGh+qvbON1GnequbuN0G3Wqu7qN423Uqf7qNk63Uae6q9s43kad6q9u43Qbdaq7uo3TbdSp7uo2jrdRp/qr2zjdRp3qrm7jeBt1qr+6jdNt1Knu6jZOt1GnuqvbON5GneqvbuN0G3Wqu7qN423Uqf7qNk63Uae6q9s43cZCuvdJt6lzExERERERkRFM2iQk7e3t6Q5B5Kio7spEpvorE5XqrkxUqrsykan+ykSluisTmeqvTFSquzJRqe7KRKb6KxOV6q5MZKq/MlGp7spEpborE5nqr0xUqrsykan+ykSluisiIiIiIiIiIkdj0iYhERERERERERERERERERERERERERERERERERERERERERERkcOjJCQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJTnD3dAUga+FugZSOEe6F4DhTPB4sl3VGJvH09DaZux0JQsgCKZqU7IhlvPfXQsgHiMSiZD4Uz0x2RiIiMpkjQfNf31EFOOZQuAld2uqMSgc7d0LoJLFYoXQh5NemOSCTzde0xx3SLBUoWQn5tuiOS8dS5B1r1+5cJrnULtG0Fl898/2eXpTsikczX02ja7mIh03ZXNDvdEYmMvmCnqed97VAwE0oXgM2R7qgkXdp3QNtmsDlNO1ZuZbojEhGRySqZNG3U7dvBnWO+d3wl6Y5KDtRTb9pD4xEonqfrIZGJIhwwf7u9DZBbZdoBnVnpjkqORLjP9Ef01JtrspKFpk1XZCoJdg20V7VBwQwzttbuTHdUImPH3wzNGyDaB0VzoWReuiMSEREREREREZmQlIRkqulpgH98DHY/Zx7b3fDev8O0U9Ibl8jb1bkL7n2PGVgD4M6F9z0AFcvTG5eMn44d8KfroGO7eezJh/c9COVL0huXiIiMjngM1twNj3xxqOysr8GpnwaHJ31xibRshDuvMAN2AHJr4L33Q/Hc9MYlkslaNsEfrwR/k3mcXQE3/s1MRpbJ7+Dff04lvPev+v3LxLLvFbjrnRDtN49rToYrfwN51WkNSySjde6BP98IzevMY1c23PgAVB2b1rBERlV/FzzxDdN+ASZR5TV3wvx3pDcuSY/G1aa9INRjHhfPh+v/ZCb7iIiIjLbdL8Dd7zYJLgBmXQCX/wxylDAzI3TsgntvMMnJYGA8y4NQsSytYYnIIUTD8Nqv4alvD5Vd+H044d+VbHKiiEXh9dvNtfp+598CJ35MCRhk6gh2wZPfhNV3mscWC1z9B1hwRXrjEhkr3XXwt3+HfS+bxw6P6YuoOTG9cYmIiIiIiIiITEDWdAcg46xp9VACEjArDj7xDQj1pi8mkdGw+4WhBCRgBnWu+KnpTJSpYcfTQwlIwAz4fvU2SMTTF5OIiIyezp3w+NdSy577PrRvS088Ivut+dNQAhKAnn2w5ZH0xSMyEWy4fygBBYC/ETb+PX3xyPg6+Pff2wAb/5G2cESOWDgAT/6/oQQkYAYyNryRtpBEJoR9Lw0lIAEI++GFH0EsnL6YREZb88ahBCQAyQQ89DmzQIBMLbGo6aPan4AEzKTj3S+kLyYREZm8gl3w6JeGEpAA7HgCmtakLSQ5yJ4XhhKQgDlHeOlnGs8ikuk6tsPT30kte/I/UscmSWbr2A7/+lZq2VPf1u9QppbWTUMJSACSyYH2qvr0xSQylhpeH0pAAqY/71/fNn0SImmWTCZJxDWmXURERERERCYOJSGZavytw8vat5rB8yIT2Uidg83rINY/vFwmp9bNw8ua1phkSyIiMvH1d6UOoAUzOCLYmZ54RMAkO2tYNbxcg7tF3lr968PLGlaPfxySHvUjHDcb9fuXCSQSgPYtw8sPTK4jIsN17h5e1rIBIn3jH4vIWAm2Dy/ra9MA96koGoSW9cPLNdFNRETGQsQPHTuGl490biLpMVJCfY1nEcl8/Z0mueSBEjHo705LOHIU+juHL16ViGuMgUwtwY6Ry7RwpUxWvY3Dy9o3qy9CMsLqRx/klx+5kb7urnSHIiIiIiIiInJYlIRkqimeO7xs4ZXgKx7/WERG0/SzwGIBqx3sLlO2/EZw56QzKhlPc66Cc78LDu9Q2dLrwJmVvphERGT05NVAdjk4PGBzgScf8qZB/ox0RyZTmdUGy94zvHz+5eMfi8hEsvQ6cPrMubszG3xlsOSGdEcl42XJNeb/E78IJ91s7i+6Mn3xiBwpbxEsugou+SVMf+dQeenCtIUkMiHUnGSu5/a33zo8sORac20nMlkUzDTXiRYbXPNnsLig6gTIqUh3ZDLePLmw5Dpz/933gHOWuT/t9PTFJCIik5evFBZcMby8aPb4xyIjG+kcYMl1Gs8ikunyaoa3W2QVmXKZGPJqwVto7h/zUTj3OwPjDPQ7lCmkYIZprzpQxbGQU5meeETGWtki8//0d8GlvzT3F10NWZonIem34s9/JOTvZdcbK9MdioiIiIiIiMhhsac7ABlnFcvg8lvhia9DqAfmXgqnfRZsjnRHBp17IR6D7t1mBUSbA8qXwrTT0h3Z1BUNQeMb0LzeDJ4NdkAsZDogOndCfq3JDh3qNZ12XbvNAJdEHALNUDQHuveCO88MLu+pg+J50NMAdge4cqFrj9murwUSCfCVQOcuKJgO/T3m9fOqzUqZOeUQC5tVCgpmmud6C03ykZ4GuO5eaNsCdrd5HX8T7HwaepvAYjXbdu6CwlnQ3wHRMORWmLLcmoF96YH8aQP7UmJWtPDv35d9ZhCIzQmBFsibAb31YHeCK8c8p2iOWdmwvwvKlkDlMWZAvYyd9h0me3nXJiAMV//B/I63PgoLNAFYBAB/CzS8bo5TxXOh4hjwFqQ7qje371Wz+leoG0oWQvFiKKx+e68Zi0Ddq+ZzcHigZAGULQZP3mhELOPBlQ2X/RiCXea+O8ecW6z/szkn8RQOJJ6ymPOVjm0mSUnYP3C/Fty55rs+uxRat0LBNFM3wgHIKTMrBebVQLjPrD6XU2mem1NlVhJMJs1kOX+z+Z6fdpo5D5GJqW4lNK42K5YVzgSLA6J95py3cIY59/M3mUQ3rlzo2TswIM1qfu/RIPS1mtXO3vUrWHMP1L0Cp3wapp+R7r0TeXtaN0Og1RxnHVnm2JlVbK6Dcioh0GgSh/ibzXVT2A9WJyTj5n5eLfgbILvCXFN17jR/awUDf0+ubPN34ymCeD+0bAKHHdb/1Vy72Z0m4VQ0aK4F3T6oORVK5qX7k5HRMOdd8L4qc/2eTMD7HoTS49Idlcjh66yDWedCy0aYdyqc9VGIAhWL0x2ZSHq0bjLX8ZEA5Fab5AvJgRVmLTZzDpBMmPbhK34FJMy1lQXTHrz5AYjHzXOcA+cdnnzoazfnGT0NkFtl2v+8+aYPIdZvzkW6dpnzjkDrQMJKp2mXza0213e5Vaatuq/VtIf4WyDUBaWLzHVg+1bTnusrNdcGYPokov3mcXaZeV77NtPGXLrAJFFreN2cG+VUQdMac63pKzHnUHk15hwmvxbKl4PDnaZfjKRFyXy46Sno2A6dm+CK/4PC2ZpcOlXNudhcA/Vsgws/Y+pH4ax0RyXy9kUisO8F03/8Vv35HXugbaM5Vyg/xlzrN62FZAzKlkLlyeA+xPdk42qof92cH5QvhdqTtfiAZJ54FBpWQyxoznktNkhawGo158GJKGAx58vt28wE0OoToWoU20LsLjjrq2bcxo4nzfn0hd83/RiSGapPhPO+Dc/9l+nDWvYeWHJ1uqMSOXKRoPl+bl5nrqWrjjt0Moddz0HzWnO/bCnMOPOtt+/aCw2rzLV+usdd5U+D6+6BBz5h+jmK5sAVt5r2BpkY8qrhwy9D51ZzLmqxwDV3Aa50RyYyfkrmw7V3wz8/Y/p6q46Hy35iEqhmgrqV0LrRtN0WzzW3kvnpjkomstLF8IFHzTyESAfc8BfInTU8GY9IGlhtZupWe93eNEciIiIiIiIicniUhGSqcWbBMTfCjLOGkkk4vSRjMfrXbyC4+g2sHi9Zxx2La/Y4rorS1QBJoGs73HcjxCOm3JNvOn6ma2WwtNj+OPz5fXDsB2H1XWYQ9fm3wD3XwLzLYOsjsOtZuPC7cO/1ULEccith/f1w7jfhL+83g69nnguv/grO+CL842Nm4Pnx/wbPfh9O/Cis+p2Z5HnON+DBT8Dia2DD/VC/Ei78HtxzrZnIaXOZ9zz/FrjvPSYRSeUx8Prv4eyvmefaPbD4anjsy2YC6Gu/hmAnnP55+MdH4dgPwJq7TcfF+d+BP10Dcy8xg853PTO0L+VLzUDxdX8e2JcPQFYRsaUfJdQUor+xH2dhH57sdpwFXnjme3DCh+H1O6Bt69BneNUdWtF5LHXXmwHdD33WTIAE01lw9e/B5TX1L0OEd+wguGoV8b4+vMccg2fRIiyODEgAJRNGeM8e+t94g1hbG55ly/AsWYLVcxiDbfp7TPKx9X8ZKjv9C3DmV8yg30xT9yr8/SMmYQqYQSDvvA0Kr317r7vjX3DfDWaiE5hJSud/23yfZUIyNjm0dX+Gdfea5DG1p8MT/zE0YA3MANu8GsguN4PfPAWw/TFY+duhbeZcaM4VmteRWHojoc27CNaHsTmTeCvacWWH4Z7r4IwvmXOfZMKcBz36ZXMes/qPZvJIdjm88CO46vcwQ8kmJqS6lcRevY9gqIpwfQeuqijepUuwb30QFrwDHr3ZnPvud/bXzbXJ3z9iBuR07Ya612DLQ0PbXPCfcPnPzMBDDV6Qiax1s7k+e+xrcPyH4OHPw7nfgr8M/P/XD8Epn4Snv2uOqy2bTHIzmwO2PUbk0rvpf2k9kY5+3PN9eDsexLbj7+a1bU545y/NgJ/SRSbB033vgVM/Ay/8BWaeZ9otrDZzvH7i66ntA+9/aGjlIpmwki2rCW3YTHB3BxaHHW/1Wtxw6MHnIpmi+Q34201D1xa5VXDlb8HlS29cIunQvB5+f6mZGAxm8uO53zLtv117TVK/gpmQU0a0K0h/XzHhhnbcVfm480M4vJhrvcrjTIKRDX+D428y5wAnfgye/A84+RPw6Jfggu/AXz5n2nfrV5r3XHilOXc//zvwyBdgxtkmmUn9Kjj5k6ad96SPm3bu7n2mXfnxr5nJoed927xPMmles3G1mYzi8Jq25ie+YfapbAlUHmvafQFO/yKs/ZNJilI8F6afadqgi2abdvAnvm7auR/7Crzj/0ZekV4mr546YttfJ9jQR7iuE1e1FW9pO3aHF8oWpDs6GU+hALE9a+nf3UZoXyeucvC0PY9jicMc70Qmsj3PmGv5eNQ89uTDNXcOT8pb95LpFwa48QHznAPPGa69G2af/+bv07jG9FN37zOPLRZ49+2H7HeN1NfT/8Zqog31uBcvxrN0Kbbs7CPfT5mw+jdvpn/V6yTjcbzHHYt74UIsY5lMvOENMz7AVwxWx1Ay83jcjEGwDCQgeeSLJnkvmMn0Nz4ANSeOXhxFs+GaP0Bvg2lXy3ubyf1ldHnzTRvognea66W8alNPRCaazQ+avrL9ypfBdX8yY8VGsvNpuPc9JlknkCyaT+i4HxDctAuLx4P32GNxz5kztH13vTlnaF4/VHblb9ObtKf2ZLjpCbOIgbcIsgrTF4scsXgwSGjNGvpXvow934e3oA/nC++Hq+8AaxJyy9MdosjYs9pg7sXmmB3uNeNdxjFhbrS1jf41awhv34Z77lw8y5ZhLyoyP2xYbdpRG1YNPeHc/6ckJPL2tG4m8cz3CeVfRHBXF7asNXiPd+HKK1FfnqRVpD9IKGDaBQKdHWmORkREREREROTwKAnJVHXQgIPgqlXs+9BNZuVBwJaXR82df0jt6BtLVhskQrDy9qEJRmBWLdz1tJKQpEOgFR77qrmfUw6vr4fZF8CGv5rVI0sXmsQbZUtg78smqc2Ms0xiEV8p9NSbgWTH/xu89DMzgCKZNAPPT/wIvHabeW1PvlnxZ+GVZmJvMmlWol93H9ScDNueMIPYqk4wr10ww6yYFemDuReZCcCuHLOqT1/7UOIRMJPXuvbA8hth5e8G9qXCJC2ZdR5s/LvZl7LFZl9KF8G+V8y+zDwbnv2BSWLR2wihbpKn30zXS420/+7ewY/Je/wxVF5Rag6mWUWpCUjAdJLUngrZpWP3u5rK2raYz3x/AhIwv9MXf2IGInTsMHU1zcLbt7P3xvcR7+42BVYr1b/9Db5TTklrXDJxROrqqPvwR4ju2zdYVvG/PyL3kksO/eT2rakJSABW/AQWXwUlGTj5oXXTUAISMN8Lz/3AfN+UHmUnc7ALnvr20CRBgO695vhRssBMGpLM1rUXnvymmfTe1w79nakJSMCcW5z2BTPIt+Yk6NwNb/whdZttj8Ml/wPbHqUvOI36r35jsF7Yioqo/a/P43JmwWu/gWU3wCu/MOcFg2XvMWVnfdWcE+15AWpPAZsuqyaaeOsuWl8O0fPwbYNluZdfROm/vQ9b+5rUBCRg6tdZXzPnrvUrzcTGghmp2zzzPZh3qRKQyMTX22S+I/NrYdMDMO102Pg3yK02599gVjvsazNlq/9oJuo+8z1iJ32Dxv+9i/43ho7Rxf9+PYUFs7B07jDX+xv+aibr2jyw6nawWM05fO1p5v3mXmwG8m5/fHj7wPYnlIRkootECO5sZd9Xf24m4wDW7Gxq/6cSd3UEHBmYJE/kQC2b4IX/Sb226Kk3q7/Wnpy+uETSZcsjQ5OJAWJhc52E1QzmLVsEVjvx5r20Ph2g98k7BjfNv+7dlCzqxJpTadpOX/45LH+vSfaXXW6++8G0U7tzYfND5rzkjT+Y5KrP/RAcbrPN2ntgzkXmXOLsr8H2J6Gv1SRKW3W7SUTy4v+a8uoTTRvwtsdMu+2eF00SytO/YJKQRIPm/6LZ0L7d/H3Pv2xoH1/7NRzzPnj5VnPOtOjdprx9u0mODeb6ceGVJuFJ7SmQVTx2vwPJKPHuVlr/uYaeh58aLMu99FxKa5djK0tjYDLuEq3b6HhyA513/32wzHfqCZTXHIO9Io2BibxdwS7zPbc/AQkM9Oc/l5qEpHUTPPdf5v75/wk7nhx+zvD6H6D6ZHC/yQSghjeGEpDAUF9BzUmmv3cE0dZWGj7/BULr1g2WlX7ta+Tf+N6xTUIhGaN/40b23vg+kkEz2d3icFBz5x/wLl8+Rm/YYybMWyymHSuZBIvN/I1EAhAPm/biPS8OJSABiPabMQujmYQETF9G0TiN8ZEjZ7FAwbR0RyFy9HobzXXugZrWmOvmN0tCsu4vgwlIsFgJ1vwb+2765FDbcE4OtXfdiXvuQH9987rUBCQAj3/VjBvMTuNFVVaRucmE43/8MZq++vXBx45pNdT8+w04d/wLSpekMTKRNMgpB8Y38U7c76f1R/9D7wMPDpblXXctJTd/GZvXYxafOzABCcCLPzLH/arjxjVWmSQCrdC6iWDO5dR99ccHjAn7J7W//hmuBcvSG59MaT2tLYP3gz3d6QtERERERERE5AhY0x2ApF8iFKL9V78aTEACEO/upu+VV8cvCKsV4jEzielg/tbxi0OGxCJmFQcwK7EAePIg2DlCWbu5nzSdxLhzhwaJW21mwI3NZRKHADizhwaa7X+OJ+9N3q89tcx9wHZgJqs5s0yWdjDJTiIBM5FtcAWuN3vttyhLDvw9uHIG9yVirabjzr+mfEzBlW8QTlSnvs6B+jvN4CIZG/FI6qDF/frazcTIaP/4xzSCvldfG0pAApBI0P6LXxDvz4z4JPOFNm1KSUAC0PrD/ybW3n7oJ+8/9h4oEYdIhta/8Ajx9rVDIjK8/HDFw2by0cFi4Yw5TsghxMPm+z2ZMOcZI37ndgPJge9wi0kecuBg+P2SCeK1F9L267tSJo/G29sJ7mw15xrhHnB6zQ/CAbC7zbnG/rL95y/B9qH7MqFE/M6USWEAPQ8+RqQ7DtHQ8Cf0d5m65ckz9z0Fw1cpjAbNcUVkoktEzffj/usjT765DnTnme9kp3do0sT+Y+DAcTkcKU5JQALQ/oe/Eql+11CBv9lMSrY7IdBsjrHRPrMCrNVm/o6SsdTrvv16G0d/f2VcJeIxOu57aHCQOUDC7yewdidoPphMBPHwyMenAyeTiUwlI30397WbyXWePHPNFY8Stkyj98lnUzbruu9vRNwLzHaJmLnmcnjM8915EOo27b79XaaNNthuzksSB1yDxSJmkuf+58DQ9eL+58VCQ4kjD9wu5TkHXdcFO4Z+duBrAkT8Js6Rfjb43p3m2rWvXdcIU0yktW/4tebDTxFpH+E6Uya1SGeIznsfTCkLrHiNSGswTRGJjJJo/8j9+YGD2t9jEfM9CFC+FAItIzyn+a37UCMjnGP3tb9lm35469aUBCQAbf/3E6INDW/+PjKp9D72+GACEoBkNErXPfeQPDCR5GiKRyAeAgZe32I154RWq2lPTmL+H+k6sqdu+HmoiEgmi0XMtfrBRhqPsN8B5wCJqlPp+PvzqW3Dvb30rVjx1q/V36Vrazkq0dZWWv/7R6lle/YRDhWb81e7O02RiUwdkd27UxKQAHTfex/RPXvMg5Gu78J+Hffl6MXjxG25tP7x4eFjwtZtSmNgItDbbtrPcopL6VMSEhEREREREZkglIRkKgr2Ql8XtG2DrjqSsRjxjs5hm8W7usYvplgUHFmw+KrhP5t9/vjFIUOyy+C4D5n7VrvpeNv1rFndHcyk3v0rwc84y5T1tUP+dJOhvHypKWvZBFXHm0Hk2eVmAPquZ2DuwOvYXGBzwI6nYMEVQ+/v9MHel2D2heZxJGBial4H1SeZsq49ULoQ/E1QOMuU1b0GM881g3mcWWagz/YnYeE7D9qX54b2JRYxq2LWrzIrcoPpbCyYAZ07oWwxAMm+bpLR4ZOZE/bc1H050PL3m/2WsZFbPfj7SbH0etMZlT9t3EMaSbx3eKKUeEcnjFCfREaS6B8+USHe0zPiMWmYwlngK0ktK1sMBdNHKbpRVjzPTEA+0NLroXDm0b+mrxSOuym1zGI1KzJlyHFCDhKPQW+TWUGwuxHsXph7GfhbzErTnvzhCSDmXWa+i50+MxHOlQsVB61u6MmH/m6Srjzi3cOPzYlQ1Ayem3ORWZkQIK/GDBCefSHsWTGQBGUgWdn0M4bHIRNCwuodsTzp7zbHR5sz9QfzLzfneU1rzcrpPfXQvCF1m1nnmwmQ/hZTfwPtZjX07rq3HoApkmm8heZaaM8LMPeSoevAlg1mteFA6wHnERZweE0dzy4jEege9nLJSIQkB1wnLboSGt8wiU2W3WCOu9kVsO8Vc8zNKQe7B2adNzy2/ddwMmElsRLvGuH6qDdkEtOIZLq86bD0utQyi2XktgmRqWDBO4aXzTrXtIe274TeBnB4STrzh2+XTJJwF5trL6vDnE/vfRlmnAkNr5v2gZ56KF0EXbvNecnu58zfW+cuc13vzjGTPBdcDjufMtf/+8+9Sxaa9uOak4ZWUZ5zgWlzhtTrvtKF0LV3KLbaU81qzmDakq32A/bvPNj3srlvc5jrUDDb7L+/4ArY8S/TFqG24SklmbAdUblMXsmEPWVy5X4J1QWZ6HIrYMk1w8tnnZv6uGg2LLnW3L/ravO9e7Al10BW4Zu/V+li831/oKU3mL7oN5EIDe9LSQT7SUbeRpJzmVDi7cOT5MRaWkc8Jo8KX7Fpy0omzflgMmnalpNJM1bBbgerE2pPGf7cY943vD/sUGIRM6G/t8n0g/R1mETqIT+EeofOhZNJ0/YW7R/6v30HdO4zj/f3ccTCEOwyiblH+n//z8MBCHRAT6OJQY5OpB86dpnfRV9nyqRIkQkhpwKWXJ9aZnOa6/c3s3AoQXnSmUOsa3iSsVjnAeMTS+YN76NbfqPpQxgrkaBZ/CgcMMfSkfS2mPFvByaVCvWY42+wcyipVLBLi6BkkGQ0RsI/vM4lInHTRtQ/QpIwkcmstxlaN0N4/BJ8JN7kvRLhgWu3wlmmr/lAsy+AnJoxjkwmLV8xSV8V8Z4Rjv9BJYqW9OofOC8pqq4h2D2Oc3RERERERERE3gb7oTeRSaV9p1nZve5VeP334PBgO/Vz5N/4Xpq/+a2UTbNOGWEgxFjJr4T2PSa5xDn/AatuNxM6T/0c1Jw8fnHIEJsdlr8PSMKGv8LF/wVr/mRWeD/9C7Dx73Dut2DTP8wgiXP+A9b8EU7+pBnwvWcFXPA9WPU7OO6DZkDYlofhkv+B134LJQsgqwg2/B0u/h944w9m0PYpnzavfeF3Yd2fzeCZM78C6/8MZ9wMWx+DxtVw3rfh9T/AiR+BuldMopGLfwgrfwtLroOcStj0AFz6I1h1B2SVwAkfTd2XcGBgX/4B53xzYF+2mX1Z/Uc4+ROw8xkzGP3C7+FoWEnWqSfRt+KVoY8pLw9XRRE4b4INfxval+69sOjdcOwHhicmkdFTvtisMPWuX8GLPzEroCy/0UwGCLabSWxZRemOkqwTT6TdcmvKQKKC970PW05OGqOSicQ1dw44HCmJawre+17spaWHfnJeNdxwPzz7PfP9P+sCOP3zJvlSJipbAFfdAc//N/ibYfHVZrKy03f0r2mxwLEfNH+Db/zBJGU58eMmkYAnb9RCl1HSshFe/oWZ/F51vPn9O7Lg5I+Z7+xpp5kBsFfdYY79nTvNIPaZ55oJaO48aN0I2x4zCdV2P28mf5UthWPfD6/ehv24D1Lw7mpab71j6H2tVjw1uVB+tTmPWH+/ObfY9KA5J8qpgL0vwrnfhDfugst/BqVL0vQhydvlnLMIx7RpQyvsAM4ZM3Bmx0wdfNev4aWfQfceM9lx5jmw40m48AfmeDTvUnOeGuoy54/zLjPHlLuvMtsuvtrUk30vmfJl15sJibWnmGOSSCYrW2ImZpz/nybxyJJrzaDZkz4OTevgnG8MXO9911xzXfCf5v/TvoCrz4E1J4dE79BAXd+Zp+GI7TXH1uM+BMXzTUInqwWKF5hru53PmL+reNRMlnDnm/P4078Ia+8BhxvO+hpUnZDGD0ZGg83jJv/6a2n6RmoblO/MM9IUkcgR8ubBvIGkC2vvAW8RnPFFKJxvzmFrTobK5W/5EiKTRrjPTLK54LumDTgWNklEXbngzIaS+ebnwQ6cxVnYKyuINTQOPt01by7OHAuc8ilo2276BuIhk3jk7K9D/Wtw/i2wdwWc9gXoa4XpZ0HVcabd+OL/hnX3mvboeMScY8y5CF6/HS78vmkvXnoDlC2Cl39uzjl66s1k0DO+CLGQOTdffI0533nkSyYh2mmfg2gYXDlQONtsu+oO046y8Erzd/7ozVB5LJz0MXNdWnGMmUS68ndwzAcgqwBya027+JFOLJUJzTFjDs7p04js3jNY5pw+HUdVLTSsMX8XDiUznQqcs+bhWbaU/jVrB8vsxcW4Zr3FBE2RiaL2tIH+/N+BwwOnfMa0JRzImWUSj9pdpo83twYu/TG8/DPzvX38v0HlIa7xa04e6Cv4IfS1mf7fZe8B65uvs+OaOQtrlpdEX3CwLPvSS3FUVr6dPZYJJOeSS+n5+z9SyvKvvx6LfQyHRhXOMQlIov0DEygtAwl0LOZvIBGHkkVw/nfMOJhEDE79jEnCdyRaNprEeRaL6RPf+wqUzIWufeZcdcP9pn/k3G+Z8RreQpPUvWwRNKw259G7njEJ+hZfbdqxX78Tak4w4yGmn276U6YN/D/9TGjbbPpWsgphyyMmKWDFMXDqp6HymDH4MCexhrXQtRNevtUswLP8RnPNULFECybIxGF3wplfMos+rP0TFMyE8/6fSez5ZiqWwUU/gFd+gc2/h4JrP0LTt3+QsonvjNOHHpQughv/Dk/+P+jaZb77j/83sI/BuKtYxPT9PvtfJhnFoqtMkpHyZaZv0DuQUHXvS6ZdoO5Vc35y7PuhbRckQ7DreZPE9PQvmOeuvgvypsGZN5ukqOoTTCtHaQl5119P1513DpZZnE5c8xdDcTXkVaUxOpFxtutZeOUX5vxwzkUD7ZwnjvnbOmtrcdTUEN23b6hs9myctbXmwbRT4Zo7zRixju0w5xLTzlpQPeaxySQVaMZeWErB9VfT+qP/Gyq3WvEsUrucpFcoYJKQFFRWs+uNlcQiEexOLdQiIiIiIiIimc2SnKQrKxx33HHJVatWpTuMzNJVZzq3tj5sBskeIHbNg/jXNtJxx++xZmdT/KlPkXXKyVjHu3Ej0AXEwd9kEjeUZHyj36j3FmZM3U0k4OnvmMQcZ3/dTOTFArPPM4NRlr/HrFTd1wGL322S2iy4HDp3m9UfjvuASRJSexok42ZAyvH/bjqiC2ebSfGbHjCdxZseMIO6a04yyT+O+6CZhBYJmtU0X/89LL7KDKzp3GPe+/U7zET6/i6oXwmFM6GnDmpOAacHNv0TTvg3M4E4u8yskLn2PjPpbfvjAyt1l0P7VjPIZ/MjZiD74qtM3PMvNavWN284YF9OIexaQNejL+J/5iXc82dT9J534nG3mgF0J/ybed9E1Exw3/UszL0Uzv92Jg42H5Oe7rTV30CbuSXjZrLA3VdC/Sq49H9h7mWQcxiJGsZQIhol+PLLtP30Z8R7eij4wAfIuegi7IUZmgQi803eY++bSCaTBFetov2nPyPS0EDeNVeTd8UVOMqPYDXdSD+Eu8FTYAY9Zrq2bSbRROFccI1SvMmkmXBEEnxlZqDU+JpydfeIBVrh95eapA77Fc2GM79qzg29RSahSNEcc99bYMqtDrACSYsZkE7SJHzIrTT/97WCrwISITMI2GIh1tZGz1Mv0HXXH7EVFlD8qU+StXg2luxiM0jM5jQDhyMBMxk+1GnOV7r3gcUGxXPS9Smly6Srv6Ft2+i8/Xb6Xn6FrJNPouC91+IuzzWDwF05JvletN+cWybiJimD3QXRPognoHO7qSe+EjNAcddTQy9evsycn274q3lcMMMkMMkqhioNzh5nk67ujpu+DnNMdXjB7jbfm7HIwOSJGJA0x8NE1Ew6ivSB00f/lm20//p2Qhs2kHPxReRddjauXIu5vrPaTJKx3gZzPRYNm1WUc8rNNWgkAN310LnDJPyZdTY4fCbJVKYmUBtbk7L+xna8hn/VTjru+ANWr5fij3+ELOtarEuugOK5aY1NRs2krLuAaSsK9UDedOjaATYP7F0Nj33STC6IhU2yBKcn3ZHK0Zm8dXcsbH/SJOFz5ZikfKULzQTHZBKSCSBprp9sLsguJ9Rto+NPfyf4+hqyTjuZwuuuxOUNmmQgYP62EpGB8/Fsc50X6gF/i3mP7GLzN9bfado4fKVmu0jAbBePmKRm3kJzvhLuNdeN4cBQe22wa+j+we0kfR0m5qwic/7f12YSYrqzIew35zreIjOhtK/VnCM5fQP3s8xzo0FzP9pn4hvfyUaqv5lg+78I9fnovPcfQ9eap1fjjm6C424CklB1bLqjzDSTs+52NxPet4fOvz9O4Oln8CxfRuElJ+Cx7YJj3g/5mkwzSUzO+nu4mteb7+u36s8Ph6Fjs/nOLJoFLZuBuJlgfLh6m0ybQsH0t0xAsl9w7Vo6fvFLQlu3knPZZeRfczXOGq2ifZBJW3fjwSB9L7xA+89/TjIao/AjHyH7nLPHZ2GIrn0mwa7FBsQgAZCEJOa80GoZanvOOYL+PTDn1TufMeei0T54/Btw7n/A8/8DJ37Y/A8w4yzT/uYtMmMrak+BrY+aZO9r7oa+drPdmV82ifpO+RSs+D8zXuLA/0/5pEm0eebNkF0Jr//OTMLfz1cC//aU6ZcfXxOz7rbvMAld7ntvavmF3zOJZc6/xSRhlsluYtbfkSQSpk/XlWWuyw9H8yawJok5KvA/8SQdv/sd1mwfxZ/4JFmnnoL14PEAYb9JfuorOazv/6Oy7xW446KUxYQ47fNmPNrF/2USljaug/vfD527hrYpngdX/AL+fKPp6yiYYRI3vX7A4hc2pzlOlk+KBS0mdN2NbFtDzz8eoPvR53DWVFP0sQ/jnT8fS6jxyM5JZaKa0PV31Ox9Ge651rSh7jf3Erjkv0zCyDEW2raNjt/dTvCVV8g6/XQK3v9+3LNnpW7UuQtCvWZMsbdwzGOaAFR3j0YiDk9+E2acRSxoo+eN3XTdfa8ZE/ah68ny1mE54QOHf/4iR2MsOkUmzUSnF++9i9ce+Avn/dvHefLXt/LvP7+dnKKSdIclQ5RBUEREREREZARjuNyHZBy7yyRsWHvP8B/teoD86/+X7EsuwWKzYfP5xjSUtr42grEgVdlV2A5MzuAbWEXAVzSm7y+Hwd8Ir/7KDJxu3wbr/2ISdDz7A9PoP+0UeOMPZiWclb8xg05qTjQrtxTOMolFdj5lBtQ+90PTcFv3iklmcvpCePxrZpDNtFNNopNjPwBPfRsCLWaVnbV/gjkXwks/haa1UHsyvPZrwsvfi99fT14SenNLSXZuo7BlPex+1sRdvhSe/jZggdqTYMtDcPIn4PGvmwHp0083+3Kg2lPhjTvM/6t+Z1b6qTnBvHfBDNj84OC+uB69ntLSpRT94KNYN9yJNbwKnv2ZGVA0/XTY9PfU1175azjxI6aDRMZOLASv/crUyQOt/iPMfOtVpDr7OwlEAxR7ivE4xmaSkNXhwHfGGXiOOYZkLIY9L29M3kcmn47+DixYKPAUkHX88bh/fRuRoJ9+rx2L6wgHTDo9E2si3FgkeLBYdDzOdB07UxOQALRvN+cl2eXQuZO+9q105lfibdpD4crbzcSwG/5stsurMhPaLRazCleo20yEG+Hc0l6VTeH7Z5B7xRVYHA5sWVlDP/Qd0MHnGjgvdgwMCi6ZP7r7LGnjnjOH8u98h3hvL7acHCyOw1hFracRtjxoJk74G81A7MtvTU1AAmbVszkXDD3u3GUmOCZiALQGWwnFQpT7ynFYx2D1NpHRkFVobodrYLCOZ+kxVP7vQhJ9fUSSPbQEG8nu2EN+Eujvhhd/ZJI9HejC78OaP0HL+tTy0Bfg3G++rd2QDBMNYe9aT/7e75D9gfOxkKTHtZa6vCpKIn1MoLNVmapCfvN9/r+zTUICILTkalqu+Ak5zjzyH/86zL98skwwkCmgNdhKOBamNKsUp+0IE3Xu72cI95q2XDCTHudeYs6VG9dBMmYSTze8jnvrI5Rf9VkS152K7Y2fYUkshWi2OXfGYpILYxlK3NHbCE3rzIrtiTAEmmDPC+Zar3wp9Ow1kyhbNkJOpZnY3L3PJLIEcA5c4+1fufjg+we3kxx43mO1mcTW+7myUwcmH/izA++7B9pq3BrEPFWF+zvpybHguXIOvktnk73jQSwrf2mSnC69zgyEl6khGcHV+yplhY8R/+RJBKYtpdUZp2xnHS5/vZKQyORQtvjQ27hcULFs6HHpUbStHmGyBu/Spbj/7yckgkFs+flYxjcpmKSZzesl58ILyTrlFJKJBPbc3PF78/wxnMDZtcck+utrN+M3CmdCw+sw40zY8sjQdlXHm1Xkz7wZ1t0H8y4xC7nYXUMJSPaLhegrnEXnJT/A4y2iyOk15+TRoPl5TrlJFuzOS01AAib5QNuWdCQhmZh6GuhOxum68heUb/sX7g1/M+Vr/mTG4PTsM8n3RSYKqxVyyg693YHKFgBmoGr+tdeQfdGFbz0+8eDr8LGwZ0VqAhIw48NmnmP6/+a/A7p2pSYgAXP86200CUgA5l5sFrbaz2IlOP0MgrEgsb5mcp25YzYWSQ7NGd1DsePP+L79OXpKqonvfRjLTy6Fa+5SEhKZVBr9jSRIUJVdNfyHHdtTE5AAbHvUjKkdhyQk7jlzqPjPQ4zLKJgx5nHIFNDTAP5OaF6P/alvU5hVTO5N52GJdmPb9A249Me0+ZsJhjqpzqnGahmjRGcibyIU8OPO8uH2ZQ88DigJiYiIiIiIiGQ8JSGZSpJxszLKSJOWPWbwxVgPwgjHwqxoXMHP1/yc5r5mLp52MdfOvZbZBbPH9H3lKNicpkM3GjT1Bszkiv31xzKQPCYSMKs6HlgWDZqJmWAGw1jtJkmHfWD1lmi/+XmoO/V1XNkmCclI72dzsvWyH3Jb1xosod0sWH4Z92z6FQAfOeuTXLDzVXK3PjbwPh4Tg9V+wOsMrIo5UsOxzTEUQ07FCPsy0LGdSIDNgaVjC/bgDmh4GaqXmX3p7xr5tZ2+oThkbLlHOH65c8E+8sTe/lg/T+19ip+v+Tn9sX6umHUF51Sfw9KSpWMW4lgneJLJoyfcwxN7n+C2tbcB8LGlH+P82vPZ17ePX6z5BZs6NnHBtAt4z7z3UJtbm+ZoRUaR3fXm5TYXa3OL+XGLna1bf8sJZSfwrit/yqIND1G0fxuLzUxYs1gxyekPPcBciaGmNovDgb3wCJIs2JxDt3jUrPZqH2GypmWE+md1EvTm8+q+Z/jV2l9R56/j/Nrzed/C9zEzb+bb2g+RjON0sKF7H8/WP8s/dvwDj93DxxfdxLmWAryunOFJSOzOoYnCBxrpHF8mNottMEluLLiX1ed9mTu3/YXVG/7GsuKlfML5SRYXH8ZENpF0SSZMPXZlAxbWX/s7Hmp/g4c3/ZJCdwGfvuQWzrC7UYoxyXS94V4e3f0ov1n/GwCunXstZ1SdwdyCuYf/It7i4WWuHMACVic4veBvMuUOD1jtWHt2YfV0Q9du87eUGPibslghGjHb2l3mNZxZYLOb1Y99pWDDtLXGoyYZkN1tXtfmgli/eS27Vg+X9NnetZ1ftL3AKxtWMb9gPhdNvwhcZ3Nedj4FO5429dySSHeYMl6SSXB6CXtzeeOEy/jt5rvZ3LmZE0qP4yNOJwvSHZ/IJGd1u7G6dV4wldmyJ1lSOJvTtDnbHZCwD41/6G1MnaSfiA/0lQyMW9g/5sFiS3m5hCuHtdfezqpwC3/e+RcSyQT/dv7NXIyPvP3bR4Kmzc7uNOMdBhJsD8Wkv7HD9Yrbzs+33s+O7p2cWnEKH7jxPhb98TrT9hkJmn4GkSlmXJNEvRn3COMn3TmmHSKrCCx2M/5sJI4DjoEHjknLKmL1ed9glzebp7fexRutb7CoaBGfO+ZzLCjSVUBaOLysveLH3Lbz77zxxm9ZUrSYj3zgbxwbtx36uSITQGtfK0/ue5Lfb/w9iWSCG+ffyEXTLqLMd0CyqJHaTO3ucR3TesTjMkSOhs0BHfugamD8b18b9q0mmXpkybU870xw64ov0RZs47IZl3HVnKuYna+5CzJ+QgE/bl82Lo8ZGxPpD6Y5IhEREREREZFDUxrXqSQeMwMOTvh3s5Lffq5smH7WuISwpm0NX3j2C2zr2kZvpJf7tt3HnZvvJBqPjsv7yxHwlcD53zH3gx1mBckdT5mVWCwW6NgB1SdA42qYfobplNj3Msy7zAx2KZhhBopveQSW3wixkBmg4i2EjX+H428yrx0JQF4tbH3UbAdmtYiyJWZFnbkXg8VKszePT+7+C880vcLcgrn8ZPVPaQm20BJs4ZbNd/Dq7NPN4Ju+TjjrK+Z14lHILodND8BxHxrYl/bhq8gUzYUZZ0PTWph2mmmM3rvCrGrhb4b8WrMvWx+G5e+DWNjsb1YRbPjb0L6E/ZA/LfW1z//OEa/QJUcht8qstHrgICurDU748MiTGYE1rWv46otfpT5QT0eog9s33M4zdc+wq3vXiNuLjKdXm17llpdvGTzO/b+X/x8rGlfw8X99nBcaXqAj1ME9W+7h+699n75oX7rDFRk9RbNh8dWpZfMuBV8Ze315fPTFr/B66xsEogGernua32y+izULLjST1XwlZoKHw2tuziyzGrbIaPIVmXpq90D7DjjmRnOdNfv81O2W3gC7nhl6PPdSsLtZZ4cvPvdFNnVuwh/187cdf+Onb/yUUCw0vvshMsa2d23n2fpn+d2G39ER6qA+UM/XXvk2a3IL4IwvpW6cXQaefFhyTWpiR3cuzDhnfAOXsWd3QMkCyK1h85mf4zuv/4gXG1fQF+1jReNLfO7Zz9HS15LuKEXeXOFMwAJnf53Gs7/CP1pX8qct99AT7mFXz24+99I3WJ8IpDtKkUN6uell/vPV/xxsd/jp6p/yYsOLtAXbDv9FllydOoDd5oRpp0K417TL1Z4CxfNgz8vme33pdSaRc/1KOP7fTDtex3ZzLefMGkgmEoLO3aY92lcK8y83kx3btpjrvdnnQ8l8aNsO/hZzDjHnAsipNsmtS+aN/oclchg6+zv5wnNf4F/1zxKIBljZspJfrv0luwnzTM0SOPOrpp77tKrhlOHOh7IlbDr7C3ztle+wsmWlac+qf5avvXILnf2d6Y5QREQmksJZZjK8twR8ZZCImjEOdSthweVDbWpb/gnHfgB2Pw8Lr4Tm9WYcROcuqDpu8OW2FlSyKtzKT1f/jOa+ZlqDrXxv7a284rSa8+1guzl3ySo2Yy6WvSc1nmmnQ6km0x+Oje0b+exzX2BN21oC0QCP732C/9r6RzrO/iocdxO4coePMRGR8VF7qmlX2M9iMcfO3c/DqZ81Y9wKak1f9YEWvRuwmbFykDImbcepH+cfwT38ccvdPN/wPIFogFeaXuFjT32MxkDjuOyWpGosqOEra37MC40v0hft4+WmV/jya99je3ZRukMTGRWvNr/KD177weA53Y9e/xErGlekblQ0G0oPWgDg5E9A2aLxC1RkPOSUwwk3QNniYe2wbxz3Hr7w/M3s7N5Jb6SXP235E/dtvY/YwckWRcZQqC+A2+fD6TWJ7sJBJSERERERERGRzDd+qYwl/fKroWMPFMyG6+4xCSMcHqg+GWacMS4h7OzeSSyZ2mj30K6H+ODCDzIjb8a4xCBHYN5l8L4HYc9LJpmGvxmiQbjuXpOwY8EVEOqBQJupUy3rzQCJ+ZdD9z64+k5o3WQadKefAW1b4V23mQQmDi9ccxc0b4BL/ht66s0Ezuvvgca1cNbFZnBLfzdcfy97436agy0sLFzI6tbVw0L9W+daLrjhz6bTxOkzk5rqVsI7fgpde8zAm2vvhqZ1Q/vSWw81J0HlCVCxHPa9YuK49k/QsgHypsG8dwzsyx+gdbMZaDPtNDPw/Z2/gs6dZpWfa/5oBvFc/EPzGv5mM9C+6vhx/qVNURYLlC03daruNTNhoeZkc7wbafUS4MWGF4eVPV//PCeVn6TjkaTd33f8fVjZw7sepjK7kq5w12DZisYVNAYalZVfJg9XtvmennUeNK6BwhlQMAtsDvZEewlEUyd0rmtfx96ac+gpWEpuJGS+D7CYhGLeYvBkwCpaMvlUHQ8Nq01yx1A3hPvglE/D3MvMJMqSBWaCctsWKF9uBm0XzgJfGdtaXyaSiKS83DN1z9DU18T03Onp2R+RMdAWbBvxfPu5llWcUn4uXH+vmYDsLTID3MIByPXBVbebvy9PPsw8C8oXD39xmfhKF8E1d7I7sIM6f13Kj1qCLezu3U1pVmmaghM5BKcHHE4oP5ameDdPvvjVlB8nSbKpYxPHlB6TpgBFDs9Dux4aVvZK0yucWnkqxd7iw3uRquPgg4+a5HuRoBnYa/dAPGwSh8SjMO0MmGk3K7LbHCaRsNUBudWmrHieSS6SiEFOAhJJsAy8fjIBybh5jsVmtkvGIatkoM3VYh6DSTpdutAkwBZJg7pAHbt7dqeUtfe343P4+FPd01x04rfJwmauD2Vq8OaAt4Kd7XvpCHWk/Ghnzy729u6lwFOQpuBERGTCySoyC3J07jTn2Zf+rxkD8Y7/g2AnvPt20x7tyTeJAXsbINAOJMy5dDwM08+ExddCTx0tTg9rG9YOe5v7657iwgu+j6VjB1SfZMaGuPPNuJDKY83Yj5KFJpYsTd4+HLt6dg1bUGJN21r2LPkoheE4zDp3oG9LRMZd6QLTrrH7BTM+rWQ+9HXA+/8JFQNte8Xz4NTPw6zzzZix0oXmFo+aRawWXAHddeYY+d6/syvUSEnUzY7uHSlv1RnqZE/PHip8FWnY0altV7iden99SllLsIU9wUZmszBNUYmMnif2PDGs7JHdj/CuWe/Cah1IVFexHC77kemD7dptHpcsNGNsRSabBVdA2y549x1Q/5q5Xqo5kR3+fSSSiZRN/7nzn1w/73pm5s1MU7Ay1YQCfry5ebi8ZmHNSL+SkIiIiIiIiEjmUxKSqaZwmvm/dB7MuXDc395r9w4rK3QX4ra5R9ha0s6VBTPONLeDzb1oeNmcC4aXzT5vhLIDVopfcPkIr33JsCJb8yoAesI9Izb6VudMg5lnp77HwSvSA8y/bHgZgCcH8qqHHo+4LyO8HgfuyztGfm0ZH74C8J2dWg/eQrFn+ISKQk8hdou+GiX9arJrhpVV+CrY2bMzpcxpdeK0OccrLJHxkVNuVsheel1KcdbAucCBXDYXLpsLR8kCk+BMZDy4c01yhINNPyixY81Jwzbxdg0f2J3tzNb1kEw6dqudQk8hdKWWl/rKoXbgb2PuxSM/eeG7xjY4ST+7EyqXk7WnFQsWkiRTfpxlz0pTYCKHqWgOAM629RR6ClMSRYL5bhfJdJVZlcPKCt2F2Cy2I3yhY8xNZIrz2r1YLdZhA9ltVhtFniLsRbPB5kpTdJI2RdX4/BuGFVstVrxqxxIRkSOVV2Vuh6PsrRP72utfpMA9PBlWVXYVlllnw6zD62+XQxtpjJTL5sLtzocqTX4XSbuS+YdOFll9nLkdBnf989C2HpvFRnx/4tQBWQ7T7t3e347VYh3xOCyjz2v3qh9CJrWyrLJhZaXe0qEEJPtVn2huIpOdywdVS8z96acNFnu3/23YpoWeQjw2z3hFJkK4r4/88srBJCThoJKQiIiIiIiISOazHnoTkdEzt2DusAQSn1r+KSqylelfhmsPtrO9azu3r7+dP2/9M2dVnUV9oJ6ZeTMHO2cBPHYP75z1zvQFKhPSaVWnUegeWh3VYXVwwbQLqMo+zMFbImMkkUxw4bQLUwalZTmyOKv6LKqyUuvnx5d9nOrs6oNfQmRSmpk3k7Oqzkopu3butVRnVxNLxNITlMgRmpU3i4WFqQOLP73805T7ytMUkcjYyHZmc071OTisjsGyfFc+p1eensaoJNNUZlVyxawrUsqunHUlM/JmpCkikSPjc/i4ft71WC1DTexVviqWlSxLX1Aih+nSGZcOa189tfJUsh1KoiNyNGpzavnQog+llJ1Xcx5rWtbwvgXvw6UEJFNWta+ac2vOTSl734L3MT13epoiEhERgRxnDvMK5uFz+AbLPHYPV825Ko1RTU5zC+ZyUnlqwvKbFt3EnPw5aYpIRMbS3Py57OnZw5Wzr0wpf8eMd1DqLeXuzXdz9T+v5tqHruWBHQ8QiATSFOnUMTd/LlfPuTql7LIZlzEzd/gCaCIT0fm15w87p3vHTC2kJwIQjAbZ07OH1mArCwoWUJtTO/gzCxY+sewTmrsg4yoS6sfp8eD0mOQ34WBfmiMSEREREREROTR7ugOQqcUf8fPvi/8df8SPP+Knylc1LNO8SCKZYEXDCn606kecVX0Wv9vwO8B0An5i2SdIJpP85Kyf0NjXiAULCwsXMqdAgzTkyFT7qvnyCV+ms7+TUDxEpa+SXd276I50U8bwVQJExkNXqIu/bPsLT+x+gm+d/C129uzEggW71c6XnvsSt55zK1f3X029v555BfNYXLw4ZcKbyGSW787nP07+Dy5supDGQCNF3iJs2Pjhyh/ysaUf47KZl6U7RJG31Bvu5edrfs77F76f3nAvPZEeKn2VLMhfkO7QREbVvp59/NfK/+Lk8pP53mnfoyHQgNvmZmnxUmbnz053eJIhuvq7+Onqn3Lx9ItZXryctv42SrwlLClakjIpXiRThWNhfrXuV1T4KvjB6T+g3l+Pz+ljUeGilEGMIplqcfFifnr2T9natZVYIkalr5IXG16kO9TNdfOuw2FzHPpFRGSQ0+bkAws+wKLCRezs2UmBu4BEMoE/4mdFwwpOKDtBf1dTUDQe5R87/8HZVWdzWuVpdPR3UJZVxtz8uThtznSHJyIiU9Tmjs187tnP8a7Z7+L/nfz/aA42Y8XKspJlLCpalO7wJp1YIsYFtRdwYe2FtIfaqciqoDvcTTge1vmhyCRUmlXKZ4/7LDu7d7KseBmdoU5qc2pZUrSEFxtf5Aev/WBw22+s+AY5zhzOrjk7jRFPfnarncVFi1lcvJjmvmZKvCUEo0E6Qh2U+krTHZ7I2xaJRbjl1FtoDDSSTCap9FUSioXSHZZI2u3q3sUPV/6QFY0rKHQXcsspt/DRJR/FH/ETiAaozq7GH/YTT8SxWW3pDlemCJOExIvd6cJqsxHpD6Y7JBEREREREZFDUhKSqSgahvat0NsIuZVQNBfs4zPYbWXzSn617lfYrXbcNjeBaIBKXyWnVJxCnjtvXGKQzLezeyeffubTnFZ5Gi82vDhY/tCuh7Bg4UMLP8RJFSe9xSscge590L4N7G4ongdZRaPzupIegVZo2wLxKBTPhdyqN920IdDAV174CslkkmxnNn3RPuLJOBXZFcwrmDeOQYsMWdm8kp+t/hmXTr+UW9fcSkOgATDJmQBea36Njyz9SDpDFBl/Yb85tge7KCmex4M7H2R122osWOiP9QPwyO5HOKb0GCp8WqFCMkh3nbnusrmgZB71oTZeaXqFV5pewWl14rQ5CUQD/PCMHzI9Xysgy+QQT8RZ076G1a2rWd26GrvFjsfuIRAN8LNzfpa6cbTfHN/9LZBXA0VzwKZmqqliW9dWXm56mZebXsZhdeCyuQbrycx8rUAomW9H9w4e2/MYiWQCq8WKz+HDH/HzvdO+y+LixekOT+SwPL3vae7dei9eh5dAJECSJHPz53Ji+Ymjm/A5FjHnxT0NkFMORfPA4Rq91xfJELnuXHojvfxy7S8Hkwr3x/qxWWxcPedqpufpum+q2d2zm79u+yv3Je/DYXXgtrvxR/x859TvMK9QfRAiIjL+/GE/rza9Smt/K7etuw27xY7b7qY/1s8fLv5DusOblLZ2beWWV27BarGS7cymJ9wDwDFFi1hUekyaoxORN5VImLaMrr3gKzZtGa7DS55d6auk0leZUhaLx7h/2/3Dtn18z+NKQjLGmvua+dbL3yKRTJDrysUf8ZNIJvj2yd9mQZEWipCJ7/4d9/PUvqdw29xYLVaCsSAnlp3IWdVnYbFYhjYMB0y/bF875E8z/bJWLXolk1N/tJ8frfoRKxpXANAZ6mRd+7rBayCP3YM/6sdr93J69emUZWnBQhl7iUScWDiMw+XGYrHg9HgJB5WERERERERERDKfZndMNfEorLkbHvk8JJNgscIVP4cl18I4ZPN1292AWe0jkAgAUOQuIklyzN9bMl8oFmJD+wZ2dO8glojRHeqm0FMIXUPbJEmS78kfnTdsWgd3v9skrgCYcQ5c8bO3TFwhGaxzD/ztw1D/qnmcWw03/BlKR+40jiVi5Dhz6A530xvpHSy3W/TVKOOvK9TFju4dPL7ncfM43EWhu5A6f13KdoWewnSEJ5I+oR549gfwyi/M47LFVC45j5ebXk7ZrNBTSL2/XklIJHM0b4C7rwJ/k3lcexqWS7+P0+okkogM3gCSSV0LyeTRGeqkwd+Ay+YiHA8TS8bwR/0AZDkOGKAb7YfXfg1PftM8ttrhqtthwRVpiFrGXW8j4XDPYD2JJqJEE1EAnFatCC8TQ1+0jzxXHp2hThLJxGC7ghMN2pWJo9hbTDwZxx/xD5YVegppCDSMXhKSRAI23A8PfAKSCbBY4JIfwfIbxy0xush4slusxBIxgMHzmzxX3uB9mVqC0QD57nza+tvMOW/E1AOH1ZHmyEREZKpq9NcRiocGH8eSMQLRAFaLFa/dm8bIJi/rQDtBIpkYTEDisrlI+JuBDVC6KI3Ricib2vEk3PdeiJu+PM64GU79NLiyj+rlEskExd7iYeUF7oK3E6UchkQyQa4zl65w1+BxGEhNziAyge0/jhx4jlfkPWgRvlAvvPhjePF/zWO7C679E8w+b7zCFBlXbb37eL7h+cHHSZLYLGZ+xIHjF4o8Rbht7rTEKFNPLBwGwOk2dc7l9RLpVxISERERERERyXwZNyraYrHYLBbLaovF8tDA4wKLxfKkxWLZPvD/KGUfmKLat8OjXzIJSMAM/H3os9Cxc1zefnrudEq9pYOP7RY7V825imzn0XXSyeTyUuNLfPDxDw52+q1tW8tplaelDMgscBdwasWpb//NYhFY8X9DCUgAdj0N+159+68t6bHrmaEEJAA9dbDqDjPZYQQFngJunH9jStmCggWUeEvGMkqRYaLxKHdtuosvPPsFijymI/jVple5YNoFKUlxSr2lHFt6bLrCFEmP5g1DCUgAmtdzWdnJeOyewSKfw8f0nOlKaieZIx6FV381lIAEYO+LVAV7eM/896RsenLFyamJGUQmuEg8wvau7Vw799qU8jMqz2Bm3syhgrYtQwlIABIxePBT0LVnfAKV9KpbiTUaHlZPTio/iek509MUlMiRSZLkhnk3pJTNK5jHjGhExzKZME4uPzllsovT6uS0ytPoCnURjY9SwoSOHab/ITnQPpdMwqM3m3KRySYeo8RdxJz81CQ+71nwHnJduWkKStLJGo9zw/zU84XZebOZkV2TpohERGSq6w13s7lzM+fVpE44fd+C91GbU5umqCa3Ym8xJ5admFJ2/dzrKexphldug3gsTZGJyJvqaTDJVPcnIAF4/ofQuvmoX9Jhc3BuzbkpE51znDkcU3LM24lUDkNJLMEHF30wpWxewTyK3EVv8gyRieXE8hPxOXyDjz12D2dUnpGaaKd101ACEoBYGB78BPQeMJ5BZBLx9nWkzFMA8Ef9TM8d6oe2YOHjyz5OnjtvnKOTqSoSMsmiHG4z5tHp8RIO9qUzJBEREREREZHDYj/0JuPuM8BmIGfg8VeAp5LJ5A8sFstXBh5/OV3BTXh9bWZyz4FiYQi2A6O0uuFbiMQiXDv3WqKJKLFEjGxnNlmOrMEswzJ1tfa18pPXfwLA+vb1nFNzDk/ve5o7NtzBx5Z+DI/dQ54rj4VFC1Mag49auBfqXxte3rbl7b+2pEfT2uFl+1ZANAgu37AfxeIxir3FfOaYzxCIBPDYPThtWoFVxt8+/z7u2HAHsWSMXFcupd5SWoIt3LXpLj59zKdx293kOnNZWLiQ2lwNAJQpxj980MO8rU/znVO/w/au7ViwYLPaqPfXU5FVkYYARUYQ6YN9Lw8rzt79AifMPoMcZw6BaACvw0swGmRXzy5OrjhZ5yEyKezo3sExpcfwQv0LfHr5p+mL9pHvyuf4suPJdx+QU9bfMvzJoR4IdkL+tHGLV9Kkcyeu0pn0x/oH64nH7mFG7gzixNMdnchhicQi9IR7BtsU3HY303OnU7zlGciu1bFMJoQFRQv4/mnfZ3XbahLJBG6bm9dbXsdr97KsZBkz8ma8/TcJtpv+hwMlYtDXCix4+68vkkEikQArW1byzlnvpC/aRygWwuf0UemtoDSr9NAvIJNOf6SXSCzCZ4/5LP6IH7fdTaWvkryM7J4XEZHJrjfSyy/X/4aTKk5mW+c2PrX8U/RF+6jIquCMwiVqnx4jyWSS0ytP54TyEwhGg2Q5ssh35ZPoaoa6l01/gkcJ60QySn+XGV95sMAI/RqHKUkSm8XGx5Z9jGA0iMViwWP3aJGNceAKdVHtqxy8LvPYPSSSCQKRnnSHJjIqLEkLH17yYYLRIEmSZDmysFoOWpt0pH5Zf7M53uWUj0+gIuOoqGkj/zHrGj6z/hfEk6bvua5nL++d/146Q52E42F8Dh9/2/Y3k6zdU3CIVxR5+yL9/QA43SYpncPlJhYOpTMkERERERERkcOSUaOcLBZLFXAp8F3g8wPFVwBnDdz/A/AsSkJy9HIrwZllOrL3c+dBzthN2owHg0Tr6rA4HOzs2I4/2UeOMwe71U5ftI8Hdj7A2TVnY7dkVHWUcZJIJljVvIo3Wt7AH/UD8Fz9c5xTfQ6fXPZJcl25LCpaxNz8uThsjtF7Y08+zHsHvPLz1PLKw19lIhmPE9m3j2Q4gqOqEptveKILGUfTT4fX7zD3PflEZt1AvPgE7L0hHMXDfzeRZITfrf8d75j5DhxWU7c2dmzEY/cwLXcaJd6S8YxeprBoIkosaRKE/Wb9b7hh3g1kObIo85axuHgxs/NnpznC0RPr7CTa3Iw9NxdHZWW6w5GJoGB44rG4M4uHdz3M4qLFhOIhHBYHjX2NuEJxQlu2YPV4cNTUpK7sInIEIo2NxLu7sZeU4Cg6ilWw3Lmw4Ap44Uep5VXHs7F9IwkSOK1OEskE3eFuVjSuoDyrnONKj6PIq1W3ZOJqDbbS1NfEb9f/lmvmXkMkHsFtc7Ondw9nVZ+VunF+DdgckEwQm3UlMddsrG47juxKdPSeAsoWk+xr5mIW4Q172e7ppTneyX+t/C9+c8Fv0h2dyGFxhmKcEa4ly57HWlcrwUQ/f9z0R47xzNGgXZlQ7FY7doudWDJGPBnHZXPxz13/5Lp5143OG+RUmnbY/q6hMmcW5FYR6+oi2tSELScHZ1XV6LyfSBol7C5ebHqZ2pxpXJl/NlnhKP1OJxuDDekOTdLEH+8nP2RjKWUEPeVsdnRw75Z7WXLSt9IdmoiMINrSQqyjA3tREY4S9RHK2IgHAkTrG7C4nDirq7HYx2+MTCweY5+/jo5dnVw641LC8TBZ9ixysVGuhGljpjfSy8qWlVxQdjYzwtVYIlbu6XiapY5CmH8FuHMO/SIik0Csu5tYUxNWnw9ndXW6w3lr2WVQOAs6dgyVWayQd/QLxiSSCR7Y8QDzCucNjk/qDHVS76/n/Gnnv92I5S3EsopYu/lJLnQsAyzsdARY072R7lAnF8+8LN3hibxtz9Q9Q7G3GLfdjQULPeEe3mh5gwunXTg0Zia/FiwWSB6Q+Kh4PvjG9hww0tBAvKcHR1kZ9gIleZBxVDSbkze/wBMzbqEry0JvvIG+/Bo+9aKZemKz2Ign42Q7sokmomkOVqaKaMgkIXG4PQP/u4n0B9MZkoiIiIiIiMhhybSsDz8BbgayDygrTSaTTQDJZLLJYrFoxMfbUTATrr4T/v5hCHaArwSu/M2Yrc4Z2bePlu99n8Czz4LDwRUfeh/PnJRD0GIjkojgsrm4fObl2K2ZVhVlvGzt3MpH/vURCt2FXDTtIv64+Y8APF33NM/XP89dl9zFoqJFh/VaTYEmtnZtJRwPMztv9luv1mm1wfE3QfN62PM8WO1wyqeh6vjDeq94Tw+d99xDx89/QTIaxXvqqZR94+u4pg+fLC3jpPY0OPGjJDf9k0DtZ2n60R+Id/4de0UFlf/z33iPSU0wU+GtGOxwSw78c9lcdIY6eXjXw3xw0QfTtCMy1VT5qji5/GRebnqZWCLGnZvupCKrgk8f82k2tG9gX+8+5uTPoTonwwfjHEL/+vU0fOlmonv2YM3NpfyWW8g+52wsjlFMMCWTT8lCuPxW+Ne32HfCh9iWXQh51bzT7uXmF24mHDcrav+o5rPUfvtOdq9dh8XjoeSLXyT3nVdgy8pK8w7IRJKMxwk89xxNX/s68e5uHFVVVPzPf+NdtuzIXshigWXvhcY1sPMpc9554sehfBnHBvL5yRs/4YyqMwjHw1T4KlhQuIBvvfQtPnPMZ7hh/g1jsWsi4+LBnQ8SiUfoj/Xzy7W/HCy/+bibaQg0sLFjI7U5tczJn4OjaC68+3ZC+5ppvO0RwptXYPF6Kf1KDbnvuAyrx5PGPZGxFvXMofKPz9P7l79BMsmyd1xC8/VnkbPoQ0RikXSHJ3JI4V27KPn27witeh2Ly8VxH76B7afXcvH0i9ngymeuJcnYpXsWGR0tfS1s7dpKT7gHp83JfVvvo63frPJ7bOmxtPe3j84b5dfC1X+Av/0bBFrBWwjv+jWhlggNN7+PyI4dWH0+yr71TbIvugir2ghkAmrwN7CtaxvRRJTPLP8M7g278P3HD4i1tJBXXMx53/4yrX2tlGSpe3OqOcZfRsctPye2ew/ZOTmc9dXPkT33SgKa3CCSUZLJJH0vvUTjl79CvL0de2kpFf/9Q7JOOCHdockkE96zh+b//E+CL67A4nBQ+LGPUfCeG7Dl5o7L+3scHi6f+Q5+s/63/Gz1zwAz+e72C37Dav9eGptfptRbyryCeficWnxltJR4S3iH72Tm3vky/Q8+AhYLN737cgqvXAoLZpv+BJFJLrRlCw03f5nItm1Ys7Io/Y//IOfii7C6XOkObWRZRfCuX8P9H4TuveDKhst+DMXzjuhlWvpa2NK5hf5YPzPzZvKOme/gyy+krrv3v2f972hGLiOwhd1c81gfgfu/CMkkSy+/hOAltRTVHtnvUyRTnV1zNhs7NgKQJInVYuWiaRelLtpTsgDeeRs8/HmIBMxY8Xf+ArIKxySmZDSK/6mnafrWt0j09OCYPo3KH/4Qz+LFY/J+Igfr6/DQ+KNniDX9CVthIbXfupmWqgrsVjuxhEnIDnDl7Csp8mihIBkf0VAIMMlHABwuF33dXW/1FBEREREREZGMkDGZHywWy2VAazKZfN1isZx1lK/xYeDDADU1NaMX3GRiscDs8+DDz0Ffu0lCkls5Jm+VTCbpuv9+k4AEIBrFf9vvOGHWN7im64ckkgkAvnrCV8fk/SeSqVx3d3TvIJaI0RJsoTvczfsXvp9n9pkM7R9f+nHmF8w/rNfZ27uXTz/1aXb17gLAa/fy2wt/y+Kit+i8KJwJ190NXXvA7oL8GWA/vIHu/evW0f6T/xt8HFyxgs677qLsa18b1xWLMkHG1N/sUjj/FiK119Fw/QdJhs3E9FhjIw2f+SzT7v8LjtKhDP52m515BfP44vNfHDwenVF5BnarnZcaX+KKmVdQ4FEW/sksU+quz+nj6yd9nd9v+D0vNb7E7PzZXDn7Sm55+RY6Qh0AFLoL+c0Fv2F2/uy0xfl2xDo7abjZJCABSPT00PD5zzP9b3/FPXdueoObgDKl7o4LhxuWv5dtlYv48LOfo2Pv0N/Ed0/9LreuuZVTCo9j9j0rCa1dB0Cyv5+W73wH19w5ZB13XDqjlxFkcv2N7N5Nw2c+SzJqJgNF6+tp+OznmPaXP+MoLj6yFyucYSZbdu0BmwMKZoDdyQJXFmdWnclPV/90cNPr5l7HrLxZ3L35bi6dcSm5rvEZdC5HJpPrbibo7O/kni33EIqF+OTyT/J8/fPU+eu4adFNvNT4Ej9c9UMALFj48Vk/5tzac4lPO4+W//kk4c1bAUgGgzR/85u4Zs/Cu3x5Ondn0sm0+tu38g1677t/8HH/gw+TNaOEn+c+wKLCRXz39O9qwJcAmVd3ARLRKB2//g2hVa8DmLaHn91BSc3n+Vqn+X6fljONW8+5ldrco18dVSa2TKy7B2oKNPGl57/E2ra1ADisDr558jf5zdrfsLRkKRW+Cm5dfSsnlp9IlmMUEjvOOBP+/VmThCSriJglh8YPfojIDrOicCIQoPHmLzNtxgw8Cxe+/feTtyXT62+m2d2zm4//6+PUB+oB+Gr1TRz3rfuIdXcDEGtro+9L34Q/3gbzlYRkLGVa3Y11d9P1zVuI7d4DQKK3l8DXv4Pn/z7Nh1Z/iN9d+LvDTsAvk1+m1d+pJrJ3L/Wf+jTJoFl9NtbSQsOnP8P0v96Po3JsxlFMFqq7hy8Zj9P1p3sIvrjCPI5Gaf/pT/EsWojvjDPGJYamQBONgSY+sPADPL3vafLd+Vw1+ypWtrzBrWtuHdzuo0s+yk2Lb8Jtd49LXOkwnnW3P9rPrI3d9D/wsClIJgn95R+ElyyD5W+xqI7Im5hox96430/zt/4fkW3bAEj09dH0la/gmjEDz5IMnoxedSzc9C/obQBPHhQc2YJUDYEGPv/M59nUuQkAl83FLafcwseXfpzH9z6Ow+rgomkXsa1zG+fXnj8GO5B50lV3/S++QODPfx183P/Aw5y24PP81beRc2rOwWa1jVssMnFl8rE3QYIHdz44mFQ635XPV0/8KslkcigRid0JS6+F6hOgv9uMF/eNXTtVeOdOGj7/eUiY8ZjR3Xto/PJXqL37j9jz88fsfWW4TK67YyXS1ETD575AvMOML4t3dNB587fou+2bfPfU7w4mZD+r+ixC8RBt/W2UZZWlOWqZCiLhfgCcAwvy2J0uouFQOkMSEREREREROSzWdAdwgFOByy0Wyx7gXuAci8XyR6DFYrGUAwz83/pmL5BMJn+dTCaPSyaTxxUf6SSxqSavGiqXj1kCEoB4Ty/+xx4fVp5Yu4lC91AW7Z+v+TkNgYYxi2MimMp112v3Dt5/aNdD/HPnPzmp/CT++/T/5oTyEw6rs6+tv40VDSsGE5AABGNBfr/h90Tjh1hRzp0D5UugeO5hJyABCG3eMqzM/8STxAcGF08lGVV/7S6iHYHBBCT7xdraiDY3p5S1Bdv4wcofDCYgAXi+4XkqsioodhfjtDnHJWRJn0yqu7U5tUzLmcYxpcdgtVh5tu7ZwQQkAB2hDh7e9TC7u3cTik28zodYSwvRgQH3g+JxonX1aYlnosukujsuLBYebXh+2N/Eq82vclL5SZzgmkvo+ReHPS26b994RimHKZPrb6S+fjAByX6x5mZiB51DHDZ3NpQvhpJ5ZmAP0NTXxC/W/iJls/u23sfpVadT7C3GadX5R6bK5LqbCZw2J0XuInojvfxw5Q+JJWIsL1lOtjObf+371+B2SZL856v/SWuwlXhHB8GXXh72WhEdv0ddptVf/9PPDCvLfn4tc/Pn8FLTS2zpGH69LVNTptVdgHhnJ/6nnhpW7mvswW41SWn39O7h1eZXxzs0ySCZWHcPtLFj42ACEoBoIso9m+/hqrlXsb59Pbetu41SbykO6+G3lR5SbqXpj8irJtbWRnjTptSfJ5NE99WN3vvJUcv0+ptpVjSsGExAAlAcsA7rI0j0BXG0pZbJ6Mu0uhtrbSWybXtqYSJBXnuIYCzIHRvuOHT/lUwZmVZ/p5pYU9NgApL94t3dw/oVZTjV3cMX7+7G//jwsTOhjRvHLQanzckzdc/wwI4HWFi0EJ/DR1NfE79a+6uU7W5bdxt7evaMW1zpMJ5112qxYHv6lWHl/U8/O6bvK5PXRDv2xtrb6V+7dlh5pG4C9ANkl5i2jCNMQAKwrm3dYAISgHA8zL1b72Vr51Zm5s6kIquCX6795WhGm/HSVXf9Tz09rCz+5PMsLV6C1ZJJQ6clk2XysXd92/rBBCQAXeEuVjavHEpAcqCC6ea4NoYJSMCMu9ifgGSwbNcuYi0tY/q+Mlwm192xEmtuHkxAsl8yFCLcsI/WYCsXTruQDy38EIFIgFcaX8Flc6UpUplqoiEz5tfpNklIHG73YJmIiIiIiIhIJsuYlvRkMvnVZDJZlUwmpwHXAU8nk8n3Ag8C7x/Y7P3AA2kKUY6QLcuLZ+mSYeWR2lJ6wj2Dj3sjvfRF+8YzNMkg8wvnMytv1uDjzlAnx5cdT3HW4TV6v9HyBp95+jNs6tg07Gfbu7YTio9NI52zunpYmWfRQqw+35i8nxw+W2EhHNSRZvF6seXmppQFY0Fag8PzWlksFj65/JP4nPpdyvg6ofwEnql7hq5Q14jJuTZ1buIbK77Bt1761oRL3mXNzcWWlzes3FZYOHxjkRGM9D3fEGigPdTOs12vYZ8za9jPbUVF4xGaTCL2EeqM1ecbdg7xdvgjfmKJWEpZkiRWi5WPLf0YHodn1N5LZDz5nD4+dcynBgdsrmpZxbrWdfTH+odt297fTjAaxJqdjXPmzGE/H+lvUSYXz7Klw8pCi2fSEGgEzABJkUxlzc7GPX/+sPJQYVbKd/ze3r3jGZbIEeno7xhWVh+opzfSy57ePdgtdm5afNOYJei15eRgLxk+0N1WpDYCmXh2du9MeRzwWrA4DkrgY7PhK6kYx6gkE9hyckZsm+rPdQMD/VcTMNm0yGRkKygAW+qiGBanE5tW6JZRZPX5cC9ePKzcWTtt3GKo9FXy2WM/S1e4i0d3P8qKxhXU5tQSSw5vr+6J9LzJq8iR8kcC9C8ansDAuXx4+5jIZGT1+XBUDr8emsz9ALFEjH29w5Os7OvdR5GniCf2PsHTdU/jsDo4p+acNEQ4tdj/P3v3HSZFlS5w+FfVOU7OGRhyzkowICKmNac15xwwrLoXc067Zte467oq5hxRUEAEyRkGmBkm5865q+4fPTSMA4g6CTjv83jv9pkKXw093VXnfOc7Qwe1a/MPKSLZlLLrIg2CsI+pcLcv7FzqLEVV1W6IJka7i1wwTXIycgfmXQjC7mgSE5GMxraNsozPqseoNfLE0ie4++e72dSyiZnjZ5JkFM/+QtcIBWK5M7rW96fOYCQSCu5pF0EQBEEQBEEQBEHoEXpMEZI9eAiYKklSCTC19bWwD5B0OpIvvDCWuNPKMGokSzP9hJRQvG1g8kCS9KIj70CVbc3m6cOf5uHJD3PLmFv497R/c2jeoXu1b523jht/uJE1jWsosBe0+/nxfY7Hprd1cMQxphHDsUw4OP5aTkgg9eqrkX/dgS10OUOvXqTdeOOOBlkm66470Re0fY/Y9XbGZ41v0yZLMoNSBjEma0xXhCoIbQxIGcDr01/n5OKTOTyvfbLJsNRhbGzZyBelXzC7fHY3RPjH6bOzybr3XtBq420pl12Gobh94QhB2JXphdPbtQ1JHcIJvU9gWNHBpNx6M5LZHP+Z/eijMQ1qn1AkCHti6N2btOuv29Egy2Teczf6/PwOO0eCIYEMc0abNrvezpjMMYzOGN1h5xGE7jAuaxyvH/U6t429jfsn3s9Thz+FO+RGI7WdyDM+azzp5nS0iYlk3nFHmyQg+0kn7nJyv7B/sR1+OPo+O+4DNTnZbB6bTbW3GgmJPFv7op+C0FNozGbSbpzRpgit/pCJzLVWttlubObYrg5NEPbarvpRJ+VM4qDMg7h93O389+j/MjJjZKedX5eeTtZ997Yp1JB0zjkY+/fvtHMKQmcZndn2Oe4V55eYb72+TZHstL/dgrl3cRdHJnQ3XWYmWffeAzsXpTnrL3wQ+QWAY3odg83QOeNXgiD8Pvpevci49W87GiSJjDtmthtXFIQ/QzYYSL388jYF+83jx2MaMbzLYpAkieN6HcfLR77MTaNv4oUpL+AKuUg3ty0QmGBIIMea02Vx7e9sBhtbx+agyd3xO9UUFWI8dHI3RiUIXUeXlkbmPfcg6XcUOk0888z9ug+g1FmKVta2az+217Gc3v90Zo6fyd0H383r019nQIoYD+lsmkMPQi4qjL+Wc3OoP7gfqcb9txCOcGCZmDOxXdvheYd3a5EdQ3ExyZdesqNBqyXr3nvQZ2V1W0zCgUNfUED6nTNB3jE9Rr3qHN70/UBzoJlgNFb0YW3TWt4teZdgRBSBELpG2L+9CElscSqdwUg4EOzWolGCIAiCIAiCIAiCsDfaj3j0AKqqzgXmtv7vJmBKd8Yj/HGmAQMofGcWwS1bkQ16tqWANrSJLGcWNd4ahqUN44iCI/BGvKSR1t3hCt0k15ZLri33d+9X56uj0d8IwC91v3DBoAt4Z9M7BCNBTu17KscUHdPRocbpMjPJfuRRgptLUPx+DL16degEVeGPk41Gkv96FpZx44jU16PLzsbQu1e7wTVXyMW4rHFE1Si/1P5Cujmdvw74K4FIAJ2s283RBaFz9U3qS9+kvjT5mnAEHby29jUATuhzAmWusvhA2FdlX3Fm/zM7bVXizmA97FCKPnifcEUlmtQUDH36oLFYujssYR9RnFTMaf1O4+PNHwPwlz5/YZt7G4NSBnFKv1MAsLz/HqGyMmSbDUOfPmh3SuYVhL0hm0wknXsuloMPJtLQiC43B0OvXh16Dm/Iy/mDzufDzR+yqWUTRfYiTut3Gv6wH42s+e0DCEIPppN1DEsfxrD02Cqe65vW89bGt7hu5HX8b/3/qPPVMTpjNBcPuRizLlY4yjJuLEUfvE+orAxNQkLs/kCsgrXfMxQVkf/Ky9SvXUog7Gd9goeZm/5JqimVswecjUUv7hGFns08bBiF771HqKyUJjystrto9K5GK2kxaA2c3u90eiV27D2EIHQkm97GlcOu5M0Nb+IKuZicO5ksaxYhJcSZ/c/skhgsEydS9OEHhMq3oUlOit0D2MRkfGHfY9AYOHfguby36T1CSohhGSP40ujn9FlvoGlwoM3MwNC7d5uiO8KBwzp5Mmlv/5uaTcvRpaTxoucr5jUu5ZiiYxiaNrS7wxMEoZWs05F46qmYRowgUlePNisTQ58+SBrRVyd0LNPgQbHcma2lyCYjhuJitDst6NMVrHor47LGMS5rHLXeWm5fcDuXDLlkR391QhHXj7z+D+VuCLvmDrlpybSwZOZfKGiSMevNqEV5KCkyid0dnCB0EcvBB1P0wQeEtpWjSUzEUFy8X/cBVHmqmFMxh8uHXs6bG97EE/ZwWN5hTCucRnFSMcVJokhlVypPiKB77EYiW7YSjoRpyDThTIiQHGgmxyaKbgn7vmZ/M2f2P5MPSz5EURWO7308jqADVVW7rRCJxmol9bLLsB1+ONGmZnR5eRh6izEToWtIskziMcei9M6navMKGixRvmQNZ/e9gEeWPNJm27kVc2kONpOlFQVyhM4XCgQA0Lcu0qMzGFBVhWg4jFa/7+QAC4IgCIIgCIIgCAeeHlmERNi/6HNz0efGkhTcNYt59vtnOaroKFJNqWxo3sA769/huF7HdXOUwr4owZCASWvCH/GzsHohWx1bObn4ZI4qPIr+Kf07vZCENiUZbcq4Tj2H8MfIJhOmIYP3uI1NZ+ODTR+Qa8vl0qGX0hJo4eVVL/OPw/7RRVEKwu6lmFO4YvgV/KXPXyhxlPD4kscpd5XHfz4qfdQ+VYAEQNJqMfbti7Fv3+4ORdgHJRoTWduwlr8O+CsA32/7njJXGWcPODu+jaGoCENRUXeFKOwnNGYzpqGdNxEowZDA8yuf56Csgzgk9xBqvDX8c+k/eX366512TkHoLgmGBNwhNy+uepHpRdNJMiaxpnENJq2pzXaGXr06vOCP0PPpMjKol7I498tzGctYLhxyIY6gg482f8QxvTqvoKggdBRDYQGGwgKWbJvD7XNuo19SP84ffD6haIgqdxXJxq6dSCYIv4dNb+OjzR9xdNHRWHQWfqn9hVdWv8LUY6d2WQySLGPo0wdDnz5ddk5B6Aw6Wcfs8tmc2u9UtJKWeVXzKNOU8dep52Edau3u8IRuJmk0RAtzuGbNDLR1WqYVTuP8zH7Mr5qPUWvs7vAEQdiJbDRiGjwY9jy0KAh/mj4/v8csbGLVWcm35fP40seZkj8l3l+tlUQaWUeyG+w8tfwpphVOo6konU0ty1i55jXeLni7u0MThC4jSRKGPr0x9Ond3aF0iRRTCisbVlLpruS43sdh1ppZ3bBa9Bd2E5vBxoUrrmNa0TRSTamsb1rC8rLlzDp2VneHJggdQqfRsaBqAWf2PxNJkphTMYepBVO7rQDJdhqLBfPw4d0ag3DgkvV6UoeOxti/P4mBJkbqTmVt01rqffVttuuX1A+bbv8tjCb0LOGAH1mjRaONzWvQtRYjCQcDogiJIAiCIAiCIAiC0KPJ3R2AcGDpl9SP43odx4amDVS4K6h0VTLz4JmkmFK6OzRhH5Rvy+eO8XcgS7GPsjpfHammVIqTitHJOpxBJ6FoqJujFHqqZFMydxx0B5WeSra5trHFsYVpRdPol9yvu0MTBABkSSbJmETvhN7Y9fZ4e7Y1mxP6nNB9gQlCN8ix5nDViKuo9dSypHYJZa4yLh96OX0SxYQ1Yd+Sa8vl/on3o5E1zK2Yy2dbP+Py4ZfTK1EUYBD2P9nWbO4+6G4CkQDvbnqXhdULOaboGHonHBiJxsJvK04s5oJBF7C4djELqhbgCXn4+7i/k2nJ7O7QBGGvDUodxGF5h7GxZSPvbXqPlkALFw+5GIvO0t2hCcJu5dnymDF6Bo3+RtY3r2dN4xquH3k9vRLEPakg/F6DUgYxOHUwX5d9TZWniiRDEjePuRmrXhQgEWIyLBncffDdNAWaWFy7mCpPFUcVHkVxolj9XBAEQeheVr2VG0ffiEFj4Juyb1hev5w+iX0YlDKou0Pbr/RJ7MO5A89li2ML21zb2NqylTvH30m2Nbu7QxMEoZP0TujNlcOupCnQxP/W/49X17zKqf1OJceWA4A37MUX9nVzlAeOXgm9uHTopZS7ytnm2kZJSwkzx88kz5bX3aEJQoeYkj8Fi9ZCqauUMmcZGknD0UVHd3dYgtAjWPVWCuwFJJuSGZAygGkF0xibOZZphdPIs+WJflyhS4UCAfTGHYWptXoDECtCIgiCIAiCIAiCIAg9mVjCQuhSCcYETio+CU/Yw6rGVRyWdxjZFjG4LvwxkiQxrXAaxUnFVHuqSTOn0SexD03+Jj7Z8gmfbf2M/sn9uXDwhQxKFckyQnv5tnyO63Ucn239jF4JvTi+9/EkGhK7OyxBwBv28lPVT7y85mUALhx0ISmmFALRAL0TepNlzermCAWha1W4KljRsILVTavpn9yfV0e9yqCUQZh15u4OTRB+l1JnKQuqFrCqcRVjM8Yy86CZ9E/uL1ZAFvZbh+QdwrvHvUuDv4H3S97nhVUvUO4u54Q+J4gETwGr3sqlQy9lcu5kZm2cxerG1WRZssi2ZpNv7xmrAgvCb0k3p3P3wXdzgfMCVjas5IPNH/DYkse4bOhljMwYiUbWdHeIgtCOI+jAG/KyxbkFu87OE4c+wdjMseKeVBD+gFRzKlcNv4rPtn7G12Vf0zepL1pZDL0KbU3Mmchr017j3Y3vsrxhOammVBr9jWKSgyAIgtDthqcP593j3qXUWcpbG97iw80fIksyRxcdTYYlo7vD2y9YdBYOzTuUclc5a5vWckTBEfRJEgX2BWF/ZtaZOW/QeUzMmUijv5EcWw69EnrhDrmZVzmPV9e8il6j59KhlzI+a7zoj+lkRq2RkRkjWVq3lPXN6zm578kMSx+GJEndHZogdIh0czoXD72YV1a/gqIqXDLkEjLM4j5OEH4txZjCaf1O4+XVL7OxeSOn9T1NFAYUulQ4EEBnMsVf61oLkoSDwe4KSRAEQRAEQRAEQRD2isiEE7pUjaeGa76/hnp/PQCvr3udkpYSnjj0iTbJduG6OsJVVch2O4aCAiSdrrtCFnqAiNNJqKwcWadFV1iIxrxjwrFOo6Nfcj/6JfcDIBgJ8uyKZ/l066cAbHNvY2H1Qt485k0KEwq7I3yhhwpHw7y69lVmbZwFxN4ri2sX89Yxb9Ercd9e+VWNRAiWlaE4XehystFlipXE9zVLapcw44cZ8dc3/XgTz015jkm5k7oxqt+mqiqh8nKiTU1o09LQ54vJo8IOkaYmQtu2IZvN6AsLkQ2GvdovEAnwz2X/5JvybwCocFewuHYxbx79Jvk68R4T9h3N/mZu/uFmtApcYTsGY7PK2o3zyR+dj0lr+u0DCMI+SCtrMWgM3PLjLTiCDgBeXPUipY5S7p90/+9676uqSqisnGhzM9r0NPR5oojJvi5cV0eofAsNnjWUOjdT4a7glTWvUNJSwqOHPCqKjQk9XtTtJlRWhlGScGlreXzp40Cs6NjSuqX8d/p/GZw2uJujFIT25lbM5c6Fd8Zfr5izgv8c9R9GZIwgtG0bkYYGtKmp6PLzxYQMQfgNwUiQV9e8ysdbPgZifcybWzbz76EPYXIGRP+YgBoO49m8AWfpYnL0Jr71N/Lfdf9lTcManjniGex6e3eHKAiCIPQQUZ+fcHkZSjCIvqAAbVJSl5zXF/YxY+4MgtHYxKcnlj6BK+jimpHXIEtyl8SwP6twV3Dfgns4xTyBqdo8qhwBnlvxHHcddBcmnRgXEIT9lVlnZkjakDZtP9f8zL0/38tF6X8h32emaeMq1mvtjMga2U1RHhg2t2zm0m8vJdWQwkWJ07GVhyiPLiFjeIYoIirsF5bXL+fGH26Mv/7bvL/x1GFPcVj+YXvcT/H7CZWVowQD6PML0CZ3zb2nIHSXDc0buHz25YSVMABrt/3CeFcaVls+hsJCNDZbN0co7O9CAR96405FSAyxIiQRUYREEARBEARBEARB6OFET7rQ6SJNTbGCIlYrNcaWeAGS7RbWLKTCXcGAlAEA+Fatourqa4jU14NOR/pNN5J46qltCk8IB45gWRk1t96Gf8UKABJOOIG0G65Hl7Hriu3V3mo+2/pZmzZ32M1W59Y/VIQkXFVFuKEBbWoa+tyc372/0D3UcJhgeTmq348uN3eXSVq13lre3/R+mzZfxMdmx+Z9ugiJ4vfj+Ogj6h94EDUcRpOaSu7TT2EeMaK7QxN+h1+/NwE+3Pxhjy5CoioK7tmzqb71NlSfD9lqJfuxx7AdesheHyPidBLeVoFkNKIvLEAWRcj2G4FNJVRdfz2hrVtBkki+4AJSLr0EbWLib+5b7amOFyDZzhl0stW5lXx7+4k8qqoS3raNiMOBLjNzt/cMgrArajRKqLwcxeNBl5ODNiWlw45d7i4nS0rgqtIieOUFiEYpys5G+cc4GNZx5xGEnmarc2u8AMl2pqCCd/UqJHNS7Dv/NwpTqdEorm++oeb2v6P6/ch2OzlPPI514sROjFzoTL5Vq6m69loitbUUarXce+lZPFlgZ4FjGT9W/Uilu5K+yX27O0xB2K3Ali3UP/gg3vkLAMiefDDXnXIWT9a8CUBEjbC6abUoQiL0OO6Qm/+s+0+bNhWVlQ0r6bPeSfVNN6N4PMgWM9kPPYR1yhQkufMnHoZqaojU16NNSkafLwqNCfuOGm9NvCA6QJoxlYc0p9B4+nkoXm/sb+mRR7Aefrgo6nMAivp8tLz5Jg3/fJL0SITsjAyG33kNV1U+wfKG5VS4KhiUOqi7wxQEoVWospJIYyO69HR02WI1ZKHjRN1uQuXlSDr9bvvBIg0NNDzzLI5ZscUzDIMGkfPIwxh69+70+EocJfECJNu9sf4NTut3GlnWrE4///6utqWSO5yTkWe+hBoKUZiUxNh7rqfaU03vpM7/9xWEniLc2EikuhrZZkNfUNAlfQ09SUSJ8MGmD3g69Ursd7xAtLkZSa/HeLMJ5bRBe714h/D7lThKOCb9cC6p64drxj9RQyE0SUl4/plO4riDujs8QfjTPtn8Sbu2dza9w6F5h+62LyrS1ETjc8/R8uZboKoYBgwg59FHMPTp02FxxRexcjpF3o7QLULVNUQa6tEmJ6PPy2NTy6Z4AZLrs//KpHc2Ep13E+WAZdIkMu+8A31ubvcGLezXwoEAOqMx/lrXev8XDgS6KyRBEARBEARBEARB2CsH1oiO0OUC69ZTdtZfKTvtdEpPOJHsb1YyNnFYm200kga9Rg/EJh/X/N/MWAESgHCY+gcfIrhpU1eHLvQAqqri+OCDeAESAOdHH+H75Zfd7rN9pe1f2/4e+z088+ZRevIplJ9xJqUnn4x77g+oqvq7jyN0rajbTdOrr1J6womUnXoa5eedT2BTSbvttLIWo9bYrv2PvFd6kmBJCXV334Majg2aRBsbqbn970SaW7o5MuH3SDYlt2tLMvTsVSdCZWVU33wLqs8HgOLxUH3TTYS2VezV/sHNm9l20cWUnXoqpSecQONzzxFpcXRixEJXUYJBGp9/LlaABEBVaX71VQKrV+/V/hpZg15u/9m8qzY1HMb1+ReUnnQS5aefQdmpp+JbtuxPxS8cOKJeL81vvEHpX06g7LTTKT/7HAIbNnTY8fUaPWfI4+DFNyEaBSBSXY3n0aeIejwddh5B6Gl+fX99R+4lnPdGHQ1nnk/pCSdQ/8ijRBoa9niMYGkp1bf8DdXvB0Bxuai+6WZCVVWdFrfQeYIVFdTdcw+R2tpYQyQCz73OWdqDAdBKWnQaUYxO6LkCmzfj/PDDeAESgMiPPzGuVINdb4+3mTRiRWOh59HJOhL0Ce3ax0Tzqb7xJpTW+1LF66Pq5lsIlZd3ekzexYspO+VUyk8/g9ITT8T11deokUinn1cQOsKvxyOuzzgDzd1PoXi9QOvf0k03d8nfktDz+JcsoeGxx2P3u0Ckro60Zz/g2PTDkJDQyeKeVxB6AlVVcc+ZQ+lJJ8fGhE86Gc+CBb+9oyDshWBZOZXXXEPZKafusR/Mt3xFvAAJQHDtWlrefAu1tR+5Mxnk9rkVFp1FfE91kNwmFenB51BDIQCiLS3o73uOlOZwN0cmCF3Hv2Yt5WecGc8ddMx6B6W1r/9AIUsyxyROwP7wv4k2NwOghkL4H/gHwc2buzm6/VtROJGr3KNx3v9om8/ihlv/Tvg3xqYEYV+QZGyfS5ZkTNpjMVz/ipW0/O9NaM2DDa5fT9Prr8dzDf8sJRTC+cknlJ7Ymrdz2un4dsr/FYTO5lm4kLJTTomNOZx0Mu7Zs7HrrADY9XbGbpWJzvs5vr133jzc333XXeEKB4hQIIC+TRGS2P8OB0UREkEQBEEQBEEQBKFnE0VIhE4T9Xiove8+whUV6Pv0QZOURMtDj3K15Zg2250z4BzybbFV7KNNTYR2UXAkXFXdJTELPYcaiRAqK8Pz/Zx2P/MvX77b/XKsOVwx/Io2bf2S+lGcWPy7zh/ato2qG2YQdTgAUJxOqm64QSQL7wMCa9fS8I9/Imm1GPr2JVJbS8OTT7ZLYsiyZnHtiGvbtPWy96JfUr+uDLfDhavbf16GSkuJNDV2QzTCH3VCnxPaJPfpZB1/6fOXbozot0Xq6lCDbVdKUzweQpW/XYRECYdpfOllgmvWxBqiUZqef4HAmr0rUiH0bFGHs80Eze2CZWV7tX+uNZdLh17apm1wymCKk9p/twe3bqXp5ZdBowUgUt9A1Y03iQQiYa8E1q+n/sGHkC0WDH37Eq6spO7Bh4i2Th77swrthWS5NO3Pu2Rp/J5TEPZHfRL7MDR1KAB51lwGL6wjumRF/Ofen3/Gv27dHo8Rqa2FXyW+RR0OIvXi831fFNqylcD2+76dJLbEEoAvGHwBuTax0pTQM0X9fpwffEhg5ap2P7P8spECewEAycZkhqYN7erwBOE3GbVGLht2GRI7ktBtOhvpPk28aMJ2aiBApLauU+MJ19TQ8Myz8SJ9itdL1c03Eywt7dTzCkJHybHmcOWwK+OvhwRS4wV6t1P9fsLbtnV1aEI3izQ24l/Vvm8zsnYDQ3WFnNH/jPh9gyAI3StUVkbVDTNAUTD07YsSClF1/Q2EKiu7OzRhH6eqKo7338P386J42+76wfy7GA/zzJ1L1O3u1BgB+if3J8ea06ZtxqgZpJpTO/3cBwJjozs+wXe7SF0dmirRrykcGCJOJzV33km49XtVDQapvftuAhsPrMXIZElmlK430V/nP6rqLnN8hI6TtqEOZVtV+8/imhqijSKPStj3Hd3r6DYL+GhlLaf1PW2P+wQ2rG/X5v1xXofdewY3b6bm1tuQDQYMffsSbWmh+pa/EWlq6pDjC8KehKuqqL5hBtHmZrTp6WgzMqi66WaG+dPJMGdQaC/Esrj9YkS7ylMXhI4UDvjRGXcsYKFrLUgSDgV3t4sgCIIgCIIgCIIg9Aja7g5A2H9Fm5tBkki7/joCa9agSUhEl5eHFLTy0KSH2NSyiWFpwxiWNiy+wq0mMQld796YBgxAn5eHGo3g+vIrtOlp3Xw1QldSAgGcH31E8//exDhwIKHWVR80iYnYjz8e85jRhOvq0WWkt9tXlmROLj6Z4sRiltQtoSihiNEZo8mwZPyuGML19fGVP7dT/X4iTU0EVq3C/cOPmIYOwXrIoRgKRaJoTxLaVkHCSSehTUsjuGkTlgkHg05P1OFANrVdhfi43seRb89nSe0Scu25jMkYQ5Y1q5si7xjatNjgif3YY5F0OiINDfiXLkWb1H7lA6HnGpY2jNenv86imkVISIzLGsfAlIHdHdYeadLSQKcDVcU+fTr63FxUVAJbthJtbkaTkoJ5+PB2f4cQm0Ts/eGHdu3Bks1YJ03qivCFTqSx27BNn442KQlJlgmWluL+5hu0Scl7t7+s4Yz+ZzAgZQBL65bSK7EXo9NHk2Zue38YrqvDt3QpuqwsLOPHIWl1NL3yCpGaGiL19ejSxP2ksGfhqipSr7iCqMdDuKoK29QjCG4tjX2GWSx/+vgWnYWUgn64JhyMadhwADzz54OiIHfA8QWhp0ozp/HI5EdYUr8Egy+K/uWXCAGm4cOxTplCYM1qvPPmo01NxTRo0K4PotGCRoM2PZ2EY44BrZaoowVtyt59lwg9S7ipEUPfvuhyczH274+qKHjmzMGS15unip5iePpwsdqu0GMpLS2E6usxjxtLqKqKhKOPBq2WSF0tcnFvpuRJHNfrOMZmjaVXYq/uDlcQdmlMxhj+c9R/+LnmZ2x6G2OzxmJ36nFkZWE/8kgkoxHF7cb1xRfIiYmdFkeksRHPgp/QWCzYjz8e2Wym6cUXIRwmUlMDxb+vqLQgdAdJkjix+ER6J/ZmWd0ykiPZ1Fqt2KYegTYjEyIRnN98g2Qyd3eoQheLNDaiLypEttlI+MvxyBYris+Hf80aBhaN47Cs3hi0hu4OUxAEYoVPE087DUmnI7R1C9ZDJqN4vETq6tDnigKZwh+neDx4ZsdW0zYOGYJ92jT8q1fj/XEe2pQUTIMHAxCqqkbTet+tLyrEduQ0JFlGTkrqkH7p35Jnz+OFI17gl9pfqPHWMDZzrCiq2YEMyaloUlNJOP44JL2BaEszngU/oaL+9s6CsB+INjcTXLu2XXu4shKGDwNiRZsCq9fg+vprom4XCdOPxjRiOPJOK8XvD1Iyi/Dm5WEZPx5NSgpqKITrs0/RijHsThXetBnz8OHxnEPZZELxuPEu+AlNshhjEvZ9Q1KH8N/p/2VR7SKiapTxWeN/M79MX1SEoW9frIcfjiTLBDZuRDYZkW22DokpXF1NyqWXovj9hCsqsE2ZQqiigkhDA9qUlA45hyDsTri+HjUSIW3GDMKVFUQdDhKOPw6DO8hLR77EioYVmMbWIgdCWMaNA8D3yy+YDzqomyMX9nfhQACdYcf9rU5viLcLgiAIgiAIgiAIQk8mipAInUa227EedigNjz2+o81iIffZZzim13iO4Zh2+6jRKBm33EzD44/j+uwzJKORlMsuRbZauzByobsFN2+m9q67AUg4+mj0hYUoPi/J559P00sv0/L662jT08l+7FEsY8e22z/BkMCk3ElMyv3jE9e1yclIBgNqcEeVYePwYbi++BLH//4HgPvzz3G8/wH5L7+ELr19QRShe+iLCvEuWEDTBx/E2wz9+5N0xunttrXqrUzImcCEnAldGWLnMhlJvvBCGp96CsXrRVdQQMatt4Ks6e7IhN9BkiQGpw5mcOrg7g5lrxkKC8m6716iLS04P/gA16efIhmNJJ9/Pq5lS5E1WhSvD/sRU9rtq7FaMQ0fhmdu20Ik+oL8rgpf6ERqJIIuM5Om559HDYcxDh5M1v334V20CPPoUegyM3/zGAmGBCbnTmZy7uRd/lwJBml47jmcs96Jtxn6FpN48sm4v/sOjSjEJOwFXU4ujU8/E1+NzfP99ySeeQZSByXbABiSUkGnp/G550CWsR97LNbDDyNS3yAKhgn7tRxbDjm2HNRIhJqxKwnX1sX6Cx7f0V/g+OADCt/8H8b+/dvsG6qpoeGpJ0m/5RYUt5vm115F8frQFxWSeNqeV/ISeiZdWhpp119H0yuvxj4PtVqSzjqTxLz+5OeLog1Czybb7dgOmYwaCJB46qk0vfQSqs+HvlcvMk88iYuGjunuEAXhN+k0OkZkjGBExoh4W1jrJu3666h/8CGiDgfa9HQy7rgDJRzqlBjUcJimV1+l+dXXdsRVUEDSGWfQ8tZbYgKOsE/ZeTzCNXs22Q8/RP1jjxMq/QjJbCbtumvR7KKgurB/0yQno5aUkPH326l/7HGijY1okpPJvGMmRb3GdXd4giDsRJOSQmD1avzLlwPgmTMXy8SJyGJSqvAnySYTprFjCFdXY5s6lfrHHov/zPHBBxT873+YBg7Au2A+oS1bSTrvPCQJml97DTUUwjh0KJaDD8LYp0+nx1qYUEhhQmGnn+dAJNlspF19NfVPPIHicqHNzibz9tvQJCR2d2iC0CU0CQnoCgoIl5e3adfu9IwUWLuW8nPOiednOd95l7x/vYD1kEO6NNbOJml1ZNx2K3UPPEi4shLZaiXthuuRdrGIi9BxzMOHE/V6Sb/lZuoffYxoS0us3+vvtyMZRGFIYd8nSRIDUwcyMHXvF7bSpKVhHjeWppdfhkgE06hRJJ15BVIHxaRNT8f9zdeESssA8MyZQ8JJJ8UL7wlCZ9ImJ5N88cU0vfhifBFK9zffkvXgAxSNGU2hvRBPzXyiGzbR+PzzANimTsU8Yng3Ri0cCEIBP/qd7vt0rQX3wjvNURAEQRAEQRAEQRCEnkju7gCE/Zgk4XzvfTAaSTrnHJLOPw8lGsVfWsq7G9/l5h9u5v2S96nx1MR3ibY00/zKKwQ3lQCgBgI0PvkU4aqq7roKAVACAdRoFFVRUFqr7iqhEGokgqqqbdvCYQCi/gCqqqKGwyih0I7jKApqJNK2LRpFjUbjx9k+8ROg4ZlnMI8dQ/qtt9Lw1NNEW1oAiNTXU3Xd9QRbt1UCref71bG3tmzl/fXv8PqKV/ip6id8XuceryXqj7Vpc3LIvOdu0LbWatJoSL3schxvvdXmdxPatIlgSUmbtp2vRQkGUSORP/X7F34f2WjC/c03GAYOJOXKKzEffDDBDRsIV1S027Yl0MI3Zd/wtx//xsurXmaLY0s3RNyxovX11D/0EIrXC0C4vJyGJ54g0tTYzZEJv0dYCbOsbhkP/PwADy56kOX1y4koXftZsv1zcvvndDQYJOJ2xz4vW19v/8zc/tluPeQQPD/80OZ7vOmFFzD164dx+HDcc+cQ9XhQAoH49wTEEjFTr74azU4rXtimH4VhyJD45ymAEg6jtH7PCPsO/+o1ND71VPweIbBmDe7vvie4cSORxr37bKpwVfDW+re45Ydb+KjkI2q9tW1+Htq2Dec777ZpC24qQZuVSdb996FJSiLq9xPx+Yj4fET9fkItLUScTqJ+/46feb1E3G7CLhfhpiYiYrWBA4ridBD1ekm+5BLsJ58MgPO991Gczj997EAkwC+1v+CY/Q3euXNbT6jg+uQTQpu3EKmr3eP+gtCThF0uQg4HUbc79rnp8RD1eGKfpz4fUZ+PcGMj4dbP3Nh/flyuJtbXrSF8/BTsxx+H67PP2xxX9fnwLV3W7nzRhkYCy1eAqtD4zDMoXh8AodIyambeQdTl6orLFjpQpKkJ19df41+6tLUhQsvr/8W9fg2zy2fjDPz5z11B6CxKIEC4spJoYxONTz6J6mv9TNq6lfrHHuOTFW+zon4FUSXazZEKwu7V++r5ZMsn3PLDLbyx7g3KXeVEysqoveNOog4HEOt7rbvvvg65F96VUE0N/pWrQNqR2h4uL0eTnET6bbcip6bGntm8XqIeT+x+w++P9UWEQvH+CiUU2vE6GEQJBuP9FdtfKyKBU+giYSVMpKmJxuefJ1RaCsTucesffIiIGOM64KjhMIrTSd0DDxJt7f+KNjdT8/e/07BxVZf39QqCsHuK241/+XKMo0eTcuWVGEcMxzt/PmrrOJsgbKcEg/G+r+3jCvH/dmoLNTQQdjhQIhGSzjgD23HH4vryyzbHkmSZUHkZaiSCd958nO+/j76wgOZ//we1NdchsGoVjc891yX3s+FomCV1S7hv4X08tOgh8VzbgaJ19dTedx9Kax9mpLqaugcfRPG4uzkyQeg423Ou4q9bc8OUcBjZZiPrnnvQ9+9PyhVXYJ06leSLL0ZX1CueK+CdN6/NAlEAjS+91CZPYF+32bGZhoqN1D38SDwnTvF4qLv/ASJ1dd0c3f7N+9NCZJ2O2nvubZNzWHvX3YRran5jb0Ho+aJKlBX1K3hw0YPc9/N9LK1bSljZc15VuKyclv++Aa2f3f6lS3F+9hkRd8fcn0RbHIRKyzAfcggpV1yBvk8fnJ98gtI6niIInUmXn49sMqEvKiLlyisxjYsVA258/gWqqzYye9MX+Jcvx/3lV6CqoKq4v/kG35Kl3Ry5sL8LBfzojDsVIWkthhYO7j/3vIIgCIIgCIIgCML+SdvdAQj7r3BzM6aDxpM6ciSO995HjUTImjmTgEXPQ4vvJKSE+KrsK44oOIL7JtyHRWcBSca3+Jd2x4o2NXXDFQiRxkbc332P87NPSTzlVLwLFyKbTRh698H5+ecknnwygTWrUXw+LGPH4vj4Y+xHTSdcWUmwvBz7kUfi+vRTzAcdhOLz4lu5kqS/nIDrqy8x9OuPbDLinT+fxFNOwTP3B3T5eZgGD44PNAMQjeJ45120mVmovxpgjra0EFi+Aue77+HfuJHEY47G+dnnmIYPB8C3eDGJJ/6F0d/Nx5iXD0lrqZ/zHImnnob355+RjUYMxcU4P/+MxJNOIrB2HVG3G+v4cTg++ghddg55L72IGgqhy8yMnXTn2LZTlPj/9K9ZQ8vr/0VOTECfl4/z00/RZWWSfN55mEaMQJI6qma8sDuK30fWww8R3LARz5w5GAcPIuepp4h6vajRKJJGA4Cqqrxf8j5PLnsyvu+sjbN47ajXyLXldlf4f1q0xdHufRosKWmXtCH0bCvrV3LRNxehqLHPl1kbZ/HqtFcZmTGyS87vX7cO39JlRJub8f74A9YjpqKx23F+9BHa9HSSzjwT97ff4l+5EsukSRgGDUR1OEEC38Kf2x1PjUbRWCxEKqvw/byIwKaNuL/5FstBB5Fw8klEGhpoeeMNMm67FTUcIep2ocvNpenFF/EvXYZt6hGYR4+m8fnnURWVlAvOxzJuHLJYFWifsH3izc58CxeSeOYZaPZiNckmfxO3zb+NlQ0rAfiy7EuO7308/zf+/zBpW98DirLL72hddg6+lauINDXFVjKSJDSpqSh19bS8+y6SVkvSmWcgJSURbWqKreyi0yHpDUgaGUmrRbJYMA8ahCSL+o37s2gwiGS1knrF5bg+/QxNcjI5T/6TxpdfbnOv90ctrF7Ix+vf49o57ZPZgiWbsB89/U+fQxA6m39TCVGnA8JhlEAgfl8daW5uXRlLQpeTje+XX/B89z363r1JOPEEIh4PqtuNrNWR4XYTdTowjB2Lf/HidudQI+2T4uTEBDSJiUQd7SdBB9euJdLQgMZu79iLFTqVLitrl30/gY0buMf9GZcMvYRzBp7TDZEJwl5QVQx9+hAs2dzuR4FVqwg1TuCCVQ/z2lGvMTx9eNfHJwi/IRgJ8uLKF5m1aRYQe776eMvHvGS7ol3fUbS5OZ6I3lGiTieeefNofuMNNFYr6X/7Gy3/fZ1wVTUA2qwsIvUNBJYvj33/u1y0vPkWaihE4qmnIlvMKC53bHJ/wA+ShGw0oQQDqKEQssmEpNPFJjyFI7HXsoxktWAdPx7tTsVPBaGjraxfSXFGGoE1a9v9LCImNh1w1FAI2WqNTzjeTvH62LRxIabESJf19QqCsGeqCjlPPon355/xfP895rFjSD7nHNQO6BMU9g+RxkZ8K1bGFoBQFVCU2HCExPb/gyRJyAl2IjU1OD/+BG1aGgknnUiksQnr+IMIrlwVP57tqKPQFxTQ/MqreBcvxjRiBO7Zs4nUti9U7Zkzl0hzC/qszE69xuUNy7n464tRiY2zbB8zF8+1f17E6Wj3XBWuqo4X7heEfVnU6cQzfz7N/30DbUoKyRdeQGDlSnyrVmObOAHnZ5+jqipp112L/cipeGZ/h75XEdYJB1P3yCPoM9JJPPXUXS5CogZDbXPH9mGV7kou//Zy/pl+FZry8rY/VJR4QVihc2hzckBRd5lz+OvnNUHYF61qXMUFX11AVI0VkHt307u8fOTLjMkcs9t9whXb2rX5fv4ZNdpBRei0GnKfeQb37Nl45s7FNuVw9AWF4hlL6BJKIIChbzGmUSPxzJmDaehQks86i7rHH+e9je9SKjXRb2X7gju+RYvgqiu7IWLhQKAoUSLBIHqjMd6mbS1CEhF53YIgCIIgCIIgCEIPJ4qQCJ0iUFODJElYx4+n6rrr4+3+pUvJfvTRNgOFs8tnc/GQixmUMghtWiqmkSMxjxkTm+ip1cRWsc/s3KQKoT1VVWl59z0an3yS1CuuoO7++0FVST77bOruvZekc8+l8ZlniDQ0kHbttdT8/f+wH3ccjnffJbh+Pek330TNrbdiHjcO36JFeH/8kbQZM6i+/Xb0BQVoEhJxfvABqddcTe1ddyFZrGRMOZyqGTdi6N+fpHPPpeWNN0BRkC0WjAP6gyzHJoFqNCSdcTqapGSUcBjF58U6ZgzVf7sV46BBBDdtwv3ll6Rddx31M+9Em5qCIT2DlkefIOXyy6l74AGIRkk+71zq7rmHpHPOpvHZ54jU18evBcDPElwff0z+f/6NsV8/lEAA+7HH4vr00/jvSZudjb53bwCCmzez7bzzkAxGEk8+KfY7IzYJxfP9HArefgvToEFd/495AAlu3YpkteL8+BN8CxbE2tavx/fTQrL/+Q8Ca9dhGjoEgGpvNS+uerHN/rW+Wja2bNyni5DoCvJJvfoqUFSUQICWN99EY7ejTU/v7tCE3+G9kvfiBUgAomqUD0s+7JLE9GBZGTUz78A0ZAiOt99Gk5iIGghQ92SsYE/CySdT9+CDhLZsiW2/YQMZd8yk7v4HsE8/CuOYMVjHjkGNKkg6Hf7ly9Hl5uL+6is0SUlUXnMN6TffRHDDBoIbNuBZMB/z0GH4V65CX1BI86uvknTWWbS8/t/4KkDB9esxjxuLbDLjmTuXykWLyHvxX1gnT+7034fw5+kK8km95urYBDC9Hu/ChaiRMMaBA1E8nt/cf6tza7wAyXafbPmEcweeS7/kfrFz5OVhmzYN99df7zhvTg6BtWtoeeN/GIcOxdCnD7qiQogq1Nx6a3w736JF5Dz5T5SmJpRgCFQVTWICklYLej1aRcG/YQPmgQM75hci9Ejh5maC69ZR//Aj8TbvTz+R++Q/kRMS/tSxvWEv/1r1L7whD0ycQOoRU9r8PRgHDmqzArwg9EThlhaizU0obg+R5mZkgx4lEiGyrQLJaERVFIyDB+H86COcH3wIQGDdOrzz5pH1yCP4V6/Gv34Dhvx8Wt58E9lmI/ncc2h89rkdJ9HpMI8a1e7cgTVrSbn0kvgqsPZjj0Xf+nmOToeckNgFvwGhI0lGI8bBg9AdfhiaxESA2CTz3GTcATfPrXiOqQVTybSIviCh51FMJvzrN2DsW4yuoICE449HDYeR9Xp869dRpjQQUSN8tvUzMVlL6JEq3BW8W/Jum7YNzRvw5xoxDhmC7bDDUIJBZIMB5+zZ8c/pjuL+/ntqbrs9/tr78yLSrruOhscfR5ueRmjLFppffQ3z2DEknnkm1TfMiG/rX7KErPvvI1RRgaTTIRuNBEs2E6yowDJ6NLLFjHv2bGSLFdPAgaiRMK65c9BlZGIo7oPr8y9IPlcUuRI6z5sb3uS+jEtIu+kmFI8HSSPjePddIvUNaEQBnAOOqtWiTU9Hl59Pwl+O39EP8MtiSkxhlm7+WBQhEYQeQrZaqL3zzjZjHv4VK8m8/75ujkzoCVRVxfnNNyhOF4rfjxqJIMkSkk4Hsoyk0SBJMphN0NhAw+NPxPf1/vgjqVdfRcMjD5N84YUES0pi3w1ZmTT9618A2I+eTtTpwDh0KHLrisiWSZMwDR+OGg6jTUtFtlk79RoVVeHN9W/GC5AARNQIX5R+IZ5rO4AmIwPTiBFYJ01CCYWQdDpc33+PbBNFlYV9n3vO3PiYq2n4cFpefx33N9/G8sX+byYAiRdcgPPDD3G++x4QGzfwzJtP7rPPsO3sc/As+In0a68BjQZ2mvye9Nez0OwnC5JsaN5Ana+ONVI1YwcOxDbl8B3PBz8v3LEoltApjMV9UNweDAMGYJ86Nd7v5ZozB21GRneHJwh/2qebP40XIIHYvd2sjbP2WIRE36sX9uOPR5+fFyvSEw4Rqq5B20GLPmisVqpuvY1IQwMQy/myTTsS00HjO+T4grAnoYoKGp95Fv/SpUBr7vDiRWTdew9ljjdY7liNfuTJ6AsL2oxTy2LRE6ETbS80ojPuuL+VZQ1anZ5wMLC73QRBEARBEARBEAShRxBFSIROIWt1KB4Prm9nt/uZ4/33OfaiY/hw60fxNqW1ynXU4SDlogupvuVvsZVkAPOECWiSkrokbmGHSF0dzS+/HHshSyguF/ajj8b11VcAaGxWIjU1mEaPxrtgPgD6/Dxcn36KrqCAwPoNoKqYR46k8bnnkC1moi3NEA5jO+xQmv/9n9ixFQXF6yP96mtofu3fqMEggZUrUYNBUq+8Al1WNqGyUsL19SRfcAHNr75K6mWX4fzsM8LbYlXZdbm5pF57DSgKlgkTaHrxRZBl1FAINRjEOuUInB/GJsJJGhnF6cR21FG4vopNVNbY7USqqzGNHIn3p5/a/S6cn36GZdw4ZKORtBuuxzh4EK7Pv8A8ehQJJ56IPjsbgMDGjSheHwnTjsL52edtjqGGwwRWrxFFSDpZsKQEyWKJFyDZLlxVRah1RZHtRUgUVSGitF/NVdmHq+6HKiupf/hhAq2raWlSUki79lokvS62lJuwzwhFQ+3agtGuqXoeLCnBMm4cLW+9BYBl8mRcX3wR/7kuMwNnazIugJyQQKi0FKJRPPPmk3nnHdTcetuOicLHHUu4rg7PnLmkXnMNblUlsGEjurw8whUVhDaVYJ86Fdvhh+H6LFbkSZOUGC9Asp1v0WJSr7oSz9y5ALS8PUsUIdlHqF4vjc+/EF/pLeGUU7AdOZXamXdgPewwMu+8A2kPBRh2Lsizu3aN2Uz6zTdhGjYU11dfY+jTB31uLg3PxSa3B1atwjppIobevWl5/b/tjuX+7jtsR00nsGZ17Ng+L5rkZDQJCUTdbiRr5yb5Ct1P8vtp+d+bbRvDYQIbN6Lr0wddcvIfP7gKYSWMK+zGUtyPxtvuiCdSJp5xOnJyEq4vvyTtSrGqitBzRRobUQNBok4HaihExOFAn5dH0O1GCoUgEkuYdX7yaZv9og4HkbpaJL0eY99iWt6eBYDiduNfuYq0a6/Fs/AndOkZJJ39V4y/el4KVVRQO3MmssVMyhVXknnXnTg/+RTXZ58BINvtWCdOQJcqJnXuKyLhMMG1a0k8+WTqHniwzXN9wTGPElkZIapG95tVLoX9T7S0DNXrwbdiBcnnnBMrdNvaj5B86SVsCa4Bdv1MJwg9gaIqu3zGcqdZSZw8iYannoo1SBIZt9+G64cfMA4ejKzT/elzR10uml56uW1jJEK0pZnEM89Al5VF49PPxJobm/D88EO7Yzg//xz79OlEamvxLVlKuLER68EHIWk1eH6ch6TRYOxbjBoK4Zo9G0Pv3ujz84g6XThmvYPt6OnoUlP/9LUIwq+pqspwfS9aXn8d14cfASDp9aTNmEFw00Zks7l7AxS6XKS2lsCGDaRecTk1M++I94slnnUWtaZwl/X1CoLw28Ll5fECJNsFVq0iUlkJxcXdFJXQU0Tq6ojW1YNGRpIl0MiokShq0AuK0tp/oWLo15/m119vs68aDhN1uVEjUfxLl5F2/XWoskzLf2LbGfoW41+1GvdXX2E/5mi0WZmkXHUVoc0lND79NBC7n9D36oX1oIM69Tp39Qwrnms7hqzVYho+fMezlkZD5h13oHjar74uCPuSqNtN08s7nvEtBx1E47/+haG4GP/yFfF228QJVFx2eZt9Faczll8AaPR6XF9/Q/rNN+NbuBDF58MyaSLhquouuY6usL0fRqfRk3zO2b96PjgTaT8pttJTBTdsQJOegf3o6TQ88Y9Y7pQkkTbjBiTxrC7sB0LKLu7jInu+j9NlZRPatg3XJ58AoElMJOvhhzostzBUWhovQLKd+5tvSTrrLAxZWR1yDkHYnUh1TbwAyXah0jKiLS0counHKnk9pmHDabjnvjbj1Jl33dkd4QoHiFAgVmhEbzS2adcaDISDop9YEARBEARBEARB6Nnk7g5A2D+pqgKKivyrDhMAyWTCH/HFX4/NHEuBvQAAxe+n8cWX4gVIAHwLFsSLBwhdSJaR9Pr4/4ZYosyu2wyxttYJxG22U1XQaFCjCpImVvdIjUZjRRF22kc2GglXVMRPH9ywgcZnniVUsY3m/7xOtKEB708/kXHXXSiRSLwDGCBcWUlg7brYCgVKFEmrjZ1Xbp3QvNu499C286/CsmPQUZ+dTcp551HwvzfIuOUWjDsln0la7R6PE79modNIWm3sfbaLyeySRhN/DwJkW7I5d+C5bbZJMCRQnLTvJhT6Fi2KFyABiDY14V+7FvfcuUTdIpFpX3JK31PatZ1UfFKXnFvSatt8jqmhUNvPtF//fUUi8c8/2xFH0PD44/ECJACuTz9DikTj2wLIBgNqOLzjGK2FoySdftfn2EXbzp/NQs8Vqq6m9s674v/2AM733iO4YQORujoCa9eiRtoXhNpZr4Re9E7o3aZtcu5k8u35bdr0ubmkXHghmffcjW/x4lhC587HlqTYKoUGQ7tzSEYTRCMgSUiyDLIm/p6TJIndl0gR9heqRrPr94ZW+6f//S16CxcNvohzU6bjfODRNiu5Od6ehdLQSGDduj95FkHoZHLrRAtAQo1NuFCV2MR7VY2tlCrJ8XuCnW2/P1fDYeSd7im88+fT+MILpF51FdmPPoJ5xIh2RamibjeK10ukvoG6e+9F8XrxL1sW/7nictHw9DMofn8nXbjQGVRJxjtvXrvnevecOWSYM7hg0AVkWsTqj0LPJMkyGpsdWZZp+Oc/4wVIAJpffImTdGMBOLb3sd0UoSDsWZ4tj6MKj2rXltGi0PTc8zsaVZX6x59AazajBjpoFTaNBmkX4wWa1FR8y1fQ8MQ/4n0Faji8y7EF2WiMrc8uy7H7d0VBjURBkpAN+h39EbKErG99LUlIWg3odEgaTcdciyD8iiRJTA33jRcggVifWssbb6DLL0ARfbMHHNlgQNYbqH/0sTb9U44332SsP5MTi0/sxugEQdjZrvoy9tQuHGA0GlRFifURq4CiQjSKqkRjfWOqGmtXlV3nB2g1oCh4f/qJxmefwzhgQHw7bWYW4YpY34jr8y+oufU2tMnJuL/+Jr6/GgpRe8edRJqbO+0SZUnmrAFntY0biWN6HdNp5zyQKC0tNL/22o6GaJT6Rx+N56gIwj5Llts8t6tKFEmjac0zaJsbJe2isOn253M1HEL1+6h/6KHYZ50EDU8/Q7S5qXPj70J9k/pi19sZKGVT/8ijv3o+eItofX03RncA0GiR9ToannxqR4EFVaXhyaeIVO8/xW6EA9fxvY9v13Z6/9P3uE+wZBOBFSvir6MOBy1v/I+ox7v7nX6HnfMz47Ra8YwldAlJu+sxAEmrBY1M36S++OcvaDdO7Znbvii6IHSUcCCWz6Izti0+pzUYiIREERJBEARBEARBEAShZxOjmkKnUKNR0OuwTTkcdh5MlGWSTj2VoqTeDEkdwnUjruOug+7CbrDHfmw0Etq6Ffuxx5B65ZWkXnUlxiFDiDoc3XMhBzBdejppN9wAgOL1osvJxjNvHvZjY5MowtU1GPr3J7BqFZYJB4MsE1izFsuEg4lUV2Po3QtJp8Mz70cSjj0WNRBAtliQrVZcX31N4mmnAbHEGW16Go6PPsR6xBHt4jAUx1auDG7Zimw04nz/fYI7TdKUExJIPv88dFmZJF98Eb7lK0g8+eR4wo8mMRHX11+T1Ho+xe1Gl5ODd/58Eo6JJc6Eq6owDhxIYM0aLAcf1DbhQ6cjYfr0dnHtavVP44ABaDMy8Hz/PYknntB2e7sd09Chv+NfQPgjDP36o8oS9uPbDrAZBw1CV1CAoagw3qaRNZw14CzuPOhOhqUN48x+Z/LykS9TmFDIviq4qQQAXV4eKZddRsrll6MvyMc0eAi6jIxujk74PUamj+RfR/yLyTmTmZw7mRenvsiI9BFdcm5jv374V68m6fTY56bnhx9I+MuOv6lgSQmWiRNIOussUi6/nKSzz8YwaDCyxYw2LW2XqxIp2yf9GPSxVdsKC4jU1gJgnjCB4NatuL/7Pvb5DYQrKjEOHtTmGLajjsK78OfYC42GpNP3PGgu9AyKy4WhuJjUq68i9aorsU2dGmv3xQbXEk484TdX1E4zp/HEYU9w6dBLGZI6hBmjZnDb2Nuw6Cy73F6XlYW+sLBNm/WwQwlt20Zo82YSTzm53Xe97fDDCFdXI5vNSAYD+txcNImJSFodst0OuyhOIexfVI2W5IsubNMm22wYBw1Ck5T0p48/KXcSRyQdhDY9Pfacc8UVJJx0Euh0KKEQ9qPa328KQk+iS08HoxFtaiqS0Yg2PR3F50OblYkuIx19ZhZRv4/kc85uu19uLprUFNRQmEhdHYmt9xfbaRIT0GVlxQpA7eq8WVno+8aKBMomE+HW+wfLwQfHvluuvgrZZiPq7ZikOKHzaXU6TIMGEiotwzRy5I57hGnT8C9fwR3j7+DUvqe2K0gjCD2F3KsIXUE+mtQ0FI8H27QjSb3qSlKvvgrTqFFkBo28dORLjEjrmuc3Qfi9TDoT14+6nptH38zQ1KFcOPhCnj78aTROL5qkJJIvvICUyy8n+cILkS0WtBkZaGy2Djm3xmIh7eqr2rTJFjPm0WPQWNo+3xkHDsQyaXK7sQX70UcTLi1FDYUwDRuKedQo/CtXoHg8WCZNQpuZiX/1GlDBPn06KhAoKUHSG0i76kq0HXBvLwi7Y3TuKNgj6XQknnIKCccdh6GoCG1+/h72FPZHckYG2ox0FK+XxNNPJ/WKK0i94gr0RYVkhkxd1tcrCMJv0+bnYx47tk2bdcrhaHNyuikioSfRpaVh6NcXyWoFvR7JYEC229GlpqHLzEKXm4MuLw81HCb5ggva7Cvb7Uj6nYryazRoU9NIv/46AAKrVmEeN67NPttXjNfl5JBy2aWkXH451kMmE3V7OvU6R2eM5vkjnmdC9gQOyzuMF498keFpwzv1nAcKNRRCm5FByiUXx8ZVzz13R0F8QdiHaSwWUq+8Mv7a8/0cEk46iVBpKcYhQ6B1onnL+x+QfN55bfbV5WTHx3I1qakknXFmLOds9Wp8i38BwH7scV1zIV2gMKGQl498GaOsRw0FSTr7r6Rcfjkpl12KLidHFFnvZMZBA1GDITQ2W5t+L01CgvjdC/uF4enDeenIlzg091AmZk/khSNeYGT6yD3uE2lsxDh0aGxs48orsR97DMEtW+io1Xn0vYrQ92670FDSaaeiKyrqmBMIwh5oMjOxHdW2ELtp5Eh0+fkMGnI4ozJGEdq8BcvECfF8A8vkyQQ3beqmiIUDQai12L/uV8X3dXoD4aAoQiIIgiAIgiAIgiD0bJK6vcL3fmb06NHqkiVLujuMTuMOudnq2Io/4qfAXkCWNau7Q2rHt60C1etBqavHO28eSiSM7bDDsBx0ELLBQCQaQfurqtdKOIzr889p/s/rSFZrLMnZoCfhpJOwjBrVTVeyRx0+K6YnvXejbje+pUvx/vIL5pEjCW/bhqKoGHJz8a1cgWnYMKINDUTdbgx9++JfuQpD374oXg/hujrMQ4YQWLMWbU42qBAqK8M0YgTBTRvRJCaisVjwb9iIedRIQiWb0RUW4Pr8Czzffotss5F6xRWg06LLzMT38yKMw4ah+Lyx1a4ffwLZbif1yitp+te/iLa0IFvMpN98SywBSJYJlmzCNHo0wc2bkY0mNEmJ+NauxTxqJJGKKtRoBEN+Qexahg4lWldHqL4e84gR+H75BVlvwDrlcExDhux1Ekhw82Y8P/yIEg5hKCzEv2oVmqRkrJMmYezfr5P/xX6XTpnR1Z3vX0VVKHOWoa9qJCmsJ7h2Hf5lSzH0H4Bp5Ag0FgvG/v13uW9EiaCV9/1q+67Zs2l89jmshxyC+9tvMQweTGD1arLuuxfLyD0PMO5j9uvP3p1FlSgQK5rTESJKhDJXGXXeOtLN6RQmFKKT2xeACJaW4l+7FsXtJrB6DYahQ9AmJOD9cR7a7CzMI0dSe9fdsdXa9DqSzjkHXe/eyLJM/f33Ey7fhhIIoLYmbaTdcjOyyUzU5cQ0aDDBbdsIrFiBeeRILJMmEm1qxv39d8gJCeizc/Au/AnL+PFEGhsJrF+PZfx4dPn5uGd/B9EotiOOwDR0yL64SsYB897dLrhtG67vvqP5pZdR3W7MEyZg7NcX2WQi4nCQcv756DIz9/p4v75/bAm0UOosJaJEKEooIs2cBkCoqgrvggX4li7FUFyMNi09tgq2qiInJYI/gGfuXCS9HsvkSag6HXg8sRULdVqk1hWyJa0OzCYsgwbtOqADy379/lVVFd/WrURLNuP5YS6a5GQsEyagyc3F1EGTxTzVFXjfeR/Pj/OI1tSgSUwg8dTT0GZmYBk3Dm1KSoecR2hnv37vdqVgRQWR+nrUcBilNRFCkjUo3tZJEKqKNjWVUHk5vp8XoS8qwjx6FFG3G8XnQ9LpUP1+lGCQwKrV6IsKsR1+OIY+ffZ43sD69dTcdReBlatIu/kmwhWVKC4X7jlzUCMRrEceSfoN12PIze3sX0F32C/fv4HaOoLLl+H5djb+slJMAwYSqqgg5cLzsR96WLfGJnSY/fK9u51vwwZUrxffkiV4f/iBSIsDfa9e6PLzSDzuOEwDB3Z3iMIft1+/d39t5+erQHk53u+/x/Hllxh698a/YiXJp5+OefIkTL16xfdp9DVS6izFoDWQb8sn0Zj4u86p+P34V67E/e23aJKTsR12GMaBAwlVVuKZMxf/ypUYBwxA16sI2WaDUAjv/AWowSDmCQeDqqL4fKCCEg4hsX1lTRU1FIqtqNm6Wj2RCGh1SBoZbWoapmFD2xU72c8cUO/fnsi3ciXlp5+BZLORef99eObMxf3ppyBJpF1zDUlnnYnGau3uMHui/fa961+3jsCaNTS99BKGgQNRQiGMvXqTcNyxux2rEPY5++3790DjW7EC/7LlBNauwThsGKahwzAPH9bdYXUm8d79HaJuN/61a4k6najRKNL2HCsplj+gSiBLEpLJjOL34Z2/AG1qKqZRI4k6HPgXLUZOTsJ+5JGYBg8m6vHgX7Yc9/ffYR4zFt/SpTjeeQdJqyXrgftpev4FbEdOpemVV1EDAbRZmeT84x+Yhw/v/GtVotT76yl1lGI32OmV0Auzztzp5/0d9rn3bqBkM57vvqPxo49ImDwZ99y5pJ5/HrYjp6FLFWMCB5h97v37W3Y8489Gk5yE5dBDiVRW4luxEvOI4fhXrgRFxXLUNMKbt+BbuBB9USHmsWNxfvMN5n79MR98ELr0dPyrVuH+djZotdimTInlAnRysZ6uzr0MNzfj+fZbGp9/Hm1WNprkZMyjR2E5+GBM/XpUPtmv7dPvXTUSwbd2LYHlK/CuXAFRBf/ChaRecTnWadMwiMJz+7t9+v37e/ye/DLPwoW4Pv4Yf1U1htxcwhs3knzRhdinT0eSZULREFudW2nyN5FlyaIwoRBZ+n2fyd6ly/D98guhkk2Yx47FMHAg5iFD/tC1HaAOmPduR1NVFe+KFYTWrsW/fHnsvTdyJPq8PLSpqaiqivv773G8PQs1EkEyGZG1WuzHH499F4toCr9bZ+Sl7/MTnSrXrWHW3bdyyt/vo2Do8Hj763+7FntqGifcPLP7ghN2JlbKEQRBEARBEARB2IV9buamEEv0fWLpE3y69VMAUk2pPDflOQakDOjmyNoy5+cBoPbrh2HgACRZxmPWsMqxHlfIhTvsRpZkBqUMIt++Y2Jf2O0mY+b/ES4rI7BxI4aCgvgKCUIX02gIaSFq0KFIoJqMKH4fql4LZlO8LerzoGo0yDmZYDFDNIyilVA1MorZgCKBbDSg6DSoGglMRqKSimzQo+hk/I21WI48HGtRH2yHHEK49gYkvR59dnY8lJ07eMO1tYSrqpAMhngBEgDF66PukUconPU2kdpaQlVmJFmDxmwhKilEteDXKshKEMmoRQ6CpNehsViJNjZhPuggkotjq2zbp0z5Xb8qJRgkUl+PJimJlIsuRAkGcSz/hajJgGrWEZKjGH/7MMKfML9yPjN+mEEwGiTZmMx/Jv+LrCOmoDEa0SYk7HIfZ8DJxpaNVLgrsBvs5Fvz6ZfSowf398g8ciQpF12INjMLTXIS4coq0i6/HMXlwvXdd5hHjUKbmNjdYQp7aVXDKsqcZQAUJRQxJO3PDcYqqsJXpV8xc8HM2PeuChcNvYhjio5pNwhtKCrCsH0FijN3tCdMn06kuRn3t9+SduMMUCFSU024tBSNTg8JdlIvuwzvggXIRhOS2Yw2Ix3LwQejz9qRtGNlApy104FzcjAN3XF99mlH7vIazMP266Tf/Y536VICq1cTra0l55GHCVdXE1i7Dl1ODrrevQmuWUtg7VpCDQ1oU1MxZP12Ypc/4mdd3TqqvdVkmDPQy3rK3eVkmjOI1NRQQy2W7ALsOTnoTzuNpNNO2+2xbIeLSc7CDpIkYendG3r3jhVHcrnQWCxo7PY/fMxwbS2+pcsIrFuLLjcPTWoK5uHDkQDZYkWXm4Pryy9JOO00glu2EqyuJqyFyhQJq8FKYUJhh12fIHQEQ14ehrzYc34oGqLeU08wGkRBIRgNEoqGCEQDKBmZmCaegaRKuMIutLlGCqz9yEvI23GwM89sc+yo203U4UCTkECovh7F5YpNMna5CKxbR+LpZ6C/8UbkjAxCa9biX7KElEsvwThgAFGPl/C2bQQ3bCCwbh2SRoPloIMxjRiOJIkcgZ7ImJlB0GDAfvJJmEpLUfx+7FOmIFltLK5ehDvsoSChgN4JvcW/odAjmfv3x7dxI5q0dFIuuxz/qpVoExKQk5KINDYS8fnQmnvUJC1B2CWtRktYCbPFsQVbwE9C376kZmQQ2lqKIScXfe9eRKprcJaUoCoKkqqiVVV6+X1EDVpqfYtRxk0iuXDv+9JkkwnL+PGYRowg0tiIbDAAoM/NJfmcs+Gcs9vtYz344A67ZkHoTFKfInLf/B9SKEy4ogJjnz5YH3iAqMdD/T33YBo+DMvYsd0dptCVstKhxEDqddcRratHTkpEl5lJVFG6OzJBEH7FPHw4hl69iB57DBqTCY3N1t0hCT2IxmbDOn78Xm+f8KtVtxOPO67Na9lgQN+riNRB16BLScF+5FRSzjsXNBo0KSnIRiOVV10NqkrCiSdgHjcOxeOl+a23CVdsw1BcjOLzI1vMmMeObZNT8WeUNJVQ5a2i0d9IljWLcCTMM8uf4bJhl5Fg2PVYu/DblEgI05gxpNttKB4PmTfOQJOaCtFId4cmCH/a9md8y86fkYMGYZ82DQD7kTvG/JV+/bBMmois16NNTMQyZkybY5lHjsTchQvr/Dr3MsWYwvNHPL/L3MtQNMRmx2aqPdWkmdIoTir+QwWaJEUh6vaQfsvfCKxZgy47C9liIbhhA9qkZHTpaX/6uoT2JK0WKSUFQ99iFJ8PNeAn+ZST8ZeVEQ36uzs8QegQqxtXU+YsQ1EViuxFDE0fusftFSDhxJPQrViO4nKTcPVVqHo9KApBJcx7Je/xyC+PoKgKBo2Bxw55jEPzDv1dMVlGjcTQqwglHEZjtaIRYyZCF3EEHbwQ+orzDj+D1KlTcUZ9lGhcDEtNZUPjBkKuJnJkmeTzz8e/aiVqOIKhuA+YzLGik5qOWShOEHYWar3n0JtMbdp1egPh1gWABEEQBEEQBEEQBKGnEpUd9kFrmtbEB8EAGv2NPLviWR475DGM2l2XOQgFItRsdrDplzqsiQZ6j8ogPb/zk2fC9fW0vPkmza/9G0mnI+HqK6gaYeXV8llsatkEQIIhgRenvsjAlIEENm/GPGQInm+/pfmVV+PHMQwcSN7zz6HLyOj0mIUdmr75kqZb/4+ks/9K02NPEK6oIG3GDVRfeTX2Y47BuWAh/uXLSX/gIRpbtJS5+qHxSuQnSNgTA1RfPwN9bg6mESNxzJpF6tVXUXfr7Ug6LQknnkTNnffEz+XqVUjmv57DlleEobBwj3HpMjPJuO02fEuX0vKf1wGQTCZSLroQyWTG/fU3ND7zDCmXXUrtHXegBAKknH8+jffcT9Jfz8L75AuEtm0j/cYZVF5xJbSuVqRJTKTgv69jaC1EsreCpWV45s4l6nQiWSyYx44hVFNN3fUzdlxfairKq/8isa9YDbczVHuq+fuCvxOMBtHKWu5Ov5DQbXezdckK9H2LybrjDsyjR7fb7+fan7l13q1ElFiSz9SCqVwy+BIGpO6+qJOryU/Fuma2rWsmt38SBYNSsKeadrt9V9ImJ6PNL6Bu5kyCGzcC0AKkXHUVwdJSghs3kXrZpWKwZB+wpHYJt82/jVpvLQDZlmwemPgAozJH/eFjlrvK+e+aN3i4+BkC6/VIWtA3+KlIqaAwsXCvjxOuq4sVXtpUQsusWUSbmuI/y3r4IdRwBNPw4QQrKnF9+im5zz7TpgCJcGDwrVhJ7V13Y+xbjGXyITQ8+RSB1avjP0++8EI8c74nVFFJ9sMPARK69HTkPXw+hSIhPij5gMeWPhZvO3vA2ST6JAYtX4/z9Q9AkuCyi9GcdAKWtK5934WCEWpKYvfblgQDfUalk17wxwtYCN3Dv3oNtffdS2DlKgxDhpB670M0BmyULKkjKdNMrxHppOb89srVwS1b8P68iGBJCc6PP0YNh8m6+y4q/29m/N5TTkgg88478f+0EP+yZaTNuAGdVktqk0qp3U0kGqFPcp/OvmThANBU7WHrigaaq7z0HplOTr8kTFbdHz6eoiqsrl9NQAngCrnwhr1UuCv4sfJHNjs2A3D9yOuZtXEWNd4aIHYv8+ghjzI0rX3Sm3/NGuruvQ//ypVkP/M0GqsVVVGINjVRd/c9KB4PAJLFQtZ991J9443xfTWpqWQ9+ADhqmrqHngA6yGHYCgqwrtgPui0YkWtHspfsplQYg4VGxzUNvUjKy1K8uo12DNtmHRpXLTienSyjuemPMf47L2f5CMIXSVQXY3PGaLG0I+KFV7SU8aS6twA37yDYdAg1FAY+xG/r7itIHSXn6t/RlvdQB65RNxuav7+f6j+1gkYWi25zz6D+4sv0RcWEq6pRpOQiC4nB9dLb5F02KE4Pr8P+z+fxK+a2La+mW1rm8ntl0TB4N33lwXLymh4+hncX36JNi2NzDtmYp00CUmv77LrFoTO4KmuwOh243BEqfLn0eSVybNESNNJJJxyCuHKShBFSA4oSk0DQYcPhzmfMl8GNkkl3xQlIdKIoiq/exVhQRA6hqqq1JW52LykjqA/St8xGSQpDdTfcTvBteswDRtGxh0zMQ0a1N2hCj1cfbmLzUvr8TqD9B2TQVZxInrDnlOwQpWVNL38Mo733kdjt5Nx263YjjgCfUFBfBtVUUBVSZsxA8XrQVVVGp55msCKlfFtkv56Ft6fF+H8+BNyHn8MbXJy7PjbthH1epGNRvR5eUh7udjPluYtfLDlA95Y/wYAEhK3j7ud8Znj2dC8gXFZ437vr0fYToXmTz/HP/Rwyhx6jBUqRUY9qcEgf7yHVhD2LcGtW6l/4h94vvsOXXY2mXfegWXChE7PW/G7Q1RtamHLsgZScqwUDU8lJTs2xvfr3MumQBNPL3+aJw59ok3upaqqfFn6JTMXzEQlNr531fCrOH/Q+bvN0dwuVFGBf8VKIg0NGIcMgcQEFL+P6hk7csmMgwaRdPZf8cz5HsukSR1WWErYIdLURLSsjOobb0JxOgFoevkVcp56knCLA1VVRTH0Pyjkj1C92UHJL3XYko30HplOWhfkIwttLa1dyv8t+D8qPZUAZJgzeGjSQ4zObJ8nuZ1Go6Hq2uuIOhwANL/6KtmPP0bU5WKLWsvDix+Of+YFo0H+Pv/vvHPcO+RYc/YqJlVV8S1aRM3ddxMuLcM8cSIZf7sFY2tO7q6eyTL7JKDTiXxGoa2WOh9lqxqpK3VSOCSVvAHJWBINe9xnY9NGztVOwjfjVpwrVqHpV0z4mtNZLcu8s34WF1X1Qp9bTOWVV6K2Fn+Q9HrSZtyAT6cVRaSFThFqHXfTGdveP2oNBiKiCIkgCIIgCIIgCILQw4kiJN0kFIzQWOHB1ejHkmAgLc+GcS8nAVW6K9HKWiblTCLZmMyimkUsr1+OK+Ta7QBX2eomKjc0k5hmRlFUylc1otFASk7ndvy7v/uOphf+BYAaDNLy0KMMfvze+MQkAGfQyb/X/Jv7J96PZDAQraml5X9vtjlOcN06AuvWiyIkXchTW4nziScB0CQlE9q6Fethh+H6/HNQVfRFhbg++wzj0CE4bUV89UEjqCEA1ssSx5w2CNXnw3r4FJpeeQXJYEANhYi2tJB83nm0vPVW/FzG408lPHwyVVsjpMkekrMtvznAJxsM6HNzMUw6DOXwEwkm5eJwN5CAg+Zn7gJA0umI1NWReNqptLz9duxaklMIbdmC9dBDcX3+RXwSKEDU4cD7y5LfVYRECQTwr16F4513UENBks47D8+XX+GZN6/NdtHGRvyrVooiJJ0k2AD/l/IIRqOB5FQtxptvJ7J5CwChTSVUXHYZhe+/36bAzcamjTyx5AmOzz6J0boJyGEtbkMTdf56BrDrIiRBX5h5b2+ibHWs6MLW5Q3k9k9i2iWDMVp6RppQpKIiXoBku+ZXXyX3maepvOJK7EdP/81CP0L3+77i+3gBEoBqbzVzK+f+qSIkTf4mLkm7jo3/8QOxwQv5Z4le12ohcc/7uhr9NFV7UKIqen0KLusgEgp0SB993Ga75ldexTRuLK6PPsY2dSppN1xPYMMGDEVFfzhuYd8U3LSRhOOOw/XllxiK+7YpQALQ8sYbJJ9/Hk0vvoTzw49IuepKQhUVGPfw+bS2aS1PLn+yTduHmz9klvZKfP96MN7m+MdTaLOzsBx3wh+KvaXWS2OlB0mWSM21kpi+5xVZvM4gTVUePI4gnqYA5WuaCHojrPmhihNvGklanki02VeEa2upvOpKIvUNoNOhm34SJVtVfv5kNXkDkpFlmS3L6gn5wmQUJaDRtp8spIbDuL79ltqZd6B4vWizs0m/4Xo8C3/G8d77be49FaeTcGUF4Zoa/CtWEKqoQF9QiDUgE7aF2eraKoqQCH+ao97HJ/9cgc8Vot/4TFpqvQQ8IbL7JpGcZdnr46iqSlOVh+ZqL4omijklgTqlDlVVmbVxFhOyJ8Sf8zPMGVR5quIFSCB2LzO7fDZN/ib6Jfcj2xpLpA3X1VF51dVE6uoA0CYkEHW5kSSJwMqV8QIkANbJk2l87vk2cUUbGwmXbyOwbh2pl16K+7vvcH/1Feh0KF4fhvx8NAlipdaeJhSGBXPdqOjI659MMBzFnX0kFqmafEcAgLAS5v5F9/P69NdJMiZ1c8SCsIOqKEQcbpavBr83RHZxGpFwFFfWYSRFQ5j75uFbugTt0EGY0zO7O1xB2KVaby2rGlaRItsYsKwex/MvUWcwYDntbOS/PUZANWHGi/T12zg/+JBwVRWGvsWxiZEaDX5jMtEr78VttaA1JOOrrmf+vBClKxuBWH9ZTr8kjrpkEEZr28IiSjBI4zPP4v78cwAidXVUXn0NhbPexjR0zyt0CkJP5o/40Te5CCflUB/QgqSQlizR5AziCBoZfvxxSOFwd4cpdKGo348aClGfMYbKUh9pvWxEIyr1kowxQUEt20JC0e8riC8IQseoL3ezaXEdJosOnUFL1aYWAhoPkU0lAPhXrqTyqqspnPX2HnMTwsEIjZUenA1+zHY9aXk2TDZRVK27hIIRmqu8eFoC2JJNJOdY0On/2CTGpioPTVUeNDqZtDzbLovrNVS4+eiJ5YSDUQA2Lapj2iWD6DNq9+8ZVVFoeXsWjrdnARBtbqb65lvI/+/rWMaMiW+nTUvDOmUKssWCGgoiqWqbAiQAjnffI/mC82n614sEN29BM9yK64cfidbW4Hj/A8KVldiPPpqUiy9Cn5//m9dc5auKFyABUFH5x9J/8MIRL1DhrvjN/YXdi9TW4h1zPOU1GpILLChRlTqvjM6jpWcscyIInSvq91P/8CN4fvgBgHBVFRVXXEnRe+9iHLD7xYH2ltcRpLHCTcAXJjHDQmquFY1WRlVVSpbUEfRFSEg3o6oqy2dvY8z0QhLSzESiEY7tdSw/Vv6IK+QCYGXDyna5l9vc27h/0f3xyfgAz654lkk5kxiUuvuCZaGqKiquuopQ6/0FQP6/X6P5pZfbbBdYu5ZIQyMNTzyBLieb7H/8A7PoH+lQwYYGguvXxwuQAKAoOBcuQTrhfCp+qiQxxUpqnrXH5H11B1ejj6YqL5IskZJjxZa85yI7AKWrGpj92vr461VzKzn55lGk7MWCHkLHmV81P16ABKDOV8fs8tl7LEISWLcuXoAEAFWl+dXXMA4cRKM21sc7JnMMhfZCVjeuZkPzBloCLXssQhL0R2iqdONqCmA2qkTefI9waRkAvvnzqXG7yH/pJTR2e/yZzLj9mWxjC4qiUDAo9U/9LoT9i8cRYNnX5SSkmkjMMONpCbJmXhWjpheg1e7+Wc/uU/H97S4ilVUARDeWYPv700ivPMqQUCopOX1wf/NtvAAJgBoKEVi/gVBlJeaRI/e6mKMg7K1wIJYDoTe1fQrUGQz43a7uCEkQBEEQBEEQBEEQ9proKekGiqKyfkEN89/ZMdA0+JAcDjqhN3rTb/+TFCcWM2PUDD7b+hmrG1dzWN5hFCcVk2hI3OX2AV+YaDhKUqYFT0uAkl/qiIQVUvOsnVqERAkEcL7/fvv2BYvJH5NPmass3ra2aS0RJYKk1SJZzG06+LaLio6WLhUO+om6Wyd8RWPJM7LFTHTr9jYFAOOQoSxdF2an8VYURaWsLEp2Xh6SLEM4jGSxoAZjRUokowHF54vtf/JZrE06gvIf/UAFsraS464eRm7/5D3GF40qePUpqJffwdKvttFYEZvgNnh8AbnDRxNatAA10hq32Yzicbe9FrMZpbwsfjzrlCmYBg9GDYfwLVuGoX9/NOY9TzqG2KS5lv+9Sai0lLTrr6P+kUdJPOEEFLe73bYRr2cXRxD+rJqtTr75xyYiYQWdMcTgQ7JJuPlBdN99QuDjd1GDQRSvj/C2bW2Kb/giPiYnH07xqsls2+AHImi0SQy6NBdvhheLvv2kTEe9P16AZLvKDS046nxk9uoZkxvVcKh9WyAQLwSkimT3fcLG5o3t2ja1bPpTx8wx51K1tAbwx9sURaVmlZfi/rHXqqribgoQCSnYUozoDBqaqj18+tQKvI7Ye8uaZGDgxGx+nFXG1OvuQ/q/S+Pvq6jbjer1orjdOD/4AJQo9r/85U/FLeybJJMJ35y5BNevR3Paae1+roZC6FpXclI8HlDU2H+7UemuZEndEsJK28+wvonFqLO+b7e9/4uvYS+LkAR8YbwtQQwmLQFfhI+eWEbQFwHAbNdz/HXDd5so427y8+1r66jZHEta0hk0jPtLLxa8W0I4GKVms0MUIdmHhCoqYwVIANP1M6lKHsGa2VXk9kvCZNOx6JOtACz5ooypFw6kaFga7qYAGq2EPcWEJEsEt2yh+qabQYndK0eqq2n+z+tkPnA/dffc2+6cisdDaNs2IPZ9HbupVnEEHAQjYrUL4c9rqvTgc4UYODGbpioPG3+OFTnT6mWOv3Y4WX0S9+o4NVucrPmhCnuqiXAgQu13TnqfmE+dtgJX0EWdry6+bZYlq83z/nYbWjawpG4JsiTzj0P/QZo5jXBlZbwACZIU+0+JosoyitfbZn9tZgb+ZcvaHVfx+9EU5BPYVEJgzZpYYzhM87//jWXiBKwTJ+7VNQpdQ1UUHBEbkbCD3P4JhINRZI3EpiWNqCMyKUxqjm9b5irDE/aIIiRCjxJpbMShJuFzV2G261n+TTnFY2PFRmyTjiO6ZT7mYcNo8TdhUjPEKppCj9Pkb+Lv8//O4trFfF/wBA23/h8A9rPOoaVwHM7mCI0VbsrW+Bk95TKy132EbDHH7m9ViAybxLefOPG53IAbW9JApsjJlK5c0+Y8VRtbaKnzk/WrIiSRhgZcX3zRNihVJVhaKoqQCPs0X8iHAQmXxo7P5USr19BS68NR5yO7XyIBi4GkbNE/cCCJBoO4Tdk0NDSQXmgnElII+cOsm1eP7ZTepJliz/0G7Z5XbxUEoeO5Gv1Urm+mpTY2Vm2waJlwcm/sN88kFFCQq7bi//gdwpVVuy1CoqoqmxbXMfd/O8Zy+h+UyYRTizGaD9zJq90lEo6y6vtKFn28Nd42+Yy+DJqUjaxpX0h6T2q2OPnkn8uJhGP9uwlpJo69ehiJGW3zBmq3OOMFSLZb/FkpeQNSMJi1RKMKrsYAqCr2VBMarUykqQnnhx+2O2dg7bo2RUgMxcXYpx1JqKwciI2n/JoaCmHo24+0664DVIJbthDeXELjc8/Hx+wc77yD4vORdf99yIY9f984Ao52bb6ID0/YQ779t4uYCLunJqbS7DATcLtZvKQUAFkrkXDeAHpK6dKQP4KnJYDWoMGeIkqjCB0rUlsbL0ASF40SLC3900VIvM4g37++nm3rWvuUJZh+6RB6jUjD3RJAiaos+bwMpXUMumBwCo4GHz+6vuP5lc+jonJW/7NY1biKn6p/YkLOhHa5l86gE3/Ez6+1BFr2GFtw/fo2BUggVph1+2e6ZDJhPOF01KxCpIG9kcxmwlXVVN/yNwrf/B/a5D3nzAm/QzRKuLauTZOu3wCqe0+j8stKcvol465vpn6bkyGH5KIzHHjp1I2Vbj59aiU+V+z9aU8zcexVQ0nK3P1iBn5PiMWflrZpCwei1JW5RBGSLlbiKGnXtqFlA5FIBO1uCin8egwWIOpyoaoKWZYsbhlzCwuqFmCJ2rks91pM/fWkm9J3G0M0qrD2xyoWfrgl3jZ45KnktjQR+uVnAAIrVxGuqUFjt+Nuav9MZk81EQlF0f7BQoLC/sfZ4EeJqvE8HSQYd1wvmqu8pBfY220fCUdxNwVIDmXiMbS9p1WcTgw1jRjQIiclEW1p/z0ebWlBk5yMqiiIkT2ho4X8sftJnbHte1OrNxDZxXwZQRAEQRAEQRAEQehJft+Iu9AhnPU+Fn6wpU3bmh+qaKlt37m7K0adkX+t/BcDkgdwYp8TKXWWss21DY206w5Yd6OftfOq+en9zWxcVMvQw/OwJRlZNbeScCi6y306gqTTYejTfhUvuSCPlmDbTrypBVMxao2ofj9oNFgPPaTtPlYr2iQx6aQrmbJy0Z9xYuyFLCGZzXjnL8B+5FQgVmRGk5JCcMuWXc4ZjiIjaTQE1q7FPHYMiteLJjUVZBnvvPnYj5oGQGjIIZRv3mlCfETlx7c34fe0Tabxu0MEfLGEGa8jyMIPt/D2PYv55pX1pGRb6X9QFgBrfm5Ce8oFoCjIZhPodHjm/oD9mGPi1yJbzHh/+gnb1Ni1WCZOQNJqaXjySeoffIjys/6K88MPUVsnj+6J4nYTWBlbeUgNhSESwfPjj9inT2+7oUaDbtCfX8VDaCsSjrLsyzIiYQWTTcfY44ooWVzPp281MJ/DMNz7LFJrMRnZ3nbwIdmYzETDETRs2PH+i0YU1nzcQK2jYZfnU3czQV5Vdz9xvqtpEhORrW0HdK2HHooKWKccji43t3sCE36XcZnj2rWNzRz7p45p0BqIRiLt2pVo7P0b9EdY/UMVb9+7mLfuWcQ3r6zBUeejdouTwiGpJGXF/pY8LUG8zhBGm46lK1SMRx4TP5b9qGl4fpwXf+366muxOsABSp+Xj2/RIgDkxATkhLaFmiwTJ4IcexSxTZuGpNehSU3Z7fHWNa2jOdBMirHtNr6IH4oL222v67t3K8k2Vnr49MkVvH3vYt558BcatrkYODEbS2IsIdfnCrF15a6/EwDqylzxAiQA4WCULcvqyR0QSwzb3feG0DNp7DaQZWS7nUZDPpGwiqqoZPdNZNPiHclpRouOaFjh+3+v4617FvH2PYtZPnsbAW+YcFVVvADJduGqKqIOR/z+N06S0Pfpg8ZsRpOcHFtZXpYJalQyzBlk27K74rKF/dz25FprkoG60h2FPSMhhYUfbiEUaH9v8GvhUJSAO0RLrZelX5ZRsqSO3sPT0TfbUKIKRYlFFNoL49uXOEoYmtp+EvHglMFsdmxmZcPKeHE12WYDTWtfhqqi+P3IViuSXo/xVxORJaQdz3XbaTTocnKwDBmKb8GCducMlmz+zesTupYky/g8EQZOzCYaVlj5fQVLvizDaNHidkTw63ckV0/KmUSqUax6JvQsssWCxxUhuziRyo0tjD+hN2WrGln6ZTkLPy7D1+cgJIuVhze9QJWnqrvDFYR2SlpKWFy7GJvORnR1bKVS3eBhNB90OvPeL2PJF2UEfRHGH9+LZQs96E46l6jLjRIMoihRtpZL+Fw7ikO6W0JUbnZjtuvbnWtXfauy2YwuK6tduyahZxT3FYQ/Sq/VE9HocDSGKPmljqVfltFc62HolFx0Bg0Rg1mMcR1gIr4Q1aUeioaksXlJ7D2xZVkDI47MZ+XcKmqMml0WbxQEofO5GvzxyW4Q628Aie825vDFsjTmRQ/BcPczyIm7vz9xNfpZ8F7bPocNC2tprt67fA+hY7XU+nZMTGs1/70SHPXtJ43vSSQcZelXZfECJBCb+FZV4mi37faxNQBZligcmkrh0FRUVcHrDLLo4628fc8i3rpnMQveK8HTEkA2mdDnty/ooU1Pa/NaYzajSUoi0tRE1OdDtljQJCa22cZy8ME4P/yAhiefxPnxx4S2bUMNR9otRuH64gsitbW/ee3Z1mz0ctt7+mxLNnqNnmpv9W/uL+xexJaG0aqjcuOOHCklorL4s7J2OTG/l98TIuD9c8dorvHyxfOreOuexbxz/y9sWFjTqXlkwoFHNpvRpLQfA+6IfoDGSs+OAiQAKvzw9ka8ziDRYKxAlbLTWG35miYCnhC3z7+dCncFle5KXlj1AqMyRnF04dGcP/B8HEFHm3NkWjLJMLctSmbQGMix5ewxNsXX/jtIVVUskyYi2+3o73qGeaGJfLEsjc+/DKG/82nkhATCZWVE6ut//y9D2K1oTTW6zMxYEfxWmuP/SlBjwZxgYNlXZaz8rgJPc7DNPeKBZP1PNfECJBC7X/71Al3tqG3vh7bbVZvQuUZnjG7XNj5r/G4LkADo8wvi+Trb2Y+ejqTVYtAYeHvD21yYcRWZs8ex8V9hNr8awVcu7TY/0lnna1MQEGDNMi/S1JPir2WrFdkSK2zj/NUzWdAboXxtE8pe5OoKB46QP8KmRTs9y6iw/Ntt8UWlduZq8vPjW5t46+5FfPR8OfWn3Ynh6BPabKNNSGR2aBWedWuwHHRQu2NYJ03CdsQUZH37sQ5B+LPCgdi9od5obNOuMxgIh0QREkEQBEEQBEEQBKFnE0VIukEoECUaad9hGthF59iu1PnquHjoxSyoXsDLq19Gr9GTbEqmwd9+gmQoEGHBe1vik42C3giLPtlKv/GZtNR4Ce/FhKM/StJoSDr7r/HOYwBNZibVQzI5uuho9LIeCYlJOZOYnDsZSZKQ0tKQolH0ffqQeOqpsclEEyeQds01qGLl0C5l1Juwnn4KuqsuxP39HDL+/ncMQ4cQdXtIueF6vAsWkHb9dcjJSQwc3LZjDAmKchQSzz+XcEMDlkMPJeGvZ+KZ9yMZ994NRgO6/AKSLr6IoNbc7tyOOh/hQCyxwecOsmpOJe888AtLvihj46IaSpbUsXJ2BYqioigqGxfVYrbr0Rlik9fCOjOJp52K+/s5ZN19F5r0dGSbnaQrLsP9/RzSbr89di0OJykzrsdy8MG4v/46fn7r4YcTdTjwLVtGdKfK71GPh6gr9rcU9XppeXsWLbNmoS8qjG3QOnkuUl9PpLmZ5AsvQFdQgH70SGzPPop1sFjNs6NFwgotdbFBqYETsln8SSmellinrLM+wA8/qVhvnEnimWdi6N27zb4FCQXYo+1XD3HU+iG468+bxAwzOcWJbdrSC+0kprd/H3eH4ObNKF4vaddcg2XiBHQ5OSSeeiqGvn2RVMi45RY0JrF60b5AI2s4pugYNJIGjaTh2F7HtibC/nHbPOX0ntT2PV8wOIXsvoks/aqcinXNzHt7U3zltrJVTSz/ZhvVm1vYuqKBtHw7o44qAGIJttYkA66WELpho9AXFpI24wYiDQ1EGxvjx9empiL/KjFSODBIBn189apwRSWpV1yBZdIkdDk5JJx8MsYhg9EkJZH18EOYhg8DgwGdvf1KFdv5Ij4+2vwRFw+5mBxrLKkrw5zBhYMvZNuEXm0ScDXJydinH/WbMQa8Ib5/fT315W4A/O4wc/67AaNVR+8RafECZ81Vu08cdzcH2rU56nzYko3IWomsPontdxJ6LH1REalXXYUmMRGXR2Lr8gb6H5xFNLIjmaZoWCqTTu9DY6WHzcsaYqvBhxUWfrCFulIn2tT2k+U1SUnIFgvRYIiUyy5FX1SIccgQ0m+5GcUfwH7CX8h+4nFkmx10WjYnBpGR6ZfUrysvX9hPpeZaMdl07VZmhViCeci/54TycDBC7RYHiz8ro7HCA8Q+L3/+cAsWk5kcYx6n9DkFZ9DJ6f1ORyfr8IV9JBmTOLn45Db3MvW++viKgdv/v76oiLRrro6fr+7ee5FMJiSTCX3v3mQ9+ggZt99G6vXXYTlkMqoskXzhhegKCjCNGE76zTejhMMEt27BsItVE3V5ogBfT+T3hNFoZVbMriAaVkCF0pWNREJRgq33vEPThjJj1AxMOvH8IvQsstlMU5UHjU5m4qnFLHh/M15HrB+ipdbH9++WE0nOZFH9YkLRPzcRSBA6gz8a+w4ORoNEE2NFbOW/XsWP75cT8sfGCmq2OKktdZHZO4EwepLPPQd9YSHGIUOpr23/vm6odFM0vO19cFqBdZerpWqTk8mYObNNkrt53FiMAwd22DUKQneIKBG8lkzmzyqJT9xpqvSy/Jtt5A1IRity1w881gRCgSiLPtlKU2vfks8V4uePtlI4JJXK5hoCkfb9SoIgdD6Po+3f3sCJ2cx/pwR3U6zd2RhgznyFcELmbo8RDkR32deyq8lQQucLeMLwq/mQSkQl4A3veofdiIQUHHXtJx+7G9tPJM/qk4BGK2NNMnDwyX3wOoK46v2UrWpk89J6ln+zDSUaK3K9em4VZaub0FitpM24AUmnA0Aym0mbMQNJb8D7yy9EdlqNW9+rF+45c9CmpKCqKlkPPYT1iCPQ5WTHxlhGjMDQuw8pl12GcfAQJL1hR6HfnWgSE5F+NclpVxINiVw78lpSTbH7+gJ7AecMPIdyZzn+sJ+oIopS/FFhXwBZbj/G66zfkRPzewV8YdYvqObdB5fw6dMrKVvdyOo5layeW0ljhXuvjxMJRVn08RaqNjmA2GfYd/9Z/7uOIQi/RZeRQebMmW0KQFgOOwxj//5/+thBb/vvXZ8rRCQYBVna5TiuN9C+zaw1Y9KZOOuLszj101P5bMtn8Xv1dHM6Txz6BAX2WJ5EmimNJw97sk1h9l0xFPeJf97rD5qI9p4X2OTKxnvKDOzPvsH3P0ZwNcX6FN1NAb7/IYLx7MvQpKSIQq0dTEpIwPnJJ6TfcjPGIUPQFxWi69sPSYKtyxtQ1diCVavnVh2QRUiiUaXNIgbb1Ze3b9uZyaZn9NGFbdo0OpmMot3nfAidQ0Xl+N7Ho5W0yJLM9KLpaCXtHhdUU4KB2N/E0KHoCwtJueRi1EgE2WKh2lvNzKF3s/ZNZyyHkthiVV+/sHa3Rf6C/mibok/bhdnRIZZx+23oWxdO87TsIs+m1kcPWgNO6AF2Lg65Xcgf2eVz3uZf6lj/U038M335QhfBw06D1mI8urNOpiZVS5+sQZQMsBH1eki74XoMffti6FtM2nXXEfV6xOJ+wm5tbfBQ1vjHC8+GggE0Wi0ara5Nu1ZvIBIURUgEQRAEQRAEQRCEnk0sTd8N7ClGkjLNbQYudEYNCWl7N7HCqDHyj6X/QFFjnWw/Vf+Eqqqc0OuEdtu6mwJUbWpp26iCzqCheHQGJmvnZj6aBg+mYNbbBDeVIGm1SMWF3Lb6VsLRMOcMPAetrKXMWUauLdZ5Z0hIwGs0Iun1eBcuxDRyJOHqajwLF5J20PhOjVVoL71wAJbL8nGdfAJRswXTlHFE/T70SWmYTjiCsFaPadpEDJ4g068czNofq9FoJQYekoUp0YtkPQLLlIOJKgpGix3J1YRqTcB86Fii4RCmhFQSt/pgdtuBq6KhyeiMGurLYgnv82aVUDA4BUedj9rNTnSm9gk0daVOUnOtNFV70Vdtwjh8BCmXXYY2NRXrUUfx/ZaveGHrG4wYUExN+Es4AS7tO5V71/6D+zghfpzkCy8gsGYNjU8/A08/g/3oo0m7cQbB9RtoePZZANJuuAE1HKL2rruQDAbSb5xB/T+fJNrUhKFvMcFNJbg+/RRNUhIZjz9KqH8BqUk5SKKQToczmnUMODibnz/agqSR2iX8eR0hwoMPJvOYQ9HYbO32T8ls35Y91EpC6ySMduez6DjsnP5sXlpP2epG8genUDwqA5Ot+7PIox4Ptffdh3nMGLwLF4IKppEj8S5cSNI5ZxOuqkLSadEXFHR3qMJeKLQX8m35t1w05CIA5lfN58iCI//UMXWyjuea/smJf/0r7mVabGkGTGYD3760Do1OZsgh7Vfr2bKinuLRGfjdYTYtqo0VLSlOJL3AzsrZ2+g3zI4lMwSDBoIsE9iwccfOkkTq1Vdj7NXrT8Ut7JvUcJiEE08kuHkzwU0bidTVo0YimEaOxLd4MfZp06h/6GEshxyCZfJkdL+xGnBxYjGBSICnlj/F9KLppJpSybHmoEWLvn9f7K89g3ZrFQoqpWkqvYr7/maMTZVeGra1TaRUVQj5o6yaU8nQw3OxJOopGpZKc7UHa7IRvbHt41NqXvvvkYLBKRjMGk6cMZK0/PY/F3ouWR+bYGkeOwYiGaxfsRmfM0SvEQnIGgmNVqZgcDKelhClKxvb7V+71UXuEcWkXnctjU8+BYCk05Fy8UXU3PI3Mu+5h5o778Q6bhyKz0fzf/9LyoUXUnvPQ2Tedy+BiSNxyD7S5SzyE/LRyO3veQXh90rKtHDcNcN3mTjeZ1Q6JrtuF3vtUFvqomqTk6YqT5t2VYW6UjeGJjv5w4xkWjNRVIUTep+AN+Klyl1FOBLmn4f9kwZfA+9teo91zesAMGlN9EqI3R/IOh1JZ5+NaeQoIjXVaDMzY/cOWi0Rp5NoYxN1jzwKkQiSTkfWAw9Q9/DDWMaNJep00fK//5F5/30E3S5shx5KcP16og4HAJZDD8E0VBSC7InSC+xsWda+kG7FhhYGjsvnzoPuZEreFJJMe74/EITuIEkSKbk2DBYdAXcoVkhnJ+6mAL6ghqOLjibbmt1NUQrC7hXZi7DqrHjCHsr7WEjLysKbkA9sabNd+epGJp/ZF72jlOioIUT1GhQJimSoLnG22VbXJ0B2v0Rsyb0pW9VA3qAU+o7efX+ZdeIECt+ZRWhrKXKCHWP//ujS0zvrkgWhSyQZk6h0tbSbcNFc7aVyYws5fcQknAONyaYnu08iy77a1qZdUVTMdj3VWgd5NvG8IgjdIW9ACmt+qI6/TswwEfpVIQC/O4yjIYAttX1RNQBrspG0PCsNFTv6S7Q6ea/zPYSOZU8xojdq2vw7mu167Cm/XXxjZ0aLjn7jM1n8SWmb9uy+ie22Tcu3ccKMEfhcQb5+aS22FCPWZCOr5lRhsrXvb9u0uJZBE7Mxjx5N4bvvENy8GU1SEtU33Uy0tfiIZfJksu65G11mJvqcHPJfeJ6GZ58j6vWQePLJpN50I6rTSc0dd5LUty+Nb79N8jlnIxkMNP/3dezTjsI4cCCBdevi58249W/oMjJ+89pzbbmUtJQwtWAqNr2NOm8d/1r1L87odwY/1/zMkQVHYjOI8Y4/wmyS+H/2zjtMrqPK2+9NnfOEnpxnNCONcrAky0mS5SRHwARjgvECCxgTlgwLXvhYFlgyC9gmORGcc5TlpJzjaHLOPZ1zut8fLbc8HskJB9m+7/P4sbrmVt26d2qqq+qc8zt640zXvJp5hZhsr83HYOCQlydvPgLA3DMrePT6g/kgTVkncsmXFuGuefn1ZzSYpOc4tg7/RIzSesdr6puGxvGwrFlNzT/+TrKvD8nhxNDSjFxQ8C+36ygxIogC6gv2YbXzCjE59JBVqWx2MnjkBT6TAqQd020dNbYaegO93Nl5JwDeuJdvPPcN3GY3S0uWAjnB7JvOvQlP3INdb8dteul5NRMMomazVN54A6EnNzJav47NT/qBIQBWXFo3Q0AlEU2TnrWI0v9Xh1Ja+hrfiMbxyBS7sJx2GhM/+zmWU09FrKxEJyQZOjIzkHiwzUvNXBd601vvA/ZmIUkis04pmSFEUje/6GXr1i8qRmeUOfTMMNYCI3NOL6PoOP4TGm8sdfY6Hu59mI+3fhxBENgysoW1VWtf0k9Vqaxk9JvfQl9fj66iAv9dd1Pyve+BIKATdaSDOiL+6WfA6WQW32gYp3tmojZboQFrgSEv7AigN8kULqxB/p8foVRXY5h1LAHLi/dkAI1L3eiNL2231nh34So1I0oC2cyx73mH24TJpiMSSOAdjaBmVRwlJjp2TMyoP+ozMOenPyRlkPFW2tGbTTy8+2HcrR9jwezZjHz9G5gWLgQBvLfcTNmPfoTuFeydNN59RBJp1vzsaYyKxK5vn41R9+p9uZKxGIph5pmRotdESDQ0NDQ0NDQ0NDQ0NDROfjQRkrcAo1XHGR+axdZ7uhnrCeIqNbPyPfU4imce0B4PX9yXFyB5ni2jW/JZDF9IJpXF4tQT9k0/pNCbZVpnlyMcJ+PG642hoQFDQ0P+8/84/oc/HfwT93Tdw2L3Yj4575MUm3JOxsn+frITEyT7Byi85nOkx8YxL1tGor+PzKQHml4+oFTj9cWsM2MuazxW4Dj6P4PjWJkNKIPa1iIQmG7EeKFtyTLTiCzFejl9rY1tm6MkomnK68zMn51l3+MDTI1G88rn7hob2x/oxezQUVNZyBDTxXXsxSbCU3Eu+Pc5FBfNRX5BMLMIzK1dwdrMGHd03IHb5OYDsz7Azzqup8PfwcEKH/PMJgSDETWZJLp9R75u8KGHsKxZw8iXv4xgNFL8xS8w8T//g3nlCgDURALP736P68orEfQ63N/9LumJCbKBIPqmRgxz5iDq9a/ijWu8WhoWFRHyxXKOfQLTMl1JikgqkUV2OI5bt7TawWkfbmDbnX0kY2lKm60sPK+SQuuJHR7sxSYWn1fDwnVViJJ4wuvebNITE0S3biO6dRuFn/88ckEBGb8f69lrwWAg6/cz8d8/ovKPNyJZji+yonHysKx0GZF0hN/v+z0CAp+e/+m8k8trJZKK8MzYU2wSnmVu4zzeV/whOv+cm58y6ewMcQUAR7FpmpG4/9AUq69sZqjdT12LiVlVMXw33ED8wAF4+BEKP/c5JIcDNRZFP2sWxkWLEI6TeU3jnU/G72fiRz/C+cEPICg6zKefQcbvQ02m0Dc1En76GVLDw/hvuw3bOetQTjnlJdtrdjXz+7N/z692/4pnh55lddVq/Ak//2z/Z/6aq+dezU2Hb+KGJTcgSy+9zclmVbyjYYxWhVhoepYMxZAbs927J1n5ngZ69k7y+J8OUznbyWmXN03L5u2utnHa+xvZek8PqUSGugWFLDq3BkexURMfe5siWa0kKmYz+uwwi86p5tCzw0yNhln9kRb6DkySTqn07fPgcE+fHwGsBQYkkwnn+9+PaDSS8QcQZAnvLbeS8XqJHTpE6c//l0RnJ2IyhWHOHCZ+/BPIZBj/r+9Te9ddlNa2vEVPrvFOpqjKit1tJJPOsvnublLxDDXzClmwtgrpJdaz8XCS7t2TSJKAwaLkssq+AEkW2HlvP++ftwxb4TGHifHIOPsn93Nf733c13sfn2j9BPWOesaj49Q76rlm4TXUOY6JlEkWC+ZlM9c5Ga+Xse9+F9I5Z1w1lWLy17+m7Mc/JjU0iGixoG9oRNApTP3+98T37cPxgQ/m9l+SRDaVQtTWvScl6VgSq2tmIJCzxIQSD3BKxSmaAInGSU1RmYFoJHvcrHyyTkRJRLiq9SoM8qsLeNPQeDOosddw/brr+e2e39KbmWDWRz/CpHFmYIXDbaKw0op/v4FybxTLglygfCwzSO2pdvq3BEGAqlUWtkqP0em187lzP8fCsytf9rxMkGWMra0YW1vfkGfU0HirsDlnBtrozTLJaJrRrgAl5XrtXPZdhCAISIqE3iSTiE4PMDRaFU4pXYTL6HqLeqeh8e6mtMHBKRfVsvPhfrLpLCabDkFg2vpelISX9KMwmBVO+0ATW+/tYaTDj8NtYuVl9TiOE5Cn8cZjLzZx3mfm8eRf2whNxXG4jaz+SAsW5yvfk6WTGTp3jhMPp2heUULHjnEUvcTKS+spqbPPuN47GuHRGw/SvLyUbEalfmEx+54cRG+UcdfOFH8oqbPnx5ShuRldbS3DX/6PvAAJQOSZZ4jt3YdybknuutmzKf/fn5IJhZEddgRFIe3zYV13NlM33ohl1Soim7dgv+giopu3oEZjuD7xCTLBINlQCH3zLMzLlr2i5zfIBj4575PcdPgm7uy4k2pbNZ+a9yl+v//3BBIBxmPjmgjJa2WoB0f5XFZcWs/uR/tzPjFNDpacWYD8GoLXgp4oh5/LBe063CYmB0LTssSnk1nat469IhESxSDhdE9PoAVgOo6QjobGv4KoKBjnzXvdRcMdbhNrP97C1nt6CHnjVM9xsfi8apSjf1urLm/kqds6GO3yYzArnP6BJtSyIMYDRmLpnI/l8tLlPNb/2Iy2j3iPTPPPcBldr2j9nujtZfTb3yG2axdIEq5f3sCOB6aLxKeTWURRmCZiKYgCutISzLO1s5LXG10wSsTjofT7/0V6fAK5wEWq9zBFlQvxjkwXIjHZdEwNRyhrfPeIkADUzC/EOxrh0LMjCCIsPLuK8lkvb6MxmBUal7ipX1SM+Cb4IGscn8XuxXx0zkf53b7fkVEzfGrep1he+tLJHqPbd1D4qU+iJpNkEwksq89i6uabKZ8/j0AiQLWpBUnxzBBhP5Fd2WzXs+ajLWy5q5vxviAF5WZWvqeBgtkFMHdm4qqyBgenXFzHzof6yKazzFpeQtMpmviDxnRcJWbWXT2HZ/7eQTSQxFVm5pSL6tAZZR74zT48R0VBT/9gI64y04ykKtYCA18X7mJn/05+UPED1het53srv0f3VBe+O+6g+Cv/kUtuoqpY1q7F949/YjnttLfgSTVOdrb3elFViCYzbOnxsLr51c9XqXgMnXGmCIms05NOJVGzWQTx5PFF19DQ0NDQ0NDQ0NDQ0NB4IZoIyVtAaCrOozccpLjaxuLzqglOxnniL22892uLsRe9vGNKobFwRlmRsQijnDugSPv9JHt7yUajpN0tzF9TyXhvEIfbRDajEgslkPVSTvn/LaDB2cB1K68jkAhg1VnRy8f6kfH5EI1GQg89ROiBB0CSIJMBScJyxhlvSX81XjmvRdQmM9iH4Xe/5fzPfRXV6iC7eQOx4UXsesZPaYMdgyXn4PC88TXiT2K26/PiOopeYs7pZVQ2u7AVGnC4j5+RqtRSyr/P/3feP+v9xNIxBoOD+bH3q8nb+fkPv4D76TbiBw/l6xjmzcN+6SVENm8CwL5+Pf5778N69lqU8gqKvvlNYqKFTCxFZNuTiOkEro9/HGnx4lf9HjReO8GpOKOdAeoXFjHvrAqmhiOU1uecwQwWhcmhEE3LSo5bV9HLzFtVRVmdk0gggcWhp6D0xA5U2XicZE8vmYAfpaICXWXlCa9VUynSXi9xjCTSIma7DqPljTNUi2YzUmEhGY8Hz69+lSuUJIo++1kCDz6I+1vfJH74MNlQSHN2fxtg1Vm5qP4iTi8/HQEBu2Gmg+NLEQsnCXniKAYJe7EJURSw6+2Igkircy7r7BdQLlcxmBnLVVAhEkjgrrXlM5woeolZy0vwjkRYfF4NiWiK3n2TFFeasbQ/R3LjXegLLiVbVZkTIclm82Ov+BvfQDAYie/bh1Jejq6qalr/MuEwmXAY2eVC1L27HDjeNagqgqIwdcON04pLf/oTQg8+SGznznxZemLyZZuTRIlTSk/h+nXX44/7+f6W77NpdNO0a8ot5fz13L8yu2D2K+ieSiqe4bT3NzHeG6Rj+xixUIrGpW6CkzlnS5NNYajNR/euXP8GD/vY8UAPZ1xSQSScJaVKWAuMzD2zgurWQjLpLNYCQ96xTePtSSqZYevd3fTu92B26Ji1vARJFnGVGSlvbqJnzwSj3QFO+0AjTrcJxSCTSqTxDIcxH91fiVYr0V27CT/+eL5duaQE5i0nZC0hWBOEf/sCZI857aixGBm/D6h5cx9Y412DTi/TekYFVa0FJGNpUokMojRz/5YOhQh5k2QlHfFICkkW6Ng2zsJ1VWy9pxtVBVeZmXlnVZDNqpTU22c4oLnNbma5ZnF5yXmsTFXDiEq3rQBbzbl8ZM5HKLOUvaI+Z/x+sqHpzrmpgQHURALn5ZfnyyI7d6KrqCS6eQveP/4xX+666uNkAgEkkxYAdNIhSujNMvPXVKDoZTLpLAOHpqhuLSApSZjDFjKmLJL8yh1tQt44yVgai1OP3qQFSmi8sQwc9lFU42BqKMzsVWVE/AmKqqyoKlhdevT2CMW2E58XZNJZgp5coIOt0PiqxrqGxuvB3MK5/PysnxMZjxAe24miF2k6xY3FYUCUBHxjEUobHMRCCbZsSXJOYyWR3gBmh4EydzF/q7+F8roaVEHlT5N30THUznVV1wEgSiKZaIxkTw/ZcAhdZSVKefnL9kk7J9B4OxKPpoj4EuiMMlaXgZIqB61nlDPeG6S6NSdybSs0sOXubhqXuom3d2BevOgt7rXGm0U2kyWdSLNwXRVDbT5KjtosMukssiJQbJ++L4pHUkT8x8aThobGG4fRorBwXTVVcwpQsyrxSIqF66pIJbLojDKJaAqjRTmu6ODzxEJJNt5yBKvTwOLzagh54zz+58O856uLKSjTbHBvFNlEgrTPh2S1Ipmn+wRUNDl579cWEwunMFl1GK25NaWqqiT7+kiPjSEVFKCvrUVQpp8bBDwx/GMRPINhjmwZxeIysGBNFWannqZTSpCV6Wf+albl8LMjhL2J/PmaKAlkUlmiqSRGqy6fCV5vkplzehlVLQVEAgnM9twZcjYcJr5/34xnTPb2Hvt3LE3Im0YxmLEd7bPsdGJatIipX/8GfVMTsruYtCdnw4jt3Uts714ABKOR2rvuRDS88u+UKlsV6+vWk86mGYmM8JOdPyGrZrHpbJhk7XzttZItrODJ2zpx1zk451OtkIVUIo2ge23B2n0HpzAe9aHRG2XikdSMa55P9PNyGC06Tv9AE4c3jWIvyolYJ2IpCis1wRmNkxM1kyE9OYlgNCLb7fhGojx1SzsNS4ox2XSMdPrZek8P5396LopBxlVm4eyrWghMxNCbZApKjCQHQjxQ+d8EbBJHzEGaC1po87YRSUW4pPw91CqNjGaGKDEd38foJfuXTuO75ZacAAlAJkOsp59Uojh/TWmDHcUgs/aq2ezbMJj3zZi/ugKySdRYDDR/ntcZgei+veiqq5AcDgRFIfbMszR96jxEWcRs15NJZxnvDSAIAsl45l++YyaTJeiJg6q+Zee/YW+cSCCB0aqblkjgeFidBla9r5F5Z1UgiAK2AsOrSsqlCZC8tVh0Fi6ou4BVZatQBRWH3vGydWSnk7H//G7uw1H/bNOK5aiJBC6DCzWisvjcaiL+BAaLLrd2EQVUjr9JCnnjPP6nQ0f94WsITER57MZDvPdrS44r1GiwKMw7q5zyJgfZjIqzxITJllsnq+k08a5u0mNjKGWl6OvrteRX71IEUSAVS7P2Y7PJZrLIOomt93ZRM7coL0AC4B+PUdboJJ3K5vfjU8NhzE49nzRcyjcz5+IKlyJksiwvW878iAu/vZPRr30dBCH3XzaL88or36pH1TjJ2dIzlf9322joNYmQJGMxFP3M/blyNMFpOplEeRX7dw0NDQ0NDQ0NDQ0NDQ2NN5OTSoREEAQD8AygJ9e3O1RV/a4gCC7gH+QisvqAy1VV9Z2onZOdkDdOLJRicjCE3qyQjKdJRNOEpuKvSIRklmsW59WcR6WtEgEBWZSZXzifIlMR0QMHCD7wAL6bbgZVxXr9PzBaiwj74sTDKZLJNNWthSg6iSf+fJiVl9W/onu+3iiSQqFpppiK7HYTP3IE54c+iO+WW3MCJIDzQx96s7uo8Sah1NXhuvLD+G/8FemxUSyr15B2VwMjjHYHWPXeRkY6/CRjacwOPRF/gp0P9zH3zAosTj3WAgPP/bOTvY8PYrAonPupVkpqbUjyTOODIAiY0lZsOgcV5RUYFAN7J/biT/j51MQvuPaiqzlnSxGxvXvRNTRgWrKYqf/7HZbVqwGQy8qw19fh+fWvkRedgu+sq9i1NUw6maV69lUsP7+UiJiie/wIoWSIKlsVNfaaN/eFvgvxDIbwj0cZ7Q5SNcdF2B9npNNPJpPFVWKmflHRS9Yf7fLz6I0HifiT6AwSZ13ZTN2CohkG1Uw4jPfmm/H86tegqog2G5X/91tMS5bMaDPR34/vn7cTnHUGm55LEA3m1NjXfLSF4uqXzzr0WlDcbkq+822Gv/ilfFCz+dRTibcfIdndjZpIYD7zTCSnllH87YTD4HjVdaaGwzz2x0N4RyKIssCKS+ppObWMWnst1y//E/4tMt0PTTGxIE1pg53RrgAAh54dYfF51Sw5v4ZYKImsiCQTWXr2ThINJDHZdax6XyMOp4T/rltIdnaSXrkcw+zZRDZtzmUHACxnn03G72PgyitzfytWK5V/+iNCzSwUg0Ty0AEmfvwT4m1tWM86i8LPfRZ93czMFxpvbwSzGddVVzH5s5/lU0hazjozl0klFpt2rfIikZqXwqyYMStmPtb6MbaNbyOdTTOvcB7n152PXW9HL+nJqllE4aWdYqYGQ0yNhOnYMU7Yl2DFpfWkkxn0ZoUNf21DEGDhumqe+MvhafUCnjgde3xsvm+AdCqLrdDIOf825w2b2zXefGLBJL0HPEBO/G7/k0MAOApkZp9Rg7vahqvMDCr07p/E4jSg6CVmryxjciBA9ZwCREXBccklRDdvJhuJoCxcQuS9X2LjvUFS8S7Kmpws/uYPifzg6/n7Sk4nslvL7qPxxhOaivPYjYeIBpPoTTKrP9JC7bxCECC0v42uziQ7nw2QSmSonO1i9qlltG8b4/BzI5x99RxSsQxTo2E239lFcbUNa9HxHRcXpEspv3mY5M77AahunY34vS+9YgESALm4GLmkhPTY2AsKZZTy6W1k/AGU8rK8IB+AXFSEaelSTYDkJERVVZKJDGa7nrZnR5B0Eqqq0rjUjawXuft37WSSWRaeU8WCNVV5YdITkUll6dk3ydN/aycRSVNcY2X1lS0UlGuO2hpvDKlkho5dHrKShKvcTCaZJTQVo2fPJGaHDkGwsXdYpdUePu44DPsS7H60n4PPDCMArWeWs2hddV7MTEPjzSCTzjK8L8hTt7WTjOm5cJ6C1WlgqN2HrIioai7za9SfZO6Z5TxwfTvJeAaTXcfqq2axvPwUOvwdTEQn6PR3UGurZYk7dz6WCQTw/OEPeP/0ZwAkl4vKP/we49y5J+xPdPceJv7nf4h3dGBdu4bCf/937ZxA46THMxTiyb+2MTkYxmBROPNDs6iZX0jj0lxw2eARL6IoMjUs0bjUTXmjnWT3fk2E5F1ELJwCQUCSRRSDRN8BD3qzgtNtAlGkc9ckDYvcSIqIZyjExpuPMNEfQm+WOfNDs6idX6QJlWlovEHEwkkOPDXMrkf6yGZULvrCfGxFRg49M4LBrBALJ5l3VgV684ldacL+BL7RKKhgtOkITcVIxTMExiOaCMkbRKKri8lf/4bwM89gmDMH91e/gnHevGnXmGz6fPDi84SffprhL3wRNR4HWabkO9/BftmliIpCNqvSt9/Dhr+2kYylMdl0LLuwju0P9LL70X4EAWrmFmArOHb+lU5lSETTjHT6gZyIlMNtYqI/SHmTg+EOP7se6qP1zHIsTj0Wp4Fn/9HB7kcGsBUaOPdTcykstyDZ7VjPPhvfrbdN669hTk5k3Tsa4enb2hnp9KMzSKy6vJHGJW5knYSuqgp9SwtyiZtMKET4mWexX3YZgbvuyrdTdO216KqrX/V7rrZVE06G2TKyBaNs5AOzPkCDs4GR8AhG2YjToNmZXy0x1UAkkKKs0YFvJMKexwYI+xLYi4ys+ahCaYPjFbelqipdOyeom19E334Pk4Mhlq6vZfCwd9p1LStLX3GbRpuOiC9OLJQkHk0xe2UZOoMW6Ktx8pEcGsZ7800E7rgTubQU99e/hl/J2XdDU3GyGZWwL0FoKk4kmMRhkJkcCPHojQcJTMSQFJGVF5RjvvkHJHdtR9DpWPbD6xDOsvOlxV/C2x9j9H7wTyYodJRSf2UDqqoiCK9cXCETDBLa8OS0suxzj9Gw4hq69vmYc3o5sWCSzXd1IQDzzqpgyQU1BCZjRHxxhEQKQQs+fd0RFIXia65h9D+/ixqNgiRR/JOfEVdEQlMxwt4EIV+cluWljPb4qVs405/11RAJJNj7+AD7nxxCBeacVsbic6uxON+83+1Qu4/H//gCW+BHW6idW/iSyeUkWcRZcvzEbxpvD15NcivRbkPf2EiisxMyGQSTCeu6dSCK1DvqmQgHsRYY6Nk7idGiIxZOMue0shPa7MK+BBF/kqA5J8IXmoqTiKYJTsWOK0ISmIxy8OlhDjw1TCaTpW5BEUvOq6Gw3IT/nnsZu+46SKUQdDpK/98PsK1f/6rmY413BvFIAlUQeOLPh4kGkzhLTZzxwSY6doxT2eJiajhMNJikbfMoaz8+G7Kw86E+BFFg9qmlWO0K0keuIx2JMiFJ8MUv4LjiCtIDQyilpcjFRbmkWaqKVFiI+dSVb/Uja5ykdI6HaCm1EYylODIWevkKxyGViKMzzvStkY+KkKSSCU2ERENDQ0NDQ0NDQ0NDQ+Ok5aQSIQESwGpVVcOCICjAc4IgPAxcBmxQVfVHgiB8Hfg68LW3sqP/CnqTzFlXNlFYaSM0lRMkmbemAtOLnM0nB/vx9PciKTqKa+pwuHMq+4XGQi5tvJRrN15LLJ0L4ry04VJaE4UktmzB99eb8m0IYwP49GYqW1wMHvFhtuvR6SUS0TQ9eyZxFBtZfkn9SXNIq6uoIDkwSPxIO0XXXks2kUDU64ns2I7d9p63unvvOlRVxTsawT8WxWjTkU5myKSyGI86oetNci6AKJbG5DAQDSbQ6UQEWSQWSmJxGoiFUogyKDqZWDCJ2aEnEc1lY9GZZMIRJ0r1YtTPzUONxhCbqjGgp35xEGdxlKh/H6s/XE48pnDmFbNo2zzKWHeA0FScknobz/ytg2gwibXAwLzVFex5dIB0KkPLyjIMZhnZIBKJxJAkiam+KEe2jFG/qJjSejsOoYK7VzzM1FQQo0mPXtIRWhHHtuoiouEMoVgQ5ZQLCCRF9C2nIhUpeL77HbKRKJmz38+2J4P5d9XfEcZaEqFMyBL1CcQTMoGCJAc7BrCbzRSUWzDZtYCSN4KKFgcX1y4kFkkSmIxTXGVn8PAUeoOMq8xMIpY+Yd2wP85jfzxExJ8EIBnP8PgfD3P5t5bOCBZKtHfg+eWv8p+zwSAj3/kONbfeiuxyHStPJJj85S9Jt57KWFSgZUWcbCaBrLfw7O0dnPepuZisb8xYkAoKKP/1r4gfOIio0xFvP0Lo0ceQ3W6SQ0MUX/v5V5XxSuPkJZvJ4h2JEJiMYbAoFFRYMJgUUokMm+7swjsSobDSQs3cQhLRNJP9QWSdiNxbQNeWHgB69no495OtWBwGRrp8LDmvhmgoTmC8n3TSg9luxTNoIBrI/X1EA0meurUd6+fn4/jRL5maUvHpjBgsMvqlF0LIhzE4jD4dYeQrX0UqLER31Rdg9kJ2HojTe9sOCivMtJYHSXR0oMZiBB96iNTICJU3XI9k1bJqvZPQlZbi//vfKfr853PrOZ2OeFsbgigiFebEoQSjEfc3v4lhVtNLthUN+Bnv7SYa8OMoKaO4po5lpcv42wV/YzQ8yqGpQ/xo+48AkAWZH53+I86pOWdaG5mjfzPekQjWAj1DR/wEPXEcbhPNy0vZdm8PZ13ZTNiX4JQLa3GVW0jF06y+spkn/twGQPPKEuoWFPHQ/x3Itxv0xNh4SxtnfbiF0FQco01HNp0lEUtjtCj4xmMYzDJmp45EOPd9JMoiOr2Es8SMzniybcfePcTDSfwTUVKpLGpGRVVVUAVknYjDbcI/FqW42sri82qIBZPozAoj3X6y6SxnfGgWQ0eGWLQOIv5xjNZi0qkU7ho7fQcmiYVSmAuacH3tmzA2THT+Gp772zERhZGOICZLDbNOP5PYM08hFxdR9tOfoit75eIMGhrHwzceITgZQxAEMuksoiyiZrOIkkg6lcVkVXj0hoPEQrn9WCKa5rEbD3HB5+aRCkdBLmTLEwfz7Q0e9mIrNHDO1a0Md/jwjUawFRoJTyWYt7qSoXYfiUgKz1AYW5ER6aiIXzARJPLUMyR37s63lTp4GOdz+6D11Jd8BlVVmezvxTPYj6I34Prtr/Fecy3pkRFEm43SH3x/WlByamyMbDyG77a/4bjkEgS9DgQBNZ5AMBiQ7K/c4U7jzUEQBEx2mdDkJI1LIyRjCQzWUhBkdAaZ1NEsg7se7qe03k5160s7/E6N5AT4nk++NtEX4um/d7D+M/O071mNNwRRzVA7z0VpjcpEXzvZTJbZq8rpP6jHNxYlm4GSGjvb7u/h7KvmoOimB+70H5riwFM5kTMV2P/kEEUVVppfRYCQhsZrJTQVY7wviCiLPHrjsbkzk45hL/IiChPojE4UYwm+sQil9Xae+fV+stnchdFAko1/bmf1x+dRLbagmuHDCz+FKIowKNKvTqJmsqinX458yqU5O0Q4hidhIbnA4RFzAAEAAElEQVR7HKNNTyKaRKdXyGQyqFkBuyXF2Cc/iRrOZS4M3v8A6YlJKn77GyQt86/GSUo8kmLjzUeYPJpxMx5O8egNB7n4ywsITMQpa5CxOiOkExEcJRVksiYsxrS2Nn2XISYjIKqY7WHKGibJpECUi0mndcSDKZ68+QiuMgu2AgNP3dbORH/OgT0RSfPojYe4/BtLKarSzks1NF4L/okoU8NhYqEUjmIjxTVWdIZjwXKjXQF2PNCb/xwPpoj6kxRXW5kcDFFSZyc4FX/JIEw5HWPNx1qY6A3Su99DYYWF8/99Lnoh8YY+27uVtN/P8Fe/RuJwTjQ8tnMnA//2SWpvvx1dVeUJ6yWHhhn52tdzAiSAbuESvKqDcLuPdFZAViQevfEg2fTR9W4wya5H+mheUcJYT4CmpSX4x6N4hsIoOglRBP9EDKtLT/W8AjxDYQ5sHGL+mkoUvYSr3ILDbaJ3nwf/WJT6xcXc/4u9pFNZyhodVM128dw/O9GbZFrPKKf4ox8j3tFJbMcOkGUKP/lvGObOI53MsPWe7rzQSTKe4cmbjuBwmyitd6ArL8f91a8w+fs/YL/oQmJ//CPykkXofvNLwuEgVqsdfW0dgvjqxayMspGPt36cNdVrMCtmvv3ct/ElcvmhVpat5LqV11FiLnnV7b6b0Ylp1n92LsMdAfY8NkAqkTv7CkzGeOT6g1z+zSVEA6NMDvaj6HQU19RjLz6+YHkmnaV2fhG7H+tnyfk1JOMZ9EaZMz40i71PDACw9IJayptemVhMKpmhZ88kpQ0Ohtp9OIpMpFNZpoYjlNRpa1eN6UQCCaaGwqRTWZylJpzuVydWkEpl8A5F8I9H0Bll9GYZp9uM0ap72bpqOo3vjjuJl88m+8NLyJoNTCYjOMqMrL9mPvFwinQqS92CQmLhJAIw2u1n0x1dBCZyfpWZVJZn7xnk3As+BLu2oyaT+L7zX/T84jPMn3Uh++7szPtFRPwJnrj+CO/7puVVPadosWBcsIDQI4/kyxLbt7DoC1/HXmYjm1E59Mwkoiiw+iPlRIPDTHT3YHdXYDQXktmzgVSxiL6m5lW9W42XRhAlfGOjJL94DaK7BEtJHUGcBIfCONzmnJBYo4NUMkPzilJQVYa7fAgqqKgIqoAgCdiLTZhewXgdPOxl7xOD+c8Hnx6msMLCnNPK38jHzBPyxnn0hoPEwy+wBd5wiMu/tRRXqSYy8k5icqAPz0Bfzre8tg5H8atYoyWTGBcvxnruOZDJggCxvXuxXXghqiiTUuMEJqC03sFEX5CiKivxcAqB4/uYG8wy7/v2EqL+JGFvnLoFRVicejjB9aNdgWl/Jz17JrEXG7EkYfyoAAmAmkwy+p/fRdfYiLG5+ZU/n8ZJiZpVmRqNEBiPojfLFJRbMb5I2CboiTE1EkYQBBS9xFO3HCGbye3X/OMxJociKIpEMpamflExkiLQsX2cyf7c3hxAlAR0hgi+kSHUL1yDLZYgef2NTPz0fzHMnYtcVMTwF7+I88orEY1H/WhVNCEwjRPS743SVGwlmcnS8RpFSJKxKIphpgiJosv5kaeT2nmShoaGhoaGhoaGhoaGxsnLSeWNr6qqCoSPflSO/qcCFwNnHi3/K/AUb2MRElFRKaiwcvDpYdo2jeYKBTjzimZcR51ZRjqOcPsPvkU6kTtYsBW5ec83r8NVVsFgcJAfbf9RXoAE4O6uu/n36DKkaGzG/dQs7Hi4L/954JCXs6+aTVmjg65dEyw4uwqj5eWNJK+VbCJBenwcwWBAKc5lgRuPjDMRncBpcFJhrZje32QC8/LlTP7qV6CqIMsUf+U/EPWagMObzXCHn4d/f4DWM8qJh1MMtnlZcWk9j/zhANVzCzFaFI5sGWX5JQ1s+fMhREmkurWAti2jLL+4jj2PdaAzyDQudbP5rsMsOa+Gw5tGiIVSLFhbyRN/PszcsyoITIp07gxw/qfn8sx9PZTU6kj4N/DcE5vyfVnziWsIe+egN8rMW11B9+5JPIMRosGcEbj1jHI239mNetQpfrjdzxkfamKk0088kqa8ycmuR/qpbi0gMBGle/cEKy6t46nru7AXGXEUm+g/NMWKS+t56sEhCsoslNYXs/P+fpxuE/4JAyvWV2JZvoL4rp34FTcwkuucANVzCjA7DAhhA+13hlh8Xg3bbujJO5GUNTlY+7HZWF3aYfXrSc6JMBc8WdbgoLzZydZ7uvM/H2zzctZHWk5YPxpIEvZNP8DNZlWCU/EZIiSp8VzwsKDTUXL3g2SMduREiEwgME2EJDU2RujhRzBc8iG67/kL3uE+AERJ5syPfpWwN/GGiZCkJybw/+Of6Bsbmbrlllx/9XpK/vM7GJcsQdYc3d9WRFNRBkM5o2uVtQqjcswQ0XdgikeuP5if82afVsaKS+uJ+OMMtnmpX1yE0axj1yP9qFmVwTYryy6qo2fPJIWVFqrnFKCq0LZplLoFhZQ3Ozj49DANC2NsuPF/UdUsACUNzbSs/ABtm3OiS8lYmpF2P4pB4bl/dpLNqlgLDDSvKEVvMrH3gIGVy60IioL8lf/hwKAJdVuQwbZcBq6wL8Fot8zaq79A7Bc/AHKG7NTwMJJmMH5HoSsvx3bOOYx++ztkAwEALOvWkejrp/iLX6Dg4x9DslhQqqpeUgwvFgry5J//QPuWZ/NlZ33yMxQubaXR0Ug6m+YPG/9wrIIAu7qfZW68CFNBMY6i3Dqzb5+HR284iNmhp3llKTsf7MtXGTjkZeG6Kib6Q/gnosxbXYF3JIrOIKGqKivfW8fUYC4AT82qzDmtlMBknPG+IKl4Bs9ghFgoSdAbIxFP4ywyEgsnGTg0hb3YxFO3HKF5RSmNy4oZ6fBjtusRBAh64lTPK0CnP6m2ZO8KkrE0kwNhYpEUkUACURRIJzNE/AkCkzFaTytn34ZB5q+t5NEbDlLe4mTBmeXo9CKiSSEa8DOw73b69+/KNSgInPahazDZFzLc7mOsO8hkf4iFq5upmDpIwBNHlAUaFhVjLTASDSTo2TvJgm9+m8JrPo2+uATFfXynYg2NV8p4X5An/nKIpiUl9OybpKzRwUinn7JGB97RMMsvbSAVTRMLpRAEaFzmzl8T9MRwVVgYOpwLKCitt1PW5CSTzjBw2EvjMjeyItK+Y5yqlgLsRUZ2PtSXv/fAoSmMFoWKZhc9/h42DW9i1dbtM/oYf3YzqauvRpFz5w9qKkVqbAxBUVBKco5xw20HueP/fYdMOifcVFBRxYV/vAFTJIrkcKKrmO6kmQmHmfjhf1P8pS8ydt1/oR51Siv4zL9jnL/g9X7NGq8DajqNQJBnbvkfwt6cM5iiN3DaFV8jnawCwGhVcBSbiEczL9uefyKWyzxtVWhc6kZnkBnvDRIJJDQREo03hIx3ivImgft++p9E/Ll9js5o5NQPfJUjW0KM9waZv7YSV6mJbDoLLxIh6dwxRtUcF8XVNhLRNJ07x+ncPa6JkGi84fgnozzxp8OM9wZZfF4N9iJjzhncIdG/9wl23n97/tp5ay+lZNZaREmgdmERqVia8b4giWiaiD9JIpwh5IljdhiQDCLBiTiKQcRo0dGz34uj2IityE7fES9VrcVsf6Sf+kXFPPHnNpZfWs/mOw4xf00l/QenQFVZcdU1xH713/n7R7dtIzUygtT00oKVGhpvFdFQgrImB5WzCxhu9zLWE0RVc2IkBlOSLbf/gbGuXJC0IIic+5mvITvmISeK3+Kea7ypRENIRLnvN98lFc/Zbi3OAhacdw0hbyFnfLCJVDxNJJBkvCeI3izTtNSN3qQwOZg7o9JESDQ0Xj2+8Sjb7+8h7E1QWGFm50N9LL+knublxwLyhtp92AqN1C8qQpQERFmke88EU8MRICdu6a61UVJrZ/CIl8pm14z7KGqC9m0ehtpyZylhX4KxniDrP63ZOd4IUsPDeQGS58kGAiT7+15ShCQbj5GNxTC0tiLV1jE6773Yqiro2jKOvdiExanPC5A8j6yTKK62IetE0qkMnTvHKaqwYnbqGe8LYnHo2XhLOw1LinOJgNq87NswSMvKUmxFRsL+ONVzCwh54kR8CdKpLJIiUjXbxdZ7e/L36TswxUWfn0/l7/6P5OAQks2KUlyMoCgEp2L5ALrnqZjlJBFLE/LGsboMCCYTsW3b0Dc2Uvz977N/sIvdNxxLprHy8itYWlmFrBw/W/3xiKfj3NlxJ5OxSVwGF2Pq2DSfpM0jm9k3uU8TIXmVKE4jwakMmXTOplozNye427ffg3cswmR/J/f+5LukUzm/F0dJKZd9/Xs4S6efgz4vkpPNqLhrbGy9twdJEZl1SglLL6ihYXFurWkwv/LfeSyUJBZK5cVSx3uDDBya4uyr57wej67xDiI4FePxPx5irCfnM6AYJC6+dgHu2lfmf5LNqrRvHuHpv3Xmy+aeWYEoe1i0rhqT7aV9FtMeD8G65TzxaIRsJudneeaHZ+HvDuAbi+Ibi+IdiVBQbmbRuio23dmFq8zCeF+QhedW0rDQTSKS4rE/HiZltWFcuID4ocOosRhKIEp4PJ0XIHmeVCLDRF/o1YmQ6HQUfOqTRHfuJOPJzePmM87AUWZj2fxi7vn5HgBOe38xz9zyY4KTOR8kWdGx+upvYoz4yQZfW2Crxonxx6M8vP1pogE/AHqTmfM//5907ogx3psb0xN9IQrKzRRVWchmIRnNoKoqavbof0A0lKSk1o75ZRKQhX2JXJKLUJLOHeOkEhnat48ze1XZm5IkMBFLY3Ho8yIkkBOxCnvjmgjJO4iRjjZu/69v5dcPdncpa7/0ReI2kSprFSbF9NINGAykBgbw//3vAEiFhRR98QuQTNIZ6yUUTjHRLTDcntvvjPcFc4J4jY7jNifoRIb2e9hy1zGfzYXrqmhaWUyivx+5sBDJfGz8jXT5p+3JBg976d8/xexZRXlb7/OosRjpkRHQfMre9gy2eXnw//bnRUUalxaz6vLGvB9t0BPjzp/syn8nn/HBJiRFpGWlG4NFh9Eqc/DpYfzjUSA3LstnOVl+cR37Ngzl77NonYVd9/88P+/rjCYu+PIXSFz3A1LDwyTPWIrzw1fg/eMfARAUhZL/uo7AffdhWb78zXodGicRz3V6aHJbKLbN9O3PZFWGvDHOnu0mkcqyvdf7mu6RiscxO2aeL8lH42JSCU2ERENDQ0NDQ0NDQ0NDQ+Pk5aTzxhcEQQJ2AQ3Ab1VV3SYIgltV1VEAVVVHBUF423rqhf0xRFEk7I0dEyABUGHznV0UVVlwlZnYcf+deQESgODkOAMH9+Eqq2AgNEBPoGdG2ymDjPIioQ6promOO8emlWVSWYJTcXRGiUXLqlEM053hX08S/f14fv0bgg89hORyUfKtbzI4v5TPPfdFPDEPFsXCdSuvY3XVamQxNxzl4mJCG35F4TXXQCYDAkR37cZx2WVvWD81ZhKPpOjePcH8NZVM9AVoWOJGUkRGu/wsvaCW3n2TuGtsNC0roW3zCLXziyioMDM1HGHWKW6GjniZd1YlfQc8JCIpFp5dxUiXn6ZTShhq8+Ifj7Lk/Bp6D07RuKiY2nmFHNkyimcwTE2rQtfOTdP689zf/sTpH/kuxTU2fGNRJgdCVLa4kHUiil4i6Inng/Gf59CzIyy/pJ6ePZMMHfGy5NwaLAV6ov4kRquOQ8+M0LKyFIfbRGAiRv3CIobbfSw6p5revR5ESWTumeV4RyPMOb2c3n0e3Os+A2szSMKx6XP5xXX0H/Sy7b4ejFaFRedWM97rzwuQAIx0+BnvC2oiJK8zyXiKA08OkYimsbh0dO+ZmPZzVYXx3gA1Ni/GOTOdZWJyGL1JJhFNTys322c6OShlZYhmM8abH+XBmzrxj3dgLzZy2vubqH7BdaJej+RyEY5M5AVIALKZNAc33k7tghOLovyr6KqriW7fjppKUfj5z0M2g+RwYDzlFGQte+zbitHwKD/b9TMe6ctlyTm/9ny+sOgLlFpKCfniPHXrkWlz3uFnR2ha6iaVTrFwbRWOEhMbbz6S//l4b4iunRPMW13J4CEvex4bQJAEWlaWIusl1KxKQZnMnkduzguQAIx1HaF+iR/IZUsTJQG9RUbNQtMyN0e2jhGaihMPpxjr8SNbLAQEM/p1F7Btr0DtQtu0IGXIZVqJWsvz+S4EvV7LJvAORTSZcL7vfQgGA4IsEdu3D4HcfKorf2WZfjwDfdMESAA23fwX9LpVGAuclJnL8uVG2cgvS66h8Dd3Emi7k0jzLFLf/greohKeu3UEVYW6BUUc2Dg0rb1UIoOaVXGWmPCOhlGzKvYiPd7hCH0Hpmg6pYSqOQYOPTdCQZmZ0noHFS0STae4GekIMNzhI53MYi8wgiAQDadxFJswO/TIOomGpUUc2TJK9VwX2YxK334PBZUWjMks/vEIxVWaQNSbjW8sQjyaIjARJZvNEgumEUQw2XQceGoYz1CYNR9tYdMdnVx07XxEWSARSRPyJUFVScWHjwmQAKgqO+//K6s+VIUoSuhNMmdd2Uw8kqKt+jJqaotY6Szi8LMjdGwfx1ZoZPkldVzf/xeC+PlS7ZfQwo41/hXSqQw7Huyldl4Rex4fYOHZVWx/sJcVF9fjqjBTv7CIdDKDKAlUzXay6Lwawt4EqUQGa4EBg1khGc05JS48uwr/RJRdj/Sh6CXmr6kkMB5BBRoWFlNYaeHp29qn3z+ZZaw3SNTiZ5P/adp97SxdOhueembadZHls/n9/j+womwFhQEV5W8PELzjLkSzmeKv/AfGs9fy3D9uyQuQAEwNDTA+1M/s08467rMrbje6qiomf/t/FHzqU4AKooh19Wok08xMMhpvPem0ynDbvrwACUAqEadv3xNUL/gAyy+uI5XMUFRtJTgZ456f78bhNlExy4XOKCNIkIpl6Nk3SXGVFUUvUVhpoW5BEfueHCQRSVMxy0kmlX2JXmhovHbiio3+A8/mBUgAkrEYQ4efpqD8NKaGIxx6epjVH23hod8foKzBQc3cAsK+BGFvjNbTy9m/cZidD/VhsCgsWFP5hp7Namg8z2inPx9YYS8yUtniYv/GIZacY2bnA3dMu/bAhnspqFqAKtiomuNCEKBhSTGTA2Hat40hCALWAiMgMNrtx1VmORqkmaVqjotoMMlYd4CSegeJaDqf6bWsycGRLaPUzCtk34ZBFp9XzY4H+/A2NGE2m8lGcoG/gsmEqJ0TaJykBKdi9O2b4tAzI6STGWrnFzF/TSX7Ngyi6GS8wwN5ARIAVc3y3N9vZPVV/0lFVcVLtKzxTiPjLGLfPb/NC5AAhH1TxIJdjPVnOf2DTWTSGcK+OCX1NmrmFrFvwwCxUIqSevtxbRQaGhovz9RomIZFxQx1+PCNRJh3VgXpRJrJoRBFFTlhn9J6O4IAB54aIpNWOeff5uQFSJ5nvDeIqmY5sHEUV6kJs3362iSQMjPU1jmtLB5J4fdm0KSGX39EoxEUJZ8RPV9unhlIq6oq471B2jaNIMoCZX94gLadExTXOTBb9HRsH8NWmDsP0xnlXHJ2FWRFZMkFNQQmYnTvmaBpqZuBQ1Nk01lMdh1hX4KSWhub7ugm7Euw9/FBqma7WHpBDcW1NtKpDG3PjaI3KjhLzIz1BBBFAYScgEjP3snp/cyq9OyZJBKwkU5a6Xx0gsbFIAgQ9idxFJvywXVL19cy1h3gwd/sR2+SWfW+RmrqypHLyvDfcgv6732H3c9tnNb+ljv+RsPSFRRV1bzs+01mkvQEeggnwviTfm47chuxdIwycxnXLrqWn+36Gals7t33+ntfxW9OAyAlWjHZ05TUWokGEuzdMABA8/JSGpa42PnAzfkAYgD/2ChDbQdniJCMdvnZ/2TOvlXe5GDJ+TU4SkzUzS9EeY1i99mMypEto9PKkvGcYLuGxgsZ6wnkBUgAUvEMOx7s45xPtqLoXv5cy9s9wbO3d00rO/D0EMsuqMUzGKJqTsFL1k8IRrZsTeWDlgEUvYzBpDA1nEsk0bjETe++Sbp2TVC/qJjRbj+XfnkR2+7rYc8jgxitCqe+r4F4JEH70i9Tf0kK884HyRQXk46oSIo4/UxZgIg/Qdgfx+J45WcUxpYWav/xdxK9vYgGA7r6emSnE4CyRgeT/SGigd68AAlAOpWk7Zn7WLn+Y8hltld8L41XRs+RA/lAdIBENELH1idJxpdOu25qOEIynkGU0mTSWbKZLGoWEHLzpZpR8Y9HX1KEZHIgSPfuCTxDYawuA8suqmXPYwMUlpvp2D5O0BtDlkSyGRVBzM25tgIDQx1+5qwqo6TeTnAyRufOcUY6/NQvLqZmbiFWl4GpkTCd28cZ6w1Qv6gYWZZo3zFGw6JiVFWld7+HxiXFBCdjWAsMzFpewoGnhgl6YggCKAaZvU8M0LffQ1mTE5NNx3CHj7oFRfTtn6SoykbdgiIy6SyduyYYafdR3VoAAvjHY5Q3OejZN0nFLBf+8QgGs4KkSCQiKRoWFxMJJDj0zAiKQaKyxcVIl5/SBgdj3X6Kqqz4x6LY3ab882i8dtKpJNvu/ue09UNgfJRDezZzXfR6VpWv4stLvky55cQ+ObLdjmi1Unjt5yGrkg2HSA4NIzmdDPVto05qZU/79P2Ofzw6TdzmhUQmY2y7b7o/+57HByif5WTyPediWr4c9ze/geGo6HRlsxOdQc7vyeoXFlHW6EAnJxD0etQX+M2LZjNSYeGrfk8aJxfRYIKnbmuf9l3euWOCuWeUM9jmo2PrGAazzOkfaGLXI31M9oexFhlZtr6WfRsGCfsSrLisPr9Hep7hdh+tZ5RRVGVhajiMyaYjNHl42ryfjEXpGBmgsbGRTIGdix+7nJuaPkvhNdegZjIIsszkr35N0Wc/82a9Do2TiJ19Xj78x23Mclt59Iunz/j5eDBOMpOl2mUmFE8RTqQJxlPYDK9c/BEgGY+hO47d6/mYn7QmQqKhoaGhoaGhoaGhoaFxEiO+1R14MaqqZlRVXQBUAMsEQWh9pXUFQfikIAg7BUHYOTk5+fIV3gpEAUmWjnsgm4ylSURSZJIJvMNDM34emBhnPDxOMBFkqXvpzPrVJWSiEVxXfTznhAGkVAVBnKmiLokC/Qe9TA6GEMU3ZhioqRRTN9xI8IEHIJsl4/Ew/MUvETiwB08sF2wSToX52jNfoy/Ql69naGyk6DOfwXfrrXh++1simzZT9LnPIlnfuRm/Tsaxm0pmkBWRHQ/0UlBuZfOdXRzZPIrRquOpW9uxFhjZ/Wg/ex4bYKTDz57HB4j4E4x1+9m3YYjiGjsb/nKYiC/BWG+Qrff04K6xsfHmI4x2B4iFUzx3excFJWb2PTnIcIefoSM59fRMKjajP4lohIg/zLN/76Ss0YGr1EzYF2PZhbWoqppz4nkRkiRw6NlhDj83wtARH9sf6EWnl9m/cYjDz40w3OFn18P9qFmVrl0THHx6GFeZhSf/egRREujcMc6OB/pw19jZ8Nc2IoEE430hNt/TT8gbp7jaSkWzk6E2H6NdfgBioRSb7uiisGKmYTjsjb++v6SThLdy/KpZ8I7ljAsWpwFJmjmfybLIxC9+SaKvb1p5KBHiR4e/T93FRkTp6PgRYOklVcfN/qBvmoXr7id54s+H8waNwEQu48t4fyB/nVJSgvub3yAemZmhJOQZR5LeuGA4Q2Mj5b/8Bcm+Pjy/+hWRLVsxLdMESE7EyTj3Ps9TQ0/lBUgAHup9iGeGc4G8yViaWGjmOiIcjBPyRxFEAc/gzPHXf2AKSRZo3zZGNquSSWU5+PQwmZRKcDKOySYQ8nhm1Ms+n+VMgKUX1DLc7mPT7Z1Uzj6mzh6cipFOZrG6DMRTMpb3XI5vMk42k3PYeTESx0Sair70RXRVVa/85Wic1GP3hRjnzkUqKGDqT39i8pe/QrRYcLz3Pa8qw088EplRloxFMal6frzjx8QzceSjwmCfLLmMwu/dQLotFxyfPtKO7/NfRQ2miEdyfzPZrHpszn8BepPCwaeH6dmTy16ZSqgoRpngVJwNf2nDOxLBNxrhwFPDbLuvl8mBIKhgtCksvbCWDX9tY3IwTDSQYKI/QGgqjqKTGO30M2dVOYIoEA+nifgTxKMpUCGbyZKKv/sCpE+G8ZvJ5BzHMqksmaRKKpEmOBkjczTrZTSQJBFLc+p7GpFkEf9YjFQiS3A8StumUWKBmXNsLBhAljMMHvEx1hMkOBVn0x1dtJxahtmqY89jA3hHc+M56Imx+a5uqpRaHul7hKeGnnozH1/jNXIyjN0TkYpnmBoKI0oiqUSGTEYFFQqrLWSSWbJZSERSRMMJFp5Tg38symh3gL1PDGC06kglMyQiabJZlWQ8Te8+D6i5dnc+2IferKN3r4edD/WRiKYRj7PmzqazRCIxwqkwu8Z3MTW/GuX0lfmfS8sWsbtZx/UHrqfL14nw4EaCf/8npNNkAwHGvv0d4v39+MdHZ7Qd8ftO+OyS1UrJdd9Dcbvx/OY3+P72dwxNs9DX178+L/cdwsk0fgVZIDAx8/cc8oygN4oMd/iwFhgYPORl853dDLf7OfTMCJFAglgoQTSQ5Im/HEYUBA4/N0LvPg+tp5ez/f5eEpGcgM1Qu4/dj/aTTmdm3Efj7cXJNHafR5TEE45hk10+eo3AeG+QkQ4/3pEIk4MhnvlbO4pB4fDm0fwZUjycYut9PbjKtD37O42TcewGp3LnkqIkkE5mjp4HZMlk4jkV3xegqlmy6Tj+0Qj+0Siewdw4lmSB0y5v5Nm/dzDWEyQaSGJy6Hn6tnZCnjhBTxz/eIxEJE0ylmbPY/1MDYWZGgkTmIjRsLiYwEQuECKbVcke3Q754zqkgmMBR0XXfh6l8sQZ7TXeWE7G8XuyoGZVho/42HJ3d07QVIWevZOkkxlazygjlciQTs60bYS9U4T9EeKqJpL3RnKyjd1MMoNvdKatN+Ibx2hRyKZVfMNRevZMsGBtFVvv7c6f+Y51B9j5YB+peHpGfY13Jifb+H07YzQqPPOPDg4+Ncxwh58td3fjGQqjviDQSc2q7H9yiHQyi5pVyb4oycXzCIKIdzSS32u+EBUQ5ZnnzG9CcvuTijdr7Oqqqii65pppZbb169E3NMy4dnIwxD0/20PbljFsBUYe+2snE8NxknGVp//WwdARH4efG2XHg30IosCy9bUgwLzVOVGxts2jFFfb2PCXNto2j1FYaaN3/xRdO8eZ6A8R9Bz7rh847GXHg32EPHEe/cMhBg556dw5zvb7ejjlojqCnhjzV1ee0C6BAJ6hCE/dmltPTw2H2XhLO7sf7af19HIkWaSoysrUcJjBtpwQZiKaZsNf2/CGZCp++Qt0TY0kI+EZTavZLIlodEb58Tg8dZhYMkYgGeD3+35P7KhdcCQywj/b/8k5Nefkr51dOPsVtXmy82bOu4KY82kIeuO0bR4lm1bJplUOPzeCo0SPf3xkRp3gcey1Y73H/BGGO/zsfKiPHQ/05s6CXyOyTjzu2JSPY9vVOHl4K9YNwcmZvk6eofArWq9molGChzrJpl80VlXIZFSioeTxK76AtKAQ8k4PzFR0IhtvOcLg4dz8+Ow/cnN8+7Zxnv5bO4vWVbDjgV5GOvxAzpdrw1/bKCi1MtQR5OmNMabO/DDtTOLpD3PKxXXT2m89vZzu3ROkYq/+jFkpL8eyahWmJUvyAiQATUtLcJWbifhn/o2HpsbApEd5Bwfav1VrXu/w4Iwy3+ggJtvM4OFUIkMslCSbyZ1bqaqKKOTO0rJZdVoyshcTDSV59MZDeIZy38shb5yt9/Qw76wKTHY9W+7uIhlNM3DYy2hPgNGuAOM9QXY/NoDOIHPPz/cw0uHnwf/bz44H+hju8PPM3zrY/kAPQU+U+3+1l12P9DPcnisf6fKRCKd4+rZ2JgdCRHwJnvzrEVRVYKTLz+Y7u2g9oxwEWPW+Rto2j7Dpji6GO/zseKCXw8+NIIoCj/3xEEWVNjbd0cVTt7Wz78lBdtzfy3CHn813dTPaFcA/HmXjzUcorLDy9G3tKHqZvRsG6T/gYWokwv2/2cdwh5/e/R46to+z8ZYjONwmnvxrGw63maf/1oFikNl2bw/b7ushnXz72W5Opj1bOpHENzo8s9wfxqyYebz/cTYObDxOzWMY58/HtGgRUzfciOc3vyE16cF56SUIgoBD7yCjHv93dCJfn3g0fdx5Ph7OzfHRrVsZ/fZ3yASPCVrt2zCY35N17ZogHk6iqyjF/Y2vI5hMQE6A5IXiJRqvnpNl7CbjGUJT09cTepOMdzTKE386zMBhLx07Jnj8j4dZfE4NpQ12dDqJLffkRCAhlxjleMiKRHG1DbNDh8GiEPbOtOH5/FO4rv4ED6j7CSfD3KU/iNc3wtQNN+D53e+wnXcu5tNnClBovPN5oi2X9LJ9PMSIf+bZ/lgwN25LHQZKHbnz/bHAq48DSMbjKEbTjHJZyYmQpJKaCImGhoaGhoaGhoaGhobGyctrS4fwJqCqql8QhKeAc4FxQRBKVVUdFQShFJg4QZ3rgesBlixZ8totrW8gkiSSTKawFeaC3l+o7Otwm7AVGtCbzMxbey6+0WFMNgeQC2qrap0PAkiixBmVZ+BL+Ojyd2GQDHx49ocRrTYKPvIR4t3dmJYsASBoszF7lcC2e48pTeuMMg63CTWr0r1rksXnVB/NXPj6kvZ4cgIkL8IxFuYTrZ9AEiVkQWbDwAZGIiM0OHNOIoKiYD17LYa5rWQjEeTi4ne0AAmcnGM3mU7Stjl3ICspIrFQivpFRXTtzP35Ga06AhPTD93SySyj3UFshQamhsKoKpTPcrLz4T5knUgikiaTylK3oIgDG3POlwazgm80itmhp6DCwkiHH0lxISkKmRdkMyptbCGV0LPo3CzBiTYWnu1Cby5i8129LFhbjbPExOFNI9MyU8w5vZynXpSl2zcWJRqcbsQOexP4x6OU1NnyBmpXqZnu3ZNYCwx4R8KoWZWKo88CcPDpYZpXlFIzt4BHrj84/eWp5LImvYjCinfmOH4rx68qZKmZV8D+J4cQJIGmZe68mA3kHABL6m3E/2cXqYEB9DU1+Z95E172e/azqGUviz+7FDWk4Bc9xAtHkXUzndYkk5HgVGiG+EMimiY4Gcddbc+XWdeswXXgME3LT6WwsoZsNkM2kyGdUEmlTpwV419F0OmwrVuHcd683PzpdiNpAiQn5GSce5/nyf4nubDuQsqtucwUQ6EhNg5s5P2z3o/Zrqe42spE/7EgeEEAc4GCEMuw6W+9LD6nZkabRdVWBg56Z5T3H/RQ2mDHNy5Rv2QVopihoKKSbDZLNpOhqLqaxedZkGSBrl0T1C0sIp2awDceRZJFMuksRZVWgp4Yo91+6hc14qwqpf5QO917JphzWlk+MxdASbUJV2EC4ctfxjhvLoY5cxDeIEG0dyon89h9IZLNhutjH8V69lrUZBKlvBxR/+rmQFdpOad+4ErSySSSJHP4mScx2O3IdguSINEf7OdzCz/Hnw7+iZqImfSLjOYZrxdzKoyrwox3KEL37glmrypj18P9+WsMFgVBgNHuAHqTTCqZoXffJBXNTuoWFLHnsQHatoxSO7+Iw8+NEPLGkWSJkDeBKApEpuKkEhnat43RvKIUe5GJsC+B3qRgsCgko2lK623YCgzEQiZEUUCSBWRZxGh992W1PRnGr86oIOtTKEYpF4Ag6LEWGFF0x+YiT3+IkgY7yRgkYmmS8QwGq0LvPg8VTS50RiPz1p6HotcjCAKCIGF2FuAZHKdxiZuO7WNIioggCnhHozMyB6biGZboF2OUjWzo38AHmz/4Zr8GjVfJyTB2T4TBrNC41E0slMRWaEDNqugMEgIgSJBKpFF0MqPdfkrqFXr2TuKutRPxJzAYZTJplXQmy3hvMB/QMB2VwgoLkwMhNt/VxaJzqtlyV3f+p3qTjN4iMyaMoJf0jEXGiBSa6Ln2IpT3riCZjuMp0hFS0ny66NM0iqUkH7hxxl0y+w8w96x1dGzbRPOpZ5BJp5AVhbKm5pd+/lmzqLzhelLj40gWC0pJyb/4Rt95nEzjV5ZlquYsJBWP4iwtI5vNkkmlEGU79mIbnqEBmpaVcGTLsUyQrjIzgckYtkInkwMhUvEMFqeets0RpoYjuGtmioB27Z5kxWUNWF0vn4lT4+TlZBq7x1CpW7SMVCxCUXVtfr8v6Qs49GxOcGz2aWX587PCSguhqQTls1zEoykGD3lf3JyWYfgdyMk4dourcnOlo9iUF8LRm2TshXZWXv5hUFUmervp2rkVs9OFq6yMdFqmbfMojcuK0RlkRFEgGkwSDebOjReeXUUmnaWkzk7AE8fq0uftHRaXgbbNo9QtLM73wTsapXZ+IaPdfgxmhUwq58xeXqHguPRSsvEYosmEvrHxVYlXary+nIzj92Qh7Isz3hecUT5w2MvsVWXs2zDE/NUVLFl/GYoht1cMTIyTSqaZGlEpa9QEJd5ITraxq+hlmletpayxGaMtZzuIBv3YiluwFriJBhOEvHFMNj1Tw5GcXekFDB7xEQkkcRhOWlO+xuvIyTZ+386EvHGigel24LbNozSvOHZWMNQ+XexUb5Qpqbcz1n0swL9qjgudSaJ2XuFxRQMtDgNzTivP27sB3LU2rIXvrqzub9bYFWQZ5wc/gGFuK6mBAWR3CcbWOUi2mecBo51+MukspQ0O+o/uv+oWFHF483Shh2QsTSyYJJXIcOp7GpDknD+EKAuk4hnSqZzwvm80gqPYSMe2MYqrbRitygxbcTqVnfE5m1HZ8WAfzhIT89ZUomZUxnqOrSMkWaSk3s6TNx0BoH5hEQeezo2nTCrL7sf6WXROFe5aO49cf2DGc/rGopStmkv1TTcR9Exg3Po0sWCA4po6Gk9ZiZpVkSSJdCp3vnYiRsOjJNIJFFHBG8+9r/V166mwViAgMBwexm1yI4syV7dezbyieSds6+3EmznvSiIIkkjP3pmiA717Qsw+bR3pZARZp0MQRHxjI1S0zJlxbUH5zLmorMGBon/tZ1+SJNJ6Rvk0m5nRqmCyv3H+DBr/Om/FuqG4ZqavU+NSN0bLy9s50+PjSJ37MNnmT/PVUgwSalbFUTwzGPPFmG06KlucDLYd+w6PhZIkomlazyjnyJbpwcapeIZIIDPNdwgAFfwv8HPbt3GS9Z+6lNGRGI4iA8surCWTziLJIoOHvYiSiMnx+tlyXWVmzvvUXDyDBgwmXc4fI51mz6MP0rDsTAS9gVQmhSKdeN5+O/NWrXlrG5oxOZwYLLl1QzTgw1pYjW9y+u+2tMHOSIef+sXFCCIIGRU1K5DJZtEZZNRsFpP1xL+bsDc+w48yk8qiM8o8d3tOiEfRywwd8bF0fS07Huhl6QU1DD3oo2mZDlTo3DE+IwnbkS1jNC5xE/FPX+N2bB9n4boqPENh2reNsWBNFd6RCO1bR6mbX0Tb5lGCkzE+8J1lZJJZnv1n57T6kwMhauYVggrjfUGcJSYGD3tZur522nW9+z0sOa+GkU4/qXgGSRZp3zpG7bwijmwZZen6Wvr2e5B1x76PshmVoCeO0aow3O6juMpK+7YxauYV0r5tjIVnVx33e+1k5mTasxksFuatPY+I34es0yGKIv7xMQpbWnivQWE0PMoT/U9wRcsVJzxjlaxWnB+5Esvqs1BTqWm+PIIqYDEbqFtYSM+eY+uXomorxhP8DVhdBkw23fR5Xi9hLTDy/C4rvn8/qdFRJJttxp4MoGvXJE3LS7Gccw662lrSk5PIbjf6piZEw7trn/V6crKMXdNxvsvnnlnO/o3TBXwz6SyewTD1C4vwjUenidsEJ2MUVVmZHDjmL9mwtJhMNlencYkbnUFCb1yO2WHBZHcCKvFwiAJ3GdmSEn564NsA3DLxINtbG/jgyn9jbdVa7NUNCC/aN6UyKXqDvUzFpigxl1Bjq9HsFu9AtvRMIQg5rf7DI0HKHNNjaSaCORtukUWPRZ87px0NxGlyv7pYgFQ8hu44c5l8dO5NJzRbsYaGhoaGhoaGhoaGhsbJy0nluSQIQhGQOipAYgTWAv8D3Ad8FPjR0f/f+9b18l/DaNYRCyXQm0TWfKSFTXd2EQ0mcZWZOe39jdiLzABUtLSy77EH8Y3mnCGcpeXMO/s8MlmVWDrGL3b9gnNqzmFN1RrS2TSP9D7Cmqo1yEV1WIqK8vcLtPvQm2SWX1LHRH8Io0WhotmJ35PLemJ3G1GMb8wwEEwmlIoKkl1d08othaXc1fkrlpQsQSfqOK3iNIqMRTPqa4FDby0p9QTZJl7qHPXoIat6AhGO47XzfHapoSM+Vr23Ee9whMObYpxx5X+w5+Gb8Y0NU9W6mOZVl+EbOcJzt9509FYiq6/+HOmUmb2PDzB7VSmnXFhLcCpOPJyiuNpKMp6ZqbJ+vH4dLZvW7+cPjNXplQSO+YIe2TKKIIK1wDBNqVuUhdzB+Wwng4d9KHqJ5ZfUUVz9zhQheSuxF1moWyAQ9sZJRjPIisiqyxsZ6wkgKyLFNTZ06QiRSBTxRY5oNp2NLyz6Av9s/ycDBQOMR8apsFRwkemiE95P0UuIooCqquhMMsloznFc9yJHYNFgwGAvJBGLs/n2WwHQm82s+9TXUY8vyv66os2fb3/eN+t93NJ2C6lsChUVT9TDFbOvAHKBxmdd2cLGm9ty3+1WhTM+NIviCht7u4dBFQh541TMcuYNt0arQuMSN4NtU0BuLKuqSjqZxVFsYuiIF4fbTNPSC9lx781svv223L0sVhwlrex6pC8/+dXOz2XfyaZzmduaTilFAJwlZkobHBRXW5H1MksvrOPZf3bgH4uy/JI6kpEkNjmCuX0znmt/Q8kPvo/5lFPe1Peq8eYjCAK6iorXVDeViNO5Ywub/nFzri1R5IwrP0GwXGFvqp1vn/JtvAkvNx++mUsaLqE0Ww+iSD6dNoAoEkl7cF9gQ3jIwtRgmMB4lNUfaabvgAdbgQm9WWbLPd2IksCic6rZ+8QAhZVWJPmYIMUL7ch6k5w3QKJCOp2dcU2eo2uLBWdXk0pmyKSzuOtsSJKItdCIs+TlHes0Xn9cpWZS8TSSJBD25gRjUskMqXiapetr2bdhkN1PDHBB49xpQUDpVO7Dng0R1n/xWzzy258SDfgBKJs1G3vJgvz1x5wPcqIzoixMX5cKkFIS/HDVDwkkjgU4aGi8FgRRYM5pZWy/v5d5Z1XStWucZRcey9onAKqg5uYtjo5PITefwbFhHvbFsRcbZwTDS7KErdCIrdBI0BNj8JCXU9/bwER/CJ1BoqDcQrTIQ1yIsml4Ex+f83E6fB0kMgkcpQ4suiKeHdjIppFNAExVXcyV1VWkR6YHf0hmC62nrURvMvPMrX9GVbMgCJz1UTPuusaXDJiQrNZ3vHjpOwmzq4SQx0Pbc08BYLTZWX/tN6dnEXzR96rw4qjMF3zxZrMqkiIiSQLJeK4NR7ERRa8J3Wm8/uiyMRwlFWTS6WP7fZOZcz/3DYJemerZLnr2TOYzs+XPylCJR1JYCwwkojmR3szRdaTB8s4MLNA4uShrsrPiknoOPDOEo8SEIAosOd/A4zf8gGQsZyuomb+IpRdfTvmsRaRTRhKx9LH5+Og0/HyA5bRpWj3BfuhFiJKAq9zMWE+QJRfUsOvhfhatsKE8eiuTD9+b389V33rL6/bcGhqvN0bbzAA0e7GRwcNeBCEn1N723EYi/tyZnLu+keWXXU0kaCMeTs2oq/HOJekZxF3XyP4n7seft/WWsfbqtUg6IyFvPDeZCgKCkJtHn7c5qCqYHXoUgyaop6HxajluQJAAonRsf2g7mpxFVkQESWBqJELrGWWU1tvxjUVxlZopKDeTjKWnCaq9EIfbRMOiImwuA/7JGGa7juIaKwXv0IQUJwOS1YplxQpYseIV1xGm/Xvm2MhmVdKpDIJw7DzhhahHD9OeF9pr3z7G4nNr2HZvT34/t+icKsZ7Zp7vqlkVBJjoDzE1GGa4y8fKy+rxDIcRRRFXqQn/ePQFy2112viNBpLseLCPi65dgNNtYnIwPK19sz23JpEdDlwOB5d+7T/Z/eC9WAuL2PTPW0FV2XLH3zjn369l9mlnnTAZQCQVIatmCafC2HQ2Pj7n42wb28YDPblkQ82uZs6vPZ86Wx3Ly5ejiNr+9dWikiWTzlBQamb4iC8vGpJKZNAZJUobW3j4tz8iFsyNo/LmOdiKZs495Y0OKpqdeVEFs1PPvNWVSNJrP/9KJbN4hsIsu7CWycEQZrs+F0AcOIGvkMa7FnetjVPf28C2+3pIH0081XpaGYL48ocBoslE8rF7OfOz89i020BgIo7VZWDB2ZWYrDoKK19eiEAxyKx6XyMbb21nrDuA3izn7R0nvK8EFqf+aOIImVQiQzajonuBj6QgwPDuCKIoEg4kMZgVtj/Qm/c5O/2DTeiNr++8p2bD7Lz/dvr37wZy/hjrPvV5DJZK2iaPELA5mV0w+3W957sde0kpW554iMBYTqzGWVbBKZeuorDajbvGxkhnAGeJiUw6JyKWjKWwOA1ksyKgomYhq6rodArOUvMJ76Mzynm7WyJ6TIQ0Hk7N9F08Ec/7IEwvOrEL5vN2vxf6NQpCvg1RESgoszBxHEHVl7vvtB+/oAMq6tEOvfQzvcBUjvr82aEmt/i6UdbUwr0//cELfBVaMJtn0+/rZzQ8yodbPvyyYgmCIKCrrJxRPpWYwjsVo2FhC84SM1PDERxuI4UVlmkJN1+IrcjI6o828+w/OglMxLC6DKx6XwNWayYvQiJaLIjm3N+Q9UV7slQ8g91tQpIEFKcTRfMle8ehO/pd/tSt7bkEUWaZyjmu4wr1IZLzZTj6nS2KAopBon3bGIvOraZxaTFjPQGqZhdQ0mBnojdAYaWFPY8PEJqKc9rlLgYPH8Q7PAiA3V1Cw3mXEk1HkQWZFWUrcBlcbB3dyv2JnZxXfdUMAZJEOsHdXXfzo+0/IqNmMEgG/vfM/+X0itPf6Fel8Saiqipd4yEuW1jBnbuHaBsNsna2e9o1k+GcvbfYpidx1D42FojNaOulyKTTZFIplOOIkChHRUhSSU2ERENDQ0NDQ0NDQ0NDQ+Pk5aQSIQFKgb8KgiCRO0r6p6qqDwiCsAX4pyAInwAGgPe9lZ38V3GVWNl2fw+ewRDr/m0OqEni4XHGuw9jcTThcBfTu2dnXoAEwDc6TNeOrdStO4tiYzGiIPJI3yOUWcrwxX24DC7KLGUz7mUrMLD9wR7mnl6Bya5HkgR8YxGMVj0rLq2nsMqKwfTKDGZqKkWir4+Mz4dSVvayAaWy3Y77m99g8JOfgnTOuGJYvIi9rhAfqfoID/Y8SDKTpNxaTjqjZYA72XC6rLScW4jqj2E0j3PKhWZGuuI0LnWz7d4eosEkDnfOOeZ5ZJ1A2Sw7I+0BCs60IIgCQ0e8NCwqpmvXBHqTjKyI9OyZpGVlKQeeGkZSRERRIJtV2XZfD62nl2MpMCCIMP+8L+AokhnuiKLo0+y875gDuqpmefqvf+CMq77Dpn940ZsVtt7XQ3mTg7JGB8l4BotTZvnFdfQd8OQzCxWUmzHZFaKBYw6/JpeCs8zIRF+QlZc1MHjYy9RQmLJGByOdflxlZkRRYLDNS/3i4nw2W4CJgRCnvq+BR68/BMCCtZXojTLeyTCNZxSy9LJqzAYj1gKDpoT9BqDoRHY+1M/8tZXoTTJb7u6mZXkp1a0FRx3G0qg7n8NxxRXoGxqm1RUQ8Ma9zCmcw3PDz1FhraDOUUeGmU5mz2NxGTj9Q01EA0kigSRmmw6TXYfFNTMbUHhqkP59u/KfE5EIex+9k4u+/M3X7wUcJRoM4B3OKcO7yiswHc2s+GpJ+wMk+3oRAKWmFtnx2trR+NdRMxm+WnwFgdF+fDYJb5VCOHnMwbCwwsKF1y4g4kugM8pYXTkjhcEp0HpWKfseH6ZuYRHL1teiGCXshUZ2PNTLsgvrKCi3EA+nKSg3k0llMdp0eIbC7HtiEKtTYuDg3vx94uEQbc/dS1njekY6w8w7qwCT1cOS83RUzzVTO38+oiwiySKKLheg/DzOEjPnfnIuYW8cgl783/4WiSNHiKXTKHV1mJcufdPep8bJi398lMDEOAaLlYKyirzCP8DU0GBegARAzWbZcvtt1F5zOff33M+8onmsq15HMBnk9o7bMTXquPSznyLw698BYD51JdZLLiEQy4JujMg5QS4pXI9e0ZOIpClrcCApImannvlrqhAlgYPPDBMLpWhYXEw6kaFn7yQAzSvK8AyFWH5xHZFgEp1Bwl5sYrTbz8DBXHbAWctLMdoU/JNRnG4TOqNEYjhNUZUVo0UhmchgcekRRRGjTcFi17K1vFWIokBpvYOAJ4bZnsvWnheWIUtVs51MLI5ilsggojfKyHqJTDKL0apgMMscfPLxvFMPwEj7YWYt76V2fhn9BzwsOLuK7ff3gprB4kyz6r1GogEY6YKRzigLz65ia+wh7j1yD0tKljC3cC5Nrqa36pVovAOwF5k488PNhKbiVM1xkc2qZNJZktE0slUhGUvhcJsQgDmrygj64tQtLCKbUTFbFVLJXCa3siYHk/2hvBhEUZUFSRbxDIWomuPCaFEQBIF4LMXsVaXEwknS1ij3j99Bo7ORSxsv5b7u+7i69Wr2e/Zzb9e9IMD5teeTyCTYOb4TT2QC68evxLJ4CemxMfx3342uvg7T4kWEEgme+8dNOQESQBRFpoYHGDiwF4PZgrO8AqNFC+h5u+Mf68Vot7PivR8CVCJ+H/sef4CG5VdgLzaRTmdoWVnKwaeHAfCORJhzWhnJaBqH24TOKBOailFYYcE/HsXqMrDonGoS0RRmu54jW0Y5/QNNGMyvX5ZKDY3n0RUU4O9ox2S3s+K9HwQEfCND7Lzv7yy+6LOIokxBpZW+g1OgwmR/kKrWglxWyAtrWHFJPWM9gVzQkQDesQhFldq8pvHGozcqlLRYsBU3YHbocZTI7Lj7l3kBEgBJliltaCKVjKMS4sgmP7NPLSOTypBMpHNrgqPBj7NXlaEzSIDEWG+AqlYXahZEKRecEfTEKay0kIynEQUQZRFLg4rVrOfSUxaSSmSobnXB3s2M/vdRzflsFvt73jPtDC8dCJDs6UEQRXQ1NUh27axK480nHk4x1hdgciCExaFn8bnV7Hokly1e0UvUtBby3O2dnHVlE13bb8dgtTH/7PPIZHJr6rB3jEObQ1z4uflv5WNovMkoJeWMPPwQjUtXIMoykiTTs3sHA4d2Uda8Fp1RxuI0MNEfpKzewcr3NOCfiGG26fBPRqlfVIzZPtPuoKGh8dIUVJjzAcfPM+fUMlxlx8SgSxvtrHxvA7FgkmxGxVZgoGfvJLXzCnN7ToNMz/4JFp1dRWGF7Xi3AaCs0YnZricaSKIYJQo1AZKTgrLG3Ln/WE+AlZfWM9Tuo3vPBC2nlrLnsYH8dXqTTEmdncoWF6qqkk2r7H8yl71d0UsoeomwL4Gz1EwqkUbRSyQiafZtGGThuioUg4ROL6EzSMiKRPeeyXzbil4iHkkx+9Qy9m0YpHvPJNWtBWy+q5vK2S5q5rpIRDOIosgZV8xi6z09Of+JU0vZ/+SxTOBGq4K1wMCp72vk/l/tI5PO4iozM/fMCqaGw0QDSUob7EeTBMxi8fpLue1bX85HEatqlidu+C2ljbNwlR3ft6fIWIQv5kOSJCajk+gkHYenDgMw297MpY5z0A9FKbSa+ewTn0UWZT638HMsLVmKLJ5s7mYnJ2PiCPasm7pFRlxlFkRRhyA6kHUJFL3CvsfuyQuQAAwfOcRoZzvOkun+X9YCI+uunoNvNEImncVZYsbi/NfsTGaHDpvLwI4H+3CWmBjvCRIPp3jv15f8S+2+EsL+BL7RSE6sstSM0aqd453M6I0K89dUUju/kExaxVpgQNG9MsE8xe3G/ZX/YOSrn2fVJZcjnr8KpaQAU4UFe5nzFffBVWZh/efmERoPk02lUREwmJWj/mdl7H60P3+tzihjskucenkDgbEYYX8uIYHRKmMrOvZ3M3dNOQefHCEazM2nTctLWPeJ2UiKhLPEhNHy+o7LQCJAz6HdeQESyPljHH7mSQrr3gOzQgy3jWAtVCmqrMZgfnmBFo2XZ3RsiNmrziKbzSAgcPCpxwlOtGN3V2C266mdX4jOIBGcitOzZ5La+YUYbco0wQydScFeYJzWbjYeJ9nbSyYcRldVBYKVZRfW4h+PYnbo6dvvwVZkYvho4iCLU08qnqZytouJviC18wsZ7vTjLDERDSQQBGha5mase7q4WcupZdjdRqwuPSHvsTXurFNK6DuQC95vXlFC7/7cWmTW8hIOPDWEIAo0LMqJWtndRqrnFtB/YCpfv7jGmhNEE8BdbaNr5wTVcwuIBqcHQdctKGKoPSeipRgksmmV5uUl7N84REWLk4n+IGaHnvQLROZFWcBaYCAWTlHR5GTTXV0svaCW/U8O0rKiFHvx9Hep8cqIhYJ4h4fIZjJ4BvuIBY+Jy4y0t1E4OJ+uVBdrq9cSSoVe831KzaU8PPAYcl8B9fNKsBUa0Rkk+g94WPqCJBgvJDAR5anbOlhzZTPZrIooizz7jw4WV/vz17i/9a28v3lpw/Q9mdmup7DyX1/bvJ7kfOX7yfi8KCWl6KpmCrZovDpcZRYu+Nw8Ir4EiiHn67hgbSVP3nQkf42kiJTVO7AWGkjEUqx6fyOJcIpYOGcDthbqcTfYmXtWBbKcW4tkEhn6Dk6x9IIaRFlkauDZvACJ0WZn1orT8Elgtzv531U/4ca2P9Hp72Rt9VrOrzkfszJTYKon0MMPt/0wJ7wExDNxvvXct/jH+n8cN05D4+3JZDhBJJmhtdzGjj4T7eMz587JYBxRgAKznkw251s2Gogfp7UTk4znREt0hpmJymRd7vw3ndBESDQ0NDQ0NDQ0NDQ0NDROXk4qq7CqqvuBhccpnwLWvPk9euPQ6SX69k+h6BJEfRvp3vksALseLOKSr3yHobaDiJJExexWRElm6NABhtoO0nTu2Siiwn+t/C/GomO0+9opN5czv3j+cbO32AqNLL+wnsf+eBBBEMhmVArKLVgLDRx+doSzr3pl6vnZWAz/XXcx/t8/gnQa0Waj4te/xnzKspesZ16+nNrb/0mipwfRYiFcU4QntJVf7vpl/prr919PiamEucVzX8Ub1Hij0ct6KqqyPHj7z/JOD62rz0fRr+HMjzbRs2+SRedV4puMMNkbxtWisNnwCKdcsBxLo53JIT9rrmqm7+AkxZVWCutMTPQEOetjsxg8MoXBJnPqB+tzZR9tZt8TA4S9SZKpNFk1g8GgEPAKGKIpgmOPIgol+UA0AFGSKW+eja1EouVSB+MDftZ8vJmhTi+2QiMbbz5COnk0A9G5VdQvLqKg3EI2rXL2J1oZaPMwMRDEOCvF7ZE/U7e2kdqxOrxjIdZ+opnuvRPULnFR2epkcjDImo+1MHBoioJyC8XVNgYPT1HW6KR+URGSp5fzT4ujVjWy+dFJ/BPHlI6XfKiMxasaNAGSNwhRFEknMjz4m/0IApzzyVY239lFNqPmHQfPXH8G9nIHkmW6gT6UDNHh6+Cx/scAGI+Oc8hziJ+d+bMT3s/q1LOvL8Th546JRDUtc1NQZiYaTGJ6QSbMkHcSZ2kZBRXVTA70EhgfY7K/m3QyBuaZB8qvFd/oCA//9meMduYMMqWNzZz32S/hLH11Bo/EwABj//mfRLduA8C0fDml/3Vdzliu8aaiJpPM2TVF+Ps/xpVKUWg2Ef/uNXQ1Z6ddZzApM4TEKuwVBOYnURQlZ+x36pEVEQRYcl4NmWSGbff2sOKyBp79RyfxSE6QqW5hIed9Zi4jnRsAsBYU4a5rwDc2gmegm0UXGGhYaGTvIzcy0dcNQG/LHM799BdwlJSe8Fl0BhlXmQXKLJh/9N/EOzsRdXr0Lc3oyjSj3LudobaD3PPj75OIRkAQWPGeD7B4/aXojbk5MhrwIUoylXPmIggCg4cPkIhGMCdkJmOTbBjYwOGpw3xvxfcYDA0yGh2la+0qquf9HH0iS+rhDYx95asAVDXUM/tH36OkppCefZNsuqOTVDxDLJxi2fpaHG4j2+/rRVVVVl3eiL3IiH88gqvUzLL1tejNMnqTxOY7u/P9Lyi3cMpFtUwNR2hZWYrFqQdBwGzTozdKJJMZymc5KKqyIita5tqTEXuhETCiptMEH3qI0W9/BzWZRDCZKL3ue+gaGwnqS3C4jSSiaXR6iTUfbSEWDLHpH50gCJQ3z0ZvNDPUdoDJwX6Ka2bRsKQYSRZZ84lmQlNDbPzzT/KCJa1nncv6ay7hyeiT3Hj4BgAe7n2Yg56D/OXcv1BsOn52VQ2NV4Kik3C9OAtbViWVyqA3KehNgKrStnWU3hdkFZp7Zjn1i4toWVWKbyTCikvrATDZdLhrbYx0+rEVGokGknTuHKeqxYWrzMy9v9iLopcwO/Rcfv4n2MVTSKrE+tr1eGIefrv3t/l7/Hbvb7l20bXMoYwLHwsw+dBnAdDV11N14w0o1dXoysqIHNpPJpVCbzZT0TyH2gVL2PngPex//GEA6hYtY81Vnz5uNlCNtw+CALFggC133AaAs7SceWvPxVYgYVjjJeg1UtlShL3YlBMDXVCE3iIjKxKiLLL2Yy30HZiiZVUpJqueZ/7eTiyUyrd93qfnUt70yh3YNTReLZIsMtrVwcGNjwO5fXh5y2y8Qz52PzqFq9zMuk/M4fCmEapaCygoNXPGFbOIhZI89sdD+XYsLj0XfGb+tLMEDY03konIBNv+PM6yC2uJ+KcIjI9Rt2gpyXgch7uUkNfDff/7AwDsxSWcddV/kIobAQFBB5lEFu9ohJXvacB6VJB3ciDEmVc0IysCKrlEqJFgEmNSYcHaKkBFFVR8unGCziizS5cjicf2R9nTT0P397+TGhhAKirE0NycFxpJDgww8s1vEdu5E8gJTZZ87zp0lS8tjq6h8XqSyWTZv3GQHQ/25csqW5yc+8k5xKMZRFFgpNPHGR+ahdEKqUSYhqXL2XLn31GzWWS9ntUf+xTn/lvrNPFejXc+ZqMZs9PBzvvvyJ99zVt7LslYCDWjYrLpjorcGunePcmRzaP5uk3L3JQ1aKJLGhqvBadL4uwr6ug5HMQ7FqO6xU55tR5ZOeYWI8siux7qy2eoH2r3MfvUUp78axsmh56oP8mq9zfyEjnn89iLTdiLXz+bn8a/TlGVjUu/tJD2bWOEfHHO/VQr3bsnMFgU1ny0he49kzhLTDQudc8QhLzo2gV07ZpgaiTMuqvnMNjmxTcWpmGRmzOuMHHw6SF8o1GCUzEqm51YC4z4x6PY3UbWfnx27j5mBWeJie0P9FLW6GDZ+lrG+oIUlBk564pGpoajRIMpdj2cC5aXZJF1V8+m/9AUrjIzqz/STPeeSQrLLTQsceMoNmEvMvK+byzBPx4lm1Vz+8qjgdEmh45LvrAQZ4mZwMR43p/CVVaBq7ySib6enK/HCURI7AY7Fp2FRCZBk6uJxwdy+9wFznl8IHYa7b+9j2E1i2IwcvVV7+M/h3/Op5/4NDeddxPzizSBtVeCN+HFkoEHfv7/iPhzgegtq84inU4iyzrGezpR9AYq58wlGY8z3HYoHzT5YowWHcbG1+8MQZJEFpxdhaRIHNkyiq3AwNlXzaaw4o0VPvCOhHnodwcITOb8akrr7az9+GxtvXySIwgC9qLX9p1nPfNMqm++mWRfH5JTwFBfiFzwGs5vR4cIfuUrJA4dQjCZWPff/8dg2IkgCqz+SDM9ez043CaalrpJ6hPEAim23tuTr15QbsZk01E110nRAh1Go0A0mMw13RVgtCuAxannfd9c8roLkAB0jfcSHsoJRZQ2NmOy2xlqO8h4TyeLL4bHfnc7wfFx9gMNS5ez+uOfxlpQ+Lr3491EMpkgnUyx9a6je3RFx8rLr2CirwfZGOTAU0PIOolYKMnK9zSwdH0t5Y1OJEV8yXYzgQCeP/4R7w03gqpi/vzX2TQxC+/YMbHfMz40C0uBngNPDrFwXRX2IiOJSIrKFhegoqqQTmawOA2Mdge45MuLKKm1cd6n59KzZ5KRbj9184soqLDgG41yzr/NZbjTx3CHj7r5RYiySDSYZO5ZFahZlWgwyeJzawhMxqhbWETLilLctbl9pd6ocPr7m+ibPUX/IQ9lDQ4MFoWx7gDrrp5D/yEPp72/iZq5BWQyWawuIyOdPqpmu8iqKiFPnLlnlNN3YIqzrmzGNxZh4TlVSJJIMp5m+cV1RINJgt44OoNEeaOD0d4Aaz/awlhPgDOvaMY/HmHFZfVUzSnQfCdeA/6JMR77/a8YPLQfgIKKKla894OMdXfk1w+pcR9+s5/f7fsdX1nyFVRVfU3+qlbZyhkNq3DqnTzx18OY7XoigQTLLqw9oS1DlETCU3Hu/cXeaeWm85ux/vjHKNXVGJpn5ctfvCcTRIELPjvvVff1jSKbTBK4627G/t//g1QK0Wql/Fe/xLJixVvdtbc9eqOC3njM17F6biHrrp5Dx/ZxjBaFxqXFlM9yIooC3tEwvXsmGe7w569fckENyWiGuWce298UVdtIp1We+PNhXKVmUpEjiJJM7cIl1C9aysabbiQVjyEIIrMuPg/FIjIWGePWtlsxK2Zai1oRhenz/kR0Ii9A8jz+hB9v3KuJkLyD6PPkvrdrCs1UOI0M+2MzrpkMJyiw6JFEAUkUKLToGfW/OhGSRDgn7q83zxS8UY4ma0tpIiQaGhoaGhoaGhoaGhoaJzEnlQjJu4mKFheKoQ9HcZADjz+bLw95Jtl29z+Yt/ZcauYvomvHVpLRGMvf8wEsrkIKzAUc8h6iK9DFjQduzNerslbx0zN+itMw3UiXSWfp3jvB/NWVeEejSIqIrcAAqIiiwJa7u6lodmKyvXQ2rURXN+Pf/0H+czYYZOTrX6fmn/9AKSo6YT1BFDG0tGBoaQEgFfPSMdAx47p7u+7l4oaL0Uma0/3JQiIaYfNtN03LunLwyYeoXbaY4hY3jlYBSZAoFJxUZoxYFAuVyXMRBZG6CjPRdBSLbMDWXISqqhhlG8VLFYyygm1WIRkymGQThYsk9LLMmU11JJMZrDYDkXQEWZAomltI+8OP0b7laU659HJknZ50MoG7vpFZy1fRtWML2/52E4suvBTL0gqMBj32KjeP/KyddDKLrIgsOreaeCSFfzxGNgN9+zyMdgdYsLYS+7kR/tZ1K6ssq4lnY/xV+RmXL7+cm7vu5+xVZ9PoXko4Faaxyc1Tv+9Cb5KZGo4QCSa4+AsLKSizkAkE6Pvud0keOoz6vRvwTySnvcdD909S3VJISZFmGH4jUPQSSy6o5YHf7KOi2cl4T4DW08vxjUURJQFbkZGJoELBHMeMuslMkg0DG6aVxTNxpuJTM659Hv94bJoACUDH9nEcxSYG7uxi7cdn5x0vCiurKW1sZryni8qWucw+7Sx8oyPoTTMPk/8VOrdvzguQAIx2HqFr51aWXnjZq2onvGFDXoAEILp1K6GNGyn46Edft75qvDISvb2ErvsRHM2Wmo1EMf7wD9h+cc3L1nUZXJjKk3Q+66FilpMDG4fwDOUMGY2nFJNJZSmf5aRr53hegASgZ4+HWStKKKqqZulF7yERjTLcfpjCympq1l+Gu95J59Zn8wIkAMNth+jZs5NF510IQNATY6jdx0R/kPJGJ2WNDsyOY+sLfUPDtGzGGu9uosEAj/3h17kgDABVZcsdf6OqdQEVLXMAsBa5WfXBj9C1YwtqNsvK936IkY427JIVvaQnkUkwGhnFG/fy+/2/B3Jryg+3fJhPBFvwPfhQ/n6prm7UOx4k4G4hOBmjrCHnPGR1Gdj7xAArLq3nnE/OwezQo6oqagbKm5w43GYe+M0+5pxWTtum6fP/1HAYQRRY/1nN0fbtTrK3l5FvfRtSuXlRjUYZ+6/vU3vXnbgrHTOuH+1J0LBsORaHi57dOwj7plh03sUU1zWx4aY+FqytYtfD/dTMtRH23JkXIAE4uPERHPPq+VnnT6a1ORgaZCA4oImQaLzuFNdMD1wb7fZPEyABOPj0MPWLiimps1PTOnPfUlRl5bnbOzFYFBqXuCmssPD039pZtK4aNasS9iVIegTObr2AkGkKu97O97d9f0Y7eyf28u/hBWQf+t98WbK7m8DDj1D6nW8DOUfm1tXrMNnsTA0NMNLVjn/s2Pzbs3s7TctPZc4Z7yid2ncdiWiEobaD+c++0WH8Y6NIpgh3x2+nP9rLj+f9mIULFlI9x8Uj1x/EOxJBEGDZRbXUzitk5Xvq0RsVDj4zlBcggVyy392P9lMxy4li0I49Nd4YhtsPMzV4LLvqaOcRGpYuRzFZWHK+Fc9wmMGxMVg3hP+IkadvbWfumeUMHPJOayfsTeAdjbzhwT0aGpDLtvvP8Vu55MKP0rZllIpmPUsveg9HNj+NwWLBXVfPwY2PHbt+YozOLY9y9ic/S4Ysnf5ORESiznZum9jJ0NgQgipwes3prKleQ4e/iypbFVbFiksQKRLNCAKgCmTULC6p/LhrXdFgwLRgPiyYua8KPvpoXoAEILJpM+FnnsZ1xRVvyDvS0DgegYlYPkj4eQbbfCw+v4b6RTl7XMvKUgL+MFMDUeauPod7fvL93KKEXAbDZ2/7C++/rgXQ5vt3E9FggO333j7t7Gv/4w9z4Re/weRgCEUvkYpnKG10TBMggZzNYd7qSgzm/8/eWYfJUWV9+K1qd5vpcZe4e0hCggUI7outL7CsAMu6+7K+y8cay7KLu2sIhCTEXSY67tMj7V7d9f3RSYehE0hIAgHqfR4eMreudU/NrVv3nPM7is1UQeFoie/dR+jGG6n+yu3UT6kh9sr9+DatxX7//aidTgC69vmywW4A1RPy8PZGGH96GX5PFPtUI57WAAWVlsMNo3CSU1BlywbdAtRMOrgPHTnr8ML6rhIzrpKDz+vKccPPyarG55GIpVD1tjGwZy9LnlUR8mXOJErrzJz+6dEE/RLrX2hl3KmlpKQ0nrYAcy6rwVGY6bevxc8Td2wEwFlsYuTMQlq2DmBx6nGXW8gvtzJq9vCgNkEQcJWYMTt0PP2HTbw9Fi7iS9DXEgDZz2BnG1qjkWnnX8pQVweethYqxk1ErXv3jPKj8kbhjXnxx/3MLp7Nyu6VXGQ7g90PPpmtk4xFaX74RS676gL+2/YQDQMNigjJESJIaVY+fl9WgARg11tLOeXKa2lY9gbjzzibVDJJ08a16IwmTr3uczhLT0ySEFmW8bQFad0+QFqSqRzvwl1pZfYlNUw4oxSNTjUsKPREzWHnyp6sAAlAT5Of9p1DjJ1XckLHVvjwELRaDOPGYhg39n33IcsyvqefJt6QEfiVIxFCX/8MY/7yZ2wLFwIMWz+DQzHWPtcwrI/BrjBpIcUjVb9nZ/NObqv5DgZLMemUjNmhw++JMm5RAUbLu/tQvh+ktESwO4GjoJr5n/4irVs3Eej3MP70s3EUl9LwxmICfX3Z+o3r11A/cw6j5sw/7nP5JNHX0czqxx/OinRJyQRrn36Mc75yO6GAitopbhKxFM5iEy3bBjjj06PeU4AEINqwk6F/3Z39OeSsZmhbZFidtc81c9UPpnP+Vye+Z3+jTykmFkri80TRGdVMOaeScTGJTa+18eaDewBQa0UWfXk8k8+qyLYb9bZ9zdh57y7aa80zMH5BKeMXHKw3Zk5m3a2dUjCs7pSzTUw5u4J3Ujet8F3HKB/tyv57xMyiYf9XODZat2zKCpAADHa2EwuH9guNwKnXfQ6dw4a36T8ArOhawXWjr3tfY/mTfjy9PhKNLiadUY63L0KNy01oMI63N5Ij5AdgdxsZOauQpk39WPP0BAdjFFTbyBtZjH5K7r3Uucc77J1MTstsfb2D0no7qpNApCbe2EjvT3+aPd9LB4P0fOvbVD7+GJrCd/87UDg6jBYtdVMLqJuaWYdi4SS+3gg6k5qwLz5MgAQyNuCLb3tHnls5c0+Nm19KcDCKY8wsSkeNJiVJrHriIZKxzL5TltPsfuZFLrz5MjYNbQXgoV0PcUX9FRSYhq+DRaYiREEk/bakmXmGPPINh4+VUPjo0TaYObetdJkosRtYvq8/p44nECfffHBvWGTT0xM4OhGSWDjju6s35doH1PtFSKSEIkKioKCgoKCgoKCgoKCgcPKieON/SOSXWTjvK+NpWv9KzrXOXQ2MXbCQZfffky3rbdrLwhu/DoBD7+CBnQ8Ma9MebKc71M0o16hh5YmYhC3PyIrH9madEdQakfnXjEBnUhMLJ0mlhiv2Hopkb09OmdTTQ2pw8F1FSN6J0+CkxJRrOM435ueoCSt8uMTCYXr27s4pj/sC2PV27Hp7zjWH4aAIjgvXu17Plh0QznlbUhM7mb7j0Sh7V70FwI43l3DKldey7rknGTFzDssfvDdbv3vPLi7+zk8omVTOoC9EyJs5kJt4Zjnb3xwekDT9/CoGu8NsWdLB+WPHc37nl2h/zo9Gq+Kmhd9nn389GzwbSMkpAokAd225i1sn30bJpdWk2rS4812oBJH1L7VQWGWnuEJFYlfme0qRawSJRyXE9IdvHPk4U1Bt5awbRhPoi6Izaln28J7seqfav94dCpPGhEljIpAIDCu36Q6fYVBKpg59QYDe5gDtDUOMm28k7PPy5v/uZrCzHcgY/9xVtUy78BLikTCa93D2Ohratm0+RNmWoxchWb78EGUrFBGSDwGpty8rQHKAlM9HQezInM71Bi2zL65lz+rerAAJQNSXJCWlcVdac8R0ALzdEUpHFrLt1Zdp27YJgMGONrp2N3D+rd/Plr2djp3bmXzO+USCCV6/bxfd+41/Dcu7GTO3mDmX16HWKmugQi7RYBBvT1dOeWjooBBUeGiQ5Q/8J/tzz749nP3lW9m7di0VFRXs9WaE7aLS8EwES9qWcF1bbkaX8KpVxC4Ks/LJxmH74mnnVSGqBDQ6NW89to+mzf1odCpmXlhN247BjLCZViQZz30GSInDPBcUPlIk+/qyAiQHSAeDSAMDaMvKcuoHB/ooqKrl5f/7A+n967WnpYn5138RtdaRzShkyxfZtzp3Py0GkjllAHr18dsfKCgcDimRzimTZejc7WXJvTs57fpRlI50DMuM5Sg0ceEtk2jfOYRKLSCqBMbOK6F5Sz++voNOlVOlSqafNxJBFMgz5IqZFJmK0Kzv5J0rZ2TlSlKhEGqHg6GODswOF2uefJi66bPpbdyT009fc6MiQvIRx9PanFPWtWcnI+dexIjeUbSGm7Hr7AA0bvRkBUhmXVxD0+Z+1j7bgsGiYcG1I4mFpZy+osHMWdeJDZlQ+KSSSkl07tyRU96zbw/lEyaw7oUOxswtRvJL2ONutr7ajdGqpWSkg73r+3LaHWqPqaBwItCIGgaSHuwVOtJvyWjUXSx/MPO+ZbI7sOblCoR07tpGNBTGbLcxJm8Me4b28Mt1vxyWAXD74HZkQcamszFSPZJy2/EJlpNlmdDSN3PKwytXKSIkCh8oKSlNOp1rQ5PiB/fV0VCSnW/24SxMMtC+LxugkL0eDBAaHMBVkvt+qfDxJezz4evJPYONBHz4PTZGzirkzQf3IIiHzkqsnDkpKLw/kl4/8h0P8uqL3UTeGqKg6hxmfON8pKGhrAjJ2+3GAGannu59vmHBTZXj84YFxSkoAGj1arR6Nf4NHezpshDyHbTBde4L0bHbS2GNE1GEDS+1ojOqmbywgoGuMGqtGotTTziQSWgiqgRGzSrK2Cv2s2VJBxffPvmQgZ2Q2Ze8PcHAARIxicDAINuWvMLCm25hxYP/zYr6Dna04e3u4sJv/eCQAU8HcOgdOPQOpLTEnOI5qA5x3hLyDlIgZHw7TJrjm3Tj44wlbaB3X+4ZZzIeJxoMoFKreevh/2XLO3ft4Iof/uqEzMXTGuCpP2wiLWX2q5sXt3HhrZMoqXdgtn8w9gkpmaZrrzenvK/Vr4iQKLwr6WiU8LJlOeXhVauyIiRvJxGTSMRy99TxaIpt/ZlA/jub/8A/Pv1fpDYdg51h6ufkYyk/Mb6LoiCiiRuwukSe+/3vkJKZ50F/WwsLb7qFnj27ctp4WpsVEZJjJOYPZAVIDhCPhElJCdq2D9Gx86Bo9OxLaoiFpfdM5AcZn9m3k/EXHP6MTkQlUlKuTe5QeNoCvHHfbga7QlicehZcNxK1VmTjiwdFUaVEmjfu381l355yRHNU+HjRuTvXJtG9Zxc6k4mOhu107mzg3Fu+iUPnoD/aT4GxYJit92gIJ8PYBDvJWIr1L7ZmywuqrFRPPrSfuEanYtKZ5eSVWeje56N+eiHlY5zoTYe21EX8iZyyaCCBJKVPChESqbc353xP6u9HGhxSREhOIJ62AEvv381AZwizQ8eMC6tz6qQlGd5xb0vJNAazhuWP7CW/zEJeiZrlD97LjEuuHOaDdgBV6OC7jk1nQyPm3qdVtip+ccov+NnqnxFLxbDpbNwx944csRKFjzaeYCbOoNCqp9huwBOMk5DSaNUH94P9oTj5bxOoc1v0dHojOX29G+8mQqLRZvpOxhUREgUFBQUFBQUFBQUFBYWTlxOm+iAIgkkQMqoSgiDUC4JwgSAIiv//fgY7g7xw1za0xtxDqcqJU+jem2tcali2hJQkkUgnSKZznQsiUu7BhlqronmLZ1g2FCmZZnB/AMeYucWYbe9tmNAU5qqSq4uKULlyhSbeizMqzxjmlKAW1Vw3+jrUoqKJczJhsFgoGzs+p9yW/8FlZ9dotRTV1gMQ9g6x9unHmHrexfQ07s2pu21JRtDHaNXiLDaBAIIo5DiS7VrVQ82kfKx5ejp2eGnf6Ac5E/Sx47l+SiN1aEQNN0y4gX9s/Qc2nY3+qIfbd32F563/pa/Dx6qHW2ja0M/Kx/fx+kPtmG75NgCW5AAq9fBldcQcN3l5hxe1UDh2ehp9LP7nTvpaAjRv7h+23qWSaQa7QodsV2gu5NYptw4rG+EYwSjnqEPWBzCYtdgLjMPKrHl6LK6MU05vix/IZPI+IEByAE9LIxGfH63h+Dpl1UyZnls2edpR92OeN+8QZXPf15wUjg11USGohhtVVXY7+aX1R9yH2a4fJkAC0NPsp3JCHp7WAEW1ueuSLEM0GM4RGwkNDeL3DFAyakpOm6oJkwHw9UayAiQHaHirG5/n6IwuCp8cjDYbeeW5GU+sb9tn7FyxNOf6rrfeJH9EHZ6IB4AzK85k28C2YXUGogNoRuUKUNmuvpatS7ty9sXBoRj5ZRYaVnTRtCnzHEnGUqx4dB/FdXYgE5xfNWG4Q4VaK+IsUrIYfxzQFBSAZvirqmixoM7LFVEASEl6epv2ZQVIDrD51ecZd2oe/R1BAAa6UpSOyt1P6w35fHb0Z4eVLaxcSJW16lg+hoLCEWEvMGKyDxc2yysz4++PEvLGefFv24YJixzAVWJm4ullJKISwaE4BrM2p97m19oJDGSEoS6qvQid6uBZg16lZ17pPLSHWJ/1p8xEZckEV9iKiti6+EUg43xbVDcyp35x/eH36wofDdyVuetdcf1IIoEYnnQPt0y+hSpbpk7H7kxQQsVYF81bBzLZfckEjb38j+3kl5vhHX6UmazxyhGkwolBpVJTMX5iTrmzpBRByKyLu1b3UDTSgiacOT8YPaeYNU83ZTO5HUAUBfJKlf2kwgeDUWPk9uofsP7hbiacVsCe1S9nr0UCfqx5uQ7kpaMnI4oH9w2pdGqYAMkBTBoTd2+/G3/cf9zmKwgC5gXzc8c6ZfZxG0NB4Uiw5ukprrcPKzNYNDgKD54R9zT52PRKGxF/D6IoILxDcN9kd2ByOD+I6SqcRJgcdlxluWdf6VQKOZ0gHEgQ8sYJ++LD7icAW74em9uQ01ZBQeG9CReO5PVHWonsF3roawmydp1Eyn5wr1MxdviaLKqEnOzKrdsGSEnvnchF4ZOJUFhGX19uUHE0kmbjq220NWQCmuMRidVPNxHoj/LW4/tIRCWsTj2CAKUjHTRu8gxrn4yn6NydK85wAKNVx/gFw0XNBAHcFVYMFisRv5/B9rasAMkBOnfvwHsIYaxDUeuo5YvjvkhN+Zica5b8fDrTHtwGNxPyJxxRfwqAXkPZ6Fw7gUanp2LcBLa/sXhYuZxO07Vn5wmZSuNGT1aABDK24W1LO5EPIbp3otBoVVRPOsT75whlv6zw7ogGA6ZTT80pN06adMj6KrVA7ZR32HY1IlbHwX32JaVXsOsZH+ufb6N58wCrH22lY3n08MmJjgFRECkrLcDT2pYVIDnAlldfoHzcxJw2B/zlFN4/9rwCxHf43hgsVqLBYI5AyL4NHnSGI/NdVRcN96M1xz05/oJj5hZjcry3T27YH+eVu3dkfduCQzFe+vu2Q4pXBwdjhxRmV/j4UzEud60rqKlloCMjVCPLaXqb9yEgoBW1XF5/+fseKypFMausOXvVvpbAIZNdQEb4af1Lrbz12D6aN/ez+ukmVjy2j2goV2wEoLAm12etfsbJI+6gLizMEbpQu/NRu5T9yokiEoiz+J6GrK9jyBvH1xdBZxq+LhfX21G/Q6hGVAlZn2GNXqRp49pMnz4vNnfufZW0HGx/25TbcBpyf68alYZF1Yt47PzHuO/s+3j0vEeZXpTro6vw0cYTiGHRqTFoVZTYDcgy9Ppj76gTx/12ERKrLitecqTE94uQ6My5NmGVRgOCgJRQREgUFBQUFBQUFBQUFBQUTl5OpOrDcmCuIAgO4HVgA3AloKSpA3qaAySjKYZ6zIw+9Vx2Ln8ZZJm88gqmXXApDW8uoWriVIrq6kmn08QjEYKD/QiCgIDAoupFPNf0XLY/q9ZKiSk3K4QggBRPUTLCQXGtLZPheI+XRExi9JxiXCXmw2bZeju62hoKfvgD+n79G5AkRKuV4jt+gyb/0OrW78Yo5yjuO/s+Nnk2kUglmFwwmdGu0Ufdj8KJRas3cOq1n+O5P/4Kf18vgigy69JP4a6q/cDmIKpUTDr7fJo2riMa8BMLBenZuwuDJdcQoTOZiIaCDHV1Mv1cDZ521zBFckEUqJ3sxlFsxOLUozWoaNrcn9OPeSifpy54ioHYACk5hVPvzAY6z7GcRtuzgWH1h7ojxBbORpWXR+Lu33HWN37D1r0aAkMJamfmMXp2MaLqhOk9feJJxiU27FfdTybSSIk0NreB2sluBFHA54m8a2aJc6rOodRcyvaB7RSZipjonkih6fCK9ZFAgpGzCvG0Bulr9eOusFJYYyPQnwm2LBuZMUqIqszjtWLCZErqR5FOp0hEI+SVlaPVH98sQjVTZ9C2fQvNm9YDUD15OtWHECZ5LyxnnEFo2TIiazKGGOOsWVgWLDiuc1U4MnRVVRT94hf0/uhHyMkkosmI69c/x1Wb66D2bpSPcdK48aBROJVMkzYksE+EPI2LkDfOUHcYrV7FnMsLiQa7SMb0VIyfnCNEkk6LFNZMoXzcTtq3bwagbsZsKvaLkKRSh/g7kyGdUpx0FQ6NwWzhrBu+xnO//xUh7yCiSs2p136W/PLKbJ2KcROx5rtRqdQ0bVxLX3MjGp0ed30dC3sXUmgsZEzeGH648ofD+p5XOg/TqCkkLryAwLOZ/bK2rg7TmWdSui1KYbWNZFxiz5pe4hEJURTQGVXsO0Rm+lgoiUanoq8lwMQzyhh1ShEdO4dwFBmZfl51RvhM4SOPtqqK4l/+gp4f/BA5kUAwGin+7W/Rlh06S7W3V53dj5aMGkPF2AmkU2nUOh32AjMbXspkrxzoijLv8svx93Xj6+tBEEXGnX4RPfu0lE6t4OaJNzMQHcCldzG9cDomrXI/KZx4LE49Z35uDJtfa2egI0hRjR1XiZl1zzcDmf1CoD+KozD3fgwOxdj4chtGm5ZJCzPBdDqjmhEzC9Ho1CSiEvL+d7ApBVP4y4K/sKlvE/F0nHGucewe2k2DZZAFi84g/eISANQ1VTiuvRZBndk/W/PcqLU6TA4nI06ZR155JYOd7fTuF6IcM/8MSkflBkEofLSwOPOpnT6bxnWrACiqG4GzuIyQN8kFo89nWuFBUcWaSfn07PPhKrWw8eXWYf3I+/eb5908gbXPNxMPJ5lwWlmOc7mCwvGmdPQ4OnfuyAYF1U6diajWIIoqpi2qRJbB4jRgTZvYTD+yDL6+KEW1acafVkrLlgGMVi1TF1WSX37oDNcKCieCRLeIrzeCWpdm/GkLiYYCxCMRti95haGuTkbPOy0jBinLuCtrqZl6OnrTQefKMmsZMwpnsLZ3bbas1FxKhbWCIlPRIUXSjwXrwoWEli0numEDAKY5p2CelxtwpKBwItEZNCy4ZiRb3+igZWs/BVU2pp5TiTXvYODagczJolqNDMz/9BdY8dD/kBJxDBYrZ3zxZiyu4g/pEyh8WBgtNmZffg1L7/1n9uxr5qVX4vP04q4aQ3S/QMKeNb1Mv6AKT1uQvhY/JfUOJi+swGw/vnYEBYVPCr7B5DsTVtPXGiQYBNN+veGCahvnfnkc655rIRFLIaoEdCY1I2YcON9IsmdNL4Ji3lU4DMaKIirq4zkCvfnlFtY/35JTPxlP07y5nylnV+AqMXP6Z0fTum2AsO9gUKbBomHEjEKMVi1hfxzTYRIJjZhRiCAKbH+zE6NVy4wLqnBXWEinjcy95jNI8YMBU86SMkbMmks6nSKdTiGn0wjie9/Y3rgXq93MpOuuYtsjT5JKJjHa7Ez57HW0WXxcOfk6Km2VR/htKRjSNqonX4CvtxtvTxeCIDLu9LPo3rsLQRDRGY1MXHgeerMZURTpa2lCrXvvoPX3Q+IQAe0HznSFd6r8HgHJRCrrJ2FzG3ICQg9H/bQC+poDtO0YBAFGn1JMyQjHUY+v8MlCEATsF19MZNUqYg0NAJjPOgvTjBmHrJ+SZIxWHaPnFNPeMIjFZaBmcj6R4MG1d5Qwgc7O4YGmu1b2MGFBGa6S4y8c7HRZ6RVUjDttIWanExDwdnfSuauBMaeejqe1KWsLGX/6QopHKL6Ux4qzqIR513yOtx69DykeR28yM/fqz+Dt6cFkL8ue5XbsGiIRlVBrj2wdM4wZjetLX2Lw7rtBlkk/cx/n/+xvrF/Sg98TYdTsIkbOLkZ1BP6CIW+c4MDw+1BKpIlHc8VG8krNGK3anHKFjz8V4yYyYvY89qxaDkDJiNEU1YzAYLEiiiKelma0RhNfGvklxuWPe9cEbO+F2+imx9OPRpd5R9IZNUiJFHvW9iKqDr1f8HuiNG4YLlrSvdeHtzeCoTb3nvX2hpl1SQ171/aRjKeom+om8I6/gw8TXW0thT/5Mb2/+CUkk4gWC0V33IGm8PA+pQrHRsgbx++JDivb9kYnp396FA0ruhnqCVFS78BVYsZgGZ6IQpZlpESKstFOKse66Gsy466qweYuYO7Vn+GNe/9JxO9DpdEw7/rP4y3Rcav9Vsbnj2ds3tjDzkkUxEzSDCX/5MeW/lCcfGvm3avYnjnv7/JFKXdlBKPTaZmBUJz8t4mQFFj0DIUTJKQ0WvWRHRzFw2EA9Kbc/aUgCGi0OpJxRYREQUFBQUFBQUFBQUFB4eTlRIqQCLIsRwRB+DxwpyzLvxUEYfMJHO8jxYGg3OYtIdyVk5lz1VREdZr6mfXY8pzUz5jDmq6HWfX4QwCYnS7O+co3EFUq1IIak9rEtaOuZV3vOsosZUxyTyKQCOSMo9aomHZ+FQ0revD2RbDlG6mdnI+twMCyB/dyymVHJighGgw4rrgC4/TppLxeNMXFaEtL3/fnr3fWU+9UFPtPdtyV1Vzxozvw9vSgNRoxOwqJBmUgQSwkIaoF1BqReERCb9YQj0gIAmj1amKhJHqzhkRMQpYzwWmxUBKdUY2UTJOWZPRmDdFgAo1Ojfkw6v/uymqu/sXvGexsR6XWkFdWQaDfQ8Oy10mnMgY3UaVi/Oln88rf/kTzxnUA2AuKOOumb6NSi6SkNDMvqmbfuj72behDpRGZdm4l1ZPz2fpax7Dx8gptVNqK0Kv15BnyaA+0s6hqEYvbFlNkLMIn5x72DchhuPNbCD19aKw9TP30FPIMxai1ImFfgsBgFKtLyVp3IpDlg+IHPfv8zLuqjlhUIhlNkZLSJOMS407NFWg6gEljYmbxTGYWzzyi8XQmNeuea8FVaqZslIuh7hBrnm5i2qIqRp1SROnIjHOMs6SUU668jr6mfax6/MHMWA4no+Ycf1EPm7uQc796O96e7ozjRWExOqPxvRu+A21ZGSV//gvJ1hYQBDSVlahtihXlw0DQaLBdcD6G8eOQBgdRFZcS09oJDESwOA1HJB4GUDbKychZhexe3QtAxXgnsXwvq32vUaGtYsb5C/B2RnEURXj97l8Q9mWyq42YNXeY8bqofhRaQwFtO6LYii7mgoWXY3EYcJSUoDNk7jVHgQlrnn6YUbh0pEPJ2KnwrhTVjuDqX/2BQH8/epMJR1FJNhNRe8M2Xv/PP0jGoiAITDzzXNQ6HaXzZvD7vXehVWl5fO/j6FV6fn/q71nasZQtni2cVXEWi6oXYbSWovvRj3Bedx1yPI62qopeD2xf2kgkkKBirJPTrh9Jf1uQ4pEO4hGJs74whpA3Tn97AI1OQyycJK/cgs2tp7jOgUavpnK8i8kLy4mFJPQmzXt8QoWPCoJajXXRIvRjxyINDKB2u9FWHMxW7B+IEg0mMJg1pFMyxfVOZGks9TNPQaXRZt/Z9GYLC788Ar1ZQyyURK0WkZIOqqbeiMEcQxA1tO1IobXK6Axalu1bRr4xn0pr5SHf5RQUThTuCgv1093UTnGz/c0OOncPMffKOnQmLalUCr1Vw0BnEJVGhcWlQ63OrM3pVJpFX5mAWisAArMuqcHi0PHWE/uI+JMYrVqqJuRhLzARk2I8uudR1vSsAcA4xsjd2+7mpok3seYqO9XnTMEuGLHXj8NUNjI7N2dxCfOu+Qwh7xArH30AKZlg5Kx5TDn3QuxFxTiLy467qJ/CB49G76JkxKj94mMyfk8fFlc+GouTTYMrmFF00HG8akI+PY0+YuEkRpuWiH941jSNVkXpSCdFNTZSqTQGs+KAq3DiMboKmHzehVRMmIycTtO9bzcCYLTZaXirC19vhImpMsafVspp148kvP++3bWyB5NdS+lIJ4mYhN1tRDzC9zsFheOBnIbaqWb2vPUkTRtWAGB2uDjlqutZ/cSDXPStn1I7/QyS8RSOwiJ0JvMwcWWL1sL1Y66nzFLG1v6tjHCOoNpWzZ82/omvTv4q+cbjKwKlLS+n9P/uJNHSgiCKaCsrUSlnVQofAvYCI3OvqGPaokq0BnVOcKWz2MTURZU4CmKsffIeBFFk8rkXYLLZsReVIqhLSX+A2eUVTh70dhezr7yGgCcTiNO4fg0zLv4Um5YMMGVhJWqNiJRMs+aZZgprrFzw9YnY8o05GbQVFBSOHK0x98zWYNGg1h78u9JoVFSNz6e4zo6clklJaWZcUM1QdyYoJJ2WOeWyWvJKFMFAhUOjtlgYs6CSgb4kXXt9CAKMW1CKzW3AXmhkoCM0rL5KnXnvS6dlVGqR+mkFFFRZ6d7rY+n9u7G49IyZW0Jvsw+VRoWvL0LleBcFlbl7X5Ndx6Qzyxk5sxCVRkSrz7h8iSqRiWedy2BnB527dxLxeameMp01Tz2CnE6z8fmnWXTLt6id+t428TJLGet615GqSDHh9i8QCnhR2Uw06Qc4o/wMnHolA/zRkJASbHglSNWkLzHnUypkWY0g6khE+tEZVWj0Wl77150E+jP7hYrxkyiqzQQOB4diSIkUZqcezREGxr8bdVML2Lmie1jZuAWlSJJMuD+MRqvC7Dyys9fgYJTVzzaxb50nKyQybVElZsd7t7flGznrC2PweyIIooDdbTziwH+FTza66irK7v4XidY2BLUKbVUVKsuhn9cGs4amTR5ElUDpSCchX4yVj+9j9hfKuG3KbSztWIpJbQaGBzwjkxVbP96Y7XoKa8tpWPY0Q12dABTVjeT0L3wZBDeXfOen+Hq7UWk0OIqK0egUW8ixotJoKKytZ8bFVyIl4qQSCZo2rmXyuZey9Y0EO/d6qZ1SwOg5xVicesK+CEEvgIBWrz6sr5/KZiPvyzdhPedsUqEQ2vJyNAUFuOvzScZTGCwaBOHIzn11RjVqrYiUGJ74x+LQs+DaEax4dB9SMo0lT8+C60YqPgqfUKx5+Zz1pa8y7fxLkGWZdCrFi3/9HYH+TKKd8nETqB4/mdnVdcc8lj/ux5inYs4VtfS1BAFISWmmL6rEUXhof8TDnXvJhyk3mLWsfLKRijEu1FqRHSu69v/75NgPiFot9ksvxTBlCqmhITSFhWjLyz/saX2s0RrUaHQqkm8TzUvGU6RSMiBTNsqFfyBCxVhXjmCjWqNi+nlVNG3uJxJMUD31VFRqNW89+gBavZ7xp59DUf1IDAUuSsprEcWT4z5T+PDxBOK49wuMlDgyz/xu38G9oTeSQErL2ToA7v2iJf2hOCX2I/OLjYUzZwSHEiEBUOt0SIoIiYKCgoKCgoKCgoKCgsJJzAkVIREEYRZwDfD5D2C8jxSF1VZEtUBakvG0RvC0woJrR2LLyxjsQ95Bmjetz9YPDQ2ydfGLFNePJJFO8PCeh3HpXYzPH09XqIvX21/njrl35Izj7Q0y2BWmpN7OrpXdNG7wYM3TM+PCatxVVgqqjtxpV9Bo0Ncd+0H1Afoj/cjIuI3u49anwvHF2xtm1ZOd+DxRRp9iYcuSTdRPLyA4FKOnyc/khRVsXdKRFV5o2drPtPOq2P5mF84iE2anjt2re5h+XhV71vai0aspqrGx7c1OpiyspH3nIN17fRgsGuZ9agRV4/MO6VxpLyjCXlCElEgx1B0mKeVx6fd+RcfOTSBD1ZRp+Hq6swIkAL6+Hna/9SoX334tzVsG6NrtZaAzc5iXSqZZ+1wz5355HDtXdJOMZQ6v88stFNfaASg0FXLnaXfy8zU/Z9vANj439nME9AMUTyyie/NBxyGTQ8MWaR0bfWs4r+48ZhbNpMhchN8TYfmjzTRu9KDVq5l9SQ110wvQ6pRl8Hii1auZfFYFr/1nJykpjcWlp2t1L40bMs4Eo+cU07nbi7vSetjMO8lUkoHoAEa1EZv+3ddEe4GRWZfUsPKJRvrbM4a26edXUT0pD1veQecYvcmMs7iUlY/en20b9g6x5qlHOO/r30atPb6BcTqjicKaY1+f1XYb6okTj31CCseMoFKhq6nBZ7az641+dq3Yg6gSmLqoktFzSjCYD+9YIMsy3t4I/v4oY08tYez8UkRRoEto4brXP0+ppZQ+ex/51mJSnRZaNz+bFSAB2LN6BWfffBsavQl3RTWJRBGL72nBXmBk7KklvPlgM+d/rSIrQAJgdug498vj2bmim849Xqon5WcyYhgUBwiFQ5NMJwnEA5itFkqcecOuhX1eXv3HXzICJACyzJbFL3LmN77Bt9p/g8uQhyAIpOU0ESmCL+7j+zO+TywVw6QxZftRmUwYxmayVvj7oyz570YigQSTzirH1xfh5X/uQKtToTNp6I1LbHixDVElMOH0MsL+OB07Bykb5WDSWRUsf3gv8ajEQEcehTU2Vj/VhKPIyMwLa3AUG3G4TSh8tBFUKnTV1eiqq7NlqVSarj1e1j7TTN30Avat72Ps/FLiEYm27RFGzjyVF/78q2z9WCjImifuZdYlX8dkNeMsNiOnZRre6sbTGgfiaHQqplxo47vb76TWXkswEeR3G37Hz2b/bNh8AokA6XQau97+AX0DCp8UYpEkQ11h9CYderOK8aeVodWpWfNsM2WjnGh0It6uCDuWdyElUoyYVcS0cysJ+eK89fg+ooEEE88sZ8tr7YS8cfLLLUw6s4K1zzQTj0q8evcOrvjeNHzaft7seBOZjHOZjIwkS9y5+U6qrFVU2irZ593Hv2z/AsAX8xGVoli1VhyVFbxx7z+REhlHi92rlrF71TKu/fWfFQGSjwtinGX33zOsqHNXA6de931OsZ3GQGgQg06PQ+/A6tJz2qdHE+iPUDrCweJ7GrJOi/XTC7IZKbUG5V1b4YNDFiVe//ffifh92bK2rZuYe20NBZVW3BUWti3tJL/SzMhZRfj6wsTCSbYu6SDsS7BnTS8LrhupiDYqfOAUVFmJ+Pew47UV2bKQd5COhq2cffNPefWeAZBh/IJSDDYVsXCUSCiBwQ3xfoiHU1h0eewd2kuppZSGgQZeaH6BAmMBgixQbat+l9HfH2q7HfWkSce9XwWFo0VUiRithxZSL6yy0rihh40vPUtwcACAdc88DsDCm24nmYhRUKGIkHwSScUSLP7HX4eVLX/g38z/zA9Y+1wzddMK2LWqB4Axc0twFh3/bOsKCp80nEVGqibm0bIlsx4LAkw/vxpHwfDz24g/zmB3mHQqjcmhRU7LdOwawu+J4igy4io2k4hnknAofPxIpdJ4e8IEB2MYrVqcxSY0R2nDdxRbOOemcfj7o6hUIja3AbVGxZzL63j+r1tJSZlA4qIaG8HBGMV1duzujF1NEATs+Ub0xoxATjSYJBGRSCVlNr7cis6kRqURUWtEXIcRwzFYcm3NGp2ewpo6Ft7wNfrbWnj2979EljPzkJIJXrnrT1x7x1+wuwuJSlEiyQgOvQNRGO6fUWgqJJQMcdeWuyg1lzLaNZqCeAGGlIFUOpUzrsK700MnpXPMDO1NY8t34a4wEw2ncJbmM9gdZPfKR7MCJABt2zZTNnYO/kEzO5Z14WkNUjkhj1MuqcVecPSJSN5OYbWV8746gc2L20glZSadWY4tz8Crd++gfccgerOGeVfWUTUx/7C+FQdo2TaQESABkGHnW90UVlsZNbv4iOai1avJL7ce0+dR+GSidjpRO99bDMlo1TH/mhG8+Lft7F6d2XPXTM6nQdjEXzf/lWkF0/AZ+zDn5REaOCh8XTUpD5Utfbhuj5m2reuyAiQAPft2M9DeizmvBJPdgVBsQy1qFQGS40Q6nWL3yjfZ8uqLw8rLxkwnlcxn5Kwiti/tJBFPUT0xn6rxefvFmGQigQT+/igFFdZD2h9EvR79qFHDyjQ6FRrd0QW32/IMzL2ijqUP7MmWTV5YgavEREGlleI6O/FoCotTd9hziXcj7Isz1B0mnU7jLDJjcSn31kcVrcFAQXUtKUliyT1/ywqQALRv38pgdyfJPD1WrfU9/R/fjXgqTjKYJi8p09vkZ6g7jDVPj73AOEwg4u3Y3QZKRzro3H3Q98xVYjqsaEnZaCe2ZXqat/QDGTGeCaeXo1KdPKKsglqNvvbIEnwqHDu2fANzr6znjft2ZcvGLyhloCPA6DnFSIk05WOcmJ2HXgcjwQTJeIpdK3uYcb6Rza88D0AiGmXDC09hdrpYdMsvSafAn/ASS8XIN+SjFhX78icZTzDOxDI7AEW2zPOx620iJP2hjL9KvuXgs7Ng/7PYE4gdlQiJqFKj1h36/tXodFnfGAUFBQUFBQUFBQUFBQWFk5ETeYJyC/Bd4GlZlhsEQagGlp7A8T5S5JdbuOjWSWx/s4uQN8bYU0spH33QSObt7sxp07mrge6BdvwJP/NK57G8czlLOzJfqUvvotRSmtMmEcsYxra+3kFwMAZAYCDGmw/s4fyvTcByhFksjif+mJ+XWl/i71v+jozMDeNvYFH1Ihx6xwc+F4XDIyVTrH+phdbtg8y4sJrVTzdhcelJxFI0bepn2qJKVj/dhFojojdr2Ly4nQmnl7HhpVbiEYn66QWse76FETMKaVjRjbc3wsyLqlnzTCa4rWPXEN17fQBEg0levXsHl317KgWVh3Y0kJIpdizvYuUTjZkCARZ+/kxqJrsRRIG9q9/KadPRsJW5V3+aMXOKePDH7dnycfNLMZg19LUFmPvparRqDWpBg6vENCwzy9i8sdx95t344j7sOjs9oR7eGLOCmsJxBHeJGEplYrV9hPUJ7JKdX679JSXmEn4y8ycEl5lo3JBxukhEJd58cA/2AiMl9cp9frypGOdiwefr0Kg09LUG2bsuY2RLp2W2Le1kxoXVdHl6qSgpyWnbFmjj39v/zUvNL1FuLefb077N9KLpOc5WBxAAk0PHjAuqkZJp1BoRi0uP3W3KEdA54HD+drp2NRALBzFrXcf+wRU+1vhiPpa0L8G6p5J9ywJA5p5e80wzjkIT1RMPn124a4+XF+7aRiqZ2QOMnlPEzItqMSb01Dvq2evdS2ewk9Wq1fx93p00/2FPTh+d/S1MPud6XvrHNkJDQ5k59UXY8FIro04pJhJM0Ll7iIHOEGaHjoIqG65iM3Mur0NKpo7aWVPhk0WLv4X7d97P0o6ljM8bzw0TbmC0azSQEdHp6m8l4OnLadc60ExXuJtL6i/ln1v/mS13G92oRBUm8dBCIGF/nL4WPzWT3djdRga7Q7RszazRiViKlU80MvOiGtJpmXRaZuMrbZz6qXr2ru3l1bsbmLaoknhEysx96wCiSiCvzMxAR4hlD+1h3qfqScZSuBVnyY8dQ90hlj+yl4JKK7tW9WDN07NrZQ/FdXZcJRYGu7tz2vQ178NRIFJQ6cxmjT/nxnH0tvsYCnlpEXfzs6Y/clHtRazvXc+Gvg0Y1Abq7fUAxKQYK7tXctfmu4hKUT479rOcWXGm8q6kcFyIBhOseqqR3at7AVBrRC64dSKL725AEIVsdrYNLzVn2+xe1UPNpDxWP9XMUE+Y6edVseqpRtJSJoiyvz1IOp3m1GtHMNQVRmfSEAnE0RfqceqdDMYGgcz6btFYCCaDtARaaAm0cM3Ia3Ab3azsWslv1/+WrlAXp5efzsWWM4gGAznzD3kHKUBx9vo4EBwYzCkL9PeRjIdJ9zrY1dLNI/yDq8dczZySOWh1GvJKLTiLTFz+3an4PVH0ZjWuEjMG8/EVeFRQOBIS/ugwAZIDJGN+dq0KM+uSGsYvKCMWSbKrdw8jCuqYtqiS6gl5hAMJrC49rhLzEWfDVFA4XhgLRdLpoZzynn17sBVHiYcz7z3rX2zl9E+PwmjT4u2K4BtMs+y/mTNZUSXwhU/dwg86biGQyDyvF1UvQq1So1IyCCp8ApFlmaZN/YT9ITzNu3OuD7R30LglY0M50oBMhY8Pgf7+nDK/pxd/v5ep51ZhsmooG+PElmfAWawI3CooHA+cRWamLaqkYqyLWDCJvdCEu8I8zIbnH4iy+J4GPC2ZvcwFX5/IuudbsmfA3p6MLcRZbMLqUoQDP460bOln8T07syKn08+vYuIZZUdt29IZNLjLhwvVFNfZufy7UxnoDJKSZPz9UdRakclnV6A3Da+rN2mon1ZI+84BGpb30LErs1ePhyXWPtuM3W0AQcBVfHQiVdZ8N4Od7VkBkgPEI2Gifj/tgoe7ttzFPu8+zqk6h6tGXEWZtSxbz6g24ja40akyAVIT8ifw+N7H6Qn3MBQb4nNjPzesvsK74zbmk5iUxq4xsva5ZmZeXIOjwMBQV4ieRg+9Tbty2vj7Oti5ysS4+aV4WoO0bh1AZ1Cz4NqRh0zqc6SoNSoqxrgorbdzQCLv9f/uon1H5qwuFkqy+J6dXPqtKRRWHz54WU7LNG705JS3bB34SOx5k3EJT1uQ/vYgJruOgkor1jxlvf84otGpmHZeFWkpjagS0OpUlBaMR9ousbpnNet71/Od835MWXsNg80xyibYacnbylWvfpNPj/k0CysX4jIcP98eKZmgbceWnPK+5t10NZZicxu5bPGFWHVWvjHlG8wvm49erQhGHAvJWIz2HVtzygc6mhl32mRe+cf2bFnz5n50BjV5pSYcpRakuEQ6LTPQHaK4xn7C5iiIAnUzCnGVmgkMxjDZdOSVmLP7EnvB+39X9HkivPKv7Qx2hgEwO3Wcd/OErLi7wkeTZCxKZ8P2nPKmvVu4Z+DPzC+bz8T8iUwumIxNd/RiJMXmYvKkMpY8tovg0EF/87XPNuMoNOYIPALojBrmXzOCxg0emrf2UzbaxYjpBYcVzhFFgbrphaRTMsgyokpApbiZfaIRBIG6aW6cxSYCg1FMVh0Wl47tb3by6t0NmTqiwMIvjMlpm4ynGOqJZH2Go2FvTp3Q0CDde3tJqbTctO0z9Ef6uaTuEq4ffT0lllyfYoWPP7Is0x+Mk2/JrFN6jQqXSUuPP5at4wlkhEHcb1vL3PsFSfoCRy4aEg+F0JsPbxdWa3Uk44oIiYKCgoKCgoKCgoKCgsLJywk7upNleRmw7G0/NwNfO1HjfdQQBIGiGjuFVTbSspyj4uwqq6B68jQKa+pJp1KkpCTxaIQ/7/w/GgPNfGHcFyg1l7KhbwPVtmoWlC3IZhpMx2IkWluR3UX4PVFs+YasAMkBkvEUXXt9mB36D1yIZG3vWn619mDG8DvW34HL4OKcqnM+0HkovDvRQJKmDRkHyVQyjSxDUY2djp0Z55d0OlNeVGuje58PALVWRTSYxFlkYqAjBIDZqWfP2l50RjVh3/5DuUorG19uHT6gnAlwP5wIia8vwqonG4fVf/1/u3CVmnEUmiiqG5G9ZLI7GHfaQkwOB97uLjQOJ64yE/2tIcbNL6G32Ud/eyhbf+LlBUycW0lnqI2BrgGKzcVUWCsQBRF9r5e8/n5U+TJ1ZXVsy9/Grzq/ySmz5jCjeDqNQ7vp9fbyevvrADT7m1m6dwW29bkZOgc6gooIyQlAZ9BQOt4GYTWbX+nIue7tDVM000lHoGOYQ1RMinHn5jt5tfVVABp9jdz0+k08sugRRjhHZNfSdCSKprwMTV4ePk+UJffuzAZdQsbAkVdqzjHSOotLqJ06E3dVNel0mlQySSTgR29WgtQV3ps1PWtY0fYWs7eV51xrbxg8rAhJNJhg6YN7sgIkADvf6qF2agEVtRXcMP4G3up6i4bBBk4rno9ZUDHr0k8Rj0TYtWIpvr5MFqCUXYvPEyY0NNzAEQsl0Zs0BPqjB0WhgKJaGwu/OBaTTXdMAiSS30+itRVBpUZbVYnKpDjff9wIxAP8eOWP2dy/GYA3Ot5gS/8W/n3Wv6lz1NHoa+TxzmeZMOdUXMVlpCUJGZltS16hrKSOX474JeFEGLvejifi4fTy06l31B9yLFmSiHT0sGapj93rMnuaUbOLaGvIDXyO+ONo9SoSsUzmlq59PuxuI0M94Yzjw9tobxhi9JxiBjpCRAIJ4hGJxo3tnP7pUe+ZGU7ho0M6GiXYH8XviVI3tYB9GzyMOqWIlY834iwyYrLrkFN2nMWljDxlHqlUCpVKjbenm1RSmxUgATDb9WzsW8YvNv8iW/b3rX/nl3N+ydTCqUzKn8SovFHEpTjre9dzy9JbsvV+vubn6FQ6Lqy98IP8+AofU/o7g1kBEgApmSbQHyXkjVM/o5CBziCynJuhPZVMM9STcVBMp+Vhe2GAwc4wfk+Uza+1gwDn3DCWougA91X8kP/6X+Xx3pdZ27OWX875JT3hHtLpNDqVjrllc2nyN3Hz6zeTkjPr70stLzFj/ETshcXUTpuJWqtFFEU8ba1YXIcXYVP4aKE3O3FX1VA7dSaplIQoqujc1YCnTaJ2qpG3/i/A/GsW8vWlX+e+c+5jonsiAKJKJL/MQn7ZobMAKyh8UBgtNmwFhdRMmY7WYEQURYZ6utHo7UCI1m0DCKLApld9jDjfhnZWC7XOWorrlDMhhQ+Xzf2bkQt0zL7iWlJSElFUsXP56+SX1zPYKQ2rGw0nEdUiap2KgOdgRmBZhs6Xk9xy6e080fUIc0vnEpWi1NnrcsaTBgZItHcgGg1oKysR9UrgjMLHj1gombF/mFSUjJ6MyWZEazBkng1dnZidJcSjEi1b+j8SAZkKx494LIlKYyevrIL6mXNIpSRUKhVde3cz2JUinYpiydNRN6rgw56qgsLHjvwyK3mlFtIp+ZDB+l17vFkBEoBENJkVIDlAJJAgEZPe2TSHRFcXUm8vKrsdbWUlgko5Hz6ZSPb2kuzqQrTa0FVWIGg0+AeiLH1gT1aABGDd8y2Uj3Ed1k/haBAEAVfJQbtxSkq/p2iERqem/RB2i4HOMG8+uIeLbptEXunRnYVY8vIRVSryyiuz5y8anY60ScMXFl9HVMpkd75v5330Rfr4xSm/yAa6q1Vqqu3V/GDGD7DqrNz25m3Zs7sn9j2BlJb40awfoVFpDju+wkH0aj2d/R00vTSAWiNCOo3WoKJrb4SBjgTFIyYS6M/4K+jNFsafcTY2dym2AhG98aC9t3GDhxkXVB8X/y7VfltWYDBK06ZcMRFfX+RdRUgEUaCk3kFPo39YeVGt/Zjn9kHQtKmf1/93UPwlv9zCuTeNG5awSOGjTySY4PX7dhPojw4rP/+mkbxY/Xv2iB6eja0lbBpiR8lGrllwLTe+8UUGPZn1+Nfrfo1aVHPFiCuO25zUGi3Vk6bjaW5i3OlnYbJnzgodRdWsfiZMIiIRkSJEpAjfXP5N7l14L1MLpx638T+JqHU6SiZNpGriVDR6ffZdvbBmBL2Nvpz6rdsHsLj0iLKMIAqkpTQRfyK34+OMRqOioNJGQeXRC0a8G+0Ng1kBEoDQUJydq7qZc1mdIpD9EUZrNFI7bSbpdHrYGZRQ4qKtr43/7PgPN064EUmWOLPizKPuv8pWxVBfPCtAcoBkPJXz3vR2bPlGppxTycQzy99z/9u5x8vaZ5sRhIy/cTKeIjAYY/7VIxBEgURbO6mBftRuN9ryXL85hY8nao2Kgkpr9r2st9nP5sUHfYHltMzSB3eTX2EZJhgaDcXp3HlQfF2jtTPutLMwO/MAmYjfR9uOrQQGBQwDUTqCmT4f2v0QoiDyjanfQC0qKjifNEJxiWgyhdtyUGCk0Kanx39w79gfzPjN5pvfJkKyX5DEExy+Rr7rWL4hTDb7Ya9rdDqkhCJCoqCgoKCgoKCgoKCgoHDyctxPTgRB+LMsy7cIgvA8kBO9IsvyBcd7zI8ygiigIvdQ31lShkqjYdXjDwKgM5lYdNt3eH3Tv0jLaZ7c9yRnVpzJSOdI3EY3Y1xjMGvNSD4fg/f8h6F//xvHV76K7tTLiQaTqDTisIBkyGQ9joWTx2ykTsQlPK0BBtpDmBw6Cqqs75oV6Pmm53PKnt73tCJCcpKh0YvY3Aa8vRFEVeYeDXljWPMNBIdiqNT7y4biuCss9LUEEMXMPR0OxCkdlTGWpqU0Gp2KZCyFzphxRIkGE5gdOkLe4QdnBvPhHVWigQTvjIeTkmli4SQAJSNGM/70hexetYJpF1zKWw/fh5TMGALrzj6DkeefQW1nAalkmoqxeZSOcLLl9Q7ktMyuFwfRlMf54urPkpYzAXF3zv8rY/fG6P7mN0mHIwhGI8W/+TXnzV9EraOW9mA7efo8xuaN5dLnLx02r7ZYC/MKZtEbSg4rN9kPre6ucOxYdVYiUhRHgYH+9uCwa7Z8A290LqHCUTFMhMQT8bC4dfGwulJaotHXSI1QwOA9/2bonv+ALKOpqKD0r38hJhbkBF3KaZlocPjvGsBeVEw6nWbV4w8BYLBYueC276HW5N7n8WgST0uQga4QFqeegirrBy4QpXBy8UzjMwxEBjAUAO/Q1nEUHV6YIx6VchxpACL+BDq1k5nFM3Eb3JxfsYj01k5evP9n+7NKqJh12dVsW/IK1dNOwWoci9GqQ6USSL1NgEEQwFVi4rX/7BzWf0+jn8GuECbb+1/n4q2t9Hzv+0Q3bQLAeu45uL/1LTSFhe+7T4WTj85QZ1aA5ABDsSGWtC1hdfdq8o35eBM+NAYXqx57AMg4By388i3c0XE3GwY3o1Pp+Onsn+LSu6iz1+HQHwzmlGWZgY4Qvc0+iEaxOVW07DiY5SLkjWPLN+Q4C+mMapKJg3tle4GRzl2Zdgf2QQew5RsIeTPGRFHMZM3qbfaTjKUUEZKPCcnBQQb//g9Up1+FWpfZE09bVEk8IjH70hpatw9QNspJ40Yj4884h2UP3IOcTiMIIvOv/yK7VvdTUJ2PRpu5H6LJKI/teSxnnNXdq9GJOqrqqmj1t/LQrocIJUM59R7a9RBnVZyFQaNk4lM4Ng7lKCmqRVRqkZA3ht6owWjR5tQRRBGNPvNO9841EUBrUCMlMoEIyLD++RZmeJ8i+tJzXDtpItd//1+8Lu+ku6uf/GANxEUqagvI17nZ0LshG8RwgN/vvpP7P/9XXv3rH4kGM0FB1ZOnoTcrmdk+LuhMedRMmcGqJx7K7kXPuuHrJBJOvL0h9CYN2oQRGZm93r1ZERIFhZMFUW3kjC98lVf//kdCQ5nAhJKRY6ieYgVC2PIN2UCc5sUhCkaawPkhTlhBYT97PDup7tax/okns+vv3Ks/g8kxgjfu7x1WV2dQo9GKSHEJUSUgigITzihDpRaREimKtbXUTKkklApS76yn0DT83T22dy+dX/86yZZWEAScn/k0ri99CbVDEeNR+Hih1qlwFptpbxhk6hfms+TffyDszTi9l44ex6iSEqYv0nIIM6DCxxyNRoVK42LU3AWsePh/IMsIosjpn7uZ3WslTHaJ7kYfxTXKuqigcCIQBCFry34nA53Dz980OnVmnX6b+U8UhezZ3uEIr1tH19e+TsrnQ9BqKfjRD7FdcAGiNvdsReGDJ7JlK11f/SpSfz+o1bhv/wb2K64gHpZIRHODJ6OBExNg/F4BmABaoxqr28BQV3hYuVorICXSdO3xIsvQ1+JHEAQKKq3kvYdAq7O4lPO/8T06Gra/7fxFzYJ8J0a1MStCArC4dTE3T7yZKlsVAOt61vHVN75KRIpww/gbcs7unm9+nhsm3ECppfRIv4ZPNL5gPzXJIvIv1BOPSKi0KpAFjFYd3t4otVNmM9TVxGBHK7Mu/RQrH7ufRDTz+xk190yqxs+iZVsIe4ERjf742qA0OhW2fAM+z3Dbsv5d/HYOUDetgH0b+vDvb+ssNlE5Pu+4zu9EEPLGeOuJfcPK+tuDDHSGFBGSjxmJyKH9Jvw7W1H/9BbKTSZ+9Oufsdtm4syKM3mu6TkGY8MFoR7c9SDnVJ2DRXv8RLGLR0xn/mcsbH31BYa6OwFwlVVyymU3o9aKVJgraQu1ArDJs0kRITlGBuNDFI0fx8q///Nt7+pjseaXoLfm/l5t+QZElYAsgJzO7Ck1uo+u/b+vNZBT1rPPT1pKZwWpFD56iKKKuumzee5Pv87e1yWjxmBxVpHqzezbNvZuJBAPcFrZaajEo/tdW7QWAloJlVokJQ33N9cewV7kSPa/g50hRp1ShMWhJxZNYjBr8fdHSMYl4ivepPu730WORBBNJop//zssCxYc1WdQ+HgQDea+o6UlmXhYAlfGZ9fTHqS32U/VpHwqxuex5bV2VBo9PY17GWjP+AU7ioqZf93NvHG/j9LJw5OePLnvST495tM59g2Fjz+e/QIjB0RFAIpsBjqGIjl18t8mVOIy6VCJAp7AkYuGhIYGMbsO/66k1upIxhUREgUFBQUFBQUFBQUFBYWTl/c+8Tt67t///98DfzjEfwpHgLe7k0QkwuwrrmXmJVcx8axFbHrxWRYUzAMyhqY71t/Bj1b9CKPaiF1vByDW0MDQ3XeDLOO9869YnDp6m31MPL1sWP+j5xYTDcUxH6UoQioaJR0bruC6b10fi//dgKc9yK5VPSy+e0c2MPOd+GI+XAZXTnmFteKo5qFw4tGbtMy9sh5RJTDUHaZ8tJOufT6qxueh0ano2uujfnoBvr4IrhIzerOG5i39jJtfQjwsodWrsbj07F3fx6Qzy0mnZRIxCVeJiX0b+hh/WhmCeND5q3pS3rs6y5hdBtTa4UuWwaLJOgKYHU6mnn89F33r52x88ZmsAEnNlOnkWwpQeQeJBgfYsqSdDS+10ry1nwmnlaIzqSkb7SQQDSEKmf4TqQThtia6bs8IkADIkQjd3/o2Ymcvk9yTuLDmQk4pOQWbzoZTPzySZFnvUsadV5jJZLOfwiorBVXHnj1J4fBotVqK6hzoTAf1tSwuPVaXgUf2PXLINm8PXD+AWlQTa9jB0L/v4YDyTbKtjf6/3onJqkJnHK7fpdGrsDhz19LBjnZElYrZl1/DzEuvYuyCM9n08nMk4zHSaZn+jgCde4bobvbRsKKb5/66hVVPNvLq3Tt443+7iJwgZ7f3IhWNkYoeuVK3wonhzPy5WFQGxHGBYfecLd9A+ejDR68ZrVqK6uw55bb8TOC6VWtlYsFEyhJ5rLz/f9l7PJ1Kse6Zx5n/mVtwV5yKLiLRuWsLZ99YisFy0NFs6rmVmOw6kvFUzhiHKjsa/M8+lxUgAQi89DLhNWuOqU+Fkw+dSodaOLQO4u82/A5kOFU/FZ3OyKzLPsXsy6+hZsoMVj5yP6MtIwGIp+L8Zt1vKLeW4zIO31f2tQRY90IzPY0B1i3p45WHO1lw7UiK9/9ddO4eomaye9ieIr/cjJRMZzMfWlx6jFYtsXCSETMLht3bKrXIyNlFtGwdAGDimWUM9YapmeRGb1Ky/n0UScdipKLDnRBj27bhfeABeP1pTr9uJC3bB/B5ojRv6mfVk02Uj3axZ30vVeMNrHnqEaYsuoiZl17FrMs+RdeeHTiLksNEyzSihnJLboYeh97B6u7VtPhauK/hPl5uffmQjoz5xnwl84rCceHAfuDtBAYiTD23gu59PsrHuJABR6Exe12jV2HN0zP7khoAepv81LzDOWfiGWXsXd+X/TkSTCLYM04U8c1b0G9tY554NtJzJex7Kkz/hhTta0J0NQ9h1ea+I83On8nGF5+lYvwkZl9+NTMvvQpHUQmelubj8TUonAQIBGjetI7Zl1/DjEuuZOYlV7L+uScRxSBSIo3JocOnyWRhNakPL8CnoPBhoeprp3njOsacejozL7mK2Vdci1qnI+BpYvTcIuwFJvz7gxyS8RQaFFFahZODKdrRaBIw8+IrmX35NVROmMLqJx5Ga9AOcw4vqLSiN2kQVQJSOkXXXh8zL6wmJaVp3T7AliUdvPR/OzC0FlAyMApzwj5snHQ8zsBdd2UESABkmaF7/0tsx47j+nnkdJpUMIicTr93ZQWFE4RGq2LaokoKayw0vPkqWr0+u8cpHzuB0FAfO5Z3UlJv/7CnqvABI0cjmB0J9qx+K3tPzLr0Kja+9AxTznGyb30foUCMZCpX4FxBQeHYkSWJVChX7Beg5B02FEGAsfNKhpWNP70U8TAiJgDJvj66v/ktUj5fZrxEgt4f/oh4Y+MxzVvh+CB5vfT88IcZARIAScLzmzuI79mDya7LSQQhqgQseYcWH5AlKbPnfGe2lOOIq8jMzAuqs/eczqhm3lV1gMCEM0qxFxh56rcbWfbQXt58cA+v/GsHAx1BkonD2+VElQqLw8mmF5+hsLqO2Vdcy7QLLyXWN8jny68dVtegNqARM/aNgcgAP1z5QyJShCJTEWZNrihwniEPvVoRazhSivtTqFQGNi9uJzgYo2uPjzfu20VBpYW8UjMbXvJTPOrTXPajO0hJElMWXcyEs85FEEV2rXgNV0kEUS0w54pa9Mbja4cymLXM+1Q94tv8dsrHush/D5EbAGeRiYtuncT5X5vABV+fyAVfm4ijwPie7T5sJClNIpIrRHSsdm6FD5ZUJJLju/hODuc3YZIzSY3S4TDe7/6QmXIlZdayQyYCcOgd2fXxeBH264n4w9RMncHMS69i9uXXYC8ooK9pC289sY9vl/w0a0t3G9zHdexPInpBR9uKVYw65dTs92202ulvbWHHsk6mLqrM1lVrROqnF+IsNiOnMvsDtUYcZjN7J+lYjFQkctjrHzblY3J9dOumFSgCJB9xUpLE9jdfY+Tsefvv66uxOPMQPKHsmlVsLsaus2d9YY8WlUZk4hnD/c1HzS4C8fio7FaOdxEYiNHWMEgsmGT36h5MNh3yUD/d3/oW8v6/q3Q4TPft3yTR1nZcxj1aDrwLKHw4WFyGrH95xTgXMy6sZszcYvz9EcL+OD1Nfp763UY2vdLGUHeYgc4g0y+oItC/i6LaEcy67GpmXfYpysdNpG3rZqacU4GQHi7G7ja6EU9IGI3Cyc4BERG35eC7bbFdT4//oP+YJxjDpFVh0h3011KJAnlmLX2BI/evDg0NYnEeXoREo9MhKSIkCgoKCgoKCgoKCgoKCicxxz2SSZbljfv/v+x49/1xJhYOkYhEMFptqHU6pGQCncmczQCv0RuYc9X1GItSvN77Zrbd6eWnY1AfNIQlOzqG9Tv4pasp+cm/2by4nRkXVCMl06g1Ika7FlexGcMhshwfilQwSGjFCob+cy+CXk/el76IccYMQoE0nvYg9dMLad02gMGqpW5aId6eQ2eJ8MV9THRP5LW21wgkMmrrZo2ZU0tPPdqvTOEDoHSEg8u/OxVfbwSDVcv400qRkmnO/9oEwr44OpOGETMLScQkzvvqBBIRHyq1iupJk4gEEpz1+TFEAglUaoGLbsuU1U5xEwslEQSBi26dSNifQG/S4CoxY7Qe/n60uw2cfcM4Xv/vTqLBJGaHjjM+NxqjVUt/R5BoMMFr/9nJ6Nk6goOZwOCRp5xKPBJm1eMPAqA3mZl91TdY/XQQvyeKs8TEmDklNG32oB3Q8fu5/+DZ6ENMKZqMs5OsQeMAciyG5PGgq67OluUb8/nu9O/yjWXfyJZNyJ+Ao1zPZd+dircngkanIq/UjOkoRX8Ujg61RoVWr2Ls3JJMhnZBIBGV6KMr4wylGr4mCYLAF8Z9gd+u/222bJJ7EhaNhURba07/kTVrKCTC2TeOY8l/Ggj7EhitWs747Ghs7lyjc0qSSCbi2fvPYLEy67KriUfChH0ZQ0jDim60ehV1UwtwFpsY6s5kuOrc42WoO4TReuSpkoP7sy9bnLlG5CMhFYkQXr2awbvvBiDvS1/COHMWKmOus4XCiSPp8RBcvJhJjz7G+BI3vis8hK7UUxYppMDspqa6FIvr8I59Wr2aeVfW8fp/dzHQGUKjUzH3yjpcZRknwVQqTfdeL57WLmQ5jSCKVE2ciqu0DE9bC4Io0LnrVXYtfwUAjU7Poq99n2jUjcmqxZKnw5ZvonpSPs2b+7PjqrUijsL3HyCaikYJLV2aUx5ZvwH7RRe9734VTj7KLeV8ftzn+ee2f2bLZhXNYp9vH1pRi15SU50/no2rn6Zl83ogk1W+fMwE6p11yEY19++8H1/chzfmpdhcnO1HklJ4e8NEA0m8kQijTikiOBSjp9nPmHnFBAejBIfiNG3s47wv1uMbktAYtehNGgRRwO42oNKosBcYCAzGuPDWibhKLKRTaUpHOEjEUljzDcTDSeZcXofOqMbnidDbEmDelfXDxNUUTn7S8TiRtWsZ+Ne/kGNxnJ//HOa5c1GZzcT3ZrLgRR+9D+PFn0FOyfS0+iisslE71c3W1zs47fpRJKMdzLzkStY+8zjRgB+A8rETcLjFYQJSapWaz4z5DCu6ViAKIouKzqLSUEaFux6NqOHehnuptddyxYgrMKlNWLXW7LuSWlTz2bGfRaNSRG4Ujp38Mgvzrx3ByscbScZT5JeZqRybj96sIb/cQiSQwFXioKTeTjSURBQEXKVmnEUmbG4D1jwDgf4oFpee+hmFxIJJTHYdq55qJOI/KKA3aoyOxL0vAaByOvGWTEUakAl540w9t5LAYIyeRh+JWJJJZ49linsKGz0bmZo3hZnWycwuno3Xs52uXQ3sXpk5WjI7XJSOGvuhfG8Kx594RxMV4yYSHPCgNZpo3LqZ0XPnY7QJiGojrvkp7my7h2pbNWWWsvfuUEHhAybe0oi7ugpPcxOCKNK0YQ3uqlpU2hRVNS5e/dfObN3isRasTiU4S+HkwCoZWLnkZeLhzPlT9eRpVE+aSiwc5LTrKhCEFNGQlsHuMDqjmlA6yAvph7nk9Kvp2hyka4+P/HILdVMLWPtcMxtfaWPWRdW8ft9OTrt+FBZH5gwp5fMRXrU6Z/x4ayvmuXOPy2eJNzfje/QxQsuXY5o3F8cVV6CrqTkufSsoHC2F1TZmXFDCigcHGDX3NDa++Ax102ehN5kxmIOcctlE+juDFNflCmIrfHxJ+f0kggFGzJ5LNOAnGvDTuGEt0y64lHQqRtiXwFCVIpgM4lQduR1AQUHhvYk2NDD03/8S27kL2wXnYz3vPLQlB0VGimptTF5YzpbXOkinZYZ6I0T88WG+FAOdQezvEkwvDQ4i9fUNL5RlpJ5eGD36RH00hSMk5fWS2LcvpzzZ04Nt0iTO+sIYFv+ngeBADL1Jw4LrRx7SxhXbs4ehBx4gunETlrPOxH7xxWgrTkxyncJ6M+d9ZQKhoRhGq5ZX72lg9OxiSurt7NvgQUpmhPdGzylGrRF5+Z87sOXpmbqoiqJaG4KQa58I+7wU1tZTVFuf9TsSVWoW3PhlnHonQ7EhAD437nOUmDN/I/6En8HYIF+b9DV6w72UaYr48ehv86JnCRsGNiIg8J3p3yHPcPgAKoXhqFM6utrjTDyjnEQsgM4gUjWugpA3xtyr6gj0x9AaQrzxn/+jv7UJAHthMTMvuYrVTzyETp/g8u/MxlVyYoR6S0c4ufx7GZ8grVFNXqkZo/XI/FrMDv0h/cJOZswOHfUzCtmz5mAAqkp9bHZuhQ+OVCBAaPkKhu79D6LRhOuGL2GcPh1Rm+trpjVk/CaW3LuLwa6M38TMOUbSj/wuWycdjiD196OtqKDYVIxD58Ab9wKgElScXXk2iXQCPcfvPi+otiFLTpY98AyxUCawvXLCZNQ6mLywApEIPxn3Ax7sfJRJ7knHbdxPKpqUSGndaLr2NGBx5dPbvg8pkURnUjFiRiFag5rp51WRlmWKamyotSKCSkBOyai0aiwOHRZnrs9UOpEgsm4dg//8F+lIGOdnP4d53lxU1pMrOVnpCAfjTytl+5tdyLJM3VQ3NZMVcZuPMiHvEFI8TsmI0bz1yH2EvZn9XPGIUdSPGY1dZyciRZheOB2r1kpaTqMSjl50xpZvwD8QZcaF1UiJ/e9IHcHjJjgmyzKV41x07vbS0+SnpN6OIAgEA2nkdwTip8Ph7Fr9QRLbvZuh+x8gunkz1nPOxnbhhWjLcxPPKJw4nEVGFn5xDFuWtGO261j77MGEJZPPLmewK0z99EJ0RjWt2wYwWrU4i4yQsrJl8VsMdmTEa+pnzWH03KlYor149m7L9iEKIp8Z/RlSKGJ0n0T6QwdESA6++xTZDARiEuG4hEmnpi8Qo8CWuw8ssOrxBN9dNESWZcI+L3qzhYjfh9l1eJ9utVZHaP96rqCgoKCgoKCgoKCgoKBwMnLC0ikLgnAK8BOgYv84AiDLslz9bu0+iXTt3snS/91Nf1sLNVOmM/vKa5Flma7dO1n09W8RC4cQRRGNTk+Zzcp3p3+XzmAnZdYyTGrTMBESdXHxsL6lxkYsSx9m/GlXsOHFNtJpmclnlVNa78Cad7BdPBhEjsWQvV4EQUBfVzesn/CqVXTfdlBkoWPDBsrv+x/xopFotCK9zX5qp7qREmm2vtHBnCuGtz+AU++kN9zLD2f+kKHYEDIyLr3rkNmPFU4CBJDTg6TibaSTDtLJJOlYDNnkIp3oJ621gpxGJaZo2dTEhuefQhRVzLjkShwFRcgpK+mEF1JqVKKBVGwAWXKTloKQlpF1NtJxD4LJRV9jlFQyicHuIDTYj1ZvJK+sHD0iaqeDlD9AaZmGy741magvisllQifGad3ag7e3E1EVYtw8PWqdCVdZBYMdbThLyrIONZAR+9m94gmmn/95RLWOaCDJplczh81qrUheUwHfmP59nhl8mCa1wDi9Hvlt2TMErRZ1/sGs333hPgYHO6lKO3n47AdJ+3wY9DbEoTj+7XsxOl3I0hCyWkdm6VNESE40ZaOdhMNRti3uRq0VqT/LiS8/wAhhBGpx+CPPpDZRbCrm13N/zVB0CFEQ6Q51Y9AY0JSW5vRtmDIF0WqltMDAZd+ZSjSQxGDRYnYc+veaSiaomTyNEbPmICUSGK02mjdtoHbcZPpaI+xd10fNpHxSqTTb3uxk7KklrH6qKdv+SLPtRIMBdq1YyuonHwFg1mVXM2rOqRgsR7euRtZvoOvmr2R/7vzyzZTd/a/jFhyikIs0OIig0ZCOJxDNJkS9Ht9jjzHwf3dlKuzbh2X1Bqbe8wf2VfhJagT0aRvpuICoO/x6kldq4cJbJhH0xtDqVdjyjcTCYfoaWwgM+DBY7eSVWNFbLMy65FPsXrWMjS9upHTUONTqBNUTx9O0YTmJSIRkPMayB//BVT/9LUarLTvGrItrMNt17F3fh6vYxIwLq3EWvX/nLFGvxzRnDvHdu4eVGycpjjUfNzQqDdeOvpYxrjFsG9iGWWNGlmVsOhvnaebQ9q9n2NLdRdXEyZx/23dJxuPEw2HshUVotAbcIQPXz70YSU6hNww30A11hfD1RSmut9OydYDNi9uZdl4VgcEoepOGWZfW0rKpjxGmDgKf+iyiJJECbH/6I4YpU3DbRAQBZCmIzSUhaFPIHh8qIN8Aol2HqIG0mCDPBGFJhd1qZMKpxegsHy0nSwWIbtlCx5duyP7cfettFP/lz9gWLkRXk3llNXzuy7z54F5EtUDtFDeCINDfEaRslBOTXSKpMyBQwJwrr0OWZbQGI0vuuYtYxJcz3gT3BB4552GC+9rY9NCjeIcayJsbYea8iazoXMGanjXU2Gq4YcIN3DThJoKJIFqVlumF0xmTN+aD+loUPuaotSpGn1JM6QgHyVgKs1OP3pQRuDHZhu8t4gODpIcGEdISSW8SORqh0CniNkqQDoAogiWNbFQz64IK1r7QTiSYYOxMF3nbXiDWm3HiNn3v18TtVnwtQeqmuuna66WvJUD1pHxs+Qb2re3n57N/hKo6zvoXnqZ54xtsLmtkzpXX4SwuZcyCMwF47e672Ld2JVWTpqJSn7CjLIUPCF1hMWZZZtfKZUSDAcYtOAuD1YYsC4iCgMfewledXyWcDCsiTAonJar6EcSadrN3zVsk4zEmLjwPe0ERokqLKIoUVJgY7I1RMdlB0QwdNrNy7qnw4RHx++hvbyUWChIJ+NFo9VkRkp59ezj75tsIDXlY+fBfiIVCjDt9ITVTpiMlOtCn01ztPAtBGKR2MtRONqJSCXg6gkw7r4rNi9sRVCJ5pRY6d/uom6JFrVWhsloxTp2aIzaqKSwi0deH2uEAQSDl8yFarcjBIHIqDcjI6TTIMqjV2UBKOZ3OGJdUKkinkWMxur5xO/FduwBItLQQXr2Gkr/8GUGTeW4IogiiiAAgCIgGw0kXCKLw8SJtTzH+9LORkZl/3edZ9cRDRAMBRs45ldFl1aTT9g97igofMCqbDV3Ah3djJ7tXLsPkdHL6527C09yIaaSB6dcX43d0Y9WO/LCnqqDwsSLe2kb75z5P2p8RDO7/059JtHdQ+OMfZQOUjVYd0y+oZuSsItIpGWuegZJ6O+tfbKV7r4+y0U6mnVeF0XJ4O4za6USVl0dqYGB4eYES1PlhICeTxD39IGf2kmlJQlNVSbKldVg9TUEhkBEQu+xbUwj7EujNGiyHEI5MdPfQccONSPvPuAb/8U9iO3dR8sc/oDKbj/tnMBgMlI000NPkY/fqXuqnFhAJJOhrDRD2Z4Kbxs0vQRAFtr3Ricmuw1liZqBziLTUQyzkJxYJ4SwqIb+iinQqjUZvoGbKdFY++gDVk6dTWFNHKiUR9/p5aOY9POR5mnpHPU69M7v3tsR13FX1M4JDIaab6th8z5N4Ozu4YMoUbll0A5JDy/i88cf983+cURWU44jFiIca2bHkAaKhAONOW0j52AnEAiJlY0fQ39LL+NPPQqVWI8syr/37b4S8g1hc+eSVF5NXevzvuQMIokBeqYW8UssJG+NkQq1WMW1RFQazlj1re7AXmJh5YdUJE3n5JJMKBpETCdT7Ay6j+/YhpNPoR4x4332GVq6k+/bbsz9H1q+n4oH7MU6desj6eaUWLrp1IkFvHFU8zNCN15Hs7MxeFwwGVK79okoy/GT2T9g7tJdYKsZI50h6Qj3oxOPj55WSJHqbG5GkODuXL6V+5hzMDgfpdBprnhuzK4/27a+y9bWX0BoM/OBTX6RIV3Bcxv4ko9Fo0ZstBIcG2btmJSUjxzD1vIuIBgNsXtzGvKtG0NYwyMyLaiipsx9x0pHY1q10fOGL2Z+7b7+d4j/9Eds555yoj/K+MNl0zL6kljFzS5DlzL5Xoz16QQqFD59YOMSe1StY+egDpCWJCWctYuENX8ff34u4f/+QSkl8afyXsOvsiKLIYHQQlfj+ft8Gs5Zpi6rYvLiN1m2DFNXYmHZeFVbX+09kFuvqIu3zZc6G0bFtaSelIx3klZkZ6gkT8vqoHF+NoNEgJ5PZdoLBgCrvgxXAS3R10fHFLyH1Z5JzDdz1N2K7d1P8u9+hMh4fIRaF90ZUidRMcmN26Hjyt5uGXfP3RVBrBZwlJuKhJFUT82ja1M/yh/dROzHM9AsuRUokMLvy2P7Gqzz3h1/hKi5l7pXX8HPHzwnEA7iNbkKJEA6dIhz9ScQTyMQF5A8TIcmcDfT4o9S6LfT6Y9myt+O26On0RnLK3876555kxUP/Zc5V1wNgcR5+HdPodEjxdxc1UVBQUFBQUFBQUFBQUFD4MDmRkRv3ALcCG0GRij0cQ12dPH3HT6maOIWqiVOQkgneevh/jJl/Bmd88WYW/+MvRIOZLNiOomLmfvEGfrPhN5g0JsLJMOPyxjGvdF62P8PYsdivvhrfQw8BoHbnk7foLEpHF1MxNnOIYTAPzwAQae+AYID4jgaG/nsvclLCcc01mM44HX1ZGelEgqH7M0IOBT/7GfpRI+n5yU8IvroY8boRqLUqzA4dm15pQ6NTMW5+KcnYoX/lESmCQ+fgl2t/iS/uA6DQWMjPTvnZcf1eFY4P7Vs38fTvfk71lBmkkgmaN29gwWduoLe1Eb3ZgjYconvPLtyV1ax85P5suzf/dzdnfPErLL3/30ixOOPPPIdVjz/IpIXnsf6Fp/H2dDP78mtY8adfM2LW3P1G1XwKa+rZsvgF9qxcgSynKakbwfx5Z6Jq7yS2ZQuWc88lvGw56vx8EkWFBFwV9IUGWf343dmxp55/JdMu+Dyrn/g7UiL3YK6/rYmRc5N42hMMdIQAMFq1TF5YwbalHexa1UNx+UwmX+TG/LNSvD/4KXIigaDRUPCLnxN0W1jd8SYmwYB9TxemJ17DeuZZxBxWJIuVjc8+R/Om9cy//gu8+Lc/Zg8HS0eN5ZyvfANrXn7OnBSOH6Je5mXDw8gLReKpOP/pWk6iI8FtU26jxn4wG6osyyztWMpPVv8kW3Zx7cWMdo5mMDLIuLGTsH/qU/gefhgAtduN+5ZbUBkyxjSzXY/ZfviA83QigdFqZ8viF+nZtyfTh07HuV+5nWg4QiwkYi8wsnlxOyqNyJh5xahUAia7lrAvgVavysm2E/H7GexsJyUlcZaUYs3LODK2bd/C7lUrmHjWIgB2r3wTo83OyNlHJx7ie+IJAIp+9UsAer73fbyPP6GIkJwAkr19+J55Gt9DD6POz8N20cUk+vtxXH4Z0c2bMU6fjmHmDKSubuKNjTi6wnSEfbhfWELLyjUYp00j76ab0I88vIOO3qxBb84E3sSjEVY/8TCbXnqGc26+jZ7G7djyC1l4w9dZ/K87iQYyzrjtO7bg7++ldupMzr7pVp77Q+ZesOYX4OvtJhYKotEbGOpsRxBFJp5VxuSzK9Do1Wh1x+aoIAgC9ksuJvTWWyT2C5GYTp2HcfasY+pX4eTD19eLt7sTU0oiEBjkP53/wawx86fRPyfZ1U3JiFEEPH00bVxHMpmgfsYprHr8ARKRKAtv+jqbXn4eR1ERU869kETPENRmnqthf5y96zzsWNYFAoycVURemZndq3uYf80IOnd7KR/rZEpBB4H//QdtWSmJ/Q7IvscfRz92LIJKhdTfnxEG0utISxIqnQ4ZgWS/B1EQQa0i2dWNqFahRiAVDOAf8mI+/TSM48Z9iN+swtESePGl7L9FqxVtVRUJrxcpmcQwYQLWiy4iPuU03LvjGCxati3tRJZlRswopH66mdWP/4dJC8/jjf/9i+BAxvnEZHdwzpdvY6Cznf62FiJ+LzqzFQGw5OVj9sFzf/4rspzJWrn7jdeplyQ+fcb1/GXrX2nyN9Hib+HvW/+OVtSiUWmYUjAlc+8pKBwnBEHAlv/uzlHhDRtItLQQb2xEP3oMgkpEXVmJxu1G0OlJh4KEFr9GorUV0/TpuGtrOft8M7LJgp44nhf2HBgMubyGiC+B1qCmamI+b9y3i9mX1rJrZTeNGz0s/Hwp6UCQlY8/SNfunQD0tzbz/J9+w9TzL8bT0kTp6HFc8q0f075jC7FQCJPdnjPnSMDHYEc7KUnCWVKmvHed5MSTCdY/9wQjZs9DrdHi6+1msLOduhnlSFKYf279J4PxQW6acBO94V5GuUZ92FNWUBjGYNDHhheeZtSc+ai0WgKePjQ6A4U19STiKaY6thOcP5K2wFZ6w3YMIRXVDkWXW+GDJzg0wJK776J503oAVGo1Z3zpq/j7MoGUzpIyBjraWPHgvdk2m156FpVGQ35FFVIiTjqVQlSpM8GcKQmNwYgtz4BGb2LsqcV07BzEWWQm0B9lqDeMu9yKaDCQ/7WvEtu5E6mvDwDLOWcT2bKFVCCAaDIip9J47rgDw7hxmGbNxP/Ci9guvBAZGeJx0pEo6rw8RJsVZEhLSUSDkXQ4jLawAHVRIaLFTGpgkHQwiKjXk+zrQ1tRgSxJyJIEiQSyJJFOJEj29KAyGjFNm4aoV0QkFd4fkUDmfFZKJHCWlGLLPxgQlieBkJfPQGc7a558mFFz5qPW6QgO9NOydR0jTrngQ5y5woeBYDCw6603Cfu8TL3gEtKpFGueepg5V32adCpFyN2OLpCmdfNGzHYneaXlqN9FeFpBQeHIiDfuI+3347rtNixz59Dz85/jf/ppXF/4PLqqqmw9lUocZofLK7Vw5udGE49I6Exq1Op3t3loCgspvuM3dH3ta6TDEVCpKPjOd9DV1p6wz6ZwaGKNjaT8fgSdDhmQo1EQBPJv/gq9P/95RpBGFMn7ys3oRtRn2xmtOozWw6+7ieYmpN5etLW1aEpLSPn8pKMRJK/3hIiQAMTCSba93kE6DXmlZgwWmc2L25h6bhUarQp7oYnVTzVSXGenqNZG195BNFoPe9u62fzyc9l+zv7KN/D1drNr+RtMu+BSqidPR6VWs+rxBwEQBJGzHXmMLx6Pr7cTvaDDIzUjiCKtmzcQ9g5hsdt58547s/4WzevWEvJ5SV40ikprJS7D4bM4K7wDnRG1poPlT93DqLnz0egNhIeGaNu2meZN6zjzS1/l+T/+mkQ0E8SWV17J2TfewrbXX+bU6z+Pu6rmPQZQOFps+QZmX1LDxDPL0OhUaPWK6PXxRE4kCK9Zg+fPfyE1OEjJ3/9GbNs2vP/9H7Ik4bjuWozTpmEYPfqo+k3HYgz973+g1VL6f3eSCgTouf2bBJe8flgREgC9WYverEVOGVF9/Wv0fO/7yMkkgk5H8a9/hbayAgC73s4NS25ALahRiSqiUpQfzvwhOvXx2aO379jK+ueeYtScUymqG0HzpnUMdGSSZtkLixk1dwH9bc1MWXQhcjrNpuefwerIo3K8krTlWAgM9LP6iYeoGD+R0lFjifh9LLv/Hs780leZd00hUjTNBV+feNTrQPD1NwBw3XoL5jlz8Pz1Tob+9z8sCxacdOdOKrV4TAmFFE4OOnftYNuSV5hwxjkgQMfO7YiiyMYXnyEZj+Eqq2DeNZ/lX9u+RUpOcfvU2ykyFx3TmM4iE/OvGUnsoiQ6gxr1MQjYhNetY/De/xLbuhXDlCkkP/cDxp9WyrY3OgkOxnBXWKibVoCUkCn65S/o+f4P3rZW/xptRcUxfZajJdHUhNTfj/Omm7AuPIveP/+Z0OtvkOzoQHUMYloK7w9BEJDT8rAye4GJsjFOdr7VTeN6DyqNyOg5xeiMIs4iNa/f8zfcFVUkYjEsrjymXXgpUjzOkv/ezdzPfZbrd/8KKS1x+9TbCSaC6NWZtbs72M36vvXsGdrDJPckJhVMIs/wwYrgKHww9AfjaNUiNsPBhCgHRUhiWRGSmTW5775uq47N7d537X/n8sxe4a1H7gPAUVRy2LpqnY7kIWIdFBQUFBQUFBQUFBQUFBROFk6kJc0vy/LLJ7D/jwWetmZmXnIlO1csZfeq5WgNBqYsugi92cLWxS9lBUgAvD3dDO5rwqFzMBQfAmDbwDY6gh3Y9XYgk3XHffs3sF9yMelwGE15OdqizIHyO8VHAGI9PZBOkWxqpvfHPz44rzvuoNBoQH/llSR8PowL5pN/6y2EV62i/5VXsJ5xJsYZ04moBWKhJE2bMoF3iViKja+0ccZnD20sVAkqdg/tzgqQAPRGetni2cKsYiXQ+GQiEvCz9P57SEkS7soqVj76AKWjx6HV6Vi79DUifh8Ak8+9kL1r3spp375jC2q1hto5M9nw/FOIoojOZMLT0sS4085i8yvPkU6lKB4xhtBQP5teeo5k/EkKqmuZe/WnWf7gvXTt28PQjLkUu1zERRE5GERbWkqipxt9fT2S08T6B/44bNwNzz/K3Gt/SPXUG8mviOXMq2L8FJq2hNCb9GgNGePI6DnFrHm2CSmRCQj1tIdZ/UgP555bRdHvfos0MEC8tobG9maSry6hpKAA4xuvYJ4yhUhRMcHSIpp2bcfsdNG0cS1VE6eyZ/XyYerEnbt20Nu4VwmGO8F0h7t5dO+jpPcH9x7ArDFj09myP3eGOvnt+t8Oq/N049NUT63GqrOidrlwf/N27JdekgluqKhAU1h4xPOI7dhBwNufFSABkOJxNrzwFGd+6ask43H2rc8EYaTjKba81sGC60aiN2twFpmYcUE19oKDwaGBfg8v//1PdDZsB8DkdHHJt3+Mu7Iav6cPa14+a59+DID6WXMI9Pcddm5SIEB00yb8L7yAnEhgv/BCTKecguXCC7BfeAH+F14AoPSu/yMlyyT9fqJr1uB//gVEoxHbBRdgmjUTQaVkx3g/yLKM77HHGPjb34BMBiBVfj6id4jeH/8E4/TpaCvKEfR6YpKE5PEgDfQzpi3M4POZgPngq68S3b6dyocfQlPw3tlvBtvb2PTSM5SMGE0iFkUUVfh6uhDV6qwAyQH8fb1odHpat26idMw4imrq6W9r4eEffhOVWs24088mONhP04a1uCurOe+W72CyFR+X70ZXXU3FPf8m3tKCoFajrapCbbO9d0OFjwy9jXt58lc/IhbOiICNmzqDhWf9mZBvkI13/YeI34clL585V13PysceoH3bFkpHjGH2Zdew7IF7WP7gvSy88RaevuMn1EyZgdXtJuzzYbLbad85xNbXO7JjNSzvYuq5lQQHoiSiEqIoEB6KY8tz4LrxJkLLl2G/4gqkwUF0NTV4fvkrVC4X1rMXgl6fzW6YSqVQ2Wyo7XYElZrYli1oqyrxPvHk/j22jNQ/QOiVV9EUFqLJV57zHwXiXd0Ipsxz1nH99YhmE6bZpxBesYLuG2/EOGMG9muuZkBw4CwOsf6FlmzbXSt7KK7RkldaQcuWjVkBEoCwz0vL1o2MXXAmz/3x14xdcCYbnnuSWDiEs7iMU6//PKJKJCUd3Kc0rlzJqfNmcPPEm/nJ6p9kgi6BRDpBIp1gXe86JronfjBfjIICENm9m0RbO57f/wHXjTeQCofQjx0LkSiJ5hbS4RByIoloNGCecwqyJBHvaEebl0do8UsEdu/CdullOK6/DjmVwhNNgSzStdeL0epm5OwitrzWTsgbZ+IZVlY9/n/UTJ6eFSA5gJSIk1deSefOHSx/4D+oNVomnn0+Kx97gNKRo6mePA2VVktv417CPi+bXn6enr27ADC78rjkOz8hv7zyQ/gGFY6EsM/L2AVnsfHFp0lEo+RXVFFUPwo5neKV//sJP/j8Ldza8EP+2/Bf/jz/zx/2dBUUhpGIx+lvb2XCmeey8YWniUfCuMoqKBk1FrVOi5geYv1AB82/ewoAvdlC+e3fBCWRmsIHjCzLdDRszwqQANROm0X3np00vLmEdDpN7dQZ1EyZmdN298plFFbXIiGQllLEw2EEUURUqUgmfCCnkeVBHEWldDQMkk6nkWWZaCCR7UM/ahQVDz9EaPlyUoODRNatJ/jyKwhaLfnf+iaCIGKZfyq+xx4ntmsXlvnz6fvVr8j/8pcRNBoEjRpBpSK0ZAmyJGGaPZvYrt3oRtST9HjQ1dahHz0aQa8jumkT8R0NJPftQ9TpkZEzjsmSBMkkciqF2mhCltNEd+zA9C7BSQoK72Sws52OXTvQGYzsWPY67ds2A2C02bn0ez/FXZkJCg2kIwQGPSTjMSafe+Hb3gVLmXj2eajEEMrD4JOFr68Ho92Ot6eLNU8+gkqjYfzpC0nEIpgcTuxdMm/+8x+kUxIAcz71aaacc4EiRKKgcIzIag3l9/2P4BtL6f/9H7CdfTb6b32LdCzXZvxO1BoVatuR277Mp5xC1VNPkezuRuV0oa2uQtRo3ruhwnFD8vlI+QPIKhWk08iRCGkpReiF5wm+sRT75ZcjarWg0WCcO+eQ4iGxlhaknp5M+1RmXwsyyDLu732P2PbtyIkEts9eTMrrI7xyJTGbjVhDA9rKqozwXm8vtosuxDRjBqpjsGslYxItWweYdn41UiKFnM6cFnc3+qifVkBvsx+tQU35GCdrnmlm6jlmUokAW155YVg/wX4Pa57IJNqIRyIU1taz6rEHstdlOc2yB+7hom//iIfvuotejQb9p7/E2mcew+/pw2C1ceq1n8VgsRAcPOjv4Nm7l9LoWPZ49zDbMPt9f85PGoKYIuLtZur5l7Dh+aeIBgPYC4uZfO6FVE2aysYXn80KkAAMtLcSCwepnzWXuumzEEXFJn8iEEQBk03Zd50Iojt20HHDjSDL4HaTaGyi7yc/zV73/Po3FP7sp1kRknQ0SmTjJnxPPonKYsF28cUYJownvncv/mefJd7cjGnmTAwTJuL6yleQg0F8jz2GaDBS+o+/I5st+J9/Hv8LL6IfNRLrueeir6/PmZegUmE991w0lZUkW1tJRSJIgSDJjg605eVs9mwmLadJyAnYb8Z7ePfDLKpahEl7bAIOgQEPG194mrIx42hY/jpVE6ZkBUgA3JXVqFQqEATWPPkIokrN2AVn4uvtAUWE5JgIDg0w7vSFrH/uSSJ+H9Z8N1POvYiQd5CSUYX4et6fEJG6vJzye+8ltGwZA3/8I5ZT52OYMJ6UJKGkllA4Efh6e8krq2DtM48hyzK1U2ei0moprh9J2/YtDHa04e3u4tTiU3mi6Qm2D2zHrrMzo2gGqmPYS6jU4jE/L6MNDXR/57tI3d0AhF57DeONP2bN081ZvwlPW5BkIsVpNaOwLlqEbswYUh4P6oICtJWVCIJwTHM4WgSNlvL77ye07E36f/c7LLNm477hBgS1Ilz2YWDNM+CutOBpDWbLbIUGuvZ42bv2oP/t1tc7uO5Xk9jyygqCA/3Mvep6IsEA2157mZ3L30BvMjP1/EsQer18peBKftf1X57c+yTzy+YDMBQb4gcrf8D6voxN5f5d93PtqGu5dcqtaFW5sRcKH208wTj5Zt2w9aXYnklQ2eOLkU7LeILxrDDJ2ymw6BkMJ0hIabTq3Cd/Skoy2NVBfkUV/W0ZfzN31eGTVWi0umGxBgoKCgoKCgoKCgoKCgoKJxsn8tx7qSAIvxMEYZYgCJMP/HcCx/tIojOZ2bduVfagIRGNsvqJh5ESCYa6OnLqe7s6KbWUDivTqA46s6T8fiJr1uB99DFiOxqQw5F3djEMUaVGpdYQXLo055r/mWezWQPNM2bgueO3DN71NyKrVjHwl78w8Nc7EYC2HYOIKoGiWjvuCktmnr3hQ45n1pjZ59uXU97oa3zXeSp88CS8Xrw9XQBIySQAZaPHsnfdqqwACUD79i3Y3LnK6Rani2gwgEqjIRGNoNHriYUyQcdGu4NAvwcArUHH2qcfIxnPOH/1NTfSum0T5WMnABCJRen98U8QDUZ8jz7GwF13oa+ro/vb3yYV8SMlEzljq9Vxdq3yk0wUMXnRVYgqNY6iEhZ85gYqxk+gtD5I6Qg1k87Mx1ZgQJbJCpBAxuHAYNERi6bovuVW/GmJJ/72B5Y/8RCrH3+IF/7+V5IL5tHzwx8hWczs3LiWTS89SzySue8tefl4e7pz5hXo6znq34PC0aESVGjEXAe/A2rlBwglQkSk3PUxlAgxGB3M9GU0Yhg7FtOMGVkBknhLC4P/u4/uH/yQwOLXkLzDFa3ldJq+liaahzyEfblq10NdnSTj8WHrZn55Zt3s7why4dcncs6N4ymoGu6g1rp9c1aABCA8NMiGF54mJUnIssye1SuQ5TSynGbPquXI6eEiLG8nun49nTd/heALLxJa/BqdN3+F0FsrUQGdX/0awVdeJfjKq3R+5auogOjGjXR9/RZCS5YQeO45Om68kfDatYftX+Hdkfr78T70UPbngh//iKF77mHwb3/PPF///Gf8jz9BbNs2Bv/2d8IrVtD/u98Ta2jANGfOwX66u0m0th7RmNFgRmjEkpdPNBgEISM0ZXHlKrULooggCgx2tDHjoiuQkklat24CICVJbHn1BQpr6hAEEU9rM00bj++9oHa5UFltRNatx/OHPxJctozU/meHwkebRCzGiof/lxUgAWjasBZ7VMP2ex7O7i2CA/2sfeYxxsw/A53JRCwcYueKN6ieNC1TZ7/tL+L3AyKJWBSAPWt6sLkNlI5woDVkDP+e1gDjFpQx1Bshr9xCqq+b9JCXREcHuqpqhu5/AE1pKT3f/R6hN9/E/+STdH71a5ms26EQyb4+JI+HRGMjqf5+ZDmNbtRIImvXIWq16Gpr0ZSWoS0rI/DqqyQ6Oj/Ab1ThWEj5fZhPOQXzWWcR37Mb84IF9P70pwz+85+EV66i/49/IrpuPQZtmv72jCikVq+idIQDm9tAxO/HWVbOYGd7Tt+DHe0MtLcx+dwLWfnI/dl7fqi7g2X338OI2fOG1Tc7naQHgpRZyjiz4kwGIgPDrhvVRhQUPiiiu3YReuklohs34r7tVkSTCcO4caSDQdKRMInODpLt7Qzecw8kJRKtraS8XjROFz3f/wFD99xDeOUqum+7jeCrr5IOhVGlJcxOHRaXnu59PlzFZkLeOAabBllqob+1mZSURKM3DJtLXlkFrZs30rlrBwBSMsGG55/Elu/m5bv+SPOWjbRt28JTv/4J/W0tWQESgNDgAFtefYF0KvWBfn8KR0YyFsNgNrP6iYdIRDPP8f62FvasXoGoUhMaGiC5voV6Wz1RKao4dSmclDiLSlj1+IPZc6DBjja2LXkFQRDo3dcwTPQhFgqy+cknSRxB0KOCwvHE19tDyDuU/VlUqXGWlLH99Vczz0hZpnH9Gry9XZjsw4URLE4Xu1YuQ2+2oNKoScSipFMpUkkJQRBIxuKkkjGigQT55RbMDj073+rB4hr+PCeVou/nv2Dgzv8jsnYtotVK3le+gtTdQ2xnw/+zd97hcZRX375ne9+VVr03q0sucu8NGxswzfROSEhCElJ405MvPSFv3vSQkELovWMwBtu49yYXSS7qvay0ve/M98faa4RsAsQGEua+Li6sZ542o9HMM+c553fQ19Whq64m2tOD0maLC4ZEIgSbmlDabPR+//u4X1mFZ/Xr9H3v+6jsyfR+93vEBgZRmoyEjhxh4Gc/Z/ivf8O3bRv9P/0ZruefQ+CkAIkoIYbCiF4fEYcD0eUiOjyMjMx7xdHdydM/+jZv/fN+Rnq7EwIkAH6Xk10vPUc0EmHQP8iIy4XHMURSRuY7vgW7OLDmVXlt+glEEhR4BgfoPHIQgFgkwv7XVwECkWCArQ8+kBAgAdjyxEMMncHOICMj8/5QJ9no+Z+vM/Lgg/i2bmXgZz/H8/IrSMlj90P+XaKDgwSPHMG1ahX+PbvjQhYyHxpRpxPflq04n3mG4K7dEI0iutwoFApcr76G6HYz/I9/MPTnPzP0+98TPnJkTB+xQIBQQwPR4RGi/f3ERoaJ9vQQdTggHGHg3ntxv/IKnjVr6Ln7yyjUamIuNwO/uBeF3sDAL36B8/HH8a5fT/eX7sa9Zs2/dU56s4b8mhTaDzuwZ5voaHRQMSOTzoZh3EMBTuwbYPyiXLwj8eCkWNSPKMaQ3pGc4+3+E4fWrUFnHCu+4nc5iQQCSKJI5ZyFbH/uCVwD8QC+gNvFm3/9I1XzF49qo9bpyTJmMhyQ19Tvh4C7H5M9ha1PPZJIQuXs62Hvqy9gsNoY6RnrF+bq7yNzXDle+ftF5j+QwIH6uAAJUPjwQ3jWrh1Tx/3KKqL+uL+Ob8dOOu+4A8/q1Tiffpr2m2/Gv2s37bfcyvA/H8S3cRMD9/4ST2MDktNFz1e+inftOtyvvELXF76I4HHT8z9fx7dxI46/3E/HbbcTbm8fMyZAuLMT35ateN58k2hPL6Ejh+n59reJjoxgUI/djzNrzP9W8H7imni9jPT1EItGcPb24Hc7Rx23pKbhGR6i/aRfhhiLcnDtahRyYqB/G0GhYOuTjyR8EdyDA+x66Zm4LUyCkD/yvvuMjoygG1dC73e/y/CDD+Lbuo2Bn/0M1/MvEB0YOMdnICMTRxCgYdP6uD+gJHFi93aioSDat4nsOft7uXzc5QAcHzlOqi4VhfDRy+KEOzoTAiSnCHrCxKIiZruOnLIktEYVI71+oqEYkf5+gvv343r5FQL1B4n2nz0R2/lCYTHH/8b/Ht/7HvzVr3A+/gTIwrEfCTqjmkW3VFI+MwOdSU1BrZ2MfCvN+wZRKAQyS6yJuAWtXoejsx2VVoveYuXg2tcZ7on7cgV9XrY+9SjajAyKXPH9505vJ8JJR7QWZ0tCgOQUjzc9Todbttf9NzLoCZFmGf03fernHleAIV+IqCiRYRkrQnKq3pD3zMIh7sEBkCTqLrqMGSuv49J7votaO7afU6i0WiKyCImMjIyMjIyMjIyMjIzMx5jzKc077eT/355WTgIWnscx/6MIh4IgSfQcayK3qpbcymrEmEjI78M3MkzRpCkJcZJT5FRWc31eGfeY7kFCwhV0kW/JTxx3vbKK/p/8JPHz8MMPk//Iw2jy8s44B0kAxBiqMwQiq1JTiPh8CJJEuLub4MGDo477d+wg2TtI4fgUjDYt/W0eDFYD46amozOdOcuPM+RkeuZ06gfrR5VPSpf1aT5uaBUKiqsncLx+Lyq1BgSBUCDAUHvbqHpDne1Mu+JaTuzZQeRkILDebCGrtIK9r76E1zFEUmYWI709mJLsTFq+Ap3RxOzrbkESY/GA+HfQcfggUy9dScfhepKMZiKShK66Ct+uXejG1xLp60PQ6bAYDJjtKXgcp4M1VVot6dmpjJ/m49CGAWZcsYC8qioiQQ89x5o4sWc7ky+6nMaND+Ls72XctLlkFKYl2qflmymuS6OzYZj9h6HyNw/R2bErcW4AYizGgW2bqC0rgwm1NP39D0BckRig52gD+bUTadq6cdR5JSedewc3mdHkmHO4s/ZOHjj0AL+c90u0Si16lR6zyjyqXoYxgxJbySgBJK0yrmwdiAbe2S0A4Z4eOj/7OSInHRZczz5L6le+jP3Tn0ZQxDftupqO8OxPvocgwLK7vjqmj+K6qWi0Ogpq7Wj1akb6fAgKgdKp6ai1SvTmM29WDba1jCnrPX6UaDhE5+F6ymfPJykjExAY6euh48hBpl1+9Zg2MY8Hz7r18A6n9+Dx44QaGxPOIABIEq5XXiHt298e3Uk0infDRkwz5QxXHwRBq0WZZCPmdMZ/FgSChw6NquPbtg3LiktGl23cRMoX7sK3ZUuiTPGOYN134gq5GA4Oo0+xo1Sp6DnWRMH4SbgH+7GkpBKLRimfPZ+mLRsSbRbd/lnCgQCl02cTDYdofVvwXHHdVNKLStCZrUxavoJ9q1+m+2gjky++/ANejbGEWlvpuPVWYied6lxPP03mz36G7YpzN4bMR0PI56Wv+bQQXfnMuSRlZSPGRMZNnUnj5tOCeH6XE41ez6Rll3Jw7WoCHg+5VbWkFRYT9HoQFApsmVmAlAiWq5qTTdshB+5BP1Vzsgh6I2gMKo7u7GPS0nzcAx5StF7EsIgqNQVBpyPpxhtxPfc8xlmziDqd6CdORAwGCTQ2oUpLRfL5EfR6go2NGIwmlBYLXV/8EqIrLuzjfukl0r//PQStBmVSEgqtHCT9n4IgQXR4GMvSJfR87R4inV2Ej5++Pw3TphHcvx9iGmxp0yifoSY5y0jPcSfpBRZsGToOvrWa/NqJo4KMAQon1LHtmceYdvnVjF+yHJ3JhEKhoKvxCB2H65l51Q2YU1JRa7Q0bH6L6vmLadu6g9LKq7im7Bq+vunr3DX+LqpSqlAqlGQaxor9ycicD4JHj9Jx082IJ8W/XM8/T8aPfwQqFaLPD5KIODKCFAyiyc4m6nCgSEpCmZaOFImgyc9H9HqRRBF1djaR/gHUhQXYgi4G/TqKJ6Ux3O1FAHIrkyielM6xbZsAaNq2iUnLLmHnC08DUD57PqVTZ7L2H/eNmafOZGbW1Tfid44Q0vgwWG24hwbH1OtqPEIkFERr+PcyFMqcH/xuF1qjkZqFS1Gq1SiVSk7s2YkkxjDbU+g7dpTp1ZOJSJFRNi8ZmY8DQiwWDyyXJKzpGVTMnh93/D2ZKUtnMo9pM9BygpDfh0Z3dgczGZlzjd/lxHwy2FahVDL5ksvRWyzMvOp6+pqPJ9axrfv3MPXyq3nrn/efrKuidMYcNj7yD8pnziUcjL9PBaUCQQKFoEBjMKJQGbCl60GAA2s7WHhzOUnpowN2BIsF68qVRAcHkUIhrJeuwPnc84SOHEH0enE99zypX/saoRMnQHnSIV6pQFOQT+DAgTH2K+/mLeirqwm3tqJKT0PQ64l0jHYAdj33PJblywEhPmeFgBiLIigEok5nQmhYRua90HO0Ab/Lid5iPaPgdM+xRiKBAJ2BTnyNx7BnZCMoVcxYeS2SJOEZGuLIxnUMd3cScLs+gjOQ+SgRo1HaDx0gt6qG3MqaxP6vs68Ha1pGQszs7biHBskoHvcRzFZG5r+HcEvLmCC1kWeewXLxRZCedpZW7x8xEmHogQcY+eeDQHwN4qyoIPf+v6BOO3fjyJwZSZJwPfscA7/6VaJMnZ1Nxk9+AkgorVZiQ6PFngX92ODycHMzUiSK6PUiGPTEBodQWi0gKPCsWzdmPepevRrzkgviAcaxWMKOdoqhP/4J88KFqFJSPtB5qTRKpl1ayPpHmtjy7HFmXl6Mc8DP9EuL0Fs1REMifc0uiiamcnhjN8mZmQx1dqI1Ggn5Tr9XlCoVaq2OSCiIs78XtU6HIChGiZWkF5WgNVmAuFD22/0tIJ6YIDW/gOVfvIdoJIJGp8PnHKEt6KAkp/YDnd8nlYjfTyTgp+6iy1CoVAk72EBrM86+HorqprJ/9Suj2qQWFOLs6ebEru1MWLIcS0rqRzR7GZn3j8Jy2jYWam9HnTr2mahKSUFlMCCGQjj+8ffRByMRvJs3o9BqeLvEkmXBAvq//o3RdaNRfFu3oauuJng4LmgeczgIHj2GJn+0XTnmctH/05/h27w5UWacOxeF3oDnRBPj88Zzfdn1LClYgoREi7OFLHPWmIRHAP6InwH/AHqVnnRj+r+8JjqDkYLxcb/IUDBAWkHxqOMGi5WD63YAkFc9npyKKsSYKIuQnAP8LieW1DTKZs5NiEAe3rCWkM+HBFjT3v/+vihJhI4dI9LdParc+eyzWC65BIrOxcxlZEbTc7yJ0umzsOfkAxLuwQHaD9WTW1mdqJNRUso33or7+E3PnM7MrJkIJ/ctPkoU+rG+bRrJz9RLCgl4wgR9ESpmZiGKEnqjkr4f/hDfxvgesuuFF7AsX0bGj36E0jRWWO98EWppSfiHnsK9ahW2lVeizck5SyuZ80lyppH515cTvDSCVq9CUArk19opnZrOcK8fQQHjpqTjGvaQXzuR4e4uvCPDBNwupl66EkGpRKlUcmznNvweDxFN/B07J3sOUTH+fgjHxibDFCUxcVzmv4sBT5AC+2hfEq1KSYpJS58rSJ8rnlwi/QwiJOknRUj63UGybGOfca7+PgCsaelUzVv0L+ei1mgRY1Fi0ShK1fkM65KRkZGRkZGRkZGRkZGR+WCct69VSZIWnK++/1uIhcMolEpqL1hG0ONh2zOPA2C2p1A8eRoqtZryWfM4um0zSpWKCRdejCnJznHnZv7f9v9HTIxxacmlZJgyqLBXEOnrY/B3vxs1RrS/n2BjE36dHWd/gHAwRlK6gdS8k5t+goCEgGnBfFwvvIB40jlB0GiwrVxJwgwtcUZiyalkFPrwuSMkZxhwDQWIRUQsyWd2qhcQKLIUcVnJZbza8ipKQcnl4y6n2Fp8xvoyHx0qjZaJE6cTisZo3LKBOdfdzIndO8kfP5HD698YVTcSDLLwtjvxDA2gt1gJBwKc2L2DCUsvomHTemZefSOHN6xFpdXQdmBfQl1aqVaz5DNfHDO2PTsXn3OYuTd8Bo9iHMa/vkr9MRcZP5iNzy/S4QiQ85cbaWz1Me/GL7H92b/j6O7AnJLKgsUXodm9jfSnnmbc//sR9W89waFtGwAwJdlZePtnee2P/0c0FDcS1r/xMiGfi+krLmPnqi5K6tLY9nwzAAqFgCkli3dqDKu0WnRmC6r0dITBIVQaLbFolKPbNzPzqhvY99pLFE+ZTsGEOtoO7EWj1zPj0muwRuRsh+cbf8TPhbYVLK69jFBPhJDZzY9OfI87au6gw93B1Oyp6FQ6knRJfGPKN/jdvt9x2HGYLGMWN1beyJNNT/Ld6d89Y9+ho0fHbDAN/fkvWJYvR5ObSyQYZNszj50MbFCgUKuZfe3N7HrpGcKBAAUT6iieMh2/UyS90Ip7MEAsJqHTqjDatFhSzh6MlJJfOKYst7IGBIHqhUvY++qLCSGJjOJSJl106Rn7kSSJMz/QpdECJIn6JAKpxh6Q+SCorFbS/ud/6Pr8Xe+/8duuu+Wyy9AUjb0vTnF46DA/3PZDmkaamJExna/d/Q02PPAXXIP9WNMyUCiViNEokWCACz//FXwuJxZ7CvtfX0XPsUYAMkrKSC0owtnfS83Cpbgdg4m1SlJmNjOvuh6VxsL6hxvJrUgip8KO/h0iZB5HEOeAH5VGSXKmAa3hzCJlpwgeaUCh16EqKyN0/DiIIoO//S3GuXNQf0CnTZmPB3qLleoFF9B+6ACF4yfRfbSBppPB52mFxUy9dCW7XnoWiK9BMopL2fHcE/icI+TXTiTo8zH3xttY85ffc8FnvogxyY4oxWj2tJLtyWe4x4vRqqG/1cX+Nzoon5FB9jgbtlQ9RzZ3Y882ES6qISRBLBwj6I1gnjEeT/48epp9pBdYEDIMDHV5sGebsUSHoC++KYgECHFHg1MCJKcY/ueDWJYvJ+naa9EUFHyIV1Tm30GdnUWwsYFIIjvp6PeaYcpkRp57AfMXv0+xVoOj00tX0wjWVAPphRZ6TgxRNKEOS2o6E5ZezKF1ryNJEpVzF6HRGwi4XdjSMtj1wjN4HHFxhHHTZlG94AK6jzawf/XLIAgs+cwXOLhuDYXTp3PYcZhMUyZfmfQVfrPvNwzXDzM5fTKXFl9KIBqgMqXyQ75KMp80/Pv2jwmcGHn4ETJ/9b/xH962DlFV1RKecylD3T6sKTo8jhC90++m5PNpxGISEUlCY9MyLIGokBhsGibgcVI4PoVoKEp+dQpbnj5G7dxaWvZuxzM0SMfhemZfezPWtAwaNr/FgTdexZ6Tl8hOBzD5kito2LT+9FqluJTyWXNRqceuL0qnzUJzhuASmY8BgoDBmszMlTew/dnH42IOgsCEJRcTi8WIhsMUTZ7GkMbD16d+HZP6w3MqlJF5L4hOJwarDVt6JpVzF7DzhaeJRaOo1Bps6ZkkZ+eOaVM8aRp6i/UjmK3MJxljcjJDXe0nv921HFq/hpHeeMbJggl1VC+4gMNvvYk9O5eRnm4u/NyXcQ70oVSp2fPK8xitSWgMRkyiBIJENBxBqVKh0RtRqFQoTMmEXTHa6h2k51uJRURa9g8iShKCQkCpUqBSKRCu/1J8uR0RGZEkxC9PQ+X3o9yznsCff4V71Srsn70T/85dqPPzEYMh1NlZZ84cK0lxO5V08iPtbEjS6cOShCBJ8SIJhDOsG2RkzkY4EBerDnjcmO1j7VLjpsxAazIS9ARRa7WEgwEaNr1F+8F49mp7bj7Tr7yW+jdfQ6OXxfE+aeiiMWoWLmW4pythUzUl27ngM1/EPTSAKdmOd9iRqK9QKhPiUTIyMh8c6QPuXwX9YYY6fficIczJOuw5RrT6s68bIh0djDz8yKiyUGMj4eZmWYTkQyDS3cPgffe9o6ybmGMIwWzGfuedDPz0p4ljmqIi9DXV7+wmjiQhSSKJHPGCwNn3TaUz75uernE2t5p/yVC3m5A/SjQsUTkrCzEmodGrKJqYit8dxp6tY9lnq2mtH6KrcZiFN5cz2O3FmlrO7Gvt7HnlOVwD/SRlZVMwfhLZpZW8/pff4hkaJBqNcMFn7mLLk4/gdzlJKyymfNY8tj35CPm1E4lFo6h1+lFJWSrnLqRp62aO79wKgDU9g3k33UFRWiYV9ooPeJafTJSCgNZk5tC6NQR9XgRBwfglyzFYbQQ8HkqnzcLjcHBi93ZUGg2TL76ckd4elEoVUiyKo6P9P16EJOSPMNzrJxqOYUs3YD6LP9kHRRQlXAN+gr4o5mQtGp2KoW4vflcIs12PPduISi2LOXxYGCZNQpWWRnRggJ47P0vuA//A9eKLcbFz4klbrKcSkEjSWdxXzvI0FcWxZdIZys7Qabi1dZQACYBvUzwRzIH+/agza0nSJ/G5dZ8jHAuzNH8ppUmlxMQYSsXp+6fF2cK9u+9lW8827Do735n+HebnzEetPPu6wWi1UTJlBo1bN7LotjvRGAzUXXQZ9WtXEw2HEUWJ9MJi0guLEUXxbf6jqaQVFpGWL6tafFDMyamMmz6LnS88hRiLodbqmHn1DZhsyZzYuYWCiXPob3eRlG5Eo3sfbtRnfeHLvlQy54dxU2dxYM0qju2Ir81S8wuZfMnl7F/zKiqtlrqLLkOt1xNRRbgy70qKbcXEpH/PTzUUiuLo8OAZDmG0arDnmtAb379wjyonB/OyZXhWr06UGfCjUJjRGtX4PRF0JhWCIKALOhg4KUByCvdrq0m+/VPoq6v+rfM5J8j+kh8pSpUCo1XLUJeXtsNDpOeb8TnDKBSg1ioRFALEtBiTkiicNBmt0cSMldez5cmHCQf8CIKCSctXYLLZeCJwnNnZs6m0VyKelD0rshaRYcigz9+XGHNm1kxyzLLwzH8jA54QUwuTx5Rn2XT0vE2EJNM6VmQkzRz/nul3vzOyII5rMC6Oa01/b6L4Km1c1CQaDssiJDIyMjIyMjIyMjIyMjIfS87516ogCDdKkvSoIAhfPdNxSZJ+fa7H/E9Fb7agUCrJLC5lzV9Oi4d4HEPse+0lSqfNQq3VsvxL9yCJIkd3bCF/Yh3/qP9Hou5zx58jx5wT3+gXRaRwGOvtt5F81VWIPj+RgX4C2VUcXNXGYIcHo02Lc9DPwpsqyC1PRpuSgr+nB0VWNtl//AOhhgakaBRddQ3GmTMQBIGoz4cmJxtdVRXBI0cSY6f85KdEwwIIAvXrOvA540rAJ/YMMPWSQrLGJY055wxTBvphPZXJlRRZi1ALamqUxXh3tvJSy3pKpkwnv2YCpqSxxh2ZDxfRbsMhFaK1pVBzgRHvSIyiulIyS9QM93TT03QEhVLJ+KWXYk7JpedEBLM9HUkSiERExk2vwtEdY84Ns1HrFJROL0ap7EwIkADEIhGGu7sonT6HYzvim70qjZbZ197OyICGpm1equfreeOh44ybnM6RHQ76W93MurKENQ+dQBIllCoFxZM+xfyVEsLGN1Hvq0e7YAGanBw8UV9CgATAO+LgwJuvklVaRseheiCeCcg7MkxGsZYFN5VxfFf/yXkomH5ZMU3beykeXwPEN0Kq5i3ClGxnqKMdx5zppBeVMP3Ka9j4yAMMtrfic44wcdkKcirGIygnkFV+CbGIwLGDUTKvkjPZn29cXSGat48w3OtHjIoM9/v46W2/5dZtV/G/8/6XI44j1KXXAWBUG/nc+M/hDrtpdjazr38ft1TdQomxgEh/PwqzGaXhdOCiFI1BXh4F9/0JKRgkFo3SdeNNSLH4RkQkHMI1EL9/FEolsXCYrsbDLPrU51EoVfQebyLgdqMz5eIbDCXEbgAat/cy4/JiwoEYOeVJCIKAo6uD47t3MNjWTMH4OubddAebHnsASRTJrqiiZMp0tHoDI7099DcfT/TV13wM58mgkneislgwL1qM68WXRjlo6EpK0JeU4F279vSGmSBgveRiggcPju5EqcQ0f94H/yXJYJw9m/zHHyNQX486MwtdVSXBIw2J44YZ0wm/Q/DGsHAByskTSb3na2gLi9CPr0VpHpthG2DQP8hXNnyFPl98U2yBZRk7XxQpm3s3tkw1ak0UrTGeBY1d23j9vt9QNHkapmmzEkG9AH0njlI5dwE9xxoxJiVxaP2axLGR3m6c/X1YMypp3NZL47Zepl5SyOTlBYlMGoMdHlb9sR6/O4xCIVC3LI+qWRkYk40EOzqQ3G4EiwWFIKDJzUUMhfDYk+i44mL8AT/jPn0bqudfItbQCLEzOQ/J/KcgiSIDrc3EohEyiseh0RvoPX40cXygtZnssgoMVht+t4spK67A2d9Df8sJUguKmLJiJVqjkXDAzyVf/gYGq43hmJue2AAp4XSa9vdRv64LSZQon5lJWn4UZ7+ftkNDNGyJi0yc2DNAcpaRWStLiEUluo45sabq0ejVNO8bpHnfIEUTUymakML6hxuZdUUJWROnIHa3Y5g5A3VNDYLHS/6zz+BauxbvSy8T7e1FCoUwLVqEKi0VpVEOKPpPQWWzoS0rw7djB/rJk9Hk5qIpKiLc0hKvIElY7n+crhYfRkuUDY+dvl/t2QbqLtTiGgxxcO1qcitquOjubxCLRjixewfr//kX5t98B/vXrEoIkAAc37mVpZ/9EpseezAxxtanHmXKZSsZyVHiDHWQZkzjl7t+iSfqAWBP/x7USjWOgINCSyF6zdjNbRmZc4X0tiADw5QpaKsqUaWlgVKJJjcHKRoFvR6CITx5dWx88hh1S/JpPzxMw5YequZk0bClh5RcM9llSXiGQ2j1KtY+2EAkGHdyO7qjj/k3lNG0o5eCmhRMqZmUzljIsR1v0Xv8KKZkO8k5ubTu3w2CwPyb72CgrZmQz4febEEQhNFrleZjZI4rI+D1UDl3IY2bNyBJIoUTJlM2YzZHNq2nec9OssaVUTx5GslZsoPQxwG1VovObGbLE/+MC5AASBIH1rxC4YRJ2HPzKa6bgd7uIybG0KvlZ5/MxwuFWoNSo2HqZVex9u/3JTJoRiNh1v/zfi66++tMWHoxB9e+jhiLklFcytTLVqKSncZkPmRsaRm40jNxDfTh7O9LCJAAtB3Yy4yV12FOSSW1oIjNjz/IRXd/nf2vv0LI58OUbGfJ5+5Ga7Cg0ZoQlJz81lcgqFQ41F7CbVG2PXLatqXRq5h6SQF+VwSFSkBnUKE1qFFqFKhUApGwSCwiEvBGiEUgljeXjCu6iO3fgXHuXPQTJiCcdLQUtFp048ejnzkTolGIRJCCIVQZ6Tj++U+Mc+ciRsKEmltQ5+QQ6Tptb7ZefjmCXo8UjSaCkAWVGikWQplkQ5M7VihIRuZsZI4rRxAUSJJIf/MJahYu4fCGtUiiSG5VLeOXXIRCoaTQVEi0JIXupn0JARIAR2c7npJSFt72WWKi4l1GkvlvRNDpsKZnsP3ZxxNl3mEH+19/mcmXXMnUy65m14tP4x12oDUYmX3dzaTkFXx0E5aR+S9BW1yMKi2V6MBpu5ztyitQv4uAdDgQ5uiOfurXdWJN0+Ps8zN5eQHl0zNQniVoXRJFiMXIf/EFiEYR9HrabrkVMRI516ck8zakaJTI4BAxtwvp5LXW19VhXr4MVVISyowMlBYL6qwscp98glhvHwqrFVWSDWWynXBvb3y/SQBVSgqaoiJCbe0ok5IgFEaZmoLkDyAoFBhnzsT96quj9lOty5cRdThQpaYgqFQojIZEUD1Ayuc//4EE9Uf6fHiH40HoW54+jscRTBybuCQPpUoAbLz+18NEw/H5HN3Zz4zLixnsNpJRmMTs675yUkzEii09G71Zww0//TUBj5uh7g5cfb2UzZiNxmAk6PXQVr+PvuZjTL7kCurfeI15N97Oun/8GUkSERQKMkrKWP/AnxPzcPX30bhpPdOuvxG1Qhb2ez/obXbe+NWPE3YwSRI5sGYVy7/4P1jTM7ClpZNRXELZjNlIkkj92tdJSs9koLWZkN9HbvX4j/gM/j28zhCbnz7GQKsbW4aBgCfC4lsqSMk98z73+yUaiXF0Rx+bnzpOLCpisGqYc/U41j7YSCwS/3tZeHM55TMyE3vYMucXbVEReQ89SODAAWJuN4q8PLL/9CdCR44gxUR0VZWYZs0CQKHTYf/U7XTt3Xu6A5UK45w5OJ99dlS/7nXrSbruWgL7Tn9zoVRinDWLkcdOr7mVSUloy8rGzEuMxvcpCl5+CSkUAp2O9ktWgMnITvVxqkN5/OnAnxL1X2t7jTRjGmmGNLLMWcQ8HsJeN4+3PMq2nm0AOIIOvrbhazx+0eNUp5xF7Ip4YKnZnkp6YTGW1HT6Thyjec9O5t5wG3qzhf6WZgom1OFzjrDliYcS7TyOQbY99QRLPvcVDGZZdP2DEIuG2fXCM0gnxWoioSA7X3iaS//ne+gtqfhdArFImJA/SlaxDZXmXwsWKQQBbVkpqqwsoj2n7W3Wyy9HKfu7ypwnvMNDdDed9tsebG9lsL2N2dfejN85QsPmDdhz8vj8hM8TjoXRKDWs61jHbTW3faDxJFGidd8gO15uJinDiGsgQPXcbCpmZ75vIRJ9STHJt9+Gae5cwm1taIsKcSdlcWztCYa74wkzm/cOUDk7C3953Le2YNUrSIEAGAy0X3RxfJ/6Q0RbWIg6N5dIZ2eizLLsQlSybfkjZ7jXx4u/2UdOqQ2TVcvmp077zCpVCi7/2kQiwRCekWGMSTbe+udfCAfi32ySJLL31RfJraklLaOI7oH9GNQG8sx5QDy24U+L/sQTTU+wt38vi/MXc1nJZZg0csKM/zZC0RhOfyQhJvJ2Mq06WgZ9dI7E/WeybGeuA9DjDIw5BnEbsCAoMNne27pAnRAhCaE1yGs+GRkZGRkZGRkZGRkZmY8f58P7+VT03bnZMfwvR6HW4OjuHFPefbSBKStWEgr4aa/fj9ZopGLWPDzK4Ji66zrWcXPlzcSAvGefQXQ46P/JTwjWH8QwZzaB6yux55iQJHAPBSidnEH30RFSckzoTRoMWVnxjgoLMM2YMXaOej0xs5m0b38L3+YtBPbtxTB1KvrFyxjpDRAORBMCJKfY/0YH5dMzMdvHGmCq7FXEpBh9vj7K1AXs/uMDuPpOBoju2kbdxZcx57pbUKpk54WPkpFhD3vXDRL0RcgoSmH3qlaKJqTSdtiDNf0qJl54AyN9ITzDWg5tCNLRMMyUiwvZvaoVc7KOoC+Jpu0DTF5ewLbn29CbNZRMdI4Z58imdUxe8T/kj59PwO1Fkqy4R1LZ9UozOeVJtB6IO4nZ0vUc39NPcqaRvlYXkhh3Io9FRY7tciEGbUwtLcVx/1/R5OSiykhnsGvs31bv0SZqFi2h41A9+TUTyK6opv3Qfva++jiFExehM8Xv2YqZWexb047fHUatNTLvpq8y0LIPUZTY+cLTFE2aytDIEBt+9QQ5ldUsuOXTOPt6saamkWFNZcMzHpz9/lFj9wwEyZaT2J83JFEi6IxitutxDgRQa1VMvaiQhnX9XDn5avp8fYiSmBAhKU8up36wnsHAIHa9nUJrIbMi+QR//GtaNm5EV1ND2le+jL6mBgDNxAnkfOub9H3r24Tb2zEtXEjeww+hyY4/Qw0WK7WLLmTrU48gxmJ4R4apXbwMR1cH7qEBbOmZHFq/htzKfiTlhFFzj0VEXAMB9q1pZ8XdE1CpfDz38/+HZyh+/x/bsZUpl65kyWe+SMDjxpaZRUZJKQBdDe8QCQG6mg6f9TrpJ9eR88c/4nr5pbhw1RVXYpo1k9jgIDl/+D3OF18EwHrZZWiKS1BZLWT/5jc4X3oRpcGA9YorME6f/m/9rj7pKDQaDJMmYZg0CYD07/8/vOvXEdi/H8O06WgKC1Do9NjvvJPA/v3oFy3AN60SXXE1hhmz/2X/Pd6ehACJUlBid2dzYsSHJVnHjmf+xEhvFyq1hhlX30TdRVeRVzOVgZaG00Ggb2Pz4w+x/Ev30LJ319hxjjYiCXNAgIxiK73NToYPt5JUnktMUrBrVQt+d5iMYisFNSl0NjgY6vRSM92O9MjvCGzZjHHmTJJuugn3m2sJjivi+b/9gUgovtY5uns7F972WTK9QdTpcubA/2T6mo/z1A++mQjCfHuW11MMtrcx65qb8LtGaNq6iZlX38iFn/8yeouVIxvXUrBsAQcUTQQCAZ4+8DQ/m/MzYmIMldvEib1tREJxx7HDG7upW5ZPUqaR3a+0jBpjuMeH3xVGoRQom5bB+ocbmbysAINFg98dpuXAIDnlSVhT9biGgtiyzCjb2jDOnYv7nw/ifv111JmZpNz1ebTl5QQ3bUJbUoKkEBD9/jHnJPPxxlBTA9ffQKitFe+2bWT86If4Nm4iUH8A02WX0T+iILPEyoZHjo5qVzpF4pX/+3+YU1IpmzUXnclE0OvB2d+LUqVi7o23k148jh3PPzVmTEdXJ5Hw6UwYPpcTTWEGTkUnkUiEl068xJzcObzW+lqizo6eHdSl1dHr76VII2c6kzn3RP1+QseOoa2sRDAYSP3iFwidOIE6MxOF2Uxw/wFGHnmY6MAglhUrMC69EEePD61eRTQi0rQj/i1vsGrR6FUc3dlHeqEFtVbBcK8vIUByioPru8ivSUapUrLpiTYyimax8Pb5KFUKYlYVbt/JbzhJYtvTjzFh6UUolEpyKqrZ/fJzY+Y/2NmG0WJDozew8rs/Rms0YUlNY9vTj3JgzatA3M5wZOM6rvzOj+XM4h8TIgHfqGD4U/hcTmoWXkrrIQXJC80U2Qs+/MnJyPwLRIsZ3/Aw4YAvIUByikgwQCwSwTs8xOzrbsaalokxOZekrOyPaLYyn3TSC4vR6PS89odfjTkW8LipWbiUbc88BsBwTxeLP/UFolEjlpQUDm0YIRrx0HPMiShKVMzKpOeYk6TLvaQl22la7R7VXzgQJeCJotIokCQIBWJIgA41AgqQ4nZctVZFNBxGoVYhXHIDtsqSuMBjMIQUjRIdHCB4pAHT3Lnxjk8FiWk1RPr7sVy4DN/2bfh37Sbl85/D+OMf49u6heChw5gWL0JXXQOShKBWx53TtVoEpRKlyYTSnoy2uPh8XnKZ/zIyisdx5Xd+xLZnHmeoq4MZK69n/AXLQRCwpWegNcS3QzVeA2FxhJGe7jF9DLQ2k1c1HrXa8mFPX+YjJiJoGHmbKP8peo42orpCjSU1j0nLL0OMRrBlZJI1riLhcC4jI/PBMYwfT9b//grP2jcJHTuOaf589HWTUCefPfBjsNNH0BshrzKZoU4vBbUpeBxBBjo8ZBbbzthGnZND3mOPMnz/X/Ft2YK2pITcn/8cbc3ZA5Bl/j3CnZ0Ejx9HCocRtFpsV1+FtqAAZUoKoseDb+s2DJPr8DU3I6jURIeG0OTnE1z7JvoJE1BarCDGcL30MsHDhzFMm0bq3V9CX1VJpKc3HpwsigjJIIoSglJB1q//D8+aN5BCISwrVhBzjqAwW0j71rcIHDxE2je/RfDQISK9vdiuvALDB9w/9bnCSKKEayAwSoAE4ra0S+6upfuoMyFAcorje/qpmZ/DW480AZCUYcCapkBQjlAyMQ2jLQmjLQlP1IvY3c2h9W8y48prcQ8OEA4EqF10IVnllWRUVDDU0sJFX/46vpFh9BYbA60nxsyzr+U4Qjg2plzm3Qn5wzj7xtrBnH09GG1J+D1uJFFisL0Vj2OI8hlzMNqSadi0nrSC4v/4BE79rS6S0o3ojWqGOr1kFlvpa3NhyzCgOovQ0zsJeMMM9/iIhkVsGQasKadFi4d7fKOE5P2uMDteamHc5HSatsdt15uePEZmsQ1buhzQ92GhLSxEW1h4uiAnB9NZnpGG6TPI/ev9jDzzDEqTGdvVV6GvrSX/oQdxPvc8oeZmTLNnocnPQ52TQ9avf43r5ZdQ6g1YLl2BuriYzHt/geull9BVVmK9+BK0+flnmFMBuQ8+yMC9vyRYX49+0kTyHn6IXpuEONxL/WD9mDbrO9ZzafGl+HbuZOBX/0e4o4Orls6jcO5t/KL7nwBISLS7299VhAQgJTcPtd5M+8FWLClpTFh6Eb3Hj1I8aQrpBUXsW/0y+eMnjmnXc+wIw10ODBXy/ftB8I6MJARIThH0egh43bQdVpNT6qN0WhqHNvRgNGuw5/xrd2dVUhKR9HQyf/oTvOvfInTsKKYFC9FPnIDqpP+YjMy5pvtow5iyrobDpBeW0HviGBWz56HUqAnHwth0Np4/9jyOoIOryq76QAIK/e1uhvt8FE9Io7/NTW5FMtGIiKPTS075+1+bGGpq4v4ZJxnc258QIDlF49YeSqelx5/VP/s5wYMH0ddNIu+Rh9EUFrzvMf8d9NXVZP38Z3jWryd45AjG2XMwTJmMNlve6/moGer0EAuLTL6ogH1vdIw6FouK9BwfQaNXUjxxCgGnC49jaEwfbscQQ4Yhrhx3JRPTJo4SqitNLuU7079DIBLApDHJInb/pQx54/EuaeaxttiCFCNvNQ3S0OMm2ajBbhpbJ9mowaxT0ebwjTkGEPL70RoMCIr3Jkyu0sTHiIRC/6KmjIyMjIyMjIyMjIyMjMxHwzkXIZEk6f6T///hue77vxFranzz/53kVtVybOdW9q9+GVOynUgwyN5XX2TJ178+pm6xtRi1Qk1MFMHvp/db3ybaG99Mjfb2oVIr2Pd6OyF/3DG+v9VN5ewsgr4IetPZlakHO9po2buLtoP7ya2spmTKTNK+fHfiuM8ZQJQkohFxTFsxJiUyDb6TNGMai42L8Uf89B46khAgOcX+1a9Qu+hCOUvxR4waFWLs5O/25O9SoRSIRSVaD7pJyS1g35ohMkuUKJTCmHqJtieLI6EYyTljnbzLZizk8GYXueXJdDRE8TndTLkoOdFPODj6/or3PfbeiiHgfOJJNDk5+HftJNh0FNuFF4ypl11RRdjvR6PXk11eybanHwWgcMJkvCPNpOcnYUuzoDWqySjSkJwewu8+js5cQPmcZbx477cAyBxXytan4m07DtXTcfggk5degu3J54iUVBENzxt7UeVsh+eVUDBKOBhjx4uns7B2Ngwz44oStKYa1Fpp1MaAWqlmcsZkqlOqkSQJtT9Mxx2fJnToEAD+bdvobGig4Nln0OTkEGtupvvLX4lnRQHcL75IzOVC/d3voDm5yVQ5byHhQID9a17BbE/F0dWBa6Cf9oP7EpsafSeOMf/WgjHzlyQJJHD2+5FibQkBklPse+0lrv3x/2JLy0BnPL1BmFczgc4jh0bVzas6e0YkldWKeeECzAsXjCpX5OWhzsvDvHjxmDaWZRdiWXbhWfuU+fcwjK/FML52TLl54QJC0RASEmmqsaJeZ8OitaBRaAiLYQQEkATyqsw0bXmSkd6443s0EmbzY//g0v/5KXvX6Fh40yJCvqFEdtdTFE6oI+BykV5QzKF3jJNTMYmYoGTRjXqO7liDFBUY8c9DezyAkFVCb7MLhUqgoMY+6u+y7ZCDpYsuQVz9Gp41a4j095H2zW/R0dyUECA5xa41q7jy0196z+cu8/GkZd+uRIDmSF83NQuX0n5w/6g6aYVFbHnyYQJuF5bUdNoP7uPg2teZc8Nt1CxaSr3Uxm/2/oYbK28k35qPJWgnfMjM7v0dpGSbKZuWye5VrSc3lV1MWJzDmZaioiihOOnTKMYkJHjbOib+LFYoFSBJhLq6sc+cifPpp3G/9DIAIZeL7q9+jdy//JloZhaCyYzCaCQ2MoIYCqGQg0X+ozBMmohh0mmHPuPkyQB4t+9AMhSjEARi0dPPxOQsI92NW5AkEfdgP2n5hXiHh9n4yN9RabXozRYaN29gzvW3kltZw/Fd20aNpzWaiL5t0zh3wkS2+/bxfNtLdHu7ub3qdjZ3bx7VJsuUhSiJqITzoR8qIwOhE82IPh+IEln33svAL36B7ZprCNbHHbv6f/ZziMWDC0YefhjNhEmIajsKpQIJSCwbJAmFQkAgLg6IICSEI99OLCZSUJPC7lVtqHVKiidm0tvswj0UIK/aRGZ5HgqlEjEWIxzws+vFZ8ipqMbR3UVqfuGY90deZS2Fk6ZgS89EZ4wHgTq6Oqh/Y/Woeo6uDhxdHbIIyccEjd5IcnYuw+8Q5dWbLbiHVHiGY8yx16LWvrdABBmZD5VIjKTMHDoO70OpUhF7WwY+jd6AKTmFijmLiQR9SGKUhg0v0X4gibKZc7Bny1nyZD5cFCoV9W+uJnNcGc7+0TZ4g8XKjueeQIzFUKpUCMAb9/+Oy75xLz6XKrGXMO2yIk7sGaD9kIO6FXls4VUySRtl+01w0rbF25cAwujDCkHi9MeaAKJIuL0dYjHEYBAiUYhEcL34Ioa6uriIiEqFoBCQYiJEIygMBmJOJz33/A/5jz9G+j33nMvLJiOTIBqJIAgC4y9Yjt5sJjkrB2ta+jvqhHH2tbDqdz9lzrU307D5rVHH04vHodbriYR8QMqHOHuZjxqVzoA1PWNMeXZ5FeFggHDAhy09i1g0jDHZjsYoBxXKyJwrjNOmYpw29T3Xj0VFWusHcZwMgutvc5NRZCGnwnbWNtHePgZ/9X8E9sftFIH9++n+ylfI/ev9qE8K0MucO8RQCN/WrfH1olJJtLcXbck4RK8XsaubwT/9ibQvfZFwewe+zVvQlpYi+nx4W1rQFBYScziIDQ/jeuFFon1xEX/vunWEmpvJf/QRTLMKzzq29cIz749aly2L/+OqlefgDKX4UvoMtjRJlBBjEmJ07DExJuEaDKBQCUy9uJDhHh+Obh/9LW4sdh3pBVYAFMkmsiurmaXVsvvl58itqqVwQh1iLIZroB+VTsvG+aRo2wABAABJREFUh/4OgM5kRqXVMnPl9WPGyy6vwmyX1zPvF5XWhD07d0xyKpVGgzklla1PPcLRbZtQabToLRaatm5k4W13Urt4GXnVtdhz8j6imZ8bYlGRtoNDOLrjyTD629ykF1rIq7Rjsev/RWvwjATZ8EgTHQ3DAOjNai754gRS8+JCAW7H2EReroEAJXWn1+3RsEgoEB1TT+bjgdKgxzR37mkx0pPoKirI+O53xtTXFRVhXb5sdFluLrZLL33XcSJ9ffR+85uJ94Bv02bCbe1k/e63dLg6mJ49ViSlwFJASrePzjs+jRSJxAuffpkp/guYNLeGfSNxD4ok7Vi/zzOeq1pPNALmJAO9x5sorpvK6/f9Fq3RSPnMOWdM1pZZWkNfS4icivc0hMw7sKSkIigUSOJpO5beYsVgtuJ3ueP7wAoBo01LOPTehbb0eXmQl3fGZH8yMueDnIoaTuzaPrqsspoDb7yKo7Od/atf5sIvfJV9gX282fEmoViIK8ddiV71r9+1ZyIWiTHQ5qH76AgQ9ze3pRtILzw3Irtv98E4hSSBGJVGP6s3biLc2kbO736Lymo9J2O/VwyTJ2M46T8i8/FBawgy5SI/bz14L8lZOVxw2ww2POkmcnKtF/BEQPSx/p9/YeHtn8WSmo57sH9UH/aMbL5R+g0MmjPb4lQKFWatnIP3v5kBd/wbIvUMIiSVmRbCMZHVh3upyT7zc0cQBApTjLQOnUWExOdFYzCe8diZOCVMHQ2N/baRkZGRkZGRkZGRkZGRkfk4cM4j4gVB+P67/Pe9cz3efzp9J45htCVRvXBJIqufLTOLyRddTv0b8ay9WoOR8UuWUzBhElGHmyzjadV0m9bGiuIVxAIBFAoFka7uhAAJQPDoUYLeCLkVSSy+rZLZV41j0S0VBD0RxDM4MZzCOzLMofVvIEkS2eWVCAolDZvX43Gczlyv0qowWNTY0g1oDaOD4mrmZ2NOfveAaYPawJl0giXx7AImMh8eZjFIbV3cECaKoDWo6GgYZtzkNABCgShmu47+Fhd5lXHRENdggNQ8M67BACm5ZhCgt9lFfo2dSCgGpDHrms+ht1hRKFVUzFlKZtkMQv4obYeGKJuWgUqtQG9Rk11mo/uYk6LxqSjVCtQ6KJ2agqPHS2aJbcx8yyt1BBsa0I8fT6ykGMdt1xMWGPW3ZU3PoGbBEoonT+fCz3+Vo9u3AJBXPR6tycS2px5l7d/+wOZHf0os2IBGc4QtT/yGfa8+yZr7foHH0Y01PYM5N9w2VnVYkmjYvgnt5SuJjp9H7dzRzqVKlYKMwrHzljl3KFUCJ/b2M++6UuZeW8q868uYd30Zzn4fSqNEMBqkyl41pp1OpUOv1hPp7EwIkJwi5nQSbm0jOjREuK0tIUByCt+GDUTe9sy12FMpnT6TJXd+CUtqGta0TJr37Bijqh729Y8KqBMUAtmlNvzuMFqDetQG+CkkUaJ17268w45R5SWTZ5BXfVp0JK96PCVTPlimLZmPH1qVFt37ECAByDPn8fUpcdGyqBTFax0kJVdF7/HGMXU9Q/F70e1QsPvl55lz/S2Y7akIgoJx02ZRNW8RO194it4TRymZctqBIjW/kPwJNVRMh5HeVlJy8sgoKqFx+xaGY1EEhcCca8ZxwW3jEN/xTpck6HYaUGXF1zPBA/WIXg8xv3/M/MRYjOjIyPs6f5mPH7HYaYedkM9HLBod9dzKra7FYE0iOSuHBbd+htnX3UzDxvUA+EaGGfY72De4j5sqb2JDxwa+Wvs1Qu1KFKIKtVbB8T39HNrQSfW8uCBUUoYelVpJfs3oQHNzsg5TkhaFSkFHwxDlMzKQAO9I/NmeU5aE1qBmqMuLKVkH619BodXhfvW10ScUiRBubcX94osEDx5EcrkgJhJ1jH4+y/xnEvP58O/ZjV4TY6DdTc3809lsBAFEMX4/23PzGe7pxj00AEA0FMIzNIgkidSvfY3KuQupWbSU9KJx5NdMYPIlV5CSV4AlNQ0EgeLJ0yhevog/HL6Pbm836YZ0pmVOI8N4eg2pElRcX349FckV6NTv710gI/NeEb0e0GgJHj5EqLGRqMNBzDmCpqCAmGM4IUByisEf/xB7lhGPI4Bao6B4UioQF53sb3NTUJuC1qAiEoySnGU8LfR0ktKpGWjxkJRlYPzCXHa/1obPFSK/JgVBEBju0TH3S1/AmpaONSOTKZdeRc2iC4mFQygUCnKrTmfJyq6oIhTw89i3vkxXw+l1fDz2+UxBG2cIlpb50ImeFGyYc90tTLzwEuouuQKDxcqMldcx0NZC/Zq/UTVTIQuQyHx8cTuxZuRhzy3g0q9/n+pFF4IgoNHrmXHV9UQjIV759U94/b7fsOq392LPyUWl0XJsx1Z6jh/91/3LyJxDHF2dHNm4lqTMbFLyChLllfMWYU5JI6eyhtKZc7nwrq9y6K034+9KyYffEyZrnI1wMMr255sZNzkNS6qODksj2ZYsotoQZYtSR42lVCvQmdXETgZHavQqtDoVSpWAUiWAACqNglAwhqAUEEURY8yJcDKIlJiIIIGgUqEdNw7/zp2ABLEoUiiI6PUhul1EenoIt7VjnDEdJIlgw9gsoDIy54rjO7fyzI+/w+o//ornf/7/eOlXP8Z9Ujg6Eg7Run8Pb97/J45uX4852Y7WZKL4pF02t6qWBbd+htLpc3B0tqPSyALlnzRUUR/J2bnMuOoGpl52FQXjJ2FLz2Tc1JkMtDRzbMdmXv6/H/Pq7+7lqe9/naPbNn3UU5aR+cQSi4jY0g0suqWC2VeNY/GtlehMamLvEq8e6e1NCJCcQvR6Cbe1nd/JfkKJ9PUR7R9AUKqQQiE869YTGxhACgSQAgF0xUXEPF58mzZhnD0bz+uvoysvJ7BvH+r0dARBgSAoEsGMiX7b2oh0dJxl1A8PvVmDQgm2ND060+gA9IqZmQx1eskssaJQjLaz1S7IIRqKUT03m8Mbuzm2qx+9SY1aq2Sg1UPAE2Kww4N2SMDZ04XeYiWvqpagx822Zx5jx/NPsuXRBxlqaUn0GfR60JvM6Mxm5txwa8LPwp6Tx6QLL0FvkoPx3i8KIRRfC0yczLTLriKrtIIpl64ks7QKpVpD6/7dAETDJ/cYRJGQ30/hxDqK66ahVJ1fgXJRlBjs8HB8dz/tRxz4XOc2+7ZSpUgIkJyiv9WN3xV+T+37m10JARKIB5buWR23Kfc2O9HoVORXj94PNCVpCXpP92+2x/cHZT7ZhDs7x74HOjqIdnXR5e+iJqWGQstpUSqj2sgNlTcQa207LUByktjq9SwzxgXPFuUtoiy57D3Nwe/sYd8rf8LvcaFUqwkH/ETDIXwjw0RCIbQmE8u/8DUq5sQTCiVlZpNbvQSl5uwJ5mTeHa3JyIJbPkNR3TSmXnYVmePKWHjrZxjp62HSEhWpeWaGujxEwzG0xrEiMDIyHxcKJkxi2pXXMu2yq0nJzSertILkrGy6m44Q9MXfswMtJ2gcbiQUC5GkTWJ54fIP7IMtiqBQwuJb4/7mC2+pIK3ATDT83sV63g1Lin7Mu7lwfAoGq+aMz+pwV9c5GVfmPxtJkhhsP0Ak4CVrXAUGi43upt3Mu9oGxD9d8mtSEklNNj/+EPNuvJ2iSVOZdtnVZJSUMe+m20lJTjmrAInMJ4MBT/ybJ8081g+rKisuPOIPxyjLOPv3b4H9XURIAn60xvcuQqI6KUISCZ/bbzEZGRkZGRkZGRkZGRkZmXPF+ditPNNXtRH4FGAHfnwexvyPJOBxs/HRf+Ds62XC0otZ/sV7CPl8JGVmISgVpOYXMmHJRfhcI4jRGCVTZmLPyeWXyb+kxdWCJEkUWAuwaW0J1XaFYbR6tQDoLWqsqQbW/vO0Q+7EpXkozqQAchJnbw8KhYKtTz2SKCuum4qztxuNz4cmNxetXo3WEKGrcYS515bSWj+ExxEkv8aOLd2A8G4DnMSem4/JnoL3bQH6NYuWYk0bmx1M5sNFoVaT0bWZ2fNn0tLsZM7KYrqPOwl4I8y7uphj+x1MvjCXoS4vwz1eFt5QwtHdQ1TMSCe3zEJfi5PFN5VyfO8Q2SVW0nONtBwYoXL6JGZdW4TBoiIS1NC0bZh515TQ2TiC0RZj2iURjqz7I6aUVOZft4iAP8KsyyUOrb8Pjc7A/OsvwtHt46LPFcczeEoSyTYL5pFOBi0WsFk5GvVy5M3XmGG1MdTRxrLPfwXXQD+e4SFaD+zF2d9L4YTJVM1fzIld28iprGHb048mzj0pMxu/20F2aREte0+rYbfu38mkZSvY8PDfmX7F1WOuWWZJGc3BQg5vGaZwvI8pFxfS2eDAmKSlan4mOQVy1u3ziShC5exs3nqkKZGt1ZysY94NZfiTQaFQjArsfScKvR7UaniHA4HCaEDQ6RD0Y7MDKMxmFG/b8I9FI/hcLrzDw3iHHRitSUy/8lreevCvo9qZUzNYcFM+3uE+IEZyVjbekShVc7OwZ5sIWQswWG34Xc5Em4o58zm2cytao5GU3PxEeUpuHpd89VsMtrciCAIpeQXojKb3c+lGEe7uBkCTnf0vasqcLyRJIjo0hEKvR2k6/buMDA2h0GhQWt49s4RSoeTSkkupsFfQ5eki25xNemY6jRvHZps3JiUxbUUOYtSFQqlEozcw7Yqr8QwN0tlwiBf/98fMue4Wdr/8HKn5hcy5/lZMyXba6vfhdQyy5Y1Xcfb2kF87kZyKKnzOYfaveYXxSxR0HNxFz9H9ZJXWsvSOuex+zclIr5/SaVaSc0Nw+y3o9tcTO3iIiM1KVlkF1t0ZuPpPbyhPmjIL1TtFn2T+4yium8aeV55PBH/vX/0yl379+4xfchHRSJhoKIglJY2B1maObFhL8eTpLP38l3nzr3/Enp2LgMCsrFmEY2EuSFvG8FaoX38CKSZRNDGV6nlxB1uNTonWoKJwfCr717YzYXEeqTlmOhocpOaZKZ6UhiSBWqPEaNORlG6gv9VFWr6ZzHE2ssbZ6Dk+wqKby9G3H8D95msIn74FVXIS0YHBUeekMBhQpqTEz0mlhnAElOfXEVTm/BMZHo5ngrdYcX/rLtJ//Q+c/X5mXFFM64FBdCYNpZMXcWLXJqRYjPSiEryOIaZeuhK/28WxHVuQRIkZK6+naetGhnu6KKqbilKlJhYJ0320gcIJkymcOBmvc4S2tVv5yxV/YjA6TJ45jy5PF7dX387youX4I37sOjsqhYpAJECaIe2jvjwy/6UIKhVSJIzSbCbmciFFIih0eiRRRNCMdbjULb4QV7+HBTeW09fqoqQuDUuKnp7jI1TPyyEWieHs92PPNhGLilx4ZzWN23oJeCKMm5xGisGH0NVFzuRKHE0hxk1JJ+SLsO/1NgSFwNRLsklKtrP0c1+mdf9ebOkZHN+5Be/IMCl5BeTVTGDctNlYU9M49NYb7F31Aim5+Qx1dZCaX4A1LQNbajpVcxdyZOO6xLwtqen/8VlD/1uQRBGtQX8yA5ABncnMojs+z0hvL2qtBrdjkKYtayiuq0UQ/rVdSUbmw0YSRUIjA0TDQZx9PaTm5HHFt37IcFcH/a0nSMrIGlV/x/NPUTZ9NgfeeJVdLz7DVd/7KVml5R/R7GU+aQy0NZOaV8D2555k5tU3MOPKaxEUCmKxGPVrXkVCIreiis4jB5m49GJEUcQ1OEBKtoHX/txJ2fQMkjKN9Bx3MumKbHp0IZSSFUmSsFbA/JtKadrah96ioXhSGgrFqQBKAaVCQKVRIKgUSKKEoFAgRqW4yFQ0hjE0iGqok1gkjMJgjMuHKZVIsRjEoiiMhriTvCiBAIJaDZKIoNXGz8HpBOK2ORmZ84HHMcTGR/4xqmywvY2BthYsKal0NzXy/C9+gC09k9yqWiYuW0HQ40GKSVzzg3sZ6e3C73bRe+IoWaXlKCQ56PETh9OJoFCiM5qIRSMUTpxMck4er/72l8y94VZ8I8Ojqm967J8UTqjDbE89S4cyMjLvh8jICKLTiTorC4X23Z/BGr0SU7KOdQ+dFnKfclEBWv3ZxTEVOi2CVjsmeYHifQSZyLx3BI0GQadDikYRlCpUdjsoFQmBjJjThaBWobTbEd1ulHY7UiSMoNPFHWYUykTd0R0LKAzvLfjslGC+wmgk5nSitFhQ6M6NcLQ9y0QsEiMSirHw5gqa9w0w0uejeFIasaiI3xUmJV/PhZ+tpmFLLyFfhLIZGdhzjChVCjwjQbwjISYtzWeo08Oe19pQqRUoVFGUai9hfw9+lwuD1UZyTh7bnn4UrcFI2cw5ZJVX4TuZAEOl1rD403fhdznZ+fxTZJdXcfX3f4YoipiS7dizcs7J+X7ScA/1otRoyBpXjlKlonrhBVhS0hBjYVRqLWmFJaMElgGMVhsarR6F8vyL9HY1DrPqTweRTiaxyqlIYvGtlRit52b9qjOcOaj/7eLVQX8EZ58fQQBrmgHd24QARgbGJrFIyzfz6n0HGWz3AFAwPoXK2Vk0bOlBrVUy55pSdrzYDEBylpGFN1ecs/OR+XgQ6uxEUKvRZLx330LlmZ73goDCYOSe8nsIxoJ8f8b36fZ2E46FybfkExNjaEzWsX1ZrUzMmcZfK6ZRllxGsi75Pc2hZe9uIuEQKrWW9kMHUGm0CX9PY5KdWDjCiSM7ya2qoWbhUvpalRzZOsKKL8i+Zh8UpUqNJS0jLnAvSlTOXUQsFkOj1dG4eT3TrvwMnqEwCoWA/gOIkEQ9HqIOB+rUVJTyOlDmPBL0etAbTUiixPgLlpOUnc2zP/7uqDrJWTl8tviz+KI+CqwFiKKI6gP6sGi0CrJLk1j74Gl/8+p52WjP8l5/v0RCUeZcU0pr/SDDPT6yxtnIKLaeOfHPyWf1R0HE6Yx/V6anx/1KZT5Shnu6EKNRtjz5cKIsrbCY3Kpa8iqTya1MJuQLk148jua9OxGjUQSlgvya8Ygxkco587GmZ6DUyOvCTzoD7iAA6Zax90JRihG9WkkgEmPOuLPbacsyzLxc34PTH8ZmGC0YF/L50L5HWwOA+uQ9GZV9ZGVkZGRkZGRkZGRkZGQ+ppzzSDlJkv7v1L8FQTADdwO3AU8C/3e2dp9EopEIQbcbJIkDr7/CgddfAWDJnV8iOTuH2dfeQs+xuCH3wBuvEQkGqZy7gNJ5C/BH/Rg1RlxBF+OSxqHU6AjHYqjS07FcugL3Sy8DIAUCKNVK9q1pHzX2gTc6KBx/dgNJLBbl8IY3qV28DL3FghSL0bhlI0G/l/bP3oX1skuxXbkSS2EBCpWCNx9oIDnLiNGq5cDaeCb6cZPT/+U1sKamceW3fkjD5vX0NDVSPnseRZOmolLL6vIfNSq7naS6KoLf+jwTJ9YR2zhISX4e9k/dQffddzLriqsQN4yg3ryZlK/dw9CP/pepc+ahPJKE7vnnKPvq1xi59/tMmjIFfaCGwV//H0Vf+jLu3/4fNp0O8yUrGPrV/zK+opLYul4qp02lP62a9Y/8PT6Bo9B+YA/zb7yd1+//fWJe7Yf3c8U932X7k/fT03KC2sXL8LusDLS1kvOlz2Ior6Lhl88hCApEMUbfiWP0lRyjaesmAh438266g5TcPOrffA1nfx+FE+qwZ+cm+q+YPR+1TsfeVS8iKJXULLwA98AAJ/bswJ6dy9anH0GMRXEPDZJXPZ6Ow/UA6C1Wai+4gtX3nxQsqR+is3GYogl2Zl9Vht4sZ6Y432g0SloODCYESAA8w0H6mp2IViclySXv3j4vj5TPfY6h35++38zLlqEtLkZpMqEpLERXU0Pw0GknoJTPfQ59bW3i557jTQy0HOfAG68R9vtPPtOmYM/Jx9EVfw4X1U3DbM9k5/N/p/PIPgCSs/OYf/OXmXpJEXqTGr0pkyu++QMOrFnFSG8P2eWV+FxOhjraCLjdY+auM5rIrawZU/5+CPf3433jTYYffDA+p9tuxXTBBWjS//WzXObcEe7pwfn00zifeRZ1VhZpX/0qmsICXC+/zMgjj6JMSiL1a1/FOHMmind5V+pUOmpTa6lNPXl/psIFd9zF8/f+kEgwAMCEpReTW1mGWmvA51Ix0FpN0OdhyxMPj+pr98vPUT5rHvtff4WOIwdZ/Om7aNqykYLaSVTMmodCpUKhULL58QcBKJ85ly1PPkB/83EAhjra6Grcz/jFF2OwpXJk4yrqV8ezek256HJ0M6bw+v/9BEmSmHrJFSCJdBw5RPm4SixNx9EtWHyOr7LMh01mSSlXf/9nHFjzKgGvhwlLltO4aR0ndu/AbE9h1rU3s+GRB3B0tgEw0NZC7eJlLPzUZ9EbLaQXFVNjSwLgxN4B9r9xONF3875Bxi/KRW9WY7LrqJmfw/qHG5lxRQkH3+qmam4WKXlGDDY1Jk0UIRampTlKa/0wW487saboKKhJoWhCChacmGnA+dXf4u7vR1dbi3frVlK++EX6vvf9xJja0nFoCgqwLFuG0mZF0mkRYlE06bJIxH8qYjCIf98+hh9+mODBQ2T//ndIDz5I9IVH6LIvonnvABnFVnzOELtXR7jkqz/g2I71iNEI3U1HOLp9C8akJKZfcS1KtYYND/2NoDfu/DrY3krZzLk4+3owWG1o9QYaNr9FXvV4TuzcxsSlFzOrai4Ak9In0eXpwhlyEolF6Pf3k2ZII9UoByDJnD+UViui2422ooLhBx/Esnw5UjSC/9BhbJdcjKawgHBrW6K+sPw6Nj3UgkqtYMrF+cREEZCYdUURG588wYQLcomERBAE3I4gWqOK6nlZhH0xmnb0YNccItTfjsnWhDR7JeFAlCObBgAomWQkGjxCwGVh3TOPUb1gCW89+FeiJzO+DLQ2M2n5pRjMNtrq9zHQ2sLECy8h6POy47knqF/zKvNvuYOiuqnMvPoG0ovG0bRtIzkV1VTMXoAlRf5b+jig1mjwu124hwZo3b+HgbYWskrLmXrpVai0GqKhEN4RB9FIFPUZhHBkZD5qdDk5tG55i5HuLg6ufZ1YLEb1/MUUTpyC2Z6K3+MaVT/k85FRUsp0kxlRjNGweT3pRSXnPZOxjAzAYFsrUy67Gr9rhBO7trP1qUdIKyiiau4iBjtaCfl8dDceYe4Nt7H58YdY/Om70Oj1KBQBaheYObC2lykXF+IZCdCtaaHd1UaOOYeapBqS9cmQDeXTspBEkeiQg5EXXkCh0aBISkYwm9AVFSFFIoSOH0eTmUGkswspGECTlkqwsRFFeRmeDRsw1NVBNIYUjSCgxvXcayRdfz0KW1Jc/FeSkEIhJKUShcGIJieX/l/+EnV2FoJCQbi7WxbTlTnnxKIRQv6xORciobiDcsOmuOCds7+XuTfdjhiJ0la/jwlLltO6fw/1a19DEkWq5l9A55GDlM+QbayfNGLJSQzt30Pn4Xqa9+3CkprGpAtXsOyLX0OMRhOBvqcI+wNE3yGQLiMj88Hwbt3K0B//RLitDdOCBSTdcD36qqqz1pdEqF83WsB97+p2ciqSztpGVVZG8qc+heO++xJlhpkz0OTln7WNzAdHk5mJpqSEaG8PCAKW5ctwvbIKy/JlSNEYgk6HQqPFNHcuQ3/+M8m33orz2WdJuv46vBs3YVqwAEQR87JleFavTvSbdMstaAoK3nXsmNuNZ906hv78F5Jvugn/nj34d+5EX1dH6hfuQldRcU7OMS3fiiRKhMNRssZZUCgUqLUq/O4QAW8EtUZJwBNmzrUlCILA2ocOE1wvMm5KOskZRqxpevzuEB0NcZGrvCo9vcfeJL+2mmg4jMFqQa3VgiSRlJlNzcIl7Hv9FUxJyXiGHeRU1pBbWcNIXw87n3+KmVffSN+Jozzz4+9gy8hk0W2fJTkjvv6WeX9oTWb6Dx7ANdDH0e2b0ZnMTFq+gryq8SjUOuouuoyh9laCPi8AhRMm43O7SMkvOO9zC3jDbHrq2Kh1SVfjCIMdHow15yY4055tIrvMRvdRZ6KsaEIqtrR4UJ5r0M9bjzYljudWJjP/ujIsqfFA39Tc0cKTlhQdPmcoIUAC0FY/xPwbyiipG4/ZrseWZiC90ELQF8Fg0aA3yb46/y2EOjvxrH6dkccfR6HTYf/0HZgWLkKVZPuXbZVZWVhWrMD98suJMutVV6HKyWF+bh5trjZOjJwgKkaJilE8YQ/phnR0lUXoamsJHjyYaJf+rW9iLZvxvuYuxmJ4hgZRqTV4hgYYaG0mGg4zZcWVNO/djSCAxzGAUqViw0N/Q2+xMvvam7ns7qlY02Rxiw9KJBTCPdjP4fVvMNzdRV51LRVzFmBKtuNzDiPGJFoPDVExMwPt+xQh8e/dy/Ajj+LfsQNtRTkpX/gCxrq683QmMp9kHF0dDLa2cPitN3F0dZJbVUPl3AVMu/Jadj73JADZZZUYLFZikpOoGMUZdJJj+uACcpIEu1a1jio7vLGbwvEp/9a5nEKhULDmb/WY7TosKXqO7uyj9eAQF95WOuZZbbvmalR5ue/S2/nBt2MHQ/f9mdCxYxhnzyb51lvQV1d/6POQOU00HGbf6pdHlQ20NhP0eggFlOxZ08Yld5WTlJmFPTefyRddjt/p5Mim9Qy0tZBdVknVvEWE8gqQZUg+2fS7QygVAnbT2DtBoRB49I5p7GsfYVH52f0AJ+XFbUb7O5yEojF+8+ZxvriohItrswj5fVhS3/t+gOqkeG4kLIuQyMjIyMjIyMjIyMjIyHw8OS/ezoIgJANfBW4AHgImSZI0cj7G+k9GrdVRs/hCDry+isp5C8kuqyQc8GNNz0Cl0eIdGUal1rD5iYcAUKrVHFz7OiZ7CsFxQdxeN36tnxZnC+PTxqPLySHQ2Ynt+hswzZxFuKcHTW4OA74o0mhfNiQJAu7wu85v5sob2LPqBTyOQdRaHVNWXIFCUBIeGmL47/8ACdLu+RpDHfHN3eEeH8M9cafMjiMOJi8vQK3515k5UnLzmXv9bYhiDIXi/GfykHnvmObPJ/dvfyPY1IQqKQldTQ3qzExyf/97go2NqMZXY5g8GdHtJPMHPyDS3YXKbkf/zW8S8/sw/OSHOEccOEUJ2x9/h2rERdqX7ybS3Q0aFZk//QmRrm5UKXaEygpW/fz7o8bPHFfO/rWvj56UJNF66ABu5wh5NePxDjs4uHY12RVVhNUqOpqPoVSpiEbCqDVaFEoVx3Zuo3rBBex++TlMyXZW//FXiLEYAC37diNJEgUT6ug52oA5JZVdLz4DQF75ePRmC0kZ2VTMWUA0EiESjBv6Dr/1JuOmzWLmVddjTs3EOWBluM9Aap6e/EolYixIOGzk6A4H01bE0MtJOc87sZjISO/YTDjOgQAR7zDru/7KlyZ9CbPmzL8MQa0m+cYb0I+vJdzaijorG111FUprPLOJvqKCtG9/m3DzCWIOB5qiIrRFRaP6cA8Msu2ZxxEUCgRBweG33kRrMDH/lk/R3dSASq0ht2o8ju6+hAAJwHB3Byf2bKBg/KcTZelFJeTVTsQ12B8XNQnEzy21oJCupiOkF5UkVLD9LieDHW3x43kFGKy2d71W3mAEfzhGikmLQhHPMuTftp3+n/40Uaf/Jz9FYTShufyyd+1L5twhxWIMP/wwIw/G3/sxh4Oe73wH21UrGfpdXBwnOjhI12c/R/5jj2KYNOl99Z9TWc2NP/8tzv5eFAoFfrebg2tfJ7usEkdPJxnF4xL3mdZgpHz2PHQmM17HELqTmYVnX3MTsUiEpZ+7m5G+HnY89wSl02fh6DrtoJuUlU3Ttk2jxh7u7iToc7Lh4fuZe+PttB3YjVKtRm3Qs/mZRxP1drzwNBfcdidLZi5EiMXQfXo+mhw5s9p/OgqlkpyKarLLq+g4epgDr7zEiT07AHAPDbLmvt8xY+W1bHmyLdGmYeM6CifU4Xc7MdpOO3t3HBmb+aT72AhFE1Lpa3bRuLUXANdAgNKp6ax9oAGtXsXcaSKuH96N8eZPs7evBr8rvg52DQapX9+FwaolfU46giMLxe23oTSbUZjNKK1WJJOJ7D/+gXBzC8okG5qSEiIDA2hKilGmpiIFgmjHlZ7HKyhzvgk2NtL3/35ApDP+LBvevp2s//0lgZBAx4sOohGRrqbTn7Pu4SxmXfNZdjz3D47v3IYYi+IZGmTT4w+y4ivfSgiQnOLYji1MvXQlO194mhX3fIe2A/tAEpl+5bUIgoBraBDrSXGEXm8vzc5mJCTCsTDBaJBwLMxIcIQk3dkDH2RkPij6sjICTUcRI2GSb72V2OAgYiCArroaSRRJ+9a3iHZ1EfMH0JWOozcW/2aPRkS2v3Da+Sy/zILZpmLtA40suqWCjiMO9q5uHzPexCtKcf765wCkTpvHvhPxIE5BgOxS0OoyiYbDuAcHEGPRhADJKY5sXEv1/Avobz1BdnkV0XCYoyfXHd4RB6t+ey/X/OBeciqqmHjhxYxfsky2M3wMCXq97HjuSQIeN0q1mp5jTbz14P1ceNdXUapUFNUtJOiNoU6WRUhkPn64hwbxDo+w66VnEQQFCqWC/a+/giU1DQmR1LzRdoKq+YvwuZzseP5JVBotU1ZcSTgYQG+SDUUy555gJIY7EMFqUEMkRMmU6URCIQ6ufR33QD9IEgOtzbj6+xi/ZHnCBtp55BBpRcUc37mV/PGTcA/2k5afi86kZqjTQ8liG28NbyYUC+GP+hElkQV5CwBQqhSAAlVWOklLFxPYuxfRPYzaakIa6kd0udDoNYgD/agNOoTUZKRoFMOUyYheH7ZLL40vBCQJFAqijmHsn/8cSrMZSVAgKBVxERJRQgqHQBAIt7SQ8tk70ZaW0v21e0i67jrSv/F1BFncR+YcYranUr3gAg6+bX9CpdaQkhsPLtfoT2cyDLhchIMBGjavJ7u8kl0vPZOwD+9f/TLTr7gWn2uAFN57lm6Z/3y8zhGa9+ykZd8ulCoV7oEBNjzyd1Z87Tu4B/txDw2Nql8+ey5Br4eAx43ebPmIZi0j85+Pv76eri98ESkQF2N3Pf880eFhsu/9RWK/750EvBF4hy+FKEoEvdEz1gfQmEyYl1yAbtw4Qm1tqNNS0Ywbh66i/Jydi8xoTDNnEGxsJObzgwD2T92OGAyhtFpIu+ceokNDKFNTyfjhD4g5XaR99SuI4Qj62lrEaBSlxYK2qhLT7NnERobRFBejnzABhU73ruP6d+6i91vfxnrF5Yw88QThlhYAvOvWETx0iIKnn0KdcW7e8YJCQKsbbQsxWLQYTmZntqTo6W91sebvR/A4gmh0SiwpelLzzYyrS6Nxe1+iXXKmD3PyOMI+H76RYWwZGah1epKzcqiat4hNjz/IxGWXICiUHFq3htLps0kvKuatB/9Kfs0EuhoP0XEonozFPdDPC/f+mKu+/1PEWDTuP5GZLYtrvkfCgSB+1wgNm9YjCAqCHjebH3uQFV/7NsbkTFrr91GzaClKlRqFUkF/ywkaNq6jcvaC8z63SCiGezAwpjzoPXfCaDqTmgU3VdDZMEz30RFyKpLIq0hGo4/fPy0HhkYJlHQ2DNN2aIjahfFg44xCK5OXF7Dv9XZEUaJkUirtR4bHjDPQ7qFqzmlxSqNVi9Eqh5f+t+HbuJHBX/868XPvd75L9u/NWJYs+Zdt9SUlJN10I6bZswh396DJyUZTVIwuPw+ADncHnd5OAtEAoiQSjAWJiTHK8srI/u1vCB48RNThQFdaiq7m/QehD/d0kVc7gea9O3E7BuNl3Z20KBTMv/kOtj/zBPacHI7t2IIYE/EOO3j9vt9wzQ/vxZp2djE1mXfH7xxm06MPEI2EUapUtB86QMjvZ/7Nd1A5ZyFt+9ejEL2EfHUIWAHhPfUbPH6c/p//guDhePIU//YddDc2kf/Uk2jzZVE6mXOL2zHIpsf+SSQURKXW0HG4nqDXw/xbPoNAXNBjuLuLrqYGBupU+CN+/FE/EhJl9rIPNGbQF0WMSmPLz9EaIeSPIsYkXAMBXAPxtUjAE0FUqEm66UaMs2YS6elFk5sTTxqX++GKkAQaGuj60t2IJxPFuVetItLdTfYffo865dwIsci8fxQKJX6nc0y5GI0iihEmL5UY7DjMiR1byBpXjinZzqu//yVBrweVWkN30xF8zhGSs3Ox2OXkJZ9k+txBUk1alIozv/fr8pOoy393/6zxuVbUSoHfrjtOU6+bUFTkey8e5oLKdEJ+H1qD4V3bv51TPuDRkCxCIiMjIyMjIyMjIyMjI/Px5JzvCguC8L/AFcBfgRpJkrzneoz/FjqO1FM4cTKp+YVIosiWJx/GPTgAgsDEpRdTMm0Gbfv3Ur3gAiwpaYQDfrRGE8O9XRwz9/JazxqyTdl8b/r3ABCUSgwnM7U02XL5q7+F+qMe/lmixmDR4H+b6IjOpMZoO3u2B63BxIE3ViFJIhVzFuBzjrDt2Se46js/4VQvrueeI/nmm0jNM9P0NocGgPRCC6qICwaaQW2A5GJQv7sDhxwY9PFDodEgjCshbDWD3oBXkoh0tKLLyiRsNiBpdKAQCAcCKM0WItkZiBoNsXCEUMBL46YNHNm4DkkUKZs1l6zSckLOQYrGT0JQCCiMJiJ52Qh6A7FIBIXy9D1gTkmlePJUjm7fPHZeKhWxWIzcyhp2nnSWL5owmc1PPERqfiHjlyxn76sv0rhlI3Nvup3jO7YS8HhYfMddhHyehADJKVr37+HKb/8InclEV2N8gzCtsJikjCy2PvUo826+g+HuThQqFVMvuwqVWs3+11/h+M6tNO/ZwUVf/hkBD+RVaHD2NLH1yReQJBFjUjLzb/4aBqucWeW8E4siuQcompDKYMfowN+sEisbvC0MBAY4NnKMuvSzZ55QWiyYZs2CWbPGHBNUKowTJ2CcOOGs7R1dHUy74hoEQUCMRtHoDbTW7yO1sIgdzz1J5dxFtNbvY/wFy8e07Tl6kEgoiEanT5TlV48n6HHjGujHkprGxGUrcHR14BmKOyXklFcx2N7K+gfvp6shfu/mVNaw8NY7ST1DdiRJktjTNsLPVjfS7vBz5aRsbp5RQG6yAfdrr42p7169GpssQvKhER0YxPnkU6PKjNOn4Xzq6dEVJYlA/cH3JEISjUSIhkPojCYAkrOyEWPxzKyOzg6yK6p55be/oGjiFJz9veSPn0Rydi41i5Zy4PVV+F1OrOkZ5I+vY/Gn76Jh03p6jjYCkF8zgYW33UnHkYMolEpS8wsprptGUuaZsw8LgoAkifQca8Sem49Gp6P7ZF8lU2aQXlRM0OcjGA4Rrh6PFIuhTbG/38so83HC0wcj7aCzgL0EQakmphFo3rsLlUbL5IsvB0AUY1jTMjDbU/A44gEYSo2aWDSK2Z5CX8txFEoVap2ejCILjdt6Rw2TkmumoDaF47v7USgFFMp4AFssHGPxRDeKrmMEf/gYUiBA6PWXKb15Ngc2D47qIy3fgtJgwDhtKsZpU8eeS2UlLD4/l0nmoyfU0poQIAHw/uk+vH+6j5xnXiAlR0Fn42g9TVuanmjYRXJWDhOWXoRGb8DZ30vDpvUJx8G3o1Sp4+tPQSDk85FTWcPav/2BcDBIX/Mxpl9+bUKExB/1s7l7M/WD9Yn2X570ZfwRvyxCInPe0Je/dwc0e48Phap9lONZap6Z5PwkFt9hxz3oZ6Ddg0od/7ZTa5WUTk1HZ9KgUEBs/8sIBgOWH3wfMUXPghtthHwmBIWC+jde4+i2zUy/8pqTbcfaENQaHUlZOSjVanIqahhsb2HKpSuRRBG1Vse+1S/T33KMnCQRYhEUycWgP3OQkcxHRyQUxJKaRt3FlxPyeVFptAS9HiKBALOvu4WUvCw0etlGJPPxRKVW09d8jKmXXRUXwQ2H0RpN9B5vIjWvEIVCQXZ5Fc7+XkqnzSKrrIKuxsMsuPVOuo8eYf/rr1A4oQ79uA/m/CsjczYOd7t4YEsL21uG+crMNHQHVnN82yaW3PklKmbPI+jzoTUYGWhr5sSu7aNs8Rq9Ho9j8GTQmxJRkji07jUu+dItRIMhYpKXC7TTiYlRomIMrU9D9/EmFIIACKjUGiypqehKStCVlJzzc4sMDNByxZWILhdEIqBWQzSK/TOfAUnC+eST2G+7FXVW1jkfW+aTgSRJuAb6iYZCmFNT0eoN+N1OSqbMQKFUcXzXNqxpGZTPmpvYW6icswBnXy/W1FQsaRl4hvqx5+bTfrieGSuvQxIlRDGGWqujr/k4xXXTPuKzlPmwkWIxXIP9zL7ulpNrXg2RUAjviANbZhYX3X0P2599nJHeHkqnzSKtsIgTu7ZjSU2juG4apmTZLioj80EInWhOCJCcwrdxI6H2dgy1tWdsY7Rq0BpUhPynRUeMNg0Gy7sLY+rLy9GXy6IjHxYKvf59i/OfC5zPPw+AOj0DV8sLo45FBwYIt7WdMxGS90J6oZWV36jDOxJCa1BhTY0HNpXPzEIQwlhSYxgsSnyuQaLBIEGfD2tqGh6Hg6DXi9meilqvp3bRhZiTU0ESgbiQdlHdVFQaLZnjytnx/JOk5hdSNnNuwnbjGRrgtT/8H4JCYMEtn6FqweJEsJTM2dFoNbTu38uUFVei0mgSdgSPY4iUPB9peQWs/fufRrWZsuJKvMMOzPbzux4wWDSU1KVxfM/A6UIBbOnvPWDuvWBN0WOdm0313LF7yG2HRguzWdP0CAqBoU4PZrsOnUnN5IsKKJ2STjQqYknRIiHg6PaNapdZLNuA/9uJeTy4XnxxTLl306b3JEICYKipgZqaMx4Li2Eea3yMfn8/AGqFmu9P/z7+iB9rVhaa92pzEEUYacXj8eENiOiTM7ClZ+AeGiTo9TLz6hsQY2Ki+lBnO8NdnRRPnY4ATFp+aeJZsffVFxlobSGnXBYh+aD4nE4qZs/DbE9N+N12HD5ANBLGkp6Je2gQlUagu3E/Gp2KrPdos410dScESE4RczoJHTsui5DInHP8TielM2ZjTU1P3MedDQeJRcLseO7JRL3lX7yHnzb+hH5/PwaVge/P+D4xMYbyTD7ZkSA4TkA0AEmFYBwtrKE3azDbdXgcwUSZWqfEaDs3a78zCYVp9Cp0RjWG/Jr48/ojJHyiOSFAcorA/v3xpHayCMl5JRoK4ezvw+92otbpUChV6M0WLCmpKDVqymbOobPhEPm1E/E4BulqOIwlNY3qOTFc/e201e+nYvZc1v3jz+RUVlNQO5HknDzCfh9ao5He40cJ+bww3ArefjClQ3LhR33aMh8y/e4g6dZ3j2f5Vxg0Ki6uzeKF/d3kJuv5woISvvHcIfZ3OE+KkBjfc1+qk34xEVmEREZGRkZGRkZGRkZGRuZjyvlITfE1IAR8F/iOICSUQgVAkiRJTt9EPAOW1mAk4HKRlJnFtqceiwuQAEgS+19/hZJpM8mtruXQujW07NtDdlkFAx07KJ8xG0EVF/3o9nbT5mpjVvbpgPmufifdTce4rVDPltQMvGKU+TeVs+OFZoZ7fCRnGplxRTHm5DMbUSRRxDsyRMnUmWSXVeLobCc5K4eJF15M0Hc6uF+ZlISg0ZBXZSY5s5vhXj8AerOa6mk2hIcuhoEj8UyG078As788xmB9ioDHTTgYwGhLQqWWBRs+Lgx1tnNiz04UCgXpRSUM93Thc46QmldIJBTAZE/F3d+He7Afe14BCAJavQFHdydKpYpD69cAUDhxMvbsXDxDg1jTMmjet4vh7k4Kxk9iuKcLoy0Zc7KdySuuZN3f78Oek0fZjNlsfOyfzFx5A50Nh+PZMIGUvAIKJ04mt7IGR2c7E5ZchNGWhN/pZOZV1xMNhzHbU7no7q8z0NqMQqFg4W13YklJI+h20t/WMuY89RYrrQf2YrGnotbq6DnaSHHdNHY89yTGpGQMFitvPfckQV9cU0mpVjP/pjvY/twTzLvxDhAiWFMVOLrbqX/jOVJy8zHakug9cZR9rz1CUsZnsWZkonsfhkWZ90HYDwceQ7XjL2RcsIbK2Vk0be9FqVJQuyAHa5aOR3Y/wu3VtzMcHJsV598h0t1NzOdDnZGB0mIhq6yctX/7E9a0TLRGQzzQ6JbPcHz7FnIqqknNL0CMRmjaupGssoqEmANA4YQpiUBL10A/roE+tEYTBeMnkV5cStDrJhoKo9Jo0BmMuAf66dfqaD2wNyFAAtDVcIi2A3tGiZBEYiIHu5xsOjpIRJRYXJ7O/Zua+dvmVnyhGD9cUYUqdazCuyo97ZxeL5l3R9BqUCYlEe09LbAQc7lR2e1E+0aLfSmt776ckiSJnmON9J04hiRJqHV6CidMwpKShrO/F5M9BYVShbOvh5krr0dnttDXcgyVWs3C2++kv/k4lXMXkJSVg29kBJVaw1Bn26h7tv3QAXIqqikYX4febKb94AF2vfQMuVW1FE+ZTvPuHVhS00jLL0JjNDHQ3orebCEtvwhRFBlqbyE5O5es0nI0ej1bn3o00XfZzDn4XU5Uai0Lb7sTW0bmObrKMh8aPfvhqRvB1QUKFSz7X1z5F6JDgyk5mZqFS9m/ZhVBjwetwYDBZmfRp+7i0Po1tOzbRd3yy7CkptG6fzcpuQWYUlII+TwkZ+rILLbQ2xzf8Neb1aRkm3j1TwdJzjQy84oSopEYhzZ0s/jmMkI//TOB1tbEtCLtbZRkBfDXmDh+2ItGr2LmFcWkFY7NRC/FYoQ7u5CiETQ5Of8yI6LMfy5K09g1mm78eJRhP1OW5NDX6iYSjAeaZZRYSc030bDpFXY8+yRqnZaQz0d+7URKps5AZzRROn02ltQ0hrra6Th4gIlLLyYSCjFu6kwOv/UmBeMnUTB+Eil5hficw/Q1H0et05FWUIQz5BwlQALwwOEHmJcz70O5FjIyZ0ISRSJdXYjhMJasLC7+fC1vPXYUjyNI5jgb864tRWeIB+ak5JgJB2I0bOlh4pI8jDYt9Ws78QwH0RpVWBfMwfT32YhGAwG/D8exRszJKQx1dqC3WJiy4gqMSUlMvuRKdCYTBquNSDBIblUt5pQU0gqKkIDM4lIEhcDOF+JibbFIGEGhZNY1N6FXiwQ3/I6QrRQ9L6OZejMkF32EV1DmnVhS0iiePJ09Lz9HdkU1I309KASBshlzSM0vZMfzT3DBp+9Cqz+zuJ2MzEeJwWqjZOoMNj/2IAarFaMtmc6GQyy89TPse30VequV2dfehGfYgVqrIxaNYE5OQa3XkVZYQmZxKeHg2CzDMjL/Dp3DPrY3O9BrVFw/NY/ccBvbtm0ip6I6HszS041vxMFgeyvls+eTXV6FMSkJrcFIJBSkYEIdGr2elLxCbBmZRIIhahYuwTs4gEqnQxJFlAiEXD4CHieeSASQUKk1SJKE3+0i7PczadklZxUmFUMhIl1doFSiyclBeB9Z0wWtFpXZRHjoZHBaJJ5xU9CoIRZDmZKCoJH3FGQ+GOFgkMYtb7HxkQeIBANUzl1E7eKl9DcfJ+DxMNDWQuGEOsyp6URCIYY62wm43USCAaZdeQ1hn49YJIxKq2PBLZ/B7xxh7T/uIykzOy5SdayBhbd9loH2VpIys9Aa5T2CTwoGWzI1Cy5gy9OPkldZi885TMjnY+FtdyIolIR8PmauvAFRjBHwuPG7nNSvXY1GZ8CaniWLkMjIfEAUev3YMoMBhfbswXJ6q4ZFt1aw/flmRvr82LONzLi8GL3lX68voiMjRAcGUFqtH6oQhcxYpFgsbr+KRFBnZ6M8w73wQUgI3SmEuN+LNDoj/JnuufONwaLFYNHiGuin/dAxNAYDGp0Bg6UbMaLANSiSlJGF2zFIit1OyOfDqtHQsmcnW596hPk334EpKZlIMEB30xHqLr6cIxvWYk5OZfLFlzPQ3hoXYJs5l81PPERyVg62jCw6jhxk4rKL2ffay6x74M9kjCsjo+jcixD+t6E1mph44cU0bH4LY1IyAY+b/pYTLLvrq4hiFASB2sXLOLLhTWKxGEUTJ6MzmTm2awv23Dw053FvSqVWMuWSImJRkZb6IQxmDXOuLSU1d+ye2fkiv9pOzzEnAFmlNtLyzGx97gSxiEh6kYWFN1WQnGkkKfP0OrpiZiadjcMMdcb9d4ompJBdJou4/7cjqNUozyDMo/o3gsEjfX3EXC5Uqam0udoSAiQAETHCKy2vvL/9uWgYGl6kyxFj1VOr8Y0MY0lL5+K7v4FCqcJiT8E7MowtI51pl1/DnlXPE4tEMKekIcYivP6X35FXWYvf7cTvclJ30WXozbKb7b+DJTWNwxvepKupgeTsHHqaGqiavxidyYyzr4f04hKGOtoJB/wMd3distuxJP/re0qh08ZFck/aqBLlxnMr4iQjA2BNS+fIxnV0NzWQmldAV9N6KmbPR6XWYM/Nx9nbTc3CpUQjETRC/BvGH/WzqWsTFxZcOLZD3xBs/jXsvC++tk2vhiv/AWmnBRYNFjXzbyhj+wvNDHV6sabpmXlFyb8UanyvJGcZmXBBLgfePJkoRoD515dhSYmvrSODg8SGh1HZ7f/Wc/6DIhjG/i0LGo3sM3Se8Q476DhyMJ50pPk4gkLBhCUXEfS4qVpwAZaUVKrmX0DJlOkMtLeSXljCjCuvJxz04R5oJxaNoDebkSSJijkLMNtTiIRDNG5ajz03n97jTRRNmoreYoX750LIDVozXH4/lC2Pf+/JfCLodwcpsP/7dvofX1bNtMJk5pamYtAo+cZzh9jd6iDs97+vfQD1SZtVNCyLkMjIyMjIyMjIyMjIyMh8PDnnIiSSJCk+aFtBEHKBh4EMQAT+KknS7wRBSAaeAgqANuBqSZJGztbPx41YNMJQZweu/j6MScmk5hUQ9vtQa7Ro043EwhG6Gg+PaecdGkSp0VAxez4exyBt9fspqJ2ILT2LcpWfV0/W80VOZ3gI9/Qg/uFPZL30IiiVzL/qetzLb2Droy3kVdspHJ+CeyjIhseauPLrk884X9fQEAarlZyKal793S8JB+LiIgqlksv+53vEThrbUr70RVRJSdiAS740AbcjiCRJmGxqrFu/GRcggbixevsfoHAOlC4dNZYoxug4VM+6B/6Cq7+P0hmzmXnV9SRn5fw7l1zmHBAOBulvOcG+V19kyoqVbHjobwx1tieOL7vrK+x+6Vk6Dh1IlM2/+TO07N7BYEdbwuHcnpOHNTWdrU89kqhXXDeNrLIKXr/vN4my1IIipl1+NXOuuwW9xcobf/0DSBKH33qDeTfcxnBPF3k1E+k8XM+GB/9K5rhyDDYbe155npTcfBbc+hle+c0v0OgNlM2YzboH/pzoO6O4lJlXXU9/azOe4SGyy6vobjqSOD5z5fVse+YxzCmpTLzwYo7v2IokikiSiDkllcG2loQASeGEyWSVVeAc6GP2tTcz0HaCva++iCnZzsyrbmDejbfTe+IYHscgE5ZejHtokOO7tuEeGmTejbdjtMnOD+ecgQZ47R4EUzp9xwbpa3EzYXEekihxbHc/QlKYqBglKkbJNeWekyHFcBjPm2/S96MfI7pc6MbXkvmTnxDweJh/y2do2raRoNfDvBtvxz08RPnseTRsWs+eVS9QNHEKA+2tVMyelxB0SC8eR9GkycSiIoPtzbxx/++pnr+Y+jdfw9nXR/GUaRSOr+PNv/0RAEtqOhd/+eu07N1FV8OhMfNrO1TPlEtXJn7e3uzg1n/uQjzpF2fWqvjKBeP40apGnt7TyefmF5O84hLcq1cnMsQJBgPWiy46J9dL5r2hSk4m/ZvfpPvuuxNlgc4OdJ/9Itzz5XjWHECVkYF+4kQgLjbiHXagVKsxWE5neGrdv4dVv72XSCgIgsDEpRcR8nmou+hyNDoD6//5GzxDgyjVamZfezNrf3dvwnFy/i2fZsdzTzFj5XWs/ft9zL/xdg6ue52w3ztmzr3Nx0gvLEFnMHJw7WoA2g/up3rBBaz42rfpOHyQroZDZJVVUly3gNS8Apr37iStsJjKG28nGg6TlJ7JlqcfHdXv0W2bmXnV9Wx75nEat5QxY+V15/Ray5wfIuEQjs4O3AO9WMRB7Pp01K4uAoXLaGgOsf2+r6DW6Zh9/a0MtjaTXzMhvk5Iz6DzyEF2PPcEBRPqGL/4Qo7u2ELnkUOEAgFe+c3PmXXNjeTXTiQSCjHv+ixC/hK8ziBDnV52vNgMwHCvjxP7BrCl6qmcnUVaoY3Q1/+Hrs/flbi/1dnZsGcTVVGRyd/+NCqj/ozCfFGnk5HHH8fxl/uRIhHMy5eT9pUvo8mR16j/jWiKi7FcfDHuVasAsF1zDWLAT/tNN/H/2Tvr+Diuc38/s8y7Wu2KmWVLlmTLzMwY23E4DbRpCmlTbm/vLdzepv3dlFNK0jAnDtiO45iZmUQWM0vL/Ptj7bUVOU1yY0oyz8f6WHvmzJkzo7NnZs77vt9XYjIx91d/ot+QQI8vwJbGHjKaG/E6nYxavBy3w47OHE3N0UNkjRqLUquNCEFllY6haMZc6k8eJzopmYDPS+X+3aQXj0Aik7Pnkrkvd+xEpt37VYKh4KD+9Xv7kQj/59dsEZFPRcBmo3f1ajr+8EdCLhe6KZOJ+dGPWP6DEXhdATRGBQrVwKUlS5KO1IJoQsEQR9+vx9EbdpbwOPx0uuXIBS+Cy8Xa3z/CuJW3cXzjepKGFFBz9CDdTY1IFQom3noXW5/6J9PvfQAQ8HncVB3aR19bK7njJlFz/Cim2FhGL12Jvac74ozfeq6CkjkLeW3TVtrrd5IytICRcV0ou/1YklKQi85hNwRSuQKJVMqIhUs5d2g/Cdm5pBUNx9bTxcG3X2fKHffR1VSPOUEUIRG58Qj4/QR9PibdcQ+V+/dg7+pgwqo7sPd0Y7TG0FJZQf3JY+jMFo6uX0PpwqVojFEoVWqOrHubzvpaFGo1K/7z12KwlsgVY391N796N7zGlBSlJslQAUDRrHl01tXitvWTkDuEsctv4dDaNxk6ZQZtVRWMXHQTBmssO196mtL5S+lpbkCuUnHs/XXkjB5HdGIKXqcTZ38foVAQqUxO+L7swud0Y+/tDr/Xx8WjNUVxYvMGJt16N4Jk4LOrt6mJzj//hb633waZjOh77yHqjjuQf8ys3jKjkZjvf3/Qu13QGV7Div3hD6+LM7rI54O2mio2PR7OPG9OTEZvsfDKz34YFt+RyRi34jaOvLeG4XMX0VlfS3dTA6e3bcKSkkbG8JEcfPsNBImEm378C05t3UhcZjYz7/8aZXt24ujtZvzNd2Dr7kQikeKy20QRki8QAZ8Ht8PBxJvvoHzvTkyx8WSPHofbYUeQSFn3x9+g1huYeOtdYbGovl6m3/s1Nvz1d/S2NQPF1/sUREQ+k6iG5KMaNgz3iRORMsuDX0WV+2+y2ocEtjxzlpSh0WSUWOlrd7H52bMs/xBfigu4Tp2i+cc/xltRiTQ6mvhf/gLd5MkI0stkGhe5qgT6+uh55RU6H/srIY8H/ezZxHznYRQpKZ+6bePSJfSuXo19x06MSxbT9+ZbkW2GpUtRZFwf4duWynLe/M3PcdnCgu2F02aRkDuU/q5OBEHAnJCEUqli3R9/i8cR9icaOnk6yUMK0RiMuB0OAl4P9aeO09/RzuwHHiIUCtBcVU5aYQlJ+UM5+PYbLPrOj2k4c5KWinKSC4YRl5HNkXffAcDW2S6+134MfB4vpvgEcsZO5NyhfUQnpTB6yQrK9+0iJiMLR08XTeVnKF24DEEioansDKe2vk9KQTF+r+eqipAARMVqmHHPUBy9HmQKKTrTh4s2XQ0yS6zUneikuaqPlHwz+96+mFSorbqfQ+trmHZnPjLZxbk1Kk7Lom8W09PmRCoVMMVqUGquTFC0yI2LRKXCfPsdOPfsJXRe+EFiNKKdOOkTtxUKBLDv2EnLT39KoLMTRXY2U378IH+XKvEELgZ/tjvbkUo+wX29owx7zTHWrW/C0RNOkFQ0Yy4uWz8SmZT1f/09rv4+AJb96OfIlQp00VakcgntdfVMuuUuyvbswGCxMmLBUhx9Pah0Ovrb2zDExH7i8xQBr9NJ0cy5NJ4+RXttNcVzFqBQaQj4fKz9w29Iyh9KwdRZ9Ho9SKVSnH19eOwOrCmp/7ZdRUYGUbfcQs+zz0bKtFMmoxoy5GqfksgXEK/bTcG0mTSXnaWtuoqimfNQ6XS4HDYm33EvjWdOUnVwH1KFAqXh4n28zdF2+QYbD8K+xy5+bjsFu/8IC/8EsvP3U0Fgy7NlxGUYSC2Ixt7tYfOzZ7npu8OvyDkp1DJGzksnuzQGjyuARi/HFBteM3Ps20fzD3+Ev7UVeVIS8Y/8Gm3pv383u9Ko8vPQjBmDc9++SJn5nntQ/rv3SpFPTUt1FdWHD9B2rhIIJ0o5+t4aJt56F2v+8Ai3//pP9LY0DfALj0pIYvYDD6HUmsDRjUwhp+H0Cfo72vF7veSPn0xT+VlaKssZOmUGSq0On9sdFiAB8NjgjfvgKzvBIr7bfFFo7XMzJuPTC0DrlDJWjbq47pAdo+NIbTcFoRBK9ccXJpMpwnO3zyOKkIiIiIiIiIiIiIiIiIjcmFxxEZJPiR/4TigUOiIIgh44LAjCRuBuYHMoFHpEEIQfAj8EfnAd+/mJKNuzgzPbt5CQm09bTRVN5WfIGD4ShVqNTKGise4kcVk5NJw+MWA/bZSZYDDI2R1bOHf4ABAOqKmxxjDqq/fCedtrSUxJZB/bxo043lwd/hAMwovPoJuwBK87QNWh9gHt23s8lw26lCoUCIKE+pPHIgIkAMFAgGMb1zP5V79CERODZvQoAAL+ID0tDg6+W4vH4adoWgIKv5JBOV86ygaJkHTW1/Hmb35OMBDOLF6+Zwd+r4f5D30fueLaGrdFBuLs6+HohrW4bP0otdoBAiQA/Z2dAwRIALwuB2V7dqDS6kgrChsdskaO4eA7qwfUM8TEcvDt1weUmROS2PPqC/Q0NzH9vq9GHMq7GuvZ/vy/GLnoJna/+hy9Lc0AdDbUEZeVw5wHv01zRRk1x47gttsonDaLYxvWRdpVarRY09LxeTxUHzlI3rhJBHw+csdOxGW3oVCp0FmsZI4cg727i/K9uxiz/BaMMXHozNF47HZc/eFFZ3NiMqa4uAGCKgk5eeRNmELZrm3ozNFse/aJyPempbKckrmLcNlsnN25ldwxE8gsHf1//ZOIfBi9YVV8X2wp507Z6G520N18UZyprdJGVmwWI2JHkBmVeUUO6Skrp/k73418dh8/QddTT6G5aQnvPPqryJzWdPY00+75Km6ng5qjhxgxfwnle3ZSMG0WHbU1jF1+KxCip7mJxrO1NJZLqD78FDljJrDjhacJBvwAVB3Yi8fhILWwmLqTx8gePY6e5ia6GuuJy86j/gP3j/isbLw+H05fCLVcyl+3VUUESABsHj+9Lh9GtRy5VEAhk6AdM4bkx/+J++RJQEBVWIi2dMQVuV4iHx/dlMlY/vU0bYeP49UZOapN4JUzPn7w338ir68JrdmIuqgIZVoatq5Ojm96j2PvrUGp1TH1rvuxpqTR39lB67lK5CpVWIQkFOLoe2vDQQ9dHfS0NmHr7AAgo2Qkp7dvjsy5eouVzvpaVDo9bls/k2+/h7aac3TUVTNk4jSaK8oG9NeckIRcpaS3vXVAucfp5NCa1ZH6Kr0Bt8NGxd5dwPnnmaMHmXH/1wkGg4MyxwHhcqDywB5KFy5FrhSDhm9kAn4/1YcP0llfS8DvY/veXRRPu4cSAjSYprLt+TcB8Dgd+L1edNEW+jva8TgdbH/uyYgjVuu5CnLGTCBz+EhObd/MkIlTANi/+lXiMnOQKpU4+20cWt9K4ZQkqo914PddFG1oPdfH+OVZWJJ0yORSZBMmkPriC7hPnkRQq5GaokAAdWEh8tgPFwZzHT5M55/+HPlsW7cOZUY61q997SpcPZHrjSorC/P996GdOAF/RyeEQnQ8+igAiokz6GwNcHZ7HXKtjDGlVpTYqD5ykO6mhkgbY5atwhBt5Z1Hf0XAH75/N5efZcyyVUTFJ9B6rpK640cBiIpPZNclz5MA5Xt3UjhtFnmJecglcnzBi5mzJidNJl4Xf7Uvg4jIZXGfPEn7rx+JfLZv2448MYnYH/0QjeHy7+wKtYySWSm0VPVycF3tgG1Gq4BMruD09k0k5A2hfO9O3HY7Ss0oupsaw3UsMbRWViCVy+nr6ECpVrP9+X9F2qg9foTp9z0IwdAAJyN9tJXh8xdz4K3XaK+rAaD+1ElsXT0MnTKdhtPHGT5vCTK56JB+vZFIBfraWji55X0AWqsqOHf4AAse+j59ba3Unz5O6rAr48goInKlcdttqI0m1vzu15GMVM0VZUxYdSeW5FTUBgP733yFoZNnIFcpObhmNeNW3IZUoUBxPkO21+Wi6sBeMVhL5IrQbffwh82Vkc/t/R7kOamkFQ3n7K5tVF9iV6g9fpgJq+7E7/VwYvMGAEbMX0IoGKTu5DEyR4yiv6Od1IIivC4X3c1NmGJizr/HefA6ncRmZtPX3orbYScYCBCdmIQgkeD3eak6sJfRS1ag0g3Mmt2/fj19b70V/uDz0fX3f6DKy0M+5zKZOD8E7YV3u1Onkei0yKxWPDW1pD7/PKqCoZ/uIop8oelpbor8njduInvfeJnQ+TWpgN/P/rdeZcyyVbRUlhOTnsHuV8JikjljJrD3tRcJhYKEAkE8LidN5afJGTOeNb//NYHzQXHN5WeZdNuXsKZnodZdu4zyItefgM+PVCZl6zOPny8p49zhAyz+7o9RaMKBNS5bPyc2bWDo1Bmc3LKBmNR0skePv+xaqYiIyMdDmZZG/H//EveJk/ja21Dm5ERE3T8Me7cbt8NPxYGBQXr2Hk8kE/cH8Xd30/y97+OtCa8/BLq6aHzoW6S/8TqqnJwrczIiHxvXsWN0/O5i8hPbhg0o0tOwPvQQwqfMZq0uKCDtpZdwnTiB1GREN3UavqYmFGmpqAsLkeqv/f3d43Sw9Zl/4nO7KZw2G43JRCgYRK5URN5T5QoFG196JiJAAnB6+2am3PVlettaMVis2Do7kEhl2Lu78Hs9hICo2HjW/OERJt9xLyOXLGf3K8/T1VgPhN8pkoYUkjVqLFUH9qKPtl7zc/8sIhCi/uRxjr63Bgivg1UfPsDMr3wDiSCQWljMvjdeYf8l/jijlqxAodEMSEBxNZErpJhiPn6Q3JXEaNUw94FCettdtNf2D9pee7wLt82HLmqgEIRar0CtV1yrborcIGjGjyP58X/iOnUaQaFAPawQTXHxJ27HW11N4ze/Ceff27yVlch+9gdWfXcezzS/Gam3LHsZBqXh4zfc14hdFoO956L/jjk+EVtXJ2d2bI4IkAB0tzThdjgIBgJYU8YiV9Sz5al/RLZXHz7Iou/+mG3PPs6wGXNJzB1CXGb2Jz7XLzpKrZbNT/4Ne08XEL6X5Y2bRNKQAgAaz54mIWcIxtg4VAYjrr5eJBIJwcQkJP9GWE4eG4vp1ltQFxfhralFnpyEevgIZCbTtTgtkS8YcpWKTU88FvHzaj1XQdbIsYxcchMGSyyr/+c/QRCYeMuddJ55OrLfkuwllxdSai8bXHZuE7h7QBcDgKPXg6PXw7kjHQOq2Xs8mBN0V+S8+jpdHN/cSFtNP5nDY8gfH4/G3Unj179B0B5OkuVrbKTpG98k/Y3XkSckXJHjfhwUiYnE/vQ/cJ84ga+5BWVWFqriIiQK8dnjamLvbKfxksSSF3D29UEohMfRz57XXhiwrae5kZ6WJkKhODpqj6C3WolJy2D9Xx5FrlKx7ZnH6W4O+yC0nqsguaCIxNw8MGdA9/kADJ8TbM2iCMkXBJc3QL/bT6zhyvuh5sTqOdnQTQGg1H78uVJ2fm7xiyIkIiIiIiIiIiIiIiIiIjcoN5QISSgUagFazv9uEwThLJAILAamnK/2DLCNz4gISXttDY7uHhQqNXKlCoVKTX9nB267DV1UNBKplO6mBjKGj6K3tQVbV3jhdsikaSi1Wpy9vREBkgv0d7RDr4sEbQLfKf0OhdZCAIJeL/1r1g7qg9bdiyAM9FmTySWodJcPvAn6fICA1+0atM3Z24NhwfzIogdAe10/7/z5OJxvf+sLlQjL7iRf9Rq4LxrQiB68SNfV2BAJ1r/AuUP7sXd1EhUvZry9noSCQdprzpFWPAKtKYqRi5YTDAaQKRR4nE6i4hMYtWQFAZ8PmVKJ1+3GnJjEqCUr8Xs9xGVmM/7mO4iKT6R00TL8bjdylYqA309sRjYKlRqvy4lCoyHo9xOdnIolOZWGMydQqAY7dCnUmogAyQVaqypwj5vEucP7ySgZCYBUJsd33rnGkpJG/vjJHHt/Hae3bSZvwmR00dHIVSpUej1+r4eelmb2vv4SSq2WopnziE5O4eyOrex++TkmrLqDsr07sWZkwo7NZI0cw+G1bw7oQ3NFWURwpb+jfYBwD8DJLRsonjUfgN62livzxxEZiCEclCvrrSQhMUhnw8DN2kQZ3y/5PqVxV04V31tfP6gsWDqclqryQXPa8Y3vMudr32LWA9+iuewMWaPGordY2PfGS7B/d6TehFvHEPC7aTtXTlpRSUSA5AINp08wZtkqJDIZHbXVyJVK5Co1WlMU8dm5tFSWAxCfnYfGGIU/CI9urGBVaRJ9Lh8fpM/pIzFKzZcnZkQW1bWlpdc8e4DIQCRKJY1JOdz6Xjee5iDBUNjZ6t5O+P3KaSwdnkSX3YPT4eH0ti3sX/0y0cmpKFQq+jraeP+ff8bV34dCrWH00pUce39dxBCtUGuQqbV4nRfv70qNFrfddvGzWoPbYUeh0WCKT+TI+reJik9CoVKRWliExmjg9LbNdDbUkZg3lGDAT9AfRPsBZwpLcgqVl4zvrJFj2PbsEwPq2Lo66e9sx97dhSkugd7Wi3O8PtqKxxmeT5OHFCKTi4bcG522mnM0V5VhTU6j5ughCqfPorezk55xv6T8vc0D6tq7OolNz2T7s08wdvktEQGSC1Tu30N68QgyS0dhiAnP8X6fF7/PizYqir5OH80VvbRU9jJmSSZ73zwX2ddgVWO0qJHJw84UErkcTUkJmo9wNP8gzgMHB5X1r12H+c47r4tTscjVR52bizo3l5DfT93tdwAgtVjoLlrAvu0X58mOGhtJtysGCJAAnNq6EZlSGREguUDZ7u0MmzmX9JJSNEYT0ckp6C1WVv70V3hcLjb/62/YuzoB8Ho85JmL+fuMv/Obg7+hrr+OWamz+PKwL6OWXT7gQUTkauMqG+yI1r9+PdEPfAW59cMDDWRyKQaLGrlKis998fnY2Q9RsTIcvb3hLF22PkbMX0ZMWhorfvo/eN0ulDotnTU1hIJBupsawtmIPkDjmVOD3r1sXR3I5IpBYpk9LY2YYuOQyeT0tDZhTU77ZBdB5IoT8PrDQniX4Orvo6+jHZXBQHNFGXkTplyfzomIfBShcMD6hcCuCxx9bw0z7v86Ab8PqUxOT3MTeksMXQ11BPw+3P399LVfDGp09HV/sGURkf8TvmAQm/viM6g3EOSo18yikWPZ9MRjA+r2tbXS29pMbHoWuWMnUr53J2d2biVn9Dj00VYsKWmodAaUWg0gIEgE5CoV+pg4IETIHwCJgDYqGp/bRVvtOTrr64iKjUMml5OYPxT5B9Z1Ay4X/WvX8UHsu3dj+AQiJJd7t9NNmPCx9xcR+TAuXdMK+P0RAZILeF0u5CoV7bXnMCclX6zr8xIKXazrtttQ6w101FZHBEgucPS9tSz+7k9QarVX5yREbkiCwQBH3xtos/V7PXQ3N5E8tAi13oDL1k977TmGhKZjtMbidtgxxcWL9lERkU+JKifnEwmBaAwKBIlA6BI1f6lMglr/4SKmvtbWiADJxUIfvoZGUYTkOuA8cnRQWf/adZjvvvuKBAOr8nJR5d04Wc/dDgftNdVMvO1ujq5/B2dfHzljJiDJkmFJScNjtxEIBCLiIZcS9PsIBoOc2raJ4lnzmXLX/dQcPUgoFEKjN1B5YA8xaRnooy04ursGtdF45iQTbrmL5OxMopNTBrUvMpiA38fxjesHlLntNrob67EkpxKXlcuyH/2MvW+8jNveT9bIsejM0WQOH3WdenztUekUxOkUuOyDfRosSToU6hvKtVHkOiKRhJPraMeM+VTteBsbIwIkF/DX1XGT8Xu817sHh8/BHUPuYH7G/E/WsCEedegISq02IgIVDAVRajS0V58bUPXExneZeOvdeBxOBAGObfjAu4PPS2dDPc6+PpRaHe11NcSkZfxbYQyRwdg6OyICJBco27uTYbPmIZMr8Pu82Lo6sKSm4fd6CHh9KPV6vG4Xqo8IHlalpaFKS7uKvRcRCWPv6or4fV2g6uBeSuYsAEEgLiuHkjkLUWi0yFVyTCET9xbey+TEyZdv8HJCCynjQHVR/EyllSNTSPB7L1knE0BtuDK+W/2dLtb86RguW3guPrKhjq5mO5MnKSICJBcI9PTga26+piIkAKrMTFSZVybZncjHQ2M0YU1JG+RDptYbCAaCBANBPE7HoP0Cfj/73ulixJy5RMU68XmczLj/a9i6OiMCJBdoOHUc/5IVcKnImFQButirck4iNx5t/WHfk6shQpJh1bL+VAsBJCg1H1/kUSqTIZHKInEPIiIiIiIiIiIiIiIiIiI3GjespU4QhDSgBNgPxJ4XKCEUCrUIghBzPfv2SfC5Xejj4ojJyKR89w76u9rJnzAVQSLF7XSi0mmJy8rF63Ex52vfxtHTjVKrQxBAKlcSCoUQBMkAZ0YAtVzDS/Nfwqw2R8oEuRx1STHuU6cG1JU6Whk6r5BT68KZMwQBJt+Wi8l6+UA2lV6P1+MieUghJ89nRLxAwbSZAwRIABrLeiICJBc4ttdNRtEtKI/9PVxQdAskDg5sF6SSQWUaowmZ8vIZlUWuHdqoaOY/9H1Ob9vE9ueeoHD6HA6vfZO88ZNx9vaw9enHGbV4OYfffZuUocNAIrDpib8ydvmtHN+0nv6OdowxMbz/j9WMW3krZSeOIlMoScovYOPjf2HU4uU0V5zFZesnb/xktj/3JK7+PlIKi1Bq9QybOZcT550xZHLFhzpdepxOHD3dRMWHDQ2NZadJLx5BzdFD5I2fzM6XnglXFAQ8DjtelwuDJQaPy4lMrkAfHY3aYKCvrZVdLz3DvG9+j4p9uwDwBwKMXHgTwWCQGfc9iMfpHBBYKkgkpBQUYU3LYOrdXxnkoAwglcoiYhLmxORB20WuALFDYcqPEbb/miEFjZwri8XRGzZSWVJ0FJVkYom7slmCZNHmgZ9jY+lRypEEBzvGSGUy+lpbObLuTcbcdAsqvR6pXI5CrcbrCotB5I6bSUejkoDPT0JOIfpoy6B21HoDCo2G2Iws9r3xMlHxCXjdTpQaDUWz5jFq8QoCAT8KtQapTEbtqWMsSFDS1u9iUVECYzI86FUypILAuQ4HJSlRLCpKYGjiJ8jcInJNMGsUzBkaR7JZQzAECqmEAzVdxBpUvLi/jr9sqWJxvom000eZfMe9NFeUIZXLkMkV5I6ZQE9rMz6PG7/Hw+Tb7+Hoe2spmjEXn9fNkTWrScjNRyKVEgwEqD1+hJyxEzjy7ttAWBwsf+JU6k8dx9bVSWdDPSMXLUdrNPHWb39JKBSkcPpsJt95Hx6nE5/HjdEaS/2po6QVj6D22GEgLAh1KRKZDEEQCH0wi2coRGbpGGIzsji9dSONZaeJy8gma9RYOhvqMMbEUTh9NoLk4vOC3+fF7/Gi0l2Z7Boin55wkE6IuIxsyndvRyKTY0lOwxSbgAs1prhE4DAIAsOmzyEuKyeS6UmhHmx0EyQSBKmU2IwcBAnc9JP/5vDaN5HKFYSCsO/tsKNQKARelw+FWobX5UcqlzD1ttwrkvlMkT3Y8UJVWIhELQpBfN4RZDLUxcW4jh1DMX0up055B2wPBUN4nQMNv+bEJOKy85DKBr9eS2QyJDIZwUCQxNwhIAhs/Oef6airITFvKHMffJg9r79Af0c7Tq0VQRAYFT+Kp2Y/hcPvwKKyIJd+eMCDiMjVRpEw+D1MmZ+P5GPch41WDVNvy2PjU2cigTwKjZEQdoZMmsqhdW8x9a4v09vSxMbH/0LpgmUoNGo8dgeaqCi0ZjOO3h4kssFOtTK5nFBQRd74yXQ3N9JeE3bgDfi8BD4g5ieVyfB5PEjlcqoO7KWjtgalRktsZjY6U9T/5bKIfEoEiRB+vvuAgKMgCBgsMaQUFOHzX5/sqyIiH4VMGQ5Q/CASmQydORqv00HGiFEoNVpqTx5FkEiQSmVoTFG4+i9m9M0cMfpadlvkc0yMXsWXxqXS6/JjVMuRCFDf7cSYoGeQMjkQDAZpr6shKj4RmVKJXKlEqdXhcTrY+8ZLpBQUIeuV47Lb8Hk8qLQ6FGo1PrebgN+LRJAiUyqRKZToTOawEOWRgwRDQUbMWzzomViiVKIuLsLzAWEzVV7eVb82IiIfh9iMLNJLSqk5egiJVIpUJhtgA1Dp9Ci1OlKHDR8gkht2DJZGBKm1RiPG2IQPmsoidaUKBZ31dVhSUq/2KYncIAiCcNl1AkGQEAz6GXPTKrY+/U8ScvKRINDT2sJQgxFTXAIy5ZV3ghcREflwTDEaJizPYudrlWGfBwEm3ZKDMebD30ulBiMSg4HgJc/4ANLo6KvcW5HLoUhPG1SmKihA8gmCfj5LqPUGShfdxJkdW0geOoy04lIq9++icv9ehkycQsDrxdnbQ1xmNq3nKgfsqzEY0USZScgZQkfdObTGKMavvB2Py0kg4EdjMBI9ZgJnd24leUjhZY8fn56GMSYauUL06fk4SBUKJDLpoAQkoVCIUCiEVCYjrWg4iXlDcPX3ExIE9FHmL6TQQEyqnowSK9VHw4HWcpWUcTdloVDdsK6NIp9RpGbzoDKJXk9iQi6vFL6CP+gnRhODIAxeA/y3WPMwxh1j9opU1j73BggglSvoajxHQt6QAQLq3U2NSOUKXLYW7D3dl/3OS6VS8idMRanVotEbcdttaIymT3i2X3Au8zeUnPc9CZx/n7ekpqNUa/B5PIQIIREElJfxYRARuW5cZioSBAkg0NvaQv6EKdSdOk7R9Nm8svAVQoSI0fwb9/qkUVC4Ek6+Gv5sSIJJ3wXZxWc7o1XNlNvy2Pz0mcjy8tilmZjirsx3o6fFEREguUDdyS5c0/JBIoFLfHAFuRxJlGjP/SIQm5GF1+mkvbYaZ18vAGnFI+htb2XGfQ+iM5sZMnEap7ZtjOwjlcsxxsYRCnYjCF7W/fE3xGZkYU5MJm1Y8WWPI0gk0FF+oQFY9JfLJlgV+XzSGhEhufLvsxlWLcEQ9MmNKDWfzK9VrlTi94giJCIiIiIiIiIiIiIiIiI3JjekpU4QBB3wBvCtUCjU/3GNOoIgfBn4MkBKyvXPuuFy2JAplGh1et787S8iCwT1J48z5c77SBpaiMfpRG0w0HW6jg2P/T6y7+Q77kVviUWQShkyeTqnL1k4s6ZlEJOWgUk90CgmCAKm5SuwbdiAvz1slJWkp7NTYuFcwMXiBwtoaLaTl2EiLcN0WYd5AKVKhUwm49yh/Uy89Uuc2bmFgNdL7riJA4KKvW4XbeeqEEJ1lM5To9ImYOuWUXeqC6VGhmTiwzDlm+GFYYUWVIMD3b1OB4m5Q2gqPxMpG7lwGUrNFysj3I02dgEkUgnle3ZSc/QQ42++g50vPI3BasXrdlGxbxdjblrFzhefRiqXozYYOPjOGwyft5h9q1/G47CTN3YCe157kfyJUzmxaT3dTY1MuOUudr30DKmFxdSdOErD6RNMWHUnuy4IhRD+fsgUSopnzceakobbbicmLQNBKiGlsHiAUbZw+mzaa8PBZmd3bWPSbV/i7K5tpBYWY4iJxXfJotyEVXdy7tB+NvztD8hVaobPXUj9qeO0nqtk4i13sf/NV/E4HbRWlqPWG8ifOAWpVEbn+Yy1SrUGa3oGyUOH0XD6BMbYOEpmL6Bi/252vvA0maWjScovQGM0RRbBAUYsWELN0SOMXHQTcZnZV/3vdj247uNXqYfxD8HwO4gOwU15Crq7BSQSAXOCFq3xyi8YK/PyMCxbSv/qNwFQL1mMPDEJucOO7AMLwsWz5tFccZbOhjq2PvNPZt73dVILirjtf/6ArauTvvZ2XHY3EkmIs/u9FExcilTWT1J+AY1nL4pKDZ+3iNB5I7hEKsPr8VA6bwlOez+2zk62/OsfkWzwCbn5jFq8gsrt75A1dT6a5GQefvU4zX3hRfQx6WbSLRqKkr/YRrrrPnY/hCSzhhn5sXznteO4fWHD6pcnpSOXCvz4zfCYqOzyMHvcZDY/8RiEQuSOm0Rfeyv1p46TP2kq3Y0N7Fv9CoJEYMFDP6Cp/CyH14XHq8Eay4z7vsbJLRuwd3djSUlj/M13cGLze6gNRvTR0UxYdSduux2pVIq9u4tj71/MWnxswzoUKjXH3n+XtKIS+traaKupIrN0NONW3EowGCImPYP8CVM5u2srAGW7tlMwdeYAcTNzYjLG2HjW/v4RTLFx5E+aRuGMubhsfex++Tlm3Psgo5esHCDK01xRxv43X6W7uZGCqTPJnzAZg+Uzo013xbjRxm57bTXtNZVseeofkbLKA3tY8r2fEhJkJBWWcHLHNoZMmkbDmZNYklPQGIxMv+9B/B4PprgEelubI/sOmTQNhVrD1qf+zoRb7kKp0TBqyQpkCgUt1aBSy+kjLOKkNalY+I1huOx+jFY1UeedHuw9XbSeq8LZ20NUQiKxGVkoVB9fQEQ7ejSqoUNwnw4/o0pNJsx3341wmeARkU/GjTZ+L4dx2VIchw4RGl1MrrsHiVSOwZpK87kQVYfbURgtyBRKAj4fY5ffQk9LE01nT5GcXzBAZAwgf+JUNDoDPc0NeJxOLCnpZJaOpqOuhqay0+x6+Rkm3no3gUCQb25q4unUJMxaJQalAYNSFAq7kfgsjN2rgbpoGOrRo3DtPwCARKvF+s1vIP2YokwZw62sjC/F1uVGpXXR115HT7MLc0IiU+64F1d/L+//88+MW34LMoWCgM/HkfVrMMcnggBpw4bjttupPnwwIs4qSCSkl4yk/tRx6k4exZqSTt64Sex5/UXUBiPZo8ZFhCUBimcv4OA7r2Pr7GTk4uWs/8ujFEybha2rk6IZcwaInX1eudHGb8Dnp2TOQg6tWR0pM8TEYk5MYtTilUjlUoI+/79pQeSLwo02dgH8Xh/mhGRUWh1ux8WMfKMW3UTtiaNYEpOJz8qhqewsAONW3Io2KpqTWzYwbPpsGs6cpGjmXKzpYga9zzPXcuwKgsDk3Bi+8dJRGnvCz6GlqSaahBQKJs8Y4JAbm5FFVHwijp5u+jvbicvMIWf0eLqaGjh+/r1foVLh7OsjNjMbtU5Pd1MD3c1NJOTkojGY8Hk99La34nW7UWq0aAxGCqbNRGs0YYi2QsAHwvl7ayjcv6ibb8a2cROBrrCgpCInG+348eG6FwT3Pur3UAiCAZDKwmUSWfjzpbYjyRcvSO9qcCPOvVcTXVQ0w+ctJj4rB5lSxdQvfYXtz/0L3/msx3O+9jAtVRXoosz0tDYxYsFSjq5fw5kdWxm38nb2r34Fn8eNXK1hxILFuPv7UWq0A7Jyjlx8E0F/gNW/+Rmrfv4bTDFx1/GMP7/ccGNXkFC66Ca2XrJeptLqiE5Kpqe1lfjsXExxCRRMnUlLVQXDps/CkpzKqa0baTx7mlt/9Si6qMHBkSKfT2648fsFQyqXkD8xgbhMI45eDzqzCnOcFsmH+FIAKJISif/5z2j6zncjAXLme+9BmfXFes6/UcauprQUVdEw3MdPACAxGom+/z4kH0iu81mkp6WZtuoq/D4P1pR0YtIzUahUZJSUUnfiCJbkVPa/+SrDZsxBF2WmpbKcE5vew9HXw00/+jkb/vEnbJ0dSKQyRi1Zgc5ixW23IZH5UOsNqIwmyvbupObIQUYvuxmjNRaXvZ+UocXoLdEk5g2lqex0pD/Zo8ZxatdORi5acR2vyqfn2o5dgdKFy9j3+kuREn20hdj0bMxxCZEyuVKF3PrFFiLTGpVMuS2PYVOT8HkCmGI1mP6NINQXlRtl7v0so8zKwnz/fXQ//kS4QCIh7mc/Q5GUxL+VEwv4w2sPl65FXFomV0PRraT1t7EsYQhdzc04eruxpqaTkJOHrbOdnpZmBImE4XMX4bbb2P7ck0y45U6Gz1vM1qf/ebGPGi1KnY5ki5U1//s/zLj/axg/4++S12PsGmNiMSck0d3cGCkbNmMuSo0OuUpNRskIYtIy8LldOPt7iU5KQWsyfyHsRiKfjOs59xosMVhSUumsr4uUFUybiVKrY9Pjf6GzsY4pd96H224nQZMfqeP3eGitqaK7qRGN3kBsZnbY/0ofC/N/BzN/EV5zDQXBlDTgmIIgkDUihuhELbYuN1qjkqh4DXL5lVl/lcolSCQCqcOiMVrVtFX301bTj8yoI+Z736X9N7+N1I358Y9Qpoqivv9XPkvPDabYeBQqNeakZGxdXShUauQqFSqtFnNiMt3Njaj0eobNmEP1kYMYrDHkjpmIo7ubIRMSCAXqCAb8tFSWkTtuIrpoC/E5+bRUnI0cI3fsROQqFXz9UHj8S2Sgs4bv5ZfaJSBsf+ipO/8dSQWZmDzo80DbeRGSOMOVf/dKiw7HvfTJDCg/oSiqTKnE5xVFSERERERERERERERERERuTG64KDpBEOSEBUheCIVCF6IR2gRBiA+FQi2CIMQD7ZfbNxQK/RP4J0BpaenlEo5dUwJeLyqdjoYzJwYplB5e9xYphcU8+/1vsPQH/8W+1a8M3Nfvp6+9FalMhlqnY/Sym+msr8UUl4DGYIgEUR5v6OVUUx+hEAxNNFCSm0PS8y9QdeAEvZ4gR6Rm/niol2CoD6NeyR+2V/BEWimZsn9vLFFqdShUakKhAMOmz0EqkxEKBvB7w5nAQ6EQZ3ZuZfMTf43sk1pUypDJd2BJSsVoUSDvOwUnXoHOCshfCBnTIH5gthS33Y4pPoHUYSUEAwGkcjm97W0DxE6+CNxoYxegt7WVc4f2AeD3eQmFgiTmDaX2+BEgPAb8Pi8Jefk0ng07nshVKlz9fUQnpdBeVwOAwRrD2Z1bUWq12LvDjuZx2bnsPz/mL7dwVnPkEBklI+lrb0OuULL9uScZMX8JmSNGkZQ3FGd/H0lDCulurEOl1ZHztfH0trXSXFFGRulopHI5rVUVFEyZCRAWujl7mpbKcMZNn9vF/jdfZcKqO2mpLOfIu++QN34SxzeuxxSfyIz7v07A78fe3cme114ILzgLAqMW3cSYZTdjio0nOimF7c8/Sei8Y1n3O40otTpGLFiCrbMTe3cXMemZtNdWM/3eB4hOSkEm/3yO6+s+fgN+aDwIJ16FjjPoc+aiT5sMKSOv2iFlUVHE/eAHmJYuJdDbhy0pniNvv0ZrVQVjb7qF3tYWPE4nOWPG4XY4iE5KYdiMOZzY9B5etxNHvwdbl4eNTzxG3/nAe0EiYcpd3+fMbg+jF6gxWGMYV3g7Ab8PmVxB7bHDjL/lLgJ+H3MSkti3+hXWnP4NY5bdTOX+3REBEoDm8rP0tDRBKMSOfzxK1n0/iQiQAOyr6aaq3X5ZEZLaTjvHG/rosHvIsOooTTFh0Hz2nfQux3Ufux9Cp93DL9aeiQiQAPxzRw2JpovGiXZXkLoTRyEUQmM0oTdHc/CdN1Dp9Ljtds7u2gZAKCgglcs4+t47kX37O9rY9MRjLHz4x1Qd2MPhdW8xfO5iskrHEp+TS/2p47j6+8kaOYb4nHyayi4KhV2gsex0OHgpIYmKfbsBOHdoP+cO7QdgzLJVpBYWYYpPQKXVYoqLR6ZUYUlOo+HUcaISEkkaUsihtW+RP3Eqzr4eNvw1LMYmlcmYcMtdmKT96INdQFiEpLO+ltd++RP85+8bu156BmdfL5Nvv+cLlw3sRhu7zv4+qo8cHFgYClF5YA/Zo8cj6auneM4CFCoN7TXnkM9ZhFylZsPf/4Tf62XUkuX4PB5sXR0kDx2GPtrKme2baa+txuN0IFMo0EXH8/4T1fS0OkkZYmbUwnSOb2kgIcdEdIJuUH82Pv4Y1YcPRMom3/kVhkyahUb/8YSpFMnJJP3tb3gqKgl5vSizMlHc4Ab5zwo32vi9HKqcHGT/8SPe+O0vItkJ9RYrU+/+IWnDhiBR2Zj/rR/SXl1B1cG9tNdWA7Dt2ccZt/J27N1dOPv6yBheCiHY+uzjFE6dReX+PcSkZw6Ys1oqy/G6XGx/7gluXvYwqivkuCNy5fksjN2rgTw+nqRHH8VTUUHQ5UKRkYEyPf1j7+/o8dDX7kIitfHunx+ht7UFCD/7Lv3Bf2Hr7IRQiEAggLOvB5lKhTkhkZpjh3H0dOPo6aFo1jzmfv07NJ49iUQqJaWwhLM7t1K5P/wM0tfWSuu5CpZ87z+xdXaQWlhM3vhJdNTVIJHKqD1xhO6msINp0O9HECSc2vI+Mfdk0N/ZgTEm9spfuBuMG2n8BgJ+kAhYUzMYu/xWOmqr0VtjUGq0+DwetKYonv/xQyz92R8j+4RCIU419VHWasPh8ZMXb6Ak2YRSnDM/99xIY/cCLrsNQSJQuvgm+tvbcfX3EZuRRTAQpKupAalURmLeEORKNVmjxuLs62Pf6pfoa2tl/rd+gM5iQW00Icg+n+/ZImGu5dgNBkOsPtIUESABOFTXS3VfIuNGjUVrNtNZX0tUXAKCRELA56P1XAUphSXkjZvE7pefGyAQXn30EEUz5iJXKLF3d9FcUUZKwTAUKg0+r4eWynIkEinGmBhUegMCAnJHC4b+/dBA2CHXY4NAANRGaD+LKmEEab/6Ch6HGiHoRhktQ+44Bk9/BXJmgiEZDvwjbEPQJ8KBv0PuPDClwP6/Q94CUJng5GtQuBy6zoHXDkmlULkZsqZB81EYsgRSx4H4/fpU3Ihz79WmpaKMPa+9CIRFSYpnzUOuUpEzegLRSckkDymgt6WZEBAMBEgvLqWrsQ5bdzejlqwgKiEJv9uN3+PB7/UycvFy+jvacNlsxGVkoTVF4fd5cHR30dVQJ4qQXCVutLEbCgXD65yr7qStugq1wYjBGgOCgFqjRRAkzH7gmwQCAZJkcrqb6nnzkZ/j94XtsC5bvyhC8gXiRhu/X0TkcikxqQb4BLFt+unTSX/jdbwNjcgsFpQ52Uh1nyzT7WedG2XsKpKSSPrLX/BUVBDyeFFmZqD4HAQqdjc18Nqvfoq9qxMIJ6lY8dNfkZQ/FFNcPNmjw3bopLx8fG4XnXU1+H1e7D1dlC5YSm97K+nFI9AYTABU7NuFwWpFIpXht9lQ6w0olUqOvbcWjdFI45lTVB85wIz7HmTbs08y6ba7ic3IIiEnj+7mRqKTUrCmprPp8cewxsdhTb71Ol6dT8c1fWfz+UjKH8q4FbfRXluNPtqCSqensewU6cXDr+ahP5OodXISc77YiVQ+ihtl7v0sI3U2YhljQJ/3PfxeJYrMfJR5BR++g70NKt6Ho8+CdQiUfgmMyXBuMxx6CqJSYOT9kDAcmo9QV9PB239/POxrBlhT0ylduIzh8xYjV6qQKZQotToaz4TFs5x9fWSW5jH3G9/l3MF9qHR6DNYYtvzrHxhjYsmbMJkj698hIScfXdRn9/txPcZuCMibMBm33U5/exuW1DSkcgUQ5O7fP0ZvUzMhAYyxcRhj4tCZLWgMYpIIkcFc6/F7rKGX0019hICpUZA9ejyphSX0trVgTUlHKpeDJMTIpSvoqqul6ewZssdOGNBG+f5dvHdJUszkocOY943vopMA7YfhyLPg6IBhN0N8MSSWDNhfKpNgSdJjSdJf8fMzJ2qZ/eWh9HW48bj8ZI+KZcTcVIyxWoRVq9CMGIGvtQ15fDzK7CwxWdCn4LP23KAxmtAYTZfdJlMoOPbeWqISkxg+bzH9nW1se/YJZtz/DfRmFVrjRb/K/atfYekP/ovUYcUk5ubT09JEdFIKUpkMQZDAkWfC9/HksYTy5hGsO4S04m18+UuRFywGuQYOPgm7fgdBH4y4ByZ8G4yJ1+hKiFwtWs/7UMdcBRGSBFM4rscu06HUfrJEvHKFclCckYiIiIiIiIiIiIiIiIjIjcINtTonCIIAPAmcDYVCv7tk0zvAXcAj5/9/+zp07xMTQkCQyyJGpQEIAoJEglqnx+d2RYLbLtB4+jTJQwuxdXZwaO2byOQKTHHxNJ49hcfhIDYzhzZtEvc9e4h+V3hfrULKk3ePJNMawz3lSjpsHqA30maP04tWISNa+9FOuBq9geRhxUgkEvrb2wj4vJhi45Frziu1trex47l/oTdbKJo1j1AoyInN79Pf0ciR94NMuyOXuNO/RGg8H5DaeBBG1sOc34SzFZ7HYI3h8Lq3cPaF+ymTK5j5wDeRigvH1x2ZXI4pNp7u5saIKIytqxNTbDy2zo5Imb2ri5iMLFoqy5BIJAgSCc6+XlIKi4FwkJdcpcbndqM673jl7OtFH23B1tV5WcEZY2wczRVncfT24HO76G5uRKZSsfHxvyBTKJl025dY/+f/RygEE2+5k9M7NtNUdobY9CyGZsxgz6vP01FXQ0J2HpbkVBJy8zm8bvC0cUEAxd7TRXzOEFIKipGr1bz7x99GsmVHvr+hEIfWvok1LYOuxnoM1piIAMkFjm98l5Shw6g5dhi1wci5w/uRK5VMu+v+z60AyQ1B0xF4/W5whB2waDwEJTWgj4Oo5Kt2WKnRiHbkSPw+HzXbN1Fz7DCEQux88Wn00RbkKhXW1DSsqWm89b+/Ijm/gOzR49EYTGEF/3NlOHq6GH3TLai1Wk5s3sDp7a8z/xv/ibO/hd7WZs7s2BI53riVt1N77BC2zg466mrobmogIScPnTmazoa6Qf1z9PZiiIml6tB+gt1tg7afbrZx04iBZQ3dDn785kn2nOuOlP3ngiHcM+HjB5qKfHp6nT7a+gcbFfyBIBIBhiWZyLBq8daG56D0klLK9+4CIDY9c0BGMggHJAUDgYFlgQCO3h7O7tpO+vCRqPU6FBoNmx7/C15XOHCp/uQxxq24DZe9n+ojBwbsb4qNp6Wy7Pzcrsdttw3YLpHJcNrtqDQaTm3ZSE9LE5mjxhKXnkVUYhKO3h7aqivRm83ozdHsX/1yZN+A38/hdW+Rs7wUdv8Y7lwDhjg6G+ojAiQXOLZhHcPnLvpCBA/fyPi9nrCR9gMIEgFdVDQyfzNH95/CGBODXKVGYzTS196KzxM27O1/81VUOj16i5UhU2ZyZutGTHHxWFJSkSmUCFIpe1bX09kQzjRfc7wTnzfAsu8OxxwfzkAfCoVQ68LOD531tYQCQXLGTKDu5FE8Dgd7XnkGlT6TrNJsVJqPd0+Wx8Qgj4m5QldJ5LOE1+1m79uvEQz40UdbScwbgrOvl2CgD0nAzju/+jXFcxagj7ZEBEgAPA4H2555nMXf+w8OrVnN6e1bKJo5B7fNjkQmIyohEYkguZgZHlDrDcgUcgRBwsi0KDQK8T1I5MZDZrEgs1g+8X697U7WPnaC/g4XxdOc9La2IFMoSRtWAoJAwOtFqQ07A0llchQaLVKZDHtPN6bYeBy9PaQOK2bnS88wdNI0elqazwf7Z0cESC5g7+6itbqS7sZ6zuzYwoz7v4ZSq6ej9hwtFWUXKwoQIvyOp1CLWTSvB1KpDJlCwe5XnsXe3Y05IZGm8jO4bP1MUNxFeslIErLz8Hgv3q8P1XXz07dOU9YafuYUBPjzLSUsGJbwYYcREblqKJQq6psa2PXiM2ijzKi0OqoO7kOqkDP9nq/i87gJ+Hys+f2vB+wXm5GFVCpHrdPT29JMwOslPicfc7w4jkU+Hf1uLwdqugeVSwU4s2ML1UcOYoqNo/HMKTxOBykFRQyfv5ie5ibqTp0Y5NBrio3H1tWJJTkFlU6P1hSFrasTrcmMRCLBaI3F0deDx+VEqlCiUKpQ+nqhYQ8E/aA2hx1xO8ug7VTYiX3N11BM/Q8UB/8Lpv8nbPktaMwwdBls/iVkTAV1FGz6GeTMBoUWtvwS0iaC1gqbfw7Zs8JZCNc9DBMehhMvw9l3YOS9sPYhmPlLeG4x3LUW0idek2sv8vnBmpYR+d3e08XBd96gcNpsTHHxAChUamLSMwHobm7k1Z//aMAaVXRSClPuvA+XzUb53p2cO7QPXVQ0Sq2WygN7SCsawZS77gPA4w8SCIaQSi7JnC3y+SQUYvfLz+G22zEnJuE+b/OaeteX0VusyFQqNj35N/LGTWT3K88P2NUYF4/W+NkNLhQR+aIgKBSo8vNR5ed/dGWRq47cakVutV7vblxR6s+cjAiQKLVaUgtLqD56iLjMbDQGI3GZOTSeOYXeGoPGaEJAoO1cFeaEJASJlMazp+moraarsf6SVoVIApazu7czctEyEMBlsxEVn0De+El4XS7GLF1J3cljHH//XRRqDQaLlfqTxzFYY0gpLKaluopg+1kkMeL4/ygkMildtQ3sW/1KeB2s7DQuWz8yhZLimfPCImUiIiLXjv4WeOlWpN1VRCwEnoWQ+3fgMv6UoRAcfga2/ir8ueEA1GyH0V+B934YLqvfA2fehrvX4Ty1gS3v1kEohCBISB5aiMZgJBQMsvnJv0WaNcbFUzxjLhBei9n3+sukFBbR1ViP22HH0RNe6+moqyFr5Bg66mpAfI38xPS1tbLn1RdQ6fTooszUHD9MwOcjMTcfuVpDIBhAplASk5rx0Y2JiFwjDtR0c+/TB7F5wj7h7y7Qsve1F1FqtejNFuqOHw0nDszNx9Xbw4G3XmPG/V/DEH3xWbi/s4NtzzxBQu5QcseOp7e1hWMb1tFRV4NO2wMv3wqBsAgq9Xth9q8hvggk/z6x5ZXCZfNxdncLtSe7ImUj56cRl2FAqVGjHjYM9bBr0hWRzxCmmDhmPfhtCAboa2/DHJ/EvG9+F4/bSO3JdlLyO4jLzKH1XAUuWz+2rk72vf5S5H2m7uQx/B4P8dl5sOtRCAag6TBC7U6kC34HW/8TedNhAq3HkebNh23/c/HgBx8HSxaMfuD6XQCRK0JjjwuDSoZRfeX9+S06JVIhhE2mQ6n5ZCIkMqUSnyhCIiIiIiIiIiIiIiIiInKDcm1WDT8+44E7gGmCIBw7/zOPsPjITEEQKoGZ5z/f8MiVKvweD+akFBRq9YBtw+cuwuNyMnrpSjQGE2r9QBX15sozKDU6BEGCIEhIKSwmc+QYUguLkUhlCMC7J1sjAiQADm+A1w83YtLImZE/2FCdZdXxi8VDyYr9aHVqn9uNXKFgx/NPseOF8M+Wp/8REUvxezwUzZ7PhFvvourQPk5seo+88ZMwxWoJBUMcfq8e29BvDGz0yDPQNjAwuuLAHgqnzWLs8lsZc9MqRi+7mbLd2wl8IFha5Npj0sLYZSuQSGV0NdSRWjSchjMnySwdjVypovHMSfImTKG7uZGY1HTUegOVB/ZSPHsBLls/Kq0WvcVK2e7tlC5YSjAQwOtyYUlOpXzPTobPXYQgkdDX1kJi/tDIcSVSKWOW3UxLVSUNp0+SNXIsQCTAXR9tobn8DAG/n/wJkzm59X3qTx4n4PPRXHGWDX/7A+NW3o5ab+DohrUkDS0kaUgh0UmDxSikMjn6aAvzvvUDvE47+996lTPbN4eDmQkR8A8UBwoGAgR8fjob65DIBmZcTsjNp2TOQuIycvB5PHQ11BEKBhk28yZkN9xU+zmjs/yiAMkFjr8MffWXr3+F8blcYUeh84I6aoORrJFjyCodg1qn59j768gcPoqG0yfIGD4Sn9fNuaPtqPRKZt7/daoP7ePI+nfIHTuRoZOmo9QIOLq7iU5KZdzK2xm9dCUTVt3JucP7kUikGGJiI6IjPo+X5qpyUs+L/lxKdFIStceOAKDTDlbuLk0b7MR8qql/gAAJwO83VlDW0v9pL5PIJ8CqV5BpHWyIyI838ON5+ZjUcvqcPrImzQTA53ah0IRdZPo62jEnJF3cKRRCJpeHDWiXoDYY0ZmjmHjLnTh6utj18nOoNFqShxRG6vg8brY//yRxmTnooy8GHqv1BlKHleDq74/M8QgXPV6yRo7F63Ki0mrZ8eLTdNSHM6+V795O7fHDtFdXcWb7ZhRqNclDCrF1f+D7SziQ2GcZSm/mClzdLQBIFYONPwqVColUOqhc5NoiV6pIGVY8YBwIgoSc0RMQfDaCbjvGuDhi07OYdvdXqDq4F4lEiiU5lVGLl1M8ewGCINDX1orHZsOSksrp7ZsYt/J2VFotMrmC2uO9A47ZeLaHUNBH+d6dvPTT7/HiT77DqW2bcPb34bbbcDtsdDbUUjRzHlmjxuLzuLF12elpdlzbiyPymSTg82LrbKdk7iIyhpfSWl1F8ewFVOzdzNH1b+HzuJFIpQQDwfOZyxahi4qO7O/zeGgqO0PN0YPsf+s1Zj/wDVqryhk2bTY+jzuS2QxBYMItd9FaVUnJ4pVkJYnOxiKfL1rP9dHX5kQqE/C57STk5jNm2c30dbTR196KTK1BZ7aEAxcqygj4A7jtduKycskZPZ7EvKHUHj9C/oQp7HjxaRpOn6CzoY7+jraI+JXWFEXJ3EWMXHQTcoUCvSXsYLfzhaexdXXQUlXOxFvuAsKiIxKJFEIhzInJaKPMGCyfr+CUzwoCAgq1BlNcHOklpeSNn4zGaEIml+P3+Riz7DbsLT4A2vvdHKnrjQiQQNjv+1frztLW775epyDyBUZjNAKgUKvJKCkls3Q08dk5KNUalBotEokUiVTGqCXLI+8q+mgro5feTH9nG5uf/Bu7X3mO9/76e/a88hyO3t7reDYinwc6bF5GpA5e49Eq5WiMRsyJSWSMGEXuuEkotVoUGg1uuz1sdwiFSC4oiuwjlckonDoLbZSZjrpa/F4vOaPHY4pPpKelCY/DjjE2jtSCYqwp6WiNJuLiTOibNodFRcwZoDZBbz2c2xIWDmk6AlHpYG8FlRHOroX0SdDfHBYbAajeConnM4BXbICUMeHfa3eGnd8BKt+HlNHh30+8ArnzwNUDQvjeTvNRiM4Mi5OIiHxC4rNzKZ6zMLKuYU3LYMT8xZcVy7d1dgwSyc0aOZbOhjqUWl34GSc2nrwJk0kdVoIuyoxKq0V53tl9d5ecVw7W4/GJNrDPO4JEQKHRYE1LJ7N0NFkjx6DS6pBIpah0eiQSCV0NdVTu38OoJSvCWYwJZ3yd++C3I88cIiIiIiJfXBzdYZtt9qhxFM2cR2dDLY1nTtBw5gQBv4+E7FxM8Qm4bTZ2v/QsxzasJSE3jwmr7qT2+GEq9+1i2PQ5kbVriVSGXKlFrlSh0ukI+n1IZXKKZy3A53ZhTkwiLjMXe3cXcrUamUKJXKkiZ/R4MktHE5OWgVKrxed2kTa0AKHl5PW8PJ8ZlFodoWAQmUJOfHYuhdNnE5+dh1KjGWBXExERuUZ0lEN31cCysjXQXXP5+v1NsPsPA8vSJ8HuPw4s87mgswq/oMDZ24M2yszkO+8lGAjQWl1Fb1srU+66P/K9zx09DkEqIzo5FXNiMh111ah0uvC7Q+loVFrdJY0LFM+aj0r70f6eIgMRJBJkcgXp59dxE/OGIFUoAIGGUyfwe9xIxLlY5AZjzfGmiAAJhH1vpHI56cWlZI4cQ+KQAiQyOYRAodUyetnNnNq6EbiYKNPv9TDlrvuxpqZy8O036KirYeHDPwwn3Gs5dlGA5AIH/hmeH68RfW3OAQIkAEc31tPb5rpmfRD57BEiRCjgZ8Pf/sDuV55jy1P/4Mz2LSiUElQ6KVKphBELljLzK99g7IpbQRCQSGWkFQ0ns3Q0KUOHIUikCIIQFiC5QOvxsE3DlAqAtO0EVL43uAPHXwafaJv+rFPf7STZfHWS1UglAlHyEHaZFsUnFCGRK5SRZG4iIiIiIiIiIiIiIiIiIjcaN1Sa5VAotIsP122ffi37ciVQaTT0tbUiV6uZ87WHqT5yEGdfLxnDRxGdlIzP6WL/m2El6jHLVnH43bfp72hDH21lxIIl+NxulFots7/6EMc3vsv+1a9gTU1n9gPfRGuOpvFwy6BjNvY4kQoC905I52xLP8ca+pBKBFaMSGJreTsN3U7GZ1nQfkSGbUEi0Hj2FP0dbZEye3cXNUcOkFE8Ap3FgiU5lQNvvUbOmPEEg0FCgQBddWUYrRnYu90E+UBQsEQ2IOs3QHJ+AVv+9fcBZZNuvwepGFB8/QlBas9Gljz0bTrbO7EkpTB00jQ8TieLv/sTOhvrMVpjyCodg6O3mwXf+j5dTY1ojCZShhbS19bKnK8+RE9rCwq1hqU/+C+6mxqYcud99Hd1gkRg6Q/+i67GenLHTcI1LRw0bIyJpfrIQcYuW0lXUyP9ne3M+8b38DgdaIwm5CoVXnfY4KCPtnJ6++YB3XbbbXgcdmbe/3V8Xg+9rc3UnzrOmGWrWP/Y7yIOwimFxWiMJibeejcymYxtzz5BYt5Q+jvbAQj4fCi1WjyOi8HKCrUavcVC8az5mOMTUesNuGz9jF1+K23VVex84Wn0FgvT7v4yTRVlGK3ZdLea8XlDDJQhErmiSC4zX0ikg+abq4VKFzb+F06fRXtNNSmFRRzbsA6vy8nQyTOIScvEGBPHuUP7cNn6cdvthIJqomKjaCw7TVrRcE5t3cje119k3Mrb0BhNRCUksu7P/y9s/BPCGamS8gswxMQiVyojY88YE0vbuUpiM7JIKSyi/uRxZAolI+YvQqnR0d3cSEJeAUJUHGMyQuyr7kYiwJ1j0xh5GRGSPpdvUJnN48fm9g8qF7l6mLVKHl1ZxNdeOEpTrwu1XMovlwxFEAT+e93ZSL2WHjW/+vZ/UrNnC8Wz5rP5yb/S29pMwdSZ6KKisfeEDbZnt2+mZM58jDGxNJ45hSUlldxxE/E4nGx/4alwsA6w/fknmbDqThrOnMLrcgIgU4TH29ibbg0nRwsGcfb3sm/1y5TMXUhHXQ3aqGgWPPQD3PZ+FGoNoWCQmuNHUKg1BHwXx5QgSKg7eYzRy26m7uQxQiHobW1BJldExvmFetPueYAd67dTfewIUfHnmH7PV4lJy8QUl0Bva3OkzYm33T1AIEXk+mCKS8DjcDDj3gepO3kMqVxO7tgJhBCI2f4wnpgSepvUpBYUUb5nJ86+XrJHjyc2M5vD695CqdVRMmcBaoOJiv278DgcmJNS0BpMyFQqAn4zMFBYSqGR0d9RS0ddDdmjxyEIAvtWv4wgCGx64q+R+/2BptcYtWQFaUUj6WoWiM8S5zORj0atNzDmpluoOXqQuhPHmHLX/ex78xWiYuPp7wg/K+qiouhpaebEpg1I5TKKZsylva4GqVRGw+mw87UgSGipKGP8ytsZPm8xglSK1hRFwZSZ5IyegMEag9vpQKrSkFhQjETMhC3yOcPRF3Zg83uDaE3JZI6QsvPFpwFIHVbCwbdfxRibwOilN+Po7UYikaIxxhEVn4jf52H8zXew55Xnws8llzwn1Bw9zLAZs+ltbSE2M5sTG9fj93oZNnMuWqMJAI/TgVyhpLupkZrjR5ly5/0oNBoOvbOa7FHjyJ8whZiUdIRrlNFLZCDBYJCxy2+h9thhjqx/B4VKTfHs+cRmZCOVSXH7ZRjNYSHF6k47Du/g+3eHzUO7zU2sYbDgoojI1cTv92KOT2Tcits5/O5b2Lu6yBgxkpGLlqM2mji1bRMx6RlUHz3M3G98l/72NqxJCXg8Pg6tWU3wEuHl8r07GTJpGhnDR17HMxL5rNPr8mFUyxmXGc2ec10IAiwclsDW8g6+M3Yirv5+Dq1ZjdpgZOSi5WiMJvxeL4JEoP70ccbffCeT77gPqVyOLsoMAugtFqQyeWS8Gqwx4XumICAQQhAEhFAItWDD0rAG3H0gVwOh8HqcRMb5RQSQyiDoPy8WcslnuBhwd2mwx4et511aLpVD0DdwX6k87DgsFe8LIp8crdHE5FvvZti0Wfi8HqJiE1AbDJetqzYYEQQJoVAwUmZJSaW5ooz+zg7yJ0xGqVZz7P11SKUyhs2YQ/LQYbhs/Sy45zbmv9tNt6ONwkQThUmiyMTnGQEJk++4j/I9OyLz8KglKzAnpeCy96Mzh4VI22ur8brdLPz2j1BpdeitMRjE9U4RERERESB56DCObVhLVEIiB956LVK++pGfs+rnvyUhO5eu+joOvP0aCAJJQwrpaqzHmppB3vjJ7HzxaXa9/CwFU2eg1OiITs7gzG45E1ZYcdn6KJ69gJaKMlKGFaMzmwkGgwT9fir272bMslVExcUzftUdHHn3HWydHaSXjGD4vMWU7d6O2awFoe86Xp3PDgGvl6i4gesImSNGMXrJClEgWUTkenA5/yJBgA+1FVxY57iEoD+8DjGoqgRt3XoKxs5Fl5DJzheeiiS/2vfGSxTPXsCUO+/HbbcRl5lNd1MDyUMKUesNjLv5DloqyynbvQO1Xs+IBUupPLAHc2Iy1tQ0VDoDHocNXdRgPx+RD8dgiWHK3fdzZN3bnN25lZSCIuY++G3kahU7nnuShd/+IdFJKde7myIiA2joGSjEYbBYmfalBzi87i3Kdm8naUgh8772beRqNXU7t3B62yZGL12Jvbub2PRMAFR6A/Unj6E2GCmYOhNBIuHAO28w+bZ7wHmZeVAq+zfz4JXH7wsOLvMGCQRCl6ktIhKmt62Vva+9OCCxZM2xQ+SMmURvm5r4dIG640dIzMsn4POhjYpi5v1f48j6d6jYt4uEnDzmfu3bKLTa8H08cImfrER60W5h7wDrkMEdSBgOMuVVPkuRq01Dj5Pcj5HI9/+KWebHITcgk1/mWfHfcGlchIiIiIiIiIiIiIiIiIjIjcYNJULyeUSmkLHpiX8xauEyMkpGIpHK8Pk89Hd0oDNHUTB1BlK5nKPvrSG1sAiNKQpXfx9ndm4hpbAYiVfGntdejIiBdNTVsPWZx7npp79iWl4Mm862DzjevMJ4JBKBrBg9/7O0kPJWGzKphLUnmiN1q9rtxHxEkIZUrqC7qXFQeWd9HaFQCK/TicdhJ2vkWPa/+SrBQACFWsO4lbeRWaLF5TBhqPrbwJ3HPAixQwcUJeYNZcT8JZzY9B6hYJChU2aQVljySS+zyNXAEI86Ppv0924ifeYv4dDfwNUFE78La+4ldfy3ofy5sDr67P+BNQtIKb4NWvuhfD3MeQTWLyclbTyE0mHHE2TMfgS23g3GJMiZDet+HW5776MQ8sPoB+C9B8ic/AOoejScKWLqT+CtL8Oo+7E++FV2v7OWxLyhVB85CHA+C30AqVxO6YKlSKQyPE4noWAIiUyGRCbj1JYNmOOTmHT7l5BIJKj1RgIBPxKJhPWP/Y7SBUsJBgK0VVdSPHsBzeVnObV1I2OX38rBd97A0dONxmhi1JKVuGx9eFxOlGodk26/B6/TSf2p41QfOQBAf0c77//jzyx8+D/Y9KyD7BIF2hjz9fs7fhGw5IApJaxIfoHS+0ATe00OL0gk5I6ZwMkt71M4Yw7vPfa7yLYTm99j5KLlEAoHbPS3t6G3WDFGV7P6kacIBYMoNVqm3/cgZ3du4/T2zQyZNA1LSipLvv+fbHr8MWxdHaQWDSd75Fje/8efUOv0jFq8nB0vPo3H6SCzdDTbnnmc1GEljLlpFUG/H2NsPPa+Hobc8gCng9H8+IXT/GBOHvdNSMeglpMbp8eoVgw6lySzBpVcgvsSY9+4zGh0KlEY6lpTnBzFs/eMoqHHQZRGSX6cjgdfPDqgzpk2F0+eMxGMnYmsPcD8+39EqLmKTq+E4nu/Q2tLO6lWHZk6G9JTL6EqmkvqkHw08hBRmdmc3L41EtB7gbI9Oxi1ZDn7Vr+COSGJgqkz6Wyow+dxI1cq2fzkxXv73tdfYv5D36etpopDa95k/MrbqTy4l7RhJRhjYtGcD9bIGDGKgskz8Pt9uPr7UKjDavJuuw2pVErF3p2MW3Ebh9asxutyUjBtJmW7t9NUdhqAnuYm3nzkZ9z+6z+w7Ic/o/HsSfra20jKLyAhJ/9q/hlEPiZqrRZHbzc6s4W8CVOQKxV0NTbgdTrIcHaiPPYkYxe9gxsZVQf3MW7FbdQePcTpbZsAcPb1sue1F1n0nZ/Q29KMNTUdU1w8SCQYLFaCQQUpQ8zUn+mOHHPm3UPo7zjE4Xffxu/xIJXJGL30ZqqPHSY+OyciAgFQdWAv41Y+xPZX2pmw/OpkMxD5/BGTlsGWJ//OhFvuxNbVSXt1Fc6eHrJHj8XZ14uts4sj774DhDMJHXj7dWY/8BAuux2VTktaUQm2rk4CPh8Bn58j69+ms76WvPGTSSsewfv//DNaUxQjFizlVMBCwBbAJMafiXzOiEu/GLjZ2aLF3Xcxg1Z8Vi77Vr+MurYGc3wCe159AZ/HjVQmY/Id96PUapDKlaQUFkMoSHpxKQm5+QSDAcwJSah0ehy9PQOevY+8+zalC5eh0ukxWGPoamoAoOnsScavvI2elmZKFy3DFBOLNTUdlU7MGnjdEAS6Ghs4ueV9AFw+H3tff4no5FSi1Co8TgcJ2Sn0ODyUtdhINKmRSgQCwYvProuKE7BfRkRRRORqo1CqCQYCbH/uyUgA+rlD+5HJFSTkDsGSkkooBFqDkZojB6k9foRlX38Ar1eCvbtrUHsuu+1an4LI54xUs4Y1J5p5aHo2U/NiiDOo6HV66bZ7OLt3G+V7dwLg6Olm10vPMO+b38fnciJXadBFRdPVWI/aoGf3y89j6+ogpaCIIZOmUbFvU2S9c8UPf0KKpA62PwKJJWExEXVUeD0uOgPc0eDsCmcNVurD5fkLoOxdGH4HnF0LGjN4bJC3ELb8AqIzwdEZPom8hVC7K/z70KVwbkv499x5UL/3kvKt4d+Lb4W9j4E+Prx+LJFBbAGcfA2GrbxWl17kc4ZMqcSamv6R9cyJyUy58z62Pvs4hEIIgiQsXh5toansDN3NjRx7fx0AfjwcfOcNopNSsMZaOOtX0O0Iz/tNvU5RhOTzjkxG3cmjlO/ZAYTn4R0vPMXi7/0UhUpNd8PFTOtGawz2nh4yR4y6Xr0VEREREbkBic/OYf63fsDWp/4xcEMoROOZkxgs1shzx7gVt3Hu8H7O7gw/M6cUFDF66Ur2v/kqR99bizUtA7VpGNYUFZaUVCQSgYDfT1eUma6GOqJiE5Aq5MhkchRKFX6fF40pijW/+3U4aQZQfeQgEokEvTUWfaibkCX/QzNMiVwkiEAw6B+wjlB1aB8ypYLUouGfODhNRETkU2LNhYQR0Hz4YlnxHWDOuHx9YwJM/TGs/8HFsvp9MOn78M7XL5apTBCVhtSURGleCVVN7gFB0gCnt29m2PTZKDVaOutr0Vti8Hk9BH1eupsbObMjvB7i6O1h9yvPsfDbP0Sl0+N1uTm09k0m3XrXFboIXxyCfj/bnn4cvy8sml9/6jg+j5vp936V0oXLCIZCKDWi/4DIjcXM/Fi2lXdEPgf8frY+80/8nnAinsYzJ/E4Hcz88jfwuV0MnTIDa2o6PS1NQFjwvL+zndj0LPatfhmXrR9BkFA8Zz6Ovl6ILwmv4XousU2M/TrILy/IezUwJ2iRK6X4PBdF2y3JOsxx4vdR5MMJ+Hz0tg1O3OpxOsgcHocgdNByroJT2zay4Fs/IBQIsv25J3E77AA0V5Th6Otl/je+R/vspzFUv4mq4i1IHQeGJOhvCreXtxhl7mw4/DT0VIcPoomG0rsHCqqLfOYIBkM0druYkX/1/MpNgpd22Sf3Q1FqtDh6e65Cj0REREREREREREREREREPj2iCMlVxhyfRFbpaN75/a9RqDVIZTJCwSDLfvwL1Ho9zZXlJOUPpXTRMoL+AC57P9a0DBJyh4DPh7u/PyJAcgG33Ya9qwudMoHHbi2hptNJMBQi06pFqwwHih9v7GV3ZSdufwCJIDCnII5Ou5fDdT0fK8O2IAhkjhhFzdFDA8qzR49HEAQkUhl6s4WtzzweCWD2upwcfPt1Zj3wn0QbZUhsy8CSCn2NkFACKeMGKWbHpKajmreYzJFjEABjTBx6McPXjUPBTWFn7rNrYNw3oLMCus7B4r9C1SYoWgXpk6DxGCz5K1RtgZTxEF8M9Qdg4R+hZmdYdGTmL6F+P8z6FTQehCAw/9Gwg/nkH0D7KehvhUV/Djual94DPXVQvQ3m/RaqNpFoTGHJkjE4BSNR33yYsgMHKJ69gCPvvs2oxSs4sWk9jr5eJqy6k+ojB6g7eQxTTBzT730QpVqNSiWnv6ON/s52rKkZ7HvjJQI+H1K5AgQBr8uFrauTYTPmcGb7Fg6+s5rJt99DMBDE43Tg93qQyeQoNVoay06x57UXGHPTLZw775B/gVAoiK2ri+zhiYyck4JUJmbXvrpIYcYvoGFfWIgkoRiSR4P+2s0lUfGJjFx0EwffeWPQtsr9u5l0xz0UzZjL7ldfYPH3fsKbj/w8st3jdLDzhacombOQlMIiZAoFEomUjJJSbvuf3+Fzu3Ha+jn+/jrGLb+FUCiE3+dl0cM/BqUad08Hcx78dmQRWhsbRSgEQt5IHv7nfly+br41I5vy1n78gRBuf4DKNjsTsqNJjdYN6KtMCPHPO0ZQ2W6nz+kjwaQmyaRGIhpQrjlH6rrZUdkZvsUK0GFzk2XVselsO0qZhFAIvIEgaoWU/Hg9MqkEt0rOrw+4sLn9OI40IJUIPHdPFvoEKcjcpJ9dC2kT8EWNRNBHodLqBh1XqdFi6+5h7te+w9ldWwkG/DSdPUP68FLObN8yqH7Fvt3kjp3Awm//EI0xiroTR3HZbNi6OnHZ+hm/6k7cDjvv/uVRpLJw9levu5FxK28jJiWNTU/+ndKFSynft4th02ejM0djSU3n9V/+ZMBxAn4/PS3NZI8eR1R8wtW67CL/R9QGI2q9gQ1//T1KnQ5Hbw8ymZylD38HUr8O9XtJ6NlOS/IK1AYDglRC5YG9g9ppPVdB8ZwF6KLMxKZnYbDGRLZNvSOfjgYbrn4vplg1Kq2LNb/7V8TRIuD3s2/1K8y8/2sc3bB2QLsKrY7W2gALvl6EKfajnRYCLhfB/n6kJhMSpZjF4ouKUqsjb8Jkjr2/lvjsPExxCfS2NhMMBBi5eDmVB/YM2qfx7CnSikew9el/4rbbyB49Hp05GltXB9FJyaQXj6Cp/Ay27i78Hg9KjRZfUOC1SjfFw8R7rchnB19HJ4JMiuwjMu7FpOmZec8Qdr9RRU+Lm6iYi0GWwYAfmUJJ0ez57F/9Cj6PG7jgSPcPFj78I46+9w6WpFQScvNx9PZydtdWCqbMZMfz/0IqV5CYNzgDUd2JoxRMnYnGYGTnS88AYE3L4MBbr9JRX8vSH/8SS0LiFbwaIv8XpDIZZbu3DSpvLj+Dq68PY0YRUoOCzn43v9tYwaMrivjVkqF0OrwEAiFMGgWxBiVGzWBhRRGRq41EKqWvoy0SOHSBin27GTZjNgG/j6Dfj0Kt4cyOLYybN5PY1k2QsZK4rBxaqyou7iQIRCcmX+MzEPm8EWNQ8fuVxbh9Abz+IOVtNlQyKRaJm4pdg9/jbZ1t+NwekocOY9iMOaz+9c8wxccz6ba7UWi0hIJBjr2/jtpjF4Nx5BKgfC2MvBf0ceB1hIU/BGlYkERrgeis87VD4PeCTA2JpWHbwKK/QOMBWPEMNB6GaT+F6Gw4uRoW/glUJkINR/AP/y4SlRzpyeeg5A5Qm+H02+E6UgXUbA+LWHdWhAXPo9Kh5Qgs/ht0VcHd6yGp9NpceJEvLDK5nMIZs4nPyaWrsR5bZyfO3l7cdhtDJ0/n4DuvD9qn9vhhcnz7yVOaWVxQzNunuogzqK9D70WuJaFggLJd2waV97Y2Y0lJQxsVxZibViGRSOmoq0FvtV77ToqIfI4J2O0EHQ5kZjOCGOAvcpUI+Xz4u7uRaLVIdYNtbp8WuVJFYk4+ysvY8xRqDVK5HLVeT0LeELxuF23nKiPb608dJ3noMCasupOA309UQiYdDUqKpidH/IWkMhkyuYK+jjZcfb1Ep6Th6O1l5NIV9LW2EgwGIgIkF6g6fICb/+sRDNIm6kMxpF7xs/78IZPL6e9oH7SOUL53FxNW3YUx5tokVhERETmPLobAkicJNpUjbT+IJDYT0qeA/N+8oxXeHA5OPvtOeD0jb37YD04XC6dXgzEFhiwEqRKSRmJ651b0I/80qBmlRkNcZg627g6i4pNY+4dHiIpPIr24lPLd2wfV721rpfzt12mvrmLs8lsxi+uInxhbd2dEgOQCLZXleFwuqo8eJHfcxOvUMxGRD8eqV/DYrSVUdzoQAHt3Y8Qv5gIdtdV4nHZKFy7D3tvDu3/8f8z/9o8i26VSGcc2vovL1g+EfVmPrl9DytAiUCph7m/DgkruXkgaBZY8MMZds3O0JOmZ99VCdr1eSXeTg5Sh0YxenIFKN9Du5+voQJDLkZlM16xvIjcuxpg4UocVU3fi2IByjSmOYL+czvo6uhrqAHjvb39g9gPfigiQXKCvrRWXrZ+W2l5qjmmZdfOrxKi9Ydte/lI8aTOoMZRSaM2Du96B9tMQCEBs/ocLlol8Zmi3efAGgiSbr57gkR4XNomZYDD0sWJ1LqDQaPA4HVetXyIiIiIiIiIiIiIiIiIinwZRhOQqI0gk5I2fjMYURdXBvRitseSMmUB8Vg4AU+64l66meuRKFZuefQyfx41EKmPS7XcTbGxColUjkUoJBgID2lVqNKiCUn6zoYxz7eGFB7NWwe9XFtHt8HK6qY+/bK3C6Q3vl2xW899LCjhS30uW9eM5QGQMH0XJnAaOb3yXUChE4dRZZI8aC4AuKgqvx405IYncsRMJBgMIgsDp7ZtRaQMY/TXw5pfDDsi6WKh8H+KGwe1vgnpgdjeDxYrBIjrX3ZCoTZA3L/zzQQqWDi7LXzS4LG/+xd9Lv3S+3oKLZcW3hv8fsvBiWeHywe0MWQyA4vyPCbAMGU7r2eNMvv1efF4Pjt4eMoaPpObIQZrKzwDQ29bCe3/9Axn3/QcPv9HKH1cV4Qu0oLY7sHWHs21WHdzLiPlLOLzuLc7u3Ep0UgpLvv9TAj4/O196mqT8ArqaGmg4fQIAS0oaIxfdBICzrwedyYy9Z2A2W32UkaKZBaIAybUg6IbX7w4rjuvjwgI5+gS4byNw7VT61XoDWpN5ULkhNhYQ2PP6i4xdvgqf+6JhML24lPjsHILBIDqLleazZ3Bt2oJi4kTkMTFoTeHATq3ZTNbIMex6+Tm8TicjFiwhPjuXgFJL6ykXh99+g+bKswAk5OZTunA5x5r6+fKkDNRyCT0OL7EGFf/7/sXs87eOSubH84agU118FIjWqfjH9nO8fiSs7C6VCPz2pmGMzBh8XiJXj067h2ONfTy/r45Oe9ghIkoj5y+3DkevlmN3+xEE0Cik6NVy/uvt0wCsGpVMXpyBbRUdyCQCX52SSZRGBhoT5C/EZxlD35tv0f3MfUj0epL/55ck5OaTVjSCgN+HVCYnOimFgM9H2Z4d5I2bREpBEVmlY+mor0VjNA3qq8FipfLAXsr37EClNzDzvgc59v67OPt6yR49AYVKze6XnwXA7w1nfx1/8+1EJSSRVFBE4bRZ7HrlOXLHTkSmUqGNMlN34ihKjXaQYUWp1V7V6y7y6UgvKWXOg9+ibO9O1Fo9uaUlJO//AXScgcWPQeVm1DkSxq24jcoDezBYrNi6Oga0oVCpaa2qYNwtd+OUalD6AijlYYE9XZQSXdRFQZDaE7WkDivBkpwKhHD193Ni83vIVSp8LtfFRgWBMUtXkZifi0rz0c7m7jNn6fjjH3EePox2/HgsX3sQVU7OFblGIp8dQsEg8oZG0oYW0lFfgzk+ifSSUt7/x585vnE92WPGExWfOMCpG0BnjWPLv/4eceYp37ODoVNmcGrbJopnz6etuoqkIYVUH9pPTFoGY2++k7NuHbeNVWPVKeiye4jWicI3Ijcu/s5O+tasoevJfyFRq4n59rfRTpmCVHN551y5UkbOqDgSc6MIBoLYukyU7dpMwOej5VwlIxctwxgTh9thJzFvKKmFxQQDAQJ+HxKJhGHT59Becw5nfx8nNr3H+JtvZ8eLT0MohFKrvaygmikuAVNsPJue/CuEQqi0OopnzaejsQHzhIUc6BSYJ+qZXXd8Hg+mmHi6mxoHlOujrdgtGRxt91Ig7yPBpMEXCPH9N07wh5uL+cOmSlr7w+9TKWY1T9wpBpqLXHtCoRBypWpQuc4cTSgUQqFSU3vsEE3lZxg3byYFugbY8zixmiim3nYHW557hrbqKlQ6PVPu/jKWlLRrfxIinzsMahl/336OzWXtQDgZ31OrhhKwxNLhqB5YWZCg1GrpaqpHb4lh5OKbkEgk7HzpWUpmL8AUG0dCdi5xGdkAOPq6MWcXQdEzn66TheG1VIYuuVh2fs3ZU1tL157D2Nb/CGV2NjHf/Q6a4cPDdYZcst5cfMvgdotu/nT9EhH5PyBXKInPykUXFU3VoX0cXr+Gcctvoaupnqj4JFoqywfUN1hj8WoE9Bsf4utL1jE2u5CcuCsfqCxyYyEABksMHY6aAeVKrRapTEr10WOU7dqGXKli+LJbSb6MyKKIiMj/Defhw7T/76N4qqowzJuH+Z4voUwVpRJEriyeujq6/vUvbO+uR5mVRcz3vnvxGfYKIlepGLfiVtY/9juGzZgTfidVKEkaUoDGYGTy7ffgdbs5vvFd1HoDhdNmIUilSKUyXHYb3Y31ZI4cS1xmNjljTEilA30XzAmJZI4Yw6lt7xPw+UjIzqWvvQ17dxdq/WA7u9ZoourQPqRJSqKSGwBxoe2j8LtdH7qOIBeF8EVErjmuk6do//3vcZ84gW7qFCwPjEZp/Ii5TBMV9nO71NcNIGdW+OcCTUdgczghUUyoEUO0BYVGS87YiQR8XuIycxEkEvTRMUgkEgwWK531NQT8fgyWmIh98QIqnQ5zYhLDZswltaAIQUwe9ImRKwbPswq1GolEypRb7iIqTryPidx4yCQSfrHmNI29Yb+XWcsG++zJlEpkMgXdzU1sf+5Jxq26i/jc/AF13LZ+Ri1eHnk2rDl2CKetDzRueOurYEgEpT4ssJS3EBJLQHbtnk2S8swseXg4XpcftV6BXCGNbPN3dtL39tt0/espJFotMQ8/jG7yJCRqUdT3i4xCpWLSbfewT/sq1qRUgqEg1pR0YtIzkUhlvLm1gqKZc8/7NwpIZYPDYyRSGXKVCkGQ0FZTzfoX3mDlaIGd1pX8ruUeJC3w3TnnE7GYksM/Ip8bGnqcACRHXb25RO+3ExCsdDm8WPUff04N+8o6r1q/REREREREREREREREREQ+DaIIyTXAGBNLYcxMCqfOHLQtLjMbmULOuj/9LzO//HUC/nA24KoDe0maOBW308bweYs5tGZ1ZJ/C6bOJScvg3QPNEQESgG6Hlw2n28gxyWnt6Mfrv5hJo6Hbxemmfk439fFxbVL6aAuT77iH4tnzCYXAGBuH7JKFOa0pilFLViCVyXH29aDWG5hy1/0o1Gq4EFTq6Az/ADQfCatnXyJC0tfVhd/jwtXXh6OnG110NAk5+aLh7AYhFAzSXl9LX2sLGlMUQb8Pl92GwRqLvaszHPQlEXD29mKMicXe041cpUQmV2Lr6sQYG4urrw9BEnZut3V0oLfG4HU6CPh8aE1R9HW0o4uOxu/x4HG5MERb6O9sR60zIFep8Hs9KNUa+jrakatUKLVaXE4XfomCuqZ2jBolWmssbeXhIPyYtEz2rX55wHkEA37MgT4CwRBlrXb+sqWNESkmvjVhGgfeeJH2mnOEgkHGLb8FU2w8hqhoPLZ+JHIF0+66n/b6Wo69vw4AbZSZrNIxeF0uZn75G0CIhNwhvPfX30MoBEDy0GHI1Uraayqx9XQhVyixpqSjM4tCDleF/tbw/86u8A9Aby04u0EXc8UPF/L7Cbhc9Nv6cPT1oo+KxhQXD0BUQgLGmFj62tsAkMkVDJs6i+iEZO76f49hjI2lveYcAHkTppA1cgxBvx+5Sk3A5yVjxEicDhfBI0dQlpbS19qEy2bDGBNL9qhxJA8pJBAIoL1EDOJMYz3ZY8ZSNHsegiBg7+mmtb6OR0/30eP0cdfYFOKNan6/aWCg9IsHGlhRmkxJysUM9t1Ob0SABCAQDPHr9WcZlxVNvFE05F0r+pw+KttsEQESgB6njw2nW9lzrouq9rBKv1Yh5ZdLCiJ1Xj7QwO9XFjE00YhMIgAhsmIuOgj2r3+Pjt/9DoBAVxfOXz1Czj23s+25J8kdOxFzQiKhYBCD1crwuYvwuV00nDmJTKFAqdaQlF+AIJVijk8ABLoa60ktHoFapyNn9HgUGg266Bim33EHgsqAUq3lrd/+YtD5tddUo7fEgMfLyMU3kTFiFK3Vldi7u9j69D8RJBJGzF/MntdejOyTPXq8GJx3g6MxGMkdkk5u24vg6IK1P41s87gctA3/Ce7mVqRyOdbUdKzJqbRWVxLw+YBw0LjH6cAYG8fGk038bEsz47Oi+fbMHPLiBju6yhQKXLZ+9r4eHifGmFjGr7wDXZSZ0TetIuDzYbBaCfqD+DxuWspPIFerkcqlmOOTUWoGZzXwtrTQ8MBX8LeHn2NtGzbgqagg9fnnkEVHD6ofCgYJOhxItFoEiSg69nmis6KM/t5udElJZJSUYkoIj88FD30fn8eNz+0mGApSfXg/3vOiN9ooM7GpqYMcBKsPHyBnzAR6W5qJik9AbzIyevFibN19BBDodbj468EGjGo5+6u7yIs3MKcgDqNacbmuiYhcNQJOJ4JMhkTx4WPPtnkz7b/5bbg+0PTwwyQ/9S90Y8detn57bTU+jwdBKkEQJPi9Hpb/5Je4+sPP0TqzBZVWR/bo8ShUKva89gIQDspLGjIMj95CSqEBt62PUCiI3+uNvHN5HA4UajU6czT27vA7gFypIiEnn8oDexi3/BaiYmOxaALYNPEYFTqanR621NRTmGS6qtltRD4an9tF5sgx1J85EcneprdYicvMYcIz1WTF6PiPeToSjCq+MjmDN4408u7JlogACUB9t4vNZR3kXOY5QUTkahIKBlGoNcRn59FSWQaAIEgYt/I2vB4v2qgo8uzvUzInDm3d41DTAIADOXe+28eIYbcwfJpAiyNEX3wmMjEru8gVoLzNFhEggfDt0tnfx+hlK3n3T/8vInBuTU1HazRyetsmFGoNRbMXYE1JQ2M0kVYyEkIh/B4v8dl5eN0u1AYjMpmcrsY6BASCwSAIhP8nFP4XCoVVT4JBAn4/AZ8PqUxGMBhEIpNhiokjKv7DAzoCTiftjzyCfVs446/ryBHq772P9NdfQ5mZOaBuKBAg6HKF38FE+4HIDYA+2kLJ7AWkDhuOx2HH7bBjTUmn6uBevK6ww7DGaMKSkoagd0MoiK2jkZKCAjQK0Tz7eSfk9zF83mI2/vPPkXk4OjkVg8WKVCqlIFlCyte/xd+Pe0ixpl82OFlEROST46k6R/299xFyuwHofeUV/J0dJPzv/yK9SgFrAbsdiUqFcJkAJ5FrS8jvJ+h2I9VdXbGvgMtF+29+i33LFgBcR49Sf8+9pL3+GqqsrE/VttftpquxHntXBxKZnGAggFqvZ+b9X2fL0/9k2LSZGOPiaa4oo6uxHlNsAh31NcRn5ZE3bjINZ04Qm5GF3+cjNj2T4XMWYoyJ/bfHtKakMvm2e+htayUY8LP39ZdIyMkj4PeRPGQYDWfCiVoQBCasugulTkvZyWOMiPf+23ZFwoQIr2fG5+TRUnFxHWHCqjsvmwBCRETk6uGtr6f1v/8beVwsMouF/jVr8dTWkfL448hMxo9u4KOwtYJMSW/Jt7BZRzH7q3Nor6tl+/P/Qh9twWCNxdXfh0QmxWiNY9yK25FqNCg1GobPW8SGv/+JYMAPgDkpBX20Fd3M2/HKZZhiLZ++f19AVDo9GSNGUX34QKRs1OIVyBQyfP/7GIFHr94zoojI/5XD9T0RARIAhUZL1qixVB3YGykbtWg5glSCxmhixU9+yZpGgeHqi7ZPQSJl+v1fh1AQR08PSo2GkrmLUOt00L0jXKn/on8gDfvA3XdV/Cz/HSqN/LLJhOx79uI6cQKJToevro6mb32LlKefQjtmzDXtn8iNR0xaBlmlY3jvL78jFArHR4y/+Q6Gz1/MuOW3EQoFcfb1IJFKUahUDJk0jTM7tkT2L120DCRSao8fAaCzoR7btGlofd2UtYb9JM61O5iWd+3PTeTqU991XoTkKvqKaHxhv952m/sTipBo8LldBIMBJBLpR+8gIiIiIiIiIiIiIiIiInINET0hbgD8Xh/jb76DLf/6G7auTgRBwogFiwmEQvQ0NBAVn8Ck276Ex+VEb7agi7agVKup63IMaGdOmpY7nOW4H/wZi1QaJi+5lf+oU3G2M7wo3drv5lRTP+WtNsZlfbzFDalMjjkhaVB5V1MjcrUae3Ulu156NlJeMmch5vhEMF4mm1DqRNBcFGHobm7C6/XSXV/Dpif/hs/tQqZUMu3uByiYMl0M5rwBaDhzkvf++gcMFiuxmVkcfW8t41fezp5XnwcEcsaM5+A7bzBi/hIOrV2NvauLkrkL2ffGywyZNJVT29poqShj3Mrb2Pf6S6QOKwFBoHL/Hibffg8bn3gMS1IKxth4Tm7ewMRb72Ln8/9CodGQNqyEQ2vfYvTSFVQd3IfX5aRg6iz2v/kqfq8HhVrN2Jtu4eBrq5GpVExcdScAXrcTlVaH22EfcC7xFhP/uyIGhztssD1c38uxpCyGzVnEmc3v4ejtQanV4bbbObphLf2dHYyYt5jyPTvRW60AqLQ6ShcsZfcrz+P3esLf1fmLSSsZweTb7sHjdCCRydAajex/8zV621ooXbiM7c89SXxWLvMf+j4Gi/Wa/g2/EFxOcdyaD9orf61dp07T8847dOWks+Xt1yJjcf5DPyCjpBSP3cmEW+4KO2n5fBhj47D39ZJptSI7H9AZnZzKtC89gDEuniPvvk3KkEL2rn4Zv8eDXKli2pe+gmpIHqe2buDAm68SDATQGE3MefDbpBePGNSn6MQUjq5/m4YzJwFIHlJIybxFpLcF6anvZfe5bu6bkI7nEmGqC/S7fAM+d9kHO4t12r30u/zEXwGfC5GPh1krp6XXPai8ss2OSX3R+OrwBjjd3EeKWUN9d9hI0uvysaeqk2XDE5kxJBa5LHwvDfT30/viiwPaE2bPZMcLTzF6yQpqTxylfM8OLClpjFt5G1UH9nFmx+ZwfxKTGTppOrFZ2ZTv20n57nBgUFrxCOQKBe88+j/YOjsQBAnFs+cxdMpMYuPDgibRySm0nqsYcFyd2YwgQMeunShrajEvXoy6aASH176Jx2FHYzQRm5HDql/8lt7WFjRGEzHpmWgM4iC84dGYwdYG1VsGFHdZJtJbXYYu2kr57u2Y4uLZ8/pLjF1+K1KZHIlUQl97G2d3b2fcittQKpXYPX42nG6jss3Gq18Zh+UDhrnupkYaz897AH3tbVhSUtnw9z/S09IMhIPY53z1W6z9wyPoo60Mmz6bmIwsmu3lpBeVDOq+r64uIkByAW9NDd76+kEiJJ7qanpfeRX7jh1oJ00kauXKQQFyIp9N2mrOcWLXVrobG0grHoElOY13//Iofm848D0mPYupd91Hxb7dlC5YhiARUBuMeJwOuhrrB7Wnt1jRWyzozFa8Tgd73nyNwikz2f3K8/g8bobPW8z/m1LCpnNdtPa76Xb6MKoVzCmIu9anLvIFxd/Tg33rVrqfeRaZxUL0l+9HU1qKIB3o2BBwOOh54cVB+zt27rysCElj2Rm8bieCIEUml2Pv7qK54iwQ4tiGdZF6k267h4Jps3jz1/8VKfM4HPg8bkKOGvoQCPh9mOISkHygTwfeeo3Ry1aFhaVCoNLr2PH8UwgSCclDhxEIClTWdlNz9P2IUMCoohH4+hJBFCG5roSCQUKhIJNuvRuXrR+5UkVUfBKS89l4G3uc6NUyBEHgttEpFCYa+Nu26kHtHG/oudZdFxEh5HbT19ZK0cy5ZIwYRcDnCwuTCgJ1J46QPXIcSm8nyrPvDNivyh9HVaeDqk4Hr5wv+11K4rU/AZHPJX3Oges7I5N0RHWWs2PLBiasuhO5Wo3X6cTW2UHZ7p2kFo3g6HtryLPbWPen/4dSo2Xq3V9GplCg0unZ9uwTdDXWozNHM/n2e5GrVAQCfkKBAKFgEJ/Hi9/rPl8WIhDwRQTHVDo9Z7ZvJmlIIYJEwt7ys0y/96vEpl/+fcnX3BwRILlAyOXCU1094B3LXVFBzwsv4jx4EP3MGRiXLUOZehkbhIjIdcB8XmjH7/XS09LArAe+SXdTA4TCQiVep5Ng3giQyGgTLFjP2yhEPt9IpHI8Tgcz7vsa/Z3tyBRKouIS8Hl8gEDC3p/x/9k7zwA7iittP919++Y4OefRjHLOCQQiB5ExyTYGGwe8zvlbvPauveza64SNjW1sYzAIkzMIBAghJFBOI40maHK+Od8O348rRgwjjAAJBPTzB6a6qrq6b6m6wjnvWTfrdlbvjLNokhFV1cDgWJFqax0VIHmd6HNrUfr6kGpqjum90l1dhB5+mPATT2KbOYOcq6/G2mh4Kn1QJJua8N/xdxI7duA++yw8552Hufz4jK9Kb++oAMnr6Mkk6bb29yRComQyNG98mZ6m3QAE+nqomjGLWDDAQHsrM08/G5PZzNO3/nJU1LWgpo6FF15OQXUtB3dsQbZYeXn1naN1nnr9F5l2yhlvK+InShI5JaUMd3Zgc7uJBQOkkwl8xSVUTp+BbLYi22y89uj9hAb6WHTplSQthRjSsG+PZJLx93YzaekKambORVNVckvLMNsd6Ko6bh/WwMDg+JHp7cNcUUFy925sM6bjPvcchm/5LZme7mMjQuIpY3j+DzkQ8tL0j9VMWLiUzY/cD7rOnPMuwt/bTfvW12hYtIwnbvkZaibDpTf9lGB/P4lYjJWf/RKhwQFMshlvUTGpeJzWWIISjyFY+G5RlQyTlq6gfNJUkrEoTl8uJtmEpmjYvvU1lN5eJOOM3+AEY0/P2KAnoUSGxoXLKG2YdKgf52Aym9FUlS2PPUg8FGTlpz9H61CECYXZ2ZkoimQScZ75/a9HhRpq58xnzjkXQsHE8TetWwlW3/j0D4Dkvn3E1q8n1XwA+8wZyOeew/Bvf0d0wwZDhMSAYH8fz/7xt6P9GuDl1X+nZtZcTGYTT/z6ZyRjUS774c0omTQVU2eQW15JOh7HlZePmsmgKZlR2wGrw4lVj9Ov+4CsP0brUPRItzb4CNAViCMIUOo9fgJk1mQQzDAYTjH5rfX5x2GxOwBIxxNYj7OwqoGBgYGBgYGBgYGBgYHBO8VQeTgBMFksbHpwNZGRYQB0XWPzow8Sy6QpKyhm4/2rCQ70oSkKTeufx52bVbdfNuGwg71VFrnBPgT/+f9I7tlLZstm7P/+dW6eJDKvOgdRgOo8B/3hJME3GSW/UzKZDGomhZJM8sp9d4+5tu2pR7PPUTwNTrkJxEM6N74qOP0nYHFln1HTSCfiZOLRUQESACWV4rnbf0fvoQggBh8cEb+fl++9i8jIEFUzZrP1iUfIr6hi8GAr/p5uGhctY9MD92JzuknFY/S3NDNp+Qpeuf9udHQsDicdO7YyaenJvPbI/STjMXLLKti/YR11cxew+4U1xAJ+yiZNYeezT1LSMJHOPTsJDvRRP28hrz58H+68fMLDQwx1tDNx6cm8ct/dow6g6USCjQ+sZtKyFeiKQqC/j8WXXU3PviZmn3vBmGepmjEHq93OuRNzOHNqEZ9bVoMgwM83DPHb2ETO+8FPqJ+/mB1rnsTf203fgf1MXraCV+67m5HerlEhnolLT+K1R+4fbYPZZsOZm8dLd/2VF+/8MxsfuIcN997Jmj/+lsppM4n6R9i3/kVqZs2lt7mJvgP7398f8eNC4WQ46+dgOuSg7iqG828BR+6/LvcOSbW30/npT5PMy+HZB+4Z0xef+PX/Ehzsp6Cmhs2PPkB0ZIhMOsXmRx+koLJ6VIAEQDZbKJ82g8jQIEU1dbxy/z2jhmKZVJLn/vJ7IkMDbLzv7tEIifFQkBf+9kcGOw6Oa9dQR9uoAAlkxYOGDraPilW0DEapynMwodDJkro85lT6EARwWkxU5jrG1FWVa0d8kw3atDI3RZ6jV+U2eO/4HBbOmlZMrsPMSQ351BdkDxZObsxnT+/Yw+beYJKl9dl5gUkUWFiTy703LOTqhVUUew4fmAiyjKlorEN7xmrB4c0hEQmTjsdZdtW1NC45ieHOjlEBEgB/TxehwX46dmylp2nPaPrB7Vvo2LmNVCx7CKfrGtueeozgIQEIQRSZcdrZmN8QbcPh9VE9Yw7bnnyUqJJm+Le/Y+Dm/8HpdHHSJ6/n2l/expU//SU1s+ZQ2jCJyctPoXrGbBxGJLAPB2YHnPZj9JxDxtyihH/lL0kEgwx3dfLSXX+heeN6dj+/htlnnY9kMrH96Ud5/q+3sfXJR1iw6lJCg/1MdSaZXJw1jmgbjtPhj4271XDnwTF/270+hjraRgVIIOvEvmfd8zQuOYnIyBCxUJAdzzyOmkkz3DVeLEK0H8EhXRTHpSt+Pz3f+Cb+v/2NdHs7gb/dQffXvo4yMvIOX5jBiYauaex45gmcvly6m3aTU1rO5scfHP3mAwy2tzDS00UiGqZq5mxMFivr7rydl+76K4lIhPyKqtG8omRi5hnnYpLNBPq6cecXMNTedmgOezKaqrL50Qew+juo8Yg0D0SZUe7lga3dH8DTG3xciTyzhr7vfZ/U/v3EXn6Zzms/Q2L37nH5BFnGVDreWd5UOD6SajqRIBYMoCoKuq6iqgpNLz1PScPEMQIkABvuvRPxTQKkRXUTiPlHMFttbH3yYUKD/Zz8qc8iyjKFtfWj+TRVQzabWX/P33n+b7ex+dEHOf3z/0b1zDn07m+ibeurJMLBUSMigO4dWwgd2IXBB4vd46V92xYO7tiGqih0N+0hPDxALBRClgTOmlJMbX52rZLvsnLKxCJWzRzf/06fbAg2Gbz/xFMpiuonsOnBe4kH/WRSSbY+8TBqOsWOpx8nNNBHavkPIa8hW0CU0JZ+g43JinF1Vec5xqUZGLwbqvMcSKIwui/w+Wk2NtxzB+HBAdbd9RcGWg9khXTtdpR0ivX33MHiS6/i5XuzzompeIwX//5nZKuN4c6DzD3/IgCi/hE2P/YAmXQKNZ0mk06RjEZRMik0TUXNKKhKGnQdXVNx5xWw+/k1eIuKMVtt7HjmCSqnzWDHM0+gaeoR2y5aLIiO8Wsx0XH430emv5+uGz5PcPVq0m1tjPzhNvr/40eoUcMY2ODEQclksLncyFY7G1bfSdSf/UZse/px3PkFJBNJOpb9gj81mY6rkbPBiYPN68Vis7Pj2SfRFIVAbzd71z9P29ZX0TWN7jP/zv9uVhAEqM415gQGBscK0T7+35PodCJYju05lxqPM3Dz/zB8y29Jt7URuv8BOq+7nnR3z9sXNjjmpLu66PzMdYQefJB0WxvDv7mFwf/7BWoi8faF3wWCxTJmvvo6R0p7JwT6eoiMDLH7hTW48wsIDw8SHhrC4nBSPnEKPfub2Ldh3ei5MsBgWwuhwX5S8Sg5peU0rX9hTJ0v/v12ggP9R3X/YH8/4ZEhpp16JgdefYWDO7ZittlIxeOYzGae+f2v8Pd0oSoKL919B/HI+LMbg/FkkgkKq+vY+sQjpOIx4uEgu198FiWVMgRIDAzeRzJDQ/T/+MeEH32UdHs7oYceJrLmWdyrzke0HaM1Wn4jB0bsZFKp0TNrVcmKUHryCtj25CM0Ll7GxvvvyQqQ/PBmdqx5klQ8itPnY+sTj6Bm0oSG+tnyxENYHQ5ea/czHE2zoyt4bNr4McNss3Hg1Q30tx5A1zT2v/ISyVgMSZKQnU6EY/XbGxgcQ86eVjzm78c6oXXbq/Qd2I+uaTRvfJl4OETPvr2IJhNDHe3sf/lFik2HbcJTiRjr77ljjFBD6+ZNRAMjUDYHFt4IwqHz2aKpsOjLYJL5oMkMD9PzjW8SfuSRw2P1c2txn3suckHBB908gxOAZCwy6mvwRkxmC7uff5ZkLMpnfv0n9r70PKLJxEBbC4HebnRNZeeaJ0iEg6Dr2UKCwKkXn40/dxr/s/mwaPQb/TIMPlp0+RMUuqxY5eO3DrPEs0FUBsLjAxD+K8yHbBPTifgxb5OBgYGBgYGBgYGBgYGBwXvF9EE3wCArvNHf0jwuPeofwf7D/+KMb32daEEeoiwzdcXp+A5FVZtXncNPLpjCSDRNuVPE/fPvk3pjBbqO7bUNFE04g/+7dDrrW4ZxW00UuN+bkY2mKGiqTioRR82MFzRJRiNgdWc3qxvOhFQEvFXgym4ERwNJRFEllUySCAXGbQqqmcyoIIvBB0cyGh511lIyaQDyKqro2rMTyEYL0HWN3LJyBtpagKzDuZJKkVteib+7CwCL00ks4MfqcBILZTfYfCWlNG9cf6jubB/Kr6ii6eUXxqTlVVSN/tvQNQ1NHRshMBWPIckyUb8f2Wzhlfv+wYrP3EB4cIjlV38GJZ3G7vHQs38fq//9m5ROnML0y69jS0eAO6+aCpkUByIw3NvJjmcep2LKdAbaDz2LJJFJJQ+9iyiV02dhtjuIh4IAFFTXMmHBEpRUevT538jr76y/tZn5F1yaPcjxG87JxwXZBnM+DdVLIRkETzm434GM9FGSamlBi0RISsIR+2I8EKCkYSLnfvW79LcdQEmlmLj0ZAoqq8fVpR5yzEQQxjg2Q/abcKQx0N/bTSoWGZf+ejSsMWn797Bk2TzW7h/CJApkFJXPLavlrk2dOCwSPzp/Co2FTqryHGiazsGRGEPRFAVOC3/+5By+8c+djMTSTCtz898XTsNjM4+7h8HxZXall6sWVPJs0wATi9187bQJ6JpOIjPWaWdRbS5Ws0SB28LcqhzqC11Ib1aSAUSbjbwvfoHOzZtBURDMZtzV1cwvKSIZCVM1YzZKOsWONU9SO2vuuPLJeIzhroPj0gdaW/AWFTPY3jqa9saxrqi2nou+/2P6DuzDbLWCILLmj79lwsIl6DYbCALR554j09WFtaEBd75xaPyhp2gKwrVPExtopT9pIumoRGndireohG1PPQpkhZXW/PEWJp90Kgsu+gRKOoWnsJhtTzxC+/bN+ErKuGh2FXse24sggN08fslSUDU2aqWvqITAEQxpA73dNC5ZDkB4aIB0MokoiqSPcChtrqnBe8nFBP9532hazrXXYq6qGpMvfbCD1N69Y9P27yfd0YEp99gKYBm8vyhKhoH2FuxeLwCyxTJG2OZ1Yn4/fc37UVdmePWhf5I+ZMy++4U1nPH5rzDc2YHJbMbhy2HvurV07NzG4suvwSRnDXfioSDmNzhEJKMRJhQLtI/EkESBytwjCOIYGBwHlFCIkdtvH5uoqsQ3b8Y+ffqYZNFsJu+6zxBfvx790HpNysnBuWjRuHqTsTi6piLoEmo6Ayad4EDvEQ0mlEx69N/Q65TUNxILB7F7vaQTcUa6OsmrqCLmH2HuuReiqSqJcJh0Ms6OZ58a3VMY6mgnPDTIrueeZtZZ5zPS20W0bfy8umv3DmaedtY7elcGxw5FUUiEQ1jsdopqJ6Bm0lROm8GeF55l8vJT+M/zZrCoKgc9rBBXwO62oGk6M8u9/OSCKXT54zywrYdVM0pZfEiMz8Dg/USQRDwFxaz49Ofw9/WAplE3dwHP/+2PAAx3dVAzZz6WTz1BLBAho1mQcrzMGErw785cdvWEWLtvgJvOncykYiNmtMGxYVqZlz9dM5u24TjP7OnHkgyNub77+TVMXn4KFVNn4CsqYe75F/PSP/5CsL9vNE8iEiYZjZCMRvGVHBZ+GmhrQUBARyCTTCKaTKRjMQQERFEkdWj/VNc0wkMDxAIBKqfNJBEJYTKb0XWdgfYWVEVBNI837JTLyij4xjfo/48fjabZFy7E2tAw+neqrR2ld+y8PL5hA+nOTmyTJr23l2dgcIwI9vWg6Trr/n47k08+FZsrO8Y3LlpKb/M+Jnhz+Ma+Wr57zkScVhM7uoPomk51ngOP3dh7/SiipNM4c/OYtPRkNEXB4cthoK2FXc89RUnDRNKeIhbVOVk+oYDGYtcH3VwDg48M1sYG7PPnEd/06mhawbe+ifkIwqrvhUx3N9Fnnx2Tpg4Pk2prxVx2bO9l8PakWltR/f4xaZEnnyTvi19Aqqs75vczl5VR8M1v0v/DH46m2efPw9ow4T3Vm4xGUJXsvpuqKjhz8ggN9RPxD1M5ZTr5ldXsfPbJceXCw0O4CwoRxPExqDLJBOn40YmFKEoaQRQZ7uxg8aVXgiCArpNXXsmDN//H2My6btg+HCW6pnPg1ZeZcfpZaKqKKEnoms7uF5+jfv74vVUDA4PjQ7qjg3Rr65i01L595HzmWswV48WD3xUmM8ERP7qWdfpXUilsLjeJSBhNVdFUFVVVR0UBLFYbPfv2jAYGm7R8BejgzMlDtlho376ZfUP1nDOtmP/38C7+/pn5hu3OOyTY34eu65Q1TkLNZJgwfxF71q3FU1iMu6gYUXpvgfwMDI4Hyybk85+rJjMSzdqezq7wYhLLMNvsaJkM9fMWsvel50GH8slTad/6Gt1Ne5hxVorXdxfUdJpYwD+u7mQ0Ao48OOUHMP0ToCTAV33MA729W9IHD5JuGWuHm2pqwnX66TgWLPyAWmVwIuHMycOVmzfGtlYymRAkEX9vNtiPqqj07NtN+eSphAYHqJ4+i0w6xaTlp3Dg1Q248ws458av4c3xYPd5eaJb5vK5SUyiQL7LwvzqnA/q8QyOM13+OBU5x9ceS46OgBcGwqm3zftGLIdsyFJHuX43MDAwMDAwMDAwMDAwMHg/MURITgBsLjcF1XUMto/dQHXl5ZP/w5uwTZ16xAMvVdPZ2R3inte6WFzpYeoRIquY3C5q8pz8fE0z3z6jkeUT8vHasj97b6SXnSM76Qh1UOWpYnbBbPLsb+/AYbHZMNttOFUfrtx8IiNDo9dkqw1v0SHnf5MMBRNHr2UyKm3bhli/+gDlU3zMOyWHHFchyy/9FBsfv49ULBu5UDKZcBoOnB84Dl8OxXUN9DY3YZKzh5jDXR0U1tYTGRlGks0gCPh7u6meOZdULEpl9TQsF9jY/epz5JSWwWZIx2PYPV4S4TAOjw+AUH8fueWVjHR1jDpjDnd1UFQ7gY6d20bvN9LdQXF9IyPdnYiShChJaOphB3yzzYamKOi6hiO/gJlnnEPP3j107NpOeGiAJZdfw5rbbhnNP3SwjXh7M9+bU8K2P/+UcH8fVfMW4l16MoIg4u/ppnbOvFHleJPFgpJKsfPZJ6meOYe8ssrRPt+wYAkv3f03GhYuJa+8kuGujjHv7/VnKKiuZaQnK8iSXzVejMLgGCFKkN/w9vneBc3+ZrYNbmNeJusoYdU5Ql+0Y/d4AfAUFOIpGB8R/o3Y3F5yyysY6mjHJJtHRWsgq8zuzBk/BvqKS7A6nGPSIiPD5FdV03lIHMiVm8+EuYtomL0MvyXrpJfvMNMXSvLHl9o5dWIhKUXlt2sPcMsVs1A1nad29/GNf+4kkVFxWkz86vIZPP7lJYQSCkVui2EE/z7T5Y8xEk3z940dvHrQzxmTsxEufre2he+fM5F/P2ciKUVH0zUqcxzIEjy4rZen9gzgtJj49SdmsKLxyP3PPns2VffcTbK1lVBBLs88cDf+nh5q58yjoKoGJZMhHgoesf9Z7Hbc+ZPpbd43Jr2guobtzzw+Js3hG3sYl19ZRf+BfTzzh9+Mpm157EFO+eRnsVos6IqCIH/wETUM3jttwTb2+fcxQa7FZavkrt0D7O1v4T9n++jeu4uc0nL8h76JAHteeJbq6bNJRMLI5qwhlclswenNocHq5I5r5+GzmWgfihJNKlhNArIk0ljiweJwMmnZKexd9xwAmqpQ1jiZPc+vGdOm2jnzad7wEgCFNXUkohEymTT5R+jnktNJ/le+gvOUU8n0dGOurMQ6eQrim6JkCvKRl1CCyVhafdiRzRYmLT0ZJZ39Lrds3kTd7Pnsev6ZMfm8RcUU1zeQjEQobZjEUEcbBeU19He0oOuw4Z93jcmfX1mNr6iYkd5uJi04mbLayYh2eXQ+YXU4eW0wjSyK5NjNNBa6GIokyXdZ37dnN/h4IkgSovMIUVttRza8sM2aReU9d5PcsxfBYsY2dSqWmrGiUIMdYXY+30fVlOx6UZbNmGQzFVNnYLE5kC3WUbFHAHd+AZqqMvvsVWx76jE0VSE0PEj5pKmYzGZkqw1fSSnpRJxAXw+SLKOkU1ROncFTt/6SVOywEYYgiNi9OSy/8FrsXg/pZBJTgWnM/MVTWMSUZaeSSCfYMbyDvf69OGUncwrnUOMd+ywGxwdR15FkE8GBPvauWzvm2rzzL2GyV2XTHU0MtEZx5VpZfkUDTXqar6zeTjKj4bKY+L/LpnNSQwGyJKJGM2gpBcllPqJz+/uNrunoqoZ4HCMoGXywSIJIIh4mGggw2N7CnheeG3M9p7QMSTLR3qrwwj96iIfSFE3wos3w8uM1TUwtdXPXdQuYUuoZV7caTqErOpLbjGAa7zz2fqBlVASTiCCMF7c0OHHxx5KkFI31B4a5cmYp+YwX4ept3sf0lWeRX1RNfMSP21fIcFfnaNQ/q8OJ1enE4nCQiBwWwS2oqkE/lEe22MikksgWK6qSQc1kRvd2AeweL6UTJ9G9dxd1cxciShLpRIJJS09GNh9ZGF0QBNznn4+5poZUSwumgkJsU6eMEXgUj7QGE0VjDWZwQhENBhBFkbzKKjY9sHrMtZWf/RKCKPC7S2eREnT+/eHdVFjM5Ftl7o93cd2yWirzxs/L34iWURFEAUH6YL4PBu8cyWTCbLWx6cF7R8XtARAEnF4fq1tjdPlVppV6MJuOzdxRVzXUUBrBJCC9x4AU7wQtoyJIIsIRxLENDN5vTHl5lNx8M4mdu1CGBrHU12OdMuWY30cwmcBkAmVs0ALROOv4QDjiGZMsI0jHb23uPu9czNXVpFoOYCoowDZ1Kqa89yaW6skvRDKZMFksyGYLQ53tzD7rfDY99E+mnXI68XCQqumzxu2nOH05rPv77Zz71e+MO3fOKSnHlXd0kbwlSUbXdGwuJ0/f+qvR9PO+8X0cvlwa5yyltHYi7U1b2LH2KVxHOGcxGI9oMuErLiMxEqa4sp6WXZvYve5ZFl9+1QfdNAODjxVv9Y02V1Qc0/2F8snTRh2jd7+whoUXX8HmRx/A4nBg93iRJBOCIKLrGul0kpIJjaBpeAuLefGOP42p69Trv8SXptTRHYizszuMP5YxREjeIc6cXJo3rqd543qmn3QGNZNnUzdtAU6vj0Q0imy1fdBNNDAYR1pReXbvIJqu8OPTy0GPEs3J46nf/WJMvtlnr6KnuQmAkoaJWK2H95asLjelDZPo2X84uI4giHgLX7frtkLR5OP/MO+Qtxqr7bNnY6mrfZ9bY3Ai4vTlcM5Xvs3jv/k54cF+bC43p9/wb9hdHurmLmC48yCyWaZ0wiQk2cTQwVbatmwaU8f8VZcSyq0hz2dnKJlh9Ws72NoZBODcacUsn3B066fjgZpU0OIZRJsJyWbsLxxrugJxFtYev3WsksmgZ5K4TRoDkeTbF3gDFpshQmJgYGBgYGBgYGBgYGBw4mJYq50AqEqGyctWYHMfMj4XBKactBJRlvGcffZbKu5v6Qhwz2tZR85XOkMEzrsM3hDdRLDZaK+dzm0vtXHqxEK6A3H8sQwmSaQ/1s9tu27jmy9+k1u238IvX/sFXdteIvDYY0TXr0cZHm+o/EZ0XSCdSLHyczeSW14JZB3vz7rx6xTVHDmazHBHhLatQ8w6s4J584owRyyk149Q3lvL1Z+6mVkrzkOSZU7+1Ocorj8+YgIGR4/d5Wbh5dfg8Pro2LWd6aedxdDBdorrGvAUFtG8cT3zzr+YWDBAdeMszl7+ZcRHo5S2lXPBJ75L48SlrLz6S7Rs3sjc8y5Gtlrw9/VQN3chB17dwLQVp2NzuenZ38SUk1bSvW8PVdNn4crNp3XzJmafcwHBgX68hcXklJbTtP5FFlx4GdKhw1+T2cL8Cy9j34Z1zDrnQsonNLLw4iuYfe4FnHr9F7E6XaSTCbxFJZz32e9wzfd+zRXX/ISylmJKduusOOtTuHLzyC8uQZJE5q26mHg4iNXpoqCqhqaXnmfBhZePiol07t5BeHiIeRdcgqewmFgoAMCBV19h6qFnAUAQmLridLr37sLu8TJ52Sn0NO3h1Ou/SFFt/QfyWxq8e5pGmvjcs5/jPzf9J8/IzYjVVaj3PcjJZ184pi+e+aWv4S0q/pd1pfv6iDz/AuGnnsIcjWaV2XPyWHDRJ5AOHaKZZDMnf+qzuPMLmHf+xQhCdky3Ol2cdM315FeOFbIJ9PciSiYKa+tZcfFnufCMbzMxMhvrQRO1gsgK2YIV6AkkmFHh5c/r27lvazcXziqjqS9Mpz/G1+7dQSKTFVSJphS+cs92UopGQ5HLECB5n9nRFeDV9gDtIzFW5ancXhNlZWA/JckAc6tzGAynKPPZ+Pkz+/nfp5v54aN7kESJaeVe4PDv1zly5MMIQRSxTZmCOmsGD/325wx3dqCpCmpGwWxzUFBVg2SSCQ70Uzf3cAQJb2ExJRMmUjqhkcKaw+NYyYRGKqfNxPQGR6Kpp5yOt2RslD/ZbKFn317ezP5XN2CdOpWcT30Kc3n5e3l1BicAbcE29rbtZHHXFFwPxTGtC/ON+nIuayjC5vFR0jCJOeeswuo8FHtFEJi+8kxGejopqqtnz4vPZcfAT17Pi4MC3cEkLx0YYkObn6Si8rV/bqcnlMKfSLOxbRgNgdq58zn7y99k8aVX4c4rQNc0Flx0OSaLBUEUmbTsZLyFxfj7epi+8kxEk4kJC5bg9Obiys0aAwf6YzS/0kXzi20M7WhFS6dxnbScnCuvxLlkCSafd9yzmqurcZ999pg01xlnYK42xMY+jGT6+4m8kP0+p1paqJ+/GE1VWHTpVTRvWEfVzDnZMVEQsNgdLL3iUyTCIRoWLmHNbb/hpFWf5tyTvsp8y5lcdMZ3KcqtYeqK07JRIskKTk45aSVmu5MCdyWLZ11ChbWR4nglF3zm+8w59wKspbU82hzmO2c2Igjwkyf38eiOPh7f0UM0aUTgMjh+SE4n+V+6cUya6HZjnzN7TFoynqF7X4D9m/oJmEuwn3sB3vPPHydAEg0kefL3u2jeNIggepFMMpLJAqJA3ZyF9B3Yz+mf/zfc+VnBtLzySk79zBd4/q+/p3PPTs74wlc4/5v/D+8pl+OqnEAmmWTWGeehKQodO7cx7dQzsLpcDHV2EBkZYcEFl2E6JBQlSiZW3fgD8qJF1PtmUWqqY+GcCymrm0xBdS2CKHLedd/hglO+hWODRGxtD92d7fxiyy/48cYf8+mnP01LcKwwrMHxQZRlLHYnE5ecNCrkCDBx6cmoqkLqoMhQewxBACWt8tRtuxjuiZLMZKNDRlIK3/jnToZCSZL7/Qz+bhvB+w8Q3zpIqjOMrmjvy3MokTTp3ihK8LABUbovSvDhVoZu3UH4xS6UwDszLjL4cGB1uUCAvPIKKqZMPyzGDFTNmE0sGCDkTzHUFWXykhLmnlNFqC+GvjXAqfX57OwO8/D2HjRNHy2nZVRi2wYZ+PU2+n++mcgrfaQ6QmSGE+hvyPde0RIK6b4omZHEqKjE62SGE4Se7WDo1h2EnmgnM2AYuX1Y2Nsb5OBwnFhKJZ5WyEmASbYx47SzR+ekdreH86/7LpY9IiN/2Y2+P8npq77Audd+E0EQkS1Wll11LUoyRV5lNdvXZKOr2z1e5px7IbLFgiTLmMxmrE4nJrM8KhgtSiZ0HQRRIhGLUlhdR8WU6fj7upl/waVIkkT9/MXj2q2lUiR27iT02OMkd+7C0tBAzpVX4l55KnJR0Zi85tpabAvmj0nzfeITmCsrj9NbNTB457gLCti34SUqp0wf4+hbP38x+ZXVhKIisd4YuzsCXJ/v47I9Ec4cVvh6SR7WQHLcuPw6aixDbOsAQ7ftZOQf+0gdDL2jb4MaPTRnMeYl7z8mK7rAofOxrGObIIrMPfdCUvE4TX6NTe1+Ht/Vd0xupwSSBB9tY/ivu4m+2k9i7whqNP32Bd8laixNqjtC5KVuhm7dQeCBA6R7Im9f0MDgfUAwmxGdDiSvD9FuRzwOwmXm8nJyr712TJp1+jTMdUe2kzA4vljq67FOHutEmXPN1ajxOFoicVzuKdntOObPOzSHXTluDvtucOcXUDVtFsuv+gw9+5uYd97FxEIhpp58Guvu+gtqRiWnpHx0v9pss7P4sqtx+HLwFhXz/B1/ZOXnbsSVm52LFNbUc9aN38DuHi+CeSR8xcVYHQ7cBUVMPunU0fSY38+VX7mZKTlLcWyVmV12Bp/90Z9Iq8q/qM3gdcx2O7PmnMUk53wc22Tm1ZzLtf/+uzHnqwYGH3XS3d1Enn2O8Jo1pDo63r7AccBcXY1z5coxae7zzsNyjL/d1dNnYXN7mHXW+aiKwiv3/YOFh2yCFl1yJX2tzcy74BJEycTqf/8WM04/h/DIMIU1tfiK37DPOH0WCgKRRIaXW0aYWOzCZzeckd8pipJhwUWX85kf3Mqs/JU4tpmZmLsAj5iHEI1i8hzdN9LA4P1k7b5Byhwyty6ox74mhO3RMJW2SVz4pR+O5smrqMKVV4Asm8kpLWfSkpMZUA/bjacTKos/cQ0lDdkAknaPl9M//2+Ync433+59QY1GiW3eTOixx4hv3Yoajx8x3xHH6lXnY5008Yj5DT6elEyYyBU//l+u+u9fcdV//4raOfPRdZ3KaTOZtGwFf/rydUxcvoKo38/scy7AfCgAiyCIzD57Fem0Qpu/h/96rIm9veFRARKAR3f28UrbyAfyXKnOMJHnu/Df2UR4TSepjtAH0o6PKilFpT+cpCLnyAF5jgXpQwIiOVaBwfA7FCGxZ9uVeovx0cDAwMDAwMDAwMDAwMDgg0R4K8O2Dztz5szRN2/e/EE346gIDw9xz03fYsL8xcgWK6Ik0r59K4suuYKq6bPestz/PLWP373QSp7TjMsqI+kq9y13E133EqrFxv7ySXx7Z4pAPOu49v/OmcjfX+ngJxdMRbU28cXnvoiOjt1k5zbX5zF/92egZh3RHSedRMmPf4Qp/8iqvpqqcuC1jYSHBimZ0ICSTiNKEmom85Ztbts2SMvWQSrLXVRUOPH/Yx96+rBziPPkMuLVaXLKyrDa/3XUtxOIYx7W60Tpu+F4mhvu2sqqOiuTbEkcDieikiYVDePILyISDpGULMiyTHHIQfzxLkS7CdeKCiLrutHCaUS3Gce55XRkBhFMZogFweFFUpKk0hlMDjdCLIhmdSJqKplkAtntg1iIjGRlJKEy4g9SWVaInIrgdTmI6RK9AyP48vLQRYnqHDv5JcWIb4pkFBzoIzowgn3QSmp7ANuEHKIbekevC7KI+aIC7vnl97G5XMw+9yJS0TBKJkNx3QR0VcWUUZEUhYhsQbTmYBbNDHWEEE0SIl28cMetAJhtdqaecjoOj5e8yjp0XSIeDCGZfThzrHhynbjzC97Pn+9oOC4h6U6U/nusuHPvndz82s0AiILId0o+xaxOE56kBPPnkRB1HPn55JdW/ssowenOTrq+9CXSzQcAkHJzkG75JelEDHdeEZqSIR4KYXW5sLlz6D2gU1ynkggGSEQiuPPysbm92Nx5BAcSgI63wE54qJM7v/sVTr36Boq6y8gcPGzka8q34TqpjLRb5g8tg/z+xbYxbfqfi6YyMdfOubeNVXsH+Pu1c3HaZFxWE3X5LvrDCSIJhQK3Fc+JobL+kRt7w4kMLzYP8tu1rfxpiZvYl25AC2UPk8TSUnZ88Ycki8vw2mT+tL6Nnd1hAGryHPzbKXX85+P7cFgkOvxx/nTNHHx2mUlFbqyW8ca1zRtf5tFf/BSA2tnzECSJlldfwenLZdZZ5/Hqw/dRVFtP1fRZeAqLsbm9hIbStG9PYbaBKydJbqkTh8eJ5LKjRiOEhwaw2B3YfT5ScQ8F5W6szsN95eXVf2fjm6LATl22gkUzFmBpbEDO/dhES/vI9d3Xebb9WWbvqSa2/g3fWotEzlWNXPnUXv7vnAqa1zyCxWbDZLYgSiKtW1+jeuYcJsxbwnD3QWzeHJozDj57TxMNhS6uXVzFT55s4ueXTOenT+6jJt/JVQsqyCg69dY4B55/CnSdsklTkGQzdreHPeueY8rylaiqht2dQzIWQEDHZLYiyhJWqwPnof423BXhoV9uIxXLGsraXDKnLsxQNLv2bZ3ZMv39xDdvJrFjJ7Zp07DPnXNMjIxPcD5y/Tfd3U33l/+N1N6sUJJgs1Fx+5+xTJ1CsL2dTDqFKknIVhuhoQEcXi+ZZJKhjoNsfuwBzvj0v2HdCErf4UNgucyJttDCwfbtaKpGJp1i74vPctUPfoG+L0H05V70jIa53IVtWh6dXp0tEZUd3UHcVhO9wSRP7x1AEOBbpzdQleegNteBwypT6jOicb1LPnJ991iipVIkduwguu4lJJ8X55IlWBsOi4JmUgqvPtbO9jVdo2kLL6hh+ikVSKaxurbdO3sYGdYwmUUCvXHKGl3YnHFEkwgC6JqOkkwims1kEnFAZKSrHavLA+iEh4coqq3nrg4ZURCoc2SYlW9C0hTUTAbBZEKUTGiqQmSwn5fvvZMpJ52adbqwWqkvnAf9GWKv9YOqY6n1Yltewu5AB3U5BSiP9qMMHnY8kaqc/K7+Ph7qfgSAb8/9NldNOuEikH4k+2/P/iZe+sdfKKypw2y1I0oiHTu3M3HZSna+4GD+eTVk0iqB3hiuXCuaR+aC+7biscnkOc10jMR55TMLSP15L84FxSiBJMl9fhDAuagE1/JyJNfxE1RMdYTxr96H6k8hOmR8F9djKrAzdOsOtOhh8Sj77AK8q+oQ5eMXefkE5iPZd1+nq6UVl9vJvvUvEBkZwuH1IQgCfS3NyHY7SuYUeg9k13NWh8xJVzaQTirsU9L84Nl9FHlsPPSFRbgOra+TbUGGb9sFgHtlJcn9ftKdETCJeE6rxD63CMn23hwn0wMxAvc1k+mKIphFPGfXYJ9ZgGiWUBMZ/HftI9USHM1vyreSf/00JPfHzinqQ9d3X2oepGUwyp2buijzWvm38iIS4SE6dqymatpMdE2jpKIR6wsaaig1Ws4ywYtzWRkjiT40QUGyWFCSSbY9/ShV02fhzs1HtliRZDM62T18XdNAAE3RAJ3sBx4k2YTV6UQUJDRdRRRFdE1HEEXc+flIpvF7ScEHH6Lvu98d/dv7iU9Q8LWvIrlcR3zOdE8P8VdfI7l3L/bZs7DPnv2WZxcfYz50/fejRE/rfrp2bmfj/fcwdcXp2X8TokgmnWbqijNp35kkEc2QW2HHeV8r7jOqSOweJtMdRZBF3GdW45hdgPimvbzopj6CD75BLE8SKPj8dMxlR/638kZSXRH89+xDHUki2k34Lp6AtTEHQTwuRwPvhY9k3x0JxYn3tfPMrb9iwoLFCKKIKEo0b1zPokuuocdczrX/3M7Mch///NwCJOndxw3RdZ3wmg7S3VHkPBvRV/tA0THXefCtqkPOO7bG9emeKKHnDiJZZeJbB0fTBZuJgi9MR84/fsb8JyAfyf77YUYJBBj4yU8JP/poNkEQKP3lL3Gfftqxv9fICPGtW4m/+hrWhgnYFyzAXFZ2zO9znPjI9d10VxexVzaS3LkTU3ExqX37iKxZQ+FN/47v0ksRpA/P2jwRDhMN+kEQMJlMgICuawT6egn09jDcdZC6eQvJpFK0vLaRvPIKfCVluHPz8RWXoKkqyVgUh9eH1XH0jqaqotC9dxepZBJ3Xh7xYBAlnaK0dBKRB9rH7oNXuDCfXYiv8l8H6TgOfOj6bqzTT/ieVlT/YSc0S72P1GyBshmT/0VJg48gH7r+eyxItbTQed31KP39AEg+HxV/uR1rY+P73pZMX1/2fHfnLmwzpmOfMwe5sPCY30dTVSIjwyTjMWSzGXdBET1Nuxnp7mSkpxtvUTFOrw/RZMKZk4/ZauGlu/+KKycPu8eLKIr0tx7AVDmZ7+x1cuMpdcyrymVWpe+Yt/Uo+dD23bZtm7EoVoRnomiRw3v3tun5OFeUYil8+7W1wYeeD13//eTtm/jd4noCf9sDb9Dd915Yx/7hzaRiYcLDQ2iayqQlJ2N3e1i9Y5ilsycwo9xHKpFhsOMgmZgfyWJFEAREUSI6MoLF5aJ6+szj1vYjoSWTjNx+O8O//s1oWsE3v0nONVcjyOP3jTN9fcRf20xi1/Edqz8EfOj67gdJ0/oXGOpop3jCRCx2O5IsI4oSj/3yv2lctAxBkhBFiZbXXmHmmVcyXGxhd6+TwXCKtfsGEUXIKDr94SSXzS3n5oumvaP7D4aThBIZClyWdxX0LxNIEFjdTPpgeDTNVGDDd9VELAUfGl+K1zkem8/v2dGpbSjKip+/yM8vmc5Fs4/P3k2gr4fbv/I5Nsz7Immzi0dvXHLUZf293fzlqzdw1pe+zsSlJx+X9hkcFSfc4YmBgYGBgYGBgYGBgcGJwLEP+2LwjnHn5bPk8mt48pafj6ZVTptJfuVbR1NvHQxSm+/gm6c30B/KbmBNKnaTaSxhoKCGP60/yJMb+8eUWdc8jM9uJpRIowhBqj3VfG7a5yjJOLB/4ccohwRIAGIvvECyaR/OtzDkFSUJf3cnLZs3kk7EEASBoYPtmO12MoW15Lqs5DjGGqkLksiB1waZN7sAxZ8EHVwnl2HKtZHY7ye2vpegEkNJJ6mYMv3dvEqDY0h/OMmunhCTKzTEgjTplE6OU2YYAacSR3OmiCYyTHDlkr8+CIB9TiHh5zrRE1lnXi2WIbM9gHtJAbsS/UQdCUyYcDp1DvojFAkmVFeSTEbA4xDpSIcpwozmShBPqghOnWEhicWSImVOIqGhaAK91jBVJjtpPYouuAmGYgRSAXKtucQyMXRdx2l2ki/4iD7bhnNxCbEtA4cfziRinZyLLDnJK6uk90ATm+6/m/nnX0rlhHr0nduI/PxnZGLxbNT73z/IU3f0MHNlBbtfCpNJqiy/vApPUQmh/l7SiTjbnnyUs278AU/9wf+GaLb9uHKtLLmxDDEdxWn+YNTkDY6eeCZOe6idWCZGkb2IQDLAtVOuZYJ3AmktGzXwpsRqfn7Sz9k6uJU/7foT5m4zN2g3sKhkETbTkZ2D45s3jwqQAKjhCMmRYbY99dihaFUQ6O0hGvCz8vqvk4p1svrfbyaTPOwkOXHpCmze09i7PmvUW1TjYcUn65h99irMqm1UgEQud+GYW4SeUlAjGWQEth4MjGvTnr4wp00q4JqFFax+rZuUoiEK8KUVdWzrCtHUF2Z6uYdARZqv3L2DnnCCGeUefnrhNCYWu4/ZOzfIEk6kyag6DrOI9uB9owIkAFpPDxO79vC7mI2RWJor51eyszvroNY2HKPIY+P0KUWEExk+Ma+CjpEYX/zHfq5bWsN504qZUOSmP5igN9ZHQh8mTzq8V15YO4EN994JQDQwwmuP3M/0086iZMIkuvbBjhcTTFpsYsuTPWPaWzpBw+FNIssvs+Wxf46mSyYTiz/xPfpb85lzZiXiIeP5+gWL2f7MEySj2X5qttmYfuZ5OGuMqIAfFSYJ9cRe6cIyOQf7xFyUYIroum5Uf4rfXlzL3j0HyCkpY8O9d5JJZQ0tbW4PXe46rrx1NwBnTnFil7NziP0DETKqTpnPzmAkRV2Bi+1dAVKZMjKqRqirnb7mJmpmzcsabHV1Eg+HqJg6g1ceDtPfGmHqSSKNi0ooqDjymLVvY9+oAAlAIpKhM+jEvWvX24qQyEVFeM45B8855xyL12fwAZHYum1UgARATyQYuuW3lN3yG3LrJ3BgIMI1t7/KNdM8NAzvpG3Lq1RMnobd62PyshVogTRKn4Kl3ottWh5aTCGyrhu3WkDT+hcJ9GXHztnnXIAUkQhu6MNS70PPqKRaQ4gOmUSDm509Qc6cUkQ8reK2xegJJdjdE2YwkqJ9OIY8uQhVi7G108+KxkIcRxCYMjB4t4gWC45583DMm3fE64H++BgBEoBND7dTOSWP3NLD6xslFEK02vD3DrB3fTaS9461UFzvZeo5FZz+10384apZNPUr9AVjLCs3Y29+me6mPVRNn4UgCAy0tRLs76Vo0tmMxDN8/YnO0fo/s6Sap/f00x1IYJVF/nJxLWa7g00P3gtA/ZzFNOYsJLyxE7nUiSnHSrorQnqvn8JlXqzdMsFgEtfKCkweC4k9IySb/Jw2awUPkRUh8Sf9x/TdGhwZXVGIhQLUz1/MujtvRzu0F+UrKcWdX0Z4uI/QcIJtT3eSSWWvlTb6uOWiaWwbiNAXSnDBzFLkUIaM3QQCJJuyv53kMqOG0qR7otgac45L+9VwCv8/mlBD2fWhFsswclcTOZc2jBEgAYhvHcS1vAyxwIEaSaOrGpLHMk7AUkupoGqIRiTLDwWReJpeXOR2tiGIIi2vbSQeCgIgW6yc+/V/54lbh0fzJ2MZOnaPMNgZYe5FtVyzsIqafAf2N3zPM33ZyFhyqZN0bzQrQALIhXbSXRHkCidSlfddt1lLq4SeaCfTFQVAT2sEH2xBLrJjqfSgjCTHCJAAKENJMkOJURESXddRQykEURgjTKLGMwgmEdH84XHo+yjRMhAhklTJc1lpHYryyWmlbH7sIFanTPWU+bxy318BuOCa72Mqc+M6pRwlnCL+Sj+p5iCWOi++igLa2rfxzO9/NVpv62sbOfW6L5BTVs5ucwdpNU1Gy9AR6+COvXdwTs05fKLxE0zMfXcRKNNdXQz853+OSQvefTeec8/BPuvIAufm0lLMF5TCBave1T0NDI4nqqKw5dEHKaioxuZys/3pxwBw5eRx6qe/yIFXNhAK1FE9pxBXMIVQ7SbVFiLTfWhczmiEHmlFLnJgrTkchVmNpYm80PWmm+mku8NIeTYEHcS3EKlSIin8dzeh+rPiQ1pcYeSuJgq/PBPRY0FPKIgO2Ri/jyO24T4CsRgzTjuLF+7402h6aeNkrE4XVWYb3z69EZdVek8CJJCdk8a3DOCYX0z4mWxkedFuQrKaSOz1Y1piO2biM1o8Q+D+ZqwTfEReOrxnLJc4sNb7UEKpURESXdHQUgqiTT4RxW8MPqKk9jcfFiAB0HX6/+M/sE2fdsxFpE25ubhXrsT9pkjdBh8M5vJy1FCIkT/8nkz/wGjwncH/vhnHggVYqt/a9uZEw+Z2Y3OPP9ewOl1oqoKuazz2y5tx+nJoWLQMTVE5uH0LM884B5srW87hPXpHdV3X6RiJk+pt4/Gf3ISuH/Z2XXrFdZS5NJSBOI6lJZiLHCQPhklsHsCVLH/vD/sxQAipqMEUjqWlmAvtJA+GSGwZJHe5IUBi8PEgsubZUQESADUQIPjAgxR977v/otTxQS4uxnPuuXjOPfe43keUJDwFhXjekGa22njlvruZuPRkrHYHw12d7HruKeaedxHr/vFXTrrmOl76x19RM9k9ZlduPpNPuYTr80xU5jg+SAGSDzXOnDzsfhvBZBDXKRWYfBYSTX4SO4dwzCuCj6WugcGJzoWzSskcDCM6ZFzLyxAsErFN/cQ29OKZncvDf/sDstXGokuu4P6f/DsA8z75RZKHztREUUBTYO1f/kj5lKk4fbloqsK+DS+x7MpPv+/Pk25vZ/g3t4xJG/zFL3AsW4q1vn5cfrm4GM955+I57/iO1QYfHYKD/Tz351tJxWPUzJpLyYRGTGYLWx5/mEnLV7DpDUHTKqbOoeeARENhCf6cIGv2Bvn2mY08v28Qi0mkOs9BjuPoRUQ0TWfdgSG+ff9OBsIpppS4ufniaUwu8bx94TegDCVId4SxzSvCWuki3RcltqEPdSgBHz4RkhOSrkDWDrs85/iJJ6di2fPefIeZrSPJt8k9FsuhwL2pePxtchoYGBgYGBgYGBgYGBgYvP8Y3ksnCPXzF+EpKCLQ143N6aawpu4tDQPSaZWhqIIsifxhXSvhQ4IPj+zo5dxphaRVDa/djFUWWT6hAFkSeHH/EPUFTp7a08+UCpW4MoEvzPgCN224ia8UfYLpvb3j7qMGxzutv46mqgQH+hhsb2WwvXU0vaCqhk2vtLGlO8ovL5tJbcFhp6RkNOugoadVBKtEzicaib3WT3zrUNbg+bIJKMEuDrz6iiFCcgLgsJj44cVubtnzPUK2ueRac/nN5of46qyvctuemyl3lzMzfya/2vMivyz4AXSCYBJHBUjkEgf26QUkdg9jfbSfCbN0dnv8bBh5gq0DW7lx5o38YtuPWF66HLNk5sm9T/KNOd/gdzt+xsTcidR56/hH0z/48swv85f9f8Br8bK8bDm37b2N66ZcxwNddxPPxLnUfClfW/crLm+4nAPBAzQHmvnctM/x222/5Z8FtwGgq3q2bahIHgvOpaXENvWR2DnMSfVXMDJ/CKvFgaPbBjvCyPWzKPzNHfRdezHmyko6DmQ3B5tfG2DmqRW8+ng7ibidxsWfxeENk4zEkcz5xCJ5aFp4zHuM+pO80L6OjtYD3DjrRvJsee/vD2lw1ASSAW7dcSt377ubUytOxSyaubThUv7e9Hdu3307ACWOEn646Ids6tvETa/cNFr2K89/hT+s/AOLShYdse5051hjcdHhIB4OM9zVwXBXx2i6zeUmnUygZkbGCJAA7Fv/AgsvWz76d39biPbtQeZfcCnp7giRV9rwnFONntKIvtiFYDXhXFqKllI4fUohZbl2tnYEODiS3aguclv5wf072N4b49tnNPLjx/fy6cVVPLajl7bhbJ4nd/fz6UVVfHFFDd97aA/bu0J8674d3HndfDy24xdZ/OOIx2bGbBKZUeRAXds07rq9t4Op007hH6920tQXIcdhxh9LU5lrx2mWuHNjth89sqOXn1wwhS+cVIuOQE8wQSKjsmdkF//s+AWfnPRJZNVG2aSpdO/dhaqMdZRMRMJsemA1F3z/Z+x5qQ+L3UTyTc6UABF/ktrZdp6//bEx6aqikEkOsuOFGPVzCvAVZQ9ICipruPxH/8PQwTZ0XSe/soa88opj9foMTgAcgh358gZSzQHCz3YiF9rJubwBNaNhkySSBzazb/NrzD3vokMGrAIWp5MXdTfnzzCz/sAwZT4bk0vc3L+tl0nFbmQTdAcSFLis7O8PM6Pch1UWkUWB6MgQgwfbGDzYNtoGm9vDokuuZtuzWbGmPS/1kl/uIrfUOc6Zw98bZfiQE+YbCUYkNIdxoPdxIdM3fg2UbmlBTyTAZsNrl9F1eHVQY+W06Wx74hF2DRw2lDz/U9/Bd1EdWlojtqEPXdFwn1KBaJY56bLP0Nu5H5NspmPXDrQpKs6lpST3jiCYJTxnVhHbMkBpbiGnOAv5wUN76A8nEQX41KIq8p0WbLKExSTy+xdaWTWzBBGBnd1BFtYa80mD949UXBmXpmk6/W0hECC3JLvmT6dURnrjNG0YK4badyBIY6IMj02mO5DAa5MZjCRJSTY0v5/+lmb6W5pH8xfW1JE/10RvKEm+08JQNOs06bKa6D5kGHLOtBJ+9vIg3z/3ElIj/WiaRk5xOWooieesalIdYTJ9MawTfIhOM5lEHFW0kXNxA9GXe4lH0tim5uGblkdAPDxPn5E/41i/PoMjoGUydO/ZReuWTSy65EqUTBpRFBElE4KQ3aYMDyWw2E2jIiQ9+wJMm5vHn9e3A/DErn7OuXgmzhInqUMRoZyLS9BVnVRrkNhr/UhOGXPZkaMYpjIqzQMROv1xCtxWGgtduGxHJwCihNKjAiSHE3XQjxCASRTQgehr/YSfPoieVnEuLcMxvwiT24KuaqTaQoSe7UCLZnAtLsE2NR/JZay1TmSSikKZI8Fg6zAb77ub2eesQpRMgI4gSmja+L4U8ScxySLDbWEe39NLidfGqRML8R0yZJSc2f+aK1zEtw0imEXcKytJtYfI9MVI7vVjclsw5RxZ+PTt0KIZUvvH7/Mqw0kslZ63dAp+PV0Jp4i/1k/kxR4EWcR9eiWWWi/JPSNEN/Yhuc24V1ZiqX7rugyOPcORJAcGw+S7rLQPx7GYRCbnOdmYUsmkVAa6Sll65XdQlRDFDQ3ENvQRea4LS40b76paYhv70FMaqNC5a/u4+vesW8vsCy/m8b7HWdu1FoBiRzFfn/11UlqKrkjXuxYh0aJRtEPGmG9EDQbfVX0GBh80mVSS4YPttL22kTO++DUCvd0UFtfhifvIrA9T7qqifn4+PdEMZlnAXe4m+nLPuHrCfRG2o9BY5MJrNyOIIoI8dj9DLnUiyCaGb9uJntFwLS/DOikX6U1iZlooPSpA8jqCSUQJpgjff4BMdwRLjRfP2dWYiw3x9ONBOpYATaN1y6ssufwaMukUkkkmNNjPUEcb7pJ8/vupffzskmn0B+MMRtJ0BeIUuq00FrlwWo9eoE4wS5hKssJ3APaZBYgumeS+AFpCxVzqxFLjGSeG925QwmkyvTEsdT4EUUBXdVzLy1ACSSLre5B2DcN5NUguM+EXusl0RrBNycWxsBg57/gZ+RsYvM6R7BtUv/+Icw+Djx5qMEimZ+yer55KoYbDb1Hiw4Xd7aF18yYqp81EzWQIDQ7w6kOHAwU0Llr2rup9rmmQ7z24i/9XOThGgARg57OPMmXCUnKvnkTs1X7CO0ew1HrIvXrSMYhF/TFBgNyrJhLb3E945zDmGg+5V08E7e2LGhh8FEju3zc+bfdudFVFkD4+ooi6IFA/fxHbnnyE+RdexqsP3YunoJChjnbQdV57+D4WXHgZqqIgW6x4G2fy/bUDbOkM8LlltSyuy8Vt2Oi8YzKJBILZQc7ljcRe7iW+NYl1Yi45lzega8aHzODEpNxnx6Sm8ZxRTXRDL3pKxT6rANEtYy80seya61ASiTHCCu3rnmLe1LkApBIKSipFaKif0PNjz21T8fd/XaSGwuPP0BQF7SMyRzf44EnFYqN9u23rawiCQHh4iMjIEB07t43uyzl9eYSGC9m9Lkj1dI3nwr/h+pM/x08fbaI3mBWMsJhEfn/17KO+94HBKNffsZmMmu3ju3vDfHX1du757MJ3JGaCDrlXTyK+c4jwM53IZU5yr550xONng3dHlz9rC1j+Ls9aj4bXBUQK3RaGO0IoqobpKMWnzXb7oTqM/SsDAwMDAwMDAwMDAwODEw9DhOQEQTZbKG2YSGnD2xvuRtMZ+oJJ/PEMJlHk2sVV2C0mhiIpfvLUPlZNL2N6mYeqXDsPbusho2pct7Sa2ZU+avMdmEQTCTXBzzb/jFgmxvPx7cw+aRHK8y8fvokgYK6qess2iJJEUW09e9etHZNeM2c+WpEXRZC5d3Mn3z5jIqIoEAklsDrNmGQR3S5jspvw37Mf6wQf9tkFIAgk9o6glGSwu9+ZCrDB8UETkhwIruc7JT9G6nZTXO/hpLwLSR9Q+N/KPzDYGiHXbWe27VQocyLsDoEggCSAqmOfXkDoyfbR+hy9sPy8RUzyLCAQjSMdhFsq72DoYIziehen5VyOckDlF5V/ZrAtQr7TwaLis9G6NH5avpTB9gi+qI3fFi8nciDF4urTGe6IYR+U+V35XQTbEpxWeyH+eBy5S+AX5bfDof27xK5hHPOLiKztwjG/KNsuVQdJwOp1UVNTRvDBVtRodgNP3TyIWukm52vfJXTHH7F6sxvCsWCK1m1DLL6wjmQsw461YWadXsn25zrRtBgLzoe8UgdTZxVg0mEknGIoHuG+kTVsG9nKiooVLC9f/uZXbXCCsHdkL3fvuxuAibkTuW3nbcwvmc9znc+N5umN9bJ6/2oafA3jyj9z8Jm3FCGxz5nNyBsTNA1PwfiIa9Uz5yBbnMgWy7hrJosF9U1aEJ17Rph1eiWWWgf68hR6WiMzFMc2owCA2IZeXMvL2Lytjx1dQRbV5XHW1GIe2dFLvtOCP6nRHUzw/P5B7rthIT2BBI/s6OO6pdVYZYm+YIJ7N3fz+6sPR6Hd1ROmy5/AU2oYOBxLXDaZSp8Nob4I+azzSO7ZO+Z6fOZ8Knx27GaJjKohCQJum4n/OG8yF/3hFSwmkfNnlFLgtjAUSTEQTvGPVzu58eQ6BFOCl6O/5vza8/mvTf/Fj8q+ijsvn0WXXoWvqARBEMcYFRbWNhBKapRek6YsXY7L5mTPS2ONNism5xIaSGJ1OMYJ5oiijKboRPxJRnpjDB4Mo+s6JfVe0pkazBaJrqYMe19upnxSDsW1HqyOw0b10UCS3gNB+lpDFFa7KWvw4fRZj8NbNziWZCwqqU2DmJxm7LOzIYMir/ThPrmcqBzH4faSjEbY8M+7RsvUzF9MT2k52zqDXDy7jIZiF4IgkO+ycO3iKvb1h/m3U+oJxNNIosBFs0qRJRFZBF/p+Ah7tXPmEz4cdB7JJKIoGum4gtUpM9gZIRXLkE4ovHh3M1OWldLTHBxTR9WMQg4mfUR2D9O+axiXz0pemZP2HcMUVXvwFNmwOmQ6do/g741TUOkip9iOKIkMtIcY6YlSWOOhYnIuLqPfnvDYpk4bl+Y+/zwkX1YMMt9l5Y9XzsISVZH1YUobJ9Ozb89o3oQaRVd0Qo8eFsMJPdqG95J6EsEwuZYS0mqCRCQESY3Ic52j+dKdYbzn1RL0xrn9gW4mFrv5xLxyVF1nJJrmgpmldIzEyHVa+P2LbSydkEdljoPmgaghQmLwrggNxenc4yc4GKNqaj4jPVFCQ3Eqp+ahqTpqRkNTNbRDBjID7WGcOVaK6zxYHCZSscNiJK4cK0OdEbY81cHp10+msMqDIlpJxkJHNNpMpRWuXVzNr9a28OdPzsVtMyGgUVzfwL6XXxyTt2b2ApqiGcq8dr5wUi2/eK55VHj1dQrdVp7e3U+PN0Dzw/8AQDKZuP57fyT0QCtaLDtpVoYTOE8qQwiqyCYz8dcGSHdkDdqiL3bjXFJCoD5CrbeW82rPI629SVjC4Lgg2WzYnC7CQ4Osv+eO0fSKydNw5s0EwFNgZ98rYw0jrYx1mLyjbYgveGzIdhOCJKCG0iR2ZycCylCCVFuIgi9MH43C/jq6rvPozj7+/spBljfk0zwQpWUgwnkzSnFY3n6bVLSbEMwSelodk27KsWEqtKMMHBYzcy4rRQukCN5/YDQt8kIX5lIHijUBokDqYBhbvY/kgSDBR9rQdXAtLn3bdhh8cOS77fSkQbZYUTJpNj147+g1k9nCqm/NHVemuNbD1mc6Kax2s6Q+n39s6mT/QIQFNbkAmMtdmIodqP4kcoEdS42HyPNdaIeEoKLrelBDaXwX1SOa37lzhmiVMBXaUAbGrt0kZ3YdZsqzYZ9TSHzzwOg1c40bUylR3cAAAQAASURBVEHWEC+5109yfwDn0lIQQJAE4lsGiKzNCjmp/iTDf95N/hemY3kL8R+DY0+XP4HTLOMwS7QPR/n5JdOx2WXyyp0Md0WJjKhY9GJKy+tIt4VJHwyjxRXi24ZQ/Emcy8qIbuxDbLRhto13Crc6nKgSrOteN5rWF+tj88BmXLKLrQNbOa3qtHfVdlNxMeYJE0g3HxYiE8xm5ApDrNTgw4M/lqYnEMduMVGZY6dm/hK2PLSaQG83e9atpWrZZBKbD81nBiHW0UrhJRNo1xWcIynkAjuZvrEGxR3JDJfftoMr5lXw7TMa8dhl3Cur8N91WLDYuagENZB1mlKGEgTuP0COJGJp8KEMJdA1HTnPlp2zWCX05OE5i2N+MYHV+0e/L6mWIP67msj/3HRDBO04YC0qQB5QiAwPjZn3Aqy4djKyReKiWaX86aU2BkJJLLJIKKGwty/Cts4AV86vxH4U81MA0SzhXlZOqjWI5LUg2kxE12WFbpTBOKmDIQq+MANz6XsXnJHsJkSXTGL3MI55RaQOhlH8SRK7snNxk9eCnlYZvn3P6Nos+nIvmYE4OVdNRLIe3TNpSQXlUMRQKdd61OUMDMxVVSBJoB4e/2xzZmMqNMLcfxyQy8oRHXa0WPwNaWXIJR+ddba7oIiR7k6cvlyigcOnz7LFiqfgnffzjuEY/3bPNj6/qIpSPUXzm65bHS5Eh0zo8TastV7kYgdaTCHycjees2ve49N8PJDcZgIPtWKb4EMudKBnNCLre/GcY7w/g48H7tNOI/LU02PSPKtWfawESABMskxkeJjFl12N05dDUd0EwkODow6nsWCAl1ffCUDFzLn8JVhBjtPMrVfO4i8vd7CnN2ycD74LJNmKJMuEnmrHOiEHc5UbNZwmsc+Pc/lHZ35g8NHivi3d/KChhOi6HmwTc9B1yAzEMZscDFiiDAZj7Hvk7jFlLE4Pz+0fprrYlzXflW0UT2ikr/kNQlCCgCsv/31+GpDLSpG83jEC1Kb8fORS49+gwbHBlZtHTmk5/p7smVU6mcDiyO6BvTEgyqyzrqB1pwPZKmF1mLnAeyFt8S1MKZnCxbPL0HVYu2+QDS3DLKz2YjW//X5px0hsVIDkdZoHovSHEu9IhER0yYQebcVc5sY+qwA0nfDaTrzn1R51HQb/mu5AAlkSKHQdP1u+VCK731/ktaPpIUZiaQrdR3c/k2xGlEykEkbgNAMDAwMDAwMDAwMDA4MTj6OT2DQ4oZBEKPXaUFSNzy6r4cFtPdyytoUNrcMsrMnHZTURT6v89Ml97OuP0DoU4xfPHqAvlGRWhQeTaCKajtIfyxpAbhjZzP5L5yItmZ+tPzeX0l/+EsvEfy2IUlhTz/TTzkaSZQRBZMLCpUiVk7np4b28sH+QMp+dWPqQs5AGskVk4QW1JAIp1GAK1+JS0h1hImu7iDzfiWiSyPOVUTt73nF9fwZHhyYkmBM/mZa70lhNNrY+1Mu2R3pwWOy88KcDaEnY99wQr97XyUAgQ2huMWmnjOu0Skz5NtK90XF1qjuGad8Y4MDLw6hRiZf+2obNbOHVf3ax46lerKKVF29vQVQlkkMhUkO7iQ9uwJoJManSiy8jM7A7gtft5IU/tzDYEmN4f4INdx3E7XTw0t/aaH/NT3II1t/RRkjXkGrsaLEM6Y4I7tOrspEDD238uldWkjwQINMbR4uOVXdQOsJYpi/GctOPyWv0YLZlDRxHeqK88kgrnuLs5mDnnhHq5mQFH0J9MU6dV4j75R7s67up7I4wc3EuO/zbAegIdxyvn8vgGNAbzYosmAQTsUyMhcULaQ+1j8u3a3gXNZ7xRkE+q+8t67ZNn07h//sBosMBkoTjJ78hk8lh/oWXIVuzTj2V02fRsGgFmbRIXnkVueXVY+pYcNGVtG0fG72yalrWyEA0S9hmFSDIIspgnMhznUTWdiLlWFHjCj2BOL2hJPdt6aapL8Jnl9aQVFROm1yEwyzxarufIo8NkwSfXFjFva91ccvaFrZ3Bfn6aRMwvSGSsc8uo2hGaKbjwdRyHzPLPehLlmO67AqQZQSbDf2zX+LPES83rt7GxbPKOLmxgJvOncTXVzbQH0zgsJj4zpmNvNI2zC1rW/jLhoNMKnFT5rMhyyLTK2Sag/txyk6SapIBe4xYNMyGe+9kwz/vZMnlV2M7JABWWFPPwouuJkyIjJ5hywM97H6xhzlnVWF1yIiSQMP8rIDO/k0hFl58zZhncOUVoKi5lDb4SCcUnvnTHrY908n2NV08ddtu7G4Lrz3ewYYHWtn1QjdP/G4nTRv60A9J96eTChseaGXN7XvZ/WIPz/21iZdWN5OKv0mBx+CEQ4oJWGu8ZAYOj0EmlxktqZDMJKmYMxvZcvhgTZRMWKYt5/5tvXT64/xhXRstA1EKXRZu+cRMSrw2lk8oYF61D5fVxM0XTaPEY8FhFpElgYrGSSy+7OrRMbRq+izKJ05n74YIggAzTnUzZWmA/ubH6Nm/jcGDQ2SSCgPtYaLBNMlohuBAnKknlWEyi8gWidlnVhIPp+lpDvPsX5qwOcxsfKiNF+9uxp1v47k7mmjdOsRAe5gN97XQ9HIvL/5jP23bhwkOxtjwYCtNG/p54c79rF/dTCph9NsTHeu0qRT9xw8RXS4QRTyrVuG79FIEQUDJZGjbtZPhFx+kb9szxMNppq44naLaCQDYXG5K6yaT7oyMqVOQRdDAt8WJa6OZ3G0+zj/vm6Ra3hSFVYdMIEFnupuqXAc6Or949gC/fq6F9S3DmE0iM8q9/PeT+7CbJZxmE4qmUegeL1RmYPB2RANJnvz9Ltbd00x+hZstT3Xw8n0tODxWhjujhAYT9DQHaNrQT2gwwdo79rHnpV40Vad5Uz9LL6knr8wBQEGVi+mnlLNvYz+RkSTD3VE6945gOeS0WFQ7VlTU7jZj9lqYVeHh7xdUkNz2PPbtT1KdHiCnqo5pK8/M7imIIg2LllE8dSbTK7zUFzlpLHbxx6vn8L+XTGNaqYcCV7b/9wYTFLitRHKqsR4yIFIVhUQwNOrkBuCYX4QyEMf29wD+v+5FTyhZB/pDxLYMUidXU+ep49btt5JSx861DY4f5VOmY7E7Rv8WRJGZZ53Pa4/3s/jiOqKB5Jj8drcZZ74Nj+2wcN0d23uIzMnHPqcIa2MOiT3DY8roCYXMIUGQZDLDyMEgA3uGGOyJsLXTT02+k1vWtvCr5w7w4PZe9vcfXcQ1U44V74V1vFETxX1aJaZCO7lXT8RzXi32uYXkXNGIa0kpyQNjx3/PaZUEH20jfTBM6NFWIs91En6uE8lrwTYtn+j6HtSYIYhzoiPpVjyFxRRUjzX+W3DhZcg2H7PPqEC2SMgWiWknl+Hvi6EqGrmVLrx2mWX1eUTeMFc05VgxX1oPM/Kxn1QGJnHUQfx1EjuHUIJJ0j0RUgdDqNGj7yeiXcZ3fl12nnII28x85EOOyKJZwr2yEt9lDdjnFOK9sI6cixuQHGa0jIoyHEfKsRJZ20nk2U6iL/civFkMRdPJHGEv0OD44baZkCSBNU2DnNyYz182HOR/17cw+8wqamflc8bpFeRtGSB5/wGir/ThOrkc0Z7d30x3RNAVDcfcIjImK7Wz542urSArQF43dyHxvkH+q+ArXFh8zui1bYPbEEQBt9n9rttu8nop/Z+bsc3Mik/JpaWU/f5WLLWGQa3Bh4P9/WGu+ONGzr3lZc785Us82zSAY8osGhYvJxGNMmfFKrSdb4pYqGiY4hkuW72VB4Q09lMrEMyHx2Wl3sMTQyEA/vFqJ61DUbSkgpRjIefqiTgWFOG7opFUS5Dwc51EnutE8SdwragguqGXyLpuhm7dwfAfdjJ0+250Vcd3Yf2YOYspzzru+6IMJ1HeNPcyODaYcnKwOr3MW3XxmHSnLxdPQSWKDNs6g1y1oIoOfxxVg9+sbeFPL7UxFE3TNvzOvqvmKjeWRh+OBUXEtw+Ovai+/Xda13QyQ3GSbUEyw29t7C65LfguqkcNpVD8SVwnlZPYm3WCt03JQ3TKZAYSY9ZmkBW9Uf1H19eUQBL/P5sZ/M02Bn+zjcDq/ShHWdbAwFJfT9lvfzsqOmJfMJ+im25Ccr53ER6DEx9LVSVlt96KfCjYjmXyZEp/+Uvk/A+f03awv48dzz7J2r/eRsvmjSQi2X2L+rkL2PvS88w97yJ8xdl9LldePqu++f9G/34nDESSnDGliAtqiyiobsDmesM8XxCYfe5laNE0lgo3kRe7iaztIrnfj21iHmrE2L84GpRIBvuUvOyc7fku4tsGsU3KRY0aZ0gGHw/s8+eT9+UbEaxWBFkm57rrcJ708QvelFNSSkF1DS+v/jvP3PYbGhYuxZWbjzs3H7Pt8J6MIIo4Z5/KU/uGeHrPAD94eA/nzywhkjLGjHeDaPOixTOYi51Enu8ksraLdEcYc7FzjGingcGJxIKaXLRYBslrObwHNJwAQcCSMVHYOHWMqLQgiuQtOgOHzUIokUG2SGiaiwUXfoLC2noga9tw8jXXkV9R+b4/j7msjLLf/Q5zXR0AlsZGSn97C3LR+OBtBgbvlMGONvasW8viy64ivzJraxvo62XGyrMQxMN7rxa7A0dOPQ63hYWrajHbJRxtpXRGWijz2fn1cy387oVWJhW7KfXZeGhrD1s7A29121GOJDTitppwWeUj5H5rtFgG26Q8YpsHiDzfRXRjH7bJeShhY811rOgJJij22BBF4e0zv0tSseyZQElO1g5iMHz09ieCIGB1OklGI2+f2cDAwMDAwMDAwMDAwMDgfcYIG/QhxGO3YjMnqcix8+V7to0q6Xb5E/z+xVZ+c9lM9vaFEAVYWJuLyyqzoXWY1a91ke+oweMEr8VLmbOM7mg3AN/tvIVlF8znB9+6mzxvCXJBwb9sQzqZYO9Lz5NbWsqZX/waAIqmc3tzNqJmdyDBxrYRLplTRjySJBVTiIdTOHwWZE1HdJqJ7xhCGToUgVOD2Kv95NQ34qk2VK5PBDyqh841bYiSgK/ITts2nfp5BYx0RzHJIoXVHvpaQpRP9BEeSrD35T5mrKzg4LYh5p9civkNhqtyiQPblDwQBaYLApFJOax7sBUAk1kiFkwxYV4hTa/0AVBSJ5Psb6fYXo6ndi6x9f2k+1oRgVmNPqJ2iaknuckpyhCPxHDn+UjEMmRSKrUzC9hxKBLrwIBG4XQfzmletLRCOlfDlJZG25TpjqD6kwhv2FcULBLOJdk+KEoWYkoVG/92kFmnV4BJRyFDyNtPn7OFykUuOl6JUFznYerJZVQV2Eg8fXC0Ls2fRHhhhJV1p/B07xqqPWNFJQxOLMpcZQAouoJDdrBlcAunVp46Lt/sgtnIooxJNKFoWaNtm8nGqRXj876O5HKRc+WVuE45BV1V2X9AJx7sQ7baOP2GL6PrOko6Q2gojNmuk4yZWfKJLxMeaCXiH6SwpgFPQRX97X1EDhnbFtd5KKjMGoLt7gkhJzPk9cXI9B4ycNchsX0IS7WHUDyD02JicV0uibSKRRaxyhI3P7mP82aU0DkSx2uXcVpkfr5mO4f0IGgdinHva118+8wGAEQBrl9aQzyljHtGg2NDic8OvirabriRrpPPRdN07u1SeKYpazjuj6d57NlmmvojXDannDlVPn54ziRufno/3YHsNzUYz/DDR/Zw44o6vFaZNbv9NPomE0qHsJls3Nmxmv9Y9T3Kl8zHP9JPTkU1c865gHQygb+nm4d/fhOLvnQDruECBpJR+lpCeArtLL20DsEkEg+miUfSLL+ykYM7+zj3qz+gv20/drcXh6+GvjYTRTVmooEUunZY7V9TdGLBFOHhsdG3X3usndqZ+bjzbAQH4hx4bWDM9bbtw8w8PU5R9VinZoMTC4vFTKLffziKrw7xrYNY6ryYTRYCOQkWf/U7RNoPYhE0csqraB+J870l+fzyVT/xtErrYJR8p5k7N3Vy+bwK/uvxJiRR4K+fmsucqpxx95x+2lmUTZxMOh7H4nQjSF4c3kHKJ9ppWncrgd7sPHfns4+x6NJPEhpppHXrEPPOyX6PW7YM4s6zMnV5GaIk4Cm0svav+5l7TjWde/zoOgiiQGQkidmSnT/sebGHBatqKa7z0nsgCMDe9b3MObuKiok5HNyVdbpo2z7MrNMTFFa/s4Nlg/cXyenEd9llOE46CT2VQi4qQjwUzaRrz04e/OlNo3nNNhvnf+PHzFt1NbqeQjY7EEQHWJI4l5UimiV0HUz5NsJPHzwscKdoxJ7swndlI+ZSF7qiIUgiqYMhkuYMdpObmnwr/9zSPXqvjpE4T+/pZ1qZl3BS4Sun1lPisdI6HOPCWWXv6zsy+Ggw0htjpCeG2WZC13R69gcwWyVS8QwWh4nISAK724JkEtl9KFq2KAloqobDa2W4O8r882rpbw/j743y8v0to9/4eDDNjme7WHJJPXa3merpeXjybPS2BMkvdzHrjEoKq9yM9HSx+n9+TCKcdazc9dTDzLz2q6QbFnPK1DnYzCYisoc/7U1Q7PEzpcSNBvzX4020DsWwySL/dcEU4imVF5qH+OrKem5Z28JvvvYdRlqbUVIpJIcZU6Ed+/R8dF1HtJiIbeoffQ+pthDmShfuM6tA0Yk3jZBB5emOpyl3llPjNqKPvl/oiJz15W8y3NFOJp2iuK4R2e7kpKvyyCQVbG4zSkqjtyVIbpmTSScX8ckHd/CpRZV4bGasZpEyjx3FKmGtdCPaTUSe70LPaNjnFmLyWNA1HdEsER+Okd4xTOK5TtBAdMjcsKqGM/+5lVynhWhSodhtZTiaIqOoyKZ/HYFTEATsU/KQC+yogSSiy4xcaEc0S4h5duQ8+5j8ku+wCJtc5iR1MIwgS2QG42R63rB22zGE+7RKzJUuks1BBJOIXOxAzrNhcOIR7+rhudtvYeX1NxLs7yE0NEhR7QQ69lqRDoTIK3dxzpemEQ9n2PViN0paZfknGtgajfG751v5v0unU+w53Df294X41XMtCOi4bWa+WHHYQU50yjiXlCIXO4is7SKxfQgAU6GN3CsmIRfax7XvSFhqvBTcOBNlOIFoM2EqtCPZD89VTR4LppkFOGaO3RMWRBHJZyW6vnc0LdMbw1Rox1Roz4o9Tc1DLnKAopPqCCOXOBDlj1c02w+C2gIXw5EUbpuJYFxhS0eA2ZVebA6ZOYuKSd6zD5Ts91pPKITXduFbVYsykiTVFsqOkU3DaHIeldNmc9H3fkTv/r0omTR55VWkEnGG9++l6cXnmLFiOa3FU9gR2M2cwjm0Blr53PTPvaf2WxsbKf/jbShDQ0huN6bc3GPxWgwMjjkpRSWaVPDazUiiQCKtcvOhAAAAaVXjp0/u464rZ1J42tWYxCAuay66N4meVhFMIoldw2T6YgSUrIPTAy1DtCTSfPXTkzGH0+wcjvJYb4B/bu9nerGb78wop3YoRWB9P4ldWaE1y6QczKpOfNthcYlMdxS5wI5UaCPdFgKTiGtJKUgCyeYAljovBV+eierPzllGN33fiCggWIwx+3igqhqDbS3YvT7O/ep3GWhvweHxklsxAcRc7t3fT9twjL+9cpC5lT4SGZXL5pYjiwIPb+9hTqWPKe/guFQQBCxlbkS7nF0HxRVM+TbsMwuyexGyiBpNIznHOkco4RTpnghqIE3oiXZQNASzRM4VDdgajzw2WyfkUHjjTJSRBKLbjOQ2owZSyCUOws904D614g0NA8fCEiS7iXRPVghFLnYgCG9t8J/c5ye5Z+Tw301+EnVeXIuN82ODt0eQJFwnLcd6/31oiQSmnBwkh+PtCxp8ZHDMm0fVP+5CjUYxeb1I7ncvnvdBERkZ5qGf/ScjXdkAJ9uefIQll1/DvPMvJr+ymou//2OGOtpZ8enPIVuteAuLcXjfOljGv6LAZeXSqaUg6IDE6V/4Ov6eTpKxOMV1k7E6S0GF6Es9o2XUYIr41gE8qwwRwaNBkiUCz3bCof1ULZYh8kIXOVf966BQBgYfFUy5ueTdcAOeVatA15GLihCkj98aRFNUTLKZJZdfQyadQslkmHHa2bgLKjj/Gw30HdiPqiqIJXV8c11odPk2FEnRF0rgsRkmvu8KVURXdWKvHj4rUoYSJFsCmOsM+xODE5O0ooAmk9gxNJqW6YmSKXZgmeji3vYQl3/p+yQ6m9GVNLaKCfxgQ4ySnGEunlNGMq5gdcr0tw0z+8zzEUQBRBF/dxea+sEEHbPPmknl3+9AjUaze8Ee49+fwXtnqKOd1Td9h3QijiiZmLx8Bcuv/gyKojIYSXHBt39Ib/M+ZIuFgupGAoNOJszXceZZUdMqu5/q55zPX8znns/amquazj+3dDOrYip/frmdlNLOA59fTJ7rrQMFNRS6+NSiKv664SAAggA/XjWF8pyjO7t7HUESCa/tQk9kbXL1lEr42Q7yPjmZ+M4hzJVuTB4jYNF7oScQp9R7fM/dU/FDIiS52X2IgXCSqRz9eGf3eImHQselbQYGBgYGBgYGBgYGBgYG7wXjhOIEJBUMoqsqWm8fKBnk2lrkNxlHNBS52N0bGhUgeZ3uQIKOQIx8l4Xvnz2Rp3b30zoY5ar5lVhMEv/3XAu/ubKclJriW3O/xQ9f+SH+pJ853ml8y74K/YGnCOXn41yyBGtDw1u2MdDXy45nHh+XPvfqb3P/of/f0hEkllKx6VnnJU2BrU8d5JSrJiAgkD44PspsJpAgHgpi93jf8XszOLZImKis99FY5UI+GGLVxbWo/TE0VWP+NY2k9vs577wqtGCKdFeEmtPKyeTbeK0nykvPdHLqOdUIsohol7FOzCX8TMdo3Tkz86mo99K6a2TU8NVkllDSKq4cK/k+O8lNBZBSySSiKIccmu1zC5HcFiyxNIUTSkgeDJJJp0jnZFDcKjvIOgubZJF5J5dRVuxgZCTJlm3DhP0pkrEM81aWUV7rQnbbSLVnN+wygwnM1W7S7WHcKyoIP985GvHA65RZfEo5zz7UhsVu4pwrC4hrKi2DB6lYNIWGWRVoGQHJZ8bdJzAullxHkk8tuYyq3Bqm5E053j+bwXtgUu4krpt6Hbfvvp2dQzs5o+oMiuxFnF97Po+0PoKOTo2nhlV1q1jfvZ4bZ9xIMBUk35bPvOJ5NOS89ZiZ6e9HGRwi2XIALZFA8c1HTfex8f6/jsmXU1LG2f/2I3QdtjwdoKCiilioCGfEizPPjGwVmXvIeX6kJ8pTt+3i3G/M4iurt3HH+ZNIt4/fhFZGEiybkE+O08LTe/qxm03YZIneYIJgIkOp18aV8ytxmE2MxNLjbNH3DUSQBIEvn1JHkctGic8KgoCiapgkcdz9DN4bejpNfNcubM+/SLVsobt+OjaLgx+cPZFfrGnGLptoH46TUXXu3NSJz2FmW2eQuVU5dAcOGwAqmo6mQ7GYxqwrnFv9Tf7e+0fumP0LWgabcGsSubmFKB6B/qYmNt23ekw7Op99ickrPksLUcxWibJ6L2v+0gRknZJFSaBqai4ldUmeuOVmzFYbmWSS4obJlDRexL5XRph1etURn9HiMJGKHRayUTMa2uuGd+oRnCEATflgDsINjh5N1EkdYW6nDCeIVqXpjQ7wsxfhE41VSC/eyeA9dwDZiCv/fcVXGTbnse7AEHdu6mRpfT4iApNL3OzpDZN+C0MIm9NF2cTD39a+1iBOrxlP7sioAMnrvPrwPcw593sApJMK7jwr4eEk4eEk29Z0MvusSoY6XncEPuSop+kIIugaaIfSVFUHdExviFasZjTQs3OZN5KJxUg296PretZZ/5Bxh5yfj+z1Hv3LNTguZGIxlP5+0HV0RUHQIblnD4LbjS7LbLzv7jH504kEvc178A/WUVxXQm9zgCnTEuTXeQk91o4azEawcJ1SgRp4UzQLHUiqRDf2oR2KVGKfXYCzrpA1B/oZjIyPfrG5I8AV8yr44zWz8dhkJEFgdlUOBW7ruLwGBm+Hms6K4kgmYfRbK0rioTENlIwGuo5kElHS2TFXELJ5RVFHlERG+qLEQinadwyP1lsywUs8kmLO2VW88I/9xIIpGhcWk1/ppHxSDjleDY8QBNwMtB4YFSB5nbbH76Zt4XV8cccI/7VqCt9fvXv02mmTCllSn0frUIxij5Xrl9bwz809DEVTnDe9hE1tI/zHYi/P/N9PUBUFyWRi2pzTsc8qIPzkQSyTcziSS1uqNYQgS6Q6QuRc1kBHspfrpl6X3aPQjEhC7xeRoT7Wr/47yUgE0SSx0/QUy678NLvXhxnuilJY42bCvEIqJueQzo3w570HOKUyl6u8LqyShGSW0MIKyVe78Ttk7HMLcZ1agepPke6OED8kapeqDmGfVUh0TefovbVYBldHlCdOm4w2EMc3KZf4QJz0riDdIRVHjYeCIte/bL9gEjGXONGLHCjDCdI9MSS3GVOudZwzpbXeS8RjRgulkYscJPcHsNR6SHeOj2KkxTIktgygjmSFJ0W3mfzPTEEuNBzmTiTUTIatTz5IUe0EtjzxEF27d2C2O9j6xMOc9MlvIFlknvnTHnQdJi4qZuKiYkRBIO2W+MHftiOJAtWCRGl/kujgAKJZoqAtyH9kLEgTc7hjKEC/TaKoyA6DcVwnl6MrGpnu6KgACTDa31OtAdSEgrXOh5bIkDoQRMq1Yq3zIReMNXKUC+zj0kbri6VRhpMIooCUb0OyZo8NBElAPUKktXR7GEu1B1OuFT2tEl5zeN/Pe1E9zrlGFMP3gxnlXvb1R+jyx/jOGQ3s7QsTCSSRFG1UgOR19IRCpj9O5PkunEtK0HUdx5QCMvEMuq5T2jARQRB45Oc/IRb0A1Bc38C0U89g13PPcMYXzyGqJTij+gw6wh080PwADb4GChz/Wsz8zaT7+0m3HwRdR/S4wWRCCwTIBININhtaIpGdn8tmEAT0ZALBakULRxAsZpBl0PXD33lBBAEEXUcHEEUEQciuwbTs/q5gs2H+mDo5GRwdij9BsjVEpi+KpdqLpcqN5DKzpzfEb59vYVtnkNMmF/LJhVVYTCIvNB8ej6cUu1lR4cNlkkFV0HuspIeG0WIKlko3uqrjWl5GZH0PbpeFrdfMwxTKkGwOIm0fwjKzgD9vbmPdgRGsssh/zajA+0wXnFQ+KkACoPRESTvHR9ZMd0bwnFPDyN/24F5ZSXRD76gopmCVyL9+KuYqN+mOMGowhX1u4ehcCcB9agVyriF6djxIRcNERgbY/Ph9+Hu6sbnciCaJldf/G6HhKE/syf4OBwairJpRQlWug3te7SKjalw4qwyNI++TAlnR/a4ImaEEgik77qW7IqjhFPbZRbhPryL0SCv22YWEnz7I61XZpuXhPb8W6VCUVi2lEn7qIJLPSuSFLlB1EMC5sJh0R5jUwTDWeh/KUILMYAxLjRdLtRvJYUYuciCYJZRQCs9Z1fhX70c7dK6WGUpgrsz2O+fiEpL7A4eDUkgC+ddOwVLrfcvnSzT5x6Ul94wYIiQGR03a70cZHERPJtEUBdnrw+TzftDNMnif0JJJUgcOEH1xHVJuztvavRwtSjRKZmAQMmkwmSCTyc5bnU50RYVkAsFkwlJbOyp0/W4Z6mwfFSB5nY3330PDoqV4C4vJKSkjp+TYiFVX5toJBRIoyX4e/fkPScVjmCwWimrqMdsnseO5vVxxxYRx5TK9sSMLnBmMQ41nRgVIXkeLZtCNoB8GHxN0XSe5Zw/RdevQFRXn8mXYpk5939fouqKQ6etDMJlQwmH0WAzJ68NS8/4Ekwr09bDhn3eNTRQELvz2j3jsVz9B17PnNq6CYi6cfzm/2nT47FASBPyxzPvSzo8asllCixxhb/NgZNzYbGBworCnN8opwnibgFR7CPNSDzM8Glvv+iPxkSFEk4SAwOeu+Co/fiVIPK1iBcLDg6y/849kUskxdRTW1OHOy3+fnuQwmb4+4q++SmLnTmwzZ2KfOxe5sPBflwkEyHR0IEgStqlT36eWGnyY6Nqzi3QiDoCmKuxa+wzDXR3M+8L3GBhpYeuv/wcdHU1RceUXcNInv0ZkxMr61c2cfFUjakZDyPgIJ3rG1Lu5w49JEjgwmGAgkvyXIiQum8xXV9Zz5pQihqMpKnIcNBQ537btWkYl3REmtnkQwSxineAbFSAZRdHRkgr+f+zDNj0P7wX1o2d3Bu+cnmCCpfXHd/xLxWMgCJTlZYVHBiLJtykxlqwISYDkvn30/eD/oQwPk3fDDfguv+x4NNfAwMDAwMDAwMDAwMDA4KgxdiROMOLt7ZBIktyyheHf/hY1HMZ12mnkfPKT2GfOGM1nNkkUuMZvNrutJkZiGaaWerjx7u2ohw5MDgxG+d6ZjXQHErzaKmL19XLL9lv45pxvous6cw5oBD//zdF6Rm77I1V3/h1Lff0R26kpRz4Qd8oCi2pz2dYZZPmEfNw2GZMokIxnGOwIM9ITxS1L6BkVucQ5zmFedMoMHmyjavqsd/rqDI4xTp+FGTUuEs92YlleRvTJdvSUiuukcsL3H8Axv4j4up7DhoPNQWzT8pi4oJCmjQMMxTPYl5dTkGMh/FDraL2CRcIkCCxcUcZQXzwrGmIWObhzmJMuqMHWH0PqUVB741gn55LuyjrmWCfloAZSxF8bwHN2NaF7W7MGkYBJFPBcXsj887wM90Q57xMTUJ46SPrVPlyiwJKFJWzc46c3lmHHy/1M+GwNQr8fBA/xrYMkdg7hmFeEbWoemZ7oqAAJZA1A3PEMdreZeDhNIqIi/uGPTAAcSxP4/3YHuZ/+NPEtW+D8a8e9R1OhlZx7n+LKWVNwNxpOoycyHouHG6bdwBlVZxBX4hRaC1l9YDUW0cLNy24mo2aIKTF+tPFH3DD9BtqCbVxcfzEVnoq3rFONJ4g8/TSDN9+cHc/POB3HggV4Y51E1fFGAulkAlVV2fBACw6PCbsrgsWWIBHSSEZstG0bpm3b8JgyQX+CjKrjcZhJlLrGOT5LOVYaEfn+Q3tG07Z1Bfifi6Zx2Zwyzp5aTHV+9vDDa5N5M/kuCz3BBGv2DnDe9BJ+88ABRqJpLptbxmeX1VCeYzjEHUtiW7bQde1nRg338m02zr7pF3xz7RDXL6uhtsBB5A1Gabt7wgTiaRbU5oypx2kxcZE1QOanP6Vs/34cZ53Nj+edTOCmb1AbDuM6ZQXmqdOYUlHO9mh8XDtS8Ri5OSKCAI2Lihl+PUo7WaEQTdWRzAo7nlnN1JNPw+p0IUoibds248mLMvfs6jHGh2abiZmnVaCkVCbMLcSZY2XvS72EhhJMW1GGKyc7PnoKbORXuhjqOOyUmVviwHuU0b0NPjhEJMwlTpLhsU4CphwrYkbmP+/TCcQU6oQA0ux51MycQywQYM+LzyI0beBRfRbburMiJq1DMS6eVcrsSi/7+yOU+Y7u9w8PJ9m9rpeZK8fPU9VMBuGQLdvOtd0svqSOTEol4k9SWOXG6pR5/o595JQ4iPiTiJKA2SqhKTqyVUI6JLpUNzsfk9lET3NwtO66OQXINonOvYefPbfUgS3YTWKgCzUWRTSbESxW5IIC0qEQGZsN++TJ7+QVGxxD4vv2o0UigI4aTyAkEwz+z/+S6enBNmsWOd/7LqlkYly5RDRGzYwC4qE0NTPy6WkP44lbRwVIALR4BtElo0XGfucFu4zn7Gq0cJrYxj7iWwaRi51cWFzIXzNvEHXwWKktcNJQ5KJ9OM7sSh+1BW9vpGBg8FbEm5rwWBxYnTKJSAaLw4S30E5wII7Ta0HXdXxFdhLhDH1tQRoWFLJ3fR+qomGxm4j4k4RHEnjz7UxcWERRtZvBzgi+Ijtmq4moP0mgL07kkGjC3vW9o/c+eTFE7v8N5X/4PUpmvJFnJplkYqGDqtwEA+GxBhjbuoJU5WXnmVcvqOSnTzaNirD+35pmvn/mBBJtm5l11nlomkZJ1URMcYHAC91IHjOuZWWkD4ZJ7hn7XcqKQPhB0Ylu6KVrUS937LmDtJam3lfPdKYf0/dvcGSGOzsoqKqhoKoW0An09dK7vwl33nKGu6IMtIUZaMvOC6qvqGZLi8rvKqxY4yq6rqAKIqEn20fri28ZwH39FGSHTGxTH6ZCO9Y6L3KZC2Vo7FzXUu9FHUkgre/BPbeI1DOdaH2x7Abp9mHSC4tInWHDYvnXW6a6qhPfNUTgvgOHo8V/ogHbxLHR4uUCB/nXT80655iyTvFKfwxziYOEf2y/l7yWsd+UcJrEPr8hQnKCoeka6XiMsomT2fbUY8w+5wIEQUAQRPa9/CjzLvjC6FKoaUMfTRv6AFh4XTbC8dcXVFG6JwAuM0KZk+DDLYfnDfsDXH1yOZ95/gDn1edxysJiknv9yCVO9OjYuYVreRmhJ9rRYhlElxkyetZ5+BBRn4X866diynl7x/LMUBz/6v1kurPSutbJuXjPrcHkza7TzKXj5yJymRNzjQd0neADLWOuhR5rw1rrOap7G7w3LGYTJT4bzf0RVm/uQtdhUHSCW8YpCmOcKQSzNPp39OVecirc+B/Yj+/iCYhAKh5n21OPMu3U09E0DSWdZvfaZ6ieORdd15jim0S/NcxNG24inM6O0TfMuOEdiZBkhkeIPPssI7/9HWoohHP5clynrURXVHQhK4KGphN68kk8p52G4HAguZwEV68m+sKLSLm5FHzj65gKi1Bj0f/P3nlHyVGdefup3DlNzlEaSaOchSQkASJjMCbHNTjHdVin/XaX9TrvOucAzsbGgG2MCSIJkEjKWRppZjQ5T0/nVOH7o4eRhhEmSYBNPedw0NyuunW7u/rWvW/4vfnEz0wGK6eDaWIaOmYshpVKIzgcyH4fRiaDlc4gB4N41q1DKX79g+xt3tzosQwjtx8iN+6HSDzVh2dNJZnlJdx423MMx/Pr2F8+1cGhvhjfuXo+8yr9VHsdvH9eJe59YaQ9Y2RGWnHOLMCSJExRRFBEog/nhdDkEhf+C+rQh1NIYYPIg8eSipPbBvn2Tc38S2ovM0NuQtuGELwqxgvWCUY8hxSYGvCu1vqwsBA9CkY0OyFAAmClDRLP9SMVOon+Lb92cswqwH9RPYIiIhc4Uco9CLItNH0qSKWzGIaO6nCx4rJrsEyTTDLOoac2orjP4dyZJfzkqaMUelSW1ob46O930j++L/rpk23UFry4qH22I0piyyBqlQcjliP+VO9EokJ6/yjBK5souGEWI78+kBcgEUBrCCD5NHLDKSS3iqWbZI5GSG4fxLuuasLf5jmtnNTeYfSRNO6lpYzd04o+kF9TJ57qw3tGFb4za8h2Rhn59X7MpI5c7CR0RRPWuJBwatcQ7mVlaI0BRKd8zI8IYFiMPXiUwptmv2jihNYYINMSntw2Lfiqvgebtx6Z/n7S27cz+L//h97Xh2vpUgo/8mGkhQsRRHu+eyuQeOopuj/wwYm/R378E2p++xscLxL38nJI7d+PkUxhxWMILheZ/QcY/v73MVMp/Jdeiue0FfTf8t8Y0Si+88+j8MMfRqupedXXM04Qi2PoOqZhnODo14YgCEga7LznTwTLK6hfsBjTMEkn4pi5HkzTg+ie6j+Wi11g/6ZeFqJLBgGO1xcTnDLCS9iebGz+WUjt3k3n9TdgZfN7q5Gf/ISaX/4C1+LFr9sYcgMDjP7617jPPhtzaJjBr32NXEcHjjlzKP7kJ3AvW3bKx2DoU+ODKmfOZvuD99C0YjXuYAhRFOnav5fZ0iiKJJAzLFbUhzg0EOMdFf5TPsZ/RrLpGOoJnmNKhRvsvbDNm5RpxS5k6wQ2oEoPgijiD7ejFRUx67TVgEVkcID43ie5YtF5BJwKuUSORDh9Qt/sieaiU40RjdL/xS8Rf/hhAMK//R2+iy6i9Jb/QnKf2P+V3LmLsTvuIHLPPYgOBwXvfhfudetwTp8qjmfz1uWFIjuQj3f0ayLmnieoX7QUX1ExoijS23KQ7n27OfBMAbmMQWIsy8zVZWwZmFowqL7QTcClMhjNEHS9tMCk36myrL7gJY+bNM62CCM/PxbL65pfhKCKWNnjinSJAqIzv2dI7RrGu6oSqervF9KwOTFZ3WQwlqEicGr9lplkAs3posjnQBBgIDr1/vp7uHx+hrs66bzpZgRZRqmooP+WW5D8PnznnXeKRm1jY2NjY2NjY2NjY2Nj89LYXs03Eem+PkRFIdtymIEvfnGiPfbAA0heL865xyoBhJNZBqJpblxRwy+fzgcsSqLA+9Y2UOZ3sKtrbEKA5Hl+/WwHa6YXEXKpeF0l9MZ7+eymz/L20rOZ+f2WSceakQjJnTtfVIQkUFpOaeN0+o8cOy9YXklMC5DRo3xwXQNnzixGGU/YlDUBT8iBJIsImoQ+lMI1txB9KDkRFOmYXYDlBD1pq/e/GTDCKdKb8wlkgiJixnI4ZxeS3JWv8id51cmBg0B2zzBzrp6BrIp0HQhTNyfEaCKHlM0HxCjlbpxzi0g81w9Ho7z9HQ1kMgaN751NMmvgGkiSeLYf68y8qIM+kESt9qIPJlHLPUQf7kQucpLtik8EREo+FdfiEogIBJQUFctLMR7owny+CoRpYWzuYeE5tVTNK0RWBMbGsiSyKqVzCpG6YxiDKRLP9eM6u5rc8DHjtOhRcC0sQfSrnLa+mmce7UIa7CaxYwdFH/8YQ9/4Jq5lS0lueY7E5qfwX3wZjuYQ6X35z0VwyjgaM/R97o9E/vg71IpK3EuXnLovzeY1o8kaTaFj1bCqvdXcsvcW7jh8x0TbyvKVrK1cy8UNF0+pcv1C0nv30PfZz078HbvvfkRNQ+jrp+K9H0CUZEzjWCDZ3DMuQo8bBEoUCsuOsvn3t2OZJk6fn4rpn0FSRIzcMWeD4pBweVRml3mQcgJavY9cd2wicU2bEUIOONCik+dVy4JD/TG6R1Ns7xzD61Ao9GqIgsDbF1Twpx15hXdFEnj36nqGE1muXlJFfzTDOxZVksoa3LmtG0kU+eTZ0/E4pjrtbV45ZjbL6E9/Nkm8w0qlqDi0HUWaTZFXo2N0chJldYGLPT1jlPocSKIw8ez/wVllpD/1PoxwPljbNWM6Q7fcMnFe7KGHca9bR+ZQC+VlRSAIk647d85CrL/cztvefQ0pU2FsYGoyfmGFSrBoDdvu/TOxkSEQBGavPQtJtpA1CdMwWHttEwee6mPGilKeuruV3LjIkyDAGTfOxDIhPpamfdcQJXV+vCEH6985iwNP9dGxZ4TKWUGaV1Xg8r14VQGbNwdixkJr8JPri2NE8sEMjqYgolvBn9HoGEnz/qXFRFoe5+CmjQAEy8pZecV1HHzqCYpnLp3U31929fLpc5v4+hXzaCh6eYm3bn/e+SuIITSXO19hYJzmNesJlBSz6LwghVVuIoMptt3fgeaS2fdkL8ESF8vf3kAuY9B1YISz3jmLvU/0UD+/iBmnlbLtgQ4WX1BLcbGEpmapm1PAaH+S6uYCyipVVJdMw8IiBtqiVDQFqFM6Mbbtx9I0LMPAlGUgghmPoZSVIxkGejyO7LHFJd4IrFgUK5XCTCaRXC66P/lvWLn8szK1fTsjX/kqi667gg0///HEOYIgEiqbgeqUEEUNURYom1OA1R7FOa8IudCJIECmK4rvjGoi97Vj5cx8BeFVFYgOMZ9IXu3FtawUYySDmcwhjaZxSgIXzC2locjDUCzD/t4oTkWibTjO9x47wu/evexli/HY2ByPmcthxmKouVHOv66KfdvjHHyqj9VXTOPw1gG6D40ya2UZlimgufLiJNm0zpILamndMUS4P0H9vCJSiRyyItK6Y4i9G3tw+VUOPd1PSZ2P5tPLGTwaw+FWSL+gEp9DSJM5eJBMSwvFdY1IsjwpiaJp/dv4TWeas2eV4NJkjs+VHoplmFfpRxYFElljQoDkeYJWikh3G0eeexqA937hNvTuFI5pAZxzC8l2xVFKXShV3omEUrnYlU+C86oYY2ky7RH2hPeSNfPPrWLXy0+itnn1mLkcrlCQgaNHePrO3wFQ0jCNmavW0nXoBfeQW6E1kub6maVo28PosoRS7ibxbP/kTg2LxMFR0rJIcHUFZjxHYusAgRrflKRarcY3kRAs+VVyWxKTXlf7kuhdMSwE5JADOXRiMdHccJLwH1smbBNW1mD094co+cgC5ILJAUxKoQulMD+PKwVORm4/iFrlJdsTnxCRdMwKYaZ1MCwcM0IoFR4EgfzC2eZNhZHOMHfZKuKmzpKLLuXpu24nm0ohKypLL7kcxwke2U6vgjpuI10VcKM5Ad3ECGemCJelN/VwyYoibnniCNEVtdxU60MPp5H9x+2JZAFLNydsX665hcSf7Zs8znCG3GASS7cwIhlEn4pS6EKQJt9TlmWR3D44IUACkN43QmZWAfKicRGSGh+O5gLS+0aAvGCOoyGAMZZBLnbiXlZKYtsg6Hl7hZUxMDMnPznO5sTUhFz0R9J0jqaoCjrxFjjY/mQv606vwHiiG0xAEvBfUIeRyuFaUkJy+yBGJIMZzxF5oJ3QtTNJE8NbUMizf7oD0zBwen2cdvm1JKNj1C5YxC977uDh/scmrlvlrSKkhV58YCcgvW8vg1845veIP/YYotOJNrs5vwiwTDBMPEuXMPC1r1H8mc8Qf2gD8cc2AmAMD9P32c9R+b3vYSUSGIkEZjSKGYtjxOOIsowUDCA6HeR6eoht3IizqQmltBR9eJj4E48TvOyyk/Gx27xO6CMpjFgW0aOiFL54gLBl5uc6yM9RL2WznXSNgdTEevF54k/2wDQ/VzeXsdjjxBJgUzjOz7Z1M5LIcdv6WRiHRjGfGiDbEcUEyFlYWQOpwIGgiET+2nbcNZKk9gwjFTtJ7x5+wQBMhM4Yv7p5GelIGuO2/RiJHNIL1yCGhehR0WYGyRzI2/ukkDa+35RwLSye4q8ByPUn0YePtaf3j5DeP0LR++ai1dpJbKcSPxaa20tRTS1P33U7WBbegkKWX3olJk70eApZFPjIGdNoH07QG5mcOHHX9m4uX1yJKk+uEG9mjfz3OprCSuuo1d4plVIj97ZReFNzfq0gi/jPrSW9f4TkvmGkAgdmNIugyWQ7x+99UeD5DZnolNHHRSYlnzohQAKgVnsRJIHM0QjhO1swk/nr6oMpRn93kKIPzsNzeiXxJ7tJPNuHVO7GPe848ScRXPOLkQud6INJhDI3ojL5/QE4Z4VI7Rki15VfnyiVHpxzCl/dF2HzliPX1kbvpz4N4/aH5HPPMfT1b1D2pS+i1dW9waOzOdUYsRhD3/7OpDYzGiW1ffurFiGxTBNjNIyZSmLlclixOINf+crE65E77kCUZQRNA9Mkeu/fEP0BSj/32YnYnldKYUU1DreHdOLYPm3WmjPxFf39avGvlnKPRLfTiaOqhqfufP6ZVcTp185GcwOSgGtJKckteXuM4JBwLy+bVNjF5sWxDAvv2ipij3fl92eyiG9dFZZuvuS5Njb/DETvu29CgAQAw2D0d7fjXLToFe3dXguxRx5h9Ge34lmzlt5/+zesZH6Nm96zh/7/uoXyb30T54wZp3QMwbIKShum0d96eKKttGE6nmCI3Q/fz2hvNwDTlq2k2KvyvtOrcGkSmiRS4newsCpwSsf3z4qRzSCoHpxzCkjtyds2RY+Cc3YhpA1SHR04X4NwmI3NqaC53IcwmM0LdB4ZA0AKaqjVPlTBTaHPQY8oTvjYCqtrmb32LObPKUaVJUzZJJ1y0LTiTA5ufmiiX83lprDq9b/fs+3tEwIkzxP9618J/cuNOF+kcE/80UeJ3H03AGY8ztA3v4VSXm6LkNhMomrWHARBxLKOrauXXPQOfC6NmunT2LvxYfY/8SgA9QuX4Ao4cHgUclkD1Skx64xKciNxir0ag7G8bXlmqZfaQg/ZgRhfu2wu5adAtMIyTGJPdE9p855RTfShjrzvWRTwnlGFqZvIxS70kRSmbu+/Xi19kRSWBRXBUyxCkkigud3IkkiBW2MwOlUo5+/h8gcoP3AEIxan/u67UGtrOXrddfR/4Yt41q1DdLx4EVQjZ5KKZ3H7NQTRji+wsbGxsbGxsbGxsbGxObnYIiRvIkRVxTIMMkcOT3kt9tBDhG5650RwTE84hQBMK/HwjSvmEc/oeB0yqiSy42iY8hNUmvRqMuc0lzCjzEvQM5ubZ9/MrXtvxSVokEpOOd5Kv7gKq9Pr5bwPfpy9jz1E67bnqJw9n0zDEo6aGmfNLMYCDg/EmFmWD2L0+l14gw5KGnz5YHdZwBIFAm9rwEzpCLKI6FaIZIYmKmXZvLEYqdSkhHRgUoWWF770PHLnAWqeuB1t4VLiX76L4L9/nkSxA2MwjWtuEZEHjuaDHs+rJfLnI0h+DdfCYlyJHKkdg/lOTAvBKaMPp3AtKEYudk1cT1BErFzeoCp6FDwry4k81ImoSZScXo2QUxgb6Z0yLo8m8bc/HmHWqnIOPj2GJ+Rg//Y2isvclM0owBTg4NEY82cGyXVEET0K3tMriT7SiZUx8GgSl147jegff4Do86EP5cVYnAsWMvLjfIJqtvUgie27Cd34fsxIEqnIjT4QpeQ/vkV692bSBw/YIiT/YCwuWczcwrnsHt4NgEfx8J657yHgCLys89MHDkxpiz/+BN7164n9v89yyX9+jh2bNxIfCzN78WmEDh5ArJ5LbTM8/qvfUj59Bt6CInoO7eexX36fM2/8DBtubQMLRFFg3fUzKK/wcsvcGqysiR7N4Du7Fss0EUQBI5Zl5Jf7WLm8jEtnlnD3gYGJcficMisaC+gOJ7l/bx/Xr6jF71RI5wy+fvk8Elkdlypx59YuFtcEMR0yt21uJ50zCboUPnrmNH6+uZ1L5pczv9quQnhSME2MeHxKs5BMojkl/E4F0zD56Jn5QEmnKqGPPzNH4lm++o45pLIGZQEn5V0HyY0LkAiKghGJTulX7+1FAPjlb7jkEx9j28YNZDJp5s5dhOeJp8gsWsuTd3VSM6cIy7KomhWia/8okE8ILWsoZOMvf42eyzJ9+SqS0Qh7Nz5M3dyFqL/4Eug5BIeTFeVl9I6+bUKABPLPkJZn+jFMi96WMQAqZwZZf1MzwVI3Ky5pYPF5tSiaZDtG/lGQBASPjP+C+vG1nZCv4qaI5HQLUYBmOUwiPMr05Svp2reHcF8vfYcPMWP9hXz7mcn3vlORWFAVZEF1EPFl3gOFVV6aTy9nz+MDnHblv9G55xHG+juombeKhsWn8dfvHKZiegBPQGXbAx3kMga58eTIcH8ScaiHgt0PUXPaMozOdk5fXo2smaQPPc2qkjiqVMjgez+N553vpHHzZor/+4uEf/kLUl+6n6xpMe2it9NUVIzbU0nfJz+J4/3vx0xnEAQBI5EEAUTdwPTGEDQVfXDQFiF5A8iNjGDG4yDL6H39mG73hADJ86S3bqXi/e/jzLddzp5dW9GcLhatWU9AzPK4YzM/PfITbmq8mWXe1ciNAZJPdGGMZTDiWdRyD7hlgpdPx4znEH0qlixiWZA+OIo+msazqhxBErF0CyzwawpXLKrkKw+04FQkzmkuRRDBrWqcO7uEg/0xW4TE5lWR6+/HymRB11FbNrLA7cYqCyKF0yysTJN1R3GEw4z+9ne45sxHcDqw4nHMRILpF5yPGQ8T+cb/UnrRRaRKGtmzcRTLtIiPiyb0Hh5jztoKDm8ZYOE51TxzTxumnt+4LTmrFPOuLwNg5XKU1DVw2X98iS1/uZPo8CAVp53Fg4kiHj04yKMH4Ybl1XznqgUkMjrJrMG9u3qZU+Hnvy6axUhicqUuWRQIJPrZ9dzTlDZMx19cApaFEcuiNQUBgfS+EaSVZfjPq8EYzoAsIDhlIg+0IzkUrJyJ67xKHji0AYAbZ93IjNCpDTK2yWMKAugG3fv3UjtvIbKm0blnJ/HRUSqa5tJzaAwAURZYeUUjjyQTzC7wwvbwuD1CmFQ5dqJfw0KtcWPsHCG1awilwoOV0skNJfGsLCf+VO94Ffhj64oX2jUc04OIXoXwz/YCIBU4CF7ehJXMIagigiqR2p23Bag1vgkBkon+MgZGPDdFhOR4lBI3Re+agz6SpqAxgJHUEVUJudhJatcwntPKyQ0miT3SiRRy4GwuQB9Nv6gYis3rj9XdjfPBR/C+52b++u2vkk2lKK6tJ1heyYFNG6lsXsSctRXs2ZgX9xRlgQXrq3E5ZL5++TwKkSGTebFbGcuy8vY3YMdwHN3ScEwLkj4wimNWiPT+UQRRxDpOfFqQj9nKnkfyqZhpg+TuobydTRIxytNo9QGy3TFSe4YRHBKueUWkD45OGUfmaAT3onyCm+zXCF42Df30SqycgehVybRFyLSOEXu8G8mr4D+3lsh9bWCCUu1FCthCkq8XIbdKsTf/ecczOr5CB5pH4bGnB1i4qpLSYieKKJA6HEar8CIEHfm16riIjd6fxEznSKTDtO/YyrRlKxk62sZobzfbH7iHM9/5PhpWrWLT4e9OXFMRFT6z9DMUuYtOOKYXI9fVNaUt/vhGtBlNWNksgiRjYUFOx0omkX0+Yo88OvkEyyLX14egaUhOF+bQMKKqIgSD+eQlwyQ30ENq3z4cTdORQyGsbJZMWxvZtjYCl1yCINtusX8EUgdHGL39EFbGQNAkQldMxzGrYEqSmpHMEX+2j/ij+fvLu64K99JSJM9LV6kETpz8aVr4BIErW1MwnLevNZS7qT69kRIdkr85iGd1BbGOvL3teRHW6IMdSH4VrTEwqTtBFZFDDkSngmt+EXqll8SWY6Jq2ZxBsVPB71QYXVFG8sEOjGgGx/Qg6Zb89eUSF1qtF+fsArIDSbIZHbHQiToudOZbV03qwCjp/ZPndNeCYiL3tR83GPCeXkmmI0ri2X60piBaQwDZ+/I+L5uXj9Hdgz8U4snf3obLH6By5mwSkTD7nnycVVctYBVuFtSGaBmIsbh2qqhTVciFLJ6gMvfzvjJByK8bToRlIboUtAY/comb+BPdWLqJd20Vkb+141pYhOTVMCIZ5CInyZ2D+M6sJvpo56Q1smWBa1EJclADVUJyyYz9tQ2/W5kQ05v0nscy+NZX41pQlBflCTnRh475n33ra0juHCK5fRBhYxe+c2pxzS9Cck++/5RCF4U3NueFdSyQi50v+zdtY5Pr6JwQIHme1I4d6ENDtgjJWwDLMDATiSntZmqqUNfLJdvdjWVZ6L19yGVlpPfsmHJMfNMmXEsWE733bwDE/vY3Ct/7HpTiVyd4Gyyv4LL/+ALb7ruHwbYjzFq9jqaVpyMrp6YoRDAYoGLmbDb86NvImkbNnPlYpsnexzZQWHURgiahNfjRGv1YKR3RpWBhIZzgMWUzFUERkctcBK9syn9+bgXLtBAUkWx/P2pp6Rs9RBubU4oZnRqnYEQi+cXm6yBCYmYyE4nsue7uCQGS58kePYre3w+nWITE6fVx3oc+we6HH6R951ZKGmZT3HAabc/9hUQkzLSlp5FNpziy5WnqFi7F51QwLZOUbrLx0BDTS7wEPba97ZWiOh0IiGhNBTjnFGImdQSXgiCNC42NDIItQmLzJkOWRESXgmtJCa4FxViGiejM2zMtLEQEOnbvpHb+ImRVpXPPTkb7ehmr05kGSIpAYYUPwTqdhRcU0bFrE8GyGuatv4hQeeXr/n7M7IkLUr4wRuN50m1txB7aMKU9uX0H/osuOqljs/nHprRxOpf9v//hub/cSSoWZeH5F1O/YDGmKBPu6yE6NEDj0hXo2SxHd+2gZu5ikrEM88+sQnHI/GpXDyGXyqfOaSJnmoiCgAD0R1KsmV7I/KoTx8OmcwaiwBTh4FfEC8PyZRExpBK6qgkzkUNwKmBZCJKAXOTEtSBvy7N5dfSE8zaBylMgKnM8mWQSzZm315f4NAZeoQiJW1JwDY3he8elEwWEiz/xCTpvuJHIn/9M8KqrppxjmRbbN3SwY0MnmaSOr8jJ2Tc3U1Lre+1vyMbGxsbGxsbGxsbGxsZmHDva8k2EpetYhoFcUDDlNaWyEtF3zCjgUiUKPRqHBuJ89f5DxDI6tQUu3r+2gTUziggnswRcCmPJY8baq5dWs2FfHw1FHioUL++a8y5WVawinA7j/ZfpjH7xq8cuKMs458/7u+MNlVey+uobWfb2K9h8NEo8nsOKZ2gfSVLs00hkTfrGkpQFXGQzBtGRFOWNAcxMPsECC8J/OjJRoUup8uI+p5xwrO/vXtfm9UHyyLjmuUk8G8XSLUS3QrolnBfmeKgDM5FDKnBgjBwzlDlmBYje9R0yB/aiVVWSa20l9fRGnA0LyLoCGLF88phrdgGJZ/qwMgauBUVEHzyKc04hokvBjOeIP9WLb30NmZYwie0DeE4rQi5yIQVVcn2JfILEgVFcC4uJPtYFuonnrGqiD3finFeEFHJgjE424CVyBpZp4farjPQkCJa5iQwa7Hm6nz3HHTd7SSHqaWVomkz04c7xQEkHnhVlZLYPo9W+A/d/nosZywc1GyMjyCUl6P39CIpC6tnNRNwq/nfcTPShOFbGAhSUinNwzHKf6q/N5iRT46/hW+u+xYHRA6T0FNOC06j317/s85WiqcFlSmUl+sAARk8P4n9/kbWf/ATR++8n87/fJBWLIa6/Cs2ZZe0N76Jj904Gj7bSsHgZoiSjOnJc8dklJCIZvCEHwVIXuf4Emd+34LpuBo66AKO/P3RsXq304FlTSXxjN1efXTkhQuLRZKYVe3nu6AilPideh8xANE19kZvTGgq55Z59xDI6dYVuPv+2ZsLJLB+7YxfGeJJTOJnjhxtbuX5FNZH0iZ2CNq8c0eEgdOON9H7iE8caBYHw3KW4OyUCToVP37mbRDafXOZ3Kvz7+TP5wiWzGYxl+NbDh+kOp/A7FR64sJQxQQDLwtJ1RNdUJ4ro9mAmk+itbRQdOsKS7hFwOMj837fJWRaxs95DdHuEQ8/2s+TCWtKJHEsvrMM0LQqLJGQ9SqC0nJKGabRv34I7GGLtDe8iPTCA8eixahqe9etJl00VO0sndVz+Y8Hj3QfCjPYmcDWpCKKA6rSXqf9ICJqEKEuE7zo8Uf1OqfHiO7uGIdHitzctITB0kN2WxXBXB81rzyIxFqZz7y6qz70Ct9YzKcn82mU17O4eY9EJkjBeDIdbYcXbG6iZVcBgV4z6xVcx1DlGVXMZT/y+FYCK6UHiYxn07NQkIz2Vwexsw5regBWJYPX1kk4kGL3t5wiqSuimm7B0HQSB3OHDCMP9JDfcPxGsFr8jX2nG/dXxNbUsI44Hz4mSmHcQyzKC5gBBQFDt5Ik3AsHhQFBVLN1A8vsQnCeYH71e5HQa5ze+w+rlK7AGB0l/6KNY//pRtoTn85kl/0HSiKHHwRhL4WgMkm2PoNX4UCs8kDUZvftwvqoh4FpWinNuIUY0i1rnJ7VnBLXejzGSQqn08NN7Wjh3dhmWZXH54goGoxm6R1JUBpw0lfhQ7GBum1eJ4HQiyBKWZSH5vOSGhmCgH9Pnw4hF0duPwplnkNm2hfTTmyed61+xhNzBg6R3bsezfCnZuIhlTq2UHhvNMHtNBXue6GbROTVYFhRXOLB+/AUyO7YiBQJojY0IgkDljFmUNnyWo4NRLv3ZVqKpMQDOaS5FNy26x1L0jqVQJJEPnTWN6gI3169ws7c7wm+e6WA4nn9OhNwqjHaz5vqb6T6wl4H2VkZifRRWlSHIIvpomuzRCN6zqhm7+zD68LEq3r5za0luHUBrCMKowafn/wdup5M5RTNxK/Z+7fXAsixiI8OsvuZfaHlmM/HRERZdcAmpeBw9m2PpRXUYuoWvUCPlFnlm7whzy30UzQgiBzXMRA7n7AJyPccJmEkC3QEFP2DtHQbAMTOEPpxCKXRhZHR859YiyCJKmTtfeX04lRdT8OTtEABqrY/oho58nwJ4Titn5Od7scZFy9QaH0qxi8SWfrwOGSRhkhCJoElInpdOCJI86gmTKB2zQiQSWbIdUXzn1qIPJcn1xEkdGME1twjJTg5+UyC43QhdXWT370fPZjn92nfSf6SFgbYjVMyYhZ5JUlRdzLKL69GzJqIIpmVhCfl75ZHhKOcO6UheBa3Qi+hWJsQgANwrK2jLxKkpcPGeRdVkn+hDKXWhVnrJDiTwn1+H4JIRNWlCLDh1YBTX/GKSW48Jj7qWlGAmc8Qf78bK5RclWmMAQREZHhfaAUjtHcY5s4Bc3+REPa128pwvORWkmvz9nT4SJtcRRZAEfGsryfYmSO4cxDEjhGVY+M+vQ3KemuQ4m6ns743iUmVW1BfQF0mRSehUN4fAhIhuUapJmOE0zvoA4b+0wrjggjYjiHNeUf671y2yqRQFldUMtB6mvGkmM1aeztN3/h5XIEhJZT3/WfifXD79csYyYzQEGpgefOVVJ6UT+T0qKvPxtoqChQCmOSESYhk6Snn5FPES0esB08TMZRE0FTOdxsrpCJqGIMtIoSBSIEBuaBiltAxkGbmkBEFVbAGSfxByw6kJARLIC32N/v4QxR9ZgFKUD+LN9SdI7Bwk1xlDrfbinFNIcvsg0Q0dyAVOXPNenkiOUuJC9CqYsWNzsWNWAQylYPiYj0HoTXDmrBCORF40D8MCWQDdQq05toYw4jmkwGTxMN/6GmKPdWEmx222ZW48q8qJb+oFSSBR6iSSyuJ3qvRWuFBPL0feH0ZuCqAtaqJlNEFDUyFKsZuOkQQ/2HaUu7b3UOp3cMtFzZw+vQjVIeNoCuK/sI7oQ51gWnjXVqI1BVH3DJFpjQDgXlJK6sAo+mDelpHcMYhnZTn+8+oQZHvzeTIRXE5SHX3MOeMcFIeD9h1b8RYWUr9wKaaZZkdXmp9saufG02pJ5wwK3CoNxR5OayhAAE5rKDihMK+oScjFLqSAhlrlxcrmhXqe/70AeM+oRg46CLytgXRLGCOaxXNaObHHuxEUEcmVT2RIbh/At76GXF+CVMsogYsbkAMO4oqIlTORQw7SB0dJbsuvMQSnjP+8WhAFpKA2RYhECjgQFQm17JjoruiQCF7VRGJLH7meBPpAEufsQuQSF+l9I+hDSdxLy/Kirsf39SJrZhubl0IMBKa0ScHgCW2ANv98yIEABe96F/233HJco4xrwcJX3afk84FlIvp9YFnIJxCMUCsryfUf248pNTWIrtcmKl1S18g57/0IejaD5jq1NquMbhJPZqhqnkP17Hm0PLMZUZKYvmIVRTUhBFEg15cg/vh4tW6B/L7PFkx9WQiySK4rTvzJnvEG8F9Yj1TgQLSF6m3eAvgvuojIn/48qS10zTUIJxLcOwUIioI2YybpvfuQ/FN9HILj9fsthsorWXLxNdQtOo942EIgg6xpzD/7Ao5seQaH28Oa624iGY2iFMDB/iRBl0pzhY+ecJJpJd7XZZz/TGRSadyCA2M4ydjGY88x3/l1aI0OxFP8jLWxeaUk01mGYxnqZZXYI10TvjDRJRN4xzSGMzmioyOsvvoGWp7dTHw0w6ILLiE+OopLNAknsjhMyKZ0FEcAp3clpdNWYeQEEtE3xu6j1dWiTptG9vCxwpyO2bNRa2tPeLzgcqFUV5NtPzqpXakoP4WjtPlHRJQkqmfPo7xpJpZpomj5/UlH3wimYbDowrdz+JnNKA4Hq6+5kVR0jBWXzAUgl9HZ3xvl/Dml3Lurj40tQ0iiwCXzy1nbVER9kXuKXa5rJMmm1mFuf7aTAo/Ke9c0sKQ2hPQKi6sJkoh3dQUjbZFjjYqIGc4y9sDRCYES7xlVKNVe0vtGSO8bwdItfGdW28XcXgXdY3kRkvJTLkISR3Pn15UlPgf9kVcoQrJzN6JloY0LLpmmgTp/Po65cxm57ecELr8cQTomfmMaJhtu3U/r9kFq5xZSNTPIzoe6+PPXt/OOTy+isNJeO9rY2NjY2NjY2NjY2NicHOyIsjcRciCAmcuhTp+ONnPmRLugqhR+8IMoxwXpVgWc6KbF1x/KC5AAHB1J8rMn25FEgWfaRnnnyjpuXlXHVUuq+My5M9h0ZJhE1mJ39xgAHtXD4tLFrK9dT8EFb6Psi19AmzED9+mnU/3z23A0N7/kmAVRRHO5cWkKB/tjfH1DC3ds7eJ7jx7h1093TBhR9IyBKAqMdMexEBAUkeSW/olEeYBcVwxGdDSX7Wh/MyD7/Wj1Cp7lGtmeKP7za3DNL8BIZAhcUos+ksS3tgLP6lLUOh/uJS7I7kGrr8YYG0Py+5FLS4neey+5rn1kW36PFMgbwKSQI1/BDPKJEBak9o/iXlKSrwSbMYjc24YlWfjPL2Loqx9l4L8/hme5gjbdRfpohMAl9UgeFSttILpkzGgWK2eS2jWEZ2U5wvPJ6yJIK/xEjbxTxhxPEOo6MEr9/MmByIIAiQP7yR66D7HchTWe6O9ZVkbk/nbS+0dIHxojvimHUjkXbcYMovffT+j660AUyXZ34Vy4EMuSSB8WJwV95noyIL38RGqbNw9FriJOrzydc2rPeUUCJACOeXMnzaWCquJ/20XEn3wy/7emoZWUYrS2YcZiAIjxCK6An6f++Dvad24l3NfLrg33kYpGAAdF1V5q5xRSUOFBlET04RSYFlZGJ/5M3+R5tTueD9SVBCotkRuW13DTylrev7aB7Z1hdnSM8eX7DzIQzWCYBgf7Y/znPXsnnivtwwm+8Lf9eB3KhADJ8wzFMzSV+BiNZ8gZJvt7I2zY18+OzjCJzOQqczYvH8/qVRR89Wtozc04li5F+fp3aSmoYc30YrrDqQkBEoBIKseRoTiWlVds7xl3mLx7dR1HXUVw47vyB1oWRjiM1jxr4lxBUZBLSzDjMXznn0+upwcSCdKPPoqVSiH6/aSMvHMum9LZdn8H3pADQRIoUwbxHXgMd0kJmsvFtnv/xGhvN137dvPk736Bt6zs2HU0DfeSxZT7plaeq51bSG/L2KQ2PWtMOc7mHwTTIvFc/4QACUCuI4YxkqZ7LM3A0TYe+N436N6/h9Gebrb+9W68BYVUL1zOF54Y4MK5Zfy/C2ZyxeJK/u2cJnb3jJE1XqSa699BcyrUzi1k+pISQuU+Fp7TiL/YQWQw//swTYuu/aM0LJi8BlA0CW92CO9Z67FMA9HtQvT5iP7tPgCC119P7IEHCF13LdENGwi9818Yuf12ij784Un9+C66kMzhw/guvBAjGsECciMjedERTUOpqkTy+xBdbrTK17/KjA3IbjeC2w2qglRUBJKM97xzJx1T9NGPIofy67bUI4+QfuYZlIoKlAULuf3ZIaxUI6tKzwAdiGaJPdJJpi1CcvsgejRL9L72CQESgOSz/VgJHUERUSs9JLcNIKoijqYgj8diHBqIIwjw/jUNPHJgkG8+fJg/bu3mmw8f5oF9/QTddtKNzatDLSzMC5E4NKTCQqRAENHnxYxFkUMhHPPnMXbf/RR84P2TzvNffjnIMrEnniB03bXkenvRxroor5ucPOHyqSQjGQ4+3c+KixtBgNoGDX/Lk1i9Xfjf/naqbrsVtbp64hxZUUgjEz1uzXr2rGIaij187YGD/OrpDm7d1M6Hfrud7R35qu9FXpXvXbOAT50znZtX1XHzqlpq5s7nuT//kdatzzLW38ud//sf6H6wDIvU7iHcK8rJtkcmBEgAjGiWTOsY+liG2KNdmGMZGpU5rKhYgke17RCvF4qiUDGzmcd/cxt9hw8y3NXB03feTqCkDEmRMQ0LSRKIj2UxXBLrZhTxqbv38AsjTdIhIvpU5CIXgUsa0KYHcMwrwnn9DA4JBinBOibUYVqIDpn4U71kDobJ9SVIbh/IC5suKkFZWEzqwCjeC+pwLCxGLnZhHZd465gWJLV7eNK+PtsRRQpoIOQTdv3n1uaTj8lXtQ1d2YRc8OqDl2SfRrYjimdVBfEne0huGyTTFiHy17b8Xs985Wsjm5OPo6aGwo9+FHlwhLXXv4vt991Dy7ObGevvZd/Gh3nuL39gqGuU3Pi62LKgvzVCRhb4n7/t5/NPHOGZMg2z1A0iBN7eiGtpCVq9H98lDewt1Wgs9vKxs6bTEUkiV3pIPtePZVmY0SzZrhiRv7YR3dhF8Mom1GovmBaOmSH859chl7hwzClEawiQ3DIwIUACkDkyRq5/8t7MGE6jVnlRyo8F3DtmhtAapiZlAOQGEoz8+gDJnfmE9ujDnciFDoxoFt9ZNRRcOxO1xA7efz0RBIGBWJq6QjfXLqtGkkX6W/N7EUEAKWOQ7UkQe6J7QoAEIHMwjFLqxr2slNSeEZ77yx859PSTjA30sf+JRzmy7TkWX/wOPKG8TyLoCHJaxWmcX38+TaEmhFdRrdg1fz6O+fOPNSgKgcsvR/J4EFUNQRIRJJFMezu+Cy8kNzJC0Uc+AscFVbqWLUMqKsqvcUwL0eNFDAQQnQ70cJhsX17g3Lt2DY5pjWS6uzHGxpBDQfwXXPCqPmOb1x8jlp30DIa8H8GI5kXp9NEUQ7ftJb6xm0xbhNjGbhAElNL8ejWxc/BlX0sOOii8aTauJSXIxS60tZUI6ypIb5vahzaQQvLk/Q6pfcN4luVtYNZxvy0MCyOSwTEjv6dUKj1k2iITAiQAub4EgktBW1xM8h0NtEsW+3qi7O4eI6eJXLWtjW+VS3xmcITlf9jKvz7VCh6ZnG7yg8eO8Iet3XkRv3CKd/96K0+3DtMTTrJ9IMqOYg31vXMo+fgivGdUowQd5M6qIruoCCmoIZa6JgRInif+dC/66CsLiLZ5GTROI1hZjaQobL/vL4T7eujcs4tNv/sllp5iSX2IjG7ykyfaiKR0fnrDIs6fU4oA9IylueWv+9l6dPSEXWu1PtzLS0EWEP0agYvqcS0uQWvwE7qqCdeCvDi6UuJGHRcWExwSZiKHWukhfWQMTJC8KtEHO9AHk8hBB1KhE8f0IIXvmoNjVgH6WGaS+J+V0kkdHCW5dwjPyopJfjjfObUoJVMT7kVFwj2/mOCl08l05tfTkl+dsKUknuln6Kd7yA1OFbG2sXk1qDXVuNetO9YgCBR9/GO45sx54wZl87riPedsyr70xXzcy+rVVN92K47ZLx338mLIgQCiz4dUVISRSqLWVKPW1U28LrhceM89h9TWrfm/VZWif/0o0klIaJdk+ZQLkACIAqQcAaYtXcnmP/yGoY52BtqO8ORvf0EmkbeNxJ/oPnaCRV6A7QRi7zZTsTLGMQESyH9+Dx6FrIVsi5DYvAVwLlhA1Y9/hHPxYhzz51Hxne/gWr7sdbu+IIoEr74K0edDKCvFf+mlk14v/NCHkKe/cqHVV4uFwMDRDINHY5i6QrCsgmf/dAcj3Z30HNrP47++jWBZOZ+/9wC/39LFDx9v5WdPtr8qO4wNyA436Caxxyc/x2IbOrAyJmKBHcdn8yZj/LeuD6Un7cfNpE5yxyBBWaG8vmHcx3aI4c6jPH3n7RRU1zKYsjBME8uyyKR0YiNpchmD2IjB0d2jSG9Q5RO5sJDKb36T4I03oDY0ELrpJsr/92vIJxCQBNBKSwndcAOi+5iNQamuxrlgwes0Ypt/NGRFnRAgAciJMsV1DTz9x98x3NVB3+FDPP6b2yioqiWT1GnfNYQgClyztIr9vVE2tgwBYJgWd23vYSCaj4U9nt6xJH/Z1cNn797D7p4Ijx0a4tqfPTuRi/FK0RoCFLyzGcfMEM75xZAxiD7UMSFAAhB7rAvh+L8f70IP2zbcV0NPOB8zWBY4OUKaRjxL/9e3En20c1J7JplEHRckLfFpDMZe/vdlWRbSM88x5HUSdyhYpsmdX/gPvn/TlUjnnk2us5Pklq2TznnyD4dp3T7IiksbOP/9c5i7rop3fHoRqktmw8/2YeTsPbuNjY2NjY2NjY2NjY3NycEu+/YmQtI0RI8XEyi95Ray7W2YqRRaXT3OpUtoH44zEs9S7HMQS+cYimWwXpB/cHgwTkY3qQ65+PL9B/FqMk5VYjCW4XPnz+D7j7Uyt2JqELkcChF4xzvwnncegiwjvsLK7IIgcPtzkw0q+/uidIdTLKgBd0DD6VMpqvYyNprG75TRB6YGlBnhDEOpNuoXLn5F17c5NRzyFTMojjKjKoGey5L2JHA5FOK6jFmVxDCypLQkjiaBrOognnXiWb4KbclKYpExtP/5Msm+QTI+N/qMueS0FGJAIzeQRKnwkOuJI0jjDg7dJPFcP76zazHTOmJQIaelCbfuQ/rEZzAHB+hLhnE2eDB1HcEJzoAf0SWDKGCNJypbOZPow524l5QguhTGxCEe++vPaD7zEgBEUUBWRTIJnbHBJIvOraFt5xCaW2b+mmKsnn0crG+GcJwZsojkVcgNJiYlkgKkDqTR/uPzuAd6CecMnN/7MQOdPXjPOA+fP4R+f3TK52kmbKPeWw21ooLKH3yf9IGDmMkkWn0dliRR/n//i6hpqI2NGKOjlH35y2TbWrHSGaQyP51D3WRTk+fIQ089yYLzLptyDdGVf5SLqozeP1XoQQ+nkQIavZjcv7efjGEQTel884p53Lu7F4BfPnWUs2aW0DqYmPJcOTQQRxLzfs7jXwu4FEJuBYcicu/uXj5xxy6ez4l735p6FlUHqQq5mFHmew2f4FsPyedjbPka/ibVsKc3SsvuLMOJVgQEfnjt1EptHSNJnm4dIaubvGtVPZZlEklmeaoryl7fQm74n2/jjYzQ7y/AOu0C6pJDWNEIjpJiEok42ulrUdMpxGQSzxnrMFNpzEQcqagI1eeHjfnKbel4jh0bOll2bjmFtQ60lZeSzGXZ8+iDk8Zj5HLEEnHqfvgDjGgMubAQIx6jqNDDeTcXsP2RPnIZi7lry4iMZMkdl1CiuWSCpa+tMpzNG4dlWOROsLbTwxl+cLCTT9SOYRqTBYr2PPIg6z72n2z7dStjaZMvv70Zn0Pm03fvQZNFPnvezCn9vRwEUSBY6iZYmg/OTcWzhCrcjPYkSMWyZJI6Lp/K7DUVdO0fxVfkZOHaYvyxdgRRAtNA9HixTIOij38MKRDEzGVxLV6MZZl4zz0XKRDEMeMQgtNJ5Y9/RK6rC6moCMnjwYhEEBcvAlEEw8j/n3zwMZqGoKo4Gxtf1XuzOTm4588nuW8fVjaH4HQSvP56vGefjTE6ilJZieDzYVhQ+aMfkWltQ1QVqK1n+Z/7CbgU6gvd7O2NUO6QSDzbP6lvQRImJZc9j5Uz8K6rIvZYF6JPRXDJLP/Vs1y5qAqA1sE4s8p8PHxgcqLbQ/sHuGZp9ZT+bGxeLq5580ju25cXv3O5sDKZcSEDCySZUE0NlgWVP/wBuZ5e5KIiBK8HdJ2y//k8+tAQ6DpIEqt8BRw8HODonlEKKjyUNQZ49p42yqcF2L+5l6JKF0WNFYjNV+K/6AJEhwNBnmp2qitwc8GcMv62p493LKxAEgUePjDI8foKiazBk4eHmF7i4bFDQ3ztwYP85LrFHB6M8ttnu1g6M0Eqdtyey7L42Wdv5v1f+BX6YBK1xofed4K18VAKOejAGE2T3DrAkSIV2adRGbTXIK8nfUdaeOHGY9/Gh5i2chqtW8eomhWiYl4h/bpBJKnTF0nz421dNNQFuH93D6ZpEXAqeAIKu7uHOatbRFMk/t+DB/nq8hoCD3Zi5UwSWwcIXNyQF10wLJQSN/Ene7CyBptPL2aXIbP7yRY+euY0HtQTXIbB83XUpKCD7J6hKWM30zpIIsZImtxoipKPLMSIZZF8KnLha6+epDUGsTIGZiI3qT32eDfuRcXIIbt695sBaclSigsKiI8OEg+PTHqte/8e5p9j0b47yVBnjNJ6P9NWlLEzHGcsmf9eP/zQQcr9DppKvdy0spYdfotzllfTOZbmI7fvJJXL75POmlnMqrlVeEWR+BM9eNdVYcSyeAqdIAqM/ekIao0P37oqXDPzQhHuZaUIkkhuKHnCZF4rM9U2le2JU3jTbPThFIIoIBU5kZzKCd97tjcxRRgguXUAz8py5KADUZVOeJ7NqcEwLUbiGTRZ5KH9A0RSOdZeuYiqmSGObB2koMxFqieGVusntXvqnCZIAtENHTjnFhIfGZ702mDbEVZefg1uf+CkjVcpK6PyO98mtWsXxugoclEROJ0I48HxiCJWMoVSUZFPDhIlzEyaqp/8mFxPD6LHg1xWhpXLIQUC+UrFlgWmiWWaOCC//zJNEATkikpckoigaijlZWgvUl3T5s2H5FEQFHGSkBKSgOTJz025/iTmuCDJ8yR3DuJdXUmuP4la9sqSddUyD/tmB/hzKsbTO9rIbj3CPUsaoSs26ThnUxA56MQxq4D0/hFyAQ3f2TWIAW3yWLYO4FxegnW+F0NRsDZNnY9jkTSfDofZfMcRRAH+66JmYukccysDXL+8mm8/cgQARRL49/Nn0j2aIp01uXtHz6R+LCvvi/vj1m7u3ZMX4dFkkVtvXMKqoIPReIar79yJLAisqA5weU6n4IWDsbDFzk4BYxkLl9/H3kc3TGrXc1miI72EQ8fs5mOpLL94aoh7duW/w+ZyH8vrC/jTjh5mlnlxa5Ofy6Im42gI4mgITrS5F5eecBxKiRPPynLMeA4pqGFEsyjFLmJPduNdXZH3r+kmaqUHR01+TFqND+XqJmKPdU3pT+9PotX7iT2a98MJsoggCsgVrr+7DpD9GlqdD8mrkdgy2ZZipXSyfXGUYntfZvPacc6aRdEHP4j/wgswwmN5wYhq27b2VkIOBglcemk+7kWSXnHcy4lwz59Pcu9eRIcTy9Ap/eIX0Ht7MbPZ/P0lipR96YtYuo7WNAPn3H8s0RtVlqifOZ3nfvatKa+1bt1E1araSclwkI/JeOHe0ObEvNDGA2BlTaysXdTD5q2B6HTiWbMG17K88IjoODnJn68EZ3MztX/4PZlDLQSuuRr36adjDA/lCxBUV6P5Xr+YFo/fga/AgalbpFNx9jwyOd7CskyGu47i0QJE0/l5ojucojdiJx2/GtK5JJ6EduLnWFrHWXvifZSNzRuFKgls7Rhjbnqqf1XvSxBN5+g7tG/Ka/sff5jWpRUsqglRGHLhLXBi5CyObB9E0SQaF5Xg9J7Y5v96oDU2UPLpT2N+OInociGIf18QxbNyJVXjsRqCqqA1NOCcN+91Gq3NPzpKOjbl+Ypl0dtyEFEtoHZOIX3pHDuHx3imbaoA8L7eCKfVBxmIZqktdOPRZA4PxPnTC+yyhmnxTNsIC6qDU/p4KURVwtkUwtmUF8NK7hsG/YUPKzCPK+yCaYFtw31V9IylKPZqaPLJ8WEmdw6hD6WIPtSBd00VgpQXkMokEhRV1QBQ7HUwHM+SM0wU6aVFoNK7dmENj9BTVYyvvw9JUejatxuAQ8kxql0uIvf+Ffe4mN+hZ/vZ+0QPC9ZXs/Dsmol+3H6NddfN4G/f382+Tb3MXWcXSLOxsbGxsbGxsbGxsbF57dgiJG8yHAUhsukUySOHSe3dh2vJYpS6Oh7YN8An/7iLZNbA55C59cbFiCcQua8IOGnMjFI/dJBz52Zp85XxtSMWly+uZE6Fj0gqR13RiwdgSq5XH+AlCgI3rKjB51QQBbhvTz/HF7AvqfWRjGY5sj/MosWFaI0BktsnJ9kJBTJWl20oezMQSWb593sOEM/ofOrcJu7d1UtNQREFmsYj+we4dvk0Hto3gFPxM68qwL27e7lyyRI2HR4mls6xvnkaf9nRy4Xz5rOnO0L7cIKrlvpwnu5mlijh9WnE7m1HD6dRq71kO2PjhrmjaFc18ZWDPcwo9aH7mth4cIhrli3hkQODPPz0AMmsAQzzvasXUHdmJYGHu5FDDhABMx+wGH+iB2Gtlz/97ovomQzTNZXKhT72PNHDae9o5Mi2QfrbIogBhTlXNbKns49E114cY6No3kL+enSAqjMr8W0dBI792ARFxDW/GKnERZcioTaWEUtmebxnjD90JqmMwbtO87OgUUTaPTl43yp8/Z3pNieX3MAA6b370EdH0Orrccyahej8+0lgSkkJSknJpDbntGnH/qiuJn3wIPrQMMboKJ66OsQT2LtlVUVWps6PSpkb55wCUq1htGlBks9NDuBVKzyYqsCQRwIBQi6VD65tpDzgxLLy93YsrZPRdaoLnHzojEYE4L49fbQOJSj2angdCu87vYGfPNmGYVpossj71zTw9YcO84mzp/Oh3+2Y5OP40eNtfHz9dD7y+53c/u5lzH8Vzpa3Mg5FpLmumLaoTrQvwawyH1cvrcbnnLpsW14f4u7tPRwaiHHenFJqC7z8YGMrq6cVIns87Az4EIK17O6O0NsT4z2nz+LBcD9zBD+LmoP0hFN0J1LUlLt4+4LJTgdHWueMG0SeuruVXNpg7rpKZqypxBXMz2V6fx+qw0U2lZoyLu/xlQaB3PAIhdu3sW6egOjzofkiZJrqyGUM2nYMUVzrZckFdfiL7EDzf1QSAjhOsLZTip3s3xjD3TQ1oEF1uYgm0qxrKuaSBeXE0zoOReLaZdVcMKcMn0PiyGAMWRSOc8hZWBYYloUmS5T4HC9Z+cnpUVn/zlk8ddcRDjzVx+orptF7ZIyxgRSz11RQ3VyAOzNEuiuClc2gTW/CMWtmvt+/U01Fq8078bIdneh9/SSfeRb3iuW4ly9HDtlVk97suJrz1S+tXI7k7t2k9+1HdDpwzpuHc/Zssr29pPfuwxBFuj3FfH5zhMXVQT55bhPVBW52d0codGnIioB7WTlqpRd0i+xAHLnIiT503NwogpHI5atDChC4dBo70mnGEjkCLoV5lX6W1xdgWhZFXm1clEHENC3u3NaNZVm0D43/FmQRhyITcL324HmbtwaCIOCePftFX7dMk9SePcQ3Pg6WhWP2bJxzZiNIUxekXqBwvsW0ZVFanuln58OdTFtUjCekkYrlqD+tgpGsBdk0IEFKxzR1FEnAxCKW0vE4ZBJpnX89s5FVjQWU+BxE0zrJjM7bF1RQFXIiCgKbj+T3lR0jSXojKYIulVROp8Dj4NOrikm3b58yPkmWCasZvGfVEN3QgW99Nal9k8UBHDNDyMVOlGoPiWf78LtVBqMZW4TkdUaST7wu8AQ16hYUUtTg59mxKEV+J8c/5h/cO0AmZ/BU6+SAsEsXldM2lGRfX4xPmUf51PoqKhApOb+O1IERrJSer/Y+HrwVO7uKr206wlA8w8Xzy/nqhkO0DMQZTeT4zIpSHM/2k+2MojUGSL1gXy+6ZNDzCdGuWYUoxa6TmizpnBWact/CuCikIJAbSmLlTES/CjkTQZNeVCzC5tTROhinRBJJhKcGJwqCiCjJgE51cwGeMidbo3HSEqiSSHa8elpvJM1ALMOFc8v5xkNHKPU5+cVTRycESAAePjDIubNKWFLvxTmUZOwvR/BfWE90Q8dEspc+mkI5TgBH1PL7RqXIiWNmiPTeyfeTXPKC+1UA58wQkkdF8rz0+uJES29Bk9Cmh9BH04huGTngwDItjFgWQRaR3PY9eqqQRIFoWieWzvHVy+bwi81HuW1/L9fXlVBY5SFY4kTOGqh1PrS+IJlD4UnnW7qJlTVQZwYI39E7pf9cJvOax5jt7ia9bx9mLI46rRHnrFn41q9/Wedm2ttJbNpE9mgH7lWrcC1cgOSfKrBu88+HXOAkeNk0Ru9oAcMCSSD4jmnIz9uN/o4ZQPQoOOcWveQ1jgzGODIQx6FKlPudfPD3O4geF9R9fy7DhU1BcuO/G9fCYrTGIJJbIXBJA7klJRjRLLpfpVcBZXkJ2nMDYIIU0Ih4RvnzD76Et7CQC9d8FEYmJ4zJ5R6M/vw6w7SgYySBz6GwvSPM4pogv33XMrrDSfoiab72wEF6I2l+dN1CyvwOOkcn2+ICTnVCgAQgo5t87k+7+dMHVhJN63SM5EVQWocTVHs1LvCrWJFjIi7OeUV5/4rNScYimUyhOJ3oucmiOaIsTvLx+p0KA9Fjc+6+3ijnzi7l3l1DjCZyU0RIXgmiKuM9o5psTwytKcjYn1tRq7ykD4eJbewGEaSghntR6bGiAYCoSKjVU5MxtWkBUEXMZN4PByC6FYoW/P1kIEEW8a6tIrVnePJvWBRwzilEVCRyw0nkAieMryNEVUJ02esIm1eO6HFjRKJk29qQS0sQT9H6wYjHSe/bT7ajA7m4CMesWSjFxafkWjYvH8swSO/fT+bwYUSnC0fzrJMiROOaPRsznSa1cyexBx9ELizCc/pqHE1N+QMWTi0k8GbHNC0GY2l0w0TVM6gnEAZweDyIHnWKQJzoU7Hsvd7LQvSpIAuTkgolvwYuO1zP5q3FGyE+cjxaXR1SIEB63z6M0RFEj5dsVzeCqmKUliK5X5mY5WuhpM5HMpIlUCKiniDeSFJULl1YgdehIAoCG/b3Y9pJx68KwdIRXO6pzzGvgvgGCjLY2LwYhgUORUIJTp2TtGkBdkWSyMpUO77qclHkUTHHFXeKa7ykIlnKGgMAOL0KxSfY47+eCKKI5PG85HF6OExq715yHR0ITme+poFi/15tXh47OsMkO3tQTvB81VwukCQCFW7ee/cOvn31fIbiOfb3TS42Ob3ECwhc+N1NXDK/nM+eP4O+SAqHMjV+wnGSRC0kv4roUTDjxwQMBVVEUI7Z6txLy5CDtg331dATTlERPHmFPnLd4+LlFujDSZSS/JydTSZQXfl/l/jy39VQLEN54KWvHb3/AQRFYbQoyNhAL/2th1GdTkobm+hsOUjz+rOIPbgB8z//k7HhHBt/e5DyaQGWX1I/pa+a2QVUTA+w9b52Zq0qQz7BvWtjY2NjY2NjY2NjY2Nj80qwvZpvMvRwmJFf/AKloADJ5yN3tAN9JMztsapx4QWIpnVM08KwLK5cUsUftuQrUSmSwG/OLiH5ofdiDOYTQMtUlVt/8GO+3Z8hnMzx6XObUE6kXvIaUUSBL759Nl974BDJnI5hWFy3vIaagmPGk2CpG3+Rk+hwGksG1+ISjHiOTEsYZBHvmkrC2UEKq2r+zpVsXi+G4xmW1YdIZQ2+83AL71xZzx+3dTGzzMeimhDf3NDCu0+v5749/aRzI5zWWMg3HzrMzavq2HRkmHt39bKmqYgfbWzlmmXVxLM6v9h8lEsWVPC1p9u5cG4509eW4E6ZTJ9fSGIggcOEhEfmK8+2cd7ccv6yq4fKoIvl9QV85f6DOBWJD61r5MF9/ezqjpDKGXxhfw+XrizidFcS92XVZHeOQcYiVw9btt6DnslQUF2LXFTG8lAGc26QeHaIktVeIlE/X9rWyersKDdtv4vM/fdhAIXATe/7MIfnVGAuDLGi0As7BhEkAd+5tcQ39yL2xJg2r4jEM52EkjrXzCtk1YXNRCT4zqNHeP/cCpY1+DFbIwiKSHJ5Kd2WwfI3+Hu1efXkhobo/fRnSD7zzERb2Ze/TODtl5zweEM3yWUMNJf8dxPk04cO0XH9DZixvHF69Be/wPW7XxIqr2S0t3viuLnrz0N1ukgfPET6wAEERc6LoNTUMry8lExfgullXoyxNJmWMZAF3MvKSO0fIedTKXKp/L8LZmBZ0DaU4PGWIYJuhf5omhtW1DCayPHxO3YxGMugSAI3r6rD1zbCVUtrsCyLRw4O8OEzGtFNi0XVQT5z924GohlG4hlimamVmrKGSSpncNvmdr5R4Ud+GYreNnkiSYPvP3aEK5dUceasEgzDZPOREWRJ4N2r67lzWxeyKHL54krSOZPRRD6I3amI7Ogcw6PJLK8voHWwk58+2UYya7CqsZCPr5+OIgscHU7y8IFB/u2cJv62u4+L5pVNOD6OR3XIzDytnKqZIXJZA0/QgXJcNUtZU5m3/nw23/HriTZPqABvaHI9VSMeZ+ib3yBy190TbcGrr8b/9ktYfeUcllxQi+qQke2K2f/QDGJSt7gEI5Ylc3gsv7ZbW0m3JmBZIIdKcAeCJMaOJb3NWXc2mmBwTnMJPeEkS2pDJHMmZzaV8KPHW9ndHWFZXYhl9QV4NIlCr0YkmcMwLURRQEDA75CZUeaj7CUcdoWVXs597xxS8RyaU2bmynIyyRyaS0HvPErnO29CHxgAQFAUqn/xc9S589FzJo7jkh2yvX2k9+3FHIugNjYgl5XR/dGPkjl4EICx22+n4P3vo+iDH0SQ7a3WPwLJbdvofOdNiF4voRtvJL5xI/rwMMPf/S7pffsBUASBn37n22hrVuJS89+rW5P4zf5ePnVlE9lDYcb+3IqoiHjWVeK4pIHIn1vRh1KIbgXX2WUYKvgurkMPOHkoniAWzQe6FXpUVk8r5NuPHObbV83j/Wvq+cZDh4lndArcKv961jQCTpktR8P4HAqaIqKbFpIgsKy+ALdm32c2r43Url103HAj5HIodXUkB0YpVjWM/l704WG0ujq05tlILif9kTR3buvCyGS5zNxPTbAHOe1H7xSQhCxPHDmdEVPG61CIpXKMJDLUFLgJulSeODxEkVcjkTGoL3Rz/94+LMvivDllPNc+yofPnMY3NrTw0P4BDMvkrBklnNNcRjyrIwkCQ7EMbk3mL7u6WBIyCY4MU1RTx1BH+8R7WXD+JWzsS1MVcrDguhkIuol7RTmJZ/vAsnAtKMbKGIT/0IKjuYDg1TPZMDDKIjvh8nWnoKIK1ek8JmYnCMxcuZZAbQCz0uLW7T38YWsXX7xkNt3hFM3lPvb1Rnn00CD//bZm9vZGJ5KET2soIJzI0TYcB2D/QJx/2XAAUYAzZ5RwQW0Bi4sKoLmAyFgad6mbrz7TxlA8g1eTuWJxFdfd+iwAD7cOM5DMcNO6cmYGXZQWutFSOpnDYwiKiPeMaox4Fm16AM+qCtTakx+wqRS6sJpM4k/2TAo0819UR2r3ENGHO/CtrSbbEyfdEkYpdRG4oB6tzk7Kfz2pHTxK+MA+RpJjlDfNpPfQgYnX5px1HkcsF/J8iZZIEo/LQhIkfrmxjfetqee7jx3BsvJiHh9a18iPHm8FIJLKcWggPuVaI8kcn97ew/SAk4/c3MyzvRGc51bijusYAuzIZDkDkxeGmAmyhP/sWsxEjmx7FEGV8J9fi1rjpeD6mcQ29yJqUv5ervK+7PeulHsQnDLW+G9Q0CT859cx+uv9GNEsolshdE0T6ZYwiWf6Ed0KgfPrcDSFJgVL2pw8FtUEiaZzRFI5zptTymg8x2HVoHphAbUOBf3ZfkZ/cwDf+XVYKZ1sZwxBk/CuqUSPZgn8SzNCsUjtvIUc3XVM5Gv68pWkotG/c+WXJtvdTdcHPkC25XC+QRSp/NEP8Z5++kuel9qxk2xnB4KiEN+0ifBvf0vJ5z5L6IYbXtOYbP4xEEQB55wiSkrd+bnFq6IUORHGfVtKqRspoGKMHRN28KwoQ6nzUbS4ZJI404nY0Rnmup89S2Lc5/bv58+cJEAC8D+bWln07mXMOrsGRAG5wIk4bruSfRqyT5s4dv+RIfYHRC68YRrW6ChdXft4+he3Y1km0aFBHHNCGCmZ9P5RkAU8K8thKMVXfAH+uNjL97d2oskSvZEULlXi4ECcL913gE+ePZ3fP9dFfzQvYPLZu/fw5Uvn8oHfbpsQhG4u9+FQp86vnaMpommdQo/K4togW4/m7TH/9/RRKs9qYmnUxOiM4ZxXhGt24cR7szmJmCbW2Cjzzz6fp++8faLZW1iEHCyi1JO/h86YUUShR2PL0cniZr3hFNcsraboZYiEvRSSW8E5PS+Yq1Z6MaIZCm+ejRHOIIgCSpk7L/7xAtRqL75zaog+0gm6hWNWAe5lZaCbKAEHyV1DqJVe3EtLUU5w/pT+yjyIbgVBlYg+cBQE8J9bS2LbACO7hhAUkeA1M8gcHCW5fRApqBG4sAGtMTDx+7exeSlyfX2M3XU3ktOJ6PWSbW1FHxkhePnlL1lt+5VgmSaRu//EwJe+NNHmPXs9pZ//PHIg8JLnp5M5ZEW0E0FOAcktW+i8+V1g5J/zSk0N1T/9yUkRIok/uYm+z3ya0DvfiZVOEXvoYcxEAtcpFCDJpHKIooiindx7pXs0yeHBGJmcyZaOMNOVGI3Nc2nfuQ1z/LOTFZWa+Yvok01KL5vO2L2tmLEcUshB4OIGumSD6Sd1VP+cRFSd0BVNjP01//nJBQ4Cb2sgacZxYttzbGxeL4xkkuEf/JDwr4/FNgSvuxZBkrByOTxr1rxk4YuTheJX6CsQCcoWM1etZfBo28RrDreHopo6Hr5/kGg6R063uGJxJQ1/p+CczYsT1yXccorgZdMZu7cNM5adeI6lDzyH5FqEHLSLKtm8eTBNi9kVfjKygmdNJfHNPfn9+MwQjnlFjIzEmFlTh+JwkkvnfWyCINK0YjX1tYU4x4tMBEvc+M90ER1KggDuwOR4rzcr+bn6B4R//ZuJtuD112Gl0yCKOGfMeANHZ/NmJpcxyGQNfvBYKxf5wzQuXkHvwQNYVj4uR3U6qZoxC1118WwszkAsg26aLK8L8fihoQn766wyL1VBJ4ls/rw/7+xlzfS87e6ieeXs6z3mM/FqMsvqX3uBqkxXjPCfWwlc0kjkb20Y4QyST8V/YT1G1kCp9OBaUIyzuQBBtv1sr4beSIo5FSdv75XtjSOFHBijabK9CZQSN5ZpkkkmcbifFyHJ234HX4YIiWVZRDdswL1qFV6fTG/LQYY7O2g67XQKq6rZ+Kufodz4dsy/3EPk0cd54BkviiZx9ruaEU8Qky0IAovOr+Web+3kyNZBZqwoO2nv3cbGxsbGxsbGxsbGxuatiZ2x9CYj29WFKMsMfevbE23u1av58NXv4snO2ETb3r4IpV4ni6ol5lcGyBomNQUu1M33kx48VoHeymZJ/Pw2uhZdjzm9iHt29vLD6xad1DH3jSVAgI0HB7nxtBr6Iml8TgXdMElkjEnHipJIoMSFHs0ytqkdrdGPa1ExCALJHQMULKukLzrIaF+CUJntQHsjcSoSyazBH7Z08bH107nlr/vwORQW1gT5wcZW3r+mga89eIh0zuD9axr4+oYWrllazc82tdMVTvKpc5r4wt8OcPasEu7f28/2zjE+c+4M/vOefcyrDHCgL8o3Hurnk2c3cdPPn6HE52BdUzG//lsHHz6jkS/8bT+iILCoJsS3Hzk8Ma6vPXiIz5w3g13dEfZ2j3HzylqeaRtlkWOE337//yhrmEbVrLkoKSe+smIWzH4PPc4KqiPDDL/v3ZDLJ/EUTJ/O3P/4CsPxDGu0HJn775v8Adz6I1I1c/m3ZyPMLPHwo6tm4I/rxDf1YoymcZ9bS/T+owAIiohPFJmtC2yJZbhiQQWGV+PnhSlWN9eQsSy+sLmNdwZqbRGSf2Ayhw5NEiABGPjKV3AtW4ZaPtlQO9gRZd+TvaTjOQqrPExfWoq/6MTG5OS2bRMCJM8jHjrCtOUrsUyTxFiYQEkpkqKihsMcveqavHMNkIJB/D/8Kef94Sh1BW5+UVuGv86P57QKrKxOct/IRNVjv1nChw900RvJn/vu1fW8fX4F716tURV08tm79zIYy1dbzBkWP3q8jZ9evwhJEvjD1i5aBuK0DBxGEgV+e/PSicqMggCVQSfd4WMVOBVJQB4PCm4dSpAzLU6S8PtbAsM02dcb5XN/2jupfWVjIQ/u6+OieeWYpsXfdvdx9dJqesbyn/3C6gC7ujq4dlk1qazB9FIvjSUeCtwqt20+yqGBGH6HQrFXYyyVpczv4KolVXSMJOgJp8jpJsoLnFVjA0n2beqhbccwZY1+5p9VRWFlPkHNEwjh9PlYffWNhPt7cXi8KJoDNZnCMgyEced2trV1kgAJQPiOO9BmzcQ5dy6u45I2bP5xCUoS8Sc6cMwI4VpcAkBiWz+l1fn75fctWa665AriI0NkEnECJWX0HG7hgFHDT7bu4aJ5ZSypDZHJGYwls+zvjRFO5nhg3wBd4RT1hW7OmV1K71iaZNZAAFyaTDgpkNZNSv2OlwwMUx0yquPY9uf5ey/y9DMTAiQASn09Y6aXHT/bx1h/kubV5TQuKkHLhOn5138lvXv3xLHlX/0Kud7JFcNHf3Yr/osvRqutfS0fqc3rgJXLMXLbz8GyKHzvexj+wQ8xEwkKP/zhCQGS/IEWw1/+CnULF0JBAQf7Iowmc6ytLiDXHsUYy+A5rRxBgMzBMHgUxEuK0eI5ImMD9Axso7+1hcrV53DnQZmRRJaL5pZxTnMxnaMpvvdY6/iFBP73wRZMy+IjZzaiGxZtwwnKA06SWZ19vVHmVwXQLQtDt9jeGWb1tJeu8G1j8/cYu/tPoOu4PnkLR606YlmN4C6dStKkvvQFrFyO0v/5PMHLL+eu7V18/7FW/nh2IdFP3AKmOamvOT+ez90JLw/s6aO5IoDfqfBc+yjpnElvJD+XVwZdfP2hFhZUBVhWFyKSzHHmjGKePjLM2+aVMxTPC+K5VJmxZJZ5VQE2HR6mxOcgnMwhAL/eG+EmGaqa51K/cAnx8CiB0nJ8TfNpD8OeoQSJQotfPt3BJXPLmX11I/VOjdT2QZBEPKsqMOM5UjsGWbggxFA8fcLPxubU4RZllrztMlKxKHo2S6CkFIfDza+3HOUnW/omjlNlkQ37+7l8URWnTyuiN5JCEuBz583EtGAolqZlIM6tm9q58bRaNh8ZmTjXtKCx2MP/e7SFd66s5buPHsn3KYl85+r5LJtWSHXIxS82t7OivoCnWvPn7umL8bG+Q3zv6gU8eGSAs8+spO78OiRFQi5w5MvQCUyqEn+yUUs9FL5rDqndQ2T7ErjmFSE6Zcbu3oejKUj6SJhsexTHzBBqhYdMWwTRJU9UWbI5tRjRKNnduzC37UBdPJeimjqqmucSHxkmUFKGVDeHdkNkd88YBW6VWCTNouogC6uDlPo1vn75PJIZg9Fklgf39XN4MC88Uh1ysaqxgMdbhiddr9TvYOW0QprL/TyTSPLxBw+SNSbPv7NmFFJfNLWCoFLsouDGZoxwBlEVkUL5NbPcrOGYEQIEBOmVJVcoxS6K3j2H5K4h9KEkntPKGf39oQnRHEGTSLeEEQQRz8pyrJxJ+O7DFNwwC63WTq46FTx2aJCqkIuOkQS6afHdR/NCN6vrQnyzqAAl5MCzugJjJIVY4CC0roq0LDCgifx1fx/rHAILggEWnPc2ShunExsewldUwlh/L4U1ta9pbOl9+44JkACYJoNf/RrOefOQ/Se+H7Ld3XS9931kW8fXyKJI8af+jaFvfouh73wX7/r1KGV2wORbAUEUUErcJ3y+iW6F0JUz0MNp9LEMckBDmxZE9r60WEM6Z/DtRw5PCJAAHB6MU1vg4uhIcqJNFgWcbhW1NG/XaBuKs7UjzEg8w6KaIHMrAxPVL00LAl6Np4ajBFo2obocLDjvIlKxKEU19Qh9OlbGwHtmNRgWqf0juBYWI2/q5fx1Fdztd1Bd4MLnlBEEODwQw7LgB4+18n+Xz+PTd+8mmtIJJ3PUhJzc/f7TeO5ofp09GE3TOzZ1PbuiPkSRV8WjKXz+4tl89PYdHB6MI0sCUbeMe2UZmiAi2snvp4xQZJiRaIrhjg5WXXUDYwN9OL0+vAVF7E86qPOJfPntc6gKOdndPcYLC5svqgkScqs41JPrypf9GrJ/3B5b9fePlVwK3jVVOOcUYRkmctAxIVij1fpxLy9DkMVXlKwp+zTcS0qRgw6yA3FSh0bRB/K/PbnERWrbIKm9+fWQPpwmuWcIy7KQfBpKkQPBdjTYvATZri5S27aR2n5MXK3wgx8g19ePWlF+8q7T2cngN74xqS224SGC11+PvGTJi54XD6c5snWAvtYIilOmeVU5pfX+1y3p+Z8dIx5n8JvfnBAgAch1dJDcufM1i5AY0ShD3/kOBe99HyO33ooZiQAw+vPbqP7FL3HOmf2a+n8h6XiO9t1D7HyoC9Uls/j8WiqnB5FOgrhjTjd5qm0E3TA5PBjn55uPclZjAHemnZVXXk9seAhBFPEVFbMn4WSJYhB7qhf/BfVgWVi6RXxLP8Xn2sWFXg6+rEXsmb5jn59hMfZwB4HzTt6cZGNj89Jk29onCZAAhH/7Owo/+AEGv/pVqn72U9xLl57ycUSGkuzd1Et4+xBj64oY6uzg9GvfSbi/F9XhxB0sIKz4uXaZZ1L8ZSw9tTCQzUvTk1OpFmTiz/Thv6AuPw9nDFIHR5BDLrKdnbYIic2bikRWx6GIaHGddCRD6IomLAv0oSSZI2P8qqWb981UWXrxZaRiEfRsDn9xCZbTx8OHR/lAxTFBhEwyR++RCJ17RxBlgRkryqiYHkR6E4sYZNvaJgmQQH6uLvrYv5Lr6rJFSGymoOcMeg6NsfVv7WQzBlcuKUINOTlw909Yfc2NjA30I6sKJTX1GP/3dbxXXk2v2gDA75/t5sqlVVy2qAJJFBEFyOgmfpeKKh/boz/TNsKnz5vB0ZEknztvBocGYoTcKuc2lzKr/LX5vYx4lvAdh9Bq/cQ29+A7qwZEwILopm4Kr56Je26RbcN9DZimRd9YmnNnl56U/izTQh9O41lZTnxTD/pQ3q6ZSSWxLBOHJ+9PeL4g4ED0pWNRMi2H0fv68H7wA1TGRtjxwF8BmHPGenKZfIx2sqwE0efjyE/uYqzkCt720fm4/S8ec1vZFCRY5mb3Y922CImNjY2NjY2NjY2NjY3Na+ZNZVEUBOE2QRAGBUHYe1xbSBCEhwRBODz+/39qy7+VThP+7e8mtSWefJKyTJT1s0r44LpGzmku4fuPtlJT6MLvUpBEKPKqFLpVUt29U/oUB/pYWukl6FT438vmUlt4cpMSBEHAMC0aS7x89YFD/OrpDr736BHu39tP7gVB8c9jjKXR6gMknu4jfPshwr8/iBxwIGQFUjEvHXuHSY4nw9u8MRgW/HlHT/7fpklGN1nZWMiGffkkXUUWGEvmWFAd5MnD+YDAQq9K52iS+kI3e3vyqs8zyrxs7xzDq8kMxtJYVj6RfsP+fD9ZwyBnWKyZXsT9e/PJRoIAiazBsvoQjx0cfOHQ6BhJ8Pm3NbNmRgm/39LJrDIvilzC2hs/haQ6OLpnO5bpoXbWOpzlCykfcbFlm4T1Hz9CW7seALOlBavlIDevrqPRnTcay6WlOJcuQQoEsHI51Fy+kuLbFlRwwV072ZbNYoymETQJMzZeZVEU8J1TS/rACIm7W5n1YA/nZyTu3drN091j7M/leM+9e+kYTdJ8EtWUbV5/zNjUisRmJIKVmWwoHhtM0rl/FKdPwVuQNya37RxEzxpTzgcw01MNzbk77qRx4RIS0QixoUEkRWX6spWM/vTWCQESACMcJrPpCYIuldVVAQIlblK7hhj5xT5Gf3cIwRJwzssnJ7v3h7lgPFFZlUTmVfn5ygMH+fgdu+gYTZ7Q4D2SyOJ3yGxpz1fKDLgU/v2CmRPBkKIATkXkY+unUx1yAVDgVvnk2U38cWs3ANcsrcZpO0JeETUFLt6xsGJSW0XAybQSDz+6bhEzSr3MLPPx/rUN/PDxI6iSyHXLqukKp7lwXjmWBZ++aw8/eaKNnz3ZzrcePsx7T69nS/sosiTyLytr+ex5M/ntM538+5/3Ylj5eX4knma0N8Fzf2vn3u/v4sBTvRza0s/Oh7qIDqc49Ew/f/3uLmIj+XtFEASqSysQIlGiw4NEe3spQSL57/9JtqtrYuxGPDH1TRoGViaDZVlTX7P5h8SVMtCmBYk91pVf293RglbuQ0zm+MG1C6mrLESobEJQVMID/XT3DpKau57bto8gCrBmehG9YylM4KfjicTPs683Sl2RmydbhnCoIoIAgghZ3SCrWySy+oSI0qshN9Cf/4co4vnM58l84tvs25MjVOqmfFqAzXceYf/mXtJt7ZMESAAGv/4NfOedO6nN0nUs3Q4E+0fAsizMeBy1rpb0gYOYifH5ypj6zNaHhjDHnbubW0f4xB27cBkWoipiJnPEHukk+nAnlmEhpAy6WtN0Dhxl91MbaN+9k4bVZzGgFjKt2MO8Sj9jySzvOb2Bu7fn19sht0rHSJJUzuC9a+q5/bkufrCxlZ9vPsq7frUVn1Ml5FEZTWTBtNAUkc2Hh6eM08bmlWLGojjOv5hWeRbe6hIEQLdkctMX4f345wAY/OrXiLZ38MunOlhcGyQyHJkiQAKQCEdxqiLza0Lcu6cXRRZY0VDAwwcHxvd7/SiygG6YzK8O8NUHDzGjzMfB/hi1hR7+b8Mhbt3Uzo8eb+NnT7aRMUyKfQ4umlfOu1fXE0/naK7wcXAgyaHixcRlN0d37UDSNALTZrNxQMTrkKkKOjFMixtW1PKdx45w4W+3oceyiLJI7NFOYo92kT4yhlruxpky+caGwxwZiE15PzanDkcWAiW1jPX3ExkaQHOH0K1K1tUXThxT4FapCDj58tvnMKPUy/wqP2+bV0bbUJL/umcfjxwcIJrSeWj/AImsgUeTuWxRJaKQ36dcOLeMcDJLPKPTMhBnYXUAgKxh8sHf7aBlIEZGN3m6bZSbV9Uxp8IHgFuV+OiZjfz0yTa++fBhzv/xUzw2HEMpdCIIQj7J8hQKkDyPWurGf3YtRTc2455fjDGaX4MrFR6y7dG8uEPWIPpwJ9GHOhj7Wzv6qC2o83pgZjLkurth3SWUzzoLl6+I9h3bkFQHpU3zsIKlfPru3fzmmQ6+/chhNh4awqXKLKoJkNUtfrixlafahukdS3GoP4YgwBkzihEFgeX1BcyvytuOXKrEh9Y18MunjvL1DS2851db0RSZohck2KuSSKlPo28sRV8kNWW8kkNGLXMjFzgnJTYKkviKBUgmrlnuIXBeHYU3NCMo0oQACYBzbiGiQya+uYfYo10ktg7gPaOabP8J9oU2r5mReIa7t3fTOZqkocjD060jnD87H0x4w+xyFK9G7IluYo92kdwxhFbpJdefIJ02IJzlN8914xhPJi+fPoOCqhqS0Qh9Rw7RvPYsyhpfW11zMzr1+aoPDGClpt6rz5Pes+eYAAmAaTJ25114zjgjb0ew91pvefRohrF7Whn68W7Cd7SQPjCCWul9WQIkAImMzqH+yffmX3b28JnzZlBfmLdvBl0K3792IY3F+YDhjuEEN9z2HJ+6czdffeAQV/z4GR47lPdbJDM6z7aNMBLP0uT2UjXnTETZRdf+PYiSSkXtLNLbR8i0Rog90klsYxf6YBJ9JIXoVSnsTfK582fwhy2deDSZ6SVe/rIz7+dLZA0ODcR416p6AJrLfZQFnMyvDnLWzBK2Hh3lN892smFfH/910Sy8Wl6sYna5j/+6qBmPpgAwq8zHH967gns/vIr7P7KaK5dU4VQVO3j9FGNm0kSFKprPeDvh/kEigwMIkkZRxTT8Xi8mFvVFbkzLYk5lgHVNedu9Iglcs7QaQQD5VT6rTyaCKKAUOlFL3BMCJM8jKtKrEk6Q3AqueUW4F5WSbY1MtDsag6T2H7N1+M+pJdseZeTn+xj8znYiGzowErkTdWljM4E+PDxJgARg9Fe/xohGXuSMV4eVTk/y1z3PhH3xROeYFkf3DGPkLLyFDjx+jb4jEUZ6pvofbV4dVjqN3tc3pd0YHX3tfRsGkttNrqtrQoAEwEwkGbvzztfc/ws5umeYR391kNG+BP2tEZ79SxtH9w6z4dZ9bPzdQfrbIlgvVLCCl+V364umGY6lEQSBB/bm/SNJSyI35wzCsSSDnUfJGBZW+TRyTi8e3UKr9hG+o4XwH1qIPtSBo86PM3li37fNZKyUhbMhyNhdhwn/oYXI39pxzyvGTNk+Uhub1xMzcYLnrWWBYWJls4z8/BeYuVO71sxmDDbdeYTWrYMsuaiW5KhFxaz1JCJxwn29RDIGZsV09oSZEn/JG781+IfE79IQshZKoZPwHw4R/kMLsSd7UApcKKX1J4wDs7F5I3FIEpmcjpXMIRgWo787SPj2g6T3jSA5Za5vLufr25OMecoY7utnbHCAEcHN9w5YFHsd9EeO7VF6DoVJJ3J4Cxx4CxyM9CQY7Iy+ge/upTnhfso0sVJpMkdap75m85ZnoD3Kvd/bRX97FFkVCckS2qCDFZe9i4G2I4z2duMWJJxPPUP6uS1IyThHBvO24a0dowSdMisaCinwqBR5NVY1FpLJ6bQOxfnWlfMp8mosrAkRcmvcuKKWdTOKed/aev71zOksqg29xOheGiOWRR9KIRVouGYVMPbXVsJ/aGHsz0dwzSxED6dtG+5rZCieIWuYVAZOXEDylWImcmBayCEHUkCb8OGn4/k1xfMiJMXjhdEGX4YISWLTk0C+YPHcM89B1jTqFy6hbNoMQhWVAIwO9pGZtgStZQsr3lZL5Yy/f/8JgsDs08sZ6ozZdicbGxsbGxsbGxsbGxub18zJLZ/02vkF8D3gV8e1fQZ4xLKsrwiC8Jnxvz/9BoztdUGQZaxsdkq7JsJQLMND+weYU+Hn61fMo7ncj2EYOBWRUq+DG36+hVvnL0b83a8mnStdfCmr51Uzo9SHWzv5X7k1/t+vn+mY1N4xkmQkMfW9AAgOidTuIYzweMKoCYmn+wjW+fEWuEAUiI9kcHlfXKnV5tTiVCRCbpW+SBpJzCfYRFI5Qu680MjzbdFUjspg3kAnjQcbxtI6AVc+wNUw8wkRWcOcqAyYyOj4HDLhZG7inEgqR9ClMhzPTrneCyn3O+mNJPnWIy18+IxpPNs+SikaOx/JUNZ4Mc6gyK6NMZZd7GTvX1vJpvMBMO37YeXa63Ht2ooRDlMk5Fg9rYgCQyH8uS/TY5TTPyJRe75JeSiD6i3ju0USAUvglpWNxCwT0SVjZgwELf9eHDNDJHcMYkTG73XTwnysm69cN4MHInG+9uAhynwO/t+Fs5hri5D8Q6M21CMoCtZxgQeeM89ALp2skh0fSyMrIoomIQcFsmkdSRaJhdMET1C5071oEUOyDMclUYSuvprgtBmcXT+N6EiM6JBOZBDEpnlw3335YIjn6e/DH5hJwjTJ9MbJ9R+r2JnaPYTvrGpSAgh+lcKAg4vnl7NuRjEbDw5OVFf81sOHuWppFT99sn3S2Iq8Gv/yi62c01zK+XPLSGUNvv/oEf77bc1Uh1z861nT8gIAaZ2vXz4XVZYYiWf44n0HGEtm+fj6aZzdfHJUxN9KBN0a1y2voTLkYkv7KHWFbs6aVcLMMh+KJE6o6G87Osp7Tm9gZqmXwWiannCKkFvhYH+cVO5Y4F9GN9nWEWb9rBKi6SyVAQf//qc93Ly6jueOjnLrpnY+tn46fX0J9v6mBYdXBQse/fVBZp5WRnVzCM2lIKsi3pCD7kOjFFZ6CJV5MEw3ojaP8hkr8Go6Us8esgMDmMljCUVqTQ1SMIgRDh9rq6tFa2qyq/v9E2HIAunNvccSEA2L2MYuQjfMomd4jDXTChFFgcT8s0mXLSZU4GPDjj7OaS5l9bRCQi6VsVSOB/f2E3QpZHQDQchPd7IoYFlQ5HVgmCCJzwshCePToYDjFVZrsUwLQRQwTQvrrMswixfibKwlq7mIHI2iuWVkVSQ7olPW4GfXw500XFs4pR99ZAS5uGRSm++CC1ArK1/Nx2jzOiOqKqEbbmD0l79EHxqaaBc0FSRpkhhJ4B2XohQV0ToY49sP56u5D2VzNKUtsu3HgnUyR8bQGvwUVhQQG3XTfGYTnhIXfZaFK2sw1+dCliREMa8IGnKr9IylKBhf83o0CcPM7/2ex7Lg1k3t3LiihqxhgSAgCJxwnWxj80oJvOMyBttH8Rd7efpPrSxYX42kCJiGRbTpdFy/vh/14BbEbJZCr0Y0laPPU0BxVRX6caJjclERY8FipJxAJJmjwK0hCQLJrIFblSf2iJIosrKxkAf39XNOcwm9kRRzKvzcsa0b/bjEiWha5/BAPhhieomX+kI3veF8gv1/XTSL59pHGVFnceU71+HzamQNgZV+8kKo40YKTRX4wbULiWV0pKRF9Ln+if6N0TTpA6NkVpSwry/Kwf4YjSXe1+1zf6uTK6ile0eUxRe/D8s0MXQBURJxqgJrpxdRW+hiXlUAAYuKoINoSscyLfwuhXOaizm7uYSesRSqJOJQJZyKiCaLHBmM88F1jcyvCjASz/D9ja2U+hzMKvNSMasYr0Nh85FhGoo8rGoswqPJ3HhaLZ/84y5WNBRw5swSZpZ6+fy9B+gZy69nLQu++XALy+rzAWZvFNJ4JSNLNxH9GogCmeMSNjMtYVIHRvCurHixLmxOFoKA2thIrKSO1u0phrtLmXfGB3AH3WTiIq7RFBuuX8ZdrQP87OkOdndHCCezLKgOEEnq/N/lc+mLpFEkkbpCN1nDpNTnQBAF7trWzTXLqnnHwko8mszXH2qhO5y/F3XT4vdbuvjXs6bz73/aS9YwUSSBH167kA37B/neo0cA+MiZ07hsUcXrdr+KLgVBEbFyeXEqOeRg7M9HYFyrykrpxB7rInhl0+synrcaDkVkeomXoEuhdSjBWTNL6I+k+MDaBmb4ncTuPZR/LpIPjIw/0YP/bXVYgohTFfnl1QsmbEwOt4cZK1bTsHAJgigiK699ralNn8bExm6cwBWXIxcVveg5RnRqILw+NIR72VIC112LUmZXbHurkz0aJbl1YOLvXFecxHN9+M+vRxBf2s4UcqtcMr+CHz5+LHEho5t4NJk/vu80BqJp/E6ViuCxoOTdPZGJ+fh5vnL/QWaUeNndE+F7G1v5yXWLCCgaek6hsGYVFbNWkolbZAwFpz+OPjT5fNEpY2UMooUObrlnPyOJLDu7IvzbOU0TP5nKoJOBaJqAU+W82SX861lNBFz532Z9kYcfXLuQ7rEUmixSE3Jz5owSEhmdsoBj4rjj37e9h3x9yTn8GG4TXZeYsepKJEUHS8XC4q87O7lxZR2yZOHRVA72x8kaJh85sxHDhIf3D/DnnT38+qZTX4n9jUR0ysglTvSB/O/DTOYQPSpmNIta4yPTNoY+PP7bsSD+RA9aQwBn02tP8rD5J+YE4sJmLIagKCf1MkpFBc4FC0jt2DHRJrpdqLW1L3pOIppBlkVcZS4ClhNBAMOwSEZtcZ2ThVRQQODKqxj+7ncntTvnzHnNfcvBIKEbbyByzz1TXsu2t2OZJoJ4ckRLcxmdXY8cs7uJkkDj4mIe+PFELScObO7j0k8upKQu7zNMJ3J0HRhl/6ZeCqu8TF9eDAZER9I4PAoFFR4cLgXLtHDIIvJ4pe/n40EW1wb52H1H+OG169lkTKO8wIdvTGVZnQslCeEneyaubUazJJ7rR2u0Yx9eDqKmEH6kZco+OXTttDd2YDY2bzGU6mrk4iL0wWP+QKWiAn1cqErv6c7Ha57kNcPxxIZTFJS5mbWyDEM3KW3wk47n6GqZxryL1hL2O3B7NL738y2TzusYSRJOnjj+0ubvk8zoIAgkthznHxpJkz44iqum0hZ3sXnTYQkW4UQOAZnUnmMinbm+BLn+BI3zC6hq9/JYVOXiS9/DlrZhfri5i3QuSk/CYu30fExLJpXDNCwCxS58hXn/AxakYm/uueSEc3VlJfrICKLL9QaOzObNytHx34koC8xeU4HmlEkndCTNx/zzb0Ya6ib2qQ+RHhlBUFXk4hJWqCEuW1SJV5MZTuT41J27+fhZ01BVkQf39XPX9h6++PbZ3P5cJ58+t4nZ5flCFoosMu0kxxOITgXRrSAFHYz96QjWeJy7lTWJPtJB0bte+172rc7zdv3j7f2vBSOSj+WS/BpyyDFRJCQdz4vbODweAArcGqIAA9GXLqoWf+JJtOnTUUpKKATe/5PfoKgagiDgCRagOp0c3RMmm2lgrv4I9d5eoP4l+21cVMKmPx6hZcsAKyo8r+4N29jY2NjY2NjY2NjY2NjwJhMhsSzrCUEQal/QfDGwdvzfvwQ28k8sQqI2NOCYM4f0nj0TbaLHw5MZNzu78o6vPT0R/u3O3dz+7uVE0gZ3buvlumXVjKVyfLHDwWc++984f/5DzGQS7w034D73XGqrTmFAlmkhCQLR/8/eWcfZUd39/z0zd67r3rvuLtmNOwnxQHD30kJpC7RUqT+V5/m1BeruDrS0OBQIwUOAuGeTrLvvXneZ3x932WTZoA0kgXm/Xnltdu7Imdlzz5zzlc83HGdanpVlVZl4w3Ee3dtHcjyJqN8T5uCAj1g8RWW2hWKNhljX1EqIqVAcjVVHIp4kmVIrp5xIXBYd3zinjv/3n0YKjVqum19EtzvMZ08v46cvtOLQSHx2WTnbujxcNSMfTyCGJgnfPrOGxxoHWVnqpG8sRCyc4PZzp3Hn9i6mZ1o4d1oOoVCc286Zxq9faqPEYuCqOfmMBeJ8bXUVP3mhhWythhtPK6FxwM9H5xcTiiaozDASjqcIJpPUu8yMxeJ8c20NBllDw5x8Egf9KAr0Naf7lS07bTR8VYDkVXbvjrJi3QWE7vkbuooK5pVk4B02sKl1EM9ggIJqB0lLBtubvWQWCmx/vI0uQG+WWXhFJbqzSwnf35Lu9w4dcraRyIHRKc9PE4hz9fwizqzKQtZIOB36d/1vpvLOCftjaLQSGq1IJBBHo5WQdZNVxHWVlRT+8Y8M3nEHsbY2rGedhfPjH0MyTDZQKwrYssarZIuQiCcREEnEp1aLB9DX11P05z8z+uc/kRwexvGhD2FevhyA0d4QD/9sL9FgWqDEVVjFghu/QPg3Pzxy/LLlxHemMIki8fapiRpJbwzRosV2RglnOrTUu0N8f/0h6vJs3Ly8nE0tI7QNB5lfmsE9W7vxRxMIAtyyogKrIZ0wet+OnknnjMSTXLOwiP97tJHPr61ieZWLQqdpQlCiPt9GUlHSiVSqyMQ7oqHATmGGkXOm52KQJXJsk/tZ91iI7z7eyDULSnh0bz+7Ot18bm0VmRYtWzvcXL2gCJtB5oWmYQ70+fCE49TnWenzhvnsv/YQjKXHRp1G5IyqLObkWDAjsOSKaka6/Iz0BmhYUYCsl+hv9uAfjaA3adj66LhQjQCrPlxL5/4wLdt9QLrvZeaXsfiWW5Hz8ybaqi3Ip+B3v2X4+z8gvG8fhrlzcN1wA/q6uvfkWaq8N3gDcTRjU9X7E5EEZr1E51iImYV2+jwR/vBKH1fMk7hsTj6D/ihP7B/ginmFfPvRA9y0rJwt7aNIojCRdHP5vEJebh3hkysqaBsOIEsiGkHApJPQakTy7XpsxjdOpEkmUkRDcZLxFB37RmjePkRepZ3Cugy2PztCz6EUbGqjYk4WOqOE3qzFPxrBaNVizzLiH4sgZToRLBbst3weYeZCaNoL3jF0K8/AlVtAtLsXY2Eu8rzTSIoyYV+UWDiBAEhaMS2aQjoHDwQkWURvfPcC2VTeGvKCJdjK61AUBVNKRNBoSPr95P2uAd/m7YhGI5r8QuzzppMSJYil+MSiEpaVONHqRWJ7uqecM9rpo6UrwKFX0gFtsl5i+U316BWRZHeY1m1D2LKNVC3K4Ttn1vKbTW083zqCKMAnV1QwFowhCnB6VSb1+TY6RoLs6/Ega0RMOpFEUmHIH2Fp1esnb6qoxGNJosE4SkohhUIykUIURRRFQZIEtAaZZCJJtGw6ttIU2/7WRPnsTDRaAUeumdadgxTVudi72UNG3kxKJRffO9fJhb9/Bf+sPEa/9H9k3vMn4tu3oZkxk9hHb6ZDNNM06CaRVLhiXiF7ejxIgsAtKyv47QutXL+klIP9PopdJkYDUerzbXjDCV5qHsEdipFl0XH29Fy0ksiGxkF8kSNJOBpJxKTX8PTmQZZWZVKXa0UrC8iCgCiIdI4GeKllhJU1mQRiSVoGA2xpH+O8GXnctv4gL6+dPuUZRTt97CtJz7EC0cSUz1XePaJJiar52cSjSURRIpVMEgnGsWXpuXJBEf5InId29XHtomLsJi0uk8hYKM4Fv36FaxYWk2XWkWHW4rBr+c3zLThNOtbUZbO728Pubg8mrcQnlpfzrXPryDBq+evL7fzk6Wbml2bwsaVldI2FeLF5mK+sq6FlKIA7FOfxfQPs7vJw2bzCCQGSV/GE4gQiiRMqQiIXmNHXOQnvGcG6spDw3uEp+0QOjqkiJO8BGqcTtFo0GQ66Dx7AVWDG6rIiyiLbH2tn5upi2l7q5zSbjqs/spCeeBy/kgIEnGYtigLfeOgAq2ozOb0qk0RSIdeq566tndywtJRvP9rItQuLGQ7EpiS8j/ij7OvxcOPyMqx6mSUVLg4N+Ln9iUMT+3zv8YPk2vScOyOP9wKNS4/9okrc/06LXSQ90YnEqldJBeMIkmobeDcw6WQ+tLCYjrEg3nCc+3f2cPHsfEpdRnSxFLHXFNZOeqMgSyTiKYRkCnMshcaUFtBNJlLIeol4VERn0hAJxhEE0P0XaxZ9bS0Fv/k1Q3fcQWJoCNull+K4+moE6fUr9+mqqqcIl1jOOAPttGlYFp+GoDmpXFoqJ4DYMSq2Rg65sa5KIhjevH8IgsCV8wvp94Z5eE8fJq2GW8+oYkaBHYtBxmme+r4PxabOFd2hGJvbx+geCyGLItUGHVF/nHgkAYJINCCgNcqEg3EyZlqItvshme7XolWLIEtg07JTp0wS83+haZg5xQ4GfBGuXVTMHesP8cW11Xx61SwM2snfHbNepibnyHe0yKkmY5xM6DJsGL0B4tEkqaSCIMrEQnF0Jhl3JD3GfvfRRr5+dh3BWIKXWkZ5qeWIr0kQIJI4tk/h/YJklHGcX8HIXw6gxFOE9o1gW1uM5+FW5DwToV1DU45JjIRB1TZTeQP0NTUIOh1K9EiSh2nZMuT847tWkiwWcr/z/xj+1a8IPPMsuppqsr/8FXRvIEKSiKcw2nVEQnF0Bg1KSiEaSWDSqnPl44UgCNgvuhAlGsV9991IDgdZX/4S+vr643J+48KFpMJhAs89P2m7/dJL3lSA5FVfdCKWPPJTTvuPJ/1MpBAE0JuOzGuKG5y07zliB7BlGcgttzHU5Z8QIWnePsjGfzYxbWkeogR9h7y8dH8LSkqhsNbB9FWF9B72MNjupXJeNksKHbjDcb55RjVP7hvAZdRiN8gM+aOEUhr+sKkDgKvmF1KRfwyB9sEQgnB8RFfe70TC8WOukxPhN09GU1FROX5oc3Mp+M1vGfrRjwjv2IFh5gzMK1Yw/OOfAGC//Aok09SiQseLWDgBgkJ2mZVwIIYkiaRSChqtxIxVBXRvd7PksipGkwl84QSzCu0sKncyGozx2N5+EknlzS+iMoVgPEkyOPXZxTp96BIKhvLyE9AqFZXXRxIkvJE4sdGpYiHRdh/ORbl869w6OkaCfOeJQ8wuzuC6xaW80DTMWDCGbtx2lEqC0SoT9MYxWGQURSHsi2Jxndy2o1fH6sHvf5/I7t2TxuqC3/zmRDdP5STk1ZirotoMjBYdfneEjFwjkWCcngM+CqcVocnPQ+N0Yr/0Erw2J1GfwvV/287PLp+JJAoM+aN85cH9k84bS6TY3DbGglInoiBQk/vuCDBq7DocF1cSHw5NCJBMkFBIRdUciv+WV/3++fbjM/5NiJBYtWgyDIQPpu25EyIkprRQjSQKZFn09HnDxz7Rq+cLBAnt3Inzw9dObNPqj8QJC4KAxVVLX2sOubMrEFrvxP/U05iXLHnTthqtWgprHTRvHWTheUdE3JVYjKTPh+R0qrHdKioqKioqKioqKioqKm+JUyFiM1tRlH4ARVH6BUHIOtENejfR2Gzk3vY9Rn75KwLPP4++rg7tpz7L3btjfGFtFdFECr1GYmPzMG3DAYqdRmYX2RnyR7hwVgH/3NrFNWM2rvj4d7HJAnNnV7Cg8N1NTst1mDg8GOC7F9TzQtMwv9/YRoZJy42nl1OZZaFzNMjH/76dw+NVjM06Df/5xCIMhWbi3YFJ5/LFUjx/12Eq5mZRMt35rrZb5c1ZnGPjR9NK6X52kEuXF9DUNQh7vXytNJ/WFwZZs7KQylSM6NZRvlKRz8GXB2hYlk+e3kZo0xCfr89n/8ZeSoxmPu1w4X5ugBsX5tD4Yh8OU5Qv5eTQ+3Q/1ywv4PDmATQHfXytOI/254Y4b1Uh0zoTJHaN8fXyfA5vHWD68kJ6Do0RfmWYsko7h17qo/S0PEb2e8jINaM1aIiFE8xaW0QkECcenmqEVVIgOl3Yf/oLjJU17N/YSzQUxzMYRtQI5Nc42PJwG3PPKmHnk50AFFQ7yCm30bF1kGGblpyl+SQUsJxRAgJocowkBkKTrpMSBHau7+Tw5gGMVi0Lzisjv8qOKKnBOCcT/tEwhzYP0Lipj4YVBUSDCZq2DmDLNjL/nFJyy20ThlZBEDAtmE/xX/9CKhhE43Ids3KaVi+RSijsfroLd3+IkgYnFXOzeT17rSBJmObPwzBrJkoiiWRIC9YkEyl2beicECABGOkOErhgCbrsO0FRMNz0Sf6nVeKc6dkU2HQIqQh4JgcsyQVmTAtykPPMFIsCHSNB1tXn8deXOxgORFlbl821i4r5x5ZOfnDZDJoH/eg0IufPyCcUS7Co3MkrrUeCn20GGYNW4nv3HcIgS5S5TITiqUkG6SyrKrpzPLAbtVOqlr5K52iInV1eut2HuP2iBh7a3ctn7tnNr6+axaJyJz/e0MRYMMa6+hwWl7uoybEQTyg80zjEWChGfb6VeCzJr1fUkK2R8TcH8GglmrYMIooClfOzadzUR8WcLPRmLbYsIxv/2XSkAQpsvKeJ+tMnB+4O94ZJnHc2Gttk55tx+nQKfvdbkm43ktWKZLUe9+elcoIxSkg23YSz7VWiJg3ZKQN6WcRh0lKUYeTMaTn89oU2FEXh8nmF1OdbebpxgAtm5tPY52NmoYOZhXa+sLaKXKsenSRyTkMukUSSogwTggCiIKARBewGmdq8N+5Po30Bdj/VRffBMXLK7GQVWxhs89Hf4qV52yD1ywsorHOy+aE2WnYMMf/cUrY+2s6cdcWYM3QYTFoalhew6T8DzP7HkxzePkTHP3uxZxcyc/ViNt3bgTO/CmNFA6lEivhmN6M9PVTMzqR97wgl012IIhhtOpKJFKmEQiqZIpUEnUlDQbXjv0rsU3lnxMIJ+lo8hANxLBkmYpG0YEPjS71YnXqyiguQ5hXRsW+E0c1BFuUKDG5qpqA2g9P1Jvbe04LBLLOs3kmsc3ISnJhvof2Jzonfy2dl4m7ykogm2f10WrTE6jTQsWOItt0jrLZq+cQFMxkzCgSjSWYU2vnaWbWs3z/AL59toTrbwlfW1eKy6IjF0/Pbujzrca+yovL+YaDdQyQQR5REJI2IdyiERieRSqYI++KM9QWoWpDLwZf66Wtxk11qY8F5ZUTCMbyDETyDQYrrM9n4z8MsOK+MnsNumrc1Ulzv5JmPLWbrqJ9ARinK57+FIxnGIxsZigtkJlOcPT0XRQFFUciz56IAJq3Idy6oxx2McXZDLilFYXahnZdaR3nm4CA3LitDp5HoGgtx95YuookkF80qYF19zqT76nGH+PvmLjSSxJb2UVbWZBNJJNFrJIqdRjzhGN5wgi3tY9y7o4d8u4EMs5YfXTqD9tEYrzUmCQUWXuxxY9RKlLreveBilamYnEYS0RTNWwfpPujGVWCmYXk+iWiKpw70c9/OPhaUZmAzyJz7i5f4zOpKOkeCXH9aCX95uQNJEMgwafnCmio+tLCEv73SQZHTiCQKJFMKwViSH29o4pdXzWJljYPzQ3Ee2t3P1vYxtranBX7v+uh8cmwGKrKOVP3p90UozzQjCpA6Ki75kjkFFDhObGCmxpoOQksMhkgJCtoyO9FW76R9dJWOE9S6DxaCICCsOBeNO0Zxg5P8agdbHm1H0ojMWlvEvue7qT+9APdgiOf+dgijVcvMM4rIzTDw7OERbn/8IB9fVsYPnzzMv7b3YNXL3LSsjItmF9A9GsKik3nm0BAfP72MB3f1Trr2RbMLuGP9IULjopKbv7qSB3b2TGnjg7t6J0RIukaDNA0FkEWB6hzLFIHL4/E8jA0u5GwjSU8UQS/hf64bjvoOCQYNGlWc911jfpmTeEohw6jj8X395NkN/Oq5Vuxziql9zb6iRYs3mmLTfS2IksCMVYU4zCl2ru8kEU8ha0UioTiJWApXgYWDr/Qx76xSiqZlIOvevitJ0GqxLF+OYeZMUpEIcmbmGwqQABim1VHw618xeMf3SQ4PY7/8MuyXX46uuPhtX1/l/YmcP3UdpK2wIejeuG8dTZHTxB0XT+fTqyrRasQ3fc/X5ljRiAKJoyYIH1pYzG+eb0EvS/z9ylkEByK07x0mv8rBoVd6iIWTTFuah6vQTCLTiudiA85QEkkjItm09HrCDC7L4av375l0LadJy+JyJ7u7Pdz+xCEUBeaVZtA1FqJ9JIDNIFOTY8FxAsXRVN4aWrMBnSmKfzTCtuc70MgS05bmYbBo+d7aWrwkWVadxf4+L5lmPSatNCEcDbCyOgubXkMskUKref/6lXRldrJumUViNIxo0CBlGsjMM5P0x0iMRYgedk/aX5OhzilU3hhtRQVFf/wDA7ePFxQ44wycn/j4lIICxwNdeTl5t91GcmwM0WJBMr9JVdmUgigJjHT5adk+jMmhZfbaYoS3/gpTeQvIublkfvYzOK66EkGnQ+M4fmtljcOBZfVqlHickV/+CiWZxHXjJzC9QfKPfyzCoVf608nnpLX2REkglUz3h1RKQRAgGU8h6zVEg3EMVi2ls7LobfJQMt1Fcb2Tgy/1AzD7jGJCvijdB90EvTHsWUZSiRQ7nujEkWMklVSIhZMcerkTAVh0UTmCRuCFuw8TcKf9N0arFlcojsUg03NojKIOH9k1En++aCa/2N7BzCIHKUVhY/Mwzx4a4lNVOVPuS8o0IJpOhXCzE0/MJIPAlHVy2GJArUWtovLeYphWR8Evf0FiZIRYWzsD//d/CAYDrk/ejGXtmnftur1NbrY/3sG8c0sQRIGBVh9dB8Zw5puoX1aAxaWla7+bB3+4k+LpTu6/Zh6/3NbB7za2kW3R8elVFRQ5j/9c5oNAplnHFCUoQC6ykNTIyDnvYlE/FZV3wHAwyj3beli3qHLKZ0qRhf5wlPn5mXSMBljXkMvfX+7EE45xVkMuK6uz0MvpxYWSSiKIAgF3hK2PtqM1SMxaU/S6sYsnE4ZpdeTdfhvhvXvxPvIIY3+/k9zvfRfDrFknumkqJyFF9U52PNlJYUMGsk4gFkrw7N8OodFKzFpbRH+LF9f//Bxd+24SLjsX/aeP06uy+PCiYga9ERZWOCl2GukcPRL7XeoyIQqgEYX0uqhpmItmF7xr96CvyUC0yAhaESV21DtLFJBsqg34v6V3vOBDvuP4zKWS3rRIlGTTIWXoSQXipKJJIsF0LozefMR/Uew00jUaOuZ5XiW0ZTPE45iWLD3m50FvlEh4EQIRzvzUMsaGl+F/+mlyvvmNN/W3AVTNz+HpvzTS3+Ylt9yG+867GP7lL0n5fGjLy8m77XsYpk8t6KOioqKioqKioqKioqKicjTvK6+wIAgfBz4OUFRUdIJb887RV1SQd8ftEwEr2wYjnF41xs+eaabAbmAsGOPcGXk4TToGvFGKMoyE4wnOqs9BrxF58sAA2z1w/WnFFDvfG7d1pkXHhsZBHt2bDn4Y8kf5/pOH+ccNC9jYNDwhQALpCsN3PNvMT86tZOxvjaSC6erG0sxM9u4bxT8WYdeGLuKRBNklNqT3cXDdq5yMfTeVUmh8sY9dG7qYf04pL/6rCVknkVVkYduj7cxaW8SWh9uIhZPMWVfMy/e3UntaLnue7cY7HGbRBeVsvKeJkgYnHXtH6W/xsOjCcp6/+zCZhRY8gyFatg+x4LwyXvjnYYwWLa4CMzse72TOuhJeuq8FRVGYsbKQzQ+10bC8gB1PdBD0xlhwXikv39tC5dxsDm0eYKQ7gFYvMeuMYmS9RO9hN+27R5h/bimyTiJ+lCL0jDX56OuryczN5MDGXl74x2HmnVMKQHaJje6D6YQkRSFdnU6AghoHm8eFSbY/0cGBowJEskosLF9TROqxNlKhdPCQZm42w4E42x/rAMA/GuHRn+/m4i/NmahG9H7iZOy/b4VUSmHPcz3sebobZ76Z0Z4ATVsHAQi4ozzS6uWSL8/BVTA5sP3NBBQSMYUNf9hPbFyd/MCLffjdURZdWPaG7RFlGY4SNYnHkgx1+afs5wtJzLv/PtzBGOfffZB+XwA6Amn17DNqmdatIzWWDiIzTHehr8lAc5RDIqXAHU8emigo+8T+AawGmfNm5PPFf+/BYZL52RWzyLbpSSRTfGhhEbk2PS+1jFCZZeGc6bm0DAVYW5fNlfMLiSVSGLWnZoTkqdp3AazjlV1teploIskvr5zFnZs7SQFfuX/fxH6P7u3n6gVF1OSY+ekzzezt8XLJ7AKqcyzkxwU0QzF2HxygZlEuWx5umzhuy8NtLLqwnN4mD96hEDPXTH0+8UjymMJKYwMRMkuimF7jCJNMpne1etAHiZOx71oyjKTOKyX172aUaBIE0K8q5Ff7e1k9I5dP37ObP354Ll2jYf64qX3iuD+/1MF3L6wHBf6zr58Mo5ZPr6ykMsfC8ur/Xnsw5Iuy/rf78AylnYqtO4cY6fFTsziXxk19+EYixMMJ2veMUDE7i+btgyQT6QGybdcwiy4qp3PfCOYMA+YMA7uf7qZ9zwiQflcMtvtYeW0NT/7hAKUzXESCcZz5ZnwjYV66r4XZZxSz6d5m5p1dSioFQU8Es11PNJwABCKhOChQPvt9rbM4iZOl//a3exjp8WPPNuEeDBGPJNnySBuiIFBUl0HQE+PQ5n7C/jhV87PZtaGLsjmZRPzxCVEmN9Bb5SAzz0yiL73eEfPNhKxaouPzQoNFRm+SiYUTHN48AIDZoUPWSex5Jp007B+NMPRnP7Ovr0YnCwjAP7d20TocBODwoJ8v3beXR285jRKXGpZ8ojhZ+u6bMdoXwDsUJhFPYTBr8I0mCPtiaLQiqSRseaSNc2+ZwYv/bsLdnw54aNs1zEi3nzUfnUbz1mFqF+Ww7/le6pfls+upLkK+dCBF46Y+3P1BLvzk9P9aPGnIF8YfiXPX5k5+8ORhvnXuNH79fOvE5//Y2kVNjoX5pUfESfWyRInThCjC3JIMfrjhMABVWWYWVTiJJhS84RjnzMilPMuETS/z06eaaSiwIceS3DjDiXZPWlxPNMv0zMjAs7+Hn10xk+kF77912tGcbP1XZ9Cw6Z6DDLSlRZyCnihDnT6WXVnN5dPyuW9nH1vax/ifh/Zx4+llHOjzsX7/APX5Vj67uop4MsX0fBvfeuQANbkWfnbFTAa9EX52+Uwe3NVLIJrgw4tLOL0yXal3fmkGf7h2Lr/f2IokCnzi9HLmlKSTkGYU2mnIt7Gv14uiwEstw/zw0hn89eWOCfvbeTPyEMUTH5kpmWSksnRf1Vi0RA6NEe9OrxnlQguGae+/gOmTre8CxCIx4tEUoJBXaefl+1omPnvmrwdZ8aEaRnoD7BkXHvOPRtjw+wOs+9R0PnPPLlIK/PHFNj5+ehk6jciicid1uVa0Golmq59bVlXwzYcPEI4n+da5ddyztZtoIsmV84sYDUQmBEgKMwzoNCLVORY2Nqfnp5IoUOgw0JCftlk09vn40J+2MBpMj+PV2WZ++6E5lB7n+YSgEdHmmSHPjBJPYb+gAs/DLZACQRbJuKzqA5cw/F72XVkSSaZS6DQC3zq3jlv+uYt4UuF3B/q4bWkuhk39oICgFTGeXcq9f26cSIB87s5DrL1hGrJeIhZJcHjrMOWzMmnbNcJwVwBnvpn1v9/PeZ+ZSWHtOx9jNHb7W95X0GqxrFiBYdYslEgETVbWm1aVVzm+nIxj79HoSq3o65xEGtPzOsmlx7Iob6KK31s+jyxRlvnWxsNp+Tbu/Oh8fvxUM32eMNcsLGJVTTZ3vtKJPxrGFRN48u+NLLqonE3/bp447pUHWzntkgrisSRjRjj33j0oSnq8/sllMxgORNFqRCLxdHC5RhQ4c1oOHWMhOkdDLKvK5GNLS4nGk1z621eIJtL7nd2Qw/+eV4/LogahH83J1ndD3gie/hCb/n1krrDxniaWXFpBVqmNtkCYR/b0cfWCIsbCUX502Qz+9nIn7SNBTq/K5MJZeVzz5y1854IGzpmedwLv5N1HzjIiZx0RA9KY0sLcmgw9I/1BUuNrUuPcbLQF709B1pOt/57KCIKAcd48iv/yZ1LBIJLLlfa/vUuIOh1ibu5b2jcFtO4YZv/GtNigfyzC+j/s5+ybTt1kj5O17wqiiJwzVTjjeCBZrTguvxzzylWAgpz5+gWBUimFvc+mfQoFNQ66GscoaXDStmuUkulO2veMUljnpH33MJXzsjnwYi/TluSz/bEObFkGFl9SgZJKvz/mn1OGrJUY6fHTdSAdzxD0RBls87LkskpEUaBkuou9z/Uwc3URIV+MqgU5HNo8QPmszAkBEp1Jgy3TSNATo3FTP/7RCAAtmwcZ6w5w9bmF3HDPLhaWZfDJFRV4gjGGdAKWBdnotg6m1xYGDcOn5aBJpXh3yyG9e7yXfXdAA4Zl+Rg39k6sk8NrCgnqpFP2+amcWE7WsfdUQTIakYqK0BUVYWj4N0oiiZz97vlpR7r9PPbrvcQjSRZdVM62RzvoOZQW2gt60r7m5VdX07k/vcZt3NhHZpcfY75IMqXQ541w+xOH+Ot189+1Nr5XnJC+KygkrVrkGZnE9wwDIFpkItUZJONJfCMhrK4TK0CucmrwXvXfTS0jNPb76TQKFNRmkBiPYxUz9EhzsxkJpuNe4gmFH204Ukjq4d19OE1azpiWHs8SisJgu5/NDx2JA3vqz42s+0TDu9b244k2Nxc5JwfjzJkIsowm4/3n/3qveL/PGzILLZx7ywwkDfS3+HjlwSPxBk//pZEzP1FPNJykQykn7jAzHNjJ/Tt7+MtH5pJrN1CTY+X2ixr4y8sd7On2MLPQzqVzCvnqA3u5ZE4Bzx4aYlXNuxvPJYgC2gILjsuqGbvnECQUkAQcF1YgZ6oiZP8tvZ4QNoOM+R0I7R+LpDcKkoBokid8n4mxCJHAqyIkR3wOJU4TzxwafMPzBV58EdFoxDh7qtBSIpbk8d/sI6XIxEMPYrCcg3XNGvxPrCe8axfGuXPftL2lM1xIskjL9iHk9Xcz8stfYjp9KaZFi3HfdRddH7mOknv/ja68/O08BhUVFRUVFRUVFRUVFZUPGKeCCMmgIAi5iqL0C4KQCwy93o6Kovwe+D3A3Llzldfb71Tg6IAVszdB04CfT6+spGnQT67NgE4W0WpEDnT4+MGThylxGbnhtBJW1WZyepULk05Dvl1Pjv29MULpZInH9vVz07IypuWnEyKe2NdP63CAtvHkuaM52O8j6tLj+Fg9SXeUSDTFS0910XNUFdeDrwxQvywf5zEq273fOBn7btATZd9z6cTIVEohEUtRNjOTtl1pp5ykEQn74+RX2SeEO0w2Hd6hMPZsI8Pj4gmuQgvbH+9A1ksEvVFQoKgug50bugBIJlKkEgrF9U5adqS/3oKQrk5f0uCkY186kUJn1BBwR8ksstDfku4ntiwDzdvTRrpYJMmWh9uYf07pRHLwnme6mXd2CSM9AUK+GMZaG2OZOnKNZiKhOLufSSeEhLxRMnJNJGJJTPZ04G4ynkRvktGbZUZ6jojovKZIDYU1GTzyjyZmn5ZLfp4JjztCQBHYM35/r6IoMNTpf1+KkJyM/fetEHRH2P98OtCvuN7J7qcn/82S8RRjfcEpIiRvhncoNCFA8ipd+0eZdQwRhzdCb5SpnJc9IWbzKnkVdmSXi1bvCP2+yJH2phRu3nCQRz4yn1JRgyCLaDINSIbJwZV9njBZFh3nTM/DqJXY0+3hkd19fPS0Eu69cSGJJCRSKUYDUZxmHYvKXNj1MovLnCRSKXrcIRQF9LLIdX/dzlfW1TCv9NR09p2qfRegPNPM9aeVku8w8J89/Ww4OMg184roHguRZdFx4ax88h16rHqZbneY1uEAi8tcNOTb6B4LYTVo0PeF0ZtkjBYtvYfcU64x0ObFlmXAMxBitDeIyaZLj+PjWJx6tIbJAjTZJVZGegJkD4WmiJCoHD9Oxr7rtOjYbdHgvLYGTSBOSi9xZ9swf9nWTW2Rg5FADF84zgtNg9y8vBxRFPCF49y/o4cn9g0QiiXwhOJ8YW0VgViCztEghQ7jf53w6xkKTwiQvIp3KEzl3OwjGwSBkZ4AJdNdIIBGm05w0xrScw9REknGU+RX2dnwpwOTzhWPJokE0wl8HXtHmH1mCQc29lIxN4v9L/SSSimkEgrJeIqDL/VTMS8LQRQQBIiG4kSCCYa7/JTNzHzbCVOnKidL/x3tDpKIpRBFCHnSySyphEJerZ2uA6MU1GQQ9qfFEq0uA01bB5mzrpjDWwYmnWfj4x0sPb+MsrVFjPQGae/0Yx07MlbmVzno2DeaTtoc/xOn572THc1KSiE2HCFuTc82G/Jt3LC0FKNWQ/dYiA2Ngxwc8KsiJCeQk6XvvhlBd5R4NIWsFxE1Eode7qZqXja+sQi+4TCuAjORQGxCgORVfCMR/KMREtEEQU8UQRTQaKUJAZJX6W/14h0Jk1X0zhJ4ApE4XWNh9vV6ONTv57QKJz3uMC82j2DWabh4TgEWvYZUSuHZQ4NcOq8Qw3jVrhKXiZuXl9PjCfOjcQGS608roTbXyi+fa6FzNMSzh9JrynX12YwEYmRZdYwEokiCwJ91cZaszqPUokfrMhBNJvnSGTWUuIwYtKeCeeydc7L1X/9IZEKA5FXC/jiRYByDoOFnV8xEFAQGfRHKM83ctTW9Vtvf62N/b/q4L6ypIhBJkG838t3HDmLQSly9oJgZhTZ0GhGLXoNpPJjIpNOwrMrFkgonoiCgk4/MYbOten519Wy2tI/SPhxkbomDmYV2ZhbaiSVSFDoMmPTvXsLaO0V2GXF9pI74+DxHzjIgjSdrvp842fouQDyent9Fw8kJG9nRDLZ7Ge0NTNqmpBQ8fQFEIV01bdAX5RfPphOSn/jM0okxqCbHigB8+9w6WoYCzC128L/n1WHSSTy+v5/fPJ8W89OIAt+5oAGHSceFswr49/Ye5hQ7mFVkp2nQj0mnoXUowF2bOyYESAAODwZ4sXnkuIuQHI0gi5jmZKMttpDyx5HsOjSuD16Q5Hvdd6uzrTQN+glE4nxtXS2ZVh2j/hj/Gglw3YdrMYaS6LKNPPdQ24QAyau07xmmdnEeG54+QMWcLFp2DFE0zcmhV/opnZEWc2rZOfRfiZC8E96OcInK8eVkHHuPRmPX47i0ksRQAUoyhewyIlnf3XdgIplifqmTv15nJ5pIkmFK27y+sq6Gx/b2093oxmCR8Y1EphzbuKmP2tNyqW9wTYhCJ1MKLcMBbAaZH182k8Y+b1oQM8PI9588zGgwyoKSDG5ZWU6+w8Slv315QoAE4LF9A1w2t5Blx0G89f3EydZ347EkB17sm7J9uDuAxWkgqSi0Dgf5v/8cZHlVJstr0qIzOllElkT+tbWb608rY0PjADMK7BRmfPAS47R5ZrJunkliJIyok9BkGhD178+128nWf98PvFlBgRNBIpLg4Cv9k7alEgqeoRBF05yvc9TJzQe578qZrjfdJ+iJsO+FXqYtzePQKwNUzc+mefsQFXOyaN4+ROXcbJq2DlA6w0XrziEKazJo251eZ3qHwvQechPwREklFNr3DDNrTRHrf79/0jVikST+sSjVC3OIBONo9RKewSCuQjNWp56mLQOTRNALazJo3zNM+eysCQGSVxnrDVKVFKnNtbC5bYzNbWNUZZmZXezgkeExvnl1NdpEiqBBw/8908TXck1kWk5Nwcn3su+2joV4anCML3+oBk0kSUAn8qnHG/m/7HrIfvPjVVReywd57D3eaJzv/vt3pC9AfDx+KBZMTAiQvEo0lJjwNb/KcIefK9fWsnJ6WlDr76900u+Z7O8+FTkRfbfPEyFLgn2DYaqXFSIpCu5QnB33tbD86hpk3alZcEnlvee96r+tQ2nfwuX/2MlvL55Ow/xsSKSIWmX2+cN0jKb9uy3DAZZXu7hkdgEIAm1DAe7e2sXNyyvQayEZSXFoc/+U8/e1eCibdWrIoAmCgJytTpb+Wz4I84ZoKIE9S8+hVwamfNZzyE3lvGxeebCN4tIjvrFeTwS7MW1TXlTuotRpYsAXIRxL8ELTMJ9aWUkimaIq28zMwnc/3lsQBAx1TrI/PZukN4po0SJnGhGkD0Yc2btJrztM/nHMo0n6YkhWbTqexpleDyfHwkQC6XyJo0VIil1GRgIx/JE4lmPEGyiKQnDjixgXLULQaqd89txdhxjq8FE1N8rep/oI+32YTl+GoNXi27DhLYmQaPUaiuudjD7xNCNbfont/PPJve17CKKIdd2ZtF98CT2fuoXSBx9A1J+a63sVFRUVFRUVFRUVFRWVd59TIVLnEeDDwO3jPx8+sc157xEEgVy7nkf29LG43Em3O0TzoJ8lFU5KnCYAdJKIXivz+43tGLUiF84qYFreeyd24A3Fuf3i6TzdOMgf7tmNKAhcvbCI8kwzidRU2+XqumxsRi3+aIKQUcPISGCSAAmkRSckWa1yeKKQNAI6k4aEJzaRABwLJ9AZ08PGxLZIErNDN2lbPHpkP0VRECWBVEJBM57oE48l0eoloqHEUedOojNqCPlik86tH6+wfWRbAkfOkWBLQWAiePfVc8taiXg0STSU4OUHWrFnG5l3eQWPdI9i8qSYp3WhJJlo44FNfcw5o5h4LImrwEzXgVEaX+pn/rmlHN48gMGSbkN34xgVc7InhE+0egl7rhEFhZc3dDH/nFK2/qedijlZ6I0yIe/khD1ZrzovTyZEjTjR5+LRJFqDhkggPmkfjfbt/800xxi3NLKIpHn741nNolw8gyFadgwhSSJzzyomZ7zydZZBy/+urmZLj4cnm4ZIphQkUcAtQG25/XXP6TTJXDGviL+81I4vkmBRuZNbz6hCJ4s8tneAHz/VRCKlUJFl4pdXzsas19DY72NLxxgOg5bSTBM/fbp5IvA9w6QlGE1g0cu0DPnpGAlhM2ioyrZiM558yXrvF0w6DZ9eVcGuLg+xRJLH9w/wty2d/M9ZtdywtJRBX5QtbW6e2N+PLIl8ZHEJNTkW8ux69vf6eGxvPx/LdCGKArFIAnv21CB2nVFDTrkNAQFHnpHZZxSxY30nIV8Me7aRuWeXoDNIzFpbxGhPgIw8E4IgsOupLmasLDwBT0XlRJNMKTzQPsKOLjd5Nj0zixxkW3WYdRIaUcBmkKnLtfGDDYeJxFNkW3XcekY13WNBcu1GnCaZJ/cP8MT+AWRJ5JaVFVy9oBjHf5FQe6wxGZgIKLJnGwn5YkgaEUGEheeVpUUmBGhYls/29R3klNowmLUoSWVijnE0kiY9R9HoJJKJJDqTZiKx79X5iygK6M0yyXgS9BoUBURJRKMTEUTNB0aA5GRCkgWUMICApBFQxvO54uEkerM8SQBHENL/EvEU+tf2RwWGBkJYC0wEdRKNWwcpqHYwc00h+1/oJeSPYXboaN01RN1peeza0EU8lkRnlCdETl4lKQncvv4Qv/vQXA4O+Hhodx+5Nj03LC1lTpEdrdpPVN4CgiRMrL9SqRRGi4ySUpAkEZ1RZqw/iCQfe44rCFA5P4ewP0ZxvZPEa8Y7SFfi0byDeS1A06Cf/3lwP1s7xsgwablhSSnJlMLSCheJlMKsIju/eb6VIX8Ugyzx+bVVkxZ7Oo3E0ionm9vGSCnwkUXF7On2cKDfy+wiO91jIV41P+g0GgZ8Pi6alY9Rq+Gxff3YjTKjZg23Pr6fOy5u4Oz3eTXxkxlREhFFgdRr7EWSLJLUiPzvgwcYC8VZUuFkeoGNWYUOnjs8WZO4yGnk7hsWMBqMcfeWTv7n7Fpuf+IQSyoyWVblomnQz4g/SlW2hYMDPu7e0kWhw8B1p5Uyq8gx+VwZRopek9T5anLxyYxk0iKVvv+ER056UikEQYDUEbvS0ejNMoI4dZwUNCLfu7CBL92/d2JbcYYRRVF49uAgFoNM86Cff23rpsRl4sJZ+Qz6Iph0GurzbeQ7TCypyMITjlHmMlOdnRZMrcuz8vAnF/PInr6JyoeP7unn7i1dXH9aKdcsKCIQTfJU4wDBWJJQNMG29lGGAzGKM4xU5ViQpeNrfxU0ItocM7w7hcdVjoFJLxGIxtnX6+Vf27rRSAJnNeSRbdUxrBcwh8CmpI4p8qg3y0RDcfQmmVg4MfGT8TkwgPFdFnhQUXm7SAYZqfj42B0VRaF1OJC2aRplqrIt2MZFnUf8UZ45NMg/tnRRlmniw4tLmVlonzj2vJn51OZYiewaIxFLIeumjqd6sxZFURDEI/Mep0nL0goXN961k9FgDKtBgyQIfP3sWn5xxUziKQV3MEo4nsITitE2MlXofyQQm7JN5eRCEMBgmTp+6gwaBEkgx6if2G95dSbhWJK/b+7EadKyuNyF06Ll0T19rK7LJhxPTDnPBwWNXYfGfvLPzVVU3gqiOO6XfI3/WI2HeP8iSiI6g2YixuLYP2Vi4eTEPPzodWY0fCRWYrDdx2CnD41WJBFLTbqOAPS3eympdzJzdSFbHm5n0UXl434IgWgojtWlxzcSIZVKoTdpji0AL8DhkQD1eTbOmJaDooAvEifDKPOhpaV8asNhOkaDWHQavnhmNTbDqRBuduLJNGtZVZ/N5Q/swR9NUOI08ZWzazGq330VlQ8E8lH+GFEWkDQiycTkcfxVX/OrCKLAYDDGLY/tx2aQ+czqSnLtalLoOyHTqkOMCvS2eOl6jQDMq4VJVFROJqpz0nZ/oyzhURR+uL8HbyjOwjInnnCMAkc6Vrw210o8qfDl+/cRiidZUZ3J9y5smLDnSpq0X/i1HMunoaJyqqORRVIK6EzH8NmZ0t8DvVmD1SijEQVEQcBhlHGMi5A0D/q5f0cPL7aMsKwqk/JMM7u7PUSTCs8fHuLPH573ntyHIArIWUbkrA+eEPG7Sa8nTPF4ns3xIOmNIo0X5tNkpOdnidEIkYAfWadH0hwZe0vHr9s5GqI+f2o+T6y9nXhfH86Pf3zKZ7s2dNG0dZAF55dhc/Wz9ynwDQ+RU16JackS/E89TfZXv5r2Wb8J5bVmQr/6O2JJBTn/++0JP7ack0P+D75P1/UfZeyvf8N14yfe/gNRUVFRUVFRUVFRUVFR+UBwUlnTBUH4J/AKUC0IQo8gCB8lLT6yRhCEZmDN+O+nJN1jQR7d08dDu3rY3e0mHHtrQWNaSUCWRGYU2Hh4dx9doyGuXlBMIJJkdpGdFVWZ3Lyigi/et4eNzSOsPzDEJ+7ayQtNQ29+8uNEKJ5IG+N29pJIKcSSKf7yUgcdo0GKMgx8bGkZRq2EKMC6+hxW1qSrrRhMOjSSSEauCetrqmLOP6cUe9bxM/6ovD2MVh2LL64AIOSPkZFroqtxjMp52SDA2ECQ3Aobw11+8qrsiJJAb5Ob8tmZBD0xLE4Dsk6iffcIdUvySCZSSBoBg0WmZfsQDcsLAIiGE9gyDbTvHaZ2cS4A/rEImUUW+ls8FE93ph2snT6KpmXgHQrjKrSgkUW6DoxSvXByRkPAH6N6dcGkbZJOxK+kWGEyUdoapX/fGE/+cf/EvaDAjvWddO4fJbfSzkW3zmH2GcUICqy4ppqKudkYLDKDHT4kWWTuumLql+cz/8Jy9j7Tw/Sj7yXLQMfeEWoWTW6X0a4lp/S9EwZSeXNMNh2LLy4HoGXHIA3L8id97sgx4iq0vOXzRcMJ2veOYHXpySyefNzMtUVkZL39oACby8DKa2u58hsLuOIb85l9Zgl6s8xob4CDD7YTeqib0wcUfnnGNGpyLHz5zBoKHW+s3C2IIj97phlfJP0OeqV1lN1dHgZ9Ub7/5OEJ4aiWoSC3rz/Ezk43giCwqMxFeVbayXLtohIAVtdmsafbjSgIbG4d5ZxfbOKGv2/n0t9t5v/+08hoMPq271nlrWM3aqnLteAy65iWZ+W8GXnYjDICMLvITjyZIqVANJHidxvbiCcVPvuvPWxoHGRj8wh9BhjpDWDJ0JNTZpsklKPRilTMzebQS/3sea6bvc/0YHLoWPnhGlZfX8eC80vZ/ng7zduGiIbihANxDr7cz66nuqicm4U954NX6fqDTjSR5M7NXfzk6WY2No1wz7Ye7t3Wze0XTWc0EOMHl0wnkVQYC8X4+OllfG51JUsrM/nzS+3MKc7g9xvb2Nvj47F9AxP99ocbmtjWMfZftcuebZyYX7xK2axMNFqR06+sonx2Fo0v9jLv3FJKGlwoikJhXQZLLqlgx/pOpq8opGxWFkNdPva+0MOstUWTzuUsME8EitWfnk/rjmHqTsujfc8Ijlwj4UAMq0tPPJqgYXkBGlkiEU+RSioIIhjMWmoWTm6fyntDTqkNk01LKpnC4jIg6yVsmQYGO3wU1DpwDwbJq7QD0HVgjKr5OQx3+Smd4ZwkbiPJIuWzM0nFFboOjHLapRU4ck3oTTJn3dSAa0kW01YXEg0mGOsPsvjicgpqMqh/zbzDaNcStkj84NIZfP2hfRweSFc56vdG+P76w8wrcRKMTRWEUFF5LfYsY1pYR0kLmtYuycc3FsFk15KRZyLoiYKgULVg8nqlfFYmOqOGQy/1k5FrorMxvTYqrJ0s1jBrTSG2zLcf+BKMJvjfRw+wdXxcHwvG+MGGw2RZ9dy+/jBFGUbu3d7NpXMLuWVlBTcuL2dXp5v21yRcZpj0NOTbWFuXxbySDOrzbVw2p5ASp4nPra7imoXFAEQTCW5dU4U3HOe2Jw6xt8fLQ7v7uGP9IX5y2QwWlJ2aFYbfLxhsGuqXTx4H86vsaLQie/1BbllVyW0X1bOv18ddm7v40plVE8nAAGvqsllYlsH0Qjtzih1cOjufXV0evnZWLdXZZjY2jfD//nOQ2544xCN7+rj13r3s6vLwyJ5+rvj9Zhr7fO/1Lau8jzDZDIiygEYnUrMoF/GoKmSyXiK/0k7ta2xCJruOUZ3Ats4xpuWm7QVajcD/nT+NK36/mW8+coDH9vbztQf3s6fHy8O7+7j57p3MLLTTUGBHEAQyTFpOq3BxdkMetbnWSQljGknkty+0TbrmnGIHI4Eo6w8MsLvbzSdXVHDl/EJ6PGEu/d1mbr57J+f+chMbDkytDKdy6hGLpRjyRbEZZT6+rIxb11Yzo9BGlkXH803DGEwy3sEItUvyJvdZnURJg4uOfaPULs6lfe8IVQty6Nw/StX8HLoax5B1EmUzTo3qmCoq74TNbaOc/fNxm+ZvX+G7jzUyNm7TvHdHN1++fx97erw8uKuPq/6wmcMDR+YRZp2GWcUO8mscCKKAVq+ZFOwuCDBjVQEZuWb+eaAXgIosE7+/di7D/hijwXQSui+cINOiwxuK88X793LT3TvZ1DLKAzt7uXNzJzeeXjal3SUu1Xd2sqM3y0xfWTDpna01aMjIM7HXH8QdjiEI8MW11bSPBLlj/WGePzzM/Tt7+dYjB7AaZKbl2RCBw/1+QtEPrhCJisr7BVehhXlnl07aZnXpycg1v84RKqc6JpuOxZdU0LprmGlL036DV/0Hdafl0bZ7mLoleen594Iceg67qZibNZE82t/qoXSGa+Jd0rZzmIYVk+Mgskos+Mci9Bx089L9rfhHI6y7qYFYOIGzwMTcs0rY93wvVfNzWHhBKTnldirmZjPQ7qW4YbJ9rPq0XB5uHeLeHT389OlmfvZMM395qQO7Ucv6/QOcPzOPW9dWc8PpZezsdDMWVEXR3gqiILKry83HlpZy69pqzp+Zx/r9A8iSWsBGReWDQGaxhcyi9Lte1AjMWDW5mEtOmXWKIFnF0lz+sLMLAG84zv892kg0MbUAnMqbIyBgtGmn+CNyym3Yc/QYrargocrJRbnLxMeWlvE/59Ryz9YuKrPMLK5wgQBlLjNKKh0v4I8k+PFTTQRjSRQFnj00zIbGQVLjxR2sTgMzVxdydG66zqQht0KNXVV5/+HMN7PxwWamryicVABKZ9SQX2Vn33M91KwpojsQ4Rtn1/KLq2bhNMkUO40M+6N87t+7+e3GNg70+fj1863cuaWLDJOWzW2jfGhRCbu63W9wdZWTGUVR6HWHybcfvzjWo0VIRKOMaNSQGA0TCQTQmyfHjL8qftIxOlVkHCDwwkYAzEuXTNre1TjK5odaqZibxZwzi7G60vk2vpF0TpBlzRoS/f1E9u9/S222bH4AXczL6KqPI+onx7CbFi/GvHoVo7//PYmRkbd0PhUVFRUVFRUVFRUVFZUPHieVtLGiKFe+zker3tOGvAv0ecL8+KkmZhY62NQyjFUvs64hl1U1WW+qRJpIpehxhxGAjy4pJZZMEY4n0WlEcu0GfnrlTL77n4NHFwgG4O+vdLKmLue4V7M8Fvk2Az853DJl+4vNI9xxcQN6WWRReQaBaIIcq57aHCsAGq2EbBQZ7Quw7Koq3P1Bgr4YWcVWJFmt9H2iKW5wccanpjPY7mX+BWWEfDFi0QTrbmpgqDtA2ZwsqhfnEvBFOfOmBoZ7A1gz9JTMyMQ9GmLNx6Yx2h/EYJZZXZn+/4oP1+IZCiPJIms/Uc9Qj5/Fl1bgd0dJJFOceVMDQ91+Zk93EgnGCQVjrLupgeGeAPYsA+XzsnGPhll6XS3+oTAak4blNQ6Ge4MYXDp6xAS7xkLUX1yC0Z8kaZRoI8Fwk5fWJ7uZf04pL9x5iEQ8RcgbZdGF5YS8MfR2LfnVDuyZRsgEY44BUQSTLp3odOGtsxnq9JNMpDBkG/D7Yrz4uwNAWk174QXlRCNxFlxcjs8dJRxNsOYT9fR3+bDYdOSU2bBnqyrVJxtlMzM5/3N6Btu82HOMnPOp6Qx3BzA7dOSW27A637pwSOf+UZ760wHmnlXCaZdUMNYXxD8SwVVkxmCREbXv7JUrayUy8o4ElYcDMTb86QBjfWnj9GiHn8BQmJ/cXE9KL1LoNJFMKUjHqmAFDPoiU7ZtaBzkkjkFU7bnWfV4QnH6vGGah4LMK3awqjYLoyzxiytnEYkn+dOLbQSjcb7+0D4i8SMVW+7f2cP5M/M4vUpNVDletI8EOdjvQxSgJttCvzcCAiSSCp9fU8meHg/JFOzodLOnx8v5M/MQUVjfmHZA7Opyk2XV0TkaAuA7m1r4fyuqmGY1kowlWfWRWrzDYURZJLPIwt6nu+jYNwrASE+Ap/7cyJwz04m9Wx9tB8AzEKZqQQ4Ny/PxDIbJLDKTU2ZHZzg+1WhVTh2aBwM8vKd34netJHLl/CJCsQQH+n0MeCMsKndSYDfy1Qf3ATC9wMbKmmyaBv3MKrTzcutUZ9ZLLSOsnfbOS6hr9RoWnF9GfpWd/jYfJpsW90CIF//VzNLLK7FlGTj/s7PILLKgNWhIJVJ0HRzDPRCiZlEuh17uJ7vUSt2SPKLBBI48I/YsA8PdASxOPRm5Jnqb3Ky5vo5EIsXSK6oIuiMsvrgcnUFD0Btj4QXp/6dIkZFrIpVUSKUURBHMDv3bErxSOX5kl9oQZZGgO4JeK2Ewyyy+pALvUJhUIkXV/Bzi0SSV87IJeqLkVdmJR5KIGjjzxgaGOv2AQmaRBUECQRZxFViIBOLp30WBw1sGyay105SKUnhZCRpfEmOmgef+2Ig928CiC8sJeqLozTLxXD1t0SjGZIrusfCktkYTKRoHfGRZdGxqGSKVgmRKQaeRiCaSRBPJ8TmrgkYUqcq24DSrQXMfVCwZenIr7PiGw4CCKEsUT3MSjyeRJIFVH6nDNxyh9rQcCqrtjPWHcOQYEDUiL/67mZpFufQ2eZi9poitD7dhzzUy/5xSgr4YZoeOkunOd1Shd8gX4aWW0UnbFAUiiXSw3KA3wqVzC/nhk4cnBHeWVLjo90YIROJEEikEQUBRFA70+QjHU3SMBVlY7uTuzZ2cVu6ixxOmczTI366bR32+jc7REF+6f9+ka/oiCbzhOHrNSaXJ+4HD7DBQOsNFZqGF0d4gtiwDFqeOoU4/jnwd/zkwAAp878J6fvt8K6Fokn9/YiF9nghGnURVlgWHKV2dymqQuXF5BZuaR7hj/SE+saycZw+n57+ra7N5YGfvpGtHEyn293qpy7NO3h5PcrDfR8doCJdZS12elQyTOpaqHBu9RUJRZJJxhRXXVOMbjSCKAq5CCyF/nOEuP2s+WsdoTwC9WcaWZ+LC+3agAH+4dg597ghlLhN3PHkYXyTBJXMKuHd7z6RrhGLpPlmdY51y/bbhAIcG/IiCQO24qEnsqAqqTpMWp0nHL55N22pHAjG+/+Rhfn31LG6+e9fEfikFvvbgfmYU2ilwqDarU5lQIoFOlmjr9lCTa+X5pmHy7AbW1edgkiX6UnFCTR4Kau2su7GBoU4fopRe+8djSUqmu4gEY6y5rg7/WIRVH6kFRSEStJJbYcdVoCbGqrw/GQtG+fqD+4geNYb+e3sP583IoyLLwm+eb520fyiWpLEvPTY3D/o5POjHotOQo4is+FANvpEwy66qJuiOEg0ncBWYScRTyJkyA21x7v7ofPJseoYDURQUPrWyAp1GZEenmwWlGXzn8SN+vru2dHHtomLW7x/g+5dMZ3unh20dY1j1Gr557jSm5U19P6icXOiNOmRtiDUfnYZ7IIggQkaemVgoTpHTyPYBP//46AIC0QQ/f7Z50rGBaAKdRuSh3b2cMS2HLIuO5qEAMwrtJ+ZmVFRUjgvxeBKNVuCMj9Uz1OXDZNVhzzEQV0WG3teUzXBhtutwDwRZ9eFaQv4oqz5cS9gfm/i5+ro6Qr4oa2+YRsAT5cyP1+MeDKE3yeRW2Lnoi3Pob/Eg60VMdj16o0wkGE+LZQvpmJtpp+djc+kpmubEmW+mpMEFQE6JjdwKO97hMAazzBO/3Ycty0DdaXloDRKl010E3FGyii3g1LHzN+2T2r+yOgtfOM7cEgf93gibmoepzbNRnWOdKHih8sZEE0mqs610u0Mc6vcxtzSDuSUOAm+xaJWKisqpjdVpYPV10+hv8RALJTFYZFZdW8toXwCLy4BGK2J1GTjjY/W4B4JYco38Zl83e/snC2n3e8KvcwWVNyIWTxJQEuSWWXF9pJax3gDWTAN6s4yiiBgt2hPdRBWVSUzLtyEI0DYS4pqFxQz5o2wct/VqsgXq89IiIm3DgSnHPnNwkJuWlZE5Hn6STCRZd1MDgx1+tDopbadKqEVPVN5/GCxaVl9ZS3+ze8L/oZElMgvNxBMK+fOzOBiN8MSeQbIsOgRBoDQjg63tY3jDcfb3Tn7n7u3xcvPyciRJJBBJkPs6glWtwwEOD/iRxn11RU5VNPpkwxOKE4wlKXiToo5vFUVRSHhj6OuOzB80TgOJ0QiRoB+9ebIvrcRlRBDSMZXHIrDxBXSVFcj5R8TSfCNhNvzpAI5cEys/VIsgCFgzx0VIhsdFSFauoF+jwb9hA4aGhjdsc6y7G+9dfydQs5TDIw4WpZRJYj0AWV/4Am3PnM3YXXeR9dnPvuXnoaKioqKioqKioqKiovLB4aQSIXk/s6/Hw+IKF9986ACLK5wM+aN85p+7+Pv185lTkvGGx0ZiCqIAgUiSHz/VBKQrqN1+Udp4YDNo0UhTk821GpH3SsYj166nKtvMzq7Jqr+VWWZ63CGe2DeINxwnz27gni1dfGJZOcuq04aReCRF5wE3TVsG0JtljBYNu57swplvoqDKgaxTu+mJYmu3m88/tJubllfwdNcQ+3q83LisjK8+eYCzp+chjnl58kA/t6ys4LbnDzK31ElxQuGuzZ18amUlv9zcTL7NyCJnBr949hA3L6/kzt0dpFIKF8zK5wdPHuC600p5rKWf9uEg1y8p4cvrG7lkbgH+gTE2tY5Qnmlm155OfnDJdLYP+dncPkJNtpUHnz/IZ1dV4YvE+c7j+9GIIgaNyNfOrmVNkY0Hd/ZSnm3mO48d5BPzi+ndlK64nUopJMaFEtz9IV55oBWDRUazJoeXDvdzlk5gf5+X377QSo5Vzw1LypA1AmPBOL/d2ko4luSWlRVk9R+p7NPf6qW/1Ysj18BLQow/bO1Er00ntX3j7Fo6owm+/fBefn3NbDWp4yRD1mkoqHZQUH2kwntxvettnycairPjiY6J3x/60S50RhlXkYldT3eBAld+a/5xqWbmG4lMCJAcuX6C/m4/jUqUHV0eHtrdx9pp2ZxVnzPFwWE+xpha6jJhNx4RjdBpRC6fV8iZ07K59d69OM068h0G7trSybppOaxryOGHG5rJsmj5zOoqYkmF1uGpit0jgeh/fb8qaQ72+bjqj5txh+JkWXRcu6iYH25o4paVFcwptqMRRUqcZr76wD4Wl7sIxxN8/t+7+dVVczDrZR7Y1UtBhpHwocGJc/qjCX6xo4vfXDWLmlwr/d4wd3YPYUTDArdIx97JicLJeApJI9K+d7JQRNOWAWRZYPk1te/Js1A5OUkkU2hEgXgynS3zlXXVGHUabr13NzMKHFj0Gn75bAtfXlfDmXXZrG8cZG+PlxXVWdTkmHmpZZQyl5mm1zjeKrP/e4EOk01HX4uH1p3DxMKJiYSew1sGuOgLs5HkI9XmhrsD7NrQhayTCPvjQHrcLZ+TRen0tKhSdrGNynlHzp9fdeQdonJqkVlgIbPgnfWx4mlOEskUzzcNsavLw2yjkUOPtiPJIjqDhpA/BgrYsgw4io186oVGvn/JdPp7QyQTKUZ7g7zyYCtag4ZkPEXpVWV8/6nD3LqmmoduWsQje/v4x9ZuqrPNrKvPZVaxnX3dXiw6Lf/Z00ttno3OEQ8lmWY8oRitQ6PMLnIw4I/Q6wmzvDoLlypE8oHF6jRgdb6FQIoq8HnCHNrUz7b/dADwygOt6M0yepOG/jYv/W3e8aruEtFwgow8E678t/+9Mes15Nr0aRG1o9BKIqdXuVhSlcmX799LeaaZNbVZZFi0GDQSdr0GbzSBwyghCRJ3PHmYfk+E6hwLD+zsxWnScfOKcn7yVBOBaJIr5xfiCccZ8kcZ8IXRiAKvnZEmFYW/v9LBVQuKsRvVANMTgXcwTO9hD9uf6MDq1BOPJYn44ygKGM4vYE+Ph/o8Gz97ppnPra7CG0nw82ea+cGlM8iyThWKLMtM26OCsSSx5JEk4ngqhfYYgjOCAIFIHLP+yBro8X39fO7feyZ+v3h2Ad84p1btIyrHxOowYXXAoc39PHfnYSRZRJJFMvKM6Awy7XtG2L+xD0uGjkggQUahiYZcG4F4ghcODzO3xEEkkaJxPJkgnlTSffU1A5YkTu2/jX1ervrjFjyh9Fw126rj79fP55qFxfz15Q4AFpc7efrg4JRj9/X4cJq0hONJPre6kmyrnkFfhJCa9HhKc6jfh14WiCWSVOZY+NvLncwpcXCwz8cju/v4+ZUzMcdEOrv8eIZC9Bx0Y800oCRT+MeiFDc4OeeTM070baionBD8kQRtI6Ep24f9UapyLMecR0iSyJ5uD1f9YTPBWBKDLHHn8jq23NuC3qRBlESi4QQGi0zp9Ez6mj3El2fyr23dPLCzl99/aDYKMOiP8uvnWkgpcNGsfHQacUqhgScPDLCsKp34++ePzKXfG8EgSxRmqD6GU4XR3iAb72lCNkqYbTq8Qx2kkgorbq6nIsvEA7t7mVVgRyuJkwS+ASx6md9dMxt/JAEKjAZVW7uKyqmOZyDEc3ceJpVUcOab8HsixIJJllxWSVGd80Q3T+VdQtZpyK9y/Nd+hOxSK/FYkkd/uhujXUvAHWG4M0AqlZ5A6M0y01cU4Myf7IvWGo74wrc82gaAdyictk3rJSxOPRd8fjZ6k0wqpfCXj8znW4/sp2M0xFn1OVy/pASAB3eNsbVjjIYCG5uaR4glUnzngvr/6p4+KBi1Gv60qQ2zXqYww8g9W7tZVpVJXa4qKqei8kEhI9dERq6JnkNjvHRfWjTY6tIT8sRIJFKsvLaG2sV5AHSOBtn77NREVataBOYdoZc1hIcjPPvXg4gakYxcI2PP9ZBKKJz9yem48lThXZWTi5ahAL/d2Ma1C4tp7PfzmxdaWVDqpGnQz3/29vHLq2YDkGmZGgdQ5jJh0adjAv1jYbb9pxPPYAh7toFoJEnYG6NhRQEl09RiYirvPwQEtj/RxVhfuvhFIpok6I1RtySP5Gw7/+/Bgywsc9IxGuTRvX38+qrZ/Pr5Vq6YV3jM84XjSX76dDN5Nj1fWFs15fP9vV6u+uNmfOG0fy3Xpufv188/LjFuKsePHndaxO2/jdlXFIWwP07EHSEZTyLZjozBGqeeaIePSNiP3jz572/UaihzmTjQ551yzmQgSGj7DjKu/dDEtlRK4em/NKIkFdbd2ICsS8cz6k1mZL0B30hahESy2TAtWIBvwwYyP//5NyyEPPT9H4AkYbvp04QeHKK/1UtepX3SPrrSUiyrV+H+5z24Pv5xRKPqf1BRUVFRUVFRUVFRUVGZjFr69T0iz25gR4ebm5aXM+CNEIol+czqKg6+Rrn+tQx5wyRSKVbWZE1UcoV0xeDvrz9MvzdtJFlenYVWOvLnFAS4fG4hGum9+RMnU1CbayXzqES3AoeBUpcJdzBOVY6FHJsenSwyu9hB20iQsfGAOQEBgyXtLIsE4oz1p+/J4jQgvkftV5mKOxhje8cYH1pUzKN7e6nPs5Jp0fH84WEum1vEMwcHybLqqM6x8sT+IS6eU8j2jjEUBOaXOnl4dx/nzyigfTTIUCDG6rpcHtjVy+raHIKxFAcH/Jw7I5+Hd/cxpzgDk17DK21jXDKngCf29VPsMlGcYUQSBa5dXMz/e6wxnZCkldnf5+Mji0vp8YS57YlDBKNJKrPMXLmgiO88dpAHdvSSa9PjiyRIjAfeKKR/iuJUg1syoTCrJAOdLPFK6yif+9cefOEEC0qd3PD37ezu9nLz3TvZ2+OleSjAF+7dg8Y4VchB1mtoGQsSS6ZYWpHJNQuK+dOmDjYcHOKCWfkc7Hvj77vKqUy6Kjsc6WPRUJzeQx5QQKMVkY5TtXVJKyIeQ3jKYNJg1WsRRYGdXW5uf+IQX39oP75wfNJ+Fr2GeSVHAt10GpEr5hVi0Wu4cn7asfLFM6p5qnGQbneY65eUkmPT0zIUYG1dDpIkIAkCF87KIxxPsrfHQzKlsLRyqnhLsVM1SB8v7t/Zg3s8yey8mXn8fmM6ULDUZURAoNcdorHPy6dXVTISiOILx/n8mmq2d45y0ewCfnbFTIozjLjMk5M2r5hfiDucfh83DfhJKArdYyG0emnCkXE0giigN00NcDHY1ET3DzrFTiOXzU2PIbk2PdF4kl5PiFvX1gDQNRbi2sUlHO738ckV5dz7iQUABGMJzqzP5RdXzeITp5dNEkSqyjazpOLtC0MdC6vTQDSUmJTQY882IrxmrinrJBKx1IQACYDOpHnPhP1UTi0ODfjo90To84SJptLJQsl4ipAvLUACIAgCWo3Ijy6bwVfu34siT+5zsXACjVZkMBTn6vnFHB70owgCVdkW/vzheaysyeLeHb08sW+Qwgwjfd4wMwrtGGQJu0lLKJpgX4+Hfl+EoUCUXJueLW1jdI5MFQdTUTkmSUgllEnv/UggTiKWmtimpBSioXTim1b/zkRCMy16vndRA5qj1mPnzsjl7Ok5/PaaOVh0EtcsKOJjS0uZXmgnmYLNHWPs6fVi0Ej0uKOMBmPML3Uys8hO06Cf6QV2llS62NPtYV+vlyyLjq3tY0TjSdbvH8Cq13DVgqJJ7ci16cm1GrAatHSMHLvijMq7jygKaLQSKGmxr7AvLUCiN8mU5JhZVOaiaTBAdbaFUCyBVoQXmkc48AY2tJxxcRLDUeJiTx4Y4LK5BZP2sxtlBrwRPvznbWzrSIuVdo+F+NYjBybtd//OHg4P+I/XLau8T0kmUmgNGuLRJJFAHM9gGKP1iHCNfyxKPJbE6NTjjcS5fG4R84oz0EkSXWMhThuf6z6xv58r5k8er1xmLdPypiYk/Xtbz4QACcCgL8qGA+kKh988t45peVbq8qzkHkOwJ8uqI8eq446Lp3Pv9h6+8fABWoaDtAwFCETiU/ZXOTXoHA3hDyfIMOkIRZOcOyOX1qEAdqOWz62p5GCfD1kWiEeTmMYr9vmGw/jH0rYAa9bxqQCnonIq4jLrOK18atJ3sdNElkXPrWurJ213mrTU5Vj4w4ttBGPpyrHheBJhXJA8EkwQ8sVIxlNodRrC/hh6i4bhYJRbVlYyLc/K4cEALxweJhJLcMfF0zFqJR7Y1UuWZeq47TLr8Idj2AwyFr1MVbZFFSA5xdDq03PTeCiJuz9EKqkgCOCNJ3EaZR7d3Uc4npyybsmy6BjxR2kaCvDjp5oIxBIUHqeKnSoqKicOSSNgsqfnY6O9QWLB9LvkWL4YFZXXQyFdnEKUxAkBEkjb87SGN7bbme2TfXmxSBKjVYtm3GYtigJLKl3cd+NiNn5xOT+8bAYZBi2JpEKWVceyqkyaBwMUO41cOrcAXyR2rMuovAZ3KMbVC0socBhpHgywsiYLq14mlki9+cEqKirvKyRZRDO+fvSNREiMjwNH+10kQeCahUWTYkAXlzsxqQXc3hHuUGzi+aYSKUa6A6QSCqI07qNQUTnJ6BwNsqDUidOso3ssxOVzC2kfCaDTSHxmVRVDvnSxB6tBpiHfNnGcUStxzow8xmsGIckiJnvaV+EZDBP2pudtJqsqvK/y/kTSCpgd6fWOdyhMcLzPmx06mgb9XLOwmK6xEIIg8IU11Qx4w5Q6DYTjSRa/xj68pMJFKJper/d5Iwz4osQSSeLj721FUbh7S9eEAAlAvzfCM4eGUDm56PWkBcgL3qFdNRZJsO2xdu78+iv85Uub+Odt2/mPN8HjG7rY93wPyXgKjctA0hsl7PNhME8VoWnIt7G/d2qMQ2jzKxCPYz592cS2Pc9009/q5fQrqrBnpf0AiVSC/mA/wUIdB9wHOTB6gMNjh/Gsmk3/WBeD+7YRSUQmYtePJrh5C/6nnsL18Y9RsqwGSRZp2Xnsfppx3fWkvF48Dz74jp6VioqKioqKioqKioqKyvsb1UPxHjDgCaKgUOoycdsThya27+h08/MrZr7hsYIIY8EY4XhyymejwRiBSAJsMD3fxh0XN/By2yiJpMKSCiezCu3H+U5eH7Nexh+Jc/GcfHQaCUFIV5HTiAKJpEIypfDsoSFah4PML83gktkFDPujZJh02LKN5FXYad46mE7YAzSyyPQVBcctaV/l7ROOJwjHU/x+YxufWVXJtx9pRBQFrllYzHceO8gNS0v58VNNuINxPrO6km88fIBL5hRw9+YuDg/6+eq6Gr50/15Or3TxYtMIm1pG+MqZ6W1V2WZ63WHu39nL59dU8T8P7cei11DqMnP7+kPcvLyc2x4/SCSe4sbl5fzvo41cs6CI321so8cd4ktn1vD1h/bzqZUV+CJpY+6q2izuWH+YaXlWAtEk33+yiS+dUY0kCmwf9PHJFfns+08nQW8UZ76J0d4jiZlzzi3hV1s7cAdjvCoKfOGsfH7+bDO5Nj2NrxEPiScVOkhgyzLgHUqL5oiiQNXqQr56/04yLTryHQZ+/Xzr+BF+trSP8osrZ7/rfzeVE4POqGHuWaU89acD+EYjZJVYGOo4krC24LwyrK7jEyTcHolQu6aQA+u7JrblzXLxWOcIlflWCo9S7n6xeYT2kSAzjnofWPQy+XYjS9Zkkkim0IgChwd8XLmgiK+fVcvVC4v5xTPNTC+wk23R873Hd+MdFzJpGQpwZn0Oskbk6w/t5ytn1oy/1wS+fW4dn/3Xbvb1+jBpJf7n7Dq1gtNxQlEU9vUeUUQ3yBK+SAKbQWbAGyXHaqB5MEBBhpFvP9o4sd+ubg/fv2Q6PZ4wkViCHJueT6+s4KXWETyhOLOKHdj0Ghr7/VgNMju73JRnmfnPnn5ufbyR751RSuMjHRPny692MNThI7/aTlfjKKlE2nkh6yXKZqiVMj7oOEw6LpiZR65dT75djz+SxG6U+dy/9pAcD4Q9NODnlpUV6LQS7lCM6xeXsLDMiSAI5NoM5NoMPHjzaTQP+pElkeocC3n24zN2lkx3sefZ7glxEY02Pdd8rThZdpkVS4Ye/1hkYlv96flYnGqih8pk9vZ4+N9HG9nR6aYyy8za6iwqFmTTsmVwYp+KOVnobFq8IoQiCa47rZTGUIisKjtDTZ6J/YpX5fP1Le0M+aN8fGkZPWMhDFqJv2/u4PwZ+XSPtfHXlzvocYdYNy2XPl8Io1ZDidPE4QE/KSWdfB+IJnCldLhDccJqALPKW8SSocdglalfls+uDUfml57BEIsuLGfjPU0T28pmuXDmmd7xtU6vzOSRTy2hYzSdGF2bY8FhSgcD9SXCBKNJRAE6RuN897GDfGZ1JaFYgraRIDajjFYj8sS+fg6NC0O0DgepyDLzudWV/M/ZdTzVOEC3O8SAL0KZy0gypVCfb+VLZ1azr8dLnt3A0koX33h4H0P+GFcvKCLbaiD3OL1rVN46tiwDtmwDOWVWBtqOrLfnX1jGj3f38NzhYQBahwPs6vbwm6tno9OIeIKvn9xSm2tlRXUm7mCML51ZzS+eacEXTtDrCfOLK2fxYvMwFr0Gh1HHr59vIRRL8qE/beHRTy0hmVImbAtH4w6pyTQqr8+hXg8Gp56GFQVs+087ACFvjIw8E3qTTCSYnnfKOomqxbms6tHS7Q6RZdWSSCl0u0OcVu5kyBdhW4ebA71evndhPa+0jZJnM3DR7HzKMidX4kymFPYdo1rW4QE/2TYD159WyhXzCtFpJGYVOdj6x7EJcd5sq45llS5KnCY++rdtvJqr9q9t3aQUhWybnjnFGe/iE1N5t4gnk8RTCjU5Zl5qHeG+Hb0ANA8F2No+yg8vnc62UR8l013ojBq0Bg2x8eBYnVGDrcbOgV4P0/LtJ/AuVFRODCadhm+cW8et/97D/r60TfOb506jNi8dLHx2Qy6ZFh0bGgcoyjCxujaLHJt+ilDZzkAIR54Rd186qFkQBWpPy2XrI+0s/UgNn793OykFvnRGNQJg1mnY3ulBK4lcOb+IP21qJ55MkW830OtJ+xskUeDSOQXEk6m0H1DllMTs1FM1P5umrUdsBTNWF9KXStCgNRJJpNjZ5WF2kZ1b11ZxoM9HUYaRujwrX7pvLx8/vYw+b4RvP9rIr6+eTWW2am9XUTmVycg1M//cUp7528EJAWNnvhln/ju3tah8sJC1ErPOKGL9b/ex+JIKBtp8KOOLO71JpqDa8YbH51XasWToJgQJRY3A3LNKpyRhO0xaHKZ0gmo4nkQSBRr7fbzYPAKk7TXbO9z86LIZx/sW35eYdBK/e6GV0XG7VutwgBXVWZzVkHOCW6aiovJek1FgYs66ErY83DaxrWiaE0fukRgfp1nHgR4vn1xRTiKloJFEWgb9OIxTC8WovDlGrUR3IE7F3Cxath9Jup25uhBnviryqXLyIYki3nAcWRSQJZHfjReoahoMsK1jjJ9fOQsAq16mNtfK6toskoqCgED3WIgMY3oOZ7TomLGqkIFWH8nxuAGzQ0dOhe3YF1ZROcXRG7VMX15Ab5OHZDzd5402LbmVNgJtQ0fFccO29vR3aVllJl97+ADfvbCe2UUOmocCVGWZqc2z8LUH90/s3z4S4Mv37WUsFOdjp5cxq9BG4zF8dc2DanGLk40ed9rWfnQ89VtlqNPHE7/bR2AsStG0DGasKkTwRhl6oYcRQWDjPU3sebabxYty0SoQdLspnj5rynnq8208tLuPYX+UTMsRYdDACxsRTSaMs9PHuAeCbHm4jZLpLqoW5HBg9AB/O/A3Xux5kUA8AJXp437/n2eOnPxTGtj1UdiVLgbs0DuYlTWLNcVrWFO4isHbbkPOyyPjuusQ9RqKpzlp3TnE0ksrEV4TL2mcPQvDjBmM/fVvOK64AkFSxdpUVFRUVFRUVFRUVFRUjqCKkLwHCIKIRhRYv39gymfbO92cNzP/dY+VBYFMiw6FdNBh8qhqJnOLHejGRTpy7AbOmp7LzEI7ggC5dgM6zXtrBDhvRj63PXGQJ/YPoBEFPnZ6KbW5FrrGwmzvGOPSOYU4zFoC4TjbO8YmqnlKkoiryMyqj9TiGUwHaTrzzeRXvXGQhMq7SySe5K7NnRO/+6MJzpuRx+P7+oG0o27QF2VhWQYvNqcThPLtBu7b0UOpy8SBceGOmUV2fv5MCyatxHAgSjKlsKI6iz+8mHaSJFMK4XiS82fm8fDudJC8LIm4Q3FWVGfxdGM6ODPDrKVrLMS0POtEteJIPInNIGOQJdrGq70vr87ity+kjcb3bOvma2fVEEukeLjby5rzivE0+6hZlk8qpeB2R7DlmeiXU6zfMMC0POtEsrMoCkTiKUKxJJbXVPsudZmI6UXmXlvNaLcfktCvJNgaDGDWa1hRncUju/smHRNPKhPKyirvT0rqnay7qYHGTX3UnZZHwzKRoC9GZqGZ7FIrgiC8+UnehD5PmG1dHrYMjvC1mxvo7fET14pY8gwUDAXwhuNoNSI6jUh03In42gT7+nwbM4t83P7EISLxFHOLHdx2cQM6jYROI2HTy8wotPPI7j5GgtEJAZJX2XBggE8sLUVR0qIkeTY9f3m5nWsWFXPnRxfQ5wlj0mkoyjAel3tWAUEQuGROAVva02Nf23CQaXlWyjPN3Lujh3mlGZS6jDy2f3DKsZtbR1lWlUl/KIZe1vCHF1s5Z3o+JS4TbUMBnj44yDULi+kcDRNNpLhnazdn1ucgiQJ+h5bFH6tDCiawOvQYLFoOvdLPYKeXdTc24B0MI8kCOWU2XAVTldxVPljEkkl84ThmrUSGUcfXH9zJjaeXT5q7Ajy4q5fzZuTiiya4ZkERDvPkynulLhOlruMfdO3MN3PhF2Yz0hMglUzhLLDgyjdP2c+RbWLdTQ30NXsIeaM48824Ci1YMqZWJFb54DIWiLK5bZRzp+dyxrRsgtEk3378IN9eU8OK2gw8/UGMVi0Gpx6PHnZ1uynOMPH9Jw8D8JFZhcyvK8Ypy/SnEvzmUB9D/nTg9wO7erAZSsi26anMsuAJx5lb4uDl1lGeOTTE0koXWWY9nWMhLHoNuXYDA74Ie7rdnD8zHxSFqmwzTpMajKjy1hAEgcq5OQy0e1l6RSVBTwxHtpH8ajt6k4wz34RnKIzRqiWzyILB8s4rZEmiQF2elbq8qYlzo4EYI8EouXYr/9rewZxiBy80DXPr2iru39HDqtosetzhCQGSV2kZCiCJAt99/ODEO+dgv59vnltHNJHiod29fG5VFbU5FmIJhWcaB7lsbhEGrUQypbCj0805qgjJe45GltBn6plzVgmBsSiJeBJblpFuKTkhQPIqPe4wLUMBllVlThFkOBqnWcdtF02nxx3kuUNDfHhxMbIk0jYc5NmDg1y1oJib7t7BSOCIsEgknqJlOMDichczC23s7j4SMKaVREpdr389FRWrQabNHyOvwsrpV1XjHwmjz9DRmIwjrclhhqwlGk9izzPhNQgc6veR7zCypX2MJeUu8u0Gbnv8IF9aV8OicieJpMKfN7WjIHBg8B7qAAEAAElEQVThzHyqc6aOla8mpO/odE/avu6oxCWjNm3Dml+SwQM3L+ZArw+DVmR6gZ1gLEHLUIDXTNF5Yt8AZ9XnHv+HpPKeYDXISIJAPAkPv8YeGYwl8YYT7Bn0s2hWMdGRCMuuqiIaTCDKIkGzyDMDbuoEK9U5VjSSKgiu8sGjJsfK3TcsoPcYNk2LQWZVbTararMnHXPp3AK+9/iRggO3bWzmiRsW4+8Pok2CwSQTcEdYcl0N/7e5dWLcfbF5hE+tKOfl1lH29ni4akERigImrYRFL/OVddX0uMMkUwrVORb29Xq5a3Mnf71u/nv2PFSOLwmbhrKF2RTUZBAJxjFl6Hi4Z5TshIzDIKMRBR7b18+cYjtJRWFBWQab20b53cY2ijKMDPqiE+d6Yn8/ZzWo72sVlVOd/Go7Z900Hc9gEJ1BJiPfSHaJmgio8tYprHFw1ien07Z7mBUfqiHsi6E3acgpt5OR+8a+FUeOifM/N4vhLj+JeCrt/yh4Y9uHKArEk8qEAMmrDAei+CPx1zlK5Wi84fiEAMmrPHd4iJtXlJ+gFqmoqJwodDqZ8tku7NnGtC3RosWZZyQj98hYbNBK3Liigi/et4c93V6MWomvn117TL+KypvjDcf5zH27efCquRTXOwn5YpgdeoxZegyviVNQUTkZCEYTxJMpkorC/bt6Jn0WTaQYHo8pmFFo40Cfl58+3Uw0keK0Cif/7/z6Sfbd3AobZ93cgLs/iKgRceWbySlX1x4q719yKm2cddORPm/PNZGwSzy4q3fSfomUQo87xJIyK+5QnC/ft4/L5hZy3eJihgNRvnzfPvzRI6LQDfl2/v5yB60jQTY2D/PPjy3ksrmF7OmZLESyum6yDVnlxNPjDmPRabAa3l6qVF+Lh0d/vhuDWctFX5xD7vjYGdjST4ZBIudzs+jrDfDCPU08+Wg7dVqFaDiIyT4152V6gR2A3d0e1oz3EUVRCGzciGnxYgRZJpVM8fRfD6LRiSy5spzbt97OPw/9E7Ns5oySM6h31dP30na69+1h3We/SFJJEkvGGHzg33j27cJ88w3EtCL9wX62DWzjma5n+DEWPpL0cP6XfoyoT8c8ls/JpG33MP2tXvIq7VPamvGRD9P7uc8TePFFLMuXv61npqKioqKioqKioqKiovL+RhUheQ9IoSBLIibdVFEQg/zGQiF2sx5zIEaXO8xX1tXwl03t9HkjLCzLYG1dDvqjqpLoNBKlb5CQ8W5T5DTyo8tm8JnVlciiSJHTSMugn0Qqxdq6bCKJFLs63RQ4DJxZn0MieaQ6tzXDgDXDQFGd84S1X2UyKSUtNBKKpatRQ1r0wzje58TxQNxwLEnGePVq4aj9DOP7pRTQiAKJlIJ23NERTaTQayTiycRRx6SOOvf4tsTU60XiSYzj35v7d/TwqZUV/HFjG45xJXdFUZAEgSQKXWMh7njiMF86s4pXetz85/Ag3zq3js9sbMYTinPjsnLueHAXn15VAcCBPh8Xzc7n+cNDpFIKRq3EkD9KgcOASSsRjCX55IoKBn0RwokkZ/3pFT5xejl/2tROLJlu/y0rKzDIEtvHhVKOxqJTk0Hfz2gNGspmZFI2I/Ndu4YvEicUS/JC+ygfWVZGi1nBrBd4pnGA8kwzeXYDn71nNzctL+enTzdz5rRsSp2TlbzNOg3XLixheVUW4ViSfIcBq+FI32wa9PP99ekk6UTyNZlJpEWCUuMl2vSyRDSRwqjVoBEF7EYtduM7T0xVeX2WV2fy6ZUV/G5jGy80DfPjy2awq8tN63CAlkE/M4scPN80OuU4g1aiMEPPSCAKioJeo+GuLZ189LRSBEFgVW02dblWDg/6yLLoOH9megxcU5fN8y0jGLUia+pymV7tAiC75Kjglvr36u5VTgWisfTIkGc38MyhIZIphWgiOWU/iy69/BAR0MriRDW99wJHjglHzpsLnGQWWsgsVIV1VF6f9nHxu93dHsx6maIMA59YWk6jO0gqx4K9wcbuwQDdPSPU5Jipybbwj63dE8f/dVc3fxfgK+tqJiWuQTpxuHUkSJ7dQCKpIIkCkXj6uySLIqIgkFIUNJKAWSczGoiSbdFzzcIS7AaZ1qEASytdVKnVkVXeBkar9nXnsHmVDvIq332BUFEQkAQBEDBqNfjCcWwGmUQyNZEE+lpxvFeJxlNTRK/++lIHt1/UwPxSJ+sbB1hQ6mTIH8FmlIklUzR2esl3GClwGEillCnCfSrvPhEt3LG9g+uXliCgkJREYqG0jUB5zTJkKBDls6srqch64/dzjk1PMJrgTy91EBmvcnXV/EJGAjE2NA5ObDsai06DzSBzx8XT+d9HG3m5dZTCDAPfu6CBqmxVhETl9UmmIJJS6BITPDvm5uCQj907PMTH19HXLiqmJsfCbU8f4qZlZZw7I5dnDw3z2L5+VlRlUZ5p5tYzqmnq9xNOpHhoVy+SKPCZVZXMLn79cXdlTRafWlHOH15sRxQEbllVwaLyqfZUURSYXmCfCG7r84T58v37WFIxdd9MsxaTVmLAGybHpgoznWrU59toHQqgl8UJe+vR+KMJPryomL1DQTb3jDKvNAPJDuF4nEQY/JEEo4EY0URKFSFR+cBiM2qxvQ2b5rnT8xjwRrhzcyd6jcSta6vAJNFlVMizG4iJApt9MX74r/2TjrMbZPo9IfIdBrKs6cBfq17m1jOq+dL9e4knUnz1rBp0GpH/fbQRrSRw+0XTKc800djnwx2KUegwUOQ8/uKtKu8O4WSKK+/bSbHTiCgI7OzyAPA/59QyGozznQvq+cWzLfzi2Ra+sq6G329so3U4yPQCGxfMzOeO9UdsBu+kYqeKisrJh8VhwOIwAK4T3RSVUxRZp6Gk3kVJ/TvrQ7ZMI7bMt/5OSSoKCspEvMfRvFbgUuXYvNbOBSBLxzCAqaiofCBwZJtxvInduSrbwt+vm39MsUyVt4eipP9dcPd2si06qnIsNG3186trZlNwohunonIMLHqZ2UUOFMAoa/CFJ9t6Xx0JbAYtHz+9nDOm5RBNpCh0GDDrJ8el6o1aiuqcajy2ygcGnV6e1Od3dIxhGY+Bfy2SIKARJFxmLaPBGAO+CIVOA3t7vZzZkMPDu/qQJYErFxQhiwLu8TgFRYH1+wf41IoKejwhNhwYZHG5k7klGSwsVb9rJxs97rQt/u3Mo0Z6Ajz2yz2YHXou/MJsjNYjfoOkJwoiSBYtRdOcXPa1eTz1pwPs3z+KpJt9TBGSGYU2jFqJF5qGJkRIInv2kBgcxLxqJQC7nupiqMPHadcVc+u2z7K5fzNX1VzFLbNuwaxNzxt3NGt4vnc/ixxzMVjS8WDRi+po+9PZOMo95HzzmwCklBTP7XmInzz9bb5/qUSz5WW+kVyFLMmUNLiQNCItO4eOKUJiWb0aTWYm7rv/oYqQqKioqKioqKioqKioqExCFSF5D0gmk8QSCmun5fBy6+iEM94gS8wusr/p8Tk2A52jIe48MMDpVZm4LDr2dHswyBKZJ5kqu1GroeaoSp1GrYTTpGXzkJsfjFf+BijMMPDLK2adiCaqvEUKHUZuWFrG7U8cwhuOU+w08kLTMJ9fU8WBPh/dYyGmF9jY0+PlG+fUsrF5mJ2dblbWZPHsoSFKXSZ0GpFnDw5x0ewC/r29G71WwmaQeXxfP1cvLOK3L7QRjiXJtel5qnGAm1dU8IMnDzPoi1KVbWZr+xhfXVfD1o4xDg34WViWwea2Ma6YX8T6AwO4Q3F+90Irl84pYHGFi0d29/H0wUEump3PPdvSiZ6xZIr7dvTy5TNr+My/djMWjNM9FuLM+hwe2JlWjA/HUmSadQwHovzxxXa+sKaaaCLJt86t438fbeS3L7TxqZUVZJp1PLS7j51dbuxGmZSSPr9eFoklU4RiSe5Yf5iqbDM3Li/nS/ftnXieDqPMrLfwfVdReSNyrXrsBhmdRkRRUnSNhrhrS9fE53OL7dy0vJyRQIwfXDKdxeWuKU5GSCcjlbiOHaz+wM4j6u9GrUR5ppnW4cDEtivnFyEJAkatRJ5dz2gwxvcurCd7PHBe5d0h06Lns6uruHRuIYIA+XYDp5W7aCiwsavLy4KyDNZMy+bZw0MTSbg6jcjcEgeyJKWTkXQSHzmtBH8kzm1PHCKaSCdh/mtbNz+7YiY5Nj0P7+7jrIYc4kmFlbVZKIrCkD/CgV4v0/LVihgqr89QIDI+NqX7XjSRQqsRsRnkSUnjn1xZQSyRwm7UkqmOGyqnKN3uEC6TlpU1WYiCQNdoEKdNh9OsRRAEbrp756SAoPtvXIRJO3npnVLAZpBxmrSTqiBePreQfb0eUorCoC9Mfb6VXd0eAC6bV4hFr6FpMECuTU9Vthkl00Q8pSBLAooCM4vsZFrU75bKqUeJy0TTkB9vKMaFs/K59b49fHVdDRsODHB6pYtgNEm+3cDaumw2NA5OHHfmtGxiyanCEiadRMdogJ8+3QzAnzZ18PMrZjLsi1CUYaAs04QkCvS6Q7SNBN5U3ELlXUBRuGhOHts6xtBqRMqcJrKsOi6elc99R61J5hY78ATjFNqNaDVvnhxv1EloNSKReIqblpdTm2Ph0/fsJs+m52Onl/KTp5on9l1QmkHRuGhjdY6VP3xoLsOBKGa9BtdJZm9TOfkIxBLYjTK97hCnVTi5a0vnhM1XL4tUZpn52oPp5PN4UmFRmYPyTDMfXlyCVhLINOuwGzRMz7cjSwI3nl6GrBHJt79xMFyWVc/n1lRz+byiibXhWwme29HpZlvHGNMLbJS6TBOiaoIA1yws5vH9/RhlifNnF1CdrY6JpxIZJh1eSxwBhY+fXsaPnmqa+Kwww4AAxFMK33v8IN+7sIHfv9hGba6VddOyebJxkL3dHpZXZWLSqa4iFZW3Sq7dwNfOquUjp5UgCen5ydV/3Ewilf4ebmsfY1l15oR9BEASBVbVZZNMpdBpRCoyTegkEb0soox/PhZN8PzhYT69qoIr5hWilyVybXru2drNdx8/SEoBq0HDH6+dy3w1qP2UwChr+OSKCr7z2MGJbXk2PYFIAgVYVuWiPs9KLKlg02uYdvlMnmsaZk6xg4/9fftE/7EaNCyvfvfEz1VUVFRUVF4PnSShk5JcPKeAf207IrQ9Lc+K/W1Wk/6gYjPK1OZaONjvn9h26ZzCt2TnUlFR+eDydsUyVY6N3ailOtvC4UE/g/4og/4o1ywomiiipqJysmHQinzy7l3c+4mFXLOwmB9uOBJvnWnRTYrNk0SBshNYsFJF5WSnIMPAWCjGlfOLJtnmHEaZfIeBwWCCu29YgEYUKXAYkCWRLIuOh3b18tElpSRSCi+1DDOnyDGp4KpRK+Gy6LhqfjGKInD/jh4O9vvJtuqZX5KhFj85iehxhylwvPXiC7FIgvW/34dGJ3HeZ2ZOEiABSHqjiEYR78MPET18CDkvj7VXnMNDtw8yzHKGe6bGauk0EovLnTx/eBhFURAEAd8T6xFkGcvKlYz2Btj6aDuFs238cPRbHBg5wHdO+w7nV5w/6Ty2rBwAvIMDEyIkurJSHB+6Bvedd2E96yyMc+eiBIKUfuMv3D6kY8P3z+cvLf+iP9jPT5b/BLPeTNG0DNp2DrH00kqE1/RVQZaxX345I7/8JbHOTrTFxW/52QGQSsFIE4w2QywEJhfkzkj/VFFRUVFRUVFRUVFRUTmlUb3C7wEFGRbGut1IgsCXzqyhczSILKUNV4ZjqOy+FqtBxh+Nc/2iEryROL5wnCvmFRJPpognU2g1b36O400knkQjCm9aHTGZSpECfvdC66Tt3WNh2kdDzCh69ysqq7wzdLLEqposDLJIY5+PL59ZTcdIiFA8wS+unMWWtlE+uqSUYX+UIX+EX1w5i+0dY9TlWllelUnHaJCfXjGT3V0eCh0GZhc1cKDPyx0XN3Cgz4fNoOFHl85gZ+cY3zinjtahAKlUip9fMZOt7WN8emUFA74oo/4oP7t8Jts73SyvymRtXQ5DvjC/uHIWOzrdhGJJqnOsVGWZ+ct189jf68Ws1zCryM4Lh4dpKLCzpi6bAoeBf9sX0joU4IeXzOCVtlE0UtqIdufmDr6wtpq24QCJpMKgP8Kisgxue/wQNy4rI8Oko88TxqTVsKllBK0kTjgk/7O3j6sXFPObo/p4KJbEHYrxlTNrxhPazCyryqRSTeJQ+S+xGbUsrXCi09QiCAL/2No16fPtnR4+sriUrrEwl84tnPTZWx23My1Hku22dbi5aFYegWiSAV+EUpcJi15DNKHww0tnsLfbww8umc70fOsbnFHleCGKAoUZR6qTmfQaVtVkY9XLuEMxTFqRL51RTedoCEkUKHAY0AhCWjQq306XO0QolaBlODARwA6QSCk8sX+An1w2g03NI2RadOzo9PDjp5qIJ1OsnZZDlkVNwlR5Y0LRJBadht9sbOOKuYX0jIV5eHcvNywtxR2MoSgKC8uclLmM+CIJSjIM6E7AHFZF5b/FHYySbdHzi+daeLl1FJNW4volpTiMMqVOI883j0wSINHLIptahlk7LZv1BwYmqkW+Opf81rl19LjDDPujTMu3IgnQUFBEIJLgyvlFtI8EuWJuIXV5VgozjMQTSeaXOP4/e/cdHUd1NnD4t71X9V6sZsu927iAjW2K6YEQSKMFkvBBAgkJCSEJkEIgkEqAUJMQIBAIHYMBG1ywce+W1XvXaqXt7ftD9oKQjG2wLcl+n3PmHGl2Zvad2buzM3fufS9FKRbSZRRkcQJJsug4tSiRilYPKoWCv3xlEnuae5iU48Rm1BCOgloBl83IZl5REnua3YxKMpPjNODyhQckvbp8Rg6RT40m+vcPKrn1zBL+uqKC1eUdTMy0cfnMHHr8oU+HI44DjUpFjL4EMT9YXERvMEJzg5szx6WRnWCiss1DhsOA2xci22nAoOu7bojFYvhCEYzawas002wGfrC4mP9tbiA3wUj5/oSKTW4/qRY9P1xSTK8/jFGnItthZG15B++EWshPNDMp237QZI1CfNrodBtVrW4UCiPRSIzHr5jGqn3tqJVKrAZ1PAlSXqKJBLOWdIeR9E9tI+FTicO8wTCxWF9ikM+i+tS94aF4g2HKW/u+C4+vruLKOXnkOI00dfux6NU8/VEdiSYN151awPJdzTyxuopFY1KYmuPEahiY2FQMP3mJZrbXdzExy8YtS4opb+slyaxDq1aS4dDT6PITi0FFu4cvT83iryvKWTwmhWSLnq/PyiUvQc59QhwptUpJtrPvu/PO7haqO7x8bWYOb+9qRqlQ4gtG+P7phdS7/ESjMXISjCQYNfx+eRnXn1bAhZMz6OwNccdru/AFI3z3tALue7uMXU1uHltVzQub+5KymbQqbl5cxHXzRxEIR3l6fS23/Hcb/71uNgmSNG3YM+qUlKRauPXMEspa+joj5CYYUSj6kpOm2Y2k2T/+TX+/rBV/KMqt/93Gry8YS0dv371Khl1PlydIOBI9ZP2+EEIIcTRFY1FUCphb0Pd8Z3dTL+l2PWadGpDOdYclBkvHp3HhpAzC0RhqlRIlfaOoCyGEONZinDsxDa0qg0g0hkqlRK1QEJWTsBimdjS46QmEaesJkGjW8ruLxuHyhuj2hzDr1EiVgBCHL8VqoK3Hj82g4b5LJtDa46fLE8Jh1BCLwfqqTm5eUhJf3hsMs2pfGzcuLKKuy4tapeDGhYVsqO4kw2HE3eRGp1ayuDSFUCTK3z+o5B9rawBo6w3wtUfX8b/vnkJpugzyNhzEYjEaunzMzD/8ZN7vP12Gu83H+TdNwuIcmFAkWF1D7+u/o/tfDSgMBmI+H+0PPkTJaefSHHSya3UB6UXNFM9I7bfeaSXJLN/dys5GN6VpFtxvvYXplFPAYObtP21AY1SwLPdxtjVt4/en/p5FOYsGvLctOQWA7rYWUguK4vOTb7yR3hUrqfv2d7BffDG9K1YQrK0l7+8Pc9OsWYzKGMcv1vyC777zXR5c9CAFU5Op2tpOU2U36QX2Ae9jv+Ri2h98kK5/P03KrT8+vAPX2wbr/gabn4Le5k+9qICs6TD9W1B6ASilragQQgghhBBCjESShOQ4sRo08QbkRq0Ko1aNAlArD10z7PEHMWpUNLsDvLWrhU5PkHlFSYxLtxIMH98kJO09frbWd7O3pQeTVs2ELBsTsw6eSMRm1NHlDeMPDRyZOBCOHMtQxVFQmGIhzaZnbmEAvVrJxEwHvnAEu0HD2AwrWpUCpUKJN9TX6WtMmhWlAvQaFT2BEFa9mjFpVmKxvpGop+U5sehUlKZbCUdiWA0aJmXbMWpUjM+wEYxEsRnUjMuwoVUrUCkU3PnaHh76oJJEs45XtjbiDUb40RnFLCxJYXRqX+KDdLsBjVpJis3A6LSPkyF8eVp2v/2ZnpcQHyHwlMJE1lV2csMzm4lEYwTDUULhGOWtvVw5JxdvMMKXpmYRDEfZXNvFfzc18KdLJ6JRKQhGomhUShLNWlrcAbY1uPjhkmJauv0YtSpUKiX3vLmX8P7Gxd87vZB0u3QSFUdHcZqNVJuBHY3d8VGWP+nACIoHtLh9bKvvpqylF5tBw/gMG+Oz7Afd/vmTMnh6fS2BcJR/ravhunmjSLJoCUaiKBWwvrITq17DU+tqWDQ6BZUS2jxBio/+rorDoNOomJmfwO6mbhxGLY2uAFa9On7NEY7GMOk0rK/pJBSJUZJqoaXbP2A7Pb4wKqWSGXlOKts9PLGmOv7amzuayXIYmJbrxCgjI4uDCEUitLqDLC5NodMXojTDyoLRydgMGhpcPhJMWow6NYWp8rBVjEzV7b1srnXR2O0nwaTlS5MzmFOYiC8Yoa0ngD8UIS/Zwtt7WvutF47EiKGgrSfAj88sobrdg0KhIMNuwKBWsafZTabdQIpFS06CkUg0yoz8j0c3npaXwCWfuqYV4kSV4TCR4fi4E/QZY9M+c/kd9d1c9OAa/nLZZL41L59OT5Aef5iCJBN6tTKefOKA3kCEspZexmXY+NbcfBpdPlrcfvQaJclmLxlH0KFffHE5iWZqOn10+0L85o093L50DL3+ENUdUfRqBbmJRtp6AuQ4jWQnGFGrlOxr7WHZjmZMur7r3dwEExOz7Ng/NSLkeRPTKU6xsGxnM06TDoUC8hPNrNzXxuvbm1ErFdy0qJBuX4g3djbT3hNgQUkyvlDkkOVOiE/KS7bSWdXWlxhHrSLJoiXDYaKqzcP84iRSLHp0GiWmQ9xH1XV62VrnotHlQ6tWMjHLzsSjmLi5qt0TH2E5GoNHPqjihoUFPPx+JSadmhsWFrC2ooM7X93N3MJEVAoFVz6xgd9cOI6vTJfrkJGiqt2Lw6RBp1GS5TCiUSkoTrHQ2O3HEwhz+zljCEWibKpxcdHkTPQaFbMLEihKMqM7SGInIcThCUf6Kmm9wTC1HT6um59Hjz+CSdf3rCMWi5Fg0nL7yztJserRqZV8VN3F46ur+e5pBdyzbC/haN8ztAUlyazY2xbf9penZZFs0bOirI1ub4gfn1nChuouOj1BSUIyAiiVSjyBEAoFzClIxKhTU9nWi07d9wwtGo31Gx3VH4qiVys5fXQKvf4Ib+xowhMIc/qYFDQqBZNzHCRZBjaAF0IIIY6VHn+YnU09dPtC5CYYSbHqqWr3olCATiO9YA+HRqlgXIadhi4fHZ4AGXYdVoNaRkgXQojjQP2pc3C6Q4dVL4kcxPDVE+gb7GRDTRczRyWwr7WXUDTG2HQbSkVMUsAJcYTCkRjpdgO7m9yAgul5Tnr9Ifa19mD71PPlcDjKGWPT2NnUw/JdzWiUSs4Yl8qcoiSK0yxUtXtZPCaV8Zk2Glw+nv7U4IGhSIyyll5JQjJMuLwhegJhMh2Gw1q+dlcHe9c1M/WsXNILBz6jDTU04Hr6diBC1kMPYpo3j0BZGdvuvIWV9f+kLM1EQuIFvPaUB4N5NtmlHyc/WTounTte2cW/19fy0zQP4aYmrN//HutfraK9voeape/wftNKbp1+66AJSODjJCSulv5JPpQmEzmPP0bjbbfR+fjjaPPy+uKbNQuA8wrOQ6fSccv7t/D9Fd/n97PuR6VWUrGxddAkJJrkZKyLF+F68UWSbrwBpfEz2tBEI/DhA7DitxDyQuFiKFkKaeNBY+pLSFKzBrY+A/+9Clb/AZb+ATKnfuZnIYQQQgghhBBi+JHWpcdJbqKZrfXduH1h9GoVaqWCSAxyEg/dyUWjVhFDwa9f30Mw0tcQcU9zD1fNyWNuYeIh1j66NtR0cdN/tuIN9iUQGZdh41cXjGV8pn3Q5RPMOspbe7hkWib/+vDjSjejVkWa7fAqd8TQMus1mPUDRz0drIFrovnjv5MZ2BAyyTJw+4NtJ+ET2/nSlExe295Ea08A6Bs1fkqOE41aSc4XGKE4xapn4ehknrxiOvVdXh5YUUGDy8ctS4q589XdtPX2vV+mw8DPzh7NC5sb6PQE+PK0bP71YQ0PvV/BdfNHEY3FiEbBoFExLtPKb9/YS4cnGH+fs8elkWqVsi6OLptRi1qh4JSCBFaXd8Tnp1h1JJp1jMvoe5gRjcb4sLKTHz63Lf77cUpBAj89azRjDvLAY2KWnf9+exYfVnb2JbDQqnjkgyrC0RhN3T6+c+oo/vBOGXWdPjbVurj+tFE4PvVQRhxf2+q7+dKDazhrbCrnTEinJxAiFuv7/A1aFX95bx+bal0A6DVK/vKVyahVingHCYAvT89CqVQwJsPKi5sbB7zH+2XtXDUnT5KQiIMyajUYtRFqOr389s098RHcLpiUwTnj0qju9LCgJHlogxTic2ru9nHrCztYW9n3m6tTK7n1rBKi0Rh/frec3AQjC0f3le9puU5USgWR/ZnCwtEYo5JM3PNmGRdNzSTJoiMQjpKTYKS1x09Vu5cHVlRy1rhUztNr0Glk1AchDtfYTBv/unoGDV0ezDoV3qASi15PJBajyxvgje39G2BcMTsXtVJJlsPAsp3N/Ht9Xfy1W88s4ZuzctFp5Tt4PJWkWhidamF3cw8//d8Onr5mBj9/aSdLJ6QTicZIMGvJchrRa5S0uv3c8tw2loxN5c5Xd8UTMl4yJZOfnD26XyISm6FvPV8wwsvlDdy8qJiXtzZgN/QtE47GyE4wcdOzW+P3Sftae7nylFwmZztItkrHTnH4RqXY+L+nN7O+qpMnrpjGb9/Yw1nj0siwG4AY4zJsBEMHT8TsDYZ5b28rT31Yy96WHgCsejWPfXMaU3OdRyXGQCjKyrI2vnPqKJ5cU40nGMGsUxOOxrjilFzue6sMz/663oq2Xi6cnMHoNAu/f2svC0cnkyydnUeE/CQzm2s7KUy2sKXWRVGKhXf3tvL0J37vfnHOGJq7vZxaksTYDBsa6XEhxFFRnGrBbtSwbGcLNy4sIBiBe97aS2h/3dui0clMzXFy+cwc2noC7G7qYUutC28wQkdvYH8HKCVLx6eR5TBS2+kF+p5NjMuw8b1ntxDef/Gztb6b25eOIdEs9bEjgdOkw2nSUdnuxaRT88Pnt9HtCwEwKsnM7740jik5H//eV7T1kukwkJNg5MZnt8Tr13Y19XDjwkLaewOShEQIIcRxs7fZzR/fKWdFWV+CNLVSwW8uHEeaVUenL8SoZPMhtiAATDo1j6+p5n9b+p6/KhTws6VjyLRLGxIhhDjWzDo1j62p5qVPnINvXzqGTLvcV4nhaVyGDaWir673T++Ws7air32CVqXkd18aj10v9blCHAlfKMrtL+2kYv/gJTaDht9fPIHnNtbx969P67esQqGgusPL/W+XxedtqnNx/yUT+NKU/gn7tWoldoM23sb8AKO09xk2Ktv7PvP8pEP3MQgHI6x8ugx7ipGpZ+YOeD3q91P37e8QCwdJ/P79mOfPJxQN8ZDnTR5fXEMkpkQV8RJR/Rt1koZdLy/ml/pbyBjVV+9rM2o4Z0I6L25q4NKe99DbbHRnT2PTQ7upnb2GNzte4aqxV3HZ6MsOGqPWYMRgtdHd2jzgNU1GBjmPP04sHEahHti294y8M/CEPPxi7S/4xYbbmV96ORWbWplzcSGKQZJjOi6/HPfrb9D96qs4Lrlk8IC6auDF66B2DRSdAYvuhKSi/sskFkDuHJj7A9j5Arz9c3h0MZx6K8y9CZTyfRFCCCGEEEKIkUJ6kh5HC0tS2FzXxc4GN0kWHVNyHWTYD52ERKtW0ejyxTtGHPDfTfV8bWYOdtPxGe2s0eXl0VVV8QQkANsbutnZ6D5oEhLo6/xh1Wu48pRc3t/XTqbDsH9UzeMQtBjxZo1K4JlrZrCl3oVFp2Zcpg2tWklHbyCewKSmw0Nzt59Es468RFO/UWNa3H52N7np8YcpSbVg1KowaFQ4zTpMOjUzRzlZuTdCg8tHboKRirbefpXD9V0+djS4+dOlkyhr6UGrUvDDxcV0egNEYzGSzDre2NHMmooOnCYt3z1tFO+XtdPg8nHptCyWjk+XUWzEMWHQqpiel0CWw8hH1Z0Up1oYn2lHqQSzvu/nvabTyx+W7+v3+7G6vIOylt6DJiEBGJthZ2yGHYC6Tg8mnZrKdg/ZTiOvbm2krtMXX/bf6+tYPCb12OykOCzrqjqJxuDV7c00uwOcNymd+k4f03Od7GvtjScggb7RNP/y3j4e/uoU/vxuOeFojDPGpuIN9o2mYdVrKUoZ2GiwJM1CooyuKj5DpydAJAYPrKiId5AAeHFzA2ePT+PCyZmDJjUTYiTYVOuKJyABCISjPLehnu+dXsgPlxSjUyvRqRSsr+ogFIny7Ldm8reV5TR0+blgUgY5TiOPfnMq66s76fGHGJdp47mN9byzqzX+G/3mjmYunpJJ4SDnYCHEwU3LdWLSqFhf3YlOo6Krt29EeJVSwa1nlVDb6cWsU5OfZEKpUFDe0kuSRc+/1+/st537l5cxa1TCZ9ZtiKMv2arnga9O4d3dLX3XrNEYt58zhma3n2gsRqbdgCcYoabDS7c3zLhMG498UBlPQALwn431XDg5g5mj+ifpTbcbmF2QyNMf1fHEmirOnZDOlBwHr2xtxBMM0+TyD6hn+9+WRi6fkUOy9TjsvDhh2I1afn3BOFaWtaFWKrhxYSE7GrpRKRTkJJjo9ARINOpodvvo9oYxaVW09vipd/mwG7QYtEpa3IF4AhIAtz/Mwx9UMi7Thk79xRtg5SQY6fWHeWlLI5fPzEGnVmLWqclNNBKNxeIJSA54ZWsj18zN559ra+KJ1cTwNyrJRGdvgMq2HvKTTHR6gv0SkAD89s09PPHNaWQ5jZKARIijKDfRxFNXz+Cfa2tQKhQ8vroqnoAE4O3drZw7MQOPL0SCSYNJp8EbjKDVKBmTZuXaefmMSbfx1RlZrNqfcFqhgOvmjaKyzRNPQHLAU+tquGhKxnHdR/H5mXVqpuc5eGhlVTwBCfQlHNlY09UvCcnUXCevbWtEp1b1q1+DvnqDM0pTjlfYQgghBGUtvfEEJNCX1PWP7+zj9xdPICUYJuE4tVMa6Zrc/ngCEoBYDP64fB8TMmSEdCGEONYa3f54AhLoOwf/Yfk+xmdMHcKohDi4UCTKT84ajT8ciScgAQhGovz53XJ+dEbxEEYnxMizudYVT0AC0O0L8fzGeh66fAolqf0fCCuV8Pr2pgHb+LCqkwsmZ/abl2zRc9vS0dz4zJb4vOIUM6UZ8pB5uKho8wCQn3joNlgb36zB3ebjvO9NRKUZ+Oys/S9/IVBWhmHW/2EoLiAYCXLTiptYWb+S8wvOJ39FD6X/W0WXMchr/zeR99Jf4+tvbeO+xfcyYdQYAL5z6ihe3FTP35vV/HDJUt76xz4qitbyduw/nDvqXG6cfOMh47Qlp9Dd2nLQ1wdLQHLARUUX4Q66uW/jfagyDGRunU9TZTfpBfYByxomT0ZXXEzXU//GfvHFKBSf6v9QswaeuRyiYTj/QZhwad8DjYNRKmHcl6BwEbx2M7x3F9SshoufAMPA9xdCCCGEEEIIMfxIEpLjyKxXM7cwibmFSUe8rmWQTpsmrRqL/vh9hJ5AmM7eIL+9cCyZDiMoYF9LL61u/2eup1QqeGBFBYlmLVNznbS6/dz56m7+/JVJxyly8UWUt/ZQ1e7BadQSCEfxhSIkmnW09fSN0BcF3L4QqVY9bb0BjDoVamVfkpB0m4EObxCNCowaDW09AVJt+r6GlrEYVoOG1p4AiWYt3mCEUCSKw6SjrceP3aghHIkRDsdo9wRYV9nJktJUrv3nJtp6Anz3tFGUptsIR6Lc8t/t9AbC6NRKfnvhOJZOSEejUtLo8nHD05vZUNPFdfPzWbazmWU7m0m16fn50lIKUsw88F456ftHmUm3G6hq98b3fVqug3lFSaiVSnQqJYtGJxOOxnhvbxtGrZrV+9qZVZDImv0PfTo9QX7z+h6+OTuX6+bnMyMvQRKQiGMmGoP73y6Lj4hZ1e5hVXk7D1w2mde2NaFTK0m16WhweblsehYz8hLoCYR4YEUF3b4Qy3e1kGLV9X1vNSqKUy04BmksluU0keXsywj+xJoq3t/X3u91o1ZFuowSMiRisRg7GrpJter4w5cnkOkw0ODyk2DUMD7dBooYiWYt1y8YhV6tIhSJxTsieYMR0m16fOEof3pnH2MzbFw4KROlUsGpxck8s6GOfS19D+EcRg3fnJ2LWjooic/QN6qrh3S7njvOK8WiV6NVKdlU20W3N0iLy4vdKKP0ipGpszfA+EwrV56Sj0IBKoWC9/a2QgySLTpe3tpIgllLWWUnr25vwh+Mcv+XJ6BTK3H7wwTCURREyLLpUDgNaJRKKlp7+3V+16lVOIzaw0pSKYToL9Wqw27SkJdowqxTEVNAIBhFoVDw9/erUCnhF+eW0u0LYdSp6fIEuf60UYxOsxKNxfAGI9yzbC+9gfBQ78pJKcdpZG5BIvMKE+kNhGno8LK13sXELDv/WlfLK1ubeOKKafQGwlgNGtp7g5w9LpUzx6WhUihQEDvodeqcggQeuHwSD62sZGVZG4XJFv7+jSmUt/YObCxD372N3ShJ08SRy3IauWRqFnub3fgCYZaUJtPhCeEPR9lY04U3GOGJD6v5yvRsaju9PL+xnkunZfPB3ja+NDWL0nQrD14+maZuP5vrXLyzu4U9TT14g5GjkoQkwazjT1+ZyBNrqnl9exOz8hOYV5jEj88o6dcZ+gCDRkUgHOW6U0eRapX7/ZHCoFUzOt1KeXsvaTYdXV4lT1wxjVA0SiAUZUuti0dWVcXrdoUQR67bGyQcjcWTo39SabqNX18wjsr2Xu56ffeA1yvaerHo1dzz2l78oShj060sLk3lB89vA8CiU/PLc0tJtup44duzKW/twe0Pk59kQqVU9EsKpdOoUMtzhxFDoQSzVkOyVceDX52MSatGoYC/f1BJTYe337ITMu0EQhE217kGbMekU5Eiv8tCCCGOo25fiCtm57JgdDIQo9cf5u4399LjD7G6vIPTSiQ51uHo8Ye5YFI6F0zKABQEIxH+8PY+/OHIIdcVQgjxxfR+6hwcikS5/+0y/CE5B4vhaWejm0dXVXHb2aO5ek4e84v72pl7/GF+9fpudGpptyXEkWhwebn1zCJK0+0oFNDs9vPPtbUEIgMT8GtVKqyD9NNIMA3e1m1JaQrPfmsm2xu6STTrmJzt6OtXIYaFirZetColmQ7DZy7X1exh07IaimakkFniHPC6b/sOOh57HMuSc8EwDmWinls/uJWV9Sv56YyfcmnJpTz23LW0LFxE4Vur+O7vdnPa3T/g15V/44qVX+f/Gm/im3O+Qn6SmfNUrbyUPYN8V4TytHd53/lfFmYv5Jezfzlo24VPsyWn0rRv7+c+Jt8s/Sat3lb+tftfzMqMMmFj1qBJSBQKBY7LL6P59p/j27QJ45QpH7+4+Sl45UZw5MJlz0LCqMMPQG+Dix6BvHnw6k3w6OK+bTjzPvc+CSGEEEIIIYQ4PiQJyQgxNddBskVHa08gPu+HS4oGbex4LBxo4HjXBWOp7vBy56u76PKGuGRqJqcVJ3/mug6jhkyHgfouH2/uaI7PT5NO68PeuqoOvvHYeuYWJqFUKFi2s5mfLR3NTf/ZSkGymaIUM0+vr+OHS4q5/aWdmHQqFo9J5W8rK/jOqaO4Z9le3L4wV5ySy71v7eWyGTnsbOhmb0sPNy8u4u439rKkNIWeQJj3y9r42dIx/N/TW5iYZSfJouONHU1897QCfv9WGd85dRR3vroLTzDCjQsLeWFzPZ5ghOc21Mc7iyVZdOxt7iEvsZsx6Va21bvYUNNFabqVhi4fr27ry1StVSmpbOtlQ00n/9lQz8VTMilNt7KjsZtLp2WzqbaLklQLYzNs/P6tMs4al0ptp4fnN9YTica4aEom18zJY/GYFNz+EPWd6bT1+JlTmESKVc/jq6v535YGLp6SxeUzs6VyWRwTCWYddqOG+i4f9V0+AH62dDTX/nMjDpOWVKsebzDCk1dM540dTdz52i4y7AZ+cuZokm1aLnlwHXajhutPK+Cu13Zz5thUfnleKcmWg5+bp+c6STL3JS454MdnlJD4GeuIY+fDyg7ueHUXu5t6uO+S8bywqQEFcGpJEtqIite2NfHqtiayE4xcMCkDjVLBX94tR6dRYjdomVeUxBOrqwiEo8wrTIwnTRqVbOafV05nR6ObYDjKmDQLuYeRFV6c3DIdBto9fn64qIhQNMZzG+r5sLKDKdkOpuc6cfnDtLl9JFk/++GeEMPRmHQrNzuLqO/y4wmGeW1rIxdMySJGjPbeAJdMzeLBlRW0ugMsGpOMWqXkzld38/NzRhOKRPmwqpPSNAsGrZqn19VSmGrh2nn53L98X/w3/PoFBUzIsg/tjgoxQtW6fPgCEdSKEEqFgqp2D6XpVm773w7GZtiYnufgrtd2o1IquHxGNpOzHVR3ePn3uhoWjk5Fr1Zy3yUTKJDrnSGxvb4Lg1ZFbaePepefn7+8k5+dPZreQIRXtjbxlelZ1HV62VTbRbJVzy/OGcPy3S08+kEVi8ak8PzGevyhCFfNzWN+URL5ieb4da3DpOOscenML0omHI1iM/Q1EpuZn0hlW++Ae5sfLCk+bvVs4sQSi8XYXt/FmopOTi1KpKzVy6aaLt7d28r5EzN4YWMDi0pTeL+sDYtew6xRiby9q5kvT8vm+qc3MyXHwahEEy9sbsCoUXHb0jHY9GrshqOXFKcg2cIvzinFvSiMRadGs7+xcn2Xl7xEE1Xtnviy35idS0GSmdkFCYfV6E0MH0kWPdNzHNR1+eOd288al4bVoMZm1PDTs0rwBCKUtfQyLlNG3RbicPlDEd4va+N3y/bS6w9zzbw8zpuQQaKl/3WDUqmg0xPklFGJrCrvn8i5MNnMrS9sZ+n4dFJtegqSTNR3+fjTpRNRK5UEwxF+8+YeWtwB8hJNXDM3jxV72+jxB7l+QQF/XL4vvq3vnjYKk04Sp40UsWgUlVLFqUVJ7G7u4dmP6lAqFFw7L5+8hP7PjrRqJXMKk7AbtTy8spKe/c++FAr47mkFOOVaVQghxHE0PsOKzaDh7jf6rlHOmZjGby4cR4pFS5d3YEJLMbiSFAsOo5a/rahgb0svpxYl8ZOzRpNqld91IYQ41uQcLEaa0nQrkWiMSVk2kiw67nlzD43dfpaOT+eei8eTKWVXiMPW0Rvg/InplLd5+fnLO/EGI1w6LYtbzywhxTIwsYhGreSaefm8v6+NA/mgDRoVZ4xNHXT7eo2aGfkJzMhPOJa7IT6nyjYPOQnGzxx0LxaLseKpvWh0Kk65qHDg66EQTbfdhjohAeu5V+F+u4XHXf/mrZq3uGnKTVxacimhYABXSxOFZ8/G6J2Cb/U9jPvVv/jnvQ9w84e/5r7K3/BG+TIu0p7G2cv+xhun/phH7N0o0l5gUfbp3D3vbtTKw+vKlZiVw9417xP0edEajrxPgkKh4IfTfkiHr4M3eAlbhZ050ZtRDJLw3LZ0Ka333EvXU0/1JSGJRuHdO2DV/ZA3Hy55EgyOI44BgMlfB2c+PHM5PLIQLn0asmd8vm0JIYQQQgghhDguJAnJCJGfZOapq2ewuqKdJpefeUVJTDyOndRau70EQ1G6vSF+8uJ2Yvsr2f7yXgUGjZopuQMzwB6QZNHzuy+N55onN+AJRlAo4HsLCylJtR6n6MXn0e0N8ouXd+EPRRmf2ZeMY1qug5V72+j2hZhflMR9b5eRk2Cksq2XZrefGxYW8MB7FVgNagLhKBVtHq6em8eDKytQKhQkmLRsrnNx8dRMnlhTTTASpTDFwn1vl3FqURKvbmuiNxBmRr6T379VxqnFSby9qwXoa8DrCUZIsujo8ASp6/Sh16jiI7bOL0qiMMXMPz6s4e+rqrhqTl48i/EpBYk8uaYagIlZdmbkOdnb0sO6qk4AnttYz9Vz85ijSCTNpucr07NItur5y7vlaFQKilIs/GF/I1+dWolSoaC6w4vNoOG1bU3MyE/gnd0thKMxfvTfbYT2Z8r+28oKegNhbj9nDJrPqMwU4vPIchq59+IJfPepTQTCUSZn29lY08V3TiugpsNLXaeXy2ak88rWRv69vg6A9t4g3//PFh79xjQAXN4Qq8rbmZzt4I0dzVw8NYsFJQdPKDIm3ca/r5nB6vJ2mt1+5hYmMSnbfjx2V3xKR2+AtRUd7G7qYWqOA08gwr/X1/GPK6exp6mHfa2tPLexvm9ZT5CdDW7+9tXJfPe0Al7b3kQsFkOpgKvn5fH8hnrOmZDeb/upNgOpNkkWIQ6fWa8hyaynvTfAr17aSUVbXyfG5Xta2dHo5k9fmYg3KCMKiZHJpFWzfE8rj6+qBuCqOXl4AiFCES1mnZrvP7uF8P5WCP9eX8eXp2YRjsZo6vbT6vazoboTvVpJUYqZ2QWJtPYEaHb7+eW5payt6GDWqASm5Dikk68Qn0NvIMSO+m6a3H5mj0qk0eUjFI3i8gWpbPdw0ZRM7nrt45Hof/36Hu6/ZAIFySZa3H5+9fpubAYN3z+9kLEZUkdxvLX3+AmEokRi0OULsXx3Cw6jhkSLjjX7O+7OGpVAWUsvL25u5MdnFLO9wc2q8g5+clYJv359T3xbd766m+6FIYjBV6Znk2b/+FrWpBtY/ZmfZO67t/lEPZvc24jPq77LQ1W7lx5fCF8oyt9WVLBoTAo1HV4isRgLRiezs9FNty9EilVPpsPAJdOy+NF/t6FR9V0j/Omd8vj2bn1hO/d8aTw7G7sZm2E/anGqVUqcnxqxLdNh5LFvTmNNeTs1nR5m5ScyPtMmCXlGsNaeIDc+s4VgJArAPz+s4eIpmbi8AS6YnEWvP0SjyytJSIQ4ApvruvjWPzfG/7/z1d3o1Cq+OjNnwLJrKzo4pSABfyjChpoubAYN18zNQ6dW8v1FRTy5prrvOcIZxURj8ItXdtHtC7GkNIWr5uTRGwhTkGRmT3MP4UiUidlOSlIsXDUnD18wwumjk5lVIA3bR4r2Hj+BMLhDIZq6/fz+rbL4az/93w7+8pVJg643NsPGs9fOYlX5gedxyUzMkvO2EEKI46vLG+J7z26JD1j02KpqFDEFF0/P4JSCxCGObuTwhcJ8/9kt8eRiL2xuoMUd4CdnlQxxZEIIceLzyjlYjDDTc50sGp2M2x/me8983AbhiTXVhCNRrpidO7QBCjGCtLj9dPSGuPWF7fF59y/fx8+Wash2Dt4mckaek+eum8X7Ze3oNUrmFiYxNkPq5EaiirZeCpM/exCaveuaadzn4tTLizFaByam6XjkEQJ795L5178Q7lGyzrGDB/c8zLmjzuWbpd8EoK26ilg0SmpxETqXHlXCLfT871do77iLZ//2MPe8+zivef/DXeFNcD3EXK/gafoS59h/zO9PvRSl4vD7FSTl5ALQXldDetHow17vk5QKJXfNuYuGthaWpf+TGatH86W5Zw9czmjEfuGFdD71FEmV+9Bu/DXsfAGmXAFn3QOqL5gkPXcOXPMuPPUlePIcuPAhKL3gi21TCCGEEEIIIcQxI0lIRpDCFAuFKZYheW+1WolRq2JPS088AckBT39Uy1dmZA9oxP5Js0cl8toNc6nt9OI0aSlINqHXSPEbznoCYcpaegAIhPsarWc5jXxY0QEQb8ie5TBSub+jcTQG4WiMFIue+i4vAHqNCrc/jNWgptMTBCDFqqeu09dvO5lOI69sbez3fsFwFL1GBYBGqUChgAy7ger9o7MGQlGsBjU9/jDTcp3c+9ZeAL42M4dQJBpvENPRGyDVpqemw8vpo1O49629zMhzkpNgjI8+/8gHVZi0Ku67ZCKXz8hhTUU7kWiM3P0NfqEvAcmPzyzh8dXVZDuN/PndfUzMstPg8rOyrI0x6dZ4ApIDnvmolmvn55PpOPLMw0IcyoLiZF6/YS4NLh8pFh3v7Gnl8dXV8dG8Tx+TEk9EcUAoEqOu0xv/v7y1l6k5TjbVdtHeE+BQhvK3SHzMG4xQt//8leU00uXtO79GY5Bm03P3sr39lg9GorS4/fzkxR3xee/saeWByyfz5JUzSLJIBzPxxbn9ITZUd8UTkBzQ7PbT7Q2RYJJResXItKmuiwfeq4j//5f3yrnjvFKi0Si+UDTe+OeAl7c2cv2CUZS39WLWqSlMttAbCBOKxEi16al3+SACdqOW25aOOd67I8QJpccfJhCJ0u0LEY3F6PQEsRs1dPQGOXdCGsv3J7X8pHf3tlKcYuGFzQ0AdHqC/OylnWTYDSwYffCEfOLo84eiBKNRfP4onkAYvUZFbyCMAuJJRHRqJYnmvvqmJneAt3Y2MzHTTlW7Z8D23t3TSpJZj2NnM1ecknfI95d7G3G0+IMxOr1BxmXa8IcjlLf2sqQ0BQCtSkkwEmVvcw+Tsu3kJpqIRmN4AhEC4Shnjk3lnd2tA7a5pqKDLk8Qq0FDttN0TOPPSzSRl3hs30McP83uQLy+9YAXNjfwzDUz2FLXjc2gIdUmv3dCHIk15R0D5j2xpprzJqRjMfSv63Catdz+0k5OK07m/xYU4A1G2FrnYlymnfvfLsPtD3PjwkLqu3zc9/bHCSle396MzaBBrVTwr8pa1u9PoP5hVSebazqZW5jEBZPSj2pyKnHsRSIx/MEIMWDZzuYBr7+6rYmln0oOfcCYdCtj0iVRohBCiKFT0+GNt7c44NkNdVw4OZ30FBnI4HA1dgfind8PWF3RTu+n5gkhhDj6Gl1+OQeLESXNbuCeSybw6tamAW0QnttYz2UzsocoMiFGHrtBw3/217F+0nMb6lg8OnnQddQqJVNynEzJOfigrGL48wTCVLd7OPcg9a4AXneQVc/tIzXfxphTBi4XKC+n/YG/YTnzDCwLF7L5j29yb8oTjHaO5vZZt8cHmWqu6KvjT8krINrsJtScSsZ991N//XdpvOgCrlt0Ohets7FR5yP6taUkz57N48utfLBNQ9fpoSMaFCIpu6/9Q0tVxedOQgKgVWl54Ow/c+E/LuXXFbdTXJLNuKRxA5ZzXnUl3S/8m9jj54CqCRbdAbNvgKM1wFbCKLhqOTxzGTz3TeiqgVNuPHrbF0IIIYQQQghx1Bx+Ck1xUotEoiiVCrSqgUUmwaQl+qlK78HkJpqYV9SXGVgSkAx/iWYtp++vbNWr+xKBbK51MXv/qDbq/eVhZ2M3k3McQF9SEJtBQ02Hl+LUvo48LW4/2U4jbl+YFGtfA/edDW6m7F/n4213ccr+Efy0KiVKBayr6mTxmBQUCnh7dwtfn5VLWUsP4/eP1PnCpnquP62QvAQT1R19HZAmZdnp9AR5fHU1L2xq4PuLilhb0cFXZ+agVIA/HAFgfXUnC0tSMGlV8X3OSTAxOs2KRq2kKMVCkllHW6+fTEdfI5rzJmbw+OpqWnv8uH0h/KEoU3KcvL+vDQCVcuD3w27UolXLqVYcG0qlglHJZuYVJVGcZsVu1MYTkAAkmDTYjQMTRKlVH1fUzhqVwOa6LgByEiRZzkjhNGop3d8IfUudi3SbAY1KQSwWw2rQYDcMTPag/FQFfSwGy3Y0SwIScdTUd/mIMfizIL2m77ddiJHoje0DOwq9vbOFnAQzNv3A+5oEs5aCZDMGtRq9WsWWur7RrzUqBZtrXBg0Kqx6Nel26fwpxBeVYNJi12tIMutQKRWk2w10+0LoNCqWlKaSOMh1TrrNwBs7Bn6vdzW5j0fI4hOsBg06tYoEs5ZwNMaMPCfRWF9yGV8wwvmT0tlY7WJUookvTc6kvstLfpKJhaOT4wlLPynBpKPbF+LlLY0EI5Eh2CNxsrIZNaTbDCzb0YRZp2F2QQIVbR4mZztYVd5OttNIs9tPToKJuk4vCRYddmPfPduUHGc80U6/bRo0rCpvp6HLf7x3R4xwBs0g9ZMGDb2BCHlJRj4oayPTLh0GhTgSCYOcp1OtejSD1PsXpVgoSbXw7p5W/vxuOf9eV8vsgkR21Ltw+z/u5NTpCQ1Yd9nOFqblOuMJSA7Y1uAm1a7nMB7DiWHGpFMRisXITjDiNA28N3FKwl4hhBDDmEo18KGO06SNd7YSh2ewZ2P6Qe7bhBBCHH2qQU7Ccg4Ww53doEU9SNl1GLVI1ZAQh08BWPSDPU/WSo6DE9zORjfRGPF+BoNZ9dw+Qv4Ip321BMWnzrmxSISm236G0mgk9bbb8DR2cafuz6BS8PtTf49O9XE9b8XG9TjS0rEkJKLNsUI4ijZ/Inl//TnJUyNYmh9izKTtfHNiM1dt+xvnPPU17m6/CY/Xz68eegK2Pw/egclyBmNJTMKckEj9rh2HXvgQbAYrP8v9NfqAhWvfupZNLZsGLKPReMlf2ouGJkKn/OrYJAgxJcDXX4LSC2H5z+G1myAiyeKEEEIIIYQQYriRWnVxWFLtJsKRKDkJRpI/0YlHqYDLZmRjHqTznRjZ9Bo1P1hSzNRcB69sbeSmRUV09AZItuiYV5jIfz6q4wdLilApFQTCUc4el8rzG+u4cWEhiWYt1e1evjw1i9e3NXHFKbnkJ5r4qLqTq+bk8WFlO0tKUylNt/L2rmZuXFjQl7gkxcKMPCcvbKrnliXFWPRqnv2ojl+eU8q0HCcFSSYe+uoUZuY7+eqMbFy+EI9+UMkNCwsYk9bXGf+UwkTe2NEEwPaGbv6xpprFpalMzLTx32/PZnRaX3KUWAz++M4+rp6bzw8WF/Hw16bw6Demkr0/CUOa3cDfvzGFTLsRnVpFXqKJZKuO2k4vsdjHdWmdngCp+5OrdHmCjEoy9zuOP1s6mmSLdDAVx8enE09sqnVx1Sm5/eaNSjLHz+OnFiWRZNbR3hPgrvPHMjbj4BXvYngx6dXMyHPy9Vk5NHT5aO3xc/vSMfzzw2rsRg1XzOk/8nthshmHcWCj9sEaXQjxeVl0GlbubePCSRn95l8wKQONSkmKVTq6iZEp/1PXdwBZTiMdvQHsRi15n0ridcPCAt4va6Mg2YTdqOGSqdkUp1rQqZUoFTHsBg3Tc52k2eQ7IcQXpVWrmJzrID/JRJPLS7JZR7rNgMOgoarDwzkT0tF9onOoWadmTkHioI33jmSUGXF0WA0aLAYNKgWMS7cRicT48RklbG/oZkaeE7NWTbJVR1tPgHSHnolZdr41L59QNEqCSYftE/c/GpWC+UVJbKrtIj/JhGaQJKFCHCvJVj1ZDgMLx6SiVsHVc/Ko7/IyPtPGtBwH3d4Av794Ak+vrwEU2A0awpEo35qbR0uPn9NKktF8onOX3aghwazFZtAQiUSHbsfEiJSTYKQwuf/169dn5+ILhVEoQKNREpJMBkIckdmjEkkwfZyIRK1UcP2CgkGToo1Lt/H904u46/yx/PSs0dx5fimhcJRRyeb4MwWVAsy6getmOgwEwgc578dg1b72o7I/4vgxG7QkmDQEQxFOK0nq19nNpFUxa1QC3sDAhDRCCCHEcJBuM5Dt7F/3/Y1ZOZJw/gg5jFqm7h+g54CvzcxBp5EDKYQQx9pBz8FqOQeL4S3ZoiM/0dRv3hWn5CJFV4jD5wtHGZ1m69deUqNScN6kdIyD1OuKE8e2ehcA4zLsg75eva2dfR+1MOXMXJzppgGvdzz6GL4tW0j56U9Q2R38+rVfss9Qy50z7yTLkhVfrqu5kbqd2yiccQoKhQJdQg9W9T/RPDMX/Yqrsdt3Yi7NRD3lPBSnXA+n/wJO/QmFU07jW4nbeKEtkzX/+T3cUwBPXwZ73/jMBBwKhYLsMeOo27mNSPiLJ+qYPW8sF1XdgC5g4pq3ruGl8peIxfY/P6xeBY+cjkobov7DTJqe3/7xa0ebRg8XPQpzvg8bHoOnL4VAz7F5LyGEEEIIIYQQn4tkjhCHzR+JYtGr+eYpufiCEYLhKA6Tlgy7YdDGlmLkK0y28Pg3ptHg8mHWqblgUga9gTBXnJJLpyeEXq3g7HFpuP0hEk06XL4QKqWCM8em4vIFSTBpuXZ+PtFojLPHpdLhCeIwavnqzGyC4RjnT0qnozeIzaDhosmZeIMRLpuRTUdvEKNWxdIJ6fT4w6RY9ThN/UcbnJmfwDdPyQNiZDmNNLv8PPNRLZFIDI1KGW+s2+EJ8sSaauYXJXFaSQIFPjP/t6CAP79bTrcvxGOrqnj0m1OZnpcwYP8nZjn49zUz6PQE+dKUTFrcfv71YQ0ubwiLXoNBo+LVrU1cv6CAu9/cwz/WVnPFKXlcPDUTlQLGZ9qZkCVJHcTxMzbDSopVR4s7AMDzG+u59+Lx3LKkmE5vEJNWjVGjQqVU8Nb355Fg0tLWE+DL07LIdhpl5KoRZlymnQyHgaXj0wAYlWhiUraDaCxKaZol/rmbdWoMGhXhaAyFoi8JE/QlU7pkWtZnvIMQRyY7wUCW00BvIMzNi4tweUMUJJsoSDYTCMUw6mR0VzEynTE2lZe3NtLpCQJ9oz3OL0qkusNLQ7ePRaWpGDQqvMEIE7NsZNj1jE2zEgN8oSgGjRK9WkW3P8Si0hRSrQackuxAiKMmL7EvyV5dp5doNIbdZMYfijC/MJFIFH51wVgqWj0oFDApy051Ry9Xzsnjlue3xe8bi1LMjM+wDvGenJxKUq109QYw6oKcVpJEpzfIlBwHxSlmJmU7qO30sqaiHatew2OrqvCFItxx3lh+8sI2rp6bj82gobUngFmn5uH3K7Ea1Fw0JVPubcRxNyHbQYpNR1N3gCyHnjvPK6XTG8JhVFOabkehUDApx06XJ4hBo+Ku13ZzWnEyaTY9P31xB3/6yiS213ejUCjQqBT868Marps/iqxPJTsT4lDGZdq5cWEh5W299AbCOI1a/KEIoXCMlWWtjE61opReg0IckaIUC89eO5PNta799332gyZzNurULC5NZU9TN55ABIUCsp1G9Gol159awJ/fK+flbU3834ICilMs7G3pa0yrVSm5YFIG7+xuZdaoBNZWdMS3OSHTxoaaLiZk2o/H7oqjbEy6nbqOHhxGLd87vQi3ry/piN2oIdGkO/qjRwohhBBHiVGr4vIZ2XiCYXzBKAkmDZkOQ7+Ev+LQTDoVS0pTmFuYiNsfxmHUkmbTYdXLMzMhhDjWjIOdg+1yDhbDn0mn4svTsvAGI3iDEZwmDTlOIza99tArCyEASDBr0auVXDd/FD2BMOFIFKdRS5pVj0l+B05o2+q7SbfpSbIMbJfV2xXgnX/sJiHDxJQzcga87tuxk7Y//QnLkiVYzzmHZ19+nJe173B58iWcXrgIgHAoROWm9ax9/mnUGg1TJ2TAc99EtetlLOoYIaagPecmKFkKpsRBY/y/RRFeuX8lt0V/zhsTV6Pb/gzsfQ0saTD1Spj8DbCkDFivaNYcdn3wHuUfrSV/0jT2rHmfzsZ6Rk2ZTubosUd0nLQGNacvmgYvathw2rPctvo2Vtat4OcxB7YP/gDOfBSXPoUpdS2td9+N+/XXsZ199hG9x2FTKvuStNhz4LWb4e8L4UuPQeqR7ZMQQgghhBBCiGNDkpCIw5btNFHd7qEw2Ux9l5dorG9eilU60J3ILAYNJYaBla5JFn3874wD86wfz0uz943snvyJdZKtA0d7T/7Edgbb9sFo1SoKPjGqZ06iiSeumE51Wy8qJfzlvYr4awVJZopTLfH9+c6po1hSmorLGyTLaSQnYWA24wPsRi12Y98DnLxEE3dfOI7v/nszj3xQyfcXFVHV1ktdl5fHvjGNTm8Qp0nLmDQrydZD74MQR1t2gol/XDmd17c3sa3BzbkT0kkw6ahu92LRqVEoFCgUkGYzUJjS952QEd9HNqdJx/S8jz/DhP3nz1AkilGrZlu9i0SLjoYuH/e9vY+fnjWaj6q7MGpVXDo9i0lZjoNtWogjVpRi5fIZOVS1e+jwBJmQZUOthNe2NnHD6UVDHZ4Qn9uMPCcPXD6ZnY1uorEYWQ4D2+tdlKRb+eWruwBQKRXMLUjk67NyyHJKZ2EhjjeTTkNJ2uAdQV2+ED9/aSfBSBStSsmd54+lps3D7y+ZQH2nD6NORWm6ldKDjIQjjj2HWYdjkPsSE+Aw9XXMeH5jA4tLU7Ea1HR6Alw5J5/7l+9jco6d6+blU9fl45p5eYzPtDM5W65xxdBItRlJtR38OiDVaiB1f93Y3ReNp6rdw8qyVi6aksGNT2/hjvPGEI6BNxDmZ0vHUJxi/sw6KyEGo1EpGZdpBQU0dPmw6tUYtHqMOiU6tRKbUTNofawQ4rMVJFsoSLYc9vKDXZvmJ1mYX5xEU7efbKeRey4eT2Wbh3A0Sm6Cid++sZsNNS6uOCWXiZl2dja6KUwxo1YqeGpdLdfOG3U0d0kcR1kJFmo7/eQnGqnv8gGQn2RGo1Fg1MqjeiGEEMNTqk1HYcBMo8uHPxQlzW7AoleT4ZD67yORbNGTn2Sm1R1ArwmRatXjMGnIcsr9vhBCHGspFj35yWZauz91DpY6VzHMOU1aCpJNNLn8+EIR0u0GHCYNqY6BbW+FEIOzGbQYtEryEk00dPuIRmLkJpqw6DXoZNDVE1Y0GmNNRQezRg0clDQSivLWozsIh6IsuWYsqk8l2Iy4XDTefDPqhATSfvkLPqxdw2+7/shk5VhuXvJjYrEYm998lQ9feIaAu4txaX4uneJB95+LQGeDWd+hu3kB3lojaZNnfOagKXqNirvOH8fXH1vPg+qvc+NNt8O+t+CjR+G9X8HK30Hp+TD9W5A5LZ7IOm/SVBIys3njL79HqdYQ8vtQKJRseOUFZlxwCad8+WtHNFjL2PkZ7Hi/gTO3fpulZ6whZ9V92LxetiePoueMXzHBnonz61/D/cYbNN9xJ4Zx49BmZx/29o/Y1CvAmQcvfAv+vgAW3wXTr5FE3kIIIYQQQggxxKRlkzhsFr2GSdlO9rX2kGDSYdGryXQY4x3ZhRhq6XYD6XYDJelWxmXaWVnWRkmqhbkFiaTbP34IY9CqDzpS4aEsHJ3CqzfMoa7TS6JZx1dnZksjUTGsFKdaKU79eBT3Hl+IcDRGeWsPNoOWMWkWOW+fBDQqJTPyE7AbNby3tw2rXs0tS4pQKhWcOTZVGgiKY2ZKjgOzTk2z24/bH0KtVHHVvHycJhmRRYxcCoWCmfkJZNj1NHX7Abh6/igCwQh/+PJE1ld1MjHbzuxRCWTK+VWIYWdGXgJPXT2Td/a0EI7EyEkwMacggYo2D6lWffw+UgxfyVYDl83I5qOqTlaWteEwajlvYhqnj06mudtPut3AacXJaNTSYEyMHAlmHQlmHVlOIzsaXPz6grGEozFGp5oZn2GT8iy+kJwEM1a9loYuL229AYLhGB9VdbKgJJmpOZKoSYihYtarmZrr7DdvfKY9/vefvzKZfa09gIJRySY6e4Ms29mCXqPk2WtnMibdihi5ZhcksrGmi2AkhlalxKJXMzb98z2nEkIIIY6HnAQz4UiMaCyGPxTBZlBTlGpBK/erRyTTaSQQiRCLxTDr1dgNGkrSrGhUykOvLIQQ4gvJdBoJRiIQlXOwGFkKU6xEYxCJQigSwWnUUnqQwRiEEAc3a1QSG2u6CIQi6LUqHEYNo9OkjvVEtqvJTXtvgFOLkvrNj0ZjvP34TprKu1l8VSmO1P4JyaJ+P/U33EiosZHsJ59gs7+c7628iaxAKvctvg+1Qs3qZ//JlpeeYt5oJWN0+1D72kAxCs66FyZ8BXRm1B82Et1VQaTTjzrhs9ugzCtK4pwJ6fz1vXLOmZBGfsnZUHI2tJfDR4/Alqdg+3OQNrEvGcnYC1FqDFzwo5+z5rmnUGu0jJm3gOT8Ubz3+EOse/E/9HZ2svja/0OpOrz7dpVayfwv51H5yO+Y/fa/UamiLBu9kF+Gm+j54AcoUJBtzSb3G2lY3gmQet9XGX/tj8lJLyHDnIFOdQwGwMw/Fb69Bv73bXjjh7Drf3Dm7yB17NF/LyGEEEIIIYQQh0V6zosjIp1zxEjgNOlYUprKktLUo75ttUpJSaqVklSpjBYjg8Wg4ZSCRE4pSBzqUMQQ+HRSGiGONbVKSWmGjdLPmexLiOEsy2nqPzqhAc6flMH5kzKGLighxCEplQomZtuZmG3vNz/ZKnUbI4ndqGVRaSqLPnWfPy5ziAIS4ihJsepJsR79+ishHCYtjk8kg1wyVsqZEMNdmt1A2ieev2XYjYz7RJISMbIpFIoBSWiEEEKI4W5UsoVRyTK4xRc1KsnCqCQ5jkIIMRTykyzkyzlYjEDS3kuIo2NKjoMpkpz9pPHCpgY0KgWnlSTH54UCEZY/sYvKzW2c8qUCCqel9Fsn4nZTf8ONeD/6iPTf3c37zlZuW34bKSEnv439CGdOMtsfvQ3Hjv/w7ZIuVNEQpM6DmX+BwsWg/Di5mTanr71koNp9yCQkAD9bOpoVe1u5+bmtPPOtmejUKkgsgDN/Cwtug23PwPq/w0vfgbdug8lfxzbtKs787k39trPoW/+H2ZnI2uf/ja/XzdLv/QiN9hAJQoJe2PE8me/fS6a1hjr/BNon3cnii+dxWjTE+ub17Gjfwd7OvdT01FA3UYk/1gXrfwSAAgXJxmQyLZmUJpQyM20mU1KmYNQchcG7TIlw2X9g05Ow/Jfw0FwYdwnMvQmSir/49oUQQgghhBBCHBFJQiKEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEGDG6PEGe21jH4jGpOPcn6W+q6GbFU3vobPIw5+JCJizM6reO58N1NP3sZ4SamtD85lbutq/llZWvMMVQxC/3TCG96DmCv76C8WEXYYcO5aTLYPo1kDpu0Bg0KUYUOhXBGjemKSmDLvNJyRY9d180nu88tYlb/7ud331pPGrV/qQmOjNMuxqmXgXVH8C6h2DNn2D1HyFjMhQugVELIHUsCo2B2RdfhtFq453HH+S/v7qd82/5GXqTuf8bhnxQvQr2vg47/gv+bkgdT+zy5ylfm8Gud5tp69nF3C8XMidjDnMy5sRXjcVi1H/4Dlt++xOaDAF6TptEe4aT+mAbT+95mn/s+gdqpZqJSROZkTaDmWkzKU0sRaPUHMGn+AkKBUz5Jow+F96/FzY8Btuehfz5MOErfQlgjJL0WwghhBBCCCGOB0lCIoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQYEfyhCD98fiveYIRrZuSwd10ze9Y2Ub+nC7NDxznXTyC7NAGAUEsrntWr6X75ZVq2r6VpkpX2r+fTXv8LJlYG+J7CQlL3uyjUywlXaah1WwnkXELptfej0Jk/Mw6FUoG+yIF3Wzu2M3JRGg+dgOOscWncvKiI379dRrsnyB3nlpKbaPrERhWQN69vctXB1qehbBms+A2s+DUoVJA8GhIKmGhJI+OcfHauXs7G29dQOGUqSU49it5WaNsLbbshGgaNEYrP7EtwkjMbhULBqQUxLIkGPnq1mtqdHYw+JZ1Rk5NIyrKgUitRKBRkzTqd1IfH0/Kb39Bz/5ugUGAYPx7GncvebBWbdM1scFXxQMsD/HXLXzGqDExOmMCEpAkUJY2hyFlEiinlyBKTGJ1wxq9h7k3w0aOw5Sl48VpAAWkTIHcOpJRCUjE480Fv7ztmQgghhBBCCCGOGklCIoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQYttrre/jHy3t5v93NPn8ATzTKmRE9q+/dyuzgA0zXVTLPGEVLFMU/QlToeggTQqOIYFJEScqLkpMbA5qgYi8AIXR0BZXs9Jayz6umpsfEtAu+wuyLL0dxmIktLKdl4dvVQesDWzFOScF6WtYh1/m/hYU4TFp+/fpuTr13BaPTrOQnmbAbNEzIsnPJ1P3bsGfB/Fv6Jk871K6Fxi3QtAVadsC+t0kKeTg1ef+Gy7YRiioJqCz4NUn4HAvIOuNbkDsXNPp+MSgUCqaelUfexCTWv1LFtnfq2PJ2LSq1EmuiHqNNi96kRa1Vopp2Lc6pF5Hu3obng1UEXnyVbI+HbOB8oMcAO7MV7Mj1sCNnLataP/z4fWJg8ylx+tWYI2p0qNGjQa/QolGqUak0qBRKpvnTmR7MQKFUYD3rLAwTJsCpP4J5P4SGDVDxHlSthPUPQyT48Y6otGBKBlMCaEygMXw8qXVQuATGnHtYn6UQQgghhBBCiD6KWCw21DEcEwqFog2oGeo49ksE2oc6iGNA9gvaY7HYGUfzzT9H2T2RPgfZl+PnqJddGPJz73A75sMpnuEUC3zxeIbDuRdOvON6LEhM/Q2XsnssDcfP/IuSfeoz3MrvcPxcJKbDc7xjGm5ldzDD8XM6Vk6WfT1a+zkSyu8XNZLLxEiOHY5t/CdD2T1gpJeDw3Ey7eNQlt3hcpwljuEVAxx+HCfDuXe4fCZHYqTFPBTxngxlF4ZnWZCYDt/B4jpe5Xe4HpfP60TbHxh5+zTcz70j7XgeiuzP0TPcy+6hDMeyMBxjguEZ14nSxgGG3/GVeA5Nzr1f3HD8XD9J4vtihvqe7WgaDsd6qGMY6vcfDjGMhLI71MfoSIykWGFkxfvpWI9F2X1z//scbgwjhcR9fB1O3MekX4UQQgghhBBCjHQnbBKS4UShUGyIxWJThzqOo032a3gYafF+FtkX8UUMt2M+nOIZTrHA8Ivn8xpu+zHc4gGJ6WR0Ih5f2afhaTjug8R0eIZjTEPtZDomJ8u+niz7eTSM5GM1kmOHkR//cHEyHEfZx5MnBolj+MUwnOIYDkbisRhpMY+0eEeS4XhsJabDN9RxDfX7H20n2v7AiblPQ+lEO56yP+KA4XjshmNMMDzjGo4xfV7DbV8knkMbjjGNNMP9GEp8X8xwj+9IDId9GeoYhvr9h0sMw91IOkYjKVYYWfEOh1iHQwyfh8R9fI3UuIUQQgghhBBiOFAOdQBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQoihJUlIhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQ4yUkSkuPj4aEO4BiR/RoeRlq8n0X2RXwRw+2YD6d4hlMsMPzi+byG234Mt3hAYjoZnYjHV/ZpeBqO+yAxHZ7hGNNQO5mOycmyryfLfh4NI/lYjeTYYeTHP1ycDMdR9vH4GA4xgMTxScMhBhg+cQwHI/FYjLSYR1q8I8lwPLYS0+Eb6riG+v2PthNtf+DE3KehdKIdT9kfccBwPHbDMSYYnnENx5g+r+G2LxLPoQ3HmEaa4X4MJb4vZrjHdySGw74MdQxD/f4wPGIY7kbSMRpJscLIinc4xDocYvg8JO7ja6TGLYQQQgghhBBDThGLxYY6BiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxBBSDnUAQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIoSVJSIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEOMlJEhIhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIU5ykoRECCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQoiTnCQhEUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDiJCdJSIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEOMlJEhIhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIU5ykoRECCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQoiTnCQhEUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDiJHfCJiE544wzYoBMMh3r6aiTsivTcZqOCSm/Mh2n6aiTsivTcZqOOim7Mh3H6aiT8ivTcZqOOim7Mh3H6aiT8ivTcZqOOim7Mh2n6aiTsivTcZyOOim/Mh2n6aiTsivTcZyOOim/Mh2n6aiTsivTcZqOOim7Mh3H6aiT8ivTcZqOOim7Mh3H6aiT8ivTcZqOOim7Mh2n6aiTsivTcZyOhaHeJ5lOjkkIIYQQQohj6oRNQtLe3j7UIQjxuUjZFSOZlF8xUknZFSOVlF0xkkn5FSOVlF0xkkn5FSOVlF0xUknZFSOZlF8xUknZFSOZlF8xUknZFSOVlF0xkkn5FSOVlF0xkkn5FSOVlF0xUknZFUIIIYQQQgghhtYJm4RECCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQghxeCQJiRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQJzn1UAcghl4wEMHV7CHkj2BLMmB26oc6JCFGhKA/TFezl3Awgi3ZiNmuG+qQhADA1xOkq8WLQqHAkWpEb9IMdUhCiJNQNBrD1eLF0x3AbNNhTzGiUCqGOiwhhoy73Ye7w4/OqMaRakStUQ11SEKcEHo6/XS3+dAaVDhSjGh0UtV1IpFzpzhZBH3765hCEezJRkxSxyQ+QywWw9Xqw9Plx2DVYk8xolJJvnkhhrtIOIqrxYuvJ4jZqceWZEChkHqSk5W/N0hXiw9iMewpRgwW7VCHJIQQQhxUv3sQixZ7qtyDHE8eVwBXqxe1tq/+U2uQ+k8hTmSuVi+9nfvPt8lGVBo5334Rn74XtycbhzokIY5Iv3Y3dh32ZGl3I8SRiF9La5Q4Uk1yLS2EEEIIIYQQQghxhKQ25SRW4apgb0M5sY2JVK/pBsBk13L2dyaQlG0Z4uiEGD7C0TBb27byfNnz+MI+Li66mLHGiWx4uZY9a5sAsCToOevb40nMNA9xtOJoisVibG/fzgv7XqDN28aFhRcyI20GZu3w/ZxdLV7eemwHbTW9AGSWODjtqyVYEw1DHJkYKXZ37OblipepdFVyXuF5zEqbhUPvGOqwxAhQ1lnGK5WvsKdzDxcXXkJ2aynv/XMv0XAMlVrJ6VeMZtSkZGkQIUa0ht4G3qt7j/dq32Nm2kwW5Swi15Z7yPWayl289sA2At4wKGDa2XlMXJglDRyE+IJaa9y89tdteN1BACYsyGLqWbnozZ+dhK+6u5q3at5iXdM6FmQv4LTM00i3pB+PkMUgOn2drGlaw0vlL1HkKOKcUedQ4iwZcO6cvjSPCQvk3CmGl0pXJcuql7GhZQOLcxYzP2s+qabUI9qGxxVg9Qvl7FvfAoAtSc+Z140nIWP41j2IoVWzvYNlj+wgHIyiVCqYf1kRxTPSjmmnlD2de3i14lX2du3l3FHnMjt9NgmGhGP2fkKMZLFYjG1t23ix/EXavG1cVHQR0xKnU/2Ri1XP7iMajaHRqVjyrbHklMr36ETX5e9ibeNaXip/iXx7PueOOpf0aA7v/nMPjWUuAFLyrJx+xRjpDCeEEGLYqtjWwjuP7onfg8y+NJ+xs7KkY/xhqnRV8kb1G2xq2cTi3MXMzzz8uoP2hl7efHAb3W1+AIqmpzD7wgJJXirECapudydvPLSdkD+CQqnglC8VMGZOOhqtJOf+PEKhCNs/qOXD56uJ7b8XP/2aEvLHpgx1aEIcUnegm60t21BV2tn2fHtfuxuNkkVXjCF/UpIkthXiMHQ09vLG37bT3eYDIGeynbFLk8lNzxziyMRIt71tOy/ue5EmbxMXFV7E9LTpWLXWoQ5LCCGEEEIIIYQ4JqTV/kmqqbeJ69+5nhsSf0LV/gQkAB5XkA9fquSMb41Fo5MHWEIA7GjfwVXLriISiwDwbu27PDXm5XgCEoCeDj8b36xm4TdHo1bLd+dEsbtzN1cuu5JAJADA+w3v89u5v+Xs/LOHOLKDK/uoOZ6ABKB+Txe1OzsYO18enohDq3RVctWyq+gJ9QCwpmkNt0y9ha+Vfm2IIxPDXU13DVe/dTVdgS4A5psXUfnvMqLhGNA3wtA7T+wmIdOCI0U6VIiRyRPycPf6u3mv7j0A1jev5+2at/nb6X/7zA6Yvt4g7/1rT18neoAYfPRqFZklDtIL7MchciFOTEF/mNXPl8cTkABsfbeO7LEJZI9xHnS9dm87N6+8mbKuMqDvu7yxZSN3nXIXRo38Rh1vsViMF8tf5A+b/gDAh00f8r/y//Gf059n5b9q+p07179SRUaxnDvF8NHiaeGGd2+gpqcG6Duf7OjYwW0zbkOnPvzOQM2V3fEEJADdbX62LK/l1MtLUKmlQ5foz93uY/kTuwgHo0DfSJgrntpLcq6VxMxjk1i8uruaq9+6mu5A33OED5s+5IZJN3D1uKulsbsQg9jVsYsrl11JMNp3nfp+w/s8M/N/vP9MDfRVkxAKRHjniV1cfOs0LE79EEYrjrWXK17m3g33An11re/VvsevbA/EE5AAtFS5qdjcypQluUMTpBBCCPEZOtt6WPFkWb97kNVPV5CYYyIjJ3GIoxv+mj3NXP/u9dT11AF9dQe7C3dz6/RbD1l3EAlH2fJWbTwBCUDZ+hbyJyYxanLyMY1bCHH89XYFWP74LkL+vrZpsWiMVf/ZR1q+jeRc6dT6eTTXdrL2P1Xx/0OBCCueLCPhx2ZsCaYhjEyIQ3un9h18bVHcz4c/bncTivLOk7tJyDBjl3Y3QnymSCTKluW18QQkADWbXOgKQijMEXKsOUMYnRjJ9nTs4cplV+KP9N2nrWpYxa/m/IpzR507xJEJIYQQQgghhBDHhrRiPklVuCpo8jSh6h3YuLGp3EXAGxqCqIT44vxhP56g56hu853ad+IJSADMGjOtDa4ByzWWuQge6CAlTgibWzfHE5Ac8NDWh3AH3UMU0WeLhKPU7ugcML9hn+v4ByOGtXA0jDvoJhqL9pu/p2tPPAHJAQ9ue5AWTwtCfJayrrJ4AhIAQ9BCJNy/fIVDUbzdgU+vKsSIUeOuiScgOWB35272ufYRihz8/snfG6Kr2Ttgfm+nf5ClhRCHK+AJ0VzRPWB+b9dnf7f2ufbFE5Ac8HbN29T21B7V+MThafG28NC2h/rNcwfduNy9g587D/H5CnE8lbvK4wlIDnip/KV4x6LD1dHQO2Be/Z4ugj6pYxIDeXuCHydo2i8WA4/r2NxrhaNhdnfsjicgOeDv2/9Os6f5mLynECPdhpYN8QQkBzQ0t8QTkBzg6wnh6+m/nDixtHhaeHjbw/3mOQwOGvcMvI+pGaReXwghhBgOujp7Br0H6eoYeC8rBip3lQ+oJ3ix/EXqe+sPuW7QF6Z+b9eA+R2NR7c9jBBiePD1BvslXT+g9xjV+ZwMujoH/lb5ekJ0uXoGWVqI4aPT18mDWx/EEDDHE5AcEApEBj1XCCH6C3rDNOxxDZzfpqDKVTVwBSEO07b2bfEEJAc8uPVBXH7X0AQkxBfQ2djAY9+/joa9u4c6FCGEEEIIIcQwJklITlKRWKRvsvgGvJZZ7EBn0gxBVEJ8fqFIiLWNa7lu+XV8/c2v83L5ywMaxx8tvaFetEmxAfOzRjvRGeW7c6IbziO8qtRKcscPHHEqs+TgI8GLk09ZZxl3rr2Ty167jPs33k+N++NOcwqGb/kWw9unz40erRu1pv+thkanwmQ//BHhhRhuDnaO3NWxi5+s+gm72ncN+rrBrCUxwzxgviVBRrsW4ovQmbVkFNsHzD/Yd6vL38UL+15gT+eeQV+X66Djzx10U+WqGvTYBzU+nBkDRyK0OOXcKYaPUHRgEjKFQnHE9QaJWZYB87JLE9Aa1Z87NnHiMll16D9Vd69UKjA7jv75cV/XPu768K5BO8cpUCA/nUIMLhwdmEQqYgzw6Z8Ho1WL0ao9TlGJ4aKmu4bk0QPrCPIGqdcXQgghhgOtRYHePPAeRGeV5maH44vUOWqNarJLBz7nT8wceC0hhBj5jBYtZsennqUrwOKU5+ufl86mHFB/ZbJrUQ989CDEsKJQKFCgwKtzo/p0uxu9CpNN6pOEOBSdUU1WqWPAfHVyGF94YL8JIb4IBQr2dO6hNyjJOsXIsmf1Croa69n0xstDHYoQQgghhBBiGJOnwicplUJFpjmT5b5XyZ1niT9wsSYZmH5uHhqtamgDFOIIbW/fzrVvX8vGlo2UdZXx09U/ZUXdiqOy7YXZC1ErPu74ESOGPVvPuNMy498dR5qJSUuyUanltHoiKbIXoVf178Rx+ejLsWqtQxTRoRVMTSaj0B7/P29iEtmjBz5QESenZk8z333nu7xQ/gI17hqe2PkEd6y5g55g30gvxY7iAeX7OxO/Q4opZSjCFSNIoaOQBH1C/P9/1D/C5K+kotH1XVNqdCpOv2IMtiTDUIUoxBeWbc1mUc6ifvOKHcVUuip5s/pNrnn7Gmq6awaspzdrOPWrxfHOZUqlglkXjiJBGgoL8YVodSpmXVgQTzqiUMCUM3NIGqQzP8DymuX8fM3PqequotBe2O+1M/POJNuSfcxjFv2taVjDz9f+nIuKLuo3366z47BZWfDVkn7nztkXFUgnCzFshKIhXH7XgHPHeaPOI9OceUTbSs23Ujo3Pf5/QoaJCQuzUKmkjkkMZEnQs+iqMWgNfXWVKo2SBd8owZ5qPKrv0+Jp4YZ3b+C/+/6LL+zDoetft/St8d8i1Zh6VN9TiBNBl78Lk8aETtW/k5gpSc1pXyuJPz/QGdUsunLMMUkgJIaPnmAPFxX2v9ZVKBSkj7aQM+7jerTM0Q7yJ0oSEiGEEMOTPcHMuC87+92DjPmSA41z4KAtYqBkYzKZlv71BGfnn02yIfmQ66pUSiYuzMaZ/nFv+dK56aTmD9+2CkKIz89k13H6FWPQmfrOt0q1glMvK8aRJhkzPi9NQozSCx0f34ub1Iy9xIndKc8ZxPDm0Dv46piv8o+GRym8yIRa21eGNXoVi68cgy356NYFC3EiUqqUTFiQhTPj4+9L5nQzW5Uf0unvxB1wD2F0YiSbkDQBg7p/+8el+Uv5/orvs6553RBFJcTn01ZTDYDPfWwG/RVCCCGEEEKcGGQ4xZOQJ+jhL5v/wnUTrqOyu5IdlhUsmHAG2oiOgpwcTDbJoC9GnrWNa4nR19DFqrVyUeFFtPva2dWxiwJ7AVrV588APy5xHI+d8Rgvlb+EL+Tj/MLzKUzOQ3W+mtGz0wgHI9iSDRgt8t050VR2V3LrjFvZ1raNTn8nczPmsqFlA4tzFmPX24c6vEHZk42c8e1xuFq8KJUK7MnGeKMwIaq6q5iWOo0MSwYKFFS6KllWs4y6njrGJIwh357Po0se5Y2qN6hyVXH2qLOZkTZjqMMWI4BFY+Ga8ddQ31NPtbuaORlz2Bx4nynfmUmaMhujTYstyXDEo8ILMZyYNCZ+MPUHzEidwYr6FZQ4Sih2FlPZXcninMW8VfMWFd0V5NhyBqybkmfj4h9Pxd3pR2dQY08xSvI6IY6CpCwLF/1wCt3tPrR6FfYUI2rNwKSq7oCbf+z6B7nWXFJMKcxKn0V5Vzk7O3ayIHsBczLmYNBIoqzjKRgJ8tTup0g0JFJoL+TW6bfyQcMHZFuyubDwQnJtuWDj43OnUY09Wc6dYvho8bRw17q7+MmMn1DnrmN3524mp0xmTMIYdOojqx8yWnWc8qUCSudmEA5FsCUZ4wl4hBhM9pgELvnJVDyuIAaLBnuyEYXy6N5rVburqe+tjzemvG3mbWxs2Uh9Tz1n55/NrLRZcn8nxCBq3DXU99Tzq1N+xZqmNXT6OpmYPBGr0ULxzDRS8m34e0KYHTqsiXL9eaLb2bETX9jHT2b8hA/qPyDTnEmONQedXcmiK8fQ3eIjFothTzGiM2qGOlwhhBBiUC3eFj5UvsOM6+bQ0+XDaNXToCwHTxK5zoF14aK/pt4mLi2+lE5/J3s79zI9dTotnhaavc1YdIMnU/4kZ7qJ8743ie42L2qNCnuKAY1Onv0LcaLKKHJwyU+m0dsZQG/WYE8xojzKdT4nk3pvLR3Z7Yz/dg7engAWp46V3W9g95xHgbZgqMMT4qDave1sb9/OVeOvZEXryyy85kxsUScKY5TcwqShDk+IEcOZZmba1Sl0t/roCnfSqqkgS5vGfRvuY2LyREp1pUMdohiBip3FPLbkMZ4ve552XzunZZ1GJBbhtKzTeGb3M8zPnI9aKfdsYmRwt7UC4GppGuJIhBBCCCGEEMOZ3OWehFRKFecVnseTO5+kK9BFmimN5kAjFxRcgMlWNNThCfG5mDR9Iz8Y1Aa+PeHb/G3r33AH3fxp85+4YdINXFpyaXyZI6VSqpiUPIlJyZP6v6DmoKNsixNDgiGBVypeodxVjllr5omdT/CN0m+gUQ7vBsF6o4bUPNtQhyGGIZ1KR1lXGa9UvgLAxKSJfG3M1/qV6RJnCSXOkqEKUYxQapUanUrHhpYNaJQa7t9wP2fln0WBs50p2eOHOjwhjpp0czpfLvky01Onc8eHd/DIjkcAmJQ8ia+O/upnJr4zO/WYnTLKtRBHm8muw2T/7A7/KqWKYkcxObYcHtn2COFYmHRTOrfPvJ1TMk85TpGKT1IqlExJmUJXoIufr/k5GqWGqalTmZM+h2JncXw5OXeK4UqtVPO10V/jv2X/paG3gXRzOqvrVzM+8fNd+2p0apKypY5JHD5bkhFb0rEb8VKr0jI3Yy4JhgT+tPlPAIx2juYXs3/BmIQxx+x9hRjpYsR4t+5dntz1JDnWHOZkzKG6u5qZaTNRKhU4U02QOtRRiuPFoXOgU+u4b8N9FDgKaPI0kWfLQ61UozNoSM4d3s8ZhBBCCACNUoPD4OC2bT+ixFlCWX0Zi3MXk2/PG+rQRgSTxkSHr4PXq14n2ZjMv3b/iyvGXnFE7Q2MVq0kKxXiJGJNMGBNkKSVR4NJY+Kjno94tOYRRtlHsbtu94ho8yWEWqlmaspUHt3+KA69g60dW5meMp25jrlDHZoQI057rIU/1f0JtUpNs6eZU9JPYWLyRPktEF/I2MSxtHhaeL/+fe788E4isQjFjmK+UvIVlAoZVEWMHO72viQk3m4XsVhMBqAQQgghhBBCDEqSkJyE9Go9jb2N7HPto9BRyBVp1xFtMBBdb6TB10VKnnXQkYOFGM5mpc/CvM3MopxFPLX7KdxBNwDRWJQ/bPoDU1OmMiF5wufa9icrVnw9QZoqumksd5GQbiaj2C4Pf09gwUiQd+ve7Tdvb+deLii4YIgiOjLengDNFW4ay10kpptJL7LLCJsnuXVN69jbtTf+/5a2LczJmEO2JXvAslKpLI6EIqbgv2X/xRvykmxMRqlUkhzJwFGTy6r1+0gbZSNtlA2j9chGhRdiuNratpUWb0v8/82tm5meOp1ie/Ggy4eCEVqq3NTv7sRg1ZJZ4iAh3Xy8whXihBUMhGmu7PtuWZx6MkscOFIHJp80aUxcWHgh337n20RjUQAUCgVP73mafHs+aea04x36SU+tVDM+aTw3vncjAHa9nWAkyJO7nmRC8gRibjX1e124mj2kFzlIG2VDb5LGYGL4SDWlYtAY2Na+jQxzBjqVjj2de9jWvo2Z6TMPezted5CmChdNFd0kZuy/b5d6JnEY+pWdTDMZRXYszqNXdvJt+czNmMuv1/8aAAUKlAolz+x+hlum34JZK9eyQnxaKBrif/v+R11PHYmGRJIMSbxX+x6/HXs/oa0mPuypIHO0g9Q8G2qtPIM7GRg0Bp7c+SQmjQm9So8r4OLRHY+yMGUxVWVtNOxz4UwzkVHkwJYkv/9CCCGGJ51KR1N7G7ck3UmkUcd5SWF2eT+SjlWHSalQ8vjOx0kzpaFT6QhEAjyx8wkWZS867G10t3lpKHPR1eQhvchO2ii71JMJcYIa0CZN2vh8IQqFAr3Xws3WOwi1qDg3PcCG1vfR50jiczG86dV63q9/n3ZfO1/LuYL0ngK8FVFsJOKxBg45OIMQok9nZze+fRouc30fS7qaCvt27i+7hztm30GONWeowxMjXKOnkeW1y5mUPImG3gb2du2lsbdR7pXFiBH0efH39qC3WPH3uAkF/Gj1cu8hhBBCCCGEGEiSkJyE/GE/m1s2c+PkGymKjaPsyQABTw/Qw863Wzj7O+PJHZ841GEKcUSKncU8ccYT1PbU8mL5iwNe/2Qn0cNV11PH8prlvFf3HvMy5nFG7pnUv+dn4xs18WVS86yced04jDZ5uHMiqu2pjf+tQMHV467GE/Jw1VtXsSB7AQuzF5JlyRrCCA8uEo6ydXkdm5Z9vA+po2ycee1YSQJwkgpHw6xuXD1g/t6uvejUH5eJ6u5qllUvY03jmng5z7RkHs9QxQjkDrpZlLOIclc5TZ4mfjXlt3S9YmJNRTUAW5fXMXFRNjPPzUelkYdtYuRq87axqmEVL1W8xKTkSVxUeBEPbXsIX9hHtbuaJFPSoOvV7uzgzYd2xP/XmzVccPNknGkDkyUIIQ5f5eY23nlid/x/k13L+TdNxp5sHLBsKBoiGouiUWq4bsJ11PfUU+Ou4Z3ad1iUs4gUU8rxDF0AvaFelAol14y7hq5AF+Vd5YxOGE1XZw9rH6mno8EDwJbldcw8P5/Ji3NQKCVJnhg+dnbs5IZJN1DbU0tdTx1fLv5yPNHR4QiHI2xaVs3Wd+rj89KL7JxxzVgMFhnhWBxcOBRh45vVbHv347KTWexg0dWlGI9S2bHpbGhVfdsqsBdwfsH5rGtaR7u/nc2tm5mRNiP+uhCijyfoYV3TOq4edzW9wV72du3l9pK72PRIB/7eZgA2vlnDGdeOZdSk5CGOVhwP7oCbc0edS5IhiS1tW5iSPIWJiROpWN3Jptfq4sslZVs4+zvjpROREEKIYckb8DGxfiFl73cAXgAyiqahzJX7gcPhCri4fuL1NHmaqOqu4sLCC/GEPLgCLlLNqYdcv9fl542HttNR/3E92Yzz8pmyROrJhDjRRCJRtr1bx4ZPtElLzrNytrRJ+9w0AT1JH05gT6U7Pm/6gjPwBLwgj2jFMNYd7Ean0nHXtF/jf8fJ7u19ZbhmVS8ds/zMvbQYrU4S3ArxWcKhCNuWNbJrZXd8XmpxCX886y94FT392koK8XkoUHBR4UVsbdvKrPRZpJvSWd2wmnAkjFol3bPE8NfT2QFAUnYudTu34e/pkSQkQgghhBBCiEHJXe5JSK/W87XSr/H7Db/nZuM4Ap5wv9fXvVxJWqENnUFGzhAjS7GzmCRDErnWXKrd1f1eSzUdugHHJ3UHuvnFml+wvnk90De6fUoom/pl/b8XzVVuOpo88sD3BFXsKI7/fe6oc1lZv5KyrjKgr0x82Pgh98y/B4vWMlQhHlR3m48tb9f1m9dc0U1no0eSkJyk1Eo1p2adyta2rf3mz06fHf+7w9fBD97/AXs79wKwqXUTHzV/xG/n/lZGORafyRf28fjOx3EFXACcZ7yMtgpPv2W2vlPH6FlpONOlRY8YmSLRCE/veZq/b/87ABtbNuLQObh89OU8sv0RZqXNGnQ9vzfEupcr+8/rDdFS1S1JSIT4AjzdAda+WNF/nitIe13PoElI0kxpqBQqLht9Gc/ufZZWbyvQd71T667llmm3SGOQ4yzdlM75BeezvHY5Fa6+z3JT6yZmhhbGE5AcsOG1agqmJGNLGvjZCjFULii4gDvW3kGbrw3ouza4uOhiQtEQGuWh61W7W3z9kkgANJa56GzykCFJSMRn6G71sf29/mWnfm8XXU2eo5aEBIgn3j2/4Hzu3XBvfP4HDR/w90V/Z2b6zKP2XkKcCMxaM1eOu5Lnyp5jT+ce1Ao1HmUUf2+o33IfvlRJRpFDRq8/CWSaM1EqlDy641Gg71qhVD2RLcv6n8PbanvoaOyVJCRCCCGGJV2vhfIPqvrNay7rYVxP2hBFNLIkGZP4zfrf0ORpAvrqvhbnLMahdxzW+h31nngCkgM2vF5N4ZRkbIPUgQohRi53m49Nb9X2m9da5aajUdqkfV7abittlc395pWt6GDM7AxwDlFQQhwGu9ZOsbMYb3uE5u09/V7bs7aZ8adlkZQ9/NoqCjGcuFq97Hy/qd+85r29aKfHyChIH6KoxIkiEA6wq2MXr1S+AvTd56WZ0vjB1B9ImxMxYvh6+pKcOTOyqNu5DV+PG2uSJNAXQgghhBBCDCTDkJ+kYrEY3YFuCA0sAkF/hGgkNgRRCQEuv4ud7TupcFUQioYOvcKnOA1O7jjlDpz6vqeFaqWaH037EUWOoiPaTnV3dTwByQE9/h6i0YHfjUjo8Ee5FSPLuKRxXFJ0CeMTxzM6YXQ8AckBqxtXU+uuPcjaQysaiQ5eXsNSXk9mi3MWMzVlavz/+ZnzmZE6I/5/hasinoDkgJX1K4dtORfDR2V3ZTwBCYAiMvAaMxaNEY3IOUiMXE2eJp7c+WS/eV2BLjRKDQuyFjA7fTaRaISq7ip2tu+ky98F9P0mh/yRAdsLB+X7IMQXEYvGCAUG+W594v4sGAlS3lXOro5dJBuSuWP2HRjVxngCkgP+U/Yf6nvrP70pcYzl2/KZlDQpnoDkgB6fZ8CykXBU6qrEsBOIBOIJSA54cd+LNPQ0HNb60WiM2CDFWu7bxaFEI9HjUnZKEkq4bcZtbGrZNOC15/c9f1TfS4gTgVqpJsOcwZ7OPQAoFUoIDxydPuQPS/3ISUKn1vFq5av95kUisUGva+U5kxBCiOEqGA4Nev8RDIUHzhQDdPo64wlIDni75m16Q72Htf5g93lSTybEiSl6sHsFqSv83IKhge0Oo9HYoPOFGE48IQ/PlT03aLsbkPOCEIcjGo7BIJfM0XBsQFsBIY5UfW89r1W91m9ek6cJlUI1RBEJceR87m4AnOkZAPh7D6+eQgghhBBCCHHykXSbJ6lILII37CWU3I1CqSL2iY7qExdlYTDLaJvi+KtwVXDb6tvY0b4DtULNtyZ8i8tKLsOmsx3RdiYlT+KZs5+h0dOITWsjx5Zz0BFoq7urqXBVoFPrKLIXYdaaWde0jkZP44Bl1/Ss4IzxV1GzrTM+z2DR4JAR7E9YKoWKuRlzafO1EYkO7OAIoFAMbEg+HNgSDeSOT6B6W0d8ntGqxZEq5fVklm3N5vZZt7OmcQ2RWAQVKtY3r2efax9alZY6d92g6w3Xci6GD6Wif+OHJk01Rlsh3u6PG6FmlTqxJhmOd2hCHDUKFAPKOkCuNZevj/k6SoWSp/c8zf0b7ycYDTLKPorfzfsdRY4iJp6ezarn9sXXUSoVJOdaj2f4QpxwTHYdE0/P5qNXPx6JVaVWkphhBvoa+D++43H+sfsfRGNRpqdO55ezfolBPfC3SIFc6xxvHd4OHt7+MFmWrIGvGRrQGTMIeD++jiiakYolQX88QxTiM1W6KmnsHVh3pFAoDvv+yZZoIGu0g7rdXfF5Jrvct4tDsyYZyCxxUL/nE2XHoTvqZaextxFXwDXob6daIY+WhBjMJxsZB6NBfI4ulEptv2TRE0/PxmiVUaxPBsFIEOWnxgNZ0f02F076LlWbPq6315s0OOU5kxBCiGFKZYuQVGikbZ83Ps9o16B1SufXwzHYMwWFQnHY9ZHOdBM6o7pfPVnx9FQsiVJPJsSJxppoIH9iIpVb2uPzDBa5V/giNAlRjFYtXncwPi91jAmVTX7DxPCmUChQoqSC3aQmT8fdGoi/lpRtxpYs7W6EOBRbkoG0IhtNZd3xeSaHhhrlDkoUo4YwMnEiUDD4PV0wEqTOXUeWdWAbCCGGG5/bDYAtOQWAYMA3lOEIIYQQQgghhjFpKXoSavY0k2RI4q8L/opaoSbn2hQq3nPhc4cZvyCT/AlJQx2iGCbC0TB7O/dS0V1BijGF3mAvoWgIp8FJi6eFBH0CwUgQT9hDijGFFm8LVm1fZ0pXwEWaKY02XxsGlQGNSkOHr4N0czod/g7UCjUmjYlWbys2nY3RztE8uv1RdrTvAGBW+iwUKHi39l1KnCUUOAoGTSTS1NvEyvqVrKhbwfS06SzMWkiOLYc0cxpp5jSae5tZ1bAKT8hDvi2fYkcxKmVfQ+Ad7Tu45q1r4qPMjE8cz5Vjr+R7K77HgqwFTE2ZyoaWDfH38im8TDs/G3u6gZrNXSTmmsidY2Gjdy3Gxr7RtFNNqbiDbiKxCA6dgxZvC0a1kdEJo0k3px/jT0wcbbs7d2PSmpifOZ9AJMDDix7m+T3Ps7Z5LZePuRyT2kStuxaT2kSOLWeow+1Ho1cz5+JCEjLMVGxqIzXfyvgFWVgT5UHkySgai1LeVU6LtwV/2E8sFiPfmo9aqabGXUO7r50Mcwa17louGHUBk1Im0RPswaq1YtFZyDRnDvUuiGEu3ZTOXxf8FZ1KR6u3FU/Yw5Rrcqla1U1blYe8SYmMmZ2OVi+3H2LkSjIm8ZeFf6HWXUskFiHLksXrla+TaEhkZd1KDjxfvnve3fjCPn697tfcvf5urh53NaZCKzMuyWHfqnYMNg1jTk8m5HADkohEiM9LoVAwZk46Gr2C3aubsSTqKFmQRKVqN7vrA3T6Onlqz1PcMesOjBojLd4WtrZvJdOcyTdGf4OZGTOpddeiU+nIMGeQYckY6l06qaxrWkeRvYhCZyElzhKmJk9lYc5CmnubsegsJH0rk5oPeuis91E8I5Wi6SmoNTJykBgeQpEQT+95mnPzz+UXs35BOBrGprOhQEGCIQGLxnJY29Ea1Mz7SjF71jRRsbmNtAIb40/LwuKUjkTis+kMGuZfVszu1U1UbtlfdhZkHrWy4w15qemuoc3fxrjEcSQaEpmUPIl0czoKFAQiASzawyvnQpxMKrsq8YQ9/H3R32n2NuMNeUmzOci/LoGqFW48riDjTs0kf6I8gztZeENe7px9JyqlinZfO4mGRBINiSSNTyYx3cq+j1pIybUyYWEWtmTjUIcrhBBCDEqn1zDxwlSaNvmo39ZNYr6JgjkOgsaeoQ5tRHDoHTy25DFaPC24Ai4yzBnoVDrMGvNhrW9PNnLe9yaxeXkNbTW9FE1PoXhmqtSTCXEC0uhUzL6oAGeGmfINraTkWZm4UNr4fBERo5951+ax7/0OOqq9ZE+0kzJRh043+EBmQgwXZo2Zn8/8OTFFDHNaAm0fhWgp85AxxsqE+TkywKQQh6GbLvLO1pOYbaJuu4vEfCOZs4z0mrWolWqqu6vJteUOdZhihApHw/x42o/Js+VR21NLNBYlx5pDm6+N5bXLOSX9FIqcRUMdphCfydezPwlJUl8SkpBPkpAIIYQQQgghBie9AE9CjT2NmNQmyrrKuPuju1EqlJw9aSkTnBMxZCVhsEglteiztnEt1797PWfnnU1DbwNb2rbwg6k/4KerfsqMtBloVBrerX2Xm6fezF0f3kW2NZvShFKeK3uO7078LvdtvA+dSseZeWfyyPZHuKL0Ch7a9hCugIsrx17JHzf9kRh9IwDePOVmVtavBGBOxhyMaiN/3fJXoG90mHvm3cPi3MX94vOEPNy74V7eqnkLgNWNq1lWtYwHTn+ABEMCjb2NfP+977OrcxfQN0Ln307/GzPTZxIIB3h428PxBCQF9gIuKryIZ/c+C0C5q5yl+UsZmziWClcFczLmcGrmqaxsXM6j4Ue5/ss38GbTf1i/YR1Xjb2KP2z6AxcWXsjerr3s6dzDTVNu4scf/JhwtG9EmkJ7IX9a8CcyLdKRfyTRKXXcvuZ2antqAdAqtdx36n3MzZrL3R/dHS8/CfoE/r747xQ6Cocy3AFsSUZmnJvPpEXZqHUqVKqBIy2Jk8PaxrX8edOfGZs0Nn6ee3jRw9y88mbcwb7KZLvOzt3z7mZr61ZuX3N7fN2z8s7CoXUwOXXykMQuRgZ/xE+br41XKl9hY8tGoC/r/33z7mfqkhzcsS6UtuQhjlKIL2ZH2w5+/MGPaff1jUBm0pi4Z949eENeltcuZ3nt8viy35v8PW6feTu3fHALE5ImoFAocKQ6yP5qLq5gGx8EN6Ov17NEs4REY+JQ7ZIQI15A10tV9iYKCrPxRLvZFqwk6A5S1V2FP+znFzN/QbOvmT+v+XN8nTNzz+TLJV/m2revJRDpGzks3ZTOPfPvYXzS+KHalZNKa28rOrUOo8bIjvYdXFZ8GenmdH6+5udcWnIpd6y7A1/Yx/jUCYwtHse8iZdhtUpDazF81HTXsCRnCc/te44Xy1+Mz/9G6TfY0baD6yddj9PgPKxt2ZONzDgvn0mLs9HoVCjlvl0cJnuykZnn5zN5ydEtO9FYlHVN67Dr7LR723l85+NUu6sB0Cg1/HTGT3H5XRQ6h1cdmBBDLRaLsbJhJXadnb9t+Rt7u/YCoFKo+N283zHuK0VkmDPRGuSx7MlEqVCyvG45b9e8HZ/37fHfZnradKYvncqEBZmotSpUavn9F0IIMXz5wj5W9b7LS8qXOHXJAt52bcFRZ+ca6zVDHdqIoIgp+Neuf/Fu3bvxeTdPuZkMQwaYDm8bSdkWFn59DOFgBJ1ROs4LcSKzJRmZvjSPiQuzpI3PURBTxPhjzd30pngYVzyeZ1ve4SLvRSwILxjq0IT4TA29Dfgjfm5eeTPhWJhxCeNYct6ZpGZNw5F0mBcQQpzkKlwVlIfLSZ2aRnPadt7v3cOatWuYlDyJm6fczBXLruDB0x+k2Fk81KGKEWZ7+3auWnYVv5v7O370wY/o8HcAfQmk7ppzF39Y/QdsWhsFjgKUCrmWE8OX192NRm/AYLUBEPT7hzgiIYQQQgghxHAld7cnIbPWTCAa4K9b/kqWOZvfFf6Z2bXnY9ySS7BRRTQSHeoQxTDQ5e/iN+t/QzQWJduazabWTcxIncHymuUEo0HGJ43n3dp3KbAXsKN9B72hXuZnzuf5sudx6p10+jtp97VzRu4ZPLX7KdRKNRqVhtqeWs7IO4N/7f5XPAEJwJrGNZQmlAIwMWkiy2qWxV+LxqLc+eGdNPU29Yux1l0bT0BywK7OXVR2VwKws2NnPAEJQDgW5t4N9+IOuvGFfZR1lQFQ7ChmXuY8nt/3PJnGTO4teoBv9/yCrB1TGReZzmlZC7hs9GVEYhHu3XAvrd5WagJVLK9/myW5S3hqz1PEiJFqSmVH+w7mZszl1YpX4wlIAPa59rG9fftR+nTE8bK7c3c8AQlAMBrk0e2P4tQ74wlIADr8HbxX995QhPiZPK4AZetbWPl0GTtWNuBq9Q51SGIIdPo6uevDu5ibNZfnyp4DYGn+UpZVL4snIAFwBVysqFtBWWdZv/Vfr3qdHR07cAfcCHEw5a5yFApFPAEJgFPvJNKupnVNGPe7JprL3IRCkSGMUogvZnXj6ngCEuhLiPdS+UtEiPRLQALw0LaH0Kl1nJ13NvW99SQFMsiumkTPu2bSOgrIUGfTHeqmyl11vHdDiBNKR1MvSWUltC9XY2lKwxyz0RPo4fmy5ymwFWDX23l428P91nmj+g3avG3xBCQAjZ5GtrRuOc7Rn7x8kb4RVOp761EpVaiVasq6yrBoLaxrWocv3Pf6ts6tJCiTqV/n4a1Hd7JnbRO9XdLwQQy9aCxKT6inXwISgH/v/jeTUyazoWXDEW0vEorSWtPDyqf38uH/KmitkXsvcXgUCgWRcJTyTa28/dhOtiyvpavli9X91Lnr2Na2jTZfG02epngCEoBQNMT/yv+HUWNkVcMquvxdX3APhDhx1PXU8betfyMUDcUTkAD8P3v3GRhHdS58/D/be9Wq927JHRdcMAYbiE1LaClACCEhCSlAElJvkjf3JvemEXJJckMIKaQ3Qg0dg22acS9ykWTJ6l1abe/7fhCWLWSwMcYqfn5fwGdnRs9Ks7Mz5zznOcl0kk0tW4i1a9j4t3q2PH6IgY7AWxxJTBfJVJLh2PCYAiQAjzQ9gn7QwSsPNvLygwfpbPQSj0l/mRBCiMlrIDrAwMAwt5i/SunupXwg+UlmaufTFe46/s6CjlDHmAIkAL/Y+QuG4if+POUfCHNgUzfr/1JP3Ysd+AZkdWIhpqvgcJT6zT1s+Kvk+JwKnYFO5ugXcnXyZkp2L+HT5q/R0zcwOllYiMkqmUzyi12/IJFO8MmSz/Jh1edwbK7Gt0eFf1DGyYQ4EeFEmPmuBag7rVQcWM7lQx/jv6t+TNNwE63+VmZ7ZvPkoScnOkwxxSRSCX5f93sKrAVs7d065p4iEA/wbMuznJN3Dr/a/asx+WVCTEZh3zAmmw2twQBAPCJ9DUIIIYQQQohjkyW3zjDJVJJUOkUkESEQD/Dtkh/Q+Ps46bQfgLZXAtg+bye33DGxgYoJF06E6QqOJI4cLqbhNrrZ1rNtTFuGMYPuYDcwMgkjTRqH3kFfqA8AjUpDOBHGqrUSiI0k1zr0DgbCYwf0Xu16lf9b9X/sG9xHLBUbF4836sUf95NDDvFUnJ29O2n1tY7bbsw+Ee+4to5AB+F4mExTJmtL1vKr3b/igqIL+PmOn6Og8JW8/2TjL1shHQdA9bLChZ9bCkAwESScCGPWmkcLUBz9Xo/+nezs2znuZ7/xPYvJZ9/APh5vfpxWXysfmfGRY3YEd4W6UKvU49qPnpQxGSQSSbY+2cLuF9oBaNjcw76XO7n0M3MxO/QTHJ04nQLxAO2BdtLpNKn0SKGxalc169vXj9u23d9OrbuWZ9ueHXeMcCKMTW87LTGLqccb9WLWjl1x5fbCr9L8hzTJeCcA+1/s5uJPGyielTERIQrxjrX528a1dQY7R+9xjxZOhIkmo6wuXM3BjlYij2aye6AHgENbYOZ7crFV9BCKS/KgECdruD/MK/e1ERgceX5s3gyzL87BUNJJPBUnSXL0s/hGRxcUPKwn1POuxyxGKCjEUjH2DOzh4pKLiSVjNA43julfAPhA4bVYNlSxrXXkXqJhcw/VS7NZ8f5KtHrp0hQTJ5wMH/M6Ek/FUSmq0f60E9W2b5DHf3GkcO3OdW1c8cWz8BRa33GsYnpLJlPseLaN7U+P9JHWv9bD3hc7uezWuVichpM6ZjQVZSAyQCwRO+Z53hnsJJlOEoqHiCfj7yh+IaYTX8xHNBEd94znNrhZGr6IZ/9ypOjvyHV+Ps5sWbl2Okun08d85v9k7m28/It2EvGRftq9GztZe8tsSmZLf5kQQojJSZ1UU9W8jMZNrz8fbAdHfim2D8m9zInwx/zj2kKJEKHEiY0NRMNxNv69geadI3kLDZt7KKx1ccFHazGYtac0ViHExErGU2x7qoVd60ZyfA7381z6uTlYHCfXz3Omc6U89K2z0NQRHGnYDjPOXo5SJes2isktlo7RHezmkrzLydg8i4MNI/cN7dv9DNRHWXXDDHQGGScT4q0oKCgdZvb9/siYnVav4/Mf+BqB+DAZxgyavE0TGKGYimLJGM3DzRTZimgPtI97vd3fzuyM2bzU8dKYRUyFmIzCfh9Gqw2tTg+KQkyKkAghhBBCCCHexJTqUVcURa0oynZFUR6b6FimKrVKjQoVLqOLS0svJbzbQDoNrlwzmcUjie37XpIVSwR4jB4uK70MAJ1ah0bRsKVnCyvyVwCQJo1JY2J3/24WZi8ERhIoMk2ZtPhamOGeAUCrv5VKZyX++MhrANt6trEsb9mYn6dSVHiMHv5y8V9YkLUAtTK2yEONq4ZsUzYAO3t38tGnPspTLU+xLHfscapd1ZTaSwEod5SPe1/vLX8vwXiQP+//M4XWQi4supBoMkqaNLXumTS95IX0ke1TqTQdO0cSQ/It+SOfm0QYj9EDwNaerSzPWw6AXq1HpajY1LWJc/PPHfezD/9OxOTU6G3kpqdu4nd1v2Nd2zo+u/6z1GbUjtvuoqKLRgs5HG1V4arTEeYJ8/WG2bO+HZ1BTU6ZHbNDx0B7kMGu4ESHJk4zj9HD8rzl+GI+skxZAPy+7vesLlw9btvzCs5jQ8eGMW02nY0CawEZRkmEF2+u3FGOx+hBo4wkOjj1TrSdTvRGDTlldvSmkfZtT7bI6q5iyjp8H3y08wvPJ9OUiVFjHNNe5azCqDZyz+57yI+VExyIodGpyC6zY3Ub2PdcH8VKJTmmnNMVvhDTzkB7gMBgDJVaIavEhiPLxN5n+qjSzcSms3HPznuw6qzjngtNGhM55vGfvXmZ805X6Gc8BQWz2sxcz1za/G2oUFHjqmFH3w6W5i4d3W6m5ix0ah2OLNNo2/5Xuhnuk+QHMbGsOiu55lwsWsuY9hJbCd3BbhZmLTzhYyViCfa92vWGthQdB058RWRx5vL1hdn5bBuOLBNZJTZUaoWh7hADnSff95NpzGRB1gKcRudoH8LRLiy6EJWiosJRgV1vfyfhCzGt2HQ2yp3lZJmzUFBG2y/LuYKW50LoTSP9IyabjkggTn/b+CI/YnrRqDVkGDPQq48UBLfpbFh6s0jEU2Ou3VufOEQ8Kv1lQgghJidHNIu21wJH7mfsOrztUaxB10SHNiUUWgsxqMcWD6hx1YzmzhyPtydMd9MwOWV2DJaRoiOtdYN4e6TAuRDTja8/zO4XOtAZ1GSX2TE79Ax2BhnslM/7yTIH3Hg7IpgdOnLK7OiMGto2BXBET+waLMREydBncFHRRSzQL6O/IYzRqh25FzBradreJ/cBQpyAGdZadj/VhUqlkFVsw5ljIh5NYu73UGIrYVPXJtaWrJ3oMMUUY9KauLLySja2beSc3HPGvb6qcBWPNz/O2tK1o3MMhJisDhchUVQqtHoDcSlCIoQQQgghhHgTU6oICXArsG+ig5jqNCoNfcE+rq+5HpPZwIUfqyUjz4LJouO866qwunQTHaKYBLRqLTfNvon3lr+XB+sf5I6Fd6BTjZwbV1VcxUMND3H7WbeTZ8mjM9DJh2s+zBPNT/CxWR9jpnsm23u388nZn+TVzle5vOxyluYuZV3rOm6ffzvNw83M9cxlVeEqVIqKfEs+P1v1M8qd5eRb81mUvYifnPeT0Qnvte5avr3s29j0NgAeanyINGle7nyZIlsRN9TewKLsRdw671Z+uOKHuI1uAGrcNdx57p1kmjLRKBquqriK95W/j8+u+yzfe+17fOPlbzAQGWB+5nzUihqdWkf6qOLDeZUOFl9WiivbzKHd/bz6xxaW132Ae6r+QPNgC7efdTut/lZme2azumg1jxx8hDsW3EEilcCqs/LesveiUWnwGD38cMUPqXWPL2ghJo/9A/vxx4+sROSL+nDr3fzH4v/AbXCjVWm5quIqzis8j0pnJZ+Z+xmMGiM2nY2vLvoqC7IWTGD046XTsPSqcuZfVIRKrVCxMIvlV1eQSqWPv7OYVoxaI19c8EVIw+fmf45ZGbMYjg1T4ajg5lk3Y9aasWgtfGrOpzBpTFxbfe3opLkqZxX/sfg/Rq6TKvVxfpI4k5VYS1Ch4rvLv0uBtQCdWkd5ST7VS7JRqRXmri7g3A9VkkykxhT7EmIqWZyzmNvm34ZNZ8OoMXJDzQ3McM2gw9/B98/5PmWOMhQUzs45m88v+DyN3kbqB+sxq81UnZ3N4ktLUWtVFM/OYPVHasi15FLqLJ3otyXElJVOpVl0WSkrPlCJ3qQhu9TG0ivLsens3LHgDgpthTzd8jRfWfiV0cKZFY4Kvrfie5jUJt5f+X70aj1OvZOvLvoqi7IXTfA7OnPkWfPQa/QkU0kcegf/s/l/cOqdfHbuZ4kkIlxdeTUXZa+hQluD3qQhq9TGRR+fid1jhDQcoyakEKeVTWtjIDzAj879ETNcIwVnz8o6iw9Uf4BKZ+Vo21uJBOM0bOnh8Xv2YDBpec/NM6lcdKTgQzIpJ7o4MUuuKCO7zIbOqOacaypYeV01inL8/d6Mw+Cg2FbM/2z6H6pd1Xz+rM+TYcxAq9JydeXVzMyYiVpRszR3KXqN/vgHFOIM4TF6uL7mehqGGvh/S/4fWaYsNIqGKmcVNctzmbOqAJVaoXpJDhfeVEs6LZ0jZ4JkKsmPzv0RpfZSFBQWZS/CarRy4cdqyX69aO85H6gks8gi54QQQojJKw2LLy1l7gWFqNQKVYuzOffaKpT0VEs3mxh2rZ0fnPuD0fuBJTlL+NKiL53w/qlkippluShqhZnn5nHhx2sx2XQy5i/ENJROpznrPUXMf08xarVCxcJMzru+mnRK+glPliqtYuV1VVQsHMlZmH9RIQsuLpZ8BTHpqVQqLi69mEyDh3PeX0HN8pF7gVnn5bP0qnK5DxDiBDj1TrJLHJx7bRV6s4bMQisXfLQGp8mBVW3l6sqrWZQj+QHi7VtVuIobZt5Af7ifz8777GgO2Y21NwKwLG8Zn5j9CbRq7QRHKsRbiwQDGCwjC1jrjEZikcgERySEEEIIIYSYrDQTHcCJUhQlH7gY+C7w+QkOZ0qz6W283PUyGzs2cu3cm3n8/3aTSo50TB/aM8DqG2smOEIxWRRaC/nm2d+kN9SLUWNkTckaQvEQToOTj8/+OFqVljUlawjEAjj1Tq6ruQ4VKi4tvZTh6DAOvYOrK68mSZKrKq5iKDqEVWflsrLLiKViXF9zPUORIYwaI2nSdAe78Zg86NQ6VhasZIZrBoF4AI/RM1qABCDFkQHWP+//MzadjQ9UfYCPzf7YmPj1Gj0XFl/I/Kz5RBNRbLqRc7/V3zq6zdaerfijfu5bdj9DLWFyFmTRuc9HRoEFZ46ZTY80sfTKch7/xW7Srw/gNO+Aj3zqFjLLTVxWOvJeHHrH6HtZW7qWcDyMy+DiU3M/hU6tGy2oIiav9BtGmQuthXQEOgjEAvx45Y9RFIX6gXoODB6gylnFzbNv5rLyy1ChIss8fmXYiaYza+hp9tG4pReAjnov9kwja2+ZPcGRiYlQ5ijjtrNu4+svfZ0MYwbXVF7D9zd/n3xzPvesvodYKsYf6v7AL3b+gstKL+M7y75DOBFGp9aRbc6WQRFxXIFEgEA8QJY5ix+s+AH6iIktv2kdXZmpo95L8Ww3S68oI5VMAVLURkw9HpOH2RmzufPcO1EUhRfbX+T+uvuZnzmfnmAPV5RfQZY5iwx9BhWuCrJN2ZxfcD7GsI2DPUO89EAjAB37h2jc0sOaT8xi34ZukokUOeV2MgttKKp3MGNUiGkulUrT1+Kn66AXjVZFZrEVb2+IF/50YHSbxi29rL29ltkZs5l3zjyiqSgWnYULCi/g/VXvR42arkAXvzz4S1bkr+Dnq34OQDwRH/PMKd5dKpUKm95GV6iLZ1qeYU3JGm5bfxs3zbyJtaVrMWqMxPeaef53R/62B7f0csFHa9n3Sif2TOMERi8EZJgzUKlUNHububH2RowaIx6jh0gqwkB4AKvOetxjNG7rZf0brl/Lr6kgEojTvn+IvCrnu/kWxDSRiCV57dFm4tEkAG17h1iwthhXjvkdHdeqt9IeaGdH7w70Gj3/s/x/SKVT6FQ6wskw5fZyKlwVp+ItCDFtGLVGZrhmsKlrE26Dmx+f+2MAlLia1o0BDu0aAEb6R1y5Zs6/vnoiwxWnyWB0kKHIEDfMuIEyZxlqRY1twMkTP99NIj4yztVaN8i5H6xEZ5gyQ/ZCCCHOMFor9LX5adreB4zczziyTZz7USmwfSI6Q520+9r5zyX/CQqEE2H2D+xnjmfOcfeNBOK88q+DdB0cHjlWvZfsUhvnXltFMpFi87+byci3kFVix2STxaaEmOrMdh3+gQgHNnUDI9dbq9vA2k9Jjs/JMjv0vPDPRob7RlZ176j3UrEwk5zFhgmOTIi3Fk1G2T+4nyXZ57L5Tx30HhpZVK2z3ktelYPy+Z4JjlCIyU9v0uIpsvL8H/aPtjVu7WPNp2tpCO/khtobJjA6MZVlmjK5Ze4tvNr5Kt2Bbr53zvfQqXSk0ilCiRAfqPoABq3ca4jJLxoMojePjCnrDAZi4fAERySEEEIIIYSYrKZSRtNPgC8Bx8/iFm8pw5RBT6iH/nA/7R3e0QIkh+1a10bp3Ay0+ql0eoh3i1atJc+aN/pvp2FkEoRJaxpts+vtI226I20WnQUAs+5I0vvRr48eX6Xlpc6X+O6m79IX6mNtyVo+OeeTFNoKyTJnkcX44g7vLXsvjx18bLRohC/mG13Z+lgyjBk0DzfzpY1fYmbGzHGv11pn0/l4ira6EN7ibpZcUYZWp2bj3+qxug0MdgZGC5Actuf5Li6tnYNNc2SFn6N/J7zeh2jUyuSoqWKGawZmrZlgPMgczxyW5y3nwNABdvTtIJKKQBraA+3s6dvDxaUXoygKOeaciQ77TQ33hGjc2ju2rTeMtzuEK/udTUYRU5NJa+L9le/n4898nKW5S4kkIzzX/hzPtT/H6sLVVLurubTsUpbnLR97PRPiBESSEe7adheXll2KXq1nJRePFiA57NCuAarOzmbfy13MWVWA8k6W5xZiguwf2s+rXa9S467BqDWiUWl4pOkRlucu557d9+DQO/j5+T/njg138HLny1Q5q/jRvP9lz/qOMccJ++P0tvip29jBUHcIlVrhvbfPI6fcMTFvTIgpoOugl0fu2jG6utcFN9Ww7+WuMdsk4imGWiKU5mfydMvT3LX1LmKJGF9Z/BW+uP6LXFFxBVu7tzLDPYN0Os3Wnq281v0a5xWcx3KWT8TbOmMV2gqpdFTy531/ZiAywAerP0g4EebfTf/msvwr2PlU25jtE/EUA50Bll5ZLhM0xaRQZCuiO9jND7f8kEvLLkWj0hBNRnmi6Ql+v+b3b7lvyBdly78PjWmLR5P4+iMUz8mgZK4Hs0P/LkYvpoueFv9oAZLD9r/ShcGsJbPIilpzciuT51vyuabyGpIk+fHWH1PjrmFF3goAukPdrCle845jF2I6qnJVsbZkLTv7drKxYyPr2tbxXyV3cmhX05jtBjuDDHWHyCqxT1Ck4nSx6Wx86+VvcXn55XSEOvAYPVQcsowWIDls+zNtlM3PxGiVycNCCCEmn9SQdrQAyWHe7hDh/hQUTlBQU0gyleTP+//MYMkgKkVFMB7kkcZH+O17fnvcfb29odECJId1N/nwD0Ro3TNA695BAGadl8/S95Wh0ckCAEJMZd7eMPWvdY9p8w9E8HYHyci3TFBUU1uoLzFagOSwhi29zDg3B6SGg5jE9Bo9v637LfPLV4wWIDms44AXb08Yq0tyUoV4K2F/lJ3PjR1vTiZS9Bz0k6xNvsleQpwYlaLiqUNPEUlGKLQWoigKr3a9il6t59yCcyc6PCGOK51OjxQhMY08Z2gNRuIRKUIihBBCCCGEOLYpkbWvKMolQG86nd6qKMrKt9juZuBmgMJCGe1+Mz3BHmZnzCYUC48rrACAAqn0MdrFu+ZMPnf3D+3nc+s+N1pQ5NGmR1FQ+H9L/x9atZZIIsLOvp083vQ4ToOTC4suxGP0cO8F9/JAwwOk0imuqbqGeZnz3vRnRBNR7tl5Dy92vEituxabzoYv5ht9fY39crbVjSRo9B7y098a4OwrykinYSSs8ZOkFeWYzWek6XL+ljvL+c1Fv+HhxocptZfynU3f4fb5t1PXX8fOvp2j231rybdGC+9MZsk3JDIf9sbCU2ey6XLuvh3zs+bz24t+y7bebVxUfBH37roXgGdbn+WFthf4/ZrfSwGSKWAynrseowebzsb9dfcDsKTmgmNul0qm2fRIEyVzMrB75Fw7E03G8/ftmJkxkx9v+TEb2jeMtn181scpsBTwweoPsiRnCXUDdaP3tgeGDrC9bwco4wuAJZMpzHY9Q90hUsk0O9a1kVViQ6U+ucmi4t011c/dqS6ZSLH9qdbRAiTwFve1adjdt5tvvfwtAM4rOI9UOsX3zvkekXgEj9HDL3f9cnRzjaLhs/M++67GP9Em4/nbH+4n25zNxaUX81DjQ6P3pVatlY+U3wSKd9w+qVSaWCRxmiMVE2kynruHdQe6yTHnEEqE+M2e34y2XzfjOrLN2W+9s/J6v9IbmxWIRRO8+q8mLvn0bKxOWSVrqjpd5276GN+FiqIQ9EVJJlInXYREq9Zy06yb2N2/m1kZs9jdv5u9A3sBKLWXMidjDvFUHK1K+47iF5PTZL72TnZdwS4GwgP8cd8fCcaDZJmyUMeOXVQiHpNE91NtMp67Vp2Vckc5f9n/FwC+OfvbJI957Wa0H0GcmSbj+SvEiZBz98yQTh47KSI9hW9nTue56za6iSQj3Lf7vtG2lfkrselsx903/SZ5W4lYckzx0t0vtFOzLIeMfFnT60wg197p643FCg871jPEVDQh527qTRL7ZJhBvE2n+/y16Wy8r/x98Cb3YcnEsa8XQrzRmXzfkIgd+3OSTqXJNeee5mjE2zUVzt2leUv54vovjmn7zrLvoFFNialZ4gwXj4RJp1PozSP5jDqDkZgUIRFCCCGEEEK8iakyu2kZcJmiKIeAvwLnK4ryxzdulE6n702n0wvS6fQCj0fKlb+Z4egwW3q2sCR7CdlldlTqsZ3VtefkoTdIAvHpdCafu83e5nHJlf9u/jd94ZHVdDZ3b+ZjT3+MdW3rcBvdfGH9F7js4cv44eYfcvPsm7lz5Z0szlmMTv3mK8QNRAZ4puUZAP6474/cPPtmVheuZlbGLH699Pe4klljtk+l0vj7I5jsOvyDEVw5JhTV2M/J3NWFqGWCKDC9zt8adw23z78db9QLwF8P/JXPL/g8S3OXUuuu5WuLv0axrXhCYzxRBquOsnlj/x72TCNmh6ymeNh0OndPlE6tw6az8Vzrc+wf3M+n5nyKWnctS3KX8O2l36bGXTPRIYoTMBnPXW/UyyWll3BZ2WVUOisJ27y48sYWXSie5SYZT5GIpUgmpkeylHj7JuP5+3aYNeYx9wafnPNJGrwN+OI+NnZs5CfbfkIynWR+5nxcBhcAz/Y9zqzz8sYcx2TTYXEa6Gk5Uhgv5I2+aVKxmHhT/dyd6lKpNCF/bExb2B+jatHYif4anYrscjubujcBkGvOZYZ7Br6Yj7u23sVwbHjMPdDS3KV8fsHn0SrTuw9kMp6/PYEeDnoPolJU3FB7A9WualYVruKTcz5JUhtj7qqCMdtrdCpc2SaiQckOPpNMxnP3MI1aw98P/J1b5tzC+YXnU+2q5iO1HyHblI1a9dYrD5uses5aUzymTWtQo9aoiIdHkiLfbNKBmBpO17lrzzKi1Y8936rOzsZs16MzvLMkxyxzFlpFy0dqP8KVFVdS6azkveXvZU3JGv53+/8yGB58R8cXk9dkvvZOdu3+dsxaM5+e+2nOLzifmRkz8Q+GKZ6VMWY7d54FR5YUZj3VJuO52+pvZXHOYq6uvJpKZyUZmixc2SY0urFjS7PPL8Bk1b/JUcSZYDKev0KcCDl3zwxaM5TMGXs/48wxYXJM3f6003nutgfauX7G9awpWUOls5IPVX+IAlsBHYGO4+7rzDKTW+EY05ZTZkejVdFRP3SkMf3mkyzF9CPX3unLaNVRvmBs/potw4jVPT2eFSbi3DW5tNgzjWPayuZ7UMsjuXibTvf52+HvoM3fhtGhIbN4bJGx3EoHZrvk/okTcybfN2iNGmpXjM3TUWtVZBbbaPW3TlBU4kRNhXN3R88OvrjgiyzIWsAczxxum38b23q2EU1EJzo0IY4rEgwCYDBbANDo9SRisbfaRQghhBBCCHEGmxLlNtPp9FeBrwIoirIS+GI6nb5uImOayhQU9Bo9X3/la/xp9kOs/sgMmncOEI8mKJnrwZFlPP5BhDhFbPrxK7zkmHMwqA1Ek1F+vefXAFxZcSU/3/FzgvGRjo96bz2ffPaT/Hntn8kyZ407xtHMWjMl9hLqh+oJxoP8aMuPqHJW8YPa/2X9L5upWhzEaNUS9sdH9/H2hFjziVls/Hs9u9d3sOKDlfQ0DZOMp5ixLJfscvsp/C2IyUSj1mDRjXSsdQW7+OHmHzLHM4fZntls69nGgcEDVDmrsOon90pCjkwjVYuzcWab6W4exp1rIa/CgcEydRPCxDsXjAe5v+5+Cq2FPHnoSTZ3b+asrLMIxAL0hnqPO1lOiDdj19v55a5fkmPOocRewnd2f4vvXfG/hA+46Wv1k1lsI6PAwuZHmymd58HqllXdxdRk1pq5Z8c9lDpKcRlc3F93P+FEmJnumbT72wH4Xd3vWFuyllWFq9jQtoErtTeiN2hYdnU5rXsGsboNFFQ7aakbIB45slzkrPPyUWvkOizEsWh1amavzOe5+/eNtu19sYsl7y1lyRVldNZ7MVp1VC7OIrPQRm54ZPWiC4ovQKto+d9t/0synSSajLKhfQOvdb82eg9019a7+Mel/5iot3bG8sf9+ON+/tXwLxx6B3M8c+gIdLCnfw9rStZgrzWz8roqmnf0YzBrKahx0dsaoHZ5zkSHLgSRRITeYC8Zpgx+uOWHzHDNINOUyYOND3Jj7Y0ndIzyszLRG9Uc2NSN0aojs8iGooLXHm1Gq1fjzDEf/yDijOfwGDnn/RX0NPvwD0bILXeACnRGNf7BCFbXyT93tfha+NLGL/HRmR/llc5XqHBWsLVnKw81PsRcz9zRvjMhxBFWnZWB8AAPNT6ERtHgMXkYNvVRODOfzGIrnQ1eXLlmskvtqLVS4PxMoFPp+NXuX5FjzqHSWcmB8D4c3nzOv34GLXsGiATjFM9yk1Uq401CCCEmr4ghwIxlOWTkW+g6OIw7z0xelZOYPgS4Jzq8Sc+sNXPXtrsoc5SRb8nnmZZniCQirC1ee9x9DRYtK6+r4uDWXjrqvWTkjxSzCwxF8fVHRrfLyLNg90ielxBTncWpp2JhFs5sE52NXpzZZgpmODFaJcfnZMV0IZZdWU77gSEGu4LklNnxFFqJGgPId5iYzHQaHa3+Vl4e2sDiNefSdXB4NO8mu8SG2TE9ihMJ8W4ymLTYMgyc+6EqDu3qR2/SUDw7g6g2hEolfbPinTPrzNy19S7mZ83HpDXx8x0/57Kyy1ArkvclJr9oMACA3jySk6DR6qQIiRBCCCGEEOJNSU/KGSiRSqBX6VmYuZDe1mEC3ijZ5XZK5nlIJlJEAvHjH0SIU2SGawbzM+eP/lulqPjqoq/iMrpIp9MkUiOrHKtV6tECJIf1hnrpCnYd92fY9Xa+vPDLaFVHBmYXeRbT8PwQIV+M3evbmX9REYW1LswOHbNW5nPOByrJLrVz2efmcvltcymfn8mqG2q48GMzKZjhQquVjsLpSqPSMDtjNnM8cwBIk2bf4D4KrYU82/IsL3a8SCAemOAojy8WSjLYFcRk11G5MAu9Sc3wQHjMZGdx5ukL9fFI0yPMcM/AqXcSToR5seNFBiIDLMxeONHhiSms0FrILXNvodXfyvr29XQGO+ngELFInIUXF2OwanjtkWaySuzMWVWAViffo2JqyrPm8fWzv87Ovp1s7NhIOBFmbclatvZsHd2mJ9SDSWNCo9LwobyP0PhwkE2PNFO3oZOiWS6sbgOuPDPFszNw55mxZxo5/8PVFNZIspsQb6VoVgbnXVeNPdNIRr6FBWuL2bmuHV9fmKJZbhKxJLufbycRT7IoexEF1gJUqIgkIyTTI/fAz7c9zwerPzh6D7SjbwdfWPAFimxFE/zuzjzeqJd9A/tYkb8Cb9TL+vb1NAw1cMeCO/CYPCgoxONJZizPIbPYSvuBQcwOHfGoPM+IyeHA0AFK7aW4DW72De5jQ/sGTBoTy3KXndD+BrOWioXZLLmynLL5maRJs+OZNlw5ZpZcUYbeNCVqh4sJZssw4cqzoNGrKZ6dgdGuQ6NVse7+/XQ2et/Rsdv97YQSIXpCPbiNbta3r6fN34ZBbeDW+bdi1kqhHCHeqNhWjEbR8IGqD9DobWR9+3r+MPhL0Kbobw9QuSiLvEoHLbv7ef73+wgHJKFzuts/uJ8rK66kK9jF+vb15MQLCfli9LX5ySi0ULkoC41RjckmKxgLIYSYvNJRFQMdQbQGNZWLsjA79fgGwsTC0kdzIlLpFGtK1nDQe5D17evpD/fzkZkfGe2vPB5nlpkFa0tYckUZOqOGuhc70BlGngHNDh0zluVwwcdqMVrlfkKIqS4aStDf7kejVVG5MAt7hgH/QJS4XG9PWiycxDcQweo2ULkwC41ezUBHkHREUqbF5BZPxrmk9BLUCR3DvSFMNh2Vi7IwmDUM9YSIhhITHaIQk14ykWKgI0A8lqB0nofsMhvRYBzfcAitIgW+xDuXY84hy5TF5u7NvNL5CjadjVp3Lal0aqJDE+K4osGR+Th60+tFSHQ6ErHoRIYkhBBCCCGEmMSmXDZzOp1+AXhhgsOY0jwmD483P84nqj5F09+GiAR6Kaxxk0qlaNk9wMyVeZTOzZzoMMUZIsucxQ9W/ID9g/vxxXyU2EuodlUDYNAYuLH2Rm574TY0igYFhTTp0X21Ki02ne2Efs7C7IX87ZK/cWj4EFadlXJjNY8/theARCzFS/9sJLvMzpL3lVGxIAuVemTAUW/SojdJp/OZZpZnFt84+xvUD9XT4mtBURTu230fiXSCUnspToNzokM8rnAgzqsPNeHMMZFVbGO4L0xX4zBrPzULZI7lGcusNZNpyuSenffwoeoPoVVrUVCodddS466Z6PDEFKZWqSm2FvPZeZ8lmoyiV+tRohrqNnRRt7GLvAoH2aU2ug56KahxTXS4Qrwjq4tW81fbX2kLtGHUGPnzvj/zStcro69rVVrKHGWUUEJhqIp10SYAvD0hXvx7IwCZhVbK5mWSX+0knRqZiCyEeGtGi5aa5bmUzvWgqKFuYxedDV46G7yj25hsOmLhBMX2Yu694F4ODR+iP9w/+vq+wX0YNAZum38b2eZsCqwFVDor0aimXPfYlJdjyeHZ1mc5v/B8Pj330yRSCXRq3eg9aSQQ56W/NY55ntn/cjcXf3o2ngmOXQiDxkCxvZgfbP4B1864Fp1ah4KCRWuh2F78to7l7Qrx5L17sHuM5JTbCQxG2fDXenLLHZjtspqhOD6720hgMEI0GKfnkI+hrhAAgx3B4+z51hx6BwD/qP8Hl5ddzjl555BOp5mfNZ8F2QveadhCTEsGjYFSeym/q/sdN826iVQ6hUalwT88jKJA294hWuoGiIVHJopEgwmMFpksOp2ZtCa2923nM3M/QywVIzuUz5Zn27BlGMmtsNMyFKX9wBAf+MYi+d4XQggxaaljOjY9XIcrx0xmsZXh3jBdB4dZ8bHSiQ5tSjBpTPhj/tH7Ab1az/Mtz/Oe4ve8reN0NXh57dFmAPpaAmQV2yiencGCtUVYHMZ3I3QhxGkWCcZ57ZFmnNkmskpsDPdF6Gr0suaTs5AszpMTD8CLf28gp8yOPdNI7yE/g11BLq6Q3BgxuWWYMtjQvoEPOz7FSw8cJLPYiivHTH97gP62ANkldpzZEx2lEJNbLJKgbn0n8ViSwhoX8WiSlroBKla6MOQbJjo8MQ0MhAc4v/B8rDoradLEkjEOeg+i00ifv5j8IqGRcWSD2QIcLkIihfOFEEIIIYQQxyazLM5AGaYMvrTwS9y5+U5urv4GLRvCNGzpGX09p9Q+gdGJM1GWOYssc9YxXzs792zuPu9uXup8iWtnXMsf9/1x9LUvLvgihbbCE/oZiqJQ4aygwlkBQCqVpmROBrvWtY9u031wmPkXFY0WIBFntipXFRathT/u+yN7B0YK1hg1Rj4151MYNJN/IMLs0GF1GRjqCo1OQFFUCla3JCGdyTwmD988+5vc+vyt/HrPrwFYXbiai0suRquWCfDinanJqOHXe37NnoE9AFxReBU1hWvobw3QUe8d3c6WMfmvoUK8FZ1aR01GDTUZNUQSEXb37ealzpdGX//M3M9wVuZZuEwu/IMRjNY2wv746OtqjQqLa+RzoDfKtVeIt8tgGfncuHPN414rnpOB/vWiPvnWfPKt+XT4O7ik5BIea34MgB29O7huxnVcWHzh6QtajDM7YzbXVl/Ln/b/iXWt6wD49pJvk2/NB8Dk0GF26Mc8z6hUClaX3EeIyWFR9iLKHGX8Zs9vgJH+gnsvuPdt9xdY3QZQYLgvzHBfGABXrhmTXRLUxInRmzRYXQZ2PNs2pj2r9MQKN7+ZMkcZN8++mXt33cvDBx8GRvpia9217+i4Qkx3pc5SLiu/jFufvxVfzAfAndW1HNwWH7Nddqkdo02eB6e7lQUreaDhAX6242cAFFdVA2p8/WF8/Ud979vke18IIcTklZHhwOLUM9gVZLBrZJKKolLwZDkmNrApojajlhxzzuj9gILCd5Z954TzXA5z5oztC+055MORbcJokUJmQkwXZrsOa4aBoe4QQ92v5/goYHNLn/jJysx0oFIpdB0cpuvgMABmh56MDMfEBibEcZi1Zm6ceSMHmveh0WXSe8hP7yE/MNIfbHHK978Qx6M3aSmZO5IfXv/akfkRhpw0M9wzJjAyMV2sKlrFLc/eQmewEwCXwcU9q++Z4KiEODHRYAAAvRQhEUIIIYQQQpwAKUJyhjon/xyyzdkkvSriPSo6D4ysxDb7/HyyyxwTHZ4Qo8xaM+cVnseK/BWEE2EuKLqA3lAvuZbcd7RitUqlMPPcPPrbAnQ2eFFUCvMuKCC75J0l6IvpJc+ax93n3U3DUAPhZJgyexmljqmxqpPZrueCm2p46ld1BL1RtAY1511XjTPHNNGhiQm2LG8Zf734r7T4W7Dr7FS5qnAanBMdlpgGci25/O/5/0v9UD3heJhSRym2Mg9P3VfHcG8YjVbF8msqcOdbJjpUIU4Zg8bADbU3sDR3KT2hHnLMOVS5qkYnIFtdBi78+Eyeua+OkC+G3qTh/Btm4MyS72Mh3qmsYhsL1hSx7alWUqk0WaU25q4qQP2GopJ51jy+vPjLvLfivQxFhii0FVLhqJigqMVhFp2FW+bdwuqi1fSH+8m35lPhqEBRlJHXHQYu/FgtT9+3h6A3hs6g5rwPz8CZLddPMTkU24v56Xk/5cDQASLJyEn3F7hyzay6YQYb/lJPPJrE6jZw/odnYLTIZGRxYhSVQu05efS1+umoH+njnHN+AdnvsAiJQWPgxtobWZa7jJ5QD7nmkb5Yo1aK2wpxPAuyF/CntX+i0duIVqWl2lZF7gdjvPTPRhLxFPZMIys+WClFKc8AZY4yfn3hrzkwdIBkKkmlvYqKG9Rs+Ovr3/sZ8r0vhBBi8js85vz0fXsJeqPoDGpWXFuJJ1fyKk6EVWfl1vm3sqZkDf3hfgqthVQ6K9/2cTKLbSy8pIStjx8ilUqTWWxl/kVFqDWywI4Q04XJpufCj9by1K/2EBgayfFZ+aGqcUWIxInz5NpYdVM16/9QTyySxOzQceHHarA4pLCLmPwWZi/ErXcT/oiaV/7UQjSYwGjVcsFHa7FlSB+tEMdzrPzwmefnUF2ThdsoeZLinStzlPGb9/yGhqEGkqkkFc6Kt11sUoiJcqQIycizhkanJxGXIiRCCCGEEEKIY5MiJGcolaKiylUFLij7ZBxfXwSVRsGeaUSjUU90eEKMo1apsegszM+af8qO6cwys/ZTs/D1h1FrVNg9JtRaSdIQY2WZs8gyZ010GCclp8zBVV85i6A3hsGswe6RCXsCNCoN1e5qqt3VEx2KmIYyTZlkmjKPNDjgii/OJzAYRWfUYM80jk4uFmK6sOgszMua96av51c6ueqrCwgNRzFadJIUJMQpYrBoWXBxCRWLsknEk9gzTOhNx+7mcugdLM5ZfJojFMdj09lYkL3gTV/PLXdw1VcWEvRGMZi12D1y/RSTS6Y5k0xz5vE3fAsarZqqxdlkl9qJhhJYXXpMNlnFULw9jiwTaz41C1/f632cmaZTMhHtVPfFCnEmKbYXU2wvHv135jlp8qudxMJJLC4DJpsUnThT5FhyyLHkjP47fXaa7DL53hdCCDG15JY7Zcz5HbDr7SzMXviOjmEwaTlrTRHlZ2WSiCexZRgxmKSonRDTTXapnau+vICANyrX21NApVZReVYOWYV2IsEEZocei0OewcTUUeosBScUFGUS9scx2XRYXVJER4gTJfnh4t2WZ8kjz5I30WEI8bZFgkEA9MaR5w2NTkciFiOdTkturxBCCCGEEGIcKUIi0Bu1eAplcFqcmfQmOf/F9GZxGGQVDyHEhDLZZEKFEFanAatTvo+FONXUGhUuWQVwWrNIUrA4AyiKgiNTJhSId0b6+IWY3BSVgiNL7luFfO8LIYSYumTMeeKp1dIXKsSZwOzQY5Y+8VPK7jFh90x0FEKcPJvbiM0thfqFOBmSHy6EEONFQ0F0RiMq9cjC1RqtDtJpkokEGq1cM4UQQgghhBBjSUlXQTqdJuCNEgnGJjoUIU6baDhOwBshmUxNdChCvKsSiSSBoQixSGKiQxFCnMGCw1HCfrnXFGe2kD9GcDg60WEIMa0k4q/f60aTEx2KeBfEIgkCQxESCfn7iuktmUwR8EaIhuMTHYqYwiLBGAFvlHQ6PdGhCCHeRMgXJeSTZ0IBkVCcwFCUVEqu2UIIIaYOGXOeXFKpNIGhKJGQ9CUIMd0kEym53p5icRlrEFNcPDZyH5aIyTksxNs1Mj8iQjggOWtCCHFYNBhEb7aM/luj0wGQiMkYlhBCCCGEEGI8zUQHICZWYCjC3pe62PV8GwaLlqVXlFNY40KjVZ+ynxFLpNjTMczeLh82o5Y5+XaK3LI6hzgx6XSaPZ0+9nQMo9OomJNvpzzT+o6O19ng5eV/NeLtDlGxKIt5qwuxy8pzYgryhWPsavfR2Bcg32Fkdr6dTNuRFagGu4JsfeIQzbv68RRYWXJFGdkl9gmMWEykWCLJ7g4fezuHcZh0zMl3UOiWa584td74vb0w287QPi/bnmpBrVGx6LISSuZ40BvlMURMX+l0mrpOH7tf/xyclWsn0hxg0yNNpJJpznpPERULszBadRMdqhBT2kBngC3/PkRL3QBZxTaWvK+MzCIbAKFYgt3tw+zv9pNp1TOnwEGuQ1YIm4x6fBF2tXvp8Eao8FiYlW/HZtTS3TzMKw8epK/VT8nsDM5aUywrvYpJayAYZVf7MC0DIYrdJmbn23GZT2y1Um9viB3PttLwWg+OLBNLrywnt8KBoijvctRiukjEk7TuHeTlfzUSCcSZfV4BNctysDgN9Pkj7Gofpm0oTJnHzOw8B3aTrF4lxOnW0Rukq26AuqfbSKXSLFhTTMWCLAwW+TyeCeLJkTHSuk4fWRY9pWkNmx9uIjAYoXpJNrPPK8CWIc8qQgghJq/hcIze9gANL3TQXjdIRoGVpTLm/LZ0D4/0f3UNRyjPtDAn347FcPL3gr7+MLueb2P/K91YXAaWXVlGXpULlUr6EoSY6oa6g2x9ooWmnX1k5L9+vS2V6+070dY4xOZHmulv9VNQ6+asNUVk5p983qEQ77amvgA7271EYilm5tvISqrZ9HATXY1e8qudLL6sFHee5fgHEkIQ8EbZ+1Inu9e1ozdpmHNxMVlVdjKdki95JgtEEuzq8NLQEyDbbmBOvoNsu+H4OwoxjUSCAQymI/k3R4qQxEDScoQQQgghhBBvILP/znD7X+lm82PNAESDCZ74xW7e98X55JY7TtnPeLGxj5vu38LhRRiL3Sbu/+giKUQiTsjWliE+9KtNxJIpAFxmHX/5+GKqsm0ndbzBziCP3r2TZGLkeHUbOomGEqy6YcYpLb4jxLstkUzx+1da+NHT9aNta2dl89/vm4XDpCMaivPCH/fTdXAYgM4GL4/evZOrv7oAhxTdOSNtqO/n43848n1c5jHz2xsXUeiS80GcOltahrj29e9ts07NTxZXUP9oy+jrz/1uH5d8RkfRTPcERinEu2tr6xAfunfkc6BS4J7za2h4oHn09Y1/b0Bv1lK1OHsCoxRiagsHYjz7m730twcAaN8/NHqva8sw8u9dXdzxz12j2y8ocvDza88iyybJI5PJUDDGNx7aw9N7e0bbvrKmmvfPyOHRu3cSC4+s9Fj/Wg++gTCXfHoOepk8LyaZYDTBT55p4A+vHrnn/eiyEr70nkoM2rfuek/Ek2x6uInGrb0A9Lb4efTunVz1lQVk5EsSsTgxvYf8PPGL3aP/3vxYMyq1QuXKPL777308tKNz9LXbVlfw6ZXlaDWqiQhViDNS22CIhl197Ptn02jbhr/WY7BoqViQNYGRidPlpcZ+Pvq7zaTS8MNV1Tz1YCvp1EgH7c7n2kkl0iy/pgKVWq7NQgghJp94MsVL+/rwPd3JwCE/AF0y5vy2DASifPVfu3j+QN9o2zcumcGNS0tOqmhIMpli+zOt7FnfAUA0FODRn+7iqi+fNVqgWQgxNUXDcV740wE6G7wAdDV6eeTuHVzz1YU4suR6ezJ6Ov089X+7iYZGxhqatvbi6w9x+efmYjDLYhFi8mno8fOhX22iLxAF4HNLSnC9MkjQGwOgeWc/g11BrvjifEy2EyuELsSZrGFzD5sfHcnViQTjbPjdPmZfX4lmrgaXfA+ckdLpNA9sa+Nbj+wdbTunIoOfvH8ubotcV8WZIxoKoDcfyUfQ6EbO/2Q8NlEhCSGEEEIIISYxyWg6g4X8UfZs6BjX3tvsO2U/YzgU43tP7B+d8AxwaCDErvbhU/YzxPQVSyT55fqDowVIAAaDMTbU95/0MYe6g6MFSA5r3NpLYDB60scUYiIcGgjxv881jGl7fHc3DT0jEzH9A5HRAiSHxcIJvD2h0xajmDyGgjG++/jeMd/HB/uC7OnwTlhMYvp54/f2oiIn3t2D47Zr2tk3rk2I6SKeSPGrDc2jn4Myj4Vws3/cdns2tJNMpsa1CyFOjH8gMlqA5LBIMI63N0SnN8x//XvvmNe2tHjZ13Xq+jrEqVHf4x9TgATgrmfq6e0IjBYgOaz7oA/fQOR0hifECTnYFxhTgATgty83c7AveNx9A4NRGrf1jmlLJlJ4u4+/rxCH9TSP72ev29BBT19wTAESgJ+ta+TQgJxfQpxOLQNBfAe849rrXuwgfXRHnZiWhsNxvv/Efl6vOYItymgBksPqXuok6JXxKSGEEJPTof4gQ32h0QIkh8mY84mr7/GPKUAC8MOnDtA6eHK/v9Drq7kfLZ1KM9glz3pCTHX+wchoAZLD4pGkXG/fgb7O4GgBksP6WwL0yDVTTFKvNA2MFiABKNDpRguQHDbcG2a4L3y6QxNiyokE4tQdY36Ery1AU1/gGHuIM0HrYIjvP3lgTNvGhn72d4/P6xJiOosGg+hMRwodqrUjiwElYlKERAghhBBCCDHeWy/HKKY1jUaN2a4bl9xmsJ66VWUjiRS9/iiXzM7hPbXZKAr8e1cXvnD8lP0MMX0lUmk6vOMnGfX4xrZ1D4fp9UdxmnQUuEY6RaLxJH2BKBa9BofpSNVqrX78ZU9v0qDRSU0mMbVE4kn0GhVfek8luQ4DvnCCu59tIBgbGUBX69SoNapxRXe0BvVEhCsmWCSRRK0ofP6CCordZqKJFPdtbML/hsmdQrwT8WQaXyTOty+rJcOqI51KkXh5YNx2VpdhAqIT4vQIxhJcPjeH1TMyae4P8GJDP+pjPF/ZMoyolLe/yqEQYoRGq0alUki9YQKfVq8hEk/ijyRQFLiwJpsVlW6cJh0mndwHTzbBWHL0/5eUuVlc7CLPaUSlHX99VGtUaORvKCah8FHncbbNwOVzc/FY9SSSKXp9ETJtb37vq9Gp0Bs14xLhtQbpshcnzmAZf69pdugJJ498R+Y7jVyzoIBit4lIPEkqlT6pFbeFECemeziCLxwjmUqjVilo7ONX1bRlmFDkmXDai8aT9PqjzMqzcd3ZRWQlNDS+YRuTVYdaxqeEEEJMUpF4kmgqLWPO70AwmqTQaeIz55dhNmhoGwjzv881EEkkj7/zMai1KkxWHYGhsXleumPkwQghphaNVo1aqyIZH3u91ejlenvSNOOfu1UaBdTyPC4mpz5/lKVlbj64qACVosIWTtH7xo2UY+e/CiHGUutUmB36cUV7dGYN/ojMXzhTRRMpQrGxz2KLSlyoVQreUAyzTsOhwSDReIoClwm78dTNpxFiMolFwuiNR4qQaHR6QIqQCCGEEEIIIY5NeiPPYDqjhrPfW8ajP905uvKW1W0gu8R+yn5GplXPnVfNoa5rmG88vIdoIsWHFhdSm2s7ZT9DTF8mnYbrlxTx1X/tHtO+sipz9P9fbRrgs3/ZTp8/is2o4c6r51CSYebHz9Tz5J5uSj1m/vPymSwpdaMoChn5FnLK7XQ1HlkldPlVFVicMiFaTC0FTiM/+9B8frm+iVebB6jOtvLNS2so94x0DNo9RhZfXsrLDxxJay6dl4ErxzJRIYsJ5DRqueW8MloHw3z70b0EYwmuXVxIVbacD+LUMes1fGplOXc+fYC6Th9nFTr57opKuvcOjSZL6c0aimdnTHCkQrw7DnT7+O6/97GxsZ/qbCvvX1jA2lk5KGotetORCcYarYpZK/NRZOKnECfNnmlkwcXFvPZo82hb5aIsnDkm0CqsnZlNRZaVDIuOZ/b2sqG+j5IMM9+6tJZzKjJkwuckUeYxYzNouHxuHn2BCDajlr+81sZLFj0ral101Q2ObrvoshLsHuMERivEsRW5TeQ5DBi0at47L4/e4QgHI3F+9PQBzDoNX1lTzZpZOViOkRRscRpYfnUFz92/b7Qtu8xORr48p4kTl1PmwOrS4x8cmYCmqBQWX1YKdj0us44cu4H3L8xnKBjnPx/biz+S4MNLivjoshJyHHJdFeJUGg7HeGRHJ3c+U088keKqBQUkEimunp1F15Y+YpGR5GatXk3tspwJjlacDh6rnq+trUarVvGblw5xTp6D7Fwz3s4jq24vv6YCk1U/gVEKIYQQb67AZSJY6SIcVbH3ydbR9uI5MuZ8oiqyLHx5TRU/ebaBg30BlpVlcM9188l3ntzzmMmmZ/nVFTx5757RNne+GU+R/D2EmOrsGUaWvLeMF//RMNpWPDsDd555AqOa2uw5JorneTi0vW+0be57isjIkt+pmJzOr/JgM2j59qN7CUQTfGlVBVXLcjjwUtfoNvMuKMSRJf26QhyPVqfmrIuL6b575+jCJiaHjpwKBzaP5IqfqfIcRs6t9LC+vg9FgS9eWMXm5kE+9KtXKfWY+ez5FXz/iX10DkdZUOTk+1fNpswjz1pi+omFw+iMR+4nNLqRYvrxWPTNdhFCCCGEEEKcwaQIyRkur9LBlV86i/42PzqjhsxCK/ZM0/F3PEGKojAQivLjZxrQqVWoVQr3bWwmy2ZgbqHzlP0cMX1dUJNFMJrglxuaMGrVfOmiKuYVOgDo9Ib5zJ+30R8YqbzqCyf4++Y2wvEkLzYOANDYG+Tj92/hwU8vpTLLhtmh54KP1tLb4ifki+LONeMptE7U2xPipA2H4vz34/uo7wlg1Ws40O3njn/u4o8fW0y+C1QqhdrluXgKLAz1hLA4DWQWWjEeY4VcMf019AXpHo7yk2dHElb0GhV/fLWVLKuBuYWuCY5OTBcHun3c/rcdDIfjWHQatrYO8eUX9nPXrXOI9IZRqRU8hTZcOZLUI6afwWCMr/1rN1tbvQDs6/Lzo6fq+fCSIswlNi7/wnwG2/ykUmk8hTaZXCzEO6TWjBTzyS614+0JYXUbyCyyYjCN3Ot++T0zeHJPF4/u7GJT80ghiw5vmFv+tI0HPrWEqmwpjDoZFLnN/Olji3lqbw9p4L6NTfgiCXa2e7HOzmP5lSVkaTRk5JjJLLKhkuJNYhLKthv51Q0L2dnq5a5nD/Deefn8/pVDROIpIvEYd/xzF9k2A+dUeo65f9l8D7YMAwOdQUw2PZlFVswOmYgsTpwjy8Rlt82jt8VPPJIgo8CKp9CKSqVw/40L2dk+TCCS4K5nG1AUsOg03PdiM26Lnk+eWzbR4QsxrbzWPMg3Hq4b/ff9Lx/ilpVlfOW5ffznjVX4O0OYdGoKyhxkFZ+6xQDE5KUoCjl2I7f9bQdDoRgNvX4+Pr+Q2rMzydRpySywyPiUEEKISS2eTPPLDU2kYimuuaoETTBByqCmuMIhY84nqD8Q5Qv/2EkskcKk07CxsZ/hSJxfXncWFv3J/Q6LZrm54o6zGOgIYDBrySy2YnXJZGQhpjpFpTBjaQ7ufDND3SEsDj2ZxTaMFt1EhzZl9YTjbHKkWPK+YtSRJFGTmmcDIYpjCcwm+R4Tk0+XL8J3H983mmf9n08e4O73zeKSebPx9Uewe4xkFtnQaNUTHaoQU4Imy0DJB0tRhuIoWhWt6Tgf+utW7v/oIgrdEx2dmAhmvYZvXVrDLzc04Y/E2VDfN5pP0tgb5I5/7OLT55dz7/qD7Gjz8uuNTXz78plo1aoJjlyIUyseiaA1jC9CkojFJiokIYQQQgghxCQmRUjOcCq1iqxiG1nF784EnEQyxWtNQ9y2uoJYIkU8mcZt1rGpaYDrzy7CIB3iZ7ThUIxObwSzXk2h+9gTkjMsej52TimXz81FrVLhMh8ZXO3xRUYLkBxWnWPjp+saAdCoFG5eUYpapfBUXQ/DoQSz8+1YXQasLqlmLaa2Vm+YfKdpZNVwfxSnSUuHN8Kh/gBzCxwA6Iwa8qtd5FdLkYkzXa8vQvNAkAyLjo8uK8EXiaOgoNWo8IfjWI2SYCHeueb+IMvKMqjKtjIYjOEy62jsDXAwFmP10tyJDk+Id02PL8wrBweYme9gZXUmu9qHeWZvD4FoArVKIRRL4smzEDGqCEQSaBySLCjEqWAwaymY4aJgxpF73fahEL5wHKtBQzyVYlPzIB6rnhuXFjMcjqNSFLp9ESlCMokUZ5jZemiQS2bnkmM30OeP4jBpGQjE+MRze/nzxxeTXybPM2JyK3AYae4P8MULq2gbCvPhJcU4TVp+9/IhenxRXj7Y/6ZFSLR6DbkVTnIrpFizOHmOTBOOowqLDwSi9PgiuMx6Miw66jqHWTszmxm5NvoDMdxmHT2+CMOhGHaT3JsKcao8s7dnXNvLBwd4z8wcutJJ2vRJqrPNGDJkbOJM0jkc5uoFBSgKhGNJDBY9P9zeyjcvqWVOmWOiwxNCCCHeUqc3zFAozkW1WWz1h7CaNYSiCbx9fmaUSn/NiWjuD3Ll/Hw8Vj3DoThui57XmgdoHQyR4zi5wiEarZqcMjs5ZVLYTojpRmfUkF/lIr9KrrGnQnN/kJReTb06wbAqjluj58BAkHZv+KSvwUK8m3a0ebltdQXxZJpYIoXbrOOvuzpYePVcZs3MmOjwhJhyWgfD/KWhh0XFLvoDYRwmLZfMzqW5L8g8WUT1jFXqsfCdy2eyv9vHpT97acxrFVkWilxGPrCoEJNOjVpR8IbieKyygISYPlLJJIlYFN3RRUi0I+PFybgUIRFCCCGEEEKMJ0VIxLtKo1axssrDv/d0UZtjJxRLkEiluGZBgVSGPcPt7/LxhX/spK7Th+X16sKXzsl908I0HqsBbyjGS4399PrCFLjMROJJzDo1wVhydLtQLInNqMEXTvCxc0p4eEcnHd7w6Ov3Xn8WF9Zmn3TcgUiC3R1emvuDZNoMzM6zk2mTpGFxevnCcSw6FYuKnSRSYNKpUakUsu16cuwyUC7G8oZihGNJnCYdnzi3jB89dYBoIgWMnDvzCh3MLRg7sHZoIMju9mHCsQTV2TZq8+yoZeV5cRxZVgPLyzPo9UewGjSoVQomnRqHWYrciOkllkixp3OY+m4/FoOGwWCUbz2yl3R65PX3LyygNtdGXacPjVqF06Tjga3tfOuROgLRBDU5Nu68Zg4zcqQIghCnSjyZ4um6Hr764C584QTvm5fL/EIndqOWT6wo5Yev3//U5Niwm7S09IfItOmZne8gVxJNJ8zezmG+98R+VlRk0B+IctezDczMs7FmZg4ZFh3fvqwWs06K14rJrbE3wFf+tYtbzi3jy4/t5oKaLEoyzAQiCb62ZgZ/fq2VXIfp+AcS4hTZ2TbErX/bwaH+EHkOAz+8ag7zCpz0+iMoisLezmE2HxriPTOzSB6+gRVCnBJFxyi0vnqGB4/VyMG+AAoKezqHeflgP1+8qAqTToZozwQ5dgPP7+9lRo6dVCpNPJXiM+eV45T+MiGEEFOA3ajhsjk5hOMpzHoNCgpui5YClzznnqg8h5GWgRAqRcGoU6MosLzSPWbxHSGEEO+OPIeB1sEQiqKM5iOurPLgNMnzmJicFhQ52dvlR6tWUCkqkuk01ywowGaQc1aIk+Eya5lf4EBRwGwY6YstdpvIdUi+95kqkUxR1+ljX5cPjVrh0+eVcc/6JpKpNFa9hotn5XDb33aObl/kMnH5vDwpQiKmlVhkZE6NznhUERLdSB9FIiZFSIQQQgghhBDjSRUIQTKRwtcfJuSLnvJj9/kiBKMJ3GY9jb0+Zufb0WtUPLqzE29IHlSniqHgyAT2SDzJYDBGOp1mOBQjGE0QTSQZDEZJptL4wnH8kTjxZIqBQJR4MkUgEscXjo853kAgwrcfqaOu0wdAKJbgoR0dNPT4R35eKEYoduTYqVSaUDTBz9Y1cu19m2gbivDpP2/ji//YxadWlqN5fWK8okC5x8I3L6kBwKBVjylAMjfXTl9PkIGB0En9HlKpNP/Y2sYHf7WJrz24h1v+uI2/bWmlfSgIwODrv6dwbOT3JMS7IRhN8IsXGmnsCdAXiDEYiDCnwE48mWJ3uw+Omj+SSqXxD4YJek/99V1MPv5wHP9R19tgNMFwKMb2Vi9dw2EWFDnZ2eYlmkjhMun44oVVfPb8Ml7Y1zfmOM39QT72u808vruLV5oGuen+zWxqHjjdb0dMQal0mj++2oLFoKEq20prf5AZ2TYi0QQD/UH8AxFSydREhynEO7ahvo/P/Hkrg6EYrYMhnt7Tw0eWFo++/vCODm5YUsSX31ONw6gmFIsTTST5+gWVfOv8SlwGLd94aDfdw+E3/yFCiBMS9EYZ7g9T3z3MZ/+yjWA0yflVHi6dnUuBy8SPrppNPJkaKYpl0rJ2Vg7P7+8hlU6zpXmQ2/+2ne7hyES/jTOSLxzn6w/u4ZLZOdTm2blnfRNus44La7LZ1jLIvHw7sxxm9jR56fHJ30hMTtFEkrufa+CyWdm82jzI8tcL6mxvGWJmno1ANMHyCjfnVLjH7RsYihAYknNbnBrpVBr/QITe3iDfeqSOjqEw1y4u5P+unU/rYBCdViEQSXDfxiYWFLkocBl5ck8PB3sDEx26ENPK6hmZZFiOTCadkW1hebmHYDSORaOmzKQnGoiT5zDK5+8M0euLMBCIkWUz0DkUZE6BnQyTDkJJXGoptieEEGLy06gU1CoV6/b2sKzYyfn5Lvy+KCkpaHjC0mnY1jKETg2z8+009wUYDMRRK+/sdxgcjuIfCJNKyd9CiOkmHkvi6w8TCcaPv7F4S2lgR+sQM9xmLi7zoE2lGQrFJGFaTFrpNDyxu5N8p5GaHCvr9vcQS6RJxUeuC7FIYqJDFGJKSafT5DkNlJoNXFiSgdWg4S+b25A76DPXzjYvT9V1MxSKcag/RGOvn5uWlwCwZlYOf9rUOmb7lsEQ+7p8ExGqEO+aWHgkX1FrGClCkhgcRP1634IUIRFCCCGEEEIciyyzdYbz9YfY+lQr+1/qwmTXcc77KymqdaPWnprhluFwDJ1GxYU1mWxsGOA7/95HgdPIzStK6fKGcVukOuxk1ukN8/CODv69u4sblhTz2K6RQY5cu5FHd3XykaUlvFDfh06tYk6Bg79tbuX6s4vY0eZlMBhj9Yws/vxaK5F4is+cV8bKKg91nT4aegO80jwIgMeq55aVZTyxp5sHtnWwbn8vT+zp5qPLinl6by/7u31cMjuH86oyue/FZrJtBrqHI/S8XjTnH1vb+Oz55bjMeuYVOijPtABQmmFhe+vQ6Hv5yjnl5HTG6PxnK/9+tofl768YOdc1J36utw6G+P6T+wEo85j54KJCHtzeQSSWJplO8VJjPx9eUsxDOzppGQjy/gUFXHlWvqysLU6p3R1efrG+iZ99aB7nV2fyyM5O/vPRfdTk2Pjo8mJ8kZFOQP9QhN0vtLNrXTs6g5qlV5RTOt+DTi9f/dNNIJpg/YE+frqugTRpvrC6Ep1Wzd3PNZBMpVlS5kavUfNiQz/D4TjvX1DA3EIH9798iGQqzfVLimjs8VGeZQNgf5ePq84q4MHtHYTjSa5eUMAL+/uYk+cYXRVAiGMZCsW45bwymvqD3PVMPQatmtXVmTgGEjzy6+1EgnFql+cx94ICbG75bhRT02AwSl2nly9dNIM/bWqh2xfh8jl51Oba+O1LhyjNMPOhxYX8ZXMbQ8EYl83JxWZIMN9oYtuTBwl1h7iqxkWs1sb+Lh/NfUEK3SbynLJypBBvRyycoHFrD6881EQimqTq3Dw+u6SUnGwTdqOWeDJF52CEh3d04A3F+cDCQrJtBhxmLUVuM7/a2ExNjo2Pn1PKwT4/2XZZ7eh06xgKccPZReh0ara0DBGOJ7nu7ELKPGZmmI0MrOtmz+4BbBlGvHYzntl6VK8XIBVistjf5eOSOTnYDRo2HWqhJtdGVaaFp/b28F+P7WNuoZNrFuSTPmpyVtgfY/+r3Wz5dzMACy4uofrsbIxWWQFZnJygN8qejR3seKYVtVbF587Pw3pBFRElzfMH+nhgWzvZNgMfXFTID66cxaM7u7h4Vg73rG+idTBMJNFHTa4Nt1n66YV4p6qybfz6hgXs7/aTaTWwqWmAz/xlO19YWoqpJUzTa23kOPTUXGwnkUhOdLjiNPCF42hUymg/fnOLj5LBFM2v9vCkqZVlV5VTMicDrfTZCyGEmKR80QTZNh3fOLeCxsc76DkwRH6umcxiz0SHNmWE40k+cW4Zv32pmT+82sbKKg/LyjPoD8YpPYnjxaMJmnb08fIDB4mGEsxcmcec8wuwuqR/U4jpYLAzwMsPHqRlzwCuXDPnvr+S3ErnRIc1ZSVSKb6xpJwtDx6kviNIdqWT8y8uYjB0ctdgId5tSjrNZ86v5N4NTQSiCa4/u5A5ZiNP/d9ueg75yC13sPzqCjyF1okOVYgpQR1N4WmKsG9DJ51GNZUXFnDn+2bR5pdFAs406XSaV5sGuHtdA6uqs9jf7eeVgwPMK3RwdokLk1ZNVY6Vx3Z1jts3FJO+fDG9xCMj10CdcSR/t+niS1BlZoIBEjFZ8FQIIYQQQggxnhT2PoOlkil2PNPG3o2dpFJpAkNRnvjlbvra/Kfuh6QVSj1mHtnZxa82NtE+FOaVpkE+9adt+KNSmXsyS6XS/OHVQ3z/yQNcMCOLbz5cx+4OH1aDlh8+Xc+Kykx+9PQBnt/fS3mmhf96bC9zC5z87uVDPLCtg8Wlbr7+0B7qOn1UZVtoHQqzbn8fH/7Na+zt9FHoGplo+eElRXzvif20DYZQFLjr2QZWzcjiO4/v49l9PbQPhblnfRN7X68mnG030DYUGo2zZSDEXc828MSeLmbm2TFo1Ri0auYXOVlQ7EKtUpiVYyOnK0b71j5SqTT+wQhP3LOb/qPO9VQqTVNfgC2HBmk/6vhHC8USROIpAK4+q4DvPr4PgHZviHvWN3FhbTb/8dAeXmrsp30ozJ3P1PObF5tJJFPvyt9InHnCsSR1HSOfhXy7gR8/U8/fNrfR4Q3zzL4ePv+3naPFnRpe62H7U60k4ynC/jjP3b+Pniapyj0dvdY8yKf/vI393X4OdAdo6g9x4+82s63VS12nD4teQzSR5K+b2zi7xMWiEhdf/ddu9nf7aegN8M2H69jeNgzAUDBGNJHie0/u50CPn9bBEP/3wkHMhpFjCPFWArEkjb0B7ny6noN9Qeo6fYR7wqy/fz+h4RipRJrdL7RTt7FzzERMIaaSWCJFodvMl/65i82HhmgbDPOz5xvZ2jrEklIX1ywYuUfc3url0ECIu9c1kqOoeeFXdQx1hSANHXWDsGWQ1t4gA8EYL+zvIy73i0K8Ld1Nwzz/xwNEAnES8RR1z7axSGMgGEviDcdJptP852N72dE2zKGBEL9Yf5BoMskDW9v5+5b20fvnrz24B5UihS0mgkIatVqhPxBle6uX5eUZzC9y8viOLoY39dG5a4B0Gob7wqy7t46BjsBEhyzEGF3eEEaNmlcPDtDrjzErz0G5x8Sdz9Tzr20ddA5HeHx3F998uI5u35FknfYDQ7z8QCOxSJJYJMnLDzTSvn/oLX6SEG+taUcfW/59iEQsRTSYYN+jLaT7Y6w/0M9Pnm2gbTDM5kNDfOWB3XQNRzmn0kO+w0Su3UAqnebHTx+goVuusUKcCslkCl8kwaM7O3h4Rwf3bGjCYdCiOuCn8dWe0bGJTX+sxxZB+kbOAEatigKXibuebeDlgwMUDKdofLGLZCJFyBfjmd/spffQKRyTFUIIIU4xNaBJKux7uJme/UOQhsGOIBvu28dQT3Ciw5sSbAYtn/3Ldp4/0EeHN8yfNrXyq43N2E9y4YeeQ36e/e0+Qr4YyUSKnc+2sf/V7lMctRBiIkRDcZ77/T5adg+MXm8f/elOhrrkenuy8tS6kTHa9iCkofvAEK/9tQGPTgpBiklKpeJzf93O7o5hmvuD+AejvPTbffQ0+yANnQ1eHv/FLoJemSAsxIkYqPOyZ107ycRI/uzOB5pGCvo4pIDfmWZvl48bfrOZTKuBB7d38M+tIzkjj+3q4hsP7aE8y8JD29u5+qz8MftpVApV2VL4SUwvscjIHBmdwUjS6yU5NET8wAEAErHYRIYmhBBCCCGEmKSkCMkZLOSLjR+MTsNg56kbvEqkUsSSaR7a3jGmPRJPcbBPBskms25fhN+91AJAMp0mHE+yvDyDJ/aMnDMGrYr+QIz5hU5ebOwHINuu52BfkNIMM3s6Ria01+TYsOi1/GrDSCGRVBoe29XFR5YWo9eoiCdTRBMpVlZ5eGxnFwBqFfjCY4vUdA1HcJi07O/2MafAMS7e987Noz8Q5ZWD/bxwoJf2oRAz8+zc/9FFXDs3j64dA2N3SMNgV5CBQJSdbUP8Y2s7a+/eyFX3vMIlP32RVw6OvKdkKs3g68ddt7+XuQV2zDo1fYEo6TScW+nh37tej1uB1BsSh3//SgvdPqmcLU6N9qEQQ+E4Rq2awVCcrS1jJyr1BaK0DISIhOLsfWl8Ve6OBu9pilScTv/c0jb6/zaDhqFQDINGDUAilabHF6Umx0ZFloU5BQ6e3dcz7hgPbu+g0xvi8//YwbaW8RPgnq7rxqBTv3tvQkwLDd1+1u3vHf23w6RB7xtfdG7fS52EfDJgIaamNNA6ECL2hqIhf97Uys3nlhKKJXjjPLKh3jDJ+Njt+5p8qMNJntnXg0Gnons4/C5HLsT00rp3cHzbll5yTDqGQ3H2dfnHfRb/vKkVh0k3pq3XH6V9SD5/E0GtVvHA1nY8Fj27O4aZW+AgHEsy32OlZ9/Y+9FUKk1fp0yQF5NL62CYYDzBA9s6iCZSNPcHMOm01PeMnKt2oxatWqF1MERT/5E+0P2vdo071v5N49uEOBHxaJK9L47v//E1+dh8aOx3ZSyZoj8YZSgUo9Rj5vtXzeLHT9dTm2unZTBIOC6FR4V4J/Z1+fj2Y3u565l6PrioiEd2jnw2L67IPObYRNNBL0/WdZNKSSGS6ayh189AIMbWliEuKM2gb+f455juZikcLoQQYvJSq1T4BsIMto3N7YlHk3h7pE/tRBwaCDIcjqNRKdiNWgA21PcxEIyf1PG6Dw6Pa9v3Uidhv4y7CTHV+Qcj44oUJuIpvL3HXkhLHN9wX5h4ZGyf11BnkLBXrplicnqteXDM+GauRkPYP/aeITAUZbhf7sOEOJ7AcJT6V8aPv6V6I3QPSz73mWZ/t59YMkWR20Rd55H+WKNWzVA4TkOPnwKXmeUVbj5zXhlZNj0Lipz84aZF1ObYJjByIU69WHjkPkJnMBLvOnKdVKVSJOIn11chhBBCCCGEmN6krPdpFEsk2dk2zLbWIRwmLQuKXZR5LBMWj0arxurSM9g1drBKbz51p0U0mUKjUjDrNQyHxz6YGjRSA2cy06oVrAYN4XgS9esrQwdjCWyGkcSIw22BaIIsmx5gdAXpYCyB9fWVW86fkckvXjiIRqWgf/1vHo4nuWf9QT55bhke68i+wWgSm1FDXyA6euyjPbC1nXuunc9/P7GP1oEQ159dxN+3tJFOw43Li5lTYOeWP27jtdcT7D1WPfffuJDl5Rl4M8w89lwPw71vGIDRqbn2vk2smZXD3c81kHw94dcbinPb33bw6xsW8vfNbZR6zPznY3sB+OKFVWTZvBi1R97L0jI3Z5e6CUQTfOLcMqLxFL9+sYlUGqwGDTq1nOvi1NCpVTywpY0vXlSJQatGrVJGz9vDDFo1aQXsmaZx57zVqX/bP7N9MMSWliHah0LMzrczr8CJ9fUEKTE5ZFoNr/9Xz0eXlRBJJLl+SRFWg4Zfv9jMH15t4cr5uaydmc3d6xoo94yvzu40aVl/oI9UKo3Lohv3useqR6Maf20W4mh6jQqbUYtVr+HjK0aKMdgM41ePsGUY0UpRGzFFGbVqtMe4t7MZtDy/r5eiDPO419S68dvrDGpCqTQZFh2xZAqtWj4TQrwdtgzjuDaLx8BwJEmuw8hAcHwCqcOkIxQbXxzLqJXP30RIpcBu1vHPre185/KZdPsimHRqWuJJ7FbtuKRKvVG6MMXkolUrqFUqbEYNdz1zgP9670y0aoUlpW6WV2TQ/Xox3WA0gemo64wrx0LrnrETkN25E9c/LKY2lUbBmW2iv31soSaDU8+5mR7eMzObP7zSQufrCbVqRcGgUVPXMUxxhhmTXo0/mkCvUaOWR34hTlrLQJDr7ts0eg+6sH2YfKeJ9y8sIM9kYNilx/eGftq4Cm7/6w4e/9w5lGXK98B0pVap0aoVPr2yjGKnCeVQbNxqxWb7+L5YIYQQYrJQK5BSK2h0KhKxsYW2pa/mxBg0aq47uwiXWctgME6WTc/ONi/ak8yXMh9jvN/mMaLRSx+nEFOdVq9Gq1cTj44tmqEzyfX2ZOmO8V2l1qrQSK6CmKRsR+XjzcyzUZxtpfcN2ygK6IxyDgtxPH2RGNYMI77+sQVHnBkmfJIDecY5nBOioKAo4DBquWl5Kb5InFQ6zZx8B1/+125mZFv5+PJSPrK0BKNOjVkv92Fi+olFRsartEYjqYEjCwRpkymScSnWJ4QQQgghhBhPZsafRhvq+7nm3lf4nyf28+UHdvOhe1+lqW/iVnI1WLQsu7oC5agONU+hlcyi8ZOTT5Zeo4Z0ik+fVzamvSTDTOkEFmARx+exGvj6xTMAGAjGKPNY2FDfx2Vzc1EUONgX5KwiJ7s7hllS5karVtjUPMhFtdn0+KIUukyYdGpUCiRTaaKJFFq1Crd5JKGy1x/l7nUNlHnMFLtNPLO3h6sXFADQ4Y1Qmzu2evDHzilhUYmbP9y0mC9eWMWXLqri6dtX8MznV3DHhVXs7hgeLUAC0OeP8puXDhFPpnA4jJxzTSVH1zZxF1rYFwmPVDhOpMYVcjinwsMd/9zJugO97OoYJpWGVBp+8NQB+vwxZuXbufmcEgqdRlZWZfKDpw7wfy8c5GfrGlm3v4cPLykG4GtrZ5BpGz8BW4iTUeAyccOyEu58uh67Uc11iwvHvL64xIXNoOGVQ4PMvqAAtfbI17zNbSC30nlCP6d1IMhTdd281NjHZ/6yndv+toMfPV3Ph3+zmX9sbSP9xmXlxYR67/w89BoVnzy3lB8/U89Pnm3g3g1N/OKFg9yysgxFgXA8xY+fbaA628bqmiwMR50bOrWK983P5+cvHOSKefm4zDpsRyVjaFQKV8zLQ6eRQWzx1mblOzivysMt55Xxqw1N3LO+iS2BILasIxPFVWqFs99besyEHyGmirJMC/nOsQUQbltdwbP7esm2GXCZj0wgUhTQZxgonOMes33JBfnYMgysrMzEYdSRbZf7RSHejoIZTqyuIwn3Gp0KTY2Drz6yh1v/tgOXWUemdexn8eYVpRQ4TWOOc3apixyHfP4mgi8a5/I5ubzY2M/vXj7EQDCG3aClINdC8YX5Y7bNrXaSXSQrDInJpSrLBukUn1xRRoc3wj82t/HqwQGWlrv54VMH+MOrLfx0XSOvNg9S6Dpy7alalIX+qIkDepOGioVZE/EWxDSgVquYs6oA7VGTzUwOHU2aJHeva+THz9TziXNH+uXznUaybAYsBjU/euYAqXSaW1aWEYomKHQb5ZlfiHfgQLd/TBG8Z/f18P8uq+Hu5xr48mN7yFmZM25sYnc4TDSRontYVq6dzjJtOvQaFQ/v7OQrD+/BttCDSnPkZHBmmcgut09ghEIIIcRbSwF5+RZmri0e054/143e/fYXvzgTFbpN7Osc5u7nGvnjqy3c+XQ9VdlWnCc5TpZTZseeeWR8Qq1RseiSEin+L8Q0YMswsvTK8jFtFQszpYDxO6B36ig4yzOmbeaaQrQOuWaKyemsQif21xf+uXR2Lj96tYnCpWPHDxZcXIIzc/zCKEKIsYKJJHMuKkR9VPE/S4aeRuK4rXo6hkJvsbeYbmbm2ihwGtnY0Mflc/L46toZ/Pz5Ru7d0MR9G5v51J+2ccvKMg72BWnsD5Jh1UsBEjFtxSMjxZl0RiOp8JExKr2iIhGPv9luQgghhBBCiDOYPCGfJr5wnB88tZ+j5233+KNsOTT0topxtA2GiCdT5DmM6E/Bar3ZZXYu/dwchrqCaA0aMgutWF3jVxQ+WZk2PZsPhdCqVPz0A/PY2e4l226gNMPMcFgeVCe7C2qy+MvHF7O5eZCvra2mzx8lHE9y34cXsK/Lx8Wzs/FHChgMRLn3+gUc6PGT7zSyZmY2nd4Qv7h2PsPhOCsrPbxQ38cvNxzkk+eWEU+k0GvVLCl1M6fAzu9uXMRrzYNE4gnu+/AC9nb5uLAmk8FgnA5viHmFTuYVOFGpFOxGHXbjyGQy61HV3/d3+8fFv711iOH+MMMdQaLxJOfeXEvQG2UgliBiUfOjjQcB0GtUKApjPp9FLhP/3NpOrt2A+vVCPWqVggJsax2i05vNSwcHWFjs4qEdHWN+7sG+IDctL+FPH1vMvALHqf2jiDOaSqXwwYWFVGdb8YaTzClw8KN8O3s7fRRnmMm06tncMkTHUJjWwSDf/cwson0jHYZ2jwmd4fjfGwe6fXz4N6/R44ty++oKdrR5x7z+o6frWVTiwmXWk+s4dd8X4uTNLXDw2GeXc/dzDcSSR1YhC8WS9PqiPHTLMnzhOLPz7AyH43zn33v58TVzOdDtI5mCBcVOnAY1a2Zm09wfZGvLEDctLyUSSxJPpXCbdfT4Im8RgRAjvOEoZR4LW1uH8EcTANz1chP/c8EMVuj1pONp7BlGnFmm4xxJiMlLUeCBLe18fe0MDg0EGQrFqcqyEo0nyXcaaRkI8eNr5vDKwQHC8SSFLhPZFj0ZS7Ipnp1BLJJkWAc/29FKbdzBnHw7pR5JEhLi7XJmm1nzqdn0tfqJx5Oo7Dr+85WR57t0Gn6zsZkfXj2HlxsH0GlUVGRZ0akhnU7zvStmUd/jp9BtwmbQ4g1J38REKPdYWX+gh19efxY9vigqFQRjSdLJFJjUnPfRGsL+GHGtQl00gvpdKmDW5Q0TiifJthsw66SbVJw4s0GDVa/DbdHxf9fORwE6vWHuerZhzHZ7O30Mh2L0NA8z2BlEZ9Jy2efmMtwfhjRk5Ftw5kyee4FOb5hwPEmO3YBJPhOTXjqdRq1VccFNI32eKTVsGg7wvY2NAMSTaV5s6OPOq2djN+oIROPc+Uw9oGDRa3CZ9XxyZRlz8k+saK0Q4thUb1g58+PnlPLw9k4urcrivEwHuiSs+FgNoeEYil7F8z3D/OK1Q2jVCh4pYD6t5dhNPFXXTftQGL1GRV8iwbk3ziA6HMdg0pBX7sCW8eZ97P2BKN5QHLdFh9Oke9PthBBCiHeLgsJgMM7WoI/33lRDbDiG1qRhfzTCgcEgS09hbtF01TEUYmurd0zbfRubOa8q820dJ+iN0tfqJzgc5fwPVxMajpFMpHHnmnHnS4ECIaYDRVEonZeBxaFnuD+M0aojs8iKwaw9/s7imOqHQvhLTJxTW008lEBn0/FE1wCrggmKMiY6OiHG29s1xN0fmIs/Gud7TxygfSjMqpVuVnykmlgggdWpJ7fUPmZRMiHEsRW6zLSmA6z4eA2RgQgqjYqQScVND+/k65YZGLUa8o4xNBJPpGj3hlErkO80jev7FVNTodvM/R9dxIuN/RQ6TTy9t4dwPDn6ejSRYnurlyWlbjq9Yc4qknEzMX3FXi88ojMYSQaPFGQyoCIZi73ZbkIIIYQQQogzmGQSnya+cOyYE1uGQif2sBaIJHhwezvff/IAwViCS2fn8oULKylyv7Mk9da6QZ66d8/ovzNLbKy5eSYW56lJfHSZ9Vj1Gp7a282rTYPMybdzaCBETY6Nr66tOiU/Q7x7TDoNS8oyWFI2fuRt1Yzxq7SeV33sRIk5BQ7+ta2dx3Z10+WNcOPyYqqzj6xiXJxhpjjjyLm8uubtrwC7sMjJfRubx7R947xKnvnFbga7RzpJFAXO/kg1tz1XR3mmhdn5djq8YZ7Y08UnV5Rx78Ymkqk0c/JtzHm9eEjncIQZ2VZuv6CCRDJNKg1mnRqjVkNdp49zKz0EIolx8Vj0WpaVy4ilOPXsJi0rqzLZ1znMg9vbeWhHBzNz7fzltVYKXWbmFjow6TVEYima9g7S8FTb6L5l8zNZeW3VWyYpPL67mx5fFIDk0ZV5XheOJ3mqroffv9LCty6tYc2sbIxauZ2YaKUZZvr80XHtPb4IfYEIhS4T51Z5uPu5BlJpuOVP28iy6VGhkGHVcdb8fC5MwUPbOzin0sN/P74PvUaFRqWQSKX5+yfOnoB3JaYal1nPT55toDrLOtpW4DThGE6y4akDo22l8zysvLYao0USpsTUYzfqWFru5lN/2kaGWYdapRCIJvjWpTWsrsni8d1dWA0a9nf72NE2zB3nlXPouQ4at/SOHqNsdT7DkQRdwxF+93IL6+v7+J8rZrGiwiMJDEKcIN9AmOfu38tAe3CkQYFPXFnK3m4fwViSgVAMq17D719p4d7r5/PIzi5WVGQwGIrztQd3k+800e+PkuMwcs918yf2zZyhnGYds/Kd/H1rK6lUmmK3mZwsHZaeKFv/1si+w9sVWwnPshJNJDGcwhVdo/EkT9Z18/8eqWMoFGdllYdvXFxDWaZM2hAnriTTgkaj4qHtHZj0CrV5DoKxsX1Eeo0KTwge+OnW0eK3zmwTF396DnbP5JmsFYkneWJ3F99+bC/eUJxV1Zl8/eIZb6t4tjj9uhqHefh/t5NKjJxcJocO7cosookjBUr7AjFS6TS3/207/uhIQuX1ZxeRTKfo8sW4bE7ehMQuxHRSnW0l32mkfShMdbaV1sEgxXYjRa0xDj146Mh2F+TzeDzIAzs60aoVvnlJDR6rFJaYzmxGLaHX7w3+45xyYk938bxvZFxYrVFx+e3z3rQIyasHB/jSAztpHQwzI8fK966YPTpuJYQQQpwuahU4TToWqYxs+PXe0fbMGieaHOtb7CkOixz1fHZYNJEimRo/Dv9mwoEY6/9ygOad/aNt53ygklnn5qEoMqYgxHSRTqVp3NzLxr8fKXJcOjeDlddVY7TIs+PJsGvURA/42bi7ZbRt9qo8tHLtFJNUntPCJ/64lf+8rJbhUJxlxS6yOmNseGj/6Dbz31PEwouL0ZyCBSyFmM5sRi3G4SRP31tHKjly72126rhjRRm+SIKMY3y3dnrD3LP+IH/e1IpGrfCZ88r50OJCXGb96Q5fvAtyHAaKXEYi8SR9gfF5tkPBGKl0ikyr/L3F9BYLj8yp0RmMBF8vSAKgBxJxKUIihBBCCCGEGE9KIp8mGrWKi2fnjGlTKVDkPrGV4He2e/nGw3UEognSaXhkZyd/2jQyUeNkBYejbPxr/Zi23mYffa3+kz7msaRIs6o6k0+eW0qGVc8HFxVw2dwc7AYZIDtTFLnN3H5BFQ99einffd/MMQVITpUFxS4+tbIUzesTN8+v9pCZUEYLkMDIitj7nmjlspps6jp9zM63U+Q2sa/Lz7P7evjv983ibzefzY3LStnbNczX187gs+eXkwZ+8+IhfrqukZ8/38ivX2ymxxcBYH19H2tnjf1s6zUqKrNkkoZ4d2nVKq6Yl8/X19bgtuj50OIizq/O5PHdXWRa9Vxc6qFpXceYfQ5u62WgM/CWx63rHB7zb4t+bIGRC2ZkcbA3wHA4zuf/vpO6Dt+peUPiHVEUhVUzxheCWlTionMogjcUZ2mZG636yK1fjy9Kly9COJYkmUpT6DZzQW02j+/q5GtrZ7B6RhZrZuVw3w0LmJ3vOI3vRkxFXcNhDGo11y0uZN5RqwFcW5vLoTdci5q29zF4nGuREJPZ/EIHX11TzYISFyurM7l1VQWZVgPrD/SyekY2+7t9mPUaZmRbWZphH1OABODQC518sDaHxSUuDFoVXcMRbv79Vhr75HMhxInqa/UfKUACkIbOFzq4onbk2ezyubm4LXo+dk4JA8EYNbk20kCO3cCnzyunIsvCBxcXcsdFlZRL0YkJU5Zp4csXzeD21VXUdfqIB5PUPdYyZpuhQ34WOi0YTmEyZZ8/wvY2L7f+dQdDrxcMfuFAH3c+c4DoUSseCXEiClwmPruqgivmFeAPJ7jgDUV7r5iZw57HWzi6xudQd4jelsnxLD0UjNHlDbO7fZjb/75ztIj2c/t7ufu5BqIJ+UxMVol4kq1PHhotQAIQ8sbICqcxH1W0aVV1JoUuE1ecVcDqGZncvrqCuQV2kil4fFcXEbnuCfGO5TtN/O7GRXzlPdVcOT+PFxv7WZ5pp2tH/5jt6p/r4MbZBXzxokp+dPUcwvEkW1uGJihqcbpk24y4TFrcgTQh35EE3mQixfZnWkgeY2Lyof4gN92/mdbBkQTgfV1+PvnHrfS+Pi4lhBBCnC7xVJoMRT1unKd37xCW6MnnKp1J3GYdNuPY8falZW4MmhNP1xvoCI4pQALwyr8a8fWH32QPIcRUNNwf5pUHD45pa9rRz2Bn8E32EMfjTip07x4c09a8vhPL+HUEhZgUnCYtd1xYhUWv4dI5OVxa4qH9tb4x22x/qgVvj9wDCHE88ViSXU+1jhYgAQgOxciJKxS7TWTbxxcGfmJPN79/pYVEKk0knuJHT9ez+dCb99/Gkym6vGG8J7gYrZhYdR0+bvjtFnzhBPMLHeNef8+sbAaCMXLsUoRETG/xSBhFUaHR60mFjjxr6FBIxuVGWQghhBBCCDGe5vibiFMhlkiRbdNz0/ISnqrrxmXWcfnc3HGTu9/MznbvuLaHtndw8zkjhT1ORiKeIhwYeVicsyoPd66Vuhc7iUVObeKxSlFoGQyRYzNSm2vDqNVwoNvPquqs4+8sJoV4LIlarYCikEyk0OrUJOJJFJWCSlFIxFNo9WqS8SQoCiq1QiKWQqNTjVl5xWrQvmsxui16Pr+6iivn5xNPpil0mTj0Ws+47ULDMSpcLgDufLqeaxYUcOsqJ6UeM2UeC5uaBviPh/YQiCaozbVxzYICev0RhsMjn5UCl5Gr5udT5DYDUNfpY1GJi5uWlxAIxlBpFK5bXETZ668f/j2p1VLzSZxaFoOGm36/BaNWxU3LS6nvCRBPpvjJ++dy+993cMeiUnzxFHnVTqoXZdF50Mu+l7qJH+caf+mcXJ7dNzJZ+v6XW/jChZWs299LQ0+AC2oyybUbCSeSsGdk+/oePwuKXe/22xXH8dqhAZxmHbeuquDRnZ2oVQrvnZeHTq2ixx9lZ5uXm5aX8vEVpfxsXePofiUZZhwmHWa9hmgixg+e2M+lc3PpHg5TlW0l06qjwGmSVbTEcXUMhQnEEtR1+lhS6uYr76nmoR0d5NoMUO3E3x9hsCtIQY2T7JIjxcjikQSQJpUGFAWdTo2ikvNNTG45DgM6jYrZeXaiiRSpNHzz4T3c8Z5qvv/kfr6+dgYlGSbyHCYGG0eKe1mcejLyLQz1hEjEklwyJ5ekQcVr7V5+93ILsWSKQ/1BKrNk9Ugx/Rx+Tkyn0yPPkKqR50WVClKpkbbjrdYVi8ZJJdIYzCPFTGPhxJjX3XlmbB4jmiwLHz+nlIpMCwe6/XxuVQW72r08vvsgZ5dmkAYUYGauHateQzqN3OdMsFgkTjqR5oNn5bOn0UskdCSpwZVrxpVrJsOhR6MoxGNJtLqTL0biC8d5Yk8XP3q6ng8uKhj3+pN7uvna2ij5zhMrGCzEYeFQDKJJugaCXLMgH4dJx4b6PoozTFxam0NPZwdFM910HRwevX5FgyP/jceSHL4Mnc6VC+PJFC829vNfj+2lezjCrasqxm3z791d3HFRFXnymZh04rEkiWgKjfZIf6NKrZBb7iDLbmRegZNYMsnnVpaTZ9ETTaW4oCqDbe0+tGqFh3Z08oGFBRRnmNG/jYlvQog3V55poTzTwsEeP/FkmlRsfB9sKpVmOBpjZoaVB/d0Yjfp8IVj5FuMVObZUEl/yLSUIsV/v28Wxjofikohp9yOSq0QGIqQV+EkHk+ifsO1eG/XMME3nENdwxHah8Jk2gynM3whhBBnOItezfBgjEQ8RUGti8qzMmlvGOLAKz3HvN8R42nVKm5fXclz+3pp6PWzrDyDGTk2NK/nj0QjcZKxkXwblVoBlNF7g1g4jqJSoSgj/WRHFyJIxFIkYuOLmQkhpq5ELEkiniKvykHVomy6Dg2zb2PXKc/jPJMc/q6qOjuLvEonDZt7aNs3RDohhbTE5DQUihOKJzFq1ZRnWshTtAwAZWd5KK5107xrgKYdfcSjieMeS4gzXTKeJDAYxWzXsfCSYiLBBK8+2oQpqaA2jJ+3EY4n+de29nHtz+/v5aLa7HHtLQNB7tvYxD+3dpDvNPKNS2pYVp6BWvp4J62mvpHnqaFwjA31fXzhwkoe3tFJKpXmyrPy6fNH+cULB7moZvzfW4jpJBaJoDUYUBSFdPhIYTONoiIek6JKQgghhBBCiPGmRBESRVEMwAZAz0jM/0yn09+a2KjensFQjLJMK3WdnSwqcZFIpVEpI5NfToTLpBvXVp5pM40MVAABAABJREFUxnyCRUyOJRFLMGtlPkUzXdS/1sOu59spmunG7jm1CWzeUJw/vtqKVq3gNOkYCMZIptJcfVaBJMtNcsHhKM07+6h/rYea5bm07RtCZ1DhyrFQv7mbGUtz6WvxEYsmyatwsv/VbioWZuLrC9O2b4iimW6ql2TjzDaflni1GhXlmUcmbrrzLCMfsqPGDnPmZ9Bt1nD76gr6/FFWVHlYVOzCYdKRTKZ4ZGcXgWiCMo+Zcys93P/yIWpyRyZLu806rl1UxI+ePsC8QgefOb+c379yCCWc5FyzhYH2MDXL82h5qp0Bixa7x0T9a91YnAbmriogu8wuE9zEKdPrj9IyEALgjn/uwmXWEU+kMOrU+MIJdnsDfObWObTvH2LnunYyCixc+rk52Nzjq7gfbVl5Bp85r4xfbWwmEk/S2h9kYZGTbJuBVw8Ocs2iAqqOOkY6PZJAL0nyEycQjfP9Jw/whQsraO4LMqfATjKVpj8QJZVO4zbrcJi0qFQKV83Pw2XSsaPNS7bdgN2oYX6hA61aRcdQmL3dfvY+eQCbUYNaURgKxfn9RxdRnHF6ruNi6jJq1bzS1M9vXjrEzFwb8WSKTy0swjGYoGMoSkaRleXXVNCwuYfmnQMk4mmSiRSv/OsgzhwzxbPcAGgNaqwuAxn5UohBTF4d3ijffnQvduNIgb3DxeoGAjFuWVnGzDw7Ba6RybrJLBMLLi4m7IvR0+xj0SUlBIdjrLt/Pxanntkr8rhtVRk/ee4gOpkAKqaZWDhB695BupuGMdl0HNzeS82yXCKhBEaLBlBo2tFHaDjGzHPzKJmdgdE6tu8jFkvSsX+QPes7iATjVC/JIb/ahSvXgqKARqdm4SUl9DQPM9wXpiBgxpVpQaVTY9Zr0KpVVGfbuH5JMb996RDr9vei16iwG7X0BaIsKnZxUW223MtOAP9QCH9/lMBQlAObuokE4iy4qJD6ORm07x1k4SUlDHYE8PaGSYVSPP+n/Qy0BahcnE35fA/W4zzXHMvmQ4N8+YHdAGhU46+5JRlmTLop0VUqJomh3gDBoRhBbxRffwTDzkHiriAfWJiJRadiMBTDnlbwmjQEBqPMXJGHfzBCw5Ye3Plmtj/dQv3mHlzZJnIqnOjNGgqqXRjM714R38PqOn3c9LvNI8UAgUhi/MSlUo/lhAtoi9PDPxShcUsv9a91Y880UTzHQ161k+adfRTMcHNoVz8tO/r46vIi7E4dDa/28FqLn7wqJ8Wz3FhMJn5a187Gxn7OLnVx1VkF0lcpxCnW0BfgfcUeIv4YBrOWSHDkeVFv1rDqhhqad/TR1+rnA7Uu3OUOWnb0s/P+AwzOclOzJAdHphR+mm5mWkwo0RSRCjt2t5FDu/tJxJLMXVVIV9Mw3X8apnZFHvmVTgAO9gVGE+KPdvg5RgghhDidUikIa+GyW+fQdnjMudDCpbfOISZfSycklkhi0WuwGTSsqPAQiiUodpvRx1PUv9aNtzfMcH+Y7GIbDVt6UGtULLq0hOHeMHUbO1BrVdQsz6NiQSYqjYrNjzaTiKfIrXBgcckK3UJMJ1a3gUs/N5eO+iF2Pd+OO38kx8fqltzKk6Vz6rjs1rk0be9j53Pt5FU6mHthISnz6SsGLcTbsbPdyy/XN/HDK2dR5DbjG45y2a1zObi9lx3PtZNb6eCyW+dgy3j7Y2RCnGkMZh0rr63A2xNh70tdGExa1nx8Fhqzip/vbKfIY6HgqCL8OrWKWXl26jp9Y45TlT0+fy2eSPF/LzTyt80jRUsaegPc+LvNPPTpZczKs7+7b0ycNJdZh0GrwmHUsromi7++1kZVlpUit4kCp5HP/30niVSaQEwKPYnpLRYOozOMPGOkQqHRdg0QiUsREiGEEEIIIcR4UyWLOAqcn06nA4qiaIEXFUV5Ip1OvzrRgZ0onVrFfz22lxy7gQXFLvyRBD9dd5D/ft/ME9pfr1FRk2Njb9dIB5dRq+aS2bkkUing7Q+MJBNJ+tuClM7L4Olf1RHyjTw09rcH8PaE+P/s/XeUHNd953+/K3XOPTknzGAQicicCUaRFBVIWaLyT5Il27LWsvw4e+3dtdfrdVwHSZZk5UxSoijmnAkCIIiMATA5h8650vNHD2YwGJAESYQheF/n8HBQ3V1d3V1dXXXv937ulR/14vScmqqB6kC541s3bSbTRQB8ThXfCdKEhaXDtm32PzfKS/f2sfHGFp796SEAVl/RwNM/7mHt1Y28fF8fuVSJzTe38cT3D9B5fg37nhllejgDwMxIhsF9M9zyxfMWDSY7nUzTIjaSJZ8pcd2nV/Lir3rJJUt0X1xL5fpKmpwS7VU+vCcYXDSaKKe63rSmlv948giGZfPBjQ3ct2uM966r56tPl5e93B9nYCbH5y9rZ8W0xe5f9bP5Pa089cODqA6Z5RfWzr1nk/1p+ndP8/6vbKCqOXDG3gfh3BZwabg1hbxenrkjli0fx89vjbD505tZFfTw3E8PM7BnBigf34f2x7nhN1e/7npdqsxALMcnL27hwrYof3Xffo5MZeZu/8+ne/nf7yuvY0NzmAMTKSbTBWqCooPzbMmXTCJeBz1jGfaOJumuDWJj8/DeCXqns/zD7WvnOsRaKnx8YIOT81sjZIsmzRUeqmcDwYJuDacqUzQsUvn5zpTQKTofEM59Vf7yvpQqGBwYSdFecvDqtikA1l7dyOPf3U8mXj4XnB7OMDOSpWlFhB0PDzJ8IMa6a5sojhkYJQuHSxWFE8KSFXCpuDR5LnzkqI4qLyvrgoS98+e9bp/G6KEEoz0Jqlv8xMaybH9gAICpwTRD+2K8/wtrOLwmh2GKWQuFc8vgvhme/OFBVl3WwAv3HKFzczV7nh6hc3MN+ZTO1l/3Yc3ONvfE9w5g3L6MNVc1LljH2KEED351D9bsKPnJ/jSX3L6M9g2VXPPplWRmCmx/sJ9itnzuMj2UoeWCan5kZPjStZ0AeJ0qm1sibOuP8fiBSYqGNdc2saYhJAJIzpL0dJHYWI5nftKDZZY/34e/vpdrP7eKplVRXv5lL/m0zvrrmnnmJz3k0+Vj7vTwYeLjWS77jU5U9c21hz2wZ3zu7/6ZLOe3RnipLwaApkj85S0riXjPXNuF8M5mGhbZeDlkrJg1eOWRQaD8+z6wJ8Z1n1qOads8+419czMTTw2mWXt1A7f8zhr2PjvKwRfK++T0UIbB/XFWXFyHZdh0nX/6Z9g6NJGeCyABGI7n2NgcZttAHCi3Zf/FzSsIniAYWzg7TMPilYcH2f1Euah1eijD8P4Yq69sYPn5tTz67f1z9x3tSXDJB5ex7/kxsMvXX7HRLGuvaeRTrTU8PxCnqyZAR5XvbL0cQTgnpfM6lZrKZF+Kl+7t5dLbl7H/+TGmBtJc/fFunv7Rwbl2kZr2IFt/fIjkVLk/Yno4w3R/ius+uwqnCJo4Z+glE0W32fvcGLUdQZ67+/BcaP74kRQXvLeNrff1MbQvxs2/s5bq1iC9U1ke2z/Jb2xu5Edbh+bW9QfXLxdB0YIgCMIZJysSTV4Xzz1wiME95TaU6eEMQ/veuM9ZKLOA/37vXt6zto5Kv5OD42m+/tQR/qCplkJWZ8+TI5x/axtP/7gHANUlEx/P8cT3DsytY6QnwXWfXsnTPynX6aRm8my6qVWcNwrCOaaQMdjz1DB9r04DR2t8YtwojrdvWVDTePwH+4mNloMeZ0YyjPcmufKjy8/ylgnCibVXlNtrq4Iu/uHhHr5xy2oe/a8DxMbm9+GJviRXfbQbb1CEkQnC6zENi/h4nmd+cmhu2fCBODd8YTU/2TbM5rboghASRZb46IXNPLh3nESu3C/dEvVweWflonVPpAv8fPvIwuezbA5NpEUIyRK2uj7I5y9r59+ePMJ0urjgGs3tUDAsm00tYQIucZ0lnNtKhTyau3z8s3J5UFUwDDQkMiURQiIIgiAIgiAIwmJnPAVCkiQHsJxymdVB27bf8GrFtm0bODoCWpv9z37tRyw9ed1iYCbHwEyOF3tjc8tnMid3sZYq6KxtDHLdympM20ZC4qXeGO/f0PCWtieTKHJkxyStayvmAkiOOrJzirXXNFLbHnpL6z5eZ5WfT1zUwref759b9le3rqQ5KorllrJsosiOh8sDKCQJijmDjo1VHN4+CYDDpZCJF6lbFmJoXznkIFjhouel8QXrmR7KEJ/IndEQkoHdMzz4td3YNqgOmQtv66BpZYRAhfs1B5gVdZPeqQy3nlfHtoE4ll0OzgF44uAUv7elE0VmroEZKA9cy5nsf2oMKAe36EWTjg1VHHp5YsH6LcNmciAtQkiEU6Y56uEvb13JH/x819yyz1zaynlNYXxOlaH9sbkAkqOyiSKJiSzVLa+9H6aLBk8emCJdNHCqyoIAEijv95Zt89+2dDIwk+Wl3hhf3iJmCTmbKnxOblpVy0SqwJM90zzZM73g9nTeoPaYkJiAW2PlCTq8Wiq8/Ol7uvmzX+ydW/Y7V3WIQUnCSXGoMr1TWa5dUU22ZLKx0k/fvcNzt1umNTfQ5qjBvTMsv6AagHxaRy+YyLJEPlMiEy+IEBJhyWqJevnvN6/kD+/ePbfs85e3sa4pjNe58BI7OZVntCcBwMrL6nnursMLbjd0i9hYlmzRBEQQgnDu0EsmOx8ZpHlllMPbytdGwUo3E/0ppocz+MPOuQCSo3Y8PEDHxio8gfmiufHDybkAkqP2PDWC5pR55seHuOC9bXMBJEcNbp3k0vfUUzom2Mc5G+T6s+3DjCYKAFT6nLx/ff0pfd3CySkVdHKpEsmp3FwAyVEv3nWYlTc0z4WOKKo09/dRB54fY92WJsI1J9+uVDRMGsPz5xZ37xjh1vPq+J/vXUXIo9Fe6aOrevFMVoLwWjKJIsWcQTGnc/ClhW1ApmGRGMmAIs0FkBy1//lxalqD9Ly4sP2skNFRVIkdDw3QsiZ62gYSFXWTkmHhPy4c+mfbhvnUxS381pXt5Epm+TtxgtndhLMnHSuw96mFRa3FnIEv6OTwjslF9x/piVPR4GN6qNyuM7Q/xsrL6hh+cYLfuaydtQ2iEFYQTrVM0aDR7eTRp48QrfMy3pfC4VJZeVk9hYy+oF3E7dPmAkiOGtofJzmZp6pZFDmfK3KJIoWsweRAGkmWFvVsD+yZobY9xMjBODOjWapbg/icKq8MJXA5FL58bSdFw8KjKVzdVYkiAhQFQRCEM8zrUIkPp+YCSI4q9znnXrfPWSibzhTJlkx+8vJ8uNgfXtZBIaNz8MVxqtsCDO6bf39XXFTHgRfGFq7EhsG9MSJ1PrwhJ4pTwR0QoaGCcK5Jz+TnAkiOyiVLxCdyVLeKdpy3Ij2VnwsgOWpyIE0mVqCiQbR9CkvP+W0RumsC5EomB8bTJKeLcwEkR032p0lN54nWi1ouQXg9yckce47rU7Esm/EjSe7c3MDB8dSix6ysC3LPFy7mwFgKVSlPHFsfXly75lIVKn1OxlOFBcuP73sTlpbqoIt1zWH+8bFyMM2x12jdtX6uW1nDlV2V1ARdZ2sTBeGM0PM5HK7ysc3K5VBCIcyZGRTbxtT1N3i0IAiCIAiCIAjvRme0xUOSpJuArwJHKI+wapUk6XO2bT9wEo9VgO1AB/Bvtm2/dFo39hSrDThZ3xRix2BiwfLmqOfEDzjOBW1R/v2JI0zMztbrUGS+9+nNON/krK/zJOo6Q+Wit+PIkoQknbpCNr9b479t6eSGVTVMpos0Rz1iYMc7gSShajJ6wZzbHyzDRtXkuduhPLDC6VEXLDueopy5wsh0vMCTPziAPVvMaZQsnvlJD+/9b+sIVS3+vpmWzWgixwN7xvmbBw5w46paPnVxC5ZlE/JoJHI6W/tiHBhL8f+7fjnNEQ8Dsdzc4w3bwqVKmAZz75NpWChH36djKKooEBVOHUmSuHVtHV3VfgZjOaoCTrpr/PhmBz9LsoQkS9jHDdqUlcX75rEqvE6uX1XDz7YPoyoSksTc9wmguybAQ3sn+Nn2YWQJvnrnBkJiZuSzSpIkLmyPcP/ucTa3Rtjat7AQsDHqXjQo/kQUWeKDGxpYXRdkKJ6nJuCiu9aPxyE6yIQ31lLhxeNQUBWJtgovo8NpZFmaG1h8onPO8s+mdPwC5NnjlyAsVbIs8d519XTXBhiM5agJuOiq8Z/wWCsfcx5smjaqplDEWHSfmWyB5bXiGkk4d8gSqE5l4bWRJGHqFqp64uO8oiqLliva4vupmkw2WcLQLUp5c/FzKxJel0pLZGFAxbJqPz/93IUcGEtj2TZdNX4RjnqWlK9VQJZPcN2syWjHXLOcqH1KVuSTPlcYnMlyZCrLD14a4KL2KGGPRnw2XPThvRN88uJWzmsMvbUXIryrSZKNJElzAbiLyNIJE7RVTcYybSRFwj4ujAlJQnMqJ/xuvF3JfJHt/Qm++Vwfk6kif3BdF921fvaPpY8+NRd1VHDl8upT/tzCqSHLErIqYZUW7jflfXBxH4GiypjGfAiOJJXXoTkV7ji/kahfFFEKwqkW8TlIZQwUTaZpZZStv+oDykETV32se8F9T9gHJ4Fh2xwcT7F/LIUiy6ysC9BWKQaVvGNJs//ZNg734jYDRZPnAsuOth/4XQpXdFXy5MEpXjhSDhn/y1tW0Fwhrl0EQRCEM8/v0ki+Zp+z6Mc5GU0RL4osYR7z/rkdCrZlojrK122OYwYrmro1X5NzDMUpYxQN8hmdl+/ro74jSN2y8Bl5DYIgnBmSLJX7148/3op+87fstfoR3qhuShDOluaol299YiOTqQKXdFS85vmW2IcF4Y1JinTiGm5NJpHRuaxrcX9YKl9ie3+Mbz3Xj1OT+c3L26nwOXBqC/tgKvxO/uKWFXzhBzvm6mrXNgRZWSdCw5a6mtcYy9MU8fDEgSkkScLvEiHhwrmtVCjgcM+GkOTzyG43ltuNaoOhn9zk2oIgCIIgCIIgvLuc6dbIvweutG37Ctu2LweuBP7xZB5o27Zp2/Z5QAOwWZKkVcffR5Kkz0qStE2SpG1TU1OncrvftlzJ5Lev6qCzulws6HEo/OlN3SedmDqayPP+DQ186ZplfPHqDn7n6g5i2cIbP/A1BKIuIrVePH4H4dqFwQwrL6unounUFjUG3Rrnt0W5eW0daxpCixrl3u2W4r7rCzk5/9Y2AEoFA3/UxcDeGZZtKje+ZmIFKhp9TPSnaOyOIEkw2Z+icUVkwXpa1lYQqj65sJ1ToZQ3Fs2SDJDPLG4YGU3k+d8PHOCXO0f5mwfKwSW/3j3Gg3vG0RSZf7h9LfWhckOL16liWDZfvGYZjZHysqBbo7s9wqabW4HyTPbekIO+XdMsv7B2wXM5PSrVLedmI/NS3H/fLZyawtrGEDevreP81igB93wYiMuv0n1RzYL7R+t9+KOv/7ujqTKfv6KdSzsq+OXOUb68pRP/7KDqtgovH7mgicu7Kvmdqzr48rVd9EykGYrnXnedS9W5tO/Whjy0VXq5fWMDy2dnq/Y4FP74xuU0vIl0dpemcl5TmJvX1rGpNYJPdKosSUtx3y3qJpmiQXdtgIlUgdo6H80Xzx+DjJJFRePC88vlF9YysKc8m1Oo2oPDpWDbFi6P9obHKuGdaynuv2+F65jf4E2tEQLuEx8vg1Ueui4ofxdeeXiAdVuaFtzu9mtE6rxsbI7QP5090SqEJeJc2XfPFEVTWH9dMwN7ZujcXP4OTPaniNR5CVV7kBUJp3fhILzzb23D7VsYblfTHkJzLWw/WHtNIzsfLc9KU8jpBCoWzj7Uenkd1TWeE2ZkNoQ9XLOimmtX1ryrAkiW2v6rOVTcfgehaveiwZirtjRhaNJcO0I+oy9qU1h/ffOiz/14lmWzZyTJ/bvH+a0f7uDR/ZP83UM93HlBM3/+nhX8/QfXcs8XLhIBJEvcUtt3j+UPu3F6VPxh56I2IJdXY1yxsEIanuNmJl5xSR27nx6m+6K6BcuDVW4KmRIbb2xBc57adtOibvJMzwyf/d52njs8w6HJDJ/9/na+eFUH/3Hnev72fav5+W9eyGXLKk/p876bnY591x91sfHGlkXLMvE8bWsrFwyqkGWJ+uVh4mPz7TXLNlVj2zYbrm8mGhDXW8JrW8rH3qXOqSrYLoXzrmnCNI4PDFrYLpKYzFHTtrC/oH5dJbsSWT7+rZf50k9e5Xd+9Ap3fO1FesbTWJZNQV8cwCfMW4r7ri/swu1VaV4dpbY9iKIe0y0vQfPKKOO9SfxRFxX1Po5MpvmTe/YQ9jj4vS2d/NaVHfzpTd1c1V11SiePEJaepbj/CsLJEPvuu4PTr7L8wuP6nBt8+CPOs7RFb9+Z3HedisT/uHUlgdk2sKaIh7amIKEaDysurmNyIE3D8vBcW+b+50bpvrhuQYa/oso0dIYp5k0Ks3UvJ6qJEd4dxLH33OXyq3RfsrCdMVLnJVD5+m3h7xRnY9/1hh00LF8Y2NS6JorbLybiEd6cM7n/1obctFf5uPOCZrxBB/VdoQW3t6ypwB0Q+7Bwct7N5w0uj8baqxfW52guhZqWAO1Vfja0LA70e2TfJL//813sG0vxymCCz31vOy/0zjCdLhLLLqw/v3p5FXf95kX87ftX87U71/PvH9lAXejc+M1eCk7XvpvM63zl2i6W15Tb6r0OhS9e3cH3nu9nRW2AVXWBU/ZcgrBUlQp5NFe5r9jK5ZA9HmSXC9myMUsihEQQBEEQBEEQhMUk2z7RnIyn6ckk6Wnbti875t8S8NSxy05yPX8BZG3b/r+vdZ+NGzfa27Zte+sbe4o9cWCC3/7hK3z52k4iXgemBf/5zBH+5KYVXHoSBd5f/umr3LVjeMGyTc1hfvjZCxbMEPtmxCezPPWDA6y/roXJgTSx0Sz1nSEqm/xUNYuGlJN0yqv+ltK+W8objB5OMLBnmoblUVJTOQzdJFLrY+RgnNplQXIpnWyiSE1bkNFDCSoafRgli8mBFLUdQRq6IvgjZ6awfXooTWwsy6uPDTE5kJ5bLknwwT/eRGXjwtnl/9/jh/j7h3v4rSs7+LcnDi9a33/bsoxCyaQx4mHvaIpf7hzFsCxuWVtPV42Pa7qraI76KOR0xg4lGNwXo7E7QmIih2VaBKs9jPYk8IWcNK+uoKJhSc1YeFoqVpfS/vtul0+XGD0UJ5fWGTucJFrvpaLBjz/iIlL3xgMuswWDl/pm2DeWwrRsdMtmPFng3p2j/Nl7uvmzX+4FIOJ18I+3r+XyrqrT/ZKOdU4fe9+qz3z3ZUq6zS3rapGRGE0UeHU4wfvX13Pdqto3XoFwJpyz++4rA3Fu+4/nAeiu9bO2IciVLRXUFCUm9sfwhpw0dIWZHsowM5qhtiNEuNrDgRfHCVS4iNb5sGwbp1slUOEmVHXmAsyEk3bO7r+nWyZe5Mgrk4wdTtC6thKwGdofxxty0tgd5qGJGP/j/oN8+dpO3rOmhtYK/xuuU3hTxL57lpi6xXhfkvG+JN6gk/HeJHUdQUzLRpFlkGB6OEMxZ9B2XiW1HUEczsVFc8MHYgzujVHI6jSviuLwqNz7TzuB8ix2669rQlZkkjN5gu0BzIiDj/9gO9/51CYubK84w6/6lDtn999CvsTMSJZixmDscIJi3qBuRYQpxaJW0ZjpSwGQjhVoPa+CxFiO5FSO5lUV1C4L4vG/9kCXoViOH788hGFauDSFf37s0ILbNUXi11+8hM5q0fZ1Gp2z++6xsqkCyck8hbROPqMz3pvEF3XhbwtwIF/ggT2jbKmP0mYopKcLVDX7ObRtkpGDcdrWVVLZ6Cc5lSNQ4SYQdeENOaluD6Kd4vDmg2MpfrFzlP946siC5VV+J1/76Aa++UwfI8k8d57fzJXLK4l437kDyU6BJb3v5jM6oz1x+ndP44u4iNb7SE7lOPD8GCsuriM+nkOSoXVdJZpDYbI/zdRgmuq2ANFaL5ZlU7cshCoCws9VS3r/fTeZGk6RT+k88NXdGCULKIcDbfn0CpLTBWaGM1R1BHBVuentiaNPFtBq3WzNZnlmOE53bYD7do3Nre/3r+0kntN5qW+G961r4PpVNedaQfs5ve/u6pmiQlbRixbxsWz5WC1BQ3eE8d4ETrdG04oI1a1B7t89xhd+sGPusZIEtg3/8ZH1XNQRJeh2vM4zCWfJOb3/Cuc0se8KJ2U0nmNgLE11SSKbLB3T5+wjLcOqFWe87e0dt+/etX2Irz7Vy+cub0ORJZJ5nb9/qIcff3IT3rRJJl4iOZmjqsXPeF8KVZPp2FBJNqHTt2saVZNp6AoTm8ig5yx2PDQAksTtf7yRigbRl/AO847bf4UzK58pMdITp5AxGD2UIFrnpbLJjzfsJFp3VuvN3rH77qv7pghZErGxXLmNrNWPL+zCCGl0tS4efC6ck96R++9wPMe1//gUX3/feTTIGonJHJMDaapa/AQqXFQ1BfCFRdD0Oe4due8uJbZtc3j7BJIkMbg3hsurUt8VoYDFUzMp7tjcuKCtLV8y+Mg3XmLHYGLBen5jUyOjyQJ901m+fG0nV3dX4ztBTYMwZ8nuu/mSyZ/8YjcXtkWRJYn+mSx+lwq2Tapo8sSBSf7ohuVcIiZteDc7HeMqztxAvZP0rS99lqrWDt7zu3/A4Kc+hZXLY0xOMuNzs7etnk/909fO9iYKb55IsRcEQRAEQRBOqzPdErJXkqT7gZ9Svqj6IPCyJEnvA7Bt++4TPUiSpEpAt207IUmSG7gG+NsztM2nhFtTsYG/um//3DKfU8XrOLmCX88J7ud3achvY+arQNTN6isaeemXvRiGRUNXCNO08AbPTBGbbdsYkzn0qTyKT0Ot8aK4ROPcUuJwq7SsrqBl9eLikfb1iwMH2s47tvGt/jRu2WLTQ2nu/vsdGCWLi25rB2ByII0n4OCqj3UTPS50IZ4r8dNt5dmzHYqEKksY1nxbT5XfyXS6xMP7xrlqeRU/2jo0d9vzR6bpjnio1VQKRxLYukVDg292UOlCyzZUn46XKwivyyoaqKZFVJFwWRaBlRF2bh3H4VapbDy5Gd+9s8fj//twz4Ll7ZU+vMd0pHidCtmiceo2XnhL0nmd7toA//LYYZ46NJ/+/oUr2snpJkXdxCkGGQmnkwSNITd/emEryx0OtICDP3v+CM/0x3jwYxew95FBdj4yRKjaw8YbW4jUeahsDNCwPHK2t1wQ3jYjXqA0lkXWZNQaL6p/4fWUL+ykdW0F6ViBp350ENu2ufC2dtLTBXozBXKzM2Rbls1IvChCSIRzhqLJ1HeGqe8sF3Iuv2BxKFrnpjdeT8PyyNzvRTZZZNv9/ay9upG9z4xg6hbxiRzJZT6+fmCSzNAov3N1ByXTWhTYauZ0jPEsZt5Aq/KgVYrAq7PJ5XZQ31E+XradV8lLvdO8NJIidCDLoZ4E669vZv/zY9imTTFfYvNNrVQ2tbzhenXT4qtPHeHxA5NctqyS2tDic2CXqtA/nXtHhpDYhompW9jJEkasgOzV0Ko9yKI97azwBlx4A+VC35Jh0uu3+cqv9hN7dn6GIFlWuPKqLp74zn4cbgWHSwEJhvbFqO0Icunty3C4tdO6nemigTLb9tVe6SOWLTGVKeJ3qnzvhQHu210e6P7KYIK/vGUlH7+o5U0/h23Z2EUTyaEgKRL6TB5jMofkVNCqPSheMWj6VHD7NNrXVy1olx3aF2OvMcrzdx+hrjNE1/k1HNwf41+GJ6jyO/jbq7pwpEq4HDJarRdFtA0IwmlX2RDAtm2u+cxKnv1hD4WMzmU3txI2LfwhB02rGtg5lWHP8Az/ub2PmoCLkYE8RcNiTUOQvG4uWN+B8TT7RlP0TmfZM7KPvukMf/6elWjqW5ugQDiz9sRz/Pdf7eW3r+zgxsowh7dPkkuVGD0c54Jb2wlWuInODiA2LXsueATm/x/LlXjiwBTvXXdm+93OJDOvI2sKkiqjT+YwZvLIbhW1yoPiOb3nSoIgCMJrs2wwFAlNlalyKzSsjpCxbNLJIo560bZ2MoJuB35VpqFoU43EsCWzsSlEUYKVqxfWlyzbWDP3t0Sa1HQevWBS0eBjYFeMscNJPAEHV9zZReTsBhIIgnAaONwqkiRx8MVxQjUe+vdOo7lVovUnV+MjLCY7ZVIjeYxMiQ3nVSDpFnhUphzielpY2mQk/uSKZTRbEkHbQtckNJfCke0TrLq8EYe4ThaENyRJEm6/k12PD6E6ZKZHC9g2FBpcFE2L0XhhQQiJZbOgJvYot1MhUzQYjOX43R/v5Duf2sTlnad+sj4jW8JKFDGTRZSAE7Xagyz6c06pvG7SP51lRW2AyXSRH788SCo/X/fs0uRF4d/69Gx/p0NGq/WheMXxV3jn04tFNGe5xsHK5ZE9HiS3G8WyMfTSGzxaEARBEARBEIR3ozNdoe4CJoDLZ/89BUSAmymHkpwwhASoBb4jSZICyMBPbdu+7zRv6ynldcp86ZpO/u2JwyTzOiGPxm9f2UHI88YF2LFMkYvbo/xs+xAFvTxrmiJLvH9DPYr81kNIUlN5HvnWPppXRgnXeinlDbb+qo9wtRdv6PQnZRf2x5j54X6YHXTn2VxD8PoWUUwmvCVDB+LohXJx7vP3HKF1bQXLL6qlvSWA3hMnsW8a9+oKHC1BYobJWCJHfdDNUCzP3a+M8KVrOvmPJw+TLZlU+pz88Y3d/Ovjh5hIFWmOeHFrCnnd5K8u7+DivES0qJD4cQ+l3iQAklul8tOrcIjZZoSzyEgWKOyNYaZLFPuTlGZnD1fdKhfd0s4vvrOfcLUHT/DkjvF+l8YXr+7g60/3UtAt6oIuPn5hMwfG03P3uWNjE0Fx3D7rHJqM36myZUU1j+ybAOCSjgo6a/w4FJkjUxlW1AXP8lYK57KoT+NXN6wi89MeMG0s4O8urOUnjSF23N+PU5HZeGMLetHk+bsOs+ryeiob33kDfwXheMXBFDPf24eV1gHQGn2Eb+/EUbmwIFDVZJKTOdZc2YhlWux6bJjkVJ4NH+pgKl2kJeoh5HGwvX+G7lo/UZ/zbLwcQVjyYqNZ9jw1QqDCxeorGlBUmZFDcTJ5nWRe5w+u7+KBPeNctbySZVXz12ZmpkTi3iPkd00DIDlkoh9dgWuZmOluqbBsaHe5eHV7PwBb7+1j2aZq3H6N1rWVVDad3HnDRKrAT7cN4XOqbG6LsHckSXPUw8BMbu4+H72wmX96tIfzmkJU+d98+5eRLFI8nKDQE8PRFMC1PIIWdb/xA98G27IpDaRIPzeKszVA8v4+MMvtab7L6vFf2YTiFkEkZ5MqywwlCty4qoYfvzyEYdksr/Fzx8YGxg/FmRpMMzWYprYjyIbrW3C6FbovrsXhOv3X001RD2uiXn6xZSXBoQyFVo2egEIx5ORPf7FnwX3/48kjvGdN7Zs6F9GncmRfHqewL4ajLYjnvEpmvrcfe7Zwz7k8TPi2ZahBcX5zWkg2DcvDeAJOMrECT/+oHCb7wVvqubrST+mbeygZNhnAs6EK9+oKcq9M4loexdURQvGLgBhBOB0kScLWZJpWRlm1Oor+qyPkM/PXjZu6o5wXDbGrMcQTR2bmHvfpS1r5ys92LVjX8poA988GRgH8cOsQn7y4lbbK1x94aqRmz1kOxnA0BnAtD6NViMHCZ5rfpfK+dQ08fXCalkMFIrVeGpZHyCYKPPzNfay9upELZ/uVKv0O3rO6ll/tmv+8L+2I8spggr2jSa7prsJ3Bs4d3oiZLlE4kqCwP4ZW78O9PIJW9db2LSNRJL9riuzL46jVXrybqol9fz/2bH+4Z0MVwRtbRaCZIAjCWSJLNq0ODc/eaXJbx9EBSZFovL2L0ZSYpOJkhF0K/7W2lfS9fQC0SvBPt7Qzpr3+APihA3GG98eB8uQ7bedVcMnty2hdW0HgNLdDCYJwdqSm8jz6rX20rKnAG3SiajIv/bKXcLXnjNRxnovktEl2Mkdb3iD/s3KbmeRUaPxI91neMkF4faGSxTUHMuiDY6QAr09jwwc72apbPPH9A0RqvVQ2iRpVQXg9pYLBC/ccQVEl6urC+EyLw9snaXHXcCSd4Za1dQvurykSH9zQyHOHpzk6l6VbU7iwLcqjs7WYAA/tmTilISTGTJ7cvhnQLVKPDJRH0gCBG1vxX1iH9AbXDcLJi3gdXNxRQdCt8W9PHOaLVy3j3544TDynE3Cp/Pl7VtASna/1Kg4kmf6vvdiz4xKcXWHC7+1ADS88L9MnsuT3zaBP5HCvqsDZGhRhJcKSZpRKqI5ye7uVy6FURJFdLuR8BlPXz/LWCYIgCIIgCIKwFJ3R6nTbtj95/DJJkhy2bb9ubKJt27uAdadtw86A1go/9+8e54MbG3BpCvmSiaZINEXeuChLVSQOT6b5uw+s5ZXBOIZls6E5TLb49jr1LdPG1C16d07Bzqm55aZpva31nozieIbEr47MBZAA5LaO414Zxd0VOe3PL5x7SoX574PDpVBT5aYx4iT+7b1zgx5yOyYJvL+Dfxud5rKqIH99URt3Vfn5xvYhvvdiP5+/op2mqIcdAwn+x337+MKV7Tywe5xvPtvL39y2ilV+F4HnJigdjCFf3TQXQAJg5w1Sjw4S+chykUAtnDX53TMkf91L4OqmuQASKO+fxsvjVDf5MY857r6Rtkovd+8Y5lMXtyLLEolsCU2VqfA5+NCmRpZV+fC7VOpOMtREOH2cqsLymgDPHp7md69eBsBwLEfIrfGDFwf4ynXLz/IWCue6QAlyv54fDAuQe2GMj35sBffv7GWwP8HgvtjcbcW8KE4V3vnMokHmuZG5ABIAfShD8VACdAu1woPsKJ8XWhaMHU7Sv2tmwToUW6LC6+Szl7UxmihQNEwciigiEITXYhrl9orUdIFXHh6cW77uyjpuW1+P16lw6bJKltf454LybNOm2JecCyABsEsWyV/3ov5/q1F9YjDbUtBV4+eVsfkCLr1osu/ZUQAau0++ncihyoQ8Dm5YVcP9u0ZZ0xjifesbKOomqbxOd22AB/aMk8wbKNKbD/a1dJPUowPkXi5va/7VaXKvTBL+YCdalQfpBOu0DRN9ugCWjRJxobhOrjnWTJWwSiZKwIExmWPqG7vxbq4h/cTQgnOuzNMjuFdEUVpE6ODZJMsSl3RU8N9/uZfPX9GOJEEsW6Ip4iE5UJi739jhJGOHk4SqPXRfUvc6azx1qvwuNmUh+1D5uOkG1vk0Uu9vJ1cykST45LoGLgr7cDoUHObidgOrYGDECiBLaBUurJyBVbKQXArxuw5R6i+3QSghJ+lHB+fa4gCKB+KUhtIihOQ0MXSL/c+NLVwowWUtEZR7jmAd2/6+fRJnewi7YBL/yUF8l9YTvL4FSZx/Cu9QRrqEXSz/Vh699loqzIJB1AJniw979xRWZuF1o6sjTPHuQ/ztBzv5TmMISYLLOqtojrj53WuW8dUnj+DUZH7ryg4e3T8xV/gOoMrSG05QYBsm6ceGyL5UPj7kX50mu91LxadWgm5jZnWUgEMcm8+A7toAP98+zB2bGjCenmb/zukFtxez8/tGS9TLjatr6Krx0zedZXmNH49D5U9+sYd1TSHktzExxalimzbp50fJPDEEQP7VKbJbx6n4+ArsoonkVFCjbqQ32FZLNzFSJXIvjpF5ZgQArd5H8r7euQASKP92edZWonSKvmNBEISzwbIhlLdIbB2fX2jaZO7vpfYjou/xZHShkniob36BDelf91L3mdWv+zj9mPoX27I5smOKxESO7otqT9emCoJwllmmjaGXB0gf62i/iPAWWDbLW4OkZgNIAOyiSfrhfhx1XtE/JCxZVl8SfXB+gjAro6NvmyCfLGLqljguCMJJsCybUt4gMZFj7PB8nXexYHBJR+WisRu2DVOpAn//wbXsGIzjUBXOawwxnizgVOfbnmtPYZ2sVTJJPNiPFnWTfnZkLoAEIPVAH87WIM5GETh0Kq2uDxLLFFlRF+BfnzjM+9c34HYorGsMsa0/xnAiR1PEi1UyST40MBdAAlA8GKfYl8S2bcx4sTzhrgr5fTPYho0xmSP2/f0Eb2zFf1nDWXyVgvD6jGIRzVnuG7LyeWSPB8ntQk6nMEqvO6RPEARBEARBEIR3qTMaQiJJ0pPAJ2zb7p/99ybgG8DaM7kdZ4PPpfK5y9vZNZxkLJmnJeplZV0Q9SQKfPO6ScDj4H/dv4/bzmvALcH/feggv39t19vapkCFm7bzKug9puDN7deI1Hhf51Gnhp3RMePFRcvNxOJlgnAyGrsjbLu/H1WTue7WNpSnhpB82vygB0XCs64KybD5UjRC9v5+bN3izqiLOz68kV+OxUnkddypIt99oZ/aoJtvPtPHyjo/f3/zZkJHUhDLkj4QQ3IqmLnFg6dLw2msgilCSISzwkgVyb40huQ48f5pT+aoXR4hXHvyMxJGvA5+8/J2jkxniWWLhBpC/OczR8iVLLZ0V9MzmaG1wosiBqucdb1TaZ4+NMXtGxuZSBXxOhWWVfn447t3c+XyKlorTv9vu/Du5swbZFIn6IRIFem4pJap/vSCxW1rK87QlgnC6WMlS+hjuUXL9bEs+kR5eXBLM4rPgTfoYM3Vjbz8q/liY0WVkcIapYksP9w6yKGJDP/xkfXkdRO/W8yKIQgnEqn14vZr5I8J/2laU0FcstjcEmEoluO5Q9P4Zgeh2oZFdtfUgsHwR+kTOcxkURSZLhERr5M13RXEWieZPCZQMVjlJnSSs6oPTGeJ50t86uIWciWT774wxY7BBH95y0p6pzMcGE/zg62D2Db8w+1rifre/KBbYzpPbtvEgmX6cIbCnmnMRj9quBzOoIScqEEnZrpE+skhMs+Pgg3OzhChWzvQXmfGWtu0KByME//FYaxUCdeKCK5lYTBtZLe6YBDzUWZaFIMsBWsaQvz1+1azfzyFU1FYURegpcLLWKeFJJULGI9at6UJl+fU/d4bpsWB8TR901nCHo3u2gABt8Z4Mk9Ah9zjgwvub2V0vIkSQbfGn17UxsW9GTweCckG9sXQu8NoofJ+qs/kSdx7hOLBOFqtF++mGlKPDWLldIK3ts8FkACoERf5vQtD1wDMeGHRMuHUiNT6cPk0CsccG1rWVeKQwDpB+7sxk8ezoQrJ7yDz3CiuFVFcrSLESHhnsS2bwqE4ibsPYyaL5d/Xm9rQqpdG+5eRLJK8v5f8q9N41lSgj2UX3cdMlYuUrT3TXH5hNWGvg44qH5PpAu9dW8d7z6tDU2UsyyYdL3BncwUl4HsHx7msu4rG8OufH+nxItmtCwOK7JxO8UiSxC+PYOcNZJ9G5DeW42oPncJXLxyvo8rPX926ir2jSeouqmHsUGLh7RvnZ06tCbpRlQRtFV4kCX62fZieiQwAn7yoBY/jjHbrn5ARL5B5ehgASZPxrK/GuSzEzA/2Y4znQJUIXteCd1MN8muE7+lTOZIPlQdYZF4YnVuuhl3kj5k04yjzBOe/giAIwpkhSRL2Cfp+zGQJx5uY+OLdTEqV4PhxwoaN8ga/b43dEV6+v3/BQMR1W5pwnGS4rSAI7zyBCjdt6yrpfWX+nNjt14jULo1r3XciNeRAGll8Ta6Pi/4hYWk7WmtwrNJohjWXN5DPGQSrXruPSRCEMpdHY92WJp74/oG5ZZIErSui1LcHF00sYVo2TofM3z/Sw/vW1ZPXLf76/v383pZOzNmE6IBb5Zru6lO2jUa8QGH3NNpVjXB8uJANZrIAIoTklJpKF7l35wi3rW/gptW1xLIlllX7GU/miHidPLRnguU1ftYGPSds1zdm8uR74jjrfBiqRG7vDKUjSZDBe0Et3gtrybw4jntNBWpITOwoLD22ZWHoJVTHbAhJLofs9iC73MimgamLuhNBEARBEARBEBY7072TfwM8KEnSvwD1wI3AJ8/wNpw1fdNZ/uu5Pg6Mp7n1vDpqgy58J9NBbEMmb/Cpi9s4OJ5CVWTuvKAZ9W3mHGhOhU3vaSNY5aHv1Wkqm/ysubKeQMXpb6SWHApavQ99JLNguRIUnTvCm5OJFxk5FCc2kuHaT6+kMJVDeWkMK2/Mj+6QIHh9C9kXx1AjLjIPD8w93pwpoD02hLfLS7fLRZ2ssuOj55M/GMdZ60XTZKThHIkH+vFf1QiyVJ5d0bd4oIh7VUU53VgQzgIzVURyKq+5f6qdYVo2VxN4ncFuxxqJ5/jptmF+tm2I1kovt29sxLQsLllWyXSmxKHJNCvqAuRLJg7l7M/A+G52aCJN/0yWrb0xVtQFuG/XKJPpIu9ZU8tXru+iyudEU0VQjHB6yU4FrcaDPn5MMYQESsDJT18d4o4Pd9LzzCiqQ2HtVY2ElsjAIEF4O2zbxtkawJhcWATkaApQPBwn/+o07uUR1M4wLxyZYa9cYt2trQy8PIk35KTrklqmZJvRZIHV9UE+sKGBvSMJPA6FqoDojBaEE5EVias/sYIDz48xPZyh5bxKpFYvf/jwfoJulY9f1MLmtghhb7ltQZ/Mkfp1L6Hbli1al7M9hCTOY5eMmUyRkdEMK6+sp7LRx8jBBPVdIVZf0YA39MZhIQfHUrzQO0Net/j17jE+eXErF7ZFeKE3xh/evZvPX9HOyvogHVU+rl9Vw8bmtziTus2CwR9HSS6V0kCame/uB8NC9mtE71yBmSqSeW5+YGWxJ0Fu+wSBLc1IkoSZLqFP5LB1E6XKjZXRsXMGM9/bN/c8hf0xHM0BAMxYAbXKs/C3RyoHPwhn3+7hBP/v8cPsHkly4+paVtQFiE/kSIxnuepj3Rx4cZxCRmft1Y20rIme0ud+8uAUn/3eNmbrIPnvN6+gb7ocdPZnl3Vwtbl4x01kS3x5yzIuSdj4VlaSfnwQK2cgORRkVUbd4EKSJXKvTFI8GAfAvaaSxL1H5tZhpXWQmNtfS8NpnG1B8runFzzXUgkGONfk0yVmRtJcescyel+dJjacoW5NlD4f3H1okjua/AtmzASQ3RpoCo56H4X9M5SGUmjVHtGmKSw5RqpIaSCNPppBq/XiaAmgBsrnBPpElpnv7OPoQa/YkyBuHKHiYyteM/TgTCr1Jcm/Wj4OloYzONuDGDMLw5jUiJtcehKHW+XvH+nBsmxuW1/P/324h2Re5/aNjXzhinZqdLj9SA5jLAcSXHhhLd5VNZSOJLBNG63agxounwfYlk1pOE1h3wyWbhG8vpXs1rG55/ZsqCb+80NzBe1WRif2wwNU/fZ5c+sQTr1s0WDPSIp/fuwQv725mcs/0sW+Z0ZRVIl11zVT3TYfBDWTKRB0O/jzX+7h1vPq2dQSYUVtkNX1AeqWStG6bZf/UyQC17dQHEiRfX60HEACYNgkf92H1uRHkiSsrF4+V+5LYlvldpTMi+MU9sygXlSH7FCwjHJoZGk4jaM1SKkvueAp1egSee2CIAjvQg5VRj1BDY9W50V2iIlZTobi05AcMnZpflCh7FFRvK9/DaY6Za75xAr2PTtCKW+y9ppGmleLgH9BOJdpToXN72klVOmm92gd5xVnpo7zXJWWbJTA4v4FV3sQVNE/JCxd2gnCh5wdIRxVLq74yHLcIkBHEE5K06ool32ok73PjOLyqXRdXk/KLdFyggn3ZFkiXzL52IUtHBhP4VBkPn5RC05V4jOXtqIqMmsbQ3RWn7pQEEmWQJGwSyayV8PKzgcVSpqM/AbXDMKbF/E6uKC9gkOTGRrDHtIFg7/61T4awm5uXF1L71QapyrTN57kpmUh8rsW9ncqQRfZl8ax4kU8m6pxdUXwbqzBnMmjT+SwvDqu5gC2fnwSpSAsDcZsyIjqKJ9LWPk8sseD5HQiGSamYWBbFpIs6s0FQRAEQRAEQZh3Rq8QbNt+CPhN4J+BTwE32La940xuw9lyZDLDZ76zjajPyfs3NNAzkeEfH+2hqJtv+FgbG79b5cB4ih2DcXYMxEnkdEKet9eYrBcNdj0xxOFtk0TrvcTHs7xwzxFyZ2D2VEu38F/egFpZ7iiTnAqB65qRRKGC8CboRYOtv+rl0W/tY8dDgzzyrX1Eom6sWAFskFQZSZNxdoQo7I9hzBSwj0mMlr0agWua8G2s4X2Wg+WPjtBoyWS+tx91Oo99OEH2yWGKhxMAFPbN4N1YTrIuDaTwXlQHs4PWnO1BfJfUi0FswllhxAuUhrN41pVnTSz1L9w/Hc0B1BVRnvh+D9nk4llwj6ebFl99qpd/fuwQybxOQ9hD71SGgFvDtuG5Q1PsG0vx6lCC+pAbjyY6PM6mA+Np/vXxw3z4gia+8rNdpAoGN6+pw7RgLJFndYOY0Vg4AyQJ/zXNqBXHnNtd2wyaxI3Lq9n72BC+sAvNofDIN/fSs3X8LG+wILx9tm7haPLjXBYqL5AlPJtqUMNOCj0JAIypHHtGknz8v7YymMgz1pMgVOXBKJk8+p97iW+dwiiZTCQLmJbN3rE0O4cSTKYKr/m8gvBupRdNXrq3l/v+36skJnNE670kp7LMlHS2rKhmMl3kKz/fRX3Yw/lt5YAJM1XEyhpIThn/VY1IWrkZTKvz4tlcg22K4o+lYrAvybb/OsAT39rP8IE40XovdcsjROt8J/X4/eNp/uaBAzzdM0XY4+D3f/YqV3RVcWF7lFzJ5Mdbh9iyoor/ddtqruiqOrlQ4BNQo25cKxeGRyhRF7JbJf344Pyg3rRO8qE+ir0LB1DKPg3Zo5LbOUXhUJzYjw8w/Y3dzHx3H8X9cfTBNKXh9MKgExvsoons08jtnsa7uWZuIKbkUgh/qEsEPCwB/TNZ7vzmVl7sneGq5VW4HQqH+xP8+t938fh3D/D49w4gAedd00jXBTWntEh4MlXgj+/ZPRdAUhNw0Tud5TsvDKCbNt94dYTChsoFj5GcCr2SxStHYnhn918rVx4AbJdM4r84jDGVxyqZFPbOzD3OPm4mtuLhBO418+vWR7M424M4WsvBOajlAcpa48l9l4WTZ1k2u54Y5oGv7uGRb+4jNZmnritMqtbBDBZjBR316kbUKg9QDgX3X90EmkRhfwzJJRO8sZXCnpkFha2CsBRYJZPUwwPEfrCf9BNDxH54gOT9vZiF8nHKmM7PBZAcVepNYqaWxgxtxeH58H0zVkDxajjbQ+UFsoR3Uw2l0QwoEocqnLzUF+Oq7ir++J49xLIlTMvmR1sHeWLfBOmnh8oBJAA2OFSF9I97mP7mHma+vZfJ/3iV0lgGI5an0BNj6mu7SD85TPa5UZIP9uG9oLYcFgXltuLjjuNWVl8y79u56uX+GH9x7x4+sakZ+5UEz/30EN6gA4dL5eCL41jHFKTvG01z1/ZhPnZhC/ftGuORfRPEc0UURaLC98bBfGeCGnbh3VSDe2WU3LYJtIiL4jGhId7zawi9t53C3hmm/v1V9JEMM9/dR+rxQWSHQvFQksLecvF+btdUeR+dVT6vqECbvQaQNJnQe9tPOPhKEARBODPcqgyaTOC6FiRnuZZHrXTjv6IRS7SrnRRLsgne2IY8O4mIHHAQvLHtdR8zOZDirv+zg8e+sx9ZkfFHXXhDDlxiEKIgnNNMw+LAC+McOqaO88kfHSSbeOMaH+HEArKM5FHxXd4AsxP3aPU+vJtrFl0fC8JSogQc5f1UPlqXGsLdFcEqWrzy8ACl2TYyQRBe39Rgihd+cYRAhQsJiWe/e4DBviS7R5KL7qspMlV+J4cnM7w6lODl/hjTmSJuh8pvnN/MBzc2ntIAEigHVfuvbCS7bQL/lY0ogXLfoezTCFzbjFV44/ElwptzflsEt0Nh/1iSg+MppjJFbltfT8Ct8bcPHuD8tgr+4ld7yZigbarB0Tj7masSvovrQC6He5cGUkiKTPa5UXLbJyiNZLByxmwdwKRocxeWLL1YvrbQnE5sy8LO5ZDdbiSHhmSVz48NQ/QbC4IgCIIgCIKw0BmdEkySpD8DbgcuA9YAT0qS9GXbtn99JrfjbBiYyfCFKzv4zgv9DMzk2NAc5sL2KCOJPG2Vr1+EPZPRGU0UCLo1blxViyRBhd/JVPrtdTIlp/Lsf34MbEjH5ge5JcZzePynNy1bsm3yIylC7+vAmC4gO2Qkn4ZdFI1mS40+mcOYyiN5VTAsLN1C8WmYaR3ZVS40sfIGSsCJlSkhOWSQZaysjhp0otZ4kLWTD5fRp2afz6mUZ+F8nUEZc/vwUbbNzEyeyqgLc6ZA5rlRAtc2IzlkEvf2AuVgkvIf4L+qkdSD/fivaCTz5DBag68cOGKDszVI6tHB8iw0s7P76OM51Ao3gS3NGIkCjpYA3vVV2KqEZJVnYLSyJeyShWUc8z45ZLRqL8pp/l4J715mqoTklCmN56n43GqM6QKSJuNZW4kRL5DfPUVhOMP0cIbYWBZv8PULlseTBX60dZD6kJtPXtzCt5/vZzieZ9tAnE9d3Eq+ZKDIMqZpMRTPkdUNAoiip7NlOJ5j90iSZF7nvevqUWSJbz3XhypLfOT8JuI5nYBbHH+E08y0KY6kCb1/9txOk5ECDqxEkfREjuREnuREfu7uW+/ro319Ff6ImMlUeAdTJAr9KXwX1+M5rwrk8rmmUTCI3NGJGSsiBx20FeHn166koy2Mli5h5UyUiJO8ZfOzf93FnZ/s4hu7R3j+8AxrGoJkSybZkrguEoTjJSdzHHihHGI1PZRheqg8uLO6ycPPtg/xd7es5PKIHzNWRDqSpOBxILtVwu9fhpXScS4LodV6sPImSsBJ/mAMtbL6bL4kYVYyXyI+lKE4G4CQnMyTnMwzPZyhqSuMy6thW3Z59qBsCRsbyZawdLMcQOqQudxW+MHV3TybzKL4HSiSxN8+dIB/unEl/3JBGy5Jwh32ochvLjh0ro3CoaDVeJCcCsEbWnA0+Cjsi6FWe1DDrvJgaPu4xw5l8BwTzoAE/isbST7Qj6RKhN+3DEdLEGdrEBvQx7LYhoU2GxhwrNzOSSo+uZJifwozoxO+vQtkCStVRFJlzEwJNSTOq86mI5MZol4Ht29q5NvP9TORLvCta1eRnCgPHLctm+GDccaOJGloC6CVDKyihSRRDktyKGBZ2LKM4tWw0qW5/e5o25gxU0CfzCKpcnnfm53FM1M0mDymnXhza4SneqaIeh38yQWt1NsSRsBJ6EOdmM+PIVd5KK6MYKZzrGoJIbkccwEkc0wbI1lArXTjbA2g1ftQQ07koLPcjvbCKHbRLIf0NtYRvLkNfSKH4tOw8gaBq5sx00WUkAtHvU/MkH0apKbz7Hh4YO7fU4NppgbTLK9u518fP8zNK6oxLRv/ZfVIbhWcMpIB+lgGR5MfNerBmMxj6eYbzsAtCGeaMZUnt21iwbL8zmn8FzegNPqR/Q4C1zRh24BpkXl+FElTznjIvW1a6BM5jFgBxe9A9muYU/m58P2jMs+PErq9E/fGKmRFxpYljNEM3s01uHMlfnL9SiZdi89RUokChYPzBfHlPhM3skPGXhGde+3ZF8ewCgaSIoN5zAmJDcW+JO51VSg+B662EGlpcME5i+QQM2qeblv7Ytx5QTPOvMnwnhgA/bvnA77WX9tMdWv5MxiM5bhrxwjLavxcuqwCVZHJFw1aK7y0VCzsSy7N5DBjxXIgj21jmzayQ8G2wS4agIRW60V7nVnTzUwJfTyHXTJRK91olYvPQ410CWM8i61bqFUetAo33ovr0EezxH98EDXqQqvxoo9l8V5YS6k/hRJwknl6BGQJ27Sx8waulVFyOyfRar0oIRdmrFAu2O9PEbiuGTOjo1W6cbaH8K6tRI8XMBNFsKE0lAGbBedFgiAIwpkxlSlRnTfR6r2E7+jCSpdQIy4KY2lcAXFMPhmSbiP7NELvW4aVLqGEXejxPIppv+ZjBvbMYM4GlQ0fiANQKhjUtYdQ3kTtjSAI7yyp6TyvPj6EbdkL6jhjo1m8oaURSvhOU5gpYNng7AzhbPJjZnWUsIviUAp3RLynwtKlT+dxr6/C0RrENi3UqJvsvim0VRUc3jbJui1NVDUHzvZmCsKSVioYvPyrPvSCSd+r03PLK/PlWst1TeEF988WDQ5OZKgOOLh+VQ22DV6HwsGxFFtW1Jzy7TNiefSJHM62IGrUjWWahD6wDDNeRAk4KI5lUCUJq2ggO8/oUJ9zWsTr5HOXtbFleRVPH57mey8McPeOEdY1hvjytZ0MxbLYNjhlidFckcaLavFpDaBJYNroo1kCW5oxcyWQwHdZPXbBRPZrJO4+jHttBVbBxIyLiaeEpckolWsKVKcTu1DeT2WvB9nhQDLLtYpmSUdziHNlQRAEQRAEQRDmnemWiQpgs23beeAFSZIeBL4BnPMhJC5N5W8fPEBxNkV9+0CcbNHgmuVVb/jYsFfjV7tGuawjyg2raigaFpOpAg5FflvbZFn2ogESwGmfsaQ4nsayLDztYWa+ux87Xy5y1xp9BG96/Rk/hDOr2Jtg+r/24lwWBgkKe2cIvqeN+E970Ko8aFUesi+PE7iumcQvjyA7FdwroqSfGp5bR/DmNnzn186Hf5xAaTRD7tUptCoPiXuPzIXROJeFCH+gE/U1AhOsY2Y7DFW5ufyqBtQjcXyXN5B6sB8rq5N8oJ/AR7pQ6n2Yg2mK/Sk866owk0UK+2awdWtuFldJlef+tmdXbeUMJJeKEnRiJovk98xQ6E1S+ZnVOGrLRZ+FQ3Gmvr0X98oodtGk0BMvv08/Pjj/WjpmX4voGBZOBxlAwtNx3HG13kfwxhYKe2Mol7qRZLBep6DpKE2R8btUbt/UyP9+4ADG7HftucMzFHSTP7tpBQXDYiKZ56W++JKZhfHdxrJsjkylqQm4uG5FFVGfg4qsg68+VQ5dKgJff6aP85rCNEfFbJHC6Wbjbg0y85192LMzMZTP7VrRptOL7m0ZNrb1xscjQVjKJE3G0x0lcc8hzGR5FgvHsvJgmZm7D8DsZZVnUw1tDpncjw4SvLGV4uE4hf0xwh/s5ENfXEt/rkRnjZ8Xj8zw1ad6+cMbugi5Fbb3x5AliRV1AZwnKCyeyRQZiueQJQmHImHaNhGvk9rgaw8wEoSlrqibDMVy6KZFXjdRZZn2Sh9el4r5WuexNqytDXB50Efy3l6cHaHyYGrTJvXwAMZMueNcCTgI3tJG4u7DSJpcDnHgzQVSCKeHpsjlmXWPY+oWyVwJl1ejcDBGsTeJpEooETfFw3EwQWvwkXluBCutUwN8oNLFUys1crrJT+9YT8Mz4xSHhygCaa9G6IPLSAU08GrUBN0MxXIUDYu6kAvdtJhIFQm4VGqCboqDKaa/uWf+ur49iKM1SPFQAv+1TWh1fhL3HSG3bYLAdc2Ltl92qzhagjjaApR6Uzg7QuR3T4NhEbihjcQvDs8FP2j1Xrybaynsm8GYKhecFXtnBx1LEHpPO456P4768mxL+kSO6W/vwYyXi0SUsJOKT6xCq148cFQ4M1yawvvWN/B/HjzA0dPcTH7xLEGNnSFKOyexZtua8rumUXwa+kSO0mCq3J70wwPYpYVtY1ZWZ/qbe7Cy5XVqtR48F9WhVXmprnZzaUcFzxwuF1FOpgs0RTx8aXktNQ8OYc8OXNK7woRv76QwnsN8fIhLHAqeS+tx+BxITmVhOLQMit+JJEt41lcTv+fwXCCA5FYJbGkmeV8vyBJqyEXy0UECl9VTOBhDq/Ex/dDu8nokCH+wE8+6KiRJHHNPJdsqDzg/Xragc15dgK9UhCl9Zz8lAE0i/P5OYj8/NDfLq2tVFFdXmOB1reXiSUFYQmzjxKGMlmFhxPIk7+tFHy4H0sme8jEJWSL15BCeNRU4mwKv2x9xquT3zRD74YG5fjbPphqM6TxqxIlrRYTCvnLgRPDGVpJ3H/O7X+clcE0zse/vx9Yt6oHGrhCfPq+Bb+6c71uZ0Q205gDFveXACv+l9WSeHUUfyy547bkdkzia/IsDpQBbt4h8uANZVbANi+DN7SR/daS8zbJE4IZWEONYT6v2Si9f/tku/vbyrhPensqXGB2I4VBlmqMefvOKdnYPJ2mLeFjXEsGybZZVLmzbLY1lKPTEwbQxUyWM6Tyu5RGK8QL6YJrSULktTnIpVHx6Fc7GhQOTLN2kNJQm9fAApf5U+b5OhYr/bzXOxvkZXY14gdiPD1IamL2PW6Xy06uQvRpyQEOtcJPfFyN4UyuphwdQfA70sSyu7kh5BTIcPTGSHQp6wSS/e7p8HvFAH1iUz3llifAdnaj+cj+DPpkj9sP9mDOz57ohJ95NNaSfGnrdPkNBEATh1Iv6nMgBk8KeGTLPjJQXShC6pR1bnEOcFMmtUNwTW/T+Wa+TA2eUFtdsGUUTyxanboJwLrOsE/efW9bpreM8l8lIKBWuRb9jwVva5wsDBWEJctT7SP7yyII2oMiHl5MtlI8Hlqi1EYQ3ZFtg6It/Q1PZEg518cQOXqfKcDzPeQ1BuusCSMCj+8cJeU7cDlUyTIbjeWRZojHseVMTYZTGMuU+v0y5zy/yW2ugL83MXXvn2pr9VzWCW2Hy31/Fs64Kz9pK1LCYkOLtSud1xtMFciWTv3voILnZ/thXhhIk8zq/t6WTiNfBDR431k8OEbcARSL8gWUk7j481+fq6g5TzBnkXpkCwLOxGldnuPyZ2rYI/haWLL04G0LicGLlypOpSG43ksOBNNs3Z+ils7Z9giAIgiAIgiAsTae/Cu8Ytm3/7mwAydF/DwA3ncltOFsSeX0ugOSoA+PpuQaM1zOTKfIPH1zDuuYIn//+Dj76za1878UBKv1vr8gqWOmmcUVk4bIqN6Ga0ztgwS5aKAEX6adH5gbKQ3mGWGM8e1qfWzh5Vs4gfu8RbN3CUe+jsHcGR2uAwsFYedayzjDZl8dRoy6MqTxWqoR7TSXpo512s5K/7kWfzr3m8+iTOaa/sRtjLEt26/iCAQ/FQwlKw4sHLh917D588eX18FA/xqEkyfv78Gyoxn97J9InuvnpdBLzinpkj0qxJ46ZLOK+tA5jdrCOpEigSJQG0+XAFcBMFFFnZx9OPzmEe00FgeuaCX+oi6rPr50LIDEzOrF7DoNpo1V7KRyM41wWJr9reuFrOZygMJh6Mx+BIJwUI14gds8htBo36WePO66OZNDHc+BVyTkU3H4Hkdo3DqOoCbr44xu7MUxrLoDkqO0DCZ7qmeJDX3+Ru14Z5X3r69DeZiiW8OYlcyUe3DvGX923j+aIm+W1QSp9Tl44MrPovo8fmDwLWyi820gOuXxuV5j/7Suf2+XYtKoah3th9uGaqxrwRUTnqPDOVzySmAsgAfCeV0ny/r65ABKA3MvjOBr8mIkixcMJlKgbJeAg/eQQTkUirUDApbFjMM7nr2ino8rH/36ghzu+/iJ3fP1F/vbBAxwcX3geua0/xge/9gLv/bfn+a0f7uCVoSQj8QJ3bR/mmUNTlAxRkCi88wzHczx+YIKRRJ6nDk3zqe9s45Z/e47PfG8bPRNpQlVu6jpDCx4TqHJxMJfn767pojSYRlJl1IiL7I4J9PHcXAAJgJkqUexJ4GgLYusW6ScHy9eCwlnncagE673I6sLPo+b8Kg4nc5ipIolfHUGSJZSQi8L+GbQqL/pEFn08i5U+JuhhqsB6U6Z/OkNd0sCYHaAsORUkp0Ju2wTm3hl+/yevctf2IT77nZe5/p+e5sE943zsm1u59h+f5uZ/fY6dvTMkH+pfeF1/JIkkSZQGU8z85x4kFSo+uoKKz67GtarcZnA010bSZMIf7MRR4yX64W4qP7sa/9VNmPECjiY/xZ74goHC+kh5dnlHW5DczinkgIPAlmb8VzUS/fhKXF0LZ+PK7Z6aCyABMONFcrunTtVHIrwFLRVeJGlunC0AY5i4jisyO29jFbJpYyaKmIkihf0zKAEHpYEUrs4w+Z1TcwEkUG4b0ydz5bCdrI7s1VBCTvSxHNZMgZlv78GeyPHnN6/gko4KAHqnsvzRVcuo2TY1VwwHYByMUxxIkf7+fvShDKUjSRLf2VcOS7mhGY4eE2UI3dqBVlkONtMn8+gjmbn12HmD4pEEwVvbCVzdRObZETzdEXI7p3Ati5B9cWz+BduQ+MVhjJk8wqnlr3Cx/KLaBctcPo1R2+SzK+uQnxmdW+5eUUH6scG5ABKAwp4ZsCH2owMUe0WbpbC0qFEPas3CNky10oVW4aZwJDkXQALlfozSYJpiX5Lci2NM/+duimegHd6IFYjffXhB0H/u5XFcHSFy2yexdYvQh7oI3dFJ4VBi4e/+aJbSaGbBeCfrYIL31oXm/u1UZZqqfFgX1iAHHKDK2IY9N/gEyq+92JfEvaGK/L4ZHMeERxzlu6gOWS0PVZVUGdfyMIHrWvBf1Ujg6iayz46Q/HUf1kn0VQpvzUSqfM72ajJDqGHhfl3R5GN3MsfW/hhb++P8wc938a+PH2b/WIrWKh9f+MF2Pvvd7Xz9mX56ZtsFbMOiOJgmt3MKI1ZA8TvAsikciCG71LkAEgC7YJJ6dHDR51vsS1LqTc4FkADYRZPUYwML7lvsT80FkED5HCD15BDZnZPEf9RD4JomJE0m9eggvotqYfZ8XpLLfW4YNpJLBUWi0BPHvaoCu2SReX6UwNXlc93Ih5cTvn0+gAQgt3t6LoAEyv11ZrKIMZlb8PoEQRCE0y/g1rBzBplnj6kBsSF5fx+yaII+KXbemh/4DuX374E+FOu12yWbV0c5PsfzvC1NaA4RQSII57JAhZtlGxdOZucJOQifRI2PcGK6V8HO6It+x1L3950w3FcQlgp9JLuoDSjzwhjuiIOa9iChShFILwhvxOlRWbOlacEyWZYoRhz0n6CeXZElPn5RM7tHU9z5za18/L9eRpYVLp3tezvWWCLP//z1frb849Nc949P8y+PHWI6XVx0vxOxLZvsS+NzASQAsm6TfLh/QVtz+okhpKKFMZEj9WA/qccH5ybYFN6ag+MpPvmdl9nyD0/z7KGpReN3eqezuDSZ73xgLTwwMFf35V4RJf3k8II+18L+OGrF/LE4t20CR3MAJHCfV4kkrt2EJcoolWscnVIJ6dm/Q3GayB4PkuYAo9yPZYoQEkEQBEEQBEEQjqO+8V3ePkmSnrVt+5LZv79n2/ZHj7n5RWD9mdiOs8nvWvxWex0KvhMsP9Z0OkfvdA6/S+P/d9euuUL2nUNJ/vqBA/znnRuoCLy1AZxOt8blv9HJwa0T9O2cor4zzIqLa/GFTvOAUBnQTYzJxQ15RvzkGuKE00/Pl+Y+I9ssN56pYRfFI8kFy5RwOYSkvNBeONoCwIJ8ooijxrfoOcx0ieJgCitnoERcFF+dHzDjXluJVuXByhnkD8yUZzx2qriXh+dm/nW6Na68YxnFiRzKUJrs7FPbBZPMMyOotV7+X7XEj3eO8khrhD+8rY2obvFKPMejOwf5bGcQ14sFsi9PELy2hfTTwxT2zRC8qZX8/hl8l9SVC5iPJLAKBt4N1WjHFT/ruRJWrHDc++Qsz258nEIsz+J3QRDeHn0sizmaw9atEx9XYwWCv9HF/v0Jbv7ttfhPctD/jatrebpn8SC2kGd+ANXTPVOE3RqNYQ/VQfdbfxHCm7Z3NMWf3LOHT1zUwlC8wGAsx1AsS2uFl1eHkwvuu6xKHHmE088uWeivcW7nbPVTfUsj9qE0xeki3RfV0Lq2CvlNzAIhCEuR4ndQOmZALgCydOLZp4vlZcZ0HmbyuFZWkH1hFFu3GIxleXDPGN/6xCa298d4ZTDBT7YNHX0k33qun7ZKL1015ZmLRxN5Pv/9HUxlytdOQ7E8f/PAfr509TJqAi6eOzxN1OtgRV3wtL12QTjVbNvm1aEEhmkxkc7xvx84MHfb80dm+L8PHeT/fGA17osqaal1k+lNE2rxM12p8a0ne/jdzc3o8QLO9iBmsohW6UE/QcipPp5FawpQ6k2iT+SRjq/mF86K3qkMcSe0fKCVwp4EekYnuCrCg7EEG6cdrPO4wSqHgMoRF8ZkHq3Gi3pse8QxImmDv7h5JUZPGndHEO/5tRhTeYyZAlqDD0dO56bmCH9w125+9+plLJvM8PWnezkwnuZT6+rZUhGgKmlgjC3eh6yCAYoMhkX2hXGid3ajzQaYqpfU4+qMYGV1lLATtaJ8jaT4HCg+B7Zt49lQjTFTOOHgSSOWx7k8QvCmVnI7JjHGs/ivbMLZGkA6Lvjx2MGgr7dMOHO298cIuRcGjvzjC338/a3dKH1ZEsMZ/MtDmFhIqoykytglE0mVsWaD/JSIi+LA4hBJu2Si1niIfGQ5pZEMdt5ArXCXvxNOldyhOMuuaeFrH93ARKqA16kSNWF88gTBH4njiobs8kDffzFynH9FDRUWOIJOwmuiSGp5vzNOUIypj2dx1PvI7pjEfV4lasiJPpZF9i2e2csuWVh5Mbj9VFNVhU03tuCpcDGwY4pok598k5uvPLqfr13auaBYVQ27yO9a3MZjJorYRZP83mncXZFFtwvC2aL4NKK/0UX6+VGKPXGcHSH8F9ej+B0nbP/Ux7JoRwdl2ZDbPoGrLfS2t8MqGOVQOxnUqBv5mMJhK28sCIP2rKtCrXAjuRQC1zaTfXkccyqPmS2dMHzfjBdRPCpmav643OjQ+Mv3dHOB34M/b+Hxaei9KdRrGrGdKnpfctF6jMk8/ssbSKV1cjsmCN7USmF/DNuy8V/WgLMtuOj+qQf7Fy6bKWBcU8BRIwa2nQ5HJ5T40asj/PnlnTS3+sn2Z6jrDlOod9OTK5DXTb756GHyevn3smciw/956CC3rK3nh1sH+fbz/bRWeOmsCWDrFnbeQHGrGFN5lIADJeyiOJhCzemLnl8fzWIVzbn910gXybwwhjbbT+BcFsLZGkQJObGyOon7enG2BXG2BU98DjCcQdYUrHSJxL1H8F1QC4qEo8k/V1yf3T5B8Npm0k8Nk3lhlNDNbRR6EoBN4IYWci9PUDgUJ3B1E8624Emd6xrTeZSQCzMp+pEFQRDOpES2iJrVF1xfANi6hZVf3A4uLGZlFw/esUvWCfsRjqpuDXDL765j56ODlAoGa65qpKlbXLMJwrlOcyhc8N52Khr9HNo2QW17iBWX1BGIilqctypuGphZ+4S/Y3ZW/I4JS5cxvbht3xjPolhw9ce6cZ2gHV4QhMUaV0ZY9f42JnZMobpVvGvC/I8Xe/nSlmWL7mvbNs/0THPPK+XgKtOy+frTvbRXeFnbtHCyiIf2jfPdFwbm7vfPjx2is9rHTWvq3nCbbNOidFyItpXTwTj+xwrMzPy1RG7bBP7LGtBECNFbkino/Pkv97KtPw6Ax7l47I5Lk3llMMEFfg/hY67X1IiL/N7FEwMeHS9wlOwuhzFbydKCz04QlhKjWG5fDw/dj7L/W1Ss8iC7PUgOB9JsCIlRWtzPIAiCIAiCIAjCu9sZCSEBjq1cW3ncbe+KER8lw+S6lTU8tHd8btlnLmvDeVxh1fFmMgYTqQLJvL4o2+GVwQSD8fxbDiEB8EVcLFtfRWNXCKdXI3gGGqgkVcZI6zi7wuRenlhwmybS+5eMpAR2RwipJzE36KA0mMbZESS3fXJuJjN9NINnQzWloTS2biG51QXFt5JLIe2UOX4IZGkkw8wP9+M5r2p23SlcHSHyu6dxr6rAyumkHhsgeEMrM3cfmusQzDw7QuXnVmO6VfRYEYbTFB8fwru+iuPZDpmZXLkx76W+GLf1xfj0JS0MzuR4ZP8kLRe1cuPaCtg9Q+alMUIfWIbic6CGnPgurAVJwruhBqtgILuURYWQc+9TawCpL4WkHfs+hcjvWhhEkg863tJnIQgnozCewdV13IzDgKPeh6MpyKa2MKWCwdiRJHrRIFjlIVjx2sUKXqeK16lyRWclT86GkUgSfOaStgVBJI8dmOTTl7aKEJIzrH8mSzynU+FzsHskyQVtUb7y81388Y3dPH5gklShfByuDbi4unvx8VEQTjVDlXG9xrndjuk0f/1CL/9+y2p8yIRDDlzeM3UZIginj+JUca+qWDBzsJUzUCvdCwfFy5QHoisSjkY/2e0TuLqjODtCSA6VvG2zYzDBtoE4Bd3kuSOxRc/1VM80d17QAsBwPDcXQHJUKm8Qy+kE3BqHJ7PEsqJDUHhnSeZ1+qdz1IfdTGcWDyp7ZP8EY4kOYukioSoXa9ZVklJtvvSd7ZiWzWC2SFOdD9u0Mafz6IkC3nVVFPYv/D45O8Nkt5cH+LtXRFDDpzmEVTgplmWzoz/O6oAX59oIklPm318eYH1bhIBHIaGA4tdQIy4wrPJARVWmNJrBs7YS/bhAqPFKJz94cYD/uKAdpWSRerC/PIAYYPsEvsvqCfo1aoMuHIrMh7trGI/6cG9sYvneJMorIyi1XtT20KKAUdmjwuwsU5J74QxGsqbgqH/tAEBJkvBuqiH90hhOh0xuNtD0KFdHGHdnBLstiGdDNcgSymuEF7tXV1A8lDhuWeVrPrdweiVyJf7hkR42NIfZ3Bpha1/52PPBVbXUeZ0YqxxY3X7+/JGDfL25G1+63Fal1Xixdau8X1EecOvqCJHfs7CQTfZoSDMF4j8/hF2cD/MIf2AZWdvCUsrN6y7LpsEAWbGRvRqurgiFfQvXJXkW71MFWaIm5ObLjx2cW/ZkxxV43eV2LEdTYNFjnO0hcCmE378MOeBADbvwrK/GTBRAlee+JwBK0IEq2sROC0WTcVa76b65haIDDo6mKBoWY7ZJh0PGLpU/h9JgCmd7iOLhxILHH23zlU5QbCkIZ5tW7SV8S8eitnlnS2DhTPKAsy1IoSc+v+AtTGZsJApYeQPF70TxaRixPIlf9c6dT3rWVxG4tgU1VA6UUIIOlAoX5nQBz4YqjFiB3CuzQVKyRPCGFgpOGQkbZ3sIY2Z8wfNptV5yOxa2oVhhJ2umDLw/PYzvmmbS9/fNfY+RwXNbx6Ltdq+pQK3yELypldSjgyQf6Sd4QyvuFRWoQeei+0vKCbpkZanc3yOcFook0Vnto2ciw+FEjpqGIOvXVaH4VW7/9st86PzyjKxHA0iOGo7nifjmfz+fPTzF+9bV43OpKAEHVsHA2R5C0uTycb7Rj+Jf/HvrWV2B4i235xcHUqSeGoKSiezV0Bp8qGEX+liWwqE4pb5y+0Zu6zie82twL1882Nm1PEKxLwGU20DSTw0DEP3EShyNfsJ3dJK8r4/0MyPl70yNB63CjXdTDbZlI2sKvs3l4BL5NWYE9aypoHjsdxpwNPrJvDhG4LgZbAVBEITTazhRoCPsRNLkBbM+ywEHsk9c550MJewCVVowqFAJOpECrz14uJgzkBXYeGMzvrALn2jDFIR3DX/ERet5ldS2B9DcKqFKUYfzdsiyjBJSF/+O+bUThikLwlLhaPQvqv9zLo+gO8D/NmrFBeHdxnbI+Oo9KP5aSpbNfUcm8TgVAq7FvwGjiTyP7J9YtPyF3hnu2DzfHlUyTO7ZMbLofo/unzypEBJZU3CvrUQfnQ+uVoJOZJ+GlZmv85EcMrJ3fjslVQbRhvuWTaSKvNQ3XzsS9Wi8f309dx3zWX7q4lbu3TVKtjnCZ6s9WBPlgObibP9t4bj2yqN9bOV/gC1B8p7DOFoDKOJ6WVii9FK5Hssz/Ur5/5UlDE85hISjISS6CNERBEEQBEEQBGGhM1Vd+nolf2+hHPCdZyJVxLZtfm9LJ40RN7YN33uhn5tW11LzOo/zOGQ0RV40kyaUZ88KuN/6R2hZNodenuDx7x7AtmwkWeLKO7voOr8G+Q3CUd4Wh4JUyONZW4mZKJYHTagy/kvr0ZoXF7ULZ4fDpbK/O0hH3iD36hSBa5tJPzOC4nfg7AyRfXmC4HUtpJ8extYt3KsryG6fIHB1E5lnRjCTRZSgk/FLa/C61fJgsFwJM1FCH8+S3TqGOTsISHKr6KNZ3CuimJkAWq2X1CMDONtD5PfNzB0lvOfXIntVin0pSiMZVL+D9DPDYNjIPgeSQ8EuzRdqmufX8MTPdyx4XffuHONnn7uAj17YQixbolTtp3ZLC4oqzxUQH0/xvnbHo+pW6VkdprVkkt8zg//qJjLPjuBaEcXZFqTYm0TSZHIX1JBwKzS+zc9FEI6n1XiQgw4USUZbW4ERz1M8mABVKs8QGnGhORRyqRLP332Igy+WO0tcXo2bv7iWqtc57k6ni3idKv/zvSsJuB1MJAvctWOI37pyPg2+tcKD3yEGq5xplT4niiyRLhjUh91ziW7/8tgh/urWldi2zVA8z8XtUTqq/Gd1W4V3D8+6Ksx4sTywbfbcTok4mY6V+Ma1K3n2q/swDQskuODWNtZc2YAmBrsJ73DuVVH0yRy5l8dBAiORJ/ieNpL39WJM5ZG9GsEbW7Bsm8CWZsyZAu5VFUgBDd/FdUxOZdns8fIH13UxmSxwaCpDZ7WPHYPlzuuI18GmljA3rZq/aox6HWiKhG7OX0rLEvidKrIkEfVpuB2n8XpOEE4Dt0Mh5NFwaTIravzcsKqaCp+L3SMJdg4lWdcYRBkvkvzlEHHDpk+CdTe38uc3djGe0Xl+MkVbUwVW3kAfShO4pglJVfBuriG7bQJsG/faSpSAEytewNEWIHBN88LCEOGscSiwQXPx6nd7sAwbJPj9W9s4HLAZT5RQmhXCty0js20cVXHiaA1Q7E3iu6gOM2/gWhktBy3IEtq1TVS7Nb66phm5aGEli/MBJLPskslG2cOPVjQS8nlJ39tHQ84gcEMLqdmBl/pYFvfKKFZ2/rree0Ht/AB+WcK78fVa9E5MDbsIXdOMPpHFyhkU9s6AKhG4qhFHS/naTFIVFPXEAzKPcnVF8F5YS/alchGq9/xaXF3h132McPpYto1h2ewcSnJ1dyXvWVNLl89N/68Hee6JfQAEq9188aJmvntogi+2VlNpS0hOhcD1LRT7k/gurSf74li5bSxnUJrd70If7qLYl8DOmwsCSCSHglUy8a6rxsoYFHoTJB/oQx/KIDkVwh/qwtHow8qUKA2mkRwKvovqIOIsR4LPnkZImsxMtYueI5Nz664PufEec57uaPITuLaZ1OODYNi4VkTxXViL7HMsGuAuVXiIfrSb+M97sNI6SoWLyO1dKIETt7kJb11iMscj39zL5EAagFCth5rLq/mD67oIR71oHwhh3NeHlSphJIqEbm3H1k1KA2kkp4Lv4rpyu6sq4WoPnd0XIwivQVKkRW3zjpYg/muaSD8xBJaNa2UUyalgJmaD7CTwbKw+6eewLZvCgVj5uDUbKhm+vYtif3JBoF1uxyTOtiDqxhr06TyFgzECVzeTfnwQNeImt33+OIplk3lxDO2GVoyQE8dMAVdXmMLBOKgSvovqkDwqjkb/3DHafV0zaqWH6ocHwKlgpUvzASQAFtgTOeyLa5FeHC+/9lUVeDdUo7g1/Jc24F5dARYoIeeCUBEzXaLYn6TUl8TZGUZr8KEPz4e4+S6tL4e9CafFjsE4F7ZF+T/Xr6Dn3gF6n+ylFwhWufnLazs5XCydcLYOlyZjHTM7RXulD6cmI0kSzuZAuQ1iIodVMHCvqgBZwsrr+C6pI/PiOBgWruVhPJfUoU/lMGIFkvcewUwWCV7fSqEnju+ieuI/O0jg6qb58D1Zwn95A7ZpYaRL+K9qJP10uR/OuSyEEnTiag+TmZgPX1Ur3Wg1XmRNwbuuGld7CEu3UIPOBddc0uwprvwGfdvOZWF8F9aSmT3Xda+uxCwYBLY042gQbd2CIAhnks+pYCMRev8ykr/uLV/nRVzl64vjZn0WTsx2QOQDnSRm3z816iJ4S/trTteVmsnz+HcPMHKw3EcQqHBx4xfWEK177eBbQRDOHQP7Znjwa3swddGnfiqUSiZE3ITet4zk/X1Y6dLc79i7o2JZeKdSoi58l9WTeX603Ca/PIJnVZThnhSGlKFzY7UIlBWEk5CZyLPruz3kEuUB9ZevjHDlBa30TmUX3Tfo1FhW5WPvaGrB8rbKhefhmiKzpiHIq8PJBctX1p382AfPmkqM8Ry5nZPlNj3LIvz+ZSTuPYIZL6IEHARvbif5+MDcY3yXN4gJVt4Gn0ulyu9kMl3uR8jpFsm8zj/cvoZ00cTnUHhk3wRDsTw/TI7x2Y9tRn2gH2M8hzGVJ3xHF1bBmGvPD1zTSHF2ohTZoxK4ppn8wRm0eh++S+rRasSEvMLSZJRmJ0tJ9wPg9BtYbgeS0wGWBbaNKUJIBEEQBEEQBEE4zpnqoQhJknQbIM/+/b7Z5RIQPEPbcFbVBFwE3SrNUQ+P7Z/E41D4rSs7iL5Bqnpj1Ed3dQGHJnP9qmoe3FMePK7IEn9yY/fbGlicnMjx5PcPYs8WsdmWzZM/PEh1a4BI7enrwJaQyB+Mo1V68F1aj++yBiRFojCSRguI9NelIuRx4K31sedChaBuURX1kHxfKzO6jaszQHw6T0XYRfq2VuyCgS8SId4VIOd3kr+tlXSsgO1ViPpcNFsS8XsPo0ZcpB8bwndJHfpQuQEu88wIgasa0afyFAdT+K9oxMqV01QlVcLKlotX3KuiGFM5Sq+k8V1UT37bBP6rGudmjEk/PYz/qkbMRBEDOBJW6SsU0BQZw5ofpPFbV7bTUumjpfLU7ONRnxOrws3/i0h8oLOSQMhNsrIVtw2Otgbi50WwZIlpxWbTafxeCe9easRN5SdXYRYNUo8N4r+8Ad8lDUiyhJEvUTyUwNUSZHIgNRdAAlDI6rxwzxFu/M3VaK8xu3Z9yMXNa2t5dSjBUz3TXNQe5fNXdDA92xjvVGW+dE0nrVVi3z7TllX7+bv3r2E8lWdFXYBYpsSHNzVy0bIKHt03garIbOmuwqHKfPeFfs5rDLGmIXS2N1s4h6m6TXbbOP6rGvFdXj4G6TM5jPEcdX4HW39wsBxAAmDDi7/opaErTHXru+JSQDiHqSEX4Vva8V9SD4CRLGKMZQjc0AI2yA6F1NPD+C6oRfZo2CUTY7qAndJ5tTfFtgcH8QQcVN3cQHVTkIaoh+aolycOTPLxi1soGRZ7R1KMpYo8fmAC3TCRZZmvfmQDn/7utrnt+OiFLVT5nQzFc5zfGqWtQnRoC+8sTlVhVX2AyVQRn1vlptV1PLJvgq4aP5+7vJ12t5On/21POaACwIZXftXHlb+9hj/65UsAfNXr4ImrViBpMpIJZiqPHHYS/cRKMC0swwQTKj63Gq3Wh/Ia58DCmec3Zfb+on/B57vtl71s/swKUm6Jpw9N8+vdY3z0vAY2VHhxqjJqlQdDNykZFkVsfJfWYWoy2pEUqbsPY1/ViAkgLSzCdHWFMWNFSi+OE9zSTPLuQ3D0FKW4cPb51KODuLrCVH5hLbJHxSqaSJqMoyWAqyvylgdASqqMo95P5I4ujHgBSZFRI643VTCqBp2EbmrDd2F5Ri014hKhOmfBzsE4g7EchyczfOW6Lh7ZN0G6YBByaxQHs0z3p+fum5zI0zJt8PJwghdao5QSBdZV+4nWeXDXe9GcClUbq7Esm9SKMGMjafx+jbAiY8aLyNrCYBr/5Q2kHhnEzhs4l4VIj2Xn2trsook+lCb9xBCu7gj+qxqxDZvczkmUJh/xW1vxDmcxVYnhsIOMR+Gx2dndVFnif922ikr/fGiI4tHwX9GIe00ltmmhhl3IjhMH5UiyhLsrgvZb67DyOorfIWb7Ok36d03PBZAAJMZyrIgZ0Ozm7ldG2FPj4/0f7iRkgKRJyIqM//oW9KE0asRNaTCFo96PZ3UFZkYUkwnvHIpXI3BVE57zqrBNCyXgRB/NYCaL5ZCwzTU4m06+4NuYzDHz/f0w209mTOWJ/eQAnrVVi+5bOBjH1RVh5nv7MCZyoEp41lYiuRcfE81YAc9EFnumgL6xCqPajfuSOg4n8rg9CvWahuvGFsamc+iaxIquClKxPCRKIEvYxuJBvaXeBE+tC/GeL6zBoyqLjsdqaHERum1YpJ8cIvPcKACZ58cI3NiCd2MN+ngWZ3sIZ2tAnEecRtetrGEslSfRl2aqb34QQ3IyT/1okUCtQtTv4hMXtfDt5/vnbv/cZe3ctWMYgIawm2u6q3HMBtWpUTey34FRm8fSLVAkZBtQZGxs3OuqkDQZTItiT5z8q9M4WwOY8dki+52T5e9QyQAb7GMG3/kuriO3cxIzXiSwpZn87mn8l9Sj1nrJvTxB6qF+XN0RAtc2o0/kcDT5cXVGFoT8KwEnrx+p9/rUoJPgTW14L6wrD3CXJSR19pxZEoOsBEEQzqSWCh+5vdMYiQKRDy/HLppIDoX83mmcbaGzvXnvCNZMCTNZnH//nCq5nZO4V0ZPeP+Rg/G5ABKA1HSBfc+McskHl4nBxoJwjsvECjz+nf3lABIQfeqnQIvDgR0vYORLRD7chV0ykTSF3I7JcpijICxRxYMxtBY/FV2rypNLKpB6cpjwpfX87J9fparJT1gMcBeE12UaFvseH54LIAEY3hvjonWVhGsXt6P6PBq3b2zkqZ4p4jkdgOaohwvbIgvuJ0kSH97czP27x5nJltfdEvVw5fLF7cmvRQ27CL2vA/8VDSBLGNN5Er84TPDWDiRskCVKk1m8KysphdxoVR4c7UFxPfA2VAdc/PVtq/nc97djWjYj8TwuVSGZN3ipN0ZjxM013TVsao3w7KFpxpwSxrUNeIoW4YgbK63jvagO76ZyUJxtWsgulfAdnUhOlfzeaQLXtSKpMlrULT4rYckyigWcso5ciGO5apELY8hkkRzl/nzZtjFK+lneSkEQBEEQBEEQlpozNeLiKeCWY/6++Zjbnj5D23DW7B9NMpMpcumySr74451zy+/aMcy3P7mZizteP522NuTihd4Z7jy/ifesriOR12mOeFhe+/YaknPp0vxg0FmWYZNLlYjUvq1Vvz4FtCoPqQf6kb0akipjJov4r2lCUkSh41KybzTFn9+7l89d1sYvH+shmdf57as6+Luf7uA3Njey7dk4R6Yy/NGN3fz1z3eypbuadMHghd4ZrmyL8AdtNVQfypCcyqOPZsoFgyUTM15ErXBjTOexSybJB/tRIi4iH16Os8GPPpEFVabYm8R/RSP6cAatxkvq0cHy7IDD5QJ7K6OjhJ2Y8SJ23iD1YD9K2MXUTU186PvbCHs0vnxtJ68MxplMFfnwBU1c3ll5yt+nSzsqqPQ5mckW+fxPdlAyLD59SSv/+JMdc/fxOVXu+vyF1Abdp/z5BUGr8WIciqGFXcz85x6UkBNbt7CyOuEPdfHMTw7iPUER+kRfimLeeM0QEqdD4X/+fBfD8fKsho/sm+ATF7Xw6YtbcGkKTVEPTgXu3z3KxuYIVQGRtn6mBD0ad+0Y5tBkBq9TZWVdgEu7KvnCD3bMFY3/4pURvv6xDYwm8nzjmT7+/SPrWVUvilOE00PSJIyZItPf3IMSdJZn7DUsInd2k87kyacXd06k40WqW8/CxgrCKSapMlqVBwA9lif1+BCSKiMpEmayhBJ0IHs1cq9MUjwYx9YttHovTU0BtgG5VIkGSeYzP93FX9y8giOTKf7+9rX86S/20D+TA+CR/RN8cEMDF7ZH6Z1OU+FzcM8XLqRnPEPArRFwq2CXByZ1VPkJe8VgX+GdZTJV4NXhJC5VJpmX+P2f75q77a7tIzx052aKs2GVc2wYGUvz9Y+t56tP9vLFS9ogbZHdOo6ZK+FZX0PinsNggxJ2YWV1tBovwZvbRADJElPKG5Tyiz/fobE03+mfoKPSx5MHp0jlDT56QROSBOmCwZ/9ci9uTeEr13URKlpc1xAi+eRQ+fEWWEUDJeBAcqvYs+t3NPpJPTpYfgrTmgsgAcoDNSUWzoCoKWi13rkACGf9qZt5XXYoOKrfetvesb8/wpm3fzTFvrEUf/bLPfzhDd387jFtvslsiZvzzkWPyQ9l+V+3riRrmNTU+hlLlyhp4NRkeqcyKLJEyKPxuz9+ha9dtZzqCYv0/lG851WVQ3JkyvusKmOXzAX7dfrxoQXPZRVMZJ+Dwr4YhX0xACS3iifsxBF2MBjWKBoWrRU+Knwa3/nkZhL5Ei1RH101i/dzSZbQKk6+TUsNOSG0+D0QTp3RQ4lFy+K9KbYaWR7aN8FD+yb4ycvD/OtvrMOnqbTbEsVDCczpAqn7+1ECDmzLxsroVHxm1Zl/AYLwNhx/TFLaQ7jaQ29pXcZMfi6A5ChzuoAaXdzO6WgJoE/kygEkAIZNbvskgQr3onMIV2eYYk+C0kAKR7xI/oIqni0WGU4V+ae7DvHhzU1cuixKJOpkRU2AwUSe3/vpq/zbiiq0lydRo4vXaW2qYffoDP3JIr99VQeh1wiEOpY+ky/PmnuM1P39VHx2Nb4LTmdHoACwbzTJ7pEk97wywn8LRBbdPnU4SefaFv74l7v58rVdNEW6AQnDtFhZH6Au5EKVZbpr/ayoW9iuKzsUHDUnDgc34gXyB2YoHkyg1fso9SVx1HmRvRpWVkcfzZIc6yOwpRk54MDKlFCjLoyZArJTmQsrsU0LYypP+slhAtc2UzySAKCwP0bhYAzPxmq8m2peM5zs7RDnuoIgCEuH7FTIPjNK+tFBlIATM1VCdiq4u08coiEsJLsUErNtUbLfgZksogSdeM47cd3KZH9q0bLhg3FKRQOn+/UnuRIE4Z0tn9VP2KeeTYnw2LfKyBnIPo3MzwfJWPb8cdjnwLPu5AeLC8KZpoRdxL97oFxbrcmYiSLei+owLBtDt8indcI1Z3srBWFpy2V1xo8kFy0fG0pTWV/JaDzP7tEk6bxOR7WflXUBdMPk3z68jqF4HlWWqQm60E170Tq66wLc/YWL6BlPI8sSy2sC1IffXF24rCnIs/3EZqoINsS+u2/udsmlEPnIcjIvjlHsTVC1XvxuvV1XdFXyq9++mP6ZLGsaAnzvhSH+8lfz73lNwMV7z6vjQ5ua+MDXXqA16uXWdfV8895dPP/hzSR+tBfZq4FtY6V1tHofdtbAxsZ7QS12WsfRHhIBJMKSppeKhB3l8QC6fxXOwhiKMYN8NITEsjF1cf0hCIIgCIIgCMJCZ2TUhW3bnzwTz7NUjSQKpIoGj+wYWbBcN20ePzDJxR2vn6w+niry1/cfIFWYH5AhS/DdT22m0v/WC7BcPg3NpaAX5md61ZwKnsDpLRC38waSKuO9sJbctgmsgoFnYzVKUBSmLyUTqTz/8GgPAG6HwniqwPWrarh3Z7lgtTrg4tBkhvVNYZ7pmcK2YUVdgH969BCSBL+zrBb/Q0MoVzeR2zaB5JDnplPL7Z4meEMLqYcGsEvl/U9aFuLR0Tj+XAEFm6pbW/E8PUqxL4n/pta5YlsjUcC9soLi4QTZHZMEb2ght20CfSyLEnURu6yOu49M8T9uXckrQwk0ReKPbuimJuhCPU0hN7IssaIuwK93jTGdKXHbunruOu77nika7BxK0FVz8rMwCsKbITsUJFXGvbqC/N5pJE3Bf3kDsktl9HCKjvWLj7FNqyK4fK9drHR4MjsXQHLUD18a5KY1NfzRPbsBuKA1wuVdlbzcH+cPb1iOUz31BcfCYkcmMzx3ZIbPX97OPz16iK99dAM/eXlowayVhmXz0J5xFFniquVVvNQ3I0JIhNNGUmXcaypAhlJfCjngIHBxPbYNqlPFH3WRninM318CzSnC54RzU2BLM9kXxjCm82i1XrwX1GIVTAp7ZgBwr6rAmMkTqC5fywUqXFTKKg0hN994po+/uHkFrw4n5wJIjrrnlRFW1wepD7kYTRQoGTZ3bG46469PEE6H/pksk+kiq2oDfO+lgQW3Xd9ZRXIkiyfoIJec7+yWZYlJ0yRiwicubmFTxIs+PI17VQX5/TO419cQvK6V9HMjmLECjpYA7pVRMcv7kiThCTjIpRZ+vjlV4tWhJDetrqW1wsvlnRUcnsrSO5WhdyoLwM1r6zgwnOB3cipShR97thAst3MS7wU1SE6V4A2tFHtiGNN5lPD8gOLjg3BzO6cIXN9C5pkRrIyOqztC8LrmuQASQThWMl/i/t3jbGiO8PiBybnlkgTvb6rEGzcWPaZtXSXru6uBcjuRbiZJ5nV+979eJlsyaa/0sqIuwB9f0EbdQ0NoN7WRnymAImFLELypjcL+GLZhwTGDfc3EfNjvUblt4/h/YznpB/uwJ/JIlS7GLqhmcCzJ+9Y30FW7sH3qojcIyRaWnuZVUfpenV6wrKo5wA01Tu6SRzEsm8l0kUNTGVbX+DFSRWRVRqpw4VoeoXAwhuxWCd7Yilp34kHsgvBuIPsXBzhKbhW12oNa6caYKh9btUY/ruWRuX8fK7dzCset7RiPDmJldJwdIRxNAVKPlM9rS31JIm1B2gIKSsTNl65eRv9Mjs//4BX+9cPrSIV0tvXF2Tee4uH2Cq5bV0F22zjBm9sp7JvBLBjMdIf4130jPHBoCoArl1e9Yd8iAKa9MGBtlm2cYKFwysVzJf7jySNc1hqlqsZP37apBbfXrYrwnZf6+V+3reb3fvoqd17QzD880rPgPhU+B7/6nUtO+jltyybz4iiSIlM4GEOrLx/jc69M4r+ikeTD/XD081cloh/tJnl/H54N1RgzhXIH9Kxjz5dzr0wSuK6FzLOz58qdEfyXNpyWABJBEARh6RiJ5Yhg47+qkexL4xiTOdQqD97za050iiGcgC1R/g19YRRzpoBW58Wzofo137+6zjB7nl4YIlf7/2fvrqPkOu/D/78vDNPOzO4sM4qZLDMzJbEd5jTQcAPtr5S2KX3TJmkKSRpO49hJbCeOGWVbtmwx4zLz7DBc+v0x65VWkm3ZFtrP6xydo70zc+fO7N0Lz/OBxgCx0TSRWjHPKwhvZS6v7bhz6m6fKED0Rtk8Khbgv3L23K17RRmWOJMJZzHJJuO7qIrki0OYGQ3XwhLUkBNNt7C7VFziuCAIr2kkk6N6Xoi9zx11bV3jY1PvFE/uH+H7z3QBheGw+z+zlh8/382zh2bPu/zJhQ2cd5xx2Nqwh9rwm2skeyTvxVWkNw6jDadRi1141pRj5Qxkn42i69tQg2Ie781SFZm5FQHmVgTY1hPl5xu6Zz0+HM/isCk8smeYmpCbzvEUfZNpgm47nYZG47taiD/cjRHPY6/x4ZpfTOyRLnyXVGNmdKK/3k/kU4uxV5+8piaCcLLp+Tx+W6EIuWZvwsHjSLlRJHsQANmy0EUREkEQBEEQBEEQjnJaMi8kSaqSJOn8I37+kiRJfz39r+l0bMOZZFoWzREvmnns5IVumMd5xWyxjDarAElhnTCezL2p7dJyBiuvq8fhKdSicbhVVlxfj2kYr/HKN8fKm6hBB/mhJJ41FfguqESP5VCDogjJ2cQ0wZhO3nk5qV2VJXRz9jJF5phlDcVewoOp6RVZhWSJvInstoEigW6SeLIX73nlFL2zmZ7ravjL8QlGNYOP/nwTW/piXP+HHTy+KMCmNh9fPjhAptKDEnZiJjQUrw0l5ATdJPZgF7YaH4FPzOdHdXbe8cBOfrahh2/8cS/zKvzcsqSKqpD7lBUgmfWdWebM92Qc5+/9eMsE4WRRgg4kl4oezeK7qBrPijIkt4olW2STeQYOTTH/okrk6SDicKWXldfVo75KQp1lHWc/tixMEz5+QQM2RWLXQIxij4NfbOih96hkaeHU0aePz4pSOC5blnXcawrNsFBlCUWWZl4jCKeCGnYhu1Vkh4Lv0mpcc0Lkh5LIDpneiRQrbmrAHSgk9tgcCiuur+fgxhEM/dRedwrC6WYrdZPriWOv8eG7pBo14gLLwspq+C6txn9FLWZOR3HbMdMaJTVeFl5azZZ7O7h9Xjm6aSJLEsfri2FaFkggSRKmdfzztCCcqyzLAstCko69bzq/rIjND3az9Mpa3P7D55LVdzTzvzv6yOsGnaMpjJSG7LZh5nT8l9YgyxZGPIdrTgjfpdXIDgXJpmAvO3nBQMLJ0bdvgqVX1c4ETdqcCmve0ciWiULnV8uCa+aXEU1r3LWxF7sqk52+hijxOVgR8iIdnEKP5/EsKxR4MKZypDaNYGV0lKAd72U1hD8yH2drELWsUAQq1zGFe/r5APpYIZGm9HNLKP3yMkLvbsNWIrqvC8dnWoXjlSLNHgNaWh0ktmOSdCJP/eLDQYnVc0M0LjvcpWxj1wS/29LH77YOkMofcU1sQQ0yVt4k35/AvayMqfs6MFOFrp3eiyrxXlfHLps5M7Kf2TWOZ3U5HFFkyTk3zC86R/mvMoX1l5Txv9V23vvwHjZ2TZ66L0U4rWrmhWlccrhzdvXcEJZlMfbSGGvqQjPLLQtsioyZ0rGVucnum8TM6fgursa9ogxbpRdVdNMW3sZspW58F1cfXiBB8NYmHJU+Sj6+gOKPzafkEwso/uBcbGEXcsSF7J9duCRX7OBvDwyQu6GBog/NBYuZAiQAqBIYFkVpA4dN4fvPdPD77YUi5j9/vptnD46R0Qrngn96vpNPD43xyFwfd8cT6LfU8zcejXes2z9TgARgOJblRCghJ46WotnLAnZskdfXmVN4g6zCePr5ZUXERzM0HHHcrmwpIljrI6ebpPMGWd0gf5zx3fFknsnUiQf9Gok8qZeGsTQTya5gTGaxlXsw0zrJ9QP4LqzCf00dJZ9ahHdNBY5qP+EPzsO9OIL/+nqcc0JI04VFcp0x3NNdVvWxDMnn+gm9u7Vwrfweca0sCILwdpDI6UgOFTOtYavw4LukGltF4byC87T0vDrnyU4VfSqLoy5QmDMIubBMC1zHn6OvaCqiZVUZL08SlDcFcLht7Hth+DRutSAIZ4KWM1h0WTWeotlz6oYoIvmG5XMGkkudSRb2XVKNWuLCyulI4jwmnMVkn70QW72yDN+F1RjJHGrIycRImhXX1aFrrx1zLghvd6m0TqjcQ6S2UBBCkqB1dRm6YaLIEqOxw8WmTQsGpjIkc8fGsMWz2infVsmtYmV11Ejhnste48OI51GKnBR/aB4OUdTi5JMKORLH8/L8L8DewTiNJV6e6ptiMqcRvL0F/5W1yB4bsYe7UEMubBVejJE0mKCNivhp4eym53J4bYX5hrxUAYCsRZHshXuQQhGSU3/cEwRBEARBEATh3HK6RtP/H/CrI37+E+CHgBv4BvDe07QdZ0R1yMX6Q2PctryKLT3RmeWyBJe2RV7llQVBt42wx87EEUFmqixR5n9zlW0NzWTLIz20rS5HtSsYmsHWR3uoPCog8WST7QpaPI/vwiqMsSzI4LugEtkjgp3PJuVFLj5zaRP//PB+dNMi6LbxzIExPnpBPd954hBTGY3qkIutvVN85apWXuiYoGs8xaKqQKEzu9uGC8jsmcCzqpzUC4MkNwwWOhB3xTDTGlqxi22qxYce3M1V80q5Z2s/mmGhGSY53eQfn27nS1e08MShcT42v4rgwhICk1nSu8bxXFwFNgUTOITBvdv7+PWW/pnt102Luzb2cduy6lf8jCfbnHI/fqfKE/tGeM+qWv7r6faZxxyqzKLqotO2LcLbj+y0Ya/3Yyt1o49lUPx25CIHhgnZpEbf3klSFR6u/+wi7C4Vf7ETl/fYTp9Hqgm5KfE6GDui6NUtSyoZimV4aNcQn7yokT0DcZ7YN4xhWhgiGfq0aSjx0BTxktUMPntJI//9dDu3Lq1iffvEzHMkCa6eX8aGzgme2DvMf7x76RncYuGtTpIk5CJ7oWvqeKbQMbjYjakZbBmME5Y0GhaX4HDbsEyLvesH8YYcWCI2QniLsQVd+C+rQetLYMTzOFtDqOVu9JEM2kh6ultwEFMzMI1CV8OX/tCJaVgossyH1tTx/XXtLKkNUeZ3MBw/fA6+dkE5XodC72SaYq+dhhLRsV5466gJeSjxJYhndW5cVMmLnYeT5CVAyxps/GMnravLsbtUTMOkT9fwuVTGk3l8LhVNApsi4WgsIncwijaawrW0FHMyi5nRca8sE11nzlLZtM62R3tpW1OOzTn9+90/yZRToznipWciTdhrR5Ygr5usOzDG+1YX7rkHohnqIj4kh4KV1DBNE9+l1eTap1ACDmxVXlzNoVnvF37PHFIbh8geiOKcG6b4o/MxcwZq2Ikt4kFSJEQ/d+G1BFwqV80v5ZsP7uMfb1kwU9xDlSXQLfY9P0RFSxErrqsDwO62ESguJHyPJbIcGE4wHM+RPKLwdMdYijtW1pCfHgJObxsj+I5mfJcU9ml9PIOjMcATuSzf3tjDd65tonJ/DFIaw5rG1A21mLEcdZV+iuqLyK3v5M4dg9x5xHavqp/99yCcu3whJ5VtRYQqCsW1Rrri7Hyqn5J6H7bpYsxFbhtNEQ+SIiO7VYykhu+KWozxDJZlYS/3YK8S15TC25vsUPFdXIVzTggzmUcJOrGVFgorKH4Hin928Xzdo9J+UTm1QxlcIxmitV4e13M8sWmcW4JBRjIm9Ud1U/auKiezZxz7+RXohoVNkcnqhQGRnGGSyus0RrwzReD3Dif42+EE/3zrAnxeB9GcQfao5JKq4IkVEVGcKkU3NpHeOkJm1zj2+gDeNRWoRaJz5ulQEXDyobV1YFnse2GI8qbD1wZjvQn2DcW5cm4Zo4kc71hahV2RkaTDBf9fXkeJ98SbOEg2GcVnJ7NzDO+achLP9E8nL/jRBpMgS7jmFWMrPrwPKU71cCK5y0bxxxeQfK4fbTiNa1kE97JSrKyOEnJhi7iRlOOVThUEQRDeiuyKhJY2sNcFUINOjHgeR1MQpchONqsjypq9tpxm4mwNYURzmMk8znlhZK+NrGYe9/tzB+y4fDZWXFsHwHh/kq2P9tB2Xvlp3W5BEE4/y7R46f5OWleVzZpTfzl5Wnj9ZAtG+hOUNgfQo3nMRGHuVvbbkEScgnAWsyQL7wWV6CNpLN3Ce34llk3CkGDzw92UNQbO9CYKwlmvyGXj+ecGCJV7qJkXBqB3zwSaR2Hu0jD/+PD+Wc/fP5TguoVlbO09nOMhSbC8NnjKt1WSZGzVPpSAEyOWw14fQA06kABFFJE/JYq9dm5dWsldm/pmlgXdNjTDZGlNEffvGARgcXUR69vHWF4b5N/2D/E1WyWBiBsUCUdDACXoJNcdR+tNACA5RJSBcHbTcjl8ag5LdWJkZYychJw7XIREsSyM/IkXRRcEQRAEQRAE4e3hdBUhabUs64Ejfk5blvVvAJIkPXeatuGMmVMe4KXOSXYNxPh/71zI77cN4LKrvGNpJYuqX3tAWFUk/uaGefzN/buJpjXcdoW/vG4OJb4TDzo7nqJSN+6AnR1PHh5EqZoTIlByakMF1LCTbGesMEAWcmBZhQ61jjr/KX1f4fV757IqIj4H923r529vnMfm7iiTqTz/8o4FPLB9iM9f2syh0SSHRpJ8+/bF/GHbALctr2I0kWPc66LGpaKPplGLHPivqgXTQgnYCdzUyLreSf70rm188qJGAEq8jpmEDUWWcKgyOd3k4d1DfP2aNgyPwsaHe1EkiZIyDyN/7MZZZGdvnZ3f7hzk9pXHFhspCzixH9EF9lRrivi48+OruGtTH1lN559uWcDvtw9QE3Lz3lU1zKsQE0DCqSPbFWRFJhfPoUYKHZT04TT9GX2mA4KWMygqdeMLnViQeSqn8Q83z+OZg+PsH05w2ZwIRS6VWEZnYCqDZpjcvKSCz921nRsWllMbEl3lT5eI38n337eU+7cPsqCyiN2DcZ45MMa/37aI+7YNYFMk3rWsGpetULTs329fzIJKcQwSTjGXDWMgjVLiAsNCG0qSL3OjYeGp9bLn/w7NSqK44LZmVLuYfBPeeuylHmwlbsy8gWxXkGQJ8haO1iDkTSzNxMoaDI1n2PFE4V6s6aIKshVe7KpMbzTDSGKIf7ttMY/vHWFnf4zzm8IsrAqgmyYtpX6ymo5L/P0IbyHlRS7WNhbTMZ7CZZf51rsKYydOm0JrUxBqo4z3JNi1rlB4MlTrw3tZGR+/oIEv/GY737ltMe5SD9n2GIpbxTkvhGRTIG/gXlYKloXsEF3tzlYlrUXsfKKPnU8fLiy64PZG2nIZPnR+PRu7JnGoMpu64rxjWRU/e6Gb/cNxvnB5M+sPjeGdW0rm/HKspwfwXVgJioR7WSlqmRtHxbEB2raIm8C1DfguP+I4LQiv07zKIvKGyb/fthhVlvi3dy3kvm0D+Bw2GpeWM3RwisHpf0hw8xeXzLw2ky8kk2/rneKD59WxrW9q5rFfvdjD/9yyEKkhgdUZJ/F0H+7lpTiXR0hJFlsyeb72xEHyhsk7H9zFn13azNrGCr77TAdZ3eDjFzTibwyi2FTesbSKTd2TM4Wd3rm0kjWN4dP8TQmnUnGlj/vu2jrrPqvx/ArSe3p517IqrltQRrHXQVPER86SyR2KYmR0bMUuLN1A8djE+VEQKHSnd9Se2PyUx2GjA4O/6hrkjqVVWDK82JHkQ2traWoO8+h3dyBfWEHbzcWYoxlkr61QlF2CuN9Gz+AUeeNwptM7llbxq5d6eNeyKv782jaePTjOVDrPB9bUcemcCF6Hjb+5cS6f/L8t9E1mUGWJL1/ZwryKE59PsxW78F9Ri/fCKmSbIgpInEZBj53qIjcRpw2lwc9Q+xRD7VMAhCo9HCqV2Hwozucub2ZL7yQVASd/dmUr33vqEFnNpNhr57t3LCHyOppSKG4bgWvrmfjFXnI9CfxX1mKmdRxNAXyXVJ1QARpHtQ/7ba2YulkoUCIIgiC8bblsMlGHib8jgeq1oZS4sHI62aE0k1VuTn063rmvxzKoHcqgTH9/ZlojP2kwXOU67vcnSRLVc0I88L0ds5a3rio7PRssCMIZ4y92Ub+wmN3PDMws8wQdhMpFAdk3SnPL7HlhHN/8YuxupXAczuroQym8K8RxVTh7aU4V6dAUSsiJJEvok1lSqsyzdx+ivKmIoukCuoIgvLLKiIc5l1bxwq8OAmMAyIrE/BvqSSsS0lFDpBnNoLnUx1euauXJfaM4bDKXtUUIul+9yd/JYCt2keuJgSwV7rnyBtpIGs+y0lP+3m9XlgUeh8LnL29m/aFxGoo9LK8L4nGojE43i1pWG2RuhZ+miJcfPtvJcDzLlpE4D3xkNY6ADX0kjT6axozmyPfEUcvc2CvFdZtwdtPzOcJ2DclXjpXNoudUHKlRJH/hWCebFrqmneGtFARBEARBEAThbHO6IoeOjmi67Ij/vy0in/1OG0/sHeXeLQO8Y1kliazGWDKHeQJV1XO6QYnPzt/eMJe0ZuB32ij1O4j4Dn+tfZMphmJZnDaFhmIPXudrV7/1BBxc/qG5HNw0zODBKWrmh2lZWYrDfWor58p2Fc/iCPn+BEYshxJwYG8sQraLQLazTbHXwa1Lq7hpUQWKInPT4koMw0RRZN65rBpZKgRBvLzspkUVSEcsMxvD5PsTYFjYKr3YKwoDbAPRDF/67U5yuoksS7hsChs6J7hhUQUNDgcRXebOGxbx/HiM77/Uw8dsKhFDpuqOVrp3TTDaPkVwXhB/a4A/u3srAD6njZDHzmSqUIFVlSU+c0kTDtvrT84cjWdpH00iyxK1ITeaYRJw2wmcQFXp+ZVF/ENl0cx3ctuKahSR0CScJvYaP5Iqkx9OIdtklKYAmb2TROp8lNYHaFtddsIFSADsqsJ3nzyAx6GypCbAnRt7uHFhJUF34Xgdz2g8tGuIr13dyvWLKkQy9GnWFPHxxStaWLd/lIVVRXzrsQM8vGeYdy6tRMLCrsqc1xTh/OYI0tEzZ4JwCrjKvAxndexjGTAsoiE7n3pgN81lXran0ix7XwuxHZNoWZ05a8txBexkEnlcvlM/YSsIp9p4MkfvRAqAiiIXZQHXrEQde7UPSZEK52iPjUylh6FNI5TW+WlcVkKwwc//bOvhpa4o37x5PoZlcc+WPrrG03zx8iaG4xkUWeLQaApFlrEsODiSZNlp6LoiCKdLU6mPplIfum4AEjcuLOdQfxwrrrP65gYG9kUZOBCltC2IVePmW893sGswzuLqAGUBJ66AE9v5lWj9SYxkHjXswl7pZSCZZTiWw6ZKNBR78LvEeedsYlkWil3hqk/MZ98LQ2g5g9JlJRwizwVNxXzwpxtpjnj5u5vmc0lbhEd2D/GZS5p4vn2cwViGf7hlAU0lXqaqs0hVfqzJLPaAA3uVl3EJouNJkhkNu02mMeLDO51sL8mSSKgU3rQlNSGW1MDPX+hm38AUn11aixcZRYJLPjSHgy8OodoUFl1WTVn94aKQqZxOXdhNRjPonUjx4bV1/G5zPy2lXj5zSTPuIgeuGxsxB1PIaQ0l4uaQZPL5e3dy/eJK3ru6hs3dUS5uLeHqxRU0lHj5fk0RULiPf1ldsYcfvH853eMpVEWivtiDW4y/vqVE6v3c+PnF7Hi6Hy2j03peOSnF4hNLa/j9wREOjCRx2BSaIj4cFV4MyyI7WDhPKmUe3BUiGFIQ3ohrF5QTS2t875kOwh4737hxHqsawrjtClf96QIOrh9i475Jli4vw5zKkpkTZFM2x7d+v4N/ecdCVtWHyGgGNyysoMht49alVbjtKl0TKfK6SdBtp77YPRPgPq8iwL2fOo++yQw+p0pdsQeb8vqKr0uSuPY5E8ZTeTKawQ+39vPPN7UxvC9K/75JKlqD2Jt8ZOJpnuuNsrMvyruX15DM60wmc/zswyswTYv6Yi/lRa+/cYSzOUjJpxahDaWQnSr2RV7U0Otbj6TKKKexyL8gCIJwdvI4bByIZtHKXBRNaZiTKfA5SJY46c3laTzTG3gOGMvrbMlmWC1bBAwYkeGgZNCoHb/pVDat4XAqXPXx+ex5bgBZkVh4SRVlDaKpkyC81al2hRXX1xOq8NC5fYzSOj9ta8rxhU88xkeYbUzTKVldynBMoyhl4UxoELATr/WeUAygIJwpI4qFVuxAGU0TcdrR3Da2PD/E0qtraVlRivMUx3cLwluBqsiEm/xc/IE2DrwwhNNrp+m8Mh4cnCDktfOj9y/jr+/fw3Asx7uWV3HHyhraRxOE3DaWTDeXDXvt2E7D8JikyrgXlKD1J9Gnsih+B/ZWL7IYzz1lDNOipdTPNx/cy4LKABnN4Ml9I9QVe2kt9fHvty2ibzKD0yZR5HbwqYsbaCj2EPQ48IZcKLIbq9xHfiCB7LbhWliMvcqHGhTXbcLZTc/n8dk08Fdg9qUxNBskR5GKp4uQWBaGlj/DWykIgiAIgiAIwtnmdI1QJCRJarEs6yCAZVmTAJIktQHJ07QNZ1Q0necdy6pQZMhqJpVFbnYPxLh9RfVrvnZgMoMkSciyRE3QzUg8S380Q3NpoZvr1p4oP3m+i3UHRvE6VP7kokauXVBO6Wt0xkpGsxx4aZjO7WMUlbrZ/8IQgRIXwVLPSfnMr0bx2HC1hk75+wgnh3JEQOvL/z+ysMbLy+SjlikRN7aIG10zmBxMEdsygttnxyqykdUNoJCo8WdXtfD8oXHeWVvCiz/dT1fOoAuoai7i8Q+u5rH/3c1jU4VBjbpFxSy6vZH337WVd4UkbIqEZlh8f10Hn7iwAcOyCLpsLK8LsaDycILHiZhM5uiLpvnK73bSN5nhq1e38s0H97JrIM7CKj9/f9N8FlWfWKLn8b4nQTjVJFnCXuXDXlU4P+x7YYhdT/YTqvLSu3sCRZHwBh24/ccPajpmfZLEgqoiSnwO4hmN966sZVP3BA0lhfXPKffTWOKludRLiU8MoJ8JkiThcarcvamXz17aTCqnA+C0KaiyJI5Bwmk3IJmsjyWQJXhgwxDXLa4gr5u4bAq2rEEmkUe1yTz1y/0svqyGfHaYJVfW4g+//oQKQThb7B2M8e3HD/FS1wReh8pHz69nTUOIuZVFM885+hw9cXCSfFrH7lLZ/FAPiipx+3uaGU3kWdMYxkjpNOgKWr1BTpfYN5zk/17s546V1Wi6xb3b+llY9fqudQXhbGaaFpODSaZGMjg9KuEqL5YFoy+N4nTYeOaxHrxFDoLlHhxBO4dyeVY2hLl8bilhr52wtzAhrvodqHMPX+tu65nk2fYJ7nyph3Re55p55fzJRQ00Rnxn6qMKRxlsn2LPgz30H4xSWufH6bURCjuR4ga7B2J846Z51IU81Bd7CHsd1IbcRNN5Pnp+HUUu+8w4RHHQDcFC57dkVuM3Owb510cOIEkSl8+JYFNknDaFz13WRNFp6FglvL00RTy0ZmXU0RybnxkgGc0hyxItq0tZcV39Mde66bzB7sEY/3TrAr77xCEkCf7fuxayuTvKF+7ehl2VuX1FDdv7orzUOclNiyv582vauOfTa0nldcqmx3yPLLx7ZPGRIwVcNhZVF52yzy6cWZZpMdaXJBMv3Gc983/7WXZNHWPbx/j8jQ0cGoxToRQC0jtGE/zX+nae3D+KU1X4wHl1rDB1Vta/LWrEC8JJVep38vnLm7l9ZaEA+csNAyaTORSr0EUzFdP47Q934/DYuOCDbXT3pfiHmxdQ6nXy9zfOo28qw57BOC/umeDJfaPkdJMSr4NPXtzA3z+wj09c1DDrPUt8TjH+eg4Ke+1s7p7g79c0seOhHqZGUoQqvPTtmWDNvBAD0TSfuriBh3YN86P13UR8Dt67upYf3b+Hf7xl4RsqQAKFxAVHjR9HjUhWFgRBEN6cyUweRYbcpMb993VQXOMlNpqhZl6IshWRM7155wQTOJjMElckklmNIredrd2TfL7u2LiTbFrjpd93YHOo9O2fxOZQMTSTZ359gOs+vYiw6KotCG95w50xdj01HeOzdxJJfn0xPsJsRXYVoyvB5heGKCp1Ex1OsejyGtxl4v5aOHvtHYxxaCTB/TsGeceiSpIjOfY+WNiH9784jNNrx1/iQn0DjfkE4e1GSRhsur+TYKmHVDTLrkd6uPSaGvakM1zcVsp9VUVkNYOI34llWaxvHyOeydMU8aKZJlNpDV0/gU6zJ2Nb3TaUFtGE6HQpDThRJPjTS5oYS+Zx2xVyusGPnuvie+9ewhVzSxmcyvDw7mGeOzTEwqoA//V0O+m8yftW1/ChtfWU+Z04agM4akXslnDu0HI5PGoOfGWY6QyG4YTkCJL9cBESPS+KkAiCIAiCIAiCMNvpKkLyN8ADkiR9E9g6vWwZ8BfA50/TNpxRa5vCfOwXWxiKZVHlQhDizz68EscrBIgfqa7Ey0d/vomPn99IRjN4YMcg1y+qJOCyE03leGzPECvrQ1w1rxRJkuiZSLGrf4rSuWWvut7x/iQ7nuwDIDGRBWD9bw5RUuMjLLogCidBd3+c+GgakjrP/fogWIXlcy+q4C8ub+Ubj+5nMpXn7x/Yx59e0ED7k/1ouUJxEqfHRs3cIAeeHyI9dXhAo3vHODXzw3xkbT337xjgA2vq+PH6LjKawXefPMSHz6vlkxc24p2uAp3J63SOp0jlDGrD7lnFeVI5nY1dkzy+d5iV9SF+9WIvjREvB0eSfPC8Or7/TAcj8Rw+h8rlc8p4fO8oW3qmOK8xjN9lw+9U8TpFZXnh7DTel+D53x0il9ZJ7Z0EYPsTfVTPDVEz98QCFNrKfPz8hW7ufKkHh6qQ0Qy+dEULv9/Wz9evaQNgLJHlvKbiU/Y5hOPTDZP20SRjiSxuu8zHLmjg6/fuwibLWFisrg9xcUsxWU3HaRNV8YXTp28yjSRJtJb5qC/28rm7tqHIEn91YTNb/9iJqVszz93+eC/Lrqmlb98kzStKsTvEviqce3K6wRP7RljbFOamxeUgSWzoKBQjmUhpBNw2qkOHO1gDDPTFGe9M0LFlbNa6RjaP82fXtmAkdR75wW7G+xIA2J0Kt350DsVeB0/vH+WZg+NUFDmpnk62F4RzXWw8w1hPgsd/vAfTLJwnGpeU0HZeOR6vg80PdYMFyWiOZDTHwMEozusqufOlXlx2mX9712IGoxmCbjshT+E6N5XXOTCUYO9QHJsMX7uqFZddYTKd55Hdw3z6Ei+SJIq1nWnpeI7hzjj9B6IAjHTFAcjnDNpuqKE7lubAcBJFkmiZLsTrddpm3YdnNZ3OsTTJnE5NyMXAVIbeyTQbu6J8+Px6TMuiJeLFpkj86yMHuGZBGSvqRFFc4eRqcjhYt6GLcKWXZDQHFIor7X9hmFCVj+4iidFEjqU1QRZWBagv9vBCxwQP7x7m4xc0UB/20D6WIOSx855VNVQVuQh67LSUejkwkuDRPcNct7CcS9siFCMSDoTDosNpXri3fWbMFWDroz0svKSa7q2jjLfHePzRfi78+FwOaTmunl/GmsYwsYzG/TuGsKsydcWemQIKgiCcOEmSKA8cLhCxoWOcLQfHWanbObRpdGa5PpWj44VhGud4GZjKMJnK01rm47zGMJphTRdXq8dpU/jRc508e3CML1zWhGTBY3uGaSzxiAJ657Cg28HnVjcQPxhnYPqaNzVVGKvf9lA3511ewWMHRllVH+ayORGK3DYmEho3LKrkG3/cwy8/ugq/6M4tCIIgnEGdoymqFRvP3tNONqnRu7twHts1OsB180RBwxNR4nUQS2vctakP5/R8+19fP5ei45zjR7riHNw4wrwLKhnvm93Pa+/6Qc6/rVmMaQrCW9j4QJL1vz1ELnU4xmfnU/3UzA1RO1+MCb4RxbrMgw90YVmHY2Nfuq+D62oWneEtE4TjsyyLlzonsCky71peTZWh8Oz9B7FMa2YffvG+Dsrq/ZQ1iKR3QXg1uazO9if6SE3lSR0Rf948kac8YmdX/xQLqopmvabIbef/Xuzhfavq0A348fpOvvUucc54K3LbVZbVBXl49zC/fLEbzbAwTItLWkuoCblRFZlYRuOfH9nPt29biNdho77Yw8BUBsuC+7b2c+38MmqLRa6NcG7Rc1k8ShZ85ZjpJIbpguQokr0wRiGbFromipAIgiAIgiAIgjDbacn0syzrEUmSbgW+CnxuevFu4FbLsnafjm0409rKA/zqY6vY3jtF3jBZUBmgrfzEOlCVeO382ZVt3L9jkHhG4+r5ZSysLAwi90UzLKsLks6ZbOudQpYkltQEcdlfu7hJOn7sTWIurZNNaq/vwwnCcXR1TbH+Z/toXFjC7ucGZgXD731mkMUfauUja+t45uA4rWVebl1QwVNP7gDAX+xi3gUVTA4lGetJHrPuyf4kn7ijhesWlqObJlfOLaUvmqHM72B+ZWCmAEk0lec/n27nJ893IUsS71tVw1Xzywg4bXRPpIhndf783l189tIm/vze3SypKeLgSCHZ0+9UGYkXEkc+dXEj33+mg2RO58tXtvKtxw6wrXeKz13WjCJJ5A2TeZV+FlcVzepCKwhnUjqRJ5fWj1meiuVOeB2KLPHB8+q4dkEZyZxBbchNPKtx5dwy1h0Y5Zr55aKL+Bny5P5RfvViN3esrGVLT5Ryv5OffmgFfZNpnDaFqqCL7X1R+qIZrltYcaY3V3gbCbptqLLMvqE4LrvCzz+ykv7JNHNtDtYfUYAEComZbr+dxESO0e44Va0iIVg494zGczQUe4imNda3T1BR5GJtUxgZ+P32AdY0hnl45yC3raylvthD574JhvZOYhz19wAw0ZdgjcfJ0L7oTAESgHzWoHf9MM65HjrGUlw1r5S2cj/3bevn4xc2iGJTwjlttCfO/g1DdO+amClAAtCxbYyqOSFUu4xlHnX+0C0Wl/r5q+vn4HPa+PmGLuyqwg0LK1jTGMKy4OBIgv3DCaqDbvxOG33RDD0TKdrK/CyqDjCZyhP2iqDdMy0RzWIep3vUZH+SWsPib+/fS1YzuLQtgtOmcF5jmJIjEuWn0nl+8GwnO/qmuKwtQiKT51uPHeAdy6pI5jQ6RpMUe+381R/2cNXcUj52QQOP7h5mIJphRV2IyuAb6ywvCEdLR3O0rirjwEvDxzzW1zHFD1NRmkt9JHI6umkxv9LPFy9v4ZE9wzhUmQd3DbG4uojvPLGfL1zezPb+KfomMty4pIJ3Lq3CtJh1jBSEl6VjuVljrgB63kSSJaZG0vhCTmJjGTqeHSJ4YSn37x2mvMhJQ7GX25ZXMZHMM5bIiSIkgvAmdY4l+cjPNvM3l7aQ7D927HWsN8F5KyP8/eZubltRxbt/+CL//b6lfPL/tpCbvhbyOlT+5dYFHBpLkshqbO2bYjSR5a/v38O3b1vEmkZRBPpcFZBl4sax17zjfUnq7CoLqwNgWeR1i01dURyqzJrGMD9/oZt4VhNFSARBEIQzSlUk7Lp13BiidEwkpZyIWDbPB9bUctPiCnK6ic+p4lAVxpI5asKemeelpnLExzL4wq7jzucPtk+haya2E4gFEwTh3JSJ58iljo3xOV58p3Bicok81tFjZ5pJTsTGCmepdE6nLuwhntPZNxSnIRg4Zp7U0E3S8ROP/ROEt6tcSmOi/9jY8/hYhkh5kNFUjnUHRgm67cwp92NXZRqLPdywqJJfb+rFocp84sJGyv1i/uStqr7Yy6VtJcwt99MzkQYsKovcRPyFeOjheJbv3r6YzrEU0XSMumIPQbedx/YOc1lbKX/YPsgtSyqpPuK+ThDOdlI+hiqZ4K/AzOzAVD2QH0CWC/chNllFz4v7D0EQBEEQBEEQZjtt2UrTxUY+cLre72wzEsuwvW+KB3YNAeC0KZT4HMdNejHzBlbWQPbYkBSJJ/eP8Q8P7mN1Q4jasJsfP9fF4FSGr13dhkuVMAyLgNvG3Ao/ed3E51Q4kd4X3qADWZZmBbH7wk7cgVdOKLcsix39MR7fM0zeMLlqXhmLqouwKfLr/k6Es59pWhwcSdA+lqTE6yCjGeR0g2Kvg5FYjqDbhm5aJHI6ZX4no4ksXoeK266S3BslPpJBVmW0rHHMukfH0/xx5xAfWF3LR86vx6nKNC2PsOfZQdrWlPHiHzrxBOzULihmcig1+8URBz/f0M1lbaXUhb3Uhb2sOs727+yf4sfruwD46tWt3LdtAN202NobpSbkoXeysF4LyGgGB4YT3LCogq29UyiyhCxB2ONgcCpDPKtz1bwyHt87wva+Kb56VSuGaeGVJfyyxGQyz5P7Rij2OkjldTTDIuy1MxLL4XYozCn3UyoGpIXXYGZ0LMNE8b7xwh6dY0nWHRjj2qoQvrBzphMCgCxL+IInth+apsX92/opK3KzqTtK53iK8xrCrGkMMxXM01ruw6HI5HSTZE7D6xDB0KeaYVr0R9Nk8gb/3327+Pub5vPonmHayvw8On38ubilhH9+eB+jyTxfv7IVe9YgFs8S8DsxTIvtvVM8vm8YSZK4Yk4pi6qLUGTRMUs4eWRJoi+apncyzfK6EIPRNPfvHKJiWQ0OtzqrOJLNqWBzqri8JrHRDFWtJ/4+lmlhpPLIdgXZIQowCKferv4YT+wbIZHVuGJuKUtrgjhsCpmczrbeGE67QqnfiWlZ9E1mmFvuZ0tPlItaSlhaG+K5Q2NMTmVo/30X1a1FeI6456puKaKkzI2z2MXfP7KXW+zHFqucHEgSq1ZpK/dxYCTBH3cW7iuX1gZZ21Ry2r4HQTgRpmZgZQxkt4qkvvJYga4bbH2sh6KIZ9Y168ucPhtOj4rNoaDlDt9TOtwqg9kcAa+Nx/aOYJMV1jYWs2cghiJJTKRylPgcuO0qqiwxMJVBNy1K/U4SOZ0Hdg5RF/bwxN4pnto/SkOJh4tbS2gSHeZPO10zcXiOvY+onR/mpYEp/vu9S1EV+PZj7Xz+ru20lfn4h5vns7yuULhsz2AMpypzw6IKtvRM0h/N8CcXNdHsc1DpshMzLYZiWT57SRPlAQd5w6Iy6CKvm9y1sYePXNBAUBRVFN6kyWSucG2qmVQ0FR3TqdhX5+VzZWG+/cQh7t8xyIb2Cb56TSs7+2MsqAyQzOnctLiC59vH+ffbFjGezGGacFFrCUUuG6OqjCxJ/ONDe6kOuWgtO7Gi1mcbM2dg5nUUjx1J3IOeNDanimKTMbTDye1uvx2HW6G8sYgDG4dpXVpCKOKmxGlnfqUfv9NGNJUn7LUT8jhEgRtBmKYn8kiqhPIGCj70TKTJaAbPdI/zp82V7Ht+aNbjNfNCpKZy3LS4nIGpDF++spWJZJ6/vG4OI4kc9un5tZ9v6GFj9yR3rKjGaTOIpjRuX1HN+vZxmiM+in2iiN65SLbLeEPHjsnXzg+Tly28dpVUXqeiyIHHruCwKWzsmuQvrm3DfRYmGVu6iZnWkZwK8lm4fYIgCMLr8/JxXXYrSOqxx3WbIuN0qAQiLmKjmZnlkgS+kLg2ORF+h0rOKFwzFisyDpuK0ynhOqq5zcRgCptDIVLnw1987LVDw5ISUYBEEN7iXD4bKy6vJpPQOLhznHxGR5IlvEFxvH2jPEUOVLuMnj88duby2fAFHeiJHLJNQXaKWAPhLGJZWEDIYyfiC+MxlWPnST0qLt/pmduyTAszqYkxAOGsMTMu5VKQX6NZpMOlUD03xN71g7OWF1d7MXImPp+N9R3jfPfJQ3z/fcu4Yk4pd27s5Z6tA6xtKiavm/zDg3uRr59LXYn3VH4s4RRqH02w7sAYnWMpLp0TYUVdkICrcAzdMxjjmQNjrG8fpzbs5rI5pfzTw/v46lVtXDXPhd9pYyCaZmltkL7JNIoiUR10kckXE03n2dQ1yfyqgChCIpxTbLnJwn985ZjpDZhFhTgp2SzEOKiKjKGJgn2CIAiCIAiCIMwmRtFPky29Ub5w9/aZ6upP7Bvhf967jKvnl816Xq43TuzRbvThNK4FxXjPr2TPQAzDtHi+fWLmeTv6YiSyGnZVxu+y8zf37+HQaOEG0GNX+O/3LXvNbUon8qy6qYGtj/aQS+v4wk4WXVaNabxy4PH2vilu/8GL5Ke7dv14fRe/+tgq0YXtLWpD5wQf+ulGrpxbRjKn8+yhMf76+rl88e4dLKouoszv5L5tA3z96jb+8ve7ifgcrG0qpms8ya35QkfhZDRLUambqZE0AKpdpn5xCcEqH6VdDgamMqRiOSbGs9QvKiE+mcPQLSzTIhnNYXcoVM8J0bdvEkmWqF4d4cGhKL/ZPchzB8f5zh2L8TmPHxjcO1l4zzUNYZ47NM7+4QTXLChn31CCurAHYzrI/uUg34lUHkWWWNsU5vG9I7xnVS3Pt48TyxQGVBZU+tneF+VTK2u4ubIIOa5jPtcPaYPUghBT9T7+a10Hz7WP85fXzeFzd20jO50EsLSmiP9891IqRKflty09msXM6Ch++zFFRizNIHtoitij3VgZHe8FlbgXR1Be56ThQDTDR362ie6JNOe9ZwWLLqtmx5N9JCayONwqS66sJZs+tnPK8fRG04R9Tv76D3sYjheSQjd0THB7tBq7KvHLF3tZXR/iS1e0MJ7IiyIkp9hoPMvPXujmR8918cmLG6gIuJhI5Wgo8fLPj+yfed4ftg/y+cuaKdZhZX8We/so2Z1TOC6tJinBb1/s5u6dg1gW/O+zndz9idUsm07iFIQ3a2Aqw3eePMSWnikA7tk6wHULytF0k+9s6OKb72zmpd93kI7ncfvtLLmyhv0bhph7fjm6dmxH2FeiR7MkXxoivXkEJegkcEUNjuYgkiSSGYVTY/dAjNt+sIGMVgju+cnz3fzswyu4uDVCPKdTFnDyX+vamUoXrhmrQy6+ceM81jaG2T+c4L/XdQDwhfMacA2mqJ0bZrQ7wYKLK2mq86HumUDvmMKhSlxeFuQ4Tc6oXx7hB7t76Z/KzFq+fyhBbdhNVVBMagtnh1xfgsRTPeR7kzhbg/guqsJWevz9U8sajHYnyKV1KluDDByIAiArEi2rSnH6bEz2J1l5Qz1bH+0hk9BwB+wsu6qWTMDOe3+1BX36nu7xfSP8v3cu5At3b58Zr3j/6lpaFpfz5L5RNvcU1m1XZP7upnk8vHuYbz50+Brqx+u7uPsTq2d1HxVOA9Oie8cYCy+tYs+zgxi6SWmdn6YVpXz8Vy8R8Tn4u5vmsXswxvtX1xL02Hipc4Kwx059iZfRRI7qkJsv/3YHa2qCfHVlHRVTOsYjnQRtEtGlJfzh0BhjWY0PnVfPX/1h98y43K1LKukeTxGsEUVIhDenfSRJ2LLo3j1BaZ2f2vlhenZPIMkSravLKG8q4p0/20gyp9NS6uWClmKiqTx3beplPFnoIlTmd/LNW+bxQsfkTDFdgKqgi6vnl/HLDT18/Zo2NnZPntVFSMy0hj6VQ3YoqOHC+JdlWeS748Qe7UIfy+JeGsG7phw1JMbHToZULMuqGwvj+9mkhqfIwZIra3B5VUKlbuY1+Mms68Pck8bpUemdivPDLX2c3xTm4xc24LGrZLUTGycShLcqPZYjvXmE5IuDKD47/qvqcDYVIZ1g4X19IsM81cb7F1eyYWAKPW8w57xyDrw4jGlaVLUG8fgduLx2Qm74y9/vJjGdOPLFy5t5Yu8IA9EM18wvw2GTuaC5mNFEjrs29c28x+qGEDcsqhBFSM5BY/Es45k8w+2x2de89X5q5ocZMAw+f/f2med/8YoWfv1SL+9fU4tuWphHt+w+jYxUHiOWR3aqqNNFVLTRNIln+8num8RW5SVwZS32SlHMURAE4Vxk5gy04STJ5wfJtU9hbyjCf1k19vLDyXVd4yk+9+vt/N9NC1lwcRU7n+ojPp7F7lJZemUNuYy4lzgRkiTzwq5BbnW5cWwZA7sMF1Rg1h4ek9LzBqZuICsStfPDdG4bo3VVGQc3jWCZFrXzw5Q3BM7gpxAE4c3SJ7OYWR3F70DxHhtbY2Q0bH1JqjunAGi+uobdnXHC9X6y4nj7huUyOqtuaGDrY4U5Jk+Rg6vf04K6c5zRHWMoYSeBK+twNARErIFwVtBME7sq0zOR5jtPHuJX1y44Zp506ZW1aNlTf1zQxjMknx8gs3MctdRN4Ko6HLVn7/yE8NZl5g30ySyWZpJ6cZDs/ij2ah/+K2qxV75ycZB0XMPtt1PRXMTgoSlkRWLOeeUAyF4VmwqWVfj313/YzaKqAFt7p0jnDR7fOzKznl0DsVP+GYVTo2cixft+/BLDsRwAd27s5e9umscH1tSRymn8ZlMfP9/QA8ALHRM8vneEf7h5PjKwoWOcz9y5lX+6ZSF/8sstM/Fic8v9/MX0nG3HWArjVfJtBOFsZNOiIAH+CsxMGrO4MNYg6XEAVFlB1/JncAsFQRAEQRAEQTgbnVgUnfCmaIbJH3cOcWSsmGXBfVv7Zz0vP5Ji/Ee7yXfEMFMaqReHiD3QwZUtx3a2Pr+pGKaTbfYOxWcKkACk8gY/Wd9FOvfqg80Op8r2J3ppW1POsmtqqZ4TYvsTvdhdr1yb5sGdQzMJPVDYhJ+90C06Jr4FRdN5/vb+PWiGRWuZj2cOjrG6vlCcI503WNMQ5r5tAzSWeNg/nGAyleeqeWX87IVunm+foKSlCIBDm0eYf2El4Uov4UoPq25sYKwnwa5fHeIrVeVcVhnk+V8f5I//sYMHvrcDybKI1B0OWtz2eC8Aq25sYPGHWvlhdJLf7C5Up35y/yhd46lX/AzVITcAi6oDvNRVKOJjmIX999mDY1y3sAKAFzsnuGlx4f8/Xt+FXVH43KVNvGdlNd+8eT7XLijnh1fN4RbLzmPXLeQDHVl8gxn0ew5hjmQwE3lcLwxT3JuiMujiwuYS/rhjcKYACcDW3im290dPxq9GOMdYhkV65xij39vG6H9sY/R/dpDrjs96Tr4vycQv9qKPpDHieWIPdpHZNf6632vfcJzuiULxnTFNZ8vD3VTPCbHsmlra1pSz48leHO4Tqz+m6SbRtDZTgORl92ztZ1V9GIAXuwrdxm3K4cn4oakM6w6M8sTeYXomXvnvU3h91h0Y47/XdZA3TPomM9y0qJywx8Efd8yu1p/TTUqcKud1p1F3TGCmNLT2KSZ+vhfboSm+OCXx6B3LAdBNi98ddS0iCG9G11hypgDJyx7aPcTapmI6xpP0j6doWFLCsmtqaVwaYfND3bj9drIpHUWV0V7j2hXAMkwSz/STXNePmdTQ+hKM/3wvmb0T6NOThoJwsj13aHxmQvll//V0O9m8gcuusL1vaqYACUDfZIa9g3EunVPK95/pmFn+fH+UygVhTMOkb98kzc1F8Hgv+UNTmCmNzNZRlu6JofgUVtzcgM2hIEnQuqqMxpWlM8UWXuZQZSxg3YHxmeJ6gnAmWKZFri9Otj3KxC/2kN0XxUxppLeOMnn3AYzU8btkON02mpZF6N8fpXpOiPLGAJ4iOxfc3kxpXYA/fns7WtZg80PdNC0rZdk1tTQsLuHQtlEOTaaP+Zv49cZeVjccLq72yxd7mMroMwVIAPKGyVgix/eeap/12qFYlj1Ds6/RhVNPtSuk43l690yy+PJqll9bh6fIQXy6MMNoIsd4Ms+fXdXK0wdG2dUfxwSe2DfKpu5J5pR6uXdrPz+4dh7/ESmmflIj/2gPRiyHOZ4l8FgfX55bycWtEf710f2zxuXu3TbAZEoETwhvjmVZdEwkyUtQUuNjx5N9GLrJ8mvrWHZ1LSW1PnZPJEjmdOZX+rmkNcIftg/y9P6xmQIkAMPxLNG0zq839s5af380g8+hktNN7tnaj89x5uuJ6xMZUpuHiT3aTebAJMZ04V5tKMXYj3Yx+h/bGPmPbaS2jGBqBvpwmrEf7yLfncBMaSSfGyD+VB+WfuJFCIVX5nDa2PJINy0rC+fJuoXF7HthkMmhNJ68QeI3B9BH0piJPOkne/lowE/E52B9+wSxtMZkKkdeF9eRwtuXZVmkNw8Tf7wHM6GhDaaY+Nke8gPJ136tZpLaOsLIf2wj/6PdfHrI4CdXzSOT0hnrTbDkqlqWX1uHrEiMDySJ53R+vbmPm5dUAlAfcrPC7uAnrVX8dkUjl4Z9nN9UzLLaIE/tH531Xi92TtI1lqL7VeZChLNTbzTDxr4pDMOcfc0bcJCK53lo1wgNxYcLIf7o2U5uXFzBfz/djt+pohuvsvKTyEhpZPZOEHukm9S2EXI9ccZ+sLNwXv/eNtI7xjCSeSZ/d5D05hHMlEbuQJTxn+xBn8y89hsIgiAIZw1tJEVm3wTJDQNEf3uIzM5xzLROdvc4E7/YixE/PM+yeyDGWDLHcE5j66M9VLYEWXZNHXPXlrPz6X4U+6t3HhcK+qMZ3hv0oz7VjxHLYYxlMO7twDte+K7H+xM89qM9PP7TfWRSGvHxDN27JogOp1h2deGa0tBN1Nfo9C4IwtnJMkzS20YZmY4XGvvBDnK9x85F5DpiJP7QgTGZxZjMYj7dx7LFxexaN4DjVeI4hddgl9nyaDfNywtjZwsvqkTeM0H6+cFCrEFPgvGf7j4mhksQzhRJKjT7kSWJsUSOvCyx5eHZ86SbH+rCeZxiRieTmTeIPdRJasMQZkoj3xlj/Me7yI+IsSnh9NImMkzetZ/E031M3XeI9JZRzJRGdv8k4z/djR7NvuJrXV4bXTvHsDkVll9bx5IraxjqiCErMgfj6Vl5EKOJHJpucVlb5Jj1LKsNnpLPJpx6ewbjMwVIXvatxw4wFMvQPZ6eVQgcYDyZJ5rK819Pt/Orl3q5ZUkVP3m+c1a82N6hQnx2xOugrdyHmGETzjUOfbqwkq8cK5XGsh1VhESSMfIijkYQBEEQBEEQhNlEEZLTQJUlFI6tli7Ls5dpA0ms/OyIsuz+KIu8Lu5YUY1NkZAkuGxOhKW1ReRME8uS6Y8eG+DVMZYknj1+os/hDZCobAmy48k+tjzcw74Xhlh8WQ22VwkWSOWPjXhL5fQz2o1LODVSOX2mwMfLA67lRU56pgsczCwLuGYKDRiWhWFa5HSTzek0bRdVgAkv3NtO/YoIy29s4PnftTM1kiaT0Nj9aC/luszgvsNJYb17JuncNkbL2rKZZf37J5ECNv700T3sOioxLKsZJDIavRMpptKFgQ/TtDg0kkCVZd6/uoau8TQtpYXCJook4bTJpPIGL3ZO8JWrWpElaC3z8b8fWMZ371jM5y5r4sLWEuZWBFgR9HCx08m8p4dwRXOkHysEJBvJPEePIDp3jrOi1EdFkXOmEMSRjh7QFN4etKEkk3cdwEwXkuuNiSyTvz2AfkQQV3a6m8mRki8MYr7Ojib6EZMjummx8NJq9j4/yJaHe9jxZB+184uR1RPr3lEVdGM/TsdPSWJWwudURkOZPp91jSf54E838qGfbuJjv9jCLf/9AnsHRTX4N8uyLO45oljIgzuHaKsI4H+FYJNmhx06Zn/vVs4ASULrSRDaMc43r2gFCsd6QThZjlcE4eVLxHhGp89m0n9gki0P97BrXT+yIhGu9LLh3g7G+5KMdL12cI8Rz5PaOHzUQgttMEWuPYqpnabsDOFtJXuc/SqVNzAsi4qAk+7jFN3qmkhN3ycdXrapN0pkVQnjQ0mWX1eHWzcxjyrOoPUlWOl0EloS5o6/Wsm7/2YVF7+vlfIKH//0jgVUh1wAlHgdfPnKVtI5nZ+s72IiKa4zhTPDsixynTFSLw6R70tiJo7apwdTr5iUJskS886voG5hMS/+oQOHx8Yl72tjqDPGzqf6MA2L2GiGUIWXXev62fJwD/s3DBFcFWHfeOJ4azwmyCOaPnZyPKMZ5I6T/K6LLjWnndNrY/HlNSQms2x5pIfND3WTz+jIMHOta1Mk1h8apy7swedU+e+nO2gfTdA5lkRWZJqKPazISxDLkz0wecx7hIczlPmdxI9zb3W847sgvB6SJOGyKcSjOSpbinAH7PTvj7L5oW4ObhzG1E3ccmGc9ap5Zfzg2U6aI166jnPtkM7raMaxx6aXryV6xtPUhT3HPH466VM5xn+5l+jvDpF4uo+Jn+4hvXUUI5Ejen872mDhc1k5g+hvD6INpdBG03BUkYv01hFRQPAkKa72UdUaYudT/dPj+4PMWVPB/g1D2KZyx4xdmltGeff8Qqe/eFanbyKNQySyCW9jZkIjuWFo9kJreq5ON8kPp8h1xzESx15T5odTRH9zsDDmBhgjaRzP9BMMOjANiy0Pd7P5oW5GexI0LY+wYTJOOmcQTeWRJfi38xqpeaQX85kBvOuHWLBumEuCXl5pqu3gaIK/uX8Pydea9xPOKg5FYqnfS1mDn2xSm7nmjY6kcJc4SWQ17OrhMfhETseuFuavcrpF2GM/5dtoGRbJFwaY+MVeEuv6yO6PEr33EPpo4T7OyuhM3rUfbSSN1jv7PsxMaWhjogiJIAjCucCyLHJ9CSZ+e4DMngkszUIfn30MN6I5tCOWvdzcRbMsFl1azf4NQ2x5uJvtT/RR1RZEOsE557e7co8dto8ds9w4FCUVy/Hgf++ka+c4hm6SieXZ/ngfS66sYbQ3weaHCteU4SovoYozOyYgCMIbkx9IMvmbA1jT49P6WIboPYfQk7PvM1Obh495rb5vgrlry1FUEd77RsmqTMvKMnY+XRg7UzWT/K6jjsm6hdafQEuI8UrhzMsbhbhvbfo6zJKgdXX5zDzp7mcGmHt+JdJx4vlOJn08Q3bv7Dk3K2+inUDhXkE4WV4uIJ3dO4la7JqZg3qZmdTQXqUwjupQWHRp9cy83ZaHe3D57MiqhCJJxNM6P17fBcCVc0oJuFXsqswVc0uRpELex7uWV5HKifnkc9XL97RHyusmpmmhKMe/nzUsCHocdI2nqA656Bw/Th5APIOkwLtXVGOI3BnhHOMwpsf4fWWYmQyWs9DoSc4XzvuqJKFrYh5KEARBEARBEITZTlupdEmSLgE+C7ROL9oH/KdlWetO4LXVwC+AMsAEfmhZ1ndP0aaedJIkccvSSh7cPTQTQChJ8M5lVa/9WruMS1GoDbv59MVNyJKEyy6T1QyCLgcdEwkWVRcd87qr55VRFnC96rqnhtNoOYOVN9Rj6BaKKrHr2X5q5odweo5fLfvGRRXHdOX80Hn1qKd4YFs4/Up8Dq5dWM792wdxqoUu7Ju6J7mguZi7NvWhSBIOVWbnwBTvXlHDtr4pMnmDkMfOZCrP/3u2nWXVRfzlp+exdzDOjwZGeX8+POs9vEEHWvrYRKCDLw2z6BNzKI84qHTb6c3leTQaozzgnNWp+PymYkbjWf71kQNs7oly/cIyPnRePZOpPH965zbyhsmKuiDvWVlDyGPnM3du4xcbevja1W08tGuI9pEkCyv9fOudCykrcs+s19JNtKks6eEpYo904WwowsqbKH47xkQWFAnpeAH6Xhsbe6NsGoxzUUsJ920bmPXwnHL/m/ytCOcibTQNRyXmGxNZ9PEsqt8BgHKcY67stWHmDeTX0dWktdRHwGUjltHwWzIHXhpm5fWFY7xqkxk4ECUxnoWm116Xy67QWualPOBkKHa4avx7Vtbw6O7Dwfk1YTf56STO5w6Nc3Dk8ITjZCrPLzb08M1bFswUKhFeP0mSWFAZ4KWuwkBv3jD50bOdVBQ5+fgF9Xz1nl0zz3WoMrJNQbLJWNrsiRRp+neQOzTF1Svb+IYic9vy6tP3QYS3vNYyHzUhF71HJJuvbgixZ7oY0fapJF96VzNjXQmwLHTNZOMDXRiaiazI9OyZpKot9KrvISkSslvFTM6e7JAk0Cey5LrjuJpFFwrh5LqwpYTvPXVo1un8Ty5swONQ8ThUbl5cwZ7B2UV0FlYWYVNkitw2ptKH99d7Do5Q3uBkTpMPefQ4XVlkCSmtU6WDs3T2/dyymiL+/Oo5HBpNEMtoDE1lSOZ1wl4HHrvogiacfnoqh9afIrVxGFvEDcdJnkfi+PdO0wIRN1d8ZB6J8QyKKjPam8AbcNI+Wuj+vu+FIVpWllJ9Qz0uv51tmQxfeXo/H7+wAZsioR1ROOS6hWX888P7Z3522xXKA85j3jOvG3zsgnr+6+mOmWVeh0pbme+NfA3Cm5CJa+x/cYilV9VimRayIjE5mGJwf5RijwOXTaGh2MP2vik+cn49v3qxh69f04YqS/x6Yx9/9fs9PP2JNWiP9IJhorhtHB0OobtUOsdSzCn3sW/ocNKkTZFoiojfufDmxDIaFX4X/U/2QGsRLStLC8WdJYlcWmPTA10Uv6OWGxaWzxQ/air1IiOxsWt2AK8E3LS4kt9tOVyA0u9SsaarSFyzoIzW8jO7z2rDKfTh2cF28Ud7UIoc5I9TUFCfyCA7j71GkZ0qkkieOCncfjsX3NGMZ16AoKrisis8d/dByhuKjvsdy14bFcGXi9rZSeeVM17cRhBOBUs3Z7pgqiHnKyZmSDYZ2WM7dozBoZB4po/4k71gghJ0EH7/XOwV3pnnGMcptKf1JdFqA5Q3F9G0LIJpWjhcCt07xxm057l9RTWfuXMrq+tClO6bwjri8tnKGwSHM4R9dhZVBdjRf7jAcHOpl8GpLM8cHKN3Ms3cisCb+XqE06gq5KavI8mG+zpZcHEViiqBJJGO5xkYSrK8NsRje0dmnt8U8TI4laG+2EPE55i5DjhVzJxBfjhJYt3h6w817CSz46ikPKvQwR1ZOmauQ3aIYlaCIAhnOz2jkTsQRR/LYAu7yXXG8CyNFG5EjzrVyEc0LJpT7sdlUwhKCnuf72PF9YfjiobaY6QnRbL2iagNOLGOFwvgVEnHcySnv0e3z04uo5OO5znw4uE5fodLoXlFKfbXETMgCMLZQx9NH3Os1UfSGBNZVO/hooNqkZOjj6pKwEl8Mot/PAvNp35b34q0uMZIV3wmNjZc60PaYTumSYSlWxijGWw+xxnaUkEocCoSV8wpJaebuO0KWkJjuDPGqhsb0DUT1SbTsW2UssYAJVWnbr7A0g0ku3JMQ83j9OEUhFPGyhhkdo4fXiBTyB6Z9aRXfn0mobFzXT9Lr6zBsijMQw+lGG6PUbw0gM9pI5XXuXZBGX92ZSseh43eyTTxjMZnL23CtODJfSO0lYmY73NVW5kfj12Z1Xz3Exc0UB5wUQZ86Lw6fvBs58xjJV4HEZ+D7X1RPnZBA4/uHubKOaX86qicmZZSH6OJHL0TMT56fv3p+jiCcFK4rCR5yY1ddWCmUkjuEtBVpOwEAIosk9eOLcwvCIIgCIIgCMLb22mZpZQk6TrgP4G/A75BYThyKfATSZL+1LKsh15jFTrwZcuytkqS5AO2SJL0uGVZe0/php8ked3ghfYxvnP7Yh7fO4JlwRVzS4kd1ZFX9tiwV/vI9x1OivCsqUByyTywc4g1jWFkSeLZQxP8062LcDsVdN1CxuJLV7Twg2c6yGgG1y4o57oFZa+5Xf5iJy/cM0HP7omZZU3LIrj9rzyhsrSmiJ9+aAU/Wt+Jplt85Pw61jSGX/H5wrnLoSp84bJmklmNe7f28/Wr2/jf5zrxOlWumV/GXRt7+frVbfxofRfRtMZty6u4d2s/n7+smV9u6KFjPEU0o7E/nSHpkNgxGOODlZGZ9S+4uBLLOpwUf6TaRcV878UuXuyJEnDZ+PDaOtxOlS9c3szOvim2900xpyJAfdjN/3vsID0Taa5bUI5Dlfn9tgEe3zdCfjoBblN3lE3dUe751Boe+Oz5dI2n8DpVrl9YjoREyGNHliUszUQbS2NmdTLbx5DdKskXhlB8NszpatZW3kRyqYUOFRLIfjtmfPrvWIL8mnJqUikeOTROecDJFXNKeWL/CD6HytevaWNhlQgOfjs6XhERyaUi2Q8HvzvqA4WiIy8HvMvgml+MNpBEDZz4JHd9iZc7P7aKn2/oRrdLWBZs/GPXzOOKKrP8uroTXl8yq/OlK1o4OJLkwHCcC1tKiKXzqIqboNvGl65owWNXeL5jnJqwh/1Dx3ak39E/RU43cIvk6DflHcuquG/bABPThZj2Dsf53OXN9E2k+M93L+H32wfwOFSumFPK3nSWiy6qxHiib+b19hof+kQhOUItdeMyLLZ+YBWK145lWEivUN1dEF6PsoCLf7l1IQ/vGWZzd5RL2yLMr/QXEoavbqPE72DTSJzJR3sxjiiSU1Tqxu2zYZqvnVih+B0Erq0n+puDM8vUEhdmWkf22ND6E0g2GcVjQy12IUli3xbevEVVAX71sdX873MdTKU13re6lvObimcev25hBf3RDL96qRdVkfjMJU3MKfcxmcrxb+9axD88uI+u8RSNJR6uXlBGKmcQz+uU2WQcTUXk2qdm1uU9r5zM/nEUt0peBvsRycZ+l50lNUV0T6SwqzKP7x2lP5rm/z66Cs9xEnwF4VQw0hr6WBorb5IfSJI9OIkky1h5Ay2Zx9kWIrv/cGK9d20ltuJXL5BqdyiEKwsJndGRNIOHotQtKqZzWyHx7eDGQlJe07sbiSoW711dgypLfOtdi3ju4DjxrMZ1C8sp9TloKPZyYCRBVdDFX143Byz4h5vn863HDjCV1rhsToT3rqpFlWVCHjv3bh2gpdTHh9fW0VwqClKcbpIsUdkSnHXPAnD++1u5bEqitdRHx2iSlXVBNMPk3Str6JlI4barXDG3lE9cUI/DAqXERWrjMIHrG8h2TBVaFFG47+r0K9gTEl+7uo1/e+wguwZilPmdfPOW+TRHvMfZKkE4cYdGE/zjw/v4XEUxoXIPj/1oz6zHW9aUMSxbZDSD1uljjCxJlHjt3L6imu29Ud6xrIqw10FLiQeXXabE6+DZQ2M0R3wsrS3i/z16gMvnRPjkRY24bGf2fG9px3Z7szQDK2+ghJwYk0cXWJNQI25slR60gcPd6ALXNbyusQ7h1Xn8DoJ1Pp47NMY13iDpuIYnYEMNOo4Zu/SsKWdTxxD/cusCNNPioV1DzC33UywSLIS3ED2WI7muj+RLQ4CEd20F3gsqZ4pBH0l2qQSuqWPi53tnAtaVIgdK0Dlr3MGI5pj6YwfhD85Dmb73ko9IFnuZUuQgFsuz57nBmWXLrqklNpHh2qur2Ng3xZqGMF5VRkkZHF2e3Uxr1NYE+No1bTy5d4QNnZPMq/RzaWuEz/56K4osYRMNAc4pXeMpjLxOWWOArY/2HH5Agks/swBLNin3OxmMZZlX4efWpZX8Yfsgf3FtG996bD9/f9MC2k5icXtLM9DGMphJDcmtkni2D1dbeOb6GcDM6LPnKqbJThXfJdUknjwcdO+cF0aNuBEEQRDOTno8hz6RRRtMEnusB9+acozJLLZSN9mDUdyLSkhvP1x4yr28FPWIcbzWMj8/+sAy5Fyh2cWR4zeyIrHwStHo4ESkczrhJRFynbGZc67sVrFXetGn57BKanw0LY8gT8fOTI2kZ77vFdfX4Q0eW2hZEIRzg3S8Ar1eWyGR+gieZaWkt4zMNJqR7DKJoJNDT/czZ0356djUtyS730ZsLDNzTN3nt/POmxuI3X+4SL1a6gYZjEQeUzOQX6WwviCcahawtCZIXzTNt29bjAuFqZE0L3UdTpJ3++14i44dlzqpbDLe8ypIrDscd2ar8haOX4Jwmkh2GXu1D30iS3bvBJ7lZaQ2Ds887mgJgu2Vx0odHpXK5iCbHuyetfzyj8xlRLfoGsvwyOcvoC7swTF97P/Amjre86MXZxrF1YTcXNxacvI/nHBaNJf6uPMTq/nZ+i4Ojia5ZUklF7eWIMsSQ7EMigx/ff1c1h0cpTniZW55gM7xFD6njbDHTqnfxYr6IOOpHI/tHcFrV/n0JY1UBV1UFrlojHgpcp/i47EgnGRO0uRUPzbTxEylkH0+0MogXRgfUpEwtKNb/wiCIAiCIAiC8HZ3uiKXvwLcbFnWjiOWbZckaTPwPeBVi5BYljUEDE3/PyFJ0j6gEjhHipCYPNc+wY+f76GtzIckwRfuHuJjF9Rz65FPlMC1qBhnaxAzW0ikVEvc2Nx2/us9S9k/HEeSJN63upaaUCGoayKl8YW7d3DTojL+533LANjQMU4id3T44rFcPjsrb6hnx1N95FI6VW1BmpdHcLxKB43OsSQ9E4UEOlWWmUjmGI1nqS8RiRtvRQ0lXv7zPUsZjmVx2xVuWlxBKm9Q7LYzmc5jV2WuX1ROPKMT8tr49MVNyBLcsKiCqbSGLEHneJIyv5P/ed8yHBkTd5Edt89ONqVzaNMI4Uovq25sYMeTfWRTGuVtQYrXRHjx14VJjFhG4ztPHALgS1e0sKM/RlPEx12bevngmjp6JtIoskRLmY9vP36QP720iZH4sV13hmNZltWGqCs+trunpRkkNw4Tf6IXz4pSUhuH8V1ajZU30CcMPCvLyewYI719FN9FVcQf6ybxTD++C6uQ3CpIYKvyMeZRuMVRxE2LK8nkDUIeG5OpNhyqQmXw1RPvhLcu2WfHs/KISRAZ/JfXoPgPD0BLHhvetRVYmomlm8huG8kXBvEsL8U198QLPU2mcuweiDGZyjNhaCy9qoadT/cz3pfEG3Sw+IoacirE0xp+92tPDE5lNb7yu52U+Z2UB5z822MHyWgGd35sFRc2F/Nf69q5dn459+8Y5J3LqrmwpYQ7j6r8fcuSSlGA5CSYU+7nnk+fx/6hwrXAnDIfNWEPbWVe/uK+3Vwzv5z/fLqdP2wvJDlc0VjMx66qpg0ZWZHRJzKkXhpGsiu4l5aCYZF4sANHUwCrsQjXwhJRrEE4KXTLIuyxsbw2SDyjIUsS1UE333vqEKm8QanPwZ0fXcT6uw+SjOYorvLSuqaM5FSOthMMoHItKEZ2KOS64kgOBStnYMRyWJaFmdaRZInUUArPslKczcFT/ImFtwNVkZEkuKQ1woHhBI/vHcZpU7iwpQSvQ6WiyMVfXjeXD6+tR5ElKotc/N0De/nZC934nSpfvKKFYq+DdE6ndzzNnEofWk+acUUhWO7BUR/ATGsofjuSx4aR0Mh2xKB9Cv8V9lnJcuVFLm5dWsW+oTjzKwM0R3y0lonCCcLpoU9lif6hHdXrINsexb04Qr4ngf/yWpLrB/BdUIk2msZ/RS1mWkMtdeNsCSKpJ54oWVLtJVztpaTKRz6t038gitNjY9Fl1XRZJv/++MFZz/+XW+ejKjJVRS7u2tzLX98wh8mUxlQ6z1/+fjfjyTzFXjvfu2MJlUEX5QEXU5kcz7dPsLFrkpX1IVpLfVjWqe0wLhyf22fDMExaVpbSvnkUWZGYd2EFSY/MH58Z4n/jXfz9TfO4bmE5w/Ec6bzO+c3F/NXvd3PbihqePjDGcNDNbRUelKCDxLP9+C+vxcrryB47UsRFU5GNS8MeJKA25Cae1SnzOykNiOQN4c2LpTW298eInN/MjscKXaF3PtVHLq1TOz/MnEsq2blvmCU1QfYNxfjKVa0cHInjc6gYhslty6v510cP8JlLmtjQMcHewTiXz4nwjZvmcfdLvfRMpPngeXX0TqYIec58EJut1DNz/f0y14JiUhtH8J5XQeyRLtALx1PngjCZXeMofjvh980l35vAiOewVXixV4lx5JOtpdTHvt4Y+18cZs3NDfg9KiiF4gtWzsDSTBS/HSXo4OK2CN98cD9D8ULRmPevqaX1JCa4C8KZlj0wSXLD0PRPFsnnBrCVe1CXlh73+c6mICWfXEi+P4nsVLHX+Mn3xo55Xr47jjaURKkvAsBW7pk95qtIeK9vgP2TKDYZy7BoWlFKqMKLq8rDbf+3mQWVRXz8wgb2D8fJ2pyo/cnZ71Hv5z/XtSNJEh9dW0dl0IVTlWkfS+Kyqbx7VQ21YVHw4VwyEs9SVuKiRpIxNJPBQ1O4fDaWXlULXoXxkRRfvrIFl10hr1uossTty6v4q9/vYTieZTx57FzXG2XmDVIvDhF7uAtbpRcl4MDK6OQHkrMKpKa3j+G/tJrYw90wXTDYe34Faokbb7ELe60PfTiFGnJhq/ahnMA8gyAIgnD6aaNp4uv6MGN57LU+yBlIDpX8QJLANXUk1vWj+O34r6zFzOnYq/w46vzIRyTLx9Mak2mNKd1g0WU17FrXz1hvAk+RgyVXVINLJGmfCM2wkFwKgavrMBIakiIhu1Ukh4K/xM28CysJFDt54d4OqueEWHJFDbufHUDPG7StKadttSg+IAjnMsml4F4WIb1ltLBAlvBfVnPMvIm92kf4TxaS6ZginzWIAVufH+S8W5tw+cU19xuVU2H1TQ1sf6KPqZE0dpeKWeYmcEMDRjRXGOvUTWSbgjGZJT+YxFkrGowJZ5LEPz+ynz+/uoWJtE5ClVh9cyPbn+glNpohWOZm0WXVuE91kW9JQi334L+qFjOlITtVJI963GaDgnCqSKqM98Iqsoem0IZSKAEHgevqC3FhqoyRzPNqe6TdoVLeFCAxkaVrxxiqXWH+RZU4/XYOjEaJZXR0y6S17PD8yPzKAL//9FoODCdQFZk55T6qgmI89lw1lc7TPpLEwuLilhKcqsJXf7eTL17RQiZvsGcwwUtd3cwp8/PQrmF+vL6bf3nHAtpKvdy1qQ/NMKkMurh2fhm3LKnEJkts651iZ3+MD62tP9MfTxDeEJeURVMjmOk0ALLHA0YZUrpwv6JIEno+/2qrEARBEARBEAThbeh0ZQWXHVWABADLsnZKknT8yL9XIElSHbAEeOkkbdsp57arXLewgoOPH2T/cGJm+ZKa2UmRRiKP7LVjShqyTUbx29GnstiqfdQVe45bPMHvVHGoMn/YMcwfdhSCHSM+B1fMfe2vdaI/ya51/bSuKsPuVBnuiPHs3QcpawzgPk5XOIBdA3H+9o+za798947FogjJW5jbrtJwnN9v4Ijkh5LpvMeg+/B+E/YW/n/kvpHM6eTf34IzZ/HMjwr70cRAknQ8R8vKUiJtRfzTpi4Wj8VxqDI53Zx57er6EGsaQmzoGCejGcQzOhZgUyRKvA56JwodVXsn0rSW+jgwcvhvTZKgJnTs38/LtNE0sQc6cTQUke+OFxZaINlkLM0kvWOUwDX1pHeOke2YwnVHK2PRDAd0gwe6R/iz6+dQGXRTc5x1F7lFJ9G3O2Myg73Oh63Cg5nSUYrsGAkNYzI7k1SsuFS0oRSZPRNIsjTT3cT2OrsIPrlvlK/duwuAi0qL6Lm/n/rFxdTOLyaTyPPS/Z2UXV1F2DBY21z8muuLeJ04VJnheJbh6eSU1Q0hNndP8u/TxYHet6qWueV+VFliRX2QL1zWzP8804FmmLxjaRXXLRCBUSdLXdhDXXj2scxltzGnPMBQLEvvZHpm+eMd48hOla+trSMymcfm8OK/shbZpWIB+mQWYzKL4i0h+rtD2Cp82EpEsSThzekZT/KT9V08feBw57xH9w7z7dsXc+emQnGxxTVFpOI5auaFcfnsTI2k2HBPBy6/jcWXn1jXPNmm4JwbRnKraP1JLLuC7FLAgsyu8UIhv5CT6G8PEvnTxSivcF0rCCeqazzBI7uH+dkL3TPLnjk4zo8+sJzzmgrnU5sqz7pfm1dRCFSIZ3W+MX3/dMeKapbXBtE0k8GXRtnaHefiWxqpDTuRnApmRsccSKJ4bCAVEn/cS0qP6dhdFnBSJpLnhTMg1x0nty+K/dJqjGiOl6N6coeieNdWkO2M4mwJIzsVHI0BbGWeWYkLJ8IbdNK2upx7/mULVW1Bll9bRz6rs/PpPiqvrJr9XIdKVcjD1+/dybuWVTKvIsCdL/XSO5lh18DhxNHxZB6fyzZzX7u+Pc7X7tmFYR4uPPIX17bRVOLF4xTBvKdTcirHlod6KK72suSqGkzDonPbGHZv4R7ErsgUex1867EDfPqiBuprg3znyUNc0FzC/dsH6RhL8h+Xt6KEXPguqcZM6Uh2GTXiJfqHTlw3N9JQ4p0ptifGroSTzWNX8DlUBodSjHTGSYxnaV1dhs2hMtIdw+9xcOXcUv7lkf10T6apDDj56PkN+F0qHofKX/1hN+9eUcN92wboGi+Ma+0dirO+fZyPXlDP5369HcO0+NTFjQRcZ/74ZIu4Kf7YfBJP96MNp3AvKUEpcjB1Tzv6eAbfRdVgWaghJ5m9E2T3TuJoCuBsLEIVXZtPqf3DCWodDjZt6qB/zyS3fWYB+f1RbJVezHgOy6WiBB2YGZ3vP9M5U4Ak6LZR6he/G+Gtw7Is0tvHjlme3jWO5xWKkEiqjKM2gOOIJCNjKnvM82wVXlKbRlCDLtQiB4rbhv+aOtxLI5hpHSXkZOMz/XTvmWThJVXIskTPngmS0Sx7mx28Z1Ut1UE3nWMJvv34IdpbI3z9+jqUjaPgkDFXl/OpdQfZMVSYn9jYNcm33rmQr9yzk/9571K+/76lFLntGOYxmyacxcIeO30HY/T+vpuaOSGWX1tHLq2z5eEevFdX0NBUxLOHxslqBvds6SeaPtxh0G1XqDyJSQ76aJrYQ4Xu3446f6FgtVNFjbixV3lRihzkOmPYIm7UiJvSzy1Bn8gge22oEQ/KdAMLV0sIWkInbbsEQRCEUyO1dQQ14CCxdRR7nR8UidTGIQLX1pPdP4l3bQWy144SsGOv8KL4ji18uWNgiq/ds5M/P6+xMOe8sJiaeWGyyTwb/9jFee9vg7rT/9nONR6HgtYRxxZyYVkWkiShBB0YsTwuh8KqG+t58fcdAPTtm2RqNM38CyvxBB3MOa8c++scXxUE4exi5U3sTUXYq3yFe8ciB0Zaw9KPvblLSRK/u6eTugVhAhE3ZQ0BXrq/k0DxPEJlYmz7jTATOs/95hBNSyM0Lo2QnMxy93d38P7PL0KyK5jJPLLXgWVZaKNpJI8Ne+nrn9sShJNFlWVWN4TQTPjaPTv52zVNRB/qp3FZhKZlpSQmMjx39yHClV48p7IQiWGhx6fjGiUJ2aGAU8E8okC5IJwO9govkU8vIteXAN3EzBlk9k6gFrtw1PixzFduNJJN5dlwXwdOj42lV9dh6Abtm0cxbRIL5vp5eM8ozx0a5+Yls2MQGkq8x42XF849j+0Z5qv37Jr5WZUlvnxlCz9/oYeakJs55T76JtNs65sCCrkItWEPf3PDXH67ZYDvPHmIPYPxmdd//rJmkjmdZtEoSjhHWZaFS86RsxVhpgqxCbLXA1Y5jBUaQilIGJooQiIIgiAIgiAIwmyna8Q89QYfm0WSJC9wD/AFy7Lix3n8E8AnAGpqjlcO4MyYTOeJJnO8b3Ut923tx+1Qee+qGhKZ2TdpkiKT3T2BmdGQvXYy28cKk/+2V67X63OpfOmKFr7/TAfRtEZFwMknL26kIvDaicQ2h0ImobHzqf6ZZaFyN/IrdCmeSGZ5aPfQMcsf3jXETYsrX/P9hFd2tu67J5vXobJ0XoThoSQ2p0IurQMU9sOn+6kPqKxrH2f3cJyvX9PGXRv76BxPcsXcUr50RStNES//+Z6l9EymeWLfCA/vGuKD59Xxyw09lBcV9vmHdw/x59fM4Zcv9tA1nsLnUPn7m+fTepwJ2WxOJ9YbxxnNgVXo7O2o9ZPvTZDeOorvkmriT/WiDaaITfTgelcz3z80wp2/20oqf3hS5aaV1Sc1GPRc83bZf98oSZWZvPMA9mofSshJausIZkrD8dH5s57ju6SafF+ikNAJuJZEsNWc+IB1Kqfz4/VdMz9r093cO7aOAYeD73UsOseTJ1SEZCqd4+vXtPHrjb10jae4oLmEJTVF5HSTMr+DD6+tR5Ek3r2qBkmSCHscfPayZm5eUolhWlSFXDjUs7cL1ltl360MONnSF+Vf37GQ/3y6nYFohsvnRlheG2JvPItdUlDW92Gv8GFMZbHXBsgdiiLZFSzdwtJMtJEUuc4p1JCz0AlTdLA8q52t+27/VGZWARKAkXiOoakMdkXmkrYIc8t9IEvsXT8463kOl/qK16DHI0kS9iof+kSWfPsU2kASI5bDf0UtyReHcLWGMOJ58kMpbBaop7oTjHDCztb999VMJDV+u7lv1rJ03qB9LMmqhjDKcTr+VAVd3L6imnu29KObFuc1hmko8VBfXPgX9dqwLHj63g7Ov7qWKsOAvEm+O4bsteNsKgJZAl0E8pwtzsV992TRYzm04RRa33ShR8NCssukt43iv7SG+FO95PsSONqCqKUunI3BN9UJy+G2IasS/fuj9O+PziwP+R1c0FzMho4JWst8fOyCetY2FfPzD68kltGwLIv7tg5w85IK0nmDjrEkHrvC165pY850IEgyp7OpOzqrAAnAvVsHuKQ1QvNbtAjJ2br/qrbCvcJ4X5LxvuTM8hIZmiNe3r2yBt00+e/3LsVtUxhO5NjaO8WSmiAdY4Xnh5HJ9yWQnDLaaAp9LIM2nMZ/eQ04lZkCJMK56Wzdd1+2eyDGl65sQckUfk7H8zPjrE6vDUWRWFBdxH++dyndE2lcqkxruR/DtBiMZbEsKPE5ZgqQvGxr7xTXxXKsbSxcZ9y+vPqs2JfNrI6VN3EvLUF2FxLWsjvHUCNu9NE0iSd7sdf5MbMG2b2TAG/bgoCne9/tmUgXkiZkiVxaJx3N4Qk5STzRg1rqAdMir8o4l0W4ZkE5uwfjlPodfP2aNlpKRbCkMNvZfux9WX44hTaYBEnCXunFFnEXxgpqfOQ7Y7Oea696ffu5rdKL57xyUi8U5sNkjw330gixBzvxra2EopcLS9tQ6g4XL5FtCrHRDNse651ZVrkozAudk9yxspr+aIZ3Lqvit5sH+OOBUebWh+gslbhucTm/2tw/U4DkZY/vG2FuuZ8NHRM8c3CMnsk018wv42tXt1EbfuWi629XZ+O+O57MUxF20WtB795JeqfPj5IsoRom3eNpIj4H33vyEJ+9tJkfPNvBSDxHsdfOP926gLrwm5t3MtIaWn8SfSo7q9O6Hs2hlrjQBlPILpXs/knMvIG92gcOGVuxCzXswlYm9rPT5WzcfwXhRIh99+ykTWbItU8VCkuFnaS3j+K/pJr4033EHurE0VyEvdqHo6noVe81u8ZTpPMGmmUhAZ3bx+DIgm8nPqVz1jmd++5kWqM24CS+rg9biRsrZ4AMzkURAFxeO+4j5rASE1m2Pd5L/aJiFlwk4rCEY4lj77lFkiX0/iT5vgRK0ElqxyjeVRUgH3sQlVUZ0zBp3zI6a7liP4cPuEc4E/tuzrIwNJMDLw3PWp6XQO+KgWFhTGYxUhqelWVYSQ0zq4siJMIxTtf+63IotJT66J5Ik84bWDLomsmBF2fvw8rriK15IyQZZEUh/kwf9nIvxlQOW6UXR0vRKX1f4eR7K1w3qGEXelJD64mT2jqCrcyDPp7BjOigvPL9TDyvo7oURrrijHQdHneVbDJ2VeahXUN8/rLm0/ERhDfgze67sXSe/3mmc9Yy3bQYS+RoH01w/cIyvnbPLr5583z+4r7dVIfcvGdVNbF0ntUNYVbUh7hsToQn940iS3D9wgpkCfKGxfLa4Cu8qyCc3QxNw63mSTuKMJOFeBvZ4wGpAqnzGSR7CAXQNe3VVyQIgiAIgiAIwtvO6Roxb5Qk6f7jLJeAhhNZgSRJNgoFSH5lWda9x3uOZVk/BH4IsHz58lcucXuaeR0qvdE07aMp7lhZQ1Yz+NkL3fzdjfNmPU92KkguBUe5B8u0UAJ2JKeC/CqdLueVB9jcFeWWJZW4HSrxtEZ1kYuyotcuQlJa78ftt5OOHy6GsurmRpyvkHgsWeC1H7vLeBxi4uXNOlv33VOlrNzL6psbeObOgzPLAmUupqYb7Iwn8/zTQ/u5Ym4pf3vjXJbWBmcKGYS9DsJeB7/71HnsH4rjtMlc2FyCYZqsqg/xUtck//LIft69qpp/vGU+lUUuao4KyB2ayrBnMMYCS0G78wCuS2tABmMii7q8DNlnw4jlSG0axndFLVrAznNjCSYmEvxkU98xCWvqcSaH307ebvvv6yX77biXRkhvHYW+BEjgv6oW5aiEeHu5l5JPLkIfzyDZZNSIG+V1TGwrskTIc7hL1e/2D/PVy6rY8/jhpOlQvY8t0SQLwyfWqdDvsvNPd27nqnmlXNoWYWNXlF+80MO3b1+EZFkcGE5QFXRTHTx8zlFkibricyM4+a2y786vCvDk/lGcqszi6iKunFvKpu5JLEw00+KP8QRtqyMsllRsJS7Su8bRR9P4L68l9dIQklMh3xsn+ewAAL5LqvFfVjMrMF04u5yt+65NkVFk6ZjzpNOm8NEL6ni+fYKtPVHe9YGVr+sa9JXINgXnnFAhcSPkBAsSz/TjO7+SxLP9KGEnmZ3jJJ/tJ3hHG+pxOvkJp9/Zuv++GkWScNiUWUXoAByqzLbeKMvrjj2vNpf6KPY4+OTFjcgSHBxOMKfcz7Lp5y69sobePZNYpsX6R3q4+ePzCOQNbCUu9IksiecGCFxVh/UmCjkIJ9e5uO+eDHo8x+TdB8h3x/BfVgtAevsYvguriD/ZS2rLCL6Lq1H8duw1PmylnjdVgAQgUOJi+TV1bPzj4QJ74TofD3SPoxkmH7ugnu6JNFPTXcKP7ET0lata+dxd27ioJcK1C8qoLHJxxdwIjuliF+v2j+C2H1skz6nKvJX/2s7W/beo1M2cteXse/5wwdvKhWHyfhttZT7+5ZH9/PwjKyn2Orh/xyBOm8yKuiBH5sfUl/lIPdCJ78Iq1JALNejE2RLEzOn4ykVi/bnubN13X1YacPHFu7fzrWvn4itxkhjLzjy25pZGPNNJ6kVuO4vdh69FFVmiJuRGluCV8r0M0+RrV7dRF/bgOQuC3i3TIrV5hNgDhwP2/FfVkDkUxV7rw7WwGFuJi8y+CVIvFAoOOhoD2Kvent3iTve+G/ba+ebTHXxmbRldzw0Rj+fxOBUcrSFkp4okS5iage6QaY54+NNLmzBNi3nl/rOiwI1wdjnbj70Aub4E4/+7Eytf6Bwtu1WKP74Qe7kHz+II6W2jmLHCmIMSdOBe8NrFmI+kuG24l5eheOxYhomlmcQf7UHxO1BeZWyhcWmEXU/3o2vT26VIONoC7Hm0n6mMhmlZNJf6+MVHV9I1niKazqPIoNgUlOMEzLvsCnndRJKk6aJ78NCuYWrDHr56Vav4+z3K2bjv+p02frurn9VtQQaOKLBYvTrCjw4O8+ELGlhcFYDLmvm3xw5yw6IKgm4bi6uLuLCl5E39jk3NILGun+SzhQJp/itqC7PyFmT3TxK4tp74WDeJdX24l0awVXqxRTzYyj0onrdmccaz2dm4/wrCiRD77tlHG0szefd+7NV+0ptH8F9VR+zhLlLbRvFdXI3sUnHU+7GVe1/zPOOYnif83f5hPrO2jO7nDo/fhOp92MLnbtHJ07nvjuR0alUJZ3MQya4gSYWiz7L78L1+w6ISdjzRh5YrzEHIssTiy6uRFTFXKxxLHHvPLbLbhiVLOFuCWKaFGnSADGrg2HvLQLGTZdfUsemBw3Mj5U0BwhXnRvzNazkT+27SBpVLixnYOj6zrGxBiGEbVC8sRh9Ioha7MFMa2mACJejCNMSflXCs07X/SpLE4uoiNvcUxhCeHohy+fwQI7snZ54zd205RWWntlme4ncgyQncc8MgS9hKXBg5A8V95ucqhNfnrXDdYGkmRiqHiYVrbhgAW0nheK14X3ms1pCgdE0pE71JmP7kDo+Ks8KNYUJ10MUFJ9DETzgz3uy+K8sSLtux91OqIrOgMkA8q5PTTbxOlY+cX8fgVJZ/feQAP/3QCgCaIh7aSn3Mq/BjWbCtN8qtSytpKPG8rRuWCuc2PTWJUzYxHKGZIiSK1wtKOeTiyK4IsgWGln+NNQmCIAiCIAiC8HZzukYFb3qVx771Wi+WCrPfPwb2WZb17ydtq04Tp03hfatr+cJd2/nx+sJE0aKqAI0lsyeJjJSGLTLd+YLCYK6lWa86+e92qHxwbR3to0nGkzmqg24aS04suDtY5uGmLy5m4OAUmYRGZUsRpfX+V3z+VFbnlqWVbO+L8okLG3HbFX6zuY8bFlWc0PsJ5ybdMBlL5AqJWpJEOqcT9tqZTOWxKTIOm0wioxPy2omlNWRJwu1QmEprOGwyg1NZsAr78Ug8S4nPQVPES/OKUhwBByOdMTJ2iQ50nA4Jj72Q4Jk3TBJZjbpiz0wBkiPVhT3UHVVcZGFVEYdGk2i6SUOJl8rgscV4RhNZvvib7aytCTKnKweGRXrrCP7La0ms6yP+ZA++C6swQ05G8zp/mEjQP6nTP5VhLJHj1iWV/HZL/8z65lf6aSn1ohkm49PfkwVk8gYlPgeqCAwRdBN7nR+12IWlm0gOBdljmwmSP5IacKAG3ljAltOm8OlLmnixcwLTgr0jCZ6vDXLVB1qZ7E0SKneTCaj87+MHuGFV9Qmts63cz20rqvm/F3sK2ydL/Mcdi/nG/Xs4NFbo1HzvtgG+efN83ru69g1tt/DmaIZJXjf5xIUNSJZF96SHp/eN8bnLmjg0kqQm5KbU7+Brv9tFS9jNR1vKaFtdhjtnkN46hqmZ+C+rIbHu8HEtsa4P18Ji7OVvz2Qx4Y3zORTev7qG3skMFzQXo+km3RNpKgJOHtk1xJ7BOH953RzsQfvrugZ9NarHjjQnhDaYQh/P4D2vguSmYVBkvOdVEH+kG0sz0YeSqL4TK8AkCEdzqBJfvqKFvdNdqR/dM4wkSVQFXfxyQw/L60IMTqVJ5wxqwh7sqozXoXDlvAjd4ymKfU5uXVyBhUTfROHnssYibv3KUgYORJEVmSHVIuB1QN5ACTrwX16DZZpkO6I4G4redFEHQXij9KHUTCd5bSSNa3EJmR1jpHeNE7ihAdmlooac2Eo9J60znCxLLLioipIaH8MdMRwhB0m/wr89uIexRI4XOydpjnj52tVtM68xTYvBWJrKIic/+9BKeifTOG0ybeV+wl4nXWNJdNPiP55q52+un4fbrhDxObi4NUI8q3H5nFIszsm4q3OazaGw6sYGauaGGemN4y11Y4RsDOd19g8nuHJeKaV+O4dGkkyk8mzpjvLOZZVs65tiZX0Iw7CQ26dwr64gtWkE94JiLANsZW4cTUUoLhEMKZxa1UEX8yr8/NlDe/nq2kaW2BxYaZ3iej8TDnj24CjNER/lxykWvbAywF9dP5cdfVMsrw0yMJXh+oXl1IY9YEHYa2NeZeAMfKrj0yeyxB7pnrUs/ngvxR9dQPSegxiTOWSfjaKbm3DNK0Z2qtjKPK+arC+cPHPL/bSU+3g0m+bKm2vxBx2gmSg+O1beAKkQKD6lm0R8TlbVqzRFvJQHXruQuSCcbSzLIvXi4KyxVTOtk9kzjr3cg63MQ+STi9CGU4V9v9SNGnS+7vexR9zoQymmft+OpZnIXhv+d7UwjkHEOv68XWmdnws+OY+R9hiZnEE+bOfvNnRgV2QWVxWhyDCRzBJw2XhgxxB/3DnIVfPKSOUM7lhexeN7R2YKu6qyxMLKIp7cO0qJz0E0fbjz3P3bB/n4BfWEPOdu4u/bRVnAQdTQWXJrM2UdMaJDKcrqAyS8Ev6XElQEHLSU+6kr8bKiLsTQVIbSgJOmEi+2Nzm3pI9lSD53eMw3vX10Zh7M0kxSG4cJf3geZlpHdirYSsV5WxAE4a0g1xVD60/haAhiq/KRfLYf/yXVSA4FNeLGXuU74WJTDcVeGks83LqsiqKwmwWVHoyxLKFyD72KgftVEv6Ew6oCToyBDLLPPhMLZq/wYmQOX9+V1Pi49c+W0n8giqGbVLUGKal9Y/NmgiCcXSzdRC1xYSU1MC0kt4pkkwvjNUeRFZmFF1cRqS3MjQTL3ZQ3BXH7xb3fG+Xx2NhaaWfVnGbSIxlsYSeTTlBUCbXcg5Ux0MfShTE0w0Tx2ND6EtjD/z979xlgR3Xf//897fZ+t/cirXrvEh1EB2NMc4ltwLj32HGNHf+SfxInjmvcS2yKbTBgwIDpIFEEEupdq+293l6n/R/c1UrLChAgrUCa1xPYuWXnaufOnDnnez7H6jOznDzTS71E03kait0smRampshNyawg+miO0joftU1BlKMsuHA8mTkDUxYRnHKh/SIKhXOZZo2lWqaeOpwm+peD+C+rxzApHJOSUOgLLnr1MIi8ZhLxiEy/oRFHRMXmlIl7JTSPjFsR+dU/LKXIa11jT1Veh8LnLmjiE7dv5tK55Zw9o5hoWsXjkJhb4ednzxxkRX2IWEblF+sKCzBcMqeMMn9hLKHU5+SWsxpoHkiSzmtcu7SampAVPmJ5Z9MjhYVEDGcII1Wo/xc9HpAL88AUr4AEaHn11d7CYrFYLBaLxWKxnKampBrfNM11r/aYIAjhY3iLNcA/ADsFQdg2tu3rpmk+fBx274QbTeb4z7/v4wMra5ElAUkQ6Ipk2NefYE5lYPx5uf0R9EQee0NhW749hp7WcC0ofs1JZy6bzPyqwKs+/lpC5R5CxzjJOJ3XME2Dz17QxE+eaiaWUbluSTXuE9ypbTl5ukbT/O75NtbtH+SmMxr440udLKoJ4FAkHtndxyfOnsZft3RTEXBSV+Tm7pe7+cS5jTy+Z4C6Ihd90SxbO6PcclYD//PYftSx1QL+cW0Ta6aFeXE0RtqlIwC6YfL7Z1r5yJkNVAYc1BW5aSz2EPYce0dv2GN/3efv7Y3zYuso755ZiphIoFOYSJF6qQ/PqgrMsINmp8C3n25mZX2IGeU+EsMpLpxThtMmoYgCZ04v4oWWEeZW+jlzehEZVefHD+zmpdYRPrimnts2tNMTyfCeJVV85Ix6asKnxqoUljfHyOgknurCtbAYRAEjlifxVBfFH59/3H/XivoQf/nYKl5sHcU91mGuGQYvDke595k9FHkdfPniGWja5IKGoxEwaSx288W1TeR1A7skYpjmeADJIf/92H4umF1Kqe+NF/Rb3rzmgTjPNg/zm2fbSKs6/3LFHIIuG/Oq/bhtCvv6E/zwiWYqg06+cfksBuMZ/tYXJzWrhMU+L4H6ABgmo7ftwUhrh9/Y5KghORbL69FNgXNnltAfy/LA9l42d0RYXBNkJKXyyfMaWT2tiJ8+00J9kZtzZpQccxv09UhOBakxgFnvJ9+TwNQMjIxG/NEOzLHVh43ssZ33LJaj8btsZFWdx3YPAHDzGfUsqg6wuTOKTRF4dFc///XoPgbiOa5cUM77V9TQOpzi2QPDVAadPLZngCV1IeaW+9g/kMDvUphV7mV6vZ+y+sLk4r29MRLP9+OQxUJYmWaQ2TGM4JThfBOsEBLLSWLkDp8/MzuGsNV48Z5Xg73Bj63cjeg6MStkOzwKdfOKKJ0R5Kb/28iWrigfXFWHa2y10OklHuqLCvdZfdE0e/sSZFQNn8PGvz64h4vnlZFVDSLpPKMplV+tb0USBW5YXs1oKsf/fXgZj+zq554t3YTcNs6cVoTnOIWoWN6Y/myeTJlCP3ZGU1nMwTS6AV+/dBYP7uileSCFXRZRJJEX20ZYUhtgcU2Ay+aVk0irCM8NkNw9imtRCaZmYOYNMs0RXPOKT/ZHs5wGntw3yLQSD+fPKmFJYxGRdB6HIvFwRwRFFLDLhXDeBZV+Zr0iUMSmSJw5LUxNyIVdEXm5PcIfXmjHoUi8b3kNNkVkJJl7Q/1iJ5Kp6qC94j7RKGwv/sQC9EgO0S4jFzkRJKvdMtUSWY1MXmNWlZ+Seh9myiR+fxvuJaUIdgkzpxN/rAP98nqaY2muXFhx1NBni+UdwTDRhjOTNuuj2fH/l4OONxU8ciRBFnEtLsFW40NN5elSNW58YDv98RwfObOe65dWU3KUvtCXokkGbCp50eDBF7uoDDj51HmNRNM5NrRG6I/nKPM72NoV4bPnT+dPGzt5cu8Awwsq+ONHVvD4ngFEARbVBIlnVX703oV8/s/bJvyOORU+3Har7fpO0DyQ5JNnNTBk6Cj1HvoVnW8/tRsTgY+eWY86NnnHJovMKvcxq/z4TTY2cjpH5ixqQxlSm/oJ3zQXQRSQ/HbkwNujnWGxWCyW40ePF1arTa7vxjE7hH1ZGSgiroXFSG9wgp2ua3z+giZ+8PgBBhM5rlpQwXuWV6Ij8KfH9uMLOaiyJmG9LkMzSD/Xg1LqLkzeNSG9dRCx2ot3Yen484qqvRRVe0/inloslhPBSKskn+nGNb8YRNAjORJPdGH71IKjPv/Q2EjdvKIp3tNTUyqvMndaiH9//AAjqTxzs35uXFNHPKcjuUQiG/tw1PsxdQNMiD3ajv+y+pO92xYLWVXjSxfO4PuPH+BHsSxXLCjn2uVVqKKA+00ubvZGmJpO/IEWXItLEV1yIcx0XTf+S6zvh2XqmXkDM6MRe6gN9+KSwphHVi8Ee73GeFRW0ynxO2jX0tzR3kssq/LuhZWsLLIjS1gBJKeBxhI3t9+8gq1dUb43Nn/hI2fUk8pqNJV6qS9yI4sinzlvGooksq0ryoGBBA1jCwEHXDaW1VsLnllOHXq8DwDTVYSeTAIgut1gKwMKISSiYaKp+ZO2jxaLxWKxWCwWi+Xt6aRUqQmC0AI8BNwO/B6Y/VrPN03zOeAdW72cymuMJPP87JmWCdvnv6L43LmgmNHb9pJvi49vC90w422x6vVANE02p6Mb8E937xjf/pvn2nDaJJbVH0uWjOWdRNUNfv1sK7du6OCLa5v4f3/bQ8ClYJdFfvtcG588p5H/emQfqm6yZnoRP37yIB9YWcsv17Uymsozr9LPbXs7ufmMen6xrmU8gATgjpc6USSB/3p0P6IAN66pJ+i28fm109ENk/u29VIbdnPDsmrCHjtdo2kODiZx2STiGZXBRI7ppYWAErskUhFwIh7j9ySR01hQ4aNYlLAvLiH9RCcAeixPYl033RdX87G/7+fHNyxiQXWAgGvyCj4La4JcubASgJym87V7dnLv1h6+dOEMvvPAbrSx1Qpv3dBBXjP413fNRZHf2qp1lncuuciJkdFIPHN41UGlxot0Agp8FUlkSV2IJXWFzu+O4QQ/eOIg920rJBhHM0k+/aet/P7Dy2gbSpLIqmztihF0KSysDlITnlgotq8/wXf+tmfCti+ubZr0e3OqMb5Kp2Vq5DSdlzui/L8H9wLw7kWV/OGFdrZ1R7n95mX84YV2HtxZ6DQ+MJDk03/cyq8+uITdPXHme5y4cwaiW0G0ifCKATkp7EAOWYEyljfOqYg8tW+QZ/YP0TGSBuCFlhGaB5P88PoFLK0L0B3JEM+cmLR0QRRQSt0knu4mu2fk8AOSgBy2jmnLm7e9O8a/PrR3/OfvPrKfb142i7bhFGtnlfKJOzZz6DL4x41dCIJAidfG6ulF/HljB1VBN4/u7KPM5+DgYIISn5ORZI6Q63CAXm8si7/WS+reifeMjnc1IljtSMtJJJe4Cm2Fsfu5fGcC0WvDe3YV4hQEkhqmSSyrkdMK96eH3HJmPZfNr8AwTF7uiNATzbKkJsgD23u4YHYpzx4Y4nMXTKcnmuU//r5v/HU/fvIg/3bVHLZ1R/m/F9oBiGc1vnDXdu7++CrK/dbEiamUyevEsnkyeQO3XWY4mUMQBPxOGUGAS+aWAyYht41tnRE+sKKW/326hWnFbm4+s4H/97c93H3WDPxPdpNcf/h+S75u+sn7UJbTSiKrcs+WHj5+VgMjqRzPHRyhNuSiNujiwECCnozKqsYwvfEs7aMpZEnE71SoDbko9TupDrn506YuSr0OfvhE89i7qvzP4wf4ysUzeObAEO9ZXHXSPp8ez6EOZxHtIqLPhlLjRe1MjD8u2CXksBPZa0e2ijVPqmg6z9P7h9jUPsrimkU80DHCFYpE8vne8eeIIQf9okFPJIOqGVYIieUdS5BE3MvLyXckJmx3nogJWoaJqRskEnle6h5lMJEjllH5n8cO4HUofHh13aSXLK4J8p6fv0B5wME5M0oYTGRJ53QMw+T82SV0jaYRhEJf3ncf2Yc5di95x0ud+J0KN66pI+y24xhra3dF0jQUe9jWFQXAa5f51HnTrO/wO0SxTyGe0wi6ZLZ3J/jOg4f72v+/h/fxvWuPf1C5Hs+jjmQQFRHJb0eP5Q4/aJrIIQfyFExYslgsFsvUM1UdW9Xh8PfsnlGye0bxX1r/hgNIADI6fO7PW8f7vm/f2IkB3HRGLS+0jPC+FTXHac9PbSnTRJgZwLWud8J2z7kn737fYrFMHaXIiZHIk3ima3ybfVrAapNPEUWSuOXWTaTzhcD9rkiGwUSO/3j3XESvgqPeT+KpromvqTg+C6lYLG+FaYp85k+bx2vx/rSxi7xm8NlzG6fk90sBB7Z6P6kX+w5vlEWUYueU/H6L5UhSyIFU5EAfzo6PeYgeBfeK8td8XVXQxYGBJN+8b9f4tp8+04LHIXPmdCvs63SQzOjs7Inx34/uH9/2X4/u59tXzKZ9JIlmGOzojvH0/sHxxy+bV3YydtVimRJmvL/wP+5ijERhjE30eMFRGG+SXTpixkC3QkgsFovFYrFYLBbLK5yU2UymaTYCbcAG4D9Pxj5MJUkQeffiygnb7LJIZXBip6xc5MS7tgbRqyC6FbznVqNUuKdyV19VKq/jd8ts745NeuyvW3voj01eec7yzjYYz3LnpsJAm2YY5HWD1Y1FPL63sAK8JArEsxqLagI8f7Aw0TfoUuiJZqgOOTk4WEhJddokounDk42DLoUvXdg0HsrzwVV1PLN/iN8+20p3NMM37tvFCy0jPL6nn4d29LGhZZirf/YCv3mulT9saOeW2zbzQssIf9vex2U/fpbzv7+Ou17uomUwQSqrve7nmlfs5X/qymh6qBOiOdwryxEcElLQjuOa6RhlTu74yEpWNYaPGkDySv2xLPdt6wEgr+vjASSH3L25m4FE9mgvtZwm5ICd4HVNKJUekEUcM4L4L65Dcp6YVeOPFM/qPLijb8I23TBpHU6x9gfr+c1z7bQNp/jsn7dx0+830TWamvDcoUSOVzIB1ysmnH7s7AbK/dYE/6k0lMixpXFs3fMAAQAASURBVCMy/nNd2MXWrijfvGwWOc3k4V0T/+6aYTIUz/HFGRVov93N8K93MviTrWRbYoQ/NAd7ox9kEfuMIOEPzELyvv75z2J5pa7RDD6HMh5AcshQIkc6p5NRDcr9jhO6Wq9ok/BfWo9zcQmCIqKUufBfUk/82W60iHU9trw5d2/unrTtueZhVjaEGEjkeGUO1z1buqkKuni+eZj3Lq/lvq3drGgMM5TIce6MUnKaTiSt0jl6+LsyO2ei7BnFe34NoteG6JIxzqlEaDx+qyBbLG+GKUDgigbkUheCIuKcX4TvgpopCSABcNtl3rWwYsI2UYDGsdVnBpNZhhI5+mIZcppO82ASuyzy+QumMxjPcf+23knv+WLrKHv7EpO27+yZ3N9hObFGUjnSeQOHTeTxPQNIositL3TQG8vSPpLm1g3tPLpngA2tI1y3rBqfQ+abl83io2c1sLM7SkbVSQVteM6uKgTseRW8F9ZyUNfI6/rJ/niW08C8qgCCAGc2FdE5mqGpxEN9sZtfrG9B1Q3CHhsP7ezj7s3d9Mdz/Off9/OFO7dz18vd7O6JYVckrlpYwf3bJ5+r9vcneXLPwEk7lvO9SQZ/vp3hX+1g8CfbSDzVRfCqaTjmFRWKjWu8FN00F6XYCm96O8jkdd69qJJzZ5bQMZLiyY5R3Fc2YKvzFe71G/z43z2NfdEsPqeMx3Hi+6QslhPJMSOI/9J6RJeM6FUIXD2tcLwfR4aqk9rUz+CPt6LesY/zXxrhd+fNxDvWp3Hbho6jhqz6nYX2SnXQxe7eGAurA2zujPKtB/bw8ds2E3bbkASIZ7TxAJJD7nq5i58+3cKn/7SFlrHxleqgi1/9wxJuvWk5v/qHJdz/6TUsqAoc189qOXFKvYU+c4csjwdGH+mRXQPH9ffl+5MM/nI7w7/cweAvduC7tA779EDhWjAtQPhDc6zJjhaLxXKK0jMa8fXdxJ/oxHdRLVLQjuCQ8J5fg3NB8Zt6z7ah1KS+7/u39ZBVDYq9dsJuayzxWLQMpVDLXbjXVCA4ZSS/De+l9aRcVqicxXI6kIIOgtfNQKlwIygijlkhfOfXIDpOyrqBp52OkfR4AMkhmzsijKTyCIKAa0kpntUVCHYJKeTAf0kdpmqNLVhOvtbh5KTFwB7Y3ksyPzXHp2iT8J1bjWN2uFB3U+4mdH0TUtDqU7BMPdlrI/z+WThmBEEWsdX68J5bTa49hqkZr/o6t13mxdaRSdvv29r7yvXaLKeovK6Ph3sf6W/be/nW5bOZW+GbEEDic8oUeazznOUUlhgbj/CUoI2OAiCHguAthDopTh3RNNHyJ2aBQYvFYrFYLBaLxfLONSUjGoIgPAbcYppmx9jPK4GPAx8DLgdunYr9OFkCbgW3TeZT505j/YEhir121kwLE/ZMHJTP7hkl9UIfzrlhEARSLw8gem0oJSc/iMRpF2kdyhI8SiFBic8+aUK65Z3PoUgUe+10RzJIYiGvKJrOU+xx0DWaQZYK2yLpPHXhwjEqiQKCAD2RDOfNLAFgOJGjKuikO5JhUXWAc2aW0BvLjA/yBd02WoaSXLu0ir9uKYR51IVdXLe0mqf3D9ITzTCUzPGBuhp+8EQzdlmkscTNj588iCwKfPmiGTy8s4/v/G0PC6v9fPWSWSyoDhz1MxlZjZKEysgLhTTX9MsDSCEHnjMqcS4qxhZ28UYzrh2KRNhtZyiZG/93OlKRx47dWr3+tKYOphn94z4cM0LYG/zkOxOM/mkfJZ9eNKngV4tkMfM6ot+OdByKDiRRoMhjpz8+ceK9XRbRDJMHtvfygRU1lPsdHBxKsqs3TnXo8DWnJuRGEJhQEP/CwWFuu3k5t7/YQfNgkvcuq2Ht7FIEwRqdmUo2SSR0xDX50PW52GPHecR56UhzfU70u1swc2OD0rpJ9N5mij+5gPAH52BkVESXMmWTii2nHrdDRhQERIFJham6aeJUJP5hZS1O5cQeY0qRE1u1B8mtoEdzxP7eBrpJttaPe3k5gjWabHmD6osmT64t8ztw2aRJk8YASrwOBEGgKuTi0d39XDG/gsZiD6ZpEknnkUQRgcOhXloki/m3dnIpFbUzgXNuEUgC2elBwiXWaluWk8fUDFLPdJPeMYRzdhhHU5Bcawx9NAvlU3dsVgQcfHFtE0/vG8Rllzh3RgluW6Gt7JQlRFHAqUgYhsmqxjAVfgejKZVUXqfcNzkoryLgIJ6dPGgePIYQSsvxpUgisiigapBV9fH7/+qgkw0tI6xoCPOnjZ08tnuAb1w6k6Dbxs7uKNGMxpLaAP+wuJK6vgzpnSM45xWBYZJ6vpfqM8qRBes+3HLiBZ02vnHpLBBMPHaZDS3DrHWVcdXCSlw2ie88uIfPnz+ddF7nB08c4NwZJYTcNn77fBt/2tjJNy6bxarGMFUBJ7t74xPeO+RWUHXphBzLRl5Hj2YRZBE5NHnlQiOvE3+8Az1y+J4ytaEPx8wQoeuaMFIqgkM+Lv0WluOjyGsHAWaX+/DYZW6eWUbij/uwTw/iWVWO2pci9pcDNFxSjS1gFVBa3tmMvI6R1nDOC+NcUIwgCickTFcbSBO9r2X8ZzOrU7quj48squIHL7ZTHXQetd9/d2+c7zy4h69fMpMSr51v3LebZE7DqUh8+aIZ3P5iJ61DCT5/wYxJry3xOhhN53lib6Hw+SfvXYxNFinxOSg5SrvW8vYnIoAAg6kclUcJ8a4MvLW/qxbLYWQ0ZL8dQRFJPNONPjI2FqAZRP68n6KPzCP4HofV72uxWCynOLU7QeLxTgC0oQzOeUWFOoiVZUhvss/LbZ983SjxORCAm9bUTRintLy6Cq8Dz6ZBsj0p3ItKMFSd5NNdOK5ogNqTvXcWi+VEU/tTjP5pH45ZIeyNAfLtcUbv3E/xpxYgewt9NHoyj55UEd0KsrVYzHF1tMVRnIqEbazmkbxBtjmCe2kpRkYj/mQXSAKln1mEHLLuwy0nz9GO3RKv46i1qSeCnswzetcBRJeMe2U5eiTH6J/3U/yx+dhrrEVULFNPtMsgCXhWlaMNpIk92AoCKOUebOWvPr+ixDt5PKTM7yDgtK63pwOXTSJ8lFCR6qAL0wTdgI+cWc+GlhFqQi4W1QSt+1zLKc1MDQEgekvRR3YgOJ2IrrGaSEcAxakh6gaGbmIYOqJojSdYLBaLxWKxWCyWgqmqyC85IoDkMuB3wBWmaf4GqJ+ifThpnIrEvEo/L7aOEPbYSGRUYhmV0BGD/aZhkt03ipFSSb3UT+rFPoxEnlxz5Jh/z3Ayx71burnx95v470f3sb8//vovOkYBp0I2b9BU4qHiiEI5WRT45NmN+KxOuVNO2GPn21fMRhCgN5phfpWfZw8Oc/n8cmRRYHdPjHOaitnbl2BJbRCnIrH+wBBXL6okldfJaQZLaoPcv62Xm8+opzLg5MI5pfzg8QM8unuAy+cXVrPWjUIatWnCoQyDqxdX8b3H9hN02WgeLKxQrY3NZp5V7mNrZxSAdy2s4C+bu1nfPExG1dnQOsqX795OXzQz6fOk+pIM3raHfPvE74U+miXxRCfCq4diT5LJ6/RE0mzuGOUPG9r5xDkNAAwlcswq90547revnE2x1xqYPJ3psVxh8vueEZLP9pDviGMkVIzk4YmPpqqT2jLAwI+3MvCDLYz8YQ/qQOot/26bBP94YdOEbbPKvFQEDk8yWtc8xIr6MADtwyn+tLGTvljhOxRyK3zlopn4xiYWNRa7uemMOhZWB/netQu5++Oref/KWqsI/iQo8TlY1Rim2GOn3O/AbZMp9hRCwVoGE3xh7cS/+5wKH0GECccdACbkDsbQRjLIAYdViG55S/wOmXRe47ql1RO2X7O4itFUnmRWYzSdR5FO7C2IoeqkXx4k+WwPmZ3DoBfaENnmKIkXe9GT+RP6+y2nnncvqsJzRKGP1y5zzowSntg7SKnPwYyyw+0/QYD3r6jhib0D9EYyTC/2MLPMy2gqT6nXwd+29yIANSEX9UVu9LRKriOOkSqcn420RmpjP6kNfdhT1soClpMr358k2xIF3SSzc5jksz2oPUny/ekp3Y9Sr4PmwQReh0xeNdjeFaUmXBgI97tszCzzUhlwklENltSEsMkS8YzKcweHmVvlnxCa6nPKzC7zcd3SaiTxcChVXdjFoprAlH4uC5T6HNhkEROT82eVsqsnhkORkEWBGWVe/vvR/XRHMlw4u5SO0TSbOyKcPaOEr10ykw80lfE5txezLY4Rz5N6sY/Uxn6MlIprKIsovrHQsUgqT9domqxaWBHpW/fv4hO3b+bJvQMkc9oJ+hewvNOF3AoHBhLcv7WH+rCLoMuGzyGzsX2U4VQe0yz0Z9lkEQGBcr+D/3u+nWha5apFlWxqH+Ujf9jMVYsrJ0xkD7tthD02zp9Zyqf+uIVv37/rqCt1vRnqUJqRO/Yy8P0tDPxoK8mX+jBecYwbGY1ca2zSa/WRDKIiIQccVgDJ20x9kZszpxVx+4sd1IVd1CpK4X7/QITksz3kDkYx4nkCpoBxtBQ9i+UdQh3OMPrnfQx8fzMDP9hCZvcwgnJi+hj0WG7SNiORp85lwyaJfOrcadiPErKa1018DoV4VmNbd2y8HfHe5dX8fF0Lu3pi+F12eqMZakOHAy8lUeA9Syp5aiyApCbk4g8vtHPtLzbwP4/tp2UweUI+p+XEUmSRoNNGfyzHpfPKcR95b+KQuWRe2fjPBwcT/O9TzXz4dxv540sd9B5lnOsQUzfJ7B5m8MdbGfzhFoZ+u5P8YIrcwegrngj5roTV72uxWCynMNMwyewfJddxuAbCzOmkXx4g8VgHRlp/0+/dWOSmsfjwhD5BgM+dP51kTsUmiwRcylva99NFlUvB1pVEj+RIvtBLetMAZkZDGJraPlaLxXJy6LEcGCbZ3WP1Ql0J9GgOI1m4V8y1xxj8+fZCu/5n28i1Rk/uDp9iSn12zpw+cTmyT5/biGusL0GL59CGMiSf7yW9ZRAzr2NmNLRI9mhvZ7FMmbqwixmlhxeEEAT4wgXTkYSp6dvVkyr6aBa1O1mou9lVqLvRo5P7yyyWqaAn82T3jJJ8tofsgQiYgAF67LXP18vqQhQfEUJhl0U+uKoW1Th8n9Q5kua3z7Xx4d9t5LfPtrKnN0Y6b40Nnwrqwm4W1/gn3Ls6FYkrFpQzlMwxt9LH1o4IJV4HA7EsOU0ff+5IKsdft3Zz0+838d1H9rG37/jNx7FYThYhPURGk5GdbvTIKHIwePjBQDWyPY8wNqdHV62aRYvFYrFYLBaLxXLYVFUL5wRB+BBQDXwWWGSaZo8gCD7g1WNoTxHdkQyfv3Mb58wopr7Ijaob3LulhwVVAWrChY8viAL2Bh/5jokdFba6Y0uONgyTP7zQzk+eOgjA0/sGuWtTN3/5+Erqit76CsU2ScbE5MGdfXz1kplEMyo51aAy6KTcZ62eeKo6u6mYez6+mv0DCS6fV04sq6JpBv934zJ6IxlK/Q6uX1ZNOq/xmw8toTeaJeRWuGhOGcPJHJfMLUc3DBRJ4Pc3LuXBHX1AYTXAxTVBPrS6Dr9TQZEEHt8zwIdX1/GjJ5vJ6waGCTu6Y1wwu5QDA0nSeZ0ij43BeJaZZcUAVASc3LOlB4CQ28ZHz2ygfSTFj59q5ooFFSypCTLal0CJq7BtCK0lhtAYmPQ55TIX4iuKZPK6jmAKZFSdSDqPIEDHSBpZFPjl+laW1ob46dMHyag6cyp8fPmiGTgUkYvnlBJJqyRzGk2lHuZW+E/sH8nytif5C6vRcsQ4oOi1IXoOH3P5vhSRuw4c/rktRuyRdkLvnfmWioN1Q6AvmuHHNyykL5bFY5fx2GVimcMT8KuDLvrjGSRRQDfga/fu5IZl1XznXXPY05fgd8+3cf2yGuyKSF80wz/etYOHPuOjtsiNZCUdn1QrG8L8+L0LSWQ1/vORfdxyVgMum8TtL3bxlYtn8L/vXUR3NIPXLiNJAi8PJVjqUSYGkQiAYTJybzOO980keJRVsC2WY9EdSXPj7zfxs/ctpnU4xeKaAKMpFZsiEknlaRlKUu538MSeAVqHkiyqWYp8gsJIREXCMTOE2jNxgo5S7CTxaDuSXcI5twjRmjhpOUZzK/3c84nV7OqNkcnrjCRz/NPd24lnNR7Y1sMfblxO60iaZFalMuDk58+0sG8gwX+9Zz41QScb2kb56TMt/PoflvL+FbV4HDIzyrxIucLqWmpXAtGtjAeRACBA2i4ROnkf23Ka02M54o91YKv2kt09MuExW5nrVV51/OU1nR89dZCcqrN6WhjThOeah3lm/yALqgMALKkN4VAkYuk8o6kc33/sAN++YjZP7RukcyTN/1y3gL5oFlGESErlG/ftIuyx86ULm5BFkbyuc97MEmrDp3z31NvSrHIf+/sTjCRzLKoJsqk9gt+lsLmjEMq7pDaAQ5H46dMtXDO7jMqoiiufwDgYQ+1J4pgWRO2dGODoOuK+fziR4/mWYZoHEswo9TK30kd9sZdUTmMkmcchC+zoifMff99L63CK7149j3++fzc5rVBc8fdd/fz0fYu5bH75lP2bWN45Htjey+7eOOfOLGE0lefqxVVkVJ0XDo4wr9KPQxHRDRO3XWZFfYin9w1hl0X+/eq53LahczxY5Fv3pfnny2YX7s+AIo8NE/jiX7Yzmircv/95Uxf3fGI1cysn9zMZOY18T6oQEuJVsFV6kY6yaqqpGSTWdZPbX/h+mTmd6F8PIhc7cTQExp8numTsjX6ye0YnvF4KW/eLb1epnMatGzo4q6mE9QdHuLEyROwVfVGSz0ZnOscvX2jhv6+ZR1OZ1WdpeWcxdZPk8z3j5yYzbxB7oBWlxIVjWvB1Xj2Zqhv0x7IokkCZ34k6kCLfm0IQQKnwIAWO0qfrs9FYE+DeT65mTsXRx+78DpkV9UE2tIxwwazS8e1uu8xl88pxKhKtw0kQ4KuXzCSWVUlmNUp9Dja2jZDXDc5uKqZlMMnvnm8HYEtnhEd29XPHR1ZYYdDvMPsHkuRUHUyTfX0J/uua+fTHswiCQJnPgccuMZjI0jmS5mv37qR5LGzmmbHA///v3fNwjo0PGHkdtTeJNpRB9NkYuWMvjIXrq91Jks/1YG8MkNk+NGEflJKpu3+zWCwWy9TSUypqX5KR2/bgO69m0uNKhQfpLQSFZDSDz5w3nUROJZ3TqQw46Y2mKffZ+dnTLcwo81Hqs+4TX0/GNPHU+sjsGJ6wXSmyrtEWy+lACky+h5OCdkSPjBbJMnLb3vHxQT2SY/i2vZR+eiGy1Q93XCSyGpfMKePSeeXE0nlKfA5SWY2MXriZkv12EAUwDt/8iy554pitxXISxDIqHzurkYyqk8xpVAScpHMq44MIJ5hgF5FCDvTRiQEPotOqsbGcHKJdKpyf00eEg4ivf0ym8yrfumI2o6k8ed2g0u8kns6RVQvX2Wg6z1fv3c4LLYU+52cODLGsLsjqxiIunVfGjLJjm79heXvyOBSmFXv4/rULaB8phEDaFZF/eWA3X75oJj9/5gANxR5qQi5ymsEdL3Yys8xHVdDF7S928IPHmwF4at8gd27q4o6PLKex2MOevgSP7OyjyGtjRX0Ij12h2GvH47CCOi1vb2I2SkZXkG12MkPDSEVHhPX5q5FtHQi6AUhoqopit8ajLBaLxWKxWCwWS8FU9Qq+H/gqkAe+C/xBEIT1wLuA30zRPpw0umGSVfXxAIZD8mMTGqBQPCbYZWzVXvJdCQBs9f5j7rjd3x/n18+2UhV0cs2SKvpjWe58uYtt3bHjEkIiSSJeh8Ldm3v4y8uF0AdRBMOAX35gMXOq3vKvsLwN2WSJxbVBZpR5sUkiggA5zcBtl0nnNSRRQBZFsqqG266QVXUEwCaLpPMaLpuMIAhsahvl47dv4Yblh4tfbnuxg1KfnRtX1fLrDy7lB48fYP9AnP/v3XPHC3v741kcisg5M4r508ZOvnzRDB7b3U9d2EWRpzCZQhYFNMPkljPr+eGTB8iqBnZZRNNNqkQJ6a8tyDPDJPcWOoqz+yN41lSQ3NALBohuBdflDUhuhaFEjlg6T+twijte6uCKBRXctqGDVY1hnt43yPRSL23DKQ4OJplZ5iWjFhKxd/fG6YtluWROGe9ZVInHoYz/O1ksos+Ob20t8Sc7QTcRHBKBKxomTAjShievapjdO4qeyCO+heKCZE7j+08UOsNlEQ5ddn72vkVAIdn74rll3Lmxi69fOpPfv9AOwF0vd3HG9CLiGZXBRI5fP9t6+PMIMJLMUVs0cZJmTtMZTebxOmSrQ32KOBSJVY1FZPI6t73Ywb8/vJePnlVHic9OIqfx2T9vm/B3v2JWCeddUkfsb62YWR0kAe/ZVaR3DKEPpBnojVshJJY3bXtXlJ5olr54li/ctR1xrPbhUL3Obz+0lJ8/00L7SJoSr/2Er77tWlhMtnkUtbMwecM+LYCR0zHzBpmxCUuuRaUI0tQUaVje+WaUeakLu/jAb15i09jEeCicY+/f3kdt2Mkz+wZpH81w7ZIqBhI5KoMONraP8sMnmplV5mNaqZuRpEo8pzI4ksbcE8FMqGR2j+A7r5r4E52YucL5mbU1HNRVrNssy8mS70+ROxDFd3Ed2kB6vL3qXFKCrXrqim1yqkEqq7KtO8bLR3z3VjSEyKo6GVVDEkRml/tI5jT29SXoGE1jmiYhl41rllTxtXt28t1r5vOdB3bTO7YaUmo0zXcf2c8XLpjO/z59kBllPmaVW5OxTwanTcauSITcNtpH0lwyt4w/vdTJsvowADef0cDn/ryV8xrDfFJxYnusG+/ZVST2joJuInoVlAr3eBCJY04Ye0Phb6kbJndu6sRll9ncGeW+bb1cMLOUyxeU84PHDyCKAlctrORr9+7EbZe4bF458YxGXjdYVhfE51TY2DrKT55q5qymIrzWfY7lFWIZjd29cXb3FkKlizw2vnThDJrKPNy5qYt/vHAGd7zYwecumI4oBMioOpfOK6Mvmh0PIAEYSub45v27+M0Hl7C+eYho2sGBgQSxjMrqxjA2WWRDywgb20YnhZCYpklqyyCx+1vGtznnFxG4atqkyWZ6UiWzc+KkJwBtMANHhpAoEr61taj9KfTRwsqGnjUV2Kq8b/WfzHKC6KbJUCLHS23tAHzg+qV4z64m8Wx3oS/KKeM5qwpdzbK9O0bLUIp03mBhzRsPbrBYThYjpU6auAmg9qXecAhJTyTNr9a38seNnXjsMn+7djHCnw8U7scoTDjy3zwH9bxqlGcOf4+MS+uorvHhd00O5h+IZdjWFaVjJM2aacW0DCV5YHsvX7l4Bn/e1EVjsZs7XupkU3uhTdsbzZLIaNz6Ysf4fKdL55WxujHMwuoAP3qyecL7Nw8mOTiYHA8hyao6o6kcLUMpnDaJ6SWFc3Q6p1HktaMcJfg1ndewSeIJC4W1TJbTDNKqQUXQyTfu201G1cfHVgH++5r59EaydEezdEcyfHBlIbj0ns3d3Lu1hxvX1DGvKgBAZscQkbsLx4X3vOrxAJJDMluGKP7EAtSeBNpw4b7HtaIMW411/bZYLJZTkZHTSDzViWCXQDPJHYziXlVO6sU+MEH0KATePQ3R9ebrFaKpPJ+/cxtweJxZEgXu+tgKRlJ5VM147TewAODQTJQKD2pv6nAf69wiBLvVJrNYTgeSX8F7fjWJp7vBMAv3m5fVI3vtZNtik8IuzIyGFs1ZISTHSSqn8fX7dgGHr2WCAH/52KrCtmIn/kvriD3SDpqJYJfwnlNN4rkelEoPivV3sJwkw6k8X71nJ3D42PXYZe786PKp2YG8gWdNBYknOwuhD6KAZ00Fhmq1/ywnh6EaeM89oqZGFvCdU42Re/VjUtUMNrVH+eX6Qt3roT65BdV+/uOqwljbgYEEL7SMsroxxKqGIl5oGWZD6yhrphXx+Tu388dbVhB0Ha7xzWs6hlmo2bS8/cXSeXqiWb56704SWRUTOFSumMhpDMSz7OyZuHCwquns64vzy3WtOBWJlQ1hsmphsaqu0QwdI2kiqTyrGsLopsnvnu/gr1t7WFYX5NtXzDnqYhIWy9tGPkHOkHHYbOS7unDOm3f4MX81spxB0HVAQs/nX/VtLBaLxWKxWCwWy+lnSmbIm6Z5EPjIoZ8FQXgKuAD4immaT0zFPpxMbrvElQsquHdrz/g2v1OhzH84IdLERO1LIgUd+GYUCibzfSmMlDbp/V7JMEzSqs6X1s5AN00e2N5LkcfOT9+3GIHjN8HTMM0JC78dKpLTjBM7idRy8gzEszy6q5/7t/fw/hW1PL1vEL9TobHEwwPberhheQ1bO6NkVZ3l9WHu3dLFuxZW0jqU4rmDw5wzo5j3Lq/hs3/eSl8sS1XASX2Rm7bhwuSgSEqlKuymN5pmQVWAsMdG2G3Droh8cFUtt27o4DfPtnFGY5ifv38xFQEn1yypJJnVWTu7jO5Imo+d3cAdL3UyEM+RVQ0USeArF8/kthc7EKuLMAcz6GVZ5CIn2kCafEccM6/jO68Go8jJnd0jRA70ssbU+OZ9u7hhWTXffWQ/H1pdx38/up90rvDZ9g8kuXBOGQ/u6MOhiBw5d/r6ZdV47DI7uqM8tX+IJ/YO0DqU4vpl1Vw6t4xSvzUoeTrThzOktwziPacaTBNTM4k91IpS4UEpKhwbknvyZDapyIHoeOsDFoJQ6Dw/sg5MM0x+fMNC8pqBx65QFXLx3b/vJz+22odJYZBldUOYoEshkj5c+HDZvPJJ5/3mgQQ/erKZJ/cOMq/Sz9cunckiayLLlHHaJD53/nQ2to3y62fb+dbls8eDH478u19RFSL+UBvBq6ej9qdAEMhsH0IbziB6FF7ui1M5LWRNrrS8KZph8r/vW4QgFEI9Xtk8FAXYODbR5ryZpfTFstSG3a98m+NGKXYR/tAcsntGMGJ58j3JQvEtIAftxB5tx1bjs1aDtbwhggDyUYJrJBH++FIn37x8Nt++fzd2WeQLFzSxty/B/zzejCwKfOrcRn65vo0FVX5aBlNcXuoj9Wwv3jMqMTMaiWe68awsLwSQ+Gz8R/sAl5RX0h/LTrhvtFimipFUQRaJP9aBe0kpzgXFCAI4ZoWRfLbXf4PjpGMkzfmzS9nWHRvfJgiwsiHMk3sHeLZ5iPNnlbGxfYS6kBtZgisWlPOVe3fyz5fP5oWWEb64tomNbSNIR/n+ypLAVy6ZiaFb/RonU0Oxm929MdpHUmRVg9WNYaYVu2ksciOLAqIgcENDMbbHewHQIoUibG0wTeLpLlwLS3DMCmOr8mCr9yM5Ct2dXZE0ugn/9cj+8RDRRE4dX2X+21fMpn0kxbsWVhBw2Xi2eYi8ZvCLDyzhr1t66Iqk+eDqOlI5lePYvWY5RZimyZppYe7Z0j2+bTiZp9zv4Lql1fzHw/v436cOctWiSpIZjVUNYWaWeXn+4Agex9G75Pf1J5hT4efBHb3YJImfvm8Rf9nczVAix6fPm0bgKJPHtJEM8YfbJmzL7BjGs7Ic6YhgEQDBISGXOFG7khO2S77J94C2cg8ln1iIOpxBtEnIxU5Em1VU+Xbld9r40Opavv3AHqCwHmZm1/ARfVEGqU39+FaXAIXg6cf2DDCvKoAkWsGMlncGwSGhlLnItcQmbJcCkwNBXotpmtz1cjd/2NABQNhjR9s2iDwWQAJgpDUyO4b5Vvcg7z6njCJRJFjm4efbumlfd4D3r6jhwjmlFHsd4+95x8ZOZpf72NoVwTBhaW2IJ/YM8L9PHeSiuWXIojgeQAJw3swSfvJUIVDiUB/Kwzv7+fENC1+1iF03TQYTWR7fPcCfNnVS7nOwsjHMX17u5uYz6vm/F9rpGE5x1aJKbjmzgbqxEOm+WIa/7+rn7pe7mVnmnRBsYTmxijx2dvVGqQw4kMfOt8YR/bWqbuB2KHjsKl+7dCZ/ebkbt13iK5fMpGMkRSRdKPTVIlmiDx4OCheOEiQjuhUkv53ijy1AG8kgKBJykQPRCsu3WCyWU5I2lCH5fC++tbUA5FpjGFkN3/k1mIBzThhb+VtbrEg7oi/k0HijKEBOMyn12Ql7pq6P8J3MLgqktw1iq/eN97Hm2mKYqtXZZLGcDrShLJmdI3jPHeujUQ2if2vFVuEpBEUdSqU8RGBSsLDlzdOP+Lc9fC0TxhdMESQRwSXjPauqMAZgmCTWd2Or9aENZ6wQEstJYxzl2JVEAcOcmr5cE0i+0ItrSSmCIhbqy3YNY6ubuoUqLJYJTEg+33u4pgZIbRkkWPvqx2T7yMSxsEN9cpIg4Bgb70rldH7+/sWsbx7ige29LK8L8Q+r6jg4kGBvX5yeSIagy4amG7zcEeGX61qIpPPctKaes5tK8FvX7Le1PX1xDg4lkUVhUh1jJq/z3uU1/OjJg+PbfE6ZEp+DeFZjTWOYOZV+ntk/yPXLatjSEeF7j+3n3JklOGSJVF7n3x/ey9rZpXzqnEZ++kwLH799M/d+YvV4kLjF8nYj5pPkdAmPKKH29uK77NLDD/qrEEUViRxgQ1PVV30fi8VisVgsFovFcvo5KZVHpmluBbYKgiAJgvB+0zTvOBn7MVWGk3mcNombz6hnQ8sItWEXi2qCDCcPp0QKmomt1k/iyU4yO4YAkIucOOcXve77tw4ncCkiqbzGD544vDrahpYRfvOhpcftc4iCwOXzK3hge+/4tsZi94SkX8upwzRN/rSxkx8+0cxnz5/GvzywGwT44Ko6vvO3Pdx8Rj0/eLyZkVSOL1zQxNf/upOrF1dyx0ud7OtPsGZamAVVAZ5tHqZvbLXpf39oL9+8fBadkQx5zaA25MIwTP75/j3IosCXLprBJ+7YwqfOnUZvNMMX1zZhl0Wqgk5ue7GdjGryiXMaWV4XolwWKfXZqS9ys6QmyEttowBcMrecOzd10TWaQsjqmEBm9wj+S+uJ/b0NNBO1L0XOKdFbYsP02mhw27jl1peZW+Hn2ebCaoo+h8xAPEdjsYeuSBooFIQ6FYmMquNzKjgUkZqQC8M0+e1zbXzhgul8875dpPOFguXv/G0PI6k8X7ygCdEq6D9tGVkNbThD4snOCdvN/OHCdqXCg3NemMzOkcIGSSD4rmlI7rd2fvU5FS6aU8Yju/rHt80o9eK0STQWezjvf9bxodV17O2LjweQAFw0p4wXDo7QWOzhE+dMY3tXlLbhFCsbQqi6OT4gDxBN5/nSX7azvTtGmc9Bmd/BT55s5ltXzqHuBAYMWCZaUOXn65fOYiSVwzBNPHaJ2eU+9vQdTmsvsysYaY30lkEEWSCza+x4E0FbW8PmtgGuk61VtyxvTk3Qwb1be7loThlzK33sOmKlgPNnlSALAotrAlwwq5Sn9w8yv9p/QkNIAGS3DVuVl+FHdxUm0wNSyIFglzASKsYR52GL5VjYZImPntXAhtbRw9skkdqwm55oF/v7E1y3rJpir50yn4NdPTE+c940bLLIb59r5fplNTywvRe/UyHrdmLTDEzdQC51oQ2kSazrRnDKRK6oo7HSz7auKKOpHFcurLImh1qmlGmYZPaP4j2rksRTXaQ2FdqS7jUVyMVTV3CZzmvs6Y/zQssIX7pwBk/uHcBhkzh/ZgmSAF+7dyffuXI2u3qieO0y6bxGRtV514IK1jQWASYem0TApfCzZ/p47/KaCX0mXruMbsBPnjzI/334+PWdWN44uyxRF3bx4VV1JHIaOVUnrxv88+WzSasa1y+rxn7EZTuzZxj/JYfv8dNbB5GbgoiLi3GOhTtkVZ2caqAZxngACUBFwMlT+wb56sUzccgSRR4bI8k8v362MKlzX3+C5w4O87GzG3lkdz+7e+N85eKZeJ1WEZllokRW4+GdfXz90lk8uXcAzTC5YFYJ+/sTzCz38qMbFjKUyFHsLUyOv+pnL/BPFzah6Qb7+hMsrw+xse1wm2JVY5idPXGe3jfIJ89t5IdPNPN8yzCfPGca33/8ADu6Y3z/ugWT9sPMG5hHWX3QyE5u60oOmcClDQz/btf4a+zTAyiV3qN+RslrQ/Ja/b7vFLIo8oULpvPUvkFypolc4jzcFyWC/+J6ehNZltUFscsisXSe7tEUtUVvbWKixTJVRJuE78I6hn+7EzNfOIfZ6n3Yqo9+Dns1o6k8f3m5a/znIo8NZ1zlleWU2cE0Z80s4YsP7eVLF87gJ3/aTG5s1sc37tvFcCpHXjMIOG0sqw/SMpikZShFZdCFbph4HRL/cuUcYhmVrKojvqLLzTDNSYXPAJG0SnckymXzynloZ9/49lnlXmRR4M6NnfzP44U27a6eOM+3jPC9a+fzuT9vQx0L1rvjpU6SOY3/umY+kiDw22fb+M1zhcCqPX1xHt8zwH2fWkNjifX9P9H6YxkSGR1ZFHjfiprxlVehcOz5nQoem0heN/nW/bvHH9vYNsp/vmc+GVUnlVOxqTrmEdf2fGcc57wiMjsL41kIEHj3NOSxUB7r+m2xWCynPmMsQC17MIJrSSnpzQOovSnUvhTBa5vecgAJQMilUB1y0jWaGd/27kVVyJLAh1fXMZTIvuXfcTowdBPfsrLxfiwAe6Mf02kFfVospwMjqxXCtF9RL2TkDZRiJ/7L6on97fB9gv+S+ikdhznV+Z3KhMXSAK5cUDEeEgmFMObRp7vRhgrXO9ElY6/zoUdyU76/FsshxV47IbeN0dTh+vL3LqsGYWpCzAQRPMvLiD3aDmPDD865RQivEpxrsZxwIriWlE64nrqXl8FrHJKZvMHMci92WRzv1wW4fEEFpmmS13RCboUv372XAwOFwJLmwSRbuiJ89rxpOBQR11hYyfbuKO//zUvj4Vaf/fM2vn/dAq5eXHUCPqzleBhN5fnW/bvxOmQ+vKaO/3nswPhjAZeCJAp47TIfObMwr6c65GJJbZDmgQT1YTcrG8P864N7uWlNHT9+snl8DsSBgSRnTi9iaW2QaSUeHt09QOkqB1+9eAbffXQ/XZGMFUJiedsStRQ5Q0Y/0Ay6jmP27MMPBqoBsMkZwIuu5o/+JhaLxWKxWCwWi+W0NCUhJIIg+IBPAZXAA8DjYz9/GdgGnNIhJG67xGO7B9BNk0U1ATpG0vx9Vz93fmzl+HNEl4KpG7iXloIsIgigp9RjmoBumCa6AX/cOHHAKq8b7OuPc1ZT8XH5HJIoUO538OnzprG7J059kYuAy3bU1YQt73z9sSy/HiuIFBCIZzWuXFDBwzsKha9uu0R/PMuK+hDrmwvBOdVBF/du6QHgvctr+MyftvLh1XXjgyJd0Qwfv2MLi2uCvG95Df90zw5uPqMe3TC5ZG4Zd23qwjQLCz08sXeQ5w4WJlt86o9bAagJudjYNoKhG4xmVB7b1Uex18lDO3v5xqWzkESBmrBrPCgnF7RjEwDdJPFMF96zq8EpMeoQ6ZRMDsYy/Off9/Hp86aRVQ1U3RhfjVYSBUQBukbTXDa/jEd2wYM7+rjpjHp++vRBfvdcG/944Qx8Dpl/vq9QHGqYjAeQHPLr9a28d1k1lUHXif2DWd625CIngk2aGDpS7UEOHu5slrw2AldNx72yAiOjoRQ5kUve+jHjUCSW1QZpKHKzty9BQ7EbuyximuCyFSbc3f5iB589bxqDiRwtQ0nOn1VKXyzDI7v6+dS5jXzuz9uYWealMujkge292CSRy+aVjf+O7kiG7d0xPrCyFlGAZ/YPURlw0jaUskJIppAiS/REM/xq7Lz9z5fN4qymIlY1hmkdSjGr3IsQciC6ZLL7RnHMDOFbW4uJSbrSzS0P7+bf3jMPm2wNGFvenGTO4J4tPaxoCLN2dikrG8K0DBaOPVU30AG3XeZHTxYmyphHm2lzAtjKPRTdNJfM3hEEE4yMRuKZLuQyF3Lwja2WbLEA1Be5+cF1C3h8TyEMYWaZj98+18qsci9twynqwi5KvHZu+sPLk1777sUGrUMpLppbRtotE3ArJJ/rwb2sDNe8IkxRYKjEwb88d5CX2yN8/oLpqDr0RTNUhay2pGXqCKKAc2aI5LM9+C6sxdQMBFlErvQg2qaurfBi6wgD8SwbWkbY0hFhRX2InGbwu+fa+MrFM9EME6ciEctohN0KkigiCga7euPUhFx8/s7t/OC6hbzQMsKaaUW82DrKP100g21dUYJuGxfMKuEf79pOPKsxmLCKSU86E77z4B4yeZ2FNQF6oxn29iW49ablLKkJ4BFlRLeCkVJBK9zj+y6sY0Q06cmpPDIQ47zBBOF0jmhG5bfPtuGySayeNjHcVzdMPn52IeDhv66ZRyJrcu/W7gnPSef1CavM3bqhneuWVhH2WG0Hy2Eum0TIZeO/HtnHsvoQTknkB483883LZ3HXy900FnvwOGT8ToWfPdPCgio/e/oTzKnw8fsNHdy4po5F1QEODCRZUhsgkdP45brC/Zw2dvxlVWPCap13vNTBZfPKsR9R6CsF7Sg1XtTOxPg2wSa+6mQFe72fkk8vRB3KINollDK3NVH5FOFxyPzbQ3tZUR+iM6fSAIX7ft1AkESSoxnyYYkV9WHcNolFtQFsVhCp5R3GXuuj5NOLUAfTiDapcG/ve2PXZ5dNpr7YTe9Y0fD2rhjaRdXQFp/wvJEqN7quF1aq1/QJheoAv3++ncvnV/DTp1so9dr5zrvm8PHbt3DRnDIWVvsZTub55n27WVYfQhIEqoNOZpR62D9W0D6YyE2aCFXstVPmd7C1M0pFwMEnz2kc79NVJIH1B4Z4+IhgEii0WwbiufEAkkP+tr2XL1zQhCDAHza0T3gskdPYP5CwQkimgN9l4z8f2cKNq2qoL/byhbVN7OiOUu5zUOp3MJTMURd288eXXjEh0YRtnVEunFNKMqdT7Hdgnx4g1xwFILs/gmN2kPCNczDzOnLYiVJq9RtYLBbL6UQOORA9Cvm2OIIo4ruwFkwT+7QAtlcJmnyjREHg2iXVjKbydI6mmVvpQ9NNoimV7z6yn7uOqHeyvLqICFJrBN851ZiGiSCJqENpcnbrfsxiOR0oxS6QRTjintLW4EcK2BEkEfeyMmzVXvRYDslvRyl1IVj9NceNCVy1sIJoRqV9uHAtM03giFJXpdSN55xqjEi28JhuEn+ig6Kb5p6kvbZYClkjN59RT280w0A8y4LqAJig6VNTZyP5HOQHUvjOP9y/nO+JI/ussQTLySH7HeT7k4drFySRXFccyf/qYQ+lfjstQ0n+8cIZ7O+Pk8rrLKoOIJgwklKJpGOMJnPjASSH7O1LkMkbfOrcaVQGCmNtL7SMTBivA/jFuhbWzi7F67AWsng7GkxkaR5MIgjwvuU1fOnCGWzrilDidVAVdOJzyPzuuTb6EzkW1QToHEnzyK5+vnfNfF5sG+WR3YWFejwOeTyA5JBnm4e5dF75eJ/8Y7sHuGpRBe9fXoPXcVLWhrZYjomkpcnpTvLbtwPgWrbs8IP+QgiJohSOdy1vhZBYLBaLxWKxWCyWw6Zq1OI2YAawE/gI8BhwLfAu0zTfNUX7cNKkchofPbuBdF7jyb2D7O2P86HVdbwyusM1vxgkgeSz3SQ39mOr9WGref0iQJtYCC1xHiVp2n4cB6b8ToWw28aBvgTxTJ72kRReh0zoGIJSLO88kijgHJtgdmgBgJymj2+TBGFsm4Fj7Ngb28TKhhDrDwxhmnDf1h4+fnbjhGPxUHBJOq8jS4XtfqdCJJ2f8N6rGop4fM8AAHVhF+9ZXMmv1rWyuy/O5/+8jWmlXm5/qQNVN+kYTfH1S2fid8iUjhUe/8fmDqT3TEMI2jEyOqlYlsESJ/+1r4/bd/Zx79ZCYIptbB929MQ4Y1oRogCP7xngfStqyesG7cNp3rO4kr5YlucPDvOfV8/jyxfNoKnEy7K60PhnO9oC9U6bhPTKZQ4tpxWl2EXRTXNQqjwgCjjmhAld04TonNjhLLkVHI0BXHOLUMrcCEc7oN4gn0MmpxmMpvOkcirbu6KEPTZ8Dpkyv5P/9665GKbJD55o5sm9gyyoCnD1wkpmlvkA0A2D96+oYV9/gif3DpLK6dx8Zv2EQRWnTWJOuY9MXuPWDR10jqbZ0DrCx2/fzL6++KvtmuU40w2T2rCLhqJC8MvvN7Qzp8LPts4IqZxKJJ3n712jjFxSi1DtIXsgQqY9RqTCxcNDcf75ytksqQ2d5E9heScTxULw0b6+BF67TNdomngmz96+OGV+B/sHEjzbPIxumHzy3GnctbkLVZ+8YvuJYKvw4JgeJHMgQnJDH/bpQcI3zDymsD+L5ZVkSeTf/76XG5bXkFN1fvTEAWaX+3nXgkoe3tnHsroQ+wcSR20XRlJ5Lp5bRk412DAcJ//uBqRqL6mXB8i0x9jtgMv+vJmX2yOcOb2InmiGv27tRrFCHy0ngWNGENeiEhLP9pB6sQ/RKWN/g6vMvxWabvB/z7Wz/sAQH1hZS04zWN88zI7uGN+4fDa9sSy6YeJxKDT3x/E5bLhtEm67jEDhfhbg9hc7KPHa8TsVqkJOfrW+BYAzpxfxq3UtxLMagDUJ+21ANUxuXFNHRtULfWd9CW5YVs1oOkdV0MWzg3FGL6lBGLuvMotdDIXtXPT3XXzg8b24Ag5+8tRB1jcP89FbN7O+eRibLOGxyUw/YoLt8weHiWdUMqrOSCpPidcx3qdxpCPP4y6bNGFlRIsFCpOxltQFKfU52NAywnMHh1lQ7UcEKgNORBGiaZW8buBzyJwxvZi/7+rn8T0DfOfKOTy+Z4C/7+pndWOIrkh6PIBEEA73Ux36+RCvQ0EUJh6LklMh9J7pOOaGQRRQKj0U3Ti3MMHhVSilblxzi3BMD1oBJKeQxbUBFtcGeObAEF997iBDjT5SWwZIrO8mMZhie5HC+tYRqoJONMPk9hc7maKadYvluFJKXIVzWFPwDQeQQKEv8wsXNI336WdUnWa3QPaMcgRnIfQsfXYFv+kcptjr4IZl1bhskwuHnYo0HkwykMghiwIVfgeP7u7ngW29hNw2ZpR5x68RL3eM8k8Xz+SWM+uZW+kj7Fb4xqUzOW9mCW6bxJrGMP/2rjl8675dlPrt9MWy/P6FdgYTWe7e3M0v1rUyrcRLVpvclyIdpZ0SdNlwKCKyKEy4rhxitW2mhizCB1bW8sdN3YQ8NkYSORIZjf39CWySSNtgCkUuhP6/kl0Wcdsk7LKIaJcIXNGIc0ERSAJyuQvPmiocTUFc84qxVXgQjvJ3tlgsFsupSw46KPrwHGx1PnJtMXKtMRyzwthr/cdt8nrAZcPrkGkbThFL52kdSuJzKrzUNspNa+omBLhaXt1IXiW5tJRET5LEum5SO4bIzg7RZ81VtFhOC0qJi+Kb5iCXu0EScMwrInjVNKSxCaqiTcJe48M1rxh7jQ/Rbk1cPZ4EAXxOhZbBJPFMnrahQq0rR1zCBFHA0eAvLGayrpv09kFC1804bqFeFsubIQjgUERah5LEMiqdIykkETL5qamxEe0SvnNqUAdThe/FriG8Z1QhWwGolpNE8igE1taR64iTeKabzP5RfOfVoISPHsgPUOpzjgdMd42mGUnmGIhnUXWDnd1RHtszgPIqi7UFXArr9w/RHckAR5+b4bHLR+2Xtbw9+B0KxR47pgl/2dyNaRpousm2rgg2WWRBdYBrl1WTG6tN2NMX59olVai6ybau6BFzJyb/jUUBgi5lPGC8NuxiZ0+M+dUB6q1FGy1vY5KeIW/KZHfsxNbYiBwMHn7QXwWAYhsLIVHVk7GLFovFYrFYLBaL5W1qqkYuGkzTnAcgCMJvgGGgxjTNxGu/7FQh8Ov1rXzkzAYAFFHgib2DXDynbMKzZL8d3wW1uFeUgyggH2MRuE0R6Ylm+djZjXzt3p3j24MuhTkV/uP2KeqL3LzsUIhk8syvDtA6lMImidRZnSanpBKfgy9fNJOv3LODeFajOuTkmf1DfGFtE7t743RHMsyt9LG9O8o3L5vF+gNDbOuMcs6MYpJZDXkseCOSVvndc2189KwGfA4FRRK4Z0s3715UxdbOKCPJHDNKvaw7MMTFc8u5/cUOeqJZ5lb6yGo6rrHOvHctrOQnTx1kZrmXTe0RAEyzMPE+llGxSRLff/wAl80t46uXzOIrd+/g8QNDbOmJ8vOrF9AQcNJvGjy5b5CrF1fitsn88/27AdjQMsLViyu5d0sPt7/YwVcvmUV3JM20Yg+//dBSYhmV+rCbj5xRjygK1ITc452MAF+6qIlvP7CHjKpT7ndMSD7+p4tmUPYaiduW04O9zk/RzXMxszqiR0E8ysDEieB32VhaF+Tvu/pYUhtiKJHjQH+SqxZVAnDBrBL++ok1tA0nCbptzK7wEfbauWxeOZUBJyOpHHt643xhbROqbmCa8Ov1rfzv+xaP/466sJvPXTCdT/9x64TfndMM9g8kmFnum5LPeroTgGf2D7KiIcQVCyoQBBhN5jirqYRIOs9zB4cZjGcpWdvEVo/O1VfXUV7qpj2RY2G1n4G4lVxteWtcisQHV9Vy56Yu3ru8hnhGY351gAMDCWIZjbBb4dPnTUMWBf66pZu6IvekQL4TyV7jo+imuZgZDdGtINqm5jxsOfVUBpx89MxGvnnfTj5z7jRKfA52dMf4z0f28U8XNaEbxtgqF4W25SGLawIMxLOsqA/z4yeb+dCaOtbFUqSnuXDUO1kyo4ie0TQfO7sBSRDY3RvnLy93c9b0IsKeNz6xzmJ5qyS3De9ZVTgXFCMIIL2JCZ5vlSILPHswgqqb4+3RacUepoVd5FSdUp+DvG5wzdJqfv1sG3MqvFw8t5wXDg4jAFcuKOeB7X2snhZm3YEhAK5aVIVhmrSPpNnUEQWgsdg9HsJnOXlskshvnm3jxjX1CAIoksi6/YOU+R386aVOPn52I/ccGGLafB/mDA95ReC5je3kdYOgS0HTDbZ2RTmzqWh8QnDApfCvD+3hfctreNfCCgbiOVY1hNjUUehT2NQWodWd5NPnTuPfHto7vi9lPgcZVR//+R8vnIHfZQU1WCZ7et8Q588qIeBSkASBAwNJ9vYnWFDlZ3NHhDOmF5FVdZbVhxiIZVGkwjX+nBklfPzsBnTDxC6L3L35cJvhw6vrxgN5S7x28mPHsyDAR89qQDnKZDKl1E3o+hkYSRXBISE5rZlMp6Myr5PFNUGW14XQTZO/xhI0rSoiIEs83RPFFjHAMCn22tnZE2Nff+KoxZMWy+lgSW2Q+z+1pjDOEU2zN5bhOSFPcLG/ENKzuY2KgIPNnaOs2z/Ex8/2UeSxMZw83H92/fIafvtc6/jP/fEs/3hhE/90z04yqs5LbaPMLPOydnYppllYefHOTZ1cs7iSeFYjp5p85NbNrKgP8YlzGinzO+iKZPjcBdNZXBNEN002tIywu7cQ8ryyIcTKhhCfO386X//rrvHfW+y147JJLKjys707Nr79W1fMpszvxDRNvri2iX89oq1THXQyy+qznRKGCTu7o3zynEY03WQ4mWVmuZd4RuO2F9v5xqWzGY7n+dDqOl7uiBRW3aYQgre0LogsCgTG2qFKiYvQtU3oF6uIdhnRZU1OtFgsltOdrcpL0YfnYJygcY+GYjeP7+1HkQTmVwfY1hlhTWMxkihw39Yezp1Zclx/36nKRODWA/14iiTOnN/A1oEYjniSpUdO9rFYLKc0e0OAko/Ox8hqSF4F4VUmPFuOP9OE9uEUiiwyvyTA9q4oC2sCvHL9BznowH9pA54zKxFkCclj9a9aTq6wx87dW7oJe+wUeey83D7K8vowvbHMlO2D1Q9hebtRytyE3z8LI6UiOOXxQK/XMrfSz19e7qI27MauSGxsG+XyBRVEU3ke3tnLlfPLOW9GMU/tHxp/zQWzSmgdSvJyZwR9rLNudWMYt00ilT88fvyZ86YfNbza8vZQHnDy3Wvm8bHbNvNS2yj7+hN86/JZrKgPURVy0zma5pfrW/jQ6jokUUCWRJ49MERl0MnzLcP808Uz2doZpWs0zbxKPzt7Dve937C8mrs2dQGFgJqL55bx/x7cw4dX1x11HNdieVvQVSQzjyrYye7aheessyY+7i7BREKx50AFXbXqyS0Wi8VisVgsFsthU9UDMh6HaJqmLghC2+kTQAJ1YRdnNxXzv08dHN82v8o/YSXWQ9T+JFpKRXYraKKJ7H79iT6prI5mmOTyOj957yJeODhMkdfOktrgcQ0hkSWRqxdXMq/KT38sw3sWVzG9xINira51yrpsXhkVAQfdQynOv2oe/fEsdlHg9x9eSl8kw1ULyhlK5sCAP9y4nN7RFBV+F5GcSo3PwQstw7SPpOmPZ/nJUwf5/nUL+NJftmOYcGBgH1ctqqQy4OS/r5lPdzSDIokEnAp3buriAytrKfXacdhENraPohkmmmGSzul4iwunrp5ohuklHpoHk/zq2VY+c+50emMZHAKs+9By9JEsokdBKHJRVOqhCJhbFRj/fB8/u4Ev372DDa0jnN1UzD+ubaLU76Cp1MuHVtViP8agiKsWVVIXdtM3kub7186nN5ohl9OpKnazsNoqHrGAnlHJj6QRdBBzOkqR87itQvV6lteH+dENi2gbTuFzKjSVePG7CgPmNlliYU2AhTWBCa9x22XWTCtiZ3eUkVSOHzx+YPyxW86sn7BSpiQKzCzz4rZL5NMTV1xwWMUTU0YUBW5cXc/7f/vSeLG6LArc8ZEVjKbyLK4JUOWz0zWU4ttnNeASJPKmyUsjadqHTc6fVQqAqekgiAivrLqwWF6HIovMKffyxbVNtA4l+cDKGjKqznkzSnDbJa7/1YuoRyyz/a9XzUV+C21IUzfA5A2dSyWHjJbRyLVEwQSlzIXotYNhIh5lxdkJv88wMXUDUZEwVB1BFjE1o7DKrGliGiaCgFU0dhoQBIFrl1ZRFXKysyvG0togcyv8fGhVLVs6IiyoFvjOJbPQTYMbl9cQS+UZyqoEPHYO9MXxyiI/u34BqZSKEMnhDdoZRmc0q1HstfP1v+6c8F25+Yz6t/RdsZy+TN3ENHRAQBCEwux1zMLqbmP/+1rnUHU4jTqaRTAKBT1vah9ME1Mz3lQAnyyJ3HxGA0/vH2JbV5RtXVFkUeCuj61iWpmPtG7w7Stm0zOaoSLoxKGI/GVzD/GMygdW1ZHOa7x3eQ1L60Ls7Y3zjxfOwDBMuqNpZpb5GExkuX5ZNbUhF2tnl1IRePVVkiwnjmma6Ok8JgLzyn28a2ElP336cN9ZVcBJIqvxUluEFXWjnDGtmMFEloYiB3WGyGJV5IbaMA/1RdjXX+hmlEWBsxrDzCr1MpTKcfHcMn76TAs2ScTjkHl4Vx/fu2YBf3ihnYd29nHZvHJmV8h8/7oFbOuMUlvkYlF1gC2dEW4+o55zZ5SwuDZwkv6FLG9noijwwVW1vNQyzJnVIVpHk0ScClctqSSb13EoEvXFbn73bBsXzi4l6FS4aU09D+/s48BAIfxhd28cwzT5+qWzwAS/S8Zrl0hmNdbOLmFhdZCN7aN89Mx61s4uY0F14NX3R5EQg5PPt3pKRe1PYaRV5LATpdR9Uu73DrWhMQHDsNrNJ4AiiyyvD/EPv90IwM2Lq1gc9lNW5GRNfZgdiRSRbIjdvTF+/kwrHz2zgTKfFZxsOb2Ypok2kEYdSlPnkCmvC/EvjwyyqTvKwuoAnhIPrUMpPnFOI+fPLOEPG9rpjWX597/v5RPnTMMpCbgUCZ9b4Y8vdXHRzFLKPDa298VZXRumI5rmh9cvIGCTqQ85+dWzbfzkqYPoY30G//auuTy2Z5DzZ5fyvUf3A/BS2ygvtY0CcPWiShbXBLDJIg3FHu771BoODiZxKCJNpV7CHjtXzK+gzO/gyb2D1IScLK4NEXAqrHhfiN29cSLpPNNKvMyrLIwNCoLAe5ZUURN2s27/II0lHs5qKqY6ZK1cOxUaiz0oksCv1rfyw/fM458vaKI3lacvmee9y6vZ0xdnJCkQz+T5+fsX80LLCA5FYnldkLDHTlOpd8JxKzpklDL322Lij6kZIBT6zARJRLBWfrVYLJYpY+Q11P40ejSH5LejlLkwc4WaIfkYJuIdjambhbEO8/B53W2XuWJeOYuqg7QPpwg4FX627iBdoxmml3poKvUe5092avI5ZERT4L3TSymyScwLu3luIGaNo1ss7yCGqr+lhYb0tEp+tFAvZOR1lPDU1Qud7gJOhdFkjgVVAfK6wdlNxSQyKkVOBT2nIdkPXzdNw0BPqOiRBJLPVrj3epPX1fH3PGKc7Mj6BkPVx6+3r/x/UZEKdTuidZ91OlM1nUvnVdA6nELTDc6ZWcJPnz7ID65fMGX7YOoG6kgGI6tjSnlsOJFcVkCP5eQxVB11NIuZ1zBTeWxhF5KzcJ4+sqbrSNNKvHz0rEa2dkUxTVjVWMSv17fyodV1dEeyJHMaH15Tx1lNJezsiTG30kfQpfD5O7dz5YIKqoOFPtTZFX7u/Ngqnt4/SDStsnZ2KYteY8zO8vZwTlMJD332TDpHUoQ9dqaXePGMXdurAk7ev6KW/3nscF10mc9BOq+j6iYtAwn++JEVPLZngA+uqiWV09jbn2BWmZcZZV72DySYW+VHFAR+/GQzYbeNGdbCN5a3s2wh8N7Ajj4ygq2hfuLjoogu+JDHQki0vBVCYrFYLBaLxWKxWA6bqiqlBYIgxMf+XwCcYz8LgGma5il95+20yXzxwiaW14d4Zv8QS+uCnDejhCLv4YCR3HAKYziLqZnkDkZIdCawNwZwzi/CXv3a/zxBj42eaIZSv4PHd/cjigJum4RTkXAe59VO7IrE3Eo/cyuPX7iJ5e3LqZosjmjM2BnDvdzJzLYMKAK2MpH0jhjuJQ7yPTmMrIa9UWHGjjjO+Tb0SI7c+gH+MqeW9jIHt+8bYE6Vn0RWxWOXCyv9aQZ3burilx9YwvzqAPPHOmXXzi7lg6trccgSPqdCXjOoDLjojWVQJIHW4RTvXVHDI7v6eWBbL1+6aAYvtoywqX2U5w4O863LZ1E1nGf0//aACQbgWlKKfln9pIGQtbNL+eH1C/m/F9qQRYFl9SGW1YWQ3uAgnls1WTKqkd4Vx73MRVNLGm0og3uZA0eZAdZ8ttOantHIdybI7BxG7UvhmB7AmB7A0Th1ATUNxR4aiicHX70en1Ph/3v3PF5sHeHgYJJldSFmlXnRjIlhIzVhN1+9ZBZfuWfH+Lb6IjezK07py/vbztK6IH+6ZSUPbOvFJolcMLuEeFqltT3C9QEfwsFhZi8oJbN9hFhnHHtjgGubggwGFSqddlJbBki92Ifkt+M5owJbja8wadliOQYht41IWmVPyyipnMb2rggrG4tw2STmVwa486Or+NuOXrKqwZULKlj8ivCjY2XkNHItMRLP9SDIIt6zKrHX+Y+pUEsdSDH8u13osTxS0I7nzCqyB0Yx0xqupWXYZwRQ/JMn4eV7kyRf7EPtSeKYHQLdxMzpSGEH+a4E9oYA2b0jOKYHEV0y9oYAktf2pj6f5Z0h4LJxydxyZpZ5uWtTF0/vH+KiOWV8ZmUtjuEcZk5FcinkD8bINkeZXe5GXuZjRZGf1IY+TMOkckkppiGSfmmAgM+Oc1kpzumh4/ZdsZy+TNMk351AG8qgDmUQHRLqQBp7jZdsRwxHfYDM7hHMnI7njEoc0wITiijzvQkyu0fI7h1FKXMjFzmJ/b2N8D/MRik69hubfF+S1MZ+8p0JXAuKcc4rQg6+sYnOy8baNvdv68WhiFwxv4KF1QFEUWDREWGPBwcTXDavnC2dUR7dM8ijewZZVO3n21fMQREFPHaZv2zqxGWXuGZJDY/vGWBrZ4Qbltdw7owSawLmSZLriWNmDXKtMbL7RlHKXHxuWRnzq3w8vLOfplIvlQEHt7/UCcCPn27Fa+/kp++Zz7S9MTKbBigCigSY+64GHtNV0hmVa0M+bmjLQp+Oc14ZSa9MQ8DFT55tIeRW+Pqls1jZEOL2m1fwy/Ut9ETTeBwyZ00v4urFVeP7t7g2dJL+ZSzvFKZmsFhWWFgRhjw09Kic3afi8CdxLypGnlY4Z144p4xP/3ErC6sDXDG/nBtX15PTdX7weDOfu2A6//n3ffzrg3u4+Yx69vWr5DWd5fVhHtzRy87uGJ88ZxoLxs59b5SeUok+2EJm69gKbiKEPzAb5+zw8fyneE3qcIb0tkFybTE8K8rJ7BpGG83iWVmOY2YIyWO1m4+n5XUh/nTLSlLDKRa1pnB67GQ2DqANZ5k1N4xW4+G3zW189ZKZXDy37E0dVxbLO1muNcbw73aBYeI9txpjj8ZXRyA5rZKtPomvPX2AFfUhLppTSmXQxY1n1COJIg/v7OUMj5OatiTGcALnklLOP3sGyXVdiHEd15J6jM4kxTkNudxN4qkuBFHknxaW8uUF1dzWOUxpwMmmtlEcisTdm7pYVBOgZSg1Yf8W1gSIpNXx9ml1yDWprep1Kpw3s5TzZpZO+nzVoaOHBwZcNtbOLmXt7MmvsZxYYY+dX123AFdMw0ipZJ7upWo4w7QFRdw/MEJjXYDmwSQlPif7+xMMJrLUBF3YZIkFVYXrf7YlWjhuxwJL7U1BgtdMR/a9/iIWJ4Kp6uTa4uR7Eph5g+yBCEqlB8/KcmwVb3wMwmKxWCxvjKkZpF7qJ/ZQ2/g27/nVaCNZzLyBe0UZUr0Hm+3Y7rVMwyTXESffGS+c18f6aDyrK7BVegl5bPTFs/idMnndYFaZj+uXVrOyIUypFWp4TBRZ4CvzK9F60yS2DyF6bZy1tJS8YgUQWCxvd+pQmvTmAbIHIjhmhXAtKn1D4yQwFkDSlSC9fQhtII1jRhCj0T+l9UKnM7sk8r6VtTx/cJjmwSTXzCtnpSmTubuVUUXEvawMpdaL7LOT3jpI9N7DIenec6vxnluFaHtz5dXqYJrUlgFyByI4moKIXhvZA6O4l5SR2jGEaJNwzS0i8VwPUtCOc2aI5PM92Kq8SEEH+c4EnjUV2GusuqvTkSSLhFwKUZfChpYRKgJO/u2qudS+St/PiZBrj5NrjZLdF0EudcH8Ymw1XiuIxHJSHLpvyR2IkDsYxVblhblh7LU+tKEMyRd6UQfTuJeV4ZgVmtBvtqQ2hGHC/dt6cCoSt5zZwM+eKZzv41mVZE5nS+cIl8+r4Ol9Q2ztjvLFtU28e1HlhPkX1ryJdx5RFGgq9R41QFMUBd63oob6IjeP7OyjtshNkcfOj59s5pK5ZVyztJqldSFcNolbbn2ZZE5nXpWfnkiGXz/byi8+sITnDo7wwPYeLplbzj+sqqXGqjuxvJ3lYgAIeuE6rpSVTXqKIQVRnF2QMNFUK4TEYrFYLBaLxWKxHDYlISSmaZ72SziU+51cu7Saa5dWH/VxM65i5A0Sj3egDWUAUHtT5DvjhD4wC9n76sVkRR4H5YEs27rirJ1TikORyGs6NSEr+cDy5pmmSWpTP/HHOvCeV030gVYwTTxrKone14JnTQXxJzrR43l8F9YSvbsZ18Ji0hv7UXvHimd7U9RUevjGtdP4+L07aB5I8oW104mmVeJZjbWzS486sbLEe7hgxSaLLKsPoRsmogBfvnsHv1rXyhfXNpHXDATgW5fMIiSL2DwyclRj+K8HCyurjklvHsC1uASpceLvCrhsXLWokovnliEJAsqbWGnCNEySL/SSfKYb3wU1RO87iJnTAYh2H8Qbr8F3fo21OsFpTB1IEb2nGT1e6JRTe5KoA2kEj4K99O1dlFsbdtM2nGI4keOK+RVs64wgCQI3LJ98LbtsfjmVAQcb20apDDpZXh+yJnROMZsssbIhzMqGwxPKdM1gcWeazENtFH18PtG7m9GGj2hndCUovbKBTPMQ0ftbxl6VILNnhJJPLsBWaa1iZjk2FQEX7SNpltQEcNpl0jkNEagOOZFlkcW1QRbXvvViqlxLjJFb9xz+uTlC0S3zcDQEXve16Z3D6LHCudizspzYgy2FtDIg35kgcFUjysqKCa9Rh9IM/XonZkYr/NyTxLW4BLUvhdkcxVbjJfa3VrxnVRK9vwX/pfWktwzgPfvobX7LqaW+yMOXL5rJZ86fjlOWyOwcIr1nBOfsMOnNg2R2DgOF48Zf5mb0wdbx1+bb4vgvrkPtTaF2J8k1R5BvmXfcviuW05famyR3IEpyQy+eleXEH2nHf3Ed0fta8F9ST/SIe6XR9jih983ENb8YAD2RJ/ZIB7kDkbH3SiEF7Thmhck1R465uFYbzTD8u10YCRWAWE8SdSBF4Kppb2i1wKO1bY5mWomXVE7nP6+ex2Aih6oZnD2jmAXVARI5DdUwaSz1YJNEZFHgO1fMIW8YuN5k4ajlrVNjWYysTnrTAJlthXAEtSdJdl+ECz46j0vfV4FpmmxqH+Wzq+pILDUYyOZYVhFkugaRTQOH38wEHuvkXbfMZbWsoN/ZjD72UL4thv+Set5fHebKL1TikCX8rsIknNXTilhaF8QwwfEWVrG0nL7y/UnU7gQIAsn1PeixHFA4d6q9SULXz0C0SSypCXLbzct5/uAIu/sSnDm9iNkVPnb1xPjb9l6+evFM+uNZqoJOzl5eg8su47SJvGdJ1aS+Kj2lggiSc3KRr55UMVJ5RI+C5C4c52pf8nAACYABkb8exFblQZqCict6RiV6bzO51hi+tbVE/nIAUy00wCN3N+O/pB7v2VWv8y6WN8KuSKxqDJNKGQhznUTubp5wL+NeVc7vrpqHt8y617ecHrRYrhAi6reBDtG/tYBu4lxQTHZ/BLUnCYC9N8Wachd3/sNSQkVuKsdWuKwOuvjaJTP57IIq4r/aSS5faGWo3UncK8ox4nnUkSy51iiBq6aRORhD7EyAAbm2KLnWKP5L67mptoSBoMK6A8P8bXM3PofCD69fyL7+BLt6Cus3XDq3jNqwiznz/CiSNSH1VOKMa2gjGWIPt084J1+2qpynIhkq/Q7aRzMUe+1c3NiATZEoCznQRzLoHD5uD8kdKBy7JyuEJNeRIPZIG0qpm/TWwfHPk901TPEnF77hSZkWi8ViOTamZqBnNPRoltjf2yc8lniqC9/5NcSf6CR7YJTwB+dA07GFkOS7E0T/2oy91k9qUz9QOK9ndo1Q8qmFhEtcuOxphJTKnAoPZ00vYiiRpfFNLH5xuprudZLfN0D88c7xbYW/02woOok7ZrFYXpOeyDPyx31ofYX6N7U3RfZgjOIPzUZ8AxPwtYEUkb8cwEgWxkvUniTacAbRZ8NWPHVhAqerGeU+njkwyPK6IFcuqKC0L0PszgPjj+daogSva4KxMf8jJZ7uwjE79LqLBx5N4fjZi9afBgrHj63aixSwM/qnffgvqSf2cBvZ3SN4z6wsXMN3j+BZU0niyU6UMhdKpZehX+0s1O1YgY+nnfqwh329MZpKPDSVehhN5XHaJEKeqekLyA+nSG3qnzCGl9sfIfSBWUj1VgiD5cQyDRM9ksU0TOSgA0EWyQ+kSD7dRa6lMIm+cF2OErphBsO/2YWZP6JeOzFWrz228JrHIXPuzBLOnVnC7t4oX/rLDuJZjcZiN8VeBzZZ5d2LqtAMkzNmFHHN0koW14ashdtOA2G3ncvnV3D5/Ar29sVpGUzw7++eR23YxcyywvV/drmPz13QxL8+uIeNbaP4nDLfv3YB86oCzKsK8KHVtdhl6Q0vfGqxTLns2FriWqE2Ri6ZHFpvKEEUVzuCCXreCiGxWCwWi8VisVgsh1kzLt4G1FSu0GkG4wEkh+Q7Eqj96aOGkIymcmxuj9AxksKuSEwv9eCQRUCgscSD12GlTlvePD2WJ7Guu/CDIGBmNJzzi8nsKAwuCA4ZPZrDVu8bn6QmhZ2ktw1NeB+1J0lx1uAPNy5nKJnD61Aofo1QnVcjiQKXzatgToWfoWSOMp+D2rAbdTBF4tketLyOEHKgiiJGSp30+r6+BHtSaXb1xqgIODlrejHVQReiKLzmhKNMIk46HsPp9eHyTR5E0aNZks/1AGCajAeQHJJc3417aekbXvXbcurQR7PjASSHZPeO4l5TAcew+KSmqiSGBxElGV9xyRsa4GgfTvFi6wgdIylWNIRZXBPEd5TJSkc6MJBg3YEh+qMZ5lb6WT0tTE3IRXckzVWLKplZ7kM+SiG8xy5zxvRizphefMz7Zzm+9vbF2NIRIZXTKfM7mFnmpcGmkHmhFwA9lhsPIDkk3x4vnO+f6Z74ZrpJviuJUuEhNjSAqet4i0uRZavpaHl1qxuL6BxJ0RvNUOSx0T6S5r6tPbjtCguqA+MrQhi6TmxoAAEBX0kJonhsE39N3SA5djwf3giZ7cPHFEKS704AIDhltFh+PIDkkOSGPuyzwyhHTOJQB9LjE0QOSW8fwntmFYlnunDOK8LM65hjc0HyXQm0aA7XopIpmdhpOflEUcBlk9FGM6hDGWwVXtAMMruGx58jFzvHJ7cdKdscwVbjJd8ex1QN1IG0tZqV5S3LdyUxDRN7nY/0zmFsVV6yLTEknw11KD0hrBEg8Ww3jlkhREVCHUqP39sdokdyiE6ZfP/EVdpfizqQHg8gOSS9ZRDvWVWIpcevqDY+NIim5vEWFRN02UhkVbx2GVUxeHLfAKIAC6sCVAWdRNJ5gi47dWEXgiAgY03sPJmMlIqZ1cf7F47crvYlsZW60eN5ZranSL3Yh+Cz4VxbS+apbrS6yedJI63hUWT01gTZVzyWa42iaDql0ycHPNlkK3zE8uaZWR0jZ4BhjgeQHJLdPUK6e5SYV2HnQJZdPTGyqs51S6uYW+HDYZP5j3fPp3U4haobNBS5CbhffYKYnsqT2TlMYn0Pgk3Ef2Ed9umB8WCnXFuM0XsOoA9nkYudBK9pwl7rO2r/mJHIY+R0puLo14Yz5FoLBaGmYY4HkBySWNeFa1Gx1W4+TlJZla1dUQ4OJnmPYAeBSfcyqY39FM+3+m0spz5TM8jsGyX614MYKRVbg5/A5Q3j429ykZPM9ontEL0vzWzFhqNoYntVy2ehPzFeyH5IessA7lXlJNf3gAm51hiOGUFiD7biPbeafEccTMh3JxHsEimXwHevnseXL5qBJApUBJwsqPbTPpxGkUQait247Va/26nG0HTMtIYezU86J2c29rPmw9OJ6wmWNRUhHEiQu+sg7pXlpNf3ktk5jPec6knjxsBRr/FTJb1lAEdTiMT6if3JRlpD7U9ZISQWi8VyAuT7UiSf70Gp9GBmNTBe0cFnFu65ANBM1L4kzqZXD7qODQ1gaBreomJyrTGcs8Iknu+Z+JY5vXBeL3GxtDaEXYqyrz/B7t4EIbed4niW4Gvcx1oOExIqyZf6J27UzMLE9KbQydkpi8XyutThzHgAyfi2jjjqcAZ7zbHXY6oj2fEAkkMyO4dxryhHD6pI8sT32tIxyp6+OJm8TmXAyaLaIOV+q439ZomiQInXzu6eGKZmEHhpcOITTMg1R5FLXJP6LqFQxyvaZZSSN7YAkzqcHg8gOSTflcDbFCz0FfQmkcIO9JHseJ2BmT3c76D2p3HMKQLNKASYWCEkp5WcqrOrJ8bBwUJ9S12xh3mVfqpChT6rTDJOOhbD6fHi8gdOyD4YCXVS35mRUgs1Z1YIieUE0lMqqY19JJ7qwtQNXMvK8J1bjRHPjweQjD93NIs2mp3Ub5tcN1avHXBgGgaxoUFMw8BXXMKcigB/umUlo6k8AZeCTRJ4uT1K23ASSRRpLPGyoDpoBZCchmaV+5hVPrkOwaZIvHd5DYtqAowkc1QGXRNCOV9r4Zt4RuWFlhE2t4/SVOalKuCkocRDqW/yXIJcOkUyMord5cYTtO4TLSdArhBCIqqFWiml7GghJEXYnQYKOpp68sYgLBaLxWKxWCwWy9uPVdF2kkX6etGyedwOD4JmHvU5gnT0Dq0tHRFahlPs6olhk0U0w2RhdYBFNdbK2Za3ThBBkEXMnM6hPlVTNxDGVmAd72fVTASnNHHbK4kCXqeC93XCD16PKAo0FHtoGOvE0yJZRu88gNqbxLe2lvhjHTjnhlEqPRMnegqQ99n41B9fxqGIfPa86fz0qYN0jKa5enEl580sodg7uWOv98A+Hv3Fjxjt6SJYXslFH/8clTNnT/psgiRiavrRP78sgpVyfMoxNQMjrSI4ZETba0/dEY62cqUIwjEcF7GhAV689052P/0Ess3G6uvez9xz1+Jwv/4Ac08kzc1/2ETLUKEw4ufrWvnOlbP50Or6V31NdyTN+gNDtA+niKTz2GSRnKbzniXV4987y9tT92iax/cMEsuo7OiOMqO0sKpxUalv/BwlykefbCvKIoJ8lONRNNn80H08f9ft6KrK3HPWsuLq6/AXH0N6juW0VRN2E/bYeGz3ALt6YvTFs5T5nKTzOk6bRKmcY/ND97Pl4QcQRIGlV1zNoouuwB0IvP6bCwKCMvk4FmzHNpHcNb+Y3L4IGOZRz8GCIvLKOelHfZ4ojBf0Hrr2j//30P5ZA9KnH1FAEAQEzMLfXxRANxFsEq7lZWiD6UkvEWQRM3/EJKRXue+zWN4IQRIQBDB1s3CM6QaiXDhvCUdpCwg26fApSxJAYFJQiSDwmhMXJu/D0dq/wnG7L1KzWfZteJZ1t/2GXCpFw9KVSCuuoCcqs+7AEFVBJ8vrQ3zvsQM0FLu5fmk1i6xiobcXgcLfQxQmTZwxdJ1EZBTj5TiJJ7sAsJe4yD/TjdYaQ2gMTHqdUuVBciuI9qPcm8ki4tGOSYvlrRIK51uOdmoRoG37ZvbseR5x5VXcuyXKLWfVc+/Wbn6xLsc1S6o4Y3ox86omF+uauomRyoNNQnIUuu6ze0aJ3tcy/pyRW/dQdMs8HI0BtNEMw7fuGZ/YrA1lGLl1DyWfWYhc5Jp0XrfV+5F8UzNRTBAPf/derc/MtM7Nx83mzijrm4foiaS5blHdpEAwKLQTzFde6C2WU5Dan2L0jr3j5798a4zkxn6cc4vIbB961Vt2I6MV2s1j7daRni6e+v2vWLnoqsmne1kE/fD3SRhrcyMKE867gixiUhjP+/YDu1laF+LdiyoBCLnthNxWENMpzaTQ9j1Kc1QQBQZ3bWLTk3/l6qu+RvqJPqSwA204Q2ZHIdg01xLF0RQku3d0wmvlkxj0IdgkMM3CNeUVbfljGfOwWCwWyxujRjKM3Lob55wwiSc6cS0qQXQrEwKpBKeMqR2eOH3Uvjkgm0qyZ/3TPPfnW9FyOeaedyErZlxZaP+MjSUe6dB5fTiZY0d3jLaRFL2RDKU+B1lVx+9UqAhYE+NflyQctV/WGg+wWN7eXq1t+0bbvK82XiJIAs/84Tcsu+oafOFCYOyu7ijbumI0DyaJZ/JEMyqaYXLlwso3vP+Wgo7hFJs7I7i0DM7RvSBXTHqOIImINgkpaEePHA6bFhQRPZ4jvTOLd1UFouvYax6P7BedsP1QTYEsgjax3uBV/9/KUj/tbOmMsH8gwc7uGBRKDrBLIlUhN30HD/D4r37CUEcb/tIyLvrY56ieM++474NwaFxXf8V9v9V+sZxg+fYY8Uc7xn9Ov9SPHHaiVLiPXsdwtGNSFkEQyCTi7HzyUTbc82d0TWX++Rez/KprCRQVE3AVxsmebR5i30CC5w8O41AkdAPsksCy+vAJ/JSWdxpJFJhTMXlMN5bJs6snTm80Q0XAyZwK3/ixBXDXy13s7IlRHXJx39Ye5lT4yesGIbcN5Yg24lBnO0/+9mf07NuDOxhi7S2fpn7RkmNe1M1iOSbZQpCTMBZCIoUmh90YjiKEOPikHJqan/S4xWKxWCwWi8ViOX1ZVfhTIRuHaBfkJ65WpWsamx64hz//61eRPDYEu4jtFSu6OuaEUcomp6kPxDIMJ/PIosDS2iALqwIYpslQ4pVrvlosb47ks+O7sBagsEJqwE7uQATngsLgpxbNoZS7yXcnsE8PFII+upPYpwUmvI9jVgi5+PgWn+gZleSmftLbhlB7kkg+G9pI4fuV2TOCa2ExSlUhMEH0KhhXNfKNZw8CcNOaen77XBt3be4mnlWJpFV+8tRBfrmuheaBBKOpHLphEh8e4v7v/RujPYVJT5G+Hu77738lNjgwYV9kWwrf+YUBX1M1EL0TJ3L4LqxF9luFxKcSdSBJ5J799H9/MyN/2E2uK/Gazxd9CnLpxPO4a0kp2F5/YG7P+qfZ9dRjmKaBmsuy7rbf0ntg3zHt596+xHgAySHfe/QAPZHJKyce0jmSJpnTaCr1sKQmSKnPwUhSpScyeeK05eTqGE7xx5c6+MUzLbzYMsxoOoePJDXSKKaW5/aXOvnJUwdpzam4z68BQHAp2Gq9E97HMTeMaRPHz/eHCE4ZzWew7rbfouVymIbBzqceZd9z66bsM1reoXSV7FAnXiNBbbiwQl5DsQtdNxiMZ2nbupmX/3Yvhq6hqyov3XsnHbu2HdNbC6KAZ03lxImekoBzXtExvd4+PYjnjEpMzUB0y5PCS1wLislsHSLfdzjITClzIwUnXsfdy8vI7BrGVudDHUgjehVMzQRJQClz415ehuS1VgA8nZimSY+mIxQ7yXYlQBZxLylFqfTgPbcadAOl2DWxqFgA+7QA+e5CO0J0KzSLBum89iq/5QjxXkj0v/7zLKclW7UXE8j3JHHNL0LtTWGv92OkVOSAvVB0cwTv2VUIcqF4QXQr4/d7hygVbkS/HVvdsa9qpZS6JrV/PWdUIocmBz8eM9OEeA8kBxloa+GxX/yIXKrQ1m19+UXyW59ierGT4USOxTVB/ryxi7OairFJIlu7omzrjGCa1qTrtwvJY0NwSLiXl0/cHnLQF21DHNZJvtA3vt1W5SXXWiiKSL3cj/+iuvF7b6XaQ/A90xGdMu7FJRPDbkSw1/uwWauyWU4Eh4TglhHcCkq5e8JD9sVhdm9+ku4dW9E3PsRPrp3DfG+KS+tkrlxYzs6eKOv2D056S3U4Q/RvLfT/YAvDv9tFri2GkdNIvmJFaoDsgQgAWiQ3HkByiJFS0SI5lDIXoffPQvQUCuRtdT4C72pEtE9NLrlc5MS5sHBdMQ0T0T2xUN9/YS2y1W4+LvqiaYYSWaYXe7hmXhA9nkMKOZBe0SfpObOKpBZ7lXexWE4d2nBmUkF6+sU+PGdWYp8RJN81NqZxBHuDn3xnnOTGPrRIttAXe/vv6NyxleFUN4Jn4jnMs7yM9FhQBP8/e3cdZld1Ln78u+W4zpxx97gLMZKQhCRAcLdiLdSN21/b29721m7dbt1o6aVIcQsECSQkgSTEbdxdzsxx2/L744QJ0wkt0AiE/XmePmX22WefvSdr1tl7rXe9ryRgKfcSPzCIfXYO8SNDo9tN+Q4SbjNfffwQO1uH+c3LTdzy5x3/dIzWcOYQTRKiw4TktSB5x/bJ1sU5tDfu57Jb/ovUnvT3uqXUTaJ+ZHSfZHsIc5FrtL0KNpmMK2swFZ6+hOH2WTnEDg1in5c3Zrvks4y7JzIYDAbDvyfRESJ+yI86nEAwS2iRFJGdvbhWFI8mpJKyrLhXlRDZmY5hEGzyW/bHvY31vPSX35GKx9B1jQMvPkvMESVe68cx/x/6dY959Dhtg1HsYpLLK3SumeGhLNvOQDhBp9+YP347lFgK19KxCQQEm4wpd3wcmMFgeO+Qs21Y/iE5u3Va1jtOCCh5zePe4zgrD1VQ2fvc0zS8uhli6arkg5EkHf4oZT4bs0oyKMqw4w8naR4IH+/QhrehcyRGMJaiSulhy19+jTzDPTbWQBaw1HiRs2xkXFaNnJPum6UMC+41ZYS3dIOqk+h6Z/8GcrZt3LiDdUIGibZgeqwg244aSCC6zOipdCIxyWNGS6YTglkqPCR7Ioh2GXOh6x8PbzjDDYQSoMPsEi+zir0ADIbjhIf9PPmT7zLQ1gJAoK+XR3/wTYZ7usceQEmkY9Wjw+/6HHRZxLHwH+bwfNZxYxsGw4kWf9O42Btiu/sQHTK26f8Qx1DkRHSbEf8x8f7ZBbzQPkTroYO8ct/dKMl03OO+59dT/9oWSIRhpIN4JEjzQJhfv9SI22pCAH74XB1dI8YaDMO/Fk+p/H5zM9f/cTtfeGg/1/9xO7/d1EQ8lZ6z7RqO8ujuLpwWmb5AnJWTc8j1WOgciXKo69g8XSIS4fnf/YKu2sMARIb9PP6jbzPY0X5arstwBounnzlQ03ECouM4Y0fWdGISu5hETRpJSAwGg8FgMBgMBsMxpybi+IOsYwc8+2Xo2QtVq2HVf0HOZACigRE6aw8yb90lqKJKcH0r7nNLUCb5SHWFMBe7MOU7kOzjg7GTqobLKjMcSRJWVNxWE6IoIL1FJnWD4d2wTc9GcpuJHRnCc0EFylAMLaWSef1EEo0jOJcXoYVSKKEEmTdMItEUwFToxDrVR6o9hKXCg6XSi2R7+9UA3o5EU4CRhxtwrSwBAbSoguQ8+neiQeCZFqyTfNjm5vJsNEbbSJAjfekFnmZZZCiSxCyJXDqriP9ZfwSrSeTO1RP4/rO1aKkUH50oIIcGiAZGAJBNZuasuwRRkmk7sJf8molk5+VA/QZ47ivY85YgX/ppYp1JMi6uJDUQRfHHsU3yYS53v8VVGN6P1MEe/A91k+pIB1UlmgIM3nWQnE/OxOQ7frCBnlBxnVOM6o+T6o1gLvekK9Ifr/zhm8QjYY68shEAUZKZc8HFyGYL/s52REkiv3oCFttbBycl3lTx6g2xlIqijd/+Bk3XyXFZ2N8xQkrT8dhMTCnwEIqnq2kpqkYsqeK0ykYl+dOoZyTGJ+7dxboZhTQOhBkMxfh4WRfTjvwXwnALl1ZfwosTb+RzL4ToC8axFlipvHEyelzBcVYe1kk+Ut1hzCVukAUEDSwTM8m6dQrRQ0OIDolktkrPYCMLr7gO0BEEgd3rn+Dw5o3MXH0BluMNQhsM/hbY9gt8e+9hpbuQ4aXfYmNyMm0jCfI8NlwWmcZdO1h05fVomoogiKhKisYdrzJ5yfK39RGWMjfZd0wndmAQZBHbVB/morcXeCO7zFgnZ6YrC2ngXluO0hdBS6hYq7xEa/2IgkBkWzc5H5uB5LYgZ1rJumUq8Tp/ug8v86BFkjgXFyDIIlo4iXWyj2RXOL0A2mV+2+djODN0+CNsqhtkIBjhomILebOz0JMa1imZmCs9DN9Xh3NJIbG6ITyry1BG4ugJNb0gXhawz8xGdJmJlji59oFdPJS9iKmFb7FYPtwPe++FLT8BUYYVX4Wpl4PVWFxvOMaU58Cm65hyHSjDMTKuqCY5ECPz6gkk+6JkXFlNqiuMntKwTcvCUpx+XtF1HaU/irnYheyzofRHMBU4kbzW9EJmx9t/ppM8Fnw3TiZe7yfVHcZak4ml3POWVVj/pWAv7L4bXv0FuArpL/8SAJ6cXKaesxo1lUKSZZzuFCsm5fDEvm5uXVLGproBVk/OZTCc5IUj/fSFEiytycZuNobCTjfZZUGLprBN82HKsZFoDmDKc6AXSBAJkdjrR7LLKEcTK6jhJJLXgjqSQB1OEHy5A/uMbORJGdhL3KNjDuYSN9m3TyN6YBAUDXO5BznLirnA+G42nHiWfCeoOlo4iWtlMUpvlNRADLncwaDSRQkzKZkxi93PPME5sWZyn7wcbBkMLv4arsIFCLJENKmM9klaSiWwoYX4gfTC9VR7iIE/HST3M7MQ3RboHbu4641+WbTL46u/iQKiTUaQROxTs9IJqhIqotuMZD11faBokfCsLcdak0GiNUDGFdWkusMogSS2yT4sZcaY2YnS7o/ROhThusIBcnb8gNik3zL8eCMZl1WRbAuiDMWwVHkRc61svO8XXPrFr53uUzYYTqp/THoEILnNyB4LvusnoY4kUIbjmEtcKH1R5CwbWkJFGYiRaAqg9sdQZplo3buLORdcQkKKIa71YBqUIKjimJqDYJNQ48rRBJMZKOEkyqxs8FowSQLmsnQitJRD5jMb6zhnQg51vUG6A3G6RuLU9wUpzDixydsN703mLBNJTcd7USWJjhDqcBxLjZeWvr0sOudq9P3hdEXtoThqIIGcZUUNHKu+HXy+Dd9Nk/FeWIlgEpEz/o3kjieAudhFxlUTSPaE8V6cviZzvgPrhMzTfm4Gg8FwJkkNxRi86yCuxQXpDUK6Gr2eUAk804p9eha26VlYJ2WiDiewTsxEcpmwTsjAWuk97jE7jxzCbLMx+/yLR+d5O/tqmXrFclJ9MbyXVJFoD2LOs2Od6EM+OvddTgfTG7+LqfE5anKnU7Pkv3nVUknqOHPRhvF0XSU1GCXjqgnEG4aRXCbMpW404/dnMLynSXYTGZdWEW8cIdkawFLhxVLpQXyHY2taRMG9ujQdR9YXxVLhQUtqqKkkCy67BkEykdz2G8w1y9H1MvI8VkaiKSyygAhkuSzEUm+jgIHhuCRB50OlQV55/FXmXngp7UOHqLx+Dqm6IIIsYp2QianEiSCkx1NNBQ5sU31ooRTB59rSCfJ1SHaEkDOtbxkXNu5z7SYyLqtOt5+WQDo2RwJlMJ6eN27w415bhrnQSfTAIO7zyjDlOYgdGMBzUQVIIno0hfvcEkw5RtKqDxqLLKFqGorG0Xs2HbMsERzox5uXz/RVa1BSKWSTib7mJgL9vWTkH71nHGyATT+Aw4+CrwbO+x6UnZ2+l3wHREFAdJvxXlpFomkEOceOKdeOFjH6I8PJ9Y+FToB0Ml5BwFzqwlziItkWTMcxuM2Q1Mi+bSrRWj+Rngh9ORb+0NrHoV0R/p/nCPMvuRJJNqHrGqIo0fj6dmZI+zDt/AWW8mWcPeuLxJZVIooCmq4xryyD9qHIcc7MYEhLKRpxRaVnJM6vX24a89rvNjdz4YwCphR4UDSdq+cV0RdMUJpl59UmPzta/EzMd2E3yeSpIzS8thmnN5Oexroxx8kqLiU40Ed/SxM2p4vciiqcmb5TeZmGM1EinYREUCREux3heOvNrOkkjHYphZJKncqzMxgMBoPBYDAYDO9xxsqLk2moGe65fPTBjfr1EOyEDz0O9kxMVhtzL7iEF+/6HV57LsUrpuC/vw7RLmMqcBJrHEYuOn41K6tJRNd1avJcPPh6B40DES6cno8sGovCDSeOZJOxTfJhmzR+AMs+LXv8tilZx35YcHLOSVNUorvTlXzitX7sc3KJvt6HrqcrCSgDMdAg0TRCaFYW33ymEZ/TzCWzCvnb9mPZgZfWZPHEvnQl2RsXlPH7Tc0MRRL8+VwPr/zieyy84lpESUJTVeZfciV7n3t6NCmJyWLlyv/3JfIfugkAKXA/toYHsaz5LuLUOzBCh89QSgq1rZlUx9iAID2moAzE3nKy2ZRrJ/BCO4mGEUz5DgLPtOBZW4Yp/59XK5QtVrJLyxnu6Wb+xVdwaNMLhIbS1TUlk4kLP/dlKufMf8v31+Q6cZglIkcrZQBcO7+YAs/48+zwR9PJeWQRm1miOtdF61AEm1nCH00iCk5qe4P8ZWsrO1uHOW9qHlfMLaLMZySiOB1qe0PMLs0kHFco8Fi5oTxE5n3XgZae7HXX/p011VFuO+tONF2nMZRg6qxCEu0B4vXDxA4MYip0EtrYjnNJAYJVQrTIWGsyiXuSPPq9/2byshXsevpxYsF05nWT1caiK6+jt6ke2WJUtjAch5qCrf8Lu+4CQPA3k/n4jZSt+jubBn3MLM4gllKZuHgpG37zc5RkejGFw5vB8ptuf9sfI8giljIPlrJ3l3TBlG0nsq2b2MH04k7RY8G9qoSRJ5twrywl8FwbKBqpgRiSO93WTTn2fxnc45iV867Ox/D+Fksq7Gwdxm6WWOoM8Pg3vwsC5FVWUzZzHpPscwGI7h/AMTeXwDMtmAod2OfkMvJIAwBylo14qYsf7GglntLY0z5MQlGZXZIxPuFXw/PwwteP/fzU58CZBxPPP1WXbHifMOc7Mb/pXvONO7bRnmzG+D5LC6cIrG/Bs7ac0CudiCaJeP0IokXCd+Pkd3wOpiwbpqzCf73j23HkCXj5fwAYmH0DyWgSSZaZtfZCNt1zF/rRJHuZRZs599KPEU+52N8xwvULSnn2YC/7OwOsnJSDCOzvDLCgwgjQeC8w56bb6JAcoK5zL/v//iyR4SGuuvkbaAfiuFeUEHi2FYDY/kHcq0sJPN0Cmo4eUwj5Y7zaKzDZITGtyAuAIAr/1n2CwfBOCKKAteRNSTSmQndDHQ/+6CtERvwAmG12llxzI31d/WT5apB695L1zB3krrmfbx3wYjFJzM1xIYoiWjRF/Og96ihFI9UTwb28iIHGEdDSmUYEmzxaSdOUZce9upTghrbRt3nOK8P0pgqrsuf0PcPJXgvy7Fwcs3MBjjvGaPj3DIYTtA5GWJARIv+pG0G2IHnTCWeG/nwIKcuGKceOaDfx2nMPMnHJstN9ygbDSWfKd2CbnkVsf3osFRG8l1UhudKJzMUcO7qiEdnei2iTidcPo6s6nvPKCTzVTKovAgUeFl5xLQ3bX6WwfCK1g6/QWreXlbfcQdbkdF+2R1N44Ugfk+IxXmjsw2GWWWLNZn1ghDklmbQ19rKkOovSLCeqpjG7pJi4ovN6qx9ZFDncHaDU58BhMaZqz2Ri/+tY774QZt6ALWcydDxKu/Bt6ve+SlZVAWpDEM/55SQ7QySaA3guqCDZEUY/Oq5vKnRgynUgZ743EnwIooClxI3l6H2Qc+FpPiGDwWA4Qyn9UfSYQqItiHWKj9jBQZyLCwi/0gWKRnR3P+61pZjznAjFbuzTx8duvJm/pwtBFFlw2TVsf/TvJKLphXUWh4PiSVPJnV8FgHPB2Ir3RIfxPvspxN69AEg9u8l74nrOuuoZ2oWCE37dZyLNrGHKtDP8cB2WCi+p7jDqSALbnH/+b2YwGE4/OcOKc14ezMt718cQHSYir3aT6AhhyrEz8kwL3rXl9LY389oj9yNKEll3fIiSe69m0pVP0W1xUZ3r5NHdXYiCwMwSL3mJ98azwPtRpdiD5/FbqF7wKzbdcxehoUFeBAqqJ7LwqhvImFg1uq+cbUPyWght7Bjd5lpRjKZoJOuHMRc433YSEvjn7cc2IXP0v63VGcfdbvjgkoR0AqJ7trej6zo3LihFFgXMdgdZxaVsfeCe0X0nLDwbi+PonHAyAs99FeqfTf/cfygdu377y5A75Z2dhFlEssiMrG/GUuYhsqsPc4ET19nG/Z/h5LLWZBB5Iwac9HyYc1EBuq6T6okQPTCEpdRFeFs3phw7rpUlmHIddGsqn3y9iZZ9ETQdXBaZqqWzeOmuXxMZGQZAtlg498OfQKr9FmgKQtOLlA+3sPDcB/jP59NjuzcuLMVhOX5hlXA8xbamIe7d3k6O28I180qYVeI1Cvl9QDQPhKjtDfPoni5aBiNcNCOfL66dyK9fbiQYU7DIIpfMKmQglKB5IMxINMkrDYMMRpK4rCZGoim6RmJ0jcRYlC3w2B9+QcQ/xKzzLsLmchMLpdcZ2VxuahYs5vEffnv0s0unzWTtJ+7EmZHxVqdnMPxr8XQb05MC4lsUoNTt6bkvm5xCTSVP2akZDAaDwWAwGAyG9z4jsu1k8jcdS0Dyht79MNIG9kwS0TCHX3kJTVUIjwwTHRwg8+oJqMEkglUCVUdQ9OMe2mM1kWE3c8c9uwkn0ouOf/pCAzcuLGVhhQ+zSTrZVzdOOJ7i1eYh7tvRQa7bwtVzi5lRbAyyGU6cZHeY8GvdiLZ015XqCiN5LbhXl6LFVTi3BCGhEIimOJhI8rOnDvDJFVU09IUo8tr4j9UTENDJdVuwmiRiR4M4bWaRXIfEd1aUMLjpYQDqt29j1toLObx5I7FQYDQBCUAqEWfPi8+TmzcDsXdfeqOmIm75KUy5DJxGwMgZKdyLMFIPcjX8Q98sWt66z5UzbDgX5GOtykALJ3HMy0POsiH8i6RRsiwz76Ir6Ko9jKqkRhOQAKipFHueeYLCiZOwOo5f1bs618W9H1nAb19uojcY55r5xSypysIkH5so0XWdF2v7ufPv+9A0nTtX19A0EKZ5MMLZ1Vlk2s1EkiqqpvPhv+6kJxAH4JcvNXKgK8Cvrp+F0zK+sqjh5EqpGhPynOxrH2HFxFzCndvJ0cZWm7A3Ps3S1Z9iT3+EZRPe6JMERIcJzwUV6bY4O5dEZ3DM93RfcwPxSJjQ0OBoAhKAVDxGT0MtCy6/Fkk2bh8NxxHug733jN2ma2TFW3lyf5ItjYPce+tc6l/bMpqABCAyMsxwdyeJWBSL7eRX8ZFcZryXVOFYkI8aTCJaJZLdYdznlBB5vQ+OVp5L9UYQBDCXe4x7WcNb2tsRIBpP4ZYU9j70V3RdAx2qJp1FiTARQUjfH2jBJImWAO41ZWjRFLrTROZHptHUPMyIoPNg+xDr6wfIcpppGYzwraeO8NDHFtIbiHP/zg7y3BZuW1hM5e67x5/EkceNJCSGE0JTNESTSOiVTrzrKtFCSRAE5Bwb5uLj32+eaD0jMTbW9vP0gR7mlWVy4Yx8qjzArj+ndxAE+lI+QoMDzDzvIg6+/MJoAhIAf2c701KDXD1vEoqi85VHDzIQTn/nNA2EaZ6UwyUzCoglVWzmUz9mYji+/Rs3sHv9E6M/a6gISY3ovgE8a8tQQ0kEq8xghhnzTROJ9kUZSCk81TvCvc/U4rbJPP6JJZRnGQkSDadf067towlIAJKxKP1tLfS3NlG09EIyjy7ayhzeT7ljNb6GAIN/bwZJwHtJJYJFQo+rY44pWiTMZR6yPzqdZHsIwSRiKXVjyku3ecEk4lxUgKXCizqSQMqwYMqzI8jHD5I0nHnahiL8YEMdv1kYgNgwWFwond04lxSip1T0lIbssRCpH8Lf04HFbUdJJZFN5tN96gbDSSM5zXgvrsIxPw8tqiBn2Ub7zTeYC5xk3TaVRMMIaiiJ6DAR2tyZfr/DTNOhPeRWVVGyYjLi/iSoOhPOOYvWfQfIq6rBbLURiKXIsFv44XN1fOTsCva0j/DYni7WTc9n/YEebltSztbGQSbkuVh/oIdQQuGCaQUMh+PceNcOANZMyeWrF0yiONO4lzljtb2a/v83jZslK3rw+QqxZbgJawEir3bjWVOGGk6hqxreD9UgxNLf8+Z8B9JpTChmMBgMhlNL13WSrUGUofSiu0TDCLaZ2dinZ6OLkHnjJPSkhpxpTT/7md7es99AawuyyYS/u3M0AQlAIhKhdtsr5FZUHf+NgY7RBCTH3hRCHmnGcqISEJ/hYpEA5pBM5tUTUQMJRLsJNZxECcZP96kZDIZTQdUwFbuwTshEiyk45uQSaxwmkOoFQFNVtmx4hcsnL8IZbaM86ywe29vFWRU+NtX3c7ArQKbdTErVMEnGeN87ZQ+1gmQhODQwJuaqu6GWXU89SkF1DeajMQqiRca1rBhLuQdlMIZok9GSKqn6EVJdYXRFRUsqiGYjXsZwciVUnTsf3D/6896O/fzqulkkImH2Pb9+zL51r75C5eIV7D/YyznZI5jfSEDyBjUJgw3vOAmJKAokOoNkXl6DGkxin56NGlfQU8ePZTcYThRTlo2s26aS6o2iKxqmPAemLBupvghaJIV7aSFqKIml2IUykhiNv42nVJoGjj3nfPjsMvxde0cTkAAoiQSNO1+jqmYe5u7dQLrA1lBXPYe608fZ0ern9zfOOe65bazt59P37x39+fG93Tz00YWjxTIM729dwzE21vWxfn8PCyp8XDA9n6qcdJxMTyDG84f7+eXGRkJH1+v85PkGLptVyFfPm4THbkbRNHa1DfORv76OKAh8+OwKeoMJDnQF2NM+wqdXVrGrzU8wruBL+WnypwtT1G7dxJx1l7Ll/r+CrjNx8bIxsRMAbQf2MtjWjDPj+G3TYHhbEkFSmoSk6IjOtyigejQJicOkEU+lTuHJGQwGg8FgMBgMhvc6Y1T8ZLIcZ6GObAFz+uFNU1SCA/2UzphNZnkR5qAD/721CFYJPalhLnLivbz6uIcejip0B+KjCUjecP+Odm5ZVEaZz8HejhGe2NtNXFG5eGYhc0q9mOWTt9Dmxdp+PvOmQbZHdnfx0McWMq3Qe9I+0/DBoYzEGfzzIbRQEs955emFGQmV+KEhEo3DxK+o4tx7d6IDd547gV1dI/QFEzy6p4vvXjqVWSUZJCJhhnp7Ob+0ktcGBSblu/jhhnpy7RIfzetncP3TmO3pycWhjjbMVhuLrrqenoa6cefj7+tHWTCPUOklKEh4RvZhCncS00y8xfCM4f1OtiJ3PIpnwX8R2HIsKMg60YOc89YL51ODMQbvOoSeUBDM6QVF5nIPvpsmI1mP/zUcCwUJDvRjttm4+ps/ZO+zT4zbJzQ0SDwSfcskJAAzir18fk0NLx7pY3P9IGZJZLEkkuNOV0ppGYzwyXt3E09pfHZVNT95vp5gPP29srVxiI+cXYGu6+R7rKMJSN6wqX6A9qEokwuMKuMnSyyp8HrbMI/v6SLDYWbd9AJmFHupynGiqBo5HhvdgRj5HKfaij2LgwMpfratgdreED++agZmp4lUT4TQi+2jfahjfh6qpNDb3IDd5QFBwOb2pCfhBIHqeQvxFZeADoHBfjILik79L8Lw/iBbwV0Aw61jNsfE9LficDSFqqqY7Q4WXnEtAB2HD9J5+AAjfT34+wdx5xWckuq/ktOMVJVecKclFeKtQUIvHKtoZJuZTezAIIH1LeR8cibmfOOb/YOsdTDCxtp+drUNs3xCNkuqs8j32I6+FqY63832A83gTweu5ZRVUcIElJ0BxFUeRKcJLZwi2RIk2R4i+yPTsJSlvzsFi8Cvnz7M9hY/M4u9XDyzgB9uqMMsi+ztGOFrjx8aPY+DXQEeLapG6tg+9gQz3yI43GB4hxK1fuyzcwmsb8F/zxEEi4ToNJF1yzusjPVuP19R+fmLDdy/M90fb2sa4rG9XTz8kblkZVZC/2FGFn+LWNTC/heeZdVHPsGhl9KBGZIsM3HxMly+bFwOGxub/YSTGh9ZWsEfX2mmP5RORPLCkX5uWVxG53CU6txTk1jF8K/5u7vxFZdSNW8BgiBgL/ShFQZJdYUJ9EQQLBLOc4oYlHQaR2J85ZkDaG+KcQzGFOr7QkYSEsNpkVI19raP8Pi+LvLdVoq6uwCQzRYmnb0cu8eLzekiEY2Qypw0+r64LZcbzF7sL3TyRsqR4YcacK8uJfBE8+h+5jI3cr4DQRSwlLixlLiPex6iRcZS6obSk3aphvew3kCcoUgSr/dopdRkGFOeB/9jzWgxBUES0VWNjGtqiGwdItDXg4CRaNFw5pMcJqSqf14Z0JzvRLTKDP3tCKnO8Oh2x5oiTG1tZFuLCD/ZNtpXsyVB2YrpKIkEZquNSfku/rSlhVsWlfODZ+tIqhqCAJPyXcwq8XLPa23MK8vkcE+Q7S3pJFUvHunns6uOzfttONTH3NJMPrK04kT/CgzvEUl7Lv+Y9klNKdTkn4WIgOg0oQzFCTzbimCTUZdZCfeMMPnsc07L+RoMBoPh9Er1Rhn40wGsEzKxVHtJNIwQ2ztATAD3eWXYJvoQpLd/Px+PhAkODhAPh2javQOzJT1HLJlMTFq8HEdmJk5vJrquHz8hu9menv9Rxs4Td0RNJBVt/P6GcSJBP/bMYvz31Y7Oz0peC+7Ljfs/g+GDQHSaiR9sJ9kRHI0Xcq0sRlbtLLjsGnRdo+PIIRR7HpLVSySpUJntZGNtP+VZDsySyNefOER5toPpxiLnd0wxOcHiIDjQT9nMOeRX1QDQum8PwYE+1JTCm8NtJJuMtSqDUHeYkefb0BMq6GCp9hLdM4BoTb9uMJxMT+3rHrftkT1dTJ4pIZstTF66AovDgZJMpovrRaPc8fAunru1nBpbRjpR9ZtZjz+v8M+ITjOy1/qmWHYVc5EL66VGbILh5JO9VmSvdcw20WlC8loIPt82ek9trclAdKRjzMp8DmYUednXOcJZ5ZnEUxrB/l7yqmoomzEbQRDobWpgpK8HbVremw4sEcEGHHve2Vw/wOopeWM+PxhL8auXG8dsSyga21v8RhKSM0AsqfCT5+t4eHd6nvfVZj9P7Ovmbx85izy3jbreENGkOpqABCDLaWZivov93QFGoinmlWXQE4jzpfMm8j/ra/nVS438x+oJHOhKFwF8al8Pyyfk8MS+buw2C3PWXYpsNpOMRmjYvpXFV9+AM8OHJyePPc8+Oe4c49HoqfllGM5c8RESmoykqoiO48fCClYvugZ2k0o4mTzFJ2gwGAwGg8FgMBjey4wkJCdT9iSYcS3su+/YthVfg8z0ZLLN6WTJNR/i8JaX0YMKiaYA7jWlaDEV0SKhBhKowwnIHb+QQtU0ND296iLXZaEmz8Wu1mEkUSCeUtnbMcJVv3sV5ejKjPt3dnDPbfNZUp19Ui41GEvxi43jB9l2tPiNJCSGEyLVH0tX4waCL3fgWlqErmqodpldaorXO/yjC5F+sbGBO5cW8NEphZQU+Mgt8DDY0caG3/ycvuYGpq1YzdSaSeg6rLyhEkEJ89Tj9yAgsPT6m2nbl8503dNQS19TI+d+4nMc3rxxzPnMXXcpOxv2sWPDC2iqSkF1NStu+iyCbjGSkJypnNkICz+GfftPMa29lVTUhewSME3IQ3KY3vJtykAUPZYegH6jonGyJYA6HEc6zsL2gfZWnvnljxloa0GSZRZfexOl02eze/0T5JRVYHW5aT+wl4mLl7H1oXuZs/oC8o5OlP+jnpEYH/3rLpoG05nenz7Qw82Lyrjz3BpcNhPdIzHiqXSAmK4zmoDkDX9/vYPLZhciieODzkQBZKPSykm1uX6QO+7ZNfrzX19t46GPLmJakYeRaIojvSF8DgvbuoqoLl+DvWXD6L6t87/GHzfFcJgl9neO0DoYoTKmIcgi7lWlaAkF0SqTbA/RuXM/T9z9faxOF5d84avEggEmLlpKdkk5rft207BjG4IoMuu8i0hGo9jc73yC2vAB4MiCtd+D+69NdyhAMmcme1KlOC0hsl0WkuEgyWiUA/ueIxmLUTJlOtNXraWgeiLN2zdTNG0mlqqaU1qRWzTLuJcVYSl1k2wLpv8uusIkW4MApHojRhKSD7CBUJxP3bdndFL46QM9XDmniG9ePAWbWabAa6M/EGdrd5Krz1pGy6ZnmbF4Ncr2EADBlztxLS0EQQATSEU2zG9aPDy10MMvr5vFI7u72NE6zLefPoKq6aybns/d29rGnMv+riADq64n78hjkDy6OM7ug4nnn5LfheHMpsUUwtu6QQf3mjL0mIJgEpGybZiy3jrZ3onUPhTlcNcIiyt9DEeTJFUNn91MV1DBsfjLhKd/ht7+AEqyH7PNzq6nHqNq7gIObX6RJdfezP4XniEW2oHZZmfq0vP4U18W9++McefqGu7f2UH3SAxV04kmVGyZxj3se8n0lWvoOHSAnvo64pEQlbmzsBS7sE32oSVURJtE/LAfuzePNn8EsywST2mUZNoJJxT8kSRm47nEcJrsax9mT5ufmmwHP3qxnv9dtAhH/RHmX3wlTbt30H5wH9FAgEVXXU84JZNTtAglfwHD2QvIfyXAm5/AtWASLZoi6/ZpKL1RRJcJc7EL2W05bddneH9wWmTmlmawJeAge9J1ZAzsJHpoCMf8vPR9qKohWCQiu/qYe/5lmJx2NE1F4q3HsgyGDxI5w4rvuknEWvyokRS6R+DZR35BNBKkNDR+zFVq1uEsMZ242WHiwilZTM9Q+eYyH9v6IDfTye62YVwWiZo8Nz/f2MDiqizOKs9kT/sIBV4bmq5jNYmj47LPHOzhlsVlxljrGahrJMr+aBWrPaVIRXPAkQ0IZFTORnt8mODwm8YNVA0px8r6J37OWZddfbpP3WAwGAynSaovAopO/NAQ9tk5uM9Nz+lZyj2Yy9xvOwGJkkoy0NrC7mefZOKiZURG/IQGB5m+cjUdhw9w9nU3s/fZpwgODuArLsHmclEx9yxM5rHPoDFXCYlF/4l389dGt4VrLqNBK8QWTJzQaz9TZWaXEH26F/fqMvR4etxVS2oo/TEw1vEaDGc8dSiOKceOtSbj2Hh3/Qi2MgcvPPJLJFlm3rpLISvKkL2Mp1/v4bG9xxIQTMxzce6UXBr7w0YSknehz1qB5CihctpZ7HziYZpe304iGqVs+iyKp0wfLVT2ZoIkYJ+bh2ASUYNJRIuMMhQjursf2WsxkpAYTjqrOV1kclqhB1GAfZ0BspxmJLeHs6+7mdeffIys0lL87W3Mv/gKPLl5QCP/7/lhHl79P0iPf+zYwSpXQe7Ud3wO6kiCRP3IuFh2ZShuxM8YTgtlOIE6GE8/H8WVdN88EEUZTmDKspPhMPOTq2dw/452sp0Wfr6xgSsvWYySStGyZzcWmxUdWHjFtVj2f330uCPzPs/vD4nMLc0gnFSo7QlhM48v9CrAcZO7i8dL5Gh432n3R3lkT9eYbU0DERr6wuS5bYQTCqIAZkmkMMNGfzDObUvK+fFz9SSOJud8an8P3798GvGkxh1LK/j1y03ElXSs+PJKD5dUWqnOs/Oh8hwcaoRXXt2C0+cj4h9m9gUXMdLbTV7lBPIqq6icexZNr2/HYndgsliJBgP4Co3CgYZ/UzxIQpOQUilE51slIbGgJkTssoKaMpKQGAwGg8FgMBgMhmOMJCQnk80D534Lpl4OoV7ILIf8GSCmB6mG+/tIJRPMOf9izEkLyY6R9IJHSQA1vXjTPjPnuIeOJlJk2M386rpZtA5FaegL8cXzJpDntuK2yjy4q3U0Ackb/rSlhQUVvpMWyHicNerHr5ZieN8YGQnRWX+EjoP7qJgylcDgAPFYnNziYtrrjlBYVUMsFCQw7KeoqprOujqyi4tRFYWBri5KJ01msK0ZV6YP2WRisK2NwkmTGepsR7ZYsbs99DTW4s0roHTqDDLyC8edgxpNEa/1o0VSo9v0mELw+TaQYM85+XzqhTq+tHYiZknEahL53rJMuh/7FbtjUUyXXkXT1gB9TQ30NTcweekK/D1dHNj4HHPWXUpg13Z8xSWg6+joHNr0IstuuJWuuiOIFiv2aYt5PeVi0hW30frcQ6hKirnX3IqKyGvr0wv+S6bNoGTqTPZveoWyGTFa+npIJlJkFxXS11CHMyOD0umzyCo2StK+71WuRHJkIw3UYc1LQv508By/n36DYBk/MYEsIMjj++JUIs6W++5moK0FAFVR2Px/f+LSL36dK776bToOHSAZizJr7TrQBYY623nm1z/lmv/+/nETQ9T3hUcTkLzh/15rY0qBm6U12WS5LMiiMO77YvTcBZhXmkG208KCikxea/aPvnbTwjJKfadmUeoHUYc/wq9eGp/ca2vTINOKPEwr8hAIR8mM9iL1H2Kv9wpKL/sc7ngzB2OZfH+fhY/NclAQ7SQ53I/Y5UTPriG2b4AYHLvXEMA3v4Q5F1xC/WtbCQ0PMffCy7DYbPQ0NdDTUAuArmnsfvoxSqZMp3LO/FP/CzG8P1Stgg+/SLLnMFHRSZ1YQTDg4M7V+TT1h6G/lbzKaiw2OxanE4vNjtlmQ5BlvLn51G95mb6GWnLLq+huqKOgZiJKIoEoy5itVvKrJiBKx+lT/02Sw4yl2MXI401owbETKGowRXTfAJaaDCSb8ej0QdPYHx5NQPKGh3Z38qFFpUwr9BJNqnQH4pw7JZ+SjDwmz5pDsa+KwIEmtFAKFI3Qxg4QwHFZCX1DjdRU5dDYH+K1piFebx9mWoGHqhwX31lfO/oZsihwvMeo50cKuPG256HvAAhy+j4kq3r8jgbDO6SMJBCdJpItQYLPtqbvEzQd70WVp+TzY5EI5sEWfrrEippMIVsdiKJIdGQY63ALXakkHYcOIJvN5FVWs+zGW+mur8VXUsqyG2+jefdOpixfRWTYj5JKkmEVuH2qgzu6IgxHk5xVnkGWK59cl4XeYJxJ+UZCtfeC7vpaEpEIFqeDkqnTMVmtTJywCGvSRuC15vROb9yzygIWq8yGQ718blUNmq5T2xvCYzNRnuVgUp7r9F6M4QNpsKuDvESQmYEjxMNhHls3ha66w0xfuQZ3dg7ZxaWUTp2BNzef3eufYPXVH2fI8SNSh6MU2KyIbh2F0NiD6mCt8EKF93RckuF9SNN0clwWPr2iipv+spPGKVdx/ex1FARco/ehCOnvdcuUTESLCV3T6K6vpav2MJIsUzBhMoOdbQx1tJFXUY3N40EQJODoWJGuo6SSyGYLOWXlODN8p/OSDYYTLpWIc2TPy2y+9y/MPu8idvz+QdRUCmemD82qjdtfcpqI7xhgyNVCXIoxNdRP/5E2SjN9lLvNZGQVcJknATqEhru45tJywrKTftFNbW+Ig11BZFHkxgWl/OGV9BjwososIwHJGepIT4iWmJOetfcSj4TpPHKQwglTcMdVRJcJBmJj+mv7qnwq5p5FX2szpdNnne7TNxgMBsMppKs6iZaR0aIsANHd/QCILhPOxYVItreXSDDs99O893WiwQBl02fRsu91zBYr59z8EUKDg5z7kU+y59knKZg4mSUz5zLc2037of3oCJRNn4X1TYtRWofifL9+Gp845x5yU90EZB8P9/jI1R04jxcgZBgnlYqhJzWCG1pHx13RwX15+ek+NYPBcApookZkZ2/6h6Pj3YJJJHtFGTa3h1gwwGuPPQgf+xL76mNjEpAA1PaGWDs1D5PxzPiu1AZMbMr+DGcNDjBtxRqGOtvxFRbT19rMQGcbVpcTTdOx2O3poTBBJKesHMkmk2gKEK8fHo3hBRDMEqmhGCaf7fRdlOGMd/60XFZNymF7SzpG745lFWTazaQiPdjcbuZddCl9zQ2UnLcOd04eQiIKwHA0SbRqHa5bK2CoAexZkD8TnP88rvF4BFkg1RMh2TY2lt02NeuEXafB8E6IJpF440i6X35Tm3QszB/dpzLbyZfPm8ThniB7O0ZIJWJMOvscuo8cIpVMUDxlGrFIhOGVP8LcuxtrdjktWil3FFjY2jSIzSTxmRXViMf5ynXZTHxqRTWfuHf36DarSWR+eeZJv3bD6SOQLgrc4Y9S5LXx6ZVVHOkJcdGMfGJJdTQByRv+tr2dLKcFj03mkpmFWGSRz57lY4J/HyVyFa0vvIQ3Nx9zdg5zLriEoY42Jp99DpqqklVcxmB7C2XTZ7L0htuomreQwfZWkvE4FbPn4s3Nf4uzNBjeHj0eIKFICMkUosOBrum07B8k5I9TPiMLt8+GaDajJESssoKSSv3rgxoMBoPBYDAYDIYPDGMl3cnmzIbqc8dtDg0PI5vNeLJzefKn32X2qouZsnAh4S3dowNklkoPouf4leD7IymynGb+6/FDHOpOV2p/bG8318wrZlFlJrGkOu49SXV8wOSJ4j46yPap+/aMbrOaROaXGYNs72d127ey5a5fMvv8i9jyt7sI+QdZfNUNPPWT7zB56Qr2PPUIvU31LP/Qh3nqx9+hZNpMAp2tNO/ewdLrb+GZn3+fjPwC8iqrObDxORZdeT3P/PLHyBYLk5YsZ+Ndvxn9LG9ePld85du4srKIDPuRTRasDhfxWj/Df6/HUpOBdbKP+OGh0fdI8/O5uzY9WXv/znbuvaIUOeJn3+N3E+jtZvHVN/LK3/7CrPMupP3g/qOfU8DhzRtxZ+eSjEVpfP01csorESUJTVUZ7Ghj0z13UTJ1BpXrbuSWB2q5aq6HX9Y5+dHH/hs3MZpffIpYVrptOzN85FXWsOW+u5l74WW89JffEg+FWHDZ1Tz9k/8ZPVeby83V3/g+vsLiU/FPZzhZZDMUzU3/722SnGYsFR4SzccWMTsXFyK6xvfvsWCQ1n27x20XZRNP/Pg7JGMxAPZseIp1n/l/ODJ81L36CuHhoeMmIdH08f2+ruu0+6PsbPWzenIe37h4Cv/12EEA3DaZYOxYLear5xZT3x9mcr6b71wyjY21/RzqDlKWZSccV2gdjDLBWPB3UhzsCh43OYx69B7BJInkRzp4+sffHn1tt8PBos9+g4ZAnJtnSgw89L/U9fUA0PLS09z0jV9gnZxJ/LD/WLKz+XnU73+VnLIKLA4Hezesx+HNwJmRQdtx2mLHof3klJbjyso+GZdteL+TTFA4h37bRL70yEEiiTDFmRpP7OtmaXUWminIK/f+ZXR3u8fLils/ynB3J1sfuGd0uyc3j2U33sbTP/s+F3z6C7Qd2Ed2aRmaqlI8edrJOXW3Bc955Qw/UDe6Tc61ow7HCT7TQuYNk7AbARUfOEnleN+jjH5XFmXaONwTZE6ehb4Dr5GdXUXg+UacSwoJPtc2+h4x24rmETBFLYyEovzshQae2p/unx/b083Cikz+95qZPHWgB6dZZlqRh+pcFz/ccKw9Wk0imQ4zDfionj75JF+54YMkNRhj4A/7ca8oIdkWSgfBqzqi04TlFC2C722oJ+wfIDIyjGQyYbJYSUQjdNcdYcrylTz10++jH72vlc0WzvvE5+k8fIDBjjYWXn4NJVNnsP3Rv5OKp++VEQRWf/ILSKJAPKWxrWmIdn+M1ZNzWT4hC6/97S3YMJw8A22t7HjsQeZefDnB/j42/ObnnHPZbSSfHECs9h57fjp6zyotKeSZjiGunVeCJAl866ljiZs8NhNLqrLIO10XY/hAigaDJKMRnvnlT3D6fMxavY7HfvgtdO1oX2Uys+iq63nl3ruZsfI81n7o00Qf6EgnKQPU5zrwXF5N4sgQKOl2LlglbFOM+03DO7Orzc9AOEE8paHrcO/BKPcfgh3XZyDYhtBjSvoGVhawzsikZ9cWSqfP4uH/+dpoe5VMJlbc8lH2PbeefaQrATozfaiKitliQVNVUok4qWSC7rojzL/kCsxWY6GF4czR19zE87//JQCaoqAeDawM+4cIu0I4LDJ64uh8myxiKfMQeKoZU5GDrqxWtj56bDxj0tnnYHU6adm9E8lkJre8kmd+/VPW3PFpirwObnk2/Yz39IEephd5uGx2Ifs6Rrhk1vjk7IYzg6KoXFAEwz3d7H/xWWavvZCdTzzMObNvxDk5i2RraHQhsuiQIU9m0zf+xJqPfZbAQB+e7NzTfQkGg8FgOEWSHUEG/3QQx/x8TPkOUj3Hikx41pYjeyzHfZ+qpIiMjGC22kaTh7Ts24XT4yUWGOHZX/90dF93di6Tl67AnZ2D1ekit6ySbQ/+DX93JwD7X3iWJdfexPyLLkc4uvIumlR4uTXGy60i8Ebl5Sg/rrFSYizAfls0EzjPLmDk4cZjY10ZFmSj2IfB8IGg28Bc4iLZHjq2YPrsQnZvWs95n/g8j3z36wCEhgZJuI+fKEASBKpzjl+t3PDP6cC+PpXFZWae/t8fsvzG21j/ix+PzjntMltYdOV1uLNzsbvd6EB/SyMFNZNwLStKL3Y/SrTLCCaRwFPNZF47EdF84ounGAwAkijymft3jcaM/W17Ow/esQCn3cbuTc9xePNLo/sWT5nG4mtvBuAzK6txudzgWgAlC/6tcxCcJlzLCgk+3z7ad5mLXemEqgbDKaSl0uOygsuEY0E+kW3H1ldYJ2QgOsfG34qiQFWOgxsWlGCOtPPkj79LKhEHYM8zT7Luc18iZM7jqfgS1mXk09Md4lP370Y/GqL5t+3t/PaG2cc9l2UTsrnr5nk8vKuDbJeVS2YVMrXQc5Ku3HAqlfrsXDmniL+/3jm6rTrHSXWuEx1oGgjR4Y9x7452ABZVZjK10DvuOKqmI4kCj+7p5r8vnIzXLuMcaMWbk02wv5/arZu49ItfZ+eTj9B5+ED6TS/B5KUrKJ81D5srHf+tqwqb77mLWCi9NujAi89y8X98hap5C0/q78FwZtPjARKajJhMIjgcrP/tAVr3DwLw2qNNrP3oNHItFtSkiMWVIhVP953RpML3n6nlSE+Iq+YVc8Wcon/2MQaDwWAwGAwGg+EMZSQhOU2S8SiCINJZe4hkLEamq4BUXxT36lK0qIJok1GG46gjiXHZ0/2ROIFYkkFFH01A8oa/v97BrYvLmFHk4YHXO0YHxwDWTM47qdXUzpmQwx8/NJcHd3WQ47Jw+ZxiY5Dtfay/r5/dD6cDaK0OJyN9PVTNXUDtts0AeHPzOLx5I3mVNbQd2IuuaRRUT+TVh+7F5ctiuKcLJZmgYs58dj7+ELLJjJJMEI+EmbN8Ffuef2b0s2asPh+HJ4O+1mZ2rX+c2q2bOe+6z5Ap5BA/kM7qnqgfxjYjG/e5peiqRp9TZnM4ismS7sZun2rjtV98g5lr1jHY3oogiKipFEoqyUhvD1klpfS3NKEp6UWjhRMm0bZ/LwCHN29k4RXXsePxh0jFY9g9XhZefg05VUU8cLsXfzTJ1sZBQqpI60N34W9rpvCKawCoWbiEfc+tB8BstRIaHGDi4mUc2vTimN9nLBSkt7HeSELyAaT440iZVtyVXrSYgmiXSbQEUIfjSPljAwUsdgc5ZZX0NtWPbvMVldB19LtilK6z6+nHWf6h26jd+jKpeJxkLIbZZiORUqnrC9IXTOCxmch3W+kJxkffunZqXro9x1NMLXCzblo+M4u9DIWTzCzxsv5AD/3BBLNLMzjQOcIrDYOcXZVFJKnyo+fqyHZZeGp/N4qm0xeK86MrZ2CRjcn1E+3BXR2cNy2Pwz3HvudlUWBOaQb37Win0CHQ9uj9o6+JksyCS6+m5an78B/ej6mimuU33MpgRxuCAP7uLoLNvXjMGbjPLR1ti8mOEB5vNjuefISVt36MbX//Gxd+/ss07HiVrOIyQkODY87LbLNz4OXnWXj5tQiCUeHMcHx9oSRbGgf59MoqfrmxEYBJmRJ7n3t6zH7RwAg2p5vnnnhkzPZAXy/xUIhzbr6doa4urC4XakphpK+HgppJSPLJeYSxTfEh3T6NRNMIgiCgxRTC29LVpiLburFUe5EsxuPTB0mex0qpz07bUHR027KabBJKOtChOsdJ80AYvfsI3VufY/4500lEh4gdGsK9pgwtmkJ0mOhJthAP9xEaGkR0ZYwmIHlDXV8YsyRyVlkG2W4ruq4Tiin84tpZPLmvm0yHmaU12XT4o8QVjepcIwGY4cRJdYXRowrhrV3pZ624ApKAdWImptyTFwg/HEnQNBDBoUZJ+QcI+wcRAJevAB2dVx++jyv+81tsvvfPo8GgAEoyQeeRg1idLjRFwWSxEg2MHEtAAqDrHH7xGZaUr2NygZtXGtL3M88d7uNDC0txWo0AudMtNDRA8dTpCAg0vb4dTVXwWnPQY0li+wexz80dfX6Si5wkGka4MKUiz83ilqcOjDlWIJZiX8eI0TcaTqngYB/+zg4WXHoV/p5ujmx5aTShA4CSShIPh7n6Y99GqlUQO7XRBCRvCG1ohatqsIdSWMwS5mIXpjzHKb4Sw/tdy2CYF44MsHxCNssnZPNy3QCTC9wo+wZwLS5AV3XQdQSLROygn2Q8xqFNL45pr2oqRW9jPZd/5Vu89vD97Hv+GeauuwzZaiESGEl/56oamqIiCALDPd3klleexqs2GE6sNxbdAkiyCUEQR+8/n/v7r1h5+R0UeKohoiBYJEIvdwCgdEbImzT2b6F2yybyKqtJxqIUl1cS6E8nUB9ob6XIPXaubH9ngI8uq+SmhWXkuI6/qNjw/jctUyTaHSeVSODOyiY87GfKvHPQ9kQI2xJjnsGEXDNdI40sueZDqMqxIF+DwWAwnNm0hEKiOUCiJQA6RHb04FxYgG2KDy2lYanyYikdP+ahKin6mhvZ+9x6GrZvw5uXzzk3fQRXVg6Bvh5EUWTnEw+PeU9woA/ZZCIWClA6fTbxSHjMvRDAaw/fz4SFS5A9WdT1hkgqKkurs9jccGy+sMxnx2s3MRBKnpxfypkmrhHZ2Xd0zkBBMImgaKR6wlBhFHUyGM50ylAcU54Da00GWkJNxws1jJCdVUygv290v4zMDPY0D4/rc8t9dqpzncRT44vRGf41t1VmVVUGux6/l8KaSbTs3TVuzikaDBALBiidMQddU0mpGqlkAnOJG9+HJpNsDqSf2USB0Msd6EmNRGsAS5nHSERiOCme2Ns9pmiVquk09YfxWcMcfuXlMft2HDpAdNjPb2+YzeLKE5fkXAskiTeO4F5zNJbdIqGGUij+OOZ8IymS4eRTYwqJhmFCr3QimCRcy4pQh2Jj11cMxVD98XHrK6wmmUn5DvY/um80AQmArmvs2/AUaz7+eX7zcjMXTMnjb6+1jVljkVA0tjQOcc7E8YmBnRaZFRNzWDHx+EnDDO9fVpPMZ1fVMKs4gw2HeplblsGSqixkUcBmkrhoeiE3/2Xn6P5zSjNxWmRkURjTX6+dmsevX2oCoGskxg3zqtiwpYOOaIycsgoAlFTqWAKSow6/8hKTzj4HAF3T6K4/MpqA5A1b7r+HosnTsDqMPtjwLsWDJFQJIZlksF+lNTjI4iuqKJuWxYY/HmTDHw5y2fVZmBMiFq8y2n/e+fd9bDjUS7nPwX88uA9d17lyrrEOxmAwGAwGg8Fg+KB5X6yiEwThLmAd0K/r+tTTfT4nhKohm82jQWSe7BwSrw2TaBhBMInoigY62GePH7DSdQjHleMu/tV0iCZVdB2+cv4ktjYOkVI1llRnoes6rUNhynwnZxBiIBznwV3tdI3E6fTHmJTvoTrHicNYrPm+pKrqaPvUj460pttsenGX9kZ1V4vlTcGQb94vvU0QBDRVRTKZUY8mAJFMJpRkOihlxrnn0VNfSzIWo3jKdA5s3MA5l38YyxaVZG4A0XJswi62b4AYkDg7n/sGQpxbaqEy08PyGh++3t30RCLEQ0GcGT7CI34EMf030rRrO8tuuI2R3m4kk4woSYSGBsnIyyc40MdIXw/7nl/PzNXnk1tZTX7VBNxZ2QDkuK1IosBvb5hNor+TJ1rTi6mDgwMUT5mObDKhJBPjfk/JNy+CO+rNg9qGD5bo630ggCCL6CkNJAGO04dbHA7Oufl2Hv6fr5GMpRc8T1yynPg/DCoDpOIxNA3mXXgZj37/G8y/9CrmXHAxO1r9PLGvm+cO9VGUYeV7l0/jhSN9HO4JMac0g0hCYf2BXpZUZ7HmZ6+wqNLHf62bzNKabF480kd1jpPKLCd/3NLMYDiJKICi6zQPRkgoGp3Dx9r2proBhqNJ8txGpasT7axyHy/XDfCFNRPY0jiI0yKzbno+L9X2YTFL7GkYZkIsxuSlK/Dk5OLI8DHc3Unrvl0AJCJhBtqaycgvZOsD/4cnJ4+M/AIim9uJQfpeI6WBAM7zfaTiMVQlRX71BIa6OhGA6avW0NfSSDQwAkDRpKlERvw0797JzHMvwO4xEo0Zjk9R0/cIAgKjc22adtzFEzr66D3Bm2maSuPrO5i6fCWB/l50XUvfZbx59vcEE80S1gov8fphQps63ritAUCwSKR6wkhl3pP2+Yb3njy3lZsWldLQF6auN8ysEi+armM3pZ9vrCaZVRNzeea5u3Fn5SBbLSRIJ3VIdYVBFjFXuNjX/gwz165DNptRlPFBgh9bXsnmhkEkUeCPW1q5eGYBiyuz+J/1h5EkkZFokgUVPjRdI6lo495vMLxbaiSFGkg/y6jDCYIbWkEWQBSxzzl5FbfrekP85Pk6tjUO8dMLy8lSFdD1o/28hiiKnHXJVSAKo/fEb5aMRUeTT7bs382YDnt0nxjXzy+iyZ+gJ3Ds/tUYn3hvMFmsRIMB0I/dH2jCsf5t9PnJKuOUBWK7+pABsS3EDbML+Hp/w5jjJVSjbzScWjrgyPTx+pOPMGHR2fQ21o3bp7JsLtqTfhQdqPSNe12LptjeF6SkKoN55eNfNxjeDl2HWEqlaSDCxDwXldlOhsIJTJJM8IV2EAUQAFXHOisLTdNIRMLjjpOIRtj19GNMW7mG7Y8+kO6DOTb+K0rppAyCKKCmUuPebzC8n9nflBykfvtW5l54KTuffAR0nWQ8huYG3SsQfrZrtMomAAJk+PIRJRlNTc976LqG1eFi4RXXExzsZ7inG5PZkp7L08bfr9T1hvj433azbno+/7VuErnGGOsZRdd1BE3FYrVR31RP0eRpSCYTBZnVpA4Pjn0G00Ba4SWWHEEymUjFE7iOzlEZDAaD4cyWaArgv68W56KC9AaddHJ0AUwlTlznFCOax49nddUe4fUnH6GvpZHZ51+Ey5dNIhpj5OA+7J4MEtHIaAzDm1ldLl5/6lEWXXk9/q6Oca+rqRSqqrKjaZD1B/oozLAyqcBNda6LPe0jTMhzkuu2pueBjFoFb4uuaxBRCD7bCrKYvi/UwHNpxek+NYPBcArIsomRHa1j44VkAUu5i7CSLspVMXs+qsnK5oZB7jy3mvnlmWysHWBKgZvyLDu9gbiRvPJdkkSB6mw72+MxbE7X2IT2R8VCQSpmz0MQBHRBQAc0VUMwCwiSQGhLV3pA+I3AB0kg2RJEAKw1RjIpw4kXS46PJ2geiDAnL3XceBlVSfHE3i4m5Llx2U5cIYZUZzjd1t8Uy26p8Z6w4xsM/0yicRj/vbWjPyfLPcTrh4nXDY9pk455ecd9v1mSxhb8e+O48Rg6OuGEAoJO7DhJvmJJ5cRdiOF9o8Br49qzSphe7OGrjx3kR8/VU5Fl5wdXzMBhkfnosko2HOqjaSCMIMDd21r58vkT2d7sJ5xQWFyVxZaGwdE2NSHPhWQykV1STm9TA5qmYrE7UJXjzLHpOpqiEAsF0XSdVGJ8HGUyFkVTjaR0hn9DPEBCM2GKJ+jtTjHx+jxmrioB4PyPTee+b2xn78Ye5iREHFKSVDzOS3X9PHOwl5sOr+eOpZV8oWoRX33sIIuqsij0GvNZBoPBYDAYDAbDB4l4uk/gbfoLsPZ0n8S7puugjh04sLo9xMNBiidPA0FASaWwTUsHlOmpo4O2lV4E8/h/Ip/TSnmWE6tJIt9jHfPa8ppsyrMdzCzx8tT+bvyRBLGUynOHevA5LRzsHL+Q/URIqRq/e7mZDYf6OdgV5FBPkP989AD7OkdOyucZTr7c3Bwmrb5w9GezzUbrvt1Un7UYgFQigSMjk576I5TNmA1AcKAfX3Epwz3d5BytiNnbWE/ptJmk4jHsHi+CKNKy53UmLl4KgMObSX9rM6XTZ9K481UAcjLL0CIpEi0BrJN9YwJYBIuEqdTB3JHd7PzxlwlvfozFQifmeLpt127dzJx1lyLJ6WAcm8uNpqq8+vB9zFyzDm9eIes+92UiI37KZ8/DbEsPhIT9Q7Qd2EteedVoApLdbcPc/OftfO+ZI2xpHKQvqmGypP/mDr70PFanC5cvi2kr16TPTRCRLZb09S1aOub3KUoSeZU1J+hfx3DKHacff7sEs4SpyAn60f4dcMzJfcvArIKaidzw3Z9x2Zf+m2u++UNmrrlg9LvizaatXItsNrH7mSeJR8Jsvf+vtDa30ToYYf3+HgKxFIe6Q9x69+tcNruQ0kwbD+zs4G/b21lWk008pZFQNF6qG+CXLzXS2B/it5ua+J/1tfxpawsfPruCUp+dddMLyPdYKcoYP2g4qyQDj9X8rn4vhn/u7OpsokmF+3a04baacJhF6npDbKwbwOcwM6Mqn7OuvpnB9lZefeg+XvjDL+luqGXlbR9n3sVXUFAzkR2PPchzv/8FlXMXULNgCaLFhKUyvbDijbZom56NqipMW7mWwEA/U5atQk0miEfCPPOrn3LOzbez4PJrWHTldTi8Gex/4Vm8efmYLEaQi+Gt1eQ4uGp2Poe7gyyq9DGvLAOvz8f0c88fs58oyaRiUSYvXTFmu8lqw5OTR+m0GcgWE/1trchmC65MH5LpxAVNvBX7lCwE+U334KKApdJLeEv3Sf9sw3uLx25mYq6bPe0jWEwij+7pwiyJTC44VnnSYTWRWVhE1eSzkBxmhDdXvFI1bLOyiEdCWBwOMgqKcPmymVuaQabDzEUzCvjyeRPx2mQyHCYe39vF7UsrEBH48qMHONIb5mBXkB2tw3zpkf2U+pxMKzy6QO5d3pcYDG+mDMVQBmOY8h1v2qjjWlqInGF96zf+G4YjST77wF42HOpDB+474MfhzcTuzUAymUgmEsTCIXLKKvB3tjN12apxxyidMZsNv/kZgYEBBIsDd1bOuHvlsmXnce/uPoZjKaJHg/VmlXgpy3KMO57h1JPMZipmzSUeiVA+aw4AXb21CDlverbQwT4rh9jBodFNWiDJ8qyx1X/NksiMIu+pOG2DAUgHAMdEG6IkMmXZShKRKFPPOXfMPlaHE0vANJojSRmMYS4Z23aTs3PY3B+kItuoWGV49/K8Ni6ZWUCnP8rEPBfrD/SQ5TCnK6VLQnpxhKqDJGCt9CJbrOPaK0DlvAWM9PYQ6Otl/kVXIptNaJqG3eMFATRVRRAlYqEgGfn5p/5CDYaTKLeympJpMwEYbG+l/dB+LvnCV7nozi9z4/f/l4mLlmIpcGEpH5uM1zY9G6U5SmHNpNFthROnYPd6eepn30NJJpi6cg1TV6wmlUjg7+7ik/OPJZ0qyrARiKWf657a38PutpGTfq2GU6vDH+XlLgXRZKJ67gI0VcWbW4DSEMFx1psWSCg6otNE3BQlFgqiJJOUTJ2OxWY/fSdvMBgMhlNC13XCr3WjpzQEk4hof1OyER3c55QiWccnIIkGA/Q01tPdWMv8i6/E5nLTVX+EeDhAcHCASGAYq9PFxCXLx7zPZLGCrmNzeeg4fACzzY7FMXasbPKyc0hY3Dyyp5u9HcNkOyzMLsmgLxBnXqmLvR0jWE0Sd7/aMi5WyXB8VocL+/yjCZ+VdAIS0WlCMhIKGAwfCIJFTM/BvDleaH56bCWzoJhFV14H6LQHFKpznEwv8tI2FMFiEtlY2883nzrCfz95mKSRiPtdcZplDg1rTFu5hq7aw5TPmjtun9JpszBbbelpJkFAlCUsR2MJ5VwH5iLXsQQkpOO9YoeHiOzsO1WXYfiAuXBGwbhtkwo9OH1Z5FdPHLPdnZ2LJyeX9Qf7eGhXB+obbfXfjCXQRXDMT49dvBHLLufaEd5UTNBgOFl0RSO8tWvMtkT9MPa5Y9ukpdqLnDt+/CypqLxUP0jZzNnjXpt2zmpagworazKRdIGr5xWPeV0QYMXEk1esxfDe1uGPct0ftrOnfQSA5sEod/zfLl5v83PX1hYWVGSybno+u9qGWTkph6FwkivmFvKpFVU8vKuTV5vTcQ3LarLJclqIJlUqZs2jePI09r/4LIuuvB67x4s7e2xx4vzqidgzMnBm+pAkifzqCYjS2P523kWXjUmobjC8U0IyRFKVEFQV1WRlwcWVo6+5Mq3MPLeEltogakLEJCZJxaP85uUmCqQUlzdsIrFjO9+/fDoAP3i29q0+xmAwGAwGg8FgMJyh3hclYHVd3ywIQtnpPo93pXc/7Por9OyFmddDzVpw52N3ufB3tWN1u1n32S+iRRUQwL2qBGU4geS1oIWSCG+xSj2cSDEQjPPNi6ew4VAfh7oDLKvJZuXEHDw2M9ub/ZRnOSnJtCMI0D4UxR9Nomk6SUXFLJ/YAeHekTjrD/aM236kJ8iiyqwx21Jqit39u9nUsQmH2cHyouVMyZpyQs/H8O8TJYnpK9didbpo3bmVc275KE27dhAPh1l6423Ubt3EoqtuoPPIIQY721lx68c5tOl5Zpx7HoMdHXTVHebcOz7NoU0vUDV3AdlllbTt38Paj32Ww5s34s7OYeEV140uFosGgzgzfXhzCnBnZhMkBDpEXu3Gs7YMxZ9AcEvEnFF62rZTu/5BcsorMdvtbPjVj1l6/S3AG5U7H2X+xVfgyc3jws//J111hwkO9FE4cQpFE6dgttkomjiZZCJB6bSZDHd3IpktZJeW48r0oes69X1hNhzqZVFlFtPyHVQKLcjyIIuuvY5Nf7kLgIbtW1FFkaIVlzDdmUnLvtdZddsnqN++FVVRWHL9LdRu3ojTl8VZF19JbnnlW/6+DadHIBFgZ+9OtnVvo9RdytKipZR7ysfu1L0Pdv8F+g7CzBugZg24jp9F/bg0DUuJG2tNBmogiZxpJdkdTlfAfAsZ+QVk5B+bVLR5M7jws19k97NPkoxGmbpiNbkVVdS/tgVRSi+UVxWFbUe6+d3hJJ9fXcPvNzfTF0wgiwL1/WGsJpmbFpUiCQJHeoJMyXcjCOn8Kk/v72FyvpudrcMADIQS/ODZWn529UxiKZWBUIIZhR4un13Iw7vTkzxZTjP/sWYCNrMxwXiiJRWVZ/Z38dE1EodG9gEwLWMRWiyXoUiS7zxdS47bzLfL++lvbQagbOYcCmom0bx7J/nVNex8/Ln0wRQFSZbZ8fhD2NY4yPblYy7zoI4kkDMspAZi2N1uivKnEOjvo73uCKXTZ1G9YAmxwAgAda9uYbi7EwBJlll81Q2YrEZgoeE4NA06t5Ox/fd8PzrAwOSb6PTO5/fbB/nBhlruuXwGCy7TaNj5Kg6Pl4o58xFEiSnLVuHwZtCwYxsZeflMXbGa0OAA/a1NODN9VM6eh2wxk1VS/q/P4QQwF7vwXlpFqiuMrurIXgvhLV1Yqr2n5PMN7x2d/ijfe7aWs6uzsZpEFpRnEksqSNLYRJGTFp1N9+v7CL/Wg2t5EVokNdp2FC3FilvuQDJbsbvdeLK8fOliN9v79uOP7yQ3cz7P7XIyNT+Ljy6v5H9fbODWxeV0Do+tyhJPaei6zhRzL7z4C2h5CSasgymXQOap+dswnHkESSSysxfn4kKsEzJRw0nkDCvmGi+CeHJKmbb7o9T2BvnmFdkkTEdoC24j4rkIjzkPJZEglYjjzM2nr7kBs81OKpXk3I98kn0vPIMkm5h9/kWYbHYWf/xLbAvYWFbqoPGxv7Dshtto3LGNZDzGtNXraHVW4A2EmVrgZlK+i5UTc7lsdiEZdiOB3nuBZLESGRog0NdLbmUVqz7yCQ689DyZi4oomFeFHlAQCp2o+/wog2P7Q5/byo+umM7dr7ZR6LXx4bPLmVLgPk1XYvggSqkqf9rt5xPTrMRCQSRZRFVVzr39U+x74Rlkk5mZq8+H+LH7hejeARwL8rFOzCQZTTHkMdFkgk9VFOJzGouODO/egnIfTf0hbGYJCbhsdhGXVWgkdg/hPrcULZhEB2S3mXh/kJp5C5AtFpbdcCu1r76CJMlMWHg28VCISUuWoesaNo8bq+pEEEQ0NARdx2y1oWsaExYuweYyghwNZxZXpo/zP3knA20txMIhvLn55JRXIEnHpk9tPg/qdB/mUveYMTU9kmLS4uVEAsOUzphF8eTp7Fr/ONHACNsf/Tuz1qxjy313jx4nt2oC/+/s62mPy0wpcPPNpw6PvtbYHz6l1204+QLxFB67CVGWaT+0H3d2NsHBfvJtJcSP+HGvLUMdiiPYZKQMM0GlkcyCYgonT8Hty/rXH2AwGAyG9z9VQzyaZCS0uRPXsmK0uIKu69inZKUXPR+HkkgQHRlm2jmrCfT30rZ/D4uuup6ehnrc2dm89Nc/ctYlVzJhwdk4MzNp2P4qmQVFTD3nXGwuN4sLinjku19n4eXXsvLWj6XnAXs6mbBoGVOWraAtpiEAl8wqpKZsiN39r1JcGWCFs4Lbc0U2hW2U+Vz0BhJMLzqFv6/3KR2dRGvwaMxLHMEqIZgklEjidJ+awWA4iXRNo7epEUvYjKXSi3ViJmroaLxQV4ismlKef+A3dB4+wMyVK8mdZmN19svsDO5i8ZSz+MHjMboDx/qJpv4ICyqM54R3KpJSmGDtI3PCBBZf8yGGOttYesOt1G7dhGy2Mvu8dVhsdkTZhCCLmAQTmQXHFqTLLjOZ10wgum8AZSB29N8vjNIXxVJqzEsYTg6TJPCTq2Zw/452dB2umV+CyywhihJnX3cTda9uoePgPvKqqpmy7FwEUeL717lpi63n57ufZnnWLGa89ickdyHM/hDkTX3H5yDoAoo/jnt1KYo/juQ0o6saKPq/frPB8O8SGH1OekOyI4R9fh7Wai/JjhCmPAeWSg+SfXwhq87hGPfv6OCHyzJZ99kvsvuZJ1ASCaatXEt2WTkme4jPzTiIc7CPRZnVfO+yafz99Q4sJomPr8qgNbKJb79az9y8uczNnUuW/Z9//7YNRdjaOMiRniALK7OYX55JljH3977UMRwdTRz+hqFIElmS+MKaCfx5ayu3L60gwy7zWvMwv9/cjFkWuWFBCV9dN4m9HSOIgsDBrgA3/3kn3798GrvaRvjEnOmsvsNH+/592DIyOPcjn+DwKy/T19RA8ZTpVM1fSCIaJa8qXeQ0t6KSi778X+x64jFiw8NMXLWKwjnjk+oYDG+bkkBQkyiqBYjjq8zG4R3bT81cVUzt87WoQyKCAAMp2NHi5xNiNyZdxazUU9j3MjcvLucPm5v53KoaowiUwWAwGAwGg8HwAfK+SELyvjXUCH+9GKL+9M+dO2HxZ2Dl1xFEieDAAEoyjmQykVVWit4ZJLixA9FpQouksE3xIWfZjntoh1nmbzvaOH9aAQsqMrlgWj6P7e5ABxRV4+5trWxtGhrzHotJZFvTEDNLMphZ7D2hl6pqGhXZDvZ2BMZsL/CMP/9t3dv41MZPoR8tB3r3obv547l/ZHrO9BN6ToZ/X25+LrmXXEZo5WrMZhMTFi0lHovjcruYvHw1kiQz+ewVRKNRXG4XE5YsRxDAYrEQDkdwOO1MWrIMdB3ZbCEZjSJbLNQsWIKqqlhsNloOH0YQRJp37+DqO78DBxKobVHkHDtKfxRlKE7gmVasy3N57dCjBPp6sDjSVWIrZs9j+yN/B+Dw5o0su+FWjmzdRCoew5mRSfnMudjdHoonj59Msbnc2I7G7WQVl45uHwjFuW9HO7luKwe6ArT7o1xWbeX+9sc5EOlgVcE5VH38KkxBBdUu0WweRBJ1vlXv48sX3EHVzGKqFiwhmUzgcrmYee55SLKMbDIWu73X6LrOw/UP89PdPx3ddn/t/fzu3N9R4i5JbxhsgL9eBPGR9M8dO2DZF2HZl0AUxx/0OOQcO4lnW0n1RhDtJrRQEueSQuTMt5/EYaC1CZvLw9nX3ASCSCwUpG3/HoIDfRRNmkqgv4/M4lIOhWQ6hwN8/5k6PrOqmgdf76Aqx8nfXmtnf+fY/jnXY+PmhWX8eVsrldkOmv4h0F3Toc0f5ZHdXfz+hjlku63890VTuH5BKdGEQnmWg8IMoxrjydA5HGNCxQD/+epnUHQFAFn4P36+/Dc8sDP93Z7vsdF7OJ2gxOpwkldRzba/30PptJm07Nk15niy2UJwoI+OrkN4ZQ/JXX2IDhNaOIltVg49/Y1sf+JBbvjez5h89jnjzufy//wm/S1NpBJxsopLyS41Frsb3kL3bvjLOtAUBCCnbSvyhX9hd7uDLIeFH28f4RNnzWdScQ02QeXwCPziuRD/s9KGx+dj5poLSMaiBPv7ee3RB5i15gKGOtsZqbbzp/q/8P3i7+Pg1Cx4k7wWRta3IGh6OlmgJGCflfOv32g4o+zpGGZ/Z2Dcd+hFMwuZXHCsLeaXV2A2mxCyUgQ3tKWDiCURwSziWJSP05mJp7IAQRBoGG7gK9vuRBRFukJd/J37+ObC7/Drp2N8dGkVw9EUlTlOrCaReGpsVbPZvhTCgzdD/9GFap2vQ/s2uPxPYDUC3QzvnK7rWCf7CG/pAjldbdVc5MSxKP+kfaaq6fzk+jzubvwWTYEmAB5vfoRPz/gceZyN0ymiWG007PwbhRMmIYoS8XCQiUuW48zIRNd1HGovV262YJLiPFYb4M83fIx4XzsVqy8hLLv5+Et9pNRWJFFgcVUWD39sETaT9E+TABpOLVVRUBJxWvbtIhGN4PRlcc6HPgJAQAvy9dBP+Kr5C/jsY4ctzeVubPkOrqjOYN2MAmRRQJbe3nOZwXCiuG1mFlVnkZSSDHW0UzBhEoG+XvrbW5i1dh3RkQD5ripEIG6R0BMqAJHXevCtM+GaYMaePZ0ao18ynAAWk4TbasJlNXH3tlbKbHGKX/ga2oJfM/hg62igrpbU8NxQSVPtflr37qJmwdnklJZTMm0GakplpLcbR0YGvQ11TF2xGtlkAQEEBARRQBREzDYbwtscCzMY3m8c3gwc3ox/uo8530n/0wcQLTJaOAmA5/wK8jp1ll56M51th+htqqd1z+sATFh4Nq8+fP+YY/Q31nH+JSqvJbz81+OHxrw2yUiqdsbJtJk5lAiSUEconjSVoe5OXvnbn7nxsz8msL2fZEcI0WVCT6o4ryzHY80np6wcSR6/eMJgMBgMZ57UYIzQC22Yi13EDg6iJzWCz7ch2GWybp2K5S0SkAA4MjIQBIGc8kr8XR0UTpzCcE83FruNfc+tZ9n1t1K7bRN1Wzcze90lXPT5L2O1O3FkZgLpMcHrvv1jBjvasLrcLP/QR7A47dgc6c/M9EeZU+qlvLiHz226k6gSBeAe4Nezv8DyzkewVHwMt80IN3s7/P2d5EwuIvBQU/q7P6EhmESc15ad7lMzGAwnUW9TAy17Xsdl95HdmI0yGEe0y+l4oeVFtLUfpmruWSyYX0G4qoYbXr5tTGzINy/7OZ/687EkJC6r0ee+G0XiME2WTn7W/ARfK/wk2WXl6JqKOycPdJ2+pnrKZ87F6cvC5nRhdTrHHUPOsGIpdxN+rQdtdwJ0QBKQ8xzE6vxYqzNOWmJ/wwfTkd4QfYEYty+tQABeqh3krMoMwv4hggN9VM5bwMTFS0mlFML+IcyxKN+r/TSKlu5D/ir8H79d+E0W/O1GOPQw3PbCOy5qImdaMRU6CT7fhugyo0UVZJ8V5+KCf/1mg+HfJEgizrOLiNcNc3SJAYJJRM60EnyhFWUogdg0jJxpRfaOj79NKRpLqnx0Nx7BlZXD0utuBlEgFgrRsmcXprll3Hbwf5ngqeYHk24hQ5rAJ86pwmGL878Hv8qBob0APFD/ANdOvJY759yJRT5+UpH+YJxP3bdnNKbo/15r56PLKrhz9QRMxhz2+06G3YwopOOm3yCLAsFYil++1MgX1kzg5boBqnMdZDrMKJqOklR5Ym8PKUXnz9taxxzvgZ2dOCwS/f4AYn8f3rw8Dr7wLBkFRUw6ewWTl65AtpjZt+EZzrnpI1hs6VjsxkATX2n5Pp5ZbrwmN78b+CFXtF3Bp3yfwiQaY8eGdyEeBEDV8oBWimcVj9vFbJWZuLQUtS7ddx0gH0kUWBNsRJA0Cqc3w/3XctunWvjzllb+uKWZb18y7VRehcFgMBgMBoPBYDiNzqgZCkEQbgduBygpKTnNZwP0HT6WgMTshGQYXvsNzLkFMstREnFe+OOvKJw0BcdKD15PBq5zilGGYsg+G3pSRUtpiMdZp241Sdy8qJwfbqgnEEvhMEvcuXoCXpuJuKLCceY2REHAYZZoHgif8CQkSVXjklmF1PaGiKc0FpfY+eVyHU/yZThohawayJtCNBXlz4f+PJqABCCmxHil65XRJCRaPE68ro5kWzuCLGGuqMA2ceIJPd/3mvdc2/0HLtexSTaTKT2I5XAey2Dq9qQDZO0O+7htb64YaHEce88bW4ura7j2az9DGI5jbpGJHh4iIoRxnl2IMCkTNZYkbAvht/VRt3UTLl8W2SXHJkZ0Pb04c7CjjS33/5WymXOYu/Yi3JKFka07iGRm4pxYhc3jgVA/jLSCIELXbhhqRKs+j6izkKTkxJuVz8v1/fzk+QZ+dvVMJrqTfGOFnQPJFh7seJ7bp9/Obw/8YXTil6N/3v8xfRoD4RQ/3NjG0inFZLnMWCzppCNvDAyeyd4T7XegAQaOpPtZZy4UzAJ75j99S1uwjd/t/92YbZ3hTg4OHjyWhKT34LEEJBYPqTlfIaVPQ9/ZhinXirnsXy/Q1OMKlgoP1iovykgCU7YdNZpCT6oI8tubbPB3dbLvud9RNmM2JouV1n27cWRkUjV/Ib2N9eRPm41lwUU8uLEfUYA/nZvHdK2d6yqGEQtsPDbiHLeAWtN0CjJsWGSRq+eVMBCKj/tcWRT49MpqNF1nX8cIBV4rs0v+eUD++8l7ou0eh0UWeaXn6WN9DaDoChvan+TSWVfw6J5uGvvD2KtnwJGDlM+ex5EtLwEQ8g+RU1pOT0MtQLpysZo+jjcjD5PDiaXEg+KPY8qyoUZTBLv7cGb63jJZkic7B0/22OQLyd5eErV1qP4h5Nxc5AwTVskPBTPBlXcSfiuGN3uvtl1aNoOmgGiCmrUw5RJcopcXz0qiRmMIXgtxJcQX9idZOqWAb286AkBdfwxhw8MUTphM2D9Ex+EDoOtomoaaStIx2MOh4UMcGjpEqaf0X5zEiaFGUrjPLkTxp/tGOdOKGkn9i3cZ3o73bPv9B8FYiq6R2LjtgpB+rvpHnuxcBgItOC4tQW+NI7rSFbOCz7RhKnCgleQg2UxktY5wv/xRBKuNYL6J7w3cwz21d/PJ1V/BLVmwm0VaBsLcvrSC/32xcfT4180vJjPWmk5AIttAjYOuQ8Nz4G9K3/sYTqr3S9t9uxR/jKG7DmKd5MO1siQ9DpFlwz41C8l28gIXWgci6O620QQkb/jNgV/ysaopfOeRQf73wgoycvNQkkl2r3+czIIi8uJxGrdvJTzs57oLa7hv0WK8iQhWswn98AHUklI++soIQ/EB7rvQRq7SjehvBaeGJS6B+YMdFPdea7+S3YWidNC6dxfddUconzmH5t07aN2zi/mf+DCfKf449geC6JMyca8qITWYHiezTc9CcqbvWa0m6TRfheFUeK+1XUg/S6NDb0Imv2Yi0WAAVUnR/Pp2Og8d4JLb/5PIQ20gCriWF6GFU2gpDftEKxapHmGwFXuhUa3qTHcq2+7+rgAmSUQQBJb5RjC3dxEaSeJZU44yFANRQPZaCPUNMNTZjmQy8dJffoeOTsGEycQjYURZwup0M2fthUj1jaR6epBycrAUZGKOHIaBWihZAFkTIOO98bdoOHnei33ve4GpyEXOR6YTOzSEFkkh+2yEt3Wj+uNkuvOp9Q9Ru23z6P6yyUwqMX68VU0mWFKdzbTCLg50BREEuHVxObNO8JzdB9F7re1GkgoFNh2nbKahoQG7x8uUBSuJvNSFe2UJykgCVB05x4Ylz4sn64P9zPJB915rvwbD22W03XdHVzRCL3cQ3TuA1BYcvXcXHSZsk32YCp0k29uJ7tqNaLMi2u1o0Sjm0lLMlZVIZjMz115AT2MDJosVZ2Y6ca+mafi7O3nl3r9QNmMWGXkF7Hj071TOmjeagARIJzApqyCnrOK45ydL4HFF2D3w6mgCkjf8ruM5/jD1FqYLERTX+3fO+FS2XUEUSfSH8awtIzUQRbTJiLZ0MhKD4d0w+t73OH8LDNbTvrcHHRlRlbBOyECYIKAGEsjZdtRYimQ0gi3bTZ6c4hs9z46LDdna9yxzSi9gV9sICyt9WE3v/4XMp6PtOsUAfzh8P3bZzs4nH8Lf3UXJlOlEQ0HaD+ylau4CZLOZjLx/HvtlLnbju2YC0f2D6ee4TCvhlztQw0mybpmKudg1mgzYcGY6le13RpGHu9qG+fBf0wWoFlf5uGJeIdqgyvN/+CW+4lJyyyvxd3XS21TPBZ/94mgCEgBVV3mwaxMLSpdA25Z0DPs/JiHpO0ysP0aqqx8tnsBcVoZ14kREazpQXUuq6AkV97mlKP1RJE86abUWU8F7Ui/fcIK9X+8bLGVusu+YTrzOj2CSsFR6CTzVRLIjXWRPCyYZ/Mshcj41C9M/FHoNxRUm5LkZ2tzGlr/9hbJZc5AkmZa9u/Dm5VM6O59Cez4/zP84GQ0xztLrUPIK2RiPjSYgecMDdQ9wZfmFVOccf6F9XV9oXEzuH19p4co5xVTmjE9sZXj7Tkfbrchy8IU1E/j+s3Wj225ZXM76Az2omp4uLJjr5KFdXcwuzWB6kYf9nQE0XUfX9XHHk8R0kR6bLNLe2kzTztconzmHyIifJ374LTKLijnr4iuYv2YVdmd6nYGiKezr30ftcO2YY/3f4f/j0upLKfe8u+KBqYEBEg0NKAODCCYZJAn7jBmY8ow43w+EeLqfUvV0EhJX4fHHcyYvK2X4V+nnjjq5kLmlGbhf7kVzqaP75EQauGx2IQ++3slnV9WQ5Tx+kiaDwWAwGAwGg8FwZjmjRr91Xf898HuAuXPnjn+iP7UnA2oSLv0jCDoEOsBdCKloOgEC4MnJRTaZ6TpyCMuyG4i82gOygOQyEzs4CIqObVoWsmv8ouChcJKhcJL/WjeJkWiKTIeZTn+MpKohILBmSh5bG4dG95dFgZU1WVxbnYcWSdHTNIKvwIn5BFUnUTWdu7e1ccfSSiQRPl7Uity4Afb/HSwumHsr6DoRTy6x1PjFfKFkaPS/Y/v30/Pl/0SLRkEUkX0+8r71TewzZpyQc30vek+13TdRkjHibbsRBg5j8pVDbBhVSWJy55EaakXyFkEqihILYvaVoAy1ITizEHWNVLAfU04V6nA7WDxIsonUSBem7Cq0YA+aYMLk8KCrbsSXzJgL3cQODqQ/WIfw5q509fg1RTzxp68x+7yLAAgNDeLOzsHu8TLS20N2aTkDbS1Auppyb2M95lAEf1MbEcGN2T+E1t6GPLcU+ckPI9SsgfoN4G+G2R9CrH0c58GHwepGW/pFVmlWHrk1n17hAEvmC3y37i94LOlK9yLi6MSvgDCaTEcUVLZdZ8MZaMDaA8nGIVLREfScyVhK5mCy2DiTnfb2O9QKrZvh9T/BUBNUrYQZ18KEC+CfVGgNp8IkteS47bFUOL2Q3luW7rOvfQDCfaSs0xh8PIkaTAGdIIt4bzBhKfdisrx1X6oMxdPt2SQiOk3E9g+CpuOYnYvZ/vYWeOZVVrFbUWjatWN02/Rzz6N8xlzKF63kv59v5fkX+tLJKy4vhicfo+fRR5EyMlD9fi757v/wZImH19vTg4lmSaTAa8VrN/Gx5ZXcu6ONr62bzK9fbhrN5H3BtDwm5LrYWNtP13CUHz1XT1GGjV9dN4sZxe/foLI3O+1t9y3kuq2ElfC47aFkiE8uq2RGsRdRECjxqMRaj6BrGqKUXoTp7+pg6vJVtO7bTTwSRtc1rC4XgiiSm1VG5PlukEUkl4nYgXSAROGKSZTMm4XZ9vb6KmV4mKFf/ZqRBx8EwFRaSvbnPovgCmNJbkErP5d4XSOJxiakzExsU6dgyv/XCXsMb997te3iKoDL/gjJCNg8JIfjdP/696T6+lAHBpC8XvK+9jV+Nc2Mo3SY7TU+nq8f4pnWONdXTOLIKy+NHko2mbG7vQx1tqNkpycywqkwO1rbkAU3s0tPbj8U3dlHon4Y0Znup7VwCku1l2FzumK9r9CJ1WFUF3g33rPt9x/o6ASiKWpyndT3HeuT103Pp9Q3PslcNKgw0NNGjliI3hpBiyroiXTbTXWGUbr9xHoaGPr2d1AHB9HCYVxr1/KdK27h4yO/weeJIaeSXHdWKeGEysv1/dy5uoZ4SuOGKSbykh0gWeCS30C4DzzFgAhPfSZdsSA8CM6sU/Xr+UB6v7Tdt0NJqcS70+00uqsPJAHJbSZ2cAhrlfeEfIau69T2BBmKJImnVFxWGck6QGZOP82BkfHnpCmcU2Hhw7e7CMnQMFKGrukgCPi7O/F3dwKw9OprETLKyenoJdnURPddd6XHDQry+eWnP4enOIr1ua9DIgTTroS6Vgi0QuFsKJp7Qq7t/ei91n674xIOWSYjv4Dhnm7qXn0FAHd2LprLRoU/n3Cyjdi+AWJH22f80BBypYfjp80znKnea20XIJZSSSgaSYuZksIitj74N6YsXYEgiKTicdxSJqFUepwzuKEN0S6nKxxndCLs/A+YfweE+sCVe5qvxHAyncq2G0moIKismZTFWZ4AWu7Pib6gkOptQXSZ0wkewymsc7PorjtMoL8PgIrZ8wFQUylyKqsp9DmIbdtNx3e/i23dZahTvSgxyMieQJYnirj+C7DgY+ApAlGG6CC4i9KLa95IRhrph4zydBvXFcgohcFGMNnScyN9h8HhA5s3vT27Jp1Mz/LWVd4Np957se99LxAEAXORi0RLgMjrfWihY+PKsb1DzL3kUupe24KupReTxsIhKmbPp3nX9tH9TBYru4NmtMZB/vChufQG41hkifIsh5Fg7QR4r7XdhKIxr8iG0jZCPBzCm5fP9NmrCN/fSqAjgugwgSSg7Uziy7FD1pmf0N7w1t5r7feDKJVQGOqOEB1J4MiwklnowGT0zf/SB6XthofjDHVH0FQNX4ED97/ZZyf7IsT2peMi1OEEgWdaEF0mPOdXYC52EW9qove738O9ahXJtlaGfvd7kGXk3ByyP/EJPBddhDc3H5cvm97GeoY622nZ8zrls+chSjKaqtC8eycAs8+/BKfP947Ory+YIM8Xob5r/Dx6NBVFC3SQ77NzJP7+Xax0KttuRkY+safaiUcVJK8FLaGixxTcF5SdzI81nME+KH3viaBrOv6eCIGBKBa7CV+BE6vzJM7vBnvSsUYHHgTzhYwMDlA6cQrhjen4N9FhIrp/ADSYeOVCIkIP/idf5YILF/AkT405VCQV4tfr8nisJY+DnQFGospbfOj7x+lou6rdTkyNcWnmCqacXcGzv/05R7a8PPp65dwFKKnx33f/SBAFRIeJ2IEB0NOxA29ItARI9UZwLi5EEI9TNfAkiEdSDHWFiUdSeLLtZBY4EE/RZ39Qncr2u6l+gCvmFLFmSh66ruOxmWjqjzDL5R2Nkx3qaAPAkZGJxesed4xwKox2zlcR48Ogq2Nf7NlPtCdO/09/SaKuDtFmQ08mKfzpT3AsWACAFkgQfqULRJA8FrSIgp5UMeU7MOc7xn3euxEejuPvjqBqGpl5DjzZxrjIyfB+vW8QJBFLmQch18FwbwQ9khpNQPIGPaGiDETHJSFBgB9uqOOnZ83iwIsbaNzx6uhLU5at5M/Nj/Dnov8k+o0f0j8yAoDocnHeV7/CXfZ8uqI9o/truobavBEaNqbjkZ1ji7gp6vhfqaLpKJqRcPDfdTrarsUk8aGFZcwpzWBHix8dePFIPw396bZnlgQ8NhMD4QQvHunjkyuq2N8ZoD+U4KwKH3/b0U7qTW1i1aRcfvRcHY75MmXTZ3Fk88bRuAiA6StWU9byB8zPPQUfegLKlxBMBBlODI87N0VXiKQib3nuSlJlqDtMZDiBw2shs8AxGtMeq68n9OST+O/+K1JWFsrQEDmf+TT9mzbhufhiLOXlmHJy3vLYhjNAIr1uQNPSa2Ek5/GTJDmzHAwkJbr1THrkHG6emI36iB+z901jpP2H+MjSq3jg9Q7+uq2Vz6+e8I5OpS8Yp3skhs9hoSjDZtzDGgwGg8FgMBgM7xNnVBKS95ThdvBVwq6/wq67jm2fcR1UrQHAlZXN6o9+mv0vPIvd6yXMCCg66nAiva8spEttH4fDIvHgrk7iKZUyn4PmwQhVOU4unJ6PwyKT77HylQsmsattGLMksqAik4K4QKQ/QjySIjGYINAfo2J2NuZ/snj+7ZJFgXXT8/n5iw384PwCpPYtUP8szLwWlCS89ivIKMORVcEFFRdw2H949L0CAnPz0ouBlHCY0CtbyPmPO9GTSRS/Hzkvj2Rn5xmdhOS9KnFkA85Hb4LZN8HBv0Hvflj9bbj/08g1a6EpBo0vYl7zHXjgWuS8aZBZAfvux7Tiv+DhmzHZM6FmLbz6K0xn3wlP/QxSMTjro/DEd4itfYVURwDJZUXKsKJFjw0W60kN0QSX3nErMVWmoGYi3fW1bH/kAWaffxF2j5fJZ6+gdsvLtB7YQ35JOXOXryIQcvL8qwkEdGasqiDiMtFzOEHWWfeSazqC6bXfgCsPzVVArd1J3co7ccpWyj0FBK0OPv3KF7i48mIea3wMVVe5quYqqtwVTIpl8LcpP0AfHELuGiDqtbLDO8RSt42Cv14M8z4MB/4C/YdHF0ZFL74L06zLT8c/3weHvwFe+DpUrYLKFdC2DXb+EXImga/qLd+mqArrytfxStcr3Fx8O+5kJpo1RZUjF175CYgmWPgpWH8nDLeQmPEgavBNE/uKRnRbL8MKFEzIRHqLyiPi0WRPekob7d8Fs4RgffvBi76iEpbecCuHN71IMh5j2orVFE6cQuHESbQPRVg0IZ/n64f50Xw3joEetJkzsE2bhhoYwZSfT7y2jt+vPJcv77FiN8tMLnDzzIEeJue7uWd7O587t5oJeU7+77az2NEyhM0s4w8n+fT9ezm7OouCjPRkTedwjM//fR8PfnQhmQ4jg/HJIksi55aey+bOzWO2rypZxecf2MvBnvSCtkyHmbtv+DjZsS4Guyay4Y+/A+DVh+5j7oWX4crKRceEmF3EuZ//Gk5TNmHCoBxri0gCuRXV2Mq9b/v8Yvv3M/Lgg3hvuAHHvHkIFjNKXx+RwRRqpo7SvY2uz3x+dH/bnDkU/vQnxmTFB0EyBOv/A674K7RvI2FbTeZNN5Hq7UF0OJCcLoLPPIPjnOWoWSZ+d76Tr2U46BqJkzN9HRmZXhpe3Yw3N59Zay+kq+4wcZvOY/3P4ja7ybBk0K8ewC37eK3TyYKi41eaOBFkn5UEYwOI5Cwbg0NxepuDKKlupiwpxJlhwf2PE9qGM4LHZqY614UgCCypyqJpIMKUAjerp+RiM6e/26OhBCO9UXTg+T8dYvHl+VjNHsLD/jHHEqwSWlJEGRzEPns2kteDaLcz9Pv/z955h8tRlv/7nrK9t9N7TT3pPYGEloQWuoACioKI2NGv/uxdKWIXKyIoKEiVDkmAQHrvJzm9n7O9t5n5/bHhhBhAUJDi3rlyXWdn3n2n7OzsO8/7eT7Pb7GesIRvTvg4m2PdGKUR0vkaZjZUcueGHm5+sp1zp5VSlvAj6Cyw6VbYe//RjudfC+fcWjBb6HkBJpwOUtEcp8hro6oqHdvGqLS8LA6gHIlDiALIb041ve29IfpDKfYORqnzmNFZOzjo38uDhx/kw1M/jNvoJpg++l1ZXrecqnQSQTZjT/Ugpf3kjR5WXPtptj7yIOlYjGknn0JLlZPE5u1IbjfB227DumwZpqlTQa9Hp5dI7kmTbfk2ptxWdFt+AQs+Dv0boW8jnH4jmN2vsddF/lu4zDo0QWTB+ZdweMtG+vfvobJ1IjOWn4VZ8SLmXvbc9dL1KQsMdETwWfS4SotCxCJvH6qqMaHUSo06hjoYo2XuQjq3bWHFxz/DSPshxPyx91E1mUfQi+QrZqBvWAbrfgT2Cph5+dt0BEXeS/QFEliNMiadyJz8NvR3vx+17Qok90fIDSePMUnQuc2UNjSTz2ZpmrOAqomTefaO33PSJz6FVSeT3rwfLZfD85d/MDiokIzmMKg6tj8yzOxTTsC0cCaWXA+Off9A8LXAyG7oXFuI8f7jUzD36kKiTbADTv0WPPH/wOQuGJes/k7BnGTS2fDoZ6F6biGG/Ojn4PSbCjHVV5kHKVLkHYckHPPdApDdRgS9h5XXXU+wvxdRkgiPDFHe1ILD66V944t4KquZvfwszn0iTDg5RpnDyJw6N55ilbj3LB6zhBCMEL3nXprOX8WTt/2aSz7yncIzV15FTRyNORUrZhcp8vaSzyl07vQT86dJJ3IYrUniwRT103yI0psTJynyzkVVVEIjSZLRLDaXEUeJCeFlY9PwSJLHbt1FcCiJ0apj5vJaZJ2IpBMpqbPjrXzj1a1zgwkkp4H82NHiPWosh6gXyY2MkHjuOSzTp6EEAgR+93scq85GV1lJtq+fXF8f6fZ2TBMnIskylRMmoTcY2L3mKYYOH2TldZ9l26MPEfOPMWXZqUw96TRE8fXPSSuqgt40RiQSoMpWhSiIqNrRBLoPtF6EZe0v0KZeiK5h0hs+9v9F9KJA1mlATeZRwpnx5YJeZuhwiPKm90bxjyJF3okMHg4x3BklncihN8gEhxI0zSzB9ArF4N4Uxg6ivfgL0jUfoMI7gY2P/Yy5888hQxwtq6Jkj+iFTDLKcBpbiYV0TTVT08ebRZ1SvYzSBy9m2rTv8btOgQtmV701+/wexyPoOKfpHFbGJ5Jzmzjxso+w88lHECWJ6SvOJBbw0zxvwevqS9BLxxmQQCFRPvJEN8YJbnRvoYlCLJhmtDtKLJhGb5Q5sGGYocNhRFHg9GunUjvlaLEKTdMIjySJhzOY7YU5leK49t3DlEoHn/7rDiaV2xEE2DsY5Sfvm86wYmLuue+jY/N6evfspKyphYmLlxE0po/rY3ntcsRHPwd6M6z84bErg51kulXcH7wCJRBAy2TQVVYR27gRfWsrOpcLTQPRLBfGL6Gj4xekNyeGGxlL0rXLTyaRR1U0wsNJqie58VYWzaqLHCWbynN42yiJcIaWRnshnyL/T14Ur3BNWgwSrWV2MgaRU676ONsfe5hcJkPbqSsQSx0kRpOYAnFMV30EJRxBV1aKJkkkNm3m2yd8nCv3fWW8r4XlCxhwlBOJjzK5bxPWiWces63mUis+m4Gx2NHvyelTy6hxvzlmPUX++1gMMnPrPcTTea68fcv4cpNOYnq1i8/dswOAcqeRWTVOAGrdJgbCSb6wYgJ7B6Iomsq0Kif3bx9gZYudUobYNhDgtI9+gq2PPEguk2HaqSuoMwyib3+wsIENv4Ca+ciijE1nw2vy4k/5x7d/cs3JPHD4ASyyhXpn/fhyRVXoCHSS7zKS9CtH4lo6wqNJHIYs+rEOdEYdGE24r7yS/NAQuuoq0ocOofN6SW3eTOhPf6Lki1/EUF39lp/fIm8T6SgASrZwzxQtr36PUjUDq5WCsciSegf5UAjHdDcwXGgQ6afRZ+WUiaX8aUMP1yxtxKz/1/MbGzsD/ODxA2zvDY8v81r1nDeziquWNOCzFefKihQpUqRIkSJFihR5J/OuUDUJgnAXsBTwCoLQD3xd07Tfv7179RrkMiBJkPDDttuOXbfzL4VqvM5KPJXVKNksE5csBVHAPKOE5PbR8abWhZUIulcO3Hb5E1wyt4b2kRgHhmKsmFyG06xjNJGhHismnUQur2IzyOhlkWkuC8G9YWL+NM5S83iAzlVuobTueDfsN0oklaPCaeT601pZWp1G2J+GCWfCrr+CpC8IieMjjCXH8Bg9fGrGp3i692nMOjOn152OJBSED2o8jmXmDGLPr8N+2qlIXh+CTiZ9uAMtl0PQFZPq/lskgkNYVn8Vpe408r5TEaUKtNYPoUazyDM/ieKZheDfg7DkZJSkHWn6x1E9M2BsL+KCr6JoNUhTrkLzTEUbPYCuch4iAhoSuUU/QAsNIs7+HIpiBSKkDwZxnF5PZDgBR9yAdRUm9PoxyvbejVTThuusFXR1TmOgvxfZ4CYaKicwbKR2+kXUzTgLq8NMKiWy7qFONFVj+qk1dGwbJepPgwD1bV4mLVyE8oGNjNBNStS4/oX/h9Pg5EOTP8Rdh/9CiamESCaCWTYzxdzEJbqFTAhXcfHhPMnf3Ilt2TKCfygYC7kqK7jkwx/GJI6Rn/058q4ZiPig+kxURUKWM0iDAyRsBzE3thwjWCryJpLww7Ivw/Y74OBj0HQylE+DROA1TUie6n2Kk2pO4lzjB9hyxzBDGQVRNNBwgZd8w3Lkxz4NrSsL5jv2CvJJGTi2uogazoCqMdYfw1djQ3qFSVu51Ix5dinJLSPjyxxn1iO7ja/7EEvqGlEUFb3JjJLP4a2uo6yxmUA8wyfu2k4mr/L/Vk5kdtcLyLNnkO3pQVdejuRxo0SjyD4vOlVhRrWTXf0ROsfifOaUFu7e3MsXlrdS6TQSTebxxzNYDDq294boHEtwwayCkCGROVoVoWMswWgsUzQheQvRNA1ZkPnCnC/wRPcTCAgsr1uOKIiUO03jJiTBRJYH9gb4SvUhXD13YP7ghRzY34fJU4ne3MzGh1PYPEZa58k4K+qRJA3zrBKSW18+1qggnVaxSG9AgOj34/vUJ0lu307KbEay2RD0OgSjkeRQHOMUDxW3/IjcwAD+X/yS1NatpA8cKJqQvNcJ9RYSywBMDlT3RJTRJLnuHvQNDQg6GUQJxwXnI+j1ZOMgpPJ8ZaqNoOjiho2jLJ58KotnLSY51MuBjevwtU1gp/4QrblWTqg6gecHnsdn9mHXB5AFGd1wlllls96Sw9FVWBAtuvGEENGiQ1duoX39MEpWxeYxEg+n2b22n6nLqqhocr4l+1Hk7aXea2EwnKJ9JEZziZUKp5F0TiGZzZMJZlj7l4O0zCtlqD3MxIUVbHl8jOUX+TBOdJPef9Rcwba4kmzfMKgaUmkppuZmNAF8X/kyeb+farWVKkMJaUnFNjHJ9X/ZxbXLGukPpfjWAhmh48VC0ubLDUgANt4KdSdANgHRfvC3Q+nk//JZKvJuY/BQhFQ8S1pVMM8pJbn56BjVuqAc0fqfh4kSmTx7B6P0BVOUO41MqY9zw5ZbmVs+l95YL6F0iGvarmHryFa6ol3ML5/PWdUnY+zaBOVtsPMuGto+w9BYiI7tW5i5/Ex8FdU4c2Nk+uMYp09HUFUqbrmF7EA/ma5u9JWVBG79Na6L34cmmEiI87Cc2oJu289g8rnQux4SY0UTkncIXn0OTW8ioKp4q2uonTINd2UtGx+Js2SeitoZxjTdR2rH2Ph7bKfUkrHrGemKFE1IirytZPJ5+sNpGuQMeUmkxmzHNGs+h7ZtZuriU8keimOa4iW156gwzHZyDWFFRrROwHjqXGh/CiafD4aiCLHIv08kmWUokmYglGRhjQnzUzeBqqCl4xhb3GQ6ImhH4jmSy4DskJl78XnEx06hY9tmOjv2MPWaD2DWiZj6/Ig+Hxl3JX29efJZFX9/nL59Qeaf08j6RwY54X3NbN0n0TDxC1QYBtAMk5DwoMsmwOSCrbfBok/BczcV4nO1i6B73dHf31AX6EwFs5G+TQUzYThqLOyuf42jLVLknYNo0SGXmMmPJgsLZBHzdB+bnx9CZ3VgcZbTt3cz7spayptngmKmKZaFgB9zIks4WYgz7BmM0jEW59qlTcV5g/copfos2VQWx8oV5INRVlzzWdI9EWyLKog92z/ezjSjBGzFuc8iRd5OwiNJevcG0BlkjBYdsUCaWCCFq9yCu/yNG0wUefeg5FUObhzm2b8cRNNg5ooajGYdqXiWqlY3oaE4mbRCcKjwuz9reS0bH+oknyuYctRMcTN7RR0mmx677/VXb00fDGKZV07k0S5Qj+giqqyIToHk5s2o8TiaogIK5lmzUBNJgnfciePMM9FUjdizz6GvrETQ6Ujt2Uv2739nUXU9Y04nhzasY84Z5+DyluAsr0B+leq2x+1TPs3OsZ3k1TyqpvJwx8MsqVrC9bOvZ23fWuK5OOc0nsPS4U6omAG5FEou8y/7LQJiOot5dhmRRzqP6mDKLQhGiUggjbsih8FcHAsUKfKfkMvkGeqI0n8giNVloGqCG6NVZqgjSqA/XtBJpvMMHArjLrdQ+VaZkESHSNZcTe+Xf4LkcHDGddcwMnqIsim1pPccO28Y3zCE44xSdA0NkFdZ2/Irnpc7ecC/mlNqT2GCzgn+dqaPPchXzvgi+bz66tst8qoo+RQN9gaU/f0YSkqoq2/C/r7LCY8OIWsC1Q3N6I2vr+CI7DDgXNVI8C8H4EgOvKHJSW4kCXltPA73ZhMNpEhFs3TtDrD98R7UI2OHmctriQVSxEMZ1tx5kPmrchjMMvFwmmQ0h04vsePpXjLJPEvf30rLvLJX1LQVeeexozfM/62YwFP7RtA0+L/lE9jaE+KUSaUM6Hz4ps6mpL4JyepA9FUzpOzhi3O+yBM9T6BqKqfVnoZe0qOVTkTYfS8EOqHyZboaVUVXUUFs40bsCxeCopIfG8UyZSpKKIzO5UKQwLq4kuiTPeNvM7a4EF5HkvHrITiU4PCWUapaXYiSQM+eACabHneZpWiY8z+GoqiMdEULz+R6iZrJHnw1BTOa4HCCrp1j2D0mslkV68JK4s+9LKY23feKBVZi6RwLGt30CCITSmHGKaeiKiqGqnL+kXqWC0pXEP3dYxinz8AyrQ0AVdOwzJ9Pi6Zwcd3pbA0fYl75XPSSgU9v+jYAn51wBZdnT0bSH/3dqHKZ+dOVc7ljfQ9be0KcNa2cVdMrMelfvw6zyDuThU1e/vKReTy8cxCLUabOY+EbD+8lp2iIAly+oI7eYIr/W96K26rn/92/B0XVqPOYKbUbcVv01HnMfHy2EfPYZqY48/SGckxafCKeMh8lDGPb/rI0qHQEUAlnwiiawoenfJgdYzvoDHcyv2I+C8oXcO0z11JuKWdWdhbTS6aTyyh0DwyQz0gEe1LsfObo96NpdglVLU7G+txMqgxjPWEJaiyOGo8Rf+55UFXk8nKUQID4M6sxTZ9OVNNwrFqFvrT0v3/Ci7y1ZAomJPlMQXcuvkasSMPIGnUGPjVGlUFhIBrFUFqBpoKmdyFGBwG45sQGnto3wt829/HBRa89x/vLtYe56YmDlDtMfHHlBFpKrYxEMzx7cIw/rOviLxt7+fIZE7l4TnVxvqxIkSJFihQpUqRIkXco7woTEk3TLnm79+ENoSmAWEgG07Tj12dj43+W1DdSUt9IbjRJZGcE+2m1aHkVQRbJBVNIjldO8vbZjXzp/j3UeSw0+Cw82z6GLAmcNa2cWCrHDx8/wIHhGDNqXKSyCldPrCRn05MMZ9CbJTRNo6LJSTKSBv5zExIEgT9v7GXllHL82PFZvAhrvnt0/bM3wDm/IqNkuLf9XtpK2ri49WJUTeWFwRdYXLkYKATz0OlwLD+N0R/eQHrfPiSPh5LPf550Xx+mhob/fF+LvC60XJpM61UM372R/D2/xrFqFcE/3Irj/PPJdo2Q3nsT7g99kOCNt2FdeiJqOk38ue/i+/i1BP90B8ZJk5A8biL3fAVNVXGedSqeaTOJ63SMfvIGfB/7GIktB3BdlgIBUDRiz/ZjP6kGdAKSIUti02q6Lv0xrisuw9aykNBXvk7lB6/CNOcDvHBfN55KAZsH1vz5EPNXNfD8PR20nVRNMlqoRCgbpIIBCTB/VQNdO/088qu9mO165l08iZx+gDneeSypWcQd+++g2lZNLBvjporrmNLr5vzemYR+8wukaz5K6Pe34bnqIwTvuBMA87x5GKdMYfTmH+G95hriqw+gprZjW76c4G234br0UtJ7OkisuxvRcju+z34Ox6qzkV6n0KfIG8BaUqi4mj8idDrwCGTiMOWC13xbja2GzoFe+LtM7shksKpqrL+nm8pr51IKhX4AooMYfXHi//SzqWvz8thfDpKO5ph2SjXTT6nGbD/2vi2ZdDhW1mOe5kOJZpG9JnQVljccLCtvbKa8sfmYZZ1DQXb2RwD444tdXLyolugzqzHWVDPwqU+jBIMYJ03C94XPI2oq1Qk/z6VgZ3+EKpeZhY1eQsksv1/XxS/fPwuLXub7j+1gYpmdGo+ZR3YP4TTpmFRx9HeixGbAZXqLRBlFAAjE0+z17yWn5Ti/+XwA9vj3YJAMlNprjmnbG0xBSRxD/zoaBl7Eu+p+HnnIxL71MVrmliJKAuvv60DTNE6/fALWjHJ0rKETyQ7ESVf960oSSl4lGkgjAPrJU0huuR0tk0Eym/D/6ldoySSWE0/AedFFDFx3HWoshnnuHCp/dDODX/g/lLGxf7mNIu9ycknIFO5HpMNkdc1I9jyRbduIr1+P68ILGb35ZhS/H8OECZT83xfIjo2hxhM4Wlv47hQ9s/62j3RO5ZeXzkAua6ZXt5F6uZkKpYZnep/h2f5n+cSMTxDLxni8+3HObz6fGnsNPrPvTT8c0SBjmVuGcKRqhpbXiMVz1E7xsPPpPqonuUlGsjjLzGx5pJMl72tF08DmMaIrTia/J8grKr9+tpPVB0aZUeNk90AEXU6jWtQxoE/g3+KnZpIHTSmIZCxOI6loFn9Yw1dtxV5lQ1MK99rUbj+WuSY0Wxm5tWsI3norgsGA+4MfxDxvLtnhIUSjEb3RyEJZ5qbTG9kVVmj0WRDUKOTTkEscv5OaCvkkOKrAfxByx1c5KlLk5UTGkoBGLJgGtxMlnDkmBoEoIL8J1SVSOQVV0wgkMyyanCCay9AX6xt/7v/59p9zQcsFzCydybLqZZQaWmnN+EHLkdcMZJo/jTAWo1wVqZy5gMBtf0R34gnE9QYM1VUEb7+dxHPPI1rMuK+6Guf55xG59++4L7+c6KOPkFj3AqLFjPe6j+NsOAPJ3Qh7HwBT0YDknYKkgKqqyPfcT03rVCSPh53r8hjNBlKSgNQTw9joGL8+Raue/YMJDj7Tx+yVdYXKPT5TUYBQ5G0hnlEoMYqocQVB00js60acsICSphoObE8wp8aEMhQ/5rkraZB46FcHmXHKuTS6ZOzOSeiVLFA0ISny7zMUSdPhjzOxwsbhwWEmxQvGYlLvM2juj2JbUommFTw/1IyCmOomo8h8e+BXXLTkIgRRgKyIYe1mBn91K5ZV56Gc/1FymSg9ewIYLTpmraxl7/MDVLa4SISzmB0Gdq8PY55lRVPM5MXTcOoULJ4XEfo3UQjyAvER8E0o/J0MgNEJyWAhdifKoOQK/6Ewh5JPHXd8RYq8U5EsegxNTszTfGiqhiAKZBJ5qqZ6CI+m2fdCEtl4MhoOevdrlDfKOE5eReCy8zDPngsUhPEGWeTnqztYNb2SKlfRYO29iICGYHdAKESiZ4S4ZSK2MonMi4PHPofZ9fR0Rag1ysUE5CJF3kSSsSxKTsFo1b9ivFbJqwQG42iKRjqZp6TGzvanekmEM9g8RqadXE0iksVd/jbsfJF/m2Q0QyqWw2zXY/oXCebpRJbgUJK1fz6Ipmq0nVTF4c2jRMZSzDmjjid+tweTVY+nsvDc5q6wMNwVGTcgmX5qNaGhJPfdtA1RFlh8YTOVLS4MJhmL87Xja+Y2H5FHu7CfUlP4PZBEJLdIYt0zKMPDqNksktNRKOAzfx7he+/Fe81HCfzhtsIcS2sr5pkzUGMxsh2dpHbupPT0s/AI0CSb8X/564wNDhKfOZPyb34DQ3Pza+4PwM6xncSzcYbiQ+hkHXaDnbsP3s2Z9WeyvHY5RtmIlM/ifvEXkI3Dgk8g64rzxa8HRUuTT6jYT65BUwrjRyWaJaMWqrun4tniGKBIkf+Qzh1+nr5t3/hrs1PP6R+bik4vERlLMtYXQ8lrTF1aiapqRMZSWFx6ZPnNndNV7HWM3f0TyOdRAgGUb34XY2Ul5h//Fn2VDS17ZN5wlx9BLxB/6iEMrfVEHnuM5Jo1tE2cyNyvfpbHlXaqDjwOgD7SxXAkhcvy+oscFTmKZHBQEYxjqK0lvmYtobvuQjAaqb3gAszLliK/TgOSlzBN9OC9aiqZjjCCKJIbTZLaOYZcbkF6A4Wo/hWpeJZMIk/Un+KpP+wlncjjqbSw4LxGXryvA03V2P1sP5OXVLDjqT4S4Qzh0RRbH+tm/qoGdj7dh6ZqzDmrnvX3dbDmzoM4S82U1NqRXiFhH45ogvwpBFHA7jEWjSDeRiqdJm5+8iDz6j0IAvzoqXZ+evE0vvnQPvpCSRY2ejDr7Ty/zc+vP2DhYOgg8Vycc5vORUNjf2A/fbE+znAc0Zdl48duQGcBnQ5Zkui7+qNo6TTWZUtxX3klgqlwHUt2I7lAGvvyWrTcES37aALZ/uaM/5LRLBXNTgRZQKeTcJWaScdzZFJ5TNbiGPN/iaFDYR76yY7xNIttT/Zw3vWz8FRaSUayVLa4iIyliKUUbMHUMTG17FAC+RXyK/KKxl0b+7jmxAYe74jwieFbQMnyQOsX6fb38f78bOwXX0J89TP0/vSnoGk4zjsX57nnolfG+FLHTvaf9AU+veX7DCeGx/v9eftdLG09j3r9sTkME8vtfPucKaRzChbDuyIlp8jrwKiTWNjkpdxhZFNXkEOjMa5YWEdeUTHIEn/e0MNlC2p59tAYJp2McsQkrDuQpDuQRBCg0mHEl+qGp7+BE3AaHeCsBceKgg4sedSkLjv7o+glPVadlfsO3ceCigXM9M3khMoT2D66nX2BfczxzmWSNJ09nQcpzVez75kR+veFSMVyTDmhgjln1qMqGpHRJJ3bx2iaVcLeTUFqrmhAi8XJtA+Sve8OhHwO1/vfj+T1kt61CwAtlcb/y19CXsG6bCmGujpE0xsbJxV555IOBjACaioEgGh5dY1CXrSwSZ3APG2YRH/hHqizi+THRDDYESMFs5tZtW5m1br43bouPjC/FvlVxo6/WHOYG584yJlt5fzg/DasL7tPXjK3ho6xOF97cA9fum8323tDfO/cqa/aV5EiRYoUKVKkSJEiRd4+ihGPtwK9GeKBQjKYq75Q5e8lbOXgbT3uLboSM9b55UQe6yY3ksTQ6sR+ci2S6ZUnmzVF5XdXTCGY8bOvP0+nX+SLKyZg1ssEkhkC8Sw5RaNjNI7FIGMwSJisOloXlBMPpZFlCUeJGfk/zy8CoMZloLnEituiJ5QREQ4+dnyjnhfJVEzl3OZz+d6m75E4kkg3p2wOZeaywnGl08huN8Nf+SrpfYUJQiUQYOj//T+qf/87KJqQ/NfQW0vwrx9FPfVisqVNxPUq4vcWE1Y0zIv1KAmFCDnEb84jnAWrXYbTPkxIyyJ9ZQ7RlIY+2Idudh/Z9esIP/A4pvknMPLz27EsXgx6O7bl15Lar+A8p4nYc/0o4QzZQAqmeAjt7cJc24Tzl3eg7t5EJhhH/MKNbG/XyI0EyWUUqie62fxoNwazTDKWJZdRiIwm8VZbCfTHUZWCCKi8ycHQ4QgjXVHsXiNTT6xiy739GCwyn1zyFQI7Y3zdOBNPhYw3MYb/mk+g//CV+G/9LfraWjIHDwIgyDq0dCG507JwAWO3/BjLooWk2tvRzng/mZIGJIOG+P0T8SezmDyNyF3d5Af6Gfn2tzE0NmCZP/9t+0zfsyQDhSQGQSA54SxGJyzHGhnCq752JZCJ7okE40n2xpPHrtAgmNRRanKBpwkkHSg59Id/gu2cX5J4pg8to2CcV4ZSaeXUD03i0V/tZvuTvfiqbTTPOd4JWolkSO4YJdsTwzTVi2jVIXr+8yCt9LKku9klBgK3/grvR6+m/2PXwpHjT+/bx9iNN1L23e8yecdjmEuXMBBOMRxN0+izYDHIXDy3BpdVT15V+eypLfzm2U72DUWp85j55MlNfO5vhWCzQRa58YI2Sh1FgcNbiiAwq2wWN225ib8e/CsAVbYqrp91PSHBxZ0b+8abLmv1gbcZJD0oWdKag+BQCEknYvea2PJoNwA1LU4MqTzGFheJTcPkBuPoG5yYllazb9sIfZ1RGqb7KKmzHZfMGQ9l2P5UD3vWDgAwdVklNb5qLHW1jN3y4/F2iWefQ3I4kX0+srEYyU2bES1WvNd9HNFqRYnHi0ZM72WctdByOhx8BNofh0mfJvKnW0muX0/FLbcw+PnPQz4PQObAAUa//31KvvJVog8+iGy3IXl93Laqkese6yGraDhNFizmGr7w/KdJHUlIW1SxiJHECJIo0RMtVFzpjvT82yYk8VAaf3+cXEbBXW7B5jEw0hWja6efmiY7Lr1I7LnCdW9dXElY1VDyGjNOrUFnlJBkkVQsh6/GQSKSITycJBZMU9boRFVUTDYdBrMOT0Xxun83klc1BiMpfnd+G012C4lwmshoCjsi9jzs647iKDFjdTmYurSKTDLPogua2bW2n5ZJbiqSOdK7xpCdBqwnVpGz6xkNO8id/WlMJ18Cj9xJ4NZbMTQ0oOXz5Px+DHV1aNksM/UauzGTyqlE9BU4LT4EeyVYSwsJnS/haQRLCYzsA3sFuGrfvhNW5B1LNJgiHs6QS+WRJAEEgdJ6O5pBwjTVS2xtP0o0g2l6CflWN4Qz5DIKocEEkl7CW23F5jo69hsMpxiNpZEESGQVBARUTUMEFCCZyVPpMlNqM3Bii5PHe3/D3LI5LKlawubhzZzdeDYPdTzE3QfvRhZkvrXoOwh5JxjTYHKRjUqo8Ri5nh4kr5fhm3+EZcF8Io8/gfvDHyb6yKMknnseADWRxP/jH1Nxyy3om5tIvPgCiXUvjK8b/eGNGH/9Uyy7fw1n/QSsb75pVZF/k3CYlKsG5covkcvkMdkMDD62l5mn1aAXBWyrGkm8MED06V4ME9wEywQCgTTTTqomEc6y8cFO3BUW6tq8+KptxIJpRnuiZJJ5LE4DFqcBT7mlkGBfpMibjMuipzQ8QsJTRzycQ51dSzyYRpI02to8iOk8WPXE1vQhmmSYU8a2TaOceuUkwiMJ/EEjI7lGpFAauzuEo9SM5VVMqIsUeS1MOomeQJJJ5XZ+vT/FyrZL0T3/Q0gGMBoPkYg7SWwYRTCI2E+qRD90P+6aCzmn6Rx+vuPnfKv5RoxhO2OtTTj+fDaD3SmCm0bxVFion+YlHc8TD2UwmGWcZWZ69wVwlVkoa3CQdtqJhdLEJQc9wxkmz7uZ5JQMoUwJ+jM+jM4og6ahTbgRQQO5ehTH6KPYjIaC+YjOBMIRAVnDSeCoee2DLVLkbSaXVQj0x4n6Uzh9RszlFqJP9aCl8pjnlpEptxALZEjHs1S0unD6TOxfP0TD9BKigTSmGiu+T34CJZEErJwxtZxd/RE0XqGIQZH3DBnBCKkgybSCtmg5gT1ByqZ5MU71En+uHy2rYllYzkgsh6IXGeqMkAhlMFh0OHwm3BWWYpXqIkX+DTRVY+BQiN69QWKBNKX1dqomuvBWHjVjjwZShEeSRP1pVEXDU2lh77p+EuFCsYNYIM2WR7tZcfWUt+swivwb9B8Msfr2/cRCaWacVkNJjQ1RFHBVWBAQEESweUxk03kioylW37Gf+jYv2pFEIaNZR2QshSgJqKpGJpEnl1ZomVtKx7YxDGYd6XjBSM/qMpBLK/TsCQAw9cQqBg+FWffXQ9RMcdM0q5ShjjB2j4naKR48lcfOERianFiXVBJ7phdNA+s8N6mdWyCbQNDpCN1xB6Vf+AKaBrqKcpyXXUFUcpH9+PfRGwV0dhM9/QpGXy3eGZX46k4gsTWOZJXRl5fx0hAjtW0bw9//AVU//xmS+dVNz1RN5VDoEBadBUmSiGQiTHRPZMvIFn6x8xcAtDhbuKly+XgSq7D37xgnfgRwvomf4nsTIRpD39REZruf5LZRJKsO26m1xK0yqZ4YsUAaZ0nRpLRIkX+HZDRLZCzJhgc6jl0ezoIGGhpzz2og6k9hMMlYPUae+v0+kpEMTXNKmLK8lPIK75tmdq2ZK8mPHlucJR8KoSZSSDYX8fUFnYahzoa+KszwN34HmkbFjTeQXLOGzP79aN+4gQU/+SqWrV8CIDH1MqL+PPMb/3VhmSLHIylZqnCS3LmB4G23AQVtavB3vwNRwH7WWW+oP0EWMTY4ESSR8D86yA3EMTQ5MU3xkNzjJ+U0EBhLY7Lr0Zsk3OVWjJZ/bTSVCGcYaA8x0B7GXWEhm8yx6R/dlDc6mLWijvX3dxAYSNC+aYT6aV46t4+RSyvIuoKRTmmdneBQ4Td6//oh6qd5ad80QngkidVlIB7K0LMnwMENw0w7uRqrx0AilEVVVPJZldBwElXV2L1kAoqsAAEAAElEQVS2n0B/nOmnVNMyrwyb24jeeLy8XMmr+PvjREaTyAYJSRLIZVT0ZolsMo/BoiMdy2Gy60jFsphsetKJHFanEU+VtVjU5V/QXGrltEllPLpnCIAVk8sosRsJJrNk8ird/gShVJZoKo/NoGO6bzo/2voj7jt0H03OJiyyhcsnX44WjyPIRvD8kyFdJoIylMf/81+ML4qvXoOuvBzH1VcDIBokzAtKSazpJ70/hOwz4Ti9Hrn0zTHSNVl1OEvNREZSqKpKw4wSstk8mvLaWs8i7y2UvMr2p3rHDUha5pbi8JnY9mQPFU1OnKUmnKVmTFYdsUSOsgUVJNb0kekMo6uw4lhRh+5l+ttEJIO/L44rkefrS5rAmSbdaCNe/kGsj30Wr8lLXs0jayLZrk7Cd909/t7I3+7BUFePY9WpiP9YTzAdPMaABCCrZkkpr1wYSBKFogHJu5h0TqF7LEEgmSWRyVPjNtPgs6KXRTKKQp3PTH84xS1PtSMK4LboMepEalxmtnSH+OTJzaw5OMpl86qw6GVufb6befUeHto5gKZb+7INRWB4F6g5sqf/BLF/G4K9iu7WDxMxzmAm4Da5+b+5/8e1T19LVi0UYz2p5iRmmxdQ2j+Dbf+IUN7YRHRJDrNVz9yzGshn8xjMOkRZINCfoKTOTuMsH+IRrUQwqPHEY37Q3Ey59PvU6QcI/Ox7lH/3O0QefAjRYh4vuBy+915yvT0IRiO+j38c2VfU2LwXCPcMUQYoL5mQvIaGu8tZRQwz04QBBrb0YgFkOUUurUOwmtFFC1ra9g3rqN79EFvtJ3L/9gEunF19XF93rO/mxicOsmp6BbdcNH38mnw5jT4rf7pyHrc81c7P1xwmkVX4yfumF41IihQpUqRIkSJFihR5h1GMeryVyBY4+2ew7sfQtwEqZ8MJ10PJhOOa5saSBP56EGODE2OLi0xvjMTGIfRllkIlrH/C4R7m1l2/YMPQBurt9Xz1guvp7UvSVuUgmclxwawqJpTb6RyL4zRJiELB6X/TQ50Md0YBEEWB066afFzfyVySbaPbeKTzEbwmLyvqVjDZe3y7lwjG07SPJrlgVjVff2gvVh3M8NZhZtuxDd2NKChEc1E+M/Mz+FN+jLKRMksZOTWHpmlokQhqIjFuQDKOqpLr7YMFC/71eS/y5hCJkphzFk8/nqRxpkoqkaX/QIjFFzaz9q4OyhodmCx6Dm0ZYsF5jbxwbw82l5HyJie71/Yf6URm1tKr8UajkIyRT+exXP0JxIWnwiAkNhYCtbmeGKbpPnTTfTz59w4SOwNMPbGWdc/04auWKGtcjojIloe6ESWBiQvL6T8QKsS9NJBkEeVI1aHO7WMsOK+RA+owOoOEIEBZg4OdzxSS9icurODF+zsQRYEpSyt59i/tANRO9WAwWVAMlTh+didxZOQvtWDSZRC9JZhkM5muToxTp5Lt6iLv9wNgmjWbUMUsnn4iTuv8QsWMocMRAATRwqmf/A7CN69FSyZJHzhYNCF5K7B4QZTZfdnd/Lj9bjbt+CGNjkb+X/5EDu67g20j21hStYSFFQsps5SNv80gG6izl9JlP0Qymh1fLghgcEjwvj/D4B644I+w9vuIY9vI19jInVaLvzfG/g0jRB7uZvop1ZzyoUk89qvddO/xH2dCkh5NEPzDHtQjwrTYmj5yIwncF09A/A8nVht8FhY3eVh3OMAip0Z62zZyg4PjBiTj+7B3H0oojMVl4xOzfJw7rx5UjS/etxtREPjx+6bz+Xt28L7ZNWzsCHLJvBr0sshINE1fMMkfPzSbTF6j2m2iwVtMpn+rSGTy7OwPU+c2E0wF+WjbRxlJFpLNyyxlhNIhmkqtWA0yoggfWdzAhDIbUVsb9gv/CGt/gCXbTV1bAzF/Bn9fDABREpg5zYvyZA9hEYwT3Bgbq8j4TNz3h70s+8AEhg5H6N0XIK/lWJ9fwwsDLzCnbA4nVp1IeC/sWt0/vp87n+nHdsFKDIMvHn8ML76Ibdkysp2dhdfr1uG+/DJSBw4iHzqMecb0t/w8Fnmb0JvgpK+AyQGJIEosTuL5QpK4EgiMG5C8RKb9EGTS6BsayPb1Y/R4aHNIrJxajkEWCSQzaPFqfr7sl+z0b0fRFMKZMFXWKn66/aeYZTOl5lIGEwPsGXYypazpde2moirs8u/CPxrB/6CRYF/BiErSiay8ZgqaBlUTnDgEgcSGISwzSgBIbByi7MQq7vnbIXKZwj22ZpKbxlklpBM5QsNJBBGsbiPBwTgj3RF8NXZ8NVY0RcNbXRSGvdsw6iRuPn0SumSh6lMmUZi0TScVEofClNbZkQ0SvfsCtG88agwy58x6wtEMlXYd1kWVqPEskYc7QRbJzijluSPmUNPmf5DyRJzUzp3o6uuQvF7yY2MIZgsmk4m7N/UyFs/yo6fg0MemQjaOcO6t8PyPYHA71C6CBR8vTARb3AUjIIv3bTpbRd6pxENpYv4U/QfC+GqsGM0GQiMJhJxKfv0gkbFUwSDPoic7kkAySoSGEzx+657xqq6eKgunX9OG3Wti13AHT3U/S3diJ6322TRYZ/HUrgySKNLos3DLU4fIKiqSKPCNsyYxpVriV4e3s6RqMXa9naQhyWhilE/P/DRWnRWf2YeaNxDPKOzDyyRvC4wpqMkUmqahhsPk+vowXn0Vss+HZDISX7v2uOPMHD6M6HSQeOH4sUnqcA+Wc28Cd91bfLaLvBGSBg+paB5V05B1Epse6aK0wU6Fx0jmnnbCApgmezC2ulEcBjY83M20U6qIBtLIOpEJC8tB00jHs4z2Rnnmj/sJDhaMbmW9yPxzGklGM9RM9LzNR1rkvYjDpCdgcJFJquTSeQRRJJ9VqSozozxwmFhGQfaasMwvR/QYWf3iMBMXljPSGaG82cXjv9mNmi8IuXw1NlrmlNI8rxSLvWhEUuSNoZdF2qqcPL1vhJm1Lnqqz6ZhcQ5xz71k8y2k9oSwzC1DyylEn+5Hd97HMMb3I+tlftb6B5669QBKvjCO9VZZWXxRMxaXkf3rBqlsdSHJAqGhBJMWVSDpBDp3+Jm90oIoiYz1xbB7TQhiFrPHSs+YgCDA8389BMCEBeU4SoyoeQ1FUVFyBuAcptq246iaCzMvh+dvgunvh8WfAUMx1lTknYumaRzaNMyaOwtG5aec00Bu6wjmiW4Eg0R6fxCjJGDzmTCYZTY/0s2+SIZF5zfRtz9I4wwfok5GWrwMcWSAz5SUsLkryLrDfj5zSjMVjmI1wfcqqqgDRSFfNw1JAJtdR37TMNmOMKYp3kIF9INBys5qoH1/mDV3HBx/7+QTKmmY7qVmUnE8W6TIG2WsP0bHtlHMdgOOEjP5nEr3rgB2txH9keIvUX+KZ/9ykKi/kDykN0qcfGSe7yXS8RzZVP4Vt1HknUd4NMljv9pFNq3QdlIVvXuCbH+il0mLK+jYPsahLaNMXFSO2a4nn1Xo2uEnMpaicUYJolgwHVGPmJEIooCqFP5WFY3AQJxJiys4tHmEGafVMNAeprTezkB7GABHiYlsKs/hLaMYLTp81Taevq2gdbF7jQgCjPZEsboMmO16EpEcBrOMfYIVk2ZG1Ekkn7oX2eUsHMvf7qHkE58g9Oc/o29uwjR9GiHPRB6/sxdNy7HogiZW39+BklMxOzKcfkIFuecLCSD5Ech0C3g/9gWGv/ZpAJIvvkh+dAyp7rUNrA2SgaHEEA2OBh4+/DAr6ldwYcuFaGg49A4muCcgHzhaiEi1V4FcHMe8HvKxGCRiZHuiWBeWoybzRB7pJLu4isqJLlKxHIHBeNHQvkiRN0gikmHtXw5gd5vIZZTj1gtiIcn90V/uGk9urp7k5oSLm3ns1j0c2jRKRkiRnLuaE2pPoNxa/h/vk1xeg/OiCxm75SfjyzxXf5rokxHUdADjBA/GRieqmiN6z18hV9AQKcHgePts+yGcwSSYnAy2Xcct+0oRzFkEQSOXV9G9goa0yKujCDrU8BjZ7u7j1sUefwLbqaf+W/0aau04VzWR3u0n2x8jfMQIRzqxihee6iObVlh4biNdO8eYc3oDelNBop2O58gkc6iKRiyYRjZIZJM5ooE08VCGgxuGUfIqJXU2WuaV0b5xmEwqT9PsEto3jTDWG6NmsgcYo3qSm+GOCN5qK02zSnjx/sI+5NIK8hEtWi5T+FuUBERRYO/zg+hNMtl0HrvHxOZHumiZW0Y2XRjLzDithlxaYdsTvUiyyHBnhJnLa0EAV5kZg1mHrJPo2uXnid/uGTc+q53iQdaLREZTlDc56dkToHl2Cfv+Nsi0k2t45o8HWHBeI0/+bh9L39/KxIXlb5r5z3uRrKIxqdzGiikFjWN/MImiqnzmlCbsJj17BqK4zTqq3WYMOpFwIsxnZn6GeC7O8wPP4zP5kAQJJANceDvULz52A1XzST9x93Hbja1eg+Oii6C0lN3DO3E9q6GPC9iWVJIPZQje007JNdPQef/zMaDBrGP17fvHn8l0RokVV08p2vX+j6FpGplk4bm7tM4OwOZHugFo3zjCwvMb8ffFad80QssMHyUHAsh6CduSKnL+FKH7DuO7ug3ZaSAeSrP1iW4iI2kGD4fRFI3FV9eyLvxnshVzmX71auKpUc5qPAu3dzZDt9913P7En12L4+L3kZ90PrWuVmw6G7FcbHz9ZM9kKq2Vb/2JKfJfJZnN8/et/URSeX7yTDs5RUMWBb537lQafGYOjSa46YkDfPqUFn79gZmMxjLYTToGQkl29ke4/rRW5tU5mFE9l629IRRF5Y8fmoPLLHDXpl4U2/HXjOKo5brVec6e/nP+sXOQNU9FufUDRwsDzS2by9/O+huHQ4eJZqPsHtuN2O5mYHsh92fS4gqev6edWcvrWHPngXFz1YoWJ1aXkfaNw1RNdDH3zPpCh6KAmi/of3atHcK0qhHfeR8gHwhinDIFx1ln4v/lrwCQXU6USJT4Aw9iWbAQ+/LTABhLjqFqKqWW4wt0FnnnExscpVQTCsVeAfE1jGr3HNFWzaCd0b2N1ANiPkxeMSFkdRAv5OJsevBeqgKHqfPO5YePH+S0SWU4zEfN9/6+tZ+vPriXUyaWctOF017RgOQlJFHg+uWt2E0y33v0AF6Lnm+uKppDFylSpEiRIkWKFCnyTqJoQvJW4a6GbBL27YBJq2D+tZBLgKPqFZvnRpJoiTyp3f7xZdnuCLYTqtD5jn3Y64/2c8OW77MvUBAvdEW7uP65z/KTE36HTixnLJ5jfoOHT9y1nUAiy4ZPLEFQIB7MjhuQAKiqxsYHOymrt2NxHg1gvDDwAp999rPjr/968K/cvuJ2JnomvuK+dweSaJrGMwdGOTxacFXfN+NSZnc+DrlCYicWL7Qsx2kwY9fZWd27mqumXoWiKTzd8zQrG1YiCAKaLCNaLEhu9zGTbACS2/UvTnqRN5OUaGLTFgVV1XCVmzn08AhVrS66doyRz6pUNDnZ9HAXrjIz/r44mUSetmU+tjzSdUw/2zbEOPtTX2WgO0nQ6qVfCdKWNsHW7vE2Wk4luXkE2WlkuDPK3LPq2fBAJ5JOpLTOzsaHupi1sm584lhVNSpbnISGE5TW2xnpimL3mRCEwrr193XQMMOHs9rEaVe1MtyRwFVmJjCQQMmraKpGzVQPhzYXhPZVE1zoDTIbH+xk9ul17NxeqDgz/5xJbN8wzNiaGG3LPkhVrREpn8KpJMmpEiaLD5onsH51Dk0Du9fEgfVHHbA1VWPDpjxLzjqf1F/vQFdeRpG3gNIpDF3wW76+61ccCheSHab6pnLD5hs4GCoId5/ufZqzGs7iqwu+iumIIKrGVkP7vmFmLK9hyyPdZJJ5JFlk5vIazA47lDdC6WToWQ8nfAEMFpLRHI/ctn88cAuw45k+qie5ASipsR+za4PtIbSBGNoRA5KXSO8Lkg+k0Jf/Z2Iip1nP98+byrPtfsyJCHJJCZLTeVw7yeNBtFoI/uE2Qs1z+NILnfzqA7MIJwv79eNn2rlyUT0fvXMrv7x0JusO+9nVH2ZZawmRVBaHSc/kSsd/tK9F/jWbugJ87p5d/PC8yVQ6K7nnwD18pO0jCAjcuvtWLmm9hFAsw+1XzkFEIJrO8vjeEfb0BvnxPIWSxZ8lZ2pj4kI7gwdDBUcdApQ3ONB1hskCqIXrL00QebIHvUFm8FCEjm2jxIJpHL4JrAu/wDNDT/N079N0RbqYvGnlcfvasy+Mb8nxxmD6ujpygwNHX9fXoQFqKEjsySeR3S70ta8tdCzyLqZ0Eiz6LIS6UUdS6GvrSO/bh2g/3oBDcjrRBBF9bU3BpEQQCeU07tzQw50bevjFpW3E8xFiKZUKSwWaoHEodIi/Hvgrc8vm8sEpH6Q30ovD5OBgZCc+i40cOUrNpeikV68mtNu/mw8/8WF+UPHLcQMSACWnsvWxHiYuLCMeyeLIqaiRLPEXB8fbZLaMUNPiomN3obph774gjTN9WJwGNj3cyawVdcTCaUwWmekn17D6joM4S8zESOOpshaFNO9CrJpIf28EV5kZJS8y3BFB1kuM9kSpnujG4TOx8cHOY96z4+lezvvIZFJ/3s8xKpmcikN/VBi4c1OMiuUXoFP8aLkcstOJlskAAioQTRfEFooKjb8c4flPz6NCCCCc8k2EdASCnWhbbkNY+AmonlOoJl+kyD8RDaTIJPOk4mlknYPAUAKzTU+2L4YyUDBsSG4dHW9vavOy/bnBcQMSgEB/gqGOCBlTihu2foud/oLZ6FpWs6h8GZ9a+nk0FFbvjaKTBLIKKKrGNx7ex9PXt/GluV8iq2bJK3kGE4MsKF/AaHIUj9vD7Xtv57PTvsHO0RB/bg9zydxS5gphRIMetEL1DfPCBaCqaBrkgyH0dXWk/ilWoCvxoWka+rpaUqHQMevy7hJCxgqK0YR3Fsm4iiiLJAMpYsEMgwfDLDivETGYgiPPWqldhfiY5NDTtqgMURQwWnR4q6307Q1gMOvQGSVkvThuQAKQz6p07fQz1qPHV23DZNW/LcdY5L1NNiuiKAqZlEI8lGSsJ0qj20DiSNwq708Rf34ARIGmhRUYrDqsbiObHu4cNyABGOuNUT/Ni78vjmVy0YSkyBtDJwm8cHiMi+dUk86pfGdNByPRpfxs5fuxPhpBCaaJrzv6fJ7oA/vsSbQqGtv/3oeSP/p77++P4++PY3HqaZlXysGNw1Q0u6if5sVolXn6D/upaHKQTecprbfz7F/aWXh+E2peJR5MoSgaFc1Oln9kMmvuPMCB9UPMPaseQRCQddJ4VdYheRGOy84obLTxJLCUgPyvq8EWKfJ2EhlL8fzfDo2/tgFqLEti09F5AGX9EPqzG3nmb4dYdEETm//RRdcuP3VtXow2HbFgGl2Fh3y5RPxAHA2NH100jROafa8pvCzy7iaTV1BtVaiJHGO9MWqrbSRX94JWMLt9CcWfHk+weIm9zw9g8xjwVFixOItjhCJF3gjJSIaoP82eZ4/EdQWYv6qBiD+Nr7ow7hjpjI4nuwFk0woH1w/RMq903GxYlAXMjuL3791CLJAmm1YQJQG9USYwEMdgkTGYZPatG8RRYkIAtjzSzayVdUTGUgC0bxxm9hl1bHu8B0EoJD/m0goGszxuTtKxbQx3uYVTPzQJu8+I2a6na6cfV5mZ8EiSyhYX3UdiGA0zfOx7oXDt6QwSU0+sGi+OsuC8Rh7/zV6yqTxzz6pnpDtKz54A7nILi8+5ktTIGHqdguUKN2HFiPHK65D7D6HavWy4ZwxV0aidUtA3vFScpaXNi7Jj7NiToWggeRB0ukLcuaICyWp5zfN3OHyYKlsVeTXP/sB+rm67ml/s+AVTfVNxGV3klBxD8SFyTSfhSccxb/4D0YVfpCsqUFvx5n6W70XkibOJ3LYPNZYjPnJ0XsqYztOxy095k5Nc+ngDhSJFirw2/r443TsD2DxGWuaWsnvt0RiIJIuAwPr7O8cNSAD69gWZsOCobmtwWwK1JcaLuhc5v+X819yepmnEcjHMshlZfHW5rWPVOWjZPME77kCy25Ha5pJ5qDAPk94XIA0ggPWE5SQ3FIzVJdtRnZHkdCLbfaw/9QHu3pvmwX2DQJIlzV4cJj21nte+pxc5lj7FSakljOw9vpCDobUFwfDvj/cyh8LEnu0/ZpmwN0DDZDf7N4+ya20/Va0uhrsiGC06ktEsoeFEoeiP20DjzBI2PNBB27Jq+g4ESUazzFpZy6aHuxjtjlE3pbDPwcEEDdN9AFicBUO1KSdWMmlxBdl0nj3PDvDi/R3jOraWuaW0byqMaUtqbHTv9DPnjHr2v1h4Dh04GMJg0dG/P0TrvDL2Pj/InDPqkGSRnc/0MXN5LVse7WasL04ymuX5vx7CW2MjFkxT1VpIbh48FDpmHrxnT4C5Z9XTsW2Mhuk+YoEUqqqRz6qER5JYnAYObR6hZrKbdX87RGWzE0fJqye//q+zszfEhAoHj+waQkNjxZQyQvEUZr2OT929Y7xdic3Are+fQZWtivZQOzdsuWF83X2H7+OOJTfRmsmBqoD4siJpooau8vikeH1DPaLZzD7/Prp6DuPaU0JWg2zPUb15bjjxppiQDHdGjnkmy6UV9j43wJL3vb7iQ0XeG8g6iWknV3NwwzAt80oJDiZwl1sIDhXmfW0eEy/+vWCwVFNtRXmuHwXIHA6P95EfSyLadIz2xoiMpMmm88xeWcfAoRA7Hxjmgisu4mPrPkqTs4nrZ1/PHXvu4JTKU9A3N5N44YVj9sfQ0kJqz1765/+AiaUl3Hrqrdy85Wb2B/ezpHIJH5v+MRyGon72vUb7cJyhSJrbXugmd8SQNK9qfPmB3Xx+eSujsQwGWSKTV3nmwCi1Hgs3PH6QWKag6ZJEgV9/YBafvHs7yWzhuU4ndfKHK+bw/06fQMbsQdtVjhA7Eg+WjRxuuYp5mXJueLqb3mCS1lIrE8qOaisFQaDR2Uijs5FgKshU23S2PFGIO9i9JgbaQzROL2H3mv5jdOyD7WHmnlUwHunfH2Ly4komLS4Uyng5I51RnK2z0Xly6BvqGfnhDaAoIIrYzzqL0Zt/BEBox2bSS6bzfP/z/Gz7z8ipOT489cOsalyFx1Q0z363oORU0oEAOYMRvSAhmM0I4qsbG+62V1Gp+akWOtk8EAI0hIwfFS9aEpDj5JIRRro6EICTIxu43XISn7x7O7++bBYGWeTODT187aG9LG7y8vNLZ6CTXp+R4tUnNOKPZ/nNc520lNl4/7yizrxIkSJFihQpUqRIkXcKRROSt5LB7fDANSCIpFvOI1W/AlHrxm6vQvgnca3wCk71giwiSMcLEPvj/eMGJC+RUTKEcv3EM83E0zkOjcYJJLJAQZCsiRqZVO64viL+FJmUgsVZeB3Pxrl1560AVJmrqLBVsGlkE1tHtr6qCUkklcNt1bOzLzy+7Oo18INFdzJN10ep0wblbeBtJjKyk1ZnK0bZyA1bbiCei3Ne83nohML5EC0WlESCkus/x9BXvgpqQUBhP/MM5GLS8n+VWF4kGii4nr5U7cfiNDB4KAyAkj+6LOovCHU0VTtmArdxpo+aSR4OHA5R4vZS5jNRX1mNySgTkUU05VgxRf5IQEzJF6oNVbc46Xop8UgSQAA02LW6n/ppXjyVVpoXV9CxY5T+/UFOvKyFQxtHC2YS9Un+MPQLGsvqWDFrCVVlTp74WwrxyHdKkkWUnErNZBstc3QEBlNUTXSQyyiEhpNMPbGK7U/2kM+qLDy/kcH2ME+sG2bBuY3sXhMmncgx+/QVZGw64uH9x5ynY85jMIMwtQrD7FkYp059Ez6ZIsdhLaHbUTZuQAJQbinnie4naLA2IMsy7eF2Hu58mCsmX0GruxWAwcQgsklm/f3dTFpUgXjkPjzSE6Ht5OpCR8Eu+OuloBXuRdlVh44J3AKgQSaZx1VupnbK0eBqaCRB34EQ9SXGgvnDyxEFhNcZWPtXVLstrJyoERzOY/7RzaihIJ6rriL29NNku7pAFCm5/no0SUKNxwlHEkTTeTZ2Bvj8qU3c+NRh9g5EsRt1pHMqewejPLF3hAqnkZ+tPsyFs6poKTveQKDIm8tINMWW7hCKouG06LHoXSytXcq3N34bgEsnXIpT7+Qnm/vQSxK7ByIE4lluvLCNCyuDlDxwBWgq+umfYP22M2meV0Jls4ue3X7KmxwQSR+3TdmqQ2+SEERYfkEDYiQNuRxfafgCSTXB+pH1PNv/LEvrLhyv6AaAAA6fCf+Yin3uXFKbNgEgWsw4zzuPoS9/udBMr8dz9UfJ9vYheTz4f/FLTDNnFE1I3sNkI6Mk+w+jJgLo5EY811zD4Be+QKb9EPZVq4g++GChoSji+9xnURNxYk8+ifuKD4Km8uEn+rEZZG74gJ3H+26mM9LBCZUnsKBiAVkly5kNZ3JR60U81vUY3934Xdq8bZzXfB6ZXIbr1l6HTtRxYcuFtLhamOyd/Ir7+HT30zj1TrSEdNy68EgSo1VfmGgJH/+dwSCRTanHLFJVjXV/PkhpvZ2ePX7c5RaMNj2RsRRzz6wjn1UQ5ULlREkuJha969CgtNaGokAmmcbqMnJ46ygltTa2PtbDCRc3H/eWXFpB1TSQRMgfe73YvcZjXismB/pyF/5f/xrJ4cTQ3ISWzxO2Ctx5XQk3P5hiQ1cETYO7dgSYoe/jlOcvKgiFKAyNyUThoj+9VWegyLscJaeSyyg0zihF0onkMwrRbAqDwPiz1cuRDTLhkdRx/cSDacKRPnYHdmCQDKiaiiiI7PJvYSzbxR377iCrZPnm+88hFmjFKFuYXCOwI7CZuw/cDQJc3Hoxi6sWM5IYodRSymhilA9N+RD3dt3GVO8U5IpnueVAH99tvp56sxm5vAwkGddF72Pkhhso+fz1DH7xS1T9+McMfO5zaMmCYN/Y1oahuZncyAj2VatIH2wfX2eaM4fh2iacwwPIditWj7doCPUOQUBD0wSS0Qxl9QJL31/OULufuuZXqJyjl1DyKlabHoNFY+hwmFQ8x6Gto8xeWUdgIH7cW6L+FDaXgXxGhWIR2SJvAYIkoKmQCGWwufXYXCYQ1ePb6URK6u3s2+HHXWEdT3R7OfmsSjp+XNSgSJF/iddmZHGzj5FYBkXRWNteSD68dWuMLxhfIeYkqwxIVuIxP5HRwvOOIMCEBR7KGvToDCl0BgPZlEj1RA86g4Sn0sy6ew4zaUkFpXV2JFnkubvaESWBwGAcg0lGEAXsdj3DnVGcJSbmnFnPC/cePiZOqmmFbUVDeTAciTEZirGmIu8Osqk8+ezRe7zJoSfxT20Eg4TNY2TpJWVkUgFOuryR7U8NUd7goGP7CFaXCUkWidicfPmM6v/uARR525B1GmlFRVUK82bpVPoVYwWIwivOOeQz6itWdC9SpMhrk0ur9O59mXmpBjue7qN6ont8UcR//Lg8PJpi6kmV4yYkC89vwlddfKB8t2C06kAAvVEmdaQwREmtnYH2gllt3VQv+9YVzEFURUVnkMhlFCJjKfa/OMS0U6opa7Bz5oQ2dq0doHdfgFM/PIkD64eJhzK0LauitMGO2W7AU2mjYbqP0Z4oQ4cjJCIZbG4jyWgWSRbHxw1Ns0rYtbaQENQwq4S9zw+QTeWpbHUxdDhC3/4goiwwaXEFT9x+iEwyz8Lzmjg42EigP17QWbRNQB1h/FnS6jIw+vIk0IyCYJAgxrGIGpqqgizj+MoXXjHxWtM0OkbjhLNB9kU38PDhh7l+7vUkUlHCgwN8sfXTmFwO4mqSbD7Lbv9ufr/393iNXq684h6k3GRGgsd/l4ocjyqJiHoJlWP1WpokEBxOYvcZiQXSuCst6A1FCV+RIq+XeLRwD3rJiGrGqTV07/Fj9RiZs6IOJa+RCGeOe18mkR//2+LRczDdz5au9cyxLiTaodC3L0RFs5O6KZ5xk4SeaA/3td/HM33PMKtkFu+f9H5aXC2vuF+6sjK8132c9BlL+HPH3ziFUY4rVyUJqLksCAL2c1aRPnigsFwUET//Mb7b91sW+c7j/BYfl09p4b69QcZiGfRvksbofwlTcpCcx4XuxCU4p00l19ND+k93osXjuN7/ATD/+2YKouEVtL4GidmLyykrt7B9wzBmh554MM36BzponF5Cx7YR2pZVsfOZPvY+P0jT7FK2P93L3DPr2fRwF8loFrNdTzKaRTsiwNQZCnMkoihw4qUT8NVaMVv1iJKIpmkIgkAuqxIPpJmwsIxEOIPDa+LES1vRNI1pp1Szb90gsWAhHugoMePvixEZS9EytzAnM9oTw1VeKEL3ku7T7jUy3BEhncjRMMNH+8Zhqie4WHvnAeaeVc/8cxvZs7afeKjwPXtJR5rNFAqAJaNZjBYd0UAKi9NAeCSBt8pKLqOQSecp8uosavbxoT9uYmK5HQGBz92zk8c/uYTP3bOLzy8po9VjZPdIit9vC3BgJMasJif3HroXgLneuQwkBxhIDrB9eDOtT98CVz4GZS/TrLpqMUwKYpg4kcz+guZVtFjwXHklajZLd66bpJp6xRiGqHtz7kPRV5grCY+mxq+jIv87uCssqIrGU7/fV3g+WlSB3Wuke3eA3MvuFSq8or5BkEVGu6M8futuNK1gLFnf5GThgjLC4Qx5Utw46zsEg6M4FQsXTbyIHYEdtJ18ErHHHyc/XDCalktKsJ5yKtGHH8b5iUIB1zZfG7885ZfEsjFcBhcGuWhU+l5kNJZGFAVSuWPjsDlFI5HJU+M2s3JqOamcwjMHRjljavm4AQkUCvTcvr6bqZUONnYV4lGSKDAcTfO1B/eiaho/W3E7k21ZBFXFWFLJ3hEDmVyGOXUuzmwrp95rwWc79vqKZCI8P/A8f9zzR6Z7ZjCj8gwiYykknUAureAsNRALHa9tfPncXCKcpnaym6du239MG7vXRCynUpqKYj/1NPS1dWjZLKLZTPivf4Vc4dk1WGWne+AFvrvxu+TUwrJbtt6Cy+Di3OZz/4OzXuS/yeDhMLKaIC8Y0CEgWV7d1FDTNHaZSjlB24VBDKHLxBB1GkI+hSq7UBIK2CHedxA0DU9VDfQf4GvXXcPXHjnIKT96FrtRx76hKEtbfdz6gVkYdcdrdF+L/1sxgYPDMb718D7m1LlpKS3OJxcpUqRIkSJFihQp8k6gOIP5VjK6FwD/GX9mLGPh0IsvoDP00ZK2UDlpMkbT0Qc5yaFH9pnIvyzAaj2xCsllPK5bWZQxy2aS+eQxy42ysfBQZ9Wzve9oQCQmqDgECccruFDXT/Nh9xzdRjqXZmbJTL664Kt0RjoZSYxwQesFVFteXRhZ6TSRyuWZ3+BhW28YgGAiy9VPwtfOPJErpx5xVo32Q0xPakyPEHWyyvk+ftn3I36w6Qd8ce4XaXI3IeRy5Ht6kCorqf7Nb8j19yO5XYgOJ/pXEEcUeeuQzBK1M910bQ4g6UQEoRCMqJnsZu/zgwgCyDqR0Z4YU06oZKQrSjadx2TTkYrlaFtWxVhfjGQ0y8R6B6zuxbCgguTOUWKKhnV++TEVAUS3kZSxcEt6KUk3n1HQGwsBiK5dfqacUMmeZwvVK7p2+vG2GNmmbaFsYSlWNU9I14O5NIVD0JEigS/kpsJSwYAUwPPMwyyfNg1KGqiZ5KR3X5ATLyllx+N38o9bttN26ulUNVcR8+9hzopqvLVGfDUeIsP76dj0NJWtbbTOm8b6B/qJ+lPMW9XApoe7KKmzUz3BTd/+ILJePC7YXd/mIjwhwtON9SzXB5lCsRzQW4OAUTKSVtLU2eqYUzaHGb4ZHA4fJqfm+Kz7s/SH+1GOJO0mc0m2DW9Dlow4qr1sf6oXKJjTnPyxZozmI0ZRgUPjBiRQMN15acL3JYwWHVaXgbM/OQOr62gwOBnJ0rFtlJJTqzFXWsm9LDnOMr8cyfXGJyaS0SyjPVES4Qx2r4mSWhuhcIDR9r3kkwmyNhtRs4FDQhrj2cuZOH0WTkEmHwqhDAwgT5zE+kTh2CLpHKdOKFTLmFvvZnNXAICmEisXzKpkz2CUr5wxkaWtvtftRFzk9ZHMJdkb2EsoFcIoGxlKDGGQjExuNvBBdx9+VSCVNvDVF746/p6vvPAVfrjkh8ytacZs0lPjsWDSiYgI1KoD49eped9tLDlpJY/8rYct9DBrRS3eaiuyYCN7IDReWR5ZxOAxcVKVkbQaI3PvMNoRUbtgkPjG+7/I5qbdVFmr8CbtHN6ip2lmKXqjjKZpuMotqEP9eK64nOyypUguF5LTCbJMxc03o8aiSA4noXvvxXHWmfh/+1vUaJR/J+33cPgw+/z7sBvsjCXHUDSFKd4pTPJMQhSK1+Y7hZGuDrq2b6Z//16qJk6hrNGAJZ+n4kc3o4yNYVmyGNvJJ6GEQog2O+nuLjh0GDUSRbCY+ebmEAdHEnzjPC/f3vwZYrmCarY72s1wcpjZZbORBZl7dt7D/mBhcqwn2sPOsZ1cOeVKDgQL4qw51oU0hWawZfdhRHeOqGMMTVQK14oGC8oXMKd8DqWRUg7/kzK3doqHVCxLPqdhqnOQ1g+hHalSgADWRRX0/2rPeHtBgHQ8D0JBxLx33QCl9Q5MVh3DnVG8VVYknYjBJB+puFXk3YaoE1HiKqlYDpvbSGgoQXg0ycSF5ZhsQVLxgojq5VXk3RUWVJuE5YRKEqv7xpfLJWakTJ73fXIyf/3pXvQmGWdjGUPXfYiS6z9Hcts2DJMnsS61m29t+QXfXPhNPnWmkw0/iyCLAnpZpI6hcQOScTqegdgQGI43RClSpGCsVDDMs+gNKIqGJIm4a2yI03ykXlYp1dDsJE7hXvhSUsZL6MtV8qh8bNrHEBBocjbhMDjIKTlUVC6fdDlmrEh+C5mUhskOWjrG11782ngfX3vxa9xwwg30Rft4oOMBllQu4eatN3PZpMu4actNpPKFWMilWz7OH2f8lAnGUrRUCsFqIT88TOShh/B96pOM3Hgj5d/9Lko4hGS1ojQ0kQ2HSR84gG3xEipuuon8yAiixUyqtRlrNMKBJ54kk4jTuvAEatqmY7baKfL2YrYbyOfSeCqCtG9YTzISZuqylZhsZtIWHWriaFKG9eRqynwmDCrEgxl0epn2Tb3MWlnHi38/zAkXtwDHXrM1k9xIsojJoaNIkbcCk0VGySqU1ecZbN/EwMF91L/vU2Q8RvKBo4Iv67Jq/JqCt8ZK754gjTN8HFg/fExfepOEya7/bx9CkfcIS5t9PHtojHTuZbErKYV1cRPB3oPjMUrBIGGudfLo0BPc334/n5j1XfatG2Ll1V4GDmxn33OHqZ06DW9NA0ZbCYJgwO6UcGQHWHmBj4GAgS2PdhMZSyEIMP+cRva/OMjEhRXIloLRsyyLJGOFRInyZgeCWEg+EABBFJB0IqW1xd/gIu8+bG4jrjIzoeEkp17YhJxXkRx6lMjL4sMnVjHYuxdBzDDUvpPu7QkmLTyRbCaEwaQHTUPSCTS6i2LJ/yVEwKBXUVWJ0po0RllAXFhO/LmjFdrlUjM4DZgdepKRY+ccjBYdFmcxuaFIkTeKohxvDpiO546Jz1Y2u9j/wtAxbRpm+KiZ4OK0j0zG7jXiqbQiFufG3jW4yszMX9XAhgc6sR2Zf42H0nirbIz2xMhnFfSmgvHIoc0jzDithk3/6AKtkLyuKhpljU70RpnSegf5rILBrKNumhdN0dD9kzGE6YgR+cRF5Ug6EXe5hWf+uJ+unWO0zi9j1+p+zPZC0jEUEnwObS4Y3JQ1ONj6WDcAjTMK5iSZRJ7aKR66dowR6I9jceqxe0ys+XM73mordVO9HN46ykB7mNopnvHnysN7A8y+pIXwvUcLdYgWHcYp9ZR891tkaso47FXZ07N63JhX0zQEBPxpP6F0mBpbLSbZxJyKOezt3MrUcBkuTynD2w7T3dVB/cy5WD1N1CWmMtsW4a99f2bryFZ+sez31LiLRQdeD5KWxnZSNaF7jv2cLNU26vQSBpPEmjsPUt7opLS++MxU5N1Nb7SX3f7dRDIRJnomMsUzBZ30+mK0yVySPf49tIfa8Zl9TPVMZTQ5SigTYjg5jKIqTPNNY6JnIrIoY/Md1Toe3DCM0aKj7ZRKTFNSlFc7CQ7FqZroon9/aLydIIDdV9BOiqJA0xk2fnzwH3x99jfZ/Y8RurcVEkc7t49xcNMQ0y/34HE6+daL32LTSKEwS0+0h/VD6/nTyj9RZjnOXuTIdgTWpnfx58GHOHXO2chlMvnhoxpP66JK4uW15H+6AM2rwxDsoKymhnSVj2uGfoQ74WGW18zAwY10dXdwbttMfCVOyp3/vmHG/yoWksSzOoaHB+jasQVvTR11P/0RbkTyg8NEvCbsGSe2f8MsV9/gRDDJaKmjicjmaT7iD3dSOdWLb2klu3pjCIJA65wyXrj/MPPObGDLY91MOaGS7U/20jSrBDTG55pjwTRmhx5JJ5I+Ypgz/5wGHCVGWueV4Sq3IIpHVTeCIFDR5KSkzoaa19AbZXKZPAgCOr1EaCTB+vs7xg1ITDYd3irr+LjkpfGB3WtkrDeG2a4nl8lj9xrRG2XSiRyyThxPaE4ncsh6iT3PDVI31cOUE6vYtaaPVKzQDsBo1pHPqbhKzRzcOEzLvFJ2re6ncaaPgfYw7nIzNvfxeugiR1nQ6OH2D83lgR0DqCp8YUUriqrx46V2Rg/uZeCZfSycNJUzLpjIkN5EMDPEl2d/mZSWoj3UjllnZop7CrqQhf3TFiIdNuETkrhKzePbyPX2Ufb1r5Hr7UPNpNHX1ZHt60M/cSKGuIE10edYsWQR8TVHtb1yiRnxTYpTVLS42PfPz2TTfUi6YjGJ/yU0VWP/C0P07S/8/qp5jT3PDjDv7Aa69wSwe03jepyBwQQzZ5WS3DIy/n59nR3JZaB33SCaBqIksOLcRuTn+slsHsIkgDHtIxgLUmuxks4O4HX72J4/REu3QOUtt5Dt7ir0VVtHcu8e9BMm4C1xjm/DorNg0b16wn6Rdz8VThNbe0LYjTLRlxnfGGQRQRAQgN+v6+ILy1sxyhKJTB6nWccX5jfgyQpoAmRsEnG9gMui55n9I5zZVsHP1xwmlVO4aLKTxN5t7Faz1E+fyY77H0TOZlk4/0R2xgUe3T2Mx6rn5ImluC1H54vXDazjS89/CQCX0cWy+Sr6gzKhoSQTF1bQs9tP9UQ3ffteZsR7JKfjpb9zWZU1f25n1oo6Nj7UCYDNY8RglrETBEVh8ItfxHX55RinTmH0+z8g11+474snLuB5r5+DPQdodjUfUzj53vZ7OaPhDPRScX773UDPngCVUoKcoEOvFYzHXo1Of4KwaGRGuhOTOYVJiCObCuNUzeglN9IP5ZAa6gCgbtoMAv29LK+Emg/N4bYXuknnFL59zhQunVuDJL7x33VJFLjpwmms/MlzfPKu7Tzw8UVv2MikSJEiRYoUKVKkSJEibz5FE5K3EksJ+frT8GcsPPrTG3GWVSAIAgdeeJZz/+/r1E2bOd40N5zANMkDgBLLIntNZEcS5MMZdC4jkdERcpk0Nk/BiOOySZfx612/Hn//iVUnYpEtmA0SgYTApHI7olDINf7eE+3cfNYU0skcJ1zSwuZ/dJGK56ib7KF1binZTB5ZX3hAS+aSnNN8Dj/e9mM2DG0Y7//qqVcz0TsRSTz+QU4UYDSWZVGTh+29IdZ3FoIap00qZW6dk9zAANm+fiR7Gdv/FCARLgjpRNnEFy/7Fp87+LFCUKL+DGzV1eSDIcZ++jN0LhdySQmJLZsp+cxnkN3u47Zd5K1D0McoXSySTls4sH6Ihec1seOZXiSdSPOcEva9MMiCcxvZubqfZDTDpCUVHNw4zNwz6zm4aRhJJzLcEWHRilqUBw6j5lUQQDnigJ8diGNfXks+kEbzGMl7Tcho1E12MdIVpXGmj87tYyy8oInBQ2HGemPIOpF5qxow2EU6hQP8PvIj5mvz+NwLX+XKKVdy14G7MEgGTq8/nd/v+T0fmvwhBoY6EZIOpEXzcebA9NSdLFh0EunZLg7tfZa+vduZdOLJhIb62fX0Y1RPmsrEJeVkEl2kolHaN6xhrKeLnl3bqJ8xl4mLL2LLoxk0VUNRVAYOhpi3qgFN1WjfOFI4J0/3kYxmKZtspeQkmWu33UQ0G6XSP5kp3ilv8yf73iStpHn/xPfz+z2/51OzPoWYzpI6tI+qZIYOa5zrd/+WHyz5AVm1cP/pi/VRZavi2k3XcvaUc5k9czFiTiZm8rNfv41mKgsdm1zHbCcVy3Hipa1sfKiT4GACV7mZ+Wc3kE7kKG90AqCpKpHREfLZOCabiNMgI9TZMba4UCIZZI+J3EiC/FgKfcXrr6KWSeVYf38HB9YfnYRbeF4jDp+fTDSMv7+X6sltPPrzm8fX71u3hlUXXIZLEwisfY7uD3+Wv78YAWBBg5eeYIppVQ6uWlLP5X/YTFuVgxk1LlZOLf93PoYir5Mnu59kTf8apvmm8UjnI2iaxqzSWdx98O7xNosrFnNyzck80/vM+LLHuh7jhsWnctuL3Vj0Ik0lNkrtRvQZz9HOs3Gqt13DhRd9i25xBn1JBbtOoGcwSdP7J5JvD4EIksNA7Ll+RKsOXbWZ9MuqamoZBeO+HKPlA7iGNMTcKEsurGT/hijdOwvXjyAKrLi8gczenUQffZRMezu2pUuRS0sxzpzB8Le/A4KA6+KLiT78cMFUzOslU1fBK8k3ooExMokEJp0BYWAA0WBAX1/P4ewAVz5xJZdNuoybt95MMF0YY8iCzG9P+y2zy2a/uR9OkX+LZDTK2tt/i7+vF0dJCS/e82eqJ01l4QWXkv3D7YhmE/5f/grXpZcgWK3ku7pQkwkyPg/6U05icwQe2FtIhDdYhscNSF7i6d6nWV63nLSSHjcgeYneWO+4Gc0VdR+hYv1snuvuHF+/8NJK9nm3oKEVxrEa5LU8bpeXeec0sOPJXrKpPHXTvJhsegYPRZg0p4TY0z3YllWjxrNoORXZYwRFpbLVSf/+EBangXln15NJ5Jl2UjWbH+li1opa3JUWDm8bRWeQ0TQw2vU4iiKadxVqKkW2qwslGsNaU0vGoCM5mMCmEzBYZCYuKKf/wBiLzvMg63Ms/+gknr/7MLFAmtJ6O1PO8nHWC8t5dNGD2OVa8v4Ukl2PpmpE/tGF6+IWJiwspaTGgUgcxzmrGPnBD7F9/+s8p+/i8/u/D4A/5ScsRKhyuXjfnGqe2jvM5UtLj99hiw/0RdFDkVfGWWYmPKyRjOQIjRbEZQPtIRosElnAfkoN+WAayWlAzSpksgo6g1R4FtvhR2+UaFtWha1Ex9c2/4DD4cPjfX9zwTcxy2ai2Sh6yUDmoIWD/zgqRKuZ7uTspnN4aOCB8WWPdT2GSTaxx7+Ha6sv5Tu2S6mIVdHpmsPjY8+Nt7tq5+e4ftIfaFX1TIgcwnH2WUQeeJBcdw+O01eS7e4mPXMuL+IhGshjjsqcPWMGo8+tRWpuxqCX0RwOkokY//jxD1DyeQwWC9GxMQRBpHXB4v/G6S/yGihqnlRskEMbX8RbU0v1xKnYZRfR1X1YF1agpvOoqTw6rwlQKSuzIksi2VToGOOnfE5FUTTmnFHHztX95DIKjTN8OEvNVLY4keWiGKHIW4OgU0BME+g/AIJARcsE0ntDmKYU4rZKPIvsMaGpGtsf7aN2sgdnqQmr20guo9CxfQyjWce0k6sxWXX07w9RM9HzL7ZapMjxmAwyXquBvKpR4TAyGElz+sR6UofCOFbUkQ+kEXQiolVHpj9FuacQ52qY6aWyRWbNH28gn81hMFt47s7bmLz0ZNpOOgMTRsRH/oxw0klo/fvw1Exi0uIKsmkFSRbY98IgLXNLsXtN5DIKO1d30zy7BJ1OIh0vPCNlU0qhYqsG+bxyJKHzlRPqNE0j29NDfmgY2etBX1eHoCsaSRV5Z2Cy6Tn1w5N57q52Sm06Ig92YFtajZZTUBN55BITWqWB/OEIa2//DYIkUT2pjdDIEHqzmZJqAzpTJZqUBMz/cntF3jsYdQbCY/uQXNXE/CHsOjuZsRj2014WKzhyn5x7Zj271/YTGCjMOcw4tQar24jOUBzPFinyRvFWWRFFAVU9WjGiotmB7WVFWQRJY86Zdex4ug8lpxYSOsvMoKlU5DqR1VIkqWgc9W5C1klMXVZFRYuLbCrHgnMb2PJoDxMWlNO3P8jhraNMO7maTQ93EQ9lOLx1lIXnNWG267F5jHgrrejHi6WI46Y1siy9qqLK7jWxe+0A4ZEkZoee2WfUYbTosHuNOEvNjHRFqGvz0rXTT3Aojq/GxlhvjEwyN24+9XJzEm+17ag5ycwS9h4xCfb3xamb6qV2qoeePQGaZpfQPLuEw1tHmX1SNemDQRwr68iNpRBNMqJRJhvK8FBjBJUQalhF1VQ0TUOjYECyeWQzm4Y3jR/L1W1Xc6JrIbZRBdWa5/m7bic8PIi3upZkOITeOIAjWMKEwaWc1Zrg4cEHOBzdywVNU9+iT/S9haJB5kAIx4o6cv4jn5NBQkxkyWVUZL2E0aIjncz+686KFHkH0xft49qnr6Un1gOAgMBPlv2EZTXLAMj295PrH0By2NHX1yMaj50/fazrMb6x/hsAmGQTn5n5GYLpIPceuhd/yg+AJEj8+tRfM698HqU1dhZ+oI6t9/WTSeaxVegZLe2gQl+Iz2VSeaYurQIN+g+EMDv0zF/VQDaTp/F8IwlLiG3y8ywqX0R5vpaN20aP2Z+x7jh7D4fIl0bpiHQcs24oMURXpOtVTUigkCwKUJUpwdCsIUxwo0SP6EGHEuBy8tzfD4EAp11ci1Se5Dfpx7i0/DwWeOfx4l1/Ijw8iNnh4tk7f8/UZadRWlmF8TWSBoscT8peyeEnn0LJ5WiYOZex7g6e+u3PWXnNp3F63OwRB2hJ2f49E5IyC76PTCW5awwtmUf2mkhsHUHxpwGBzJpepr9vAg/96QAltTZ8VTbyOZVcWkGURCSdiKZqBfPeI+Z35Y0OkrEc9W1eEuE0LXNn4am0HGeI9s+8fMzy8rauUgurPj0Df3+cWCBFPJRh8z8KCfc1k92M9ESxugyYrHr0JolFFzSTCBd0nVsfL3yXp51czaEjSf9mm55cRimYlWRVtj7WzYzTapD1Egc3DjHnjDr6DgSZcVoNQx0RJi+uIBZIUz3Rhcmmx2jRceIlLZisxaTl10IniSxu9rG42Te+bKSvj+6Og4g6HaUNTWx+6F7Kmiew7IMfZX0kgMFk4PrnrkfVVAQEfjrptxy4/aU5tV7M9mFWfWYG7vLCPURfV8vwt7+Doa4W0WIl8IfbKPvKl9G73RhSBq5v+DT5jaljYxgqBa1j6eu7D6m5HNnOTpRgCF1lBfqamqMrRY5/Jis3oylFE5L/JdKJHJ3bx45bnohkmLm8lkwqx8kfnMj6+zsoLzOjxbPH6huSeZRIFulIcnrLdB+67SMoLxW70CD94hjN586jZ3Q3mWScVCRGg3ES8gSZoS9ej2naNBAE/L/9HZ4rP4Rl3rz/5iko8g6gpdTK5Ao7nzy5mZ+uPkQ0lcdmkPn88lZCySxP7Sv8Bla7TDhMOppLbSwrcTJ4fw+hI3pbg1mm5OxqegNJvrRyIslsnnu39qOTBE6wRUl09TFj1YUMHNyL1e2lZ/d2nvnJ9/j0Jz/PkuoSdoYljPLR+186n+aOfXeMv57um871+z7ONRd8kvJ0JRHLMA0neBFTBQP0vv0hzHY9s1bWsufZAcx2PdNOrmb/i0Ok4zksdonFFzSQSWsF09V8FE+FwMhXv4cajxP45S9xX3UV9pu+Q7a/n6RJ4I7sOh4Yvo/LJl7GwdDBY85Zrb0WWTw63sgpOUaToxhlIx5Tcb77nUbPngATLFlyig5Z1RCtr5yzkMgluGfndgAmZzsx2vLY5AiCvTBfq1nLyIUKmrH0aGGcWDt1BlsfeZDQ8CBLFzaxtLXkTdlnn83AjRdO40O3bebmJw/y5TMmvSn9FilSpEiRIkWKFClS5N+naELyVlI5k4Shhu6nn+esz3yJ0e4ONFWltKGJ0Z7uY0xI1FSe2LP9BVGwWUdy+ygIYDuxil3bnuW5O/9AJpmgomUi8y+/gv5YP5+c8UnSShq9qKc/3o9RNuK1mRiKZJAlgR+/bzq3vdCNx6QjNJQkMpqic/sYC85rQtaJ9B8IseHBTs67vrAf4VQYvaSnP9x/jAEJwG17b2NJ1RKml0w/7jBFQSSTU3hy3wgfW9rIhxfXIwoCw9EUlcNddH3iOtRMhuT1vxw3IIGCc3F4vcy81vkktQSyKKOlsuR6evB+7BrUaBQ1mcS2cgXm2cUk4/82WTXL/+36DHX19Vx18rWsDzxO+SUVhJQ4+xO7Wbr4ZDYEnsJ8rglFLmdbfCtLZi1lU/AZbCusqIdsnP2+ZszhDJF4DsEoob0syT1zOEymI4yuykagVWNDai3ZnJ9lU1owxSyIPheNM+vwZ8MsubqeUG+aJFFGvR1syb/APe33cMXkK/jtrt8iCRKxbIxgOsgHJ3+Quw7cBcBs01QO/+1+9vT00jhrLpmGZgIWmUZdhtBgFyM9nSy55Ary+RzVk6bSMn8xeqOJnt072P/cGgRRZNIJyyhrasFZWk4s4EcWO1l8ngl/71qmLfWRy5ax8cFOqlpdtM4vI1DeRWpVO1bBxuPhv3J4Zzsr6lfwt4N/wyQXq1K8VRhkA3sDe7nhhBuIjQ3S9MhhzHfdA0BViY8J37iWOw/cxTfnf5NwOoxO1KGhYZSN3DdwD/dxz3hf3/Z9+2jHZW3QdCocfgoAvUHj0V/vY9aKOmxuI/Fwhmfu2M/p17QBkI7H2P7kI2y672/kc1ma5ixAVq8k8sIgyCKSRUdyxyioYJn/xow+QkPJYwxIgIKwzZrCUVJGJpEgPDTIWZ/9EuvvvQt/bzdKPs9wJolv4jR662fxw9VdTCi38eHF9bjMMj9b3cP1p01gY2eAmy5sY16DhzJHMVn+rWQ4McyNW27kskmXkVWytIfaubrtav6w5w/HtFs3uI6PT//4MSYkdoOdPcEdzJuoo9LUjNtiRC9LEJ8KLSug/XEAhFg/eodA1mbBmlEYlVWqfCbigRTaXj+oGmqy4Nwuu4xokTz/jBLMstA1gZHOQ6x+/GEA5p33YazuEuLBghHTpmeGmLyqldqFc1H3t6MmkwhGI4mNGyn71c/oEUOE/XH0PZ3woQvpnF1Jp9zHCiaPbyfqH6V//17W/ul3pKIRvNW1LD7/EsTNmzD8/e+MnDcTVVOJ5+LjBiRQMJH47e7fMtU3FYNUrAj6dhPo76HtlBXEAn7iwQAzVpyJv6+XVDxGyQcuRTl4CPvKlRgmTybe3U0sn6Z98wb2rP4HwppHaDvhZO679Ey+u24UnRg6rn+DZMAkm1E05RW2DnqxIFKZpM2gqzt5zLrtD4+y9H2tPKXbSk7NkcqnmOqdyotjL1A3sIDW+WXoDBL9B0J07fDTMrcUs1EmMZoi2t+NYJIRZAE1lsOxso7TPjKZmD+NziSBAr37gyh5laXvn4DRpsPfG0XWSdg9RhKRDHVt3mOqERV5Z6NEo/h/9zuCv/1doVK1243pt/djsunJptKYLCEqm9McXP8c//jJi8iyjplnnsOyDy1gNJ1ld3Ibl2y9imW+JeiSGtGnepDsBtRkDu1IdXo1nmPCPD2r7+yjZEGK3MAA3o9dQ+iWX9H25c8iIKChoRN1yKLMTRc3sbsnx9UnNNIuxJjRcib69n8UdlgQ4IybwV7xNp61Iu9kdDoJi8PAcGcUgHQ8Q9P0EtTeCMkdYyAKSDY9SiILiob+0gnsfKaPkjobM5fXkMsoDHVE0LVJxxiQAPxi5y/4+vyv0xvrZYpuJrueiB6zvndHmNNmnn2MCYlNbyOYCvK9qo9R8n+/INfZiQZ8ZNkiqs85j98O3wcUBMaLrAL5L3+X3j17cF5wAZ6rrya9fx/kYmQWrOChmI3bXmjnkrnVmNwe9mcTbDmwndSmtfhq61l88eWMdh5m4UUfwOr2oSo5Rns6iY6NMNbTha+2/i0990Vem3wyhark0YsGSoUadLs0LEvshEN+ok/1IBglBL1EcssI1tNqkI8IcN3lFhKRggBWkgUQIBnJsO+FQaacUIG7wkImqdC5Y5T6Nu/beYhF3sNE0hFygRDd29ax+aG/o+TznHHd9agdGZL7gwh6EdGkI7ltFEO9A0+FhW2P9zD/nAaCQwlsbiMnvK8Fg0XHWG+MHU/3UjulKMgq8u9T7TIxFk1x44Vt3LOlH6cqke+Lk9o0gmjToeU1tFQe86wS0rv3cZ1jORoRRCHMovddjr+vGzWfZ/4FF7P/+TXksklc/n5YuJDc8DDRO/9Cas8e3Nd9kUjNbGIpgdln1WJ3m4iNpYkF0zTO8KEqKmO9yYIxSTZPSZ0dQQNNBL1RxuZ69XhT/NnnGPjMZ9BSKZBlyr7+dRyrzkbUFxMSirwz8FXbOPMTbWR3jIKiEXumF8EgIRolkttGsH+olVjQz+yzz8dXXUfH1o288Nc7kCSJmaefQ/M8I9G8EcfbfSBF/qtklSx5o5Vn//Bjxnq6uOKqm0nvD5I+EDwmVuBocLLub4doml3C9FMKCTmHt47SOv/VExqLFCny6rgrrJx+bRvP/uUgsWCa6sluFp/fNG4wATDaHWekK8qJl7QgSiId20bZ+UwfrrYo/s9eh2AwUHHjDdhOPXW8OnyRdz56g0x5Q+HXtmaSh6ZZpSiKSn2bl9BwEp1B4oyPtzHcFcXqNFDZ4sRV9u8ncgsizFxRQzyYQVU0DGYZm9uAt8pKzSQPExaUEw+mEQSNrt0BllzUTDqR49DmEWYur2X9Ax1ERpN4Kq0EBuLEg2kcJSYioykEQUB7mZHOlke7KW9ycOZVrVjVMIZakRlz6zBbrUT+PEJ6dwDJrkfNKGgZBetpNeQMOXJaDuGlf4KAhIRRNrJlZMsxx+LKmrEN5Rjt6sDq8TJ12alYvD4ETWPt7b8lFYviq2tgxsoPoZeX8jAPYJKNmA1F48DXg5BRyXaESe/2H/M52VfUsuWxLpZeOoFcRsXuKWpJiry72RfYN25AAqChcfOWm5lROgP93k76PnYtaiQCgoD3E9fhvvxypCMJcEPxIW7ecrTYzsk1J3PvoXtZUrlk3IAEQNEUfrXjV7R52xhIDnBj5GssOncpDsnFuthDrN29mq9Zv8aM0hkYTDJP/3E/9VO9R4xV82x6uIvFFzbz+cGPAqATdfz8pJ/T09MDHP8dFBD4yfafcGbDmfx5/5+PWfevKr9XW6uptlUjZ0Xiz/ceqwfVwPiSIbEGLz4+zNwryph9n4menffxgOFRFl54KQarjUBfL3PPPp/u3TsIDvZT0dz6Rj6W/3nUSApfbT1r/vibgh6lpo5Tr/oE0aAfu2Sk3tH4/9k7y0A5qvvvf2bWfe/u3evuEnd3IiQQCO5StC3WAqUu/9pDS1ug0GKFtrhLCJAQISHufm9ukusu674z87zYcMMl0NIWqLAf3nBnzpxzRjJ75pzf7/v9l8Z7KpuOSF0/ckhC9p+MiVViEoIoovHHGDE+k46uIKIooFIL6IxqpITEiNl5NO7rZfySIo7u7GHSWSVUTszCZNMhfIbxBRaHHosjGbvQdcyLMCcPR7YJo11HIiZjcxlQFIVhM3MxWLSEA3Gs6X6cOWYkSaZucydBb4yRc/NpO5KM5aianM3ulc3EoxJZJTYs6XpKx7hASe4TxORYRlQJJOIyGp2KeERi7KJCdIbU+OEfRZFlPG3N7FrxGiGvB2deAUtu+zYD7a34+3oYUTiCO9bfgawk4xHGucYzsFkYIuof8sVoqxsYFCFRO5xk3HknUk83ciSKdfHpCMakeK5KUGFVTEQOtBA52D9kDsN+Ttmn6rMcDuN+/nl67v4VSBKi2Uzu7+/HPGkSAH0tfjobPKd8k+VV2j/DK5fiPx2NQUVGkQX/QGTI9qwSGxXjMzm6q5sNzzUwfkkx2U49oScPE/5wfENCQV/jpKA6jR1vimRkGZE2nhpzFh8Isf7JP2HPymHuV26kuylG/5F+Mr/3XRI9yd9l29lnoS8vR2VLzeB+2dCqVSwZkUN9t59sm55oQiYal3hsYxMLarMozzSzrWmAAx0+Fg7LQiWC5miQ+IdzIUIJVB0R+oNRfvlWHX++ejxjC+2MTNdQlhVHnbeUdx97AG93FxZnOtMvvhKt3sixXdsYP2IUIwvsrK7rYEFtHlq1ClEQselOPouSIhGRIvz66M8Ht43LHMcIx0jECSrOPf1Sju7sQVQJlI3LJOSLseudZqIn4oMVKUZepA6lsBoR0Lj9RMNRTEtOJ37wMNb585FDIbovvBIAVXY2c39wOe/pdjAjbwbLjy8fbNegNnBR9UWDhnEtvhYe3vcwy48vJ92QzncmfofpudPRqFK/9/8JeHtDyRyDsihuvwq1LCN+RNTQG/Xyx71/5KWGlxhoWYKgqmR7WSsTfBIBXQ9ZygmhdGsu8RPv69hAK6JKTW5VUhzE09nxmfd9dmUGl0ws4NH3G5lXncnEklQ8RYoUKVKkSJEiRYoU/05SIiSfJ/YC5LCasnGTePPeuxFEAa1ez47lr3LGN+4aUlTtNIAooMRlpBMJFfph6QTiHlY9fP9guY4jh9n14gvMOnc6azreY1vXNqqd1czInYFdZwfAH4nT6Y0QCMf52uxSLAYNnfU+csrs7F7Zwpo/n3SQn3N5FTrjCZXKEw7x4UR4cL8oiFi1VvwxP9FE9GNP06pXo9eo6PCE+drTO9l68ygMUgDJItHy9f9DcrtRu1yEIqcukETdMulaF/PLLyLUKVO3r4dEpIjM7iCq1SuI7NmNEo9T/OoraHNz/7n7kOKfQiNq8EQ9bA1tYXzuOB469gcWFy/m0MAhjnqOYrdY+ePRPzI2cyyiILK5czMWk4mHjz1Mqb2UP5RNJfLcURITsxEtWmR/DNH6kUVYBeQyPTfXfY3Z+bNZ0bKCh+IhKh2VzDTMxKl3sqF9A+sa1nHLmFt4bP9jFHYX4tA7gGRSsj/uJ8OYQSAeGNwWSoQQBRFtb5ic4gpqp8xGo9MRDQbIKC5l5R/vI7O4lNoZc1n1yAOUjZ9Ee91Beo4fY9ic+Rx6L5n0r0gyB9auYvZV17Pp+acwO5wossTeVW8NnkJO1TCqJp9H3WY3OeOM/OTA9/HH/WhVWsKJMGpRjUVjwaF3MDw95Qb0eaERNczMm0l/qJ8JfXrCz5wUFUn09JLx53coubqCqBxFCHrJl2FvsJurhl3F/btPvmMLLAWU2EtOVmzJhKUPQNd+iLgxmRKMX1zMxhePggIIMGlpKSZb8tlu2b+XTc89OXj40e2bmbf0egRdUoTng/e7Js+MaPvHEilikVOFIrLLLKjUXpb/7peotFqQZWRJZtFNt/PW7+8hEY+R8Hro+ta3sP3st3x/SQ2yonCsx48vHEdA5Ocr6rj9tArKMs3kp6XcOD9vYlKMQDyAJJ9ciBARScgfIwTyoTIaUcPCooVcvfJq1IKah+f9kSzbRIiFQNTA6b+GCdcS9/fjN+TxWIOB2QWdTLIFQRTp0WdjNJnxhRNJy60TxN0RrBPyiR7xDGlbXW1mzUM/Yfic+dizcvB0dbDrzacYe+Zd7Hk3+RyHPHH2RNpwtWvw/uwXAMjBpABEtL6ep6/MYI1/ExVLK+gJbaK7rZsf5v9wsI2gx82xndtY+8TDKHJy8buvtZkNLz1DfvUwStKd5LSEMKgNBGKBU65Pd6ibuBRPiZD8ByCqVGx6/im8fT0YLTb2vfsWUy64DLVGR8RqJuOMRWBIBpE1tjcTcPezf/U7QPJVumftShxFpdw4azxqrZ9SW+kQR6kLKi8gS19AQNPP6cWns6JxxeC+qTlTybfkc+e4O1F3aoGh/5YigTjqA12MHJXPbqGZSkMN2b0VKMdcuIrNBHvj7HzrRECckAxOjmsFDKPSCW3rRgknUE7sU9l1aBXIKDzp3p12Ikjj6M5uIv44Gq0aR7aakC+G0apNCZD8lxE5dIiBhx8Z/FsaGEBuqCOiK0AQ6tny0gsUjRxLw9aNACTiMba98jx6owlNrhNnX5yfld2FtUehp+c41gwjie6TwjiiUY1o1zLQWU/NlFLi0WPEu7rx/7+7AYg+9lemnD2O7oQbi9aCRWvhp1u+yp1jfsyavQGKrCqyJ/+IzDGXo4t6wFEC2SNBSkAiAjozxMMgy0mBEkUCjQkiPkABnQVUJ6YAYmFIhMHo+McukixB2A16e7LNUD+EvSDFwF4IFhfEQyCoQX1irBMLgkqXLCN+aHuKLwSdUYO7M4jNZURWicjRBCq7HlQCSMrJ+YdqBzGtCrVGpKfJTyQQp3ZGLiqNSOhAgv+r+BX3NP8MT9QDgDviRuHEmCIhIMXlU9pWJU4GFnwwlvGE3Ax/ZheB48cH98lrNzJj2ld5QtQQl+NcUHkBvv3bUB84gKDR4Fu1ChJxzHPmYrvwAtpkC8+t3s+tYy0U0oZLl8aK+38zOJ7obW5k/dNP4Cospu79dcy//ibWP/U4kVAIg8nM7rff4Lwf/Jy0rJSAz78LjSbCOw8/xmlzr0N5z0cckPwxDDVOgls6USISSiQ5FlbnnHRiMVi05FWmMWpePsf39DJyTj5SQkGWFHa90zJYbvT8giEu1ylSfKaEI/R2NrPlpWcHNxklK/qKNCKHB1BiMlIs+W7V1TjpfLcNWVLQGtTYM5Lf3OufPTKkyuqp/5hIaYoUH+ZAhw9FUdBpRK6YXIDnkI/skS7inUFkf3ywnLbYhmd3B3Ub38ORW4Azr4Dl9/4Sg9lM0OMB4PSbbkeRFVqqXZhiCtJPf4rk8SLarESfeghd+HeY7/4+Vx77FeeqzmWOawEOTRrRUIKgL4oj18zOt5uYcmMOTqcdVCqQ4qD75HdyrL2djm99KylAApBI0PXDH2IYPgx9VdXneOVSpPjH0Bk0KOnGwXG0EpWQohK6SjuiqCI9r4Ady19BVKk4/P46AKREgu2vv4gzL588dRGkYiS/VMgeH1tee4m2QwcwOZyobPqkWH/kQ+sE2SYCCZmKSVkc2tBB3eYuAAwWDdPPL/93dj9Fiv9aRFGgcJiTc+8aSywiYbTp0OpUQ8rk16Sxb20bXce9g9vmXVmN9/+uBUCJRum469sUV1SgKyr6TPsXiyboOuajvd6N2aEjrzLtXxLCSPHxCIKANf1kMvmHr3HR8M9ItFQGKS5jceqREgpqrUBXo5e8quR8q0arwu7SM9awn5rhIGzdz6w0kVhZAbasfHLuHIu3N0T11GxW//kwx3b1MOmsUra8eozje3qpnpLNvrVtg831twdRdm+i51c/AEA0mQg8/yj2EekEN3ci+U4kPgugyTQSjyW/BZQT/43UjUPdZSXUJ/Gbkod5K/gy73StwGVwUd5r562/3oPF6SLo82BzZTDnqht4+ec/RDmRzNrbdJzdbz1O9QVXkqZLY6QjFffwaYlpExhGuAhuGXqf1C4juWV24tEEsy+rGpwzSJHiv5VgInjKtoHIAIrHR+f3vp8UIAFQFPruux/TxIkYx44FkiZZH8R8AVi1VkLxEKFE6JQ6e8I9xKQYUSlKo7eR/X37h+z/IObRaNMx5exSVv3pEHtXtwJQMSGToP7k739cjhNKhHg/sIYpVefRU3eyPUeukTr5ffwxP8Ocw4a0MSVnCqW20k+8Fq2+Vn6949fMzp+NLs1ERCMOiQfVFlkJxCT0Jg3RcAJrupbmtRto3rsr2a9ohPee/BNLbv0WdRvXsnPFqyy88VZEdSrM9x9FikV4+4HfIEvJ9Ya+libWPPEQp3/9m3RfdyPpf3kYo+2fF4BUmTUYR2bgW9k8ZLto0SYNKoJxcgNRrOMzaTo8QG+LjxkXVWCy61BpVNRMzUZUi1ROzMLi0H+uAngmm47SMRmUjvnbDvUGs4b86uR4JhZJkFNmJx6V6G7yEfLGmHRWKc37+4hFJLQGNdZ0PTbXp/gNS+X1/9N0HW9gxf2/RpaSsTD9bS2sfuwPTLvwcrR6A4FEBHf0pPCCU5tO1KOcUo+v76TQQ2jHDjq//W00hYWozCYidfUYJ04k74HfoxE1RAwSxhIb0ePewXcXahG149OJpkWPHqXnF78c/FsOBOj81l0UvfA8mowM8qoc7F3dxruPn4xjn3dlNQZzKv7ry4RarWLswiLa6z1Egsnvl5wKOzllNgRRwOYyoNaqWP/MEWYtK8WZmYy/+eCZFI1qVFYNriwzi28dxkC7F3WuiUT70DFJREmOMTxdHbzz4O+Yd913iR3sp/WqG9BVlAMCmd/7TkqA5EuMKAq4gzG+9vRuMi06/rh4ON/Iy0QbFHGVuth0tB+VKPCbVUc4f2wujv5TTdQSvhhpRi3dvii7Wtx8d34F/VvfQZHyWfWnPxDyegDw9/ex6pEHWHDDzVRNmUFr3UHkaB8blX2UD3yFqoxctCotVw+7mi2dW5AVmbWtazm77GxeOHIyJj4UD1HlquSuDXdRZqwiN72SXe+0UDwinYPr2wfLaQ1q7Okqeq6/fUh/BY2G4uVvoLv5FvzvvUfn9d8d3Cd1dlL00jZ+dtuPuHP9nZxXeR4qQYVBbWB4+nAO9B6gL9SHXWfnlaOv8Nqx14BkLO+ta2/lqdOfYrgrNWfwn0DzgaTpo04MEpVUqE8Ig33A4f7D3LbuNrqCXSwuWcyq5nHkqLvI61KBEX4zq5Gf71dQEBCc+SQiSfEZyduFJT0drcGIKc2Bt7f7c+n/d06vZkNDH7e/uJe3b5mBSZf6HkqRIkWKFClSpEiR4t9FajT+OSOIIu11B1l6+3cZaG8jGg7hKihioL0dZawyuHggxyXsy8oJrG9D8kTQ1zgxjnTR09tySp1Ne3Zy1rnL+JOviVn5s2jztWHT2Si2J518FQV+9U49C4dlEUrIJCSZfI2W3vfaWHBNLQ07e4gE4lRPzaHoQ06bNr2NDl8H+eZ8rFor812zWWKaiRhKoDLpyFB9fEB8ulWPN5zglmlZjHemg78JoX4FMjlE6+oASPT2kmmNnHJswSQLhVULyQ9X8PK9uwYTl0RRYMFpFyCtSYpByMFTFytTfL64jC6+XnsjTp8Oa6PAnyt/QyQQYIl2DOZqJ96WLh4rvxspEiUWCnFz7aV427p4pOjnaHUGlAY3KBDa3YP1tEJ8q1sI7+vFurCI4LYu5FCc2Gg9HcUD9G/t56jnKLXOWjZ3bqYirYJ1res4NHCIO8ffydaurfSH+zGoDdQP1HPjqBvZ0L6BSCKCVWulJ9RDobUQgD09e5iSM4X6gXrsBgfH29/j4Lp30ej0jDhtEVnZuUw481xkWebAundRFBlXYTGbXniKgmEjaa87dMq1aD2wF2u6i5Ix49n+etKdW6VWM3bJ2YgqFdb0AfKqTPR17uWB0p8Q9HoYcHcj55ppt3jJsxXy2PzHhopbpPhMyTZls71rO4f6DzGrfyz+j+yX9xxggfNqookoeUfeRTy6CseMm8g0ZvKL6b9gd89uck25VKRV0BfsA9eHDtYawWAHFGyGCOn5Nk67upZYOI7WoEZv0mBzGYmEgrQfOcxH8fX1kHZOOf71bSS6Q+hK7ZgmZkHi1AW/DxPyRwl5Y+hNWsxpOuwZRvQmzeCiC4CrUM++VQdY9PXb8XR1IIgCjtwC4pEIYxefiUqjI8fhItT0IL4BH7sGRBQU1tb1srA2C4NWxYEOHz2BKMUZqSDHL4JMYyaLixcTlaLYdXa0opZGXyM1zhoO9Z98/9h1diZmTSQqRREFkXGZ43jlyCsAJJQETxz6C62eo0zw9pF3dB2MvRI0JjRKFMfAbm4fOR72P4nw+l9AVGNc/DiSahjWuQX41rRCQkbQqbDOyMOveDEtyiO8ITkZrJ3kIGIOY0nPYP+aVQyfM5+db75KPBpBFE8KPGSP1xMy65CLipHvuZuQux+HoCZ+9z0kWlqZ4VzCW91rBwN/tKKWMvtJV4ze5kaCHvdgwvAH9Lc2UzZ+Ej6TgKvLQ8AQoMBacMq1vLjqYsxa8ynbU3zxuLs6mXL+Jai1OgY62lCp1RitdrQmI0H3ABii0B/Dq87i2I4tyPKpi3HHdm1lXEER3rDIBQXfI6Y9TIu/iRrHcHKNlezr6OOne77CbWNvY1TGKI4MHKHUXkqhpZA6dx1xJU5xYQ7HVMeQPyS0UzoqDem9pzGXL8XlyMB8sJD3320C4DheMkssTFxaTE+zn6rJWUTsXi7ZejkvjXkaowzh/X2oLFrM03OJtgcQrTpU5lMFFFwFFtY+VUfQHSMciJFTZmdaKlnkv454V9cp22JP3IvjR79ixX1/pnDEaFoO7D2lzEB7G3k2O46AlkNvraT4wsux6lxYT0snuK2TWKMPTbYJ08RsJFFGTkjEIn20ymFU5yzFcebpKH99BqmplevLv49sMxFPxLnjvTvwxDw8sP+XPFxyHjZvO8r6NTD5Zoh4oXUrJEKw+ykQVFA6Oyn4IUtJAbXs4WDKgI7d0PAOOMpg+jcg7IGtD4K3HYafB1VLIP1TuBa1bocdjyXFRvQ2MLlgx59AjkHlYoj6oWIBrPwB6K0w+Wvg64AtD0JaMZTNheZNMO4qyJ8EovgZ3LUUfw+VWmTYjFzeefQgkWCcWacVYBQV7EtLCW7qINEfQV/jwDwlByXdwKKvDqd+Sxe55Wmse7p+0HVVrdVzx8Xf57v13wRgaelSZEXGoDGQ0EVwFZvpbTwZJKzRq8jISeMq7VUgwHDncO7deS/V+gJqtpw6Zk5r7Ocri7+CVqVla+dW5vqGob/56wSK8hC0Osx6I7GnnkFwd1Mcfp8n51fw2r2/IWfmXGLqok8cTwBsefl55t9wC6KooutoPVZXJr6+3pQIyb8Rv6efrPwyVIcTg/JhoR3dmKflgJxFaF8volGDeU4+mlzLkGONVh0Tl5ZQ2R0mEUugKJBbaad5fz+9LX4qJ2VRODwdUZV6x6T4fDAmknO9H2DPzEbTLqAUKlhOKyC4pRNkkt/9WWqyCusZNbeCrGIBWU4jEZNZeN0w6jZ3IogCw2fnkVWSCmxM8c8hSTK+SBxZVgh5ZdQilDt0iFYd5um5hHZ2I2hETFNyUKIyZbWT6DrWQNOeneRUVDHvKzfi7urAnpmNwWLh4HtrmLTsQkS1Qryjl75rLkdrNGHLyEJQqVCrVKjicSapJrGpYxN2nZ38eAUDmzR4ekLEoxLliy3oTB44uB3kOKBAxA81ZyRF9D56Dv39JxORPkCWkw6EKRGSFP9hqHNMpJ1TTmBDO4m+MPoqB4ZRLoKbulBX6xizaCk733zllOOa9+2hoLIaOvZDTir49stC0O/j+K5tANSOn0W0wYN9aRnBTR3Eu4LoSmyYZ+ShyjNTY9biyDJybFcvrgILVVOysaUSkVOk+JcwWnUYrR+/z5FjZuH1wziytYtoWKJqUhbm7jp8x04KYyuhEFJ/P3zGIiTHd/Wy+kOGMRaHjqW3jf50iZsp/qNwFVppOtDP8T29aHQqVGqRBdfWolKfnI+QQyH8zz5FrLFpyLHyFZeT9e1vk1Wc/BY8765x+Poj6Ixqzq0eh68vgt6kJj3fzOHNXdhdGkp0nUR/dffJOoJBVGEFXZkdRVII7+1FNGuwzMgjpiSQFAlFSc7rDTOOpnOFQM2EOBpTG6qQihszL8GoVeNSpSH3xVly27fpb23GaLORWVpOV8ORQQGSD+htOs50g4aHx36L8kAvWHKS88Ap/iZaQYdYrk3ep329qMwazDPyiMejTDm3DFEUsGUYP9fE8xQpvgjK08pRCSok5eQ68AWVF2AIJoh9SJT8A+KdJ9fksoxZLCxayFtNSUOo99vfZ1L2JLJMp4pDXFx1MTa9DVmSOaP0DJ6pe2Zwn0pQUWxLxk7qjRoES5y5l1cRDSfQ6NTEhDC/O/6LwfIjXSNBgbAQpH/sQUqLhhNsUGEsknEMU/PL7X9lcfFiJmZN5Lezfsuenj1UOioZmzkWu97+idei3l3Pnt497Ondw9IRC8g7txz/e20kesPoyu2YxmehxPyMnufDkp6BOc3Jyz/fcko97s4ORi86m/T8PNoOHySrNLX2/I/i7uocFCD5gIG2FiIBP6qCYlSROHr1vyZobhyTiZKQCWzqQDRqME3IInygD+vcAkK7ukkMRMiYnotlZh4Gi+a/atyn1atx5iZjcjKKrNgz+nn7kQMkojJavYrTrq75rzqf/1YG2tsGBUg+wNPVgc5oJBYOoTSE+GnNd7l+560k5ASb+zZy2thzGegYWo/JpqWvzU96noVEVycA8eZmPohCjDU1oYTD5Jhy8HT1kTE9F8GgJnrEjdplwDIj76RBxd/h4+IuEt3dSAMDaDIyPvJNlqBqUjaufDNCyuTnS4erwMK5d43F3RVCrRFx5JgxnjC6dOSYmXVxBc0HBjDpVZjGZBA56iHWlIy/MYx0EfOE8FrDdOma8ef6yTRXIa5oQfbHkmZT4yzs3Xlyvjbg7keRPRi87YSA6JEGAOTju8DSCyWzQZeKof0yYtYn06l+MLWMLY8cGow9bFC38dOrq+lSy9gMGt7Y18VpUyroOjp0XUtXYqFhXVL8w2XW09PRhj4Rwd3RPihA8gHxSBhPdxfvP/dXZl1+Ld7gAF/JXEro4AH27d9PfvVwxmSN4YkFT7CpYxNGjZFJWZOYnjudnd07KbOXUZtei0Vj4SdTfkKjr56SjHImnVWKSi1gzzTSsKMHW7YOqbKftuOrGRpxAUo8juTxQGEhseONp1yP2I7d7D2ejTvq5uF9Dw9uv3XMrYiCyPc2fo9rhl/D8uPLh9aLwjHvsZQIyX8IzQf6sGUYUMV9hBMOxHgC0ZQcux3qP8RX3vkKJo2JPy/6M9m6Sp5avpqLrWrGbVZgChT4ZY4Xeyn1m0jo05DjAoqggmAvNlclAFZXBt6ez0eExKRT8+vzRnLBw5v52YrD/Pzs1HOVIkWKFClSpEiRIsW/i5QIyedIwtOFJEsUjxrH23/4Lf6+3uQOQUi6CioygpB03lGCCUK7e7DMygOVQKIvjHdVM6qZGkrHTWTYzHkoQtI5bd+77yAJcGXtlQTjQcZnjWdj+0ZGZ4wm25yNKApcNaWI+9YcHezLjIp0vn9GFcYEjD+9CLNDj1Y/9PaLgkhbsI0cQw5/nPUg1PXQdbABf18vpjQHqqiC3eJEbzx1ks2sVzE+Q0GIhWDzA1D3Bqqypehrq4kcPIxh5gw00X6mnzeWPavbiEUSVE3JRlsY4kdbf85d0m+GOCfLssKRNj0VtTWIWh2a7JQj6BeNWlAxwZ/HWw/ez8jTFrF30xb621qYcclVrPrNbyifOJmOPftoPbiPWZdfw7u/+y1ZZRVY0py0HznMGTNuBkCJSvjXtGAal4nKqkHyHEVlbEB11iwa5VaCXb08Pvp+NoR3Mtw1ko5AB4XWQlY0rkAtqnmu7jmuHnY1OkHHj6f8mOfqn6PJ18RtY25jXes6bh9/O+6uTnK9Fl6a+ATt7cfIsufiDrYRDwbpbKhHEESmXXg5W199nj1vv8HEsy/A4nQS8iUnAj9Ihvb19pBTWU1nQ1I8R2swUjNjDlmlFaDIKMDEs88DQcCansHhDWvpbWli9ILFbHroXkYvOpMj69cw0H7SlWjBjV9j2OgFqSTLz5mOQAf1/fWcXnI6atWJd5tej2XRIvzr16OrrkTnzMHga0N859ugsyCjcPPam3HqndSk17ChdQOdoU5+OvWnBGKBpLhByA3rfgHbHgJA0FnIu+wVvPZagt4YRqsWW4aBoHuAhh1byamsxlVUgiiqkKU43u4ulFgC38YmzDPzELUqEv447heP4Lp+xCeeT9dxL+8+cQhvTxijVcvsy6vIKbez5KaRbHr5KD2NPvJrnai1AgW1w1l+790kTjgta/QGFn31Nra+klS+Lq4Zzvgbb+Sh1jivnlg4STdrqcwy89ctTYwpSCPNqCUhnepen+KzR6fWceOoG3mx/kXsOjvfm/Q9XjjyAouKFlFgKUgKMdkrOLfiXL625mssKlpEriWXG1ffOKSeYCLIm61r2CTq+GnWcPR1b8K+55I7tSaEMx+APU+DFCdedjq7D3SQbTNhOajHMj0XBEBS8K9vwzsiiFSeSWdFG9FgkAPPryLk8zLzkqvYv3YV0XDS8SezpJxY1EDpaC0Fw8yQI6Hz5LPpzZeIhkJUTZ1BfUsTVb/6JfKGtdgy8/mJ7Scc6D1Ad6SbK2quYKRrJPFIBEEUicdiqNQaAPJqhzNizgKioSAanZ6gd4B4QsFUVsUvin/Ba0df45tjv8mK4ysISSHOrzifuflzv8hbl+JvYE13MdDRxso/3kcinnRx0+gNnH3n9xHDfdB+GLLHEgv7GOjsoGjkaFoP7mfcGcvIKi1HpdWi1esJ9HeT8PlxWfP5/aZiLpk4k8ffaeaGmTb02hAJJcGvdvwKvainLK2MFY0ruLL2SiocFSw/tpzy4RUsvLacrW+04+uLUDjciTPHjJx3PdpMhUrZzvtrTqj9C5BTZsdk1yHmRCgcqaVXauKIr55lZcuIEUdlVmNfVg6yTGhvL9E6N8baj3dJtLmMLLpuOJ6eMIIA9gwjWkPqU+u/DU1OUpBAU1GBNj+f4Lp1aAw6LE410VAIX18PjpxcPCcSNccvPQe9yYJaqwNBIBoKMmr+YnaueI35597IwNOHMc8qwDQuEyUmE97fS6RYwpGdxZYX7yHg7gdAEEQWX3Ml6q5W7tj7E6od1QiCgCfmAeDQQB39lUZs7/4I4bw/w5u3gTfp2kbeOMibAEYn+Nqhpw56D4MgQt5YOLYadj6RLNt9EHJGwvpfQfyE03z3gaQoydwf/O3xav9xePYisBdAIgZFU+Hla07ub9sB834Me5+DSTfAi1fB8TUw5wfJNroPJPsy7Vb4y5lw9UrIHfOZ3bsUfxtHjpmlt43G1xvGlJDx/ukAhlEuTNPzEDUi0WYvgiiiM2kpqHaiy5PY/tfOQQESgERMRteaztz8eSzLP5fstAy6Ql1U2auw9GVhHatgNLtpr3PjzDMx9qwCjiT2sLFtIzq1jufqnkOn1mFU6dFNmzKYfCFaLAh6HfbRo+gM7GB543IkRUI96nI6jrYgBAO079yG1mhk+DVXoQ4dImorYe3Df2XGpVdjSU9HJapZcsu36GioY887byJLCQwWK/FI8jkP+7y0Hz5Iw7ZNVE6ezsqH7mPE3IVkl1ei1f1rwaUp/jlUGg06sxk+pDcb7wziX9uGZUkxcrGNhFog5tRjsZwq/qXWqEjPGypGV1DjRJYVxFSAYorPGcFkwupyMWbxWeTXDEOt1aJtMuB94zjGsZnYFpcgCBD3RHh/xV/IKClj/+pX2bMywcSl55FbXUtmcQYlo5Pqp6kkoxT/CsFYAodJS68/it2oYV19D3KGlRIZiCSwn1WKIkH0qJtInZvic8fR2nQQW2YW0WCALS89i6c7GXBeO2seI+YtRIrHUHvh8PYtHFy3GkWRceTkMeb0pWgNBkSVmvOyz2RvWh31A/XoXXqMC2yMpoB+pQe73U/pQAsEesHbBlIcnCXw5u1w3hOnJCmqXC40paXIHg+S1wuJBKhUqDP/eRfaFCk+L9QmLUFPGPO0XASNSLwnxMDTdehGONEajMQiEZx5BVROnkF6QSGKIuPp7CAWiZAQAE8TaE2QnhIr/1KgUpFdVsmIeQtxZRYSeXWAeHcQ48QsRK1IvC9CpNeLNkMgs9BGZqGV4bPzU+PZFCm+ACxpenRGDfYMA7KsoE/4abvuVnA4sMyciX/VKkRFQe1y/d26/hFC3iibXj46ZJt/IEpvSyCVvPlfiNGqZcqyUmqm5SDFZazphsFkuQ8QTSbMM2Yy8ME8mNmMYNCjHz9+SDlzmh5z2sk5KmdOcs4ju9RO6QQXnuN1DJx3J0o0OlhGN2I4gs2M97kmDMOdJ9cydvSgDDNS6CpEp9KRJqRj9bkomu1h78qXKagdQd3WrRgsVq6YuwxDppOu0H6W//ZEUr4gcNadP0Cj02FJz2DahZeh0esRRBWNu7ZjE0I41v06Oda/4GnIH3ouKT4OBe/bH7lP27sRK404R+X+uzuXIsVnRrWjmgfnPci9O+8lnAizqHgRZ5edjTqhR1tRQezIEUxz5hDcvx96ewfX5CAZQ3HT6JvIt+SzumU1Np2NpWVLOdh3kNvH3c7LDS/jj/m5tOZSFhQtAEARFU4vOh2VoOKtxrdIN6Rz3YjryDGerDejwEaDqom2jm4UIUFWrgPRo2DT2ZiaM5XTCk8jnAhzUdVFvNv8Lm8qrzJ1xjRGuIbzf3se5MySM7lq2FW4TC7mmeYxr3De370OTd4mPFHP4N+ekBvrtjjm6bmIGpGEL8bAi0dQLXFwfPdWwj4vp137dTJKy6maMh2DJSlQ1bx/NwarlS2vvkCwv48zbv0Wsvzpkv9TnERrMFA6diK1c+aDIiElJHa88TJqjQZuvQmPVcW/Kg+ttuuwnlaYNKPwRok0uNFXpBHc0YXkjoIoYLTq/uuFJkVRoKDWyQXfmUDIF8Nk16bGsF8QWoOB4tHjGT53AaCgSBLbXn8JlVqNWqdn/9qV5FUP5/EJD3Lb3u9g09moqMnDFAlyeGMHGp2KUfMKCHgitNW5Sc+zYBg9+pR27MuWoXY4aO/cTiQSwPZqEMvMPIwj0pETCr51bdgWFn2qPg/GertcWCZNwv/GG6hzclA5k4aZljQdOqNj8JvMbNehN526Hpjiy4HNZfzY94laoyKv2onNZUQViON5ZB/aIhumidnJ/IrlxzGcm4uvN8wv9/6SXw27j9eeqGfU1Byqas0khAQ7Nyxn5OLFDF+4CCkWZeeK19Hq9cTefGGwHUGnQ2sMwnOXwMXPJ413UnzpKHWZuWNBBYkG/xDzMzmh0LG7j4eCbq6dXoIiy+Q6jJjmFwwaToxaUMDaYBBZUajNsRKIxnEhodbpkGUJlUZDWlYOpeMnIQgCfS3N5FRU4cjNJ+L3oZEEmt/fREZhMbKs8O4Tf2TeVTcwOns0ozNPvq+rqWZ2wewh/T6t8DRa/a2IxBH9IjG/grPCSPqYbL629ms0HGzgoZofI1osyP6T1p7qggK0eXkAaMvKUNntSH4/nBBv00+awI5w/WB5URCxaq049U6eOPgEN4y8AZ2oI9uUTYt/qNmyXpWKwflPIB6TaK/3UDs9C+q8hGNO9IkEKrOZVl8r16+6HovWwp8X/plsczYr9ifXi0fZQIol1yhuXSUTmSXSqotxaKCRYQigtSG63VhzMgGwuTIHc24+DyYUO7h2egkPrz/OgtosZlZ8tvO1KVKkSJEiRYoUKVKk+HSkMuM+R9y+CIlEgv62lpMCJACKwpaXniWvrBRLZvIjXldoxftWI+7njwwWc1xSjdfQz4h5C1EUhYjXh8FqZep5F/NuaBuNgSYmZU/CHXHzfvv7XF57OdlkIwqQazdw58JKglEJo1akLMOMzqAmK/1vq/TKyFz41oW8MP4xOgIBSkaPZaCjHa3egNFmZ6CtlZyKUx0ICx1G0ETA3QP1SWXT6KyfkzkxjNzbS3j/fvpzhrP1tUZKx2Sg0ak4vruXPJ2Rs8vOJrpLOqXOSEzAOGkyaWefhcryUR3WFJ83wZ4Wtrz8EqMXnUlGUQnOgkK0eiNhr4f5N9yMIIpEgwFqZswlFgoy75qvIqrVBD0e8muHo04zI+0LgqQghxIE3m/HclY2vv4mrFPH4gv42PeHPyHF46SfdwlTlALo8fJQ9f8jMNDPvBGPIMoSoZ4urHIWcncn+qDI94KzEbrDqEaOZKazCjGoIxAzEQ0F8fY3IfcNcOxAE0e2vM/Es88HoHj0OOo2rSfk9TD+zHPY9+7bSIk4w2afxvbXX0KKxzFYrHi6Oxk2Zz6mNAdSPM6kZRew/fWX0Oh0NO7eQV9rM+POWEY8GqV+0waceQXMuep6Nj3/FGNOX4qroIi07FxkKUHE7ycWCbHl5ZfIUpux5OSiK0kFF39e9IR72NK1hVGZo5CzRlDw7LPEm5qI1NeTdfNNaKuqONBymOGtbyQPiPrJNefxs+rb2es+wKuda/DH/RjVRtL0aWxo38Ci4kXQtQ8OvQJTbwWVGmQJVv0Y2wV/wZbhGGy/v72V+k3vkV89nNyqGqLhEIoik1M1DL0ljdjeHjwvnQwsNE/LRe0wfOy5BDwR3n74AEFPMpAs5Ivx9kMHmHpOKfZME4tuGE4iJuHrbcbX30P95g2DAiSQVMpu2r+b3Kpa2usO0nhoPyO/eRaj4hkU5LtQieAw6ojGZUxaNTfMLKHTE2ZKmeNj+5Pisyffks/NY25mIDKAWlRT66xlTcsa0vXpXD/iet5rfY+eUA9qUc1LR1/iG2O/cUodU3Km8NDeh4jJMW6Y8gvKnrrk5M5YENb+H9Qshb3P0lt2Gbt++wC1k+cyzDwJ/9rWwaKqahOBRBtSl8yGl54Y0sb+tSuZccnVrPj9r5l49gXkVFYjSxFkWWLfylcZu+QsOo82UDVtNnqLFYPZjD0rh1giju2CKxnV3U0MA8OiZqKxCI5OgcaunfS1NKHR6bBlZhNwDzD1ostRq9Ss+P09oCggCMy67BoySksYcA9QeRz+z3gBIlaWeAQUWcbMWPSG1DP7n0IsHKL1wN5BARJIvouO7tzG2LGl8OpdcNkr2PR2MoqLsThdzP3KjZjSHATdblQqFZLRhFqrJ6M4gyy1igcXmokF+xixMJ+mqIBencmM3Bmsb19PRI5woP8ADr2DIlsRK46+yd0Z16F66xBylR5XgYW8Kgft9W6O7uhBa1BzVk4WkqJKBpWbNYxbVETTvj56mnxYnRnEmgU8HTrmTp6JJdiGyADhHoXACZcCAF1lGuqMj393A+iMGjKLNJ/JNZVCIWSfD5XdjqhPLc79o8R7exFEEfWJIJa/S7APvG0ILhd5f3iQ8J69qKwWHJddimixoM3Kpmr6LA6vX8PMy64h5PUyYem5DHS2Ew0GMVht6EwmdHojgkbFmIVnEFVHMIx2EVhzcrFVk2/CXJSF293JrCuuxWCxsG/1O9RvWs/2HZuZfM1lxHe+wbq2ddw65lbWtq4FINuUjbXrELiqoGHlSQESSIp/lC+Etm2QVgxphbDvWTjjPggNwN5nh55rInJSgOQDdjwGoy4GV8UnX6POvRDshTFXwJG34eNcjo6vA7UOdCcSS2UJAl2gt0HEC/FQcpsUh/adKRGSz4l4Xx8CoE4fKppktGgxWrRI4TjRagfhPb2E9yTnKfS1TlSuk+83uyqNWHBooAACFBVks+zYdTSvcRMriTB8fCEiMi8/eoxETCarxErtjFzC/hjGpjrG9/YyrfLbSAE/ijqKoFIhx2KoZ1iRO3uwTJ+OqqiAiMOBO+jnKimH68ecR4+vC7PFhXmUi5DXQ17NCNRaLYH+PhqUMqxiOlkV1VhdGQT6e4mGQogqFfk1wzE7XWx48k+MW3I2O958FYDKKdNp3L0DX28PGp0OgH1r3qFm5hxyK2s+t3uR4pPRWayUTZ6MIZKG//mTLpiSL4asTnD4qI/uRi/jlxTjzPkbFX2EVMJmii8CQZHIrRlBNBggEY0S9HhIK8+Crb2EdnYT2tkNAijzzLiKStj80rOc+Y3v4O3pYqCjHVmScBWVYE8JLKT4DFCrRNJNOlYf7mZuVSa5dgMVGi2dA1HSDg8Q2n7Secp0ej6dfc0Mmz0PvSU5XpvzlRsJ+7yodXrCHg+CIJCQEsgJieyKKmpmzsPd0Y7ebEJrMCAIIiCgj8Fp6gn4c0ayauB9/PE6NBkxpsbB0tdPnz2HiD0Xdd5YUCRkKY5x4Bj2gSYUVzWhffsIbd2KoNagLSkm45vfBCmBEo0S3rMXbUkJiYEBgrt2ocQTRA8eQIkn0FVXoSggajQggByJoASCoFaBoqAkJARRRFCrUGQZRZYRBAFBo0HldGIYNgzxxFggRYp/Fn1JGr0P74MP9JxFUFcaCft6kWJRRi9cQjQUIhYOIyXipBeWoNZrkSQFeuvAmg2k1gm+DKh0WqZffAWJWIz+/nayZxYReK2F2HEfAKJRjf68XPpbWjDWJh38UuPZFCm+OLQ6FY7spNCDIhnJ//MTSP39yIEglnnz0LjS0RYU/P2KPK1JYWCDA5ylIKo+sagkK8Sjp8ZEJOIpk4DPmnhPD4Jag9qR9pnUJ4fDhA8fRvZ4USQpaV4iCAiCgA5QwmFCfX1IlZUQiRA+dAiVxYquvAzTrJlEWlqwzJiBKj190N3d+/rrRI8fR52ZhWnSRHTFxR/btlatwVU+jMT9dxP8xW9JNDahnjyejqsX0eB5n2Vz5g+ZWxEMaoyLMhknTqZtl5+j23uZfn6YjobD5NcMZ+PzT7LgxttIxGN4u9ox2WxsefGZweNLxkxEpVJhcqYz//qvE/R4QIGI30/l5GmoYr1QsQjW/gz6G1IiJJ+CYMSHaUY2vpeG3ifLnFTiTIr/fpR4nPDBg4R27ERlMTNm9Ggetn2V6JEGDI5yYi+8jVelIvMXP0dqbiFy8ADmyZPR1dYQOXKERF8vhlGjEa0WnMf7uaytkAta52EcOwaTYxgjXSPpi/SxqHgRKkGF03By3S8ux7l17a3cO/Nezig5A51Kx0O7HyKUH6IkLfnNZdaaGV08jOLsPBQU0vRp7B/Yx7jMcVSkVRCMB+kN9fKr7b8i3ZDOhOwJtPibaQ+0ce2Ia2n1tZJvzf+HrkmDpwF3xI1T76Q/0s9O5QA50lg8LzYMltFPcfHuy48y9oxlKIqMqFIx6dyLkCIRgl4PGp2OkjET0BmMjJy7gI3P/pXty19h8c13fDY37kuELTOb0YuWEI9GiQRCGO12Zl56NTqLDY1WS4v02bi2C4KA2qZDECB8oJ9E50kFdvPUHNSO/431fkEQsGcasWemxEe+SKwZWYw5fSmJWJSIP4DRlnyO9WYrIY+bgtqRWF2ZyEGJB+c8iEFtoOO9AMd29lIxIYtETGLb8kbGLSoiFk0AoB8xguyf/5yeu+9GCgZJu+ACbMvOBqA33MtfGv/CfeN/jG9F02A/VC49mqy/HXv+AbrycgqeeYbo4UPE29rI+dXdaEpK0HxI6PHD32QpUnwSoihgyzAip0nExmUQ2t5DrDFpPKnJN5EwSQjuMPXuepoHWtCbNci6AD3hAayuLMonTyYRjRINBjDZ05h8/qUYbGlwwzeJf+traIqLcH73W2i7n042uP0xKJ8PKQOBLx0mnZpLJxWy4fDhU/YJMRkEuGdVPU8uG826Rw5hsGopHZOBLCk07+ljcpmdOeeNZWW3m/VH+pg4K5/WAxvJKi1n4Y23EY9FObp9M9FAgDGLz6Kn6TiKJGN1udj51htUTJzCe3/9E1MvuJSiYaPoaKgnLfvvi1YG4gGsWisuzHiatxPduw8lO4P4sHK0qqS4UyTTjvOeX+D99b3EjjSgHzsG1223Edy8mcjBQ2iLCsn6xc+JHjpMvLWF8N59pF1/HYGGHwJwYcZCFgZLsDT1YTJLZJZex407vsPVw67mgsoLuGfnPchKcm6r2lGNRZPK9/lPoL3ejZSQKarUwWGZUAyM0RhRk5bb1t2CgsKj8x8l25wUDtveNIBeI1Jj1xCMJk3MzFKUEknPNo2a36ie4R4TSKIJjRTE6soAwJaRSf3mDciShKj65HnRf4VvnFbB2roe7nxxLytvnYnN+NnE56ZIkSJFihQpUqRIkeLTkxIh+RxRZAk5FiMWDp2yL+zzkvD3QaQVCiejyTKRdmUVsSMe5KCEcVg6UXMcOaAQDYV495HfEwuHEVUqpl14BQtHz+L/DdzHXRvuIsuUxR3j78CpTy62qVUidqOaTJueY70Bsq16IjGJ7LRPTpr8gCJrETq1DimRwOJ0cuj9ddRMn4MAHNqwlpGnLULyelHZhurAm3TqZB6aSg2ihugl6xEUBam7m7abb0GTnU3rsinEIhKHN3UOHte7T01JdSkFw9I5smXowk711FxcI7+GyvD3+53is0eSYNSCJWx77UV6m46TXlDE3pUrmHbhZWx95XnUGg2l4yby3l8fY/yZ53Bw/WrCPi8j5y9m7ROPoDObmb/sRqyRNJAgbA+zevWTFI4aTdOh/TTu3k7Y52XmZVcjCAL7161m+Oz5rHjgHgxWG/nVw9i54jUUWUZnMjH9oiuJ9XWjM5qwFpWw+bm/EvH7KBkznh3LXxns9/C5Cwj7/QybfRqOnORisDMvn50nEtDUWt2g67y/v49xS87m2M5tTLvoCo5s3ciet5cz+dyLsKZn8OZ9d6PICoos09faTOHwUfS1NNG0dxcAgYE+zA4HMy+/hpV/vJf+9lasThf7164ERcFoszPx7PMJ7N6D+zvfo+DPT3xiAFGKf408Ux4/nfpTulsOk5Zpxrv8RdxPPjm43zhpEiO+fRdi0EuiQk3cNQvXtuNk6DIY3VXJUmMZu2oEVHoDvqiPh/c9zNScqVhDbpj5bQj3QzwCGhPUng1RHxiTAgiyJHFk60a6GuqZduHl7FrxOg1bNwKQlp3D3K98Fc00Iwa3Fbk3jqbYjKUmC29/Nz1Nx5ETEq7CIpx5yWBGX19kUIDkA6S4DAi8ft8ezrljLCHPEd5+8LfMuPRqAu4B8mqGM2LeArQGE+2HD+LuasfsOBmA4Y1LuCw6BEFAoxLItRsQBDh3XD7tnjAj82w4TP8bi97/LahEFS5jcnFVI2rY3bub/b37WVaxjK1dW8kwZnDdiOsIxoPoVXp+MuUnPF//PDE5xmmFp7G9azsxOYZaVKOSTg1apf9Y8lkFEpKCLCXY//472M5wkVdYiegGXYmdAbmL7Ixq2g4fPKWKsM9HPBph7le+yv7V77D1lecAyCwpY9I5FxH2edEaDFgcTuKxKHveWU7dxvcAsLoyWHzznWx79QXisQiFI0ajiYZZ+dD9xMLJROFxS86mdOwEUBRev+dnSQESQKPVgQCv3/MzIsEAgigyZd5iCqMS0Q0bIC+PkMdDuiBgqkklDv8nIMsyYb/vlO2B/j4C4nis8RBEvGhVWiacfT6H168jp6KKdx95AJ3ZfMpv/mnX3UQiGsVgsdK64S2Gz5xHQNBx68i7KLIWsbZtLdWOak4vPp2/Hvor3zAswXP111BiMVR3/Yq6LUODXmLhBL52N6buOgqqaskqd7LltWTCPMDOt5upmJiFpzfKm483cuaFLnTtjehritCV5BNrD6PNN2GozkBl+PwWMaRwmHhXF7I/gH/zJoIrV6LJycV109fRV/wNcYgUgyTcbnxvvkn/Y3/CNHMm1tMXobLb0ebmojJ9QkBMTx0ceIlI6aXEDx+k45u3J99Hoohp6lSc11+H7PMx5dyLMVpt7HlnOfOu/RqdDXU0bN1Eb3MjAEWjxjBh6XkcWLuKQ+vXADD1zEupWjqZWKMPwaUl5kjQfmg7+9esoq+lCb3JzIIbb0Wj09G8bw+rejdxzfBruHv73Zg1yYAbnUrHj2uuJn3n85BenhTv+CgDR8GUCSrtyWAI6cRYQmNICo98gCCeerzGkPyO+5ucEB2RE6DISbGRj6vH6ORkNh7JPknxD7V/on/q1Ljjsybh8eB/+218q1ZhnjcPXXEx2rIytB8RI1EZNNjPLCVa6yTa5ENXbENXYkOlP/kMdBz1kF/jpPPYyXd7+dhM9q9tp7spuc3XF6HjqI+pS/IG36ddx310nUioK5oQIHH3z9BVVpJ+y81E6+qJt7WhKymh86GHyP71r5BLivCEwxzfvJ7WQ/spHD6KnW++ijOvAOPSczmwdiU55dWkFxSyY/krdB1Nirbm1Qxj8rmXEA0GaNi2mcbdOwBIzy9kxqVXs+zbP2LPyhUIgsCIeYsQRZGBjjYApEQCQRRRZJl45EP/NlJ8oSiyTDQUZNWK5xg/dynaHjVqmx59hR2/4mHv6qQIWG+zn4KaTykolSLFF4So1SMnYjRsfp8D61YBkFFcxplX3Il0PIQcTaAqNbLq1YewZ2Vx1h3fY/c7y8koKMbsTKevvRVRo0at02K2p4QVU/xrGLVqNKLAtDIX33v1AD8/exjhPR52buhgzpnFuEgQ7fYTc0ms3/Q0WVXlGKxWzGkOvD3JedYtLz2Dye6gcMQotB4DAc8A2eVVmOwOVtx3N4GB5DxqzYw56M1m9CYLWqMRURRBEFmaM4vnwiuIx0KoI3HeNOn41a5f4I/5WVS8CKfBiVlj5rBFyzWiRNGBA7RcetngHIAqLY30m29OivfE46iLikh43ERWHsG6YAHdv74HXV4u+ppaYs3N6Kqr6X/kUSJ792JbshjLwoWEDh8GWUbjcBJtaUHyelHb7YgGPeH9B1DCYfSVlchuD5Z5c/+dtyzF/wDaAiuOr9QQ2NuFWq1BzlfjlrtJxOM48guJx2IcWr9myBzZ/OtvRu3QgigCH/NNluJ/EkEWSMRirHzofvz9vRTWjGbGGZei6lRI6CSMNemseuGPlE+YTEZJKTpDKokrRYp/F5HjjcTb20nIMuaRIwhs3gKxKBGrFX1R0Scf2LINWjej6G0IiQh0H4Kq00H98Q7eJouWmmk57FvTNrhNpRGxOlPzZP8KiqIgnJhzTLjd+Nevp/dXv0aVZsd1yy2Ypk5DZdCTGBgg0deHym5Hk5HxD7UR3L6deEcnSAkkvz/ZnkoFogoBhZ7f/o6MO+9A6u2l865vD4511S4XtvPPwzZ/PpLfR6KzI9nnSJTe3/xmsH51djaFTzyOtrDwY9sXBAFPTR6vf2MMxepFvB86wHvHf8H1I67HXJuJ7moD4YMDqGxa9NVOSNPQu/cYmfkJMvK09DbVozHo6Tp2lNNvvgNvdzfdjUcZOX8xUjxOJBgAYMT80ykfPwVFlkCWicaiRAMBVj18P1I8jlqnY/51N2HTnUgWVaXc6j8NgigSMPlhnhlVl4BiBCFPQ3+wE13Ejk6fiodK8d9LcNt2Om6/HQQB0WzGMmcOA088QcYdt9N+y60okQjOm24isnHTkPeetqKCnF/+kuYrriDrRz9ECocxjhpFPJFA43TSdsst5P7611hmzsRl+HjBngxjBudVnsc33/8mvpiPcCKMWlRz5YgrTylr19sH/390xmg2d27mO+9/B5fRxRXVV3Db2Nv4waYf0OA5KRQyLH0YpxWdhkb8x9aGNaKGh/c9zE8n/5R+Xzfb+ncx4fSxFPfnI3WG0Rab6Q42M+XiK4j4fATcA2hPfAuseuT3+Hp7gOQ8zIh5i0hEY4gqFWGvl3g0+reaTvExyIkEnUfq2fTi08lYBKOJ+TfcnJzfsljIces42HeQ2vTaz6Q9lVWH85Iqog0eYu0B9BVp6IptCOrUXECKfx4pnqCnsYGNzz2JLEloDUbmX38TOrOZeDSMwWpl1zvLmXDmOZzz5kWcUXAW1bsX4h+IsH/dyW8Pb2+IsnHJcbDKaMS+7GxMU6eiJOJoMjMR1Mm14hxTDj8tvwVVRxdp55UTOepF7dIiV5pR2z+dwHP02DF6fvlLInv3Dm5zXncdqpwcdGmfTijww+P8FF9OZEkiGg6hMxoRNSpU4+0Ys7RIzSHU+SbiDpmNrz/J+DOWkWXMosDsxDK1jrr312A9fSnxaJiB9lbWP/knpEQCjU7PvGu+itlux51ViPDcfXSLEcjKIC12QnRMb00JkHyJsRm01EzJoXlf/5DthdUOvp+TTZs/iuKLoygQ8sY48N5JY7OsUjub/3SYoqUFVI7JRWM0MmLuAlY+fD/9rc0AlIwZz9QLL2Pn8lc4tnMbAI7cPKZfdAXvPfUEZeMn4e3pRq3VYvw778pALMA7Te/wu12/w6q18qD/LEK/ODneFitKufK7F1GXPYnyHpH+O+7CPHUqltlzEPR6Au+uxv3EE4PlDePHYZ41CzkWo+CxR9Hk5PD/sv8f2xrXM/b5A0iv3IcE+ICMxfOZNXsCoUSIDW0b+NqorxGTknHMPaEeQtKpOVMpvnia9vej1qnIyUu+0yJREGSZ++07OeY5xh/m/YEC60kB5p3Nbkbm2dGaongjSTERtUFGowTINc8mItRx35kiT0gaDKo4NlcmkFwDU2SZwED/oDDJZ41eo+I354/irAc38qM3DvLbC0Z9Lu2kSJEiRYoUKVKkSJHik0mJkHyOmG1mOgf6cRYUIggiinIyGat21jzsG38EpbPwGEqIBQNEw2GCpn50GWZkvQ6k5GLIuj8/QiycdKuWJYn1Tz/OOUXFrGpOBrq3B9r57sbv8tC8h7DJBmz7d5L+5ivIGi1Zi89mO7lk2E1oVH9/QSPHnMMf5/0RvU9D2OujdPR4Nr/4NIlYjJHzFiInJCJHj2IaO3bIcfkOE4rHDeZMGHc1ijkdlSzhWb0GJRRCnZaGNf3UADpnrgmHSUfz+/1MXlaKqBIwp+nw9UUIBeIpAZJ/I6JaR/3mDQTdA4yav5iNz/2VjOJSuo414OnqYMr5l7LphacwpzmIBPz0NB5j4tnns+WlZ0nEYyTcA7zy2M+wZ2Yz95qvEvJ5KZ0wEY1Oj8FixZaZhdFmQ5Fl3rz3bnIqqjm+J+lOPXzOAjY+91cAVBoNtTPnEQ74yCqtYKCjnbbD++moP8TEZRew4/WXBvucXV6JxZFO5aRprH78j/Q2NzL53IvobWkip6KatsMHhpxj3cb3MNrslIwZjyM3F41WR+2suWi0Orw9XUSDQRy5eXh7kgI52RVVbHkp6SbvKiymasoMfH09bHz2L0mH7qrawX4DhLweDr+/jtm5ZYR7egjv3ZcSIfmckBSJ7278Lvfpr0TSunE/c9KxCbUaw8iRhLZsQZORRe+zXThucqHWqQhu3YZotZI/fCrOvXtRLCLC6FJe1DtQFAXsecnE3vfuTibWxkIw8w5IxInU1+N99TUSdiuN+3cy/bKv0N/aMihAAuDu7ODAulWMnn8mzz7wA2ZcehU2azaENDz/k+/g70u6z2v0Bs7//s/IKqtAFEGtFQeTOT9AZ0yKPfn6enj3kd8R9vtQFIVpF18Jkoynp5NYKEjJ2AlEgwHee+rx5HEmE0F9Gt2+CHvbvKjFpDOXCEwrc6BXqynJSDkL/Dsxa818Z+J3+MvBv2DWmKl11hJKhHj92OsccSeTbTWihtvG3EZ7oJ0/HfgT4URyXHBl0RLyAgOnVpo7FkJumPM90qxaskor6Dp2hPffeBKN3sCo+aeTbaghIUtIHjcZhcWcdv3NGK22wUDCRDSCKc1BZ0M9bYf2D1bdffwoXUePUDZhCvZENvvXvENGcelgcgWAWqvF39+LLTMTd2cHoqBi7Z8fGRRmkyWJba+/xIKcPLQGA1IiMXhs1dQZ7Frx2mDQoyLLbFz5Bq6zL4HrruH9N17Eu2sjVSqJCY407FnZn/k9SfGPYbDYyB82ktaD+4dsLxg2gmg0Ade/D1oTIUmDEgyiUmvYv3YVnu5Ops66bMhvZzQY5L2/PsbohUsQRJFoKIC/p4vupuPkVlRxWeYyfDEfRzxHuHXdrZTZy0jbsINALAaANhFGVJmQJWWwTkEUUHl60NlMTJ2eQXuHcMo79uiObkbNK2DXO830RCygrSLHbkLZtpbY8WPoCuYi6IYm8v8zRDs7iR0+TLy7G016OoLNhhwIkOjuQe1wgFqNoFYjImCaMAF97TD6HnkEx8UXI0djyeBlrSbppuR0ovuEoOQvE7IsEzlyBCUaI3aknkQ4TNYPf0hox3bC27djGDmSQFsbUnc3mpIShESC8J69SB4PpsmTMBXoEDVGRKMJRRDJvvv/oUSjIMtE6urxr1yJafJkbNOmMfOSqxi35Gw66g/j7+sbFCABaNq7m7LxkwcFSAA2vv4k/dPaqJkxh+7jh9jz4nIqp8ygYtI0+lqaiAQDrPvLIyz62jdIqyzhj75XuDjnYgxqA/nmXB6ovIo8ayHFWx+FqsWw9SGoPD3pnv1h7IVgSINYANp3Q+Ui2Hg/nPYTGPcV2PDrk2VFbfKbLfAhAcjp3wTH33HidpZDRg3UvQFl88CWf0JgJHaiXhUUzwCdFbpPOIPorKCzQPzEArMlGxLRZF/zxv2jtzrFRwgdPIgSCoGoQgFkjxtBb0BXUoogSQgGA3IgQLivj0RfH2qXKynKk5mJOk2PelwWpnFZp9Qb9EaTyTACTDqrhMa9fWQWW8ivcvDmg0Pf8/6BKGqTHgQGdWogmUCjiflJANH6emSfD0GtQjSbcT/zDPZ7f4s/Mx1iUYKeAXa++SpTL7iUjc8lRQTHnH4W/a3NuDs7yC6vpre5aVCABKDt0AG6jx1BEFWDAiQAfa3NHN+1jcpps7E40ykefSnbXn0BX2/yeRdEEa3egCLLpGXnYrB/Nm64Kf4x4vGkMNF7f3kUT3cnzQd3Y8/MJh6NMPvK67G4MsittNFe70VQCSTiEmrN5+OYkiLFP0MoFMTf3zcoQALQ03iUVS/9gdlfuQElFmfrmy+j0evIqawmEvCTnl+IosjsXP4KKq0WrU5H897dVE+fTXZZSmwuxb+GDDywtoFb5pXz9LYWrslwIcVltFkRXnksGXDo6epEUWSO7dnCmd/4NrFIBJVaw5HNG5hz1Q28/MsfkV1eSVfjUTR6PVq9ns0vPD0oQAJwaP0apl5wKWG/n762ZkDAaLURcPdzQdlp+Hs8NBZYuWvDdYPHvHbsNc6vPJ/W3qPcKp6G9MM/0K/VkfGtO3E/+RSiyYT9gvOJt7YkxzGVFclg98xMqKwk3tZO2tIzUWcmxyxyMEBo8xYcl1+GHDibwOo1+N5YjuWspYiiiKyAypGWVNdWqVCCQcKHDqGvqUZJSPTc+zsM48eh/ojAeooU/wiCKNDpPko0I0R/ayvmHgf7Vr3F3Gu+ht5oor2lacgcma+3h11vvcG8r9wIWSPA+K/PLaT470CRJba/8TL+/uQaQPOh3fz18B6W3v5dYrEY3p4Bhs2aiyzJDLS3kl1W+W/ucYoUX15kvw9Nbi7ywUMMPP44hpoa1Dk5SG43fJIIib+beE8v/r1hfJu2Y6wuxDYrC13fEcga9rGHBP0xpLjM2MUFpOdYCXgjCAiE/LHP7+T+B4m1tZ2YD44iBwKgKIhpaYhqDb7ly5Hcblw334xoNiG5PQTWrkFQa+h/9FEs8+Yims2g0aIy6JEjURAgdqQB3bBa1E4niZ4elHgcQa9HCYURdDqURBwScWKNTWiKChG1WiJHjoAC4R07ME2cCKLIwGN/GhQgAUj09iJoNESOHUPjciFHIohGI4H3308W0GjQV1UhBQLEWts+UYQEoMpZhTzqIl5seJEJ6dP51YL7UBIKKp0aVYUDschKT6OPwzu6sKR1IIoKG194jannX0I0FERnMpOWlY0iyXh6uqicMoOQZwBTmpPKydPpPt5A5aSpRINBtAYToKCWZd578k/IUnINLxGN8u6jD2D99o8xnPs6Dof187zV/zOIosjKR++lv6ONtKxsIsEgYZ+X2Vdeh8WZji6v4O9XkiLFfyBSOEystQXrksWQkDCMHUvvgw+gyc8neqQB5YQIuHnqFFqvuXbwONPUKRjHj8f7ystk/eiHqPPzUerqcf/1r+jLK9DW1uC47HIGHn8C0+TJiNqPFzySg0Eu9tey5LiHkNNEd5ULS1kVVc6qv9nvo56jPLrvUX6cey3lO7rRv/gq6rnT+GbhFdzT+mcAap21zM6fTYXjI/N2ITdo9MnYoU+gIq2Cb5XdRHjtAUL7DjOztARjvkjA6ac/3IJdl4NapWPv28vJqaxm3Z8f4fJf/571Tz4+KEACyXmY/NoRZJVVoFJrqJ01F61WD7EgaD/BeCHFKUT8PjY+f9LAKhoKsu7Pj3DGN75Df3cHOp2BgqiBTn8n2ZbPJu5Ek25E8zExsilS/LNEg342PPOXwXFmLBxi7RMPc+Y3v4vZkc76J//EmMVLScSi5FpyqXRUkJZtxN01NAnc4tTj6wtC5Qlx9IEWNGIYcofOR6gRyVY5ScSO4X/7cbSlZajt5SRCCSDzU/U51tg4RIAEYOCJJzDNmIFu3NhPOOrE+TY14V+5ksB767HMmYP5tHnoClLjpS8TiUSCvuZGepsb2bf6bbJKKxi1YDEJKUbE6qfH2sjhN9ZgtNkZvehM4vEYj094kK79B3nvyccoHjkGa3oG8UiY9/76GPIJc7d4NMKaxx/i7Lt+iE5n4fq6n3JJ1SXkCGUQ9iRjXsZ95d978in+7RitWuZdXU0iJtNysJ+MQitHtnVRvbiQGeVOgi1B9n7MMdFQnOLhZorsflSKF01vL3vXrxkUIIFkXFnhiNGDAiQAA+1tNGzfiiMnF0u6i5DXQ8WkaaDIHN+1nVg4hN5iw+J04sjJGxRn2tOzh2cOPs3NuVeTF0sjEfSiqa4mfjgZryUfOUZaqwd/nh/l/S3IXi++FSsAyLnn13R864Eh5xDevgP7snPwr3gL5xVXoMnJodReSo42QtMrdw8pG3tzJafPu4lfNL3AWWVncf/u+wf3ZZuyuWrYVf/yfUjxr6EoCs37+yiodqCKJ42k4nGRrRUC76jruH749UzJmTJYPhhNcLDDx40zSxEFP4mIiKwI6G1xRDlMVtlYpm+oYW3F8xxvC5GliqOcEByxuZJruN6ers9NhARgeJ6Nr88u497VDVRnW7huRunn1laKFClSpEiRIkWKFClOJSVC8jmiUmkwmC10Nzdy+s23s+3VFwj5vNRMn0P5hMkIcjZu6wji4TBBj5vl9/6/QbGRxbd8i7TsHGKhECGvZ2jFikLAPTThWFZkmn3N1DREid9+M4Ne0++uouKX97O8z8WCYZ9usSQzbiWmhEFReOuBk8qoax5/iNOu+zqx+x8i58c/wjhy5JDjBGsO9ByG8TcgKgBCMjgHSPT1YU3XY8804ulOTnAbrVryqtNwSqArPUoi1o7WkEnjHpGc8jRsmSkBkn8n4VCAzoZ6ABLxZPBTen4hrQf3ASDFk4mwztx8uhuPJQ8SBBKxoc4Lnu5OAgP9rHzoPobPWUBfaxO+vl4mnX0+r//6Z0w650JkSSI9v5DDG9cNaQ9gynmXsPvtN8irHsbxE5NvGn3SEUpAGExcr5wyA1GlYqC9jSNb3sfdkVQZ9vf3UTl5OqNOO52VD/ciJeIYrDbCPi+QFArR6PSsfuwh+lqbyK2q4a0Hf8uCG25BpVbj7e6icvJ0GrZtQlEURJUKWZKomjKDDc/8mYnLLhhMQP1wvz+g6+gRgmdei+En5Shx7792U1J8Iq2BVsKJMNqohBKLJZMNTuC47FJ8y5djHDcOz7PPEQuHUckybTffgm7hmYRKZrJtXZyikTMR5ASNb3i5Jvcu4n0qiEcgEYcL/goRfzKRtucwse4BWq77BtLAANrRoxl29mJ6jjeg1Z+6kNxRX8fI004nEvDj7enGYLLQH4wMCpAAxCNhdr31Ogu/ehtag5ox8wvx9PaRkR9GigUwObIRVclzkhPJwCRHbj7xaJR4OMSqR36Pt7sLAHtmNvOvv5mR8xZyfPcOppx/KV99p5eGngCTS52EYxLfe/UAV00t4oIJqUW6/xQKrYWcWXomT9c9zZScKehVeqblTuPHm38MQFyOc//u+3ls3oOU6dOp8zcxKWMMo30DaBIROO3/YO3PIBGBtGKY/V1AgOcuxiLFmXPuy+x6fxvN+3YzetEZdB07SuOenRSNGI3F6WLTi09RMGwUspQgPb+Qhq2bmHDW+RxYs4pI0H9Kf1sO7MXX30vtzLkoMCQgxpaRydjFZxPyeVFkhcbdOygcPprgR8YuKArxSAS92YLeZB4UHTHa7EPq+4CQ1cS7j9w3uDi4//11JESB+dfdjFrzjzkQpfhsyS4tR07EmXL+pRxYuwpRFBl7xtl4urtwFZXCa9fSN+ImPJp81j/9BOOXnkP9iYScj/vt9Pf1olJriIZCVE6egbe7k8LhI3nrgd+w4IZbuLL0Up5veZlyezmTsycjLX918Nj4y39m4mU/ZPN7J5/bSUsKCEhh9h2Pk2+V0ZlODVbT6FQk4slnS5IUJEnNrvX9lI6di2b0Ag7U9SG1NFMyLpueJh9NB/px5pgpHObgwLp2sspsyAkFe5aRjEIrHQ1uGrb3YHboySi0oDOqEVUCKGokey2ypQZkGZ0UIM0kkug9SPTQIYzTptL9ox+R6D35G5H5wx8S7+1L5vjLMqJOixRPgKKgzsj40ov2RY4cQQmHQRCINbdgGD6cthtvHAzCEU0mMr77naRbSSRKx7e/jTQwgLqkjOiUJXR5MjG4qkl0S8Rdo2mvd4MgkFtu55inGpUUocQdJn60k44+FUazBo3BRHfj0SH90BmNuE84WX6Y1gN7GbPoTAIDAwiCiEavT46jT+Dt6SYcCKB4wlw08gK6gl38ePKPyRK1lNgqoHkTjLkyKfYx+zsgqKB4JjS+lzyn0VckxUG6D0P+uKSYSDwKRdOTgRKFU8D2O2jfCenlULEoKRZybC14W5KCIoVTTun3KWRUwaxvJ+vRWcCYAWf+HnoPgxSH/AmgNoExDXpehrk/gpJZEPHAhOvBmp0ULvF1whXLIaP6n73lKYDwsWNIXi8oCkowiLqggNDGjfQ/+CCCTofxh/cQUOUgRERUGhsho4PWHQPkVSkkjnfQ1+KnaKSLrmNeOho8ZJfayCm3M9AZBBEsDh2ObDOiWmD0/AK6Gn34ByKniI0A+Dwxxi8qYPuKluQGASZPNxF/6InBMklhHwXRZEIzdgxRhx05EkWRJEIeDwCJE8IUrsJiNDodAx3tjJq/GHdXB+7Odj5Ky4G9ZBaXnbK97dABKqbMILOkFG9PN8Wjx3J022ZMaQ5GnraIfe++Tdn4yQybNY+1jz/E2Xd+H50xFbD7RSIIAlIshqe7c3DbB/8fGOhDrdORWWxGTgAKKZezFP9xRIOBId/zH9B5tI5YMICUkPD0dJFfMwxnbj4dDXUIgsimDwW7dx9rYMYlV/HiT7/LxT/7Dc7c/C/yFFL8j+GLJNjb5uPQy/uZXZmByaFjzmWZhDyn/oYqikzQ58WRk0vQ48aZX0giEWfqBZfSUV+HzmTC3dmO3ZWFLEuntJWIxehtbkSlVmPLyERnNIIgEPR5iHjchCI+LBoL/vjJ77FN7Zv4vf5Kgrd+e3BbYM1aMr75TRCg+yf/N7hdtNlwXvMVkJWk+7oC8ZZm5G3b0Y8cgaDVoXY6CO/Zg8pqRV9bS2DdWhS/H0mSUTkdSJJEorcPQa1Gicewzp9P9NBhlFgUORBMzhumSPEvIssy2155gbGLl7LyofvJqajC3dGOq6RscI72w3TUHyIWDhM3ZKFxpOZjvywk4gk6j3xERFRRGGhro3jceJ6661YMZiuTz7sYQUiJ7qVI8e9EMJnou+cegus3AOAFLIsW4bz5pk88Rvb10fvCWryvvQlAeMdOfOu2UXjvT9CcqvkKgCgKlIzJwNcX5vDGDqwuA6WjXcQSyscfkOIU4r299D7wACq9AdFqQWWxEu/tRVdeRuePf4JyYn4puGkTmd/7HnI0QrS+nsDaNdgvuBDf6tUYystRZ2fjfvstLLNm0f/Io6BWk/mtOxl45VUEvR59bS3uF1/EcdGFhHfuQpFlghs2DPbDsmgh+tGjiTe3IPl8aEtKELTa5HzdR1CyC3EbivAG1ZgK9DQf6sc6q4riywUC3jjdQhpGu5593TFsG9rxdAexZxpxd4dwZBkZ6AzhyDHj7gqSlpnGeVxLolfinTWHceaYKB7pIh6X8XQG2fTyMU6/wUXXsU4UKcGo006nt6WZ5n27yR82gvzaESSiUbJKy4mFgkRDQcI+H6MXLiEWDhPyelGpNXi6O3Hk5hHu7xsUIPmAWDiMt6ebuoZ6xi1ZSkre7+8TCQbob28FGLKGEPJ5UST5kw5LkeI/nmh9PT2//H+DYiPu558n44478L72GpLPN1hOkWTkUDJOUJ2dja6qmt7f3QtA4aWX4v7DH/G9+iqQ/A02TppE+rfvIrB6NUoiAZ8gQuJ/5x26vvu9wb9zc3MpfOJxROGTDdoSiQRrW9dyfc55VP2/V5FaWokA7NjBnDOX4LziR5gtDmqcNWSaPpRo722Dfc/Drr8k1+Fm3gkFkz62DWd/F/Kqwxw7kBR1D3k8DJ86l76+ZoLufqzpGbzz4G9RZBmzwwmAFJfobKg7pa4PRC0Xfu02DFYbiUQMAiFwpNY0Pi0fja+FZBxhLBTEmplNLBQkgkBMSs0XpfjPJTDQP0ToDiDocRMNhYiGgxSNHse7jzzAwq/exqXVl1JsLsE6LJ2OBi+RQHJ87MgxYXUZUGkV8HdB23bYeB+E+2HUpVAyM2l2BRRosonuXE33j3882J46w0XOb37Dp0WJRE/dFoslxf3+BomBATru+jaRPXsACO/cSWDjRvJ+91tU1pQA3pcBb083W15+loPvrUZnMDJqwRJaD+1nxX2/5vSbbqd+8wb2r35nsHx73SHOuuP79Bw6noxvVBRsmdlIkkTI6x2MMfyAaChI2O9DNuu5vOZynDon2aihehmMuBByx3zRp5ziPwBvT4j2Bg/H9vYwem4hAx0hepp85Fc7yCi0sPX1RqYYNPgbA9Rv6WTCmfl0HfPSXh9AkRVGzcvH29NHyL2SYE8tvr5eYqHgEKMdAJM9jb6W5lPa7zxyiGGz59Nef4jqabPoPt7ApheeonrqLOLRCC0H9zFy3iKyK6ooqB0BwOG+Q1wjLubgAy/TcuI3YsbSs0iLx4gfTeZzqOMy+3r3IQx8JK5GViAx9FsfQDkRyyZHT77DP2lNTRNX6Av3caDvADePvpmuYBclthIm50wm35Ja9/53098eIOCOMn6JEyLJ5yEowMOLRCpVOVw/8voh5fe2epBkhXFFaajcblAE4pIBY0by/hsLKpiszyR26AX2ZQQpjsZQu5LfS9aMpPCIt7eHz/vO3zy3nKO9AX6+oo5IXOZrs8tQiUPjiQLRBGpRQJ8yOkqRIkWKFClSpEiR4jMlJULyOaI2WolFmknLzKavrZkZl1yFWq9HrdUmRTo6DyE6xyPEYmx+6ZlBARKAra8+x5nf/B66SASjzT5EiEQQRIxpdmga2l6ltRz3fY9S+MrLJDo6kHp6UGfnENPrWZj+6dXawz4fequNpr07T9m3f81KZs+aQbT+yCkiJIgiOEqhYyeyrgRFVrDMm4v/7bdRRBWiCPnVaZSPzwRFIZGQsaSFeOve39HbkjwZUaVi/g13sf65XsYtKiKvwvGp+53is0VQackur6Sj/jBqTXJRt6+liayySvz9fag0WgRBpL+tldJxE+g6egRFllHrdCSiUQRRZNSCJRjMFhRFYdHXvoEsy+jNZhw5ebz35J+ApPMLQG9LE9lllTTt3TWYTJ6eX0hP03ECA/2kZedSt/E99CYztbPm0bJ/L0GPG1tmFr7eHpy5eWx64WkmLruAuk0nnQaD7gF2rXgNR24e5ZOm4swrYN5XvkrTvl0MtLeRW1VDWnYOu99+g+zySpr37QZFIRLwM/7Mc9nyynO4uzqpmTGH47u2UztzLvWbNxD0JgV23B1tuAqL6W1uHLxOHyaztByVVs3KjVqWXj/5c71nX1qaN2HVJheaulwaqrOz0Y8aSWRPUnNaNJmIt7ejPuMMYq+9RtHyN+j+4Y9QZ2XRP/Yctq31Y3Eq2HpPuL4DzYc81G/u5cwr8tAFytH1S+iEPkJiNfEAyO1N5PzqV0S9Hnq+8U1yb/oqW197gdlXXHdK93KravD29SKq1IiiiJSIE5fCp5Tra21GSiRQaUQsLoWWfcvZ9/bJ9/CCG27Bmm4iLcuJ1mCkcvJ0sopLObJ105Dgdk93J8f37CC3opql3/wuWr2exZ1qfr6ijtWHTwo7TC1LuW7+p1HjrOGc8nN4tv5ZYlKMM0rO4K4Jd7GtaxsOnYNZ+bMYnjWO4VnjTj1YlqFyEUR8YM9Puqq+diPEk89a9utnUvbVzWinV4Jf4PjzW5ly3sW0HT5Id+MxosEgGUXF7FrxOraMTMIBP7FwkJYDexkxbyHHdmwd0lxmSRkN2zZRMnoc/a3N1EyfM7ivatosgp4BrOmZdBxJqqt7ujowpzkJuE+6KCMI2DKzEFUqZl15He8//WcC7n5i4TBWVya+3u4hbeqs1lMWB+s2vMeUcy/BnvkJUb0pvhDUWi06o4ni0eMoGDYSb083AXc/RSPHEfJ66Bx2Mx1uDbveehhfbw/u9jbyaoZRt/G9jxWQsboyCAf85FXXIiUkzA4nLYcOMOuyawj7fditFmbmzWRTxyY2d25mzLIlhDcknQMTx49hffFXLL3th4QSWox2PUf2+Ti8Kfn+yyiyEfIFsbkMeHtPvovHnV5ER4MHe6YRX2+E/evamLS0hGhQYueKZiacUUzDjm6ObOvmwHvJRL62w26O7uxh8tklvPv4YaqnZnNkezdVk7PY9U7LYEDHUaOa4bPycOSYcHeF0Js1xMLJxTxR1KGkuXBUVdH+8MNoK8qHCJAADDz6KBl3fetEUEaCuHsAdVYWkttDvLMTVUnJZ39T/4tQYjHkcBjZH8A4aWIyaPxDQThyMEj0cB2mefOI7tmDNJAMNlPd8B0GEjYsAvj6I0RDcXa+3UwsLDH57FJWPnZwsI7IMAeqLjeOXDN6gxp3h4rssgp6PhDiA6KhEGlZp35zZZVV0Nt0nIpJUzm6bRMGs5VY5OSzZ8vMQqPTsfH5J1lW8TPu3HkXP5/2cwqyxkCOGqqXnHrSFQthoBFU6uT3l0YPtWf97Qs17iNOE/nj/3b5j6LSQNlcsOZAqB/0aZBZAyMvOLVs3kfci0pn/2Ntpfi7KH4/SjCIIkkIGi2Kz8fAn5LfV/rrvkE4twbJE0dv0RAJJFj56EGmnlNGcCDGppePsvjrI9i5oon2Ix4A2urcZBRZmH5eBY37+igcns7ulc1UTMhi2+uNDHQGySqxUjE+kyPbTv4+51Wm0XbYgyzLnHljFeGBACa9jNHXinj7N1FZLSAIyOEICAKCTo8wdzYhkomY+TXDMaalAQz+HoxZdCaxcAhHTi72rBwigQDWYS7aDx8ccg2c+YWodLpTrk3BiNGs+/Mj9DQe47Rrv0Y8HGHGJVdhcjgQRBWzrriW3qbjrP3zw3h7ugl5PSkRki8YRZYRVSL2rBw8XUPFm8yOdEy2NFx5IgG3TGaxFZX6k4PGU6T4d6AzmrGmn+rik11eTTwWo6uhnnnXfJXjO7ciSRJhv4/WAx/1xIKexmOY7Gn0t7WkREhS/EvkOwxkWHT0+KOsqevhtuH5hH3H0Wi1GCxWwv6TiT+CIGK0WhHUalY9dD/Lvv0j+tpaMFisZJdXEAkE8HZ30XJwL+OWnM2w2afh7+/j2I4tdB09glqrxVVYTMA9QDjgRxBFdEYTao0WWZI4smo9r5zzSzQdPWgzM1E0GgRZRhFFhMcfBxSkYJD+++4j3t2Nec4c8p94HCWeVJ4SFAVFEJLjBkFAEQSMo0chSzKCIqPIMiigzsqChIQci2KeOpV4Syui2YRgMiLo9Mnxh9+PoNMiDbhRFAWVPQ37Beejcbn+bfcqxf8OKrWayedcxK633wAgr2YE7s420guLsGWcOkeVW1mDRq/H3Rokw9yanLtL8T+PSqMmu6KKlv17hmw3p6cT7O/HaLXh7+8jMNBHVmn5v6eTKVKkAEBqax8UIPkA/1tvYV92NhQXf+wxsf4QlnMvwLrkLOJtrYhOJ+qcHKKdrWhqPr4dUQvdx71se6NxcFvD9m4W3TD8MzuX/2WkcJhYUzPWJWcgiAIKAko4hLqkmFhdMnHbecP16IcPB50O4YSarr6iEtOM6YCAq6oSORhC9vtwffWrDDz7LIJWS9YPf4jn5ZcxTZ5E/6OPoSspwTR2LN6XX8G6ZDF9vx/qEOx/623Ms2cj9/djXbgAzyuvYhg7Fts5y+h/8A+D5dTZ2bRRxJ5VfVRPyWH9cw0A6E0adOm5HNzSTs1UNVtfb2LUvALef76BcacXseG5o4xfUsx7zzQw8cwS3nu6nolnlnBgQzsZhTYOrj+5RnF8dx9jFxXSsKObM76eQ2fDfqREHLVaQzwa4cjm9ykaMRpPdyfZZZUk4jHM9jRkSUKSEugMJmRJIhoKJccxgsCmF56iatos0vMLEFXqIUIkWoMRtVbHnneWUzRyNLaMTx+H9GVFo9eRnl9IX+vQZDOD1YZKo0FKJOg6egR3ZzuWdBfmNAeO3PyUMG+K/3j8q1cPCpAAIEmEtm5F0GgwjB5NYO1aAORQEOuCBfjeeiv5znz22WR5UURqa8P32mtD6g1t2YLU0oL9gvMR9XpCe/bie2sFiiBinTWThNuNaDAS3rtvyHGJ9nYihw6jzf/k761YUxN3i+eR6O5G/Z0pCFYbrRdfDEDwjTcpO28e1bUfWdOSJRL7VxPtFJHsl6G1Cuhe+TrCBU9A1rChZVu24a3fSesJARKAYXPm09t8nLScPPy9PcTCYUYvXEJn47HBOUa1RkNORTWNu3cMqc7iTKe36RhqrZagx4PZbksaA6T41JjTTo07tThdaE0mQh43RquNcMBHVtgG9i++fylSfBrMDmfSnORDMRCmNAd6k4mc6lra9u9hyW130d14jONpxymwFKLSiFRPyUatEUEQiARiCCRNNeneA89fDsoJMbTVPwb5O4MiJJrufrofemhIHxI9vcSOHsU07mPi1T4GbXERotWK/CFRKtO0aWhycv7mcbGmJjK/9z0S3d0kurvR5GQjpjmINTVhGDHiU7Wd4r8XRVHYt/ptDqxdBSTF/La8/CzTLryc95/9C7FIiEPvrR5yTCIWxd3VQcDtQavXYMvIpHD4aHRaLdjTBg0nP0BnMqE3W1AJMew6OxmmDMTN9yfNf8yZIKaS1r9sSAmZo7t62PLqcU7/6nDee7p+0Gi3rc5N6RgXZ94ygnhEYv+aRnLK/BzZ+BagMO3cpShCPrtXtlMxPoTJbmbXW28wfO58GndvJ7u8ioGOtsG2gh436QWFp/Qhr2YEaTm5iCo1m55/isnnXEQ0GGTPyjcZu+RsEicMXpoP7MGu1mIuKGSMtpr1z90z5Lfh/ZVvsOyyS8iwO0n096GYTdyUcT66+XYCL786WC7W2oph7FjCO0/GpqscDgSjCU1eHtrCk33UFhaiLS8n1tAwuE1dkE/5iBlc0u3HH/cz3DWcy2suR6c+NX4nxb+Hpn3JGO3CYU7oSN7njWVhIhr4oetKNOLQeN3tTW4EAcYUpqEiOX6ORzSYbcl/C6QVUT7OSt6PTNSf58UgSoiWpJmwNd0FgnBKrPfngUoU+O35o9CIAr9ZdYRXd7czszK57nu8N8jBDh99gSgqUWB8URp3LqxiTEHa596vFClSpEiRIkWKFCm+DKQi+T9HVGo1Gp2OnuMNGC1WFEVOJl52dGAJHAJHCaJKJBGL0tfaMuTYvuYm4pEIQY+b2VdcO5gUo1KrmXHJVSgm7YnAiSQj0kdQRRYZt9xC4K23aP/a1+n68U9ou+EG5N27GJll/NT91ugNJGKRj03E0ZvMKAMDSReZWBjcLUmH7Q+IekHUou9ej6LIaEpKyPrp/2G9/kbqtvVQMTETe4YBvVlDXqWd/tZjgwIkALIksXP505SNsbPn3Vb6OwKfut8pPlvkeIKKSdOwONNp2ruL0QvPoLelicySMhw5edRvWs/Es88n7PeiM5nJLC3n0Po1TF52IWqdjglnncfxXdvY/sbLxMIh1v3lUd5+4De01x/G7HAS8ScdMcN+H868AtrrDlI4fBS2zCwatm1m/JnnkJadS9/g85GcLIsEk89EblUthzasYfSCJRSPGY/nhAhDxO/DnOY85XykWJydb7yMu7OdN377C7QGI6a0NHa/vRx/f3LCRRDFQZfPWDhMw/bNzLz0arKKy8ipqGbyOReSXVHFlPMvxXSijaPbtzBs1mmY7Gm0HdrPiHmLEE44a5jTnFRPm0UsEiUelejrP6VbKT4L+hrIM2VzWuFp3ON+nqNNu8m44w5sy5ahzspCMBgAUCJhRJstmYgQDKI94zz27EhOkpWOcXF4Y+eQaiOBOP1tAQaee5XGG75L0DSNgYcepuO22+j60Y9ovfZaVPE41osuRNXnRqXWkIjFqJg0fbAOR24e1dNn4+noYNI5F5KIxQj5vNg+JmGpdtY8NDodYX8cUek6RQhq/VOPs+CafPweHbOu+DqyLKExGOhpOnZKXT2NR7Fn5yKeUPldMiKHa6eXoFWJWA1qfnrWMMalJtf+49CoNEzInsBvZv2GbGM2T9c9jSfiYXLWZLxRL8/UPQOJU90iAIgHQaUDZxmtUoh1bevZOuZCWq9egW/araDSYJYVdsfr8AwkxRgkScKWkUV/W3IMkojHMTuceLo6ceTk4u3tRmcyYbBaKRp1MqE8q7QCrcFA0D1A095dlI6bhNZgoGbGSSESRZbZt+YdsssrATi0YS0Tl52PzpQcW4gqNTMvvZrelka2vfoiJoeTBV+9jTNu+za51bVMOOtcDBbribIqZpx3CeqPcTky2mwfuz3FF088FsXX242/vw+DxYLObKbjyCEsdit79jZjdjjw9Safve2vv0TNjDmkZecO/uaLquRCrt5sYdbl1+DMLUCt1RMLBjE70pHjMRRFxtvTzdHN75MfdxKIBxiePpyGIh1pP/sR9ideRvPUOkJfv4eIMR2LRSBed5jDm7rJLLIycWkJVqeevWvaqJ6azbTzyph3VTWzLqlEZ9IwYk4+I+fl03KoH1El0Fo3gMGiZsScfLy9YUpGZpCWZaRmWjazLqlk2nnlTFlWitGqZc6V1eSU26mdnoPBrGXUvJMBbtFQAkEU2L+2DZVaQFQJCKJAIi7hH4jQcMCPaLOiLSmB+KlOA3IwSLz7xELNieCS5PVSTnG8+TIiKAqCICD19iIaDEMCWT5AiceSgeknXBt0VVV4VC6ioQSiSiDgjhCPSESDCbJLbTQfODloM6fpGD4rj+KRLkw2HRqDiozCbConzyGrrGKwXOHwUUiJBJWTT44D0rJzKBkzgSPbNqHIMhPPPh9XQTFHtiRFcwwWK7Muv5bD769Lumm63SgohBIh6gbqqOuvYyA0AIEe8LTBB270eivkjITM2qQAyReF1gR546BiARRMAJ35i2s7xRAU+UMOmYKAEo0OOpAkimtIxGVEtYAowsH3O7C5DKj1KnQmNVPPL0ejFamdkcu088tZctNIpp5bRkGNE0mSMVg0+PsjDJ+Vj0oj4usPM+msYobPzier1MaCa2uZvKyU6ReUU1Dr4PieXpr29aMEA2j+9H8IaQ7600fQrK+l21BGWDDRftNNdP3gh3R+61soAT8qrZaAZwBvbzdGq51xZyyjYetmTr/pDlQaDbvfWY6rsIREPIbeYiGjqJjs8qrBU84fNgIU8Pf2UDzqZLBbZkkZBbUj6Dl+FBSFjc89SdmEyai0Glr276O36ThdxxqQ4nG8Pd2k5eShM6We4y8aAYiFQsy45Moh470JZ52H1mhEazRidlgoHumivz3A8T29hPwpF8IU/zlIUgKtyczwuQuSYzPA6spk9KIz6G9voa+1GbVeR39bKz2NDdgzs9CZLKfUozEYiEeiqNSnivKlSPGPkG0z8OgV4xiVbyfNqEWKS/S3t7DrrTeY+5WvojUk1wVUGg3TL76CkM/Lqj/eizUjAymRoG7jeiIBP2aHC5VGQ9n4STRs28RARxs73ngZQRDIrapl/FnnEfH70ZlM5FRUk1c9DEduPq7CYny9PQiCgN5gJPTEk3R/7/u0334HidZW4h0dSF3dxFpbibe1QzSG84YbEE1G4u1txFtaiLe2EG9uJtrUTKyxiXhjI9Hjx5PbWk7sa2ggcriOaF0didY2oocP43vrLbSVlYT3nhD6EQQElSr52SRLCIKIkkigq6pEtNuwL1v2b7xTKf6XsGVm037kMAZz8v0e+f/snXd4HNX5tu+Zne1dq967LNmS3HtvGNuAsTG9twAhgRAS0jsJ6ST5UiAFQu+92cY27r1bclPvfXvfnfn+WCOj2IT8UiBl7+vSZevMnDNnZlazZ8553+fxetEajPjdLowpjhFzZNaMTGoWLUm408pqGDz1Yc0m+S8jHo0yYdlFWE47AiIIVC84D8Npgaj35w9ElSr5XpIkySfMh7lxy9G/kuSbX0a0oYH2W2+l59vfoeuzd+F+6mnIPrdoCYC3L8yh9e0jysKBGM4e/9/V7/8lFEXBv3074YYGoi3NRDu7iBw/jvPJJ4n39CAHAjhuuw0pLY1Y/wDxzk6ibW1EmlsINzYSOdVA+MRx/Fu2JNZ5v/FNOj93D4baWlLvvovAvr3I3oRrtiBJyJEIokGP7Pd/6By8oFYnknOKi8n40pdAltGNHkPqXXehzs1FN7aWlJ/+hn3v9VM8No3jO86sQxfVpnJ8RzdFtWkc29FNQXUqJ3b3kFeVQsO+PnJH2Wk62EdOuZ3mQ/3D/1ZOy+LY1pGCrt6hEHJcoWaulsGOBsIBP5JajcFqo7epgYziEnxDA+SPqaW/tYn+1mbi8Tj1WzYS8fs5vm0TfpeTeCyKqJII+3yk5uaz68VnCPl8zLnmpmEjFrVOz4KbbufE9s1AIoEqyUcTj8WYecV1GKw2IBGTMmHZRRisNlQaDY17d3H43XdQ6/X0Np5i/zuvs+2Fp/AODnyyHU+S5COIu89ej4v7fFhXrCB45DDpX/ky2vIy+n7wAPZrr8F+7TWINtsZZ3VRTKyLnuM5q0SjmBYsIHT0KG3XXIPr6WfQZmXRfsutdH3uHjpuu41wUxPWlRePrHcOp/aBwACDwUGCbW34Xn+djjs+fTqe8naCO3aQ/egjiR0FgWxTDscGj3Gk/wgDgcTfYKyrmZ4nN9P2jYfo/MEfaP7qI/iK7qYz4mEoODTyYEMNqOQQgngmHFerN6DIMlq9gYY9O3jrlz9ixwvPMGnZCmwZmZhSHAS9bsYvvQjr+8YrgsDouQvxOgcRBBFRVCGp1Zh9DZDUJ/o/oVJrmHH5tYiqhE9jIhbhJhQZZDmGLMcRBVXC9CdJkn9TREli1pXXo5ISn2Ot0cjca29GQUEOhxnq6sDV20NmcRkT0idwuOso3sEA+aMdGCwaTDYtZZMy6GtyMtDug4zaMwIk77P/ceipT/xfjiMHAmf1Q/lr70d/gWH8eHIe/DnG2bOQMjOxXX4ZqXfcjjY//6/Wk202fGvW0PnpT9P7ncSzOrBtG3JK0sjyf4Ggx039pg1nlftdQ2iNRkSVhFqnP2u7Sq0mt7KSxr27mX7p1WgMBtwDfQgqFXOvvWX4fUaj1zPv+k8hiioiXj97e/dy93t349HbwN0G7o6z2k7y34+rN8CR9xL3PhKMDwuQvE/jgX4UGcLBGDnlQTY/8XN6Go7T03CCNb/9ERptHwtuGIUo+DDaU/D096IzmfENDWHLyCQ1v3C4rcLacYBAyYTJw2Wp+YWUTJhCz6kTbHr8Dzi7O3H2npk/aN6/h7yqaoY620GBoQ3rcb7yCpaYboRgKCTyb+SsLLq/8mV6v/Nd+r7wJXK//ySKw4Zy/xfQVJSjKSrCa9eS9vl7sK5ahZSZiXHePLLuv5/gvn3k/vrXqDMyhtuUUlLI+dnPsK6+BCkzE+uKFeT9v1+TW1jNl6Z8iftn3s/UrKlJAZJ/M1qODJBeYMZo1Q7neB3PiHP5ZpmSlNKz9t/TMkRFhhmLTo2UksgriHo+8OJhL6BiSibauJmylkSMzwsHE4JlKkmNKcWBu+9fL0ICoJFEfn7ZWH5z1XhSTVqe2d3OM7vb6feGmVOexn1LRnHbnGKaB/xc9tAOXj3Y+bH0K0mSJEmSJEmSJEmS/3akT7oD/+3YMrKJhSO4+3vpbW7ClpGJNT0dfftWOPkO8srpqPVGCqrH0rBnx8jKQkJ0pOtkAwtuuoNoJIRGq8fvHmJvsI5fzPsFXf4u9JKeGamTwS8T7+9n8A9/HNHMwK9/Q8aC5XQKYWKROHqTmpRsE5L63Kq9BrsN/9AQeaNrOPzuO0TDCecCQRSpWbiE2O8fRbNsOWz8LhTOAm8f2AugZC4oAsQjoMQQ9z1Dy9cfJ+fppwgbcphaK3BwXRsN+xLu7tMuziTid3PZt39IyOvBOziAKcVBPBYnEtbQcoT3dSeSfALoDGY6jx2lZOJUMkvKiASDLLzpDmQ5zsQLVw4Hocy7/lMgQO3C81FJEkGfl/k33o5vcAB3bw81C89n3xsvE3C7KJs8HbVOx/bnn6R4/EQa9+3mwJo3GbfkAiqmzUYRBGZdcT1yPEbQ6yU1v5D+1mYGO9rwDQ2SkpPHUGc7+958hbLJ05l91Q1IWh3ZZaPQGgzUb97A8W2bmbrqcrY+8xjx04sfNQuX0HQw4Rghnlarbjm4j7SCIqKhII37djHu/As5uOYNZl1xHW1HDtFed5jU3Hw2PfEnZl52De89/gcmLL+YoxvWEgkFufDzX8GSloGnv5etzzxG9fzFZFdUEvC6mXPNjYR8PsIBH21HD2FMTSgDK8kP9L8GSUvGzj9xQfUFnJd/HjZqGfSLiNfcQ8qtn0Pn7kTQ63G/8SaOG2+g/3e/w3bJKnz9/o+8I3GPF9OMGQT37SPW3oF3XUJpXT1zBvKcWbR6naRcsAzxwFGmXXI1mx7/PeOXXsSyz34BRVGQdHqCHi/5Y6oJ+f2otVo2Pf5HKqbPYvrqq9j31itkFpdRMX02iiLTcbwOfUoWQa+bi+/7JpFggKDXizUzk466IwS8btY83IfRpmH6ylrcfT0UVI+lvW6ky0th7QQG25rRGQyYUrRk2/Tct6SCa6cXIAkCWbazF2SS/HtRaCvkmZPPsL9v/3DZVyd8Hg48lUh0K1sMER907gVjOmz6IXTt58AVj3Ln3gfwRBJBP4sLFnPxqBVYy+ZTfeDPXFpzCyGhj3oARaG/rZm80TWc2L4ZtUaLs7uL4gmT2ff6y4yeu4hDa94i6PEwZu5CqmbNw9ndyVBXJ7tfeR6AtPwiZFkm6PNSOnkaZVNmIGk01G16F1EQyCytwLxvN96BfrY9+wSTLlyF0WrHaLNzcvd2jm5Yy4Kb7+DE1i0Y7FMpHGWis+EYiAILbrqDoa52sktHkZVfQFiRySobRfep48PXZN71t57TvSbJx48jJ492twtRJdLX3IjWaCKnYhSpaj8Bj4+UnHwyS8vpaTgJQNDnY9TMuShy/LQQw81ojSYiwSBBjxdBJdKwdzvZZVX4XEP4hgYJuF3Ub95ATkUVlsxsxuSO4ds7vw3Ac7NexhC0IYRldEY1IV8UWW9CXzkaS10bORV2dr3axIQlBRgsakAgHlfY+lwDIX9ivKA3q5m6ooTcCjtFtam4+4MEvVHCgRjbXkgEdU29qJicCjvr/ng6AEOAaStKsKTpWfP7o8Nj13GL80nLN9Pf5v3AVVJImHoLZ8a4CZNv4kNO7KtXo3KkIKjVIwI4bFdegRKOgFoNsTii3U7cH0Blt6NKBluATocQi6HOzSFw4CC2S1fT++3vnNkuCBimTCE+MIC2rByk91+BFc5E6gmMePE4HfAoSgLTVpZQv6WL5kMDGKwa5l1VQW9LBwazh0W3fJa+lga8A330NDaw8dGHmXbJlcy/8TYCbhchv49YJIJ3cIBYNErQ6yEc8jP76huIBkPoLVY6jh+l7r13UWt1GFNSoQm8ES9Xvnkls3JnsbhgMYWWQmq3/AY0eig7D7KqwZr7MVzcJP+uiEYTciCAoCjEPV5UjhzMS5fifeMN4PQz5n2nTEUhd5Sd9vohmg70M3N1GSd29VG/tYvx5xVwZGMH7v4gBdUOBjt9uHoDjJmTQ8gXQaOXWHZHNQ37+9n5yhmX3toFeXQcH8KeaSS30o6nP0RTS5ziL/+c1mNuXH0B8ipTiMcU/KZs7M+9g//rdxM5Vo/3Jz9D98MfkJZfRCQUpOP4UUonT6WgZhxyPEb3qRPEwmEOrXuLCUtX4Ap34fe4sWZkMnrOfBRFYbCjHTke48iGNRSOncC0S65Eb7ESCQWJhIIs+tRd6AwGRLWacDCApNZiy8hEJUloDAbW/+l3SFoti275NAaL9RO5h//LyEBckYlFIsy88joEQUSj09HT2IDOZAJFwTsks/YPdcN1qmZmM2NVKRp9chozySePoNIgCgI6o5lln7mXWDQKikw0FGT3Ky8w7eLLCAcCiCoVm598lPnXf4ryaTNpObRvWERK0mqxZWSh0euHHU+TJPlHqMm18diNk/GEogwdGiKrtJLD694m4HYx/6bbkKMxNHo9DXt2kVFUjKe/n5lXXIurt5u8qjFoDUZESYVWb+Doe++iM5jQ6PXYs3LoOXUCr3OImZdfi0qlQkFBURJDDZVKIhIKkJKTSzQUZtzYSYS+9T0AZLcb/6bNGGfNJO7xJN5zBJFYwI/KakNXVYXs9+Pd+B6mWbOIO50osShKLM7pTBBQqUClSiTviCLEYsR9fkInTxAbcmKoqSba1oZu9GhUZguCWk3c40GJy4gmE3IshqakGF15OZI9Kcab5J+HpFYT9vupnDWXpgN7CPo9lEyaQiQYRGcyYcvIZtlnv0AsFiMS8J1+xVQwpueDnBQh+V9BUquJBoNMWXlpImlQo6GvtRlJo8Wckko4ECCnogpTSio689mCZUmSJPn4UOfmYbrjbsS5y4kqEhoiyO+9gTo750PryM3N9P/0ZyMSp90vvYR5wQKoHHXOOoIgnFvPQklmE38U4YYGIk3NiXGhSoUcdOJ8/Ansl1+O7HKjzswi5vUQHxxEURRQSIhSC0JiPv70RLzzyadGtDv4yKNk/+iHDP76N6Rcfx3Rri7UWVlIaWk4n3wSy7KlxPr60RQVEmluGa6nraxEN2YMok6PIgq4n32WgV/+CpXNhu3SS0n/8pdQ5+UTNaWC0psQEf7gzT9tZC+cnpYWhJHlwPD0tTLi33N/VrR68Dvb8Az00bBnB1NXXoGzt4usslH0tzRRPHEKdRvX0bhvN5Uz52G02UnLL6T1yEFMdgdhfwC1TkvA6wRZJruiko7jdbh6unD2dLPk0587PcemIRaLcXLXNgRRxJqe+U+5v//tqCQpsZa06gokjQZJo8XV14UgCAiCSHvdYcqnziAcCmJJz0BvtRLyeRMGDytWf9Ld/6cQ9EXpb/PgHQpjcehIKzCjM5wRZQ16Izh7/AiCgC3DgN78txlQhPxRBBG0+qTA6yeB5fwluJ97bkRZyjVXY164EMuS8xCNRmwXX4wcidD7/e+jX7QIQ0kJsa4uXM8+B7EYquwsdDU1hA6fiXdR52Sjyc9Hk5FB39NPo0SjWJYtxfnccyPWT4N792KaPn34d0GnQ1teNvy7O+RmTesafnfodwiCwKvZ32Hw938Y0d+B3/6WvD/8HgDzyovZKTbz3XU/JBANcHHpxVxYciElTU68G7efqRSL0fOLR3j9SzNZs/vbfG3q15iWPQ1JlEDSYW1+hQkLVrB33XoA9BYr7fWHcfX24DqdUHreHXcjx2IEvG7Ou/1uAAIuJ3OuuoFYNIogJp4NO557ktrzlqExmtArESTBD7GkYPf/BUmjJhoKcv6d9xANh5AkNQGvB3tuPkJEwOcawmhJQZOd/Ul3NUmSD0Wt0RD2+1hyxz1EwkHUGt1p079CEEXMaekocZlIwM93j30Xuy6FZRWreOs3h4mGEyYnZoeOhddX0lY/dO6D6CxwWqhBzsrEtvoSAv1ONFfeTlTQIAkxBFXwb+5zuLGRjs98lvwXX4RgAFkU6fvud8n77W9R/bU5kJ4eBv/4F7Hvv/0t+RPGQ24yPuK/nYDXgzU9A59zpNOj1mCifNosVGoNk1esZvMTfxreZs3IxJqeicmRy+i5S9BbbURCQWQFVKJIwOvhvDvuJhIKotZq8Q05SS8qwSoZeGPLG8zLmIy98wDkTQdVch36f5H317zgQ165T/uDWVI1BJxBpqy8DBSFo++9i985xLEt66iam47R7qB711EyS8o5uWMrMy6/hs1PPMKoGbMZPXchWoOBEzu2svHRhyioGcfi2+4iGgrQ19JMX3MDB9a8CSSMgqPBM0IoRrudoNdDVnklrt4ulCN19G/dhuW5J9AajYT9Z4RtNXoDUk8vIf+Z+uETJ7DWNXKL8kfm3DEJDWoM6lZWfvc1Ur94H7arrgSVhOupJ3HceBPagrPFonRlpWR94xvEvV5UZjOCOvn+9e9MwBOht8XD5OUJoWS/twsjYHBpWLYngvgX38OhaJw9LUNcNSWR56Ky2QAIdymQDbI+BVFnxawDld1OZqsTUuHNI48wrWIlxbZirGkZw+aEHweCILC0Ooul1Vkfus+ts0u49bG9fP65Q2RYdEwtPtvcOEmSJEmSJEmSJEmSJH87yVmTfzFGmw2VVIrObEYOBzDoJKyHfw37H0vs0H+SiJTGhGUX4XMO0dNwAkmtYdKKS/AO9KMxmrBlZhKPRQj7fIiiRFZ5FddvWzXiOGvOfx1R0hF3Os9SZzff+w2GvBqObWtlsMtPTrmNUdOyyKv8kKRFRSASCnJy9w6W3PE5+lqbiEejZJaU09/SRO1tn0LQKKCpgr1/AlMG2HKhvwHSSsHTDqllROqdKJEI8YiMLlXNYJd/WIAEIH+MiXh0Iqd2bWPXS88Ol09YtoLcMYupXaDHkZN0//qkEBSBmkUXsPWpP9F5vI6yydPY+8bLjD//IjpO1OHp62Xs4mXsePFpKmfOwTswQMeJeqZefCn1m9YPJ3PpLZaES4sgkFZYzPbnngBgysWXImm0NO3fQ3vdYcbMWwQI7HvrFUJeL6PnLmD7808w/4bbKKgZx9GN7zJ11WWEfD66T53AmpFJwO3GYIFDa99i4vKLya0aQ0f9Ufa9+QrTV1+N0WYj6PXicw4SDSUWQryD/WSUlNHbeIqKabNILyqhtzER+Lv41s+gkiSW3PE5TuzYQkpuPotv/QzRcJh5191K3eb1TF6xmq1PP8bh9WuYvvpKPP19aPR6BFFF/ZaNpOUXsf+tV4mGQ6QXlTDz8uvwDoUQRSu6zPgnci//60mroD41n8+++ylemvo2gx0Rjm/vIRaNUzE5k5wcK+l3341v5w78e/ZgW7USdX4B4omTjMuysPs9J00H+hk1LWtY1RpAZ1RjdLcin3ZLiZ92c9KMH0fb2Cr2v5EQYeD1F5h96dXkjBrNii9+g6HOdqKhEKIk0d/cSF5VNSq1GrVGy5anHiWvqhpPfx+KLDP5oksI+rysfeiXw8eddsnVFI8bz/YXnqb5wJ5EoSBw3qc+iznVAfThd0XY/oKH6av0ZI+qYtSMORzfvhkBgYoZs8kpr2T/O69TMnHKcLuSSiTPbvjX3oskfx/eXug6AIF+SK0AROYaC9mbPZN3u7YCsChvPrOjAjS8DZM/BfUvw6l1MPUOePV28PXhq1zOT08+OyxAArC2dS2jUkaRrcnAknsZG37yU4w2OxOXr6R+80bGL70QOR7HNzhAw56dTFi2goDLSemU6QRcTsYuWY6rtxuTPQWDzc5gRxsnd21HEESqZs/DnJaGu7eHTY/9EVGlQo7H0RlNTF11OeGMLPpbm1l40x30NjeAouDu7cXV20MsHKb1yEFmXHYNltRiuk6lk52vY+Pjv6O/vQUASa3h/M98mWO7wJEmY85OZfnd99Hb1EDI58WRk0d68dnK3Ek+GQwWKwU14xg6sR9zXir61CxsbW9AYxvTLrmT+k3vMuuK69jwyEMMdrSx4U+/4eIvfYuhznZCvoQbwKkdWymdPI1oOIRGb8BsS6XtyAFKJk1jzLxFhHw+8kbX4O7rIeL3MdY6hoV5C1lgXkrHxhCdp46TUWQlvcCCZyBAPKZQXJvKlOUFbHgiIX5yfGc3sy4t48DadmyZhmEBEoCgN8pQl5/Oky5O7u5l3OJ8tjx7iqwSKxPOL2Df260cXNfOxGWFZwRGFDi0vp3aBXnklNnoPOkC4MC6NqZcUER/mzeRMK0ojJmbi7svgByXURQFtVqFJkUixaaj974fkfXtbxEPhcj5xS9wPvkk0Z4erBdfjDo3B5XZjKIoKGo1osGQcPc2GFEnE+lQ2WzEI1FEq4iuvAwkicxvfQvnU08hms2kXH0Vot1Ozze+Seb3vkfOT3+C86mnsam9uLWpKDKY7FrCgRhag0RPo5upK4rpPOmiqCaVgDtC86GE21nt/FwCnh72v/FTREli4U23Y0lLQ1Jr0OgNVM2ehyUtnf7WFgA0Oj27X32BhTfdTuvhA2SVljPQ2kLXqeP4BgeoXXQ+O557CoPVxrzrbmVADHBl5ZW81/EeCgqbOxKOkhPSJ1A047NYvJ3QuR8a1sOk66H7MIS9oLUmhKmsuVA4A7TJ5KX/dnTlZQTCIZRwGEmrRQmFsF9+GZrcXMKDbcQd2cSjceS4itGzcnD1Bqjb0oWkEdGZ1NRv7UJSJ5z43P2J96SMQgsH17UxcWkhW547BQpMubCYoDdK3eaRDqtHNnYwfkkBe99qYerFxUjVKnxDQQY7/Qx0eknLN+Ps8WNx6Knf1o27L0DxZd8j37mXwC++j8ntIqdyDO11h7A40tjx/DNMunAV3sEBJLWGmgXn0XJoPwfWvE7pxGlEQ2HSC4vZ8MhDFNaOJ7OkAkduLnmjq+lvbUFUqehtaqBo7HicXV0EfW50JgsavR45FmPPay8S9CbGRya7gyW33YE52ktK7Di8+3JCVNXVDmllIOlBbQB7IaQmxxn/CkRRRKWSCAX8GEwWvEMDxKMRisdPQm+x4hscxDNgQK1VDQdH1m/tonxKBjllye+9JJ88EZ8LlVpNWkEh4UCAaCiIKSUVS2o6JRMmk1ZQhBBX8LtcTFy+ElHSgCyz9DP30tNwEo1ejy0jC3d/HyWTpiJp/rbEmiRJPgqLXk3MFeGtlxsZNcPO+KUXsv35Jxi35ELUOh2yHKds8jSc3Z1MvOBigh43xhQHOpOZlJw8dr3yPJ3H6sgoKaVmwXm89+c/MHnFag688zplk6fhHejDkZuPLMeJRaP0t7QQi4SR43HisRgqlUi2y08wdsZ5LdLWilE9LxGYaLcjqFXIbjcqq5VIWzuiVpMQF1FkFFlGicYSybkIIKpOJ2SKiQjPaAw5HCbu86EEQ6jT0kBUEfd40Y8bi6DVgSgiCGJCrFEQEI0G9FIrqjcegJIFMGoZpBR9gncpyX8LOpMJa3o6B955naWfuReNzpAQ81Gp0Oj1OPIL8A32gwIGmx2NXk/I5yUS0pMy6tyJ6Un++wiHQujMFhTAOziIWqclu7QcBBGd2UxavgrdEhMtB/dTNmnaJ93dJEn+pwkrArE5Kzm2rZu+Vg+ZxVZGzV9NLNz9oXVkrw/Z5zurPO50fmidtHwztQvy2PPGGaFXrUHCnpVcu/soZJ8P2e9HlZKCEg6DoiTGmI4Uol3d+DduRF9bi6Iop0W+YyhyQhRc+aDL+1/E0RCNQiyG7PcTqqtHN2Y02soqoj3dOG69lWh/Hyq9AduVVxKuqyN48BDGWbOwX34Z2rw8AGJDQ7hffBGAuMvF4MMPA5B2112k3n4bE5cVcXBdG5XTs9m/phWAjmNOxszO5vDGDiqnZ3N0cye1C/I4sLaVCecXsvfNFiYtL2T3G81MuaCYXa83MeWCYo7v6GbUjEzqt5z5bJpTtGhNAu31nfS3NlM1az6bnvgjU1ZciinFgSzHkTQaxi1dQe3ipficTtRaLbFImOzySgJuJ87uDnKrqlHioDGaMDvSqJw1D1GlomzSVEI+H3I8hiU1nTW/eRCtwcCcq2/CkWb5F971/x4igQCiqEokiAUChHxe7Jm5WNLSCQcDlE+bRTQcShjsqNXYM7OJhiPsff0lqucv/o8XUY6GY+x9q5nDG87EYUw4v4CJywqRJBWu3gDrHqmnryUxf5tVYmXB9ZVY0z782RjyRWk82M+Bta2oNSKTlheTX5WCpDm3EVeSfw2GcePI/d3vGHjoIZRwGMctN2OcNg1BFJHeN1HQaom1tOB98y28b74FgP3KK7FfczX+rdtwPfMs6fd9Ec/rrxPYuQtddTW2S1ejHzMGACWamGNQZ2XjWbvurD4IBj2a4mI0hYU4brkZXUXF8LZdPbv47s7vDv8ed7rO/h6IxZBdLvRfv5fwpBru3XHj8KbnTj6HVWslz3l2Imass4scMYUufxef2fAZnlr2FFWOKkgtR5pzL5PCcXLyr6arcwBHbh5qrYYdLzyTuCR6Azqjidajh9DqDUgaLfbsXEyOVDqO1WFKSUEURWyZ2Vx4z1fQGowYG1/FuvenMOU2GHfD//1m/Q+jKJBRXJowEvMnYhLsGVlEgoHEnJOs4HXr0BhCWBxJM6ck/57IikJGcRlhv4+wz4dk12DLyiEaCtB6uAVZljHa7CDLTM6YzDfHfZetTzcOr7EBeAdDdDe6KZtog8HjYEwF/8CZg8y4GxyJddEBVzupy5YTktM4urOH7gY3qbkmqmZlo/dH0Bk/ek0j0tKC4vfTumTJiPJoVxeqDzyr/5L40NA5x+xxp+sjj5nkP5+G3TspnzqT3uZGYpEwAKl5BeSPqcWenYPPOYh3cIAld3yOnsZTmFIcWNLScfX1EI1kYE0vQYk7UUlqNDodokqNLSOLaDhM2OdDpZLIKCnF1duNzljGj6ofpNQOOuuJhACJ+cOT2ZP892LLMFA9N5ddrzah0UtY0/W4+86ILhWPS0NvFmg7spVNj/8eRZaRtFpmrL6K3a++QGHtePa99jskjUTu6GpytXqObFyLKEnMvOIawoEAsXAIJS4zZs5CciqqsKanM9TVSeexo4yes5CmA3uIhoIYbXamXHwp259PCKiqJImSiVPpqDuCRm9g3JILEddtILxzF6fad3P+3V/g3d/8Cp9zEKPNztwbbyH6wwfPOsd4Zxd3LbuLB/Y8QFSO8mD2Z4kee47uG24csZ95/vxzipAACGr1mTF+kn9rmg4m1qaKx6YBsKPpbeYBC3YYEZXIWWJg+1udhGMyM8sSIh2CWo1oseDtipMS9BGovQLb6X1N+ekoTYl8m1wkvr796zy25DGsaem01x/9mM7wb8OqV/P76yay4v9t4/PPHWLN52Zj0ibTJpMkSZIkSZIkSZIk+XtJjqY/BnQmEzqjEfqPJyZvDzwxvM363HKki5+mJ5bGols+jd/lRK3VoTdb6G1u4O1f/pjFd9yNHItjTtXRUX8E0X72oscfGx7j3sKbkbKzEa1WZLd7eJsyaQ6bHjlByJdIsjy5uxfvYAijXUNK5tkiH9FggKDHTVHtOF7/+Q8wp6ahktTsfeNlVn7+qwz88pfkfu4SePXTZyodfRGufgkoBUs+BHoRsxMOA2J6NnFBIRw4k+RZuzjhHBT0uNn9yvMjjr/vrVcpGjuB0gnJhJ9PkmAsjLuvC3tOLjkVlWh0eiZesJKU7Dy0BgOiWkJvsTF+6YXYMrOxZrjJqRyN2ZFK0dgJ6EwmTu7cSiQYRG+2oMgyAdeZwKtdLz9HemEx45etILdyNH6XExSFkvGTsWZk4urtYcZl1xIJ+KmcNY/x519ILBIhFo2QWVqBOcVBwOsmFolQs3AJokrFrCuvx+ccQonHiUejtB45SMWM2chynEkXrmL9H37LkQ1rqV10PlWz5hMNh5h4wUoEUWSoo436LRvIKhvFnldfZOEtn+bI+jVEI2HSi4pp2b+P2dfehHewn1lXXodaq004G5otGO12XN2dFI+bhEqtZtJFl+DIyaVx/x5e/uG3UGSZvDG1mGLzKaXgE7yr/6Vkj6Pn1MvMy5lPbEhk2/MnhzftfqOZmZeWYnzuOQzf+zJNeh8FG74Bu46jvWYtZWELpkwrpw64sKdpmLO6kMZDTuyWOPmGAcK/+hXGK64AQJ2fD6KIsnA++9e8MqILW198hqvHjOJk3WEElQpbZjbxWAxzairrfv//qJqzgD2vvsDyu77Iqz/+PrOvuZ5Tu7ZjdqSx7/WRbe188SlScrLPCJAAKApbnv4zF9/3LQCKx5qwp7toPVxH6eTJTFlxKdXzFoMgoDEYWPfwr5h77S2opKTq9L89/gF44y448TYUzQFrDqSPJufdb/K9sVdw6+yfg6Aif8dDGDd/Fgqmw4En4egLifoTbwBfQkXamz+ZYw2PnXUIm2gms11g26ancHZ14OzqwDc0yNgly7CkZ2IwWzClOFDkOKKkIbO0Ap3JSCQQQKXVIigKoiShyArjl62gdtFSFCAWjdHXeBJTioPC2vG0HNoPQMjvY/vzT3HBPV/B7xwi4PWQM2o03adOYHak0tvciNFmp3zqDPwuJ5GQmYkL7fSd2jksQAIQi0bY9+YLGFMvwRtQYQIsqWlYUtP+xTclyd+LzmAke1QNuNrg5Ruhrx7lwt/gdw6x761X0ZkszL325uEFOZWkwZKWgcFsRY7HGb/0IvxuJ3I8RsPunTTu2YklLYOKabN46YFvs+Cm29nxwlNY07OYsPwiDCE1d1Xew9bfdhAJOhEEgaYD/Qx1+ckqsWLLMOD3REixxolHE4EKflcEZ08QUSXgGwqddQ7Obj9VM7PY/mIj8ZiMKAp0N7qpmJZw9Av5o8iygtGq4X1pvYAngqIoGG3aMw0pYE03UD03h9Q8M1qDhKgCR64ZOS6jNSSESTRBJ9Hvfx3z/HnoxlQjatQo4TDaqkoQBAQArRYlHkeJxSCeCBTRZGYmXB+ToM3IgIwMIgMDyJEIoiiiKy3DMGc2AgIqk5G4ZwDjlEm0X389llWrSLn5JmIhJ7r0FPwRGXOqDkNEZs6VFXQcG8LVH2DRTVVo9BK9zWeEnSzpetoObiTgdnHhvV9FJWlY9/CvcfV0gSBgTkll7nU348grQGc0Eg2HWHjzHfQ2naJp/240Oh327FyyKkah0RlQZJmLvvg1JElNOBxiQDMACuzr3Td8zK2dW6lJraFTAkv7bkgbBc5WaHwPJA2s+TJkVMOYlXD4GYgFYfTFn8CdSPJxIggCxpoaIl4vstudECYSRWzXX4fs9eGNaQj4ZUSViM4kETsdZKbRS0SCseH/f1CISY4rlE7M4PDGDlBAlASi4TiWVN1Zx5flM86tGq3EzlcamXRBEdFQnMxCK4JKQEBg1+tNREOJYx9+rxt/zWjKp85gQB5CG9Rhz8hCazIx49KriAQCWNIy8A4OsPWZx8gbXU16YQm9zQ0Y7SmUTJzCpd/4AT7XEGqtHlFMJHjqzBaiwSDWzCx2vvI8Uy5cRbjZz1BXB5FAAK3ROCxAAuBzDtJ9aAcFFVp47Zsw98uw/lsw4UbY8ZvEWCu1HIJDoDGBJeno+s9GIs6pnduIx2KUTpyC0Z6CEpfZ8uQjLPrUnYTDYexZqWgN0ogAyZA/9ldaTZLk40MURN785Y+Zefk16Exm9GYz/W0tOHu6qFl4PnI0ht/jYsycBUh6O5CGq6eXSKiFpv17CHjcSBoNYZ+P2sVLsaSlf9KnlOS/iHAwSjQc58gGJwXVk7jw3hnEI2F0JjOipMLvcmJypGKwWDFa7URCAURJAgR0BiO1i85noKON9x7/IygKftcQORVVeAcHKZlgx93fByiotTpScnLpb2tBkGWk065nHr0WtSgOB4obpkxBCYVRORwJcZFIBJUjBRCI9fagr6nBPHcu8XAIQVKhxFQo0SiKHE8IkGhOz2upNQiigKhWI+p0CBo1oeMnEA16zAvmoc5ORYz6YOgkihZQxxHDvUiBMLz3vUQbjRvg+Jtw+RNgSLpdJfnH0BqMlEycghyPs+a3v2DWVddhz8xBpVHj7uul9chBimonoCiJv4/XfvJ9ln32Xpw9QRif8Ul3P8nHhByJsOZ3v2TedTdjsttRa3UceW8t5VNmghKnYe8u9r3xMotvuxut0fhJdzdJkv9pQrpMtjxyDO9gYr64cX8/zu4A868p58OkftWZGWiKi4k0NQ2XCWo16vy8v3qsgjEpGMwaGg/0YUnVUzohnZzypODmR6HOykJlt0MsBho1KAqpt99O3O1GNOgJ7t2LceoUlFgc4vHT4iPvC5AICGLCzli0WJA9Z+aJVA4HmtJSRKsV33vvEdizB+O0aZiWLcU0bRqCJiEqiaLAJZdANIpoNCKozggdCHo96tw8op0jRXyl9MRa1qipmRhtWgbbfcy6rIygN4JGL+EdDDHh/EIC7jBTLizCMxhixqpSXH0BZl5airMnwOxLSxnqCTD7sjKc3QGqpmeCIGC/xEjLkUHS8kzkVqZwbFs3eoOFssnTqN+ykakXX0bQ70WOxTFa7URDIVoP7eDw+ncS10ElsfhTn8Ez0I/OZEEQRTpP1JNTVQ2KgqTVklNRRSQQQJEV+lubObTuLVZ//X4WfeozaPQGLBY7psxkkt7fQtDrZcvTjzLn6ptAEDBYrBzduI4x8xcz0N5KVmk57/z6Z8NzmBklZcy68npGzZyDq6cLSatFoz17jvY/BWdPYIQACcD+d1opnZBOaq6ZxgP9wwIkAN2NbpoPDzJ2wYeLkLTWDfLeE8eHf3/7d0e46O5x5I5KPk8/TkSdDvPcORimTAZZRvUhY1pRp0Nltw8LdTmfegopPY2cBx9EV12NqFajLi3F3j+Aym5D7Tjzzm5eMJ+hRx4hsHcvppkz8G18b0Tb+ppabKtWIWi1iH8h9Ptyw8sjfpdyss/5PaDOyeEB1Stcbxp9Vt/Xtq7l6oJvMPzF8n69mVPYGqoDIK7EaR46lRAhUeuh+T0Me/5AqSBSakqHXS/TUHs/eaNrqN+8nqyKSmLRCK2HD9DX3AjA+Xfey9anH2XG5dehklSoJDW9TQ3IsSjldjfWHafnNvb8AaouhmTc2d+Mp6+H49u3ULPwPNRaLZJGw7o//IZFt96JzmgmJgj0NrrRaKWkCEmSf1s8fb0c2/IetYvPR9JokDQa1v/xNyy88Xbe/MWPAEgvLmXetTezpHAJSlTAO3B2LIxnIITRkQm6GbD6MejYDQEn5E+FtMrh/Y4LvdRIY9n5fBMD7QnhRb8rzECHl/NuGUNWyUeLkIims2PSRaMBUf/X/87Uubnnflbn5nzkMZP85+Pq7aJp/x4mX3QJshxHFEVElUR2+ShUajVyPI6kVvPOb35OWn4h3qHBRMzNF76GZzCKd6CZ3FFZKLLM2od+yZSVl3Ny51aq5y9KGAvpdKz97YPMvPIG/O4IsV1WCud2J2JuAGqvhEXfAVMyLvF/CUlSUTzWgd6s5tCmduZeWUFb3RB9rR7yKlPILrPhH2rlvcceHh4PxsJhdr/6AqPnLgIUuk4mxoUzLr+WruN1zLnmZmLRCFq9gaDHhahSAQJv/vJHlE6aRsjnxe9yIogqUguKcOQVUFg7noH2VmLRKLOuuh4lLmNNz0QQBUz2FLobTxGPRGl2mMn+1c/RegeIqwWu/N5PaOtt5FiokfXBXaysrSVcf2zEOepqa1hZPpeJmRPxRrwUurV0a3+dEHn9ACpT0vDqv4GGvb3YMw2kZBtZ37Ye59ApAiodWc5EnKn4FyIkWxoGkESByUVn3sMkh4NIs4dd6wtIX3H+GRGSvFQ8hxOmrlfnLeKqnjU8Xv84ZekZ+LZuIh6L/lvlLFh0an68uoZLfreDH759nO+uGPNJdylJkiRJkiRJkiRJkv9YkiIkHxeCAJEACCoQJYhHhjcZX76CgsueZUhJQdJoUGu1KCoBlVpDOBTk9Z9+f3hfvdmCffbYs5rXSFoUnw9SUsh+4Af0/uABom1taIoK8XniGG1aFt5QSSwiI6lFdr3WRMAVIeUc+TQqtRpBVCFptCz97Beoe+9dRJWKudfcRGZ+EeK3voXgOpMcL6dXMzjzdzQf0iLUNVNQ5SCtYDQ6dRbGOXPwPfUImituxZKqR1KLxKIyOSUWBCFO2O9H+Uv1akUh6PNizUy6VHySCIQ5uOYNBtpacOTksv6PvyVn1Gi6Thyj5dB+Zlx2NRsfeRhbRhY5o6qo27Seqasu581f/hk5HmPe9bcy7vwLOblzK5MvuoTtzz2FwTrSpaWvpQmjPYW2IwcJ+31MWXkp+995nVlXXEvnsTqKxk5APD2B3HG8DktaBipJRcjnQ6WW8A70ozOaSCsoQkHh1R9/j5xRo3H39dDX3MjMK67jlR9+B1tGJvnV4yibMp30ohK8A30EPE6Ob9uCu7ebaZdcya6Xn0eOxzDaHdQsPI9jWzaSkpvHqZ3bKBk/iaDPg6uni10vPYvWYKRq9jwOvPMGo+csoPN4Pa7ebmZcdjXbnn2CgtrxtB45QOexuuFzbT96iLK5Mz/u2/g/g0PvYEraNLoPu5lzVTlGqxZREOht9XB8Rw9z7vw03RYYivsgdwb0HUf1+GIMU75JeruEzTmAur0E/Zgx2HufI/jWfqKyTOodtzP40MOYZk9HTE8n6/776fae7WImx2PE2/fiyM1n7UO/HLGtcuZcTu3aRiQYYPerzzPn+psJ+TxYM3NRqdUjHbhIBMSF/We7pwXcLmKRMPZMPWr1UbY9+xIAh999nZScPOZedys9p04gyzGyyip4+YFvcsnX7ie7/NzumjGXC0QRyTLSpSra3Y0iy2hyRi7gRZ1OREmNynz2QmGSf4DeOjjxNvHKVchV1yB2b4OKS4jlXIBGr6e0/xgyUbzpqwgW3ILVGkX94pVn6ktnFmjtbXuZmjWVzZ2bRxyiMJJGcKiL7lMnhstcPV3EwhG2PfMYZZOnsevl50bUqV28jIG2FjqPJ55jU1dezs6XniG3qpoFN32WgNuFSoyjoNBx7Ch5VdVEQkG6ThxDZzIzfulF7H/rVaoXXoir24Mc9+B3OTnw9msjjjPrqk+x+ZkGLlhpxh/wn3V53H3dpJeIgHLWtiT/puit0NoOffUAyNYCQq1eFFkmFgnz4ve/gT0rm4oZc1AUBSUeJ7+6lsPr3iG9qIStT/95RHM5FZXsf/s1oqEgW556lAs//xVe+8n9hLxeVJIGyZrCrEvL6G5yEwvLpGQb6TwxhClFe3rcKyNKKi66p5Z4VCESjBEOxZh5WRlBT4SJy4swmFQEPDFUahFFgVg4zvxrK1GpBYx2DZJahd6kZuLSQkS1QGquCYNZTdmkRLK+pFGhUot0nnSduQxmNf3tXqrn5WLPODvoLtLZhWftGnzr1uG4bDXmefNQp5wOjjxHQEaSj0aTmvqh21Qdm0idakabdwuejbvwq2Vs00qxH3iQ2MQ7UazlIBkRDGYKKgwooRCehi62vxujalYui28djSVFh7s/iLOnjYySMgy2FJr37UoIkAAoCt7BftrrjmBKcXD0vXW4ukcGnpsdabQdOUj95g3Dz1VIPGOVslSODB4ZIUACkKZPQ0ZGpwhw6GmYdDPobRDxQkwNi78Ha78OxXMgsxo2/Tjh8q5LulD+L6Axm+EvFoix2dAB0b4+ws2NRFqaoWYeoiQQcEcwWDRojRIBTwSLIxG8bsswkF1mJRKKU1jjIOBOJEMIAqh1EjkVNopq00jLNxMLxzHYNERDcTKKzOhMGs6/vRpFBpUK/J4og51+BAGMVi3Zk6zYMoyE/THisTjme76CMSVOYMiLz+9HZ7Yw1NWBNT2TwZYm7FmJMWh73RHa644k+peZTVpBIese+n/EIiHGzFtEakERFkcae994mfa6w4lzF4SEy6Jag8FiIeTz4unrPeu69fc5oTwjMTfj600kk6gk6D4IFUsSZbYCGGpMipD8S1CRXlTCuod/xdGNa4dLx8xbhM/lQqPRMdgZIuA9M2+m1qqwZyadoZP8e6A1mcgsKWPt70a++y/59D0EPW4MJgvxaBRBpeXAWj8ZRWoMFgtDPTnMv+EOTu3eSn9rE1UrL6dk4hRUUnJ6Psk/D1u6gdQ8EwPtPlqPOCkdq+HNXz6ApNFSPX8ROpMZjd6ALT2DaCzC1mcfp/NYHVllo9Cbzex785UR7ZnsDlLzCjFabYQDAfpaGjHZHegtFrQGA5JaTSiUCGhXFJmQTovtimsIb9+MfnQVurHjECQVxOMo0SiCTo+olpAjEfTjxuHbsBHT7FlIahOKwYASj49wuhQEAWQFRU6IMiqRCHII1OkZaEtKQImhdqgQIn5kyQIZNQjxGMRDyKEMogY7ygUlEHAiNb6B2LIBBk5BflKEJMk/TkZRKWqNjrTCEk5s34SgCKjUaiStlrr33qVu4xmXbp3RhN5ixSEkhSb+l9BbrcQiYV77wBovQPmUmciyjN5sY8HNnyMlu+oT6mGSJP/dxFwu4kNOtMVFH7mvzxVBb1Yz58oKYpE4klpkx8uN+D0fLoapyFEyvvF1+h74IeHjx5EyMki/74vE0j9cZFBRFNrqhmg+3M+Cayrpb/ey5g9HWf7pWjKLrR9aLwmoMzPRjxtLtKMTJRoBWUbQ6ej74Y9I/cydpN5+O5HWNvTV1afnhwQQBBQxEW8inF5jSr/nHgb/+Eei7e1oiorI+v796CsrKXj6KWL9AygoqCwWVDYbclxGCIeRgyFAQWUwoCAQ93gQSIxVo7KI1x3D+PUHEI/WE3X70Jl1hMIK8sQJDHR6EQSB9Hwz1jQ9erNEf5sPd38QU4qOkC+KRi+RW2knJdNEf5sXe7YRrUEio9iEKuQiR99GOG6gYLwdk2s9uFrx5yzFnllEOBhDpYLC6hSMtlkospOpaekocRlHXj7uvl48fb3Yc3KHBUggsa695ek/s+DG2+lrbiTo9WKwWuisO8ye115k4c138O4ffjPiHugtVhT0vP3QIAXVapaMfwuyb/q4PgL/0RitNrz9fbz64+8Ol0lqDWPmLyK/upa9r74wQkS5t/EUA20tZJaNYt+brzB+yQU48krRGc8k/EbDcTyDQUL+KBqtClOKDr8rkUBmTTeg1vzfYq0Gu7x4h8KotSoceSZ0ur8taSgajuPuD4AA1lQ96nO4CkdC8bPKFAXCgRiu3gBtdYMjttkzDahUAn2tHiwOPTqTmnhMxt0XJB6TMdm1HN7YflabzYf7R4iQeAaCBH1RjDYtpg+aCJwm6I3gHQqh0amwphmGxYqS/N9RfVRCeWYmGV/9Kl333jtcpi0tQ5OXh3ha1FRjtRJXq88yYNBWVlL40osEdu1GNJtRYjH8W7YiWq1kfPEL6CpHDSe0x30+RK0W4XSb+eaRLu5hm4nsHz4wIp4y/ctfxqVVqE6tRv7L2EUgx5RDrDiXnJ/9lJ7vfJe404l68ngar5rFprZfDO9nFU9/9l2tZ4zpFBm8PeDrxz5TRVp+ISk5uUy8cBX9zY3DAiQARzeuJTWvgHd+/dMRx190y514DdnYDQ4IDIKkhaRJxf8JU0oqzQf2jDCBMlhthP0+LGkZuPu6MaU4iIbiDHZ7UWQSc1GKgkpSYU03oJLOfc2VeJzI0BD4/ZCSgtaSXJtN8q/BnplNy6F9tBw6E0egt1hprz86/HtfUwN9zU00pnYwM20mxePTGHrTjygKWNP1BDwRsstsxAIx0AGFMxI/58CoMRLwKETDcZbfWUMsKiNpRPa+1YJnMERWyUf3WVtejnnxYrxrz6wDpn/hi6jzzog2egaCdJwYYqDLT06JjawyK0paGtkPPEDvD35wesyeeFYrf7ke/jERHRpCdrvRFn30e2WSf5yyydOpe+9dtj//5HDZebffjer0dzuKQtG4iRisNk7u3EbxhMlUzphDOBjDMxDCbFdjTkvnyLtv4+rtxu8aouXQvhHfARq9Hq0xDa1eR9sxD/6ZVmyGFAgMwaGnEuY/ZYs+7lNP8gnTVudkxyuNpOWZee+pExSMcbDktjE0HujD73TS33ZshCAdQNDrIbtiFE37z3y+4tEIm57401ntz7/pNowWO/FolBPbz8T1phUUUbfpXbQGI7teehaAnMrRFNSMp7+1iVM7t41ox2i1IkoS2156mpLxk3njz99m6We+gCSKVMVyyAxokS+rxHTRKkSVFkltRNDq8YQVAi0+crPz0dgkFEec+D330PuDHwy3bbnoQrSlf8MDPsm/NX53mM5TLiYtLcQT8fC9nd/jhyoDgkqF+rTZlPgX4pHbGgYYn2/H9IH3eU1REZHmZnxaDYahoeHyuE6LcNo8qCxuY37efH514Ffcn3E3iiLjHRjA9i8SrI37IigxGZVF+396f59QkMJ10wp5bEcLV08toCIzKbaTJEmSJEmSJEmSJMnfQzLK+eNEZ4WIHybdBDt/e6Y8pRjJnEp6buIFvv1YHTq1xMntm5l68aXsevn5045pGmZdeT0ah4Pzi87nneZ3UFCYmDGRuXlz0Rozab3+BlK/9lWyH3wQxeshmFdJ0BNl8vIiNjx2nIA7gtYgMfPSMnSWcy8cm+wpdJ6oJ+zzoTOZmHzRauLRKHqNBueDDxI8cBDD5EnYPnUMp9+LHIsCAjmj4kTDEn5PGFWPgCPLQdZ3v0uovp6QDKJaYOGNo9nxcgO7X2tj8a0FmFPTMNpT8DvPvKTqTGYsjkz627zY0pNJJp8UalFksKMNgFg04ZBtTc8YTgT7YNlQV8K5RFEU5HhigmHjow9Ts/B85l13K0abnQU3345ap6N00jQa9uwAwOxIpaB6LHI8Tl9LEwPt7UxYtoIT27dSMmEyu15+lokXrGTTH39L/pgaXD3dnNq1jRmXXcOGP/0OtVZL5cx5bPzzw9QsWELA7SIlJ5dTu7YhCCLRUBBFlikeP5nD69cQDQWZsvIydr30LFllo0jJzsHd203dpneZcdnV7HntRY5vfY/sUaOZdfm1OHs6ceTmY01LJ7eqGk9fL47cfIY6O9CbE4uHJkcqrt7ukdckLYNTu0ZOAAJEnWcn2Cf5xxkKDqEX9WRY0iifnMn+NS201zsRBKiYksnkC4o4Lg4QENxUq+2gOTOJpml9CUfGaJQJMxEmXAOAVmgjPtWOKAagqhZTzs1IzS8SOvgW4SE9abNnot34DuEPCCaYHWno9HqGmjsoHDuBloOJhT9zahpphcUc2/oeAAPtbUxKS0NnNCKpdZjsNvQWK0GPe7gtg9WGLSMLQRRHiDTljBqNzmKheGyInc+PFHIY6mzH2dXO9uefGFF+fNums0RIov0DBHbtxPnkkyiRCParr8Y8fz6xgQGCR47gfPIpAOxXX4W2ogKVxYJ/y1Zczz6LoNORcv11GGfORGVIPp//KcTC+Be+iPvN9QQf/TGGKVMwKocQzWbcr7yKXDWRQ+4iWo+JCAJUTkhn7MJXse28A8HTBhoTjLsWDjyG7thr3Hr9K3T5u2hwNSCJEpdVXIbXNUSor5eU7Nzh5zWALMdJKyiiv63lrG71tzaRWVJG5/E60guLcXZ3kppXwNSVl7H39ecpGjue9OISjm5cx4kdW0AQKB43kSkrLyN/zFjCfh9ZZWNY+8cBomGZUdPSsWdNxp69H+fpPuRW1RD0Z6E1hJEbjpFRc/ZCRvG4mUSDIraMpCjDfxYfcILq3oclbQ4Gqw1FkdHo9Ti7u9j5wtNAYhyRWlBId8MJdCYT+dVjaTtyEABLeibpRaVsfPQhAPzOIaKhEMvu/iID7W1owyF08SiD3XswGEUcFfm0HPVRPdcIShy1Tk88FkaRFUTC6AxadEYdkZAa70AIWVGIeaP0t0Qw2rToTGp8zjAmu5bBbi96g4Yxs3OR4zJr/lCHHFNIzTejVqvY9kIDerOaGatK0VsSgZ96sxq/K0xqnomaeblsefYU6QWWc4qQaHKySb3hBhzXXIOQTDz9WFB3vEVKSgn2LyxH6NqH7NmLJ+MOYgcHkJV+9BUVuJ5/ntDROlI+82nC+RVMu1hCUfzEoxGioTgGM5RPmUYsGsVgsdDX0nTWcfpbmlCp1cy56kbe/vXPiAQDAEy8YCXWjAx2vfwsKTm5eAb6ABBEEYPdxnPODayoWsXxwTPufaIgclXlVRRbiyl69qbEonY8Bio1dO5LiCT01kPVRTDUDEWzSIo2JXkfdXo66vR0lAnjaT46xIyVpRza0MGx7V3MvWoUe99spu3YELOvKkdv0PDuo8eompFNLCoT9kc5vrMHRVaYcH4BKdmJ7+H1j9ZTPjkTe7YBvVFDOBBHEKNEgnF8zhD2TCOiSiCjwITGqCav0opaFwQlDoIaAYl4PIqoaNCbLBgsVmLhMAG3C1GSaKs/zPTVVzPxgpXsfT0huKfRGxh33nLa645gz86mp+Ekh9a9TUpOLuVTZ54RIAGKx08i6PXiHRokEvBjtNkxFhbTeaJ+xLUpr8gD39mB6meRjDv/16Ao2DIyKagZR+vhAwBY0zOxZWbj7e8lq2wimaUSGUUWuk+5sWcamHVpGSmZyaTdJP8eqCSJ8UsvorepYXg+s2zKdFoO7Sd/dDUarQ5BEOnrsDNmjpFwIIqzN4gj24EjL4PC2lri8RgqVXIMmOSfj96kYdal5ex6vYmuky4CHhcAsUiYA++8AYAgiKz66ncIDPQz0NoCQPep48y5+kb6W5vxDg4AUDp5Gpml5QQ8buLxGO/85ueUTJh8OjEjiEqSEFXScACwIAik5BWjqpmB7pIrUetUBOMKgmgkFlWQZQVkkOMyohyB9a/gf/11bCsvRNQoCfERjRGiQVAbUQQVKCCHQqe3aRBFESVhaY8SCiPLcaIuEferTxI6Wod54UKMc+ckBOEFG8pgBOLZyEI6QlEpqsLrMYj/Pg5cSf7zScnJJRa3kFvlxtXbid5s5uTObUxZcSm7Xzmzrrfg5juQ43Eyi5IJ5v9LCKKK+dffyprf/ZJYJIwgiEy6cBUH3n6NGZddg0o3Dp1Zhzo5z54kyT8d346dOJ9+ikhjE+b58zEtmI9h7NgP3d9gl6idn8e7f6on5I8mBEmuqMBoPztp/X1EMUbngw+S/5MfEx8YRDQZcW/ciNVmhMLCc9Zx9QY4tL6dcCDGM987k6Qy2OlLipD8DRhqaohmZREdHARZRgmFiA0O0veDB7BddhnGqVNBJaLJz0ch8RwGJTE2fB9FIeeXvwBFQZ2ZiZSSQvDUKeI9PQnRdFkmFggS6+5GUGuQvR6cjz+BEo1iv/wyVGlpyIEACALhtEJ2bwsQDitklVip2yoxefk4tq5vJ3eUnfA73fQ2e6idn8u+Na2MnplDb7MbnyvMqGlZ7F/TSjQUx5yiIzXfRCQYJxKKIYoQ8g4Rj/pQ6zQIKSUIgkhAJeJPnY+coqDRqdGF3RisErGwD5U0SCQo0lF/BFEUUElaTKmpeAb6EFQiEf/ZMQp+5xCSVoM5LR2t0U/A7cLd1wPAkQ1rmXzRava89mJiPKPRMvvK6zn8no/CGgdTpoaReo6f1WaSc6PS2Zh/4+2s/+NvkONxRJXEtNVXsunxP7Lgptvpb2s9q46rpxtHbj7dJ4/hnzaLrS8eZOENVTiyTXgGg7QcHqCtfojWI4OMmZND0BOh8UA/kIiPmHJRMeYU3d/Uv86TTjY/fZKhbj8qtcjE8wsomZiOPf2vz8V5BoPskYjkrgABAABJREFUeLmRhr19IMCoaZlMuaAYk33kcY1WDQaLhoDnjOCw2aGjv93LOw8dpWJqJl2nXADkVthJyTGy9YVTyDGFtAIz864eRdP+PvavaUOWFcbMycZg0fCXGMyJMllWaDk8wIbHjhEOxDDaNCy+eQzZpbbhffvbvaz7Yx3OngCSWmTG6jIqpmScU0QlyT8H86KFFDz9FJHmZlR2O7qqKqS0NADiHg++zZsZeuQRRKMJx6duxTB5MqGjRxn8/e+JtndgmjsXdVYm6V/4AtErriR86hTe9RsQDQaksnICmzfhfvEltGVlOG68EX1NNReVXMQrDa8QiCXW6fY0bKDyreNk/+JBZLcHlc1K///7NaqrVjI+fzyVjkpyTDl0+joB0Kl0XFN5DVGVQvr556MbOxbF1cfxeAtf3PcNlNPrcdNTx1KhPi2A8/4SnTkL35TPE3TUIspxQoqBzU89wvwbbkMQGJ57eZ/2usMsvOXT9LU04XclTJFGzZjDQEc7A8IEdJN+Qfqmq2HG3aD666IvSUais1iYuvJydr383PB32pSLL+X49i0JcVGdkQ2PNxCPyWQUWZi+qgQFkKMKshzF6wqRnm9Bbxr53Am0tiK3tuF64QXCDQ2YF8zHNH8BqqJCtDbbJ3KuSf57Sc0vZM41N7H5iUeGP8fTV1/FtmcfH7HfUHcnsyfMZsDnJr8qBUcO6I3hROyhICBKXnpaoDTlr8df2TV2jFYt01eWsuHxkfHmZseHvyN9EMluJ/MbX8e6ahXxgQE0hQVoK6sSotNAwB3G7w4jiiImiwZFUXD3BrARZuidt8n+5S+Gn9UDDz1M2h23/13X7h/Bv2s3rueeJXTsOMZZs7AsOQ/DuHEfez/+l8gZNZpFt97JtmefQI7FmLxiNcXjJg5v15ltHFr3DpJWw9zrbiYWidJ65CBFtVPJLBbRGXIxmMzDcTz1mzcw5eJLE98BsoxKklhw0x2gRBho28vUC02IWjmxJvE+nu6P+7STfML4nCH2vNmCHFPobU6IQx7e0IHWoGbPG82MW6xHUJSzYrkNVhvtdUewpJ4Row243SPiHiGxJmdLz6Jh7w7GLlnOwdNrdVqjkYkXrKTzeD2e/r7huF5beiYavX54/e6DOLu68DmHyCmvRJQkFFlmz2svYHakojdbGOps50jvK4xdvJSDa99ixmW3ojWXUr+1h66TLvJHpzD78nKsaQasl6xCV1VJpK0dKT0NXdVoVNbk3NR/Og17+0CB0gkZ/HjPD3CGnIzRZxAMBNCJKkSjEUF1RrR00BfmSKebuxeUj2hHN2oUvg0bcFuMGF1n8rvCIiiyQChuZOhEE1+/7Udc/OrFPOx+gWmCgru/958qQqIoCqH6ITzrW4l2Jea2VFYNloUFGCZmDI8rPoq7F5bx0v4OfvD2MR69YfI/rX9JkiRJkiRJkiRJkvwvkVxB+zhRaWHoCOROhuUV0LIV0iogaxz4+od3s2dk4nM5sWZk0bB3F9MuuZx4PI6AgEqjYVvXNlaVrmJWzixkRSbLmIUsy6gsFjK+9CXar78BJRLBMH8elm//GLVG5t0/HRte1A0HYmx84jgr7v7wSdG8yjF0HDuKq7cHyTlERm4Bwe/eT+jgIQBsv/sNnnCIaDjE7leep6P+KOlFxUy/9GqaD/nIKErBkWFArYuhnjqOyJCAszWAzx1k8S2jiUdkRCFM0O/jvNvvZsuTj9Df2kxKTh5zr72Zk3tjZJcnE+g+SbTWdIrHT6Jx7y7UmsQCQvepE+SPqaFu03pUKhWiSqKvpYmq2fPpPnWCeDSK1mgkfDqQ5fC7b3Ni+2aW3HE3A+1tpOblI8fjzL/xdmKRMN7BASKhIPveeAVJo6Fy1jy2PPkI0y+9mo1/fpjsiioa9+1CUWRyRlWx/fmnMDvS8PT3EXC7mLxiNXtffwmdyUzI7wMgEvBjsNoIuF3DbrKRUBCtwUA0FERSa06fy3HmXHMzPQ0n8fT3sfeNl5m8YjWp+UV4B/vZ/PSjTFy2gv1vvootM4vKmXMJetxUzp7P9ueewDPQT351LX1NjeSMGk3n8TrUWt1w2/ljahOJ+R8gJavw47h1/3OIgshbLW9x75gvcmh9J+31iUV5RYHjO3tIL7RQMWoiHXIzRQE/HHn6TOXRF8OWnyFMPOPUJKXnIr1xY8KZpGIqZKeCfglafwTXjjpcjzzCki/ew5Yt6xnq7iSjqJCF501B3/4u7UfNmB3pTF99JfasXDpP1LPtmceG2y4cOwHv0BCu7i7keAyj1cL01VdxcO2bDLa3klZQxNjzlqPSGzj/0/ew5alH8Q4OkDe6humrrwRFobA6hW3PnO0YJMfPLouGQ2eVBfbupeveLwz/3v3lryD8+EcgCHR/6ctnyu/7Etk/+QlIKnq++c3h8s79+8n93e8wz53zN96hJH+NYDSTnvvvI9LcAkCkuZngkcOY5s0nsHMnA1WraD2WWOBQFKjf6yLNrEdXdjv6fV9OJKLnTYbcieDro9bVy4+nfIO28BCeiJdwPEyBtZQ3//wsc66+kU1PPEI0lFg8s6SmcWzLBsaffxFN+3aP6FfR2Akc3biOrLJRTLzgYgZaW0gvLqHtyEEcOTkE3C78ziFqFy8lGgnTtH8P3Q0nKR4/GRSFgEfhxHov0XDCESOvys6WZ09SMe02HNlRohGF7kaR+i1eFpxnwBBUYagaw+JbbmfzU48TDgYonzqH4pqppOWkoTefHUyW5N+YzGpIGwX9xyHkQp+pZdEtn2bv6y8z/dKrObT2TZzdXWQUlzHtkis4vn0LxeMmcmjd25ROnpZ4hmbn0nmsjk2P/3G42bSCIgRRJOjxkF1aQSQUpG7TOuo3rady1jw0ej0Go5tXfvgc0XCImoVLyCobRUf90USiXCRMwehaRFFFw/4omcV2YuE4O19NLEBXz80hNc/MpqdOMuXCIvpavXSecFIyPh05lhiXDrR5MVo0ZJZY6Wl0s+W5U5x/WzVmh46aeXmIkkDnCSfvPXkCOa4gfoTyelKA5GPCmpsQbcoZh+Bsgoa1+KsfxPvOWsINDWR+5zt0fvazxLq70V11JfUD3Vh0EqJTjcXu4PiOLdRv3oDebGHe9beeXrztoLB2PM0H9o44VOHY8bTXH8WWmcXYxcsw2Gyk5uYT9HnpOnkca2Y2o2fP593f/z/MjlQmr7gUXVEGq8yXEo6Hua32NlaHVuMMO0nVpWLX2ak4tR0G6mH2vWArhJ5DcGodLPgG7PlDolzSQ8demP0F0CWdtpKcQZAkFAV2vNJI2eQMsoqsxKNxJi0vwmTXIssKb//2CDqjGs9QCFuanoPrEmKUokpApRIJB8LUbe7EOxQmq8SKIMLet1oon5RBd4+ffW+3UjI+jd5mD5nFVmwZBuTYEPGol7A/jlqvQ47Fcff3YbTa2P78U/S3NJFbNYbpl16NJT2DlsMHmLhsBbFQCL3FxvTVVyLHZeR4jB0vPs2sK67jyLtrhs+rZOJUUvMKMdrs+F1OisZOoGzSVBRFIKOkFFEQiEWjxMJhquefR/2WDQiiyJSly8gL7AT7KJBjYMpMJKPIcciqhbAXHKUgSpCSdHr5l6BWo9bpsWVkkX1JJaAQ9HjY8cLTXHzfN3jpJ0dZcH0l01eVIgJGuxaj9W9LmkiS5ONAazShM5kZPWcBokqFKIp0nTpBy8H9VM2eT1yOE49Fadjbh9aQTUaRhdzKFOwZxuFAmKQASZJ/JdFIjAlL8pm6opig52zRvPwxNagkiVg4TNH4SRw/LZy79dnHqVmwhKyyChRArdXh6e8l5PMRDviR4zFS8wsRRRVagxGNwUA4FMKgsiLH40g6HQNtjcRjJ1BJEu6+XtILiggFQuSMmko4IBGLKoR8UeJxBaV4AYXfcqDf/1XEvgOgt8Ps+2DNlwDw1/6Iti8/OKLvaZ+7G0GtSczZIaDOz6PrW98mPphwzh58+GHCTY3Yb74ZwhEQQAmFUIIh4pEwcUFA9GhJfqsk+WfS1+pBZyoEJYbOZKK/tRlFlofX9ayp6fjcLixpGcn5rf8xdGYLequdCctXAKBSqTi1ewc6kxmNwQAKbH76FMvurPlkO5okyX8Zgf376bzrLmRPYl1lsLGRaFcnqoxMtFmZ564ki2x84jixSCKZJOiNsvGJ4yy/s/ZDj6PRBsi45CJall8wXGa7bDVac+Cv9k85R/jDucqSnBt1Whrq00nrSixGxhe+QO/3v8/QHxPrCKl33ol53jxE3d824ot5vUSOnwBAjkQSU0ShMIJaQjQa6brn88P7dn/tKFk//QlKXIZggGZvnNZ6F1MuKmbXq02MmpbFkY0dhHxR9CYNx7Z1M3FpIbteb8Zg0RDyR+k86WLyBUXsfq0JRQFBFMirSkGjlQh6o6DIhIIt+N39aPR64tEo4unkEFElIWnUaHQG6jfu5OimdxkzbxF6oxmVWo2iKGh0Ot5X1fUO9KGS1KAo6K3WxPzXBz5s6YXFBFwuHNn5+N2DiKKIWqvl5M5t9DY1IMfjTLvkcgxWGypJgyO/iPQcHfYjD6B+4ym44gPr7Un+KmqtgiU1jVlX3YDBknh/2vnSM3j6+1BpdBSNn8ihNW+OqJNRVELXiWNklJQRj8sMtPvY9WoTi28aTXv9EN7BEK1HBtHoJdRaFUcPnIk3O7Grh8wSK2Nm55yzPyF/FFdvAFlWMFgSiXVD3Yn4nnhUZtdrzdizjR8pQtJ8aCCR4ASgwPHtPWSV2KiakT1iP+9gkPHnFdCwv4++Vg+ZRVZGz87m4Lo2Qv6EyU92mY2uUy5yRtnZ9eqZ99j+Vi9732oh4IkkhC2Bo5u7WHh9FW1Hh4bLNDoVmSVWWusG0RokNj1zgnAgYZ7kd0VY8/BRVn95Eia7lnAwypZnTuLsSTyvY1GZTU+dIDXXlBSE+hciarUYxo07Z/K2b/OWEfErgT17yHv4ITru/AxKOAxA+NQp7D//GfGDB+n5xpnYFd+GDeT8v/9H/49+DECksRH/ls0UPvccVSVVPH7+4+zv248z5MQnWaEol9aLVw7XT7n+OkKPPovvUwvo16TywKwHaHI3EYlFKLIWYZSMGKSEaKAmKwvSHFRtW8uTo26mWYhhQ8Uodz9plrxEg7Y8AnO/Q7+xBtegi3hLD6Ik4R9qxJGTh1qrw9XVTWbpyCQ/gL6WJmoWno+iyBisdmLRCFpDIdtecmE05JG++s/g64PoXx9rJBmJpFajt1iG39EBdr/6AlNWXIqk06G35jFxmZVdrzbT2+yhfms3o2dnowgK8ahCPC7j7PKjLz/zPh8dHETu6qbrvvuIOxPxaYNNTUTa2nHcfRckRUiS/JNRa7WMPW85+WNqCbhd6C02Tu7cSsjnHbFfVmk5npgXXzxAdrQIrT7Avjdfp2nfLqwZWcy87GpsmR8QaA44IR4G88j3pJ5AD6nk8t6TxxNjVM7Em1/42bF/c7+l1FTMc2afc5vfHWLvWy201Z1JbJ60vAjj1HR0RUUjntXpX7oP7YcIPf6rCBw+TOfnP098ICEaFWlqItLURMY3vo42L+9j7cv/EjqjkZoFS4ZjD00pjuFtQ10+dr7ahN5YRWaZzPZnn6S9/ghphUWY7CnI8RhZZRWEggEKa8bRfGAvQ53tnNy5lakrL8eU4iCjuJR4LM7TX7tnuF3N9ddTrU+BaEKEjJSij/u0k/wboPyVyRo5rqF53w6mrbqc3a+8QCwaQWc0MffaW1j/x9+QN6aG6vmLqdu0njcefIDLvvVDANqOHMRkdzDryutQUDi87h3GnX8hF3zuy0RCQdx9vXQcr6Nk3ERO7d5J7aKlbH3mMbpPncCclk7RuIk4uztHdCmzpIxD695C0mgwO1IBCLhdpBcUc3TjOqavvortzz9JJBgkFonw7h9+wvLPfZ+8yhS6Trpoqxvi+I4eplxYjMpoxDBpEoZJk/61FzfJx4aiKNRv6yKjyMLeyDZebXyVW2tuxbDlTwzGtehFFaJ1ZDzh2vpeFAUWVWWMKHfc9ikMEyew9cnf4/uAyXQgHkMDxCQ7kb4ObBEzX5v6Ne7ddC+mYivn9fX+884nGsf5cgOB/X1I6Xqs5xciaCUCB/pwvniKUKOLlNXlCCrxI9uyGTR8el4pP3j7ONsaBphRmvpP62eSJEmSJEmSJEmSJP8rJCOeP04MdrDmwfPXJtRzKy+Aw8/CgcfhmteGdxNUKuS4TPH4STi7O9j+wtOIokjNwvNx5BfS1bWVTR2bmJs7FxmZt5vf5u7xdycOMWkihS+8QKSxEc3EKURUIn5XZISrBIAcU/AMBslyeMCef3ZXrTbKp84k7HKhyDLhXbvoOi1AoikvR6XTE/G6WP+H3wxPdPQ0nOStX/6YFfd9kzW/byKrQEvK09MgvQrP+Ecw2rR4B0M0HxhAFAWsGTpObFuH3+Viye13EwmFEFUqdr74LFrrCtLzk8lznyQhd5jyqbPwOZ0c376ZGZdezZ7XX8KU4iC/upYjG9cx64pr2f3qC8SjUcomz+Doe+8y7ZIr2fv6S/iGBjGlOJh99Y2Ikho5FsVgtZOaX8DmJ/7EjMuupqP+CKWTphIO+CmfOpPjWzcBEI9FkeNxNDrd8ASGHE8Efhnt9hHO8bFoBJ9zEHtWIoji+LbNTLpwFVue+jPRcBhLWjqndm5jwvIVbHv2CVoO72fsecs5tPYttj/3BBOWX4w1I6Ee3Hr4EEGPmz2vvcjUlZfzzq9/TsW0WeRV19J96gTZFZV0nTxG1ZwF2NKziMejREMhdEYTW595jFO7tzN11RXse/MVyiZPI6dyDJ3HjiKpNdQuXoqo/tvU4JP837DpbIxNqyUWUWivHzpre3eDi4KaYuJePyhC4tnr6YSSBeDqgCufhezxZypkj4NrXoWtP4PAEGz5McQiSGWLyJguYJt1HXG1hlWf+gyxnp0Yeraj23I3CCIzznuIlx56hIa9O1n22fvQmy0IQmKSK7dyNLWLzkejM/Duw7/ignu+wus/+z4qSaJs8nRKJ03F7Eglq6KSlv17ObFjM8vu+iKKLBPy+3n2e1/jhh//P1LzMqicNY9jmzcMd1lvsZJeVHzWuVfOmjfi95jHg2/DhrP2kyMRvOvWnVXueeMNsn7+s7PKfe9tTIqQ/JOItHcNC5C8T7iunpSrr0FdPZa2jrPr9AyqyBFt6EsXQ/MWyBwN23552ulXRWloCaUb7kfJnoAndwW+zHSmr76DfW8+y7LPfgG/y4laqyXo8zL+/ItQaTSMmbeYuk3voigKFdNmklNZjT07l2NbNvLGz3+IIIosvfPzHDl8kIrps1n70C+Zc+3NbHvmcWZcfi0Tlq1AictsffYxquYswGAbT065j9xyAa1B4sCaNsonZ5JRbEGOg1atUDwmRu14GxZtGG3xRagMeqoXLqNwTDUxvwuzQY1kcoA5/eyLkOTfG1s+LH8QTr4D3YcQsxbRWneUudfdQiwWZf5Nt9NZf5SMkgp2vfwc45demBAZGxygYfcOmg/sZd4Nt5FWUIRapyXsj+HIzWfO1Tcy0N6G2ZFK0O9FUms4uOZNUBQOrX2L7IoqNjzy0HA33hc90Vms7HvzlWFXo7zqWsYuLGb9oy3ULshDa5QI+2PUbe5i9hXlSBoRV28AU4qW9EILsag84vQ6TzoZPSuHnkY34UAMnzNEdpmNoC/Cjpcah/czp2hJzf3rLjJJPibSq2D+16DrANgLYPH9eJ/ciCY/j8CunURbW4l1d6Oy2ejNSkVrS+HYlk1MveRyTu3eweF1bwPgDffz2k/uZ/XXv08k4CetsITR8xZRv2k9KFAxfRbm1HQmXbASUaPBnpmNHIvR19ZM4+6djLv8Uk4VBglb9az4xncJEaZLclKWls6o9wMU4zHo2A0Na6B0ERx5AlytsPh+SCmG/Y9C266E8EjDu6CzgjUf9LbEeRbO/MQuc5J/X1JzTWiNao5t7ebY1oR7z4xLSikZl86pvb0EvVHyqxw4u/2oPiCeZLJrcfUFMDv0nNzVg9GmQUHB3Rsi5I+iKAqHNyYGK44cEyF/lEPr25l7dTmR4BCgIMfiqLU6Ok/Uk1VawZsP/nBYQLLtyEGsmVmMnj2PnLJRxKMxYvEQmSWl7H39JZoP7EVUSYxdshyt2fx+DgWlk6eRP6aWLU//mWV33UfrkQP0NjVwctd2ZDmOPTOXymlT0GjUCIKIEspj3KzJaIhg6VyPkDobeg7D0p/AYDMs/Ba42mHqHaA2gtqQeFaYPyQ5Kck/RDQSQVCrKZk4hY2PPoSzuwu92cKiW+7EmOIgFhmifks31fNyKKpJ+6S7myTJWYSDQUJeD7mjRrPu97/GO9iP0WZn0a13otHreePnD7Dk0/diTo0S8EQIuCMYDDKCrE2ISCZJ8i/Glmnk5O4eiIPemsLca29l23OPEw0FySguZdJFl9B96jg+l5PRs+fjGxqko/4IgiCit1iIR2N4BnpRFAWDxY4jr5B1D/+S0XMXYsvIQmMwoFKr0ZlMKEoimSPs87H1uScpmzwVT38ffc2NVM6ax943X6Zo7AT6Ww9jSZ9APCajUovEIjFQa4kVT0Q8bIeSO6F6Naj1EPsGDDTg2Xe2G7hvy1b0EyYgiAKCSkXc6RoWIBne59312K+4AlSqxDhAEEGOIwgicZeT6IAzKUKS5J9GLBrHNxSm7aiPmZeNwtXVwbRLrmTPay+y/fmnyBk1mvxLr6Lr5HFU6uRy7P8cioxGp8VgsbH1mceIhoKkF5Uw6aJL0Gh1aPQS0XAc39DZQuJJkiT5+wk3Ng4LkLyP5+13sF95JXyICInXGR4WIBluJxDD7wp/+IF0Vizxd9H+6DNEAlokfRyddxsq69IPrWLPNFK7II89bzQPl2n0Eml5yTnkvwdBkrBecgm6mhqinR2os7LQlpf/zQIkAJGmZpR4jLjHg2g0Eht0orJZQZLwbdp8Zke1Gv3nv03dYDYDQwoTFuXQ8nJivPr+Z8do0+LuD5KWb2agI5EQqigJUYe0fDPdjS4A4jFlWAtk8gVFnNjZQ9mk9NNzaH56OhNrDJFgAFEUEUQBRQFRpUKl1dJ14hgH1yYEK/QmMwDRSMJFXpEVFE4nSsVi9DY3UjBmLAG3k3nX3cL2558k7PeTkpvP1FWXI0p6Nj7lpPIiO2klVlwdHYyZu4j6LRvob2shJTuX/OpxiCoN3kE95a1fTaxFXvYk5E39+27c/yAB5xCv/vR+YuEwi2/7LI17d+Hu7QEgFgxQNmkarp5uWg/tRyVJjDv/QowpDva+8TI1C5cQi5iBQVrrBgmFogx0+hjsSMyvpmQb6WvxnHXMpoP95xQh8QwEee/JE7QfS8RULL2jms5TrrP28w3+lecfoMgKjfv7zipvOTxwlghJX6uP3a83kT/aQe28PAY6fGx7sYGCKgf9bT4OrW+nqDaVuVdXnPUsBmirG6RqZjY9je7TB4dDG9q46HPj6GvxIEoieouat357hEgwhqQRmXJRMXtebyYSSggOBDwR/O4wJruWoCdK9/ttfQB3fzApQvIJEA+GGHr00ZGFioJv82ZUKSnEuruHi221tXTf/bmz2vBt3ox58SK8axPxLrI/QOjUKbQlJZSnlFOeUk6PvwdPxIN9zigMGiNyMISo1+F7bxPBgwepvGYlW/r3EJLDNLmbCEQDBONBmlxNfHX85xJrd/4BCLtRV61gTNt2xhx9MWEUU3peQhxEZwV7IT3aMXgHnIT8fjz9fbQc2odvaIhLvvZdehpPEYuEycupZvJFl7DvzVeIx2IUjZuI3mxhxwtPkVlaztxrb6bliMxgp4IcU4iEFNh4f8L0rvy8f+Ut+a9Do9eTXlTCwTVvcHLHNgDGzFtIZmk5kiQx1OGnalYWu15NjM9ajw5SOT0rsR4lJJI5A76RMbeoVIRPnhwWIHkf79q12K+7FoqSCexJ/vlIajXphYm4wIH2VorHT6SvuYGW0+OHseddQEpOHh2RZpqdzZSmZ7HpsedoObQfgKHOdt74xY9Z+aVvQm8EBo/Dhu9BcBAm3gzjrgZbIl4hz5yHvy08LEDyPnJMwTv4z5nDcPeHRgiQAOxf00puhY2Ma6/FOGUK0e5u1Dk5aMvLEdQf79pKpKlpWIDkffxbthBtb0+KkHwMmOwpI34P+iKs+2M9A50+yidb2fbsnxlsT7yP9TaewpGTS+nkGXTUHSF7VBVZpaOG43icXV04uzspqB2H1mDiue98aUTb7z37LHmXXIntwC9gzpcg9WyhsCT/3ZjsOiaeX8iOl8/E+2kN0vB7u0qyMn7pCrY/9wTjl12EIIpYUtM5uXML4YCfht07qJqzgPk33oY5NZ3+thbm33Q7QbcLSaPFPdDPUEcipubA269xZP0aiidMIqu0guyK8bTVx8irXoneGGbFF7+Fb6gPg9VGLBzB2d1F84E9iZiZ85bhczmpnDUPn3OIU7t3AFA2eRoNe3YCZ0wsQz4fGr2eSDCAd7AXQTgz79R0sJ9xi/PR6P6B9Yp4LJEDpTOPLA96wdeViLmx5Y7c5m5P1LPmJtfL/0X0NnsY6vIz5jI7X97xLWpSa7it9jZ450f4I3loZQXJMTL+5u2jPRQ4DFRmjbyXokaDcfp0jG+/hP8DIiTecBAHoLakog87Obyhg/MuPo93W95ljfwOB3sPUsM//r4S90YY+HMd0Q4f5gX5WObnDYuNGCdn4t3YjmddK0OyQsrloxA+wiQQ4LrphTy2o5Xvv3WM1++c+ZHGgkmSJEmSJEmSJEmSJBnJf0zUmyAIS4BfACrgD4qiPPAJd+n/jtaUUKS/6New5Wdw5HnIm5xwq3acWYCIx2L4hhIB7FMuvpxx5y1HUEloTSa+feLHXFF5BYWWQvb27qXYWsynaj7FKMcoAARBQFdehq68jFgsTsQdRmdSo9aqiIbjZ/oigMGshpdvhCmfgqI5CZGUv0AAhFgMUTrz0p/6ta8iiCK+oaGzlFZDPi+evh5CPploDAg6IeSmt8lD+3EX45cUEPJHUWtU+N1hyqfM5I0HH+DxL9013Ma8Gz5DblURtgzDP+e6J/m7iEb9rHvolxSOm0D5lJm4+3qYf+On8A0NkVtZTfX883B2dzHj8muIhcMYbXYqps1kqLuDiResRKVWM9DaTF9zI/WbNxANhxFEkab9e1j8qc/g6ummdPJ0TPbE5y4WjSBpEyIdqtOft/b6o0xcfjF9zY1EQkEMVhsDrS1MvHAlrYcPEPJ6MDtS8Q4OcGrXdmZefi1HN67j5K5tLP3svYSDAWZfdSN+lxMEWH7XffQ2N2C0pXD+nZ9nqKuDaDhE68F9+N0uBEEgFkkEVCgoRMMhuk4dIxIKcHLnNnQGIztfegZJq2Xs4mXsff0lplx8KXtee4nSSVMpnTQVV28Pi275NO6+Xgqqa8mrqkaOxxL1zSkUj63+ZG7ofzOd+1m452mUCxaSXmBhoN03YrMj18RgcBBLJASpVVD288SGeAQQ4S8diFUSFM9OPJ9DHjA6YP9jUP8KUv40pOrzEov7plQw+qHxWVBpYNQF5I2u5fJvPUDLkUN4BnopnzKd/DG1xKMR9FYrrp5uNHojphQHgx0Jh/l4LMbx7YlANoPVxsqvfJtYJMxAWwvPfOOLw90qHj8FsyMVSaNlxuqrSM3J49i2TWSVVjD2vGXYM7O5+L5vsu/NV1FJEhOWXUR2eeWIUxNEEdFw9rNVicZQGc8OchTNZuRo9Ozyc+yb5O9D/LCFUgFiTQ1k1MDAXwiROKwyCBq4/MmEyMOb9yTGFioNaMyw8X7CObOpN9/F3jdDjJ4V5Nh2NaPn3kEk6MPvHERUSbQc2k/x+ElYLDZGz13EqJlzUOJx1AYD7p4uBEEkvagEe1YOuZXV7HjxKcaet5yBthYA6jauo3LWXDY99vsz3RZEquZcwfHtPahUAl0N7uHxx0CHD52xiN1vNIMCl38mE0d5CfyFQJM5Mx84WyAtyX8Q3h44+BRYsmDCDVjiQwy1N/PkV86I7kkaLUs+/TkmX7SKvDG1aPUGlt91H57+XrxBN0IgSjQS5qIvfJ14JIKk0bLrtZcYNW0GiiwTj0Z561c/GXYeyK6opKPuyFldObljC9XzzyN/TC0d9UcJej0Uj59ILOwm4ImgKApafUKERJYVohEZnUlNLCpj1ksJMRL7yM+oI8eEqy/hMqWSRAwWDYIgUDU9G2uagdYjA9izjBSMcWBJ1f8LL3SSvxlJAwXTEj+nEc3HQBBQIlGE08lgmrG1nGo4TkVaGtkVo0BROLF98zkaVNDoDRxc8wYTl69k9Kx5KCTGsEo8zsbH/0BfUwMAy+76MvGYjZnX3cbP23+NO+xmn+cQG9s3Drc2Lm0cD85/kBRdSmIcUjA98QMwainEYoAMET+E3AkxkgNPJP7WLvo1jLkE1MlUyiQfjjXNwIWfHUvr0UGc3X4Ka1LJLrMBiQAKtVaFqy+A0abFaDvzzAu4I5hTdIQDUQxWDUFfFL1Zw2CnH51JjRxXiJ4O5JbjCmqtdPq5GiPoDiEIApJWSyQcYqC1BbPdMSxA8j5H1r1NxeTppOTkEQkFECQVzq5Oxi25kInLEy5XsVgUrcHA1T/4OYIoYk3PQCWpWXTzpwn6vLQdPUT3yePDbXadOM64+XNJWX8nDJxKBAu52hN/Vwu/NRxEl+STQRBFgs5BNEYj5995LyGfF63BiErSIKkTboJ+dxhFTlpBJ/n3JBoOI4oqgmE/F3z+K4R9XtQ6HZJWhxyP4cjNQ6NLx9PfQG65HY1eQnvqRTg1AFNvB0PKRx8kSZJ/AKtDz6gpWQx2eAn6oqQWTmfJp0tQ4iHMDivu/k6MdgcpufnIssLoOQsYPWcBKrWaSDBI0OtGluXTz2QFUSWy5Pa70egNiCqJeCxKb+NJuhtOMtjRRsmEKbTXH8FotSAg0LB7BzULl+AbHCASCKA3Wzm2ZR2zr5lI0KegksRht+qYrIK5X4XgEPQcBWSw5EL2eMRTO886N9FgOB1klsgEESTV2RdArQZRTDjUv+/2/v6PSnXuOkmS/J2oJBGdUU3RWCuSSsKenYs9J4/8MbXEohFUajWevl5yKkcjabQEeroxpKeDmPwc/i8gAL6hIdJLSln11e8QCQbRGU0IkgQqFWqtiCgKGCyaj2wrSZIkfzuC+uy/KUGjAfHDXTENZk1C6OED76EqtYjO/FeSItIqECdfh37XQ+gbN0DaKJj7pcRY5q9QOT0To1XDqX19WNP0VEzOIKMomfT+96Iy6DGMrYWxtX9XfUF9OrFIdfq7+bSQhyDLiKYza6GGmz7De8dTCfhcTL+4lIMbu0nJNjLQ4UMlJZIWIsEYerMa72CIrFIrbXVDqFQCggCu3gCObBPO7gCSOvFZTMk2MtTpx9UXIBaVEVQiQa+TeCyGgIAoSchyHDkaRyVJhAIBMtIy2Pnckx88g9PdVhHwuNFbLIiCCAoc2bSGKSsuxdnbRXZ5JVqDiaWfuXd4rB/waNj+7CDhQIwMSwHtHCMrNxsFgYLa8QS9bk7u2MprP72fmsX3EPKFKF/yeXC2Jn60pqQg9t+Iq7ebWDgRg+Lp7ye7vJLGvbsAOLjubcomTaV20VImLV+JKKlQ6/QMtLcy49JrkLR23nk4IcIwZk4OjXv60GhVpGQZ6W5w4xkIUjw2jc6TrhHHzDk99/uXtNUPDQuQADh7AjiyjQx2+kfsp/9rzz9AEAVyKux0N4wU88gqPfu4tgwDipJI7G89mhCRLKh2DK+zATQfGiC/KgXrOdbU0vLNuPuCI8osDj3phWayy2z0NLl58Uf7hrfFIjIH17VTNimDui1dAKh1KnTGxDqQ1iBhS9fj+os2jbbkmOyTQFCJiJazDcpEkwklPFIMR5Ckc8a6qIxGIi0tI+v/RQxGpjGTTGMmwa46Oh78xVltWONhSvXp3LHty4TiiQT7ta1r+eHM76N75hqY/xU49Ay074SCmVB7OSz8ZiJOY8tPE43UXgFTP00wEKTr5HEsqekYLFY8/QnBnrDPh85kpuXwKXQmC0XjJ5NbVYMcj2FOTSfk85AzajQAPreVk7ubKaxJOHQX57vBPR1qVicE1JP8zURCIWLhCJNXXEr1/PMQVSp0JjOu3h6smZnEYnHED7inpxeYkdQisUgcUBAQ0OpGfp5kWUbUnGPMKUnDJlVJkvwrUWv1uHp6mH31jUy8YCWiSkJnMuEZHODXzb9mVf5lhLyeYQGS95HjMVy93RTopYSJ5vsZ9pseAEGEufcBUJ5STteQ89zx5tZ/zvdlNHy28Fg8KhOLyqiMRgzjx5+j1seHcI6/cSQJ4S9jTJN8LHgHQgx0JmIMTLbIsADJ+1hSM7BlZrHj+ScZ6u2mqHYcE5ZdRNWseaAo6KxWQh430VAQ70D/iLqRYJBo1mQo+gO8dz80vQdLfgCZYz6u00vyb0Dl9CyMdi3Ht3djzzKSV2mn5cggC2+oIrfCjtZYgCMnD3dfD0abHUVR6D5lJqO4lIKacSiyzMZHHuKyb/+Qtb97lg1/+u2I9pd/7svD61WxSJiTO7aiNRiR9BUc3dTPxKVGPAMiB9f1Y882MvVCNQphpq66nInLVqCg4HcOIWm1SBod3adO4BsapHbxUmKRKN7BAbRGI/FYIs7bnp3D0fcSAn16k5mA98x8V1apFUnzD6xPdB2EHb9OmP7UXA7VqxJmde17EkZax14FeyFMugXypoMSSYyjN3wPYsGE8NX0OxNiJEn+qRzd1ImgU/h94GfIiswDsx9AHYtC2IMnBJpoDCnlTJyCOxBle8MAN80qQhDOLchhsqcw2N72gTo+HICgtmDVd3N4Yzs183L52rSvsf3ERh7mJZaHbknEP/6dRHv9DDxSh+yP4rimCv1ox4jtgihgWZCPIAm4327Bk9aGddFHvyPp1Cq+cF4Fdz97kNcOdbFi3NnCrUmSJEmSJEmSJEmSJPlw/iNmxQRBUAG/BhYBHcAeQRBeUxSl/pPt2d9B0Sxo2Zp4iVYbQJ8CmaNH7GJxpOIfGqT54H58zkEMNjshr4fKWXPZ3LWZzV2bKbOXMSdnDr2+Xgqthec8lCQlJoIFUWH6qlK2PHMyEeArwOTlRdgDu+H/s3ffcXLd9b3/X2fOmd5ne1FZ9W7JsmXZcgNXwOAGGNNLICSUQArJLyG5CffetJvk3sslCQkJJIRuMNgYsA3GvXdbtnqXtvedXs75/THSSvKubNna3ZnZfT8fj/OQ9rtzZj9z9rMz53zL5xx8BA49Cjd9p7zA7RU8sRiZI0cw21oJXnghqYceIr99O4GlS49OPDbHq6ce4w2GWLTBR3z/N8sNg/vwLXLRe2CMO/9l6/jjGhaEedtvreOKT3yaR37wbexSifOufzcrLthMYJJBRplZgWiQQCzB7icepXHBIh655dssOOtsCtkMnTu2ccG73scjt3yb+nkLSLS1s/Oxhzn/ne/l0R99l0AkyrLztvD8L3/BeTfcRPpoVV+XaTLUdYS+A/t49s47KOZzvP3zf4Q/EmXPU4+x6dp38dD3vknnzm0s27yFnY89TM/eXWy+8T3se/YpLnzPB9n+8P2M9PRw9luv5eUH7+WCG2/muV/+nO49O8nnMrz5o5/k0Lat3P9f/866y67iV//6FVZfejnde3aRHOznyt/6HXJjYzzxkx8w3NNNx4ZzWH7+Rdzxf/6aeEsrzUuW07lzO6V8Hm8wyFBXJyu2XMrOxx5mqLuThgUd9B3Yhz8UxmVaZJNj+MNhdj72EPXzFvDILd9mybnnM9rXQ+/+vScd02A0Vplf5mzXu43gzjsZ7u1m2aYmDr08yNjRuwfWzwvRsjjG3+/671zStoVV8YXH9zNfY2DM7StvjavgnI+W78jqDUHdsnIBEoD558EHbj1arKQey/LS1ghtK1ZzePvL7HryUUb7e/H6AuSyGdZccjnFfLmwky8UnPAjQ4k63F4fL/zqTt762T/i0R9+h+HuI3RsOJ+z33IDbm95gXG0sYlN172L9Vdfg+Xx4Do6cX3R2eey4KwN4IBpTfyIN0MhwpddxshPfnJ80oZp4mlrxd38dkbvvhuOFR1xu4lc8zayzz9fnpxplwcADb+f0CWXnOYvR16LZ/FiglsuIPXwI+Nt4be9ldzefRT27aUj0M2BWJzkcPn30tjmIzG2i8CmzeVF9Ysvgxu/DoN7y3fXMd3w1r+lZ5/NI/+yFwywPCbZZIEX7h3mTe+fRyG/k1xqkKbFS3nkh9+hmM+z7rKrWX7BxZTsAvlUmufu/jkDhw4QbWzhwps/wD3//lWCsRip4UF8wXLu9h86wIKzzmbVxW9m1+OPEKqrY/MNH+SZu/OM9I9x4TuX0r1/FI6mWvvKOKP9GXDAZRm4Dj8Cvh5Y/KYZP+4yzbq3wrPfhJVvB5eFp5Tjze+4nMejMXY98Th18xZwyQc+RuuyFSe9V3l8PoywwW889nkCLj9/u+iPOfDCc/Qf2EtqZJhzrrkeXyjMaH8fseZWMiPHJzeO9fezYO2GCaGE6xsoFHKkR4ZpmL+QUqmEY9tgWCw+uxEHGD16t5ZEaxB/yE3v/lEWr2/AH3aTaAmSzxTHn88bsFh6bhMP37ILw4BN7+gg3lKejOwLuVm8oYHFGxomxCHVJ3zZZfT/67/i37gRa/58/Bs2UOrspH7xebgsi3w6jVOyCSXqSI8Mn7SvyzQx3W5WXXgpD3zr3/BHYtTNX0DToqUMHTnCcFcn4foG1l/1Xl6838XqTa20Pfh5/vBNX2CbkefT9372pOd7tu9Z9o3sO/Ug3LG/E8tTvsNZtA3azikXI2lcPaGYk8hkEi1BEi0Tzz89AZPN1y3ioVt2c8H1i0mP5mheFKF77yjFgo1D+S6QGy6fz2O37WWwO0WsKcCzdx1g+XnNtC2LjU9y7zs4SsO8MIbpxnAZuL1eHNvGMj2Ybjce/8QJwi7TwnYcvvunv89Vn/ws3kCYunkLOPTSCxzc+jzNS5biC0VZcs4m6tpOLh7SvHgpAOFEHY/d+n32PPkYDQs6uOQ9N5MYeBQOPVF+4KHypH62/rD82aQiJBVlWRaBaJzOXdvp3LmdeHMzYwODrLn0MkiVJ8AsPbcJb0B3wJHq5Dg2nmCQbDrJYz/6Hg3zF5LPZFh09rnsfPJhttz0YRw8xBoDxJoCZMbyBF/8KgzthfZzYdmVlX4JMgeEEz7CCR+Htw9y2/957oTvjOD1m1z+0QTD3UcYOHSQ/c8/Q9uKVcxbuba8ON7lIpMcwwq4cVkWt/7VfwPHoWPDuSy/4CJGerqxS0V69u6iadFSXKZJKFFH34F94/9PjQwTqW+gWChguFzEmtoolcByG+RSRUzLRalYIhpIQ6qnXIQk1Q/p/nLRPccmct5bGPq296T+q+CWLeDYYNs4joMRCOBdvZrcSy+Nv8LEBz+I4fWCbWPYNrZhlAuTlLKY0Sju1pPvyi1yJgzDYP6qBCP9KUb69uKyTIr5PF27dpDPZEmNDrPx6mswHCjm84xk/QTsrdD6xhZKS21xbIdQXR0HX3iO3oP7qWtrI5dKsez8i3Dh4rEfH+DcazpItE68ThORN86zaBGejg7y+/aNtyU+/CGspUtPvY/f4LxrO3jsJ3vBKa8LueCGxXj8r3JHTJcJ9Svg/M+UF1aYFgQbJ97p9RXCCT+rL2pj9UWa6F4NvEuWkD9wAJfHjZ3NYdXXY6fTYLgJnn8+Iz/8IU4uR6ZxCcntBZaf18xLDx5hqDvN5msXEU746D+UZNGGBnY+2c3Gqxfy2G17cHvKRSL2PNvL+ivm8+wvD7L8vGa69oxwYGs/ay5pI5ss0HtwFJxy0QS318QVjGC5PeUxDNvB5XLhmGDbDpbXS7GQJ1RXX74BC+U72ofq6sllUni8frw+P6H6epySzfnvvJknbv8RidZ2/KEwifZ1PHb7CMs2NbP/hX6GusrPse6aJpqf/iLtzUvg4OP0nPNnPPjj2zm87QWaF69g8zs/xxN3jLL2klbYe3f5JkSP/zNc+T8htkD9bKfB6z/+WX/ghWeYt2odF978IXY++iDJwX4Sbe1se+h+DANsxyHa2EL76vXseDRPejSHbTt4AxbNC6Pc/e8vce41HUQbPUQb/Yz0ZvAF3cSaAgz3lIt6JFqDLDp78nGqIzuHTvr6yTv2ccVHV/Orb7w8vsh4yTmNRBpeu8D+snOb2P1U7/jPrWsP0nFW/YTHNS+KsGBN3XgBEn/YzdlXLeCebxyf7tfYEWHeqgSWx2TJOY3sfqpctMEbsNh87SKevvv4oid/2M3GtyzEcpfnRySHTy5UAZAaLt+sC8DlMnjzB1YQbQgc3d/DJe9fwc++8jzFfHn+w9pL26hvD094Hpl+Lo+Huo//BulHHx1fDG8EAoQuvJCRH//kpMeO3n038fe9l/QTT5w0dyW45QIGv/GN8ce5FyzAt2LFpD/Ps3AhkeuuZfQnt423hS4+n0Dnbbzo6RgvQHLMt17+Fpde/T8I3PoJ6N9ZbuzfCXYRRjvLizCPef67sPJajJJNIBrDZZo4jo1huHAcG9Pr5aF/+ycufM8HeO7un9G0aAmh+gbq2+eTHh3CZbjo27+Xxo5lPHv3ERaf3UB6NMc1n1xKU6wbXO+FlnVv8EjPXblUCo/fz0v3/hLT6yWfTuELhVm0cRPFbI5Ec4CR3nIhJl/QzYYr51PIFbGN8pwWw3ARaz55bMuyLDzLluJdtpTczl3j7fEPfwgSE28AKDLVfOEQ/kiE5+66A28oRD6TIxSLseCsDewb28dLoy9wVfxc/OEImbHRk/b1+APQ+cTxAiTHPPOfcNZ7IV4+tzM9sOWdS7j/uzvLxRqPzjf3+qemsG6s0Y/bZ47f7AKgcWGYYLw6ioJ5FizAt3oV2ZeOn6/Eb3o3no6FlQtqDrO8Ji7TwC45OLgxLYtS8fg8LrtUJDM2SriugZd+fTfr3nwVW++5m2wqSbiuHpflZuG6DaRG81huD8VCfnzf1sWLiez4Dqy4DPp2lLdbPwEfvkM3FZhD/GEPyzc1s3xT83hbx7qTr6maFy8dn5+y95knObj1BRKt7TQvWcbtf/c/iTQ0UcjmCcUTpIYGT9o3n05z1W9+lsd//ANSI8OsvuQyfMEg/YcyhOt8ZJIFevePsmhDA7uf7uWuf8tw9cfjPHfnT9n+8AO4fX7WXXEVHevPY6g7zKo3vY9Vl7yd53/5Q/Y98ySJtnmsv+ptvPCru9hy0wfY/eSjACw7/02YnkYGjhXxiXtZe0k7Lter9He9mv7d8M1rITtc/vqeP4ehfXDpn8Jz34anj56T926DfQ/Czd+DQgZ+cfxGnDz+z+Wb2m35nVc+u5yB0f4MO57s5oULfsrz/c/xNxf9DfPC88rvacDAmM28bAGz7nhBjztf6qJoO7xlTcspnzfa2MzeZ57Etku4XCZDo8MAlJwgPrsf7DyP3baHyz60ipuGN/P1xgf5wgNf4KuXfxXL9fqXKGZ3DTHw7e0YlkHDb67D8yrX6aGL2yn0Zhi75yDupgCBda89X/cdZ7XytQf38r/u2sHVa5rxuXXDABERERGR01UTRUiATcBux3H2AhiG8T3gWqD2ipAYRrkQyWuINDaxaOO5lAp5HNvBGwnzePaF8e/vGtrFrqFdNAWacF7ZKXyCsYEcY4NZfCGLaz5zFsnBLMGYl2wqT+DJvyw/yHFgzz2TFiEBMIIhbNum7lO/TehNl5Ldvp18LksgGmXj267jydt/NP7YlRdeCq4Gzrosiue//qLcWEjRFj2MN1i+y3z5SeHcty4kGIuw7rKrWbzxPBzHIRRXx121CLkyXHLTzfz0H/8PI309tCxdwcEXn+OSD3yM7t276N6zi0Vnb2LvM0+w+tLL2ffcM+x77inWXHo5W+/9JcF4HH8kSjY5RiheR3JoALfPjzcQZNfjj7DmTVfw3F13sP2RB7jk/R+lc+d2Mskxrv7U79K542UaFnSw6OxNFHJZSoU8y8+/iNTwEIZpsmTTZvY+82R5MXI4Qsf6szn/xvfQvXc3v/7Gv7DywktIDg6QTSVJtM1j56MPccG73ssD3/4PBg8d4rEffZcl557Plvd8kMd//H0GOw+DYTDU1cmaN12JPxxh632/4vx3vpcnb/8R3bt3cM7bb+CFe+7i/Bvfw77nnubZu+7gTR/+BJ07tnHuO27kvm/+G8mhQRo7FrP3mSe5+H0fpv/QgfEiPfHWdtpXTj7QLWfoaAEOIzfMkV0OV3xsFaP9WVymQTjhY7AzSWeykxJvsPM0vuDV7ybiDZe3V2hfsQpvIEg+k8KxHVxuD4PdOYo5N2/91B9SKqWJNbcy3N159GWYbL7+Jl5++H6iTS107/PRtOSDLD7XRanko37exImLHt/ECUDma1TdD5y3ifZ//ifSjz6GUywQvOgigps2kR0bY94//SOpRx8FwyC4eTPmkiV4IhHmffWfST78MC6/n+CWLQTPPfc1DpqcLu/ChTT8/u8TevMz5LZtx7tmNWY8jhWLYdXXk9vzDG+77gaSZgxnZJiwmSTUdh7eYxNmvcFyMZz55530vH09+8v/cSCXKlDXVr6L1XCPwbxVG0kP95LNpHnzhz+JPxKhZ88uDr/8Alvv/SXrrngrF773wxgOpEeG+ek//DV2qcRF7/0QPQf20bZk+XjuPn3Hj6mfv5Br/+CLGC4/v/xGL9lkuWDKc/cc5KJ3L8Uulshlbbp2jbD90W4ANl4YILr76+C7XkVIZqNjgwjbflregDrgyvf9hAvf+1G8/gDe4OQLLJzsIEW7yP70AT6+4wt8bMH7uXTtOwj4QuQyabJjY0Qa2rCLhfHzC4DM6AjzVq3lhRMG8yy3h7VvvpLR/j76D+5n0cbzWLB+I45t03vQZOG6CAe2DuD2mLQsibJqSyuHtw+y5cYlxFuDpEZyDHQm8QbcbLqmg0DUTevSOLlMkcs+vIpgzEOiNUQgXB0TIeT1CZ57Ltg2+SNHyL74Ig1f+ALZF19kdWsTezsPMXDkEM3LVnDede/iZ1/+X+PndLHmVmzHxn30DqoXf+A3KOZzuL1Btj+aJdq0gev+aCOG4yI9ZrKg5SD1j30YY2AbjSPvoz/aNGk8Jbs0afsEgQR0XDxVh0GEREuIUt7myo+tJpsuMK89QcOCCGddbmBZLhJtQYrpLL1Hslz1iTXkMwWCcQ+XvG8FXbuHWX1JG96Qm+2PdnHu2zpwcDj88hiNC2IU8jnAIZfNsuy8LeCC5Rdcwo5H7h//+ee+4wZ8wRAtS5fzwHf+k8t/47fJjo2yYO0GFqw5CwebxoWLx4vxTaZ+3gKu/u3PkR4ZwRsI4O17AXryEx/oMssLm6Wyinls26Fp8TKaFi6mVCziCfjJZdKQt9j4lgU0dURo6lBxWqlOocIYeY+XQDTG5htuopjL4QkEyKZSrLnkClzuOtJjRTa+ZQHbHu1i8XIXDO8v79z1vIqQyIxKtAZpWRI96e7UK7a0Eoz4ePYXtzFv1Voufu+H8QSC+EIhhrq7cAEN8zvAcHjsR98Hx8Fyezjrirfw8gO/Jt7ShmlZNC1aSihRx5GdL7Nw7Qby6TS9+/ay7vKreeGeu4nUN7DyokvZ/+KzXHDjh3BsF26vheW1wHaIB4aJ5LeDJwSucpEQLB+E/WC48Jt7WPDlL5F8bi+lTBb/mrUYfh8O4KJ8L1oMaPyD3ye/Zw+5PXvxr1+Pe/58MMBwuXBsG5fXg2NZEIlgNTXhXbiwQr8Nma0SrSEsV46hviCGaVAqFFi2+UJKhTxun59CLodNCW8wSiZXKi/clTnBNG0MBxactZH2VWux7RIef5BcKoU/EuRN718JLodg9NTXOiLy+gXWraX5f/4PMs88S/7AAQIbz8azdBmeUOiU+xRy4PGZvP0zZ5EayhGMexnoHKOQOfUcDADCjeVNapbL48G/bh2Fw4exjy5iM0txMACXi7av/D8yzz7LaEMD0Eso4WPH4+Vxrifu2MeaS9rw+i2a5gdZs7kOx+3h+t87m2yywKINDWRTBSy3i46z6smni7z1t9eRGcvj8Zq4LINtj3Qx0pvhsdv2cPFNy/AGG4g2zyOfHiEzMorpdePCGO+LzqVSnHfdu7jj//wNdqnEjkcf5IJ3vpeWJcvJZdLlGyuXbEJ19bh9Ad70oU9gmhaD3QEeuXWAxefUE14K8zpMggMOBX+GTv/TWL9+BJqWwN77aJq/mQuufT97lyUZ7Cry6I9HsTwmi+YNw8//5ISDZ0HfdhUhOQ3RpmY6NpzDvmefomvXDhJt8wjG4yzZdD6xxlZcVph1V7yNfDqJy3RheYNAjE1v9zLWn2XtJe3EmgNsvf8wAE/9fD+rL25l09s7KBVs/GEPy85rIjlYLsaRaAkSjE1euLx9RWK8wAeUC+AMHBnjmk+vY7Q/g8dvYbpdjA1kae6IvurrijcHufbz6xnqSoNx9OdGJ/7cUNzHZR9eyVBXikLeJt4UIFLv5/rfP5vBrhQu00WiJUAgUt730vcuZ+2l7RSyJWJNfqINARItQQa7UhTzNrGj+x8TqZt4LhVvDrD47AaaO6KE63zEX1FAoH1ZnHf/8bmM9JWLuCRagnj8tTJ9cvYJnnMOC771LZIPPoArGCK0ZQu+VSuZ//V/J/ngg+T3H8C3ejWehQtwz5tH+z+W57S4fD4Cm8/Dv24d8/7lX0g98gjuhQsInn8+7rbJi32ZwSCNv/u7hC6+mMxzz+Ff3E7AeRbz4E8ozv/whMfn7SJOLnm8AMkxbh8ceXLiDyikqDeSeJavpHPnDkZ6u1h72ZW88Ks78fgCLD//Qu79z6+x6dp30b5yFabbTaFQANtmpLeHoa5OEu2bmLcyx8oLWojU+Y/eqV7vtW9UIBBgoKeb1ZdeTj6TwXAZmG4PjuOQz+Xwx6IMd2fYfP1iEs0BDm0bIJwIUN8WBI9JtMGPP3Tye5sZieCaN4+mP/1TMs89T+HgQfznbMSzZCmBBa99F3aRM+X1B6hrm8f6K68hl05huFy4fG4+8fTnAbj78F18cd0fcMG738c9//7P4/u1rVhNvLUdul6c+KTBBsgnx7+0Cwa5TJ63H51vHoh5SA1lyWftKXkNgQY3V318DU/esY/BzhTzVsY567J5xBuro1Crf/VqGr/4p2Sff47cnj34zzoL34qVuBt1/VcJ0UY/517TweO37WXvc3nWX/1unr7jO+Pfz4yN0X9wP+uvfCsHtz7Pfd/8Gpd99Lco5spzFdweP+lUmoPb3Fz8gd/j2V/8F0Ndh+lYu5qLL1iM98E/hDUnrJ3ofQmGD6kIiZxS48LFRBqa2P/80yxcfzZr33wV2x68lyM7tnLeDTdxx//+6+NzzJpaCCUSDHUf4YJ3vx9fOMS2h+6nbt4KRve4uewDHex4spvhnjRLzmnEE7DY/WQP+182WX3J5SxYtwGXaRJM1JNOxvEEHCy3j2Ley4oLP8iis6/DdHvJpkpc+N7fwy6k8Eca2XjNzYTq2jEML4s2+Fl6TiONCyOE4mfQF9237XgBkmOe/S/Y8MFyEZIT5Y+eQw+efCNXoPzYjR8Bn+aDTJVn7z7ICy338kjpHj6+9uO8ddHR97ThQwCMZCwWpJNYdcff177zxCGWNoY4q/3U1/7xljZKhQJj/X0EojF6hwZxTJNC0oPfKbHpAoNHHuhm+eYW1rdt5PznXuIh1+P82c/+P7645I/wNAQwEz6M1yh8Y2eLjN5zkOSDR7CaAtR/aDVW4tVz1TAM4tcvodifYeiWnVj1fjytp+7/hXKR0j9+60re92+P881H9/OJixcfj8GxOTR2iF1Du+hOdZMtZTEwaAw00hZqY1XdKnyWxnJEREREZO4yXq2ARbUwDOOdwNWO4/zG0a8/AJznOM6nT7XPOeec4zz11FMzFeKM2D6wnff/4v3kSsfv5PDFzV/kpuU3nXKfnv0jDHSm6No1zI7HunGcctXoi65vp/m7JxREuPDzcPmfn3Ys2WSS4d4uCtk86dFhxvp7CcXriDa3Eoo3EX7pX+GeLx3foe0cBt70DQ7th1y6SPvKOM0Lo5hu1+s4AlXpDVY1OLWqyd2xHkrf+wC9Sz5IfzFGOB4ll81TyucJRiOMDo0QCocoFovkMxnCiTijQ6P4A14cIDOWJtpQRyqZxXS7+eXXvoJdKrHp+ndRyGQJRiOYlsnup59i3uoNNC5cTKlk4JQM8tnynQjGBgZxGTkScQ+pVA6f16JYtElmi4QaGhnt7cMbDGJaLjIjo8QbGhgdHMYyLbxBH2MD/UQaW0kNj+A4EIxGKGTT9B/ex+O33kIwFufst15LKJFgbHCAh777n5iWm43XXEesqQWfq0gsbFLKZghmD5Jr2YKTGiCY3U+q/lx8vc9gNiylkMsxNjbCQNpDNBEnmxrDLpYIxmKM9PfjCcdpWrKcWOPki04rZMpzFyqUv3vug1//BYX4KjpX/AVP33WQrl3DYMCSjY0s29zAR196D1+94qssTyyf2diA9Fie5GCW0YFs+U60cS+245BJ9pNPjTF45BCFXJZEazu+SIyxvl7q5nUw2GXQs2+EurYQbcvihF+jU22Omb3vvVNk11M93P1vR+8EbMCai9uINQbwBi0SzR4OvfwwOx97iFw6ybzV62hduoJioUAxn+O+//w3wGHj264n0dZOIZclEG0gm/KRaGsnEIb0aDdDnYcpFQvUtbaTGH6CI+l13HtHllLBxuMzueJ984hHs4Tu+x1Sqz5BZ3IhQ/1FmhuzNPd9F/+u78PbvwwbP1TRYzXD5kbudj4Pj/0jvPD9421r3wlr3g3Lr3r1fbue578O3Mnf7vjWeJPf8vNfm/+SDm8b+ZIFh58kG15A92AGAMe2iTW3YgUClLJZBg4fxC4ViTW14DItkkMDBGNx3G4vuAwMM8aBF1O8/FAnZ102j7r2EKWCTSDmwS45jPZnidb5CSV8HNkxxHBvmpYlMVoWR/EF3dNxxGrF3MhfYKirk7HBfrLJJIFojEI2w1DXEdxeH4n2+eTTKbbedw+NHYspFVfTfyTLyvNbePG+w3TtGQED1m6p55xNBQLfefPxJ37nN0gG6/nCnu/x4JEHx5uXRJfwr1f+Kw2B167KL2/InMndM9G9d4Su3cMUizbty+M0LYzgMsvX67Ztc9+3d7Dt4a7xxy8/r5E1l87DsR0KuWL52u6ZXlJDOdqWxmhZHqWY7caxbZKD/fgj5YFrw+UiOdBPemSYcH0j/kgMu5jH7Q8w2tNFPp2ioS5IQ9+vsJ76N7j4C3DR51/fi+l5GZ7+Dxjrhm3H72jIxg9D60bY+MEzPFozavblbzFPb2c3+dQYmeQojuPg8frwBsJYvia8HodI06svcpCaMPty95iurfSVwpRyebLJJLlsGko2wUQCl9vLoz8apnvvKIYBay9MsDH2MwJP/m1533f9B6y+vqLhy2uadbk7OpClc9cQg0dSNHVEaF0SxR/xMnDkEN27d5LLpIg1teINh+nZtRNfOEQulaFh/gKGe7qw7RLRhmYGOg/jDwUZ7etjz9NPcME7byafzeIyTYqFAi6XC8MwKBULWB4vxXwel2URikQJBGNQyEJ6ANOy8KV34x7dB4kOcAcg3Q/J7vJjAEx3uZh7eqB8Z7XW9RBtg5Jd/pw3XVC/EjwBKOUgPVJeAOyvg/ol0LC0Yse7wmZd/taMZB9DO1/m4FCWUCwGQDGfx+3z4fb6CMQS/OobR3jrh1oJ5/bA4ksqG2/1mZ25O3yE/qRNZmSIXCZDqVTAFwjh8fm57ctdLDqrjvNvWKp+/9o3O/N3juk7PEr/wSQP3bKbfKaIN2hx8U3LqJ8fItH86pPXa5hy93UYG8zy479/hkXrG9j+WNfxG+8cdcMfnE3L4tjrft6hrhR3f/0l+g8lsdwuLn3fcurnB8kk+7DzKYrFAoZhlIuL2OA4DpbHjV0qMXDoAC7LwhMIYrosok1NuL1eMmNjjPb1kEuniNcniEcimL0vYsTm85xxiN96+q/Gf75pmPzH+f+d9d9+P1z6R3DfX8Mlf4j93PfpvewWDu4tYfl8zGvP0vCztxwvptawHN7yd4ADi2b8vKbmcjd54EWGsyajvT1kRkeINDQRqqujJWLAL78IrWfD+pshNv9Vn2fbI538+pvbT2pbuqmRyz64CtM6vXlXYwMZHrxlN/ue6wOgdUmUsy6fxy++unX8Mb6gmxu+cDbxpupYBPxaioUSO5/o4cHv7aRYsAnGvFz9m2tes4hKhdRc/s56T3wNfv77ALzwtr/iQ9u+RtE5/h7/t6t/k7eEl8J3333yfvM3Q6Aett9xcvsHfwqPfYWB9reTjK6kUChil2xKhTyGy8QbCJAZHSE9MkwgFqd+4SJK2Rw9+3cTjCaIty3E548RjHsxjGmZ0vVG1W7u9rxM56hFPpMkl0pjedx4/AE8/iAudz0//KunCES8nPPWhWTTRR778R7e/pmzmL+67rWfW2pF7ebv6/BU91N89K6P4lBeC3BW3Vn87Yo/IzMyxHB3N75QiFhzC+Gex4g0tcDPfg9Gj5R3Nlzwtv8NS66AWLmI01BPiv5DSR743k6yyQJun8mWG5fQsCBM4/ypWTQ+1JPEdqCQKREIWZhek2BEfSQnmBO5e7pymQJ9B8YY6csQbTAp5XsZHejBFwzhsjwU83liTQ1kk0kGjxzGZZm0LFlGPpPlxYd/zbyzL2N4r4uGthBNoQNw+GGC3Y/iPvBrWHMjLLwQ7jg6J8EdgE8+BHWLXz0oOZU5kbtjA/0c2bmL1NAozYs6GO3vwrFtBroO075iFUOdR7A8XhKt7XgDAcb6ezDdXgqpJAFnlHDLMnxti3B7TEpFm+RwjtRIFstjUsiUcFkGltcFDjjF8ru7YZSLQbosF7ue7OG+b+8oz9P1W1xy8zIe+MFOcsnj57Km28VNf3Iu8eYpurbbeRd85xXnxW4/fOQX8M1rJ94Q6B3/D0oF+Nnvnty+6nq44V/Bqsqbvk3HSfi0LtQb7EzxF1/9f9y7+DtcvuBy/u6Sv8NlHO0jeOrrcMfn+fr2jZz/XBeNf/SH1H34w7xweJh3fOVh/tvbV/GRLR2nfO7D27by/T//I274//4CbyDId//093lrX5rEWU00RX9O4bpv8r3v1lHMFFnGXh7ruZXhDfP4SctD3DBwGb/RewMuj4m7JYSnPYS7PYynLYQr6IaSQ7E/Q2bHIOknu7HTRYLnNRN92yJcHvO0X39pLE/P/3sWw3LR+Kn1mKcxt/fD33iCp/YP8fPPXcCu0Se45+A9PHTkIYZyp76JgOWyWFu/lisWXMFbOt5Cvb/+tGOcIVV1ASkiIiIis0+tlPKf7MR4wkWZYRifAD4BMH/+qw/Q1qIVdSv4+lVf53s7vkdnspN3L3s3F7Rd8Kr71LeFObJjiGDMyxUfW4VdAn/IovGX1xx/kDsAHZe+rlh8oRD13oUMd3eRz6aJNjXTMH8hsaYWyAxDw4pyUZPMUPn5wy3UxQvULVHH3GSqMnfDTZgbP0jL7Z+iZfNvwcN3wlgnvOmL8NM/hbNuhr3bofNZuOp/wh0fgEWXgmHCrrvhii/Bzz4K9Uth/vk0Xb+Ksfpz8Cf3Eh+7H1f4fLjvr1l39V8zaIfY8WKKeMd8HvjeTgq5EjBG+2Ivb357HeHDP4WDj8KKt8H9f03uqr/kGfsI37IfhzGD9zWcy9mhAr77/hDSg3DpH8IvvgR2keLlf8NwfBP5PEStIYKubSwe+ynLPvJWsuFFRAefJDI0SMExaP/850gWPcSsNA09d2AM7oV998OV/wMe+DNC0XnlTueH/gH/hZ+HrbeCXcC/7iYiD/1v2rb8Djz4Ixg5fPw4XvN/4ZxrK/VbnBEVz99gPWz4IO5ULz5jjEXr61lzUSsYBiP9KfY5u/jyZV+uSAESgEDYQyDsoXHByYNwoVg7YwMD5DNp8tkswXiChvkLae5YBECiBZacrQr606niuTuNmhdFjt/t2IGdj3fzjt/ZMH5H+br2tzB/zTqyY2NEGhuJNpSLJG3v38a5Tb9FIO2irq4ZfyBG3wGDXU8NMG9Vgkh9gFDUC4YXj7eFSO4l/L2/hFKeZY37aLw5RmYkTdAcIBoag7v/AoYPENkwSqRxEF7+HOzpAseBcCssePXzGJlc1edutA3W3VyeiJoZAl+0fOYenfyuUyeJL+KaPRbxVb/BLX1PscBXz7ubL2C5Awy8gCfUBM/+X0L92wktfhv9868j62/AIk+sOIbfGaB9ngmOSS4cYDjnxxeM4g0GiDWV31MzyTwuV4BF6xvoO5zk5/909E4vBmy5cQnNHREaFkQwLRfRBv+pY5U3pOrzF4i3tBJvaQXKE7uTgwMEonFclkl2bIxcKsO6y97O6KCfzJiDx1dg630HuOwdfnLpBC63RazzNqyRluNPuvRKcHkI+RP88Xl/zN0H7uZXB37F+a3nc82ia1SApAbUQu6eieZFUZoXTT4x2+VysfqiNg68OEB6NA9Az4Ek5wQtSkUHx4ZwnY+NVy8gOZTDF7CINgQwXFGwbfK7uxlKD2AZNsFojHn+QxSf/nteaP8cg/Y8AmkTTzZJY1OQxHduAPvoxAhPCJZc9vpfTNMqmHcu2CVo21BewOyLwmhXeRHzHFRV+Wt5iLoLHM4HcXsKZJOjuCNBisU4iew2vK0bKxufVJWqyt1jYgtpGNnPSDaLE6qjkM9TLBYpFfykx/xc9k6L/CCY/iDRw7dgPfr35f2WXAHt51Y2dpkx1ZS7kTofkbqWCe11bfOoayvfSbf3wEGGOjuJt5TvipYedWFYTay5dHX5wfkMLXGDkd5eos0B1l2zDv9jn4dFb4JQA5TyMDYIiUUQTZTvhJY9XL6L2VP3gcuEeZsh1Vfuu420gD9R3rDBKZXHEEpFyI5CZhACdeV+g1Bzuf95aH+5n7lxKQzuh333lr8faQG3FzqfLhcxufK/z9CRnb2qKX9rRqiBuG8Eb24rg/5rSQ4PEohE8fijHN6Z5umv7uKtH19B2OiCQLzS0c5aVZe7VgDTSZNJ+3G7ixTzeUx3ENtOcONvQmxxB25/VU60lgqouvydY+JNQXr3j3LJzcsolRxM08BxHGINgUqHVvXmSu6GEz6u+fRZHNjaz7lv6+DhW3Zx7F5PZ102j7rXuNPqqcRbgrzjs+sZ7k1jWi5izUE8XhOYuLCzMDLIyMEubNuF318guKiNbMHEySexC1n8u35CrC5enr8QiJfvNmy8CQ4PQc9LsPBC1o8d4cvn/gnfPngXEXeI9zZuYk33Lgg1lc+lw83glHAVRmne8/c0pwdg05/C0D7Y8jtH5/74ITofhg/AsqvP4KhW1kzmbijgx8odwY5GcblchCJBmp1OePaB8tyTYv41C5AAtC6N0zA/TN/BMQC8QYsNly847QIkAOE6P5d9aAUjVy/Ath1iTQEcx+HK31jNrid6iLcEWXpuY80UIAGw3CYrz2+hZUmUXLpIKO4lFJvdC5jnynvvjJh/PngjkBtl9UP/xL9f+jm+O7yVoewI71lwFZuf/i5sXABLLofdvzq+X6AeNv8W9O+A/l3lBfybPl6eA7H8bdQlO6nr2QH+ONQthaVXgdtLqVSke9dOXJZFMJogl/IzcNggNbIU0+0j3tT4uv6ma01FcrdpFc3phzjsi1AaK+J2B8j7bWL+NIVsjqs+sZZirsSRXcNse7iLNZe2nXKsTOa2an/vXdewjq9d+TW+9fK3KNgF3rfyfSSa5zN8wKCYy+MLhUh0/hL//X8GH7kLLvgsZAbKi8P9ifJ7Vez4fJ5YQ4C+g2Nc+K4l2DaYlkEuUyTeNHXXSPGmWVvwsapUe+6eLq/fTfuKBO3j911tPun7fQdH6dw9TH1bjGA8g2lZ5PN5to5uY9/qHM08ypZVjRiBehg9DEED2lbD4gsg0g4P/f3xJ7vqL8tjHVJR1Z674bp6Vpx/vAhBq7OU4a5OYs0t5DNpYs2thOvqiTe1YB1+lIbs8zA0BKanfA3uboOjhRZMy0W03o8nCgcPd3Nw+AhJzzBtTY2sb1yPx5zYh7x8UzNNCyNkxgqE4h7sks3qC9t45s4D44+5+KalxBqnsG+raTU0rIS+bcfbLvlDqFsJWz4P9/z58fbY/PI6In8C4otgaG+53ROCLZ+p1gIkNcdxHP7+J1/l14u+w6bGTfzlhX95vAAJwOA+HMPCSZWX4Xna2wH48j27iPgsbtzY/qrPXzdvAQC9+/bg9pXn0Ho7Okjv6oRzIP2T+zirdB0P5W06E0ugx+CtrRfhnd/C97kF79IYn7TfR7EzTeqJbpyHOyf+EJeBb1mcyOXz8bSHX/P1ZpMFkkM5xgazZJMFSkWb/PIE2Uc66f3n51nw/lVEG/0YrlPX5Pj05Y2856s9XP3Vr+Nq+TdivigXtV3EpuZNLIsvoy3Uht/tp2SX6E33sn90P8/0PsNjnY/xt0/+LX/31N9xXvN53LD0Bt48/82T/o2KiIiIiMw2huNMa4HFKWEYxvnAnzuOc9XRr/8/AMdx/upU+1Rj5dOp4jgOJaeE5Tq9GjKFXJHBzhTJ4RyhkEMinMQ9shP23AueIHRcAosvndogh/bD4L5yMQZ/HOqWQOOK19ytBs3uqr25MTj0JOy9t3wnh+FDUMhA/TI49Bi0bSxPNhnrLi/mOvxUecFxMVfOgXmboOt5CLeUO896tsKCLeVOKE+oPJn88NPQsQWS/eANM+RZzVB3BncwSJ23k0D/Y9B+Noz1lie0FNPliezhZkpj3eBPYOZGYWA3tJ1dfh6Xqzzo2/3C8TtqQnmS+45fwOprYc+vIZeEVe+AI8+W900PlheoNa6AHXeW4y9my8+98CLY+qPya+m4uPy4+MLya7f8QKl8rBZcUH7tI4dh8Ztg3nnlCffVZ1qqnlYsf7tfLB/37Bij0c0MDLhwuRziLSHCLfXVdpcQOXOz+713iqRHcgwcSVHMl4i3BImd5mDw6zrPSA9Bz4sw1gPR9vJnQqof6haVBxNGO4+fBzgOdD4Dnc+VFwK3bSzfoXhumTu5O3SwPIA0chi8YUgsgebVp7fv6BHY9wDFVD9mqAUjWF9e1GZ5AKOcS70vlz+f52+GcFv5++YJlcxNDwTrXvPOFLlMkcHOJOnRPJE6H4mWEKZ79k7uOkNzJ39fS3IQRg4ylI0y3FfC8pokAv0E7Z7ywkmD8nli5zPlc+GmtZBYDN5QuTDCUcVSEcuslbqgNU25O0VG+zMMdqYwXAaJtiDh+GlO5h7tKk/EzQxCIQfhBsinYf/D2M1rsRuXY3VvhWAT2Hk4+Aj44uXiPW0b3liwxTwcegLyY+XrWtNdvlZtXPXGnq9yZmf+pkbIDfcxOOonPVogEi6QCAxhNi7VwtzZY3bm7jG9u6CUJz86yEA6QTofJBwzSXi6sIpJKGYg2VPukypkytc/DcvLRVSl2s3u3H0V6dEc/UeSFHMl4s3Bye+MNnyo3AdXzILlKxcPcRwwLXCHysVGigUoZWH0EKSHIdIMGOXzZHcAXEa5SGWoAUwfFNLlrVQo394du/x4HLCd8s8wXOXC14YNpVL5dm/GsbtgOeUYvGFoXnNai/dmsTmbv1WhkIWu58pFc1rPJl0MMjASpFB0EUu4SPgGwAU0n1XOYTnR7M3dgYOkMw79gxbFXJFEaIyYfxjazi0XUJLZYPbm7xxz4nyKcMJHvDWI2336d92sQcrdN6hUshnsTDHanyEQ9pBoC+L1v/ZdVqfE8CEY2AN2oTwfo39Xufh7qg+CjeXCIHVLyufq3S+U5+ssvLB8Ldqztfxv11aK887FZdu4DMrjfKF66NsJsXkw1gXReXD4yfLCqEQH1K+EdF95zC9YB74EhI9+b+bVZu72bisXc0kNQKQVcEEhVZ7T0rK2PG/rNKSGcwx0JikVbeLNwaldUCYzoTbzd7br3gp77im/l7asx3ZsnIaVmKFGOPIk7HsIVl1Xfl/tfgFa1pfnx2WGy/0YyV7IJ8vvmeFGML3ltvRAef5E3bKTFvYfU8yXGOhMkhzKEYp7SbQEcXurdsywtnN3pBv6t2PnUziBGKbpAxxoP4dSyWaoM8VIfwZ/2EPdTH6uy0yp7fx9nUp2CQDTNcm1zMHH4dDj5XPKs26CoQNQypXnNbScDZ6Tx32LhRKDXSnGBrIEI14S7UE81fs+NRvNqdydCiN9aQa70piGTSJRIlTYQ2lwP65kD0b9kvLcssYV5fnl/dvL43ihRogvhmRnee5jogOa1oBH59lnQLn7Spkx6H62/P7rCUK8A1rPOuXDX/W9/FXkc0UGj6RIjZT7thKtQayp7tsa2Av7HigX4+u4uHwDgkAcurZC38uw/6Hy58r8zcdvTjh0sNwnUcqVi5hU91qi6Ri8mZaFeoVSgT+69S+4O30b6/3n8rUb/gmf9Yo5XP91A8kjO7j93gY2HOih47bbeNaq4+avPcbvXbGMz1y29DV/zn/83m8TrquHIgwePMhlQzFy23/NsneOUYxuwnn7V9nTlea+7+zAch8iHHuZ93zpr/ibJ/6G72z/DpfNv4wvbfkSYTNMsS9NvjOJkymCy8CM+/DOD+MKHD//LhZKDBxO0X94jLGBLMmhHMnhLMnBHMnhHKWC/ZoxWx4XdW0hmjoiNHVEaO6IEoi7eaTrEX6w4wc8eORBsv1byPW+jfdf5OHP3/Km016Tt3dkL7/Y9wtu3307nalO4t44b1/8dm5cdiOLohUtYKWBRxERERGZVrVShMQCdgKXAUeAJ4H3Oo7z0qn2qflOh+lWKpYn9np0d/czpA6zalZIlyezuyZZTGzb5Qk61uuY6OkcndQ+2fPVntlVhOREhQJQAvfsvsPNHKf3XqlVyt3X68TP3lKR8gIzG3CBpQlAM0z5ezqKBcYXTrrM8maXyv9KpSh3q1kxz9FbaJUXY+pv5ZVmd/4Ws2Ab4NECzFlodufuiWy7XBDPMHV+OjvMndydbpOdAx/rj3WccuHI2dHHWk2Uv9WkmC/nuzswm8YUpsvsz91CHnBUeGR2mv35K7OVcncumGyuhOOUC5iczjh6dfZr137u5vNASXO15qbaz9+5zHHKxScn+9utzvfLqTQ7ctdxytdmbo+Kg84tsyN/p0qpVJ53o3G5WqDcnQrFQvlz2qN5xDNIuTuX5bNgmiffSK621EQRkpcGXuKPf/VF9mZ3c2Hpar78ob/E/cpj7jjwd0s5kGti++Nh5u86QMvDj3Ht15/BceCuz12M33Pqaxg7XyK3d4T7vv1vvLzzAQCWRjayIdJM8mdfZunvrsBK7oDPvwSGwdN37uexn+zFLh7mhi+8mdalbXxr27f4h6f+gYZAA39y3p9wybxLTvoZxXyJ/sNJ+g6O0XtwjL4DYwx2pXDs8iEzXAbBqIdQ3Eco4S3/G/cSPvq1P+zBtFy4XAb5bJHeXx2k5/Fu0vV+xjwmfQfHGHT1saPxcXY0PU7SPUzEiPGW5mu4btEN/MMDQ9y/u59//9A5XLq88XX9DmzH5tHOR/nRrh9x78F7KTpFzm48mxuX3ciVC66cWBBm+ukCR0RERESmVU2UJnYcp2gYxqeBuwAT+PqrFSCR02Ba5U1kNnO/SkVqlwtcr3NAxTA0EFkL3G6gZjsxRUTkRCd+9urcVWrBZIuPZ/fEQ5EzY3kqHYFU0swPvItMPZcLXMplkQkmOwd+I/2xIrXK8gBHz3U1piBuXfeIiEgFTDZXwjBO/0Ye6teeHh6dF4jUJMM4dfEgvV/WBkMF0UXKC8P1niVziKV5xCIzSgV/po3jODzf9zzffvnb3HngTvz5EO9Jf4Y/+M2P4p5sTm3fDkj1sW+wkXrbRbFjMb996zaODGX4zsc3T1qApNCfIbt9kOzOIXJ7h6HosMBezg7XIxguFxd84SNEQ152/+zL5PKNWKO/hiPPQPtGNl69ENPM89APc9z2v7ez/PwxLlz/Fpacv4L/+cKX+PSvP83a8Hqu9F5LW/8KBg6mGOxKjxcc8YXcNM4Ps3BtHQ0LwjTMCxNK+HC5Tm98zRdyE75pGQ0JL7sfeI59jbt4bOVLPDXwNAYGyzmLlT2bqd+3DNMxuZ9DrMFhaxg++vUneac3xOZICH/Igy9o4Qu58QbdhGJeog0Boo1+fMHjnycuw8WWti1sadtCf6af2/fczq27buVPHvoT/vrxv+Zti97GlQuvZH3D+okFYkREREREalDNrORzHOfnwM8rHYeIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMhUGcgMsGNwB491PcZ9h+5n3+hevLafDV2Xc23sJt7xyXNxe09RXOzFWwDY3hfCW4zxHxuu5/C+Qf7XO9exqSOBU7Qp9mfIHxojt2+E3N4RSsM5AKx6P6HzWvAtT9DWEaV9+HwwIFLfCIBn8WL6HuwjsD6CcdtvQ8fFkBtjfbyDsRWjPPtCPbuecLH9kS4ArjQ+w0tND/FC6738vfcvCBairG7eyNkrzuHs+etZvWQJ4YQP4w0U9B/JjXBo7BA7BnfwQv8LPJ9+nj1L9wDQ1tXIRyPv4YZzbmL+osUYhkEuXWDgSJLUcJ70aJ61A2n+1/bD/CCdZOtIgS2jPpqzDvlkEftogZRjvEGrXJCkwU+0wU+4zke4zkekLsiHVn6Yj6z+CE/1PMUPd/6QW3fdyvd2fA+/5efc5nNZU7+GFfEVLEssoynQhOWqmSWcIiIiIiJADRUhERERERERERERERERERERERERERERERERERERqSW37LyFkdwImWKGXDFHtpQlU8wwlB2iL9NH11g3I4VhAFyOScvoIi7ufzcbuZAtb1vJsk1NE4p2/PjZwxx8qZ/00F7S3QNsL/4Z21rnk1wQoMV0+MrCZs55Zojue7spDmThaJENV9CNtyOC9+J2fMvjWHX+k5430tB40teJD3+I7j/9Mwbmn0fCeQbXC98HTwie/x4X4bB+XpDdI3HMprXkAisYiV3Mlat+C1/00zxnP8b9fffycOfDPJH+NWwH/24/TYEmmgJNRL1RfJYPv+XHY3qwHZuiXRzfkoUkw7lhRnIj9GX6GMmNjMcV9UZZV7+O65Zcx4Wx80k8Aunn++DZLroCfbjbQpgRL8Gwm5DXxPCYrLq4nTfduJR/f2gfX7l3N1/LjhANulm3PEpz2EvUtCBXopgpUkwVacqVyOwZYfdTPTgn1CgxDPBHPPiCbjYHb2Jz6AYO+new03mRnUde5MHDD+JQ3sHARcyMU2c2EDYj+I0AftNPQ12caCSM6TIxjRM2l4nLcOEzfdy47MapSkERERERkdfFcBzntR9VgwzD6AMOVDqOo+qB/koHMQ30uqDfcZyrp/KHv4HcnU2/B72WmTPluQsVf++ttmNeTfFUUyxw5vFUw3svzL7jOh0U08mqJXenUzX+zs+UXlNZteVvNf5eFNPpmemYqi13J1ONv6fpMlde61S9zlrI3zNVyzlRy7HD9MY/F3L3mFrPg9Mxl15jJXO3Wo6z4qiuGOD045gL773V8jt5PWot5krEOxdyF6ozFxTT6TtVXDOVv9V6XN6o2fZ6oPZeU7W/99ba8Xwtej1Tp9pz97VUYy5UY0xQnXHNljkOUH3HV/G8Nr33nrlq/L2eSPGdmUpfs02lajjWlY6h0j+/GmKohdyt9DF6PWopVqiteF8ZayVyt5aO14kU98w6nbinI3/vPPqzq0E1/u6qLaZqiwcqlLsiIiIiIieatUVIqolhGE85jnNOpeOYanpd1aHW4n01ei1yJqrtmFdTPNUUC1RfPG9Utb2OaosHFNNcNBuPr15TdarG16CYTk81xlRpc+mYzJXXOlde51So5WNVy7FD7cdfLebCcdRrnDsxKI7qi6Ga4qgGtXgsai3mWou3llTjsVVMp6/ScVX650+12fZ6YHa+pkqabcdTr0eOqcZjV40xQXXGVY0xvVHV9loUz2urxphqTbUfQ8V3Zqo9vtejGl5LpWOo9M+vlhiqXS0do1qKFWor3mqItRpieCMU98yq1binUjUeg2qLqdrigeqMSURERETmHlelAxAREREREREREREREREREREREREREREREREREREREREREZHKUhESERERERERERERERERERERERERERERERERERERERERERGROW5WFyExDOPrhmH0Goax9TQee7FhGM8YhlE0DOOdr/jenYZhDBuGcccbDOVf3+B+1U6vqzrUWryvRq9FzkS1HfNqiqeaYoHqi+eNqrbXUW3xgGKai2bj8dVrqk7V+BoU0+mpxpgqbS4dk7nyWufK65wKtXysajl2qP34q8VcOI56jTOjGmIAxXGiaogBqieOalCLx6LWYq61eGtJNR5bxXT6Kh1XpX/+VJttrwdm52uqpNl2PPV65JhqPHbVGBNUZ1zVGNMbVW2vRfG8tmqMqdZU+zFUfGem2uN7ParhtVQ6hkr/fKiOGKpdLR2jWooVaiveaoi1GmJ4IxT3zKrVuKdSNR6Daoup2uKB6oxJREREROYYw3GcSscwbQzDuBhIAt90HGfNazx2IRABfh+43XGcH57wvcuAAPCbjuNcM30Ri4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIzDxXpQOYTo7jPAAMnthmGMZiwzDuNAzjacMwHjQMY8XRx+53HOcFwJ7kee4BxmYkaBERERERERERERERERERERERERERERERERERERERERERkRlmVTqACvhX4JOO4+wyDOM84J+AN1c4JhERERERERERERERERERERERERERERERERERERERERERkYqZU0VIDMMIARcAtxiGcazZW7mIREREREREREREREREREREREREREREREREREREREREREREKm9OFSEBXMCw4zjrKx2IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhItXBVOoCZ5DjOKLDPMIx3ARhlZ1U4LBERERERERERERERERERERERERERERERERERERERERERkYoyHMepdAzTxjCM7wKXAvVAD/DfgF8D/wy0AG7ge47jfMkwjHOBHwNxIAt0O46z+ujzPAisAELAAPAxx3HumtlXIyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMj1mdRESEREREREREREREREREREREREREREREREREREREREREREReW2uSgcgIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIilaUiJCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiInPcrC1CcvXVVzuANm3TvU055a62GdqmhfJX2wxtU065q22Gtimn3NU2g9uUU/5qm6Ftyil3tc3gNuWUv9pmaJtyyl1tM7RNOeWuthncppzyV9sMbVNOuattBrcpp/zVNkPblFPuapuhbcopd7XN4DbllL/aZmibcspdbTO4TTnlr7YZ2qacclfbDG1TTrmrbQa3Kaf81TZD23So9GvSNnc2ERERqQGztghJf39/pUMQeUOUu1LLlL9Sq5S7UquUu1LLlL9Sq5S7UsuUv1KrlLtSq5S7UsuUv1KrlLtSy5S/UquUu1KrlLtSy5S/UquUu1LLlL9Sq5S7UquUu1LLlL8iIiIiIjIbzNoiJCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiInJ6VIRERERERERERERERERERERERERERERERERERERERERERERkjrMqHYDMbcWhLHa2iBnxYAY9lQ5H5iA7X6I4mMWwXFgJH4bLqHRIImdEOS0ilWSnCxRHcri8FlbCV+lwRGZEKV2gNJLD5bOw4sp7kWpWHM5iZ4qYYQ9mSH0QUhl2rkRxSNdsUrvsbJHicA7DMrASfuVwjShlCpSGc7i8JlbCX+lwRGSKOSWb4mAWbAcz4cPlNisdksxRju1QHMziFG2suBeXV1MRRERmi+JwDjtTwAx5MMPqV3u9dPxERCqrOJjFzhWxol5cAXelwxF5TU7JoTiYwbEdrLgPl0d9PSKzXXEwg50rYca8mH59VlU7O12kOJLVuJvIDHAch+JAedzBjHkxfRp3EBERERGZSToDl4pwSjaZbYMM37oLO13EavKTePdyPG3hSocmc0hhIMPIz/aSfXkQLIPIm+cT3NyCqcFGqVHKaRGppHxnksFbdlLsSmH4LeLXLca/uh7DclU6NJFpU877HRS70sp7kSrm2A7Z7YMM/WgXdqqA1eAnftNyvO3qg5CZVejPMHLHXrLbB8FyEbl8PsFNzbpmk5pR6Esz/NM95HYOg+UieuUCAuc2Y/o1zFDN8j0phn60i8LBMQyvSfTtiwic1aAiBSKzRGksz9hDR0g+eAQch8D6BiJXLlSRTJlxdrZI6qkeRu/aj1Ow8S6OErt2Ce7GQKVDExGRM+A4DtmdQwzdshM7WcBM+EjctBzvgkilQ6sJOn4iIpXlFG3SW/sZvm0PTqaIuzVI/F3L8LSEKh2ayCmV0gWSj3Qydu8hKDn41tQRe0sHVp0WuYvMRnahRPq5Pkbu2IuTK+GeHyZ+41I8TcFKhyanUOhOMfjDnRQOJzF8JrF3LCawth5D424iU87OFkk93cPonSeMO1y3BHeDxh1ERERERGaKVkZJRRR60gx+ext2ughAsSfD4C07KaUKFY5M5grHdkg90V0u1gBQdBi9+wD5g2OVDUzkDVJOi0gllTIFhn68i2JXCgAnU2TwezsodKcqHJnI9LEzRYZu3UWxKw2ckPc9ynuRalPsTTPwrW3YR/scin0ZBr+3nVIyX+HIZC5xbIfUo53lAiQARZvRO/eTP6RrNqkNTskh+XBnuQAJQNFm5Of7KBxWDlczO19i5Gd7KRztH3JyJYZ/uItCp85ZRWaL3L4RkvcfBtsBB9LP9pF+sb/SYckclD+SLC+WKNgA5PaMMPbAYZyiXeHIRETkTBT7Mgz81zbsZLlfrTSYZeDb2yiN5iocWW3Q8RMRqaxCd4qh7+/AyZTnqBY6Uwz9ZDeljOaoSvXK7x9l7FcHoeQAkN06QOqpHhzHqXBkIjIdCp0phn+0CydXKn99cIyRn+/DzpcqHJlMxs4WGb59D4XDSQCcbImhH+wk352ucGQis1P+SJKRn75i3OG+Qxp3EBERERGZQSpCIhVRHMzCK/rEi91pDbTLjLEzBTIv9E1ozx8arUA0ImfulDl9UDktItPPHi1QOJQ8udE5es4nMkuVRnPjg8rjHCgOKO9Fqk1xMFNelHmCUn+W0oiKkMjMsdOFSRcEF44kJ3m0SPUppfJkJsvhLhWzqGalsfzxwjEnKA5kZj4YEZkW2Z1DE9oyz/ViFzRJXWZWsXfiRPvM1n7dgEJEpMYVh3LwioUd9mie4rDm9pyO4lBWx09EpIKKA5kJc1QLB8awx3SdItUrd2DiXL/MC33jxXREZHaZbLwmt2OI0pjmMlSjUrJAbu/IhPZiv8bdRKbD5OMOAxp3mAP6vvKPjN1zT6XDEBERERFUhEQqxAy5J7S5gm5cfqsC0chc5PJauNtCE9qtukAFohE5c6fM6Xp/BaIRkbnG5TdxRTwT24MTz/lEZguXz8IVniTvJ7nWEZHKcoUm/q0afkt9EDKjDK+Jp3XiNZuZ8FUgGpHXz+WzcLcGJ7SbcW8FopHT5fKZWA0T+4Ym658XkdrknuT8wrMggmFqCFhmljlJ36C7OYjLa1YgGhERmSpmyALj5DbD7cLl1zXF6TCDbh0/EZEKmmx8yIx6MPy6TpHq5W6cOH/VPS+M4VHeisxG5iRz66wGPy6f5jJUI5fPnHRsVONuItNj0nGHloDGHeaA/q98hcOf+nSlwxARERERVIREKsRqChK6sO14gwviNyzBimnhhcwMw3IRedM8jBMWnXkWRPB2RCoYlcgbd+qcjlYwKhGZK8yIl/gNS8E8PpMyuLkZd8vERYois4UZ9RK/cckr8r4Fd7PyXqTauJsChC9tP95gQPz6JVgq/iAzyOU2CV8+/+RrtkURvAvUDyG1weUxiVy5EOOECT3eJTE888IVjEpeixn0ELtuCVjHh4L86xtwt0wsWiAitcm3LIbVfHxxiiviJripGcNlvMpeIlPP3R7Guzw+/rXhMYm+pUMLJkREapzVGCBy5YLjDQbErluCVa9+tdNhNQWIXKHjJyJSKe6WIMFNzccbTIPYDUuxwiqsLNXL2xHFfUK/uytgEb6oDcPSdH+R2cjdFsJ/VsPxBstF7LolkxYnkcozQ54JcyQD5zRNWixcRM6cuz2Md8Urxx0WadxBRERERGQG6exbKsL0W4Qvm49/TR2lZAGrzoe7UYv1ZGZ52sI0fno9xZ40htuF1RzEmuRu9iK1QjktIpXkWxan6TMbKA5kcAXdWE0BTN3JTWY537IETZ/ZQKE/gxlS3otUK5fXInzpPHwr6yiN5bESPtxNE+8iJjLdvO1hGj+1nmJvGsPjwt0cxJzkTowi1co7L0zjZzYczWETd3NAOVwDvIuiNH12A8X+DC6fidUcxAzonFVktnDXB2j4yBoKPWkc28bdFMSKa1GrzDwr6iXxrmXlXMyVsBr8uBt03SUiUutcbpPQBa14F8cojeax4l7cTUEMQwXPTofLbRLa0op3iY6fiEglmAE3kbcsJLChETtdwKrzYzXqOkWqm5XwUffBlRS70zhFG6sxgLvOX+mwRGSamCEPsWsXEzqvGTtbwqrz6bOqynkXx46PuwWOzhXTuJvItLCiXhLv1LiDiIiIiEglqQiJVIzptzAXRisdhsxx7jq/BmlkVlFOi0ilGC4Dd3MQd7MKy8ncobwXqR0un4V3QaTSYYjgrvfjrtc1m9Qu5XDtMQwDd2MAtyatisxaZtSLGdVdnKXyzJBHBcpERGYhl9fCO1/9am+Ujp+ISGWZfjdmh+aoSm2xwl6ssPp6ROYKM+DGXBSrdBhymgyXgbspiLtJc8VEZoLGHUREREREKstV6QBERERERERERERERERERERERERERERERERERERERERERESkslSEREREREREREREREREREREREREREREREREREREREREREREZI5TERIREREREREREREREREREREREREREREREREREREREREREZE5TkVIRERERERERERERERERERERERERERERERERERERERERERE5jgVIREREREREREREREREREREREREREREREREREREREREREREZnjVIRERERERERERERERERERERERERERERERERERERERERERERkjlMREhERERERERERERERERERERERERERERERERERERERERERkTlORUhERERERERERERERERERERERERERERERERERERERERERETmOBUhERERERERERERERERERERERERERERERERERERERERERERmeOsSgcgc5edL1HsTWNnipgJH+46f6VDkjlCuSezWXEkR7E/g2G5sBr9mH53pUMSkTmkOJihOJDF5bewGvy4vLrckNnNcRyK/RlKQzlcITfuhgCGW7U+RaqRXShR7M1gpwrl68B6XQfKzCilCxR7MzglG3eDHzPirXRIIq9baTRPoS+NYRq4GwO4AuprqDX6HYoIgFO0y9ewo3nMmAerPoDhMiodlswCxaEsxf7M0T7BAC6vWemQRERkCjklm2Lf0XOIqAerQecQr4dTPHr8xvKYMS9WvV/HT0RkBml8SGpRKXN0bKmosSWRucCxHYp9aUojecyIB6vBj2Fq7lG101xtkZmluckiIiIiIpWhM2+piFKmSPKBw4zdewgAw2dS/6HVeDuiFY5MZrtSpkjywcOM/fpo7nlN6j+s3JPZId+VZOCbL1MaygHgX1tH9JrFWFENRIrI9MsdHGXgP17CThcBCG1pJXzZfEwtbpNZLLtziMFvbcMp2GBA9G2LCJ7XjMutxTYi1cTOFUk+1Mnorw6AA4bHpO5Dq/AtjlU6NJnlisNZhn68m9yOIQDMeh/171+FuzlY4chETl+hJ8XAt7ZR7MsA4F0aI37DUqy4r8KRyema8DtcFid+/RL9DkXmGKdok3qmh+Gf7AYbsAwS71lBYE19pUOTGpc7NMbAN7aO9wkGL2glctl8zKD6BEVEZgOnZJN6ppfhH+8G2wHTIPGe5fjX1GMYKqTxWpyiTeqpboZv33P0HMxF3XtX4F9VV+nQRETmBI0PSS0qDucYvn0P2ZcHADATXuo+uBqPxpZEZiXHcci81M/g93ZAyQGXQez6JQTPblQhkiqW70ox8J8vURo+Nle7nug1izRXW2Sa5A6MMvCfJ8xNvrCV8Js1N1lEREREZCaod0IqotidGi9AAuBkSwzduotSKl/BqGQuKHanxguQADi5o7mXVO5JbXOKNskHj4wXIAHIvDhA/sBoBaMSkbmilCkw/NM94538AMmHOykcSVYwKpHpVRzOMvSDneUCJAAOjNyxl2JPurKBicgEhe4Uo78sTzAFcPIlhm7ZSXEs9+o7ipyh3N6R8QIkAKX+LMnHu3Bsp4JRiZw+x3ZIPdkzXrwCILdrmNye4coFJa+LYzuknug++Xe4c4jcnpEKRiUilVDszxwvQAJQdBi6ZSeF/syr7ifyaibrE0w9oj5BEZHZpNiXOV6ABKDkMHTLLooDOoc4HYXeNMO37TnhHMxm8Ac7dPxERGaIxoekFuX2j4wXIAEoDeZIPnwEp2S/yl4iUquKAxmGbtlZLkACYDsM/3g3hT7NPapWTtEmef+h8QIkAJkX+8kf1FxtkelQyhQYvu0Vc5Mf6qTQqXEIEREREZGZoCIkUhGlkYkDOcW+zEkXhyLToTR6itzLKPekttm5Irl9ExeQFLpTFYhGROYaJ1uicHhip/5kn7sis4WdKmKnChPaJ7vWEZHKKo1OLDpZGs5hp3QdKNMrP8n5UW7PCHa+VIFoRF4/p2hPWnAkp0l0NcMp2GR3D09ozx3W71BkrimN5o4vfj3KyZUmva4VOV1OtkTh0NiEdvUJiojMHqWx/PECJEc5+RJ2Uv1qp6M0lh9f+H6Mky1R0jmYiMiM0PiQ1KJC18S5frm9Izg5jS2JzEZ2soCTf0XHre1gj+maoVrZ2VPM1dZNq0SmhZMpTlpwZLJzfRERERERmXoVLUJiGMY8wzDuNQxjm2EYLxmG8TuTPMYwDOPLhmHsNgzjBcMwzq5ErDK1zLhvQpu7NYQZ9FQgGplLzNhkuRfEDLorEI3I1HH53PiWJya0e1pDFYhGROYal9/Cuyg6oX2yz12R2cIMuzEjr7h+MZT3ItVosr9Lq8GPGdJ1oEwv7/zwhDbfygQur1mBaEReP8PtwrdyYl+DtyM288HIG2J4XPhX1U1o9y6ceP0mIrObGfWCaZzU5gpYmGGNy8kb5wq6J+8TnGQcWEREapMZ9YB18jmE4bcwI+pXOx1W1AuuV5yDBd06BxMRmSEaH5Ja5GmfOLbkX5nA8FkViEZEppsZ8WD4XjF2bBnlazGpSi6/G++kc7WDFYhGZPZzBd14FkYmtGuOpoiIiIjIzKhoERKgCPye4zgrgc3ApwzDWPWKx7wFWHp0+wTwzzMbokwHd0uA6DWLxic8mlEPsRuW4Aqoo1yml7slQPTtr8i965fiCmhwUWqbYRqELmjF3X606IgBwc0teBZM7HgTEZlqLp9F9G2LMOuOduy7DCJXLcCtQkgyi5kRL4mbV+A6OknNcLuIv3MZ7qZAhSMTkVdyNweIXbd4fMGEK+wh/q5lmCFN3JHp5VkUJXBO0/jX7gURguc0YRjGq+wlUj0MwyBwdtNJi4sDZzdOuthYqpNhGAQ2Np00MSuwsRFvh36HInON1RAg8Z7lGJ7yhHbDb5F4zwqshCZpyhvn8pgT+wSvVJ+giMhsYtUHSNy04hXnEMuxEv4KR1YbrIYAiZuWYXjK0/NcAYvEzcuxVLBLRGRGaHxIapF3YYTA5mY4OpTknhcieF4LhktjSyKzkZXwk7h5BYa/vH7C8Jrlftt6zT2qVoZpEL6wDXfb8bnaoQta8MzXXG2R6eDyWsTevhgz4T3aYBC5eqEK/4iIiIiIzJCKVnxwHKcL6Dr6/zHDMLYBbcDLJzzsWuCbjuM4wGOGYcQMw2g5uq/UKJfHInR+K75lMexMCSvuxYx4Kx2WzAEuj0Vocyu+pXHsTBEr5i3fAVBkFnA3Bqj/6BqKAxkMy4VV78fl1h22RWRmeFpDNHxyHaXBHIbPxF3nx7AqXfNQZHp5O6I0fno9pZE8roCFVefX5B+RKuRymwQ3teBdFMPOFDFj3vJdSEWmmRXxEnvHIkIXtOKUbNx1ARXglZrjrveT+MBKiv1ZDNMo9zV41NdQS9z1fuo/tJpCfxrDdOl3KDJHGS4D/5p63C1B7FQRM+LR4leZEuU+wbMoDWbVJygiMgsZLoPA2mPnEAXMsFsFSF4HwzTwr2vA3RYuHz+dg4mIzCiND0ktMsMeYm9dROi8FpyijbvOrxvsicxy/uUJmj6zntJYAVfQjbte11zVbnyu9mAGwzKx6n2aqy0yjTxtIRp/az3FY+MQ9X4MU+MQIiIiIiIzYcpmvRuG8RTwDeA7juMMvYH9FwIbgMdf8a024NAJXx8+2qYiJDXOMA3cjapAKTOvnHuqEi2zkxlwY2rgUUQqxAp7scKatCNzixXzYcU0aVik2hkuXQdKZbg8Fh7dCV5qnOl3Y85TX0Mtc/ktvPN0BzaRuc4wDNz1AaivdCQy21hhD1ZYdxIXEZnN3PV+0EK4N6R8DqbjJyJSKRofklrk8ph4WjS2JDKXWAm/Cj7WGDPoxgxq/FRkpphhD6bGIUREREREZtxUlv97D9AKPGkYxvcMw7jKMIzTugW0YRgh4EfA5xzHGX3ltyfZxTnF83zCMIynDMN4qq+v7/XELlJRyl2pZcpfqVXKXalVyl2pZcpfqVXKXallyl+pVcpdqVXKXallyl+pVcpdqWXKX6lVyl2pVcpdqWXKX6lVyl2pZcpfqVXKXalVyl2pZcpfERERERGZbaasCInjOLsdx/kTYBnwHeDrwEHDMP7CMIzEqfYzDMNNuQDJtx3HuXWShxwG5p3wdTvQeYoY/tVxnHMcxzmnoaHhjb4UkRmn3JVapvyVWqXclVql3JVapvyVWqXclVqm/JVapdyVWqXclVqm/JVapdyVWqb8lVql3JVapdyVWqb8lVql3JVapvyVWqXclVql3JVapvwVEREREZHZZsqKkAAYhrEO+Hvgf1EuLPJOYBT49SkebwD/DmxzHOcfTvG0twMfNMo2AyOO43RNZdwiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJzmTVVT2QYxtPAMOWiIn/kOE7u6LceNwxjyyl22wJ8AHjRMIznjrb9MTAfwHGcrwI/B94K7AbSwEemKmYRERERERERERERERERERERERERERERERERERERERERERGZwiIkwLscx9l7YoNhGB2O4+xzHOeGyXZwHOchwHi1J3UcxwE+NXVhioiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyIlcU/hcPzzNNhEREREREREREREREREREREREREREREREREREREREREREaki1pk+gWEYK4DVQNQwjBtO+FYE8J3p84uIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMj0OuMiJMBy4BogBrz9hPYx4ONT8PwiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyjc64CInjOLcBtxmGcb7jOI9OQUwiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyg864CIlhGF9wHOdvgfcahnHzK7/vOM5nz/RniIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyPQ54yIkwLaj/z41Bc8lc0gpVaDQncLOFnHXB7Aa/RiGUemwZBYr9KQo9Gdw+SzczQHMoKfSIYlMGadQotCTpjicw4x4cTf5cXmn4mNeROT0OI5DsSdNYSCDy2/hbg5iBtyVDktkWtn58udvaSSHFfNiNQVwuc1KhyUik7DzRQrdGUqjOay4F3djAEN/rzKFSpkixZ4UpWQBK+HD3RTEMNXPJbXBKdgUetMUh7KYEQ/upoD6FGYZO1uk0JOiNFbAivtwNwUwLFelwxKR01DoS1Psy2B4XOW+lpDGNaQ6OLZDsbfcF2j6LSz1BYqIzFrqBz8zdq5YPn6j+XK/ZFNQ12MiIjNoYt99AMPU+7BUt+JojmJ3GqdkYzUGcNf5Kx2SiEwjp1A6Ok53dO5vsx+XR+N0tcBxHIq9GQr96aNrE4KYQfWRiky10lieQk8KJ2djNfpxNwQqHZKIiIiIyJxxxj0UjuP89Oi//3nm4chcURrLM3z7bjIvDpQbLBcNH1mNd3GsonHJ7JXbN0L/17fiFGwAfKvqiF2/BCusCbtS+xzbIfVsL8O37h5vi1y9kPCWVi2sFJEZk9s9TP9/vAQlBwD/hgZi1yxS0S+ZtZyiTerxLkZ+tm+8LXbdYoLntmjRuUiVcQolUo92MfKL/eNtsRuWEDynGcOlv1c5c6VMkbFfHSD5cGe5wQWJ964ksKa+soGJnAbHdkg938vwj3ZB+VSeyFULCF3YpkVls4SdKzJ2/2HG7j1UbjAgftNygusbKxuYiLym3MFR+v99K06uBIBnUYTEu5djxXwVjkwEcruG6P/my+N9gYFzmoi+pUOT7EVEZhn1g58ZO19k7MEjjP3qYLnBgPg7lxE4u1E3aRIRmQGlTJGxXx8k+eCRcoP67qUGFAezDHxnO4XDYwC4Ahb1H1uLpy1U4chEZDo4tkPqmV6Gf3x87m/0LQsJXaC5v7Ugv2+Evq+/BMXy2gT/2jpi71iCqbUJIlOmOJxj6Ic7ye0eBsDwmtR/bA3e+ZHKBiYiIiIiMkdMWUlvwzB+aRhG7ISv44Zh3DVVzy+zS74zebwACUDRZuine7DThcoFJbOWnSky/NM94wVIALIvD1A4MlbBqESmTrE/w/Dte05qG71rP4W+TIUiEpG5ppQsMPTj3eOLDgAyz/ZROJKqYFQi06vYl2Hk5/tOahv+6V6K/ekKRSQip1LoyzBy5/6T2oZv30OxX+fLMjWKPanjBUgAbBj+8W6Kw9nKBSVymooDGUZu2zNegARg9O4DFHv1HjlbFHrSxwuQADhH36MG9DsWqWZ2vsToLw+MFyAByO8dJX9Q4xpSecWxHEO3ntwXmH6qh0JXsoJRiYjIdCioH/yMFHszxwuQQPl67DZdj4mIzJRiT+p4ARIo993fuovikPrupXrl9o2MFyABsNNFxh44jFO0X2UvEalVxf4Mwz89ee7vyJ2a+1sL7HSBodv3jBcgAci8OEC+U32kIlMpf3hsvAAJgJMrMXrXfux86dQ7iYiIiIjIlJmyIiRAg+M4w8e+cBxnCNCt9GRSdjI/oa3Yk8bO6WJQpp6dLVLomTgJxh5T0RuZHexMEYrOyY0O2EnluIjMDDtbpDQ4caJOKTXxnE9ktiilCict1i03OtjpYkXiEZFTsyf7ey3q71WmTmmSay87VShfq4lUOTtdPKlwLwDO0XMdmRXsSX6XTq6k9yiRKmfnihS6JhZ31UIpqQZOtkRpJDehXWMSIiKzz6T9auoHP22T9Rk5eRs7o7lRIiIzYdK++3QRO6vPMalehd6J81wLh8dwtNBWZFay06eY+6txuqpn50oUJ1ubMMkaGRF540rDE8ciCl0pHJ3Ti4iIiIjMiKksQlIyDGP+sS8Mw1jAxKFoEQCsOv+ENt/KBK6QuwLRyGznCrnxraqb0G7VT8xDkVpkRr0T3j8Njwsz4atQRCIy15hhD94lsQntk53zicwWZtyL4TVPanMFLMyYt0IRicipmHEfhucVf68ht/5eZcpYCd+EXlarOYAZVY5J9TOjXlxhz0lthtuFFVf+zhZm3AemcXJbwotL71EiVc0MevCvrZ/Q7mkJVSAakZO5wh48CyMnNxrqCxQRmY3M2CT94EH1q50uK+ED6+ROIzPqxYp6TrGHiIhMpVP23Uf0PizVy7sgMqHNf1YDht+qQDQiMt3M2GRzf83y2I5UNVfQjW9lYkK7+khFppa7KTChzbe2HldQ685ERERERGbCVBYh+RPgIcMw/sswjP8CHgD+vyl8fplF3K0hYjcsGZ+s4FkYIXr1Qlxu8zX2FHn9XG6T6BUL8HREATC8JrHrl+BuC1Y4MpGpYcW81L1/1XjRETPioe4Dq7DqNBAhIjPD5TWJXrMI9/wwAIbPJP7uZXha9Fkrs5e7zk/dB1eNLzA3E97y568mAohUHXe9n7oPrByfVGomfNS9fyWWFkvIFHE3Bal778rxSQ5Wc4DEu5ZjBjTpQapfuU9hJebRPgTXsT4FFe+dNdyNAeo+sHJ8EqvV4Cdx80qssBZbiFQzw2UQ2tKGb0V5ErPhdhF9awfueeEKRyYCps8ifu0S3O3lojiG3yJ+03LczeoLFBGZbdz1x/rBj/Wrla8h1Q9+eqyGcr+kK3z0eqzeR+J9KzAj6pcUEZkJ7qYgde97Zd/9Msyg+sWkenkWRohcOR8sA4zyItvgxiYMw3jtnUWk5oyP05049/eDK3FrnK7quTwm0asXjhdrNrwmsRuX4m5VIXGRqeSZFyZ6zSIMd3npo3d5nPCFbRjmVC6FFBERERGRU5my0siO49xpGMbZwGbAAD7vOE7/VD2/QCZf5MBAGoAFdUH8ntot2OHymIQ2teBbEsPO25gxL6ZPlbpl+rgbA9R9aBWl4RwujwsrcXodtJ3DGfqTOepDXlpj6tSV6uVdGKHxt86ilMxjBt3TOnFpNFPg4GAar+ViYX0QtzryqkomX+LAQAoMWFgXwOfW56vMDE9zEP/Ny3ENZTF9FoGWkCZByKznWxyj8VPrKaXyuEJurPDpf/7atsP+gRTpXIm2uJ+4JruJvGG5Yon9/Wlsx2Z+IkjQO/H8x7c0TuOn11NKFTBDHkwtvJ4T8sUS+wfSFEs28+sChLzTUxTEMA38a+pxt4ewM0XMqFcFSKTqdI1k6BvLURf00hY/uY/Lu+Bon8JYHjPgHi+yJrWpdzRL92iWWMDD/EQAw2XgX1GH+zMh7HQBM+zFDOk9SqRapXJFDg6mcBkuFtYHSLx3BcWhLIbpwkr4MFzqa5nNCkWb/QMp8iWb+YkAYV/1vl+7W4I0fGwtxeEcLp+pxegiIrNYrjUIH1xJoOAQSvjwqIDGaTMMA//yBJmPraaULuKJefEmJt7BV0REpodhGgy1BTA+vJKIYxCs82PqjulS5cyAm/Cl8/GsqSeVKZDymQTDnqmb7C8ip/TKvlmvNTPrNLwLozM293euG8sUODiUxmO5WJgI4rbObO6zuzFI3YdXv+61CSJy+lw+i9CWVnwrEzhFGyvmY6RY4sjhEQJek4V1QVwaOxMRERERmTZn3C9pGMYKx3G2Hy1AAtB59N/5hmHMdxznmTP9GQJHhjL8wy93cOuzRwC4fkMbv3fF8gkTxmuNOltkJpk+C7P59N/2HtrVz+e+/yz9yTyJoIf/fdN6Ll5arwXVUrXM8PQvptzTm+QPb32Bp/YPYbkMPv3mJXz4goXEAlrEWQ2ODKX5m7t2cPtznRgGvGtjO5+/YhktUX3eyvTbemSE3/nes+zpSxHwmPz5O1bzjrNa8blrt3CeyOkwIx7MyOv7HEzlivzw6UP85c+3kyvarGwJ87/fvZ4VLZFpilJk9uody/KPv97Nfz12ANuBK1c28cVrVjG/buJkfjPi1YSdOaQ/meNf7t/L1x/eR8l2uGRZA3/xjtUsrJ++u7NbMR/Epu3pRd6wR3b38zvfe46+ZI5E0MM/vPssLlnWcFIflxnyYIZ0bV/rnjkwxGe++yxHhjNEfBZ/dcNarlzdjNt0YUW9oAIzIlXt4ECa//Gzl7n75R5cBrx/8wI+/aYlNDZN3/mLVI+BVI5/e3Af//rAXkq2w4VL6vnv162mo75675zp8lt4/FoGJSIym+3pHeMPf/QiTx0Ywm0afObNS/jQ+R1EVXz1tOSLNndu7eKPf7yVZK5Ie9zPV967gfXz4pUOTURk1rNth19v7+X3f/g8w+kCjWEvX755A5sX1VU6NJHX1DWa5e/v28Wtzx7BceD6Da38wVUrdBM9kWn0yr7ZD2xewKfetITGyMwU3p2Jub9z3d6+JH/ykxd5dM8glsvgk5cs4qMXdpAIntnY2etdmyAir59hGLjryudBO7pH+dz3n2db1yhey8UfvWUF7z5n3qQ3rBIRERERkTN3ZuU7y3736L9/P8n2d1Pw/ALct6OXHz1T7lB2HLj1mSPcu6O30mGJzFoHB9P89refpj+ZB2Awlee3v/U0BwbSFY5MpHIKJZt/f2gfT+0fAqBoO/yfX+3i+UPDlQ1Mxv1qWw+3P1euB+c48IOnDvPAzv4KRyVzwUgmzx//+AX29KUASOdLfOGHL7C9a6zCkYlUp5c7R/lvt79MrmgDsK1rjP/5822k8sUKRyZSex7fO8B/PlouQAJw97Yebn/+SGWDkqrw1P5BvvZgeQEnwP07+7jl6cM4jlPhyERm1uGhNL/17WfoS+aAch/Xb33rGfarj2vW6R3L8tnvlQuQAIxmi3z2e8+xuzdZ4chE5HT99Pkj3P1yDwC2A9989ACP7h2ocFQyU545MMw/37dn/Pz1od39fPvxg9i2zl9FRKQyCkWbf31gL08dKI8NF0oO//DLXTx/eLiygdWQ3b1jfO77z5HMlfv+Dw9l+Pz3n2Pg6DW6iIhMn739ST71nWcYThcA6B3L8envPEPX0b4zkWp27/bj88UBfvxsJ7/ervniItPp9lf0zf7nowd4fJ/6ZmeLku3wX48e4NE9g0B57vNX7t3DsweHKxuYiLwu6XyRv/r5drZ1jQKQK9r8xU9f5qXOkQpHJiIiIiIye51xERLHcT5hGIYL+KLjOG96xfbmKYhRgDtf6p7YtnVim4hMja6RDKPZkxeBpvIlOkc0EClz11A6z90vT/zseVlFBqqC4zj87MWJv59fTvI7E5lq/WN5Xjg8OqH90JAWNopM5sDgxL+NB3f1M3C0AJ6InL6Hdk8suPbzF7tJq6jPnPfk0eKJJ/rFi12MZZUbMrd0DmcYyRROassUSnTqXH3W6RnNcXjo5L7Lku1wRL9rkZqQKZT4+STjfo9Mcr4rs9NzByeev965tZuRbGGSR4uIiEy/oXSeX26buNh1e/fE8SCZ3KHBDK+sJ7avP03PqIqQiIhMtyNDmfEbQhzTn8zTNZKtUEQip+8uzRcXmVHpfJFfTPI3NtlcBKlNw+n8pO+tLxxW4QKRWjKQzHP/rr4J7QcnmYspIiIiIiJT44yLkAA4jmMDfzcVzyWT29yRmNi2aGKbiEyNRMCDxzz5LdJyGdQFPRWKSKTyIj436+fFJrQvrAvMfDAygWEYk54bbJrkHEJkqkX8btrj/gntDWFvBaIRqX6Nk/xtrGwJE/FZFYhGpLata4tNaNvUkcBnmTMfjFSVFc3hCW3nLkwQ8Cg3ZG6pC3rxWif3cZkugzqdq8868YCbWMA9oV3XZSK1wWe5OG+Sfrx17bGZD0YqYmlTaELbOQvihDzqKxARkcoI+9ysa49OaJ+f0Njw6WqMTLweqwt6Jr12ExGRqVUf9uIyTm4LeEwSmvsnNeC8RXUT2jRfXGT6+Cxz0jmWk81FkNoU8lmsnx+b0L64YWKfrIhUr4jfYmVzZEJ7Q8hXgWhEREREROaGKSlCctTdhmHcaBiG8doPldfr6rUtLDth8tnSxhBvXdtSwYhEZrdFDSH+x3VrxgcjDQO+dO1qFqnDUeYwn9vkdy5fRvyESVGXrWhkw/x4BaOSE73jrDYW1wfHv17RHOLylU0VjEjmioawl7++Yd1Jixs/dmEHK1smLv4VEVjTFuHd57SPfx30mHzpHWuIBTTpTeT1umhpw0mF8tpjPm7eNA/XK2eWypxz/qK6kyZkNkW8fHjLQixzKrtDRapfR32Qv7x+7Ul9XH/+jlUsqlcf12zTHg/wNzeuw20e/wz8vSuXsbRJ12UitcAwDG46d/5JRV7Xz4tx4dL6CkYlM+nchXVsWXx8kVFDyMsnLl6E29L5q4iIVIbfY/J7V5w8NnzFqiY2THLTCpncsqYwv3PZkvGv3abB37xzHa2xiYX9RURkai1pCPHFt63i2Gxm02Xw1zesZYFutCQ14C1rmk+aL76kQfPFRaaTy2XwnnPn0x47vohdfbOzi9cy+dSbllAfOj4v65Kl9ZyzUHOfRWpJ1O/hS9euJnjCzYfedU47a9onFiYREREREZGpMZW3TvpdIAgUDcPIAgbgOI6jM/opsLghxLc+dh67epM4lIuQNEVUsVFkupgug+s2tLKmLUr3SIamiI8ljSHcWqwkc9zatii3ffpC9vYlCXhMljaGiesuIVVjSWOI73x8M7t6kxhG+XyhUecLMkO2LKnj55+9iAODaeIBN0sbw4R8ulOryGQSQS9ffNtKbjp3HqOZIgvrg3ScUERKRE7f/LoA//bBc9jVO0ax5LCkMUSLJvEL0J4I8I/vPZtdPUnypRKLG8K0xZUbMve4XAZvP6uVVS0RukYyNEV9LGkI4dGC5lnp8pVN/OyzF3F4ME192MvSxhB+j67LRGrF8uYwt/zm+ezuTWKZBksbw9SHvZUOS2ZIW9zPl2/ewO7eJLliiUUNIdrjWhwnIiKVtbY9xu2fvpA9Ght+Q4Jei09cvJg3r2hiIJljXiKgO22LiMwQr9vkvefNZ1NHgt7RLK0xP4sbQ+gei1ILFmm+uMiMW94c5pZPXqC+2VlsdWuUn3xqC3t6k/jcJkubwiR0fStSc85ZmOCOz17E/v4UYb/FssYwEb/7tXcUEREREZE3ZMpmnzqOo9vpTbPGiE8LiUVmkMcyWdUaYVWraimJnGh+IsD8hCY/V6umqI+mqM4XZOYZhsHixhCLGzV5UuR0RPweNi5IVDoMkVmhPuzVBCCZVF3IS11IuSHisVysbI2wUn1cs57pMljWFGZZk4ZrRGpVS8yvonpzmM5fRUSkGs1LBJinseE3LOi1OGterNJhiIjMST63yZq2KLRFKx2KyOum+eIiM099s7Nfezygws8is0CHbvgmIiIiIjJjpux2h4Zh3HM6bSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIlJdrDN9AsMwfEAAqDcMIw4YR78VAVrP9PlFRERERERERERERERERERERERERERERERERERERERERERkep1xERLgN4HPUS448jTHi5CMAv84Bc8vs1ShO0Vm5xD2SA7figSe+WFc3qlISZHjCt0psjuHKI3k8C1P4FmgPJPZyymUyB0cI7t9EFfAKud8a6jSYYnIHFFK5cntGyW3exh3cwDvkjjuen+lwxKZdvmuJNntQ9ipAr6VR69r3GalwxKRV8h3JsluH8TOFPGtTOCdF8FwuyodltSg4lie/N5hcvtGcbeF8C2OYSV8lQ5L5FWVMkXyB0bJ7hzESvjxLYvhbgxWOiyZYYWBDLldQxS603iXxPB2RDCDnkqHJSLTpDSWJ7dvhNzeEdwtQXxLY1gJ9dPImSulCuT3j5DddawPMIa7PlDpsEREZBoVh7Pk9o6SOzCCd0EU76IIVkx9IaerOJglu2eYwpEk3o4InkUxrLCuxUREZkpxMEN21zCFrhTeRVG8HVFMvQ9LldO4psjcUhzJkds3Qn7/KJ55YbyLolhxXXPVgkJvmuyuIYr9GXzL4ngWRjD97kqHJTIradxLRERERKQyznglvuM4/xf4v4ZhfMZxnP/3evc3DOPrwDVAr+M4ayb5/qXAbcC+o023Oo7zpTcesVSDQm+avq+9iJ0qAJB8uJPEzcsJnNVY4chkNin0Tcyz+E3LCW5QnsnslN09zMB/vjz+9dh9h2n45Do8LSpEIiLTyyk5JB/pYuyeg+NtVnOAho+swYx6KxiZyPTKdyXp++oLOLkSAMmHjlD3oVX4V9ZVODIROVG+8+jfav7o3+qDR6j7yGr8yxMVjkxqjVMsMfbrg6Qe7Rpv8yyMUPf+lZghTVqW6pV5oY/hH+8e/zoZ9VD/iXW46zQpZ64ojeYY+NY2il0pAFKPdRG+bD6RN8/HMI3X2FtEao1TtBm7/zDJh46Mt3nmh6n7wCottJIz4tgOqcc6Gf3lCX2ATQHqP7IGK6Y+QBGR2aiULTL8s31kX+wHIP14N7419cTfuRTTp5u/vJZSMs/gD3aQ3z8KlK/FQhe0EH1rB4alYuYiItOtOJZn4Ls7KBwaA46+D1/URvSqhRiWCjpIddK4psjcYudLjN69n/TTvUD5s8q7LE7iPcsxAypmUc2Kgxn6v7GV0lAOgNSjXUTfsYjwBW0Vjkxk9pls3Ms9L0z9BzXuJSIiIiIy3aayJ902DCN27AvDMOKGYfz2aez3H8DVr/GYBx3HWX90UwGSWSB/eGy8MMQxI3cdoJTKVygimY0my7PRu/dTShZOsYdI7bJzRUZPWPwP4ORK5PaNVCgiEZlLikNZxu47dHJbd5pCT7pCEYnMjPy+kfECJMeM/uoApWyxQhGJyGRye4bHJ+odM3bPQexXtIm8lkJ/ltRjXSe15fePUuzVOY9Ur+JIjpE795/UVhrJU+hMVSYgqYhCd3q8AMkxY/cdojiUrVBEIjKdigMZko8cOaktf3CMgs5Z5AwVBzOM3vuKPsCeNMUenVeIiMxWpb7MeAGSY7Jb+yn1ZSoUUW0p9KTHC5Ack3y0i0K/rsVERGZCsSc9XoDkmOTDRygO6nNMqpfGNUXmlmJ/ZrwAyTG5nUMUdc1V9QqdqfECJMeM3n2A4rCu90Sm2mTjXoVDY5qfLCIiIiIyA6ayCMnHHccZPvaF4zhDwMdfayfHcR4ABqcwDqkBTtGZ2JYvgV2BYGT2mjTPbLCVaDIL2UxYBA3g5JTvIjIDbBvsST53S3oPktnNLkzMcSdnYyj1RaqKnZ/4R2nnSjiTfHaJvKqSA5OkjVNSLkkVsx2cyc5ZdK4+p0z6+7YdUB6IzEqO7Uw63uYU9TcvZ8imfE78ymbllojIrHWqa0ddU56eSfsfHSYdUxMRkak3eZ+Y+vSlumlcU2RuOeU1l/rbqt5k78tOwdZaGJFpcMpxL/VPiYiIiIhMu6ksQuIyDMM49oVhGCbgmaLnPt8wjOcNw/iFYRirp+g5pYI8bSEwjZPawpe0Y4anKmVEwN0WAmuSPIt4KxSRyPRx+S3CF7e/ohG8i6OVCUhE5hQz7iNwVsNJba6gG3djoEIRicwMb0d0wlV16OJ2XAGrMgGJyKR8S2Jw8qVh+drQp79VeX3MOh/eZbGT2+JerAad80j1MqNeQhe1ndRmeFx4moMVikgqwd0YwBV0n9QWOKsBM+GrUEQiMp2shB/fysRJbWbUo34aOWNWwktgY9NJba6AhVvnFSIis5ZV78fdevL7vNUaxKr3Vyii2uJuCGDGTp6f4l0ex9K1mIjIjHA3BnBFT56P6luVwKrT55hUL41riswt7roA7gWRk9qsBj9ujT9XPXdTAMNrntQW2tI64RpQRM7cZONeLo17iYiIiIjMiKnslbwL+IFhGF+lfN+GTwJ3TsHzPgMscBwnaRjGW4GfAEsne6BhGJ8APgEwf/78KfjRMl3crUEaPrGOsQcOUxrKEtrcgm9VXaXDqhjl7vRwtwRp+Phaxh44QmkwS3BzC/45nGfTRflbPXyr64ibBsmHOzFDbkKXtONpD1c6rKql3JVaVY2563KbRK5aiNUUJP1cL575YULnt2ryjkxQjfl7JjztYep/Yy3J+w9TShYIbWnFtyLx2jtKzZltuTvXHPtbHbv/MHa6QHhLG97l8UqHNWOUv1PH9FnErl1C+pleMlv78XZECW5uwdJEommh3J0ahssgdH4LVthN6skerIYAoYtatVh4GlVj7lp1fuo/tobko53kD44RWN9IYH0DLrf52jvLnFKN+Suvn8trErtmEam2EJkX+/F0RAid14oVn72LXZW7M8OwTCKXzceq95N+thdPe5jQllbc/z979x0e2XUe9v972/SG3oHFLrZXtmWnWMSqQlFdomR1q9lOYsctduLEsWM7kWNbdn6yuihRhZZkURKpQomkSEpsy7q9Yjt6md5u+/0xWOxiMcttAwzK+3kePiQOZi4OiDP3nvKe98gc4EWR9ivmK2m7i4MW8lD7nlVktgyS3zOGb2Utwcub0ELz94Ch2Wy7esxL3QfXknm2n8LBBP719QQuaUSVTcTiAsm9V8xX1Wq7eo2P+g+uJf1sP8VDSfwb6gluakT1yJyYOHez3X4X+7qmqBzpN8wPakCn9u3LS+vPO0fxLY8RvKIZLTJ/x1wXa760XaNpYo/CU8exhrIELm/Cv64eRVXO/maxYM2X9jvfLMZ1LyGEEEIIIeYKxXXdylxIUVTg48AtlPIwPwJ8yXVd+xzeuwR4yHXddefw2kPA5a7rjrzW6y6//HL3hRdeOIeazx/9iRz7h9JoqsLyxhAN4fk/aHItB9dx5/PCTsVnihZi2622821nA4kc+4bSaIpCT1OIxgXwWStjRmY5pf3ODY5poygKiq5W/NrxXJF9g2kyBYvu+iBddVXZtCT33teQLVrsG0wzmi7QXhNgWWMITRY25ooF33YPj2ZIJQuoHpX2uiARn3H2N4n5YsG334vhWg6u6573Js6+eI4DQ2l0TWF5Y5j6sGxinwHSdhc423E5MJzm2FiW+rCXnsYQAU/5IP4L/axWkbTfConniuwbSJMpWnTXBemqv/hxjFOwUAxNgojKk7Y7RzlFG0VTULTSfEE8W2TfUGmMv7Q+SGd1xvhzybxvu/HsxLxNsfy8jeu4uKaN6pUNbwvQvG+/orx0wWLfYIrxTJHOugDLGkIoyrn/uedBn0Xabhmj6QL7htIULYdlDUHaaubeaX5OwULRNRRtzrat2SDtV8xX0nbFeTkylqV/PEutV6ehJkAsWLXNcPOy7WYKFkfHMlh5m0DIw5K6IOrc7ZuJmTMv268QzPO2mzdt9g+lyeRM2sJemuqDGFrlY6nEnDWv2+9YMs/AeI64abGsMUxTZEHGsIry5nXbnc/64jkODKfR1dmP4XFdF7doz/W53LOZ8203nTfZN5QmnjXpqguwtCF00dd0bQfXclG98yYORZQ359uvKBkazXA4kQNVZXlTiJh/8SZtmjATD43KbDK9CLtWrQZg9e5dVa6JmGHzttMjhBBCLCYVizR1XddRFOVrwGOu6+6p1HUVRWkGBl3XdRVF2QyowGilrj9f7BtM8ZH7tnBkLAfAhvYon33PJSyZ54Hhiq5Kr1HMuPNpZ/sHU3zsGy9ycCQDwLrWCP/y3ktZUoENSkLMlpnaVDmUyvOXP97JQ1v7AYj4db7+4c1s6pDTFuaKTMHii0/18o+/3AeAR1P5/953Ka9f3VTlmonF4LmDo3zoq1vIFks5CN+7uZM/vH0lNdULRhVi1lzIuGbPQJIPf20Lx+N5AC7tjPGP776Eztq5t7FIiLns0V2DfPpbL2HapfXP/3zbCj58XXfZRCQyB7E4zdQ4Rjbwi/no1AS9g8k8f/HDHfxsxwAAsYDB1z+8mQ3tsSrVTlysoWSe//HjHTy8rfQ3jfoNvv7hK9h4yv1OURUUuX8JMW8kcyb/8vh+vvBkLwBeXeXLH7ic65Y3nPM1pM8y/xwfz/KH39vK0wdKy+GNYS/3fXgzq1siVa7ZVNK2hBBicdh2LM5vfeV5xrMmALetaeJ/3r2Wpqi/yjWbHzIFiy882cs/PXpy7fZz77uUW2TtVgghZlzBtPnWc0f4nw/vxHVBUxX+4Z0bedPG1vNK7ilENfQOp/nE/S+ydzANwPLGEJ9//2UV2SwvhChvz0Bpn8ax8dI+jU0dMT777kvorJudGB5FkfWbmRbPFvmHX+zlvmcOA+A3NL76wSu4alndRV1X0VQUyT8ixKx45eg4v/WV50nmLADeuKGF//amNQv1wGEhhBBCCCHmhIql9VYU5c3AK8DPJr7epCjKj87hfd8GngFWKopyTFGUjyiK8glFUT4x8ZK3A9sVRXkV+Czwbtd1q55Zb7Z998WjkwlIALYeS/DEnuEq1kiIhekHLx+fTEACsL0vyaO7h6pYIyHmjm3HEpMb9wCSOYu/++luMnmrirUSp9o7mJpMQAJQtB3++Htb6YvnXuNdQly88WyR//rg9skEJADfev4IO/qSVayVEHOX47h8+/mjkwlIAF46EufX+2SMJ8T5ODae5Y++v3UyAQnAZx7Zy77BVBVrJeYaGccIUd6rR+OTCUgA4lmTzzyyh9wpfXoxv2w9lphMQAKQyJn83c/2kCnI/U6I+Wr3QGoyAQlAwXL4o+9tZTiVf413ifnu+YNjkwlIAIZSBb70VC+m5VSxVkIIIRajXNHmH36xdzIBCcAjOwd55Wi8epWaZ/YOpiYTkEBp7faPZO1WCCFmxYHhNH81kYAEwHZc/uTft3F4NFvdiglxDn66fWAyAQnAvqE0P9nW/xrvEEJcDMdxeWDLkckEJACvHI3zlMTwLCg7+5OTCUgAcqbNf/nBVsYyhSrWSghxrjIFi7/9ye7JBCQAD23tZ9uxRBVrJYQQQgghxMJXsSQkwF8Am4E4gOu6rwBLzvYm13Xf47pui+u6huu67a7rftl13X91XfdfJ77/L67rrnVdd6Prule5rvt0Bes8LxQtm2d7x6aVv3xkvAq1EWLhsmyHZ3pHp5W/dFg+a0IAZYOhth5LkMybZV4tqmE4NX1BZDRTJJ4tVqE2YjFJ5swpARAnDMmmGCHKyls2zx2c3u/cKotiQpyX8axJPDu9L1quTyQWr/6EjGOEKOfUQMoTXj0qn4357HiZeZttcr8TYl4rN6/Sl8iX7QOLhWP3wPSkii8cHidTlKRSQgghZlcqb/JKmTnrw2OyeftcDSXPtHYr/TkhhJhpw6kCzmlHHWaLNmMZiZ8Rc99zZWJYy8W1CiEqoxTDM32fxtZj8dmvjJgx5cZnvSPZKQkNhBBzVzJnsu349Hmq/oTEKAshhBBCCDGTKpmExHJdV3ZMzQCPrnHX+pZp5a9b0VCF2gixcOmayhvKfNZuXCWfNSEAljaEppXdvLqR2pCnCrUR5bTX+FGVqWVddQGaIr7qVEgsGvVBL1cvq51W3lkbqEJthJj7Ah697Bjv2p76KtRGiPmrOeKlvcY/pUxTFdrl+SNO0V0v4xghyulpnP7ZuHV1I7UB+WzMVz1l5m1uWd1IbVD+pkLMV+XmVda2RmgMe6tQGzFbLuuqmVZ257pmIj6jCrURQgixmNUEPNy6unFa+armcBVqMz911E5fu11SH6ApIv05IYSYaW01frz61PDo+pCH5qjEz4i57/a1zdPK7lo3Pb5ACFEZAY9e9jMmMTwLS7n59su7aqiTuAEh5oXakIebV02fp+quD1ahNkIIIYQQQiwelUxCsl1RlPcCmqIoyxVF+Wfg6Qpef1F7w/pm7lhXmlhWFLj3yk6u6amrcq0unp0uYsULuKennRfiIrmWgxXP45xnhuLb1zVz1/qTn7V3X9HB9T2ShETMH67jYsUL2OnKn9yxvi3KH9+xEo9W6j5s7Ijyezcvx6trFf9Z4sIsbwrzj+++hJBXB6At5ucf37WJupAEsomZFfTp/Lc3ruXtm1r5rzcs4z0bW/mrt6xlTWuk2lUTYlaVnsN57PTZTzG8e2Mrr58I4FYV+MDVXVzZPT2ZjxDizBrCPj777ktomQgYDXt1PvvuTdM2Ydt5C2s8j1O0q1FNUWXTxjHtlRvHONK2xDy2sSPKH9y2AkNTaIv5+cwdq/njG3ow9EouGYjZtL49wh/dvhJDK+1w29gR5dM39Uy73zlZEyuex7WcalRTiEXDTk2sf7kXvv61sinMZ96xgYCn9DleUh/gb9+6nqgkjFrQLuuq4eM3LEWb2LF8fU8977qiE/X0HcxV5lp2aQ4kd/Y5ECGEEPOToav89g1L2bykhttXNPDfX9fDP79tAxvbpyfMEuX1NIb5p3dt4p0bWvhvN/Twtg2t/MM7Ze1WCCFmw9L6EP/y3kupDXh4y5pm/ub1K/jGb11Ba8x/9jcLUWU3rWrkn+9ex59ct5TO2gD3bGrlpjKbboUQlfOmja3curoJKMXwvP+qTq5aOnv7NJyiXVp3zp9fzLs4d6tbwvz1PevwGaW10GUNQf7y7rWEzyP58+TehKz8nYSYbR5F5S9uXM6f39RDwKPh0VT++I6VrG+LVrtqQgghhBBCLGh6Ba/1u8CfAQXg28DPgf9Zwesvah21Qf7+nRv5D7f0oCoKS+qCeI35u+nbMW3yO8dI/OQgTs4ieG0roStb0GOy0C4unjmcJfXoEbLbR9AbAtS8aSme7iiKcvYAzfaaAJ95x0Z+9+blKAp0z/PPmlhcrESBzHP9pH/Th+rTiN7VjW91HaqnMm044jf42PVLuW1NMznTpqPGLwHvc4yhqbx5Yyub2qPEcybNER+NETnFRcyOHk3nT2wv+d+M8IbmALGravB5KjncEGJus8bzpJ/pI/NsP2rQIPqGpfhX1qCcoS/ZWRfkn951CYfHMmiqypL6gCT2EuICXNpVww8/fS0DyTwxv4fOuqmn1xSOJIk/1It5PI1vRQ3R25dgNMspGIvJlHFM0aa91k+sAuOYwtEUiYd7KR5N4V0WI3rnEjwtobO/UYg5Iur38MnXLeOdq5sxdoyR+9VxzF8Pkb69i8D6BlSf9OXnm4jfw2/fsJTb15aft3Edl0JvnPhDvVgjOQIbGwjf1IFRP/3kNyHEhXMKFrmdoyR+egi3YBO6vo3gFc3o0fNf//IaGm+7tJ0rumpJ5E3aYn7ZsLoI1IW8/MFtK3j7Ze0UbYeu2gCh8wiEnw3mUJbko4fJbR/FaAoQe9MyvN0S6CuEEAvRssYwX3vDOlI/O4T562E8SyL4W2sgMLeeTXOVR1e5rTbM5vgw5o5h3rQ8Rswj6+tCCDEbVFXh1jVNXPW+K8j89BDW44P4jhcp3m7gkXUiMYc5BYvowRSXPz7ApQWbd17Tjf+KJvySQEeIGdVZF+Af372JI2MZVGV2Y3iK/WkSPz1I4UACT2eE6Bu68baHZ+VnLyZ+j857N3dyzbI60nmL1vOcbzeHs6QeO0J22wh6g5/YG5fhXXpuexOEEBfHGsuT/vVxClsGeEPYw9vffhnJFj+ttQF0TQ5ZEUIIIYQQYiZVrMftum7Wdd0/c133Ctd1L5/473ylri8g6NFZ3RJlZXNk3idFKB5JMfbt3diJAm7RJv34UbKvDFa7WmIBcAo28Yd6yb4yDJaL1Z9h+CvbsQaz53yNgEdndUuEVQvgsyYWl9wrQ6QeO4pbsLETRca+vYfi0VRFf4auqSxrDLGuLSoJSOawzrogG9pjkoBEzBo7ZzL+g33kt42C7WIdzzD6le2YQ+f+/BViPnNdl8wLg6SfPI5bdLDHC4zdv4visfRrvi/o01nTGmVlc1gSkAhxERojPja0x6YlIDFHc4x8dQfmkRTYLvldY4w+sBs7U6xSTUW1TI5j2qMVSUBijeUZ/doOioeSYLsU9o4z9s1d2ClpW2J+0TWV4NE02V8ewc3bOGmT+Pf3UziUrHbVxAV6rXkbcyDDyFd3YA1kwXLJvjhE4ueHcEy7SrUVYmEqHkkx/sBenGQRt2CT+uURcttGLvh6iqLQVV+a65MEJIuHR9dY3hRmbWt0ziUgcfIW8R8dIPfqCNguZl+GEZkHFEKIBctKFEjcvwvzQAJsl+KBBKP37cBKFKpdtXnh9PnJwu5xRr8j85NCCDFbzNEcyW/swjp6cp1o7IHd2Bmz2lUT4oyKR1OMP7AHe2JuKfv4UaydY9WulhCLQtB7Yp/G7MXwWKkio/fvorA3XhpzHUww+rUdWOOyBWcmKIpCd32I9ec53+4UbRIPHyT78om9CVlGznNvghDiwriOS/rpPtJP9+GaDvZYnvS3d9OUcyQBiRBCCCGEELPgonvdiqL8WFGUH53pn0pUUpw0limQzM3/RZDi4emB7JnnBmShXVw0O5GnsGd8aqHlYg7nzvregmkznMpj2s4M1U6ImWNnTdLPDUwrLxxMVPxnpQsmo2kJLJvLxjJFEgugvyDmDzteoHhwav/ONR2skbM/f4VYCOx0kczz/dPKi8dfOwlJqf9ZkP6nEBVQrv9jjeRwc9bUsv4s1pj0ZRcLx3EZSRXIFq2zv/g8WKM5nMzp7S0vwWBiXolni6TTBTJl5hJyu0arUCNRCablMJzKU7CmJxaxhnNgu1PK8ttHsRMyJy9EJRUOxKeVZZ7rx8lbMgYU56x0Py+UvZ9Xm5UoUNgfn1Lmmo4kIRFCiAXKGstPGzPYySLWqMyBnAtrtMz85IDMTwohxGw54zqRzOWLOaxwYHqsX+bZfpxcZde6hBDljWeKs7pPwx7LY582vnLSJtaoxNzNlES2SDx7fmtjdrxAfvdpCaFsF3NY5kSFmGl2skhmy2kxDW7pAA4hhBBCCCHEzNMrcI3PVOAa4ixG0wUe2trPF5/qJezV+f3bVnL98np8xvw8LVsLTz91Vot5Uebp7yPmDsXQUHwabn5qYKbqe+22tf14gs8+uo+Xj8a5dXUTH7mum2WNoZmsqhAVpegqWo0Pe2zqgoQWufhTvk+wHZdnekf5+0f2MJDI876rOnnrpe20RP0V+xni4oxlCvxk2wCff/IAAY/G779+Ja9bWY/PqESXT4gzUzwaikfFLU7dRKN4pW8nFgfF0NBiXpzU1EAENXjm04p3TPQ/Xzoa55ZVjXzs+m6WNYZnuqpCLDil/k8/n3+yt9T/uXUlN6yox2/oqL4yfSBNQZXn06JweDTDN587woMvH2d5U4g/uHUll3bVVOTaZduWWuoTCTHXxbNFHtkxwP/71QHWt0T5r7V+OC1xml7rq1LtxMXYO5jiC0/28sSeYa5cWsunb+phdUtk8vtKmflRNWCgGHJClBCVpEWnn56o1fo4HM/xN4/skTUIcVb7BlN8/slentg7zOYltXz65mWsaYlWu1qTVENF8Wq4hdPW4fwyBy2EEAuRqQEKcGo+Q+Xs8ReiRPXK/KQQQlRTTnGnF2oKqszlizlMi5aJ9Yt5yTkOwdmvjhCLxnimyM929PO5X/XiNVR+//UruHFlA37PzM55KV5t+piLM6xHi4uSKVg8vnuIf3x0H6bt8Omberh9TTPRwJlju05QDBXFr09LblZ2zCeEqCjVo6JFPVhDU5MzpRUXO1ck6q/cPgkhhBBCCCHEdBcdXeq67hMn/gGeBwZOKxMV8Iudg/zFj3ZwbDzHroEUH/v6C7xyJF7tal0wT3cUreaUQExNIXprlyzwiIum1/iIvnHplDLvyhqM5jMvwRwdy/KBrzzPIzsHGU4V+NbzR/jjf9867RRtIeYy1aMRfX0naMpkmRbz4u2uXHDy9uMJPvCV53n5SJz+RJ7/8/O9PPD8UVy3zKK9qIrHdg3x5w9u5+hYjj0DaT5+/4u8eDhe7WqJxSDqgZvapxRZPVGGfcoZ3iDEwqL5dKK3d4N6ynO43oens3xSkWPjWT741S38fKL/+Z0tR/nD720lcZ4nbQgh4NFdQ/z5gztO9n++8SIvT8yX6I1+Apc1Tnl99LYu9DpJorfQFUybf/jFXr7wZC9DqQK/2T/KvV96jn2DqYpcX28MELyqeUpZ+OZOjHppW2Lue2rfCH/0/W0cHs3y0PZ+DnQFpiShUEMG/lW1VayhuBCj6QK/++2X+d6LxxieSGj+0fu2MJA4GYxltAbxLJ06TxR901L0MgkThBAXzrssNnWziK7gu6GNd3zx2alrEN+XNQgx3Wi6wO99Z+J+nirw8LZ+PnrfC/Qn5s7Jp3qtn+hd3VPKvKtqMZoCVaqREEKImfToQILipQ1TynzXtKI3yBzIuYj7Nay1U8fYzrWtFMNn3+QmhBDi4vTFc3zmxSOYa6YmJw/fKutEYm7zLouhRqbOLR1dFeU3h8aqVykhFoFf7RniT/99O0fGsuwbTPPJb77Ei4fHZ/znGvV+wjd3TikLXt2C3iBzbZW25dAYv/Ptl9k/lObwaJY/+t5Wnto3fE7v1Wt8xE7fm7A8htEi6aGEmGlqwCD6hqWlhE0T3EY/PxxI8PSB0epVTAghhBBCiEWiYuk3FUV5E/AZwAN0K4qyCfhL13XfXKmfsVhlCiZf/c2haeVP7hvmqmV1s1+hCjDq/dR/dD3m8TSu6WA0B2UiRlRMYEMDRr0faziHGjIw2kJo4TNnOe0dTjOambrh84VD4xwdyxJtmzunywlxNp4lERo/tRFzIItiqBhtIYwKLpzv7E9iO1MTjnztmUO8+8oOmiOyQF9t2aLFV58+NK38sd1DXNtTP/sVEovKUKrAn+3t4yO3tVNvuWQ0hZ+NJFkzmKJDnqVikfAujZaew4NZFI+Kpy2EXlv++dg7kmE4XZhS9tKROIfHsmwISHZ+Ic5VtmjxtTL9n8d3D3HNsno0v0H0zm78GxpwkkW0Wh+ethCKJkmyFrrj8Rw/fLVvSlnOtNk3lGZ5U/kEUedD9WpEbl2Cf009dqKAVuPDaAui6Bed71mIGWXZDvc/e2hK2e88vpcv3b2GlaqOoqkYrUEMCWycdw6PZtkzMDXR0vF4noMjGZqjpT6pHvZS+66VmMfTOBkTvcGPpy1UjeoKsaAZjQHqP7Ye83gG13IwWoK8mM0xcvoaxGFZgxDTHRnLsqt/6v28b+J+3hKdO3PwgUsaMBoDWCOnrMOFZD5DCCEWmuFUgf/1i71c0xbjXbe1EzNd4oZCoc7HjYYcMHQuto2keUwtcPet7URslzFd4asHhvjPiXpW+SURiRBCzKTekTTferUPdX0Lb761nfDEfbi5J0JU1onEHGY0BNh9Uwt1GRvdhSOay188sZd1bVFuW9t89gsIIc5bwbS575lD08p/vmOA65Y3TH9DBSm6Sui6VrzdUezxPFrUi9EWQvXKmKvSfnxa/ADA/c8d5s51zWja2df5/Rvq0et8pb0JwbPvTRBCVI6vJ8bYW5dijBcoaArPZfP83dO9XDNYz+1rmlFV6d8LIYQQQggxUyqWhAT478Bm4FcAruu+oijKkgpef9HSVZXGiJc9p53WWjfPg7mMOn9FN8cLcYLq0fAuieJdcm7Bu/4yATK6quCVzUNinlEUBU9bGE/bxW+qKyfond5tqAkYeDVZ8JgLdFWhOeJjR19ySnl9SE40FjPPo6vsHMnw/oM7p5T/69rGKtVIiNmnqAqe9jCe9rM/h8v1PzVVwSeB20KcF01VaAr72MGZ+z9ayIN/Ze3pbxULnEdXCXl0UgVrSnm5+++F0oIG2oqas79QiDlEVZSJhBQnT24byxR5dDTFpbevql7FxEXzGSqKAq57evnU+54e9aJHZZ5AiJlm1Acw6k8mdNIOFqa9RtYgRDk+Qzun+3m1qR4db3cUb7ck0RFCiIXMo6vUBT08uHuQB3cPTpZ/5h0bq1ir+cXv0fjWtn6+ta1/ssyrq/zZOWxwE0IIcXFOrAfcv62f+yfuw6oCP1lzfTWrJcQ5eWIoyX3PHJ5S1hrzVak2Qix8mqrQFPEBiSnljZHZ+dxpfgOtJzYrP2sxay7z92yO+M45eYFqnN/eBCFE5Siayo+HEnzxqYNTylti5/4ZFkIIIYQQQlyYSq5qWq7rJs7+MnG+vIbGp27sQTtlgBQLGFzXU1/FWgmxMKTzJiGfzk0rp26S/tRNPSypD1apVkLMTRvborTXTE0e9V/uWk1NcH4nxVooPLrGx1+3FP2U/kLEr3PjypnNxi8EQEPYx5+/YfWUsmUNQda2yqKbEOUsbwxx+9qmKWUfv2EpS+oCZ3iHEKIcb5n+T9RvcMMK6f8sdiGfzu/ftmJK2Yb2KKtbIlWqkRBzg+O6vOvyDjynbHYKejTuXNdSxVqJSljaEOSDVy+ZUnbPJW30NIaqUyEhxBTLG8O8fvXUNYiP3bCUprBsHhFTddcH+dA1S6aUvWVTK8vlfi6EEKIKon6DP7xjJcopezmao14u7YxVrU7zzcqmMNcsq5tS9h9fv5yuOolFEUKImdbTGOau9c1Tyj52w1K6JR5QzANvvbQdn3FyHt9nqLz9so4q1kiIhU3XVD563VIM7ZS4S5/OTSsb2N2fZN9gioJlV7GGohLuXN9C0HMy2bNXV3nH5R3ytxVinnjTxlYCp32G33NFZxVrJIQQQgghxOKgV/Ba2xVFeS+gKYqyHPg94OkKXn9Ra454+cs3r+XgaAavprKmNTKRdVcIcaEOjqT5bw/u4Kn9I7znig7+591rSeRM1rVF2dQRw5DTZ4SYojbo4c/fsJqd/UnSeYvu+iBLZXF+TlnWEOT/vnMj244nMTSFjho/Ae/cOiVTLFzr2qL81VvWcWA4Tdins7wxRFDanxBlxQIe/stdq7hheQN7B1PUh70kcxZHxnKyUVSI85A3LfriOf7w9pWMpIv4PRo3rKiXRBOL3J6BJP/xgVeJ+HT++I6V5Io2SxtCXL6khuaozKWJxSuRNfn6s4f49nOH+Y+vX062aFEf9nJld53cNxcAXVW5aWUDDWEvA8k8LVEfVy+tI+wzql01IQRQE/TwV29Zz1s2jbGjL0nIq/PS0XF+74GX+e9vXssS2YQqJhwZy6IqCn9w2wpGUgVWt0S4rqde7udCCCGqpqsuyP+8ex0HRzIEPBqrW8LUheSAinMVDRh84oalXLW0jtFMkfaYj83dtXJKrxBCzIKwV+feK7tY2xphMFmgNeZn85IavLrEMIi5ryni5a/vWc++wRSuCyuaQjRHvNWulhAL2mVdNXz/E9fw4pFxPLrK2pYIX/71QX7wch+qAu+/qotP39RDo+zdmLfWtUX53ievYcvBMcayRTyayn964BVuWNHA79+6gtaY/+wXEUJUzYb2GN/48Gae3DdC3rSJBQye7R1hSX2A2qD0k4QQQgghhJgplUxC8rvAnwEF4FvAz4G/quD1Fy3LdvjKbw7yjWePEPBo2I5LwXL42oeu4MaVjWe/gBBiGsdx+eazR3hq/wgA395yFFWBr3xQPldCnMnW4wk+cf9LGJqCR1PJFG3esqmVv3v7BlmknyNeODTO733nFfyGhuOW+gufvqmH/3zbChRFgtnEzHEcl28+d4Qv//ogIa9O3rSxHJcvf+ByblndVO3qCTEnHR7N8V9/uJ2gRydVsABI5k3+6u51GLokwxPiXOzsT/Gf/u1VgMn+z5aDo3zxA5cT8somvcUoU7T465/sYld/EoDnDo4R9up89UNX0F4TqHLthKiuV4+N8/eP7AXgf/98D35D4+2XtXHvlV1VrpmohP1DaT583wvYrkvIo5MpWrTG/Dz4qWupD0vQlRBzQXPUh6Gr3P/s4ckxIMB3txzlP9++UubuBHnT4u8f2cPPdwyiKEzczw/zrY9dRXut9GWFEELMPtNy+MKTvTyw5ShBj4ZpuxRth69/eDM3rGiodvXmhX2DKT74tS0oikLA0EgVLJbWB/jeJ66hNiRjNSGEmEm9I2k+/LUtmLZD0KOTLlrUB7386HevpSUqm4zF3PbY7iH+yw+24zNKcQN50+Gv37KOe6+S+XwhZoqqKmzoiLGhIwbA5351gB+83AeA48J9zxzm0q4a7t7UVsVaiou1uiXCq0fifP6JXnKmDcD3XjzGpZ0x3itrpkLMabbj8pPtA9z/7GEUpdQ/AljZHJEYZSGEEEIIIWZQxXY2ua6bdV33z1zXvWLinz93XTdfqesvZvGsyc93DAKQLdoUrNKAaUdfsprVEmJei+dMfrZjYEqZ48KLh8erVCMh5r6DIxkATNslUyxNwP9i5yBj6WI1qyVO8cLEPSxnnuwv/GRbP8m8Wc1qiUUgnivys+2l52q6YGE5LgCvHo1XsVZCzG17B1M4LlM2nz2yY4DxrDxXhThXh0ezk/99ov/zTO8YIyn5HC1Wo+kiT+4dmVKWKlhT2ooQi9XugdSUr3OmzU+2DTCekXvmQnBsPIvluLgT/UvHhWPjOfqTuWpXTQhxihcPj00ZAwL8ZPuAzN0JoNSXfWz3EMCU+/nh0UyVayaEEGKxGs8W+cXOUqxSpmhTtEtrj7sHJFbpXB0bz+G4pY0yJ/qBvSNZBpKFKtdMCCEWvuPjOQqWM7ke67ownC7QH5eQZjH3/XwirjVvOpMbbH+6feC13iKEqKC8afPwtr5p5U/tGynzajHfPLy9fzIByQlyjxVi7ktMxCgXrJP9I5AYZSGEEEIIIWaaHK88D4R9OpsmMuueqrsuOPuVEWKBCHo1LinzuVreGJr9yggxTzRHfNPK1rVFifjklPm5YmVzeFrZZV01BDx6FWojFpOgV+eSzti08mXyXBXijNprpp+wtaE9Rlieq0Kcs8bw9NNClzUEifil77NYRXw6q8r0icu1FSEWm46awLSyje1R6XssEPVlTtCO+g1qAp4q1EYIcSYrmmTuTpxZxGewpjUyrbwxPH1eXgghhJgNYZ/BhvbotPLO2unjS1FefZk5qbqgh1hAxuJCCDHT6kNeFGVqWcCjURuU+TIx921eUjet7Mru2irURIjFyaurXNk9/XNYbnwk5p/NZe6nco8VYu4LenU2dUy/D0uMshBCCCGEEDNLkpDMA15D4/duWU7NKYvQN65oKLvRUwhxbry6xiduXEbdKQuL1y6r4/IlMpEoxJlsaI9y1/rmya8jPp0/uXMVQZ8Eyc8VV3XXsfmU+1hD2MuHr+3G0KTLJ2aWV9f45OumP1evkOeqEGd0SUeM169unPw66jf4g9tW4PdoVayVEPPL2tYI917ZOfm1z1D5q7esozYoCScWq1jAw1/evZbAKffSd17eztq26Zs5hVhsLums4eZVJ/sesYDBf7pV+h4LxfKmML9/64rJr3VV4X+/bQPtZZLPCCGqZ9rcXcjLR66TuTtREvYb/Lc3riHkPTnffvfGVta3yeYGIYQQ1eH3aPz+rSuI+k/GKt2yqpFNHTVVrNX8sqIpzO/e3DP5taEp/O3bNtAam56kXAghRGX1NIb4L3etnvxaUxX+5q3r6aqT+TIx9925vpmehpMbapc1BLlrfUsVayTE4qIoCu+8vIP22MnkwOvbotywoqGKtRKVcte6FpY1nDwIeFlDkDvXyT1WiLnOq2t86sYeiVEWQgghhBBilsmu4XliXVuUH376Wg4MZ/B7NFY0hed9VnYnb2GN5HBtB73Ojxaa37+PqL7JNmU56PUBtNBrnx6ztjXKg5++lgNDaXyGxvKmEHVlTg0VYj6x00WskRyKrqI3BFC9ldtM1Bjx8b/uWc8Hr1lCpmDTXR9kSX3w7G8Us6a9NsDn7r2UvUMpipbDssaQbDgSs2ZtW5RHP3IVudEcBAy8jQFqy5zwJsRCZ+ct7OEcruOi1/vQzjBua4r6+T9v38DeoTTZgs3ShiBddfJcFeJ8xAIe/uTOVdxzaRvJrElXXXDaCRfWeB4rXkD1aRgNARRdNngudJu76/jx717H4dEsEZ/O8qbwlM0yF8rOmlgjOQD0Bj9aBa4pxGxqjvr4zDs2khjN4kuZBPwGoXo5FWihCHp1Pnp9N69bUc9Iukh7TWBKAOWp7KyJNZxDURW0ep/cz4SYRafO3RUsh2UNITpqZ3fuzrVdzJEsTsZCj3nQa2UD7FxyWVctP/7d6zg4kiHs01neGCIWmHvrp9Z4Hmu8gBrQMer9Ms4SQogFbEN7jId/91rcsQKevE2ozkcgIms/5yrk1fnEDUt5//ImrHQRT42PmtZwtaslhBCLgtfQeN9VnVy/tI5g1iJguYTrAyiKUu2qCXFWSyJ+fvC2TWSyJumARqjGR3NU5nCEmE0rm8P82yeuYf9QCk1VWd4UojHsO/sbK8C1HMyRHE7WQq/xotfMzs9dLJY1hvjmR69k31AagOWNobPeY52siTmcA0ViBYSYTa7plNa08jZ6jY+1bbL3RwghhBBCiNlWsSQkiqKsAD4HNLmuu05RlA3Am13X/atK/YzFrrMuSOcC2ZRmJQokHu4lt3UEAKM1SO27V2E0ykZpcWGsRIHEzw6Se3kYAL0lSN17zt6mOmoDsx7kK8RMMQczjH5rF9ZgaWNc4LJGIrcvQa9gIFgs4GFzd13Fricqry7s5WpJ/CCqIL93nMw3d+EWbNAUvPf04G5qlE0IYlGx4nniD/WS3z4KgNEeovZdKzEayvc3a4JeruyWe7YQFyPsM7i8q/ypFoXDSUa/vhMnY4IKkduWELq6BdUrOXkXumUNIZY1VC65gjWaY/wH+yjsTwDg7YlS89blsmlXzDvhjIX5w4OYx9OkAGtDPdG7lqLHpD+yEAQ8OhvPciK5OZJj7N/2Yh5JAuBbXUvszcskgFWIWVTNuTvXtMm8NET8RwfAdlH8OnXvW41vWawq9RHlddcH6Z7Dyb8Lh5KMfuPkOCt6ZzfBK5tRPTLOEkKIhch1XGr7cow/sAfTdIgbKsq7VuJfU4eiyibus3EtB3aMUfz3fWC7FLwaxfeuwr9STukVQojZ4FNVOgbzjP/7PnKWS96jUfveVfhXyX1YzF1WskDyp4fIvjwEQKg5QN17VkG0yhUTYhFqjflpjc3uerBTtMg8N0DipwfBATWgU/dba/AukZtAJTVH/eec3MkcyTL23X2Yh0tra96VNdTc3YNeK2trQswkJ2+R/k0fyV8eBhfUkEHdB9bS0RGWvT9CCCGEEELMokruCPwi8KeACeC67lbg3RW8vlhACr2JyQQkAGZfhsyWAVzHrWKtxHxWPJSYTEACYPVnyDzbL21KLBqu7ZD6zfHJBCQA2ReHKB5OVbFWQojFwhrPM/ad3aUEJAC2y/i/7yudACDEIlI4kJhMQAJgHkuTfXEQ15U+qRCzzc6YjP9gX2ljHIADyZ8dwuzPVrdiYl7K7RydTEACUNifILdzrIo1EuL8ua5L5oVBzOPpybLc1hEKvfHqVUrMuuwrQ5MJSADyu8bI74tXr0JCiFllDmWJP7gf7NIY1c1ZjD2wBztRqHLNxHxhp03Gv7dnyjgr8fBBzAEZZwkhxEJljZYSkLimA5ROoB1/YA/WqKz/nAtzOMf49/ee7H8V7NL/v/F8lWsmhBCLgzWcY/x7+8CauA8XbcYe2IM1JvdhMXcVDyUnE5AAWANZ0s9IHKwQi4U5kCXxcCkBCYCTtRj/3l7stFndii1iua0jkwlIAAp7xsnvHa9ijYRYHMz+DMlflBKQADhpk/iD+3FyVnUrJoQQQgghxCJTySQkAdd1nz+tTHr4oqziKZMxJ+T3jOMU7SrURiwExaPTEy3k946f3AwtxALn5C0Ke+PTys3+9PQXCyFEhdlpEyd7WtffATshwTticSkcTEwry+8ZnwzQFkLMHidjYpXZCCfPJnEh8numJxwpVybEXOYW7bLttlBmnlYsTK7lkN9dpg0ciM9+ZYQQVWHHC5PBmic4yaIEsItz5mSKWCPTx1R2XBLZCCHEQmWnitPmt13TwU4Wq1Sj+cVOFCY3D57gZC3stPz/E0KI2WAlCnBa4gY3J/dhMbcVj02P9cvvG8fNSzi+EItBuXk2aySPk5FnVzW4tlt2bS2/Pz77lRFikbHi09cizONp7IysaQkhhBBCCDGb9Apea0RRlGVMhK8pivJ2oL+C11/UHMdl90CS/UMZQj6Nta1RmiK+alfrgnk6I2Sendo8fCtqUD1alWok5jujPTytzLsihuKd3qZGUgV29icZyxRZ2hBkVXMEj17JnExCzD7Vp+NdHiO7ZXBKudESqujPGUjk2dmfIJ23Wd4UYlVzGEVRKvozxIWxHZfd/Un2D6eJ+HTWzPO+gphftJCBGtCnJiJRQIt6q1cpIarAuyRK9oWpz2LvyhoUo3xfczhVYGdfgnjWZFlj6bmqa9IvFeJ8HI9n2dmXJG86rGgKs7K5NDZUgzp6ox9raOqprPJsWvhM22H3QIreoTSxgIe1rWHqwxfXL/atqKWwf2qiKd/K2ou6phCzTfFo+FbWkB6cmqBJ75g+pybmp+PjOXb2JyhYpWfiiqapf1tFV/GtqsU8LYjduyw6m9UUYlHZN5hiz0AKr66yujVCe02gqvXRol5QmJKIRA170MJG1eokpsuZFrv6UxwZzdIQ9rKmNUJNwFPtagGgBg30et+0RCQyzhJCiIVLC3lQDHVKIhLFUNEic+PZNNdpUc/0/ldARwvJ/z8hhJgNbsgAVZmSiETx62ghGQeLucvTPj3Wz9MTQ/FWMtxfCFHOgaE0uweS6JrKmpYIHbWzP59bbp5Nq/ehBuXZVWn7h0rz94amsuYM8/eKpuBdWUvxyNSDUn09srYmxEzTotPjfPSWIFtH0zipHKtbI4SkfySEEEIIIcSMq2Sv+9PAF4BViqIcBw4C76vg9Re1Zw+O8oGvPI9plxZELuuK8c/vuZTWmL/KNbsw3qVRfOvqyW8fAUoDwuDmZhRVNrKLC+PtjuLfWE/u1Yk21RQgdGXLtDY1ki7wZw9u4+c7SptDFQU+d++l3LGuZdbrLEQlKZpK+No2ioeSWMOljZaBSxrxdFVuM1FfPMfvfOslXjoSB8Cjqdz34Su4ell9xX6GuHBPHxjhQ1/dgjURPHHV0lr+8V2X0FxmIlaIStNrfATeupzMv+3FLdqgKeRvaqdPc1lS7coJMYu8PVF8a2rJ7yydgmG0Bgle2lQ2YddQMs8ffvdVnthX6r9qqsIXf+sybl7VNKt1FmI+OzSa4be//gJ7B0ubqf2Gxjc/diWXdtagBT3UvG0Fo/ftKCXJUiByWxdGS7DKtRYz7Vd7hvn4N16YjCm+ZVUjf/u29TRcRCIS39o6crtGKR5MAqV5Lf9qSUIi5hdFUQhe3kx+3zhWfykRibM8xk8TaW6I52iZp/PMouTQSIaP3vcC+4dLz8SAR+ObH72SSzprprwusLGB/J4xzKOl13lX1uBbXjPtekKIi/fKkXHe+6XnyBZtAJbVB/nSBy+nu76ySaPPh9EUIPbmZcR/3AuOi+LVqH3XCrSIJJCYK1zX5cGX+vjTH2ybLHvfVZ380R2riPiqv9FAC02Ms76xszTOUiF6+xKM5uom2BFCCDFzduTyeG9pJ/zLY2A5oKuE37YcvU7GkOciH/Hg3tGF8sgRsF0Uj4b+5mXoNbJ+K4QQMy1TsPjGngFuvLmN0OPHJ+7DKjXvXIFeK88xMXd5uiJ4N9RT2FqKI1AafLxUZ9A+lGJ1S6TKtRNi4dp2LM69X3qOZL50AFd7zMfXPryZnsbZTeZvNAeI3tVN4mcHwSklMax92wpJZFhhrxyNc+8XnyUzMX+/pC7AVz54BUsbps/fT66tTSQi8S6vwbdCYgWEmGlGS5Dw6ztJPXoE3FKS9EOX1/P+r2/BtF3+9K5VfPjabgw58E0IIYQQQogZVbEkJK7r9gKvVxQlCKiu66bO9h5xbhK5In/18K7JBCQALx6Os+14Yt4mIdHCHsI3tBG8vQPNAXQNXYIcxQWwxvPk94yR2zmGf1MDwc0toCoY9X608PRJ1119yckEJACuC//1hzu4pLOGxoAHt2ij+HRc0waU0qk+eQvFq+PaDq7jono13JyF4tFwHRccF9Wn42QtFI+C6wKmixrQcXIWaAqqR5u9/yli0dJqvMTeuxxFVXE1FdV2Syd6VMirx+KTCUgAirbD//rJLu7/6FVE/dUPgF7MxjNF/vuPdkwmIAF4tneM7ccTkoREzArXddmSy3Ll76zD56q4usKze0bYtWuIT8zyYqwQs811XcyRHIquYNT4id6xhMBVzaiqCnqpP1nO9r7EZAISANtx+W8/3MHG9hh1IRkbCXEuthwcm0xAApAzbf7lsX38f/dehs/QUP0atR9YU0qQ5bhojQGsRAGjQSubHEjMf0PJPH/+4LZTDzXk0d1D7OxL8rqVZ+8XF/vTZF8dxhzIErykEW9PDEVV0MIe6t+/BnMi4aPR4EcNXPwYyM6Z4IKiKqi+0jStnbfAdkFxUVCm/BzHtMFyUXyleQlXmXivnO4iyrDG8+T3x7GTBfQ6H56OCNmQzg9XBFm2JoatwMPHx/nRL47whebQWZOQOEUb13bQ/AaOaeMW7NI8mV8HF5ysiRoyUHUN13aw00UUn44m7XNWPNs7OpmABCBbtPnxK8dZE/OjlKY5UVwH11CJvmkZ5rEUqlfHaAnK5jcxZ7mOOzk3r2hT+25O0cY1HRSFijyTL9bpfQhtaYR/faJ3MgFJW8zHxy7rIJco4EwkRrvQ57dTtHGKNoquovmmX8Mp2LiuW/Z7iqER3NyMpzuKkzHRYl4M2UA8pxwezfKXD+2cUnb/s0e455I2LuuqTmD7iT6AnSiSe2UIcyxPzbtXAaCFDYyGAIo+fe7DtZyTa26WA3ap3+DkrdK6heWCoaAa2uT6mqKX1tKcrIWLW/rsO8g6mxBCVEkmb/FXP9nN25c3cM/vX4pbtLF0GE4UiMgBQ+dk91CKISxu+f3LUEwLy6Pw/eePc/NYqCqnqgshxGKyfyjN3/1iLy23r+LO378UTAdThazlIHdgMZdpEQ/WZY3U39aFYjukizb3PbSD9Zm8JCERYobYjst9zxyeTEACcCye54m9wzOehMR1XayRHCYuquXg6iq+NbX4ltdgZ030Gq8kz6ow03L4wpMHJhOQABwazfL0gdHJJCSu6+LmLBzTRg3o1LxzBW7OxLFcFAUcxcVOF0FRUDwqqiFzl0JUkmPamMdSuKZNzYfXoAU9FA2F2HiOL9yzga2DKf7pl/u4aWUjK5okPlkIIYQQQoiZdNERwIqi/P4ZygFwXff/nuX9XwHeCAy5rruuzPcV4J+Au4As8EHXdV+6yGrPWa7rYicKAOixUiBitmBzeCQz7bWj6cKs1q2SiseSuIC5Y5zEi4Oofp3QDe34VtainmGTnhCnc4o28Z8eJD+R9b2wdxyjNUj9h9aVTUACEM+ZBDwa925opSvs4+eHRnn+aBzfWIHxnx3CscHbFSa7ZYDAFc1Y/RmsVBH/6joyWwbwr6/HSRUpHE8TvKyJ7IuDeJdEcYHi/nGCV7aQ3TqCXu9DC3nIvjyEGvEQubkTb3cURYJxFi07a+LkLLSwZ8aCZQuDGcyDSbIvDqH6NELXt5E/NoQR8uDf2Igeubhs6GPp4rSyQyNZskVLkpBUWbZocWQsO618PDv9b+YUbOx0EdWvo82BTRpiYTAth+ubYhR3Jhib6NtdcUM7XeHqLbC5zkS/WlHQY5LQQcyM/PEU1tE0mef6QYHQtW1otT4Ku8bJ7xnHaAoQvLIF1a9Pbi4/IZE1J/9bUeCOFQ1c3xbDzVkgSUjEHOLaDnayiKIpc+6E9GPj0/s/ewfT5Io2ajyPeSRF+uk+cFyCV7diDmbJPj+If2M93pW1+DolUG8hOPWZX3AcBpPT58vip9xzz8QczjLyxW2lE90B1adhjeZmZFxvZ0xyO0ZI/7oP1avhv6QRNeZFcV2cRBE0hdz2EayxPMFLG/Ff1oQzlifx2FF8S6Ogq+C65F4ZBgXCN3bgW1kjyUjEJDtvkX11GCddJL97HC3iwS062Msi/N/fHKRgOVNeP56ZPnZ0rdL9Hw2skTzJXxzGyZgEr27BSZnkto3gW12LtydGbucohX1xPF0RgpubyDzbT/FoGu+yKIFLG/F2yZzYTDs6npv8b0NT+Pwda7lc1Sm8NAyug94SwjyeIffSIFqdH9+KGhI/PYhrOjR+ciNGc7CKtRdiOnMoQ/rpfvJ7x/H2RAlf24bRFMS1HPIH4qQePYKTt/FvqEeLePD11KDXVj6hjp0xcfKvPad7eh+isHuM8J1LiE/My/2vW1Zwp9dH4YUh1J0pctfa5A8nCCyrwbs8ds7P79N/98CGeozWIJ4lUbSAgVO0KewfJ/nYEbBdwq/rwLuyFs0/9fqKpuKRz/yclSpY5Ex7WnniHPqzUNnxm2s7FHoTJB89gpMx8a+rxxrJkd8+Sn7rCJHbu/Dd2FE2wWOxL036yWOY8TyhK1vJbBnAaAqgxXw4ORMcl/yOUQKbm3Eth9xLQ+gNAcI3dWAOZnHzFtlXhsCFwKYGzHiB4Lp6PLLOJoQQr8lOF3GLNmrYU5ENUJmixXs3tXBXQ4zUTw9hHk/j7YnRcmkjdtaUdcZz0KDAhvZass/0oQcMtLDBu9a0MFjmeS+EWLjsTBEnb89ovJCYLpEz+c77NrLREyT1s8MUJ55joUsbcfLW5NqtkzWxcxZa0Ji2nitENRRH0kQLDskH9uIUbIJXNPHFN67l04/umdV6OEUbO1VE9eloQen3iepz8hZ2xkTz6xVPTG3aDrv6k9PK951yIMpMsEZzpLcM4FtRQ/6lIQq9CTwdIYKbWzCaAhgtMo87E/KWPeWwmxMOTuzVMUdzZJ4bILd9BKPRT2BzC9ZAmuxLw2gxL6FrW8nsHSD/6ghGYwDf2jqMOj+erojMXQpRhmvZpXULQzvj/p7TFXoTjH51B/UfXkdu+yj5faU9QkuuaqHmleOsyTq8/82bGCnK/IoQQgghhBAzrRKz5hebOvBrwL8AXz/D9+8Elk/8cyXwuYl/Lzh2qkhmSz+px4+BohB5fSeBy5qoD3t5yyVtfPO5I1NeP6+zNoYMiltHSP788GTR2Dd3UffBtfhXVuckLzH/WCO5yQQkJ5h9Gazh7BknKVY2hHjg1jXUPj2AG09wQ08M5d7lZL65GydrErmlk8SPeglc1kjmuQGswSzRO7uJ/2A/3hU1FPbFKeyPE71jCfF/34fRFMROFMi+NETk1i7iPzyA4tMxmgIkH5lo38M5Rg5up+GTG/F2zOPPrbhghd444w/uxxrK4e2JEXvj0opv7rDzFubBJMmfHposG/vWburev5rRr+8CF8I3tF/Uzyj33HnLJa00yEbpqmsIe7l7Uxvfe/HYlPJljaEpX5sDGeIP9VLYH0dv8lNzdw/epbFZrKlYsDIFivvjJ599lPp2TR9cU5XqWMkCmecGSD95DFSFyK1dBC5tlIBYUVF20cbqyxB/cP9kWXEgg7V1mMKe8dJrxvIUDyep+8BavF1Tkx0sbQihKKCrCl+4Yw3Lt8fhsUGsnSkKd/fg7Y7O5q8jRFnWeJ70k8dIPz+A6tOJ3tWNf13dnEl0cPmS6fMH77y8g5qgh+yBBOPf2zdZHv/BfmJv7cFKFkg9ehS36KA1+jF88myYz6xkgcyz/aSePI6iK0Rf38Wf3NTD3z5+8t6sKkyeWPRazP7MyQQkEQ9ayDNj4/rcjhHi/37K8+NYitp3r8QeL+BaDqknj+EWS0kikr84glbjY/x7+/AuiVA8msLbFSHxs0OT7x/71u7SnNoqmVMTJdZ4Dnu8UEqURmkOrXA4Sf2H1vGWTa088MLUsWNP09TPiDWWI/n40VKS04BO6JrW0onXwzkSP+olfFMHdsbEThRJ/vIw5tFSoJ62sYHxb+8pJS8BsmP50tza3cvwtsmc2Ey6sruW//d46b//+LqlXKEbZH7ThzWSw9MdJVjrJ/XoYXDAGs1T6E0QuamD5C8OU+xLSxISMafYaZPRb+/B6i8F/Gafz1M8mKThtzdgjeQY/doOcEuvTf3yCOFbOkk+cZSaNy1F0Su3matwYGJOdziHd0WM2F3l53RP7UOckH7sKH/0jmV8ejTLnT4/mYcPTn6v+MAeat+9ktH7d1H/4bX4Vpzb87t4LDXld09O/O6u7RJY30DxcLI0Dzxh7Dt7qH3/agJr6y/gtxfV0hbzs6IpNCUI3meodNWd/T5tjedJPXGMzPMDqH6d6Bu68a+rv+BNjsVjaUa+sv3k5+3xo4Rv7EANJHCyFqnHjxLY1IheMzUBkDWeZ+Qr23HSJpHblzD+3T2ofgNvR5jsCwN4lkTIbhlEbwpgDeXIvjhYeqOmknl+AKPBP6Wvm+jPELljCcNf3U7DJzbibZc+hRBCnM61XfL7xog/eAA7UcC3rp7obV0YDYGLum59yMsbWmsZ+9aeycOUss8PYA1kiL1jhay5nINWzUNu1whkLJLP9KP6dELXt9G8qqbaVRNCzALXdSkciBN/cD/WSB7vyhpid3VjNMk8zGzorAvQnPQw/sAe7PjJ55jZnyb2npV4fTqFQwnGf3gAqz+DpztK7E1L8bSefT1BiJlkDxcZ+/buyfF44uGDRN/YzZ/ftnLW6mAOZUn89CD5XWNo9b5SfNmymGyuF1VT7EsT/3EvxYMJ9OYgNW9ZhndJ5WJqfIbGOy/v4C9+tGNK+S2rGiv2M0534hDO0JUtJB7qxewrzYfnxvIUj6apfe9KtNDFHTooygv7DN55eTv/6ye7p5Rfu6wOp2iX7n/bR4HSoVKFPWNknhsAJtZcDyWI3NyJPZrHHs1TOJQkdE0LikfD0yb9CCFOZY7kSD5yiNy2EbSIl9jdy/CtrEHRznxotWs7pJ86TuztPaR+dZRCbwKYiMM8lKTmnSsY/coOzO/to+39q2frVxFCCCGEEGLROnPv/Ry5rvs/Xuufc3j/k8DYa7zkbuDrbsmzQExRlJaLrfdclN87TvKRI7img1u0SfzkIIXeOIam8ts3LOUtm1pRFagLevind29iXds83pSWt8lsGZxa5kLxSKo69RHzk3v+b+lyFWp+egR3vAAuqPvi+J4pncDm6QxT2B8HQIv5sAaz6HU+in2lYE9PR+n7ikfFzpjggG9lDdlXh0vVcVxc08G36mTZJMfFPCbtezEyh7KMfHUH1lDpRNrC/jhj/7YX5xxPLjxXdqpItsx9tXA4hd4WJP10H3b64n7m+vYo//TuTdQFPagK3HNJKx+9fin6a0wGitnh0TU+fdMy3rihBUWBhpCX//feS1jbcnLDu501GX1gz+R9zhrMMfLVHZjD2SrVWiwkbtom88Lc6dvld42RenSiX12wSTzUS/Hg9BMrhLgYVqJA7rQ+n6c9PJmA5AQna2GN5jjd6pYI/3rvZXxycxcrtozA4dLnxRrIyv1ZzAmu65J5cZD0M/1guzgZk/Hv7qV4bGZP+zkfl3TU8L/uWUfEr6OrCu+/qpO3XdoGQG77yLTX514ZJnBZEwCZLQM4w9M/m2J+ye8cI/XYUbAc3LxN8qFe3tNSy21rSn/n5oiPL7z/cla1nMNGRffkJIN/ZW35cf3xi2//Ts4i/dTx0352aZNnsS+N6zKZgAQAFazhHDguniUR7HSRwsHEtOtmnu+/6LqJBcR2yb4yNK3MGs3xyRt7ePPG0jxzfcjDP7/nEta1npxndh2X9NP9pTkGx8VJmyQfOYx/Q8Pka3LbRvAtr0Fv8E8mIAHQIp7JBCQnFI+ksMfyM/N7ikmXdsb467eUnol3ttWQ/MlBrJHSc654MEH6iWP4152SiMBycJ2J+94FzLEKMZOs0dxkApLJsuEc5nie/L7xaW02t30EJ21ijRcqVgdzKMvI13aUnsFAYW+cse+eYU73DJ+hZY0hPnv3Ogpl5ksKR1LoTQEyLw6Wf3MZZ/rdi0dTOKZN9tWhae/JPN2Pa8uHfD6pDXr4x3dfwuaJhItL6wN89YNXTEs2fTrXdck8P0Dm2f7S8ztjMv5vFzd+KxxMlG1z3uUTm6bP0LTMoSxO2gRdwclZpbW0FTVkt43gW11H9uVSP9u/qnZKf8W/uhZzKEPh0PQ5vMKBOJ6WEOYcGo8KIcRcYg5kGP36ztIGaxfy20ZI/OwQjnlxp8GqqoI1mp9MQHJC8UgKOy7jvHNhJwq4BZvsy0OTc6zJnx3CHpH/f0IsBtaJseXEZ76wZ5zxH+zDzlU2XkiUt6QuiD2Wn0xAcoJ5NI0zWsAczZX+PhNzEMWDCca+tQs7XSx3OSFmTbHMeDzz/CBtxuwcEuEULMYf3E9+Vyms3x7Jlz4rQxK/IKrDTpcS8xQn1ketgUwppqZMHM7FuH1tE799w1I8mkrIq/Pnb1jNFd0zdwCENZ4nv30Up2hPJiA5wR7LY49Vbr5bTPfGDa185LolGJpC2KvzP968hsuX1Ez+XU7wrakrjedOZblT5t3dnAUomH0ydynEqVzLJvmLw+S2joBbmiMZ/cZOzNPWAM9EDXomE5Cc4KRNnNTJ/np+6/DpbxNCCCGEEEJUWMVmJRVFWQr8E3AVpSnQZ4D/5Lpu70Veug04esrXxybKFlRkveu4ZYMNs6+OEFjfQFddkL97+wb+060r8BoqzRF/FWpZQaqC6tM4PeRB8chG9rnGThawRvMoPh2jwVfRkwQvll7nw7e2jvyOkxN+eksQreHMnw97JA/O1FWawt5xwjd3kN8zjhopZY5WJpK2O0UH1TvxO7suaAqu405mYHVNB8Wj4easyfe4E+9xmEq5wNPmxPxmjeZwzamtwexLY8ULeCp4OpSiguKb3sYUr4abNVH9OlxkE/QZGndvauOqpbXkTYfmqA/vHLonLHbd9SH+/h0b+cPbVuLzaDRFpp5AaY8Xpm3gcE0HayR30SehCYGqoHrL9e1mJwjiVK7lkD19gw+Q2zmCf23drNdHLFyqCop/ahtXKPUXOW2Tl6JPH+d4dJXb1zVzTchP4pmtU77nFm2s0bzcn0VVORlzepI7oHgkiW9ZbPYrVEbIp/PeK7u4aWUjRduhNerHmPi8qf7pfW3Fr09uHFV9OshpXfOKNZ7HihdQ/TpGg780l7ZlYNrr7H3jfPbdlzCQzBP0ajSEfWWuNp3RGkIN6DhZC6doo/o0nNPyqVVk3kpTUAPT+0iKRwNDm5xbmOSCop+YpHBxLRfFO/39qpyENW+4tos1ksXOWugxL3rNubXR86EGjVL/vDC1h656NZbUB/k/79jAH9y2Ap8xfezopItl56ndnDXZz1F8Gm7RLrVXhcmA6Gntl9L3y/WFRGWFfAb3XtXFTasaifQmiU+bi8rgWzU1WFZRkFPZxJw0+dw7jaoqpT7c6eU+Hdd2ULTK9e2skTJzusfLz+kaLUEUvz4RaFwSvrGDSGOQjUGDuHf6cqbq1XAK1nmdZHmm3x1VRVEV1DJzzWpIr8BxFGK2rWmJ8JUPXs5IukjYp1MX8k57jZ0ultbudAW9PoBTLJMgGDCPJfEtvbBDLSbXxk5xog8AEL6pHS02vW6Tz33n5OfZKdqoXg3XLP3bsRxcc2ItLVv67Jz4zCllfq7q0zGTRVlHFkKIMzCHspwenJDfOYqdKKLWX1xsUdnxnMJrnlgrTlK8Ovk908/lMvvScGqiSCHEgmQO58CaumZYPJTCThTRyqxhiMorO8eglMqt0Txufur8qTWSxxrPn9d4XYhKKz8u1lC02YnRs+MFiqdt+MV2MYdzGM3BWamDEKeyxguTyaJPcAs21mgOo65yeymao37+6PaVvO/KTjRNpS02s/s0FE0FXTnjGpqsrc2s1pifP71zNR+4ZgmaotJWU/p7mxkbdGWyD+cWbBSvjlucmqTs9DVRRQHFkL+ZEKeyEkVypycJccEcyuFpP/NBQoqmErqurRSHoCrT9v2cen9UA9JvF0IIIYQQYqZVcrT7LeDfgBagFfgu8O0KXLdc1GDZs5UURfltRVFeUBTlheHh+ZXVUFEVPGUmaI2mk5NYXl2jqy447xOQ2KkiruoSur59yl9XDeh4Os7hZNoFaK623eLxNEP/71WGP7+Voc++RPKxo3PqNAbFoxF7w1Kib1qKd2mUyG1d1L13FXp4etDjCaq/3EYdA8WrYx5P410WA1WhcDCJb20dTqqIXutD8ajkdowSvLwJLBdFV1CDBtmtI4SuagHAKdhoNV7yO0cJTpyuferPWKjte66237miXJtTPGrZBcOLYdQFCN8w9b6q+HU87SHs8SLhmzsrFsTQFPHTVRec9wlIFmLb9RoaXfXBaZvIABSvWnaho1wbFXPbXGy7Wq2X8Ovap5SpAR1vRxU2s6kKetP0xA16vSRzmAvmYvu9UHqNn+AljaXNuBMyrwwRurZ1yuuMtiBGy5mDcXxBD5QJHpD789yykNruuVI8Glr99D6FFj3zeKtaWmKl/qlxymfJv65uat9HVQhsaiT/6ggA4Zs68LQsjk3XC6H9Fg4lGfqXVxj5/FaGPvsy6Wf6cR0Ho3n6891oCODzlBItnGsCEtd2MBoC1H90PaHr23AKNuEbO6a8Rg0ZrxkIca5Uj0bklq5pYzejNYinJYCTt9DrTqm3C0ZrEDVikNs+iq87iqcjNOX5g6ZMm4dYCBZC2z2dY9pktvQz+NmXS+35n1+mcDBx9jeeI9cu7TozavxEbl8y5Xta1IMx0YZPzDOXGztiqOi1ZcaUHq2UaE2BwMYG8vvGye8dJ3BK2yscTuJZNnWjc+DSRvSL3PQ231Sz7bbG/OjR6cFWikfDPWXTi1bjRY14qHv/agkcF1PMhXuv3hAgcFnjlDL/xnq0ej/e5bGpiZiVUr/PtzSGdpFJnU7cQ+H85nSNxgD1H1xL4IomvMtihG/pxC1YWKM5PEEPodPnbH0aRksQJ23h39RwzvXz9tSU/91XxFA0lcCGhmn939DVrShlM0QtPHOh7VZSyGewpD5YNgGJOZRl+CvbGf7cqwz98yvEf7Qf13am9iEnqK+xXnY23u7o1OSrCoSuasW1XWreuYLg5pay7ctoCuBZGikFBisKasggv2eMwCWN5LaOELq6tKaW3TpM8OqTcyjZrcP4VtXiaQ+VAv1P0BQ8nWGcjCnrbELMMdJ2545yyU7VkAe1AoekaLU+vKeP865oQm2qfELN2TKbbVcNG2WTdpUrE+JcyL13fik7tvRpFbk/zzfVartaTfnnmF7vR/WX+TtoCmqZJOBicZvt9uvtjk6bAwpd346nzLz9TFA82rTDWEDiF+ajhdJvUL3a1HXRE+VlkjZfLF1T6awLzngCEgC91kfkpg6sdAH/pqnz4d4VNWg1i3fMMFttV9dUOmuDkwlI4OTf5YTc9pFpcWBa1DslibneHMAu2pPrsGJxWyj33kpQPBpaZPq9TA2cfTzkXRaFkEbwyuYp5Z7O8Mk1N10lsEESvAohhBBCCDHTFNctm8/j/C+kKM+5rnvlaWXPuq571Tm8dwnwkOu668p87/PAr1zX/fbE13uAG13XnX502Ckuv/xy94UXXjifX6Hqin1phr+4bfK0NDVoUP+xdXiaF9ammNyuUZK/OEz07ctxxgsUDibR/BqeJdE5c5ryeah49OZcabtO3mL0GzspHJi6EaL+o+vx9cSqU6kJrulQOJQg/XQfrgvh69rwLAmjnkNCBDtVZOz7eynsHi8VKFD7nlV4OsMUDiaxxnN4WkOYfRm0Wh84LvZYHqMjjDmQQQsZKLpKcTCLtzOCNZKbSEjiodiXKpXFC2A76DU+isfTaGEP3qVRjKY5FdA/I5HHc6X9ziV21iTxcC/ZF4cmy2L39BDc3FzRAHDXdsgOJFHiFsVDSVSfhqcrQv5oEm9rGN/SKIqxYAIZFuy9dya5rkvmuX7iDx6YLAtc3kT0Dd1yys7sWbBt17UcCoMpnLhZ6tsFdDxdEVzLwr9y9if6i8dSpX71xMnvasSg4SPr59qzeL5ZsO33YhTGcziDWYqHkqAqeLujuBrYYwXM42n0Oj9arRc94j3jxnXXcUk/20/iR6fcnzc3E72rG20GgiYWIWm7F6FwMMHwl7dNnvKiN/ip++Daip4oNFMyW4dQPTrFI0lwXDzdUcxkAbs/g3dJFLU5gK9xzj8XpP0Cdtpk+F9fwRrJTylv+NRGFFWZ+syPemj48HqMMgnJyjEHMmReGqR4KIl/YwP+tXXosVIQp2PamEdT5A/E0UIePEujeCrUl3Ath+LRFPl94yi6il7vR4t5cQEnXsB1Xex4ESdj4l0WxdMZwUkWKBxM4CoKalAHy8UaLs1JeHtq8LSH5tImY2m7Z1A8lmLoX16ZUqZFvTR8eiN6mQCcc2WniuT3jJHZMojRHCC4uQW93kfxaJrCgTha1IN3aQyj8dw+G/kDcUa+sr2UdATQW4NEbunE7M+U5r6SBayBLHpzAD3qxU4UKB5PYzQH8bSHKR5PY/anMVpKX3ta58389oJou3bWJP7jXnIvn5yLir55KVqtj2JvAi3iQQ0YuKZDbvcYNW9ehn6RyRvEnLAg2u8JVrJA8XAS81i6lKhrSRR9IhlesT9NYV8cO2tiNAdRgwaethBa4MLmt8zBDJmXhigeTODfUOoPKF6NxEO9ZF86tznd9DN9pJ46jhb2UDyeBsshclc3kRvacQoWhUNJCgcSKB4VT0cYcyyHryOC0XZ+z+9if5r83nGcrIWnNYhW58PTEkaZCMIvHk9ROBDHtV28yyb6B+qc6R+cyYJquzPNdVziDx0g8/TUZfLa965CC3sY/tK2k8/vpgD1v7UG/SLGb4VDCfL74zhZC++SCEZXGCN69meGNZ6ncDCBNZzDuzSKOZzFdVyMOj9WvIDq0zAHsxitQRRdxTyaRot58XRHsVMF3LRZOjWeUqIfp2jh7YjMxbk9ab9ivpK2u8BYyQLj391LYV+8VKBA3b2r8a+7+PUZcyCDnbcw+zJYw9lSv6spgB70lE1gOcPmXdst9qWx00VGv77zlDlWH7XvWT2fxsqiMuZd+xUXz86YxH+4n9zWkcmymnesmG8Jped123Uth8Kx5MRzLDfxHPPjpi283VESjxwm83Tf5Oujb+gmdE3b5DhbzHvzsv1mj4yhFhQKh5O4BRtPdwQ3ohFojc3aPE/m5SHGH9gz+bV/XR2xe3rQgtMTYIsZMS/b7kxxHZf0030kHuqdLAte1UL0jiUzkohkNtlZk0JvAjWgYY3kMfsz6E0BjOYgml+fi3NhZ7Mg2q6dNSkcTFA8mESLGGiNAbCcUkxk1IOnLYwVz2P1ZdBqfOg1XvSGwDmvw4o5a0G037kmt3OU0W/snDyC3LssSs27Vp41NqJwJEn62T4C6xtwMibF42n0ej9Ga7C0B0hX8fbE8HVHX/M6i8RMdBArs8n0IuxatRqA1bt3VbkmYobJ4FsIIYSYBy569kVRlNqJ/3xcUZQ/Ab5DqdP5LuDhi70+8CPgdxRF+Q5wJZA4WwKS+crTGqLxkxsxBzIAGK0hjAV4SqQ5mCWwqZGRz74CAY3I7V1kXx7CWKCnV81XTs4qexKrHc+XefXsKhxOMvLl7Se/3j1G/UfW4Vtec9b3amEPNW9djtmfwcmY6PV+PK2h0qafS04GyfhX1U17r39l7eR/l5sqDKyfHsTjXysZVhc7LWAQvaubwMZG7HQRvbY0CVbpzWFWokDq3w5gDWYJXN+KeTyF2Z/Ft6F+StsVi5eiKAQubcRoDmKN5dFCHoy2kCQgERVh5yxyzw2ReWmA8Bu6ye0aJf3r48Tu6alKfTztYRo/NdGvVlWMlgBGvSz0icrz1vihxj/ZdywcSTL2tR04eQu9KUjm5UGCGxphXR1nCsdRVIXgZY14Wifuz2EPRmtIEpCIOcGzJELjpzZhDmZRPSpGa2jebFJ20hbJXx/GdV0UVSH1q2P4b2wjdlsXmk/6P/OJkylOS0ACYMcLBDY00PCpjVgnnvmtwXNOkmON5xn52nbseBGA4pEUZl+G2FuWoRoaqqHhXRrDuzRWyV8HAEVX8XZH8ZYLiOgs/555GmgmTmPFC9PK7EQBJ2PCBSYhcR2X9HP9pH55BIDi4STZrSM0fnIjvp7YBSUT9nZHS/f/oSyqR8NoC6HHvPAa81zBy0/+t6dNNlJVkxYwiL2xm+AlDdhpE73Oj9ESpDCYJrttGDdtTZ7QFrmtq/SaefJ8F4uHHvGir2+A9Q3TvudpCeFpqcx9xornGfnaDuzx0v25eCSFeTxF7K3Lib6hm8CmqZ+jM83p5vaMY4/lscdO9lnyu0YJX9+G6tXxr6ydMkd7oSt/Z/vdPW1hPG2y1raQuXmb/J7xaeXFYymid3bT+OkT4zcNozV4Ufd3azzP2Ld34+RtFF0l83QfgSuaqLl7GcpZDgXQa3xTfvZZ1+/WnNLHkGB9IYQ4b3rES807VmD2ZXCyFnqDH09LZeYQ7JxF4qFebB1ClzUx/tA+jLoQsXt6qpGEZN5x8hbJXxwmcscSFE3FzZsousz9C7FYaEGD2JuXEbysCTszMbZslTne2WTF88R/cACtxotnZQ3j/74PT1eE4JUtqD6dyOs78a+uxU4W0Wt9pXguSUAiqswdsxj5t734L29Aq/Uz9vVdRO5YglsbQrnAJLznK7CuDr1uI9ZIDi1olOIXJAGJqBJFVQhe0YSnLYQ1PhFT0xaa9wlIoLSeo8W8pB47Qr5vnPB1S0g8dRxdV6mpUsydKP1dAmvrCZy+LupA4meHSMYPowYN0BSid3TJPgEhXoNvZU0p7mA4hxrQSnFnZ4mLKPalGfnittKBGi8Ngwaxt/SQ3Zcg++owkTu68C89+54hIYQQQgghRGVUYgbmRUpJR07Mvn/8lO+5wP98rTcrivJt4EagXlGUY8BfAAaA67r/CvwEuAvYD2SBD1WgznOW0bjwM6F6OiOknzha+iJrk/xBKTtx9uVh/Ctko/xcofh1PJ2R0qnup9BiF34qa6VkXhiYXvZc/zklIYGJAOaLOF1WiPOlBT1oK2Z2Ic6OF7AGswBknzp5Sof/0umB+mLxUj063iVRvEsk+7OoLLdgkXlpECxI/fDgKeV21epkNAVlo66YdfZ4HidrAWD1l5JLZl4aInD5a59opnrl/izmJkVR8LSG5uWpnKpPm7IJFCD3q+OENzaitUgSkvlEDRpodT7s0al/Ty1aGtd7moJ4LuCZbw5mJxOQnJB9aZDwDW2o0ocQM0SPTp8b0CIetOCF35fsRIH0E8emlLk5C3Mgc8HzzIqq4GkLSTKReaw0FzV1rr24cwxnfOp9L7djFP8ljbNZNSHmFHMwO5mA5ITsK8OEXteBpzk47XN0Jr7lMQq7x6aWrayteCJqIRSfhm95DZnRqed1GG2hio/fzMEMdqL03Dgxx5d9YZDw9W0YjdJfFkKIuWamYiBc08Y8ngYgebj0b/N4GjdvVfxnLURu3sY8msY8mp5S3vDJDVWqkRBitmkhD5ocHFQ1dqKINZjFGsyWTkwHigeThF/XAUxs/j7HeEMhZos1lAXHJff80GRZ7tVhglc2z1odFEPD2xnB2xmZtZ8pxGtRvfqZD3iY59yiTX5naW459VAp5s6ilNBQzB2u7ZB5vn8yBsVJleZNCwcSBDe9dkyYEIuZoql4OsJ4zuOw6uKx1OSBGgDYkPrlEbzLa8geTaF5JeZLCCGEEEKI2XTRSUhc1+2+yPe/5yzfd4FPX8zPEHOL0RQAXZ1WrhjTy0T1aD6d2BuXMnLfDpyUCUDohjaMObD5TNHLBO6WaVNCLCaKWj6gXZulExCEEC+lcWsAAQAASURBVIuboqkoioKLO7Xc89qnogqx0ChamXGOWtpAL4SYXWq5frACyEbQeUcLeah9+wpGvr4TN2eBApHbl2A0X1wS37JjKGkjYobpzUGib1xK4ie94IDi1ah510q0i9kopgBl27O0ZTGVYkwfnymaclFJcISY7840p3q+t1D/6lryO0cpHEgAYHRG8K+ru9jqCTGNoiqErm6h0BvHGsoB4N9QPyNJTcsm0VEUTp5LIoQQYjFQveXXeWT959wonjJxLIr8/xNCiNmiaOXHL6q/Emc3CjEzyvYTNAVFlfhYIRYi9QxjA9Urz6q5RYFyMWEythOi4squ3akKuC6xu5ct+AO/hRBCCCGEmGsqOkOhKMo6YA3gO1Hmuu7XK/kzxPynBQ1CV7eS3znK5D5VFYKXyomLc42nPUzjpzdhjeZRfTp6g/+ME56zwc6YmMfT+FfVkX1x6GT7USC4efYyvQsxF+kNATzdEYoHk5NlvrV1GM1yIqEQYuZpMS/hmztI/vzwZJka8cjJ6WLR0VuCqGHP5IkXAOEbO9Brfa/xLiHETDBag+gtQaz+zGRZ4IpmjHr5PM5H3u4oTb+7CWu8gBrQMeoDF5zM1s6W5hZcx0Fv8GMN5ya/F7q6Ve7ZYkaphkboqha8y6I4WQst5sWo81/QtayxHMWJ06jDN3WQ/Nmhkz8nZGC0yHyAmMq7ogYeOwLWyeSR4Zs6qjrfK0S1GU0B9OYA1kB2six4VQv6ed6b9Vo/dfeuxhzOgqugN/jQgp5KV/eCOHmLYl8aeyyPGvbgaQ2hhedG3cSFMZqC1H9sPdZIHlVT0BoDaL7KLflbiQLm8TSopbZsDecnvxe6RvrLQgix2OiNAbwrayjsGZ8s866oQW+4sLHsYqM3BTHaQqVn64TApU3o9fL/TwghZoPe4J8eS7VeYqnE3OZbHiP5SxUsZ7IscnPHGZPDCSHmN73ej29dHfnto5Nlnu4Iumyyn1MUTSF8fRuFveOn7H1RCGxoqGq9hFiIPO1hFK+GW7Any8I3duBZEsGo95c9JE4IIYQQQggxcyoWkaQoyl8AN1JKQvIT4E7g14AkIRHTKD6N6F3dFI+lQZkYLAYka+9cpMd86LHqBxQ6RZvkL4+QeaYPrdZH9K5uzMEsiqYQ2NSIpzNc7SoKUVVa0CB62xJyu0axhnIYTQFcwE6bqBUMQBZCiHIURcHojBB5fSfF42m0qBe90V/+RHYhFjA96iX25qUUDiSwEwU8bSEUn45btFHklBIhZpflENjYgLMsijWSx2gJ4l0eQ9ElQG++0mv96LUXt0HDKdqknjhG+oljoJQ23wNYwzl8q+vw9kRRdAlYEDNL0VU8LReXrM8cyTHyte3YI6VNwb41tdS8YwX5vWPojUECa+swZEOTOJ2uEL2jG7M/jVtw8HSG0SKSiEAsblrES9371pDfNUrxSArf6lq8PbEL6g+oAQNvV3QGannhXMcls2WAxMMHJ8sClzYSfdNSNL9RxZqJi6WHvehhb8WvayULjD2wm2JvEtRSYC+aijWQwbem7oI/H0IIIeYvRVcJbGzAaApiDWXRGwMYzQF5HpwjRVcIXtWMNZjDGslhNAcxWoOyYUYIIWaJoqsELm/C0x7GGs5NJCMNomgSxyDmLsWrEb1zCWZfBrdg4+kIoYZkHleIhUrRVfxr6zHq/JiDWfQGf2nMdYEHcoiZM7n35WgKRVMx2kMofok/EaLSHNMmfHMH9kgeO2vi6Qzj6QrjaZJEgkIIIYQQQlRDJXdBvR3YCLzsuu6HFEVpAr5Uwesvaum8xUtHxnnmwAjtNQGuXlbH0ob5ebK8a7ukf32c3CvDpdM9XJfcK8NE7lyCp1EGh6I8azBL5pk+AOyxPImHD6I3+Kn9rTV4Gs6e8TlbsHjxyDjPHBilJerjmmX1LGucn58hIcpxijbJR49QPJZCr/FR6E3gFm30Ot9FbzwqmDYvH43zm/0jxAIeruupY2VzpEI1F5VwcCTDswdGOTyW4cqldVzWGSPilwVoMXvsTJHED/ZhjRcwGgMUj6Zw0iZ61IteU/1kZkLMFnMky9i3d6MGDLSwh+TecbBdvJ1hPO3Tk+YdG8/yXO8oewbTXNZVw+VdNdSFKr+JSIiFbNvxOL/eN4plO1y7vJ6N7TE0VaF4NE3yZ4dQAzpa1EvhQJz83nGMj66TDZcL1NGxDM/2jrFvKM0VS2q5vKuGmuDUPrE1nCP95LHSFy6kHjuKGtRp+PhGDDlNSswjxcPJyQQkAPmdYzgFi/oPrEP1aBQtmy0Hx3hq/zBRn8E1PfWsbpFx/EK3uz/Jb/aPkMibXN/TwMaOKJ5Tkm/lt46QeuwoWo0XxdDIbR8heFUznjZJ7iwWN6Pej3F9e7Wrwd6BFL85MMJYusg1PXVc0lmDz7i4AGZrNEfi54emlGVfGiJ4ZTPaHEuYIkoODqd5pneUo2NZrlpax6WdNYRncfxi9mdKCUgAnFJ/WW/00/DbG9Bkw5MQQixKxaEs49/di+LR0Gt9FA6W1qCN5iCeVom3OBtrKEf8+/tR/Dp6rDRH6bouTS1BjHOIcxFCCHFx0n1pkt/dh+LTTsZSWTZGSxBPs8SpirmpsD9O4se9J+dxd4zgWV5D3ftWo3lks7sQM8WyHV49GufX+0fwGRrX9tSzrm3m51DNkRzj392DomvodT4KhxK4eRujKVg2zkhUVqZg8fKRcZ4+y94C13ZJP9VH7tVh9AY/ruOSfXmI6F3dsvdFiAoq7TMrfda0iAfFr5PfOYplu/y4d5jxrMl1PfVs7IhhSIJXIYQQQgghZkUlk5DkXNd1FEWxFEWJAEPA0gpef1F7eGsff/zv2ya/7qwNcP9Hr6Szdv4tSruOgzWcA8AayU2WW6P5M71FLFJO0cYpWLhFB2t8evuwhnO4WeucrvXznQP8pwdenfy6JerjOx+7iq56mfwTC4NrOVhjedy8jdmfmSy3k8WLvvZv9o/w4ftemPw6FjD4t49fzYomWeSYC47Hs3zsvhfYP5wG4F+f6OV/vHkNH7imu8o1E4uJazrYiSLY7pR7UD5VRM5fF4uJm3fAASdt4qTNyXInb0977WiqwH/+7qs82zs2WfbJ1y3j929dgSGnSApxTrYei/POzz9D3nQA+KdH9/Htj13FFd21ONnSZ9DJWjgT40Z7PA+mgzycFp6hVJ7f/fYrvHI0DsAXnuzlP75+Ob9zUw9K3sIcyOLkLBRdAXfqe52MhZ0xkdQ0Yq6zxnKYE3OqdqIw7fv2SB63aINH45kDo3zwa1twJ9p7xKfzb5+4mlWSUHTB2t2f5J2ff4ZkvvTM++fH9nPfh67ghhWNk685MSdvj59sP+ZgFtdxUVQ5/VWIato3mOLdX3yWsUyR5oiPQqpAp65TV3RxLad0UnPt+Xdi3YINljut3MlNH6OK6js2nuXD973AwZHS3Nrnnujlr9+yjnuv6prRn+taDna6iJ0sYsfLr8U5BRtN9pkLIcSiNDqWA7fUrzh1/cfJn1ucxmJXyJTW6t2chZk7+f/MzlsyFyWEEDNsPFPk8LEk9TAtlsotyLhYzF12otR/OHUe1xnLc3QozZJ2SSorxEx54fA4937pOWynNJ/qNzS++4mrZzwRiVuwwQG3eFrcb9rEtWwUXZIPzaRHyuwt+PbHrmLJaXsLXMeZ3PNyYr0NSonAhRCVc+pnzU4WYWIPhDmS41vHB9gzmOazj+7j/o9cyTU99dWsqhBCCCGEEItGJXc2vaAoSgz4IvAi8BLwfAWvv2gNJPL8zc92Tyk7MpZlZ1+iSjW6OKqhEbi0cVq5b0VNFWoj5qrCkSSjX99JbusIw597leLRFGpwahiGVudDqz37SfHDqTx/85Opn6H+RJ7t8/QzJEQ5WsAgcFnTtHJPx8UlCknnTf7vL/dOKYtnTbYcHDvDO8Rs29WXmkxAcsJnfr6X4+PZKtVILEZK0MC36bT+nQJWRE5IFYuLXutDq/VNKVNDBmpwev7PvUOpKQlIAL74VC+HxjLTXiuEKO/hbf2TCUgALMflvqcP4Tguep1v2usDlzWhyundC9LegdRkApITPv9EL7m+FImHDzLyxW2M3b+Lwr44anhqG9CiHowy7UWIucIpWuT2jTP6rd2MfnUHo1/dgVImYVlwczNayEO2aPFPj+6bTEACkMxbPHNgdBZrLWbb072jkwlIAFwXPvvoPrLFk2W+NXXT3he4tEkSkAgxB7x0ZJyxTJFPXd7JN9Z18qlwBP3BXka+vJ3R+3Yy9P9epdiXPvuFTqPV+NBbpgZLK14NvV6y8s1FO/uSkwlITvi7n++mPz5zgezFgQzxRw6S/k0fw//fqzgZC057Lvg3NKBHZRwlhBCLUSJb5OVEFu20tR414kGvkbmUc1EI6Ci+qZsG9eYAaZ9sJBRCiJl2YDjNYduaHm9Y60OrOXu8oRDV4umaHuvnubSR+185XoXaCLE4mJbDF5/snUxAApAzbX65a3DGf7ZWUybOKGhgDmUY/c5eiv3nPy8szs1IqsDf/rTM3oLj0/cWqIZGcHPztHK9zoc5KHG6QlTKmT5r/qYAf3XNMgAcFz73xAGKliQWFEIIIYQQYjZULAmJ67qfcl037rruvwK3Ah9wXfdDlbr+YmY5Drni9EFSwXLKvHrucy0Hp+gQvKYVxauhBg3CN3fgOtNPYxOLkzmcZeTL23EyJsVDSZy0Sea5AcI3d2C0h0AF7/IYde9bjR4++6Kg5bhkCtNP4snP08+QEOW4loNiqASvaEYxVNSwh8itXTgXeXqH5bgkc9M/P6duYhHVVbSn38typo0lz1Uxi1zLwWj049/YAJqCVuMlekc3RpnTdoVYyFzHJXxdG54lEVDBaA8RvqkDc2j6gnOxTF/UclzMMvd1IUR58YmTRE81li3iFG2KIzkidyxBi3lBVwlc2ojeIJstF6pyc2Tv3dCCeyhF9qWhybLM8wNEbu7A0126T3uXRqn7rbVoEQk4FnNX8UiK4qEk5rGTQYbZV4eJvmkpWsSDYqiEbmibTExqOS6JMuP4dJm5MbFwpMucQh7PWdh2aUxmFyzsdJHw69pRJzbBha5rRdEkAYkQc0HOdGiN+nirx0dgyxCKy5RTL52MSfo3x3HPc7yoBQ1q37US36rayTFq/YfXYUgSkjmpXJ82V7SxnJmZJ7BTRUbv34nm0Un/urSRKbNlgOidS0qJajSFwGWNRG7tkhNXhRBikbIcl+UhH6HXtePpDIMKns4w4de1Y2fNaldvXvCYDpFbuzBag6W5qGVRgpc1oV/kGr4QQoizK1gOq2OBKfGGnu4IoWtacdLyHBNzl1uwiby+EzVsoHjUUgJyXSFkyFyuEDPFcV3Gs9NjD+KzMO5xCxaha1om16+N9hDhmzvAdslvH2H06zuxk4UZr8diZNoOmTJjszPtz/H2RAnd0D5l70t+T5zsK0NlXy+EuDC+NXWEXjf1s1bYG6f7eJaehlLi/Xi2KDHyQgghhBBCzJKKJSFRFOXriqJ8TFGUVa7rHnJdd2ulrr3YtUT9fOCaJVPKfIbKyubpGa/nAztZJLtlgPyuUYJXNONfX0/muQGKh6ZnjhWLg5UokNs9SublIYrHUphDWdyCjVbjm9yw6RZtEg/3ooU91Lx9BXXvX4OnJXRO12+O+Pjo9UunlHl1ldXz9DMkxOnsVJFCf5rMM30UDiYIXtWCf3UtqV8fxzycvKhrxwIePnZ995QyTVW4fEntRV1XVM7yxhBBz9Qg8Pds7qA1KpsJxOxx0yapXx7BGsoSvq4N79IoyUcPo4zM3EmtQsxFTs4i/uMDKB6N8PXtaGEPiYd6sYZz5PaOUTiawp1YrF7WGKLhtIR6N65soKsmWO7SQogy3rSxdVrZf7hhGfZwDvNQktTjR/H2xAhd00rxeJrMM/2Tn0GxsPQ0hqgJTD3N8K72WtzTEjG4pkP8RweouWc5zX94BXW/tQZP27nNLQhRLYX9cZzU1MBH83iazJYB6j6yjqY/uIzoHd3osdIpaRGfwW+fNo5XFbhmWd2s1VnMvmuW1aGeFoP+seu7CftL90Y7VSS/fZTMS4P4NzUSvKyJ3LYRcttGqlBbISrLHM6S3TZMdtsw5jydh9jUHuOelY0Eto2iBoyyQeXFIymcMgcWnI2nOUjte1fR/IdXUP+RdXi7IpWospgBK5vDBE6b533/VV20zMA8rzmUoXAogT2SLx0SMRGra48XSD5yGE97iIaPb6DmnuWStEYIIRaxupCXRkUl8VAvql8nfH07ql8n8VAvdlw2wZ0LLWWSePggWo2P8PXtgELi4YN4c5KERAghZtrShiBR052MNwxf346iqyQe7sVOyHNMzF2FQ0nST/fhX1NH8MoWCgfiZJ8b4B1rWqpdNSEWLK+h8aFru6eV3762acZ/tpOxSDx8EEVXT8YZPdyLa5biGuzxwryd957rmqM+Pnrd1L+7V1dZ1TJ9b4EVL2CnTKxkfsrel8KBOMWLjNEWQkylBQ2cvDXts2YfS/Pmdc0AfOS6pQQ8epVrKoQQQgghxOJQyZ7314DrgH9WFGUp8ArwpOu6/1TBn7EoaarCe67oIOzV+MHLfXTWBfj4DUtZ1VwKFMwXbVwF/MY8OYXKr+JdHiP73MDkyVoAnlZJCLEYWckCYw/sptg7MQmnQO17VgFgHkvhW1OHNThxcrwD+V1jBC5rQvWcW3vfN5ji1/tHaIv5+aPbV/L9l47RVRfgUzf2sLplarCtZTvkijYhn46iSOZ4MT/Y6SLxH+5H8Wp4e2JktwySfurkvdVoPf+NzKbtkDdtwr7SRpW71regqypf+c1B6kMe7r2qi6cPjJAt2lzSGZOJvCqyHZemiI+vf/gKPvdEL73DGd68sZW3X9aOoVcs15wQZ6UEDbwrashvG5lyUq9e66No2XjktFSxwKXzJj5DQ4t40BsDFPaOU9g7XvqmAqpPJ/vCELltw9Tduxr/unraawLc9+Er+OKTB3n5yDivW9HAHeubsV1JkCDEueqqDfAP79rI135zCNN2+Y+39LBm3CJ3YBijKUhu6wjZFwYnXx++pfOcx5Ji7ilaNqbtEPQa077XXhPgc/dexn3PHmJ3f4o71jbR0xpBOZAAhclNlVAaI6lhA80//TpCzCTLdsidMtY+V4pXRytz7/J0Rhj/0X5q71lOsmDy4uFxnj4wSnddkCu6a/jfb9vAl37dS23Aw+/cvJwN7bEK/SZiLuppCPHNj1zJt7ccYfdAig9es4Rb15wMjlUAT1eY4uEkmaf7JsvDN9ZUobZCVE6xL83Il7bhZEuJx9SgQf1H1+Npmf3kjqfPqZ7N/qE0v94/TH88zy2rGnjzZe1wuBd7OIteNz3pg39DwwX3X1SPJv3gOSaVN/EbGrp2cg53RVOYr3zwCr74ZC8HRzK8eVMrd29snfKaSigeSzH8xW2Er28rFbigGOrkxgbXdMjvjxO5YwmKzDELIcSi54v5yPp08nvGye8pzXkrPg0t7KlyzeYHPeoFBfI7RslPlGkxL1pI5qWEEGeWKZgYmipr7BepJeonU5cnrqvkd42R3zUGlOYO1JA8x8TcZbSGyDzTT+a5gcmy4FUteGolSagQMyFbtFAVhet66vjfb9vAV58+iM/Q+O3rl3Jp58yvoWgRAzVgUNgXp7AvDoDiUaesb6vzZX/IPKMoCu/Z3EHYb/Ct5w7TGvPzns2d0054tsbyjHxzJ/41dRgxH6lfHZvyfd+a1z4IwnVd0gWLgEdHO/1EASHmOcdxyRQsgl4dtULtW1EVjPoAiYd7p5R7V9TwpuYAjW9bz5XdcpCqEEIIIYQQs6Viu4Zd131MUZQngCuAm4BPAGsBSUJykVzX5Rc7B/n6M0fY3F3LUCrPX/xoB1/+wBXsHUzxr786gOk4fOJ1y7hueQMh79zeDK5Y4FtZgz2WL02YaQrBzc1o9d6zvlfMXXaygDmUBUXBaAqgncNinZM1KR5MnkxAAuBC4UgST3eE4sEkiqHiW1lTCmjRFEI3tOFdcm4n9fUOpXnvF59jOF06vaAu6OEf37WRzUvr8J62ULu7P8l9zxxiy6Fx7lzXzNsvbaerXk6hF3OfOZAht30UVIW6e1dhjxco7I9P3luNtvNL8LT9eIKv/PogW48nuGdTG2++pJWOmgDvubKTK5fW8Pc/38t/+M4r2E5pleOf33NJ2RPoxczbO5jim88e5jcHRrmkM8Z1PQ34DY3vvXSUG1Y00F4bqHYVxSKi+XSClzfhJIsUD5ee38GrW7E9Gv/137fxviu7uLRLNreJhef4eI4fvdrHv790jNUtEX77+m6W39PD+Pf3YQ3nUPw64RvaUQyV/K5RcGH8hwfQan0YjQGiPg/Zgsm6tiiP7xnmvmcO8xdvWlP2hBUhxFRjmSL/5QfbeO7gONf21OPTVVYbBsmf7EH1G4Rv6SBweRPZl4bAdfGtrsW7/rWDP8Tc9fKRcb7wRC8HRtK8+4pO7lrfTKPPwBrOYWdM4h6V33vgZZojPta2RvjZ9gHetrGVetclcmsXqaeO4+Ys9MYAoevacPM2SBISMYt29iX46m8O8fLROG/a0MI9l7bTecqYzc6aWEM53KKN3uBHr/FNfs+3qpbk40cIXtVCZssA2C7eFTG0gEH2+SSF3gQPWnn+4kc7J9+zrCHINz6ymTvXN2OoKr7TNp67risJeBeQA0Npvvb0IZ4+MMplXTE+et1SvvabXq5f3kDtxPSmXuvHaA7iX19PbvsIKBDY1IgS0HFtB6XCG9yFmC3Zl4cmE5AAOBmT3NbhiiQhcUwbayyPopQ+Q6+VjGHH8QRfnphTfcumVu6+pI2OmvJzc3bOJHUszciRcZxCkfufPcznn+zls+/exOvv7Gbsvh0U+9IENzeTeXEQbBffujqClzZe9O8kqu/oWJYfvHycH73ax6aOGB+6dglrW6MA9Mdz/MUPtxP2GaxuifCt547gMzQ+fkPwnJ7b1ngeaySHYqjojQG0wPT+rpUpkn6mH7dgkz+QwL+hgcyWASK3dZF68hhOykSLeal910r0mK/MTxFCCLHYpF2H2Bu6ST5yGDtZRIt4CN/WVdoUJ87K9ijE3riU5C+P4GRMtFof0du6QBJ9CSHKGErleWTHIPc/e5iOGj8fv3EZl3XWyDzeBYpnixRxib5xGclfHJoc70Ru60Lxyn1YzE3ZooUa80xdD1gew7uyhqPxPCuDEmMtRKUkcyZP7B3mC08eIOQ1+MA1XXzruUN01gYoWA5//P2tfPOjV7J+hpP8O5ZD+KYO0r8+jh0voIYNwje0k3qilOgicHkTeoMkIZopTVE/G9oivNwcYSRT4NPfegmfrvHdT1zNurbSvG3xWArreIac5RK6ugX/xgZyW4cB8G9swLM0Sn7fOIquojdNnZc9NJrh+y8e46fbB9i8pJbfurqLVS3ntgdCiLlu/1CKbz9/lF/tGeamlQ28e3MnPY2hilzb0xUmcFkT2ZdPxnx5WkN4HznMgSUeUjmLj17fLWMlIYQQQgghZkHFslUoivIoEASeAZ4CrnBdd6hS11/Mjo3n+Idf7iNn2jy8rR8ARSltFP/kN1+ivcaPV9f4xP0v8eUPXM4tq5vOcsXqcnIWqSeOEbm5tCFI0VRcy8EeL8KSatdOnA87a2L2Z8B2iP/4ANZw6ewWoyNM3btXogQN7JEcruNi1PtRT5lYK/anGf/uXnyrTmYiVfw6oatbAIi8vgsnVcROFvCt7SB82xJUj4pe6ztrUPxgIsdje4aIZ83JBCQAo5kif/qD7fzw09fiDZ3cfNEXz/Ghr22hP1Gq/z8/tp+RVIE/f+PqsicsCzGXOLmJIHvHJf7zw8Te0E3giiYUXUXxaijauU+wHR7N8L4vP4eqKDRFvHz2sX0cHM3w1/esw6trbD2W5OHtA1Pe83c/2801y+qoC8ki52waSub55P0vcmw8x9KGIL/YOciegRRdtQGOjef57otHJeGDmFWu7ZB5aZDwLR04OQtVV3Esh/zOUQ6PZHjvl57lwU9dK4toYkExLYfP/Wo/j+8ZJuDR+PHWPn61Z4gHP30t7e9fjTWcA8cFBexEkeDmZtLP9OOki5iDGcy+NAcjGj/fOXXY/PeP7OX65fX0NJ5fIjEhFpudfQme2j8KwON7hvjiXWupSZrEiw5KTWm851tVi295Da6h8vhYitp0nmuozIK3mD17BpK894vPkTNtltYH+f5Lx7ixPkxiX4LMb/oAUMMGD75lI7v6kiRx6RvPog3m8LaGcAo2NW9ZBpqCnSgy/r19NP3eJVX+rcRicmQ0w/u//DyJnElPY4j7nz3C3sEUn3nHJjxFG3MoS/o3feR3lO5patCg/iPrUDQFJ2uh+DV8K2rAdaldthLF0LDG8yR+dAAAcyzPV7YenPIzDwxn2NWfmjZPvG8wxQ9f6eP5Q2O8aWMLt6xqojUmgYvz2VimwH/4zsts70vSHPHxytE4rxyNs6mjhh19CTomkt04RQsnZ+HbWI9vXR2qoWFnLdKPH8W/qlaSkIh5y+xPTysrDmQu+rrWeJ7kI4fIvjIMCoSubCF0Uwd65OQcqGs7mENZskNZxsazjCdy7B9K85lH9nJ0LMtf3rISEgUUr47R4EPRNexUkfjDveReGaYd6AzorLptNfc+vJ2/+eluLv3olTjvXUn6eBpfvZ/YpQ14fAZ6rQ/VI6ddzne5os3/+fkefrq9n2UNIR7fPcTju4f4waeuobMuyK6BFHsGp7bpf/rlPq7rqWNdW+yM17WSBayhLGMP7MFJmaApRO5cgqc5iBow0Bv8qIZG4WiK9LPHsYdKa2F61IO3J4a3J4qdtah996pSApMaH1pYTgUXQggBiWyRzFgOYyRH7J4enLyF6tcpHErgRj14mqtdw7mvOF5AK9jE3r4cN2+h+HXyu8bQIh48DXKghBBiqu+/eIz/8/M99DSG2HY8yb1ffI7vf/KayQ2w4vz0DqdxjiZZXlSoeevyieeYQX7/OFrMC5LrU8xBrx6Ns2xfkuCyKN6eKK4Nmk8l9Zs+tq0Ms1LuB0JUzFP7hvndb7/MsoYQ8VyWT9z/En965yr+5qe7J1/zy11DM56ExM1aZF8ZInJXN9gOasDAHM0RvLoVT0sQT0cY1Te3D6edz3JFi88+tp+n9o2cLDNtHts9NNkHs9MmAIqhgq7iW1+Hb00tqk9H9ekU9o2T2zqCeTyNd3mMmrctR4/5yBZM/vsPd/CrvaWEJfuH0vxq7xDf+8Q1sj4r5r2RdIHf+9bLFB2XgmXzpV8f5NneUb7+kc3UXmTSNDtr4uLiX1+Pb0UMVAXFq2EOZNAjBhsaQvzxL/dyx7rmybVwIYQQQgghxMyp5KzEVuAyYB2QAOKKojzjum6ugj9jwbPzFvZoDlQFvX4iKMyyKdrOlNetaAzz6/0j/Omdq9g7mCJvOrzz8nYe2zXETSsbUdW5m9XRsW1CVzQzdn9pos61XbxLo4Rv7qhyzcS5ch0XazxP+tfHye8ew9sTm0xAovh1vJ1hzJEcmYcPkt9Z2kARuKqF0JXNaDEviqIQ/1EvZl8G//p6mGiukdd3knzkMG7BJvXYUbwra6h563L06LlPRpiWwxee6uWrvznEp27qmSzXVYUPXNLGVbVhPPEirt+YDK7fP5SeTECyrCHEu67oYNuxOH/709285ZI2NnXUoM3hz5RYGFzHxRrJ4RSsUpBv6NyCfPV6P6gKOC6hzc2MP7Dn/2fvvKPbuM68/cxgBr0TAHunSKr3Ystq7jWOHbc4cco6Pd7sZlO3993s5sv2bOrGqW5xSdy75S5LsnqnSFHsHSB6n+8P0KAgUrJsURJp3eccn2NczAwG4sWde9/7e38vWiqbM/8psWC/vBr1FAVMLf0h7lhVTSieptMf5bI5xRwZjNA1EqPeZyWcSE84J5rMkMlq7+m7Ck6f1sEI88udXD2/lH29QVbVFWExKLzjOeOPpE56vpbVSA/HyMbSQlQumBJkVYd5vpeRew5ARkPLaujLrVjXV3JzmZ61jV4O9gfPiQlJNp4mPRwDWUYpEkk7gqmjdzRGpdvMhQ1FhONpPrKkgqf39nGwL0Td/FIkJIZ/s590fxQAncuA/ZIqEu2jSKpMvG2EWQu9LK908vHGYhRgY3+Q3+0fu4bHOq3XdYLzg3QgnqtwalFRiqaPCCKdydLpHw83NXqtLE2ArliPodGBvtJB4JHDoIGk12FaW07ApDHYH+TCBs85vHPB+2F/b4hSh5HbVlSxp3uUu2aX4umLko5nsF1cic6uR3YaCPy2heZ0FtNCD5ddOZfM4QDBQ72kusNIeh2SKmNbV4G+yo78HuIMAsHpcnggzKIqJwsqnOzpHmVZjRufzcDocATl+S70Zda8AQkSmJb4iLf4CT57FNmkYF7sQ2fTE3qtGy2WRktlUUstWC8qJ/xqN3KVje5X4hM+N5kujCf3BGJ85hdb2VDt4lN1XmLBFL99q4MvXNKAQRFz5JnKkaEIHSNRvnVlE0eHo/ijKRZUOCh3GKnXKSQ6gyhOI6mRKDqbHv/9h0CS0FIZjLNcWNdXIBuEeFUwc8hGU6RG4kiqjFpkwrykmMTh0YJjLItOP4sotneY6PacMBgNwm/2olbaUZaMXzu2b5iRew9AFmqBv1jmRdPgzc4An24sIbF9gMThAIkjo7CqhPY6G4uzOmI7BkGWMC/woHMbmScp3LGknN/t6+f19hG+9dBuTKqOVCZLicPIA5+/gDIRy/hA0OWPksxk+fKGBvZ0j7Ki1k2RRc/hwTBVRZYJz26ARDrDG4eH8dqMFNuN+XYtq5EeiZMJJkgPx4nvHyYbSqGWWrBdUsXoE20E/Qn0VTYsF5ahr7Div/8AmXAK68pS1FILqf4o0QdbQALZqmL8xFwMlcIQVSAQCGYamqaRHo6TjabQOQzvSVvxbqSyGj6PhdRAguFf7kNSdWipDLZ1FQWVnQUnxuQwEGsbJT0YQ+cyQFZDLbWgM4l1mEAgyJH2x8mEkiT0Mgf7Q3zt8iZ2dQVwW/RUuc20DISECcn7pDsQY12Ni+ye4cLn2CVVcMw6O5vKkB7KFZfQuY3oTOIZJzh3PLu3j282lRF8pp1UfxRJlpBUGecNDYT8o+9+gSkkE0qS9seRTQpKkQlJaBcE55h0IEEmmEC2qKinqV1IpDI8u6+PP7t6Njs7AxhUmTtW2en2R6l0m+gcyWkR/NHkVNz6BDRNIzOazBUYNOowNrvx33sAxmS41jXlmBZ6MFSIYl9nmrbBCMHYRK3tsW1KkRG11IKhxkHgwRYAJIMO+2VVhN/oJeOPY7mwDNO8IoLPdxA85Odn/iA9gRgr69wE4ym2dQQA6AnEaR0ICxMSwYyncyTKhxaXs6srgEWv0OCz8pNX2zgyFCkwIXlnvaOz6VFcxpNcMUdqOEbolS6ykRSGWgdaKkvw+aOQzg2QltVlzPPZSKSzpEXugkAgEAgEAoFAcFaYsl1NTdO+CiBJkhX4NHA3UAIIVf8pkhqKEXj0MIlDAZDAvLwE+6VVyEhcObeEJ3b35o9VdBLLalxsah2mym0mo2kEoikWVzmnfaKalswSfqMHLTUupkscDmBeIuzlZwLpQJzwpl5kvY7Im705A5K+XGKlbFGxra8g/HoPkqrLGZDI4LiihnhLgMGf7MZ+WTU6s0LySG5TJLptAMeVNSR7I8R2DaElMvnPShz0k+oKvSehTKc/yi/eOEpWA5OqQ6+TSWWz/PDKOczeMoj2djejL/agXVaNZWUpOpOCfsyMRJLgthWV/NOT+9E0mF1qo9hupGMkSoPXyqxiG0ZViH0FU082kSaypZ/Rp45ARkPxmnB/tBl92btXaVeLLXg+NZfQ5l4Sh/xko+NGIanuMOmBKDS5T3h+LJmmpT9MXzCOWa9jZ6efV1pyyU8v7B/gtuWVqEruuVJiN6DXyQXGWDcsLkcUyz37WAwyOhlePjTIZXOKSaSzOM0q1a6c4cyHF5ed8FwtlSGyfYDRx9rQUll0TgPuj80WAnPBaZFNZohs6kWLjz/Hkx0hsoEEa6pc/NXzB1lS5Trr95UeiRF4tI34gREAzEt92C+vmVIRruD8ZTCU4PsvHebmZZWUOUzE0xk+t7YOo5p7MMb2DOUNSAAy/gSZcBJjs5vMaBK10o4xC9/1uFFe7AUNFlZZufGGhXznlTYWVjipEG79gnNIvDXAyL0HyIZTSAYdrpsbMc0pmhYCsy5/jJb+EOVOE92BGB9dWIbBbSI9FMeyooyR+w7mBTpaMkP0hQ4W3NTAfUcHSaYz6EWy/YzCYVL52uWN7O8Lcd3sYly7hlGWFBN9e4D0YAx0EtYLyzA0uTDWO8iGU2iDMdByayLI9QMtmSHRGcJ1YwM6US1KcBZxWVQunV1M32iceq+Fn7/Rjs2g8uliF8FD/gKxjf3yGiS9zOhjbQA4rqsjtneI9EicbHBc6JjqjWBsduO8aRb6GgcfXVHJrzZ15N+3GhQaiwvXeIf6Q/zZihrmbR9G294LssSiFT6GhiKUlwgR40xF1cncuaaOHR0B5pY78NoMeIwKF4Y1kg8fYjCdRec24LphFsEXOwti8vFDfszLis/h3QsE743UQJSRBw6S6gqDDLZ1lZiXF2O/vJrQS50gSdgursTQcHrJWVomS2zn4IT2+P5hLEt8pIaipPqj+B8+DMd4Rhi2DvIHV1bw50ursb3YRXAgiqHeieOKGkafaae6wkp6JLdGdFxRQ2RbP+kdg6CT+NK6chZf6eZ7Lx4GcpUWITfvPdQfEoLkDwh6ReLiZh89gRhzyxyEE2l+u7WLVXVFADQVW7EbFYLx8Rj/lfNKeGpPH3PL7XkTEi2VIbJzkNHft+biuw4DtvUVIEnoK21E3uwl409gv6yaZFeIZEcQNI30UM60LBNOopZZiWzuy32IBtlQiuCz7RTdMUcY+AoEAsEMQstkie0Zwv/QYbRkBtmmUnT7bAy1U5OsrpNBiqUJvdIFWi6+AhB6pZuiepEQfypkIymUIhORzX2k3x6LY11QilJsOde3JhAIpgHxQ35G7jtANppGMil869paHg6EaC6xI0u5NeHsc1Dk44OCx2pAjWcYfq278Dm2sRN9dS52mg4lCb3QQeSt3F6tod6B84ZZqB6xDhecGy5u8pIejJHqiQC5Ao9aKkt05xDXXXxiLdhUk+gMMfKb/WQCCSRVxvGheiyLvEhCOys4RyRaAwwfq124aRamuZ73rV2QJLigroi2oSgNPiuyBJ0jEZZUuXhyT1/+uMVVzin6BuNkQkkiW/oIvdyFpMi4bmsktLEzr28ACL/WjaF+6j9bMJHHd/Vw8exidnYVGj1dMvuYnBYJbOsrGbnvQL5JS2QYfbod923NjNx3kMjrPTiuqcVxZQ2BrhAPHuiiL5iLx37ziib294bycX9VEYJrwczHH0mQymSp81oxKjqe2dvHH6yuRT0moSB2cAT//Qfz6x33rY0Ym9xI0onH7tjeYYyzi/DfcwB9uZXQxq68AQlA5PUevHUObl1WSbnz3U1NBAKBQCAQCAQCwekzZYp7SZLuAtYAS4GjwM+AV6fq+ucD0R0DOQMSAA2im/sw1DnIlprw2gx88sIaXmsZosZj5tLZPjQN9veFuH9rFwAus8qfXjX7pAk16WSG4FAMSSfj8BiRz0XmuCyRGohOaM7G0pMcLJhuRLcPEN7Yhe3iSgBSfRHMC7wkO0OYlxYTfL4DndOQ/xub5nmI7hwk1RPBfnk1wafbMc3LVfjLjMRJD8YIvtSJ4+paRp9qn/B56UDilO8tFE/hjyZ5Jzbxyzfb+fZVzQyPxph9KIg2OFYVNqMRfLodfaUNXb2Teq+FFTVukpksr7cMsazSxS3NJZQ6Tfzra4fZ1RME4G8/NIfbV1SLAKCAyGiCWDCJyabH4jz9RPZUT4TRx9vyr9ODMUYfb6PoE3OQ3yU5TpIljI0uZIee4Z/vnfB+JnhiN/ZEKsM9mzv4+8f3564lwR9e3ED7cIyOMUH8w9u6+fzaOgDiqSzfvqqZFw70MxhKcHGzj3A8jaad+0TU8w1V1rG/N8iFDR6+9+whIPf3+8tr5vD318+l6iRJ64neCIGHD+dfZwIJ/A8dwvvZBegsoqKL4P2RTaRJ9UUmtGdCSVJpI5VuC8lsZpIzzyzRXUN5AxKA6NsDGOqcKEsnJtrFI0nC/gQGk4qtSGxQCN6d7Z0BPre2nt+8dZTe0dw8s95j4T8/ugiAREdwwjnp/iipnkgu2VMnoYVTKNuHxg/oCFNVaiWZyoJ4vArOIslYmtBIHEUvY/eYyIwmGLnnANlIrrqLlsgwcu8Bir+yGHVaCOQ17t/SyV0XN7C3J8hsjxVJ1SEDqZ4wHF9BXIPYaByvzZAzmfQJ87WZQjyVYX9vkH995iAAz9y2BNmoEHmrN2dAApDRCL/ajfu2JlJ9UUIbO7FfXTPpWijdG0G2ijmv4OzRMRLlbx7dx86uUZZUOLmpuZhf3LSY51oH0YZiaKkssjm37tdX2kh2BFFLc+OsUmpBS2YwlNuIbO2fcO1sIoNjWQkAX1jXQJnTxEPbumkusfG5tXXU+6wMhxMcGYqg6GTsqg7PkTBa/9hvJ6th2NSPpcmdsxIXzEjqPVZa+kMc6gvxb8/l4gM/v2IOyWfa88dkRhKMPtWO6jORPm7dlo2kGO4Oo1NlHB5RzVIwfdHSWUIvd+YMSACyEHqpE32NHduGSsyLfSCBzmE4qXjxVJB0MvpaO8nOUEG7vspGJphg+Nf7Mc0pQptkT6vBoEf7/RHSY4Y/iZYA2Wga01wPSjyLbNBhqHcQb/GPm1ZmNNIvdrH+U3P4+tjasuB+JImeQIyOkQh2o546r0WYpc9QgrE0P9jYypGh3Fi8vMrFv145B0tcIxlPU+u18uNPLOOnr7ZxZCjK6oYiZEniyd19Bf061R/NV9wEyIwmCL/eg+3SKlJjpiOGWU4SbQEko0K6L1c5WTYrZKNpYruHkM0T58SpnkjOYFiYkAjOA7KZLKNDcbRMFpvHhCr6veAsEI+mCI8k0Bt12KcosTk9EGPk/oN5Y7RsKMXwvQco/vIidFNhxq5JaKkMHF9ZNquhJbOTnyMoQJIl4vtHCuNYr/Wgr3UQ6I9i95qmfaEpgWAmcybG3qkiPRxj+Df788W6tFia7O9bKV1Xwp+8kEtwnV/uYEOT91ze5owmldZyxiPHF0hPazC2bk8eGSWyabwwYKJ1lOjb/dgvrz7t+MKJiIWSRAIJDFYV2ylUgxecX8hSrtjO8aR6w5jOUJ88nkwkif+3B8mM6Xa1VJbAQy3oSyzop6jAlViTCU6VsD+OFk4SGjMggTHtwn0HKf6KeYJ24dj8iXQmy5GhCEPhBKUOE9VF5uPGdonfbe9mIJTr643FVpZUu5hdaqPSZebKeSUMhU5dv36qxPYNE3z2aP67kNYKEuxzb4ybZwnOLFlga/sIX72skWf39mFUddy4uJwG73jfko0K8Y7QpHOKVH8Ey7JiIpt6ycbSJA4H0K0uZX54lL59uXj/73f0sK7Jy9N7+lhR42aW792LU75X8pp2ux6LKM4mOE0y6SzBsTiGzWtEOS4vLZxIsbcnxL89fwht7HfxubV1KDqJOk/ut5MajjFyz4GC9c7IPQfwfWXJCQ3/tIyW03ul0qjFZrRUtqC48TtIyQxf3lAvClAJBAKBQCAQCARniaks+2kC/g14W9M04SbxHskmM8T3Dk9oT7QFqJpXRDKd4fn9AyytdtETiPHYzh4ubi5m1zHOq/5oimf29nHN/JJJF1XBoRibHm2jZUs/siyx+PIqFlxcgdl2loMNWTA2uonvK/y+uilI5BecWTKR5HhlNElCUuVcYFcnYWhwIikSWiJDxp/A1OwmDigeE7FdQ7lj4xm0RIbYrkHsV9Qw+nQ7pLNo8QzpQALT3CKixyVVqMWnVv29bzTGPz65n5b+MDcsruCBrZ30BxP8/RP7+OmHF6C9cXTCOanhGM9HovzyzaNcu6AUj02PfzCGtTVK92/bGZIkPrvSxyavjd/s7ObvHt/PytoimkWVifOanhY/z9+9n9BIHKvLwCWfmk1Fk/u0rpn2TxSXJ9pGyURS72pCkkeVMDa7ibzZW9hceuIk0bahCP/4xP78a02DH73cxmfX1vE/Y1U3M5qWj53XeCz82SO7aS61U+uxcu/mTr52eSOes/0cERBJprlibgn/+cK42FzT4F+ePsBfXzeHCtfkQdrQcIzYkdEJ7em+KNlwUpiQCN43OrMe42w30S2Fz3HFZ8Ko6vjFm+2sbfSc1Xt6pwLg8cQP+bEcZ0Iy2BnihZ/vZ7g7jMGisP5jzdQu9KA7F4Z9ghmDWa/jYF8ob0AC0DoUYePBQTwWA7a5HhIH/AXn6CttpIdjpHrDGGcXFZjkvIN8OMAX19QwEk5Q4Tq1ubBAcDr4+yK8fM9Bug8FUA06LrixnoZqW96AJE9GIx1InnMTkkxWo20wwocWlfEvTx+kqdiGdYGMbFJIdIeRzQqyVc2LkAAkVeZIKkUgkT5jolHBmaF1IMx3n80ZkOh1Mu5wBuMsF/7fHppwbCaSIrI5tx6KvNWHbU050W0DBceYFnjQmcScV3D22NQ6zM6uUe5cWsnCoEzXQx28LUl8/JNNEEmDBMmjQSwrS0AnE93WnxfxWleVEHqhE+u6CgwNzvGEpTGMx1SdLneZ+OL6Bj6+shqjqkNVZFoHwvzRfdvZM2au+/tPLkd3JDRBH6cbPbF5qWD6YzEqKDqZJ3aPx4McqeP/yjmTLvPyYmK7CtdIstvAs/+3l+BgjJXX1zFndRl601RuGwkEU0M2miZ+3PoKID0QRWpyo0xx0o5lSe738k6yhVJsxji7iFRflHRflEyFDV2RkczwMXFdWcLuNBJIFSbkprrDGJvd6GQJLZPFvLQY/0MtHI8aTHLHymp+/mZ7vq3eY8FlUrj++68zGEogSfDl9Q18bm0tdpN+Sr+z4Mzz+uGhvAHJutoiPuorYvfPDpBOZmmb42L1zbMYDsepLbKg6mSe2dtHfzDBnFI7DccI0yfbT0gPxSCrkeqPoq+0oa+0EXqxE/ulVQSf7yDVH8W6toLgs+1oySzyJGO9cV4RsogPC84DYqEku17qYtuzR8lmNGYt9bHqw/XTLjFZ8MFiuDvMi7/az0B7CL1Rx5rbGqlf6kM9TWOxdCCeNyB5h2wwSSaUnBITEpdFT9ykIJmUAgM2yaTkDTUFJ0cyKiTaJ+7NZkNJ7vvBHpZfW8PcNeUYxTNYIJhyCsZek8LaW2dRv9SHMk1MHdPB5ISEOi2ZxXlMEvLu7lG6AxPn/4JTI5XNIlsMSHq5wDxLtqhIY1qsRPvEohKxvcNY11WgO1W91nug/8goz9+9j8BADJNN5eJPzKZ6bpEwBhbk6Q0mWVRuI0Kh/s80pwj1LCXaZsMp0gMTjVDS/viUmJCINZngVMhmNdp3D7Hx1wdYva4CS3gS7YI/kdcutA9FeHRnN8/vH2Bdo5cPLSpjR0eAP39kD8lMFotex//cvoQNzT4AtKzG5iMjeQMSgEP9YTqGo1S7zRwdjvJvzx7k3s+tmtrvlcqMa/DHkIw6ZItaoM+Q9LKI050lrpxbwv+9eoS3j/q5sL6IRDpLNJXhs798m+/dsoh6nxWd04DiNE46p9Bi6fzfSlJkkh0hepZ5mF/u5Ll9Oa1COptlRY2LJVVOVtd7KLJOrd66+5Cf5+/eR9ifyGnaPz2HikbXlH6G4Pwh7E+w7el29rzaA8DcNWUsvbIa6zH7cF0jMf77xcN5AxKA/3vtCP9+6yIMY+utzOjk653MaOKEJiSSTkJXYiH6Vi+mRV7SgzF0LgMZ/zGGUDoJ2axSLjSVAoFAIBAIBALBWWPKsuo0TfsuoAJ3AEiS5JUkqXaqrv9BR1JkDHWOCe36CjsDwQQ6WeLmZZVEEmkWVjpZ3+hlcBKH3YP9IRKZiSJjgJYt/bRs7gcNshmNt586Sm/LxM3uM42WymCoc6CvzgWkJb2M7dKqKeyNgjOFpOrQuXNBhMhbvdivqEHnMhB+tRud14Sh3pmr6J7MkE1l0dc6IKMhqXKukvtYtEFLZQm93IVtXQX2y6vxfHY+tjXl2MaSKnKfJeO4uha1/NQ2LjYfGeGxnb0c6AuRSGf4w4sb2NDk5auXNjK71oVaPtE5OKzK3HXPdjYfGeGvHt3Ld546QENKR9fbg2haLpDd8WY/q21WDIpMJqsxEhWJGeczweEYT/5wN6GR3CZ/2J/gqR/sZnQwelrX1dkmCsaVUgu695D0IckyOpcRwzvBY0XCurYcLXXiKlTD4cSEwlWJ46rGf3hROSX23O8+EE3ypfUNVBeZSaazfGZNLb2BGDHhun5WOToc4fsvHcZmVCf9+0mSVJAQfyyt2wcJxSf+vXQOA5IQCwpOA0knoa+25+YCAIqMbUMlqZ4wLcMRNA3iqbM7Vkg6OT+vOBZ9daGZWDyS4sVf5gxIABKRNM/+ZA8jPZEJ5woEx7Ks2sXhgfCE9u2dAX6zuQOlwYFpZUluHiyBeYkPpcSCloX4vpz5iOqdZFOtwsa+4RBffWAnI5Gpr6oiEBxLOp1hy5NH6D4UACCVyPDKvYdIZDWk4ytOSaCznXuhS9tQmC/+ZhuRRIavXNJAicNIMJkGSSLROkqyM4zz+np0rpxwQ7apjF5Vzfe2dNA+FKbyBGZtgunJUCSRFy4sKLOTTWtkY6lJzRZlq4o2JtDODMdJ9kWwrikHXU68a5xXNMGITCA40+zvC2IzKCxVTXRuGUDTcsLGwY4wsX1DOK6oIdkTJtkRQl9jRy23Ets3jHVNOdmUhpbJMvpEG/pKG8Y5YwaoOgnbxZXoaybGkm0mFVWR0TSNB9/uzBuQAPxo01F05RN/O4pTVNuc6Ry/1gpNsrzXuY3onAbUylyMVNLrsF1ahSZBPJwincry+oOH6Z8k8UIgmA5IRt2kSQ6K+8yMYWqJBe8XFlD06bl47pyH9w/moXpMaGPBuOiOQawXlKGMCSVli4p8aTWjwxNjcpJeJuvUE4+myIwmySYzqCUTx2Odw8AXN9Tx3ZsXcOlsH9+8oonvf2wJf/vYvvx+oKbB/7x0uGB8F8wcji0s8ZFaL63PdJIeE6137vOz7dkOfvBSG+FkmpoiC03FNu68qJb/d/MCfLbxvj7ZfoLOrkfSyyQOBzDOKULTNGSzkp9LZyMpIpv7sF9che3iStRqG/arakDJbc4aZjmxralA0onEN8EHn57DAbY+2U42rYEGLVsHOHhcApBAMJWk4mle+20LA+0hAJLxTM4UvWtibPm9MtkzQTIpU5aslkhnyCQyOK6sQefIfZbOrsdxeTXZE+iSBIVomQxq2cS5n2RWyaSzbPpdG/2TFJAQCASnRzKe5tX7D42PvbE0z/98P8Nd02f/V2dR8/Px8UaJ0eOauv2np0c6n4kk0yQTaRxX1yKPPTN1TgP2y6vJjumc9GUT9YSGOgfy8XtkU3E/owme+eleAmPmDrFQiqd+tBt/3/Tpl4Jzz44OP9lUFutF4/tbhmYXsk3Fn0y9y9lTg2xS83O/Y9HZp8YQt7d1VKzJBO+KvzfCMz/aQyyUIpbKIhkm0y7k+uRoNMm3HtrFvz3Xwq6uUf77xcP88X072HxkhGQmF3uLJDN89YEddI09VzPAgb7QhM/tGIli0itUuc385rMrWVjhnNLvJelklON0Qtl4Bvvl1cfoG/Q4rq4lkxT1gM8GCyuc3P/5VVy7oBSdLHFRg4dHtnWzo2uUB7d1oWkakiwTa/PjvGFWwZzC+aE6IjsGkMY0YcnOELLXxONtQ/m+B3DdwjLu39LJvz13iD97ZDfD4anTggWHYjz1w92Ex0waxjXtE82kBIJToWPfMLtf7kbLamhZjT0vd3N0b2GRtVAiVdDHIVdQKpHKsLMzAIDOqoJy3H6DTsq1n4SsVUFLZwk+34FsUXFcXYeuKLc/IltUHJfXTLyuQCAQCAQCgUAgOKNMme2DJEl/DXwL+NOxJhX49VRd/4OOJEtYlpfkDR4A9HV2jA1OBsMJfrWpg7tfP0IgluLJ3b08s7ef8kkSZzY0e3FOUtE1GU9z6LjK9ABdk1TePtPoiowkjgSQrXpsF1divaCM+MERFO+5raYseHe0ZBb7+krQSWTDKYLPtmOc58F71yIcl1djqHHg/HADSBB5owedRUGtsWO/rDpXWc2i5jdHsqEkoRc6kK16jPVOdCYV1Wum6I7Z+P54Mb4/WoL1ovJTNmE4Vrz5+x09/OTVNgyqjk9fWEOZz4rz2jqkY65lWlbMvR2FlT8rnWY6dxS2ASSPRqj3WrEZFMqdImHtfCY8kiARKQzuJ+MZQsOnFxRWy61YLijNv5YMOlzX1yObT10gpjqNyHoZNA3bJVXYLqogfmDkpEL8cpcZ83Eb526LnjKHkSVVTj63tg6DItEXzInnjwxF+M7TB3izdZjBcJz/fL6FX755lIAw5zmrHOoL8dLBQRwmdcLfr8iip6U/RH9wYp/MpDO0bO1n374RdMckX0qqjOumWSi2qXVYF5x/yGYFSZHGxqAyYruHUCvtfPGh3RgUGYfx7FfotSwpLti81VfbMDUVOv1HAgmGOgvFvpoGQbEZJ3gXGnw2Lp9bMqF9Tqmdn7zaRkcyTaTBhfVjs7FdXEl6MIb//oPE9w1jWVFCNp1BX2UfNxADJIeevWUGfvhqO62DEUYiZ0dIJDh/iQVTHNk+cQ3UPxjDdfOs/PoNCRzX1aN6z30lif5ggkQ6y6M7e/jRy234o0n++fU2Muk05mU+YjsH8T9wCOMsVy657iMN3PbcXgbDCa6cV4L+LFUJE0wNHosBo5oLX15Y4WIomia8qQ/LypLCNf48D7JJwbx8fJ4b3dRHvG0U7+cX4PvjJbhvaUIpEmt6wdllYYWDphIb8bbCZPHdW/pRFxcTfLkL01wPxtluUl0hHJfXkBmJk2jxI2ka1tXlkNbwP3AILZHFdmkVns/Mw35JdS5R4QTEUhleOjhY0Pb0oQGCK4sLqlWbFvvQT2LcK5hZOI+LH/2mbYjMMeOhpJdxXlfH6O8PozgM2C6uxLKqlGwqw9BgnGhwPK7zjjmjQDDdkPU67JdVIx8jTjQt8KBOQfXVE6E4jZia3BhnudA5cnEztdiM7NBDOsvo00fQV9uwX19P6IIynnqynf17hjHMKyq4juXSao4YQaqwEtnSR3RbP7Z1FUjG8XmpeUluPC62m7h5aSU//eRyvrShAbNe4e2OwIR76xWVsGcka2Z5ADAoMmp4olnv0Z1DrKlyc+/mTn75ZjuBWIpHtndzfIq3WmLBdklV/rWkytivqEHLaBgaXQSfaUdCwnZpFRl/PG/glxmJE3y+g/jhAPoSK7Y1FRT/8RJ8f7yEoo/NPmH1QYHgg8Y7RqzHcnjLAMmYSO4RnBmiwSRdB/wT2kcnqS7/XlGKzTiuqc0ZYQPoJNw3N6K4psaobTSaIm5ViWzqwdjsxnZxJcbZRcQP+QlaRIztVEjqFSwrSgvjWAs99B9Tyb3/iDCYEwimmuhoctJnfmBg+hh6KB4TrhsbQB4bxGXg8ir+Z2dXwXELpjj5+XzCblR5om+U6M5BTHOLcs+xRhfRbf35Z6Wh3jFeaAXQuQxYVpUiyVOf2BgJJAgdZ16aTWsEJzE0FZy/VLgtSE4D8RY/trUVufV/WkM2KvzNc4fOyj3o7HpcNzXmCg+OYbu4clJT3fdD98GJc+PDWwZIxIQ2QjBOcChGdswQevubvchrKwq1C9fWofpysawjQxHeOlKYC7G3J0jZcVrvQDTFUDi3H2LWK1yzYKLeZ32Tjz+7ejb/cMN8lla7kaf4eSDJEtbVZQW/r1RfmNjuoby+wTS3iMi2AfTFIqfibCDLEkur3fhsBo4OR/nO0wfY15tbo718cJBYKoPOqmKsshP4/eHxOUWzi/RoAsuSYiSLSno4TqI1QO8qH/fv6aXSZWJlrZuvXd7ItqN+DvaHiaey7OwapW1o6gzIQiNxEtHjNO2xNOERMb8QvD8Ovz0wsW1rYQ5aqcOE67j9aYteR38wznP7csfm1juzCtY7rhsaUDwn15090xfAuNCLFksTeqGDkfsPYqh14P54M+ZFXrKpNKrv3GvXBAKBQCAQCASC84mpLHl/A7AY2AagaVqPJElnTv33AUQtseD7wgJSA1EkWUYpNqGz6PFKWZxmlUA0lTdaKHeaGAknuWNVNfdv6SSZyXJRg4fFla5Jg16KXkdxrX1CRfeiirP/J1KtBqxrK0i0BIjvH0FfacVxXT16IW6btmhZjUSLH//vWyGdzRmNALJRh77MWpDEYxlLXsiMJtA5DKg+M1qdA7XSRmY0TtEdc4i+3U8mmMB6QVlB0iWAbFDQl7z35IeFlc6C1/FUlhK7EbMhN8wZquwU37WI1HAc2agj7dLzwt1bCs7pDMRwVZdNEHmoPiPprgA/vGMp1UUisHs+Y7QoyDqpoLKTJEuYTrMivM6s4riiBvMSH9lYBqXIiPo+kuP0DQ5QZKJb+nOOv9fU5SvcTkZNkZkf3bGUP3lgJ4OhBGUOI59ZU8c9b3XgMKvcv6WTWDLDZ9fWA1DlzgXuuvwxuvw5Ydy6uiKc5rNvLHA+885z/jtPHeAblzfxvy+3MhhKUO408Zk1tfz3iy3ctqJq4nk6mZI6B7te7CKTyjJ3fSVKRsNSZcPQ4DzL30LwQSRWasa8vITIW72Q0bBdXs2+TBKjKvOVS2aR1bLvfpEpRvWZ8X52/tj8WkLxmdFZC8csg1nBZFOJhQoFDaZJKggKBMciyxIfWljGof4gv9vRgyxJXL+ojC5/jHRGQ5YkZL3MIz/bx1U31qM4DeglMC8pRuc1kY2mkK0q7tuaGDkaZH9XgL3xJP/+7AEAGnwW3BbRDwVnFr1Jh7vckq8G+A4Gk4ppbhHFXzGTDiTQ2fSoXnOBGOZcUWI3YFBkEuksiXSWXV2jFNsMaKqCziXjuqWRyJY+0qMJsvUOPvH4HsLxNDcvreDiJt+5vn3Be8Rn0/PNK5r5wcZWTKqMR5UxzHaTjaVxfWQW6UQGzaSjK5xgqCNAWa2VInsN6T3D6DxGrBeWYziDyckCwbtR57WyrMaFfgQ4lIvryrLEuiuqyfZGsK0th6yGUmRCX+tAcRjwfXkRqaEYskGH7NAjm5Wxdb6Coc6Jsdbxrp9rUnVsaPYVVHHLarBfS3PNXYtIDcWRDToUnwndJIbWgplFMp3lq5c18n+vthGMp2kPxWlZbmX+vCLsSChuY+45btQR3TpA/JAf0wIPitfMyHHJkLaTmNkKBOcafbkV35cXkR6KIel1KF4Tuvdg4jwVKC4jnk/NI7q1j0R7kIReR2tnmM0v5pLE2g74Wfy1xRQtLyEbSqJzGEj2RPDd10rSacD10WZG/TGOjERRb6hDi6Qp9VmwlFsnHY+dZpUlVU62HWdEUuYUv9WZyJwyOzcsLuexXT1o5omJ2+5yC2/5c/u4kWQmt9axG/BYCs2jZaOCcb4nV5VYyxkDa+ks+lIrxltcpAeiZJMZFI8RfbmNbCxNoi1AonUUY7Mb8yJv3sxMGI8IzkeKyifu9fpqbSj6cx/zEHww0ZsU7F4jwcHCBCCz/fTnMbKqw7qqFEOdk0w4ieI0oEyhibDDrPJ06xCXf6ie+O5h4gf9GJtcqIs9tKUzTEzZExzPnnicxT4zzmvryISSuee3y8AD/7o9f4xDJM8IBFOO3qzD5jESGjp+7J0++26SLGFe6EVfZiU9miCsSjzaOUKZy0TrUAS9TuaWZRVUTFKkTnBqyEiMysCGCqTWIPGDfgz1DmxX1qC6c/+uisuI+/Ym0gMxtEwWxWtGcZyZAj4Gs4Jq1JGKF5pSnq7mTPDBwqSXeWwwwIevqiHyVh/ZWBrL8hL26TJcUO85a/dhaHDi+8pi0iNxdBYVxWdC1k9NuoF7EmN0X60NVS9M7gTjHKvZigaTPPdiFyvXVlBebkX/zp7HmHbhREYh0nHNTrOK5xjN2IcWlnOoP8yjO3vQSRJ3XlTLBXVFnGkMlXZ8X1pEsi+MJMuoZRaM9S7i+3JrLkOtHec1tflnleDsUF1kKdhXBdjQ5MWk5sYm03wvkl5HZFMvOocB0wIP6CTUuW5CIwm6Zjs4VGfif187zD/fOJ+r55WwuMrFdf/9Gol0oWZSd3znPA2MVhVZlvKmPZD7TRitYn4heH+U1Dvo3Fdo7FRaX6hPqHCZ+cHHlvAnD+ykZzSOz2bgc2vr+MHGVm5fmdOuH7/eUewGFK8JSXfy/m+3GvjpoWE+cdMsMtsGkBQJU7ObbDKDvtqOzmUQBTcFAoFAIBAIBIKzzFSakCQ1TdMkSdIAJEkSmfrvA53dgM5euDCqcJn5j1sXcdc92wkn0hgUmTsuqKHcaeSvfr+Xz66tQyfD7q7RExokyLLEgvUVtO8ayidYeiqsVMx2TXr8mSTZE2boh7uQLSpqmZXE4VHQJAzltnddWArODam+CEO/2AtjcbDAQy0Y57hx39aMfFzwX1Jk9GVWKLMWtOUSJHJBCGOjC7IakjJ1Yq4VNS4+vLic323vBmB2qY2Pr6pCd0yAWSky5Q1TDMAfXTKLz/3qbQBq3GbuXFRBQ6Wbzp1DRPwJAJzFZuYuK+ZXl1dT7BDC3vMdZ7GZi26ZxSv3jlcWWP2RBpxTIAySjQqGSvtpXSO+e5jgC50YauxkQ0mG796L5zPz0DVMPtZLksSaWV4eu2s1I5EkBlXHXfdsZ3/vuBHPXRvqqRwTNSyocHLnRbX87PUjaBpUuEx87YomTGIT8KzSXGKnusjM0eEo//7CIT68qJx55Q6ODkX5rxda+Ovr5lLnmTgfkCSJOavLOLxtgO62IN1tQdylZjbMdtPXOorDZ8JsF8FZwfvHGsoweM9+9FV2JFnCf99BKuYX8fmL6vjdjm6uuWPZObmvyebXx2J1Gdnw8Wae/tGe/IbcvHXlk4rRBYLjKXeZ+OYVTcwpdRCMp9h4cJDd3aN8dk0tVW4zGbOB6nlFPPTz/dz0ydnIe4YYfaINLZWbWDs+VIftwnLMdQ72DwT4fy8dIZPVKLLo+ZePLBAmJIIzjsGksvojDTz23ztJJ3P9smaBB2+VDUmWUIstqNOswk6tx8r3blnI13+7k3gqi1mv495bFxP85T6y0TToJAw1diSdxAvDIa5YWMoVwKXNxRQ7hFBnpuG1m3CYVK5ZUMrVPgepBw9zrG2YYX0Fo7Nd3PHQdkYiSXSyxF9eM5tb/2AORoN6RqoVCgTvhTqPhUQqg2eOh5F9fkLDcWYv92HeNUi8P8o7aRCSXsb3h4uBwvgVgLrChGVJMcjSKfdpSZK4eWkFbxweYueYqfVV80pYXluE4jShCOHiB4rGYhv/8XwLty6vwqjKdIxE6QonWFjnxmQ7Jp6pSSQ7Q+icBsIbu8hG05QuK8buMREcilHe7MJXc3qxKYHgTKO4jPlqxecKfakF9do6RvwxDrzex44XO4CcqH3JjXW4K2xIYyLi4IsdBJ89CkBmOM7IL/ZRdOc8Ig4VTdOodpsxqCeOrdpNKn/zobl85hdbGQglkCX4w4tnMbdM/FZnIvVeKx6LyhfX1WPxmihrdtJzIACAatSx6sP1xAdH2dg6RCqjYTcp/PutiybsTWWjaQIPHiLVFc63SWpuLqGzqOiONSwby5swNbvJpjLIJ+lvAsEHhUw6S6A/SjySwl5kwlZU+BuqaHLhrbIx2JFLLDHZVBZsqETWCRMSwdQT9icIDce46OZGnvnxHjJjiUeNq0rwTFHBIEnVoZ8kkXMqMCg6VnvsjPxsL7JJQfGYiGztR9o5SN2d887IZ37QmGc24f/RLnQ2PboiE6neMJJZYfYyH3s391NS76C04d3NRgUCwXvDbDOw/mNNPPH9XWTTuf3f5gtK8JykiM+5QNLJqCUW1BIL6XiKt15vBeArlzSQycJIOEHtJNoPwanRVGLlsZ3dpIcyZA4FUIrNxHYNEX6lG+8XF2Cozo2/OoseXe2Z35N1eM2sv72J5+/ehzaWJ7zkyiokSSIRTWE4y0argunJnDIHpu4Iw7/Yh77ChmTQ4X+kBd/qUq5YWXrW7kOSJFSvGXUKDe7eoaLJibfKymBHLq4h1mSCyXCVWlh8eRXbn83FXsMjcXReM9Z5E814aj0WrppXwlN7+vJta2Z5mF/uyBc3sRoU/uPWRVS4xvt0pdvMd25cwJc3NKCTJKqKzKhnqR+qpRbU0twzPhNMMvSzPZDRUEosxPYOE902gO8PF5/zWPj5xOoGT0E/Wljh5CNLK/Kxfp1FRVJlJL2OtD/OyG9yBaZctzXhXuRDLrdiCsT5zfIKKseKPZY6jKxr8vLs3v7856xv9FLvnbr5nbPYzOpbGnj1vpZ824U3NeAsFmaXgvdHwxIfBzf15s107UVGGpYWTzhuVb2H/7xtMS+3DDIaTfFfL7QQT2W5dPb4sceud06VxZVONh4YYNUj2/jzDbO4eijN8G/2w9j8+R1dxZmYowgEAoFAIBAIBILJmUoTkgckSfoR4JQk6bPAHwA/mcLrn9esb/LxxB9eRG8wjseqp9ZjJatp/NMN83l0Zw+KLHHXxQ0sqnSe8BqyIrPwkioyqQySJGGyq+fEPTo9EAUNsuEUiUO5SouZ0QS2DRUoonrbtCQ9GMsbkLxDfN8ImWAS+X1USZNkCaY4EajYYeIfr5/HH6yuIZnOUuuxUGQ9ccJxLJlhYYWDX925gs2tw6xWTWx/pI0n6WLRpVV4yq0YzAruMgtWEcgVjCHJEg6PiVUfriOVyKLqZRzFJuRpYKCUiaaIbOmHdJbE4UC+PdEexHgCE5J3KHGYKBlLyPz+7Yt5fn8/e3uCXNLs48J6D8rY5orLoufrlzdy45JyIokMNUVmfHbx+zjblLtM/OyTy3nhQO7vtKLWzSyflSq3mZuXlmMxqmQ0bdJJXlG5lY98YykjPRE0DWLBBA9/9200DZzFJq78/HyKyqaX8EYwc0gPRiELyfZxI6PM7mFWLmjk4tsWUz6NqzSVznJy2Z1zGOqKoKgyQ10hAv1Rik+hyrxAUOo0c+mcYl48MECtx8ydF9WyqNKJLEukshruUgtrbp6F3BUqeEYDRLf0Y1lWgsWg8OnVNaxr9BKIpah0maf1b0bwwSEaTHJk5xCLLs1VotAbdVTOcWNxTl9jMp0scfW8UuaU2hkIJSi2GykNJBmKpnMHZDQSrbmE+wXNdRzuD3DNglLmlosxfaZy2RwfPrsB094AyePey+wboXZ9JY/etZoufwynWaXeY0WdQtNTgeB0sBpVPrOmns6eIAsuqyQZTlNdaib120MFx2nJLOnh+AnFMu/HyLfOa+XuTy/nyFAERZap81qwGYWQ/YNIU4md//roYp7a3UdPIMZV80pZXuOaEBtNdYdID0Rz8fkxsgdGWPvhWgb6Y4SG4wx3hbC5RaxHIHg3JEkiPpRgpD3Iyg/VkU5n8VRacdda86LkTDRFZGv/hHOTR4M0XFp9yp+1oMLJ7+9aTcdIFLtRpc5rwaAII4mZiNWo8qnVdWxtH8YQymB3G6m4rhYtq1HS4KS01sEtNXaW17oZjiQpc5qock+cG6QD8QIDEgAtlSU9FEM9iWG6MCARnA+kEmn2vdbLGw8dJpvVMNlUrvrCfErrnfljHF4z13xpAcM9YbJpDXeZGbtHiNYFU8/A0SBP/mA3kUACi1PPpZ+eDZKEyapSVG7FaJkZ6zNrLEM8liYTS5MZiefb1XAKhMHlu6IPpfJr/vTw2L9fKMXsNZVYfGaMNhVFFXEsgeBMYDQrrLi2lnQyi6xIWF2GaZ3gbjOq/PW1c3m1ZZA3WodYVVvEbcsrcZhFwYL3S7HDxLfX1BP/4W6yiQyZ0UT+vVRfNG9CcjapX+LDVWrB3xchEUnRsnWQbU93UDO/iDW3NWIvEs/W853FlU4C+wLENUh2hvLthr1+fOtPPZ40ndEpMk0XlFK7II2maSgGnZgPCSagUyR81TZWXl9HOplFNciY7ZM/E21Glb+8dg7rm7y8fniIlbVFrG3yUuYw8cRXLmIonKTUbqR6EmMvk15Hsc2ALElnzYDkeNL+OJmxopmZ4PhueHo4JkxIziJlThP/etMCvrCunnQ2S63HOqFwVGRr/0Td17YBLIt8OM16nMfN23Lzuzmsb/SyqW2YVXVFrJnlndL5nSxLOD1mVl1fR2rst+LwmpBFsRbB+0Rv1LHo0qp80WudIiGdYHhcUOEgndV4fFcPty6r5Kr5pSyoOL05ttdm5C+uncNHV1bji2ZIPr+34P1301UIBAKBQCAQCASCqWfKTEg0Tft/kiRdBgSBJuCvNE17bqquL4Bqj6UgCBaMpGgdDNM2GMagyAyHkyQzGUzyxD9rJpNlx/Md7H+9t6DdZNVTv8R3xu/9WGTTxPvTuQzI58AQRXBqyMaJfxvZqiLrp1fw32JUWFDhPOH7qXSWoUiczpEY//NiKy0DIW5YXM7tTSU8+q/b8lUGtj19FJNN5eY/XS4MSAQFjA7EePrHe0glMvk2nSpz658vx/UenHrPBJIioxQZC8RfAJJdT7c/hsemPyVxejCeYnf3KCPhJPv7QiysdOJhPGnFpFeYWyYSOM819T4r9b5Cs5DDAyF+/GobLx4YZHmNiy9uqGdO6cS/lb3IhL3IxJGdg7z064P59kB/jO3PdLDhjmZ0ImlT8D6YbI4nOQ0cDcZpmOZJbCPdEZ75SeGGxehgjOu/uhijqDgkOAVqPRbuvKiWQ31F/PtzLXznqQNcPb+Em8s8vP7gYfQmhWs3lE84T/GakMbMzPSKjuZSUc1acHbpaxtlx/OdBW3NvRHWf2x6zwdkWaLOa6XOm5sPJePZSQ6CkKZx5bwSFlQ40QmRxYzFpCp4rXpk20RzHLnIiKzIVLjMBZWrBILphKIDgz/N62MVqIxXV1OkymipwrFrsvjb6eK2GHBbpq+xlGDqkCWJ0ViK7kCclw8O0OCbaNAs2yaKGiWHnv2b+2ndNQxA67YBbvnz5TiEcEsgOCmR0QTP372PsD9Bx96RfPvNf7oMnJDJavgT6UnjtRnre48zlDpMlDpEItIHAY9VT6PFxCt37yadHJ8LKKrMLWP7DLOKbcw6yTUkgw5JL6Mlj5tLTBKbEwjON4a7I7z22/HKr7FQihd/uZ8bv74U0zFzIYvTMK0NWAUzn0QsxWsPtBAJ5BLJIoEkz/xkL9d/dTHljScvHjHdkEyTrFV1ErJBPHdOhcnW+pIq098TZvOTRwGwOAzULfKe7VsTCD7QxCMpXvr1QYY6C837HF4zZQ3Oc3NTp8BQOMHLhwYIxtJ0j8bIvCNkE7xvYmjonAYy/dGCdtl8bp5jOkXGW2mjY88wm37flm9v3z1M9fwR5q2duJ8sOL+Ip7JkbRNjR4rHhKR+MPY6e1oCvHZ/S0FbLJjkwhsbcsUNBQLA3xvhmZ/uhWMehRannpu+vQzrJMVOy5wmbl1exa3LqwraG3w2Gk6QIuGPJnl2Tx8/eLkVs17HH1/ayNpGD0b17D4jJIMuV9QzW/jcl41izXW2sRlVFp6kGLBaYiFx0H9c24n3044OR3hgSydP7+ljea2L5hIblZOYTp8OgYEYT/34xLFmgeC90t0S4JV7CwuqxCNpLryhfsJz2qDq8Nn0FFn0vNoyRE8wzl36Bmafpv7RrFeYX+4gNRhj4CzpKgQCgUAgEAgEAsGJmdKMEk3TntM07Ruapn1dGJCceZ7f38+3H97N663DvHhwkM/96m22tvsnPTYZTdO5b2RC+9BxlbLOBmqFDbXCNt4gg/PaemSR4DltUcusGGY5xxskcF5fj84+c8RZHcMR/urRvTywtYtP/mwLr7QM0jsa5383ttLaPsrx+7axUIpo8Pgay4LznchoosCABCCTyhIJnPu+Iut12C+pgmOSReUiIxsjMdZ99yW+/eAujgydfMxvGwxzx08389jOXl5vHeYHG1v5l6cPEEtmTnqe4NzjjyT56v07uWdzJ33BOI/t6uXOu7fSG4id8JyRnsiEts79IyQiqTN5q4IPMGq5FX31MRsIEoys8vGtp/bxmZ9voXf0xP3xXBM6LiEIYKgzTDwkfg+CU+focISbf7SJp/b20ReM89utXXQfHQUgGUvjV2Rk+/iaR9LLWNeUI03jqmuCDz7DPRPnhx37RkjEZtb4p3hNWNcUCjPjq0r4hzfbuO3Hm9jVFTg3NyY4bdqHIvzijXZ+8uoRggYdsmM8aUxSZTJNbjShRxRMU+KpNI/t7GHjwUE6D43HbHduHkC3qrTgWPOyYpRiYfogeH/0BmLc+fMt/GrTUTa1DXPvlk7++P4dDAQL1zmGKlthP9NJZBb4OLJnfN8gGc+ImKhAcApEg0nC/sSE9rA/To8/xj8/uZ81/7YR/yIPKMdMVtwGng9GODI0MS4nOD/Y3D7CzpaRAlE4QDqVJTJ6auOv4jbiuKauoM202CvmEgIBk8d5A/2xfOVOgeBskYik6W0dndAenqSPTnfiNpXMYk9BW3J1KQGTiGufCgGLjtRcd0GbblUpOzcP5F9PFqMVCASnRzycmmBAAhAanr7jcNtgmI//9C2e2tPP663DfP+lVv7pif1Cr3MadI5EufnuLQws9+aSu8dQyizoj9WunmWymSztu4cmtHfun6jtFZx/vNE6xIvRGLgK98NsGyqRTqH42Eyg70hwQtvRvcMkE+lzcDeC6UrInygwIIGcuWMsOHXr+xf3D/Cth3fTPhxlX2+Iz/3qbTYfmTwH40yiekzYLys0T7FeVIbiFabU0w3zQm+BkZlsVjAvmtzlpn0ozH8838L3N7bSOhThvi1d3P7TtzjQN3EMPB2io4lJY83RU4w1CwTH0zdJPKtjz/CE3AmAQDSnW/+vFw+zvTPAE7t6+dTdm2kdnJo4h1JkxHF1bUGb0FUIBAKBQCAQCARnnymzSZUk6UbgXwAfII39p2maJko5nwFiqQy/fPPohPZn9/WzZtbEChl6s0LFbBcH3ugraPdUWM/YPZ4IxWmg6OPNpHoiZOMZVJ8Jtezs34fg1NHZ9LhubiTVEyYbTaN4zOjLZo5DbiqT5YevtHHv5g6+ckkDsdR4IKTYbkC1KEgSBUYkRquK2T6xOqjg/MbiMKDo5YKgrU6RMTumR18x1DjwfXkhqb4oSTQe7vHzT88dIJPVeGRHD7FUlv+4bRFGdfJNycMDYULHbeg9taePP7ksSoPv3G3AC96dfb1BdncXBn97g3FaBsKUOiffkHJNMo5XNLvQW4SLvuD9oTgMuG9vZvRIgN6BCL0KfOetNqLJDNFkhn3dwWlbtdfqnlglw1NuxWgRJnmCU+fwQJjRY4wbwsk0SfP4M/flJ9u54NIqytwGLDY9+jILavHMmVMLPpgUnWA+YDDNrPFPNigEFxUR8xjQgkkGdfDz1n729oUA2HbUz9Jq97tcRTDdSKYz/M9LhylzGnluXz+X6s2UNhfhMStIGoQ0jVg4SakwcxJMU3Z0jvIPT+zj0tnFrPaNz4ODQzE27RnhghtnYdVJ6Gx61HIruhk29gqmD0eGIvSMFibR7OkOsrcniM8+vtZR3CY8n5qbi/Ems2gOAw//316yx1TXU406zLbpEecSCKYzJpuKxamfYE5tsup5dFcPP33tCAAvhiNUbiilKiuRkmBbPMk/b2zhRxV2aj1iPXg+8uL+AcoUBUWVSR9TvU+nylhOcU9KkiTMi32oJWbSQ3F0NhW1zIpOFHsQCLBNEue1e00YJ6kkLhCcKTRNQ5LAV2NjoD1U8J7VNbGPTnf2DUd4IB7h5svKsafBr0r8tKWPP+i1sc4+877P2WZrb5CXiXPDZeV4kDGb9Gx6tYfg0Lhxf1GpmBcKBFON0aJSVG5luLsw+W2yucJ0YU/36AS9zrP7+jk6HKH5NCuJn6/s6wnSG4xz1+uH+YtLayhLQ1KGkkY3yjl8Jss6mep5HvraCpOQy2Y5SSUzqPoPhtGE4P3x4NtdvHhggD9dXcdigx5Fg6hdT3n1B2ccKK6xs/u4tso5bvQGoVc738mks8TCSQxmFatrYoFMs0OPaYr2L+KpDL96s31C+9N7elnbODEH40wiKTLWC8rQV9vJ+BPoHAbUMguy+E1MO/RlVrxfXEiqNwKahlpmRfVONEOIJTO80TrMozt7CtrjqSwt/WGaS05/TI+Fk6CB2a6fNNY8XTTtgplHSZ2dPS93F7RVznGjGibOUY8OR9l1nG69P5hgd9co9d7Tzw2TZAnzEh9qiYX0yNheSLlN6CoEAoFAIBAIBIKzzFRGKP4VuE7TtP3v5SRJkq4E/hPQAT/VNO07x72/Hvg9cGSs6WFN0/7utO92hjEYivP2UT97e4LMLrWzsMKBc5IFlO0EQSedTmb+ugp6D48yOpDbzJ61vBhfzblJKlecRhTn9N3YE0xEsRtQ7BMDu+ea4XCCbR0BdncFaCy2sbTGNSHBeSCU4KG3uwDQSeOVDT62sJw1qpm+V/tYdk0tbz/VTjajoRp0XPrpOdN681lwbnD4TGz4eDMv/eoA6VQWnSKz/mNNOKeRq66+1Iq+1MqLO7v5+1dbC957Zl8ffaNxak4gcJ/MnMSo6NAfk9TXOhBmc/swQ6EkK2rdLKx0ntDURHBm6RuN8fbRAAf7giyocCBLkD2uAoB0kqrwRWUWGlcUc2hzPwB2r5FFl1WhfEAqZwjODWFVYr9F5o6X9heYewFkjm+YRngrrCy7uoa3n2pH03JmZKturEM1it+D4NQ5/nmoaXA4nWT2qmIObeonm9bYvbWfss/Mw1JTuKGcTGfZ1RVg85ERbEaFlXVFNBYLAzDBmcdeZKJhmY/DW3OVN+1eE0sur0anTG9Th2gyzY6OAFvaRyhxGFlR62bPUITHDvbSHYixt6dQuGkzig3omUh/MMEj27v50vp6oskM9nIrR17p4/WWAJBL5qm5popfbWpnVW0Rs8S4KZhm7OgMEEtlsBkVSktsZOYV0bFnGIBoPI2u3Iql/PTEN5qmsac7yFtHhpEkWFnrZl65cwruXjCT0MkTF/+yBJFJKkcqLmM+ySKbybLyulpe+vVBMuksiiqz+qZZyNN8HiAQTAesTiOXfmoOT/1oD8lYGkmWWHJ5FVufOkJdlZWPzC3lob29BGNp/uS1IyTShZUIjerE31lLf4i3jowwGk2NxV0d6EWc7gNFMJZC0cncv6+P7902izfvayGTyqJTc/sMbYk4r7/Qg89mYEWtm7qTiHRlvQ5DtQNDteMsfgOBYPpTVG5h5Ydq2fzYETQNDGaF9bc3CZM1wVkjNBxj3+s97Hu9l5XX1REeaSMaTIIES6+oxlM584rzZDWNR/b388j+/oL2T6+rP0d3NPN4YG8fD+zNFYy676YlhELjZuaNK4rxfoCSigWC6YLRqrLmllk8/ZM9xMMpJAmWXFlNUcX0Nf2ZbCfdqMqkjxeBCE4ZbexftdMf4/PP5iTNiixxX8Mqys/ljQENy3y07xmif8yIpGyWk+hogmd+vIcV19XiE8+G8xaHSSWd1Qo0fzcsLqOswUWl24x0MiHYDKGkzk7tQg9Hdg4B4C4107yqFGmSOLfg/MHfF2Hbs0dp3zmMr8bOyutrWXtbI6890EI2q6E36rj0U3MmNSd5P2SyGo5JDH0tBoVHtnURiKVYWetmTtnZib3JRgVjnfOsfJbg5CRSGXZ2BdhyxI/TrLKi1l2gQ1C95kmNR46lb6x4oNWgFBSzAjCdptY6GUtzZNdQLvaV1Vh5fS0Xf3I2L/xifz7WfMknZ+P0TR9Nu2BmUdboom6Rl7YdgwC4Ss3ULCzKme5S+Kw2qPKkuvWRaJJ0JovyPgsKdfmjbG33c2QozKJKJ4urXDhrxV6IQCAQCAQCgUBwrphKE5L+92FAogO+D1wGdAFbJEl6VNO0fccd+qqmaddO0X3OOKLJNN979hD3benMt339skauWVjKm23D+c0mm0FhSbVr0mtomsbRPcNUNLloXF6MJEn0to0SCSSxuadnRXqB4N1IpDP8YGNrvqogwGWzffy/mxfiMI+LycyqjlKnkfahKIPhJI3FVobDSS4ymGl9NmdOEgumWHplNZ4KK+5yqwjACSYlFkqy5+UuFl5aBeQMHva82k3FbDdW5/Qy6bFPkmhZZNFj1J84qNdcYmNJlZNtHYF8259c1kilO/d7ODIU5uP/9xa9x1TX/cHHl3DVvNKpu3HBKTEaTfG3j+/jqd05wdo/3jCPGxaX89C2cQfqdbM8VLlPPJb1HwkSHU2y4tpaslmNWDhFNJgARPKm4P2RzmT5+evt2IwKNywq5+Ht4/1xfZMXt3X6Cr31JgWLS8+ya2rRshqpRIZnfrqX6+5aRGm92MAQnBpNJTZW1bnZ1DaSb1vpc9DX0p8fa+ORFL2tAXzHmZBsahvmk3dvzpv3OM0qD3z+AmFEIjijxKMpXrrnAHqDku+jqUQGZQZUWHtmbx9fvX9n/nV1kZm/uGY2Gw8O8o0rm9jXG8z/njxWPctqJo+VCKY3JlVHsc3AC/sH+OZljfRvGcRsU1l+bS2QS+w50BPiL186SJFFz32fWyWMSATTCp/NQDCW5qJSF9t+fYjiWjsrrq1F03Ly96kQSu7oDHDbjzflk9sNisz9n1/Fokox7p1PFNsNbGjy8tLBwXzbhxeXo+hOLtqWdTJF5RYWX1419tzU2PL4Efy9YS78yCxkIfoWCE5KRbObW/5sGUOdYYZ7IrS+PcBIbwT2+rnsmiqeMQzy1J4+bl9Zxd2vt+fPW17joum4SoeHB0Lc+uNNjESSQC7ufPenlrO+yXc2v5LgDGNUZeq8Fkp1pex9vpNFx+wztO0Y5Blzit/vy8V7K5xGfv2ZVSc0FBcIBJMTGolzZNcgy66pJZvRyKazHNjUS0m9Q1SUF5xxtKzG7pe72f5sBwCv/baFOReVUd7kxOoy4io2z4i42/EoOokPLSwrqOB8yWwfXtv02hufrnhtBhZVOtnRGaDYbiDQHqRytguTrRhZluhpDRAeiYsCOQLBFJNOZzi0tZ+mlSWoBh2yLNG+Z4iGpcUYKqanaXmJ3cD8cge7j6kk/vFV1fjs03ePfbrzjsHj5iPje7e3LKvEbZ5KyfT7w+kzc82XFjDSE2GwI0Rf2yjbnsnNIQaOBrnpW8uwe4Sm93xkbaOXx3b1EE+Nx/zXzPJy5y+28t2bFrCoaubH/kPDcbJZLb9fEvYnGGgP4q0Ue3znK/FIihd+uT9vzNSxd5j+9lFu/vZSbvnz5cTCKWxuA453MX54LxgUmesWlvH64cIcjHnlDv760b0Eoikseh0PfOEC5p4lIxLB9OC1w0Pc+Yut+ddeq4H7PreKet+pm4qaVJk3Dg/xiQuq+e8XD+fbG4utzCk9PaOxnsMBnr97PM3q+bv3c9UX53Hrny8nMprE4tDj9JmFsZPgfWN1GKic68JTYc0/px/7z53c+I2lFB+nd6z1WLh9ZRW/3tSRb1szy0M2q01aRONUGAwl+Or9O9jS7s+3fe3yRr60vuF9X1MgEAgEAoFAIBCcHlMZUd8qSdL9wO+AxDuNmqY9fJJzVgCHNU1rA5Ak6T7geuB4E5LzhvRwjNRgDEmRUUvM6Kx62gYjeQOSL62vp7nEyl/8bg8/+vgyvnFFEwOhBKpOosiip+EEQY5oMMnujV3EQoWOqrULPZTUiQCZYGZyZCjCz14/UtD23P4BWgbCLKtxA5AKJ5G6Q9y7YTYvDwX5zlvtfGRJBSsrnAw8fDR/XqA/yq6NXVx4Q4MwIBGckNHBGL2tQXpbCyurjw5ET2pCkk2kSfVHyYaT6FwmVJ8Z6V0SQU6X2aV2Lmrw8NrhoXzb31w3lxL7iTepfXYj//XRxbzVNszR4SiLqpwsq3bnqyjs6hplIJTgq5c2UOE285eP7OJfnj7Aytoi3BYhfDibtA6G8wYkAJuPjFDhNPG1yxvpH43jtRuZX2anuqhQpJ5NZkgPREmPJjAkMsSCCTY/Pj6OZtNZqud6ztr3EHywODoS5Zm9vXx6dS3rm7zUei25/mgzYFR01HnOXYW/bDJNuj9KJpRE5zTmxuFjqntHgwm2PN5OdDRZcN5Ae1CYkAhOGY/VwPduXsS2jhH29YYothmQwmkGO0N0HRzfGLN7jDSuLMFg0JHuj5IMJFCCMZq9VvYPhAEIRFMcHY4IExLBGSU4FGPgSAiArgPjfbRqjhuH10Q6kCDVH0GSJdRiMzr79EgsGArFaR0IM6/Mxp6e3P37I0nclpzZyH2bO/nWFc30h+JUOE2sa/LS4BO/pZmIx2bgb6+fy+d+9TZ3La8hNuqnfrEXNauRlCXa2oO4PLm563AkydajI8KERDCtWFXr5qIGD0N9EeLhFEd3D3N093D+/dqFHoxVp5f08MDWTkrtBr62pApvViKsk9jZOixMSM4z2oYi3LysksVVLgaCcXx2I8WqjpWqntj+YZSiXCxqMoa6I2x9sr2gbc8rPSy8pEokwQnOK9KBOKn+aG7u6zOjc5za3NfhNbNrYxe7XugqaB/dNcLqWjfPHBhgWbWLn9yxlAN9IaqLzCytdk1I2j3YF8QfHY9JaBr823OHWFbtwjqJ2bRgZqJXdDSXWEmmZLb2dvF2bzuQMyFxl1m5ZJ2PgyMRBoIJSp0mIonxPV0tq+XiuiMxZIsexWdGZzr3iXMCwXTD3xdloD3MQHt4vFGCZVfV4CoRpj6CM0tkNMGeV8bN2VOJDDtf6KSo3ELtAu+Uf142lcntewQT6Bxj+x7q+6sweyJGY0nufr2dC+qKaPBZGQjm9iDdZpVar/hNnQqSJHHz0nK+s7YBVyJLPJRm984h9r46bupSPbeI0gbnubtJgeADSNifYP9rPXmz8nfw90XwVJzdPetsfEwvFEmiuE0oJ0gKrfVY+dDCUi5u9jEcSVLqMDKn1IbPJowo3i86SeLyOT5W1xflipb5rLgtKhlt4r9/aihGejCKbNChFFvQWc78Wtxk1aMa4rz+4OGC9lgoRaA/KkxIzlMai2189dJGhiNJNA28Nj0eq4GWgTAPbO06ayYkx8ch1GIzsnFq4hBH9w5P2C8ZOBpi1vJi9FP0GYKZRWg4ljcgeYdEJE1gIE713CIAtHSWZE+YTCCOzqZHKTYj699/f1F0Mk0lNr55ZRP9wVwOhtuip2c0zl0bGgjGkvzXi628sH9AmJCcR4zGUnz3mQMFbYPhBNs6/O/JhKTEYeKui2fxyzfb+daVTfQE4pQ6jFzS7KPMdXrP95at/RPadr3QxYf+eLGIfQmmhEgwwZsPtZKMZwraR7rDE0xIDIqOT11YQ5nTRI8/htdmYDCUYGWtG7KQGoiQ9seQrWNzCcO7j9sH+0MFBiQ6HQwG4wyGEpQ4xN61QCAQCAQCgUBwLpjKiJ0diAKXH9OmASczISkHOo953QWsnOS4CyRJ2gn0AF/XNG3vad7rtCE6GqBj7y5a3nqdCy6+leSjA2QjOVGZvtaO+5YmEukMlzV5+cy6Ol5tGeLJ3f386dVzsBhkzHoFlzmLLEGFy4zbPPkGiE6VMVnVCSYkBiFQE8xgkuksWW1iezydC3xEhmMEHz1M5mAAgDUGHWtvXcxeLcOCUjuvO3oZHYiBBIsvtZOMHubQm6+STa2gesFibEW5ZKZsVmNnV4And/dS6TKjKjI7OvxcPLuYnZ0BHCYVj9XApiNDXNxczKG+EFkN6r0WXm0ZotRh5Ip5JSIY/QFA0etAIvd0OwbVcOKqVdlEmtArXYReGHvcyeC+fTbmeadu9KBpGv2tLex/4xXioSCz16ynvGkOquHEATWf3cj3bl7Inp5R/JEkdT4rc9/FRTuZzrC13c/fP74fJHhsVw//ddti5lc4AfCa9fzyD1bw0oEBXjowyD/euAiHUSGVyZ7ydxFMDe+McwDzy+18ZEk5mgb7e4OUOI2oskwgluL7L7WwZpaXBRVOtFSGyKZeRp/MmY7oJFi3oZLnXu4hNBwHcpW4E7Eo3fv3sv+1jdg8XpouWENxbf05+Z6CmcVoNMm3rppNx0gUu0nBqOgocRqRJYl5FQ4cptw8NZNO03v4IPtffQmA2Retp3RWMzrlzMxLs6kM4Td6CD49Zj4mgevWJswLvXmTJZ0qY7brJ5iQGCxirix4b5S7TJS7yrmwpJ+2Hdvo3rWNhiUNqMZ6djyfE00YbXoGQ3HUt/xknstVAqiS4D8vqeIz245Q67Fw89JKntnbx4v7B7h6fikr64rQK1MrIBcIFDVX/S973KJKMehI9UcY+vleMv6cx6ziM1N0x2zUKawu9H7obDnEwTdfo25okNVLLoTLF/HXTx3ma5c38YVfbWN9s5eLGjyY9To+vLCc5lIbBnXmVZg93xju7qJ1y5v0tR2mYfkqquctxOLKGYvWeiz87XVz8dn1VMx3k96YW1cpEqxbX8neY7wQw/H0pNdv6Q/x/P4BLHoZvaLjlUOD1HktXDTLy4sHBugJxPjIknL80RQbDw6woMLJxc0+6rznzkBNMLNJJRP0HNzP7lde4na9kQbfavyOwrmmLEso72N8Sqaz7OgM8NjOblSdzKq6Ij7ldWJ5qoN3gmRNF5SQTaQniHj29YzywoF+yp1mWgfCdI/GuKCuCJdZZW9PiPahCCtq3QTjKRp8VlbUunGYhOHoTCCRytI1EqXUYUDRQaPVxLxDISJP7iMCSKqMeq2XiCFEWdNsDKbx57k6SSV2k1VFp4pKUoLzhwlz32IzRR/PzX372w5z8M1XCY0MMXv1esqb52IwF86JLZMYllicBq6YV8ScCgeheJo324b57Npa2gYivHBggEQqN57PKbUxv8LJSwcH+daVzTy9p48dnQEA/NEkwbFzn9rTR7XbzBVzS2g+zUqJgnNLTZGFzqHxvdqyWWYqGmN0H3gRS7uPb69YRL9SQ4XLxN1vHEWRO7hqXglLMjKjvzkAmdzz3rq6DNulVehMwqRGIDiWyeY2qkGHTsTVBGeBdzQ5qeOSNNRTSLB4r2jpLJHNfYw+1pZrkMB54ywsS4snTWz39/bQtm0zXQf2Ub9keYEW4mSk0hqfXFVNKqtxoDdEidOIIklUFZkxiZjbKZHOZLjGZCR8XwupjIYOWLm8GFmCI/tzSTUGs9iLEgimGkWR0ZsVEpHCmPHJtD1ngmw8TfDFDsLvmFTpJAxX+xg1BihvbMZkG1/fGVUdpQ4TR0cilDoM2AwKVW6RSHo6JNNZ6r1Wjo5EucgZY3DXs6QjIdIXrCPlmIdqzGmuEh1Bhv5vD1oi9ww3znHj/HADylkw51dUedK9OtUonrPnKw6jQpFFTzqb0+LZTSq9o1F++omluImw+8VnaNv+NpVz5lG3eDnOktIzch/xFj/Dv9w3Hoe4qAzbJVMTh7BM8tuyugzIiohJn68oqg5ZJ5HNHDcWjq3xNU0jumcI//0H87pd+5XVWFeXI59gXaJls/S1trD/9ZdJxqLMvmg9ZU2zUfXj/c9l1mM3qqTSGhoaRRY9JQ4jD23rxqTo+Pmnl+MPRSe9fiCa5K0jIzy9p48Gr5VL5/hoKhFx2+nMcCTBywcHeX5/P1VuMxc1eIinMvSOxtncPkJNkYVL5xQTT03UQocTk+sQTsbFTV70isy+niAVLhOjsSTJsT5+Ovpcq2uiZtxWZEKeJBYgELwfdIqMya4nGY8VtB87P81mM/S2HGL/axvJpJKsWbaGvUYnfeE0c8rsuM0qsf3DjNxzIK9hsF1ciW1dxbsakSRS43G1uzbU0Vzq4Ll9/fzg5cNcNruYi2Z5SaYzbOsI8NTuXpZWu5CA1qEIhwfCXNTgYW2jlzKnMPQTCAQCgUAgEAimiinbydQ07dPv47TJVrzHWwpsA6o1TQtLknQ18Dtg1qQXk6TPAZ8DqKqqeh+3c3bRsll2PPsEbz54L2WzZpN6O5A3IAFIHgmSaA9SM8vB5zc08Ef37aA7kFvQdQWi1HksPLqzt+Cav7pzBWtmTayiYjSrXHBjA0/87678v7CtyIivRgS9pgMzre9OF6rdZpZUOdnWEci3lTqM1HtyiUKxzmDegARAS2SQN3az9lNzMJj1rLimlkf/ayfNq+wcevPnDHfmEvNbt77JvA2Xccmnv4BiMLCzK8AtP3qT2aV2hsJJHtnezdcub+RrD+zEYVK5cl4J//zUAb60vp6/+t1e4qkMn1lbx1fu25H/7Ltfb+fBL17wgQw0n0/91+kzsWB9BbteGq9sOeeiUpzFJ07GTPVHxw1IALLgf6gFfbkVZZKA8GT0tx3m/r/5NulULmFp3ysvcv03/oKGZatOel6xw0jxe3D+PdQf5qsP7MhXgwlEU3zjwV3c+7lVuMx60El86dfbGI3lnlWP7+rlr6+bw4Zm3yl/xnRiJvfdOo+FCpeJLn+Mr13exHP7+nnp4CBd/vHAr06W+Mols7j9J2/x4BcvoC4rM/rUkfGLaJB9tZvFK0t45cmj6E0KdYu9tG59i6f+53v5w3Y++wQf/bvv4qmqOYvfUHAypmPf7fJH2NQ2zKH+MDajyvdf6qM/mMi/r9fJPPGVi5hVbKO35QAP/O2foWm5TbvdLzzLzX/1T1TOmXdG7i09ECX4zNHxBg0CDx9GX2FDHaseZDCprPpwPU/8z878GGh1GyipFQZiU8107L9TTTIeZ9P9v+LA6xvHWt7EV9NA44qP07I1hGuFl/hQDPn5jvGTNDBv7OHLayoxlVj4w/u25/vib9/u4mefWsbaxpn5vP2g8EHsuw6fiaVX17Dl8fH5Qd1iD+4yC9FXu/JJmJAbS2P7RlDXnTsTksGOdn73j39OMpab7xx561Xm3/5F/umGC/iDn28hGE/z2625ebrVoHD3p5YJA5IxpnP/DQ4N8rt//VsCfbn4Vstbr7Psuhu56LZPkEbiP55v4fFdvfz0qjmUvD5eIRYNsq9147q+FgBZgqXV7gnXPzoc4Y6fvYXdqLJmlof/e609/97vd/Zw6exi2gYjPLmnL99/Ht3Zy72bO/j1nSspFcKEc8p07rsno2vvbh7+zt/kXx986Rku+dxf8up94yYkS6+uweF77/1r69ERPvbTt/LzhD+7qI7l2wIFInXpzT5Si4sxVI3HoA72hbjtx5v41Ooa/u7xfQSiuXX977b38MeX5ipx+aMpfr+zhzsvquU3b+3ji+vq+diq6vd8j4Kz33cbi610+mN848HdANx32WzSu4by72upLJnXR2lR3yQRjdB84dr8e95qG64SM/6+cSHt6ptnYbad+SQLwfRkpo69p0Nk+0Dh3Lc/Smz/CKPxQe7/2z8lNSa0PPDay1zzlW/QvHpdwfnVc9xse+ZoPrlN1kmUrPRx80PbCqpuzyq28fiuHmxGlaf39AHwxO5e5pbZ+dSFNXzjwV1868om9vcGSaSzfHlDA68cGuTbD+/OX+Pnb7Tz2y9cSMN7qLp4vjBT+u62jgBP7O1iVbOT0aNhSmtHeOXX/5t/X296CvetX+OXB9V8MkOZomPWnnA+8Qcg/HoPpnkedCJ29YFgpvTfmUBRhZXSBge9h0fzbRfcUC+qyJ8hRN8txGTVs/qmWTz1w/Fnt6PYjLfaNuWflR6KMfpE23iDBoHfH8ZQbUf1FcbvIgE/j//nvzBwpBWAw5vfYO76S7nkD76Iajj5vN9jM7CjM8vXH9yZX0cCmPU6nvjDi6idoQauZ7Pv1ikS0cfbC57jiS39LLymhiP7/VhcBkrqxPNccOqIsffUsLqMXHTTLF74xf58m7fKhqfi7I5bqf7IuAEJQEYj9dIIA5WHGe3vZenV1+ff2t0d4K57txecf8OiMr5z0wIMyszf6zgXfVeSJT73q7f5p7UuXvvVd/Oaq4OvvcSHvv7nzFp+Adl4mtGn2vMGJADxfSOkloVQ5pz5+JjDZ2bpVdVseaI931a/xIerRBjQTCfOZv996eAgf/rI7oK2z6+t45V9PVw+8gqHN70K5OZ0B19/heu/+ReY7c4pvYfMaAL/gy2FcYjXejDNnZo4ROUcN8anVeJjWnlZJ7HkimqUD8BYN92YKfMGu8/Esqtr2PzYMbqFRTndAkB6OE7g4cMF2SXBZ45inOVCXz75equvtYX7/+ZbZNK5mO3ejc9z47f/htrFy/LH/H57D9999mDBeX90ySwe39lLMpPlt2938ZNPLGMyHt7Wzd89vi//+udvtPPAFy6g1iPG76lgqvtuNqvxyzeO8p8vtADgseqxm1QiiQzff+lw/rhfbzrKd26cz+d/vS3fppMlFlU63/Nntg1F+cKv3y7YI9h4cIh7P7uS7rcn6nNv+7vv4j0FfW7DEh+7N3blDVB1qszctWXv+f4EZ46ZMvaeCJNVz4UfaeCpHxwT3/KZ8FaNj7e9LQe5/2++jTZmmrZn4/PM+YNv8qcvBdE0uP+2JUiPtnNspeHQi50Ym90FGobJaPBZcZpVVFmixmPlrnvG10gPbOnip5/Mjcsf/7+3+OK6ejYfGWF39yg7u3Lx4Md39fLhRWX8043zMeuF6atAIBAIBAKBQDAVTNnMWpKkRuAHQLGmafMkSVoAfEjTtH84yWldQOUxryuAnmMP0DQteMz/PylJ0v9KkuTRNG2I49A07cfAjwGWLVt2vJnJtGN0sJ/Nv38QAE9pNQxOdEpND0QpWuzjhf0DeQMSgEWVLh7b2TPh+Jb+8KQmJACVs93c+PWlDLSPYrColNQ5cPrObRVjQY6Z1nenA7FkzoH4r66dw8Pbu3lh/wAralx8bl19Pkkoc0yF2XfI9kWJh1JIsoyz1MKN31iCv/sg2584UnDcno3Ps+Tq6/FW1fDM3j5SGY11jV6+/9JhDIpMJJEmnEhz24pK7n0rl0CqV2QGwwluWFzOw9u6Cq4XSqTZ0Rn4QJqQnE/9VzUoLLu6hso5bvy9EZwlZoprHOiNJ36cZsMT+6EWS5ONpsF1ap/bsXtHfjP8Hd565AGq5y3KV+aYCjpGogVBb4ADfSEGgglSmSyH+kJ5A5J3+PErbayqdTO7bOaJo2Zy3y1xmPjpJ5bx8LYudnYGcJj1BQYkAJmsRjKdJZxIs7XdT43bPsHqTUtlKa20seGOZopr7JjtWd747W8KjknGYvS2HBQmJNOI6dh3D/WFqXCb+e6zh/jyhoYCAxKAZCZLlz/GrGIbu196Lm9AAqBpWXa/+PQZMyHJhFIT+34yQzaWAsbF5xXNLm78xlIGjobQmxS8VVZUow5N05AkUS1gqpiO/XeqCfT1HGNAkmOg/TALrskSqarm7ze38dP1jRPtN9NZFrgtfHdbV8HzOJ3VeGJXrzAhOcd8EPuuTiczd00Zvmobgb4odq+J4lo7BqNCsC044fhkxyi5sM25oevggbwByTt0vPAIzsb5BOOF8ZRwIs2RoQjLa4vO5i1OW6Zz/x3qPJo3IHmHbU8+yvyLryBhcfPC/gEAlHhm0rlsOJRgWbWTP7q0kfkVE9ckB3pD9I0muGNVNf/5/OGC9zpHYjhMKhuaffzo5daC91oHIxzsDwkTknPMdO67JyKTSrHlsYcL2rKZNL1Hd7H0jstQwmm8FTaKa+zodO+tGrumafzyjfaCeUKxXsnFF44jGyqMIezo9BOMp5GQChLHAO55q4Mr55Vw7+acgeq9mzv42MpqvvfcIS6bU4zPPnVxh/OFs9136302/vx3e/KvbZmJx2QG43iWVPHmQ/dRs3AJRksu6cZeZOKaLy+kvz1INJjAU2EVCXDnOTNx7D0dtKxG8sgkc9+jQUYM/rwByTu88dt7qF64BJN1XGxpdRv50B8tYrgrTDiaImSW+e9dRyfEWV9tGeKyOcX8zaP7Ctr39ox//mM7e/nIknKaSuxcUFfETT94s+BYfzTF3p5RYUIyCTOl7+7qGuXhvX04llTykTVVbPpF4TZ6MhbDGenjxQN6vrS+IWdCYtJPeLYDZCZpE8xMZkr/nQlYHAYu+4O59LWNEvbH8VbaRFGWM4jou4VEgwlK6h3c+PUlDHSEMFlVimvtOM6ACU4mnITjizOntYKiR+8w3N2ZNyB5h70vv8DSq6/HW1170s851BfiQH9wwjoymszQE4jNWBOSs9p3wzGyoYl/F7MeLvnUbIprHbhOUvBEIDgeMfaeOvVLvNiKjAx1hjE79BTXOlCNOiKjCcx2/VnZ/81M8vvPhlPYbEW8/Nuf07hqNTa3B4C2wciEY5/bP8A3I0lKHTM/Tn0u+m7HSBSTXodhoG2i5urhnOZKTsqkesITzp1Mc3gm0CkyCy6upKTOwUhvBLvHhKfSSiaVJZPOolPeWwxZcGY4m/33mb19E9p2dY3ysVkqB598taC9p+UAI11dmOc4p/QesvH0GY1DFJVbueHrS+hrHSWdylBS58BbOfXGfYKZM2/Q6WTmb6iguNbOSE9uLPTV2DFaVFKJDKlgAi153MaHNvlz9h3atm3JG5C8w5ZHH6Zy3gIUVU80meaJ3b0TzmsZCFHhMtE2FCGZyfLSwQHWNRXmZPQGYvzH84cK2gbDCfb1BIUJyRQx1X23yx/lh8foAa6aV8pIJMnvtncXHOePpogmM/zNdXO4+412fDYjd11cj16ROTocobro1P++HSORCXsE+3qDjAZGJ9Xn9rUcPCUTEm+VbSwXKEg2q1FcY8dbZSOdyhCPpDBaVBRRrOecMlPG3pNRNcfNjV9fQv/RIEaLSmm9A4d3PHZx8I1X8wYkAGgaoW0vsajiYrZ3jhIKxCfXMEyST3E81UUW7v7UckajSf71mcKxNpbKsKV9hP7RXK6DXpHx2Ax5A5J3+N2OHj67po655WLPWyAQCAQCgUAgmAqm0t7vJ8A3gB8BaJq2S5Kke4CTmZBsAWZJklQLdAO3Abcfe4AkSSVAv6ZpmiRJKwAZGJ7C+z5naJqGNubw2HFoF/MuuAj8hQmb+iobmqaRPS4ScXQ4QlOJjc1HRgray10n3nSKjCZp3z3Eobf6sDj0WJ0GHB4TkiySKgUzi55AjP/37EEe3pYLAH5mTS2/vnMF5S4T+mMd0d2TJEnMcpCIpnnhVwfx90VoXFFMWf0kATdN450IYGrM1V2ScjlPsiTlzVkVWSI99kI7ti0zMW6Uzs7IWJLgOKLBJAc39dHTGqCk1oHNbcRs15/weMVlypXlPubvrysyonOc+JzjyWaPV5FBNpNBOz5KfZp4J6ly67MZcJpVstmcqcXxpDMaiXSWbUf9LKk+RVcVwZTQXGrnG1c0898vthBLZnCa1QkiQKOaEySks1l0LgOSKqOlxvuTbFUJJTKU1jtwlViIBkcLg8NjTNYHBYJjyWQ1JHLPwnQmi9WgEE6MbyRI0vgYk01P3GA4fuN3KlFcBlAkSI+PYbJdj+IoHPN0OpmSOge+ahtdB/08f/c+IoEE89ZVMPvCUmyTzSsEgkk41mTnWLpjcf74pf1IEsRMCma9jJY8Zky2qGhWhWRm4vmJtBiHBVPPwNEgbz16hP72UeqXeKmeX4RlbGw0LfSSPFqYjGma7TkXt5nnRHNiVSeh6qT8ug1A1UkYVVHRYiYw2dxT07JomobNqDC33M7Wdj+STT/pXLas0s6PlpVRNMlaBiAztmbSSXL+/ws/653l2sT3smINL3gfaJpGNjPRAUKHxtDeEYbaQlTNdWMvMmK0qO/x2hBPFf5m9gRjrCgykhmOjzfKoHMXxogzWW0srjV5vEqR5YJjdXJuXi9+BjODbFZjXpmDTW25vYJhVeJ4SZWuxszRQy+iZdIT4kkWpx7VIHNoUy/bgykWXlxJ08oSLM4zX+1VIDjXSLKEaYFn4tx3ThHxQMeE47PZTH4jIJPJ0rXfz5u/ayUWTDJ/fTn6Bhv/8OgeFlU5J5xbW2QuiJUUXHfsmslMlj+6ZBbFDhP9wTipSeZKYp9hZlPntWA3KqwodhDqCU86HyabRWJ873bbcJgLS8xk+6Ljx0igFM38RESB4EwQ9sfZ80o3owMx6hZ5sbmNJy0mIBCcLuFAnANv9rH7pS5MNpVVN9Qzb235GU0a1jmNSHpdQSKebFbQTTKHn/RZo2mntM+c1TQkJAyKXBCj1snSCWMxgkISchLVZyQzcMy6XYK0QSI6mERvEMlhAsGZQjUolDe6KG90kc1qdB/0s+mRVkL+OHPXlDHnojJs7jM7p1bcRnKb6ONtstdIf++u3J7HMe0lkxiNzC+3Yze+txiiYByHSUWWJJh0fymNhobOomKa6ya6bbDgfcV79gyijBaVqrlFVM0tor89yMbfHGDgaIi6RV4WX1aFq0QktJ9PLK91s/FQYX+s91mJJUOTHj/V2kEAnU2PUmoh3XuMOZIEStHUaGZSiTT+3gg7Xuwknciw8BKwuk6uvxR88DGaVarmFFE1Z7zISP+RIG891kp5hY1Su55s8JjkdUVCcZ94TTLZXl0mM17EyqjoWF7jYl9vYVy40mXmlUPjNXKT6YnX0aBAm5C/vtBXTluyWqH2WdFJyJI06d8RCT61upYPLy6nJxDji7/ZxtHhKBa9jn+4YR7XzC8tzFM4AV7bxDGzxG7EqMinrc/1VFjxVIybgg53h9ny5BG6DvipaHKx7OoaPBXC3Enw/kmnsvj7o+x9pQctm2XZNbWYrHr0plyMdTKtr5ZJoxvb1ogbZHSTaBiUk+S5vUPrQIh/eHw/X9pQT2oSDWUqk0Ub2z852TRoMg2QQCAQCAQCgUAgeH9M5a63WdO0zce1nTSbUNO0NHAX8AywH3hA07S9kiR9QZKkL4wddhOwR5KkncB/AbdpZyJyeg5weItZfOW1QK5adp+uA6VubNNAJ2G7pAp9lZ0jQxHqvBbclvEg62uHh/j4ymocpvGNpstm+1g0SdVXgGwmy84XOtj29FHC/gT97SEe+6+dDHZNdHIXCKY7Gw8O5A1IAH766hFePTw0IbCnllvRNlTAmMBHqrRiWV3Ow/+2nd7DAVSDjNE8QjqZxFVSVnBu4wUX4SguBeCKucVIErzVNsKls4uJpTI4TSp6ncxz+/r5yJLxauA2g8ILBwa4flHh9QyKzKIK51T+MwjOAdFggqd/tJvDbw8QDSRp2z7Ikz/YTTiQOOE5is+M+/ZmpLHgm67IiPu2ZnTWU984q5q/CFlX2L9XfOgm9KapFUQ0F9v43Nq6/Gu9TuZfb1pAsd1IicNIY4ktb2rxDp+4oJp7Nh3lK/dtZzAUP/6SgjOMqsgsqXbx+K4evrC2HuUYY7FPXlDNxoODGBSZZdVuFI8J98dnI1tzcwedQ09mTQXP33eIV+49RDKWxmx3sPKGWwo+Q1H1FNc1nNXvJZh5NPgs9ARiXNzs45Ht3XxhXT26Y/rjN69oosGXm+fO23DZhPPnb7j8jN2b4jVT9LHZyGNJnjqngaLbZ6OzT74ZPdgR4vH/3slQZ5hYKMWWx4+w79XuMyLeEHwwcZaUUbNoeUGbu7wSn6ccgK9f3sQPdnYwfFnl+Jhs12O8eRZ3PLSTGxaXF5wrSXDtwsK5pUBwugSHojz6Xzvo2DtMIpJm36u9vPDL/cTHDM1Mc9yYl/py4lgJLCtLMcxyntN7Lp/ViKIvHLurL7keTW/hm1c0807RQkmCz62tp8QhEiFmAp7KaqzuooK2+RdfgaO4BKtB5c+uno3LpJJNZJEuqSqYy6rX1nHLPW/TMnji2FZziQ2HSeXJPb3ceNz46rHqSaQzvH54iCvnlRS8V2w30FgihDmC946i17Ps2g8XtEmyjKdsLke3DREJJNj/ei8b7zlIInbiCm2T0eWPsrqh8Pfyyx3dKNfXoxsT/0omBffts1F9hSL5BRVO9DoZRZYxHVf96iNLynl233h1xRsWl/PcvgG+tKGBEocw4psJHBmKsK7RS3VR7u/+/X09JC+pQBqL4cglJkLVYdp2b2XFh2/BZC0c3wbaQzz5v7sZ7IwQHU3y5iOttGztP+vfQyA4V0g1BgwL3eNz31UlGBqcFNc1oKiFMdxVN9yKyWYHYPBoiMe/v5PhrjDRYJK3Hj1C7GAQgypT77VSdswYOr/cwZJqF1vb/RPG8uoiM8axsfnLGxooHks8K7Yb+fL6wpicWa9jbql9qv8JBGeR5TVu/uGSZrp+d5S9G4eZu+H6gvcVVU/YUcayGhc7uwIAPLi3F+nqGhRvrm9IRh2uW5tQi89eUpxAMFMY6Q3z6H/uoOdQgEggwe6NXbzxSCup4ysmCwRTyIE3+3jr921Eg0mGuyM88f1dDBxncDbVqB4TRcfu+dn1FH1sNopr4hrO7vXhKiuMicxatRpnybvHnOu9VpwmhS+sq0c+Jvb2rSubqPdYT36yAICU2URquYJclItVSkYd+su97N09wpsPibWXQHC2GOwI8dh/72SgI0QslGLrk0fZvbE7XzzuTKH6zLhvG9cLyUUG4gsz7HnjOVZ++OaC2PiCCgdXHROnthsVvnllMxaDMFN7v5TZjXxkSQXZ0npkXeG/44rrb8JgMiMpMrb1Vehrxtbaiozj6lrU8rP/nAsMRHnsv3bQuc9PIpJ+33FkwczmqnklNHjH+191kRmPVc8L3VmqFy0rONZTVYO7vOL4S5w2slnFfVPjJHGIqTHE6T8S5Okf78HfEyE0HOe1B1o4snPw3U8UnFcEBnJ6hs59ft5+uZvM6vK86aJsUXPrH8+JY2N1S5cjyYU612XX3oiiz8V7ZVnioyuqKHMeG8O1k9XIG0nLElzS7Jtw7VKHkS+srytosxkUZou47bSl3GXi46uq86+f2dOHRS9z09LCMdSs1+X/jpmsxh/eu52jwzlj6Egyw588sJOW/lPLu2kusfHZNbX513qdzHc+Mh+fr4hl191YcKyi6ilpaHxf3y0ymuDJH+6i9e1BEpE0rdsGefKHuwkHhJZb8P7p2u/npV8dINAfZXQwzgs/30/XIT8A6VSK+qUryIu0xrAvvZhtnaN4bQbqq125PInjNAyK7+R7Gql0lh+90sbbHX7+8Yl9Bb9byBUJXlHj5rI54+um0WiSem/hHGVto4cajzDyEwgEAoFAIBAIpoqp3KUYkiSpnjGfWEmSbgJ63+0kTdOeBJ48ru2Hx/z//wD/M4X3OW2QJImSWU2s+PDNdO/fS9/AYVyryim+aj6KUY/iNiHpJLp7Ary0v4//+ehiHtnRzeH+MJfPKabea+LHdyyldTCM1agwu8SeFyceT2Q0yd5XegraslmNkZ4wviqRVCGYWTy7b6IQ46ndvXzighoARqMptnX62XpkhAvr3VQ3zIF0FsVlYKgzQiaVRZIl5q2Bjb/4JwAu+MhthP1+hjrbaVx1EQ3LV6E35oIfiypd3POZVfz8jSMsrXaxuNLJlvYRvnfLQp7d24fXpucvr5nNSwcH+Icb5vH64SHiqQz/+OF5/H5HN+UuM3esqmZu+eQmQYKZw+hgjMBArKAtNBxndCCK9QTVYSWdhHmeB325lWw0jc6uR2d7b879RrOZ9Z/4DB27d5KMx6iavwhrUdG7n/gesZlUPrqikiVVTgZDCWo9FuaVj2+OzCu186M7lvLbrV30jsb50MIyZvksfO+5QwD0BxOTOngLzixDoRj/dMN8nt/Xx3dvWjBWxVoikkzTVGLj21c2MbfMjiRJmJrcRG9tYuCgn0Aoye6HW0klMnQd9BMcjuGpsFE5dyFrPvZpjmzfitlup3TWbEZ6uympn3Wuv6pgGlPrtbG0OkljsY1tHQEMisT/3r6YvmCCEoeReeV2jGpu6eEqq+CSO79E69tvgaZRvWAxsfDkVVumAkmWMM0uQv1DC9lIGtmuopykQt9QV3iCS/rul7uZt65CVAIXnBLZjMLcdVfgLiujr/UQnsoa3OWVWNLw+B+upt5rZU+3iz39YRqvr0VJpNHZ9DzVNsBwOMnrh4f43s0LeHhbN4pO4mMrq7mwzn2uv5bgA4a/P0YiUugb298WJDQUw1ilojiNOD/cgHVtBRK5CtvSGazeeiqEh4dYfesd9LbsJxoMUrtoKXLtbF44MMDFzT5+/PGltA5GcJgUqossLK0Wv5uZgMFsYfWtd9C1fw+B3h7KmmZTVFmNNFaGakmViyf+aA3b72vhyUMBFq4qwWpWGA0lGXyjl1qPlY6RKKvqJl8f1Xmt3PPZldy7uYO6IgvfvqqZZ/b00Vhs40OLSnnw7S4kSeL6RWUsrnTx5O5ella7uGlpBRUukdQpeH/Y3F7WfuzTtO/ahqo3UDVvEbJOD4xXDew5FCA0HMdQceqVTHuDcR7b1cufXtXMy4cGUWSJtY1ejho0Fn9xIZnRJLJZmTTpbF65g/s+t4qH3u7irz80h7fahukciXHF3BKqikwEYylaBsJc0uwjkc7yxfV1rG+aKKwUTE+6AzF+9mor37lxPr2jcRKpLG02lfmfmoUcDNLVuY/DW95i9S0fw+xwTji/tzUwoW33xi6aLyjBaBHVJwUfbAIDfTz8//4aq6OI2SvWAhpaQxyXw4DPXs8tf/1P7Hz+aYKDAyy87Gqq5y/MnzvYESqoWg2w75VufvDHi9gxEOTrVzSSTGu4LXoWVTn53bZullW7MSgS88sdbGobYVGlg/VNPn755hH+92NLuOg4g5Ibl5Tjtui5Z3MHdV4LH19ZTbMQs89oypwmmqwmOmNpFL2Mq7iUC2/+GB17d2G226mcu4B4sZsv1Lr44cutrGv0cPOySmIuA9WfX5B73pt0KGe4YrtAMFPx90ZJJwsrZLbtGCQ8EhcV5AVnhGgwwZ6XuwobNRhoD1Ja7zyjn21sdOG7azHZSAqdTZ3UeD2dSrF34ws0X7iOsH+Y4a4OKufMZ/bai/NaiJPhjyZp8Fkpc2b4n9sXMxBMUOY04bWoqOc4VjhTCKWz6NJDKEsU9FkDOouekDZMX3vu32/3xm6x9hIIzgIjPeEJhiN7Xu5mwYYKrJPE0qYKSZExL/SScWpEh/wMDnWwb9NGll9/E5XzFiIdk7hXbDfyR5c0cOW8EiKJNI3FNuaWifXf6TAUSXLdglL0MSPVn/wsHbt3kIhGqF6wGLPTlT9O9Zkp+uQcMoEEkqJDKTIiydJJrnxmCPRHSUQL9+7eTxxZMLOp9Vj4t1sXcqAvhKblDPV/t72Tj15QR9HQOorKyuhrbcFTWUNJQyM6/ZmZQ+jLrXjPUBzi6N7hCW27N3Yza3kxeqMwXhLkCPRFScZyY2IqkeHJhw4zf2UJC24uwVhkRHGe/PlttjvZ8KnPc3Tn26SSCarnL0ZvKtz7bfBZ+f7tSzjUH0KRZSrdJgaCcS6oK8Kkyty6oopUOjvh2pIkcfuKKkodRu7b3EVTiZXbV1Qzq1jkYkxXVJ3MF9bVU+U28djOXuq8FhZXuQjH07ivaOKF/QPUesx84oIamkty86+BUILWwUjBdTQNOv1R5pY76A/Gefuon91dAeaVO1hW46LYPj5W2k0qf3RJI1fNL2UknKS6yEy910rf4UMc3b2TC2/5OB17dmK221l42dUU19a/r+82OhgjOFhoOBIaihMcjGF9l9+JQHAi9r3WM6Ht0Ft91C300r7zbV79zc9Z9/E76dizg2w2y7xLr6ZdX86/3yozt8xOgy83HvreRcNwPP5okuf3DwDQNhRF0zS+c+N8Ht7ejdOkctuKSi6oLSKlafzsk8u4f2snl84uZn6Fk+2dfvZ0B7l0to/rFpZhM4r5s0AgEAgEAoFAMFVMZcTuy8CPgWZJkrqBI8DHpvD6HzgC/X088/1/R1YUiuvq6Tl0gH2vvMjNf/mPVFWOCxk9VgO/2NTJ3W928NOPL8a7sor/fP4QHpuBbzy4K39chdPIbz67ilKHEb1SWNFSp0iYbCphf6KgXTUUHicQTGeyWY3OkSiLK51sPFjofn5hvSd/zH1bOvjnpw4A8P2Nrcwts/N/n1xGscNEfCAXbKtotnLw9QfRsrkg8Ru/vQebx8vFn/o8DctXFVxbr8hcUF/Eilo3mqah6GSSmQx6nY5r5peSHWv7xIU1KLLEhxaWkc5qqDqZW5ZXopMk5HOwOSmYehS9LlcR8zhx+amMpYrLCK53PWxS2nfv4KW7f4Svth7VYOSNB35D5Zx5fPibf5V3Z58K+oNxvnLvDnZ3j+bbvn1lM59bW0c6m8Vp0bOy1s3sYgvdgTh//rs97OvNOXu7zCousxBHnQsMqsqdv9jKt65sYiCUyI9/APUeC7+4c0VevJJMZ4hl4cXH2wuuoVPkXP8GAr3dvPHAryltaGLk/7N33lFyVGfefqpz7p6e6ck5a2Y0yjkiFMhBZAO2scEZ5/Wuvf68tned7XVYB2xsTDQ5R4ECCJRzGk3OOXRP51z1/dFSS8OMkARCQqKeczjQt25VVzO3bt37ht/b003j1k1ojUZyK6uxpDnO2u+SOf8odph5eHMbK6syuOetVn7yyrGxeP2MHH50dQ1GjYqRzg7W33cPmaUJYZuND/8TjV5PTvkkLI4PL9FRZdOB7eT9Jgpq0Fs0KNVyQK3MxERi8TH7r5DPxdq//xaFUkVaXj5te3awf+2rXPqV71GTk3AaV+VYeXJXN9/beSxAfWm5g4sq0nlmTy+vHOjn26vKWVWdicOsTYr4yMicKdSa8etXhVJApT7WrlAr0ZyhilYfFP+oi7X/+DN+l5O0/EJ0RhObn3yEkhu/wJ82x3hiZzf33zGLecV2DFr1Sfdf735uZc4dI92drPnL77BmZGJJc7B/3WtEgkEyi0pJzcsHINOiQ2vREA7E2L7+2LxZMi8D93CEjPcQFwOozrby31fXJPfpn55fiFIAhULBrEI7cRH0R56JTy0oQKOUx4bMB+PAhtc5sH4NmaXlhHw+NjzwN6qWXo4lbSqe4YSwqVKlQKk+8ViLxsUx9qRILI5aoaCh30tdr4dp+TZCUfjVmnpe/MoilCYNStN778mn5acwJddGXJK4aWZeUsAyJkqsrMoc81mtlNe+5xMOk5a3W0ZYVJHOT1+pJ34kqeZPC9TUP/wHHAVFaAwGtj79GHqLldt+9juMxyVa6Izjg7AMVi1K+V0p8zFgoLUZV28Prt4eug4n/G3WzCxu/e/foLdYyCqrJKusElGMo1CMfSbU+vHPiMGiIRiL860n9yefRYNGyeOfn4fNqOH7zx5kRkEKFq2S2UV2Mi1aFpaksbA0DdUEc2+qSct1M3K5amo2KoUwJkFN5vxEkiS80UQCRdEUM1ue+hue4cExttjaT95Nk0Hgr7dNQ6lUYtAcswmc7H0vI/NxZyJ/nVqrRCmLJch8SCjVCvRmDf7RyJh2reHsJDqobFp4D/H00f5etj/3JJIkYk51YMvMZP/a1yiePuuUrm/WqVl7eJB+d0IU8yirqjL4VYYFi15O6DgZep+Tl+75PebUNGyZWQx3dRLyeZl34/cZ6QGjTSPvvWRkzgJq7QT+X7P6rK0R9m97g61PP4o9JxeDNYVdLz2He6CfrJIyBEXiHhr6Pdz0t224g1EgUVj8/k/PYoksFPy+STVp+OELh/hU+gj1j/+V9MJi1Do9m594hNS8fG76wc/QGhN+MKVejfIcv9cmWsuezI4sc+Gxr2uUm/62lfAR4QONUsE/PjWT7rY2dv3zt+jM5jExCKk5eWSXV34o93Iqfof3g3EC8TxTihaFSrZ7yRxD9a45MRYR2b+ln6rl+ScVIAHob2lk/X1/Ib2oBJVGw6bHH8KenctNP/oFOqMJgJ0dLm79+7YxdtwfX1XF1y4uwR2K8ZXHdvGjK2omvL7DrOPGmflcOy1XttueJ2RadXxmYTG3zS1AEiUEhYBCSJRGuWtREWqlIvl3dPrChKNxHCYtQ76xeTfpZh2+cIxfrannqV09yfarp2bzk2tqMB0nfGDSqZiePzZo/OCba2nZsYX2vTsTNuHeHlr37CC/Zgrvh4lif4BkLLCMzPvBnDr+XW226wh6Pbz10H2M9vfy1sP/ILO4DIVSQUufiy9vSYiMfXFpCd9cXo4gAHoVmtNYS5h1aqbmWll/JEfohy/WkWrS8NidsylMNaE+si7WAMsmZbC43IEgCCgEuGpqNhKSHO8jIyMjIyMjIyMj8yFwxjwpkiS1SpK0HHAAlcBSYOGZuv6FSCwaIRaNEAkG6Dp0gNH+hGpkNDRWkbTAruc7qyoA+OxDe7j2L1u4bV4Rv1rTMKZf92iINxuGuOGeLfzj7VZ6XIHkMYNFy4Ibysb0t2cacOTJyrsy5wdxUeLlA32s+v1GoqJEabopeaws3cRlk7OAhMrwb9c2jjn3UK+H+n4vAKm5JspmplE2Q0fA4xrTzzs8xHBX+wnvQakQkoHAR40UiuPajhohBUFIJmuolQpZgOQCwpaup3Zp7pi2qoVZ2DI+3ArZgdHEWB1sa6Gn/hBiPIbXOUI8Fj2j31Pf5xkjQALwu3WNrD08wA33bOG/X6rjjbpBvvyvfTy3rz8pQKJWCvzy+lpyUuTqi+eCSVlm5pfYGfKG+dObzWOOtQz7aR3y0zHi4xev1XPDPVuo8wfJq7aP6Tf7yiKsaYm/X9DnJR6N0n34IMNdHQBEAkHi0bEBlDIy78blj+CPimxvd/Lygb4xx57a1UPrkeoAkXAQSRLpa2qgr6kBSRIJBwPEo2d2Tnu/pBeYsTqOm88EmL+6ZMLEPJmPN82D3uTc+pc3W+gcSey/JDFKOBAg6HHTdegA3pHhI2ccG+NtQ36e2Dm2QuabjUNMzbMCoFUrUSoULP31m/x6TSNO/1intozMB8WebaR4atqYtpmXFWJJ/2iu52LRKEGPB4Dhzna6Dx8kHo2iiCXWJ0O+MA0DXkx6zXvuvxr6Pfzk5TpuuGcL925spdsZOGFfmbNDNJywgbkH+uk6dICw348kikSjx+a9LmcAMd8wJgBXpVGQXpvKtLwUanKsJ/2e4/fpKoXArs5RvvTILj5133beahzCF0rM0XJAgsyZwD04gBiP09twmMG2FgBCnhF0xmPJDlMvLRi75jzCaCDCC3t7+MS9W/n643vY1eHEF4zwt42tfPOJvXxxaQmiJLGj3cXeLhc/vLKGIsepC0YpFELSfvVe/5Y5vyhJN/KbG6byVsNQMlgWQDgylw51tNFz+BDxWIygx019j4sh7zEfRHapDYPtWACYoBCYfUWRLGAu87EgEgyOawu6R4m9yw52vADJsDfMEzs7ORQKYbIfF/AuwNxrS/jXnu4xz2IgEueNun5mFqZQk2NhS+sIaw4P8uK+Xqbk2VCpFBMKkBzP8QHQMuc3Xc4Az7UO4SizotULBD3ucbZYoxBjVlEqZr12jACJjIzMyUnNNZFVOnaPOP/aEixpH017h8z5j1avZt41JRz/mjbZtWQWn9xWcTaIhkJIUiKB1TsyRNehAwS9HqLhU7M36zVKllSkjxEgAVhTN0DLkO+M3++FSOjIetM7Mpz4/+9xHymUE0dQCMyS914yMmcFR4F5XFzPguvL0JvPjsifdySRROfs6aa77gDRcAjP0BDikTkaYGurMylAAiBJ8Pt1TfjDsbNyjxcio8Eo+7rdEEnMxYPtrcmYq8Coa9ze/1xjzzZSWJs6pm3WFYUT2pFlLlye2t2dFCABiMRFntnTTZFNjSSJ42IQjvrZzifyqu1j4m8USoHpqwpQycJsMseRmmMkv2bsnDj7yiIspzgnhgKJGLXBthZ6Gw4jxuP43aPEIom5PxoTuXdj6zg77sFeL5tbnWxqHqEy3cK0/PeuOijbbc8/NColWo0KjUqJSqlArVSgUSmTf8emAS+3/mMbn/rnDj63pBjtcaJ1dy8rpTzTzOFezxgBEoDn9/bSciQ2ciJEMY57aAD3YD/AMZtwZzuewcH3/XtsGXomL80Z01azOIeUzA83pl3mwqZqYQ6q4wr2qbVKymZlEItGCLhHE42SRH9LI72N9QixcNI2du/GVna0O7nzwZ189oGdvNkwSDB6ansavUbJ5xYXYzce26dNybWi1aiTAiTHo1IqUCqO5e3I8T4yMjIyMjIyMjIyHw4fOHJJEAQL8GUgB3geWHvk87eBfcAjH/Q7LlQsjnTya6bQeXBfsk2j12PLyh7Tr30kwPN7e/j68nKicRG1QqBpwItvAieT0x9hX7ebfd1u6vo8/PTayWiPbLqySq1c+oUahrt86M0aMooscsCNzHlD65CPbz2xj0hc5M8bmrl5Vj5XT8mmOttCdY6VDEsi2DcWl8Y4Yo5iVQi076/H5xrGZO3irYdeZdKCJex86dkx/VJKJp2V3yNzfqLWqph5WSF51XZG+wIYbVpC/ig7Xm6nZLqDjAILwocgOpM7qYZtzz4xpm3yspW4+vtIyytApT4zifETPTvhmMiBHnfy3ZJ5oJ8rpmSxs93FN1aUY1QrWVCWRnmGLGp1rmgZ9GE3aplZmMKDWzqS7VkWHf85t5j4bicHwzEm5xl4PRjjc0/s4X9WVrJyQRaxYBitYZSQt5XuBh9SPIZ3ZBiVWjMm4KJi/iLMaY5z8fNkzhOGvWG+8uhuDvd5+erFpRP2icTiAKTm5I0bYyUzZiN8RKpRWtMNXHn3FAbaPQS8ESypOnqaRvGOhCmosWN1yE46GRjwhPj8Q7uSDuR93W52tDv55aoKBltaKZk+i5Zd25P9VWoN6QUFyc8TvXMBqrIs/OCKKoa8Yf739UbiIvz9nTYWlaXJlc5kzigBT4SS6enkVKQQCcZx5JvIKLai/IgmnptS7NQsXc7+da8l2xRKFalZWcAAAMFI/D2v0Tca5LMP7KTblQg23dftZn/3KL+8fgp6uQrMOcOcmobeYiXoOSaGmFFcijU9EwAxLhIfCiF2+Jl/cxkhf5TRUIwRLbTEo9y5qJBU04kr/k7E/m73mKpWW1qd/PkT07msNuvM/TCZjy3hgJ9JC5fQvm/XmPaKeQuJKrNwDNvx6QUMpdYJRZPWHOrn358+kPz82sEB7vv0TH79ekJw98V9fXzt4jI0KgXzS9KYlGWWRUNkCEVFup2Bcf4CyZaBQqlEjB97R1YtXcFP3+xlSWWcu5eVIggCKVlGrvn6NHqbRwl6o5hsWgQlRMOxCSsFy8hcSDjyCxAUiiOJoAkq5i8eUyxgdKCfoY42RDGOI6+QZ1vD/OTletRKgW8vKKFMUJGmVZOWaaS/w8N8r5I5K6v4+fY2ukcTa0+XP8KgO0RhmpHF5Q4kCbyhKI9s66Qmx4pWTrL42BATJVqcfq5bWoxelEBcxc4Xn04eFwQFVkc6nd4woijJIvcyMqeJ0aplxWeqGWjz4HOFSMszk15wcv+VZzhI12EnvU2j5FamkFtpx2w/eWVlmY8v0WicgRY3zbsGsTj0XPnVKbj6g2j0KjKLLdjSz70fQZIkJEkiNa+Aka5j/kOD1UbKu2KSTkQwEhtT/Oh4IiewccuMRWVzjLN9pReVkJaXxZV3W8gps527m5ORucAJ+qL0Nrlo2zeMPdvIis9UMToYJOiNkJ5vxnEKa4QzQSwapXjaTA69uXZMe82yFSiVx+wuvtD4ONDRQJSYKM+37xdvMEo4JmLIygdBSCi7HGHyxZdgtL13YvnZRm/SsOSWCibN8+AZCWF1GAgHY6x7oI6iWgc55bazJpwjc+4Y8Y0Xx3H6o0QN6TgKihjqaEu2G6w2bBnnn28rNdvEpV+czECbh3g0TnqhFUe+6eQnynys0Js0zLummJKpDjwjQew5JjILLadsK0vLzUcQFElRRoApKy5Nzv2iJOEMjH/eRgNR1tcPMiXXyorqDOr6PEzKspyZHyXzkScWF3lwSzuH+xJFT//xdhtfWFJCQaqBEoeJ0nQTKqVA46B3wvNPFAsWj8Wo37yR9ff9hVlXXUf7vt1jjlctXnZa9xkNx+hv9dC8exC9SU3FvCzyq1MZHQhgyzCQXmCW/XsyH4iMQgtXf2Ma/a1u4lGRlGwjOqMKk81E7fJL2PniM8m+gkJBdl4e0o6EwE5MlNjaNsKbDQkhxrcah3jos7NZVHby+PPRQIRfv97IDTNy0aoVKBUKDvd5GPSEyLefe1ubjIyMjIyMjIyMzMeVM7HDfAhwAVuAu4DvABrgGkmS9p6B61+wBL1uCiZPRW+20HFgL6k5eZTPW4gYG+tU6nOHqOvzUtd3zGhRlGbkU/MK+ctbLck2rUqBSnnMwPbMnh6+sKSEsgwzkiRRv7mPrc+1olQrEGMiphQtV39zOlZZiETmPKDPHSISTxjoRAn+tb0TgKe+MC8pQAKQm6Ln6inZPLe3N9lWnmHCMNzOs//3P8y7/hNseSqhjeR3jzL9sqtp2LwRjdFI7oob2B8yU3EWf5fM+YferKGwJo0etZPnfrcXjvio96/v4tpvTyez6MxXtorHYiy65VMcemsd4WCAygVLkCR49Y+/Ye7qm5i0cOkZ+Z7SdBMWvQpP8Nh76OLKdLa1OZOf+z0hjBoVe7tG2ds1ilGj5PLaLJRyMPQ541Cvh5f299Ey5OOK2mye25tQWf/PucV0PdWOeFSxfyt858ZivvD6Ib7/ej1rvraQ0P4dvPKHewCYfPEq2vfuJh6LsugTn+bwpjdxD/RTMX8RMy67BpVaDmaQOTGtw76kA27QE6YozUjb8DF1/0mZZgpTExXa7dm5rPzCV9nz2ouM9vdROGU65jQHbbt3Ur1kORr9uV+bWtMNGFO0bHmmmU1PNifb67eYueIrtRgsp5fsLHPh0TLoG1fBwq5W0lPXxNp7f8Xsq69HazTRtmcn1oxMFtx0O2n5hcm+hakGqrIs1PV5km1FaQZKM0x884l9eN+VQNo2EmDJh/qLZD5OuIcCvPCHvfhdYRBApVIw+6pi8qtTT37yOWK4q4Os8gpEMU7Lzm2Y0xxULV6Gc2gAk1ZFKBqnJue91+FNg96kAMlRXtzfx5eXlVKZKQcOnSucvd3MufZGWnZuY6ijjdzKaoqmz0RxpEJJX6uH1/6wD0mClrf7UKoVFFxXyE/eauD2uYWkmbRUnmZ85ZuNg2OqWgH8dWMLSysdcqV5mQ9ELBJm18vPY05zMHf1zdS9vR4QqF6yjO76Q8RFE0KKiUcHRvnV7PEDdzQQ4c9vtoxpi8RF9ne70auVBKNxWoZ8/HZtEwBv/VsWGjlpXQZwBSL88c1mvrS0lN2do8l2pUrJ4ts+Q93G9XiHhyiZOQeD2cx1DhP/81YL18/IJduW2H/FYyKbn24mHpWIHwmSvORzNZRMl4XwZC5s0gtLuPLr/86Wpx/D53JSNnseCqWKHS8+zfI7v8ToQD9P//S/8A4nKhFqjUbyb/0WANG4xM/ebkapEHjx5pm89Md9yXwmQSHwvRuK+dKaQwBcWpPF/h43z+weWx3RbtTgDkRJt8jz+ceFnBQ9X63KZcs/DjPvGj0ZxSXULr+Upu2bMaXYqVp8MQdefhrHVXfij8Qw686MALmMzMcJs113WgIiIX+UDY/U033YBUDj9gFKpjtY9slJaHTyHlFmYnrqXbz8p/3Jzyq1gmu/PZ30go+OjamvuYHX//oHqhZdRG/jYXrq60gvLmHOtTdjSTu1dX6nM8CudheVmWbq+4/FKxWmGihKM35Yt35BoZXC42xfOZOqcfaMsndt+0du3MjIXChIksThzb1seeaYrc2UouWab07H6ji7vuiWnVsJ+33Mv/E2Dr21FjEWY9Kiiwi4R4nHoihViTX/nGI7CiERE3eUOxcVYdXLcRrvF4teTbpZi0GtZMltn+HQm2sJeNyUz1mAQqkgHAigNXy0khlNKTpMKTo8I0Ge/+1ePMMJv1bjtgFmX1nEzEsLP5TiWDIfHW6cmcerB/vHtM0tttM14KRq8TK66w4k1nVFJRTPmE04OLFg3EeZwQ4PL/x+L1JcAgWIMYkrvjKFgpqPrq9a5uzjHw2z9v46Rnr8qFQKYlGR2mW5zF9divIUilz5XS4W33ZHcu4vmzMfiyMjeVyrVnLH/EL2dO4dc15llpnn9vbQ5QrwlbRStreOcN303ORxWTT4wsYbirHhiHACJGKlf7+uiS8vLWH19FxEUaJtxMfezlFK0000D/qSfUscRorSJl5XOHu6WPOX3yGJIj31dcxdfTOHNq5DEBTMuPxqciZVn9Z9dh128eo9x4pa7F/fzbXfnk7h5LTT/MUyMhMTi8Zp2NpH3aY+AMS4hCM/ETebVVZJ7fJLaNq+BVOKneolFxMZ7KIqy05dn5f5Jakc7PGMud7DWzpOSYTE6Y+ws8PFzg7XmPZLazKZeeZ+nsx5Ql0epPhALi8tIyMjIyMjI3PuORNRE8WSJE0GEATh78AwkC9J0sQynzJJRvv7efvRB0gvLKZi3kLcgwM0bdlMfmEtMXcYlTWR3Jhp0b1bjB1PMMoVU7LQaRQ8t6eXbJuOW+cU8LOXDyf7KAQBQUgYu7zOEDtfaQcgHhWPtIUZ6fbJIiQy5wUZFi0qhUDsOG+rSavCYU48J6IosbvTxUNbO5iaZ2NxkR1NUCQ/zUCqHl7/4w8R43Fi0WPq1Yff3oApJZXi6bNR1i7lK6/08G+rZAOxzHsTDkRxDQbZ/XpnUoAEEka2lt1DJxQhifsiiKE4CpMa5WkGLXbXHWDfG69SMmM2ap2e+k1vodbqyCgqYd19fyG7fBLW9IyTX+gkFDtM3Hv7TP7+ThuNA15WVmVQlm7mO0/vH9NPOO4xmV1kx2aQgx7OJUfV9psGfHxxSQmTs8yUaLWILd5jAiQAEoTq3Xx3SSlmQcAWCbDmX/cnDxusNrwjCSfKmw/9naKpM8koKqFkxmxsmedf5QyZs8vxQkRP7erm/11RxcEeN9vanMwqTOGGmXmYj8x9oYCfTU88QmpOLumFxXTX13H4nTeZvGwlrr4eMopLP7T7lESJ+GiimrHSpnvPAB33UJADb45NDhrq9DLU5aOgWhYh+bjz7qACpULghpIMosP1IElsf+5J7Dl5lM9dgHdkhFgkPKZ/qknL/TdNpbPPy4vNwwQQmVFg54/rm/nBlVX85vVG+j3HKm8XpH60AuBkzm+Gu30JARIACWJRkR0vtVEy3YElNWEfkOISsdEQgkJAlXJuK//GolGad2yhY/8eQj4vZXMWEBh1sfHhf5I3bRZX1l7B1VNzTypColCMD0ZSCAnbicy5wescZrCjja1PP0Z+dS0V8xYy0NrC2nv/TF7NVLwjcQ5s6BpjD4tHRRRdQR66eTrNXW5KrKdv09Iox48FrVqBAnksyHwwnL09bHn6UeZcc0NyDy9JErtffYGw38/8m+exd10fP/329KTww/EIAqgnGp8qBaI0Vjhnco4Fm+HUkpLj3ghiOI7SokGhkZPcL0RsBjXLJ6WTm6Lnu5dW8szuHtItGqbYLQwMKymqnUnQ76Hz4D5G+3u56OsVqJTCmHdgX7ObSDA+5rrbX2oju8KG3ijbfWQuHMRonLg7gkKjQGnRolAqGenpxpaRRVZZJR0H9uAe6MdkTyXsD9C6a3tSgAQg7PcTq9tEefp0Ggd9KAT44YoKOrcNjlmzSKKE2Orj8smZLKlIx2HWUpI2vqLr3CI7Vr0sMvFxIuKL0rqhl7xKE4c3Pkn+5Mm079tN2ex5BD0e3nn0fuKxGMVXhTEeEch797iVkZE5s7j6A0kBkqO07B5i+qoCWRhAZhzOPj++42JvjhKLinQddp61MSMGYsT9EZRGNYoJ9obhgJ++xnpGujt5+9EHyCqroGL+Ipy93QTcrgmuODE6tZJXDvbx8+tq2dg4xNZWJ9MLUrhxZi7plnNrMzxfCA0P8uaDf2f25dcxd8UNjPR3s+mZh7no0988Mm5c8lwjI/Mh4HWG2Ply+5g2nyvMSI/vrIqQeIaH2PbsE8y59AYEJUxbfgXDvZ0cWLcGpUpNzdLlGKw2AKbk2fj7p2by5w0tjAaj3DAjl2n5KWftXi9EREnix1dXo+jaxabHHqJ4xiyyKybRsns73pFhSmfNw3FcEYl4MIroj6HQK1GeY3vYSI8/KUBylF2vdZBeYEajV5GWb0atlm29FyLT8q38+oZa/rmpHUmC2+cVsL3NyS05Yd669x9klpYn13VvPnAvV37ju6QXFH0o9yKG48S9EQStEpX5zD0TnYecyRh2jvxr95oOcsptqGQfhswRnL1+RroThYFiURFBIRAeDRPq86Oza086T7fv20X95o2UzJhNdsUk2vbspOfwIcrnzEdrSAgqLi538Nsbp3DPW61o1Qoun5zF80eKXyoEAQmYUWgHEjkbm1tGeGRbBw6zllvnFDA935bM0ZC5MDDpVCwsTeOxHV3JNpVCYE5xKr96rZ5tbU5WVWdi1Cq5ZmoOjQNe9naNMiXXyifm5OMwT7xP9jqHkcTEhNe+bzf9LU2UzJhN3uQpbHzwHxTUTkNvMp/SPUZCMXa83DamLRqO03loBGefH6NFQ1qeGZ1R9jvIvH/cQ0EOvd07xu811OnFMxLiwPo1uHq7kz6Nt/91P1llldx96R2EKaTGZuDxA71s1SgJRBK+Z90pvt9TjBoqMs009I9NQ8x6H3FBMuc/P7wt4SM7cJJ+MjIyMjIyMjIyHz5nQoQkevQ/JEmKC4LQJguQnBpqrQ6d0cRgeyuD7a0sXf0ZskNFhB7sYlDfh/XyYvSTUylNN/E/V9fwXy8cIiZKGDRK/vyJabx6sJ/Ht3cxt9jOsC/C9589wC1zCvjThkS19k/PL6DAnkhWk0TGJiIf4WhVQxmZjzo5Nh2/uK6W7z5zgEhcRKdW8Jsbp1CQmjAI7+8Z5ea/bUWUJC7LslF9cBTaPCitWgyX5iOJCUOGSj3W+OxzjdDVUEezeRaCkFCOl5E5EbFonH3ru+lpdI0RIDlK0kF2HJIkEW4ZxfVMM3FnCE2hBdvVJWiyxgedn4iM4jKi4Wep37wx2VY5fzFDXR2E/X6ioeB7nH3qdDkDfPWxPeTYDEzJtfHqwX48JVEm51g50OMGoDTdyLAvIeaTadHx7VUV6GUH4DllekEK10zLwW5Q87eNrXyrMpee9d2k5Y4dY1qDirnT04m/3YM4HIRGH1fc/m1efOBXxCJhgh4PJnsqPucIkijSuns7ADUXrTgXP0vmPKPEYWJ+SSqbW0aISxKRuMiBHjdT82wc6HHzzJ4e/nXnXOaVpKIzGMmrquHghjfGXMNkTyPgdn9o9xj3RfBv68P7ZjeSBOYluZjmZqE8QbCEJEpIE8z17sEAoUKL7Kz7mFOWbmJ6vi1Zaf47C0pQjUbRWWzJPs6eLpw9XRhT7FTFliXbJVEi3DxK/NkmMl1hvlhkoW1qKrc9d4C4KPHCvl6+e+kkfvxSHQC3zcmn9iTiCjIyp0M0HB/XJsal5Po25g7je7sH35ZeBKUCy4p8DDMyUJ5isvuZJhYJ03XoAOmFxex741Vcfb3JY2ll1Xx2bhGlmScP1C9PN1GVZaau75jJ6ra5BbLIzzkkGgyhVKpAkug8uI/Og/sAyC6fhHdEYtsL9ePet6YULdPLbUSfbSN1NIymLUD0yhLUmadefXdhWRr/t76Z8HE2sS8uLT3lwAcZmRMR8vtAklBptIR8Xg69tS55zFFQgntQRBJBc4IKbVa9hm8sL+PL/9qTbDNpVcwusvO5xcX8cUMzkgR2o4YfX11z0iqoUlwi1Ohk9Nlm4p4I2nIbtiuKUafL1aovNKx6DVdPzeWuB3di1Ci5fXY+N1vNSM/2kBawklGWzYC9h/39r2K0pRBHwbdWlJNpPRYMKcbH27TiMRFXbwB9mSxCInNhEB0O4F7TQejgMAqDGttVxeirUknNzWfT4w+N6Zs/eSpao5GR7s5x1wn2dZFTPJfGQfjG/GJSG/3EohMZi0XSzFq+/+xBMixa7r9jNjfNyuPxIwHMuSl67r64DIC9XaO0D/tJNWqoyrGQapSFJi5ERFGit8WNGBcx2tR0H+xFpZ6OZ2iA/WtfS/YzO9JJTU1BoRDGjlujGtuVJeirUhHUJ6/4KiMjc2rEY+PtJHDEViIjcxyDnV6e/+0esstsE8bZnK3Ym3CXF9czTcT6/KgyjaSsLkWbP9Y2FgmFcPZ2k5KVjauvl76mBvqaGgBYcNPtp/xd+XYD/3PNZO7f1I47GGVqno2Gfg8/f/Uw//z0bFJN8prlZBjMJi697Wuk9KYQf95HhiWd1bd9n5BJBfhPOAfJyMh8MCRRIj6RrSN6dp+5WCTMslWfRbEtjDgqoMxLx1xq59Bba5m0YCla47GYjkhc5Jnd3Ri1KtItWv70ZjNP7uzmkbvmkCELP70vcmx6PnP/Tn43x0IsGqFx66bkscyScoTjxOsjPT5czzUR7fKhStORcl052hMUoTobSBOMXyku0dfsZtdrHSz/9CQq5srFhC5E6vq8fP+5gywqcyAAP3rxEN9aWYHZrERrMNLf3Eh/cyMACqUSrfHDsfdHBvy4X2wl3DyK0qrFtroUXVnKexb6OVUm8lXHovEJ43NkPr7EjlsnK1UKVl1fgm7/EK4/7U3M06vL0BbbTnh+am4+8Wh0zNxfs2wlgvKYP9hm0LCiKoOyDDOPbu/kN683Ejky/14zNRtvMMqCkjQA1tcP8vXH9ybPfWlfH09/cR6Tc098DzLnH2qlgs8sLGJ72witwwEA/uuqKr7/3AE6nYkY7Z0dLq6szaKuz8toIMLUPBuBcIzclBPHnZjtaQiCAklKjK+Qz0vLru3oTGYCHjfhQOCU71GSpAntDwF3hD2vdxIOxJhxSQEzLyuUhZ1k3jcnipv1DAfJnVRD+95dY3wa6YUlVFutSBv6iXZ08Gm7lstXVvG5txoZ9oVZPS2HSCyORvXeYzLFoOFn107msw/swBWIIgjwtYvLqMo6NZEeGRkZGRkZGRkZGZkPhzMhQjJFEATPkf8WAP2RzwIgSZIkl2w4AVZHOnOvv4VNjz2EJc1BtlhM/HAiGUYMxHA92YgyZTK6YhszCmz8bHUNg94IRWkGrAYN925sJRwTeXF/X/Ka6WYtK6oymJRlZmZBCuojQe2CABWzMzm8+VhfrUGFwXp2Aoj94RhNA176PSFybAbKM0xoZTV2mVPAHYzwZsMQf3+7leI0I/ffMQtRksi26SlMPeZE2dg4TEyUuLoqIyFA0uUDIO4O432imeU3fIkn/+/7tO/fzdRVV7Dv9VeQJBG92ULNjXfi8Zp5fHElVdnHHIihaJzGAS89o0GyrXrKM0zoNWdi2pQ5XxkdCLDz5TYEhcCcq4rpbRo9dlCA0hmOcefEBgMM318HRwy/kXYPzicacNxVe8qJnDmTqqiYv5iGIyIk9uxcUvMKqN+8kczSCiJaM+sOD6BWKqjINL/vAITGAS8DnjADnjC7OxNVsJ7a3cPvb57K83t7ybcn5u80k5biNCP5dgPpZjm47FyTatTwybn5tI8EMMSg9fVuQr4oVQuzad49mEwonrUkh9grbUhHnLnRHj96v5bpF13J9jVPUb/pTRbcdDubn3iEcMCPoFCw8LbPkppbcA5/ncz5gl6t5BOz86nNtRIXJba1jlDf76X+OFXyJ3d1Ma8kFYVSydSVV9BTfyiZSF48fTY+5zDWzCUf2j2GmkfxvHEseci7rhOVXYdxRsaE/S0OA8XTHLTuGUq2mVN1uAeDjPT4yCmXK099nInGRb50USnb25x0OQNM1upw9wbwCBrm33g7W5/+F2I8jkZvYNaVq9Fbjq0xY4MBhh84BEcSGWJtHvLDcVZXZfLkwT6icQlfOMaPr64mJoqUpJnRnsQJJyNzumgNKsKBWPJz9eJsTPbEGjJ4cBjfOz0ASPE47pfbUKXq0VelnpN71RlNFE2bSTQUJL2ohMG2FgByq2vZI2Xi7vOekghJXJK4bkYe891BOkYCTMo0s6A0TX6+ziEmeyphv5+ai1Zw8M21IEkYbSnMv/F21j3QTNATZd7qUjoPOZPnzFmcTfiFluQcGmlx43ymibQ7qlHqT76/EkWJ5kEv31hRTsuQj2AkztJyB1NlsSeZM4A1PQO92UJX3X5ql1/C/nVrQJLQW6xMXn4bW5/3kjvDwWA8yonCw0vSTXz/8kns7nRh1aspdpgQEPjyRSVcUpOJJxgjz65/z0C2o0T7/Yw8VJesJBhuHGX0hVZSb69CoZXnvguNZ3Z3A+CPxFlg1KN6uf3on554o5+M6lxyKqopmzufuMHCVLttzPlZJTYUSmFMsm3ZzAw2Pd3ElXdPQXeOq7/KyHxQpJiId0MXoQPDAIj+KM5HG3B8cQrZZRVUL1nOobfWAmDLzGbWFdeiVKkomTFnjKgUwKQlF5OVX0yqRc9Mk5E9e5uZt7qUjoMjY/qpSyw8uPYQkgRdriBdrgD/7/IqPjEnn1AkTkGagUyLnuf39vC1x/Ymz7tmajY/vKoam0F+7i4U/OEYjQNedCGRrU80MWl+Ns07+ymesYiWnduZccW17H7leSRRRGs0Mv/TXyEjIz0xbtcfN259UZyP1uP44hS0BbL7XUbmTKHVq7BnG3H2+pNtGUUW1PKaWeZd1G/qJRKM0V3vZPqqAoaPxCMACAqB/Ekfvu0sNhpm5MFDiN5ErahYv5+RB+pI/8pUVCnH/MNGmw21VsfUlVew5elHCfm8CIKCudfdRFp+4Sl/nyAIWPUqdnYk/MZNg8d+c+uQXxYhOQXUtkyMu1REWxNhdaInAm9EMKwuRlD0n5VxIyPzcUSpUVA5J5O6TWPjJPWWsztvGSQLgfXtSXtLvCuAOW5gxoqrqF6+HKXqWAxa54ifl/b3jznfE/TRPOiVRUjeJ13OIK3DfgYV2WP8EAarjdrll2C2J+bgmDfCyL8OEx8JJT4Phxj+5yHSvzoNddq5qbpuzzGhM6kJ+ZL1ISmdlUHHoYTt4e0nmsguS8GcKo+NC43Hd3QRioq8UTeQbNvZ7uTixTnMu+ETvPPYg8TCYZQqFXOuvQlr+sTxLh+EeCjG6LNNRNoT8T5xdzix5rx76mkVXTsRjgIzgsCY5Oby2ZkolB9c4ETmwkFvUmNK0eJzhZk8NwPttj7irjBwZJ6+v+495+n0ohIKJk+l48BeAFLzCiiaPpuIpOSo1TUcjXP/5nY2NY9wWU0mt88roG80yLySVOxGDQ6TljSTBk8wmiwOe5RIXGRr24gsQnKeMugJ0dDvJRwTKU03UZh2LBfBqlfzH5dOonXYj0mrIs2oSQqQHOWlA33cc+sMnt7djcOsRWc38NrBfj69oBC1crx4tD0nlxWfv5u19/4JMR5DrdUx55ob2P78U1gcGVgd6ad871q9mhmXFLL2n3XJNoVCwGjTJmOAdq3poGRGOo48WbhB5v1hcRgonuqgde/YuNnBDi/FtVPILq+kt7EeSIj75VdOJf5qD/GBhKCO5AyT9loX/3f1JPYFw/zghUP826oKrqjNPul3Ty9I4YHPzGZ/t5tgNI5aITDsj2DSnTweqHc0SOOAF0mCsgzTKcVUyMjIyMjIyMjIyMicnA+cTS9Jkhx98T4x2VPJqaxm3g23kJaWj/RGcFyfaJ+fQauaW+7dhitwzKnw89WTUQgJo+u3VpQxrSCFX7xSjzcUpXMkwMbGIf6lU/Hi3QvJsuqJhhNK0dNW5tPbOIo5TUd6vplw4MNX+A9FY9y/uY1frUkocAsC/GJ1LdfPyEVxBpSxZS5s3moYSgbgHujx8ML+Ph7/3FyKHQmHRseIn7WHB3AHIwAszrRC3VinLKKESZVKycz5tOzagkKp4spvfZ8mV4jmgJY/18X44ZXZbG938eTObuYUpzKr0MZrhwb4wfOHkpf53U1TuHxyFmo5Se1jSySUmEuluETbviHmXVtCx6ER1BoFU5fnkzFBFYyYM5QUIEm29QWIu8KnLEJitqex4q6vMOOyq/GPOulpOMzmJx8hr7qWWbd8hmvu3cOgL+Fkqc6y8OfbplOQevqVDoQj75Vb5+QzvySVv7zZTMOAj4Y+L50jAdqH/RzocXPTjFz63EHcwShtwz7uWlxy2t8lc+ao6/PQ5QxQlWmmUKNhy5qEI7p+cx8Lriul49AIYlwiPctA/F3VJOKjYXJnVLIdMKakklJQguP27yJ6nURUen7fLfL/nGEqs+QgQpn3pnXYz1cf24NBo2JJeaIiy7Q8G59dWMSeLhcHejzYj0ueySgu4fKv/TtdB/cRDYdwDw0yadFF2LNyPrR7DBznFEm27Rk4oQiJRqtkxqoCTCla+lvc2LONWB0GdrzcRk6lLEDycaZpwMvLB/q47502AOYWpRJyR6jf0sfMywqxZUxn+Z123EP9CIKAzmwms7g0eX50JJhMnj+K1OtnXmUmT5IIhozERH69pgFPKOEgvveTM1hRlXmWfqHMhYwkSjTuGGDGpYUMtnvwjoTILrehN6lRKATESJzAzoFx54UaXOdMhARg0sIlbHvuadLyCiidNRejI4smwcHzWwf5WsHEZbEGvSFaBnzoNUqiosiQN8x/v1SHRa8iy6JnY+MQrx7q58nPz5MTPM8RGr2emouWs/f1V5h33S0olErSSyvZ5TQRcCcSLZt2DDB/dQkdh5woFAKpKVrC75pDo51e4u5IUoQkFhfZ2zXKhoYhNEqBiyrTmZxjRRAE2kf8fP+5Q4SiItlWHXqNkpf29/Hsl+aTIifOyHxABuJ6ln7+O2x/7F7CgQBLbvss5tR0YlE7jTv9VF1WgMuqwP4eYp6vH+znt+uaKHGY8IViPLq9i5tm5vHz6yZTnX16YjmxkWBSgOQo4eZR4p4wCocccHMhMeILc3Glg5XVGRzocZMRHf9uFJsCLLj6VjpDIb7xcheTsz38741TsB55Bzryzay6q4bDm3oJBWLkV9kZaPPg7PETjYjoPpyCmjIyZ424LzqhXSA2FMBYkMmyOz7P1FWXEwuHsWVlY0qxA5BbVcPiW+9gy1OPIsZjTL/saspnzUVrSaFxwIvHGUKSxq5ZBAFy5qTzw20tFKcZqcoyk2bSYTOoMelUTDkuML3bFRjjgwB4bm8vN8/KY+6RKpsy5zehI8kMv1rTwG9XTCLgjjDc7aViThZKtZloyEfHvj3Mv+ET6OwOOoRUbntlkPscXmotegL7Jh63sgiJjMyZIxyIUTLNQWaxleEuL44CC1q9ikgodvKTZT42SKLEyBGhmlhEpKdxlDlXF9N5aAS9ScOUi3NJL/zwk3tirlBSgOQooj9KzBkaI0KiUCiZuvJytr/wNDVLV6DR60kvKiGnsgqt/tT3g0PeUFJs/oraTG6dU8Czu7p5YncPivF5VTITIMZ0RJs8YxslUPjiXPypSWdl3MjIfByJh0VEcXycZNAXPfnJZxDRFRnnE4z3Bpn1pdUY8u1j2gUS8TpZFh3fWlWGShD47bqmZHyozOkTjCbiYw4F9Fw+byn27BwiwRAag4Gs8kq0hoTBKz4aSgqQHEWKxImNBM+ZCIkt3cBVX5tK3Tu9DHZ4yClLIRyMJUXQwoEY0ciHH/crc3bpdwcQRQm1Gv5w4zQEQeDux3cD8NMNXXxv3iQW3HgbIZ8XrcFIzqRqbBknkjx//4jucFKA5FijRGw4dEZESFy9fuZfX0pXnZNoOE5BdSqDnV7iMRGlSl5kyiQI+mPULM7BNRAgJ9uIeHB4zPGTzdMZRSVUX7SSnEk1SKKIxmZn3YCawf5G7lxQRI7dQMuQH41S4HOLi4jGRWKiRMewj9FglP93xGb7+OfmUpVtQTWBSI5SkMfr+UiX089X/rWHfd1uICE68vBnZzM514YkSTy6rZPfrWsC4IaZucwrTsTJWPQqFpc5iMZF2ob9BKMxHCYtzYNeglGRxn4PSysclGWM3+MpVWqqFy8jq6wCV083rr5edr70LNaMTJZ/9ksYbacXh1hQk8qqu6rZv6EbvUlNVpmNfWu7jnWQIBKU7Voy7x+NVsnki3Iw2cfHzVbMmcGCT9xBf+NhYpEwcVFCa8wiPtA29iIxEbU3wk9fPwzAD54/xIz8FLJs4+ftAz1u3qwfJBCNs7A0jT+sa2Rbmyt5fHHDIH/+xPT3FCJpGfRx54M7aRtO2O+yrDruv2MWFadQ1EpGRkZGRkZGRkZG5r35wCIkMh+M1Lx8FAoFQgzEVDdiwDfmuNKsoWHAN0aABODNhkG+vaKM6lwbb9T184d1zayqyWRecSq/fj0h9hH2RQgcSTY22bV4hoO07RsivdCCs8dP295hbvzerA/9NzYP+pP3BAkF6x+8cJCZhSlJIQkZmYkIRuP8/Z2xRglJgg0Ng+TbDXS5AvzfumY2Ng3zH5dUolUpGAxHURhUiIGxBrSYEKdk5tVMXnEDuz1hbny198hzlXCYbGgY4scvJZSBH9zawW9vnMJ/H/mcbzfwyXkFvHygnyFvQuhhR7uLq6dm81bjENk2PXaDhg0NA1w3PY/t7U6aBrzcMDOPxeUO0uREpgsGa5o+qbDe3+phsN1L/mQ7S26uxJQy8d9ZoR//qhU0ShS60xOzicciRCNhVFodNctWUnvxKnSWFP7rlaakAAnAoT4Pm5pH3pcISb5Vx7/umsNrB/t5YEsHV9Rm8//ybTy6vZNLJ2fiCUY52Ouh3xumKsvCHzc0c+WUbAY9IdLlyivnjEAkhlmn5o3Dg3j9Eaqq7PTUOXH2+dn8dDOZxVYsizM44A1S9e6TlQJZ1VV85rd/JR6L0dLeDSF4sUfJ5s5Exfkndnbxgyurz/rvkjm/8ASjiBL4wjFePdTH43fNZUPDEJ3OAFadBgHQqBQ0D/ooTU+s/zKKSjDZU3EP9BGPxdGbzYhiHIXiwxH70mQbCdc7x7Sps997LWpN1zM6GEBrVNPX7KZ+Sz8qtQJbupy0+XHm5QN9xEUJXzjGN1eUMy3fhtUjcliCHS+3Y07VMX1VIdmVGShVCuyZmWh0xxxoUfX4QARBp2TkSKCYVqUgz65ncq6VTc2Jalb3b25nWWUGSlnEUeYDIigEymdmsO6Bw9izjRitWg693cuy2ysTx5UK1JlGon3+Meep0s9NkOVRxHic/BnzQKnAGVOzxathQ/0g0wtSJqwAGI7FaRn0sbFpiJ0dLuYVp7KgLI2VVRm8XjeAJ5jYB3aOBBj2hWURknOIMcVO1ZKLiYaCqI1m7ny+i1R9kOtr7HQddDLU6WW420dWiZWqKwuITRAsI+hVKI5UqD7Y46b9iDiaeCS2+89vtvDE5+cyJS8FfzhGKJpQZeh1HwsqHg2c3eBzmQsPSZLo7uzGEPAx9/q7iIYV9DRG2PGql+yyIMYlGazvHmW2xc4PX6ijNN3EiqoMpuenJEWaRVGieciHJEHzcdWlGwa8RGIiWvXprZMnskcoTOrk8yJzYeANRtne5uSVg/0oFQpWT88hNarg3XLnSruOoM7I681BBj1hWtQ+9naPsqQ8UV1NUAgYLBoCnggavYpdr3UQj4pUL8rGYJHfkzLnPwqNAlWqjtjg2KdDcUQkWqPXk1lSNu48vdnCzCtXUz5vIYgSZoeDeDxOT0sTjtEO8gpzGErXJtcsmcVWimc42OD1cs2MXJoGfXQ5A1xak8XbTcP87JV65hTbuXpKDiXpJgKROO7g+HWIa4I2mfOT5kEfv369AYCUND3BLAN9TaOkZsURBC/FMy9m8qVmnq4b4dF3PAz5egDoHg0wxWFCZdcRG5p43MrIyJwZLA49r//jECq1Elumgfb9wygUArUX5Z7rW5P5CBHwRqicm0lv0ygAPQ0u+lpGueLLU8ipSDlrxXeUehUoGCs4KUy8/1OqVFQtvggkCYPVhj379Md032iQuCjx5OfnsrFpmP99o5GZBXae/Pxc0s2yb/hUUGqUKC0a4p7ImPaYQkBrUKGYoEq2jIzMB8dg0xIJxWjdO0RGUSJOsmX3EDf8x8yzeh8KwwTxQnoVGvN4X7NOreDe22cQlyT2dI6yu9PF1VNzMGrl8N73S6pRzeOfm8uaQ/080CxyW2U16ngYlcFMSuYx4QaFTgUqAWJjBWNOtbDUh4Ujz8zim8txDwZ45je7CXqO2QpyK1NQqhWyaMMFxjvNI9y1qJDLarN4elcPkiTxhxunk23VsvqeLVxTm8Wc2mkEPG70JjMp2R9OkR9Bq5ww/naiOe39kF5k4aU/7iOj0IJKo2T7y23MX12KRifPdzLHsDn0vH7vQYw2LcXFVlApxhUCVL7HmNSZzKSUVSEaLKgEaA1raWoPU5mlZ3u7kymiSDASJdOq5/7N7ejVKq6fkcMts/PZe0ScAmDNoX7mFKdy97IyvvTI7mPXVyuYU2yf6KtlPuJsb3MlBUgA3MEof93Yyv/eOIURf4S/vd0KwMLSNALhOBqlgq9dXIpaqWBj0zCTMs3cNreAfV2jNA35mJJrJd9uYKAwBV94YuEPn3OE4e5OBEEgq6yC3KoayubMw2CxoTWefpy3zqimdEYGRVMcBP0RnvrZTvyjx/acBosGq+PcxvjInP+YbDra9w9jTTck42ZTc0wElCL9QQFNdhFWrYa4KZWWoTilGiXSu0Ty3NKx9bXTH5nwGdnXNcpNf9uSjOP561stfP/yKna0u5IxPxsbh+lwBt6zaMvrdQNJARKAPneIZ/f08B+XyiIkMjIyMjIyMjIyMh8U2Wp3DolFoxxc9zrr7/8rgiBww10/ROg75tBQ55rQ5JnRDHrHnVuba2N6gZ2vP7GXjpEAANvbnFxak8l/XlbBT15pYEFpKpnWhONfq1czf3UJ219qo7POiS3dwCWfryEl68NPoBzxh5HeVXwxFBXlBA+Zk6IUwDyBamltjo1b/76NK2qz2diUULj+xzttfGtlBV3OAJpLCgk92wxHxp2iTM/uzc/QfGAbl33jB3xvTSfR4ypNLChN5c2GQXJsevJTDdgNamKilOxz29wCfvrKYabnp7C7c5RXD/bzb6sq+OYT+8iy6lhU5uB3a5v46sWl/OdzB5NBw1tanXznkgq+uKQEQa5McUFgtGlZfkcVW55tYaDNQ2qeianL8k8oQAKgyjBgnJ2Jf3t/ss16VTGq1FM38nqGBnntz7+lq+7AkftI4brv/hhRpWZP1+i4/g0DnnFtp/Q9kTjfeHwvA56EqMn2Nic3zczjjgWFfOPx/bQeMdBtb3OyrDKdr19chjsYlROizyGHetxsaxmhYdDHKwcSY+wnF1eQoxLoPTCCOU3PpOW5fPGNOrLNWn45JxO2HRuLxmX5CDYdrvoGXvjNT4jHEkbeG5ZfjbKggrc7vOzuHCUSj6NRyolqMicmz24gzaRh2Bfhh1dW8cMX67Dq1ejUStbXDwKwrc3JmkMD/OuuOWRYdERCIfavfY3NTzwMgEKp4spv/Aels+Z+KPdoqHXg396PeKTClcKoxjAt/T3P0RrUzF9dypZnW3APB0nJNFC7LI+QL4IkGhDk+e9jyZ5OF0atiruXlZJq0kAwjns4xOwrizjwZjdFtVr2v34vfU0JQTuTPZXV//FDHAVF+EJRnmgf5uKqFDR1xxT7NZcU0tg1xHXTcyjPMPPL1xr41srypAiJTa9BHm4yZ4rUHBNTV+RzaGMPPleYGZcUkFOeqKwiKAVMC7IJ1o0gHRE1VaZo0ZWfXuWVM0l/SxNP//QHhHwJ20je1Fn0Fa1ga2viGVp3eJBnvjifkvRjwlKN/V5+8sphDvYk1sU72l1sbXXyjeVl7OkcZeiIiN/Flenys3UO8btH2fjwfdRtXA8kkn+/cvs3edOlR5FlI0+poHv/MJZUHcXTHPj6A4ymqEmdlIL68LE5VH9ZEaoUHQd63PzPi3XoNcpkMALAjIIUWof8OP1RclN0lDiMtAwdCz4waJQUpMoCYzIfjL7mRuru+RFhf2JsFU6dgyVjFemFFiYtzeG/tjSzpcPF4zu7uHtZGb9a08CmlmF+vrqW6mwLTQNeGvq9LCx18MK+vjHXXliWRigaP20REnWWEX1NKsGDifUEAtiuKUVpkcVyLyTeaR7mi8cFvq49PMBrn5mLJd9MvPOIX0EpEKtV8NJPv0VxURlfmb0a0ZDC79c2UZFpJtOSsFE58szMuKSQt59oRIpLlEx3kF5gwTMUJCXz9IMgZWQ+SigMamxXljD8z0McXShoii2oc04ulC8IAlZHBnDEr7d2Desf+BtIEh2CgovuuJvGXVacvX5MGXrUOQbyvAL/9fxB/JFE1bYndnXzZsMQkLCPvHKgn3/dOYcsi46ZBSns7Di2tlErBYrT5GfuQsHpjyR9pJkperKvLibq6WHD/T9PrhuKZ8/HmbUkuU8xapSM+qPENQpsV72/cSsjI3PqWFL1rLyzms3PtNBV5ySz2MK8a0sw2uR1s0yicnDz7kG2Pd9KfpWdGZcWsH99N4JCYPYVRTjyzGdNgARAlabHsqIAz5qOZJt5eT7qdyUXDXe288wvfoR3OLH+yCqr5LK7v4UtI4vTIRQVuaginR+/dChZgXZHu4u3m4b45XWTAdmecjJ8CpHUZenEn+9Oxq+oy6yELRqs51j4WUbmQkatUTLj0gIkSaJ93zDmI+97e/bZ3WupM4xoa1MI7z/Onr0iE0zj7XwD7hBdrgCvHRpge1uisMaOdhdvNQxx36dmkWqW1yani0qh4OtP7MGoEvhq7ggv/fcDIEkIgoJVX/oaVQsvQlAoUKXqsV5ejPv5luS5pkU551ygH47YJNINrPxMNRsfa8Q1EKCwNpX8Sak8+qNtlM5IZ+alhdgy5HfyhYA3GKXPHeFLj+xO2hLW1Q9yz23T+cqSEtJG6nnoV/+HJIogCCz95J1MWXEZKvWZFcxR2XTYri7B+VhDcv2in+JAfYZsxGm5JhZcX8quVzqIReLULM4hv0oWc5AZS0qmkUs+V8Pmp1vYvLaTVYtzCK/vSh43LcxG9R4FpEYH+ln3f7+mv6k+0T81jTnXfIkfrW3kl9fXcqhvlHgMvv74vuQ5bxwe4G+3z0B13B7PdEQcZ0m5g/vvmMWze3pIN2u5ojb7PZPhZT66tAz5xrUd6HHjD8dRKgQMGiWBSJyZhSns7RplU8swvlCMF/cn/LeSJDHkDfPKwUQM7vY2J3l2PRdXZvDawX4m51hRHSc26ezt5vlf/wRnT2L8pubmc9W3vve+hELfjVKlwGTVseIz1Wx+ppnBdi/phWbmry7FlCILh8p8MGwZBi66fRLvPNGIeyhIdpmNmZcX0td0gC1/+00y1rziktWYZq7AtygL47ru5PnRGjtPdYwkP88tspNlGz8u1xzqTwqQQMIVsr5+kJmF9uS+SCEk1vYnwhuKsqfTNa59Z7sLUZTOqu1ORkZGRkZGRkZG5kJElsE+h7h6u9lwJFBREkVefvy3eOdGsN5QQuqnq0i9vQpVio6KTBOVmeYx507OsdI+4k8KkBzltUP9VGXbmFeSytcvLk+q4Yd8Ud76VwPxqMiMSwpILzCz/sHDuAffXRPxzJNt1aN/V5B8hkVL9gQbSRmZo9T3efjFa/VcWpPJ8fod+XYDDQPeMQlDAEO+MD995TCxcIyGTg+aG4oxXJFLZLGKA75NHNq6nrDfz+YnHuQP11WRfUSgZ35JKp+aV8jMwhQWlaWxtNyBLxyjvt+LzaAmN0VPQ78HUYL5pam8dqgfnVqBJxglHBNZVZ3Jk7sSxkGFIIyrWvin9c30HVddWeb8xjcaYv1Dh9GbNcy4tACTTcsb9x/C5zrx31ipV2O5pJC0O2tIuakCx5emYJjiOK3v7Tp8MClAAuAfdbHrledoGfAyvzRtXP/5xamndf2jtA77kwIkR3l6dzeBiJgUIDnK+vpBhv0RUk1aUk1ysMO5omXIR1G6iVcPHhMW+c91DTwq+Jn/tVoaagy4LUr++9oaRsJRBhw6osvyYXEukWX51A17GGhrYs09v08ahQFa1z7PVQWJZeJVU7JlARKZk5Ju1vLz1bVUZprJMOs41OthVqE9KUBylJYhH81HBPZGujuSAiQAYjzG63/9A56hseecKdSZRhxfmELqbZOw31qJ44tT0GSdPGnDmqbHkWdixiUFpOWZeeeJJp7/3V5Gesc7JWU+Hlw2OYuNjcOUZ5gpTDUS6Qyw95lW9q/vpmxWBnrjQFKABBIVLXa/+gJiPE7bSICfrG/iHiFM54ocRpbl0LAyh9fjEQ72utnR7uJnr9bjCkSw6BPBQkqFwNIKB7s6E44xGZkPQtAXYd0Dh2nZPUj1omwq52VSv7WP8HH7GE2umfQvT8V+ayWpt1fhuKsWtePcBC9GQkE2Pf5wUoAEoGvvDmYYvMl9ojsY5XDfWBG+LlcgKUBylO3tTrzhGNdMy0YhwPJJ6dw4K480k2ybOFcMtrUkBUgAIsEgg68/xqUVNv59zWHSqm1MX1VAZomVrc+1sOnhRkb7gvxVMXYO3Sgkxu+6wwMoFALB6LHqKksrHGRZdXzjiX3ccf8OrvvLFn5yTQ0zCxPCOiUOI/d9ahbFDjmRU+b9EwmF2PTYg8lEYoD2vdvIKQ1htGpY+9eD3F6WSPQKRUW8oShalYKDPR6aBrysqx/gyj9u4u7H9vJ6XT9fvqgEo0aJVqXg5ll5BMIx4u9WeD4FlCYNtmtKSftMDSk3V5D+5anoK+VA3gsJURR5fGfXmDZJgj/v6sS7Kg/DJ8pRr0rDOzfMK08l9v3DTYeZrRtlfmkqfaMhRrzHKqMp1QpsmXoKalKZuiIfz3CIDQ/X885TzUTC8Xd/vYzMeYe2xEb6V6Ziv7mC1Duqsd9cicr63nZNXyhK72iQ8JH1RcKvdy9HM0EkSWTjw/cwY5WKZbflYcjQ81zjAH3uIP4jFd9mFKQkBUiO0jzo40CPG7NezU+uncyiIzbePLuef3xqFmXpY32CMucvuSkJH+nsQhvhviD1Gzs4sP7JMeuG1u2bWZaWsMsXpxn5ybWTeeNwP6L0/satjIzM6eF1hlj7z8OYUrTMuLQAnVHNugcP43eHT36yzAVPX8soGx6qJ+CJUL+1n8btA6y6q5pbfjCbKRfnoTOd2YTPkyGoFJjmZeP4fG3C7/z5WswLchCOi8eRRJF9b7yaFCAB6Guqp/PAvoku+Z70jgbp94SSAiRHOdjrodP14ccaXQiEh/t48bFf4F8QR1qoJ7pIzeH4Nvq6ejn4Vg9iXDz5RWRkZE6bWDTOntc7CXoiTF9VQHaZlQ0PHcbV5z/5yWcQj3uQPSPriSxSIS00EFgk8fJzv8PZ2z2urwh4QrFkot1R9nW7qet/f4WIPu60Dvvpcga5tVJP/bMPjtnLr733z7j6ewEQFALGGek4vjiFlJsqSLtrMuaL8lBoPxr1HQVBILfSzrXfns4N/zGTaCjOxscaiUdFGrb2s+mZZqIR2XZ3IXB5bRbP7e0ZV/Dxmd093FJlZPtDf00IkABIEm89+I9kUvuZRl+dRvqXpiaeic/WYLuqGKXxzKx9R3p87H6tg7JZGUxemkvHwRG668cnDst8vHH1+1n7zzpSc0yUzkinfjgElxdhu7E8MU8vy3/Pebrz4N6kAAmAb2QYVdNWsq06BjwhqtKtPLK1c8w5cVHizYYhbEeER3RqBSsmJcSpjVoVSyvS+f3N0/jPy6uYkmc78z9a5qwwo2B8AZ5FZWk0Dnhw+iJ855JKILFsiMUlyjPMvHTgWAGJeSWpvHqof8z5Xc4gVr2af25qp2d07F65YfPbY+bqke5OmrZtPmO/xzcaZt0DdRitCbuW0apl7f117xnTLiNzqox0e0nJNDLj0gKUKgWte9rY+fA9Y2LNG157Blt4hH8/3E3gpjJSbqrAdkc1/VNT2XskTnhusZ1vrSzHpB27lghH44z4I7wbfziG3XCs76fmF1KYNnHcWuuwjy8+vJuKzPF+tUtrMmUBEhkZGRkZGRkZGZkzwEfDUv4xxe9yHTMKk0gqf+Wh/+XmH/2SnMqqZHsgEmdFVQZLKxz0u8MUOYzEJfGEmyKlACqFwA+eO8ijn5+LzaDBMxJkqCuRKNnTOJrsOzoU+NCV0P2RKN9aWc69b7cy4AmTbzfwucVFyFs6mRPR5QzwyX9uZ9ATpsRh5N8vqaRvNEhllplJmRZ+u7YJgG1tI6yqzmDNoQHUSoEfLy9nfroC30gPj/72u0y/7Gq2P/fkmGs7O1tx9QyzpMLBssp0PKGEmMgze3rwhWJcOSWbtxqH2dM1yjeWl/PS/j4UR7LbJAmEo/8+MoAlSB6fCEEQeI/DMucZnuEQnqHEP+37h5Pt7sHgeypHKw1qlKXvv3r8UEfruLaehsNsdbSg1BlYUZXB2sMDqBUK7lxUxMyi95dUNNFQFQQmHMOCAL5wjBTD2Q2uk3kXAggT/OW2dbho8YfYM+DhM5YSukYC3Dg9l7ZNAzQEoxTWqrGkqnH2rUUinYB7dNw1VGEvl03OZHbh+x+7Mh8f2ob9fPWx3SyrzED5HqrjcGzMBkbHBxEEvR68I8NYHOkfyn2q0/So006vYpHPFWbnqx3JCi9Hcfb6ScuVk4I+jkzPT+Hbq8rpdAbIt+rp3JNYE4T8Udr2DePIbht3Tm/jYUZ6uhCUiTn1iUP9PHGcU/p7l1VyuO+YyMIVtdmIksQnZueRn2rkD+ub6HeHeOoL8+VgBpkPhHc4xEhPwjawd+2xQIfRwSDW44RG1OkG1O9ROehsMdTRzkBr0/gDnhH0ajuBI0GVwrsWrCfaowkClDpMfHFpKdtaR/jbxlbu/dTMM37fMqeG3+Uc1zbS0cYsjcjPL6mi9+1BBtrGBlcHWr3s8vl47Lg59IdXJmxonmCUXR0uvr68jG1HArWvqM3i20/uT/b1hGJ879mDPHLnHEIxEatehd0oJ3HKfDDCAT8Drc3j2oe7WsgsmkzLHhAHgjjMWoa84TF7OAn4xWsNhGMJG/Haw4PU93v51Q21HOj28MbhAT41r+B9j1OlSYOyXPO+zpU5P1BO8M5TCAKd4RgKm8DG+36Lq693zPHIQCf/6k/jq8tLkd610XH2BTj09tj+nQdH8AwHSMuR9z8y5zeCQkCTbUKTfWriY3s6Xfz0lXoO9ri5qNLBN5aXo3GPIkljE0VjkTD9zYc4/PabzLzqbq7JyiQUjjM6I49/7DpxIshoIMqG+kFqcqzcc/sMBr1hzFoVaXJ16wuKDLOW718+CZc/TN/BEawOJR27x68bdMFR7l5WTc9okE6nn6unZKM7klB+OuNWRkbm9HEPBfGPhmnbG6Zt7zHfn2c4iFEW/fnY4hkJ4h4I0Lx7rJCYdyTEthfaWP1v08/RnYFCp0JbZOVEo3N0oJ+ehrpx7Qkb2yWn9V0FaQZc/uiEx95tj5OZGDHgxtXXzUsP/XpM+6Jbqzm8ycPU5fmY7bJIsozMmcbvCtO8axAk6G89ZmN29gdIyzt79g2vc5gD77zOgXdeH9MeGHVBQdGYNqViosiPBPKM+/446isyxoMMiuP38v5RF/bs3ERfjQptgQVtgeWs3+epojdp6Kl30dMwOqa9fd8wvY0uDBYtabkmBDnR8rxFkhJzwbtRCAKjLhfRcOhd/UX8o06g+Izfi6BSoMkzo/kQ5szOQ06C3igH3jwmyHRwYw8VczPR6OSUho8bIz0+Rnp8KJQK0vJM2I7EKIwOBgn5YzTtHEj23Q/c9J+zTuldPtAyPsbA19ZAWc0stColgWhswhwMQYBZxXb+bWU5i8vTmZxrff8/TuYjyYyCFO5eVsrfNrYSjoksrXBg1Kh4dHsXV9RmUZtr4YHPzKJvNIQ/EiPLOn6/JjAujDAZZ338qBrt7xtTfPIoXXUHmHPtjWfk93iGgnhHwnhHwrTtOy6mfei9Y9plZE5GKBDl4MZeRgeOFcx25BkIetzjO/tH2dvr58UhN99aWcHGxiG++MRerpiSTZpJy4HuUf7r+UM8fNdc7MZjsQsxUaIm28ITAmNE2K6dlkMgGkOrVlLiMLGyKgOtanwhTVGUeHx7F+80D+Mwa7l+Ri7P7elBlCQun5xFx0iA+n4PlZkf3TW+jIyMjIyMjIyMzPnAe2cIynyoqHU6VNqxoQF6swW1fmxiZEO/l/9b38yDWzrY2eHkD+ua2NHmosBuoORdlVqvqs1mV4eTt5uGOTzgxX2kmrFKo0SpGv/nVmvGb8jONM2Dfv6wrokVVZl8+aJS5hTb+Z+XD9M+Ejj5yTIfSxoHvAx6EtWlWob8/PzVetqHfYz4Itz6921UZSWMAVtbndgMGr58USmP3jAJR9tGmrau4e1/3UssEkGtHW9AS6+exsbOAI9u76LbGeQ7Tx2gedBH+3CA8gwz+7pGAfAEY/xqTQNl6SYunpSOSiHwTtMwl0/OIhwTMWnVGDRKXj3Yx40z84CEMeR44wjA1y4uI8t6esnOMh9d1BrlhN59lfbDfZ2m5uSPayuonUqfP859m9rxBKN85aJS7lxUxNRcK6nvMzmpLN1Ijm3seL1xZh6+UIyKjLHOm5VVGcRiInFRYtAjq2afK0odJpoGvVxZmz2mvcRhJM2s4bMLihjwhNjR6eLp3b0U1BjJyG9g21P/g2/kMI1bNuAdHiIlK2fshQWBzJxs+t1hRgLjlaZlZN5NtytAICLy0v4+Op1+pubZkmJhx1OZaaY0PbF+NaU6EN4lWGJxZBAK+IlGPjpVJlUaBboJKrq8j2L0MhcI/kicWFyifSRAPBzHmHLsvesfDZNdWTnunJzKaure3kBRip5LazLHHJuWZyMvRc9di4pZWZXB3ctKUSsFRnwRUk1afv5qPV3OING4xLa2kQ/998lc4AigUI5f0H4UA7oCHjfbnn+C3KrJ446JKZlJARK7UUNV1ti1apZVx7R3CfYsLE3FqFHyyzUN/GlDMzs7XBzsceMJTJxIIfPho7eOD9rKq56MRSkh7hiZMNnL6tAzetzfzKhRJsWZllSkE4mLvNU4xL+tquC2OflJ28LxtA778YRi2PRqWYBE5oygt1gpmjZe0EijN1C/6RnyKs0ojWr84RgGjRKDVkk4JjItz0aaSUvTgG/Med2uIMO+CI0DHm6Znce0fFkYUmZiFAoFN83KGyMeqxDgkupMIrEYglZP0fTZ486z2FOZnaXEqleTZho7D2r149cEWoMKz1AIUZQ3QTIfHzpG/Hzqn9vZ0e4kGI3zyoF+vv3kPtRWOyrNeL9eNBTCMzSAs3sXPXtH2PpgA2VtYe6Ynsf2NicrqsbaRyZlmtnR7uSO+3fwpUd2MRqIUJRmPGUBkhFfGH84dvKOMuec7tEgP3+1HqtBjTVNT3apmYLaqeP6Ga02/v52G8/s7sHpj5BjNyDJxicZmbOCSjPexycIE7fLfDxwDwV5+Y/7eP2+OjTa8fE0tgz9R7aKasjnpWXnVrIrJo07llcz5bSvpxAE0s1aFpamjWmfmmelwH7uBYzPB1JsVpTqsT4mg9WGNd2CwaaR5xoZmQ8JlUaJ3jTev6s+y8+cKIroLWPt4Cq1BpM9dVxfq16NRadmfsnYYzMLUpiUJSfNvR+KHAaK0oxkpKeMi9HVmcwoVR8939jJ0ExkuzOq6Kxz8tTPd9LTOL4QjMz5w9/faeOaqdkcv9QUBFg9PYfRsIDBahvTX6XWoNEbz+5NngGMtvHC6ZY03YTx7TIXNgPtbp7+5S7euK+ONfce5Nn/3Y2z1w+ARj9+L6ZSK1BNsEebiPSi0nFt+bXTiEkKsqw6fvLKYW6dWzD2+gqBpeUORnxRvrysTBYguUCxGTRY9So+u7CIr15cSjgm8teNrexodxGIxOl3h1lSns7Ns/P53xumYNapWT3tWGztO03DXPGuWN2iNCMjvgifX1JCbkpiryxJEvvWvUZmSdm4e8irqsU/QfG294NKqxgf0y6cnfwgmQsb70gIo3XsO9uRZ8OWOXb8C4ICvdGIRiWwrDJReHDQG8IfifP4ji7+tKGZjU3D1PV76XKOzR0b9IaISyL/edkkZhfZqc218q2V5Vj0Kn63toldHS7+sK6JlqGx8RTJewxHWXOkgNGze3o43OfhC0tL+MV1tfjDMR7c2sGhHs+E58rIyMjIyMjIyMjInDrnnyX9AiLg9bDghltp3LmNVV/4GmI8TmTIi86nJdLrQ5WmR6FRJgMYApE4gUgQAL1GScugl5+urmFj4xAHe9wsLHUwLc/K9X/dCsCswhRUSYu0xOSlOeROsqFUqYhF4hjM6rOifG7RqfGEYjy8tSPZZjdq0MsGDpkJkCQJ8V2BleUZJlZPz+PrT+xFksAZiHBFbRavHOjj2T3d/H71ZPSednoGe5mz7Hry0ibRN9BEd91Bpl92Fftef4V4LEZaUSlMXcmO9Ql1bEGAuCglA/U7RgIsLk9jf7ebGflW9BolZSYdRWoVb355IcPuEHqNgq/MKcDnj3D5Z+fi8UdQK+CWydn4vEFWf3IWvkCUcCSG2qShMMOAJIrjkqxlzk8USoF51xaTUWglHIii1avob/egVJ747zvY6SEWimPRKFCJEkqrFnXqyYVp4vEYCoUSQRDQGIzMv+E2sioq0eoN7H7lOSxpDkoFLWuAbW1OtrU5EQT4x6dm8k7TEJlWHUVppgkrJJyIaEzi1zfUsqFhiMYBL0vKHJSmm1hXP8h/XFrJrg4n+7vdVGdb0WsUVGVZqe/3UikHPJwzqrKtjAYiTMuzUZ1tYXPLMJNzbEzLt/Hotk6+OL8IlzNEjd3I9MVF2MV+tOF0Lrvx66RXlWBKSWPTU48w6/Jr2f3q87gHB9Do9Uz95Fd4oSOGXa+kMk1HLBpFUChQKuV3t8zEaFVKTFoVvnCMH790mAfumMW+bjcapcD0/BS2to5Qk2NhRn4KKTqBcDCAKS2NRZ/4NNueeRyN3kDtiktIzSmg6+A+jFYrmSXlH8q9SrE40cEgYjBGVKNk1B9BpVYiCIkkfHOqHvVxTmtTio5515aw8dFGyudkYLRq0RpUuAb8eJ0huULdxxC7Qc3BHjetQz6EQgdVC7Jx5JnRmpSoVHHEeAtX/9v/w2C10ttwmN7GevQmMy27tlM68zJ+dFE535iZj384iMGmxZxpwh2J84932vCEYuxsd3Lr3AKe2d3DknIHOrWCUDRRnUv9HmsOGZlTIRSIMm1VPvGoiFKlJBqKEfJHMNu1jA75CftjqBUCCm8EpUqBLtuE2jw+EOxs4B910bZrB4tu+TSZpeWM9vVy6O0NzLj8aoTCEv7bFsWoUzMjP4XcFB3hcAiVUsVwIMZ3ntzPj6+pZkurkz2dLmYXpTKrMIU/b2hhxH9MYG1haRp207n5fTIgxmLMvHI1Lbu2c/nX/g2tTk9PUwOjvcN0H/ax4PpSug47iYbjqLVKZi/LJb/Ewis10/FERaKihNGoRqtQ0tPkoiAi8OZn5vF6+whv1A/ypYtKOdQ7PqBgap6NR7d3sK5+kM8vLubSyVnvW8hRRgZApVJRuXApKp0OZ1cn6cWlTF11GZFgiN7mBtILtdgn2XmmxIbVpCEcjHH1p+ai0CrZOuimxGEaEzgjCBCKxsm3G0GC3R0uanJOHOgoiRKx4SBxbwSlRYMqVS9Xu/wYsaA0lXtuncGL+3tRKgQun5yFVa/GpNCQ4o/hmHE5sy6+hmFXH8//6sdUzl3IQFsLV145DQV6or1Bhr1R9CY1Rpue1BwTeZNS6Dp8LPix9qJc3nmyiZQsIykZcqKhzPmBFBWJDgcRg1FUKTpUp1nxz+UNUpBiILdQw6QsM6UpJryuCCpdCjf+92/Y9dwTtO/bRUp2DjOvXM2mxx4EYLC9Hr1tGgAjrV4uW5JDmm2U2sJUZhWksKV1hCl5NtRKBb9+vQGAHe0udne6yEk5+fPVOxrkyZ1dPLaji9wUA99eWc6sQvtHNhFaJhH/nWvXM+yLsLgshb76tyibs4DM0gpQCKQXFAMSYZ+f9XdMIxKRUOsVRJwhvO0eTNkmFKeYXCEjI3PqeJ0BRgdDiHEJs11N+ewMGrcfq648aUG2nAD3McXnCtPb7MLZl0iK0JnU6M1qgt6jxX8UTFmWh+ID2mkDnjBeZxiNXoVWp8TrOvLfemWiXadEa1Dhc4ZR65RojWr8rhAGQAjFiasVxAxKLKmGMWN1uLuTrrqD2HNyKZg8lb7mRrLKKkkvLiGnohpJkojHY4mSzUdiMiQSAocTJWKrFAK7u0b5+vJS5hWnsr19hOn5KcwvTRsjhihzYsJ+H4tvvYP8whp0GAmEvQyNdqI1iiy5pQK/K4xetk/KyHxgopE4PmcIlUaJ2a5DEmDmlfk4cq2EfFE0WhWuQe+EAg5H8TlD+D0RdKaEgOCZYKCtmSW3fhZlQECDFnNBBgqrBoPVRjgURKPRJuPJTBoVpelGclIKmVmYwv5uN7ML7cwpSiHVJNuv3w/eUIxfXDcZjbuPJbfeQXZlDcTj7Hj1eYqnzMAzMszxKZRSXCI2HCDujx6zs57iC08UJdyDAQLeaEJgSpQSNloBkEBQgCAIiKKEwazBdJp2iqOk5prIrUyhu/6Y7W7KsjwOvtWDKEpsfqaFlXdqsaYZZBvxeUhpugmrXslfb5/Bi/v6kCSJK6dkY9MrUfsjzL7mBpRqNQW10xhqa8E9OEA44P/Q7ifmDBIbDaM0qFGl6RHO0B7Jlm7girsno1AoEOMSWqOa0QG5oOXHDTEusm9dF/nVdlIyE2I6HQdHGO3xYoqLpCgErvlyDYJOTTgQQ29W43WGsDpO7R0di0aYtOgiZl61GpVaw6anH8NgtnBTSRaRmMh3VlUSjcf5863TeXFfL3qNkitqs1ArwKBW4vSH5WIWFzBpJi3/83L9mLaqbAueUGxM/kKKUcPnH97FzIIU/vOySWxqGaYiw8yisjRqcixsaRmhJsdKpkWLUatmYWla0lYfj0bpPLCXzJJySmfOpXnXNgDK58wnNTefaCREPBZL7sXjsRgKpTK59ohFowgCKFXjhfWOEvCGCQdirLqzGpNdS8ATRWdQEfRFiIsSoijJvgOZ0yYWiTHU6UVQKJi6Io/aZbnsfr0Tz1CQaGSE6Zddjc81Qm5VDcPtbVjSMzBZU9j22VL0UYGYK0SGefxad3aRHad/bBGhgz0e3moYYWqeleI0A0atGqtOTcdIkFBUpNuVyJs70Tg2alTMKU5NFsY+1OvhUK+Hu5eV8k5zotCbhCz2LiMjIyMjIyMjI/NBkUVIziFqjYasqmpsWdlsfOjvzFp4LY6CAuKjESIdHuKeMIpMPZWZZrIsOvo8oeS5OTY93332AFdPzWHlpAwun5zJd586iD+SqHxWmm7imqk5GLWJP3E4EKdkejrtB4bZ83onYlwiJcvAklsqTvu+JUmi3xNCrVCcUlU2o0bJnQuL+MemNiQJtCoF31lVgeU9HHsyHz96R4OMBiK8cqCfSFykMNVA+0iAm2flERMlmod8R+NgeHxHF5dWp/PAjWUUGQU6929DaU1jdvplxJ4ZwoiScscUHFMK2b7+aWZccS2Oism80C1wz4ZetCoFdy0qoq7Xw68vrmCaTsuVN0wHUcIgSny3Jotg/whaixFBqSDYM4gp14HWNYpSp0OtV+MbcmLWOTC7PaBUoLUY8Q+7MKiV2HwB4oEISCo2PvtXVBo1Uy+5kqyyilNSZvipAAEAAElEQVR2Tsp8NBElsKTqee2vBwn5o2gNKhbfUk5MHF91MhKJ0bxjkPp3ernslnJET5iYN4oUFYmHI+iyxyYQxdxhIp1exFAUTEpaW3fR21FP+bxFhHxe0guL2PPK84QDAaqXXExKdg6LJCv3bks8M4IAn19cjFmr5NWDA0RiIksqHCyflHHK427AF+ZLj+zmsppMVlZl8Ne3mulwhvj9TVP5w7omEODaqTnkpxrY0jLC5x7eyY+uqpYDHs4xr9cNohISVVxWVmcQjkr4gmF+NiufeF+AQpMWtV6J6AqjzChF0hcieiMo41qK8qaS8oUcdDEdOavLUNp0eNQRmndt5o7KCrzDg2z4/TPozWaKps1CZzKTXz0Zncl8rn+2zEcMCYmvLy/jL2+2kG830DESwKRWUpppwh+Joleno436sHXu4qlH1mNMSaV6ycVkl1dy1be/T39TA007NuPs6aZq0VKcvd0nFCGJDgeJdHshLqEwq5FEEJRCIlJWJSAFYyh0KsRwHIVGiTrLiNKYcMjFgzF87/Tg3dCJcXYWSqsGi17NcChGTK9GoRRwDQRIL7CMERcxWDSsvLOaTU814RkOoVQrmLo8j4AnLIuQfIwIReOM+MKkGDVcWp1Jpl6NsjfErk0dTJor0rDlNeJxgfnX30jzjq101x8kt7KG6ZdeSevuHSxZfRd0h9GaRDKCUQRJQOGLo+j2Y1MreOiiysQYFhOBasscFl7oGmFBSRrr6gcxaJRUZJiJi9JpiYzJyBxPyBfFYNaw7YU2IsFEsM6C60pxDQaIBGOkGFWoh0KIvgiSSoG3wYlhVib4o4iBGEq7DtEbBQEEtQIxGk8GMUrROIJWhRSKJTLoBSAqokrTo84wnnZgmiSKzLv+ExisVg69vR6VWsPld38LY0oqrv4WVEOD6Exm4spMmhp91L29gUgoRO3ySyi3a7n53m3841MzMGtVBCMxXjnQR0GaEXXLMDqVkk8vKGRRWRpqWTDynBCLRhjt7yN/8jTS8gvY+PB9gMCU5ZdgTU9FofKz89V2pq3MB0miJN9M6IUWAlt6QQDTnCw8mQZ6mj2UVdowa5SIkThKg4pbHRY+YTcjCSpCahVfvbiUeze2EYzGKU4z8sWlJXzpkd3ERYnvP3cIAWFcpSsZmdMh6PPhHujD3d+H1mgku6yCTY89jM5kovailegtGlp2DZM7yc7Gf9Uz3OVHoRCoXpzNpBwTf75mMg8f6OHxHd2olQKfW1LMU7u6aRzwsao6g0trsk743ZIoETwwjPPJRoiJCGoFKTdVoK9OPeM2KCkqEhnwE3eGkCIiqgwD6kwj0T4fUVcIpVaF6I8iqBUoTCpUaQYUOhWRHh+x4SDKFC1SKA6ihDrdgCrDINvJzgBGrZqXD/SSadGysjqTEX+Enl4PS416DGkG4l4VUleEzLRcbvnRrxjp6STk87D50X8ioKR4xgpiYhY55XYCniiOfAvTLykkq9RGPCah1iho3TuEdySEzxWSRUhkPjJER4JE+/0ICgF1pnGMyEh00E+4zYPojSCG4wT2DpF6+yS0+ceElMVwjGh/gPhoCIVBjRgXUSgEooYYe99+Fa3CwAPzZ6MW1Uh6AUkjgUZBvHWEsOgmHo1w3bd/jMItEfNEuOSWr9HZcxCFQkU4omSoS0XZDD3Rrk2Yt2/EV1TKokUrKXbk8/d32jjQ7eZnF5VRKqgQBRCEYyITkiQx4AmjVIDjuEDNuCjxz03t3Pt2KwB97hC3/WMbz315AdXZJxar8oVi7OlysavDRW6KgVmFKRSknn9Vcs9XonGRL19Uil2lRCF4MaXaadu9k9GBPoqnzyIS8DPU3kbOpGp6G7ZQkDuF6Iu9qEZCeIDYjHQslxSheh/ikMePc6VNhzJFS2w4sd9TpuoQBIGYM4jCrEEKxBKCZlYt6hwTojtCbCSIwqhO2NYMaqRonEh/ADEUQwrHE3vCQAylWTPG/iYj81FnsN3Ngbd6qN/aDxJkl1mZc3UxKZlGYtE4Ko2SvuZRwoHxvj+ZC5d4TKT9wDCbn2qmaKoj2b77tQ6mLM9HpRYw2rQ48s2k5X4wH9lQp5c1fz+IZzjEgutKOfBmN57hIAuuL+PAW924h4IsuK6UQ+/0MtofYP51JXQcHGFObRqjb3YhRUVQKVAuzaNdHGbSghx0R+bgzgP7mLb4MnCLTJ92eaKvEoS4hKJfJDAwjBQXEVRKiImgSPh3xGgMpUaDFIyjsmpRZxpRmjRIkkSB3cD6+iFKHQa+f3kVO9pG+OwDO/jLrTM4/Wijjx9KrY6K2kUowwKxoSBGjRlryUwG3QMIwKG3e8idZKd4qkPeI8vIvE9cA342P9NC+75htEYVC28oI6PQgj3dzLp/HsY9FESpVjDr8kJU6omfs+56J6//4xBBbxSNXsXFn5pEUW3aBxZxSM3IJS+nmrgrjOiPolTriCMw0NZMw6aNRMIhpiy/hPyaKWgCMczdAfKNamrKM5hZYOM/njlIUZq8f3u/OP0RfvxiHS/eVsLgiJoDa19jxsIrWTLnEwiAMkVHqMOdiDMQQIzEcd5fB3EJQaPE/olK9JX2k35PNByj7p0+tjzbQjwmYk3XM3lpLrFwHNeAH51RjVqrorfJRfHUdA5u7OGi2yrILks57d9ktGq5+NOTGOrw4h4OEo+ItOwZIuBJCPB7R0Ls39CNwayhelEO+nNUaEDm/VGWYeJ3bzThC8f40ZVVKBQCm1ucrB308vlJOrSWMlp3b+eV3/+KrLIKyuYsQJLED+VewgM+RHeE+EgI0aQmHoujSTeg0HzwmG+dWU3dO73UbzluT3ZVMfGYKItBfoyIxyUyiqw0bu+nZfcQggArP1GB6dAIg083AaAuMKOan4MwEsRqVmE1afBv7UNh1qBK1aHJMp3w+lnlk7A6MnjnXw8QDYWouWgF9twCtrok+rw+bAY1//1SPWkGNV9dUUYoIvKz1+qZlGXmitosrvrjJr69spwVVZkYtSoa+r1saxvBH44xu8hOba5NLiJ0HuENRvGEY6Qa1ejUKuYUpbKkPI23GocByLJquWpKFqIEepWCPZ0ujFoVOpWCpkEfjQM+jBoli8sdZFn1hKJxFIKAKEl4Q1E+MTufLNtYgRyVRkPlvMVs/Nc/yZ1Uw9zVN4FKRX5lDU3bNrHt2cfJq6mlePpsBloaqd+8kayyCqqXrsAzNEDdW+sJeEaZvGwlJTPnon9XvO5wl5fX7j2IezCIUpWIY+xucDHc5aN2WS59LV2UTEtn0oJstHK+jswp4nUG2ftGF7mVKbz9eBNeZwiVRsGCG8pISQ9Qt/F1Ji1cgmdogE2PPUR2WSX5lVNQNsZRmn3EDWqiA35mpBv4yVWT+PErDYRjImXpJlZUZZCnVhFsciGpQJAElpsNLJtWgBiKE8ix8+v9XfxudzfXTs9N3lOGWUvVCQqlqpQK7lhQyDuNQ/S4E3l2s4vsuPwRInERi15FQaqRYW/4lHLeZGRkZGRkZGRkZGQmRt5VnkP0Fhs+1wgv/OanlEydQ1phEcHdA/je6U32sawqRKqycMucPJz+KH3uINXZVjKtOsxaNY/v6OLxHV0AGDRKvplXzt3LSukdDRITReJiQrVBZ1Yx0uVj16sdyWu7+gLsfLWD1BwjOuOpORwGPEEe3trJ/ZvaMWpV/MellayoykCDgHsogCAIWNP1qNTHAib94RgFqQZ+fcMUXP4ImVYdTl8YlZzoIwOEo3HW1A3w/J4eZhXZufft1kRQ5rJS8lP09LlD/GtbFz9emce/L80hVQiRrYdYbyOjb3XzjsvJUHsbt9z5E0KN/cnrikNh7JlpaAxGAsZ0vvGWm4osG3+5bTodI/5EklF+GuJjjaizTahStAR2D2K8pBDfGy0oDGqo0OB9uwfzsjy8z3UgxUS0c7JwP9WMaV42/te6iQ2HsKzIx/1gE4baNMItA4Rb3ImbUApMv/gynr7/v2ncvplP/PevSS8qOUf/p2XOBLFwjA0PNxAJJgIPw4EYGx6q58qvTh3Xd7jTx5uPNPDp780gsLWfwM5jFdRsV5cQS9Gh0msJeMLEnCECz7UQ609UJxC0Soovm0LQ5eal3/2CK77+7zz3yx8jiQnHYU/9IZbf9WVsxbX85sYp9LtDpJk06NQK3mwc5smd3Ri1KtItOkocRhSCAl8oilIBRWkmdCdwCKaZNCgEeOVgP68cTDxPVVlmRoMR9nSNAqBXK7l9bgF/3diKSasi06xLKmZHYnEGvWEMGqWsBH8WmVts56evHOZHWdkM9/RQnp1GUcCE/8kOkCAE6CenocoxEj04gn/T2HWGxWzD/1YPsaEgUUC/0EpuYQHDnW1seerRZN/W3TtZcNNtRIIBapYuP/s/VOajjQQ72p386Koq1hwa4CevHKYk3cSXl5bwoxcPA/DHyW7WPfLP5Clte3Zy/ff/h6Ztm9i75iUA+psbadu9g8u/9u+0791FbnUtKvWxBIZIr4/hfxxE9CeqDipTtJgW5yIGo4mA2KgICIxuaMa0IBvfpl60pTZsV5agNKqJ9vnwruvEtCiHUIOL2OCRaoZaJaoriun3RlEqBQY7PGPERcx2HWv/WYdnOOGsiEdFdr3agS3dgC3dgNYgJ1lc6HQMeunq8tLvCtEWCjOnPA1rEF55tJH51+pYc89PAbj+//0PG+7/G4PtLQAMtDTRXX+QKz/zHfxPdSGOduAFFEY15sU5jD6X6KcpsKBy6FFnGECrRArGKNMo+Xx1NhuGfTjMWgrTjHznqf38+6WVzC22j0lGk5E5VXQGNesfqCceS6wrg94o7zzVzPI7JoEooeoL4H6lLdnfODuT0L5BfG/2JObOtZ1I0TiG6RmE6kbQFltRmDQE9g1impdNtGGU+GgYQaskeCARsIEA9psrMExJH3Mv0Ug8YUdAwJKmQ609tkb1uZwEvB6sGZm89qf/Tba379vNVd/6Hlsef5iK+Ysw2VIIetys+cvvjq2VDx/kzi9+E1GdwbrDQzyyrROlQuA/L5vEC3u6eeAzs+gbDfHbtU3c904bt88r4JPzCsm2nZnKhjKnRigQQKlW4xnqZ+29f0q2dx7Yy5Xf/B6zL0tn6wsDbH+xjUkz04m0jCL6Eu9/JIhu7UN9cT6TJttRh+O4Hq3Hdk0prscaiB8JtlWY1SxcnIugkbhjQSFKhYBaKbDu8EDSXgbw8LYOFpWlkS8n48q8D2KROJ3797Dh/r8l29r27mLJrXfw1sP30bF/Lwtvvp2c8lzqt/Qx3JXY94uixIE3e5hzdTH6YQV1vR7uuW06eTYdn39kN63DiXXqG3UDfH7xiW1JseEgzicbIHakgnVUxPVEA+qvTkd9hiq2HiXU7MK/rZ9QvTPRoICUGyvwvtmJcXomI681wJF4Z22ZDU2pDYVCwP1yG4ZZGcR2Bol0eBIdVAKOz9SgLbad0Xv8uDKzwM4PXjjE399pB2DdTdMxpBrwru0k3HCkKqoC7DdV4NXqeOUPv0ye23FwN0s/+R+4B/RYM3SEA1FMNi3tB4bJm5RKLCpiTtURi4q07R3GnmXEaJVtPjLnlolsA2l31KBONxDp9zP8jwMJ4TxAadFgmpuF65kmHJ+rTQgpxET82/txv3xs3Wuan024zY2oEMmpqcDQpCXwVCcAhunpxH1Rwo2J50lQCiy9/lMEdg4TPewDQFJA8aVT8Zk8vPHX/+Xiu75M8/Yt7HrxdQCGOtpo27WNGV/5LwpTjXylKpuidb1IR+zMyjQd0WwrLo3A4zu6uPftVvQaJd9YXs5lNZkEoiLuYIRtrcNj/l9E4xL1/d73FCF5YV8P33v2YPJzRYaJf94xW17/niUkCdI1KvI1IbwjQ6y/7x6ioUT1vr6meqZfdhWpOfm88bc/ctmXv01sxzDxkWNFKQK7BtFXpaKqTju9742J+Lf1J/d32lIbSruWwPYBUApYLyvC/Wob1kuLiA0F8byesCUrjGosy/MZfaGFowUCDTMzsFxWSOiQE9EdJnBgCOP0DNxr2pPvfv1UR9L+JiPzUWeoy5dIdjtCb5Ob5l1D6MzKZCyF2a5LijrIfDwY6fHx2t8OggR687G/fSwqsuvVdqZfUkDlvKwPLBIRDkZ567EG3INBiqam0bCtH/dQkMLaNPpaRtEZ1dgyDLTuHWa0P0B2mY2uwy5KSmyIRwVIAGIi8Te70MzNwtnjQ2cS8Qx1kFdQjWpTBNO0LHwvdmBakE1g7xCafDNIEOn2Ypiajm9PD7piG0gQbndjmOLA9WpDoiIHoK9JxXJVKf2eML94rYEuV4CrpmTTNRrit280YdKqsMl+kVPCYU1H4RUZeaQ++fdT55lwXFHMoToX+dWpvPHPOmwZBlKzT5xEKSMjMzHxmMjuNR2070vslcL+GOvuP8xNP5jF5mdacA8l1t7xqMjW51q5/Eu1467hHQmx5u+HCB2xP0eCMV7/+yFu/M9Z2LPev83YMzJMbl4Vvrd7Ce4dSjQKYLu2FEGjoHzuAp75+Q9p3b2dz/zXn4k+1k6aN2HbxqIh54pCcsw6Uk2yiMT7Jduq44dXVNHXsIe3Hvw7d/znn/E/3oF4RGxOaddhu6IISamAuAhxCeOcTPyb+5Ai8YSd9SvTUJ2kKMlwl493nmxKfnYPBmneOYDOqCa9wEI4GOPAW91MvTifna+0UzE3kzV/P8SN352F0Xb6djaTTYfJpqOveZRnfr17zLGiKWl0HnLiHgySkmmkZHr6Ca4i81FkyBNmaYWDB7Z0cKjfy9/eaqXXHeTaaTlYrGY23HcPXYf2A9Df0kjH/j1c+pVvn/H7iPsixLp8uJ5uStoGdJNTMS/JRZs7cRLw6eDs8dN50MnMywrR6lV4h4O07hsmrUD2032cUKoUjPT6GWz3AqBQKdD7IkSO+qAAw2QHnmea0JTZiKkUY+MY5mUhzc3GG4kjKI/kLaiO5S0E3aO88JufJoV6ug8fZNUXv0Z2YS3bOtxcPjmL5ZPS+cP6Zja2jCTPu3VOPr2jQbpdQb7++D7u+7SGHJuOG/+6FXcwsVZQCPDgZ+awsCxhr/OFo3iDMewmDdrj7kHmo8HW1hF+9sphDvd5uajSwVcuKiXHpueWWXlcNz0XbyhGplXHvW+30jzo45KaTKx6DX99q4V/fHIGi8rS2Ng4jD8S59WD/bx6sJ8/3jINbyjGtPwUVlUn3rX+UAyjbmxcdvm8hQx2tFK/eSM9DXXc9MNfsOYvv8PV1wMk5vL+5kZmXH41/c2NxCIRMopKeePePxKPJsZbb8NhLv5shKkrL09eNxKMsfGJJtyDR9a6MZFdr3Uw9+piBto87Hm9k7lXF7PpqWYcBWZy3ofwmcyFSSwaxz0YRJIkLA4DGu3YOauncRSLQ8/mZ1rwOhN+ilhEJOTt543n72PVF77KWw/+g56GOiARF1mSP5MUcwbhJhfhptHEhRQCV99SgfOiEiJxiZ7RINkImF/vQlqUg+gTURrV+Df1EjrOl/2d68oodJiwGjSsqs4g06pnfrH9PYX1KzMt/HT1ZAY8YYLRGFa9mpcP9HPL7DzmFKXy4xcP4QvF+M2NU5mWb5MFYGVkZGRkZGRkZGTeB7IIyVlGkiS8oRh6jRKj1cbhtzcgiSLFtTORPBF8xyUGA3jWdpBZWMP/vtFEqlFDmknL+vpBvrm8nC9dVMJ9m9rocgbJtOi4a3ERnmAUUYJih4lNzcNcNSUbgFg4TiwqsvCGUgwWLTtfbcPZG6C3wYXXFT6hCIl/1EnA40FvtmBKsfPs7h7+b30zAN5wjP95uY6ZFiMH1nXRunsIBKicl0n5xXnkZpsQBAFJkoiJEi/s7SUWF8lPNVCTY0UjV+/+2BMOROnu9ZITU3CL1ox3j5v7VlYT1CowGNUE42FK0qCyeIjh51+jtmYKO196ltyrVrPr2UeZd/0teAcGueKT30IxLI27vtAXZ9ln/41RhYZfTRIJqiAUFUkxaDjUMYqiJUg8HOf/s/fe4XJd5d32vdv0enrvTb132ZZtyb1gY5tiMD2UECAhQHr58qa84Q2Q0BIggMFgsA3uXbZlyZKs3svpvZ/pfdfvj5GOdHxEN6bNfV26JO299p49M3vWXutZv+f3OFoCxJ8fRC52oE+mMZMa7nWVJF4aQnDKWKqBEc7iuayaxM6RfNVvp4w2lsK1upzknrF8wl6pi/T5hWMAw0I8mGPJxq0ceelJxnu7CiYkbwCRiRTTw0nUjE5RlZvyBt9Pdck3dJPweIpEKIPLa6eo2o3NcenHYzKamzUgOY+umiTD2Xlt4zMZLNOCuDrHgAQg9swAcpWbKXWGkbNhGt3+WQMSACtnkDkZoqFjOX11hxg+dXw2qfI8x557ihs+vpgHTsY4M5mk4pzhyJdfyiczJ3I6n3u+i/YKD0OhDLt7ZqgKOLl6QRkLKzxEMgbJnE5dsZMKX15wnsrpfOradr62sw8LeNPyKlbWBZFEgY9sacahSAyGUmiGyc1LK9nUUsKe3hCLqn2ousVXdvTw8JFRqoNO/uHmRWxuKUEuOL7/2skmE3zt+jJe+uL/QVdV1n7oL8i9MDW7EAyQOTFD8coyQs+cnnNs/IVBiu5sw7mkhMSLeVMzY2+c4jdXs++RB+a0NQ2dVDTC2d07KW9cRjYlYHNksHts+EvL5gVnLcsiPJ5iZjiJzSFRUuvBW+TEsiySkRCCIOIJ/uyqMQV+N0hrBqvri3jw0MhslYDTY3H+7IFjfOvda+gcGOPwQ9+Zc4yu5tBVlRMvPDNnezaVJDY1TioawbIsGlesBvL3VGr/+GySEYARyWHMZJD8dsyElu93TQvXslKSu0ZxrSgjuXsM29ISIoAvpoIsIMjirAEJ5Ptd6/g0rsUlpFP6bKWg84iSwMxIct77jk5lSEZyBROS33NmRuOM7pvixPZhTNOiqTVA1J/Cr0oEK92MnH1ltm0unZ41IDlPfHoKsz+NGc3NbjNTGtpEGrnEiT6TT8h1tAWJPzeI75p6RIdMct84vm11WJbF/r4wPzhnPtk9lUA3LW5bUf3GfAAFfm/Qcgbh8dSsAcl5skmNXEqnNGAn8XDPnH2p/RP4ttWDLM72nd4rakjuHMFzeQ3pI1PYG/04WoKYaW22ffz5CwaoWBB5pBfdbycnCTg8NrIJjSPPD9J9YAoEaF1bTuOWKopLXdj1ND0HXsVbVMyJF5+d+yYsi/5DB1h+3U107dlFWUMzQ6eOzRsrn3juCT7w/s/w6Kn8M0kUIJrO8ZkbFtA9meTvHjs12/a/X+5DkUQ+eU2hdusbyWRPF+VNrex/5MF5+87u3sFld78Xn+LBYZgE6n3E7j09r53TIWGzIHM6jFLmItcfmzUgATATGtpUmpUlTnpsOoIAFT4Hn3u+e855Ak4bQ+F0wYSkwC9EKpYjGUlgmVGObX967k7LYnKgj0BFFdGJMWLTk1Q0B3D7LRSHhJY1ZptqWQMiOQwLPnTfYf7x1kV8YmsbDx8Z5aXOadw2mVKvDW06jTaZRpAElEoP8jlxupFQZw1IZl9eNTES6utqQqKHMmjjqQsGJAAmxJ7sw7etnsQLQ7NJyAC57ijuNRWEf9gJgBxwkD5wUWxEt4g+0UfJB5YgOQtj6V+FREZjKJLmo1e2IEsCogA1lV708dQFAxLIf19P9RO4vXLuCSyL6cGDLLu2A8FSiU1P4ystpaajiCPPDWIaFhVNfi5/WxvTQ3GyKRXTNElFVURRQHFIKA4ZgXwF9fh0lth0mnRMpW5hEaV1v7oovUCB15I6MDEvNpA5kx8PpI9MzRqQABhxFSOuYqb0fNVpl4I2kyH2dP+ccyb3juG7uo749iGKVzeQ6B+Y3ScXO0kfnrrQ2LBIb5/AXu8jzblYgQn6rijSVoVkJMRETyend26f8xqZRByiE9y4uIPWIxG0i+LMxkyWbFeE7aLGfzzfBUA8q/MXPz6BQxH5h8dPk8rp3LS0ihX1Rdy758L1uZSfLGwfi2b4t2fOztnWOZnk9Fi8YELyBqBmdYJZC3cmRCQ0RWJmataA5DyndrzAFe98H5ffdA8+M0hyZHD+ecZTOH9BExJtOk3smQv3ub3RPztPcy4oJn1wEslnR7CJswYkAK7lpfl2Fw0v0gcnca8qI/HiEI72IuyNARKvjM559meOTuNeXY7UUhC0F/jtZ6I/Nm+bzSFSUuVj4x0tePw2REkkk9Io3NG//2g5ndBoitBocrbv6z08zfpbmzjx8gjZpM6iy6tYdFn165KkkIlrTPblzRmLKj30H53B5pRpX1tOfCZDx4YKPEEH6bhKLlOFYpNB1SlRJKJ7RueeTDepqfMSSk+RCE0RHhuhpWglhqmhTqSwNwdI7h3HvbKM+ItD+K6qQ5BEsl0RnB3FJHaN4N1UjVLhntU7zF7nyRDWslI+eP/hWSPXBw6OcOvyKt6/uYHKgJNkdu6aeYFL43B7iT7efcFABtCGk+iTaTJpFcXuw+aQSISyv7cmJPFQlpnhBJpqUFzlprja8wv9ntIJlfBYCl01CFa48Je6fo1XW+B3jXRcpefA1Lztatpgeigxb3s8lJm3LRnLzRqQnMfQTZKR7C9tQhKfnqL38H7aq9dfMCABsCD+zADl717I6VMvA+D0+lBPRTETF8W24yqu7jgfryzHYxb0lb8sumlR7zY48OwTLLjsKvST8VkDEgAjnCU3EMfW6MfSLdBNbNVeUsI4WGCmdYxE7meakMRm5t9XE31xVl3fgGFYTA3GKa7yoGsm2ZSGbJNIx1SS0dwvZUJyntJ6L9f+0WJeeaCbTFKlZWUZNqc8m5Dce2QKf5kTf6lzTiGAAr+9eOwyGc3gb29awB9959Ds8Oz+/cN8oFGdNSA5T3hshOjkOEp5DcWe16+AiR7JEnt6YE5sIHsihGtpKdT86uePTadZd2sTux/sRs0aeIscbLqzhVREw1ZeMF76QyGX0hg+dcH8wxO0I4WznO+lbXVect0RrJyBZ00F4fvOzDk+tXccR3uQH37hGIIAi6+ooW1tGYaWJlDhZeDYoVkDkvMc3/4M1318OXesrCalGiiSyLWLKnju9ASyKHDHqhriGY2GkgvP/x2dUzSWuGcNSCA/dfrii92sqg9ydjzOPz99hjNjca5ZWM4fX9VKS9nv57j+d5ED/WHef+9Bkrn8nfXsqUlGIxneu6mBYo+doYk4y+sC/O+uAQ4PRlENk/teHeKq9lLWNhZxfCzOLUuruLK9jEhaJZrSKPIoWFgEXAptZV6+/FIfL52dYkm1n7+8oYNltReiSf6ycra8649YsHkL04P9JELTswYk5xk+dZzVN90GQMua9YRGhmYNSGbfx2M/pmXtJjyBAADppMr4ebOHi9BUc96/49OZgglJAQBmRhMcf3GEM3vyY92mFaVsenMLitMgGQ6hKDaik2mKKt1EJy/oagUBFNsM0YkxUrHorAHJecQMiD75ggEJgGmReHqAu97Wxv5wivoiJ+t1GbHCjamagIU+nblgQAJggvbsIMuur+XFkTD9MykODUbY0TnF6obgTx3rWFgcHYrQWuHhf1/px2tXaCv3YpdFTozm43D/9sxZPnh5E5e1lmArGEYVKFCgQIECBQoUKPALUYguv4EMzqT44cFhnjk5wYq6AP9wdTXSuUmMKRiYaW1O4BYAw5pd/AilVEKp/IJTTZGLT//oGDcvrebW5XYiKZX/eqGH/3nHSpI5A5dd4rKWYgQRwuNJdtzXydRgfnFNEAW2vmcBL333LMFKNy7v/MCtaRiMdp5h/2M/Yu2ttxObngQLXjprzGn3/btWMNkdpX1dOUu31KBmDZxehfGeCF3xNFcvKCdnmOi6wZ9tbcUEJFGgfzpRSEz/PcfQNCTl0kkE8VCGdFxl90PdtK+toHPHCJHxNMu31mJPZnFmUgQdIseeexx7bT0nHv4hG+54O6/++AeUN7Yw1p1PYLC7vFy5+V0YL8aRtsxflBPrvcyMGxx6+iyltV5qFxUhJBOsqwuyvrkY89l8MM8y8sE2KeBAP7/gbFlgguRRMKL5352giFg5A+FcdXrIV1I0Irk557kYM6ISaMyL+0Wp0OX+upkeTrDrh92M90TzGwTY9t6FtK2p+InH9B2Z4vlvnsY61/+uvqGBldfWXXIB1uW1ISkixkUiIVEScPnn96OBcoWr7im/UK37IqycgZXRefRzn8HmdNKy7dPz2uihLHbRgyCKSPL8a5FkBVPXuXt5MXGqccgif/KDo/PavdI9w/Onp5iI541Snj45zpfevoJ3/O9+LCtf+eOzdy4joxropsnXd/Xz59e0E01rPHJ0lK7JJB+8oolNLcUIwPqmIuIZnbMTCR4/Ps7f3LgA3bT4zxe6ePhI3khrYCbN++49yCMf2ciSmsClPvYCrwPZVIreg68iHz3IyWSSdCxK3ZJlaIkMUuYS/VH6EmJA3cJ6TSIyhoWgC4jS/ECrKIoIkoSh55geOMqZ3S8Sm5xk9c23sfDyqxFEJ9lknL7De+g99ColdQsoa1hOdCJHZEKifkkNvft3su+RB5FkmfV3vI3mVWvxl5bPvVbTwLJAusQ1FPjtpMxrJ+iy8c9PzV30zekmI5E0W9pKef4S36cg5J+Phj7//hQEgYnebkobm3F5/aQiWbTR1Lx2eiSHVOzAyp67lwUQ7BJmWkc459ZupnTkoB3BY0N0yBhJdd55rFAWu10imzPmmYrYXQq+Eifx1wiIFLtENjW/ny/w+8PI2TBOj0xVa4C6hUVkUirPff00i6pcFK8oY+V19Qwe2T/bXhTnz3GCldUYU/PvOT2UQQrY0c/dV5Zh5oXIgpA3s5NF0CzqAg4WV/voC+Xvf0kQeOLYWMGEpMAvjCgJ2JwygsDs2BfyfZnNKWPm9Dli+PNYhonolC70nZKQb2dZSH47ejiDvdE/e+yl5kVWRgfNJJUwiM9kmBlO0X90ho4N5bSsLkUQJOyiweTxAwQrK+jcs5Pl1910yXGwqCjoag5EAQvrkm1kRUGRJFbWBQk4ZVbWFwEWX9vZx/LawLz2Dxwc5q5VtdQWFwTsbwTpeAZNzWHFTcRLLO7Ldju2qIzz5V7QTdSlJSiVbrTxueMA0yFjmRZGOItS5UGbmj9OMEJZRJfMM90TnByL819vW47fqcwKxf706hbWNhWR0y3u3zdIwJWvZjUYypDVDVrLPCyvK4hyCszFNEwyiRzp2AjZRPTSc3ZJwjTyY1xREMEyqWrNUb+knMFTAv3HpklFVBS7hN1rYySSRjVMxqIZvvhiD5+7axkfu6qFvpk04lSGqR90YZ0zL5HLXRS/cwFKiQvJawNZhIvmdYJNRHqdK6SaWWP+3JG82Y/okDFilxhfq/nqoQhc8lh9OoOVM6BgQvIrMRpNg2Wh6iZf3zXAX1zfgSAKl4wBGDEVpzI/eUZWFIZPvIwnGABBYKr/NI3LFuEtbqP38BSjZyMMnwlRv6iYvqPTFFd5AQtBAAQBu0tGzeikoipOj4Khm7h8ds6+OoFpWpQ3+H/tn0OBPxwsw0S7hEmoNpbEsiy04flJZnoki63Zh+TO9zdmRp9jnpA/MXljU8BKGyAJsyZPlxrfGuEs0tLSOdvMuIoies4dYyBJMrr5mv5RkHBLElwk4DxPdiLJ9nh03vad3TN47DLRtMbDR0Z5x/p6qvwOxmJZmkrcLK7+yb8xzTBJ5Yx527Pa/G0FXn/ioTTTg2FkeYxkaObS8VZZprq0g8yDI6RLx7HVecmcDM1pY/slEh9fe59ffB9LARvZzjC2Wm9+reKie+R8TO21GGkd0aVgRLIo1Z45Zj+zr1mIkRX4HeG1Sf6tq8tQswZP//eJ2W2rrqunbV35aw8t8HtGJqlyatcY+x7tY+3NjbPbp4cSxGcyLNhUyYKNVQTKnIivk7bF7pYJlDvJpnRESWDdrU34S52oqk5xnQdJFDmzZ4xghYdkOIuvyE5pUsUQxbxW4eLYnSyCyyR85hS5dBqby4k2k0EJ2DFCWewtAYxINj/GEQVM1UAK2FGHE9hqPIg2KW/SdpHe4WK0hDprQHKex4+N8dCHNnB8JIYiFZLify5yFnpofkETM6nRuqqMbFInl9FxX0Jv8OsgFcsRHk9hmRZFFW48PyOx/qcRm8kQHksiCALFVR68xfPPFZtO89RXjhMez49/JVnklk8sp6ol8HO9RiKc5cXvnmHkTD4xyeFWuPnjyyi7yPAyHVeZGUqQTqgEyl24gzZCIykS4SyBMhdl9d45636GZjIzmiQykcLhUSit9eL2//ImAAV+sygOiUC5a14xCcUh4i9zzpoxnMd1ie/a6VFQ7BLaxeNiAVy+X/53OXL2FJl4HDNwiXFzWsfKmrPzA29xCcbk/H5YjGSYCKlIQRvxKg8+ZyEx/xdlPJal1pHXI7g9AfSJ+XNxI5JDaBbAtLAsC8S8Kb+lmYguOf99mRbCTym2d6k+pKjSTXw6Q7DSRVGlm4ETIWoXFKHYJSzTwuaUcXp+tbiorEi0rCyjssXP8OkwR58fJjR6wQja6bXx6OePsnxbLYsur8ZRKKzyW09aM4ikNSZiWV4zDLukDgFAlETGDuwiuWAV9RWvTyEoSzUvOcc3U6+PCV390hIGT09z40eXkk1puP12jmwfZH1Ny+ty/gK/G9icMpUt/nzREiAZyWFcNDaVAna0sfzar6Ual9QxmCmNWz6xFEEQ0NVJZoYO8uqP7ueyu993Sa22KCsIooDHLiHLIj3TSULJHB+9sgXTgudPT1AbdOGySbSVe+iaTFLisc0xIDlPKKUyFE7zzm/unzW4ePjoGKPRLP/77tV4HYU+9zfNWCTN0ZHo7PdznpNjcfpDaXZ0zfC2tbX80xNnkESBv7tpAQ8dHuHocIxit43bVuZdl77z6iDPnJwAoLnEzdvX1yEIApV+B//6zBlOnjM4eLU/zD3fPMBjH91E/UXFT+LTE/QfPYgkKwQrL63zEs718aZhzv77YiRZZrQzistvYAGmbnL9hxcTGk1hc8ic3TvGzHAK2Xbh2PP/dl4iR6jAHx6xmRRqRqdjQwUNS4txee0cfm4ANT3FVP8EWi7DZG83vrJybI5VuAN2UueKrdV0eLDMGbAsRHH+Goe9xIt1CaNaI5JFT2n8yf1H+NDlTVyOHcVvh3NjayMz/xgzruIWBKqDLrom86bq9cVuMpd4BgDEMyovdU7ztZ192GWRVQ1B3rKmlqU1fkwTTMvig5c3cu/eQQ4OhFldH6TS72BhVWHtukCBAgUKFChQoECBX4SCC8QbRCqr8/ePn+IrO3rpm0mxq3uG6NQUtYuWItvsxCZnkAL22UTJ84heG0LATnPpXDGMLArctryGBw4O86UXe/jeviHetKKarqkEf/nwCT7+g6P8/eOnGQqlmRyIzxqQQF5Iuf/xftbc1MD6W5suuRAyNdiPKMusuPYGTu98ic7dO7FMk/93XdVsG69DpqLERVWrn/Boisf/6xhPfeU42795mtIKL1/f2cvATApZFFlRX8SXd/Ty5q/u4SPfO4woiMiFu++3nmwyQff+vTz5X59lz4PfIzQ6gprNMDM8yNm9uxg6eYwTLz7LKz/4DgPHj3B298sMHj/C7gfu4/6//zRHn3+Kyf5eQmMjxKanGDl7ltHuIaaHuknHBmhdEaVn/7dZtCnO1nc7qGqO03vgm2Sip3ji8/8HLJO+w/mkTtM0sEyTVDSCr7iE2o4lNNYuw9gbB8PCiOZwLLiwkCKVO6FNRBTHWLpFpWl5hujYTnr2fovI6GGOvPgd5A5vvrEggCyijiawnRPFWzkD0a2gh7IoFflENCOSQy5z5fd580FidSiBvTmQP41yieBfs5ve0wexu9yUNRQWSn6dWKbFZH/sggEJgAW7H+whGZ0v7AGIz6TZ8b3OOUmYB58aIDw+P3kNoKjWzaY7W1hxRRVX39TAxmvquOwtrRRXuzB0ndGzp9n/6IM88tl/YvDoi/hLZeRiZ160fhFyqRPRbyMdixKdGCftmP96jpYAqVyU8OgwNQuXINvm9tUrbriFw088Qnh4kK5TZ3j8yBA1wfnVK502eU4gPZLW6J/JV8jd0FTMWCzLl1/qJpJWkUWBK9pK6J1O8tnnOumeSrKnN8T77z3I0eEY//5sF4msTqXfzr/fsZRyjw1FEtENi0ePjs15XcO06JmanxBQ4PXBsiz6jh3hma98HpvTxfRgvqplKhIhqUaRKl4j8hIFJK+CYJs7zpB8NixBwLyoErfoVdAUlY7NW+a0VewOHB4vK6+7ibO7n2G89wyLr9zGpre+k8r2DiZ6O9n1/f9m/8PfxV9WhqwoHHv2QQ49+T/EJvbx0jf/nt0//CbxmSnUTJpMIs5L3/ofhk4e59j2p0nHYxi6zvCp4zz+H//Kj/757+g5+Cq5zHwhSIHfPmyigGFa+JzzF3FtskhCcLL2TXfO2W53u5FsNlbdeOuc7Z6iYhxeL7lMBgSByNgIZ3e/THS6H6l9fhKwrcqdNwlz5O9vy8g7pSuVbvTpDAgwHc0RGU+TkgUcK8uRg/OFkI6OIvxFdlxehbJa75x9Lp+NLXe3o1w0Vm9fX4HLp7Drh93EpudXNyrwu8/0cBxRFth+71me/PJxHvuvY4z3xHjTny1n8HiIs/smiIylqGhdNysUFESR2kVLZ89RXt/M1js+ODuevBhbgx915MI8TVBEpCIHlmGAnB+f6jaR6bTGqob8OHdjczGdkwnayj3ktEKlyQK/GIlQFrBYcW095wtNiqLA5W9rQ5JBcitIrxGdn5/jmElttu80Emr+XtVMjEgWe70PPZRFsEn5P5IIrxFjSuUuOk+GECWBRChLVYvBte/30bJSQ2ACQRgnEx0iMT1JdHICd7CI8OgYS668Bi6qiilKMo3LV3Hqpe00rVhNLp2iqn0hsjJXOLHihjfRF8limCYbmkvY0z1DRjXZ3x/GfwmhbrnPQSQzP4G+wK+HbDqBZegMnzlJy+r1CMKFubQgiqy+5k0knx+aNVXInArhWl2OeF6QK4CyoZJ4Lp8gbGv0kzkxg+MSFXxsdT4m7QLd5+YmX3u5j3+8ZREf2dLMV+5egcMmMRzJ8kffOcRfPnySD3/vMJ99rosXzk7xqYeO8/Zv7GNX9/S88xb4wyY+k0GyC8SmxolNTbLw8qvm9VUltfXEp6coqWvAX1aB7HDQc+BVuvdup7hiiAXrJtj23lJku8CYYDCTVLFJIqvKvPzXVW0oCY1X+8OMhFIY+yZmDUgA9Mk0ud589Xa5xEnRXW2z/bWgiATvakcuef2qHkI+WVl0yfAarb2twYc6lsTe9BqhjpA3QxG9NrDy/34tzqUlr7tZyh8iJ0fjLKsN8LVdffzr7Yv5/quDGLqZr9D62u+r2U9Ozr3mfpWoXbSEipYWFLuDQGUVrkCQmaFTBMoTrLvJx+2frMXjH6Rr78O4vYMYWi9athtBnCA+eZSDj32DVKQXhweGz0YwVIvYVBp/mZPpwQTqJURkBQr8sgiSiGtl2bztzkXFCIKAa0XpvH22Oi/eTdWI55JtojKI7rkicMEpXxCyB6RZAxK4dNzf3hEkNxCbs02p99B79hAAPQdeZcX1t8zZH6yqwVddy3haJdbk47VotR6USyQ1BV024hcJ3Xd0TvFXNy7gc3ct41vvXkNt0U820qvyO3nLmto525yKRFuF9yccUeD1IpfVMDSLsnqL0MgQkfFRvMWlOL1zv/ut7/kIxsE4lmqgjSZRarzIJRfi/K7V5djq5t8vPws56Jh7nwvC7DpFrj+Ooz2IOppEdMjIZRfuIX06g1L1GtMTEaSgHVM3UGq8aOMpbHWvuYcE5lx3gQK/zVQ0+qm4qB9uX1/BiZfmVqE9/NwQmUQhTvD7iGGYxKbT7H+ij85XJ9j3WB8A4bEUtQsvaA3UrEF1a5CiSvfrZkBynqvuWUDb2nK8RXZOvDSCaVrYnQpYcHzHCC6fg2xSIx7KUuG3k9s1SvrwJL6r6+bM/Xy3NTA0dJRsOoUoSWSTSYyAhTqSxNboQx2MY28JYOkWgiIhOmXUwTiO1sCsAZUUsM/RO8wigH4JU4wSjx1JFPjyjl4EoWBC8vNguAScC+YnBMulLhAExnqibLythaLqX3+19OhUmie+dIzHvnCUx//rGA9/7jChc2Z+6UQO7RJJQz+J0GiSH/+/Qzz1lRM8+eXjPPK5w0QuobGY6I3NGpAAGLrJ/sf6mOiL8sK9Z9h5fycTfbFZQ8B5x/fFZg1IALIpjUNPDaKfM9XLJFR2/qCTx790jBfuPcOP/v0QPQeneem+s+y8v4vH/vMox18awbjIkG3gxAwP/d+DvPDtMzz5peO88O3TpGLzDSAK/G7gcClsurMVUb7QJ1W3B5EViU13tMxZ2124qRJv8XyNpL/UyZXv7EA8Nx8TBLjsLW0Ey39xM0CAZCTMRE8XQ6eO5eMzr5nnKZVuRJ9MoDxf0CoRmkFZMH/Mr1d7CY0mmeyO0Tt9aQ1TgZ+OJIp8cfcwq266jRM7n8OxuHheG1utJ18oQhKwRAFLyye6CzYJ75W1RB7uuVDQ7CdQWutlyZYLScWKQ2LhZVW4g3amhxO4fDbqFhUx2hVh5XX1dB+c4Op7FuB7neZQbp+d4mrPbKIogLfIgd0pk01pvPpoH52vjtNzeIpsqjDG/W2modhFa5kH5RImpp7SUlrXbZyzrbKlDX95Jb6SUpRkiJz++pjOCh4J5bVjExGkotfHtEuWLHwBF0988ThPf/UkT//3CTrWVaElL63vLPD7iSSLrLy2frb4n6GZpF0y9kX59V51MI69LQCAIItIwbn333l9jSClGO/pZbzrONu/8WVa121CTSdpWLZyXhHNFdfewImxJC6bTDStcve6OjonEnzxxR6+/FIPqaxOS5mH7acnuXFpFe0VHtorfGxsLua105/3bWpkOJKeZ3CxfyDMSKSgIftt4ORYHN8lzGDssohhWjxxfIyZZI4To3GODsf4m0dP8Z5NjVzdUcr1Syu5b/8Aw+H0rAEJQO9MiuPDMRySyKmx+KwByXliGY2BmQvjtlw6TS6Vxl9WwbHnn8bmdlPe3DbnmLZ1m8gk89qxrldfoaS2Hptzbsx/1Y13MD2kMtWfID6VYXowyauP9CHLIrsf6mHhpmqufvcCwuMp2tdXsOXudqJTaRZursTuLhjiFABNN4hOpHniS8d55n9OMTEwzsJNJrHpSfqPHaT34D4qWzsob24BcYar31WDfC4GFSiTcfp8ODxeREWhedXaOeeWFTvSJbS49tYg93flfz+KIqJXusgNxBEkAfMnrWU3+ZF8F4oKyaLA7Suq8V6iqOzR4QiPHh3j4z84yqmxOIeHonzyweOUeu1899VBbv/qHv7k/qN0VPr54ttWcFlrPjdiIFTQoxcoUKBAgQIFChQo8Isyf0Re4NfC2Yk4OzovJC2Uee2omTSeomJu+eRfIWclLBmCd7URe7IfI5xFLnMRuKmJI9ksb15ZhWZYZDUTn1PBrogMhFJ88po2crqJQ5bY0zNNfVF+cUIUoNRjxy4KZFI6ZQ1ernhbG7pqIkoiz37zBLUdRZjW/IXcVDyOIEnkYlEe/ew/z1btPLv7ZW76xF/wr7ctpKXMj00W0DWLdEJj32P9s8fHpjPsfbiHP7u1mclEluYyN//+TD6BQxIFKn0OvrV7gIDLxmVt8wWhBX57OLP7ZV785n9jc7rYcMfbeeX799KwYiU7vvMN2jdeTnh0mMnebrbc8wGe/Z//ZMW1NzPe00V8ZorVN92GIIgcfuoxGpYuZ++Pf0hxTS12l5uRM6doWrGaI888zoLNW+h69WWyyST+sgpGTp+kZsFi1EyGTDKBKxCEc8n1smIjEZqmfdlm7C4RacKaFQOnD01ibw3g21oHJQqH9j2OeRhGz5xEV3PULFzCiReeZdNb3sGL3/pv2jdcxpjZR/mCKlL7x/Ff10By1yhmWsO1qpzU4Sl8W+tI7R1HHU/h3lRF6uAk/m31pA9PkuuO4r2yluTeMbxbarFMk8yxaXzX1p87j46t2UduERSJzTSsvpVs5hcXihb4+cllNbJJja3vacdX4kYQYHIgwisP9JNL63gC84/JpnTU7PwFuEz8J1TsM6C2xEF67xhmJIfXKeO+sRHLFJjq7+XA4z+i9+A+AIZPn8AdLEIpt1H0lnZiT/ZhxFSUSjf+G5sYPnlo9rSH9j/O5VvfTnrnBJZm4lhYjNzkIRkZ5qZPfIbo1Di3fPKv6Du8n1wqTfOadUg2O81rN/D4f/wLlmWy9K0fpGHxMs6OJ7h+SQVuu8xUPIvXIfOFty7DIUsoksi9ewaQBIEvvdTDlrYyPnh5E9/eM8CiqgCdE3HetqaOv33s5Jy3rRkWadXgxGiM/3qhm7+7aSH/9MRp/s9tSyj3K7hsEmVeBxPxuYuBvkI141+JWFplIp7D65CpCswVHxwfidK94zkAJnu7qe5YRPe+3YRGhjAslcwSA6fowBjLIvpseC+rJr5jhOCdrcSeHpgdZ/ivbwAZkn158ZZY6sB+VQmdvXsprWvk2g9/guFTx7G73ZQ3tqBpKjPDA0z29zJy+gRnX3mZy+9+D9l4gsc//69YZl7AdfqVHdz0ic8wePwI4ZEh2tdvAqD71d2sueXN2Jwu1HPmIv2HD1DdsYjB40fwl5bx4D/9DZaVP8/wqWPc8ud/TeuaDW/ER17gVyCU1tBNkz+9uo0FlR5kSUQ1LHomEwTdNnK6wSm5nhs+9ml6D+7FHSiiYdlKsCBQWc01H/oY/UcPEayoombBYib6uhnrPEP9shUIooRpGuQScVx1XpxrKsgcmgRRwL2m/Jxpg4mgSFguEyurk+uN4lpZRmLXKOK2evbtGCU2k+Wmjy4lVeehWBbxbq0juXNktt8VbCLm8RnKGwOo5nz39NoFRVz/kSXEpzLINgldMzny3BCRiTQzownsLhlHYeHu9wrJJnDk2TFmhvOJ65ZpceKlUcob/JTWe0nHc7SuKgPBx22f+f/oObCb7n172HTXOxjrPoOoy9RLHSgTEvp0Gve6SlKHJsAE99pyBJeMlTUQnDLeTVWoY0n8NzRimSb6WBrP5dU8NDBDwi7SXOrhr67voGsqya7uaRZX+dnZPcPlraXYlfkipAIFLkU8lOGVB3tYe1Mj2967kFzGQLFLuPwKFc0B9PEU0qYq0gcm0CbSSAE73m31IOWTNHP9MTxbakjtn8B3VR2ZE9N4LqvGiGQRFBHRIeG/sZHUoQn81zWQeGUUM64iVbnJLCnl4IM9tEZzdGyQUDMJZJuDyOgQCCL+8gr2PfIQgcoKGlesQluynL0/+j6b3/oubv7Tv6D34D5ku52W1evAU8Tmu99DMjSNJNuwOz3c8LE/Z/D4UdRclua1mzDLm0mMp+ieTOJ1yLRVeDEsi+sWl1Nf7OTmZeXcs74R1bDQdJNYRkU3Li10L/D6o6sZDE3H7nThLi7hpj/9DH2HDyBKEgs3bMGj+4lMX6jWh2ERf3YQ952tnJxOsqg2QDSnI+oWGUnA3ezHSKggC3g2VZF8dRwA14oyKLLzg54JcucMTaIZDYci4rRJqLpJhc/JF17oRr0oEWFX9wyfvCYv/kmrBv/1QjdLq/34XQWzhAJ5DMNET0+hplOkImEEQeDGP/lzBo4fxeZwULtoCX1HDrH+zW+lsqUDm8vFA3//F7PznJM7trP5re9kx7f/gy0f/3vODOf44luXs9btxHy8D2Mqg2CTWL61lpEqBdvJUV6bBqRP5edTgijgXFyCUunOm0T57MjFjtc9GUxy27A3B/Df2ERixzBmUsPW4MvH0w5M4GgPYhkW6mAc0a3guaway4LiuzuIPNxD5lQI3zX1JHaNYmV0HAuK8G6pRSi4VP/KiGLeaKm51IUkikwlVWJnwwTagwRubyH+zCBmKv99+bbW09t/mBv/5FMMHD+MrCjULlpKIjRDZGyUouoahk8dp7i6jqLKGjRNJRWaxu5y4XB7sLvcTA304Q4EESWJ0PAggijSuGI5L3/3i2x554dx+2vIpjQkWcTQTGxeGzOjCSRFyFdvMy3sbgV/yU82TShQ4GfhWFiMZyZDcu84iOC9ohZ7Y94Myd5ehOfyapK784bJnk1VOJeWYCvLJ49lNYOvHx3hEzc0knppGH0mg1zswL2xisSuEXzXNaB5JBw3VKDumMFM6+gzGQJvaib+3CBmWkdp8qItFHALxejTGcykhtLgxVipsP9zD+av0ePB6fVxzYc+zuCxw5Q2NOFoXc7bv9/Juzc10meo3Lq8BPH4DIIkYm2oIBSw8a6NjVy7uJL+mSSmJZDRdIrcCvGLEkKbStxc3VGO0/az54KKLPKRLc2Uee08dGiE1jIPf3JVK23lBROSXzd6TkfLZbD0FLKiUNbQRO+hfVzzwY8x3tNJdHKCJZu2UWSVk5q6YH4Qf24Q96pyXFdUkwvY8VR7kH6JcagcdFD8zoVEftSFPp0h2xuh6G0dxB7vRRtN4lpZhqVb5AbieK+uJfnyCNpYCnUoTvDONmLPD6INJhC9NoK3t2Ar91B8ZzvpY1NIXtvsb04dSiB6FAJvakGp+OWSNAsUeKMxTZNNd7aSDGcxDYtcxiBQ4WDbexaj5Qxkm8gzXztB9nWq8l3gt4N0XGXoVIjp4QSRiTTDp8Osur4BzoWDeg5N0bKqjLU3N+IJ2imp9VL8WlOmc0Sn0iTDWRSHRDKSw+5S0LI6giSQTWpMDyeobg0yM5wgUOEim9AwDBPLglxap/fwFDaHTDKcIx1XcXoUDM3E0CwSM1kEBCqafKxeXIQ0nQYLjLhKcs8Ynk3VIIJc76F35BDJcAhBEJkZHsTQdEoq6ijdUI2ZMpH8duQyJ7nBBL6tdeT6Y/n+37Aw4zm8V9aijiZRqtyIbgXLMFEH8nM6Yb2bjC3Nf961lMZSL0lVRwCODUeREJhO5BiLZlhRN98QtsBctIkY7nUVmGmdbGcYwS7hu6oOsciG3S7QsKSEsjof0s9hdpNLa0Qm03kzfs0kGclidynYHBJDp8MANC0voazBP2umcDGDJ0Oz6x0A8ZksZ/eMU9nqxzLBMsHplalqDf7MuELnvgnS0QuJ7PFQlr6j06yqnPu7SUZVJFmkeWUp3mIHsekMk/1xTu0a5+zefAxvtCvClfcswOW14S1ykIrm0HUTT9BOdGp+ctDkQBw1o5OK5H9DFxflAjj09AAdGyo59sIwAAefHKB5ZRlFlW5S0Rw7f9A1+9sHGD4TYWYkeckCXgV+N6huC3DXX64hMpHG5pAoqfGQy+h07pvgxj9eSiKUwe5WME2L8GiK8vq5ZrqCINC8opSiv15DIpzFHbATrHAhXcKQ8meh53LsefB7eItKGD1zClUxKLqrjehT/ZhxFaXag//GRjKxOD2H9rPmljdT2drO8aPbaVuxGuN4/jdqW13OSM5AV01spXb6ppKFPveXwOuQ+LerK4iMjXLVez5ETIrgWVNO+tBk3uR0XQVylQcsC0EE7BJ6KIP3qlowLBIvj2AmNfSpNHKxE+ESfSuAw6Ow/tZmWtdWkI7msDllBBGKKlyIS4rISw8sJEnCMAwaly0j+DrPn0prvbz5M6uY7I8Tm86gZnQOPZ2vHo8FmYTOKw+cZNMdLWiqTsuq8l/aaKfAr4/hcIbOiTgbmkv45DWtbGwqIWeYCICaCrH6xtuoal/I6NnTVDS1UL1gEWomzROf/zdu+fO/JpbRKPNeiBeZpoUAP/He/Umkoxr+GxuJPdWPNpJE9Cr4b2hE97w+ehg1a7Hz/q7ZonGpqMrL3+/kug8teV3OX+B3h5IaL3d8ejWRyRQ2u0U61s/+6Zdo3rgaAQO9LIVjaZDQj3soubOV6JP96JNppKA9v16VCoOUIR0dQJZ12jdcxtDJY0z0drHlvR/mlk/+NX2H9qHlsrSs3oCvogJd8KAaJjnNIJEzeO/mRiBvQpZRDYbDKa7qKOej9x/hs3csxaVILK8N8K13r+E/t3cTzWh84LJGrllcTvfk/AJ9DkXEWdDw/MYZi2Y4NRanqdjJIx/ZSFYzsbB49uQ4NkXmqRP5uchr5z3Pnpzgz69tp2cqRY3fxbGR2LxzTydyFLtt1AadKJKA9hqdiXLR2mf3vt1oat4kbMMdb6P71d1c8c73Mnb2NBN9PdR0LKKipZXI+BgtazdQUluP2x/k+j/5c4aOHyGTTNC8cgOn90rUdCjEQ1mYsbC7ZeoWFjM1mCBY4WLvI72svamRxqUl7P1xLzPDSZZtrcVTZGfo5Az9R6eoX1xCRZMfqbA2+wdHPJwhG9V5+ftdmKbFZXeVYndOk0uJPPPlz6Gfu0c79+7i2g9/Arc/SDY9ys0fX0Z8Jos3qNBz8Akuf8d7GT5+hFU33UbNwiWMdp5m8YZtSFHIpiIEbmsh/uxAPn+myY9jSw1f+dpuAAzTJFVsp6jJh2WC5JIRHDL+m5tJvDg0qz2wXVOHKFusqA3yz7cuprXcTVaz2N8f5shwFNOyWFUXxGGT+O6rA8xcwkT6mROTLKz2YVqjjEYzfPKBo3z9ntW8fV09f/y9w7x9bd0b+fEXKFCgQIECBQoUKPB7QcGE5A0irRrIosBf39jO6vpiqr0ykd4zTPR0kstkWLT2SpKPDaEsKqLo7o585RG7BFmdl87OEMtqVPkd2BWBnG6Q00xcNon/eK5r9jXeub4eWRIQBPj0dR08f3qCgF3B2+imuLqZl+7rZGY4ib/MyeV3dYBgIgrzg126msHl9XHyhWdnDUjOc/T5J2l9xyd45zf3s6mpiC/ctoRkeH5FiKmBBBttNqYliGV0XuycYnWNn8+saGTs4BSSLFKRNUll07gdBcHxbyOJcIg9D3wPf1k5m97yTgaOH6G8pRVJtnHFO95HNhmnbtFScuk0hq6x9pY7OLVjO8u2Xc9ETxeJmWle+cF3WHjZVex+8HvEpiZZsHkLex64j9U3387R554E8tX/zryyg2XX3EDn7p0AKHY7smIjNDLMlnd9gImebiJjo2z7wEcZOXUST9pH5tQ4pseN5LdjnKtKkuuOog7GCa2IcfjFx9l4593INhurb76d6OQ4S7dej2mYmIZBMhKmM7Kbs7rJZbe8k+6Bg9iWO3HZDSYm+mh+0xqGRk6jtuUor2hkdOgItbctZmS8i3j5NPVty+jpP0rFzS1MhAaY8Q7Rsn4tvf3HEJYKOJ1eDh19gsQTIVrXvYf9j0+z9rYE9QvnV1Uo8PpgaCbV7UE6X53gxe90Ickiy66u4bZPrcTuuvTjzhO04y1xkJi5YJ4hysJPrDaRncmQeawX85ygxsroJH/cg/99i5kZHpg1IAFYef3NHH32CZavu57yVA3BdywA1UR0SoSf7GJQPz3btufYPtylxSy5805E3cK0i4RN6DlVRMPiIEWVEt0HXqVl3Ubc/gC9B/dR3tTK9MgwlmXSunYjfjNFuTnJ/7u1jY/9+CzhlMqK2gB3rqrls8+eZf9ABJ9T5pPb2llW7cWy4KXOKcp8dq7uKKVrMsHO7hnetraOcp+DK9vLQIADvWH+9Y4luGwSNQE7f/nwKQzTYiCc5iPfP8z/vms1PofOX1zfwZ8+cHR2gXB1fZBFVa+phFzg5+b0WIx/efIMdeUmLkViU0MjreVuuqfybvz7u8Zo8uSTBaYG+mhdt4nY1ART/b3s/fEPuPJdH8Ra48brqiCbS5K2Z/BvrQPRInB7C5iAZZLtiZAsSSFe5UJUPZzZ/wIn/mM7dpebtW+6E8lmw7IskuEQuXSGQFkZit3BkquuYfTMKSzLJB2LMj3YP2tAAoBlcWbXS3RsvoKzr7zMxZbVU/29FFXXMNGTH8O4A0F0LceJF56ldf3m2cS88xx8/GEal69CVgpJn7/NqLpJz0Sc+lIP3VMp/veVfgZCaWqCTv7p1kWIgoDb44HqGhJyPRtrZUbOnCAZDhMaGWTZtTex8oZbMXWdsa6zYFpUdyykpmMRCOAvKyeXzhCJj2Nrr8Asa6Skyo0gC1iGhWWBZpjEwlkcbhvK9Y0MnQ2Tag5w/MkBcucE44lwDlkR8DplMocmca+vRJBFcj1RTJuEOpokfWAS37sXMj0cp6TaO0eQYXfI7Ph+5xxxYmmdl+HTYSzTon5xCcrPkQRU4LefyGQSPWsx0hmev28ixaprakjFDfb8qJfweIrmVaUs2riZ8MQ42VSauoXLcSc8RH/QBe1BzJyBNpHCu6kaRCEvNq6zcN5Ti8vjx9JN5AVFqLqBZVjEmzz8zctd7OoN8/m7lhFK5ijzOUhrBrcur+YL27v5oyuacNtkWss8lPrmVxQoUOC1mIaFYpfY/VDP7DbFLnHbp1YiCwLp7ijaaBK5zI1jYTFmUiP2aC/ijY3kttYTmclQ1OzD21FEeCyF7YoaklmDtOnA1+QgZ1nkcgb+G5owTQvltham+uKMjybperAHy7SwuyCXjmPoJrGpIdRMGncggGJ3sO5NdyAqMslwGHewiBXX3UJ0YgzF4WDJ1deRjIZQ7A4S6TSWK0BpfTsf+/FZBDLcuLSCLTe/g2RGJ26ZZHMWX93Ry9/ctIBnT03yo8OjiAK8a0MDDkXiravr+dJLPbzcNYPbJvHRq1pY31SYq71RGLksdo+XYqeLVGgGm9PFmtvuxO7yYo6lSDw3hKMtSObEzOwxlmoQ0nQm/DL3vdrLDUuqODwU4f6HhlhZ7eeLNy1EMQSUBh/2ZSWkcwbHwinuPz3Cm1ZVEyhxIQig6RYf/f4RGopdvHdzE36nwkBofhXJ86YlAL3TKaIZrWBCUmAWWRbJxLLYnE7qliwjFY0gSBI1Cxfh8gWQZIWahYupbl3AaM8Zzu7diWWZ+ErLKaqoZnKgh/DoCO5gEc6cxnUNxZycTKC/PIE1la+OZqkGwlMDVL2rg0SLD+drkm4urlItiAJKqQul9NcbY7VVepADDuxNfrBAKnYgOWTkMhd6KIu9PTg7ThadMnIgPz4p/aOl6JEsgk3CubQULAvJb0csjJt/ZSzLOicst/O1d67m1f4wH7ysAU+Rk9A3TlL8wSUUv3shlmaCIhBOjWJz2skkEpTWN6LnsoycOU02laCosoqZkSEMVSWbiJOORSmqrMHp8yMrNtLxCdxFxWi5LBO9XXiLSwmPDOErK8eyTFZcdzOHn/kxq27+OMmQgIU1WyErFclhdyvomkYupWOYJiFvioYlJZdMjCtQ4Gch++34b2jEvaEKhLzZwvm5u+yz47+2Effaynn7AFI5nedOT3Kr201NnRfn0hIEScTM6PivbST+0jCGT+G7pTJve2cHRaKIIAqEDJ2jWypoCbqoK5c4+OwjZGJxipuqaVy0klB4BEV0cs0HP4Zss6FlszjcbkTFRvPaDSg2Dx94eoRIWuO5UxO8bW0dL+smjuJK0rpBZzrJypiN//PkGT6+tZUnjo3TH0pTG3TyoSuaCboUImkNuyzysatbcdokImmVoXAahyzhUEROjMaYiudYUOllWW0Aly0fE68JuvjE1jbu2dCAyybhKIjg3xAsBCQ5h4mN8qYWUpEILavXMT00QEldA4uvuhZ5ApLPDOFoDZLaf66ipmmROjBBprqJKcFgMfDLjkLtDT5KP7gUM6UjumUkjw17nQ8zoyP5bLjXVOTX12SB4Ns6sLJ63tDMb0ep9mDGNUSHhHQuIddW40UucqCnNDBMHAuKsEwL0SEjF5J2C/wO0X88xNHnh2b/f9ffrGLTm9vY/q3TRCbSFFW5ufIdC3B6Cv3l7zKpWA5DM4hOZeg/OoPdJXPomUFW39DA8OkLMV9ZEdG1fAyg59AU7l4bd/7FGtyBuf1aIpJlZiiBphrsuK+TNTc1cviZQRqWlhCbSqNmDcoavJzZPc7GN7fw3DdO0bS8lKHTYSLjKZZcWcuhpwdYc1MjsakMLavKmB7Om5uLioBlCZiGRVmDh0C5m8YaL8n7TuPZVIXglLEyOkZcJbFjGNGjYBa7iU1NMHzqONUdiyhvaiE0MkQ0PEnWk6ZhyTISMzPkktPYO9zEUoNIdTKBCh+iKCKJjnz8riqAZRqkY3FySzS0FpHp8T6O/PAJrn7/x6hLKAiJSQxXkK8dn+bjV7dhVwTsNjDMgqHvz4VTIPJAF4G3t+O5ohpBEsklMpgpDc1UqLxofv/TSESyvPLDLsrqfUiKyKFnBskmNTbd0cKeH/dinfs+jm0f5k2fXHHJ8070zU+gq24PcmLHCEOnwji9CmtvbkJSJCoaf/I6v2VaTPTF522fHJy/raLZz4bbmzm1c5Su/ZMUVbnZcFszB57MFyJqW1uOYpd45D+OUFLnoW1NOQeeGCCb1mhZVcaiy6rnnXPNTQ0cemaQky+PIskiCzdXEZ1KM3giBOTNfhT73ARsPZcvTKOrBulLJCnl0gXjqd9VMgkVTTUJlLsorvbMbs9lDVJRlUc+d2RO+xs+fOkEd1ESKa72zDnHL0NkcpwTLz5H+/rNLLz8KvRIErUvR9E7F4JqILhloo91IV9ZwtKrr+PpL3+OA4/9CIDB2qOsu/ZOSmobGJ8IYxM9FNV76JdNGu2FcckvQ43fSWK4j/DIEA6vl6LF1QgNLoIripBEBewigpWPsRnoYInE7xvAUi+sD0hBO9nuCFKxE9tPMQ6xOWUqm36zGqlAmQtZEdnzox7S8Qt9nWwTOR+47Ts6jSiJ9B2epmNTFcVVbnzFDhweGzZHQUr+m6ZzMs7CKj81ATujEYX33HuAeEZnXWOQL1xdQjqZwF9aTsvqdcyMDpMMh3D5A2RTSWaGBymrLgMc5DI6I2fCnNg5gt2psGRLDVWtgZ87Fiv7FGJP9hC4sw0rqSHYRZInpnF6Xp91skQ4x2trZyYjOTLx+c/oAr//eIsdeIsdjHadZf+jDzF69hRn9+V15P6ycjbe+Q6qlrVi5DQCb22DtIFgl4g/P4C1zEk4MowgiIiShL+sgtM7X2TR5VeSCk2TikVYfPW1ZOJxDFVFTaWpKgsypkeoCQb59I9Psa9vribong311Ba5SeZ0kjmd7WcmuaytlC3tZaxpKEI3zNk1Y6Ecti0s5/nTF4prfOraduqKCjkRv2niWY3qgB2fy85Dh0d44MAIhmVxx6oaNrYE+NrOPm5ZVkWN38F33rsG3bQ4MhQhktIYCWeIZ1W+8Uo/H7+6dfacjcVuvrC1g+njYfoe7Kd5TRn/duMiPnlRwcct7aVI54xNIuEI+x55ENlmY9NddxMeG8VXVp7vrxtbaF6znqETx9j38AMsuepalm27kdjUBJHJcZxeH57Syyhv8ROdyTLeM0h1m4XTpxCbTmOaFo3LSjj45AC+YgfhsdRsQc5EOK+Ff/HeM2x8cwuWJXDkuWGOPj/MLR9fTk1H0Rv7ZRT4jZNLayTCWUzToqrVQ2m9g/0P76K8sYnl196IpCgIgkDnnp0ceeZxLr/7vSiSRDYR5YVv5+fu139oNd37XqSsoYnpwQHKGltoWb0BadTEyhmk90ygljrx39iIoEjouslzM3FEIV9Ye1VdEZ967BQzKZWPrKjlqo4yFMPE1egl8I4OkjmD73RNUjkRYyaZ44svdvPVd6zCsCCr63z4e0dm41Afv6oFS4BwUsPrUCj12rl2UTktJR58LoUSt42ckc+zS6sGpgXD4TTRtMY9G+oJJVV6ppK0lP1qc78CBQoUKFCgQIECBf6QKESO3yBabQmevi2IJIWZnNFBCaBnsxiaRklNHbGhcbytQTLHQiQf689XjNxcjVzhoqPCQ4ctgaQlOJm081fPDfNvty+hxG3jn9+0mJFIBrdd5kB/iBV1ATY3F7O3d4ZDg1EUzQJJZvt9p0iE8oGF2FSG5//3FDd/bBmy3WKiL0ZoNImkiJTV+7A5FEzLmmdAAmDpJp1jCTKawb/csgjDMHF55weXA+UudFlAMwxskkilz8E/rG3m5W+emW0zeDLEFR9sQKrNsaB4wa/vwy/wS2HoJou2XI2ayXDwyUdYcuU2Dj35KMuvuYGXv/tNFl+1jeFTJxjv6WLTXe/gpW99jTW33s74mU42XnEXLsVP8Ts/Q9aeZXqgn8vueQcBbwV1f7YEu+ygoXwJjoAPKSvS8qk1iJrA8vZtKG4H+mSWBZ/ejDaVxspYvPsjnyNzIoTLW0pFZS1GXz4hI314Ct91DaT2TaBPpRGDdtzXVxGaPsU1H/w4sk2hvKmFp7/yeSRRYtGVV1PdsZCr3vthZkaG6Nh0OUPHj6K7TPyNVViChSUIVJYsICdlcdcW4xFFUukY3qoypmMjHHjuIdKxGJJbYd8TP2TVTbfR/epuZkaHcBUH2PvkDxAEAafPT3h0GFmxoS3TAHD7CiLMXyemaDDaGeHUrnyVS9MwOPjUIL4SJ2X1l67s6PLZ2XJPKzvv6yE2lcHpVdj09maCFZdeCFByeaHC3BfOV4ty+vxsePPbUJwuiqprsTkdZBJJDu99ijve+bdE7juDEVNRKt0Ebm6m73Nfnj2FbLdTv2wlT97XSSamsuG2ZlKxHEMnwyh2Eac7TbCymkwsRioSwVdSRiYRo+vVXay77S6mBweoW7ocl9fP6NlTfP+2ag4PRmhurCcYN/jr9lqEFY08PxHh7x87xTfetXr2tXf3zPB/b1/Cl17qRRIFHLLInatq+PqufhZWevn7Wxfy78900jeT4uqOMh760AZEAd6zsYHdvSGmkyoHByI8fXKCT13TTkYzCLpsLK72kdWMX/Fb/cMkllb5waFOVi/t5NHBb7PeuxGn9nYikyb/ub2Hze2l6Dmd6o6F9Bx4FV3NseeB79Fx2RWsueXNhEaGOPzUI0wN9rPxzrvZ88B9yIqN93z6Swhxi+SeMYxwFrnMhXtdBW6XDVwgWAIrN9zEsm03MdRzHEsQkGWFwWNHWH3L7Uz0drHnwe+z8PKrsXu9vOUf/y+hkSF0TSUeupAg6vB4qVu8jEBlFWo6TWl9I4mZaTxFxTQuX01RbR0HHslXhXX6/FS0tuMrLae8qQ3L0Nn0lnew7+EHZx22FbsNQSg4sP+2U+KWaasySIV76PD6abqmlrvv78Rvk/ElTWyTaZY57bh12NLsQzSylDY04y0uJVBRicPlITw9gSSIVLW2k47FkG02EAQS01NINjsOlysvohRzvPzUCPWLi3H5bCQjWcZ6Yqy9qYmJgQRn9kxww0eWsPfFkVnzkfN4AnYs0+Tw4UlWrK8i9eIQlmrgaAsi+W3oR/LJndZAAqdHJvTKKI7mIHKxHdOw8Dtltr17ATt/2E0urVNc7aZtbTld+yYwdQu7U6Z2QSGJ/feB+EwWt1+hpNY7K0r3FjuobLZT1ebGMONkkxk6NnnRsxaCZGJpIi3lKzETGvqpNKqaF/RmuyL4r2sgcypE4uURRI+CfEURZ07voby5GbeQ5NmvfJ6it3+GyrIifrh/kNoiN16XxH+/fTmqaaKZJlnN4AvbuwGQRAFFFOidTjIWy+C2yXRUeKgr9iAVEjkLXALLsoiHM1x/dzvGdAZfrQdFySdbCrEc2ViO1O5RPJuryfVGSRyfRnTJ+K6rZyCls/vHvcg2kRs6goxNpNn/5ABrbmxg5w+60FWT1Tc0cPzFYS57SxvDx6cJlHvQVYMdj/fPuY7KFgXLNHE4nfQf6qaopg5/eSWpWJT49CQltfVINht6LoskK7grgriDxbgDQURJYvcPv4vD7WHhZVfiUFN87cYaMokMot1JKhwlFoshun0oNhv/tK2GVluc5oYsf9RYyu6wnX98sZ+WMg9HhqK83JUfv6RUg//7TCctZR62+S9tRljgdUYUESUZl8ePBx9C0sIY1xH9GtaMiTaWwrGgGHtrgFx3FMEp49tWj1rsYu/+fppKPQyFU3x7zwAAewcjrP7ybt6zqYEnjo3z7k312M5Vj13dVMR4LMs3dvWjGuasMKFnOkV1wMFkPMtlLSXs7J6Zc4kXV6jauqCM6kDh3ihwAUEWsDldlNTWo6sqTUvWIsVAdNiwUhqCTaLYUYY4JVGdaKCsvJyNf/MWcp1hhEkDfZGFUO9AqDEwHwnhk8Jcf2sLkfHhea/liGs8icaNS4uRToYQJBHf1jpsDb7fwDvPm4vYnHMFOZJLQXL95AqIkltBcr8+FRILzGU6nuWVnmn+dms74ozKMlXGWeTEiKt41lYS+uqJ/HxnQRG2Gi/2Ri9pMUVoZIimlWvQcirVCzzk0mk8wSCqmmOqp5tkNILd6SQyMYJsc5BNJfAWlWABoiQRrKgmMjGGzeVGttkxDQNRtDB1HUkWSUYzVDT6cAVsxKaz6FkdQcxXhbeAXEojFc4RKHVSVFUQeBX45RAkEeUnGEkLkvAT9wVdNm5YUsn3x8J8wOPBvnMUTAvXslLMmIoxlYZpqKktR3bKiENJ4s8PohgWWzZUYQ2lMEcF1q97M9pEEqXUSTQ3Tf+pwyzddj3ZVJJgZTVaNnPuWiQMTSNYVcd/X6aTzWiobpkxweDjj5ycc21J1eQDlzfy5Zd6mEnmY9DDkQz/9vRZvvDW5UwnciyvDdBR6aN7MsGf/vAoJ8fivHN9HYeGopweu5D0+f/uXMYdq2rmnL/IXTBUeyMxDQtJEcglc8g2G7UtS7ELTuprloFqQcgg2x/FiOQQ7BKORcVkT4cQFAnrsir6bBalsvQrG+FJHhvSRUlCks+G5Lvwf/EnmJhJTgXJOf/5LboUbD/luV+gwO8Cr11uMFTY/q3Tswno4bEUL9x7hhs/vPQ3cHUFflm0nE54PE0upZKMqux/vI/lV9ex+0c9LL2qhpM7R2fbCqKAZVqc2TPGulubOPLcEOm4iq/UwdZ3L5xnQJKO53jx22cIVLjoOzqNr8TB1ECcbErDV+Lg7N5xVl3fwJFnB/GXOpkZSWLoJoEKF90HJ2lcVsLA8QtxB8Uu0bG4iE1rytCjWWxZk9xYAlu5G59bxu63YY4nwbBIHZjEt7Uuv7YXyiKVOrFdXc3Rw48yMzJE+8bLWdh+GUYoh1B/OUJQJpQaJUuah7/8T7NrbefZ+v6PkEunsDlcaGoOSZIQFYXDTz6GIIpc/d4P0bF4C82XbaBz3ys0r1hNLp2myKnyxVvasCw7qUiOx96zEU0uxKF/HgzDwL2pmtiD3WgTaaSAHc/majRJQ2q0MzkQwzQsghVudNUkPpPB7pLxlTlJhrJoOQNfsZPx7ijF1R4cXhu6anD1uxaQy2hgCdS0Bxk+k1/HME2Ls3vGL2lCUr+4mJ6DU7P/X7i5itOvjDF0Kn9sJqHx8v2d3PChS5s0nEcQBdrXlTPeE52zvXlF6by2bp/C00/2z67XhcdSvPJAN80ry0iGc3iLnRx6egCAxiUl7Pph9+yxPQensDkkLn9bG6880I1pWDSvLEXN6Bx/cST/fg2DYy8Ms+6WJoZOhrAsKG/0MTNyoSp9Sa0HX2neKNUVsNO0rIS+oxd+k4IoECwvxP5+1zAMk+HTYXb+sItUOEfb+nJWX9eAvyw/vjU0g5aVpeiqwcxwEptTZvnWWgzd/Bln/hWxLLAsOvfuoqKlDQkZpVQm/N3TmHEVpdqDa3kZubRKIjFDZDx/L3uKS7j2o39GLpkgK6aZ6ttP//FDbH3fHyPaBPqsggnJL0Mup6FY0LhiNWo2Qy6TIREOkUulEASR6YFe3EXFeIuKsTndOLwegm9tJ/Z4H0Ykh1zuwr22gvgzAyiVHnL9MQRFRFQkTN1Acinn9Asg2mQsy0JAQHRIiAE7xnQGPZpDDtpRKt2I9l+/VNsTdHDdBxfz/LdOk5jJ4vLbWLGtjiPP5U34ZJuEmtGZGUmRS2o89oWjbLy9hf4TM6y+vgGw8BY7EQCnr2BM8kZTE3Sxq2sGv1PhHx7PFzd77+o63rM0gKZGkRQFf0UlR595nJb1mxkfGcHly5vfWKbJh555P+9c9k6WxS5j+7cu6LT7j81w6yeWU90W/PkuJGPgai8l+mAX2kgS0avg3VyDkdZel/fp8s2PdTjcCg5PId7wh8zMYD+xybxJb0l1HVdc/27sMzbkiB28FmZKJ7G9C30yjRS049lUTXhmHEuwcPrqGet8jsblq9n21j+msrwFu82DpyqImsshCAKe4hJmRoawe4rZPfYCETHM1sVb2Nc39zpEQSDgVqgvdnFgIEJD8QUDKvdr+nHNsPjL6zt4y+paJuJZmkrcLK35+Q1/Cvz6qPA5mPA5OTYc5b5XLxjR/vDAMPVFLj5/11Jqgy6+t3+Y505PUlfk4i1raqkvcjMSyVAZcKBIIrGMzl9c206x18Zal5vnvnYSNZvXRE/0xlh1Qz0737eBrlyWSNYgpxmYpsVoJM3x/ijlTa00Ll9JoLIGh8eHZRrY3B7UbJrRztMEq2oQJBFdzWFZJkMnjtD16m4AimsbuPJdH+fs3hh2l4xsE1EzBpVNAXY90E14PMWCzVUceKIfl99GLq3hfE0/Gp/J4C3Oz4UsCw49O4irVqDInX8eZLQMqqHidxSKTf4+k0lo+ViXAGX1MoIgItlkSuobCQ0NsXDLVSRC05TWNxKsqMIt+LHiBqJD4p4/WkRGM3HaFUqXvhnBJiHaJPSZLJIhke2JYYQyeK+qJblnjMhD3TjagihXVGOLaXzmug500+SrL/dydCSvo/yrF7sQXuriq3ev5HsvDrHrNVqdv7qhg6++YxXf2NXHmYkEl7WU8uW3r+Aj3z+MaYIpgGnCoaEI37hnNYcGIuztm2FTcwnD4TRf3dHLimo/9921kjNTCb746gB+p42lRR6mRpMUmyL3v9LPB65owopoxGcyuAJ2Smu9OAqahgIFChQoUKBAgQIFLslvPEosCMJ1wH8CEvANy7L+7TX7hXP7bwDSwLstyzr8hl/or8DImZOAiCQpaLks9SWQS8aQbAqmaWIJUFxdS+hbp7FVufFeVYuZNUjuGiF4VzurHFFEARLROKsDAV5+Xwcz7igL6uyYQop1go2BUIauSRvFbht3rq7lq0+e5umPbcZQTVIRddaA5DxaziA+k8HptXHm1VHWXN+EpppEp1IUV4JhGjStWMOJF57Dsi4swC3ddi1v39EFgKKDauYob5Z5/+c3sOdHfZx+ZRLFIbHpjhYGcxqVPhuyafL9967k2A8GuOuvVpOKqqQTKr4SB/HpNA93/YDg0iAV7op5n51lWQhCISD3m0CyudFyKoamsfmt95CMRNj81nuQbArXf/STWJZJy7qN5BJJRFHkts/8HYrswD3hIrV9FNWmUXJ5NYJLpu6OzxB9uBdlhYgY18gNTVK0tY7YwwPY1pSjjsRRp9L4ttYR++EA7vWVpJ4bRY9m8V1dT/ShHjybq4k92Q8COJeUkOuJYmkmsaf6cS4uwXNlNVlPlr6+o8g2OzaHk0wyTs2CxfhLy1GcLhxuN4MnjlHV1o6aSTPWeQaXz8cr3/82S6++jr4jB/EEizBNk94De1l98+3se+RBMvEYi7dso2HFKja/9R4cLjeh0WFu+fO/JhmJsOqW2/EGi5gZGeLGj32aXDpJMhzCX16BpNhJhAI0LpMQC2vCv1YsTZgjFjnPyJkwzatKQJ7/BYxMTXB65xSVzQFaVpWjqzphJpnMiPP6JG0qjTEUn602dTGCU+DkY89RXFtPVX0jupojFQmz8LIr2bz17YS/dxZnRxGiR0GfzhB7tp87P/XPjA2doX7pSiRZITYVwlc0RfPyUkrqPJSSr7JSVOMmFx/A0CaZHpzCNAyCVdW4fH7W3fYWXMEiKlvaObH9WRCgdc0G7AqsrZBJj5/G27wYn9+PIAks7QnzV1e1kFUN7IqIqps0l3r4/PZu6otdfOvdqxmNZPnHJ05jWfCvty/mg989TEYzEEX48ZFRZlIq/98tHXx+ezefvXMpAafCN05P0D2V5N+f7Zz9TP50ayvf2jPA996/jkVVhSD1L8JMMsfSlkkOT3XynU0/4PhjExw6NokgTPLHmyoxPA4GBBNsbtbddhdqJo0oipQ2NPPCN79KJp4P1q64/hZ6DuwF4Jb3fQbF5ST80GmcS0uRlpeih7PEnx+k+D2LiD7cjT6RT46QK100XrecpB4BBLZ96GNEx0cprW9i2bYbOfPKDkKDgwRKKzB0Dafby4prb2TxlVvJJpLomorL60eUZURJpGXNOpLhMHXLVuAtKiIxE+LaD38Clz9ALpMiHY0y1deNms1g6Dp2p4vb/vIfGO88g6bmqOlYhGkaSMhouSyh0RFyqST+sgoC5fPHDgXeeCzTpDg7hWWaCKKIoanUSCZ7P9CG4qhAV03EcshEI2jRcWJdE2jZLKUNTaiZDE6Pj2wijmiYOHweREkiUFWDy+djqq+HkrpGZKcDEZBtNrJpjZXXuxg9G6FtfYBAWSlqrgI9K5GKO9j6ngU4vTLXvG8Rk8NxJFFgoidG7aIi7C6R+IxGw/Jynnuin+ve1gHDcXJ9cRI78iIvJAFLN4k+3Itvax3RH3fjv74BuczF9FeOUfXWdq79wEIEUWSiJ8ahZwZZdUM9Xa9O4AnaURwywSoXdnthUeJ3GcuEF77Tybb3LmS8P0ZxuUn3vh2AycntL2EYOsuvvQkxEkEOKAjkKBYaSO4YQQ46yJwJ4b38XMKXBbFnBnC0FxF4cwtmhYxqZai0tTPefYaiqho2ve3ddDkcTCdy/PGWZkZjKpe3ltA5meTkaIyV9UEait18452riGQ1QgmVJ4+N8KZVtQxPZhiaSaEvreLkaJyGEjdLagK/wU+vwG8j4fEktRVuMo/0ELi1BdGyyHZFkL02kvsncK+tQC53E39uEHtLAO9VtVg5g5wskk7mMAwT5dyEJhXN4S9xomZ09HPV4ERJQM0ahEaTeIsd2Nwy3iI7HRsqiE6nEUQBb9BGSW0plu5GkCSaN2zG4XCSicfxFZUQrKwiMjaC0xfAW1SC3elCU7OIokA6FiUZCbFs6/XYXC4QBRLTEwiShGUYmOkIvkARz3zx76hobmHJlddw+pEHUDZdQUldIzaHg6trJdbd7MXhSSBW2DlY6iSe0QmdE8ydGY+zbWFhbPFGoNhsuPx+3CkPhDSsnIm93kv0/h781zUAkHhhCHuzH+9VtSDkTR+0J/q4bnUxg6rOseHovPO+2hdiWa2f509PcePiCkZjWb69Z4CPbGnGtKx5FXrtkojPofCujQ2kVYODgxH8ToU/29bGY0fzyUlXtpfyrg0NyFLBFK9AHk3VySWnUDMZ1EwaWXKiHYyiLColtXME14oyEtuHcLQHiT3ej6UauDdWkXk6bwYJIEyKeILFxHcPzp5X7Yog+e0YsbkJYrpT4v/t7Uff0sKdH1hMqd+BFHQU4qV/wJiGSTquYhgmWkbjX6/sAAMMu4S32M7wmQhlFW6SR6dxr61AUERyvTG0yRRKazHJyBQLNm/BNE1EWcEwNGRFJpdMIsoSVe0LECUJyW5HkiRAyM/1BAFNzeEvLSMyOYFlmYiSxERfD8VVNTh9ftbcchdqVqRldRlgERpJMdEbw1fiwOmzY5oWoiyia/n+OBHOFUxICrzhiKLA29fV8dlnO/mjnjHue8tCXGNpsp1htLEUAEKFi9VtJRSFc4R/3DN7bOKFIbxX15HcOYJtKIFrXQWh756h6C0dXHbTOwjFxyiqrMHCQldV1GwGb1EJ/rJytFwcX2kxQdlFJqFS5bDjd8osr/KzqMTL/rEou7qnuaqjdNaAZPZ1czqTsSy1RS46Kn1ousn/vNzLyXOmIyVexxwDEoB/fvI0m1qKqSyY7P3GMDQDS82hOB2QNbElFUSngJXR0CZSWLqF6Mov0yd3jWKr8+K9shbTq/C8oNFU5CRQMPsoUODXQmmNF8UuoeXySSPxUHbWgOQ86ZhKIpyl7Ddk/lfgF0PXDE7tGmP3Qz2sf1Mzrz7SS2VLgIGTISBvDCWcSwIbOhWibW05na9OkI6pHHxqgOXb6qjpCOIrduC6RFGR0GiKkc4I5U0+0jGV0jov0an07LkBBAFMy0K2iWi5c/fTufLuuYw+m1CZS2tcc0czwZxB9NFe/Dc2Ev7+GXzXNhB5sAvfVXVEH+3Fd1Vd/hQZnfgzAziXliCtKEOrdjMVS7Hs2puwDA1Pxk/422ewtHyMTqn1UHJTIzlnlpv+9C+Ijo8iiPmYRsPy1YiSiGWBlskg2x2Ypo6AQN3iZaQiEWwOJ2omiyiJVLa05ecNokhsahLLNBk6dRwsk7oly9HkuYZnBS6N7HWSeXEMucyFY2ExZkIj/twggduamRmLs/07XWx+SxMunwaCgM0F6UQCXcuCJWMhEAulKa5y4ytx0nd8miPPDFGzIMiSK2o4un0Ib7GDpuWl9B2dBphNinstNR1FLLq8itO7xrAsaFpRwpNfOj63kcU8fdmlqF9czJIrazj18igIsHxr7SUraicjuXkFA9JxFZtTpqTGw0RvFMj/hs73yxfTfWCK1Tc0UNMexNBN3AE7j33h6Lx24fEUvlInRRVuVlxbz/4n+lAcEvWLi1l9QwOOc4Z8ik1i/W3NiJJIz+EpvMUOrnhrG8XVhbnpbzuv1Q+GRpI89ZXj57tazu6ZwDLhynd0IMkioiSSiqsEylw0LClBVw0GToYorfdycuYkftFPliyWZdEVzesgK9wVpPU07cF2yt3lv9R1+ssraVu/if4jh7C73NicTsKPduJaVoboltEm0yR2jhC8uwObL8C7PvsV4tMT2Fwu9GyGVCyK3eGkZe0G2jZupnPPLhZfvY3a8Ajwy13THzIlZhwjEETNZkjHonhLSrF7/Th9Abr37sLu9iDJMqIko6tZMgkTu9uFvb0IySWjh7LEnuoHw8JMaSAK5LqjmBkN58JiYjtHsTf4EOwS2e4I7lUVZDvDSD47UsCG6LWRPT5Dri+G7/pG3OvLkd4ADUFlc4A7Pr2K8HiKvmMzHHhyADWjIwhQt7CI3T86F+sQBCwLJgfjpGMqL913lrqFRYx2RWleWcp4T4y1tzSi2CVkRUJXDexuGS1n4vIpSJKIbJOQ5ML6yetFa5mHVM5gKJzXb71tRTW3lvoQSaLpOulYFElWaLvsKiRZoXXDZgRJpG7FWkpq67m36V6MnMXRfWO8+TOrEESNYJkbVVU59fLMz21CIjokYq+MYqv24rgqiJnWie8YpuiuttflfbqDCquur+fQM4NggSSLXPaWVhRnQVz7h4yWy9KwfCWndrzAlTe8H/GFFIaVwyCBu6mEyAs9OFqDOBcVYyRU4s8PUPaOBcimm90PJVhzw5spsQeI7+glp02QAxwrS7AttxOPTSJJEsVV1Ri5BDcUvYlDwi621S3k7uWLefd3DnNwKIIkCGxqCTAQmuJPrmxmb/8Ua5r9mJaJeJGj6Uwyx48OjfDlHT3YJJFPXtPOLcsq8TkLJtC/LRimRVo1OD0en7fv2VMT/OMtC/n6rn6ePJE3vjkxGgMsblxSid+pUOpV+K+3LMfrkjk4EKZesTHVH0fNGdR0BFi4uRpdM3D5bNhsEotlEU0MExkfQevK0Z+Is2jRUowtV6NlM0z2dmFZFtHJcaoXLMLUdBxuDza7DbvLTXhslKr2BWjqhbWB0PAAXXufpW11G3a3D3dQIpOwM3xmmtZVPtJJgeJKg423+3AH/QycSJPLCDQs8ZEI64RG0yg2CfMiE75cWicd0Uhog6SMFLqm8+2j3+aWhbewpHQJNsnGcHwY3dJp8DXgs+fjYvFcHMuyCmYlv6Oc3T3OiuvruOpd7dQv9qPnsmx489sxMfEEi0jMTJMITeP3leHVA8Qe78O1uoLo9kHkEifuVeWkXhjOFyYpdmBmdOQiB7HHenGvLidzZAo9msO9ugLBJgICmcf6WLyxklEsVtYF+eyzXXOuybJgJqlyaDBC0KXgscusri/CsiyCLhufeugYFT4n7WVephJZ7t0zwF9c38HJ/igtARd2WeSz2zqoEWQq6kq4p6MSE4vcvmk+v7md3v0T7P3SSWwOiX+7ppE6j5OXv3GadFylF1i1royRQzPs+3EvCNCxsQJJFnB6bdgcErJNwu5UMAyTTELD5pBmzfnS8RyCKOD0FPr8AgUKFChQoECBAn84/EZNSARBkIAvA9uAEeCAIAiPWZZ1+qJm1wOt5/6sA7567u/fbiwLwsPETCeCKHF8+9Oc3vkiAN7iUq7/4z/D5fVTVFWLKMmYMR3v5dXEnhkg2xkBwLWqDMs0SUdCPPc/X0RXcwiCyKa33E3jxk3c238/zw8+T5W7ivcueS8fu2Ih1UYGKxfhiqU59KcfQrjhLmyufLD/tW7+FU1eshmDjrVVvHTfWSLjaeoWFePaWgZGGl95Bbd88i858dLz6GqOxVu2UV5WwQuVu1FWryanhlAzKYYOdzFy9iQVzW286U8XI8iVVBalKU+bWGoGc2wMo2UJG25rpnPfBMdeyCd41i4KcNmdFbwneQfRo10Mh3bjKSomUFlHNuklaIuTvu9b2BobcK5ciXvlyjf2O/wDR8/GWXzZVmwpBSZ1yqpr0JMqVsZADjjIDIRx+oIYooqR07EpTqy0SezFvDW098oaEjtH88GHQ5NgWchBO+lDk7jWlJPcPQamheSzo41O4FxWSurgJACSR0GfyeBoC5I9nRcHCTYxv6BHvuqqXOJEn8mAYZEbjqG2mjz++c+i5bKsvfUOnv/aF1l1w60cOvgI6ViUtW+6k+1f/xIrb7iVHfd+nWwqyYprb+aV73+b1Tfdxq7770VXVZZfcwP7H32I1Tffzt6H7ieXTrHiupuZ7O+h58Be1t3+Vp5+4Lu0rt3IwLHDDB4/zOV3v5eXvvnfVLZ1MNHTNftbd3p9XP3+jzBy6gXa11+OoRQSRH4dzIxHSUcMghVOAuUupocSc/b7ylzoM9OkjhxGECUkRUKrqMIWj6PLVZTW+NByBu6ADVlxEhuUiMYziJ4ziIlRjMkpsg0VuHL1aPum8V5RQ/y5QTiXwOa+spqe7n3ULlqKZLNz+KlH6D9yMP/apWW8/T3/ghlXSe2fmHtdqgOXP0jnq68gIqDrGsuuLCMZ7UXPWjjcYGojDB+PE6iopGbxcsbOnESSZWxOF7l0ClmxkwrN8Pjn/23WMOr0yy9w65//DdlkklM7XyCXSjLSVYOFxJobGljslNn/aB+PbGmh2BgDr8DNL6b5+xvbaBrvY3F3N9cusrC3tpEttdNS4uIryyTsg32gyISqSphO5H+Le3pCHBwMc/faekZe6iGRuyAgMiyLaFrjO3sH+JfbliIVHN5niefiHJ0+SjQbxa24aYgpBAejmNMzKJWVlDocXOeuYFtuC517Qwwcy/eDlgVdr4yzpbGRZOUZ3MJSZFOgq+tlPAE/PpfI9Z/8JPGpKD5vgFO7XmCqv5dNd91DIFaEVW7gXldJcte5am8C+LbWY+aMWQMSAH08jX1QRSvO8erDP2DRlm3YnC56D75E36H9NK9eR9/h/Zx6eTu3fupviU1OIMoyBx77EZN93fhKy1h98+1IsoIgiuz6/rexDIMr3/NBfvQvf4+ey49n1tz6ZirbOsjE42i5HPt+/MO8CYnbw9b3fZh9jzyIls2wTxDY8Ka7aFmxilOvvMzh554EwOHxcttn/o6qtgU/3wdvaDByACZOgqxAcTtULAZHQUT8qzI9PEhscoLDTz3KZF9esFK7aCkb7ngbMM3hZ2OsutZLdKKb0c7T+ErLqF20lGe/+gU8wWIqWto48szjYFkoDifXfPBPECUJNZPGXVREbGYay9Bwev2Yho4kK5Q3OCmttHF656NkU0kal68mUFlFsDRB76F9qJk0TSvWEiiSmezroWVFI4rDwFATKA4nu344zrorqjGjWUSbhDqQN+9BAO/lNWSOTYNpYZ0TEGe7oig5ncCdrcSf6COwrR4UCV/AxsJ3daDNZGi9qZEckEiqjHWqmIZFNqXhdNtQHBKmZSIgYBom+S7bwiWruDMTmLEYgiSBKCI6nGgjIxjpNLb6OgSHE7DAzAulLUlCFEWk6hrspSW/gW/8t4/0mbOgqZi6nleqZjKog4MIioJSU4ul5rA0HSkYAE1DV1XM2layugM1ayApYFkChmaQS2tI8gyWmaJ9TZR0bAiHPcnhJ3cyfPoELWs2oOVytG3YzPavf4nwaH5uc9OHPkMuFMXREiCxcwRMMLMGtlov6nACLFBHErg3VpLtniZBjFhynLoly3j43/4/mletYcMdH0DUwoyI09TaS4gO5WhX4fLFJVSLZxFFJ8hxcGTBJfPBq1WwpqHcj9WQwVLiWAgIsRhWSEWQFPCUQmoGYqPgKYO69ZCNw/iR/N9l7VC7Hmzun/4hA0x3wdhhMHRwF4MgQWIc9Bz4qkB2grsUJo6DzQUVSyAThanToDjB7gctDVXLoajx13lL/EGQ6erCTCbBOie+9biJZZykc1BS7MOmmRgJFdEmYWQ07A4ZYzqDrdaLaFmYGQNREjFSOkqZi9SecdzrK9EmUuR6ouR6othbA0itQUZ3jtG4tIT+YzNYFrj8NsITKRqWlVC3sIih02GmBuI0Livh6PZh2tdVINtMlOIk7etAwIUoSaRiUWJTw4x3ncHmdOYFuIoN2aZw4KmHaVy+Cm+wBF1VicRjDJ08QtOKtWi5HHsfup/pgfxcs7yphU1veQdDJ48xPdh/zvgVglXV3PaZv+NH//y36LkcZQ3NvPqjH7D65tsprqlDy2WRFIUXP/8vXH73e/n6bRW8kjmEXbbTEWhjaaQXuodAcUFxM3gLgt5fF5Zl4VeKMZIZYs8PgWkRuKMVM6FiGibOZaVkjk2T642RG0zgv64BI6GiDydZsqKcgN/OVCI377yNJW76plMsrw0wk8wbkAA8f2qSD13RzH++cKGS6rrGImqKnKwvKqF/OsE/3LKQVM7A65Ap8dhY2xAkp5s0lboLgrECc5AVCS2b5fTOF9hw1Z3IuoJermKEs1iaiRHLoU2ksNV6sdR88ozolGcNSABsdT6yp8Nzzps+No3/piaij/aAfi57YnUZUbfE1+9ZjWoYpFwylUWFZPI/ZKJTaY4+P0TPoSn8pU4WbqpCUkQcHoXoZJpjLwxz04cXI4zmq1Oen/+LHgXXyjJkm5OyxhZS0QjeohJy6RTZZJLEzBSSoqDlcjjcnnwCpWHOPjttDgcI4rm5jI6s2KhZsBgEgeqORRiahiBJ5FJJTPUUyZADLZtFkmTqFgZBcKLldGwOiVRURTpXMd3UdaZPDuAID+fHmOewLEASEQThXMKkgGXo+TmaZWJpGoIoIvl8IAjoU1PokQi26mqksjIsw8gfYxqg6XmHQctCKfZg1/ogl4DSNsilINIPwcb8OHbyRP4Cyhfnx61TZ8BVDCUtEOrNj6uLm/Nj24mT4AyAtxKmz4LizrcN9+a36Vnw10LlMpALz5HfNuqL3fy/O5cxGsmgAPrpyAUDEpuE/6YmqhuDhH7YOe/YXE8UW52XXG8Mx5ISbNVeEjuG8d3SRJFQjiTb0fsSuChBrnCRzaXIGCksSUKwTPY+3E94NEn94iKeeMsaXn2qn9iZEG9v8ePeWkdUM1EkAc24YJ4mCpBSdT56/xGe+JPN2GWRFzunZ/cb5vxK3rGMhvrrrvBd4KeiODQSU2kOP/0Y19z4YUSnjJnWMTM6RiyHOpDA3hacjRuoQwn0cBb729tZ7pIwTJOmMu9v+m0UKPCT6d2RfwZKMpQthPqN89tEh2HyNIS6oWQB2Bz5OJFpQNkCaLriZ7/O+HEYP5p/bpd3QO1GUOabRFzMZG+YyGSWTErDX+KkqEggUF86u1+QYPUNDSQjWXTVxOGSQQAu8q0URQG7SyaTyeB0XnoMHhoMEw3pxGYyuLw2guVOypsCP/XaQuMJYpNZwuMpHG6Z4moPlc0//ZgCebRwmFxnF5aeN2rAsvJlTy2LVKCePT/qx+6WSUbmmyf0Hp5i0eYqDj0zyNRgAl+pk3W3NJII5yiuchMod5GYyZCOZtE1E1mRMAwTTAtZkcicM6nJJjW8RQ6mBuK0ra1gZjiJrIggwFh3NB8/Oz5D27oK+o/OkI6r+MucjHdH2XRHK+PdUQZPhFjW4CX14jBKtYdcXwxBkfI6CMPCMkwwLLJnw7g3VpHaM4almaSPTOG9rYGsMIFghDjwyCHWX/8WEi8MzRqQAGjDSYypDGO5TrAsXL4AiCJ2p5O9D36P6aEBWtduoKptIbl0EgBBEHD6/EiKDdM0QBBQM2lc3gCjnad45f57MQ0DSVHY9oGPsvvB79G5ZxfX/8mfA4UEpJ+FXbcjLi4h9twg1vF8QRV7SwAEAbc/wy0fr2Wi8ziP/cfzOFxull97E57iEkLDPbgCxRx/yaBhSSm5jJbva8rc3P6plRx8coAX7j1DVaufkmoPCMyakCzcVHnJa/EE7Gy+s5UlW2qwLAtREvCVOIlNZ+a0s/8cRmieoINNb25hyZYaBAF8xQ7ES5j42l3KJfvY6jY/qWgOSREY7YpiWSAp848PlLuwOWS8RflrMg2T4hoPMyPJOe3KGryse1MTLq8NxSZx/YeWoqY1HB4FWZmb0Bwsd3P1uxew/rZmFLuEy1uYs/08xKbTTA0m0HM6xSUGJephVKOUTPcYVjaLUluLVVNJcnQAa2gUT30zxugYgihiX7GCXCRJRPORyCrY3TIOxcRjRHEFbBiTk6j9A4gOO7a2NnK5FFaRB84OQCSGXF6OWVZOSiojPKMh22VMw5o1IDlP1/5Jll1djd1pQ8tpuH02bA6ZyHgKt99O49L8umrlo/uQKyopbqgnoTnp0FchKhKKKpEI5xg7myVSMowYTFEUcSCHTESPhZocIuswmKnzcSR2ijJnKfWeehYPH4LSDiKywqimsfqGW1l4xVayyQSmbuJcXEJq33j+IiUB/7UNYECqb4JDrzxOSWMzVc2tPPWl/yAVyccM29Zvpry5jZLaeqJj47j8AcLDAxTVNrxh3/nvAxYG/UcO8OrDD+RjQ3YH133kTylrbMbh9WGZJna3B0EQyKbTKIZJQpohWFdG9KEuOPeIdW+oJHsmjFzsQJtI4lpRPrv+K3ltxHcM472shmxnGEs3kYN24i8O4buqDqXagx7LEX92AEERkbwKeiyHqEjIpU5y/TEknx05aEcdSSIF7PmxjmFiq/OilLh+qffu8tnPJVHKOFwKmYSKr9jByZdHwYKKZj+R8dT5DwpByJtQOb02opNpdNUkNJZk5/e7KKnzgmWhaybxmQwtq8o4/co4K66pY7w3SuOSEhKRLP5SF6loDk/QTjKSxVvsJB3L4fLbySQ0PEE7ZQ1e7M6C4eZPIpzKohoGQZfCzk8vQ4w7UYjTd+goex+8H8syke12rvvQJyhvamHg+GE6d7/MymtvxlNSzlePf5W31d3DwvU1mMYE07397PvxEYoqa6hfupyp2BSnYqdYVbwK8fgp0q/uw4jFcG/aiNzQiKu1hYHwABVqEO/mc1r2c9pd18qyOYnsr2V6MEF0Ok0inMXttxMoc2A7tB19chJbUxO2hkacCzoA0HMWtYuKqGoJkI6reIrsWKIBpkXm5HHUgSH0yUnkikqU+jqsbBb36tVvyHdwnsyJE+R6+zBCMyg1NSjNzThbWt7Qa/h9Q9MMZoYShMdSOD0KpfU+vEWO2f21C5eQjsdYe+ud2PqE2aUyyK8tey+rJr59cLZv9myqwlINHKKTbZc7kU07qadH5syPsodn0DwKT9/7H0iKwtb3/zHVHYvoObCDZreP+PGnoaubb27aiLW1nWk5xNcGv8CxmZNcXnM5m5e18Y+H/patU1u4o+Ot1PvqAXjp7BT/+vTZ2df5yx+foNRrZ+v/z959x0lylYfe/52KncPkPLM551XOOSOQEDkaY2xswOY63+v72vc6XftisI3NBRsbE0yyEAihgLJQ2pW00kqbw2yYnZw6d1d+/6jZ2R2tBAJWuzO75/v5lDTbU939VPUz1VWnznnOMtm/YLZImBqGKmjPnNims6Ithe35PLxrBID/edViLm0Ivxfb2jIUxmqUthWZ3xQlGdeZP6+OWmmIYmyY824qkWow8aw9qJpKJeeiiDqqpQLP/Nc36Vy+it4XNnHJez5EaXKCZ//rm0wODQDQuWIVSy68lOd/cCeHt20FIN3cwqXv+TDRRJIfffavue7jv0N5coKRA/sBOLxtK+mWFob27yXTMogRiVDXLNj22I/ZcONb+eFn/4HSxDiJbD0X3PEejFiCsQMPE4vHWHr7FXi+hn/cH9Oijc2MvFJiaVeV5JYX8Uol/mfHlZQ/fx/aZWVqBw6SrhQ5ck4Xf8pXePvit0O+SHzfIJH+MfI98ykubGZAr7BlZAtLs0sxNIPnh56nJdbEefUrWZ1cBKOvwOju8H5a0zIoqWDtCfvqtqwOTzykU6ZlfhqhFMk2VimN1SiMj1ErFEk1NuG5Do/8+xfJNrZy6fnvo2ZPIgwVa+8kQc0jurQOv+zgHCkRvbqLwAsobxokeXknfskhcAP0tjjOQJnSk/0oKYPkhW24QxUijx5h+XUd2K5PazrCYD5ss8vEdP74ggUsrCnc/dZ14bUdAZ4dMHywQGNF8O2b1uBaPiMHC+SGKnSe14TqBKQOuSycr7DjoQEWn9tCDMGOZwZ5ZscE2dY4G2/s4cjOcY5sC6+r7JrH+LYJKodLVArHivzU1UV5/u4D6BGVaz6yguJYlYe/shPP9Vl5aQdChYaeGPs2j3LgxXGyrVE23trFaF+JbQ8OoaiCDTd3sXBtC2b0tM8JL0mSJEmSJElvutN91nsusC8Igl4AIcS3gFuB44uQ3Ap8NQiCAHhWCJERQrQGQTB46sP9OeT6cFBwHYvc0MB0UQKA4vgom3/wXS770McwIlEqhTwRxaD0TD+pKzoJ/AChKlj7c+DDo1/5Eq4dDq4IAp8nv/11mhcs5qs7vgrAYHmQ7Y9t54nL7yIolcl969vkv/c9Uu98F37RJpY02HhTD5t+0Dsdw8abe3DsALfq88C/bseZmglj73PDlHM1NrwjQ8TzSDe3cv3HP41QBJOf/XuGv/Y10DTaHnuUoFzkhXvuYu+mpwHYt/kZWhYs5rqPfxqrKsKxkn19DP7Z/6Lha3dSnrSmC5Ag4NJ3tGHXqux44mFeeuBH07GtuPxq2pfdRM1IoD79NN6dd2LMn0/bZ/4v0WVvcKCx9EtTdIPIpEH5+33hoPUH+3BGq6Sv7yH3jT1E1zRSeWoIu79E6uoucnfuC2coDkBJ6ng5m6DqIgwl/H9UwyuFhQvUpIGXm8ppb2rmbFPFr4YdeI7eKA78IOxhC9OzEwEUHw1jiq1txE367Nm3CXtPjeL4KGuvu5nn77mLwPcxolFyQwOsvOIatj54LwBmLE5+ZJglF1zCnk1PAqCZJpV8js4Vq6cHsKm6jlUpo0eiaIbBwO6drLv+Zp67+7/wbIdsSxtPf/cbLL3wUl5++H5q5RJti5fy1Le/Ph1ntVhg813fYfXV13P3Z/6ct/3hnwFyZu2T6UjvGE4x4P4vbeMd/30jyy5q5fD28ekZy5J1ETqWZnEPbGf87/+R1HXXMf71r9Pxuc8x8Md/jPfX3+TZ7+8jEtdZc1UnT9x9rNpufYvJpUsreI/9BHv3blKf/iJWyaG8eYjUVV0Eno8S1RgWRyiNjbPn2afYcPOt0wVIAAqjIwj9xCr9QlcQquC5u+8kka2b8R2x9vpbaFuwmEe+8kUG9uycfvyKD32MpZddxfjhAxx86QU0TWPBxgvYdNe3pguQAAS+z84nH2X9DW9lw4238MPP/h8u/+D/5Nkf5HngX7dz08dXc2TXJEd2TXLh5UkS/+eP+O5//1PqjuzhyCc/FQ5mBZREgvZ/+Hv+fb3G2G99nJIV/s2qdXUs+sd/BKAublCounz1mYPctLqVbz3XB4SNhEc7ub9ypIDlesSM033KMXvcvf9uto1tY3F2MbGJMpH/eonhu++e/n32Ax9AxONU9+znQOt7T3j+0LYJVq7ZyI+/sg9FFTR234gRVUmMPMH2ljU4uxpJnNPEonNvY+mF19FiNlP5ySCRxdlwhpVrugk8H6EqVLaOkO46sTO7e6hMpqcJx7JQhODHX/rH6d8N7t3FJe/5EEP79lAYHWH/lueYt2Ydw73hoM5lF19OtVAglkoz1LuHaiHP+be/i8e/9mVc69j5zObvf5ebf/sPiGcy/OQ/v4Lnhn+3i8+/iCe+8e84takOb0HAM3d9m+auedMFSABqpSIPffkLvONP/pJI4g3MTrX/UfjmO+Ho30v9Arjy/4OlN4UdpaVfWGl8lMG9u6cLkAD0bX+ZBRvOpWn+ItZdE6VWKmLXquRHhjHjSV5+8F6KY6Osvuq6Gd+dTq3K41/7Mmuvu5lGw0QISKTT7H72SRLZOhq751MtFhCKQAjo37WDkYP72fmTR3nbH/4pP/zMX+I64Q2DHU88yg2/+WkMM8L9//w5Ln3vhzGiUYxEgpveuxjre/solxy05hjZOxbjTtQQQlB5eTQsdMZx5x+qIHB89LY4ftHBz1lUXx7DnJ+m/GQ/0ZUN5B7ZQ+rqLgw3YN9YDbvmIhTB8IECHUuzdK2oZ3K4Es4yWHMJ/ABFVWhrbyZuj2IdOIC5aBFDf/1/sHunztsVhba/+RswdISqEtg2SiyG67rhuU4mjdDP7k461d27CawaQbGE7zgIIej/1KcIpmaH0BobafrjP0JEogSVKkN/8Rc0/eMXKFUMciMlIkmdoAaVvMWupwdZfI5LrXiIAy8+z7lvfTtjhw5Smhhj19NPsPi8izj08hYueucHOPjSC9MFSADcWljl3q+4qAkDr2BTfnqA2LomIkuyqHURhCpwx2q4LxbRJ20aLu9g5xOPcdOnfo97PvvXrLziBvRIJw2TNX785QNUp4p+CUXwlvfX0cGz4bHr8NNhQZD2DRB4sO8RxPm/Dpu+AGvfA33Pwc4fwls+HxZfeuhPj+2wK/8nbLsTRraH/xYCbvsXWHXHT9/RhSG4/w/DgSLrPwCVMXjys1DLhb83EnD5H0K5IRxY8tTnwkGXq98JP/m/4TpNy6HnInj4f8H77oT6+b98ApylaocO4U1MgOfjFQrorS2M5gyefmCQq9++EHGoQH7LCIkLWpm8ex/pa3ooPnkYoytJZHEWv+oSTHXQFQL8soOaMig8eIjEBa3hoF9FIBI6lU2DrLusncG+Eqsub2e8v0S2Ocb667qpFm16VjcQSxsc3jHB0gtbWbixGavikMxM4NTCv0nNjDDWd4hkQyNPfOPfKAwPseHmt5FuacO1LO75+79h7bU3YhgmtVIRx6oy1neYzhVrOfjSC5iJxHQBEoDh3n0cemUr0VR6+voNYHKgn32bn6Z96XL6d+1g/vpzAXj5oftYecW1bLn3B0TiCTa+5XYe+bcvcO3HP8UL+c08MvQ4jdFGPnfxX7H6lR+GnSCKA7DgaohlTvXHe1YwjASKrVHaOjZd3PHod25QdPDLzvQ5K0JQfLKf+NpwwFglb9H/fJ5LrmnloR3D9I6FnWSzMZ01HRmeOzDJHRs78IOAxlQU1w/oqY9RF9Pprl9D72iZ7voY67rSdNSFBZjmNZ54PtyUkoUepNdm12rkhgc597K3oZQVvJqFYqp4eRs1YRDYftiW5R/r0PXqflR+2UE9rmMlQGB5WLka2tsXYw9ViDZG6Y3D4VyVuKGxpDnJAjkQ+azm2h6bftDLvhfCTpEjh4qMD+xl443deK7PU/8VXo9FIhrOhIXeFCO6tI4ggMD2qPXmSC3OEHGi+DEXP/BQVRXfddDNCOXcJJ7nMnJgH77vk21pI5pMkR8eYvTwQbItbaQaG1E1ncLYKAP7dpNtaceIRrEqJZyaRbK+nmqxyKaHvs2Ky65i/MhhqsUC6268AzPRzsiBPNGUiRqAZijseX6U/t2T3HB7A8buzQSOE56fKOEsrKppgqZB4BNYNsFUu4FiGNj9R7AOHiR52WUM/+8/n95Pjb/3e0TWrUX4Png+2BZepYJvWXiTk4i2NMYP3g+aCVf/KTzwx2Fj9Lm/BoeeguHtYCbh0t+HB/8kfNH2jeH5wYtfC/992R/Alv+A4lBYeK/zPHjuX4+d7/7o0+Fr3/M78NZ/DtsdpFknoqssaArbk7xb5pM4ryWcva0hit4YDvDRXnWsBlBTBs5IJfxHEIAm8Ithbnr7K/hKldqeSdyxKsJQSF3Xg5pJobUlefnhgwzuzQEQS5s8+OXt09d9gy+PUzdeY2hdkl+9eD5feHz/9Ht+8MIevv/SAPmqQ65is6g5yfquDA/tDI8HmqJgagrWcQNBblvfQUv6xPilU8cqVXjme9/i1g//IV7RJnD86YHlXs1FTRlhu8H6sN0gCEC0xnisWKFdidDT8AaKhUrS6bL3Qfj2+8KiWwDxBrjjP6Dn4pnr9T0L3/toeLz8wA/hO++DylQxPj0G7/w6LLzq9d9n8BX47gdhYqpNQCjh+yx/y+s+ZeTgJE997wCD+/PTj110x0LWdh9bJyx0BgiBqinEMiprruxk68N90+usv6GbeFZjeF+ZnlUnXh9axSK92/NsvvvA9GNdK+o4/9Z5NHa9flGG4d4ij37t2EClTHOMKz+wVBYi+RkC1w0HSE5OAAJhmuA6+JZN4LlU5jUSBOBaPmYsvN8z1JvngrctoH/3JNWiw8jhIufdOp/xgRKxpEGyIYoZ19m9eYj2hVkcy2Vgb45lF7Wxf8sAqYYoyboI+14Y5vy3hoUK9mwe5rxb5/P8vQfxXJ+FG5vY89ww5986n5cfOcLCjU2su6aLscNFLnvPEnZvGmT1FR3khisc3jHGlR9ciu8H4Pj41fC7IHDDQipMXTcebR+x+8JJN1LXdIcFiDsM+oZ34eZqPPSv/wTA5W/5Fapjh0/YX17BplSexKmVEUKhrr2T+/7p76iVwtcc7zvEsouvoHPlaqqFPHVt7VRyOZJNTQSBjyAsrFIrFaYLkAB4jsPDX/4C13zsE9z7D3/LZH8fLfPlQMyfSUB5yzCJ81qm212dwTJB1cVsjtL74nM89h//Mr16345t3PLpP0QzDYb27WT5hct44F/3cNUHl/H4t3ez9souPNdn/rpGDu+Y4ODL4+SGq5z/1vm0L8mw9uouWhZmXjccTVepb5s6D/Z8zn/rfB788o4wN4G2RWmyLW+sXUzVFLLNP31wfLY1xjk39fDcPQenHzvvrfNpW5SlY2kd4/1lel8cpVp0KOcsmrqTjBwKc1XRBBfdvnBGURRFVVh9RScHto5hT/UvSjVG6V5ZT7r+WNyGqWKYJ/bTOH4/pBtk+98blRup8MO/f4nCePjdryiCmz+8nOpv/wre+NTEUtEorX/5F+R/59M0/e7vMvQ7n8YvV6j/7U8R7NrNrolWXnz22DFr4YYmjKjG6iUOo7/1ien7emp9Pe3/8A8M//6fYe0KvzP19nbc//FFHj6uUORVHzyx/2Aia1LO2Tzxzb1c/I5FIASBH6AZKgFTNaz8gJG/De9b1f37d3j+xSIdS3RiacGLDxxmqLcAQM+yLOc2R6m9dOz8ILIihXv/P5B425Xsbd7L373wd9zQcwMfXfmrtD/2N3y5YxF36JdTqI0xPnCE3NAg8y5eiTtePdZHQxGUNg+SvW0Riqew+5mfcOE73svD//b/pguQAOx59km6V6/j0f/4Ejd98vfZ+uC9XPTO95+Mj/OsUp6c4NnvfXv6345V45GvfJG3/t7/YPlU25XvONTKZVzLwohEKRfyxDq7yLx1IV7OQqgKtV0T2H1FjO4kvuVBEBC4PkIN27Bww+9yd6yK2ZPGKzkIUyPwA8rPDpK4sI3i40fwSzb5u/eTvmEeuXv2odZFiK6oJ/fgXrSGKJHFWQr3HyS6sgG/6lJ4+BANv7IKvf4XO14JIWjqTtHUnaI0WeXwjkkaOhPMX9eI5/q8/MgRhIDmnhT7XhiZ7oMBkB+tksiYjPeXmb+ukefvPch5b5lP74ujJOsiRBIaz91zgIUbm3j0G7tZdXkHj35tF6sub2fT3b2svbqLp+7cxvlvmc9j33iZC29fyOP/uZtzb5nH2mu6UOREVq+pIx1jMG9zTlOMHYXnWMv5lCfHefo735hex7UsHv73/8db/+B/svj8S3j4S5+nf8d2bv29/8G3dn+LTy7+NCJSZct9T/Pc3XdOP2/HTx7h5k/9Pp985pM8s+Rf6P/kp/CL4Xdu7lvfovVv/4bYooVE3SgIKG0aPLEv+3FFc49XHK2ya9MQLz9y7Ji5+Nxm1l1zDWPXnA9Awyc+gdLRjplMoukCq+IzOVyhVnbwvYBMS5RoTGHy82Hf96Oy730vife+h/Lm54ife87J3N2vq7prN6P/+HnKTzwx/VjDJz6B2tKC8Ub6p0mv6eBLo/z4y8eGhrQsSHHdR1eSyIRtmEJrJp5ZQSIbILa+ujidoPLiMKmrjvV5rO4cx5iXxvrhCP6ERfLKTtxXFdcD0Pyw4JznODz6lS9y2x/9LxRF5YEvfo51l19D9+bNTH7jG3R+/vOYVp77hx/ECzz+c9d/srZxLYvrFvOVnV9nz+RePnPF5zDUKP+5+cTrsPu3DckiJLOIqau0piOs7kjTVRfj8ETYpt+QMLh+ZQtV28fUVNa2Z7gwmeCBL23jyg8uZcsDhzi8/dg52flvm0c0eojdzzxO75bnph8/99Y7OPjyFs6/7Z3c9/nPsOKyq5i3Zj0vPnAPF73jfVTyOYYP9E4XIAEY2L2TBRvPny5AApAfHmL/C5vwPY956zZycOsWzn/bO7n77/4SgOYFi9j5xKP0rN3ASz/+IRfe8T62Pngva6+9kYe//M/UymFf79LkOI9/7cusueYGOpat4Ilv/DtHdmzhlk//OS89UqChM8HyS9o48NIYiiroyAjiq1cz8aUvUbj7buLnn8/Af/tdGn/ntyl+8zukvwk3/+1vMpYfYMl3nsf/1g/wgTKQuP2t/PiSEntrfbQl2vibp/9menuaYk18/uK/Ztl/vgP8qckH0h3wti/Bdz4e3pv7wN3hBFrSKdOxNIrnlPFch/zIOLVyCd/3cSyLvZufIjc0wEVXvxtDGFgDBdSMOV24P/CD6c4OQTD1HyGm269KT/YT29BMdHk9AaA3RJj4r7AfuZezWF4f47nJCn984zJ+59sv4foB/9/FCxn9QR/c1MOOJweJJnWyLXE2/aAXI6KSyJiUJix2PDVAteigR1TaFmbYdO9BelbVs+vpQYyIRqrBZPMPexnaH17DDe3P8+N/2cZ1v7aSlx461qcz0xynb+f4jH0ihMBzfdZfP49a0eYn3z42odGmu3u59iPLefHefvqnJhYf6yszvKfMc/ccml7vsf/YQySus2C1PPZLkiRJkiRJZ74TpxE4tdqBvuP+fWTqsZ93ndnFsUHRsdU4kUSS/MjwCasM7t1N4DoE+CTSdYi4TmxNM4WHDlN8pI/Cg4cQhoJaH6FaLMx8chBQmph5MfSn6/8Ioet4w8PTjbDx667Hs32G9hfoXlnHjb+xikvftZjrP7aS5Re3Ekvq5Meq0wVIjhrYm0epZElH46TjSZRKBWfzc+S+FnaybfizP0VVVUoT49MFSI4a2r+HyYHDoOoomkbp0Udp/qcvohkqleKxCpLn3tKF0DQquUm2/vi+Ga+x/bGHSGQKbP5hL3X/9BUA7N5e7H37kE6hskXt0TB31ZSBM1QhsjhL5aVRCEBviGIfLmJ0pbCmOs4GloeS0FEiGn4l7DzrFx3UrElQc1GnZhCx+4qY88MOWGJqdqDa7kliq6dmoXJ9lISOdSBPdEU9QPjz1KwUBFB+dhC7WuXe7/09W5+8j2o+7ExmxuNU8jmEUKYHtEfiieP+jsKbIa5toRnhTFmKEh4KSxPjpJuOFQlRdZ1kfQO5obDmkRELX9uIRqkWw/dLt7QyfiRsVHYd54TdOHKwFzOWwJ/qxC+dXCoaWx/uw/cCVF3geQE3/sZqLn/vEq54/1Ku+chyJkZLuKUyqeuvY+LrX6f7299i4mtfxbzhrWy+L/x6WbixiZcf7Zvx2uNDFnmRJbJqFe7gIEZr2LnFm6hRePAQxUf6KE6MsWPTo6Qam9BMg8mB/hNjrItgLsnOeCxxaQciqdGxdPmMAiQALz1wDxODR2YUIAF45rvfIDfQh+84vHjfD/F9nyAIpvP8eJ7jomgqxfExknX1WJUcAFbFJXfczZaXXrQwrrie+OBhCvfdN12ABMAvlSjc/wDJ5UsIrGOzjHsTE1hPPcXylhSpiEa+6jBStNjYkyUT0zl/fh2fvHIRX5/qQPK2de2yAMlxBkoDfP6lz9Od6sbyLFYUUhSOK0ACMPn1r2N2deEe2E9T44mvUd8W49m7wv3rewHDvQW2PzPJSPoq0rlW6tsSBL5g2xOTmKKZwo8OYc5LIxI6Wn1kOn8LDx4isiiLEj/x89HbEwSjLpppcnjHyyf8/tDLL9K6aClCESSydZRzkzN+7/semmEw1hfGGUtlqORzJ7xOaWIcoajTxdbCddMUx8dOXDc3ccJjowd7pztN/lTVXDgI/7iCPYzvD2dqnOh9vWdJb5BjO4wc3H/C433bXyGRzVKaGKdWKeLYFrVSkeZ58xnYE3Yae63vztLEOLppho39joNj2TR2z6NaKBD4HoHv49QsfB/W33QrAPUdXfRtf3m6AMlRWx+6D0VV6V69jqH9e9jx5GMoioI6XsGfKo7mDlfI/bAXJaJSePAQ7nB441FvT+DlLRAQWZTB6Ehi7c1jzEtjHynhjlVRkgbepIUS0QgcH2e0irpnAiyPdGPYSXlioEwkrrPtiX7sqoNhKqiqAkJgVRz2by8iolH8chl3dPRYARIA32fsC18ARcG3LALXxRkcRCDwcjlq/Sd+75xtAssiqFTxbQuha0x+61vTHRWBcJ/u70UYOtae3dT/1m9SUxNMDJXDWfZUQWG0ilP10E2F3ucfwIhE6Fq5mkgiyQs/+j6ubaObEYoTY1PnioKRQzOPHZ7nYsxPU9k+RvzCtunHKy+OUN0xjhLTcMdrqGkDd7IGbkC032C8vw8jEnYccyyL0qRDNa9OD0SD8Ibe5qc8nJEDYRGQQEDH1Ew/z38FFlwBA1tg8Q3w4n9C/ghc/Dswvgc2ffFVO8w9VoAEwpuDj/xFODPtTzOwBfY/DCtvg513Q77vWAESALsEAy/C3gdg3tQstvk+IAhvIkMYe7wRJnvD4ijSL8zL5fFLZfxSCWEaeEaMFx4bYd66JtRJC0F4vVZ9ZQyjPUltfw5vsobeFMMvOShxHSWm4ZVtUAVu3iKyvJ7A9Sk+doTiw4cpbxrEz1s4OyfIRlSa56VYuLGJho4ERlSlsTNBy/w02bY4yy9u5bqPrqCpK8mD/7YdIWwqxQKe6+B7Hq5jc/DlF6kW8oz07qOhq4fJoX4UAfmRIZxaFc0wqBbD7wohFIpjo+hmBNdzObJj2wn7YOzwQbxXHfMhLE7VsWwlZjyOY4Udos1YYrq4Wa1cIj8yFP6+WmNdfAUAo9VRXpjYAbE6KA2FBX7G95zw+tIvz3VdTF8nsD280rHPUEQ11PoI9kAJFHHsmuvhw8RWN1B9ZQwlazJWdOjfMUE9Kn/+1pX83TvW8PfvWsvn3rWW1nSEr37kXDZ013FOTz2/esl8fv2yBVy/spVz5zdw2/oOfve6JdyxsZOFTanTuBekucz3faxyiYgex5u0CLwA60ABrS6C1ZtDzZgIRaCmjOnCul7eRjtuUI4zWCayvD5sE5uixDTcxhgP39XLzr4S99/Vy6KmFHds6OTGVa2yAIlEadJi35aRGY95jk80YbD/uMeffyi81q/tngzvNTx8mPKzg8TXNeMOVWDSRdW1sD1JCALfx3VsfM+lPDmBY1lkmlpQdZ3SxDgHX36RbEsr8WwWz3U5snMbo4cOEPg+dqVMaWKMdGMziiJwLItXHvkxnStW4doWvVueo2PZSrY9cg9mRNC2uI5Mc5REnckrj/VT1xKnWnQYHBYE3lShkVoVv1QiKBVxJybwJsbxJnP4loVfq+KOjFDe8gL2wYNEl68IC7Mpx/6Wxj7/eXCcqWuCIBww6boIwJucxCoE0HkuuBbs+TF0XTC14/7tWLEQqwjD26Buqmhe//OQ6Ty24zd9EVbeHv489AokmsKfj57vAmz+Eqx4G9z/x1A+sY1Dml3UmI7Zkya6rH66AAlAdGUDSuxYu5kwFIyuJO5whciyOhRTwz5UJLaxGdwAJaFT2jxEdGV4TyOwfdyhCmpZxbMtNONYrmr6zOs+gIn+Mpe117OxJ8PXP3Iun7xyIf/t2sVs7cuzfaBASypCUypCRFf57asX05gIr7W+9uwh/vJtq9jQnaEubvCrF8/jk1cuxNRef9Cl9OZzrAr1bV0EJRfhAYoICx9oCkZTnMjyelAFlS0jFB46TPm5IZykQb5qA4L6hCwiI81SlXxYfOtoARIIv+t6H5+53vAOePQvw7anq/4M9j10rAAJgFOBF/4Dqj+lfb//hZnt94EPj/0VFF5/rprciDWjAAnAc/ccZLg3N/1vzVRQNZXADwiCgFrJZ9E5jVz/sZVc+q7F3PAbq+heVU+14LH14T5KEycOYhofctly36EZjx3ePkFhtHbCukeN9hV57p4DMx7LDVeYHCq/7nOkkLVvH05fH75tEzgOXm4SN5fDL5cIHJe4ZqObKp7rE/iQaogQ+AF7Ng9x0e0Lmb+2gWhcw4xpNHTESWRMnvz2HvIjVdoWZHj50T6iSYNowqD3xVE6l9bR+9IonuvTtijLc/cc4JpfWU59e5ytDx/mvLfMp2NpltYFGZac24LvBSy/uI10Y5SlF7XStaKe/S8Os+7qLkYOFVB1QSxtMrg/z44nBnB0hdiaRuwjRSILMwROOPGFMBTcvIXeEQ5stPuKFB48hBf12b3naYxohBd+dNf0fhERDXNp9oT9pTfG8IKwD1AQ+NTKxRPupe166nGMSATHsrBrNbRIBHyfIADfdYlM9Ys4WoDkKMeqoSjhOYbv+0hvQEwjcVE7xSfCdtfCg4dwBktoLTGsSpmXH7p/xupB4DO4dze6GaVWKOB74TGib+cEbVMFiyYGSiQbjp0r5IYrqKrglk+spWdVA7rxxs4DVVWhqSfFDR9fxaXvXszVH1rG+W9dQGPXyWs303SVtVd18bb/tp5rfmU5b/vd9ay8rB1VUxBC0NCR4Lbf28D1H1tJ14p6rvzAMm7+rdVc+6sruOMPN9K2OHPCazZ1J3n7H2zgul9byY2/sYpbf3st2WZZwO3NNLgvN12ABMD3A557JIe+Zv30Y0G1SvG++4hdeilW7378cni/NX7hhRRyAS9tmtn3cd8LIyQyEcaHrRn39bzxcSqbN+EMHvu+T3zi93j63oEZz48kdJrnHctVIWDVZe088e29NHYlEaqgnLPCQXME+FMTZE3PigUUgxROzWPkUIFa2Z0uQAKweEkW66XRGe9Z21Ehed1t+J/9F27NXALAfQfvY6AywMG2FWC7lHNF+nZugwAyzS2o9RHEce3dhYcOE9/QjDNRY7IS9slzajVGek/sT1aaGEdVdXJDAwzs2Rne5xg88X6J9PqOL+xy/GO1UgndMPEcm0ohDwQk6upwajUi0RSVooeXNCg+0U/hwUPYfcWwP2RUJ7ooS23PJGZPGnfqPFFrjuFN1IgszGIdKqAmDQJ36rvY8UFTUFLG9ORs9kAJrSGKN1FDmSqY5I5Vp9sgqtvGMOel8MYtnCOlE7bhF5HIRll+URtXf3g53SvrqeRtFm5o5MLbF7LtJ2GfgxWXtHFga9iO1dCRIDdSRTMU/KnCE9VSeM41sDdHU3eKSsFGNzXsqosQhMUkfHBqHrWyg6YrDB8skG2Js+uZIbpX1bP5hwfIHy3uKp2gPmWiqwp2fJIvbv0ihbEapcnxE9arFvJYxSJi6pgWBD5Hdm7j0dsfxXV88mPDvHj/PTOeUxwbZaL/CI/d+hi1rVunC5AcNfFv/07twAFS+RxKUid+TsuMvuyBH6DWm68Zd368yiuv6ne5Z/Mwxcljx/fxf/kX3D3hAN9KyUEzFZrnJelYkqGxK4GiguMyowAJwOQ3vwmDQ1ReeOEN7sVfnnPo0IwCJADjX/oSzq5dr/MM6Wcp5yx+8p29Mx4b2l9grO/YMW7740d49u4iT95pwfL6GevWdo0TWV4/o8+jmjZRMyb+RNjn0OkvYXSfeB5rKceOOXa1SiWfw/PC4/HWnzyCcs1V4Lrk776buoUr2diwbnr9l0ZfYnFmMQBPD23iSLEPTSjMf43iwd11P704n3TqrWjPML8hwV/dtoq/fftqPvuONfzDu9YxVrRpTZt8+KIe/uSyRbxw36FwTISuzihAAmCXxymMDs8oQALwwo/uYsE55zN2+BDl3ERY0FNRCDwPVdMwojEG987s/x1LZ6fHGhxvcO8u4tk60i2tuLaF54fnENnWNhq7ehjrO8TAnp1km9uwy2Xq2zvx/WC6AMl0rNUKiqYxOTRAPJOlWixQmhxk7dVd9Kyq5+k799G3Y4KGjiSDAy5BuURk2VLsAwdQ6+sAyP/wHhKXXkpQrdKzp0DrhMD/9sy+zZU7v88d5gV8aOWH+Ldt/zbjdyOVEXbme48VIIGwD9vAFrj2M+G9uSc/F/5fOjXKefyggm6YJBua6N+9g/6d26lra0MogsG9YaFHNVCp7pzA6ElhHypiTrU/+FUXoQpEVMMdq+KMV4lvaMYeLGMuDtukKi8MU3joMIHtkX/wcFigD4gsypJQVcqOh+V6fOF96/nsO9eQHXWJJHRyQxVa5qchgF3PhNd/Pasb2L1pCEUV0/fQOpZmObA1vDar70gy1Fsg3RRFKMp0AZKj7JpHaXJmfo0cKtC5bOb3SjlnkW6KUt8Wo2/nzL7vAOWCPV2ABKBlfpq+HSdeW+x/1b17SZIkSZIkSTpTne5Rwa9V0vrV5ZLfyDrhikL8GvBrAF1dXb9cZL+MwAVFwbU9/FqFTHPLCau0LVlGtawilAqJZD2+42IuzaI1RXEnLdSEgdYcxYk4xLN1M26KCKGQbGiA4/q1zEv0oCgq/nGdB0o//AHRj/0+IweKPP29ETJNMSYGS6y+ohMBOI4/o9PjUZquoOggFAV8HyEEfvFYY4Xe0ozvh7Ovvxbf81FUBbwAd2wMEknsikuyLryxFvgBdW1xFFXFqlQIghNfx65WqBRdfONYJXffPnGA0Zli1uTucUQg8MphQ1BwdGZiQ8WvTT029VcYOB5KPCzOUH5umNR13ZQ3D6G3Jai+MkblpRFS1/dQemoAe6BEbGMzlS3DpK/rIXB9Ki+MkL5xHqVnBvFtl8QVHVS2jZG8ugv7SBHrSJH02xdg7c8jmk0Si3rwyjaF6iijzl5sq0JpYpxsazjYc6L/CE3zFjByYD96JIoQCr0vPs+SCy5h+2MPEfgBZjzOwZdf5KJ3vI+RA/sZ7z9C+9IV9O/azsorriGaTLHrycc499Y7eP6e77Ho3LAzerVQIFnfQHFinGgqA8D4kcM0z1/IcO8+dOPEGy1tS5Zx8JUXAVC1033IfXOczvwNAijlwgajlx87woK1LdMdxfIjVXzP57y3zGfiLz9P+pprCGo1hKriDo+grbuEymB4XDGjGlb5xGIebqDB0dmdJnpJvnUp5YcOhwV3VsfZM/w8ezc/xdrrb8L3Peo7Ttx+P/BIXtFJdEU9XslBy5qo9RGwvNfunBUE2NUTb7jWyiV8x0VRVZxalfLkBHuee4alF17K/uc3zVh32cWXUclN0rftZSKJJKqeIqxDzYwZf4QQ4Pso0QjuwMxOGwDuwABq/MSbJt7wEO+6uZO/+FHYUH7Hxg5uWtnKxu4szx+c5E/u3obtBrznvC5uWt164jbOEqcjd13fxXIt/MAHAUr5NTqk+j4Q4PTuZ158hMOZNKVc2KDa2GbSkHIp50/8TvQqNnhhx0rP9RjqLTCxpER9wcarOFS3jRO/sA1zURavaKNlTNSGKIHjEVkcdpQAiCzOErgBii2wK2V088QO75phYFUrZFra2bvpGdoWLTkWh+vieS6ObdG9ci3D+/eGBXHqG2YUFwnPZxrxfQ8jGsWuhh00SpMTZJpbyQ3P7EicSJ54o7BtyTKiqTfQEc6pQvHEHMetgTP3OvjOtvMG3TRonreAgd0zb551rlyNHoliVytsufeHLDjnPJZedBm+59O1ci07nngYTTdOeL10cwuOVSMQAt9xUA2d4tgYdq0SDtYAIIAgwJ/qvKNoGt5rFDTxXBehaiCYmgnRQlE1/PLMdYOqS21fjti7luBP1oimTQLHxzqQJ/PWhYi4jhLX8HIWkSVZCg8cBI7Nan/0XCmouQQeRGMaAUx3yPG9gNJ4jfZFGXw/IAA8x8OuumGnHCOCYkbwKyd2aHdHRhBBEJ57B0F4jDB0sO2wF8Ycc9LzNyyzT+C6CMPEHXyN77PxcYSm4RWKRNatx1U0XMsNrzSDcPAmhLOxlwvVYx8s4Hsuu5/+CWuvu4nN3/8ul3/wo0BA68LFjBw4VnzHrVkEArK3LsQeLJG5fRGB7SFUgVYfxZmoIVIGvu1N32wTFYglw8J8qcZmoqkmciPudCfu41WLLl4g0D0HUi3hQI1a2CkOVYfceDhIsjgYFiiJ1UF5FMqvutnlnfh3QmkI7J9xLLSmBm/oMVD01x7sURqGSHbmzeRaPnzO0RvIR9+/cmJnqdluVh17XRd8j8DzEKqK7wtKRT+cNcz2woknTBU/ZyFUgZI0IAD7UIHomkacsSpafZTokjq8gk3qyi6ciSqZWxcSOOEMbn7Rofh4ODOEV/VAV/jJd/bSMi9NOWfR2JkgXhfh4FNjjBwssPHGHnwvIJExsSsWuhYAAt/3EVOdJI6e++aGB6lrD2fOUtSj+S5QdR1dN6gU8zR09VAcHyHT2EKqvpEjO2d2rG2ev3C6qOTxulev48DWLWy46W1s/fGPAFh99fU8/8NjHdYq+RzJ+kZUXWPAOfY3Ml4dB0UDqxTmqvv6A4fmmtmUv0Hgg6/gTVSIr2ui8FDY0aZw7wEyty3C7s2BrhJd3UBQ8xCminUwj74gw1hc54UfHEA3VRJxnYVtCQw5uPaMNpty9yjHrpFuaiXwIXB9Ss/0k75uHoEXkLi0A3u4QvqW+dR2T5C5ZT7VXRPYw2WiV3ZhDZbwhytEFmXZdbBA8sJ2kgIQMOn41AYrRJM6tbJDLK2TjJ94rizNDW9G7qq6ErZfVWZeA/heQCJ77Lp92xNDnHdZJ9l3LcEdKhP4YLTGCOI6lUf70JYkUBQf3/PDcwkBBAFmPIHrOLi2xejhg7QvWY4eiaCbEWrlMom6sDi0Zhg4loXv+Xiug6rrYTuE52FVyji1GkY0hmvbqJpGEPhUC3kKYzUmh2rs3zLCvLWNTAyU8deG58XFgoNimnjFYthWhQjPyQWACGcrdmywbQKrBo6LmkqF9y2qNYSuTxfQDapVAsdFqApCKCiKghcE4am/7YTnOrGpjmalIaifmrndf9W1VWkkXO/owOcZ57i58Bx3+kM47ndHz3dLIxDNQmkQnLl1TjEbj72ni9Eap/HX12D3lwhcHyWiUd0xRvKaLvSmGOWtoySv7MRckKb09AB6UxxcH9Rj9918y0UEoBomEwPHbm0q6om3PoUiaK6LsL47jev55Ksuf3jnyxQtl6akyT++Zx3NqfDvfWV7mrt+80IOjJWJGSoLG5Nct7KZiu3REDfPyhmFZ1vuRhIp2hYuIfADSs8PElvVhJo1wVDQYip+2SHz1oUENRdfV3HSBkfwOH9eA4uaZfGxs81sy9+fyi5B4TXa2ouvaityrbCtCKB9PWz5yms8px/8n3L///gCuEeVhn5qm75TO7G91K66uO5xx2BFoJsK9W1xhBBEUzr9u/L0bh0h2xxn35YRlpzXQsuCBOWchWOdeC/PtX1c5zX6OFjeCY8d5XvBCQWoABx77hZyOFW569dqBLUaajyGX6uFvYWsMHeErqPsf5lr3n4Bj90zwosPHmbjDd0kszpBpUzazNHd3Eu5dQWbfjKMqim0LkijRzSqJYdUfQTX9vG9gEhCZ7SviO8H6IaKVXGJxHUmBysUx2uYMZ2GziSj/TnmrWzilceOkJsqaq7qCpe/ZwkCyI9WqZVcygWbvc+NsPKydva/MMrSC1qYHK4wXHZo60qS0BVqB/Nk3jKf6t5J0jfPxxkuE13XQOy8ZtyqhRt16c/vxXMdAt/Dc4/lWOD4xDe24JccrD05hKmSvLwDJaWjqup0sT5FObFPUNhvISyQpagq5clJYolkOHGA6+IHkMjWoer6jHsvZjyO69gk6urJtnWe8LpzxSk97lZd1IYIde9bhjtSQRgqekucwFTQgyi6eWIbp2aYYaHGIJi6RoJYymD8SAllnsCIaOAfO64JAbG0iar9/POQpeqjJLMRKgUbzVQwo/ovvq2vw4hqtC3KvO7vM00xMk3HrrHq2xM/8zWzLXGyLWdn4ZHTcd5QKbzGpBJ5F1HfNOMxd3QUc9Fi3NHj7k05Dq4njq/9Mc33A2w34NUtvO7wMGoigT81GRXJLLXSzEGWxYkaqy7voHtlFd8L0HSFHU8NUhqvYUQ1FEXQujDN8z86hKKCXXNZfG4rRkyjBiAEth0e+z0vwHnVd7jiv0bAAaBoeJOTRNxjf29Fu0QMj4yewnf86fvGIPAJSF7TTXR1Ba/soNdFECkDISB3eAgALRqlfely9r+wecbbpRoagYBKPkf70hVEUkmoziy2NpecjtxNNTSFB8njEjDV2Ewsncb3PZINi4inJ7CqJWrFEnoki2a24zgeIzWPhvcuRc1bCB+EKvBrLmp9FL0jiTNUJnVtD9b+HPENzVgH82gpA3N+GmesSvqaHkpP9mN0JfErDsnLOijcfzDcF4YStlExI7TX/Nn/KeeXvwhNV2lfnKV9cRar6jByqMi6a7sgCIsDjQ+UWXJeC4XxGp7js+GGbvZsDs/rI3Edx/ZoX5QJC2BpyvRt9aPtEIEfgBKeg2uGSq3sYMQ0CqNVmuel8Fwfdw6e/56q/C1VPeriBrZfYKw6hm6qGA1NCKHM6GOdqKsnlsmwb9vW6cd0M8JkdZLWaAxynFBMDsAPfKJGlFLtxMHffqUSFqWzbfyyizEvTd27l+CM11DjOlpzjOA12rMgHPD7Wsf546/PglqNYGqCKkURTA5WcB0fRQgCAenGCPHX6v7l+/iVMt7YqSv07JdPLP4TWBZBbW6188LsaW9wbI9a6cTzCXtqAlXf85mcKlBUKzns6y+z6p2LqW4aQhgKsVWNiJiO3hzHzVmoCR2tKYZ33N9Fbc8k6Rvn4ddc3OEKwlBQzk/y/JNfm14nkkgSz9axd9NT4fv6PsHU9ZJXKqFEIzMGrKhCnfGzroTnGB+4oIf7tg1RscP46+IG16xoPjk7SwJOXu7qSoAiQFcFVcdnomzTXR8jpqls7M6SUXWqUxPsvnb7jIvnvnZ/RE3XKYyO4nvhZH17Nz3DsouvID8yjGPbdC5fzUT/kennlHMTNHXPO+G1OlesoTQxhue6dCxdQSyV4YK3v5vS5ARPfefrAGRb20nWNTDadxC7WsGIRML+j96x46yiqiiKgmaY09fxQlHZ/kQ/+18cRQjB4vNaKE3U0OPKzDFAR4taOQ5CD8c5KI5HRkRxX+sAX7PQlTQV58R+7o7/Gv3SyuOw9kPwYyB3EDz72IRWZ6DZcuwN+YACSkDgh4XjkvUN9G1/mbbFK+hcvoqJ/j7G8kdIFBag1UfQW2MIXRBZUU/lhWFSN84jc+M8Ki+PhpNhxjTUqkuAILqynsC2UVMxfMslmDp3NRdmMBakEV5ARzrCeMVhomzRmIxQLdoYEZVaxSGeMVH1cMwdhGMafC+Y0XfTsbywHQSoFm0SWZPhgwUWrG9C1ZXpfp9H6REVTVem227VqErbOY1MDpUZPlBAKIJYWmfNuxoJLEEsdWKfDFVT0E11+jqxVnZI1p3Yjz6WPfltKJIkSZIkSZI0G/38dyBPriPA8XemO4BX91p5I+sAEATBl4Ig2BgEwcbGxsaTGujPxYiBa6P5FpblkGltZ+UV105fEKWbmjnnLW/n/v/XS27cpVgYByucAVZrjRFbVY/enSBwPByrwlUf+Q2iUwNvNcPkig9/jP74zIbOL+79D3zXQe/oQGsKb/IV77qLwPPpXl3P2qu7aJmf4rxb5pNtiVEp2riWT7oxesLN3vXXd/OFI5/Fd10818V3HPTODrSmcJ+O/Pc/wXc9EvUNdK5YNeO52dZ2Gtrb8Wwb3/NJXHEFuX/6HEEA8bTO5e9dghnTePrOXjzHJd3YTLppZuNbPFtHsrGVJee1YP9nOHO3mslgLlhwcj6fWWjW5O5xlEwMc21YpVQoAjQFa1+O2Mqww3ngeCgJHae/hLkwAwphFdN7D6C3xVG7YkRuaA1n/3tygMiVTYhVMUazQ5Qv8anGawx2DlJe7zAq+tnfvANrgcez+3/A/sadDPkHeXjHVxluGeChR/+NB17+FwaCXu765l+y6ZW72Nv3PE989z9Yc82NdK5YTe9LL3DRu97PwJ6dLL/kSpoXLGL7Yw9x2Qc+AkIQTSRZf+Ot7Hr6cS5974dZdO6FDO7bw42f+F2iySSrr76eq3/1N6kWC9zwm59mw81vI9vWzs2f+gMae+ax5IJL2PnkY2y8+TaiyRSjB3tZfumV7H9hM8suuYJkQyMHX36RddffMj2QLtXYzNprb2LHYw8TTaZo6ll4uj7ON9XpzF9BwOJzw2PIKw8PoJmCddd00bY4w4pL27jg9oUomo9z8CDWvn1E1qwh//0fkL75ZtxH72XxqrADy+EdE8xfNzN2RRUkgxzB1AzrSiqG35Mg8p75DK8d494n/5nnH/4+AC8/dB9XvP9XcWyb5ZdeOX28b+yehyIUvLKD1pEguqIOtTGCV7DxNB+7WiVZ3zDjfZMNjWRb21H1mY1TPWs3EqvLsv1pl84Vq9n22EPomkq6pY2bPvX7dK1aQ/eqtdz8239AqrmVx776r7QuWsqCc69h/4thQ1jHsjoSx81KsHadgXXvXfgBJK+7/oT9m7zuWkrPbjrh8ejFl/C1Zw6iCMF7z+viNy5bQNTU6GlIcNv6Du7/1KU89DuX8qe3LKctEz3h+bPF6cjd1ngrdyy+g7JbJqJGKDUnp79fj9I7O8MiXkDt//wxlzdt55prTG56Txvn+j/B/s8v0rksM+M5qq7Q4O0k22pSLdoIIUjWR9i9bRxzXSOV54bDGY4tD60tRmRFHUrKwJuoYQVVtBVpUld3kbyqiyAIKD87QC1aY8XlV1Pf3jmjiJIQCgvPuYBz3nI7xbER1t8QHvcuuP3dGNEY2x9/mMaueWiGScuiJay4/Gq2PnQfl773V4imwsH2mm5w8bs/QDxTh6bpXP3R38KMhR3Ferc8x+Uf/CjxTHZq23Quv+N9mC+9wkU33zZ9jE02NHLlhz42/byfKtEM6z848zEhINUKmZ43+vHNGrPtvCHZ1ELLoqW0HleMpnv1eprnL6L3lRFSjU1YlRIdy1eRbWnHjEVZeeU1NHbPY8+zT3Lebe+cPubF0hkuftcHaFu8DFURKJqOppkY0SjReJJAEaAoGNEYCNh017cBGD3YS9eqtWERveOsuuJaPNfh0NYXaV+6nPnrz8Uql+E1ZkTTetIUNYV8JsLDTw2g9CRJXtWJ0Z3EczywPKwD+bAASQDmgjT2QBk0BTHV2cLoSBI0x+g7WKBatMOON4pA0xWWnN8yfeMSwIjqpBpjdC1O4OUmcCcn0VuaZ9xEAUjfeiu+5yF0AxQFJZnEK5dRolG0TPqkfIan0snOX2GaCMNAGAaBY5N6y1tOWCeyfBl+tYa5aCHDn/m/KE6VVGMUVVMIgGjKQDdVhnpLLDznGlzb4vD2l3GsGmuuuZHS5DiDe3dx8bs/QK1UJJpM0rVyLW2Ll06/R7E8Co5PbX8485XnexidSbT2OEEQoKYNFFMlf9exwiVOT0DzgoUIoXDtxz6JUDKoqkI8eWLnnZWXNBCJKOFx6+AzkOuDVDs0Lg5nXG9bDxMHYOVt4f+33QlGApbeMvOF9BiIVzUDrHw7ZE+80T1D4zIw4uEMtPFG6DznxHV6LoZsd3iz+Kh0J1SnZgZQVNCnzgva15/4/FluNh17lXgMEYmgxOMEvoeOzbJVMXLDFYKGKEIV1HpzRFfU4wyWMXtSoAhquycpPHIYLWVgD5dAV9Da4mitMQYNjXLGoPzyKPl7DoQFSLwgLDiZNnjliSNc/PZFtCxIs+KSNloXZRg/UuTIrkkufsei6XOPc26ax4GXy+jRWNjBwTTRdJPuVWtJZOvJtLRRmhgnnslQq1ZINjSRrG+gnJtACIVSboIgCMg0t2BXq9R3dpFuaqbnuBkVu9esp33pCkqT4yw854Lpx1sXLWPBhvO44O3vJlGXZenFl3PDb36a/c9vwqocG6DUunAJa6+9iXGtzPcHfjT9+PqmdVDJQaIJNAPSHafk8zwVZlP+6rqBr3mIaFiwK3FJe5hnfoCfq6GvbMBcmEZpiFDNGOR0hcMJk/teGuOhu3rx/YAL3raAzs6ULEByFphNuXuUqhvEslkCI+xMHV1aT/nFYfySjW+7RBakUdMGsYvbcZui7M+abHbgW/+6nbt/3EdxeQOlOgM1ZfDQD3q56/u93HVXLzu3T5AbqbBgXRMDe3NsuL4H3ZQ5Ple9GbmbrItw4e0z2xYbu5IUJ2r0rG6YkS+eGyBiKubSLJHlWVzXw942htNfQjTouF5YGNXzPALAjCeolYtEkynaFi+nobOb/t07EEKw7OLLIPAZP3KIIPBpXbSUtsXLiCWTTA4OEBDguQ66YZJtbmXhOefRu+U5EnX1JKaKkS675HqqRY94xqR9SR19OyZI1keoTRWH7JwXxa9UCBSFwHXxbRvfccIBd6qKEjFR4nGUVAq9tQ2juxt3ZAS7vx+tvm66AAlAdMMGlPjRc94A3/MINA3f91HTKfR0FA49E6686Fo4+OTUzlwSzsZ2VPcFMPRy+LNqhIX4jpp/BRyZmvVO0UCdams7/nx32S3Q+yis+wAkTyxSP5vNxmPv6aQ3xYivayJxTguxVQ2kbplPZHkdatYkeWk7Wkec8nPDKLpKbfcEkcVZ7IPHZl4z2hNhG5xtc1x/YIYPFFiwfub+3XB9Fy1tYfEJTVW4aXUr93zyYn7wmxdx9ycu4pyeuhnrd2RjXLKokQ3ddaRjOglTpykZOSsLkMDsy11FN0i1tiAiCkZjHGe4jD1URhgqasrA6EritEX53v2HuP/hPmxTpashLguQnKVmW/7+VJl2WPX2Ex9fcMXMf2fnh21OAN95f/i9+2or3w7x+hMfP6p55Qltpax6R/jarxdecwxVn9n21bksSzJ17DFVU0GBSELHiIaFKFrmp9hwXQ8t81Occ2MP9Z0xnr/vEIvOaSbbemJbcrLOoKln5t+rHlFJN77+PbFEVp++p3mUogiyTXN3tuRTlbt6ZydqXRbfcRBmBGHoKIkEIh7uO+F7pA9u4qbrNW59Zx3zIv00vHIPDTseQN/yCM6hQ+jlcUoTVdoXZSjnLRRNUNcaZ7y/RMv8FKquMLAvx7zVDVgVB0UVpBqiHN4xzvx1jURTBn27Jtj2eD87Hh/GjOusurydc2+ex8Ybezj3lnmkGiOM9xexay7VkoMQgoUbm+nbGd6HPno/esuj/Ww7WGQgqhNsbOGVgRLq9T1YbTq9+k4OVLaxo/8p9uVfpG9sJ45jTZ2zl1l33c3T+2XXtp/gV10Sl3ZQ/+EV1L1vGVpbjCAAu1LG8zx8z8eIxqlrn1kwZP1Nt1It5lF1nWqxgCDA9TyCwEczdDyriplMccWHfg09Eua1GY9z7a99ktFDB7jht34XPTK3znOPdyqPu1bExc/biKRBdHkD+sJMeM/H9nnlsQfZcPPbZqxvRGO0LFyE5zmkm1vwvDhmTKNlfhrNVKmWbBq7k+x4emj6OWuv6aKu7RcvyCEUQTxjvikFSKST77T0cVhw4qjw5edkcJ54aMZjiSuuIH/fvUTXrp1+LBAKccMm3ThzkGEsZeDaHpmGEwd8xS+4AGfoWI47P/4+C1ZnZj4/aVCaqPH8vQd5/t6DPPuDXnLDFRasb2JgT45SzkLTFdZe3cmqyzs456Z5JDIGmjHVfhIEpGI+Y30lUg0RUvWRGYV8xos2SnpmzGq9id27De26K9mhhkUZsmaWrmQnnaVJ7h1+lIgZoX3JMoQQjB85BEGAV3XQuhLEVtajNEXB8+kf2sP4kcMsPv8ivvLbH2PDLbdR1x7ekxBCYc01N1KcGOey93+E/t07WHP19ST7fwKpttf5lGa/05G7yeYWLnvfR2b0RbjqV36dSCqLazvUCg4D+xU8twVFm0883UkgwoJzvh+Qd31yKZPhiMpoTMNbkiW6MYOaKeFNPoPd+wxq6ghBrQ9zvkdkaZrYhib01hilZwYwF2ZI3TgPv+yQv/cAgeODpqA3RPHydtjPYOoaXujHCnqoWTOcVEUB/TXORU8WM6rTubSOFRe3s+T8Fi55xyLu+KONLL+4lfZFGS68fSF9OycojteYv66RicEykbjOvDWNHNk9ydqrO9n7/PB0X2RFFRgRFd8NyLbEKOcs2hdnGTlYYP66Rvp2TNA8P0Wq4cQBnLPdqcrf+qRJ0tToNDu5af5NJOpN0k3NXP7Bj05PzhBNpbn6Ix8nmqnjx5/9KwCMaJSOZcu57d7b+L+v/A2p5mZWXH7VjNeOJlPUt3dx3nfPC4/T6sz7D9l3vpPIggXQ2krglvDyNZTGKLGV9eg9Sbyag+K9dptTsiFCumnmtVA0GfaHOSp27rloreFEZpo+dU0W1zFiGrqhoGoq2uTgdN/3o/SODvS2dmLnvkb/hDeJ0d2D8qpJ2yKrVk3HP5fMlvaGRNZk4TkzP1tFFdS1xKZ+Vlhxcfv077Y9M0itPopzaTvWBW34SR2vYKHURYguzaK1xPCLNiIIQDs6exTk7ztI/IIWalcopH9tGbnUJCNHDgAQiSe4+qO/SSJTx84nHwNg2Ybz4SdhQZL0LbdQemUrz4+9NB3HLQtu4YkjTwDwwSXvoivVA8Cazgzf+40L+ew71vAP71rHdz92AUtb3sAkatIbdrJy19Q1YrpKWyZCd12U9mwUUxd0NCRIRjSKuj/dVhNPGZjxmRONel4CMx7HfNUxoalnPqMHD0z3G3vx/nu4+N0fpL6zCzOeoHvVGtqXrZjRl3LBxvNxXZfF519y7HXmL6Rr5Wp61qync8Vq0s0tjB3qZedPHuOVhx8g8H0SdfXMW7uB9mUrqGttJwB6X9rCxltmXkue+9Z30LvlOeLpDLVyifqOLtJNHbQtyrDxhh42XN/N5GCZvc8N05C0UDMZ7IOH0Jqb8cthf5r0jTdSevwJ0DSKa+fjNdWh9XTPeB+1rY0t+iB37b2L2xfdPnN/qyaLEq9RdKN9A/zTmvDnjb8C5pndBj5bjr0ARNO4WoVaqUxxYoKeNetJNTax9YF7iSQSLDjnfJoXLGbzA/9F5RyP0vODaO0JjJ40iUvayHxkBU59lFpjlOh1Peg9Gr7Ty0jnKKWVDtGtHyD58BqUhEbpqUGiKxtIXtkZFnD0A/a6DmXHpy6m01MfJ6KpdK1tYGKgTMu8NLmRCqXJGovPCduYDm4bY8l5LXiOP10cpH93jvnrGhEC9j4/zJorO5kYKGPVnLCY3nHal2Ywoxo3/NYaLv3QUq742ArWvWMhi5fWc/Mn1nDHH23knf/jHM65cT6HzF3kU4N0LM1ixo797auaQiJrsvrKY33GxvpKdK+un9HubMY0Oldl38QP7+wWvFYBJEmSJEmSJOm0EafzBE0IoQF7gKuAfuA54D1BEGw/bp2bgN8CbgTOA/4hCIJzf9Zrb9y4MXj++efflLjfkIk+8D1GK2FVe1VRKI2P4tQs0s2taNEGiqMWm+4+wKorU3R3NiMKLm4h7IygpHS8jErFmiSWzlAcGaY0OUEslUZpyVDwihwqHmLb+Daaok2sbFzFYrsB4fv4/f2M/fMXqL3yCtHzzyP+R39FteojFIFuaBTHq6TqI2gxDd91cWsBk0MVSjmbbEuMdJtJb7ALpWSzwugGJawIH/T3Mzr1uo13fhcRT1DJTXBgy2YOb3uZ1kVLWHz+xXQ0JSDwqVRUKBapvbQV/8Lr8FWNaFKnNGFjV1wSDTaKAsXRMTZ9/zsM7N5Jy4JFXPD299C3J8r8NQ1UPvUBzEWLyL7zHcTPP//0fZ6v76T35jztuXuc/IFB7JdzeL0VEhe1UdkyjNYQQ60zqW4dI3FRG7W9ObyCReL8Vqz+IoEaQLvGju2P0750BVgBRiRGzS0xevAgzQsWUpochwDSjU3kR4ZJ1jeGg+JKRdKNzUwOD5JIZwgAx7ZIZLIUx8bCgeYC7GqVWDaLVSyiGga6GcGuVokk4hRHR1F1Hc00KU2MkaxvpFYqIRQFRdMpjA6RaWmjWi5i6CZCUSiNj5FqaqEwPoIiBNFkltzQEdLNrdRKRexahaaueVSKBTTDxIhEKIyNkm5qoVoqQBAQTabIj46QamjErlZwajUiiSS9WzajGSZdq9ZR39JOouGndKY7td6UnsinOn9LpQrFIYvel8fY+eQgsYzOVe9fgW07CAR6ZRLn618gdcP1jH7+86RvvpnaS1vJ/uqvUn74IaqJFnrFEvZuL7P++i4q+XBGqlRWY8N5Ueqqhxn9zGfg6ktp+uBHUQ4epDZ/DdXcAM/c+TWG9u2ma+UaNp5/EYmmBiwzhe/ZONUKrmOTbmrBsS2yohlvoorv+ghTRauL8Morj9LQ0Um1WGDbIz9mcN8e2pcuZ9UV19K4dAUTvXt5+jtfZ3JogAUbzpsqcNNCUKviqxVeevAu9j//LAvPuZALbn8XkUQSoamUxse5+2//nLXX3UTLwpVYVoLxI1USGZNsS4z9W4bJD5eZ3+YQefIu4gu68K67iZRVovLkk0z8x1dBCOo++AFiF16Io5tY999L7j+/iYhEqP+1XyNyzbUU9Cg+gqakiaae8ppmc/rYO1ga5IGDD5AwEtTrdazpVyn8v3+ltm0b0fXryb73vSiGztg//zO1nbuInXsudR/6IP2//wco0Qix3/4N+uf1MPaMQt/WHHUtMS66UqHt2Q/jLb+D3oaP4lR9knURtvz4MB3tCXpiKvYrY8TPbw07LFQ8FFNBzZoM5HrJJBsRhxysLROIhE704iZGa30ITSWaSlMr5unb9jKB7zNv7UYy7Z3UCnkQsO2RB0m3tNDY1TNVIV0QS9XjOj6uU8WMRXCt2tQsxILi2ChmLIaiqei+II7A9jwcU6dUyFMp5HnxgXvYcOPbMKJJYqqG/9B9JC+4gNzXvwmXXIjX2UZ60SIa2nve+I7P9cGzX4AXvxoOoL/wE9B9UTjQ6NSZ07n704wPDlIrTFIp5NHNCIm6BjQzyughj0RdlVp+jBcf+BELzz2flsXLiMbiWJUKhdEhNMNE03SsWpVILIFq6LiOjWfZaKaJXa1QLRZJ1tfjey6qbiJUlcD12PT972BVSiy96DKa5y2kkpvk5Yfvx6pWWHHpVcTSWQb27KSxex6uPXUerukY0Ra0kSqVx49A1SVyfituR5KBIyUcy6VjSR2Hd4yRbYxR3xBhctImZqrEag7ekRJaYxS/5OAcKRFd1UBl6wiRJXXYrs+oD2raxKq47H1+mPnrGgmCgGxzbHqGTN8N8DwfXQ1oTpQQR3rBcRDxONgWY//0T7gjo6RvexuJq68OZxpQFALLRkRMhKYh4nFiy5efyo95VuZvta8PP18gsC0C20YoCpVNm5n8+tdRYjEaPvYx1Pr6sLBiczP2gV7MlSspmM2UJm1c2ydZZ2KVXSpFm6H9ozR25DHjCrVyiYauHsYOHWDnk48Rz2RZf+OtjBw6QPviZfi+TyU/iaYbKKpCKtaIllcJbA+hCOyBMmpSR+9MYhkWYtCl+vgggR+gbUxTyVRQYjqabuC5MVzHIG3WmEhZ2AMRXvpRP3bFY8WVLSyPbyaWMsNZ1qs5cKuQH4BMZ1j0I90JozugeRVUJ2DHD2D1u0HVYe8DsPteSHfBDX8TFgV59H9DYTAc7HHuR6Fl5c/e2fsehkf+Nyy5EQI/LGjyzOch8GDt+8LBlS1r4IefDGO66k9gsg+e/ExYMGXjh2HnPXD+b8DCa0A/ZbNazMrc/WUEjkN11y582wbHAU3DidWz6+UidT2NtCY1lJKLO15F6ArWgTyx1Y044zVcP8BYmGH37klMTSHdkcQXAbqhUclbtDZFsZ8bxt4zidaeIHpxO0MFC93UCIKAaFInCAJ8F8oFi8nBCp7lMn9pFHdsHKO9DU/oBKKMW5sMJ9QQytSMqhOYsTh7Nz/D8P69bLjlbUQSKQLPY2DvThLZelKNTeGNxCBAM02EEGimSeAH2JUygedjxGMIRUXTdWrlEp7j4PseiWw9E/1H8BwnnB028LErVaqFHNsefxhFVTn31rfTPH8RrgkP5H/C13Z+jYSe4GOrP8Y1IkG8OglmCuINYUeI0++My1+A/OgIZjWCX7DwchZoClraxEloHNibJ5YySWZN8qNVynmbuvY4taJDtWTT0JGkeV5qeqYTadY6I3P3qPH+Ixh6FL2k4oxVCSou7mSNyKIsQUqwa2eeWCpC4IcdbUuTFo7lUdcSI5pQ8GwfMxUlP1olP1zBiGmYMQ1FCColm3RjjPbF2bN2EPlpNqtz17Fchg8WGT1cQI9oxJI6ytS1NgTkR6oIRZBqitBsari5GoqpYh0pocZ0lG6TmlojCHx8JyxALoTAsaoAeI6DY1l4rouqabiug++4IASqphIABAFOrUZpcpxMSxuxVJrSxDhGNEphbHSqTTRBfmSYdFMzQo2SaliCbWkURmu4tsfYkRLz1jSw9ZE+Nl7ZQqs+isiPE7gOge8jgoBAhLOyH71/JTw/LExi1QgsGyWZQEmm0BrqGf3c57B27yFx+eVk3/++cMZ3RSFwvfA6wXHB91EMnbj1FGLzP8F5vx7O7Pb038P8K2HDh+CeT4HnwCX/LTzvfuyvoG4BXPHHsPlf4PAzsPxWWHBVuG66Cy76FDz5uTBzzvlVeO7L0Lo6/J1dhPM/HhbqOzVmdf6eaZyRCu5kFWtfHjVl4E7UQANzfpbCfQcRqiC2oRmtPoKVcqlYPr5rUhyrhffimqNkW2MUxyzyY1WyLTGaulNE4mflwM8zNndH+w8TFXHUssAdruDma5idadQ6k+G8zcRQFd1UqGuN07ogc7rDlX4xZ2z+/lT9L8Lue8LvPT0GF/82zLsCGhfNXO/Ic7Dl67Dtv+D9d0P/Znjq78N2o3N/DRZfGxbWfT1WGfbcB4/+BZTHYPU7w4EKza/fJlqpVBjeV2bz3QfIjVToWVXP6is6aV2YmV6nMFGmWvQoT9TwvIBkvYkRVakWXHzfR1EVel8cRtU15q9tpGXeaxeCHtw3yYsP9tG3Y4Jsa5zz3jKP7pUNr7nuUUO9OXZvGmbf8yMk6kw23jiPxp44qewpL0Qy53K3un07Tv8AgecSOC5CVUBRCYKp80c3POcL/AAhmD6fPDaaV6XSuoIDvTaKrhJLmeRHKkSTYYHqicEydW1xyjmLwA9INUQZ6y+Rro/i+wGO5dLUneL5+w5SGK1x1a8sI5mOUMpbeLZPst5E1QV7No+AgGRdlNxwhdb5KY7szmFENayygxHTsKsuRjT8vxnTsMouiXqDzmX1uPY4ldwgTE366rkeQhUIwkHKRixOYWSY7Y8/TLKunqtv/xhe3iEou6AI1KxJIRgnNzY0Nag53H4zFmP00AEmB/ppW7KMWCaLY4UzuYsAVNMM2+MMg2gqFRbY8z1UzaA8OUGtWCDZ2EQs1Ui1LAi8gJb5p6VI+pzLXYBaXx4vZxNUpj6njMGkN8buTY+z8spryQ0NcGjrFsx4gs4VqzFiMSqTkxiJDLnROJmGGNWijWaoGBGNZJ1JbqRKfrRKtjlGY3eKaOKsPI+ca+Zk/gI4jsfhV8Z5+nv7qJVdVl+YZlnDK3hHaoz9y9cIHIfM228netmljP7gTvTxAtF168h957vge7R+5jPk87DlJZ/+fQUau5IsOb+ZmFKlMWVRvv9+8nfeiYhEaPjNjyM2bIADvYz/3edwhwZJXH01xns/xisvlNn3UljYdMN13ZhJjeKYxSuPHaE4XmPhhiaWX9JKrejw5J37uO6jy3GqAcWJGmZMI5oy4P5vMfmFLxBdt46G3/kdRr0Ghg5XiGdNIlGdF+4/RH60woINjay/qBH7mSH8gxX0dhMtNcrE1kfx33kTv/LKHzEvPY+Pr/0453pxlMmd7GxezOH+vSyhB9u2cCwLVdPpaV2NN1nDd3xEREPNGowUDnJ421aiyTR17e0oqkYsk6E4MoJuRtAjUYQiqORzJOrqUU2TercfOn9ml9k3w5zNXYCJ0RHKoyNUiwVS9Q2YqSRC0UCYVAsBO37Sz/4XRlm4sYGVl3VSyduomkA3NXzfw6n5BAEYEZWW+WkUVaFy8CDunj2Mf/GLWL0HSFx2GdkPfAC1vY1IczO+5eHXXNS4DkJg9xWo7Z5EqAKtOUbxiSMoUZ34xubw55hObF0jxUf60BpjmAvSVF4aJX1tN+b8zPSEKKdaKWeRH6mgqAJFFdRKDmZMD4v8GArj/SVUVcFzffr3hsXcel8aoWdlI327J2jpSTHWVyKeMQmCAKvqsuH6HurexMIqr2HO5a/v++wcLODph9k1uosrUtdjRizyo8PTeRxNJRk70s+BLZsw4wm6Vqwm2d3NRx//KBkjw9+s+SxWaYi+7S+x77lnqW/vZPmlV5LtXMBfbP1z/vvy34WtW5n4+jfwcjkyt72NyPr1xFasAKD80lbUbA9ezsKvughdQctGiMzPvG7c/XsmeeG+gwzuy9PYneScm+YR8QeZ/MivEr/0ErLvehex9eH132tdk2lUaShuoVSpZ+yf/jns+75uHQ2/8evYpkkkkSB6CiexLD3xE0b/8R+x9u4lfuEF1H/kI8Q2nNJ7x3Mud3+W3EiFlx48zJ7Nw6Qao1z89oW0L85OF2OqFm32bB7mhfsPIhTB1R9ahhHTqBYcqkWbee1xvIkavuWh6ApqNsLeQ8/RUbcEe9M4fs7FXJPFWNPA6NB+BvbsYvkV11AeG6VSyJHI1hNNZ3nl4fvp276VxRvOp2WyiPvjB8m+593oixdTcfeyWS2zrzzA0uxCIq7HS6MvsqphNevaziObfo3iCtKrzbrcPThWpGIHBAQoQGvaJBMPC2IN5soEky69z48w1Jvn3FvmseX+Q4wdKdGxNMuqKzoQ5MkN9vLiA/cwdvgQ3avX0r16HaWJCWKpFGY8zjP/9U2sSpk7/uQvObJzO3a1QuO8+cSTaRyrhqrrqIZBJZebKhJSxnNsoukMiqpglcsIBGP9h0hmGzAiUaqlAp7jEk2nUFQdu1ohCHwCL2D8yGFaFi7CrlawKxWiqTTlXI5kQyOHXn6JdFMzTfNWoKgpSpMOuZEqB7eOEU3orL4gS0O0iPXiFpzDfURWrCD3gx+QuuF67AMHsPv6SL333eSXd/DYwBNcavXAf/wXzqbnMTauR//Ie3gpleOufXdxy/xbGKoMcd/B+2iNtfL+RbdxodkML38LXvw6RDJw6e9B6/nw1WvC/rpr3wfJ5p/2kZ1Osy5/T4qhHYwGmbD/KQHl3AS+51McH6VtyQp8x6E0OY6q62QaWjCUKGW7gE+a0oSNqoAe1ch4w1Cp4gqPwaYAy+6iIxgg8+zfIMwM9pq/xOrN4+UszHlplOYYB/UgnIgqopGvebi+T1xRqfWV6ds2TmNHEqEIVE1QK7sc2DpK14p6ss1RXCdgcqhMfrTK0gtbMKM6Q/vzRFM6da0JqkWbRJ1JcbzG5FCVRMagrjVOU3cKoQgc10NVlNftc5Gv5Xn48MN0avNotruYHKgQ+GExvUP5PqqJHB2ih/xgDSXpk+rQmZgsUBsEXdPoWNDAgnmzZnKrN+OC4bRWAfEDnzVfDYsXvfLBV05nKNKbT3aMkiRJkqQ54LQWIQEQQtwIfA5QgX8LguAvhBC/DhAEwf8TYQ/azwPXAxXgw0EQ/MyrsVlx0QZQmsAJPKo2aKpGLJOF8iSWL3AxsYpeOPCtMUI0buCMV8Lij6oNpRJqQwPVUglV14inM+QrefzAx/ZtEBATMZLxYxVBgyDAzucJJicJymVoaKQSSTBQcmiK6xg2aDokjRqTQoFAoDomqhDE0ib5Sjig2As8vMDD8iwag+Mqjk69rtrYiBEVFH0Nw4ziOhaBHsFyArJKlaPD0S1XEAiFYGgIMhkcPYWmK7iqhUCQjCUp5fM45SJWrUY0mcaqmKQyhB1HxsdRGhvRY7N2BqAzs8HhOJVCESdfQWhK2FnH8VCzcYKyQyACAgHCC1CjJrZVAQSKquE5Fppu4NoOQgHDiFKtlFENA99xCQKXWCpFpVBEVTSCADzfIZZKUykWUBUVoSh4jkM8naZSKIQFejQVx7KIxhLYlhV2homERUg0w8Czw8FmsXSKci6PpusEvo/necTrM1TG86iqAgq4rkcsnaSWD4uUqLqCa7tEEjGsShUCgW7q2DULIxrBrjmAjxmPUyuV0E0D3/HwPJ9oOk61UEJVw9mcfd8jmojjVDyEgFTLrKt2ekYUITmqMFGkVgpQFAU9HkBQxqx6BLkcIp3GMlXiegy/VkVVbfx8AaV9AfaBAwSRKLaWQPFsImmTkuWjeA6JmE7RKqDaGhPpgKpbY36kA39wCC9Zjx0IfK+CgU0ybiCUAMwMVdfAtUsAWDWNeNZAVxX8kgWeipLSoVwEXScww5x1HAu3UsX0PNTmFkzTpFSoYhXHcCyLeLaeaDw1PSuLOzGBg6BStYgk4yiRGNXxYVAEiqqDbRONRqFQxKtrxLVBqDBUczB0ha66OKXeA4Ag2t2Jph0bwFfduROAyMKFiKnZQIIgwD54EHQds2NWNJqdEcfeol3EEAY1r4aeK6AUyvjJFLguSrUGWlgszK/Poqs21UINS/XxEwmSTgUTjWpNRzfAVCooVhHMNAFQcWPUPBNFVXFtH91QMPDxFB9NURG+iqcKXHzwBUZUQ1EFOB4BHrbnhp0bHYcgUAi8AM2MIzwfL3DRDA0RBPgBeEqANTGCYhgYZj26Bmo5h18pE6g6tpZAVQM8L8CM6ti+BYGPUShBJIICmN3dOEP9+JaNFYDvukSjETTFxvcNyukoniLQyxa+75Fp7vxZu/e1+T7kDgM+JNtAP+UzrJwRuft6bMuiWsyj6DrD3jgpPUVcmGiFEko8Qb6Qw3UcookkTq1KoCjohonv+7i1GiDQMmmEAYoHrmWBqYXnA75HRI8gEHh4VN0qIoCYFkO4Aaqm45QLqKUKxBIEqkARAttxUQ0Tb2rwnKbFcR3AD1DUAA2FAAUHULUAIRQ8D1AEggBVeGgiwBUawqriawa+0PFtH00EBCoofoCmguMKjk78EhAW8fN9CAhQNQF+ELbMC4HwXFTfwVTsMCk8L3xeMNWz2HEIXA8RCTv+IkTYiVpVw3Ofxkb05CmfFWBW52/tyJGwGIPng64R1GoIRQHTBN9HCAUCJ7w2qVmIbBYPHcvV8QNQNcJZqYPwczKMAAQI4aBMfU+qqoYfQBAIrHIZBQUjFXYCVFUVp1bFLpcwiIGAAI/AUHAdG0GAF0BUTyACsLwKvuug6DFUNYJvWRimTd4McAOXmlPD9GOkRJSUOxjOvi6UcDCk76AoKqCDXwMzHRYlyfRAbTL8WZn6bo9koDQcDqZMtkA0Ez6e7we7BNl5oJ04y9zrKoxAeRgSTWEhEs8BqxhmR6IVYlkoTsUbbwh3ankYtCi4tXCW+J82w+2bY1bn7i/DGhzEL1fCXFVV0DRqloJi6iiKgVBUfCXcAa4Lvirw3QAhAoQi8BwfoQoMQxD4Pqqq4AcKiioQlounhh9xIMLZMF07fJ6hhsdUHw1ch6hihblpWeEtyGQCajVQVeyIgQcoiooQCkIV6LqJ6zgEnkDRNHzfJsAnEo3jBmBhY/oKqtBxnVrYBmLVwtcgPFYGrouqa7iui+c4GLEYjmWFbRFCEChiugBa4LgEQUBZdVDiJo5nE1djeCIgb+eJqxG6HRcCJ8zRZPNsmnnljM1fgMpkAdVSIKZRqXlohsDVLAIlwPEddFWnLlp3usOUfjFndO4CVEolfMdG9Q0UN8A3A2zHwvMjaKqCogS4to8Z8Yl6BXDLgICmJSfO5i7NJnMyd13HpViy8YKAiFPACww8XycaVRE1Hz+iIdQAVBXX8fBsD98X6KZDrVBAj4aFmsNCYOFATRH4YTuTUEBVUISCT4BXs7GrZYSqoiganuciNJ1ACFRNR/XBc1wUXSfwfISvAx64Dobq4zgKuh7guAJFBOh+NbxWP05YUiX8SQimC5TN+NuZvq81tY7nTZ/7oygQBOFg1KlBqGoygt7UDqXR8Lwl1Rqex9byEKsHPQqlkfB1k83hSVBpBIwERNNQzYfnz/GmMI7yMOjx8PflYdBiU9dy5alz3yokWsLBm6fOnMzfM0Hg+niWS7nqIFQwVQVqHoHiYwVV4rqCFjiQnbszVr/JzujcLefzAGi2Cgi8qCCmehCdNdcc0i/njM7fn2lwKwgNWla8/jrlHOQPhN+PTUthcBvgh0W73qjcEXAqUDc/bMR7AyYH8jg2xBOCeMNrz0acHysT+JBpCgdB5oaKOLaPoqt4jk+62cQ0f3oR3dJoiUrZwzAVMq1v7O+6WrIojtvopkK25ZQOwDzenMxdr1LBGR4+7lyQsDj+0fPEAETgE6jqzA082sbuefhaFFcxQNMQiiAIps4+PTc8dzw6QQ8CRVXwbDccrKCpBI6LZ8Tw3AAzKsCuEmhxAgJ0zcMt1lAiJr5lAQqKpkDgESgqrqegagLPCdB0wAvQVB9fMVFjBr7jo2kC13ZQFAfH9RAKEAiECEDR0DUD3/YQcR27XEQEAiFUNFNHqSmgClzNIxABnusRV1wqnooQLo4VoMWiRCIRiuXy1OsKNCFw3QA9ooT3AB0LRSi4vo/vuRiGiaaCqUHFiyF8QSACEumZM92fQnMydwHKhQJqTQ0L1xkBAgvfSJKfdPBcn1SDGfYzcQKCAFzXx4xoCCFkMd4zx5zN36OqJRvPDYgnBKI8CkYCt+zgVSpo2SxqMkmhMok/kSOeaUC4XnhfM5vFnpjAGc9jm0kUM4JaKxJJmmh1dVj9A/i5SUQkgm8aGG2taFYJN1/ArfkIRUFEoyiZDJWRIr7jIQKHVGcT+ZECrh/2a4mnIJoKv49r5XAiAj2mUJl0UHWFqFfEtyz8fB6SScTUPdtKPIPrCjRdxXHDPmB6Gnxhk3DADOJ4bolacRwzm2bc0JisTZLU43TZTnj/NtkKqkGlNETJqRJzTXxVR4snMTQdr+iAExAkFVwn/J5QDQNVVXEdG6tYCAu6azqe56LpcYIgLBYVp4xixsP7bqfHnM/d3PgYuqIiNBXfD/AcHd8L25AUfBzLD7+3jwoIt1oIFCCS0InEZ95PdatVnP5+qFmI+joira1vOB6/4oCuhOedZQdhhPezvIqDElXxax5CV1HnyPHfrrkomsCpeSiqCE/Vpvah5/hopoJT9YkmddTj9/OpMafzt2SXOFw8TJfWg+tW0RQF33cJNINabpxMSztA2M+wWiLn5tCERouaBrdCTU+AbeGpKjWnxpA7RJvZSNZXwStiuTGwbURTE4YxM8fLuVGUko2iJ1GjJlrqZ08wkh+thoX3oiqZ5ji1w4cJikW05mb0hhOPYTOuyUb3gF2GdBvWpH3sWG3ZRBYveo13e/NZBw/il0ooDQ2YLS2n+u3ndO6+Hs/zqRZsNFMlEnvtInrlvIUQhJP0AIWJKq7loRoKhi5QagFqXEObOi67tk2tUCNwFLSMilMp47ku8Wwdge9TmpzAjEQJEPhoiIiH8ASRag3f88OijMkIqp0L2xxiDcf6E5ZGwv8nmt7sXXMmmZO563k++ZEKRlTDtT3sqocRU8LbTdUKql+jomp4vk9MAa9WQ0SjqHoELRIjVx1BCQRlHZqUJOWJcTTDIBmLEhg6CgGlyQKKbqAaBp7rQqUM2SRasRJOwqPq2I6N67pEE3HIl1Da2/A9D7+Yx/Vs7IRBNJYmqsao5C1UxUezK7hGDNv1ca0AzVDwnAA9qBKgEY0rWL6OZ9kYZlhYzEylcMbH8UslME0UTQv7HAUBajod/jzF8RxU18fJTaKkUuiKD06Vmh5DaBqmajJZnSTiukSL/WEbYLoHxneBokPL8pn35ma3OZm/b4htUS6Nokbq8FwbTQ/bIDzHxq5WUXWNwA9wazWisTQ1J4eZqMcqBmhqgCksVF1FKD4TFZuKmqQ1E8XQVLCrUB2HSAanphHYHlpdFOVnTG5aqzjgB9iWh6IJVEWE13ARlUjcwPeDNzRpS7loUSvYaBGFdP3P39Y6UBqg5taIaBF830dTNcZr45jCJKbHEEKgCjUsZCQUvMAjoSdIGImf+73eRGdcERLP91j7tbWALEJyFpAdqCRJkiRpDjjtRUjeLLPmok060525DQ7Sme6MKkIinXXksVeaq2TuSnOZzF9prpK5K81lMn+luUrmrjRXydyV5jKZv9JcJXNXmstk/kpzlcxdaa6SuSvNZTJ/pblK5q40l8n8leYqmbvSXCVzV5rLZP5Kc9UZV4TEcmps/M9zALjvnG/SsXzl6QxHenPJIiSSJEmSNAec8tLSkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvTo9x7CrXRjT57Hn/3LS3z/mUPsHy3h+ae1NookSZIkSdJZSzvdAUiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmzhztZw52onZTXOpSv0lesUXV8qq7HaMnmlf4cO0YLHHHAF78BwIMmPPiDbQBoQUCrCl1RhTpdIamrxDSBJgSqAFWAQvh/gZh+LyFAAJF4Ct2MHPcbUARAuIKmKqTrzKnnHPf819kG8apfvPo9X+v5M57yei/8Mxiqwvrm1C/25NNAb46hJozTHYYkSZIkSb8EEQRnZjU4IcQocOh0xzGlARg73UG8CeR2wVgQBNefzDf/BXL3TPoc5LacOic9d+G0H3tn2z6fTfHMpljgl49nNhx74czbr28GGdNMsyV330yz8TP/ZcltCs22/J2Nn4uM6Y051THNttx9LbPxc3qznC3berK2cy7k7y9rLufEXI4d3tz4z4bcPWqu58EbcTZt4+nM3dmyn2UcsysGeONxnA3H3tnymfw85lrMpyPesyF3YXbmgozpjXu9uE5V/s7W/fKLOtO2B+beNs32Y+9c258/i9yek2e25+7PMhtzYTbGBLMzrjOljwPMvv0r4/nZ5LH3lzcbP9fjyfh+Oaf7mu1kmg37+nTHcLrffzbEMBdy93Tvo5/HXIoV5la8r471dOTuXNpfx5Nxn1pvJO65cOz9ZczGz262xTTb4oHTl7v3T7336TZXP5NTbS7H9KaMaZMkSZIk6eQ6Y4uQzCZCiOeDINh4uuM42eR2zQ5zLd6fRm6L9MuYbft8NsUzm2KB2RfPL2q2bcdsiwdkTGejM3H/ym2anWbjNsiY3pjZGNPpdjbtk7NlW8+W7TwZ5vK+msuxw9yPf7Y4G/aj3MazJwYZx+yLYTbFMRvMxX0x12Kea/HOJbNx38qY3rjTHdfpfv+T7UzbHjgzt+l0OtP2p9we6ajZuO9mY0wwO+OajTH9ombbtsh4frbZGNNcM9v3oYzvlzPb4/t5zIZtOd0xnO73ny0xzHZzaR/NpVhhbsU7G2KdDTH8ImTcp9Zcjftkmo37YLbFNNvigdkZ06k0G7dfxvTGzMaYJEmSJEn6xSmnOwBJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkk4vWYREkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJks5ysgjJqfGl0x3Am0Ru1+ww1+L9aeS2SL+M2bbPZ1M8sykWmH3x/KJm23bMtnhAxnQ2OhP3r9ym2Wk2boOM6Y2ZjTGdbmfTPjlbtvVs2c6TYS7vq7kcO8z9+GeLs2E/ym08NWZDDCDjON5siAFmTxyzwVzcF3Mt5rkW71wyG/etjOmNO91xne73P9nOtO2BM3ObTqczbX/K7ZGOmo37bjbGBLMzrtkY0y9qtm2LjOdnm40xzTWzfR/K+H45sz2+n8ds2JbTHcPpfn+YHTHMdnNpH82lWGFuxTsbYp0NMfwiZNyn1lyN+2SajftgtsU02+KB2RnTqTQbt1/G9MbMxpgkSZIkSfoFiSAITncMkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSdRsrpDkCSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSpNNLFiGRJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSpLOcLEIiSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSWc5WYREkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJks5ysgiJJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJJ3lZBESSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSTrLySIkkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJknSWk0VIJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJOksJ4uQSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdJZThYhkSRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqSz3BlbhOT6668PALnI5c1eTjqZu3I5RcubQuavXE7RctLJ3JXLKVpOOpm7cjmFy0kn81cup2g56WTuyuUULiedzF+5nKLlpJO5K5dTtJx0MnflcgqXk07mr1xO0XLSydyVyylcTjqZv3I5RctJJ3NXLqdoOelk7srlFC4nncxfuZyi5aSTuSuXU7icdDJ/5XKKlpNO5q5cTtFy0snclcspXE46mb9yOUXLSSdzVy6ncHkznO5tksvZsUiSJJ1VZlUREiFERAixWQixVQixXQjxZ1OP/6kQol8I8dLUcuPPeq2xsbE3P2BJehPI3JXmMpm/0lwlc1eaq2TuSnOZzF9prpK5K81lMn+luUrmrjRXydyV5jKZv9JcJXNXmstk/kpzlcxdaa6SuSvNZTJ/pblK5q40l8n8leYqmbvSXCVzV5rLZP5Kc5XMXUmSJEmSJOl42ukO4FUs4MogCEpCCB14Ughx39TvPhsEwf89jbFJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0hlJOd0BHC8Ilab+qU8twWkM6awQ+AGlXI1qyT7doUjSKWNVHEqTNTzXP92hSNKbynU8ihM17Kp7ukORJOksVspZVArW6Q5Dkk6rSsGinJN/B5J0Mrn21LluTZ7rnonsqktxoobreKc7FEl6U3muT2myhlVxTnco0hxWLdmUcjWCQN5OkaTZqpy3KOflNaEEtXJ4f8r35P0pSZIkae6Q95xnF98L2xJqZdmWIElnmqPHW6sq/75PFrsm7zVIc5tthccFx5Y5LEk/ryAIKOUsqkU5PkKSJOlsFn4fyPFyc01Z9juXJEmSJEmaFbTTHcCrCSFU4AVgIfBPQRBsEkLcAPyWEOIDwPPAfwuCYPJ0xnmmKE3W2PZEP688eoRIQufC2xfSvbIeTVdPd2iS9KYIgoD+PZM89V/7yA1XWLSxmfXXd5Npip3u0CTppJsYLPPcPQc4+PIY9Z0JLn77Ilrmp093WJIknUUqBZvdm4bYcv8hVF1w3lvms2BdE0Z01l2GSNKbxq667Nsywqa7e/G9gA3Xd7P4vGZiSfN0hyZJc9r4QInNdx/g8PZxGntSXHTbQprnpU53WNJJMtSb56k79zJ2uET36nrOvXk+da3x0x2WJJ10uZEKWx44xN7nhsk0xbjojoW0L84ihDjdoUlzhOt4HNo2ztN37qNW+v/Zu+swSa7z0P/famYeZlhmEqMli9mQ2DHFFN/YThxDknvj/C5DyE5syxhj7DhxDJIsixlWu1pmHObpgWauqt8fPZrd0Yy0q9Xuds/M+3kePZo5XdXz9s6Zqjr0njxrrq9n9TV1uPy2UocmhJiSSeXp2DXKq7/tQtd1Nt/azJJLqrG7zKUOTVxkmqrRf3SSl395gvhEluWX17Duxga8IXupQxNCCCHelIw5l5doOM2+p/s4+soQ7oCVK9+9hPrlfgzGstqHTAhxDiaGkuz4XRfd+4rX2yvf1U5Nm6/UYc1rw11Rtv7yJOHeOE1rglxyRwuBWlepwxLirIV7Y2z9dQdDHVHql/m57J42QvVSh4U4G4lIhsMvDbHv6T6sDhNX3NdO85ogJousjxBCiMUkMZnh0AsD7H9uAKvDxJXvaqdxTRCzrJcrW6lYjqPbhtjzeG9x3vndrbStl3nnQgghhBClUnYjkLquq7qurwfqgUsURVkNfAtoA9YDQ8A/zHWuoiifVBRlp6IoO8Ph8EWKeH47snWIXY/2kMuoxMYyPPadg4z2xEsd1qIjdffCmRhMsu+ZPrb++iT9RycY64/z26/vY6wvQSGncWTrENse6KAgmeLPmdTf8pRJ5XnmJ0c4uWuUQl5jpDPGb7+2l8hIqtShlQ2pu2K+mk91t+fgWHExXDJPMpLjmZ8cpf+Y5BJczOZT/T1f+o5O8Oy/HCUVzZFJ5Hn5lyfpPTRR6rDEW7QY6245S8dzPPHPh+jcG6aQ1xg6EeG339hLbCxd6tDK0nyqv5lknv5jE/z2a3sZ7ohRyGt07ArzzL8cIZOSnR8Xm/lUd99MPlug7+gEW399kr1P9zE+mACgkFN55TcdHHl5iEJOY6w/wW+/vo/xgUSJIxZv18Wqu2q+uJj9se8cJDaWIZdR2fVoD0dfGb5gP1MsfAvl2lsO4uNpjm4f4sSOEZ772TFSsRzpeJ4Xf3GCviPSJjzf5kPdHTwZ4eH79zMxlCKfVTnwXD97nuhBVbVShyZKbD7UXyHmInV3cViIY87zse5Gw2kOvzzIrse62fVoNwee6yefVZkYSvHw/fsZ65e+hMViPtZfcXay6TzP/fQoJ3eefr3dx+RIstShnRelqLuR0RS//do+hjqixbGG3WGe+vERMkkZaxBvTamuvfGJDA/fv5/+o5OoeY2eg+M8+p39JKOyG7w4O4v9ueH4qyPseLiLXLpAfDzD4987yEhXrNRhibOw2OuumN+k/l582VSe7gNjvPQfJzj4wgCTr+uzOrptmJ2P9kzfDx777kHCcj+YpZzqbue+MK/8uuPUvPMfH2WoI1LSmIQQQgghFrOyS0LyGl3XI8BzwC26ro9MJSfRgO8Bl7zBOd/VdX2zruubKyoqLl6w81QqluXQiwOzyoc7oiWIZnGTunthTA4nefAf9/DSL04QGU0xeDJK3+FJtII+47iOPWESkzI4c66k/pan6Ehq1qBJLqMyMbQwJiicD1J3xXw1X+qumlc5+MLsZ82O3aOk47kSRCTKwXypv+dLOpHnxI6RWeWHXhyQRUbzzGKru+VufDDJxODM59pssjCvFz9cSPOp/h7bNsz4QJJcZmai0JHOGPHxTImiEqUyn+rum+k5OM5D/7iXPU/0cuSlQfqPTvLodw5wbPswnXtnTt7QCjqTw3Itm+8uVt0d7IgwcHx2ksdDLw5Im0ucs4Vy7S21dCLHsz87xr6n+uZMQnn45UF0XZ/jTHGuyr3uhnvjjHTF0LWZv/cjW4dIReSavdiVe/0V4o1I3V0cYmPpBTfmPN/qbjKa5Yl/Psiz/3IUtaBzbPvMxJO6ps/qKxUL13yrv+LsxcYyDL1uzmY+qzIxsDD+vktRdyeGkuTShRll4Z440bAktBdvTamuvZPDSVLRmX0GsXCGyKiMIYizs5ifGzLJHIdeGJxV3j/HmIooP4u57or5T+rvxXds+zC/u38/+57uo3v/GJ17Rnnwn/by/L8eY7QnxqE55jAPdUoSktcrl7qbTec5/OLse3jn3rESRCPEBXTiSdj27VJHIYQQQpyVskpCoihKhaIovqmv7cCNwFFFUWpOO+xe4GAJwltw1LyK02udVW6xG0sQjRDnX7g3TiqWw+mz4q2ws+PhLtTC7MWeNocZk6WsLodCvG2ZVAGjeXa9VpQSBCOEWJQUowFPyD6r3OW3yqQIsWhMDidxB2yzyl1+26yFR0KIs6dpGgbD7AdbwxzPv2L+iI2nObp9aM72udFswGSR/iox/6QTOV75TWfxGwVWXFnDS784QeeeMBNDSawO06xzLLbZZUK8Xj6nsvvxHpy+2f37Lr91zj4hIcTFMzmUou/wBAajYc42obfCjiIdtYtK/7EJrA7zrHKnx4pRxqeEEEKUM12fe8xZbl8XzcRAktGeOACBGicOj2XWMRa79CUIMd/pmo5pjuutwShtx3M15ziSSZGkoGLemKvvSFFArgpCnJmuF8dKXs82R/+cEEKI+Ss+kWH7g8X5GHa3mVC9i20PdNJ/ZIKDLwyw69FuXHOM0znccj8oV6lYbs6xVadvdn+YEPPaz94Nj/0FFGQzdSGEEOWv3IaFa4BnFUXZD+wAntR1/WHgbxVFOTBVfj3wZ6UMcqHI5zSWXVYzY8DFHbTNOXFZiPmokC8mHGnbUMGRrUMAxMczVDV7Zhx31XvacflnN1aFmK9ymQIHn+tnzXV1M8qb14SwOqXjTAhxcRgMCks2V82YLGVzmrG7LZJ8QSwa+axKVYsHq/PUBGCTxUBVs4f4eKaEkQkxv433JVh1zcxn3dYNFbilP2Ne0zSdxhVB+g5P0LgqMOO1zbc246uYndxMiHKnqTr5bHG3zVC9i8ETkenXTuwYYd07GmYcX7vUR6jBdTFDFPOUruq4p/oz3cFT/ZoGg8Ka6+ol56tppAABAABJREFUmY0QJfZaMvSqZg+ekG1G0imz1UjL2lCpQhMlYnOaSUayBGqdpwoV2HJHCw63TJwUQghRvnSYNebcuDIgi+IvIlUtPluarUbG+uKsua5+xurjQK2TQI3zDc4WQswXuq6z5vr6GWX1K/wYTOU2vXf+MBgUmlYHZ5Stubae4t1NiPlAZ8mWqhkly6+okRosxFlQVY0lW6pmtFtcfisOr/TDCSHEQqKp+vR6oZZ1FRzdNjzj9e7946y/oWHWermadt/FDFO8BfmMSv1y/8x55y4zFY3uEkYlxAWUHCt1BEIIIcQZldVMVF3X9wMb5ij/YAnCWfAsdhNHXxnkkjtbKOSLuwjnsyrpRL7UoQlxXlQ0uKd3MFCmZmEc2TrEqqtraVoTxGwzUtnkoVIapWIBSkay5LIql97dSiGrYjQbcHgsuAKyMFMIcfFk0wU23dqMWtBQDAq6pnPk5SGa1wTPfLIQC0Cg2smJncOsva4elOLfgNFkYPfjvbMmvQkhzl4uU2ByJDn9rGuyGMllCjJpaJ5z+20Eqh3se6aPtg0VXHJnC2pew2Q1UtnkRplj10Ihyp3Ta2X9Oxt55dcd6BozFgml43m69o1x/QeXoWtgd1uobHLj9Eq7XZyZxW6idUMFe57ooX1TJWaLEW1qx9xERJLdCVFq/moHnqAN0Nn/TD9r39EAuo6uF3exfm1CpFg8ArUudj/RS+OKAO2bKlELOmaLgTk2NRZCCCHKitFoYLQnPmPMOTKSQlNl+evFEqhxYHebKeQ0VFXj2PZhLru7lXxWw2hSAB277OArxLxnMhkZ7oxN/X0Xr7fR0TRaQdqP50rXdSx2E5fe1Uohp2KyGuk/OsnSS6vOfLIQZUAxKBTy6qk6bDEy3BmdsYhWCDE3s8VIx+4RLrnj1PqIQl4jPp4udWhCCCHOI1fAyupr69j/TD+6ps8ac9E0HU3XeddfbGJ8IFGcf9ToxlvhKE3A4oxsLjOHXhycNe88kyyUOjQhzh/9tL71ZBi8dW98rBBCCFEGyioJibi4XD4bK66o5YV/O16cAK8XJy+/60ubSh2aEOdFqMHFPZ/bwMEXB1h1TS27Hu0B4NCLg1gdJu770ibZEUYsSBabiU23NfPYdw4yeDwCSnGC2B2fXYcnILuHCyEunooGFy/+23HyOXV6Q6HrP7AcX5Xcf8Xi4A7aqF8e4LHvHiQ+nplud619Rz2ekNyThThXzWsq2P1EL/1HJqf/rm75o9WYrdLNNZ8ZTQbqlvtZc109e5/sLRYq4PBYuO+LG0sbnBBvw/LLqrFYjRx4foDmNSG69o1NPxuH++J4KxzULfWXNkgxL1W3ell1dR1P/uBwsUAp7vB67xfkmilEqbn8Nm7747Uc2zbE0kuq2PFw1/Rrr41NiMUlVOdiwzsbefZfjhYLFDCZDdz3RakLQgghypuvyoG3ws72Bzun++F81Q4uv6+91KEtGp6Qgzv/ZD37n+nD5bcRC6fZ9sCp38fNH1+F1SFJSISY77zVdgI1Draddr31Vjm47J7WUoc2b4Ua3Lzy6w5O7BiZ/jdddlkV/ipZcCjmh2Cdi0wiz/aHTl0XmlYHCdTKfBshzsRqN7Pyyjqe+P6h6b8fo9kgY85CCLHAGI0G1t/YiNNnpWtvmNXX1hX7TKaYbUYC1U6CdS4qmzwljFScLU/Qzqprannh56etcbQZZWxVLCy55KmvU+Oli0MIIYQ4S7I6Y5FbckkVDq+FY9uH8VU6WLK5SjqpxYKhKAo17T4qmt1k4nlC9W6OvzqMv9pJ++ZKSUAiFrTGlQHu+Mxajr4yjM1tZtkl1VS1SAeaEOLiCtW7uefzGzj+6gjxiQzLLq2mfpkssBSLS2WThzs+s5aOPWFGumK0b6ykYUUAo8lQ6tCEmLcqm93c+/mNHNs2TCaZZ8WVNdS0eUsdljgPXH4bG97ZSLDeSeeuMKEGF22bKmUXEjGvOTxWVl9bz9JLq0HR8VbYOfrKMOg6y6+oobpVrl/i3NicZlrWV3DnZ9dxdNswFruRZZfWUNUs/T9ClINgnYvL7m0nFc0SanRzfLuMTSxmRrOB9o2V2F1mjm0fxumzsuySaioa3aUOTQghhHhTJrORS+5sobrVS+feMDWtXlo3VuDyWUsd2qJS0eDmug8sp5BTqW71cvzVYZKRLMsvr6F2ia/U4QkhzgOTycjm21qoavHQsWfqeruhApffVurQ5i2n18rNf7SGrr1hBk9GaFkbonF1UBLai3nD7rJww4dX0L1/nL6jEzSuCtK8OojVLsnHhDgbTWuD3PGZtRzZOozDY2HZpVWyAF0IIRYgd8DGxpuaWHV1LVpBx1/t5Oj2YbxBG0svqSZY5yp1iOItWrK5CqfHUvw9VjhYuqVKfo9iYcmnT319ekISIYQQokxJj/oiZ3OYadtQSduGylKHIsQFYzIZcfmNtG+y0b5J6rpYHMxWE02rQzStDpU6FCHEIlfZ5JFBXLHoBWpcBGpkIESI80VRFKpbvbJwf4FyeCwsv7SG5ZfWlDoUIc4ri63YFV+31E/dUknMJ84Ps8VI46ogjauCpQ5FCDEHg0HB5bfR7rfRvlHGJhY7i91Ey7oKWtZVlDoUIYQQ4i1x+WysvLKWlVfWljqURc1oNGC0G6hqNkvySSEWKJffyoorallxhVxvzxd/lQP/zU1svLmp1KEIcU68FQ7W3eBg3Q0NpQ5FiHnHIvNnhRBiUXktUVvr+gpa18s4zHxmc5pp3VBJq6xxFAtVPjX310IIIUSZkq2XhRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOJ8y6dPfZ1Lli4OIYQQ4ixJEhIhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEON8KpyUhyadKF4cQQghxliQJiRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKcb/nTkpDkkqWLQwghhDhLkoRECCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIc63fOrU15KERAghxDwgSUiEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ4nzLp0/7OvXGxwkhhBBlQpKQCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcT5dnoSkpwkIRFCCFH+JAmJEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQpxvryUhMdlBzZY2FiGEEOIsSBISIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhDjfXktCYvdDQZKQCCGEKH+mUgcgSiufLTB4MsqhFwYwWYysvqaO6lYPBqPkpxGLy+RwkhM7Rxg4HqFtQyUta4O4g/ZShyXE2xKfyNC9f4yTu0epXeJjyeYqAjXOUoclhFhkxgcTHH91hOHOKEu3VNG0OojLbyt1WEKUlKZqDHfGOPjCAIWcyqpr6qht92K2ShNdiDeSzxYYPBHh4AuDWO1GVl5dR3WrF4NBKXVo4gKJT2ToPjDGyV3SnhELWzKSpefQOMe3D1PZ7GHZpdUE61ylDkvMExNDxT7NwRMR2jdW0rw2hDsg7S0hyoWqagx3FMfgCgWN1dfUUdPuw2wxljo0USLJaJbeQ+Mc2zZMRVPxvh+ql/u+EEKI8hYfT9N9YJyTu0epW1rso/FXSx9NqURGU3TsGqXn8ASt60K0rK/AG5K5LUIsBInJDF37p/rE26f6xGvlevt2yHxAMd9FRlN07A7Tc2iclrUhWtdX4K2QOizE2cilC/Qfm+TQSwM43FZWXV1LVYsHRZH5BUIIIYpmthcqaFkbkvZCiemaznBXlEMvDpJJ5ll9dR21S31YbDKvViwg+VTx/3afJCERQggxL8iT2CI3eCLCw9/YP/39yZ0j3PuFjdS0+0oXlBAXkabpREaSPPqdg0SGiw/zg8cjDHdVcv0HVshkYDFvFXIq2x/q5Ni2YaBYr0/sGOGeP9sgi/+FEBdNbDzNb7++j+RksZNs8HiENdfXc+W72jGaJOmdWDxyWZVMIofVYcJqNzPSHeOBr+xG14uvd+0b4/bPrKV5dai0gQpRxvqPTvLItw5Mf398xyj3fXEDnpADtaDi9NkkIckCUsipvPpwJ0e3ntaeeXWEez4v7RmxsGiqxr5n+tjzRC8AA8cjHNs2zH1f2oi3wlHi6ES5i09meORb+4mOFndJGTweYbQ7xrXvX4ZJ+jSFKAsjXTEe/OqeU22/vWPc8Zl1NK0OljYwURKapnPg2X52PdYDvHbfH+JdX9qEt1Lu+0IIIcpTPqey7cFOjr86Arw25jzK3X+2AZfPWuLoFp9oOMUT3z9EuCcOwNCJCH1HJrjp46uw2s0ljk4I8XYU8iqvPtzFkZeHgOL19vj2Ye794kbpEz9HiUiWR751gMjIqfmAo93VXPsHy2Q+oJgX0vEcT/3oMCOdMaB43+89PMEtn1iF1SH3fSHOpOfQOE/886Hp74/vGOZdX9pEZZOnhFEJIYQoF7GxNI98+8Dr1g9FZf1QiY32xHjgK3vQ1OLgas+BcW75o9W0bagscWRCnEf5NKCA1QOFTKmjEUIIIc6orFb+KYpiUxTlVUVR9imKckhRlP8+VR5QFOVJRVFOTP3fX+pYFwJV1dj7VN+MMl2Hjj2jJYpIiIsrMZlh2wMdnNw1Ot2B8JoTr44SHU29wZlClL9oOM2x7cMzy0bTTAxJvRZCXDyj3bHpBCSvOfj8ALGxdIkiEuLiG+tP8Ni39/PTL7/CQ1/bS7gvRsfu0elFaK/Z93QfqqqVJkghylwhr7Lnyd4ZZbqm07E7zMPf2MvP/ut2tv76JPEJub8sFNGxNEdfeV17JpxmYihZooiEuDBi4xn2PT2zfzYVyzE+IHVdnNnkUHI6Aclrjm4fpv/YJLlsoURRCSFOd3Ln7Lbf3qd6pV9kkYqPp2eNy6bjecYH5b4vhBCifMXC6ekEJK+JjKSYHEqUKKLFqZBXObl7lJM7R6cTkLym99AEkRF5vhRivouF0xzZOjSzbDwj/YRvw+RQcjoByWuOvTpMLCzXTDE/TI6kphOQvKb/yASRUanDQpxJNp1n56PdM8q0gs7AscnSBCSEEKKsjPXH6do/JuuHylDvkcnpBCSv2fVoD4mIJGoQC0g+BWY7mKyg5kodjRBCCHFGZZWEBMgC79B1fR2wHrhFUZTLgL8EntZ1fQnw9NT34gLRNP3MBwmxABzbPjy10+wcu2UrcxcLMV9ob7CIWc2rFzkSIcRilc+qJF6XgASmbq+K3GTF4pCKZXnsuwfoOzKJrsNoV5ynf3yEuR40FUUBaYoJMSeFqb+R18llVJLRHGpeY99TfRx5eQj99as8xbykFbQ5m+RqXpI1iYUlmypI/5M4Z8pcz5TASFds1uR0IURpKHONwipw+OUBCjnpp11s3ui+r8u4rBBCiDKmFrQ571+FvNy/LqbR7jiPf/dg8fcxBxl2E2L+01R97j7xN/i7F2dWeIPxBPk3FfPFG9VVqcNCnJ257quyPkIIIUQ6nuPJ7x8qjtm8nqwfKrm5+rgUBcb7JSGymMcOPQD/9gegTc0PKGSmkpDYil8LIYQQZa6skpDoRa89HZqn/tOBu4EfT5X/GLjn4ke38BSyKi3rQjPKDAaF6lZviSIS4uLJJHMcfqm4g0QqmsVf45jx+vLLqvGG7KUITYjzQjEqtG+snFHmq3JgsZlKFJEQYrFJRDIkJrO4A7YZ5auuqcUTsr3BWUIsLPHxzKzd6cf7kzSsCGAwzBwxWX9DA0ZTWTXRhSgbRrORDTc1zigzGBV8lXZS0VPZ4A+/PEg6IdnhFwLFoND2uvaMt9KOxS7tGbGwZBI5ll9WM6PM6bPg8ltLFJGYT/y1DnzVM/s02zZW0n90gsETkdIEJYSYoX1TJcrr2n5NK4PsfryXRGR24laxsKXjOZZfPvO+7/BacAeln0wIIUT5MhgV2jZUzCgrjjkbSxTR4hTuiwMQDaepaHTPeK15bRBfpWOu04QQ84hiVGjfVDWjzFthx2qX6+25stiN+Kpe13e2oWLWGK0Q5cpsMVLV7JlRVrfMj9EkdViIM9E1naWXVM8oM5oNeCtkTrgQQix2sfEME0MpWT9UphpWBDC87nm3bWMl+57uk43JxPz1uy/A0YdhorP4fT4NZgeYrFCQua5CCCHKX9nN3FcUxQjsAtqB+3Vd364oSpWu60MAuq4PKYpS+aZvIs6K0WxgYjjFFfe1MdQRxWgyUNXskUzZYlEwmo14QzZiY2kOvzTIxluayC1TiYZTtG6opHFVALO17C6RQpw1k8mI1WFi481NhHvj+KrsWB1mFKMMRAohLg6z2ciJnSOsvrqOVDxHNJymsslDwwofRqMkWhCLg9lqxGBQZu2mYveYuOcLGzi6bZhCVmX55TXUtEsySCHeTP0yP3f+yXqOvjKExW6kaVWQF/7t+Ixj3EE7ZrNMyF0IjGYjljnaMwZpz4gFxmgykM+qbL6tmZHuGJ6gDXfQhs1lLnVoYh5w+Wzc+snVHNk6xPhAkopGN+lEjuHO2KxF7kKI0qhq8XLbf1rDsW3DqKpGTZuPo9uGsLssmCzy3LrYGE0Gssk8m29rZrQ7hjtowx20y31fCCFEWTOZDdhc5tP6aBxY7KZZidbEheVwWwA4/uoIG25qpHaJj4mhJC1rgzStCUniXiEWAJPZgNluYNMtTYz2nOoTR66358wwlew8ly4QGUlR0egmm85jlPa4mCcMRoWaJV6q27xMDCYJ1jvRVB2jWebbCHEmRrORxGSGy+5pY7gjgsVuIlTvQlVl8bIQQix2FqsRg0mZXj+UX64yOZyieU2Qlg0Vsn6oxCqb3Nz4kZV07Rsjn1WpafPSuSdMZbMbRZH2sZinUuPF/493QGgJ5FNgtk8lIcmUNjYhhBDiLJRdb6Su66qu6+uBeuASRVFWn+25iqJ8UlGUnYqi7AyHwxcsxoXCZDay7JIqtj/chabpZNN59j/bR3WLLH672KTuXnxmi5HNt7dgMCnoOux6tIeR7ijXvX8Zq66qxe2XnefOltTf8uStsBOodXL45UFsbhO9hyeIjaUJ1DhLHVrZkLor5qv5UnddARtXvqudI68MMT6YIJvKM94fx1ct16HFbL7U3/PFW+XgkrtaALC5zATrnKy5vh5fhZOaNh/X/8Fy3vnRVTSsCGCSxAllbbHV3XJkshhpXBngpo+t4rr3L8df68RsMWJ3F/+2TBYDl93ditkmg8GvNx/rr7fCTqDayYHn+tE0jYnBJKl4Fr+0ZxaV+Vh336pAnYtCTmXvU71Y7EbCfXEcHgueoOyuM59dzLobqHXRvrkSh9fC8R3DHHl5CHfQRu1S/wX9uWLhWgzX3ovJYFCoaHRjthpRFIW9T/YyPpDk6t9fistnLXV4C8p8qLuBWheFvMaeJ3sxmBQmh1M4vXLfF/Oj/goxF6m7i4O3wkGg+vQx53HiE2kCtfO3j2Y+1t3KVg+tGyow24zseaKXE6+OcOldLay5rkGeJRaZ+Vh/xdnxhOxU1Ls59NIgNpeJ/qOTREZTBGtdpQ7tvChF3fXXOElOZug9PI7NbeLwy4P4q5z4KuS6Kd6aUl17/dUOdB069o5ic5s4uXMUq92Er9Jx0WIQ89tifm4wW4y0b65ixyOdGEwK8ckMB18cpKrJXerQxFlYzHVXzH9Sf8uft9LOpXe1Tq8fOrFzhNqlXpZfXrOo1w+VS91VFAV/tYN8toBigFce6GByJMWKK2pLFpMQ581ryUjy6dOSkGRLG5MQQghxFhRdL9+sroqi/FcgCXwCuE7X9SFFUWqA53RdX/Zm527evFnfuXPnxQhzXlNVjYGjk3TsCaMo0LapkrolPgyyO/3ZOu/pFKXuXjy6rjPWn2B8IInZYiDU4MbltzLcGeXEzhGMJgPtm6qoavFgWHg7S1yQDyT1t7zExtP0HZ6g7/AEFU1umlYHCdUviIEUufaK+WpR1V1d1xnpjnFi5wjZZIGWdSEqm924/TKpZ55aVPX3fMqlC4T74vQfmyQynKJlXYj6FX4cbllwdpFI3V3ARrpj9BwYY2I4SfOaEI0rAzg8C+pva1HX31ymQLg/zvDJKOHeOI0rgzSuCuBaxIP+88iirrtvVXwiw2h3jM59YRxuC+2bKqmSJNGlMu/qbjKapf/YJN37xgjUOqlq8eCrtOMJyUT0RWje1d/FIpPM039sks49o7gDNhpXBalq8UgiylMWVd1NxrKM9SXoOThOPlNgyZYqatt9mGQn7vlqUdVfsaBI3RVvSXQsRd/hSfqPTFDZ7KZxVYhQfUkWxS/KuhsbT9N3ZIK+I5NUt3jwVTlweK1U1LtQFt48loVsUdZf8dbMnuNTsuvt6eZ13R3rj9N7aJzR7jj1KwI0rAzgDcl8hUVkXtdfgImhJL2HxhnuiFKzxEfTqgC+qvmbDE6ctXlfd8tBLlOg/9gkHbtHsbsstG6ooLbdV+qwFjqpu2I+k/q7iGTTBcb64sTCaZx+K74qB+HeBJ17RvHXOGlZF5pPCSEXXN2dnneeyNO0Jkig1kmgZt78PsRbcyE6N8tvkfR/m5oDdtP/gis+Cz++E9Q8VK6Eww/An3eWNDxxTqRjXgixqJRVpglFUSoURfFNfW0HbgSOAg8BH5467MPAgyUJcAEa6Yzx+PcO4g5aqWh0s+uxboa7YqUOS4i3TVM1EpEMuUzhDY9RFIWKBjfLL6umbWMl3go7Qx1RHvjqHg69MMj+Z/p54B92M/ImfxOZVJ5kNIum6SQiGbLp/IX4OEK8ZYlIhr7D4xzbPozdY2HgeISnfnSYZFSyZQohLo5wb5zDLw0QrHVhc5h5/LsHGetNlDosIS66TCrPvqf7AKhsdnNixwgHXxhE18qvr1uI+WRiKMlj3z3AiZ0jVLf6yKYKdO4LU87JdsVbk0sX6Nwzit1twV/t4Pl/O87233aSz75xO1+I+SAZzZJJnuo/ioXT9B+bwGI1kcuoPPnDw4R74yWMUJQ7XdeJT6SJjqXo2hvmqR8e5uSuUV79bRcv/fsJSTAuRBnJ51RO7Bjh8e8epGN3GBSF+HiGZET6aBer5ESGx759gOGOCFUtHsYHEgycjJQ6LCGEEOINFfIqex7vZaQzSuPqIKlYnmd+coRUTJ5nLoZMMkfvoQlyaRWDQWH7Q50ceK4fT9AmCUiEWGDUgsa+p/voPzZB4+oguVSBp390iEQkU+rQ5q1kNMuz/3KETDJP4+oggycm2fNED4W8WurQhDgrmWSeF39xnOh4msbVQSYGk7zyQOebzocVQpzSf3SCnb/rpqbNh9Nr5ckfHJTxNyGEWEB0vbh2JxJOkcu+tWd8q91E3VI/K66spXFlkM49YR77zgGOvzrC9gc7eegf9xIZTc06LxXPkk7kztdHEHMY7Ynz+PcO4vJbqWr1svPRHmJj0i4W81jhtGtGaqL4/3waTLbifwXpZxdCCFH+TKUO4HVqgB8rimKkmCDlF7quP6woyivALxRF+RjQC7ynlEEuJP1Hx7juA8vZ/XgPiYksbZsqZkyCF2I+ioym2PdULyd2jRKocXH5va3UtPnOeJ6u6ex/tn9G7kNN0zmxY4Satpk70Kp5jb6jE7zy65O0bqggnSjQsWsUT4WNK+5rp3aJD0WRSR/i4ksn8nTsGmHX4z2se0cDLr+VEztGCNQ6WXFFLZPDKZzeBbU7vBCiTOXSBQo5ja2/OkmgxsHNn1zNoRcHsLvNVDV7ZXKkWDRiY2kUg8KBZ/sJNbhZuqUKVdWIhFP4ZZciId6yfF6l79AEk8NJll1Sjb/GyYFn+4mEU7Sur6CqKUFFo7vUYYq3abQ3Ri5VIJ/W2Prrk3hDdm766EpefbiTaDhNqF5+x2L+SUayHNs+xL6n+7E4TFz93iXkMyrbHuwkly6w9JIq8lmVplVBIiMpuZaJOcUn0hx4boAjW4dwei2sua6e6/9gOS/9xwnyWZXJkRTjg0lcflupQxVi0RvtiTFwIsKex3twh4rjBnse7+HQiwO0rqtg9bV1VDZ5Sh2muIjGB+Kc3B3m0rtbiYbTbH+wC1fAyoabrCSjGZxeuXYLIYQoP9HRNI2rghzbNsTWX50k1OBiy+3NRIaTODwy5nwhRUZS7Hmyl47do/iqHKy4ooaqVg9HXhoiMpKiutV75jcRQswb0XCa2iU+OnaNFsfXa51suaOVyGgGl0/aCuciEk6z6bYW9j7Vy+GXhmhYGaBhRZDoaJpgneyiLcrf5GiKtdc3cOC5Pk5sL85fXXlVLZGRlPQpCXEGuXSBTLJA48oAOx7uwmI3cckdrUTCMv4mhBALQWIyw0h3jBM7Rug/Okmw3sXl97SdU19JfCLDqw93zShLxXKM9SfwVToASCdynNw5yu7HezAYFS65s5WWdSEstnJbjjn/RcNJNt3SxJ4ne8lnVVZeWUsymiWfUzFbjKUOT4i3Lp889XX6tSQkGXBWgskiSUiEEELMC2W1JZ6u6/t1Xd+g6/paXddX67r+P6bKx3Vdv0HX9SVT/58odawLQSGvEmr08tQPDzPWlyCTzHPohUE694Ql47uYt/JZlZd/dZKDLwySTRYYOhnhoX/ay8RQ4qzOV/Pa7LLC7L+HkZ4Yv/vmfkxWI5PDKQ69MEAmmWe0O85DX9vL+MDZ/Twhzre+w+M8//PjVDZ6OLlrlBM7RsmmCgydjLLj4S7ZGV4IcVHEJzLsfKT71DWoI8bTPzrC8str2PVYD+F+2VlCLA7peI4X//0EnXvCZFMFBo5Nsv2hTmJjsvO1EOdqtCvGo98+gNlqwFtp57mfHmWkO0Y2WeDIy0PsfLSbQk76NOaz2Hia468Oc+C5fo5sHSKbLDDaE+fJHx5my+0t6LOb7ULMCyd2jvDKbzpJxXJEhlOM9SV47LsHiYykSMVy7H2qD4vdxPEdI0yOJM/8hmLR0aYSKO95opdMIs/4QJLnf36cbDrPqmtqp4+bq39TCHFxxcbS/Pbr+0hMZNBUncvvbuOpHxxmtCdefG7dOsTOR7pJx6VduFgkJjM8+aPDWGxGJoaSHHy+OKY01pfg6R8eIdwrY0pCCCHKk67rvPrbLjr3jk31cUd49qdHwVBW080WnFxW5aVfnuDwS4NkUwVGumK8/MuTZOJ5lmypIpcplDpEIcR5pms6e5/q48TOU3N8nv7RYRSkn+ecaTpP/+gIQyeiZFMFTu4cZe9TPejIvCkxT+g6L/z8GH2HJ8mmCnQfGOflX52UuX9CnAVd10lMZtn1WE9xXG4kxTM/OYpBNpYUQogFof/YJHuf7KVjd3FO5uDxCL/92l4io6lzeDcdXZ39fKVrp8p6D03wwr8dJzGZJTaW4akfHmboZOTcP4B4Q4qi8NzPjhEdTZOK5tj5SDeZRJ5CTtrGYp7KZ059nY5MlaXAbAeTDbQ8aFK/hRBClDdJvbeIRUZTJMYzXPGudswWI9l0AYfXQu/hcaLhNMFayfi+2KkFjXBfnMmhJC6flWxGRVNV7G4ricksDo8ZNa+TyxZw+YplNqcZXdfJJAu4AzaSkSxmqxGjSSEZy+EJ2kjFchiMChabmeRkBnfQRiaZR9d0bC4LicksZpuRykY3npD9LcUcn8jQvW9sRlkhpzE5nCJQ8+Z1WjEorL2+nt5D4wB4QjaWXVrcWXt8MIG/yoHBWJxMM9IVBR0algfY/UTv9HusvrYOh8dCuCdGOpEnMXHun0WIt0pVNQ6+MABAoNaJ3W1mzXX1pGI5rA4TmUSedDxX4iiFEItBNJxi4HhkRtnm25pRCxq1S/zEwmnSsRwoCgYDGM1G8uk8JpsJX6UDp1d2zxMLQ2wszcTgqUXEdct9rLqqjlQ0S2wsTT8TREbTOL0WbE4L1a0eFEUhGk4R7o1TyGsEa12EGlwoMhlCzENj/XEioylMZiPJaA6XzwLAa3Pjsuk8ZquJQk7FZDGSjuXwVNhR0MnnNLSChtVpJjKaRi1oBGqcREaKi/PsbiuTQ0kKr1to3bk3THwyg7/KeVE/q3hrdF1nuCuGyaSQjOaIjqYw20wEap3kMyqNK4KMdMfw17gI1DhIRXNkUgV0HVwBeU4Q5SGfLTA+kCRf0DCZFNKxHPHxDFaHGV+Vg8omN8lolnBPnEyquDjIV+UgMpKifoUfu9vMplubMZoUYmNpjr4yTNe+MeqX+Tm2bYQ119Vjd1lK/ClFOUlOZrC7LNP1Jj6R4cjLQ6j5YjvL5beBrmOxGzn88iB2twWzVUHXwWA0YLYYqWh0y3OlEBfQaE+M2HiGfKZAJpGnc0+Y5ZfXkEnlaVkXIljnopDXMFkM5DIFBk9EyaYLeEI2KhrdWO3mUn8EcZ5lUjmi4TTx8QzNqytweK0oisItn1xNZDSFpurEJzKMDyRpXhMqdbhCCCHELMlIltp2Lxtuapwec07Hc8QnMmc+WbyhQl5lpDtGIaeRTeUxW4yk4zk8ITvZdB6LzUzDigCNK4PY3WZe+Ndj030L6XgOo1mSwAix0KTjOfzVTlZfUzd9vc2m8sTGs9SVOrh5Kj6eZsM7G3D6rGSSBewuM+HeOOlYHvlHFfNBcjLL8sur8YTs03V4YihJKiJz/4Q4k0wiT7g3ys2fWEUiksVoMmCxmwj3xmjbWFnq8IQQYlGbGEoyPpDAbDGSjGUxmhQcHiuRkeK8oZpWD743mfOVimVJTGYJ1LpYfW39jPZTZDiFr9LxluJRDArXvG8piYks44MJOnaHsdhNBOuK646KazP6Z513cneYptUyrnO+DXfFeefHVpJNFlBVDZfPyrHtw7Sur8DuknFUMQ/lT0uOlI1NlaWLSUiMU3PC1CwYZK2hEEKI8iVJSBaxQk7DX+dk7xO99B6amC6/7N42zFZjCSMT5aL38DiPfOsAKy6vYWIoyWhPnCvf3c7TPzpK48oAAN0HxrnyXe288K/HCdQ4CdQ6ObJ1iEvvauWVX5/EYjPRuqGCPU/0svHmJnY90k02XWDDjY1se/AQq66pY/9z/UwMJbn83jae/OGR6cyh/moHt396Hd6Ks3+gNpkNmG1G8pmZO1+fbZ2uXeLljk+v5diOYSobPbzymw40VcdgULj+Q8tZuqUKg9GAzVlsxOYyBWxOE+l4nlVX1zLcGZ3+LM9+bd+pz1Ll4PbPrMVb8dY6NoR4KwwGBU/IxtDJKC6/BYNR4akfHp5+vXltiA1tDSWMUAixWJgsRkwWw3T26c23NjHcGaXrtERhW+5oJhnNUtPiBYOCxWEifDJKOp6jbqlfFlyKBcFkMaIoxYQLNoeJFZfX8uT3D00nYAjUOFl/UyMv/Pw4K66oQS2ouHw2HvqnPcQnijtiG0wKd39uA7XtvtJ9ECHOwXBnlIf+aS+X3tXK1l+fJNTgIljnwhO0U8irdOweZfW19bz8y5Ose0cD2x7oZMWVNfQeHadpZYjhzihNq4M885OjxMeLixoMJoVbPrEag6G4k7jRMrudZ7GZMJpkEn65G+6OYTTqTAymeerHh3lt48FQvYur3ruE3U8V+6qWbKliuCMyI7nZ9R9czsora0sTuBCnCfcmiIwk8dc5GTgyyfaHuqZfa1odZNOtTbz47ycI98YBUBS4/L52Dr04QE2bj2d+cnT6+NqlPpZsriIRyZBJ5XH6LJjM0j8rZho4EeGV33RMf1/d5mXZZdX4q5089YND5Kb6Q60OE+/40Aoe+eZ+rvn9pdicZnKZAkaTglrQqGnzlegTCLGwDXdGGZz6O73kjhaAqUmQTmxOE4W8xvaHOgGoX+HH4bHw2OMHp8+/9O5WNtzUiNEoz7ILha7rxMYy9B+exFvl4PBLA6TjeaA4ZnXJnS1se+AkVS0emlYHSxytEEIIMTe724LdY5k55rwuxPp2bwmjmv+69odRczr9xybxVTrY/2wfl93bzs7Helh7XT2PfGv/9Bib3W3mug8s57HvHsRgUHAHbHPu0CuEmN+sThOekG3G9bZpdZANNzeWMKr5zR20M3gyOqPfdu076rE6pd9VzA8Or5XewxPsfKRnumzt9fXYfTKXRogzMduMrLi8jse/fxCtUHx2dgdsXPfBZaiqJn2wQghRImP9cR746h42vLORPU/2kk+rXPGudp79yX60qTU33gobd352Pd43SCZiNBlwBS2gM7P9tCZIVetb66+aGEzwyHcOEh0pJgmoW+rj2j9YRmWTm0BNMRGKQVHwBO0Md8RmnOuWDZQuiMaVfp75yVGSkeLcWaPJwE0fX4VBEvKK+apwWjLvTLT4/3wKzA4w2U4dY5YkJEIIIcqXPIktUolomlQ0SzaRn5GABGDXI93k0oUSRSbKRTqe48VfnAAd3EEbI10x6pf7OblrFE3VqWz20H1gnECtk+GuKPmsSuPqIEdeGcLuNpOMZknH87RtrOTAs/0YTAqKQSE2lmHJ5ir2P1vMCOr0WhjrS9C8JsTRrcPTSTsAJodTjPbE3ijEOXlCdi6/t21GWc0SH6GpbKRnYraaaFoTYvOtLWx7sBNtavKGpuk8+9OjRKY6GarbfLgCVk7sHGXNdfXFz+KzMtaXoGl1kGPbXvdZRlKMdMff0mcR4q1SFIXV19ZjNBuwOs3sfqxnxuvd+8fIJPIlik4IsZi4AzY23HRqQpSvyjEjAQnA7sd7qVsaID6ZJR3PkU8VUBSdXKpANJy+2CELcUF4K+1suLkJgE23N7Pzke7pBCRQzOyv5lUSk1kKeY0Dzw0wPpCYTkACoBV0dv6ui3xOff3bC1G21ILGnid7qV3i48TOETRVp2l1iO4DYyRjWQxGAy6/jY7dYVrXV7L/mWL70B2w0byqgp2PdOOtcEzvGP4araCz58leNt3WhK6DN1jcMf50l93TiicogzLlLJ8rkI7l0HQD2x7smE5AAjDWnyAdz033VfmrHTMSkAC8/MuTxMblWUGUVnwiTSZZbF+nY3l2PTqz/d1zcJyJweR0AhIoJiU79MIAm25uYt9TvTOOHzwewV/joG1DJYPHI1xyR4skiRYzJCYzvPwfJ2eUDXdEqWnz0ndkYjoBCUA2VaDvyAQNKwJsf6gTVdXAADaXmd2P91AoyHOlEBdCNJxi39N9AIz2xGhaHcQdKI6tFHIa3ftP9YvUtvs4vn1kxvk7Hu4iOiLPOAtJYjJLLl3g4AsDDHdEpxOQAOSzKoMnI4QaXIx0xWb0FQghhBDlpJDX2PX6Med9Y2RlzPmcJaNZBo5HSCdy9B4aJxXLkc+qoOvYnCaOvzo8nYAEIB3PM9oTp31zJalEDqNZwV/zxjsCCyHmp0JOY9ej3TPKeg6Ok4nL9fZcFXIqR14emlF24Nl+8mntDc4Qorzks3PU4ef6KWSlf1eIM8llC+x9pnc6AQlAfCLDeH9ieqG5EEKIi69jdxiT2Uh8PEM2WaBhVYDjO4anE5AARMMZBk9G3vA9rA4zHr99dvvpwDjpaO6sY9E0nYMvDs64Lwwcj2AyGahs9EyXKQaFNdcV12a8xmI30bqu4qx/ljg7ick04Z74dAISKM5BPPhCP1abLH0V81R+avzf4oJM7FSZ2Q6mqWRGhbO/dgkhhBClYCp1AKI0FEWhkNNmTE5+TT6rzlkuFpdCTp1uwL2WiMPuthAZicwoc7gtJKca7Lqmg16c0J6OF8sMRoVCXsNiN5HPFJPbWB0mUlOvn/7egycis+I4l4QJyy6tJlDtZKw/gctvpbLZg8P71rKNZhJ51PzMQcdAjXN6soe/ysHdn9vASHexIXD7p9cSGys2EBxuC8Md0Vnv+dq/iRAXUnWLl3f9+abpxcyvl01JkikhxIWn5jXUgsaNf7iS2Fh6xiDB6cfomoam6hSmjjcYjeSz6qx7sBDzlclsZMM7G/FW2PEEbTMGSF6Tz6pgKN6j04kchTmSjcTGMqg5DbNFFiOL+UFTdaKjaSoaXYwPJIBie9HmMJNJ5DFbjNjdFka7Y9Qu8U63lTRVx2w1kIxmMZoVkpOz/2YSk1la11cyeCLCzkd72HRrE5lknkyygMtnoabNdzE/qjgHmqqj5lX0gkZqjgkAp7dZtDl2dc2lCzLBUpScVtDRNA2b00Qhp83Z/s7PUU8TkSzuCvucfa9OnxVd07jvixupaPLMel0sbvmsOp345nQOj4Xo2OykBbHxDJ4KG31HJlAUMBgM5LMasXAGNa9hMslzpRDnm1rQp8c9ug+Ms/TSai65q5WDz/Xj9M0cn5jrGUdTdfJZ6btdSHSKfV5mq5HEZGbW68lIFru7uHvxXHVCCCGEKAe5zNxjNjLmfO4KuWKbLJ9RsTqKc2sstuJ8Gk/IzuCxyKxz4hNpVl9dS9/RSXY/1kPrelnoIsRCk8+qMxIQvSYrG8mds7nuVboO2ZQkdhHzwxvW4aRcF4Q4k0JWIzk5exw6Fc1hMCsliEgIIQRAZCSF3WWeXnvkcBc3M369VOzN19wU8nPP0XgrG3EXsioDRycBCNW7MJoMjPbEGO2JsfzymhnHVrd6edeXNjHaE8NgVKhs9hCsPbsNksXZ0ynOqXm9xGSWfEbDJjl5xXw0lYQkpdmwpiYxahqoWTA7TktCMnscWQghhCgnkg5ukTKbDdjdZjwhGybLzGpQ1erBX+UoUWSiXDh8VlZMNaCNJgMGo8LAsUla1oYA0HUdi83ISHeM+mV+oDhI5/JbiQynqGgo7kYdGUlR0egmly5MT7QdPBGhaXUQAJPZgGJQ6D86MedEiVDDW2+gW2wm6pb5WXdDA20bK3EHbG/5PZxey/SOs56QnSvf3Y47YGPHo930HBonny3gq3Sw7JJqll1STfOaENWtXhSDQt+RSVrmyG5a+boduoW4UCoa3Dh9llm7wputRrxyfRdCXAQ2lxmn18ZQR5ThrihOrxWLbeYit1C9i1Qsj81lxuowYXGYyCTz2N2W6QUYQiwENqcZm8tMIpKlfXPlzBcVcPltoBWfOZvXhHAHZz+7rrq6FpvLfJEiFuLtM1uNrL6mlv6jk7SsK7YhM8liosdQnQurw8zA8Uma1gQZOB6haU3xGKPJwEhnlPaNlRSyGqE52lBLt1QRqncTrHMVF16PpuneP0ZkOImm6jg8cg8pd1a7GZvLgslmmHVdVJTi9fC1HUQMBmXGbiIADSv959TOF+J8snutWOxGJkbSODxmKptmt789FXaU181jXHlFDRUNLuqX+2eUG80G0vEcVS1eqlq8GAwyAVLM5ArYaJ66p77GYFIwWg00rQrOOr51XYgTO0doWOFHnUpsYHOaWHlVLVa7PFcKcSE4PJbpcQ+A49uH2f5AB2veUY+30j6jX0QtaFidM/eJ8Fc78ITsFy1eceFZrUZsLjNmm3F6zOx0DSsCDHdGMRgVAjXSby+EEKI8uXzmWXM2zFYj3gq5d50rp9+Coug4fFby2QKhBhepWA5XwEbHrlHaNlXOOqdhRZDO/WNoqk7d8gBWh7TrhFhonH4rlc1zzPGpkHbiuXKHbDi8M8eM3EEbrjnGYoUoR96Qdda4pztowx2SOizEmXhCdpZsmf1cXdXqxWKVZ2khhCiVJVuqmBhMUtVS3JTl9Hllp6tu9b7p+zj9tjnnaHgrz76/ymwzsvTSquIaoaANq9PE5fe20bAqMOfxFY1uVl1dx4oraiUByQXi9tupW+KbVb5kc1Vxjq0Q89FUEpKJWA7Sk1CY2mTIbAPTVL0uzE6+I4QQQpQTSUKySFnsFhxeM0aTgRs/spJQvQuDUaF5bZDL72mThZ8Co9HAxpsbWXVNLYe3DnLVe5ZgsRtRVY0119VxbNswl93bhr/aQWQ0xcabG+nYE2bjzY3ULPExcGKSS+9qYfDEJEsvqaJ5bYiO3aNc8a524uMZKps8LNlSydHtw1z1nnYAzFYDq66uxWQx4A7auPVTa2YlUbhYvJUObvr4Kix2E6uvrWPrrzvo2jdG974xHv76PgaOR2adE6p3ccen12IwgsliYNU1pz7LLZ9cTUWTJCERF483ZOeye1ppXBXEYFQINbi48Q9X4pGBSCHERZDPqhx6cYBDLwzQe3CC539+jBv/cCUVjW4MRoXGVQEuvbsVs82IO2DF7bNhNBmoanbjDtoI1EjKarFwaJrOcGeUp390hLqlPlZcXoPJbMATsvOOD62ga/8ol9zVgsliYMmmSioa3bzzoytx+qyYrUY239rEki1Vpf4YQrxlLesrWHV1LSgKK6+q4eSuUdbf1EgqnsNoUlh/YwOKQSFY66Si0U3bpgqOvjKEp9JB+6ZK0oksJrPCte9bistf/HtY+456WjcWEz6GGtw0rwmy/aFOeg9NcPzVEV78xQmi4XSJP7k4Gw6vhUJeY/W1dSy7rBqj2YC30s6NH11JRaOLd350JcE6JwdfHuDa9y0lWOfEYFJYsqWSq9+7FLPNdOYfIsQFZLEacXqtVDYUn28vu7eN5rWh6fb3dR9YRkW9k9v+eC3eymJindXX1rHuxkasdjPrb2ygeU0Qg0khUOvkivvaqGh04a+W52AxN7PFyJX3tbPs0urpenPrH63h+Z8dY/BEhA3vbMTqNGFzmrns3jZSsSyNK4Ksv7EBu8tMsMbF5EhqdlI8IcR5E6p3sfKqWlo3VmCxmfBXO7j+w8s4sWOEF//tOJfc1TrdLxIfz3DLJ9dQ0+bFYFRoWh3k5k+slrG5BcbqtGA0whX3tZNNF9h0azN2txmL3cSGmxqJj2dw+a3FZ1+ZsCqEEKJMeSucXH5v28wx54+uxF0hY87nymQysvKqOgwGhSvuaycZybD5tmZO7h7l8nvaMFsNbLqlEYvdhN1t5or72hjrj7P/6X4GT0ZYf2MDRpNM9xNiofGG7Fx6VytNq6eut/UubvzICrwyx+ecuXxWrv/AcqrbPBiMCrVLvFz3/mWS2EXMG56gg+s/eHod9nHt+5bhlSS2QpzRaxtZrrm+HrPViMtv5Zr3LcXlt8imJkIIUUK1S31c9XtLGO+Ps+nWJgp5FYNJYc11p67XN350JZVTSUreSLDGyZXvXjKj/XTTx1dRO0cCizeiKAqVzZ7pNUK9hybY+usOdPVtfkjxtjgDVq567xKcPgtmm5F1NzRQ3V7cKFqIeWkq6UiyYMGISj4eLpabHWCcei5VJQmJEEKI8iYz9hexYK2H7Q91sO/pfjbd1ow7YKX/yASv/KaDuz+3AbPVeOY3EQuaJ+Tg6t9bSiqaKy6K3FJFPqtid5nZeHMTBpPC0kuqyKUL2F0W1lzfgKLAsstqyKby2BxmVlxZi67D6mvqSCdyWGwmll1WhVbQsbnMpON5zBYjS7ZUUchp2NxmNt3WjMlkeNMJt2MDCUa7Y6BDZbOHUL2LyeEkI90xCjmNyiY3FQ3ut9XgbF4T4ve+fAn7nupF1/QZr+19uo+GFYEZkzsMRgONq4Lc96VNpz7LLc2YzG/+WYS4EBKTWX779X2svqaOGz6yglg4w5P/fIjrP7ScbKpAqMFNZaN71q7iQghxPkwOp5gYTE5/HxvL8MT3DnHXn61HMYDFZkQrgDtgxWAyoOs6igIOj1V25RYLTnw8zf6n+wF46odHaF4X5PoPLsfpt6HmC2y4qRmL1YAn5EBRis+uSy+ppn65H03Vcfqs0+VCzCdOr5VNtzaTjGRRDApbbm/BYFIwmY3k0nk0HTRVL7apdDAYQVOLySnRiwsacmmVUINCdbsXXdNRCyqxcJqJgSQmi5H9z/XP+JlqXmO4M1qyZJbi7AVrXOi6zuRIks23N7H2HfUkJ7PkcxrhnjjbH+wkWOeiMWjj6CtD+KudXHZPG/Ur/JhM0l8lykOw1o2nokB8LINiUrjs3ha23N6MxW7EE7QzOZIik8xz1XuWYHebSURy9B2eINvi5tmfHsMdsLLuHQ3ExzO8/KuTXPe+ZbKISLwpX1Vx0vmld7ditho5uWuEWDhDLJzB4bWwdEs1ZpuBlnUh1JxG2yYFXdNRDAomk5HapT55rhTiAnptB65CTqWq2UOg2olBMdBzYByArb88SdPaIPXL/bRuqKC6xUvlZ9aRTeexuSyYLfKMsxBVNHjJZfM4/SZyaZ2KRheDJyJMDCUJ1DjRNdj+2y7qlvmxu2QcSQghRPmJhlP89mv7WHN9PcsuW0F0NM0T3zvE7Z9ei9snC+PPlb/aiSdkJzaWJlDrxGBUUBQFXdHJJQs4vFbuWBticijF3id7mRxOATDSGSOfkdUwQixEsXCa3359H6uuri3O8RnL8OT3D3PLp9bgCkjCgXMxOZzmsW8fYOOtTay5rp6Rrhi/vX8fv/9Xl2CtkzkJovxNjqZ49Fv72XBzsQ6He+M8/M19vPvPN1PVLHVYiDeTTed56T9OYHeZufb9yyhkVXY+2s26dzRQ3eIrdXhCCLFo2Rxm1lxbT+u6CnRdZ9ml1SgKGEwGVl5dg91lwem1EhtP09MdIxnNEWpwUdnoxmw1kc8WGO2JM9afwOm1cOV7WsmlW7BYjfjPYePD3oPjs9YI7X+2j6bVAYwyN6kk+o9GOLp1kM23t2CyGDn8Yj9DJyNUf94r6xvFvFRIxTABqi0IjBE9sYcQFJOQmKb61wuShEQIIUR5kyQki1guk0ct6OSzKtt+0zFdXtXqAZmLLKYYjQbcgVOTR2zO4gCG67QJsa8tFj69zDK1K/HpuxO75xgUdQdmNwbN/jdvII72xHjgK3vIZ4uTK8xWI3d8dh2PfecA6XgeAINR4a7Praduif/NP+AZeIK2OZM0GBTlDf9OTp8oap7j8wlxMR18foCDzw9Mf59J5nnx30+AArf/pzU0r60oYXRCiMWkUNDoOzzB/uf6ufzeNlrXV8jiCrEoKAoznhu7943TvW+cy+5pJZPI4/QVFyC/fkGow2O9uIEKcQEoijK9GPN0FtuZu6NsnJo8p6kaux/vZWIwSTKaZfBEhCVbqt7gZ557vOLiUhSFQLULVdXY9WgPPQfGCNa5UAsamqZzctfojOPrlvkkAYkoO2aziUCNa1Z5uC/OA1/ZQy5dYPNtzRx+eZBUNAfAiitrUBQY7owx3Bk7dZJcv8RZMJqKfbWjPXGSkVMTEVLRHAee68cdtFHZ5KF1fYUkHBHiIkvFcjz9kyP0H5kEoH6ZnyVbKqdf1zSdrr1jADSvCQJgsZuw2GWodqGzWM3EshlGOqMkIjn2P1NMpvhaghpvpV3aMUIIIcqWPrUO48Cz/Rx49lS5qmqlCWgBMZoM+KtnLpAZH0jwu/sPsPb6egxGhW0Pds46T54bhFig9GL34KEXBjn0wuB0sSbX23OmqRqqqrPj4e5ThQqzFhkKUa40VUPTYNejPTPLNbkuCHE2FGDgWISBY5HpMlX+foQQoiw4fW88LzIxmeHxfz7EaNepuRQ3fHgFyy+v4eSuUZ75ydHp8soWD7d+cvWcc9POxlybHRfLpPOlVHRVIzaW4fmfHZsuq2qWzcjE/JUYHcAHeFrWwMAxEn2Hp5KQ2ME0tYZCkpAIIYQoc7K14iI2MZjC7rZgMM1sJK25rl52XBNl7firw9MJSKA4yaL/yMR0AhIo7qi9+9Ee1Pzb3wWmdX0Fhtd1Mqy/sQGjUS6honwZTAbaN1bOKPNVOU4t+Nfh5V93kEnmShCdEGKhC9Q4CDXOXIzZvDbE4Mko2WSBiYHk9K5tQix07oCdDe9snFHm8FjIpVUsdhPbH+wkOpYuUXRCzA/RcJodv+vCX+Ng8EQEgJ4DYyy7tHrGcSaLgapWbwkiFG9HdDTNrke6aVod5OgrQ3Tvn/27NVuNVMvvVswjnXvD5NIFTGYDmqpPJyB57bVVV9fOON5sM1LZ5LnYYYp57OSuEQxGA2bbzH78ZZdW8+K/Hycmz5dCXHQTg4npBCQAtUt8dOwO07gqMOO4yiY3vqq3vhubmN+Gu6L0HZnEbDXO2qlty+3N2JySqFcIIUT5alkXmvF9oMaJySRzJS6EnkPjqKpGLltgrD9BddvM/rCGlQG8lY4SRSeEuJA0Xad908zk694K+6y+H3H2zDYjvqqZ18z2jZWouiQhEfOD0WSgqnnmuEHdMr8kJBPiLOgaLL+8ZkaZ0WzAVyHP0kIIUe7G+hMzEpAAvPTLE0wMJXj5VydnlI92xRjvT5zzz5p7jVAjRun3KplgvWvW+sb2LVWoBUkkJuan9MQwAN72DQCo41NJJi1OME0lUCpkShGaEEIIcdZke61FLJ9T2fd0L5ff3cbYQIJCXqOyyY3FKoNXorzFxmY+ZJttRlLx2YkUEpNZCgUNo/nt1enKZg/3fGEDR7cNU8iqLL+8hup2WfwkypuaUzHbjGy8uYnISAqn34LVbmZiKDl9TDqWo5DTQea8CyHOM4fHys0fW0XnvjFGumJ4K+zk0gUOvVjctSmTzKNJp7BYJBSDwtJLqlCU4i6GDq8Vp9fKzke62XBTI4WChpqXvwch3kwhp6KpOpp6amJoLqMycGySy+5pZWIoid1tZunmaioaZPeD+aaQU9E0HV0v7q6by6gMHI9w2T2thHvjODwWll1WQ6hefrdi/oiPF/uuTBYjuUxhxmvZZIHISJqbP7ma4ztG8IbsLL2kimCda663EmJOsbE0/ccmufEjK+jaP0Y6lqe6zcvA8UmSkRwFeb4U4qLLZ2YmRNc0nd7DE6y+to6NtzQyOZTCHbTRvqkSh0cSTiw2+bRKOp5j71O9bL69mYnBJIWcSt0yPy1rK0odnhBCCPGG8lkVh8fChpsaiY6mcQWsmK1GEhHZnfFCSEaymK1GsqkCJ3eNsv7GBqpbPEwMJqlq9bBkcxU2p7nUYQohLoBcpoDJYmDTLU1MDKVwBYpzfBKTsrHQuUpFc7RvqiSbLpCczOKrcpBO5Mgl82c+WYgykI7lqFnipbrNS3w8g6fChqbqZBKFM58sxCKXz6oMd0a57J42xvrjGIwKoToXk8PJM58shBCipE7fqPg1uVSBQk4jl5r9HJSb4/izVTW1RujYtuIGybJGqPRiY2kuu7uN8dfWNza66Tk4xpLXJe0UYr7IxYubmDhqlwGgx4rrKDDbwWQtfl2QvnYhhBDlTZKQLGLeSjveKgfZdAFP0EYhr6EA7pCt1KEJ8aaWX15D176x6e+TkRwNywMcemFwxnGrr63Dan/7EzAMBoWaNh81bT4yqTwjXTH2P9WHp8JOdasXd0D+ZkT5cQdtmK0mLHYj7qANm9NEKp7HbDmVlGf1tXU4vTLhXQhxYZgsRjxBO/msislkmJEEKVjvwiX3T7GIuAM2vJUOCnkNo9lQXBRqKO60Ur/Mjzsofw9CvBl3yE5Vqwdd17HYjOSmFnjmMipWu4lgrROHx4rFId1c85EnaKeyyU1iMou/2sHkcIpAjRM1r+EO2Khb5sdfJbtSifmlfVMlx7YNk0nmcfln3+dDDS7aN1ZSv9TPSHeU3oPjRMNpqls8cx4vxOutvLqWUL2bka4YvkoHTq/Kjt92oWk6DasCeKS9JcRF56t2YLYapydHZlMFPCEbVocZRdHxVTlwB6x4ZAxuUQrWuaYWP8ToPzJJwwo/iWgOo1Ehm8pjsUtbRgghRHnyVdox24xY7abpMedEJEugRna5uBCaVofY/0w/vspiX9jep/pYf2MDtUt95HMa8YkMTq9Vnh2EWIB8lQ5MVgNmmxFP6NQcn0CN9I2fK3+1g+HOKA63GYNBwWI3kk0reGW8QcwTvmonfUcncPps6LqO1W4mGc3gkzosxBm5AzaaVgdJTGZxeK043GYmhlK0bpBkwEIIUe781U6MJgPqaZsctm+pwltpp31LFSdeHZkuN5oMb6uPSjltjdDpsunieqFwTxxPyE51qwd30H7OP0ecPX+Nk9HuOO6ADbWgoetQt9SPQ9a7iHmqkIwAYPQUE+kYUuHiC2YnmKbmDaiShEQIIUR5k1HJRcwTsHPpna08/t2DpGJTWfMVuLPeBXWljU2IN6LrOlWtHt7xoeXs+F036LD59maq273c8snVbHuok1y6wIZ3NtK28fx2GGuazsHnB9j+YOd0Wf0KP+/86CocbmnYivJithqx2o1se+C0+rrcT2WLB5vLzOpr6lh5VS2KQSlhlEKIhSqdyPHcz47Rc3B8umz1tXU0rgrQsCJA7RLf9ARKIRaD/mOTPPWjw6AXv3f6LNz00VWMdEW55n3LsNikaS7Em7E5zLzjgyvY/2wfl93TxomdIyQmMiy/vJrnf358+jhvhZ07/3Q93pAM/M4nNpeZGz6ykj2P97Dyqlp0Xef4qyOM9SWA4mKLq9+7hDXX16Mo0n4R80Ntu48bP7KCVx/uYuDYBDd8eAW7Hu8hlyqw7oYGlmyuQi1o7Huml52P9Eyf17wmxDs+vBy7S/qZxBtTCxqDxyLseuxU3alfEaB9cyVmq5H1NzZiludLIS46f7WTu/50Pdse6GCsPwHo3PiRFTz+z4dJRqYmDingDtpxrpFEJItNdZsXTdO44t1tpCJ5tv66Y/q1miU+bvnEKhweawkjFEIIIeZmtZtRFIVtp82RaFoTxCP9bxdETauHmz+xmmOvDnH5fW1kEnn6j04S7o0DsAu46j1LWPsO6ScTYqGxuSzYneYZc3xql/pkY6y3weG1MjGYpP/o5HTZ5tubcXml7SXmB5ffSi6tcvD5U9eFVVfXyoZjQpwFNa8xOZRiz5O902XNa4NUNLpKGJUQQoizEaxzcuefrOOVBzqIjKRYdmk1a6+vx2o3c+mdLdhdZo5tH8Zf7eDye9oI1J7fRLm6pnPk5SFe/uXJ6bKadi+3fGI1DmlLXHAOt4X9z/aRTRaAYqKY2z+9VvrBxLyVT8VRdQNGmxcAc24SLIDFAaapa0pBkpAIIYQobzITdZEbH0icSkACoMP2BzupbvWWfCGcmk6jxWIY/X4MFuk4FzAxlOTIy4P0H52kbXMld3xmLXaXBftUApC2jZXULfOjqdoFmawZDafZ8buuGWX9RyaZGEziWCZ1VJSXyFCcXY/3zCjrPzrJxpubWHtdPQ6PRTpkxHmjJhJoqRSmYBDFaCx1OKIMTAwmZyQgATj80iC3/fEa+o9GiI1n8FU6ZKc2seCpiQSZZI5tD3RMJyABSEZyJCYzxCfS9B0ex2wx4PLLJEIh3sjkcJLj24fJpgpY7Cau/+ByFAUe/OreGcdFw2nC3VFJQjKPqOk0hVicZMSIyWakkNfwVdqnE5C8ZtuDnTStDcnvVpQlPZ+nMDGBwe3G6HCQyxboPzbJiR2jrLiihtqlfiqb3DSvDaEWNJxTE1MmhpLsfqx3xnt1HxhjciiJfYn0M4k3Fg2n2P3EzLrTf2SCW//TGuqW+LA6zG/5PQvRKHo+jzkUOl9hCrHo6LqOruvULvVRt9xPoMZJZDh5KgEJgA6v/KaDmjYfVof0iSwmiXCccE8cf42TVx+cOc40dCLC+EBSkpAIIYQ4Z1omgxqNYvT5MFjP7/0kGk6x96m+GWU9B8aZGEpS2+47rz9rIdPSadRY7Iy/I7PNRNOqAHa3mZGuKP4aB3te1/7b/lAnzWuDeCsk2b8Q5SofHkMxmzH5vGd9TiycZtfr+goHj0cYH0hQvzxwvkNcFCaGZiYgAdj9eA9Lt1Thrz6/CxWFuBAmh1Icf3VkRtmhlwZZdU0dFQ3ut/3+hWgUPZfHXCF9wmLhiYRT7H16Zjume/84G27K4PLZUFMptHgcUyCAYn7rYypClDsZ9xPny8W+XqbjOXoOjXPwhQGaVgW56j1LqGh0YzQaAPBWOLjy3UvYcFMjFpvpgqx3i42nZ2xYDDB0Msr4YFKSkFwEgyci0wlIoJgUZu9TvdQt9WEyy/oEMX9sH9rOY92PcV8mgW4xwlQSEps+NSfSbAfj1NywQqZEUQohhBBnp6xmuCmK0gD8BKgGNOC7uq7/k6Io/w34BBCeOvS/6Lr+SGmiXDiS0SyxcHpWeTqRR81rUKI1cFo2S3rvXsa/+z3SBw/ivOoqQp/6FLYl7aUJSJRc5tgxUtEsjz2SZHK4WGfH+hP0H5rglk+tmXGszXnhOjjUgopW0GeVF7LqBfuZQpyL5KuvkowZ56yv+UxhesGTEG+Xrmmkduxg9CtfId/Ti+eeu3HfcCP5vl7MtbXYVq7E6PGUOkxRAoWcNqtMU3WGO2Lsndpl4uZPrqZ9Y+XFDk2Ii+L066Nx45WkExtnHZOYzNK5d5wTO8IkJrJcdm8bBoMkCBPi9dLxHE/+8DDhnuJunyd3jlLR6OLGjywnk8zPPn5ghJRlFMfatRc7VPEWaPk86T17GP/u9yjc8WEefTw3naxp823Ns47P51S0wuznCyFKKdvRQX54hOhDD5F47jlsK1ZQ8fk/Y4RaHv32AQB6Do0DXdz9+Q3UL/XPOF/Nq2jaHO32OZ6lhThdIa+hz1F3wj1xtIJG+6aqs34vLZMh+eJLjH7lK2iJBL73vx/bsqUoNhu2lSsx+XznMXIhFrZwb5wHvrpnuk/WaDKw+dbGWcdlEnnUgkqZDdGKCyTb20v8ZC/PbzMx3Jti823NFPKz7/WFnIwzCSHEYpfr6yNz+DBaJoNt6TKsy5ed1YYSmaPHCH/jG6RefRXHZZdS8elPY1u27LzFlc+qc7Y/snP0y4m5pffvJ3z/N0nv2YPz8ssI/qf/hH358jc8fvBEhIfv3w+8QT9ZVkWdYx6AEKL08qOjRB94gImf/AtGr5fKL3we51VXTW++pqbSZI8cJtfTgzEUwr5yJaaphaH5nIo6Rx94NlWYVSbOTm6OfzutoJMZi6J6DBgdkvRclLdseo7nLR1y6bd3XdByORLPPkf4a19DjUbxv/99eN/9biyVMn9HLBzqG4yjpGM5Uvv3E/7KV8kcOYLr2msIfPCD2NesmeNdhJh/Xj/u5//wh/HdfRemioo3PEfXdbLHjpE5fhyD1YptxQosjbPHNsTikuvtJdvdzcT3f0Dm6FHcN95A8GMfw9raekF/bsfuUZ7/+XEARjpj7Hykm3f9+SYqm07NQzcYFFy+C7fQTc1rc47j5GW90EWROH1zhympaK44/ip5w8Q88rc7/pbjk8e5kRy6wQTWYiJJp3GqjpudYJhKrFOYXe+FEEKIcmIodQCvUwC+oOv6CuAy4NOKoqyceu2ruq6vn/pPEpCcB5PDKexuC7xu3sLqa+qK5SWS2rmTgc9/geTLL6NFo8R/9zsG//zPKUQiJYtJlE5q3z66f/99jB0dnE5A8pqBExGi4dRFi8XlVKhvd80oszpMeFyyOESUj/ThI/T90acwFLLUtM3cVcXqNGG9gIl6xOKTPXac3o9/gsy+/aiRCJM/+jGT//qvTP7rv9L7kT9k4ic/QcvlSh2mKAFflR2ba+b1pqrFw8Rgcvr7fU/1ygILsWCdfn3MPvJrVq6emQBMUcDqMBeTPwL7nu0jMSHZrIWYS2Q0NZ2A5DXh3gTp/mHWXFs3o9xgVHDF++n72MfJ9vRczDDFW5Se6vvJdnTQP2aZTkDyGrN15u4V7RsrcQdKlC1XiDlkjhwhfP83Gbv/fmIPPogWjZLato3w/d9k/9O9s44/uXNkVpknZJ/Vbre7zfirZCdj8eY8ITvVrbPrTiGvsvepPvJvoZ2V3r+f/s9+llxXF4VwmLF/+idSu3Yz+PkvMP7d76GlZycxF0LMbbQ7NiMptFrQMFlNvH7t8Np31OPwSJLoxSA/Gibx9NNEeycZ7i2OZY10xahfPjMxmcVmxCe7cAshxKKW7e6m9w8/ysCffo6hv/hLun/v90jv3nPG8/IjI/R/+tMknnoKLRYj8cST9H/2T8iHw2c892yZrUYqGt0zyuxuMxa77Dx6NrI9PfR/5rMkn38eLRYj/vgTDH7+C+THxuY8Xtd1Djw/MKPMbJv5b926oQJ3UPrJhChHsd/9jvBXvoo6Nkauo4P+P/40mf3FpEK6rhN7+GF6/uADDP2Xv6L/k3/E8P/639PzIQ0mhdolvhnvZ3WYsDklgeW5sjlNWF/371fT7kUdGiC1fRu6LgmdRHmz2Iyz7vn+agcm69t7Dkvt2MnAn/4puY4O1LExxr72dWIPPPC23lOIcuPwWAg1uGaVoesMfO7PSG3bhhaNEnvot4z8n/9L5tixEkUqxPmV3n9gxrhf+O//ntjjT7z5OXv20v17v8/Qn/8FA3/6OXo++lGyXV0XKWJRjrInO4g+/DsGv/BFUtu3o0WjRH/1a4b+639DjcfP/AbnKB3PsfvxmXMtNFVnpCt2wX7mXNxBO83rQjPKLDYjgRoZx7nQdF3HVzk7WeTSLZVY7NI2FvNLX7wPgLwhh24wg8GIarTjME0llTTbwTQ1Z6Agc8eFEEKUt7J6EtN1fQgYmvo6rijKEaDuzc8S58pgVDj6yhBX3tfOsVeHySYLtG2smDX57WLKDw+TOXgIdXx8Rnn2yBHyfX2y8+Iio+fzTPzgh+jpNAbmTvRhMJ7KpVSIRsl1dKLnc1iamzFXzdz1MzcwUNxNwuXG0taK0XnmzgBd09CSSQxOJwwPsN7XhWdDC90dOUKVJta0pjEPHINWyQQvykP2+DH0dJp8Xz/1K7bgCtgYODZJoNZJ85oQ+utX9wlxjjLHj5Petw/yM3feiD/5JLV/8zfkTp4Eg4Fcdze2pUtLFKUoFYee4MarNA50OgkP52lc4cdT4eDV350aoDKZFZRyS4koxHmSPXli+vpYGBmh8uTTbLnqBo4cyuHwWFiypYqDL5yaSGw0GVAMZ97VUojFyGB4o5uFgWWtKqab6zi8fQyX18iGlTr5f/xfaPE4ua4urE1NFzVWcXby4TDpfftRx8YwVVRget1cyQPP93P17y3hxM5RxgcSLN1Sxepr6zBZZHGLKB+RBx7Avn4do/9nZq5sLRrFbJ193TJbZ3fDWx1mrv/gcvY93UfXvjGqWz1svq0FT0h24BRvzuYw844PLWfXYz30HZ4gWO+icWWA7Q91Ut3q5Q1vnXNIbds+qyzxzDPUf/ObhH/wA7KdndhXrTqP0QuxcBlNs//4ug+McfN7a9j9cpRUUmXNdfUsvaS6BNGJUsgPDpJ44UWUa++eLus7MsGmW5txeK30H50g1ODmkttbJAmZEEIscqlXd5Dv78dx+eU4Nm+GQoFsbw8Gu53C5ASmujpQVQrDw5hCIawtLSgWC7neXvIDMxNW5Ht7yff2Yn6TXY7fCsWg0Lo+hLfCzuCJCKF6Fw0rA2iSY/6sZI8fpzA6OqMs19lJ9sQJzKHQrOMVRZmRnPfAc/1celcrXfvGmBxOsmRzJauvq8cs/WRClJ3C5CSTP/vXWeXJbdsx1dSArjP2ve9S+dd/jcnjQctm0BWFXH8/Rq8Xg6JQt9SHy2+l/+gkgRonzWtDSJ6Mc6cYFLbc1kL3gTEmBpPULfPjq3KQ69tLVpvA2taOpbGh1GEK8SYU1lxbx+CJCKM9capaPVQ1e1+/5+Rbltq5c1ZZ5Bf/gefee7Gcp2dIIUrNYjex8soaBo5HGDoZJdTgomFFgMRYHFs0MuPY9J49ZDs7sS1bVppghTiPUq/OHveb/NlPsa1eRWE0jKW5CWt7O4rBgBqPkz1xgvSBg/je+14i//7v6Lkchf4BUq/uwNrSUoJPIMpBcudOTAE/2usSjqR37CA/MIBx+fIL8nMVg4LRMnuszWi6uHMqzVYjV76rHU/Ixsmdo4Tq3VxyRzM+Gce54NRcjsmBKJff18bx7cPkMirtmyoxGWXDaDG/5NQcmanEIppJA2NxU1fd4obXNgIyO0Cfqtt5SUIihBCivJVVEpLTKYrSDGwAtgNXAp9RFOVDwE7gC7quT5YwvAUhUO3A6bPyyoMdNK0OEqo3oaka/hLutqWl01jnapgajSg22cljsSlMLRwDsA4eo37JVfSfONWhsXRTEMvISXJKBYrRyPD/+J8knn0WAHNjI/X3fwPbkiUApA8coO+Tf4Q6Wbx0+N7/Pio++1lM/jdOupPt7CTyi/8g8eKLBD/+cUyVlaS//n9paGqiZdMV6AeOk/7nrRh+/OML9U8gxFtmsBcXK6mP/4r0zS2MD2k0rQ4SDac5tm2IO7asK3GEYiFI7t5NeudOjL7Z11Cj14tiMqHrOgYUkq/uwFxVhdHrneOdxEKl6zqFb/8/VlZUY2hfjrHqKn73aJjpPEgKrLvMh/H1q46FWCAMr0t2l/n3HxNc9gp3fOnLaG4/j/2il9h4bvr1Lbc14g5Ie0eIufiq7LSsDdC1f2K6rGWNn8Kvfszog79k5b/8hKoDL6P19ZP52bNQKGaLN9hl8Ldc6ekMlqkkdYVwmBpHhP1mC2q+OLCWTRVw+W3c+qk15NMF7G6LJGoS5cdgwNzYhGK1omez08WZfftY/Rchug9MTC8QMJgU2jbOPXHXX+3k6t9fyiV3tGBxmDCZ5flYnB1/tZP1N9ZjNBuYHEry8i9PggIbbmp6S+0sYyg4u6yigslf/hLfzTdJKlsh3oKqFi9Wh4lsqjBdtqSpQOEvP8KWS67C+5E/xL9JkuQtJmoqibm+HnXr47St/jAdh5MA7Hq0mxVXVnPflzbh8FhkEbEQQggKw8O4b74JUMgeO4rj0stQw2G6vvzXmAIB/B/+MGNf+xp6LgdGI9X/3/+HY8tmChMTs99MUabHi88HT4WdfFZlcjhF0+ogkdEUR7cNcedn1p+3n7GQzdlHaTBgsL7xeMCa6+rp2D2Krhf7ybb++iTv+tImXD6r9JMJUcYUqxVjZSX5/v4Z5Xo+R8/7/4Dav/kbqv76r9EmJsl2dmBtbSXb28vQP38f98034X73e8nnNMb6EsU5PmNpjm4b4o7PyByfc+WrcrD9wQ50XaFpdZCR7hikE4R2/g7z770btZA/85sIUUK+Kgc7H+kikyzQtDrIWH8CkynOmuve3r6epjfoE1Yk65FYQCw2E66AjehoutiOGUnx6sNd3PWxViaTqRnHKlYrpkAALZ/HYDaXKGIh3j41kZizDWoMVTD2jftJvvQSisVCzf/9P2C2oE1MEH/qKZIvvYSpupqKz/0po3/7dwDkhwYvdviijBjtNrTT5kC8RrFYUBOJC/ZzbU4zl97ZyuPfOzhdZnWYqGq9+HPPfZUOrnzXEjbd1ITZbpJxnIvEYDDQUKXx+ANdNK0OYjIbObZ9mBvvmp3IV4hyNpmZPLVxtFEF41R/vdUD6VE0g3VqYz4DGExQkCQkQgghyltZJiFRFMUF/Ar4nK7rMUVRvgX8T4rLFv8n8A/AR+c475PAJwEaGxsvXsDzlM1l4foPLqf30AQjXTHqlvqoX+6fsavGxaZ4PCgOO57bbkOxWTFVVlEYHcEYCGKsrS1ZXBea1N3ZUrt2Eb7/mzivvhrd4cJ8+bVsUnWaGz2MxcxUerO4Dj/B4D/8AHN9PaH/9KnpBCRQ3OFn8qc/o/qvv4yWyTDy//5mOgEJQORff477HTfguurKWT9bz+fJ9vYy+KU/J3v4MME/+iPGvvUtFIMB/+//PhM//jH548cx19VS9eUvY/B60NLp8zqZZz6R+ls+0gcOoqsqlf/5L8n39dE08gIVm25iaFSlZZmD4NhBzOkm8FSVOtSyIHX33BTGx8l1dzP27e/gu/cerEuWoFgtOK+6GjQVS3s74e98h9zhwwC4rr0Wa3sbrssuK3HkC8d8qLuFwSFCn/0M8ccfx+K1wdHt3HrLZQxlK8hlVRrbbIQcqTO/kVhw5kP9PR8sTU2477gdS30DFArEnniCwO+/j/yBXWQOHuD6m97NcNJDLG+nYZmX2mWBUocszmCx1N1yZHWYueSmWhqX+xjpjlNVZcA3coD4g7/Efddd5Lq6sDsMJAZ6CX6s2FVUiESxLmkvceTlo9zqryEYwDQZxH3rrRjsdqyFMW7/8JX092Qo5KFtUyVVzV6MZoMM5C9y5VZ3T2ffsgVjKIj/Qx8is38/jo0b0bJZNJsNi8vEnX+ynt5D4xjNBlrWhqhs9rzhexmNBhxe60WMXlxoF6vuhuo9rLoSuvaFCTW4aVkXorbN95bew7FlC65bbsHW0oKWSRN74kn8730PairFyP/7G+rv/8aFCV6UrXK+9pY7Z2Gcd16ZI2xuJBFTaVzqxnHoOSajMdSTR7D7JUnehVSOddcUCuG+8UbSX/0qG1epNKxuYbg7QVWzi8Y1lXhCi3NMScxWjvVXiLMhdff8UGMxLG1tKGYzmaNH0TJZ1MgkY/d/EzQNz113Mf7tbxcTkACoKsnt20ju3IF93To8t91G4vnn8Nx+O8ZAEHNtDZbzuFux0Whg3Q2NhOrd9B6eoG1jJc2rgzh987cdezHrruLz4rnnHhSjEVNFBYWRYRS3G9yuNzynutXDPV/YSNfeMIpBoXVdiIoGtyQfEYBce8uZ0eGg4rOfoe/jnwBVBcBUWYFiMFIYGWHse9/Dc/ttJF94EUtzM+k9e9GyWcx1tYx/+zuk9x9g3d98lYpGN32HJ2hdX0HzmiDOBdJvWIq6a3dZuP4Dy+ndP8JoX5J1V4UIRE+S3aNjDAbQM7LIR5ydUl17bU4z175vGb1HJhjuiLHm2jrqVwaw2N7etH9r+xKsa9fg3HIJBouF1K5d+D/4AXBI39VCs9ifG+pXBDCZjXTuDVO/3M/Vv7cEv1sld/XVFEZGcF1/HaBg8HjQNZ1cd/f0ppeitBZ73T1XyVdeQVcLGEMh9Gy22E/g92PfsJ6Jn/wLAHoux/B//W/43vteJn7wAzx33I7ziitIbt1Kavur2NatI7NvH45LLinxp5m/5nv9zYfDjP/851R86lMEP/MZKBRQJyeIPfw7Ah/9Q8Lf+jbWv/tbTIHzO9cxn1NJjGeoaHBx15+so3PfGE6fleY1QYK1b9yHciEZDMqimsdRDnXXYDYTtCe5+Z4AfaMmDAaFd9zowG+Jn/lkIcpIJBuZ/tpg0FFMxWuJ4vBBBFSjHcNrB5jsUJid+EkIIYQoJ2WXhERRFDPFBCQ/03X91wC6ro+c9vr3gIfnOlfX9e8C3wXYvHmzpGU+A13TiQyn2PtUD4piYHIoQaDWictfwh2402nUyQiee+9Fi8cpDA9jbqjHVFdHobcX84oVpYvtAirXuqvn82SOHiV7sgNTdRVaPIFWyGMKBCkMD2MMBtFzWfRUClNVNfnhYYxeD+g6aiSCua6OwsgIisOJwWyiMDaGua6ewvgYGI0YXS4KIyMYvV5sq1ZhriomRsh2dND78U+gp9NY7vo9unw3cPzfJjGYDGy80svaikHG//o/k5nKsqqrKukDp7Ke2lauxH3zTej5AqmdOwFI798/6/Plh4fnLBv/5+9j9HrJHj5c7GDOZsj39gKQqamh4s8+h8HrRUskGf3KV9DTadw33UTlFz6PYrGQOXQYLZfF6PdTGB7G4HBiW7USS93by0Jfrsq1/i5GhckJJn70Y9y33YZ15Sq0htW8+uQE+azOcLfOlo0NFGKx6b+1xU7q7rkpRGNE/+M/0LNZFJMZ/4c+iBaPo+fzqOkMWiKJ/z3vRovFiPz6NySefx73rbcs6mRN59t8qLtqNoPB5SI/NEz8iSep+h//HWN1LQNPh0lG8/Qc0rn2zhoMe/eBxYy5thazz1fqsMVFMB/q7/mQHxsDTWP8u99FsVgIfOQjqIUC9pUrMLlc6G4zRquP0R3jHN0+wpJNFWy8yo/Lksd6HieIi/NnsdTdcpDt7qEwOYmia2j5PJPmWp77VS+pWJ6adg+BTZXYojrO//E/sLS3kX51B4rdgX3TRsa//wNQFHzvehf54eHzPug9X5Vb/S2MjlJIxPHedy/ZWJIBQyvbftqN2WqkaVUAh9eK0Ww48xuJBa/c6u5rtEwGRdNQh4exr1mDKRTE4HSiNizj8BGdI189gsGgcNm9bSy7tAq7y1LqkMVFdjHrbi5boPfwBOlEnv6jk9zwoeVUtZz9blBaMolj7Vq0RAJjRSXVX/4rct3dKHY7gQ98ADUeJ/bsc6BpoIBiMKDncigWC4rRiG3lKkxBud8uJOV67Z0P1HAYuyGLyWJkqGOSwy8PsXTTGjb8+29RjuxEz8sOyxdSWdZdTSM/OkLwi39Jb8zHjmf7sTnMFPI6dUv9pY5OlJGyrL9CnAWpu+dHascOJn/2M1zvuB7bsmWEv/Y1bCtXgqbhuvZabKtX4Rq+BmtbO1ouh8HhwLJsKdm9+wj/zd/ivutOqv/7/2D0H/4B5xVXYHC5iD70ENZly7CtXInB8vbbpMloln1P95JNqwx1RPBW2HGH7BjmaVKMi1l3tckInrvuRB0eQY1EsLa3YfD50SYm3/CcbKpA/9FJuvaNoao6uXQBp9+GO1DCuVyibMi1t7w5t2yh+ef/SnLHDvRkCl1VGf/+9wGwLV2KwePFfdNNU/MhGzBVhMh2dpF86WVSO3ZgG0+x/6k+spni9dZXaccTtC+IJESlqruxkTgHXh5F1yDcn+Sqm9sJfOxjqIkEijL//13FxVHKa298PMO+p/uKdbgnhq/agfttzu/OT4xT8Sd/Qr6vHz2Xw/+RD6PmC6jhMGZXaRb5igtjsT83pCI5jmwdZKQ7jq7pWOwmXJdU4vvgB1BQyPf1gqZjbmokNzKMqVrm1JaLxV53z4VeKDDx059hX7eWwEc/iikQIPyVr+C84nLU1hZ8d91Z3LTVYCDx9NMoU30FsYd/R8Wf/AnJrVvJHDmM6+ab8b/v97GvX1/aDzSPzdf6q+s6mSNHKIyM4n7HDShOJ9bmJgqjYSxNjbhvu43Uzp1YmxpRI5HzOh8rMppi669O0rVvDLPNyBX3tnH5fW1YrGW31HFBK4e6m0+lyBhddPcr9B6fREHBuDGAy5FAnlLFfBLNRgHwGt0YlDEUczEJicFZvHbmDXbMrx1sskJBkqQKIYQob2X1ZK4Ue/a/DxzRdf0rp5XX6Lo+NPXtvcDBuc4Xb83kcJIX/v04Sy+pQVN1jCaFVx/u5IYPrcTuLs3k+EIyiTHgJ3voMKP/9/9OlzuuuIKKP/uzksS0mCVe3kr/H/8x3rvvItfdQ3rfPqr+4i/o/4u/xHnFFWA0knjmGSr//EsM/7f/jqWlBduKFUT+4z+o+JM/YfTv/h6D3Y7n1lsY/94/E/z4xxn71rdRo1GCH/sog1/9R9CLbVTHZZdS+7d/i7mykmxXF3o6jamigt6Yj2O7ihMw1LzGjucm8d5RjV4oAGBsaMT6yc+TCjVha9kAzz+Ea9MGwl/9R/wf/CAj//v/YKqswLF+PakdO2Z8Pkv9qaQgWiZDtquL1LZtTP70p4Q+82mguFNdfmho+rjUK6+QeuUVKv/qvxD++7+fLo8//jjOa64h+utfkd5/gKovfpHBL/05TMVpWbKEhm/ej6Wh4fz/ooQA1ESCsW99G/dNN5F84Xn0+jZ2d9bTtLoCXQejSWHfwTEC64JIGgjxtugaue4eAh/+MPGnnyb/4x8Xy81mqr/8Vwz/z/9VvPYZDFR+8QuEv/4N1Hic/PCwLKxfRAxmM6N//w9kDh4k9GefIxtoYCQM9cuD6LrOoRcGeeLf+7nzTht2NVwc1JUkJGIBSb28lfgjjwKgZzKMf/e71N9/P6Pf/C6G23+PjKGOfAHyWRVdg+M7wngCVla3Z6G7G2tzc2k/gBAlku3rozAyjKZpaJEI0YEoTxzOkk0V21WxsSxDQwVcobVYhk6ifO8HBP/g90nv2EHkX38+/T6Rf/s3LK2tWFtbMdhkcn65UaNRSKcZ+LPPY/zyP/His/0A1C/z4w7Y6TsygaKAt0J2XBPlKdPTA0C+r5/Rv/kbAIx+P/HPf4vD28YBUDWdl//jBIFqOzanhXQihydkx1flkMnt4ryJjKYYPBGlYWUQo0mh99A4j37nIO/+y024fGe+/2W7uhj887+YTr5c8WefY+ivvow6MQGAwemk/pv3E3vqUUwVFeQGBlBMJmzt7UR/+xC2lSuJ/vZhqr/8Vxg9ngv6WYWYFywWot5WXv5FDzXtPrbc0YKm6kxkrHhTaRRTWQ3JiotA13UKQ0NEtRAvPpvEV+Vg6ZYqVFVnpD+Nq9KF2SL1QgghFrvoI4+Q3r0b1/XXo+VyACgmI/ZNm7CuXIFitaLGE4S/9rXpcyq+9EVwOtHzecyhCob++q/x3HoLuY4Oor/61fRxdf/4VTy33PK24ksncrz0yxM0rAxOjznvfLQbd8BGsE6m/5+J0e1i4kc/Jv7YY9Nloc9+Bse1173hOQMnIkRHUyy9tBp0nWyqQOeeUdbdMP92UBZisVFMJuxr16Jls/R++CPFpK5T7NdfT+7AAcJ/93fTZc5rryX48Y8VX7/7PWx9ZICGVaeutzt+14UrYCvZzt/zXWQ0xfZH+1myuQq1oGMwKmx9Osylln0EtqySdrooe9Fwipd/fXK6DhuNCi/9xwlu+eSat5WczOT3M/zlvybfXxyfU8xm6v7xq2A0nq/QhSg5Xdc5+soQDo+VpVscGAwKI10xfEEzIYOBwS9+CTUSAcDg8VD7D3+PweksbdBCvB2KgsntRjEY0VNJhr/6Vdw334TB7Sb57HPEHnlk+tDAH34Ec0vz9Pev9UU4Lr0U11VX4b722osdvSgDqZ276PvoR/HccTveD32Y1NNPM/aNb0y/7rntVjy334FeyGM4jwlINFVj31O9dO0bAyCfUXn+58fxVTuoX3bq5yQmM0wOpTCaFfw1TtkIZoFSNI2BMSsFNc/yy2pA18kk84zrQYKlDk6ItyCSjQBQrQQxKJ0YzMX2m2IrbiiUxcr0rEiTDQrZix+kEEII8RaUW0/6lcAHgQOKouydKvsvwPsURVkP6EA38EelCG6hSUayrLiihlcf6kLTdFBgwzsbSUQzJUtCohiMKCgzGq0Aqa1byb/3PbBmdUniWowKE5OM/J//A5qGub6B6G8ewHnlFcSeeAI9n8e2di1jX/861iVLSO8/gJZM4rruWsbu/ybGQIDC+Bjq+Di+T3yciX/5KYrZDCYT+d5e/O97HxM/+ZfpBCQAqW3byR45irmyEuNURnXzhi10ds9OpDk0ZqS+pgY9n0f7z1/nd78cQNMGQXFxxd2fR/vF/wPA6PORPXGC7MmTVP7Fn5MfGSlOqjcaCX36j4s7CFFMQDL585+TeP4F9Gwxi2B69x5c119P4sUX8dx+G/HHn5j++QaXC/W0nWnM9fX43vUuUFXSu3bjuuEGog89OJ2ABCB34gTp/QckCYm4YAqjo2T27MH/nneT2voK9r++j5aKSrY91IlWKF7j115fTyo9bxIrizKlTkzguvlmDFYr+anFdwDk80R++StcV11F4rnnQNOY/Pdf4LnpJhSLFcUqC4AXk8LgIIXRUUKf/Sym1Rs51GHn0NZOAMxWI5fe3corv+kgVbCSf+hB/B/7GJmeHmxNTSWOXIi3Lz88jMHnJfipT2Gw24g98iiOLZuJPvsckbs/x7YX47C1C4NR4ZI7W9j/bD+paI4Te8ZZvrwCZWqigxCLkTo2hpZKoQOZfftJ16ydTkDi8ltZflofhqK4ueyaD+OZDJM+dBhjMIj//e8HVQWjAT2bQY1GJQlJOTIYmfjhj0BRiKlOIMGyy6pJx3K8+nAXAHa3mTs/u46KRlnULspQJgMGw4wFYJZ1G+k4kZtxWN0yP90Hxjnw3AAAJrOB2/54LQ0rzt+kHLG4TQwk2PN4D4V8cUHLyqtqMZgMxCeyZ5WEJLVz53QCEmMoRGFkdDoBCYCWTBJ94EEyhw7hvumdWOpqQTGQePEFFIsVU1U1Y1//Ov7fey+OTZsuzIcUYh4phMcYHgjSsCKA02fl1d8Wn2tMFgO3fPQWgjXeEkcoLrpcjokf/4TE57+Jt0JlyeZKdjzSja7pKAYFtaCx4vIaDEZDqSMVQghRQpbG4rhIavt2PLffjsHpxFhVTeBDHyR7/Di5EydJvvDCjHPGv/lNav/u7zBVVICioKfT2FasIPrr38w4bvh//W/sGzdirqw85/iS0Swtq0Nse7ATtVBse6y+to5kNCNJSM5CYXx8RgISgPHvfBfHli1veE42lSc6mub4qyMAuAM2NtzUSD6nYrbI4mAh5gPbihVUfO5zxf7DQgFzQwNGk4nxb94/47jk88/jvfcegp/6FOpVt9I8aWP7adfbNdfVkYhkJQnJOUpFMtS2+YrjDjrTY7NqpJXJn/wLFX/5l6UOUYg3lYhkaVgRZMfDXeg6KAaFLbc3k4xm31YSkuzRY9MJSAD0fJ7xH/yQ6v/9v85H2EKUhUwyj91j5vCjg6SixfG72qU+MmmN1Lbt0wlIALRYjPgTT2J7k2d0IcqdYjTi//CHiP76N5gbG9HzeSwtrQBM/stPZxw78dOf0fDP3ysmnzIYUMxmrEuXYm1ro3Dapq1i8VDTaca+/nX0fJ7MyQ68sSjj3/nOjGNijzyK+7bbyI+MYp2chPO04WAqnuPErtFZ5eP9yekkJGMDCX53/z4SE8VF+vXL/Vz/weV4grIl60JTKGioRjMTQxGObR8GwBOyUdkg88rF/BLNRQGo0DyYFA1MU+tzrcV5kBn1tPW6JisUMhc7RCGEEOItKatZTbquv6TruqLr+lpd19dP/feIrusf1HV9zVT5XbquSwv3PDBZTex6rKeYgARAh71P9lLIam9+4oWkqeiFPFo8PvulRKIEAS1eeiZ9qjNpKpmGMRiiMDw8sywUojAyVaZqoOsY/X4KY8WMpIrJjJ7JoNhsaMni79Dg9aKOj8/6mWo8BoB1yVKc116LOtBDMDB7d9hgvQvPHbfj+OL/x/MPDs2ow688Nozhne8CgwE9N5URUNcJ/8NXcF5yCaHPfIbmf/s5oU98YnqHzmxHB6N/+3fkh4amJ/kkt27F6PcR+qNPYnC6CHziEygWCxiNeO66E0tz8TiD04n/D95P+BvfmP73MoWC5IdHZn++idmfWYjzxeByYaqsQM8WB03M1dXsfry3mIAEQIf9z/SjIDsui7enMDyC87LL0NXC7NdGhjGFQqcdO4z7jtsxer1YamsuZpiixBS3m+Cn/ojxb3+bKF4ObT01UJDPqhx8foC2jZUYJofJDw0Xd4FS1RJGLMT5ocbjjH3r24T/9u8Y//a3CX/1H4sLNltaUddcWUxAMnVr1lSdXY/1sOz/Z+++w+yoygeOf+f2Xrf3muym90YgjRJ6F5AiRZqiqCBS7SCgqKgIgoL8pAgiVSDU0CEQ0pNN2Wzv7e7tfeb3x11usmyAJCTZTfZ8nocn7NyZue+9e3bmzCnvmZ0DQEauEY0cQ1FEwjBhFJNllHgCkkkSvb3olCjSQPV1zKwcVu3UhqEo8NE7fiL2fAyTJ5Nx+WX03n8/PX/9Kz1//gu+ZcuQg8Fh/DDCF5FQSHR0oMTjGDUJkMCeaaRp046J72F/nBUv1BOPifqBMPIo0VR7kxIOp7clW5twOwffwwvGOtMJSAAScZk3/6+GoFesYCF8fcH+KO88sS2dgARg03ttFFa7MJh2L/d8onfHdVfjdJLo7h6yT6yhHrXbnWr3TcqQSBDv6EST4U63Dyd9Q9vyBWE0Svb24nBpyKt0sPnDHd2YiZjM2/+pJ9jRP3zBCcNC9gdQQiGMmjiVM7P59JVGlM+eZ2SFd/69lf7O8FecRRAEQTjU2Y45GpXdTvC99/C98Qa5v/stPXfdRayuHmQFJTJ0ALIcDJHweMi++SbUdjvmI45I9xHvLNnbixz+evcaSZJY9WpjekI8wIa3W0ERfc67Y1fjnJRYDDnyxW0D8UiSzgZf+md/X4SuRh8qlfjOBeFgobZYcF90IaXPPkPx449T/NhjKNEIcjA0ZN9kn4fe++5D9nhY/bnr7fq3WsUIn69BRmL1602D+mZXLWtEl5eXSsAQH3rvFISRRJJg9SuN6XX+FDk1vuDrXhc+G9c7aFtHO0o8/jXPLAgjh1qjonWzJ52ABKBtaz+JhEKkoWHI/vGWFiTViJpSIwh7zDRtGvYzz0BfWQmApNEMWkw1LR5H9vlwnnceub/8BZLRiL6qCs+T/8E0a9YBjloYCZRwhNhAgjLrwoXI4fAu6wVyMIjs8eyyLrG3dAYNrtyhSRfNTn3qPZMy695sTicgAWjZ7KFtW/8+i0EYOSQliZKQ6W7aMf7A1xOho9EvxtQKBxVvNJWExBUzoVUg8Vk905CavxhO7FTv1BhEEhJBEARhxBMtJqOYoijEI8nPbYNYZBgneMgyKosF44wZgzZLWi26oqJhCmp00mRmYjv1FIBU8g2NhtCKFVgWLgBAkWVUZjORdWsxzZoNQNLnRZOdTay+HkNVNQDRhgb01dXIfj+azNQKO6GVKzEffvjgN1Sr0ZWVEe/uIdbQQOb3vkfmd65kwhw3evOOgfOuXBOFk3LIvOoqyC8nHh1ahuP2rFRZMpv5bMaaEo/T/9RTJP0+DOPGIWm16WMSXV2gKMQbG9GVl6MemEDvffoZvC8vw7J4EVk/uJqyF56n7H8vkH3DDZhmzsQwdSq2446j71+PQDKJpNeBSkXww4+wLlo05Ds1VI/b21+HIHwlbVYWOb/4BdqCfCStlmhbB5Hg0EbAeHQXjcqCsAc0ubn0PnA/uoHOip1ZFi0i+OEH6Z+tS5agMpnRl5Uii87qUUXjdtP/1H9R4nHC0aGrsvV3hiib5CL++P1YFi1E0mhQO50HPlBB2Mei27bR/8QTg7b1PfRPFJ2WuCMnPcjtM/FIEpVahc6oYfJhbggFkTRaBGHU0uuRzCYkrRbD+HEkX3iUGYelVoyXVNIun/+iKjPmKVPwvvhSOjEAQHTjJqJbthzQ8IXdIxkMWI8+GhQF4/ZPKCgzEQ0NfU7prPMR28V2QRhuKpcLOZHAMGFCelts2zbKM3wYLDvu47saBBHwRIkGRbkWvr5IME6wf+ikNYNZiyPLtFvnMFSNTf9/tK4Ow7ihbZe2E04k3tmJHI+T9PuQtFosh88n9OkqJL0OyWRKJ2sWhNFOV1pKpsGPIg9N9O/vjRDuEwl7Rht1TjbawkLMdSvR6VU7EoYPkBMKYb+Y9CYIgjDaaXJyKPzrPeT8+lfYFi9CiUZJ9veT8HiQoxEkkwnJMHile8PkyQTfepu2G29CTiaxHbs0NTlEMzghofWoo9BmZ3+t+OSkQtg/tI8vFhWJY3eHNj8/NW5lJ/rKStRu1xce0981NElBV6N/UGICQRBGPkmrxVBRgWnqFLSZGagdDgyTJg3ex2BA7XQAEOvo2uX19vNjO4Xdl4gmh/TNxiJJYq3t2E4++fMvCcKIk4jJOxbnG5CMy4MSU+8Nw8QJQ7ZZjz0Otd3+tc4rCCNJMiHT3TQ0IaC/O4RtyeIh261HLoGoWERAOLhJajXmadPQ5Obg+MY30BYXoSQTqD53fdeVloBajXneXHRl5WgcdiwLF1D04D/Ql5UNT/DCsNK4nDjOOANIzbdRWazoyssH7aOyWNBk56AoMuzDpE06g4a5p5Sh0e04Z26lg+yS1ET9eFSmvdY75LieZrG49aFIa7Hg6RzaLtZZ7/vadWBBOJC8US8GtQFjSEKDQvyzVJImNwCR2E7PeRo9JEQ9VBAEQRjZRBKSUczqMmC0Dp7gptJIWF36YYoIsFpJtLfjvvgizAsWgEqFrqyMvDvvQJFEbv8DSdJqyfj2pdjPPAPP00+TfcP1qExGFFnGcfbZ9D/zDJnX/AhtUTHxlmZcF1+Mb9ky3JddimHKFEKfriTjqu8S+vhj7CefhPnww/G//jqZ115LvKkR45TJWJcuBbUabWkJhX+7D0mtpvH882k891wazjyT0Mcfk1Xm5IyfzODYKyZywncnccL3p+DIMiFpNJjtul2WYceYAqxLl+L734tk/eQ6NLm5oNXiPOccXOefj6ROTYZO+nz4lr1CvL09PSCn5557cJxyChlXf5/8P/+Jor8/gL6oCEmtRldcjL60FJVWiy4vj4I/3Y3t5JNItLUB0P/Ms2Rdew3IMpLZjP2MM5C0WjTZ2eT/8Q+77MARhH3JcvjhJCJR8u68A52/G6tr8IA0SSVhyzAOU3TCoUKTk439pJOQw2FyfvkLNFlZSDodznO/iXnuvNROWi3WpUvR5ucRWrGC+lNPo++f/yQZDA5v8MIBo9LpiDc2AKD3tQ95PafcjnHze2RcfBGm2XNAp0MrkpAIh4Bkf/+QbXIggC4jA4tTj0oz+JnGaNWSV6TnlIuLsKu8oNdjqCgfcg5BGC0MY8eislpRmUzoq6txHHcs5a5eli6Syc6UMZgHP/+pNSpM2jiRbVuJNzUNOV+8q+tAhS7sAcntxrxoIY6zzyb674eYqnxCduHQCfMlk9yDEjoIwkhhrKhAl5lJ5o+vTSXZVanQj6nEoQ9xwilWjj67gOO/O4n8sUPrt648Mya7KNfC12ey63DmDL12ZhRakHZzdWzJYiHz6qvRZGWmVkNTq8i4+mrUDgcqswn3d7+LrrwM9yUXoy0pRltSQjKcGvTj/vYlhNatp+iB+9GXlu7TzyYIByvD+HEY4/3kFOiGvJaRb0KviBWMRhtJpSL7huth06dkKu1oDYMT9Wr16vRqfoIgCMLoFG1ooOWKK2k89zw6br6FwDvvojKk+nL7n3oKbX4+muxssm+6KbWSsUqF+bB52E8+GcP48amxD4k4kk5H/1P/Ievaa9AWF4NajWXxYtzfvgTV5xKY7CmzXYct83N9zhLYM0Wf8+5IhsPk3v4b9GPHgkqFac4cMn/0Q5J9ni88Jn/M0PaEsqmZaPVDk/4LgnDwkLRaMr53Vbo9UVdRQd4dt9Nzz18BUNXXDBmzKa63X4/VbUClHtxOZrLpMDt0GMaPRxIL6QgjnNVtHDQhF0Bv0mBxfb36nRwOk33LzWgyM5H0ehznnI2+ohwSIoG6cOjQm7SUTs4Ysj27xIqcSJBx1VWpcQkWC+7vXAla3aCFLQXhYGYaPx7baaeBSo02J5esH/0wtRCBJGGcM4fsn/6UjhtuJLJhAy1XXomutBT7ccehLykZ7tCFYeQ49RRcF1+EJjuL0Ccfk3XNNZhmz06NhaiqIu/23yB7+1E7HJDct8kgciscnHnDDJZePoETvz+Zpd8en57/oDOqKZ0y9HqeWy6Spx2KlGSSguKh/Wal1Va0OtEuJhw8wokwJq0JVTCBVlGIf9Y0MeF0+nSlrPfl7dhZY4CEGEcgCIIgjGyar95FOFRZXQaOuXQCrzywgbA/js6oYckF1TiyzV998H6iVqmQXS7arv0xlsWLybvrd8Tb2un4ze2U/Ov/hi2u0UpXVEjuT39KvLsblcGA7bjjkENh1G4XGZdfBhot9uOPJxkIoHK5cF1wPkgq7CefTNLrRe1w4PjGN0CWcZx1Fsm+PtRWK/ZTToZ4HJXTSdaPf4zKZERlMtF23XXEGxpSb64oeB7+PyyHHYbjiCN2uYKnrcDF4pMyefP57nQZPmKpC0e+Dc0dt5Po6UFlsWA/8USUaDTVcbJTQ3Hgrbdpu+46tIWFZH7vKnrvfwA5GMT73HPk/+EPmGZM/9LvR5uZicpiwbJ4MYE33yTe2Ej3X+7BdszR2E44Hn1lJZnfuRJJp0OTMbQBRBD2NUmjQWu30XL1D8j4zndYfEY+rz/ZTLA/hlavZtF5Y3HmDt81Xjg06PLyQIHwyk+xLFlM5jU/Ilpbi9pmo/POOzHPmYPG7SL4/geEPvmE7FtuhmSS7rt+j2naNEzTv/zaKhwizBasRx2N99lnkZ/4G3NP+QEfv5tapc2eaWRGaT/en/0czWWXYVq0EJ3FMtwRC8I+oS0sQtLpUGI7VjLWV1bif/U19NOnc+S5s3jryXpi4QQmm47Fp2QTveYCzBdeiHrpMeizsoYxekEYfiqtFvOkSUQ7u5CDQcyHOWi57FISXd2o7HYW3vgH3n4Pwv44epOGI47PRNe+Fd3UqVgWLcT79DODzmeoqhqeDyJ8KaWtDWIxEn4/ubfdStLnQ37+AabOO4m1H3mRZYWsYitTjy5GrRH5k4WRJ9Hnoe3mm8m86ip05WVYlx6DBHj+/QSRtWsp/PvfsUwcQyKeZNH5Vbz7760k4jJWt4HFF1RjMA+dnC4Ie8po0bHkW+N45YEN+PsiaHQqjjh7DBkFu/9spcvOpv2pp7AsWozKYsH73PNIOh1ZN1yPymRCUamJbN6M9aijUkmX1WpQqZBUKpREAsfpp6O22fbjpxSEg4vaaAQJ1G88xRGnHs8H/2slEZexZeiZN1eLKeeLV7sXDk3R2lpkTz+60hIsmiBHnlnKm0+3Eg0m0Js1HHXR+F32fQmCIAijh/e55wmvWZP+2b9sGfZTT8EwdSqR1avpvO03WBYswHnB+eT+/i4i69ahMhjouuOOVHuZ2UzOz3+OvqKSRFc33X+8G+vRR2M75mhiHR1oi4q/dowmm56jLhrPsvs3EOyPotWrWfDNMbhEn/Nu0TgcNF/1PVznfhN3YSHhtevo+NnPKHzwwS88Jq/SwYQF+Wx4pxUUKBznYuzsHCSxcJMgHNRUdjvy1q3ox43DftqpqCwW2q79MbI3tap3+Jl/c8Tti3lrOTuut+eKMT5fhzPHzFEXVbP8kS3EIklMNh1LTs8n9OefYr7yCtQ5OcMdoiB8KUeWkWMuncDrD20iGkpgsGg5+uJx2L/mAmRqs5nOe/5Kxve/h8pkpv+551CZzNiOO24fRS4Iw0+lkpi4sIDuJj/t271IEkw+sojcMW4itQqBt94i++abAPA88ijWY44h9NFHWBcuHN7ABWEfMVZXEfR66bz3Xsxz5+L45jnIoRDhNWuJbNqE8/zzCX+6imRfH+033kTxo4+gcYk+jNFMm5tL1jXXENqwgWR3D5133ol10SIcZ59FrLmZ1ptvIet73yPw9tvYTzppn7+/K9eCK3doP7ckSYw7LI+ueh+tW/uRJJi4qIDcCpGE5FCkNhhwK11UTbWzeY031S5WaaG0cLgjE4Q9E06EMWqMaEJJtHpIjya35bG+6Pt0bPrfjp21Boj6hyNMQRAEQdhtIgnJKJc/xsmZN8wk5I1isOiGPXt+sreX4EcfkXHllXgee4z+Rx9FW1xM5neuRGUXD4vDQdJqUxPOP+NMrbqizs1Nb1J/9rsx7ig/6oHJxGrzjs5QdX5+6t+dzq/OzyPW1ER4w0aCH3405P2jDY1Yjth1bCq9noLxWZxskQj2hTDajTgKnWgdqXh0A+/3ebGWFqINjfTcfz8A8eZmPI8+iuOsszCMq8Y0cyba7Oxdv+nnqI1Gsq65BiWRIPjOO6hMJiyLFmEcOxZJp0O983cnCAdAoq+PjCuvoO/vf0cO/IGjvn89cmk1RrcVV7kDlVpM4hO+HkmlwnHaqYTLSgmtWYtp9izUVhuKSiLrmh/Rc89fidXVoauoIOPyy4ht3w4aDSQSxNvbhzt84QCJ1WxCW1yMZckSAm++iSNxBydfdT2yxYn89ssEf3EfJJME332XjCuvGO5wBWGf0VeUU3DvX2n/6c9ItLZimDQJ96XfJrx2HX1/upu8u+7ipJOMRKIKRr1C6P7bSLS1EfrwQ9wXnD/c4QvCiKHPTiXkCa1ZS6KrGwDZ6yVx6w848luXo569EG3Yi7ppFcaZM+n958OYpk1DDobwv/ZaasWiSy5GP2HCcH4M4QvE29uJtbVjnjKZ7t//nnhrG4ZJk6iaO5OKKyeAzYktw4jBLFabEkamRF8v8e11eJ9/AdvSY+j/z1OEV65MrU594w14ly3DMncOGq2a6nm55FXYiYaTWJx6zPahq7YIwt7KLrVx+k+mE/BE0Rs12LOMezQpTVdYSP6dd9B+8y3E6uvRjxlDxhVXEN60Ee9/n8Z+8kmEVn6K87TTRLIRQdhNSjSKRqVguudajjnuG0hF5RjVEay5DnSFYoTcaBN8511MM6aj0ulpu+Za1HY7J1z/C6IaG/bx5TjyncMdoiAIgjCMkoEAgbfeGrLd/+qr5P/2TsKfriJaX49xyhQMVVXEmpvpuOlmVGYz9lNORmW1ocTjaHKy0VdWpNqlb/kpvuefxzh9Ojk/vQWNY9+Msckps3PG9dMJ9scwmDTYMvfs2WM0i3d2kXn5ZXj+9cjAc1cl7suvINHX94XHmO16DjujgglH5CMnZWyZRvRG0U4mCAc7ubcX/yuv4jj7bEIrViAZDakFs/7xIIn2dvTV1eSU2jhjdpG43u4jKpVEyRgTJ5/tItjchaphLYnbfovjnHOI1GxG+wXjCgVhpJAkiZKJGXzjppmE/XFMNh1Wl+FrnzfR14f9pBPpuuNO5FAI27FLUZnNJHp70e00JlgQDnaObBPHf3cS3p4wao0Ke5YRjUZNWCVhmjWLjp/+DBQF+5lnEN28mcA772CeNw+VTiwmIBzclGSS6NatJPo95P76V3Tdfge+559HP6YSxxln0PXHu8m+4QaCH3wAQKy+nkRfn0hCIiCp1ch9fXT95jdkXXcdPff/jb6HHkJbWEjeL34OQO6ttx3wsuLIMnHslRPxdodRqweu51r1Vx8oHHQUWUbVUMMECcpmuVFUaqwmL6zshJnVwx2eIOy2cCKMQW1AFUqi0Ss7kpAABrOFRDxGPBZFq9ODxgDB7mGLVRAEQRB2h0hCImB1GfZJ4/S+oLLZUOsNdPzqV1iXLMGyYAGJzg48//431mOPHe7whP0g1tpK0xVXonW7MU6cQPD9Dwa9risq+tLjNS4XbpcL926+X7yzk9arf4A2NxdJs+MSmOjqpu/BB8m64YbdTkDyGX15Gfl3/5FEZycqo3GPjxeEfUpR6PnTn7Edfxxqp4voh28S/P2tWG/9NYGWzdiOOWa4IxQOAWqbDcsRR6ArKaHx4otJtLRiP+VkwmvWYpg4EevRRxNvaabrt7/DdckloCgAaLLFSjKjhRKL0XP33RhnzMB9+eXIwSD+X/wY+3HH0fv3v6f3M0ycSLK/H1VW1jBGKwj7jiRJWA47jPzf/57A8uXEamtp/cEPIZkESF0ni4vw/uqXhHp708cZxo9HjkRQGUbGc5kgjARKPE68pQV1RgbJnh4AZJ+P4F9+R8nC2RhnTAWmkgwEIJGg4+ZbME6divuyy1DCYWKtbWjMYoXAkUjtciN1dND9xz9iO/Y41BkZxGpr6bz+JxT9/QHME7/+Kr2CsD9pnE60RUUkWloIvvsearMZ9xVXkPR46P7j3ZgPPzy9ryRJOLLFtUjYf8z2r5fcxjR9OoX/fAj/sleIrF1L67XXQjwOgKTTo584kWQkIpKQCMJuUOJxEh0deF/4H7alxyCFuwn+42n8oTC2v94z3OEJw8A4cQKJ7h6C77+HayDxqP8vv0WJx7H858lhjk4QBEEYbuFNmzCOH0+0pmbQdtO0aegKCtAVFKS3KfE48cYmkCTkYBDPo4+lX7PMn4+kUmGZP5+S/zyJ7PejycxMLxqzr1gcBiwO0X69p1QaNe2334F16VKsxxxDvLmJrttvp/D/Hv7S4zRaNe78ffs7FARheKmdThJeL4m2Nnrvuw8AldmM7bjjULvdWI8+GsOYMQDiersPSYD/tpvRlxSjKysnMX4CXXfcScZ3voPa4Rju8ARht9jcRmzufbe4pOz3433qvzjOOB1JbyD44YdEt9Xi/OY5++w9BGGk0Ju0ZBUNTuinzcoi3tKyo73ujTeJ1dVhnj9fJP8SDgmh1atpuvAiSCTI/tnPME6alH4e7fzt7yAeRw4G0/tri4rQOEXCbCFFMpuJt7XRes01WJcsxnL4ESS6OlEA8+zZaIapDq03Dr2eC4ceSaUismEjsbo6LIsWoiSSeF99FdPMGcMdmiDskUgigkFjQBWIoXUoRFHSrxkG2u2jgQBalx40ekhEhytUQRAEQdgtIgmJMKIo8TiawgJUOh3+ZcvS27N+ch0qvVgp9FAU2bSJeF0d8bo6sn5yHdG6ehLt7QA4zjoLw8R9u3J1ZPNmIhs3Et2+nYzvfIfuzZvTr0lGI6ZZM/fqvGqjEXVJyT6KUhD2niYjA7XdTv8TOwYxO77xDRI9PXj+71+YZs4UGauFfSa8fgOJllYg1SHnuvBb9Pz5L+nXVVYrklYDskzGVVdhqBo7XKEKB5ikVqPJzSW8ciXhlSsBcF50IcpOCcD0Y8eicTiIbKpBK5KQCIcYXVEhoZ3KP4BlwQJCH32I1eVEm5tDciAJiXHqFORgkFhjI4ax4jopCJ+JNTfTceutZFx+GT1//ktqEIRGQ9Y1P0JfXp7eL7ptG4bqKnwvvkh49WrCq1eDSkXhwCBeYWTSFRZinncY/U89ld6mr65GtY8nyAjC/iDH47i+dQHdf/oz7iuvoO3H1xF4++3UiyoVpmlTiXd1iTqucNDQZWejdjjwvfRSeptkMKDJcKMvKyW2eQs6UZ4F4SvFmppAVpC9XvoefCi9PefXv0JSqYYxMmG4qN1u1C4Xie4eeh/YkZQ34wdXowwkfBIEQRBGp2QgQPfv7sJy+Hz0YyqJbt0GgHn+YZjmzB2yf7SxEc9jj2E79thB9XZ9dTW6ior0z9qMDMjI2P8fQNhtKrMZ/Zgx+J5/Pr3NsmiRWF1dEEYhORLBdd65eJ9/AdPsWYRWfIwcDNL/n/9gnn8Y7osvGu4QD0mSTofjtFPpuv0O4DUAVGYTusIClKiY5COMTrqSEpJ+P33/3JEULeuG61FkeRijEoQDJ/DmcnRFhXT98e50UnYA10UXIWnFBHfh4CbH46kF4hIJIPVMGt1ei/e559L7WBYvRjKZUq/bbOTedisa9+4uBSsc6jRuN9alS/G//DL+V14FQD+mEtO8w4jV1qKZIZJBCPuXZcEC2l99lejWrakNajXmOXOGNyhB2EORZCoJCX4PWgV87HjW0ptTYyMjwQAWlxs0BkhEhitUQRAEQdgtIgmJMKLI4TDh1atxX3EF8eYmkv39GCZOIrxxI454HMTK4IccORxO/3/3H/6I48wzUDucmObOwTBuHOqBhq59RRl4PyUSwf/662Rdey3h9evRFhRgO3Ypxurqffp+gnCgJb0+7CefTNLvJ97aimFcNdHtdWi8PmRvP0osNtwhCoeQnTOiy34/oRUryPzxtUQ3bkJbVIRlwREoySSli5egKy1BJe7jo0Zo5ac4Tj+NpNdLvLUNw/hxyIEgKq2GjKu+C4pCvLWVnvvuI+/3dw13uIKwz2mcTnJ+egveF14gVrsd/ZhKkv399D/xJJYFC9GVV2BZuBCA6PY6+h56COvSY4Y3aEEYYeRIFNnjoff+B1Irb6k1SBo1hurqQXUKORLB88ijZF17DZGazSAnMYwfj8otEu+NVLLfR7SuDrXdjvvyy4lu3YqutASQkIOh4Q5PEL5aLEb3PffgOP10kqFQ6vqzqQYUBcP4cfQ9+hiWRYuGO0pB2CNKMknWj68lvH4DKpMJfXkZ/f95CsP4cViOWDDc4QnCQUGORul98MFU/1ZTE0mfF8OEiSiyjBISdZzRKLp5C2qrFfdllxFvbSHp8WCYMJHgBx9gP+GE4Q5PEARBGEZKLEayt4eee+/DfsrJWI86ClQqtMUl6PLzhu4fjRJetQrdqafgvuIKolu2oCspxrJwEdpMkXRkJEt092CaNRPTrFnE6utTfQUeD0mff7hDEwThAFNiMaLbagm8+irO887FOGkS0drt6CvKMc+fj9pmG+4QD0lKIkF43Xoyr7mGyIb1qG12dMXFhFavwTBh4nCHJwjDIlpbS8aVVxJvbCTp92GcOInQJyuxHn30cIcmCAdEvLODwPLlZP3wB0S3bUOJxjDNmYNppphYLxz8lESCRGdX+ud4QwOmWbMwzZq945m0z4OusICifz6ENj8fXWHhMEYsjDjxOCqjYVD7k6TREK+rQ2O3D3d0wiFOURQCH35I1o+vJbJxE6hUGKqrCHyyEvtJJw13eIKw2yKJCFatFSWRRKdAWEmmXzNYrKl9goHUBo0eEiJJqiAIgjCyiSQkwoiiy89HV1BA569vRZOdjcpqxf/a62T/9BbUVutwhyfsB4bKSiStFiUeR4nF8Dz6GM4Lv4Vp6lQktXqfv5++ogLJaEQJh4msW0dk/Xrcl15KxlXfFavNCIcEfVkp7T+5DkmnR5OZSfC99zDNmUNo1ac4v3kuGrFyrbAPGaqrQK2GZKpxJPTxJ+jKyjEvWYzj+OOHOTphOFkWL6L54ktQu1xoMjIIvPsuebf+mtCnq+h/4on0fpLBgGGnVfoE4VCir6xEbbcTb20luGJFatKZWo1hXDW9Dz6Ib6dVJvTjxqErKhrGaAVh5NEVFmCcMYPwypXpVcPVTif2U04ZvF9JCUo8Ttcdd6ItKkJSqYjWN2A/9dRhiFrYHbqyMgJvv0NozRrira3oCgsJffopKosF17cuGO7wBOEraXJzsS5eQt+DD5L5/e/Tc++9aHJzQZLw/e9/OM8/D2129nCHKQh7RF9aQuPNN6MrKUGORPA+/TSub30L//LluC++eLjDE4SDgq6wEP2YSrrvugtNTg4qi4XQJytxX345WjGId1QyzZ5N+JNP6LnvPtROJ2qbDf/rb+A852xRVxAEQRjlNC4XzvPPp+v2O/A+/UxqoyRR/Niju9xfV1iIcepUvM88i2QwoCsqIlpfj/Pc8w5g1MLe0JeX0fWb3yBHImhzcwmuWIG+tISMq64a7tAEQTjAtPn5kEhgnDIFzyOPojKb0ebnE92yBcdZZw13eIcstcWCadpUOm+9DV15OXIgQOI//yH3tlvRZovxU8LoZKgeR8sVV6TGZ1ss+F99jYyrr0aXmzvcoQnCAWE//nja3nqbrjt/i7agAEmrxXzE4WL8uHBIUBuNuM4/j/YbbwJSiwz6Xn4JOTzwTPrRR+gqKsi89hqRUELYJW1BAfG2NnwvvYyuqIjQqlVIkoTzvPPQlZYOd3jCIU6SJCxz5tB+442p8YCyjO/558m763fDHZog7JFwIoxbl1pAT4tCREmkXzOYLQBEAp8lITFAInLAYxQEQRCEPaEa7gAEYWcalwvjnDnk/OIXqO12lHCIrOuuw3a0WBX8UKWvqqLowX9gnDEDTXY2Gd/5Dq4LLtgvCUgglYSk6MF/YJo7F01WJq5LLsZx5hmiAVk4ZOjLyih88EEM48eT7PdgO+lEjFOnYJo9B+c3z0FSiVu/sO8Yxo2j8IH7MUyejCYnB+cFF2CaNQvzzJnDHZowzIxTppL/p7tRu93I4TA5t9yM+YgjcF/6bVyXXoomKwvT3LkUPfgg+srK4Q5XEPYLSZKwn3githOOR22zYZg8mcIHHsA4ZQqF992LdelSNJmZ2E8/jfw770DjdA53yIIwoqitVnJ/9UscZ5+NJjMTy5IlFP79AXQFBYP20+XmUnj/37AuXYoSDmOcMSP1N+VwDE/gwlfSFxfjOP00XBddiOXw+SQ9Hsxz51L417+KyZjCQUGl1ZJxxeW4L7sU32uvkf2zn6HJykSJRFLtWhddhKQRub+Fg4txwgQK7/8bKpMJANfFF6Oy28m78w705eXDHJ0gHBxS9ddf4fjGmZBMos3OJvvmm7AsOAK1xTLc4QnDwDh5EvrJk8i++Sa0ebkkvd5U29jFFyNptcMdniAIgjDM7McfT9b1P0GTl4d+/HgK//Y3jOPH73Jftc1G7q2/xn7WN1BbrWiLiyn4/V3oCvIPcNTCnjKMHUveH36Pcfp0kh4P1iWLyf75z9GKhUMEYdRRm0zYTjwR53nnYTvhBFQmE5r8fPL//Och/R7CvmU79jiyrvsxSjicvqcaZ84Uz2XCqGWcOYO83/8etcOBHAqR8f3vYTt26XCHJQgHjGlgjoKutARJo8F1wfmY580b7rAEYZ+xLFxIzs9/jraggNCnn5L7m9sxz5tL0uPBdsLx5N/+G5GARPhCaouFnJ/9DPspp5D0eDCMH0/WDTdgPXKJaIcSDgjTYfPI/uktAEhqNTm//AWm2bOHOSpB2DORRAQdqXFjWkUhtIskJNHgZ0lI9JCIHvAYBUEQBGFPSIqiDHcM+8WMGTOUlStXDncYwl6S43ESPT1IGg3azMzhDufLSPv6hKO17CZDoVRnn8uFJO3zr3Xo+4XDKKEQaqdztCZl2C9f8mgtvyNRMhxGCQbBaIRIBI3bPdwh7Uvi2jvCJAMBkn4/KoNBTKL/cqOu7CZ9PhRZHjQRXJFlkh4PksmE2mgcvuCEPTXqyu++lOjrQ9LpBk08k6NRZL8ftd0uBrntX6LsHuSURIJkfz8qqxWVXv+F+x2if1OHdPmVw2GSA1n91Xa7SA56aDmky+5nFEUh2deHNFCnPZDtWsJ+MyrK7pdJBgLI0SiSJCEZjeKZ7eAy6svvSKEkEiR6ekClQuNyicRUX+2QL7tJvx85EkGSJNRut6grHFoO+fIrHLJE2R1BEn0eJJ12t5KWKfE4Sa/3K9vJDmEHbdlN+HwkPR602dmoDIb9/n7CiHTQll9h31KSSRIeD8QTqJ2Og+GacMiU3VhnJ8gy2pwc8Vw2ehwy5Xd/iPf0oESiYkLxyCTK7gEQ6+gAQJeTM8yRHFJE2R1BEh4PkkaD2mo9VMfT7Gui/O5ESSRI9PaCJKXG84zOdqiDxSFZdmMdHSBJ6MRiVoe6/fFwPuyTpBc9uYjZjulk/mMzP6x+lxfyxnDyZZ8AEAkEuOeSs1l4waVMP/5kWP4bePt2+Fk/iLaKg4n4ZQmCMKrst5FvkiRlA7cBeYqiHCtJ0jhgrqIo/9hf7ykMFksk2dDmY1uHH5tJy6R8O/lO03CHtVtUWi263NzhDkM4QFo9Ida3evGG4lQGVEzIt6HTqPfre6qNxlRyBkE4xMQSMhvbvGzt8GMzaplYYKLg0EpAMqpt6fCxsc2HSoLxeXYqs63DHRKQyn4tVnQVdkVtsw3ZJqlUu0yMFIwm2NDqpa4nSIZFz6QCG9k2ca8WDg0al2vINpVen+6g++z6LkkwYQRd3wVhfwlGE6xv9VLfHSTTpmdSvp0s264H2koaDZqMjK88585/U8LI1+GLsL7FR08gSnmmmYl2FeKuLxwsZFlhY7uPze0+DFo1E/MNlGSYwXRwtLsKh676ngAbWn1E4kmqc22Mz7Pt8YQK8XwvCF9fZzDB+j6JnkCE8qCPCfk2TDqRiGQ0Cg0899T1BMm06JlYYCdbDB4TBEEQPkfj2v3k/pJWu1vtZF/Xzv016XvYF7TdCV+tyxdhfWuYLr9ESSLAxAINFr2oHwrCaCWp1Wi/4FoeiiVY37JTf3m+jWy7aDn/Ojp9Eda3eOkORCnNMDMx345OPJcJB7luf5T1Lf10+qOUuE1MLHDsVd3ii65FgnAo6AlEWd/ipcMbochtYmK+DZtx8IIYIvmIsC8kZYUNrV62dPgx69VMzLdT5DYPd1gAgxYTFONphD0laTRoP5f8odMXZn2Lj+5AlLKBurVJtG8I+9iO8ThxjFo1E9TB1HgcQTiIRBIRtLIKCQUVEJRj6df0JhNIEpGgP7VBO9DuEw+BTpR1QRAEYWTan7X+fwIPATcN/LwVeAIQSUgOkLe3dnPZvz5FGcjjNj7Pxv3nTz9oEpEIo0Nbf5grHlnF+lYvkEred9+50zlmgmjgFYS98c7Wbi7918r0tX9cro37L5hOgbj2H/TWNfdz9gMfEYolAbAZNfz70jmMy7MPc2SCsG88v6aNG55Zn/554ZhM7vrGZNwW0QEmHNrWtfRzzv0fEfzs+m7Q8Phlcxgvru/CIUpRFP67qoWfPrcxve3I6izuPGMyLrPuS44UDhXd/ig/fnIt79b2pLfdcfokzppZOIxRCcLu+6Shj/P+sYJ4MvXgnecw8MglsynLFIkbhOGzvSvAef9YQbs3AoBWLfHot2czq1QkphWEA6nHH+W6p9byzjZRzxntFEXh6dWt3PzshvS2xVVZ/PaMSaKtSxAEQRjRFEXhmc/dw5ZUZXGnuIftFU8wyk+f38CyDZ3pbT8/cRwXzC1BpRKT4AVBGOz5NW1c//SO/vIFlRnc9Y0pZFjF9Xdv9Aai3Pj0et7Y3JXe9utTJnDu7KI9TtwrCCOFJxjjp89t4OUNHeltPz1hHBfOE3ULQfiMPxLnzmWbeXJlS3rbj44aw5ULytFqVMMYmXAo+nB7L9966GOScqrfuMRt4uGLZlEsJswLh5jeQJTrn17P8s3d6W23njKBb4q6tbCPfdzQx/liPI5wkIskImhkFSopVY6Dcjz9mqRSYTCZiQQCqQ36gbIdDYgkJIIgCMKItT9bUzIURXkSkAEURUkAyf34fqNaIBInENlRMekNRPnFC5swadUsnZDD0eOy2d4dYEObbxijFIShNrR60wlIABQFfvHCRnr80V3uH0/KeIKxdIOdIAg79Aai/PJ/G8mw6Dlpch6HVbjZ3OFjw05/YwdCMJrAF45/9Y7Cbosmkqxt8QyamOsLJ3hxfXv652A0gV9878IIIssKnmCMeEL+yn2b+0Lc+lINWrXEorFZnDApl9XN/dR0iLqrcOhRFAVPKEY0kXo8fnJlM8FYEqdJy4mTcplW5OTFdW3DHKUg7D9NfSH+/XETp0zJZ2J+KtnO6zVdbNnLa35i4Bkxkfzq+40wMmxu9/FubQ/ZttRzy9xyN7e9tIkWT2jIvsFoHH9E1HGFkSMcS3L3G9uQkFhSncVxE3PwhxN8VNf7pcd5QzHCMdE0Luw/H9X10u6NUOA0cvKUPKYUOvjzm7VE4jvKnTccIxRLDGOUgnDoq+nw8c62HmYUOzl5Sh4FTiO3vriJ5r5UPSeWSOIJxpBF/8Yhr7kvxG9eqiHXbuDkKXnMKXOxfEsXWzr8Q9oFBEEQBGEkaeoLcdvn7mFvbulikxhrtFe2dAZYtqGTaUUOTp6SR7HbxO3LNtPUN7QdTBCE0a25L8StL9ak23ZmFDt5e1sPm0V/+V7b0unnjc1dTB94Ri90GfnNSzXiGiwcFPzhOMHo0LbcLZ1+Xt7Qka5blLhN3PnKZhr7gsMQpSCMTNu6Ajy5soWJ+XZOmZJPeaaFP72xjS2dfjHuXNgr3vCu+3k/S3hjN6bGey0Yk0mzJ8yqJs8wRCkI+9eWDj8fbu/lmPHZHDM+B5NOzW0v1aT7v/aGmBMkfF44luTu17di1ms4YVIuC8dm0u2PsqKub7hDE4TdFpfjJJQEmqSEWkqNZw0kY4P20VssRIMDSUh01tS/scCBDFMQBEEQ9ohmP547KEmSG1AAJEmaA3zpLGhJkgqB/wNySCUvuV9RlLslSXIBTwAlQAPwDUVRxBM6EIgmWN3oYVO7j4SsMCHPzowSJ5F4krFZFk6bXkBTXwgFOG1aPhLiIU0YWfyRoZ0l3YEokZ0GX27vDlDb6cei1/L06hZWN/Vz1aIKtBoVWrVEda6NYrfI+icIkYTM/MoMDBo1b2zuIttm4Objx2HQqHh3azf94RhlmRbGZlvRqPc8D5ksK2zu8LG9O4jNqGFcrp3MnVZcicSTvF/bw5/e2EYwluSKBWUcWZ2NwyRWtP861jb3c8/yWup7A/xgSSXBWBLPwAS2Nk+YSDzBqqZ+1rV4ScoK4/NsTCl0iO9dGFaNvQFWN/XT1BfCZdIxtcjJ+IGJ5rsSiSfJsRv4zsJyvOHUZOMlVVloJbEChXBwS8oKW3a6d+bajTy/po3n1rYyLsfGdceMoSLLwk9PGIdWrcIXifP2li6K3WbiSRntXtyvBWGk8wRjnDgpH5UKqnKsXLmgnD+/uY3ALgbSfZWtnX7++X4Dq5s8XHpEKRISNqOW6lwbeQ7jfohe2Bf80QRXLCijKsdGU1+IyYV2LphTnF7FAiAUS/DettSzhVmv5ooFFfgjCawGDdW5NnLshmH8BMJoFk0k0WtV3H32FJr7QsSSCsdNzP3CxHsd3gjPr23l0RVNHDcxhymFqXbbEreZqhwreq36AH8C4VDV4Yvw7cNLMevUWA1aqnKs5DuMeEJRdGo1q5v62dzhQ69RMbnQwdQip6hrCsJ+EIkluffcabR5w4RiSY6ozKTFE6KxN4gnFOPv79SxqrmfYyfkcO7sYkrEaoiHrHBc5uL5JZRlWGj2hJlc4OD8OSUEIgn+8NpW6nuDzC51o9OoKM+0UJVjxazfn932giAIgrB7IvFk+h7WMnAPu2BOCR2+CC9vaGdqoYMcu2h3213hWJK7z55MfyhBfyjG/IoM+kMxwnGRjEwQhMEi8STfWVROpkVPa3+YqUUOLphXTCQuErDvrXAsyZ/OnoInFKM/FOfwygx6AzHxnQojmjccY3VTPxvbfKhVEpPy7UwrdmDQptoMwrEkfzxrMt7wjrqFNyTKtSDsLBhNcNcZkwjHZXqDUeaWu4jGZbZ1+dnS4WdKoYPyLMtwhymMQOF4gi3tfpr6QmTZDOQ7DLy5uZt/ftBApkXP1UdWMrvUlR57HYknmZhvZ265m1c3deI06fjLOVMIxWT+t66NyiwrY3Osw/ypBOHr2drpZ1tngIQs87szJ/PX5bXICly5sJz3a3uI7MYChbs8b4ePtS1eOn0RbEYt079ifLEwOkQSScbl2fjm7CIae0PoNCrOnllIS18IbyiGXcyLEA4CkUQEAHUC1FJqLGSYBLFkDJ06VYYNZguRgD91gH6gXhr1H/BYBUEQBGF37c/RTD8CngfKJUl6H8gEzviKYxLANYqirJIkyQp8KknSa8CFwBuKotwuSdL1wPXAT/Zf6AePdS393PpiDZs7UxUOg1bFvedNZ35FBufMKeamZ9bT6YsC4Dbr+ONZk4czXEEYIs9hQK2SBmUxvWheCRkWPa2eMC2eEJf+30rOn1vMc2vaaPGEueboMfxm2Wa6/amynWHR8cgls6nKtQ3XxxCEESHTrMOgUfPg+w0ANPaGKHAYeX97D2/UdAGgVkncf/50llRn7/H5P9jew4UPfUJi4O/18IoMfveNSWTbUgPNVjd5uOThlen9r/3POv509hROmpL/NT/Z6LW9K8C5f19BIJrg+qVV3PbyZvqCqWyo2TY9d505mbXNXq57ah0tnjAAdqOWu8+ewsKxWcMZujCK+cNx3tnaw8+e38hnt/cjKjP42YnjKM/adcdansPID5ZU8lFdL4+saEpv/9FRY5hWIibHCQevD7b3cNFO98555W5On1ZAttXAK5s6mVHi5G/v1NETSF3bM616LphbzA1Pr6cy28q0Iudwhi8I+5w3HOPFde009IV4bVMnAJIEvzxpPJWZezb4oscf5arHVtHcF+b20ydy49PrCQ6sPjMm28ID58+gWEzqHJHGZlsJx5Jc99Q6YsnUgIQphQ5+edL49D6fNnq47F+fYtar+fUpE7jikU+JJnbse883p5LvNA1L/MLo5jDpuGheKb94YSPbu1MrC5p1au4+Z+qQfRVF4d8fN/HQBw18f3EF61q93PvWp+nX/3jWFE6ZKp6XhX1jUVUmT3zcjEWv4dcv1qS3nzu7iGMn5PC9x1enJ7lVZFm447SJTC9xDVe4gnDIyrTqueW5jaxvTa3JoNeouPWUCby9pYvlW3tYODaTlnVhHni3nq2dAe755lQsBu0wRy3sD7l2PYVOM9c+tS7d/zWnzMXVSyrZ0umnwGni5mc3pPe/5YRqvjW3ZK+ShwuCIAjCvpRrN1DkMnPdU+vS7dqzSl1ctaicSx5eye/OmMyJk/NQqaRhjvTg4DJr+c+nzby0viO97YZjq3CbxaQJQRAGy7LqMGjV/Pi/61AG+tiPqs7i+0sqhzewg1iGRceTK5t5ZeOO/qibjqvGbhKJoYWRa01zP1f/ew3ecByAfIeRu74xiTllGQBk2fQ8vaqFF9a1p4+5/tixZFtF3UIQPpNt1fO/de088UlzetvVSyrRa1X85L/r+cGRlVw4r0Qs8CYMIssKz6xq48Zn1qe3nTe7CINWzYmTc4knFG55dj13fWMKUwfGcmVY9GRY9dz9xjYAFszL5M9vbmdTuw9I9Q888u3ZzBT9ccJBamVDH+f9Y0U62VlVjpV55W4efL+BzR1+fnHiOPL2YgGhdm+YD+v6+P1rW9N1ngKnkfvPn864PJGIZDRzmnTMLHHxoyfXEhoYA1ieaeFnJ1bzv3XtnDuneJgjFISvtnMSEpWUun7GkfDFfGQYU891BouVSDCQOkA3kIQkFjjgsQqCIAjC7tpvI5kURVkFLADmAZcD4xVFWfcVx7QPHIeiKH6gBsgHTgYeHtjtYeCU/RT2QWdLh5/NnX6qc63MLXcjIXH/29tJJGQ+qO1JJyAB6A3GeHGnjm1BGAm8oTg3HFtFRZaFeWUubjt1Ar5IgnvfquXTxj42t3u5ekklOTYDLZ4wuXYDbf3hdAISgJ5AjOfWtA3jpxCEkaE3GBvUeQJQkmFOJyABSMoKtzy7gW5/ZI/O7QnG+NnzG9FrVMwrdzMm28K7tT2sa/Gm9/lsIunOHny/nohYyWmvbe30E4gmKHGb2NblTycgAej0RVnV5GF9a39qJZxCB7NKXQSjCZ5f00Y0nhjGyIXRrKkvxD3Lt1OaYeGwCjc2g4Z3tvWwpfOLG8jMeg2yovDox02Dtv/pjW1s7RTZfYWDU18wxs+f3wjAzBInUwsdfFjXS2t/mCybnh8dWcnWrkA6AQlAtz9Ke3+EbJuBD7f3Iu+UqE8QDgUNPSGsRu2geqOiwF2vbUWn3bMmqvreIG39Ee44fSJPr24lGEsyLtfG3HI3TX0hPqrv3dfhC/uIWgX3v1OXTkACqUGVO9/z/7e2DbNOze/PnMzDHzSmE5AUuUxY9Bpq2kX9QBg+m9q86QQkAMFYkn992IAvEh+0X4cvwgtrW/n+4gpiSXlQ25XTpOXF9W2094cPWNzCoc2s0+Aw6XjgnbpB2x9d0URdd5BwPMmYbAvzyt2094fZ0OYbpkgF4dBW2xVIJyABiCZk/vlhA5XZNmq7AuTZDSyozMBp0hKOJ+naqZ9DOLR0B6L8efm2QQn4P6rro8UT5tgJOTz4fj0AOTYD8ysyeOj9eup7gl90OkEQBEE4YLoDUe5ZXptOQALwcX0fHb4oWrWKv7xVS4snNIwRHlxa+yODEpAA3LO8lqY+8R0KgjBYa3+EP72xLZ2ABOC1mq70YjTCnmvxhNMJSCDVH/XnN2tp6duz8VKCcKBE4wleWNNGMJpgVqmLqYUO2rxhPqrrS+/T1h8elIAE4C9vbqelX5RrQfhMuzcyZAztfW9vx2XWkWnRc+9b29neJSZ5CoM19gb55f82Dtr2UX0f04sdPPheAw++X8+iqmwae3c8y/XtNF5bJYHDpE0nIIFU/8Cdy7YQjIpxvMLBJxhLcNerW9IJSAA2d/ixGbWoBxLTvrW1e68S7bf3h/m4vg+TTs38igyyrHpaPGGWbeigNyD6zUazvkCUR1c0pROQAGzvDrC5w88D79XT1Cv60YSR77MkJKq4gmbgehmXwBfdUUfQmy1EggPlWT+QhCQq6qeCIAjCyLXPk5BIknTaZ/8BJwFjgTHAiQPbdvc8JcBUYAWQrShKO6QSlQBZ+zrug1U4luTm46spcZuJJ2QuO6KMAqeJhKwMauj4TF1PEEURE9mEkUMBfvvKFqYVOThhch43PrOBZ1a3oteoebe2G7Vaza9fqklPvM8eSEbyeeta+g9s4IIwAmnVKqyfa9DbeWLfZ9q8EYLRPUsM4ovEGJ9r46L5pUQTMpVZVm46vpr+4I5JVs5drNjkNutRS2IlrL0VH/j95dgNuxyMtmlg0tBNx1VjH2jcvfbosUgSgwa4C8KBlFRkLjyshPF5NsIxmfPmFHP6tHz84fgXHrO+pZ9oQubz1dSErOCPiI444eAUiiWwG7Vce8xYNGoVNqOWm46rxqRT89L6DrLtBlr6htZrWzwhsm0GApEE61r7D3zggrAfBWOJdP1mZ/2h+KBEk7tDr1Hx/SUVfFjXizcU45YTqilym4gnZK5YUD5oooQwskTiMo19QzuGfTvd8zOsem4/fRKrmjw09gbRqiWuOXoMs8tSSfc2tnnFhBdh2HT4hl6vGntDxBODn7N1ahXfXVTJna9sGTRI4rw5xZw+vYAef4z7361jS4dIBiHsG0admmBsaHtPIJrgpuOrGZNtJRKXufCwUgx7mPxLEITd0xeKDdnW1BfCYdJww7FVbGzz4Y8muWJBOfPK3Nzx8mY+quslsYs6snBwiyfkXfZlReLJdDKz7y6q4MjqLALRBAvHZqdX/BMEQRCE4RRPKDTvok8yHEtyyfxSqnOsu2zfE3YttIvJZr5IglhCfIeCIAwWTch4QkOfCT6f+FjYfbtqJ/OG4+I+JoxYsgIycO3RY1GrJOwD4wt2HmvjDw+tWwSiCcK7KO+CMFr5djHO7LMFL46flMv5c4sJiUX1hM/xRxPpZAsWfao9f1yujQfebeCCucUcOyGXf7xXj2qn7jWtWoXNoAFAr1HvcoxjXXdAJCERDkqhaJLa7l2M6wnHMWrVAGRa9Xt1boNWzbRiB4urUv0jx4zP4YoFZdR2B9iwU6J/YfSJywoNu0g00uWLcs7MAvpFP5pwEAgnU/3DUiyJwZCaW5WQJHyxHWPDDGYzkcDAAmw6a+rfmEhCIgiCIIxcmv1wzhMH/s0C5gFvDvy8CHgLePqrTiBJkgX4L/ADRVF80m5OXpYk6TLgMoCioqI9CvpgNTbHyvX/Xc+R47Ioy7TwwfYeDivPIBRLsLgqizc2dw3af+n4HHb3+9xTvYEom9p89ASilGSYqc61YRh4yBS+3Ggsu5+ZkG8nx25Aq1bxt4GVOi+YW8I/P2hgTLaFbn8nigIb2nwcXpnBJw19XHZEGe9u6xl0nlOn5e/y/O3eMJvafPgjCSqzLVTn2FCpREKEfWk0l9+RJhSPc8HcYu58ZUt6m8OoxWbUEIgk+Gwe5o3HVVHb5WdNcz8VWRaqc23pzMRfRKuSyHUa+cubteQ7jEwpdOANxZmUb0/vs7gqi7+9XUdgoNFcrZK49IgytJqRObFlpJfdxp4Anf4oY7ItbGj1ccHcYj5p8AzaZ3aZm/JMMzc8vZ6lE3LRqiW2dwdYODaTlzd0UOgyMy7PhkW/P6p8wnAZ6WU3nlB4dnUrh1VkkGs3sGxDBzNLXRS7jEP27fRFWN/ST2NviIpsC9W5Vmra/enXs6x6StzmAxm+sJ+N9PK7L2Va9Zw3p5iNbT4mF9h5vaaLW1+q4U9nTwXgqU9bOGVKPivqe9k5V8JR47IJx5OoJIktHX5K3Rbspj1fNUDYt0ZT2d1fZFlh+eYuxmRb0agkZEXhW/NKcBi1aNUqAtE96ygsy7RQ3xPkwfcauG7pWG58Zj0ZFj1LJ+QQiiVFIrydjLTym0zKLB2fw7Nr2si06Dl/bjEqCZwmLa2eEPlOE0ePz+Hdrd28ubmbhWOzsBu1/PvjZnqDUY6bmEssqfDMqla+fXgZRp1oezpUjbSyCxCNJ5lS6Biy/buLylnf6sMX6aXUbWZsjg2XWUc4niSakNGoJLRqiYn5DnoDUV7Z2MHiqixMOg3/+qiRKxaUU+A0HfgPJOwXw1F2feE4E/NsXH9sFcFoAr1GzX8+babDG2FygZ3vPraa2WUu5pa7aewNopIUFEXZb30FwsFrJF57DxaJZCpx8/cWV6DXqmnvD/PoiiaOGZdDocvIj59ajzccJ9Oqp8MXYUKejfWt/XzzgY948vK5zChxDfdHOKiNtLKrUatYMtBPe+6sIjJtBiQUSjLM+MNxzppRwFtbutCqVcwrd+OLJPjLm7X84ewpOE1Dk30Lh7aRVn4FYXeJsntoiiVkbjyuGn8kgawo/OO9esLxJEUuE69t6mByoQOz7uDudzyQZTffaeTESblUZluJJmRMOjWb2rw4jKLNX9g74tp76LIbNEwtdNAXinHu7GIC0TgalYrSDMtwh7ZPDEfZLXAYObI6iymFDmQlNYapvjuA3Xhw38eEA+9AlV+VJDG71MXf3q7jqHHZJGSFh96v58bjqtP75DoMGLQqzppZhMusIynLOI06nCZRroWhRmu9ocBh4PqlVQRiCfQaFds6/axr8eI262jtDxGKJTllSt5whyl8ieEou/kOIyUZJnr9MW4/fSK1XQEqsszMLXfT3h9hUoGNdS0eGnp2TI4PxeKcPauQX/6vhnA8iXsXizieMjWfDMveJWoQDk4H+7W30xdhU5sPbzjGzcdX8/vXtg5aGDvDoicQTaBTqzh75t59PptRy5Z2P5k2A2OyrTyzuoUphU5Om5bPsg3tLBgr1isfDiOh7OrUEsdPyOW+d+ow6dR8Y3oBToset1mLRiVh0Y3M+SiCsLNIIgKAKiqjH0hCEv98EhKLlWgwkBqzox9o94n6h5xLEARBEEaKfd7yqCjKRQCSJP0PGKcoSvvAz7nAPV91vCRJWlIJSB5VFOWzhCWdkiTlKorSPnCerl0dqyjK/cD9ADNmzBgVS956QnEuObyUhz9ooMMXYdHYLHQaFZFEkm5/hMuPKOOfHzSgKPDN2UVY9IMnZvj7wnTU+fD1RMgsspBTake3Fx0t/aEYv35xE8+sbktv+92ZkzljesHX/oyjwWgsu58pdJl46MKZdPujvF7TCYBJp+bM6lxm2czEvDHOWJzBM43d5DqNXH5EORkWbbpsA5w3u4gZxUMH6LZ5wlz56KesbUllRdWqJf550SwOq8g4YJ9vNBjN5XekCUaTvLetm58sHUtzX5hpOTZKVVr+OrWCkF5ipT9IRpaJZRs6WNXUD4BGJfHPi2YyvzLzS88diCZ59KMmjqzOoiTDzL8/biYhy8STMqWZZrKsBsbn2Xnyirl8VNdLJJZkTrmbyQWO/f/B99JIL7tNnjBvb+niiDGZ6DVqsqw6LpxXwmMrmlCp4MzphSSSMt2+KMdPyuPxFU1MyLdRlmnhe4+vSZ/nhuOquPiwUrRq0fh2qBjpZdcTjHHEmEweX9FELClzxvQCYgkZvU5NT2uAju39JBMKrmILv36/llc2par2apXEn86ewj1v1rKpw09VjoXvLKwg2yY64g4lI7387kuhaILG3hD/WdlMNCFzytR8phU5Wb65iwumF3B0jotkR5THj53EG91eHl7dzNVLKukLxvjD69vS59neHeAHS8ZgEgmlhtVoKrv7i6wo1LT7CMUS3HHGJJr7Qjy/po26gUEaeo2KR789e8jky/6uEB3bvYT9MbLL7GQVW9Fo1UgodPoi+CNxunxRjqjMpNBl4vEVTSQVhbNmFtHQE6DkEBmg+3WMtPLbF44ztchJKJbg+PG5qPvjqHpjSKEI73jamTclB28oTiiWpNkT4qhx2WRYdMQSMtcdU8W/Pmrk6Z5WZpW6OKzCzbRdtAcIh4aRVnYB4kmZ+p4g1x49hvveriMcT3LTsVW8s6WbBVkOzAGZlvoQmjEJnAVmPKEYAP/+pJmfLK0ilpC5+41t3HR8NS+ua+ee5bVUZllYXJUlkpAcQg5k2fV2h+io85HsCaOyqnljQwefNPejVknccnw1eQ4j0USS7y+p5Nk1rbyysZPqXCszSpx0eCPkOoYmixRGt5F47T1YvLOtm6sfX81P5lXg9ilUqYyccdYMWqQ43nACbzjO3DI300uc/OvDRh79qIkzZxRwzqwiXqvpFElIvqaRVnZ94QRLqrKYXerivdpuplvNGHwJgjVe5pTYKck04zTpqe8N8rd36nCZU22/jb0BnCZRFkabkVZ+BWF3ibJ76NnS4ePihz+hJ5B6lnWYtFxz1BiKrAbcAZmLXG4sBgNRfwwO4meJA1l2YwMrrv/+ta3pbT8/aRyRL1l5PRKK01nvo6c5gD3TSE6ZDYvTsD/DFA4i4tp76PJGEvxoYQWWgEx7ow/JomFtOMzvXtnCn745lRzbwX0dGI6yG00kWFqeicmfBF8cxa6lvCyTSEz86Qh75kCVX1lRaO+PMKfMzT8/aECnVnHrsePI9st8+nIDrnwLGq3MvedO59aXaqjtSq2UrdeouPe8aYzJsX/FOwijzWisNyiKwqrmfm5ftpnJeTa+PS6f8UYbF87OQvYnyDDrqCiz4ovs2QIpwoE1HGXXbdHzl3Omsb6ln+v/ux7/wEKM2TY935xVxP/WtfPjY6roH+j7BQjHkizf3MX1S6to8YQwaFXceFwVf1leSyCS4KTJeXxrbrFYOHWUOZivvZ3eCD98cg0fbO8FUuN5f3XyeG57qQaVSuKqRZVIKFx0WAmHV2YytcixV+/T7g3T7ovwn1UtXDS9iIeXTqS7JUBmRMJVLhKQDJeRUHaD0STFbiOPnDYFuTtKXFHoTCrcvmwL4XiS+86dTlmWbThCE4Td9lkSEimS3JGEBAYnITFbkJNJ4tEIOt3A2NZY4ECHKgiCIAi7bX/OYir5LAHJgE5gzJcdIKWW3fsHUKMoyu93eul54FvA7QP/PrePYz1govEkapWEZh9NBLbo1Px42WaUgWr+m5u7UElwypQ8TDoNz61t5rIjylBJ8NL6DmYUO9PHBr1RXv3HRjq276jMzD+zkkmLC/Z4BcTNHX6eWd1GWYaZ0kwzG1t9/OL5jcwudVHoEgPohS9XlmnBadZy+rQCHv6ggXn5DupfaGRDfWd6nzOPLuC2ba10+ML8+Zxp/PODRi4+rBSAVzd1MiHfTkmGedB517b2pxOQABi1al7Z0MH4fBsOo1hJTjj0ZJh1jM2xcceyLcwucXJ4QstHb25Pvz6+2kXBJDu3vbQ5vc1q0PDy+g4m5tuxf8EKi7KsoNeqyLXrmVTgGDRI6m/v1FGaYebsWamst+NybYzLFQ08+4I/kmB+RSa3L9uMXqPCZtDiMGl54ILpfFjXyysbO7n1lAnU9QS5/506AOaUZ/D0qhYuPqyE/nCc1zZ28rtXtrB4bBaV2dZh/kTCaOEJx9NlEuCThj4unleCIyrxzD2fEoukBlaq1BKnfaMMfzSJAnxS38fvXt3KRfOK6Q/Hqe0KYjNqxcrcwkHr06Z+7n5jRzKRJz5p5tLDy3AYNFR0J1n76I7XJox38dRFs2kORXh+TRvzKzL4uL6PWFLm/nfqOWFSHpNGcGIvQdgdGrWKC+eV8u3/W8myDR1csbAinYBkTLaFAqeJf7xfz/g8O0ZdKoGqtyvE83evwd8bSZ9n6eUTKJ+aBUisbOjjksNLCcUTjM+zDUrg8/AHDVTnWkUSkhHIpFXzfm0PFVkW3N4ka/9Tn37NkmEkVOTArFPz/No2rlhQzt1vbOPG46o5Z3YhdyzbTHRg8sbH9X389PmNPHrJ7C98lhGEfU2nUZFh1XHv8u2cP6cYg06F06LjrPIcNjyyjc6B8tm8vI1jvjeJD+t6OG92EY+saOKPr2/j5yeN49Sp+fzrw0YaBlYM2tYV4OrH1/DC9+dT4jZ/2dsLwiC+3ggv/XUdfe07Vp/60ZnlvJBn4/VNnfz9vXr+fPYUPOE4D7xbR7s3dT+tafdz9+vbmFvmJpeDd+KgIIwkvYEoP31uI79cOJbeF5qpC6UGKKtUEvMvHYdfTnXiHV6ZwZ2vbEkf9+iKJi6cV4LTqB2WuIX9x2XW8HGDh+pcK5eMLWDjo9uQB8pBi0nDvEvHsaw/zLINHQB0+6P89pUtjM+bOZxhC4IgCKPcS+s76AnEsBu1TCty0uWP4AnGKOlJ8u4rzen98sY4yPz2BEw20R7zVaIJmRfWtbN4bCYT8u28urGT372ylUcumbXL/WVZYcPbrax4bkc/W0G1k6MuHo/JKr5vQTiUZVl0BFb38cHLjeltZRU2fPlGNrZ6D/okJMPBrtHgWe+lfm1velvh7Cz0S8RYVmFkUkmABI993ATAkRWZSOv6WbGqO71P1eF5eCpM1HYFmFbkwGbQ8nFDH39dXsvsUjdmsbCJMMo19ob43StbKcswc93EYtY8UZt+zZZpYNKibO79oJE/nT1l+IIURpRIPIlWrUKtkhiXa+PhDxrSCUiK3SYqsizICtT3BLlz2WZ+c9rE9LEus57JRU5uX7YZl1lHJJ7EZdLxt/Omk2s3kuswoNeov+itBWHE2dDmTScg+Wwc1+MfN3HXmZP5uMHD39+tIxJPUuI2c9LkvL0a1xuMJXjkw0Z0GhUnjs9hSkDFRw+n+s22A+UzsoiOyUBvEv1mo5HDpKVaa+DDf9QgJ1N9ajqDmj+cNZ57Vjfy+9e2MrPUhU30qwojWCQ5MM41mtiRhESS8EV3zNvVm1PjWSMBPzpXBqg0EOo74LEKgiAIwu7any2Ob0mS9ArwOKAAZwPLv+KYw4DzgfWSJK0Z2HYjqeQjT0qSdAnQBJy5XyLejzyhGG9t7uLhDxvIshr49uGlzCh2fe3spn2hGAsqM1k6MQejVk04muAvy7eTVGBMjpVvzCjEZlDjNOupyrEOGsje2xoYlIAEYMXzdZRMcmPP3LPOFn8kzq9OHo9eo6LLH+XYCTl4QnGCAw0xgvBVnCY9h1W4cZp0eDtC9Nb7B73euLyNH32jjIAWXq/pYHt3kHvf3k5lloVTpubR6YuyusnDmGwrZr2GRFKmxx9NH3/ylDzy7Ebere3m5mc2cMn8UqYWOWnoCbK5w4dBq2Zcro0s0WkrHMQybUZmlTqpzDYz0WbhvXvWD3q9paaPovnZHD8xlzE5VmwGDU6TlidWtvCrF2u4cF4JE/IHr4qwsc3Lvz5sZH2rlxMn5zGpwMbdZ08hISss39zF/9a18+TKZs6YXrDPEmwJKdW5Vp78pJnrl1bxWk0nGpXEBXOK6fRFMOs03HH6RIpcJrZ2+rnyiDKqcq24LHp6A1E+qutjXrmbu8+ZQm1nAF9E3I+FA2dFfS83HldFgdOIVq3ipfUd/G99OzmuWDoBCYCcVEjUeDlteh6hhMzJk/N4/OMmEjK8s7WHb88vZVapWPlVOHh1+SL8+pQJhKIJArEE8YTCR/U93L6kmjf/u27Qvs0b+7BPc/OXlQ0cPT6biiwL584u4ulVLbxW04UvLFZhEQ4Nc8vd3H/+dB7/uJkObwSDVsVPllZh0KrxBGO4LTqa+oJk2wwkkgqeRv+gBCQAHzy9nYhDQ0WBnTNnFPK7V7ZyywnVPLaiiSsXlKPVSOjVKsx6LT3+KLKsiJVlRpiyLAvTi51MzbZS8/C2Qa8FesK0N/hY1u/jygXlPLGyiR8eOYZMi55YQiaakBmbbeX4SbnEkjJGrZpOX4RoUibDrBe/a2G/02nUlGdYuOiwElxmLTajjve29TCjSyE5kIAEIB5N0rSmh1OnFPDEymauOXoM0YSMLCtMK3Lw709Sk7fOmllIdY4Fp1lPfzAGIgmJsAd6mv2DEpAA1Cxr4uhzK5hR5KCmw49Zr6EvFKfdG2HhmAxOmJyHVq3CG4rhDYk6piDsK6FYkjOnF5AVVGgL7WiHk2WFbW+3kXN8PqdOzUsnoNqZXqOiLNPC65s6qcy2UOw2E4wmCEQTuM060eZ6kCpwmlk0JoNsq4G2F5vTCUgAoqEEvno/Kxv6WDohh+pcGza9GrdFjyzLX3JWQRAEQdi/tnT4OGN6AW6zDrVKYsHYDCbbzay4d9Og/dq29tPbFsBkE304XyUST/DQhTNZtqGd12u6OHpCNpVZFmKJXd/zvd1hPnmxftC2lhoPfW1BTGNFEhJBOJQZY7DxteZB27prfZy1aByNYvzlXtGFZNp3SkAC0PxxF2Pm5AxTRILw5SRJ4r1t3Vy9pJIphXZsIYWP7h9cD9v8Xhuzx4/jr9+cSqc/SiQuc8aMAj6o7SUUS4gkJMKoF4gm+O6icmbnOdj08NZBr/m6IxxmMJBr1xNPKl9wBmG0aO8Ps2xjB0992sK4XBvfmlfCmGwLWzr9qFUS319SSXNfiLruAMVuEz87cTyxhJwe2+I067CbdEwttPP9JRW8taUbl0nHcRNzcJq0OE1akYBEOOj0h+IYtCp+cOQYNrR6qesOctbMAtQqicosC9ccPYbN7T7KMi0U7eUi1fXdQZxmPdu6+rhuTikb/zn4Wr19ZRdTFheSU2b/gjMIhzKTVk3rx13pBCQAsUgSbUeEQpeJKYUOApG4SEIijGjhRHjgf+LodRpIDiQhie2Yu2u0pBYWjgQC2DKywJwJwa7hCFcQBEEQdst+a3FUFOUqSZJOAw4f2HS/oijPfMUx7wFfNFtgyb6M70B7ZUMHD73fwJLqLJKywvX/XccfzprK5ELH1zpvaYaZU6fn0dAdAgl0ahW/OmU8Zp2aaUUOtGoVf31rG/EETCiwUeDc8cCXiA3t1I5HkyQTe964VuQysanNx+YOP+VZFlbU9ZHnMOAwiwq+sPu2dgS49aUa7j5i7JDXEnGZKfl2NgVCGLWpS1eB08hFh5XQF4wTiCV4r7aH5r4g4/Ls/PP9BorcpvR+TpOOe9/eDsCGVh9v1HTx0IUzuPyRVXjDcYxaNZcfUcri6mxK3GbxcCoctIpcJlY39+OISci7uJ7rFAlZkfEEY8STMss3d3H0uGxufbGG1zZ18sx35lGWmcqu2dAb5MpHVjG/IoNFVVmsafbS0Buk2x+jNxjjonkluM064rKCWkz22+dKMyzccFwVb9R0smhMJnMr3Gxo9fHqxg6QwG7UEogkqOsOMD7fjkWv5YF3tjMuz87CsZm8tqmTtS39XHJYKS6T6GQWDgxFUThhUh7rW7wA3LO8ljllbqpzrAS2h4fsH/bGiCVk7ntrOydPyeeyw8vIsulYUpVJcYblQIcvCPtEIJLg08Y+vOE4m9p8VOfa8IXjPLumjZ+dOI5wNDFo8tFndEiMzbFy71vbOXZCDiVuE6dMzWdjm3evO+4EYaQx6zUcPT6Hwysz+GB7LzqNhEYlcffrW1lSnU0onqSuO0Cm1cDf363j7lmVQ84RDcZp7Q0TVaVWkjdq1XxU18sJk/O48Zn15NoNfHNmEZva/eQ5DSzb0M6MEpdIODmCOE06jp+YTV9PhEhg6AR4k1qNVqPivre3c8sJ43hhXRsFTiPj8qwUuUwcMyGbP7y+lXxHqk3g969tpSrXRlmGmXG5NjRqFfkOI1qNmLAr7B/TihxE4kk6fVGufGQVJ03KJeEfem/3eSLMXJiL1ahl2YYOyjLNTC50EE/K6NQqzp9bjNOopaYjQIe3m/kVmUTiMjNLXbR7wySSCnkOAzoxQE34AvFYcsi2aCiBSoG6niASqcFi+Q4jJ0/OZWFVFqsaPWRa9bjNehRFDLIVhH3FrFdjNWjwd0aHvBYPxHl9QydHj8uhuS9Ent3AcZNy0WvU2AxqXljbzt/eSa10X+I2ceupE7n7jW1s6fBzwqRcvn14KaWijeSgo1GrKHCZeOyDRmb6h9Z5I/4Y35xVyMcNHmRZQVZS7fHRuIxZr2V2mXsYohYEQRBGuzNnFPJGTRfheJK1zf0ATDpizKCkm58JiaSGu6XIZebqJ9Ywt8zN4uosatr91HUH+ckxQ8fEACTjyV328SeiQ5//BEE4tChJZZfXW48vSn6pdRgiOvhpdtX0pYD+C4cnC8Lw0qhUfGdhOb2BGKua+pmg1Q/dSQGzWs1/P22mJMOMUafm3yuaOH9uCRmWXewvCKNMtk2PSaumrTdEJDj0maXXG+XKBRVkWkSCv9EsnpR54N06tncHWVSVRX8wxuWPrORfF8/mrBmFbGjz8vyaVrZ3B7n5+Gp+9b9NjMm2MrPURXcgQiieYHtXEIdJh16jYlaJk/G5NhKywvbuAL99cCs2g4YfHzOWBWMz03MeBGGkK8+ycNG8Uh54p47eYIxjJ+Swsc1LiyeCVi3xfm0P311UQVWOFfde1DuCsQR/emMbr27qBKC9L5xa6vxzErvoAxdGB0VWCHtjQ7b7+6NMqrTzm5c2U+Qy0ReKD1l0VxBGikgiteCeEo6hd+kgBCqNflASEoMl1fcfCQRSGyxZEBBJSARBEISRa78+1SqK8jTw9P58j4NBfyhGbVeASYV2/v5uPSoVnDWziMa+4NdOQmLQqogMJBOJJxXUkoInGCcUS9Dpi/L3d+s4rDyTVU0efOEE61u9lLjNWI1anDkmtHo18Z06q8umZmJ17/nEnL5QDJtRS7MnxMsbOihymbhwXgltnjA5NuPX+ozC8OkPxfiwrpeX17VzzIQcNnf4iSWSjMu188bmThZXZdPqCdHpizK7zM2bm7uYWeIkEE2wtcPHoups3t3Ww5gsC2qVxOqmfo4an80n9X1kWPS4LTqWb+lmbLaVpRNyuO+dVJKQHklGZ1ATi+wom9nVTu54ZxvTytycM6uQF9e38625xdR2BXjw/QYseg2XLygjGEty24ubeXNLF9cdM4Ybjq3CF47zfx82ps9V6DJy6fxSHny/AW84TqZFz5ULy3nog3r++EYtUwsd/PrUCYzP2/OH083tPl5a387WrgAnTsplXnkGTrNosBYOjHhC5qO6PqwGLXXhKDmVdjq3edOv680a1A4d1bl2Hnq/nv5wnAWVmSgKLKnO5pWNHWzt9KeTkNR3BTh/bjH/eLeeDl+E6cVO5pS6WDzWyOZOP/e/s51rj6ki32FAkkQn/f4wNsfG2BwbAC+tayOWlLGbtKgliWhSpicQJc9p5JWNnVwwt4hit4V/ftCALMOp0/JJJGVqOvy8uL6da48ZS7FYVVvYz2ravbR6QigoSEhMyHfw0PsNADx83CQaPx7cSGad6OSmN7Zx+rQCNrV7KXKbyFD0PLaikYkFTpxmLS+sbWdcno18p5FgJIHVoGFOqRujWMFFGIFiiSQfbO9hW1eAaCJJkduErECB08Tp0/J5fVMXd548ntoyG511O2W2tmpZ5QmwrqWf64+t4o+vb+U7CyvwhuPcd950isT1WzjIBCIJNrV58YRjJJIyRq2G+t4g3lCcSQV2ogk5Xb/8zyfNXHRYKQ++X0+nL8qsUhdXLsyg0x+lRUkgqSSUnRL35M7M5A/vb+eUKflU5diYX5nJrFIXP3xiLd5wnF+ePIFOb5hMm45YQqauJ4hKJXHUuByROG+EkGWZ2q4gnd4IYw/PY+ObLenXVGqJxkScN2q6uHh+KTq1ij+fMw1ItVF8d1E5P31uI4oC58wqoqbdh82o46/Lt6NSwfcXV5JjN7CivpeZJa70s40g7EtrW/rZ2uknHJc5cXIeJp0a8zgzbO0ftJ+pwsbWriDHjM/hmPE7VtdMygo3HV9NQpbZ1ObDbdHTH4rzm5drsBo03H7qJLoCUfqCUVSSijOm55PvFAnJhKHceWbUGtWgCSoFM1L3yfH5qQSldT1BcmwGzphRwLbOIKUZFvpCMVr7wygSFLpM5InyJQhfW6cvgl6jImesk+3vtg96zTnZTSIZZnt3gAVjM7EbtfzqxRrC8SSnTMnjsIoM1CqJuu4gPzxqDJf+30pCAwMsH13RRIc3wp+/ORWTTrSDHExkWWFrZ4AppU4y7TI9LYFBr+ePc+GX46xp8VLgNPLc6lYmFTqwG7V4w3FW1vcyo1QkIhEEQRAOrJIMM8+taeWyI8qZXuyk0xelORohv9pJa40nvZ/epAGbWNRld7R7I5w/p5iH3m+gtT/MlEIHx0/KpcMXoXAX7f62DCMFVU5aNg/+vp254rlNEA5lvnAMvypJfpWT1s/9/etdenqCQydhCV8tZlJhdRnw90XS25y5JmImkcBcGJkkCWIJBYtBi04TxaOSsbj1BHp3JL115poI62Fcno2HP2wgEElw1LjUGN5uf4QsMVZbGOXa+yOoVBLL6ro5bW4OW99uS7+mUktYs000+iMUOcUCJqNZW3+YLKuejW0+/vJmLVlWPRfPL6WxJ8iR47LRqiUe/7iZKYUOPq7v47w5xWxo9XHP8locRi0/PGoMb9R08vbWHo6flMu8Mje/f20LZ0wvTCcc7/ZHueKRVTx+2WzmlmUM8ycWhN0zLtdGXXcATyjGSZPzOH5iDp80enhsRSPRhMzxk3JZ09zPxL1M/tDcG0onIAHQ2HQ48814WoPpbRanHkm0OY1aaq2a8nk5dNb7Bm3Pm+DCYFFxxcIyWjwhtncH6fZHmFbkxG4S87SEkSWdhCQURZdrghDotBZ80Z2TkKSSzUaC/tQGSzb42oecSxAEQRBGin3eoi5J0nsD//olSfLt9J9fkiTfVx1/KFJLEkadmv+sbCGWlInEZR7+oIHgPlipIpZQUEF68rckScSSSRRFocUTZmqRkztf2cLrNV089WkLv36xhvWtqQnpzhwzJ/9gCoXjXJjsOiYvKWDuaeVodXu+uqaExMMfNLChNfUrbuoL8dtXthAWmSgPas+uaeXKR1aR5zTyixc28fd367EadFz9xBosei1/WV7LXa9tpdBt4ruPrSIQjfPM6lZ+/WIN5VlWvvfYamrafHza6OGW5zZSnmXhR0+s5fWaLrr8UX7y3/Us29DB3W9s47GPmzBoU2Xv7hX15J9aQvZYBya7jqI52Xgqzby8uYtbX6qhzRvhv1fOY3qxk8beIHqNiisWlPPAu3W09Ud4c0tqgnNchnvf3s60Ymf63BPybZw0OZ/1rV42tafK69mzCvntK1to7gsDsLq5n+8/vprewNBVC79MXXeAc/++gj+9WcuyDR1897HVPPVpy1cfKAj7SH1PgJ5gjLte3cpdy7cRnGCjaFYWJpuO7CoHuScV0xCJ8vvXtuIJxVEUeGtrN5809DGj2AmkVlVIkyTueHkzHb7Uw/CnjR5e2tCB3ajFoFFx9qwiYnGZCfmOYfi0o4ssK3jDcW57qYaX1nfwwrp2bn95M0gSVoOWacVOWvsj/OujRiJxmVhS5olPmsm2GdBrVLywrp1/fdhILC7uy8L+1ROIEUsoaNQqeoMxHvko1QERTcjctbqB2eeNwZlrwpZhpPL4Ip7v7KMnEONv79Qxs8SNViVx39vbWViVzZ/f3EZ7f4QZJU5++txG1jb1E4gmeG9bDx/W9Q73RxWEXdra6cMbjhOOJ0nKsKnNh8OkpaEnSInbTIc3TFBWKDuuiIIZmZhsOnLHOck8vpC/rGhge3eQu9/Yxtkzi/CG49z16lb80QRRcf0WDjKfNPTS0BdiU5sffyTBu9t6+Me79eQ5DGzrCvDP9+vpD8Wx6bVMLnRyx7LNdPpSz18f1/fxt7e3s2hsJnevamTGBWPILLFiceopXZzPGm2CmnY/v3l5M2tbUu0boViS9a1efnhkJYFIHItBS6snjEatIp6UCceS1LR7vyxk4QBq8YRo7Y9ww7MbcE52Mf7oQswOPZmlNirOLOPuTxvo8EW4Y9lmVDslO3SYdBS5TUQHJtsrKGRZDTy5splYUqYqx4bboqPFE6atP8JTn7awsU383oV9zx9N8u9PmlEUhVy7gUdWNPFUSw+VJxRjzzLizDEx9pQSHqhp5aZn1tPuDQ86Xq2SOHN6AS6zjvUtXjyhGK9s7EABfnXyBFq9YTyhGM2eMG3esKj7Cl/InW/hxO9PJqfCjtmho/SIXGqdKla3eHlkRRMdvig6jYptXQFMWg1Okzad2MCs16CRoKE3+BXvIgjCV1EUhaa+EHqNmr9vamHCWeW48s1Y3QbKlxbykqef//uoEVlR2NLuY2uXnwsPKyEpK/x3VSsAJW4zVy0uxxOMpf9OP/PG5i5aPeFdvbUwgtV2+cm06rln+Xae7/FQcWwhtgwDjjwTh19URcSqJhxPcvKUfJZv7uCsWYVoVBKRhMy/P2kiFE/S1Bca7o8hCIIgjCLRRBKtSqIq14JWLRFNyLy4vp2EWkVisoPC2QN9zmMd5J9STL96F0vVCkOYdGruXLaF1v5UfW5Ncz9Pr2pBp9n1cD2dQcMR54xhwoJ8TDYdJZPcnHT1FOyZIgmJIBzKXt7QQX88yYQTSyibl5O+3uaeXMxlz6xFlsU1d294FBnb0bnkTnRhsunIm5KB48g8IiIHiTBChaIJYrKMUatic7uPn766BeuSPHInuTHZdJTPymLmN8fQGIjy5zdr8YUTyAq8srGTmg4/8Z2SVQvCaBWXZf71USMvb+xELrdQdWSqH9pdYqXizDJ+8MpGdBo1wXiSpLi/jmrLt3Szor4PgC5/lDuXbUZSSWTbDFgNqQQIR4/LQlZk6rqDLN/ShaKAJxTnp89t5KyZhSydkENlppn7361jTlkGr9d0DXmfD2pFP69w8FCrJMx6DdccPZb6ngCeUJy/v1tPMJYkISs8t6aNSDxJ314mSVSrJD5bO8pp0lLrC6Gel0n+tIzUGMqJLmaeP5btftE3Mlq1eULoC8yMO6kEW4YRZ66JsaeVcsfKerRqFX95s5ZtnQFq2r28UdPFk5+28O7WbvpDInGnMHJEkql5V3Iwgk6bWmREr7fii+0iCYl/IAlJxhjo2QoJUZYFQRCEkWmfN6krijJ/4F+roii2nf6zKopi29fvdzDQ61S8t62HDIuOc2cXce7sIjItej7c/vUbFiQgFJfxhmKMzbaSazfgMuvxRhK4zDqeXd06aP9QLElNx47KS3apnWOvmMhZN87ksNMrcexlx3UiKdPQm3rg+2x+SDiepD8c36vzCcOvwxvhj69vA8CgVdPlj7JwbCYvrE1lhs6y6antCjCl0Mk7W7sBqMqxsaK+jwKnka2dfhKywvzKDF5c345Rq05PyFw6IYcnPmke9H7PrmrlygXlAPgiCb67bAOdEyyEFmZyd28Pt76zDZUEC8dk0heK0ekL86sXa+gJxPjRUWPQaSR84QSRuIxFr0ElQTSepD8UZ32rl3NmFQJw7IRc7lleyycNHuaWp1aRU0iV151t7w7S1BdiTZOHF9e1sbrJQzCa+NLvrKbdR+/nGlb+9MY2NrZ6iSbExFFh/whGE6xqTJVTfySR/ttSFPjZ8q38pb+XivMreNEap02VpN27Y4WPz67Xy7d04TJrKXabqMq1pl/v9EWQJFg6IYdL5pcyqcDOmuZ+FBRK3GaSSQWrYc8TVwl7LplM8npNqiMjvU1WWFHXi92goTrHSjCSwKIfvCLqJw199AwkVHpuTRuPf9LM2mYPgrC/JJMKNR1+ApEE72zt4qhx2Vwyv5RpRU4+ae7nT1tamX/ZONpn2fjxqjpe2rqj863FEyLfZaTEbebmZzcyscCOzajFotdQlmHmyZUtSEC23cBrmzpFZ7Aw4oRiCd6o6ea6/67jL2/W8uB79ZwwKY98h5F5FRnk2Y1ctaiCvmAMr0bBMT+LGZdV8x9dmO8t25iuj/aH4hS6jLy6qZPeYAxvKI5aJX3FuwvCyOENxWjqC7OuuR+TTo1WrebfnzRz7MRcuv0xKrOsjM2188rGDnoCEdQqic9f0j+q62N8np0mT5h/bG5n0jcraJ/l4FfbW3hgZRMAdqOWvmCUVY19bG338e3DSphT5sZl1pFnN5Bl0fGH17Zy9xu13PpSDb0B0UkzUsSTMk+ubOZnJ45DbdbwuipC8TllvJ6pcM/GFo6dmMuxE3JQSdDpj/Detm7Wt3oJRhIUu8xkWvQAlLrNfDwwMAjgkvml/GdlC79/bSufNnpwmLQ09gTpHEgA0dYfZmVDH9u7AqIeIey1xm4/nmCMht4QRS4TKxtTz1ft4RhrNHGSi7MIHu7m/oZOPmjy0OWPsrndz6sb21lR10sgkmorTcgKbrOeKxaWE43LuMw67j13Om39EXoDMR7/uIltnQHsRi29gRheMWhC2AVJklAy9diPyUM+Mofbmtr5uNvHJfNLWTAmkzdrOvmwrocil5FOfxS9VoXbouWNmk7ufn0bnlBcXA8FYR9o6A3xwyfWotOqeLGmkz9uaiE4z03TdBufaGJYbHqyrHre3tpDPAkFDhNTCx38ZOlYrlpcgcOkxWHSUNcTGpKABMCsU5OQxSSSg008qeAJxWj3RtjWH2K9QUY6KodV5Xo+CIfoCMXIseqxGTScOLkAkNBqVPjDccbn2nludSvd/shXvo8gCIIgfF3haJx3tnZz+b8+5Sf/Xce355eT7zTy9sAYkN5AjGuXbeINQ4zMM4ppqjLxvWUb93hBl9GqJxBDVhSOTveXOahp9++y3vcZZ7aZw79RyVk3zeSYb08gq3hUDrUThFGjxx/lj69vIy5DbTjC3T3dNM6w8aw5yndf3oA/khDX3L3U449y7as1bCvRkXlGMe85knznhfWE9sHCgYKwfyipgaxIvLG5iyK3iQ3BEI1lelpn20lOd7E1HKHJs2Ni7mdj/97a0o1KJTLsCEIknmR7dyr5+oft/fy+tQPv4S6UIzJ5pduDNxynoTfIs6vbWN/SP7zBCsMmKSusqO9jfJ6NS+aXctzEHDSq1IJr8aTMmuZ+ZpU4MenUHD0+l+UDC6PutH4KTb0h6roD1HT4uX5pFfPK3WTb9IPe57AKN2Oyrby4LlXexAJUwki2odXLLc+up9MbYV1LP55QnLWfu05KErxX24PFoNn1Sb5CkdvEeXOKAZhc6OD92h4eWNtM9xgT5hMLeFoT4b61TWTbDV/34wgHqURSpice5wef1NI4zYr6yBzeDQfZ1hOkwxdBVuCRFU3MKnHzwfZebn2xhvMf/JgfPrGGtn6xoIMwMoQTqbIoB6NodQNJSLSWwUlIrKn5WuHAQBKSwlmQjMKG/x7YYAVBEARhN+3dE8BukCRpDrBRURT/wM8WYLyiKCv213uOVFqViuMm5uAJxXl1YycalcQZ0wuozLJ8rfMmkjJIoJagPxzn+/9ejaLA+Fwbvzp1PA6TBlkZOohYxeAJbFqdGq3u608in1vmYn5lJsFoAoNWTVNfaMhkaOHgoaCkV1L4rBipJImk8vltDClnKmnHJDJJSvWNSNKXH+OPJsiy6fm/i2fy2qZOcuxGFo3N4L6366jtDmDSqbn26LG8tL6dW57dwPRiJ6dOzeee5bX85uXN/Oa0CahVEi+ua+OCucX89a3tWA0aJAle29TJkqosfnzMWDQDEzgbekMcNzGXwysz0Kl3dMA4TFouPqwUWVGoaffR5Y/ywDt1BGNJrj+2iovmlaDX7vrvJbGLQftJReHZNa1IksQVC8pwmfW7OFIQ9k40nuT/PmzgjmVbALhwXsmQySNbugJs9Yaozrdzz/Jabjy2iosPK8Fu0hFPypi0aj5t6iPPYeTBC2dS4NyRjMpl1nHjcdU89WkLb2/p5ogxmZw+LZ+P6vr42zt1XDK/lGq16MA8EKQvmHs+Kd/O+lYfj3/SRLbNwHXHjOU/nzazvjXVUDE220q+08i1R49lVaOH5Vu6+NMb2/j3ZXOozLbu+qSC8DX4owlcJi0Wg5rjJ+Xxj/fqqe0MMC7Pxo+PGUt7f5g73tzGhHw7l8wvJZqQMevUvLapk/JMCyvqevnv6hZ84QTbuwN8VNfHn86eQpHbxMY2HwzUY5OKgqIo6Z8FYSTY1hngDwNJ/ADKMk3IisL3Hl9NIJrAqtfwx7MnU9cT5F8fNrK62cPCsVmcNDWfVS1eogMrE0kSZFkNnDIlnzXNHjRqFRpxvxUOIp/VRj+rlg48QeIwaZle5OD2l7ewrtVLgdPIq5u6OazCTaZFz7fmlRBLJlFJEmqVRF8ghlYt8e0FpTyzoZ2VHd50Qr3ZpU6OmZDL717dgicU5/RpBSwck8Fl//qU/lAco1bNjcdVMbfMxYd1ffQEYvz1re3MKHZh3svOcGHf6QlEOXFyHm9v7SEUS+Iy62kJRZld6WZbV4DHVjRRmmHmxuOqiSdkzvvHxwAcPzGXm46r5t7zpvHDJ9dg1KopdqeSQJh06lSSkUYPZ88spCcQ5baXNgOwoDKDyxaUc/W/V9MTiKHXqPjlSeM5ZWr+Fz7fC8IXkZHSqxXrNBJV2VbmlbvZ0uHn2dWtlGSYOXtmISeYsplX4UZRFHoDUa59ah0alcS3Dy/l5Cl53PHyFt4amNC1aGwmt506geueWosvksCsU3PV4goe+aiJpKzgi8Qx7IO2W+HQ1OEN88SqZkoyLHzrsBI+qO1h+eZOMq16vjWvlD+8toUzpxeyoc3HL1/YhFol8e35pbjMOv70Ri1/u2D6cH8EQTjotfeHqc61gQLfXViO06xDK6nI0hr514eNhGJJTp9eQJZVz8Mf1rO5I4DLrOPqJZXcs3w78aTM95dU0twbIhJPMq3Iwaqm/vT5v7OonJ88tY4bjqtmbnnG8H1QYY9oVAqKrHD1kRVs6wzw8oZ2HCYtx0/Mw2XSEk/KbOsMcPcb24gmZNxmHd9dVMETnzRz8WGlmPUa1F/UKCwIgiAI+0g8keTtbT1c/e816fbpxVXZdPkjlGaYKXKZKHAauOHYKj5t7OMP72zHadFx0/HV5NrEhJDd4TBpuOn4al5c1872rgDlWWauP3bsoDEqu6JSqzDZxdgSQRgNFBSSsoJOLaEoCll2A1mZJsx2PTPLM+gLxjCL8Zd7xWlO3bP+t66NV2u6KM+2cP2xY9FqRL+rMEIpYDVo+KShj+8sLKepL8w7W3swalWcNDUfi0FDLJEkw6LnsiPKMOs1JJIyRq2aDa39YviMIAAalYojKjOYXebGZdKSYdXT2h/mfx91otOo+d6SSvIceu56ZStjcqxMKXIOd8jCMDDrNfz4mLHUtPl4a0sXVoOG64+tIt9hQKOS8IbjTC9x0e6NUpqh5ooFZShIxJOpcY7PrG4lmlTY2hlga2eA92t7+c7Cci6aV8LH9X0kZIXZpS7y7Ea+9/hqIDUW7I7TJzKz2EWO3YhR9P0KI0hDb5DvPbaK+t4Q580uYkV9H4mkgtusA+CM6QUUu02EY0kKnSacRu1evY9eo+bocdnkOYz0BaIcVZ3N6uZ+7l6+nSyrnnNmF4GiUN8TYmyOfV9+ROFgIYFOo2bBmAw0RjV/ea8Oh0nHObOKcA2UR4CNbV4COy0uvXxLNx/V9XLatILhiFoQBokkImhVWlSKlG5/MOht+GP+9D5anR6NVkfksyQkY4+Hglnw0o+h+kTQf725xoIgCIKwr+3PFvV7gcBOP4cGto06kiSR7zRh0WuYV+FmWrETu0mLUff1vv4Ob5iELCNJEv9d1ZpO8LCx3YfTqCWakDllav6gY8bn2ZhRsu8bzRRF4YgxmTy3ppVxuVby7AZC0TiZFt1XHyyMSHaDlm/OLiLLqqfQaeTY8dmEYgmuWlROdY6VTKuOM6cXoJLgnFlFTMizYdSpuHR+KQ6jhiXVWUwpcBBNyFx79BhK3CYm5duYW+bCE4xx0/HVVOdYOWVKPnPL3Cwdn01FhgWtWsWYbCtFLhPfemglkwocWPUazplVxF/fqmVlowe7UcvhFZls7w5w4uQ87j57CipF4fpjq5AV+KShjxuPq6LEbeLP50zBE4yRkBVqO/2DVpH/61vbURTIcxg4b04RAN9dVMF9b2/nj69v48ZnNvDQ+w18d1EFAHcu20xdT3DQ9xSKJdKr0Ra7TCypymReuZuTp+SRYzPwjRmFvLyhg/vfqWNdi/cA/faE0aKuJ8hvX0klICnPtNDWH+bsWYWD9rHoNagkCYtBQ38oTrbdwIfbewhE4jiMWl5Y18YJk/KoyLRQnmkhHEviGSjTGVY9t7+8mY1tPnLtBqYWOdjeHSQpK1xz1BieXNmMLxw/4J97NNJoNCydkDNoW7ZNjycc5x/v1XPB3BIWjc1ibUs/35pXwrxyNy6zjkVVWfjDcR58v56zZhUyKd/ON2cX0eEVGX+F/cMfSTAmx0ooJvPkJ00sHZ/D9BInuQ4DZp2aeRVullRlk2nR89yaVu5ZXsudr2xh4dhMkrJCts3Iz08cz6XzS9FrVLR4wmzvDjIu18Zfzp7C2GwLE/NtXDyvBG9YrAYvjCydvghOk5ZZpS4yrXquWFDBLc9tSHd4+KMJInGZX/9vE1s6/Xx/cSVZVj0b23385rSJFLlSicDOnVXEf1e10N4f4txZReQ7DLR5QnT0h+gLRAhExb1XGF7eUIxQLIEvHCcQidEXjOIPx/CEovQFY0jApAIbJ0zKocRtosRl4FcnT6DYZSIUkynLtHBkVSZnzyxiSqGd5Vu6+MnSsfz5zW28t60Hi15DKBZnfmUG//veYXxY18ff32vghEm56DUqllRncerUAja0elk6PpezZhTy4Pv1fFTXl052GY4n+cULmzh/bgmzSl1k2/Ssae7HGxF/PyOBXqumMsvCm5u7MGjVzCl1kWs30B2IIStw9ZGVyIrC7S9vRtrpGf7F9e28W9vNjBIXT195GBq1ioVVWThNWnJsBrZ0+DFoVbgtel6v6Uofl+c08pP/rqMnkKo7RBMy1z+znm1dgSGxCcJXKc20kGHRcWR1JkadhjllbpSkwswSF4ursynNMNPhixBNKDy+oonyTAsVA/8lZIX/rGzh9U1d6QQkkBoQsba5P922G4wl+ePr27hkfikNPUGmFTnRa8RANGHXXtnYyflzS5lR4iQQjlOda2NyoZN5FZm8taWLX5w0nnVNHnr8qRVzk7LC396pY8GYTMLxJMmkPMyfQBAOflk2HfPKXHxU10dVjhWHUUPe/7N3nmFyVGfavquqc+7JOSfNKGckASLnnGwTnI2NMc679nq99tqfc1rbGIzBCRsHwIDJiIwCylkaTc65p3PuCt+PFiMGiawIdV+XrtFUV50+1VNddc57nvd5vRaC8QwXzSnh4rkl/O6lbgyiQO9ktlKtP5bmthc6uXReKSlZ5Wer2ij1WvHaTbSUuvjiWQ188uQa/ufCZkySyM6hMLf8YzsjehWvEwaXxURDsZNUWqGlxM3pTQVcMqeUeFpGksBrM/HTVW1TCd+TsTR3ru5mZUM+v32xi7IcKyVePblbR0dHR+fI0euLsqp1jL3DYVKyyvmzirjljDrKvFb+sLaHK+eX0Vjk5Pl940zG0rSUephd7mFxVQ6joSRWk54Q/1ZwWU2MhpIsrs7h9BkFnNVcRCQh47bqn5+Ojk6WfKeFm0+vwyQJFDjNXDinmA09k7QUO3FbJLb3TVKsVwJ/RzjNRsZCSRZX5TK73ENLiZtgPINLN6vXOU4RBYGXu/w8t28cSRCozbczt8LDktpcYikZq0kix26iKtfGC+3j5DtMNBU5ea5tnAvnlCAcXD9PR+d9h8MsMb/CS+9EhBK3BatRpDLHztwKL0trcknLKpom8PkzGwjGde3A+xW31UAyrdBY7GROuYcl1bn4Y2kMokA8LXP+rCLmlLrIc5hoG43y5O4xfvF0O7c+l9U5fnBxxYGqPEA0JZOSVZ5vG+d7l83kG+fP4KPLq7hvy+DUPpoG//vwXv6xaYDP/2MbPT5dq6Bz/LBvJIzZKPG50+tYWpvLzBIXiyq9nNqYz503LGAoEOdnq9q57YUuvv7gLh7ZOYKmaSQzCoHY29PwDgYSWAwiy2vzaB2NcP+WQaIpmW5fjN2DITw2Ey+0TfCvLQMMBeJH6Ix1jlcK3VYMosaS6lwE4OMnV7OyMR+zUUSW1ali1IXu7Dpsrt3E4uoc8hwmdg4Gj2nfdXReIakksUhZc2mTMZszbDW7CKfD0/azOJ0HTEgkA6z8GqQjMLjxiPWtczzC1Xe8zGfv2UpE19Hq6Ojo6LwNjmREXdA0bWqGrWmaKgjC+zaCH03J/Oq5DpKZrJhMFOAHl896V20mZRVRE2g/RNLE/zy8h0+sqGFrX4Avn93AnuEw19cXEW0N0vNgL7aTSyhr9GJ+h06UByOQ6zBx3dJKfvlsJwZJ4OMrqknrIuYTlkA8TYHDzFULy/jTul5uWFbFYztH2NTr58I5xfx1fT8fWVZFNCXz9N4xLptfyr2bBrh2SSWBeJoHtg5y5cIy/r6xn0vmlLCgMod7NvRx2fwy/rlpgEKXhVMb8tnQO8l3TmlkZIePrX9pw1LvJqfQzOf/uR1Z1XihbZyfXDWbeErh92t6APjEyTX85Mm2qevLKAn857lN/OLpdr54VgOJdDbR888v9zGz1M1t184nz2EmJSuEEhluWFrJ3ev7ANjaH+CMGQXMKXWz4rr5PLVnlHhamfocQokMg4EEhS4zY+HUlDmDrKis7/Hzy2faWVqTg6zCui4f1y2p5KHtQ2ztD3DZvFIKXWYGA1lhcOd4lJWNBUftb6jz1hjvj7Bv3QjB0RhNy4opb87BeoIYKAXiadxWI59ZWcfuoRC+aIoCp5lff3Au92zop9BlobnYRVORc+q6Dicy3HJGA39c18NoKMXFc4rJyCqxtExPzyS/fLaDAX+CDy4up9RrJSWriAJ8aEkF33u8dSopymbKBhzHwqlj+Am8f1BVjZe7Jvmv82ewrtOHJAlcMb+M7z/eykeWV/HQtqGpe82/tg7xjfNncOMpNfz4yTYEEf7r/BnsHQqxqdfPy91+KnKs/Pa6BTSXvLlbtJxRGOkMsWf1EAgCM08pobjGg2TUq8PoHExtvoOdQ0EsBpElNXn8eL9REkCB08zPrprDT5/ag8Ni4FOn1BBKZPj+4/u4a3UP37t8Jv5omrtW92AziXzromb+sr4PSRS4a3UPNfl2TJKIrGiMhVO0j0fx2Iw0FTkpcFmP2TmP9YTYu26EyGSS5hXZMbbFfrjG2DrHC/6RGB2bxhjuDFK3oICqWXk4c6YL/gqcZi6f/4oxQhGyqk7N/14hnpYZDiX52nlN/N8z7VOv/21DP7d+aD5dE9FsReRBjRc7fPhiaZbV5dE7HuPc2YUk0gqyomI2SCyqzsVi1BOSdd46Y71hWtcNE/YlaV5eTFlTztu6X41Hkjy+c4RdQyHqChxIooAvkqJ8v4HOWCSFx2rEapKIJjOEEhnqCx3sbA+xtT/I6Y0F+ONhNvf5qc13UJFjxR9L47YYeXz3KN+7dCa9kzH+sr6PQqeZ+RU52M0Gdg2FUFSN3zzfydfPa2QymuFrD+ya6ldtvoNrl1TyfNsEi6typswnZFUjkswgAGfNKGRGiQuv7cQY57/XmVHg4KVOP3++ci6Z3hhj6/uxVjswiQr3bh4A4OvnNfGzVe0YRDAbxKnkzNXtPq5ZVEG+04xRcnPL37fxocUVWEwSXquRnUMhel5jHprrODAvfwVNg6FAgpmlevUUnbfPcCDBx5dXY0+DvyNIVW8MS63IqKzxu839GESBX39oHt++uIXfr+lhIpriivlluC0GntgzyksdEwe1uXckQlWenV1DWQPblKyiqBqnzyigvkCvcKFzaFRVw2kxMOCPk2M38VzbxNQ1BHD1wnLSikppjo3JoenmyEZJ5PyZRdTkv73r65UYwe6XhhDE/TGCWg+SXkFW532MgMCCSi+begPsGwyzwuVgZM0IjTYDhnon9w6NccX8Uh7bNcK8ci8vd08CMBZO4bFlx+Oqll3z6x0O8fHlNewaCjIhQPdElHs29gMwEUnhi6Yo9hy7GIjOWyetasiKhtVkIF8VqfRDum2S4gY3BWUWIqr6ap06ACOhJG6bifFICqfZQIFT/1vr6BwJVFVjrDvEnjVDJGMyM08ppbTBg9H8vpWyvCcIjsXp2jZO3x4/NXPyqJ6bjztPv4++HgP+OC+0TaBoGqIo8NnT6tjc46elRGL3cIibVtbR549xz/p+vn5eE+3jEX73UvfU8S0lLl338BaJJWU29/m5rrEYQ3+CTNsEy+bkoiSVNz9YR0fnXRELpejf46dt/Qj5FU4alxaRV+Y81t06JBfNKWHPUAiH2UCu3UxziYsfPLmPUo+VW85sJJnWE0PeCbF0hufbJmgbO1Bt+LqlldMqZutAJqMw0hFk90tDGIwSLSeXUFTrRpL0eN/RJpZReLl7ktNnFKBo8JMnp+ttZpd6yCgKBlHgi2c0cOfqbvyxNFfML8MgiieMVltTNUb1OZnOW8A/EqNj8xjDHa+v03kt8bTCwiov45EkG/v8uC0mfvjkvqnXvTYj3764BUGAmnz7kT4FneOU8VCSlKLy6+c7p7ZV5tpoKnLy1/W7uWpBOQgC+U4zCAJ71x1IGtY0uGt1D184s575FV629gcAEATonohxw9IqmkpcPNc6dtD7xtIKRoPIqr1j5DvNfPviFoxH8Hk79YxfPYwkCsw8tVR/xuscEotB5PSmfDw2I0/tGuFLZzaQGU0y/PggAvDNk2r4lqyyqT8IwO0vdFKbb+eOl7rpnIhy1YJyrphfSqnX9qbvNafcw8f+tImfXz2HB7ceMOqZX+EBAb56/04A/rFpgJPr8/jlB+aRY9e1Xu8X4ikZERGTKLDEZiew1Y9HFLDMcDPoj3NKfR5JWcVrM/KR5VVkFJU9w2EumF3C6U16rFLn+CApJzGLWRMS434djc3sJpx6jQmJ41UmJABli7I/h7ZC7emHv18ZhU//dSsjwQRJWcVqkvjpVXMO+/vo6Ojo6Lw3OZKzyG5BEG4RBMG4/9/nge43Peo9SutIeCrBzGUxoGrw5O5R5HcR+LUYRHYNB6g9RCDMYzPhsBjoHI/y62c7uaI6n7b7uzFKInmlDjY/2kvvTt87fu9XMxlOYDWKqCr8z7/30DEepXUkwlfu28lQMHlY3kPn6OOyGOjyxfjN812c2VzItx/ew87BIE6LkZ881c4pDfn8dFUbz+0bp67AwXcfbWVOuZc/v9zL/VuHWFyVy38/tJsCp4Xn2sb5y/o+VjYW8vUHdpGSVXon4/z2pW7+46RaNvyhlY7VIwy1BQls9VEvGrl5eQ15DhMr6vL59F+3Iuwvflybb2fXYGjaoklG0djSF6Dca+OR7UP4Imm+//g+1nf7uWt1Dzf+dQsaUFvgZH5lDrecUc9fP76Y33xoLl8+q4HRUJLbXuxmU4+fAX82MckgClNumb5oCq/NhMtqoGx/gGTnUIgbfr+BWEqh35/g9he6OKOpkP9+aDdrOycZ8Ce4/cUudg+Hp5JFqnL1oPXxhn84xr9/vpVdLwwysC/A03/YS/uGg4O/ryWdlAlPJkgnju3CdKnHyqdOqeEXT7fz8I5h1nVN8t1HWxkKJLCbDeweCvGDJ/Yx4E/QUuKiudiF02zkln9sY2NPgH5/nFuf72LfWIRYKsN1d21kbeck/f44P3qyjeR+45KTqnNZ1zWB9ipRdDytMBxMUqZXYzxqlOXY+OETrQQTGcbDKe7dNECx24LDbJhKqjRJIqIAt7/YyUsdE+wZCbN7KMxX7ttBfaETt81EmcfK5U3FbGufJJ5882t4tCvEw7/cTtfWCbq2jPPv/9vOaHfoTY/TeX9SkWsjx26iItfGPzb2Iwjg3F9JaDySotsXpdsXY+dgiK89sAuH2cCKujxUTSMQy/DtR/bSNRFl11CY/3pwN9ctqcRmMrC4Ooe1nZPE01nX866JGCOhBD2+KFv7gsfsfH0DETY+2oPFZsRkkXj693vo2XFwUqnOiU3Un+Sx23bStmGU/HInwdE4O54dQM4cEAlHkxlufb6T36/pYUOPn7+s78NqlDC9ZuHWaTFSnWtjKBCfZlCianDf5gFiKZl/bR3mn5sHGAwkeGrPGLc+14lkEPjZqnZAIBhXGAwkphaydXTeCr7BCA//chvxUJqCCiet60bo2jr+ttr497ZhfvDEPipy7WzrD7Jqzxhum4ktfQHu3TyA3SQxEkpy76Z+hoJJZBUG/El+v6aHc5qL2DEY5PYXuhkMJHixfYL//NcugokM5Tk2ZhQ52TsS5tbnu+ibjLOxN8BN92ylzxenudiVPYdomtFwijvXTA8tDQRiFLvNFDjN+GMHhLiiAHazgQ09fv66oZ8/r+vVHdyPEwYCCcqsJoYeHyA5lqCoxo0ykqByKMMZdXlYjCJP7B7h1MZ8ZAW+e0nL1LFLanKm/u+xmfjupTNx24ys6fDhtplYXOVlTtl0Y5FQPEOB03xQP4r06pE675B55W6MaY2d/+wk5U9RVOMm1R2hJQCLK7womsaze0e5/YUuNvcF6JuM8/On25mIppEVlcXVOQe12VDooN9/oJKPQRSIpmS+8eBuNvX6j+bp6ZxAiKLAwkovg4E4iqpNGZDYTBImg8ADWwcxiCK9k3HqCpyU5xxIwkzLKguqvFS+zXjlWE+Ynh0TuHItTPRF9BiBjg4wGU3xfNsEf1zXyylOByMbJyiqcGEVRIYe6uOSqnwqc20UuSxMxg4YOufaTcRelfg0s9TFF85soLnERUuJm5893c5fN/RPxWS9NiM59oPHNDrHJzaDiEkScKsC8aeHMSZViqs9RNvDBHb4MYkHL9HnObLXRI7ddFA8QUdH5/Ax3hfmqd/txmg24C20sebeDgZa9TjbiUwikubpP+5l/UPdjHQE2fxEL93bxgmOx1Ff6/ikg6ZpbO8PMhiIU+A047JIBGNp5ld6+dPaXn7zfBfPtI5RkWMnrajUFzq4f3/1Ztf+9Z49w2Emo3qhirdCNCVzUXUB0edHcZoMFFY66X1phOCe4LHumo7Oe4JEJE1kMokiT9dfaqrG7heHeO7uVobag2x/ZoB//992guPHZyVtr81EodOC12rguX3j3P5CNwP+BOu7/dx0z1YMBj0x/50QSci0jUUQxQOahfs2D0zTPr3fSSdkJnoj7HxukN4dPjo2jfHvX2xjrCf85gfrHHbynBbmVXgocFr4+35TWrvJgEHM6m3GIkk8ViOCIHLz37extT9I72Scnz3dzp7hMIZXBLbHOWOvnpMV6XMynUMT9Sd58o5dBEfjFFW76doyzqZHe6bpdA6Fw2zg18918reNAzhMBv65OTuXeeW7FIhnGAsnKXZaWFR18HqdzvuDhKxyz/5CpmaDiNkg0jcZJ5zM8ND2Yb724E5EQeCJ18nzGY8k6Z6ITSW8V+TYiCRlLp1XSlNJVt9SnmPD/BoD/4ocG+P7iz4+snP4sM6rpzTtr9IDj3QEeeRXO+jZNkHnlvHsM15f09M5BGlFw2kx8qMn2mgucREZjDG8bpSCYgdmk8SLv9/Lt5bWTeXyXLmwnI/8aRPPt00w4E/w86fb+e2LXWTeQl7cjGIXv7hmLqIABa4Dmp2T6/N5eMfwtH1Xd/joOkSxbp33LiZJwGkx0CCY2Hd/N3arkcJiB/Etk1RoBj6yvJqvndvIrBI32/oD/HFtLxt7/Px5XS+/eraDQCx9rE9BR4eEnMAkZAuRGF4xIbG4ictxMmqGjkAHn1j1CYI5ConIq0xILC6wF0Cg94j064GtQ3SOR7n12vl8+KQqHtw2hE+P8evo6OjovEWO5ArFp4FfAf8NaMCzwKeO4Psd16Rlle9e2kKJx4pZEjEZRPomo6jvYlUj32lhfmUu7WMRTmvM5/m2bMJjmdfKhxZX4LQY+PSpNZS6reT5M+SeWcHuF4eIhVPUzisg7EuSjGXedaX2pKzishp5aPvQQa89uXuUC2aXvKv2dY4NkZTCA1uHqM6zU5NnZ2VjPnPK3ESSCstqcmkpcTEWzqPEbcEoCZxcn8ey2hxUTWNhhRe7SeK0xnwunlvM+m4/TrOBPKeZM2YUck5zIdsHgpxUk4M5ppCKZ4Nes08vIxmTee6PrXidRm4/fwbdBpnmYhdP7BnlyvmltI5GiKUPBMksRpGL55TSUuKipcSFqsGvnu2Ydi5j4RRto5GpCt0pWWUymmY8kqKxyMGsUhfJjEJNvoOqPDsrGwuIp2VEUcAoiVgNEoqq8p1LWkhlFFIZhW39QVQNVjbmT1X9kVUVVdM4p6WIfKeZ7okIdpPEJ0+uZmt/kDnlerdVhRcAAQAASURBVIXl4w3fYIT0a6oMbXqsh7oFBdg9hxZ0T/RHWHt/B8MdQYpq3Ky4up6CStfR6O5BVObasZkMJF6zuHL3y3386MrZTEbT3L2ul1yHiSK3lduvm89z+8bJKNOfPfdtGuTc5uKDKiJs7gtwx7XzcVmNKBp84uQantg1wl/WZ6uTiwIUOvXEvaOBKAqUeqz88gNzcFmzrs7hWBqDQWLfaITafDufOqUGTdOoyrVjMkj0T8b4y8cW8ULbBH/fNMC6Lh8LC5xcYnIw8NwoCUmgXTPStLjoDccCu196zfNdg9aXRyht9B7JU9Y5QRkMxBkOJmkodHDz6XWYjSIFDgtWk0T7aBhRFLnltFp+9XwXmpat+L68LjuuuHfzwEHtdYxHWd0xwYJKL2aDyGQszSs5GklZA1SiaZnxcHLaosTRIhpKocoa21b1kVPiYPkVdex8foiq2XlYHboD+3uFyZEYBZVObC4Te9cOI0oCLStKCY7Fpyqm9fhiPNM63dDhj2t7+eaFM/jOo3vJKBqLq7wYRIErF5bjsRm57UPzeHzXMJfPL8MoSXSMhVjZWMSZMwppGw3zq2c7WFDl5awZRVTmWZlX7sFjNaCoCuGkwOoOH8tq847FR6JzAjI5GGXxRTW0bxild6ePoho3qqoRj6SwHcKc4bX4Iil+v6aHRVU5vNg2wYr6XG5/oYtFVTlU5NpoG4uwrT9IU7GT2WVeHt4xzA0nVeK1GUnLKnazxBO7R6e1mcgoqJrGb1/q4jcfnM8t/9jGeTOLOGNGAXl2MwgaFqNAodPEvZ9agiAIiAI4zRKzyr2kMwqqlhV4hBMy1y6t4E9rewCQRIEvn93AQ9sOjGPax6J0TkSPyfNCZzomo0TAF6NleSkdm8fYtqqPgioX9YsK+Y8SK4HTasmoGgKweyhEQ2H2Xruk2supr6myW5lr51On1PKpU2oBOL0pn79tGGBBpZctfVnB4o7BIN+6qJmv3r+TeFpBFOA/z2uiodBxVM9b572DZJCwpWHWqWXsXTNM19ZxSpu8lFe6+EFNKcOKTCCR4bQmkTWdE/x9Y3ac+49N/fzw8lkUuS281OZj13BW5LWwysspDfnc/XJW7GbYX4X6FZHNr57r5IwZhXhs+vhSZzqheJrBQJKGIieBeJpzmwv45Ck1pBUNRdEIxFMIaBQ4TXSORTinuYi71vTwwcXlbOr1s3sozCVzSsl7C2MByCYljHaF6Ng8jpJRaVxaRDqpsG/9KKUNeoxA5/1LIqPyj00DnNtQgEUVMBhFtj3dj7fQxpKLa1BUlaIqJ/kOC/WFTu58qRtZ1fjMylpufb4TUYBvXDCD0xrzsRizy7b1BQ6+fVEz33m0FUXVsBhFfnb1HEq91jfpjc7xgiBkhbvlBiN5Z1dOjRnKmnJwuc3IcYUbT6nhztXdqBpYjRI3nlrLXau7+fSptdy5upt5lV4sRulYn4qOznuOif4IM1aUsGf1EHJapWFxIRP9EcqbczCa9O/ciUhgLM54bzZRtrDaReXMXLY/PcCGh3uYfVoZs1aWvWm17PcTQ8EEvZNRmkvc3P5CF7ecWc8/Nw1x7swiJvaLjltHIjzfNk5TkRNBgI+eVMXpTQXImoYkQu9EDFl95wWX3k/IqsqiXCfxJQZ2vzREOiHTsKSIZChNNJDEoRf80NF5R6iKSv9eP6vvbSfqT9G4pIj551biKcjqwiL+JNue7p92TDKaYXIoOrXP8YbdYmAimpoyfnqFlKzSNRFjRX3+MerZiYusavz4ilmUe20o+59hT+8ZO0gb9X5lrDfM2vs6GO0OUVjjZtmVdax/sBtFVunYNEZJnedYd/F9R0ZWObUhn9aRMIuqPHxgcQWamtWMheJpIkmZErvEg71+lNeY7d27eYBzZxZyIii1fQOHmJMN6HMynekExuO0nFJK69r963CNXjxFNsITCXJKXn+NdyKaZkNP1ty/359gRrGD/3dJM6qW/S5FkxkGAnFyHSZ93e19jNkgccX8Us6YUYgGSPuNFeL7ddgD/gTBRIYZxS4UNas/efV999yWIl5sn+CyeaV8+pQaDJJAUlY4uT6P7vEoGVUlo2j85eOL+e+HdtM+FqWh0MEHFlXwoyf3Adk1AIfl8KRxTfSHWXNfJyOdQYrqPKy4sp78cgc7n58+rtQ0aN80Rkm9vqanM53hYIKJSCprRlvkJD+oETIcWOtadnkdwzsnmVXqZudgCItBmlZ8DeDvGwf4xMk1UwUw/LE0aTmrz1FUsJskUrJCLK0wo8hJ/2SUL5/VwC3/2IaqgYZGnsPMJXNLsBslSnOsiAhYjAJ7h0PsGAwhiQJzytw0Fh3I2QjG0+wcDNE1EaXMa2NOuZsCPa/hhCWjqATiGQI7Jzjp0lr2rB6ic8s4Fc05VNjMhA0iDYVOWkcjbOqdbmK3uS9Aty/GArv+fNc5tiTlJCb2m5DsH2TYLNlnbyQd4fYdt7NhZAOJ3ArOaqucfrC36oiYkGiaxp/X9dJS4mJlQz6lHit/WNvDozuG+cjy6sP+fjo6Ojo67z2OmAmJpmnjwAeOVPsnErKicvXCMkZCSXYPhrhnQz8Wo8SNp9QwGU1R7Hlni1tmo0SuzcT/PrKXm06r5eI5JWQUDU3TiCRlGoucNBa5+NWzHfzX7ErW/K2VnCI7JbUeenf5kAz5aLx7a3dZVUlkFNzWgxOYc97CIF5TVBAFhBPEifv9glES+NiKKiYiaX71bDsfW1HDvZsGaS5xMavczc+fbufGU2p4eMcw+U4zCyu9/GxVO584pYaX2iZ4dt8YJ9Xl8Yun27luaSXxtMzfN/Zy8Zwybn+xiwtnl5BRNYLxbCVqd4GVTFKhfUM2MS0aSNH29AB1l1Qxs8RFiddK90SUaxdXYDFJPNs6jt0k8ZVzGvnj2l7u3TxAvtPM189rosBpYjg03ZXvlctrMBDnc3/byraBEC0lLi6aU0LfZIxitwWv3YTFKPK9x7dOBUecZgO/u2EB/liKD925AUXTuHphObNKs4YiiYyC3WxAVTWaCxz86PJZ/H5tLyUeCzOK3Ty0bYiXuyf5j3OacFv1Se1xxyHuO290L4oGUzx++040TaO0yUtwNM5jv9nJlV9beMzEaxbjdLdss0FkYaWXrb1+fre6h8+dUU+pJytOr8y1YzIcXEHRaTEgigc/D65fWsFoOMWPn2qj25d17r5qQRl7hyNsHQhSkWPjwe3D5DhMlOe8vcq5Om+f+gIHd7/cy8M7hhEFgasWlnH5vFKai53U5NfTNR7FYpT4v2d2YJAEPnlyzX4xSh4zS92EEhnKgyrtL/RTWONCVTTW3tuBO8dC9ZzXF6wc6juhP7N1Xg+DJLK5Z5Il1R629vlpKHLx7Uf2EoynuWphGee1FFGbb+e0pgKuvGM9NqO0v5KviZ1DBzvtiwJs6PEzt8JLS7GLrf2B7PWngQBoWvZaPNS97UiTjGXY8FAXklGiqNbDWHeI9f/uZsF5lYd6vOicwIgSuPNtbHmiF4fXjKfIRtuGEfLKHVMmJA6jxMIKL1sHAryy7ryhx883zm/irx9fgj+eJhhP84m7t0y1e92Scs6dWcIPn2zDF01z2bwSRsMJdg6FWNPh46dXzWV99yTfemQPJ9flccHsEkZCKeIpmWKvBV/43ZlJ6ry/sDiMrP1XJ0pGpbTRSyyUYtuqfsqbc7A53/x4o0HAbTUQS8m4rUa0/fdho0FAQCCWknFaDEiCQDwt47IYkQSB7okY588qpnM8it0kEX5V1RUASRAIJ2Q0TeM7F88krSjkOc3sGAjSNxmnOtfOgiovL3f5cVklGovcbO4LcsdLPcyr8PKRZVX86Mk2Ivvb/d5lM7nupCrcFiN3re7muf1mra9gN4poioqgVxU/pgiAw2Jk44M9pBIypQ1e4uE0W5/q47RPtHDXmk429vqZVermEytq8FoN/ONTS2gsdOF9kziT2SCxtstHsdvCF86sR9NgLJykbSTEY7eczGAgTo7dRF2+A/N7IKFT2//QEUR98HE0EQCbSeKph7oQBCF7DYfSdG4epzTPxM5QjF2DQeoLncwpc7NnKMTOoTBOi5EZRS5Kc2z86WOL6ByPIooCtfl23FYTj96ygp0DIfr9cR7eMUyPLwaAeIIOLvX77dEhEE/T64ty/UmVNBU5uW/LEE/uGaXMa+WmlbV4rEYskshENE1jgZOGQicPbB1kfY+fErflbc1dRrqCdG4dJ7fEzmhPmN0vDjH/nErkjPzmB+voHGa0rCIRQTr290gBcFmMzCx20b5hlOBYnNIGD9FAipcf7OKUGxpZNxCkpdjFZDTFb66dR6nHhiRCY5GTXLuZ2nz7tLGJ2SjxwcUVLK7OxRdNUeqxUp2nx19PJCRJoNhpIrfAyVN37MLiMFLa5MU/EiUVzzDnqjoWVedwelMB/f44VlPWVPqqheXctbqb6jw7x/7qPj7Q15F1DjcGo8TmJ3opqHRiMEq0rhth3lkV+nfuBObVf7vqOfmsf6hr6vcdzwzgLbLRuLQYUZ87A9k1vnBCpsSbNVP7xap25lV4D5obPLpzhP84p5Ecm5FTmwp4unWUoUCCpKxyw0lVlHn0hI63wowiJwwmaX15hOrZuSRiMu0bR2k5uVRfS9LReRf4BqM8fttOXqn91rpuBA2NlR9qQtq/biwAJotEQZWLWDBFYDR+7Dr8Fih2WwjEUjjMBlLy9OrNZqMeY3sntJS46Pcn+MnTbYgInNaQx9ktRXhtR7Ju44lBNJBi4yPdjHaH0DQY7QoRC6ZoOqmIPauH9fnXMUIQ4C8berlqfhkLK73sGAyxpcfPcDjJjafW0lLqQjSbsJkOvoadFgOmEyQeLxklNj/eS0HVq+ZkZ1cc627pHGcIgsCOZwZwF1pxphQG9wVIxWUqZ+W+4XEmg4BBFFA0jaYiF43FDp5tHeeBrUN47SZuWlnLoqpcMsepH5W+tnZ0iKdlzphRyGO7RnhqzxgVOTauWVSOJMBHllXyp3V92E0GKjxW7ts6xPcvm8XvXupmNJTgrOYiClxmHtk5wgcWlTO73E1NnoMcu5G71vRQ7LZy98t99Phi5DlMfP+yWZR4LKzaM8YPnmglo2RNxy+ZW7q/0Nu7035FA0keu20XkNW0B0biPHbbDq78zwWHjHXpz3idQ+GwGKaujTyTkb0v9RAPpSlt9OAfirH+wS6WX1OPaVeQ82YWkuc8WLdjM0uYJJFYSuaF9nGCsQz+WApfLE0ipXBKQz6r9o7yYruPqxeUUei28NSeEb5xwQzQoKnIicNs4L4tA/zHOU3ctbqb1tEIJ9flc+X8Mp7aNULXZIxgLMNfP7GYkWASTdDYMRDity92T/XjkrklfOeSmYfMa9M5/tE0jUKnAVt9DqvvbUcUBUrqs2uurWuG2VIukcioeGyH/vsejTucvmal82YklSQmDIDKK6kNjv0mJMFUkPUj6wHoM02SjOZMP9hdCiM7D3uf2sYitI1F+O6lMxEEgYZCJ01FTp7cM6qbkOjo6OjovCUOe0RdEIT/0DTtx4Ig/BoOdrjQNO2Ww/2exzsjoTiyotHvT/CLZzqmtn/jod3cdu28d2xCAlCRa+emlXX8fFX71LZ8p5n7P30S4+Ekf1zbw8vdkyTrSlh2eR3jfWGi/iSzTysjFkyhpFV4l7pFkyiQllWuXljOc/vGySjZP7vVKHF2cxGaptE1EcUXTWE1StTk2XFaTSiRNMl9fmKbRjEU2XEsLsJU9hayn3SOCl6biWA8w72bB/jSWQ387yN7cVmNLKjycseL3dy0spYfPdlGSlb49Km1/OKZDq5dUsGdL3UzFEzw1bMb+cHj+zinpYgndo2ybSDI185t4lsP72FeuYd9oxGe2jPKZR9ciMVupKwph66t2erxkkFk0YVVBEbjDD4zxGkNLnyCxPaEzLce2cMDn1nGnTcsoH00wm9f7GIsnDUcOaU+j8FAnK+e00TraIQ/r+tlZWMB8yo8mCSBf2zsJ5qS2TYQwmwQuWhOCT98Yh+1+Q4unF3Mb1/opMRrmzIgaSh0cOHsEjrGolTm2qkvdNA6EmF7X4BPzCvjghmFPLpzhF9c2EzxRJrctRMkvCaKFlbynD/KXWuyVbgnY2k++ZfN3P/pZSyo1B2EjyfyyhyYbQZS8QPJEosurMbuOXQF2LAvQcPiItJJmYm+CJUzc7E4TIQmEsfEhERWVGrzHTjMBqIpmXPr8rmltpC8jhCKLLPs7GY+v7qD6lw7TcVZ59+GAgclbgvDoeRUOzefXkeh20KZ18pgIIHLYuAbF8wgnJS55e/bSex3+H5w2xCT0TTfuXgm63om+cemATrGo6iaxjcvbMaoL4AcMeJpmZe7fTy0PVsJW9U0/r5xgIZCJ4Kg8cSuMc6fVcy3Ht4zdcy3Ht7D/10zlw3dfsq8VmYVuwh0jrHk0hoG9vgxmgSWX1HHcGdwmgmJP5bCKIk4LdkgXcsppXRuHZ8a1QkCzFhWfPROXueEQQ4mqR2I89OUBXFXkLLmIk7/80ZScva5+tsXuzGIAufOLGI8nOIrZ9ZTkWdnc6+fP7/cxzcumMHGngMVW5xmA7kOM8vr8lhc5WVLbxC7SSKeUTBIInazhNkoUeSyHJPqFFF/gsaTihnY60eRNZZcUkPPjgnsbhMW3U37PYW3yM7Gh3tYcF4VyWga30CU6jn5pFMymWSGVE8Yx8vD3Gp1MnJ+Kf+9uZc9Y1HmV3hwWo3E00ny7CZ+8lQbt5xRh6aBURJpKHRw0z1bp0xLfr+mF00Dm1HAbjbyhX9u57uXtpCRNR7bNcpkLM0V80vxRdL4ExmW1LyxuEJH59WoikZ5cy4Oj5nhjgB5pU7yKxwkI2nIf/OYhNtq4ivnNPHJuzfzzQtn8ODWIS6bX4aiwt7hIPMrcmgodLJ3OEQ4KfOBReW0jUUYCSb58PJK9g6H+diKav7vVTGR2nw7/v2mlMFEhrFwkhy7idaRCLe/0M2nTqnBapbYMRBk31iEC2cX858P7GTAnwDgxfYJOsej3H7tfNb3+DFJIs+2jvE/FzYzGkpxckM+M0rc/GV9L6Ig8MezmynbMMGEbwD74iIsjV4kh36/PhakZRVRg5J6D85cC0NtAXJK7RRUuhiaiPJMazY2sLZzkn0jEf700UUsrcx5k1azGCSRj6+o5vrfb5zaJokC9964lOo8+wmfvKumZLSMhmgWSfWEiawdAsC5vBRztQvhPWCsciIgywpKTKZ6dj6u/P3XcLGdgioXo/EMP3mqjf88t5EfP9XGl89q4CPLq/nSvTv4/Bn1lOZk77m5DjO5jumxh/oCJxlZ45v/3k08rUxt//wZ9cd9NTZNUVHjMqJVQvaniG0dI90VwjIrD9vMPAx61fEjgttmojLXRkuJC1EQuPvlPh7ZOQJAPKUg+JIU9MTRBqJUt+TSlpR5dt8Y2waCAHz+zPqDrsPXQ9M0UnEZZ46FZCzDgnMrGesJ0793ktOubzpSp6ijcxCaqpHqCxNbN4wal7EvK8Zc40GyHrsEolyHmZtPr8Od1nCV2Cmp9zDcEaSgysWMZcUkUyo/faqdL5xZT3ORE4uiUWYzYXaYqMp7/aqdJoPEjGLX676uc3yTyYA/kUEOJ5lzZgXJWAZff4TqOfmYLAbMApw5oxDIGulddce6qfVVgB9eMfs9YZr3VtA0DTWWQTBJiK+qeKzEMqQ6AkTXj2DIsWBfWoy5Qv9O6Lx7whMJll9Zx2BrgExaYfFF1fhHYqjquy/eonNs8BTZKK514x+NEQ0cWP8srHZRMzeftg1j9Gz3MfuMcopr3VPJ6e9XStwW8pwmgrE0H1texTf/vYcL55QgAIUu85T2QlE1+ibjCA25mCaTfDRhwBQ1Eqpz8+i+CRxz9bXCt0I0LVNiELhgaSFKfwShxs2shQV0tAaQTO+PZ72OzpHAPxKbMiB5hbb1Yyy6oBpXrhVnjoWV1zXiH44z1B4gr9xJyyml5JW9/hzsWNM1ESGTkfncGfV8+1W6j/IcK/X5DmIpGbtZN894O/jjab718G5+sqKOqv44UnuChCGOqcFzrLt2zJDTCkMdQXY8OwDAsivqaF07gn8kRmQyidVpQhAF6hcVHOOevj8xSCKfPbWOMo+FRG+Ei/uSXJoy45tdwC83DvCBk6sIxDPMKnWR5zDhix4wLLppZR21BSeG9jo8nmD5VQfPyTR9TqbzKlRVpWZePqPdIUobvMxYbmXToz0ob+IeUu21cf1JlQz44yyt9vLA9mHuXH1Ax/3l+3bwu+sWHFd6G03VyIzHSbZOktzrx9zgwTa3AONb0HHovH0GA3H+vK6XaErmsV3Zoqm7hkK0j0W4aWUt8yu8zPfaWTiZRtgbYHlpLgmbhYILmtjY4+e5fRM8tD3CVQvLeLp1jNUdPm6/bj6tIwrhhMwTu3umNC2+aJqb/7aNh29ejtkocvNpdSiahigI/PKZDtQzNBoK3929O+RL0LS0iFQiq2mvmp2HxW4g7Esy+/RyendNTu2bfcYXvqv303lvUrNfR2M2iEyOx6loySUWTDE5FKV2fgGSUUCSRM5uLqQm307HWJTafAddE9GpNr52bhPFHiur2yfYMRBidfsEi2tyeWDLEF8/fwb/2DTAmk4fVqOEzWzg/z3WCsCm3iCCAL/+wDy+//g+7rxhAV++bwfhRDavY5bTSlVPhB8nzURrPETrXPjGYwyGk8QVFVnR+PwZ9YgCDIeS3Lt5gCsXlGGSRCRRoL7QqRuSnECYjSKhgIokCVTNzCO31M7gvgCeQitFNW5mVNi5a/sAXz23ka+e08DW/iAvtk0gqxrLanOpyT9ymjAlkibZHiC2cRRDvgXH0hI991HnkCTlJEYMQBrD/vCvy5Ide24Y2UAkHaHR20hboI1gKoimaQdMbewFEJs4dMPvgid2jSIIcG5L0dS25XV5/HV9HylZwWzQ49Q6Ojo6Om/MkViZaN3/c/MRaPuEJJFWsBglHtkxfNBrL7RNcP6sknfctigKXLuknFmlLjrGozjNRmaXuanMtbOlz8+L7T5UDaweM2vvbiOdlDFZDIz2hJl1WhkG81sTWMiTk6ixOIb8PESrddprxTkOoikVu0nijusXsrXPj0ESWViZw/L6PNZ3TTIUjDMQSGAQBbb1Bzm1IY+cHX4iz/QDkO6PkNgxQcFNczEW6oGz44GxcJL7twwCIKsqKVlleW0eq/Zmg26SKBBKZDipNpc1HT4Ach0mBgMJavMd7B4OAdBY5OCpPaM4zQbGIlnRz7K6PG5/oROATZMhis4rxSYacHjMJKMZZp1Wys7nB4mH9i+U9IQpX5jPDSdVcMsZ9bSUuJlZ6sZhNvCTVe0IAtx4cg0beib519YhGgudXLGglF9cM5cHtw1x97pezptVzO/X9HDLGXUAnNKQzyM7hmkptPOdZXm83Oej2GNlMpoV1VTl2jinpYhfPNOerfItwH+c08gX5htoGU0h/r2D/6l2Yr2hHnm3n/iLQ6QBqR8q20PMPnl6oE7TsoFK3YTk+EGTZRxqkItvaqZrV5DAaJyGxYWUNb1+cpvJYmCoLcBYXxiTxcBYX5i8Uge18/Jf95gjRTCepm00wmAgzs2n1zHgj3NLoZfMwz28ssRY3Bbgvg/MYnMqNXXcoupc/u8Dc9nWH2QikmJBpZfaPDuqCl89p5Gu/UnTm/oDKKo2ZUDyCi91THDTabX86Il9yPsX//6+sZ9PnVJDmVe/fx8pUrLC8/sODiqs6fDx0RVVLK5K8+jOg8cZT+8d5azmAsbDaXyxFKU1bl68p23q9f5WP2d/rBmAiUiSx3aO8MiOYc5sLmR+hZe5ZW6Ka9xc+oV5tL48giAIzFhWTGHN64u9NVkmMzqKYDBgLCp63f103ltoskr4uQHiG7PjBAYiCLsn+d9T6/jaswfM8h7YOsQZMwpJZBQumF3Crc93IooCP7h8Fh1jEe68fgE7B0OYDCIem5FURuXaxRWEkmkq82woqoYAiBIYRRG31UhzifuYnHMiKrPu/s4pgdtQW4Cll9bizLW+8YGHIDMxgZZMYigqQjTqix6HEzWdRh4bQ7BYMOa/s+e13W2mbmEB+9aN4hvMLp6N9YYprHVT4TYR+uu+qX3z24L8/kMz2GVQKXJa+Nq/dnH5/FL8sTSfOrmGrokoBlHkxfYxjJLAa3U0D24b4idXzkaUQjy1Z5RgPMPCKi+rO3ys7/ZzbksROQ4Tvb444WTmHX8uOu99Mj4fWiKBoaAA0WzGmWvBaBLZ+lQfkK0SONTup7hu9ltu85T6PO69cSm7h0J87vR6IqkMaNnq7WgqGUXjjBmFaICqahS6LAgCyLLKjCIXsYzCT6+aTdd4jEK3hTy7kQe2DfE/FzZjMogE4hkqcmzcs6Gf+ZUeVnf4+Np5jXzjwd2cN6uItKxNiTVeYSiYYDiU5KFtQ5w3s5hzWoqIpWQ+cOd6RAHOaS7kt9cuoF4USf+plUQ6K0pK94VxnluFe2X5YfvMdd46tYUuBpNBTFYDW57IXpN0h+nf42fh9Q0IQtaMLJKSmYylGQ0lmVX21ttfXJXDfTcuZfdwGFXTmFXqZm75iT0X1xSNVE+Q0Ko+1FAa9wXV+P924PmTaguQ9/GZWOpP7PM8UWifiDPLbcLieNU1TJj+PZPMvb4Rp9nAnuEw1bl2NvUG+NKZedx1wwKW1ea9YbsdYxG6J6J8/7JZqJrGms4JLpxZwqLqt2bCc6zIjMeIrB4iuS+A87QyYuuGkX3ZGGB6IEK6J0TONY2IFj1J4kiwoi6PfSNhUrLKY7tGprZ/5aQqZq+fILU/vpoeiFA/J48PzyrhwtklFLlMNBS99UTuif4Iz97diipnB7AjnSEWnl+FNWAkp/jIxYMyPh9aPIGhMDum0dFJD0Tw3bmLVyZTqa4gOR9qwjb76MdnX6Gl1I2Ghl2Gzp5hdjw7gGQQGesJY3UaWXRtAzMKnZyc66BeMpJ8YYhAfADLyjJcLXn6/fE9yngsSTKjYbEb6HtuaCqe4BuMUljtonJh9ppNywqCAN+9ZCaKqpHOKNQWOVlc9f4Y18mBJLFNo8Q3jyHlWnCfXYWh1I4azZDcFyD0cBcA6d4w8Z0+Cm6ag6nk+E0c1TkxyC13sOquPVMJbsPtQVZcXY+QTpCeCCJ5PEhOXTx8ImF1mDjjIzPo3eUjk8zGfkRRoGZuPi8/2DW1X88uH5d9aT6FpSYUnw/R5cLg8RyjXh87BEHgyoXlrOucZDgY52dXz+HZvWOcMSOf/7tmLqs7fLSOhFlRn0d1rh1XUsP11ABqXCYNWPsjfGhpETtienz6rWBNavBsH4n982QGIpgavZQ05GAwvr8NcXR0XkGJRlH8fkS3G4P7ra37mg9R9dhbaMNgyn6vNGByKMa2VVld4lhPNnZX2XL8JBy/lvFImg/duYEnb1nGbz40j239QQpcZuaWe7h7XQ9fOLuJat2E5G3RP5ngu8tqqXxqEDWjogKGvnC2Xt/71PRzqCPIo7/eMfX7QKuf5ZfXsfZfnQiigCvPwmVfmkdh1fvz8znWDPhjDAYT1CsCyn2dKKqGArh7Qvz3hVW84I9jNkgkUml+/cF5bB8IEohnWFjppTrn8MZoD4fO4vXIK3fw1F17EEUBURKm5mTvd7NAnQNk0gp714zQtWUcQRQIjMQw24zMWlmK+U1iqYVeG5fOLWYiksYoQI0S5ovzvNzdHmMylkbToHU0TF2eHddxkJSe8SVIdgRIbJ8g3RcGsjHwxF4/eR+bicF5fBcpOBHZNxLh5Pp8PvePbdO2p2QVWdXoHYvywRCk9hdVZSCCaa+fhVfWY6j0YJBEPrOyhns29LOpNwDA2g4fC6u8rKjL4+XuyWntphWVfn+ch7YN0zEenfbaeDjFu8VsNTDQ6me8P3JA017moHZ+Ad4iG5d8cS771o0gGUQaTyqmqFp/xuscQNM05JERWgwa9iInd1y/gBxZYNeTXQTH4gD4h2MU1bjIn+Fly5Ygd67pYW65m/+5cAZjkRRDgTgLK3OYV5Fd03imdQy3zcjMUjdP7R5lcU0O8bTMms5srtErerDp/YDhUIIFlV4CscyUAcnptbmc71cQ9w2TBkwDEfK7QtSeW8V8A8jlNq5/dDetoxHcViMfXVbJL6+ZSzQp8+/tg1wyt4xEWqGp2Em+Uy+aciIwFEzT709Q7zTgzrey6bHeqdf6dk9y5k2zsJkl9o2EuWd9P3PL3dz54QUIQH2B64gW94ltHiP8VLY/6b4wiZ2T5H9mDqbiE7sYls7hJyEnMKvZuY0kAoJImbsSgIc6HwLg8vrL+cHGHxAyJcmkkpgs+/MOHPmQCkMmCcbDd996bt84Cyq85DsPaG6WVOfw+zU97BgIsfg416Xp6Ojo6Bx7DvvKhKZpj+z/+efD3faJioiAJGrkHyIYVOB69wODtrEoN/5lK2klK6iYWeLi9usXYDNK1BbY2T0UJhJMUbsgn/xyJ1F/EmeOhbHeMJmkiuUN4s+aohBbu47R//1fMsPDOE4/nYIvfQlzbc20/UpybHzjwV08tH2Y5mIn0aTMb1/s4v5PLyORlommZB7fNUL7WJS55R7OKPEQfWlo+nulFFKDEd2E5DjBYpTItZsYDiWRxOwgOJhIk2c3M+DPGsoAhOIZyvcvYoj7HfjCyQw5+ydxsqJhNoikZBXr/qpt0ZSMx2bCH0tnjQ+eaaUyx8r3TmvAf08HRpN0wIBkP4NbJrjorArKK91MxlK8uHeMIsnIHy+bg5hQIJhhdk0xu0u8WN0mvv/4Pr50VgNP7x3jo8uruG9L1sFfEkXMBhGTJPKBChOLNz2B+okHONtuZ+UnPkvbzEVs6g1w0ZwS7nixeyqxeFapm3KHmbnbA2Q6QxjKnVgK7Gj7gsTXTk/81xIy9cLBiyKe4yBorZMlMzqK/+67Cfzlr4g5OTT85FfIc8qxui1Y7K//d8qkZJy5Fqpm5xEPp7A6TQRG46ST8lHsPWzq8fPk7mG2DYS4ZlE5t7/QxccWlqOtH5u+o6Jh741wkqYh1yQxeC2kMgq+aJqXOiZwWwyEkxlaSur46ap2Ht4xzBfOrOPlHj9/Xd/Hty5qOei9HWYDZkmcMiAByLWbMesLgUcUgyjQXOJic19g2vYZxS6GAwkWVnrpmcwGfSVR4PKZxVxQk08eEtGhBMUeM1aLic4t/dMb1mCoPUj9oiIe3zXK6k4f8ytz+M3zXWQUlY+vqOYjy6oobfRS2vjmwvfMyAiTf/4zwXv+hmCzUfCVL+M67zwkhy4Mf68jTyaIbxqdtk2LZDjNPT3AmuswYzGICMBkNMW9+w3P+v1xqvPs/OcDu/jMqTUsq82hqdhzlHr/1on4E4x2hwmOx3HnW1l0YTWbn+idSsTr2+2jecVbr/6nplJEn3uese9/H9nvx33RReTddBOmCj0p/nCQ7utj4je3EX70UQx5uRT+93/jWLkS0fT2FhsEQcBTYJtKGHqFGYsKSG4aO2h/414/t/om6Z2M8bnT65iMpinzWhkMJLhvyyCxlMxV88sOWa0s12EmGM8g769+nDVmyI6LrUYJgySSUVTMRhGbSRca6hyMlk4TXb2a0e98F3liAue551Lw+VswWPPYt34UT6GVhedXE/YlECXhbY1jzUaJxdW5LK5+9yLd4WCCf24aIJyQuX/LIDetrMUgiqha9nswHExQ6rGSzqgUOM0oKpgMwiHb8lqNXDq3lD+s7UHT4BMnV/OJFVUsqMrhT2t7+efmAb5TXUgqPb0qUuylQdRGD95iPbHoaCNPTmIcGWHfulcJCwQobfDgNhu47/w5TI7GUFxGnhsPYn6bCRlDwQRfvX8nvfvHxzaTxK8/OI/6QicVh1mEebRID0fx/WE3aOC9op749vGD9oltHNVNSI4Ss8Qoxok4+14OTm1z51tZeEEVclzhl3NqsBXZ+Jus4XSacNsMzKl447/N9oEg1965nlg6awRa5rXy3xfMwJ/I4IulcB6nMSUlnsF/bzuZ/eMkNSZPGZC8QrLVT8aXwKxXgTkiOCxGLEYRDWEq3gowy2xCe018NbnTx8yWPB6IRjGIAvmxNG7r64+No4EUY70hAiMxnLlWTrq0lg0PdyPvf6Z2bBrj7E+0YDAe/nHp641pTJWVh/29dE4skh0BXuvmGHlhAEtjDqL52FToaR+LsGMgRK4KOfkWll5SQyqp4Mm3smfNEA4Ebi8rwHB/NxGThOOkYtK9YaL3dYBJ4ulUkmAizbxyL7PL3Jj0SkPvCTxWI9ZAH6FJFd9gFIvTyPLL64iFUqiyhhzNoKkaz7SO89m/bZ1aizq1Po/ZFZ5j2vejhaaoRF4aJPZy1kRLCadJdQeJrhtGsEik2qbHwpFV0oMR3YRE510z0Rc5qMJ2Kp6he8ckwfEk3twkhaV+3PX6uONEwp1vY87pFQTH4rS+PILDa6Zvz/TEHzTo2DSC9vu7CT/0EKaaGor+3/9DrZpBIppBkgQmh6JEAikKq1wUVDkxvUeTvXPtZi6ac6BY0hXzy9g3GuZ7j7bSPh5hQYWXUo+VgUCchRYIx6fHEDObxpg1+42NNnWylGQ0oq+ZJ6fbAhQtLSaVkDEY9bGfzvub5N69jH7v+yS2bMHc1ETRt/4H27x5b3pcfrmDohoXo91h8sod1C0oRFVU+nf7Kap1I4qw+8UhGpYU4cq1oMgqnZvH8Q1F8RynukSP1ciS6hzuXj/I3zb2s7DCQ58/Tigh862LmnHpBpZvG5tJYk5aJJF57frQMJI1iLWxEuktGt8c72iaxkR/hNHuEKIkkF/hRJRELHYjzhzL1D67Xhh8zYEw2hMip9hO7YICGhYVIekmWceMvsk4w8Ek+OSD4l/mLRM0nltGVNUYUlSuvWsDRS4L+U4zv3upmy+f3UD9YTLXSff347vtdkIPP4whN5fCb3wDx+mnvW2dxevhG46y/Mo65IyCmtGwuU307JqgeUUJ+shIByA8kaBryzhzzijHlWchFkrjzLVgd5tw5b9xYahwIsP3Ht/HF2Y6Md/7ALPvv595Tienf+pzfD9SxMvDcdxWI2lNe8N2jgZqWiH0aDfGMseUAckryCMx5Im4bkJyBNA0FY/diMtiJJSYbq5pEAVW5DhIvdA1bbsaTiMEU9TbDXz4+U6+cGbDlAEJQKnHyvcfbyWSVLh6URmBWIaHX1W4uMBl5oaTqvjmv3dPa3dF/bufV6eTCq58K1Wz80hE0rgLbBgtEpmkjCiJlDXmUNaoJxbrHIw8OUngvvuYvON3IAi4P/kpHs+fR0tuAcGxOM5cC3POKCcVl5GMAiZRZF2Xj0hS5um947SORPjXZ5ZR+JpcuCK3lbSiEkxkyHWYCMYzSKKA3SQRSysE4xlKPQffy51mI6c25COJB7RhF1flIT47Mm0/JZBCnkgQe2kI++Iivru8locG/TSXuPjFMx34Y2nOn1XEWc3FPLVnlPpCJ//c3M+Xz26iOk83izjeyXMYEcQYjkiSteuDU9tLGzzULy5ECWc4OWPG4cvwxRW1bPdF+PRftmKURL54Vj1XzC87IkYkcjBF5KXpcyktrWTXrHQTEp3XkFSS2NXsvVESNZBMlDnKEAWRvZN7KXOUMbdgLgAxi0IyGjlgQmIvyP6MjYOn4rD0JxBLs3s4xBfOaJi2/RXjkU29ft2EREdHR0fnTTliEWNBEJ4XBOG51/47Uu93PGMzi0QSGT64uGJakrbHZuSkmneXvBNNZvjRE/umDEgAdg+H2dwbIN9p5pbT67PJanYDogixYApBFImF0lidRniTQFqqvZ3xn/4U96WXkHvjjZirq5n4za0o8fi0/faNhKcCJntHIvQHEiQzKh3jETQBfraqnfaxrBh9+0AQMaOCdHACkXAcBPZ0suQ6zHzzomYARkMJWkpcrOnwceGcYiRRoHU0woq6PPaOhFlU5cVsEFnT4eOSuSVMRFIUe6y4rAae3D3KtUsqSCsqoihQ5LLw6I5hPrysCoBAPENdgYM+f4KvrW4n99IKHHkHAhKCADOWFbPw/CqEhEIqnmZiJIZhe4jBJwfR2iLs/kcXu5/sR+2Kcq7XzWyjhU8sqiAlZxM3ZEXDuN9I5a8v9/GTS5q4oVTlrJ71qP/6J2QySF4PhfEAK4Jd3H9RGR6rYep7dcncEmrzHSiBFJnOEACW5lzCz/SjpRUE8eBr2Wkz8erNZV4rc8s9h/vPpPMOCT/xBGo4Qu5nPoP1h7/jsX9HuP/H27j3e5vo3j6Bqh76XiQZJSwOI3JGxWQ1oioaRrOA8SgK3Ht8MT76p03UF7ronYwzFEhw4yk1FNlNCIe4ryIIZLaME9s4gqZp7B4OcdM9W1nbOcnju8e4d/Mgm3oDPLJzGLNBxG01ccdL3cTSCvG0zPzXCJ5vPq0Ou3n68OGbF87QXYKPME6LifNnFlH0qoBtRY6NueUexiNJHBYDl88vxWIU+fFZMzgrZSSzN8SLf2ply6O9bP5rOyMvjdK8vIRTP9jAogurWHRhNTXz8tEMAuFEmrtf7mVOmYc7V3cTTcmkZJXbXujimdaDE+xfixKPk9izh9j69aAoIEmooRCj3/wfEtt3vOnxOic+akaFQzwPba8ST0qiwE0raxEEyLWb+H9PtE69tq5rklyHiYlIiu882koooRyVfr8dooEkPTt8TA7FSCdkXvp7O3Ja4fxPz2LWylJEg4DBKGJ6GwKwVFsbqa5O3FdcQc6HP0zk+eeZ/MPv0eSja271XkTLZPDdeSexl14i92Mfw335FaTa20m2t7+j9kzW7N/V7jGx4NxKzvp4M6VVToRDmHAJBoGT6/MIJTL8dFUbJoOIJIr8+Kk2gvEMGUXjb5sGqMyxUZ5zYFFNEOBzp9fR7Yvy5O5RLpxdjEkS2T2UFRt8eFklDpPEYCBBoctCXYGedKNzMMl9+xj+2tdxnX8eeTfeiLm2hsD9/0IEzHYDJ11Wy+4XB0EDOa0y2BZgYjBy1Pv5yI5hfvlsB5v7AtTm29nQM0mR20wgnubSuSV0jkdZUpPDozuG+ejyap7eO0Iio3DNwrJp7VwxvwxRhFuf7ySeVkhkFH79XCdVeXZue66T3UMhSj1WsvZXr0ESiEbSxFL6PfdoE12zBm1sBEESKJvhZfGF1Zz36Vk4cyzsWz3MhnvayYwnycsIfLiygFzx7c231nVNThmQAMTTCn9e18vPn97HcCBxuE/nqJAZjoIKlhm5JDuDh4xDCLow+KigyTLSg/cihAMIokBRrZtTP9jA4ouq2fncIKv/3o6YUBB8KW5sLOG02lw6x2Nv2GZGVrlrdfeUAQnAYCDBlr4g//vwHm74/UZ6J9+4jWOFPJmYMiCB17kOBVCPsnnr+41ERiWSTPPlsw6IBg5pLiKAQQBjUmE0lKRvMo72OvH4RDRN324fE/1RMimVdf/qJDAa57wbZzL37HKMZglREt5U8PtOSXZ2kdy7F/dll5H78Y8Rf/llxn/1a9TUu68Kp3NiI0iHuM8YxCO42vnGhBMZvvavnYxFkszIsYKWFf1KosCuFwaZfVo5zok4hi0ToGhoCZnIcwOY6zwApLZP8Kd1vXzvsX1cdcfLrO2cfOM31DlhKBAyRH72UwwoGC0SZ354Bqvv7WBk/xrTaGeIkZ4Q331477Sl2hc7fKzpnGTV3jePyZ7oKOE0sY0HTI1NlS7Sg1ESu3zZZKtDrSMfYhyso/N2MZhEqmbnsvK6Jk6/oYmTr6kjEUkTDKhoBhP+kMSeHUmSY743b0znuMNTaOPiz89l4flV0yqpG0wis08vI6/ERmbeaXhuvgXvF77MaNzFvd/bROvaYVb9fg9P/2Ev6x/sYvPjvQzs9TPUESAafO+PQYPxNF+9bwerO32MhVM8vnuUz/9jOxrCIRNBBVHAqRunvSUOmfYggEESiEyemHEqHZ3DRWbCx/D/fgfbwgXkfvrTOE8/nZH//Q7p/v43PdbhtXDOJ2dywWdnM2tlGesf6mLjIz08++dWHvn1DlIJmWVX1uIpzMYtTBaJeedUYDpG5pVvhYocG188s5779xfx2NwfZCKazmrXhKyOT+ftUeKxYDqUjkoSEExWYps2Hf1OHWbSKYXxvjC9O33s2zDCun918eLf2vn3/22nf4+fe7+/id5dPjIpmcBYnPIZOSw8vwrXq7SZJquB065rYs7pZboByTFmOJjg/i0DCMIhrltRoNJtpcRtIZzIoGowHEqyYzAbZ7hnfT++SPLg494mWibD5F/+guh0kHfjjXg+cA3+u+8muXvPu277FQorXYx2BVEyGpqmMd4bpmlJ8aFWc3XeB8TDKYY7g4z2hEjFs4YQggCzTivDNxBh9T872PpkHy/e05Y1FX2TFIOO8QgjwSR5q1chaip5n/oU3uuuxb32WT5blKLUY6WhyInlOJjPyP4kyX1+JM/rPOMVPZ/iSOCymvja/bv4yP4chldoKXHhj6VxWIzZi/A1qOE0trjMZ1bWMhk7ECdoKnISTGQYj6RJZBT+vK6PilzbVNHWz51WR32Bk3NnFvKN82eQ7zRTk2/n9mvnH6TNfjPkjIKiTDdXM5okzDYDiqxhshpJRjOM94TY/HgvO54dIJ3Q12h1Dk107VrSnZ3kfuyj5H7so6gd7Zwa6SGaVsivcLD8ijomh6Noqoaa0WhbM8Q9l86dOn4wkKDHd7CG4bTGfDrGsjq0y+aVsn0ggM0kTeUN7RkOs6QmZ1pOnctqwGQQsBolRkIJTtlv0KMBhxogCGQNIKJrhmjQROaUu/mvB3czEUmhqBqP7BjhxfYJZpV5kFWVx3aN8utnO0jLx58mWWc6XrsFx0tPI4wNIkoinkIbZ328mfwKJ2M9YZ7+w17UQBolkKFBlpjhtpGSVaIpme8+2sqGHv8R6ZeakQ+9PqXnPuocgqScRFIEDEYToqaCZMIoGal2VQOwpHgJRfYiAGIWmUTkVdpdR2H2Z3TisPXn5e5JNA1W1E/PXfbYTJTnWNk7HH6dI3V0dHR0dA5wJC3Sv/Kq/1uAK4A3nMkKgvAH4EJgXNO0mfu3fRv4JPDKU/S/NE17/LD39ghS4nXgj8n84Il9/OKaufRPxjBIIkUuC8OB+Js38Ab4Iin6/Qe3MRpKEEzI/HRVGz+5ajYFZgvmMo1kLIOcVpEMAnavlVgkgzP39YXC6eER7CtW4PvtHaAoiA4HeTffjDw+jlRVNbVfNCXjMBsIv0ZQbjaI+GNpUrLKl89qIM9hJq0oKKqGa1ER0Vc5AooOI6Lj+Kzq+X7l9MYC/v7JJewZDnN2cyGBeIZkRuH3H15Ijy9GudfKNYvKCMYz3HnDAnon4xQ4TJzTUshoKMlvPjSfAX8ch8XA72oW0O+P8eMrZzMSSmCUxKl2/vv8GfhiKYYCCSYkjbBLwlVgJTyeYNGF1XRsHiO4PsEiUaB7uw+L3cDAlgkWnl/Flid6gaxRSSyUYvU/2nHmWrjgtDIMNgM1pzWxZiLENYvKue2FLlq8EnXP/xv3+BDR7dsBMNfX4zj9dHy/+x3IMk67jYt+/DP+lGNlLJSiKteGEJVZWuwmI40iGETUaLaSaGK3D/viQqJrDrgWC04TEZeRP3xkEQP+OC6rkTllHqp0B9XjAiUSQZAMxLdswWD18uIjPiL+bFA4FZd56s7dXP2NReQespqeSm6pnWRMzt5LjSL55S60oxjw7/XFiKZkbGaJlQ155DvNOC0GqlwWbAYLoUe7p/YVjCKi3YCWUohtHsexrJTO8ehBbXaMR7AZJWryHbzYfmDS+u1H9vKDy2Zy1YJyfNEUZTlWMrKKrMK3LmpmPJxkboWXlQ35R+Xc3++EEmn+49xGkhkFURCyhg5/28rvrpuPQRR5YtcIf7x+ARNPDeOpdrPpsZ5px3duGqduXgHJuJyNzgpQUOnCVeHAIInMLnOzZ3i/0ZJR5KwZhTgtRp7fN85VC8sxHirJA5CDQXy3307gz3cDYCgooOCLX2Tshz8ETSO+aSOOFcuP6Gejc+wRJAHb/ALimw4kSEg5FiSLgW9d1EwirdBc7MJpNZCWFbYPBNjSF5za1ySJyK+6l3b7Yix5l2Z9h5NUMsNId4hEJINkEAiOJ1l0YTWbH+vBbDfizLWw9JJackvt04TNb4QSjxN9aTW+224HVUV0ucj/7GeZuOMOvB/8EJbGhjdvROd1SXV3E33ueXI//Wl8t96KGo2CJCEYTVhqaxGtby9Z0ltkp25BAQWVTkZ7QxjMEjkOA5Z6D8m9k/tXvQARzDUeVrhF8p0tbO8PMrPENa3CxSt897FWfnH1XFpHI4QTaZqKXFgMIokcO58/ox6v3Yg/luarZzdS6rWS5zAhKxqn1OdTX+jAZdXnTjoHk+zoJP9zN+O77XaUYBAEAe8HPoA55ee8G2fSvdVHSb0HhOw6mMVmJB5KQZnzqPUxnMhw7+aBqd8jSZnBQAJNg1Mb83GYDNx+7XyGgglOay7EaRb4xvktTEaTXLWgjIVVOYyEEpTn2ChwmLlrTc9B7/HYzlHOmFHAB10WEhklG2+wGVBfVbXVvqiI0bRMKpTUTX2OMmo4THrN45z6ga/S1RbHbDPQs30CV66Vnc8P0ryihIg/ydYn+5h1WimWuExXRKGwyoXD++bmhwOHiJMNBRM4LAb2jIQo8R6ZhPnDiRLPII/FUeMyhjwL4n5xvLHIRuS5AdwXVJPY86rnj5C9pnWOPLLPh6WyguCdv+bkm77P2HhWpB0aTzDRH2HppbV0bBqlcmYe0bEEBS4jWsEbP7PTikL72MGGUL5oCrfNyEAgwa7BEFW5x0dcSYllyIzG0FIKos2wX+WTfU20SBiL7WRGDgiOLM25qJHMoRvTOSzsGQqT4zDitRv45TVz6ffHyS1xoOVZkX0HktpscwtQ4jI7RsKsaCkkmVEY9Mcoz53+HIxHUgzuCxDxp5AkgfZt48w7q4Itq/pw5VnILXGw5OIa7B4TFtvhH5OqiQSxNasPWpPw3XYbqc5OrC0th/09dU4cLPUews+KIB8Q2jpPLj20OclRIDCZ4PqaQkqsFiQM7Fs/SmQyCQK0rCghGUwh7zg4iV32JxFdJlSHgfBI9h6pafCjJ1uZX+nFrc/3TnjiwyM4Tz2V6DMPcv6Nn6Nn1yS18/PJKbaTTmaFrkP7Anz7tHpufHjXtGNlReX/PdrKSTW570nzb03TkMfjKLEMosWAGst+B8w1biIvZOeKiT2TOFeUEn7mQAKqYJEwHcW5q857l4qWXGxuE52bxsikFRZfWIUgiqTi2bU/g0nE4nUQCGkUFx7r3uq8E9x5Vtx5WXOwgVY/ArD0klq2PtVHPJxm7lnVCEVVWEULG/7RjSKr2Jwm/MPZeUzdggI0TePJO3YjCDD37AoKq1xIBpGcYjuuvOM/rvB2GQ4m2DU0XWycklXsZgnBakBym1BC6anXbAsLyWjqa5vROQSCSThonmxtyUXTIP6qz1RH5/1IZnwM99lnMXHrb9ASCTAaybvxU6RHRjBVvHm1V4fXgmQQue+Hm6dtD08kCI7FMZolUlEZFQ1NyyZtGizHr8HCcChJOJnBbTUyEZ1ugGXQzfjeEb2TcRqdFgSrAS3x6vWhQtRUBHl8/Bj27p2TjGfwD0WJhzPIGYUN/+4mGkjh8JpZekkNa//VSSapEJlMIBkEnvzdbpZdXkMmpdK3e5Kx3jALz6ti38sjRPwpZiwrpqjWfaxPSwdoHYkwr9yDIdeKYBTRMgfGW7a5BQzGUoylVUyH0KR4bEbS8rsfn8m+ScwVlUzeeefUd8R18cXIvsOXBJdOyORXuJD3n58r30oqoRwyyVjnvU1gNMaqu/bg2292XzU7j1M+0IAr30pxnRv/UJTFF1WjyBqSQaBj0xg18/LJe4P4kKxonF9uITeTR+CeVWT2m5s5TlvJDEuab5w/mxfbxjmlPp/KY6znFgxC1mBb0bA0ekm2BaZeM5U7QTeGOuxomkb7WITBYIKX2if4+nlNZBQVl9VIvsPMQCDOOl+Ei5YWk1h3QOdlyLOixDJIAlxQ6mVrJM7vrl+AxSjROR7hu4+1TnufzT1+fnf9AuxmiYYiF3azAbvZwCdPqeHSeSUYJRGP7ZCWlYckGcswsHeSHc8NYnEYmXdWBcV1HkRRQNVU8soc0zTtueVO3IV21t3fSX65g7KmnMP2Geq8d1BCIdK9fYQffQwAy5w5VMzL0G2XmH16GYlYhom+CNbm7LVaVOPBJUmc3VjAqrbsGMFqPNjQqanYxefPqKd/Mk5SVvjVB+YRjKdZXpdLU5GTwWCCUo+Vv39yKe1jERRVYyKa4lsP7+W/zp/BD5/cx7cvauaiOSUoioZxQQGZzQfG7YZCG0r4QDwl1RYgXms7qB/PtI7xgUXZQlcC8PCOYb50dgNl3oP31Tl+iIz7MDmdBO/5A0s+9j/Idi+h8QQGk8SO5waZc0Y5Yz0hguNxaucVMEOQ+NcV8/nuy51sHw7z1J5Rzmk5/NopAQH7oqKpNSwA0WZAtOvruToHk5STGGQwWq2gpEHKXidXNV7Fr7b+ig80fQCv2YtJMBKzKiSjr9KL2bMmTMQPn0n+mk4fDrOB2WWeg15rKT6QO6Sjo6Ojo/NGHDETEk3Ttrxm01pBEF58k8P+BNwK3P2a7b/QNO2nh6tvxwINCCZkbrpnK1ajSEbJJnH/5MrZ76pdi0ni4jnF5DktZBQVSRCIphSqcuzYTBK+aJqb/7aNtR9bRjKWYePD3VgcRjJJhYYlRXgL3ziIJogi/j/8Yep3NRrF/8c/Yn9NMrEoCFx/UhW/eb5zaltjoZOqXDtjoQS3Xzefbz60h6FgAqMksPD6RdhCSVxnV5IejCK5TEiutx5Q0Tk6dPlifO2BXRQ4zMyr9PKndT18/vQG/rK+D0XRuHBOCbe90MlHl1fzyM4R+v1xPr68ml8928Elc0t4uWuSDT1+vnR2A79+tpOTanPZOxLhsZ3DfP28GfxsVTtLqnNY2+HjhY4JvnJ2I0/vHSMpK3hPyqUZiYgvSWAkTsvJJbRvHMNsM2C0HAhaaBqIBgG7x0zruhHMNkO2ysUDXahqNgNi5aICAkaRZy7IxxvxM/6lO5BXrMA8o4nM4CCu885j4tZbQc0ubKixOMH//i9uv+2PfGejn/kuG7U7R9G6+7AvKSa2fgTBkr19KoEUsj+J66xK0sNRKLLxsqjw9X9sJcdu5LfXLaC5RF+oO15Q4glSY2MkW1tJ9/TAlVVENk2vAqAqGmFf8pAmJHJGJRpIsfWpfqyOrGv07DPK8BYfvQUJZf91Go6lOX9WCf/xr534Y2mcZgPrP7QQ93lVpEdiCAYRY76VyItZsydDngXBLB0yeL1rMMRXzmnkdy91M7PUNe21rz+4mysXlLFnOEjrSBSTJPKnjy7EYpCIpxViKRnzIQKJOocfu8XIjX/dOG2b12bEbJSIp2VsZgN9Q1H8e/0UVroOJCTux+E1o6oau14YJB5KIxoECipctBRY6ByPcM3Ccp7YPcrMEhc3n1ZHly+GomqcVJuDP5ai0HVoUWVy954pAxIAeXyc8KpV2JcvI7ZmLYaCgsP+Wegcf4gWA2jgOrOC9FAUQ44FwWIgkpT53mN7Oa2pkNllbqLJDA9sG2Y8PP3e+8ElFTy154CBifcIJLK9G4b2BXnmj3tR5ewXq2ZuPv7hGFWz88gkFXJK7PTsmKB5RfFbbjPV0YHv1lunflfDYfx/+QveK68k2bpXNyF5l6S6uvBcfTX+P/4xa0ACoChM/OIX2Jctwzpr5ttqz2I3Mv/cSh7+v22suKaezs0TmEwCZeEU7vOrSQ9GEUQBY4kdOSkTlzW+9fAeVtTl0u2LHfL5W+SyMBxMEIylmVHiZE6phx891crTrWNEkwqyqnH+rCKuWVDGqU16xoPOm6NmMkguFxO//33WgARA0wj8/e84zj8PxW3HVWAhEc6w8dEe0ECUBOadU0FeuQO76+gkt5mNIrX5DromssL7NZ0+vnZeE99/vJW/bujHZpJwW4zc/fHF1BdOFxDd+mw7dosRr9XMbS90cnZzMTX5dp5vmy58K/VaaShy8dm/bUXT4JKrF+I4uRQlmEaJpjGVOshMxDE0uLGZ9LHs0SYzOkps9RqEi2/CZDESj6Tp3+OneUUJkkHE5jKxd80wSy+tYefzg1MJGTnFNs77zGw8BW8sCjipNpeuiShzyj2kZBWLQcJiFLnjxW7OPQKLzYcbJZYh9Fg38a37hRSSQN7HZyJ5TGhpFcFqIPrySPb5M5R9xtnmFmCqcL1BqzqHCw0Ir1pFau9eDJk4NpeHwGjW+Ca/wpmt2HdSMZuf6CUVywrb8yudVBc4XjdRzW42cv3SSvyxNKqWLa4lqxpOs4GHtg8BEE8dH1Wq5HCK4ENdWRM2wFjpxL6shNjarBAv2RbAOi8fc50H2ZfAWGRHiaYPXRVG57BR4LZgMggE4zJfuW8HdpMBomlumJePllCQJxMYSxwo/iSiUWRJkRunxUg8LfNCu4+TajXqCrLP3GQ8w8aHe9izOvs3FUWBpZfVsuulIRoWFSKnVTIpBd9ghLrFtUfkfFKdnUz8/BdTv6vRKP4//AHvNVeT2LEDS0MDgvH4mjPqHD1MZU7yPzmT+LYJ1FgGU7mTyAuDCEYRa9PRNTMN+xJsuqedyaEofpPELk1j4flVrL2vEzTYs3qYM29oQsyzgm96lXvJbgRZRW70coUze9+/a3U3/ljmsCSM6Bx7TGgM/eH3iCXlCJpGKi5TNTOX9Q93ExrPXg/OXDMnXV7H9y+ZyWg0iSQIhJMZzAaRUOK9ey2ke0JM/GEPolnCcVLxlNGIEk0juc0owRRaUiHVHcJ1bhWZ0RiGXAvWljyMRceHKZvOiU0smOLFe9qmihQKokB4IsH2Zw4IiBeeV4m3+L1nNPF+o6TOw6VfnMdEf4SubWPEw2kqmnOYHIwx0OpnwXlVKPvvta/oChAgp8TOxkeyprfzzq6kZ8cE257K3qtsLhMX3TLnDZPeTkTsZgN2k0QsPb0irNkgImsa9kVFqHEZOZjEVOokM5kgqmp4j1F/TyhUBXO998A8udiOEkkTDCSJpzWSsTQWu66V0nmfksngu/23WQOSV37/7R1ULFz4lptQZJVk7GDzW4NFIjqZYuNjPVPru9Vz8sgrOX7Hk3aTgc29AT66vIofP9U2tb0q10ZFjp4o904wSiLJpIzzlDKUYBIlmsFU5iTji5Ne9wimipJj3cW3TTKW4eUHu9i7v1iaKAmcdGktmx7rIRpI0bd3kpJ6D8MdQVJxGZPFQCyYJh7OsOWJPpZeWsNYT5jNT/Ry+vVNuPJsFFbrawvHCyvqc3mhbQI1o+A6s4LMRAItpWSvW3+CMa+IzW6ixGOlwGlmPJI1LBIE+NCSCtxvI6H99dAECD/11DSTnvDDD+M45eR33fYrSAaRtg1ZI19REhAlgRVX1ZNOyBh0DeL7Bk3TaF03MmVAAtC700ft3HyalhUjigKuPCubn+jFbDWQjGVYcnEN6cQbr5d5bEZObi4m8ef7pwxIAKLPv4B95Wl85f6dfPLkGrb2B1lWd2wL7xlyrLjPqkAJp5E8Zpwry8mMxTDk20DVECV9be1w0zYaJpzMjh23DQTZNhDEJInYTRJXLy7njhe7ue3a+QzlilQ5K0n3R7IaSLNE5PkBPJfU4vp7B2deXkfRft3Bpl7/VIzpFZpLXJz8OoUd34npdN/uSZ75496p3/v3+Ln8K/MpqnGjZDQikym2PZ3VtCeiGeaeWU5xXTZvITAW101IdA6JMuEjuXv31O/JHTuwL1+Ou1LEYjPSuXWC5uXFbH26n+hkdsxRUOHk4+eVsaptnCvml1Kbf+j5VX2h8yC916GYX+ll0B/jmdZxPraiimRG4TsXt/Cjp/Zx06m12E1GHrSonH52OTkjCYz5VlA0Iq8qgp3JMZNWDl5LKfNY+cfGASpzbfz86jn8YW0vY6EkpR4rgqDfX49XTGYzoW3bSO3ejU2JkLIV0LZ+lPIZOZgsEoIAyZhMzdx8Njx8oGjvZ88t56eySn3BkYnZinYjSiSF65z9uY8OE5LHNJV7pqPzapJKEkkGs9W234QkO0+7dsa1XNN4DQYxm4eYZ8kjbgmRjL6qwLTFk/2ZCB62/qzvmmRJdc4hixG3lLh4cs8o4WQGl0XX4Ojo6OjovD5HzIREEIRXz1hFYCHwhkp/TdNeEgSh6kj16VhikkSuW1rBjsEQlbk2NA16fDFyHW8t8KuqGr2TMSJJmVKPlTynGcgGI1bU5/OvLYM0FrlQNej3xzh/ZhElHiv/e3ELt/xjG6qqMdwRYOV1TQRGY1gdJjRNm6q29XrIfv/B28bGDiTy7ae+yMmqvaP8xzmNjEdSuKwGTqrJRRA0SjxW/vOB3QwFs4uGGUVjz2CIigoXocd7MORZSfeHMRbbsTToMoXjhVha5gePtdI3GeeqBeX8dFUbTUVO9o2GaR2J8MWzGvjlsx3k2E3EUjIbe/x85tRa/u+ZdhRNw20z8dcN/Vy3pILfvtCNP56modDJz59u59yZRdy3ZZChYIKqPDsPbMsmVPx0VRvntBRRX+Dglr9v55q5pcztzgYubC4TwbE4NpeJmnn5DLYGCE0k9jv4ZrLVBYH6RYVsf7r/gFAICHWHOWtxJZn77yd+6nk47/gn/okMMcVCzqnXoKoTB00ClUAAcyTIp06upn40hTqRRAYMXguusyqQPBakAivKeILkXj/JziC2jzTzj14f924ZJJqSiaZkvvPoXu66YSEOfVB+zNE0jfDDDyOHwyS2bwNAigUwWfMOWpywv44pkpxSifiTLL6wimgghafQhsVhRJFV5LSC4QgnMA4HE9y3ZZCL55Qws9TDJ/+6BX8sm5DXUuQkvHMCR74d66w8ouuGiW/en9BvEHCfXYVokphV6mZBpYctfcHsS6LAp1fWMq/cQ32Bk2gqw6o9Y0zub3dGkYMzmgoocluYV57m3zuGyCgaQ6EEI6EEV8wvO6LnrHOAGUUuzp1ZyJO7Dxg1fPviFjonovzmuS5+fvUcjEkVrdhOPJymdn4+qqqRV5o11LE4jPTvmSQeSjNrZRlmm4F4OI0Sl/EHVHK9Fs5sLmR5XR7f/PduxsLZ+6/VKPGLa+Zw7sxDC24zw0MHbUvu3o33Qx8k3dePobAQ2efDkJd3BD4VneMFwSxiKLIRfrIXY56VdF8YY4ULSmycNaOIhdVe0orKD5/Yx+LqHL545iz2DIfpnYxTlWvjX1sG6ZrIji/nlnuYVeo5pucTGI0x3BEkFkpTWO0kEUmx9OIa2jaOMTkYpXv7BEsursFkkxjpDKKqGgajhJxWMb9Fbbo8MnLQtszgIJaZLfjv/gu2xYsxlZx4wqfjAXlyktADD+C+4grksbGDXs+Mjb5tExLImpHlljro3TmJyWrA7bFgzrEQfLALyZWdX6V6QjgvqaU8pfCvy+cx3hPGFVCpKnDjW1hKsTsrEtw+EOCK+eV4bUaK3RZmFLtwWIxcs6iCilw7E5EUeQ4z4XgGl81E+1iEqlwbJoMuutF5feSJCbRkgnR398EvJpOkjApWh4l193fhzrey5OIaEpE0wbE4Q/uClM/Iweo88oJ3s0HiMytrWd3hI5HJGu48t2+Mv35iCXuHwzjMBhZWeaeSoV9BVTWW1+dz8z3buHhuCZ88uZahQJwFlTm0DodZUJWDIGTHzHUFDvaOhKfEHlERbK1+5EAK0WYg2TaJ55I6BgIJvBIUe/TEoqOFkkyS2LoN0enEP5HCletkqCNITomdZCxDfqWTsC+Bp9BGcDyBw2OmpN5NXrkTV56Vjk1jGIwipQ1e8iudhxQHzCxxUeC08LNV7ZzVXEhzsYtyr5VTG3JpeAtCh2NNZjh6wIAEQNEIPNBB7odbkMfjSDlmQg93E3qsB0OuBXOTF1O5E0EXoh0V1GiU5M5dAMTDGTSbhmQQUWSV/AoH8VCaobYAAgIFVU4yKYXyphyC43GGOwIEJ5IUVrkoqnFjdWRjRbGkTF2Bg0/evQVJFLhifikem5HaAgdem4lwIsOMkuNDCJ4Zjk0ZkABk+iKYypzkXN+MPJ4VRooWicm/78PgNJHqDCLlWXGd9ubVa3XeOfUFDp5tHWNpTQ6XzS2hIteOZBCJWA2I64aRnCaSHUHM1S4ywzFOcZlYn8zgi6Z4as8Y5V4b3ozAUHuARCRDaaMXZ66FjY9mE3W2P9NPzdx8HB4z/uEYSkbF7rGgpFQ4ArfVQ43h5fFxLM3NjN/6G6zz52Ntajr8b6xzwqApkNznRzCKJHZlqwAFHujEdLMDyWU+Kn2IJDP0tfupaM6hpN6DnFbIr3BmkyaurqNnxyRDbQHiMZnipcVkuoJT1WvFHAtihRNfoYUb7t9GMJ4h127i5tPqkUTIdx6dc9A5smixKPL4BLYzLyIVkylt8OIbihIaT2CySpx8TT2puMJYT5jmUjtWp0B3OIFBFNE0uH5pJUXu9948RY1nCDzcBbKKKqsk2wK4zq1Ck1UMeVYsjTn472kFDVLdIRDBe00ThqMwV9V57xDyJRjpCBKaSFBU46aoxoX5VabXg/umJ4coskbbhlHmn1uJxW4gEcmwZ+0wJfV6kYkTHckoUlLrwhyf4OXubDXBgioXmx/vzb4uCdlSqFrWfM9gFBFEYSqZ3WSR0FRtyngSIB5O07vTR26Jg3RKJjSRQJJEkrEMwx1BLA4jpQ1eco5iAYvDQUWOjf+5sJn/fGDX1LZzWgr597ZhTjm5lsxAmMxgDMlpJNwewH1utW42+RbRlBRaRiG+fQKDOztPtp9UjNFuRFIzJCIZ3YRE532LEg4fpD9ElpH9gbfcht1tZtbKUrY+eSDJWBQFrHYTa+/rpGlpMZ5CK4qsIgoik8NxRrq7Kan3UljlxGg+YtLZt02p18qsMg+JtMJ/npvVXzrMBtxWI9X5BxdR0nlz7CYJxSAivzyCEkpn14f2+fFcWktya5JUR8ex7uJBRCYTDHeGCIzFKax04s63kkmrOHPM2FxmQr4E7RtGp/ZXFY0dzw1Qv6iQPauHmeiLUL+okOGOIPkVTjq3joMA0v5ko77dfopr3Qy1B7G5zRTX6mPe44lgXObezYN89UPFxF4cBEVDMEkk2/y4L6vHahZoLHTR4xvhEydXE0rIJDMKBU4zM0tc2A/DPS27BrLzoO1v5978ZoQnE8w8pYRUXEbOqLhyrYx0BSnW52DvK+S0Sv+eyYO2j3SHaFpWjGQQsTiNLLu8jshkEk+hlZHuEGWNb5xjUJVrx+QbJ7Fjx0GvZfp6uWrBeURTMk6Lge6JKNGkTFmOjZxjMCYXRAHb4iJSgxHSXSGi64Yw5FhIdYewzsxDMxycKKrzzukYi+CPZdg5GOKs5kKiSZnF1dlUp5p8Oz98Yh8emxEBjRfHwlhddlyhFOm+MGpcxlBsQ55MgqKhPtmLXOfF4DZzwexi/r6xH180q7f22IxcseDwaapTiQxbn+qbtk3TNELjcUSDgLJ/3eEVTbvdYyY8kUDbnxLh8B6dYkQ6Jx6v5FG8muSuXeQtvYKwP0lZo4ewL0nT0mLySh1sW9XPWG+Y2rDMXTcsYHa557DkxgyHkgwHE5iMEgOBON0TMW6/dgGSAL2TMYYVhclcM56uMFKul9D+olsAosPINiv0TcaZWeKiLMdGQ6EDAagvdPDle3eSklV+cuVsPntaHTfds5U7rl/A3Ao9X+14RYiESWzfDoCsCox2BckpthMcj1M5M5fJ4Rh1CwoOui/69wb52aXNWEWRwFiM8ESC0e4w7nwrJfWe1y0Y9NY7BqYqN8F/d2DItZHuDyN5LLjPrXx37eq859A0jYScQMxomKw2UFIgHrhXvmJAApBj8TJpCpCMhg80YPVkfyaDh6U/k9EU3b4YVy8qP+Trzfu1aO2jERZW6aZlOjo6Ojqvz5FcSdnC1BAfGegFPv4O27pZEIQbgM3AlzVNO3wRzaNEXaGTPn+cB7cN8e/twxhEgQ8vq6T4NZWGNUVFTStI1gMDjURa5rGdI4yEk6RkFZtRYkVdLrPLvaRllcFAgmAiwy+f7UAQ4KLZJUxEs4nDZzcX8uBnlkFMpXZeAd3bJ6ialUsmpaCkNYyWNw5SGXJzMNXV4TrvXLSMjCAIRNasQfJ4pu1X5LJw82n17BkJUZlrpSLXwYwiJ90TUSIpme0DwWn721WN2IZRXGdUoCkqgigiT8RR9gdhdI49wVianUMhvry8lvkWC3deOAuP1cjYZJyrryzCJGs0ntuC127CH0hy1pVzMSsCM09vIsdhIh7J8OfL52IXRJa47HjdFrSEwh8vm4PLYGBwMk7OSTUYMho/Oq2RvdE44XiGF3v8hOIZPraimmf3jnFydQH+kVjWsp2ssMdiN+IusNK5eYzFF9fgH47iLshODs02I/Fw9joyWSQWnFdFcCxOJCqyTTqD0nEbg20BAiNxIITRInH6Bxdjv+gSYo89AoD7ssswlpWRUlVmmSQM4wleqVOYbA+QbA9gqnEzeU4F7piMRYM96Qxf/fsWWvId/GBlI6Fwiq5Eit9u6sMfz+gmJMcBmYFBxn78Y6zz52NbvAT70pMw2uCUi4p49v4htP3GNYsvrsFbfOgqIoIgUFTpxO40Y7YZkDMqwx0BYsE0nVvGWXxhDQ7vkROJh5MZntozxhkzCgglM0zsr2gA0Oi1QXeY0JYJBLOEfVEhlmo3gsWAqcqFab8RRYnHym8+NJ89w2EiSZn6QgdNRS4kUWBFfdYkorHIRetIGFEQGArG+dK9O0hkFMq8Vn5w2Wx+91IXm3qDXH9SJb5Y8oidr850ch1m/t8ls/jgokr8sRSlXitto2FW7R1nNJxkx0CAErOJhRdUERiO4y6wMNEfZdPjvaBB1excimrcnPXRGRgNIuFgiog/Qc8OH5WzcrHb4Y+bBqgscEwZkAAkMgoPbh1iQb6TVCCNwSThcmjQ34WmKhgrKrL36Fepdq3z52Gqq8NpMJLYtg3RYsGxYsUx+NR0jhZqQiGxeSw7tpOzY7vMeJzRoQiRVAaXxYDNKPGti1poKXHhsZmoysvel1RVoyrPzsVzS3FaDDSXuCg+hkkWwbE46//dRf9uP+WNXny9YYoaPOx7eYSTLq0lGcsQDaSwOAwYTBKFVW46t4xTNTuPwGiM0EQcySihqSpOjxm799DnYiwrI+9zN6NlskZYoQf+hWCxEt+yFUtDA/EtW3UTkndIYudOTDW1JPfswVBcDIKA59JL0VQVwSBhfBufazyaJh5MkUkqyBkFQRJIxWVK6z0oCZnQ8/04TylFI6tXV9MKkYEISZMBf1uARChFT88wVXPyuGZFCR+5bxuRlMyFs4vJc5gYCSaQDAIFLgsOi5EFlV7sZgOd4xFkVcNa6OCfmwb419ZBPri4gpPr8nDZjMyv8B7SmVrn/Y0SCJAZGcXcUI+xuATL7FkI1Q2ozfNJSAbSQ3FMFokZJxVT3pKDfySG2WLAbBQZaPUTD6WYdVo50lEQs8yr8PLvzy6nbSyMSZJoLnFRnmNjWe3BpmXBeJp9o2F2DYa5f2s/X7+giUA8g1ESOLUhn6FAgoYiF7e90IWiasyr8LCiLo/frzlg9hQej+EqtGFpzMneC6R8Is8PkllewHhY/y4dTUSjEduiRbi/9k2EtJfgWILh9iArrqpny1O9zD+rAk2DohoXdruRwioXfbt9SKLIs39qxWwzUFTjpnv7BMuvrKeoxk0qniEwGkdOK3gKbYzEkvxtYz83raxlS1+AXz7bgSjABxdXHBMB2dtFCR8cG1N8SQSjhG1OAVomW/VO9iWQHCaMJXYkux5zOFqIdju2pUuwf/oWQmIBqYEo/pEYqqJSNTuPeDiNIEDNzFySKRlBFJkcjrLxkR40TaNpaTGTgxHSiQxqoYU9k1E29/qJphSMksDNp9fxm+e78MfSuK1Gvnp2Aw2FTlpKjg/xrRo5+PqMbRjBuaIUW0sukF1Uz//4LDLjcUSThLHEgcGjJ9QfSWrzHfiiKYIJGaNB5FfPdWAzSsy8YjYLLqlFHotjlUTkiQTRNUOYFxZSVuSlWjXQMLeCPEFi3QOdGIwSw51BkrEMp1zTwNkfb6F17Qh9uyexu0w4cy0oisbeNcPMPr2caCCJbzCK2SpNjYezMVwNTd0fKgCMZgOeAuu05N83wlBaSt7Nn0WTFQRJJPTQv9EUheS+fVjq64mtW6ebkLwP0BSNjC+OGkojukwY860I++dAajSNEkxN218Np1ET8hExIdE0LbvG4E9ic5lImEUe3j7ERSVedjzRT2gigSgKlDZ6aVpWxObH+yiuddNycgnOHDNj0TTWa6qxJATiikoq18Lzvgh/Xt9HMJ5Ncp6MpYmmMnx8RdVh77/OsUF0OjHNmIHzlJMYjGWwe7JG+y0nl9B8UhFdW8YZ7g5j95oZ6wkx45RSTMikrQIFpQ6q8x1I78HkbjmSRh47kMyfHoiQHojgvaYB+9wCNEWj4LNzyUwkEK37xxG6AYnO2yAaSPLU73YjCODIsdC6bpi5Z1Yw54zyKRNLk8VA7fx8ckoc/5+9swyQ67rv9nNp5g7PLDPvipllliyZYozj2OHE4YapbdKmfZukSZum4TbcsBPHdmLHzLZkWxYzrJYZZod5LrwfZj2r1a4dgyTL9jyfds7cOffembPnnvOH3x/MXGXhddc189SfOkgnNFSnwjnXt4DxwsVcCpz9mKZJcu9eYr+5hcrmGxk8ngvmfc6l1bVvnCUbatn3SD8Hnhhg7bXNdO8dxz5ZrMLusRKZSOb7K6p0MG99JSPdYY5uG+HYthFGu8OsvrKRp+/ozB/nLbdx+UcW4ypRkV9AVNrI5saY+BKrvUcDKcJjCWSrhK/CjtX2ym0CgiBw9bIqWstd9EzEKXVZKXerHB6KkAqkUVQF5/oqTMPAJovEd4zgrm15xed9I2AkDTR/EtdFtUgOGdOE5O4xhHIHx7aNYLUr+CpeW6I1BQqcKiSvF6W1Fc+mTXkfXuTBB5FLil90H4IosPD8GmRF4tCWIVxFVtZc3YQgwporG4mFMoiigKvYxrFtw/Tsfy7ZuYfN719A68ry03Nzs2AaJkZaQ1Tl5628vXl+Oe2jUUYjCiVOC167hcXVXsrdheTRl4NLldAHUqhVTqR5VkzTRBAFoo/241x/PlpgEFPTEOSXHkJt6iZGZur3zKY1giMJ0gkNT6ntJSe5maZJLJTm2bu7OfbMlMjIgvOqGO4Mo2V01r+5haPbRlhycR3RiSTt23NCvrnYhdz6pbzRTTqZZe3VTXTvGwcTlmyspWvvOACyIpJNa0iyiNMz04aiZXVCo4lcfKZTQUvrIAhIikgmoaE6ZFLxLBZVJpvRkWQR08zZAkVJwNBMJEUkm9GxqDKZZBarXSGdyOL0qXjL7YXK8y/AoeEIHpvCxNEJfPOKEW0Spplbq8WfGqTimiY8doVN88vpGIsxEEhgIjCnwsWCUyRkLrrc2Netw9rUiFxSilxRQ2LHtpc0N/8tvOV2OneNUdbgxmKDiaEY1W2+M+KjLnD2IFtEGhaVMDEYz7e5ilWalpZg6AaiLBAPplEUCdkiEQumKatzYpFFTN2cVpwhFc8SGIqRiuf29J6iUlLnnYeoyEhuD0giqUOHUZqasFklOkfjvGNtPZd+ZwsZ3WBuhYvv3riUSo+NQ0Nh2kdjyJJAa5mT5bU+5NM4NiWbgqTIZIZiuC6qxcwaCLJIuieCGcuetvO+0eidiPO+X+7g3ec0UOSw0FzqZG9/iO8+khMk2zS/jMsmi/+mNRPdMOmzizRurKE4oiEkNPRohtjWXLE+I5rFSGrgsTK3ws1tH16fL5Izr9JF0ykUkBNFEcU63W6w+k0NTAzFSSd1DMPAXapy7JkRhjvDADQvL8XEpGlZKWV1LmKBFKGxBLJl0o7wIv11BV7f2FetRqmpQZmMrcwODKDUN1DmU0lbNPyDMSx2GVESOb5rlPOua2aoN0wqkOHiC2ZPZn+pRJIZDg9H+MPOfiJJjWKHhY9e1MxwJEk4niWrG1y+sII5skK8M0y2P4bz3CoQhZxfutrJZ363nbRm8N83LOH3z/Zx/8ERRAGuX1HDhrll3HdwhERGZzSSYjSa5vhYjHmVbqwv0R5X4MwgetzYN25Afe8nyKQMXB1hXF4r2+/vYeH51dhcFjJJjZWXNdC1b5yIP8XqKxuxqDJP/+IoFlWmaWkJex/uz/dZWufi8o8uwmKVsdheXvqsmdKJPt6He0N9PvdRD6fRA2loPlV3X+D1QFrPxTCIGROL3QZ6FKTZn7vF9hIGLcdJRMJTjepkbFgydEquZ3dfrp8V9bOLL7WU5dYsXePxgghJgQIFChR4QU65CIkgCKuAftM0Gydfvxt4MzkRksMvo8v/Bb5CLl71K8C3gPc9z7k/CHwQoK7u7KquaBgm9x8c4cBgLrBBM0x+vrWHC9pKmTd5TGYoRuypITJ9EWyLS3EsL0MutrF3IMSBoQi/fqYHALsi4bEpNJQ4MTDpm0iwpMbLmsZiBAGiKY3RSC4p3KpILK3z4R+I4B+MY3MpPPH7dgBUp0JZ/d8oVagoeK66ivHvfhd0HcFqpfKrX0F0zHSCl3tUyj3TnV6yKCAJOWPc8bGp6gWDms7ytE7kwRNUCGUB50WnZlP6WuNsHLtum8L3L1nA8T91MV6bxF1iY/vWIdZf18z+27tRnQq184rYdUsnKy9voOOpfrSMwbz1lez80zEWXlDN6PZxjo8mWHlZA8/+up3m5WWkYlmOHQ2y7rpmdtzSiSAKbHpTIxcOpTCD8OHljeyzCxyKJLluRQ0ttcVE+uIEh+NUNnsY7gyz674eFpxfjfciBxPoDNWrVNa4qFteQngsQUmNE/9AjKUX17Hrvh7K6t0cmxghMKl+mRMggcYlJRRXO9n54CBq1Q0s+sY1eALtRG6/jfgz2yj91Epiv25HPW+mKnG82sFtneNsmFvKfz90nL39IS5rK+My0c7unx8FwOqQ+eH1C/CcgsCfs5mzcfzOhpFIYCYSJLZupfjnP2PkX/8f2f5+pLo/ceXHv0impB5npZeiSses1U5MzcBnGFiOBzFTGurcYg52himfW0RxtcnWWzuoavUyd23labuHCrfKvEoXjxwZ44PnNeG1K/lA9Sf6g7y7uQrLzjHMtE5s6xAA7s31xJ8eQr6sEWkyWLfCY3vBKoqNJQ4aSxzs6w/x4d/uyrcPBJN8/9HjLKjykNED/HxrN0tqPaQ1HesLBNGdrbxWxu6JlLisXDCnFIDbdvWzpz/M8jovh4cijMcybG2f4MPFxRx+cpAlG2vp2DlVQb3vUID1G+vI7B7FHIqh1rpwNXoIJjWOPTPCgvOrubGqhKcziRnnvb6lnHu+vZd4KJdw1rLQRdvwA6Ru/x3WtjYqv/Y1hr/0JTBNlOoqnBdcyNjXv0HJRz/CxM9+jrpgwZn5gt4gnI1jV3JZEFwWIicpTHNNI1s7JlhW62PTvDK8jpkBUqIosKDK86onViYiabr3+Tnw+ADVzR5ueNdc0s8O53YhVonia5p58JdHyCRzoiFLN9XiLbez9+E+ll6c+x3u/M5eFl9UQ3WbD4tNxD8UJ53SKaqc7lw0UikSO3fi/+H/gGEgqCpln/40gmolfNdfsa9YTvrQIbRzz0H2vb6U10/3+DXSaTJdXQiyROrwEUo+8hH0SAT/976HmcmALCOXl6O2tCBYXjiJJRFJEZlIkYxm2f/YAP7+GCsuqUcQBZ75Swcb3z4HpcZF5OG+aZ/zvncBYkeI0ngGoURFuayeZ7YMcfzPPXxrVQv3TIS4c/8w8ypd2BQJSRDwTq4XBUHAYZH57bY+tvfkqrK2ljn5yIXNfO+RDqq9NgaDucD3NY2nLtCnwN/mbJx7TybT1w+iSMnHP074jjuIj0exbFqBmRVIhzKIkoCumbhLbTz226NsvLwBS3uA4mgGcV4xE4LAeG+UijNU9aytwkVbxd+wSQBPtI+R1U1+uqWL957TwGdv3UdGN/jspjYUUQBB4JdP9+SP39MXYk65i4xm5NssPpXEo53T+lWaPdx2bJRLl73+BZ/OpvFrZrOoN7ydWFIhNhpBFAVq5vl49q4uFl5QTTZjMLfNS3L7CMZIHPfcImhwM9wfZd76SkRRoP9oAE+JjYg/idNnZeufjtO5OxdA6ypWWf/uudT4bAQTGZ7tDgAwp8JFpcfGI0fHaC1zMrfCdVaKhWb9CYy0NqPd2uxBck4+KxQJa50ba92pCSg9mzmbxm4ew8D1j/9GUrcwemACb7mDQ1sGKW9wE51I0TzfR7YzDHvHEOwymTYfUq0TX7kDh9fK07d35MVzW1aXY85x0hdIktYMrl9Ry3cfOU4kqeFWZd61rp7xWJpipxV/LH1WJBtIswTPq81e9EQWebKSliAIWKqcWKreuBVaz/TY7RyPsr07QInTyq07B3hTWxkfrSvB98QwcYuMbUEx8e0jaOO5daSt0c3+X7YTC+QCIFpXlVHe6KZz9zjz1lWSjGU48vQwzctKqZnjQ9cMyho9+PujHH1mmPqFxdhdMn/59l5Mw6S6zUvD4hJMQBR4To0EUzfRdQMtbQAmC86v/psV10xNI33kKP4f/Rg0DUFRKPnEx5G8PoJ//CPuTReTeGYb6Q0bsTYUKgudDs6Gudc0TJIHxwnc2g66CaKA7/pW7EvLEEQBudiWG2dTergotU5E9+kRKug9OMEDPzmIljXwltm49NomrutOIR7uZ8M5lfQE09hLbHTtHWfPg30sv7Se/kMBXMUqoz0RGpeUEk5NcFfc5NhwlIUZN7ds7+eyRZW0j3bkz2NTJHomkmzvDlJXZKet3FUIgnwJnA1jdxqSRNnnP0e8cgGehMazd3Wy5opGnBkd7aFeGtM6LWvL6RxPUtXq5YnfHMXQzNz6+C0tuGrODgGyU0lmOEbksT6szV7SHaFp78lFk+sIScBS48JS87f3iq8nzrrx+xomMJygbXWu8ntwJE7T0lJioTTRiVQ+EbRuQRHDnWF23N0NgKfMxrz1laQTub1YKpZl663HuerjC1+1+3itcLaP3dTBg8SffprkA/ey6kfvIuy30n84QOuqctq3j+LvjyGKAue+pRlrOoxTnKDtPa1kdJF4OMOhJwdpW1WeszkIMG99JU/d0YG72IZFlRlsD9Kyooyj26YShdvWVOBwW7j/Jwdxl9hYfkkdFU2eacm2RkYj3REm+ng/JibuC2qxtngRX0Tlen9/lLt/uC/vr2tbU87661pwzJJE/FJRFZnl9T6WnxCQrMoi2lgS7cA4ySlTG1K5nZT1tZskeibHruhSEJ0KZiJLdNcoktOCurCEkUSGhiUlJKMZ0snsKRGTKfDG4Gyfe18KJlDyvvcy8i//mvPhSRJln/ss2F6aeIOrSGXVFY0sOK8K2SJhUWXi4RRRf4qd9/TkfbuLN9TQuKSE7n1+AJ6+vYPqOV7srtMvnpsZiRN/Zph0Vwh1fjGOleUopTOLI1kViUU1Xhad9is687waYzeeNggq4N4+Mq3dOtdH8vCTONatxshmkV6iCElmOEbs6SEyPRFsC0uwLill11ND7H0ol+hmtcu86WNLqGh6cfu60FiCo08P07V3nOJqJ2uvaWb73V0YmsmRp4dZtrmeXff1sP2v3RRVOdh1Xw/z1ldSVOUgMBSnrN5FcDiOu9TGmquacBWrxMNpXMUq9QtTdO0dxz8QAyG3Fn72ri42vncenvLpY1DL6hzeMsTWPx3HNHOCJauvamL3/b1UNHuwqBIDx4Is21zHM3/uZPWbGjnw+GCuWMtwHKtdRlYkEpE03nI7I11hGhaX5O5hUx33/s8BLvnQQhoWzixIcLZzpsZvnc+GP5ZGrXERu2O6X9NybhXd0RT1eChyWFndaGX1aYgXEAyDone9k+T+DgTHQpLHQGm8Gktj6Sk7h64ZJCJZtvwxl/zvKbNR0ejB8iLWwwVeGmfzukEQBOasq2DgaJDRngjLL6knm9Z56rYOKpo9zFlbgd1tYcc93ZgmXHBlA5UxjfStxwg2enCur8JS4SAaSPHkLcfoOZATGnOXqCy8oIby6z9A9NPvQRsYAMB5wQUo1dXc+vAg/3bVAjAho+c2OUdHonzzgWO8/9xGvvTng3T5c8IoK+p9fP6SOaxtOr2xOZLXgjYUJ9Iemvp+LCLSlU2n9bxnM6d67B4aitAfTOKPplEkAU03uXv/VFGbhw6P8dnNbQQTGUqcFr7zcG5+WlTt5ocb5yLe1TndH1HpwMxOidc2lDhoKDk94pKKVWLl5Q3c88P9ADQtKZm0AQg8fUdH3p41d10FilWi73CAzt3jLDivmgvfPpd4MMU9/7t/mk/wnDe34igUkDhtnM1z74nY165h9Gv/TviOPwOgLpiP9I6PolglEuEsex/sR8voXHRVEyuKVPS/dlLb5MGy+NStCfoDSfb0Brn53CY03UCRRP64o59Pbmzlyw8dIpHRscoiT79/HUqlg+xwnOijk+ISAng+vJjPXzKHg4MhtncH2Nmbq3NumHDrzgE+vamNBw6N5HItkrlcC0EQ+PW2Xt65tg5VKaw9TuSsGLu6jvz2jxGfSGONZKjqCmJmDS7ZVEfCqXDfzw+TTesgwOKLalhwrp1oMM2Ou7tJJzTmra/kwOMD+e5sLoU5ayp48vfthP1J5p9TRfPyspdccFh0KiiVzum5j4DtFP4/FHh9kNJyebxCWsdis4OeAWn2GIYiWzFpq0k8FJpqlBSwOCEVmvUzL5VdvUEUSWBR9ez2iRqfHYsk0jkem/X9AgUKFChQ4DlOh1f4x0AGQBCE84GvA78CwsBPXmpnpmmOmqapm6ZpAD8FVr/AsT8xTXOlaZorS0vPrgVdMJHhsWNjM9rbR3MPay2QxP+LgyR2jaKNJ4k+0kfovm6MjE4gliEYz/CZTW189MIWPnpRC091+OmdiKOIIg0lDu7YM8hvtvXy22293H9wBLtlalMUmUigaSYWVeLo01NOlVQsy877evPOtlnRNPw/+hGea66h+EMfwn35ZYz+5zfRo9EXdd82WSSrG7xtTR3uE5QDl5S7cV5Qg1ScCyoTnQqezQ2Yb1Ch87Nx7FpMGHtimFQ8S3Wbj8NbhyhrcDHcGSYWTNO0tJQ9D/Xh9KnEwxmCwwnaVlew675eJEVEkkVGuyPMWVPB7gd70bMGnhIbvQcnaF5eyqEtg6QTGudurEV6pJfssSDaWALHlmEuSgpsPe5nT2+Q/9vfz8EWC54lRdRcVMWCqxqoXl5K3CXxbDrBjnSS7z7dxZ+OjXCHkCTZbGfltU34qh0YhkkmpVNa72JoMqDR0HOWQKtdpqjKyc57e5gYjDF4LMQD9yVIta3G89abqfrmL4htT0PGQBtPYl9ZnouiF8BcUES6xc2jR8eIJDX29uf6vqy6iP5to/nvMB3XGHlsGNU8+dt9fXE2jt/ZUKoqsS1ZgrW1lfAdd5Dt7wdFwbFoAdbOPZTFj1Pe4JlVgAQgMxAl9NsjZLsjaMMJjMf6WdTsYcc93XjLco7Z/iOB03oPXruFb16/hDkVLsDkIxc0Y51UWu8LJIjO8WCdN6lCKQs41leR6YuS2D1GZuDFzdsncmQ4MqPt+FiMlnIHzsnvaSKWoXciPuO41wKvlbH7fIxF0oSTWdKawSULytnbH+K8Gh+HHh/EW2ZnYmC6QWDtJXUk7+wgu28cbTyJvnsM24FxXC4LweE4j/7qCErGZEPVdMfZ2nofqb2BfEAjQMfBKKklF4IgkG5vJ3X4MGVf+DzlX/5nyr/8ZaSSYsr/5cuke/swkkmsTQWp31PJ2Th2Td3AtrAYpTqXaChYJVwb6zAnPXAPHx3FcpYb7Tt2jvH4744RGIrTWOEgfvtxtIEY2mAM7b5uLOE02dTUunnvQ/0IgsD661rIpDSe+XPO4bj/0QEi/iRaxkTPmkQnUjPOle7uJtvfT/EHP4hr8ybMbBb/j3+M6PGglJcz8ZOfIhUVkensnPHZ1zqne/xm+vowNY3AL3+F5HIieT1M/O//YOo6rks2U/z+95M+1k66r+9v9hXxp9AyBv7+GANHgqRiWXY/2IuW1bn4vfORVRnbklKUmqlx776yiWx7kOyWQbSxBNn2IMlb22lu9DAxGOP43b1c7nPjtSs82x1gZb2PpXVePPYpQ/P27gkuaCvls5va+Kc3zeOCOaVMxNJUelR6JxJU+2zctnPg+S67wGnibJx7Z2AYTPz852ijY8S2bMVy/bsxAD2rc3jrEI/86ggWm8xTt3dwzoYaxId60TpCaKMJMo/344um2Xp7O9HAzHnr1WIsmqLHn6DHn+C65dXcvW+IT25s5e8uasFulVFlkeOjM9e5jx0b47rlOXERQQDZMHFfXIcwWSFGqXJgW1ZGIqsji6/dhIkXy9k0fgWLhTQ2giMJnrmjk/4jAeauq2TVlY3EQ2lq6pxEbzlK5oAfbTxJassgpeMJyuucpOMa+x8bIDicoOfABE/+4RiD7aG8AAlAdCJF11PDvHlZNTt7cgEGNT4bm+dX8H9PdfPNB45x/Y+e4cdPdBGfRezj1SZ5wE9ixyjuTfUI6tR49V7ZjKie3Wup08HZNHbzCCJYHfj7Yuy+v4/DWwc574Y2iqudJCJphIE42Yf7yA7HyXSG4YEeakvt+AeiHNoylBcgAejYPkpxGvb1h1jXXIxVEYlM2mk/dXEbt+0c4I87BvjI73bzgV/vZOvxcf6wvY9dvUHS2VenKrulyoHnTY0IltzcaalzYWnwELqtncRhP6mu0KxCOm80zvTYHQqlODwUZmdvAIdF4qN1JbgfHkAfSpDpiRC+txvHygqQBByrKsiOJSirnhKJOb5jDFEUCQzF2fNQH5IiYVEloqEU4Ykka65uIhpMEhqNs/LyBmrnFfHYb45hGrn93mB7iFRcw9BMsmmDbNogk9BIpzR0zUSUBSRFYqRrpp3pZNI9vSR27qD45pvxvuUtoCj4/+d/kdwu1LY2xr/3fWxLl5LYseO0fZ9vdM6GuVebSBK87XhOgATAMAnefhxtPCecq5TbKbpxLsKkz0mudOC7thXpNCRuRidSPPLLI2jZXED6ORdUk7y1Hb0rTHY4jvF4P3OrHey4r4fhzjD+/hhP39ZBZYuH0e4wlS1eOnaMUlFSxtbjfppLHbSUOZmIZ5BOWIauavARTmm85UfP8He/38OVP3iKv+4fxjRfmnMhOxonsWeM+O5RMiOvTZvty+VsGLvT0A0yNXOJjCd58KcHWXJRLV5JIHn78ZyPYShO+r4eWisd7Li7G0PL/daGYbLz9g7Gh14/v582kSR5LED04T5S+ydQW7zTbCne61pQKt+44mVwFo7f1zCCYLLz3h669/kJDic48PggsUAKw5hST/APxBg6Hsq/Do8lCQzF8VVMJWGmE9o0n0iB2Tnbx25syxayg4NYmpuJfuJdbFowysrVFhYuc3Dxu9qYs9RNS72Ot2Mr3j13Y9n7BGZ/N55SB+uuaeL6f1hJ7TwfyzbXUd7gYuBYEEwoq3flqwsrVikfb+MqVrHaZPY81EdgKE7Pfj93fntvLun3BDI9ESZ+fZhMX5RsX4yJ3xwh3R2ecf0no2V0tt/dPW1stj87ylj3315nv1w03UCSBNybGxDtk2uvUhuutZXEE6/dqtxncuwKDgdysY3o4wNoownSnSHC93RR5LQSnUix/a/dBAZfP8/9Aqefs33ufSmYySSjX/1aToAEQNcZ+69vIWSm5hfTMMj09ZHu6cHIvvC8Y3dbsUzaUBORLNv/2j0tJnL/owM0LZv6zjJJLb8OP51o4TQTvz5E/NlhtPEksScGCN5+HD352p1HXw6vxtgdi6UxBHBtqEWw5OztlloXtrlFmBmNbE8P4t8oWnEyWjDFxC8PkdgxGeP7WD/Re7qJjk4V+0knNJ645RipF/GsTCezPPH7Y+y6v5fgSIKOXWMcfGKAhedXA7k4x+e0zAJDcTylOZGeY8+O0Li4hJJaJ+e8pZUlF9dy3eeWU1bvxua0UFLtonVVObXzi6hbUMTSi2u56hNLKW90c8OXVtOyrAxRnB6oGxyOs2VSgARAyxrsvr+XtjXl9Oz34y23k4hk6D0wQWWTh1339TJnTQWHnhykdl4R3fv8+CrtDLaHsLkshEaTucRoM1c0qazBzSO/PHJW+SFfLGdq/DpVmXNbS5CtEo61lSDlfiO1zYdSamMilj5t534OE5Pow48iOJaS2JtAG0uQOhIhcGsvWX/ylJwjEclMi7EMjyXpPxogcQbu743G2b5u8JU7uOJji3nLP65kvC/KgccHCI4kOPLUMKPdEfY+3I9pQtvSEor7IiSfHkIbT5LYPsLErw6hhdIMHQ/lBUggF+cz1hPh4LN+7JddSfGHP0zRzTeT7uxE6x/ANEy6/XFS2nRfVvd4jCfbx7l2eTWf2NjCpy5uZX1zMQcGQqf9ezB1A9eGWqTJhGjRbcG9uQHDeJ0Hnr8Ap3rsJif9qn/eM8jiGi/buiZmHPPEsXHcVjlfdFQU4L3rG/nXpzuxXdMy5Y8ot2NfUU7wT8dJd4fRz8DeuHquj6s/s4zFF9XQsqqcgaMh9j3anxcgATj6zAiVLd7862xKR1FFdt3fmxcggZxPcPRF2CAKvHzO9rn3OdLHj+O88EKKP/B+LA0NGILMyIiOrpk8fXsH2bTOonUVeI/6Se/IFbtIPTtC4q+d6LFTYzeNpTWCiSy37ujnJ0928f1Hj/PWVbXIosD7zm3kM5va+NRFLcS3DGJfUY48KaIn2GR817VirbCzty9EXbGTpzr9M/ofDCZ559p6JBH6AwnWNRWRSGf52j1H8jl8BaY4G8ZuVlJIJ3UskQzZu7vI9kbRhuIk7+pEnkihP1eQbDJOW1FlBEHIz4eSLOZ9ugCLLqxh21866d7vJzAUZ+ufjnNoy2A+zuFFY5iorT4stTkBfcEi4bqodrI4S4ECU6T0yf1uWsOi2kDXcsIis+BVvaQVnXjopPwz1QvJ0Cm5nt29QRZUeVCfp/CJJAo0ljgKIiQFChQoUOBvcjqi1yXTNJ97Cr4V+IlpmrcDtwuCsPeldiYIQqVpms/JjV4LHDw1l3lmcakKy2q9PHpsfFp7XVFuM5QdS2DEphsiUgcn0C5OoUgCkVSWbz3Ynn/v5nMbMTGxKRJDoQQ3n9PIYCiJaZrUFtkZj00Z6yVZxDRMYsGZRtqx7gjpRBaLbfahYMRilH3qk4TvfwDR48HIZCn5wPsxIjMDGWIpjd19QbZ2jFPjs3NOcwkem4IgwKGhMDetqsMii8iigEczCd/bg31pKdKSUoyUTuSxfoorHVB2etRgC7w00gmdsd5cMtdzmzFfhYPBY7kkHl0zwARPuW1aoruuGXjKHITGJgOCVZlkNIvVLpOI5owOrmIb7dtzYh1OEcwTNnsAmWeGuWldBUmrxF37hjg+FuPIRJw5FS7u2jdEhVtlsDfJRy9s5r2r6jm/tZgtxyd4rNPPY51+1jUV8b431WMP5f6nQmMJiqudjPdFEYRcMFDtvCI6d08JAzl9VtpWV+Bwu0m0lyCXGTC5UU3uH0epdOC6sAazzsVhQWcomuKD5zfROR6ludTJUCiJy5yZvDbeFyWV0LDaC5VrXm0kt5vKr32VyMMPE7nzLgSnk5of/IDEU1uZ+NGPkMvLEVQVx/r1CLMkIqbag9PUrAGEIxPUtnpJTc7fL7aKxSthYbWHP3xgLYOhBHv6gnzw/CZMwCIKWJM61mZPzsiR0UkemshXudVOSILvGIvxVMc4Q6EU57WWsKzOh+Mk8ZXBUIJgYqahsNKj4lUV3ramDlURKXYoL90YU+CUUOlReeTIGHv6QnzzzYuwW2QEwMAkGkhRM9cHJzjZyjxWjJOc+fpADPuyMtZc3cRoT5TxviilxRa+ePlcfvREF8mMzrtX1jF8a/eM80fTFnzV1WiDg6QOH0YbG8XUdDzXXov/e99HLi5GdLmo+cH3sba1nu6vo8CrjJHQCN/ZiW1+CeocH2bWILFjBO/6SgDWNRWjyjkjVn8gwTNdExwbibKmsYgVDT6KHa+uun4ikqFzzxgrL2/A4bFg6Q5x8gwodoYoqXUx3jeV7G6aJg/94vCM/lJxDS1rIIoCWtZA13Skyfs3s1n0YJDsRID01qeQXC7KPvdZxv7rW6Tbj5PYuYPST3+a+LZt2JYtPY13/TrFMAj/+S+Uf/EfCf7hj6SOHMVIZyj73GeJ3H036Y5ObCtXoo2NYTY0ILxAZSvDgGzamCYkk4xm2faXLtwlKhfe2Ebs/m7kcgdqmw9TMyCpEX92ejUtM2tQ6lJYeXkD0YkUo7v9bG4rpa7CSZHTQo3vpP2PALphEkpmiQaSzKt0YVckeiYSlLqspLI6xktMRCvwxiDd2Un55z9Hurubss99jpghIiGgZQzG+6IYmslEfwzTMHGaYGjT92H63nGWbaonOBLHNVmF+kyR1Q329Yd4sn0cm0Xm/LYSFlR5coGOAqiKiG4KXL2shq/fdyQfAHnRnBKuXFw9o7/FNV5qfTb+5cr5VHlUikYzxLeP4FhdgaCIuUDf+7o5d4WP+uKXVlWxwCvDNE1M3SQ5KcQwdDzE0PEQsiLiLlaxLCshmZge9JU9GqB2TSVb7+iidl4RFc25fVfEn2BicKYTbLg9xDWbF9EXTHB8LMbbVtciSyKXLapEAKp9Nn6xtZuLF5SzpMZ7um/5RZMZiZPuzCU06/EsjlW58YoASkXBVna2YKZS4HARGs3ttUc6I4x0HsTqkFl+YQ3pZ4enf8AAYziGq0ilZ//MgDYlbZDSDHr9cTbOK0dVRFbUF2GRRa5YUkk4kaW51MkDh0bY1h3gJ090kdENfvi2ZVyxuOpM3PI0RKuM6LHgWFuFIAtkRxJEHuwBE7IDMaKP9uO5qhnnuspplb4LnF7Sms665hKSWZ1sSsN3OMA0mRoTtEga96Z6knvHyPqTNF1YR9cJNgPDMFl+SR2Htw7T/uwIF75jDt37/GSSGi6fSkWjhwXnVJNOZLntP3ZNC94BiAZSFFXY0TWDE5eqOWHK3AM9MBSDFWUveC+afxwzkyX8l78gyBJln/wk/h/9iHT7caIPP0zRu99F6tAhnMWnt/JggVcXPZad4TNAN9FjWZRyEGQR+5JSLHUujJSG7LEinib7ezKWIRXP2X6tdhlrNJPXRnmOzI4RLnpLC8/c00PEn9s/9uz3M3ddBY//9ig2l4VFF1WzpMbL/GoPv3iqm49d1IIsCTgsErIk8q51DXz8lj3T+v3ynQdZVe+j/kVWUMwMxxj/yQHMySQ7wSJS+oHF+YC4AmcWIxFHKrYSD0fJpHSe+UsXb1pXPsPHkN09RlWTZ/qcrJmMjMVpavGd4as+9WQnkvj/7yDWBg/p/pxNLfxAD+r8YtQ2H3KFA0ehUlyBU0gqlkV1Kiy8oAZBgHQiy9FtI6y+sjF/zHj/TDHT8f4ovgoHwZGcf1tWRCzW179o6esewyR89z2UfebTxB5/nPDX/gnr3Ll4vvRFiqpLkb/yz4guN44NFxH461/Ro1H0YADZ58VSV0fp5DO0tMFNLJhi660dAARHEhRXOwiNJug9OEHrqnL2PdJP4+ISjp1gG5ZkkbnrKgiPJZEkAU+5HUkSie8YnXGpsWdHsM194TVuOqnlxU9OJDR+apJBZ0M3DCyxLLEtg9iXlSFYJfRgmtDdXXjft+C0nfd1RcokfrKtQDeRImlCY3HqFxYz1hudlixWoMAbBSMYxIjHURoacF18MfFnniF96BB6NBeTqAUCBP/wRyZ+/GNMTcPz5jdT8uEPYan62zYxLaPnn+sn8tz+DmDxhtozUgFeG0+gB6bHbGZ6ImgTKaSamXvZWEpjV1+Apzr8ufjLlhKaS9/Yon0vl1KnBd9omsTuMRxrK3P2zNEEobs68Vy6kXT7fnip4p/jCfTw9EiC9PEgDefX0HmC/dffHyMdz6K+gL0incwyPvkMEESB/sO5kOtYMI11Mpa3us2bj09wFatTItcmNCwpYemmOlTH7OcQBIHyBjflDe4XdW/xUGbGnjUVz+aLeaXiWRSLxHhflNZV5Qy2hxAml8zaZHJ3OqEhKyKRiRR2t4WJwTieMjvjfVGal5cydDxEMpo5437I1wouVaHSrSL1xUh3hXGdVwOSQKY3QurJQRquasgfe2wkwtYOP/5YhvNbS1lW533exLKXgpFI4Nx4JeF7pseHm0mN7GgcpeSV+1X9fTN9eyNd4TMiDFXg7MPmtBALpmcU/8skp7wcdXUu9CenF+rRg2m08cTz7vFLa10IzfMwDu9AC0dwbboYPZ3CbSuhxmcjc5LW/4Vzy6gpcvBvdx8iNWmbLnJY+MfL5p6iO31+jEiGyH092JeWIboUjIRG5OFeikptUF7wEZ8K5lW4sEgio5E0//dUDxfPK+fx9un5PKsafFT77AjAP18xj7piO093TjCv1oshCzhWlCFYJLRAivB93aCbpI4HMQ9N4N5cj2h55XPw86EoEjVtPmrafDzyq8O4S1WO75xpW5AtIss21zHUEcJik8gktHwB1xOZbZ1c4I1FZnCQxI6dRB96CO8NN1D0sb8j5Y+QVi1kklo+56yi1IZ+eHqMgzaSIDwYpWjOK/fVpjWdlQ1FFDutVHltJDIav3mmly9cOpcfPJqzw33pohaUgTjho0FsC0uwLSjGzOjosQwOq8L7z2/i3+85zOIaD/2B6Tay+ZUuHjk6ysa55ayo87Gi3ssX/5xLRRwJp1hc84pvocApJpsBURJgFrEksT1AZZOHwRMExtMpDTCRFBE9azDYHqJhUQk9+3OiNKZh5uMaBFGgbXU5gigw1huhuMaJ/CLXz0ZCI/TXTtS2IlwbajE1k8SeMSSvFZq9r/S2C7yOSGq5eUhIaVjtdtAzIM0uflpkLUIXTYLhk0SUbD5IhV7xtWQ0g30DId6xtv4Fj2suc3Bk+KUXuy5QoECBAm8sTosIiSAIsmmaGrAR+OCLPZ8gCLcAFwIlgiAMAP8CXCgIwlJyJu4e4EOn4ZpPOzaLxKc3zWHvQJhAPOcMuHxRBUtqvQAI0ixBLJKAIAoIgsDjx8apcFt59/pGUlmd32zr4c3Lc4k2DcVO/vWvh0hPJhDJosA3rluU70Y3TLS0jrd0pgG4qs2L6nx+RXe5vBxUlaK3v43kvv2oc+diaWtDdM4MWrz3wDBfuH1//nW1V+U3N6+hazzOhrllbOsKcM+BYVrLnLz7/FLikkDiRCOILOZV5wu8+qhOheo2LwNHg8iT1U39/VEqmjx07BpDkkUEAQKDcZqXlzLaE8E0TBSrRGQ8SePiErrxk4pncXitxMNp7O7cWAuOxCmpdeLvj53suwJy6pCNJU5+vLuXdc3FHB+Lsac/hM0i8eELmnFZZZJZnYePjHLJwgrWNZdis8j8dEsXWd2kYyxGoLuLhS21KFaJ3v0TrL++hfB4kv2PDbDmqiZkWaCk3I4igleVcJbZ0U0T/eAEZsYA3USwSJiT1ubscBzNn8S+OoNLhCXNTTzWPs4mNcnb11pJ9AyT1cc5OQ25qtWDzVkQIDlbsLa0UFRVhVJXj2SxEN/yJKLNRu0vfk66u4fk3n1IVVXYmppmfPa5qunTsEgYuolslShrdFM3v+gM3AX4HBa6/DGuX1HDQ0dGeapjghuXVuPbO0FKMxBtMqlJwaDnkCefAd3+OG//2TZGIzkj4Y+f7OLbb13CtcumW9OiKY0n2/28dVUtf9zRD+SSP28+t5Fv3H+MWFqjwq3yuUvaKHK+uuIBb1Se03754HlN/N0te/jIBc1s6wty/dpyeraOIIgCxdXOfGKmgTlTdFcAWZV55o9HcJfYWH5JPRafyl1Pd/CmRZXYLBKH/VEWz/XRvmNs2keLql04zjkHa2srlpZmog89RKb9OKkjhyn9xMcJ/ek2JI+HTHc31jlzUEpKTv+XUuDVwzSxVLtIHpxuDFPdFmp8Nm5cXYcoCoxHU3z8lj3s7Q8B8POt3XzsomY+eXEbymzr4TOEiUl5o4fdD/TiKbOxsWUWUSmrhH5SEpTTp+IusRE5qeKLzaUgKyK6bqBYpLwASer4ccJ3/DmXNLdxA65Nm9CHh4k++iiea6/F0thA6Wc+Q6a7B2tLC0Y8TvL4cRLPPIM2NoY6dx5SaQmixYJYWopaU/CEAMT37yfb00Pq8GHsq9dQ/MEPkDpyFPell6IuXoTn+uuJPfEknuuvR6moIPrww0z87Odo435cF16A5JldREyUwKJKuGfZR9XOL0K3iDiavCS2j5A6lHO4OddXIVrEGeIOyXiWnff2UFTlYNGFNfSFI1yxuIpyl43RcBKHVcapKoSTGcKJLD9/qpvQCdUyvnn9YorsFpJZnYxmcP2K2lP4DRZ4LZI4dBgjmcBMpcgcPw6KgrWlmcT2HVjntIFhYrGK6KaJbBGpaPLQtXccLasjSgLmLHnhgkUiGkpTVm6f+eZpZkd3gHf8/Nn8+ub7j0rc+qF1LKz2UOu1MxJJMq/Sw7/dfXhaPOhjx/y8e10jF88r4+EjubVKqdPKxrllaKbA1+89ysc2NLPa5UKPZIhtGcx/Vl1QzEULy6gpKyRlnklESUKUBOwnBXdrWQObx0rSMGZ+SBLIZHQWXVBNeDzJjrtzAnlVc7zUzJ25B2tYVEx9hZObz21iR3eQ2iIHn/7jXrTJAWaRRD5/6RyCp6g6y4vBSOtgmoiqjBZMkfUnEWUR0WfFCOaqMSZ3jqBUOkh3hDBOGK+eK2fuTwu8ekgV5RgRg6Kq6XNlOq4h2ySYJVHRFEUUVaayxUPfoelBlKrPSrXXxl/3DxOIZ/jnK+ajSCLffOAY4ydU/fvc5jlMxNK4VJmJeIZ//ethVjUUUeZ++cHa0VQWURAQBYGMpuOxv3DVTz2ZRRBFRKtC7KRgT6XGSXYkV7k5cl836hwfSkHk6YxR47PTM5EgnNQodasYCX3GMYIJsScHMBIa1mYPpn26q0aUBPY/OsTKyxo4/PQQ2ZROeYMbQRCmJeRYVJmGRcXsHZ0eoOgpUUEAScn9D5iGiTGp1CBKIoIoUFQ5PVjWyGRI7t1HfNs2BEFAqatFLi7GumQJosOOXFbG+A9/QNE734lSV4fnmmuI3HMvejhMyUc/QmLnTuLbd2BqWWyLFudE1FNJ0HWQZGSPG3X+/IIgzmsQyWVBsEqY6amxLCgiknv6PCX7Tn/Cit1txe6xkAhnMHQTU5plPCkiXfsnmLOmgs494wSG4ihWCUEUSUaztK2uwMRkWZ2XT9yyh0RG5z3rG/mXuw7xdxe1UOayYpVn9pvI6IRTuX1hWtNJZHS8NgUjnkUbS2AaJnKpHdljRY9lSO4dzwuQAJgZg9j2YXw1zmn/B6ZuYKR1RFVGEAv/H6cLubiYtKblE6t0zcCY5fsWrRJGdrqnTFZELC6FQCyNKAp4/8Yz+mzBSGQxDAPdn8YwDERBIDuWQPenyCoS1jp3znZoQurQBKlDExS/a/6rfdkFXmeoTgvNy8rY81Avhmbi8FpYe3UTkjy1Ti+rd3P06ekiwjVzfPQezNn3BFFg1ZWNeOxnbs9Y4NRjmib2VSvhRzD2zf/CsW4dxR/8AOqSJRipVM7G7nLj2nAR49/9Hrbly3FecD6J7dsJ/O73uK+6ErJZMl3dZEdGkNxu5i1YSc9+mBiM0ba6nNHuCLFgmmQ0w4rL6nM+Y4tEOqEhCLD22iYOPDbAoS1DiKLAmqsbcwI59plhU9IsbSejOhTq5hfli708R1Hl6bPlxTMGFQ6FZCJL7KmhfLvkteIoFGF5UQjKc3FQ04tSiRaJ4koX6ZSGs6jgay/w2iR55AiJHTsxtSyOVatQFyyYteDP86HU1FDz05+gDY+QPnYM73XXYvncZ5EnKy4ndu7C/73v5Y8P33or1oYGit/33nybFg4jWq2I6vT9oaxKlNY5GT8p0f053+7C86toXV1+RmwGgjzLdyKAMNv+ErjnwBB/f/uB/Osar8rvPrCW+uJCEvJLxa3KOL0QDaWn2TMt9W6U6lKMbJTUxAS28vIX3eesMb7CVPzOc1Q2e1BfIF4wPJ7kyT8cy9uL6xcWs+D8ag49mfMLSBaJBedXoToUdt3Xi2wRWbyhhu135fwjiy6qprTOhXQKYyycRVYEYboui91jIT3ps7a5LGTTOvWLihnvi2K1y3nRCHky5ld1KGhZA0+pjY6dozQtK+XYthEqmj34+2M4vBbsnsJz7/nQdINV9T5ETUZ7aojo2JQN1r6ynKSe86EdH41y40+2EZz8bf738U5+/M4VXLKg4hVfg1xejh43QYrnC/g9x6zj/2VQ1ujmyNPTRdpq5xZhdRZix9+oiKIwY/5RnTIIgAkG5P8+EUESqWj0sI/+ae0VTR4wdBxVxaTaZax1tdiWLSOr6cwxVbx2ZdoawG2TeeuqWr714HE8NoVPbmwgndX5+VM99AfPgFiDIoIkEN9xgq1CFk6rqMUbjXmVbn73/jV855F2+gNJWsoczKtwc2QkJ7jUXOrAocrctmuAuiIbqxqL+OBvduXH5JpL59O0dWhan0qFHc2fInlgHLXNh1LrRLKd/n2y1S4TGI5TVu/KF5p9Di1rcOjJQc67sQ2LTcJqV6hbUDTDDlZcXRC4e6MTufsesKnU/PCHJHfvJtvRgeuccxmPZLHanHjKbITHkrNFnAOwbyhCnc9Kc9nLH0sZTeeRI2P86pnefNviGg/L6310+6f2cV3hJJZGN8m94yT3TYkHea9rIZXRWVrr5ZMXt5FIa+zqCTIymRuxutFHMmvwgfOaeLrDz0+2dvFcOJIgQLW3EMtwNmJ1yIihDOJsBdatMtnACTZ7AdQiKwceG2DFpfXsuKeH4Y4QSzfVsmhDDT37/Cgn9LPmqkbat49ybNsIO+/pZsnFdSzfXIfN9SJ8cJKApdZN6vAEqROEeWa9zkmei8c5sUhwbNLv61RPz/PCSGkgCIiz5TxNokfSZMcSIAjIZXbkF3P/BV40KW2y4GUqi8VmzynrPI8IiU/NFaOYSJwsQuKFZOgVX8vh4QhpzWBF/QsXvcgVxholrelY5cL6s0CBAgUKzM7pECG5BXhCEAQ/kAS2AAiC0ALMlKQ7AdM0b5ql+een/ApfJRbVeLjrY+fQNR7HbpFoKXfiteUWFHKFHXVJKZZyO6ZmIEgigkNGLlZhPMxXr1nInHIng6EUkWSWb9+wFIsoIIoCB4dCeQESAM0weax9jOtX5hLT3D4bqViG0Z4ICy+o5tCWIUzDxFNqY9nmOpTnWWQmOzsxFQVtcIixf//3fLtSU0Plf31z2rFjkRQ/3dLJpy9uRTdNJEFgOJzi6EiUcrfKv919hLevruXTm1rJZg3MjI774jq0WAZrlRPTzAU+zpYIVeDVwWKVWHOhD6/Pgs8mcc2HFuDvj1Fe66K6wY1FgGs/vIiR3ijlVQ5Ky+0IGZ2rbp7PcG+UklIbxe+aQyaUYf7b2xjqi+LzWrj8PXOJ+VOUr6tgZDCGpdSG5rFgnFAlIHNuJT3pzGRCssSBwTB7+kI4ELjIYcORMdA8KqXLqjk6HMEmSyyu9vKHD6zljj2DvMsyhvmljxMrLeWKf/s+7UeSDByZYPN75qBhYhNFhB1jOOcVEX20H8ltQUzp6EOxfHB8fNco7ovriDzah5nSEawSjtUWsoOHKO7pQdrv5tKuLjJ9fWjnnEP897+n+Ev/wvrN8zEMG6oqoUsC9Y0ORoejWIttrygxpMCpQ7LbESWJgU98gucsSqLbTeXXvsrQf/wHlqbGWUVI1FYf0Uf7p4LfBTAWlFCe1rF7FK74yCLs7tkdpXoiS3Y4jhHLIPlULJUOhFdYfaCuyME37j3C5YuqWNVQRI3NgrGvD2urF9uCEuwry4k+NUS2N4Lz/BosNbnkyoODYc5vLaWmyI6mG8iSyC+2dHNeSyklrqnrr3SrRFNZOsZifHpTG16bQjSV5cdPdhFL54LZRyIpBAS6x+O4VQXrKaioUOD56ZmIc3Q4gigIzCl3UuayUuGx0huIk8oafO/RDj50fhMldUWUVTsZ2ONnwUXVGIpIOJPF1uxFilUhqQqmbiDIItm0Tt9YEi1jEBiK03c4wIVvb+On71pJx1gMiyQyPxsglBxkosLOxEgKQYCFq72If/0VofvuBMD7tptI7txFur2dxI4dOM4/H0GWiPz1r8QefRR17tyCCMnrHFMzsS0pxdLiwVLhwDRM9GgG0yrx329ZQlt5bg46PhpjXVMxF87JBY+lswa/fLqHa5fXvKoVnCLjSbp2j7HxykZspolaakOWBZJ7Jh0XkoBtaRmZA7kgIFEWWHVFI2X1Tja+Zy4P/OQQiUgGSRFZfkkdnlIbsiIgylI+2SQzMED/ze9HG8slySe2b8d741tRFy/BsWo1tlUr0UMhxv7rW2ijuSDi4K9/TdnnP4f/f/4HI55zbJf9/RdQamoRDQO9pARJfWOvL+JHjhB/+GEmfvJTEEVsCxcy/M9fziUeAqLLRfV3v0PqwAGUmhoGP/FJzGRONCbx9NOY//JlfDfNtg0FT5mNyFiSsjoXravKc1UkTCitd9F2biVJGaxNHrKDMbKDsdzaQNNxbq6DuJ6bayURLZYh6lZ412eWolgkBFVijuBj3NC5c+8gw5EULqtMrc+ORRHQTZNan533n1tBStOxyiI7ewJcuaSSYELDa5PRTYOnO/2kszpZw8Q++QxWJJGWMifFBYGw1zXJ7m70SBgzEmH8+z/ATKVwbd7E2Fe/lj/GumA+RfMWEXdVo0gy89ZXEhpLcHTbCGuvbSaY0ihyKRjRnHNLsMk439SIMZpAHk2QLVZRis6MwzWj6fz0yS7ee04jLlXGNEE3TR49Mkoqm6W2yI5TlZElAa9V5vM3LSOYyGC3yBQ5LDitEjeuquOqJVWcV+nCLkiYCQ3dMHngI2spzQpIuol0dRORu7rABLnMjrXJQ53Pjmo5HaaxAs+HaZoo2TC+CidLNtaw/7HBKRvVFfX0JVPMWVOB4rbm16y6JBKxiFQ3e6goVVl1bgWKVUY0TWSbzFs/sZh4MA2CgKQIFFU5yQxEqZYF/vCOFfQPRXn/ihp+vW+IREYnoxscHAxzUdtUxfWMpnNkOEpvIE6Jw8q8Sjc+hwUjo6OH0giK+LISnc2sQaozROSRPsyUhueKJoK3tWPEsrg21SPaZPRQGj2aRhtPYq1zY23xkp6sSGRt82Kb/8oryBQ4dWixGMLIBMXVlcxdV8HRbSNgQkmtk6JGD0FVwDUYzx8vqBJyvQuxM0zNHB8Rf4pkNMPS8yqZu6gEM5Lh3k3zEXwqCcFEFgT60lm+tL6RWq+NkXAK2S6z2OfApUhcWuMlZZfpDSZ5qsPP4hrv8wb3GIZJIJTEmtSRrRLtqTS9/gRVXhtDoSRDoSTNZU5u2zlA+1iMd62r54rFlZS5po91PZEl1RFCn0iiVDhIdYVwbagj+kR/rnqzz4p9aRnhe7uA3Lg3szNFMAqcTkzCySw/eqKTL10+F7nFhbUuhmiVcgGSQm4sWmpdWBo9yKU2nKrE5ne08cgfj9O2qoLR7gjphMbO+3rY8O55xMNpHD4rNXOmByQIosD886oY7gwz2h0BAVqWl00KnZuTouomJkJO6EAHTdMRBSEX+HsCiWefpf+DH8pHFks+H0XveidSRQXKqtVM/OxneK68EktTEwgC6ePHsa9YgbpoIbGtW4k/u53kM8/krstioeo//wPBZkeb8IMkow0PgyBgm19IcH+toZTYKLppDoE/HMvb5otuaEM+BZVWXwqmZqAkMrzlxjaiwRT+mEbCLmNTJczU1DxnLCql8/YOfGMJLryykcBIgvJmN/HRBNd/eCH2IpVEWqcuCz+4bD4VRVbqrSr33rSCSEpDUiUG9Nze70RfX12RDasssrc/xE+e6OTQcJjvXz6fhoCGmdRId4bRo2mKbppH7OmhaaItz6H5k7ko/UmzbWYkRmzLIOmuMOq8Ipxrq1DKzrwI4RsB3TDQ7/oDrkvfyvJL69n7UB8RVcZmETEzRm4Ptr4KXAprRYHKKgfbHuxDtko0XVFHbyZD15FRgokszaUOltf7KHJM7fVNTScbSGNm9VwSkGmCJGACgp77GyOX+Ixm5F6fIL4v2mSk5/FnnIhpmujBFKaWe+aLs/gAtFCaxN4x9Eg6t7aNZLDWu4nvGMGxphLICf3bFpWg+RNkRxIg5IRcLXWzi0KauokWzAXqyT7rKUt0KvD6R5IFdj8wFbgeD2U48MQgrSunEktL61y0rizPV4wta8jZ/irqbMQiBi6PiCs2gJgu7MVey8S3PsXwV75C2ec+S3L3boxkCrmklMBPf0Zy/35qvv89Kr78ZWKPP45gseA8/zzGv/s9Sj/+MQSbjYn//RHWlhZSBw8gKBZijz2GMn8hm9/5aY4Pqoz3R7nwHXPw98fQNRPTMGlZWUpRlYNHfnmEuoXFdOwcI+LPzWWGYfLMn7sob/RQsrw8V6xnMi4BUcCxaiphVI9lcn7lhIZcoqJUOBEkAUkWWXFpPYHBOP7BGIIASy6uo6zBffq+x3SWeMrEfXkjkk0GWUSPZRAEAbFQqP5FoSfTuDbWYgTSmGYu0UVPauC1ovXGOLxliNq5LxwIXqDA2Ujy0CF63/kuzETOfzmuKNT/8pfYVyx/8Z14PERvuYXw7XfkmxznnEPpFz4PQOyprTM+Er7rLrw33YgRDhO+8y5Ct92Gpb6eko98ZNq53T6VhedXs+OeHmLBNKIksPiiGlSnzFv+cSWq48wJKYkeK56rmjBiWQRZJLF3HEuje9Y97mgkxa+e6uYzm9rITsbz9PjjHBqKFERIXgbjsQwtgoRrUx2yxzrtOZbYtQu1qQqjtxeeR4QkO54gOxJHkESUSgeyT0Upt2NpcpPpiuSPc5xTRcxrRZQEDN3EVaJy3lvbsL5AInLX3vFpgtW9BydYfkk9ilWivMFN64pSVKdCcCRJZbMHq0Oh/0gg56deXUH9guJTKkAC4KtwsPHd83j898fQMgaqU2H55nq2393F3HWVjPVE8FXaqWrxsvuBXlZe1sDeR/pZfkk9XXvGmbe+ktGeCM3LSwmPJ6ls8QJgd1uoaPKw75E+LvnAQpzegh/7+ZBFgf2DYS6pKsGxoRZLmR1BgIw/iWSRkCcVGHb1Brl8USVlLms+VvtnW7pY21SEx/bKkgjNVIps/zGc6xsQVVc+ll2PpVEqT8085HBbaF5eSufuXDxOWYOL8kY3qq0wNt6oeMptLN5Qw75HpgSjVIfMqisa2fNAL0cPTHDeeTVYVCk/Jo1kFrncRmWxyoLzqji0dSgXz1PnorjKQWWZydDbrsjHB0teL9Xf+TZzK1xEUxplLis/esdyDBPmV7qo8NjYPK+U955TT9d4HNlh5f/es4pjo7OnvXT74xwbiSCJAnMr3NQWvTQbq6kZOduXKGBqJu5NdSCJiKqMkdYxNQPzZIWrAi8bQRBY1VjED9+2nO7xGAeHInx2cyvBRJZAPENfIMF/P9jO929ahm6Y9E4k+MymNh4/Ns6u3iD/c2iIH76lFTmQwkwbpHtCOM+vRRuN41hbSWYwSnznCK4NtShljtMq/t26spy/fHsva69uIhnLEp1IIUpCriDWoQkyKZ0nfn+M6/9hOZIssmxTPf7+GP7+nB1h0YYayhtPnx2hwNmPHosRvuceyj77GQY//nHMTC5/J/B/v6Tid39hYjTOogtr2P1ALx3HQyyf40M7oSiqNL+ImEMiFU2TimovOy+idyLBb5/tm9a2fyDMtcuqqXWrbPvQetySmMupS2rYFhRjJDUij/ShNnowDZM79w3itMo0lDj42O938+71DVS4VSyySKnLQp3PTn2JE5sic9vuAfyxDKoi8pWrF9JaXhDjORuRkgkkScQ6vxgpo6OUO/KxY9Q4if0sVy5aUkSaNtfwg3193PSmelJ9Mc69oRVDEggrJgHJYPHyNmxmruCKw2NhtDtCYChOVbOH1rk+NN1Ej2VIBVMIJpgCyMUqssPCaCSFYZhUTorVmGkd24Ji1DleJJ8NdAMtnJ419zGSzPLo0TH+94kOFFHk4xtbWVnvY1tXgB88dhyAv7uohQvnlOG0To9ZjCazHBmJMhJJUu21M7fCNU3E5PnQE1lShyeIPjmIYJVwb6xDbfbmfIQnkB1LMPHbI2iTYodytYPim+ailBR8xaeKpJaLTRczRk6EJJUF+YVFSIKp6cWsUD0Q6HrF17KrNzd3vxgREt0w6ZtI0FpeKOZXoECBAgVm55RnWpim+TVBEB4BKoEHTTOvTSsCHz/V53utUeOzU+ObuUiTnBbUJg+hOzuRi1T0aAb78jKMjEG5R6XIYeF/Hu/ikaO5pEVBgP+6fgktFW4SmZmBhbGUhmGYiJOGDJfPxuEtw1hsMisurQcgEckw0h2m7nmSGYyJCUSbncBPfzqtPTswQOZ4B46lS6faDJO3r63n6/cezQdJLqr2cNnCClY3FvH+8xr5+r1HiKQ0/vq+1dhkGaNIJd0dIfDkIIIi4ryg9pQZqgu8crJ+P9aOI8xLV2LsGsW+ohxh3ziqLFDhT5IZiOE8v5qKg+OoWR1V10keDeDYWE/F0QksYSdOl0J89yg2TwOVx4OIDgtKjRPLjmFsToWKnjCZrYO4N9ZhmgZGNI06vwxrvYubT9gw/e/bljMSSFJ+OIj+l5yivwVYubmWfzowwFfvOcJvb17DioYiFjt0et7yCbRUCq2/n8h7r6H5vPMo+acvM+A3KFNk4n86jlRmI90exIhmcK6tJPJwL4Is4jy/hkxvBCOWJfrEAI7VFSjlVhI7HiH22AF0v5/E9u2U/N1HiW/ZQtHNNxP83e8AkGWBRhskdvhxrKkkMxQj+sQAolUifm4lY8vLKCs4hV91MiMjBH77m7yDAcCIREgdPoJcWcnoV7+GbdkyLJWV0z5nqXLifsc84kcCyIKJ1OSlbzjBvof7Katb8PwCJCmNyIM9xLdNqUn73tKGY8WLr6QxG6UuK1++cgFfuG0/R0ai/OKtS/Be3Ux8xwgT/3cwP549l9ZjrXHnq6s4rRIdYzH+tCvntFEkgS9dPi9fFfw5PHYL//mWJfzjHfv59kPtfGJDCz/d0k3ypESiVFZn/0CIvmCC61fUvqJ7KvD8HBmO8I6fPctEPEOpy8p71zdw++5BPnZRKzt7c8YH3TBRJIF/f7SdjrEY86vcBJ49zjvW1rOlY5yfrq4iLAhEH+9H8ljRQinsF9Vx5MkplfaBIwGySZ1Kj41KT854NvrN/yP2y1+y9tob0dcuRm2qJ/U//0l67+7850J/uo3im28m3d4OQPzJJ3Pz5FNPY8TjpPv6sK9ceQa/sQJnGlPIJSKkO0PEHh9AUERcF9RgdVp48ugwJQ4LTeUuTExu2zWQr+pe6rTy4Qta0HTjb5zh9BIPp9l0ZSPavV2YaYMoYGnz4btxDno0g9rgQal2ctWnlhIeS6I6FEpqHMgWGVuLlTf//QqCw3EEScBikxElEEwBV7GK6sgZEFOHj+QFSJ4jdPsd1Fx4IXo0iiBJZLp78gIkzxH8wx9xXbyJ8J050Z/QrbdS/Hd/B6EQ2eFhpMbGM/Idna2YoRCBX/8GAOeGDYRuuz0vQAJgRKMk9+zFMncu6SNH8wIkz+H/6c9wXXIJclHRjL5tDitKtUQkkGDJxhrmrMlVRCttcGFzWNBCKdJ6CrnEhjq3CEGA9EAMtc1K4K6j+ZJX6pISilQX4V8cQrDJuC+sQa5xUiwLrC5y8IeJOLc828f7zm2kudSBXZE4v62U/3rwWP5a3rKihlAyy2+29XJoKMKNq2opc1mpL3YQTmbpHo+xrM7HYDjJQDDJRXPLKHIUVMpfrxjhMGYsTqanl0xHR25Pcsst045JHzqMvns7ma1P4/iHr+IosnPhO+aQimZR3TKSJGGZ48MciqMlMqi1biK3tkNGRy9WCRzwU3RDG0rx6U/01E04t62E/3uqh4Fg7n/UbZP52jWLCCd1/uP+Q/ROJLhheTUf3djKJ27Zk7c7LKnx8IVL5/LjJzv5zRULIWGS6Q8Seawf1wU1eKMZQtuGwQT78jKK3zWfzEAMPZhCD6dRs4XAnTONpmnEfvAd5MWLmXvxNdQtKEbXDNxyAqPCxm/+1MGX3R5SWwaQnBa0QBLX1S14nQp6exDZa0UyBTLtAUSPSjaWRYhlcsIjIzFs84qI3d1NdjCG+9IG5KeHqPUneafPyubN87n50aMEE1mymsGDh0cocVnx2i3cd3CET/5hb/46b1hZw7+e20LioV5ShyYQrBKeyxqwLytDfB4HrxZOk+mPoofTuUDkGhfZoRgTvzwE5Korxp8ewohlcZ5XjTYaJ3nAjyCLONZWYmlwE/5zJ+ocH+6L6zBNsDZ7Xpb4SYHThxkI4P/w+3C++90su+ZttK4qx9BM3G6TDlPnP/b28d2b5qD3hJF8Vo6ic++uXq40VI5sHWbJRTXMbXBhsysEf38UI5ET+ZQ8VhxrKjANk9q0RpNHJXpfH/OubEYLJsnuHCd0cJxqUUBeV8m9gRB/PDRChVvll+9dxdzK6cFiw6Ek/v4wvmdGSXVFEGwyjnMrcZVb+cZ9R9jZGwLAIon84+VzcZoCC9Jg7BglWeHEUutCmqx4kumJkO2PEt82jKkZqPOLkdtsuC6sRS5SyQxECd/fM1mKDiyNHiRvYdyeKY4OR0hmciIflywo55muAK2tCnMO+jGzBoIiYqR0it8+j9ThAJH7exBsMp7LGqitdvKuzy3j/ls7Ge7MBdKmExpWm0zTktLnPaev3MGbPraEwHAcXTOQlcnkd0EEwQRyUTomJqIgoqjSpFDjVOCZHosx/t3vTSttqAeDGIkE5uAQgkXBddFFIAooVVUMfe5zyGXlpI4dI3LvvQCUfvKTeRESM5Mhcv8DeN96Q+51NAIWC+mjxwoiJK9RbHOLKf/EMvRIBtFlOSPr0hPRwmkyXSHC9/egTwqoF9tlvO+aj1DnItMdxtRNJI+VsAgLV5XTapcxH+yhbl0V0T8dR4pmoNKBdHE98v4xnPv9zJFFnOdVYxaZpHePQVcYwybTuLmOX7xtOZ/9y0FGIilay5zctLqOr999hH9e1cAnir3Y51biHkwR3TKYn48tNU7iO0fIDkSxLy+bVn0LwLG6Il9dWwunmfjVYfRgziYTf3qYTH+U0vcuRLSfuQS8NwrmRAD/D3+I9ZFHmPO9n1Ez14eeNfC8ez6prjC2cgeh247nBEGcCjXldq79+BL+0uXnH7d38rGLWvj51m76AgkqPSpfvWYhG+flfApaIEW6P4I2HMcUBERJwDTMXBKGICBYJdLdYdRWH8ljAWzzi4ltG8a5ppLErlGyw3FEtwXfm1tRW33PGxSvJ7Mkdo4SeagXM2tgW1KKZ3M98qRgpZHRyIzESe7zE39qCPemeuJPD+PeVE/koZwIxIljK/JQL/alZTjPr8kl8JXYZhc1iaSJPTVIbLK6qHN9Fc7zqpFfhGhKgQLxE4pePEdoJEEyms1XNKxo9GC72sLc9ZUYuoHbZ2H06g1INhtFDQ1kOjsJBoM4f/ZTmDPnTN9CgVNAdnSU4S99EW1snLFv/AfWOXMQVBUjHie5Zw8Agd/+lqpvfhN14QIc69cRffBBPFdfTfiee3FfshnJ7SZ85514r38z/u//INfv4YPwxfczb8ECKv/jG6RdNkRRQMsYuEpUSqpdeMvt2D1W0vEMD04GxZ9IdCJF1doKyj68hGR7EFGVsDa4USpziQ96LEPoLx0kD+ae6YJVovhd81Cbc4HCRVVOrvr0UsLjSWSLiLfMPm2dfaqJZQy8RXZ0BCL39aCH0shldjyXNWCeXIa8wKwIDguiqRN6ogPJbcVM6UhFVtxLSjjweM5fHxw9A9XVCxQ4xUQfeigvQAJANkvgt7/FtmwpgvjihBH0/n7Cd/x5Wlv8qafw9t+Ibc4c1NbWGdXu1EULESSJwG9+S+Dnubp22f5+Ejt20HDrH1Enn93JaJYtfzzOnHWVqA4FQYDO3WOU1LqoaTtz+x89kSX6SC/JAxNILgtaMIX36hbU+UWzroV13eDNK2v5+r1H8zE8qxp82C2FgkAvB6ssYrEqGAZEHuhBD6aRS214Lm9EaTyH5FOPoKfSyDU1WKuqpn02MxAj+Od2tPEUZkZHKlYpec8ClFI7RTfMJd0TJtsfxdLgwdrgxm2XKWtyk07ouEtUHJ7n378YhknX3vEZ7YHhGJtunk9xtRP3pB2kvGFqvFY0elh1+emLDZBkkbY1FZQ3ekjGMqgOhUxa45rPLEOUckWOrKpEKqFx7cLlaBmD6rk+TNOkeXkpggimAaIkoGcNZKtENqUz79xKMgmNttWr8gVcCszOykYfx4ajyMUqRihN6PbjORvQwhKsq8opc+f8Uz6Hhd19QY4MRwFQFZF/umIeuv7K12faRIDAz39Byce+SuSRPmRfLpZdbfPmYw9fKf1HgySjWVZd0YBpQmg0wc77eqhfVPyC4j0FXr/IssTySxqobPYy1BGitMaFpIgcfWaYJRtrsdolZKtE5MHe3JiMpHGsrsz5WB0y51zfwoLzqknFs2AR8ShpJv7+09Pig/VQiOS+fazbcC2fve0Ab11dy7cfOo4kCvzknStoKHFS4bXxwd/sIpLM+e5qfDa+dcOSGdd7aCjM23/2LKFEruBLjVfll+9bQ8vzFA04GS2UIvJYP4kdIyCKlHxgAZJPJXJvD5o/ieSz4rm8EcFWKKZyqtk/EOb/3XWId62vxyKLHBgM8/tn+xCEXEL4gcEwP3piKun3fec0EE9rvHdxNcbecaLHQzkf2+Z6kocmSO0bR3QquDfVkxmIkR1OYMSyKFVOpNNkcy9rcHPtZ5bRfzTI2muakBWJ8b4oXXvGCQznCmVoGYNUNBc7V1Tp4KpPTtoRFBFv+em1IxQ4+xFVlZJPfYrIX/+aFyABMNNpzPtvY7z6So5uG2HuukosNplkhQ17gxsxliVSbOXOkRDHD4zwBZsT//6c/Up0KXivasa+6Pn9yyeTzOros4gtrS13Ua8JmBNp4ocncK2rInR3F9poAsltwXtFE4mjfkRVZpEgcs9wmL19Qb7z1qV88c8HGQwlaSt38p/XL6a+JDcvr2os4q8fO5ehcAqfXaGh2JHPsStwdqHFYiT+8e+xf+t/ME0z52uSBOQiFVuJypL3tdHdFyWk6dwyMsGnNrWhKhJapZ1vPdTOtq4JPn/JHDIpnb8eGmHr8Qm+eGELrT4Hu2/rZO3FtVQnsmjPDFJy8yKSzw6jWaRcLEzWwLawBGl9JZf8Zju6bvLxjS28vb6UbFcQa7WL2BMDpDt7czHAF9dh2GW6x2M0nlCA86lOP5/6497864/+bjffeesSPn7LVNvHfr+HX7xnFRvmluXbUlmNn27t4nuPdAA5gcI7376S+owJKR2l2omlyjnrmjx1NEDwtuP51xO/PETJBxehNnmnHZfYN54XIAHQBuOkjgRQziuIkJwqUlpOlFzShZwIiT8D1tnXiD5rzuYfE5JkUkks6mQ8hM0LydArvpbdvUGqvTbK/0Yh9ecKyHaOxwsiJAUKFChQ4Hk5LRYK0zS3zdLWfjrO9XpBC6RIdYVwb6wjOxpH9RQhSAKJoSgut8TBiURegARysblfv+8Iy+u8XLe8hj/vGZrW3zvXNkzbHFlUmapWL6ZpYncrSBYJ/0CU2nkzk+2mEEDX0CORGe+YmfS01y6rzB27BqZVaTswGCaYyGKzyNy0uo7zWktIZXVqNdBiWTLtwXxApJkxiD7Ui1yiYq0qLFzOBjJpDS1UTqYrintzPZEHepB8KkZSI3U4gGtjHeH7exAUCcEmEX9yBOe51UQf6cNI6yjLyog83Id9eRnxZ4bR/Encl5QSeaAXa6uXVHuQTG/OERJ5sBdBlfC+tQEBCN/Xg+Sxos71Yal0UqpIeHUB/2TAoeSx4lxfRdaf4NsVJcRWN3B4NIoiiVSHQ2gjI4huN+rCRUgeH/bVF2KMi9hv60DYWIeZ0VFK7aR7cu5qUzNysfFZg+xIHOf51SR2jYEoIMgZkvuewv+dr1Py0Y/iv/tuRJcLPTip6mqaIIqIDgfWtpUE/zSEXG5HC6ZITyq/mmkd5ZEBjHIHFERIXnXMdBojPHNeM2JRBIsFPRDACIXgJBESAM1lYUAzaKp0oB+aoKbEhnRhNXbP8xuMtZH4NAESgNBdnVgb3MivMHh+UY2X339wLZFYhrKMQWr3GKnJoDQzaxB9pA+5pA2hYcrgEEvr7OkP5V9ndZNbdvRxzbLqGf3Pr3Tz6/etYUv7OJ3jUd65ro6fPNmdf19VRLK6wYIqDx/+3W5WNRQVqq+cJu7YPcBEPGfwvXppFT96shOXVSGd0blsYSV/mVwHiKLIvoHc3LajJzcH3b57gH+4dB76eBJRM3GeU4U2kcK2uAQ9mGLJyjIev6cHgMpWDxb71PLQyGZJ7NgBuk7ytt8Bv8P90Y8SOUGABIBsdmYwkTC1DhGVgpP49Y6e1km3h0gdyYnimBmDyEN9FJXYePeKasYzuTXi1o6JvAAJwHgszWgkRd1LrAhxqjDNXFXV8oxBpjOEur4aI5El/uwImfYgjmWliKqcry7hK3fgK585z7mLbflAoOc/2UyhFQEwkkmsDQ2kjh+f5th5DiMaRXROnVOPRMEktwbRCxXmzWwWM50bU0pNDYltM7aiaP5xbN61ZLLZGe8JgkDul5gd2SJTVDF7BQg9niUzEkMpsxPfPoKR0Sl+zwKCfzwGholgk3FdUIMeTJPtieC5rJHE3jHC9/Xgva4F0WulzCphk0W+eMU8btvRT2Opg2qfna/cc2Tauf60a4CF1W4ODubWMH/Y0c+nLm4jldE5MBAilNSo8qWo8tjY1jVBY4mjIELyesYwABMzm5szBEWZIbADYOo6qW1Pk7pmQ76t9FOfouTDHwJAC6aIjSaQHQqpXaMoFXZs84vJjMQRbTLaeOKMJHvaFIl01sgLkABEkhqPHBllRb2X9tEYAGUeGz949Pg0u8O+gTADwQQ/unIhZHMVusP3doMqIigi8aembCWJnaPIRSqJg+OoDV6MtI4RzUDRmU1ofaMjGAZ6KEjk61+Hr3893y5v3IDvP/+bLy6vwz6ewlxVgR5OY19WRqYjhE2VEJwWBFkk0xtBclmJbRnAvrwcM2uQ2D+OY00FiZ2jZLrDONdXEX2sDyOam/vNYJryhwb49Np6vvxEB0vrvHz9vqNUee1kNYOv3Ds9MehAf5j400OkD03ur9I6ob90IpfaUZu9aBNJtEgGyaEg+XIJJMHb2kkfD+X78L65Fc0/Na7lUhup9mDu+IxOcr8/13fWILZlEO/VzTjPqyaxa5TMcBzP5nosVYXqK2cbpqahx+OEv/tdwt/9br7d/U//xOK33sgliyvZEYiywCqh9scoKVPxIeBtcHF5nRufU0YSBJKH/HkBEgA9nEZQZQRAD6TQSeO6uI5UVwhRlkjunwxKN0y0LUPctKmG24+MMhJJ8cChEQzDIGtAPJOr3nagN8SKI2GYrMhpJjXUh/pZ9va5vKu1HC1rsHcoQkY32NsT5PNeNzw4gAZMAMqSEpyXN2KzK2iBJLEtg/lrTR2aQHIopDpCmCkN18Y6lHI72lgCdUEx7g11SGohMPJM0TMRx6MqzCl3oUgiv3iqm/9oLMe6phI9mM7ZQSscJNsDGPHJOTGpEbqjA+/1rSgVDtZeWsdgb4y+IwEmBmIvmCTxHKpDoWqymunLwdQ09FBoRruRSiM7nBiJJIIoolRVITqdZAeHyA5O94EY6ek+CiMSQZBlBEHE0A0kScZIzVwjFXjtIBfZ8mIHp5PsaJzksSD6RAp1ng9LvYd0e5DMcDwvQAJgJDRSe8awLSjGNEz0SBrJLmPtj7FkWSmR3x/FfXEd4Qd6QDdRapxIPpV0Z5DkvqnnfvTRfjxXNpHunvRPJDVSd3bhvraRr127gD39YfoDCb71YDu/3zwP6x/asQKeyxoJP9qfv57UoQkcayvRAynkYhvpzjCuDbXEd4yCYeK6sAZLtZNUdxjJoaBH0nkBkvy998fITiSxFkRITjlmNgPZLOkDBxi9aM3UG//3OyirJrFnFEEWcG1oyM/X9qyOP5PBNE3iaY03La7kfx7vZDicYldvkDUNRThtCuneMLGtQ6gtXkSrSGLXGJZ6N3KJSvLgBLJPRVAkkgf8WBrcRB7uwzaviPizw2jjuXnRiGSY+PVhyj++DKVidpt+pi9K+J4pf0By7ziyz4p7cwN6OE3yaAA9kCKxfQQkASOds1OZJ4gNJ/eN4bmsgdj2EYxYFtFjwdrkQX4BwbL08RCxJ6bWHrEtg8hldpyrKl7Wb1HgjYXTN3Md4ypRUZ3T16c2l4KW1TENE2GkBxIJ9HicpN+fP+bktUaB1w56OIw2NpXYmz6WE3t2rFuXbzPCYUinsS1aTOroUWIPP4JSUUHs0UfR/BNgGjmRppMF1E2T1MGDGOEwnuZmPGXT51CLVaZuXhHpRJbSehfjk/EQilVi3vpc8sbEUAyvz4qlxknqcCAnIiWLSF4r6d5IXoDEeV41gigQf3YEPZLB0uRBdluxOS3YnGfG9ltkV3I2kduPY076ebSxBKG/dOJ7W0Gk58UgGSKxg6O4N9bnhMAcCpJTwQikWfWmRgbbgxQ9z7O4QIGzGc0/MUubP+e7fJEiJGYmM02cNN+ezu3DHOeei9LURLYrlwgqeb34broJ3e8n+NvfnvSZNOn243kREqtDpqjSjkWVcJeoZNMaoiTMulY4nWgjcSSHBceaCvRQGvvS0knBQO+sx1sViV8/0zutiNCOnuCsBeoK/G1EQYCsSeiOE55j40lCf+7A9875mJkMgiTNGIdaOE26O4RcZENt8WEaJrEtg6SOBdCCKZIHJ1DK7TjWVqKUTsU5FD0nKvY3CrBEJ1LMP6eS6jYfx3eMEpn0I9TOK6Jx8YtP3DwdCIKAt9yOt7yQhPZqUOxQOb+tBGMiQ/REG9ABP7LXStna3L44kszmBUgAUlmDO/cOcd3ymld8DaaWxbXhMrLjAu4NJ8ayi2RH4kjN3ld8jrJ6F6GRBHavFVGAaDBFzZwilBdR5b3A6xe720Lz8jKal+eSccd6IoiSgOpUqK60YxwO4LqwFm0skbPP6gbaWBJLrQvFKlNal8s7GIukUMYmMJ6L7z4BIxYnmMxS4VHz/0O6YfLPfznIsmo3t+4YyAuQAAwEk2zrnGAsnKR9LM7F88pZVO3m98/25QVIAAZCKR49OvqiRUiSB/wknp2MJzYMMCD05468X1sPpgnedpzidxcE1k8lqaxOfyDB5oUV6IbJE8fGGQ2n+NAFzQB47QpfOylW61fP9PL1qxawrCOejwMwkxqhOztxb64nBRixLKE7O3BvrEcPpYk9M4Tn8kakBs9puQ9BEChrcFPWkItlC47E2fqnduaurWSxr5ZsKsv+xwaxuafsBmfSjlDg7EeQZRwrlhP+/e9nvJftH6DsHDfxcAaHz4rNZaGvK0JDkxurAHJ3hE1VTt7eUkb298cQHQqu86rRgilSRwKIVhlrk+dFC5dd0FbCE+1T9tjGEjvVGdAmkmR7o6itPkJ/6UCbyCX165EMgT8do/id8zGiGcRIih8/0cm/Xb2A/mCCj17YTKVXpaXUSd1JuQyVXhuV3kJ82NmOmU6jBwJoz+4ndUDAtrgEpcxOdjSBORjHXeugrN7FYo+N69wN+OxTc9unLm7lvgNObt89wPvOaeTRozn78L8+3s6G1lJumF9ElQja4QkcF1YTeagHdU4RkQd6830kD/hxui1saCnhjv3DBMYThLcdw7OpjvizI6Q7p3y74b924XvHXL7xVCffuXEZHeMxjgyFuWPPlH9LVUTesryand2BafdpkUSi/jjpnjCCRUIutdExFuf7j3bkj/mX85rx3N1NKDjpqxag+D0LsM2Znv9pZHRiTw1yMqmjwWkiJKZhku4MzTgu3R3Gdd4r30cUyJHUc/t7WRex2u1gZEGa/RnstXoBSCsGiVAIS8XkHKV6IRV6RddhmiY7ewOsaSz+m8fWFef2//2BglB2gQIFChR4fgpWu7MEI6kh2ZR8ZSgAucSGp8WLJIqETzBsPYc/liGa0lhZ7+Nn717J/z7WgWaYfPiCZtY2T18sSLLI4g01hMeTdO4ZJxFO07qqHG/F82+mBI8b0zDxXHcdoROqKguKgqWpadqxyaxGz8TMRUckNWVoq/HlFifJ9gCyKhM5GphxfHY4DjOFgwu8CuiSg3RX7jd9TqTD2uCeSqgxTdBMLA1OMt25hAbBImIkNOQyO5lJRV3Ja0XbPYZgk9EjuU2QpdY1zVGS6w/MiID/zwfzTbEtAxS/dwGhOztR23z5due5VYTv68lXl7dsg7XX1TJ65DAJm0jJp/4BuWQ+WIsgq2MaEH0kV0XmuYpumcEY1no3ieB4rhKgKIBhkjo0geiyYF9ZTthj5ZlDE6xYsRpkGdMwQFEwolHk4hLUq99CtHE1th+9hbA/TSyYm1KtDe58cNA0xgtB768WeiRCuqMDPRzB0tqC9/o3M/rvX592jG3ZMoK/+S1KTQ1y6exOXXeRlUZRIHFnZ76tpMaJa/1MwRKAbFojG54ZpGimdYxZ5vWXg89uwRnJosWy+eT/E8kMxHAsK8+/TmRmnrd3IkEio+OdxYes6Qb/fu8RBAT+4fK5fOC8Jh4/NkalR+XCOWX831M9/Of1i9ENk1jq1NxTgemYpsn+gakaPzZFwmNTeOvKOm7bPcBVS6v44uXzePjwKNoswQx9gQQem4yR0ckMxsj0TonwqAuKqVlUAveAw2dl5WUN05TORUXBtXkTqf37821GOo1UVIQemBpvtlUrSR2ZcsI4L7qIxM5duT7cbtR5BafY6x1JkkgdmfnsywzF8Ta6GUzkHAFHhmaKQPVMxLFZzuy2xDRNRrsjjB4PUj4YRWsP5d+ztnpR5xaROhpAG0+SPh7C2uwB08T6ChyE1rY25IoKtJEpYSrPNdfkREhaWxFEgVQsBrIM2tR86rnhBsxsBvcVlxN7/Ancl1+GoMiITieizzfbqd5QyMXFOM4/n/Thw8jFRXiuu5axk57x9pUrEWUJS10tosOOEZ/atxS95z3IRS/zezRNJFUmunUQ24JiLLUutNE4ejA33l3n1xB9tC8f1AbgubyR8FiukrboUEAWGfLHufvAMB/f0EqZw8qegdA0kYXnOHGKN83cMzqUzGKYUOlRiaV1SpwQiGdJZAvBiK9nBIcDIR5Hqa1FsNvRw2Fcl2wmev8D+WNEh2PGvl2wWrEtWwrkqu8F/9yBEc/iWFtJJpTCtqiU8P09+eMTe8dxv3M+zkb3pGDP6WMgONOe0D4aY2mtN/+6wqPSO4vdIRDPYkMATc///9lai/KOvxNJHQ3gvrieyH09KGU2UE5Nxa4CLx7ZasV95VXEn3p6Wrv3+huZeHqIkjIHkb3j6IHcb5nEj/OcqlxldxMEWSTdGcK2qARLtYt0Vxh1jo/UkQkEq0TqeC6gTFClfKDWc5hpnfl2K/9w6Vzu2T+MaULHeAwBpgWUAWxuKCZ7wM/JZEfiYJpM/PYIZkoHWcC9sR7Ja5kmQAIQfagXx7qpvWKmP5pbSwiQOulYgMxQDNGrUvaJZSCJyK5CINDZiOTz4b3mGkJ/+lO+TbBasTQ2oioSV7eUkflTO8Jwbr4qBt5zfhVOQSB2XxcRzcS6oAgzMn18SsUqeihF7MnBaW3Oc3LCNCdTNJKkvthO53icg0MRGkocfPXuI4zH0ly9tIpzSl2IJ6xx89c6HGf5Y8PMX13Of9otPNjh54bGEri7d9px2X1+JhYWUzuvBG3y//FEUseDWBs8JPaMEb6nG3VeEZ43NWGtdZ2yaogFXhyabuBSJR4+GqSxxEG5W8XutBC6s3P6OvTqZnSfinZihe2sgZHR8bgt7OoJ4y5WWXl5PZ6y0x+AJXu9FL3nPYx+9atTjaKIUlmJkUwiqlaQZeyrVyM6nFgaG8l0TyXCIwjYViyn4mtfJfboY8SffBLnxRvRk0lMXUd0OjC0LNbmltN+LwVe22T9ScZ/fgBjcl6OPzuM99oWMsMxjMhMoVBtOE4snEZt9pLYMUpyzzjuSxsQJoPOTcNEcllwnltNuiOEXGIjNduaYiiO5LLkfSYAcjjDw4MBnu6coHciwTULKijd7ccwQXJbyI7GZ/ST7gjhvKCG6EO96JEM2eE4tgXFWFu8iF4rY/+7HzOpgSRQ9NZZEoUFEOVC1cPTgVRain3t2mliqY4LLiIzaMfeJhIZS+I8b7rdILFnjA9f3cxlHjePhmNIJ4hFd43HMMn5k/VwBtEqke6JYG32YKl3k+6LIFglrA1u4jtGcZ5bRfTwBNZWL2ZSy/vqpqGbaBPJFxQhOZnEnnHU+cUkD00Qf3YE++JSBFXCjGYR1dxYEkQBRMCA7EiCyCP92FeW4VxXiVxsz/vpno/EgZkVwZP7xgoiJAVeFMXVTla9qZEd93SDmRN+2PDOedjdUwnH0UCK0e4wx54dJZvSaFtTgee7Pyfyifflj7G2taJUFMbc2YqRSmHEYkg+Xy5xmJzIXbq7Gz0QRFBkLI0NZLp7pj4kCIjWqXHgufZalKoqAHxvfSuWmhoyvb3o4TBKeTkTv/wlRe94O5rfj1JXR7avL/9ZS2srlvr6F7xGq13h/Le2cfcP95FN6qy5uondD/Sy/7EBbC4L11zVQOIEoSfNnwRBQHLmhMHsK8pJd4bIDuWe/8n9fizLyuhzWKhdWEx5w+zC2acatypjDCWn7S0gJ6RpJgs26BeDkdVRSmxETrC7inYZ35tbmRiI4vBYKaoqiJAUeO3hvuxSwrfdNq3N97abEF5CcRK5qgp1wXxSh6YEouWKCpS6WgCsDQ3U/fxnZNrbMTQNtbUVS10d2fFxRKcT/STBMEGdmudtTgvr39JK/6EAh7cO4S6xsfLyxucVVtA1g+BInGgghcNjxVfpQLG88r2SoZskD0/kxQCTgGN1BcbziIokJ5NjZ7QXREheFoF4GsMwZj7HIhnMRAZLczNGKoV8wrrP1HSij/cTf2Y436ZUObCvKCczEENQZZL7xkmkdWLFKqXvX4Tsy4ksRvy5uNzO3WNUNHtoWFSCt8yG0zclwth/JMADPz1IOqEhySLLL6mjY9cYVrtC/cK/nRxU4PXPnDIXqb29M9pThyfwrcqJMwQTM21WPf4E8bSG/RXG3oilZdjOOY9srzQjlt3SdGrWoGX1LmRFnLYnK6lxTCu6WaCAp8zGuTe00ntggpoyG2ZWJ/rI1L5MqXFinTdz3tQMk1FJxXP9mxn/r29NvSEI2JYvY19/mPUtJfzghCTfoXCKrGnSMR6b0V+3Pw6YfP/RDn7yZBd/+OBaDg6GKXJYePuauty1SOKsMZuzYWR1Enum2+iMuDarX1ufxT5d4OXT44/z7Yfb8ccyfOj8JhRZ5PH2cR44nPPDfnxDC8ZJ+ni6YTLXbSNzpH9Gf+aJcV1GTphZ9qhow3F0fxJOkwjJybhLbZz/1jZGuiMcfXoIb7md829sIx3PkEpYUAsC5AVmQfZ4cL/pTcS3bp3W7rx4I9YaB7JVJDiS5PCWQZaur8D6zBDaSAJZEWlo8GCMJckCrvOqiTzSh5md8nGUvG8hauvfjsUcj6a4+dxGqrw2tncHWFjl4YYVNUhJA103SR0Pos4vyguQ5NFyBarQTapcKl9503z+sneIZ08QebhhZQ3/76qF2E7Bnq7AmUWpqMB7/fXI5Q0olX4Eq0Tk4annv7PCgXeOj+FICO/6SjhBhGRxjRefzcLvnu2bkSvz6PFxPnZjHcLDuXwytdFDcvsoesXMZ23yoJ8bN9dyx/5hFrpUjEAIQZVJzZL7qAfTPHhklENDYd71i+00lzopn/RFXD+/gvdU+ijtiGB4rGy+YiEff7ydQDzDjy+dx5ynxhgPDoAAzvNqkOd58vqYogBLZQWCJ1yfCeH7urHWuRFtU2t+QRQQ7RZguh9ZtE/fFwiigG1hCZme6TH86izrqQIvn5SWm7NkXcCi2kDPgjT7s9ij5tYKaYtBPBTEWzEZY6h6IJsAXePItqcAmHfOBS/pOobCKUYjaZbXef/msR6bgsem0FcQISlQoECBAi9AISL4bEE3iO8cmdak+ZOYCQ3DMKn22pBOMrKurPdR4rJgs8hcPK+c335gLbd8cC2XLarEeZIqtGmaxMNpHvnVETp3jTHcEebJW9oZODpT7fc5LHV1CIaO67JLKf7QB1Gqq7GtXk31976Lpa1t2rHFDitXL62a0cfccteMNtEqYcoCcsnMYGbZe2YrDhR4fqxOC9LkbyRIualCD6Xzv9tsbQi5wEIjlsn/lqZmIFglzLSOOGnM0qMZpJN+a9v8YqJPDkxrE+wyiT1jZAdioJsIqpQTOOmPMs3aZ4BwNEpNLIoUVZBK1hHfmUJyKMS3jyLaZIzYpEp0LINcakMbS+ScI7Uu4rvHcG+qQ7A+Z2wwidkVHrqtA9OAgOCFn/+BrCDivekmANKuMg6UX8mzB610H0+x5a5B0pPXpIfSyMUzq7gphfH9qqAFg4z95zfpfdvbGfjIR+i+5lqs8+ZR9oUvYGlsQF2wgMr/+AbBW29FLi+n4t/+H3JJyax9JYcTJLcPT+9/IEZ6aGYAeDatsfeRAURVBnn6/C2X2UE6dY4zI6OTPBZALp1lXi2aPhabS2cqrl+5uIpS5+zj02aRqC2yc9G8UjDh9t0DNJc5SWR0/u3uw6xo8GFXRKp9BZXg04UgCFy3vDr/uscf593rGvjuIzljVI3Pzn/efxRVEalwz5x7Lmwro3cijpnWpwmQQK5iqkUSuObTS7n+CysoqZn53HZfeinODRc9dzHofj/V3/0Ozs2bkauq8Fx9Nb6bbkKprcFx/nmUfemL+N7xDkSng6L330z9r36JtaX51H4pBc46TJlZ5yDJZ0UzTRyTz9irZlkvXrOsekbb6cbfH+Mv/70Hu8E0ARLIVVu11DhBAEERyfRHMVI6iYMzEyBeCtbGRqq++U28b387jnPPoeSjH0FdvAjJ40FtaUFdtAhDECj/wuexLVuGUlNDycc+hn3lCpwXX4y6fDllX/oSzosvRiopQfR4sRQXDMBCcTHFH/oQ5V/9KtZ581Bqain51Cdzz/j586n413/BunAh6ty5IEqU/f0/4Ln2GpwXXED5P/0T9nPOednnNg0TpcaF2uIlsW8cPZwmsWcMtc2XS36PZ2YEtSUP+HOVilUpl6ArCiiKxLGRGLpuMpFIU+K0UntStW+7RZom8OhWZUygymvDY1M4NBSmyG5BANrKnRQVnMiva2ytrUgeL3J1NTXf+x7qksX43vEOfO95D3JVFY7166n8j29gYlL291/AedGFuK+6iqr//hb2FSuAXKW3dHsQ24Jiog/3Yl9TNSPJ3UxqRI8FGJ8l8exUc9Gcshltly+qRD5hzfzo0VE2zy+fcVxzqYNoVsOUBIRJJ1t2JJ4TGTkJudxOYtswgiLiPKcKZhZZLHAGUJoaqfh//4qlpQVrWysVX/0KckUz0iMDuYCqkwQP4ttHQDOQi1UEMxfoKEgi2qQ9wkhqOXuDDnLxCb/7yXsuAXSrxH8/1M6+gTCyKNBc4qDOZ2NB1fTAya5IAqlsZkC6qEoEbjmWEyAB0EwiD/VgpmcRj4pksDR68rYGbTSBUm4HRZzdJuZTcSwqQfaqBQGSsxhrdTXua66h6P3vR6muxr52LdXf+TbipB3BHdfyAiRATqjGphC7sxO03KST6colDJ+IbUHJtMB2AH0iBaY5fVxPkvBaGI/lEi3WNBbx4yc686/Ho2mCuo4wi21KkEQwQX12lK8vr+f/XdjCAqcKs8RGDo7FGU9mUGb5X5DL7JjC1CRqqXKgVNgLAiSvAm5VQRSg1mcnmMiyrMqNFkjNXIfuGUMsOsn2I4sYgRThcJrWleX0HJzANDjt4mP5a7/0Esr/6Uso9fWoixdT+ZWvIDodmLpOqqMT53nnYamtRS7yUfn1ryNX5oIuBLudko/9HZneXgTFQtF730P1D3+AZd58BEFELi5C8hVhaWhAXVAQRS3wwmSHYnkBkueIPNiLtc6FpXqmncza6CHTHSHyaD/2yaqciT1jSJMJRYIk4lxbSfjeblJHA2Q6Q7P6CiSvZYZIdVwS2HLcz7LaXHBmqU1BmPRrGEkNaZb1gVxqw1LnwjrXBwIY8SxaOI1caiPw68M5ARIA3SSxbxx13vTqWI7VFQjewrrjdKA2NFDy0Y/gvfFG5KoqnBs2UPLxv0cPZXO2gfnF/5+98w6Q4yzv/2f69nq713tR782WZUsusmXLHReKIYQSIBBIKKGFNJIQIIGEEn4JxSGhGYIBg23c5SZbtmVZvet0vd/2NvX3x8onHXey5Yqx9/PX3ezM7Oze3Dvv+zzf5/tgZ2fGDaztI4zuT7KsICGc0o17Xm2AvkQBQRERXBJW3kCuciFIYjknFVAR3fKJObILO28i+pWy4YcAjmEjuGYKbkXv6eMHs+a5aj1kHh5AEAWcoklh9xi+s8rxvtLxNN6zask/M0rgouapebCgSXgWx1Bi3uc1IAFQZ4lRz7atQoXZUF0yyy9u4vpPreSKDy/hhs+uomHOdNH7xECWu7+7j+O7xhk4lOSB/z1A2tdM6I/fhVxbS+Dqq4h/5jMojY2/p09R4bko7N7N6Fe+Suq220jddhv5nTspHDpE6je3k3voYdJ3/ZaJb3+b8FveMm3+WP25v6Kwfz9qayvxT38K14kYGYAcDuO74EI8q1fj37SJ4t69+C+6iMIzO1Hq66l63/sIbN6MXFtL8Ibrqf/qV5DPIDZf0xbk+k+v4uqPLePA48PkU2XR+NxlVRRPMaBEADnkIv/EcHlNJYAc1qYMSJ5Ff2YUjwC/+uoOxvtnFse9ErhkafZnhSzO+lypMBPRK5N7cnrc1c6bmGmd9hVxLNNicmim1qBChdc6nuXLqf/G19HmzUNta6Pui1/Ed4Y5N7tYRO/tQ6yuJv6pTxG49lrk2lr8l1xC3T9/Aan+ZO5Yra3Ft349gQsvRG06UegbixH/xCemnVNpasI1b97U74WczuEnRtj+2x5GutMcfnKELT88QGp0ZvMox3E4sn2En/7jk9zxH7v52ReeYu9DA5gvg+G/kzenDEieJbd9BOc0piIxv8Zli2Y2QWqLVcyKXgz1Yc+UVnEasoCgyQh+P3J9PZJ08plmTBTJPT49TmsM5pDDGkrcQ+aeHjxLy/EAa6JYNi4H9JLF1l8cYevPjzDSnWbnvX3c/z/72fvw4NQ4nxrNM9KdoqY9iCCUzW+euuM45725i8s+sIhgbHaTnApvLNxuZYbWD0COeeBE/H1h/czC9quX1RH1vnRtqiseQ4lUz6plt/MvT3Oy9ERxxppsYiCH87vV/xXe0KTG8jz608Ps3zqExy1T+B2jZ6M/C6WZz9OYT+O/dyVwL19B7OMfK+cfFi2i7l//BbGmhquX1fPNB45MO+aCuTHcksQlC2ZqEda2R3nieLnouGTa3LtvhHeubebPLujgu4908/X7j/CVew5xcCTLRG5ms8LfRZBElN+Jc4keeda8tuiRyT09Qqk3PVXgX+HFc3g0S2e1nw+e34FHlbFshw2n6FSKhk34d+YNMZ+GKc1e7/JsDcWzSGEXjlOOwzrWqzeeZSeKHN89wfY7exg+lubAY8Pce/M+evcleOSnh8lnnv++rPDG5FndjtbZWdbtfP7z2J1L2fVAP8eeHueJ244x0p1GzpmYw2X9g3txjNzWQQRADKqYydL08cmB9IN9OObzr6WaIl4msiXSBYM51X7OaovwrYeO4TwbG6tyl/W7sxiJiH6VwrEUIrAm4JlmQALw06f6T5hIVfhDQ/b58KxZgxTy4poXIb99unGXOZzDJwjsfqCf27+5k+TIdNOE2pCLq5bW0Rj28LvpqF8fH0OqLa+t7bwJ6uxxTznu4UCifP8kLRtBFafqzn4XwaNw54ULqJoscXF7FbsHUpzdHqU2qPEnsRCh+wYwejJYu8ZpubuffzynnfPbo3QcSGMnTozPDmQf6qeuYBM4oXuURRHVnPkssTPGdBMsys28/Bsa4JTPK2jStAbgz+JeEMV1ivmlZ1kMV2doxn4VXjzTTEjcHrB0kGbPxfsVPyIiJcUilzqlrlcrzxUH9z7FHV/7Mnd87cv07tk16zlOx9M95fMtbz6zBp1NEU/FhKRChQoVKjwnr27L8Qqn5VmRmWdZHCmsTQkCHdOmaNgUDZMvX7eYL/72ACPpEqtbwnzkoi7UU4IYbuX0SX6jZJEczmP9TiBq5719dK6sxhucGYAWBIHcAw9g6zretWvxnnMOiCL68DAJXBRHMjRHPGiKhCyJvHtdG8m8wW92DxF0K/zV5nksapjFydUnYw/k8Z3XgN6fxTkRCFTqvCj1M4vjK/x+0Hwa3s2tpP9nH8ZQrtxZ+FCC4OY29L4MpaNJPMvj5J8exbOyGtGnUNgzju+cerIPDyBoElLERf6ZMfznNZC+twenYKLUeSnsGidwUROpO49PmYnIMYXi0ZP3p/esWtRGH5kHywKc3JPDBDY2UzqanBawEFQJz7I4crUHiOAULfJP94DI1L1VPJjAvaiK/NOj5B4fwnduPcJCEb1okllbw0Rex+1X8d80B/rzjI7m2XN7N6s2t3Jw2zD3/ude2lfG6dr4VhxM/Os3ki4G6Hukn2UXN7HrgbJ5yvGBHJ1twfL3dHkbxlBu6lqlJj+e5lenI1GF6RT37Sd5SgcW77nnkrn7blwLFxL72MdAUcGyCN9wI4VdOxn6q8/R/D/fR21omHEus2jOWphjlmYm2SaHcjxx2zE63z2P0BXtWBkdLAdEAdEjzxCZvxTkiBv9aIrgplb0nszJcbXGgxx1k87r9CUKeDWZhXUB/u3Gpfzdr/eSLBhsWlDDn57fjnKaQiGPKvPRi7u4Z+8IR0bTfOTCDr5672FSBYON86p586pGFEnkqzcsIeKtCNZfKTbMifOBDW189+Hj3H9glIvmV2NYDh+7uAu/JvGxi7v4jweOkimZfPrSufzHlqOkiwYXzI3THPXQqmrYuoXokfEsiyOoEnbBJP/0KLZuUT9/duMdALWhgbovfxm9pwfHslCbm8lt2YJ33TmEbryB4r796EeP4llzFqI/gH7sGOE3vxnfOWtfxW+owu8bq2CW53Z92SnRlFLnRYl76MkWCZ8wyDm3s4oPX9DBfz50DIA/Oa+N8zpPf/+9Ugx3pwhUuYjUepAvbMIYzlHcN3GyGF0UCFzSQv5Eh1hjIItrwUs3/PCuWokUjWCOjGKlU8jxOO65cwEQNA1zYAAhWkXwTW/CzmSYvPlmQpKIFArhmjeP0uHDWJkM/vXrEV9AJ7HXM66aGtIHDyL5/Rg9PQx99q/wbdhA9P3vB9smfe99eNasQdQ0PGetQT98BCkaQQqFUGpqUOvP3AQnmdcZSBTwaBLNES9y0EX6qR7cK+J4VldT2DmO3p0mcHEzyCLOqYkAScCzJIZS7UEMqog+FUGEjGVydDLPX14yB9tx+MIdB/jUpjl8ctNc/uOBo+wbStMU8fC3V87nvx4qd8ZsrfLynnWt+F0yqaJBdcDFW1c3E/YoHB7NcE5HFV2zmEFWeP0giCKexYsoHj1G9oH7cS9fgX68m+yDW4i+648RZIXinr1I0ShqaytqSwtSJILW0YEgl8NAjl2e1AqyiJXSESShvHYRwb0whlzlAtuhqIoMH00Rf4XXMqtaI3zykjl8/YEj6KbNDSsbWNQQAAc+cmEnNz/azV17R/juH60iVTC598AIQbfCn1/YSdyvctfxBDe0RJHjHrS2IKVjKZR6H1JYwzqRtBN9Cu4lMZyCieCSye8bh9U1mEUTr6sSHnu1sCyLzN334Fmxgpq//RsQRMzEJMZo2ezGerbLk1A2ZZDjbnDKIgIB0EfyuOZFKR4rF/SqdV6yT47gP7ce/Xga37p6krcdpbBrHP+6ejIPnjQ71c5v5Bc9E+iWTU3AxScu6eLmR7s5OJLln69dxA+29TKaKfIXK5pZUx8kqMpM3Lx3al2vNPhAFLBz0wuVscsiMEGVponHta4Qaq2P2PsXUzqWwilZaO0hvFE3xkgOvSc9tXaT67y4F1bNavZQ4bVFsbubyR/+kPAN1+Nbfx6OIGD09GCXSjCnayrOJSgi/vUNOKaDqMnTTI+cgomVNfCurSW3bRhBFFBqvbMK0gRNQm3w4ThO+f5wHEpDWXYpDrpp8+5zWvC7ZPYNnTSMevzYBJcsqGZiTTWRO3qmzE/U1rI5xbPI40UuS9ggFZCrPZinCDREn8KAaNNiOWidYZQ671QBnKBJ+M9rQPQq+M6uQ1SlKXOgCq8+C+oD7B/K4HfJJAo6N6xswNmfRq724F4QBUHAGMxiJUtI/pNrCK0jhJ03cUomWo2X/VuHuOQ9C5gcyMGiV+fa5aoqIjfdROCKK7ALhXLn+fEJtLkhQtdcjXpK4a/oduFbvx4pFALLJPnzW7EmJ6n68IdxDAOlqRHBsVE7O8r7ezzIgUostsJz45g2girhv7AJ/Xia0tFkebthI1d7KR5J4T27lvxTIzi2g2dZHCtrTD2/ny28dQybkgj+jc2IPqU81p54Hui9GYKXt1HqzUwZgshxD0pteWx/FqkjyH7b5P3r2wm6FQaTee7tnuS9K5ux7u8vC5dtBznuwRwtj9eCW8Z/fiNqtZfQFe34zq4Du2xeZY4XpozZn6W4d4LouxagtQUxRvPIIRfGSJ7i7nG8q2peNQOiNwqF/ftJ3X4Hgc2XEbjsUhBFrFQapdFH9uEB/OsacJyTyQbX3AhKvQ9BEwkN5dn58CChyxtwKSLvOLv8vDdtG0EW0ZoCJ+4nAStdwrEd3AujmIkSVqqEZ0U16S39BNbVk39mDN/aupO5unt6puYl3rV1yNWnL2bUWoIoDb5yUQflOYDvnHrGv7MHuyWAa26E4v5JigcnCWxqwZosojT7ywY9sohrfhTHsJACGvIseejT4VlURf6pYaxkuVhfDKpTRX4VKpwJsio9Zxyj/0BiRnHbngcHuOStNxE4fz0OkLn/AQRFQT7FqKLC759STw+Df/O3+NeuxRwfx8oXcAwDO18gfc/dKFUxXHPmkPzRj8k9vo3gVVchhUJI4TCBq67Cu/YcHMvE1T7TOF/yuPGuWoXa3EJhxw6M0RECmy5B8HpxdXURvPIKrEwGye9HeAGx+WCVG2yH8VNMfpvmhXEOl0XAok/Bv74RK12OX+WfHiV4SQv2Kfeo4JbxLouX14cxD4IA4/0ZqhpeeW2NhVN+/7W15LaeLMgOXtIMQqVI9Iw4ESryrq5B9Co4hl3ufG7aHN87waINDejFl250UKHCq43odhO46CK8Z50Fto10hmvw0rFjjP7bv5G9514av/ddhv/+88Q+9UlC170Jp1hk+J+/SPVffgJt7XNrDfwXb0SJx8g/tR25thbPqpXTND7ZiRIHHpteQF/KmyRH89T9ToFNarTAlh8e5JQlGlt/foT6OWFijS8t32abFqJfxbM0hqCIWGmd/M7R0xYSa7LEX2zsomTY3LN/hKhX5e+uWsD82kqM48VgWzaCR8G7to7c1sGp7cFLWkCEyW99i6qPfGT6QY6D75w6BEXCzhvkd4zi6DaiX6W4fxIrpaO2BSjsGcfOGVMx3fRYnqPbpzc1yUwUEQQ49MQwjXMj9B9MsPP+PqJ1Xta+qYPHfnEU23IwDRt3xZi8wikodb7pMSCXhHdtLeMFg3pgSUOIf752Ef90536yRZOrltZx01nNiGdg/Pl86IOD2EUFBPCsqEYKqjimTf6ZsRkFjy+W/v2zr8maF0Xx+CtN/iqUGwKpOZMLVsVxRAEsG0ER8SyLI3oUHMMiv2MMexbDMEUW+YtlIcb/8R+I3PQ2av/xHxBEEX1gAPP4cVov7OJbb1vO5361l7FMiQ1zYnzmsvlYQtng582rGvn50/3Iosi717US9WlMZE7GWXO6xarWKO+6+Unyp+SFf/XMIG9a3sB5XbHn/GyCKOA7q5bi3ompnLMjCwQuaiJ9V8/Ufr5z6xFUkcRPDwEQfsscvEsq8bEXSrZo0JcooEoi1QENWRT4jy1HqA+5+Zsr5tNaVaJoWDx0eIzf7hnii28q1+kcHcvRFffxl5vm8u5bdvDQm5aT+vGBkznXjiDm5EmjOffyOIIqkvz5YRBnNy15pchndA48PnPeKwhw8PFhulZV07SgMrZWmEn+kUfQ5s6j+m//BhAwUyn6ewt4gy6ePmU8OlXooDb5yW8fIbttmMDGpnJTYcqG+e4FVeVGxoaF40zzQ5jBQKJA0bRojvq4drnKfz10jLv2jrCgLkDOI+MPu/CsrMbUTQKbmkn9+tjJvMbqGhwcPPOjpO/rQTh3du2naVfMm/4QMdJp0vfeg/esG1FqfTy7UFdbA2htIQDy3rLGL5fUGevLEKo+qbN6tqaxZyLLv16/hC/ceYDRTIk1rWE2LqrFsQSEI0mSvzpK+JpO9L40Sq0XY+ikFsazrp5/+sE2AP573zCbN3eRvvMYkWu7mPzpwZPPgvYgFE189/YB8OElVWTbo3zn4W6+unkhvl/3TCs5cgybpYpC9dmtiLccmdE3TcwYfPcdq/jUrbs4OpYjHVDxCkzTGnnPqkX0zYxNay1BYh9YQuloEkGV0NqCqLUzY8dy2EXk+jmYFxTKZj9RN+IsRj8VXjxFq6zJkiwB1eMGyzitCYkgCATVAEXVJJc4xUzphAnJ0UfvQZQkRFlm17130rRw8Rlfx47eJC5FZN4ZxpOaIh72D6Wff8cKFSpUqPCGpVJl8RpB9CuEr+0k82A/5o5RBFXEd24DcsyNIziIosBX7znERzd24VFl9gwkuW3HAJ/dPO/5Tw4oqjQtWTb1vpKIZc2+yLLyeYoHDpC99z4mv/NdpEgEK5XCNW8eu2oW8fOdwzRFPHzwgg5qg25aqrz8y/VL+OjFc3DJIrWh2YMoWtRLti8HGZ3wjV3YaR1BkZACKlJopot3hd8f/q4w6geXUhzJoQRUXGfXYukWkT9egJ4sIXlktKUxjJxB+O3z0VNFRE0iMieMntYJ3diFmdaxZYHoexdRSpbwL4pi5U1sxyH63oWYgxMYAz0YQ0/hXjiX3FYdz4o4en+G0pEkapMfczSPnTdJ3Xkcz+KqKWGjoEkELm4m+9AA1rYhRK9C8NIWpICKldRPdhsezePqCOFZVU1x7wTFI0nkCxt5zND5s59sn/q869ojfLA6ztMPDLBoQwNP391DPqXTtboaBIHffmMXnauqiTXFyafKQiDHLv9/WsDubSNYK+O0bmjEdMlE3r0QPVkqL0gbfMiVJMnvBWt8epLXNW8e6V/8gsT//gApFCqL03I5gtdfjzE+hjk4iH7s2KwmJIYmIXeGMA8np7aJAQUnMPNvm54oLyJFv4o9kif76CBOwUSKuPCfV4/0AkS3z4fkUwjfOIfcY4OEr+vEzpkIqohj2liJIp944ii6BemCzlXL6rluRQNr2iIUdYvakBvXc5hYAaxuiRByKewbTvOtLUf5q83zcCkS245NcuvTA7zn3BY64hXRwytJdcDFxy+ey5tXNSEKAvmSiSwKqLLIaFbnjt3D/P1VC1Akke09k/zV5nmkCjoj6RKtfo0jd/XR9qY2/Bc2kbm/DztnIAVVgpe3Yruffzooeb2455e7BxsDAwx//h+IffxjpG+9lezDj4DjYGfKAWWtsxNzchK1emZ3gAqvXwRRwBgrEHnrHKxkCUEWkYIatmGjqyJxf3leGPO7+MhFXVy3ojzG1oc9SC+DEOKFEvCrXLC0isLPDoHloDb5CVzUTPqeHpQ6H4JHJnN3z1QnF6XOi9L08gh6XW1t0NY2Y7udzZK9626sZHL69mQKFAU7lQLHwejprRiQnII5OYnocmFNJjAnJsG2yd5/P9n775/ax3r3u6C1FSUaRTmDDpWzcWgkw/cfPU73RI5d/Uk+cclcrlvRgGdRjMyD/di2jWde2VAnfXcPWnsIdXGA3BNlYXZwUwu5J0fIPz2KoEoELmtBavSx/j+3kdctDMvhwxd2sHlxLd/ccoxLFsT5/NULcByHxrCH6qCb5U1hhlNFbMdBBFRZRLcdLMtBkQQcHJY0BokHXr1kdoXfL+boKFK0CqdUwpqYxOg+zsg//OO0fVp/+QtcJ8yOTkWu8uBaEpsqnEzfdRzvqhpEl0R+5xiFXWMIioj3gkY8s3WJe5kJeVTev6GdyxbXkikYuFWJvG6hSiKXL6rh/DkxNEWkLeajLqjxjrObEQTom8zTlygwkCvx7zv6+MjKJvwXN+NJFBFcMuE3dWJOFBFEASmikXlsCHM4jxJ1oS6J8a+PdyPJEu9Y20JLtNJJ8NXAzmYpbNtG4jvfQQwEpuaRdV/7n/IOll0uqD2vnsLeCQp7xkEW8Vl1gIPSEUIAPEtjZbMnxyGwuRWjYCCFXdiSQPimeVjJEnZQRbxpDqWcgeGRuWc8zWjB4DOXzmVzQ5gjxxJ8cFkjgukgjxf50oVdRMdL5O48jmMMkm4PUfXeRVhpHTtvoPdmMAayZVPJU7u9CWAmSgQuaaawZxxjOI97YbRs0qBJqLW+GcldyRci/qGlGKN5RFlEqfG+rGvECq8cdjpN9o47yN5xB1Ikgl0o4BQKxD/zGQCUuAcpqOJdVUP2sSHsnEFgY3NZZXNKbLa4f5LQ2+fhXliFY9rYioB7RZzCKd2RBbeMFNIQq1yUjiXJ3NcLooDvnDrOnh/lviU1GKMF0lmdf7ioi0LJpE1RKIoC9xybZPOqFtSNzSAICALoA1ny2085vyxCxkDPpfAui1PqSVM6nkat9aKtqaGQz1MTdCEIAlXvXIAxlMM2bJRqD0qlK+drhqjPRXXAIFsyeap7knM7qlDbgziGXTZishzUlgD+i5txihb+jU2IbgXRLZG+qwfXvAiqZePyKYBDVdOrb2YnB4MQDKLW1Jx2H3NiguRPfjJju51JI7o0nHweR1Ge8xwVKpyKmS6RfaCP7OND4JQNIHzn1JF9dBD/+nrUOh/BC5swJgt4FlVRPJSgsH9yyrBJcEkoJ8wb1FXVWIM58lv6ymL45dNjYul7eghsbAK3jC4IaGENO6sTeds8rJzBgGliRV08+VQfv75/EK8q8dELOlnWHObx/jQLzq7BvXuC/IEE4sZGBN1CQSDcFJgaj0VFmjbfEH0KoleZbp52IvySuvP4ifmMATYUD0yitYdQopW15MuJlUiQuuUWUj/7WXnOkErhXX8h0fd/BrXBT2ZLH6Gr2kEA//mN6MfT5We9JNC2oprCkirkai/vXNvCb/cMc/GCGlpPrFnUOh8oAlaihFLrRZsTBtNGrnLj6gzhmBaR6zqxdZvgZa3YhoXWFcY2LarevbAcG/aryLVeJLeM4zg4RrmYQxAEbMPCHCtgF0zC13dhjhVwdAvRJWNldKSwhn48jX9Deb5bPJSgsHecwMZmXJ3hl2xoo1R7ib1vyVRHcaXagxyp3J8VXj5mu0VFSSD/5FOk/+1LWIkEWBbeZcte/Yur8Jzox47hP3cdmQe24F64ANUfwBwbL5vSVVVROnoUtbkJAKdQmJo/Ch4P/os3orU0P+97KPEYyiUXz/qaHIm8qOvWvApVDT7G+7PUzwmzf8c4i5bGMB8bwr++gdTd3QTWlw34zPEC6Qf7CW5uRQpqOJaNf31DOQadNRD9Kpde005BfeVNIHMlky0Hx7m+OojWFUFtCWBnDaSAVi72m6UbZ4WZOIJN8NIWUnd0YyVKiB4Z//oG5BoP9v4E6bGypsA0LOTnydlXqPBaRPKdef7UKhQY/dKXyW7ZApRjxUZ3N4Pve//0/cbGZjn6d97X4yk3VDuNWYkkCwizDJXSLM15CjkDU5+unXQcKGT0572O50OpcuM7p47Mlj6cooUcdRG+phMpfHp9ZHvMx9fesoyhVAGPKlETrMyFXyyqImGVbLQ5IdRmf/k5FtKwiyZ2Lk9xz16cwskCYsd2sCZL5WY+eRMpqBG4pIXc40NYqRLFA5OIfgW9N1M2edzSh3Ki4E0QhBkx4BMvMHg4gT/q4sDjw6y5so0nft1N8eFBOldVc2jbMN5QJTdQYTpmqkjwilbslI5j2kgRF8ZkkYxSvle8msybVzdxXlcM3bSpDbnQ5JdnHmElEugDE4SvnUvmvl7M8ULZmHx9Wcv+cnC6NZnwnOXKFV6PGCWT4aNpDm8fweNXaVseI94UQO9Nk/3h/nLDP8COuwld2U76nl6s1Ik59QVNSFWzP0/VdIr8gw+Sf/BBpHAYu1TCyeeJf/KTlFJpNi2sZVljmJxuUhN04VFliiWTQyNZUgWdr9ywBMuGH207TmuVh0MnmmkIAmxaWIPjwKHR7Iz3Hc2Uzuhzq3U+Yn9ajn0JkohggxR1EblpHla6hORTQRKwTzE/Sf3qKFpzALlSY3HGHBvP8je/3EtfIk9XtY8lDSE2L6rBrUj0TOT5wA+e5j9vWs4Nqxr4wIY2HBsODWd51zmtDKWLdMa9/GbXIKtbI5SOJ4lc14UxVkAQBaycjuRTCV7ZhqhKWAWT1K+OIle58a6uRal99bQnsiJO1TBM48Rgm0ud2X1Z4Y1H/vFtjH/t61O6HdHrZfI9/47i8yIIJ6e1iYJFtU9BrnJPzUusySKp3xwjdFVHOU9R7SHzSD+YZR2ulSghztKAJ18y2dmX5E9/9DSJvEFd0MW/3rCEf7hmAbmSTU1A48GDYwQNm/WNYYz+LMXDCSLvmI+dKiG4ZMxEEf1oGkwbK1Eiqwq0RD0cnzjZcOXs9khFA/YHijk6RuY3t+M//63knhrCtSCK5FWwsgaZ+3sBcC2NsWxdLTseGcKepQ6ypcpL32Ser5yovfRqMvsH03zrgSO8/exm5r91DmJflmRRJzw3gtoWKjegcBx0v8LD+SI/fvtKqkzwyhLegIrrhrngEYm+YwHmeB7RrWDn9LJBzgnUneO8eWM97zm6n/sOjfKuWXTxAY9KdVcVE62jlA4lp70mhTVWtUb42fvPJpk3iHoU1CovqTu7sTMG3rNq8a6qnjUHJ0gCWlMAren5a3lETSrnGSu8IhTMcoxBtgRUtwcsHcTT1+mEXGF0dZTM5MTJjSdMSIb3bad9xRpUt5tjTz+J4zhnnIN9ujfB4voQyhk2k2qMeLhn3wiW7fxeajoqVKhQocJrn4oJyWsE27bJPTE8JWB0dJvMfb2oTV4st0B/okBfosAnf7576hivKvGRjV0EzkDz7QCROi+qS5rWRWPx+Q34TxOUspJJvKtXk733PrBtrPFxAHznncv+0SyZokk84GL78UkuX1J2kdQUidaq51+0iZpE4cAkjmEj+VX04SyB8xoRXwWxRIUzRxAEXHU+XLMsNGZLKbg5uXCZ7bac7Zj0kScZ+esPE37LW3Csw3hXb0Su8pLfPlo+z7I4csyNOVYoBwzSOo4AoSvbsXWLzAN9Ux397JxB4pdHCF/TSeJnh9AHsriXxCjsHCO7dRClyU/onfNwvA6JsUE6Mylue1s739yR5oJ5NeweSNEfEKlq8qF5ZPIpHVEWCFS5eeqO48SbyxP6R392hDVXlouHj+4YY/66OnbeV3ax3PfUKMcPJ1n5rrksagnO+pkrvLoop3RNBchu2YL33HXo3d3TCr3dixfj7NoFgOCe/S8nuSSSbSF8ERdibwYn5kZvDuK4ZybyNLdc7jBgOqTvOs6zdqbWZJHMQwOorcGpfc3xcUqHD2MXi6htbWjNzy+CO5X0+BimUcK9NE7paAqjN03paArX3Ajes2uYXxfk7n0j1IXc6KbN3sEUq1rOvAhbEATm1AZ45Mg4h0ayfPxnu6Ze82syf3xOywu63govDkkUaD4RGDUsmy9dtxhFFNk3mGT3QIq/+OnOqX3fva6FkFtl69EJ1oR9BDpC6GmDzJ3H4URnCiulk767h+DbZhYmPxdmsYj6gfcxEvKhXXsVmqpS+MUvp173nb8BJBljbIzSoUM4uo7W3o7a1PQSv4EKr2VKto3qlknd3YPWFMDK6MhVbrQ5IXIlc9q++cQEZk83lmWSaWolVP3qF4lFNZHk4ye79um9GaSwC+8lzUgNfgr39500IKn1InoVirvGcbeFZz2frevoR4+iDwwgV8XQujqRPC+sMFMOhfBdcD6pW38xbbsUq0LyB9AHB5F8fiRPJUFyKoKmgWVjpdMo1dUILhdOsTj1uhQOIz9HIaJdKFA6fARjZBilthatsxNRmy70SuZ1th2bmBIWfOiCTv5vez+d1T5WV/tRW4JIIRVzOIfWHqJ0NEnpaBJHgOjb5pULfneOTXUqcnSL1C+Por+5c6ozyhPdk5iWw/HxXNmI5IEjXLGkxE1nNVN9QlwY8qiEPJUuWBVOIvl92DkfVi6LUlsLkgTWyfW+0tSEHJ+9G47sV/GfVUvqjm586+rJPjoAQPFoEmOwXOjlGDbZu3qoeeeCV/7DUJ5zNj9PEthxHMT0GJ6hfnRJI+SOEfJ5uXvvCN3jOb712MluHPveu5bC02MYg1mUeh/2Hh0MG1dHCDOrM6DAjoE0EY/Krr4kTWE3oliJSbzSiKqK97zzcC9bhrh6JSlFAsPAjCoEN9eSvreX0JVtFPZNTnVcx7TJPtRP4OJm8mmDn35nL12rq0mO5mldEsPUbfY+PEAxe1KIteradr62t5f3LKxnqSMiJQ3epHrYuDpIYayAc/M+5sY9aB1hso/0gw2BTRrp3x6fOod+NEn6Xoi+fT4T/7OP0uFkWdR2fiPpe3pwdBtEAf+GBvLbR1DqPETfNh9sG9GrIDxPIk+JVYwc/hARPB6855+Pa86ccnK3tYVM0M+YY2P1dFPV0ET0jxdS3Ds+Vfid3zWGf30jmYf6wXYQVBHW1fOjr+9EkkVWXd/B57Yd5TPntlPllfAcTEGtl8DZtbga/KTv6aF4oNwlG9sh+/AAkTofpaMJnKdGiYgCV1/VTvqxnvJ7CrDu+k5ytxyimDdBhODmNkpHkic+RLmDYel4mtLxFIFrOkj9/Ahqox/PkhjmeJ6CS2JTW81UAlsKaEizGLBWeG0QciuUTIt3rWtl32CaeS4PuVPXO8fTFKsncc2LYGcNivsnMccKBDY2Y6VK6D1p2pfFwBFweV9bhod6Tw+lY+XuVsEbbyB1y0+nXpPCYaRQCESR0rFu3Avm//4utMIfHKWjKbKPnfw/KR6YxHdePYGNTWitQQRBQI66kaNuHMtGH8hijpdFQ4IiEji/kcL+CdQr2pDDLjL/sw8oz6FFrwKyOBWDc0oWolfEnBvh4QOj3Hz7YerDLq5YXM8tu/qYzOtctbSOkmlz/fwa3lkdJrI7iUvQaA96KAYg2RHkgf4ExliKiFfFpUhc+xzzCDnkInLjHCZ+sB9Ht8pzlvPqMUbzYDtTORUor1Gd0syuoRVeGnIkgmvFCnxXXE6hsZ5sIQeSijGQxb2wCnOiSObhAUJv6kTvSVM6liofaDmYTwyz5JoOrrvnAMcny7GEe/eN8MHz26fOr8a8EHvpMSJjLE9++whmoohrbgTBJWP0pMk82I9S50PrCJF9uJ/ARc0k7j6Ef2MT/vWNpH7bTWZLP3LcQ2BzK2aihBL3vmQDkmeRwy7k5yjMrFDhubAyGUoHD2EmE6iNjWgdHQjSyTxeXVeI3VsGsE7p4j1/XR32U09M6SGkUAg5/tzdiyu8+oguN4Io4V2xguL+/djZLGpbO9bkBPrIKJ7lyxBnicv7zz8f+UWaU5+Klc9TOnwYc2wMpbYOrbMDUX3+eK3Lq7D+rXO4/T92UdMWZPudx1FXV7Pwqnb07hQYDuZEEdf8CMV9kzgFk/SWftxXtCHlDdK/6S4/zwE7oyNs6aP23Qtf8ud5PvYNplgYdhAlsEbyFA9MIld5KOwZxz0vCtHKOH1G2AKp33RjnSj8svMmqbt7iL5zAbUdIVSPxP3fP0BVk5/478EUskKFVxNzZHTKgAROrOujUayJk4UWgqY9Z17vTJFVgSUXNLL9tydzBt6Qij+ikX/mGczxcdT6erT2dnwhDbdfoXBKoa+kiPgjL32ccwy7rBc6UcFnThTJbOkj0jhThzc50M94fw+qy028pZ22WHDGPhVeGHndRJAVjCNpjIEsUthFfucY3lU14NhlExv5pHzaHM8z8aP9U0ZbVqpUNpC8op3JWw6eMGJoJH1vD+6FVcTet3gqxh+Mu1mwro69Dw9OnS9S5yWbKFLdGmD3lgHallax/c7jzD27hl3399OxIs55b5lDuKaSJ6gwHcmrknt8GEEREVWJ/DNj+M5rwFtKceTJw8RaWgnGqqk7TZPIl4TbjRgIk3mwbyoW5pQs0vf0EG18eeagdZ2zr8kk5WReTe/to3TsKIKionV1osQq67PXI337JrnzP/dM/b7rgX6u+9RK7EcGpgxIAMyxIvkdo9gnDMLsvEnqt93EPzS7eagQ8OO96CI8q1dSbGslU8yjOQKiL4A5OQmxMNXB6c95y3H4za5B9gykuXPPSUP/5qiPzYtqSRQM3ndeG8ubQhi2w3ldVTx0aHzaOZojZz6eK1H3lCm0MVnAGMxR2D2GUu2luG8CrSOMmT5pHmHnzUoM9wVg2Q4/fLyHVa0R4gGN/UMZqnxF2uM+bjqrmYcPj3HN8np6JvNM5g3mVvu4ffcwd+4ZBuDczio0SeDwaJYPrG/D3jpO+kASrS1EbtvJvIJrcRVy2EVx7wTuxTFs3UKp8yLN0ugnMTTIeO9xZE0j3tKGNzS7BvHFsHBDPTvu6p363RNUsYzyGBucxQiiQgUA3+WbcW68jpxpoBWKCHfdQ3VHFdvv7mPu2bXse6Q8r912fz+bru8g6JFJ/uoogU0tpO/txSmYZB7oI7CxmckfH5g6r96bIbOlj/C1neWmKMBQssBv9w7zf9v7aYx4+MCGDr5232EGU0U+8pNn+L/3r6WzsXyvjud05kS8FPdOIEgipf0JjJ4M3vMaUDwydsaguH8CK6Xju6yVDz1ylGuXN9AzkWPfUJo1rVFuOquJgPu1lfOucGYIbhe+jRvBthBdCnJYA0Uit214ap/ijjGaz62nt8GL/zQNFkbSRfoSBT516+5p269b0UguKtOrQt//HZuKA7SfW8szHpM3N8c4V1Yobh+nsGcC5bJWxm85VG4+dHEz6bvLMQb/BY1k7u+b8b7VqsyyphAr5sbwtQik/u/wKZ9NRm3wIaoSwU2tjA/vxU6X5zbes+tQ68txwYinCxRmAAEAAElEQVRXI+I9oc2Zo6E1BXBMG9GnvGw5uAqvHEWzrF2XbAHtWRMS6fQ5hJArxJh3gvTY6MmNJ0xIrMwEjQsWIWsaex+8j8mBfqINjac50ynXYFjsHUzxrnNaz/i6myIedMtmJF18ZdaZFSpUqFDhD56KCclrgFwqiZnIYWd0Ahc345g2giRiZXTM0Rz1uQNE4zOLfhojbrzqmTlYi6JAJlHkvLfMYfBwkmLWoH5OCM0rY5k28iznkXw+1DlzCF59NanbbgPbxnfRRXjOOotv39qDZTvs6Evy2c3zXtDndRwHO6OXu3E55SC11h7ETBZwyS9fUKXCHwauefNQ2trIbduGe/Ei0rd/h6oP/v3U6+n7evAsr8a9OIZc5aZ4YAKjJ0126xCRN3edFMtKAr5z6hFVEbtkEXnrXAoHJzHqvXiWxXBMnXR6gKd/fTOmXuLQ448AIEoyH/vYX/Ghh7o5NJJleF6cay+uI6iqCAIEY24mh8pFeE0Lomy/8zgAw8dSLNpQz95HBkmPFzj7Te0MH09DQCETVchWRtfXDK5586j5279l5ItfxCkUcPJ5/BsvpnT0KPlHt4IsE7r+euSGenJf/zre9eehdXTMeq7sRInB4Ty+kAZtIURNJDuQpTGgEqmbLgpS3TKrr2zDyei4F1Sh1HhxLBtBFikemCzfu9WgDw4y8oV/Rq2vQ9BcTHz/f6j++MdwL1yIPjSEo+soNTUzCqKfZaK/l1988e+56n2fRZ/IoNZ5kfwq7qVxBEnALpj88IleRtMl9g6m2XpknH9789IX9V2GvTMXwY0RN3F/pRDp1UaRRK5aWs+RkQzdE7lpr7XHfJRMm3+95xAARxMFltoK5ExcnSHURn95riGL5SL5U4oOzoTRbIpf3f8bLKN8XOeatSz9y4+T+9K/4NuwAffKlTjZDAN/+UmKJ4x9pFCIxu9/H3AQbAe1ve2MhJkV/nDQZAljPI9/fSN2Rkdt9mMVTCjZFISTSdDE4AC/+PLnSQz2A+ALR7nio5+mruuFmeG8FMxUCXIG/gsaERSR/I6yOUTpSJJSS4D8SJ6G9iCu9iCOA1aiSOaBPrS5s3c5dByH/BNPkH9qO6WDB8k++CDRD7yf6Lvfg+Q582CcoChE3/Me9N5eCk9tR1AUQm95C0pjE8bx44heD4Kmor5Ao6rXO5LXCzjYmQxScxPVn/40Y//+71iTk8jV1dR+4Z9Q6+pmPdbWdRI//gmpX/0K34b1FHY8gza/h+Clm6YVJjx5fJLP/WrvKb8n+PSlczk6kmVtexX+dXUYo3mStx7GNTdC4KKm8r2TKqGP5FEafNOSDmqjv1wAmjH56cb53D6a5NdHxjFtm4hP46v3HOKP1rZwfDxHTaAi5K5wepSGBsx0GntsDCkUovpTn2Ls61/HTqdRGhqo/ad/fM4OrXYhj96XwTEs/Bc0IVd7yD42iP/CU4zDHAch/8LmCq8kPbuf4Y4vfR7TKCfhOlafg3Lpm2mJeugePzknWt0YgqKJlSiidYbBccqdvuNuBFViZ6nEe368HdMui5e2Hp2gPuRmRcuL62hb4cyR3G68Z60hkUxw/z2/Zux4uSuE2x/g+s/9E7H3L8bRLUqHk9OOk6s95SLEvMGV17RjRzR+890RLMOhY2WcZRsbyUyWyKdKtCyL80Q+xwWtURaNlbDSBtndZRGY/4JGeKjcgcW9oIr0PSdF6M8W9JxK6VASO6PjWV5N6XASO2+Seagf39o6lDofSAKlo0n859ajdYaQfBUhw+sdQZKIvPWtjH/nO3je/jZ2dh9i1w/vLL8milz+55+ia81aCntPFk+YI3kKtkPgkmbsgEZJEti9fZSuVdXEmgLc3j/BpoU1XP+j7US9KqsbQ/QMjfAXmRAXFN0Udo/PuI5Sd5LS0XKxsv/8RhzdwrumprzO607BeHHKVA8b0nf14F1bi1TlxkmWKB5MoPeVDdb6TZP8ZU3E+nNkDZOxeSHaaj3E/JV5yB8KsYALtyzx5PEEF82Joe9N4TunDtEt4zjlzjf5veN4V8VxzQmjVHtxHAd0C3OyiKsrjGnYJMfyRGcpgvl9UTxwgNSvfoWguSju3oWVyxH5kz9h8r/+Czkep+qDf4oYCJDftg3X/PkI3ophY4WTmKkSxmAWO28iV7lR63wIpxQylA5NzjimdCyFGFDJPj5E/IPLkE90IhYkETNdwr+hEU7MHzOPDiJHXViLYjjjhWnnyT4yQHBjM6VEFqdo427VUDtCeN0qVy9rYGF9kGf6knzkJ8+gn+jQtas/xUc3dnKZIeO6fwDXufWUdoxinMhN+LwKXRtq+OPb9/K5y+exqD70vN+BqytM7P2LKeybAAcKu8ZwL45NM0gBUOp8U5+1wsuIy0XkT97L4eQYD37tiwCEa+u4Yu2foz8yiHdVDYJLQpCEk0ZhgBhQ8Z1VC4bF11a28lShyD8+eoz2mBeX8vJ0NX4WK6czectBsB201iCJWw4RuLiZzJZy3M49Pzo1X3ZO3DNGXxbddghe2lrupmnb2Gkdd1e4ch9VeE1gpVKM/b//h5PPI4UjpH5+K6Ebb8S/Yf3UPoWszoab5jBwMImpW9TPCeM4DnJzuQGFHI9R/dd/DadpWFDh94fW1Un+mR3ljn8uF3I8jqiqTN5xJ/EP/xlWLoc5mSDyzj8i8aMf4+g6rqVLqfrTD7zknJRdLJL43/8l+8AWPGvWUHjyKVxLlxLYdMkZib9r2oJc/+mV5JIl9m8dZM8TI8TnhomeyNHld4yidYYIXNQEbplC2MU9vzjGmtVxpBPxCq0zhNYaLIvOkyWsiGvWwqaXi6rSOA99/5ssfO/fYhsW3pU1WBkDrSWAkSiAMbPTaIWZOHkT0a/gXVMzpQUzxvJYiSKKJjLak0GUBAqZElAxIanw+kb0uJGqqqZMv3Jbt1L7+c8z/Hd/hzkyghQOU/3Zz4DvpccmijmL5Fie1Ve0MtabwRd24fYrJEfzZD/xQQKbL6Po9eFethT/+vVc8icLuee7+8glS7h8Chf+0TxCL0PBppUs4V4SQ4l5ynohRaSwdwI7Z8Ip9fR9+/bwiy/+HUaxvL5sXryMjX/yIYKx6pd8DW9kPIKNYDrglnEvjWFnTdSWAOZYATkaIHDdddOaW5gZg8AFTVN6muLhJHp3Csdx8K9vAMsh80AfTtHCLpioNSdjUbIisfKyVuItAXp2jxOociNKIonhHJIsMtGfpW1pjELGQNFkJEWkZVGUqiY/0hl2Jq7wxsHOG7gXRnFMB8ew0TrDmOM50vpxfvvtr+ALR7n6Lz9Hddvs+saXguR2Q8SPIPVP07Kb4wWsRPH5T3AGFHM65980h/4Ta7KGOWFsx8HQLVSXTGHfPka++EU8S5fh6CUmf/ADaj77GdSGhpfl/Su8NigVDJ68vXvaNttyIF1Ea/SjVHsRRIHsowMIsjBlQDKF6WAlS1AzMy+gxuOErr2GAdHmzm/+C45dXrssvXgzTWsvJmY75eaCp+BSZTriPvYMpKdtb63y8p5zW0EA9YSOSAU+e9k8JrI72TuYxq1IfOayucyvC/BiMEfzmKkivjW15TVXe7BsHLz1pNmF2h5EClZib2dKMq8jiyK/2DEwpSPZN5TmyGiWi+bFaY54yJQsmiIeVrW4eOf3nuCC+dV85MJORAHaY14+9ONn+PurFnB+XMJeFCX1m26UGi+Bi5rQB7Mo1V7kWi9OySR0bQc4IEdmN1YePLSfW//5bynlytdS1zWPTR/8KOGa2pf8WXNJneRwed47MZjDG9RweWV23tvHuW/uIvYayvtVeO1gmSZDVWHu/q+v4zjlMXLlpitpDYhUtwYwSiarLm9lvC9DtM6HUu1F0sSyyeK9veX8hiwgSAJmqoRnVTVyyDW15snvm8DKGchBDcOy+fbDx/jeo8cBynUMR8d55zktfOP+I3TEfQwk86iKQE3AzZrWMG1Zh/zhIdwLq0AoGzHpR5KIc8PI1R78NR7kmBsj7uFNssk/3XGA6oDG+q4Ybz+rifZ4Jb7yh4oSDOK/dBPF4RxWuoSrM0TuRGNrpdaLe3HVVEOIi98yh8lUadbzxGapa4l6VRY3BGmOerl99xDCuijrakIUBJuAKvEBt4axbQirzkdh5zjuRVXknxqZaj7knJJbtdLlJp3mKTliQZPomlPFT86qR1Mk7KKJ7FUp7B5DCmvlWqLq8rxFrfMR/+BSzPECoiYhx9yI2uzFZ6K7UpT2h0TRLKKiICCgut1gmbOakNiFAmPf+Aaq2I2tlUiPnjTaQSub0qqiRay5FU8wBMDQ4QNnZEKydzCNYTksazrz2tymE2Z6vZP5iglJhQoVKlSYlcqM5DXA0KEDiHmIrW0kdccxlBofdsFE1CRc8xoxd6VZ02awpCHIzv6yuFwWBT53+QKCL6ATdmIwx+DhJF2ra4jWe+ndP0kpZ9C+bPbOyGo8jn70GL4LL8B/2aVlV35JZNiSsOyTLsO3PTPA29Y04VHP7HYyszqOaWNN6BQOTIAkotb5UBp8z9sltsLrD7Whgab/9y3yO3agtCyg8EwOQZYQNKns3GxD/qkRtK4wem+6nMjLmWA7ODYIqoij2/jXN5DfPjrVQUZwy0TfOZeR3ARSXYS9v/wF22//JefceBOP3vKDqfe3LZMt3/0m557/fnom8iyqD/Kn/7eTf7hiAS3r6xh4fITmhSc7Iz175/fsmSBS62XZxiY89V6+s2+AQ7kc4yMlxnfo/PuNS1/Fb7HCcyG63YRuvAHv2Wdh5XIodXWUjhwheNVVhK69FkQJxzAQVJWaz34G95KlyOHZF12CKLDnwQEUTSJQ5SI9UcQoWjQtmNk9K1zt4chTI0jtAYxDCbKPDSKFNMzRfLkQJFQev0sHD+JZvQoEEVGW8Pq8FJ7ZiTE0xNBn/wo7myVw+eXE/uxDqI0zF44HH3uY1OgwmuBCECyK+ybRh7IIgGt+FLnaQ9SrMHrCGT2nW1M/v1BWNIdZ3BBgV3852aJIAn+5aS5hbyXB8ftAEgXm1AbI6SbtMS9Hx8pJik0LqvnOIyeTdD/YM8C558+HgIqgSmQfGUCKuDDHCnhXVGNoM8XrjmGg9/ZiFwooDQ3IoRAAhXSae2/+f1MGJACHt22l40Mfo/Hb36Z0YD+CplE6dAhMEyQJLAvPmjWkf3EriR//BGyb0I03En7bW9Faz9xltcJrGwkBO6CRe3wQp2CCKuFZEsM2bGTXycTt4ScfmzIgAcgmJth9/11EGxrRPK98wZiZLpG6uxujP4c5kgcBgpe0kH6wH7Haw95tI9TNjyBWe0id4tAO4F01U+RlTE5S3LmT4sGDpG+/HSkSIf6JjzP6r1/BvXgxvnPOQZDPfMmltbXR+K1vUdi3DwwD2zDIPfIIalMzYiSCUl+Pe94LMwB8I6C2tmKOj1N85hmUujrqvvwlHMNAaWjAdRpjMYDS/gPox7txL12KXSwiV1cj+X2UenpwtbVN7ffz7f0zjt3ek+DGVeXnsuiSUet8eFbWkH9imOK+E8Vsskj4mg6sjI4U1rASJaSQhtYZIn13D6JPoTmk8a6AzBXXL6EnV8K2Hd6/vp1EXucjF3XiPU1yoUIFADkUQm1oRDcM9J5eBK+Huq98BQwDubYG99zTGzyZiQTFg08jx+IYw3mM4V7ci6oIbmoh9dvjOCULpcaLIAuora+NbnuFTIYH/vu/pgxIAI488Shta9Zx05ouHj82ScGwcCki39g4F6dgoXWGKB1LofdnURt9iAEVIeLiM7ftnDIgAdAtm139qYoJyauEPjTEsGBOGZAAFDJpnrjtZ2z6wF8gmKDUedGPl9cdglvGsyzO5E8PggMC4J4XYd2VrTz+2x72PjRA56pqfGEXgcVhvritmyuW1HOux4UymCf96ND0CzjRxdCxphfLzBaTkqvdiC4ZV2eoXJD5QB9OyULQJLS2IJJPxbOg6uX9giq8plHicXIPPoR33ToSHhe77r1z6jXHtrn329+gpr0TV1uQzCnHmWMFCnmT39x2nEi9l/ZlMQzdRrctHuidpC1fngtP5HTuPFAWUdz8aDfntkdR6n2YY9ML3OWIm0J2DLXJj50zyNx3sruVd3UNolcGWQDTQQyoSAGV7NZBQu9eSGEoV44buCQ8FzZx62SGrzxcLm7WLZvPzZ9PLFBJKv+hsaghSN6wSRVNlLYg2TuP41g2okfBGM0TurIdY6SANVbEsWxKx1KYiSLeFdXgV3nwP3ax4a1z8AZeGzEeK5/HTKVQmpoxBwcQg0E8a9aUTU5v/h4A5sQkmXvvw7NsGXJ1Na7nmPtUeGNhpkskfnZomrFD5K1z8Sw+WeGldoTI7xibdpwS91DqSWNnjLKg7BRDBXdHmPGb907b331RE/ktvYhd0+eQds4gu32Iw5E9DBzdx4XNV1M8VqBqSblbbEfcz2NHJ6YMSKYomHh3J7AVsVycOpSbds6241mW1Af40bZerll6ZkUXjuWQuffkMyK3bYjgphZy24YwxwpoHSFCl7chvoIFzG9UJI+HTMDHw//5laltiaFBCqE8omGT3VruIqg2+VFqvViJEgjgX99A6o5usBwiwMURDe+GDpYsrkGTXz4TErtkUjyawujPErioifSJuYRzSkH5qfPlZ+fKxYOTBC5uobBrnFJPCq0tiP+8RtSGiqi3wmuD4rFjqC0tOIUigqYheL0YgwMYIyMo1eX4bmIwT//BBF2raxAlge5nxijmDDZd00H917+O6PFg2xauihn0aw45GiV09dWUjnVjDAxgjo+T3vIAsQ/+KYlbbsGzYgWetWuRa2sJXLa5rENpbEQKvLhCsFMpHjiAlUqjLVgAqlIugBSgdKwbV3vb858ACETdBKJu1r95Dnf+126GjqYIdYTgWFkDVDqcLJuyXtTMb360i7ZlcYJNfrIiKLU+5LBrqtum4JYJbGzCu6oG8WU2qQIo5fMM73ma8Z5jCA6Iqkz28UGcooXgknAviuGc0pm8wukRXBKuuRHS9/ei1Hix0zpy3IMUdbPtv/bQtjSGJIn4QhUj0Aqvf5R4nJq//hwDH/lzcBwmv/Ndav7ly9T+8xewszlErwdsG9fLoCGQFJHjOyfofmaccI2H4WMpChmD89/WSc3n/x5rchL92DFSt/4CORajfv58rvvUCvIpHbdfxR95ef4npagLe6dB9uggUlDDHMnjW9+AFDyp9ywV8jzy4+9PGZAA9OzaweDB/RUTkpeILzcCrkZEUSC7dQgMC8Gt4F4QxbEdKJVQ29sBsIsmhT3jGH0ZrEQJO2fgW1eHXTIQPcqMLtfeFTP/Nr6wxvxz6miYG+bQkyNYuk0pb9K984TJtOMgKyI4DmuvbSfeHEAQn9/MrMIbD8d2sMaLFPaXzc7VOh9KrZd4Q3l8zCYm2P3A3a+ICYlaW0uhMIh7QZTMA33I1R6sVAkl7kGuennyBpPPrslW1SDKAsdOrMk6l8dxDIPCjh341q1D9PnBtpCrayju318xIXm94QhYv7OmWL+5mcL/HSF/wnBEUEQCl7RgZ3QEVQIB5Ji7PE7nDST/7DFNK52mGArywLe+MmVAAvDM3bdTtWA5I5laaoPTzcYkUeCP17Zy375RMqWyyX9twMXFC2pQZ4nJzakJ8MP3rGEgUcCryTRHPWdkUDkrkkju0SHyYtnEwrHLGjUp4sKaLKK1h/Bf1IToquiHzhSfS6alanojG4Anjk+yYU4Mn0vhl88Msqi+k0UNIX74J2fxZPckyYKBJol86a6D/M2mTq5I7Gfg4/9I7Re+hfesWvLbRygeSeLf0ICZKGJ3p7AyOq65Ar6VNbNei6mXePzWW6YMSKBsStK/b/fLYkIiygLdO8fp2T1BuM6LyyNjWxKb3r+I+s5QZa5RYVZGjh1hy/9+Z8qABOCp395Gw+KzGOsp0rK4rIHxhjT2PjJI06IIStSNXO3GHCmQfaispZQiGqFrOijuGSf/5AiCKiJXe/CtrJkaswaTBf738Z5p758umEiCwEc3drGte4K3fHsbVT6Vv7tyIevbItg9oyjVXvLbRwhuaiW7dZDS0SSCKuK7qAmt1ocgCLiAm85q5tzOGLmSSX3YTegF1NZVeO0hqCrZYp6CWEI5rmNNFHHNjWCO5XEvqiJ918l7SWoN4Du3ftbzLKgLctG8OPfuL2tvBAH+/qoFtMbKxkzXr2jg/205RsY0mLcvhZg3EVfVUOpOI53QS8ix6Q2DTtWU5XeMEtzUQmH3OHpvBrnGQ/iqDrRTzExFl4x7XgT3vNm1iHJQQ64YjL3uKFpFVGQQBBTNBZYO0vQ5q+M4DPz5X5B96CF8NwYoqkWiT+w4uYPmZ9QJMqZGiDW3orhcyIrKeH8vZ8KO3gQAy5tDZ3zdp5qQnNU2sy6uQoUKFSpUqEQkXgNkExMke4cI+EIELmpG78mg1HhQ4l6sVA45EiFklfjaW5axbzBNwbCYU+NnXs0LE0u0Lomx58EBHvvF0altF79nAfJziBI8q1ZS3LsPKzGJIMlM+qNs/Mmxafu4FRnpDIJnlmEzOZzDLYPkUSjsmcDVGUaQREoDGVyn6S5f4fWPXF2HZ3WE3LYhivvTqM1hAhc3U9w3gTFawNUZwjU3wuQtBxFUCe/KakpHkmQe7iewqZX0XcdxTGfKgMS9NIYccZG5f4BgXEUyhtj9wD0AmMbMLt6ZiTHq3LCsKcSjR8vJm/GCzj2pJG/a3EhVzEf0wCSDh5O0Lq6aSg5ODuUoFU3y66Lctm942jlf7o50FV4agiCgniIWlFeuJL9nD9b4BIIkItXW4n6OIuVnqWr0UdMeZPhoiomB3NS2qoaZbtGaR2HFpS2YvWmUWi9S2IU5lse3th4rbyCcyKEIsowcDJF79FGsdArv2WtRWlrI2l6Ez30TTylB4fvfYPJHP6L6E59AEKcXxg0c3E9d+zwkl4otFjCSRdxzIzi6jTGQRW0LUixNF7SryoszfGqOevnPm1aysz9JtmQxt9r/oh3cK7x8LG+O8O13rGTfUBrDtOmq9vM/j/VQOuG625co8INjw3xsXh1ySENaHscYyeNdU4tjWDO6qljpNJM/+hHj3/wPXBdcgrP+ClxzWzCsFIpLITk0OOMa0mOjWKEYnrPOQkAgc/sdyPE4sU2XkHvscbTODsa/8c2p/RM/+AFKY8NpTUgc20EvmigueUbngQqvTYQTZjaiR0ZpDWJOFtH7s3iWxtCUk0njkWOHZxw70d9LamSYeGv7K3qNjlUeF9EdlJgH78pqck8Mk9k6iGd5HKc5QPRokoY5YTxxD+KNc6aKOf0XNKK1hsrnMQwKO3eSvPVW7Fwe99IlpH97F4HLLiX36FZSt/0a/0UXUdjxDHIshnv+/Bd0nZLfj2/NGkp9fRi9vXjPOQfR7Ubt6ECNxZ7/BG9A1NpahLPOQo7Fyt2qJAmtsxM1PrvZ4rMYw0NIkQhytAq7VMLo7SO/9TF8F5yP5PejnPi+3erMeZ1blaj2aRi6RSlnkBor4F0aw+eSyD8zhhxx4Tu7lsyjA7gXVhG6vJ2JHx/AvThGdusQgYuasLIG5kSBULWfak1l5dw4588pkS2ZxPyuWd+3QoXfRWtqRK6KIvp82JkMguMgNzU9b/FDcd8+Ur/4KVUf+ATFAxL6oI7jVdCHcsgRF54lcUo9aQRFxMkZTA5nyU6W8IU1QtXeV/35bJZKpEaHmRzom/Ganp7kwnXV/PKD53BoJM18vxvPcAGxyk1xJA+Wg+/sWqycDgKYijDrek2qzDleNeTWFsYfvn/G9tHuo5h6Cc3jJXhZK+Pf24NTtPAsiZF9dKDsCioKBC5oxMoa1I3kuPzSZo6NFthxdy+xziAPDjvIksjVy+rRDydmFvc6ZcGaY9gzTEeMoSyuBVGKe8txAUERCV/dOVWU6z+/Ec8JI18ppL14IVmFP2isbBalqRGnWCQ5Njrj9UImTSmXxd/QTPSd80nf3YNdMJGXxskENIo5g8FDSQYPJRFlgdYb27h0YS39ifyMcymSyEC6SO2iKkpHk9iZckxLqfchhTUcw8bVFSZ97/REc+7JYQKbWgle0YaTNbHSJcxEieCmVlwhF97NbVjr6kEQkEMab04XWdwRJZHTaY/5mFtbWef/IVIb8rB5sYtd/UkKw0W8K6sxxgvYGR33/Eb0gQxaewjRr5B7agR3V7gsZs8ZDI/k8PhVYs2vjb+9revkHnuM9K9+BZKMe+lSXJEIpSNH0SQJ/5w5mJOTYJoEN1+GGAjgXrAAUarMn9+oWFkdYzSPIAjIMTfmUG6aAQlA8rajKPVejME8+R2jyFEXwavaSd95HEe3kIIacpWb/NOjZfMm33QxkNoSIPLWuaTv6cGxHTxr69B7MxjHM8g+Ddf8yJQhpaCKmEslnv7ur7BME/PaN+PVp3eKnW0+atkgKBKiR8CaxURaGy3SWe1l/2QOTTmzeYjkVxB9Cna2/Ayxswbpu48Te/8SBE1C8qmIsxgUV3jpWNksuVwW27KmbX/sof9j47UfpPTICJgO0oIoTkBD7Mmg1Hkp7BqHUwowXHEvl4UClO7uJxl341kcQ6176d0rSz0ZrNHy/MOxnSkHfuGU3IEgn/xZH8ziXhilsGeC9F3H0eaEiL1nEXKVG8lXEfVWeO3gFIvIwSC5Awcw+vpxL1uK3N6GmU5PmZA0L6pi5/39bP35kanjLnrnPIR0H8gygiLjbu1EdFeM+V6LKLW1KLW1mJkM+tGjuBYtxEokiH/6M8jhMFpb6yvytzPHxxH9ftTmZoyhITJ3/Ra1rR05EoUzNCF5luZFUa775EpSY3nwKUgXNCLsHANRwF4c46md41iWQ+++CVZf0ULoinbsnDFlGOU7pw5EgeL+SRzTxrOwCjny0j+zqVtMDOYoZnU0d5rE0ED5BUXEzhlIfg25zY05VsDOGQj1lW7KZ4o5XsC/vhG9L4Na50MKaTi6SSDqwh91sWJzM6Fqz/OfqEKF1wH+DRto+ekt6N3dSKEwakc75thYuXGQy4WrvR3J89L/H8I1XhZuqGfnvX1T2h7NI1MVFcn/8gn0Y0dxLVxIYPNlJP/v57g+3Ykv5Hr5DYFMB605gBx1Y04W8Z1bj5UqYZZshvdPICkSmifHeN/xGYemRkde3mt5A1JKTkJjE1a6hBxxIUdcGCM5HN1EUCSQJZR4OR+sj+SQVAnLLaM1BxAUkcwjA0TfPh+lwUf4hq4pIxL/RU1obac38PcGNfKJErsfHJja5vYrmIbN2us6iDf7idR4K0XBFU6L6FYoDIzhag8hKCLFnjRaV5h85mROYuTYEXS9hKrOXriYTRZJDOWQZIlInReX98wNaOVAiMJkP75z68uNHhr8SH51Wvf3l8LUmqzvlDXZH89HdStYmQxyTQ3m8DC5hx9G9HjwrlsHaiX28HpD88is2NTCvTfvm/o9aNjYmZMNSRzDpnQ0CYuq8L+pA2cwhz6YRWsOoLYEkOOzzxnMyQQlUaCQTs18MZtCzFswyzC+pDHErX+6loPDGWRJYF5tgObo6RtqhTzqy1LsLrpEAhsaSN/XizFcbqhl5Q3CN3ZROphA780gSJVnxgtBkyWqfLPP6+pCbtIlg6d6Ejzbt2ZuTYC5J2pyhpIFLltUS6TvCD0f+FjZPO/73yT4lk/iPbsOHIfcE8P41tSSfqAP/4YGCvsmTmtCkk+lGO89PmP75GA/4/29BOPVKKcZy8+EqkYf1a0BRrrTTPRnmejPEmv2s3BDfWWuUWFWTMMiMzFOKZ+b8ZpRSpNPw1N3HJ/aNndtLfGmAJIsEnnrPLIP9lM8nCgbJK1vxEoU0HszeFZWI/lU9IEMxkgOczyPWu9HEgUUScT4nVyJV5PYenSCR4+cqNvJ6nzox09z+wfPocktI8fdlI4lSd/fi2dxDCnmQo66yW8bRjqnHuXEM0AQBFqqXvnmhxVeHex8npIs8dBv/5eLNr8H9ljIURfe1TVkHxmYtq/VnSa8oZHikQS5p0YRVBHv8jhqU4Aqv8Y/X7uIvYNpJnM6rTEf82tPmuk3Rrz8zaVzSf7oAPrRFELMjaNbOEUTyV9+tpujeZQ6L8Zg+X/l1DwZlkP6nh6q3r0I0acgumWkSsOHCkDBLKA4MqrLXdYVWjpI0+eLqZ//nOyDD1L9mU/TMG+Uh3b/D019w6Tuu5/ghRdwNKtwdelfyYQ8mNuG+OD5HYTrG5g4QxOSp3sTNITdxP1nHuOqDbmQRIG+yZnatQoVKlSoUAEqJiSvCXzRKuy0gRpyk3tyBNfcCE7JIvPIAKGrWins6UWqqqI56n3OgNbzUdcV4vIPL2HPlgH0osWi9fU0zn9u4w9RlvEsWQxArmTwxO5hVFmkeEonrCuW1D5vAZJpWOx5aIC+vZOsPL+BkFvG1REC28FxwNUVQXRXbsc3Ila+3K3VsZyyuBKwkjqlo0nkGg+Bi5rIPjpI6XiawIVNZB7oA8dBbQ2id6couCeIvGUOxUNlxz6lxlNOBJ5I/OnHRNwrq3nTn/4Nd/3o68iKWrazdE6KOOvmzqff0UgV0lP/Y8/0JhEUkQ/ft5+b1jQxZ20MtWhTH/dR1Rqg95lxtDo3drOX4fz0brT1IRfzKsYMr3k8Cxe+4GPcPpUL3j6XQ0+O0Ld3koZ5YbpWV+M9jROp26dSdMkkd48jx9wo1R5Kx5JIIRfOs923DZP8jh0oTY0oVj12qcSw3Mzex8eoqg+SHFVo+NN/QfrpFzEnJnAKBYqHDyPKMuqcOSy7cDOeAXdZ8B5yozUHQBIRvRKe9iCO40y5swPE/RoNoRcvRKsNual9CcdXeGVoi/loi50U+3304i7+/jf7uLAlwMqIxOFiEcElUTySQPKqKNVejP4MgiziVsticmN0lNKhQ5jj46AbuN/+J+yRVhA0FHp/+HWGj+yn6+x1NC1cQu+endPe3xMMIWkaTj7P0Je+hL63nCDMbtlC/NOfxpDceN79QfS7b8PsK4/PmXvuJXzTTTOKhBLDOfY+PEjPngma5kdYcF49kdpKkPi1jugSkarcqEUTx7BR4h4El4QjiYjCyXlj85LlHHr80WnH1nXNo2fvLhzHeUU6tTxLaTBL6WgKK6ujd6cp7B0neFkrqTu6MRr83Pb9/Sy/uJldW/qYv7ae2iUx3HPCADhWkdK+nRhDQ4h+P3r3cdSGRhK33ELm7ruJf/IvGf3il4j9+UcY++q/4b/gfHCguGcPViKBY5ho8+c9rynGqWiNjWiNja/U1/G6Q4nHUV7A92vlcjiihOByY05Okv71rwlccw3eNWswJyfJP/EkntWrUGIx1s+Jc9vOIawT2WdZFNg0N448UmLvwTQHtw0z3pdF88hc+f6FhJr8OCUbYySPe0EVctyLIzj4z29EibnBipN7ehQrUUTrDOMYNnpfBq0xQMSnEfFVHM4rvDAkjwfvihXPu59dKFDYuxdkmdStvyBw0YVMfvur+C6+BMk9hrz0evR7h/EsjZO6oxvRr+CeX0XpeIqSbrP1rl4a5oVpXhChYW7kVTNgKBXyPH17uYCzadESendPn4cEouUOHHNq/Myp8ZPfN0H68WH8lzahdYawUzqOaSMFXUhBjV7H5k0rGvjyXQdPnsMtUx+uzHFfLZxsjlhzy4ztbctXo3nK8z6tKUD8Q8swx/IILonctiEQIHh5K3bOwBzNUzqWgoMJ5qyoRrymlWeMEnc+epQvX7cESRQwxwtIQQ0Epooq80+PELikmfRdPRT2jOM/v5HMQ/1gOZSOpYi+Yz7+c+vLphFR95RwAcriBTlc6Ur7RscxDMyxcdTaGnyCG0EQp3UIijY244tUISgi7rlR1OYAWA66AOZQngveMZcDjw3hDbmoWVHFB+/aS9Cj8NGLurj16YEp4xxRgPO6qtg7kKIh6id0ZTvGcB5BADNRpLh3omykd2J+ojb5UZv8mJNFigcmEb0KaqOP8e/uwU6XBZulQwnsrE7gouZp93I84CIeqNzbrwcUSaQu6MaVskjf04urLVQ2Vdg1hntBFCmgUdw7gXtOBCQBSZNwLYhyYPsol75/EVWvgSJCK50m/9R2zKFh/Js2YY6PM/Ht7xB91x+jNTagNjZS2LMHrasL37nn/r4vt8JrAGO8wOSPD5RNRwGl0Y/vrFm6B4pQ3J8g9ZuTJvuCWyb6R/OxkiXMyQJWRsd7Th3uhVXlOcSph2synsUxtI4Q+ZSOndEp/Lp8rsKecVxzIwQ2NmO7HXqGdvPoj76JZZpEG5pQVS+SPV2ws7QxRNCtkCqcNE2vjnsRa8LovziCHJ05N822Bdh6oI+/vWoBXu3MhGxyyEXkxjlM/HA/TtECWSB0ZXs5biO/OKPqCmeGYzu4gyFcXh/FXHZq+9hgN4fEFLfVSrxpWQPz6oMkh3PYl7YiyQKlu45P7Sv6VZRqD6lby6a+Sro8TguygBJ/8fFSYyxP6UgScySH1hkCu2ye4+g2pSNJvGvryD0+OG2+XNw7gWtRlOgflc12f3euXKHCawVBECj19eNeurRsEBGrotR9HPmUjtl1HUGu+LMl7H6wH71gsvC8ehrnR9HcL737bIVXD9nvR1669FV7P0FWkKuryW/bhmv+PIJXXoWVTmFOjFPq63tBsXxJFqluCVDdEsBxHJJhF0ZrENklMdybRTdtFpxbx4Jz6whVe3EiLopHk+CAa0EUYyhXjomcCM0JgoBnaXxKIP9iyGdL7Lq3n/6DCeaeFSBpdBOpK//f6HYRudozZeqq1HmRoi44Q1O0NzoODqJHoXhwEq0lgJkoUTgwSfhNnay4rAVvUCVc40WqzM0qvEEQVBX3okW4Fy2a2qbW1b3s7yOKAksvaiQQdXHoiRGi9T7mrghj/vg/UOtqUerPRY7FsDIZvOesxZicRD1hWPbyXgjkdoyi1HhR4m5Kh5PIMTcTfWm6j2YwdYtYk0bLkhUcevyRaYcG46/A9bzB8EWimFgoNV5ETcYxbdRGP1KVG8cxEITy2GvrFoVdYwgISF6F3BPDyFEXnqVxRLeM7FaQl1fjPtFgT3ye4jJJFlm2qZlwrZeD24aJNflpXVKFJ1AZ8yucGaIqonWEQbdwHHB3hZG8Mr1bd0/t07x4GYo8+7041pfh4VsOUdXgw9Rt9KLJ2ms7CFSdYS70RE6teCiB1hLASpYoHkwQfplMrE+3JgMwi0WsTBYpEsF77joEWQHTRJil8WCFP3yaF0a55L0L2f1gP9F6H5ppU/idfaxkCSXqQt86WK6zqPdhjuUpHk+htgQRZzF7dmwbFYg2NE0r1hQEEV84wm1f2sHmP11EXWd4xrGd1X46q/0ztr+iSCJS3ENgYzOOaSPIIlJYQx/Mkrm/D21OGDlW0TK8UGQRVjSH2d6TmNp2yYIa6kNuvnd7N5osEp3FXPlZbXTq6VFiH/kwdrGENncxctSNqMnl5n/L4mQfHURt9CO6ZKSmAInRHOFZYrauQIDmJcvZc//d07aH6+r50Wc/xpprbmDZpitQXS8uV+vxa1zwjnkcfnKYvn0JGueF6VpTgzdQ0Z5VmIlhWOzZ0o/XrxGsriE1crIBryjJBGMxLv9QLfu3DjPak6ZjRZy2pbGp+ata7SV8bSdWwURyywiySG4kh9roxzFsMlvK2vDS4SSlw0mq3rOIGkHka9cu5n0/fWZKe9kQdjOvJsAX7jww7focBw6MZuloCpN9dAD3oioETUZQRNQaL6WeNMU9E7jnRSv5idcplmHgDkQp5jP87Oa/o3PZWjwHA8xbvh47b07fWQShZDH+o5P3Uf6pEWLvW4zWHKDK7+K8DhUrYyBqEqI8fc4gZA30w0kAzLFCWUPjgDGSw724isKeCYKbW8lk+rEzOsV9E4Su7cC7tg6nZFXyZBVmpWgWURwR1eMB2wIckE6u2xzTZOw//gP30qWEb7qJ0N7vYUgOE14Z6Z+/QOC8c/nKI2PYCCySBvjafSJvWt5AVWMzfft2n/6NT2FHb5KVLc9dJ/y7KJJIXchFb8WEpEKFChUqnIaK68NrAEVzUTOnC6vHxL0gigPIVS6Cc9qwDRvB78fR9ec9z/MhSSJN86I0zIngOA6S9MISGl5NYSKn8+cXdjGUKqBbDi1RD+NZHeV5zjXem0EUReJtAURJwEwUkcIaIJRrQRSwDes5z1Hh94NVMLASJQS3BDY4pbLDo5U1EBQRQRKx8waiX8UumCCCqEjYOQPRq2CXLHBAdMvYWR3Bo4Bp45g2okfBGMmBJJSdIyMu7HyW3LYh/OsbcGyn/P8Qd1PcO0HuqWFC13ZgizbuuI4SN1BqFVK//gHahisBcM2Nknm4HwA55sa7qobcE8M4T+tsWvM+RsUBzrnhbTz1m19QyuWYf94FLDr3fMgXuaKxml4lwMOHxthyaIy3rG7kwxd2MJQsUlPtIehWsESRrnkR9DYPn/nlXnr35dkwJ8bHL57D4dEMZ7WE2dQYwVu0sAsmgiYiiJXk4euJcI2XNVe0sfLSljNKDDu6jW9dPVbeANPBNT9aNsKxHYrHjmEXiyj19aitLQiqSt5XQ37SpqErhGU5VDf7kTwqygc+iTkySt9734uVKAfGXcuWEfnkF8g/1YvRJiKvcaPW+7BLFqIq4RQMcrrAZzfPY3tvgphXoybkojFcCXq83rl2WQOXqCkK3/oGxq6dvOl9H8Jld6CsrMEpWTiGjdYVRpBFBBv00TH04xOI4VbUcD1mrkCxbjVDv+onUDvI8JH9ACSHhzjvbX9M67KV7NlyL5nxMVZsvoqAYdH/wfeAIFD1oQ+RHJ/AHBlBWbiE0cgintpWQBAaWPXXl+MtjmP95seoIf8MA5JCRuee7+1lrLcszE+O5Ok/mOCqP1+Kp5IYeU0jqDJ23igLdkoWoiLhODZ2XscVPZmwa5y/mPVvfzelfB69UEAv5ok0NPH0Hb+id+cOrvjYZ150Uu25KPVlSP/mGMZgDrU1SPDSFnJPjyIoIuEb5pBSBEo5kyd+3c3SjU3c9u87ePvnViPlDHAcHMXCNlyIgWpK3f24F69BP95L3b/9F+b4JGpDE43fW445OoAYCqHNncvIP/wjsY9+lIn//QGBiy9m8lOfJvaJj+OZN+9l/3wVXhhmKkVu2zbM8XHkQABzcoKqj3wYubqa5E9/hquzo2z8VSriWrYc05L4y0vmcGSsPDZ1xnxEcg5bf3mIzpXVjPdlqW4N0Lq4ir4Dk8xbGEUKSsjVbpySXa4iFhwcuVzkprYE0Ydz+NbWUdgzTm7bEGpzAK05WDYTq1DhJeLYDsZkEadggCSeMGC0MAaHEV1hrFyeyIc+gSBouFdfhmNlMcd+g373r/CsuhR70iZ0VTuCSyJzfx920cIXdrHw7Bp2bx3E7VMRBIHq1gCK9sqHlcZ7j7P1Zz9EUhSu/OhnqO2YCwKUshl8kRiRhuapfc1kCXM4hzlRwBzMI/oU5KgL27AR3TJ6WGMkmWNnX4JPbZrLvqE0IY9CdcD1vHGNCi8fjstFuK6O9/3L91FEFTtv4og2OTlLcTQLuXJ8SKnx4K6KYhsW2pIqXA0BCrsnMPozqM2BspnYXcfRd4zivqGd7sNpvnrdEhZ4NIyRHGJAxRjIErqyndTdPTgFE8EtIwZUYh9YjF2yEf0q7qUx7LyJHNIqJiMVnhfHNFHq6zBti2Cslg/8y/8g2EK5+EsEdAdnxMS0i8hBF5K7nEx2A+4OldqOEF1rahAFgcm8zuddC+lL5HErEp+7fC6HRrIUDJuuaj8/eLyXv79yAUqNFyut4xgWma2D5Q6qXaFyty3DJri5ldKxFLltw8jVHkJXtuPqCGIM5qYMSJ4l81A/nhXVKLMUt7/i353tYE4WcAwbKaRNfTcVXl4CLgXbtAhsaKSwbwIp4sK3tg4UAce0cHWFEESxbGCjiNhZg7XXdLzq3dAc254RM9WHhihsf5rSsWOIqkLu0UdwL1tG7M8/gjE2hlpbhzE0hNLYxMT3biZ45RW458+fOr78uU7pxikIOI6DIAivmnlahVefwu7xKQMSAKMvg7C+obwOs08akfvXN5K57xTBuSbhWRzDKZmoTX7skklu2zAIAkq1B6vGM+s4Jbpk1FQRRxZQ37sIQRSwszrGSB5zooC8LEBLZDkdC1ej2yV0pURyXKPGVZx2ns5qPz/5k7O4/8Aow6kCG+fXUBd0MVowKF3SiOo4eNbVkX9sCCwHZUGU3iYv/7JoCcuaQy/oO3J1hqn+s2WYaR3JoyDH3JUOiK8Gjo3tiJz39ncTqqohFmkuj3umjZ036Txb5LfDSVbMjeE5UTRumTa5ySLpu3sAcC+qIvdkWQQcuKgJfShHbusgpcMJQpe3o7WevvP2c5HfPlLupHwwgXdNDagCwSvaSd/dQ+lYCkcRqHr3QhBFpLDr5Hw5qCFHTs6XrbyBlSwhuiTkSKUQosJrA8dxEBUFRAm1rQ3jeDdqYwOcUrAmSiKN8yI0zAljvwjNRIU3Hvm9ezHTKUSPG/eypRiDg4heL4LHizk+jn7oEGp9PcAL1gUIgkC4xgs15UKlSGOAOWfVIIon57CCIqHW+ZCCKmqtl/S9vQiKSOCSFgp7x8vj95EkvvUNiLUeVPcLNyMZPZahut5HU50H0VXgwVsfYM7ac1ly8WYE3QJZQo66yzlol4QjgVCR95wRAgKST8E1LwIOqE0arnkR7JJFy+LY7/vyKlR4XeMLuVh8fiNzlwbI3X8/8nAYva0NKRhEiscx+vsQEBj9969R/w+fh1lMSKx0CStrIPkUpBehV7B1G//6hnIM3LBxLYyC7eD1q7j9CggKikdl4QUX4/L5cQcC5cZcHi/e8AsrGKkwE8ntQTBs0ETkqvJzTAqo5WI10wGlvO43RnI4JZv87nEkv0pgYzO5p0ZQYu5pa53fNR9xrBPxTr1s+onlgCiCAJrtMHdhlK6OIKJXxjHsskpWt9DH8giqhOiWsJI6oiYhqCJWxkDQJBzDQpBF5Ehl/f5GxcybSCEFwVZxbAdBEjBTOvHODtZccyOWrtMwd8Gsc0/bdhg8kqR1cRWGYSMAqkdi5HjqjE1IHNtBjmjIMTeObqM0KGhdYWzdfP6Dz4DnXJPZNnJVFaWjR1Db2kEvoXcfR6qpGDO9HnF5FTpWxGldWoUoCBQPJSg8MTxtH+/qGlRFotTgL+vJdRu1NYDmVjDH8kg+BXOyiKNbyKFy8TBiEL/qZv1N7+KRW/6XeEsbgVicaGMztm2heSQe+MEBrv34CtwvwczxZcNywLKnnlWiJuGoYPTmCV/XidYequTUXiSL6oOsaY0wlCrQVuUjVTDYM5hiV3+KT26aw7ya2TVajmFgHOtm7N/+HYCaf/o21qRO4r7DVL1rIXbeJLipBWM0h96fodAWInMsPcOExCyVyI6Ps3DDRkxd58AjW5AUhSUXXVoudC8WeOTH36dx/iLquua+6M8ZqfWy5sp2Vl5mV8zOKjwnicEcpuGgeSOsuuJNDB7cRyBWjYNDdVs7iuMi4JJYvaYaYV0tggiC4+BY5fkIUJ6nnjJ2KnEPWleY/FMj+M5rQJDLDYOUOi+p3xyjeGCSRbVeHnvHam7uHsOjSixuCFE0TBrDbnonp9tPhTwKao0X3/oGzNECTsHEyunknh5BDrmwc+U5c4XXKbZNoeTjrX/7VVRRw84YCAIU5SLmCgfF7wJJxBjMlnO7Tw7/zvEOhb3jaM0BjIkCmYf6KewYQ4pqhDa3obWFptZYoiYhBtQpTU32qWGCV7SRvrsHpc5H8LJW5Jib2HsXYeUMRJeEUlU2aq5Q4XQUrSKyLaK5PWCd0GudYkKSvusuzMEhaj77WQRRJKiVc707m8NcsK+fQ7fezh37FD4g3c2GmMlbRhv4763HWV9bx/6HH8DQSyjq6eNTQ6kCQ6kiy5tCL/jamyKeiglJhQoVKlQ4LRUTktcAfXt2ser8aygMjyO5ZDIP9mNnDaSgRvDKNkRVmUp6vByIosBUW5QXQO9ElvqQm/5kAZ9LpmhYiKLAhs6q5z3W0C0EAQ4/MYJXEGgOquT3jqJ1hHAMG2Mkh3dFJVD8WqPYmyB1WzdY4F4YJfPQAL61dei9acyJIr6za8k82I97cQwro6MfT+E/v4nMQ/1obUEESSC/e5zgJS1ktw6iRN3IMTfZbUMEL2khv32k3MVVk/Ctq0dtC5L8xREwHTJb+pFb/FgNfp4eK9G1oZFwrZf7H+ind3+CUNzF2uUy+l+8i/Bb30rPyB7i65vKHXdOaIs9y6tJ3dk99bu1J0fzxgUk6eaqN/8xYizGjvt+yy3/9NcoqsZZm69mcclmy1lxjtXMocfWWNoQpGuWQGNzlY+AuzyEbjk4xhPdE/z6fWcT606T+c/d5HQbpd6Le06J7EO3E77+BtxLFr9af7oKrwJnHKzVJJyiSe7hAey8iRR14d/QiONYDP3TF6j6k/eiedykf3UbKAraBz+Fki+w95FBEkN5fGGNpRubcPxhkrd8Y8qABMojuZUuAVDqTuFaECV3OIHWGsRKlij0psiuq0fMWQQ0Ba9LRpVEEgWDhtNcboU/HLIlk2d6E+zsS+FSRObXBTgymmUgUeCGVg3r43+OOTpKzd9/FTHYBVJZ9JB9ZKA8zwhpBC5uxsEkt2WC/I5xYBz3oipcc87DHs/jr3KRGCp32lx4/kZsy+LWL/wNgiCwbNMVtC5djn3wMPo//nP5ohyHye99j9Cb38zkd78LN76f+29PEKr2MPfsGh69rY9CxqCm+QbOvbwGM5lEDoWmPlNyND9lQPIsk4M5kiP5ignJaxxBFHBKFsWDCdQmP5ZeQu9Loc6vIu0WODqSor06iGNZHN+5nZ5dz+Dy+lh749sZOXaYib4e0mOjpMdHqWpoelmvzZwokL7rOI5h4xg2pUMJpLCGqzNE8tfHwHLQOkPc8IGF/PRbewB4y58tQX9skNwTI2A7uOZF8K6rI3NPL+4Fq0j9th//ufNJ3TWAd1kNmQdGkSMuxPBcGr753wx97qNonR1kH30Ez4L5WGNjuOfPp/DEE2BZCG437vb2l/VzVjhzCrt2ISgKggNSfS1KSzPZ++6juP8A3vPOQ+3opLh7N7nHt2Gl01y4bgPXbemjoJdV1X2TBWpNN8G4h4nBHACtS2JUhxT8BREnb4LmkPj1MczRAoJbJnRVO/ZkiYm7esodKxdWYaVL6MfTAFgZnezD/UiRjmmJugoVXihWwaS4ZxxzvACigN6XQY64yoaRgBhw0ObU42Rtkr85hJUqIfoUQlfeQOJHX0Xa4CZzzzGsySKiV8G/oYHi8RTZRwapXt9Aan6Up+7oxjRsOldWc9ZVbWfeNetFkEslSAwNlK9dkslMjnNo26MkBvsJxKrZ+N4P4o3X8vTxBImCzkJZxtkxiu+c8pit1HpwL4kjBTWedgzGhkp8+bcH+PCFnXz2l3toCLvJFk0W1Qe5YeWZd6yt8NIwvR5q1WoEHdIPHKd0JIlU5SJ0dQfFfWNkHx0A00FtCxK6sp0hBUoLIvh+1Y2dLReOlY4ksbI6gYuayD89gluRWBrysPRQBmlXNyOAZ0U1olcm/WA//nPqQSyblU7+5CDxP1uGq/VV7mJV4fWBKCGoGkpdG9GShDleQhBFBEXEGi+Qvre33PWk2oP7ijYeLxY5uy1CwHNyPfOsoNYlS/z31uPYjk10dROJvIHfpdAUUfjafYc5pzPK/LoAoiIhBzWyQ1kCFzRNiduNngxGooCd1NF7ynMKoz9LarSA1h7CcZyZ1z/LplcDu2SS2z5C+s7yvFxt8RO+tqvSGeYVwOuSyWsymUcGcS+sIvNgP07JQqnxELyyneLRFErcg2PYZaNwn4qrM4TwKhiLARR27yb5s/9D7+khdP31eNedgxwKoQ8Nkb3vPgq7dqPU1WGOjyOFQljFIkIuR/6RRzHb2vCdcw7m+BjeVavIb30MO5nEGB1DOHFzO4Cj6zimhaipCJIEoohcW4tn8WJEd6VI/vVG8XBixrb8/nGq3rmA5K+PYk4UcC+OobWFSN9bNiER3DKBC5vIPtRPbtsQol/Fv74BHLCzOslbjyB5FdwLTua+Dg1nSCVyzC8KmKMFso8M4Bg2SqOfwIWNyHEPxb0TaJ0hEj8/DLaDZ2kcX3sQOaohFBJ85Z5DrGgKc3Z7FFUWmVcbYF7t9NyDYdr8d2+Sj27rocancfW5cRbVBujsirD2RRQUP4scdSP/Hgyo3shIgQCTu3cxZ/4axCI4BQvHNEjd3o05Vo4VXLW5daq7KZRzDp7lceyiSXbrEIIq4jigdYYodacpHU0CYAzkGPvuHqo/sgwl9sKepY5pUTycRGsOoNR6yW0bRlBE5Dof0bfPRVCkspmj/9RY7My4rD6YZfKnBzFP5PhCV7XjWRSriC8r/N5xRBGts4PMPfdSOnwY3/kbUP3+8pzgdxBEAelFaCYqvLGwikWsiQmcfB6pqgrHcXBHIqTvvBMrlcJ/8cWgaQz91V9hDA4RuvEGvGefPS339UKZzRhHCmhE3zGfUnd57eddXVPWFWXKQmZjKEf28SHcC6NQ5UGt872g9wy7JApbejEHcziqxLlnvYUDfY/TunQFmfFxvGk/jmkjBTWMwSzIAtKC59cJVQCEctF6/ukR9N4MyCK+s2rR5oZ+31dWocIbhvwD9zH82c/SePP3cM3pIrPlQYo/+xnec9biXr6c0FVXMvmDH1L3T/MR5JPxkeLhBJM/PYidMZCCKpEb56C1hV7QewuahD1skHloAKdgIle58W9oQMfhyd90Iyki572lmWI2A8ATv/gZkqqw8vJrmRzsp2lBRWf2UihlU5iyhnNMBxzU1iC5J4Yp7p0AUcC7Jo7WqlPYNY7Rn0GJe9AHMqTu7CZwcQtSzIPkm12za+UNco8Nkr6/r6w3aA+dMDm1sLI6WqOf/O4xPEviZB8dwLe2nvT9PbjnV+GYNsV9E/jXN1DYP4k5VsB3Xj3FvRNYGQP/+gayD/fjO7cB78pqRFdF4v1GwzFtCs+MojYHEGSR0rEU7nlRenfsYPcjd7Nww0ZGjx+lccFiJHn6/VHM6bg8Ct07xzi2YwxJFpm/rg5f6AWY8IsCYkAj+2B/OYbhkvCvb0CKvrxG/rOtyQRJQlBk5GCQxM03I/p8hK6+GkepaChezzy7BlKbA4Su7SB9Vw+OYeE7rwHXgih23kBQJbJb+rASpSkdgyNC7olhUrcfwzFsQtd0kNs2hDGQQ1AlAhfE2fDWd3PXt/+d1OgI4do6Vl99A6sun8/93z9AMWe8NkxIAGMkj5MzEf0KRt5EUER8K6rRGiqNjF4sC+qC/N/2fhbWBwE36aLBWW1Rjoym+a+3r+CstuiJepqZlLq7Gfva1wAQVBVsF8UDk3hX1jD+nT0ojT7cC6uQan08+eQI8r5JGuaGp50jOTLMoz/5Hw489jCKqnH2dW9h/nkXUsplyCUmeeDm/5zaN5uYnHasXiyQGBrEsW3CtXVonunmJqejYkBS4fkoFQ18IZXBI+NEawMUsln2PfwAwXgN89vXoeZcZJ7uQw5q6INZSoeTIAn41zfgO6ceyTtzbqzUeLGLJjhlbbqj2yh1XrSOEIU944geBUEUsH7VzQUb69mVK5LXLQaTBf7ykrn8+S3PYJ5oKrChK8bCunJBvlrlKc9DNAnSDlZSp/DMOO4lMaTXyNhd4eVHUFXiQRGh4JB9vJfCrnEAAhubUaNe0vf3lvVkLQECm1rI3Ns78yR2OReWubeH/I4xAMyhPOM37yX+waVTcVMpoBG+uqN8TttBP5JE8siErmjHypRQG3xoLeX7sWIFVuFMKZpFZEtEdblPMSE5OWalfn4rSkMDvvPPByCkhQAYDGvYNdX89s4ncGrOYbOwlbrgMs4NVvHrnYNcfnYcgPTYKNH602tcn+5JArC8KXzafU5HU8TDPftGXvBxFSpUqFDhjcFrKkItCML3gMuBUcdxFp7YFgH+P3vnHR7Vdeb/z23Tu3oXCCEQvWOMMca9t7jGcWLH6T3ZTbKb7G6yv012syXJJk6xE6ds7DjuvWJsg00xYDoIEEK9jmY0vd32+2NAIAvb2MEYO/N5Hh5mru6ce2bmzLnnvOX73gfUAx3AtaZpjo8q/ADTsGAxZjqvtB57sh1TzVfr06NZIg8fQCkeQQ+Fcc6e/b71MZHOMRDN0hZM8H/rOwkl8wsiQYCf3zCHOW/bgsCmp9pJx1X6exIUD5g46n2YWR1BEhEtMuJJCnQucHwYOZ34C12oPUk859cRe64TucSOHs2SbYviOaeW6POdeTV+WSSzO4RrWRWxVV2Yqo5cZCe+qgvH/DISa/vQwxmc88qIPd+JbUogX6FwIK+UZ2Z14qu68F5Uj2d5DUgCSSFGnAS9O/vo2jdCcb2HHU+3UTtVJFBpIlsUNu+VWfGzO3FV+Ah3HuTR3/+I0y69gZp5k8hsHs5XGjiUXGGbVoSlwkl2fwyPtwylNMv2bZvYt2k9AGo2wysP/4WLLr8O8Z++Q+O3vsW8889HdDlJx2NY7A50VcU0DawOJzUBB7+5eT4t/TFSOZ3JZW7Kw0lGnuwc/QzV3iSCYkcbHKbz4x+n7t4/Y5869aR/lwXeZ7I60ec6Rytv6qEM8Ze7CVw3GVGSEHI5+r71bUq+8T2MXAnG8934671UVLkY6U+RGMmy4dE2LvzMDDI7d45pOtffj9N1yHBsQnxVV74Ssm5iFNswJnt5vi3Ifz63f/Q1dUUO/vmSZqh6d1USC5w6bGgb5usPbCed0/nJtbP58cr9bOoYodhl4SrZgj44iHPFuajRUiwOEzRzVIgBQI9kiT7dju/KSfkb+qH5Mr1jGNlvo6rGibM6w0BbA107t+AKFDPU3saiK68DoG9/C0WV1cj/+gPM3JHq2nJNDcKUJqxz5zKUcgAJmhaV07MvSNVkB737Uwx0Jnn1qX4uuNmO7Dvynt7MESIWHCSnPKIiYWQ0LBVOzJyBIIDst9MVTfN/rX18YUUjvcMRtj70Z8omNFI3Yw67X3mJUE8ndTPm4CkqITo0yFBHO/FQEFeghFwyiaRIOH0B3EXvLpjVUHVyfQkESUDy2XDMKSW5oR/Zax2tKguQbY3gKLZTN82Pv9iKGEwR33BEJTvTEkYuc2Br8pPaHsRS4yG2sgvXkgriL3WPrpXcK2pI79MouvVTJNeuIf74E1g//3n0aATR6UKPRNGHQ4geN6amjQlkK3ASUVXMVIqhH/2I6jvvoP/b/4A2kP++01u24Ln0UgSLBW1wgIyhI4fD3PuJT/JkS5hoOkfAacHcnWBkIMnU0yqIDKZQJPAaJnpCRaxyEnmqHW0or9RvqgbaUIrUa0eNqZ3DuJZWIZc5cM4vI9cVx8ho5NqjiE3+wt6owLtG7Ymjx3Okdg5jnegl15tAqXSR3jyIZ0XeASEAI48dGBVzMBIqIw+0Erjly0QeakOP5kXujKRK9NkOvBdPRHZbkRWR3v0jaLn8WqJ10yC+UjsLL534rvqaTaWIBgfRslnUbAanL0AyOgKGicVuxzRNWl59mYlz5nPaR26gpG4iu1e/wEhfD3avlxkrzmOwvY2cM8CuIagJ2EnIAo6sTq49lhdb0wwwTFrUHDfdtx2HReLLZzfyi5cP8JWzG9EMgwlFTs5oLKbYXRA8OxkYmobTVYaZNUltC5I9EAHAtaQKfThDYnXP6Lm5g1ESr/YyNLeIVH+ChsSRytW2aUUo5U6yByIodV7SSZULnA4yqw6OnpPaPIj30om4FpdjqiboMPLwAeSA7U0DhwsUeFsMg3QsgqtMJtcdQ5BFdMNE8duIPtU+epo2mCL7fCcDzS4ej2e56bT6cU31RtOsbg3y3Yun8uV7jwTXeGwyv7ppHlMq3BS58nOTpdqN79KGfKBPWkNyKMTXdONeXkN8+/CYds2cnq8uVO5EdCmj8z2A99KJqD0JIo8eQC6y45xfhqX6vRfkyfUkiD5+5PeZ64gTW9VJ4JrJCHKhUtGJpH8wjiuRw3VmNSP37hs9rg6kiD3fieusGtTOGIIkIphgGDpDve3omo6AiWmCqCh4i0pweE+s7Sizbx+dH/8EZipvE0699hpl3/kOvuuuZeTBB9E6u1B7e4k9/ji2WbOwzZyJYBgM/fDfAUhv3kz8mWco/fu/x0gmED1ucu0daMNBtEgUVBXJ50Py+zGzGZI7dyK6XFjr6tBDIcjlcJ1xxgl9TwVOLnpaJXsgSnJTP7LfhnN+OY6ZJeQORsecZ6vxYJvsp+SzMzFzBpLbgiCLeFbUEH2qHef8srwf45BQnxHPEVvZiWtxXnQdILU9OCpCsm8gxnV3bmDlFbPRIxniL3WPXkvtjpPYMIB9RhGWeg/xF7txzCghtXWI1JYhJL8NmyIiWK38bFUrggB33DSPMyeXcCCYIBjLUuGz01DiRJZEFFnkxkW1zKnz0TeSptxrp77CjdVWWLt80DBMk/KJExFzInoqh+y1EnmmAy14yFaQ1og81IpSYsdad2S+lX02vBdMwHVaJYIiIjkUjIxG/MUj4w5JwLOihuTGAdTeBPZZJdimBJC9b7+nEWQJW3MR8Rc6cS4oxz6tCNMkH0xZe3zzvp5WGXmkFe0oH9/I/ftRSh0nZV1RoMBbISoKvd/4O/Th/Bo5/frreK/5CP6bP/4+96zABxUtHMZMZxj8wQ+pueu3SDY7PV/+Mqj5fVZq3XpKvvIVYs8+h5lKkdqwgfLvfx//ddee8L5YqtyIbguZPaF8Uns8ByJ4VtSix1XUoRR6MIP4DtcNRlYnc0iABPJ7SnNNjDk3XsiDd36f+WdeTlW0HttEH2ZOR3JbyByM4FpUecLf44cSRSB7MJIXIAHQDBKv9mKpKdwzCxQ4GRi5HCN/uQ8A0eGg75vfQu3M+4jTW7bgPOssij/3WaIPP4KRySC58slI6nCa0J9a8nFngB7NEbq7hdIvzUH2v4Mk/Kye90kfisXQhtPE1/Tiu6YR04SFy6sJhE2EHh9F1SuY/c8XEo72svPFlUw/69wT90H8jWKz2ek/eIDiYDG2Jj9aXzIvQAJgmCTXD2Kp9SL5rcjFdoycgfe8etJ7QpiajqXmzUW9cp1xYiuPJLxl2yJIPgu5jhiOeWVEn+vEvayK5Lo+rBO8xF/qxjm3jMSrfbjPrsU0TGIru/CcV0fs+U7iRz0+bKOIPnkQpcKJrcH3Hn9SBU41MoaBXOxAMMHMGViq3aQGIjSctoia2TNp37YZQ9fHCZBAPvxrqDNG25ZDCZeqwY6XevBXHL+IqZnTSL7ae8SGkcnPZUUfaz4xb/AtMFIp1K5uBv7pn0aPJV58kepf3P6eX7vA+49kl3EtrMA+JYBpmEheK4IgkA1niK/qQo/l4xONpEr0uQ6Kbm7OF70EbJP9pLYMofYe2dekn+3Hdm0lS677GIamseGhe1lzz++55Gs/pLjGhd1zaiSxS06FXHccW4MvL/7osZBtj+JcUCjs+tdQ6rHxscV1fPKPm0keWtP9YV0H/3DhFPoiaTz2N98765EoaHn/gZnLgZAi1y0gWMQjcSgWiS3bh9m3aQgA71GFF0zTpHvXNnRdx2KzkUun2fT4Q1z2je9wYNNOFIuFcz/zJUzDIBkZwVua/66zqRRDHQcJ93bRvWcX+9a/Qt2M2Sz/2G0U19aN62dkaIDUyAgOnx9fWfkJ++wKfHhRFJkNj7ZQ0ehipO813IEAF37xG5QW1aO+HEWeKpHrjCFO8ufjEgB0k/iL3Viq3dibi8a1KYgCZk4f48NQ+5KktwXxXjYRfThDri+JfWqASknmmqdaaCx1sWRSEQ9s7ub+z5xGbySN164wtcJDyVGxW6IiEV15EPv0YqwTvdga/Rg5DekUmb8LnHhMXQctv99KvyEO5uh471xHjPjmQVxn1YzGnQEg5Atva9EcqW3BsY3rJupQalSExFT1vEi/14oJuJdVk+2KMfLgfpAEyr789hmSBQq8kbSWRtLA4nCAkV9LHBYh0cJhkq+9RtFttyGI+byYwyIkps9OZMYkXk0UUSWrVBtD2GwSlzVV8vX7t9Mj5O/zbytC0jWC9VAxlHdKTcDBcCJHMqvhLMSvFyhQoECBN3Cq3Rn+ANwO/N9Rx74NrDJN8z8EQfj2oeffeh/69p4QHujD6y/F6MshyuJoYvBhjKSKOLGU8G/+C/cFF2CprHjP+9Qb76Ul3EI4E6bWXcvMkpnEMyZD8Qyqbo4KkACYJty5uo3lTSW4rG9ukNFUg3Q8H4jRun2YxmsbMTf0oUeyIAl4z69HqTw+pdYCJ4fMQITsgXwlncPj0lLjJtuWD+g1dRN0E6XSNVptVZDFfOWGUgfqQN6YK3ks6OEMgl0eNQIrlc6xAZOHMDI6ya1DpOdqPHbXf2CaBmd/8tsAODwSFRP6WHvvHzBNA1GSOP26z5N2+dn+wtOYhkn9rLmsfvD3XPXlf0a2exBs0mgf5IBttNIh5KtNlCxuGn0uSjIN8xch1dbg+fUv6TvYRnTvblq3bSYxEmbS/MXsWPUsWi7Hwss/wsS5C6jwuqnwHqkeGN0fGveech1pHAuWknxlNZmdOwsiJCeRvkQfu0O7SapJSu2llDpKafA1IAgnt6qZkciNCpAcRg9lMNI6hq6R3radwKe+SqrFi5nOB+3SFmXq4gp6im3EhjNoOYNMWqXo0kvJ7N4z2o591iyiagjPWcXk1oQwUhrJjQO4rq7D21hM30CC363tGHPtzlCKUDJHXyRNucf2pmreBU5tBqJp1h8MEUtrrJhSykAsw6aOvEbbV8+ZTHt/O7WAY/YiTDNvGJZL7OPXGQkVtTcBJigVTtT+/Nyd60kgeU0SWhBD01hxy2dIRaOo2QzrH/wzABPnLiCTTlF2xlISq14EWcb2999gXyRI93OPUHvGAppmW5kqKbj8w6RDDzF8MEzDgrNRcxPZvzFOFjtHu7l9pQ4mLyxj/8YjSqoT55TgLytUx/4gYG8uJvTQfrRDlfi0Zj/PGSbP7h7kI/OqKXJrNC0+g9effpR0NMrp13+Ml//4W7Y//zSSLLP0ho8jiALDne2IkoyJyZZnnqF66nTKJkyisumd30OzB6OE79k7+jzTEsJ3WQO5vsT4c/eNsOiyieTSGrl94zUPM3vCuM+uQe1JYJvsH62QBEfWSmpfEj2RwzCCxJ95Jv9CSULyetEjEaTSUoxEHESBbHcPtgn17/g9FfjrUEciCA4ngqaDIKB2do0KkBwm9tRT1PzmTkJ33kl6+w5cXi+egR4GogJ3vpJPLv7l+dNQtw1jGCYlNS6KAjaMUBrRY8FUzdFEHAClxD46vx5NrjOGe3k1Iw+2gp5fK2RbIwRunIJjZsl7+CkU+DCjDiQxNSO/dzsYRSl3kOuOIfmsqME01gYvRkIdk5AO+XnMVOVRAZJRdBMjkcsLOJU5mNDkJ9h1ZA7dv3GQmWfVYHuHgg6RoQEOvLYOi8PBrpdfYOl1N9Oy9mW6dm6ndvpMunfvoHnZ2dROn8WGR+6jb18LCAKTF53ORV/+JoamsuWZx9FyOWbb7ZQEmrDKLjYOxVl6cT3m4+3Enu9EUETiZ1byL6+2I4sCqZxOWzCBYcCPV+aF+m6/YQ7F7hNbuavAm2MYBhgi6PoYR7DolFB7xt+fMy1hyhaWsvcojYLDe/z4qsN7/CjVI16MY1QKzuwO4Ty9kvC9e0EzEd0W/NdMRnIVghIKvDtMNUemqgJXzsBUDQSLhCgJaOHMuHNzXXEWLKtgUyzNQDSN0yoTS6v4HBacVhlZEFg6qZiX9gZHBUgAYhmNHT0RljaOFeKzlDoREAjfvy//exFALrIjKONtyoJVQimyU/zJGaS2DpHrieNcUI6RVvO/B/LrjtSWIUo/Nwul4r21y2qh9Lhj6d1h9AtVZF9BhOREYtdBclqOvf7siIFqjNplpSo78ooAI/3dqJkMiCKyKCGIIqmRMKbXRtSlUu+tp8g+PqjsnZLZ0zIqQHKY4TvuwD53DsZQkPS2bVjq6yj99rcZvv12im69hf5//Mcx5xvxOGYmjZnLInm95Lq6EGQZJRCAQ/cBbWiQ9LbtWGpqsNTXA5BtbSVzoA3nkiUIUmHMfVDJ7A7l909AFkhtGaL4thlYp/jJ7s3v423TAtiaAkD+t8BR05tjbhmS24Iez40KkBzGzOogHbGTykVH7P5r20KkczpKTB033wJk94dxzClBLrGTXN+PfcaR+VvtTyK6FVIOkfl1PjZ3Rnh8ey99kTTff3IPpgmyKPC/189mSUMRyZxOqdvK/LoAqQqNkWTujablAh8Q9EwGh8uDGdYQZBEjpaINjp0DMfNJiEeLkEA+aPdwYqNjXhm53jiCVcqPU8C1pJLkhv5Rn1v2YBTXkkq8F01AOA4xZ8fsEnIHIyQ35u0h9tklOBccf5C6EVdRu8ev3bVQuiBCUuB9J9fRMSpAcpjoI4/iu+LK96lHBT7oiBYLSBKizUbfN/4O/w03jAqQHCb2zDO4Tj+d+MqVAAz/+te4zz0HORA4IX0YTA7SGeukL9GHVbJy2mXzUfI5TjgXVpDaOoQWyu9Jc+1R7DOKsdZ7EC3Ht+7NhGKoB2PjjpsxjVhwEN1hYJ1URPzRznyRIauE89Jq8BTW1ceDYAhkDifuHIUWyRALDeN5lyL8BQoUyNuatw5tpT3WjlN2MrVoKvXe+jHnCJKEpa6WzI4dqD09owIkh0m+9BL+mz6K99JLRwVIIF/Q5bAAyej1Uhp6JPuOREj0eG5UgOQw2lAKsjpNc0soH0ygdh4SKWoHsc1Gt7QDd3ExgiTRf7CViomNx329AmNRMxlwC6gWE6Ejhn4MG26mNYLamxjdr2X3j+A5vx7JZ0F+C/H6XPf4e2e2LYp1ghc9lkNQDtmpQhnss0owkirCoXuzOpBEDtjRhlL5JOZDHH58tI1CC6ahIELyN0enXaQokUVZ3wcmyNVOsrNNHvnR9wGonT6LSQsWo2vaqBDJtqFttEXamOKcRndLZFybw8fYx78ZZs4YLS545CDoSfXYLziBCKJI5N57xx7UNFIbN+E+88z3/PoFTg0kz9j518jqo3awUTQTI3XExqtUu44Zk54bjPPMH/4bWbGw7KZb2L9xPanoMMs/OgWb49QQfpYDdtzLqgn/ZR9mWkOwSPivnYxcXIiX/Gt5aV9wVIAEQNVNXj0Q4voFb568C2CpqkTy+9FH8n6HxMuP4T7vMyTWDZJtiyKV2EnOKmXn2v7R1wwcjAC1ZIJBOlt2sm3lM+iqyuKrrqd0wiQGDuzj+Tv+F4fPz4LLrublP/yGyGA/oiShqyqyxcrmJx9i10svgGlSNnESp119PesfvJedLz/P9DPPpaSufvR6B7du5umf/xfZZBKrw8mFX/g6E+ctPOnx8QU+WOQyGqlYjqpGK7Iyn02PPciOVc9x2Y3fpHRyHdm26KF4s8i412Y7oscUIQFG7VJjzj8YxTatiMTavvy126PI3W4+OquSe7b3ccnMCnQTGkqczK3zH7NdpcqJrbmI2AudYIBUbKPoo1OP2+ZV4IOHKNjAah4RwQEEJe9jeyPqnhDy2bUU3zKNxIZ+BIuIc3EllhoPRjKH6FTGxUeKtiNjJ9sZY/iuXaPPM3tCeC+ckL8PX9OIXFK4Dxd454yKkNjtoB9av0r5NWf8+edB1/FcdOHo+V5r3keslPvpDNtpsU5g2eBe1BIFj6ByVlMpogDbIhIKEB0afOMlx7C5I8zMai+Wd1H8tzaQH/Nd4dS7EjEpUKBAgQIfbk6psvKmaa4Bwm84fDnwx0OP/whccTL7dCKIBgfZt/4Vtj77JN0tu9CyR5J61HQG3dQRrDJGVs+XJD4aWQQzl69MeBISxfvj/fxx9x/zSfuOUnrjvazsWIkkipS4rByrCyNpFVV76yhId8CKeMg5Yhomzz50gM46D95PTKPsy3NwnV5ZqPZ9iqFLJlJpPtD2cNCiFs4gH0oEH3WWjWSQD52HIIAkoMdzyIG809VUDQS7jJnVEJ35BbQezSEFxjtlDZ/AgaJdPPHH/8LmdjP3ostw+RUu/Iwfu7OXjY/mBUhsTheLr74Bh1di9d2/Zuszj7PtuSeIhYJc8LmvsureO3jo/n8jHcggFlmxTS8m9fqRBbfoVnAuKKeyspHpS8/F4fFy5k23EhnoIxIa5uE7/pee8BCr77+bnS8+T03zDFb+5nYGDx4g1NPFM7/4MR07to7rv+kYP6VKJTYMy6EfjnBKTbkfajqjnfx2x28RBRG/1c/63vWs71/P5sHNJ70v4jGS2wS7jOiQca9YAZKIFKgbF/iubxlk2tzS0eduvw3P+efju/46kCQEiwXft79JqL+LJ5/5KeF5URKLVTqqW9m7by1DHfkKw7E3tAuQ0wxW/M/L/Oeze9nZG6ErlMQ0C9HsHyR0A+KZQ0HnVpnsoWCEEpcVr13hnj4Brr4OtbcD0zCRSx15MZw33McFRQQDUtuCowkaAHKxHdGm8Nyv/pcND/0FBJFMMk737h2j5xzcsgld03B84+vIZWXYr7uWl7asY/e61cSCQ+x6+QVe/tOdVDWkeObn/4/efbuIDPTx+hN/Qhb3UVrnxuIc+/uw2GVOu3IS531yGjNXVHPOrc0svbYR6yni9CvwNrgEcstcmFeWYl5TxaYagds35ZODdQOy4UGe/OmP6G3ZTWn9RNY/8GfiobzatK5prP7TXUiihNNXhJpOo6bSTFqwhNaN69n6/FOkopF31B0jq6GF07jPqjmSVGlCrjuOUj4+yVIpdxAbSYCeHZNsNPr3KhdGWkPyWTHiKgiMrs8Pr5XkIhuCVSR3MJ/Ybp8/H7minMQrr2JrnoYgCOT6DzkgCyJQ7w+igBaPo8WiFH3qtmN/D4KAHo2R3roNQZaIPPwI0Ucf4/SJATy2/J7l/61vo+G6BgSrSeUMNza/NZ8QlDMQLCLiUYIMejQ7ujY+GqXShTaczguQyCKOeaW4V9SgDacwsuPv3wUKHA+S34YgiejhDEqZAz2cRSl2YCRyyD4rRs5AtMuj+7lRBBAsAoJ1vKNWcltwn12LfWqAsuKxY7mo0o5se+f7nPYtm0AU6d6zi4rGJhLhYTY+cj8N8xaw8dEHmDh3IZJFoXPntrwACYBpsn/Dq6iZFM/f8XOG2tsI93bz4u9+TUX0IIJgksjpPBqKsX5pCcJNTbRdXMN+Kczna8L87zyVfzuzCFUzcR2yPzSUuCguiFGcVExNAylvPlCOrgakmkjHCOiVyx1kRdivaqgz8utV+/RikpuP7PEt9R5sjX4s1eOrElomeLFPLaLsy3Mp+dwsSr84G2ttwVFW4K/AZiObTOXXf7KIaZr5qmTHEGOS/FYiuoHPLtPSH+Njd23kGw9s59GtPWxoC/GTlfv5yLxqIuncuNcOJ7PjjkH+d1Ny63RKvjCL0i/PwTa9CM/59WO7OK0IpSy/3rVUOPFdNIHST8/EOslL/KWeMeeaOf2YAn0ARkYjN5BEDaX/apuB5B4/1yoVDgRbwR58oglpOkZKRZDHr3OlgA1sIF7hx3lTPaGmEdoPvI5pGKRiEZLhENHgIMnoCMmRMERS3LHtDl7qfolQarz48jvmGGtvQRRJbd1KatMm9FiM5KtrGf7FL/DfdFM+R0ccvzYRHQ5MVSXb3U1ywwYwGTtGBRFEEdM4lMQhCCBKefGRQvDlBxY9mSP2hiByUzVQB5IErp9CyRdnU/qlOQSuaXrThDDJqeCYXYptsn+M4AiQ95YeGh+CXR4VEtEiWRY6bdw4sxLdKSMcQ/RMLnVg6iZGMu8DMTNHgprlgA1TNFn74J/57nkT+fVH53LVnGr+9ZAACYBmmHzzwR38+bUulv/Xy/zjIzvZ2jXC5+7ewhn/+RIfu+s1tnSOF0stcGqTddhR9RyCRQTNQLDKY2wFhzmW/+BoJKeCfXIA78UTRo8JFmlc4kViQx/aSAYjp5MbTKIOpzDfRMFGKbITuGlq/nfz5Tn4r2pE9r15ct0bEewSknd8v9/uvRQocDI4XD1uzDFBwCzYYgu8S5TiYoxshuLPfx4zk8FUj5F4KUn5Kp2HEETxhK07+xJ9vNz9Mt9c801+tf1XtEXaeC2zhYHyKM5F5YhOZTTRQ3RbcJ1RhVxiRwuPF4J8I8GuDna+9DzxWAipaPx9QJc0Zp1/MaX1DTxx/38xMLWfxGKVgeYB7v3Ndwj3dB2j1QLjkMfawA4jOpT8vqtAgQLvmjW9a9g0sAmH7MDA4A+7/kDbSNuYcwRJInDTTQg227FjtgQBQRTxXHrJmMOSUxkfVSsJo3Fvx8uxbGKiS0GwStRWu9APC5AcwujLUFMzjV0vPk8ulWTbs08Q7OrAMPRx7RR4exRF5plf/pjHH/xvhgJ9SBXHiAEotmNt9ONeUYNjfhmCIpLZE8JS99Z+hGMlpCmlDrRQGsmlYOY0BElEdMh5QZujbHVywJYXqIExdobRx+KROIRClfe/TfYlMnw3GmHr2ZUYNzWRWQwP3v690b937drO4ME29ENr0HV961jTvYZiezEJM0bgGMUgA1XHL0QuyCKi+xg2DNtJSPg1gWPt645hkyvwt4NgEfM2tjEHx45JPZJFLhpvF86R3y9pao4Xf38HCy+7GofHQ1n9qeUvtjcFKPvS7Lw/+8tzcEwvPik5Ix9meiMpekfG742jaZVa//g1wdEoVVVU/+J2lMNC9/t2oVQmsTcFcc7PkVhYzsqHx647Sw7FIPTu2cmTv/gxQ+1thHq6WHPP7wn3drPhob8w0t+HYrGy6bGHiAzm4wcNXWfdA/cw3NnOrhdXcthxMHjwANGhQQKV1Qy07mPHqmfJpvIFCCID/Tz50x+RTeafZ1NJnvzZfzLS3/fuP7ACfxO4/DZEWaBisof2rRsJdubzDFSyqH0JlDLHmFyhozkcf3AsjrVPkovtqN1xEPMxPu4VNdjqPZxflRcc0U2Tb5w3Ga/jzde7kl3Bs7yG0kPxPiWfmYWlYnxcUIEPDwY6pqojH1VEx9QMxGPElciVLiSngq0pQPHHp1F0w1RsE7wIkoDkseK7dOKY8y11bpSjxk9iff/YBk3IDSQp/doc7G9yH9bCaXL9SfT0ey/OV+CDSVpLI6kmFrvjKBGS/DyXeHk1Sm0t1smTR8/3WX0AiEUu9gcTpGQr0zp3gWRHyMbxOy3MqvGxviuBpChEhwbeeMlRElmNXX0xFk14dwWGjhYhKVCgQIECBd7IB8EyV2aaZj/Aof9L3+b8U4rYcJDH/+eHPHP7/7D/tbWs/r/f0rp5w+jfLQ47kaFeRJeMKYB7+VHqqgJ4L6gj9uT9BG65BaX8+KtQvVs6452cXXc2AWuAEnsJjb5Gqt3VRLU+BFGgyGUdFy9xw4Ja/M63dngEKpwsuaph9LmuGsheK/YGL0qZs2AkPgXRFR1tpoigiOS649inF5PriGGb7Ed0yGT2hnEuKkcPZZCL7UheC+kdQdxnVGNmNARJQC51kNo6hHtZNQBGQsVS6ya9I4hrSeVYB9t0D63tG9i08mHcgWLmX3wFLa+uJhoc4LH/+j5DnQdHA8cXXnENmx5/iOjQAAMH9o220duym+HuTsK93ajZLPt3r6ensgNqjmw85TIHrtMqSb4+SPTeNmbqp3P157/HugfuQcvlGO7qIB2P4S4qJtTTha+8clTM4TB2t4fefS1o6tggz5gZRpx8xPAiKCLaHJl0JobodGKfOeOEfT8F3pqB1AALyhdQYi2h2FbMvLJ5NAeaeWjfQ8Sz8bdv4AQi+m24zqg66gD4LpmInurHOWMG9unT3yQQTRgtiDL3glqKq10oFRWUfec7THzyCWqffALVNOncsZWR/l5W3vcrnrr3x6x/+i907txCJplAkeHy2ZVjWrXKeVGpjGrw6zUHeej1Xm7+3Ub+vLGLZCHh+QNDqdvKwvq8MfbVA8NU++0EnBY+uqiGh17vpqrCz28nnEXn9HlY5riRi+yk9obxnFN7pBEBPBfUkzkYGSNOIgVsyOU2ItlBTEPH6Q+QCAXpadnFG+lv3Us8HqX+oQcRLr6AkYGxjoxwbzex4ACGriNbrdRMm0lxbT0trz7NkisrcHrHBzW6/FYaF5RxxrWTaVpYjvsdVBIq8P6yf+NaNjxwFy89dDv3/+eXSTx3F7fNLaLab6faZ2O4qxPTNKhqaqaisYnh7s5xbSQjYexuD7JiIR2PgQC9e/fg8gdIRo4/4UYbyRB5/CDRxw8SX92DUuXCPqsEAFMWyfmsKEclKosOGedpZXi2PwuP3IF1gntMNXjRpeCcW0rytX5cp1eS2hHEtbSK9K5hbE1+1IEUcrEdwS7jWlqGY/E8Kn70H3ivvorow4/g+8hHMHWN+JpXsFRVIblcWGveuqpCgfcGxetFlEREiwWppARL/QSU2tox53ivvBItMkLRJz+JtWkKgY/dBIJAoqePW5dO4KvnNHLtghrM8gT2RQnCde2sM15BrnKiRTKYmoH3kgmjSZZGSkMpdyKXHHFiS14L8lQXpmkiKCLeC+vJdcSIv9hNYl0/2bbomyYLFSjwVlhq3JiYCHYZ60RvPjHeZ80nQxom2bYRsIh4zqkbc/93n13DyB9/hvf8mjHHXcuqyA2miK/qIv5qH+6szsRpeSEIi11m1mIf0jvcz5umyWDHQXQ1R9++PRTX1BEbzotSaYcSOSRJxl9eOUYA7TD9+/fiChRhdTqpnTELf0Ulu158Fr9FoC7gwCqLKH4bz4wkKHGnya1/jAOP383e+3/DyH0/5pNTFc6dVsbXzp3MmZOL6T6OpIwCJw7F4SAU6caURJynVSI68vv19JYh5DIHlqMCvgSbhHl6Jc/tD9KfztE2xYd2VQPCRM/oFsq5pBLRqRB7rgNBFMYInkpFVhwzSxBEAaXUgbXOg3yM9WeBAu8EuawMh8eDrugo5Q4kq4zkVBC9Fuwzj6peLAm4L57IM+3DhJIq33hgB/Pq/JR5bAScVr5y31Y2dY7QE05x1Zzqcdc5a/Kbm8BFh4K1xoOlwoVklXEuKKP40zPwXTmJoo8347u8IZ8oMQ5hvAD2ocNvRA2mCN3dwtBPtzD00y0k1vVhZN69zUCpcmGffsTRLVgkfJdMRCqIkJxwYmZeEFryWsd85sgC3ovqCUa6MTwm215/luJJE7C5vcSCQxiahq7m0DUVLZfFNA1yqRSfbf4UbZE22qJtb37R48Q+bRqiZ2xgb9FnPwOqhq25Gd+VV1L8+c9jZDIIFguWmhqKv/D5MedLfj+ix4NSUUFuTwtKSSmmaaDHouR6e9HjCeTiYtzLl2OqKpmDBzFVFWvDRLwXX3TMxOQCHxTeJOBaAMkmY612Y6lyHTMI7Y3IxQ58lzWMadJ74QSUcieB65oo/dwslHIn6T0hhn6+Fd9fDnBbdw7VKoJFwNZ0pCKboOTX1qJFJPn6IO7l1aS2DeWvU2JHCliJqkHat24il4zzvSf28HpXhDdu95I5nYDLimaYgMDfPbCD1fuDGCZs74nyiT9spDOUfKcfWoH3EUmSCPd2Y1ryfjZBJi8cdpQAjmNROZZa93G155hdQvFnZuK7ahJy8bGC5AWMrE7onhaGfrKFwZ9uJfFq75sGQkp2Jf+7qXS946qBstuK/+rJY96Lc3H5GFtagQLvF3JlFXJFxZhjvuuuQ/Qdu5pmgQLHg3P+fASPh7Lvfgfb1CkI1rG2Bc9FF5Fcu3b0efGXvojsPzFjrnWklV2hXdS4a7iq8Sr8Nj/PdzzPS4OraZ0xjHKoWIxS4cS1uILkxgHiL3Yz8mAr6sCbrx0GDx7g3n/6e57/9c/Yv3Ut1hWl+QJJh1Cme9nT8gpTTltGKjrC4MEDvPzI73nq3h/z8sO/IxUZKSQ3HSc6Oq6lVWPEn62TfMg+K66i4rd4ZYECf1tEshFWda3iX9f/K/fsuYeOaAcAmqEdUxx3KDWEhIRTduKQHUhITC+ZzmBqfEVY+6xZ1P/lL8hlZVgnN475m/uCCxB9PixVVWOOyyV2vBcdlbAkgO+yhjdZi785ks+Kc/FRaxNRwHvpRPbsDb9plfrDRwfa9mN3+xju6qBnz+53dN0CeaLBIUzDIDkS5pk//pSQcxDhKHFIudyBUuUivX2I+IvdZA9G8VxQj2CRjikgczTWes8Yf4bokLFOPpRQGVdxLa4kvSeEe1k1qW3B/P/bg8ilDgRJwExr2KYGRu/XtmlFo2LRrqXVpHYMY5saGBPTUOBvh2KXlU09Ub70wl6KG/1sX/3saFL6YTp3bEXPZolkIkimxJySORTbirFbbUxa7sfqOGIjC1Q6qW0+/kQ00aHgvXDCWBvGgrKTIiou+334P3rjmGOCxYJ97tz3/NoFTl1Mm5Afk0fHNyyvRrBI2Gfn19TpncM4l1SO2deITQ727V0/pq3Y8BBCcclJ6fc7RQ7YsdZ5UN7heqPAsQnGskyv9o47fs28akKpYxeDOBrH3LnU//keJjzxOPX3/hnJ5yW5YSUD3/0ilv49WJ1H5kRPsY2Js0vQYjHad26ndvosiqqPxKLtXbeayilTASid0EDvvj3jrhcbHhp3rG9fCyX1EymunUDb5g2kYjEA4uEQamZsnIuWzZIID7/t+yrwt42v1M7pV0/CULN07tg2enzzK0+g+jSsDT6MlIZ1gneMsIil1o11wvjf02HkIju2aUfFAigi3ovqSe0O4T2/Hm0kQ/zFbpIbB2gWZBbX+Jla7sF9HGsLQRaxlDvz8T5vs0Yv8CFAAQQBe3MRkv+QDdYEI6djbfSNnibYJJTl1W/p37I1F1Hy2bxfLfCxqQRumDImZuxYe3JBElD89nF/M3I6iY39DP50K0P/u4XQH3ejDhb8tgXGk9bSiFkDq90B+iEfrahg5nIkN27EtfT0MePrsAiJ4LPTY+Z9xpPDXcg5AQ7lvJ05uYQdvVHk4ipiQ+PtXofZ3BFGN0wWTQy86TlvRV0g7+ftLoiQFChQoECBY/ChivIVBOHTwKcBat+QSPZ+Eew4iM3l4oIvfIPkSAgEAYvNRmIkhMtfhCTJiILEy4/+niXTriLdOoLn3DpM3UCQRASriP+jNyJXVrz9xU4ALtmFYRpYLBbaIm0okkKNqwZRAEkUeHnfEN+5aCqPb+8jklK5YHo5s2refFN5GFESaV5aScVkH9mEitVhwVduR1ZOgjr2B4BTcezaXS5WbXiMxjkLqSgrJUcWy6RSEtkI8sXFiDmRlJpEuaKUVDaJdF4AURVIZCIoV5aSzeYQlrmwaBKxdAjLlWVoWQOjyobFcBJLD2O5ohQ9nsNUTDate4rKaVNw+vxMW342r973JyonT6V962YMPZ/kICsWnIEAw92dqJk0giAgCCKmaYz2OxWJ4C4uIT4cRLFYeOW+/2PLK09y2cV/B2ujOGaXEHu+k8PqDvpAGnGDxITpc0kmo6PqgOKhgHQ1m8FiP2LUnX3+JUiyTN/+Fl699080zF+ImssSqKjCtMLW8Cqali5BMiUSWoR9rz7FshkLKP2/P2JrajpJ397J5VQcv4qpUOWqoi/ZR07PUeWuIplJsqhiEUktidt6fIG9JwLRNMn1xsfM7cnXB9D7nyb2+INU/fx2rFOrSO/qxUgeCQh2Lq8iUOzgqplzKapyoRyq1i4qCtYJExhoayXWN0RFY9O45MzyhslouRzCcC+La13YlDpe3DtEpc/GRTMqjva18OLeIebU+vjOI7toLHWx8F2qX34QORXH7vGiyCLz6/z850dm8sd1HezoHuE/rpqB16awoT3M+dPKWdem8I0d/UxPh/iXRfX465wkXu0fOxY3DeCYXoxUaUOoseG6sg7RLbNj8wvI7nwCZyoaQZAkimvq6dvXMqYfRVU1DBxspaiqBsEy3sBrmiaSotC4cAlFNbV07dqOv6KKWedciK/q1Koo8EHiVBy7oZ5uRFGiftZcbG4Ppq6z9r4/scSfZdqkJmI5Fa/Pzxk3fJyOHVvIZXP4yipGVf0PY3O5sbnd5DJpbC4Xhq5RNrGBZGQEu/v4x0x69zCp1w8Z20yT1OZB3GfXgiIgT/XTo8epuLwKR9jA0AzkIoXUay9iZjJYKqsY+H9fo/yf/hs9boCZd5QYWRX/5ZMwMhpFH28GzcQ6wYVp6BgpDft0N4IV7E3lOKZej2kY5Hp7UcoriD76KKLNRtFHb0QMBBD8gb/Z5LdTYfxap00jt2cP2X37EQSRih/8G8m168jsbcF5+unYpjYTfeghlPJyrBMmgCxDOkNTqZMv3Ns62s7/fa6cp9qfwiJYWFS5iK5YK65qOzZMJL+N4k9OQ4/mEBQRrBKOy6oxwjkkWSGaC/Lo73/I2Vd8Gse80nxi0EjeyW0kVEL3tFD25TlvWUWgwMnlVBi7x4PsteJaVIHa4MNIqfivm4yRzOG7cgJ6JIVS4cLMZlEmuCn6eDN6TEXyKuTat6KFhlCHtlF0y2noCQ1M0MMZUmt6841rBskXu1lydT3TlhRhJ43w+ioyymLs06cddx8FQaCoqhoEkdL6BqJDg3hLywCQ5LwTu2PHFupmzaFqSjPh3rEV7wPVtUiKgsXuoKdlN+WTmqhpnk40qxFwKrhtXgZjGaYpEQ6sXImWzXL2Jz+HruaIh0MQC7J2v8TWnnyAxr2fWnQCPvlTm1Nu/Ioi61b+hdMvvJ7ATVPRwhlEi4TuMLCeW4szrmLoJu2CzpqBER7f3seUcg+3PbANQYAyj5V7FzVg3TSIIEBmdwiA+ItdOBdXYqlxIzpklDLnO6roXuDU45Qbu4CuaxiGQTwXRkLCVRwAzQQBnEsrsc8oxsjo6H4rVz2+g4tnVTKSymGRRLKawZRyN3sH4gzGskiigGaYrGsb5osrJvHUjn7sisTNS+qYX3f8CWuiVcY20QcTfW95nuy24DmnlsjDB0aPCVYJS+XYQHZTM4iv7iF7IJJ/rhpEnziIUu7E1vDW13jTa3us+K5sxLmkEjOjI5fYUY5RLfTDwvs5dmuKnBiZCNF7W7E1+o7YAGwyEWOYWDyIlJYprZ+IIAqomQymaSJKMqIkHdrHW0AQUWx2hvQERfYiMnrmr+6bddIk6v74B2LPPUeuqxvvxReB1Urm9S1YGhrItrSQ3r2bwMc+hrVxEvbmZpSKSpTKSmJPP4NlQj3OM84ge+AAiZdfxjFrFkpVdb7qvGnkRX5NE1M3MDUN99krQJJAklAqK7HPKAhEHw+n4twL+SrUnnNqGbl//+gxwSJiqXnndl5BEnDOLcVS7UKPZJG8VuQyB+JR/ip1IEno7hYOq4WYwQzG0510XlBDw9JKHHNLMXUTyWcFSSDWN4Tt0jKC4V5KL5sIugkOkb7efTz52/+ipH4ij+weYSCWQRYFrHL+vnCYIqeFeEblohnlVHhtPBhMjOlzLK3REUpRV1TYI74Zp9rYFS0KNpeb3//gC3zsH3+CBRG53J7fh0WyCG4LB2STgP34KqmLFhnbBC9M8KKNZJD81lE7AoD7/DpSrw+S3XdIxFcziD7djlLhRGo88eIL1kk+yr48By2UQXTIyGUOpON8LwXGc6qN3w8ygiRS/r1/Ib35dbIHDuBcejpyWTmStRCg/l7wtzJ2lbIyAldfhTo4hKDIVP/ql8RXvoAeCuE6+2wkrxfftdegDQ/jvewyHPPnn7Brp7QUPfEellUvI6EmeOzAY1w08SIkUeLpoeeorv8kcpkD+4zifAzEIdSeBOEnDuC+cSIO5/j1Usva1aMJS22bX2PCnAXYb6hCTEJWTxNVQxx8dDOlTZOQFQWH10cqGhnThtP/7oKZTwVO6th1SuS6w/kiPaKAIIA6lCYXTyGXn7yYhQIfHj6Mc69pmjy0/yF+uuWno8c+EvkIs0pm0Z3opsxRhtfqZVrRNKrdeTHfjJbBLtup8lRxMHoQl8VFnacO+Q2hsEPJIdqibZhukxlpGyVf/zqZnbtI796Nc9FClLo6ROt4G7IgizgXlWOt96BHs0g+K0qp85iVkN/6zYEWTI2N0dg8QOMlDWRSKmZfnGxrZPR0qdpGR+c6AAIV1eSyGbylFexbt5qKSZNRbB/cAi7vx9i1v0EM95k//y9nXvkJJjbMQ1JVlDI/w7/djZnL78/1cIbE6h781zeNsREcC9lvo+imqagDKYy0iuhQMHM67nNr8zGJJtinF2HkdIpumoqhGvlkTpeCPpKl+NMzEOwyxkgW12kVCFYJPZLFdXolpm5im+JHKXO+idh0gZPNyR6/Agb/cNEUntrRT180SdnEBg5sXDfmnIrGJkRFJqPH8Ng8pLU0rdFWbJKNar/IeV+bjJiyIIoCnmI7rndQAEq0SiS3DuE5qwbTMBEkkWx7FFF572NcBFlG8Pmp/PH/EH9+JaLbjXvFCkyl8Ft4N3xY1g2yzUp8Rzuec47cTzOtI9hmlJBZ4WSoIUKtpYpMkYBxazmesIJol9m4+hF2b1g1pi2n14dkLYynU50TMXZLPTbWtw3zrQuaeHRrH6pucOmsSkwTDgylOH3S27chBwLIgfzeV3A48F9/HY7580m/8iSXXHcLWU85otWCp9iJu8hGPDiIt6aG4GAvxTV1TF9+Dhsevg+bw0k6kU8kDvf1UFo/kaH2seL/Tv/4uO3SCRPRNQ2H14vV6cLmyvsHHF4fsmIZU0hVkmWc3oII76nAqTz3ipJI8+mVJKLDlE9q4uDrrwEQ7D7IS+v/j/PrvoDvI43osSz+6yajZXLkZA1vTelbCoBYa9xwTi2OOaUYaRW5yE6/qOFcWE5m3whqb97nZWZ1Mk+18x83NnHt49u5+7bFJ+V9Fzg+ToWxq6ITzQ5RZK8gcEMT2nAGBAHTK5CbaCLO8dMVytEvmSwpeev1rahIWOu9WOuPnevoPK2C9O7h0ZwyBHDOLTt2v/oSY+Jsch1xos91Erjh7feOBf62SKkpxJwln3+oH7pPSwqpbdswUymcp58+5nyLZMEu28FvZ9Dqwi4aWIQkQiSDmY0hkBch+ekLrfT7JuEfHl/89TCvtYeRRYF57yDe7Gi8DgWPTaarIEJSoECBAgWOwQdBhGRQEIQK0zT7BUGoAMZLfR7CNM07gTsB5s+ff0qUjVZzWWafdzEbHr5v1GDg8hdx0Zf+Dpe/CF3XUWx2pp6xnPT6MLZJvrxqtSBg6gbZ/RFsUyrQ44m3vtAJwibZCOVC3L71duaUzkE3dZ5se5LbZtxGTvVyZlMJf1jbQUOpi6YyF36Hgqof30edGMnSu28E0wS7W0EQoeRdBIh+GDkVx67V4WTJtTfy8L9/j7IJDbiLS9j10kqWffQWtt73BHaPl9ppM3n9qcdYfPX17HtsDVpOHTWazT7/Yvr2txAZ6GfRFdew9nf30HTaUpLRCN27d7DsxltY93/3kE0lqZ46neYzV6DlVM79/FdIhkOYhoHN6RytiL1n9SqWXPtR2re9TioWBaB92+tMPWM5e9a8ONrvaDzEok/czOrbf0mws4NJC0/jwMb1bNn7DHNWnH8oGD1/ruhUcC2pxDRMTnNew8GuraTNBH3799K9ZxeNC5fQunEd3tJyFKuNsomTSISGObB5AwD9rfs4sHkDM1acR6irE29pOVafk8f+9B8A2Jwurvz29yidPOUkfnMnn1Nx/CLBr3b8inpPPVbJyiOtj3DLjFvw2XwU2U+uyIYWTiPalSNK7CKYWQOltgnB7iDhrGL7mjCTTq/EE8/BSAZ7sxdlcgmiYWKxyFjsY2/XhqETDwVZ99CfOevm22jf9jrBjoMAlNRPpLp5Btlkkqf+65vMvuJ6REsziyYGGEnk6I9kqC86kuhT4bUxnMgHK3cMp/6mREhOybH7DqgvcVFX7GTJxCIEwaTK7+TZXX18dFEdsbRKfyTDl1Y0sKEtRGfHFkZSIt49NrJ7wmPakc62YzizpPvDGHaTYFcXI+F+aqtmY3d7SMdjxIYGKK2fQHFNHcPdeQNG+aQmyhoaefEPd9K0eCmeklImLVjMgU0bRttuXLgExWbHV17Bhof+gqxYQDhIx7bXKZs4BYvVifIOK20WOPXGbiaZYMvTj7Jj1XMASIrCGTd+giXXfpSIlqUnksJuESlzuYgPB6mc3IwoCiy++npe/P2vyaXzga6zzrsYXdfIJJPk0gmsDhe7XnqeqUuX46+sxhU4vvnJyKogCrhX1CBIImowRXpbEHUohfXqyRzsTuAst3J/32Oc4WykbESHoIq1soKcrpPasB7n4sUM/eT7eK+4HNfSpUj2d15lQhBFrDU1WGtqcJ1WcJgc5lQYv9ayMqxlZbjPOmv0mHPBgtHHqW3bcCxcgOjzoQeHEWQZ+/x5OCSNMycX80rrMNOrPEhiloHEAFc0XoGIiJ7TGQi1oTl1Bl7fj6HrlNTVs/KXt5OO58UOmpedxeTFS3nmzh+z5NqP8uQ9P+aaW7+HviELkoB7aRWCImKaoMdzBRGSU4hTYeweL5LLguR6Z8k19qZz8F5wzujz/kQ/ajCF8tww9tklKCWOfECPImKkYTCuEu5NM2PheSi9LWT27sU2uRHr1KmIxxEE1jBvEQc2rad+1ly2PvsEKz75OaafdS7du7cz4+zz2fni8yTCw0xevJSu3TuIDuRFq2qnz6a8YTLBznaGOtppmL8ILZclHY9Tp2TR3R5sFhFvKsjK//k3NDVH7fRZ9O1vYefh+5Qs89Vbv843Rix87LQ6ZlS9vbDqB51Tbfxa7Q4CNZX86ps3Y+g6oiSz7KZbKVMm8nLEjt9hY21nmJf2DXHr6fUMxbNcPNPFrGov23uiBOM5troELrhuMolVXbjPruVwkQBTM8i2Rwlc1fjWnSjwgeBUG7sAim6QTsRQVQ2b3c7jd/4HkUPVn6unTue0a24kV1TGs53DDCWyWCSwyjKzany09McQhXyiuSCAbpjsH0zgsSvcvb6DZZNLqfbZWDwhgN363pjt7TOKER0KqS1DyMU2HLNKUMrHrjf0pEp61/hKWXo0S7YzhhZKI7ktKJWudxQELzkVpLcRSvmw8H6O3WKXlVjKwNrgxVLnwdQMBFkkuzeMstCJbLFiGgaekhKig4NEBwcIVFZhYiIIIpKsICkyssWKrdhPVuikzlNHke3E2ItsU6cier3kOjvRBgeRrDakkmJyHZ0Y2SyO+fORAgHss2YB+cqXnvPOw3PeeaNtOOfOJXDttSekPwXGcyrOvYexTS2i6OZmUjuD2CYHwDDRQhkEi4RS9M727YIiYalyQ9WxfVRaOD0qQHIYYzjNRI8dR+3YJKZMIkH3zt2EdvVQ0zyTjshO+vfvZceqZwGwOp2cdfNt/L8/9wDw4Os9fP+yafzw6RZiGY1il4XPL5/ET1ft59bTJ6AZJhZJJKcbY67jOQnVZj/InGpjV89mcfgDLL7qOu767mcwdA1Rkjjjxk9QM20m24bjSM53txeR/TaKPzGd1K5hct0xHDNKsNS6Cd4xVqzc2uBFT+RIbhnMJ01WuJDsJ2YcCaKAUuYs2C1OEKfa+P0gY2ayGOl03pa3eBGGqmGm03nRsgInnL+1sauUlQLgPO00sh2dCFOa0OIxJK8H+4wZiD4floZJSO4TFwNTYi9hTukc0loaWZRZUrWEfeF92GQbjb5Gngw+w6IL5jIhdMgwIoLrtEpEu4xpQnYggVZl4rEdWb8EuzsZ6c+LDssWKzPOPp++/S1omTR2j5dkNEJJ3QSKa2rRVRWXv4hlN97CC7/7JVo2C4LAwss+grv4g+tTPpljV4tnyeyP4JhehHnoSpLXghbMIE5yvfWLCxQ4Bh/Gubcv2ccdO+4YfV5sL8ZtcbMrtIu94b1sD24HIGAL8Otzfs3Uoqlgwkh2hH9e988k1HxM5dKqpdw2/bbRdjqiHXz95a/TGskXGHhywn/jTRvYZkzHPncOhqZhpNOYxti912FERcJS7Ybqdz+va+EMouMN8UIJDT2WY2gwSWC+A2eDC/VgAr3EpDfZys5HVlI/ay7lkxrJJpM88ZMfcu5tX0BT1Q+0CMn7MXZd/gCLr76e1x6+H9M0EBCQ/Xa0UjC3tiA65+FeXoOpmwiigB7PkXyt/7jFZiSXBWnSuxC7q3Ad+/Gb2CgKvP+c7PGrGwK9I2ncNpn9g0mmT2qiYvIU+vfvBSBQVcPEeQvJZjIYkkE0G+WOHXcwq2QWaS3NQGiYBeoyTFVD1wy0nIHVpaAcZ4KkkVQxYjmQhLx9TADRoaDHcm//4r8S0wTSaUSHA+81HwHDwMzlMBPZt31tgfF8WNYNRlLFNjmAqR7yd3TEyHXEMGI59tj3QQlo1gH+8dV/xGv18tPG7+HyBaicPpXdG14c3cfMv+QqXIEiTPMdiooVOOmciLFb5LTwidPr+adHdjO92ovLIuGxy/zi5QN8Ykk9mm4gS8cvrqR2d6On01gaJqLMW8xg2k2sNwNmBl03sbgk2ra+jkk+rkWUZcK9Pcy7+AqKqmt44if5vIKDr29k+cc/zbrg3WQOCZPMWHE+JXX11M2cQ+eOrQB4SkqZftZ5tG5cx7bnnuSKb/4zdld+bx+oqOS8z36ZZ3/501G787mf/hL+yqp381EVOMGcynOvrhv0HYxgseaYtmwFQwcPkBjJF/1xBvykLWnadq7C4fPy/I9+zgVf+ho/i93LZ4o+yxz3nLds21rhGl3bHgwmeGpnkBU1Lrxr87EUR9us9LjKQ9fMpbKkYBc5lTgVxq4g5POv9u1Zx0t/vBNdVRFEkSXXfJTmeWfS3p/BLQpUVnoo9fx1+2NrnYfi22bki12K4JhXjqX2TfzGofS4Y5mWEEZCRfQXciAK5DFMg4yeQdasWBxO0A8Vp5YsJNeuA0nCsXDhuNf5rD4yss6Qo5LiZC+9RR5mp/ow4yEEYGa1D59DoU0opTay7U2v/9rBEDOrvTgs794XXFvkoDNUECEpUKBAgQLj+SBErD0OfBz4j0P/P/b+dued4a+oomPb67j8ASbNX4xh6Gi5HPvWraFqajNOr4/+4UFSkQiB+U3EnupAUEQEWURPqPguraP/W1+l/Hv/8rbX6ggm2NYToS2YZEKxk7m1fuqL31nwlyRJtIRamFc2DwCbbOP8+vMZTA1SLNUQTuQ4raGIIpcVwzBpG0owq/rtg+RioRT9ByIUVbkY6U8x1B5HMAUEEYoLDpRTlqKaBq741r8SGejDHShi8mnLSMfiXPLVfyAaHMLu8VA/ez7xcJjzP/d1YsPDWGx2PvLdHxAdGqJpyTKSIxEEUeTq7/wbkcEBfOXlzDr3EnRd46pvf5/o8BDRgT52v/QCQx0HmXXuhZQ1TAagp2U3s867iGBnO/HQMJuffITmZSsorqmjY9vrDBzYj6e4lCXXfJRMMokzUIO/oY5/aP0uX/zKLQTSdiSPnYrlCwnFgzwlreHywOX5NyeA+6waYs91YKp5h3JVZR366VYy5ybY/dJKpixdzlm3fIZkJMzFn/0qmmnw5M//C8gnWC+49GpEWcLh9bLyjtsxTYPq5hmsuPWz2F1eXEVlFNVMfF++u791+hP9nF55Okk1iWEanFlzJh2xDuaXzUcRT56SuZFOY5J3gsVf6UXyWNBCGdxnVmH4nYj/+SeevruTdFzlwJYQLr+V2iYPU4vdhHaFGO6K4y93UlzrpnKSj+HuOP1tUeyuEXr27sFTVEI2laaqqZlJ8/MJ7ul4lGQ4xIHNGwHY9uhfOOvL3+f1pJ0Kr514WiVzaMxbZZELppfz/57cA4DnGJUKo+kce/piRFIqsgTTKn1U+t55Mn6B9wZBEKgOHBGVmVDs5Fcvt3FmUxm6afDbVzv452UlbPr5b1ly4fX4rE7MrI5glZD9VkSHQq4zTu7VwdE2as5uouj8euKRYeZccAm5TAY1m8FdXEp18wwaFy0BBFKxCLHgEFWTp5DL2hjpzzL1jHOomzmXYFcHLp+PZCSK01fCxkcf4PTrPkYunTdMWJ0uulva2LYqyeIrGvCXv/l6Jatl6Yp3AaCbOqZpUuOuwWUpGKBPFQbaWtn54kpmnnMBTl9e/T82HKR6SjPDqoNwOEeRw0K0dYhX7/sTh6MsGxct5cIv/B26roIJqWiE6NAggaoabE4najbN7PMuxukL4CuveNt+JEYyDHXGKBIF4s+0g5q/jnWSD/vMEvSAld7hDNte6CGdUJm27AzczX5awzEEASoCCv5aAaV2CmGxhEH/CtyCnUBbiq6WbkprPfhK7dicCl17wowMpiiuduEvdyCIAsHOOOH+JGX1HqqnBHD5x1fNKvDBQLBYkYqK6P3q15AnT8Xyle8RGpGIt+f419MaMBc1oKZ0zAH4FN9CbDPxleYQbRpDod20vb6Jnj35xB+L3clFX/oGw92dlNTWYRgGstXG5X//XQzdYNmNn0DwyggWCfeyKhKbBxGtEkZCJbG2l5LbZuQDHAsU+CuJDqfpaQkTDaapaQ4wMpAkOpShttmPYYCuGRiagWmYmECwO0FptQPvwnJy7TFi2w6pqAvgu24yA9tDlNV72LR6mFn2MOkffx+5qRnnv/2cWEIgEkzjL3dQ1eg7ZmWtQGU105afSzQ4yNm3fo5MKsXs8y4mMRLGNE2mLFmGYUL3zq0su/EW1Ewa2WLFFQiQy2QIdh6kafEZvHrvH0fbnBkcZN5Fl5EciJLpbUeQJBZceDXFtfVEBweYMGc+7Vs3o2saLff/hp99/nu4iopw2QqVjk42qprD6nSx6KrrMDQNUZLpadmFp7iEc8rcRDU7EyqKuUSw45ZszLpqFtfds5mLpldwZlMJAacV0S6Tq3TiXFxJ5LE2MExkvxUjp+O95Pj34d3hFAeDCfYPJchpBgvr/cyq8WOR3/tqbgU+mBi5HFa7A0ONkoxEmDBrLrbTzwQE0okYmXgcKxUsTMnMnzOJIpeTVCLH2fPqeKBjiFha46V9Qa6ZV8P9m7t5amc/s6q9/NMl04ikc8iiQHc4xSNb+yj32Jhc7qKhxIXPcWIqt0t2Bcf0YhzTi9/0HNEqoZQ7yXXEjrzOZ8VIawR/tX30mGN+Gd6LJyAdw5ZQ4P0jEkwiuazIPhvxl7qRi2xo0RyOOaUkcnEUqxWrw0nv3j0U19YxefESdM0AwUAURARRwhRA11SEnME0qjF0HSEFfZEWVK+VpJBBlmQMw0A4pAIlICCLMjWemre0vWUPtNF1221oAwMAiC4X5f/6rxjpFqyNjUguF3JZKUpp6Un5vAp8sJDsMvbmIiSvheBvd2GmNQBEj4WSW6ePE1V6M1TdYGdPlC1dI7htMvPrAjSUjrUzic78vCvY5VGbrqCIWI8h9peKRfCVV6LY7UiyxHO/+gUVk5pYcs1HEWWZ4po6PMW1SEIvKia9kTTRtMp1C2qxyCKpnMZPX9hPLKNhmvDMzgG+dPYk/uf5/aPXuHhmBZ7CuvUDhazpxKIjCILIoiuvPRQMLhMfDjLS389kt4u9+pFx19IXZd9gfNTHu3higEqf403bV8oceMuOVKIzcjpKpZPs/kj+75VO5BIHI/cdGUfus2vxnFWNIBcCIgt8eBEcdmJ//jOJVUcqHZf/4N8KIiQFTiiCICC5nBiqhuJ00vOFL8KhMWafO5eqH/8PSnn5CblWc1EzsVyModQQ4UwYi2Sh1lOLbuok1ASiIPJA/FE+5boJCXCfUU161zBaKAOAstuBfHkFep0TSZQY6e/joX/7LkuuvYnuXTtYdtMn2fXy88y94FLScQktl2PgwH7sLjdTl52NYrFg6DqZVJJ5F18BpokkK2RTSWLBIL7St/fd/K2jqmlcSyuJPtGG5LFi5gwQwXNpPYr1gysmUKDAsdAMje54N2ktTZWzCq/t+ET3dENHPZyYAZxVcxZPtz/NlY1XjgqQAIQzYe7adRc/XPpDMnqGP+z5A2dWn0m1uxrDNHih6wV6Ej3MIx/z+FL3S6MCJH6rn4CnlPjzDxF98KHRNkv+/u+xTHzv4roktwUzp5N4tRfRbUELpfGsqEUTBUYG0whCHEMIo0x3MHiwFVGUWHLNjSQiI2DCcE8nkxcvpWXdGiqbmt+zfn5YScdiaGqO0z5yPbqmIQgi2XSKTDKBx+1GECQSG/sRrTJaMIVc4sC1tGrUJlCgwPuFIgl0h5NMq/ISSaoktSildROpnzkXMEknEiRHwjj9ATS3QOtIK8uql5FW03gdXs61XoSa0eltjaJYRRBhpDdB6ZtUgX8jgl3GMbuE2AtdyMV2jHgOpdqN5H3vfxumpiK5XfR85auYqXyMmVJTQ8UP/u09v3aBUxNTM8juHyH2fCeCIiIX2bBM8GLWupFcCiWWElRd5fG2x7ll2i3YZTtaMksqHiObTOT3MYAkyWSSCdLxOF7PkbzqjuEEvSNpukfSWGWRObU+6osLMYkfBp7e2c8f1rfzr5dPY2t3hKxm8OvVBylyWshpBob59vn1+wfjvN45Qjqn8xG/jtreTujXd2D943P0dURJx7M0n1FFLJjG1EOIksgr9/5xNDayunkGE+YtpGPb6yz76C3EhofwlJThr6jkwi9+nUw8TiaZpLiunpLaei74/NcY6jiImsngKS0ll07TMG8hCy//CL6yI/tvQRRpOu0MSuomEA+HcAeK8FdUIUoFu2+BN6fvQIR0LEc6kaOoKm/raTp9GYrViihKJEbC5DIZtFyWva+s5sIvfI3dL63iS1ffxv/b9CPuPPdOPFbP218IGIpnOTCUwGXAeUVWzFB2rM1KErBUONHsFqRCQesCRyFpJplEnFw6xYLLrsY0DCRZpqJiMqlHeylNagg2Ge2lXnK3Tsf6VxTBEWQRW4MPW8PbtyEewz8slzkQrYV5t8ARMlreJi/rAlaHY4wISeKVVxEbp9HdnqW4xjImv8Bn9RFOxxlW/MxJtOM6azns64ZMvuiwJAosnVTMq3syLBgJYxoGgjg2rjGV09jRE+VTy/46G1ddwElLf+ztTyxQoECBAn9znFIiJIIg3AssB4oFQegB/oW8+Mj9giB8EugCrnn/evgOGW5DkiVkS36BsO6BewCwe7wsve5jqNkcVrsdm93Fq3/+I6XLP497WTXGoeRw0SqhBtOILhfJHTuwzZ+PbD2y2OgMxekKZ1jVMkQqp3FucxnBeBYT6Ayl2N4T4StnNxJwHn8CpG7oyIKMU3Hyu12/I6EmKHOU8Q8L/wGvzUIwkaXK5yCj6dgUCYdVxms/hnE5lwQEsOQD5JKRLK6AjdceO8hQR165ddfqXmadXc3iKx3IhYC3U5Ku3Xt49vYfUD6pCafXx541L3LmTbey5p7f4vIHqJoyjS3PPM6Sj9zAxkfuxTAMms9YwYaH/8Lciy5n23OPEQsOseCyq1l7/91MPX05e19ZRe/ePZxx4yd4/lc/Zu5Fl7Phob+AILD85tt47ZH70TSN6Wedy66XVhIZ6Gf+JVfSsnY1isWKzeVmpK+H5R//FK8/9Sj9rfuonTEHb0UViXCKVJ/Gv038Nq/edSfR/j4sdgdnfu7zRD0adeEiug9so3bWRISESWZPKC9AIoB7WTWmYaK1ZJg35UJmLjmfgZ5Wtjz3BA3TZ2J5aT3Wyy5CQMDEZMGlV7PzxedomL+IHS88i2nmf7c9e3bSs2cnS669iRd+ezsXfOEfmDR/9vv7Rf4NYpWt7O7bzdPtT2OYBvPL5nPN5GvQjUNBhpkoyA6QjwrcHj4Arc9B3xZovAAmLANXKYQOQqwb4v3gnwDFk8EReMvr65qGaRhk9+xBG9JQSkpRql2gmQiKiBZKM2haiWV00vEjwRSJkSzF9T5a1vazZ23/6PHKRi+nXTWJx36yFV0zOfN6GYvNxpJrb2LXi8+xfeUzY64/+4JL0XKZ0edKNomJC6ss0pNRsVsk/v3KGYRSWX71chuGCadPKmJnzwjVPhsv7x+mpT/G8qYSJpU42dQRZu9AnNMnFSP0R7FIIsXuI/eWwViatQdCvLxviDm1fs5qKn3HIlgF3jkD0QyvtAbZcDDEv50mYNPiTNbS/HiJhwEzw2pJ5EvLanGZEdRMmpata6i/6ivYDBtGWiPXHcfS4EUPZsa0m3ypl/gSFdfEUmJDgxxc9yq+8nJaN65j14vPjzl33sVXsPCKj7LuoU76WiMUVdtomO2nflYJoiiRjFoID4gsveFm1vzpd8SGh4C8kNOFX/wWm54eRtNMLvjUdJRjGOOCqSB37riTkcwINtnGEwefwDANTqs4je8s+g513rr37gMucNzEQ8Msuupa9q9/lXBfvqpvSd0EGuYtZLHPysyyJDaxn3seunfUyQbQ+tqrNC5cTNvmjSBATfMMappnUD5xEqL4ztaGqUSORFcM30gGtTuOe1kN2nCa9PYg2QMRPBdNQPVaeO03e6ho9GJoJt5iB0/dsQdDz/dJkkUu+sxUBjtTbHzySIKGp9hO89IKXvj9HmafV0tRhYM19+2HQ29lznm1FFe7ePWBVgzdZNfqXibNK+Wsm6ZgOUHVZQucXESPm8jPf44gikhf/j7rXwwx3J3AV+6gotFHZCBFOpGjb3+UTEpl7jlZHv73n7HoymvwlpXTsX0LE+cuYKCtlVQ0wqq7fsXcCy9FVKxkRkKEe3sQJRlBEFj3wD34ysq54vp/gLSJe3k1RkKFQxXroxv68J3rQ+l6FfY9Be4KmHIJlM2EcCskh8FdDmXT8lLwJwM1BZINxONM0FfTICogFX4P7xfJSJbn7txJsCvB2R+fwtbnuuhuCbPw0gkMdcWRFYnoUIrYcJrSCV5ef7pj9LU3f3Y62RfyYmCiU8G9rJpcW5TTSu3kAjYq6txkO1QEmw3xi//C/h0xdr/SN/r62ulFnPOJqdiP4Yxzen04vb4jBzIxyuiD8EGwVJAT7CQqKklFRwj39ZCMjODwBWhavJRFV1zLs7/8yZj2dqx8hrIJDQiijACcft1NvPbwfaTjecdIw/xF+fXzS88TCw5RLsS5b3sWTTOYW//W6/sCJxZJltnw8H0oVitOn5++fS1kU0kmLViUr/aTtvLSH1tGz6+ZFuCOa+ewIxhHFkV29UaZXOamNZhkUnsU5/wyEAT0RA5rvReT4yvI0R9Ns6FtmOFkjmROR9UMPvWn1/mnS5qZVuFhSsXxBVAU+NvC0HUUuwPF7qD1tXUEOzvo3btn1C7kK60gNOBmy7PDAIiywGmXN7Dmdy3ceNs0Vg1HuH9zNz67wjfOm0xWM6gvcvDsrn5WtuT3Sz+9bjYmJr9a3UZTuYvLZlWyoD5AuffkCIKKNhnvhRMYvmsXZi5vR3GdUUXsuY4x56U2D+JcUE42HiW9axilzIl9WgDJb0MQRQSpUEnuZJDKauzsjaLqBgcG4kwOGkyd7MA0TNwrajA1A8EqYSY1XO4isqk+Iv19FFfXEuzsYN39dyNKEouvvgEEgZLaehS7HTWVJpEaRrZYULMZBEFEsdkQIzJBd4In+5/DrtixyTZ6473UeGpoj7Yzt3QuN0y54U2D0BKrV48KkAAYiQTxZ5/BseR0tMFBDE3FPm3ayfr4CnwAMU2TxGsDowIkAEYsR7olPEaExNTydn/hGJUMN7SF+PjvN2IcWjKUuKzc++lFTCo9EuiolDnwX9+E2pNAC6exTy/GUudGDoxPFA33dpNOJAhUVrP67rvQVRVNzdHfuo/efbtZcs1H2f2qwr3Xz+MrT+9mUqmL7nCKlv4Yr3dFRtuZVOJiTq2P85rLeGRrD393XhMZTcciiezui7G5MzxOLOUwrYNxXmgZYt9AjPOmlbN4YuAd+QYLnHikZBJZsfD6U49QXFNHdGiQUE9+b3X5tJmkIyPErH7Wtw3jtIi0Dac4GEwiSyJ3b+jivk3d/PT62VQc5/1ftEh4zq1nuHMnZlbH3lxEbFXXkRMEQDeIr+1D7UtiawpgneRFtMuF+3aBDxX6UHCMAAlA8L/+m+q7fvs+9ajAhxW5uAQzm2HoP/9zVIAEIL1lC+mdO0+YCIlDcbCidgXtkXbu2XsPJbYSbIoNVVeJ5WKYmFS7q2m1dtI8pxJEAS2UQS514JxfRq43gbgzRUaOYa/wEurtYtGV1yGIIhd96e+wulw0Lz2LNX/+PUuu/RiYJhPnLaRt82v4yirwVVRR2djEuvv/RC49tuJnzbQZJ+Q9ftgxTAN1IInn7FqMnAGSgCgKaCMZbBxfInCBAh8E4rk49++7n19s+wWqodIcaOYHZ/yASb5Jb/vaCmcF1zZdy5/3/hnIFybxWX2E0qFx5+4I7iCpJjExOa/2PB4/+DhPtT+FIipc13TdqFgqwLbgttHH1zRdgxmJjhEgARj+2c+onTP73b3p48BUdZQqF0q9Jx8vZBFRh1L0JDS2reymarKDKafZ2fXi8/S07KZqSjPZZIL+1n0EKqpY/+C92BwuFl15Dal4FJurkBT9TtA1jc2PP0ygqgZfWTkDba3k0mmu+sd/RWichtGTw31GNWoojWN2Cdm2KHKxHbm4IBJV4P0jm9OQJZEKnwNFEjERCPd2071nB76yCgbb20iOhJl25tkU1dajmQIBe4B7Wu5h5/BOPtP0OTKaxnN37hoNz1FsEhd+Zvrxd0I3UYNpvOfV5dcvsgCaiZF978UdTVUlfPc9owIkAGp3N5ldu3Aeo2p4gQ8/aihN7IUuHPPLkIvt+XhvWcA9tRa51EEDDfTEe5gSmMKa3jWs61vHw82/QdZ01t5/D3aPl0Bl1WghzOqp01FTOnSuJ2stJpz2src3TF9M56yppTy3q49rF9TjLwhSfaDpGUnxL0/sJpbWGIhlsR7KUblpcR3D8Sw1AQeWt8lb2T8Y45GtvfgdCtMqvYgjwwz/8lfYT1/KUG+ajp3DnHVTE7vX9OIryRHu2cXu1S+MiY3s2bOTGWedR8OCxciKgq+iEovdwYFN69m3dg2+8koWXHoV/vIqAFz+AC7/8cWuiJJEcU0dxTWF+NkCb0//gQhP/3IHZ94wGXeRnZGBILtffoG+fXsQRJHqqdMQBJFEeJgdLzzDoiuuJTo0SOXkqZiRFK0jrSSG9+M0BXbkqgllYFKJk95Imse29+GxKZzbXMaC+gAZTefpnf2kcjr7oinOPbcOHj0warOyNRdhqXKhZzVyvXEERcBSXtjnFMgj6iaGrrH2vj/hLi4lUFnFcFcHNZdPwzGrGNMwwTARrBKJrUOoxXZcnnfvD837VwfZOxBnWWMJzZUeGktdyG/wL1sqXdhnFJHeechOIYv4L2tAdBQKSBQ4QlrL289lXcTqcIKeL2S9b10P+p49dNRdSPsvd4AAjfPLWHz5RDzFdjxWD71hEd0UuPziFVx49hy0n29DTL9IrqsTS20dyyaX8OSOfoYlH6lYFKfPP+barx0Moxkmp00s+qveQ03Awco9g+iGiSQWfMcFChQoUOAIp1RZT9M0bzBNs8I0TcU0zWrTNO8yTTNkmubZpmk2Hvo//H7387iI9BATvIiSgtXp4OCWTaN/Ssei7F3/yqihQZBEDN3AWuIGSQDdAEwQTJQKN8bnPsMLXa08+bP/pGfvbkzDoC+Son04zWf/tIX+aAaLJPKDp1qo8Nqp8tkQBBOvVaF1MHHcXU7n0thlO5Ik8YttvyCh5l87mBrkR5t+RM6M4rNb6I+mWdUySEcoSYnbSiJ7JNiTVBj2PgXrbof1v4CWJ0nG0uQyBpmkOipAcpidL/cS7Dr+PhY4eYwMhVl//+/JJpNUT2lmz5oXqWhsonvPTpIjYRrmL2bL04/hKS4hHhpmpL+PKaefycZH70ex2hAEgcGDB5h6xnI2Pf4Qhq7jLi6hc+c2GhefzrbnnyKXTiMeSl6snT6TA5s2kI5FcXq9xIeDLLn2JvyVVXhKyrjwi39H1dRpvPbI/djcHl57+D5mnn0+Z33iUwQ72tj82ANE+lvxlubYdPefiPb34fD6WHLNjfRs3Extm8yu39xL29b1DPh6kRZ60CL5hb1jXhmZfWESr/RixHLImoKwOkl5ewWX3/D3VEydhXbRRVisLi745FdwB4owTYNkZAS720NiZPy0ZGga2VSStff9jvDQ8En97grAQHKAJw8+iXEoCWjz4Ga2Dm3Fb/HB+l/B2p/C63dB54b8C2J98Jcb4bl/hJ0PwmOfg8618Mw34eFbIbgvn2z+/HfzIiVvgmHodO/ZyRM//nfu/9d/pH2wF7msDNFtBcMEAUzDxFLlwm6TEI+xOfMU22lZ1z/mWF9rlHgog5YzKG9w0LFtAxse+gvZVJKRgb5xbUT6e0eDK0RJApefl/YOsbM3yowqL7G0yvKmEkwDrltQw9fOnYzXrjCl3MOX/rKVzZ1h/E4Ld73aztO7BtjUHubpnQN855FdvNo6zGDsiGhFVtX53xcO8PX7t/P49n6+/8QevnjvFobimXH9KnDiSOc0fvnyAf7+wR38w3ywRQ8idK1F6N2C2LWeCqOPH85LcMn2zzIxuZGzP/l5Lr3l71EyEslNA+ixHHKxndiT7egjGayTjzJGGCBqAmvvv5vKKc1MWrCImWdfwEhf77h+xIaDxEds9LVGAAj1ZNj4ZJpVf0ySy5ajZjMM7H+OjY/cz6SFpzHznAsB0FWVAxvXEqh00rUrRGLk2ONl08AmHtj/AJP8k3is7bHR3/T6/vU8cuARzONQpC/w3uMpLkbLZkcFSACCne0MtO4jqcqURrahaQapaGTcazVNZ8rSZaSiEVpefZlsKoWWU8ed92YYOZ1cX5zchn6El3sQEyqS10p8VReCIqKU5wXxDIvIYCjLgovr0bI63hIbQ13xUQESAF0zaNs+QvuOsfft2HAa6yFj8a6Xe8imNCqOUr/etaaXRCRLTfMRJ+CB14cYGUxR4AOKIJDr6sJ60RWEYxLD3fn9yswzq2ndPIia1bE5LYR6E8w+28PLf/wlhq4RDQbxlpRRWjeBeGiYptOWMufCy4iHhymdMImhg/uJh0IU19bRs2cHnTu2MnXpmQx3dxLS+1FK7WjBVF4oTzMwcjrWEgdS71Z46FbY9RBs+CVoOWh5DHY/kv+/7aX8v/eaSDes/RncdR489XUY2Hns8+JDkI5AfBA2/Q5+dwE88hlofQE61kJi6L3va4ExhHoTBLsSWOwyJgLdLWEUm4Sa0RAEgXgog8NrxV/uZNfqnjGvzSWOzMmupVXEXugktWkQ2a1gD6awvNSNP+eh8ue/x1JcjmyYWB1HBGe6doUY6U8eX0e71sPuh8Hug57NWFqfpFHcS0VlMRPmzMfQDfr37WHv3gNYnE50TRvXhGyxIkkiZQ2Tad2wdlSABKBt82soVgt1M+Zwxk230rltE2U2ncF49p19oAVOCLPOuQB3oIhkZIRZ517I1KXLySQSgMxQZ2zMOOreHabSlFh3YJj1B0NMKXdz36ZuEikV0aGQbY8iOmWsE73kumNkdoXI9cXf9No5zWBvf5Q9fVG6RtL8z/P7GIimaShx8ZNrZnHPhg7uWNPGgaE3b6PA3y5GJgOmQaS/l549OxFEkWU33UKgqhqAyEAfNseRZGFDMxnsiGF3Kwy1RZlR6eHnN8zBME1ebBnCIok8urVvVIAEIJlVKXJa+No5jRwMJjkYTHLHmoOomnHS3qe1zkPpl2ZTdHMzxbfNwFLjHq3WbJsawLm4AsskL9kDI4TvbiG9LYjamyC1fZjgr3cQureFbGe0sGc7CaxrGyaZ0/jmgzuYH3CzfVU3mAZKuSMvwmCYYIJUbEO2WNn6zBPsXvMiyWiEju15G5eh62x89AFKaupwFRUjCCKZZAKrw4mWyWAaOtlkklQ0QjaZJJC2kdJTlDpKebj1YWaVzuKelnuYVzaP27fdzu7Q7jftb/Zg27hjal8f+nAQUVGwz5mD9T2sQFzgQ4Bhog2MX1+qg/ljRk4n3RIi+LtdBH+3i/S+MIZ6JEEimdX4n5X7RwVIAIKJLBvbw2i6QTCeIZ3TMbM68Ze6SbzaS2ZPmPiqLrL7RvK/K8AwTIbiGeJpFVGxYLU7iA71o2azLL/5NuxuD6lYhDkXXIrN7WHy4mLkEZVzmkvpj6ZxWGW+eHYjv7xyBn9/ZgOfOXMi3798Gk6rTJHLwvN7hvjv5/dx+4sH+PHK/Ty3e4CekbGJvwChRJa2oTgf+91r/OjZvTy6rY/P37OF+zf3FObg9xmpshrT0GmYv5h4aJjimjqWffQWZIuVTDKBCWxqH+GpHf1kNZOnd/RT7rGBCc0VLhwWmS2dI+/omtYaN6VfzN+/5QonR2vzOReUk94TJvZMB+ntQTJ7w6S2DBH89Q7C9+0l2xtHj2Uxcu99QlGBAu8l+sj4340eiYxJYCtQ4ESgVFZgqhpq73g/rR4+8SFNE3wT+MLsL7CgYgFTAlOYUjQFv9WPx+IhYA2wLb6T3TP78gU5BHAuKCP6TDuCLCDIEolH2hl5cD8lnjpKKuuxSU40NYcoSWxf+QzJkRE2PPhnUpEI/vJKSusn0t+6l0QoiKHrqJnx9rO8HafA22GRLShVLpDEvI64boIiInmsGOnx67sCBT6o7Ant4adbfopq5H0Ke8J7+NW2X5HV3t7+rkgKt0y/hW/O/yZN/iaskpVrm66l3Dle0OncunPxWr14FS8bBzayfyRfWEI1VO5uuRu7fMQut7x6+ehjAeGY6wQzm0WPv3d2YFMA0aWAQV4Y0DCx1HpwefK+5979KWzOMjzFpcy76HLS8Rg2p5vlN99GMhbBHSgmMRKia/fO0fi6AsdPLpPmjBs/McZ3O+Ps89FyWWRDwRRBHUphJlQEUcQywZMP2T1ZhR8KFDgG69vD7BuMUROws7MnQstADF95BaX1DcRDwzQuXMK8i68g3NeDJCtYJStretawczjvu7+58RNsf7Hn6Bx41IxO3/7ocffB1AysdR6MQ7GOGCaiU0E4CUloRiqF2tU17niuu+cYZxf4W8BM61jqPCjVLkzDzK+pDRM9lMHM6bgtbqyileH0MOv61rGgdAEWm51ULMK8S66kcvIU4qFhJsyZz8IrriGbTJAIZaBzHZZ4JzOjL3Nz29e4zr+HO17YRXOVn67wccY3AImMxuudYZ7bNcCevrxgfIH3n2RWJ3ZIyPx3a9uxKiKbO0ZYs3+IBRPyRRbfjlAih02WmFji5qv3bUeLREHTKPv3fycxkmHFzVOIDWfo2D6MwBCiLI2LjXR4fVgcdna+8Cxr7v4dAwf20/raWkrrJ3LJ177FWbd8hoqmZtyBQtGcAu8tbVuDqBkdSZGIBtPoqkl0aICSugmcccPHMQ0TXVURBIHi2jr2b1xLMhKmvKERRbGwtGw+gR33I/VvZYbcyefv2cLq/UF+t64Diyzx8v4gN/9uI6v3Bwkns6zcM0i1345Vkfn2pg4GL5uAoRtIARtyhQPBKqH1J8l1xVCHUuSCxz/vFvhwo1nsqOksi6++fvQePnH+YnxV5QhWEeGwg9c0sdV72NMVYVdvhBf2DLC1a4RgPEMwnjkuH2lXKHnIv7qPx7b18Y0HtvPA5m6e2dlPThvrK5PcFnxXNFL86RkUfayZsi/NxjrR9x58AgU+yIyKkGgCVrsD41BB6a5VuxEwmXrrBVz9zXnMPa+W9m1B7v/hJrr3hPFZfQTD+WIr5585H6vDiW32IgCiD+YFe5c1luTbctQeM3fxxb1D2BWJhRP+ujVFbcBBTjcYiBXywAoUKFCgwFgKpYjfK2L9CO4GDF0jFR1vwB06eIBcJo3V4UCxWCmpm4AgiciVTvRIFiOZT6AUnArBfSM0LFiIpqp079mJJCsEbSVs647w9fMaeW7XIJFUjqWNxfRF0rSHkuzqjfK55ZM4zuKvAGT1LJsGN2EYBro5duHcn+wnbYzw4JYhFFFgaqWHrV0RXtk/zCUzK46c2Lcdoj3kPTJApAuh0kCxiKSi441rhm5inMQA+gLHTzYdJ9iZDwrX1LyT2F9RRffuvMNCV3P5Y+WVBLs6Rl+naxq+iioiA3kRBcVmP+QkdZGO5X8LnpJSWl7JJ0pmkkl85ZUEKqrZu3b16PU6d26jc+e20XZPv/5j5NJpTvvIDeiaxtyLLqeoupbXn3qU3r35wPZgZztdu3dQP2M2Qx1tzLngUl699/+Yfta5bHv+KQDqZs5h5R9ux1taxhUXfgt9TQbZZyW1eRBEAVtzEbFn8+/H2uhDjklU+Cegp1VSKwcoKS3jxk//CC2RoflbyzDTOlO/uhSr20EulMRQTELpPkYi+YCj4a6DZFMJoPhEfj0F3obWkdZxxzYNbuLmqTeB1QV6BmL9kI6CJEMmCsP7jpw87xZ44V9AV+H0L+eFSTIjUHsa9O8A3wQobhh3jYG2AxzcsomyiQ0YhkE8nULweJBdYMREjLSG5LGCVcSZM2hpGaG6yU9fa4QzLqmn2m9FiuW46bMz6OiO8+rTnXnVVkBT83Nl5URY+5f8b0VXVSonT6Vr5/Yx/Zg4byF7167B5nSx5ObP8J31Icq9TvqjaX7wdAv33LaIjGbwkxfyAfeXzqxgbq0fWRS5+bR6Xt43REt/jKnlbpxWmc8tn8QrB0KUuKxIokAyp5HVdKyyREcoyb2bjjj/ipwWWgcTHBhMUOouVAd5r9g7EOfPr+U/9yIhiZAcggOrID0ClXMwfVOQlJlkar+HxV9PoyijdadQyhzIZ9rRhtJITgXn0kqSr/bhOaeW7P580I3ktTAc6SDYcZD+fS0EO9vZ+uyTLLrimtH59jDVUxega+MD03XNwB1I8eJd/5OvZg8MdRxkyulnUjqhgaH2NpKREepmBGicXzrOUa1lswx2HMR1MMGPqr9J3BjvyH6h6wVunXErHkuhQv37jdXhpL9137jjffv3UjllGqhpHEKK2umz6dq1DQCXv4hZ512EnssS7BikdEIDW55+jN7/3s2lX/9HJi9a8qbXy/UnyfXEwTCRPBaMnI6oiLjPqSWxpgfJbcVS6ya1dQj3smrUoTRisQ1nVCUZzTHzrGq8pQ5ee/zguLazSZVjxRQZh5zEumpgAor1SJCXljPABMUytkKCXljjfmBRSktxr1hBWpXQtSMbKkkRUNM6umZgscvMv9ADRi/zL70KXVPxlVWw8s6fk4zk59NgZzuTF5/Ogss/QiIa5pU//5HLvvEdRFkmm0pxxvk34cLH4tlXI1ol9HgOyWPFtbyGyIOt2JoDKNVuxDU/gLol+X/1Z0L7atj/XF4pe9b10L0etDT46kEUQJDAV8MxB/O7RcvCy/8B2+7OPx/YCXufgE+uAlMH2QaSAlvvhtd+BTYfLPkKbL4LBndB/zbY/wyc/hVY/Z9wxS/BW3Xi+lfgLTk8H0mygK4efiyiHxJi0nI6piEjWyTUN1Sw0p0KiCBYJIxEDlM1sDX5UXuTZNsi2Cb7sdb7MJMqtu1DzJlVwuzmAIIiYKgm6UgGa0bLz9WWt6gkkwjC0B5ougja10C8F6oXYGl/lZxrNo//5Edoh/aggwcP4Lr+ZqqnTqdy8hQkxQKYiLKCu7iEcE83aiZNsKt93GVS0Si7Xl5J+cRGvOUVzJxlYUQSRte2BU4OajrNlmceZ/rycympn4goitTNmovV4cLisKLlskjy2IDqXFbHZZXJ6QY/fLoFQRAQJAGp3IGzyAamiZFUsU0JgCiQ7Yyj9qew1LrJuS0MxjO4rDKlHhsv7R3gQDBFTcDO3Rs6+cWN81jbNsx/P7+PKr+dL57VSDiZZUtnhJxmMLXCUwg6LjCKUewjsuUg3Xt2MmH2PAxdR1dV5l18JSvv/Dn+yiq8ZWOrneQyGopFIptUuW9DF3NrfABcML2Mh7f2sW/gSKKDyyoTTqms2jPIp5ZN5EsrJqHqJqmcTtdIioaSk1cFSClxoJQcEvVLqVgbvNiai0htHSLXGcPWXIQpCHjOqQWHjOy2oEey2JuL0EYyBH+zk9LPzUZP5tCHMwgOGTlgw1LhQlAKSRMngmg6h2aaBMNpPnNmA6KZt7crTjtGIoN1kg99OIOR05E8VkxFomvXdjBNevfu5vzPfoVUNEJkoA8tl8XQddLRCBa7A8VqxcQEUUDP6MhWC6loBKvdgZ7VmRKYQutIKzXuGmK5GBbRQkpNIQoi7dF2Tqs87Zh9dp21guhDD4855li0GCOdxjZjBo45c07GR1fgA4wgiTjml5HrGpskZp+et79n26OE/rhn9HioLUrxJ6dja8wL8OY0g+HEkSS4Gr+d7y6oZ66p0P1aH6/EUqwejPDTJZNwzCzB1A0EWcTM6QiKRHLLIEaxnfu7hklGs5ztd1NlKUNwQVd8N4uuupZIfx/lDY2AgK6ppKIRGhc5ad8W554NXWQ1g9lFLiaICSxbgsxRRIRlVbw8EOeFtmGaKzx8ZF4VP1451sa9sD6Aqhvs6YuxbyCGYUL7cBK/w8JAdGxi389WtXLJzAqq/Y4T+fEXeAfoGLRuXI/D46Vh/iJEUSSdiDPv4iuw2O2YwKTyvNhIdzjN7Fo/v1rdhtMi8dkzG1jaKNIxnCaV03BYjt+df/j+rUWyiG4FI57370keC9pQavSx5FGIPduBYJNwL68m8UovmX0jKJVOvBdOAN1AG04jOhWUKjey24KR1cj1JTGzWr5dScBS5UIpc74XH2GBAu8KpboaZBmOEi61z52LVPr2ySUFCrwTrPX1ZA+04TprOfHnnj/yB0HAUj/hPbmm3+bHbztSVKDWVUtHrIOUlmKhcyFDqSH0OgVLrYfM/hHkIjuCJJJY04OtyY+l1o0YF1Fe1/FMrkG0WxDSAh+59XsYiSzZVJKcXWXDUw/SuSMvWFg2cRIDB/ax7KZb0FWVvWtXM9zdiaQoOL3e9+R9ftjQDQPZY0VyKmjBNKIiIpfYMbIakqOwVivw4aErNj5h/JXeVxjJjlAujxcTeSPlznI+Nu1jXNN0DYqokNbS7Art4qapN/GXfX9BMzSWVC7h2qZrEQWRUDbExoGN49oZSAyMPl5SuYRrJl/DQ60PIYsyZnkxotOBkTwiTmaZUI9c/vb9+2uQyxwYI9l8vJDPhmAVcVqO2MZ69+corq2nrGgCTZWLAchYUmTLM+x5eVX+fbXtH43dK3D8uPxF9OzeSaC6Fm95BbJioaJqMsVGJWpHDMljwdYcAANiqzqxTy1Crizsbwq8v2zvjtBc6eHTf3qd6ZVerpnionfbHgJVNXjLypEVC+l4jOlnnYeaTpJ0SmwaOFIg0zBM1PT4Qg7Z9PHPIaZpIpXYENMK+kgG0aEg+20nRfBWKS3FdfYKwr+9a8xx+8yZ7/m1C5yiiGCfWYzky6+p9UgWyaH8f/bOO0yOo9rbb3dPzmFzzpJWOWdZVrIs2ZZxTiQbmxwuyWDCvYCBjwv3AhcwwcY44QDOtizJyjnntNqc885Ozt39/THSrtcrG2McAM/7PHoebXVVdfVMT3fVqXN+B9GhJ+mJIFl0qKjs7NgJwNzs2USDAbQGA4GBPpy5eVgzMtFotQQHPdiycokEFWjfj2ByocmdBN3HqHJv5deXXMsOTz91SS0gMPn8ft4bEYwm+c3WOn67PeV/Jgrw61umsWpi7pu2S/Puk2c3MKPYyaGWQep7g/z4lbPMLXPziQVlzC13YzG8ub31RNsgdb1BZpQ4+cn6c/QFYoSzx2C+/1l6OxOMm5+LpBHxJEIIokAyHqW7oYaiCZNT+3CA0WZnye2forexgcziUpy5eRx++TlmrrmOeChE57kasssrkeNxLA7He/CppPkgEwsn0BokIpE4clwm5EtSOWsuBeMm4Olop6B6AoIgMtjVQcmUGex9+gkKqycRi4TRO+183jUdw8YfQMyPdO0D/Olji/FHk4RiSV4+0cniqiy+u6iCQm8csy/JwyvH84Wt5xiIJJhUYOeb2+t44JIqbLgRdRLBfZ3YrygDBZRgnNg5L/JgDEOpHUGb9t36ICNKoDebiYaCOLJzsWZkotUZEEUNYo6BZH8YNa6gyTCiaFS6ewM8truRxWMyyY4kuPvpE3jCcT48p5gbZhaSaze+4bnOdPnpC8TJtOjxhOPIisqTB9vQiCLlWVaq80bGJkhmLVJaeCTNm3BBhEQrC+hMZs7uOMJ4oMQVIilJFF85H9FkIqfMTvWCfF757Qle+vVxxFV6fH47eXYDWbZU7JWUmfKtDqx7nozPf5Ucu4Eyp46WSCGhQQ+UDsexqarKlppe5ldkYPgHn6FFrpS9unUgTL7jjX8/adKkSZPmg0dahOTdwpyBkowjiAIm2+jN94JxE5C0qY/f6nZTPn0mkkNHcEcn0ZPD2ddtK4qpmD6PR775maGyQH8fhZfdSLHLRJcvwoLKDM52+ylymTBpJT4y1kZOURIh3k3InPmWhywKIjpJh0PvGHXMrrcjqmY+s7icpw+3s/lsL9W5Nj4yt5hQ7LzROhmHmB+CPXDgfogHkRd8C6H9HJKpDHumEaNVSyQwbNAuHOfC7NC95TGmee8wOm0UVk+m9dRRNNrUd9TT1ED+2Gpqdm9H0mgRRJG+1mbGzF1Id30tSjKJzmjE191FxYzZ1B/cS8Tvw+rOJODpx+RIOcUMtLWSXVZBT2M9R9e/xIwrPoQtI4vCCZOp278bjVabCppUVezZOUxauhKtwYDBbGbHYw8OjfHyz31lVEC8r7sLy+JlCIKInEiQTMQRJAlFTt2nFwLXfL09tIbPUjSzakirR1doJVaXChrV5lvQOA34N7Zgu6yEwPpmJKceXY4F71N1WBYVEN/XjxxOYr2kAO8LdUOiP9ZCM5qJxQDkV09C77S+K99RmjdmrGssAgJXZS9lHuXEJeh1itgkA5x4Cpp3giUb5nwGBhrA6BzZgdEJ3la49NupgMjShRD2oOTPJiaUoLZ6kcJtgIri86HNy0PjdhMY6KN23278fT0ASFot06ZfTmBnB9HTA0Pd2y4rQV9qpfFoH+Pm5fKhS8ejbmgmOHjeWVwjUHpFGeqKInatb8Hi1GPLOC/o8ZrYN5s7k4ZD+5m68gpObt2IgMCkZZdhz8phwuLlDHS0Ek/KFLmcbDjTTbbVwN2XjSUUTZBX7OTqKflUZluQRIG63iDlmWb8kQSVWVbaPGFKMswoqopBJ3LpmCyunZ5PfW+QtSe7efpQO59dUoGqgqrCzJKUQnj7YASHSUs6Ccu7SyQuI6sqX11aAvHWlKhOyQIIeyCrmvBgCd61F7IL16OvdKArsBA5PUDkeN9QP9bFhWiyTXDeyUXKMxKpTnLo4ecpmjCJxsMHyamsounoIfrbWphx5TUc27AWQRSZtOwaBntdGKwqepOGWHh4E3v+dXn0t9YOCZBc4Nzencxacx29TQ2MW7ic2kM+uhv8nNndxZKPjCO/yoEgCJzbu5P1v/3FULuiadNZM+1yXuhcN1Q2LWvaiExGad4/PF2dZJdX0HHuzIjy4klTSCZi0LgdgzWPmVdejSCJtJ46zuxrbmTbw39APu8Mbs/OYcYVH+Lgi89wfONaMguLceaNFiiItwfou/8k6vkgedGixbqkEDWpEG/2Y56Vg39zG6YpmcTbAgh6EfdHq2noCrH9z3VoDRKzryqj5Uwb5dOyaD09UhG4cmYWTScG6G0Zvne1egnpfJBk+bQstDqRzlrv0PHyaZloDRJtZ4f7cuaYcGSl789/NZRolHhLK6oiY73yCiyRCImEEYNFSzSYoO5IL+XTMolHZCwOH+vv+wmJaMpwbLI7WPHJzw8JkFygdv8ervvWDzixaT0muwM5EUdrMLDksjuIvdiNXz0/98w1oyuxIVq0xBq8OK4sZfC5BoxTM2H8h6B1L3QcgaxxoNFB/jSwZoO3DQpmQSIMvmbYci9UrgB3JRTNeeeEPrwtcPzxkWXTPw6vfhvOvZyaOy3+Fpx5AYK9qX8vfhaWfS8lQgIQD4EiQ9M26DiUFiF5D3HmmtGbNEQCCQxmLbYMI/7+CGa7HlVNPbMiwQRdDV7GzMrh7J6uobbN7QGKLi9DPdw9lDFLW2AlsLk1Fbjg0KP44oQOdmNdXEC0ZhBkBSUmE6vzAhAHpGsqsMx6Y2cbTzCKS1VTIoBGR0rU5tiTtM76b9rq6obWcRc4uu5FLv/cV1h/389TGyuARq/nii/ejTUjk0QsRuH4yTQc2jeinc5oQlUUuurPUTVvIe1RicFghI7BMGWZ6XXbe4Wns51pq9aw6/GHh75bqzuDyz/3VURBIaPAwpldw5mEjVYtslWDCuxv8pBnN/LNy8fS7Y+gumwI/VF865qwLStG9kTxb2odniuYtfSsKmRjXwCTTmJ2qYtWT4SfbjjHf11ZzReXVrLhdDfPHu0AoDcQ49OPHeF/bpjE/qZBBsNxYgmZqcXp7ENpUsiqirenm97mRk5u3pAqFASWf+KzXPqxuzDZHUPzgwvkVznZ90Ij01YW8VGDhlq/xI66fvY1erj78jGsPdHFkVYvVdkWbp5VxP9trmMwnOBLTx3jp9dP5nSnj2K3iUh8tADke4Vo0mJbXkzfA6fgvLhV+FAPhvFuVFT0BTY8L9UM2cZ0RVYsCwuInO4nsKVtqB/TlEzkqZmYxrjfj8v4t2MgGMOoFcm2G9lytpdiu56iCS7khIo+x4zvpUYSneczRwngumkMs9Zcy4HnnwbgzM6tLP34p9h4/6+JRUJodDokjRaDxUo0GKCvrRmz3Ymo0ZCIRTHZ7CiqSlIPHf4OCm2FHOw+iFVrJa7EMWlNKKpCrnnkOz/p95NobUUOhtAWFpD7s5/S81/fQ00ksK+5CjUWxTx/AcaZM5AsFxfaSXoGSXR0IJpN6IqLEaS0A9oHGcNYF9alRQS2tyNIAralRejLUvtwwX1do+qHDvcOiZA4zTo+Pr+UH7x8Bp0k8qv5FWS80kpMUdECSzINVC/KJ7ihBbk9CIB5Vg7x7hCJC8InAqy+poJEfRhxbwsX8rMVfWgcHl0Ph156lnhkeK0448pr8PX5sWeZKMs00+aJ8OEsB5otHQzJlz7XQNXlRfTk2/nt9gYeu2M2g6EEj+1vwazX8I2VY5la5GRHbR93PnKIC4m+xufZuGth2ahrlhU1la02zfvGoKcPW0YmO/78JxQ59Q535RdyyYdvJxlPYHO6KUtYqOsNkO8w8OW/Dgv8/sdfjnPfLVNxmLRvO8BH49Dj/sh4vC/Uk2gPwmsEwAzVbsJHegFwXF1BcFcn8RY/AMm+CLFzHvwbW0fUd1xTQeRoL2pSJbizHeW8LVgwSGTeOQld/nsnlJYmzZuhHzeWnP/8LgO/+z2Jjg5Mc+bg/sQdGIqL/2bbeEcH8sAAUkYmury3FjAUqatD8fsR9Ab048Yipeco7xtKPE68rQ0lFEKJRNBkZaHLy0PU69+R/pOD5+ejJhO6oiIEjQZ9RTnmufNQE0mC27ahyXCT+cUvYZz23gjrFdmLKLIXAakEHecGz9Hm6KN0fg7JfQMYqt0E93SiK07ZndW4wuDLtdhXlxE+1oMuz4Zo1BA+3ov8mj3qWUvW0HryGNWXLGGgvY1TWzemjgkCC276CHX791C9aAk2S9rP562gETQIUYWBP9dwYRKnyTTiuKYCUZf+DNP8+5Btyh5VNt49HqsuZXdPDgyQ6OxEtFjRFRchvIFDiUGT8oux6CzMyZ3D9Ozp3DDmBmJyjEJrIWZtSiDCqrMyxjWG430jE/a4jcM2p2xzNnfPvJtbxt6Cqqoc661n9v33o4ZCyOEwis+PJsON5l0M+hQ0IoHNbUMJYQDsq0uxFA/vRyhKgoKcccSe6yZ6XjhAMGpw31BAJJBahxZWT/x78tClOU8yHsPf38uJzesBmLXyOoz9IoONtUN17KtLkdwGbJcWkegKIVm1b9RdmjTvCXl2I8FogrsvG8uf9jSRSZAW7yAnt2wYqjPr6utxZOeiyDJW0cJ493i2tW8DoDfWzbh5uez8y2vEbQUoGPvW97lUSSTZHcb3msQ++go71stK3nofqpqyCft8aHJy0L5FYUhRp8N62WVYFi1CSSbp/93vscyYjn589Vs+d5p/H2ItfvruP4m+zIauwDpiv8k4ORPzgjwAtIKWiZkTqRusQ9Jo0YlGErEYiWiU3U89NtRm6sorUWSwZxph3QYYbIbV/wtLvwP7/4D92J9ZlTeD0PKfcMfaHn5z6zSyrG/s+1Xb4x8SIIHUdP+bz55kUoE9LQ79PmM1avn6yjH8fGMdexsHKHCaWDIui++9dIbf3jaNqUUj12Lnuvw0e0JEEwqVGRbCCZkipxFJFBkMx7lpej7BhJVQJIpZL9N6ZhD/QJixs/NwZJswWI20nX6IedffiiBJtJw4yrzrb2X9b35OMp5ab1tcbmauuY7jr75C1dwFNBzaj+1YFjOvvJZdTz1KZl4hmRYbRoMR47hx7/pnlOjpJdnTjeRwoCsqetfPl+b9pXxaFnJCRQJceWZObG1n2ccX4+3u4sALT4+4T2d/6EYmLF5GTkUV3fW15FgtVPQ3wdTbwJwJzbvJm7OSh9edY06Zm1tnFeNUoWxPD0pbkBBgEuD3aypYs+E0R1oG+cjcEh5u7udL1XnIjX7sl5WAohLc0UG82T80Tuf1lZinv7sikWn+uUkoMslEjO76uqEYMZ3JxOSpK/A+XUey/7wvjijgunUsY90WKjLNuEw6okkFWYUbZxaRVFQONnm4asob+6eadBo+v6SCLl+UXLuB5v4w6051IYkCPf7oKBGSNGn+FhdESDSyyEAndJ7qYrwDzP5OYuPGIb5GkNqeaeTar0/nxV8e48DJGNFwDpOqXhN3rD9vN/IPENiyFdtlK1hQ7uIxT4T+vn5e6x1Q1xukwxvhs5dW/MPXUOxOjbHNE2ZuedqvK02aNGnSDJMOEX630Oqxd+9G1OpIJpNMXn454nmnk4yiEkqmTEPSpIwYGp2ezJIyFF98hAAJgH9LGxZhZCDMyc0b0AT7ybDoePlEN/+7sZZ1J7v50Ss1rDAGyK09RnL/PhL79mI6so/ImZEBoW+EzWCj0FJITI5x58Q7h8o1ooZvzPwGouzih2vPUuQy8dlLKyjJMPHDtWcRL2SDTcYg5oOd/wMxP/FJX8VTbyFa04TOrCXkj7Ls49WUTc3EnmVk4uJ8piwvRKOViIbidJwbpOFoD/VHe+io8/xd6ttp3nnCqoHp19+MK7+Q+kP7mHX19fi6u3Dl5ZNdXsmZnVuZd/2tJGIxRI2GoomTOb19M3OvuwWNXk9ocJDKOfM5u2s7M674EGaHk97GeiYsWUHj0YOMW7AYe3YOqqJwZN2LRIJxKmdfQWZxGTV7djL32pvRGoxMXXklu558hGjAz8ktr44Yo7e786Jjt2VkIWokBDF1b9Yf2Mv4S5YBDAmqAGz96/28sv+3KIUaRJd+KKshgHGci9DBbjRu45CzvmlSJsHdHSAJCBqB5ED0fFknr93tVdrC2LWZOPPymXnDrcTUtEH5vWaMo5J1E3/LV5XlzPa4mPSrjaza7MO897GUAAmkBJM2/xfEApBZBda84Q4uPNdcpdB+EExukiUrCQ5mETxwgtDuvQS3bCHR0UHzRz5K8y23Eqmtxd/XOyRAAiAnEsiB+AgBEoDAllZ0qkB+lZP+tiCGQHzYuQsgqRI90U9+nonKWdksuqkKRVaYdWUpYb+RoonTU/34PJRNm0kymWTmFdew6Lbbyakch6+vh6ajBzn88nN0NtQBKp9ZXMGSsVnct62ehAJ6jcTnl1ZwrM3Lj16p4amDbUQTCs8e7eCBXU1sONPDzzfV4Q0n0EsSy6uz+OYzJ/nFpjrWnexiXJ6NP+9rocBp5MYZBcwtd/PfG87x+IFW7tvWwDefOUWbJ0yadwebQeKP15XwififERBSwdxGJ+RMIKmrwLdppLBCrM6LNts8QoAEILCjHdOsbGJZCeSrzBxXdvD8H3+EMzeP/LHjEbUa+ppTm2Xn9u4kp7yKq+/+MYs/9j1azhaRjGs5u6eTmatLKRjnwmTTMefqQjSaDsJ+76hxSxotGr2eeTd8CoO1hJ7GlAG5ZKKOxsNbeO4n36P+4D62PPSHEe1ajxzmEsPMob+zTdncNu42tGLaAeSfATkeQ1WhePK0obLyGbPJKilHo9HB5BtBbyXbHGfykqWs/PQXqdm9fUiABMDX043WYEDSaNBodbSdPTXqPKqqEtzbORRUDKAEEyR7I4g6CVEvkRyMYZqUAQoYp2WTLLYzIKgceiUVOFE9P4+aPZ2YbQa6G30suKGSjEILmUVWln18HCazQPXcbKatKMKeZaR4gptlt1dzZlcn0y4rYuzcHDIKrRRWu7BnGZm0pICqWdk4c0yUTMzAnmmkekEel905AZPtnXFuTvPekOjtxfPEE4SPH0OJRonVnCN84CDWgRouvbWK0skZBPqjmB06nLlG6g9sHBFgHPZ56W6ow2gdufkgiiJhn5dYJMLij95JT1MDNmsGyd3eEfPHRFcIyaIjsLUNjcsAgoAmw0BUK6L210HnMVj6nxCPgM4CWdVw7EnorwVRC/aClCpYVjXs+G945nZ4+nboH5k5+20jiCC+RsM0d3Kq75qXUucNe+CVr0D1VSPb+dtHir0J500Q3tEZ8dK8eziyTKz50lQqpmdxZm8Hi26uompWNm1nPdgzDJideuyZJsbOzcOZb2b6ymIc2SYKq11Y3EbkbCP+adlQYkul7wEQwFDlJNkbJtboxTgpEyWcJHK8D22uZUiA5AK+tU0kPZHRgyO1abGuWUbJGpfq2OSCjEoGl/2avS89j3gRZ2Szw0lXQ/2QAAlAMhbj1NaNGMwWjFYbY+ctJKOoBABRkpi8YtUIEUttZgFfeaGWJw600uOPvf4Uad5FdGYzzccOjxCXCQz0091QC4KALctA5cxsTDYdxRPcLP5YNR956ghJObWuuWZaPi2eEIeavSRFgXizH43bSHIgTLwtOHKuEEqQ0x3lpeOd/OzVWs50BajtSQUUR5MKWVY9L58YGawclxXqeoM8tq+FH6+r4WSH/30Vf0jzz4VB0qE3mehpeM07VlXZ9+yTuPILiUejGC0mMousZBRamHdtOf0dQS69bQwuTRvFLU9j06feqXFZ4Ydrz+I06/iPZZXcsaCU/7euhsFwyiaakFUa+4I8tKeZe9eepX3w/V1jy/74kADJBaJnBjBNPG8ve83cJt4aQJdrJrCtbUT98LE+kl1h5PRz9x8mkVSo6wmgKPDJxw7z1OE2DjV0MHlJIaJZT7IvMixAAqCCb0MLE+esGCrSaHWc3LaRSz5yB3OuuZnBrg4ESSTs96IoMq7sPPQmUyrLucOJ0ebAZHfQZwzT7G9GRGRi5kRa/C0szF9Ig7eBFcXLmaDPhN4zEPIQPnYU3wsvMvjXp4keO0po924ki4WiRx6i4L7fYF58KY7rr8d66WI0FxEgUVWVyJkz+DdvIrhjBx1fvxvPY48hh0Kj6qb54KCx6bEtLSLnK9PJ/o9pWBcVIJlSNiJRPzr3gqgfOZ+8cnIu37liHB+eVkDWkf6hYFAA+qKUJUHuCA4VSXb9sAAJpJ53m9qwOA0j+g2/2knSGx0SIIHUWjE06MFoEQj2+/niZIGFpS7c53yjxunsClPbE2BakZPeQIxvrR7Hlq8sZv0XF3HTrCLiSZnvvXR6xHBPd/oJxpLYjSNtZHcsKCX/NY7uLQMhdtX1cbLdSzg+OhtumncejSpwatumIQESAE9HG6HBQfrbmgkH/Zzt8tMfjOM06ajOHWlPONDsoTLLgln/9u2f+kIrGXdMIPtrMzCMdyM5ztuqZBVBI6LJNKLG5SEBEgDT5EwCOzpG9BM9M0CyN0xwXyfyYHRIgARAjcqEDnWTJs0/C1q3G+uSJeT+vx9T+Iffk/W1r2KaNetN26iqSnDPHoI7dhCtbyC4bRvBgwfftA1AaP8Bwjt3Et6zh9DuXYR37EQOBt+0zWBPiNYzA9Qf7qHpeC9d9d6/5/LSvAHxzk58L71EeP8B/C++SPTYMQZ+cx+ep/5C5PRb85V5M6K1tbR+6tP4X1lHcMtWgvsPkBgYQF9SgmXpElwf+TCFv/8dBff9FtuVVyBq3/u9qwJDAdmmbF5oeJFmkxfDnGyQFQStiKHSQfhYH2okib7ETvT0AIYqN+GjPYA6ao9aWytQMmEqWSVldNXVDB9TVY688gIz11xLrjmIk75R40gzGq3eRGBT64g5Z7IvQrI7TOh1yRzSpPlXRQ6HmWyrZnXp6qEym87Gl6d/GbPWTKTmHINPP01wy1b869fjX78eJXLx/YLXoxW1lNpLGesaOyRAApBrzuXmsTdj0w3PoxcVLCLDmDGivV6jp8JZQbmjnJkDNsKHjxA5epR4Wzva3Fx6f/ozmq+/gfCRIwDUD9bzm6O/4Qubv8Arja/giY70u/h7UbzxEQIkAP5NrWiUVPBfTpmNsfOySNYEUCOvmWdHkiRrwziyc8kpryK7rAI5Hn9992n+BvFIhObjR4b+Hls1j3ijf0SdwPZ2UECNK+hyzWid6UQjad5frEYtLZ4I922vZ9m4bCxqgsYjB0bUOfLKiwiSSDKeILuvhmsqr8FlSImMxIlhsutZcEMlrjwz2aU2VtwxHkVRkOW3uNcVSuB/tWVEUazeh+yJvqXmSjxOcMsWgvv2Ea1vwL/hVcInR/sAvR5Zlgns3Elo3z7C+/YRPXOWzE/ehf2mmzFWVb21saf5t0FNygS2tkJSwTw9O/W8fg2R432ogdS7McuSxXVFN7Bu/jZWmj6EkkwgaSRqdm8f0eb4xlcQRQUVBS77cSrpWywEm38Ag00ASJ2HsL50F9MyFBr7hvflvJE4h1s87Gnop9ufmsf0B0e/m32RBL507MM/BRpRRCMJfPbSCmaXuvjZhlq6/VE00sj9gjOdPnp6QoRaQxQlRWxhGW1dCPGYlyy/wuNTDHyh1IyvO0xXo5fgYIwTW9ppOeFB0onMvqqMWMTJ0ju+Qf2h/egMJq6++3s0Hz8yJOwAEPQMkIzFsLgzyascS+nUGeiMJjyd7aCqvPzrn3Fwxyb6nnoK7/PPo7yLc7/w8eP4Nr6asoPt3Utg61bUZHrf4N+Z/DFOJi7JIx5RkBWZSz88lsGuDmr37hx1n0ZDAfLGVNN57gyKIpOIxMBdAa5yaNoJxfN4/mgnr57p4Reb6nhwdxPZEQWl7TV2URV0W9r5xZXjWTMlnz/vb+GPB1rZEgmjzTOhJBRkT3SEAAmA75Vmkr60H8EHGWusj0jAP8K/T6M3kOgKDQuQACgqgS1tZJl1PH6gjW89fwq3Wcdtc4p4YGcjv9pSz6N7WzjU7GFnbR9nu/zEk8Nz4daBEM8caecXm+p46mAbv9hURyQh86VllWyu6SHHPnIPOE2at8KwCImWQ6/0YXem/GwjNfUXFS7XGTRc8bnJmHRu1ISbUsdr/BzOi5Boc114n3oKgOUTC1AEid0tI23KL5/oQhBg6bi3Jvz4ZuTaDUiiQIsn7Y+TJk2aNGlGMtobL807QzwKoV7EqB+T1UZvcyOz1lwPQirIUqM3oDcOb1o4snIItl7ESSupoMaVUcWJcIigwcmZruHF19gcKwb/IMlwBFVVEUQRORAk0dmJsfqtKUFPzJpIfV09RsnITxb+hEAigF1nR1EUyjLMzCp1se7U8Divm55PacZ552BvGww0wOSbUXMmEY2NRe8UIRZDQUGj0bD5kTNMXVZM1axs6o/0MNgdJqvEhqcjiLc3TO3BHmKhJGVTM+F8gH6a94doXKEv4OOyT1xLKG7CYLVTNG0isWic4llTCQ960ZutXD2xikgoStUl84n4vEh6I1fd803CgSBWp4sJK5aCqOXKu79O0OfD4nBRtXAuiiKw6itfJt4fRGhoQtizD8sqN0tySog67FgKSyn/1JfZuXktqqKgyKN/B62nTzBu4aWc3bl1qCynooqu2hpmrbmerNJyjFYbgYE+gp4B5lxzE/7eHmZdfQMHX3waVVEIeT20tHdRvKaY5JkBDLlOorWDqIoKKijRJKLp/KNSElATCoJeGs6qbNKgXMSYLCoiK++6no6gHxLpYKX3mooOFcEXRZUkxMxMMr/2Vfp+/gtCY6/Bfum3QY6BpIOeU5AIg70IbnsGjj0GbfshazyULCKpyUad+Gk0B35MbMb/kuyuI3rsOPG2NsxzZiNazGTfcw893/kOA398kMjk0QrUSnS0cVZNKKhJhdWfm4QiK0R3doyqk/TFMEsiWoPIkQ0tzFpTxtGNrZRMyGDsghvJKBrDsXUvUb1oCZJGiyM3n3gkxMnNG5i4ZDlNxw8DUDB2PK+u70E5nRJHybbpGX/eodkbTrDh9LBoSlxWaBkYGdT0xIE2rpqcx3dfOE3yvHNUbyDG77Y3cOXkPILxJJ9YWMYNv987ol3TQIgznX4KXWkRntcjKzL13npa/a3Y9DaqnFU4DW/9fdfmCfP9l8/wwJwBDAd/A+ULoeoy2PojSIRRlj6MGhvt4KhcLHBSUYlpItSfOkTdgT3Mu/5WimdOp+X4UU5sXs/0VVez5aHfAzDlsivQmUt59Y8NxCNJnDkmSidnsvHBM9izTJROcpNVbMVoCTLY0UU8GsaenYOvZ3jeMH311SQS46jZ6yWz1UNupQOdQaa79kXaTqecP7JLK4hHRgfXZYlOfr8sNZYyexk5lrTi9T8LrvxC9j79BO7CYuZedzOQCg7X6PUYew7B+rtAa8J46beozJmEr6ebXf29o/pJxuMYLDYKx0+m7cxJyqfPwux4zW9DUUn2jXZIkwNxNFnG1LtbEJAyjMTjMn6bjiN/raOw2s3Y2TkcXt+CVi9RMikDo0XHQEeQ/tZuqhfkIydkIqEke59rpGpmNkFflBV3jEMf6Sfe08yls+LgO4twPIBx0kRW3DmeeFhG0grozwf6ZBZakZMKBosO8UKQfpp/GaK1deiLi1FFESUaRYmEURNxxIaz2Ac6mTd7ItryqXRG4+w+24G2a/S729/fR27VWBoPDzsBVS9aQmdtDdNXXUXLyaPklFUiCToU3+j5oyorkFQRtCJyJIlxQT696gCusy/CzX+BgXrY9N2U4IclGy77YWpzz2gHdxV0HYOjj0LeNBi7CpJRaD8E1mzQ/4PK7M5SWHEvxPypft0VcPTPo+vFwykxtwuZmnVWSJz/3VqyU8KVANkT/rHxpPm7SYktVROLJhElgZwyG4mYjMmmR04qJOMyqqoS9sWJx2TyKu0IAoQDCU7t6KRscgb9cRnX9ZUkO4IYp2SiKipKOIk2x4SgEVDPB6arF1m7qTEZJTa6HOBsl59rSmXEiA1iQXBXwpZ78Vd/hWB/H6qqYrTaiASG7R+lK67F1zjaWc3X201fXETn70aRFWZffQPRUBBFljm5ZQP9rc2p9rPmc9+pGLKiUtsTpNv31pzm0rwzmGwO/P2jA1WCnn78AwY2/+kk1QtzmbGqhMG+MM/UdRNJyOxtHGBv4wDfWDmWn2+qJZZUuKrEzTh/DMmiRZXViwobKAMRrAYtEKFlIITTnBInXXeyiy8tq8Ru1NIXHNlOEobf5Y/sa2F5dTZGXdr5OA1EfV4kzWiTetDjwdvbjSMzG0UxkVGQspeKkkRGvoVoMIGj6/cI+dOZYvOTYzPQ7Y+iqLD5bC9TChw8treV2OtEPi7ci7Ki8tTBNpaOzUareX90xUX96KzugiH1WSih0Q6VakKBizz61biMEldI54j/x6jtDqAoKk8ebENV4ZfLLayMPUdH/Ev4vVFssdE2ANkXQ1IlquYsoG7/HoomTmHfs09SNH4SnXVnKRw3AY1WhyhKCKKEKImoqor5/F6DKgkMSn3YFB1fG/sR4oLAIuc4EnIMrc6C2HOGipAX26lnYdcvCK/ZQKy2mWRnB5wXnlICQeLtKYdK88BfEefeAfljLnqNkbNnSXR1k+zvQw2FEE1GLHPm4H95Lcbx4zHNmPGufsZp/rkRRAGNc7QDmGV2DpETvcPPH1HANG1kRu4sq4E7FpQx0B0gdv/pUX0QSabE9+TUuuZi81s5EEMyj8yWqIQScBE/3ZB3kFg4isOlQ/W00x8uJmEePfaESYM+KuGLhClxm9BI4gjbaiQp03WReWtPIMpnFpfT2B+irifAddMLWDouG+m8beJQs4fbHzqI/7yd+jOLy/nUJWXYjLpRfaV551AVheBA/6jyeCSMqihIegORhMxj5+eaV0zOHbHnK4nixV6jfzeSUYt03naV8bHxhI70kOgMYbmkgMipgdQetEYcEhoTtOIIUb8LKFEZUa9JiZK9jkRPOLUvLaTtYWn+OdC43Wjcbz1DW7y1FVWW0WRmoSaTCA47ajRGrLMTfV7eRdtEGxuJtzSjJBIgaUBRSHR1Ea2rwzx1tDPpBQKeKO01g7ScGsDs0DNmVjaiRiC7xP6GbdK8OZGzZ4mcOIHi85Ec8CA5XcRbWtBkZRI5fBgBFTUexzR1ytvqX4lE6Pvl/+FYvYpEVzdyJEy8ro5Edze6ggJ0xUWY58x5Zy/q72SwO0TAE6Woewrl2umcfa4LpTpEUY4Jy7y81N6JooJGRLToSHQEQFURtBJK5CKTF79MRl4xqqqOOhT2+8iwSrg7z6EG3ok31QeAhIJ8kQAaJZxESgd5pfkXJ+n1Ety6Fc/DjyC5XNxz5+18+LKbGUwGKLYXU2gtRPb5iNXXoXG5kMxm1KRMsq+faH09pokT3/a5B6IDPHjyQb4797v4Y34MGgM9oR7aAm3Myh0tQBarqSHR0gpyEjRahGSCeHsbmd/8Jh133UXHV76K69H7uWvPXfRFUrbrre1b+czkz/DJyZ9EFN6ePU6JXcRfKCajJhQmLy1Aq5dQkkkE3+hnrjoQZ+bV19J05BCCIGB2pn0o/17k5EibpaSMtusqoUTqvSiBlJHeA0jz/vPq6W5y7Ab0Gok/72/l1itGCzcn4zHkRBKT3YFX7qc72M03Zn2DUDxErq6AfjlMzb5uZl5RihyX2fNsPQtvrCLojWJ3my9y1pGoSQU1Oto2cLGyixFvagKdLrUuS8pIDjuyz0vS40Hjcr1hu9jZsyTa2iEpDz+rW1uRnC7IynxL507z74OaUEkOpGyhqqwO2Wpfi3L+nozEZRzhHLrqfTSf7GfO1Q6CntF2OUWWkRMJkoEk7PklXPELMDlT/sOvQfA0MLM6hFGb2snq8kb4f+tqKHKbEAQ43uZlUVUmRS4TGlEY8qkFKM80k2NLBy7/M1CeZUYjCvxma/1Q2ZWTcyl73XNQ8CZoeLyBWDhJyZWlnDk+QH9bkNwKBz1NfjIKy5ESEUClbHIWp3elkqeqKtTu7yG7zEZhtYto0EbR5NuJh2P0tBnx9oxMhAKpNfX8G27l1d//H2GfF4DmY4eZcdW12LNzOLVnB2Nvu5NkTx/Rs2cxTZ4MpET/FJ8fyelANPxj91eirw/ZH0CXlweJBIhWkCSizc0YKyr+ob7T/POi1Um4ci101fmQJIme5n4S4T78faN9eH3d3bjzi2g+foSsknL0Vif85cspf8BJN4EgMhAatnMcbfNimVrM62cJciBOe1+Ih/Y0A5BnN3C6K8jyCfkwEEG52D5EKIGajrn5QBPVWEjGRtrRdAbjRf1RZF8MIZl6B8uKypaaXgLRJLGkgsusY1l1Nrc+sJ9YUkESBf7zympunFFIUlHZ1dDPC8dGJsPecLqbpeMy+eSiciqyRs/B06T5W1wQIdFLEwj7E1QvccM+UMJxTNOmXbSNwawle+wY6APv8XaSKyei0UpgSO0Z2S6ZQ+fvNxJvbWVeZSFmJcKObviP8+1VVeX5ox3ML88g+x2Yg2okkXyHkdY3SDaYJk2aNGk+uKRFSN4NVBXifnBXYn/2esKXP87k5avoqj9HPBymaMJk8ipHO9Zq3MYR4gYAmmwT3sjIBZ7RasPmcBANjFxkffnSUuitQeN2ocRjCFototGIKojIwSDSRTIJXgxJkJiQOYHecC/RRBS3wY1FZ8Ggh59cN4k99f0caR1kTqmbueVujLrzLuMxHxTOhiOPoJjyETEh+/0kOzowVAcZ7I4z4/JSQt4YA+1BCqpceHvDKOcDnbY/UZtygAAGOoJIa8rILbMjvk+O9R907JoEOWf+B2PTRljxQ3j5+6lgw8JZ8NyfYNl/wdqfgd4CU26FF/4XFn4NjjySCk5c9FV44V6YcQe07IK+c7D8+/Dif8HY1RAZhKYd+Cp+RNdPfo9x2jQCj/6J8L59uO+6E++XvoxuzmwihtQ9kUzERwWeBQf6WXLtzRRXVdJeX48zv4iwz8vhtc9TOnUumaUzmbHmy4S954j4PRisxeSOWczZPf2s+NRkIoEgkYCBiN/OC3+qp2J6JhlJGevqMkSDhGTXIfviSHYdglFDsj+CNs9MojOEZE056MaafBjGuIjWvCb7hQgal5a8p67FVbyYUMVD79n3lgZ8rQ2IgRCJvn7UeAw1FkdfVUnm3XcT3rMT+wxpeFPCXgRZ1SCKkF0Nl/0I5DiqDMEuI71f/hHJvn4cVy7DIqvEGpswTp+Oad481GiEeFMzliVLAEhGwmSXlo8ekEODoBNHCEpp88xoM41odBIgoZbaCTAyO7BxrIu4CHaXCZNVTyIqk4jK1B3qoe4QmGxFZBSOxeywk1MWo/XUMURRZPyiS+msrUGVZeZedzPlEyZwf1aCzTW9lLhNXDomi+KMlCE9mhjpHBZPXsShXlWJy8qIzRKAHn+MHJsBi05DUlYJXsR5IppMGwMvxp7OPXxhyxfQa/R8ZcZX6Ax2YtQY0Ut6+iP9ZJuzGe8ej9t43kk2EUk9Q4M94Ciixeui2xfHJMTgkq+n7t9Xvz3Uv9S+Fl3RJ4m3vsYAoBERDJqUcNJrMlVKLj1hMcjZXdsYM3cxclImGgzgKiikau4CPF1dVC9cSkH1ZLoaLBzb1MPkpYXnxR6g/lAPtgwDWr3Ezqfq0Bk1TF6iJeQdpL3mNGPnLSKZSBDo7yOzuBSTcxw7n0pt8sXCCcwOPe68GDXbh7PP9DY3kjdmHJ3nzg6PU6slv6gSnd5ET2M9fedOoOQPkllWjlabDph4v8kpr2L5nZ+j5eQxPB3tZJdX4sovQgn1Y9v0hVSlRBhe/RZc+0fsWQWMnbuQgy89O6IfR3YOiz9yB7ufeowJS5aTTIw0HAuSiHlmDvHWkSq+unwLalxG4zYSqfUQyzfTHUzS2+QjOBgj5I1hy0gZ1wRRwJljZuujNSTOz7n7njjH2Lm5FIx1EvLG0Ogl6g70oiRVpiwtIPbkz3Gsvhw5EkCVRBJtbajRKKbp0xHE4Xmq3vTeZzdM884haDQosSii04nq96NxOlFjcQRRQDSbEXo7kNw2RKMbfTxIwcTJdDfUjuijaPxkzE4nrrwC/H09uAuK8XS0YcvMRpaT6IwmzK4c9qzvZsbEDGJHXrPOE0DQSmiyTYhmLSgKBpcXmxHUqR9FSEbgxc8NC3oEe2Dd12HFj8DoTIlB9p6BjCooXQhb7oXs8TDhOjj8MDiKUuIkjkIIdEH3SYj6IaMScif/7Q9IVUCVU/1eYO7nIepN9XUBjX5YgMSaC2WLITyQGqPOBHvvg+X3Qt70t/U9pfnHkDQiJsvwe/OCiJKok0BV8XSHOLevC0e2hWRMJh5JcG5/D8HBGMXjXZza3klPs5+sYitVE92UZJtRDnajK7QSbwugLbAiGDUIopAKXHvNXFNXYkVyvOad3XE0JaxjymCB2YohrsKWH6Tm4wfvh7Z9RPL6KZs2k0MvP8fsq68n7PMS8fupmDkXS14ePr3K6c3rR1xj+Yw5PFMf44aqXCRvN5GgH19PN4osUzZtJu6CIvKqJ/LKoIMNR4bXcOlgufcOJR5HVRXKps/C0zFyDZRTMYagJ8GCGyrpbvQRCcYxVlix+ELcNicV/FKRZeGZI+1DQg3/u6+JR6eV4d/UimVuLpJFNypbSn+BhdqaVgAeP9DKr26eytOHdRxv93Gs1cedi0r50SvDmX1LM8wjMlQFogm0Uto2lSaFiIDBYkMQRFR1+DlXMWsu2SUVqDh59YFzzLu2grAvSn+HH2eWmcwSK8KL2+H0szhvfIZbZhfhDcfxR5JUZJs52urlyim5nOz0DfVZ7DYNBYwDeCMJZFXl/Zp1anLN6IqtxF+TVcO2tJDwiT4MlSlR3yFEASnTiOQyjMiOKJq1iDYdkj29jvtHUVDRaUSiCZlx2SYWDT6L3l9LwBAhadXhyjCCALzGnGOalElvfzPFk6aSU17J8Y2vUD59Fj1NDVTNmo/J4SQqR9gaOYyKikNn49r1P0xlAFzyHdj5M/LnfhZ2/i8s/iZs/SEs/gbs/B8wZaRsvscehxm3E778+ZQASW8vmuxstPn5BLbvwFBZgWg0kuwfIFr6EUzPfQo+vg7Mw5mK5WCQ0PHjJNvbUWNxRKsVmRBqIIBgMmJbuZJ4R0dahCTNRdEV2ci8axKRs6m5nrHaja7QetG6cb1IdJwT3aGRe3BJt3FEpnpBK476PekmZhBtGJnNWjfGQcjo4/XkVoxBqzcgDNThcGeRadcjT8xCavAN2alFk4YGq8SkDDtLx2ZTmT16zFkWA9dMy+epg8NZP0UB9BqJP+1p4i93zSXXYRwxbxkMxbnnuZMj3if3bWtgUVUmc8reeoB+mr8fjaShYvY8Tm15dUS5xZ2JNSMT0Z7NQ3sOk2XVE4knyTDrh+o4TFpsRi3xhEw0IWPQvjPSXdocM45VZaiygppQ0GQakb0xLHNyCe5Kia0mukLoSmwj59QaAY3LgAroCq0j98MA84zs9Joqzb80ciA1v010d6FGY4hGI9qSYmSfD95AhET2+RHtdiRFRZWToChoMtyosTfO1OnpDtJ8vJ+T21K/N09niK46L5fdlRbrfbvEGhsJHz6MGgim/GMkkdChQ+iLihCNRnRFRajxOKG9e0l6PBgnTkT7dwYvyoODCFoN4eMnEA169BluZI8HpbsL1TtI5NBBdGVlGCdNQpef/y5d6WhUVaW/LUjIF2PX03WUTMgg4Ini749QPN7NgXUtKCuLkSMyEya5UzbnpEJyMIJhrAslnETQiEgXEXXTjLeSlzWOwa5ORElCkYf3eytmzMG+/16YciPYC96z6/1XJij7MU7OJLR3ZACaJtuEmn5/pvkXJ7hpM13fHvZTCO/bR+mfH2P81AVDZYmBASSni2Skg2hdPaLFgr6sFCU8OinJ34NJa+Kzkz8LIsTkGBpRQ7mjHKPm4iIScjCYCoZX1aHEbpLbjahP2aiSXV0MtNVx09ibaAu08Xz98wA8eOpBriq/inzr23vGa936EaJ/ALpiKwm9iLcnjChJ2Nw6xCojNIy0a2vH24j01FEwbgJZpeVYnek13N+L0WpDo9MPZXcPyIMpwc7XrPn1lU4EjYgqK+iy/7Y4Q5o07zbhuMwfdzXxmUsr8IbjmKxxtHoDidiwnT2rpBy90UhWSSn9XX7ydDpEQWQgMkCCGF0NXiYtzqftzAA6g4YZq0rw94XRmzRvSYREcurRldqIN73muSQJaN6iUI8cjYGskOjsRE0mEc1mdEXFJAYH31SERAmH0bhdqb0XlaFntRIKvqXzpvn3QjRqMM/MwfdKE0pURpNpHJG4SjBIaDJT96QcVelrDbDvhUYAWk/rya+0YrBYiQaH97QcOXloDSbiMSDQDeu+hnrLXxk1K9caycrMZGxOykZ7sNnD5EIHP99YS+C8j+zLx7v4za1T+e1t07j7mZN4QnHKM8384sYpuC361/eY5n3AbtRx79UT2N0wwOEWD7NL3cwtc2M2DIdOxWMyZze0EvbHmby0kBNb2wh5UyLMg91h8qscaPUi+RU2lH4f0XASW4aR7obUPkDdwR5CvhhTlxcRCyeJRQRM+S7qRZnKhcsYePyPI8ZUPHEK0VCA7LIKmo4eGio/vmEtk1es4tBLz6IajcTb2jGMHQtA5NQpen/2MyLHT2CeN4/ML34BQ1XV2/5ckoODCJJIoqMXJRxG0GpT9pN/cH6e5p8fvVGLLcPEYHcYd56BwS4z4xYuZufjD4+o58jNI+wbZPzi5QiiHVV//pmmqnD8CcibwuyyOTx9pAOXSUdPIEbCoUd83T6aOMGN0Wnkikm55DuMzC1388SBNoRsE8lWf0oA8HVzc8NYF5It/Qz9IJNIGDHZHSNskt6uDrS5o+ewxkkZ/PbU8J5pOC4zo9jJulPdfGhqPvdtaxjyLZMVlcf2tTAx305SVt8wWVmOzcj8ioyhRA9p0vw9DImQaCZRMSULm+McAIoiYJx6cRESAG/MCkTB28+uv9az+JYxoE/NQ80zJ8MDWxj88+Nkf/MbTBZ62B8uossXIdduZPPZXlo9Yb6y4u3PDV5PsdtEqyc9L0iTJk2aNCNJi5C8G8QjKeX8YA94m8l99jLMy36Jc948REHFZRbR5aU25BVFprepicHuDhzubFw3jcH/aguJ7hD6MjvWpUU0dZ0gf0w1HbVnySopY8YV14BWi8uso8BppH0wNVkZaxURA0aSXi+iTke8pQV9WTmiXocci71lEZIiaxG/PPpLDvUMGzi+PvPrTM6aTKHTxI0zi7hxZtHohnor+NuhZD6CvwUVdypIM5lAbqrDljGGfS80Egsl0Zs1NBzrY/EtYxCBvrYAs68qxWTXk4zLGMxazuzuZMzcHCyOtCrw+4ETHyoCvau34x3UYL7qapLRJIlQBPON3yDUNYj+8mtBhYgniO2Guwj2+NBdcguiTkuo24v9xlsJ9wUQp30arcVIsMuD7bpriXojqIqMcYaVQKcHw/9dglUK0nf3lwEQtFq0N12PNy+HcUYjvU0NnNi0jvk3fJgzO7fQ09RAYVU181esxtA/SF4gQWHVZDxPPYn+1lso+4/v0tFpoaNWoa9Vxd9fxPTLFoIQIejpomyKiVgogclmIOQDjU4i5I3ReLSfRMzF5l2dlExyMeeKMhK7Oghsa8e2oghZkdFNcBA51Ef4VD+2y0sI7urEPDsHtALR0x4khw7Tinw8CZHQdaeI9Pei7Yhi0sQxWtMBFu8FmsEgyUgENRFH43KR9PoI7dmDZcFC9CUFsPvrqYBZgInXpdR5X4ukI3rqOO2f++JQEK3niefRVU/DPHsWic4ukp0d6MeMQVtUBKho8vLwLF7AuVeeZ971t3Ds1VeIh8OMX7yMmro9VN+8AP/6ZpK9YfQVDmzLitG85tmmK7LivK4S3/pm1JiMcUomYrGJjq7TJOJ2jmz0c9UXJ3LprRn4+oP4+/XUH/GRUZDLtsd7ySnLYNKy1UhaCVtGFlml5UxZsRprZhbNg1GcJoGvLK8atcFRlmmmyDWsVum26Mm06EdkAV89MReDVkIQhmOKAWxGDVMKHVgMWgxaiQ/PKebB3c1Dx/UakTEXcZb/oNMf6ed7e7+Hw+Dgm7O+yYOnHiScDLMgfwGPnnl0qN4VZVfwzVnfxCZqU4G4G7+b+gIkLVOvvJ/fLHGh2XB3KrB71f9A5lgoWQCN25Fqn8Z56WX4LGOInvWiyTJhmZOLf1MLjivLCezuINERRFtqw3BJDqHAAAtv/TKS3oGSULBlBZAk6GpSyMwrIBmLExwYILvEwf6X/XTWepG0Istvr+bwuhYmLs6n/lAPM1bZiPgb0Okc9DY1MmnpSuoP7qW/rYXC6ok48yrZ8eRwcEb1vByObmyncsbIZ2Pj0YMsuOkjGC1WGo8cwpVfwNLbP4XebOGl//0xXXXDAaJXfOluxsxd+O5/cWneFEmjwZqdwUT9BGKCCY1Wi0WKYnr5s5AcNtaq9mJ6tVX4+vwUVE8kGg5xdsdW9GYzk1esBgRaT59kzPxFSBodlotkczKMdWFdVkRwRweCRsA8OxfJpQeNRLI/TLzSyba/1uPvi6IoKnM/VM7h9c0s+2g1+WOdNB3rw7gwb0iA5AK1B7upmp11fqCph11fa4DAYBzjF74HDftJtLcjTZlOoHAyvv4YxuP9OOwqhlAvkts9IiumnFTobfYz2BNGa5Aw23UkEwqiKKDIKiopMQC724jVnZ7rvl8EBqMEBiIpZ8OMKiL6BPFgEpMzH9GZwBiH5LlTGF1uBJMZQRQpdBmR8u2cPtfHtFVXcXLLRiSNhknLVnJ29zasrgyySktpPXWc9jOnGL94GYIgoNM70BqmoKgZGCx99Fp0ZE7JJH6yH8mqwzI3l3hvGPvqUhRvEIO7H+mVz8FV90HRbAh0DguQXCDsgVgwJQoY9aREP8ZfDbt+nhL9mHAdbL0XCueAvRBOPgOL74btP4Uzz6X6MDjg+oeg/NI3/7AG6lPvotey7zep4NMLIiTF86FsCRhdqTHlT0+JnJRdArEAeNtSY3KWpgS00rxrRMMJvH1h5JiMKAnEowqCANFQAlUBm9uA2aXD2xUh4IliceoRJJATKv7+KI4sM5JGRJREgoOpeWEirtBzPgittyVAb0uAAyYNN316IuEd7RhL7WgyjTiuKCN8tBfbyhJC+7tJ9oXRV1ixzHUh6s8Hzp1bD8/cDvEQAKbpH4dxV0LrXkjGoH4TmFyYM3JROn2MnbeI/c/+BVtWNrPWXEtRgYMTB/bRevYMs6+5kRMb15GMx5m4dAWSVssnpzk5Oijwco3EteMKKSysIBaNMRBRyJudy8G2IA8cGZ5PWPQaJuTb3tsv6QOMCmg0WnLLq5i0bCVndmxFazAwdeUVmGx2RNHDyR0xYmHIKbfzyLlu/nqsk8VjMvns4nK+9NRxOrzDz8NjHX5al+nIn5+H7I2hzTNjmZ9H6FAPiAKGxfn8qal3SFQxmlD41eY6fnrtJJoGQiiKyoQ8O7+5ZRq1PQGybHpaBsI8sLNx6Bwfm1dChjXt6JAmhUZWkPR6Lv3YnRxe+zyBgX7Kps+ietGl9LcLZBZrmb4yE1VuQcBLXpkVSadBTlhgzCpwlSH52/jN1ggGrcT/3DCZH7x0mhZPhA5vhB9ePYH+UAy3SUfbYIQHdjUNnfujc0vesSDkt3XtNj2um8YSbwsgB+Joc81ILkNKUFsQQCMQrfGgcRlwXFWBvsCK+7ZxeF9uJN7kQ5tnwbogD22RDfF9vI5/F6qyrfT6o6yozqG9vQVnywYQBKwuA3uebcB+QwXO66vwb2xB9scxTsxAPzODUFMToiix68lHqZozH6PNTnZZBba8QqIJhb7BCJc6VhOMBBFCAsGZ92CJ1oHJDfJ5gSZVSb2zAfrrUnPNUD9Rx2LCziyURhvaAj+xpkY0TifBXbuxzJ+HeeZMVEVGNJkhmSTW2Ip28ifRBrqJe2OE9x8g3tSItrgEyWFHm5mZCsoTBCS7DWQFFBklnkCQRGKNTejLSt+/LyHNPyWCJKAvsaMvsf/Nuhk2I/tKLBQmFTQnB5DMWjTLCxhMdOBek0dsxwCKN040GEd7bSXJLa2o3jjaiS5i090YYiBuaEXxRNCNc2NcmE9wsI6pK6/k1LZNqbXi0pVY3G5URY/DHOX/nbBR0xfg7lAj3722HLE3jNOqx+fQIagyk60GphZfPLu1ViPymcWpTITPHO4g127gS8uqMGhFHv/EHIouEkTijSSo7RkdqPFGznVp3jlEoHzaTJLxOHX7dmGyO5i2ag16sxnIp2UwzJNrslG9vZgCTRS7crlrUSkaUUSnEWkZCFHb7aci2/qOv/8FSUSQRIxVLuRAnIjkwbayBCWUQJNpRJtnIbCtjejpATTZJhxXlqPNNuG+YQyhY71YFhUQOtgNioptSSGGqnRG9jT/4iSTxJtbUAUBTXY2Sc8AiZYWRNub2Ap0WhBERK2WWHMzmry8lI1ReuPfazKm0N3oY8UnxhMNJdDqJYLnRSPS/P3EuroIHTiA7BlENBoQ0CM5nJgtVsJHj6JEo2gzM4mdPYuurIzgq6+mgmsEiDe3YBg7BuOUKWgyMt70PKLNhnHaNOQBD7LfT2j/ASSbFcO4cfg3vIp1+XJCO3cRqzmH/aor0ZdfJGHFP0g0lMDXF0HSCMhJmVhYJjgYI5mQ8fdGKKhyUnewh3Hzc2k82kfxBDcoqa2Ow5vb0Jg15C8vJnKkG2OZA02emXhbEMuifBJdIWzLiwnu7USJyhhnZeJ3+hjs6kKUNFzy4U9wdP1L+Hq7KZs2k6krr0Dz6uMw2ALOd/5a/x1RkhoMky2oCYXw0V4kixbr0iISlgTatMtemn9h5ECAgQcfHFFmueQSYvX1BNZvQFdRgXn2LFQgVlND//3341hzFeF9+wjIMplf/co/NgAV4mqcu7fdjXJeKLjcUc5/zvnPi1YXNBpUVARJJN7UhL6sPBXspkv5KkgOB7uCx/lV7WPMyJ7B6tLVrG1ai6IqqK+NpPs70Wgbcd8yBt/6ltR+SZUT6+JC6hrOEeg7hsnmJBGfRkjtxnVJFvH9KcE/w/xMTtVsQ5ZkbFMvQcnMedtj+CAjaXUsuf2THH75eTwd7Zw+uZVLbvkIgfWtJD0pYS7z7FxUEXS5af+mNP8cLB6TyfrT3fx8Yy2ZVh23FWez5OOf5PDa5xlob6Nw/EQmL1+Fiop/oA9BAFmV+dLWL5FUk/SP8XB52Q3seOIcBouWZFxBq5eYe005XXVe8iv/9hpe6zRiv6yEwLZ2ouc8aDKM2FaWoCl+ixnhE3HiTU0Ieh2S04k84CHe0Y7xIj5Ar0XQaFBVEEWRWHMz+rKy1KRWm04I9EHFODkTOZzAv7kF13VjCOxsT+035ZqxXVaCvjC1bpdkgaYT/Sy/vZp4NOUjIQgeLv3onRx+5QV6mxvJH1PNlJVXkEyAznDeXzg8gBDsJjL1ExiPPjB03sTyH5FbWo3uvE3OG46zpaZ3SIAE4HSXn8MtXq6dXsD4PDu+SIJsmx6XOb2n/M9EvtPEDTNM3DCj8KLH4+EE/c0poRqdQaJkYga5lQ5ioQRGq46zezoxWnVIokJmvhlPTwR3vhmDWUs0lNoz8/VGiIUS7HmmgXm3VmDqOo6z7hzOS+aTXHM9x9a/iFZvYPLyyzm5dSPtZ04y4dLl5JRXDSW/UlUVi8tNRmEx5ngCceoUAiYD3sMHkddtIHzwEMgywc2bibe0UPzIwxcVdVLicSLHTxDatRPJ7sA8fx6GMSOTJquyQry9HSUaQ5uVRXLQm7KTWNNzoQ8COqOEWdWz88l65l+XS/vZ40xadjlndm5Bqzcw6+rraTpyiMkrrqK7UYMu24TN+jrR5Y4jzJi6gieWGUFO4lctDEgxNKuKcO/tRfHGEMa7iM7M5lRNN9OLnQwEY3T5onxhSQVGvQZttZt4dwjntZUEtraR9EQwVruxLStOJdJK84ElKQupddzHP8Xhtc/h7emmdMp0oqYIzmsq8W9qQQ4lME3LQjcxg9/9fvdQ20WVmaw72QmAUSeNSD5188wiDFqRG3+/j89eWk6vP0ZZhpnG/tBQncosC+PzbGkBkjRvmwsiJFrZyOwry6BuIwCanHy02Vlv2K61T0TU91I81czprR2UTcmgqCA1z9XowX7FFQw++SSuj3+MpXY/+3zwqy31/NeV4/n5plryHUZWTcx9x66j0GVi/anud6y/NGnSpEnz70F6R/PdQKNLZYm25qTe+rEAtrW3YwMQNXDn1qGqnbXn2PfszJZlNAABAABJREFUk7QcPwJA9aIlLL7+DkRFQLDp6Gw+y4mNrzB2wSWUz5iDRqel8ehBqjNzsOitfGRuCXW9AZr7QmQSQ9FqCaxfT3DT5qFz2NaswZ2fD+5hRfx2fzsdoQ56w71oBA0VzgoqnZWpMYU6RwiQANx37D5mZM9gnHtcyrDbug8G6iDqSwU+505KOSGLWtjzf4hj16CaJqAdOwZJUYicPk18Qhlj5uScd3hQ0egkECASTpBb6eDUtg5aTg0ADAU3a/XpheT7hSDp6Zz833R19KAkByASJeIPgKCg+EP4Qr3YTG7i4SiyEkMIRPAF+7DoHMjhJFE5gBiI4/f3YbRbELwCoZgXKRTH7x9AZ9QR93vx+LsRJRNeQxYF3/sxfV/4FEpVJTtffZG+vVsomzaLOdfcRO3+XZzduZUFV12H2WIjuX0H6v6DhJ1O/H98EPuaq8CVS1zNQJUcDPZ4KKy2UTTOyWBPGFtmiK0P/RyD2UJh9USOvPICcjJJRmEJl97+eSYscmO0RDFY+pl7tZOT24Mc2t/FxMVODKKL7S/9mfpj+1AVleLxU5l35U0c2vsyujwT+v424mKEshtnIGhEWrrPkIwnUFQXtQcVBrvOUjDGwZKPVWO9SDahNO8QyRhyIoqaTKDJyUb2eQlu34F+zBgsS5cSPXES89yxcNw73Obk01C1cujPQDxAu6+V7P4eDOPHEz11auiYNi+P3p/8hFht3VBZxhe/gOhyYfjKf7DuLw8jJxIUTZzK7A/dgCLL2LNySCYT9CQTZN44Bp0oINl0SKaRm2OiXoN5Rg76SifhvkHOHd3NgV/8lWgoiMXpZuWn7+HUpic4te1VUFVyKsaw4o67OLbJg683QqA/ytTl5bjzU5t9RouFUCzJo/vb+H/raojLCvkOI7+9bRqTChxD5822Gbj/IzN5YGcjexsHSCRlPrW4jNOdfpr6QswsdVHiNmHVi9y1sIw/7GxM7e1JAj+8eiLTzzvEaySRTywsw2XW8dShNsoyLHx+aQVjc9PBnK8nGA/SE+7hk5M+SZOvidMDp7lz4p08dPqhEfVebnyZ66uuZ5oswKvfGT4gJzCffoJqVU0JkADkTIRFXwNfB1x6D0gatBv/E9dNz6DMTiCeexYlMQbdivFIXY8Ru3wp0T4zh7e9RP1/7iezqIx5N36anU/UDwUaO3JNTL1U5oWf/Rit3sD0K64m7Kth9moXRlshguQmGZe59LYx6E0abO4Iu5/4CZGAH0EQmXfDLQy0tWDLzGLCwsVkZOYg6J1celuCQH8fBrMZnaWHS2+zEQ36KaieQPuZ8783VaV+7y4uKR3HrFvuwJiVjXP8JBoOHxghQAKw9aE/kD92PBbnG2fKSPPeYFX8SPEWzrjzaI4OYBItsOr7FKkSVQOtoNXToZ/EriceY/bVNxAJBumoOcPUy6/EmpFFPBLC399L2dQZhP1++loaaT11AqPdTnZJ+VA2Vcmqw7a0CPP0bJS4jKARUo7dqoqxyklXbxMTV+QR7ksiSgKntncw8ZICdj1dR8X0TLKK7MRfk/33AhqthKczjMmmQ06mHMlyyuxEgnG8PUkkwUJ49x7kxR9h869OopwPZB4zO5spCzIw9fUi2+1IZjOqqtJ6xsPGB0+TiKbETvKqHExZXkTAGyUel0lEkiiySqcoUD49C3feW3TWSPOO4ekK0Vk/iF4vIRk0tJ32cGp7KgspAsz9UDlBXx4F7VvwPPAAeT//XwLRCAOHDqHIBpJxGWtGFpOWrURJJji1dSPRYIBpq9ag1RuZcOlyTDYHnq4O4tEIihIhp1wLajeZ+Z1EI2Gi40sxTatAiUtEFRCLLGjkNrSWZqg/AD2nQZIgMggGGwhiKuDzAlojuEog2JsS+SiYlVqjyQkYfw20HYA1v4NABzRsBXcF9NYMC5BASpht8/cgazxY39jQTWQQcial5k1yLDWWI49C9gS47kHQ21LvI2sOFF4kI73eCtnV78A3l+ZvEQnGaTvrQVVAb9IQ9sWJhOKc3tlJoD8VaFg5M5OMAht7n2sYajfrilKySiwkEypmux5VVUm+JjNfxB8flf09Hk4yGJeRJ2fg9SWQ/HESCYX8pYVIchStuw6tS0AVEgS3B1Hl+ZgKbLD+G0MCJIG59+ArvJzBth50l72MMWiGy58mGYuz5aE/MHXlFXi7u7jqK/cQ8PQjJ5MM+OIcWvcy0WCA/rYWxsxbhEarxerOxGCz4W9vZJzRTPbYGP36fn7buZ0JjiU4zQUkqaUoV8Mf78rmXF83Ln0WEzIrqMhKO1S8dwjozBbqX11LdmkFc6+/BZ3BwEB7G/2tLdTu28XsD91ENJJLMi6j10p8YUkFRS4zX3rqOB+fX8K9a88O9WbUSpwNRalzS6yYmI8kQrhMIVhm5URfgLJiC2aPb6i+SSfx4bkl7G7oRyOJbK3p4Ufranjiztn8x/IqkrLCgSYPx9oG6fXH+Oi8ElZPeuc26tL8G6DVEg8G8Pf3MW3VGpSkjKTVcOjl55i15jOoSoS+pq0c27AWVVVw5RcydeWVGM0GOPIQICBd8yCgUuwy4jJp+Y/lVdz9zElOdfj5Vscp7lxYRplLg+AyUZ1rJZJQ+NQlZSwe8/dl7H430DgNaF5n29IsKUL2xTBNz4IryxF0IpI5FcChy7OQ8dHxyL5YKlOiXY+gSYuRvRPotRKFLhOSKGDXFhCNTsXQvhslGqJ6fh7eYJKApo38WyoRFAFPqJMD6x5GVVTGL17KVV/7Nqc2b8BgNnNqy0amrbqawa5OrHYbCa8foyShKAqdYj6YCxERYNVaBATU1csRRDAum0Cm0Iu2dj3RSd+i5Us/QAmczyooSeR859t0f+/7ZHz608QaGtFVlKNz5SAa9ETPNaNxuYkyBiWsp/OerxI9dmzo+lwf+yhSVjaCXpcSuYnHUZPJ1NpQkog1NOJ95llcH74NxedDVdXUcVFE0GhQzguWCKKEoJGQMjIwTp6MZDK9P19Ymn9KtJJIWbmTHYkEmqxc8p1aerc8QsOB3WgNRibOW0bRvGnUOwyYpTiG6WHiAx7OHXsW5YTC4ru+ROeqQkoFLcf3dFI6GKP1+FH0FgsLb/koyXgcQRDoaawnu7gafUKlKSixeIybIreJr+yo5SNzSzjePkDd8SCfvbSC6rw3t6cWu83cu2Yin19SiUkr4fobWTVdZi2TC+wcb/eNKC90vbXMtWnePhqziWOPr6Ns2kyySsqQNFoCnj4MAzb0lhwyE21s+eN9RAJ+NHo9c665iZk54/nRri6Wjcsm06Kn0xfBYXp3A20kqw7L9ByS3hgIoLGn7intjWNQgglEvYR4fgzaHDO2JUUo4QTm2dkIkoTGkQ6sSPOvjxKNoh9TRezMWULbt2OcPBl9eTlq9I0FmwRBIHrsKJ4H/zRUZpw69U0DqiWdyPSVJWz60xmSiZTNpXiCm0lLC965i/mAEGttJXryJHJ/P6JWS6K9A115OaJBjyYrEwRQw2FCx46jy8mh/1e/xn7ttQQ3bSKwYcNQP46bbiTr63cjmd74vShZLBinTyeyfz9oNUg2K8m+frwvvIh99Sr677uPzP/4EqLJTPjkKaI1NYQPHESTkYFp5gzMc+aM6lMOhYgcOUJw6zY0eblYFi26aBbj4GAUX1+E/S82klfppK/FR8WMHLY+VoN6fo+ianY2jiwzGp1Ef1uQnDIbLScHqJqdTVejj+IJbqKhJJv2NjJ3dRnhhIKnNYDO2EKGKQe/sw85GkMzx4C7qJi+/hbCPi/ZZRV01dXQ29LEjCs+RDwSQdJqaDx2iIEbH8amJikL9L8D3+a/P6KapL2vBkOVmYxZE0CAhqbD7P3Zn7n1hz9/v4eXJs3bR5IQrcP7m7rSUrR5uXR/Z1jQXj9uHDnf+y80ublkf/1rhPftw7xwAaYZM0h0dROtqUFXVoao+/sTOnkiHn597NdDAiQADd4Gmv3NTM2eOrqBIOBfu5bgqxuHimxXXonj1lsRtFqid3+ChwZSGcAP9Rzis1M+C8DHJnyMPEseSiyGEo2isf8NwcvuU6n9vVAvuMoQLPk09/vIu7oEUZFpPHeIzffcw6SllxEY6OHUlhdpObmXKctXEcwNobvKhiAK1Dcf5cD6Z0CF1dPmU+gaLTqZ5m+TiIbpqDnD5OWrSMbjaPQ61r/4Gy696RM4tDZEvQZBJ6Gx6RHSgWZp/knIdxi5Z9U4oskgs8fGUbsjtJ4+waRllw/dx8c3vsL4xcvorqslb/oEHjj5E5Jqyg+mxlvDZXaVaSuLkRNKSuBZI5CIyWSXvcbuFA+l/AqMjouOQ19iR7pWj+wrRNBL6DLf+nNIicUxTBhP5OhRIkePYZo5A21BAWos9uYNBQH/2pcJbtw0VGRbcxXOW255y+dO8++Fxq7HvqIEy5xcBEnEdVMVciCBaNKgdabWcZFAHBSVqcuK2PzwWaLBVMDx6k87aTi8nwmLl5OMx9Do9ZzaupFZa25BkoMw8XoYaASji5bSGxCzl5GJB8FVirlwMpnG4XVieaaF5oGmUeO7kCE+z2Ekz5G2t/4roqKSU2an7awHR46JWERm04NngNTW1MIbq3DmmIjFk/DQT8j+9DdpPjHI+IV558VuBFz5ZrY+VoOcVNAMDJC456sIgPdP9zPm3nsp/eb3qduzg+Mb1xEPh5h19fVotFoyCospnzGbYxtepmLWXLzd3Sy5bA3+tWtpGVPGsScfRFUVMguKWPT1rxL58U8AiNfXE29vv6gISWjvXto/+amhv0WrleI/PzbS5hCNoCsuJt7UNORfb5w0CTWSFsn9d8c/EGHDH04xdkEOSz6ahaejgbM7tzFzzXXMv+E2REkCBLJLK7C6nSSMGv675Xt8Ovkpyi50YnLTmHsz639wD9FQEJ3RyOyrb8B7rJ1NmmoWXZpDnllPXC+yu6mf3Q39NA8YuWFGIdk2A+PzU+spjcuIZNeTDMRxFVgQAI3bgKB5b+PGZEXmzMAZznrOIgkShdZC4nKcUkcp+Zb893QsaVJoNBALh+htbmTqyitJJhJodDo2PnIfl3z4E5hvLEEjaqg5swd9eye3zy2grj/KJVWZZNv0WI0p+0IgmhxKylvkMlKVY+F7L6We78fafCiKyrXTCzjd6eNEu49pRQ7uWlQ+KtlvmjR/D/5QKjGIXujGkW1CPRNFAAxTpr1hG0VROdeVQDK2kDVlCtGzJrY+WsNNd49HDxDzk/H5z+N75RX6f3MfhYWZTOut5fH9IifavZzu9PPbW6ehdoboevQM2jwL7g9XI0hv38ZR5DLhCcUJRBNYDWlByDRp0qRJkyItQvJuIGlAZ4HBJljynVTGaFVJBWot+hrYUsELiiLTcuLIkAAJwJkdW7Bn5TDv+lvoqqtBlWVyyivZ/MffDtUpnToDLQoP7W3mphlFJJIyt0/PRQ10IweCIwRIAPwvvIDjmg9BaSoroC/mo9HfyK+O/ooaTyqYt8haxE8W/oQJmRMIJkZnRQsmgkQvZLJv2w/HHoOjj6X+1lngQ78HWyHorBDsJTrti0gdPaiRCO2f/RxqIoHhh2PpCmZjdaeMbcHBKFklVhIRmVgoOSRAAiAnFA682ER2mQ29MT1xeT8IB6G3p4Xtj/4PEy5ZRt2BzfQ01nPJh+9g7S9/RemUabSdVmg6eohLPnwH6379BzKKinHnF3Fq20bm33gbG3//KHqTmYpZczn00rPMuvp6jq5/hkQ0wrRVa9j91KMAaPUGpq2+mvjk2ZguW4EvEaOvvRWAxiMH6Kg5TenUGcxaejnxJ55EnTCBfredo0cPoHY1Mv3ur6CWTODYhkEszRI9zR14e8JkldjZ8UQt864p5uCLf8bb1cn8Gz88dN7K2fNx5uZxZO1fcOUXsvPxZ0BVESUNl3/+m0SDPTz5/W9jy8xiyoorUCWVZDzOmHkLaTx3iKNb1o74zJJygtbTJ+htrE8VCAKLbv0SxzZraD/npedcP9Y5aUeyd4XW/bDvPmRXKULu9fgeewzfc8+njr30EoYJE8j+7neIZhgZZe4/HwA5EBmg/uROHK8ewrNtP/rKSrK+9lX6/u9XqLEYyb7+EQIkAJ4H/kjhnDkohfkkohFmX3Mjp7dtIjDQB4Ck0XDlV75F64n16GbMJ39M5ZteRlQJ8fhPv0bIOzhUFvZ78fc1c2rrsFNcd/05mo5sIRaegkYnsuTD43DmjAyiONvt5/svnxn6u8Mb4dvPn+TRO2ZjNw47cYzJsfKjayYSjCY53OKhxG0mEkviNGkpdBoRBGjxRBAE+N6V4zHqJCbm26nMtg6JAkBqM+VzSyq5bU4xBq30vmZn/mcm05TJ7JzZqKgklNSmlyiIQ/9/LaFECMLhkYUaA9jykM6+mPr7ql9B03bY9uPUXEOUYOX/gyXfRezcj6g1QkYO4qufA6Dptr/Q0HyW4394bKjLvpYGzu1Zh940h+D5W8+RqeHwK08CMPuaGzn00rNEg6lAIq3ByKrPf5eQ10Zfa4DeNj8T5g8SCfgBUFWF3U89RunUmcwuLCf6m/sJJpMM3vUxdjw2nA2pYuZciiZNoW7fbqoXLiGzuIze5gayissonzqD6Lf/E8u8ech5g4QtFmL+kcESAGGfj2Q8/ja+iTTvNDpXES9HGvnu1i+QVJOIgsidE+/Ea8rBEOkhr72do62dTFxyGS/+74+Zf9OH8XS0kVlcSndDHW2nTwz1teDmj2KwWjm9fRNTV15Fb1MD2WUVQ8cFQRgV+HiB5kQ993ffz8+LfkTodCuL5phpGfDj641weF1qbrHghkqsbgOBgWEn8mmXFRH2xZi0pICDa5vJKLSQVWxDTqq0n/OQs2oClh/fxysP1w8JkACc299D6eQMjHKceGcXxsoK/P0Rjm5oGRIgAeis9TJmdg5dDT5yy+woCQVBUEnGFeoP9eC+Ki1C8l7T1eAlOBDDVGLD2xUeFiABUOHQ2mYmLi4gOWclwtYN9CfjrP3BPSRiqftm5Wf+A0EQ2f7IcDaUWWuuo2bPTvx9zwIgShIrPvVFXv3dL5ETCXKrxhELBWg6cpCGwwcAWPyRTyDpqziyYYDS68tYLB4CR3FqzXjJ3TDYnBL6qF0HS/8TNv9XShRSlOBD98PeX0PjttQArDlw/SNgzkj9yxoHnYdh/+9Sx5u2p8pfT8+plLDVm4mQWHMhfzps/WHqb40elv0gNTZn0dv4BtK8W3i6QshJBUVRUcMqbec8mG26IQESgLLJWWx86MyIdgdfaWb1ZyYydnYOjcd7qZqVQ3axlexSGz1NftrPDVIxLYv6w71DbQqrrEjbn8daVoy3J0JMa8VR5Cby8nMkW1tBEDAvWEDkyBFCu3YRPXEc5aMfRZ3yCxS/H4oL8Cgqux95EHt2NqVTZxLt7CDgGSDi9+Hr6aLp2GEmL1vJy7/8CfHzTg96s5lZV13HziceJuzzcmzDywBc/vmvEujvoaexkbr9u4fq3vb5uwi5JX5y8BtoRS3LS5bzwMkHUFQFSZC4d/69VKurEIV0UPx7gaoqyLEortx8tj1y/1B5/phqcivH0N/WTP3B3eSOWYUxw44uKFKeaUES4euXjcGoE/nZ9ZN4/mgHeY6Us0JVtgXba9Y4esDoNpFd6sBh0uGy6Fg2LotQXKYyy4qAyq+31tMyEEYSBb66oorxeeedHSSReRUZTC1yEk/K2E1/vwN8mn9v4pIWvclMw6H9DHal5g+CKHLJbbfj7Q2QiLZzdP1LQ/U9HW00HjmAPSsfbnoSes8hHX2EH1z5MyYUZlCdZ6c808xLn1tAfW8AfzTJXw61c//ORhZWuvnVzVNxWfTY/ok3dgVBQON4Y9FdUS8hZqWFH94NqnJsFLvNbK9V6ZnyBYq7DmAPHaa5q5q8KpG6vWd44affH6pfPmM2ztw8tHo9iWiUiplz2PrwH4iFQjjz8vD39tJ07BDVi5YQj4RxFRRhstrob28lHg5jy8zCaLMhSRrikSiCAH5nPmOd5QSb48MCJACyTGDTZnL/52f0/ujHuD76UbSZmWjy8wls2ow2MxM1FiVWcw5BEIg3NIy4tsEnn8L18Y8jRCRUUr8z4gmSAT+J7h7UZALT5MnEm5rwb92GqXocmpxcIidOoISCGMdPQDSbCB85CpKIYcxY5IEB7Fdc8R59O2n+Vch3mrh5bgmD4TjBljr2HkjNIxPRCEe2vMSRrS+z6js/RRnsZ/0ffjaibc3mVyi98lbaT/moP9pP4cQMHDk5HHnlRbw9XUDq3l32ic+iEANfB7MLC9lU28e9aybwl0/Ow2rUsnpSHpIoYNa/tS1brUakwPnWnqt2o457r57AXY8epssXRSsJ3L1yLGNz0uLR7zbRUJjSKdPZ9tD9qOcDI115BeRVjcNsC/Pi//x+yJ6ajMXY/dSjrPnqd7h1djEP7WnGpJP49S3T0L9HTrevFxMRtRKic/S5RZ2UzkSY5t8O0W6n7yf/TXjfPgD8L7+Mddky3F/4/Bu2UUMhBh99bERZ5OhRkn19b9hGAA683DQkQALQcmqAypnZ/9gFfMCQw2HChw6R7Owi0dkFgoBo0BM5fhzrkkuRsrIw6HREz53DMnMm/X/4A5lf/CK6inI6Pv+FEX15n3wK5w03IlWPe9NzmsaPB1Ulevo08uAg2pwcEMD79DNkfuUrKMEAqCqCRkPnD+4daifabOT/4hckvYNoXW6krEwMZWUEN2+m8+t3D9Xz/PFBiv/8WCrTO6AqKr2tfnb+pRZXroXgYIywP0bBWBd7n6sfEiABqN3fw+w1ZYybn8uBFxuZd10FJ7a0AwJZRTb0Jg1yUmbKsmIisSQ9TQEqZ2hpPdnO9sd+RzwyvA8597pbOLZxLVd88W7CPh9avR5BENj0wG+G6kxZsZpdLTtI6ODavEUUv61v8YOFIiYIeQd58Y8/HCrLrRxD8cQpJON/IxA3TZp/YiSTiczPfpa2uz4JgHX5MjwPpUQ8BJ0O54c/jGjQpzKr19cxcN+w36M2P5+ML32JpmuuJed7/4Xj6qtJdHYSra1FEET0Y6rQFV48W/0FonKUvvDo9+7FfB4BFJ9vhAAJgP+ll7BfdSXnfn4Xv/E8wWBs2E9HJ+n4wfwfsDB/IdFjJ+j//e+INzTiuOZD2NasQZeXN/okveegZXdK/P+8H5L3ipepPZLg1PZHaD11eKjq8Y3rmH/jbfTU1zL3+ptRkjLP/eR7qEpqnuDIyWP6qjUcevk51ET6WfF2EUSJwEAfp7cNCxrMuvp6InKYltrjFE++BJcjLfCS5p+Lg40DTCtxorN287Ud3+DhMf9LJOBny59+N1RnxpXX4MjJ4S+/+yVXF/0XveHh/dt9vXv4RoGW/rYAemPK1uTtSc35YuEEhZX2lH/B7p9DxAdTbk6JMVhG+wporAY01r8/4Z5otdL9rW8Rr0v5Wfpfegnnh2/DfvPNb9pO8flGCJAA+F94MW3T/YAjiCP3oDS24f/7+yNsfuQsU5cXcm5/z5AAicWpI5VdRRjx25myYjWimCRmU8CUBaIWFaiL2qnx2pmQP4XDtR6+XXX+3eDvAlWhOsfN0rFZPLy3ZcTYphU5363LTvMeEQ0mKap2EfBEkTQSJ7a0DR1TVdj7fANXfHYSXY0BCj/9VR4/28r4ihwqjHri3hiB/hg7nqglFkpidugwtZ0gAiAImL7+VTwZdhLtrRx7NRVrMOfamzi1ZSPBwQsJe7Ws/MyXaTi0j5rd23Gvvgb97Bkcff6poXH0tbdyOjOHMRPGkziVSmYlGkfvD8jBIP2//s2IMiUQIHzo0AgREsFqxf/ww/j++nSq4KWX0FdXk3PvD0h0daHJzETQpMPL/h1JxhXiURmrPcy6X/2SyctXMevq69n1+MMkEykfbLPDyeovfI2Xfv4j5nzkI9T4zxJOhFI+6eYsvFGJdb/9HbFQar0Tj0TY8/TjzLzqOq4o1XE6lOAHW+r47OIKwnGZz1xaQTiWQCsJjMsbmRxKkES0b+Jj8F5wqv8UvzzySw72HAQgy5TFreNu5Z5d9/DLJb+k1FaKw+B4X8f4QUMQJSStlr6WJk5sWjdUPu/6W1HkBPd/+46hMrPTxXWfu4eXdXpy7QZ+sPYsWVY93149joosC0vGZPKlp47xiYVlbKkZni9vPdfL7fNLCEYTmHUSX7tsDFMKHRS702vDNP8YLQ09AFj1KT8BZbAPUQbTtIskdTzPuZ4AwaiMwdVMf6yANR9bxjP/fZhdz3ewVJAg6kdXkI/zxhsZfOIJ7Hd+jFndOyn+0BIOtAzyrVXjuHxiLj2/PorsjyP7PURO9WOa/PaTXBW5UvOMVk94yJ8yTZo0adKkSUdYvFvkjE9le7YXwGU/hoVfhcv/G4rmDGWvVlXorK0Z1bT97CkAJJ0ejV7P0fMBNRdoOnqIRCSMosBtDx7gWJsXk1ZAFYSU98pFUJPDGd+7Q90c6z1GjacGl8FFgbWA1kArrzS9Qn+knyJrEXpppLPZ7JzZw4qO/s6UAIneBu5ySEZTG2gaXSordsYY1EAYKS8X/6aNqImUYS/5y/+iTN+BGvCBIDBmdg72bCNyQiYSHB1APNgdIhaSR5WneW+IxJMceulRUFVsmVl019dSPHEKtft2ochJsssqaTp6iIyiEjpra0jEopRMns6p7Zsw2R2EBlMB6VVzF3Bs/ctIGg2CIODv62HM3IVDARmOnDzmXX8LNbu28tT3v8bJqgIS9pGBuLFwiJo9O4h09xKcdTV9Ofm8+vxT9LU00d/WwoY//5G+gW66mkJYXAa8PWEEURgK/jXZFDprUr+rC4YSg8WKMzePA8//leyySg6+mBIgAVDkJJ6OBrY9fB+qouDr6Wb7ow/g6+1h/KIlbP3TH3DmjRYTsWdlDwuQAKgqR155hPJpKcNJoD/0zn5JaQAY6DnFtkgnfx53Cf2Zy1EGPPheeHFEneipUyS7u7GEe8H2OnVaUyoY19ffR0ZfDsGyq4jd9X3kikl4HnkE5803gSiCMvp5pEQiqCYTnXU1FE2cgirLQwIkAHIyyaGXnsWVl8/a//sRPY0No/p4LaqiEH9dZjWT3UF/62gl9bbTR1lxRzk3fmsWFTOyEKWRr/SOwdHK1Cfa/Xgu8rzVSiJOsw6zXsMdDx9iW20/SSUVmPezDbUUuswsr85hQWUG104rYGyuDekNsoA4TLq0AMmbYNaa+cbsb+A2uNFJOjSihrZAG1XOkRnObDobJbYSsBeCqMEz4Wp2rL6Xx5b+BzuLpzJ45c9h0VfBmgfbf5IKBndXgKiFV7+TCih//lOw+xeQiMCy78HyH7DVX0+8xzNqXG2nj5JROBxgqdUJxCNhLE43/r6eIQESSAVhnNuzmXP7utEZJS65KYNIYLRASF9zI4m6euJnz2L9fz9kz1/+POJ4/cG9RP1+iiZM4tXf/x81u7cDcG7vTjb84dfov/5VjNOm4Xngj/hfeAEr4nm17WHGLVyMxeX+e7+GNO8CrZEefnDgR+g1eoptxYiCyAMnH8CgMdCZWUkkYyomu4PdTz1GMh7D6spAlDS48wtHCJAAHHj+L5gdTsx2J/7+PhLxOL7Q4BuceSRzpEr+lPFFnMEeTFv+TPird1DYspFFiw1MmJ/NpbdWkZkpsuLabBZckcekRdksv9xCcfIcFVMzcOaaWXBDJZOXFKCqKsmojD3DRCSYIJzUEvaNfoaGAwkGNLko2tSmSCKmEPTHsGcZceaYsLpT5SFvDEkSuOAenIgmCQfiDHaFRwibpHlviAYSqYyYikr8NYIxepMGe5aRZFxGb9aC1YH5w7exbcOLQwIkAP2tzXg623BkpwQmRUmDIEn4+3qG6iiyzPFX11I5ez5yMsmZHZvRGYzklA8/8/c+/QTOnCQzbi/hx7vqUB3F8NIXYcM9qef7i58HTwOMuwoyqmD5D1LClqt/CeE+8LWD9rzEWqAbDt4Ptz6deh/EQ8PCkReQLhJMX7IQbBdxlnwtoX448IfU/4vmpARSAp3QfhACXW/hE0/zXpGMySSiMpIkIccVkjEZT2eIjEILJZMzWHhTFSqgJEc+d1RFTT3rAjGKx2cQ6I+iM0osur6URdeW4M7UUTnWwJI12UxcmMOiZVYmS8fQSwq6LDfuXAPOtgOYvG3o8vMQdDr048YRWL8e75NPkmhvJ7h1Gx2f+zyyZ5BoXT2+hEzA009PUz0ZhSUIgoDeYuHcnu2osoxGq6N8+mzq9u8ZEiABiIVCeHt7sGUOO8MZzBaC/X3YMrOHBEgu1K199hW6B9tpD7ZzWellPHjyQRRVwaK1UGAt4N5999I6MNo2k+ZdQhBQFYVDa58bUdxx7gyiJBGPROioOUNOiRFDrpEHd7dwttvPd144zaP7Wvh/685xz7OniCYUPj6vhBklrhECJBcwaCUc5wVESjMsXDo2mysm5TEmx0pVjo1nPjWPZz89j3VfXMgnF5Vje50ArlEnpQVI0rwBSUJ+35AACaTW8ie3biSr2IGvd/R7sbP2LKqShGc/ASY7wuxPkkgkqMxK2YvsJj1VOVZWTcrjqil5/GDNeF747Hx+fct0SjIs/9QCJGnef/RaiQyLnqcaNERW/ZpMfTtTpiaIBjwcXvv8iLoNh/aTWVxKb0sTkk7Hnqcfp3rhEgAifh/ugkJmXHkNZ3ZsIaukDAGo2bODqN+Pu6AIncHIQFsrLSePM9jdTiwcYqDPi2/5/yEHRtuhZI8HQZKwLl+GtrgITU4usZpzGMrLQRAY/OvTKLEo8bY28n72MwTDsKOZGo2eF78VEAA1KaMkkyixOCgKkinlBCT7/ZimTEG0Wgnt2kmyqwvjhFR2cf+6daCqGKqqUOMx+n5zH8nBt7a2TPPBw2nSocrJ0QdUFbdZS39j7ahDjUcPkmcU8PdG0Js0JONJEIQhARJIvSOOv/oKqqogJMJMNQ/Q0BdCkgSs5+cfNqP2LQuQvB0mFjh44bPzeebT81j7hYV8bF7Ju3q+NClESeLEpvVDAiQAns52osEg8UhghBA5pO6VkHeAS6tSImRP3DmHqmzr67tNkybNu4Dc0zMkQHKBwKZNyG8iKIIgDPlAjOxMGV12nkRMYbA7PKr8QpBUmr+NmkgQOXECua+PZF8v4UOHkCwWtIWFmOfOQZVlFL8f3yvr0JeVI9pt2FatQolGiTc3X7RPJRa9aPnrMU2YgHnBAozTpqEpKMBQXY2ushJl0EP0zFlQVAYfG7kPpvj9RE+dIlZXT6ylhejx44SOHaf/Tw+hLSpCcrkwLrwEzVd+REOLQOPxPhqO9nLk1WaObWzDZNPT0+Qno8BCT5MfjV4iEhh9v4iSQPPxfuZ+qBz/QJR511VQOTOLMXOyyZqjobPqJCezdnAudz91E3cSDfchiMIIARIAg8XC1BWriQQDaLRaTA4n5/bsGFHn+KZ15JPJn07/iVZ59P2c5iKoKnv+MtJO31V3jsySckyOdNBimn9tTHPmUPTYo7g/eReGCROH3o0Zn/oU/pdepP8396GGgnj+9NCIdomODkgmQFHo/t73iZw8Scc37yF66hTRM2fo+e+fEquvv8gZh8kx5XBZ8WUjykRBpMBy8cRQqnxx/0NVlnlFPUlXZHh/zyAZuKTgEq6uuBpLu4fW228ntG07ibY2+n75f/Te/wdeqXuJbW3b6A/3D3fma00lBogP+4ZF+3px50l0njs56tw6o4lpq6/GbHey969/HhIgAfB2d6I1GHDk5GJwvf3AkQ86ciJB68njI8qOrnsJEehraUL8BzIDp0nzbhGIy3hiffzx1B8ZjA0iy0majx0eUefYhrWgpvwSI14vq8pWDR2TVRlrhgF7ppGQL04slMCRbeLoq614eyL44wEikgbmfwmWfhcyx0L9lnf0GpJtbUMCJBcYfPIpVN9o37IRKBdfT6lq2p8mzcVpPzdIZ60XnVnLQMewEJktw4SqqtTu2zWi/onN60GFung9TL4Rxn8IBlvQy2G21fbx6T8fwazXQtQHBx+E382D38zCeeRXfGGOndUTcxEEMOkkvrVqHFOL0kGZ/+pIWoHe1gC55XZi4dHr7URUJhJMcGhtMwOD0BoTePx4O2KmnjrnEQadHWRO1lG+2sy866xEf5sSMjdcsZoOo5a9z/0FvdmMxelGZzSSjMWGBEggNVc5uXk9QU+qrLuvm4g0OrSrpeEcmkkTAcj49KfQl4yUBJXDEWKNjSmR1NehhEbGLSheL75nnh1RFjtzhkRjE03XXEvPf/+UeEcHaf79sLgMVM7IJNB/GpPDSWZJGU3HDg/F1QCEvIM0HTtM9YJL2ffwI/xgwj3k6eyw/huw9j/wkDEkQHIBOZFAVRW6B0Pcu/Ys7YMRYkmZ2xeUUug0Mbs0g0vHZmPU/nPtS6mqyjnPuSEBEoDecC8n+k5Q4ajgL+f+wk8P/pS9nXtR1De2+aZ5h5FkkvEYXXUj/fiOrn+JZDyeSlxyntCgB30yzNQiB99/6Qz1vUEC0QRzy90sHpPFJWOyePnzCylwGil8XXKHB3c3I4oCP71+Cmum5KcFSNL8w8hJhbamXgRVwGpJPTOS3e0oioBx6rQ3bHegKRXT47R76An1kF1iY9plRdTs6yGpMbO57nmerHmSzM9/Do3LhfXFV9DISf5zaQE7v76EOxeVEW8PkGgPYr+yDMmuI3ziTfa23gIXREjaPGn7f5o0adKkGeafazb/74bWBC99IRWwdQFHMXzkRZIJmcBAkLyqsbT+f/bOOjyO6+zb9+zOMmvFjJYFlmWZGWM75jBjkyZtmqZp+7bpW/7eUsptoJQ0aRqGhuM4McXMLFu2LGbWMs7M98c4clw7bRpsm72vS5d2Z+bMOTNn9syB5/k9hw+ckSxrdDmKLCNLMiGvF+kcBiyRYIDzygvZ1jDAm8d6aejz8cqSdASDEV1ODrG202qs+sJCNJbTHWOdoKPd184dNXfQE+jBH/NzyahLqB+q56m6p3AanNw9825+f+j3dPg7uKr0KublziPVcsrBJzAAM78CUhQ8HVB1GXQfBimsCpJc8jAMyAgKKMHTHQ+ptxfpe18kc+FCsn/1SwStFt9QCI1Wgy3pbCXLnPIkbC7DWdsTfDwIGpnAqcku+dRirMnuYLCz44xtZruDwLDa+VVkWTXsttoIeIYB0Gi0xGNRDGbLGZGrg151UaFyzgI2PfbwiCHm8U1vkTt6LCabfSQKHEDJ5Bl0+bNoqfVi0G8+q7wndqwjJW8ZIV8Um9uIbyCMzqA6q3ecCJJWWEJX/TFEnepElFc1jvqd2wCQYtERAZK3kSXprN9eT2M9kXCIcecvp7+liQU338buF58l7PczauoMYpGzo08Ehocwnvr5uVwJ3acPG3/Uz6+OP8ra9o1ck3MDXsWK1ulAV1RMrP5Mw3AlFkfXd0x1mvW2g7ebSO5CugIVtD97AkeyhU0vd44cn5w+hslLYoil2Rj/9Eu0cSOC2XxGu2abN4+4VsPhDW8ybvFyfP3niLQy0I/Z4cDX30fTwb1YXC6srqRzXo/VlcSEZavY/uwTI9tioRDJOblnHZtWWIw92YzRcu6ol2n2s9vVohTLP3SkK8uwc/nEHJ7c3caeliE0Atx3VU3C2PlDpthZjEvv4tn6Z/ny+C/z4skXWV64nD09e9jZtZNydzlfmfAVcuw5YIkTvOoZft/2Ok8c/ePIOa7MX8qXWg5iSh4N468HoxMGTkLFKrXf8batROd+KD0fLCko1gwOtb1EVfYijv1dmdKLyxjuOe1o0Xo0QPV5yzm66Y2zDOIBfANd5FU7CXlDbHv6SQqqx6PRisjvcNYYO38RYqcf8a6fERfFd43mFY+qk9ghr4cO7+kF57BOJPDt7+BcsRz/+vWwZSsrvvZltrz8HJ7+PkZPnsaki65A1L1Hh7yIH5o3w/HXwJQE+TMgvQpsiSiDHwZD4UEuK70MAYFOfydLCpbQ5GmiJ9hDcdokjIF9pOZncGDNK2i0Woa7O1l06xfxDvSfda5oKERgaJCcyrFEg0EUWWJv116m5k/HJJ4SW4gGwduhPu/uEmIBidCRIygDA8RjceRgEOcVV2BbtAjZ68Wp6yLH2IdWcjD484eJNjdj0mgwCwLxri4iy5ehKRhD5wk/eZVuBjoDdJwYwmTVY7LpTjm/QXKOlf62d0TQEsBk0fHyH2qZuqoQl6eP/g4/ZVMzsDoNePtC2FNNRAJx7Ckm/ENhOCVDYjDr0BlFjFYdmncRdkrw0WFPNjHYFVDr0CqiN4lUz88hHIyBopBe5CQelfB5HMQnLWJ414aRtBqtlrTiUfQ01DP1kis5tnkjvc2N5xy3+Qb6KZ02C7PdQdP+3Siywjt7nZFggFg0zE3HLuL+K/4E9W+C5/RYjtAQNG1S2/mnrhoRtGTK58GWAWmVUL4KQoOw58/QukONPlBzDRx8EoS/e7YaN8Dsb8CWX6jjudQymPMNMP0T4wh/96kblwV5M2Dd/4Os8ZA+Bo48p44HM2ugZBEk5b/HWkjwUWC06gn5Y0gxCdGoJSXXRnKuDSkqoTeKvPFALYtvHYPRoiMcOP3M6o1aDGaR4zu6yBuTTEquDd9giOiNS9DJMlnJbiI9vbiuvorMqVPp+7//I9jewds9Y8dVV+FctZL2O75Eymdvxn7+YsJHjuDfsOGM8sl+P3IwhJjkJiRLxEKqo4csSSNCP7IkkVVWjqe/h/7WJvxDZwuoBT1DFE2YwuF1a0gtKKRm8XK8/X1oxbP7BX2NDWREx6rnVmRkZG4acxMxOUZ3oJviwmI8gw3g7YXCOR9CLST4h2g0RMOhswwTQBW7A8gYNRpbqgu9IFKVbeflg11cNy2fX689bbA4Id9F7gdYBE62GUi2JeacEvzraBAIv2O+6m0CgwNotFEMlrOfy9T8Iix2J0pyKQoahLCHiSUZ6MSz54nMepGKrITRYoJ/jZI0CxnZ3ZieuRqAZL5LcMVqpPjZggqxcITg8BDJ2Xl4e3swWlUx6PSiUWx67CHKZs7FnZOHLMlEQ0HCfj8puQXqegUKgeFhBI2AzmBEq1fnmOL1G7CMr2TwL2fmZZ0zh1hjE8bKSgx5mUieEIHt2wgfOowuMxPXRRcR93qQA0HCx46R+vWv0/P97wNgmTkTRQBBJ6LR6VAQEGQZrc2G7HISOnwEBQXz+AnEe3tAlpHDEYRTZUJWkCNR9buioMQliMXe1ekoQQIAV2Y2jtSMMwSlskZXoNFoMVrPnh/NKBmNaDRQMNbNkU0dOJLNtPeeHXXbN9ivOlFkVONqHuSaKaWMTv9451tT7UZSzzFfnOCjIx4NEzjHWCYS8JOcX4LRajtD+BlBwGCykEyIotz0j7GkCRJ8AKQ4CBpVyP9c+Lqh7wSEBkA0gz0DNKK6JmvPBPN7dL5XFDVQgPajMW15p5iIYdosmLUEGQ1xy7nX8gAEUcQ8aSLBXaeN1LVOJxqH/V3TGMwacsqSaK0dOGO7LTnRPr9XQnV1+DdvASmOHI7guuJy/G9tIvzii1gmTcK+YjmdX/4KSiiExm7DecEFAMgeL/HOLow1NQizlxLV2zEEB1B2rEOfl/dPcj2NISsLQ1YWsZIhYi0tqhDezp3oMjMRTEbkc9gKkJqJP2kUQx6wJJnwd0SxfuU3+Icj2FwGArKGTU+fYOoqLbueOE5RTSqB4QgDHeq8SWqejd4Wn/q/2Ys7yzKyD9TpX6NZZOLyAuzJRpyp5pH1DIAkrATifja0bcBhdFDjquDos2spGj8J0WAg/naZBQGj1UY8FsNktTHc3XV63ztQZJk0nZvrK66nN/TBjJk/LShA6ByOYJpTQr0JEvwno9HrsUyYgGXCBORwGPvSpQR37SLW20u8V20jtG73OYW73h6f6zIzCR89inHUKAb//BBKPI519mwiJ05gMA6rfYZzCOk7TU5WFK8g1ZhGWiwHs2wjLc1FdtK5+9Jamw1ddjax9vaRbfrCQjQ2G3cV38UDhx7gzdY3KXIW8dUJX6XIWQRAuP4kSuhM4VXfM88xPNPJ19seZFnBEv53yrew6W1qn2Ww8YxjrXIbSVkTSC0aNRI8621MNhsbHv4j+WNrRhxPz7hHisKCmz6PPend+yQJ/jHhwNntbywSJhIKkpKXP+LAFotIDPcEiccknKlmTLaEQHmCT44pRW5cjkHEHpEv1XyJ8MDZc03xaIRIMIig0WBxOJmbMouoFOWlky/hMDjQGmU8fSFajvQTj8lEAuo8cVq+nS+sv4OLCpewUtKrtgj2DHDkgrdL/fwB8PQGCXiiaNMKETOziHe+w4k9HkeJnUMAGKDnGMhxBLPl7La6qAjBZPpA5Urwn03IH8XTG0KjFXCmmdEbT88N9LWq7XzLwX7yxyQz1NUKqOOk8LnEGCSJcNDPkHYYdG6I+hAEDbMy4ny200ue28zYbAe0bIdX7zydcMMPcFtT+cWlV/Hl80ah0wrkJJ059krwn4ktyURmiYOukx70Ri0aUTgjoI/NbSTkj2FPMeHrDfKV+aNwWPU4zHp+c3gt69vWU5ZUxvKi5ZjDVtJdTqSeXuKlJcgCRENB2o/VMmH5BbQfP0rYf3ab7h8awJ2tzk2kpmViUM5+rrJKRuOsnkLygoWYKisQ/s5e1vf66/T97nfYv/7/8LT1o48HiD/7MLG2VswTJyL5/USbmlAkWe2bn2MsKkfCJN96K/2//z0ao4GUO+9EEARi3d0Edu4kuGcP5nE1mKdMRp/5DwJdhYZhoBG0WuBU8M+s6vdUHwk+WvQGLZPmO9n2ag9muwNFUQicYxwS8nlJysrBN9BHmTaPjJfuUHdIUeR4HJ3BeEYgN41Wiy0pmcwcB/NHSaQ5LQgCpNpNpNr/fd/hLb4WGr1njt/0Gj3VKdWE42Ha/e3UpNXwl9q/kGRMojSp9BMq6acLUS8SC589Jxny+wh6htGbTCP2ZiabHavdznmF6VRlO/GEY6TZDGf4yWS5TASjcVJsBjIdRjo96rObYjMwf3TCdyDBh0fTwX6CsRA6WcRgVm1w4r1daGUNhuKid023q3mQDIeRTKeRnqAqkDtxaQHNh/oZissE/d38ZNdPOP+y80n//vdp//znKY05CAwNYk9WRWsDu7oRdBos49OIdQUIHRlAkRWE9+mXkOtWfdOa+hMiJAkSJEiQ4DQJEZKPkrDnTAESgOEWwh4PB7fKxMJRXOmZpBYW09uoKvin5BeRXjQKQaMhFgljTXKTml9Ib/PpQY7eZMaVkUWZyc7NMwuJxGU0AsghH0owiPPSSwkdOED4yBFMY6swVo45owhRKcri/MV8b9v3uHT0pUxIn8BgeJDpGdN55sQzTMmcgsvo4vvjv4PcOsixV9+g3vI81sVxsgry0SQXw54/Qc4USC5WF9Gyp4DRBbYQyBKCMwnJ68e2cCHeV149I3/7eQsQtKo4hM1lIjgcwmKPM+/aEjY/1UgsIpGab2P8+fno+/ZBzsSznecSfOTYMzIonzWfw+vXoBFFNFqRtiOHKJk8jf2vv4wsS+hNZrrqjzN+6So6jx8j7Pdhc6cw1NlB2Yw51O/cymBnG6kFRfQ2NYwIL7QfPULhuIk07ttFPBo9IxIcwKZHH2TpHd/k0NrXGexsJLdyKjkVU3nzoXayR7swGM424DLbnPi8MtFwkOkXZrP1uXYGOvwUjkuhbkc/8665ivUP/pS22kOMmbeIwPAgerPaQdaKIhqtdkRYBVTxFL3JfEYEoIyS0fQ01nPwjdcA0JtMjF24jILqGjY88ifsyakIGs0ZxiLFk2bT1RBn0kw77mTth1dBCQBo9DQSF+DB6sfoOxCjyRtj09EWaq79fzj/9nNi+/cAoMvKRJebC0IINvwYBuqhYDb1tnLeerqJytlZ7Hmt5Yxz93dHCM2tpt/UREeahrlNGlLvuAPf+nVEW1qxzpiBNsmFLi5RVDORTX99kKV3fJ39q1864zzls+bSUVcLgCLFGe7pflcREkGjoWr+YoxWG4fXraFowmTyxtYQDQXJqaiirfYQAPaUNHIrqtD+A/GF8gwbt80p4r6NDWoao8hPLqwiyfLui+VOs567zh/NqnFZDPgj5CdbEgIkHxFus5uryq6ifqieYmcxNr2Ni0ouIhALYDPYsEgydOwDRabZZGOvt4EvVH+BqBxFr9GzpnkNzaULKHPkwP5HVAf1tylZBGnvePdr9fQ5s9kX7mVWziy2dx8lf9JkmnftBMDmTqF81gqaDir0NgdAEJi4LIXAYAdls+aBotCwZ+cZ5S+ZPI2Wg09QtWApB147gre3h1lX30DDnp2EvB7KZs4ho3A06/d78R2LsKDcSEZxKV0nj4+cQ2c0kZyTx0BHG3+POzsXIRrF/ZkbibW1EetQBYKSa48zS2tFqCpE1zWEI+1fMMivexWe/+zp7/sfgUU/VoVbxISR7wfFrrOxtWMr3qiXW6puwW6wk23NJsWUQliJoQv14c6ejDsnj4G2FixJbuq2vkXx5GmIesMZIjVZpeUMdrShN5lxZ+Wg1en5/t7/437n/VTYcqFjP5x4HZz54MwienwfXb95jOCuXQCYJ03ENK6GyLE6BFELgkC8XTVuiHWIOC5YRddd3zij/LaFC/G+8BdMRYtoP67B5jKSkmsnGoyRVmCnubYf/0CYScsL2PFCI4OdAQxmkakXFNHdqIrn7F3TSvn0DPQmkQNr2zCYRYrGpbDj+UbKpmVgdRnJLHERi8TR6jVIURmdQUv+mOSPp5I+7Xi6YagB4lHQimS405AkG7GIRHKOlQXXl/HWE8cJeqJMu7iY1tpB+tt99Lf5qVmUTlpBCT1NqvN7zfkr2PTon0fEx3IqqphzzY3Ez2FEWTp1Jo60dIa7uiibMQdJks543nPHVKOzW1hVvIo1La9Q7CrBUDwfU8OG04Ij/XXA8tPfSxZC/3HYcf/pjArnwqjF4MoHkws0WvVdUHMtbL/v9HG9x2DZb6DkPIh4wV0CznNHhTsDZ646Jqu8EHb9EfRWmH2XKn5iTobyCyAegc0/g/nfBWvqv1I7CT5E3FkWwr4IkgxarQZdto3ueg+uDDNtx/owWvW0HO5nztWlbH3mJL7BMBangZmXltBWN0h+VQoWh54jb3VQPTsNy29+Tf/vfk+spwf3jTdimTWTSGMjtoWLGPzzn0fy9T79NNZLL8I6eRLd3/s+7tu/gEYUEYzGswx00QgE9+/DMLoEe0oqmlPzA2a7A0mWGTVlBrWbNlA5ez4ndm4ju6xypB/8NiUTpyLLMmPPO5+hrg5e/e3PMVqtnH/bl8+6J1ljqshNL+FnKT8jxZiCoii80fIGLV61/7+GNchjbmLM7ufQnP8zMDoguUT9HSX48FEUjDYHeWNraDm4b2SzVqfDkZqOIy2dwnETGYoOgajhh6vGcPWDu1h9uJuvLizFrNdSlmGjMtOBxZCY1kzw8SPF47izT70X3yFoWzZzLnqzjVg4zKipMzmxXRXQtThdTFxxEXJ4mJeG5xB97TjjZk8nP+/cIo0JErwfbEY9pu4zI5Q7QydJySugr6VpZJvBYsFgNqMzGAkF/Ke2WZl11Q3UnYpwfnL3DmqWrCASDGB1ucmtHEtfSyNaUcSa5CardDT+4SFVMBKw2B3Yhg8h2MKk3nUXnuefVx2PFi8mXFeHsaIcQ242xuxMFFsHypVXEqk+RqSpEWl4GIBow0l02dkIgoDtogvRIGCeMAHeNooQBBRZgVgMKRxGo9FgWzAfrdNF6PBhQocPY5k4EeusmQS2bSdcX4+pvBz7wvMI7NqFoNdjKC7GddXl6LxHoc8L7iKI+FSRdVeuKlbae0wVdU0pU6MWD5xU+9auAhhuUdd6kgpBq4P+E2qfwZwMgw2gt4DOCr4OsCRDLKQK0qeWJdY2/oOwJblZ9bVvsX/NK7TXHqawZiLJuXlseuxhUguLz+i/2NwpjJ4+ixd+9gMcyamc/9nZ9DQPjxgLv5OK2fORkWGokVGjZ/DVpCLspvcoqpvgPxadyULZzDlqdOK3EQSSMrNo3LWVeTfeyhu/+w3xWBRB0DD9squo3byezNFln1yhEyR4r0R80HVYnZ/S6tTI2RnVZ4uE9B2Hl25X36MzvwZp5aqoLkDTW5BWoY6//xEd+6FrvyoynlahiuC+V/GS94iYlaU6IY+fTkPmAmIRE6Jey+H1QWanB0hKP1toUJEkzBMnIqZnENy5E0NxEZaZs1CCoXPkoCJJMH5xHpFgjJ4mLzqDlonLCjDbE06u74X4sIfwwUMoXi/6vDwEnY5YZydiejop5y3AWFHBwEMPo7Xbsa5YjmP5CsxVVRCLEdi+Hd+OHUhf/Q1vvdCBRitQMK6Q0d9Ygvg+HLt1Lpf6l5FJcNdu9Lm5KJEIzssuo/9Xvxo5TpueRpdpFDtf7KJqbg5bnm2kekEOW55ronpBDm3HvfQ0e8krd3NiZw+ZxS5aThkIZ41ycWxbF6VT0ulp8uLKsHBiZzfjFuVx4M1WdY3CIjLj4hLSC604/8F6bqm7lHRLOk3DjaT4zRzv78PT18esK2/grb8+gBSP40hNo/P4MZLz8jm6ZSNF4yYi2AVMdgehdwQQcKZlIjjMHG44zLycef/yvfs0Img0FE2YTMPuHSPbNFoRk8OJzpAQyE3wH4gsqePngZNgcqpi+ZZkNEYjKV+6Q21z31w7crjG4cCxahWeZ58FTr135y9BLK8CjQZdXh5KPM7wk0+OpPFv3Ig+Pw/74B7orYXLH4fMcWcVZYx9LFKvi72vtKLICr0OPzm3msF6jmJHIrguv5zg/v2qPWX1WIwVFSjhMAWOAr437XvcPu52LDoLNsPpNlVzjt+pxmym2F3KF9xfYH3rehoHjjE2YxKY3ZAxFroOjhwraODA2k7Kpl/MUGfbSJs686rr6W9THaUjoRBlM+ey77UXz8gno7gUd/c6rBVj30PFJDgXrrSMM0W3gMzSMizOJMI+H/YkEwFPhMMb2gh6Y/gGwoT8URbeVEFSxjkepAQJPgZK02xElDAzs2dyfPA4i9KnoDeZRoL/gRq4zJrkZukXv0Y0EiGjT+GaglUsylmAKGggHKC4JgVPb4iWIwNoRIGqedk4Uk0sdS3lwWOPMdlaSfrW+8BdDIt+pNpRfACaD/ez9/VmXGkWPH1BRn3xp+jvvYt4u2oTZj1vAZpk99kJe0+qY0xvG0ok+ey2urwcoh+sbAn+cxnqCbLpyeOY7QY1CItey5RVhWiEMKLBSGaJkyNvdbBvTSsXfLWG4d4g7owYIV8d9uSzA2G6MrKxuVNJEyPIeguaF78A87+LweLmK+eVYNRpKc+ww1uvnF2YfQ9jHHs5RamJ98N/Ezq9lpwyN7KkEA5EmX9tGVueqSfki+FINTHtwmI2P32C6gW5xKISue+o/8kZkwnFQnx27GfpC/bxTPdrXPjd68nb1IA2L4+hI/uxupKwOF1s/OuD5FWNY/TUWRzZ+OYZZSibMYd9r71EVmkFutRU7OmZFI6fRONe1Q7S6nIz+eIrcBYWn/Maol1d9N17L5o7fsDmvVqSMorwDoco/PzdFObKaNPS6LzrG/jXqn30lG9+E8vMmQQ2nw4GK2ZkIIg6en/7W1xXXsHws8/huuYaNCYTvT/9Kd7XVgPgeeZZrHPmkPnTu9Ha30WId6gNYn7oOgk6IyQVQXcdpI9+3/WU4MNBURSa68LkVk5kw8P3MmH5hZTPns+mR/98xnFZoysYaG8hKSsHgxRD7Dqg7pDjxDw9TL7wUrY/8zhSPI5Gq2XG5deiNxl585c/5H+uuRGfwYQ7L+Xjv8B/kRZPC06Dc+R7ibOEa8qvodXTyujk0aSYU/jjoT9yQfEFdPg7EiIkHxNSMI4zNQ2tKJ4RcKWgejwmu4PoqWBnok7PrKtvRGdUhW7SHEbSHOf2AyhItpDtMrG0KmPEzmx8rovqHOdHezEJPlUc3dqJYJbQSWA45aMoD/SCQz/iO/v3yLLCrqZBpha6kaxpIyIkWlHDvGvLGP6rhFMRkRSJzR2bWTZvGYZlSyl85VW8L71MxldKkcNxggd6MY1NQWMUMRY5Ce7pIdYdQJ/5/vqtdqOOVJuBk+cIvpIgQYIECT69JKz1P0r054jIqtEyGHRjtCjEwhEUSSKtoIjK2QtQFJmhrg40p1TWRb2OwPCQGjnb4aTt6GGSc/IonzkPrShSmm7HbtLR1B/AKGoRPBHQiQQ2b0YOBrBMm0q47jhaVxKG0deMFEEQBDoDnfzfjP/joSMP8YdDfyDLmsUdNXdwW/Vt3LL2FjSChj/m/oCN99+HqDeAonBy9w4u+9b3yZIHoPoq2PvwaQX/yougeB7ICmj1GHt3EjaNJTY4ROZP72b42WdRYnEcF10I71ig629rYfdLT9PbdJK0olKWfG4FiuJCq9MCCrxwC6z8HeRN+QgrKsG5EHU6xsybgyBA7aZ1zL3+sxx841VkSWLc4uUc27yBmVdeT+1b6xjq7mTSqkuofWsdky+4lJO7ttFRV8v0y67h4BuvMn7ZBdjcKdTv3sGca29i3+qXyK2qRm82oxXPboYMFgudJw5TNmshgWEzhzb0YU1Wj4uG4hSPm0rd1nUj0ea1okjxlPmEPMPsf/2vtB0MMvXS63C49Wg1AvmjIB7sZ8VtXyXs96GPRJCiEaI2G6/c9wtqN61n2iVXsevFZ1AUmLTqYuzJaSy46fNsePiPhHxejFYbk1ZezEu//NFIOaOhELtffIbM4lHMzhtNNCaz7HNfYusLz+Dt66Vs+mzKq6chdw2iz7UiFn4wtfgEZxOLh1mUtAzvCWitHURvVCM9Hd/RxbTP/g+aX38HY0UF1rlzkf0+sMjgU8UMAu6p7HhVdUo3mETC/rMdhyWjlXBOCj/d/QPml/yaoXvuRXS5sEyZTGDnThyrVqIRBcYtXs5gZye+gT6mX3YNh9a+TiQYYPT02ciyzGBnJ7ljxtLb3ER2+Ziz8nkn1iQ3NeevIK2gmO3PPUn9jm3kV9cwevoscsorURSFkNeLqNef8/fzNnaTntvmFbO4Mp3hUIzcJDN57yFSuNOsZ0rhORb9EnzoWPVWxqWdaSxjM9jA0w6v36WKLFz4IDGLg4V5C7nvwH0oauxfvlD9BWKSVnX+btqkOrQY7KpDef0ayJ2snjC1DNns5smO9UgmF4/XPU4oHuL7i77N+eedx5C/j1qlhTejW5gxaxbFc0qxaAU66naz/ZnHmHH5dciyxLRLr+LAmldRZJlxi5fReaKOpgN7GDV1BnqTGd9AHxsfeYDsskqcGZkkZeZQt0PCNxhh4rJkRHGQMfMXYbTaaK09iDs7l4pZ8+ltbkTQisy+5jNsfepR4tEI9pRUqhctw+jxIWi1eF5QjW10OTnEe3oIv6wu9Dl/9MP3HlEgMAAbf3TmtuCg2o8ZbITU8g9UlwmgI9SH0+Dk+srr+e2+39IT7GFKxhQ+N/ZzGEUz+3LHk9d9iDnX3sSGh/+AzmCk6cBeuhtPMvOK6ziy8U0GO9spqplESn4h0XCIIxveZNGtXySgjxGKh+gOdGMcaKTo4NMw/jNw5BnYfDde8xdGBEgAgrt2Y6ysRJuUhOwPIIgi6HRIQ4OIycmg15Px4x8x/PTTCDodziuuxOTyY5zkwtB9jHB6JVG7DXuqCf9whNrNnWSXuji2uZuuk14W3zKGsD+mLswc6kc6FQEhGo6j1Wk5tq2LwuoU6rZ3oTeKBL1RtKKGI5s6mHl5CXJcFZIQ9SK2JAOiLuHk/pHTVw/tO2GgAcJDoBGx2rPRa89H1jvRaAWi4TiB4SjpRQ5ajwySUeSgbrsa/VrUm6iYdzXhV35PNBjAmZE5IkAC0FZ7iJ7GelZ+7dss+tyX2P7s44T9vpEo8u1Hj5Cck0dSVjYajZbajW8i6vQUTZjM2IVL+dbxu+mPDHBD5Q2sR0O45kIqJl7P2Je/Av5eGHuVaqX4Nlk1sPEnoDOrwiTxMDRugMV3Q/H808IJeVNANIA9Cxo3qg6QYy5VhST/VVLKYNUfYKhJfdcs/y2s/Y5qaAqq+Mn461UhrMGmhAjJJ4io05I3JgVvf4h4XGLrMyfJLXfj7Q8T9scwWkSGuoN01g8z87ISomEJWZJBkSkYk0w0IhGPylRMSkJXux3D6GSyrqtCyZqJJJqQAjL67GzEpCSS7XfgX7sWMT2dpEtXYH55FboL/4QuKwv/5i04r7gC12WXMvjwX0bKZygrQ2t3oEvPQHuoFsvMaSy5/avsfe1FnBmZmO0OCsdPor2uljW//y0Lbvo8TQf2Mv2ya9j32osIGg3jl60iOTefF3/xwzN+iyGfl6GeLhZ//k72vf4yvY0ncefmUX3RhXzv0M841H+IXFsuX5nwFda1rgPAorMQkSI8WPsIy0svIKevDgxO9Vkvmg9iwhHow0ZBIR6LklM2Bp3eQPOBvTgzMhkzdyFBv4/iCVORZInr3rwBb8zLbdW38cLti+kYALtJR1GKNSE+kuATRRuJEYuEmXXl9Rxcu5rg8DCjpkxHbzIz1KGKTMciYWZeeT2iXk88GkUrijz14+8jxaMIGg3dDfWc/3knxZMS78sEHx7i3wnL2Q/8jplX3sPeV1+k/dgRUnILKJsxh02PP8yS27+Kp6+XUVNnEPL52PPSsyNGPDa3m7SiEjzdXURDQewpqaTmFyDF48RjMUStlqTMHHR6PVq9gQza0UujYOfvEYv+D31ODoLRwNCTT6IxmbDOno6h9XEwzkL422fQz/k5SnEpWqeTeH8f4X37iPf2qn1YBRznnYdgs6OgoNXrUQSBaHMzxCLoC3KJdfcSHx5G604m1t2FLiMdQ2EBciSCEo1iW3gegigihyMgxbEvXarOHUhD2EqcMHgSXrkTjE6Y/T+w5pvqDZt9Fxx6Su0D2DJg0k2w7v/UfaOXgkYHR19Q++ULvgdbfqVGCi2YDbY0OPQ05M8ERzYceRYWfB/+dgtc/igUzPqYnoIEHwbJOXnMv/FWAsPDtB89wmv3/AyNVkvumLGIOh3TLrkSWZaJR6MMtLfRemg/OqOJ+t3bWPnVb3F8+yFmXnk9h9auJuj1Ujp1Bu6sHBRZC5t+huuKiWBOCJB8GpBiEkazlYrZ8zmxYysWp4uqBYuJRqI4MzIY7GhjxpXXgQKCVsPhta8zZv5iYuHwPz95ggSfNB374Jnr1HchqCJdK++HvKmnjxlqhc2/VAVIdGYoXQS9dfDKHSBFYeJNYPsHUVMBOvfDuu+p81qgvr8v+D2Unv+hXo48NETKnV+i15CPO6zn+M5uomGJ4vGpdBwbxJlqRvN3EeM0bjdyMEj4yBEs06YSbW3Du3o1qd/833fPJybj6Qsy45JiomEJUachEorhHwpDgeNDvab/RkL79yOfEiDp/+MfcaxYji4jA+OYFAxFxZgqytHe9XVkrxdtVhZ6q2pgaygrJ3jgIKbP38XLz7eTWeIko8hJ/e4eehq9jF8cp7A6Bb3pX59r0KWl4r72KgYeeQzrnNkIWi2pd92F95WXEZNTsNzyRZ5/tJuicakc3dJJYXXyqfUD9X9BVTIhXwxDkY6+Vh96k4jFaaDzxDAlE/VkFDnY/XITZTMyMdl0zL1mNLGIxJyrSpHiCjqDhrT89/bs6GMCSQNaGvZvo3zmXN567CHSikqYd+PniAaDONPT6Tp5gsGOduxJKViT3Ox88VmmXHAZx7dvoqepgcxRZVSet5ifNz3M5aMvJxR7d9GdBKeRohHGzl+MRqOlaf8eHGnpjJm3kJ3PP03W6DIsjg9XWClBgo+cxg3w+GUgn3IGKl8FS34O1hT02dnoL7kEjdFIYJMqdqqEw5gmTkBMSyNiTaVNX8qJw36cq32M/emDuDMN+F568axs/Ju3kHxVKlpvJ7z2P3DVc2A6s80b6Ayw56XTwYaCnihvPVHHii+Nw/h34y6tw0lw/37iPd0j9pSCTo9l+nQAdFod6dazA6AYykajLyoi2tAwsi1+65Xcdfxn9IX6uHnMzcSip9rD0BDM/ro61zDUBKKRQecChrp62f1qlBVf/l+8A/0YLRYOrX2d5Nx8AOp3bsVks1E55zyO79iC2W5n7HlLVIHYaA9oNGeVK8F7IxoOM/Py66h9ay2DHe3kjhlLZmk5Yb8PWZZR/P0MdmrxD0dprxvEkWqmbHomR7d0Mu3CYjTaxL1P8PGTn2yhabiPVHMqB3oPEAmFmH7pNdRuWsdAeys5FVXkVIwh4Blm+3OPUzl3IXX1x5m8aAHjutfAll/jufEIg50Bxp+fR/X8HAStgCyp45GTykmuKr+KWF+7muHASdj3V1jw3fddZk9fkMGuAGa7gZbaAVJybMSsLhxf+z7R++7GOmsW+lGjULzesxPHA7Dzfqh9Hu1Fmwju20e8t+fMtnr27PddtgT/uSiKQsfxQdLy7NTv6UXUa5h2YSo9DYfwDvSh0xtIysxm7IIcDq5r4+VfH2DlnaNYff8PSM7OxdufyZQLL6du2yZ6mxvIKi2naMIU0IBL7+JPHeu4ePRi3Jt/DivuY+7oVLJcZlxmvSqa8Pckl6rrBAn+63CkmKiam0Nb3SCNB/pYcEM5iqygN+noPDnMqInpdDV4mLqq8Ix0pUmlDIQH+Py6zyPJEhePuhizvZBj+X7cAS8mm53M0jJi4RDVC5fQeeI4XfV1TLvkKg6vX0M0FKJsxpyRYAHNB/fRWlfL3jWvYE9JZdolVyHLEtFQ8AxH/L9HiUTRL15FvyEDe3KAltoBkjItyFYn4RQXsa1rRgRIAPp++EOy//gHDKWjCGzegrGiHOu8eXR97evIwSBoRXRZWWhMJqLNLSMCJG/j37iRaGMjpurqswvjG4RgDzxzvSowBZA+Bs7/+futngQfIr7BMLte72TKKhczLr+GaDiEMzWdcYuXcXTTBnRGI1XzF3Fy1zYq5pxHXsVYTK1HTp9AipGabGbPc+uYuPJiRL0Bk82OVq/jjT/cSzwaYc8rz5OUmU1hhptzqkP+G/F68+tEpSgri1aSbc2mwdNApiWTtS1rebD2QdwmN1+o/gI7OncwKX3SJ13cTw3RuIag38fMq27g8Po38HR3kT9uPKn5RYg6PbOvvgEQiMdi9Le1kPMPfHICnmF6mxoIeT1MychibGYWHd4o6Q4jhcmWs+b8EyR4v3j7Q7QdG8QwS0AcFjCYLUh+P7LfAynmd013qMNDny/CnNIUjkTSONJ/us2Vk4N4RJnUoB2TxsTB3oMsK1xG2jfuYt/Gdbj//DC+mvGgG4USlbFOUf0Uddlq2xvr9L9vERKA4lQrJ/sSIiQJEiRIkOA0Cav9jxIpBlWXqgaobzP+BqJxHYfWNTDrinS2PrWGilnzsbmTETQaRIOB7oZ6CsZNICU3H19/P5sff5issgrGLVrGcHcXbz36IFf+8BcAZDhMZDhUBb/A7gbinZ24b76ZaEsL0eZmkq6+Cl1RMYrutOOMqBEpcBRwz/57qB2oBaDD38H/bvlf7p13L3ElzlWFl9O8ZQcLb70DUadOnMWjUZpra8kamwLte04LkAAceQ7KVqpR/nb/GZLy0Eo2PE89RaSpCddll4FGQ88Pf4Rt/nwcCxcSGB5i/+qXSc7JwWy3YbI5qN+9kbTCOfgGBEpqXGoeLZsTIiSfADFfD/e2/Rm5RM9n591BU7iN/BtXkKVLZ2fwIPNnfpmeSB/uK2ZTYshnX7iWeRO/jCfmQZdRw1hTKQfDdcwYcztxKU44N8g080qOBU8y/vbPYMJAY0mcamMNGft203XyOACCRsuUiy7H199Pf8tRFAXKpmahM0uY7Xr62/xEY0XMuOIbBIcb0WgFjLYCfP0+Njx0NwgCMy+/lqNvrSEpM4eOutqRiJ8arciKW+/A7Pfjf+Y5Um+6mVVfuovOxno0oo6Fn/0iOpOJ1ff8nHDAj9FqY+x555OSV0hXfR39bS0osnzWvQr5vJinT0Po60UnwfJrbiJmNPCcbwNBbT39GUP8se5h7s+6nwnpEz7Wevxvpz88iKOzkP52P6WTVYOA4zu6GTU5Hd9QD6kL5hM8eIiO228n82d3g+gDrREIIGtNSDG1PluPDlI4LoWTe3tHzq3RClhHubli17UARH3DJN/+BeJt7cQ6O0n+/OfQWK14wl48boG5199E/Y6t7H31RUZNmY7OaKRh7y5EnZ7JF15G25FDiDodvS3N/3DSA2CgvY363dvJHFVKODMLs9OFp6+X/Koa4pEwAa+H2k3rKayZhNFqpa+lic4Tx5DjEhmlo0krKEYQBMx6kTHZTgACkTh1XV5ErUBekgWdmFgs/7elaRMcexmqLgNPO4o7h99v/j0KqtCBgsLvDv2OyfP/gOIbxL/oXrRGO+a+XaoRrrdbjdI77zuEs6Yz6Otnx9DrTLFMJRRXDWB6ogPMcE8kyZKEqE/hpvU38/uGe/nD1HvwvXGIkHcYgB3PP8mkFRepbeuV12NxuvAPDbDtmcdxZWQRDviZevGVvPXXBwAIeoZwpKYjGox0NQepPi8Jf/8O2g93Egn6ETRatT/T281bjz7I2AWqsXDtxt3ULFmBoNGQVlCEFpD++iRK2WiQJAwV5STfcgtd3/o2gl5P0vXXY5k5873fU1lSoxCfa7skvd+aSvAOInKMGypv4Avrv4CsqG3rji41qtv/jP8fBJOTiNvO4dfeYN6Nn6PrhCpcEPJ6eOvRP1M0YTJ5Y6rJKC0n5B2m7eghxi1eht5pJxAY4DtTvkO7v52wMRnnuKtxhwahfTdKcin+dfvOLs/x49gWLQKNBjE1DWQJjcOOxmQCQcBQlEPa97+JGGpD9+pnYfLNsPXnpCz4HlJwNfGkZfjkVCSjgNGqZ8cLar/XmWam+VA/R95SRazGn5/H4Q2qcUZueRLdDcPEoxJaUZ2gVhRl5H8sEsfuNqHTJ0RHPnb83fDW3arzoD1bHbsUzaO5zYcjy8CaP9Uy9QLViEAraojHpJG6A1BkhZ0v+Zh37f+CMkB/24mzspBiMTqOHWXvKy+w8NYv0tNQTzQcZrC9laB3mLTihYR8PqJBH7OvvQkU1Qn/6KZ1FJfks69/P53+Tl5tfJXOQCcrilZgXvh9SrqOqo4VckyNKOvrgtQKuOhBiEdUI0atHrbdo0abe2f0WL0FCmaof1Nv+2D3UNSrY9vBJvVvqPm0AAmo34eaoacWJn72g+WV4EPBnmxCisvEIhKCoBp/peXb2fVyExOXF7DzxUYGu4Lsf6OFSDCO3iRSPjOTrFwD5oEmDEMdaG1WlOFO9F2boHcH9NWhTLyVeNoElLwCTEkBkubegWbzDxGkPeDvxlR/H6a8DBxzbkPSuxDTU9EXFxOtP4kuNxcxLRUlGkWXlam20es2YpEl5l/9GRSNBlGnRxZg2sVXsvq+X1G3bRNV8xdz4M3XGLtoKSm5Bex56Tmc6ZnEzxH1KugZZuPDf2LOZ26h+urLkK06vrb/+5z0qMIArb5W7tp8Fz+Z+RPicpyYFEPUiPQEepCGusHXrRpDWFKg/wSkV37cVfdfjxyTEQTY/tzjpOQVUL1oKd7+PjY99mcW3HwbjrQ0mvbt5vZ5n+N/d3+Hn+7+KTnzcphTMueTLnqCBAAoio6w38f2556kZNJUTDY7TQf2EvLtYVnl1/AN9DN6+mxQZCKBIAaLBY1Ox8yrrsPb30daQRGyJKEIGkJ+Hybru0erTpDgX0HOGIfGlq6+y4BYwTz621qR4nHGLVrGUHcnG//6AFpRRywcQm8wMG7xCna98DT2lFSGujoRNBpmXnk9RrsTUWcAWUbU6wh6vdhT0oiGRSLBGAigN+mp3+VllP4ByKqAsAdbaDXalVcTPHAU943XYxxdgqHrJbSHHwZNWI2q6ekjUDeEITeHWEsrhtLR6LJzUCJh/Bs3gqjFNLYaJRQirijokl04+v4AaNG8sQu5+HyU0fOh6W9gQTX61VshfwxC617QiihSHCwaKJ6P0LAO/L1oOrZBYxTO/ymkV0H3IWjeApk10LkPtv4apn4BNv9c7XMPtYIjBzxtUPcqzP2mKkKiyLD9XlWUffcD0PSWug+gebP6WYqp+0Yvgde+Dje8BuaEY+G/M0NdnXSeOEbQ6yGjeBTJuQV01x+n89TchSxJHF63hsq55+EfGiRz1GgEjYYTu3dw6ffuRitq0er0iDodg+1t1G5cy6jJ0zBabTTt34OiKGRXTQNBC952yExEsf40oNGIHFy7GrPDSdWCxYR8XrY/+wSzr/kM1uQUHLKMwWxmoL0Vb38fo2fMwZmewer7fsmiW+8gOSfvk76EBAnOTcQP+/5yWoAETq3nbztThCQ0AG3b1c8l58NwK7z0jvmpNf8LS38J6RXnDuwC6jzT2wIkAOFh9Z2dMRbs/0TA5F9A8njovfunSD9+lOM7O8mvSkGjgd4WH1qdhmg4fpYjsxIMYp4+HcOoUsK1tdgWLcJQXIR8Lqe6U2gNGhRF4cimTmxJRhQFBjt9jJ2X+6Fdy38r8YEBIvX1xHp7iTY24v7MjUhDQ8S6u9EXFmIcrUYiNWRkQMaZQUG0ZhPOFctpa/CD0kzWKBc7X2xEZ9RSOjmd4d4Qva0+skvfX3/NkJVC6uVziHniCCnpaGw2dNnZKNEI0XAUKS6jFQXiMQmtqEGKySP/W2oHKKpJobV2kKJxKRza2M6MS0roafSyd3ULBWOTmbSigMxRTlJybO9L0Nw3PEhgYAD/0ACB4SG6G08Q9HqZecV1ePt7Ge7pIqOkFL3ZQn5VDbtefIaqBefT19JI2Odh4yMPkF9dw7hFy+htaeTEoZ10p3Tzra3f4r75972ve/ZpQ4pLePp78fb1UL1wCb7BATY//jA6vQFFOtv2JEGCf2sCffDKl08LkIA6Vq65VhXJP4Vl2jSSb7uNgQceQB4aovvrd2Gev4DGibM4urlfPdVwhO4mDRffVYGx9Oyo6KayYjSeU2vA7buRfYOEausJHTyE6HZjrhmHb0CPLclI8YRUtKIG70CYk3t6CPtiZ7275XAIx4rlxAcGiDY04rz0EjWgRSTyDy9Zn5lJzv33Edi9m1BbCx1FDh5iK31DqkD6g0ceZNpC1VYCfw+8eidM+ixY0yA8jORX+0zjz0+lv6MJd2Yur/z6JwQ9w7izc3CkpmEwmandsBa92UTV/EUjc48zLrsGxl39r9RQgr8jFgmrtgjjJ5FbOZbOE8fY8uQjXP79uxnu7mSoqBizHaoX2KiYaef4Lj87X25kwuJ8IqE4JmtCqD7BJ4NGENjeuZ01LWu4sXQFbz36IIU1k8itqKLr5Ak2P/YwF33zBxSMHY8cj5M7pprunkFSNv0CFAlNZBCDNYlDG9pxpZlRFOhr9VI1L4e2jja2dG5h5pgvns6wfSe8wz7iXyUciNGwr5fUPDtl0zKJReLUbe9i2uI0bAvm41u3nsif/kTuww+dnXioGWqfB0Ae7MV15ZXEOtqJ1J/EdcXliJmZqlN8gk8dsbBEyBdj7+uq4FjF7HRioR7isSg6vQFRr6evtZmCMQUkZY7GbNPT3XgC/0A/5TPnEo2E2fjIAxSMG6+OZ5ob2fb0o1z43R/gjXl5tWUNOaMvY4ktC8HTSmVyCZidauali2HHfWrfB9Q1iEmfTQiD/Zcj6jQEhiO8/NuDAGQUOaicnYU538b43LyzxEubPc388dAfR74f6TnEzNYc0lNzcaSmEw340Yp6IpKfrvrjVC1YTP2ubfScPEHJ5OmIBgONe3cS8nmRJImWg/uoWbqSuq1vMdDeStP+PSPnziguhVFn95kBdBnp6GYtoH3HIPZkM2XTMpFiErWbOnBnmhG2bz8rTf8995J8xxfRmEyqff0Xbld3aDQIOpHUr3wZrdWKEj87sCeAHH8Xe9u4D7bde1qABKD7MHQfTPgB/RugyJBZYmawfQ/JuXl0nzyB2e6kYe9uymfPJx6NsG/1yyiyjCMtncDAAHMWTIXDFtVGsfIi3L2bWXzlxfhiBjSiiCzF2XIq+CRAT+NJ8qvH09/ShDsr+5+U6JMlGAuyvm0915Vfx5bOLZQ4S3j8+ONs6lAFNftD/Xx/+/f52ayfIWpEuvxdZFgTwYg/ajSCQjwSZvNjD1E8cSoFY2toO3aExr271CCp6RlotCLRSITuhuMM93TjSE0bSS/FY/Q0nMTb38exLRtp3HcquKUgsOyOrzFr6r/gd5AgwXvk2DY12KXWEUfXC4YkM6GDB9FoFQTzu9uErantRqsRmDc6lf6T6QyGBwnFQ5hEE9s7t+MSBHLRkOLL5WCv2j8xu5I4UJjN7H4/HV+8A/Ps2zFWTkKfreYjuk0Ieg2xzsAHuqbiVCt/29eBoijvPWBwggQJEiT4r+Y/RoREEIRmwAdIQFxRlH9/T36tHsI+mPctNTq1aIKuA0QjMuOX5mFxxCmdMhNFlln74P3EQiHGzF9MXlU1AJIkoxVFHKlpdByrpeOYKhiSVVaByXaOiCYChI8eQ/b6wGBAX1JC+NgxpLxCjrYOUZJmw2bUEpNiCAgjAiQCApdnLGWesZpRXhuPzvwDLn0yUcMgdVvf4viOLQAUT5hC1YLFqgFv67az8x9qAp0B+o5CwXTEjd/HPHEpkWPHGPrL6cjHpppxAAz3dCNJcbY+9ejIvvzq8RRWh3GkZOLc/jV1Y3/9B62JBO+DvlA/uWI+qceibHjxt9QsXcWhta8SKy4lQ69j/e5fM3HlxTRv2syx5DrS09PZsPHXTFp5MbG9B9grHCKnvJKtb9xHzZKVGOua2Ta8j9HTZrJv9Z8pnz2fpJ4+Tjq3klNZRcXc89BotQiCQMvBfRhtNqxJyex64RmioSATVlzDpJXTObmrj66Tw6Tmp9DRoJCSYyVllJPOI28AUDhuIg37dtF5/BjZoytHBEgAZCnO1lefZ+ZNN9MRWYyPKG/++pfMvOp6tj/7ONllFZhtDsIBVbUv7Pex8/mnmbD8Quq2voU7O5eCcRPOmNyzuJIw2uy8+cifiIbD1CxZyeFXniV3TDWjZR11m1/AaLPxw5VfpsvbAQkRkg8VTUyHXjGQOcqA0aJDQWHU5HQ0WjAToP+++08dqEFnU9SIa6eUS60nHqF65hz2rBukr9VHVqmT0VPTaTrUjyPFxNQLing9/LeRvMJKDGHrbnTZ2ejy8oj39iI1NHLEks69Dc/yHetncWfnEQ2HOLz+jZF0M6+8DmdaBoHhIeRYHJ1ejxKLEWlqQhocRJeZhT4354zr8g0O0Hr4wBnP76RVl9Df1sy2px6lct4iquYvVsWdmhp4+vt3EQ2pAgtaUeTS7/6YzFFlAMTiMoc7PXhDMYJRCY0AbYMBxmS5SLYZPpJ6SfCvIYXCaPQ6BK1qPBj3xYjO+gMaRyY6ehmIDDE1YyrVqdVEpAgGrYH9vfshDNv3d7PvjdUYLVZmXXwxBa4oOr0NZf0Paav4Cht//yjDPd1cNHk8aYVlmEQTT0x9CKlvmP2vvUhnfR351RN4fcrTdEn9mPtl9u7YTPWiZTTs3UU8EmHbM4+jMxipOk9dCMkpH0NqfiGFEyYjx+Oc2LmV827+AlqdjtbDBzBarfgH+5h5WR69jUfZsfoltDodUy+6gi1PPkJHndr/QBDIq6jihV/+CIBdLzwDgN5kpmrBYsquWoyrdTX2n1yLGG5GU5WF8blnQQFdVubI/XpP2FJh2hfhjW+e3iYawJkLSfkfRjV+6kmxpHJ08NiIAMnb7OjagSfqwW6w4/F0kzW6nBM7tiBFoyTn5NHf1oIsxanfuZXUgiKMVhv21DRqzl+JIit42jsQJIlKfSYRZx4dcg8b4sMkO5LxL/oOLqOLgsgBQnv2nJGvoWQUGrsdQ2E+Gm0UJRpGSBbQDh9Gl5wOL98AM74MG34IYy6Bk2+ipFQiGzMQBvYgbr0b16iFuHbch2n6g2TlZKC3WhD1GrY834rZoadqTjaRUBxBI1AyMQ17som9q5upPi+HE7t60JtEFAVEvQZBIzBmTnZCgOSTwt8N9izoOgS5UyGtAk6uJb/qEmoPDFM1Lxu9WURn0NLVMMykZQUEvVGsLgP+oQgDnQFS8myc3DtM2LOatMICDGYLkeDpidrRM+ZwYvtmIkE/Gx7+A4U1kzi0djUVs+fT03AST3cnJpud1+/7JZFAAFdGFmMXLkFvNDMvdyxJSWnU9tdSk1pDZ1MnLzW8xPy58ympuBS0omr0s+QXEOiG3uPQskUVA5l8ixpVdv53IPXcC84fGoIA7kJ1fPvaV8/e31cH5uQzjU8TfKJoRQ2Vs7IY7gmSmmen5fAA45fkM9gVYNKyAo7v6GLcwlx0Bi1SXFYdYIgj2dzIoSGkrm7MNi04sqFjD7GxnyOqHY2mpwd9x260m74Hs76KNymfnvJV6MovJqbEGVYCeCIeUsxx9kRqCReGmVU1E2dUh0WjxyeHsKe4EENxJHM/Ea1AMBQkHPATj0RIyspBbzJRs2Q5fc2NKIpMe+0h8irH8vKvfkzZ9Nnse/VFymfOZe+rL4xcr6jTI+r0KIrM1sf+Qurnl+KyZIwIkLxNKB7CF/XxUsNL7OrehSiIXFByAdPz5sFrd8GoRWC0QaD/46yuTw0yEvFwlPKZ8zi8fg3dJ1VhJ73JhM2dQk9TA9lllZhIGUmztWMrc3LmfEIlTpDgTDQmPSabA0WSOLpp/cj2SasuwWCxcWL7FswOJ+3HjhD2+xi/9AK6TtThSEnFaLGy8/mnGOxoR2c0MeOKaxkzfxE6XcKYPcEHo3UgiCZiJLv6KtDqQFEQ08eSGstk+7NP0H708Mix5bPm0nXyBGGfn4KaCThS0rA4XUy75CoEjRabO4V9q1+ibstbyJLar5t68ZX4BvuwukcRDdnZ8UIjY+fnYLCL7Ki8mIgG7Ff+lY7oEFnaEJrsYgYEieRoF8akydQX5uPUWSjLriG5bguh3UF06WnoK8qR+gcQ3UkE9+xFY7EQ3n8AXXY2xrwU9EfuRyMUQ8umkfJrjj4LyflQ+ySyu4xozsVIfhldigV942oIDp6+Ma40OPTXM29WcBCcOaoIyUADpJapIiTxMLzTdmKoSXVu9rSp36V3OCX5e8H0DifVd+57+/NQE1RcCIefgag/IULyb8xwTxfP/ei7eHq7Rrat/J9v03niGBbn6Xob7Gxn/+uvMP2yq9nxt6cI+XzMvuZGtj75CD1NJ8mtrGbG5ddQMnkqrUcOUPvWupG0ky64lHhwUBW4saaR4NNCjIo5C9jz8t8YaG8F1DGL1Z3Msc0baNq3i+KJ08ivrqGvuYnjJzdhtjvoPnmCnsaTCRGSBP++RLzQd/zs7QN/t56vNUDmOGjdAeUr4cSrZ6c59CSUr3p3ERJ/79nbeo9B/ByC4+9AjkaJdnaiRCJoHQ706en/8Hh9bi7odMSiMqVT0ohHZWRJIaPYgaARzumMJ2i1BDZtRpeTjWHmbJTebnyvr8F+/vnvmo/dbSQ4FEWj0eDtD6EzaqmcnY1WlzDg/GdIHg+xtjaCe/ZgnjwZJS6hdTjRJrsxVlcTbWsj3t2NNjkZQ36+6lCu0aA1qcF8xJQU7DETaQWDdJwYQm8SmbSsgP1vtpKSa0On1xANxkkvsmO2q2un8ZiEoBHQav+Jk5nFjaiLIGpbVOF7UxTFmUQsnoxeo2fsvEzqdvRSOjmdk3t7GTU5jRM7exg1OY0Db7aRU5ZE/hg3igJVc7Op3dzB1AsK0eo0GC06UnJtOP5BtERQRdDjkQiiwTBiEBzy+xhsb6X2rfXUbduEPSWVyRdcSnZZJduffYLNjz9MUmY21YuWsuO5Jxnq7OC8m7/A1IuvoLuhnmgoREH1BDqO1dK0f49qHyEIzLnzDtrqHgGgO9D9AWv204HBZEJnMDLQ3kZP4+l5yvFLV53R30yQ4D+CsE+1ufl7ggNnfBXdbpJv+zyOVStR+htwXnMNuuWXUff71jOOk+Iyg50B8mdMx1hRTrj2KABalwvX3FKE3aec1fNm4t9zlI4vn16b0uXnY/v1I4w9LwetKKDRaNCbRbJLnRgtZwqQAGhEHd6t29DnZKPLz0f2+YgcP47jwgvPvpxYkLrBOlq8LaSYUihLKcN98cXUdW7ngcMPMDljKmU5NRi0BmoHaukPnbp+Zy5IUTVwwCmS5lZQOqWI9AKFo5saCQ4PE/QMgyDQWX+cBTfdhsluR6PVsPP5pxnsUINfaEURe0oq8bQx/znGvf+GGK12jFYr9btO27kWTZiMVqfn8Po1mOx2RIMBZ1oGgqCheJxA1qhcgh7NWY7GCRJ8nITiId5sfRMAq82B2e7k5O7TTuT51ePRG430tbUQj0YomzGH5Mx8QLXXsb1+E8PzX6KwOoXhniBarUDFrGy0Og3j08bTF+qj35lJ5tgroGE95EwG1/ufh4hHZcqnq07vokEkHpNIyrAQj4bov+9+dFlZpP3kxwg2G5HOTvTp6QhvizmETr9DBCGO54030OfmoC8tRRoeInz0KI5Vq9532RL8ByNA08E+KmZmklORhNUZwtfnYefzT9Pf2oxoMDBx2YW40jPYu3qAWZeXYLYbyakYQ/2ubcy8/Fq0eh2N+3bTuG83AOMWL0eOxmkPtzMpfRKrOzaxpOWE+u52FcI1f4OkAnXd4IbX1XUEOa4GBEor/4RvSIKPGp1ete3LKnESDsSxOA2YHXocKaZTNoAKTf0B+nwRMpNDbOnYckb6izKXIzTIyHGJtx55gOGeLqZcdAW7XngaWZLobb6fGZdfS8vBfRxev2Yk3YzLr6Vu2ybGnb8ci8NFUmY2g53tiDo9WWUVxCMRrC73u5ZbYzAgJKVQPD5CyB8lHlUwWHRUzcsl6g2SunQZ8YFhFAHCe3ZDLIZ19ix0hYVEm5oIbjq9Bpf8hduwzpuHcdQoAPR5eRjHjiV88ODIMfrRozEU5J+7MNHA2XOEAMNt76EGEnzU2GwKY+Y6GepIIzA4gE5vIBIMEPQMs3/1SyPHjVu8nJO7d+Dt62Xs7JlYL/ij2hb6e8FgJ6Sxs2/1M3TUHSW9qJjpF1/J67//DWGfl5S8AoY620nNL/wEr/S9cWnppaxvW49JNHGw7yCfqfwMX9r4pTOOUVAYCA/wm/2/YXzqeKpSqtjVvYtydzlzcuZQ4Cj4ZAr/X4wsB7CnpCIaDBzfvnlke9nMuUSCAXa+oPYDcivHUjV/MaJOR0/TSRzJaXQ11eMf6OeNP9zDtIuvPC1AAqAorHvwd2SMKsPuTv4ErizBfyuyJHNsWxe55W62Sj50cQ0mm53Q/gOYtAoaq/Oc6WKSzN/2tTOjOBmnWU+eXR2PtXhbGJ00mh1dO1igM5GkBac3g2ND25AVGY1GgyElma6JUylcvY3A+t9infkzQA2CImgEdBlWop3+D3RdxalW/JE4Pd4I6Q7jBzpXggQJEiT47+A/bbZ8rqIo/zleIIqkOrht/Ik6+NJbYN63Mdl0WFNkwkMBrEluXvn1T0aS7H7pWQxmMym5+UTCIQbaWqicu5Chrg76WprIKBmN0WJFls6tIqrLSCfW0UHo8GGMFRXo8/LoDMS5660j/PjCSiYVuFFQMIkm7Ho73qiXb2bdyNLkOeDzI7f1UGQxEy0wU99+4IzO+8nd20ktKCLDPR199Q1otv7szMxd+WDNgIU/hNYdCLPuxOnRE9w5ishx1anEMmMG1lmzAIhHI3QeP8a0S69GiscQdTpaDh8kHg1iFnrQ1KrOyOQnFAc/CSzGJNKORmnY8BbTLr2ajQ//EaPNjlavY99rLzFp1SVsefwvSFKcvDFj2fHck4xduITdLz+Hf2CA6ZddzZYnHqFk8nTqtm2ip6GemVdcx8a/PEBmaRm9TQ007NnJrCuvR9CKdBw/SnJ2Lpsff3ikDAazhYnLLyQaDiEaJJBamLAkF0kxIZogLd8CWoGuRg9aUTVQS80vZMffnkQQNMRjZ0fG9vR007H3AL1NDbQePoCiyESCAWLhEK6MLLobzo5sP9zTRcG4CRzZ8Cbjl67ClZFJW+1h3Fk55I6pZt/rL9Hf1sL0y65h06MPYnMnI8ViHFq7GoBIMMChPz3Gom/c9dFU1qeYTHsG1mwLigSDXQG0oobUPCuyLBN//tSkmCiS9j9fwnj4xzDjdjj1XAiCQmVJP2ZXPkd3DhLwRBm3MIfJKwvRGbQYTDrMx04bdZ2QuhmTm0Po4EGiLa1YJk8Gm5WN3r1YdBasdhd9LU3MvvpGmvbvIRIMUjBuAgMd7eRUVKE3GpG0MUS9nuCxYwR37aL/579AY7ORfc89WKZMHskr5PNgdbkpmTwdOR5Ho9VwbOtmplx4KeGAnz0vP8f0y64mKTOL+p1bRwRIAKR4nH2rXyajuJSIJPP4zlYCUYkX9nfS0KcOKOeNTuFzs3VniZBEe3uR+tTXrDYlGX1qqrq9rY1YdzeCToc+JwfR/e6T2gneG5GmJiInTiBHIkTqjiP5fSRdcQVYLMQzpqMNhVB0OkJBG+NCIptMKdyz/7SxynXl1+E/2MCO559VzxcI8PL993HpF28hJymLvsrbeO6Bp0cchpo2bUWJxvnJyh+j9UfpbmkiOa+AlLxCTHY77XW16I1mIshEQyFi4TA5FVW01R4CwJmegU5vJHt0BVuf+isTll1IWkER2555nJJJU0EQeP3+X42UTzQYuOBr3+XkLnWRQorFaD60n+mXXUPjvt3ojEbGVo1H9p0dFTAaCiLq9MQGTiIefUTtrFZcCKIBfXrOWce/Z6ouA50J9j2iOnxUXwEZNWBIRB7/MOjwd2LUnj3RlGxKRq/VI0kSZrOVY+s2IsWjtB05zJSLLiO9aBQ9TSfJHFVGwbgJ9Le30HxgL80H91E59zzSi0rwDw5hT05meH8DTpMRq9vBT4/dw/KSFXSHukmdXoVhQxWRg+rzahw3Duu8uRicMcTVn1Wdv95GNKpCDst/qz4L079ExDGDsFNAdLiQnUkMmRbQ1+5H59PimrcYQZbQWyLYLQpSOMDM5RmIVgsHN3Wi04vMvXY07XVDtNYOMPWCIoLeCFklTjJLXXScGGLGpSVotRpyKxJt5yeGNQ28HVC6RG0Heo9BahnuFB2OVBEU8A+GmX5JMa21gwz1BMksduBKM9PT5KWvzU/N4lzi0RA7nmmno+4wUy++go7jR/H29lA4fjLRUID+NtXw0j80iMluB6Bx327KZs6l9chBIgE/4xavYMdzTzDU1cGRDW/izs6js7uex1of43vTvsfRgaMjxQ7Ggqr4Y6BfHU/ufQhSytR2S2eCnImw+09Qcp660Gf5mBZInDkwejmceP3M7VkTVAPUDzESbYIPTl6lG0EjoKBQPCGVpkP9pObaSCmwkVpgo2FvH42H+ph4fgFbnqknMBwle7SLURPGo3GFULKdhA0T0JZnEPDE8A/HMJi0ON2Tsc4ehy4tFV26QEZnGCXsRSOKpPT0gNlEU7aHLGsWjxx9hN/3/36kTHfU3MFDJx8i2ZTMH8t+QMjjJdDdBSg40jIJ+bxsefIRBk79ptzZeSAISLEYKArWJDcndmzB6kpi8gWX0nRgLxani7wx1ex6Ue0bRUNB4uEwNr0No9ZIWAqfcV/Mopld3epiY1yJ88yJZxiXPIai3qNQdbn6vvi4flOfMgSthqBvGFmWmLD8QloPH8CenEpWWSWRQIDNjz3E4s/fSXjgdFTtfEf+J1fgBAn+Dq1epOvkCWZccS0thw8QGB4if2wNsXAYjajFPzTAlif+wozLr2XrU4+y9k/3MmH5BURCQYa7ukYcCWLhEBse+gMpuQXklFd+wleV4D+dPc0D5NtSyRaNsOmnIMUYmvdbDu0/wpxrb6Jx3y58/X3kVY0j6Bmmr7kJvcmMVqvlwBuqQ/CRjWtZfuddtBw6QHphCXlV44gGg7TVHuLAmleYe+OtSLFePH0xRk9NRzRo8OX1Uxfq4IWTL5BmTqPQWch3Tr7ArVW38vzJ5+kJ9nBr1a280bmRHGM6Dr2NO9wppN9QTteja0i97fN49u0ncuIEpnHj0Fgs+NasQdyzB33aIqKjb0QKxJCr70HnNKBvew4peQK4qlEW/omYkoZ/5z6Cu/eSfPsMpGWvocgSStCHTtOJ1mKF8TchSDGEvqMIPYdVccKdv1NvXOFsOPaK+tmRDcHT7x6yJ8HOU/0XQVAF5t8mazz0nu63ozOf/blwHrSdcrq2pn7INZ7gw6Sn8eQZAiQA/a3NnNi5lYkrL6Z40lRO7lKdPGqWrOCNP9yDLMWZuOIi1j/4uxFB88a9O5m86mI6648z44rraNy7E41WpGj8JPqaG0nNL4YF31fHdAk+FUTDIfyDg0xadQnNB/eNjFkCg4MoskQ0FOLopnUoskTe2BpKpkxn+zOPA6rjuCxJaP4VEeYECT4uRJM6x9Zz5MztedPP/G5OgWl3qFGtO/eB+Rxzo+ZkVazk3TiX4G7xQrC/+zqBFAwSbmpCEEWIRIgHg8Tr6zGXlLxrGuPo0SR/8XaGHAaGe8OgqK9/AFuSEY14tgiFoNWiWbCCQcGNpz+MJbMAV9kUCHa+az6iKGIwi/g9EVwZFmRZBg2kFzrfNU0CFUVRCB8/jn3ZMmLtbfjeeANTVRWm8TWEDxyg+8c/IfmOL2JwOAjs3Ys0NITsD2AoKUZXUIDObseZZqb6vFzqd/Uwemo6e1Y3UzQuBW9/mKNbuxg9NZ1oOI7ZocM/GKGzfpj0YieiqMGVYSYpy4pO9y7tcmoleLtAb4bBbgRrGnqlD0LDVBYkY7Fk4fHAmNlZhINxxsxR/09eUUDjgX5S862UTk7DkWamZlGeKkBiPtuB/lwMdrbTuH8PGkFA0GhIzsrEZDbS3zPIyV3bRux9BtpaeP2+X3L+bV8mraiEnoZ6Rk+fxaZHHxqxqbAmuRns6iQwPISg0dB+7AgzLr+Whr270Op0FI2fRAd9I3nb9fYPVrGfEgQEGvfsZMbl19B65CD+oUHyx9ag1enZ8+oLFFSPR9TpGehoRdTpcefkY3UlxEkS/JtiS4Pi8+Dkm6e3CQK4i844LD4wQOREPXIohJjqxL54MRFRw+SVhUTDEqJOQ/OhfnqavYh6LfqcdLJ/9zsiJ+pRoiEM5gD6jV9EKl6BbMuHqsvoueH2M/KINTcjyBLOFBMndvUw2BWgZGIaZqcejXi2wJc2yYU+M4NoUzPh2lpMVVWIGRmInqPQZ4QU1dFSURRebnyZH+z4wUjaRXmL+PbUb2PSmihxlZxht7E4fzFu46l+jqLAgv8H676nClPpregzsyjPNHJkwxscXreGaZdciSM1jVlX34hvYIC+liayK6rwDQww5cLLaTqwB5PdQX7VOIZ7uwnWb8aq+NAkl0BK6Qerv08hvoE+xi9dRW9zI4MdbWSXVYCgIez34h8cYP2ff8+MK65DikZxZWSjKDJ6XRRzVvY/FyIDwo2NKIEgil6P1mjAkJcQk0zw4WAUjWRbs/FEPHj7+xi3eBl9rc0MtLeSVVqOVqcjEgyQW1GFVq/H6nKj1ekALRCH3iNYgvVEhHwcqSaQQdAoPNb7Z/568mG+Mv4rGLQGaN6i2lIVL4Cw533PYxrMWhxpJoLDUbz9YawuAza3ASUYR87LI+NnP0X2+oh3dSEPDxMfHMRcUaEK6DnzQNCAIiMostpWNzYSrj2qttXp6f9akKoPiVh/vzquCIcRLBYMGRloTKZ/njDBu6IoCkNdQYZ7gxgtIkmZ1nMKh72NRhQYvySfaFBi/xutzLzEzZ5XXqC/tRmAeCTC9ueeYHnuNzj/lipajw6QnO2moGYS9iQ34WCAGZddQ+uRQ/iHBsivGod3oJ+wx4MtyYZVZ8VpSgPfKR+JoUboOqCKkAAkF6t/CT41JOc46Dg+hMGiw2TXI8cVtKIGW5L62197rJcvPrGf31yXxGN7HqXQoYosjLWXcb1pPmXWKt7YeR/TL72K4R51zUFR5BF/H0WWObl7BzOvuE4VxtEIlM+cS+2m9TQf2EvDnp0U1kxk2mVXU79zG6MmT8fT241GFEGRkcJhtMZzOwEbrAb0XgmDWUfQF8XqVOfbBEWmTzuaQ2M+hyIrVKy4GeP2l7AvW4YhMxP9JZdgHjeOWFcXurR0DCXFZ7R1ostF5k9+jOfFF/Fv2Ihl5kycF17w7vbjohlGna/asr2TjLHvu14SfEgMNOAZ8BMaHibs95NWWExX/XEOrHmFxZ+/k7ptb+Ht6yV/bA3e/j68fao4dNjTDwN7IBaC1h30nv9X3vzVTxjuVudA24/VMtjZwZxrb+Ktvz5I5Zzz2PPq88y44rpP8mrfE+PTxnPPvHvo9HciCiIpphQyLZm0+9vPOM6qt5JuTken1fH/dvw/AF5vfp1nTjzDgwsfJMOa8UkU/78WQQNSLM6UCy+n8/gxhnu6yKmoIh6N4O3robteFUhv3LsL/0A/c667mWd++G3mXnMTJ3dtxzvQB4pyTl/LkM9LLPyPBc4TJPhXaa0dJDAcYdZlo/A1eNHHNBhtdkL79mF1mRD05xYYf+VQJz3eCD++UJ1HKHKoc2sNww2Mco1iR9cOVtkyEQc7GZNfxqHIRvYePMbE6grMJgf9x7sor/4C4YP30Pvjb2AsSsY8QQ2Wrsu0ENzXi6IoI6Ll/yrFKVYATvb6EyIkCRIkSJAA+M8TIfnPwpkDb34XZn4ZFFldbLKmYzCJSCEverOF9mOHz0rWfGg/KfkF6AwmHOmZvPrru3GmZ+DKyKJp/27Si0qwJiWdlU6JxdBYLIRqa9FlZhBpaMBYWkrrUJiGPj/P7WtnfF4SFp0FT8TDbdW38Zcjf2FF4Qrira1Em5vxb94M0RiuX/2SzhPHqFmyAoPZCqid8Y7jtYytqCaUvhJLZSsceUrNvPJisGdDcgl0HwE5Ci/ehjEeIffq64kYVyJYXBjGzUJ7SpFVEAQqZs9n61OPYrLbiQT8lM+ah1aAlL9NV51+Jn0W3O9uFJTgoyMajNG8RY0EIEtxpHic3IoqGvbsBECj0aqLGZVjaT2iqtyarHZ8/X0kZWXT29wAgDsrh/qdW9GbzPiHVUPunPIx7HpBdQ6zpabxxu9+Q8nk6SOiHW8TCQbQGU1Y3G4i/gD9LXXUbVvHhKXX0tk4hKD0Y7CasJq1pKSXcHidjWg4iNFqI+z3oTed3WkfNWU6J/fsICUnj6Hu04ZgOoOR49s3M37JSjqPHzsjTfboCvRGE1ml5Yh6A3qTiYySMkI+LwgC7bXq71iKx5Alidwx1WeozwOgKIQ6et8WGUzwIWEQTAiA3xPB7jaCAkNdQVwZZrJuv57Y4gmImmEM9fcjpJWpjgaLfwyeVogGscTbGDN9IqNnFaDVCmjeuYjs7SHPnkeBo4AmTxO/873Cd3ULMHV3o8tIJ3DwAB23LOWVtg2IGhEpVSYpI4tX7/kZWaPKMNps7H7pOcYtXgYImB0u4tEoshQnevIk5upq9AUFRJua6Pz618l/5ml0p0Q/9GYzOqOBnc8/hcFsIez3M/PK6wgOD48U79iWjeSOGYent+es++IfHEBWZI53+3lsZxuVWfYRARKA9XV9zCxJISfJTLpDnTQO19cjeb3IgSAIIIdDyB4PSiSC9/U1eF96CcFoxHXFFVgXzMeQ8wHEID7lBPfvp+2mm9R7DZgnTkSXk0Pr5z5P1n33gc9LPBoFQUBjsyH6IlSG3fwNMGqNmHVmAt5hjq47dta5O9v6yAl1EHCdx+QLDICALMWJRSIYLRayI2nsXfM8ZoeTHc89CYAgaJhz7U24s3Lw9HWz+LavIKCQlJnF+GUXEI9F8A8OYjRb2Lf6JeLRKLbkFLSinjFzz6O9rpb6ndvOKEc8EqGvtYnknLwRcaf2o4fpqq9j9jWfIT0rD3nbduIuB1qdTnUqPkVaYTEBzxBSXjlDk7+Na2gPTLjhzCjD7wdrCkz8DIy9AmQZjNYPdr4EZ9Dqa8WoNTI1Yyrbu9R3oIDAnTV3Igoirb4WamIiwz1djFu8jNbDB9n+7BM4UtNwZ+fhSM9gqLsTV2oGO//2NLFwCHtKKt6+PpLzCohHwjhS0wh5vYTrO7hz1M0837+Wdm87mnwNM+/+OrrWLuw6K7HsNIzaCNrtD8KiH8H6H0BvrfoOWPIzsGZBXy0s+jGhYQ3S4DCCHCQ+OIDHkkckJGF3m5DiMh0nvbjSLaz9SwOiXsOUVUVse/Yksqwwdn4O7XWDnNjVQ1q+naq52ex6uQl3loW8Mcm0Huln/JJ8dAYtDrcZre6fGyol+IiwpMPMr6rR2YbbIHcawbyr0UXilE5IZ9uLLaTm2uioG8bq0pNR7CLkjdDb5iO73IWCQtATRW/WUzZzPtuefoS3/vogqfmFWJOSMVqs7HjuiZHs8qrG0VGnOiXaklNIyS1g8xMPE/R6uPCu7zH14iuQ4nH2r36ZogmT8cohfDEfO7t2UuhUF6ntejuZRjf8abF6Ur0VLnkY3vyO2h4aHeAuhsPPQvkFEPyYtTqL50HNdbBfjXrJqPPVcpUugaT8j7csCf4hBrOOkglpRCNxFFkhtyKJgDfKi7/ez9i5uaeU2JNo2NerCpCUuTDb9Kx/9ATjzstl3+ZGqhdkY4yiRpAVNbTVDREvdqJYszDt3gZaESJhpEAQQ1GhGo1WgeIegcycfL49eGakk32de3h8wh8R0SLoDARaWwh6hkktKmawoxWTzT4iQALQcmgfZdNnjzjgtR45SOH4yRzfvhm9ycTcG27h8No1bHzkgZE0qcUlHIwc5+CJBj5f/Xl+ufeXI/tWFK3gpOd01NG3qR08zvJ531adkLUGSB71IddGAgAUAbPDSdeJOoKeYTJLy/AO9NHy9KNc8I3vAXB8+2YmX3oFNEKWJYtpmdM+2TInSPAOwsEQKbl5vH7/r0gvHoXF6eLAmlepWbKSyDsEQnuaGnBlZjHY0YZGK6I3mcmprBoxDj6w5hVkScLb1wMkREgSvH8CkTjpDhO3PnWAl2e4SJtxJygyQ5Kd5v2v4krLwDfQjzXJzeF1awgH/Ey75CoURWa49x2RyxWFo2+tp2TKNI5v30LemGoUWSYSClAwbgIaQQBBIKMwjEYrAT6ckpHM+FjmFoxlX/gocYcegEePPcqFJRfyyNFHkPr6+bVnCTy2jnihGXnV+ZjaniD5hmvpve9+kq68AkWK49+wAUHUknTddfT+8leYJ09G8vsRRBHZL9D/zEskXXEtgqAj8OI2DKWlKPFWrPPmYp02FckfIB6JoMgyGoeDaCgVJa5DMSxGicVQ0hagG23C7D+BEOhX5wYMDvB1QUo5zPk6vPxF0Opg4s0gaCHqVx2mz/s/2PsX9T7lTIaaa+Gl29X+78yvwMEn1c9Tb4OjL0LuVMifDi3bYc43QPwHztUJPnFi4fBZ26JhVaC3+cBeimomkVc1Ds2p6KxvC/5qRd2IAMnbBH0+krNz2Pb0Y2SXVSLLEpsef5i5191MLBpmMG8xSQbLR39RCf4tMBjNyFKMA2teJWt0OSGfl41/fZALvvYd4pHTAvr1O7eRVVZBX0sTg53tIAg4UtPw9HTjysz6BK8gQYJ3wWCD/BmquEjtc6DRwaRbTjvpvI0tRRWqXX4PDDapjr37/woRn7pfq4Px1//jefrcGTD3m7DpZyBFVZGwGXeCqH/XJJHeXojFkAbUaNqC34/gcBAbHkbndJ4zjSCKOJcuZfDwAPW7e+hvV9t3o0XHjEtLkOIK/N3rXDaYGZItKIKCI8WEoij09scQs3L4Ry19Sq6dlFw7AW8EnV6L3pgw13kvKOEw9iVLGH76aZR4HENZGfrCQuRYDN+mzWT+8AcIVhuyZxj/xreQBgbQ5eUy/NRT6AsKSLr2GkyVleRXutEbtXQcHyYWkTBa9TTs72Pcebn0t/vpb/PhzrZxcm8P+WOS2fzkCcbOy8E3EMbTH8buNmJ1GrC6/s7o1pWrCkX3HoXUcvB0qH1AUYdF8FPZ+y1i0+9C27YVKXAUOXUxMZLR2pKomlGO1mJ6T47Of0/QM8zmJx7BmZrGQEcbWaPL8Q4NE5ec2FNTadi7+4zjZUki6PVSPnMulXMWoBV1SPE4NUtWYLRY8fT1cGzLRkqnziAwNEh3/XG664+TXT4GKR7n+K6t7Juu9oXOzz8fk5hwwnwvxKU4aUUlbHzkAdKLTs8jzLr6RvwDfQx0tiEgEPQMI8sykVCI9MJi7CkJMcME/4boLbDohxAPQ/NmMCepwR/SxowcEu3spOsb3yC4UxUBz3v8MSKtbbRr9Wxf3QuKetzY+TmYnTqSc2zquD0cRl+Qjy4zE6JBArG/0PPre4h3riPtW1OR3mEr8zaSVk/7sQHyq5LJH5uMFJXpbfbhSDaf9Y7V5+VhrKzEu249uswMQnV1pMyYhKbteTjxEFz5NJgctPva+cWeX5yRdk3LGi4ffTkCAk/VPXXGvtebX2dl0Ur1SzwEBx4ltvKP9EvJeAaGsMTNSLEQdVvV4C19rS3Muf5WBBQMZhPxqIhWp0erE9n72otkl1UQ9vvZ+MgDLP/yN7DrZdA4YaBBFQjImfQBKvDThz05hbUP3IczLQNHajondmzF4kqiYvYCRL2BeDRCX0sTZrsDV1Y2SGq0c5P9H7+XFVkmdOgQks93yvbECCYzoYYGTEVF/zBtggTvhXA8zGcqP8PXN38de3Iq6x74HfaUVJxpGdTv3o7JaqNs5lwMZgsaUVSD8IWCcP7dsOM+GGwkafVFJF34AJ3uGg4NHuQbO75OHLUv93Dtw0zNnAqeNtj2W9BoIXviByixgLcvhFbU4kg1ocgKQ91BUvNcJN13L/GGBgJbtxGuPYJxTBWWadOIWG0Y8/PUOdqV98Kb30UZbEIwWgmfqFfb6mPHcBQVocjKh3Nj3yOxoSFi7e3qb1xRELxeQoEAljFj/nniBO9Ke90Qr9x3EDmu1ufoKelMu6gYk+30GN/T20N/azPxeAyLw0VwqB+DxcH4xVnIkg/fQB/TLr36VFA/LYOd7QSGBxk1xYbVpWHHs49RWDOZWDSMxenizT/egzM9E6sriYNvrsZotVKzZCW5BpEuXRezdRo1oNHbRIMf921J8G9GVqmLeCROOBTH6jw99m8ZCHDnUwfISTKyq38te3v2ctXoqzjSfZAvt1Ug/PrXCA9WMGbeIvpam9GKIlI8TtjnxZacgq9fFfTsqq/D09PF1Euu4sSOLQS9XpoP7hvJp3HfbqoWnE/5zLm8fv+vVB8FICWvgHnX3kx2ZdUZ5Q16hokEAiCYEY0KUrgbKdxFxG9HNKUTjxhZ/0jdyPGdDbDs83dgyE8DQGM0YqqsxFT57mvVhoICUu64A/ctt6AxGv+xM7MtHcpWQHAQmt9ShSum3aHabCb45AgOEjm5jbZAKnIsTlphMbIsY09JJeTzcnj9GgrHT2Koq5ODb7xGJBgAQCuK2JOT4W/3gC2DwZl34+vvGxEgGTm9ZxiNVsuUiy7HN9DPyq98E1f6v38AM6NoZE7OHEKxEBEpQkyJcVv1bXxr67eQFFXAoia1hmRjMhePuphvbf3WGenbfG3UD9cnREg+ZKS4hE6vp7vhBMM9XdjcKRzbvIGQz8sFd33vjGN7mxsJ+3zMuvw6dr/8N9IKigg1q+2mRhTRaLVniJHkjhmHzZ0ISJbgw6V2Sycmu568Kjf+Oj+uuIDRYiV08CDa5aZz2or0esP86LU6KrPszB6lzgHn2fMQBZGG4Qbqh+oZDA+S5KyCruPMnzGRx9b9jldf3UplWj66IS3e+DCpX5iC1jGRlmuupe2WW8l9+CFMY8agS7egRCSkoQhi0vsTEClOfVuExMeMksTvJkGCBAkS/GeJkCjAG4IgKMAfFEX54yddoH9KShmc/xN45U4YbFSNVy2pyDKIepGw34fFebaYyJi5C9FodUQCfkSdjgU338b2Zx+ncf9uisZPZtzSVbzZto5sazZjUk9PbOqzs+n+7vewzp6NxmxG5/Uy+NZm1s5QHdl2Nw3hDUVxm9x0Bbo41HeI52c/gtLTixwI0nv3T0FRSPrWNwl4BimbOY8tTzw84uButFhZcPNtCIKAIooEy7+E2Z2nGuS2bAVPi2pg4e9RI3PHVMN7sfbP6oMmaGDsHsB96nw2epsbWfLFrxILh9AZTQx1daLRAJf8RY2WoNFDUuFHWUsJ3gVZkbA4XXj7etFoVGevkN+HxenC09sz4gAW8nlxnposEDQaEATCfj8mu0M9jywh6vRIsSj6Uyq8kWAQo81GyOsh5BkmFgnjzs6hrfbgWeWQYlHaaxuo2/oWlXMXUlhdQ9P+tbhzcjHbnYQDfo5t2UR6cQk15y/HaLUx7ZIrWf/QHzixfTPTL7uG/a+/TMjnpXjCFPLH1nBkw5sEh4eonHseu196jkNvrmbG5ddy8M3XEDQaxi9dxcE3V6PRaqhZsgqry81AZxsntm+laOJkdj3/9Ej5iiZOYcy8RRxevwbzqWsO+9T7FPQMn3EtVnsiYs2HjQUrEQkMJi06vRZBIyAatUhxmWa3iWOlZpL1GZQU/x9pO/+kGkXmzVDFCDoPQDwCnjZ06e+YRA174fAz0LCB1rFLubHiRmJyjJgco8+ShW50Btm4eHr4TZ5u/xVxJU5cimNIcyEMR5h11Q3seuEZoqEQ5bPmkV9dw+6XnqNhzw6Wf/kboDUx/Jv7cF5yKVl//ANN5y0k3tODNDg4IkKCArbkVCYsu4Cg14M9OZXukydIzs0fKaY1KZmB1hZS8gqo2/oWAHlja8gsKSW9aBRyXKLLE6I03crhds9Z966u20dNrnNEhETyB1CiMTRJLlU0Kx5HCgQI7dnL4AOnHTp7774bMS01IULyPpH8fnp//osRARKA4O7dZFx+Oc5rr0WRJBA0KOEwGpMJORpFNJmoOW7iqdE/xd0XBkVhyGplv3stzvR0skrLAQFBqyElN48W/Vhe+eVPiJ5ygJu48mJajxxkqLMdS1IyaYUlbHv60ZH8FUVm69OPsvJr30ZvtlC3aT0n9+wY2T/vxlsxmMwcWrua3qYG0gqLsTqT8A8O0HnyBJXzFvHWX/5OvRyIBAKMXbSUEzu3Eg2p12u02jBabTzxg29SVF3D5GQ3y665mU2vvcBQdyfZZZWMnjGHeCzK8/f9DlGn4+IvfZE0AbC8i4L6v8q7qMom+GCkm9P59rZv85XxX2FxwWKCsSDplnTy7fnE4hGmBHzYLclMXnUJWr2eqRddwe5X/kbQ46FoQgZWhwu0GvaveXlEbToSDJJTPoaOuloGO9qxp6SiN5lxpWeijRoIxUJY9VYkReKE3EU0M4pdFydJHyI5uRztRX84Vbgq8LaBIIKvE9nbQ1guRqofBkki1t+HLj0DObuQuEfGOxAmHpGIxyRScmygAVeGmVhYwmzXsfCmCiKhOLteaqR8ZhYDHU30NHvJLkvCNxgmHIhRNj2DsfNziYVl5DgMK37iEQBVWdhk041ESkjwMZA6SjWMHGoCKUpUSUGJi0QcaWgEkbxyN+0nhsgocjDcE+TIW+3Ykow4ko0EvTGKx6chxWQi4TiSVEz1oqUcWrsGb18vRROnYrBYsLlT8A32U1A9nsxRo9n61KNotCITV1zEwTdeG+kXSrEY2599AqPVxowrriUaDrM3vBdQxXymZU2jxFnCLVW3kFG/4fQ1RP3w1t2w5Ofwl2Uw63/A1wOuAnVf2fKP957aM1VRn8m3QnhYdTixpoIrEeHrkyQWjuMdDKOKkMloRc3I/3hMRm8UkSQJRZJZcksVAU8EgKQsC4c3dJBR4mDcebmEAzGSMi1EgnHGzstGlqC32YenL4gjxYwz3Ux/ux9jgQljJApCjHhfH/rycuRYDEErEti8GTE9HV1PMhtK7iEcDbJLbuDp4Gb+J/sWlFAMSSvR19RwSujRjBSJYHY4UWT5jOvqPFGHxeUmJb+AzFFldJ44Rn71eIomTKZx7272vfYSky+4lKBnmOGeLnKrqqm+9GJStF14ox5GW3O4b969tPs7cBgc5Fpzeaj2obPuX6GjAMz5oLdBSonqEJXgQ0dQVCOE2dfcxM7nn6Rx326SsrJZesfX0GhUgxVHahpRA9xZcyezcmZR4Cj4J2dNkOBjRNRgcbqYccW17Hnpb/Q1N1Ix5zxyKsbAOwwYzA4HHXWqg6UrPZNIKEhP40l2v/gs9pRUJq28hB1/ezJh5JDgAxOIxOnzR+j1RXhioIRrNSdJOvIQ+gk/IhoK4s7JQ4qpTvAaUcv4ZRegN5lwpKaz5ne/PuNc8VgUrVaHOyuH9qNHSCssxpGaQXJ2Li2HD5BeXIpWp2e4q2VkHjjoGcbT10OG2UrRlAlkjrkXk86IXbQzbeJssvtFRMcgsWXpWCw6QsdDDE77P2LeIJavfg+dJoA+Owd9bh7SwAC9v/wVpppxhI8dIz4wiKm8DEEUsc2bR3DHTgSTCW1KCr4315LypTuQevsQ7HYEgwHJM4wgikgDg2jsNrQGA0KuE8nnI9rWRvBwPcKk8Zhv260KyIc8MOYStR9rsKtjRxRw5qoOVWMuUsUAHVlQNFd1mrZlqOsW2ZPU+QWjC0oWqeshGi2UrQStXnWUnnyrOg5J8G9Ncm7+WUZosUiYWVffyP7VL7P2wfspnjSNvDHVZ4joav4uAmv5rHnsfeV5plx0OVXnnc+hta8j6vRMvuAy3Nm5RIMBdv7tZRbdcgdmh+Nju74EnxzxWJyxC5ciSzINe3ZicbpYdMsXEQQNqQWFNO5TnTItLhcIAsc2b8TqcjP1kiuQojFk5eN1sEmQ4D2jFdX3ZvF5UP62w20EzOfo12ZWw0AzOHJAI8Klf4Wug+p7MrMG0qrOTvNOTHZV8KviAtXuwJkHpn/ShgaDyLJMNK2QWEzBrJfQePqIBwLvKkICIGi1eHpCyLLC+PPzEASBniYvDft6yS47e33XL5nRmWIMdPiRYgpaUcCebCQsvzfxMYs9IVL2r6DPzqbnRz/GWFmJLjMTJRZj+MUXyfj+97DNnYuCgEYA2eNF43SgMRgYuPc+AMKHD+Nft478p5/CUFREdmkSWp2Ghv29ePtCjJqUxv43Wqmal01/u5+Gfb0U16Syd3UL4xblcmJnD2XTMzi2tZNoME71ebnoDH6sLiPJ2VbkWAwlFkPrzFX7kQDBIdVZPBaE+jeh+ip0a+9CGn8j/rF3ImsM2LPS0ZneXVDnHxKPQuc+BnsCpOTm03L4ACl5+ej0RvpbW9EZugkMDzHvhs/SfuwIRzetH0kaC4c4uPZ1iidMJqusgpqlK2ncu4uhrg6mXnwFrYcPMGb+ImKRCLOuvpF9q1+i5dB+8sbWUHX5RShSHbOK5tLmayMuxz9o1X4qCAwNkFZUwoRlF3LwzdcAqFmyAkdqKhse+j3nf/F/2PDwH/EPquJJot7Aiq/8b0KEJMG/HbKs4OkLIcezsF30BPpwpzrmdWSfcVzowMERAZKkm28m1tODtzfItsP9IwIkAIfWt7Hy1lHouk7S87sXGXrySQS9npTbb8c8eRKtn7sd4mo703/vvTguvJDhxx8/fQKdDiku/3/2zjs8jvLc2/fM9l606r1a1U3uvdtgG4zpLdSQQBISSgJp50vOSU56TgqkAElooXcMBhuwwbjgbsu2bKv3vtL2OjPfH2tkFJFGCAay93XpsjU75Z2ZV7PvPO/v+T2k5lsQBJAlBVEFrhwz0fD4iseCIGCcMYOUqz5DpKERTZaP7m9+F/uaJbgyO1F5OqgLtINXyy35d3IiepTnu54Zfdb5oj7Ugpq4Mv7ZF4glkvQQ1fQsuI3uToWt9/+UqsXLKHMlCsGY7A5GekP0NzcxZdUaXvntL/Ce0mNOXH425XMXEIuEObFjGwaLlSXXfh6jxQLRLkBOxBwUBUIjYLB/sJv4H4hKrebsL97OtkcfoHn/bnIra5h5/iXEoxEqFyzh8GsbMVptqHV6kBUUWTk1TyEy0OEl8VqmoDNosLoMo0m3obo6pGgUld2OoiiggByLogoni5Ik+XDQqDRs69zGD+b/gGhI4qwv3sbbj95P8/7dZJdXMfuCS+k8fpSt9yck9JbUNFbdeAtb0osIrfk+mfoUatoPon71G+w861t8Z9d3xuzfHXYTSQhYEtQ9CTUXQXrlB2pvLBLHYNWiViXmpNVaEa1eRSwigd/H4O9+T6Q+UWgrfPQY4RMnSL/ja0B+Ql8QdMPZP0NLCn3f/BnG6dMQjSY0WVl4X34Z29o1H6hdH5RYby9KLJ74G5dlBFFEDoUJdXRgSOolPxBBX5StjxwfNSABOL6rl7KZGeRWJHIohro6eeYH/++UeT8YLFamn3M+m373E+Zdei1FU6cxbc15bH3wvtFYbm7VRByZ2bh7/Iz0tdDX0kxh7Uxe/e0vWXTV9Zx1061se+xBmvfvIaOkjLkXXwGCgL3bx5S0QkoHT+sjEdUf+G8gyacLtU6NWTc2vWrAF8EfiTO9wMnZ0TIud01EqR/mf/O+jPeXdxAD6Oqip7uF3MoaZqy7iJ1PPcLRra8z77KrOL79zVH9d82SFex+7kkmLT+Ljvoj8BdxYEEUqXvj1VEDEoCBtha6mxtGTUgURaH9yCF2PvM4RZNrCYyMYLI7kKU4e154imgoROGU6Uw/5/px53d0Rx/5E9P/qWsiCAIqwz+gc9TqiQT0BMPziGurMU6vwpAmIho/JN1vkg/GwHHc9lr0DAMC/a1NvP3ogyz/7BfJqayhre4guVUTSS8sYrC9lc5jddjTMyladxVHAnpSS1fiTZ/Pm2/VMXVVPoIgoihjdV0C0NfcxPS15+HK/WRpBw0aA+eXns9x93F2du3kh/N/yGBoEKPGSCgWYiQyglVnRf6LcwaQ5PHvnkn+NbRGK56+bqoWLqPu9Vdp3LMLo83Gys9/edw9UGk0SPEYaq0WRZJoO3yA8rkL2ffScxzZson5l13DgVdexDvQR3HtDOZffg1afVKzneTDIzASoe3IEFOW56FSifjjAdLiWrTuYSKBACqDdowJSVySefZAF/+3+STBSJwfnT8d1SmtpEalIc+aR8NwAxatBYCslAkgb6D0VOytO97BG7+vQ6820y91oCuyA5D3pz/SdvkVdNzwOQqffgpNRsJAJNYb+MAmJKkWHRa9msYB/99fOUmSJEmS/EfwSTIhmasoSrcgCGnAZkEQjiuK8tZ7VxAE4QbgBoC8vLwz0caxCAIULYLrNkPECxozDJxAEAUUQYssxcksnYDJ4SQw7AYSkx+u/EJC3hEa9uwkGg6RW1nDqi/cCopC0OdlV/AAb3btQkTkqqqrqM2oBUCbm0v2//2cgbt/Q6SuDmnuQhrPv46642EEAWYVpWAzaBFRo1PpqEmtQYWApFYT2LVzNJChXbaUoG8Eb3/vqAEJQDjgp/nAXgzHmtGkpmJdszpReejdAEjZWSCTqIDkbh5/PXSWhAD33cujEpkwex5vP/Ygwz3dqDVapq09D1GrB40R1IZE5WHzp1+M/7Hru4BREpi29ny8/b3oLRZWfeEWoqEQWr2BSSvWEAn6WfWFW4lHIohqNSUzZhP2+Vj1hVuR4zEUReGsL91O2Otl+eduRpYlpFiUs754O2G/l4WfuR4UZTTROOT3UbFgyRiDD7VGiyU1jW2PPkDxtJl4Bvo4/NpGIPG3Muv8Swn5vVhcLtLyi9nx1J+pmLcIEFh981cJ+bzoTRZWf/kOvP291L+9lYG2FgwWKyGfF9/gANPWrufkrrc59vYW5lx0Od7BAVQaLWtvuRODqEI8eBjBYMJmspNz+dU8+4sfjrlOTXt2cfbNX6X+7a0YLFYqFy7FkZ5J8fRZCILASF8PAgLD/b2kFZR+VLfvI+VM9l+tqCWukTi8pYeOY8OIKoGaRTkUTUnlhLuDN/veoj/Yz4r8ZazOqMblboS0Cnj0Eng3GKG3wdUvw7tGJF174aVbQVSTPfcG7jtyHwf6DwBg19m5Y/odvD20G7MrkwxfBlpRy02TbyLdmcqgpxsUWPuVO1FIJNf5BgYorp1Bce0M9m98gUWfuZ7YxIkMP/oo6qpKrNddS2jLVlQppwOtKpWK1oP7GOpsH102/ZzzUWkSiZAqtZqpZ61lw69/SlpeEWd96XZGenvoaTjOzqceBRLC99KzL+J4j4/JeXaaBwMUukyEYxI9njBVWdZE9bZ3EQXi/X0M/+IXADguuxRNQQGx3p5x1z2wYye2s8/+kO7imeNM9F05ECBy/LS7uColhYz//m/8b7zO0G9+g3HWTCxLlyIHAkgeL4oUR5gwgdScUnpv+SZutxvRZiP1czcwd/0l7N34AjufepS5F19B0953OLljG87s3FEDEgCNVocgCMy58HLU6kTQDcCZncvklatRJIm0whLCfi8oMvmTptC4f3eiYgvw9qMPcO7t38LT30fZrHmk5hfwxv33sOyzN1E2cy47HnuIslnz2PnUadGPqFJjz8gkLTeH9V//If0tTcTCI0RCQV6/7zcUTqklJkn4DDry0k1cstBEMPs6gvocDmzeRNO+d1BkmXg0woFtO1nxuZtJyjVO83EcN2Sbs5mTNYef7UtUhrJqrXxnzncQJImKu+ckVrr4zzgyCjmwaSM9Dcc566Zb0FtsSFKcWCjI9sceSlR8BbQGIwaLlbDfh9FmJyU7l7ceuZ/MkjLSCosxWG2sSFnB/oH95Fhy6A/0U2QvQiNq0IgadKr3iLgjvoRoKB4iKhYTamoj1rqX8LF6TAsWQCTMwM9/juFH99Ja18/xnb0oskJagQWzXY8zy4jZrqNibhZvP9FA0BvF7NAx76IyvEOJismCKKBSCQgCLLxsAiablrcea6C/zYdaKzJtdQFmpw53ZxBLig5RJWBN0ZNd5kQQ/0aFgE8hZ6z/2rMTP0DsyFE8ugx8XWF2PlfP5KW5uHLMSHEFS4qezhPD2DOMpBfZ2f5UI0NdfjR6FTPWFJJWmIXBNI/CKdMJeT3E4zFUajXLPvsFFFkmFg4R8Iyw4nNfIhaJ8uZDfxgVDxdOmU7XyVPiGr+P/tZmSmbMpqvraQCW5y/HqDKyqmAVRpWOzO2/HnsOgw3QX5+oEisIiQoSM24AR0GiIvtHjVr3HyXC+Dg+e9/LSH+Qnc80kVVm58SuHspmZFC/o4eKOZkcfK2Dyctz0WhVdBxz03RwAFEQmHN+MeVzMhnqDDBjbQHxmMLG39YRj8mkF1mZdW4xDXv6qN/ejaJAZrENq8uIRqfC5tKj0amINDUhWi1YFi7C8+wzhE+cxLxwAaaFC4l3dEIsjm/TZrRFhcwxpzG97Kt4QiFUKhHPoJsdT/yZc+/4L9RqDYGRESJBH9FwFIsrDd9g/+j5yfEY+156gbTCIgom16LWaJl+zgUU186gr7mRrQ/cx7S155GSk4ctcBLHI4soVRRY91sY2AUnXua1eTdyyH2cLFMWKwtXsr9/P0PhxN/n5NTJVKRUQuqns4LVx6n/qkQBncHI8Z3bmHXBZYiCiCTFCIyMEPb70BpNFE+bzZff+Rq3z7idEnvJGW1vkjPLx6nvvovWaMbT34vebGXNrXeCAr6BfryDAwy1t2JLyyASDGB2pBD0jFAyYw7xeIzAyDCNu3cC4B3oJxoOMm3NeaQVJM2XP418lH1XFAQyrHo0KoH7DkWoL1rP4hlrSbOYmLgszHBXJxZXGuvu+C9EtZpoKIQiSag0GsKnKlm9S9nMOQx0tKLVG0grKMRos1EwaSqxaISU3HwEEQRRTTwapev4EUJ+H2qNDkd6FqJazaGNL1A8/Qo6j3uwlZkZOBxCW+Kgp03ElVtAd8MIhRNdvPnHNqYsz2PfK61MmGKnYs4ifPf8mmhjI7a1azFMqyV46BDGmmo8L25AicWwrz+PmFZDpKEB48yZuG7+EtGODkSdHu8TTxA+fhzz4sUYp09DicVOJYUISCMjKPE4alcq2tRUgnX1GKddkzhhS1ri511S3vP3qNJA6oTTv1v/omJXquU9/y/7cG7mx4SP47P330laYRHn3PZNdj39GIERN8XTZiUqaYoiF377+7QfPURwZATvQMKYPa2wmP6WJnoaT1BcO4OmfYnkOnt6JsfeegPfouWk5hVy3h3/BYJIYHiIA5teYtb6i2net5uB9hbyayaf2ZP+lPJx67s6i4367VuoXLiUyStXg6LQcfQwAe8IRqs9sZIgMHnFaiwpLhZd/VlkSSIeDtHflogXJPnP4ePWf/8u2VMS8/7ezkSxEnsBOP5KIlZKwen/p5aCqzwx92DLJFGZ5O8gqsD1j8+vymot3QETbz3UTDQUx5lpZMmFeVhCf7+asUojklls48CmdmRJIbfCSVqBZdQw870oCIS8UY6+1U1gJIJGp2LqqnxM9g8m6Pyk8lH1XZXNRub//DdDDzyA5+mn0U+eTPb/fh/Rbkf2+RHUauRQCFmWMM+aRfs1147ZXg4ECB09hq64GICMAhu1K/MZ6Q+hKBAOxJDiClJcRq0RkWUQ1QKypGBy6Ohr9aLRqiiocbH14eNEwxLOLBPzLy6DJ+4muncvjksvxbJsKWqXC4wOME4DWUrEcIdbCS76KYcOaDj4RieyrFAyzcvsdcVYXe8RvgeHofcQjHQkDE0yJ41NNO8/DvUvJkz0Xr6N+NkvIssSBRMnE4tE6D5ZTyQYoPXQflJy8lBpdJTMnEdR7UwMVhuKFCfo9bD6S7cR8vtprzuIIyub4Z5E5e94NIrJ7uC1e+9ixrkXYUtPZ8Xnvoxaq6FB7Oay7Z8dTb6/YeINWDXvGRN/wvgon7tmp4sdTzxM1cKlFE75FooMQz2d1L2+CY3eiKevl7kXXYGCgkqtwdPXw6FNL2N2pGBLT08mRyQZx5kYN4SDMY682cXel1qR4jK5VU4WXFyG3Ta++Eeso2P0/+bFixl5/HFi5XOQ4mOThRQF/EdPoG7fy/DDiQIqSjxO/49+ROYPfzCqVQCItrTguv02VFYrnmefRZ2Rgf2C8wmoRYKeKLtfbCEWlkjJNjP7vGIS9e3G42s8TvfX7hizb/djL2D9wWdpViQGD0s0vjhMNGSnNHMp3zt7Nt+svx2tSkuBJQ9/LEieJY9232kdj01nw2VwoSgKbwsRWr0e3I++StmseeRXT0al0bD72adYcs0NxKNRjDYHHcfqSMsrpHrhUmRZxmCxMdTZScm0WVQvXg5KwpxdI8Qg5E7MdacUJwpuBD2fWBOSM9F3NVo9ncePsuS6GxFJmEW2HthHTlUNrtw8DBYrpTPnEgkGEEURAVDpDHQc82BLM46akPjdETwDITKLbWh06oSfTjiM+5FHiTQ2Ylm6BPPixSh/YVia5NPDR91/0w3pLMpbxLe3f5tLs8+jvNHE0mtvBECS4jQf3E9OeQUrPn/z6PhhoLWJPa6TtPpaEQWRq8ovY/orzWSaMseZKC3IWYBB/Z4xhsExRtf9zyKqBFAE3njoOP7hCEarlvkXlaK3gOTzjhqQvEv4wIHTxbvMqYl3zKEGNLEwWf/9TYYeeAzfK69imjuHzO9/D3XKR5u8rsgKSjzOyINPEK6vxzR/PpZlS1ECgb+/8ceMj0u8IRqK4x0Ij1se9EZH/99yYM+oAQkkimP2tzThzM5lxxMPUDxtOns3PDfGTLrj6GEmrTibNx48Tlaxm4zScloP7mPm+ovRm60079/DwiuvRRREZEmi9eA+Js9bQsQTotyhThiNOwvBmApTPwODjYn3LWv2v/eCJPm7fFz67rukWXRY9WoutsRQ98V5aeNDRAIBjDY7K791J+JXv44UDmFPz+T1P/yWrAkVzLvkM8iyhMXponbNOrz9/VhT04mFgpTOnIMrv5Bj294Yc5zsiiri0Sie/n5W3vgVBFFEo9OhN1vw9HbT39SAPTsH/9AQ2x97mNq169jxxCO4uxLjU53RxPRzLmD74w/RcmAPE5euHncuWt2/OF6JxyAeAr117PKRTiLd/bR/8WvE+07/LWf/4udYKyfwn8THrf8S9iKRMM9zd7WjM5lZddMtIAjUrl5H/sQpxCMRUKBmyQrmXXwliiBw46uDBGMB6su+whJdBCnyBrFwlClnrWH/yy+M7r5iwWKsqelUrjz3E2dA8i5WnRWj2siC3AV8e8e3CcUT+vtVBatYkruEXx/4NeeWnMszDc+MbpOiT6HE8enSM30c+q4gS0RDIVoP7qVq0TImrTgbRZYZaG/DnjXWBHXa2vUcffN1ciprmDBnPjufepSg10Pt6nWcfGc7Dbt3cNYXb8Vks2N2pqDR/WfF7pP8+6nf0YMiK1TMzUSSJcJyBG1Mj9iUyKUVNYwWrWns9/GlRw9S3+OlJtvGb6+opSprrOn+lLQpvNL6CkPhIcqd5VgsCY2KHQGHzoG2LETrm0EyHROItuwjFg6j0evRpKeTe889tF50EZ1f/BK5f3oAgFhPAEPlB3uXEgSBkjQzjf1JE5IkSZIkSZLgE2NCoihK96l/+wVBeBaYAbz1F+vcA9wDMG3atI9PiSiTK/HjGyBkL0f0C/iGFDQaEU9/H6tuuoWR3h6kWAxnds6phEsvpTPmMNDaxEhPN/XbtpBWWEL5nPnYjRHOdZ6LTqWjw9cxakICYKiqQvP/vk9sxENzRMWOxmEmZGi5fFY+1VlWRAFo30OAMCa1KVGVxelMJLGdIiGwVDHU1THuVAbbWpClOCOPPkro0CFyvvADtNvuTHxoSQdrGnjbE4G4tEroP3Z644V3JioMnkIQRfa8+AyCqGLq2ecQ9HjYu+E50otLoXLph34bPs58HPtuTBZRqVUcffN1UgsKsaVmUPfGqyy4/BoOvLIBg8VC/sQp7H3xWWadfzEndr5NPBqhZskKdj71GJNXnk1Pw0mGuzuZuf5itj/xMGUz5xLyeWk/cogFl13Djqf+zKTlZ2NyOGk/fICSGbOZfcFltNcdwmC1UjJ9Foc3J0xH0guL2fFkIsE9o6SM0hlzaNi9g/I5C/EO9HH49ZepPescTux8m5Lps9h8711o9Aamn3M+x7a9gd89ROGUafiG3Uw/53wG2loY6evBmZPLtLXnozUYaK87lBB3Vk3CotIQ7e3hmN+NofE4HUcOkVNZkwi0nKJmyQosKS7ioSAX3HwHkkGPRqtj+xMPs/DK69m74ZlRg6Gy2QsJDUcgZ/y1/qRzJvuvKAq0HByk49gwkKhucuj1DlKyTeQV57DKsAqtSksoFqK5OAvXcA/svf+0AQlA2ANNb5w2IWlPCMeR4+TrUliRv4I5WXOQZAmdSoesyDxU/xBWrZUFOQu4tuQCSjsOQk8juSot4bQKDry6gbDfR+mMOTTv301b3UFMDierbrqFiD+A6bx1BKZM5OUnHiQajVB7281IRiPv1lqPBIMM93RTOnMulhQXnfVHOLjpZc796rdY9JnrcWTl0LB7B/FQiKyyCaTlFxIYGab14L7R0zr21hvkVNZw3bxSJEVhcq6dva3DGLQqpuc7cBi1FKadrsYa7+yk5447R3/vOXSIrJ//DOuaNYw8/Ocx112T8c85YX9cORN9V+10Ylm+HM9zzwGQ/o1vMPDTnxJtaQEg2tRE+OAhnDfeSOzkCTR5eQjRKEP33IPkTjxPZI+HofsfwGcz0XJgL2kFRQy0tdDb1EBezST87sHR4wmCiMZgIL9mMgc3bWTZZ2/CEklh8dU3YLDa2PPiMyy+4jq2PvQH+ppOApCSm8+am7/Khl/8KNGmUAhJirPwyutpObiH4d4e5l36GfzuQY5vf4toOITOaGTx1Tdw8p3tGK02ssuraNi9g8DIMI7MUlQaDSFfFFdePgsuv4ZDr7+CWq1GslnpVVuwmfNx7fsRm4ULadyzc8w1629rRZJkxE/MqPXfz8dx3CApEivzV7I4dzGyIieqQilgrH8xsYItB9Ra3J3diKJI0ZTpvPXI/Xj6epm04mwq5i9mwpwFtB7ajzM7mwmzF9B14hibfv8rUBS0BgNnfeE26rZsTlSqstqYLthRZajwR/yMREawa+0ggFN7apJLUaB5C+z6LdHstYT8TsJHdxEfHEBfXo7a4UD2+Rj46U8TY+GghMWpZ+rKfNQakeO7euhr9eLMNlI+O5MtDx1PVGoB/MMRtj5ynBXXVqFSi8xbl4/ZqeWib05HpRF4+4km+tt8AMSjMruebWbV56pRa0V6Gj1YUw1EQ3GMVh3OLPMZuGNnjo9D/w0a0giOxNj2RAORYJydzzex6PJy4lGJ5v0DODNMFNS42L2hmaGuRBA1FpbY/lQjK2+oJh6L0bx/D4VTprHzqUfoa2oAwJWbz+JrPofZlU7z/ncomlxL+ZyFdB4/QtGU6aQWFPH8T/5ntB2DHW1MXrmGMm8JtZnTCMQCHBo8xM7unUyxFiYqZb6XooXQ8Q5MOCshfihZnhBEfELFhp80Pg5996+hyAp1b3ZisGg49FoHpdPT2f1iCzWLctj9Ygv51Sm0HBogu8xB04EBAGRF4e0nG1l2dQVakwY5JvPKPUdG99nX7KVuaycpOWZmrC0arVolxSRkSUFvUqOPuEGlwrJwEd133IE0lDD0cDc2Ym5tw7JqJfGeHnSlpYQOH0Y0GhCL8hEUhXgsRjjgp2LeIuR4jFAohNFmI+QdwZaeQe3Z5zDQ3spQZzt5VRPJnzQVv3sIURR559kn0JnMWFNT6TpRj1avR1SJbH3gXhZeeR1ZwuHEd0DxEjj+EhzfAMCM3hPocqbgDrtRFIUrKq/AqE6IpFP0KYnvkU8pH6v+KwjojGZKamdy8JUNREIBCiZOxWizIep1rL3lTmImkW/O/hbTM6ad0aYmOfN8rPruKQQF7Jk5jPR2sfPJR9GbzeRWTURUqTE5XSy74YvEgkG8Q/2s/PyXURQIuN0MdbaPJnZBwpBs6bU3ojWMT9ZI8snno+y7NqMGs07Nb6+oZW+rm+aBAF2KnenpKpy2qbzz5h52Pp0wrDVYrCy66rM07N6BK7+Ac279Bode24giSRRMmoq7p4fUvHxGenvQmUwY7U4GO1oRRDVyPI6iyGiNJnQmIxklE2g9uBeL04mCghyPM9TZRlpJgNR8K3VbOskqtePuCRD0RgkHYgS9UXpbvJgdOva81ELl3CwObG7HlZpJ2urViDodkj+ANDCIaWot3bffPnqevYcPk/Hd7xJpaMQ4fRrhw3WIJiO9//uDMWOQaGsrjquugmgERAElHEYOh5HDEWRBQJv/yRS/fZR8HJ+9/05EUUXR1OmYHU66Thyj6/jRRLJYzWT0ZjMWp4uXf/1TpFjC1HfSirOZetZahnt6cGbnkFs1EVmS0Oj1zLvsatoO7cWZlUtPw3EG2lsprp1B6bRZxEIJkX3EnxTq/Lv4uPVdjUZN6Yw5tB7al0gGz84lJScfW0YmsiSx4IprsaWm4x9x4x8cQIrHGenrxepKZfLK1ag1mr9/kCSfGj5u/fcfwlWS+PlnsWV++G15D76IntceOQmnrqK7J8jWZ9o5+8q/LZqORuLojGqObuseXdZR78aRaUTUjL8lsqSw75U2AiOJeeNYRGL3C82cdePED+9kPgF8lH1XV1RE5re+hfSlLyFaLIg6HUo8TqSpCcJhkCV0BQXIfj+CRoPyHrN+AKTTSZeCKFAyLZ3BthG6m33Y042otSId9W5mnVNEyB/D7NATCcbJLrWz/9U2ll9Xxab7jo7uw90dYNfzzSy6+mZ8j8+l9zvfQQ74SbnuutPHFFUJw7rUMrr39bP/tdOxt8a9/biyzdSeVZBYEAvB9l8kft5l/m2w4Gug0cNwGzy8HtKrIDhEuOpK/D4/JqudkN+HSq0hJSeXXc88zvxLr8bsdKLW63G3t2JyOuhpqGffS8+fnm/54m0UT59J59FEm2qWriSjuBR7RiZdx4/RuGcHuZUTceUVIElRovnwtelfQ1Ik1KIao9qIJMc+pLv70fNR9l0lLjFt7XpaD+6j41gd2RMqUanVnNz1NpULl5JWUMTme36NdyBhyFwwuZay2fPpaTrOka2bmXX+JRjMn1zDlyQfPmdi3NDX7OWd508XI+s46qZuaydzLygdZ9alrzptXh9paUZQq9EOdWKw1BDynX5uaHQqzCaJwI7t444XOnAATXb2GEMT0WZHV1aK+fb/wouNXr8fQ0xm+5ONo+sMdfnZu7GFhZe+f5LjsLt7jAHJu8iGXOJuHcee7B4dQ4z0hBFfM3H1wmuYn1lF4eHn2Fe2kIsnXMyWji0c6D9AubOcNUVrCMfDtPce4LZd3+Er2dchxWK4cvNxd3WiNRipWbIctVbHtsceZNl1N2F1pdF9/NioBs6ams6ciy7H3dVB2+GDmF2pTF26hPTd34WWNxMNEkRYf1+iyNInlDPRd0W1mqKpMzix4y0GO1rJnlCJ3mxGpVaTO3EKKTn5aI1GtCYjUjRCLCwQCdrZ/tRRFl9ZjkotIisKAhAJSQx1B0hxghIM0nPHnUjDCa3aUGMj0fYOUr/21Y/itJKcAT7q/ishIUsyn5v4OTSiBpcrj+Y9e+k+WU/pjDkUT6nl1d/9atSwoWDSVCatXMPy7HwGwgPo1Dpa/J3UzruVYDzIrdNu5ckTT9Lh72BB9gKqXdXI72oRBAFmf3F8Mvk/gSzDlofqR5/zQW+U1x+sZ82XJsF7DCPGbvSe5ebUxA+gBzJ/MBHZ60W02RDPQHxEiEXp/trXiA8k5tWjjY1EmxpJe0+8+pPCxyXeYLRqyS6z03VyZMxyW9ppM5yB9tbEsvQMiqZMJxIM4B0cwOJKxd3VQSwUxPueIibvEvJ6CHggNS+FkF/GaHWw65nH6G9uYtb5l9C4Zxf9LU0U1c6gdOY85I5OIqkW0kdOgqcLZt8MKSXw8Hkgx2HKZ+DsnyTew5KcMT4uffdd8lJM/OEzU3Gc2MtJ3wgTZi+gcc9Ogp4RXnnwXtZcfRXoDRzamDAo6D5RT/eJhAHTqi/cypEtm8mrqqHr+BFS8goomjqdjmN1VC9aznBvNwNtLeRVTyI1r5BIwM/iq67n1d/9Ek9fb+L4NZOZevY57N7wDOmFJbQfraNk+syEuV1BIZXzF7HjyT8TCQYI+bzoTCYigQCRYACNTjWqdxREgcr5/4LJTvdB2HkX9B6GiZdA9QXgyIPOfRAeIXzCPcaABKD//36JcdZs1Hb7Bz/uJ4yPW/+lvx5L6SSGOtrJrZrI1gfvG9U6VixYQkHNZI5s3Ux/WzOFk2qRFYkt99/HzRfezLPHR8jPdhHqPZgw6D9Zz4Q5C8gsKcc3NIDJ4URvttB6tI6alWvP8In+a0xwTiAiR7h5ys0IgoBKUBGTYjzT+AzHho6xIHsBX576Zba0b6HaVc35peeTa/krxtyfUD4OfVet06DV68kqq+D49jfx9PeRXzOZnKpqDFYLK2+6hZBnBGtqOv2tzbQe2o81NR1FkZl78RW0HjqAIAisuOFLpBeVYLB88DFukiR/C0VWqN/RTfYEO/Y0I56IBwBNXCRedwR1ZibIXaA10TYU4OLf70IQ4O7LpnJ2TcapojpjWZS7iKcbnqZusI4vT/0yKKdiQGEv+dZ8/OE+0tQCvZ50BFUG/uEhHJmJ73VdUSFZP/4xnTfdxODdv0LlXE6s718zUSxNM/N6fT+Korxve5MkSZIkyX8Wn4ii8oIgmARBsLz7f2AFcORvb/UxJOpHUpuJxyREtYp4NILJ7sA3NEgk6EdnMiGKIlI8hsnuoHn/bnY8+Qgndm5DZzDSenAf/a3NtHvbafI00expJsOcgfyeZHpvMEJnUKIxruO2p4/yyO52Xqrr4bsvHqPXE0pUR4lHCAb7+P3h3xMU4iBJGCZOhFMBW9WpCsQ5FdXjTmHC7PlEDx4CIHLsGFHyE+5s826FU05rCCpo2AQLvwbL/wfm3ZKoPpw6dpIvHo2QVVZBxbyFmB0uMopLWXz1Z4kE/34loiT/fgRRQ93rmwj5vORW1lD3xqtkFJfRdeIYvqEBSmbMYc+Lz2BOScE/7Mbd1UHF/MXseuZx1FoNKrWGnobjVMxfzO7nn0KKxrCnZ9ByYC+lM+dy6LWNRAIB9r30HJOWrSKnshqrK42ehhNUL1mG3z3EgVdeRGdKmCTIpyaCBUGkbOZctj1yPxanixM7t7F/4wvkVU3i1d//CkuKi93PP0k0FGLKyjVs+/OfaD20H1mW0JnMuLLz0Fts1CxbxeKrbsCZlUtwZJiAe4iyWXNZct4l5JRMYGTEzeuvb+Tonp3EoxE6jx9luKeLtMJEhaTJK9fQ19LEjicfYWSgn4M7ttLTcJxDm18mp7KG1oN7Rw1IAE7ufJORgc6P/kZ+ypGjIm1HhsYt72/zYRedNHuaqRusI6bE0BrTwJYP/XVjVxaEsRNbjtNCxHz/AGva65jmqKA6pZKeQA//b8f/A8Ab9bKheQPBljfg5Vth0zdAZyEeCVIyfRbTzzmftx75E211BwEIDLvZu+FZehpP4A4FeOWpP9N54hj9LU1svOfXtB3aP3pclUbDkms+T3pRCZaUVEpnzGXamvMQBIGMkgkMdXYgxyWWXncT0WCQN/70exp37xh3HZr37+HcSdnYDVr+6/mjvHCom8f3dPDSvlZKIkNoB3pREqU78G54adz23g0vocnMRHjPhJ7Kbse8ePHfvzlJ3hdBoyHlczdgnJ2oZKlEI6MGJO8SPnoUAQUQkAPBRCJDWhquG2/Eee21aLKz0Obn03jkIADpxaV01ieEjz0NJ8mtnjS6L0WRsThSOLR5IzPWnc/zP/ker933G7bcfw8ntr/F4s9cT+fxo6MGJABDHW30NJwkvSghIM4ur0RnNIMoEBzx0H2ins5jhzFa7bjyCqhcsCTR1niM2tXrKJ+3iK0P3IszK4edTz3Klvv/j8H24+x86lG2PfIAgZFh+psb6T55nJd++WP87mFe3dnHwIL/o6B8vGi5asZUNEnR/ceekcgIj514jIgUQVIk+oP9/NeO/0KSI+AohDlfJmbIwOxMwZVXgIJC0ZQZ1CxdSW9jA7FwGEVRMNps+IbcxCIR3nnmcU6VFyIaCrHlgXuYtuY81DoDiqQgS3HyNVl0B7pZkrcEu8ZCddBP1mALtO2E9l3wyMVEJlxL1DABOTWbeO1CdOsuJVhXh3nZMkaefBIA47oL8bkjSHGFoCfC/ldbqZiTxVCXH0EQiUWl0Qm5d4kE4kTDcVYviZPlPURusRlXjoVwQKKz3j3uGvncYYZ7g4z0B5FiMlJcIeT/5Ip0P8nEZBVBb4RIMCE8l+MKbzxQj6c/RMEkF/nVKSiyQm+Td9y2geEIWoOJgsm19Dc3jk7KQcJUpHn/HtQaNa0H97HzmcfILq9k+fVfIK9mMs//9Htj9pVbWUPX8WOcn3cur7a+yjs977C7ZzfTM6ZTYC2Exd8EzanE5Pw5CYF51uTEe9WcLyQqAiUNSJKQqNbavH8AvVmLzx1GEAViEQlBTCTB2NKMaLRqWg+PHzc3HxpEpRLwDIbGfdZxzE16gYXOE8MIAkSDcTQ6Nc4sE6m5JrQ6EWH1pcRQI42MjNnW/8YbqOx21BkZeF5+GUN5OYoso43FETVqNDo9trQMiqfPJhaKIEsSHceOYE3PoP6tN9j64H101R9FZzBSt2Uzgx1t7Hr2CV7/4+8oPlUNUK3T4cjMRqXRMmHuQmpXr2OoqwNVbi0s+y7UXgOuMqhcBwu+inWki/m9DSDA99/5PnE5TlyO44/5+eWBXxJVouOuQZIPH1kWUBSZzffeRcAzjCiK7HrmMTbfcxcGkwWdwcSzQ68QCquSE1hJPpbEY3G0ej1vP/oQokqFb2iQrQ/cy9YH7sGVm4eoVuNzD9Lf0oygUmHPyCAaCVG/bcuY/RRPm500IEnyofDWyQGOdXv4/ZvN/O7NZjYd6+PXWxpR9x/F23GSo1s3j64b8nk58MoGJi1fTdGUGRx8dQOxUBBJivP2Yw+yb8MzyPE4Gr2etMIS3nzwPvxuN4HhISIBP7FwiIB7iEgggMFiQWswMtjRTjQYRK3TUTh5HhqdgXhUxjMQwmjT0Xl8mIwiK90nR0gvtNJ53E1GkY1IMI6oTkxPdXdGUdlsxD0eVK4UxLRU/G+9Ne5cvS+9RPo3v4Hk8SJ5vch+/6gBybv4N29GkCVEkwnPhpdAFEGSEAQByeNJJO0kSfIXCIJAelEJU1au4eybv8aE2fPRn0r0zCgp4+Lv/IiZ511E7ZrzKJ+7kAmzF5BXnUgy1+oNiCo1rrx8zA4nx7e/xY4n/0xb3SF0BiP9rS04c3LRGY2o1Goczv8sI9L/aFQiIa+HQ5teRmcw0nX8GG/9+Y+88/SjWFNcaHQ6BFHEZHfS39qMIIpMXL6K2tXrsKaknunWJ0nyicXTHxxNHn6Xwc4gId9fSXwD4jGJk+/00tvsGfdZ25EhAkPjY7hyLIZvaGwVZ0WBSCAZW/h3Img0qF0uRJ0u8btajdrpRNBqEAwGFFFE8vtxXHTRmO3Uqamo08cWWFCpRdKLnZTkxFh4URFDHT6mLM+n6eAAZqee2rPycWQY8Y9EsLoMBDwR/pK+Zg+egTC2ux5ENJkY+sMfifWPT4oD6KgfH5dr2Nt3et5hsAF2/HLsCm//HIaawNcL7TvB2wVaM8QjDOSvZ6SvF5PDSdaECjR6PbIsU7N0JdFwCHdPFyO9PYQDPoJeL/s2PDd2vuX+ewl5vWh0OqacdQ6yLOMZ6GPzPXfR03Acrd7A4ddfof3IQUSNhv/Z9T+4I25kRSYQC/Dbw7/FL42PJyYZj6xISLEYqflFLLjiOjQGA7uffwqA3OpJ1L2xadSABKD14D7kWAyt0YxGq6W/pelMNT1JklEG2n3jljXt7yfsH/+9Z5g0idTbb0PQ6ZBHRjBOqyX81EMsmidicWoBMNm1LFufTvyFP6PJGZ+0pS0uRuVwjFmmSU8jaM6mW11If8jCzv0i/S3j5/F6m7zEouONRgBOGjyos7LGLFOlpBDOz0Xw6seNIdxtIS5MX0dtXyMEeonFQ/x070/RqDRcXXU16cZ0frr3p4TjAXrdxwnFQ7QqvWSUluMZ6MM/PETjnp3kT5zC4ddeoWTqTHynDAjf1REBeAf6aNr7Di0H96HSaAABp1l12oAEEoWW3vgfUOIk+ccRNBqa9++m81gdOoORY2+9wfbHH6a3qQG90UxgxI13sB/vgMSzP+9hw93d9LcFUBTwuSPIsoIoCkTDElJMJuyPQTxOpKFh1IDkXXyvvDJaWChJkn+VmBTjh3t/SIevg7gSp45mqhYuY/kNX6Jy0ZJT44fTSd6th/YTcA/h9rpp9jTT5mkjz5JHrOp8/DE/v9r/K6pcVVxVeRUDoQHuPng3cYGE6d35f4SBk8AHn5MLeaJjjKYgUazH7w6DVodx+vQxn5nmzQP1X69EJWq1iXH/GdKKRdvaRw1I3iXw1jbiQ+PH9En+MbR6NfMvLiOtIBFz1RrULL26AlfO6Vhp8dSEhiy/ZgrHtr1B1/GjVMxdSDySyLNQabTk10weu2NBwGizUzVXzZsP/5bCSdMYaG2mr6kBRZHZ+dQjtB7cR9Wi5VQvWYkiyyjF+XRagnDgYcibnfhubd+RMCABOPgQDDeTJMl7Cft9ZMkjhBwW2g4foHHPTqoXLaNo6nRCPi/RFAfSwADR8Pu8J8sys86/BFd+ITmVNVhdqXTWH+XYW2/gHeinq/4otavPo37bVl761Y+JhUMc2bJp1IAEoL3uICM9Pdgzsjmw8QUyikvY9ugD6PQG2uoOcmTLZmqWrgQgFg6j1upQqdUYrOksu6aSyctzmbIij/W3TyWj6AOa2g02wYPnQuvb4OuD178L234Kvv5Eka2eQ8ju3nGbyR4Piqc/EfeIj4+tJPk3I0ugSGgiUdIKimg/cniM1rH+rTcY6upk7qVXM/fCy/EM9HF0y+t4+3o50T3My3W9nGjrw2CxEvL7iIaCHN68Ea3RgMnuwNPfR9DroXrhEizGT7Z5k0aloTa9lqV5S7FoLLjDbjY0b2BXzy4ANjRvYH3Jeu5fdT93zriTMmfZGW7xp5N4XGKwvZXN995Ff2szWr2eA6+8SPO+Pah1enwD/XSdPMZgRxuuvHzW3vJ1Ji5dybQ152Gw2iiqnU75vEWk5hclDUiS/FvpPDGMdzBM5bxEnMkXTcTO9JKa8L79mGbMQIgGkDVmbnn8IDFJ5onPzWb1xMy/qoecnz2fVQWrmJs9l0smXHLaKDLiI9+aT5u/nWkOLXqzCq15HT1NY+ciLEsW47j8coYffAgl3Eys518zIanItDIUiNLnTX5/J0mSJEkS+KTUlE8Hnj31ZasGHlEU5ZUz26R/EkWB4AAYHUgSqNUCAW8IRVEIDLvR6PWEA34MVhuxUBBEFb2NiYTgoGdkdPKpr6WR7PIqAvEARrURi8ZCIBrAoksE5wKROH3eMO3uEP5IIiiWadVz0/R8Zjv0+GIClkAdxd523GE3Czev4Z0Vm0CtJu2WrxBpbCT86GMYzl5Je91Bpp97Pgc2bkCW4pTPXUhO1UQ875lEkV2Z9C3/I+htOFw1JKYLFciogaevSzgEx8KQVg4zP4+iKBwbOsb27u3Mskwlo7gMrd5ALBomEghgdaWiNSZFmB8HpFiYvpZExYj4qSp/zuwcOo7Wnfo8CoqCMzObgbaW92wXw56RxXBPolKU1mgk5PWgN5kJehLiLVtaOsff3jq6/o4nH0FvtuDIykYQRbQmM7Wrz2Xn04+TU1FDx9E6wn4/FlcqBot1NNnelZdPw+4dGG12Rvp6QFEw2u14B/pPJQxHkOJxNHoD1YuW89Yj9+PMzKZq4VLefvR+Zqy7kLce/hMGq5Vpa9bz6u9+ydSzz2XHE39m2trzGGhrxpmdy0hvDwAn39nO/EuvwmixYbBY6G9pIrO0HHdXJ417djIzI1G9KyU7h5O7xlfr8I/0jVuW5F9DrRVIyTbhPZU0qTOqKZ+dSW6lk0gkSp4ln+Gom5gUIyAFIXMSzLoJnrsRAG/JUg6VL+UdyUveiSeYmTGT/LzZkFYF/Uch5MG+63dM2/U7+md9jh/5DxF/z6R+pb2M/P5Twh9BpNMNr957F0abnYlLV41WyHyXvsaTVM5fjLuni7yaSfjdQxRNmY6iyAx0tFEcnYlaq8XkcKDR6QgHzIS8HpzZ2QiCirDfz2BHKzqDkeKp0zE6nOx+LpFAXzhl2qh79rvkVFThj0W5f0fr6LLvTLOxtGMf+u0qgoJItKgI68IFiMbxyU+i0YhosZD354cJHz6MoNVhmDIFfekHqG6XZBRdYSE5v/4Vse5uom2t77uOqNOhKy2BuITKaEQ0mxn83e8QjQYcl11OvHYhaW1H6TxWx3B3F6l5BbTVHSQWDuHp7WHKqrUc2foaKpWKcNDPhNnz2fPCM8jvqfRmTUvn5M638Q4NjDt+T+NxssurMDlSyK2s5rFvf5XsiioKJk2l7dEHGOntJjWviNyqGkRRhXegD53RgVZvREGmevFy/O4hYuEQsXBoNHHDNzhAYMSN2ZGCfzgxOdtyYC+lM2Zz7GA9M8q0zF+7ip2btiDH40yaN5tS+wjIMRB1H/q9SPLhUWIvodXbyk/3/nR02cXF60jXuqB6PSFnDa1twwx3d+HKy8dkc6Ax6HF3dpBeWELX8WPsOlWdG6C4dvq4Y3gH+onHojizc2g7fICssgrskolZcjlWn0Su3ApxP8SioNEjR2KEVryANOwnmJHFthd76G8PYLRqmXXR11CnaDBdeCm6jHSYNg+GIpgdEn2tMjPPLebwlk4mLclB3V6PNbsMQRRQ5NPqM1EtoDeKWLRhdFWTUNkSk3QanYgj08RQ19jqxgaTFotTTyQURxAS22v1qg/5TiT5R1BrVOhNWkSVgCydvqeHt3Sy+qYaohEJvUmN1WUYHWMAmJ067OkRBJUWmyuNw5tfHrfv3oYTWFJSWXLN5/EPDyHF45zYtR2dych5d/w/AsNuzCkphH1+tHo9igCCR6A/2M+Nk26kw9fBhuYNnFN8DpSuSrxPDTVBbx3Eo1C5PFE9M0mS96DRq0jLtyBLMhq9CpVKQBBApRIRBIgEY0RCMdLyLePEwo70xBjQaNWO268j04gcV0gvsJCSY8Jk04OQSNLwDgZ568kRQr4YGUUWpv3XTwl+97bTVQTVagRBRA4GscyejRQOY6iqRmlqRj+xCkkBtVaXaF8gikZvoGnvTvKrJ9LbeAKAkb6exHseMNjeis5gYLirg3eefZx5l3wGQQCrKxVLiguDxUp73UFScvI5phRS8+ZNsOgbcPhx0Bjg5EYwpsLEiymxFyDJEncfvHv0XFcWrCTb/C9UfEnyDyOoIOz3EvSMEPSMjPnMPzSIId/Kgf6DLMu8/Mw0MEmSv4NWrybkHSHs99Jx9PDoclmS8LuHyKmsxjc4QPG0WWy862fIUpwFV1zLxKWrOLJ1M6JKzcz1F5NbOd78OUmSfxZFUXh8TwezilLY0zo2ycGqeOlQxgsJe5tOolKrUOJx+pobiQTHCg+CPi9pBUU895P/JhYKEY8mBAUavQFBEVCpNcTCIVQaDVWLlhGPRJHjcbxuN4K6jIF2H6m5FnRGNVJMwpFpwjMYwpFpwjsQwpmZiOOJp8YrACkpKrRZKViyIkTjBuIBAxHb+LaLZjORhkbivb2IajUqh3P8RdFoQK2m+447Mc2YAbIymmyJSkTUjR/zJEnyLoIo8pdv6YIgkFlSRmbJ6fewwMgwb/75j+TXTCEejVI0ZRohr29M8qh3oO9UvMxE7Zp1qDVa1t/2NVzqYZL8ZxANBfAPDxHyecckGPa3NhMNh4iGQjgy9GgtFpbN+sKZa2iSJJ8yjJbxSWomuxat+v2TkSFhXGIwayia7CI110pgJEzdm12E/TFSss1ojeMlNVadD71Zk0hEfQ82S9J0+qNGX1lJ6MQJFK8XJR5HEEUUWSL1K18mXF+fMCBJS0eTmfm+21sqStA0NjJzjo6oSkdheS5KOISmu57wSBBNbjVp+TkYrVpqz8oHBKS4zGCnj1hEYrDLj0bnIO2hl4n39eOLaLHFZVRqEc9gEN9gmGhEwmAZPw7NKLah1pwyyYt4T49bAcxpMPNGGG6B174DOVMTy5u34F99H77hOM6sXOLRKH73AKkFRfjdQ6g1WuKxKIIgEA0lzALfT9TsHehDkWUa9uykfO4iNDodbYcTBTOGe7pHtR79LU1MWXkWkwPV/O7Q70a3T9GnUGRIH7ffJOORYnEEUYVKo8bb34soqjA5nASG3aTm5rPziT+P22aws52cCZW48guR4v/+50rQG8E7GEarV2FLN6JSJc0bk4zFlmYYtyw1z4rWMP47UmWxkHLttViWLUORJMINDbhu+CzR/ZtYMXkaUmYBOq2C5wdfJ3j8OGl33kFwzx5kX2LuQpOfj3n+fLRFRYQPHkQOhVHZrPjjJnbu7qOnsQW9WcPkpbnoTOO/960uPRrt+/fhEbNA77euIv2PG5H2HUIzaSLq22+kAQ2p72MWbHboMOqFRDJy7xG01WuocFaws3snO7t3ApBhysCoNpCiiKhFNU93vsD3V9+JrUvinacfY96lVxPy++hraaSodjqCSs1we+u4Y/W3NJJZWs7x7W+CIDB/6TTGpfB5uyCeNID6Z1DiMQbaWsbMNwF0HT9K1ZLlhAN+zHo9BjPMPb+Yhj39o9/NBrMGQUhUN1ZrRRQlMR8nBXyI2vHf64JafXqOLEmSfxGX0cVlFZfxf/v+b3TZwplTkMJRVGr1qK78vQx2tDJx9gUwBAPBAfwxP1G1i5JgKl8puIHH+15gg38DAGcXno06Hk0Umtz1G1j5vwmzo7/A5w4RCUlodCqsKfq/miynN2tQaUSk2Ol9CAIYLFpUcQuGabUYJk8i2tKKtrgIRHFUX/NxRHg/8xOVCkH1SUm3+HiSkm1m7c2T8bvDaPUJPc57SSuqoK+5kd3PJ7SwkUCAzffexaKrb0BUZSAIKqoWLkOKx+k8VofBaqN29ToMFhvdDUfx9PVisFjpOaU1eBfvQD/Ht22hYvZ8gj4PHpvE9sEDCIu+wqSGbRhRoHPP2MYqf+FMluQ/mp6mRt5+/EEyCotRa3XMv+xqtj/+ELuff4o5F11B94l6pIpC4qW5TDZrUasTRVxFlYr2Y4dxpDoJR2IMd3XiH3YzYe5Cuk8cwzc4gILClLPWsu2R+/ENDWB2pGBJTefgpvF6tKHOdgKeYfInTkU5NeY4vuMtCifXcuytN6iwLgLAkZmF7oSJmed9DrUulawSO0WT/3XT64inlcPLvs6OUCd2tZHZGCnb+jOYeROcfAV23oV+yvcSJlPx0xplx+UXonnhMnA3waTLYNEdYM/7G0dK8qHiH6QtdypOSUJrMNLbcGLcKl3Hj5I/eSqKJKE1GNj74jNMX3chD7lP9bOhGNU9h1h141fY8eSfsbjSCLjd2LNysKSmIQoiVmfKR31m/zYyzZnkWfP49o5vjykUfmXllTgN7zM3neRDRWfU03OqqKq7qwN3VwcA3SfqmXHuBTTu3YXZkYLRZsWS4iJ7QuXoGNWZlXPG2p3kP48jb3WhN2tGv2P9sUS+QIqsQRruwThzJhz+HRuHs9nfPsJPLphIUerfzpNViSp+svAnpxfo3jUh8ZBvyed55XnUlUaWVFnZcNcxdjwzTE5FCGvK6XF12u23Edi+Hf/GuzHM/SZKTEbQfLBYb0124p2trstDhu2TbTSVJEmSJEn+dT4RUTFFUZqBSWe6Hf8SggBqI+ZwKyF9EYIIcZOJw6+9QvaESoxWKx3HjuDMzEal1iApMjkV1WPMHQAySyYg6V3kanIJxAJEpAht3jYsWgv5tnwEQSDHoad9ODHplO8wcu/Z1WhVAqGgQFg0ENDOpWjv97hv4c3c27+L9Tuu4cmSHxAZGCDe14c2JSURqKiZRGf9MWasuwCzw4k9I2tMcM3yv9/jRFsLBqsNIRSkZ8c2iqZMwyrFwNcDi74O8TCodInfRQ1Hh47y2U2fZWr6VNbZVxCyqultbmDnk39GiscRVSoWX/05MopKEFXJpMwzic6sI6eymo4jh1FrEpNnA20tZJWVc2LnACqNFkEQGexoo3TmXHobT6LIMhqdHk9/L8W1M2APhH1ezM4U/MNujPZEpQp3VydphcVjqraE/T6MVge9jSeIhoOk5hWQXlSMIyuLeZdcSSwaZfn1X6DtyCECw+8R1QsCcjyO6lQbfYMDODKzGe7tRhQTA+aymXM4tPllUBQq5i9m22MPkl8zmYZd25GlODVLVrD9sQexZWTS03CcWCTMu+7u3oF+SmfMBkCRZd76858omjp9tABGXvVEdj+XqFTz7nXqb20ms7Sc5v27x1xTV1Yyqe3DJhyKUjU/m54mD3JcZt5FpejMGlQqIKCjRphJt7kBlVpFVIqCyQllq+Ccu+DwY7w4YQH3tz7H1LSpHG3ZyMPHHuZ3y39H1uVPQO8RMDjAmgXebtL2/JFfrPwuD/ob2OOuZ37mLC4TbNg3/w8A0YJlbH99F7IkEQkEsaWPF17lVFYTj8UI+/2kFRSTWzUJnd6AoBII+/0M9/WQmpuPHJdp3LMzEUxWFLQGIytu+BKWtDRi4RBqnR6/e4gDm16iYPJUrK5UUMCRlcNwdycA6UUl5E+extHuAFEpEQgrdBpYGe8m3nCSwTfeAMBQW4vGlYJ17Rq8r756OgCs0WBdswa10Yh64kSMEyf++2/ofxAqsxlVWRmCWsQ4ezbBnTtHP7OsWoUcj9N9x50owSAqu530//o2wXd2E+voINjVz56oRG55Fc6sXDrrj7DoM9fT39ZCyOvh+I63KJ+3iLW33ElvUwORYBCT0zmmCgaAzmik7o1NTFm1luZ9Y59XuZUTsaSmYnGl8uaD9wHQeawOjU5HbtVEOo4eRqVRgwIb7/45IW/CZKp87kImr1xDb+NJBjva3rPH0xPRI329mFNOm5BodDqkeIyek8fRzV/P9J03UnbxBSiiFmvbBlSOa0GdNCD5uFPiKOHeFfdyz6F7aPY0c27eUs7JmINGUSFnazmw/Qgjff2k5OSw4Rc/QpFlVBoNS6+9kfTiUl742ffH7M9otY87hjMrB7Vawxt/+A3T1qxHpVITcnuwhLX0H21GKSzClJVPqruFeNzEwDMvM/LEkxjWrucdi4XBriAAQW+UrQ+fYOa6IhwzVxMVIdYVIBqOozdr0ehUiCqB4smpOCwyw1dcR8b9DzN9TQG7Xzg1Nhdg1rnFpBU70VasGdNOe6qRmecWsfkPR0erGObXpKDRJ8wACqpTEETQmTTY08cL2pL8+7Gnm4iEJWpX5bPn5dbRymaz1hXR2+TBNxwho8jG7POKeO1P9UhxmcJJDiZMj9LfehhHRjZ6k4mcympaDuwds+/cyhoOv7aRORdezku/+BFGm51Z51+CLEkMdbSz86lHmXPx5ex+9glCfh8Tl62ibOZc/jT9bu5q/iN7+/YyMXUiDr0DrHngKABXGVSsgZRSSApbkrwPao2K2rMKeO3+Y0xdkU/jvj4mLcul6UA/k5blUr+9h9qzCjA7dLTWDRIYSVQndGQaySqzY3JoMVq15FY46ahPvGtpdCpmrClkZChEerENs01LOBjH0xfEYNGiM6opnJLKsbe66W32sVdxMnXZKsKnxBCOSy9FVqtQ2x3E/AHUaWlIPi8qiwX5Tw9BZgaqtWcjxyXUWh2yJJFZPIG2ukPkVtaMJjq8S1p+EfXbtoz+fnz7myy55vM88d9fB0BvMrP46s9xfOc2wru2UXjOrzFv/jLMujHheqHSgKMQPB3kFy3knhX38Ie6P1DvrueswrNYX7oevTo5WfJRoBHAYLVjSUnF914zPEFAb7YgyXFuqvomBrXlzDUySZK/gSYewuRIQWc0jTFvUGu06I0mIoEAzqwc/O5BqhYuoeXgPtrrDlK75jymrV2PqBKxutIQxGRCT5IPh4IUI6nvk9Ao2fIYnyIE2WUVRMMh9EYzudUTady9c8znZqeTZ3/4XZRToiqNTo+oViOIIqIgACJagwmNVkvvyRNIUjwR11drSMkpY6Ddi7s3wJQVedTv6KFmUQ57N7ZSuyKf3RtamHVuEW8/3cjU5Xk07uvHlWsip1iHfvAViPjQKTI6jR5xwRRGHn8cJXqqqrIoYl6yGMk9RKyrC016OoJaha6igkj9aVNe+3nr6PvOd4n3JIQdikBC8ChFUNnsaJLx2SQfAtFQkP7mJgonT2OgrZm0giKGOttJyRkvnM0uryTo8aBSa8nOciCEklWR/1PQ6o1YXOPF3Zml5QiiSOHU6QRHRlBiScOCJEk+TDQOG6XT02nYk5gPEVUCtavyUf0NgWRcktCaNCiygjVFh8WlI63AyvanG6lZlI3ZPn5biyHAknV2XnlsEDmeCC7OXJmCyzQE5P9bzi3J+yMIAsbycgAkn4+IIKAtLCR06DCSzwcqNZbly9EVFv7VfehLSkYTvZV4nHBzM3GTjoE7bkdjNOL48h0MCrUcfK2DCTMz0Js1KIpCzYLshHm5AkN9EQwmF91tAbwjcWLhOAFvFO9AiJZDg5ROT8eZZcLdnXiPNNq0VJ/aHkjErSwZ4O+DebeCNRsOP5Ew6W/cBBlVYE5jeMot7Nx6CJPdgdmZgtWVhtFup/3IIUS1moyi0lENhkqlQlHA/D6JIM6sXBAEPH29BD3DhP2+xLK/ILuimld+dxe3XXkVedY8NndsYZKzgmtKzid7pAtSkobZfw/NKWPleDyOye7g9T/+lskrVqPW6hDVGnKrqjm6dewcrisnj1AoiBQOI6oTSbCKrNDb4uHY9h6cmUasLgMmmw6zQ4vZYSAaioOQME/9Zxjo8PHKPUfwDoQQRYEZ5xRSszDnfc0lkvznklFkI3uCg64TCVNFnVHN9NUFqDXvr+sTRBFdQUHiF0ki0NtLrKcHul/EOH0a+pqJeCIR9JMmoi0pIf/RR4g2NSNo1OgmTECbnXh37/nGN5FHRtDNnkddcBo9jV4Awv4Yw30B8qpSKJqcSvPBRJxZpRaZe34JcizOW4+eYKQ/ROXcTHIqnOhNGmZnzuZbjd/ijv+9HWdUS9xkxNOiw+hTCKljlExLo3FvwlxSVAvMOq+ImM6X0A5ZMkkJ+1iev5xCWyEH+g9QnlLO1LSp2KNR8qNRvlV7O/+998d8/cT/8t+VXyervJI3H/4Dy677AtkTKlFkGVmSSMke/7zNKqug79TzO6eiCr3RmNCavjcJumodqJNzy/8MUjxOZkkZncfqxizPq54EMsTCYfQmC97BfhyZE5iyMh93l5/y2RmYHTpkGWRFRqUkxpWOdCMaVEilZehKS4k0nK4i77zqqoQ5bpIkHxJri9aiETU8dvwx0ozpSBo1/u4uHFk55FbWjDHWAUjNL+Jo71G+vfvb/HjBj8kOWmmsP47WaGBiPJ/ylBv5s+VVHFYX6YZ0MvyDMOGsxDxqNMB7dV0n3ScxDjlRYgIIEAL8wyEyi+yI72NWpjOrmLWuiO1PNY5qL2rPKsBg0mLIqkAaGsK7cSNyMEC8rx/LWavQnxrDfxzR5Oejq6wkcuzY6DL7xRchpv3rSfz/6eiNGvTG939Wurv91J8qbPleQp4gJ/aGSS8MozUYmDBnAYWTaxFEFc6sbCLBACabkYVXXU88HienvGq8jqd6EpKiYHak8POjv+fV7s08CPxwxjdZfXwb9Bw6vXLNRYn3syRJAO/wMG8/9gA55VXsfv5J4pEIBouVJdd8ns333kXX8aMsveGLeFo6yS4tp3BiLS/96sejc8i1q9ch6My8+sv/JugZQWcyYXI4yCydQPuRQxza9DILLr92VNebVzOJk7u2kVNZzXBP15i2pBUUcej1jehMJt51+dfoDaPFBHRGE2d98RsgOFl01UwgoYFs6mynSakn15pLtjkbvVqPUfPPjyl3EuZLRxOFfsocZTS7qrn67O9TGA/DnnsB0Df9nrz//QqDT7xBrH8Ix4XnYTUfgROnxkwHHwZnESy47Z8+fpIPioxbVmPUmBHlMNkVVbQc/ItnZNVE5HgMSVLoa25k7sVXcCC1lxtKBK5a4uREl5pMzSJ2/PFXTF65GosrjZDPQ+exOuwZmaTmF52hc/v3UeWq4nfLfsdvD/0Wd9jNFRVXsCx/2Zlu1n8EsiSRXVY5TsOQVz0RUa1h4rJVaPUGRJWa9KLSv2qSlyTJvxP/cISWQ4NMXpY7GhvzRRPmummBhM7GNG0i0iH4RXMWJWlm1k/9ACY5ulPaybCX7FDiXWSoOEzVhAqi/v9Brb2CZ3+6nzVfnERKdsLgRDQYyPrhD2i99DIi9S8S65+LNvtvm5/8NSqzrIgCHOnysLwyaUieJEmSJP/pJGcNP0piQRBUWPReGo9DJNBD9eIVePp78LmHKKqdgSQraEwGIoND5NVMprepgZ6G4wCUzZqHIzObsM7AcGSYLl8Xr7W/RpG9iAXZC8gwZqBVCcQkMGvVaFUiP1pZgUGtYqDNCyIoEqTlWxhZ9BtqnlvNT/LnEnLkY/FuJbbqHKyTqsFqJabAgY3Pk1c5EY3BQDQSoa3uEDUz58F56zBMncpwfi52WWKkrxed0YTBZsPT34vVKINaD2EvdO1NJM3ZckGtZ3f3br4/9/uk6l0IUQgH/Ox6+jGkU0nvsiSx5f57yKmowpWbFOicSbSiQsXchXgH+mnev4dpa9ez/+UXKJs1F3d3J/XbtjD7gkvZ/fxTaHQ6ssurOLr1NWZfcCm7nnmckNdL0dQZHNu2lbkXX8E7zz7BQFsLlQuWcHzHWyy4/BpCXi++oQFElZopq9YgCAKLr76BeCyCqNIgxePEgmEMNjt4Rgh4RiibMYdIKMjJXdtpO3yACbPnc2LHW5hsdrQGAyd3vs38y65m9wtPIcsyRpsdg9VGYDgxGR6PRUFRMFhto39biqIQj0UxWq2j63WfOEZx7Qya9u0m6BmheNpMmva+A0DYH8SVnQiahAN+DFYrQc8IbXUHmXLWORza9BJzL76Skb4e3F0dCILI5FVrMBVmfeT38dNOYDDO3o2tzL+oFI1ehVavIuSL4ekJ4xkKk55vJSe9lLtafsIVFVckNjI6YeqVdBfPJ9C6iW/M/AaSLIECMjLNnmaysueBLQd6DsLaX8FbP4HOPZQdfpb/t/S7BKrsmEU16t/OGa0EEDek4R0eAcBgsaC32Ji0/GwOv/YKiiLjzM6hZslKjmzZTNns+eiMRmRJSiTexUWMdgeBYTeOzGwCHjcHX31p9DyjoSDbHnuAtV++EwSBtsP7qXv9VSBhDGFJcVG9ZCXrvvZtfIODCKJASnYuzQGBNvcwF0zN4UjXMVbmGlAP9DNyyoAEILRvH6G9exGdTrJ/9lOC+w8kLtPUqUR7x05YJvnw0RWVYL/ty5j3LyJSX4++qgptaSkd138WTgnQpZER+r73fdLu+Bo9d9yJUjGV/n1+BtqhfM71lC/wI0ki5972/wj2t6DoLMhSnG2P3M9AWwvO7Fxq15xHblUNHUdPiytEUUVg2I3BYqVo6nSa9ydc/XOranDl5iFLEoc3bxzT3paD+zj/Gz+kdMZKMkoL2Pz7u0YNSCCREFxUO2OMAUnWhArcp8xxADJKytj30nNAIlHPlVuAzz1IxfzFiOkVMOdL2Lf8D8SjMO8WmLDqQ7/uSf49TEqdxM8X/5xQfz32/Q+Dfwu07cRb/Vn0FhtZdidv/PH3o8lsUizGmw/9gXPv+C8sKS48fb2j+2rcu4v5l13FjicSRnUmh5NFn7kez9AAmaXlWFLTQBAY6elGisewpabTfugg+cJUjqSlkXlymHB6GsL/fhehoIhpipGWOjMn3+lHkUGWFRyZRvzuEL1NXly5ZhwZRpoPDtLT6GHCrAzSCizoWnZh/b+fozaoKa00kJY/icBwGLNTjyvPglY7Xlyn1qrILrOx+gsT8QyE0BnUmOxaIkGJzFI7okpAq1fhzDSh0SVfx84EWoOatDwLWp1Iap6FkD+G2aFDFGTi4Rg5ZVYUAqg1UZZeYyEei2E0CQy092KyO+hvbWLC7PlkT6ikcMq0UQFDbtVEHFnZ+IYGkWKJZMmgZ4SG3TsxWq3kVk9Gbzax+9knqJi/mP0vP8/hzRtxZGSBTo07NESmKZPP1XyOdm87KYYU0o3pCIbqM3m5knxCSMu3svrGiXgHQ6QXWpDiCnmVTiRZIa8qBSkmoTVoWHl9Fd6hhOmi1aXDZNePuqHPu6gUd3eAWCSOPd2I3qQGFGJRmTcfPUlKtomyGZn0NHpo2NdD0aRUJi3N5dDrHfS2+DFccRU6sx7D1CloysuRkVE7nYipLqIqFSFFIi5LiEsXoevqxTcyjFZnQK3XIcfi5E2czIGNLzJz3YX0NjfR39IIQPm8RcRjUeLvJiEDFlcqbUdPi4HCAT97XnyaoinTMdpsDKvTMc+7FZq3JKqouMrghS/CJY8BUO2q5kcLfkQwFsSmsyUnJT9KZAmN0cSiqz7La/fdTcjrQa3RMu+yqwj5vNiysnjzgI+peX50avHvVgFIkuSjRvR3oDOls/yGL7L53ruIBAJo9AYWXnktPc2N6M1WZEVi19OPUbVwGZml5cRjUXQmE47MZFwoyYeLIAhMznVg1qsoSTPR2H/aGOeVASfLU6NMWbWGg5teRpFlbGnplM6cgyCIuHu6mbpqLe6uztH45dSzz6Gz/iiKIiOIIjVLV2JOcSEKIlI8CoKIzmhCpdEgRWNIchxFkRFViWrz8Ug3ExYWoVaLRCNx5l5RiN8XZvF1JQT9YdbcWEloJMC5N1UgxSWyctNIccQwefeeMjNXA4kEG726jawf/5DgO3tQ4nG0BfkM/f4eLCtWoMnIQAoEUJqaSLn+OuKDQ0RbWzBMmoQcDCKaLaR+5SuIdlsiuV+tRrFa0aSnoytIzjkk+dcxOZzk1Uxm97NPMuv8S5BiUVRqDe6uDiavXMOhTS8n4sFZOdSevY7WIwcx2mz4onbspqQJ1X8KUjyGIyObmesvZs/zTyFLEtbUdKafez4hrxe1Rktn/RGmnrX2TDc1SZJPFe7eECF/lBlrC5HiCiqVwP5X23FllWPJfP9tBBJjmYE2H4JKRJFk0gqsrLi+ktQc61/ZSEtBziAXXx7FNyJhMIk4MrxodH9l/SQfCSqLBWNlJdqcHDQlJRCLocnKQpfzjwt8BbUaQ1kZwZwccn7/e4Lv7CKSUcC2xxpIL7QSDcU59nY3M88tYveGFuJRmamr8mk5NEBuuZOAN8qBV9rILLZRNjMDs11Hy6FBDm/tZMKMDEpq01AUhewJDlw57zFgtWXDpY8R7TjMQECF163HWnAZ1pRclJl3Ymp5nejSH9HQGie9SIeAgILCcE8XgiiSVzWRgGcERUoYo8tSnOGeLoqnzyYaCibmW558BCkWw+RwMueiy2jev5fSmXPQm8zI8Tj+4aExmoissnLs6Rkc2PgC259+hvNv+AzX6/MxSXE0gRHQJg1k/xHkeBy9xYpvYJBw0M+iK69jy4P3EY9EMDtTqJy/hIHWFvpbm0EQqJy/mGgohCs3jzfuv4fFV30WgL42L8/9/ABTV+Yz0OFHiins2dCCK9dCVqmdw1sSc7HTzi4gr9L5D5mRRMNxtj/ZgM6gZtrqfPzuCPs2tiUMJ8oc/9brkuSThcWpZ8V1Vbi7/cSjMvYMI/a0fyxxUV9WhtrpRD9pEsgy2rw8NKmpGB5/DNRqVMbEfvQlJWO20xUWkv/HP+Dfvp1oTjkdT46M+bygxsWr9x0lvyqFGWsLkSUFjU6Fwajw3C8OjxaK6Kh3M/2CXISqEQxqA1+b8TW6gz3c37WJa11foHnfICa7Dt9QGEEURscQokqg9fAgtmI9TLsWVBryt/6UsiW3s6VjC1PTp9Ll6yJF1FH24q2oAgOsveRxqmZ9n6GIhwyTC+MV5xEcXE04FGHislU07d1NybQZDHV3Ub1kOUe2vAaKQlphCY6sbOrf3ootLZ2Z6y5Cq1Hg3N/C1h+ArxuqzoPJl4Pm/Sxnk/wtssoqyK2aRMepOaXCKdNILyxmoK2FtKISNv3+V8y75GZaDg1SNDmVrDJ7Ys5IGM3vRRAFHOkm9CYNoEMK+HF98YtEW1uItrVjmDyZ2NAQSjB05k40yaeOVGMqV1ZeyTnF5+AJyDS2DjIhrxApHqN4xmz6WpsS5nOCQMW8RZidKWhsJn40/0dEAgGEsBGt0Ug8FkWRZByuVG7QX8F/N/8fayctwvbO/RAchIJ5idjsKfeQ1uFWjGELSCIDHV4QRZS4TFq+BXdvAFf2+DGgdyBC1/FhVlxXRdgfQ2/W0Hp4kOH+AKn5Fkzz5qHOykJyD6NKcaIvKPhYG7XLw26cn/kM0uAgkeYm9DU1KNEYstd7ppv2qUWWZLpO+jDZnWOLWAAmu53Z64rRGgT2bniG9MJizI4UZEli/8YXqF29jqyyMtoO7yMS8JOSmz9Ox5NRXEo0FKC/tZELqy5mRckqhqPDPHjyGWaVX0aKORU6d0PleQmdojZp+pUkQVdnDzkTKtj51CMockLvGPJ52frgvVQtXILObEEAGnbvIDgyTMuBfWOKWOx76TkySspGcxBceQXUv72VBZdfQ37NZNrqDtJWd4C86km0HzlEyOslHPAxbc159Lc209eUMO8on7uQeDxOxdxFiCrVqPa2cv5idj71KAWTalHry3nz8R4KJ8WxZ0Swp6o4vKWFzGIbFXnTccu9PNv7LB3eDpbmL2Vm5ky0qvFFDt4Pf9TP3UfvRy2o+eKUL2LWmPFGvbytEohoVVgX34lhqBFH3bOYDn4N/dKFKNNuQz2wF956aOzODj8G068Hg+1fvj9J/hHU2ENlxORh1HoDrr94RuZVT0oUjhZUBIMjTDlrLWqXnfrBLbR6WzGqjdgdYfzGfM7+8lcZbGsl6BlGazBicbpo2LOToinTzvA5fvhoRA2zs2YzKXUScTmONRnz/chQZBlHVvaYGGV2eRVZEyqJx2JEgkEMVhuOjEw02n/sGZYkyYfNsbe7UBSFqvmnC+CMmpC4w2jy8tA4rWyRJ9Hg1/HLNSWoxA+gTdWfevZEvKR1JY7V7Rhmsk6P0SKRVdTMUF8lT/9kHwsvncCEmRkAGCZPxnrOerwvPEvgncNo18/5QOdp1KopTjVzpMvz91dOkiRJkiSfepJZbx8lKg3UPY165hdRaWSG+5z0NW9nsO04WoORlJ4hJq1Yg8Wegm9gACkeo3TmbCavXI0oqhjoaEOr1xOQJQ4NHOLugwlH0e3d23mx6UXuXnI3E9MmcrjLx91bG7njrAkU2AwEPRFS8y1o9SpkBdQakXCsCgBd23Z0XXpY91ucucX40tMYDA6i7Q9TvWg53Sfr8Tb0k1pQRNGUWjw/+SnyyAj6C88HUUCjVqM3melvbSIlJw+T1Z4IwNmy4dBjicmv3iPgmgCiiqqUKjr8HRRbihBiIrIsjbqwvossxfEPu5MmJGcYb0zhjT/9nop5i8kuryTs93HWF25hpK9v1EUy6PWw7PqbCHo9lM9diM5owu8eYtFnriceiZBaUETFgsV4+nqYe/EVCIJAPBqlqHYG7q4OZpx7AYGRhOnHyXe2ozUaUas1CCoRizOVWDiEpFYz1NbGwVdfwmi3M/fiK5HjMc69/Zt0nTiGNTWd3Ipqhro7WXHDzQx2tTPc28WSaz6HLMssuebzBL0jTJi7kKNbN6M6VSmm48ghJsyZz/6XXxhd1tN4kmlrzqPrxDHa6g5StWgZs86/hKDHQ3HtYmqWnMtARwCfW4ekOJm5/mqOvbmBKavWsv3xh+g8VkfY52X+5degNRiYsmoNQc8IGaXlNMqd1IVOkknBmbqln0qioRgGs4bNfzzGqs9XIUsiJocWs0NPRjEIKoGAN0q9u56B0NgJCkXUMCltEm2eNqJylMaRRqpd1aQZ006vFI8lnt3zbwNRlUiYk6PYowHIroVLHoEXvgT+PozhbiYtXs/bTz6G1z2IKIqIGg1n33w7UjxONBhkuL+P7IoqfO5BrK5ypFiMSCBAyO8je0IFKpWaoGeEsM837lw9fb3E41Eyist49be/GPOZb2iQlOwcnJnZODNPv9B2dfaQn2LiuYNdfHXlBDTxGJFdDfwlsc5OYrv3ENy5E115OYosM/zAAxhnzyblkkv+tZuU5O8ykG1Ceb0bTXs73pdeJu3rXx81IAFQ5+WhXX0BUmYRKpcLcaQfgyWTkC9G/fZ3X+wlsspT6S3sZajTR7UuF0hM2Ib9PhTZzLS1lyPLD9FVfxS92YIrN5+Jy85i8z2/Zto551M+bxFqjRatwUjTvnfIKCploLVlTFttaRlo9TrSi9KJx+L0NY/vT2Gvl9kXXIZ/eAh7eiZag5Et9/8eUaWmcuEScsqrCPu8CIKIPSsLjUaPKIoUTZ0OehtMvzZRbUOREpXekknBnyh0Kh06UQspRbD7XjCnE9RmsO3RH1O7et2oAcm7RIIBBttambZ2Pd0njiNLCWO67hPHqF60gvVf/y5hvx9LairxWAybTk9GUQkKCkde30ThlGmgKAgqFYVTpxGLhPG+2YA7EiFn1gzMJiOtB/Zx4JUXqZi3mLU3L8Q7qMaVl4EcU9CbtNjTjZzc00/99h6mrymk7cgQ7zzfzJz1xZRccC4AQW8EVUwhJ1dLNBwnOBJBjkl/9Tpo9RqyyxxJkebHGJ1RQ3pwK4S6GRnKpee6ryHa7RivvIIWDezfvpWSGXOYvOLsxETxwX0YzBZMVjuRQJCDL2+geOYsZl1wKdWLlyPFYgz3dLPx7p+z8DPXs/+VF0eP1dt4ksVXfRaVRkvI7yMeiaDRn66gGg740cT1fHPyncQ0CnqVnuHIMEOhIdq97eRb8kk3J52kk/x9bGlGbP+A8DezZPyygCeCIstkltlQ4jLxqAIiyBK8eu9RZp1TRG+Ll5d+c5j5F5Ww+IpKFFlBFCG/2smbj55kOM9A8Ob17OvdR7G+h7J4JshRNHYrI309HHvrDaasOgc3EkNESPN6EW0CsUAMR3omsiQx+/xLicdiLLnmc3gH+tGZTGj1ejb84kejbVVpNExeuZrnfvK9Mecw2N5K8bSZvPnQH1l3+9dBVENaFTRsguMvJarIuiaMrq9Vaf9hUUWSDxFRTTwURmswsviqzyLF46hUauq2bmbW+osJizEOdIwwIcNKfa8vaUKS5GNH3FlE/4GD2NLSWXLNjchSHLVGy6HXNzJlxRoURUKRZaoWLmWwvQWt0UTp9FmkFxSf6aYn+ZTiNGkYDsX46spydje72dPmZlKOnY6ACkthHKPNzszzLgIFAp5hPAP9iBotGo0GKS6x7LM3EfEHkBWZkM/HYHsr597+LdRaLWqdLpF0IYOMgqgSEUQRT18v/qEhRFFFJJKI7SuyzEhvO+Z4ELVGQyQcBJWKuE3L9xt+z5L8JTxz5Gn+NPk2MoMeaHgFMqpBX5T4zlbrITAAUX/id0cB7rv+TLSlBUGtIv5kIq4XOXECXWUFol6HqDcgB4NYphehzWoC/6tw7vfANL7Se5IkHyZavYHFV32Wzffexa5nHmPpdTfhzM5m258fIKu8grO+dBuyJGFLTSMWjiBFo4iiimBQxJ434e8fIMmnglg4RCwSIbu8EmfWVxIidUHg0KaN1K45F0mSKK6dgcGSFK8mSfJhotGp6KwfprN+eHSZwaJB+BsCz0QSiUBOuQNZUhDVApFgHFlS/vqB4hEEQcDpVHCmakGWQYyBFPvr2yT5yFBbrZinTPmX9mE0GmH2LAxTJtO8rxdwk1vhZN/GVuzpRoZ7g3gHw8xYW8jOZ5vILLHR1TBCxzE3+TUpGG06Nt13lMKJLmrPKiAaimFxGRjpDaJSi6hUIoOdfkx2LQZzIj7l1ZdyrKsBd3cHpTPnMhIM8vYzm8kuqyS16tuY1CZUuk4MFiv9Lc1o9TpceQUMdrYz0N5KdlklCjJpqiKkeJzUgiJCXi+OrGzcXR2c9YVbiUdjqLUa3vjT75i47Cy0egO29Exs6Zm88cff4szOZfYFl4EAKTl5ozG5gYYGNjW9zgKbi4poBMXgREhWB/+HUBQZlUaDLMXobWglp6KK9Xd+h3g0iiUlA09/J9PWrkeWZVRqNe1HDiFLMQSVCqsrFaPNgRSX6awfxmDREg5ESck0sev5ZgRRoHR6BlseOj56vFfvOcLqL0ykoMb1d9sW9seYMDMDa5oeRU4k3JfPziDoi/7dbf9V4jEJ72DC9MHq0qNSfXwTkZMkMFq1GK3OD7St2uVC7RrbJ1XWvz8O1pWUoCspIeiNYHl9Hz53ePSzoDcKCrQdGaLtyFBioQALLyoeNSB5l6Ob+ggaj5KTmoFNb+PWrbeioHCZeCNqjQrfUBiry8Cxt7vpOOYe3a58uYthOU6GLMPe3wOw4JkvUbz6J/TH/DhFF3kbv4vg7QZAG/VSGvIiqPJwt3uJG/VYXWn4mpsRVCqKp88EUUCOx8iZUEXhlOkoskxPwwlkSVxyKVMAAQAASURBVGLW+ksQ1WpCPh/kl0PIDWf/DEQRpAhoTCAnxxr/DFqjkZDPS8m0mVQvXo4gwHBvD4Kowj/Uy44nHmbJNV/A7MrC6FCo395NzcIcdCYVWoMGs03/vvuNtbXT//3vo87JQe104nn+eQCMU/+18UeSJO+HTWejc9DDxsYAM1eX0V1fhwhUzFvM1LPPRaVW09fUiFqjYe9QHeF4mBXW+URiPkRRxVB7G9a0dNQ6LRpEflFzI2knt4K7CdQ66NwLRYsh6gPSCcQDpERtRGWJ7HffkUSBaFgiHpPft41qtUh7vZvWuqHTCwUomZbQYIoaDYYJn5yYWKynl95vfxvR4UBXVITn5Y0QDpN7zz1nummfWkSViChqqFy4nv7WHyOfMle0uNIIBVzseO4E8y5KZ8qqNWx/7CG6jh/F5HCy/IYvEo/FOPjMI0w5+1w23v0zZp13MelFJVTMWwTASH8fokpFX3MTGr2RGCIhKYQ/6ufzkz6fKIRSsgyqz4PMSWfwKiT5ONLslbFL8qgBybsERobRmy2kF5bw3E+/B4pCfs1k3N0d4/YR9IygNRhJzStk1zOJojnbHn2I+Zd+hvK5C0EQMDmcxCIRWg/vZ/FVn+Wlu37GvIuvZMqqtag1WgwWK4GAB3tKOj0NjUyYvZC0olJGerpZeOXnsWeWsvPZPuaeX4IUTxQP0OhUVM7L5O0nGohFZKoXZlNdMxlJkbjp9Zv408o/MS3jHzOPiMtx/HE/55WeB8D9R++n09/JDTU38Fb3TmJGHWrzJCYXzaP2jZ+gHj4OWhms7+MInDkJNEmjn48MlYpYyI8gBRnsbMdid5BRXDr2GalWc2LnNkqmz0Kt1XMwcJRKZyW+qI87tt3B9IzpXDzhYoTUXCwBP4c2v0LPyXrsGZksv+FL6IymM3uO/0aMyb76kRP0jqDSaHDlFlA+ZwGKouAZ7EdUiUiyjDUlFYszhdS8ZFwyyZlBkmSOvd1NXmUKttTTRrEjkREA0rtHMC1dAlE/j0uLSNHJnFX9Vxzy/x6nDJCUsJeU44WQA23BRJFgW1oGYX8rF9zxGTb/8Siv/ekYbUeGmHdhKUarlvQ7bsO38VWG7v059vNmf+ACfTXZNt5uHPxg7U+SJEmSJJ8qkiYkHyVqPbiKUbe8jtm+ioBHTchXS8msmQiCQFphNpaURKKiPT2LsD+A2ZlCYHgYjU5PQc1kVOkOiA3xpyN/GrPrkcgIzd5mJqZNxGZQI8vwPxvqWf35eWiNagRFYMczzXQ3juDKMTP7vGKYcQPEI5BSzLulfyxaCxathaOHX8fiTKNoygwUQUFQiXhaWlDt34/k9+PMz8fgdnPotVc4unXzaDvyayaz+JobSfH3JyoN23ITjtn+PkAgIkcwa830BvsoVeUgx+NoDUaioeDpy6TRYnZ8sInLJB8eEa1EZmk5dW+8ijU1je2PP0RqfiHOrBxO7NzGnIuuYOeTj2C02SidOZeDr25gxroLObDxRRQUpp51Drufe5JJy8+iad9u/MNu5lx4OTueeJjSmXPx9Pcm3NjfgzMzh5d+/RMq5i2icc8u3F2d1CxZwZ4XnsZoszNl5RreeuiPCKLItLXrEVVqTHYnsWiY/ElT2PH4I+SUV9Lb1MChTRuZcd6FvPPM40xbux5HRiaVC5bg7uqgqHYGzft2Ew2GmLTibLpP1FO9eAVHtmxisKONaWvXc3Tra7Qe2s+0tesxWmwoKMiyhDVVj0Y7iLe3CZ1RQ8W8xaQXFrPyxq8QCfiJhsOM9HZzaNPLAGSWltPX3ERv00nm3fqlM3ErP9UYrDryKp30NnsxWfWAQtPBAY6+2Y1KLTJlZR7ZZTbmZc/DExnrwhiMBWkcbiTPmodKUFHmKCMYC+KLvMcARKWBwW7Q6BPP8HgE4m5IK0+YkpSthBu2QtgDlkwqg3HiMhzY+CJSLE5uZQ3urg4URcGVm4/J7sDqSqPl4F5CPi+bfv9rgp4RAPZteJZVX7gVndWKwTK+akBKTh4qrQ5BSFS6/Uvpo0Y/vuJJhtVAKBJDLYr88rUG5pe6OHfyVHh109hts7LRZGYR3LmTyPHTIiVjbe0/czuSfEAyzZm0VBUT/92DoCio7LaEkESW0V9wBb2lK6jbH0TVPsLUL/4cffdOpq5LZ8fDnSinOkLFnExM6Sp+sfWXXJF6HSN9BtKKr6R0lkwkpGLPywGMVj+5F6+hNrCOzqN1vPaH37Dw8muxpaejUmmQpTgn9r5DV/1RJi4/C0uKi7yJk2k7tB8AUaWmdvW5BDwDvHbv3Zz/re+RWVZB57G6Meejt1rZ+tAfyCwtIyUnn7bD+5mx7kIyiooRpTC+1jqq589HFRpAcBYiavRULVoyaggFvP8ERJJPDsYUiEehaBEYnHiGBolHoxitNkSVetRoBMBgsWKy2wn7fZz71W8y1NGORq/HkuIi6POg1mrQWazcWPc1pqdPZ07WHPSCD2englqr5bkffRdJkiiaOp2pq87hpV/8eHRcuffFZ1hzy52IKh2rbryFrQ/dh1qrJX9SLT1Nw+x6uhWdSc301YUUTnIRD0u8fn89M88tYsfTjRze0klGsY1IKM6bfz5B0BtlwuwMHGlGdjzbREahlelrCskqtaPWqM7QxU7yLyEI0PwmmuKvgEoFkkSfScve115m1U23gigw0tPFxrt/PrqJ0WZn9Ze/hs5gQIrH8fb1EgmHEQCNXsc5t32DSDAwWo0CILeyGgUFlVpFPBLB5HASCZyufGGwWEEAo8mOSqVGJaqwKTY8UQ+hWIgOf0fShCTJvw1FUehuGOGdF5txZpgwOXQoMhx5sxONXk1epZP86hTajgzR0+Rh4eVlGMxatj50nOHeADkVDmpXFbDosgmo4gIOo4MmfRMl4VRisQiiKCDH4rQfrWP6uRey88lHRqvNAdQsXcnEpato2b+H3S88TTQUpHL+EibMW0gkGODEzreoXrSclTd+hZG+HmKRCLa0DHRG82hl13fJKC4DRUFvsTDY0UZReA9IIai5IFHBK70GbMkxxhlHUBjoasWWkoogiESCAVQqNTPOvSAhyFbF+Po5djw+iCT11Ek+hsQVFSqNlqDXjzklBXdnB+GAn4lLViCqVLQc3E96UQmZJRNILSgmvbAI7fu8rydJ8mGhFgVaBwOUppmZX+qiod/Hq0d76fdFmJfiYlqxic5ICp7+PmzpGbg7O5DjMSyZWQQ9Hva88BS+oUEEUWTS8rM5+MqLRPw+SmbMRlSrefK/vzF6rNo152FPzxg1gpRjMdSa04ZeerOFgHuIujc2UbVwGYMdbYT9Pr6y6mr2SA30BftpjHvJdDeBIz8hMjQ6ITgE5jQwvpuQJCOIKkyzphHat2/M+eqKixH1elQuF0o4jLE8E22kLWEWnFGTNCBJ8pHhys3nrC/cwlBHB3qrjZDXw7zLrsLvHiI4MowzO5eh7k5Mdge29AxkWUZvfv/kpSSfTnRGE8PdXRisNmLhMN6BftRaHROXrkSr1aM1W1CUpOFekiQfNma7hsLJLloOJkSRggDTVxdiMv51QxFRFBAUeOvRk/S3+8gssjLjnCKEv5UPr9XD4DEwpYFKC6IMgX7QfnpF9/+pqPR6LBn2McvsaQbcXX4AZElBislkFNrY+3IrokogvcDK7hdbyKtyJuYXHj3BvAtKee2PxzDZdVQvzOal3xzGZNNSOTeLkf4g2RPshH199DadIKukHP/QIK2H9pM9oRJbajqxWJwR9wgGs5WNd/1stC0Gq40Vn/sSGr2BSCjArqcfpfvkcVQaDdbUNGqWrMRmUqHOzeXo29vIr55Ey8F9zDj3Qure2ETY76d8wSJSZk1kzVfuZKCtBUWRiYZCbLn/Ht6diEyvqkDrzKLHaKMiPgDmdLBlfWT34ZOMSq3hzQfvo/fUnMHBVzYwbe16KhYsoeukjKgyoFKHkOMxgiPD5NdMQRAE3n7sQWatv5zXH+onv1pBZ1BjSzWgKNB5ImG0lJpnpvvk8Lhj1u/oeV8TEkVR6G/10nJ4EFlSyK9OwZpq4MibXTTvH8Dk0DFzbSH2jH/sWRYOxBjpDyIA9nQjOqPm724D4B0KsfvFFk6804soCkxelsukpXkYrf+aYbQkyWPMTP7y9/fid4fxDoXRGdXY04yoNEkTlI8zRquOhZeV8fJv6pDlxHPJZBvfX4xWLYIcH7dcECEQ8zMlbQp3H7ob5ZTaRmtS0XHCzaTFuajUIia7lsBIwoTHZNcSKehHVOXCkafwTLwQt6sEq7eb7I59pAf6UfcchlMGJADEwrSKeQS6h9FpNEjhCG0H92NyOBEUOPzaK9S/vZV1X/svjr75GhlFpQx2tFEwuZaQ14PWaKK/pRGjzUYkMII+GgBDyikTEgkGTyaSpJP8w0RDIRxZOfiHBvG5B9EZjKQXlaDWasipnsjqjG+y7alhPAMHqZiTSeW8bEK+GLIkExiOMtIXJD3fikY3VmKtyUjM28Y7O4l3dgKgr65G5UgWKEny78GkU9HjDXPf9lbmxXvJKC7DKsXxDg6g1mjIqaxGazSRp89DkiVUioqek/Vsf/yh0X04s3NYdeMtpPmHoPcwFMxPmJB0H0z8e4qeYA+pYg4qNex4qmlUbz5rXTHiX5HFaE1qpq7MZ+9LraPLahZmYzD/9bHB/2fvvuPkqM/Dj39me2+3e3t7veh06r33QhECJKrBphgM7thxz8+xnTh2EjuJ48SxHVfcCwZM7yA6SEK9d13vdXvf+f2x4sT5RJd0d9Lzfr3mBTua3Xlm9nuzM9/yfIPdMZoP9NPdFKZ0gpuS8S4sDuObbn826QP5GcRz/f2D9dNajwedv/Ct3ibep7oFxWz4bR9LPvQPZJJdmOwWCkqqeOY3rQCkYhraj+xn/tXXo9PpSUQjdDfUo9FqiEfCRHp7aD2wD+11BvxV4wj1dqOqObyl5RjMVkI9XWh1BvRH+jAcOM6syZNR7FZMuRSkB2BYb1xxvktncrzapfLB8up8BZN6soyYbHYKK2toPXxgcH1/Wwu+iiq6G4dO+mdzF1AxbSZHt2wcXNfTeJx9zz9NUe0E9jzzBOlkgkUfuIGJS5ZjdrhY94Wv0nHkMFqdHltJAIOpEJVinvvjUeIhG1XTF+Lw+uluLiSVMtC0L8mctZW8cvcRoqH8/azFYWD6BWXUzi1i14ZmdjzVxCJnDWvmruFXO37Fy60vv2USko5oB691vMb2ju0sL1vOPy/8Z3Z37aY/2U9LpIWp3qmUO8q5+9Dd7O7ZjUVn4cZJN+K47N+Z2LILzK78OKLCSdC1/8SJc8HCO0D3zp4dxWlg9WCx95JJgaKq6EwmSiZMZqCjnVw2g8sf4LUH/sqMi9di9/q4q+sh0rk0BeYCPGYP9152L+seWkd3rJt/X/YfjJs5F195Fcl4DLun4JxOQCJGhgYNeqOJonG1hHt6yOWyFBSXYrTaIJPCU1ZOIhR9+w8S4gxp2NVDNJhi+Q0lQ9b3xvMJGV3BDLaVK+gZCPFMbha31IBB9x7rHY358WTZji70YSjSF9IYOpGExF9E68F92D0mrvj8TLY90cjWRxto2NPDnLWVTF9ZhnnxB4k99wtCDz2Ec/369xTCtFIn9+1opXUgTolreN+3yCuv0P+nP5NuasJQXY3nwzdjmTXrvR2vEEKIUU1a0c4mdzmgQLgNrV5h2ooyJi4qwWAqoKC0BLPNhNmWr0i1OBz4q6qwF/jwlJRRUF5B1mtBp9OTfpOs9ukTM+tEEhm+ftlEppc40Om1GIxanvvjQdqODIAKPc0RnvrlPnrKboFkOP+AXzp3yGcVj5vA5gf/wt4XnubgS8+z6Z67cKElOzCA99vfIp1KkYrH2PfCM0Pe17hnJ/0drQzYF+YrDyCfiCSbAUcxOo2OQnMhO3p3oAKpRILVt31y8CHUYDaz8paP4SosOk0nXbxXhoyW2nmLcPqLOL59C3Muv4relma85RX4Kqo48NJzLLzmgyRjMfRGIyUTJrPv+WdYeM0H0Wi0xEMhqmfNY/9LzzPn8qsw2x10N9Yzadkqjm3bzKRlq7AX+ID8wPb5V3yAo9s2g6riLiqm7dABSiZMon5nviJ/ysoLeeUvfyDS38ustet54fe/pHn/bg68tIHHfvAfHNn0CpOWrsDu8zHnsivRGY1oTrR8HHj5+fxg0ONHsXt9zLj4MtZ86vM4iwK4i0spGlfLuHkLufgTf5cfKFJbx5pPf4E5l15B/Y4taPQ6ehr3s+mvv6Fp9ws8/9sfoGhUXvzDL+lqOMbmB+/hyZ/8DzqjkXg4xJ4NTwLg8PmpW7iE+h1biQUHyDQPjMRXeU6zugw4fBYWrK9Cq1doPxZk51PNpJNZEtE0G+87xkBngmwmS5GtiK5o1+B7W8ItTPBM4M49d/LxZz7OV178CgPJAdxGN83hExmp3ZX5GUX6jkPnXug7Cuk4uCpPBuEohsKJYHZhL/Cy6Nob+PD3fpxPwFBWQVHNePzV47B7CgiMG0802M+zv/4pAx0dgwlIimrGM2XlhRzbmv8bUDRaFl9/M1pdviHb5i5gwdXX5wclF/qZfvGlQ86D0x/AW1Yx7PyML7Lhshm4bFqAIqeRDQe7eNxRi3HOycpjw7hxONZcjH3NxRgnTx5cb5w8Gfsla97fFyTeEaveimf2PGw/+g9Mc+cQ2boV3+c/j8btpn/SBWzfGB4s068+H6Zz/irqvfvx3xSn8ho9F31mAouuHkdCF6Ux3Mgr0Rcw2nU07ouw/akI+14KkoxlmH5RKX+/8+/pIcz2xx4iFhwg2N3BS3/8Da89cDcmi40Ji5ex5tNfIDB+Avtfeo6pqy/moo9/lkXX3sDyGz9CMhalr6WZWHCArsZ6pl+wBpc/P5hX0WiYu+5qDCYzuWyG1kMHiIfCzF93PTVT52DIWdEHY9RUBCh67EP47Bq85dV4AsVDE5CIsc/uB7MHHPlKNrPZxKpbPwHAyg9/FL0xP+jGZLWx/Obb0RmMbH34fl78428IjKvDWViEotVjdbnQm8z0OtL8/dy/55raazDqjPxizy/IpVO89sA9ZDMZUFX621pp3rd7SGI7Vc2x48mHKaqp5vEff59F197A/hefRc1lcBYkyWZyxIIpXvjTIdSsiqfYSjaTI5PKD2o3mHXseq6ZroYwkf4kuazKgZfb6WmJ4AlY6Tge4rnfH6SnJXKWT7A4bfxToHUbZvUghV/+EsY5czh4aB8Lr/kQ2x59AEeBl80P3DPkLbHgAD2N9SQSSTLpFBanB2dhETZPAcXjJ4FGS8fRIygnRim4AyWMX7AYs93Jhl/9FLPdwfwrP8D+F59Fq9Mx74prMTtd2MeV05fq55X2V2iNtNKf7GcgMUAsG0ODhvZw+0icIXEe6GuL8NwfDhLqTqDRKmg0GrY8Uk88nCYVy6DRKPjK7LQfC6I3anH6LDz1y330tUdRVWje38+rfz0KCsQGUkSbcyzVLycRiZDLpslms0T7+iipm0A8ODAkAQnA3mefJh4O8fJffj94Dd//0rNkUymcRQGmX3AJepMZvcGIs7AItz+AotHQtG83C666Do02/8zn8BUy+9IraDmwl/lXXkegtg7VVQFlC/I7snjBN3Zm2DqXqRodBr2B1oP7sbjceAIluItLUTQaVDWHMe7g1meu5y9N/0KZf2CkwxVimFQshq3Ai5rL0HXsGAVlZXiKSzA73OhMZsK93Wh0WrY99jjgoq8jOdIhi3OcXqdhV3OQY91RntzfweQSJ92RfLn78fYkhlyE2p77qS0Ce4GXsinT8FfVkE4keern/zvYGXLFzbeTSsRZdO0NmB1OUvE4LQf2De6nfMp0/NXjMNvsaA1GtDotGr0enUEPigaNVoNOr2f3hicpnzydTCpJ/Y6tlE6cQvOzr+I35TtoqxptfvSPuzI/25mrEopnQNVKGLcKalbBxMth+gdxXLYe48SJgzGYJk9CFyjCPGMGxokTca5bh3HqEph5A0xaBx6Z8UicXS5/MdZxZWSSKVLJBAWlZZROnIKrKEAyFsPm9nDgpecx2xxotVqcfkk4cT5JJ+I4fIU07tqO0WLDW1aB01+Ew1dIw95dBLuiPPKjfUNmcxdCvH8ut8KUJQGWXT+e+ZdXsfqWiXiLzdiL3zxRWTYLT/96H12NYVCh/ViIZ397ENS36ErjroBcFtp3QtOr0LwJ4kFwlZ/+gxIjzlNqY/76Kpr29zJujp/u5gj+aieQT2IDoOZUNDoFT7GVzoYQAEVVTup39RCocdGwJ5/0YeKiAJsfOE4qnqFuQYCX7j5CuD9Bw54+Qt0D+KtqyGbTxIIDBGrrMNud+QSuOh0ms43XHvrrkNjioSDhnh5CXR30tjTRdjg/2UQ2naa/rZWX//xbQmEFgynA5NXryaoGxi9Yid1bxMJrbmH17V+mYOECDmcayeWy1O/Yit5sIRGJDLZjuwLFlF6yjG9u+RZff/WfuEefJm6RQdbvVLCrczAByet2PP4Q6XiUl+85wot39RAJFmErKMZdXIbeaCGdVpi55lYi/YUMdCTY9UwzDq+J/q4oTq8ZgynfhyCdzGIwD597zGI/dTKPzoYQ9/3XdrY93siOp5o48Gobe19o4ejWLnI5lXBvgg2/PUA8nHr74+qO8cTP9/DXf9/Gvf++jad/vZ9Qb/yU20aCCZr393JwUzvtRwdoPdjPoU0doObH66WTWVoO9tF8oI+B7hhtR/pp2NPDQFe+vjgWTtFyqJ/GPT2EevLrwn0JGvf10nKwj+7mMC/dfZj7v7ed3c81090UYtMDx7j/e9vZ8XQToZ6hcXXWh7jn37dy/39t5y//uoWdG5pIxocnrhCjS9mkAq76zARWrLZw4TIVc8MuZq8phxMTueoMGpZeWYHbGMVgGjpKvmS5iUc7HgIgmzuZ3LyRo0xZWkJ3cxhVzTFtRRmLrh7Hsg+PY+ptTo4pB3AbXOy79Dt8VNvHuvo/cmPyCE/XLuGzTiP/Mnk5By79Lhhs+YEhnhq6jreg0xsI9/ay5eG/otXpeO43PyedTHDg5ecBeOA/v03VjNm4AsVMWLICh9fH8d07eOpn/0sum8PuLSSY85JUnNC6FRpfhZ4DYLTl2+HFO6bmciTjUSwuV/6ZrLDoRJ/GMAajie4WPf3tcXIZlX0vttG4pwezU09OVUmlciQiaXpbhw9wM8+YgfPaawZfa10uvJ/9DObx48/m4YnzSCqT47YlVbxwtB+b28OhV1/AYLJQUFKGq6gYs93Bjuh+PrXhU7zQ8gKZZILXHrx3yGf0tbbQ196aHwDuLMsnUFQUKJkFWtNgguhkNolG0fDcH4b2N3/6zn1kU6dO0mBzGQjUOFl180TmXV7FihsnUDHVi/FNkpBEg0kObmzHXWShdm4hRpuew691kM3kTudpe89M06bh/cwd+SRQgGIyUfSNr2Oqk7bmM8lbamPNx6bhLasmMH4hpRPmUr8nzbLrx7PgymqcRW5MtgpCXR08+J/f5qHv/Qub7rsLZ2ERCz9wA8lY/np93799E7PdgTtQgqe4DL3RxP4Xn8FdXIrRamXD//2Q/c9t4Nkf/S/9r+wh4izJJ0jw5r/fZCZJb7yXzCkSm4nzS1c4QbXPyk8PKyy4/pbBfmA6vYF566/h+d/9YshEFEe3bGLu+muwF+SvpxqtjiXX34zZ5WL8gsX5AfRvcHjTK6i5HHOvuIaLP/llMkkdVncAV2GAeCiCf9xkHIUzScTd9LYnUDQaSuvcJONZDrzazuaH6/GV2/P9eyJp9r3USt3Ck5PyxEIpEpH0kIRQh17t5KGDD/N/a/6P8e7xbO3YyostL9IcyveX74x28mrrq7zc+jIbGjdw5+47qXZVc/fhu/n57p9T5ihDp8k/g66rWccTDU+wu2d3fn+ZGD/f/XNayUDpfChfAAXVcOO9cMO9cN2f4KPP5tsExVllsBhoO7SftsMHSCeS5HI5nEUBHL5CDGYzC665DoPZwmPtT9EV78Jr9vKF57/ALU/cwve3f5/frfkd31r0LbRo8mXFbsRbWi4JSMQZodHrCPX1oNXrcQeK8RSXYrY7iYaCaI1mjmx6lUTcRqRf2tbE2aeqKjuebsLhNVExZWibU3e4E0MaDIoe68KF3L+3jww6rpv4PhItarRgdpNpaUMxaqn0VNEYPJGEpLCIcE8P2UwajVbD3EuruP4f51Fc62Ljfcf407c2MzB5JdqCajr/83tkw+G32dmpza/OH+fm471D1qvZLB3/8q8033Y7ib170ZeWEnvtNRpvuJHuH/8YVZUEf0IIca4Z3hopzhyDFWovgMaN+PseocN1OTaPETVnxGzX4wlYhmxudXmwujxA/oblcN9hzLkMBsXA1eOv5vf7T2aqdhqdlNjyAz3TOZWjnWF+fuNsdCmV/t40wa6hjarJWIb+ZAHeK34C+uGzr7mLS7j0ji/R19oCSj4TtgENjt/8GqWsjGg6TTqZHJLZ9XWZZIJMxTw4uj3f8aZqBUxaRydgN9hpDDXy450/5if8hIfn/B6NzsD6L3+dRCSC2W5HqzOiM46OrNbnMyWl4ZW7f8/4+UsomTCJRCTMmk99jlBPN9MuWIPBbCEWHGD17Z8iEQ4xYfFyjFYrkd5elt90G9lMGh/VTFq2koHOdhZ94Ea0Wi3pZILqWfPob2th3vprMJgt9Lfns1U37dkJQO5Eo28sGMTu8dLT1ICi0ZBOJvCUlNFx9BC5bJbyydPY+Ne70Gh1OLyFPP+7XzDvimvZ9sj9zFxzGb6KKmzuAiL9vfS2NFG3aBkdxw6TSaYoqh6HuyjAIz/4D2ZcdCnP/eZnBDs7AHAVFTP7sitwFZdgPHyQzfffzbz111BYWU06maBy2kwi/X1c+ndfIZ1MEuruZNKy1ZjtdsK9vVz0ib8j3NNNqKeLl/78W1Q130CSjp2604V477wldtR0CoPFhtGq48iWrmHbNO3v5bPX/x13H/0LqqpSaM0Peii2FfMfW/+DbV35RDe9iV7+8dV/5CcX/ITXOl/jlim3oDG78oMfGl+FgaZ8I1z5QhI5HV17dxPp68FR6MdXUYXRnL+GK4oyWJFscTjxFA2dbX2gox292UImlThR0XwTrYf2U79jK4HaCaTjcTQaHQ5fIVf+v38mFY9hdjjpajxOTXEJWp2eeeuuprCimiObXyFQO4Ha+YtweH3Djt1i0FHkMHHP1ma+fulEgvEMOo1C6KvfxtbRQsBmwFBdhd6Xf2/5L35O8ki+E5Rx3Dh0BTJ77NlS7K7ghdoG9N++naM9h6h0VjJu3v+y85HhDazth2PsVHZwbOAYh/sP89f5f8Vk1ePNermo4iIePv4wk8ZPZvmHV9G2P0wimmbcXB/Z4hAXpi/Gpqlm2Q2f4NV7fk10oJ+Csgp6mxtpPbSf3c88gauomBkXraW3uRFXUQCDyYzebCadTGD3FtLb1ADA7icfoW7xMlbf9inSqSR6g4Ge1mYMJgtLPvRlwEjTfmg+1EPt3CI2P9QGmCmssHLRBx/DWTm8M26op5uuhmOkk0m8peV4yytRFOXMnnxxZky8DI4+DXvvQz/9UrxOA8lYDJ1ez1X/8C0SkRBmuxOd0UAuk2XhtR/C6LCTLbDQ1NZMT2cLabPCA71Pc8v0WynTVkKrFWO/jq+Xfpfjm4d2tDVarSSiw5OBpKJRQt2dlE+ZRuuh/RRPmISay2G0gN1romJyAYFxTqwuA7YCIyXjXSSiaRQFJi0pZuP9x3AXDm0wqd/dw8RFAfraokT6k4S64xRVOc/k2RRnSkEN3PwQmr334a5yYJ79MdzPPIHOYKBs0hTSydSQxDYAOoMRq6eARDhMKhZDpzfkZ7oODlC/YyszLlpL+dQZVM+eRy6TxuLycODF55i4bDmLPn47R9UWCjw1XHTH59AbjEQ1KZ7t38g92x/k+8u/T1OoiayaZZp3Ggadgedbnme8czwFZvlNFmdGsCdBsCvO+Hl+OupD+MpOPuMnomksDgOpRAaDSYvOoCXcmyCTzlExxcOMCyvQGRSyWRWNRoPOkKPjeJDqmbYTdQUKai6Hzedj19OPUzVj9rD9q2qObHp4p/aH//s7rPjHr+A02tGrOrLpNFqTGUxWMvEoRROnolM0GCxW3IFi2g8f5NV7/8TCq6+n6/gx9EYDSe96IEc6EcfqdGOJ6fDKn9KIy2azmF0eqvyB/GAWVcVosRCLhImFgmRSBh5a8iTrX16DVtHwTwv/iSKbJKoVo4eiQrCzHWdRCRa3m0QwCCqYbDb2bngSm9uDzlCAw38B7UeTlE+x0NcXxOOR+0VxZiTTOZbUeumNpvjza8187oJafvTBmQTjadwWA92eMooMZhyhdn7NcWZZFmM51sTOpx/j6n/4FolwCIPFiqLRYLTa2P3MY8y65Ar629vobqxn7We+hN5owmizo9FqIKeSy2bJ5XInJn5TiQ4M0Lx/N5lUilQsht5sJpNOo9XpUNUc6UiMVc6VTF00G4/FS2LGakxW89vOdGasqqL8l78gcfAQajKBtqAAfUkJeu/wGb2FGCmZAT27nk2x9APjady7A3uBF7PDiS6RIJ1IMGvtOjRaLYpOh07/JtPFinOSTm9g14anmLBwCclImEw6jdXppq+zk6KaWvraTcRDafrao9g9w9tphRDvjcXnoVAfwqTLkE4pWKzgrnnryoBwb4J4eOgkMOG+BJH+BIXl9lO/SWeE6pX55CM9R8BeBBWLwBE49fZiTDMYdcy4oJyKKV5S8QzFtU5yWZXSCW5SiQwOr4njO7uZvKSY+l09FFY4AMjl8vVsJqtuMAlCNqOSy6mUT/ZwbHu+XbtuXoANv93PpMV2dDqFXDaL0WolGc0PoouHgyiKQjIaIxUbPhA6lYijqgyrywby9+5o6evJkYopvHhXFHjjZ0SYdYuPwtJC9nYeYcKS5ZjtDgqKS6mcPpNsOo3N42Xtqx9ARSWcDvOtbd+jvGAC8y1S0fZOZFLDk5NmMxkyqTR6k5Z0IksuY+Cxn7b9zeTrCeasPTlIbfNDx1lz+xQGuuJUTiugYW8P/e0xJi0u5viubnKZ/Ju1Og11C09dl3ZsW9fgdgAVU7w8/av9Q7ZRVQh1v32/lmM7umk9NDD4unFPL41Tepm6vHTIduG+OAdeaWfLYw2g5sc6L762FofXTKgnzpy1lRze3MGe51sZP89PIpqmaV8fAAaTlrWfnsb2JxoH15lsetZ+YipP3rmPaH/+3HpLbZROdNNZH6KzPkTtPD/BrhhdDWE660O0Hx3gglsnYTDpSMTSvPCng8SC+TppNaey6YHjFI9zERjnetvjFiNHo1HwTwzg8epIHj2KotcztbKQ0okFxIIJHE4NDgYwltVyRXmGvZuaCHbHsUxK80jiT/Ql+tjVtYsVZSt4qvEpVFS+dfBr/OvE71FTUkU6lqWgzMpxDnE8cZjWvlZWla8ilonzhSN/pC3aBkBLpIWvbfpnbpx4I7/Y8wseNzj441U/ptJRBf7J2N29dB47jMXppGrGbDbddxfpRJx08g0DpFSVp372Q8x2Bytv/ThGs5VZF61lztr1GC0WmvfuIZPMsueAh6q6yyjXvobe4c4P5BTvilZvAEWDzmAkFYuhMWox2R1kknE0GgVPqWPI9oc3d+KvcmC2GdCQI5PLJ0v4W3qfj8IvfQnn2kvJ9PdjqCjH9IZEukKcbmaDlmcPdvHxZTWY6GTSiguIB4PkclmsdgfJRIx/3vNvpHNp/nzoz9zsWn/Ke5BMKgW2cqhbC4cehUgnTLoiP0jc7ALAZ/YR6U2esr95uDdBoGZ4fFanmVg4g5pT0Rk06I1azA79sL42r4v0xamYXkAuA2oGDAaF4lon4b44rjd5z9mkczhw33ILlnnzyHR1YygvGzKxmzhznD4LTt/JcRQzzTq6W6K4Cy1k0jnCvRp2PfWHwYQj2XSajX+9i3Vf+Ae6jh/FHSgh3NNNPBLG5vYQDfaj0eqYesEaktEoD33vX4bsb+ejD1OzeDFMXAf2Qg70HuBnu3/G7u7drChdwdrqtbRH2ymzl1HnqcOsGz77uzh3mfVaNuzvYOXEIp7ts7Lgjm/i0aRwmnRs+MUPifT1YnG6Bp/fXUXFaDRa1nz6CySjkfwkbYqGTDyOqqpMu2ANbYcOMGXlBdgLfKhqDl95FSoeQr1a3MVmogNtdDWFsblLSCTsxIMpNj90hPHz/PS0RLC5jcxZW8mWR+rpOBZk0uIA9gITR7d1MXdtJbm/6WqcSmQxWk4OFTN5FTZ1bWRPcDeTPJP4+5f+HgCHwcEPVv6Af371n2kINwBQ6ajkc7M+x+ef/zzqiYfVzR2b+dfF/4pO0WHRWdjUtmnYeetKDsDEtSdXOEoGJ7ITI8PqcpOMRtn73NO4i0spnTQFNZslHY9jtJgxmM1svO/P+OeNx1+xmC+98KXB9z7f8jwuk4ura67mruN3saFpAyW2Ej4x/RMsCCyQvt3itDNYLFgdLvRGI7GB/hOTohgwZsyYrFbGzV9DT3OMUG8cm1va1sTZ1X40SGd9iGXXjx9MTv667lAHjhgokyehGI38ZX+cmcoRav3vry5HNRWQ62nHMsNHhauSx44/hqqquPxFqGqOUHcX7kD+d9ZdZOWyT0+naV8vL997lJf39lNa/QHGb/13un/4Q4r+4R/e9f7r/HZcFj2bjvdy1ayT9b6d//7v9P/hD3g+/GF8X/wCGoOBXCxGxz//Mz0//BFkc/g++5n3dexCCCFGF0lCcrY5S2HatWiBd/NIrSgKZp2ZPx38E1eOu5IZvhlYp1vZ2bWTImsR073TB5OQ+GwGuiMpntjbzlVTi9EbNGi0Crns0IQhBpPulAlIXmdxurA4XUPW6ebPByDccByr242/ppbON8zaYS/w4Sz0k4rloGwJVC0HrRF8dWSS/QTMAR489iAAZr0ZncnIQFsbWx++j+7Gevw1tSy48jri0QBmq8wKN5JUi4HJK9aw/dG/YvMUsPXh+9AZDExddREv//m3zLn8Kva/+CzJWJQFV13PC7+/kykrL6Tt8AH6WltYdsOtvPjHX1M1cw6ZVJLmfXtY+qFbePnPv8NXUYmntJyDLz+Pt7ySCYuWcWjzK4yfv4hdTz8OgN5kpv3IQVZ8+KM079+DVqsFRUGn1w9tJFFVrC43wa58AhFFoyHa389rD9yDVqdj8fU3k8tmSUaj2L2VeCuWsvu5DtzFOmwWLeu+8HXi4QF2PvkIABOWrMBosdDd2MD2Rx+kv72Vhdd8iM33342i0TB52Wqe/fXPmH3Zlex59in6WptZdO0NHN38KvW7tmH3eJl96XpQVfZseHIwTI1Wi6e8+ux9gecRX2UBTf1NaHUmHF4T3U1DMzU6PGaS8TTRbJTGUCMLixcSSUXoS/bxWsdrQ7ZVUWkON6Oi0p/ozw/4dVfklxNSiQSb7/0TWx++b3Ddshs/wqxL1qHVnfpnNdgdIxnPYncbMdudxAcG8JZXMWXVhex+5gkGOtsBOLplI72tTVz0yc8R7uvmqbv+l1B3JxVTZzD7siuJ9fXh9PuxuQuYsuICpqy44G3Pj9tqZEltIZ/+4zaqfTbiqSyxVJYfXD+DcdVDO4fpPJ7B67w4+x6pf4RN7Zv489o/882N3yScivBB7xegeeh2ejf0xnvRa/R8ac6XKLXlH+r1Wj23TrmVaDrK/xz+HvfY/swXln6BIlMB5R4PwW4TNzo/xlM/PYC3vJDL/u7vGehsp3TydPrbmsmk0lz8yc8R7u3hyZ/9L0uvv5mtj9xPPJyfsc3scLLiptuwe30oGg3F4yfhKS5j11OPcmzba1hcLuauu5psTmXr41ngZGfHeCSFyaonEU3T1RiluUmLs3LocQ10dvDg9/6FnhNJTrR6Pdd8/V8onSANuWOSxQPTroMJl6Mer6e/pZldzzxOV/0xfBVVLL3hVu7supv76u/n+yu+T2VtJT2JMN3Bdr688ytDPmpH024yB/007sh37tIZNMy9ZGgnxo6jh5l7+VXsevqxIesnLV/NwY0vY3U6SScTzLpkPdH+PjIZA4uvHkfjnl6evnM//ioH01eX0Xq4H6fXwvovzmDLIw1k0zk02qGVhXa3iVgo3zlRUcBgkUeqMc0/CfyT0AAWYJbZQvO+3SgaDalYhCkrL2LTX/88uPmCq69jw50/IR4KAmC2O5hz2ZXsevoxpl+4llBPN1q9nq0P30c8HGLc3IVMXbWW/pyem/Z9FoBvL/o239j3jWGhtEXbWF2xmp1dO2mNtJLJZtjYupFCcyHRzPDO5UKcDgaTDo1WIRZKYbToMVmHDgbe/lQTaz8xFbPdwCv3HsVg0rHihjp0Bg3Hd3UTqHay/6U2+tqjzLm0EnuBiT3P9VI1zYKay6HV6wEFcjlMFis2TwGRvpOZ0Ytq69Aahs/M6fAVks5ouWL7jZi0Jr4z73fE4g72tYb42YudjCu04TTr+cyMGqyJfg5tepnlN93Grqcfx1VUTKSvj3QySeexIxgsFvY9vwFFo2HBVdcxddVFmO2OYfsUZ4dOp0OrKBx69UV2P/M4uWyOyStWU7doGTq9kaPbeikotvLtKf/BN/Z+hfpQvSQhEaOK2eHAXuAjFYtw9LWNg3U/U1ddRN2S5Wx//GGqDQaaD/QxbraFWDBDSpeRJCTijBnvt/PS0W6KHCZWTyzkf545gtWgZVyhjQ/NL6cwUAklVQQTAzz+yHXcGf0N9077BRfe/mk23/cXGnbnkybMXruegrJyZlx0GYlImC0P3UOou4ujr70KwOrbPsWhV5+ndNJ09AYDqUSc+h3bCNSOx17go37HViYtXcmEJcs5vu01pl2wBnuBl3BPN9MuuJR4r4I2biPYF6c/p+IqVCmqfvu/C11BAbbFi87wWRTivVFVlZ5jMTIZDd0tMRRFg9nupOv4UV578F7CfT1UTp/F7LXrcRbKbNXnHUVh/IJFtOzbw9ZH7iMWCjJuzgKmX7SWdDaDVp+fOVPNyUxQQpxuJpcDk+udP/cbTMPrdxWNgt74NsmjnMXgvOrdhifGKJ1ei68sn5SmZLwbgAkLAgS7Y9TMLqS3JQIKFNU40WgUju/oJp3MYnEYaDsywOSlJfS2RtGduP5rdRoyqfzooEwqi81tonFviqXXTqXj2D6i/X24i0uIDvRjc3tJxqLs3vAEk5atYstDJ5O0KxoN7kAxsWAQBQWL05VP+npCxbQZHN4S5+i2dsbNLmT2mgq2PdE45NhMFj2N8V5e6n+ZOwpuRNEoHN78Cns2PEEum2PKyov406Kfc83mWwbfc6D3APMD0qb8Trj8Acx2x2B7K0Dl9FmYHQ58pVnajgZJxtJY7IbBtqfXvbF9SqfX4im2UlzrJhlPYy8w0XE8iEarcPlnptPVGEYBSurc+N4kgVIqmR3yOhFNY3MbCfcOnT3WYH7rdi81p9Kwq2fY+ub9fcOSkPS1Rdn6eONgghVVhY33HWPRVTVsf6qJWDBJ8ETSE5ffwmsP15+MN5Fl8wPHhwyaM9v17Hu5bTABCUBPS4TyyQXojVrSySxHt3Yx6+IKuhry/Ubqd/UQ7I7jK7OTCKfpbh4+qUGoN0Fg3Fsethgl9D7f4CQ7ANYheUrzz12+cpjuC/B049N8Z9v3yeQyXDv+Wo6HjrOsdBlfmfcVtnRsQVVVWo3HcQSM6DV67m99kEmeSfi1fvb27OU/t/wn/2/u/xtMQPK6eCaORslfz0OpEIdNFiqLpwPgKg7QfuQAqqqi0elIxfPl22C2DE4O87q6pSuxOt3sevpRDm18GaPFwqy16/CWV/Hgf36LpR+6nVce8WG48RLKJnjOwNk89+UyaXRaHVsf+itHt27CbHcw9/KrKZ44mVQ8gd1txeoyEB3IX3/tBSYGuuL5tjIl3xdAp9Oc8rN1Tie6hZIYRpwdpW4Li2q8/Ouj+/nzlQGOvraRnU8+QiaVYuLSlUxaupIlhYt4svVpAEwWO3ULl3LwlRcGP8NgNuMOFOf7R2h0MPX6fNZ1rQEKT/bLKrIUoQlr37y/+Zvwldqh9E2SOP4NrVFLsDPOpgeOM9AZo7jWydzLqjBYhk/UNVJ0Viu6uXNHOozznsNnwXEiKUlfR5RsWjPYV+d1vc2NqFoNRouVcXMX4Ckpx2ixsOvpxzjw0nPojEZmXnw5lTNnY3V7iPb3Db43l8uSyWagcAqt4VY++cwn6U3k+zLcc+QeDvQfIGDN31N8fcHXuXb8tYP3AOLc57EZuW1pDR/93VbGFdp4+biC2aDlfy/2DpbDF37/S1Z95JOEe3soqqkll8mw5cF7B9ve5q2/Bm9FJU37dhPq7uLKr36TTff+mT3PPgXkn+lX3/YVElEzm+79MeGefLJSg9nM2s/+Ez0DesbP83NoUwfzLq8il1FJRNJYXQbSyRzRYIqCYuvgM532b/o4OgpMg/XPOoMG86w4uw7uAmCKd8rgdqFUiJ/s/AkBe2AwCUlDqIHdPbvxmDyDfxcADxx7gG8s+Abbu7ZT7azm8MDhIfssskrfjtEmm9FROnkq2594mHQiQTwYYuvDf6XlwF5cRcXMv+Ja5q67mv72Ng6nQsPe/2zTs1xefTl/OvgnADpjndyx4Q5+d8nvmOyVvt3i9Mpk0iio7HjiYQ69+hIGs5lZa9dRMXUmA51xtj/RyrSVpeza0ISn2IbJ8taTnghxOm1/qhGTTc+ERcOT0ff0teCMqhgXL2J70wBHB1S+q3sOzJe85/1lo2myUQtaJYh9eSmVnZWE02H6En14ivN1sD0tTYNJSF5XPrmA6ye42fXQcbY+BZbAYtTf/xHrpeuxT393122NRmFepYdNx0/eQ4cee4z+3/0e98034f/q/zu5rcVC4DvfAZ2Onv/7P4y143Bc8t6PXwghxOgitSFjiEVv4UD/AdY/vJ5aRy1TC6ZyVe1VLC9dzvTC6VQ484Pk6wJOrphZjMWsJ5PIkMnmmHlR+ZDPqpvvR29677OumR0OcrkcS6+/mSkrL8JZ6Gf8gqVc/Mm/Y6BTz/anmogWzMpn4S+ZCQYLiqqQJTuYLEVVVdKxBM//9hd0N+YbkjuPHeHZX/+UgfbW9xybOD0MJj3u4vnMuvRDHN++hZW3fpyicXUkY1GWXP9hGnfvYPF1N1EzZwG9LU2suPljdB4/xoyLL2PyigtpObiPC27/NLFgkKqZc5lx8eXU79zKhR/7DDqjGZe/iLnrriWTTNLd2MDyD32M6tkrmbP+Wg6++hIrbrqNkgmT2fnkI1xw+6dwBspYcNUH6Wqsp+TEgPTuhvz/x4L9OHyFADTu3sH4BYuB/AwyL/7hV+x66jHMrpm88OcYfW1J+tuj9LTp2fhAiKd+FUVnyHcU0pvMOLw+dj31GBaHg/72Vsx2B4lohEhfLxMWLWPbow+g0WrRG430tTZTOnEKbUcOUr9zK6gq4d5uXvj9r7D7Cln0gZtwB0ooqZvC8pu/gsZUODJf5nmg3F1ONpujbn7RkE6BFocBf7WDeDqBgoJRawTys5OoqorfMrzzt8PgQKfJZ2o+lb7W5iEJSABe/vPvGOhoG7ZtJp3l0KZ2/vKvW7jn37Zw339tx1YQYOoFl9Lb0kT5lBmDCUhe19/WSioS4dlf/YRQdycAjXt28toD95BKvv2sQ6cyrdTBjz40i2tml3Lrkkr++7rpTCuVAVCjTZ27joHkAB6jh2pnNfv79mGaGR9apl0Ggv4WLqq4iM/O/CyX11w+JJt0rbuW7y79Lnddehf/ufw/meabxmTnVPY/38EzPztEy958A0hPUwQUAxvv+SPBznY23383e597imd/9RPCvd04fYX0tbcO6RAXDwVpObAPs83B8ptuo3rmXPY9/zRHt25CVXNE+/t4/ne/JB0fmggIINgVx+YxDr7+22RBAG2HDwwmIIH8bAWv3PV7Uon3Vu7F6JDVGkmEw7x675/oqj8GQHdjPU/8+PtcXXQpGkWDBg2anJVv3xemN9k57DOmaGbTuKN/8HUmlcNWUI2v8mRyL7PdgcFi59K/+wpFNePxlJSx/KbbiIeClE+eSsOu7dQtXIpGo8HqKeKZX9efmJHQjqJAZ32IzQ8dJ1DtZMuj9XTVR3D5LFRO85JKZAb3o2gUJi4JUH+ic+WU5SV4/CM/E4s4fQLjxlMyYTLN+/Yw0NFOQWkZi6/L39PVzl9MIhIZ0qkhHg7R196KzmAgFhzA6S/ixT/8ilhwADWX48jmVzj4ygbs2pPJH006EzplaAcdjaLBaXDSHetGp9HhNDqxGqxEM1FUVEwaydwuzgxPsZUZF5TReqifyqkFaLQK9oKT5S2byaE3azDZ9Cy8qgaTTYvJpuelu4/gLbaya0MzLYf6mby0mMa9vRzZ0kXDnl50Jh86owlFq0NRoGL6TILdnay+7ZOMX7AEZ6GfqasvZsl1NxHr76d61rzBfWr1ehZecxv9B/X4LX60Gi3N/QmqCqzctKCC3946l48uqeLvVtcydeoEbG4Pk5dfQFf9MUrGT8RgNDLQ0c7BV17A4Stk11OPkUklSSfivPSn39C8b89InGrxBt1N9Wx9+D5S8TiZVJJdTz1G64F9mJ0u9r7QSjSUYlx6MqX2UiLp4YMChBhJOr0ee4GPzmNH2P7Yg6STCdLJBNsff4jOY0eYtWYtGk3+GS6TzhINJknq5JlGnDkuq4ErZ5bS2h/n4kl+/uvaaXx17US+dulELptWPDgDi1lvpsKRbz94TT3A1ofvp2HX9nx9Zk83L/zhV0T7+04k2FWZuebywWerC27/FIpWw6RlF+Lw+VB0OvRGE1NWXYTD5yeViLHgqutRtDrMdgezL72CWDDI1NUX462YiN1bRyqaIZ3KERlIE+lL0ri3l2DX8JnahRhLspkcR17rYuKiAFsf66agpIx4KMizv/4Z4d5uUFUadm5j22MPkkok3v4DxTnFYLER6enmhT/cSXSgP19H8Nqr7H/xWaw2B9lMnAkLi0jFM2//YUKIM0rRwaQlxUPWTV9VikZ60oi3YTDr8JU7KKpyMnlpCZOXlDB+bhHjZvu56suzKKp2sOrDE/FXOYiFksxZW0lXU4iJiwK0HOynZmZ+EH08nGLhlTWsuKmOeMxDYfUUCsoqMJitWJxuLC4n6WQSq9tDuLeHueuuzvdBmDCZyz/3/4j095FNpzDZncxddw01s+fhLPQz7cJLqFt0LUe29KPmVI5s6SQaSlFQcrJNY9wCLxFbLyadiXgmjtFqpaexkW2P3D9Yb7PzyYcJH23GaTjZtuw1e4edD3FqeqORS+74IjVz5uMs9DPj4kuZu/4atHoTC67Mt3Md2dLJtFVl8IbxYoEaB6Ge/D2kolFYfG0tJms+mbPRrKe0zsOcS6qYtrKM0joPsy6qYOZFFRRWON50JuLaOUP7Rmx9rIH566p54+aFFXYKK956ALGiUaiYUjBsfekpkiREg6lhSdeymRwavQaH10R/Z/65UFEgmx4+8LinJYLDd3LGeafPQs+pkoj0xLE4DYOfNZj1BAYTCQCYrHo8JcPb9Wxu47B1YmzzmD1cM/4a7l13L3dddhe3TL6Fj0z9CDP9M5nmncalVZeytmot413j8Vv8vNz6Mj/b/TP+7vm/48svfpknGp9Ap9HhMDoG+xm9kU5zsp1Pq5zsz+Erq6Rq5lw02vy/64359pbjO7ex6JoPMWHx8hN9LJcw86K1HN26iQMvP08umyEeDvHKX/5AKh7DYDKx8d7fUzPTyPGd3Wf4bJ27dAYD+154hiOvvYqayxELDvDCH+4k3NPNxke6CPclueyzU4F84qfJS4vxFFnzGZMUBa1Og6vo1H3HhDibFEVhepmLH1w3k/7WFjbf9xeS0SjZdJq9zz5F4+6d3Fj7ocHt07os01avYfalV+D0F1E5fRZrP/sVDJYTv4G+8VAx/0Tf7lmgP3mdK3fm+5nPvPBv+5sXDSZUfb8SoTTP/Go/AyfuA9qOBHn57iOk45KoVZxa+9EBHvnfXfS0ZDHZht6rKoqGtoP78VVWYXV78JSU0rhrB3ufe5psJkMyGmXTfXfR19pMxbSZQ95bOX8eijN/r9kQahiSaAFgb89eapw1AHxvy/doDv3NTHLinLdsvI/7PrWYjy2r5osXjef/bphFWU0NV3/t2xSNq0Oj1dF5/CjuyfMwO1xsf+zBIW1vz/76ZyTCEQ69+hKlk6fS19JM2+EDg5+v5nLsfvoesun6wQQkAKl4nD0bHqF8shu7J38/mc3kCPcliAaTOArMzFlbSSKSpq89RvF4F8YCDXqbgsVhwOW3sOTacThLDBh8KrVXW/F8MMS/1n8dyCcK6Y0PLe8H+w9Sbh967T/cf3hYUhGtoiWn5vjo1I/ypblfwvSG/nCrylcxzTft9Jx8cfqoCnZvIWvv+CJVM+fw6j1/oOXAXgAGOtp45s7/Ix1PsPfZp6g0lg57++vty2+UyqU41H/ojIcuzj+5dDb/nPzSc+SyGRKRMK/e/UcGOtp57dF6ju/oZt+Lrcy5pJJQt/TDEWdPx/EgjXt6mb6qDL1h+DjcgVAnjpiK66ILuXtLMxZtjsu0m8D83pLKpprDdP5gO5mEDb0jjq7gZH+fxlAj3rIKUBR6GhtO+X6NVsOMdTVc4DOiLP0gaZ2ZA5/6Kq2H+065/VtZUF1AU1+Mlv4YyWPHaPv6NzDPnIn/y18etq2i0RD4p3/CPHMmbV/7Osljx971/oQQQoxOMm33GOK1eLlm/DVsat/EuofXAflGrR+t+hG17trB7Qw6DQuqvUwsSpHJ5dAHM2TSWS64dRKxUAqTVUd0IPn2s/e8BYfHSzwYzGfTXraSiUtWoDXoUdDw/J8ayeVUIv0prM6TjcEOo4OB5AB1njqqHFU0R5qJDfQPGeAMEO7tIdrf/7e7FGeZNm5g4/2dmKzlLLhiEQc3dVMy+QYSkRjH98SZe8UXObK1G4f/coymHIe3R5i7/gsc29mDRldG+TQTB18bYPaln6Nhbw/RUDmTVlzAoU29TL3wU7Qc7KGvPc2i65ZyfOcAj/xfJ0aLjllrVnDBR1eSiKg4iwuZs87F1sc68RQ70GgcLLvxa9icKms+/RX2Pvs4tfMWEaidgJrLUTVrHvXbX6OoupY5l11J456duIurqZq5ksa9+V4Fu55tZu6lVYR64pTWuTnwajtagxdveTVmu22wYkU5kbHabHcQ7c9Xtml1etLJBAazmWQs3whSMmESmx+4Z8i5U9Uc8XCK+n0VFE/6GMlYjk0PRVhwVQImnq1v8PzjcFk5urWHVTdPIBZMoWgUjBYd4f442zPPE06HubjyYgCMWiNPNTzFZ2d+ln989R/JqvlZf5aWLMVv8ROwBTDrzafcTyI6vFNLLpsZLBNv1Nsa5ZnfnKw0HuiIkcvpUbTzcAeyaHWnbjwL93aTyw6diajlwF6Sseg7Oxl/w2szsXqiie5wAr1Wg8syfLZ5MfJWlq/k7sN30xZtY3nZcp5uepp/Of417rj+i/hipfisPtwlZo7m0swrnodVf+rEB2a9mUneSYOvmw/0sfG+Y5isesy2k1l/+zttLLvpdg6++gILr/4gx7a9hslmw+py5zsy9gzvzBLp78VgtWMwm9CZjBzbsnnoBqpKqLsLGDrLoLfMRuvhk7/tpRPcp/js4RUb/R1tpBMJDKZT/z2K0U9VcyQi4SEzSQD5mfgGYlwx7gp8Zh+VBX5+f5uHA327hn2GOWsDhl7/Nvy2i3WfvYNgVyuZZPLEDNud2Lw+Vt/+aXpbmzj86osnkpUFWXPHlzBa/WRzFrQ6HYWVYep3dlNU5cBeYCbUEyfYFSceSVNYYSceTlE1w4e31EYuqxKocZFKZHD5LKQSaRZdVYPFaaSg1Dak86M4N5TUTWThNbfQ13YMVYWicXUU103CbLfz0p9+M2z7UHcXVpebWH8foTc0Cr/u6JZNTF1z2eDrR44/wu1Tb+enu386uO6WSbcwkBwgkU1g09uwaq2oqspl1ZcRsASodFWeiUMVAovdwJTlJfnBEOEURdVO/NUOYqEUCuArt+MttePwWug4GkRVFQa6YnhLbKSTOTrr88/zqgq+MjtbH2tgyQdqQbHS3ZLD7sph8xoorLQT7Gol3NODr6qamZdcjlar45lf/h/TLljDlFUXUrdwCdlsFpPNz8v3hnCV6fFWevnQhBu4rm4qFkO+CqvUM7TDp6m0jLbDB9GoGrLZDFqdHpPdjilip+XAvmHHfGjTS4OJK8XIaNq7e9i649u3UD1nNQDHtncxb30VN068cVjSJiFGWjqVQWey5juQ/Y36ndsomTAFFDvlkz3sf6mNiz46mZZcI7VUn+LThDg9qn02Pn9RHb3RJHaDHuspZqQ0ao18cMIH2dW9C2fOwpFd24b8u5rLEe3vx+kPoNXradyzi7nrrsLu9RPuN5DL5sjlQG/Q4irS0rQ/SKw7TS6TRavX0duWpXzqFHR6Hal4gsD4BRzZ2o7BbCWV1KJoVLLpDAaTluhAfsB9sCeOs1AGcoixS6fXUjmtgE0PHGP+umq0xjShpnpUdejgyYZd21lw5XUjFKUYKbFQhmDX8GS7R7dsZNqFl+Ar1dB5PI3RKve7Qow0nVaLxWlg9YcnEo+ksdgN9HZE0Orfe18KIdxFVtxF+Xa84loXyVgGk1VHKp4hl80xcXGAdDLL6g9PJJdVSSbSGMxatj7WSO0cP3ZPLQZbFqM1Sy47QPH4iRgtFkLdXbQfOcSstesoHj+RcFiDMZkgFYuhMxqxul1MWr4ag8VBMm7nmV8dHxLXsW1drPrwRIL9ETr1zZRWGTic7MKmszHFPw2NTkvLweH1aUdee4VZy2byXOvzTPJMkkFF74bBic4QZ/ZlV6LmcihaHRpFoatBxVumZcWNdeQyKu6AlUs/NY3oQBKL04jTZybYFaNkvAtPsRVvqe19h1JU7eDyz0xnx9NNZDM5ZlxQTvE4B5d9ZjoDnTEMZh2F5XY8xW+/r5rZhdTv6qGzIV8/XFLnpmLq8MQkDq8ZvVFLOnmy74PRoqOoyoHDY6KvLUrb4QFUFXSn6MNWPrmAroaTfcq6m0LUzvPT2zq0z4Y7YB1M1DBxUYCG3T2D/zZhQRHOE215JpuelTdM4NEf7yYRTYMCc9dW4it768QrYmzSarSU2cuGrZ/mmzbsOjanaA6mfSYS2ZMJJG+aeBO17lq+MvcrfHvTtwfXXzHuCl5texUAv8XPeM/4wX8zmi1UzZiNRq8jEYmw5EMf5qU//Jrtjz6A88MfY/zCpVTPmovF6SKdSHB0y8Zh8XU31uMKlNJVfxSNJo3FIf173qt0MsGxrZuGrQ91ddB6IEthiQNfWRErbqzD5begqio6vYZcRsWoA6vDiNMndVdidCh2mQk4TTz9xIFh/3Zs6yaWL5oLQIGpgCa1izKDk3HzF1M9ex4aRYOKis39zgbA6fVacjn1Df3N9UT6E2i0p0509m6FexNk/ib5WG9rlFg4fVo+X5xbIgNJnvzlXqIDKQ6/lmXB1Z/glbt+SDqZQKPVsui624j0+3B6tXgCJZisdo5u2zzsc9oPHaRu/SXE1QSRxjbcMydQMXcuuRO3oCbd8ImBtIoW9URyu0Q2QTTz3vruirFLr9Uwo8zFjDLXkPVlk6Zyzde+RTqRwOJyodFoaT10gMY9O4dsp+ZyhPt6WHnLx+hpbsRsH9qnFvL3K5G+4fXIoe5W0olUPqGikm+PsBeYcOk1OH1mjm/vorDSSeUsD/Zahd92/IgpgUlU3zaeVCpO3N5BJwM80/cMA+oAGw/n7zu1ipYvzv4i39z4zSH7W1ayjD3dQyf0WVy8mJ/s+sngawWF5aXLmeKbQom9hBJ7CX+57C80hBqw6W3Uumtxm4b3CxYjy1FgJjqgx+bxkYrHBicSfF02nSbS10vboQPMThmYXDCZfb35uiGj1sjtU29nR+eOYZ9r1kqfWXH6paJhjv7tuASgq+E4BmM+ofOxnd1MW12GwShZxMXZoaoqG+8/htlhYNqq4cma1GyWHiVCSUKHtrSah//4HJcVDWDrTYD53f8uprtidP9iNxqbAePkGjSN+aRPlc5KIJ+EZJZ/Fu6iAN2N9W/6OYpWwT7OzeTWMImPf4bEj77Lpq/8jMBN1zJ/fTVa3Tv7G1pR5+Nbj8CTO5pZ8b0voDGZKPmf/0bR60+5vWIwUPI//0P9VVfR+vkvUHn3X9CYTESDSYJdMVKJLAaTFpffKnVeQggxhkjPpjFmduFs/nvFf7OhaQMGrYELyi9gQWDBKbd1nhhkHvTmKCx38NLdR0hE0lhdBpZ/qA5f2fDKjHfD7AyA0k82HSaTytDfAa/e10Euq2J1GTFZh95U2Iw2wskwekXP52d/nt5EL+b48BgUjQaLy/W+YhPvn86Yr7AKdsWJ9Ku0HQ6j0ejIZVX62qJE+lWa94dxB7IUlNjoa40R7ldp2hvCaNVjc5rpaY7S35WmaX+YXFalbIKHzvoI3lIHHcfiRAdShPsVGvYMoCgw97IqNj90nFkXVbD5oeOUTnSz69l+elvjVM/ws+XRBvxVDvQmLW2HEiz70Kc4sqWDbKaEqmlunMmprP3s5QS7IqTTDmavu4Bj23p54c99LLyqhkh/gp6WCJsfOs7i66pwB2yEeuNsfriDRdfdwUD7MXqaDtB26ABN+3ZRt3Aphze/woQlKzi86RUGOtrwVVTR3ViP1ZV/IIiHQ9jcHiJ9Q7MCK4qZ/rYY/W0n19ldUuFyphVXu9j6eAONe3pRFKhbEGDi0iL8io8FznnUuPKZycvsZRRaCtFqtHxv+ffoinVh09vwmDyYtKYhCRz+lstfhNFqJRk92ajg8BXi8BUO2zbUMzzLaiaVJRHV8NSv+ll0VRGTlq9m/wsbBv99wuILMJ2istnscGK0vr/ORT778MYSMXrUuGr49cW/pj5Uj1lj5p8W/hNdsS4gja40RlrXi79wKmXale/qc/s78mU1EU3jLbNhtOhIxjK0H4ug1RUyfuG1mCwpFl4zk8NbomSzGcK9PUxevpqmvUMTQpRPWcTTdwaZsMjDuNlaHL5C+tpahmxjsjmonVfIkde6UBQYP8+PzqAhk8qhaBSmriihuNY1LM6imtph66YsvwCLc/i2YuzQanVYXG4URTN0EI6igNXIOu86JnrzGbrsJj3TC6fy1Xlf5Qfbf0AsE6PCUYE/4OaINkYuezJxU2GFnZ0bEoyfX4vDFyOdiOH0l9F8MIHdbcBXPh2Ty0lXM6RTOfb/KoyaO86aj08hFU8zZXkJu55pAkXJdzIEtDoNepOOaDCF3qjF4TFhdeZnfHl9VoHXlU8+wydOjDiNPkDNvEoOvtJK0/4YgXEmUBKMm7uQ+h1bh2xbUjeJrY/cT+X6azCd4rfaUegHh55lpct4seVFXm59mSXFS/j+8u/TGeukyFqERWvhuebnuKT6EvQaPaFUiI5oB/OL5lPrrkWjSKOJOHPsHjN2z1s/q5gseiqnecnlVIJdMaLBFFq9ZvC+QqNViIfTuPxmbC4jiWgKnV7L078+OdBBp9cwaWkNExcX0d8RR0OU1bffQXRgAL3JSl+7g/0v9xML5TuI1651cGvFrcwPzB9MQHIqVqcbb2k5Dbu34/T56W1tIhWPU1BSRjQ4MGx7b+nwWTrE2eUpLjnlugOv5BM5OX1mDFYNyWSSaockbhCji0arIdKfwFNcSuPuoZ1tCkrK6Dx+HH+NlyNbOllyXS1xex/jXePf5NOEOH30Wg1Fjrf+PS+1lfIP8/8BV8aK1eUmOjA0EbjF5SKXyaI3eZh96TXojQ66GiEVz6A364kOJPAEjKT1eloPReluCg95v6/SRyyY74we6Y8QGOcn2BUDVUFFRavTkEnnBjurGy2n7pQgxFhSO9dPd3OE535/kCnLi/FXDK/Xtbk96M3SNnC+MZq0p+xU7vD66WttIRbyUjzeQ2Cc6+wHJ4QYwlthIRpM8tJfDhMPp7E4DSz/YB1FVc6RDk2cI/QG7eDsiLoTyW1s7pP3Bkd3dGEwaklGM5gsenqaw4CdbU90UD3TRy7rpKjahjPgwuIKUzrZQv3uFI37g0xYFCCbqcFoC6E3qZgsNva9GkHNgLds+GQY9gIT8ViC/tImFEMcjUVljnMOB3oPMD8wHxJa3IHiYe8rKCljQbGXmUWzmFs0l3JH+bBtxKlpMHLotSwTFpjJqSnI6nn+7l7mrHXhKba9Zb8tT+DUE1K8Vzq9lvLJBZTUuUBlMNlS+SQj5ZOGJxB5K65CC5d+ehr9nTEUBdx+Kybb8Ge8glIryz9Uxyv3HslfYx0GVn14It5SO5Tmk4f0tEY4tLmDlgN9zL6kgp1PN5PN5CissjPnkgqO7+qhqzHf58jtt1I7x0+oK87xnT0oGoUpy0pw+y1Uz/RRNc1LQakNT7GV9mNByid5KJvoQW88Wb9cVO3k2n+YQ6gngdGiw11kGfzbFOev+YH5/HDVD9nQtIFgMsiFFRcyryg/cP/y6suZ6JlIS6QFj8lDOpvm4eMPs2zmMlaUrxiW6ESr01E9fTbHeo/RH2pj5de+TCocwekKcPwVlWRMj8GiZfoqO87ComGTw9gLfPQ2N+ApKSceMTF1rvdsnopzisXuxOHz09PUMGS92eEkGclgdRpAAV+FncL32Y9WiLNBURScRYFh611FxYR1Sb6x4BsUWgrRaXQ4ykpJdPeRCIfQGk24iwOYzO/s3sJf5SAeSfH8Hw8RHUhisupZ8oFafKWn597kVAlZ9UYtBpP8HovhogNJogMpIN/3cddzei7/0ncYaO8iGTdwZFuKYFcPO56Eiz5aTSadwVUUoLe5ccjnuAIBOunHsXYunpwGndFARquj3Jl/tqlx1rCibAXPNz8/+J4rx105+HqcaxwB6/C/P3H+MlqsGC0nr4tmu/2UbW9mm4PeDietx2qomJTN95lU39AHsrqOQO009mx4fMj7KqYtJZ3S0HZ0gHmXVZFOZzEYtXirrETSIRZcVc2h6EGOB/cQS8fwO3387/b/5Y6Zd/CD7T/gd2t+x2z7bHZ07QAV7phxB3qtnkmeSVTYK/jo1I/y450/Jp1LM6twFjdNvok/7P8DB/ryya6uHHclq8tXM7lgMk80PEE8E2d56XJqXbWDfzcA1a5qql3Sp2O0S0TNNOzpY+ICGwazmVR86NgGs92ByWZHMej55LRP0pvsJZlJ4rf6cRqcwxI1VTmqmOKdcjYPQZwn7B4vLn8Roe6hyZkcPh/bnuw7sY0JRQMmu/Q1EGdHw55e2o4MsPS68RhOMSFQz8vPETGDRe/moT0dxFJZbiish6gTtO9uyLaqqvTfexhFp6Hw49PQbgvAgT7IZSm2FqPT6GgINQDgK6+iq+H4W36eZbqPvv29FF11Ge3PP0pd/YO88thkWg71c9Ftk3H53z7xarXPRp3fxsNPbGFRQwPlv7oTvd//lu/R+wsp/u53af7oR9n7qa+zu/Rqgl3Dx9W5/BZqZvmYsqwEm1vGuQkhxGgmSUjGmAJLAasrVrO6YvU7fo+zwILVbsDhNZGMZjA7DRSWv/+GE7vbTCyYRtHa2Pr4UdqPBoF8/cjCK2tOmQk+4AiQyCbQarSkcikwW5m1dj3bH3twcJuFV1+Pv6rmfccn3h+zzcDS68bz6I93M9AZo3i8i9ZD/Sy+ppbOhhAdx4LUzPJxbHs3ExcGaNrXR/2ubiYtLWHfi62YbXosTgNHt3UxfXU52x5vIJvO4fJbOLqti1kXV7DxgWODlWllkzwc3dZFOpEdzHSu0SjkskOznod7E1TP9NFyoJ/WQyGSUZX+zigl490c3NhPuNeFzuCgcW8vGm0fMy8sx1/pJJvLsuSD40iraWJKhP849E+M14+nYlU17mQBQbsNu288vppyjm3bTOuBfdQtXMri627CbHew+Pqb2fbI/Sy46jqObd3Msa2bWXzdTex97mlmXbKOl/7028HB1SUTpuHwlaPRNZDL5I+voNSKv1IaLM+0omonyz5YS3BVGYoCTq8Zu9dMMWuGbKfT6Lhh0g1sad9CPBPHa/ZiN9ix6+2Mc49DUd48c7/LH+Cqv/8mz9z5f3Q31lNcN5FVt37ilLMFnCo7464NzUxbVUrbkQFeva+DmtmLWXrjNNLxLvSmQnyVtTh8OqpmzqV+x5b8mxSF5Tfeiq9MBkye617PEN4T7aEp0kQykwQFHAYHZdYyDNp3n/HzjQ/lwe44i64eR7g3QTqVpXici6d+uQ8VlYVXFnF8RwsarcL0Cz+NzR1n7vpr2PHEwygozL78GpxFtZRMCLHvxR5aj1hYcv3NPPw/30XN5a9/gdo6CqtrGL+wlNkXV5LL5dBoNGi0CpVTvWg0GpyF5lNmTw2MG8+aT32eF35/J8lYlCkrL2Lq6ovf8u9RjH6KomAv8DLn8qvY8tC9g+vnrruaunEz0BmMQ7Y36oysr1nPONc4umJdmHVmgppuVn6sli33NBHqSVAy3kXlNC/JWIaBzjRdCQ3+igCh3iT+Sg9avQadQYe/soCN95/M3F47pxBFq6Cms9hcBiYvKyEWSpKK52fhnraqFFXND4hzFVlwFsoAofOZzaMnHsrgrypgx9NtHN2WbySesszPomtvYstD96CiMmXFhYR6Oplz+VVYXG4sDgeFVTWDswZotDqWfvDDlPqq+OaCb3Kw/yAmrYnueDd7e/cywT0Bt9FNIpPg9mm347eerJxdXLJ4RI5diLei0SgUlNhw+syoufxsmZsfOk5XQwiDRceMi8rJ5VRAweU34/JbGOiMAflHv9IJXpIxMFmMZDJ60mmFbMZG2978bJapRAa9UcvsSyqYNKsYs/2dzaoaqK1j94YnMVptVM2cSyIcJpNO4y2vpH7HlsEEghani9p5i87IuRHvXOX02ex97unBDjhGi5WJy1bxyI860Bu1TFlWyoC1neW+5VS45BlIjC5arYZMKkvtgiUcfOUF4uH89ctsd1A1cw4ajR1VVbnkk1MYsHVgNdnwWX0jHLUQebWeWjK5DN3xbpbc/BGe/OH3B+tmy6fMwB0opa89zK4NUZZeX0uwN4lWr1JYaEcFimucZDI5IsEEs9dU8NSd+waTRRaUWPMDJ3UKak4lm1aJh1M4vGZ0BoVMSkE5Uder0SpotRrcRTKTrBj7XIVWLrx1Mh1N/ei0OhTMlE+ZfjKxr6Kw7MaPgOadzTQrzh3ZrEpB2Tj81ePoPH4UAI1Wy+LrbiQeilA5swqTT8FglKZ6IUaawWCgdo4fh9dEIpzG5DCcMqmUEGeKxW4gHkqRSqQprHKg0eTbxeLhND3NEUrr3Gi0WrY9NHCio24EnV7DJZ+cSjqZRV9gJpcx0dsWJRXP4K9wkcvm0Oo0eMts9DRHgHy93sIrayib6GGqbmgSkRJ7CS2hFsKxfqpnzWX/i88SO5Hc12i1UrVsCRpLH+Nc4wZnXBTvjEajUDrBz4M/OMCJSdQprnXi8lvQakcm+bhWd3oG+JrtBsz2t267NlsN1M4ppKDYSiKaxlZgwvWGvmR2j4kVH6pj5oXloIDda6JuQYBMKovdY8Jk1eMutlI7p5BsJoe9wITRrGf1rZOZ2xNDo5xse66de7J9paDYxrSVZacKCcjPBO0okHZAMdSC4gUsKB4+EZxZb2aqbypTfVMH1y0pXfK2n1dTUENNQb7/o6qqdPf20914mP6OGEabnilLS5m37ho6jhwik84PrnYXl2AwmQnUTmDeFbdg95XiLXl/kxWdzxy+QhZfdyMPf/875LJZAPzV47C4SikoDmLzmNDoFElAIsaUsklTsfsKCXfnE/vrTWZmXHwph1KdOA1OHHoHFY4KbCYbtrL3fv2onOpl7SeNxENJjFY9RdWnL0mjzWOkZnYhx7Z1Da6bd3kVerNMzCKGM1l16I1a0sn8dTweTvP0r9tY89EpPPGzvYPrrS4jZruT5gNBZl50GU27d5JOJgCw+wopnTiFHn2aWCZGJBejUGvDbXKj1+QHMLtMLr4+/+usq15Hfaiecns5r3W8xqH+Q8zzz+Mr876C2/TuZ7IX5w9PcSnLb7qNx370X4NtbxXTZmJxlbDhdw0ApGJGLrj9i2y699dEB/qpXbCYyukX07A3ytIP3s5rD/6ZTDrFpKWXYHZOxFVoZtbFFWg0Sn7yy1gGxZFmkj+f9KNYX8QTLY/x18N/xWaw8dGpH2VH5w7+c9l/MqlgEkadkS/M/gJN4SayuSyl9lIs+vzz2Icnf5hV5atIZpOUWEuwG+3848J/5NYpt6KgUGYvw6gzErAFmOmfOSLnVJw+FqeBbErP07/tYemHbmXDnf83+G/jFy6l9fBBVt36cWorpmAMNaEEFaKZKA6Dg5yao9pVzX8s/Q8ODxwmYA0wq3AWZY43f+YW4r0yWq3MXXc1bYcOnHxODhRTUFZLKtGOolFYsK6adCKLgowtEGdeKpHhxbsO4Sm2Mnnp8OTdAIfu/Q3MAYe3ij9uamRKiYNpmkYwv/v+AcmjA6SawriuHIfWaQSrD1Ah2oPW7qfcXk5DsAGAwqoaDm9+hVgoiMVx6uc186QCNBYd0VfbKf72P1P/getYkXmcl3qu5y//+hpLrxvPxEWBtx2rsyLXzc8VJ8qnP491wfC6s7+VTmY5HCujt/oiSl99lMBFtUy55hI8xVYMJh2pRIbe1ihN+3rZ/kQjO55somZ2IfMuq3pHiVGEEEKcfYqqDp/94lwwZ84cdevWrW+/oXhfOuuDxCJptDqFeChNMpbG5bfgKjLh8Lx55uv+RD+heAiD3oA5qtDb0kSkvxeH109xbR1G6+md0eMMOu1PL6Op7OZyKj0tEfrbo1hdBlKJLLlMDrPdQGQgidlmIJfNkUpksLmNRPqTGC06FBTikRR2j5lYKJkfDKzXEg0mcRSYiYdTKAoYLDoy6RxP/3If4+cXcWRLJ8lYhvnrq9n84HG0eg1z11ay6cHjTFwcoON4kP72GHPWVnJkayeh7jjz1lXT2xLG4TXTcqifroYwsy6uIBZK0rSvj4JSG/Murxo2W1VvvJdYJkaBqYC+RB96jX5w0GdfWwvdjfUoGg2+iircRfkHht6WdnK5HFang8jAAGarjXQ6TS6bJhWL0NfWgtFiw+QoJhkzYLblz5PBqMVbZsfuGVXZ+c7Ik/doKr/vVCgZoj/Rj0bRvKtKsUQkTCISwexwDMloPWSbWJotD9ez+7kWALQ6DSturMPlt5BJZhnoiqHRaXD7LWi0CjaXCasrPyC/v6Od7objJCIhXEXF+GvGY5QZM193Tl97X5fL5WgONqOgUOosRaN5b42tkYEkL/zxIA17ejHb9cy9tBKdUcum+/PZT5deV0u4L3miDBqJR1JotBq0OoVIMEH1dAtajYLV4yXSlyCdzJ5owFPJZbJkUm0MdLZiNFvxVVRRUPr+KpfDfb1kM2nsngK0unMuU/F5UXZPpa+9jf72FiJ9vTh8fgLj6jC9y/u9WChFKBJGVUCb02Ew6PP3EyYdZtvJTo6xcIqG3T2EeuIUlNiIBZNYnEb0Ji3B7jiKAv4KBwaLjmB3nHBPHLPDiMGiJTaQwu4x4auwyyCQ4c678tvTGiGbzZCK5RjojKE3aLF7TWh1oNXGMJh0KFoNqGAwmehqrCfc24MnUEK4r5dUPIa3ohJ/RTXKG67hXbEuQokQdoOdQmuhJFs68867sns2dDQECZ+YKTKdzBILpnD6zSgK5DIqwZ448VCKkvFuwn0JMqkcVpeBQ6+1469wMW6OH0dB/vkoFkoSC6ZQtPnZNzVaBbvb9K7/NqIDfXQ1HCcRieIpLUNvNKKikIqEGehsR6vT55/vTjGb6yh2TpbfzsYgaqaXvtYGcrkcnuJyIiEHqXgWT8BCoMYl18ax75wsu6/rbYuQjKZBCdLfdhxUFYevCJ3ejj5gIZwJY9fb8VplltIx6Jwuu69TVZX2YBvJzl7Cre0YLVYcBYUkohlyqge7x4LOqEVv1GJzGYdck8N9cfa/3E7zwV7q5hWhoqDR5AeOtRzsp78zhq/cTjqZQafXUjXdSyaVI6fmUDMqqgp6kxZPwIbJes4984+086L8jmbBRJBUD2SSA4S6mklGI7iKitGbA5isZtxFMnDsTZyTZTcWShHsiUEuQrC7nnQ8jsPnR6MzoC2yU+wuHdH4xGlzTpZfcV6QsjuKtB8dINSbnwUwFc+iN2nZ+0IrtXP9HN/ZzUBHjAmLiqia6qWvM0Y2ncNdZKG0bmgn5ngkRTqRIZtTUVBQFEgls4S642RSOTwBC95SO4rmrb/+zrYmMtEYA+1toKoEauvwFI+a360xV3Z7WkNkklmSsSzB7jhGqx5HgQmtXqGw/PQN5hVjwpgrv+L02/N8Cy/edRiAdZ+bgc6gIZNoY6CjBa3BgKekHK3WgMPnwWgeNYMuxnTZzaSSdBw/Sn9bC3qTGVtBGdEBE2a7AYNZS1GV66zEIUbMmC6/b6a7uZHuhuPkslkKysrxV42jJdiCikqZs+w99y87W7qbQqSTGaLBNLFQCqfXjNGixWg34PGPmX7jZ9o5WXbfC1VVObK1k2d+fQA1lx/vMn1VKbULikjHMwx0xtBoNbj8FhQN2JxGFL1CqLOR3pYmtPp8H4HXJ//rjnWTy+ZwW9xvOxncQGKAcDqMx+TBqpey+Q6d12U3lYzTcfQI/W2tmGx2fJVV2Dx+eprCDHTFsTqNeEqtpKIhIIOz0IuqahnoiqGqOeKhAVLxFMmoCU+JjSNbumg+0IfNbaRqug9PwErZxKF1Aelcms5oJ1pFi4qKXqPHZ5EJMt6jc7b8dh4fIJ3KkohmSKdSmK39BLtasTic6IxGTBYb3soq9Pqh18V0Nk1bpI1MLkPAFhhMYiNGnXOu7LYdPkhvaxM6vRFPSQUDnUZSiQwOnyWfuLbAKPVq544z0UHwtA2SfvGuw+x5voWrvjybQM3wMpc4dIj7P3cl/3a9litjt/C7xgl856qpfPDQ30EiCB999l3tr/vnu0n3xAl8ZS6KTgOHnoA/Xwe3PQNlc/nSC19id/dunrrmKdqPHOJPX/8il33u76lbuPRNPzP8YgvBx+rx3DCB2MYH6P7+93F/9Z/Y1Dee1kMD1MzyseKGCW/afye2dSsv3fEVPr7ii/z9xeP55MraN91XJpVl74utbH+ykXg4TfkEJxOe+w65tiaq7r8fQ2nJsPeEeuLsfr6FfS+1kUvnmLSkmDmXVmJ1Gk+xh1FFOrcKIc4rMrJOvC+5XA6jWYOaA6NFh91jQqMFq+OtB8q7Te6TWYFt4PIXnYVoxbul0SgUltspLLef0f2s//xMGvb0UDbJw9GtXRzb3sWsiyvY+UwTjfv6WHhlDU0Hepm+uoxgV5zmA30sWF+NVq9Bq9MyYYEfjUbD1BWlDHTGyGZyeIqtLLyiBr1Zh94wfCaXAnMBBRQADKsU8RSXnrIjTUFpYPD/Lc7h56R4fN37PRViBDiMDhzGdz+rhclmx2R7678Nk0XP/HXV1M7xE4+kMJh11O/pweoyAApWl/HEQM0soB1MQALgLgrgLgq86WeLc59Go6HC/f5nfre5jKz68ES6GkKEehNk0zmsLh0XfmQSA10xshkVo1lDpD+F0axDZ9Cy9/lWamYXUjurCIf35G+603eqSmQvFVOnve84X2f3FJy2zxKjhydQjOd9Dvq2OAxYHG9fPix2A+NmFTLQGSUey2C264n0J8iEs5isetRcDncgn03XLR0YxFvwltjoahxAb1Bw+c3kMioKkIxmKakrQqcfeo9ZPvnktfCtfsELLYUUWgrPTNBCnCVFlU6KKk/dmNfXHiXYE8dTbKOvM4pep+D0myEHsy6sxOW3YLScbLSwOIxYHO+/0cDq8lA149QZ5AO18qw2muh0WhIJNzafEwXIpMFZoMPhMw9JLCbEaGWy6IkGkyjYcRTOIJdRMZh1GKw63DYrXiT5iBjdFEWh2FUCrhKoe3fP83aPmTmXVlIzy0cimiaXVcnlVIJdcQxmLbVz/ET645gsZpKJNP43uV8Q4lzkNDnp00RIqw4s7kkYbTl0Jh2o+WR74vxitunpbcui1dqwuCahOvIzt6qoFLldIx2eEEKIUcQdsNC4v5eCYismu55MKsv89VWk4lnmX16FxWHA6bOgaBSKalxv+jlmm+GU9Sq+0nfX18NfXA5ASe2Ed/U+cWomq5FQPIbOqMXpM6PVaUADeoN01xPifFQ1w4tOr+HAxg6Obu2kbmER6ZQXh78Qo0VHJpnBP77gbRNGiXdOZzBSOmEyWkN+oEsqlsHi1KDVKmQyuRGOToj3xldWMZhQ4XXl7vIRiubd0+g0KGkNFrsBvVGL3qxFVfJtL0L8LUVRqJlViCdgJXgiweLu55rJZVWqZ/twFppBATWbJZMGe0G+n6PNUUfxKfoIvJvkDC6TC5fJdboORZwHDEYz5ZOnDek/BlBc66a41n1yhWvohKauQgtdjSEyKTPhXhWjRUMupzJ1ZTF184tIp7NY7UbcRcP77uo1ekrtoyZxqBilDBYdqqKgz4HepMNotqMzlOD0W7G733yCXb1WT4Xz/fdhF+LdKh4/geLxE0insvS0hLB58skNdHoNepOGXOa05ZgQ4k0d2drJnudbmL6q7JQJSAC6/uu/aCs2AFl2RMZTYDWwfkYxbGmDgnHvan/JphDJ40Gcl1blE5AAuCvz/+1vgLK5zPDN4MmGJ+mIduCvHofRYqVx9463TEJiW1RMfE8P/fccxnvbtcQ2baT/e//GBXfeyeFJNWx+8Did9a9x4UcmDb1fAVKNjbTc8RnGuVwsqnTy241N3L6sBr12aOLLbDrHvpfb2PZEA7FgitIJbuavq6ao2knq6v+m/sqraPvSl6j4/e9Q9EOf+xxeM0uuqWXWRRVsebSe/S+1cXBzBzMuKGPGBeUYzVKPLoQQo4FcjcX74im2U7+zGzRgNOvo64hSUuvKN5wL8Q4VVjjwldvp74yRjKVp3t+PmlO56PbJGM35gUjTLyhDURQ0GoVsJvemZcz2FpUhQowEg1lH0RsePIvHuQj2xGna24O9wEw2myMaTFE9Q7JPizPHbDNQMSU/EO71a2hPc5i2wwO4iqwYrTrKp3jwlTrQ6jXUzvHLb7kY0wxmHYWVTjLpLJ31QUw2A8HuOOlEkqrpPgwmeQwS74yryEbT3l40WgUU6DoSomamf1gCEiHESS6/hUhfnI76EGa7AYvbhNVpoKD4zCa3FGOHu8hC88E+Iv1JLA498WgGs+PUA2WEGI2sLiORgSTtxwZweC1kUhk0OoXCinef4FSIsUir1eD9m4GM8XCK/s4onfVhEtEMyWiC2ZdUjkyAQowgT7GNtqMDhPvimG16elrCFJTacBS8deJ+ce5RNAp2j5mGXd04/GbULPSF8vVSQgghxBuZrAZqZhSy96VWCoosOAotGC06imvdaLXSVjfW2VxGogMJuhvDWN0G4v1pbB4jrkqZPViI85HNZWLi4mLGzfOTTeY4vrubXDaHomjob49SOc0nCUjOEJvLROPubqxuE5lUmmgwRc0smTRCiJHgLrLSfLCPeDg/WVZ/W5TCSicWu7QTilN7vU3CW2onk85SUGwlHk4RbI/S3x0nGctgdRqZvqpspEMV4j3RG7SYbXq6m8O4AzbSyTTxSJqiSie6IumfJt4/V2H+tzfSl8DiMNDfkaSg1PaWCUiEGA30Bi0ms56240EsdgOh3hg6nZbKaTIxkDizOo4Hefb3BymqdrDwqppTbhN+9jmiL75Ewycr0Qb17OnV8A9rq7HotTDQDDWr3tU+w8+3oJh1WOe9YQrM1ycz7q8HYEbhDAB2du1kTdUaKqbO4Ni218hm0mh1p07qqOg0FNw0ia6f7KT3twco/Oq/0vrZ22i94w4m/PSnlHxlNk/fuY/7v7+DSYsCzL2sCpvbRLK+nubbbgeg7Gc/5aNxM7f+Zgv372jlA3Py993pZJb9r7Sx8+kmIv1JimtdXHTbZErGn0xmYigrI/Dtb9H6+S/Q/vWvE/jOd1A0w9s9LA4Dyz9Yx/RVZWx68DhbH21gz3MtTFtVxvRVpUMmPRRCCHH2jZnRd4qirAF+AGiBX6qq+t0RDkmQTzxSt6CIUE8+w3DJeLcM6hTviaIoeIqsrPnYVMK9CbR6DU6v+ZSNqzIwXoxlikbBVWjBuqSEcE8cRavB6TWhkU5k4ix5/RrqLbOz7Po6IgMJDGbdkMEQcp0V5wqdXkvJeA+hnjg2lxGbxySzp4h3xWDUUTOrcMjzjtEsZUiIt6LRKJRP9uIJ2EjE0lidRszSaUy8gUaroWKyl3BfgmQsTVGVlBEx9vgrHdgLjMSCKYxW6aAjhNluwGjRYbYbUbM57F4zeoN0jBTnp+JxLhxeE4lImsIKB1ancaRDEiPEVWhh0rJSwr1xtFoNDp8ZjQwoFEIIcQq+cjsL1lcTHUhitOixe+QZ81zir3Ri95iIhVL4ygzY3HJ/KMT5Tq/XotdrmbAgQKg7RjarYi8wYzBKXcqZYveYmLC4mFBPAkWBymlm6RcjxAjRaBQqJhW8oZ3QKe2E4h3T6bV4y/JJ0tMpl/S/FecMT8CG1Wkk0pdEZ7Ti9Elic3H6KBqF8kkFhPsTJKNp/JVOLA757RVjgztgw3Li+ugJWHH6JLGvOLPajvTzyI93Y3UYWPPxqaesO0h3dtL+jW9gnDCBg9YgsfrrCDhN3LigAmK9kI6C850nyEt3xUgc6MW+sgzNG+uG9GawB6Avn4SkzlOHw+DghZYXWFO1hikrL+Tw5lc4umUzdQuXvOnnax0GfLdPpftnu+n7SyOB7/4v7V+5g6Zbb8X/9a9x7VfX89ojDex9sZVDmzuZ6mmm4MmfoNEqlP3ylxgqKlieU5lZ7uLfHz/INJOJ7n39HHqtg2Q0Q6DGyaqbJ1I6wY2iDG8Ld1xyCanGRrr/5wcoFgtFX/86ivbUdWAuv4U1H5tCd1OYLY/Ws+WRenY+08T4eUVMWhzAV24/5T6EEEKcWWMiW4SiKFrgx8CFQAuwRVGUh1RV3T+ykQnIJ4+Qm3lxuhhMOgpKbCMdhhBnnN6gxVMsZV2MLJNNj8kmg+nFuc/hlYY58d7J844Q743NY8ImAybEW7B7TDKoRoxpFrsRi10GDgnxOo1Wg9sv981CQH6GZZtL7nMEGIxaCqQdQAghxDtgthkw22QAyLnK4jBicUgdghBiKI1GweW3jnQY5w2dXosnIOdbiNFC2gnF+yX9b8W5xmjRY5TJ1cQZZHebZHIVMSbJ9VGcDdlMjp3PNLH5oXqcPjPrPzfjlJONpDu7aL79dtR4HN23vkLD44+Qzvr4zlVTsRh00Lw7v6F/0jved/CJBhSdBtui4uH/6J8MbdsB0Gv0rC5fzdONT5PIJKiYPhOnv4hNf/0z4+YuQKt78yHiugIz3o/mE5EMPNpLyY9/Ree3vkrHN/4Rw52/onbpUiq90PfiRgxtRwlbAhyY9gl2PxrH8lL+mFb2a/jvSIpP/3orVyVN1Ez1Mn11GYFxrrc9xoKPf5xcJELvL+8k095B4Dv/hs7tftPtfeV21n5yGt3NYXY908yhje3se7EVT7GViikFlE8uIFDjlASzQghxloyJJCTAPOCoqqrHARRFuQtYD0gSEiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcRbSsbSHNnaxc5nmgh2xamZ6WPlzRMxmocOt1YzGcJPPUXnd75LNhrF98Mfc9OG/aT7F3FRdZoVdYX5DZs2AQoUTXtH+49u6ySxvxfHxRVoT5WkvGIRbPgWhDvB7mf9uPXcf/R+/nTwT3xkykdYcdPtPPi9f+GlP/2a5TfdjqIob7ovvc+C7/apdP98N/33tlD8Pz8h9upzDNx9NwP33guZDI66Omw3/wO6CSupqI/S3xEl1JNAVVXK7UZudvr4bUs3Wydbuf4D4ymwvbPE24qiUPilL6ELBOj8znc5fslavJ/8BM6rrkJrt7/p+3xldi64dRJLr6vlyJZOjm7vYteGZnY81YRGp+AtseErt+Mrt+PyW3D6zFidRhTNm58HIYQQ795YSUJSAjS/4XULMH+EYhFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKMMtlsjt6WCIlomkQ0TSyYor8zRm9LhK7GMGpOxVtm49JPT6NiSgHZgQHih5vI9PSQ6epiYN8B6l/bTW80Rah6LkeXXsLDT3QSSfvxOjbyk4/8c35H3Ydgxx+gcglYPG8eTyRFujNGYl8vkY1tGKud2JeVnnrjiethw7fh2W/BJf/JbP9slpcu54c7fohW0bKgZgETL76YbY8+SG9rC1NXXoinuBSTzY7NUzDs4/RFVry3TaX7F7vp/slubIumUfTNJWjserRWPRqLHgAfULtgeDhXADUbG/iXRw6w9D+e45IpAeZVuSlzW/DYDJj1WiwGHT77qZOTeG64Aeu8eXR869t0fue7dH3/v7HMmYNp6hQMlZXoCgrQ2GxobTY0Fgv6khIAjBY9U5aXMmV5KalEhpaD/XQcC9LVFObI1i72vdQ2uA+tXoOjwITVZcTiMGC2G7A4DBgtOvRGLTqDFr0xv2h1GhSNgqIBjUZBUZTB13qDFrP9FIlhhBDiPDRWkpCcKgWVOmwjRfkY8DGA8vLyMx2TEKeNlF0xlkn5FWOVlF0xVknZFWOZlF8xVknZFWOZlF8xVknZFWOVlF0xlkn5FWOVlF0xlkn5FWOVlF0xVknZFWOZlF8xVknZFWOZlF8xVknZFWOVlF0xlkn5FWOVlF1xLkvFMtzzna1D1hmtOjwBK7PXVFA5zUthhR1FyQ9d7v/jn+j50Y8Gt91aNZtvzPro4GvtsSiK7QiFvk389opvoNVpYaAZfjwP9BZY/U9vGU//X4+QONAHGgXLbD+udTUoWs2pN/aOgwWfgk0/Bp0JLv0v/m3pv/GF57/A97Z+D4B/W/avLC+8jc0P3EPDzm0AOAv93P7DO0/5kYYSG76PTmPgkWOEnmwYXG9dGMC9ftxbxg5w88JKFlYX8LMXj/P0/k7+ur1lyL9PLXHy8GeWvOn7jbW1VPz+d8T37CX48EPENm6k9xebIJsdsp3O76f2heeHx2/SUT3DR/UMHwCqqhLqSRDsjhHqjhM8scRCKTqOB4mFUmRSubc9rr9VXOviyi/OetfvE0KIc5GiqsNyeYw6iqIsBL6pqurFJ15/FUBV1e+8xXu6gcazE+Hb8gI9Ix3EGSDHBT2qqq45nTt/D2X3XPoe5FjOntNedmHEr72j7ZyPpnhGUyzw/uMZDddeOPfO65kgMQ01WsrumTQav/P3S44pb7SV39H4vUhM78zZjmm0ld1TGY3f05lyvhzr6TrOsVB+36+xXCbGcuxwZuM/H8ru68Z6OXgnzqdjHMmyO1rOs8QxumKAdx7H+XDtHS3fybsx1mIeiXjPh7ILo7MsSEzv3JvFdbbK72g9L+/VuXY8MPaOabRfe8fa+Xw7cjynz2gvu29nNJaF0RgTjM64zpU+DjD6zq/E8/bk2vv+jcbv9Y0kvvdnpJ/ZTqfRcK5HOoaR3v9oiGEslN2RPkfvxliKFcZWvH8b60iU3bF0vt5I4j673kncY+Ha+36Mxu9utMU02uIBKbtj9Ts528ZyTGei/D5xYv9nw2g896fLuXxsMArreoUQYjQbK0lIdMBhYDXQCmwBPqSq6r4RDewdUhRlq6qqc0Y6jtNNjmt0GGvxvhU5FvF+jLZzPpriGU2xwOiL570abccx2uIBiel8dC6eXzmm0Wk0HoPE9M6MxphG2vl0Ts6XYz1fjvN0GMvnaizHDmM//tHifDiPcoznTwwSx+iLYTTFMRqMxXMx1mIea/GOJaPx3EpM79xIxzXS+z/dzrXjgXPzmEbSuXY+5XjE60bjuRuNMcHojGs0xvRejbZjkXje3miMaawZ7edQ4nt/Rnt878ZoOJaRjmGk9z9aYhjtxtI5GkuxwtiKdzTEOhpieC8k7rNrrMZ9Oo3GczDaYhpt8cDojOlsGo3HLzG9M6MxpjPhXD7Oc/nY4Nw/PiGEON10Ix3AO6GqakZRlDuAJwEt8KuxkoBECCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQojRbkwkIQFQVfUx4LGRjkMIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiHONZqQDOE/8fKQDOEPkuEaHsRbvW5FjEe/HaDvnoyme0RQLjL543qvRdhyjLR6QmM5H5+L5lWManUbjMUhM78xojGmknU/n5Hw51vPlOE+HsXyuxnLsMPbjHy3Oh/Mox3h2jIYYQOJ4o9EQA4yeOEaDsXguxlrMYy3esWQ0nluJ6Z0b6bhGev+n27l2PHBuHtNIOtfOpxyPeN1oPHejMSYYnXGNxpjeq9F2LBLP2xuNMY01o/0cSnzvz2iP790YDccy0jGM9P5hdMQw2o2lczSWYoWxFe9oiHU0xPBeSNxn11iN+3QajedgtMU02uKB0RnT2TQaj19iemdGY0xnwrl8nOfyscG5f3xCCHFaKaqqjnQMQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIEaQZ6QCEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBAjS5KQCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQghxnpMkJEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCnOckCYkQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOc5SUIihBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcR5TpKQCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQghxnpMkJEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCnOckCYkQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOc5SUIihBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcR57pxNQrJmzRoVkEWWM72cdlJ2ZTlLyxkh5VeWs7ScdlJ2ZTlLy2knZVeWs7icdlJ+ZTlLy2knZVeWs7icdlJ+ZTlLy2knZVeWs7ScdlJ2ZTmLy2kn5VeWs7ScdlJ2ZTmLy2kn5VeWs7ScdlJ2ZTlLy2knZVeWs7icdlJ+ZTlLy2knZVeWs7icdlJ+ZTlLy2knZVeWs7ScdlJ2ZTmLy2kn5VeWs7ScdlJ2ZTmLy2kn5VeWs7ScCSN9TLKcH4sQ78k5m4Skp6dnpEMQ4j2RsivGMim/YqySsivGKim7YiyT8ivGKim7YiyT8ivGKim7YqySsivGMim/YqySsivGMim/YqySsivGKim7YiyT8ivGKim7YiyT8ivGKim7YqySsivGMim/YqySsivGMim/QgghxOl3ziYhEUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCvDOShEQMkUskULPZkQ5DiBGXS6XIpdMjHYY4x6iZDLlkcqTDEGNELpVCleuQEGeF/L2d3+T3WYjTK5dIoGYyIx2GGAPk91cIIUQ2nkDN5UY6DCFOO1VVycYTIx2GGCWy8QSqqo50GEKcV9RsVq7D5zH5HRZCiNEnl06TS6VGOgxxHpM+sUKMrPw9enykwxDnIem7IM6G169xUgcshBBCiLcibRdCCCHGKt1IByBGh3RXF+FnniH4179irK3FfcONmKdOGemwhDjrsrEYsU2b6P31b9Do9Xg+ciuWuXPRGI0jHZoYw9Rsltj27fT++jdk+/rw3HQjtiVL0DqdIx2aGIWykQjRjRvp++3v0JhNeD7yESyzZ6MxGEY6NCHOOdlQiMgrr9D/u9+jcTop+MitWGbNQtHJY9L5QM3liG/fTu9vfkOmuwfPjTdgXbIUnds10qEJMSZlenoIP/ccA3/5C/qKSgpuvgnz9OkjHZYYhbLhMNFXX6Xvd79HY7NRcOstWGbPRtHrRzo0IYQQZ0mqpYXQ448TeuxxLLNm4bruA5jGjx/psIQ4LZLHjjFw71+JbtqE/YLVOC+/HEN5+UiHJUZAqqmJ0KOPEnrqaSzz5uK65hpMtbUjHZYQ57zEgQP0/fnPJPfuw7HuchwXX4w+EBjpsMRZkjx6NP87vHmz/A4LIcQokEsmiW3ZQt+dvyKXyVBw661YFsxHa7GMdGjiPJHu7iby7LMM3H03huoaPDffhHnq1JEOS4jzSvL4cQbuf4DoSy9hW7kS5/p1GCsrRzoscY6TvgvibEkeryf4wANEXnwR24rlONevx1hVNdJhCSGEEGKUSR47xsBf7yO6cSP21avybRcVFSMdlhBCCPGOyOg6gZrN0v+HP9L7858DkNi3n/DTz1Dxl7swjRs3wtEJcXbFNm+m5VOfHnwdffVVyn/za6wLFoxgVGKsi+/dS9Mtt8KJWTXadu4k8N3v4rpi/QhHJkaj6MaNtH7msydfv/wKFb//HZY5c0YwKiHOTZEXX6TtS18efB198UUq/vgHLDNnjmBU4mxJ7NtH4y23wolZT9p27aLoW9/C/YFrRzgyIcamgfvup/v73wcgsXcfkQ0bqPzLXZjq6kY4MjHaRF5+hbbPf37wdfTFF6n4w++xzJ49glEJIYQ4W7LxOF3f+y/CTzwBQPLAAcLPPEPln/6IvqRkhKMT4v1Jd3XRfMcdpOsbgHz5jm3bTukP/get3T6ywYmzKhuJ0PHtfyH60ktAvixEnnueit//Dr3fP8LRCXHuSjU10XTrR8gODACQ2L+fVEMD/q99DY0kvjznpTs7ab7jM6QbGoATv8M7dlL6P/+N1mYb2eCEEOI8Fd+xg+bbPzr4umXLFkp/+hPsK1aMXFDivKHmcgz85S/0/OjHwIk+sRs2UPWXuzBKgsj/z95dR8lxnQkf/lUzDzPPaMRMFlu2Y2aKHXPAYY5D32Z3k91kA5tNss6GE8fMzJYMkmyLmTXM0D3NjPX9UaOWWjOyZQt6JN3nHB+rb1dXvzNzu/rWhfcKwimRcDrp+fZ3iO3fD0B0/35C69ZR+ec/ocnNzW5wwhlNzF0QToWEy0Xvd+8humcvoFzjguvWUfXnP6PJy8tydIIgCIIgjBVxh4Oer32dWFsbMDx2sWkzlb+/F7XNluXoBEEQBOHDqbIdgJB98YEBXA88gKTVYpw1C31jI6lgkGhTc7ZDE4RT6mBCniN5X37l0DGyfCpDEs4QofUbIJlEP348xlkzQaPB+fe/k/T7sx2aMMakYjFcDz2MceZM9JMmKYWyjG/lyuwGJghnoGQwiPPv/0BTVoZx7lxUNhukUgTffz/boQmnSGjrVlQGA8a5c9OLHZ1//zsJrzfLkQnC6Sc+OIjz738HQGWxYJw7F01BPpH9B7IcmTDWpCIRXP/8J6jVh9q8sox/9epshyYIgiCcIvH+fpJOJ+rDJmAmBgeJDk+4EITTWaytjXh7B+rCQkzz5qEuKCC0di2xrq5shyacYrGuLoLvvos6NxfTvHloSkqId3WJa50gnGSR5maSHg/aigqlz9dsxvPU08R7e7MdmnAKRNvblQQkh817Cb33HrHOzmyHJgiCcNbyvvgSSBKGqVMwTJsGKhXuRx5BTqWyHZpwFkgMDuL8x31IRiPGOXPQ1dYih0JEDjRlOzRBOGtE2zuI7d+PpqhI6SvLzye8fTuxDtFGF06eg3MXJL1euf7X1SFHImLugnDCxTo60glIDors2ElsODmqIAiCIAgCQKy9HTkaVcathhOmhzZsINYp5hAIwli2qcPFti53tsMQhDFBk+0AhDFApca8ZAnGqVMJbtiArqSEnOuvQ2UyZTsyQTi1VKpR672mrJTg5s14HnuMVChM3i2fwjR3LiqjMQtBCqcjVW4uxT/4PuGtW0n6AxR9/WvEuntArc52aMIYk4pEsF1yCYG330JdUEDO1Vfjfughcb0RhJNBpSb3xhuJHthPtK2d3BtvJBUIIBkM2Y5MOEW05eXk3fIpQlu3YVqwAF11Ff4VK5FUIlenIHxkKjUqvR7bDTegzssltG075oWL0BTkZzsyYaxRqTBMmoT1wgsJrV+XbvPKUrYDEwRBEE6FaEcH/ldfQ06lsF15JZJKwnX/AwBIop9MOANIGg0Fn7+bVChEZN9+bJddhqTTifp9FpLUavJuvw1JoyG8cxeW885DU5CPpBFD84JwMklaLUXf+iaxzi5iXV3k3XoLCbdb9PedJVQaDeZFizDNn0dw/QZ0xcXkXH8d6HTZDk0QBOGspSkvp/j73yO0YQNyIknxPd8h7nCAJDqEhVNApcJ2ySVoy8oIbd6EYfp0cm+8AUkv2gaCcKpIGrXSVxYMEtl/ANvllyNptaJ/RDi5VGqs55+PtrKC0KZNGKZMUa7/RjEfTDg+qUiE0ObNuB99DEmvJ/eaq9HW1BA/IvmpuMYJgiAIgpBBkjAtWECss5O8T91MwunC++yzSBoxh0AQxipXMMaNf14HwM4fX4TNoM1yRIKQXeIuV0BXVor5nPkM/tfP02WBd96h+p/3ZTEqQTj1JEki7/bb8L/1FhzcdUOrxTRtOl133JkuC7zzDpV//hPW5cuzF6xwWtHVVNNz9+eR43EAQuvWUfrTn6IWyZ6EI4Q3bWLwP/4j/TiwahXF3/k2prnzshiVIJyZkh43rvvuS++CGd68GevFF5F76y1Zjkw4FeR4nOD6DXgeeQRQ/v6aoiLKfvVL1FZrlqMThNOPtqiQkn/9Ef4VK/D87WlA+VwF3n2XmkcfQVdRkeUIhbFCpdNhmjuXvu9+N10WWLWKqr/9NYtRCYIgCKdCwumk79vfIbJX2RUuvGULpnPmYznvPBL2QXSNjVmOUBCOn6asjOD7a4ns2QMo9dw4Zw75d92Z5ciEU01TUkKsu4fgqlWAUhd09fXkXH11dgMThDOcpqSEgX/5EQmHA1D6JnJvuglNaWmWIxNOBV1DA6YF5+D4zW/TZYF33qF69pwsRiUIgnB2M06bSs8XvwSyDEDw3XepuPdeJJGERDgFNMXFaEpKGPrjH9NlAZuN6r//PYtRCcLZRVNcTPD994nsOdQnbJw7V/SVCSeVtqgQbV0tQ7/9Xbos8M47VP1DXP+F4xPauJHuz38h/dj/xhuU/sdPGPjRv6bLLBdfjK62NgvRCYIgCIIwFsV6euj7zj0k7HZAGbeyXXUV+V/6IlrRZhCEMeu9lqH0v9e3OrloihhrFs5uYssXgYTHg+vhRzLK5GiUyP79WYpIELLHNGsWNQ8/RP5nPkPBF79A7ZNPEFi79lBSkmHO+x8gNZxQQhA+TGT3nnQCkoPcDz1EMhDIUkTCWJSKRHD+44gEYMkkCacTw7Sp2QlKEM5gsZaWdAKSg/wrVopdMc8Ssd5ePE88kVGWcDhIBYNZikgQTn+62lp8r72eUZYYHCTa3JyliISxKBWJ4H7ssczCZJLQxo3ZCUgQBEE4ZaJtbekEJAeFNmwk59prqPjNb9EWFWUpMkE4cRKDg+kEJAeFt2wh3teXpYiEbIn396cTkBwUa2sjJuqCIJxUid7edAKSgzzPPCOuw2cLlQrvs89lFMmxGOEd27MTjyAIgqBsAjWcgOQgz7PPIh8xB0sQTobEwACuBx/MKEv5fMR6urMUkSCcfRL9/ekEJAeFN28mMTCQpYiEs0Hcbsf9z/szylLBILGuruwEJJwR5EQC1wOZ7QpSKSJ791Fx7/+Sc8MNlP3855T+4Pti8ytBEARBENKiTc3pBCQH+V59FdtFF6E2GrMUlSAIH+bAgC/972a7WPcpCJpsByCMAZKEpB652FJSqbMQjCBkl6TVYpo9G9Ps2eky38uvjDhOpVYj9uUQjplqlNqiUYPY3UU4nCSBZmTTTNLpxU5AgnAyjPa5kiTxeTtrSKPWAUktbpEF4eOStNrRP1fiuioc7mhtXtEHJQiCcMY7WptAV1mJrqb6FEcjCCfJUeq5aBOffY72Nxd1QRBOsqP0S4jP3tlBkiRQj+xfEH0OgiAI2SONdl0Wc2WEU0WSkFQq5BHFYlMSQThljvZ5E98Dwsk2ygZUYlMq4biNOrdXi+2ii7BddFEWAhIEQRAEYcwbbR2ZJKEymk59LIIgHLMWe4CGIjPBaJJWkYREEBA9KgKanBwKv/yVjDLJZMI4c0aWIhKEscV64SdGdB7m33WnsshOEI6B+ZxzkPT6jLLCL3wRtdmcpYiEsUil11P42c9kFmq1WJafm52ABOEMpx83Dm19fUZZ3s03o62qylJEwqmkq6yg4K67Mso0FRUYxjdmJyBBOAPoKivJu/22jDJtVRW6RvG5Eg4RbV5BEISzl66+HuOsWRlllosuRFtTk6WIBOHE09XVYVpwTkaZ+dxl6GprsxOQkDXamhpsV16ZUWaYMhl9Q0OWIhKEs4Nh/Hg0FRUZZfmf/jTaI8qEM5PaZqPwy1/KKJOMRoyzZx3lFYIgCMLJlnPFFZkJoiSJ/FtvFQnChFNCW1pK4Vcy58Sq8/LQT5yQpYgE4eyjq6/DeM6RfWXnir4y4aTSFhdT9LWvZpSpcnLQT5qUpYiEM4Gk0ZB/xx2ZhWo1tosvyU5AgiAIgiCcFgyNjWgqjxi3uvMOdJVi3EoQxrJme4BxxRbGFVtocYgkJIIgtnkWALCct5zKP/8J7wsvoi0txXb5ZRgmTsx2WIIwJhinTaPmoYfwvvgCqVCY3GuuEZOVhI/EOGUKNQ89iPeVV0gOOcm55mqMc+ZkOyxhDDLNn0/1P+/D89xzqK1WbFdeiXHatGyHJQhnJG1pKVX/93v8b71FeNt2rJ/4BObFi1DpdNkOTTgFJI2G/DvvQN84Dt8bKzBOnYr1wgvFggRBOA6SVkvBZz6DYeJE/CtWYpw+DesnPoGuvDzboQljjGn+fKru+wfe559Pt3kNU6dmOyxBEAThJNPk51P+y1/gX7WK0PoNWJYtxbx0mUjSK5xRNLm5lP3nfxJYvZrg2nWYlyzBsmwpapst26EJp5jaaKT429/CNH8+gXfewTRvLpbzzkNTWJjt0AThjKatqKD6L3/Bv3IF4d17sF18MeaFC5BG2alWODNZli+n8s9/xvvii2hKism5/HKMYqGZIAhC1hhnzKDmwQfxvvACcjxOjphvJZxiOddeg7asDO+rr6JvaMB2ycXo6+qyHZYgnDU0ubmU//Q/CaxaTXDdOsxLl2BZtgy11Zrt0IQznO2yy1AXFuJ96WX0tbXYLr0Eg0gOLBwn07y5VN9/P97nn0cy6Mm5+mqM08XcXkEQBEEQji49brViJeHdu7FedCGWRYvEuJUgjGGyLNPjCnPhpBIC0QSv7urPdkiCkHXiW0sAQG2xYF2+HOvy5dkORRDGHEmtxjRrJqZZM7MdinAaM06fjnH69GyHIYxxKqMR88KFmBcuzHYognBW0NfXo6+vz3YYQpZoCgvJueoqcq66KtuhCMIZQ1tURO7VV5N79dXZDkUYw1RGI5ZFi7AsWpTtUARBEIRTTFddTcEdd1Bw5G5xgnAG0VVVkX/bbeTfdlu2QxGyTFtWRt6NN5B34w3ZDkUQzir6cQ3ox30p22EIWaI2m7EuPxfr8nOzHYogCIKAsimAac5sTHNmZzsU4Sylyc3FdsnF2C65ONuhCMJZS1dVRf7tt5F/u+grE04ddU4OtgsvxHbhhdkORTiDqHQ6zAvOwbzgnGyHIgiCIAjCaUTf0ID+SyIhniCcLrzhOLFkimKbAUs0gTsUJ5pIoteosx2aIGSNKtsBCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgnEp2fxSAYqueEptBKfNFsxmSIGSdJtsBHEmSpG8AdwMS8DdZln8nSVI+8ARQC3QAn5Rl2Z21IMeojqEgnlCMQoueynxTtsMRzjLReJIuVwiVJFGdb0Krycxx5A3FGPRHyTVqKR7+EhYE4fTQ5wkxFIhh1qppKLFmOxzhIwhGE/S4Q+i1KkxaDZ5wnGKLnlyzLtuhCWcoWZZpcwTwRxKU5xoothmzHZIgjEnBSIJ+X5iUrDwuMOsosOizG5QgnKZSKZkuV5BIPElKlii16ckXn6fTWq87jC8Sp9RmIJZM4Q3HKbHqyTGJNqxw+oglknS7wqSQKc8xYPfHkIDKPCMatcgLLpw6A94wvZ4wuSYtdQUWVCop2yEJwlnLG47R5giiVasYX2JBJ3ZJOSsFown6PCFSMkhIFNv05Ip2riAIgjDG2X1hBn1RDFoVjSW2bIdzWmod9BOMJym06CjPFfO5BEEQTqUuZxBPOI7VoKGu0JLtcAThmDUN+IgmUpTmGCiyivm2gnAiOANRnMEY+SYdhVZlToHdF8EbjpMj5rYLR9FqD+AOxSjLMVCRJ+7nBOHD9HnC+CNxVJKEQaumSqxrEz4Guy9CryeMQatmQolVzHMQzhqD3jA9njC5Rh0NxaIPQxCy4WDCkSKrnmgiBcCgLyLaNMJZbUwlIZEkaSpKApL5QAx4XZKkV4bL3pJl+ReSJP0A+AHw/exFOrYkUzK7uj2E4km2dLmRZZhZlcvC+ny0YhKjcAr0ecL8dmUTT2/tQS1JfHpxLXcvq6d4ePBjd6+X7z+zkz19Pkpsen55/XQWNxTS4gjQNhQg16hTJt2qVfijCdqGgph1aqrzTCRlGZtBy4AvglolUZVnQqWS6HGH2D/gx6hV4fDH2NHtYUqFjcUNBZSJSRuCcMLs6HLTPhSkxRGgJMeAKxRjemUuem3m90sikWLfgI9OV4hck5ZJpTaxmDrLDgz4WN/mpKbATCSeZNAboSTHwJomBw5/lLm1+YwrMlFXJBLLCCdGrzvIpg43TQPK9SIcT9DjjjC7Ji/boQnCKRNPptjc4WJ96xAmvZZplTkUW/SkZBl3KE5KlpFlmf0DAfYN+FixZ5DPLKljR7ebr57fyOxq8XkRhI/CG47xzNZeVMADazs5d0IRjcVm6ossqCSw6DW0O0McGPCRb9KzeFwh40tF22esiidTvLlvkB8+uwuDRs2Xljfwx1UtDPqiXD+7klvPqcQVTGAxqCmy6KkvstDtDpNIpqjIM6If7gNzBqLs6/fhi8RpKLTgCMRY3WSn1GZg6fgixovEisJJNuiL8JfVrTywrpMbZlewoCGfHKMWtaTCF4mjkqDQoqc0x0jzoJ9We4Ack45wPMHaFif1RWYW1BdQXyQGk4WPLxxL0DwYQJZlnIEYK/YMUmLVM6cmjxmizSkIacmUTNOAnzanMk4xqcxG/nDy3kA0wdZON2uaHFTkGVnaWMS4jznRZ1+/l62dHvp9ESpyDPR5QkwutVKUY6TXHc4Y+zhWB79DjHo1k0pt5Bi1hONJkdBiDGsfCvC/bzazoL6AQosWk06DLxJHq5bodIbY1OlmfJGFpROKqC0wZztcQRAEQQBgX5+X1qEg+/t95Jt1eEJxJpXZsBi02Q7ttBCNJ9nV62Vvv48BT4TGEgvjimNMq8zNdmiCIAhnhW1dLpoGAnS6g0wvzyUYiTOlIhdJEgvYhLHLH45zYMDHzl4vrmCMiWU2xhWZmViWk+3QBOG0trXTzT1PbadtKERVvpH/vmEGZp2aXb1edvV6mVaRy5QyCzOq87MdqnCK7e3zsq7VSftQkAUNBSxuKCTPrCOZTLG1y41KJZFMpnAHYwz5I6KOCMJRxBIpNrW78EfjbO10U2jVM6MyB4cvzNTKXJGcXzhmWztd7OzxML7YSjKVYmePh6FAlC2dbkpsBubW5jO1QrSNhTPLgDfChrYhdvV6qSu0MLnMyo5uF5PLckdsEC8IwsnlCEQAKLbqiSWVJCQDvkg2QxKErBtTSUiAScB6WZZDAJIkrQauBa4Glg8f8wCwCpGEJK3F7iecSLKjx4MzECMST6LXqFCrYPG4omyH99EMtUDT69CzCSZcAnXnga0021EJRxj0Rmh3BtGoJLZ3u3GH4jy1pQeAhCyzvs3F0sYicvQaejxhvvH4NlodQeW1vijfemIHv7x+Gl9+ZCt5Jp2ysOjtFi6bXsZvVjaRlGW+cUEjP3tlH3Nq8nD4o7y4o48rZ5SlO/f+7fk9lOcZKc8x8NLOfmxGDYXWBv75ficatcR5E4qZUZVzqMMi7IGO92Dvc5DfAJOugtKpWfoNCiecYz/sfxUGdsGkK6B2GVhOs+vfGDTgCbGn348jEKXXEyElgz+cwKRTM6UiN31cx1CArV0evv/MTuJJGYCLJpfwX9dOpVDsxHDKxRMpmgZ9/HVNO5dNL+XHL+6hwxnigU/PY9+An+ZBP/lmPTt7PHjDMbZ2ebl0Wikm3RhqFg7sgr0vgrsNplwHtUvAIDoMx7JkSmbVAQeuUJwBfwQZCEXjLKgvYCgQodByAq4FATu0rYYDr0LZdJhwGRRNOP7zCsLHNdQMB16D3i0w8TKoW876ARXbuzwEYin6fAEAJpfb+OM7Ldw4t4q2oSC+UJyZ1bl0OUNcOaOc365s4l8um8hXHtnKpxfVotOoWNQgEiUIZxFfP7SvggOvQ+VcGH8pFI770Jdt73JzYNBPvyfCk5u7uW1BDZF4ArNeQ6czRI5BS58nQoczRI87gozEc9t7uHleFTUFYmF/VqVS0LsZdj0NiQhMuxGqzmF3X5CvPLIVgB9eN5F/fX4PsWSK6ZU5XDG9lH++38GUilye3NTNhFIrE0ut/GVNG5F4kpvnVfHJuVU4AzEeXN/J6iYHVr2GL5xbz69XNKXfunB1K4/dvYB+b4T3WhxU5JpYMq5Q7BwgfDTxMHRvhF1PgcGm3LNUzAFJIpmSeWvfIPe934FVr+ETk0sIxhJs6/JSaNHx2zebOTDg52sXjKOhyMI3H9+OQavijoW1PLS+k7uX1nFgMMCePh+XTStjfl0+WrUYTBY+mkA0wYa2IVKyMlHhwICfXLOOXX0+/NEEkiQxvSo322GC4wDsf0XpA5h4BdSJ/jzh1HuvZYjP3r+JRErp07x0ain/efVUCq163tgzwHee3JE+tsSm5/HPL/jwXZPdXaRa3kJue4d41RIcpUt5ak+KB9d1cs/FE1ix1063K8B3LppI+84BIokkKknCpFNz49wq8o4hiciWThe3/X0j4XiSPJOWH1w6kdf3DNBiD3DD7EpumFOZ3pHRF46xudPN2hYntYVmFo8rpK5QJLg4JQIOaF8D+19GLp2G37KExpI8KnKM2P0RWuxBCi16ut1h/rqmjS8ub6DDFWL3qlYumVLKgvp8jGOpz1YQjsfB+8Ddzyjt6Wk3QuV80Ipk9sIZyt0FLW9C2yqoPxfGXQh51dmO6iNzB5VEr33eKP3eCLGkTDjuRqtWM7M6N9vhnRZa7X42tDsJRpP0+yLodWpCsQQlOTqKrWJzHeEskIwrcwB3PQ1IMO0GqJwHatHOFU6+tkE/G9vdlBtj3Ja7j8J9r5CwVRNOXoWpZla2wxOEo2odCrChw40vHGcoEMWo0xBNpCjNMZ6ZyWcdB5R5QP07YeLlw/3ExdmOSjjd9e2AfS+At4f4pGvpMM/k8w/tZigQA6DbFSYeT3Dve22s3GsH4DG6uWRKKf/vMj3VRyQI3tvn491mB75IgnPHFzKzSiymP1Ps6/Pytce20+pQ5ng9vKGLb36ika+f30irw0ciJeMJxNjV6yWWSLFkXCG97gAVeWJ+waiiQehaB7ufAkspTLkGykW762zR6gjgDsd4bmsvM6tz2T/gxx2Mce74YlrtfiaV52Y7ROE04HK7qHavZ/rAC6R8hbjrrmBtqIpme4CUDDt7vYRiSVTAZJGIRDgdHTZ+TOk0mHg5Pksda5od7Oj2oJIkfJE496/t4I6FtezscTOntiDbUQvCWcXuiwJQZNWTGF4fOThcJghnq7E2orMb+JkkSQVAGLgM2AyUyLLcDyDLcr8kSaKH8TAmrYp9vgj/93YLwVgSAEmCn10zlXPqUmhOl4nqvn544jZw7FMe730e5t0NF/8MNGIC0lixf8DH3Q9u5tzGIta2OinPNRKMJgDQqCTuuWgCW7vcvLijjzXNDkw6dToByUEXTSnhJy/tJZGSuX1hDb98fT9za/N4aWcfzmCMr18wjv9+4wBmvYYZVbk8v72PJeMKiSZkfrOymQsmFdPvi/DJeVXc+3YzAF9Y1sCfVrUSGI7lT6tbeeDT81k2fnji+u5n4JVvHwpi09/gMyugsPHk/9KEk8vdCQ9dDz4lEQ57noXlP4Rl3wPVaXL9G6OcwTh7+rw8sqErXTa5zMaMqkOdNv5InJd39vPk5p50AhKAFXsHufWcas6dIJKQnErReJInNncDML8+n7f2OehwhrhuVgXN9gC/eG1/+tjyHAO3LqjBotewtdPDksbCbIWdyb4fHrgSwm7l8a6n4ar/g9m3Zzcu4QPt7/fS4gjyz/c70mUNRRamVOTQ7zkBSUhSSdjwF3j318rjPc/C5n/CXa9AbtXxnVsQPg5vLzx6M7halMd7n0de+DX8JZ/nH++34wnF04f+/LppzK7O5dmtvUwut9Jk91OaY2BOTR56rRpJArVKxYQSC75ogv97rYUrppfx5eUNTC4XAyXCGS4Rg/d+Cxv/ojze+zxsewRufw5sZUd92eYOF999aidLxxcyvy6fJzZ1oZYkppbnsL/fT4FVT1W+iVc29PPyrv706xbU57OgrkAkIcm23s3wz0shpdy/s+1BUrc9z7a+agoseu65cDwpmXQW8TsWVLOty8OU8tx0e/b6OZX89xsH0qesLjBz2z828vll9axucgBw8dRSHt/UnfHWKRnWtg7x7y/uTZeV5Rh4/O4F1IjFuMKx6ngPHrnh0OONf4PPvA4Vc9jX72XlXjtGrZrff2omSNDjCnNgwM+7/ijbuz18+8Lx7Ov38ebeQcLxJNfPruDRDV18fmk9//tWM+G40r/72MYuHvncOSxsGCP3asJpY0+vl1ZHkGKLngFvhGZ7gA3trvTzXa4QPy2Zmt2F7Z4uePgG8A73Oe15Fs79AZz7fdGfJ5wyzkCUHz2/K52ABOC13QPcPK+ayeXWjH40UCYV7On1fXASkogP+bXvomp6HQD1vhcoqz2PoObbXD2znGe29NDiCPCTq6bwjce3p9s7hRYdty+oYXOHmwsnl3xg3KFYgl+/cSD9fXHXolp+/OLe9OPfvtnMUCDKv10xBa1GxbPbevnxYW2fukIzD312PpV5YtHrSZVKKuNQq38JgLTnWabkVFNy/TO82h0gFEvy0o4+vnZ+I/ev7eDuZXU8sLYDV1BZCPHEpm7+dOtsLp129PsiQTit9G7JvA/c+gDc/jw0nJfVsAThpAh74dV7oPkN5fG+F5QkJNf/A4ynV3+vwxel1RHkD6ta02WVeUYml4kE2sfKGVTG0vf1+9Nlt8yvZkZFrkhCIpwdujfCA1eArNz7sOU+ZXy3ZlF24xLOCkPBGLt7fVxWspHyd78HgA5g+33w2RViwxNhzHIH4zy2sYsedzhd9pXlDUwrs515SUg83fDIjeDpVB7veRaW3qPM/RQJq4SPa3APPHA5RJU2uHbnExRe+iei8UOLN+fW5BFPkU5ActDrewa45ZyqjCQk+/p93PSXdfiH56b/cVUL9981j3MniKUsZ4Jdfb50ApKD/rSqlWtnVhCMpuh0hvjxS3uIxJX27H3vt/OPO+eKJCRH0/omPHnHoccb/wqfeUPZcE4448USSd7ZP0hNgYn/OWyzoJX7Bvn1DTOyGJlwOjF1r8Hw/J3pxyVb72PONc/ym51hul2H2scyIgmJcBo6Yvz44FoI7zVP8cNn20gOz1vQa1R868Lx9HsjmHVqDvT7mFBmy2LggnB2cfijGLVqLHoNsgxqlYQrKJKQCGe3MTWbU5blfcAvgZXA68AOIHGsr5ck6fOSJG2WJGmzw+E4SVGOPTqNigODgXQCEgBZhme39hJNJAm4I7TvHGL/uj4G270kE6ksRvsBHPsOJSA5aPM/wN2enXhOodOl7sYTKf62po1uV5gCi562oSDd7hD1RUqH6w1zKnliczfvHLBTlWfk7++2E4mnWF5fyP9eMIk/LZ7A/503iaVVefR6lJvARCpFNJGivtCSMfEiFEsyqyqX91uGAJhXm8fruwcozTHQ5QoBICMjy5Bj1OIMRNMJSED5DPzhnRYisST4B+Cdn2X+MCGXkj1dOG5Zr7+Dew4lIDHm4VzyZ5rCS2nZ3IfHHjr18ZxBAtEET27OXLS3t9/HkD+WftzlChGOp9Kfy8M5g7ERZWNJ1uvuMXL2BmjaOEDL5sEPrdPN9gD/9eo+UimZQCTBgQEfAJ+YXMIf3mnJOLbPGwHAatDQbPePOFfW9O84lIDkoHd+CgH76MefhcZi3Q3Gkjy2sSujrNURwOGPYdKfgJ0f3B2w9t7MMk8n2Pd87FMm4kkG2rzsW9tH+84hAh7ROXAqjMX6+7EMNeOcfA9N57xC84KX8Sz8NdKWf1KndmQkIAG4//0OljYW8V7LEFq1mrm1+YTiSbRqFYFIAp1aRSCa4LrZlSSHE3q9uqufje0u/JH4aO8uZMEZU3ePQzyepL/Nw761fXTsGiJ4Iq6b7nZlYOVwo/UNHMYVjLKh3UWXO8TSxkK8oThFVgMWg5oBXxSdVoU3HCeZknlld3/Ga9e3uTLuG88WY67+7n2eWNX59C55gn1zX6F70ZNE2ndiM6i4fUENQ8EYzsCh+lVoM9DuDGL3K+3XQouOHvehdnF1vommQT+BaCK9kBfAoFERPqyvDOCyaWX8/u3MdnG/N8KePt/J+EmF4zTm6i5APKIkTwKCU+6mc9Gz7Jv1PP39WuLRBCv2KpNqbltQgzMYQyVJbGh3Mb7UyvZuD7kmLe5QjByDlvYhJWmvXqvGrFfT7Q6lF5CDkjTnr2vaiI/VvlzhqLJddzucQfJMWhyBKHlmXUYCEoBnt/Wm69/hvI4QLVvt7F8/wFC3H1mWRxxzwgzuPpSA5KD3f3dosrmQNdmuv6dSIJrImKx2kCsUJZGSR7QjAKLJD74mx4b66Cv+tNLGWfwU4cab0HS8w2VlfiryjDTbA8yrzWfl3sGMdstQIIY/mmBLh+sDzj4cdyRB0+ChSdFJWc74/gB4bGM3fd4wve4w//NGU8Zz7UNB9vWfeW2fMVd3PV3w/u8ITf4cnYueYd/cV7FP/yWm4CDuUIxwPMm1syrwR+LEkylkmXQCkoP+e8UBPKGx3ccunBhjrv6eDPteOJSA5KD1f4Tk2LhHjwTjdO9zse/9PnoOuImGRJ/csTgr6u7H4Ww+lIDkoJaVSvlRpJIp7J0+9q/rp227A78rcpKDPDbhRJKH1me20XvcYez+03s85VTWXWcwljEPBuCpLd0E40l8zjCt2+zsX9+Po8uPnDqJ92DCGeO0u/Zu+eehBCSg/Hvbw9mLZ4yIBOP07FfaHt37XUTOgrZHNuquN5Kg2hCgavtvM5+IeJR5KUA8mqCvRRn76tztJOQT92DCSKe6/g76IxkJSAAe2tBJKDGyr+pkiYUT9Da52fd+H117nYQDJ+mzYd8zsk947b2in/gEOe3aDSdKz2YiVRfTvfgp9s19hZ4lT2Dq3sgnpxxKLLKgoYDoUcbfjuwXXts6lE5AAsrc9N+/3UwoNjb6NM5Ep7LuBkaZlxVPpoilUjiDMXb2eNMJSEAZv31wXSeJDxkrONGC3iidu4fYt7aP/lYPiVHGL7Iu4oNVv8gsi4egc2124smSsXrtPRV9T8FogkllOTx6xDziFnuQ7lHWGAhjy5iou1E/+vd/jWytxLH0PvbPf5XWOY9hTkj4wpnfu39Z3UqfZ+Q4r3B2GhP1d1gsnKD3gHIv1b3XlXkvNTx+nMHbRap/dzoBCUA0kVKSpElg90cZ8I2N8QJBOFvY/VGKbXokSUKlksgzaXEFz/z+W0H4IGMuVbAsy/8A/gEgSdJ/AT3AoCRJZbIs90uSVAaMugpVluW/An8FmDt37lkzOhtPyhkNjoNCsQQxf5y3/7mPgVavUijBpV+cRv2MolMc5TFIjdYhIys9dme406Xu+iJx1rY6M8o6nSE+ObeKEpueYpue9qEgjcUW9g5PpNjU7uK7DRVse6Yt/Zra2UV8+9xx/GZ1C2pJAmB3r5d5tXm8uc+Oeni3y15PmLpCM02DgfRuhPsHfHxuaT3vNg/RNBhgdnUu3a5wRiff4fEmZVkZxE6N0uEmj8FOuNNQ1uvvYRMWBhf8hReeNRCPRoEmTDYdV31zJgXlIuv0xxVPfvCfVKdRsb3LzZJxhbw3nDTooLoxvpN41uvuMRhs9/L8b7eRiCn13JSj4+pvzCK/fPTf7YAvQiSeosCiZ/+An5nVeezo8SLLMqFRBh7MOjXvNQ9x3sQxlJl/tGtzKnFWtAeO1Visu2pJIjbK4KxKYkRCho/l4Pf5kUZtPx6b9h1DrPj7oSQmlRPz+MSnJ2PO0X/scwofbizW349jMFrHCy9JxKNKB7HJNomrLv41KmnkjxSMJfBF4lTlG/GGYui1anJNWlIy5Jm0zKnJo80RxKRT88L23vTrXKEY3nAcq0F7yn4u4ejOlLp7PNq22Hnz/kPJQWqmFnD+nZMwWY9jxy05hbI3wRE+4PruDsWJJVIkUzI6jYqH1ndy3sQi8s16Op1BrAYNkXiKxPBCviNp1NLHj/c0Ndbqb1KXzy7rPax/OgjEAA1TzllEVJ/AqFXjjcTZ0unmutkVPLu1l2A4QX2BmcRw5P5Ignzzoe/rPJMW5/CAnUFzKPnZm/vsXDOrgn+8dyi5rVmnJhgd2d6MneJJQsKxGWt1Ny0ZJzzxNtb0X0fbWxEgCkQ577ZBJJREjyadmqbBAPVFZgrNenzhOEUWPQadCncwzt5+L0sbi3hxRx8r9w5y9czyEZOKAbzhOPJo10lhTMt23bUZtASjCbQaFSbdyCEgWR7Z3+MeDPHSvdvxO5XJC2qNiqu/OZOycbknJ8jRvqTlpLj3HwOyXX9PpSKrnvMnFvH2/kMTkSQJ6gotlNoM3L20jt++eWixsF6jYlKp9ajnSyZS7NymZsMrOg62cabN/zQLqoeQhq/l6uEJCh1DIydbekNxFjUUjCg/UoFFz5Uzyrl/bYdyTmlk+9akV6NVq4gnU0RGWaAyWh/O6W7M1V05RbjxJtYMXE/r2wfbCwaWfbKUEquOoWCMUDyBQavmmlkVJEbphw9EEqOWC2eeMVd/T4bkKH3EiRij9gmcYvFogs2vdrDjrUNJ+eddUcfsi6vRaE9Agu0z2FlRdz+O0cYyYPT5CsO697l55Q870s3homorl35xKtZ840kI8NipJWnUeRinu1NZd1WjdEXGkzL5soqX792Be1BpF6rUEld+YyaV4/NOZjjCGeC0u/YetQ1w9krEk2xf2cWW1w8tsJ91UTXzr6hDoztz2x7ZqLtqCbQqRibDQymTZZn96wdY89ih5J2N84pZdvMEDGYxPisccqrr72gjmZFYatQ+oJMhmUyxe00P6547NN93yrIKFl3bgM54gpccjDYmfLTxY+EjO+3aDSdITFfIpsTn2PlMGKWfVsf882/lE5Pz+cdWZS1FMJqg0KKjsdhCs/1QwucJJVaKrJnzxkYbW/aGE+lNhoQT71TW3XHFVnJN2oz5jVfOKKc630S7IzDqnFtfJE7qFI5nhfwxVj96gPYdh+Znn3/HRCYtKj9lMRwTOQWpUdr/Z9lajbF67T0VfU/RRJKKPOOoY1BiTs7YNybqbiqFRJKeeX/ipSeSpJJKIuTc4hRfXVDLz9YcGrcNx5MkjmP+uHBmGRP1F+VeatfqHtY/f+heauq5FSy8Zvhe6ihrIVKjjB1E4knMOg3eUFy0OwXhFLP7IxRZDp+frMM9xjdoF4STTZXtAI4kSVLx8P+rgeuAx4AXgTuHD7kTeCE70Y1NA94w59Tlc2Qf8+0La/H2BQ8lIAGQ4d3Hmwj5xuDOJMUTIbcms2zaJyGvNivhCCPZjFqWT1AS2DiDsXSCgf99s5krZ5QzqdQGgCMQpSLXAMAltYXseqUj4zwdWx1cXlPAwvp8AtEklXlGtnV7mF2dx6QyK+2OIHNr8tjT52NubT45Ri2hWJIii55IPEWPK8wn51bx1r5BljQWcvn0UiaUWkd8Bu5eWo9ZrwFbOSz9TuaTOguUTjvxvyTh1CuZDKYCUqUz2bkvl/hhnf4hX4zOXc4PeLHwQYosWi6cXJJRVmDWUXVYp2NtvpnpVbksaihgXq0yKSrXpOW3N81gcpntlMZ7pkklU+x4uzudgAQg5I3Ruefodbo8x4hKglA0zqRSK2admkUNBfS4Qtw0tzLjWKNWzbhiC73eEDMrc07az/GRlc0A3RFJVpbeA9aS0Y8XxoSqfBNXzajIKMsxaqktMGUsBv7Ycmtg7mczyyzFUDzpY50u4I7y7hOZOwH37Hfj7Akc5RWCcIicktm1wT+izdHhn0wqtwbNEbOKb19Qw6u7BrhzYS0lOXqKrXr29/toKDSTa9JSYNbx/PZeLHoNfV5l0eelU8twBWPkGY8juYMgnEB+V4R3n8zcrbVzt/P4r5t5tTD95syynGoomnjUlxSYdRi1KoosepwBZQfxrZ1uVJJMfaGZYqserVoikZKZXZ2b8dqaAhONxSJBYbZ5q25g49uZC2/3bPBRoTGABDq1inWtThz+KN++cDzOUIy6IgsVuUbKcgxEEyki8STjS5S/5d5+H/Pr8gF4bXc/37pwPDlGLQO+CDaDlp9cNZmJpVY+MamYy6aVcvfSuoz3NmhVTPyABcWCkEFrgMXfwJl/GW17M3eaeO/pFi6pLeSva9rIM+sw6dS8vqufK2aUsXLvIJ9dWkevO8yEUgtNgwGqC0wsH19ElyuEMxDjvAkjk0Z/dkkduhPRnhbOKtMqbHS7QtgMWnKNGqqPmDw2tyaX2gJTRllfkzudgASUZAqbX+s4eTupFU8Cc2Fm2bwvQG7VyXk/QRiFSafhh5dNYmGD0o7IM2m59+ZZTCq1IkkSn5pfzU+umsKEEisXTynlsbvPYXL50fvQPPYQG1/rySjbtTGMa9yXkPMbeLfJwSfnVrK+zcX5oyQEnlxuY1b1hy86VaskPr24lkunliJJyiT4hqLMvrTvXzyR8lwj5blGbj0nc9zNotcwoVT02550udU4az5N6xHthXUv9jGvyIY/rCRX7HKFmFaew8RSK9ojEiZ+4dx6Cq0iWa5whph8NSMGchd+GdTZX9zpHghlJCAB2PxKO1672EVR+JgKxkH1wsyyyvlQOG7UwyPBGO8/3ZyRj8/R5cfe6T+JQR6bHJOWT83PbKObdeoxvxHFWFKVb6TAnNnPf9nUUqKD4XQCEoBUUmbDC63EImI3deEMM+eukWWzbz/lYYwlnsEQW97ozCjbtrIr45ognBhlOQY22rX0zfhq5hM6M5TNwOsIs/aZloynmjfZcfWJOQNCdtUXmjEdkZTolvlV5JtOzf2T1x5mw4vtGWV71vTiGgie+DcrnqTM/Tnc3M9CTs3oxwvCMfDoZrBzfeY9/aZVAdweDd+5aDy/uG4a18ysIJGS+cGlE7lhTiUNRRZunFPJ9y6ZgOmIhKSLGgpGJBf8/LJ6rMbs92kIx29KuY2fXzeNi6eUMK7YwhfPrefLyxvQa9QUWw1MrRjZl377gppTOn7r6g1kJCABeO+pFnzOMdZ3ZcxV5vkeTq2D6kVZCUc45FT1PeVb9OjUElfNyEyQYzNqRF+ScGyMOYSW/5INa3WkDku64LFHqEadMS/3tgU1lOdkN4GzIBzJOxhi4xH3UrtX9+IeHL6Xyq1S5sUczlyItmzqiHNdNrWMv73bSmW+kUYxr1EQTimHP0qx7bAkJGYdrpBIQiKc3U5wWuJDJEmqAGoOfw9Zltccw0ufkSSpAIgDX5Fl2S1J0i+AJyVJ+izQBdx4MmLOtkgwgFqtQWswfKTXVRWYiQz4+f2nZvHguk4CkQS3nlPN4oYCwi0+QJnTU1KvTI60d/ozFjSfFCEX+PrAkHPsE4dzKuGWJ2DH49D5Pky9HiZeDlpxczBWaNUqPrO4ju3dHh7d0MlXzx9HNJ5iT6+PugIzUypyuGV+FY9u7MZi0FCZZ8SkUuEbZXccdQL+dsdcBnwRrplZzq5eL/2+MD+9ZioSEnqtiu7hRRj33TkXKR7hmimF/HZVJ2/uG+TGuRU8/cWF5Bh1VOQaCEaT1BeZ+dOqVjzhOJ9bUpc5kXfmp8BSBFsegMLxMOfT6YXLckpGGm0Lmo/L3QGxINgqwTiGFvafqfLr4Y4XSHVuwf2WCkklUTYuh0Q8ib3dj3foiI7WsBd8PUoimrwzZ8AqGg4BEnrjibtm1hRauXtpHTX5Rt454GBSmY2b51VRetjEZ61Gxd1L69jS6SHPrOMr542jPMfIeHGze9ySSRnP4Cg7YTuGJ59EA+DtBrVeWcCrUjGu2MKvbpjBqgN2ii06ZtbkUVdoRq9RMbM6D6tRy4o9g9QWmLhzUS3hWJJfXT+DqoKP1sGbiMeIR6MYzMrCT+lE7rZRMgXufAk23w+uVph9J4y74MSdXzgpim0G7lhYQ3megZDfx5U1CSoLczkQibG48YMTyKRSSaLBEDqjEbXmKLcnGi0s+QYUTYCdj0PFPJh5K+TXjX78EY78rk/EkoQDmZn31VoVsbCY3Cl8uFQyhd8dRVJJyKlDgx1er4aZ5YU8+YUF/O7NZuz+KF9YWsOEfB2TSs0kZYmULBOMJplVXcs9T+2ky6Vc0+fV5FFq07OwoYCZlbkkUimumVWB2XASbtllGdydEA8p92p68Z0tfLhENEk0lECrV5OIJdMD09HQoetmKiWjOtb7qrAHfL1K/TvvX6B8Jux6GmoWw4ybITczeVokEECt06LV6ck16Vg4rgC1WkW3O8g3zm/ke8/s5NtP7uTc8YV8al41E0qsSCqJ710ygdd2DfBeyxBza/L45Lwq6otEnc+2uCqXVEqmpN5CXrGWcFAiFkpSatDhlSQ2tbu4YFIxb+2z827zECoJHvrsfFTAL66bRo8nTCKZ4r9vmI4rGCeaSFFfZKbArON3bzbz+u5+fvPJGZTnGKguNGPWabhhThUatYReo6bUZiDPrOPRDV3UFZr54rn1TBQJFIWPov5cYt5Bimqc5JVoGOqJ4+oLEY8kyddr+fsdc7D7Ixi0at7eb0elUvGr66fT7wnzp1vnICPzy+un8fu3W5hSZuXPt82modhCdZ6Jf941jz+tbiEUS/KFZQ0sbRyZmEQQPkxlvpnLppUyFIzR7Qrxq2smoQt0EU5IxHUFNFQWk2PKXAQXjSSomJCH3xnGN6QsmPc6wiTiqZOzC29+Pdz+Amx7GPq2wIxPwfhLxsRCZOHs0lhs5e+3z6PPG8as11Cee6hvtdhm4M5FtdwwpwKtWvWhk4qT8RTljbl47SEKq/RotCq69wXxGev43dpebppXjVmnZlpFDpIk8Y0LGnl4fScmvZqvnd/Iwvp8qvKPrY+upsDMb2+ayT3uMHqtilsWVLOx3UW3K8S82vx0Mj6tWsXnl9VTmmPg6S09jC+x8PllDYwTiflOPrWWmLYEgzlI1WQz8YhM914f+WVmHL4w500sJhiNo9doWNNkp7rAxB9vnc3D6zsZ8Ea5Y1ENF08uzfZPIQgnTuU8uOMl2PAXSERg/uehdnG2owJI9wmbc3UUVFoY6g4Q8sZEIgDh4zPlw9V/gD3PQdPr0HgxTL0WTAWjHh6PpvC7lDa4Vq8mGU+RSsnEhvvdPlKf2wkQj0VJxuIYLBaq8s1cNaOcQoseddTN/IIoJSWlpCwiefaxKrHq+f2nZvH8tl6smiSTymw0lOURbxq5iNc3FCERS6I7GeMCZ6FT/dkRjqJ6Idz+nNIGQIJzvgBV52Q7quwYnt8R9eWADKYcHYVVh9oe8WiSaCiISqX+yHNHhdFVFxi556LxxBJWvOVTsOx/ClmtRZ59F9qSKciDQfQmLXIqDpJyXw8QDZ+kpLyCcIwKzDr+fNscHl7fSdtQkCuml3FuYyFFRhXRUBC9aZT+I3cnxAInZL5qPJIglZQxWrUU1Vhx9QUJuKInZz5Nfh3c9hzseBR6NimbV0y4RJkjJAgfgyzLyHorKpVEKiVjLdBTWmfA50xQoUtSavJSN34KeRYjQ4EIzYMBZlXlsLC+gHAsgUmrojwvM4n7jKpcHvzsOfxxVQvuYIy7l9Zz3ihJpoXTU4FFz0WTS5laZiORkqnMM6HVKHs8l9r0TKvI4afXTOXZrb1EE0nuWlTLshMwfnu0+d6j3cdEh6+/kgQanZp4NEksnCARHYNtlvGXwI0Pwqa/gbUU5t2tzAcSsupg35NGq6KsMZeQJ4qzL0gyllLWr2k0aMMOiHjBVnbUPqwPM7ksh9V+O+eOL6Iyz8RruweYVGbllvnVlNjEPY5wbGL50/G5d5NXaqS4Ro9rIE7Im6Ai38jN86pY3+7ixjmVXDmjHI1ale1wBSFDPJpEUkuUNwyvZev0gwzR0PB3tloLi76iJCzf8SiUz4ZZt1NoLmXtZ8Js64/zfIeWS6aWsrHdxeeXNVCeY6BIlyIei6LVic0rBOFUsPujLBl3aGOtArOOFrtIWiyc3ST58JSGJ+qkkvRL4CZgL3DwDleWZfmqE/5mRzF37lx58+bNp+rtjkvI56Vl4zq2vPI8eouVRTd8iqop01B/hI7UbleQVkeQUr1Ern8Ig15LTn0tjt4QrdvsFFZYad48SCKWZNzcEupnFmIwH//EAGdvN/aONkjJFNc1UFBZBf074NkvgmOvMsHiynth/KWg1uB3h3EPhFCpVOSXmzFZD8XgHQoRDSWQJDDZdJhzToubzRM+Yj2W6268t5dkMEg0t4DWsAq9VkV9oRmj7tAkCIc/wrYuD612PzOq8tDL0PJUG0Ndh75wtXo1N/xgDmF/HHunD3OOntKGHGwFI5MnhAN+WjevZ9OLz6I3mph/3c1Y6yaSazWhPyLjdCIew9nXRzIep6C8fMSAS9ATxesIoTNosBToiUeTuHq6sXd0otHpKKmvp2xcJSFfDPdAELVahd6sJR5JYLTpMuKLRRJodGqSiRSphIzepIF4GHY/A6//AKJ+ZUejq34PxUffxTuLTspsi2zX39Ztg8TCSZo3D6LRqmmcW4zeoqN6krKbJYN74YWvKosbDDlw6a9g8jXKTsbHKNbXRyoQQFtaito2+kK1eDSBdyhMPJLEaNWRU2QcNUmDz2FnoLWZWDRCUXUNJXWHdsDyOkJ4h8JotWpkZPQmLTnFRjTDk93llEw0lECWYnTt3Mb6554AYMG1N1E7czZ6o2nE+30czkCUTmeQWCKFWg0FJj31xVlfuHnWXHt3r+lh9aNNGWWXf2U6teVeeO370LJSSdZ13o9g1u1gzCGVkml3BvGHYzj8MVyhGAUWHSVWA3WFJrzhBLkmHWa9cu129fbg7O0mFg5RUFlNfnk1KrUGjU6NbyjEQLsP72CIvDIzeeUmgs5utrz6DM7uDhrmnUt+xRwKKsooa8hFrT16h148msRjD5FKpLDo46j9TtQlpcTVBnQGDRrtKAs5UklQnVG7fp/xdTfQdwDj2z9C3bICNAZS5/0Lqtl3gXH066Wrr5cdK1+hZdMGKiZOZt6V11FU8yGJRZJJUKvxu5w4OtqIRcLYCotRa7VY8wsx5SgTKmRZZqDNy+41vYS8MSYvLsOcp0dn0GCy6Vj1yAHadwxhytEx/bxKoqEE5lw9BeVmcktMWPI++LshPjRE0ulEnV+AtqjwA489Q5zx9fdwcipFvLubVDyOtqIClV6Pxz6Az+HAPzSEpDah0hQz1J1k5zs9WPMNLLmpkaaNg0RDCSYvKcNg8rD99ecYaG1m/MIlTD//YvLKyolHE8SSKTrtQfY7A6hUEpPLbNQUmBnwRXAFYlTkGSk+GYNv0SDsehJW/EiZhFSzBK74jZLg58x1VtXdjyMZDhPv7UWl1aKtqsLnihL0REklU5hsWnQGLbIs075zCK89jMGkJeCJsn99P1d/cxbIMh27nfS3eBk3p5j6GYVYR7m3SxvcA69+F3/BHPxly/BHJCStgcKqGvIrMpOYBtwuDqx7l+1vvIKtoJAFN3yKiomTUanU9HvDOHxRLAY1Pe4IHUNBcs1appbnUF90aFFlOJpgKBijwKzDpD/tJvCfkfU35I9ib29m58oXGWxvpWHuAkrqF6EzFmDK1RPVq2j1h/FFEiRTMhNKrUwut6E9hsFjZyCKLHNMO8b7I3F0GhX6U7hL0VnkjKy7h+s70MTW156nv+UAdTPnMH7Bcjr3qamaVMD+tf3EIkkmLixFW2hgpydALCkzvSKHCYclvHEFoySS8ojv/EgsSVKW0/dswil1RtTdcCCKqy9EIpbCmAu5239NQFfCjo4ULTv3UD5+ErMuuYby8Uo/1FDPIP0trYR9fvLKKjBaTAz1uDDnFtI4r/bkBzx8j/dh4oODJD0eNEVFaPLzT35cp58zov6erjz2EPaOTmJhN8hhtr72AqlkkhkXXktZTSO54Q0E6y5m/1CcHd0eKnINzK0tQKuR0Kgk8s0nf8KQPxxHr/3wZCpZcMbWXUdnH527NrHzzVcxWm3Mvep67J02PI4ElfOKcZugssBMTYEZZzCGVa9Bq5GIJVJYDGKxzWnijK2/J40sK/+pxs7kYL8zQm+TC1d/iP4WDxXj88gpMlI9pQBz7gdfnxNuNwm7HXVODtrSY0sc5HUEiQSTqLUS1lwDenNWPu9nZN2N9feT8vnQlJSgyc3Naixpx9DWTSVTbHm9E5VaRdgfUxKRJFLUTS+kp8lN124n9TOLqJlqIhpyozeZMOfl4ezuwmu3Y8kvoKimDoNZmRvhdYTwDYXRGbWkkimMFi05xSbklEwinkKSJFLJFHpTZt1LpZL07t/Luqcfw+8cYvoFl1LWOBe9LRdDohXLy19EcuxTFqJcee9wEsFTft96Wtbd/r5+HPt2svW1F1Gp1Zxz7U1Yi8bz3H/vSh9TUmdj2rkVhPwxZf5MfQ62QrFh08fhHgjStHGQngNuGmYVUT+zaKz8Lk/L+nvCpIY3r8pyGyDucJB0udAUFKApPDXju74hB0F7DybnDmz7HsZ5/v24PWpScTseez/m3FxsBSW4+w+w9dXn0ZvNLLzhFqqmTEejHRP3Badv3U3GGTywk81vvkVfk9KPO2X5RRjNxbTv9tC23UFpQw7FVVYc3X70Jg173u3lyq/NJK9U7NR+hjht62/TgB9fJIqMhFlKoRlsYcOzT5BMxJl/zY3Uz5qntP/iYSX53Wvfh6hPSQB51b34NNW4ezvw2vswWmwU1o4jr+TYrnshf4yOHQ4C7ijd+92U1NkorLRQ1pBDTtGJmY84quG2czau1WPQaVt3TwW/c4iA24nRmkNuSSnxaJS+5hY8AwOAkaDPhtFqBdmHo2MDXbvWkV9Rx7wrrqVi67+hqp6nJEc15dPnDtHlChKOyxg0EjWFZspzR6/n0XiSREqM332I07buRkJxNBoV8VgSvzNCIpbCYNXi18n0uMJYtGoK1RrkYJJUSqag3IQ5x0A0FMTe0U7ANYStqJi8nHzCXg/RZAJLcQm2wsyEJdFQiPbtm9nw/FNISCy4TpnvHfZD23YHbdsdVE3Ko3FeCXklSnvE2Rdgz7t9GM1aIqE4JpuOkDfGOVfXj90klqkkSColc8rp47Stvx8mlUzRc6AT/1AXiWgMc14FOqMVe/s2dr75MqacPOZfdiXFDGLsXYV64eegbMbHfr9Wh58hf4yknEIrSZTmGD/yRpnCR3JG1V3Z3Ul3f5j9766kc9d2KidNYdw5l7JrdZiaqQXUTC+ksEzUpzPIGVV/vY4Q/a1OUnEPelOCkNeFjIGKCY0UVByRxO7g2MFQM7FtKwmXzCOW10jIl0CtVpEwq9BIYQZ3bGD7ilexFRax8PqbqZg4BWkMjbGdxU5GI+fEL/AXPrJIPMnEf32d7148ga+cp8yr+3/P7eKN3QNs+dcLsxzdCXFaNdCFseNk3XleA0yQZTl6ks5/RmnZuI6Vf/u/9ONnfv7v3PzjX1IxcfIxn6Mq30xhwIXz//6A+6UXkTQa4p/7HMab7sBWYGTlfXvSOxV373NjtEyjbsbxZWLtbznAy7/7JT6HHQC92cz1P/h3yt78kpKABCDkgqfuhM+vYSBcxfrnWult8gBQP7OQ+VfVU1BuwdHjwzcUIR5OoNaq8Dsj2GweCrU9UDX3uOIUjkMqCfb9RAIhYt0+nP98CMmag0qOM/HrX0IvxVD1RYgnVGiNehKRMPlaIxeaIpxXCRqjn1QkTM1NtWx43U7nbjdljTksvLoIn32Qtc/ZcQ+EASisMnPJLcXkaJ3EwxFUBhNSMkZbm5s3/vKHdEgv/Oon3Pj9f0FXbCAZDYHGgJo4vpiOLe9tYNsbryHLKaqnTOP8m24izywjR0MMJWp4/f5OEvEUcy+rpet5J5MXqnjl3v8gHlV2FsqvqObCz9/Du0/YCfnjzLmkhi2vdxKLJJh9cTW2fD1mm5b+dj+DHX7Gzyth39p+Qr4405cV0VA6gElvxXf188SjKSwqB6rmd1HZqlEbTuIAzNnO0wOebvB0kEos5+0H96ef6tg5xBVfHe4Ii/qVBDF9W5THES889wUonEC8cDpqjYRKrSIeTab/fTg5FsP/1lsM/OQ/SHo86KdNo/yn/4lhQuai3Vg0wWCbl7Bf2SnD74oQ9kYpa8zLOM7Z28Orv/819vYWADRaHVd/71+pnT6Ljl1DvHn/XqLBBBqdisU3NOKxh8gpNNAwu4RoOM6eNX107Bpi+rkJVv71l+nzvvy7X3Dt9/+d+tnzTsivt8Cip8Cix+6LkKPXoBeDKKdU3Ywiwv4421Z0odaqWHB1PWV1Vlj9CyUBCSgDyiv+BUqmQMN5AJTZDJTnGplZrUxsjAddqAd3woEBLHnVYJoGaOjau4vNLz1L+9ZNAGgNRi7/+g8J+Q0U15ex860+mjYMotGpSMRSnHdrMW/+7cfp6+bWV55k/EInBzYtZPF1E6gYnzfiZwAIeKJseLGV/WsHACitNnHOMhsta1pobwlTXGNj3uW1FNcML8jr2QLOZuVzWzAOKmaBIff4fpmyDH3bYHA3qLRQ0Aglk0Enrs8nTDKBZfs/oGWF8jgRQbXyX6F0KjScP+LwSDDAyr/8np79uwHwOQbp3ruLT/3Hf48YgMvgbMbr9vHS/Y8w2NYKKNfQpbfcxY63XuPyu79AsSmCw1fA83/uIZVQGsE9+93Mv7IOnVGNwayjtEFJVlI+Ppd1z7Wmu240WhXzr6yjrFZHrsmHzt1E3FqFOu5HFfUQsk0hGLORatpL+JH7UFXXUnDrzegaGtEO7zag1kgkk/LwjgMyklqFJElIw18tEqBSSahHS74jnDqDe0h6HSS1OcimApKSCVmlQopHiW7ZhPfVlahzbOhmzmKoyEwoEObdR+9HlpWJkjUzzqF03FVMP7+S0roc3vjLblIppSIVViTZ8fr/EPb7ANj84jM4u7qYe/WnSSUS9OyP0rHLw/j5JUxcWJaeAFtTYKYyz0Q8mTo5P3P/dnj5m4ced74Hq34B1/4ZNCJL9pkklUwRj6WQUzKynEKWZSRUpGQZtVaFVqMiHIwT9kWQ+jsJPPg3iEXRfeundDT5yS8zozdq2fl2Lx57mOJaK9ve6EKjVZFMpChtyOGyL00j4I6w/vk2/E6lbTDQ6sXR7mL5RRIabzMYCwEZfL0gJ8FWAWodvbN+RG9HH9vvfxT/kAMAg9nCDd/+FiVaN2FtPnGViX1bdvLek48C4Bnoo2f/Hj71n7+mtKGRArOOAosOnVpNfZGVZeOLiCWSSEf0kUaTKSpyDajE4MuY4R3o4tV7/yt9jdz22gvUzuzGlHs1xbUF7Fvbz4WfnULJFKVtKMsykUSKY/naLLAc+7XMesTCzkg8iVatQi12SBU+hKtpPy/+5mcEPW4Adqx8FUdXO0tv+Rwv/n4XclJpD3TvdbHwugZmlJkpn543YqjwqAvOJdCLHVuEj8k9GGTr613sX9cPQFG1hXM/+WXeeeB39DYdAJR7r559u7nimz9CZzKy+sG/07lT6ReQVCqW3fpp1j75CLbiEnJLvktRde2HvGmHcr8dDYClWJlQmEqBnDo0wVBjAr0ZHPtAawK1HlQaJTGwuQicLRAPgakIYj7Q50DYC6Y85IiP4ICe/h//lITdga6ulrJ//z6mUi34+pSd1EIuJUmrpIJ4UDmntxesZZCMKv0LudUQHFKezx+nJOXzdivlpgKw71N+nuJJEAsq/RLGfMirU37GkFPZmVOth6H9Sj+FuUg5TmsGvQ18PWAuhHhEOW/JlDMtueoZLxxPolerPtKO6SFflO69+1n1wC9YcO1NrHnkn+nn3r7vdyy77ZskGpZQGWxh8bg5LB6XuXgilZIJx5MYT3IfgdU4JhavnVU6dq5nzcP3AeDu7+Wl//kvrvz2v7Dn3QgdO4a48pszKS80o1GrKM0xpO9nRAIS4bTQ8T4MNSnf50UToWqUMamIB3q3Kd/z1nKwFIFjvzL+XDQBahZ9+Ps4DigboMSCymuqFpz4xcsqmR1v9zDUrWyoMdDmo6wxl5ppH7zjZ3j3Hvr+3w+JNTWjLiig7Kf/iWXZMqQPSDgx0ObF4wihkiRkWSbsi5NXasSSNyYWx5+25ESCwOrV9P/rv5F0udCNH0/5L36OcfKxz7c5vgBkGNgJEb/SHlWpIZUAVCDHQaUnrrGgTkVJBtyoVClS+eNR5VeRSsqo1BK5JSZW/H1P+pQzP1HJu0814+j0I0lQN13i+V/9FXd/LwVV1UxavJz3Hn8wffz8a25kwXU34eyN8uqfdjLn0lp2vNWNyaajYXYRucUm+lo82AqMNG0cIBpOMOuiGsrH5RCPKYmIffZOnv7pj0gllX2m1jzyD+ZdHcZSMIP84nzMsZDS6xZypucAUTrl1PyOT2Mhr4eBnVt4+59/Tpe9/Nufc+0Pf8JFd0/h/adakFTQMLuYN+/flz6moNLM5V+egTX/tNi8acwIeqK89udduAdCgNJf3d/q5YI7J43dxXmnm2RcSTTubAZjHpRMA2vJB7+ma73SBgAonAg1Cz74eP8gDOyCiHt4TH/qCUl6FNywgb4f/JBEfz/aykrKf/ELTHPnHPd5P0jnrm288r//Tdjvw2C2cOHnf0q+0Ya/eRPvPPA7kGX0JjNzr7qe9w+7rj/7ix9z07//gspJ4jp7PHw9rTx/770E3E5guB+3o435132Btc90A8p1Ir/MTEmDjZ1v93DZl6eJBCTCmDC+1Eo4ZiQYTRBo38cz//Oz9HOv/f7XXPmtHzJ+wWIY2A3Pf+nQC3s2YffkYu/fxIo//TY9t6Fh7jksvvlzFFWVfeh7SxK0bHPQvccFKJ+TvDITV3xl+on9IQ/q267cN8aCBIMV9P3bz0gMDCjX6l/+AtOck3utFk4vPXt38/L//pKgx43OaOLyr3+XgNvDyr/+b/qY8Qs/QV7F+Tg7X6Zl01oAvPZB+pt2c8W3fkXF1u+jKZ0OEy+jPM9EsVWHKxQn36RFozl6m0OvVSNm1Zx5gp4oLVvs7F7TS26JkVkX1xD2x/DZQ2gNGvJKTcypzsXZ5adz1yA73uohlZKxFhi49IuTaFr3CuufeTx9vsU33ELL9k0MtjRjysnl8q99l+pph5I59OzdxSv/+6v045d++3Ou+d6/s3edlv5mL/UzLSSiXja9FGDJjRMw5egxmLU4Ov0MtHnTr1t0fQNa/Rgdf2pfA0PNoDEo/XmVYh1Qtjl7ulj515/j6e8DIKeklGnnX8x7jz0AgLu/j+eb9nHh5/+dzr7PMLs9RFmOG8k0+nzwD9NQZKU8N0k4Gses147YdFgQjiqVYtCVYNX9f8DR2Q7AXscgPfv30rjgy6x/rpW+JjcXfW4KejHuKYxBjs4B2re+RlF1Ba//8T7k4aS8tTPmcPGXvoElLx/sByDshICTUOliUqliwhNvJx5N8vbf9+EdDCNJMOeyGhLhjax/5hFgeO7svj3c8tNfU1I/7oPCEAThODj8SiqEosM2Qcw36XCHYqRS8keaSyQIZ5KTNcLWBmgBkYTkQ0SCAba88nxmoSzTvXfnMSchkWWZbV1uCl95heCLLyhl8ThDf/oTliVX4+yNphOQHLRtZTfVk/M/9sLHRDxO65aNmGy5zL3yOhKxGIlYjH3r3qMEiYypP6kkyUiIjh1D6QQkAG3bhygfn4fWIBEJJJBTMq1bHQQ8UeqmF6JrzIU3vwcX/wxqFn6sOIXj42/fT+ceH01NOqYsmUT4jp9gtOiQSPHai31MWlyOvc1DPA4V46zs32CncV4RXnsAnzNG/cwCDqwfpHpKnJqpBTTMLSQeaub5X/2OSDDAxMUXUdE4D40+B61BQ/M+yCmqpHO3i8oJOYT9IXa/8/iIuJq27kZach2OzgBagxqDSY1vaC9bX38lfUzXnl1sfbeehtlX4OgJ0ts0SMAdZf4Vdexe08Oia4rY8uqD6YX0ihRBjx2VRmLSojI2vdxOLJJk3hV17H2vj7wyEyqVRNceFwuuaaBjZy/lDVFSqThqfRx7ooGgu4y1L/RQOTGPoqrJtG0vxrKzmVkX1VBan4N0emX1Hfv8drDvgRU/IlFzPrubxmc8LcvQtmOI6ikFEHBA++qM54PTvkzbXjN7N25hwoJS5BQ0bRwgv9zM9POqKKk9tENxpKmJ3m9/h4MX1OiuXQz8+CdU/fUvqK3W9HGuAWWn2fYdQ7gHQlROykNv0hJwh9OTCOPRCK7eLupmzWHKuRcw0NpE6+b1rHvyUXJKannrgX1EgwkAErEU7z7exPl3TsLvjODsD7Dp5Q76mz0U11pp2bRyxK9l19srTlgSkm1dbt7cN8iqAw4mlVm5fnYlCxvO2l0GTjlzjp65l9UycWEZKpWk7LrnH4S9z408eHA3ByxzeGhtJ9u6PSysL2DJuEJs6iiTm/6EdtOhhE7xy3+Pq2AhfvtgOgFJbkkZMy66jHfu/wN+5xATFp1L/exLySutJxKIk1OsJR5rOeK6Cc0b3mHBjcvYt7YfS76enMKRST36mtzpBCQAA10hWjpz6e6MEvLG6Ng5RH+rhxt/MJec6F549R5lAROAWgs33A+Trji+X2b7u/DI9ZCMKY9Lp8PyHyo7tYlFySeE09FPwWh1s3/XqElIPIMD6QQkBwWcQwy2tRw9CcnATtj1LP2aeURDYc7/zBdJxmIkEwn6W5vIKSzhnccf45qr59LbZ0snIDmoZbOdqcvL2baiE2dvkNmXVKMzaFh4jTIwp1JLBL0xAu4o++1hyifkoVLNp3+Tl6BTZuryKQzs9iETQKOpJfd7/8OetX3k7tegbu1Eq9cQ9EQJeaOUT8ijt8lN5YR8tDoVGqMKOQmphEwqqSQEMFn1lI3LQSsSPJ1y8b4DDPZpCCYnYM7RE/cniUcStGyxozNpKB83h9TNs/EMBKmYECPW34lMirrZc5FQdi3r3LGBSUsuRK0vxt7lTycgAVCpPOnF9Qe1b99E5eSpvPf4A9TPXsScS67C54SeA27GmTXojFp29nh4YG0HBwb9fHJuFRdPKaHEdgIXIbjaRpbtf1lpJ+VWnrj3EbLK3uUj5IujVoNKqyLoiqLcpEtEg3GcfUEaZhbRutXOQJuXkrocJn7np6QSMu27hiiqspJKyexa1YOrL8ii68bRvc/JRZ+dQsATQW9SdlG1d/ox23TpBCQHHdjsZFbtIAWuFVC7GN77LXh7lCcNOQSufZyVDz9MzbSZBJxOxi9cStWUaQTdLjy+CGGNkXce+weVU6bTsnFdxrlTySQDbc3sidn427ttaFQq7l5ax9SKHNa3Obnv/XZyjTo+t7Qei0HNC9v6WNvqZG5tHtfNrmRmVe4p+RsIH8w90DPiGtmxfSuXf/N6dr7jILfUxKpHD3Dhl6cyFE3wxKZu1rc5uWRKKVfNLKfmBO+QMuiLsHLvII9v6qKx2MJdi+uYUZl7Qt9DOHMk/X6cXk86AclBfQf2MdTVSvm4InoP+NPl7dsdDLR56Y7H+NOWTj63pJ5F4wowaEe2/xx+pS4+trGb+iIzn15cJ65bwkc20OpNJyABcHQFGOobSicgOSjgGqJjx3qa178/vLvuJPa/t5qh7k62vf4yExYuZfeqlax55H4u+9r3MFqOksDTcQAeuk5JvgFKYo5l9ygLL/2D4GpXEpMUNEDHu0q/2oFXYcKloNIp/f4HXgdrMex8UlnAtORbsPk+mHoD7HyC2Dn/Rc+3voccVYabYu0d9P7wP6j9/iVoU3bY+iB84idKgtbpN4OrVUlOMv0mePZzsPwHsPUhJRHJ8u/DG/8COguc9//gjf+nxL3kW7DvJWWyu7kQFnwF3vqJ8lzD+WDKh11PKzPwz/83WPd/yuLL6gWQ3wDbH4Gq+coi7O2PKPE8/2X45P2j3g8LY0+3K8hLO/p5ZVc/c2vy+NT8aiaW2T78hYCr30fT+lexFRRj7xh5z9Wx/R3yK6bh01s48oz7+308sqGTrV0erpxezhUzyqjMEwlzzwSBvj62v/FKRpkspxhsO8DERdPZ9Y6LHat7eKLDzsVTS+l2hTLuZ+bV5qERScmEsap1FTx5u7LLNiiJt679y8ikIu1r4KlPK8kY7noFnrpLSVIKSpvhkw9C/blHf5/BPfDcF5U+YQC1Dm56GMZffEJ/HGdPMJ2A5KD+Zg/O3iAm2+jLixIuF33f/S6xdmUidNLppOfr36Du2WcwNDaO+pqQP0o0HMdrD9OxcwhLrp6JC8vwOyMiCclxira20vP1byg7BwKxpib6vv8Dah58AE3ex1sscSS/K8Jgu4+AO0JBpYWSGhs64/B9Xc8WpV1sylPqaSKGW93IkEMihRadWc9gZxCN1kgkaMFg1hLZFcNg7iQaSlBcbWPd860Z76c1KAuMAKqnWNn/3hO4+5XPz7h5C1n3tJK0t7iuAUteAbvfWUn97AX0t9iZc7GGkMeNSiNR3pg7vNnBfmZeWM2aJ5oAmLS4DLVG4vnfbCPgjpJbamLSOc50ApKD9qx6lXHz3LRtHkJ/xd8oe/4SJdlgKgHudpGE5Bi4+vto2vD+iPL9761i2e1f5frvzyEeTvDs/2zNeN7ZE2SoJ3DSk5BEI3EG23y4B0LojRqKqq0UVFhO6nueTK6BYDoByUFt2xzMvayWoirrUV4lfCQtb8LjtyjXAoDGi+Gq3x89EUn7u/D0XUpSUFCSed7wT6hbOvrx/kHlfrr1TeWxSg03P3bc3/+xri56vvJVUgHlOz/e00PPV79K3TNPo62oOK5zH43HPsBLv/0F0WAQABkZZ28H1qIC9q55iYLKaiYsXIq1oJDNLx8xxi7LdO7aJpKQHCf7oDudgOSgvub9yElXRpmrP8jcK2ox2/Q0bRwkr8yM0aJFIxZLCln0brODxzd2kZRlrvS9N+L5ba+/RMO8BaiPGP9Pjb8CfzDIpheeZNEnb0Wj0yFJKlo2r8fd235MSUhcfcF0ApKD3P0hhnqC2EaZE3Zc+rfDqp9D0+vEZtxDz8/+74hr9deUa3V5+Yl9X+G05HcNpROQAMTCIXr272HHildQqTXMuuQKrAVFIEFBBWx4em3G6yPBAANtHejm/46yrj/DxMvY3OHipZ19bGp3M68ujyunlzO3Nj8bP56QJfvW9bPhhTasBQYmLylnz+penL0ByhtzqZpkxj0YRq1TM9QdZNvK7vTr/M4IfU3trH/2iXSZJKno2rebWRdfwU71G9TOmE3P/j3ojEaK6xtQqdTsfOv1ETHsXf0WasMlzL5IZttrfyTgGqJh7lLcgzZMObU4ewMZCUgANr3cQcOsImyFJvzuCPZ2H35XhIIKCyW1Sp+Fxx5iqNtPMilTUGGh8FTc6zWvVPoN48oGtRSOV+4Xqj8kEaFwUnXu2o7RamPuFdcS8fuxFRXz7nACkoPkVIqQt5O+5gK696W4vihMceNH71drHwqyrdNNk93Pu81DTCy1cv2cShaJdQfCMUiF/XgdA+kEJAf57APkFCrXla49Lrz2MMU1IgmJMLYEvVGGug5gsOiQU0kW3XgrRquNtm2baNuykYGWFsbV5IC/D0eimph2EpJXIuAMM9juw2sP4x1U6rksQ8TvZfdbL2a8RyqZoPfAXvIrq9DqRHo8QTgZ7H5lPvzhSUjyzDpSMvgicXJNumyFJghZdbJWu4WA7ZIkvcVhiUhkWf76SXq/01YyEUdnHNkxq9Uf+0Dyzh4Pu1oGWPrGyI4JlcGASh0bWa6W4DhyIUSCAXRGE7UzZ/P2fcqOHWqNhvM/+yWS/gWo7JkLSiOmOnoOdI44T+8BN43zi0klwrx1/z4SMWWQcqg7wIwLqiha/hP07WtEEpIsSAVd7N8aZuNbYRZeV04klGTPu/34HGEa5hQx78p69r3fR/v2IeZdUcc7j7Yw/pxS9rzbj7M3wKLrGnjrgSYqJ+bRs99D114XF9xhY8Wff5N+jz2rXmHulRYcXVMyEtQsu3k8m1/vwlagw2AZORHAlGNj1aMH8NmVL/f8cjMlVSMn93bv3oRKO4/yRhvIWmqn5mOyOZgw18GBdRtw9ykTddQaDQtvvJWhrg42v/wUsy+5hkS8i6nLEkiqImKRBEFPlEmLytj8agdavRqDOYrf8Qp73t4MgNGWw0Vf+H+senwQo1VLTpGRDS8qN8COLujc4+L6786huObYJi4Lx2hgeIeVoSbii/4NqWXkhU2tGS7TWyG3FjwdAMh5DeyOX8PmZ3rILTHh7g+x9z0ly+9Qd4D27UPc8P255JcrC9ziXV0cmdEpvG0bCYcjIwlJIpLknYf3E/bHAXD2Bgi4Isy9tAZLnpFoOMSWl59j3dOPKfFptVx491cZN38R3Xt2Egn4iATiGe+TSsnEo0kiwTghb4z+Zo9SnpSx5I78jBgsJ6az2O4L85c1rby+exCAPX0+1jQN8bc75jCj6sRM2hM+nCRJmRPM9BYomQ5tb2ccF7dU8un7NtLnVZpee/t91BdZKNe2YzgsAUmicAoHBjW8/fsfMufya9LlU8+/kDUP/zO9C8a+d99GTqWomroYtRQj6HIiJzMXGQNo9XpSCaU+bnujiwkLyyirz8k4pr/VO+J1/S1eCios+IaUc0aDCdwDIXLi+w4lIAFlN6V3fgYF46B44rH90o4U8cGb/34oAQkoE5cH90DReOXcwnFJpVKs6gxzWcEUjAF7xnPJnCpGm56j0WqRJFW6zh3kHugj6HFjzj3iOpNMQN8OiAVIqmDuFdfy1n1/UjIFSxJLbr6DvLJyXvrNzwnfehPSKMllJJWERqtWJpDn6NAbtbzz0P708xUT8jDn6qiamM+BDQM0zClm37p+ysflotNrcPYFCQfjBN0RAu4otdNlJi0s5ZU/7KJxbgkee4iK8bn0tXjo3ONi+nmVvPdkE7MvrsGSp8c3FMaUqycWSoAMIV+cVEqmdpoYZDnVBgfV2J0abEVqvI4wsUiCTS93kEymmH9FHc7eII4uP1MWp3jx178gEVOurTMuupzyCZMY6uxg8tLz8Dt97Hm/hfHzMydXSqqRt9oqtYZYJIScStG6+T1SyQRoLmKgLYhnMETFwhJu+dsGAlElEdnu3j3YfRG+feGEE5c51zxKgp/iSUo7STgjuAeCuPtDJOJJDFYtcU8M31AYnVGDnJJZ+1wrV31jBuuebcXR5cdo1ZJfbmbTy+3ojVp0Zg16kxaPPYTXHmbquRXEwnEKKiys+Meh3VirJuUx/fwqQt6R/Q0SICVjUD5TSXxzMAEJQMRLwN4DsgSSimu+/6/4nU7evu9PpJLK4Mv6Z58glUxQUt+Izmgi5PVknD+l1nH3g5s5mPdnS6ebn1w1he89szN9jFGnps8TZmuX8tq9/T7Wtjr5+51zqT3BCSyEjybp96HWjhwIVqk1mGw6VOo4clJmqMuPcyjM3c9up9OlDLDt6fOxtcvN7z8164TtDp9KyTy2oYvfvdUMwO5eHyv2DPLcVxYzvkRcG4WR4sHAiL4BAEmlIrekDGtfakR5PJykVKVhbauLta0uHvzMfJaNz/xOlmWZJzZ18+sVyoKwXb1eVu4d5LkvL2JCqehLEo6dvdM/oiwSTI1676VSqXD2dvPaH3/DBZ/9Mos+eRt+5xDvPvYAjQsWs3vVSjp3bsXTP4SxsXr0N2x641ACEoCIB3q3Kvfyai0UNYJaD7ufAWMuVM5TkpAceA3O+xfY+zxozYfuy8NuGNwNKo1yDx/xEHd40wlIDkr095Pwy2iLiyARhV1PwbhPKAlAzvt/8M5/KRMcDTmw7g8w59Ow9l7oeB/KZyn9Dm2rlN3XejbD+j/Coq/Bml8rC6NcbZBbA55OaH1biRWUz//6P8DU62HjX5XdnBsuUJ7r3qjEkErCpr/D5Cvhte/DZ95QkpgIY1Y4luQXr+3nlV1KAt09fT5W7B3k6S8uouIYFoXLyQQ+ey/nf+aLNK8fuSjEYLXR2+TBPDc/IwlJjzvEnf/cyKAvmn7f/QM+fnH9tFGTVQmnF9lgRG8aOf5rsNrQD09MkSWJ91qG0GvV/GZlU/qYdw7YeeqLC5lTI64dwhgU9sGWfxxKQALg6VK+Yw9PQuLYD2//TElUMOtOaH3nUAISUNoM2x+GqnNAe5R5Eb1bDiUgAaVt8M5/QdksJYHZCXK0/SM+aF+J+MBAOgHJocI48a7uoyYhCftjdO11s/MtZcHKUHeAngNuLv3CtI8TtnCYWHd3OgFJuqy5mcTg4AlJQhL0RXnr/r0Z8xmWfLKR6edVIsWC4O0GkkodlWAoUc0Lfx8gElTGe3VGDctvmcB7Tzczfl4Ju1b3Mn5eCbtX9zFuTjFDPYH0saMpqFBz4N29AGj1RkobGlFrdSy99dOoNVpi4SDTLriYN/74G9wDyuessLqeBdd/mXce7mHWRdXIKWWBFDLMu6IOrV7FqkcOEI8ovzfvYIhoeGSl15tMxCJhOnduIh4JcN2kq9A3Pa88OVpfszBCMp7AaB15X6/WaGjb1k48bKBqSj6xcHLEMdFgnMF2L7ZCI0bryZnY2rHDyZv374Xhro6iGisX3DmJgvLTMxHJ0TYFEnsFnSB+O7zy7UMJSACa31C+r60Xjv6avc8fSkACEHQoSUCPloRkYMehBCSg3GO/8h3lXt7y8b//47196UXtByU9HuL9/SctCUnA5UwnIDHacrj4i9+gdfMGVvzpd0y/8FKS8QRrHr6PxgWL0JtGjltoxGKS4yapR95bS5IKrcGASh0ilTzUz+uzh9Hq1RRVWdj+Zhchb4z5V9SRVyrGlIRTb2O7ky8/vBV/NEFlnpEbR6mHRqsVlSSNaJMFJ30G5BgLrruJFX/5fXqew8yLL0c6zlynx/v6UTnboEmZ9x4P60deq91u4n19IgmJAEDQ7RqxSYBarSEWDnPxF7/B2qcexe90AHDpV+9Bo9WRiGfOZzDn6PD7JMoKJ9Iy6OPfXtjN3n5lXGVvv4/NHW5+d/NMGovFOPHZIOCJsuNNpZ9m0fXjWPNYEwG3ct109gZxD4aYvKSMsDdGODDyvj3o8aXHjfPKKphz+TXIskwiFqdqyjTWPvkwABuff5IrvvUDxs1dgMmWO+I8xpxciusk3vzrb9Jjec0bVqHVqSmp/1p6bc3h4tEkibhMyBfj7Qf30bPv0Gdj8Q3jqJqcz0v3bifoUT4DGp2Kq785i9Ij5vWeUO5ueP93hxKQAAw1Qd92kYQkiyLhOKa8fCYuWsZbf/8Tspxi2icuRW80ceSoskanJZVKkUrK2HvjFI/ezXlU3lCMP69uIRxL8eIOZT3Gnj4fb++3c99d85hVLdYdCB8snNSiN44+NmvONXJwaerIq6IgZJ9KLeEZbKNy0gTe/Nv/kUwo88DnX3MjtTNm4Xe5iJbY0Pv6iVtnYm/3kVNk4s1/7mPeZbXsa+7POF88CjqjiUgg82odCQQYbG0RiWsF4SRx+JXvmuLDkpDkm5W5yq5gTCQhEc5aJ2sLpReB/wTWAlsO+084QtDlYsKipRkjngazhYKqmmM+x6AvijupIjFhcka5ymxG1uiw5uuZvKSMxTeMY9nN45lzSQ3Tzq1Arfn42dp1BiNF1TWsf+bxdFkykeC9Rx8gPOVWZSeCgxZ8Ga3ZRHHNyE654horyWQSryM8opNk73t9+HUTkaOhEa8TTj6PJ86295TBUGu+gbVPt+AZDFEzvQBboZH3n2oh6I2x9KbxOHuUhm1OoQFnb4CcYiOO4R2jSutz6Nrrwpyrw9nTMuJ9Dqx9C0te5uKNLa93UDkhD5VGw4RFlyMdNoKhM5rIr5iUTkAC4LWHsRUd2rldUqlonL+IRZ+8jZIaL2uf+AVaXQfvPfYzPAPtrH7or3Tv2UntjNkATL/wMnaseJX9769m/PxFvH3fH1jx59+w9ol72f76b8kvjTLj/BwMpm5mXxRn+nkWEpFeunZtTr9n2Odl55vPUjbOQu20Qpo3DWb8TKmEjL0jc6dn4QRIhsCvTA53yo3UTS9i1oXVLL2pkSWfbGTq8gqqpxQox1qK4MrfKTtQAYHGO9i+VunsrJtRyIENAxmnjkeTOPsODWypCwpGvL2mpATVcMKPZDJFf5sXvzOcTkByUNs2B9HhiUPO7q50AhKAZDzOmkf+iZxMUD11BgZLzqGds4ZJEuhNGgxmLXqDJv2VodaoqJw8NWMRn1qrpXz8JBIuF5GWFpL+kYtPjlWbI8gbezLrst0fpcUeOMorhFNCZ4bz/yVzwXjdcnotU9IJSAAmllpZ3WTHlMqsA44Z3+KNhx4lHo2g1mrSiRpUas2IBUkH1q7BO9hEJNDL2ifuJ+TzkV9emXHM/Ktvpq81RXG1lT3v9tF7wI1vKPO7u6R25OS6wmrriJ2oNDo1hD0jf2ZPJyRGJkA5ZrGgsoBoRHkAIqI+nwjtQ0H+/dU29k74KugP/b3jk28koJlAtL2dVCxzYDe3tJyZF1+eUVY5aSqDrc147ZnXHgCSUWWnaUMO1pJKVj30dyUBCYAs8/7jD6EzmKicPA29Wqai0cryWycw/8o65lxSg9agZtryCvpbvOQUG2mcW8KW1zOT5PUecJNbZKKvxUNhtZWAJ8KkBaUEvVHKxuWgM2gIuqPYO/3YCowkYyniw23Ylq12qqcoyUtqpxUSCyeQJEjEUsgpmd1retEZ1cpEEAli0SS+oTAHNg0gp0YuZBVOLvugilgkiUoFQU+UWDhJPJqkrCGXzt1O9EYNU5fmsfrhP6Yn5gDsWPEKpFKoNGqaN62noLKUSCCONd/AnEtrmHd5LefeMgFrYQXl4zM7eaedfyEtm9anH7dv30BZg5IYYtuKLry9wXQCkoP+9m47fd4wJ0z5LJhw2OdOa4RLfgHGkzjILJxSfmeEeCyJRqNCrVKx9/0+DGYtQW+UwQ4fhZUWwv44ji6lfTB1WQXRYBxzjoGhngCxYAK/K4I5T8/EhaVseqkdU46OTS9nLqzp3ucmFk6g0avJLTFhKzQy/8o6lnyykYs+MxFDtB1UWvD1j4jRGB+ipH4cDbPmkYjFWPPwP9K7rKaSSSVBD9CyaT3TzsucuGzOzcNtKiUlg0Wv4Ssz8vjLsnwcfQ50h+0S3lBkSScgOajFHqB58OO3jYUTQ6XXotZoKWnInK0w7fwL0Rl0TDinhJ4mN7mlJvrCsXQCkoPeOeCgw3ni+on6fRH+siaznRiMJdnfL+7fhdElTXlIkkTFEf2wU5ZdgN81RN3sYpbdPJ6F1zUwaVEZdTMKsXf50WpV6evUoxu7Rpx3wBvhz6sz62IolmSfqIvCR5RXOnLBezRsYdalV2WUVU6aylC3UheT8Tg++yDewQEklcSyW+4i5HFz+de/R1HNOOzdI5OOpTn2jyzzdCgLkg7ugpyMKvf11nIlOclBySi4O8F2RLmnSykLDIIxH7Vp5DiGZDKh1sQgFlKSnXg6wTa8aOjgufz9YCqAqB80w4PAnuH3S/97+DWJKBlZ2z1dYC09LNbDfgfBISW5yWjPHXxvTxdYSpXd4WPBkb8jYUzpdAXTCUgO6vdGaLYfW9vR55JZ9Mk78AwMkF9RlbFQTKXWMP6cRTRtHCQczLz3bx70pxOQHPTCjj66XSfwHlDImkQsxZTln8gY/zVabRitNopqzEw/rxL9eCvFNgNv7MmsfykZ1jQNHXlKQRgbol5lkdiR3EeUxcPKdy1A/XJwtY58jbPlg/vng6N8DjydSgwnkNagZsLCUhZdN46lNzcqbfklZWh0R59Ko7bloLKNklRglLHEg5JxmX3DmyEclIil8DrEXIjjpckfmbRJnZs76t/o43D1BjMSkABseKEN31AY4iFlrEmWleakxkjrATKSisTCCTp2DTFlSTlNGwepm16o/H94fFpvVjN5SeaiSs9giPJGpc0ZcMnkV9aQV1bBtd//N7yDA5xzzY3Eo1HWP/s4g+1tdO3ekU5AAjDU1Yardy8anQpJJZFMptDoVOSVmvA6wkRDyXQCElDClykekRx+6vILaR3u0+5r2ocvdyYAkXlfVpJbCx8qlUowfsFiVIcthNfo9OSXV5KMuti/foCeA24mnJOZ6FytUeF3RXj6l1t47n+24uw58eOZHkeIDS+0pROQADg6/Qx1nV59qNFQnL5mD63b7Gh1KmqnZ16LJywoJad45L2y8DHEg+DrG1kedo8sO2ioeWSZc5Syg0KjnMvXc9z31ur8PDhyAwutFlVu7nGd94OYbDlotEp/xPl3fp61Tz3CrrffQGswoDUYefdRZYMYSVIxafGyjLlxerOZnOLSo51aOEYavY7KSVMzyiYvOw8kZaHxkk82Mv/KOmqmFeAaCBHyxdDoVHgGg5TU2dj0agexSOIoZxeEk6fZHsA/PG/ApFNTVFOPRn94f5OamhlzSMkpKJsG029KP2cY2oQ518J7jz+UMc9h+xuvZLRHZFkm1tNDtK2NVCRzPpZGq2LKuRUsvLaBpTc3suj6cYw/pwSd4SQkzY140v9Um9QjrtWSVovqBCQWFM4MBot1ROIur32AxnMW09e8P52ABJT53NMuuDjj2OLaetQaPSaLBrnmXNT9vdxapWJqyaFz7unz0e4QffpnC7VGQmdUxqASsWQ6AclBPfvcaHUatHo1Gu3IfqLCyiL0ZqX+TP/EJSApdU9nMLDh2SfSxyUTCVb8+V58DjvTLrgYteaw+0OtjklLl5OIDoyYu7vv/XcIupyYcnRo9ZljZTXTCjBatTj7AhkJSAC2reiic7cznYBE+flSbF/ZScx7Eseeoz5wd4wsH+0eQjhl/A4Per2eNQ/fl65jEjJTj5iPZbTlYMnPRzU8p0GjP7TANu5wEGlpIeH94H7ZDmeQQouBV3ZlzhVzh+I0iflawjFIxiHk8zJh0bKM8poZs7Hk5bHs5vFMWlZO1CCyzQpjj9Gio2HOXNY88s90AhKAjc8/hcmaS25pMZ6oBUfOBUSDCfLLzfS3epBTMq7+AMXVmett23f4WXjDbRlllrwCkok4g+0j12VmS9zhINLc/KHfEYJwurAPJyEpOiwJSd5w4hF36APmzwnCGe6kbKUly/IDkiTpgPHDRQdkWT761h1nMa3BwJ7Vb3P+p7+ARqtDrdEQ9vvRGj58d7WD1CqJbk+EwfOuoOS91SRdLgAMV15FKpkiFklSWGXF0eUnEohTWp+D3nx8f3qdwUDQ4xlRHvb78CeN2D6/GlwdYCmEoinojGbqZxXTe8CDq1/poCuptVExIY9IIIlaM7JzRq1VkewbxLHbTP5cJ5oPmLQjnHgpjQmNTkU8miQSiJFKyejNGvJLzWx57dCC3YFWH+feMoHmzY70ZMpkPJXR4SapJOLRJCbbyAEBa2EJIX9mx1k4EEdn1JB0hBnsNLPs9v9H2NdGKqmhsGYC7bsybxxL6k3klpUw94rr2fr6Cyz91J3sf381Xvsg7z3+II3zFrJn1ZvEI+F0Zmufw45aq2X8giUYzGb8Tgf55ZXYO9qIBA9N4Ai6XahUHvauug+/067EXFA0ovMFYLDtAOMXX0YykUI9SofjaGXCcbKWQYkyYBxN6NGbNchAX7MHtUZFaUNO5iTBunPhC6vB2YrKNBn1W70kYkrWXrVGRTJ+5I6wh+qafsIEcm+8Ac9TTysFGg2l//ETtMXKbit9B9y89PsdXPDpzIVIAJJaQho+15HZ2AFCXg9D3Z1YC4qQkwEWXz+ONU80kYynkFQS8y6vJRqMk0gkya8wMe38Sna+1UPYH8PR2ce5t30GrcGIJEEsFMY3OEDXF75IdNcujDNmUPofP8EwYcJH/vWqVBJqSSJxxC7PGrWoy1lXORfuXqVkCteaoGQK3Ues8Y0lZHRqFR59BZV6W3pnQmf4UOfwrrdXsuyWu9jy6guj7syZV16BrbAIvdlCbmkpO1a8ypwrrqHxnEWEfF7KGifStO49Zn2igQ0vKTsfJ+MpfENRbIWHzlcxPpfqKfl07VHaKLlFeuom2Wg6LPlP5aQ88svNIDeM/HknXqEsVvq4LMUw7UbY9Lcjyksgt3L01wgfiUqlQqtW8ekVSf598cM0qnoxmUowbTmA7+ZbkeNxcq67jsIvfwnd8A4lGq2WKeddSMXEKYR8HiLBAAHnELvfWcnCGz418k10w7tj732esNlP4oidsGU5Rdjv5YI7P0sgbqR5VxhXX5DCKguRUJxP3DWZrr0uEvEk05ZXkogliYVHThpKpWSCniildTl4ByOAREGFGbVWxaZX2vHalcVAXnuYggoLc0pqUGkkVJJEKimj0alJJpTrZnrHNUlCq9cc2oxRVq6xKrUKrUadsdZNODVUaml4N4rh7+jhr7pkIoVWp0aSJLT6GP4hx4jXuvt7MVlzqJ0+i5B3KH0+vzNMbrGZzl1DWAuMLLnlSwTdgyQTYTRaHfveewtn96F2tMmWw+H5FsPOCDq1iljyUHtEr1GhVp3ACmItgat/D4NfgogXChuh6KO3EYSxS1INX49kkJHR6tWkZOV6pNaqlXuVw+6/bYUGdq/uY3A4YaJnMMRgh4/z75iI3qQhpbyYWGTkTpzxaJLdq3s55+o6UkmZoCdGf4vSDk9N+izVpj0YSoKw59mM1+XoE8y67Er8Qw4cnR3EwocWWarU6sPOH+HA+vc49/bPIiVj5BYVklNUzP/sTFJk1vHnKSlsv/8Rif5+LmpsZMYX7uFzG4JE4qmj7mypOXKSsXDKSTojsXCI8sYJTFt+IWqdFpVaQ9fuHcQiISx5VrQ6NdOvrGNncGQSOkkCjfrEXRfVkoROoyIcz6zj4p5HOBpJViaKFVbXUDV1OlqdjtzSCvyuIXr372HaBePYu8eHrcBIQaWZRCzF4uvHEQjE0t/xFt3IhApqlVIXyWziiuuW8JHlV1upnJhHz36l/8lWaKBqchE6w5VUTZlNJOAh7PfgGehj55uvp1+nUiv3JT37djNhwVJ2v7OSycvOZ/Gn7sbefrR3AyZcCtsfySyrXaYkkLQ3QX4N5FRC40XQtR6mXqsco9YpCcsaL4T2d2HWrYdeX7MYNvwFlnwLdj2Jzhql8K4bGbr/KeV5SaL0ni+jbf8tzPuMMhup8SJoX6MkxUwN3+cVT4I9zyl9h67hH6J+OewYTqxef96hdkperbIb80FV82Hd/w2/nwo0h+0+XHUO9O9Ix4LWeOjfGoPy78YLoeNdmHqD0vcgjGlqlYRaJZE8IkGo9hjbA5FAjJLaHPqb9+IZ6OOiL3wdWU4RcLkAmWg4jEptzFhQprzvKGMIknRi7wGFrNEa9Dg62znvjrvR6HVodXrCfh+egX6s+YXklOThVieJJVIZCRUPMmo//kYSgnBS5VbBpKtgcHdmeW3mpGCspTDxctj1NLzxQyWx+p7nMo+ZeCVYC4/+XsUjx9uYeCXkHvtmLsciGkpQPSkfR7cfd3+I/HIzVRPz0psLjEZXWUHZT35M73fugeFE2fmf/Qz6caOMbwyTVMpYcTyaeV6VuP88bvrGRvLvvBPXAw8oBSoVpT/5cXos4ngd+Tc7WJZMpMBUCLZS8PSApAaVFvfQyHGHgDtKXplJmQMzPJfg4JyKvDIzyCGmnltB23YH5hw9JbU28svL6G1yY83XUzbuMxgtSXxDdja+8DRLb72LwZZmTLYcKiZMYv/7a0a852D7AcrGNRDyRrHmGdAbtZTW59Db5CG3SBlXPnwIePeaIFd/9z/ob96DLKewFRTS27QvnTBYazDiK5lD87mPkiqexBLDiUnycqYLedyEfD6W33k3Or0eGYiGQmx47gnmXPF1PINB1j3Tynm3T8Ro1XFg/QA5xUYaZhezdTiRvnsgxLoXWrn47qloR+lT+LiSsRRBT3RE+VhbcG/v9NGyxU7QG2X8vBLKGnPR6ZU5b9FQnA0vtrFrlZKER1JJXPTZydRMKaR7v4uaqQVUTc4/ob+3s5qlVEl0f+CVQ2WSCgo+YHvsiZdB++rMsgmXHv34wkZGXKAmXqXMDToOuro6ir97D/Zf/ipdVvLDH6CvrT2u836QvNJylt/1Zd76x72otVrs7UpStrqZc0jGY+nk7EG3i/7WJi747JdQa7VIEgS9XuIRkaDyeKUSCQoqq5h87gVIkoScStKxYxvJWIyh7gDRcJzSuhwmnlPKqscOUDOlAGuBHr1Ry7pnWpl/VT0Bd5T8spMyxVoQjurwviF3ME5v/xBLbr4Tg9kMskw8GsXd34tKpQZzkbLpyOw7IexCWzCOpDuIzzFy45+gR5mzlfT78Tz7LI7/vRc5HMZ62WUUf+Pr6KqrAaUtUDk+F0dXgL7mALklJqqn/H/2zjpMjuPa228PM+3uzDLzSloxM1tmZid2nNiJg44D14H7hemG0YnjOIkTM8uSLCaLLFytpAUtMw/zdH9/jDTr9coxSabM+zx6NFPdXV3dW9NdVeec30k5p3/Nu8ZWCDIFiFFUnU9jv+sm+v/4SGKz/f7/QZ13fueAST68WBwZrLr786z99c/i8xRBICWnkKLpM3npVz8as693eBDvyBArPvW5M/NugcGOViTAbJXR/7fHCf79H0wFpl15LU9VLubBk3Gfibe6Lpzkw49ao2Dyilx2PtpwzjgWQYgLM/ncIZQaOaWz0hP+rhq9Ekl0s+KTn+Xw+heRK+KJJA889yTTLrliXF0Bj5uA10NKTi47KqFZAAEAAElEQVQ3fOdnDPV04neOkFs1EUFuR67oH3eMwZaCUq3BMxxj1uWFNB8ZwNnnJ7vCRkqWHr87TPQcaxYKlQzP0HhfC2d/kP7f/ZGUSy9CO2nS271db461OL5uuO8PY8szJ5//cyV5y4T8w4SDgTEB8d7hIUJ+Hys+9VlkcgWCIOAbGSYcCBELC2j0Suz5JiRJwrdnDz3f+CbR3l7U5eVkfP97aCdMOOe55DIZoiihOIfNLen3kOStoFAJ+F1OZDIZqz/zJSRJIhaNMNzZgSBT0NvsonBKWiImJ0mSDxoqrYaAe7wYh9/tJBIOodWZkcnVCDKBaCiWWOM8fXiAiz89kZG+uEAqQE6ljZRcO0vvuJtwIIApzU4sEmHrQ39kxV2ff0+v61xIkoTvlVfo+ea34u+Iigoyvvc9tBOq3vzgJEk+wAx4QsgESNGP+omd/TzsS0ojJPnv5YKskAuCsBj4O9BKPKQuRxCEj0mSNN7y/V+OxZHBrCuuZaC9hdptmxBjMSavXIPBOj5byxuRblZjUMmp1dpp/vJPKfYPIMrkBItKKRPAlqlny99PJTKZtBwbZO7VRfHgfMU7M7QG/X60BiOCTIYxNY3CKdNpPnwQSRJRabWQng/pE8cck1liYcmt5Tj7/chkAtYMPSa7Gs9gCHOaFp1Zhd81qgo17aI8xD1P4vzbP9BUTMS05j8YIZOcd1IdRuZeW4hvOIraoEStU1BYnUZvqxtBAINNQ1quEUe+CblCYOENJai0SuZfV8yhDe2kF5kx2DSo9UoW3lBCJBTDaA1hcWTi7Iur2soVCmZefgM7Hvei1ilQ65S4hwJUL83BkKJGqZIjSRKCzIjOkk5X4wgn9w2z4NoSmo8MIJMLzLzURPPBF1n7y2PY84u54r7/5cALT9Df0kzepCkgSVjSM2g6dACIBzyf5cj6F3AUlVA4dQYAeqsN9+DYhbzMskqGu9oTAiSW9EwqFyzBmJo2Zj+5Usmk5ZcgKIw0vDrAtNV57HysAVOKhnAghiRJOPKTGebPO5lT4plKV3wPm11OT7fEK0+OZk05faifFZ94zURGJos7Ldor0QOzL9ew49/1nD7UR9WCTI5sHM1GbLSpSc0xJL4rLBbs992H6bLLiDmdqPLyUBfFnQkjoSj7X2xBksBo02BJ1+HsHY0qnrQkG7U+3vfMafYxThM5E6rJKC7FkpHFye2bySytoKA6DWPKJNxDAXQmNRq9AkEmUJRmR2tQMW1VPlklVvpa3GSVpdB2dC/Ht24EYOLSleSmpBP1+dDPn0+wtpaeb3+b3AcfRG4cq5D5ZpSnG7lhZg6P7Bu9LyV2A8Vphv9wVJL3jNTi+L8zlDmCVGWYOHEmU3bTgJd7lhTx2OkRPr7irxTs/QbyoQbU+tG/n3ugj71PP8ak5aux2DNwFJXQ1xT/DdkLiqhesYZ9zzxGyOelbM5CcqomcfDFZ1BqdJTNnoc5zY6jqBjvSBdZ5dmIYjy7m0oeIdTaiujxoMzIwJiayoo7qhjp9RMLRTDIvEjOftbcWcZQfxiLXYej0IzOqIo7KV3yS9j2A/APxx2ZZtwJRvs7v1cyOcy5BwJOOPE0aK0w9/NxYSL9f3ByTvKWKUjV89klxXzvpVN8eYsXmWDm6Wov0hOPo5s5k3BzM66nnkKVlYl+6VIUVit+JE5s28TxbRsxWGxUr1xD56la5lx7M9aMN3AOzpoGiGiihkT2WIVazUBrS0LMD7mKU/u9HN/WRdnsdAw2NXqbmkgoQmq2Ho1eiUwuI+QPk1VmoavemahephBQqGQUTbXTUTeMPc9IwBNGLlcz3O2jbGY6x3d0EvDEFxGGurwggBiTmLA47iBcMTeDo5s7MKZoCAej6EwqxKjIxMVZOPt8xKIikiQhUwjozSoyiiyjYiVJ3jMc+Ub6OwKIoogxRUPQG0FvUdHX7GLuNcUMdfpwFJpJzS0k6HFRMG0GPfV1DHa0olBrOLFzC5NXXYIkCtjzDQx0eNEYVBxYGw9utGVq0JmCHFn3LwIeNxMWrySjpIKmg/sTbZh2yceo2TEqfme160gxqOhxjRqC711RSob5rQtUviV0KVCw4PzWmeQDg9muxe8OE4uJCBJULsikr8mNwaZGZ1Jx+mAfAlAwOY2WowPI5LKEAIlKq2DSkmxkcoFYVCItz4jeqkKMSmSWWOhudCbOI1fIMNg0TF6ehcEko689wJ6nRxXWTx/q5+I7K8jN1sK1j0Drzvj72F4BKaVotHqOHHgetU6PzmzB73JiTEkjEg6RXTGBzlPxYKb+libmX3E57SdqeOWZp9CZTHz8+tu4Pj0NzT23Ew0GkVssqB0Osp/8K59YfRe/PzbC8U4XF01IZ33tqODZ7EIb5elvbzyc5MJgTnMQDgZoOnSA9tpjpGTlMOvK61GolPhcUWbeUc6dL9TwmxunMD3PwsE2Z+LYG2fkUpCif+PK3ybpZg33rSzlW8+fSJQ5TGoqM5OBNEnOjc6swZKeycG1z1A2ez6tNUfY89SjpOUVMnnVxXidMtqODwFgTNGw4LoS2k4NoSuOrwnJZQI3zMwdV6/dpOErq0r5n2dGgznTDGqqspJrSUneHhq7loLl2ZTNyyAWFlFZVSjVUdqO7eXgi08AMO3iK/GNDCeOyZ1YzVBnO47CYmxZOUTCIayZmfhcI2iMNkpm/AfxzvwFsObncPBBiEWhbHVc0MNaCHlK8PbH/5lzIWs67PxZPHB41l0weDoewLTwPtj7x7jQR/WN4B2AGZ+A7sMw53PImzdgmzYV/fTvEu3vR5lXiLr+DwjTPwanXoTKK+PO9oIsHuC893cw74vQsT8uGFJ5OWz5TnxtIRaJi7TOuBPUhnjbsqbHBU9e+GxcUGTOZ0GuhkgATJmw4nvw6oPx6y1aBhOvgefviYuLLLwvvs1gjx937LH4PlnToP8ULPwKKFRvfP+SfCDIs+m4fW4+D+4eVdyZkGWixP7W1kAdhWb8zmFMqWlklpSz75nHGO7uJH/SFHImVGOw2DCmSHHx3ddQlm6kMsPEyZ7RzIOfWFBAji2Zpf2jgEKlonL+ErpP13Nw7bOE/F4qFywls6wCpUbLnqeaWHhbOfW9bj61sJAjHc7EsVqlnPklyTXLJB9gipeBpweOPhIX4JrzOUh/XeCCMQNmfAoiwXigsq0YFn4V9v0+Lhg25WNQsPDc9Z8lZxZc/PO4rSDgjAcxzPzkeX+3avRKDq1vo68l/jxuqx0ip8LGzEsL/uNxxmXLKHj6KcIdnShSU1GXliA3vPG7Q6GWM211Hq88Nbp+ojOrsDjO89rffyFyo5HUz96DceVKooODqPJyEzbc84E1XYdSLR8jRlI2y0E4GKNmRzdyWSnpGUWk0ASSSMlkM01Hh8fUUTg5jUMvtzFxURZHN3cweXkOx7Z0UL00B0EQOPBiCzqzirwJ8eDOun09TFySjTlVw3CvH5ARDfXhHRnEmp6JTCYnFPBRPGM2+599kglLltPTWIdCpSa9uAQxJlI4eTq2nBwOrG0hb0IKoiRSUJ1KLCrSfGyAiUuyqdnamWjj3CuLcBRkotap2PfMY+z+98NY0jNYcPPtHHzhGXKXX8GtGyMIgpbf3ZTMRv9W0RpNDLS1oFCr2bNxHTK5nIlLVzLryuuxZeUy95oIKrUcpVpO+dx0qpfl0NfqZsMDtUivCdjpODVM0BtBaZMz0O6ht9mFIBNILzSTmv3ObPemVA2FU9M4fXDUR0YQwJp+/tbe3i2DHR6e+8WRxO+vYX8fqz5ZRfG0uNjjUJc3IUACIIkSOx9r4Nr7ZzBhUdb70uaPNCotrPhO3NelYV38fX/xzyH93AFoAGTPio8VXv1LvIPN+CRkznjj/R0T4Lp/wrr7wNsX9xVY9i1Qat5V02UqFdYbbkA3bRqRnl6UmZmoS4oRFBdOXEKQycivns2ij1kT2qZ6sxVrZg5ylRKlWkMsGsU7Mszk1ZfSceIYp3ZtR6XVMnnVJWSWVVywtv23oLNYyCqv4vC6FxhobyG7YgITl6xEqVZTtzee5afl6CBzriqifHY65jQd4WCU4ql2+lo8hPyRpIhRkveFMoeBDLOGHleQAW8IZW4Zwa4THHjuCcRYjKpFyyift3DUz0Rng/x5iePl3tOk5RXg6uunYuFiek/X09d8Gp3JAkDg2DH6f/RjNBMnIjca8W7ejDIzE/u9X0IQBFRaBTXbumitiSdkaasdIjXHwILr/4Po1DsltQqu+jNs+jaywRNYq2ei+/sDRJzB9+RZneTDR9GM2Vz//37BcE8Pap0ZncmBQiWQM6Gawc52KhYsIez3Urd3F8s/8RlqNm+g/fhRrJlZTF1zOVaHla7ag6hSrOiXL0caHMT/9ONc8vk8HlXZmZFvozAtuT7738Jwr5+G/b3MuaoIrVGBPc9If5snsb18bgYBbxgQUNjVZFlU5FTaEASJ1CwDbce2EvB6sBcUYc7IZP9T/yYaCeMoLKF09nxajx1KJOWxZGYTi0Z44f9+SFddLdmVE1l48+3IFGk887PDFE/T4ygso6+5Pn5yQWDJbXehM5tpqeli95ON5JTbyJ+USm+Ti4b9vaQXmLCk61Fq5IkYIUEmMGlpDhq9ktodXWOut6xSTeihnXRu2kD+E4+jtNuJeTyE29sRtFpkKhWCWo0ybWx8xFtGrYaqK+M+v7VPgsoYt6OdS2g4yXuGSqtFrTeg0urILq9CYzJRt3sHF3/hq7QePUjdnl1ojUamrL4UW1Yhs6+UkVtpw5ahx3+shr4f/AB1SQmIIqG6Orq+dC/5jz16zuTSBal6orEY103P4Z/7RhO15dl0lKUn4w6SvDlypRyD1YZap+fw+hcY6mwnp2oSUy+6FDGmpuFAH6cP9nPJF6rhHT6qkiS5UPhcIQJuF2a7A7/LRemc+XgG+uk4WYvGaEIuVxDwuUjXB4jos+lrDZBebE7YHrb9q55FN5USCsSQyQUMVjU/2NvEV6bkceiFp9n71L9Jyc5l8cc+SWbJ+594MtTcTOc9n0XhcKBfsIDgqVN0ffnL5PzpjyhSUpCbkr6XST6c9LtDpBrUYwRirWdiQUd84Tc6LEmSjzyCJElvvtfbrVQQDgE3SZJUf+Z7KfCoJEnTzvvJ3oDp06dLBw8efK9O946JRaOcfnUva3/1kzHlF332y1QuWPKW6zncPkz7kB+lFCN3uBNTXxem/BwC9nJ6m93U7e1mzlXFSKJEyB+ldmc3qz5ZhSnlnTm1eEaG6Gs+jVqrZ7Cjjd7TdaTlFZJeXIrRmoLZkX7O41wDfoa7fYiiREqmHotDT1+ri1AgQiQgMtTlxTMSIrPYjMWhJfzdL2JYuJDo8AiOr9z3jtp6gTnvEaMfpL7bdLSL4Y5GRnpOkVs1CddAL+FAkNScPDpP1ZJVXoHX6cTvHCazpJyOkydIy8tHEiMMdXWSXTGBrvp6TKlpKJRKhjpbKZw6E2dfN2Isiiktnc66k2SVljHY3kEsJpKanUXnqVqUWgtaUzFHN/vJKrNSMt2O1iBHkgSiURFnbwD3wDAth/7McHdHos0ag5EJS1Zw8MVnmHvtTex58t9kV0xArlLRduww+dVT0ZrMnNq1DQCFSs1l9/0/dj/6MM7ediavuoQDzz2JIJMx99qbCHm9uIcGadi3G53ZwtQ1l/PK4/+kYPJ0DLYUardtpGj6bByFxfQ01lE6eyGeoQHEWAxbZhYdJ2vRmW3kTZpKVmnxG93q94MLEu38vvVfdw/BqIIND3dgdmjJq0pFJhfoaXIRDkRZdOO5J1qhQISe0y7aaodILzQjV8rorBvG4tAnFtFeS6S/n+DJk8RGRlDl56OpqECm0RD0hXnyRwdxDwa56K4JCDKBoW4fzj4/6YUmLHYdxlQN5lQdsWiEhn2vcOil55h/w210nKwl4HKSN2kKKqMRc2oqprRMBts9uIcC6C1q7NlGlFoFfpeLWCyKwWpLGBLr9uzipV+/7h1y+92Yt+0i3NSMbvo0xEAQ6y03oyl5+8bAE91Ojra72NcyTJnDwOzCFKbnv3WhrAvER/rZ+25oHfKx9VQ/xzudLCxJpcqkR4qKOAWRcGgEddRNmt5Aw7aN1G7fBIBCqWLRrXcQi0WJBENIoogoitgLCnnh/34wpv7Jqy5BjEXJmzSFnsZ6Ql4v2VUTOb51I4VTZ5FePI9IQETTfZLI0//EdM31eF1hjLNnoLBZkclBZ1Sfq+kJwt09BE+eQHQOoc7LRlNcgGA9P9nqiIZguDnuGGXOAc17Hoj8ke67ve4A+5uH2VE/QFm6kWtHjhM+VkPgeA3qsnKUmRl4Nm5CU1WJZupUjroHOPLyazNlCVz19f9HZmk5AOGAH63ZiuL1DgWxKAPdXbj7+6h7ZQfhQICcqonYsnORolE6604QDgbIr56Gs6+HkNdDTuUkNEYDQZ8fldqEa1CFWqdEpVPQfLif4zu6sTi0TF+Tj1obP9/BdW1MuyiP2p1diUBSuVLGnCuL2PPUacQzzp8X3T2BgDdCNBRDZ1HjGvAjCAJ6kwrXQACzQ4dGqwAZSJKAGBMRoxKCTMBg1WDPNXxYsl1+pPqvKEoMtLvxOkOotQqiUZFYSGSgw4MoSuSUmwgHO9Do9XgG+2mvOYrOYiG7chJBr5vND/6eVXd/EZ3JgdetQyYX2PPUafyeMJOWZOPI8/H8z7455pwzL7uGjNwC/EMDGHOKOLo9Sndj3HhdOsvBvKuL6QqE2dEwwOl+L8sq7MzMT8GsU57rEpK8dT5SffetMNLrwzMcBAGUKhkhf5RIKIZcISMSFnH2+cgstuLs96Mzqtjwl1qQYP61JZw+3EfBpDRO7ekhHIgyYWEWjgITsajIqVd6aK0dIrPEzLTV+YiiSMgfw2hVsv/FNrobneRPSsGWYSA1U4Ha4EVARCKeXW6kpwu9xYazt4eBtmYcRSVo9EYQ4hlBh7s6cQ8NUL38IiQxRtjvJTUrk8aDBznwwjNjrvHqz9xL4K57sN54I4JKhf/QQVT5BSivuJrHQjaWlNnRKOXsaRriUNsI1dlm5hanUpHxoTNufCT7b/fpBnb986901o0KfyjUaq76+nd49aUQc64pxi9IZGcZ6feE2NU4yLGOEeYUpTKnKAWH6d05nL8edyDMgZYRttb1k5+qY0mZnRJHUrDmXfKR7Ltn6WttJhYJs+nPv2OwvTVRrtbrueJrP8E1oOTwy224B4IsuqkMk0PDtn4X3Z4QKyvTmZxrGWOoOosnEOHVtmE2n+wnN0XH0jI7pUnxpPeaj0Tf7e3x4urxE4nEUKeoCXUd5+U//GzMPivv/gJhvx+5UoHBlookiQTcLlQaHX63C73ZQl/LaSKhELkTq5Gr1IT9PsSYCJJILBxBkAkIMhmRUBC5UoUkisQiUVQ6LeGAH6VShTUthfTMFORqPSg1hNvbCDa2IAZDqIsK0BTmIBjSwNUBYiye9VKS4oFJAIICYiFQGSDkAo0l/r9CExcdiQRAbYKgE9RmiPji5UpdvExvh5AzXrcpG7w9o5+Drvg+ulRQG8F1JgDTnA3RIHh6Qa2Pi414+yHkBaMjXr+7B1Q60JhHPyNA2BcPjIoE4wIm7zJI6m3ykei/7xcDniD7mofZ3TjAhCwLC0pTyX+Lwmd1e3uQyQNo9D6e/dH/Eo2MOh7kTpzM/BtuA9LIKB4frNs66GNn4wAnulwsKE1jdkEKqW+ydvYR5CPZdyVR4vSh/bzwf98fUz7v+lsonrmALQ93kV1uZbhYR3mGkUFvmJdP9GHWKlhe4WBituX9aXiSt8tHsv++JQIuGGqIvxez/oMLyEh7/J2qVENKBfQfByRIKQftW3Q8H2iAaABsRXERsfNM89EBdj3RwLxrSuI5BGIiOx8/zdLbysmf+MaCQDG/n9DJk4Tb25GnpqKtqjqn8/1ZRnp9BDxhXAMBuk+7MFrVpOYYUerk5JS+53a3D33fFUMhgidPEm5tRW42o6mqQulwXLDz9Ta72P98M84BPzPW5KO3aFj3xxrEmITZrqV0poPMIiMGo0QoCD0tfg6ub0cSJSavyMGUokGSwOsMYbCq8Y6EMFo1IBPQGZUM9/rxu0JY7BJyxQjDna04+3rILK0iEs4g5B9CLvSi0unQGAx0nDyOzmQmvbiMpoP7SMnOJRwMYk3PYKS3G1dfL7kTqsmdOJlYJIYkKdAajGgMSga7vLz0+2PozWryJ6YiUwikF5hJyzcixSKs++3PxohpyxUKLv/ad1jXqyQsKJhXnMLMgjfu6xeYD13fbT1+FFdvN5sfHJsJ+uLPf5Wt/4olhEbSi8w48o2oNApSc42s/+PxMftnFJtZ8+lJDHZ6WPu7GjKKzWQUmhFkAgWT0xIJUMxpcdGcNyISiuIaCCBJYEnT4hwI0N3oJOiNoFDJSMnSk11uQ6E8v0H3rkE/kWAMg02NRvfWxaRqtnWw6/HGMWW2TD1X3TcVtU5J0+F+Nvy5dtxxN3xrJilZH7gApw9d/31DwoG4IJlKH58nv+n+XuivB0GC1LL4HPzN8PTF59jGjLj4yXkg6nQSPHmSaE8vyqxMNJWV5z0gQhRj9DY10nwmUVbhtJkodZnEAv24h/pwDwzQ39KIvaAER2ERXXUncA8OYrSlsOfJf42p65pvfp+8iZPPa/veIR/avtvdcIpnfvz/CPl8ibLUnHyW3/VZQgErCkWMSDBAKKjGlm6gv93DcI+P4ql2XAN+YhGJ7Aobtg+QOFOSt82Htv/ubx7ildODdIz4uTXLx7bf/njM9lV3f4EJS1ac89jepkbEWJThrk46Th7Hkp5JVnklsWiMguopDD70NwSZDP/evcTcLvTz5xNqbSP9f76Owmaj/eQQm/56ggU3lKJQypBE2PPMaeZcWZQQAjvv9NRAxE9UnkKwdYBo74V7Vn9I+ND23QvNQLuHZ39xOCG4MHV1HhlFaiLBuA9567HDKNUaiqfPZs8Tj9BxcnRcrVCpmXHZVex96lEEmYyLbrwdw8Yt6KZMIdjaxpFr7iLbqmNyblJ08V3woeq7gx0env/1UYLeCJOWZJFdYWOkNx7nYs83YrRpkSsgJMDjp/vIS9UzO8+KOSIQ9EYIB1rY9vAfmLB4OY6iElqOHCS7fAJtNUfQmkxkV06kvfYY9Xt2suozX2TD736Jd2QocX5jmp2Vn/pf1v2xibyJKVTMNeF3dhH0edAYHKSlp+Moy6StdpAd/26gZIYDQSYQDcfQ6BWkF5qxOHT4XSEOb2zH4ognAtzz1GkKp6SiM6k5tL6VaFhk0twUsgYPoBzqQtBqMa5cgdxspudb30ZdkA+ihOvFF5Hp9di/ch/GlSuR69/hGMjTA85OkCviiUY/PHyo+u9bxTMcwNnXTCwSoq3mKOGAn+IZc+iqO8H+Z58Ys+/lX/keWWVVqAjhev4FFGmpeHfuIlRfh3biJGR6PUMPPkjuC88hpqSg1utRacbO13pcAY53OOl0BTne6aTYbmRWge2DEHfwUeYj03eDgTADbY089+P/lxBxAkgvKmHVZ75B46suWo8Pkl1mZcH1pe95+5JcED4y/be/1UXLsU1klpQT9HloO3YEuUpFfvUUFGoNI12dZJVXYkxJxd03SFTUE/LH4wmGurxYHFoUKgUBTxi1TkmvWiRFL3D4wf+ju/5k4jxKtYabf/QrUrL+QzKh9wDPjh2ETp4i3NZK6PRptJMnI8gVCFot3t27Sf/mN9BNnvy+tvECcyHiMc9/gH+St83tfztAvyfES58fTfbqD0ep/PbLfG11OZ9efP6SILxPJDMnJ3lHXCiJYOVZARIASZIaBEFIRk69jpHeHupe2UlfU/24bce3bKR83kJksrdm2J2aa2Nqrg33ps10ff7z+CUJVl6EcM83MKZpmH1FMdsfqcfvDqPSKlh4fQlyxTt/bgQ9HvQWG4fXPkvdnp1nSreRWVbJyk999pzHDLR72PFYPf2tHgQZGG0aVtxeiS3LQO2OTvQWNWm5RlJzjYT9EWJdHfj3H8C//wAZP/nJOetMcuHwuUP0Nx1izxN/ZtrFV7D7sYfwjYww97qbWffbH1O1eDmHXnqG/tZmFt/6Cdb+6kfkV0/F2ddB69FDLLz5dtb99qekZOeSllfAie2bmXvdLaz91Y9QaXWUzV3Atof/zMzLr2HrQ38iHPQz47JreOk3o39rrdHE8k9+ixO7A+x5ponqpdkc2tBGyB8lJVvP7EsNHHqxY0y7g14PKm18QSPo82LLyqHzVC0Lbvo4AbeL1mOHyZs0lYs//zWiEQGDzYFcbaNg2k3IZV0o1TDt4qsIB7zU7dnFcFcHc665iYZ9u6mYv5hXX3gKSRRpPnyAtLwCFtz0ccKBALsf/TszLruaXf9+iJDfz6wrrmXtr0aNP0fWP8u13/ox9vy89+YP+N+GzorgCzBxSTYndnWz/k/HQYDy2emUzXpj45daqyR/YuoYJ8LiqfZz7hsdHKTn/m/g2707UZb5059gvuwyNHoVk5bksPvJRtpPDqMzqUjNNWLN0CEIAs4BH5mlceOEXKGkcNos9FYbL/7iRwS98eDj49s2suKuz5OeV0jTwT62PlIXD1IXYNHNRciENnb9+29EAgGmXXIFE5aswGBN4cT2zePaeurgPqa2tBKsrSVYW4vp4osRVO8sM1xVpoWqTAvXzshGJU9m+Pigk5+i5475BQS8EY5taWfzy6eRRIn0QjNLbyvHmq7H5/MRnjINS0YmkVAQtVaHQqNl+59/y8Slq1Dp9HGxqRPHx9XfdHAfqz/zpXjf9XmBeN9d/sl72PWvh5l5VTavvuRGZ1Kx4ovfZ9/ObmRaDfpDHur3NaJQyZh1eSEF1WkJoYfXEu7upvOznyN08sxiiUxGzh9+h2HxeRIhUajBnswYdKFIN2m5fHIWF01MR+7303nPs/gPxB2sgrUnUBUUYLn+etwvvEDYZqX2+IGxFUgS3uEhBtvb2P7PvzLY0UrpzHnMuvJabFk5o/vJFfidTl78xQ+JRaMANB8+wFX/8x1e/M1PiYZCANRs3sCaz36Z3Y/+Pf75819BpdHiHe5muMfKkY09yGQCExZnsfD6EqIRke56Jyd2d2PPN5I/MZWX/1LL5OW5CRGSWESkbm8P+ZNSaT46QOlMO9kVKaj+g0Nnkg8mMpmAI9/M60cJRVPtSJEIpw/tZ7CzHb01hU1//m1i+7GN67joc19m6kWXozEY2Pz3brwjYTR6JdMvyUdvUtFwoBu57DSvp3bHZvKmLSTyy18StliY9+Nf451sRxb0kjbBis6kpsSkTga+J3nXWNP1bylbZU6FjVAgSsXcDJx9AVprBymYlMbeZ5sS+4z0+fGMhKjb003Z7HTWfGYCzr4A6/90nEgohsGqZvHNZcjk8WypLccH0FtUKLXDREIRZHIZkijRcuQgppQ0Xt3+JN2NdQCc3LmVigVLKJo2iwPPP0XA7QKg7dhhZl5xLXKliozSKo5vGz/eHRzoI23GDKIjI3g2bADi7xr5vn3c/dijqM4E7JU4jHxsbj6iKHEhRHiTvDMigcAYARKAaCiEd3iQ0lnFHNvSgRgRMV9SQE6OkZtm5XLTrNzz2oazfUIul2HSqlhe6WB55YULVkryEUMU6ao7OUaABCDk8zHc2UkokMmsSwtpOjqAIIO+026uW5iF9k2Cyo1aJUvLHSwpsxMVJZQfDqG6JB8whrq87Huyke4GJ4IM8ipTCLq3j9uv/pUdhINBes68lxfddicymQJHURaSJPLyn35NJBQE4OjGl1jz2S/j6uslHAigUKtRaTS01hxBqdGSXV5JzeYNpBeVYExJ5dUXn2Li0lW0nm4gFosy89KryE3zERoO0vHF+4m0twMgKJXkPPQQ+hl2sLyF57zhzPqd/hwBj4my1PFlrxUgNeeM3f7auqyvaYNKBymFrzm3Pf7vLK/d9trPST60pBk1XFqdyaXVb38NymBTU7dviPS8vjECJADtx48SWHM51kzzOY/NT9WTn/r2HXkjMRGFTBjNeJvkA0c4Eqa3qWFcee22TeRVT2P6GiMx0cC8yRkAlDhgTlEq4VgsuQ6f5MOB1gzZM958P2vu6Ds27AO5EqQYCOJbP1fahXUmVmllzL2qiO3/qiPki6I1Kll8UxlK7RuPxyVJwvXc8/R997uJMtPFF+P41jdRWCznPMZs19F92onWoKRgUgqCTGCk10fWOUSqkrw5ni1b6L73y4nvujlzyPzpT955tt43Ib3QzEWfmcRgu5sjm9oRYxJiTCKjyEx6oZljWzpR6wrY8o92vCMhzHYtK++swpqmwkh3PPDeaAf16FjD2ednx7/r6awfYc5VRQS9PlxSI00H99B7Ov4OObF9ExOXriKtcB4jnSNoTEbW/fb/EnVo9AZW3PV5Xnn8H0xbcyUH1z5Lf0t8be/kzq1Ur7yYgfZWwn4fi2+7k9yqSaRmGbj6K9Nw9vmRK2VY0/VozmRxG+7vGSNAAvHESn2ne7liwkwySyzJ8cfbxGC2svd1wgIATYf3Y01fyHB3PDC+t8lF5bwMtv+7nkU3lFI5P4OTu3sA0OiVzLu6hBO7uxhs91I5LxP3YIBXX2plwqIsDrzQTMuxQQBKZtqZc0UxRtt4QUTvSJADL7Zwam8PSFA4OZWpq/I4uauL4R4/ckVciD+zRILz5OEXDkTpPu3k8MvtDLS5SS+2MOuyAtILzj0+fj1nRVpeixiTEt7YpjRtXEDqNbul5hjQW954DSYaiTHY4cXZ50OtV5KWa8RgeU8FJD/8qLRvby4sSnHR0bfDWxE3eRvE/AGGHniA4b89nChL/fSnSbn7LmTq8ycE2dPYwBPf+TpiLB4Y/eoLT3Pl17+P3mzk5M6tiWfsqd07yK+eikKpQqZQ0HVqvJhOe+2xD4oIyYcWr3NkjAAJwGBHKyGPB2uGkRd+8WNcfT0UTptPqGIpKVlZmNO0tNUOYU3XY7Aq6W4YSYqQJHlfmFWYwswCG1FRYvMDvx63vWbLy6QXl5KaM94XVW00cWLbRvY/83iizOxI56LPxsfP6twcOr90L0QiAASOHCXt3nsRzjwPFSoZS2+rYPu/4v7map2CBdeXoNZfoHADMQZKLbFIjKF/Ps3ww39PbEr9zKdJuftuZO/Q7zHJR4+mI/0JARIAV7+fgklWwj6RF3/148TAUKXRjhEgAYiGQ4nxpSSKbHvhSS4qnUz/z/6PjB/+kEuqs967C0nygcCcpmXy8hz2PddMzbYuIiGRvIkpWBw6tAYltgw96jOJo75ZkYrfH6J2azcb17YgkwvkVBioWrSa+n3bMdkdOApLWPuahJI1mzew+p4vozWZ8AwOjREgAfAM9OMbaWbFHYXU7hpm00NtpBeaKZqaj1qvJLT2SQKhRSj12UxeEW9nJBTDmKJhyvJc1v6uBrVewcpPVFE2O4MtD59ELpdRtSATz2CAQ3taKZpqx2zX4shU4rzmFxCLoZsxA8vVVzHy2GNEWlvRlJcz8s9/AhALhej5n/tR2B0Y5s19ZzdWrgGZDOSquOi/Ijnfel8RBGKRMC/83w8Ttl8xFqP16OFxu3acrOPEbol5i01EGuoZefRRwk3xdaZg7Qm0M2Zg+M2v2PjsY7TX1pBZVsHCmz6Oo3A0SW+GWUuGOR7HE4mJSZ+HJG8LjVaFp79vjAAJxEX2nL3NmO1pOPJNWDJ071MLkyR5Y0RJIi2vgIDHxdpf/gRJitvBjm18iSu+8i1UWh2xcITnf/Z9uhvryJswiRmX38hQnwZLug5nr59X17YCIJMLLLyxFKs2OEaABCASCjLS0/m+i5DIrVacTz1JpKsbiL8n9PPnY1i2jFBtLR2fuouCp59ClZPzJjUlSfLBYsAbwv46H0+tUo5aIWPEH36Do5Ik+ehzoURIDgqC8Ffgn2e+3wwcukDn+lAgSRLRcBjlmYXaaCTM3if/hSCXYXZkkJqTR8mseYhiDDEaRYzF3rIAydn6u1u68H//+6OLaOVlyDUK5IKMl/9SS8ATXzQOB6JsfaSOa74+Hb357U/sw8Egzr4eFEoVdXt3jdnWXX+SkZ5uUgJ14OyIGwVz54LORmfDCDnlNnLKbYgxCZVWTvOxAez5JvInpNDT5KLj5DBGm4aMdPB9+dOJej2bNmG5/LK33dYk75yQz8XRl+MKp2qdDld/H8Uz5lD3yg4AzGl2TmzfTHpxKW01R5EkkfTiUvY+9W+MKWkMd3cSi0QonDKD/c89gUKpIhoKEvL7mLB0JTWb1wOgUKnwjgxRsWAJJ3ZsGdOGgMeNe6CNniY1U1flsf/FFmKR+GB8qNNHf7scmVyeMN6eJTUnH0GQcWT9WiavuphJy1YTiyqYftknUChl+FwSB9Z58I2EKJvtJqvUgz1XQdvJHDJL7DQc6mD6agXHt24EoPd0A9MuvgKVVjvGODnQ1oLPOcLRjS8BoFSr8Q4PUT5/8bhrCXo9dDfUJUVILgS+Qdj9C8Tpn6O/zU/HyeF4uQR1e3tJyzNhL4jFA8TDQejYB8PNoLNBaiU43przYrC+fowACUDfD3+EdsYMVBkZlMyIByIc29ZB1YJMvMNB3INBskotFE1JR/aaLMfOvh76W5oTAiRnOfjC02QUl7LzsTbE6BmDhwR+Zzsntj1G5YIlCDIZnSdrkSk0VC+/GFtWNhq9HmtmfCI53N2JVpARGx5O1OvesAHrzTdD3tvvf10jfpoGfPjCUTRyGTk2LcWO/8oMA+8fogjDTeAfBK0tnpnXPwQpxfHvzrb4fvbK+D6uTvo8ZRxa35aoorfZxbFNLcxZFGVwwMeR9S9QvWINkiSht1jpPFXLrCuvQxRFdGYrPucwSs3rxgiCQNXCZQQ8bqZcdBlDnW007HsFgMMvPU/B5GlEw/FnpEavpO6wk84mHxMXWzm04UxbfLDl4VOs+qQclVaOKVWLxT66GBisPUHM50f71e8TVJhQx7wM/vtxNEUZKHLKL9w9TnJeGB7oxeyuRwj5CPmNCQGSs4RbWpCnpiDMnkm4tJi5ZUU07H+FnsZRQT6FWk3b8aPkT5oCSJzctRXvyDCX3Xc/au1oX+k4UZMQIAGwZmTRcaImIUACgCRxbPN6pqy+hENrn2OgrYXcCZMI+X1klaRwZGM8ALlmaydLbi3nlccamLY6H4VSRn+rB6NNM6Z/nsXVH6B6SRa5FRbMKQpCTj9hpQJnf4CAN4I5TUtKtgF50oDyoSXQ082hdS8y++rr2fbwn8dsC/q8DHd1YUnPoLXmJKFA+pnyCPufb2bioizSskNEQ/G5V07VJHIqJyCKIjKZHNkZp0zR6UTWcBT16SbcL72E8PeHIe+MA7pvMP5sF0UIDIPKHM/ALkYg4getJb5fyAOmXAh7IDgChgwIuuOZYZEgFo1ndQ+OxDO8GzPjQkySBMOn45ncbQVjgynfjN5acHfHM8pHA/GM9bFIPFu80RE/33BLPOO7rSjexpHWuGFZAGTK+Pvrvc0InwSIhmMMdXvxDocw2FSE/SIBXxirXUfF3HRCgRgHXmjBPThqxJPJBSwOHa+ubQHiwTJDnX72P9+UcOr2joTY+Vgjyz5Wzq4nGskptxHyeQmq3MgVCiRRTiwS4fjmDSz/5D0JAZKznNq9nfK5CxMCJGc5sv5FVn76C7j6ezDYUgl43AAYbClULVqGzpaK6p678X77O2OOiw0OEmpsRJUdHxuHwxFO97l5YHcbA94wX1hWglGtQJQkCtIM6NUXalksyRshSRIhvw+lWkP+5GlnnCMlnH29KDUaZDE51nQtcrmckT4fKVkGBNm7C24JhGP0e4IY1QpMWiWH20Y40j6CWimnNN3IpCwLBk2yLyR5azj7ehnu6Sbk8yJXKLAXFFMweSpiTCQU8KOz6HEPx3jlydMsuLEUlUZO58lhBju95FSMD2iIxkR63EFUcgGHScvJbjebTvWiVynIT9UxIcNCejIQJsnboKfFRUZhPCO2GJMw2NR4BitJLypBEkUi4RDHt7yM3mrDVX8qcdyxjetYcNPH8DtdDHd3JpzQgPjcauM6Jq+6lOHuDsRYlIYDe9AajNjz8mmvrUEml2NMSaVmy8sUTJ5OJBig/cQxZlx6NQdffIqszOMEIgsSAiQAUiTC4O9/h+aPf0SuPT9ZjZMkOd+M+MO4AxFS9Wr05xgviDGRpsP9FE3RI8XMzL32JiRJwjsyzIntm1Go1ISDAfyuIYwWKwrNuQMmXIEwfe4QRrWCDMsb/x4GPSG21ffz2KsdFNv13Dwrj0lnBPiSfLDwDAygVKnRW21ULVqGIJMhCALDPV3I5HKObXqUySs/BsQz57QN+ehzhzjR7SYaFbm4OpNiu+F9vookSc4j7i7Y/F2oeSz+vXApXPJzsL3/Yl4yuZyt/zhONBy3QQc8Ebb+s45LP1f9hsdE2tvp/9nPxpS5X3oJy403oJg+/dznkQlkl1npbnTRc9qJzqwip9KGPT9pc3u7RPr66Pv+D8aU+ffuJVRXf8FESACioShb/lGHxa4l6I2v/+ZOSGH/881UzM2gZmsn3pG4jcLVH2Dtb49x9T15tDUN0tOjJKfARdbETIyZ6UiixMlXuumsHyGzxELnqRHseQGkaDghQHKW49s2cnn1ErTlVex98pEx24I+L+6BfkpmzsXnGk4IkJylZvN61nz2PvpaTrPxgd9y+Zfvx15QhMGqwWAdnWtGgkG87ijhkIBGb0gkItCZLUxYsgKzXYd3pJtgYx2a6ACCoxpSkn4PbwXXYD8Gq43KhUsx2x2AwGB7K+Y0B/2dkTH7ep0hiqbY2fNsE9fdP4OKeZmEA1Esdh0D7R7aaobQGJTI5AJttUOodQqUKnlCgASg8UA/mcVWJiwcH0DZWTfCqT09ie+RsMje55oZ7vEDEIuK7H6ykbRcA5kl50cgabDTy7ZH6vC74s65naeGcQ/4ueor09Cb31z4IaPYgkwhJHwnAKZdlIfmTCCgLVPPqk9OYPu/6gn6IqRmGVh6W0VCWOdctB4f4uW/1CbySmaVWVlxR+Vbak+Sd4CzHTb8D9StjX+vuAxW/eCtiZGeR8ItzWMESAAGH3gA4+pVaMrKztt5ardvGuPDJsZinNi+iYoFC8eJPLUeO8zca2+i/cRxDLZUssorMdhSEASB7sZ6DNYUJElKij+9CxRKFdaMTMrmLkSSJCRR5NSubfhdTlJyCyidPY+g182pXduJhgMEfVeTX53GSI+fjGILwz2+ZGrQJO8b9b1uOkf8yAQBXYqd4plzSMstACRc/X2I0Sg7//U3lt3xacyCC/pPQGCEaOZMAl4Fh156bkx9rr5eRnq6yCqtINjQmBAgSWx/9lmMq1Yi1+uRq2Rse6Au4W8e8kfZ+s86Lv/C5PN/oZEAHHsMNnyNcNXXxwiQAAz+6QGMq87vszrJhxvfSGjMd1OaBp0pxo5H1o5RpouEgig1WrRGI5ULlnJWxk6tH11vC3jciOa4iLln82aG5i9HLpO9I9HoJB9OlBoFBZPT0BpV9Da50FvVaE0qMossY/ZrGfTxwtEuypVqunZ0MuvyQqKhGAhgsGUw66oJ2DLUY0RDZXI5pXPmE/R5MKakjfF7TCAISGKUkZ56+lvURCMinXUjeIaD5E1IIVdQ4KqpYzjXyq4nGhNzGM9QkJrtnRRNs9Owv5eND56geLqdtFwjequKznonaq2CSUtyOLS+lWhYZNLSbPKvuRHv44/gf/VVIoODeDdvQTdjBr5du8Y1zf/qgXcmQjLQAM/eBd2HQRBg1mdgwZdAf+HWa5L8Z6RYgM6TtWNsv36XC6PdTvGM2WiMRmQyGe21NRhtFoypVlq6JGxLb0IY9kLTa9aaiovYtnktGSVlTLvkCkJeL2t//VOu/eb3MaWN+h/2OAPsbBxAksBuUpNp1lKekVwDTfLmBH0+QgE/eouVqsXLE7a1hn2vYEpNZbi7n6ajIVJyDOxvHqIs3YCEwIA7hEWnxG5K+tYkef9QquToTCZeefyFhAAJQCwSoenQAaZcdBnP/vh/ya+eRkZpOX6Xk60P/Y7lH/8i3W0ix7Z0Mm1NPmJMQi4XkMljRCMCCrWaaChE2ZwFiYSuKq2JgQ43qVnGd+1X+U4Id3YS6elJCJCcxbd7N7pZMwEQ3W7C7e1JEZIkHzr63SEqXzduEQQBm17FkDcpQpLkv5cL5WH/aeAe4PPEQ412An+4QOf6wDPU2U7NlpfpOFFD8Yw5VC5YggRY0jNpP3GMrPlVyORy9j3zGJIootbrWfO5r7yluvvdQRRyGYPuAJLbhzgwkNjm3/QypktuwOcKJRaEzyJGJdz9ftKy30mWbSkulCKTj00ncYZYNAL/una0YNrteBf8CLVOwZGX2xJtkckEFtxQSjQiYs0wYDH4yU1X4tu6jZFv/hbT5ZehsKXg2bAhobKd5L1DoRSInAnkPZsxWqFUnqNMRSR8dmE3XiZXKomGz7xchbhqtKCSJ4KF5QoFsTOGjNfWMyZw+AyRYAhBiP/9zwqQnMU9pGHGZdex/9lHE2UVC5ahNuay8NZvIVd6CAeV9LSqaDvuAwaZdVkh+19oBmDWpWaObXyAIy/FB79lcxahNVzL5GW5IIwqDjcfPoApzc6cq2/EkpGJs2d0sCzIRgOMX3ufouHx1xIOji9Lch7ofBX2/p7o1K/QfqJj3Obe0y4Kq1NRCSE48Sy88Fk4O7ErWgZL/xey3tiR8Cyi2zOuLOZ0Ip1RW9WZ1FQvy6F0lgO5XIZK+8av2HA4ihiNjCuPhkMgQfg1au06swoBJ9kVVRx88Rli0Sj51VORYiGaj3ZSOmc+2//+F+r27AQgo6SMSZdchXCqGcPiRQROnkLyehFUbz1d0YgvRNuwn15nAI1SwU9fruNkj4c0o5r7LypHp1KQaU2qyL4nRMPxfrv2C1B6EQRGoHlbfJsgwOqfwo4fgSUPad4XEXb9HJztDE3YNK6qluNOZtp24JGXYS8o5uU//ZpYJMKsq25ArdMRCQaQyWS4B/qRxBhypRJTmgP3QB8As664jtbjR9n3bDxTRlZZJVPXXMbhdS8QCYVQ6/VIogFwkVFioelwPxnFFtpPDo9rS/PRAfpb3fjdYS6+ZxJZpXFHNikSJfSp77J5ixdRlBBkFuavvBOx8wSk54EyGZT0QcU9PEyk7RibXzlAf/cAFTNmkHLrzci7etBUVOB/9VUChw7htZjY0FSL79AuEAQmLFqOWm+g9eghUvPyiQQD7Hs67oheNmc+qTl51G7bhGdgAHXuqEPr6xfNlBptYozyWiLBIEp1fGFZjEYB4cxoZeyYYqTHx6Ql2Qx3ezGlaRnu9tHd6KSgOm2MiBRAQXUqjYcG6KwbSWSFM1jVbHigFlGUkMkEFt1cRvmcjHHHJvlwIIbCREIBkDhnvxKjEQ6ve568yYsQY69xYgjGUKrlKJU+LI4CqldeTMDtZM+T/wbAlOYg667R7JyCXIH7hRdQZGbC2cw9A/XQ8Wo8I/uBv8RFp4qWgkIFDS/Hn/35C2Hf7yF9EhQshL2/g7lfiIuBhNyQUgQ7fw5X/CEuYrXzZ3GxEJkcFn4tbthd9+X4eMiaD9c/AukT3/zGnHgOXroPFn4ZBuri5/XG3xForbDkfjBlw6Zvxc879eMgyODgX+PnnnY7DJ0GexUsuBf0qf/pbEnOI+FQlGObOzjwYgvTL8pjpFfGgbWtVMzNYKTXj1qjwO8JkVU2NpOpwarG1e9PfI+GRQwW1bhlAPdgAJ87zGCHl/yJqQiCBEhnHCZEJEkiFo0iiufIcixJ5yyXkOhrauTUKztY+rFPsvbXP0VnMjP1osvY89S/iYZCyBUKltx+C9qH/kmsowPt7NnoJk5AbjIjiSLdjXW8+uKzeIcHWTV9CRRVcKLbzS83NeAJRZlXlMq3L62gLD1p6H4vicVieIeHWP7Je6jZsoG9T8VF7ewFxWhNZoa7Y0QCIge3tDHtojzyJsRQvQuBkNP9HrbV9ROIiIiSxMQsE05/hCcPd3G634vDpObbl1SxZmJ60pk7yVtCFGPEImEaD+xh4S130N/azJ6nHgVJQm+1UTR9Dv1tbuZcXYQkiux89DTTLy4g5I+Oq6trxM+Du1qo6XSysiodhVyG3ajG6Y/w+61NxCSJK6dk8cXlJWQn5+BJ3gJOfwilUsaJXV2JNfisUj2pmSEOPPcEkiSiNZqYf8NtxKIRTu7cmjg2GgqhVGsQYxEiweC4uiOhIHKFDJAQYzFi4QhypeqM+HoIxdnPoRAKlZJYNHJGZF0iFAgiqU1EB3zj6+3oiK+tJUVIknwAOdAyxLeeP0F9r4e5RSl8+5LKcU6Sfk8Yq91F2BehYf8rNJwR7rdmZDL32puJhsN4hwfRW2wE+zowZGaDcqy961SPm68/XcOxThepBhU/umoiS8rsKF4nbipJEk8c6uCnG+JirofaRnipppdnPjOXUsc7sfUluaBIInqLlRmXXc0rj/3zzHNUwaJbP4EUi2FOsxOLueke8nKq38eP1tdxut9LhlnDpxcVcf8zNfzupqlJh8kkHx2ad4wKkAA0b4XaZ2Dhfe9fm87gHQ4mBEjOEvJH8Y6EcBSc+xgxEEjYB8eUe8bbEl+LOU2HOU1H/sQUFCo5SvVbT0qTZBQxECQ2MjKuPPYm9//d4nOFcQ8ECLjDVC/Lob/Nk+g7OrN6jLgvQPF0B6+sH6anKQSEaDgKpe0Ci29LIxYTaT4a9+2x5xs5vq0Le64i4W8wBklC3nkK04xp51yvjkVCCDIZ0rnW2ESRoa52ajavZ9rFV+AeHMBeUJTY7h4coH7vLup2b8eeX8yEpWuYd+MdbHnwN2iNJmZcdjV7nvx33IYoV7D01juoOv0D5BlVCIvuh7TicedMMpagx035vMXse/rRxBwsu2IC+dVTOba9P7GfTCaABKZULTqjCpVGgSlldJ50fEcnfW1uFt9cxqlX4kIi1gw9/W3ucedsPjpwThGSthNjs27b84yjiSRew0iv/7yJkLgG/AkBkrO4B4OM9PoSoh+DnR762+K/X3u+idSs0cDQtFwjV35pCrW7uvCNhKlamEVOxWjb5HIZRVPt2PNNhPxRDBY1GsMb+0V4nUF2PdaQCN4D6KofYbDDmxQhuVDUrx8VIAE49QIULIKZd76nzRC93nMUiucufxe8NrHVWSLBwBk79XgkSaLzVC2X3/dNdv3rbwx3dwJQMHUGOrOZHY/8lQlLVpKa/d6KtnxU0FmsVC1ewZ4n/oUYi6LUaFl6+10MdXeQVz2ZIxteBElixmVXc3TjOjLLfURDqTgKTERCUQY7PFQvTQbLJHnvaRv00jUSYGfjIC8e6+GhiyfSe+o4e5+K+x3Y8wtZcPPtDLa34u5uwXzsh9ASTywYWvxLpPTZ53zuiNG4P6IglyPodJgvuwy5xYzrhRcRlEpkurgdwjcSPre/+VCQzJLzfLF9J2HtF+PnCMXGbxdFRO/4Z2uS/16Kp9up29eb+F4yIx2JANHX+WbX79nFghs/RsjvZd8zjxOLRFCo1Cy85XYM1hS8I0OkZOVgSM/AZbUiqFQM9HbiU9qw6JRYdOcWk07y0cOWrsdi11EwKQWlWoFCNXatZsQf5r4njnKo3clfl1UydXUe+55rTsQzqDRyltxajoBvTNzAvOtu4fjWjdRs3gBA+dyFLL7tk2z/x18S+0xYtJymQwconDaTJbeUsefZJnzOMK7+ACqNgrAtm4ghBe9IeMwcBsDZ56doalz0we8Oo9ErcRSY2fbP0WRwGoOS6mW5HFrfSneDk5KFyxGeexIpFCJ8qg51WRnRwQEU6emEW1vH1K/MyHz7NzMWhf1/iguQQDzGaN/voWABlF309utLcl6QkF4T5xOn9dghLr/vW2x+8Pd4huLrU+XzF2PJSKWvZZijm+OJpKYsvoPcNCueR+NjkGh+LhPSpnDwpWfxDA6gt9qYfslVuAb7EyIkkajIYwfayU3R88N1pxjyhZmUZeLrayqYkW9DmUzsl+Q/IEoSQa+P2VffyM5HHiISCiKTK1h488dR6vWEfPVULy2l+fAAkikNVyDCzzfWU98X9//62TXVLChJTfp/JXlfcA8G0VuU5/a3CQYQxRjVKy7m4ItP43OOYEqzM23NFQT7OomEspm8PIcjm9rJm6hFrW6nbvdOssoqmXvtLfidw3TVn6L+jC9CRulR5l53Nz5nmPyJ760ftv/oUTruuhvbbbeiLitDN2M6ke4eAidOINNpkQKj1y83JH0Ykny4iMZEhnxh7MbxPhpWnQqnPylCkuS/lwsyipckKSRJ0i8kSbpKkqQrJUn6pSRJ/5XR997hIZ772fc5vO55Btpa2PvUv9n01z8gyGQMd3eQmp2H3mrl4IvPJJwCQj4fm//6B3zO8Y4TZxnwBPnTjibW/GYXV/z+FWq63TzREkBz0ZrEPuGGBhQqOTqjarwDixB3hHgnqDRazHYHWpOJzLLKMdvMjnRS9WMXoAOFlxIOxAi4xi5Oi6JE48G+hGK84OlB1fQSugkVZHz/+wSOHGXk0UfRz5+P9cYb31Fbk7xz1Gotk1deDsSNnmqdnpZjhyidMx+AkN+PMSWV7oY68qunAuDq7yMtrwBnbzf2/Hjmqp4z2yPBADqTGZlcTvOhA5TPXwyAIMhQqjU0Hz5A+fxFow0QBPImTSG7ooSJS1KRK4QxAccKpYyS6WZCAR/zb7iNWVdex7zrb0GpURHyhqg/EENnquDgusgZAZJEtehMKmZfYae/ZSfO3lFBkfq9O3D1t7Dj0Xq0RjvFMxcntrkH+mk6fITFt30Oa0bcYUNrNJGSU86MM787QRDOXMurlM97zbUQF15Jy0s64VwQeo4DoAx2k15oHrc5Lc+IIBegtxa2fm9UgASgaQuMNI075lyoCgtAOdZhxbB4EYqMjDFlWoPqPwqQAEhRPWkFRcjkY/erXrEGnTUNrXH0PNFQDKVaiXdkmNX33Mul995PZlklsZhINByho7ZmTEasnsZ6ero7EUMhXM+/gCo7G+vHP0a4tZXo4CBvxsHWYT7x94Pc+uAB1tf20en0s7Iqnc8uLea2OXk89mo7rcP+N60nyXlisAGe/3Q884O9fFSABECSiNZvYHjJrxia/f+I9dRCbw2UXoTZFCI1x8D0NTamrtRROtNMRqEelasemdrAkfUvJMSgDr/0HHKFksGOdpx9vZzYvgmdycLhdc9TOnsec6+9iYU33w5A7+lRI0VX/Um0RhO2zByqV1xEXvU86vbF+4Z3OIg5LZ4JTmceb5TTGpSE/FEioRjbHqkj4IlPyCKFE9m93Ycoxq0mkijxyjYPnqgyHoif5ANLdLCFp/7wN2r37Ke/tZkdTz5OU5oZud3OyMMPI9fryHjoQXatf350jCtJ1G7fROXCpVx67/0svOl2BJmcS+/9H1be9Tm66k6gM1vQW2woXidIVzhlxphnaH/LafImTY6/6F/DxKWraD5yCLlSSWpuPmIshkKlorNxrDOuSqtArVNisesSmQpTsuNOjsZUTeK5nl1mpXi6A/dgEDEmEQnFOLalA2efP7G/KErseLQeZ1/yWflhRWO1Ur38IoZ7upi0fPWYbTK5gtS8AtwD/ah1uWNE8mQKAWuGHrPDTtDrIausgoZ9ryS2uwf6OLrxecx3fBy5xYLo94FMRtpnPk3obEb43hMgU0DXofg4peISOPkcuDqh+wiUrYFXfhUXHClbA7t/CYZ08A+DWg8aM+z4CUy4Ki4EcuQfcQESADEG238IgeHR8dBIK2z6Xwi/ieNO38m4uMiyb8UdREdaRgVIIC6S1XUImrbC7HvihuRDfwNjelyIRIzBqw9C/oK4gbnr0Dv74yR5Rwx3+TjwYgsyhYAt08Cra1sT8yKFQkbQH0GpVmBO02JO06Izxd/dflcYo210MVWtHe9wAaA1KolFRNQ6BTK5QDigQKXTI5PJUKrVKNVqSmbPQxAETGmOMcdmV1ShNZnQGscGc05cshKzI51ld9yNTK7kmq//P1Z8/C72PfNYQrwyFo2y9cWnUX/i42T9+leo8/MZeeJJer/zHbqPHuKJ79xP06t742Imj/8Z60Adv9t2Gp1azheWlTAlz8KhthFGkgvD7ykKhQJbdjYj3V10nTqRKO9vOU3r0cMYbCoikbhj5NFNHfhc7/zv4wtG2XCil5eO9/KLTQ38anMjm0728+stjZzujzuX97lD3PvEUer7RgOVRvxh9jcPsa2un7ahpGNjkrGYTQZ0Zgshnw9BEDixfXNCpNk3MszeJ/9FYbWZ/c8309XgRGdS4R4IJJ6tr+Xpw12sr+1lbnEqP1pfx0/W19E04OVvr7QSjolcPTWbHKuWvU1DdDvHBzgmSXIWbzDCM4c7ufnPB/AOjxUkzyyOsv/ZxxKZVgIeNzWb1zPc1TmmjqrFywl6PXTVnSSrvBJBGGs6mrhsFSM93YiiiFpvoGj6TNwDfXiHh8mbNAXP4CDhYJCKhUtpPvwqerMVS3oGI709TJs9AUXTy2iLxmc5s1x7LQqb7QLclSRJ3h0tA14+/rdXqe+NjxGMGgW7GgfZdLKX1sHR8UHQO0jA3UbA404IkACM9HQz0tuNzzWCSqvDYEtBdeqx+FzqNbj8Yb729DGOdcYdOge9Ye5+5DCN/eMD4XrdQf6wbexatjcU5VT3+MDTJO8/OosVU2oae5/6dyLDYCwaZfs/HiQcDNBWc4RI0MlwIML/vnCCNIOae1eUcvW0bEYCYZaW22kaOL8BkUmSvK807xhfVrcWIuOdMd9rtCbVODFpuVKGxvjGQezKzEw01ZPGlAk6Har8/Ld2znP5byR5yygddgzLl48tVChQF76Basx5QqtXojUqiYRiDHV5mbY6D5U2/ncMB6Jj7LsAFoeOnqaxwigNh0Zw9nqRySCj2AKAsy9ASrYez4gGQSaPB20IArkTq5mwZAWVC5dhQEDv9lO9Ys2Y+mRyBWq9AbXegDHVjsGWMmZ74ZQZGFPSqF6xhhM7toxJsBKNRNj39GPsfOQh+lubqd2+ked/9m0Uqiyu+OoPWHLH5znw3JNEgvH5qBiLsuXvDzJceitC7dMwVE+SNyc1N4/22qP0tzYnyjpP1TLQ3krpTAcyhYDFoWPO1UW01Q4S8ISZe3UxGv3Y/pSSZUCMSnSeGsGeF19LdQ8EsGaMz9J+NvnD68koGutL4eoPkPIawY+zvBtB4Nej1o9/lgpC3C4X9IXpbXbxzM8Os+2fdWz7Zx3P/PQQ/e3u1+wrkF5kYfnHq7jsC5MpnmZHrRtfp9GmITXb8B8FSABiYRG/Z/x6YyhwboGIJOeBupfGl9Wve8+boczJRZ46NihDkZmJ8jxnY524bOW4stI5SzA70rEXjPUZs2Xl4hkaJCU7l/o9OxMCJAAth19lqLOdI+vX8sLPf4h3ZHzilyRvTjQU4ZXH/okYi//GI8EAOx95iPyJU4iGIsy55ibyqqey58l/MWn5KpRqNQqVwHC3D71ZQ+W8zMQzN0mS9wpXIMy2+gG+8VwtL9f2cc+SIsK97XSeqk3s09/aTPOhA4T9AQSFMiFAAsDU69GlOKhYsGRMvWq9PpE1WztrJunfuB//vn04H38C88UXY//aV5FbLABo9Ipx85WztuXzf8HtiY9KlesNntXZ5/+8ST60ZBRbWHlnFRaHDku6FoUyylBncNw72DM8iC0nNyFAAvEEgbv+9TCVi5Ziy8xh6RU34vnt70m5804sN99ElXsHj+xro20o6e/134ZMJqA1qsf4w3SO+Nle38/BlmHyUuPzLkeWgd4mF2JUJKfSSPkcM2q9ku5GJz6vgUnL40Ib9oIiepsacfb1JOqr27MTtV7P5V/5Jotu/QQLb76dkllzGe7uZN/TjzHcO8iUFfEEbYJMQJCBMhZANKcgV4wPptdbVAR98b6t0sgxWDWc3N01Zp+gN4JMHj82JduA2qIj5Y47SLvvPjxbNqObOoVwWzvGJUvGJAtWZmejmznj7d/IoBMaNowv7zn29utKct5w9cfIrZo0xvabVV7J0Y0vJQRIAOp2b2ewvYWO409TUB0fAx/dOQBTF5H1m1+DVot++nQEuZx5193CvBtvo3T2fA6vew6ZfPS30zHiZ2KWifZhPzfOyuXeFaXoNUp+ur4+4aeTJMkbIZMgvaiY3Y/9PWFbE2NRdjzyEO6ebkIBP6bUMLZsA40DPr730knq+0b9vz75j4NJ21qS9w2tUUksqqBq0bJx24pmzCbs9yOTy5h51fXMuup6CqZM5/CGF1Hq1OiMcrzOUHxtM1bDq8//jf6WJo5seJHuhpNoDEZ6GusS9fU0nKS7/iBidJCR3vcuvibqctH73e8hulwos7JQFRfjev4FooODOO67D/3cechTUtBUV2O5+WZURYXvWduSJDkfDHrDxESJdPN4EZIUg4rhpK95kv9izp/lEBAE4QlJkq4TBOE44zQ3QZKkSec47CPNcHfnGJEDgPaaI/hGhiiYPB1BJsMzNEDx9Nk4ioqJRiIoVWqaDu3H73aht5zbOLyhtpcfrz87iAhz35M1/PqGybwqu4pqZIgb16PMzCLi8xMJC0xbnceBF1viQb0CTFmRi/ZdLAprLSl4hwZYcNPHaNz/Cu3Hj5FRUkbVwiWkPDV2AVtKn0rUJxL0R6iYm4HRpkEUJQQB2k8OE4tKKFSAzkbMJ4IyxMhTT+H42leJDg0jNxgInT6NbuqUMU4RSS4sIW+AULiMeTfeTdg/wOp77qXndAN6s5WVd3+JoY5Wltx+N/2tzcjkCtZ87qv0NTcy++obGe7uIBqNcumX76e7/iTpRSXkVFUTDgW45Ev/Q83m9RhTUll0y50EvC7WfP6r9DScwpRmZ8UnP4droIfM0kpajh7k5K5NqHU6Motms+C6fDR6LzJZGIVKQTTYjauvm+Nb1hOLRBBkMnKrJqGaFSB/UipBv5/qZVkc2xJfWFMbFKTl6amc62Wo/Qidp2oS13v2NxgLOZl/TTZeZ4ii6ZdhL5hIwNWFzpKFKa2Qrf/oIb/6U1QsjBAJKdn3vJ+LrinHfPM1nG5oYuVdn6Vx/16ikQiLbrmTU69sQ2uyUbHgYux5yUH0BSGtFADFicex592NMUWDZyi+8JCWa0RvUaE3qaHPDZ6e8ccHXRALg/w/PxPVJSXk/uXP9H7/B4RbWzGtXk3qPZ9B/g4ytfa1hMmpSuXy+77BkZfX4nc5qVywlOzKKoY6Aiy5tZyRHj/hYAydSYla00Zqdh7Ovl4CbheOwmJ6GuqIRfYy0NrCrKuuP5NdNp6Vuauxjkn3fZlQ42nkZhPuzZuJ9fQQrKvD/oUvICjP7XzT2Ofh1r8eIBCJZxZ4/lg3Tn8EmUxiW31cwOTGmTk4fcnB83uGuyseuA2gGNvXPBM+wf6+VGp+8VcAJi9awMyqj6ObeBlql5P0vNN4h0IYbakMtR1kwTU3oKhXxY0bgkBWeSVaowmlVovZ4SDgcRONhLn4C18lJsa49ls/xNnbjXt4kOyJk9n+0B/HNa+7vo7Z19yIIEtDkKWgM59m0mIFkVAHtsxUOusUpOZZ6awbSQTqa41KNAZlwgji6g8Q9EXQGlWEZLoxAf0AYkzCHzWRorGc55ub5Hwy1NtP0Dd28fb49s1U3fl5bDYbolxGVKkkraCQ/CnTEcUYcoWS41tfJhzwkz9pGiIihtQ0gh43CHDpvd+gr7WZlXd9DrN9bNB6elEJ1/3vj6jZtI6A10vF/EUo1VYu/dL/cOzltYSCASYuXYnWYGTqRZditttRKDWEgz6MqRnsfW5UPCFvgg2fM4QpVUs0FEs4C09akkP7ySH2PdfM0o+VM9jupa/VjbPXh8WhS4iMuAYCiDEJa7qOgfa4Q7EYlQi4Q3AO588kH3wUqalk5eYw7PKgNhhYfNsnOblrKzqzhckrL8bn8rDglq8R8psQZG4kUUKQCcy5sohYZAhPfzvGtDR6TzcwYckKTGkOxGgUhUpF48F9aD5+N7qbbkQhV5K+cgWB9S8Tra9HWzUBhcyEQhqBnqPxxkSD4KiCzldHv58leiYY2VEJQ42ACPpUCHkge3pcJKTz4PgLjI0VjaR1Z1zERPUf+qu3D6Z/Ajy9ccESV+f4fZztoLFC3pzRMnc3aC3x+l/b5oF6KF31xudLcl7xOeOiHVqDioA3gihK6Mwqgt4wOosaz1AQY4oW70iY3hYX868rwecKEYuIpOYYSG8009vkorfFSUaRhQmLsqjdEZ9jyRUypqzM49D6NiavyKW70UnehBQG2kOkF0kICMjkciavWkMkFGblXZ+j7pUd9J5uIH/yNMpmLyDoHuaab3yHgY52DLZUVFodYjTGSG8nfacbKZo5B5VWh3egn1gkwozLrkapVp/JDCsgZufhfXEd/v37sV53LYJaQ3tjQ8Kp9CzH1z3DlUs+Q3ZGKj9eX0coGh9zNPR5+dKKEszaZDaj9wqzI4MTWzcx68rrzoiKSUiiRFfdCXzeSeRPSENv0hDyR4hFzpH17C3S7QoQE+FohzNRlmpU0z48VsxhYpYZlz/+bOx1Bfjmc7VsPhXPRGvRKfnHHTOZlG15x+1I8tFCThSdxcol9/4Pw53tVK9cg95sPTO+VVCzZSOpOaC3qDmxq5sF15XgHgyieJ3D7rAvzBMHO7ikOoOHX2kFID9Vx6meeKDN11aXsbamhycOxsXEMi0a/vbxGZSlJ53ek4znQOsw9z5xjHRz/Nk5YVEWWqMKJAm1ppU519wESAiCQCQU4vC651l51+exZmQiiiKZpeVoDCZCAR9akxlDShqXfOlrHNu0npDfT/Xy1RhSUgl43MQiYSLBIIIgULV4ObFIhKDPx4wrrsHvdiIgMP3Sq/EMDVC1aCkGrYK85j9DNIS27ykyv3EP/X95kpjbjfWWmzFffvn7ffuSJDknrUN+/OH4OOSKyVmM+MP8YN0pAEwaBX+/YybZkot1v/0/FGoVBZOnMe/6W4lFI8hkcnzOYVprjrDmC19FhkA0okN1/G8wYazQZa87RE3nWBGRmCjRMuijImPsM18mgEI+3tn49YHzST4YqNRqREnCmp5F8YzZRMIhFEolfS1NeIeHmHvdLQTcXkR3lPwUPQ6Tml9siouNqxUyfnTVRJRJm2iSjxI5s6DmsbFlhYtBOd6J671GJhOYsiqXwxvakKR4oMe01XmJII1zITeZyPzBD+j/5a/wbt+OuqyM9PvvR11wYUUwksSRabXYv3wvMq0W9/r1qHJzcXzjftSlpRf0vAabhqW3VbDhgVpajg3S0+Ri2ccqqJyXQcOBXqZdlM/+55uJnVlzMlrH22OVGjmhYIyNfz1JTrkNvUVNW+0Q864p5tWXWpi4sJSFN+cSi4Y4vnUjSo2WlOxchuRyYsOD5E2sRqG8k5O7tqEzmZmy+lIkJDpPnSAlJ4/ld95Dw95d9Lc2UzR9Fiqtnk1//i0KtZppF19BNDK6Xubs66V226bEd4sjnYnLLsKSoUatScM90EU4GGDm5dcgV6o46wLmj8YF2ST/IMlRyJsjCDKGOjvGzMui4TDd9acomjUNvUWNzxni4EutLLqpDFOKhtSc8Rkis0osZJdbaTjQx6zLCrCk63D2+tHolVjTdYz0xm1WKVl6iqaMF4AEyJ2Qgn1fH/1t8fHnUI+XmZcUsu0fpwgH42PfoqlpKDXnTyTJlqGndKaDhgOjdrnqZTm4+gPsfaYJnUlFJDS6/heLiPQ1uzFaNfF57WsQzsO4V29RUzg5jeYjo4FWMpmA1aF713UneQMKF48NjgcoWPieN0OVmUHOn/5I349/QuDIEXQzZuD46ldQ2u3n9TzZ5VVc/Y3vMdLTRSQYxJJmx5Bix+ccYcnHPkn9vt10nqghq7yS8nmLaak5TF71FFRqDXOvvQlRFJErFBzduA7vyAg6s5mR7k4G21sxWJMirm8X7/AQhdNmkF5U8hqf3ANIQE9zI57hAUypacy7/lY0ehNGu4PGV/spmpqGI8+I8jyKMiVJ8lbZ1zTM/3vxZOL7kwc7cchOMfOKa5ErlJwdk3WePMHc629GDLjGHB/2S2z5ezPzrlqNMSWN06/uxZaZxaTlF5FdHk84KQ4NEXW5SLvvy0jBEIJaRaD2BJrKSmRWKzL5eH/zyctzL8walHE0+Zuq7iFy7v8uff/cTKCm9syz+qvn/Vmd5MONSqOgZLqDrFIj3Q3HefEX/0vI52XlXV9g5ac+R82Wl1Fq1ExedSmxUIg5V9+YWJcbbG+jfu8uHIXlBAMT0BjNmO/7MlIoRLSzE4umhVVVFzHs/a/MuftfSzASZcATxqBWYNXH5yAne1x87KFXGfDE+0J1tplPLyqiJRBGiIrMuUJH3e6n6DnZS8msRWSWLMTvjJA3aQoKlRq/a4RTu7ahPTtvF2MIggxJktj60ANMWLqS0llz0ej1VC1aRsfJ4+iMAVprY6QXmkjJMZKRI8dQUIlottK8rpfK+Zmc3B2PR5IrZcy4uIDanZ0UTzOTNzEdY4rm9bnb4kgSxhQN5TNSEZr2o5szB1/tcZBg4Ne/wXrzzYixGNl//APRgQFkWi2aigpU70SsT22C3DlQ+9TY8rTyt19XkvOGOVVPTMzm0nv/h6MvryUU8DPtkqtY95ufUbV4OWZ7esKvUZDL6Wk8Sf6US2k5Fk8iSVo6QrgX87//QXvdCYa6OrFmZGJNz+T0gb1MXXM5gcDoc1MuE/BHRP60oynhl3XllCyGvCGG3ofnayAcY9AbwqRRYNYl/cI+6EgKJYJMRmp2HvmTpxGNhFEolfQ01uNzOXH39xL2+8msmIJxREPH6/y/QlGR9iE/xfbxa2tJklxoBJmMDQ+0sfpTRay86/PUbNmAXKliyqpLsNgzaK05zEhPFxqDkbTcfPY9+zhTV1+KJEVwmIIMdMQomKTm4HOjgr5yhYLCqTMJ+bzMueZGQODwuucJ+X10nDhCe81BwqEgqz/9xUQS+dfiDUYY8Uew6JQYNf9ZvPmtEO3vx3zF5ai+9EWc//43ogSZP/kxMY8HmcWCatJE+r72dTJ+/GMMixchN4wXwE6S5INMjyv+Xsk4hwiJVaeiI5nMPcl/Med7pfwLZ/6/5DzX+6ElFo1iSnOw7I67E4aiV198GplMjlqvR65UYUxJxdXXmzhGkkTK5y1Gozt3EJg3GOEfe9vGle9rHmJbnZ/V06/iposuJegLoBCDBL0K1HolC24sxe8OYzCrEEUJMTJOJ+Yto1Qp6W85jau/j/SSckrnLMDZ34deqwBLHgydTuwrb92CPHM1mcUWuhpGMNu1yOQCAU+EaRflodad6YaWHJhwKWJrC7Zbbqbri19C9HpBJiPlU58k3NGJOi/3Hbc5ydtDY1BjSdMQcPnpPFWLLTOX4a4OQj435rRMOk4dx5aVE++7koRCqaKzrhazw4FnaAjv8CB6k5mexnr0Zit+1wgtRw4y0tVBycy5hIN+vEODdDfWY8vMZrCznUg4hMFio+14DRZHJgGPh8H2FnIqJ+Jz9aHReWjYsxsxFiNnQjUnd2xGlCSW3n4XMoUCmUxOzab19DQeRwyHOLx2L2m5BVz8mVVEgkFMaen4XR3sfuz3pOXmk1FchmdwgLzqqcgUcl55/JHE9S+6+RNI8kpsGemEzCr0llRkSgPhYJSG/WONNzF9Bf6QFqVhKm0nYPKUVRjkXvzdTtKW3YoQDaNqbUJdkQ+8/850HzlyZkHFZeDsZNDtYfblRXiGAwgyAYNVg7P/TGZKtREKl0DzttFjBRlY884pQBLz+wk3NyP6/ahyc1Gmp6OfPZu8R/6J6PejSE1FpnpnC1KpOUacPR10nTrEjEuuQq5S0lZbg6u3H3NmGn1NrjNCDBLhYAyZEKRg2gxcfb2k5eZz4Pkn6WmsZ8Vdn8NRUMyuRx+mfO4iEECpVDHtosvo+8lPCezfj8xoJONHPyTc08PAT36K5aqrUBeOnWT2u4OcHvDSORxICJCcZUfjAJ9bWpwQIXn0QAfLK8aKASS5gBgz4ukkZEow54BMHhclUZtolko5tnNtYtcj23Zgu+129ENqXvz1T5HE+AKuQqli5d2fp7ejDb95FXk5FaQVlnF860ZyqyYRi0bpPd3A6QN70Vms2PMKQIJTu7aTUzGB4c4OdCYzGSXldDfUjWleSk4um//yO1Z9+n6i0ShTV8oY6W5FjEVw9voQcKHRr2D1pybgc4WQxHgg9OENo+OYtFxDQhhNpxNQaeQJRzcAhUqGIb8I1MmFiA80Si2pufksuOl2xFgUuULB3qcfQzToUORkE+nswt/QgM5s4axTRDQSZvqlV6FQqelvb0aMRDHYbEiihFKlJuDz4HMOo1SpcA/0YbanJ04nyGRklVWgUtlpODTEsW0jOAoklOo0Ft76aSIBF92Np+hvaebkzi0suvUT2HIm01ITJbPEzOJbLESCIpFQjN4mF3qzmswSM4OdXhbdXIZnMMBIr4/a7fEg+4g/xsF1rdgy9ShUcoY6RwVXUrIMyBQCAx2jGQ2Vajl6a/Kd/2HG6fGx4x8PUjJ7HmZHBsvu/AxKtZb22hjpxcUMtHkxpqhYcUclkWCMoC+CUgUBTxtqgwGFSk1maQVDne2E/D4Q4NDa55h3422MuF14W5voPV1PV/0psiuqqLzrE0SdI8RIQVSpUdmroHETKDQwUAeZU+LCHfLRzBMozvSxgQbInw/G9LjAiFIHvbVgcED6JOitGXtx8tctJmfPhDcTelKoYet3ofomiPghayo0bhy7T+5cGGwAzWuyKRrT44Jvr29zythsb0kuLMaU+H33u8NoTUrkShkBTwSdWY1MJmC26xAE6G91Ew3H2PjgCQQBZl1RSG+Tm4JJqZTNcqA1qFCo444Rc64sBATScg34XGEioRinD/YxeXkusZjI7if60RgVrL6rDKVSIOQb4MAzj2NMTSOvehoVC5YQ8vtw9vXg7OvBEgyj0Rk4/NJzOPt6KZuzgNxJ1ZjTHDh7u9EYjEixGLOvvoGTu7ZRMnMuMrkcmVyG0mIh1NGO7ZOfJNrfR6i1FVn+PGZdfQPZ5ZVEw2FCfj+12zezcLKD259sTBi6AR7e08pFE9KZVZjyBncwyXlHEKhYuJSB1mai4TAyuRyvc5Dq5RehMDiQywTMaVpUGgMxSUIUpXfk2KhXK86I1YwSi0noVHL84RgpehX3LCmm1xlgyBvilcYBhn3hhAAJgNMf4ecbG/jTLdPQqpJZqpMAMRGt3oA3HMaakUUkGCTo9SJTKOhraWb2VdcBYWZeasbnzERjUGJ16DCmqMdUo1XKKUjVo1XK8YTiQWD9nhBXTM7k9rn5nOhxc6J7NCi92xnk0f0dfPvSymSweZJxrDsety30uoJkV9oYaHdjTtUDEmqtHb+rF0kSCPp8nD6wl/k3fhxJgNTcfEJ+P/X7XiGzpAxkMmSCQCwSQWMwMm3N5fQ0NRLwuMlOcWD2BYkOj6Cw2YgF/Ij9PShzMzHme0DqgXQrgkKLGA0jy7QSlQzEBgOIWVcTE0XknTsxS0F0/3gQ1FYUDkdSdDzJ+0ogEkMugEox/h1v1o6aTwvT9Pxi02gGwWKbmmBXM53uHubdcAuRcASZAOt++39klJaTP2kKBlsqi26+g1M7tzJxySoCrk6Cs+9FpdAge915Pre0mEhMZNPJPpoG4mvZqYax7w0Ah0nLvStK+fbzJxJlKXoVVZlJgaoPIrJgXNipYuESwv4zNgoETKl2THYHQY8HlUaJwtfCHdPTuOOxU4ljQ1GRn26o5/G7Zr8/jU+S5EJQvBTy5kHbK/HvaeVQfeP726YzRMIxjDYNC28qw+8Ko7eoiMVEomHxPx6nLi7Gfu+9WK67FkVqKpoLLICRZCzq/Hwyvv890r74BWRaLQrr+OQ+4c5OIp1dyM1mVIUFyNTj369vl7yqFK77xgw8gwG0JhXWdB2ZxRYq5mUSCce48r4pBD1x4X2tOoQtXc1w72iAxezLC9nwQC0hf5TOUyNULczEaFWTYpNYeksZIX8MjcHH8/93PxOWrKCr7gTHNr7EhCUrGbGl4JBBlj9C8b33IyiUPPWLHyALBpl73S3sefyfmNMcTFl9CZFIGAEBz+AA866/FfdgP/uffYLL7v0GrTWDZFfE/TdkCjliFC750tdRqFREggECzn5C8mGQJOZcczM1m9dTOnseSrUaQSZHmT8DjunBkv+u7+d/A6IkMXnlGvpampArFHGxI7mc0rkLyJuYhtWhI+iJMH1NPhaHDuGcUWNgTNGy8s4qhrt9xKIihVPs+F0hEATKZjnwjsQ/W9N16M3n7uuWNB0X3zOR4R4/kiRhdehoPNTHhEXZyOQCMrlAf5sbU8qbJ2ERYyJ9rR5aawYQBIH86lQceaZxQiEWu44ZF+dTMCkVrzOEKU2LXC6w9nc1pBea8LtHk58YUzRUL82hfn8vRza2U7Uwk7JZ6RjOo71NoZIz54oiFEoZpw/2Y0rVsOCGUlKyk3boC0blZXDyudHs55lToeLS96UpmooKHN/8BtHePpSZGaiLz7+tSqnWIFco2PnI33AUFJE3aQpel5P0olK2/PUPgED+5Gl0nqql5egRlt/1v6g1ATY+8GtyJ1Sj0RsQRZHln/gMAa+H8nmLcPX1EPAmMzm/E4wpNtJyR0XiJEmkZNZc1Do9fqcTg8VGOOCn9fgRZlx6DVqDggmLsrE6dOdF+ChJkrdLIBzlyUMdY8r63UHKVs+nt6khUSaJEtWr1iBJoDDY4v6PUnz+otOGmHNlAcM9NWiMRlbceQ9+r4eWowfRmS2k5eYjaHUEDh1m4Kc/A0CZlUX6976LGDyTbT4qoVTLWXRzGV5nCJ1RhUwuEA2988QBb4ijChZ9HXb8GMI+NC0P4fj6r4mO+C/YszrJR4Phrmae/9n3Et/7W04T8HlZdNudiLEY0VAIn3sE8Yz/pCSB2Z5O2bxFGGwOhrt68J98iKG1z6KpqiLt3nvxp93Gb59p4hfXVb9fl5XkAtLvDnKqx407FKU4zUCZw8jpAS8/31jPppN9FKTq+e7lE5iWZ+HBnS0JARKAY50ulpTbERGZOEfFiz//DtFIfC5zZMMzhAJeyudfT8cpOYWT56HUxvA5naTl5bP70X+gUKmYvOpifCPDzL76Bnoa6mg9dojuhnqqV64hq3wCvhEXkVCUOVfl4e4/xa4nXyAWjVA+dxGZxQZEMZuZlxWgVMmxZeiBEWyOo3TUHkYMT8JRNJf515ey8S+j9gOlWo4j30Bebhauz96Ap6cHQaMh/Tv/D8U116CdNg1BEBCdTgS1GvPFFyMo3kVomUIF878E7XvjyRcByi+FnJnvvM4k7xqzXUf7iSbaTtQw88rrUSgVBL1eZlx2NZIkxf3MBYiEQ6Tm5HPJF76KUmcku0JOwBkj+uKjOAuz6BzQI5MpKJ01H5DwuUaYc82NHNu4HnvR6LqoRiHnR69JDAXw7JEufnvjFIzqC+9z0+sO0DEcoNsZQKuUE4mJ/GpzI3KZwHcur2JWQdI37IOMTIqhMRopnD4LMRpPJiVJYC8owmxPx+92YrClEhjuZrU1lYnLNPSFFGzrl/NSgwu5TCDFmBSbSfL+EIuKTFudh6u3hUgwxKLbPknI76P92GFUOi0KlYqSmfPwOYcRRZHFt3yClx/4DVd88V5sMh95E7Lwu4fJqprAxMUrUahUqLRaXnnsEfKqpyCKIkqVmiV33MWG3/0Ce34Bp3ZtJ+Bxs/GB33LNN7+HRh9f4wxHY7zaOszRDieiGE/CVp1jodRhRKN8Z8/iUGsrfb/4BbqKSoJHjoJcgb56Ep2f+zzEYghaLRnf/z7pP/wh4dZWBNmS83dzkyR5j+h1xddF0s8hQmLTqxhKJnNP8l/MeRUhkSSp58zHz0iS9LXXbhME4SfA18Yf9dFGoVKx6jNfYKC1laDHjUKlYurqy1CoNah0ekwpaYz0dCLIZGMEEKauuRy/140xdXyGCpVCRpZFS2P/WAOTXq1geZaK62teIvbsk8gB2S23Y7z2TrY8fCpudD5DSpaegknnzn5xlqGuDpoPv8pAWwtF02eRUzkRnSkeUObs7QYETu3axqG1zwJQtWgZBtMiLCu+B7t+Bl2HIaUItVqGXy4hUwpY0/Xsf6EFz3CQ/IkpVC3MJByKoTozqZQEUKSl0XPffXEBEgBRZOhPD6CdNi0pQvIeIkMg4DzIqy8+zZxrbmTbw39CJpNTvXINO//1V6ZdciV7nnyEoMfNnGtuYuvf/kjVomUc27SeoY42Ft58O5v+8jvyqqfSVnOEtuNHARju7sTvdmPNyOT4lpeZe+3NbH7wD6j1eqwZmex69GFmXnEtu/79MAFPPNhiuKuTxZk57H/mMdz9/cy/8bYzxtk4m5oaufgLX+Wl3/yMzJIy+luaaTywBwBjShq9TQ2kF5Ww4x8PkFleCZLEQFsLZXMWMNjRSlZZJXueeGTM9Z/YvZXK+RJrf/VQomzWVbdSNquS+v2jWVHSi0w0HB6hbq8TiGsFhENmpk03Enri18jKShFHnIzs3o0+245xSXIwfd4xZcBlv0Vw9WOp07HpoRNjNq+8syr+QaGFKbfE/0hNW8GUCUu/BX7nuCqjw8MM/PZ3OB99NH6ow0HOH/+IprIChcUCFstbalokFKK7oY76vTvRGk2UzJxLelEJ6QUmOk4G8DlHePL73wDAmJrGnGtuRBACRMIiB9e1IooSuVVWpizPYPej/yC3qhprZhbd9aeYuHQlg22tSGKMKasuZffj/yQSPKO8V1zG0i9+jsCN+xE9Hvp/9GMyf/0riMWQYqMLe93OAPubh9jeMMDzR7v50orxDpIGtWLMYiCALxQdt1+SC0RqGaz5ORz6W7zfLv8O7P8TmLOpPzlWkMxgS0GuM3Fi57aEAAlA6Zz5nNi5lbZjh5l+6VUYIk3s+tffmLBkBSd3bSOnciKvvvB0fOfOdvKrp7LzkYdYdOsn2PTn38af5w/8lsu/8i16mxroqotn3MipmkgsEiEc8OMZ6iGjOIX6fbUcfum5xLlnXHY1ctkgJ3euQy6XkT95NgqVhbOxoEabhsU3l6PRKQk1N+P67vdYdOXd7NwRIuSPotIqWPGxEiz5o+ITST6YWDKyWXzbnfQ01iPGYsSiEaatuRxRp0OmUjP0+9+j/usDNDz7OEMd8b6r1utZcNPHiQQDtB8/Su7EyQy2t2FItceD1mQK9GYLvafr6W1qYNEtd6B4jfjTUJeXp39x/IxoEwx1+ZhzZTr7n32Kxv1xZ3aLI4PZV9/Inif+xaX3xrPQ1+48ARJkl1lRauS0HBtk+e2VrPvjcaaszOPo5nYKJqUy1O1DphCYvqaA+gO9GKxqpqzIRaVXJJwijTYNk5ZlozWq8LviZWqdgqW3VWBOe3MnzSQfTHx9fRzftpGpay5n71P/JujzgiAw49KrKZxxEe7BIO7BAK88FRde1OiVVC3MJKMoRl+rhNZoJBoKsf/Zx+lprAdAqdEy//pb2f/cEyy+9U5qtmygv6UJgJGeLjpP1XLZJz6LJhgmgg5VzizInh4XIilaCvo0SCmKi6nNuBMO/hWatsGMT8LBB8F8A4R94O2DhffBrl/A1X+F6XfA1u+Bfyh+cbM/ExcpOYs+DVZ+HzRvov7uH4qLYNU+Dcu+BV1HYOFXYe/v4g5Nk2+Ki43kzISeM6InlVeAbyB+HED1DdB5MC5kkjXtfP25krwFbJl6ltxazq7HGuisH2b+tcXsfbaZ4W4fqTl61HoF7v4A9jwTKp2CgDuCezBAb7OLlEwDyOLOZjKlQCwioTWq2PLwKQomp9J+YoiBDi/F0+yodQr62t2kZsbFmbJKrOx5qp2hDi+zLg+SUVpO56la6v/0K+ZffysKtRq/20Xv6Xrs+YWs/fVPE+PZhgOvkFM5ka76k6Rk59J58jhakxkxJjJp2UXse+ZRQr4zAZo5u1nz9a/h/eWv8e3Zg6aqkrSij6F3u+ltOk0sHEZrNseFAcIees4sFL+WXvf4siQXDiEWI+z3s+/pxxLOOVnlVTgKinA43Pg8Jva/0IxvJETxDDvFizIpKBwfTPRmZFq0TMoyo5QLRGLxAejzR7u4b2UprkCUigwj3lAEvdrAjzbUMeQNc9fC8VkBajqdeIKRpAhJEgAiaiPe3laCXjfhQICd//obYuxMtuBpMxnsaEdnNhMNhbFlZDPc007zUTmOglSqFmQlsvhqVXK+sKyEB3Y0MavAxoHWYW6fm0+mRcfamh78kfHOvAdahwlGY+hUyQycScaSbY3PPbRnnAX8rgiH1p1izhVmNv/lF/hGhgEwpdmpWrwsPo8fHECSRMRYDFNqGnuf/DeVi5Yik8tRaXQoNRr0VhtKtRqZXIbX5UR9sg6ZRkPg0GGCp05hvuQS+r74FbR//TlaZTdEvRDxgCAjGM2m46vfJdobF0ixXHMlqbd+A2V6Dkpz1vtzo5IkOcOIL8zWun4e3tNCmkHDXYsKmZ5vQ/6aAKMSh5GbZuby2KvtRGMil1XaUMoEujwRPl8UxHl4B52natFbbMy74RZ2/OOv2AuKSM3OHWPrm33VDYSDPjRGPa/sg2lpI7RFnFTnWBjxhXnhWA8P7W4hKkpcPTWbSdkWtEo5ZY5zz9Eur84i3aRhfW0vhal6VlY5KExLBkx+EAnKFcRCQZy9PRxZ/0KifObl1xANh3AP9DHY0U5bzREmLl3FD1eU8e0tXUTF+Li11x0kEL4AwT1JkrxfWPPhun/EBWzFGKSWgvGDIXiv1SvZ+WgDnqHRtQFrho4Vd1T+x+O8r7xC1+c/j+jzg1yO4+tfx3LtNcg0SXHq9wqZSoUqM/Oc2/yHDtHxmXsQXS6QyUj93Gex3Xrru868J8gEbBn6MwE/o6QXms+5/+o75dTv76e93kPRZBt6s5qQP25njUVFarZ2Uj4ng8ZXPfS3x/1jpq+OIcaiqLRa+luaWHDjxzi+dSPOvrg7VumU6VR3dhKZMxPR7aJs/mKG2lsw29PJLClj81//yMwrrmHHP/6KwZZC5cKlWNOzmHvtTXiHh9jznJ9rvlZBe20NE5asIL96GtFwiK5TjVgzMkEQ6G1qRGswIkkSk5at4siGF/E5RwCoTUvnqnuewxYZeVf38r8FuVJFOBjkxI4tY+ZmabkFhHwuHPlvPfhFa1CRVTpqJ3ttP7Q4zp3k6vXoTGp0plGRktIZ6bQdH+Tk7h5sWXpmXFyALfPN6+ptdvPcL4/EsyIDRza1c+WXp57zt2Bx6BPti0ViPPuLIwD0t3uYflE+nXXxvlQ1P5M9T59GPFPnvueaiUUlZlyc/4biLO8Ei0PHktvKmXV5EUq1DK0hGZxyQUkphpufgsHG+PfUEjDY3/NmSLEY7nXr6Ln/G0iRCIJaTeZPf4Jx5crz2r98XZ1sfehP5E6oRq3Xs+fJfwGgt1iZcXn82dzf2pTYP+wfYKSzk5IZczi1exuu/j4AdGYLaz73FVoOv0p6cSl6q5WAx43WmBShfDtEwyG8I0PUbtsULxAE5l5zE2IshtZgRK3TEfC4ERAIej1YM5SYUnT/udIkSS4gDX0eUl4nTFviMBKLRqjfuyuR6FJntrDwljvQmq0EPU4GrnyBtO1fgJFmFLt++v/ZO+vwOK5z/39mlnm1YmZZYJmZGWMHHGZqoEmappCmKdzbX+m2TemW0yQNNsycOI6ZWZZtMbO0Wuad+f2x9jqqnN6QA81+nsdPsmfOnDkzO5o988L3RRhzI+FAgJ1Pn4p1mLB0Fe6hQVLzCgh3d+F55534McJdXTiefIrUO78NgEqn5NiOHgY7TsWn6y1qVt5Y/cmftMYEs2+HMSuQA15cNQP0XH7dGX1WJ/ji4ve46Tx6hPaag6jeIzKZkleA1mTmyMb17HnhaQAu++lvGOpsY8fT/0Q+IdIzZuZcKucvIRw0MH1sEP8PXgYgUFuLb89uVAWFCBip63OjVyuozrF+6ueY4MzQ5wzwracPsaVxEJVCYFV1BhdMzgVk9rcNI8nQNOBlU90Afa4A+9tHv+86/WH0WSYcvT3xGIeTHNuyntSCBag0Vl79cx1j52czZc25bPjH34iGw8y95KoR8d3pxaVkV1TSebSGzqM1rP3W9wl4h5m+Zhze4SaGOttJLyrh8Po32NzyAHMvuQqvs52k7CU0HxxgoH2A7qMPMtjRAsTiznqball+0/dZeFkZR7f3YDZB5SQz2t0vM/Cb38IJf7YcCND3k5+S89e/MPTre4j0x/Ihhu67j9y/34tx9uyPd7EzxsJ1b8eKGSu1kDoGdNaPN2aCj43fOYyjp4tnfnw3AOvu/jFpBUVsfeJhBtpi95Fap2fupVeh0RtwtjVQNTsLrUvGfdvTGB59kO7XX6Jo0lQc/T101x+nZOoMnP39ZI0pj9/bAK5A+LRxWXV9bhSiwJmSeQpFJDY39OP0hXnpUDfVOVZc/jCD7iDXzSmkacDL1Q/s4fcXT6A0zUhhwrf2uSQqS0RDYcJ+PzufeyLePm7JSiKhWAyO3+PBkpLOC784JQg1b+pcLrzkAiQZGvvcRKJQnW1BrUwUREnw6aE3q/E6fHQerePAay8hyxIavYGZF1xKwOXCYE1i5wtPUjFrHlqDkca9u5lx3sX4PD4iD/8T3byzMEwsx2A6C+dAL+a0dHoa6iiYMIltTz3KyeSbqgVLmXnh5YR93ni+ZV9zAx67Ha3ByIA7wOb6Ab7z7GHmlaVRmWUmKsm8XdvLH95p4I6lZVRmnd6f8e/wbtmCvqqKwb/8FduVV2A552y6bvtafF6y30/fT35C2l134XzuWTRFhZiWLUv4zBJ8oTgZR55hHn3fJunVuAMRwlEJlSLx+5Lgy8eZilheymjBkZWnafuPR6XR0dN4nE2P3BdPCM6vnsD0dZcgR6MIoogkSex79QX0FivZYyrxOoc58PrLFE8+vfKnWqngqwtL2NY0GE+iSDGqKUjWU+RqhuefjvdViDDU4x0hQAKxJE3PcACD9fQVMJwDfRx6+3WsGVnkVlXjGx6mcfcOqhctQxBFBEGkdtN6fE5HfJ/aTe9QMH4S7LkL5t8JM2+LVeLe/GuiywqIhnPZ9Hh93AndcmgQGZmkTD1qjR5ZlhHCYSSfn3BX96g5nQxYTvDp4LEPcvCtV+OfQ34/5bPmUb9zKwAqjQbvsJ2cympaD+0HYsEStZveISkzK55UmVlSxs5nnxgxdlZZOXtfjonXyLJEJBSkYs4Cjm/bBIBCqYwviE8S8Lhw9vWSVlgcT4A/id5ipavuKMgyuWPHs/vE30DZjDnIkkTLgT101x2l42gNuWNPmS+2PfUoVfMXY7BYR51/yZTpbH3ioRFtu59/jDXf/DnhUCpddcMkZRqYtDyPN/56BL1ZTW6lkZwygYNvPsHx4/loLjqXY1vfRZ9kZsp//4DQ4OAHu/gJPjw6K5JopG7nwVGb2o4MklOehE5rgkNPQOW5MPFKiAZhw09h2Y9H7eM/ciQuQAIQ6etj4Pe/J+t3v0Wh++BJ5Z3HaxlsayGzZAyyLNO4dxeCKJJeWEzA444nyQO4Bweo37GVjOKx7Hu9LR5cEwlF8TmdjF24lP2vvsCYWfMQBBFDkg2twYjHPkTj/l3kVMTEVtqPHKKnsY6+wX4M5eWEjx8n3NWF7PFgPms16twcAMIRib9taiLZqOHFg7FnbtuQl8n5SexrO2VEv3ZOAc/uO1XpUxROX4kzwRlCpYGJV0D+HDj2Imz6BVSdB8nFZKr1dBytAaBqwRLUWh3N+3cTjFfWjGHNyOLo5g0oVWoUSiXhYJBoJILeYiU5O5fj2zfH+yZn59LTUIctO5e+pgZs2Tn0NjUwfulKDr7xMmUz5zF+6SqikQgt+/dw4I2YM06jVxMJOznw2ksjjr3v1RdZffsYjm1+HYDaTa9z3nd+wro7JxONSphsWgwWDbIs43juefw7d6I4fpwlF19LxJSGZWwxqRMyz+QVTvAJ4fd4eenXPyPk9wGQlJkNgkDBuIlEnU4EnQ77YD8Bj5vS6bPx2Afpaaijed9uqhYsoXTaLAbbW5FkiZTcfHzuEAGvG53JxNEt7zJ24ZK4g+0k9h5vXIAEQBQFgt72Ec9WR18Pfc2NGG3JuO0e2msd8W2ddcNMPauQlkODKNUiZ98xkWhEJq/KhiiCazDA5OX5IEJ6vgmdSYU5VYdKo+SCu6fgcwRRG1RYUnUIwFm3jSfki2BO1WFNSwQnfZEJDQxgTknj4FuvxIJyAGSZPS89Q964yWhNmRzd1hPvH/CGGehwklEAkWAAWZKJhEIYk5LRW6z4nA7CAT8Nu7eTlJGFwWKNr5VPMtzTjcPtJEOlBRRIhnRY9lMETz9BpQl7SEnqmjmowl7Q22JCHiE3WPJg0hXgd4ApAwIuCPngksdjDuTsKXD+P8A/HBNuS6+OiYbkzYSgC5KLwJL7f18UwwkBy7APNv0SJl0VG3vJf4MxHdzdYG+GDT+BS5+C69+JJZMEnFCxFpQaQABRGQsw1SaCJD9NlCoFFTMzySyx4BkOojOqWHPrOIL+KOYULZIsESkwEY3KIAgsva6SSDCKqBTRmVRIUZmgL4Isg1or4jmxVEzJMbHnlZgz+ujWU+/wM88rZtZ5JUiSTNP+AVRaBSGfDykapbexnszSchx9vVgyMmjYtY3Jq89lsKNthFN64tLVBP0+/C4nkXCIuu2bWXTdzXTVHaP9yMG4AIklPQNbdg6D3Z0Ie/aAJCGMqyYcDFLzzhvxd1VBEFl49VdILy5hbLaZI10j3zetOtWZ/AoS/AtRSWL3S8+g0mopnDgFn8tJV91RSqbORFCAUhUg6A0jSTL1u/pAIZCUpsf6Ed5DZhUl89fLJvOrt47TOuRjdmkKE/OSuO6hvfz47Cr6XSF+u76ecFRGrRDJtI5+35tTkoLhU6jIkuCLgSAqiIZCaAwm1t/3Z5RqNXlV4wkHAzQf2Mvsiy5Ha7Ky550nAZHJq8+mfKbE1qe7Mdq0lM849X4zpcCGUatkwBXkWI+LYz0ujva48AWjzC5NGXXsxRVpCQGSBKdleVUGD2xroSTVwGC7h8MbOrFlGfC7m8kqq6C7/hjeYTuugdg7WSQcJru8CqVajaO3G63egNs+iCxJRCWJsBBAoVIS9Hqwd3WQVzWOiNmIYtJ4lAdrCNTWoikrRQoGQZaJOENQUQ4IgIwk6hn42d9G2PMdzzyPcelyVGMSAiQJPnveqO3lu8/VnPjkYnPDAM/cNJMJeadEz0xaFd9ePobzx6chdNdxqOZp1BoNN65dx4HXN+AZtjP3kqs5vmMzHUdqcPb3MuWs89j+9GNoDAZyq8YR9HrZ98oL5FVPQFQoOfj2a2RXjwe9TGO/m4Y+Dz977Vj8mP/c3c5/r6nknInZWPSnX59a9CqWVWWwrCoh2Pt5J+TxEg4GOfjGK5hT08goLsXR28O+V18gu2Isg50dqDRqFlx5Pce2bEC27+RPC87hFwfDNNsDjEk3jRIHT5DgC48hJfbvc4ZnODhCgARguMeHdzhE6vuYzcK9vXR/566YAAlANErfT3+KbtJEdFVVZ3jGCf4vIvZhur///ZgACYAkMfj7/8UwbTr6yZM+1bkk5diYkWNjajiKQqWgs84+qo85WcvxHafszbKsRGsw4h22k1ZQRG9zY1yABKD+wF6Krr8FR1szVfMWs++1F5h32TWICiV+t5uxC5bQvH8vMy+4FHt3F3tfeR5zajpTzzoXjcGIqOxnuLefcMAX+6xQIEejiEoljv5ekrNzSc0vIBqOYO/uxD00gNcxjCkllYziMpz9vTQdqiFpahGJVND/G53RSHfdUYJeL0WTpiJLMu1HDtLbVE9mWflnPT0MFg2Vc7IZMyMDURQRxA/2rR7Z1BmP/QKQojL1u3vfV5DnJIIoxOPUpIhMb7OTySsLqNvVQzQixWMkTnJ4QwdVc7LeN7bto6JUKjAnJ+x9nxrGtM9EeOS9hFpb4wIkAHIwSPdd36WwbAyawoJP7DiehgaGOjsYM2vuCIFKr2OY+h1bKJgwiZYDe+PtctSLFInG/CFuFyVTZhAOBmivPUzj7u2kF5fQ39JIcjgfa2bCpvJhCQcCHHn3bdIKirBmZNLb1Miel54lu6KKY9s3UTBuIua0NKoXLycSCOAd7kCpyogX6UuQ4NOm3e5jbkkKrx7uwXOiQNh9V0zi4AtP4BkapGDCZERRQfuRQ7QfOUTBpGl4hwc5fqQZcfEfSZb7COtzkUIR9r/2wohYh4NvvUpOZUxEJNTUPOrY/kOH4kUj/c7QCAESAJ8zhNse+D9/6z8Saj1kTSTY1ETP9786+lk9phxNQf4nf9wEXziObnqHnc8+QU7VOJKzc+LtWWXldB+vxd7VAcQKV0ajUfa89CxGWzIZJWW4Bvqo27GF0umz0RnA+aM7IHKqEJ9//37UhYVMzjSQbFDzjacP8cT1M0g2JeJk/xOo6XaypXEQnUrBnSvG8OSeDi6/fzeFKXp+sW4cNr2KFw910e8OMjnfysziZFqHYjYfk0aJRa+iPN1EOAo9vtE2W63BiNcZoXZLE7PXldDd2E/OmFRcA33kVY+nfte2EfEwfU0NseJ/wQDRUAhHbxdag4k9L/6d5v17gFg+xuwLL2PL4w/RevgAyDIa4yR6Gp1kLdfEBUhOYu9qJ+DqI6O3EX3D20QHB1GH5iNBXIDkJJLbjeRwEBl2vKdRYuB//4BuwgQUhg8mcvm+WLJj/xJ8bnDb7bSdiJ8CEFVKhjrbcQ32UzJ1JkGfl86jR2jcs5Np517Ia3+4hwnLz6J07ASQZbxeD67BAQRRgTUljf7mRrY89g8ySscwbtFyFO8RhopEJaoyzdT2jIzL0ioV/OjlWqbkJ5F2msTej4PdG6K+141Fq6ZtyEc4KvPHDY2kGNVcM7sQi1aJUoTCFAM1XU5+83YdD107nfRPeB4JPgH8fqKRMHtfeR5reiZphUXYu7s4vP51iiZOwd7dyYE3XiavegIrb/0GL//+l6jUGkoqxtD2xqMMtjWTUj2NA3lTcAcKWDDms7VFJPhy4XeFkCKOEcV8gz4v+197kYVX34AUkZh57kUcWv86fU0N5FRWk5SZhUapZPitd+DtDRifeYrWw/s5+OYrrLv7/2HLyqFmw5sICMjE7Ka1G99m1W3f5LU//Dp+HL3FiubE73dDn5tfvHGcby0vZ/3RPv64oZF0s4a7V1VQmW1hw/F+0kxaUj7kOjdQW4syIxOiUVyvvY6mtDQuQHKS6PAwIBPpH6D7zu+Ql5mJYerUj3ZBEyT4DOh1BlArRGyG0cLlNkMshmfYFyLYXs++115kxnkXk1Fc+mlPM0GCz4RPNGpZEISbga8CRYIgHH7PJhOw7fR7/WcTiYTY8+KzcQESgLaag1TOX4TeakMGpEiE6kXL0ZnM1O/ahiU9g4XX3EAkFMK5cyea4iK0qSMXwFPyk3ju5lkc6XahU4lkWnQc6XKS7B7iveaN0LEjMPM0ExNAoXp/5SVnfx/JOXl0Ha9lsL2VrLJyssvH4h4axJyahlqjpa+5cdR+Aa8Hqs6FF2+Jt8lL/pu/HBVZa4ol5CmUImqdAr87TNvhIaavKQIbCIKALEmIOi2q/HzCbW0jxlamJ4IqP01EXaziZTgYiCuJR0IhVNpYQo4oxu6fSDCIzhxLIhzZL/ZiLssyokIRrwoLEA2HUarVhPyR9+wTRK3V4n3POCPmIyrix1P/ixpeNBJGrYnNS4pEUKhUREJBUvML2Pbko0xdu459r74IxFT+SqbNpHH3DmRJ4ujmdymeMh2VVhc38pmSU7CkZYyYc0ZJGQXjJxEN+zBY9My+oJTGvX10Hhtm7DwLkVAdrQc34exJZ8ys2XiGh+IKnM7+Pl5pbeLCb37vI30XCT4YolJEZx4dnK3SKJGicqzK2viL4fkbQTrhQChbCRmjVfrDHZ2j2nx79yI5nR9YhCQcCMSCt4wmhro6cPR1kz92It7hYSgEr3O0WnZfcyPRUIRwMIoggM6kJr3QDMIgb/zpN7HzVCipmLsAURQZbG9nzOx5mFPTqd28AYB5l13D8W2bGe7pxDprJuHjx1Hl5yMajaR87WtxNckuh5/HdrVz04Li+PGf29/FxVNzmVeWilGjINemxxeMcOLPHbNWyY3zi7F7RwpbJTjDKNWQNgaEc+DAo7D/IWRbCakTfoEpORVZllDr9Bx4/SUUSiUz1l1C57EjAAiiSCQU+77Uej0+p5P04lgiuSAIREIh1NpT9/TJZ/HJ5304GERrMKIzWRjsbEcKh9n76guIokjZ9Nk4B/vRmy0MtregCQTilQNOIkUjRCNhxi5cisGahCCKDHY0YTZoURoN6EwxNWkpEMC7NSZyFXU48P81dr+H162D6T85o5c3wccnEolw8M1X4wIkEFPYR5LwDNuxpKWhMJvRmMyUz5pHy8G9JGXlsPKWb3LgjZdQiAp8bhcagzEmQiYKKBRKREXst1+t1RENhwmHRj57lP+yltUaVbgHRwo7QOzZWjJtJgMdp1n7yjHRkaxS66hKZ0kZ7692npxlJDkrtj3U3o535y6or8c6fTr6rMlAQoTki4IcDuM/XINn8yZErQ7DgvnIR2rJKC6NCy29F6d9EF16JlJUxpKqJTlbg70niC1DjRT1k1lWQcjr49iWDQz39jBuyUosaelsf+pRhnu6mLp2HbxPlR6FWk1MqEMkkjmOmi4Xx12ZWHQqxuVaUdk+wfsqe+KH659WCTNugZ1/igma7PgDlCwFZye8fuepfot+CLkzYiJaEBMbsX4AkZMEZxxBFEhKN5D0LxUxZUkicOQIns2bEWUZw7x56KqrEcT3txcYk8IUjEsZEWT+XiLBKIc3dDJlVT6CKBAOREnJK2H/a0/FtoeCCKKAKIqotDqikTAK5UjzVDgUQhAFZGJrFmNyKj6nk+zSchp2bCG9uJSpa86j8/hR2g7tR6FUUfWDu1Fs20lkbBU+lzMuQAIx8cvdLzzD6q/fyXkTc/AG22gZ9GJQK7hhXlGiwvinTCQYJKO4DMPkadTv3IY5LZ0l192MDPjcboJuDzKxCgEBb5im3f1UL82DjyBCotUoWVyZzpSCJLyhKKlGDQ/vbMXuDeHwhfGHo3GBX6NWicMX4qpZBTy+q51QVGJirpXxuVaCERlDIsYsAaBQKJCFmNRCRnEZWWMqOLblXTR6Awuu+gpKlRopEianoprN/3yQ3qZ6Vt32LeZdbOHwxr4RIiQA5RlmyjPAoFEw7Avz9y3NrJ2QRdewj3MnZvPiwS4kGeaXpVKalqjGk+D0VGSaeeamWbi9IZqfakGtUzJ9jY7D62sZ7umiav5irOmZbHz4Phx9vVTNX4x7aABzeux+lImtCQRBAEGMr1cFUYwJfwkCjr4ehjraGT+mDF1PN/6Dh9BWVIAooioog4KK+HyifX349u0fNc9Qe/uHOq9gSwveHTsItbZhmDUT/aRJKMwJMbsEHw+nL8TfNo20HUQkmT1t9hEiJABmjUh6eIj1Lz7JUEcbsy64jNf/cA+RUJDJZ53Lxof/jtcxjLO3h/LZC5BlifJZ80jJK+D4tk3orUnMvfwaZOnUWrNr0I3GFuGP7zaiVY1OenzpUDeXzUgkVfxHIAoEfT6mn3shIb+PloP7SC8spnLeIpAkcsoref2PvyYcCFI4cSrttYdx7X6L26au4veHRS6amkvHsJeydBM6dSJBNkGCD0OorQ3vjh0Em5oxzJiObtJklEnW9+2vVJ/GBiK8T/sJInY70dMUn4j09kFChOQzJ+oYJtzSOqo93Pfxit5Ifj/+Q4fxbN6MMjkZw9w5aMvKPtC+ihO/+8lZRnIqkug8dspPbLCM9G/73CaMtjQsaelEw+FYMZZ/YaCni9ZD+5l69vlUzV+Cd3gYUaFApdViTk0j4HbT03Cc2o2xCvfuwQH6Gus577s/4qyvZhKNKNBbrERCIQQEEARkKSZEgkJErdXR39tMdnklB998hVkXXkbQ66PlwB5S8gowZBUgplV+1Ev5pSIaCiIolMy55EqObdmIqBCZd/l1OPt6QPr8CI4plB98vSHLMqHAaHtqKBA5Te+RiAqRCYtzaT08iBSVaa+1M9zrZdXN47D3eEf11xpViMqE3E2Cj0+kfyCe1H4S2e8n2NSIMj0Nhf7j++AidjvBl16msKqayL8cC6C3qZHJq8+m5cBeBFFk5vmXIssSKfmFBP1epp97Ece3bUKt17PomhvpqD2CZ2gQndnC9mceI3NMOZymyFaC9ycSDrHw6hvoaaijr7mR4snT0Oj1SJEITXt2cWzzBtZ+6/to9QZ6+3pR6/SEQyHyKkfHkSVI8GngCUb5+evH+MMlE2gc8OLyh0EQiEYjzL/ieo5v3UgkEmH2RZcz3NOFAtDqjZjT0nD7IiS/ejXRZX/FK45juGd0EciQP/Zbqy4pGbVNP2UKgskEgEItIgij8slGxeh80kT7+0/7rA61tiZESBLgGhzA3t3J2EXLaD9yiMIJk9GZzPjdLqLhCL3NDfG+siwhRSNULVhyoojlXlLyCqiav5hoJEzIF0EOjBQj1U+bhiTJzKzMpG3IR0Ofh8YBT0KE5D+EYW8IgHWTc7h3czM9ztj33zLo42tPHOTeKyczszgVfzhCRJJJ0quZU5LCWluYiq5jGIb60AzLHIjk4jelY8spwN7ZGh9/4qpLadwfoHKWEc/Qdnrr3mWnN49FV9/IcG8Pu194atScPI5hTLZkHL09iEo1frcrLkAC4Brop6+lkdT8QtRaLQGfl8iJR6Qgnv79TRkJEKypwb91S+zz+euIOoZBqRwhuqOwWhG0WqznnYfjySfj7ZGBAeRQCD6uCEmCzx3OE+K2CqWSvOoJuAf6UWrUTD7rXOq3b0FvsbLk+q9Su/kdgidEyQ6+9Sr51eNRV1TgdDkxJaeQkpvHO/f/hcGOWI5X467t9Dc3svSGrxH0edHoDdR0O7l7dQU/eOEIze+Jy3r5UDd9riCeYIRPUhaiqd/D7U8c4JaFJShE2Fw/yPamIQAGPSHueauOP14yCZNWxbyyFFKNGo73eqjvcydESD6HKEUlUiTC1LXr8LmctNccJKO0jKr5iwkG/CjUGtxDg9RuXI+jp5tZ6y4hEg6x87knCXjcALg3vkbm2B42Bs5lYl4SlkRhsgSfEkq1Ao/dOardNdCPSqMFjcDx7Ztx9ffhHhrk2JZ3GWxvZdVt3wZAkZJMOOjn4JuvUDptFkNdHRzZ8BZao4kVX/06XucwPqeTY1vexec8JfQkKhRMP/cidEYTLn+IQERiXI6Vt2p72d/uAKDPFeQbTx3iz5dNonPYT+ew70OLkBjmzSPU1AQqFZG+PhS2ZBDFETZuRUoK8ntyMP2HaxIiJAm+UPQ4A6RbNKfNaU46IUwy6PKz5Y+/xmMfwmMf4vKf/+5TnmWCBJ8Nn3TpxH8CrwM/B+56T7tbluXRJT2+BIiiiHtogIIJk8koLiUaDscUTYNBlEolsiSjt1gRlcq4YIG9q4OO2sOcd9ePePnp+1AolUxdu4788ZNQqTUnxhWozrESlWSaB730ugKUphuJDmeOqDYS2L8fy9ei5I9Npu3IULy9en421vT3d6DJksTuF57GNdAHwEBbC/buLpJz8zADxpQUcsZU0nm8dsR+SSk2OLgLFn0fIgFQ6hBat2IzTUbUpjF+cS5KtQK/O4QpWctQpxvteyq6CTodEaeT9Lvuouf73yc6NAQqFam33ooiJfljfhsJPgxRQWTCslVsf/qfBLwerOmZtBzax+wLL6e/pQlHXy8ZxWX0NtWz4MrraT20n6764xRNmkrz/j0kZWajVGto3rebqvmLqdnwVnxsR28PU9acy/anHiMcDGJKTqVx7y6mn3shWx9/CM/wMCm5+XEjBYDOZCavegLtNQepXrycht3biZ4wioUDQTJKylDrdDTs3kH14uUcfPMVwsFYsrJroB9bVjaDHW007d1F0aSpzLrwcnQmE36Xk21PPsZZX7mVzc8/iS07l6SMTIa7u+JG6oo5CwDY9dxTyLJE8ZSZ5JafQ1J6FIQoAfceDr0ZS1K1d3XSdayWGesuHnE9ZUliYKCPHBKcKRQKkeoFObTX2mOiI4BaqyBnTBIGiwaGmmDTL2D+dyAaAoUa+o9C2DdqLHV+3qg2/YwZKKzWDzyfSDiMqFBSv2MLXscwFXMW0NfShM5swe92Y04ZbUbLLa8iums35bOqMCdr8QwHKZmSTu27m+J9epvqMaemYknPIhKJEPC42PCPv8a39zXVs/SG24iGQ0jb9qJITib9298iGggQ6e1DkxtLBFaIAmqliEIQ0CjFeFXFcdlmUs1ahjwhTBolb9d0M7s4hZQJGoJhiQe3t/KjtYkAys+E1DK4+lXoq8UrWtj6v/dROn0WGcVlbH7sAQCikQjtRw4y+6IraNi9HaVSRXJO7H72OR0k5+ah0RsxWJPob20hGglTOW8RW/75IBATTZq4ci3Ht2/Glp3DsS3vklZYTE9jHYUTprDp0fvj0+ltrGfFLd+gcdd2Qm43qsqZaPQGgr5TAWI6swWdyYzRlszel58jvbiU5Oxc2jQaNj38d6auXceE5WdhsFgxLlxI8PjxEaesnzrlDF/UBJ8E0WCQoc528saOJ2tMBVI0SuPuHXgdwxRMmIznzWewfe029jUcj68H7F2ddBw5xJo7vsumRx9g7IIlJOfmo/OY8Q7biYTCaA0GepsaGLdkOeFQkINvvIbP6aBg3CTUOh0puSaScwwMdcbuOb8nTHpxCTXvjJxf1pgKyqomsPOtkQ5kW5aBzBIrFXOyRgmQfFDC/f10fv0OgkdjQcDDjz5KyldvJuWrX0VQJqrUfxHw7dtP+7XXxg2hg/feS+ZPf4IlFMWWnRuvlHISgy2FJ+t7ufC6dNoObKKj9hDZFdWk5S9EVCgIeb289JufETmxDt357ONULVjC1LXr8Lvd5FRWc2zrprgo3kkKxk8myWoDlwefNRXJF2JyfhKT80cmwX1maM2w4C6oXAueAUgphQ3/Dzx973n300Lm+FMCJAm+EPgPHabtyivhREDX4N/uJf+Rh9FPfH+hGp1RxfxLyhju82E7oMfec2o9nZZvwpKmJ39sMtGIzLiFORx6p4P63SFyyqtprznEQFsLlfMWI4gC5bPmcejt11l41VewpKXj7I/ZIHa/+DRrvvFdkjKzUKhUTFi2ir6mBnyWJKauPZ+A18P+116kuz62dhju6aIzOZWV19yEcniYSDCAzmSmfM4C1Dodzv4+6ndsBUHkhYNdTMlPYvW4TMIRiWf2d/K7CyecuYucYBRKtQatwcjOZ0/ZwTqPHObsO3+Aa6Cf5r27mXvhdfQ2u9Cb1ciSzGAgxLZ9HZi0KvKTdZSkmVF8wMqsABa9GssJM1i/65SwmVJxKmDS7g0RjspsaxzkhvlFiALU93lw+cMk6RNO6QQxBDGWjBUJh8mtqubdB++Nb+s6fpRzvvNDBttb6W1qwJaZjb27E7/bzfFtGymafhn72+yUZ5jRa0auFbUqJf3uANlJOna32JlbmkLTgIdbF5UgILC/ffi0yeoJEpwk2aDG7gmSNcbKhCUmXv39D+JCkbu7nqZ81jwWXXsTclSir6UJS2oaYZ8XUaHE299HdnkVokKJqFSiMRhRKlVo9AbajxxmwvLVDPd0oTObcYeDmHJzEQ0GvHv2kvmTH6MuLh4xF4XVin7mDDxvvT2iXVNQ8IHPJ9TVRceNNxE+IVwy/PDDpH//e9guv/zjXagEX3pEUUB/GkGHTKOKwY42IuEw1vQMPPYh9r36An6Pm4mr1qJUqQkFAnGxX5VGg9cRSx4e7Ghj2U23E3C7EBVKtj7xcGzQjjY6j9Zw3t3/j/7WJhAE7EoLGbJMskHN9KJkLHo1rx7uZtgXW49XZJpRfog1ToLPLwa9EVNKKkc2vk3rwX1A7L2l42gNa7/5Pew9XQAc27aR9OJScsqrqN+1jepkBWdVZ/DE7na+vqSUiCQBiTVAggQflHBvLx233UaoPpZ8NPzII6R+4w6Sr7/+fQVXbVkGCsen0HLolKjImGnp2DLfP+FCmZyMMj2dSF/fqUZBQJmZKKryeUBhs6EuLSXU0DCiXZWV9bHG9W7bTuett8Y/i/feS8Gjj8Qq/n1AdCY1i66ooK/FiaPLicnfi6GnBqPViMcRWw8c2+5i1tlXYrK6USpVSJKEa6B/xDhGWwpGWzLO/l60RhPtRw4x47yLqduxmdqN68kfNxFzajrvzR6NhEP0NNYx3NNFxdz5aI1mVBoNkhxFoVKh1GqxpKYTDYURgJp332J26hVMXbOOI+++TdO+XQDYuzvpOFpDTs5dWEzpH+uafhnwuV1kl5Xz+omCIwA9DXWc9fW7cNmH6WtpxJadh6O3C6VKTXJuAcakz4lf4H0QBIGx87NHxKABjJme+T57jCSjyMJ5355Mb7MThVIgo8hKSo4RtUaBKVmLe+iUP2/WuSUf2YeXIMF7UaanIWg0yMFTtmHRoCdw6BCyP4BlzVkf+xiCTodstzNp+nKGTKNjMrPGVGDLzmXGuktIzS/g4JuvEI2EUWl1GKxJvHP/X+J9u44fZc03vsv2Jx9l4oo1uAYH3lcYPsH7Y0pOZeNDf4+/vw/3dJE/fhIl02YRCsTsZi3791A0ZRrHt26kfPZ80gqLCfp9aHSJoiMJPn0a+twEw1FsBjUpvjCpRg29jgBZpeW8/Nufx/v1tzSy/Oavc3jDG7Qe3EflvMWgNsC8b6Mx6gkMqkjOyWeoc2QRSFtWLGZQlZWF+eyzcb0YK+qnLinBct65iCfWjbZMAxWzszi69ZSQSV6lDVvWmU1KV6ann+ZZbcB/6CCqjHS05eVn9PgJPt8IyMiSzN6XnwPg3YfuZfo5F6DWGZCR0RgMDHW0kV5cxrjFy9EYTTj7+2jYFaufa+/upKP2MGd/63vIniD6WTPxbY/F7OinTUM/cyZ+Wyp/ebqJJZXp6FQKNMqRdoRuh5/mAQ8alYLSNCNWfWKd+kWhKDVW6MGqV8UFSE7iCUboGvbT4/BTkWVGkmVqupxcUaCk8GffI9rdRRAIPvEYk773A3ZWziN93U1UeLoJ9g+SVliK35NE1TwFg62vse/l14FYbGTb4QPMu/w6Zl90OW/f+8cRx7WkpuMeGiQ5N5/k7FyOvPvmqHn3tzSTUVJGRnEpckSmZkds/dLfrqBs+lzqd22J9y2dPhtFwI9j2iQUpcXYbCmEDh5EmZZO6q23MPjXvyEHAogmE+n//V/033MPpoWLRhzPdvllKD/n76MJPhpZYyqw93RRMWc+NevfRFQqCTkdbH/y0ViHjjY6jtaw5o676G2qZ/p5F+FzOJAiEdRTpxAJh+ltqifg9YzI7YFYjo7f5aRu5zZ0uaUgK1CIMt9bXcHBDgehiMQTezrocQaYXZz8iQp/RCWZx3a14/CHsXtDZFl1bG4YGNFHlmHIEyQclUjSq9FrFPF9E3z+EFRKDEk22o8cpOv4iZjsni46U2tZecs3sHefKjLcVXeU8ctWYe/uJOD1UDZjDrbsWKZW8/49rMhX0zrkZdAdJNWkoTTNiE4di9MJhqM09HvoGvaTZtZQlm7CoEnEeyf4eFjTdfS3jc55taZnotbpadyzg+66WtIKipmyZh1v3fsHBtpacA30ofnbn8HpJBwIoDNbSMkvYONDf4+P0VV3lDkXXUHNO28yde06tGYzsy+6nEg4jEKpwuu0o1Aq4/mVs4tT+NErI8XNo5KM3Rviqb0dLByT+qHPT51fgL/2KKm33MLgX/+K/Z//JP17d9P/y18hB4OIFgsZP/wBQ/efyjVSJnKAE3zB6HUGyDSfvmi97YQISf2xejz2IbLKKuiuP4bHPoTRlrjXE/zn84mulGRZdgJO4BIAQRDSAC1gFATBKMvyhyt19x9ASk4+K275Bl3Hj2JJy0CSokxcfhbJOfko1Woadm4lt6qaw+tfH7FfJBhkuKeTvuZGAF6856ec990fUThhcrzP9qZBvvnUobhBJM+m569nV8AlV8ITj4Aso8zKwmyOMn5xzolKxRIGq4a0AjNKlYJAJIAv7MOisaB4jzKqz+nENdBHTsVYUnLz6W9rpqP2cFwhUKPTs+DqG3jxVz/BPTSAIIhMX3cR6cYQtO+I/XsP5Qtuwa0R6KyzxxNFAaavLcKQdCpJTZAkRLWagb/dS9qd34ZIFEGrxb11K8ZFCz+hbyXBByEQlelvaWbBldfjHOhn9sVX4LEPEfL7WX37nfQ21jNx5RoCHg9epz3eZsvOpXDiVBz9fay+/Tv0NTdgtCWTXT6W3sY6rNl5pOQVMtzVwsJrbsTR2838K67F0deLLMucdft36Ko/xvRzL8RtH8TR24vRlkzr4f1Y0zPJLB2Dz+lk9de/Q29jPRATKNn25CNMP/ciwsEgeouVpV+5FelEMmnjnh3Mu+xatvzzQSLhEM379xAOBknJyUdvtVC9eClBBHKrxmFJz2DTw/eh0RuYdcFlHFr/Gpb0jHhyVHpxKZklpTj720gvsOJz9rPn+ZF/v+FgYER1w5OoDYmKtWea3HIbZ906HtegH1kGg1VNWv6JCqm+IRish3d/OnKniVeMGkc7diy2667D/sADIMuo8vJIuuVmRO0HN34NdrTx8m/+Bykae5nb8s8HmX3RFdh7OtEajTTu2UHVgqXUbloPskxSVjbj8koIvvkWGVePxzXQhd6kwdGnRvsv9079zm0EfD7mXX4tO04aAd9D8/7dzF53CarVMsorryLY0IBKkuj71T04iipIzkkjJ0nH7YtLuX9rC3euGMM/trXy7WVlbGsc4ql9MYEppSjw6wvGc//WZg53xRQzV1Slk5+UcLafSWRZZtgbYtgXotcVJN2koTDVGEuytObiVGfw1O5mjJn57H/tRUqmzURnMuOxxwK9Ompr6GmoZ8Utd1C/YytH3n2bKWvO4+Cbr9J+5DC5VdVMO+cCQn4/OpMZpUrNsptuZ6CtBb3ZgtFqY80d36WvtYUVt34DZ18vJVNncuD1l0bNtXHPDgI+D5Xz19LWGGb5zd9k48N/wzXQhzU9k4kr1tDf0kRPQx1Lv3IrtZs3MNzdRVZZBWUz57Lz2SdIyS1gzMw5WM5ei2/XLvz7Y9WSzStXYJg+/VO99gk+GhqDgTmXXInf7Ual0dDTWEfJtBlkFI9Bfuo5nE89hbG6itpNI9VBQn4/9u5OpqxZR9DnQRAFTCmpRCMR5KhEJBjAlJyCJEm0HthL496d1O3YxJpv3E3Z9FmYbFpW3jSO3iYn7iE/ap0Sn3OY0hmLaNi5AYCUvALGz5pP4Ggt885fSFNtmNaaIQrGJVMxKxNTsg7xYyT3BOsb4gIkJxn6+32Y1679UAl2CT4b5HCYoQceGKHELPv9SHoD0aCfhRdfxRv3/wmvI1ZFcs6lV2POzucys5PNf/olA20tQCxYoavuCFPXnI8UjcQFSE5yfOtGLGnp2LJyiEYiZJWNITW/gNzKaoa6OknLLyBp2IXS6eK3LQJ1BzpYPTaMKAqsrs7CqP2cODi0ZsibEft/Tz907jnx372n+iz+byhd8plML8FHw/H8c3EBEgAiERzPPPNvRUgADFYNOqOKlTdXc3RrD+21dvIqLNiyTax/8Cic8NVOWpbHyhsqcQ2HSM220lV3lLbD+9n/2ovMvvgKtHoj09aej2vYzrIbv0Z3/XHcQ4PkVI7FOTBAWkExAY8TjTUJndmKNT0dn9OBQqmMC5CcxD00QE93ByqNFltOLtPPvYiad98if9wECsZPYsLSVSisKfzXIi0PH7Kzo7mPifla/mtNORPzEoEUnyaRUIiDb706si0cwtHXQ932LSRlZOF32Tm6NZZgk12exMGwlwf3xYSh5pelcOn0POaXpX0kUYb5Zan8bXMzR3tcqBQCC8aksrEuFoiwtXGQ8yfl8Kd3G/GFo5w/KZsLpuSeVt08wZeTqMsFooBaq+XwOyODwWRZorvuKIIgojEYCPn9QKyacNnMuWgtIRb9ZQffXl7GNbML0KtPidsUpOgxaBRcMSOfn79+HL1aSbZVxx83NGJQK7l+bhGT8q2f5qkm+ALRMeRlT9swGqVAUaaBgfbDcQGSk9Tt3EpKfiHGJBsavQFjcioKlRIxHEZjMDBh2WoEQUBUKlEolYgKBduf/idLrr8ZrclM0eTpeIaG0Go1GPIKYn2NRtT5+QiKkc9iUaMh9dZbCdY3EG5tBUHAdtVVaMeO/cDnFDx+PC5AcpKB3/0e0+LFqDI/WGJbggSnw6RVccfSMXzl4VPvMRdVJ6E/sp6HX3sBgzWJBVd+heHeLjJKyhju6uTte//IshtuQ3pPpUDxXxLZPfYhAl43h9e/MaJdikbpb2mKJYfcdAdbojbylCJhWeY7z9Zg1im5enYhG4/30zTo4ZJpeYl1x38I8tAQkWAwLkByEq9jGNfgQNxvoDUYkSUJQRQZM3MOr/7uF6z+xveZVlRBVJIxaRNieAkSfBiCdfVxAZKTDP75L5hXrESdl3vafUw2HVPXFFI8MZVgIIJGpyQlx4Te8v5Cu6r0dLJ++Uu6br+dqMOBoFaT/oPvozlNRfEEnz5Kq5XMH/+YzltvJTo4CEolad/6Jpqyso88ZtTtpv9/fz+iTXI68R048KFESABMNi16TZTOP92Nb/t2PCoV87/zM1r8GfT1ShRVmkhq3EH4rRfIvOF60hcuZaizncH2VgDGLljCcG8XORVj6WtpomrBYswpqbxz/5/iFe/t3Z2kFZZQPns+x7dujB9bazSRUVLGQGsrOVXj8bscyLKMWqcnXasjEg6h0RsIB4NMPes8BttbsaSmxQVITuJ3ORnoHcBS9OGv5ZcNrcFI7eYNo9ob9+zA2d9LT0Md8y6/lq2PP4QUjZJVVsGq276FJe3TFXiJRqKIoojwAX1m2aVWVn11HAffakdQwMRl+WSUWD7QvoIokF5gJr3APKLdkqZn7dcm0NPkwO8Ok1FkIa3A9KHPJUGC06EuKCDrl7+g+7t3I/t8iAYDKTffjP2hh0ClwjB7Fkqb7WMdQ6HTkXrrrXR+7XbMv/o5k1adzYHXX0aWJcypaZROm8lAWzO5VeN46Z6fIcsSHUePcNbt32Hns4+PHEyW6W2sJ7u8kkgkxOpbv4k5OeVjze/LiNs+GBcgOUnbof1MO/t8BEFAlmV0ZjMhnw/XQB9KVSyZQKH4nPhmE3zpyEnS8dC107nlnwfoHPaTZtJw88IMMg/tHtW3dtM7JGVl01FbQ+fRWs7+9vdhy69RCgLmtbVMXHk125/6PT6nA1GhYNaFV5JaEFu8yQE/gk5H1q/vQQ6HkTweAsePx9fLOqOacYtyyB5jJeANo9YqSM42Ykk9s/GC6oICMv/nf+i5+25kv3/Es1phMiVESL7kRMIRjm15l6TMbPLGjsM7PMyOZx5n2U2343M6Uet0pBeXMnH5at74829Z9/0f07B7+4gx/G5XLAZBKyNPmIj1vPNAhlBHB6HmZl7wWvnF+dVc/9A+bl5QTEn6KeGdYz0urv7HbvpOFLtYUpHGj88ZS6bl9AlqCT5fjM0yc88F4+h2BFArREJRacR2vVpBnztIlj+MzaDm7AlZ5DTsJ9rdNaKf+4//i+XX1UhJyYRSreSka3jrb0fQGALMu9jCpgffGtE/5PfjsQ8iSxJls+ZRv30zKo2WaedcgFqnZ/ZFV5BZWk7Q5yGtYKTgP0De2HEUTJiMKMkoXn6dubPWcLTFQHaZCke3lRnrLsbZ34clLR21VsuunZtpORDzfYydPoeSjg7Yth3LunVk3fMrBEFEUKvo/81vCB47Ttodd2A+91x827aRdOUVmM9a8wlf+QSfF3IrqxEVCl753S8AmH7+pWx9/KERfWRJwt7ViS0rh4DXg7O/F5VWh2X+fGp2bGT80lUolKoRgrcnEQSBnc8+zuJrbyZDk4osC4QiEiaNkr/vaWHAHWR6oY1vLR/ziQo9eAJhNhzvw3QitrJl0ENuko52u39EP4NGQZrZxPqjfbiDOrKsWkrTPry9QZIlHAEHepUerfKTE1NJcApBiuB1DMcFSE7iHujH53QgvSfGUVQo0Oj1KBRKZp1/KU37d1O/cyuCKFI1bzFGrYpz/rydyAnBme+vLufyGfmoFQpeOtTNnc8ejt/Kdy4fw7VzChOFgRJ8LFQaJbkVJcy77Hq2PvEgUjSCzmxhyQ23sfuFp2ncE8uxtXd10n7kEMtuuIXX/vgbopEIL/351wCsueO7rLrtW6z/+0jxMlmSCAX8SJLEticfZcWt32DbiRwyvcXKubfdiSCKqBQioYhEVbaZFKOaQU9oxDgGtQJJhu5/EWX7IHg2bcS3fTum1avJ/sMfCHV3I8kSmT/7KXIgCEol/b/7Pdaz1xI4dBhVUdH/GYOcIMHnjS6HnykFp48lf68IiVqlYt5l1/DEf91J+5FDVM5bdNp9EiT4T+KMWMwFQVgD/AbIAvqBfOAYUHUmjvd5xj1sR6XRYk3PYNsTjyCIApNXn4OAjFKjJa2gECkSRa3V4X9v4g/EXtTeQ92OLXERkq5hL28c6cXuDbGoPA2FKLClYYC32v2svPp6hKXLae0Y5JBk5LlnW3jwwkn4nEFaa4bIr04mKdPA/r793FdzH8vSF7HMNhNcLiKdnSDJKJNMzL/iOloP7uPYto1klVYw77Jr4s4WgHAoyJjZc1Eq1YhKJelFJahNulEvl3JyCRnZ+TQ1+UYIkADse6OVsmnpmFNihjjJ4yEyOIh/zx5EtRptZQWhllbc776LddVK+JABHAk+OgZLEqULltG+dzvO/l5S8wtp3LOD7Iqx9DU10F1/jJS8fJr37SQpO5ehznY6amuwZeXQenAfGoMBR28XTft3M27RMloO7iUSDmPLzeede39H+ez5uIcGcQ0NkpJbQNO+3eSPm0BX/VGSc/JZf9+fyR07DikSoeadN5HlmNFPoVIxdc15bHr4PoomTyOjuAytwcisCy9HoVRw8O3XiUbCVC9YikKlZsradex75Xl2vfBULMnNZEKhUNJ5tAZLRgZbHvsH0865gM2P/oOssnIGWpsBCPq8bHn8ISavPgdHXy8AppRUCsdPZusTDzP3kqt498F7mbB8NSqthqA3MuL66cwjAywMtmQySz56YFOCD0Y4HCUcitKwpw+VVsH4RXloDSeepaZM0NvAZz+1g1IDlpxR4yitVlJvuxXTWauwD/ewWa7j8bq7OE86jxmZM7AH7KTr0ymwFKAUT/9T2tfcEA8kPsmht15j5a3foGnvTqLhMEmZmcw6/1IkKYoMiCYjwvXXsvPxX+Lo60EQRSauWEPhxCloDUYCXg8ASZk5jFu4FK/djlIzWlFdazTR1VCHWiWQGY3gevklTMuXEx0a4tX9bTTuG+COJaVcNDWXolQDO5uH+OFZlcjAU/s6mZhrJTtJx/62YX7y6jHuv3oKO5uGKE03MuQNcbjbSViSqMq2oFKcvnJcgn9PqLuHcFsbKERQKFDo9agLC+l3B7H0d6HoaCdNpSIzL4+Jf2jk5+dUssISRurvw2uw8sTuXm6fvhxt0zFa9u9hziVXsfnRf8SflVqjkcG2Fup3bo191qq54K7vsr1bIj1Hz4HXXqSnsZ7K+YvJKhmDJMuk5RcRCvrZ9OgDBLwetHoDOqsFr93Omm98F7V+tDNZb7YycflaNvzjrwS9HjILbyK/ejx6axJeu51tTz3KxBVnMXbhUl79/S/j+3UcrWHVbd/m+NaNNO3bxZiZc9AUFJDzlz8TamlFUCpRF+SjMCbEm74IyLKMQqmiZsOb2Ls6KZw4mXGLVxDweZE62km+/nqkzAwUKjVSdKSBX6M3oDXoAZnaje/g87gx2WwUjJtEw54dCDLUbd8Sv7cB6rZvJqusHGOSDUuKDkuKjq76YV74zQEAskpnM+fS2WgMMmq1n2d+8zOikTDpRw+y8pY7qF4wjq4GB+88eBS9WcXYKVaSlA4IhkAUQSC2lpVlok4XgkqJwmJBjsbE8aThYVCrQRCIDA3yr8iRCHIkMqo9wecLKRwm2NFB1OUc0a69+UY2bH2b1pqDqHR6Fl5xHabkFIzJKSRlZtHqaSfQ1xUXIDmJvbMDWYqiUI5eF6g0WjLLKug8doRoNIJSpUJvtaJQqWk5sA+D2Yz5WCNbSUFnzWXr3kYWlKXyVm0vmRYd88o+vOr0GUeXBGUrYf9IhyQZX7pX/i88ktM1qi3qcOI/fpxwVxei2QwKJUTCiFotUjCI15BF3QEnfe1eiscnMaZcybgKC370PP2HurgACcD+t9o559ZyNNoWnv35H8kfO565l15FWkExGSWxd7nOumMEXE6a9u8iOSefnsY6XvvDPXG7QuWCJeSNHQcCRCMR+ttaKJk647SObb3FilqnRwAUKiXTzj4fv9vF7uefwu92Ub14OVqjiVXeHqTpmdzT+CfC9jkUua6iyJrImvi0iISDqLVawoGR6wKFUoXOaKJw4hRkTv2Wdh0fpro8j2mFNlKNGna32OlxBKjrdTM+1/qhjz8xz8pfLpvEr9+u4+zx2UwrsLGiKoNgRCLLqqVlwMs/rplKskFNVpIOjTLhZE5wClmWObbxHbLGVJy2GqZSrcHndmNNz8QzPER2eRX2ri5S8vMBkXWTsnlidwczCpOZXHAqsUGvVnLrolL2tw5zz/njcAXCzCyycdGUXIb9Iabk20gxJgJZEozG4Quyv8PB5voBFhYms/fVNipnjbYVKdUaMkpK6aitITk7l0gwiEqtYesTD6NUqRAVIkqVBp3FQn71BHQmM9nllTTt34PeYiUSDCAoBPxKeCOyjxVFK8gyvn8leW1ZGfmPPhITEhEEpEAA/+HDiAYDCqsVFAoi3d0ozGaiXi+EI6BWIajVKAwGIg7HqDGlYJBQTw/Bjg6QpFiyCMTWA4KAIIrICCAKgBB7tZOiCICg1aHJz0NhNo8aN8GXjzmlyTz+lemsP9ZPskHNfN0Ab/z2Ocyp6YxbvJw3//I7wsEAWoOR6eddTEZRKZFQEEdfD0mZ2Qz3dDHY0UZuVTUdtTVUL15OT2MdeVXjUJ1GxFqhVFK9eDU+t4UcrYDTH+bZfbHg5UFPiN++Xc+fL5tEeYYpXpExwRefiEIRs/krFEjRkaL1CqUSa2Y2ABOWrUaKRtj4j/tYfvPXyasej6OlHsu4NHJyPof2gAQJPudI4dCoNjkUQo7+e3utUiky3OejvdZOwfgU0gv/70R6w/RpFDz7DJGeHhRJSagLCkaJsyU488iSRLClhWgoFFv3AVIkgiBLZP3if5ACAVSZmWhLSxFUH13YSY5EkL3eUe1SIHia3h9gvGCIUGtr7P/DYfw/+Ta5RcVM/P4PkXuO4hnupOfslex64gGkqMSUtecx/4rr0JnMJGVm07R3J6/94R5yKsYiyODs740LkJykv6WR4slT459tWTkYkmyxpCMBWvbvpu3wASrmLEBlMKI3GqnfsY3JK9bg8PUS8HnJGlMBgoCoUI7ye8uJZIsPhFKjG1VwBGL+sczScnoa6mg7tJ+M4lK664/TXX+Mrrqjn5oIidcZpK1mkKNbe0jKMlA9P/tUkZd/g0qrpHBcCnkVSSDEBFg/CazpeqzpiYIoX3Sibjeh5mYkfwB1YQFRp5NQWxtIEqq8PHQVFZ/6nARRxLRsGdlaLf4DByEawf7QQ0QGBlBYrZ+Yb1c3eTJ599/HsNvJQHsry276GiqNFrVOh727i/bDh1AoVad837KMWq8/bSyGSqslLb+Y1sP7sM3MQTpNMawE/57TiYkIoggIlEydSdvh/diycpAkCXNKGklZ2Wi0OpTq0ba1BAk+DeaVJPPsgW4G3EF+si4Xj2oHzugRCvSGUX01ej2pOfnAKYH0YlMmEVs5NRu7yK9WMG7JCpBBUIjozUlx4Vv/4cN43ngDQZYRDQY8mzYhh8OYFi+GlJjgkVIl4h4M0HRggNyKJNLyP5jY2OkI9fYSbm8n3NuLKjMTZUEBmtTRNg9BFDHMm0vqrbcQdXtGPKul06zFE3y5iETCTFp9Nt5hO/U7t2FKSWXe5dciKhQk5RXRU3uAcUtX0XxCgEGhiAmuR0flZShx9fuIPvsspmXLQBBwv/02mpISFv10BTuaBvnZuWOpyrJgPBGXG4pE+eumprgACcD6Y/2cM3GYs8YlREi+CGhUCs6bmMOuliG+triEe96qj2+7fm4h4aiELxQlGJbodQZi4voaAce/jCMHAgQDIZS6Rt7qXM/UI2cjSTJj52noOrYXpVodL1JxEr3ZSu2m9eRWjWfGeRcTjYRJyswmp7KaoNdL3fZNZI2por3mIJXzFnF0y7sgy6QXlZCSV8i7D/6d7PJKFlx8ESqrlcJV2bTV7OfdB15GoVSityZRv2ML0UiEGesujouQHNm1lcLV5xPdshX//v1ITgeqvDx6f/hfIEmYV61i6O/3oR03jvwnn0CdKADwH8/JWHKAgNuJSjv6+aVUa+hpqMfrsFMwYRJu+yA6Wwql5WPZ8trzFE+eTtW8RSOKERZPno4pJZWAx8POZ5+gcuESmgzFlOSkolOJ/OScsahEgQyrlsrMj76eOB0GjZK5pSk8tqsdGRlPMMI3l43hm08digtPzC5JxqxV8dLhbl4+1MNvLhzPP66eRnbS6Z/fzoCTY/Zj+CN+REFEKSopshYRiUZ4qv4pXm95ndKkUr46/qtUp1Z/oueTAGREBEE8bUygQqXi+LZN8c/jl63GlJqO0mjlyJsv09cUEyeXJYkjG99GUVhN9MQYX5lbSKpJy2M728lPMfCDF4+MGP6pvR0sLE+jJM2YyItJ8LEwp5gpmToHoy0Je1c7oUAA92B/XIDkJD6ng6A/wIQlK2ned0p0UqnRAML7PqNLp87k6JYNEI6wcvU6JFnC6PRgDsfsWsd6XLx0qJsl5Wl8a9kY7n6+hhOPQ1aNzWBn8xAVmSYsug/vKwn39BI8dozgsWOYV61CN2kS4c4OoqKIZ8O7cX+HoFaT+dOfop8+DXXO6Dy9BAk+rwTCUbqdfgqST3/f2vSx98OOrj7mllWQVVaOWqeju6EuIUKS4EvBmZLt/gkwA1gvy/JEQRAWApecoWN9bvE6hokEg/hdDrb888F4+8aH72PFV+8gx5ZC7cb1TFx1NuOWrmTXc0/G+5hSUtH9S0CsSnOq2o4/LBEIRbljSRmv1vQgyTK3LCzBG4jQ7Ze490iImcWFEJH47zH5HHqmiYFWNwAD7W5ajwzSNnsLY3SFLDNORu7tZeCee2KONsD81OO8+9qLuE8kVrYc3Mtwbzcl02YB4LYP8cpv/wfv8KlkflGh4Iqf/46Uc/4Gr94BIS9YcvCs/CNhlZUCa5COf7lGkbBENHIqqVSVmUlkcJC079yJe/07DN13P9qKctLv/DaixfpRv4oEHwGjWqT70B5qN65n1gWX8c59f0JrNJFeVMr+115k2jkXsPHh+4iGI2SNqWTH0/9k3JKV7HzuCVyDA8y5+Eo2PXI/JdNmUrvxHXqb6pl76dVsuP/PZJaWM9DaQuPency+6Areuf/PmJJT8DkcHF7/OouuuYmgz0vQ60WWpBGJx9FwGFmWmbhiLZ1Hazjw+ssYrEksvPpGXvjlz+L9OmoOMffSazDZUpl94eUoVCqMthS8jmF2PvNPpp93EY17dhKNRJAkiWg4jM/pJL2omK66mHpmJBTkwBsvM3XteQCUz5rHvldfQKnR4Pe4kaIR6ndsZfzSVex+4en4sc1pGWiNZlZ/7W4GO9swpySRXV6FLSuxiD7TdB4f5vW/1MQ/t9YMce43JpFVagVrLlzwEDxzLXgHQGuFc/4MyacXNxK1Wg5bXNyw+w7kE5mUv9n3G66quopXml7BGXLy8zk/Z3nB8tNWpxTE0UYIlVaLUqXGKCjQlVWw9fGHR2x3zZiDymDA0dcDxAwh9Tu3olRpWHrDrdh7uogEgmSWjuHFe37Kqq99m4ziMTTs2hEP/FIolZRMmc7RLe/SsGs7a6+4gZSLL8b91ttoz12HLjMN41CA7U1DrB2fxdLKDJZWZgDw7N4Ovr+6gu1NQxzpcrKwPFZZ3BsMM6ckhVsfP0DzYMypJwrwwNVTWTAm7cN9SQkIHD1Kx403ERmIVVs3LV8Ggoi6pATT9Gl0//CHhFpaAdBPn87+r3+dnsaDtP/4h8ihECiV/P4b3+WYoYjCa+9GGu4jYrOw5u4fU3e0DkGtJb8oH/1wI7NWLsZqNZKRbsSltyIbJLY+fh/dJ55zu59/itkXX8n2px5l6tp1CIKI1zGMFI0QDvhx22PrgLbDBymcMIXmfbvjQfMKlYrCiZN5+sffjZ9b57EaGnbvIOBxx9syS8s5epoKX0c3byCzpIy0glMJv0qLBeWE8Z/sBU9wxulprOPl3/0PkWDM2Vq3fQs+p4tZF16G6htfx37xZaTOnsmklWvY9fxT8f2sGVkxQaasHPqaGzFYk8goLiU5J4/u+jqqFy7j4BuvjFgHQOxZGvR5MSbFkjaD/jABX5jJKwtQqkU6j9nZ+7qDqasUvPP3X8f362tuYPcLz1A66xLevv9YvL2lxs7KhTLJSRCor0eVkYHCaqX/F7849bc4axZJl16CHAwiGo0ED9cg6HSoMjNQJCURHT5VQcm0alXCcPY5RwoE8B89SqilBdOixQQOHgJAmZZGp1pBa81BAMJ+H2/d+wdW3fZtCiZMxhFwcPeWu7k75cbTjqs1mpCiEcypabgG+uPt45etwtnfS1J6JkqVCoVKTdvB/bgGBwCZHc8+wYzlaziuPOVoq+/zcMXMArY1Dn4+RUgUKph5K/Qfhc49ICpg9h2QPeWznlmCD4n1/HW433xzRJt51UqG/vwXtFWVKFLTkAN+VDm5BBqbkMon8vrDLXgdsaSe/jY3Q1NSmKA/RiinAlk65aErmZxGcraRQMDO63/4NbIs0bh3J417d2JOy+DSH/8KgNS8fPpbmiidOouWA3tHOFYABlqaKRg7HikSxpycRm5lNY7e3lGVXLPGVGBMsuHo60WhVBIJhQj5fGx54uG4Y3L3C08z9ezzaT+0H6s7n5zSLJ5rfI4GRwN/WfIXLJpP1uGd4PSIgoIJy1fHFfkBjLZkNHoD09ddwob7/8zi624BTtmc8qx6VJ0Cx3pcrBmfic2gxuEfnVz2QdCplayszmRWcTIRSSbZeMreZvcGmV2Sgl6dqHSY4PQoLRYUKhXhQICxi5bS3XA8/oxR6/RojSZKp83i8IY3mXn+JXgdw+x5+RnW3nE3gTA09nuYU5qCLzQ6aSDNpGVFdSzAa8gTjMdVJOnViB+wEnGCLx/72h388IUj/PfZY/G5QoT8UUwpqSRlZo1IQhy3ZAXuwUE0eiOGJBvRcIS2mgN4BgeI/EuybnpBEV7HcNzeaU3LwJySiiCKKHxqig3p3F9zP3dNvwuV+P7BCaqUFMIdHXTe/FWiJ0RFLOedh7Z6LABDf7+PyMAAKTfdiPPFl9CNG4cyNQVBo0VbWYFoMIwILreedx7hzk4ivb1Ehh0QiSDodSgtVgS1ChkBUaUEteaE8IiWqNuF7PMR9XjxSBJJF5yPKhFI+aVHp1IysziFmcWxpIodz+4lp7KaijkL2PDAX4ieSD4LeD3sev5JFlx5PT0NdRxe/waTzzoHhUpFwOOmdMYcKucuAlEkEgrSXltD1fzFI/yBOpMZc1o6CoWKzv4A39rdwPyyVL6xtJTfvN0Q79c66GVVdeLe/I/CqEflc1M5bxFH3n073pxeVIKoVKJUqVhx89eJhMNse/IRZEkiEgrGqhLLElmayIh1aoIECT4YyrQ0RIsFyXlKeNi8di2q7Oz33cfnDvLWfbUMdsYKAQy0u+k8Psyqm6vR6v99IKY6Oxv1vxk7wZnHd/AgRCKgVCLLckzgLhql57t3x9eg1ksuJuWrX0V1mkTHD4oyKQnbddfR9/9+/J5GJfoJEz7aeLYkki69lIF77om3hZubEL0uur73fdS/u4ft//hLfNueF5/B3tnO6tvvRKXRUjJlBud/90d07N1FwO0+ra8awJadx/hlq0jKyMKamYUcjRIK+3EP9LPtyUeYc8lVvH3fn0grKKJi7kIqZs+jbtdW9r78HJml5aQXFqPSaBi7cCmH178eHzc1vxClJiFC8kEIBwMUTpxC454dI3ysGcWl9DbH1oMqrQ7fewTT7V2dn8rcZFnm2LZudr0UE13va3XRtL+f8++cgi1rdLLz6VB8RhVi7T1ehro8KBQiyTlGLKmJ5M/PC+H+Afp/9StcL78MQN5jj9L/q1/FfXGasjIy/uuH6CdP/tTnJggCyrQ07A88EIu7OIHt2mtRpX0ycS+CIKCtqCATWJydTU9DHQZrEvaeLnY8/Rh6s2VUUbpoOELF7Pl014+0MyZlZLHjmcdjSSt+P+bUdJKzEz7oD4NSrSG9uDSejAZQOW8RoigyYcVqJp91DmG/n6HODuZfcR1qnYH0woRgfYLPjlSzFn8oyg9WV+BQvsrfDv2VFQUrWFq4AqVKHbfjCqJI0aSpBN9jOxWVKlDpkG1l2PQaDr15HwNtTSPGT8nLJrNkDKq8PGxXXsnwE48Tdbowr16NKisLhSXmJw36w2x6vJ6OozE/3UC7m+aDA5xzxyQM1g9nqwj29OLd8A59//MLCIcRVCrSf/AD5LVr0J5GzFdpMKBISaH/V6fWyYgihtmzP9RxE/znYbBY8dgHObr5XQD8bheD7W2c993/RlJkIEkyjbu3oz9RPFJUKGJxZ2+9Gh8jJTcftU6HbDJiXr0axzPPgCxjXXceipRU9ve7KUw1MrUweUQCsicYYW/rMP9KQ597VFuCzy+iKDC1wIZBraQs3cSgN0iyXk0gEmVPi53phTb2tNqZkGvlhy8d4R/z08jQ65F9vvgY6osvw5MS5Kdbb2Nm+kxCHglRFAj5e6jbvoXxS1ex56Vn4/2tGVnozGaSc/Jo3LMDR2/MbzfrgktxDfSTUTYGv8eNgMzx7ZtZcsNt5FdPwNHXw3B3Fxse/BvIMm01B4muvQBDbi4AyhMiq9FIBPdgLAZZEEXkf0nYDyCR8507cb78Cp4NG9BPm0bWb39DuLWNwLFj+PbswbdnD6YlSxIiJP/huIaGUKpP/YYrVCrGLljCpkfuj7dpjSZMKSk07N5B1/Ej+JzDWNIyMM9egO6Nt1l2ydUM93RhzcxhyVduxd7dSVJ6JtFohPYjB6mcu4BDb79O/viJjLGmk2LOI8uqR6MSsOjOjK9DqRDj8ZUvHuzm7AnZhKMS9101hW6HH6NGSbpZw49ePkbTgIf/d3YVK8dmoHufeCB/xM99R+7DEXTQ7+tne/d2AJbmLQUB3m6L+Xr6fH3s79vPE2c9QaGl8Iyc25cVpcGAqBQpnzVvhOBIdnkVSpWa+VdcT3fDcZKzc3HbB/EMDfJYY5TUo4fjfTUGA3lV49FGAyTpVUwvTCY/2cCPXznKoCfErYtKCIRPxaTftqiEXmeAmx/dx9QCG9fOKaQiM1HYJMFHw+sM0nb4OO888Kt425Kv3HJakW8Bmeyqsbz6u1iR37SCIgbbW5EiESrnLmTzY/+I99UaTVgzMuO/9ZpIlNDPfokCiI4Zg/qyywHoHPbxWk0vF0yO2Y8euHoqXcN+kgxqjnQ5aBvyc/7kHFI+gg/avHQpzqdjMUThvj50yLhefgXJ58Oy5iz0U6bgeOYZJH8A3fjxiTyKBF84Ood9yDIUppzeN2I9IUIy6PSSVlWMIIokZ+dh7/rXTPkECf4zOVMR9WFZlocEQRAFQRBlWX5XEIRfnKFjfW6RZRm1Tkvdjq2jtjXs3k7BxMkYU1Lwu1z0NjYw55KrGO7pQm+2ICqV+Fwult14GwgCXoeD9KJTifJqhcCMIhs13S4WV6QhyxCMSMwvS8URCFGaZqRl0Et2ko4USaSxdaSxa7DNQ9W8iSwuqoBgCM+evXEBEgBva0tcgOQkjt5ufM5hkjIy8Q4PjRAgAZCiUVxDA6RMvBBypoDfQb+QzK5BNXavkxkpVsqmpZOUYSASllCpRUKhCKbkkcbkcG8fw/98PFYlEQjUHiXc1U3+449/pO8hwUfD1d/LkY3rAZCkKNFIhLyx42nauxMAUVQQ9HrJGzue9pqYs1hvtuAa6MeWnUN/SyMAKTn5NO7egVqnx3PinskbO47dLzwDQDQSRopGyR83iYbdsZd1ndmCIIh0HjvCvMuupfN4Lcgy+eMmklM5Fq3BiCAqMCWnkDd2PKGAn4GWJgRBHJGoXLtpPck5eTTs2hZvm3f5tQS8HvpamnAPxYxvJx28CpWK3MpxNOzeGa/IrFAqSSsoJjW/EIVSRTgYQKlSI54QmPAMD9HbVM+cS67C0duNOSUNKRrBPSyy8wUfBmsu5369GktGIpntTBONRDm4/l8WcDI07e+PiZAAFM6DGzaCuxcMqZCU/2/H3N+3Py5AcpL1beuZlTWLl5tf5ofbf0iFrYJ8y+hx0gqKmXXR5ZiTU/G7XYQDAYy2ZHpqDpEhamg+jUJ/a+1hymbOGdHmdzkx2pJ4+bf/g9ZkRq3VISMjyxJ6s5lNj9zHnIuviCc7m1PTCHg8qE4EfnW2NKBt7kIxfyFdRdX0OsM09rspzzDx41ePcu3swniFzawkHRsbBpiQa6Uyy4xGKdLnDGAzaKjr88QFSAAkGX7xxnEm5lmx6BJVQD4oUb+f/t/+Li5AAuB+8y1Sb7+dQEc7kZdejoseAPh27SJw6BDSgw+eCoSJRFD89n9Iu+deDquSCapz0QRE0uQwpoIx/Ha7nYbdnawak8qP5hYRlWU2DJlxdYkY/UNxAZKTREJBZEmiu+4YSdk5LLr2JiIBPxqjiXAgQOPenXjsgxzZ+DZzLr4Sr8MRC44rqaDjaM2Iseq2b2bq2nUjki0QFKhPU5VDqVajUKspmphIWP+iM9zdFRcgOUlH7SFCvnMJiyJyOAzDDqKRCHMuvpLhni4M1iQQBPpbmkjNLyLgdmNJz2DHM48zadU51BmKufGZXp479yyKp0xHikbxu1w07d9FRnEperMVgEg4yqH1Hex5tTV+7OoF2UTCUcKBtlFzbdq/C2vW4hFtUkRmSJuHyt2O1mBEjkRjqrzv/Vvcvh3j/HnIMqgAz6ZN6CdNImq3k/7DH+B5620CDQ1YVq/CvGYN4mmCJRJ8fgi0thFqa8e7aRNRt4fUr30N94Z30EybTmtrw6j+bTUHqZgznyZnE0ftR3Fk+SmfPZ+kzGz01iRUahUhfwBRIWLv7KZi3iIEBNyD/SRl5dB2+AD5Gi2WtAxcgwPoLVYa9+4ks7Sc5OxcWg/tp3bvDlwLJ2I8ESuec0JtP918GmOvzw4IoE86g1fpA5BaBpc9A8MtoNSBrRiUH72aaILPBt3kKeT8+c8M3ncfSBK2yy8j6vEQbGpCW1VJ1D6EnFOEkzR8tlRUQSNex8iqqvX7Bqm+Zhya/nayCi10t/gonpRKyB9h10vNTFgcHiUo5ervxesYxmBNQqPTk1tZzWB/P7bsXAomTCavahxakxkkCZ3ZzMG3XqdizjxCQT9ag5GhznaQJGZdcBmOvh5MKamxpL1wGAQBn9OBo68HlVozqjLC0U3vMHbRcnY//xQLpq5g/9BBagZraHI0MSl90hm/5l92Qn4/siwx0N7GvEuvxjnYj0qjRalW47EPYrQlY05LR4qeCuzSm9XsHXIzLtvKlPxYtd5IVEan/HjVJyz60e8xNkMi0TPBv0eSomSWjiEajjDc2838y6/F3t2JSqNBZ7LQcmgfokLBsc0bCPq8SNEoeWPH43O7UNuSmVeWilIhcqjTwfhcC+b3eZ9OJB0n+CBIkszxHjdfW1waC1B0eFm+LAeVOkzptNmAjGfYTlJmNl3HazHZUtBbragtNroO7aO3uZGz7/wBzr4+fE477qEhuuqOEvB6ERWnEslaDuxhxgWXMNTejjklleSIkecan+PasdeSbXr/pNuIw0nvf/8onvwJ4HzuOdS5uciAZc0ahv72N4b++jeSr7+ewb/8hdTbb0cK+PHu2EHand/Gs3Ej4c4uTMuWoUxPx/XiS4gWC+rcHESzGSngJ3D8OJLfjyLJisJsQWE0IppN4PchKJTIcizgGIUC3759WM4668x9KQm+cMiyTFp+IR21h/E5HXEBkpMEPG58bteJoB6JvS8/h0KpRKXVEfB6ySivQqtSozWYcPX3UbdjC/Muu4bh3m50JjNGWzIDrS2Uz8ols0ikosPMW0f7WF6VMeI46eaEHeE/jaDTRSQcIhwMMveya7B3tmO0JRMOBvA5hpEliU2PPEAocCKIXRDQ6A0MdXVgtNrQGU2f7QkkSPAFJWIfJuWmG/Ht3UeorQ3DjOmIRiOhxka0lZWn3cfe7Y0LkJykp8GBo9dHRlHCv/t5JtTVRdTjRWHQI4VCEAgiqNX0//Z3I9agjsefwDB7Dqoli99/sA+AecUKRI0W+yOPoExLI/kr16OtOv199UGwrDkLORJm+JFHUVitpH3zG0ie2L3o7O8b1b/l4H78LheqVC0qrZb8CZNJ15sY7uygpauDvOrxCAjkVI5FodZgy8hiqLsTU3IKRlsyXcdqyRpTSTQUovPYEQRRJOT3gSyjt1gxJtkIBfyxeBBBwN7VwZ6Xn2PuJVfidzmZdeHlOHq7MdqSiYbDeN3OUXNMMBqvfYi+lqaYj9U5jBSJYrQl03m8lqDPi8GaRNWCJfjdLmRZYrC9jayy8k9lbp7hIPvfbB/RFg5EGexyf2ARks+C/lYXL/zuAOFATNTFZNOw5msTSMr4/M75y4T/0MG4AInlmqvx7d4dFyABCNbX43p7/WciQgKgLS8n78EHGbr/fsIdHVgvuRjz0qVn5FjJ2bkkZ+cS8vvpbaqPFeMK+MmpqGLpV26NxYY6HAS8bjqO1jDv0qtxDQ2gUCrRGc24BvrxOWJxdo27dzB59TlnZJ7/yQR9HrLKKiiYMBm/04nRlsxgexvRcJi04hJ6m5zU7Qyz5JqzUKo/G1GlBAneizsQZnyulcwUH3ftiCV3uUIuBnpamXnhZQTcToI+P9b0DDqP1TJu8QqW3ngbwz1dZJSUwux7UVnyyWm2s+vZplHjO/t6ySwZg8JgpPd///dU+3PPkXzTjXGfqrPfHxcgOYmjz89Qj+dDi5BE2tvoPyFAAiCHw/T97GfkFRXClNPHi5kWLED41S+xP/ggotlC8g1fQVdd/aGOm+A/j3AgwLGtm0a0SdEInmE7w/1qWg/uxdHbw8rbvoExyUY0HMYzbGf2RVfgHhpEazQiRSL43S7SzSb6H3ggPo79wYdI/+//otcdwhySRgiQAFh0apZUpvHQ9pFxaGOzrWfsfBOcGZQKkXG5Vpz1A6QZNZi0KnpdAaYXJvP2sX6S9CpmFiXz0i2zybfp8f35XlwPP4iyo43gsrMYnDEPJ7uQZIl9A/tYN/kaNForOmMQ99AA/W0t8dhIY3IKltR07D3d2LJyadyzA4CCCZPpb2nGNTSAJT2dmnfeYPq5FwLQfbyW5Nw8djwzMl8mu3QMgmMYKAAgOSePkqkzUSiVZJaNIeDxoDdbCPn9MTESSUIQRKxZOQz+8EdE7bFnum/XLsKdHRjmzMX9xhvx8aNDQ2f+4if4TBnqbCOnchyWtAxMKSkYLEkc2/JuzJ/V04XWaEJjMOIeGqS3qQ6A7vrj5I2dQDDgQ1r/DuKOnej/9ifeuf8vRMMRLOnpHBzoAxmmn3shWpOZlLwCHD3dKJPSqDBpUCo+XkzPB6Es3cQfL53EntZhNEqRJJ2KIU8QTyBCUaqB1iEfty8pIUmvZkq+7d8Wf2kcbuSRo49w47gbeaHxhXh7kbWIew/fO6KvL+Kj2dGcECH5hPH7/URDsXXjrAsuwzNsR2c2E/C4Cfl8HNu2EXtnB/tffwmdwUhe1XgO9dk5v7AMj30HpdNnk5SZRdPeXYgqFQ+vXExAEuiO+PAEYz5gdyBCmklDvzvIt5aNQaeO3afnTcrh6X0dbG0c5NmbZ5FlTQjeJvhwRMJRuhsdDPeNzGer37mNFbd+AykSxTXYh4BAX0sjRlsyvc2N8X6TzzqXPS8+Q+n02TTu2MqCK7/CUGcbKq0OvcXKQFsroigyZc15mJ0uXMXFGOfMwXrhBSiTkwHIOBFz8F8v1fLNpWNoHvIiAla9ksn5NnKSAhg0Su567jDP3jyLTMsHv891kyeR9atfMvD7/8W0ZDF9P/lpfJvjqaexXXUVmvJyNGPKiLoTYn0Jvni0DMbiNgreR4RErRQxqEV8qEk/UYTblpNLy4G9n9ocEyT4LDlTIiQOQRCMwGbgMUEQ+oHI/7HPfxyyJBGNRDDZkkdtMyWnoFSqSMsvYqC9heScXLY+/hCm5BQCXi86k4nlN93OkY1vk1VagRSJ4Ozrxt6Vgi07FqQbjsokG9VEozISMiaNklAkglGtpDDVwGM723n+QBfLzz+94y7PWICoUkE0iv/IkRHbxCE71owsKucuIBqNolAoqdu5FZRqDnc6MItaNHoD1swsciur8QwN0rB3JwarDQQBkosBaG8ZAoIMecI0afwoJJldLzWjUIqUT0qlclo6wnsqJSuSkxHVqrgAyUmiDgfh7m40hQUf6ztJ8MFRRKLoLVbcgwOIYszR5ve40VuScPb3xQPR/W4XlvQMLOkZ5BWNQ7FWQf2hHehMMQVISYqiUKmIhkOoTyTkhvw+tEYjfrcrLuYR8LgwWKz4XU68jmHmXHwFe15+jpp33mDh1TcQjYRx9vex7YlHSCsspnzWPAY62sgoKSM1Nx97dyczz78Y50A/tSfEU0zJyfjdLgA0egPjlqxAazQxcflq2o8cpnzWPHY9/xSth/ZRvXg59u5OGvfsYOqa89AYjAS9bgSFkvaag2QUl5KUmUVqfiEDbS0oNVrUOj0hv4/2mkO0HznMoqtvYOdzT1I0eR5DPTEjRSQkQeijVWdO8GERUCpHG4ckSSYalVCcNGZZcmL/PgBapZZLyi/BprURlaIoRAX7evfhDsdejPwRP0OBoREiJEOd7XQeryXg8WBKTqVu51aMVhuGpCQ0BiP+tjZ8f7mP1B/9YMSx0otKqJq/BEEhjqheEI1EsKRnkj9uIm2HDxBwu1BrYy98MgK27Fw2P/YPdCdU3EunzqKgdBIhu5cW8z70egO+LVtQXnI12x0qNtb3MrMoBaVC5NXDPdi9Ia6ZVUDjgBeLVkVBsp7fvF0fu6ICfHvZGILhKC5/eNT16XUGCIQlPsT755ceyeXCv3//6HavF+OMmdjv+/uobYFjx9AUFODr7T3VGA6TEfXyz34l0wuTWWVpJXXPL1HYG5levI43KlZx2GdlXyCVVKMaSeXlV68d5YmLSuh+z/0FMXXUCctjCTi5Y8cx3NWJxz5E1+YNpOTmM3XtOl745Y+JhkNsfuwfzL30anrbS2g86KF0koHqxcsxJtkAAY99CLd9iCVf+QHe4T6Sc7Jw9g9iTEpi9sVX0l5zgI7aGgRBpGrBYlQaDf2tLcjEgnASfDFRaU89BLRGE+PnrsBgsqE1GAn5Y+JFw//7B9L/625e/d9fYUpKJuBxI0UjrPnm9wh43YSDARAE5l5yFSgUGDxBvjIlFe9gH8e3bECWJIomT6N60XIyS8rQmWKJGMO9Pva81jpiPkc2dbH46gqUSoGJK85CkiQadm3H53SQWVqO1z36tyIUEnh7p4blF81C23oQ/8EDo/oE6+rRjh9PZHAIbWVFrDEaJVhXT8TtIvPnP0OfCHz4QiBIUaIOxwmxwy78Bw5gmDED2W4nu7CE/tZmlBoNpdNmYbBYYwE7xJLTlucvp1frZsbCpQx1tNO4ZwdBj4fiKdMQFZloDEbw+/AMD5Gck0fbkUOxqmYqJQgCRmMSSdZsKmcsZKC7Nf481lpsTChI4Tcb2zhvUjZKERSiQCgi8cKBTgY9IVaV6sjqeQc23wOiCAu+C2UrQPMZJibprKCb+NkdP8HHRqHXYVq0EMOsmQC4N2wg3NqKpqQYEJDNNo4NpVHzQhcAU88a7TwVBQFBFJEajzO1uJzmrCyMaWZ2PB8LblNpYu+GlvQMiidPIxwM0lFbg/Y9SXWtgx68fUNYMrMpmzkHR083dTu2YLAmUTFvEZNXn429uxN7TzdZpeXYMnM49Oar1O/ahsFqw+dyMP+K6wgHA2RkFBMNh/BYh+LVRd+L3pqEd9iO1mik0FbMbebbODJwBOlfhFISnBlkhwNBFCmfPZ++5gaUKhU6s5mWg/uYsuocAj4PuVXVeL0SpmQt5hwDFQtzqPX68Q15USlEdjYP8eSeDv734glEPWHkUBTRpEL8jCqvJvhyIYoKNHoj4aAfhVKJ3+XEmpHJoTdfxTU0yJqv30X70cNxe5QhyUbRpKmodVqyGv7IxcVnc8krAXKSdMwvS6U655QISdQdQo5IKMxqhE8hICfBFx9RFEgxqlEIAoIgYJbdGBU69r05jMXm4djmd9EaTRzd8i6ZpeWk5OZBUCY64CGzeAxqg55tTz6CRqencOIU/K5mZqy7iJDfj8dup3zWPBr27CCzrIKQ14tKo0VGQK3WUGYtQ6X49wJ0kstJsK5udPtJEcsT1drlcDhesUUKBgm1tiF5PESHHUQGh0i65hoifb04X3oJQRBQ5+aCIMT6tncQHR5GabOhPOGHkSNh5EgUQRETxRQ0aqIuF8gygaPHEiIkCUbQ39rMy7/9OdFIhNzKsfEA3ZOodTr8TgdphSUUTJxC64G9RCMRDDodk1aupSZooVLlovXALtKLSjj09hsnkklthPx+dEYzBmsSkXCIVgkunJLNuROzKdSpee6yydR7gzyxr4PJBZ+xyGSCTxyFz49aoyNv7HgG2lqwZmTiczlp2rubjJIxyLKMJMXeVwRRZMpZ56LSakkvLMGckobxNL7l/ws5KhN1BREUAorTiZomSPAlINLTTf8vfom2qhJNYSHut94i0j+AYcbM991HisinbY+EE3aCzztRlwtBFAABQVQQ9XlRqFQEjx0b1TfyXh/bR0Rps2Fddx6mVSsRFApE9ccr0qBKTyf1ppuwrluHoFajtFjwHYol6uvEUzYOQ5KN0mmzMNqS0RiNI8bQlpWRlptLpVbNkH0Iz2A/siQz1N7Ksc0byBs7ntSCIhx9vZhT05FlCUEU0VusyJIUr57cXXeMsQuXIkUilE6bjVKtxud0oLdYCfr8aM1mXN195BaOpa3+EANdzeTNnP6xzv/LQjQSpnDCZKRAlPS0YnxBJ50NtRRPmsZARyuTVq6l89gRmvfvQaM3UDJ1Bub0jP974E8AQQRRMdpndjKG5/OIFJU49G5HXIAEwG0P0n7UnhAh+ZwQam6J/7/twgsZ+OWvRvUJHDpI1O9Hofv0A00EQUA/aSLa6t8ih8Mo9PozdiyvYxhJimJMSia9sASlSs2Utefh6Oulef8ePMNDFIyfREZpGQXjJuH3uFEolKjUWiLhEJa0DALemDiV1mSKP7MTfHAsaRkMdbYjiiIpOfmkpxeSllWExmwmHAxSs6mfaEjG5wphTkkEPiX47JEBSZbRa2SqU6q5Kv9ylLKCtFwjrUf2EwmFsaSl01FbQ+X8RWx7+jEUokjJtJloDUbQ6WDbb9DmXIklLR2dyUJO5VjcQ4M07tkRtzUEj49eL7tefhnbFVcCseS50yGFT//u9O+IDAzEChe99zwDASKDg++zBygsFixr1mBcsuQTWXcn+M9AoVJizciidNpMRFGBqFDQcbQGjU5PwC2Rkl9OKOBHYzCiNZnpa20mf9wE/C4nCpUSlUaLxzuIOSULubV91Pjut94i6fZ5hKOjbQEKUeDKGQUc6XKxr20YUYDr5hQyKc/6iZ5jNBBB9oURdEoUusTv/ieFJMm0Dnlx+cNkWXWkmbX4Q1HcwTD3b21lYp4VhSgwMc/KxFwrJeknYhJ9IS7f7qZk6uVcdH0ajR6ZP73WwI2rdNw0/iYAVIYweocNlUbJogtvwO9xsf+Nl1EolIxfuootjz/EWbd/h8GONiatXIstJ5f+lmb2vvwchROn4HUOo7dYcA3GChrW79zGiknTKJ4ynaa9uwAw2pKZMHYy0dY2mBCLzwr5/diyc2k5sAelWoMlLZ13H/o75pRUpq5dx+G3X2fxNTdiDkbx2keKSoW7ulHabKcaFApUuR8snj7BFxeVRovWZMbvcnBkw1vkVFSRWzWOnc8+wfRzLsDndhH0eEitqkajN+BzOlCqNUhSFLVCSUCSkNxuDB4fC6++gXce+AvDPV2ICgXTz72Q5oN7ya2opnrhMjY9+gAZM0YLATt8IdrtPjRKBYUpetTKDx7fI4WiSJ4QolaJqB/9fCxJM3Go08krh7uZlJeEJMuUZ5i569kaxmSYWFyRxsa6AaYVvr/fxRPy0O/r5/ZJt6MQFNwy4RY63B281PQSoWgIrVKLP+IfsY9WmSgw8IkjgMZoIq2wmEgwiEKlRKlSoVAqMSQlMdDWgqu/D6Vaw/RzL2QwqmZOeSY6YRnJ/d0kZWSy+4WnSSssxpqWzju/+wmRcAhTSiq/XncTd7xj55m9HXxr+RiikoRaoWDYF2ZGhpmgP0L+4jK+91ItTQOehAhJgg+Ns9/PcLcXvSWVshlzMKemMdjeRvmsudRv34xrcICC8ZNwDfRTOGEKHrud9IJi0gqL6W9pwjtsx5SSRlJWNoWShGuwn+TsPI5t30ROxVga9+xg8XU3I6Mgqaoa24qViHo9wglbrhSIMN6k48/rxnH7CzX87p0G1k3KId2soWnAx4sHu9CrlUwtSEJEQJI/3PudwmDAsmYNhrlzGbrvvlHbPZs3k/qtb9F9110UPPboJ3JNEyT4NGnsj9lhC99HhATApJDxK7SkFcZy5pNz8qjduB6/x50oMpPgP54zJUJyNuAH7gAuAyzA/ztDx/rcolOE8IXClM+ZT8PuHbHkSkCt01MydSbuocGY0EFbC4UTp2BKTqG77hiWtHTyx0/irb/9gclrzyPgdgEyPqeTuh1bGTNzDl5MGLVKHt7RxtRCGwaNkvVH+0gx5pFh1vD3zc10O2PHc4Ui5FQk0XlsOD63rDIrsjpMNBSCaBT9xIl41q8/NffUVCauWosUDpOckkY0GmHistW81R7CxyB6lciKr99F7frXOPDGy1jSMlh+09epC+rYsq+DsnQT43KsGDRKNtd3Mi7HQo6oZMvefnQmFcvPKcLgDSF0e/AM+NBXJKPKMCCqVGjKxoBSCf9ScU5hSjyQP030tmTmLF/L64/dj3tokLTCYtoOH2D+5dfS19xAf2sz+eMn0XZoP/PWXY22QEn0JTd52kLKL5hFVAMGjZWGgzuZsGw1+159AQBTcirHt21m4sq1bH/qUfxuF8m5+TTt282ci69i82P/wDXYj8/pYPzSFRROmEpPUz2WlHQCbjfJOXmUz5rH5sf+QXpRCQGXi9f/9BsUSiWTzzqXlJw85l56NbIkkZFfyPoH/4Ygisy64DK2P/MYQa+X/PGTWHjNjbTVHKR68XKOb92E3mxh/LJVhP0B3r73D2SWlpOUmcXRzRuYfdEV1G7ewJGN65l36dU06Q3se+V5Zl90OR67HfdQ7IVAa7Iy9eyv0dUA7qEoggBV87JRGRMvoZ8GCqVI2bQMOo4Px7xygKgUsGXqiYbfI0Ly7/A7IeQGQyooNVSnVPPirhdpdjYDoFVo+fncn3Pn5jsBMKvNpBvS47sPdbZzfMcWREFAkiQ8Q0MUT57Ghgf+Smp+IVIkQvH4CThdLqxOFyUTp9B4YC8z1l3MUGcHmx69H2taBnMvu5q9rzyPe3CAijkLqFn/BpXzFjFuyUqikTBGaxLWjCye+9kPuOAHPyWvejy9jfWMn7mCpEgKdEGxZSLZV1YQHarHLYo4ZCValYJrZxfx1N7Yc9qoUfL6kV6KU438YUNMSfPqWQXctqgEGTjS6eT+rS3MKUmhItOMIIwsJH/Z9DzSTIlg5g+DwmpFP2sWnrffHtEuGg241q9HP206wfqGEdt048cxdO9IcRJBo6FXbUKtECmQ2sh4/QaYfRuYM0mue4MLff9kp+9qvv30Yb4yrwirXsWPzq6iNQxTzr+MnY//A4DiydMI+f3Ubd+MIIpkl1fScbSGtsMxAYaBthY6j9Uy77KrePfBv8cquCaX0PG6nZxyE/nVlXgdmfhdLo5u2UBGcRnVi1aw4ZFexs4tYs9L9xONhCmfPZ9IMEj5rPlUzF2E1mAk4HEz1NFO075d2Ls6ueCHPyW9sOQMXv0EZ4q0omJyKsciBaMsWnEt2pA+9hzuFdDjwg+EW1sxB0KsvOUbtB7ch0KpJH/cBDRaPZ3HaohGIig1Gva8/ByLrr4BtjzHskXLeeW3p6qvdNUdZd7l16JQnnIkBH2R+DP/JLIMpmToOtbGsS0bERQKqhctw9Hbw9S16/A4LNTtOBXQoNIqUKpFvM4gLXU+Ks3a0/4taqsqkQN+VGnpuN54A8O0qSDLyMEgCqMJMbFW/eKgUKBMtqGbOIFwVxdyIIBn40YAKh56gIHeHoqnTOPw+tdxDw5S6V9ISkEJOqWRYDTI662vUaGzsunR++MCB71N9Zx1+50c374JW3YuJlsKIb+fqnmLUBsMBD1erOpU9GEDcm+UcuN0yhbP5KVHfokgikxddymNKg1XzSogL0lPMBplyBMiO0mPWiEwJ1dNZv9W8PTBou9B8yZ49nq48BEoWgRa47854QQJ/m/EE4KRypQUFFYr7g3voh07lmBmGTWP9cf7+VwhrOl6HH2+eNvYGUmoB9uIajR4f/VfTPjZz+n0n3o4tx+DpV+5g/7W4xx5923UWj0zL7gErdFEKBxh0B0i2NlI7UtPMfmscxhsa2X/ay+i1umwZmQiigpqt2wgJTsPQRAYaGsmJb+I+VdcR29zAwGPh+LJ07BaMlH3Kf4/e2cdKEd19v/PzM6679W97hp3V2KEJLg7pS2F0mI12l+Fty1t3xrtS5WWFrcSPAESkhAn7nrddV1Hfn9suCENUGixwn7+SfbMzDln9s7OPPOc5/k+SCEJJCN1RdPoCB3HkZVNoDd1DoIgMn7Juaz83a+ou+w8vrv3RwzEBlhSvgS3MZ34+ZHg8ZDo66bzyCH0RiOC0YymqIyadyZmt5vmXTvILC5FNAUpv7QMX1Lhj3taWbm/m6+eUYHdpGdWdRbnj86jKCDT8+QudDYDljHZ6PNsGPKsafGGNB86mqrQ19x0QnjXgJKUmXbxlYiShCM7h3LzBGwuN4osk4hGCPb3Y7BYSA67nLydv+GPS25i4d9aaPdFGV7gIhxOED84QGxFE2pExr6oBFOxA9GqR/KYEIR3rsaT5rNNUlGpyXWwq3UQLQ5XVjt5+vdtJOMKpSOmMe3SIlr376F6ynTKx0zApnkQwzJaQkWOxCmoraW98AAte3fRsn9PShRSg7aDBzi6ZT2uHC8zr/wcbm8+/q5OLC4Xgqhjr9LAF0d+kWydFYKdYHJDPACqDHZvqk2U0LmcmEaOILZ7zynzTtkdGmokZU8IxpO+JdFoxFhWRrKnh+j27STb25Hb2xD0ekx1dSSamog3NWIsKkK0WjGWlJAwm1FDQeS+XnQuN6LZlHoWCCKCJKKGI4jGVKC6ofajqSie5r+H3uZGlBNrUYc2rmPC2RewdfkTaKqKTq9n2iVXoSSTDHa2MWHpeQybNQ9REMgsKsbtzScPaD8aoKh+OIHeXhZ/9Wt0HT2MIIDBbMLX3YknvxBrQuYrjx7h2klFXJnlRny6AUOhnbJqNwsXD8eV8c6BDM39Yfa1+4klVapz7dTnOdLPhv8CDKJIY8MxYqEgRqsVTUuJ5S+66VYOrV9H/czZjF92PqoipwoBiAJHNm/iwNpXWHTTbe97PHkwRmhdG7Fjg5hHZmPIt2EosqOzphN10ny2MOTlARDbf4DY/gOpttJSRM87v/PrTTq85U46j/uH2orqPegN6XfLTzqS243c14eGhqYqiDYbCGAaOZLYCTGPN9EX5H9g437QSfP6rKyh/5tqavDefTeDWzdTO2YCCQE8+YXsey21rqg3mqiZNhPLiYIwb84nx2BGMBjxJRMcXL+Gwc6UoHBvcyP5tfVYnW5EUSS7tAJXrpfC2mEc3bKRRDSKK8eLr7uTxp3bqJ48HQQBUacbEhCOBfxMnnURalMYNCgYUYWw1EiH0/eBfg+fVpy5eQg9SeiTETRw6lxkTChEcwqUjh7HjpeeZePjDw3t37JvN0tu/SaZH0HxBpvLxMSlZax79MhQm8VhILPgk7veoMgaAx3h09oHu05vS/PxYKyqHPp/75/vwzx2LKHXXjtlH8uEiR+LAMlbEfV6+JBEPeLRCMe2buL1R/5GMhZj/JJzyamoYsaVn8Nit7Pi3l8hJ1ICrT2Nx9GbzWTmFxEJ+NGbTIiiDkWRCb4lQX/yeRcPBbenee+YzHYQBMorJ2Do1yP0aVixIDpNDIY7yCkxYDTZSUQ/c7UV03xC6Qsm0OtE9DE73/d8DV2TAghoeo28gmramg+gKgqlo8fh7+mmbX/K79qyfw9nffUbsP/XKJ4Kdm+IM/uaL7Nv9QvsXPEcrhwv8z9/MxlFqWITkjfvtLH1BYUIltS9WW/QUToqk8ZdJ+9D2cV2DJb3n24g5eYiGI1obwpTA6LVipSd/S+P/bifFWk+WdjcGcy49Gr2rFpJ0fCRhPr7cHnzcGTlkFOqR2+chSvHTbCvj7V//zNlYyZQUDccEDCYU8mZjswsBrsF3J6S0/qXSsuwxHuxu94+Qb0828ZfrhpH80AEgyRSmmnFKOnoDkTZ3eanyx+jPMvGyAInNtP7tzESHSGiB/tB0UAnYKpyYyx0/OsD07wr8aTCs7s7+M4z+6jOsbN0ZB52UyqOuisQ4+IJhSRkFVEUGAzFMRtSogj+aILmvjCV2Xa8ThMH/Qo/XZkS3S/zFPK9Lb8klAxxZ8UPqBRzKbFnoql2ZCVO5UXj8Rn7icWDTL3wcjqOHCQZj7H9heUoySTTL70ak93O6IVLiPgGmXTeJfi7Oxk570wObVhHoKeLiYuWUT9uMqosY27rIPLt/0fm7+4FIBYO8fIff0Pbgb1A6r3f7c1n+Jz57Hl1BVaXhyt+8hscWVmnFSgGQKdDsKfe+XQuF9677sJYnrYzP+3kV9dwfMcbvP7w/QB0HDnEmTffwaIbb6Xz2GH0BiNh/yDP/vyHTLv4KtY+8GdGzT+TRDSK8PKqoX5EvUQi0M+im26jt7kRURQ5snUj45ech6+zg01PPcKopReizy5AekvczrGeILc9vptcp4nh+U7Meh21eXaG5TlxmN99DSPZFSZ6oA9N1kAUMFW6MRafen80SCLnjSmgMtvKwc4gbquBloEw54wpYH+7jy5//G0Lsb6VPb17CCaD/HrHr1G0VDzo6OzRnF1xNi83v8zV9Vfzu92/G9p/ROYIqtxV7+n7T/PeUUWNWDCAHE8giKlnOAg4MrPRG83Uz5iLqioIgoA920uT6CDDGkNvyWfmDXew6ld3AVA5YQobHntgqN9gXy/dL/yds8dczuN7B1i5r5OaXAf+UIJvjSzE2BslurcP2WPkvqXD0nFnaf4t4hGZvo4Q5SOdHHq9jePbtzD3mi/y6n2/O8UPNOOKz6GpKoqcJBGNMPn8Sxjs6EBvMjFh2Xm88OufERrsT3UqCCy84au0H9rP6IVL8HX3sDHmIV/txOs00+4bxG01MsFqQjkyiCZrTBUFtl49mYdb+wjFkzhMVtoGVZaMzMMXSZDjMDG3Lpv71jeysD6XUYVuDJJILKnQ2BcillQp8ljIsL19jpjkcqHPP329RcrNxffEE+T/+McYy8o+tO85TZoPi/0dfgrcZpzvIghp0eLEJQvuvNRvwHVCUD7Q050WIUnzqefDEiHJBjo1TYsBfxMEwQzkAP0f0nifPAZakLp2YcocA6KHpbd9i4H2NkRJwpOXT35NPT2Nx3nu5z9i1lXXExrow+0tICO/CJPdxp5XV5JVXIok6lj7j8dQTqhB29wZZJeW43OZ8EeTzK/PYc3hHgySjhynCV80QY7dyOeGu6nLtrAnqke0SLhzLOQUOxjoCuPOsaKTBJ7uehihO87tRddgGj0K25zZhFa/hqDXI5eW4FEUYqEQHUcOIicSFI8czRy3kUMxK24T7F3+CA1vbEqdbnsrK/7vF3iv/AZ/ORhHVlS+v2wYowtd1OU5ONAZwGNNKQRPnVeEQ9OQkxpSroVkf5R4SwCdw4Bo0WMeVk/WTTfS+6tfD32drssuw1CeNkQ+SvpVHa7SCpbdfAd9XZ2Uj5tINOgnGY2x7PZv09/WgivHy7BZZ2CPOom+0YlglrDPKiS0qh3FF6csr44Rn5tPRA5SPno8iWCU0i+Po6+tCZ0ksez2O+lva2XGpVcT9g2iNxlYfPMdNO/ZQcW4iQx2tNPT3EDX0cOsfeA+dDodw+cuHBL0KR09ji3/eByA8cvOZ99rrxAaSN1mdHo9y66+gYXzlhIxG9i6+mXi4TDOnFxKho/iwLrVDLS3Eo+Emf/Fm2nZt5vVf/4dmcWlTL3oCo5u3YjJZuPMm24jMjjImV+6heBAHz3xfrxnz2Kc/koGmlXsmfnYs2T6O/SYHC4yvDKJ8G4M+i5GzR2Dvz+GrKarMX9UWFwGppxbQV9rEJ0k4s61pJwQpvfwuGveBCu/BT37Ydj5MPoKjkUahwRIABRNoaljP/9TeQvLB9Zw9YirybedfInydXWy/7VXCfanlKl1ksTc626gaMRomnZuo2L8ZASHA9uVVxD25pBvNTF87kL2rVvF0a2p+2l/eytrH7iPM7/8bXw9CkaLA1HXhq+rk7aDe2ndvxdBFJl8/qVYMrJJygreimryq2pxJbJINAUxeK1oSQVTyIDgKUW59Q6WDwgIgsyAKHDjrHJeO9yDJoDXYToRuA55DhNVOTae39OJomqY9CKfn1FGXFbIc5n50xVj+fFLh+gNxbl8YjGXTChOB7y/T0Sjkawv30Ti+HESDQ0girjOPZfo3r3YJk/GWFtLdM8eYntSC8X2hQsx1tfDbd9A/MF3UINBRKsFz10/ZKPBQ7uvm1lj47Doblj3E/C1QPWZ6GsWcklEx4zaWnqCcawGXSpBwm5Eqp3EnFuLUPo7MBiNvPLH3wKpwEVVlocESN4k2N+L2e5i7nU34M4rQFMl5l1bxOGNT/H4919HEESmXXIVUy64jMad29j+4tOMWziZgbaD+Ls7Gbf0PNY/8reh/vKqa8kuLWfXiucBGLv4bJKxGPtee4Wc0gq6jh+lYcdWErE4FeMm4q2sOkV0Is0nD1dWDjMuvw5b0obaEkO06xF0AvH2IMa8PPRFRSRbWojf838U/urn2D0ZgAaawKq/3EtfazOQSgyfcfk17HvtFaZecBmHN647bazmvbsoGz1+6LMj04TZricaPLlI4MgwMdB2gHUP/nWobevyJzjrq18nt7ySZFzmrBuHcXRbLwazhNVlYsfK1BwGB2R0JR6s06YR3beP2K5dANjPWoyUm4umKGg6HY5FC1OJcqpK4PkXyPzSDRiLij6EbzfNh4GxtBQ1GsUyeTLxo8dS1dkFAef55+MwmJh60WU8/v1voWmp95c9q1Yiq+BZPIk1bWs4r2gZvo7OIQGSN/H39uDJK6C3qZG9q1YOtS/80lfxeqvR+3QIVhFF0VAG4phcTuZffiNBLYGQU8y+Pb1k2g10B2P8dWMTXf4odqPE+sudCOgQjHY4shI6d0HR5JQAycHnwJYPOhHyR3+UX2OaTynGujqUQBDLuHFosThJTl3sPfB6O6PnF2OQFAY6IhRWWsnJgsTqQ+jsNpxLziJ+7CjO2gxEUUBVNQJ9Mv7efna/8hKQqsryyh9/i8XhwmA2o8gyTVs2UDN1JqIgcnD9GiZfcBk5JeX0tTYR8Q1iMltOWRysnTabYXPOwOx0YszMI5SQsfoNqLEYiiZjyLCjRJMU5tYx8/JriQT8KIpCZkEx/sEeKr9wAX8bfJ6BWKrqy3PHn+PcinM/ui/6M4zRaEROJGg9sIeuYycTHKZfcjVubwFmu50Xf/1TZt36FfQZVsLdet5oGuQHy+p57VAPvmiSSWUZ1OoNJB89inViLmowgW/5MQylDmwT89AX2tCZ9YjmD8vtmeazjCLLhAYH2PrsUyRjqUo3ZruDudd9CWeOF193B7FgCFduHrFQEJ2k5+jWjUQCPuR4nGB0EhVKnGUjvEQSCuFYklCTn+STKQE8xxlFxA4MEFzZhHlEFpbhmRgK7QiSCKKAaEj7mNKcZOOxPuxGiWy7iRHmXgRfiGQ8ZaPufNnPmPkiYxYtRafXY5Ft0BxHdBvBCGpURmxTKKkbTeWEKYT6egn5Bgj7fRzasAY0jf62Ftbc/yfO/eb3cGbnIOr1CAjU+zXUZpn9TZshFe+F3SySs+dn6AvHQTwIR15EN+Ur5N54Kb51IxBEkfDmTVgnT0bn8aChMfjQw4hWCxlfvIHBRx7BfcklqNEIiDr03lwCPT1k3nQjSjAE4Qg6hx3b9GloSRk1FEIJBBD0BozlZYhmMwgCgl6PcKIypmg0ogSDCAY9miyjCWAenbaZ05yK9JZKqgPtbRzdsoFpF19JRmERqqzQdfxoqhK8AKv/+gcifh9X/vQ3GK3WVLWtvl6adu/AYDaTWVhMMhZl/9pVWB0uyoaNx2b1YDbaSbhc1HjtzHDY4JkGbAuKiR0cIPT0cQSDDmlxKZbRWYgGCVlROdoTpD+UwG01cOfTe9nVmkqMN+hEHrhuAhPL3rlaW5pPBnGXk/DuATY9+chQW0HtMDKLShk5fxFdjQ0UDxvJQEcbok7HgdfX0LI35Zf193a/r7E0TSO8rZtkXxRTdQahtW1IWWas43MxVLiQrHoEgy5lT6RJ8ylHKi4m69Zb6PvNb9GSSaSsLHK+9U3MVe8cEG51Gskpd+KtcDHYHcaTa0VRVKzuf13JUo3HUQYGEO12dLZPbtL+pxV9bi7Jzi7UZDIldGcwoIbDZN12G9FNm0h2dhBc/RruSy/BPGrUxz1dABRFRQDEdwhkF41GXGcvwzJuLJmxGM1tTaz83a+Gtr92/x+wOF3UTJl+ynG6slISsTBWl3tIgORN2g/uZ/L5l7DpyUcIDvYzeuES7Fk5LL75dga7u5hx5XXEg0GS8RiSXo/BbD5lXW/pF74BPQlUDfQZZpLdYaR+Db05/X76XhAjGqJPQAF0GWYSnSHMUQsxS4JoOMj+tatO2V9TVbqOHaFy/OSPZH6V43OwuY007O7DlW2mZEQmrhzLRzL2v4PeqKN2ipfXHzu1kEDxsLR9/EnBPGIE7iuvZPCBBwg99RQZDz+MddYswieKAZjHj8c2c+bHNj8lEkH1+xFdrg8tub394D5W3PvLoc8bHn+QaRdfSfOeXZSPnziUePImge5uTBYrGx5/EE1NrU26vXnMuPw6Zl5xHc6sHNz56dicf4fAYC+SaMSSsCInouiyLCT7ooj9CnqLRNlIM3tWB6iZ4v24p5omDQCFHgu7Wn3MsjpQuwOIDgOCpCPZFcadl82K1b8i7Btk/NLzsDhPCi1qqkrnscNUTboIpf0wOr3AzhXLad79BpAqqvbyH37NZT/+FWarFeuE8eiLi0k2n4jV0evJ+vJNQ/dFq8uIM8vM2EUlDHSGcGVbEISUWNn7RVdRQe73vkf3/9yVEou228n97v/DMmbMOx7zUdyr03zy0DSN7uNHGejsQEkmsLrc+Hu6MVqtFNYNR1UU5ESCyolTaD+0D0dWDoXDRhLyDWC05OHvbmSgvY2B9lYAaqbNZNfK5+k4fHBojCkXXIbVqRBL6tG5XCg+HwCiw4F7YjFzX55HsuwMcH0HsmtPm6PTYmCE5S3+5HCCO5/ex6sHTxZ1+fbiWq6dWooovvfnthJIkGgJoCYU9NlW5L4IidYgOpseyZ3+DfwnNPSG6PBF+cm5Iyhwm2nsD7Oz2YfXZSYcl2nqj/Do1hYml2cwocRDkcdKU3+Ybzy1B02DRcNy6Gjppt7joCzDjMWk44XGf5BvzWeEfRgjs2spdruJHRkgurMXKdOMJSeLLIuFv/3uK8jJBABWl5uJZ1/AxiceZu+qlSy99U6O79hCVlEJr/zhHoL9fTiysjnzy7fRvHcn4YE+1G98G9XvJ2I2k/ONbyAVFQPg6+oYEiB5k8HOdmqmzgAg0NeDLSMTAENZGZ6rr2bg/vuH9s380pdwLl2GbcoURIdjSNA3zaebeDjCodfXDH02WqzIiTgv/uZ/hyqTZpeWUz9zLj1Nx1l2x7dTwuo7dxN+6GEAnMvOwuSWaHptF86cXKxOF4qiUDlhCv1tzZjtTmbf+l00exaluc6hsZKKymuHepldk03LQIRwQsHrMtPlj5OQBynPstEbTGAzSZRmWtHrRDRNQw4k0OIKcn+UyI5e5L4ook2PaNQhWCUMmaf6LgySyLiSDIySjpf2dfHMrg7yXCYWDfPyuzXH+fmFI9/1O2oLtvHX/X8dEiAB2Nmzkyl5UzhiPML84vmMzh7N3r69FNgKGJU9iixL1rv0mObfQSWJosj0tTZyZPOGofbRC5eQWxnHW1VDNODHlu3ltT4Dz29P5fhMKc9k/NgcDOZU0Yc3779vZbCtmfq5Iia9yKUTizneMMiNFjuGjjCiy4hlXDbJ9gjFRwKYl2R+NCec5lOFI8NEdqHMit/+eOgaDA70DfmBRJ3E1IsvRxQFXv3z/w0dVzRsBLUz5gIa7YcOnBQgAdA0tr2wnIlnX4DebOVYwsShvhgjrEa6AzEybUZyJR1aewglpqDPsZLsjyL1RJiQYeWCR3aSaTNw4+wKNhzrY25NNt977gBxOeV/+uuGJh68biK1Xjv3vnac+zY0omlQnWvnt5eMpjLn7UUVrJMmIeXnI7en1iIEo5HM669HX1KCIS/tY0nz38mBjgB13ncXgjQkggRMzlSRGcCekbIFAv295JSli3Gn+XTzYUXjPwFMectn5UTb+Lff/VOIIIAtG+fDZ+IM99I/5cf4EhLxQBSdNwvQsGdmYXW7hwyIrOJSSkaOoXLiFEx2O9VTprPtuX8MCZAAhAb76W1pxJhRgdWoIxjTUZFtJxSXKcuykqvXqNq/kZx7fo0aiTDt/Es4On4BNRVudq5oQlNASShUnelh+aankFUZQW/g9sovkHnLLbgvvhi1qpKAb5BYNMLKe385ZADtfvUllt1+J4LZihQN0LBt8ymnrCoy1aYodyyoRScImPUiCVllXm0OqqrhtJqQDCI5uWYkSQeagBpMIFn16FwGZF8Mg0WPoNfjvuwyzKPHkGxvQ8rJwVRfj876zpXg0nzwiKpC6dkV+wABAABJREFUT9M+Vj34EOOWnJsKsPUNMuXCy3j6J99n+Oz5HNq4DrPNyQxPKlnLOi6HwKstaFEZY5Ubg9eK7+Fj2KZ40UUsSEcSiMUqhbX1RKMB1j/3EPm1takEeAEmnnMRq+67l9ELl7D+kb8jJxJUTJjM4U2vA6lEj10rn2fWVdcjiKnAHE1T0ZvMyInEkAAJgJJMsvONjSxcsgizoKenKfWSOWzWGax7+H48eYWMOXMpr/zxNwx2drB39cugabQd2EvXsSOUj5tI7awZWPx9qOY8JJOCtTCTXR2HaB44xETraDyWEex4bhCPV0/l2Dj+3k30NEk4sj0ocoRdLz9JxbiZGPACaWfwR0FGnpW+1hADnWESMRm9SWLk3IJ/fWDvEXjwXEieqOhuzYJnb6Z36uVDu2SZMvlf57U4fvoUclML311wBlmFBnhL9/3trUMCJJC6Zg+sW0PlpKk07dyG1eVGTiTwTxzDyhNBBxPPvYijb/zz/VShv72Xna+aEKUoExfLbHry4aHtmqri6+6kZM5ZrDnSjzPWx2ivC1EUMXitqCeqdOjz7aBz0JntIWcgjtUgoagaqgYTyzLYcKyPmxfUEIgl+PVFo3CYJVoGosytzcbrNNPSHyaSUACNub9Yy3mj8vnzVeMw6yWy7cb3tViS5iSmqiqKH/g7idZWEEUEQUC0WDAUF5NUVHLuugu5ox1Rr0dXUEDt7/dz1ggvt/3lQdTeXnJK8pBz84hvbWVBfS6CrhmWfwGUE/bCvqcgGWXi3LvY1K4wyq0SNSQJ97QTPdiINTOHiCuPjJJ69j9zMpk3GY+hMxgQBHEo8f5NBFFk75pXifp9VE+aRl5NPbFAKvlBlHRkFhbx/K9+QiIaYcyZy3j5D/cwct4iqqdMZ+dLz57SV8fhg5SMOLmYvOOlZ5l07kW07N9LX1sLj33360O2x/YXnub8O++iePioD+EvkeaDpFvuxYkb0atD8SXQEhrGQgeCQcT7P3ehHt+KUd+BQWnlwME21j/+MNMvvXpIgARSz/S9q1ZSNXk6hzeuo2zMeHa8+Mwp4+j1hqHqewCODDNnfmkE6x45TG9LiOxiO3OuquXVP/7PaXM8umUj1ZOnk4yrRIIyiqwhJ1R0koBwIt63JCdObMcOrDNnkHvnnaiJOILJBIoCRiMkkwiiDn1WFoJejxZPYJkwAS0STf2mAU1RETQNdGIqUExRU/+KAogiuqwsDI50tYqPE9FgwFBdjehwkDdqFJosgwYkEwhWK76GI6fdBw+tW8XMORMB2DKwnYXWEaf1q6kq9oyslF35FtY9/Deu+dZvkYUoaiiJllCwjssh0RZA0GmEfW0I0RhNPXrm11VwvDfMrXMrkSQd47NBaHwBIbMKnr0JwifsjIY1KeGpWd8CSYL2HeAsBFt6ASTN6cjRKMmurtS9TFFO2B8i6KWTbQYDWjCIYLFgrChHn5+HKsuIBgsmq55YOGVnaBrEwklcZVb6e+K0HvZjkQUypk9HNBlR43G0eByry8CiaytZ93QL2UVGjm1dfdq82g7uw56Vg9FspmjYSHa/8iJ1M+ZSN302FoeTvtYmNjz+IGfedBt73iLsA3Bw/WsUjxjFgQ3reCZjHlPLsrnCbkAqc5DsDKMG4+hMEpJBTyy3Ar8hiDXQTuO+PVgLMtkS3cse36lVXwaigQ/vj5DmFGKh4CkCJADbX1xOQf0wVt33O2yeDPYmjlIlZmM1mjh/bAFtg1F2tflYWO+lPxRHpzMgmiUEnUB0fz+OecUkeyIooQTx9R3onAakTDOGIjuS/e2V+dOk+XdQFYWmXduHBEgAosEAnUcP4crLZ9uzT5FTVsmeV1865biaqTNZ9/D9yPE4O156li99/X8I2S189bFdfC3LgxnQ51lJdkWQeyM4F5YS3tJJRDkRYBOTQRAwFtkxFDkQ0u/jn3miCYXHtrZw7fQyDnX6ma97jmRvG9lFV9LTEkUnCTizcmnYvhVnjpfKwvGobhElmEA0SRgr3KgJGWPATNuh/Vg9Gbi9+UT8vqFgM0j5/H3dnan1Dg2UpIyqyIBGIhLB19OJnEjg9uaTqPgiZeuuhYlfBCWJtvUvyFV3EtmwHrmnF+c55+CYPwdRCKPpPRT8/jcg6kHUYZ06BUQdqClbBU3DNvcMAASjAS0cAYMeQZJQZTn1znVinhogqBoapN673kzKUVXelDQVTCb0uV50lrSPNs2p5JRWYPVkED6xtjDQ3oY9I5PyMRM4unUTW5c/fsr+peMm4YvJxPbvxGpxcXjd6xzauhZNVZlz7RfRNI3ZS6/F2e1Ebo9iNDqR+k2IgsziuhzKEdEVO0g0BUi0BAHQEgq+p48hZVkIZBp4/Wg/339+P4GojM0occeCKroDcTr9MRKKyq9XHeW+AtdQVcY0n0wifh87XjzVL9p2cB8j5i3i4IY1vLH8SUYtPAtfVydNu7afsp/H+x7WNN6CGk4S2daFdaKXwMvN2Gbko/gSyP1Rkj0RYg0+rGNzMBQ50GdZ0FnTgs9pPr2YSkoQly3DOnMmWiyG4HZj/hfi0Y5MM8X1GWxafgw5phILJZl0dhk217u/S8aPH6f3/+4ltHo1pupqsr/xdSxpwbOPHMvoUcRbWlAikZT/3Wgk+OKL+B57HJ3LRe7/+w7WmTOR7P9ZBTIlEiHR1ZVaIzhRyV2TZQSbDUGW0eJxBL0eY0kJgv70+2wiKtN6aJA9q1sxWiRGzi3EW+58RzESQ0EBBuDIkw+etu3A2ldPEyHpam0GSYeoe6cQsJSN3H5wP+0H92O0Whk+dyF7V61kzuduQtPpcXkzSMRip63rZWYWIRlMoGmogTg6pxGdw4gnnha3ei9IST1Chh6tL/X96d0mRIcBoyZiNFuQjKffa1JVXj8aFFklGkwgxxXCgQRKUv3XB33MlI3OIjQYZ8/qNnSSwMSlZXgrXB/3tNKcQMrIIPu2W3Gdew5qLIahuJjsr38N+dJLQVPRFxR8LJXWNVUluns3vb/5LdHt27GMH0/mjTeiz8lGyslB0H0w71dyMsGxbVtOaz+0YS2u3DzEtxmnZOQYNv/j0SEBEoDBzg5C/X2oiQSa2caBkMiMD2SGny1iwQAFBTXo7Aa0hIoaSKCz6JGyzNg1A1FdjGFz7Oxe1ULVhFzcuenY1DQfLy6LAZfFgC6poSuwowzE0ZIy+jwboklH3aTZvLHiH+xc8TzL7vj2KccazRbY+lcMbRspnT6Z5SveOGW7IssMtLWSVVSCobiYoj//idiBg6ixKKaqKow1NUP7WhxGykZlsXl5A7FQkrAvzqRl5biy37+NYnK5MJ1zNvriYpS+XqSsrHd9b4ru30/Pz3+RuldPmEDmF7+AZezY9z1umv8+uo4doe3gPvauXslgZwcA9TPnIieTNO7azsRzLiTQ18PrD98/dIzNk8Gim24js8jK5idfQdNUcstPiJBq2ikCJJCKUVxy6wgixgFKv3c5sX4RbDmYdM0Yt38T5Dj6Iy9AoBWufAYsnned8+Gu4CkCJAA/W3mYubXZlGa+d6FS2RdD5zKiKSpqII5oNSB5TMi+eFqE5D8gFJPZ2+6nMtvOQCTBoe4gRR4LlTk2fvjiQS4eX8SIAhcXjCtgfLEbnU5k0/E++sMJJpVlMLXQTu6hHcT+eg/qwAD3nn0+0dlLqc34FnJvjPC2bvT9InJGmPjhQRxzCglv7yF6aACpxo7JZh9KIg77BolHIhitVqKhAEe3bkBvMLL6L38gEU3FrAd6e1hx7y9Z8KVbCPsHqfjjH5C7u5EyMhDr6zGaUmK5byY8/jNvCtY5sytZ+ed9jJyd8jtkfPELWGfMQO7qRJ+Xj6m+Dp3djj4zLeT4WaLtyAH0ppOCy6MXnMXGxx86ZU24p/E4FeMm0XZoP0arHUfoGFKFF8ftn0Oy6zHFtyMtv4Bh0/5EZ3MbG594+JQxxi67gKDoYk7RyWsrnlR4/WgfbYNhZlXn4LEacJn1ROIy96w+xs1zK/l/z+ynZSCKJArcNr+Kq0bmQ3s4VeDaLCHa9NjnFzH46BHUUBL/iiYyvVbIfHu7ZHiBi4psGzOrslixr5OV+7u4+7zhjC9xv+3+b+Ixe+gId5zebvLwhzP+gMvkosJdweS8j0Y09rOKKgigaqcIkADsfuUlysZO4Jmf/oD5X/wKiUiE8iwPOXZTKm3TJLGrK8LUiy5n+U9/8LaFTx3ZucwbXcrcycPp9McYkw9Wkx7Zl0ANJRHtekx1HuLPH8ea1E47Pk2af4XNY8JiD/+TCM7J2K4xZy4lGY3yxstPnXJcy749lI4eT9exI9gzTo//jgUCiPo8XBkGJsYizBhjRTOEUUWF/lgYp5iFzmFEk1P+Z8ksIWWYqJFE7j53GM/s6sBh0jO8wEXbYITfXzGGWFJFJwgYJZEuX4SkomLS67htXjWbGvrYcKyf3689zo/PHY5BOt32MJaWUvzXvxA7eBA1HsdUXY2puvoD+y7TpPmo6Q3GaegLc97Yd47T0FQVXXiQmL1kqM2RmRIhCfb1fdhTTJPmY+fDEiGRNE0benJqmpYQBOE9ySALgnAL8DlSsaN7gWsAC/AYUAI0ARdqmjb4Ac/5gyMRAckIoW7wNdM3+S4ef+hlosETCS3Ln+W8b34fW2Yls676Ei/+5m5GnLGQ8OAAO158hkMb1zH9oiswWqyEBvopHjGavKoaNE2jZe8uIn4/xBIYJR2huEymzQgCGCUdIwKt9H/zG0NTkZY/QWHtAl576iAVY7KxeYwMdIYxYMAgGpBVmcePPc7jxx6nyF7E3xf9HUNERZR0NO/eeaoBpGnsWvkim8vPJseQxGqznzynE/gVHbc+vpsSt5H/myVgP7oWj07kuqqFRDJHUPZlM0ZJQOmNEtnVQ7I9hM5lxD4jH8Fy0tjX2e1YJ04AJnyYf6k074Ip0svGZ58HwGAyEejtpmL8ZA6uXwOALSOTva+9TPXk6WguHbSAoBfRojKIYCxxEHi5GVO1m0RTgPhxP8YyJwaHjdCT7WgJhZk1FyGX69iy/AlmXXU9259/OjW2zY6vu5OKcZNo/SfFXoC+1maGz5mPy5tHdmkFEf8gsWBwaLukN1A7fRbO3DwCcZHk889SXDecxr07UZIymqqSXVrGse1bWXrbt4gGgyz44s207t/LgXWr0TSVvKpazLLAwI9+i2h3YBpWz+Ajj7L4C18gtG4vavgYjqUxcutF+rwOVv7+97hy8xh5xkI2/+Mxgn29lI+diKpG6HnkQZxl5djnzk1VYUrzgaJpGn3He+hv84PBwp7VbVSMzUYniTTt6aN8dBaOjHd2xneEOmgLHMcx+w5K9z2DsWMX6PTQf4SR7pOK5rd6LsBy689InhCGCix/DtUfIO9ndehOJMTHQkGyS8ooGzMBBOhrbqKvtZm8qmoW3ngrajJJ6/69RMPhoX7joRAWhzOV5PEWTDYbCDKebBPZuV5KRoyhac8OIKWYV5dXgvHFZ5g4ciQtR3bhVytxZDiIH/ER3d+HYNBhm+TFUO7k9qcP0TKYSpCaXJbBl+eU09wf5ptn1tHui1LksSArKj9ZcZiDnanfkijAj88dQUPTIMGYzIXjCnGa9fxpXQPTK7MYX+IhM53M928jZWQgZZzqyB8Ix7lvfSO1uXa+tS7B7FoD5cJRbl1i5GhblANaLgGrkfOLCrFJIrOrMmgZjMNgw0kBkjdpXEe8pYecu3+FICfwnbWAN155YWhzUe0wqs+9AldOHpAKcrc4XSRjMWZd9TnikQhdxw7TsOMNcsoqEEURV1YOBdW17Fm1kn2vvcLYs85BMhqxZWTR3XhsaEFEbzIRDfgRBAGzw0VmcSkjzlg4ZMd0HDmEwWKlZOQYmnbvQFNVVFVl+Ox5HNu66TTbY9tz/yC/dhiSlK5k/0nF39vDgYeepvqybxI/7iO8rRs0DcvobEzVbgwOFcndDiYnDDZTVVPG4dJyTFYbE86+AFHUEezv5dCGtQQH+sktq2DF735FZmERdTPP4MDaV4GUGM7wuQvwDQywtSuOJAo4LHrqipws/epoYqEkZpseo0WPOy+ftoOnJpe78/IBOLSpk01PHx9q1xt1jF1UjJpUMNnihI8rCJs2IWXn0Pmtb2EeMQL7ggUEXnkF5/z5BNeswTZjBpFdu3BffDG9v/gFka1bMZSVkfXVr+B7ejn2GTNApwNJl6rmYjQgGE1ImRmoAwPIVhuWutOrZqT5aIgcPoIWCqJpGmosBrE4vT//XxKNTVgmT8Jw9eWnHWN1u8nVedAJOjrDnWSNrsZosVI7bRZmR0q931tdS19zIxPPvQhBEE5U0d7IpIUXkDjmJ/h6G1pcwVTjQdTrMOTbURBxGXLYvPxxbvr8N/jd641U5tqoybbTHYjicA4iRPrAbz4pQPImAw1gtMFgEyTD4GtOi5CkOY3IwYOokQjIMmokihaJoISCiGYzWixGvKEB6+TJ9P/hD0R37MRYVUnWrbcSO3QIuacHY1UV8y+dwuaXu+lpCVI2MhNnppHVfz9ZabLhgMjCaXFsiV4iI8ayz5qDltQQTSLjr6+huz+EpTebgY62U+ZmstlIxiIkImHc3jzaD+7H193F7Ks/T/Ou7VicLjRVRRDFoeBbV24eVZOmIoo6JL0B8+Sz0DdqTK/OQBeGZHck5W/Y04egE7BOyKWg3sPBVX+lbdtbKiTMnE578Ti29m1LzUVnwqVPV3j5qJATcewZmdRMnYkoSUR8vhO+BgFndi5Tr7yaVbq9dA8aybYZ8UcSCKLImcO8bDzex5WTi7EbTOjybcQbA5gq3cSO+jBVuVKVUHoihDd2IFr12M8owjYuB0GfTtJN88EQCQYIDvRRWD+cgtphALTu30twoB9fVzsj5y/GYDLTsncnvu4uAApqhhELhZDjqeoWSjJJ5+4tbPJMZniBC7fDQgwwFDuI7OzBPi0f/4omRLMOU62H6M4eYkcGEUwS2pQ8NEnEVPCfJdCl+e/HF4mzZFQeogD5xii6HQ+jC3Yyd8Y8DpaXIuhaWfn735OMxzjrK19Hi6kQVwhv7UYNJjAUO7DPLSQZSNB57AiFdcMZaGtF1U5POJMMRuKRMHIigZyIk4xFiYVCxCMRLE7nCd8CbHllLYVVc9AfWQkl04gZxtN2651DAWyDDz4Imkrs8GGiO3dhP+MMbLNmoakKAgKaAKgq/pdW4Fy4ANFiQedy4X/yKQIrVyJlZ5N9++3oMjNRQyE0OZlK/ownAA1NUVDDYdRoDEGvR+d0pvaJxdC53UizZkFahCTNP+H25nHBt/+Hln17CPX3UTR8JN7KVNKFt7KKqsnTOXJCJN3idGGZuBhDexxxnYDs72F0/kyqrp1Mc+tuLA4nVsmJuCJCPJxawoz0xzBWuKAJzpqUy0BPmPxiB6EN7afNJdQVYmtQ4HvP7icYT4lMh+IyP3rxENfPKOO3q48B0DIQIZZU0iIkn3BkOYmcTDBs9jysbg+qLHNo4zqURAKzzYHJZmfXiuc55xvfo6fx+ND6QNXk6eTX1L2vsQSDDslrRQkmkHIsqMEkii8GqkrsmA/HvGLCmzoJvNiElG3GfV4VxuK0QG6aTycxn4/E7t30/O/PSba2Yp02jcwbvviuVbYjwTib/nEMR5YZZ5aZwa4IW55rZNEXbJgsby/aowSDdH77O0R37gQguns3rZ/7HCVPPYWxpOTDOLU074LxhNCMpmn03fs7Bu77CwBqKETH7XdQ/NCDSP9B4mL00GHUcAg1FEJ0OIjv2EHfr+9Bjcdx/vgeApY84j1RbHIbluXP4r7ogqE5vUnLgX5W/mn/0OemPX2cc/sYvOWudx3bk19A485tp7S58wtP+ZyIRek8fgQlnqCgbhh51XV0HD4wtL168nQcWVkIgkjRsBEU1A3HbLeTjMcpqh9BqK+b1x/6K+fdeReJaISI30/pqHHkVlSiaRomhwOlM0JoYyfKQAx9rgXd1DzM9rRt/V4Q9Trk3pSvShmMo8+zYpuSh5RtwmAyM+nsC3n9kfupnT4HRU6iN5pOKebwYaJpGgc3dLDl2cahtkMbOzn/a+Pw5H1yE/FtLhOTzi5n2Ix8BFHA7knH4HzSEI1GTG9JZpfcbigt/cDHCQ5E6WkKEovIePIsZBXakd7GD5zs7SWy9Q16fnI3ck9qrS28fj2Jxkby/vd/GXzlVdwL5qPPzf2P5+Rva8BgOv3+aM/MIqusHE1RsThdlI4aizM7B03TcObkEh4coGrSNDz5BWiaxrGtm0jEomxf8TyRwIMsvv27QLqS7PtFTiZwFXpRehOEN3ci90aRsszYpuYh5VqQI4PozRZ2vtJK095+ltw8Eks6DirNx4ikE7EYdIiSjvgxH+HNXWiygrk+E/OITCrGTyEuRzn4+msATDrvYkRRJDjQT3ZpObtioykxW3BpjZhsdmKh4Cn9G98sAtm9H0PzKxi0Hhi+AAqKTwo7A/Fokm0vNWG0SHgrnAT7Y6x/6ihLbxqF9R3EGmPhJL0tQQJ9UWxuE1nFtlN+T9Yx/1qwMdHZSdsNN5y8V7/+OonGRrK/9jX0ZaWYK9JVhT/NdBw7TMeRQ0MCJAD7165i5hXXsfbBvzD2rLPZuvyJU44JDfTj7+kmv7oOZ3Yux97YxNjF5+Dv6UZOJjHbHdTNmINkNBIPhzmwbjWCqOEW2jGGtmP0lqIV1yI8cA0AyYwKmkdfTL8IuYFmiszuIWGHtyOSkE9ri8sqsfcp7KeJoAQShLd2I3dHkDJM2KbnI+W9dyGTNKdzuCsVv/rDFw/S7kvFTrsseu4+ZziLh+fx2ButzKvLYXShm689tZeuQIzJZRnMrcmmqS/MVVInXV+/fai/zEwvwkGFvgP7EIw6bFPyiB/3k2wPYix14l/RhGN+MYGVzZgmZVI1eRp6kwk5keDAutVEAn6MFhsVEyZxfNsWaqbOHIq3fZNoMICSSJBVVEK7R2Ag20meNZvCt+QduLz51M2Yw4F1JwsB5VfX4e/uZsLZ19BywEjb4V6advVxzh1jyC11YZuSFk34rKPJCtWTp9O0Zyc5ZRUU1A9nyzNP4MzJpXrydERRR6CvB03TqJowhWjAh5dBpKZHoG0zGGx0TriW1oqbyXDJlDuG0XZgL90NqXWrjLw8huer2E0NQOq9KppQ2NU6SKcvyvACF9f97Q3UE7oOs6uzuPvc4dyz+hgtA6nfp6xq/Gb1MS7LdqG2BtHCSQIbOkBIxX45F5Xif6EBFA0llHy70xzCbJCYWJbBqEIXAMb3EC9U6ixlev501ratHWoTEKjx1OAyud7fF57m38YRD9GVSGB1e6idNgudXk80EODA66vRVAVFlmk/uJ/8+hEMCEkybAYEQUBRNEJxmaIRo7jwuz+mv62FMYvPZscLywHQG00s+OLN5HmzATDrRSwRleDadhLNAUS7HvvUfFQVbDML0zFmaf5tjI5TBZLMDgfTL7uaRDSK3ZNBaGAAR1Y2oxYsBqC3uZHj27agN5kw2eyYHc7TigmPOGMhPcc38eKv/4HZ7mDqnEXk25zoc3Nxh8MYCrNQBhNE3ugi2RVB5zFhn56Pzmsl22Hi9gXVXPLHLSQUlR8srWdb4yCPvNGKrKhMrcjkwnEF+KJJCt1mmgbClGRYCURl1h7pxRdNkm1/+9+DoagIw78oApAmzX8Law6nxCVnVWe94z7+nm4MiRAh9WROm9nhRKfXn1LIPk2aTysfVjZnryAISzVNexZAEIRlwL+U9REEIR+4GajTNC0qCMLjwMVAHbBK07S7BUH4BvAN4Osf0tz/cwQJVBkMdjDYaPPrTxXr0DQ2PvEQWeVXYHU6WXLL3Rzf9jKHNqReWoJ9vbx47y+55K6fMeWCS9mz+mU2PfkICALVk6ZRNno8jQjoBNja2M/YYg85DhPhuIy4a+spUzHMX8Ke9f0oSZXDW7qG2ovrPPx61q/44dYf0RRoYkTmCO6cdCcZ5gxC8QEEBGT59Be0ZCxCXzDKa10RfrT0CvY99H9D27w1w1BcXi4eL3N1YRf5q2+GuqWgGeDF27Es+imWyglEj/uI7O7FXJeBqdqNoBOJHR3E+i4iAWk+elRE5EQqEVw7ESiu0+uH2lI6QSmF3sQ4BfGwLrUYIQpImWaSHSEA9AV2gqtaADBWugisbE715TRgKciAhMh5n/suuMTT+vb3duPJK6C/tfmUuZWNHs+eV15i76qXmXLhZfS1NpNRkDJgdZLE9EuvZseKZ/GvfpktRhMzzzqXid58Av29iCeS2H1dnYw4YyGv/PG3Q7/PvKpaFn/l6+gkiZZ9u9ne2U7x2UuxJ2R6fvRjHGeeif/ZZxGyvViu+wrBl57BOHkMG558CEgpb6976P4ho//o1o1oaBR7i+m47XaKH3wAy7hxH9jfKE2KzsO9rHuiiWEzCziysYuwL87uVa1D2xt29ZBX6XrbY3f17OLLq7+ML+5DQOCGunO5wuTApksFFY5LKHx7zC3cs+8+cvsUtOSp98XQa2uRmw+jq0/9XQvrRxALBdmy/HE0VSWvupapl1zJc7+4mxFzF2J2OknEoyQT8aE+Dm96nTFnLmPDYw8MteVX1lBUlEXm8K2oxw8RvPIFZvzoh4ydPodYczOmji6i3/kuanU1A04L259/mgtvv4tESyBVsWNOEYIAsj+O4k9gektA+qaGfi4cX0CWw8QdT+5hIJz63V00rpAij2VIhETV4HdrjjG5PAOTJLGvPcCOllTw/MNbW7l+eil3LKh+W3XLNP8eO1t8/N9rx7l9fhWXTbWyM/p7Vh/bBcDwjDGYzF/HYcpCL4lomsbxvii3PLabwxeeHjCeGHYDbV/9OkpfH6av3sz21StO2d5ycB+tnX6cuWMwWlajJJNMOPsCVt33O+QT12fVpKmcefMdGC1WXvzNzxi9YAmb//HoUB8bHnuAKRdchjMrJ1UV+QQCAjpJYtfKF1h00210Nxw9acdMnk59XgHJWARBSAlKHNu6iayiUgpqh/HGc0+efi7RKKif/Kpbn2V6mxrQ6Q3IvREEScQ+swBBADUmk+yJYCx3QLALDjwDS+7BHW1j2fXXcvRAAztefBY5EceTV8D0S69msKOdlgN7mXbJlUTDYbzllWQWFRPs7aFo+Ej0FjOaqmJM+gioZjr8MaJxhUnlmacEhI84YyGHNqwbqlBvstmpmjiVkC/GjpWn2hXJuIJOL7JvbTuhwTjZeWOYJB/FDtjnzSO4YgXywADW8ePp/9vfsM2Yge+pp8i86UZ67r6b+OHDACQaGuj4+jfw/vCHdH3nO7ivuDyV5C/LaCcqH6qhIFJuLqKmIYfDSNZPbhDnpxk1GECLRNBiMUSTmbbbbkM7kRQc2bQZz6WXkF1YTM+bNqggMG3WAhx9/Xx1+I/ZMfAShzdpLLrpTtY9eC8DHW3o9HpMdjvRgJ83nnkKVZHJKatg6kWXU1k1EbUzhm1KHoJOJNkVRu6PInqMhPCjoSHH4yiyyqsHe7h4fCHdwThHukJopaaUwKXxbRKNRR2IEhgNIOhAn36fSnMqajKJGg6jRaOowSDJri5QFBAEVL8fNRTCUFRE949+TLI5db3Hjxyl446vkf/LXxB85RVCcT3rlreRkW+nsNaDySaxY2XLKePISRU/LiwDh5F/9b80XfhVdFYr25sHkRWVRcNyqZx/Np2H9qKcsKdtnkzsmdnEggEad27D7U0lL4cH+omHQqiKgk5vYMLZFxDs78eZk4vN5SGvupbtLyxHSSbJLCwh46xrOHtsLoXJBjSxDDWcRFM0HHOL0BQVQRSQ/Anad2w6Zc4Na1/n/FuuYmvfNorsRVxUeiut3VYmvL+C42n+TdzefIbPWcAbzz5FMh7DmZ3DvOtvQifqWHjjLVy++0bqM4aR5ZnKk9v8nD+ukHZfFJtJ4nPTy9hwrBd3SSa1Vh0mi4TkMRF8rRXziAziR3zEj/kA0DkMaFGZyJ4+pCwL+lwzoiEtbJfmP0NVVMYtOZf9r70y9J5TMW4S9TPn8vIf72HaRVew/vEHmXXl9SiKTDIWY7Czgy1PP3ZKP3I8js0o4Ysm2GlJUJNtTiVzZVnQVA1kFcu4fGIHB4gd92ObXoCgFxEE0CKnBzWm+ewRSaTek5v7wpTnZaIdzUfwt+FZcw3eGffx9B/uH9pXVRS0uEL0wAC2yV60pIqgF4ns6EYskXB78wj7B1GSScrHT2Lvqyd9CPk19RjNFhKRcEoUTNPQVG3IXyzpDbzpy03EYqiSGexeCPcT9ydOqaAF4H/mWZznnEN023aCK1ci6PWY6upO9KuAqmEbP46eu39C1te/TvDVVQRfegkAuauLjjvuoODe/0ONhFGCIdRgADUUQg0GQdIjuV2IRiPJjg7Ca9dirKpCn5uL0ttHaN06XOee+yH+VdL8t5KRX0jGPyXzApiwMmfetUyZfhldWoRX2wdRFSfxfzSBkrq2lfYoNtmMOcvG87/6Cdd9/XeEwv5T+okf82GfW4QukKAv04TSFEafZSbZdWqAcZesEE4wJEAydLysYpTEoc+XTSzCbX1PdR/SfIwYDCbmXX8jm596DF93J3qjiXFLzsHlzUMa6Kdq0jT2vPoSoYF+zrrju8iRIEaTGU9BISbr+0swEA06HDMLiR33YapwEd7WjW1qHsHXWrFNyye4qgU1IiNlmrGMzCZ2ZAAtoaAvsKMzp+3jNJ8ulEOH6Pj2dzAtXIr+3CLkrevo+eUvyb3rLkzvIA4y0BGhpzlIT/OpCXqDXWG8Za63PSbZ3j4kQPImajhCoqkpLULyMaL09+N77NHT2qN79/7b1dM1TUPu60WLxdCSSdR4nO7v/wAA85e/warXwd/fBIAg6pm/YCo88gg5d9xBIqYQCyfRm3TsfLnln/qF5v0D/1KEpHbabPatfoV4JFXgwmixUjd99ql9KSpoIEo6nv/1Tzj7jv9Hx9FD9DY24Mr1EhroJ9Dfz3l33sWRTa+n1qQFAYPRyBmfu4n1j/4t1Y+qEhoYYO51N3Bk83o2PfkIgiAyZuSZRPb1YR2XM/QuEd7diyMjHWD8noipxA72Yx2fe/JdbHcPtjmp769k9Fji0TAv/+E3iDodSjKJpip48vPRGz9ccY3QYPw0X28yptDXHvxEi5AAiKKAIzO9JvJZJjgQY8Uf9p3y/F74+WGUj8k+bd/Q6tXIXd1DSe1vkmxvJ7JjB+bZ8xls6MHlysRgegf7WElCLJAquqF7h32C3Sgt2zCYLVjdHsKDA0DKd1I6ahxHt26kfOwEzvrq13n9kb9xYN1rCKJIft0w5lz7Rd549imObF6PqJMYccZCcsoqSMRioGnsWP4oZcPq31bgJM0748zJQVREgnv6sIzOPnkf3tOHPaOAZDyGwWJGFAX6WkP4uiJpEZI0Hzs6QUDxxdFiCvYZ+Sn3qqIRbwkQzwzRuHMbs6++HpPVxs4Vz5OIRMitrKJszHhuOvIPSt35/EhtZPY5i3npgZO2cdHwkWQVFkLHLvjH9VBxBugtsPoumPoVqF0ytK+/N0rLvtQ9rHH3ybD/wa7w24qQyEmF3atb6G8L48mz0XZokKa9EpPPrsDwPvwOyZaW0+/VbW3EDx1CSybSIiSfcvQGA51HD53WHurvx2ixoCnqP1WVT6HKSXSSxMj5Z9K0ewcNO7aSWViMKzeXCcvOZ8vTjxMLh7C63My66nr0JjM2nw+y66H3IPQehepFJAcaeXb8xfzPob8jazLmxif4xaxfMC1/2jvOuTTTis0oEXqLP3diqYcC9/t8XsdVInt6sYzMOvms2tuHPSMttvefMBhJcqAzMCRAAuCLJFlzpJeRBQ6W72rHIIlced9W5tXlUJ1rpycYJ6moXFllIbHq1aHjDGXlGEomIehN6HNsCJJIZEcPlrE5BFY2YarPBA20pIrOYwKbjsObXic8ODBUpM1gNmOyWskpraD94AEkSX9akrFOktBUlfaGw/y/Xb+jNdSKTW/jl7N+yaS8Sam5mExMufAKCutH0n5wH3nVNWSXVNByIMz+9UHCvpT/QFU12g8Pklvq/Ii+8XchHkrlVZldH/dMPrPkVQ/ntb/ey8Iv3cpgZxst+/cw7qyzEUQdO154BjmZwJNfQO302cQjEQ6sXU3hRA+SsxDEbexZ9gu+vO9eBtpTOWbXV5zHhZ+/jsSxHWiJEJ5EE7Y1t4LRAZ9fQ7OWzd0vHaKpP8ydZ9Zy6+O7hwRIAF473MvZo/LZ1nxqTfKRBU7wxRGA2KFB7LMKQdMQdCI6txF0Aiga0juIov0z70V85E3KXeXcMPIGBATWtq0lw5zBtyZ8i1pPutDgR4ksW7B5Mhm9cAlblz+eEm7IyGLWlddjdriAlCCz2ZPFxgP9VOXY8UeTbG7o56yRXvR6A4V1wymsG04yHqN22kxiwSDO7Bzc3vyhcVyaSP+6lACJZVwOksuImlQxeI2oSQWd7e3FydOkeTd8cR89pgiF9WNo3b+DvKoa+lqa2btqJYIoMvGcC9A0lZyySrY8nco1y6+pZ9J5FxPx+WjZt5uxi89mxuXXcnD9a0QDAYbNOgOTw8Hq+34HpET4Vj75IEuWXEiuJCHoDaBAeE8v5hFZmGpP2JL7+rB7TPxsxWEuGl9IQknFG1iMOvSSyMXjC4nLKlk2I7tafbjNeh7a2srk8gyqcuxk2Y0c6QriNKd/C2k+G6w+1EOuw0Sd950LufQ0HcekxEioKUFKi0FCEATsGZkE+tIiJGk+/XxYkUVfBB4SBOG3gAC0Ale+jzmZBUFIAhagA/gmMOvE9r8Ba/gki5DoDaDIoNPD+GuJd5+eOBsNBCiqdbHhqVaUhJWD6187dQdNQ0Cgv6ON3PJKSkaMRjIYCPt8BAd6CbuzEUSBiWUZ/HFdA7GkSlmmlau9p6ryC4k4Oul0JV5V1HAbPXxn0ncYiA2QYcqgzFmW2nYiiLho2Ej2vfbKKYHCI+adyfdeDhCXVX7bYOWaa76JNdpPoTeTQUsO1zx2hPJsK7eZ30gJkGz7K8gxGHYu9BxALRiHosqYqzyEtnZiLHOi+hMIJt1QZeM0nwzkhMjoKTPZunoFmqphtFhp2r2dUQvOYss/HiMeiWDPyKTjyCG6xzViHG3GaMvBfkYh4Q2diPYTjitNA1FAMOpQAiknsGAQsZ2o6oqiIYlgnuXl7Bu/zbN/uJtkLIbV7aG3uZHaabNoO7CXaDBA9eTp5NXU0tfaTNOeHUAqCT67pIyaKbOYecVN+LqOs2fVCvzdXSAI1M+cS0SEPv8gM+cvxZCbQ/eocUQjIY5v2zwkQFI7fTZZRSUoiQQ6vYQjKxujxUpEFPGHw1i+/U30FhvyxHnsbHHjez7EmPmL0JT+ITViJZk8xSEIcHzbFsYsTL20Rg8cTIuQfMDICYWupjBZRXaObu9G1Imn7aN7BydSf6Sfe3bcw/DM4bQGW2kKNHHv8aeon/JDpHAfWVc+iV+nZ0zWdH7kKsd7JEjgn/oQnU4E+WRQQzwSwWCxMuuK6xBEkVgoRNexI+gkiY1PPMTir3yN0pHj6Ny/Z+iYaDBAw843OPuGW/C3NGMUddh6+7HqRHrvuftk36+tQWtpRtu3nzfd4sa6Opp27wBBQNIbMZY5CaxqQW5POZL1eVaMJQ7++SngiyRRNY3JZRm8uK8TTYPHtrVy2/wqVu7vHtqv0x/jjNocuoOxIQGSN/nLhiamVWRS47WT40gHOnwQ7GtPJSg09oUpKT/A4Y59jM8dj6Zp7OrZRWN0C3NyLwCg0x9lc8MACUUFhxfyx0H7yUpoScswlL6UQJIqSaiKctp4sXCMg5sV5n/xW8RCXciJBAu/dAv+nm6iQT87XnqOmqmzCA30M/3Sa063VYDuxmNoaGSVlCLpDcjJBIc3rWPsWecQ7Oul/dD+kxXaNI3DG9cx++ovsOvlFxjsaGPyBZey7PY78RQW09N4HHduHlMvuoKWfbto3b8XgLGLz0YypBMrPskkE3EMBiOCQUfs2CCGPBuarJHsCmGblIff6cGChmnKlyHSC5KVuGYAUWDcWecg6nQEens4vGk9w2bP45U//obMwmJmX/V5nvjRdzjnju+kcto0EBBxBvcxZc23iedPpnv453nDl4M/ksBpOXmd5JZVcun//C89TQ0Iokh2STkZ+QX4+6KIutNt40RUITSYEqHo6YgTGTMcW/g4xtJSgkCyuRnpzDOROzqQ3G4Sx44hGgxDAiRvokWjqcT+cDi1UBg7Ue0+HAEBtKSMaLUi6PXI3d1IZWUf2t8lzduT7OtDCwZBkkh2dCBarEMCJG8iHjnGtIx8wqMmkNAUHIjoXnyZxOIz6bLUM9r1BYxGgZZ9uygfP4m5I8bg7+1GTsTR6Q24cr0MtLfS3XCMzMISxHKRWHsI0aYn3uBHcpvQmU3orHrig2H2rXmF4YuW0BuDOq+dDcf7+cO6BgAGwjn8ZnwNgtkNwy+AvW+p7DLpS9C8CerPhUQEMqs+yq8yzX8Bya4utGgUFCUVsBVPIA8OYiguItnVTWTrVtyXXDIkQPImbwqWSJlZ9Jry8fdG8PfGQID519W/rc0tAEg6Yps2MuKKG/h/b/SzdGQez+7u4EBngKc64tx+612oA62YJQlndi7xaIR4KERmUQmdRw/hyStkoKOVgfZWskvL8fek7NL1j9zP9EuvRpQkVv/l9wC4crxUT5mO4GvAaQzT63BQYJFABDUqE9nTi6HIjjIYx+Ix4ckrpL/t1PMsMBXz1er7ONwp86N/+Ll5Tpw0Hz6yLKMkk/h7uph4zkUYLRaSiQSHN69n/NLzEASRuow6DgzsZ3rBQS6cOIWBUJLvLN/HvZeN4d41x1k0LJdnj/aySRT54rA8tLYQollCZzMQO3wisDvDhKnGQ+DlZhDAWO7COiEXU407LUSS5j/CFI/j7+kmu7ScwmEjEXUSoYE+fF0dKIkkHYcPYnd72PL048y+5gv0NDdgdblO7UQQKB4zgc89doRfXDCCX65vZHFFJpOsZsqybQi9qbd+yWEgvKkD5xlFBNe3o56o6GMotiM5jYgOPbr0gu9nlqSiIokC4aTK43sGGT3tFoTHLwd7Li1Hj5+6s6Yh6AX0XivB11ox1XgQ9CL6XBsej51edwN6oxGLy0374YPMvOI6BEFETsbJKCgiHokAAkazBVmvR280YbLaiIZDDHZ1YrRacOfkMX7mRIwHvwsz7oCV30KsPPO0eUtZWSiDJ31Moddew1hViZZIIIg6NEGAE0JqksNO8OWXTzuXZHsHgsmEzmJG7etD1BsQPRmp7YpKsrWV6P79mKqrkDwetESCeEMDwvFjOJctQ9ClBXU/jaiR1D1StHww98VEZ5i+v+5DPbGm4cww4h3pwZPUhgRI3kTujuKpLGDBl25BUd+m+ppOAFUjLmqc+/B2fnRGNWedUUzgscNoJ6piKuVOVvYHKCt2YdbriCZP+vL0OgGjJGI16Lhmaglnj8o/fYw0nzj0ko7j27YybPY8DBYLalKmu+k43soYcjyO1eXCnplFIhrFr+n5ybYEX5hRSJbJ8q87fxsMJQ6QRKL7+9A5jWiylhIw04uoERnRpscyNjtlH2sQMnfiPLMEU7UHyZFOskvz6SHZ1YPu27/m9S0KgV1xiod9juHZ3Sg9PfAO4iCK/PYxCsq7VC4WTCYEkwktFjulXbR8spP2P+0IJhNSrve0xEWd2/1v95lobQUN5I4ODBWVhDesP9GpjmBmFf69J5OZNFVjx16YJMt0HRvg9aca6W0OMnxWPjr926xhv00czz+TU1rOJXf9Lz1NKRs/u6RsqDjLmxitVtx5+SSjUQwmMy/d+0smnX0Bgf4ejr2xicyiYmqmzSTiH2TPqhWMmr8Yb2UVRquNiN/H2LPORVNVwn4fGYWFtB7YR0ZBEQW19ehNZjRFRZ9lIXZwAH2ulWRXGGOV+23XHtOcjqaoSC4TsaM+9JlmEm1BzMMyQdWIdXcTQwVBZOmt3yLs96HKSURJz0BHOzml5R/q3ASRt10zE8V/fW2mSfNx09d6uoDY+ieO4q1wYnmLfavG4/ieeBLb7Fmn9aFzu4nUTuOVB9oY6IxQsGUvUy+oILPgnwoD9ByETb+FhjWppP1JN0BWzemT6j+Gy2Wjd9N26mfORdLrU+8CiopO0hPs6+X1h+9n1lXXUzRsJJPPu4TQQD96k4mjmzdQMX4y9bPOQJUV/D2dxEIhTBYLoXiUaDCAKqeFid8vSlJGVWUMXiuxQwPoc6wkOkKYKlxoiobeZEZOaiTjqWeaIJ7+vE6T5qMmJiug05HoCCFFTAhGkXhzEPu0PBwZBkYtWMzxbVtx5uYx//M3EQ0FcWRmExrooz6vnq1dW1mRO46r+57E+aXLGYhbMHtyyMm0Yn31DiiZmorr3voniAehZnFKhKHUnxJaAkTh7W2Bt7MbAPw9UUwWA2H/AI27+8jIt1I3NQ9fT5js4vee/C6+XREfUQRRILJtO87Fi99zX2n++8gsKiW3oorj27ac0m602XDnFmJ2ZjBi7kJ2rnhuaJvBbMbtTVUZ8VZWs+CGryLqJPQmIwIi7YcPMuGcC5AMRpLxGMfe2ERGQSEPi3Hy8isZZXaQr8gkDXaOx3v5waH7UU/Ef0flKN98/Zs8dtZj5Nny3nbOZVk2HrhuAne/dIgDHQEWDMvlhpnl2E3vz0etqSrGQgfR/f0Y8mwkeyIYCmwga//64DRvS08ghqJCx1sESN7kYGeAWVWZzKrOQlNVRhQ4kXQCv3jlyNA+T02zIL5FFNJ16TUoIQ01EkS06IkfHcQ6yYsmq0NFJIBU8bbFJTx2z7eGBOmS8RhHNq9n8oWXk4hG8XV1MHLeIvQmE4tuupX1j/6dQG+q8vqEsy8gFg6x4W9/5ZIvLON1+3ZiSoxvb/g2Dy9+mGxLNv7eCNtf6uPodonMgmlYPEUYrVYadu8j7PuExbwk49C4BtbcDfEATLkZas4Ca8bHPbPPFvEgNsVH2biLkfRxtj3/NEtvuxNNUVj+05TQbkZhMTVTZtDX2ow7Lx9HTg5xAcwjL+XgiPP44eH7GYilrmkNjT8ee5LROZOZtuHmU8eK+dAGGnnwcBSLQce82hx80SQ9wdOvTV80SZ3XwYHOk5kZPcEEksdEaHcv9jmFBFY0oSkapmo3mqDhmFeMGpPRez8YH2xXuIuD/QdJKAnybfkklSTXDb+Os8rOwqq3kmXOosHfQGe4E5POhFE0UugoJNOS+YGMn+Z0krEkqpKk/eD+EwJOFlQ5Sev+PWSXpGKtKydO4f49fgqzM/nVq0cIxGTm1GQT+yd/vt5oIres8m3HUSJJEk0BrFPySDQHiGzrRp9vQ40ksYzK+tDPM82nkwP9B3iw6TGuGHk9lRPnYHUZiAYDnP317xDq78fidNHX1kwsGGDy+ZeiyEkkvQG9yUhvUyOhwQGa9uygdNQ4Rs5bhNnuBAFe/dP/nTJOcf1oDIXlJHs6kZwONFnBWOQk8Erzm/WDsE7yosoqg5EkspL6bRS4zUiiyAObmuk/UcRaFOC7S+qRdDC22M3DW1r4wbJ6su1G5tflYkwXq07zGSAuK6w70suy0fkI7+APAehpasCqptaF+4IJijJSMciOzCyC/WkRkjSffj6UqHtN044DkwRBsAGCpmnBf3XMiePaBUH4X6AFiAIva5r2siAIOZqmdZ7Yp1MQhNNl6z9puAvB1ww6E1k1Y+D5FaeIeQyfu5D+zgQLrh+GpsVo2JZFX+upCTGaqmB1uolHwgx0tBHx+/BW1mCy2SnMsNDlj3PPqmND+zf0hQnMHIUuOzsVSAPE17zMmB9dyZpHGob2M1okLHkC+3yH+J/N/0NMSd0EvzDiC1w77FocngwiPh+7X36BRV+6hf3rViPHY1RPmYFoMhOXU06ZvV1hbu2Ca6aWM25YGfc8fYCEomLW6zBYnLDihydPZs/j4MgnkowQ1cfRx5IYy5zEDg0iuY2Yq90pCybNJ4aEoKMwGMN91eeJJhOc+ZWvMdDeislqY8kt32Sgs525n7sRf3cXOr0es9vNsZbt5FfUYF6Sjd5gQ9zbR+xAP9ZxOYS3dQ8FAJtHZBHa2AGKhs5hwDajgOjuXpQ34pyz8Gt00sTUi66g+/hRGnZuZ/bVn8dgsXJ44zoOrV+L3nSqwnNPUwPbX3ya0jHX4K3OZfcrqeqYoxecRev+PUO/LVGnY8nN32T8xLnIbisv3/dbACrGT8ZbUYWvu4uOIwfJLCwBYKC9NSXEc4Jpl1xFZnUx+XaVGleMl357F5mFRVRNmsahDWsR3yaA3ebOQKofiWHYMASP64P+M33mkZVUUE71pFwUWUVOqLQfGRx6gRIlgbKRb+/saQ22MiZnDC6jC1VTcRldrGtbR3PSz093/xKX0cVvZ/+Wn2//ORs6NnBlzlKWjhuFum3XUB+2W77ICmMvNYNHqHJXIYo6nFnZ9DQ2EI+E8VZW48rNI+wbZLCznZ6m42x77h+c/aVbmb5gKYcP78OTm0dtXjHJr30LcyDlTNPGjUM459TKrIJej6G8gti+/UNtkTfeIOuy8xk3aRnilgS+vmOYKt2YK90E17SR7AijxhSWVFg43B0aOq7QY+Fzf9vGyAInX5lbya9ePQqkqmq+lbNGeHl0awvnjz29JLyiajT0hYkkZBYOM72rwZ3mvZHrTIm59IfiuOLd/Gzmz2gNtiIIApfVXsaWji0UZZwIQtdgXK6DqhmVtIYUiiZ8AZKXQzyImllDWK3B9vfnMbjsaGKSgrbjGMxmnDleAn09lIwYQ351KQU1EZ77xQ8x2eyMXbwMRU6SWVTMugf/woIv3sympx6ht6kBT34B2cWniyV48gqQ9AZ6W5pY/JWvceD114j4feRV1xHM7GPf6pWnHdO6fw+iKCLqdDizcmg7dIBtzy8nq7iEwY52Dm1MiZhYPRlUjp9M8YjRH+r3nuY/x5mVnQp8SqqYazOI7O5F0AlYxmSjKgohZHaMvYRpm/+KPO5mWjsCHNn+NHaPB5PNweZ/PEpueSWe/AICfSkbtq+1GUSRZbd9G4PFQsXEKcRDAXR6A0nXWKK152Pe/EsKO7YQXvQEMVnln0MXMguLySwsHvocCcQJ9EUYu7CE9U8cHWo32fTkljmYdXk1Bzd00t0YQHHlIo+oQNewF/Mt30E1WpAq83Evv5BwQodn4UWoujjGb9yNFAuACEmdFaMok6gajfn7v0acMpGgL4nRLGE0qcRCMqpOh6KBXotgMKWdcx8HgsmEYDCAXo8wYxEJwYTruTMQdAKqqiGgkVDAJGgY5CR6i4loSMYweQGdHYep2/YMGYXFFE8YT/M+jcL6sWx+4hFaD5wQGBMEpl98JVuffZJ4OIzN7kGNyqjhJIm2IKZqTypR3mFANalomkbeuFHIpTZyDLBouJefrjwpbvP83m6uHVXBaJMfapcilM2CSD/YsqFpA5qzECERguKp71x5Lc1nhng0SaA/hkBKXFTU7CRdpUgGHXFzHkajgM7qIJjQYTTrMS65ioQSw3bXr0gEozhriom7C1FkDcUhEW9uJeEzYTAnmLi0FGeWmYMbOqmb5uWN55uGxjVaJTxOmcjzW9C5XCT1JnpD/SiaxoL6XO5b38i9V1QRMvXz/47eze/H/hKSAlanG0EQcOXmISsyw2YvQBQFFEUhGY/hzs1n/WN/R5Fl1jxwH1MvugIAyWhk5PwzWffgX4dEILMrKpn7pa9gd5kQ9TqSvdFUYkSOFS2pUjthBuvbHhiac0ZhMXG7TII9FOe7udqWT33+O6tYp/ng0NRUlSpnjpdELELHkQO4vfnUz5iDAPgHepmaN5U5hXPIMGfwTPOfmJ51MeGEwprDvRzoCDCp3ENljo2fv3yEB/d28P1ZFcw/owgtriB5zMh9UcwjswiubUMwSzjOKCK6rw/fc8cxN2Vim5qPPiMtpJjm30MzGDDbnQhAT+Nx5EScvKpazA4HeTV1OLNzcZyoonJYbKfUm0f7vr0s+OJX2Lt6JTq9gbIx4wnKqXfo7mCcyeWZ/Gx9IwAui54/LqqntM5DrMGHscJFojM8JEBiHpGFzmWg76/7EEw6nAtKMFW4Ed4moS3Np5tMu5HjPQEybQZaB2K0ym6Kz/kjRPpwdJ18pplsdnQGAzqTgXBrF/a5RUR29KAlFXQOA0bJhs2TiU6vx5Ofj82TgaiXSEZjGEymlB9WEEHT0DQVOZHA391FMh7DZLXjyctHEEQMJgvunCJ6a9enbJELF6IzWrH+bAQ6USMx4MfgtKC5ctC6W7CMmoEWiyEe2AoIoNejIYCqIkgpu1ZTVfS5uSTb2085d9FuQ1NVNFkBgwEtHkdTZESDAUEnoXO70DkcyP396L15oNMhZWeDXkoLkHwKUaJJYgcGCK5uAUHAPrcIc60H8Z2qV79HItu7hwRIAOiPMzIOvc7TryHBpMNZmMVgoIOoFEEqtCK3hoe2W8flkOgNc8RpRtOgR1N5yh/EPiOHQk0grhN4qctHUtaxZWsLN86u4J5VR0mcEBv6xqIa+kNx/njlOCaXZaSTQv9LiEUjlI0ZT2iwn+Y9O7G6POTX1CEnEtgzMrE4XZgdLtb87U/Mvv0u9DodV/5lK0/eMIUxRe8/WV4QBIyFdiSXEUOBHf+LDVgnehFEAQSwjM4muK4dNDDVeE4IU7URWteOY14xpmo3ojHtV0jz30+ssJ5DmwPMvLQIOaGAKLB/nY4ZLs87HmMwSXgrnHQe8w+1lYzMRG94ZxvbUFRE9g//B6VuCuGgjNEiYdyTEldL8/Ghs9nIuuWrtH7uejghkKEvKsIyatTQPsH+GLFIEk1REXQpO1fVQCcKqJoGWiq5UlXVlNC4YkPJrEDMLEW2WFDPqcW6+FpMFom2Q/1AE4IoUDEmm6wiG3aPCcl0DS/+8SCxUBJvuROr04C3ouCUa0ynFymuf29JNxkFhWQUFL7j9kQsRk5JGdGAjzOuv4kX7/kZ6x6+n0nnXsTUCy/HnV8ImoIiy8z/ws3EY1FCA4O88dzT9LU04ckvxOxwUDVxGiarFaPFQsOhfVSOn0J/awtahYbkNqL440QP9mMotCMadZA2rd8begEpx4I8GCN6sB9jqRNEAU1U0QSFnsZGkvEYRpMZg9HI608/TnhwgKW3fetDFyGxuUxMWFrG64+eTLazOAxkFtg+1HHT/HeiKCr+niiKrOLINGH8N4RxQ4NxggOpghEmi4Qj05KyV98j0VCCwAnx3mgwgcVpYPjMfJxZFpJxhe4mP3JSRVU1/D0R5ISK3WPAWFVFeOMmXBddhO+xx4b6s333Zzz/WCfJuELJ8AwqxmYRDSRoPdiPO9eCzW2GYBc8ehkMnBB83X4/tL4BVz4Dtn9KTFIVDM99npmjvsLB/kGO7jxO2bBaMspqWf3XPzLh7AvxllcQGhzAbLPTemAvcjyOPSub/Oo6An29tOzdjdnuIKukFEEU3gx9YtjcBZhs/ySOkuZfkohGwCWgsxsQzVLqOVbkQDBLIKXWm175SycABTVuJKNAT0uAN4PO3gz1NZolnO/zek2T5t+ldTAKNhuW4ZmEd/SgxRXMIzJRwklaB/eRiEWpmDAJORFHbzaTjMfY8NgDzLjsWubo53BB1QVsbNuINOkL5AfbyS/MBUcm/Hk2KEmoPAPW/e/JAQ8+B2Z3qujmCZw5Fmom53JoU9dQm7fciTv37RN+k0mF1kMDTD2vgnhUxmCS2P1aCxmF78+mMJSV4brsUnwPPXxyLuecQ2jNWuzz572vvtJ8MomGEgT7YxhMEs5s8ynxptklZYw5cxl9rc2pApRA1eTpWF0eZlzxJaKBKIIoMPWiKzi6ZQMubz7Fw0cRC4Xoaw8SD8tklQwjPNDCuof/xqTzLqJk1Bh8nR0MdLSRWVRCxbhJxCJhEEAnGjiYVUreml8SnvR1Go3WIQGSN/HFfQzEBt5RhARgdJGbv1w1nkA8SYbVgOHfSNQUDRKCUYfOZUw9q/Jt6FxGhHfxS6R5dwYjCYKxJMPynacUZQSYV5uDoml896w6drb6mFaZya9XHT1ln9a4SGEygb6ggGRbG/rCCgSdjcjOHpJtIUzDMpEDCUylDkw17lRBqnwrlFvY3NyErytlX1RNmkpGQTHdDcfoPHIQnWRgy9NPoCoyNk8Gw+cuYNZV1+Pv7sbidGKyWNn96goKh41gQv4s5jEHUdQxaE1ydPAoe3v2IWzM5eDG1G+k67ifFcf3suQrI6mZ7GV968nz0Bt1ZBbYiIUShP2ptQ5Hlhm94SN8mW9/Ax6+8OTn524GUYLRl310c0gDzRuxLr8BW93DxKMyC274KnqDgf62FgDMdgd102YhJ5MEerpp3beH/Jo6OvJK2W0MohPsHOg/cFq37XFfqmC3cqo4f9LgYEvDANdOL+Wrj+7iCzPKmFjqYUvjwNA+ogAZNgMXjCvg16uO4jtRaGB8iZu4TcJUn0lkZw+iVY9tWj6RXT0kNndhGZ2NdXzOB7KWcdx3nDvW3sFR31HOKjuLaDLKsopl3Ln+ToLJVOrjeZXn4Yv7WNWyClEQuab+GhoPNHLL2FsocZb8x3NIczqC2UKsPUzR8JEkolGaDu/AmZ1N2dgJyIkE879wM32tLRwcLGHWSAeBWMqGXX2oh9GFrvc8js4sITqNiGaJZGcIx4Jiku0honv7UAbjCPNEDPnpd/A074+ucBcLy+dj9dt5/U/9nHWjnbBvgHUP3U/Z2Ik4snMwmCxomsbGxx8EYNxZ56BpGrFwmNELz0JOJOhuOMqeV1cAMOXCy8kpq6Bx5zb0JjNnXXEb5gY92utJhKo69F4zCBqhdW1D+XMA4S2d6GvdXDWlBOOJgt59wQSdvuiQAAmAqsHyne1cOL6AtsEosqrRG4wzry6Hurx0LG2azwZbGwcIJxTm1ry7VEFP43Fy3Sm/SE8wNpTXZ8/Ipnnvzg99nmnSfNx8KNFEgiD8v3/6DICmaT/4F8e5gWVAKeADnhAE4fL3Me7ngc8DFBUV/Yu9P2QEAfJGQsNqepuOMPPyazm0YS3xcJjKiVOIhfwU1Nt58d49KLLGpGWXsvovP0FTU06srKISjDYHOr2erU8/jsXlIru4jMMb11EzdSZxVzndgdhpw7bbcxj3179CNILO7WH74U4eauzlkksriDWGcLoEvCMyOSru5Z7t9wwJkAA8cugR5hXNozqjGqvTycj5i9nw6APYM7PQmy20Hz5Azcz5fH1hNfe+dpxwQubM4V4W1OUQiMj4oiljpD+cQO05xGnuryMrCE28Hp2UqroluUxYx+cg6ESSXWGkTNM/H/GZ4RN17Z5AcJuQFi2hff1rtB/cydizzubgutfwVlYhGU0c3bKRCcvO58jm17FlZOLOzWf/mlcxWSwc374VUdIz6czzkXsTmHKs2AuLQRPR51nQOQwogylVU+skL/6XGkHREG16DGYzxYZ6YmKEnCllRBWZQL9KpCfAwddfw2x3UDt9Fi17d58y36ziUjoPP8moBedg82QQGujHbHecIu6jKgobnnyQmVfdiq+rg9LR49n98gtUT57G5qcfp//Evsfe2EzttNkEelPOR1eOl5HzF9O6fw9tB/dRMW4SoYEYqiLT09RAfk0945eejzMnlxFzF7Bn1Ymke0FgzKKlvPrEXxn9pZswlnh55xC3/14+zus3HkySU+rgjecbaT/iw5NnZe5VtXQe92PUq5QX9JOdbzjtuGgyyqOHH6Umo4afb/s5spZyQswpnEOlq5KRWSMZjA5y1H+UDR0bAPh797OYrjifa77xLSSLlZ6+Zr7Z/gd2btmPVW/lkbkPIIiw/tEHyKuqQW8ys2X540y54DJMVhuiTkd+dR1b/vEY219dwdj2PrxZ2XjmL6Hz1ttQTwiQCAYDGZ/7HO3fecujVK/Hdd65iBYLoVdfRQ2ngti1cJhRExcSeqCRZCKKaJGQPCbQizgXlyIPxIj3hxjuSDnoMqwGbp1XhetEEP7uNj+lmTbKs2wc7w1RlWOjwG2mOxBj2cg8vC4zT+1o55pppeTYjXS/RY14fImbjcf7mVuTTU8wTo7jv+8e/km69/aH4hzvDTGpzMOF4wrJzVnMPTvvYXv3dgByLDl8b/L3iCRD7OncQ0Yon+ALXQR6o6ww6pixpJqKwzei2orYM7CAI7s6mLi4jFf/fIRhM42MXrSE7c89jTM7l/oZc1BlhY6jh+lrbaZuxhysbg+b//EYqqIweuESplx0GXIsTqi/D4CB9jaGz55Pw85tqUANUs5ng9nCpicf4Yzrb+Tw5vUUDRuJPSMTSZLY/vzT5FXV0N1w7JRzdeXk0rJvN6MWLGbTk4/g70ktihx7YxPD58wns7CYnS89yxU//Q02lxud/vTf8GedT9K1CxANhRi35FwEGZBELKOzEUQBxZdA8lpAJ5Nrz6epfgk9Ww/wxnPLATBZbVROnsbMKz/Hmr/9ifJxk4YWNzx5hYiiwKYnHxp6Zo+Yu4B1D/0fk869GEftVfRWnkekdzU5Sjdue9W7zrG7KcDLf95HoC9G8YgMZl9RQ9vhQSx2A45ME/vWtZOMKdRM8eLOsWC06unvjGDLq2NQLuTQxk7G1hXy+p+PEgslsTgMzLikip3d+fi63YxdWMzete2oisboYhNbNxnJ6W4kI8/KgfUdTDqnHIvLQPfxQeyZJnSiSFg1UZCrfeaShz7u61ey2cDtIaDPIR5UCPYHEASBRFwmHk2CJmBxGAgNximq97D2/kMoskp+xXF2vpQKTDy6ZT37Vq1g6e13Eg360ZuM6CQJRZZB09ix4jlqpsxg35pXGTVpEWpzBFOVG01WCa7vwFzrQcqzsn3zi+wtGKBF38lsZiPTSHVOOYp6ajWTcx84xs1zK7i4QCVv5Zch5gNAs3vZNPXPjMkbj0mfjvj+sPm4r91/xWB3mA1PHKOwzsOhTR1UT/Cyf0MH9VPz2PlqE2PmF+Oymtn48HEKatz4e6NEAgmK6jPY/bqRM64ZzbGWIDsf3osqa2QW2ph6fiVZHoW5RW52r2rFW+GieV8/lRNymHNlLc37+jDbDbhyzGAMoSYSOL93F3cdDrFomJeRxTpUXQ+/r/Zg1HfTFemi2FHMHvkoYSVMNpmMzB+GFJBRknHikTCJaIRkPE5v03EEnYS3opqexuOpxOcT/pLKCVPY8+pLaJqKTpIoGj4KSW+go/kItY7RhHf3gqJhm5KHJqtoMZn68XPpaj1Gd8NRvJXVZJeU09LbQEQKE1P7ORB/jouyf/wx/xU/PD5J16/eYEAnGehpOEbrgb0UDRtJf3srbQf3Me/6m7DYHPxl/1/oifQwOms019RfQ1twP26Lk12tPiaUeegPJkgoKtdOLeGRra18e/VROqeXsTjXSf6CEgYfPZQaTNNwnV2O0hfDWObCWOYitKEdxZ/Ac1E14kcZYJPm3+KTdO2+ieR2oqkKrz/yN7wV1Vhdbt549immXXwlIJBXVUuPMsjXj/2U44cbeXzcfTTv2013w1EKaodhy8jEaLMTjMaQRIEOXwyrUcf5YwtYvrOdeFJlRZePBWMyqBUlDCYJ/wuNCCYd9hkFCCYdWkTGXJ9BaFMH/X87QNYXRqSSmNJ8Yvgort1Mm5H6PBd94QRn1GbzRiCOvfNxPHvvo3jSd7F5PIQGBph64WUcWr8Wxzg3lnE5aFEZ87AMBJ2I3B9F6IwRj4TY99oqRs5bwP61q/Hk5VM2dgKJaARBFFFlOSUIYjAi6vXYPJnEYw7QdOhNekIDUbqaY0TCEAtF8XdHyKt207CjnYLaAtoOD+Itz6d5bz8VY+3s3mpnzMJidqxopmLcNQyvFxG7mlH8fnQOJ4rfR/Z3vo1ot+P9yd0MPPggxBPIvT0IFiuG0lKUQR/Jzg50Nhuq0YgaCpLs7wdVQ8rwYJ8zm0RbO/GWFiS3CykzE+u06R/K3+LTxifx3vtuxI/7GXziZNLk4GOHEa+sw1z371fS0xSVREvgtHbrQJx/KHHKRmeh7uxF77ViHp6JYNIRiQRxub2EwoP4MzooqRuOLigi5ZjBIiLa7fzs2dQ8E4rGP3a2M7c2hx9tbMQXTbJsZB4ZFgNPbG+jwx/jhlnllGZaEASBe1Yd5XhvmLIs22fOh/B++KRdu5LZwmBnO3tXv0xh/Qh83R0c27qRRTfdRiIWQxAE4pEw1ZOnEU8mGVnoYvWhHnY0D/5bIiRvorMbMNdlILmMyIE4AmCfWZBKdo7KCHoRQ4GNwKstWCfkonMaSXZHEC0Spop/f9w0/xmftOv3vxnZbKe4zsCKP+4jGVdwZpuZcXEVCfs7r2FZXXrGLiqmtzlEX1sQV7aFWDjJlmcbGbe4lLwK12nHCKJIqGQSa/58MJVAZZaYet5ETDrjhxOA8wnlk3jtWidMoOTRR4kfO4Y+Nwd9SQkGrxdN02je10/boUEigQQ5JQ4GOsNomkZGvo32I4O4si3oJJG+thD5VS762kKIOgF3rhV/XwRXlsKWZxuQEyquXAtTzi1HEAUmLSujqzGV+L76wUOMnFNILJSkdooXVVGRDBKDnWFmX1lD24FBJKOIt9yJyfqfXy3dTY30NTewf+2rdB07SmFdPefd/jUSsRhbX3iODY8/RPWkaVROmsrGJx5isKON8rETqZgwhdBAPzOvuI6u40cJ+wYxWm1omoqkN1A+ZiIbn3wYOR5n0rTzSbYFMRTa0XutCJJIvDWIsfC/b234TT7qazfeEsBY5sRQZEfQiyS7wwhFRvatW4s9M5tgXy+bHn8Ig8XC5PMuJjjQx9blT5BfW4/J8sFU930nqibkYHcbadjdhyvbQsmIDFw5H+6Yaf4zPo57byyUZM+aNra/2ISqauRVuZh9WQ2uHMt77qPtyCCv3LefiD+ByaZn7IJijFYfFWNz0L+HBLK+tiCv3Lefgc4IkkFk3nV1jF9cQtiXYPUDB5ETKm6vheBAjGM7etjyTAOqrJFdYmfWVTcRvHQJWXd+C/vZZ6N3OUn09dPZoZKMxxm7sBir20A4kGTtI0eHbIi5V9Xh1TWkBEichWDPga590LMfBhpOFyGJDYIcJ0E3jBxFxbjZuOQIpTnZnPvN73Psjc30t7ch6EQEBI5sep1ENErt9Nl0HzvC9heWU1g/gkBvN0c2r2fhjbdiMJmoW3oekcEB4tEoRvN/r7j2x3HtGkxmEtEwSmsEQ7EDfb4NQS+SaA+hKzDTdVyHO8dC6YgsFEWl86gfT74NJa6gpuRy0VSN8EAMf28Ub7kLw38oeprmv5OP6vpVVY2DnUGEajuyP4FleCaalgpFRxCQdHoObViLt7yKMWedw9M//i4Gs5kJZ19IPBLm/tb7iSkxvj/5+7DvBQi0Q93Z0LIZYn4wOmCg8fSBj74Mc74z9FFv0DFxaRn5VW5aDw3gLXdRWOfBbH+H+C0R6qbmsfLPJ+7zVj3TL65EeJ/LcDqLhaybbsJ+zjkYPB7iXd34/vAHlMEBLGPGvr/O0gCfrHe2f36WT7ugkqoJJ+2ASEDm8FYdoxZ+FZMljIae7JJ8dq/u5fUnmhg9z0NeZQ3rH3sAT14Bvq4OrE4XRcPHser+g/S1higbk0n5iBA1U6ZjNFvZ/OQjqIpCRn4hx7ZuwpXrZcI5F3HPpnsw6oz8YMoPaJ9yE/Kgn2PJDERBPEWIxGPykGH+135mq0nC+p88H0RItIcwFNjQ51hS71wtAfT5n11xwP/02nWa9fhjSapz7Fw3rZSHtjSjqBqXTijCYdHjMBuwGnWs3NfJtMqst9YYBuBvrSqjRT32+fMRrVYkdzYDjxzDWObEXO9Fk1V0HhOiw4B5ZBaHfUfZrO0g1LOKq8ou5IDJjM3twZaRRV9LE5qqsnX5k1icTsYsWsK255/m/7N31mFyHNfefruHmZYZtatdSStmyZLFkmVmShw74IDDzPlyb5wbTu5NYjsxJ445tkyyZEsWM9NqtcwwO8wN3x8jrbyRnDixHUPmfZ59dre6q6amp6b6dNU5vxMe9pKMxTi47gUqJk1Db7bQdeIovU0nWP6pL9C2ayeH1r+EzmhixmVXUVVVw+OdL6Pfee7kGg1JeAotzL2qmr7WAHqTlrLxHixZBl575CSn9qWTwtVMz2PGJRXY3G/P83xSTnJi+AQtgRYcegd1njpyLblnTzj1yrmVdvwW6i4Bwwd3fL+X5l4ADvwZEiFcFSZSiAy0nGL/i88yYfEKAOouWIzJ4aTr2GFObN2EIku07NvFlIsu4/f2ddzacCtzCuaMxFKcwWPJYXDG18nedjY8MDnjU6hZNVw+eYiWwXTi1Ls3t/DwrTP49StN7GwdJttm4MvLavjTjjaOdIe4Y1EV2TYj7cNRtp4aYos3zJIyG6FXOrAtKCK6rx/T+CzUlIKgFYk3+dC6TW9ZIHBt21qa/GnhnjJ7GQkpwW8P/nZEgATgyaYn+d6s7/FKxysoqsJ9R+/j9obbebH1RW6fePtbev33Iu+FsZvSajBarbQf2s9QZxs2Tzandu/g1O6drLrjyxzbvIEJi1ewMj+P1N8k3j3Q5X/Tr6OxG3BdVkmiPYTz8mqUYBJdvhVEgdihIZI9YXI+ORGt0/A2v8MM7xTvhfFbaC1kS/cWHu76E/91+y+JBk+SjMVYcNNt7HnuKQ6ve4GFt3yCU7u3AzB27gI6jx+hvzk9FzXv2UHllOkUjq2nZvZ8ek4eZ8+aJ7nos1+l/dB+5q66HuM2FU22FuPsbFRJQQnp0JhU1NTo7wMqRGMSk0oc/M9LjXx1eQ2bm4YIJ6W/7Ta+aBKXWc/W5iFmV3oYCMUpdL1/158yZPhneeX4AAatyOzKrL973kBbC6W1M6EfBl8XV2nLyiLi86HIMmImMVaGDzDv1Kp45HV/G4GLgONvot5ioFVV1UEAQRCeAmYD/YIg5Kuq2isIQj4wcL7KqqreDdwNMHXqVPV85/xbMdph9h0kn3mGPU89QFnDZFwFRRzZsA5PcSlBfwPJeDoDy6GNsODD30anC6AzGbB5sogG/ER8w0xeeTG+vl56T54gp7wCjVaHR0hyJCkxNt/G8nH5pGSFleVmyjQRVJ+PyLZtxPbtZ8zUqdw5azYNjx/mDzdNZUpOiA5tGNkvMxA9exm/WHAjU5vB+LWf4p03D/PSpTTv3kFgoG8kOBigfOJUCh05/PiKCWhFAa0GdFqR3mCcK6cUsaNlGG84ybC5gnM0oHLHoagC8WQIT7aFZGcQbZYZVVZQkzIof1vhP4f33NgFUskkhzet49jGl5h99Y1suO8ujLa0MM7e555m+qVXsfmR+5ElieL6Cex48hEalqxg95qnCA0NMeeaG/nzj79M9fTZhF4bor/lFAs//FGijgA17lnoK+wkW4KosgqyCqKAbWFxWpBEUtE49Jhn5WPMsdLT48NWlF4siIWCiBoteZVj6GtOO+3mVlSh0+s5tXsbg+3NXHDjJ3j59z9DSiXPeV/BoQH6m/ex5ZH7mXHZ1RTXT0BKJkcESM5wfOtGZl5+Dd2Nx2hYsoJND9874nRjdbqpmDKNKasu5djmDSiKjJxKsuPJR3Dk5LH6C98g4h8mGY1yeMNahru7WHv3T1n95e+945/bu8G7OX4joThNewboPukHYLgnwiv3H2fZx+rxuBK4tn8fpj98Tr2ucBcmrYmHjz08IkACUJvKoviV4/xggw554nwiZeaRzYUfjPsWS6RywmueJ3mqCeuChfyu4RvM3H8DCSlBpKef+OAQs668nqadWwh5h5i4dBX+/j7snmxmXHY1/S3NlE2cSnCwH9dHb8OYlY3k9ZL/4ztJnWpGScTRl1cgTmygeEw1iePHUSJRDNVVGGprEQSBskf/QryxEUGrxVhXR6QnhZpUQADbhSUkOoPostIqmVIggXa8FXtCy+9vnIyqqhh1GtTXSV3uaR9mWpmbiybkU2A38rnFVXisRtqGIgyFk9Tl28my6Pm/Gybzh82tHO8Lsqg2h8Vjc/nTznYiCQmd5v2puv5emnsjSZl7Nrfw6VlFzPY347/vcb5h8uBd8EW+43+Yvmg/W3q2oKoq65teZczmJQQG00JiqYTMK096sX/qAVIpHTvvOsXSW+vY8PAJElEJR5aNtb/7CVq9noZlFzHY1oreZOLIxvVkFZVQ2jCZl+/69Uhftj76EItuvR2NXs+My69h85/vR06l2PHUo0y96DIsLg/h4SFURWHnXx9DSibY+MA91F+wiFf++FsAFn74Y/j7eqi/YBH27NwRUafssgoQBJKxKDZP9igbA+Doa68ydfVllDVM5tiG9TTt3k5ORSXTL76C3IpMBsEzvJfGLkAqEadp+zYK5laQ7Dhr38nhBFrBTEJKoBN1SNoC9r34KyCt9O/MK+DU7h0Md3VywY0fwWCxsf2JRzBarMy84ho23H8PA23prFKN2zYRD4eov2Axz//mJ1zyxW+iM5r4TaCRWwomMVV4402FWDjJK/cfIziU/s60H/LSccTL/GtrkFMy3Y1+Qt44Q51hHNkmCmpc7Hq+lTHTcklEJAoqnVidRjY8dIJUIm27R4NJNjx0gqW31bPm1wfZ8UwLU5aXsvv5Nva91E7trHwObejCmWNCa9Cw+S8nWfWpCej0GnpPBXBkGUnEJCwOPZ6CD+6m2vl4L4zfuL2I2GAUf18MRVVJRCU0GhG9UUdPkx9FUZl4YRG7nmvF1xdl4mIHe57566g2PMUl9Lee4uDLL6DR6ZhzzU2c2LaJgdZmIn4f7sISbvrSz1E6Y6QGYsQODyJadNgXlRBc14Y43sLuJx+j5pPXclfbvSwsXsgR7yEmedxMKXGyt8M/8lpZVj2zKjz0iB7Eq9ZgCTQiKQJ74oU80aRj6tR/7/X7T+W9MHbfCEVRObKxG5vHyP6XO6idlcfONS00LCpm55oWyhuyCfvitB4YJBpKIogC7Ue8zLikgp3PtJBf5UROKex98ewz0VBnmEOvdjJxWTGntvTR0+THU2ihbl4BoaE42546hTPXTCIaIBpMklVsZf7ilSS3b+VHqy5Gkwyhrn8Nc+UYpLZ2Irt2Ul5fR+HMS3jBe4ixnrF8fec3WTP7EeR4CjklodFq2b/2OQrHjGXn049RO3cB2aVlZBWXMtTZzmBbC2NmzsXidBEcGiSrpIz6+RfSuGMLUiJBUXA8uEGJpDCO9RB8tRPzpGxAjzYg48opQG8yMdjeSvOenUz46kd55NAvsegsXF1zNT2RDsqdb5xV9v3Me238KrKEoihMWrGapl3b0RuN1M65gGgoSDwSps5ew0B0gP2D+7lSupLj3qP812Uf479fOMHS+lxeONzHinF59AZifHJBJWVZZmpyben1KVnBdVs9uhTYLhQIb+pCX+pANGpQZRXHinL8T59C9icQc968k3yGd4f32tgFSEQS+Pq6mXf9h2nZt4uBtmbGzJpHaNjLvOtuJjzs5dYDdyCrMna9Hf+pNnoa05mB2g+lVe9NVhvD5TP54tIc7t7UwsfmVyDLCt9YOZaKLAsWg0i23UhTOEl5lhHTOA8ahwHJF0eNSKS6QqSGYtjmFxHa2EW82Z8RIXmP8e8au3aTloPdAapzbdx873EuGbOajy5ZSIUpwmWfW0AoIjPY1kJ/SxORqQGMBivS6UBzJSGjxCXUkIRBb8Lb1car99/N3GtvZssjDyAlk5SMn4ScSgIqgqghJoQQBAGT3YHBLNB5XEdvc5C8Cjs2l5HuEz5SSYXSejcHX+mkeKwbb3eYZEwiGkiSisv0nvLjzDGz+7k26ucVsP/lDnKLyshTVDRWG6mOdlRFQV9cjBoOI0Wj2FeuTKdgkSUEvZ7Qiy+ixBPYFi1CFQTUZPJ0alo1na1eVVFVBXNBAYJGg6DXo8vPx1BR8U59FB8o3otz798jsqvvnLLovv63JEIiaERME7NJdoRGldvGZXF9qQ2rFMefG8Oo8RB8/qwNbZyajZKVQtKmWLvu95isNkpoIOQdYvziZRQ6TRzpCaHTCBzrCdI5HOWiCQXkOQxUZVtoGYoyvtDO4oosLs530hGMc+fONpoHI2hEgYqs/6z1g3+W99rYlVMpYuEQ9QsW07J3F2aHk+mXXU0k4MeZmweCwPZf/plVd3yFQWsWblnm+6vryXEYaBkMU+ax/MuiM4IooC+yoSedpc1Q6SQ1ECV2eAiNw0D8pA/r7AISrQGkw0NYJueQaA0i6EQMpRmb4t3gvTZ+38/IqobNj57N+hoYiLH1iVMs+2j9G9YJ+5KsvecoU5aX4uuN0n7Ei5RMOy44c8x4ik0YDKOdjYe6Qrz2SCMhb3rNORmT2Pjnk1yc1YC59j/HOfPfOXaloSFijY2oiQSoKtLAIGoqhTY/H1JJ4idPYqypQQmFSQ30o7HZkAYHiB09Clod8oTZbPhLPzUz8jDb9exb2864+YUEvXEOb+yidlY+J7b3kl/pxJ1vYc/zrTQsLqH3VIDgYIz6+YW8/IejI/3x90XZ/VwbKz85nkOvdlFQ5WTnmhZQQRQFdAYNZrueVFLmwPoOxs4pYMODJ3DkmJBTCse39jL94nKmrSz/l69JyDvEye2bObbpFcLDXgBa9u8lr7qW/S89RywYAMCWlc2an/8IKZl2ijy+ZSOxUJD5N32EDffehdXtoXrGbHQGA96ODrR6PbFwCK1OnxbcFAR0bhNKJIVg0KBEUmjdRiTpXIfl9wv/zrGrKioasxYlLiFoReRAEm22CVVWcBUUMdzdwe5nngDSvjAv3/VrLvr812jcuonhrk4KxtS+k93DaNZR3pBNeUP2Pz45w3uCd8Nu6GsLsPu5s0HrPSf9HNrQxdyrqhD/ga+IKkn4mrpZ+4cO4pF08px4OMXOZ1toWFzCUGeY/PMIfr2eZExi01+aGO5NJ0uRkgqBgRiypLLnhbaR83y9UXY83YLJpkOR0pdmoC3Evs1e5j/5NIp3gNi27Xj37cM8bSrm2auxZ3WRiEm4CixseuRsdu/AQIxNjzZyyS15MOUHBA/0Ez/Sh2PuKizaI2h15wnctOYyOPlGvil42XHwFyPF9194D9FdJ1AUhX0vPsOMS6/hxf/72cjxaMBP2DfMuIVLaN67E5PdwayrrifiH6aofjxHNqzDmZuH+Hf2w98PvBtjNxoM4nEXIDhklKiEoBdRQil0WSYEUUPTnn4SEYnO474RP4BVn5qAIikoqooiKaiqAKgk4grDvRHyMuuw/5H8u8ZvQpKoybOCICD54+hM6bWg5EAUY6WTSJuP4rrxmB1O4qEgsdM/6+7+Dau/8HUKLAXs6t/Fxq6NzJv9WdBowZIFutP7YakoaM8jJJI1BvSjRcisLiO1s/KpnZX/jzsuq2x46MTZeT6SYsODJ7joMw3p/nd2Enp1A5GtW7DOvwDrggvQFxWdt6lkWxuxLVvw7tuPedpU3B//GIIgYJ406U1exQyv572y3nC+e/nGPzXiKbCSV5meV1v2D3JyZ9q/0JVnZuKSXJp2B2nalY5z0Br07Pzr4/j7evH39QLpTNRFdRMY6owBMH5+Dv6+AV576I9c9PmvMWbmXPqam+hrbqKgZiyOnDxikbT4dEJO8Mcjf+TOWT9AiIewSh4+2/At/u/QnSSVJDadjTvn3Um+5U18B94iqqyidRoIrk2vNQsmLY6V5ahJGckXR+t6/wpA/qu81bGb5zAxvtDBnjYfDpOW31w3CZNOwyvH+8h3GBkMxRmbZ+dQd5DJpW6qc6009YdH6g/EVXpWXEyZrxt1aAApIKEvsqH1mAht7MI8OQeIIxo0fLrrq+we2A3AhKwJFFoKmXHzxzAoKaI+H+293egMBuZd/yGObFyPznh23Sjq96FIMq78IlRFRqPTkVs5hsG2FnY+/RjA6Xn+f7noc1+jL9nNWPd4/L3yqPfryjGy9p6jhLxxnLlmUgmZ41t7ufiOBloPDnHGXbxxZx+5FXbGX3D+OfifZUv3Fj634XMj/ugN2Q389IKfkmfJS59gOo/otSUbxA+2qNt7Ze4dwZpL8MKf0378GFZPNq899EdyyioI9Pcy99oPoTXo2fv8X0eNU29nOwdeWsOHP38T9x29j89O+ixN/iYGogOIgshVY67CKDjpLL+aZO4k7IkeFGs+5uJJ6M02avOS7Gn3Aekt3FdPDLByXB6fubAKs17Lk3s76QkkWDYujzKPhZgk0+OPMRCME45LpDxGjHUeNE4j1vlFSIMxEq0Bkq1BTA3ZSGPi6DxvbQ32TIJQo8ZIMBlkRt4M7jlyzznnxaTYyN+KqpCUk+zp38PHGz6OKLw/YyfeiPfC2DXo0/ODu7CI4GA//S2nqJgyHVHUEBjoo+vYYconTsWQX0ZSlvnsomoEAbp8MWpy/7l9VGO1GyUm4Xvs5Mg8aZlbgPPyKuRAEikQz4iQvI94L4zfaCo6EptmtGnx9ocprKnjxf/7+UgcTSJy1v/AmVfA8S0bR/7Xm8wU10+g89hhvF2dlE+cgs5gZKC9lVlXXk9Rbh1qbwR9kZXQhs7T9ggIFh2mBg+xg96RtgSdSMKqw2rQsL/Tz9GeIHOrs6jJsyMIjBJgu2ZaCQ9ub+OqKcXk2AzMrvIQTyo0D/hwmHSUZVnQZBKlZPiAoqoqr54YYE5VFqa/k9Aw4vcR8fuYWFYE/TDwOhESi9ONqipEgwGsLve/o9sZMrwrvCNPcaqq/uz1/wuC8FPg2TdRtQOYKQiCGYgBi4A9pEVNPgTcefr3M29rh99JzC5c+UWIGg0t+3alywSBmtnzaDt89rSQN8H2pxNc/NlJGMwBBAT2vvIMlZOns+PpR9OZfwF/fy99zadYVteAN5RkaV0ev1p/EqNOw6dq61BDMQb+5yfEDx4EILp9O6adO/njx75CXyiOJk+HXtDiNrkpsZXQEerg4pxFzP7zEeTte4gC0c1bcBYWMNDWzPRLrkSj0wEC0aCfoa4OvLoKKrOtKCoMhxMUOE0kJQVVUfh/l9Rz79Y29usnscRdiTic7jcGO8z8FJIqEZTDeAQLUiCBGpNRUjK6HAvq30rJZnhX0Uck2g/uYsbl12C227nwI7ejMxgIeYdY9dmvkIzFmHftzegt1tNlX0VKxHEXlmC22wn7hll5x5dRJJlYKMDkVZcQD4VwlhcwEO8ke0YR2pTMmT1SY42L6P4BkFS0OWbMDdmEXu1CTcqUZRuxzayiduZ8GnduYc+ap6idPZ8xM+diMJvpOn6EXacdMwID/YR9MtOv+Bru/HMdX2rnXMDxza8CsPPpxyifOBWt/jybK6qKzmDEXVicdrIxGFBlmXnXf5j9a5/jyMZ1GK025l3/Ybobj3HwtRcA8PX20HXiKLMuv5Ytf3lwVHvDHe0wJaPK/raiCHQe851T3N3oJ3d5Ccz+DGh15xwXBRGPyUN/tB+jxki1q5pyfT6LnusluPbP6ZO27cC6vppbPnMZjw2+zFKhmp4vfw5pYBCAyNZtuG68kZ23ree2vZ+neeMmamddwPO//DHqaUV0b1cHs668nvyasQy0NtO4fTPTL7mSwEA/jqnTADCUlaVfb+LE0Z00m9EXFJzTd0NVFYaqKiBt9EabDqXLyx2gEVBCKVKxEEpSRptlQlQ0xKzZmHQaJEWleTBMXb59pL1JxU5unllCbZ6dnkCMtccG+MOWw6gqmPUafnpVA8UuM6GExO0LyvFFUviiKdqHo6xuKMBj0eO2vEGmgwxvmlybgSsnF7JC7qH3Y18YKXeuWcePfvV1bun8b1r8LVTYK6g21OHvjY9uQIX97SoebXrsyXI6qB4gMOglGYtSPiktgKPR6QgM9DPc3cXsq2/k+JYN5/SncdtmskrKaD90gHnXfxhfTzdmhxOj1YYzv5iIzwuiwOQVF3Ny51bGLViMxelm5ae/SCqRIBYO4SkuZfsTj9CwZDlGqw2NVkdpw2RC3kEuHvMNUonEqNc0WqxY3B7s2bm07NtFy9603eTv76X90H5u+K9f4Mo/9zuR4d3HYDaTU1IBspyeg+IhlJiELs+CYNSgF/UEkgEsmrS9Z7LZcebms+uvj4+00dN4nEu+9E2mXnQZUjKBzmBk8Uc/jSoIPP69ryIlE7Qf2s+UVZciJRIM93aTV1nN9cVX8PvjD/KbgmmYtOffWIgEkvj6oqPKVAXCvgSqopJf5aDlQHpu720OYHEaQIZUXEGVVZIJmdTpn9eTiEojThSKrKKcFtSLBpPoTme46G0OkF1so/2Il9BwAl9/lMBgFKvTgCKrxMOpt+UzyPDPkYxLSEmFZEJGVVRioRTxUJLsUjs5pTZO7R1AEAT6W9LOB+ksV2c/f61OT2FtPa/84bcjZf3NTcy/4RYGWpuZe/lNVBjHIx2KEPXGEbQi9qWlBNe2I3lj6PIsKHqFq779X8RVCU+fB6PWyIbODVQ7a/nhpRO5f1s7GxoHmFjs5CNzynBb9Agi7Or2sKOtlucO9RBJ+vjTbTPQazPKuf/pJCIpWg4MUjMzn4g/AQing2XSv+1ZJqxOAwfWd1JU66KvJR2AcCagJrfcRmg4cU67XSd8TFxcTM9pwb+m3QPMu6aa4d4oqsqouXWoM0wiW0/s0b+QU1aK9557yPrEJ4i+9hqBp54GILp1G65nc7nsV99gb6oTAQGDaEA1aIjE/MipFDMvvRpVkbn8Gz9AFEV6mxrJraymesZsQEAFCmtqiQUDeIpKeO3he0f6sOG+uyj9znhME7IIbe7GsbyM8PYetA4DyZ4wEyov5Lk1v2CwvZUpqy/jV833kJATJOQEvz/4e34y/yfvxMeT4W+QJAmt0UhOeQU7nvzLSHnvqZNc8sVvEA8GuLhgJdsGdpJUkvjiPibnTGXIl2D1hHyiSZmLJuTjMOko9ZgJx1NMKHSSUmR2t3oJxmUOdQXIs+n5dJYT86RcQhs70dj0aLJN6LJMGOrdCNrM5liGfw29xURWcRkv//7XIwFcvt5nGb9oGbFgEL3JhKym7YZKZyW9h44jCCINS1ZgsjsAFb3ZjCPXwc+fbOSry2sxaEWqc20MBOM8ubeTC8fmcqQ7RJHbxFN7u/jajDLiW3uJHRhAX2xHX2pDW2AFRUXQa9BYzl33yPCfgctiQEBlIJRAVeGvjVH+2igiCDb+clsx0qmX2fHkIwD0dTThKcsj3jiM1mMCjYChzI5g1WHCxZKPfgqzy40oilz8xW8giCIare60oIeKIIAoaFBJ2xiQIqsIEjETBrOWZFym51SAcRcUkEoqhLxxTDY9LfsHqZycTdcJH9mlNtoODVE/r5De5sBIoFJPc5hsSzC95ibLRLdvJ1Vaiq6sDMFgQNTpUBUFJAkE0Dgc+P5yN4FnnqHsz3/GWFvz7n0IGd51NOdx/tI43rpDmKnOQ6ovSnR3H4gC1jkFWMe4cdj09DV34/N1o9kfG1UnvmeQrKuKeP53Z+3KtoP7WHzbpzCYrUwqkXBZDBzrDvC9i+v5f88d46Ed7Vj0Gr62YiyqqnLXinrEte1Imxup1Aj8YWkZLyZiuNwWxhdlAp3eT+jNJnQGA3vWPAXAcE8XPSdPcNHnv0oqkWSgtZmZl19HyDuIo3AshkiIUEIiJSm81jjAMbuRFePy3xanLtGgxVBsx31NDcFNnQh6EcGkRQ4msV9YTGhjF0okRaxxGOdFFRjLMmMtw/uX0FDsnLLhngixUAreIG4oNBxHb9Ti748y3BsZdazj+DDjvIUYCkbfWyL+xIjo9RlURSV4ntfP8NZRFYXw1m3Ifh9otaihELGDBzFNnUqqrQ3vH/5A1idvR+ruYfihh7CvWklw8xb0hYUosSiGmlrC3hiOHBP9bUHyq5xo9Rp8fVHs2SYCAzGkpEJOqZ2eJj/V03LRGjSEvHFyymzsfan9vAINgx0hknGZ7pM+ckrtI87q7Ue9TFpaQl9LgOwSOxqdiO/02AoMnB0jzXsHmLioBJ3hX1vf9ff1IoriiADJGRRJHhEgOXP9zjy/nqHt4D7qFyymYEwtnuISmvfsJDjQT3H9hLTQ37CXSctXs/UvD1H5lclorDoi+wfQOgxIgQSWSTkI2g920NDbhSAKaBxGoocH0ToMyMEk5ik5yIqMu7CYrY8+dE6d3pONzLr6RvaseYoVn/oCOuN/XtBhhvcWQx3hc8paDgwwdWUpZvvff/6KHTyI91AP8cjo4HbpdIbWwFDsH4qQRENJek/5R5UlovJ5z+1rCTBlRVk62PI07Ye9JBa68f34f4gfSvvXRLdvxx5J0nDhZfQ0BwkPx89pa6gjTDhazvCPHkMeHgYgsnU7WZ+4hSx3FedY6jl1nKycw449PxpVHB8O0rhjC2PnLiAeDjPU2TZyrHbuArR6PRqdjt3PPpku7O6i9+QJVn32KxzdsB5Flphx+TVIqVRmPvgnMVmtpKQkWrueyMEBtHYDcjCBeVIugijQeypwTp2wP4HeqEVR1LS4mCY93gSBzN5+hnccvVbLrHIP+FOIJh2JFj+iToMiK6CqJOJRjmxYR8m4BorrJ4yq233iGF9Z9RWufP5KWgItKNZcNGcy8ObWQ+EU6N4LMR/k1MHAaeElnQkWfvMcEZJ/hog/OeI7cwYppRD2xZH8fnq++S1iu9I+YJFNmwlv3kThT3+KxmYbVSfe2Ej/j+4cNVebd+4i79vf+pf7luG9wfnu5ZC2A/IqHSiywqm9Z5Oq+vqi5JQ5OLi+a6TMma0w2N56Thsh7xCQHr+5ZU72rNkBgNFsYdO6FwgOptv19/eSW1lN8YQGxmWN48TwCTqCHUgCfGNjlP09XlaOL+euC/8EmjB5ljwKrAVEU1HMZ4R83iEEILytB43TgL7UhqHKRfClNpRICtGsxXV1DcYaF8L7XJDs382kEheBaIq97T6SkkI0IbNobB4HOv0Uucxk2Qx8Y+VYPvfoAb64ZAxHugPsafcxpdTFR+aU878bTvLaST+LxxZyp16DscZFaHMX9mVlhDd3o/WYSPaE+fG4b/Ph6KfpCHcwLmscdx++m4tKL2NRqIbtp/foAPqam7jwQx8jFg6OlHmKSrBl5/DSb39OIhJmykWXUz//QnY89Zdz3k/nscPcdMkNdJv8BB8W0rYKkFNmJx5OjQjl+vvP+vEEvXHsWcZRvj3NewfeFhESb8zLf+/871EJMQ8OHuTE8ImzIiSVF8Lmn0L8tM0liDD3C3A+Qb8M7xwN1xAeVtAHemnatQ0EgYqpM3AXFBEaGmTjA2eFN/qam5h//YfZ9Kf7UFWVbI2b9mA7g7FBFpUswq63IwgCfeFB/rwtwtrDPXx1eQ1XT5mL83VxBHUFdp7c28Wtc8u5f1sbT+7r4rOLqvnWX4+wpC6XhbU5rJpQQOtQmMf3dHDZlGLqC+xMLXVR7DJiNetJzi0gtKETNSqBRkBjM2Cemkt0Tz+WGXlvWYRkfuF8dvXtIi7HcRqcyKrMlNwpI+IkZ8g15478rRN1aEUti0sWf+AESN4raLQaBEFg22MPk4yl11H9fT3UzJqH0WZj0oqL6Wk6zthJC/l/zx0fSfQ3rsDOh2aX/lOvpURTBF5sOytAMj0P2Zcg2RJA4zAg+xNo7Yb/SDGwDP8aMSmGpEoICJAScGTnEg34RgRIAKKBADqDkVQizpnBpzeZsHmyqZ45h+1PPkIikt5L8Pf1UD1jNoqisP/FZym9YzyWek/aHlleRuyYFzGYJHpgENvCYlKRFNKpIKJdj/+CAmwuA1V2A59bVM0v1jfxyvEBOoej/PzqBv6wuZVALMU1U4uZWuakNs9KIJoi12HEqBV5an8XncMxnt7fxTdWjeXKKUWYdJn9gAwfPLp8MTqGo9w69+8nDOhrPglAdW0lmt0dDITOriWbHWnfimjAnxEhyfCB5t91FzAD/zDNnKqqOwVBeALYB0jAftJqZFbgMUEQbiUtVHLVO9jXt51owMesK68jMNCHlEySXVJGcGiIWHh0JjajRYfRqkdQNSiqwpRVlxHyDo4IkJwhONgPkSCL6wu47p6dqCr86KJqRK2WRFfXiADJGWK7djHtNi8nc/PB7UYJdBBPxbmu9jruP3o/F6jVyNvXjqojHzzEjMuv5bUH/0AslF7wcBcWMf/GW0kYzPQFEtiNWsqyLNTmO+jwRggnJCIJia+tqMFh1BGofAxX6CTIKcgZC9lj8PbvJ8vkQommsM0tRDBrQNSgRlOockaE5L2EXiMw8/Jr2fSn+yiuG4fOaKJx2yYuuOk2Xr339zjz8smtqObA2ueYc82NbP7zfWi0WsbMmseGB+5m2urLObpxPdFggCmrLuWl//s54xYuwdvVSX/LKeZe/yGGlFam5V6KJtuIxmEg2Z4ea+aJ2QTXtYMKhionhnIH0Rc7mO5ayZxv38BgdyuCWU9WVhG9TccRVZHS8RMZ7ukmEQ2j1RvZ+XyQhTdWM/+mz7PvuQeJBv3UzllI+aSpHFr/4sj7bD2wB1dREc68Avx9PQAIosjkFReTX12DqigMtLUwaflF2LNy2LPmKfz9aSXteDhEYKCPE1teG3XtpERi1MLaGUw2+zllGd4aqqCSVWw9x6nPlWcmHoxiK5l13nolthJcBhe3jbsNrajl4OBBrrTMRV77jVHnpU42sUS9nlh2kmRL64gAyRn8jz6KbdVKCvR5VE+dRd+pkyMCJGdo3LYJ/0AfJzZvZPbVN2B1ucmtqHrrbx4QBIGIGMKab0BXaAFFwTa/EFWvQUBF8qcdyiS9nv5AArNBQ1W2jd9vTN9X8u1GrptegsdqwGTQ4o9J3LO5ZaT9aFLmv58/RkquoS8QpzbXzkA4gVmvRasRiCQk3GYd4XgKqzET9PRW8CUHWTlpCOP3HmaUG2AqhWtvM9+++NsYRSMPHHuA2a75eJz5RPzJUW3EtQKqKb2BrNGJaLQisqSgSOnPJh4KojOakOJx9GYzqqrQefQQNnfWOf2xebIIDQ/h6+1CTqXoOn4Eb1cHAPbsXMYtXML2xx/BmZfPzCuuY91dv0Y+nfFs3IIlWFwuFtx8OwdeXsOxTRvIKR/DzMuvpPPIQY5sWMdwTxfTLr4Ci9NFNBhg7rU3k4iE8Q/0Y7Y7aNm3e1R/EpEI3q6OjAjJexRFkiisqEEJq1guKEIwaiAlI0dSoEJCSeCP+djX66Js7hIMcpzGHVtGtaGqCj2nGmnZt5uamXPY89zT1M1biLuwiGu++yP+9M0voDed3dQ1mEyASo4tn+5wN6d8p5CU9OKdSWOiJutsEJrRrMVs1xMNjv7OaHUiJpuO7U+ftbXdBRY0OpFoIIHOICJqBHR6Eb1RgyAKqMrZ+7tGK2Iwn577BNCcDmbWGU47gQDuAisDbWn7xmTTY3MbScYlBEFAo0m3m+Hfj1anQaMR0epFFFlBb9BgNJvRaAWGe6MYzFpUARw5aQf01iNJ6i5YxeFX0lqYhXXjaDuw55x2vd0dNCy7iHHTF6ORBdQSJ2pKRh6KkWgPoiuyIvvi6Gd7+MvPv0kiEmbZJz/P/5v8XQLJCEe9R0GQiWmauWauyOUTG2jzxRgKJ6nNt+M060lJKt5oktsXVDKzwsOEIue/+epleC+iM2nILbejSAp6kxZRIyCIwsjveDgJgoorz0xgMEZRjYv+1uDIvBUYiOGacK5jmbswXeYptBAcihGPpAgOxdAZzt1ItboM0N+FrriY+PHjWBdcgByNEljz3Kjz5L5+XD0hKusruarsMhLRCEdfXUfY56X+gkXEIyGS0SiCILLz6UcpnzQVg9nCwXUvYjBbGLdwCQdeeo6pq6/gxLZN5/Rj28t/YcHcmzGN9RA/5cO2uBiNVQ8aERWV5Td8hqamXZhKcjl1fPRay/Hh4ywvX/4vfw4Z3hyyLGN1eTi1e8foA6pKd+MJskvL6Fc7+Mj4j9Dsb6bAWsDgQC52ow67SYesglWvRa8RkBSV8iwr647388LhPq6cUsiPXzrB8vo88pwmVJ2GyIZ2bPOLSHaEkAZjpOx6bHMLQSeS7IsgWrWoMQUllkLjMKA9HbSsyiqCJuPIleFcZElCSiTOCeA6tulVxs65gGg0TEN2AwcHD9ISaCG/9iKyi0s5tXsHwz1pZ0mTzc70T1Rw6cRCVFRK3Gb6gnE8FgMrJxQgKyoPbG+jNxDn+uklJLojpFoDOFZWED8xTKIlgHliDhhEbBcWoyu0oiRllISM7IsjGrVoPaaRMazKCsI/yEqb4f2JIAg4THp0GpHb5pRRlWvFrNey7lg/p9r7CKx7YeTc/JIaYo0+7CvKEbQCgkUHigopmWe+80NQVfQmM3OuvpFI0E9wYACTzYYjN49YKEjYN4zeaMJss6M3m1EUBQTIL88jHDSh1Yu4880EBmJkl9gwWnRISRlPoYXAQAz36d+eQiuBgSiiVhgRp/ZkaZAHQmm5MVHEMmsWQ/fcg+djHwNFQY5GQRRQkylkvx9pcBDr3LmE1q0jdvhQRoTkPxzLtDyi+wZASj+HCzoR86Scf6oNVVWRvDGUqDRiD2idRlwXV6btBgG0buPIXGp2uskvrSG5s29UO9ocM+ppcfNUIo7eZEKj1dF76gRV02djNmgZCMWRFTje4+f+W6ZxqCuAP5pi7dFerplSRGp7L5rOMFqPEcvMfOInfFyckrHMdiEmZTD9a/O5HE0hB5NozFo0/yBIMMPbg0ar5/jf7B0pskTIO0R2cRkh7wDerk6mXnwl3pRCrsPIYE+AjY0DOM16bEYtLUNhqnNsb/AK/zz6IhuuS6pJ9YaJnxjGPCWX4PoO1JSMfUkpkjdG4JlmEhOyMNW6EUQBwa5HDUsosRRapwGN3ZCxlTO8pzHbzxXNt7oMGAxvPGYtdj2JqIT1PM7E2cVWTLZz13CNFi1Gi+6cQDvz2yCEleFcUt3dpDo7Ee021ESS4AsvYluyGDWaDqLRZmcjh0JEt27DtnQp/sefwH3jjQzddRdZt38CAKNBJeSNUzrOA6pKMpbC5jGSikuYbDo0WoHAQBRPoQVBgERMwuwwEBiI4s63YLCc61plzzISGY7jKbCOrLMB9LcGsboN5JTZUSSVVFzG5jl3fOVXOdHq/vVnNZ3JNCLs93pEjebv/g/prIpavYGiuvFsffQhTDY7pRMm0XX8KLlVYyisqSPkHSSViKMqoAoCjuVloBchqZAaiIFyTrMZzoOgAkYRx4oy0GlQEzKp3jCpWIq4HMXidI34qZzBbHcgSxL9rc1IqWRGdCDDu44z99zgrtxyB3rTP3Y7DaxZgy6vGq3ONiI8AozsYVgc/zjhjcGkxZljwv86ISetTjxvsjNHjomwb7SgSHaJDWF4YCSo/QzBP95FycpV+Pp1mGzn9sPmNqIJe0cESM7gfeAvOK66AX3h3+yrGO2EjGmnc5PWxIryFXiMHkwmKxaHE1HUICWSI75jDUtWMNjRRsu+XTRu2zyqKUWWCXmHGDvnAjzFJQx2tKHVZ3xy/lnikQgumwBacCwrA70GEjKpgSioKvYs0zn+ZiaLDkgL8p7WfUCn16Sf9zN7+xneYTSiwMFOP9VmM4YaJyZLdnpdNJZCGoiNBLt2HDnI1NWXj6prdjjoCfXwxalfxK6zI4qvsxNtuXDlfdCxA7zNsPInEA+CFIec2rQoyVvAZNWh1Ymj53kBzHYDyZbWEQGSM0Re20SyrQ3T+PGjylOdnefM1dGdO0l2dY0kbMvw/uR893JgxA4QNSKFp30YzuDrDZFVYh0RC42FBXIrq+lvbhrVhtnhAtL+YFJKxuZJx2WkEokRAZIz9Dc3oUoydr2dj0/4OIIqIEsm9vek+/XC4X7mVedw3fRamnxN3LnrTvb272Vp6VJWlq+k2F789l2U16GqYF9Sii7fAloRZBXbomICL7WCKDD8yHFyPjMZXdZbC7j/T0OnEZldlYXNpGUolESjETg5EMak0zC5xAnAotpsHv/4TJoHw9w0s4Rcu5E2b5j1x/u5ckoxC2py8UdTdJlEyiMCtguKEZx6nFdWo8Ylkj1hNGEt36r8Cn/ofxCtqMUb99IbauXwutH+KKgq3p5OiusmUFw/gYKasRgsVoZ7uogG/ADs+utjXP3dH2FxukZ8dc9gcbrY07eHh3oe4mM3fZYx1GM06QnZBzGgw2DRkoiMTtxqduhPJzI6i7vSyInhE9S6a9/UdZQUiUODh9jduxuH0YFRNGLUGYlJMYbjwywqWUSVs4qknOSltpcIJUNnK+eNg1tehLatkIpA6RwomPymXjfD20jhFDSJkwjaAexZ2cy66npO7dxO3rU1NG57cvS5qkpoaJCCmrE4c/MRrSY+Mu4juAwuFEVhU9cmZhfMwS0t5aGD6QSyP36pkXnV2aNESOwmHR+7oIL7t7XyqYWVGLQi5VkWvrK8BklWURSVzacGiSdlbl9YRSAmYdJq+O2GJuaNycFq1FMRTmGZnocqCCjhRFqMRBDRuPyoqbe+KLWwZCG7+3fzWtdrHBg8QLm9nEUlixiMDtIR6kArarmu9joScvo7ZNFZuG38bXQFu7hkwiVv+fUznB9FUQl5h0YESM5wcudWpq6+nJa9O5l/4600+WMjAiQAR3qCbD45xPhC55t/rbiEctqnXDBoEG16tNkmEiqosoyhykFqKAYCyMHkKD+czD5ZhvORa85lcvZkFpYuRBIkfH2DuAty0w9Hp9ewDq57gbnX3kzrgT3oDEbm33AL8XCI4Z5uLA7niADJGZp2bWfJRz/NrCuvR8ixQL8G06QcEARME7PRWnQIFh1SIIFpUSld0+JIehFHtpliT3rd6tZ5FcytzqYvECPbZiAQS3LHhVXEUjLDkRQ/eqGRunwbS+tzAZWTA2G0GpEef5Tb5lXw7b8eZXyBg4klrn/3Jc2Q4R1nd1t63Xd6+d8XD+k7dRJBEMkvryLL2sdg6KyNbXY4AYj6fe9YPzNkeC/wjoiQCIJwmBFNODRANvCDN1NXVdXvAt/9m+IEsOht6+C/mbKJU3j8B99Eo9Oh0epo2rWdS7/yA0StluGetJEgagTmXl1NdrENX38ENRYjGvKTjEVHGR1nELUaFG0vX7pEQUk5sJ7Ots4bKd2qUOJOB24WO0oIJkM8cPQBPjXxU4wZsvK3OXkSO3fRoVcx2hzMvvoGAPa98Cz+/l7KJ9UQtko4TDoqsq0AlHgsZNsMHO8NkZBkqnNtuKxZwNnF34HwAKIgotFqMFTZUSWVZGsINSGhL3WgcWU2y95L6ESBw6+uJRWPkV9dw9ZHH6agZiwdhw8QCwWZvPJitj76MI7cPAL9/QQHB5h5xbXs+usTGExmVEVhqLOdKasuZfczT6CqKhanm0PrX6L+gkUceHEN/v5e7AV56At1FLrMGOvcRPcMoEoKqGmHYUOFg+DL7YgWHbaGYsLPdZNVk4fcEyf8XDP588rJryon1RPGsNyDEkwimg2U31pEqieMYq0m95YfIukH2Progzhzc9HodMiptFOYRqtFFPXMuuoz9J3aTSIaoLhuAr7eLnY98wRtB84qmpaMn0hWadmICAmkMwfpjIZzFu9MNgeCII4IUtiz83CV/3MKmxn+MSaLnnEXFNLXHBgJLs+rsJNdYsOWZU6npDgPOo2OmXkzeb7teX5/6PcAXJw/gcrznKuqKhdVXgT7e89zNM1NllWsv+u3NCxZcc4xg9lMPBREVRV2PvUoxeMmvK0Kd/aSPDp69jGmvACNwYIal0meGEYwaDCU2lE0kK0XSaQUBkIJtjQNsnRcPtfOKKEq20apx4xBl75O/cHRzhhOs45b51Xw6O5Oenxx5o3JpirHyv6OIQqdJqwGLXFJYU+bjwW1aef+lKzQORxFVlSK3SaMGdXLf0hcivO/+/8XX3CAL55HjyuZSnD3obv59sxvY9KaeLLrUX64eiYnH5GQTwdYlMzOZU2XlxumFlPWkMWxzd3MvqKSLY81MdxnoHTCdDoO72HchUsJegdxOHKxuj0cWPscl3z52xzb9CqJaNom0RoMVM+Yw7M/+y+MVhsRv2/UpkZwsJ/Q0AD27FzKGqaw6eF7RwRIAI5sXMeca25ESsTRm5ex/NPXojMaOLX7OVDVkcC7fS8+y+yrbiC7tIJX7v0tgf504IYzJxetVoeUGi0YodFl7IT3KjnllXQfOk5WeSnyUJxE4zBatwldgSWdYU/S84vnNNTmweq5K8hO+fB2d57TjsFkpmjsOHY/+yTJWAxfbzdLP34HglWguH48FZOmsf/FZymsrceVX4gK/Oz4r7lt/G20BFrIs+ShqioxOUZ/pJ9cS1qF3OoysvCmWl686zCKlP6SjZ2TTzKWwGjRUjExm65GH4qsUlDlIDScoH5+ISabDqvLSNiX4PiOXmasLmfHsy1pG0WAWZdX0rgzfW+YsLCI1oNDCKLA5GWlHN3cjdVlwJ1n5uTOPiYsLEKrF0BQKa33IAgCRpsOV96/nk0mw7+OM9dMMpbCKZiJ+BIYzXqkpEw4kECVVcZMz2OgPcisSytZf/8x/H0xckoamHd9PqGhTorqxnP0tfXntOvKKaS+bgHSiSCyXkTrNqKioiuwokoqskWPNttIZ6hpZAN500P3suyOL/B/rXfxlalfYXffbrJMWUzKmYTR3sNVFRMQX5f1uK7AQV1BJiNxhtFotRqmLC9j/f1HmbyshJO7+pm0pITmvQNMWlLCkU1dTF9dzsxLK1l/3zFsHiP2LCMDbUGqpuTQvH+Q+vkFlI330HY4nTlVb9IybVU5yYRM7cw8BjtCZBXbiIVS5FXaqZmRR+PpoEuNTmTOAhuJbzyCxn1GbFVIp+w5jxPwQKSfRxvX8+Wi24kMDnJi22vMvvpGNHo9OlGkcdtmBCAWCnJs06vYPFlUTZtF4dg61t/zW1LxGGPnXzjaee408UiYlENCl2dG4zEhmrSoSQV5OIzsT2AqsqFRdLRo+s6pW2R969leMvxjRFEkNNSPwXLuPdBotWIvyOfHW+4A4GPjP0aRuQLJaGZ3q5f5Y3LY0z5MvsPEmkM9XDutmObBCHe+dII8u5GjPUEMWg1zqrM43hMkUWzGPDmX0MZOlGjaXpX8CXSFVoYfb0LUipgnZRN6tRM1paDJMuG6rIrYoUFS/VEsU3Mx1rjR2PSoqkqyO0yi2Y8ggKHCiWjVkWwPkuqLoi+0oi+1ozmPs3qGDxaJYOC86696owlZkvAaoiwvW85x73EEBHLqaujbd3jkOWjC0pXkVVRDeIhCRyX3bW1jTlUWMys8/M9LjZwaDFPiNnPLnDJ+9UoTG08O8rGYBuvMfAIvtIwEecUNWgxVDkIbOgm+rOC6agzB9R3I3jho0sFhxhoXsaPDxI95MdS4ME/MRusykewKkWjxI+g1GCoc6HIt6bJm/+m1OCf6Auu/87Jm+BeRFZX/ffUUX1lew5g8O0/s7aJ1KMKKcXlMr/SwyWQeyYCeikTJml4DiorsSyA1B9DlWdB4jLjyCvD1dpOMRTm+ZSMWt5uc0nJAoGXvLhBECsbUIGq0RPw++tua0Wi1mB0u4qYQ9iwnQ90qY2bk0XPSx3BPmElLSzi2rYfx84vY93I7ExcVs6exnemry9n25CkmLyulaU8/uaUWcgx+kKTRdoOqpm0J0r/VM2WoI2WcPpzhPxtDsY2c2xvSAucC6Evt/9QcpkoK0cND+J9qQk0piDYdnhvGYihzIGhFdDnnZrnUGQwcPb6Hspwq5IE4gkGD/cISkt1hpN0Rrrz+26h2EQYlRElAU2wmPOxlR7MPvVZDZbaVxr4gXb4o+9p9TChyctvccrJFEV1rEAWwTM8n8ELryBhPdjTivq4Wc0P2P32Nkl0hhp84idQXRWPX47qmBjmQQBqMoS+xoS+xo7Fk1t3ebhLRMIbXzcNn0Or0JGIRyidOIdDfz0B3FzuGrLx8tJ8rphRyajDMpROLCMQkhkMJeBtFSAA0Fh1ipRM1pZDsDKEmZCzT84juH0AaiqHNNSOoMHTPYUSrHvPkHEKvdIAoYF9aitQfBa2AocqJEk4hDUTR5pgxVrnQujMB0hnefRzGOHXzCji2OR3Qr9GKzLmiEpsYBpznreMusjB1ZSmokFfhoK8l/b012/WMm1+EyXZukI9V8TLnqio2PHQC5XSilYmLi7Gb5XfkfWV4Pa8zAE/70YzKBv0G/jKGzmOMG1+FbDfQdWKYCRcWk4hKeHvCTFpSwkBHEIvTQH6Vk+Z9AzRcWEIyliISSFA3t4Dh3gi1s/M5sS29J6DViUxYWMyu51qZvrqczmNexs7O5/i2XowWHTq9huKxLnY/18r4BUUkoimyiq0MdYYBsLoNjJtfiCD+687q7oIiOo4cpHb2/FFivUarjfoLFo+sYRssForqxtF17MjIOdMvuRKj1UY8nA4OSiUSxCNhjr62nqZd25h33YcRTu+zaww69IVGpIEYqb4IujwL+kILkphRIXkzqHoRfZ6FVG8UaSiKLt+CvsyBHAnQdfQQU1ZdSm9TI4qcXruyujy48gto3LGF6umzScZimWQ3Gd51cisclNS76Tiadso2WnVMXVGGVvcmBBlUSD1+H7Nvv5PNr4bSCR+E9H1TURSyiv+xvWuy6bnghlqe/7+DSMn03JNKpsWiqqbmcGpPOsBYqxeZc2XVyP+Q3uuYdXklwqnd521bHOxm7OzJeLvD1MzMo3HH2X2P+deOQejff573pBKX4pxvJbjcVYVdb+f2htt5+PjDdIe72ebZxvdXfYqjG1+hasYsrG4PNk82ZoeTnsbjuPIL0ZvMRP7GUV2r09Hd1cbxra+x4svfRWfI2Nv/LKJGRDRo0VkNo+fhYhuqoDLnyirW/fHoiHBC/bwCDFYdqYSMoKhoVBVFBrQqGo2IKzezt5/hnSUST3KwO8C1s1wISZVEWxA1IWMotaOrdEBH2nYUNRr0xrPPKRaXm5yySm7d/WUGY4P8euGvR9vIAK7S9M+bICElaAm0MBQbosBaQJm9DM0b+GACuHNMzL6iis2PNY3M89NXV2DPMUL7GyzgnmcPOcMHl/Pdy8fNLySr6KwdUDMjj+a9AwQG09EMe1/qYN5VY+hu9BPxJ9i7dpj5V13Hqd3bKKytIxrwk4zHsDgK0Ju6SMYkuhq7KGuYwvHNG88rxoggICCwo3cH23q28eWpX0bD6HXRA51+FtTr+NQrn6I3kn7+O+k7yVHvUe6cdydm3bnrxW8VrVMPqo1UfzT9zJVtQldoxbGkDGkghsZlQA4lMyIk/wIWg5aGIiddvijhhEyZx8zYPDsajUj7UJgHd7Tz7IFeyrPNfHphNWsO9TA2386OFi+RpMyS2hy6tTE2DQSpLs5CGY5BRCbRFkJj06GxGVBTCuOEGiZlT+Kuw3cBYNCaMNrOfd4XRQ3r//B/XHDTbUSDforH1vPKH3+bPigI2DxZnNqzg4alK+k+cXTEJ9fscFI0tp6P7b6ebFM27iITOnOMXQNb+MnWn/DyReuYe2U1Gx4+u041aWkxFqces8NAMp4WcbXmGOjMOcbe1k7KLeUYDP9YTPfw0GE+/cqn+VD9h9g3sI+puVP5/ubvM9Yzlu/O+i5/afwLr3S8gklr4oaxN1Dl/BvRqNz69E+GdxVXYSlhnx9PYTG9J08gS0mS0fB5/Xa0BgNjZszBWVjEHYe+y3Vjr+O7279LviWfSkclJYb5fOHxs2KqsqIyEEowNn90O9W5Nr61qp7BUJxoUiKUkLAatCQlmSf3dfPayUHGFTo40Rfmh88dw2HS8Y2VY3nlWB/OmIzUF0sLu2pF1IQEehGtQ4exzoM0FCPlip53D+/NUmIv4c55d3Ji+AQJOUG2KZvfHPgNN469EYvOgk6jY03zGiZlT+LB5Q+iETWYNCYKaguw6DLPBe8UUjh4XsFRrd6AIssIgoi3u4OngufGpuxsHebqqXGybG/u2VnjMGAY4yRx0o8224Ro0xF8sQ19kQ1doRX/M6ewLy7D//Qp5OE4glmL64pqEk0+Ur1RrPMLQIFUTwRtrhlDqR3t64TOlZRMsiNEoiWAxqbDUOF8S2M2w3sbWZFJKSlurL+RL2z8Ah0l3VyfvQxfXy8TLlzGoVdeAiARjWC02fAUlRCPROg6fpiexuMA5JSVn9OuVqcnGgwQ9A4RMpqxVRjR2g2oKijhJIpGRpBV5IEY9EapqnaiL7WPSlRlNWiZUuqizavjcFeQ1qEIE4sciIBXTXL7BRX89UA3n3/0INPL3dw0s5RbH9jNZxePocuXFi7p9MUyIiQZPpDsah3GbtRSk/v316j7mpvIKi5BZzSSbTMw8DoREstpEZLI6biQDBk+qLxTkcEXve5vCehXVVV6o5M/6OSUVjDtM9/FGA9g1GmQTA5sOflUmSWKal1Eg0nsWUZc+Wmj0pWbh2+gn1hPJ4KooWbWPBpf5zRQMr6BuE7mkxtvRlZlNIKGOyZ8k9nyLLQFhRgnTBilCG2aNo09Wg+avhDZ9rRhO8Y9hi9O/SI/3v1j5tsnc8PUich7DozUMc6YjqekBEduHpv/fD+qojJ55cWYLDbG5J1/g9uk1zK59HWGRTQAySjo9GDxIAoikiwxkPLilmxEtveknUG1IskWP/pSO2Rift4zhEgy2N4KgHRasMOZm0/n0cOjy3LyGOpqB9JiDYosYfUU4j8dTK41GIhHwhgt1hFnS6sna0TIQ5aSbHz6IUSNhguv/Cg5NYUI2rTRa6hwEDuWDoKzTMsluK49Hcum1xA/4cNY6ybVEyHR7Me+tJTQc+2IZh2mOg/hLd0jbbjGuonJNqrrZ3Jk43rmX38LR19bj9XtoWziFE7t2k5osJcJU+eQ1MAzv7yTWVdeP0qABKDj8AHmXHMTp3ZtR2cwMv3SK5ElmWkXX8GWRx4cOc+Zl4/F5ebSr3wbf18/qkHLkCPBlvgBrqf6bf6k/rNx51uBCMs/Po7gUAxRK2JzG3m092HqtTUstix+w7pBKciDx85+bi8m9/PZpQuQX944UqYfU01Llpbv7/4Ka2t+gzY7G2lwcOS48+qrUQoLOfSz+0nFY+hNZgwWy1kVSkFg4vLVvHrf3QBIqSRRv/+cvkhDQySamlDicQwVFehL37xgTV5FFXqDAZ1kgqBEojmAaNEhqBDe1Yd1Rh5P7Ovij1vbzlba3cV/XTqOMeNHG8tFrtEbFTfPKqVzOMr8MTkEokncFj3d/vSC9E9fPgmAKMD3L65HlhV80RT3b2vlrk0tSIrKJQ0FfGlZDUWuzKLJ36Mz1Mmzzc9S5ihDve562Lvv7EGNBu+Ucvr7/sqa5jV8d9Z3+dbWb3Fnz3f48q3fIl+pRGMw8n/7OijLt7KvP8D0C3IpErQMtodY+ckJxEJJrK5bmLziIuLhAOGhIYQsgeWf/AK+3m6iwQCXfOlbDHa2oSoKVpeHzX++HwB7VvY52bcAvF0dOHPzMFgsI4H0r0dKpYiHfcy6eCrDxztwTMgjHgoSC53NWCCnUkSDAfpbm0YESACadm1j/KJl7H9pzUhZTnkl2SVlb/laZ3hnsLmzKB0/icT+IUipiEYtalwivKMX29wCxhht/PmaYtAZCMYUgp2DTF6+mpd+98uRNoxWG4IgIMXjIyrWZzaM9UYT867/CNFQAIPViruwGFWj4cfNv2Zr71Yuqb6E9e3rWVG+AkEV0Gv0+OP+ERESgNJ6D9d8Yxredh+iKqGNDCOYLOze0kPIn2TM9DzKxrlJJWWsbhNavYBWL6ITUqj9A1Q5vLjsIqs/PYGIP4nVbcAoxDErIuNnj0MUFIprXZjsemRJJavEisGkxT8QZeUnJ2C264hHJArHuBBFAb1ZiyvXjFafyZb0bqA3askps+PrjWC26ZElBQHIxoaiqKCoCBoTOr3Iqk83EPbGMJj1mO3VDHYc4Llf/ZhVn/kSbQf3oSoKY6bMoXbcXPLzq0k1Bons7gNZRbTqsMzIR00q6MvtRNu8BC1+Ar1nhc3CPi9SLM6RoSNcNeYqqnXV9EX76I30kpJTVNrrzwpOZsjwd8gusbHqkw0EhmLkltuRJYXiOheKrFJS70ZKyRjNOi76TAPBoRgLbqolGZUwGEXqZniQwhGmLi+idlYeqaSC3W0g6fVjdhlQrRbmXzuGPS+2MdgRwurSUz/NTvkYE6mkgtMOwc/fghKJokSiuG64Hu/d9+D5xCdwrL6IwNN/HemnNjcX45gapgpG5HiKeCgd6CBLKeLhEDqDEUd2Di37zjoEh7xDHFr/IhqtZsRhLjQ0iMXlRmc0kYqn7xuCIFJ/wSIe/uEX+PB3/g+NVo80GCW6b4BkaxDjWDeiSUtd2RzKC8F84ldEpbRtW2QtYlretH/Tp/WfjSgKyKkUVdNm0X3i2IiTod5kJqesgt29Z7OhPXT8IaZ7VnL7n/ZhM2iZXOZiMJxkzaFe2r1RbphewuZT6eczUQCtKDClxEU0KfPA9nYWZdtp0AgjAiQAlqm5+J9tQY1JWJeUEny5fSR+ydyQjfehY6jxdNBYsi2IfWkJtoUlJDtDDN59CCQV0aZHMGhRUzJKTCZ2ZIjQhk4sM/NxrCpHfDPO9xnet6TicXQGA/bsXIKD/SPlk1ZcjCAK/K71XhJygruX3E0wFWRITBDyeTFarCz/1Oc5uO5FDq17EUdOLtOv/QiRRIp7t7ZhN+no9KXnpI7hKD9/+SQ/u3oCpwYjyBoDsj85Ksu0ocpJcG0bAMaxbiLbe9MCJACySrI9ROy4l2RL+hksNRBF0ApoPSakgSjxk36S7UEEowb39bV47z860r6g15D98fHoC9/eoOcMbz8aUeDGmaU0DYT5wXPHEBC4bFIBdQV21p4KM//K61n3fz8DIKHEEXQCUk8MJSYhakWCL7VhmZbLVbd/n7u/cxsAQ53tFNbWoSgK8XCI4NAAJeMaUFUVOZVkuKcbUSNicTjRn87Gbc1WceVlIYfC2MeZELUiUjTMgitKSUaTLLmmmGQ0xYrri4gN+7j442NIBULkrczF0H4YXa8fVatFlWRUSSK6Yzv2VasQtDoEoxFRq0VVFDBKaJwOdLl5DN19N4LZjGl8PaROj31dJhjnPxV9oRV94b8mnpQaiOJ7rHHEHlBCKYb/0kjOJyeisZ9fXCwZjbLzhcep/OKdiDu0mMa4Cb7agZpI2xD2mlJC67pRYxIyIO8J4bihirnVGr6/5hgvHelDKwrMKPdgM+n4ycuN6DUij3xkGmKBFfoiSN7YOSI7odc6Mda6EQ1vztZQVZVUb4T4SR/mcVlElSH0RVYCL7aS6gqPnGdbVIL9wpJMxq63GSUlMWHxcjb96b6RMovThcXpQkoleeH3v6akfjye3Dwi/RLHeoMkdio0FDt4eEc710wtGtnTfbsRBAFDhSM9xDQCok2PdDr7t3li9oiNbJ1bmLY3VLBdWExwfQeiSYtldj5qXEb2JxCNWiI7eons6sNzcx1a+z92XM+Q4Z3EZhOpyx2m7PZxxMMp7G49xsYd6BuWv2Eds9VAUa2LfWs78BRaGDMjF6NVh81tJK/8/GLAWoMBT6iR1Xc0EBqKY7LrMSUGMUYHgNzz1snwr6MrKEBXXITs9yMYDNhXriB28BDmqVPS97uBATQ2G7ZFixh++GGcV15BZPt2bMuWET92HENtDepgP9ndB5EmzCVnRhWKDjT5JkrHuVEUlawSWzpgUlXJLqlElmREUaR8YjaKrOIptKCqUDExm2QshdlhQBBUFlxdjs0uUDSmnGhYZszMXIY6whza0MVAe5C5V48ZyTlUMs6DlJARtQLufCu2tyjepDcaGbdgMUMVVZRNnEI8HMSVX0R+dQ1jZs5lzMw5BIcGMdvtZJeUUzdvIcGhQXQGY3q/TgBXQSF6k4m5136IwfYWAJKxKGaHg64TR3HmFaC3mons6kNrNSAatcjBJImeEJYZeW/Hx/uBR9RpCG/tQec2IRq0yMMJUgNRzFNyKawfj5xKcsmXvslwdxdavR5nXj6NO7aSVVRKYKCPvpYmHDmZeSXDu4vNZWTxLXUM90SQkgquPDP2NxkE61h9Ef7HHsP4x++x8qZPEs+pwJjtwmQ34swzYzC9OUHEohoXV39jGr7eKKJWQG/UYHUbySm2UjUlBykpY/OYKKhykl/ppH5+Iam4hCPXjDPbTDxZjHH8eOKHD4+0aV25Er+rht2PN1JU46Z2Zh4VE7NJJWRc+Wayi20MGnLRuN3Iw8Mj9dSbLqfNGGICpP0iRR1o0++j2lXN/y78DV/c9CUGY+m166Peo7ySc4CFS5ag1xjwd3cxYfGyEb8ivcnMhMXLee2hP468htnhxOJ0ccF1t3LSL2Es/JtgzgxvCr3JhM5sIry1B73HlL6PedPzsGlyDjqTxMWfm0jYl8Bg0mCwaFFlFY1ZczrwTURARdCIOHPNGM0ZAc8M7yySpDCxyIGQEgjv7kOfYwadhvhJP4YqB86itHN1/YLFIIpccNOtaHV6nPn5hIeHUZT0Iv9TTU+xoHjBuUIkryc8CLIMjtE2XVyK88iJR/jF3l+kE66IOn4878csKVvyhk0ZHUbyqm2s/vQEQr5EOujdbsDhMSMJZZgmTSK2/6yok3n2bPRlZee0oyspOWeuNk+fjq6w8M1cvgzvcc7cywODMYxmHe4CC3rTWV8Yd76FS78wCV9fFEEAV74FURRY/rFxBAaj6eQStiDJeIx1d/8vtqws5t9wC+7CXFbe7iIaSKAzDOHrGeCiz30VUdRQXD+BzqNnYylqZ89H0IiYtWbCqTD3HrmX6YunU5trocajZVd3gpkVblr9rSMCJGfY0LmBzlAnNe6at/3ayDGJ6OFBNCYdGrMOJSYT2dOHGpWJH0/bIPblZRjK7H//e53hvJj0Wqpzz8a9RBISB1qH2XpqCLtRxx2Lqlh7tI+PP7SHH146nl+/2sTSulwqsyy8fLyfP+3sYMu1Uwk+ewpTfRbhTd0jbWlzzDhWlSMF4izRzmPGjCl848h3+IjnYoRl0HX0yEgiU73JhMXpIh4Ose+Fv+LIzqWwpg6A0vETKa6fwHBPF2a7k0jAz6rPfpXgQD+iTkt2SRl6m5PHL3oci97Ckyef5MXIiwxGhvhZ1e945fenKBrjYvVnGgh545gceswOHcPeIFNuzqGpqxUVaBb28UDTH9GJOhaXLGZ89vh/eP3Wtq5lduFsnm99nsurL+eY9xiSKqHX6FnXvo4jQ2nB05gU4w+H/8Dcwrlv46eX4e1CbzDgys3F19/PYEcbztwCIn4f4y9cRtexo6PGqcFsIR4Js/73v2H19Ut48NiDfH3612kLthFMBvFHR6e+1mtEChznX+My6TWUeNKCHU/v6+Klo/0MhuLs6/ADsLFxkAOdfm6aVcrvX2vhi48f5J6bpuAMJlEBOZQk3uhDDiWxLSjC/2wzlql5KJFUOr5IgGPxJPs7/Ri0ApNL3NTkvXkfB6veytS8qSP/f33G1/nhjh/SHmxHJ+q4ue5m6jx1FNoytsi/C63Fgs2ThbugaCTRD0DDkhV4u9oZf+FSdGYzFxbk8sqJwVF1x+bbaB2MvmkRElGvwXlRJf41zaR6IiCraQHAKgfBte0Y69zEDg4iD6d9Eawz8/E90YQak9AVWYkf8xHde9ZnyDDGhfvaGjSnnxvjjT6GHz5+9vXserI/Oh5ddjqmRvLHkbxxRIMGbbb5Te//ZnhvIisyr3S8Qnc4bSe8OrCO65wrQFWpmTOfwrF1hLxecsorWP+H3xEc6GPWldePCJAAhH0+PMWleDvbR8qmX3IlxWPrGVvXgNB4ECE7G4xFqIEkSlwCFSKHBjGPcaEKED/pR1FVTJXpuF5fJMnutmGO9gRxnh6bf97ZwS/Wx/nqslr6AjEe3NFOuzftr/bikT6O9gT40tIaTg2G8UdSlLjNZFkzSdkyfDDZ1TbMtDL3qGSxf4uqqvQ1N1E1bRYAOTbjqOTvZkf6+3a+mLoMGT5IvK3RTIIguE//GfqbQ3ZBEFBVdfhv6/wn0DccJunt4/AzfyYS8FE2dzHSlEVsvrtj1HkXXF/DuPmFRA8eZLC7E2tFOcPdXQiCwKLbPokgiIiiSF/zSXxhL7KadmiUVZnfHP5v5s9+ggKziZyvfoXIlq3E9u3DPG0ahtmzWfBYG/992VknzOHEMD/Z8xOGYkM8FXuZqg9/mMkzxmPdfQLL/PnYV6zAe/ww6/50/0idnU8/xqJbP/mP37C3HZJhCHfDyZch3A81K6F6CYIgYDPakYeSCBqR4Pr0NRDterS5ZuRIKpNx7T1CQqulaEIDnQf2Y7I50BlNDHW2UTVtJvvXPofRbMFoteHt6mT8oqX0t5xCkSQMZgv+vh6qp83i1O7tRP3+kcAMiyt9cx1qbyW/uobepka0urRBqsgy6x/9PcW145lddx3W+QWkuqMIutMqfKKAmpDRF9tI9aQdZHWFVkKvdCCYtCjRFGpcxjwjn/C2dMC8aZwHRIHA82kxlRJbBTmX3MYz9/8PY2bMprhuPOvu+d+R9xz2DaMbUfY9v9q6IycPQRSZdvHl7H3+GeLhEGPnX8jyT36egbZm7Fk5uIuKaT2wF41Gi1zr4rNHvw5d8IVJ33y7P6YMQM9JH689cnJU2Zibx/H97d+iwlFBhbPivPXiUnzU/5u8uxi36mpWT/0i0oatmKdPJz5/El/a+3EUVWGdcpLFP/0J4fXrSZxqxrpwAeaGBgSLGSmVVrLb/eyTzLjsasx2O4KoQZZSNG7fTPnEyZzY+hpGq43+libcBYV4ikoASPb00POVrxLbswcA0W6n5N4/Yho37k29/1gwSNvBfdSOn48SSRBvHEb2pftjHONCDibxRZLn1Gsa+NtbNdTk2vjRZeP53pqjaE4H8P3ylSbahiLk2Iy0DkX4zIVVZFnOOhIrKty1qYUV4/LZ1TbM/25oHjn21wM91OTZuX1B5Zt6L//pSIrE+pwBVv7mx6SefB7FbMC7bDI/DP4ZABWVhJzgnqX30Bfy852n2/jaEgsP7O5k8bg8krLMcDTFnlYfrbv8BPqjI23nlNuoHNfDhgfvGSlzZOcy8+O30DbYwkBrP3nuYgx6Ex2HD+DrTS+C+Pt7qZt/4ahAYIDi+gkcWv8SFpcbT2Ex3u7OswcFAa1Oh95kwvXC5VjG3ESqbzL2nDxyK8fgyMnFP9BP+6H96I1GFGm0Tp2vtwdnfiGr7vgyA81NuEvKKKobh9XtebsveYa3ESEkIRp1BDe3p4NuBLDOKUCJSCR867Bv/RXkjSdU/2mObHiZ4voJzL/hFvz9fehNJjxFJQz3dmPLyhlp05VfiMFiRdTr6PZ1sl/XzL0995LsSpJUzs5rSTmJ+rr79vk2XAVRwF1gxWGH6O49+CQjzz/SO6L+v//lDlRZYazmGKHnnkVXWYmhqgq0WrIqK0n0DRC+98/oiksoXraUVKsPURAoKCyEeA/6ggJ0OedmI86vdL6NVznD24neqCO33Ens6FECT/+VREsLzisuxzJnDklVRTl6lODzz6MMeclbuRL92LF8e7ufhgNPgaoS9g8z77oPYbdm4+xyktoUwE8TGpcBx9JSAi+2oYRToKrEjnqxZZs43rcNJ3nYPNl4ikvwdnaQVVyK1preWAgmgjj0ZwMbVFRavWHGFzrfpauU4f2GPcv0phx/C6qcI3+rskzs2DFUjwm19wT63l6kwQG0OTmYBAFN0Ipfk82LTwXSgRjAtqdamDTPTXnnWqxz5xDaf4ysj32M0OYtaPKySYyvhv/+CvGj7VgXLEBXWkp05y509bW0zizhMwe/zJTcqTRkTcfmzgJAo9VhtrsAFW9PN8V148/J4FpQU0ciGqV57050BgM7n3qUGZdeRSwURE6lcOTkEvZ5KRpbz0uP/IbVV30eJZQi2RrEPDUXOZAYWYPQeIy8dO2zbEvtQS/qqXXXUmwvfvs+jAxviEajRWcyc2jdSyz96KdBAFmSiEciJKIR3M7RQRUKMgUOI19eVkO3L05FloUNJ/opdZtwmnS4Lek1hZ5AnKllbvoCMQ53+gH42mtNvLC4blR7gk5EjaXtT1VWznn0PyNAcobQhi7MU/OI7OlPC5BYdNjmFRJ4rgU1pYAItvnFxI57iezsxTIjH31+JuvJBxmTw87QzjbGzluAIzsXRZZRFIXephOUjp+UFuhVFe47eh+vdb3GzyZ9iYoxZRRU17L3+WdGnB0jw8Ps+su9fP/az/DjnX56fDHG5Fo53J0WDQklJMIJmf95qZGilWOZrz+bpUIwaZGDZxX1dfkWQq92juqnNtdM7JWh9D+ikBbvfbUTJZIWFTZPyUE0alDiMuGtPaMETtSkTOyELyNC8j6hNt/G1mYvE4qczB+TRbbFwH3b2hiOJKlfWsiyT3w2nVm4vIxUayh9L1RBMGiwLykltLkLe04ZtqxsQkODFNePZ6C9lfzKaqwuNzllFQx2tFNUW4feZCa3opKwz0csHEIFDBYr9w8+REe8k9+4PkpwzfMogSDuRReiEbORh4ZAljGGI2gcduxWG2pPL6LFjOwNIli0CJ4i1GQSUEl1dmGZNx99aQkIIpzJVqgqIEkIeh2xvftwrl6GY8UijEd+AqHZ0L0P6i+D8nmgy2QDzPDmkX3xc+wB2Z9ADiXfUITE4nBSN38hQ+FuWuN7mG28ckSARDBqUKLSiL0BgAqxrQOUXZDHjTNLWHukj09cUMUjuztYWJteB0nKCtvbfVw5vwDhmZYRofbXo+pEJFU9b7bt8xE/mXZuG7FZ5hUhOg1E9w2MOi+0sRPzxOwRp7cMbw+iVkPr/j0svu1TIIAoioR9PkLDXhzZOaRiUZr37EROpRgsWQlA82CYFePzeGpfN8UeC7q/4+zylvtnSAvoOC+uRAmdXWdTU2dtZFV6nb0sCKgxCdPMfDRWPf6nT42sAVpmFZDqDiP1RTMiJBnedTQ2G8rml4k/eisAQa0W269+iaB7Y/+DsC/B2nuOEvKe3Td0F1i45HOT3rCOoagIy9AQwuankTdvxlhfh+3CCzGPn/qGdTL86wgaDdY5c4idPIkaj0NuLqLDgZqS0Ofnkfed7xBvbMQ4dixZn7ydVP8AtuXLTtuYAui06PLyMFRVET9xgvgrT+KYNw/b0iXoi/+1vafQxo10ffozIEn4AOcN11Pw2c/SdDTC1idOjZz37C8PcPHnJlJc637jxt4CZruDknEN5z1WMTktuNu8Zyf7X1qDIIpUTp6GLTuX7hNHsY6vwGy2Mv+Gj7D9qUeYcek1AGi0WhAFDqx9jmmrL0eNyegcRoKvdICsgkbAvqgENfofm4fqn0IJp9A5jIQ2dICSXpuyLylFjUoUjqnl5I6ttOzbTVZxGfFomFQizti5F7D2d78kODhAUf0/DgrLkOHfgcmqp3DMPx9wYGpooOSBB/A/+heUHWspuvYazLXliG8i6/rf4sqz4MobvfZq95y7BmC06EbtgwAYa2rI/frXCG/ZSmzvXszTpyHNv4Snf3cCVVHpOxViD+1MXF7E1FWlGHTp/vmyDbT/vw9TsqMdfUsPoYWTeMbdznIpAnsfgN33gKME5twBxTMQ23cgxnpHBEjOsMO7m0Pao1yevQK3qnJq7y7q5y4EIKu4lJM7t7Lo1k8iakQEQSTi8+Hv72P3s09Su2Ap7voSILNW988S8ftR9Sm0NgPBV183Dy8tRY3JPPuLQ6z8XD3VUzNiTxneGyRVKHCakEMJ1Jh0dl/TbUSXb6GqfgrSrZ+k/dB+5FSSZCxOKh4j7BumoHYsan/6IV59A79XAOIB6NoDJ56HyFDarzu3DvInANA43DgiQAKQUlJ8b/v3qHHXUGIvOW+TsVCSV+9tZKj7rOitxWXgyi9Pwep2U3Dnjwi+vI7I5k1YFy7EtngxGvu5iTCNY8aQ8/WvEd28hei+fZinT8M8axa93/wWhT//GfqiTIbL9zvnu5e/HqvLiNV1NnD42NYeNjx0AoDqqW6i/udp3r0dgODgAM//6idc+a0fUjIuPX4D/QpyKkrPyRN4ikpw5uVTO3c+p2Pr6Tp6iFQ8TjiVHqtnxvmasmfR9W4jMOkitPmlHFXODQIWBRGN8M4EByvRFFqHkeD6dpBOP3MtLEbI14yIkIRe7cA8IQutO7P/8VZ54XAvX37ideI0eTa+u7qOgUACRVAZCMaZUe7GYdLxs/VN1BfYMRz1oqvPIrJjtDiNxqEncdJHeGsPFsBm1vLUlQ/gvf+XNBbnsvKOL9Pf0oSqKBitNnY/+yQ6g5HicRPILavCZLfjKSoht7KaLX9JJ9S0uj1MuegyQt5BkvEEVpMJQVYwmY3UuovY1buLPx75I4tLFnNd1oc5cV8MVVHxtkc5uK6buiU5/MH3I74/5/u84n0ZQvC7tt+N6reONx+no6IikF6nPvMboCG7gQePPnjO+R3BDqbkTnnT7Wf4N+DvAm8T2mEfbUeGKKkfz7YnHqFkXAPJRIILb/k4olYDgkA8HGbX048xeeXFhH1exku5qKhs7NrIX0/9FY2g4YnFc8m26RkMJbEatPzPlROoyP77iQK6fTG+u+YoH55dxtqjfaOO+aMp9Kf3xERBwG3UgT9G7MQwxioX0lAM85RcoocGsV1QRPDl9pF9LxX4weE29p72sbCbtDz6sVmMzT9/wu2/RzQV5Q+H/kB7MB38n1JS/PHIH5lbODcjQvJvRFJl9EYTY+cvxGx3pgVyFJWm3dsxmC3s+uvjLLzl45R6TMyp8rD1VDrZ9cKaHMIJGfM/KeShyzHjuakOOZAg2R0+7YuT3jPT5VkIHRsdG3Fm/9dY4yb06uhY0MRJH1J/FE25AzmSIvhS66jjSjBJqjuMLttMsjvM0P1HUEJp/x3LjDzsS0vRWDJCD+9XtBotRo1xJMb3UyVfYKjVj91jorepkVQijk5vINDfR3DgzDyYtkVzK6vJq6zG19tNWcNkGpaswN/Xg9XlofdUI0oiQf7JFhKPPg5A2ZrXUKISgkZElWRM5Y6zax56EYdTj1Js59hgmOcP9fC711pG+rl8XB4/u2oC6473c9+2Vj67aAz3b28f9V46hmPYTTqMOg1VuQYqcyzEUpm9gAwfPIbCCVoGI1w99e/7jQf6+4iHQ+RVVgOQYzNwuDswclxvMqHV6YlkREgyfMB5u1Mq7yV9JxSAEsB3+m8n0AGUv82v974g2tvGznt+NpLdtWn9GixaHfasWoJDZ51ZDm/oorLByeAvfonlEx/F4HBhiUTIKaug49ABOo8dJqu4lPGLlhM0gElj4sKSCznmPUZrsJWTSidXP5LkuU/PJqehgWhS5sP372bfY2lBhiLXWQfCoegQA9Gzjob/030/7hw3v/rJryjNnYiiyDQ/9Idz3kvj9s00LFnxxmq6UjLtHBzpgyc/CnF/uvz4syifO0xMimE1WFElhdjh047wQtqojh0cxDDGieafWNzI8M7htmYx+YormD3zSrRegVu++GtS3hiqpDLta6uJtfmp+fTPkcIJpMEoFR+fxLETm5h15XXseuYJAoP9jJ27gBNbX2PutTez94W/0tvUyMSlqzj86jrmXncziWiUln27mX7JVex78VmkZIJoLMiwPcIj0ovMyZnBeP1Ykm1BBFEAAaThOOaGbBKn/CN9FbQCavL0SrFGSDtGAroCazpj22mUUBJTs5myuomoqsK+F58d9Z4VWUIQ04u0vp5uciuq6G856ySUVVKB3pLNwg9/HCmZIB4OYbRY8RQW89Jvf0F2WQXjFixmyyMPEhoapHLKDLJ8OYx313Mq2EKVfXTwU4a3TiIqcfDVrnPKhW4rGkFDf7T/74qQXFt7LQ8cfWCk7FH/K1TO/wa2xfXMKpjFXQfvQjm9C/HtIz/k+6KWTV/cRJbWhFZ79hY6/ZKreOm3v8CZm4coiux57mkS0Sg1s+biLizCYDJjcblZ+KGP8sq9d+HIzR8RIYnt2zciQAKgBIMM/e53FP7852/K8aLt0D42PHAPNT+dR+KUH9l/NhApftKHsdZNXaGdpw70jKo3ucR1TlsGnYZrphUzpcxJ62CUSELi+uklxJIy4YSE26Jnb/swS+tGZ0HoDcSJSzJbmobOafPZg918aHYpZv3bbXJ8cCi2FbO6YjXPtjyL0eLg55ENXPudj/CTPT+hsW8DkF7AX16+HJveht1gR5IM9PqbaRoIUZVtISXLlHnMWAxJcixmdvWP/rzzyjRse/LPo8qsbg99Ow/RuO4FAA4CE5etIru0glV3fJmhrg40Gg3BoUFqZs/n5PYtqKpCxeTpeIpKiYVDiGqCJTddz0v3PYi/vxe9ycy0i69A1OloO7iP6jHL0G/8PPq8CZQtuItD616g9cBePEUlLLz5o2j1OgKDA5hs9nTWtdOY7Q7EeID5qcdg8v1gz2RTe+8jEN7UNRJ8gArhLT3oyxwMm+3YB45BMkKHPBtREJEScXY+/Tg2TxaTll/E4VfXMtzdRemEScy68jqObd7A/BtuwWA2gazgdmZxout5xmaNZXffWVGcek89siIzPW86dr0dRVVQVAWn0XneXmqsVmwLF9C9oxdFPj7q2JFNPRSP9aPGYsSPHiV++AiJ5mbKHn8My3XX4b7uunfu8mV41zDV12Oqrx9VFt+yhc6Pf4Kq/fsQRJH2r38D+a67mPTFH6Gevv+3HzoAisqMKZeROhYYGfeyL0GiI4Su0EqqO4wqqahJGUSomTwHU8hMsiNIycVfR5Nvwi8PcDLawoSsCRTZinjk+CPMLpxNgaUARRUYDiTxhRMIYlpNN55ScJh1mPWZZ6YMbw+CRoN5/GlH9qrzZ9Lr2tqDqvhHlR3bG6SkrohgZzOvzjKRY84mPH0JSTmJVuzB5DRxX/A1DKkdmMvMuMZ6mJlfyfe2fw8BgSvHXIFBa8Echvk33MLRza8ybfUVaHV6Ji9bRXBwkKB3kJ7G45RPmkZR3Tg2//l+QGD6pVeTXVKKqqps+cuDGMwWRI2GKz77A6yKnWomIlp16c2/04ERGoeB6J7T2QcEkL1xlN1+Zi2fhdv8zgSBZHhjNFodU1ZfSsexw7Qf3IczL5+6+YuwON04k2f1i6+ovgJF0vPFpWOwCQJzXTaMisqNl02GpEyyKcz4HA/XX5zFx18+zlA4weKxefSdVhrvCcR5MRBmQZYR+fT6myAKIJLeeNOMDu4971KXKIAgjARmmiflENrYmXZqIN1O6LVO7ItLCa5rR5Xk8zSS4YOE1eYgr7Ia/0A/+158lmjAT/X0WVRMnoYsp7gifzUDWj+/P/h7PEYPNb5usvteo2fMR0cESOZffDMV5VMwmK2IBi1PTHQhBZMkZubw/YOdvHRqEEGAbKuBryyr4d7DPcxZVo+wrRc1IaMmZMTXZd2UhuJoc81IrxOifP14NtW5ie7tHxEgAYjuHcC+tJREa2B04Nhpm0Y9j5hphvcmJW4LR7oDLKzJJsuiR6/TcPmkQvRakWqXxIGt+2g/fIBLbvk6yXWn7VZATciEN3dhqnWDrKAzGMkpr6R0/ERUIOIbJhoMkls5hoIaLYlwmFQ8js5oJLe8Ao1ejyCK9FojPHfyJVJKiqEKL+VX10NWNXhbwLcJ6qfCsadh3lVw8kWoWg2n1sOQH8YsQ4omGHxhL6mOdlJ9/RgqyhEsVmzTKzFGD4LWAt27IKsGVB/segD7kh/AkQ2w8WGYeTu88CVY8v/gz1fBTc9A5YJ38RPJ8H5Dcx7BBNGiQ7S88Vqm1mBg0orVNO3cxomdrzGh9sIR11tBK6afAf8GJSpRL4lMGJvP5wqzSHWHWVZXgjfHyP0GLeGERInbwte2nuLzK8rIVwSE3eJZm0OAgXFuQoEY1cZ/HHgm+eP4Hjs52mbZ1IXr2tpzT5bVtDhbhrcVnU5P3fwL6T11klO7t2N2OBm3YDGOnDykZBydwUgqEaft4D5Wzb+cvx4Bm0FLUlKw6DW0DIZpKHKct21VUkh2h0h54+l7vigie2MoMQnDGBeGEhui4R+vxwsaAcuUXFIDURKtARLNgVECOK+3l8/YFrocE8G1bSPCO6gQ2d6TDqaWMuMow7tPvPEk/kcfPVsgSfR///uYxo1Dl3v+4NLAQHSUAAnAcE+E4FAM8xsIUgGYJ07EPHEiWbfd+rb0PcPfR5uVhS0r6w2PO1atfFPtOC666C33JdXfT9+3vwOvE9n3/+nP2K64mkMbguec33Zo6B0TIflHpFJpEfcz+3Cn9uwEoGTSZJrFXqbYagj29zJ+wVIG21oYt2AJIZ8XOZWiZFwDZocTFAi+2pkWIBEAWSX4aieemzO+D28GQU2vHZ3xpFNTCqGNnbhvrCUWitF55CCpeIytj54N3ppzzY2IogaNTkd2Sdm71vcMGd4OBJ0Oy/RpWKZPe7e7ku7Lxatxf/J24s0tNB/oGRFfP8Ox1/pI1QwwsXwcTqOTYmsRd3OIo7VNZE3KonH4QUoSBXwy5IU1d6Qr9R2GU+vglrXw3GdxjL8Uk9ZETEpnCBcQqPfUMylnEvHGLgyWYrIKi3HmFzDlossQRJGxcy6g79RJTu7citnuoH7BYjyFxSRjMfY98xgWi5npl1z5775k73tsbg8oKuHNXaPn4de6cF+ffj4ebI5Qfp5H5QwZ3g0MGoEWb5hZWjOJJn+6UAB5OE6i1U8yR6bjyEEqJk8FFbY/8ScAbJ5scsoqkOS0fXpx5cVv/CLd++Cxm9NJJgGOPwOrfj4iQtIT6UFFpdBayJScKbza9SrBZJC+SN8bipAEhmKjBEgAIr4E/oEoVrcRfWkpWR+9jayP3vYPr4F5/HgoLsb1qU8Sb2uj46LVAER37sqIkPyHkUrIHN5w1i+4bLyONb/YMeocVVUY7ukcESGxJ3vpjkbY/9IaLvrsV8gtr6Jx62YG2loorBlLxZTpiOaz68HX1FyDVZbQzfww3PVHHAPHwXeM8nmfZ4KrhkO+xpFzr6264g2/A/8sqqyS7AoRb/Ih6ET0RdZ0sgHpdc9cGzpxXT3mbJ2UkvZ9yPCW6A3E+K8XjlPkMvHxeRUUu03odRp2tw4zEEqwtD6X5++YhzecQCMKVGSZAQE1KiFkv269/jSGcsfZGAUhvQ8QWduDcckKjvzhZ9jy8rF5stj+xCPEwyFyK6oYM2MORzau5+S2LUxZOJcVH76Rx3/+q3QTosjU1Zez6eH7UE7P6Y7cPGpmzuX4737JpV/5NgPyAB6jh2Z/M3ZyUJXuUX1q3jrMf33px5wKnKAz1Em+JR+XwYUv4Rs558axN6ITdaxpXkMoGaLOU0e9px6d5lxftGVly/j0q5/m5rqbOe49zqScSWgFLd2hbiqcFZz0jU4gmmV647WbDO8Swy2w/rtYU3HKZ/8vrQf3UTl5OqHhISomTaPt4F6Ob96IzmigfsESauctoKcx7Vfr1Dq4uPJiHm1Mr7dePeYqStv38NrHVnA8aifLaqDUc35xqXhKRlYUFBWC8STBmISigk4jkDo9n7nMOqxGLbW5dhbV5lCVY+WHL57gD7OrEERh5HlNMGgwjnET2th1dh9CgdDaNj66uIC93UHq8u3cMqeMruEoSUlmbL4dvfbNC1IMRgfZ2bfznPLucDdTyQhP/7uQkgqiVosrr4A9zz1NoL+PsobJ5FZW4ykqJpWI07J3FyFjNcvqcpla6kYQYF+7D4teQ0X2308apUrK6XuwH43DgMZjRPHFSfaEMVQ5EU3aEV8cyRtHm2NGGkj74ZzjU3ae2/LI+JQVlNh59ouTMkpSJvBS64gACUBkZx/GOg+mmowP4/sVURCZlj+NLHMW23q2YYtkYfV4iAaPsuWRs7FqF9x09pko7Pex8MMfo/PoYRq3bSarpAxPUQn5Y8ay8+nHiPh9oKo0AXOXrcbldiMPDxM7vh99zniUhIzGasC39uTZBBMpheD6DnRFVgbDcXRakY/PL8ek01CVa2MonOBwd4AppS6mlbmwGvWMybGSkBV6/LGR+VlFZWyeDatRRziRYs3BPi6szcTyZPhgsbs17ac8rezvz729TWlhzLyq9PNZts2AN5xAVlQ0ooAgCJidTqIZEZIMH3De1ohgVVXLAQRB+D3wrKqqL5z+fwWw+O18rfcTga72EQGSM5zYso76Cxs4uvmsQ4vZoUdIJkicOIHOZObl//0Zc2/4ME27dtDblH6Y6zp+hKGONpZ94xt8c+Y32d23mxXlK5iQNQGDaGc42sGyX2/lrhun8NUnD+Gx6qnJszK/Opvxr3NWs+gs2PV2gsmzThC+uA+9Ju1IIwgi9txzjQRXfsEbC5AAxPwgyNB35KwAyWly7luF7+YnKApnI8XCWGYXoLHoUCUFQS8SPepFEM7N7pbh3cGW8qIOmQiuHcA4p4DIy91I/jiOpWUE/tKMeVIOsW39JDtDI3UmzLmQyFiJuTV3kAqGcGblk7tgGiaNidlf+DQx3zAuTx7umePQqxpmf/Z2gkMDuN05WCdVoUnKyA4DBwYPMrdgFu3hDhJChHEfmkCyO4FlXiGRTd0Ieg26PDPJtgDGOjfxY8NoPSYQINESwDjWTfzE8FknSECbY8Y8KRs1pbBg4odIelTW/uEXo95z76mTrPrUF2g9sJcT2zcz49KryK2opr+lidyKCdiyG3j53n5qphVisqQNiZrZ89h/WsxkzIw5vPbQvSOLf0c2rqM2leSOpbcT1VuodlW/0x/bfxyiVsBi1+LvH13ucFj5wdgfYNefVbNVkknURALRakUJhZjkamCmWsGnl97AiWAbBlRiFh0/3PMjfr3o1wCU2ktHtSspEt/d8V3unHfnqPLKKdNZ8akvkIzHeOWPZ1Wj973wLHOuuQlnfj7V02ax/6U1FNaMRUqcFQpJto9WjwSIHzmKEon8QxESVVU5smEdAEPdbbiKs9FmmRH0IqmeMLEjXv4/e2cdJ0d5//H32LrvuXsuF3eHCCQkuEuRFqdAjQql1Gh/9VKnLcVaHIp7gAABEpIQ90su565767sjvz82ucv1gpa0tN3365XXK/fMPDOzs7PPPM9XPl91IMaSGanqid3BOEU+O9U5DmaWHnmy3B6I8vOX9vLyri5uPGEMdrPMm/t7qO8JM6fMz5wyPz77SGPz6ZPzyXKaqckbrR48pciL+SMY8v4XscgWrptyHRMyJ7ClawvHFx9PXI1z2YTLeKnhJQQElpUswyJZhpxZPruZ/zttPJIg4LAmiCY1EppBRyBGccZoZ4AkMeK5AyieOIU1j94/om3ryheYfeZ51G9+l8pZc9m79k10TWP6yWeQX11DJDBA655duE1xLvn+D7HHe1HkJHPOOp9kIo7ZZifQ2c7Wl56jbPJUtKpTkFf/hHjN2ax58C6a96TGztY9O+lpauDsr3+DLSufY8YpZ9LVcID+jjZKJ08DBBKxMLS+Cz214Mo7Ojc/zSeCoetEQ4OIdgX7nDyMhIYgi2jBBEZCw6sYYHGDoRHp7yZ/7Hg2PP0Y88+7CMVs4fV77yQZSwVh7V2zmuJJUzn5y99EVGSSsTidB/aC3cyEjAm4LC6mZk1lc9dmJmVOSgVrqTH8Vj8iqXmkLMq82/EuWbYs+qJ9xPU4JsnEWN9Yit2pcV02jR6XLA4FvaeT6OYtI9q13j4oKfnk7lcySaK3F0GSUv9ECR0jlbCk66DrGLqOoaojKnQahgFaam5jys5GENPz5sNJ9PaiHxznREnC0HVAQDQpGIIIGIiShK6qkEggmEwo/iNXuVR7e0HT2D9xZAVJMRKlZvnpvPr7n9GwZSOzzzofh8OHuNSPkUitaRKNgyRbQpjL3STbQ0g2GWuNH82kI++G/teHna9Knh3fSSVY1Q6umXQNgUSAs8ecTZYtC12HP74Y5/SpKmf9+R0WVGYwp8yPbhiouk6h18bkIwiKpfnfIhEKoQ8MIMhyytMlSRjRKILpYILMobV7IoHs9SLZ39/R9l4oR6gSYLZKaPV1SBaD6kUraAg04LV46Y324jF7sMpWrpl0Dc/UPYMoiBxXfBz7B/ZzSvkpVHmr6Ip08VDTQ/xg3g+o9M4jt2osuqaiOD2QjOPwZ5I7ZgxqIkmwt5uVf/rt0LnfvP9uFn/uKs667iq2rXmH7vYe5p5+Afawnf4nhwOB/JfVIDkV5Gwb2kAc63g/Sp5j6Pea7Ily98a7GJtfw+KixVhky6jPmeboIMkK9Rs3ULcx5cCPBgfpbmzg9G98B7vDy+zc2czLm0dMTSIJVioyFTL3DGJWNHTdAItM4NkDQw60IrPEQ6dPYkMkSkt/hElFHgp9Vpr7oty8ah+/XVbNdF0m1h6i1S7hPCYfXm8ltqcPx9w8QmvbUqILmoHoUNBDw45e1/HFyE4T9pk5xHb3IZhE9H+s9GuAoek4FxWiDSYIrWtHzrBiKnB8qOTPNP9Z6PE4giix+t67UlVXgK0vv4BisWK2O5g0YTzPDK7iwrEXskL2U/zMV0GNYa66GKvLzbhZiyk2xiL2g2CBwWcPoB6W8Pjd44vY2h3ktCn53PdOI2vqejltSj51os7kqyYS29OHHk5irvAQ39dPoilIdGcP7hPLGFzZgBFLzRcFq4xlnJ/Yzl7kTBvRHb2jPouh6iQaBnGfUo5gkTCXuofGSFPpkZOe03z6sJokphR5ufOteiqyHKyt6+XNfT2cPcHPG3ffRcf+1PzTanaiLPUMfcfx/QPEDwRQ8hwIToUZp5yFMyc7JdbEwcpmgoBhHFyrHJpXGKm1SYIkUYuOVbAytmcsCS1Br7eQbUorerwdyeVAd04gqvbhnHgi8UgjM9w5FL16CzizoPYl8BSgDpoZePDBoc+TqKsDwDF9HJLPgpE5HpICgihB2TFgr0TQHehzv41gCGj2AoSyMxETQTj1AUgqGD09iDYbss1GmjQfhJxtw728hMCLDam5hSziPbsS2fP+c0Onz498cN7dH+8kw+FDDyXRQ0lkv2VI1OkQ1nF+xFASoz9O4Pn6oW1Oi8TPjq3kxc4AomgwudDLQ3s7mV7qY8b5VZg7IljcZtSIilnTcMc/nMiDHkqOEJ8CDopMJRHtyohtlmofsjddQfOTRgJ6mhvZ9soLAEQCA7xx712c+vWbiQQC5JRX0rxrOza3h4Fkaoy9/JgyHljXyI3Lq9lY3wMcObkm3hwkurkLOcuGFkoQ2dQ1VJkt9GYr3nOrsE/5cJW8BVnElOfAe1YVsf0D6Al1aA4R29uHfW4e4bVtGKqO6FTQwypaf8r+ouQ7sI5P2UREm4zk/ejV7NOk+aTRekfPe9WubrRg8D1FSI5kK0YA2ZS2v35aMVQVLZryKaDrCKI49NoVDsXliGJqDqtpKZsZoPX3gygiud0Imja8j65jyDKCqg63qSrIcspmDylHWzKJ6HCgDQ6idnePui490I/dY6O7KTii/f3EbI42fc1NPP+7XzL37M/QvHMbva1NFI2fRMWiY9kjtaCGVWKRMBgG21e9RFZpOZOPX0Got5cJi5fy+l/vYOwX5mOp8mIqcIywgxtaWoj1w6AnNKwTMlFybMPrsQMBDB10NYEnN58dr78yos+6Jx5lwWc+S3ZJOZnF/5O1vtL8B6FFo2AYSB9xDa4FgwgWC6KikAgE0Ht7kdzuI/rutGgMdO2IPg4tGEQwmxFNI8daTdfY0buD15peI6knGesby/QOkf6zbxjaR77lrlHHM9sl3ux4A9kJ8wvmY4v0cYPh4Y38Rbw6sIcrSk9iqaeGjOe+/g8XkoC+/dBTS/Hmh/jW/Cv49s47UESFc8acw7sd77KlawvfK7uB1nXv4snJIxmP076/lvyx4+io3cOWlc8BqbXD6vvu5tSvfWso/mzbKy8wYfEyrM4PFqVMM4wgimhxFduULGS/FSOZGodje/uH1uWKNT3nS/PpwRBgaqEPdXcA58KClNitbiDIIpE9vdS/s5l9694mEuhn2omnDfUL9nbT397KstJlTM+ejkWyvHeMd9vmYQGSQ6z7IxTPg6xq/BY/ty25jSmeKUjd3Xyr4jreTuzArry3n1lWxFG2MHiPtdYHoEejdFx0MYmGhhHt8f37j9whzX8tggR2j4megzokyUTKJhvsHVkkz2QbfjYDsX7aa/cTCwXRdYO1f38glbwJ1G1cT6Crk+lXXcqc3DlMzZ6Kx+Qh74lr4djD3uvdu/FueoCf2GpYlzWLHZF2ZjuKmB6J8Emt7OKNAXru2A4Hl5u+z1RjLnFhKnENxzK0hUYUEbBNzkRO297+aRKqTrbTzNULy+kPJ9nYNMALOzoo8tmYW+7niw9t4S8XT6c008HD65u4bH4ZX310K8llRbC5G0tNym56CEPTkbNt2CZnpr47WUQLJzEOipy379uD1eVh9hnn0rh9C6VTprPqrj8N9X/j8adYZHUgHYwPLJ4wmdq1bw7NASFVeV0QRSIDfbzz+EOUnnciJ5WfxBjvGKSO0WO92SaztW8L3UYHkzIncevGW7ly4pU0DjbSHmpnUdEiJmZM5AuvfYH2cDuQEs37/ZLfk2fPY3ffbgQEqv3VVHgqmJg5kd8v/j0bOzcyKXMSZsnMjxb8iNebXueimov4v3f+j5iW8nUvLV7KWN/YT/6LS/PxURPQXw/tW1EnXEjTjm1sefFZCmomMOPk0+lpbmTD048N7f7Wg39l2TVfYutLz+HJzsWbk0uOEWZO7hxK3aXMypiMsvZ2lJzxTCtdcMRTxpMa6+t7aemPMRBNEFN1eoNxZpR4Wbmzg/NmFPHa3i4unFVMptNETyjBr1+tJddtZWyui0hCJWaVsE7KRA8mERSR2J5ePCeXIyoH50aKSHhDJ1pfDLcGx1RmcNqUfO5f18TGxn4kUeBzc0u4ZmE5fscHj537+vfxauOrVHmrRgnrZNoy/7nvIM1HwpxM0Nffx4t/+BVqMuX32v3W61TOmkfZ1JS4qSsrhwEMXtvbzZLqLERR4Mpjyhif78b6AQVz4/UBeu7aAaKA5+QyEgcCBF9tAlJCIK6lxcg+K0q+neiOHtwrShlc2ZgqFnTITxZMonaGMRU5SRxmBxbdJuTMlL9VcplxzM9j8KXDcoREAVOeAz2SJNEwWsj6kO/tcNTeKInWEEZcQ86xY8pzIEjvk8uZ5t9KlaeKgdgAt8y9BXuXFTWssv7JR0fs09/egr+wmN7mRhKRCLveWEVnfWqt07JrO73NjZxw7Q2E+/tG9Nu1fTOL5swm+tzzdN74Fcqef5tEW3hI+MYxLw/RKg+NkcnOCFMyLQTNKopNZkqujY6kzpu1ATY1BVhQmcH4fBf7m/qZU+5nXJ6L9kCMfV0hzLJIsd9GS18EQYBvPbGDG5en3+9p/vtY39CHRRGZkP/+MZKNO7ZisTvILC4BIMtpRjegNxwny5mKK7K50yIkaf77OVqR8DMMw7j60B+GYbwgCMIPjtK5PvVI1tEGWIcvAzVxWAUpUWDa8hLMHgeOpccTCwcZ6OogMjAwJEByiFg4RF9XKzfvu3moLduWzS+P/SW3nDoOn92Epqn8+tzJhOIqCOCzmfBYh5MYuyJdXDb+Mn6/5fck9SQCAtdMuoYyT1nqegSBqplz2Pv2G0SDqUmuxe5gzJSZhN58E8eCIy8cMYyUNfxI0n56gmgihNHjQc6yEt3chaBISG4z8aYAzoVFiLZ0csanhWTCQmhValElWmXUniiWGh+RLV0AyH4Lkc1dI/rE1nbiz/YjP/csWlcP9sULER5/Audxx5Ho6ca+ew+uU09FeuopbFOnomNgXrsO17lnI7/4EuaiIsQMP+6Vr+A530/+WxtTweJjugmvXY/33AtwLXVgxAdwLstFbe1EzvFjKraS6A3iPbuS0Jp2TAUOJJ8F8aBQgmCSsE/LJvDicHCvZYKXky+9gYdvvXnI0CwrJpyyiVPOuIC65gaiHR1Ulo1h8rwVvPJoJ7UbAwDsXdfPCZdVIkoSFoeTSCDVrqnJEcY/gNp33mbugpO46t56Hrumghx3Opj3k0QxSUxf4qetLjikeGtxKDQ5d7GnZRvnV54PQGTrVnr/cgfWCePRBgZwnnAC2rbttP/974h2O6UXXkhozdv43B7uOv4mPM5UcG+WLYvZubN5pz2lop5pzeTE0hOHBJsOYXE4qZozn3cee2jUNe5a/Sq5ldXsWr0Kq8tN1ewSciuHVcqthyrPH4ZrxXIkj+cDP78gCHjzCkiEI7j63Qy+0YBgljCXe1By7ZjjGkqWjaSu8tWlVVgUiUA0iVkRib9HVcJXdnfx8q7Ub7sqx8mXH95KIJoKSt/fFaI7lMN1i8rJ91jpGIxx0oRcrl1cjkmWWFCRwdgcF7s7Uu+NDIeJi2YXI4lpg8cHkevI5bzq8ziv+jwA7tx+FwktjtvsBgMaBhuwSBYWFAy/f20mmTdquxmIJphc4GJ/V4hMfx8D1jgV833sf+twA4SZiYuWsvnl54daDGP0u9owUuIHHXW1dDfVUzxhCqIsEejqYO2jDwAw9fgTccoZDP75bwR278I2ezbek0/kidtuHTFnKPfl0PrdX+G/+EkipgDNe1aOOFc8Eibc3cZJl5zPnp0HMFltTDpuBR11e9nz9mrOv/o80DWQ/n3BmWk+HIIoEtVCOCZlEnqzFXOpCy2YxFB1zBUerOaJIIgQaKFiQgYvPvciM045g46DQVWHBEgO0bh1E7kVVUSDg2SXVbDq7j9Ttfx47HPyeLnxZXRd55j8Y5icNRmvxUtPpAcMiOpRfrvxt1T7qzm1/FRWt6xmYuZEdnfvxmvxsqNnB9dMuga7yU5WkRN3to3AYdXi55xaQvIbN424FsnnQ87N/cTuVWTTJvruuYf4vv3Yjz0mNacWhJTohW6A1YIky/Q/+CDJ9g7cp5+OeVwNgqpiCAKGqiKaLaitbQh2G7axacNevLMTracHIx7HSKoIkki0ro7+Bx5EdDjwXfgZDEXBiMWR83LRu7vpf+BB1N5ePGecgXPFckw5I8UXTUWjq5dY5i9g+sRyYqZ2jr/uSzSsX49JsaB3xYnWDmAqcKL2RVHyHFhzbWgDCTynlGNIAoIkoAeShN4cWX0i2RZG602QWVxERDdQw1XkuS10DETpGIxx4Vwr+7tCNPdFuGdNAy39EZaPy6U1EKErGMdhkanISgcb/i9iGAaR7Tsw4sNJ64IkEX7rLYIvvIh5zBg8552LYDIT3bSRwaefRnS78V96KY7580cIHH0YMouduPwWBg9Lkp8xXSH2w6fI/smPybRkIhgCoiBS5CyiI9yBIiqsa1/HuWPOxW128+T+J9nctZkSdwmSIPGnbX8iEA+wtm0tJ5efTMjk4tWdnTij4LNY0d55iu2vvsTpN36PPW+vHnVN9Vs3Me74MRyftRfthM+SNJUTeGRk8FnvPbvJuGICroWFGJpObHcf0V29yB4L8aZBLBP8dCY6uOfNv3Ln0juZmTvzI34TaT4uWjJB3ab1I9rURJz+jja6yxWWlyxnIDaAkqjhq4/u5K9nTEJ4txN9QgZyto3Ixq4RZicjrlE4qFJzTCmxpMqa/b2cMC6HsgwHncEYkt/K9W/Wc8rkfDpDYUo8FmZdWI1VNTBlWLBOzUQPq8g+C9aJGUR39aF2hbFOyMRclnIymEvd+C6oRu2JjkrcRQSlyEl4bTvB15qHmj2nlmOfnYsgCOhJDXQQjyDqk+Y/C8nhYKCzfUiA5BA7XnuZySecRGe8i4SeoNpXjaNjP6ipsdPb9RYzTzkTr5iDWXFiqDpaf2yEAAmAvrqVv144mZtX1bL+oOL+ve80ktR0vPNLqVw8PE+RLxyL2h5GT+oo2TYsVVNQ+2JIVgk5y461xk9sjBc9lBwVAAEg2hV8F1Sj5NtRe2PDlboA2/RslFw7kmXYVqsnNBBAVNLP8aeNQq+N06bk8vD6Vv6+KRWRa43LQwIkY2cei1EXIxHXMVSdeF0Ax9xcDAzkLCvBSD8r//QbLvradWS6Zah/AzW7hm3+Yl5sXkU4GUbVVZYULWF182q8Ni/37LwHRVS4aeZNXFRzEf3xfjojnfRGewklQ2zo2ECNv4ZsWzZ37PgdZ1aeyZd73uaPE04ja/9rAKjWEhJxF+aqKuK1hwV0iSJiZiHhsA/qBhEoTNkwBvoQpPxUMmgolkowFfYj2m0IVhtIhejdAfS27QiCgOiwYx037iMnQqX530I0Sdjn5mGu8KKFksheM3LGB9vwLQ4n2WUVZJdVsGf7m6w48Yskm0JowTgoEp7TKgi/24ER07COz8CIa+iBBLF9/SPnMTGNqUg057u4480GtjQPAPDghmbOmlbAVcWZJB/bBzrYAc3XSfLS8SgZ7/9ci07TUCDcEALIWVb8l40ntq+f2O5ezEVu7DNz0nOUo4AgK+z8h4Riw9Dpa2lGNpsJ9feBIDDv/EvY4/Dw+/MzaQ/EuGh2CQ+sa+KGpWPIdI62i+oJjWRriERbCC2UwJTnGBIgOUTghQYsFV6kI/R/L2SvBceMlH1Em5wkOScPPaoiZ1qwT81Ci6hYavyofTFkvwU9rmGt8Q8FUIp2BdvMLES7guxKJ0Sk+fehFBWlBCQO83+YJ0xAycp6zz7eHBtjZmSyd8OwqMT4+Tl4stJziE8j0d27ie/ejRZOCWeIJhNIMkYygR6LIcgyotmCHouihULIHg+GqqIGBlF8voP/H0DJzEILBjFiUZTsbBLtHYhWK6LdRrK9A1NBAcmuLgRRRPJ4iO/aSXTLVuzHHIPn3HMwjx9PfMeO4QsTBBS3iynH59G0sxf9YMVAs02mePy/rwpwsK+XZCzKG/feQU5FFbnlVTTt2Mqk45azomwFHU0HiGXn0rEvJezbVV/HK3fexoILPksiFiXU34tgkVNFhbZ0o2TbSLaFMJW6h2Ix0rw/ktOEoWpEtnajZNlItIawjvUhmCXcWd4jCgqoiTgms4W8qur3LxKVJs2/ET0WI/zOOnr+/GdIxPFdfjmO+fORPkAkI9HWzuBzzxJ4/Amsc+fgXrGCwWeeJbLuHSwTJuA5+2zsM1KJRXo8TmT9enr+/Gf0cAT/ZZfiOOYYJJeLZEcHgy++yMAjj2IqKcF/xRXYpkweOs+27m1c+tKlqEYqhksWZP4+8dcIJhNGIjV/tnftxemrINg3PJ8ef1IWf6h7iqKsfOYXzAdRIm/jvZxvGJyfOQb634byRXBEUfODVboHmljx7qMUH/cTdkY7sZid3Lf7PgC6SvrY+cYqdF3jxOu/RtveXTSXlbP3H/wghqHT09yUKkqhabgzs5FN6XH3oxLq6yMjvwAtkCDZFRnyD9mnZmOgY/eYKCi0EowHcZrTPtc0/36sikwgHMdS7qb/if0omTYEk0S8PoDnlDJKFBtrnnqA1j27qJw1d0TfaDBIZmkm9YP1mCUzxxQec+STGEeIF9TUVEwPYJNtjOtQiDxzL4PPPoecncXsSy4hOeG942Y82TYmLS5g66stQ22VM7Lx5nz0NZXodOJcvpzeP/5xRLtt+vSPfKw0/9nIssSUZcU07+pH1w02rQww5+wLWfnn3wyt+XOrqsk6TLQvaPcS6ksJRIT6eobiwg/R09xId38rZslMIB4gqkYJ5E/Be3gMpa6iK3YK3/oNhSYHZzmzYaAZypcA/7xwlaHphFa3DAmQAAiygOQ1E9nYiZLnINkZQcmxIdgVJJ8F2+RM7NOzEdKFAP9pct0Wrj42JUCyozXA45tTcVz7u0JsqO/jc/NLeHprGzNLffx8ZS1FPis/PmMCtTpMn5GDEUwguUzE9vajZNlQilwomTbCGzqJHxgAA5QcG1anStXk6dRueZdJxy8nEhggu7yKQEf7qGva9sabzDvjLF6++w5sbg+9rc2j9olHIihmCy07t1NXK+L1ZfCDd37AlcXXYveXE+4dns/mH69w49ZbiKpRbpp5E9dMuoan657GbXJzYc2FWAQLq1tWDwmQQKowwa83/ppqXzXPHHgGAKfi5K5ldyGKIrX9tVhlKxMzJ1Ljr0EQBJaXLgdgYsZEGgYbcJqcVHgq8FrSBbU+VQjiUPx1bMzpDDy/BkglultsdgLdnaO6tNXuYc5ZF+DJzePN6GaeOPAEFZ4K3CY3m9rWMc2WQRKRxq4gHYE4bqtCeZYd20Hxhy3NA7y6p5sN9X0sqMrgT28coCLTzo3Lq7l/XRPN/RFuWlHNT1/cw0kT8vjD66kCFQlVR9MNZpX5OeOJLfxqaTVj8+x4zqhAj6gMPHsAI65hLnGhBRM45uYReLGefgmOr8nm7f09bGxMjfuabnDHW/XMKPGybPz7x/4OxAe48c0bORA4wA3TbuC2LbcRTKbiKs4dcy41vppP5rtI86Ewm6G/vXVIgOQQ+9avYeryk7G5PfjHTSUombhiQRkVWQ6yXR+u6Jie0Bhc1QQGWCq96FGV8Nq24R00g8EXGvBdXIP/knGo7WG0hIbnjErU7giCJOBaUkSyI4IeTuI8vpj4nlQsornUhWN+wYgiF7Zp2QiKRHhtG6LHjHtJUap42sG4+tjukSITsn/k51B7o3TfvQOt52BMkQAZnxuPpeq9x9l0TM+/l95YLz3RHpqDzUx1WLGHc4iFRsZpbXv1JU796s10HdiPzeNl75qR9qBocJDo4MCoYzvdXoz6g+9uUcRQe1CKsjAiKo65ecT2DaD2RjGXexAkAct4P6agyvzuvYgCDPzlGXIqKvhaTQ2vlmZx45oGzpxawKmTcrnorg1MLvSQ57GQ6TAzudDDrSv3sag6i2fXNFKaYWfRmLQgU5r/PjY09DGl0ItJfu91nmEYNO3YSuG4iYhiamzNPCg80jU4UoQk2DO6eEGaNP9NHC3Fhx5BEG4G7iPlYbkQGF125n8EX3E53rxC+ttShgFBFMlbejadOJmU58Upi+SUucksdiGIAv7PfY72/XsZM2cBfa3NSLKMpo4UNuhIjFTz7Yx0Uheo4ztPmTHLIvddNpMNDX3c9XYDkYTGmVPzSag600p8ALzZ+iYvNrzIZRMuQzd0FFFhT98eNH24WkmmP4tTv3IT3U31GLqBz+UhceO3aOnpoeD2P+OYNWv0h3VmQaAVcieDYoPkcGInc66nPzmIoenoAyq2adnE9w+Q7AxjHZ+JFohjxDVIT3o/FYTVVCIPDMdpCYo0qm0EOiSbWxl8+FGyvvpVur79Xezz5xN+620ia9eSecMNdN78bcwVFSRbWhl8+mkyv/AFur53C5LLiaWkhN5bf43/yivo+fkv0ONx/JdfRs+PfornvPPo+uH3Sba1kfnlL9P25V/iXLaUZEcn8X37yLn5Zlqu/yWeU88k2ZBB4KnH8Pz4VpTpHhTDTGhdOxggWCRcS4qI1wWIP9vNOafeTI/SQcveTRT7s3GGoxhvr6Ny/34Mw8A0sQ+TycKckhgDE0rQdfAmO3A1t3Ly1V+icd9eyqbNoO7ddUOTisOxOp0kJEhqBttaAkws8Bylb+x/F1eeysLrSmje3wOKTp+nhV8e+CkJLcEJxScQq62l6bOfwzZlCpEN76LbbSjbt9P1f/83dIzo5s3k/fIXtH3lBhx1ddhuzsFUUMCmrk3YFTvXTr4WTdeIqBFu3XgrU7OnjjKWyooJu9c36vqsLg/hg6p2VbPnUbNgMdmlFcPbJ00i8ytfpucPt2HE4zgWLcJz3nmpYIIPwfhFx5OXVUn4zTYsNT6UHDux3X3o0SSOOXnous4rO7toG4zz5OZWbCaJzy8sJxTTsJtkMpwjA4JX1w5PfrsG40MCJIdYubODz80r4atLq2gbiFLgs2E/WN27OMPOPZfOYG9HEFXTqch2UuRLB2l+VAzDYEPHerZ2b+WYgpRT+J6d9zAtaxoVnipskotkNAfdgKe3tnHBzEKKfXYe3NDMnMxmrnnjO5ySdwYLzjsesd+KO8eK4u6mUJqP1WRmz5Z38fozKawcw9Z/UF10ZmQSDR4UVkomObBpPVklZYybNJ1pCxaT4fGRYbbR8cUvDVV5S9Q3YG9t4+TlZ9AfSVXL8JitSG+vZfCtt4iuX4//3ruQFAUtOfJ5UlwZ+DLdTBPuo2vscnZsXI/DbuHcL1xNxqqroXgBZIz5F9z1NP8sDq8PrSGIbUoWsdp+JLcJ64QM9FAC3DbwlkC0n9zmxzjhsu+xZ/16nJlZWF2eUceSzWa0ZJL86hrefjgVkCXlePjp+p8yK28WGfYM7ttzH0WuItrD7Xxt9ddG9N/dv5slRUt4u+1tJmdNxiyZea35NSyihbpAHRMzJ+LKsHLSdRPpqAsQHUyQVeIiq9RF/Mc/pv3Gb6J2daHk55P3s59iyvtkREjiBw7QfNXV6MGUUTFRX4/a3o779NNTFQs2b8I2fRqtN3wV4+BvpfvnP8d/zTWYx4xJVY5RVdRIBEEQkFQPyf5+FO//tvNOGxhAj8UwgiEMTUPr7qLje98f2t66aRO5P/oRoteD3t1D6w1fTVWxBLp+9jOMZIKMq64acUxLdTW5//dDOn/0Y/RwGGXiRPae9lnuWbmfY2buZNfgJs6bs4JcoQSxX8FS5SVeH0DJtqFk2pCzrcRbgiR7okS39qAHE3g+Owa0I4g/qTrd0W5a4h3c8pANkyRy0/Jq7GYTkYTK6r3dTC/xsqaul1f3dLGgMoNsp4XGvgj7u0JpEZL/UWK1teiBAGCgRyLI2dkMPPAAg0+nggES9fWE16wh95Zb6P7FL4f6tWzcRNFdd2KfPfsjnc+TaePkL0ymvbaXcEc/Hr0H4cFf4bz4Ygaqcnm+4XnWt6/n9IrTCSaDjPGO4U/b/sT6jvV4zB5kSabYWUxci9MR7uBnG36GcTAYtyvSReNgI129PnrCcXI9Lm5f08iXSqsw9BfY+MzjOP2jEzXc/gxMsT7In4Ic60GVNPT4P1Rf1QwSTUGi27pxHleEqdCJkdRTNogaP4IgcKx9Hi/wElu7t6ZFSP6FiIaByWIhER0pRGay2vjtll/SHGzmD4vu5nN/bieu6iQTGoYAelJDEASMuDrqmFo01WZRZKYUe1lX38cD65swySLvNvSxvrGf9Y3DgWaLxmTxleMrmVDgGnUsU65j9DVbZGwTM9FiKqZCJ70P7MGIqgiKiOe0CkRJJL53ZCBb4IUGzJUetL44g681YcQ1HAsKsIzxItnSAeP/qcSCQSym0UEMNrcbX14BG9R6Xm9+nYbBBhxZs8gTJdA1HHsepHzJryCRBwMCgiQeMdbXSOpEY+qQAMkhXtjRwZKxWVRmD7/7ZZd5VJKvcljivGiWcMxMzWUtY3z03rsLbSAOIriWFGGbmInkNJHoDBNaPTKgLfJuJ/aZOUhFLrRokviefoJvtiCYJZwLC7GUeRCUdJXQTwvtgTAWReaprcOid0kkRElC1zQmzToBU8xGdFcvgiLhXl5CeFMn7hNKSXZGMKwak04+Ge/+h6B6Gbz9a+Tjvo+sKHgtXhwmB7Io86tNv6Il1MJVE1Pz56SeZGPXRqZlT6Mj1IHL66It3Ma69nXMzZuLx+zhufrnmJgxEd3QqQs2sW9sIVkNb0LhbIK7Bun41U/IuuEGBv7+dxL79yN5PGR++UskW1rRgoOgHfyhiCKCJIGiIMoSRlIFDASzBSwWZLcb2e/D0HW03l4EUUDtTonsOg4mL6VJ816IioQpf/T7/4PIGzOW+RdfSmwgQHR3L8nGIJLDRODZAyCA+/Ry1NYwobVtmPIdKIXOIf/K4URDCQS3OCRAcohkNIlzfSeHa0lrfXESjcEPFCGR3WZ851XTd/9u9IgKsoj3jApEu0JoXTuJugCWah/2Gdkj3h1pPjmEeByry00sPLK6sJpIkFFcwoTjT8CXV0jYU8T3795EODHy2djfFeS4muxRxzV0I1XFShJTldeO4Ksz4tqQaPvHQbIrSBWeI24zF7mQvRaiu3sJvZ1679imZyNaZWI7+1HbozgXFWIuHj3PTpPmX4GlsoK8X/6Cju/fgh4IYK6uJu+W7yO53vuZVA/spbLvDfIXTWYwZsJtiWNrfhW1QUauqnrPfmn+9SSam+m76270cBhTYSFyViZq/wCxujqMeBzrhPEgywyueg3RasE2fTrht9egDQ7iXLSQ0BtvYCST2OfNY+CRRzBXVWEqKqT7D7fhPedskg31xHbuwnXKKfTefjuuE5ahhcIEX3ieRH1D6hoaGohs3kzud79D+83fJr53L6LbTe73voulooJcWeHMr02j/UAAWUnFAfk/xjzjk8KVkYEgiBiGTsf+Wjr212L3+rC5PQCoHhOKw0bh+InseP1lAHRNY9fqVcw+O1Xsg7iGkm0Dg5QASYkLyW3GiB+54EWakegxFVORC0EWSbaHMZe5EcwSJFL3L6diDIrFOkKwP6ukDNls/tDxAmnS/DuIbN5My9VD9elo+/JXyP/db3Edf/x79jGSSfr+8hf6H3wQgNzf/JrOm79NbNs2IBV3EN24kfxf/wbrhPFEt2yl+Yorh8/x1a+Rd+svcZ1wAv0PPEjv7ben+h04QHjNGkoefgjLmFRsweP7Hh8SIAFQDZVOn0TOT29G/eFv0Hp7ST7/CLP/7yd0D4hoEYGgp4t9jk1E1AhFzoNCwK48WPJdePZL0Lwu1da6GRbeCE8c5l+0+cFfBe5CCDSzf8H13LDpF3RFu4fsKAB3NT7AiTU1NG58l00vPE3Z1BmE+/qwOl2jqmVqySS6qiFKMrPPOh/F/OESq9IMI1gVjJiGpdpL/EBgyD9kaDpGwmDFRcU4zHHCSSktQpLmU0FS1djUEmC2141zfj7Rnb3o4SSOuXkkOyKYq1LFMCVFITo4snp6VmUFK4Mv8Xrz69T4a7hs/GVHFjMrmA6yGdTDKq3P/jxkptY+ReYiQq/cTt+ddwKQqKsj+u5GCv54G8ybd8TrlhWJaSeUUFDto7c1jDfHSnaJG/PH8IUJgoDnjNNJHDhA8KWXEBQF/1VXYp065SMfK81/PrnlHs74+lQ66gaRTSI55RbOuPF79LU2Y3E4ySopJ6OweGj/iGyidOp09m9YS3hgYNTxBEFEUcx4LB5eaXqFYCLIGVNvxHuwYCFAqHQ54ZLlZG/8CyRC0BtKJfHPuRakTyDlxjBS9trDm1QD0WHCVOIi0RREyXOg5NgQzRJZ101GtMppccJPCJMs4bLKhOIqT29tG7EteDAGIZ7UeW5bKsm3qS/KtQ9sxiSJrPzSfHy7Eog2GVOZG8kmo3VGiGzqRLAquE8sI7SmLTVej3UxXpXIP+Vsmttb8OTkYbLZ6Y/HRl2Tw+2gpLqKYy68lPrN71I1ex4bn31yxD5On59YOETZnDm8HK2nIKIRVaP84cCv+cKKr1IZrsCmugi4O/hz9y+Jqqn15e3bb2dp8VLK3eV4LV5ag60ktSQO02g7RV+sD8thQnvBZJBnDjzDmrY17B9IFQSSRZm7lt7FlOzhMbnMUzZUADnNpxBJBk8RVJ1Apy+bgpqJ1G1MFQyKhoNYnaNtpnaXG1dONutNtTxQ+whz8ubQH+vnF+/+guMKF2Lkz6RFzOeMP65h8GCczucXlnP1seW4rAov7+rEbVWoznXy7LZ2JFHgvJlFXHHvRmaV+lgxIZfHN7Vy/oxi/vhG3dB5z5pWyJq6HmaW+mjqi3LmQ5vZ+bk5BF9rxj49JxWfYBaJ1Q4gecwIioj9/GqCwTB2k8T6hr5Rn2Vz88AHipC0hdqo7U8Vy/jj1j9yzphzkEWZCRkTmJY97Yi/lzRHjyAmzPbR99xss6GpKsu/8i3Of6KNry/LRBT40AIkwIh3sGBK2dz0xGi/rRHXhmJxEm0hun67ecR20ang+8xYLCVuLOUenEuKEE0Swj8kscsuM875+dinZoMsIJqkg+eWcC0tJtkdSQmMCOA4tgDlH2zI8ebgsAAJgAGBFw+gFE5Eso6cZ2uRJPG9h8X0LDoY0/M+ifVpPnn64/38atOvGJ8xHt3QceYtpmTyNBq2bBzaRxQl4uEw/qJizA7HUEzP4dg8Xhz+DEK9qZxhSZaZMm02sYe/ieT1kvuDWzCXlBDesYPkgXqUgtkIBwK4l5YQ3dmDrurowSSS14y5uJj+Bx7AMXcu3bfeivP445nrcnH2mBN4YksrZ08r4LrFFdz22n6OqargD6/V8ZnZxfy63M+e9kHGLq1mTI4jXYg9zX8dwViSXW2DXLe48n33G+hsJ9jTzcxTzx5qyzoYq9kdHLar2N0eOuv2HZ2LTZPmU8LREiE5H/gu8AQpEZLVB9v+JxFcfo7/0k3s372XaDhMxJ7JDzdFaezfy3WLK/jqkpHJtebSUrLdbmI2K92N9Uw8bjmbX3xmaHvptBlsUHeOOo+qq4CZaxeWMxBJ8sD6ZroODmp/XduIz24ix2Uh32cjz55HR7iDP23901D/xUWLMUnDVbEEWcab0Aj/388xolEioeFAucT+OjiSCIkgAAJIZlj8bYgOoDlKSKpeBIsdn+xAzLBASCWyswdTkQsl34Egi2hRFT2pkZYg+XSgJwNYx9mIbEl974JJIr6vH/vMHIKvt2AktFGV9MxlTkKrHsNUUkJs9y4ArBMn0nPbbYh2G1pvD2gajmOPoffuewAwNBUjFsNx8skMPv986lyKgjYwgOPYYwmtWgWA7PORbGnBUlNDdFNqIm4uryD40kqkjAyiW7eg9/YimES6fvETlJISEn2ttNFOQfkUtK0pRUzHvHwGX0kl/4g2GdlkIddcTnalG7V7P/333YcRj5Nx7eeJ1+4jtncvoVdeIfrss+Rffz29d9xBXBBQzz2H5F//xuRbvk8ktxATIrFQEF9+IX2HKRHPW3YysUTqd2hJL+SOCposccC8k1uCt6DqKsmuJB6zh6uyz6CgPUGsZTdGNIp18mR6bruNkmefpf2rXx15EMMgunkL5upqQq+/jvfiizAVFJBpzeTVpld5tenVoV2nZ0/HIh3ZaFE0fhK2w0QdBFGket4xvHn/PUxYsowJi5aRXVY+oo/kduO/7DKcS5diJJMo+fkfqUJrTlkF9qSTwU0HMBU6QTOw1PgRBIjXB7BUeemPqtz3TqoiYSiu8r1ndvG78yZzoCc0SoRkTrmfV/ekkjTMR0goUiQRiyzyjce285WlVUSTGtHDjDDZLstHM+qkGUVXMMa8vHm83fY2z9c/P9Q+N38uT9Y9zuvNr3Pd2F/S2JaBzSRRmmGjZSDKtDITf9qWqgTxdNvjPMMT2BU7F1svJk/IoN+i8kruTk6pWYEsy/wl+ATHXXk+zc+8RmdtLXlja5h52tm079s7ZNRweP0sWHQC0a99kzy7Ha2vD+maq4cESA4RXr2ajAnjUf5wW+pvIOPazwMgKDKmviDzzjiH1Q/fP9SnbPI0/GVjweXGvOA6Cve/QuE0B2RVQ8em1Dyi7Fiw+4/uDU/ziaCaBUSLhKhIWMf7ESSRRPMg1omZyN0rMY75OvTVQ/5UchUFywkn0CP6uWfVTsaOmUDX3u1Dx5pywsl4cvLY9PwzBDo7qFm0hO2WFuJ6nNUtKdXfKm8VqqHit6SeD0mQOC37eKYZRYRlFRmJ5mAzA/EBAKJqFLvFfnC+nMKTacOTOXK8VebOpeTRR9D6+5EyMlAyPrkKhbE9e4YESA4RfPkVXMuXAwKS243a0TkkQHKIgQcfJOcHP8CIxzF0DT0QwFRQgB4KofX2/s+LkBCLQTyOHosh2u30P/zIyO2GQWzXLhxLFhPdsWNIgOQQ/fffj/vMM0d812pfH/K48WQ9+DC7Wwd4vCHKE2sGkASBeZMdvNHzFm/1ruWRqfdibU2g+KxYJ2SknvuuMFKGmdArw/NB0a4QtySwjPWNUDAX7QpihoktA1spdZVhkgRsJploUkdH5dmt7YzNc7HhoJNMEUVEQUA3DGRJwJoWb/yfRQ+HMaJRDE1FMJkgHmfw2edG7jM4SKKx4R866oQ3bPjIIiSQqmDlybahRzNItNoQZv4IU2Ehm3u3ISAgCzKBRIBAIsDdO+8mkoxQ7CrGaXbSFeliZ+9O4lqcDR0bho5pVw4Gyg2qZHU2sthhIiRLmGWJTQk/5fMWU/f2Ko6/8nr2rn0TNZ5aVykWK2Nnz8LQ6oY+l2QKYpueTej14QpbSAKy30KyJQQJnXhzEFOhEyXXjiCLqKEk2dZUJeQs23tXRE7zyaImEojPvsCcsy7gjXvvHGrPraomp6KK+v31rChdQV1nnPjBjNsmTWVqmQfFb0OLqljGZZDsaBo+qADWMcPvQ6/NxMVzitnSMkBPME558eh3ZYbTRCw52pn8QUgWGanSS/b1k9EGE6lK734r0d2jtZeNhIbaF6f37h2HimASePYAorUKI6EhKCJKrgPZk64U/5+E3tiIbU8t7qwcAl0dqUZBYPpJZ9DnSvDzTSnxp1MqTqE5MQiFszFyJkLeZDyBbajFVQzuiyBYJMyFLgSThHHYmlqZmkl9IjHqvJlOM7EjBEB8WEz5DrI+Pwm1L4ZgkVEyrEMBB0ZcG1Fx7RCHEuXjtQP0PZyqii06FJItIbRgAsmhYMp1ILnTz/C/m/6IiiiARZZIaqn57qP7olyz9HTqX30Gp9kHCQ1LtQ9BEkm2hrBPzibZHkLJc9CVaMI8u5J+ZSyZ6+6ECx+H5vVY7Jn8acP30f9BMUcShuehMTUGBkzInABAXIunhJ0lEzo6UTWKWTKj6ipl7jIkSYETforqnUDvtd+FZJKuX6YSiJzHHYeppAS1vx8jFGJo8ATQNQxNQzB0tDiIVit6OATRGJLXix4KortcSHYHutSHFgoi2ewk9u2HtAhJmqOEYjKz19LOj5t+zJ3Vv8O8IznCXzI42IUggxHTiDcOYh7jxTohg+Cqw4SfBEgWOMiVRg/EOTYTekt0VLseSY5qU/tiJNvDGLqOkmNHybRhKfeQdd0UtME4ok1BMEl0374NrS8VsBbqbiXeNEjmJeMRbUfLXfy/i9DRyZyFS3n+oXuGVP3dWdnkVFRxa+ddTC+ZSYnDQFFFMp1mwr2REf2V9/AnSRYZJcNC3CxhLnWlhkpZAHV4zHTMz0dymY7Y/5PAXOxCUERCb7Qg+y0IkkDozdahbfH9A6g9UUx5DuQcWzpJIs2/FMFkwr1iBbZJk9CCQeTcXGS3+337qM3NRO78AwgCHrsdPRwmbBgkptRgSYuQfKqI19VhKixE7ekmun0bSm4upuISLBUVxHbvJrpjB/a587BNmcLAY48hZ2RiGVvNwBNPEt+/H+vECfT97V7MlZU4jllA7933kHHlFdgmTSL48is4jzuO4CuvonZ341iwgMHnnsdz9tlDAiRD17F9O4amUfTXe1A7OpCcTpT8/KHtWSUuskqOLHyjhUIkW1oQTCZMRUUI8tF9B/vyizj+qut59c7b0JJJLA4nK67/6pDob/1gPW2OViZQyqJLr2b94w+TiMXwjq8i6TNTPHc2KCLJrghKti017h/821SZFpz6MIgmiWR7GCXHjnxwLZ7sjWGWU+/HrOJSTvv6t3njvrvoaayncNxExsxZQFZxOokrzaebwRdeHNXWd+99OBcuRFBGJ52r/f0kmlvof/TRVIMso7W1DQmQHCLZ2kaiqQnrhPEEV7066jh9f/sb1gkT6fvb30a0G7EY8dp9QyIkhypXH47T4uYOx/MUfX8FuT86WQIAAQAASURBVKqDJlOINa0/Jteey4njTuQ7b36dKydeyUllJzEhY8Jwx/Fngisf6l4FbzGULwFXAVyUDbUrwZ2XasuugTP+zEDPHt7WAnRFUzEVsihjEk0k9ATv9mzktAVLcbe10bxzG3POuoCBjnbGLzqeN+67a2jt4MzMwlFYwdhzLqdybBUFY9Jzko9DwmdBj2kk2sOYCg7zDw3Gkawy8ttvIq1YjjMQgXRuYZpPAYIg0BtOIObKJLuCWCo8GEYqJFuwK+zduAaAmaedA4BitmCy2Zh20mmsNXbyzIFUjPmCggXvfRKzF467BeKB1JhjdoJ1uOia3NzMwKGx+iBGIkH8wAEc7yFCAmB1miiZkEHJhOG4i0RLC1pgECUnG9n/4WO/TIWF5P70J2Rcfz2CLGEqKDjq8+Y0n05EUSC7xE12yfC63p/np3TytCPuL8hmxEIfc86+gJ7GA5RPmzmUbA8w7fjljC2YyNXPp2KHz6w8E4vihIF6jOmXMZA9m6f6S/j9YwP89tj7GBdeh9mIYxl3IuQf+ZwfFUGWcMzLp69pz2EfVMDQdGSfFcltRpBForV9mIpc6cIWRwGTJOIwy5hlEfUffK+iILB0XDav7uoY0X7WtHyuvu9dHls4jv6H9yLn27EcU4DaGcE6IZNkV4TA8wdwLy0h8GIDCYePplnHY7JYOHlmEWKgiT7ZgdM9lp1vuIkOpooEipLErFPOwFVYyYySGiYuWUYsFEKSZDa9+AwWu4NJx69g3/q1+PILKVu6iL07v02mKyVerRoqt+7/CbIo88UpX+SXG3854rpjagxREFndupofzPsBNb4aMm2Z7O3biyiII/x/K0pX8ErTKyP6Nw424ja5uSb/XIqSLlqVMI/ve5yJmRORjlC0Nc2nlLxpMPc6wmKCzOpKZp52NttffYme5kaOu+zztOzeiX7Qv2x1uiiePI0b9nyPxaVL6Ix08uT+J4cOdWLhYgZNJVz+aOOQAAnAba/XcUxVJrPL/DgtqXd2NKlhVSRmlvh4ZXcnhgHvHOhDEARUTUc3DGwmaahQqijCY5taObYqc+i4dVqSXI8Z0WNCUUS0UBLbpExC77STqA9guWQsoX6NLJtMdY6L5r6RPrWq7A8WGrTK1qH12mBikDt3pOKY7l1+b1qA5N+A0tWNR5TJKa+k47Bk7nlnX4ivpJxtnTHMSgctAxESms6c8vc52D8gmmWcxxTQ/2gtsX0DKIVObJOziLzbObSPoIiYcu1Df0s+C+YKD/H9A4cdSEA+GCMjiMIHvquP5IM15TrIvGoiWl8cwSSiZFoR5JHjqhFVR/XTAklI6vAPehDx2v6hmB6A3oadZF45EXPpaN9IsieK2hEGgZS90p8Wl/ikcCgOCp2F7OjZwY6eHTzO49x2ws9RLBbqNqzDk5PLlBNOptMZ5pZ9t3BewSlMPvEUNj39xNAxKmfNI6e8knO+/SM66/ejJpNkFpXg8/jQnngc0e3GlJsSVxIMg97bbiP7lhnYpmSRaApiqfZhqDroBno4idrbg7m0BK2vF9FuI/jqq/ivvJIFthgvKhKKJPD8tnY+M6sYAQFNN9B0g1y3ldy08Eia/2I2NvajGzCrdHQR+sNp2r4VSOWJHuJQrmTn4LBQlM3tITIYwND1tLh8mv9ajoplzjCMPuCLgiA4DMMIfWCH/3ISySTtSQt68QSu+9u76EaqMqpVkZhfcWTjqtnjxunPQlM17D4/BeMm0N/ejjs7G0thFntbHhuxv022UeYuZ2xGgPPNvYTu/xu3Sya6Zi/gxl0qbYMJnt3WzvFjs8jSLMzOnU2OLYeOSMpQYpEsfG7c51Ck4UmwoOsgCqBp6KGRX+ORHIZDePJh73MgCCT0TDr//BKht9eDLJPxuUtoOGMRJXIxJA0GX24c6uZaWgz/RGWuNJ8sTrOdvrYXsE2bSay2D88ppSl19aiKa1kRke29uI4rSlUKaAmh5ImYijR6bn0JOScH0ZpK6jV0HWQZQ9WGnhsjkUA0m9GTyYPCNaBHo4g2O9CdsiQAeiyKaD+4kBMP3+9gwrAACAJGIpGqegmgqliv+zx1apT9991B+eRp5IyJYp3sI/puSg3QiGsggHNxEYMrGzAOVpmRMotwn3o+7d/8EvZ58+j905+Qs7JwLDw21S+ZxEgmEUQx9Vl0nWTtPiJPPsmY4iIc11xNhSeD/nCIaDyG12RBfvp5Np1ZgtemMKnQcxS/sf9dvP2NFDuLcZpSCY451ix+ab4Qy7f/wmD/XzF/6UsAGJoGigIYw8/VYYh2G1o4DIoy9KxOypxEsbOYxmBqrFJEhWsnX4tVsRLfX0fwtVXE99biPG4JtlmzsDpdnPHN79PT3EgyFsWTk4euaSy/9ivIJhN2z5ETxQVJwlxS8rHvgS3fizolC9GqEHj+wNAzLWdakYpdbGwcrfC7rqGP86YVjmo/fmw2z25rZ0tzKmGvKttBbefwO+DqY8swMEhoOm0DUWpyXekk6E+Y/nACj9nD1ROv5pkDzyAgcFL5SbgVN+2hduJanB2DL+AXL+Kzc0uIJHQcZplch4XBvcOVLgwMQskQBgZuSxU5DjP7ok1c2XYTVtnKHZN/zZ4XXsKbkUPNsUuIZCo8k3iL1dIbnHHNiZiSImWFNch/ehyiUbRDleqPtDCSpJHv8IP7eM8/H9FhJ/jE45QuW4b38uvpbarHbrOTU1aJ1WojGY8RlbOwTL8Kk+XgWF617Gjd3jRHCZtsI2GOM/hSw1CemKXKCxiIr/8Aw11AcN5NtErV1HVGyHCZ2VHfjN8qE5x5JmOmL8SlhcguLMSUkYfNiKHOX0jljNkYJpHj8nLZl2hgT98epmZNZVLWJAZiAzgVJ9m2bL6ReQElv3sOdeezCBYL7i+7qHGXo6MjCAKLCxfTGGik1FX6gZ9Fyc5Gzsoitn0HfXfdjRYI4D7xRKxTpyBaPr7IkmganfwhmM2pihmGCpoKyujlmWi3AUZq3pPqNax8nDZUYBxKZJFEwEA8QlVT0WbDMAwEZfR3INrsw3NUTSP0+hv03H47rmVLie3aTZHDwRlTj+GdDhMtgTiRYCFFziKagk1IkoTitzG4smH4uR/jxZAEzPMy0PaEUHMlDowdYG3Xg3xmwdnY/Rbiu/uQc+zYZ2bzt95H6BcGKHUZ9ISS/ODUSrY2D1CWZSecUJmQ7+L2Nw8AcM70ApwWmdrOENkuC2Ny0hW5/lcRRHFoLYQgYIgigsmEERtZNUWQR6/bJdvoefAHEdu1i8GVK1E7O3EuX45t2jSkg/PpAmcBW7u2kufMQ9VVzJKZDR0b+OLUL9IT7aEn2oOAwMbOjVwy7hL8Fj/r2tdR5i7jjMozKOo2EL78bfTdu7FbreR8+QYunXEMq3Y2M3vcBPJKitBVlVO+9h16W1tQdYN2UzY3rdcQhBKmFXs4rcqFp+4prGPORDQVE9nSjeRQcCzII6IbKIUODAEEAwZXDtsgnEuKsFscFDmLmJKVrp71r8IQBFBV8ovKOOWGm+hvb8Pu9eJz+7B7/ZxecTrFrmLWbk8FGsws8eF3WQhNtyC3R5AsMrLPjGtZCZEtXYgWCeeiIkwFI8fEfK+N6xZWcPHd67n62HKe29Y+VF3eZZGpyXVR4Pvw4o//iOyzIvuGnW1Kpg1BETGSw4E61okZxOv6h3PoBXAuLqTv/t1D+8m5djIuGjviWGk+3QiyDOs2cOKXv0h3fw/xSBhfXiFms4m/dfyNQmchJ5edzJq2NVxfsAwkhWjN2diKU8GJCmAigNEZxhDAc2YlkU2daL0xzJMy2eQSqe0OU55pp647DKRMYufNKKTA//GfWQDJZUZyjRYMkX1W5CwratdwUI5oV5AzrOhJjdDbrQcbwbmokMALDXBQJEjJd+C/cCyyNy1G+u8iklBp6Y+Q6bTwhSUV/N/zqcDV3Z0R1uWO5aqb5yL0CQReaRwSmzGVulEKBUxFbiJahM3qPsS4iEf3kLnriVQ134ollGgJLh1/KXdsv2PofKeUncLa9rVDf0/PmY5FttAeasdtdlPuKUcRFTa0b2BO/hxOKDmB7W2buUZfwInvNGPftYPIihMRRMewfS6ZZPCZVIC8//LLEey2g+ufg3P9Q8LnkJrXi9JQUo6gyKntRmoXQ9NS/xVT1d5Fc1okJ83RobU/SkcgSnu4nUpvJT/t/A23nvcDQm91gGFgnumnK9GELysLs91BZPMAWn8MpdyL6/giItt6EKwyoamZfH9DI+fNLiTXbaE9MDyn79N1bDNzCL3SNOLcyj/Me5JdEXru3oHWnxLtE6wymZePx5TvRPZZkH2pMTpWNzAkQDLUtzFIsjeK2ZZeX37SCIKIe18dZ379O3S3NmOxO3BnZWPRBcZmjaO2r5YKy0wCkSRfWFLJDY9uPTS0UZ5pZ1zue4smmErcOCSRZHsIwSziObmc6PYetEAc+8wcrBMzj7rwh5xpxTLej+yxEH4nVRnUPjuXRNMgyQ0Hg/QlgczLxmMu8xzVa0mT5kgo+fl82DQd4ZDd1jBGxER80Dwi2dVNZO1agqvfwDphIo6Fx/5Tvr40H8whG7sei4MopuIRRAHBZMaxeBGxHTuJbduGfd5cTGPGIFjMYKR8/KLFCrqRmiuaTEPxCojicEyCKGCoKqLJRLKvb6jtSAiyguzxIHs8H/r64w0NdNzyAyJr1oCikHH11Xg/c8FHOsZHpbelifb9tcw+4zysLhe55WPIKk2JWwzEBqjtr0U3dG7ruo9JuZPgkhl4RCuqP4OInMC5YByqlkQQhZF2tWML0LXRwmhpRqMnkwjy6PtnJIer5BWNm8jpX/82g91dREMh9m9Yy67Vq5h37oXkV49LC3ql+VQiHcEfJ7vdR/RdxnbvpvXr38Axf14qVkxVQddT8TuCMLTGP8Sh8V46QlVuyeVGkCVEqxXtH30ih/liz6o6a0SxIYD2cDvHFh7L1974Gjflf45Fe0RO2OPBdswM2jI0frvot3gsHi4YewFO02FrJIsLqpam/h1O+aLUv8MpnscBs5VAy2tDTQ/vfZgbpt/A8/XPp4pomKPMv+gSBpvbECWJ8bOm4qSPnBu+TFdnH2ZFIM/UQyi8mXuCVWgJFxVpn/DHIlMyEAUJPZhgcFOqGBMCuJeVkOxpT9mVNC3tc0/zqcFmVjhpYi5EIFbbj9qTstkLJgn3iaVklpYx+YpvsDNpZbZfZ/l1XwEEdIvEpo6XybPncXL5yXgt71PIpnNbKj5lz3MQ6YOaU6G/MTWe2f0gS4g2G/rg4Ihu4vvFi/8DRjJJ8JVXaf/Od9CDQZTiYvJ/8XOsEyZ8YN9ESwvhN98ivH499rlzsc+blxYgSfOhyXfm0xCLkl85lsyiEhSLhTFzjyHY3YXX48MdihKJD+K3+FlctJhqXzVmA7TGdegn/II/vLiH7lCcz8wqYUMcHh7IYG65n3OLij7R6zRXefCdN4bgGy0IiohokUk0DpKoP/i7E8G9vBRDO0IFgTT/NMV+O9GEysVzSvjjG3VD7SV+GzNLfPzkhd3cfFINj21uI67qnD+zkOklPh5Y38w78Rizz63CUA36H9o7FAdgrvBgnZCJFkwg2CT67Aq/265x+UQNcf+LoKu4+l9AKT6es770NTrq6khGo2SXVpBdWAkHc3fMNjtmm535513MpKUnIggCgz3dWF0u+lqbaXzlTa6b/jkG3RoCAsbBC1B1lRJ3CRbJQkwbniNfOPZCZuXO4twx51LsKh5aW9Zk1PCHJX/gNxt/Q0+sh/PGnMf4jPHcu/veEffq2IJjqTgQw3HLX1C7uqnKyEC/+Tp0Q0dKlxz+z8FkgZIFlCeC7AptIadqDNml5YiSjNVi4YzLr6O3txvZ4cCfkUVmYTG71u3G1+3nyolX8mzds4iiyGXjrmB9XQEH7A7quptGnabjoH9r8dhs7n67nv5IkjOnFvBOfS/94eEiLJsa+7l+cSV3v13PdYsr+e7TqcLcmY6ULfat/T1MKnCztSXAKX97l11Xzyf43AGSzQfttpKAe3kpgefrSXRHKfHbMBBYMSGHLc0DdB8s4D2v3M/ssg8WQStyFvHFqV/k5+/+fKjttIrTKPd8BHWLNJ8YoqIgbtzMsRd8loGebiKBAP78fJyRBDEtRl1XiF+cNZFVe7ppG4ix7kAvFkUiruoU+20fWETXMtaH9+wqgqtb0IMJLNU+RKtMbHcfcoYF56IilJzDREgsMp7TKghv6CC2owdTiQvH/PxPJD5GdpqRne/tg1By7akQicNMJraZOYjOkTHQekIjeLBQwBAGRPf0jRIhSbSH6LljB3r4oPiPy0TmZeNRsj96PGma0XjMHi4aexFvtr7J9p7tjPOPo8XSz9zTT2f8ouOJh8LEIkFyzR6+kX0hFb9biejxkXfmhQzKAq7MDHyimd5vfxf7rFmULZiP6TDx81EFSwUhtXaLtCLIuRiqPmyDFsC9ohQ5K5dEbW3KJ5I8WPBQVdEkmesXl9ETjHGgJ8zFc0t4blsbx4/NpiAd/5Xmf4ANDX3IosCUIs/77te0fQsOfwbe3LyhtkNzls7BYR+Pze3B0HWioSA21/sXx0iT5j+Vo2KdEwRhLnAHKY3wIkEQJgFXGYbx+aNxvk87xRku3m1qYSCc4K5LZrD2QC8WRWRSgQeTdGQnRlf9AR655Ubyq8dROnUG2sEKmLohMKgGmZM7B5/Fx8rGlRQ4Czi78mwGooP8aaJIzxWXDh0n88m/89ff/Znv7hMwSyID0QThuEqeI48fzf8RO3t3ohoqY31jqfRUjrgGNZlE9PnwX3kFXT/56VC7nJOD+YMU9j2FGK/cQn/vwpQACYCqMviXO3HWlKHm56GHEriWFmOoOoIkEtnZg2Xs+6tIpfnXoWRlIRdn03Prl8j8ytfpf/hhtO4uvBdeTPfPf47n/AsJrnyJ2PYt+K++jq6f/QhTfh6ORQsJvfY6SnExgsVC6LXX8Jx2GgN//zuCxYLk8TD4wot4zz+P3r/cgR6NIefmEnptFf6rrqL71l+hdnVhrqoksuFdsr7+NSLvbiS+txbbrFlE1q3Dc87ZBFe+THjNGlwnrmDw2eeQMzOwfvF6AhVl7Nq6kf0bUsHwW19bya61b3LxTb/EbOgIBwOFzKVuYrv7hsQaTEXO1ELSlk/2935BdMvbOBYvJrRqFUphEYLVSmjVKryfuYCYxUxoXDWWr99A5JXX8J53Lr23/wXe3UTsxRdR2tsxKQpaIoHv2zeSUZjDQzOqqfwQiqppPgaCRHuojVvm3sLz9c+zSKvEdP2vhsZNLTCAkp9H6LVVeM44nYbLryD/mzfSumnTUDCDaLdjqamh909/xvvZSzCVlbG5czP37r6X0ypOw2vxIokSY7xjqPZVk2hupunyy1E7UsG00cYGEmi8/exj+AuKGbtgIa6sHPa8/Qa7Vq9KifEA88+/hFmnnf2J3wLJYcIxO5eB5+txzMkDWUQQUhUw9cE4WU4zM0q8zC7zo2oGL+3sINNhJtczepFYnGHnzkums7lpgFA8yfdPGcfujiD13WGmFXvoDMToD6fUVc2yiCSClhaQ+mQRBHTVgc/i49rJ16bERBIhNDR29qYMrp3RNtrbA6ze38vn5paiGyAJVs6uPJd7dt01dChZkBnnm0SprYL94XXcMO0G3ml/h+n2iaz9zZ8J9acqtu9+63WySstZdu55ZOY6WRvazJKiJegOBc955xJ88cVU8AWQbGvDMnkysS1bhs7jOfNMgq+/PvS366STUAcHSTY1En47VYkj+PIrOD9/DVmlRWidXQTvvQ/N6eDtZx6jeftW8qprOOaCz5JdVnGUb3Cao4GkCUS29+A6rhhD0xFkkVhtP8RiMNiKMNiK69GzSZz/AjFPMWJ7LbbVTzJ2/ESsdj9xTx6aN5duBHLiAzz0wxtRE8OL85qFS1i0YBGVnkpy7DkUOAvQdZ0d3Tv49dyfYf3Bn0js3AWkKl0N/PgXfO7WryBYswgnw8iCzLHjj8VrfZ9gi8OI7dxJ40UXYcRT1xB47DEK/vRHnAsXfux7ZBk/HlNFBYn9+4faPOeei2AxY6hJDATkrCzkzEzU7u6hffxXX42uH0yeSyRQcnPQk0lkvx/loKLx/zKC2Qy6jqiqGKqK74ILaF2//rB3vA1TZSVGNIq5uhrJ50PrGxbn8l/7+aFqqIn6elq+/GWyvvwlun7286FjeP/+d378w99w0Ttw+6pBHrnup3RHmsmSMgm+XYd9Zi6SU8EwUmJ3RlJjVcU2nBV2Vne8iTVuI9eRy+e3fomfLvgJlsk+tg/uoyH2NhV5VWzq3IRb8fKtFRkU+2x47Sa+8OBmfnbWRMJxlfOmF1KT56LQZ0NVdSYXuslwmMhJK03/zyI4nAiRCIIB+mAAvF78V15Bz29/N7SPqaoKU/nIapmiy4Vt1syPdK7Y3r00XnQxejiVCB944knybv0l7hUrAMiyZTEnbw459hxkUebBPQ9yzphzMEtmpmZNJabFqA/U862Z3+KBPQ8gCiJXTrySQmchgYEuPH95geju3QAY0SiDP/oh1fc+gGxq4bXbhysZCoLIkq//EM2TR1vjAAW+KEuLzXgDzTSt7aTdnElmx2byo6uxHr8MsXs90vN/4aXp91B5UhW2YGo+7jq+GEM3wDAIb+wks6KAXxz7C4pcn2zgUJr3RlEUlJNX0NLZnqrwYxio8TiBUJDW9k0Uu4qZlDmZBpuJ75+cz/h8N198cAstgSiFPis/P3EcU0rcmEvd2KZnIZplRNORA1xmlfl4+MrZvLmvmz9+Zhr7uoJEkxoFHivj892fqGK/kmUj47LxDDx3ALUjgnWcH+eSIqI7eof2MZd7iO7oGSFUYsq2kWgKkuyMIGfZUNIVJj71iEVFuK++itb+HqLBQQzDIB4OsuO1NVy46BR25k8jqSW5rOZzjBvshUQY4x8SKZzFbl4YCLG9oYeFY7LoHeemsU/h7g37uGl5NS6LzJePq2IwlqQ7FCfTYWZMjpOJ+Z6j8pkkh4LvgrEMrmwgvm8AU6ET14pSZK8FQ9URrSkXgqXSS3RrN6g6glXGMTsXRIFEcxDBJCLZRwu+pTn6yKJAnttKY1+E5v4ovzt/Mhsa+in02phc6EaSRGL721JrtUN2+M1dCIrI8/f/imgoSNFnV7AvUk9MtIFkAjH1nZskE+dWnUuNv4aGQANmyUyGNYM9fXsQETmp/CSyrFk8feBpipxFmOVUkmexs5hqXzWhZIhoIsr3rGcxeHWqsmAAGHzgIbK+dRPuU06m6+A8AEB0uxHdrlSiKAwnIYkigiQhmC2pgHNdTyWSOhwIFguiyYTk9SKaTGiB1LtFdLowkokP9mOkSfMx2NM+yJX3vsvn5pWSkZ3FlKwptAZb2dfxLv2WdqpmzaWlcROamiQS6qcorwjvOXmonRv4fUsl2RYTGXMyiQlw45NbmFXmI9tp4ZZTx7Fqdxcbm/pZMSGX06fk45Ak0AzCa9sQ7Qqe5aXIHjOxff0YmoGSbSNW2zckQAKpylihd9rxnu4Y8ocACNIRklcFEOR0UuvRQCwpRpAW0dfZgZpIEBfCBPt6eeeNV6k4ay7j/TX0dyrs6x9kTLaDP31mKns7Q1gUkZpcFxML3zs4RbIpWMf4UIqdkDQQZAHrxAwEQUC0/GsSc0RFwr2slPiBAQSzhJHUkZwmkm2ptaOp2IVljJd44yCYJEy5doT38ImnSfPvxlRYiP2YBYRXvznU5ly+fERw5z+iJxL03n47/ffdB0DwuecZePxxiu74C0pW1lG/5v9VTJWVDDz9DILZhOOYYxBEiWR3N+bKHDp/+H9DAr2Dzz5Lzve/jxYKEnrtdRzz5iLn5jL46qu4li5FstsJvPA83vPPQw8GSTS34D3/PMKr38Q+Zw6C1Up440Z8559HdOMm7PPnE37rraHrcJ16CqbSko907Yam0X///SkBEoBkkp7f/Q7rhPE4jjnmk7pFI+htaeKxH31nqMIyQH51Dad//buY7XbiWpy2UBvNwWbm589nZcNKKr2VVHuyqUkWsvn+R3FnZiMsnIvaHR0Z27OtC09Vuhrsh0FAQO067P7JqftnrvYAKaHF7sZ6At2dNG7dzNaXnx/q+/cf3swF/3crWSVl73H0NGn+fbiWLaX/3nuHfKlIEt5LLkaQRtpqtWCQju99n8S+fQyGQnjOO4++O+8EXUfKz8d1yskMPvX00P62WbOQi1LFdByLFtJ7550YhxVL8V96KUpuLlk33ED7zTcP9ZPz87GMrR76e1r2NH63+HfcveNuDMNgacnSVLV2Ax6a/Ufkr/0UrXYfKjC48nX855xOybe++4mImYbVEF6zd6i6fE+0h59t+Bm/XfRbrJIVy4FBnvvdj0f0OfuGGwiGEiQSGpouM2gvIH/LD/nCuCvpdH5w0n6aI+MUregxDUEUUv4hLRU3GNrciWdZFkJFJdrgINay9Dib5tPD5EIP2vouTMUubJMzUyZSVSda24c0TsKrB1mUY+fpn96CYQz7m66+8RvUl/UTSoRQhPcRDLG44Znrh22va38P874IYqpPMicX/1VX0fn97w91kbMyMVV8+Fiu+P46Wm+4ISU4BSQbG2n7xo0U33cfsu+9Y3bUgQAd3/ku4YNz5uALL+A47jjyfvwjJGc67jbNB2NX7EiNA/z91z9HsVhZctk1xMMhdF1nMBjAWV7FrkQDN0y/gWA8SEuwhVi0ESV7CvvbA+R6LKw90MtTW9oAOLYqk4T6yQuBSFYF2+SsVL6EIBDb24ceVkesGWIHArhKRwuypfnnKfLb6QjEOLYqg8psB5ubBijNsOOzKxzoDrGtdZCNjf18/YRqcl1mHtzQTJYzgiQKXPbkdn62bCzz13YjWGQcc3JBEBBEAcljJtkTpW9JIS+093PyxDzs1jD0qfSaS1jX6WTfS88z8TidwrIqhGATib/dx8DYGjKuuXpExXRBFHFlZBIODLDy9t/S19I8tM29P4e5F3+Wv027jVWRdWTYM8mx5+A2ufnOnO/wStMrtAZbOansJFaUriDLPtpOpYgK8/PnMylzEgktgd/qZyA2wDdnfpPbt92OIAicVnEaE9Uc+N7XUAMpu4LW04P4rZ9hjJ0NxcVH/8tK84niNDkR9/bw9N/uHG4UBM659mu4cvPo6e6gb/cO2lubuGvBn9k4uI3WUCtfnvZlsm3ZNHRC+4BAIBJiXJ6LnW0jBcsKDxbemZDv5tJ5pTT0hIkmNU6ZlMdgLMnWltRzFFd11h7o4WsnVNM+EOXX505mbV0vGQ4Tx1Rm8Mi7LVw2v4TTp+azu32Q/s4wQn8c55IiMAwESUTtiWIZ6yNkGCRUg6nFblTN4M8XTqVtIIbLqjA+343vA+IXVF1lU+cmOkIdfGPGNxAEgUJHIeMzxo8UpkzzL0PL9BGbMZVwdxeJeAxNTdDX3oZUWExSC6IZAqpucP+6JqYVe2kbiPL3TS0YBhR4rdx+0TRq8t7fv2aflo1lnB9BFBBNEuYKD45jC5AsMoI82o+lZFhxn1CC69hC1FAcrSdGPKoiZ9uR7B9eqO+jYipw4r+ohsDzB9CCSeyzc3HMzBklViyIIFhHx82JltFtkY1dQwIkAPpggsj2HtxpEZJPhGJXMfv69zExcyLLS5ZjYJAnZPDqb35Nf1vL0H6enByWzzuexLjxJMeNRcjIoGXdW3S8+AzT5hyLP5kg+L3vYZ8/n/xf/gLJ/R7PtKbhu+xS+v/6BzK+8FMMVR9h+wi/24H75Byi23dgnTQRI5HAe9FFxBDJrK5gw95+YslUbpBJEhiT4yLDYaK2I4RZkSjx23BYjt4znibNv5P19X2My3djM713bIWh6zTt2k751Bkjxl6TLOKzm+gKDov/2dweACID/WkRkjT/tRytSKRfAcuApwEMw9gqCMLR8Zz/ByCKAjluC999eieGATW5Tlr6Y7y2t5tbz550xD6d9fsxdIPKWfOQJIloUiWZiBHqasdnKuTmplvxWXxcUnMJ+/r3cc2r1/DICQ8h/P23Iw+UTKK+voqcsSdy9vRCbl25h1+cPYk9Azu44uUrRuz664W/ZknxkqG/bfn5RFpasM6cRd6tvySyfgNKXi7WqVOxTTrydQ8RG0TzjiP41KbR27bvRSucg5LnGKG05jq+OK0s/ynDs3w55pwcgmvfwbV8Kcn2dmL1+8i64QYiW7dgmzkVy5gKoru3kf2NbxDZsR1TaSmOpUtJNDaS/+tfE92zGzkri7xZs4jtqyX3pz8hvn8/WG1k33org1u34fvWzeitLcQTCfy/+g3J7VtxX3sdye4eogMDZP3mtyR2bMdSWYn9pJOItbXhv/XXJPbsQsjLwDN3JmGnk5VPPMw4n4v9774z4nO4s7JZ//oTtNfWsvjMK5D9ZiSXKRX8CJgKnf/wPLpwrfgckfAuPIvnM1Bfh/+PvyWeVAmbzbz4598Se2cV4xcvpeDKz5FIJPH99W6M11eT9a1vEmyqJ9TSgDGthkSOxHH5OubMtEH4qBHuxm9W+OybX+WUslOoSngJJ4ZVc/vuvQ//ZZch+f0IikLutOkIWVkU/OH3hNetR7TbsU2dQmTTJnJ++hOormA/XVy+8nISeoKXG18G4PIJl5NhySCUDMHe2iEBEgD99FNZ+/yTzDnrfGLBIIHOdlr27CLU18vcsz/D2w+nFKI3Pf8U4xceh93z4ZLgPwqiXcE6xsvgy43okZRIiFLgwFbu4dwZRTy4vonfv7YfkyRy/swiZpf58TuPrFQpiQK/WLmX5eNz+MZj23FZFcoy7Dy0IWW0GZPjQhIFKrOd/On1On55zge8E9J8JMZkOwmphaxqe5eH9j6IgMB51edhla1oRmqxv7TwNAatWdR2Bmnuj1Cd42RPZ4Qy71IurFJ4ueVJcmy5nFJ8KUKskqIiO71dXl5veh1ZlDEH1CEBkkN01dfRu6+OxPp3+e4NN+HKysIkmTCyNIr/9jdCq1eDrmOdNhX3WW5i27aRbGrGVFmREiirHkN8by3WqVOQPB7U3l4G7r1v6PiWL17PG/W76XjrJQAqps7Au3kD9Zs2YLbb8ecXcmDzu0iKQkbhkZ0U0eAgPc2NxIJBvHn5+AuK0tW/PiUkDQ3bhAwGVzYMVde2z8wB5bC5nZbANlBLhtPOC/fdzoLPfI5AVwfR/l7kcBAjGuTLb8X48RR9hAAJwO7Vr3HycbeQ5cziD1v+wP6B/RQ5i7h+yvXQHyDx5ppR11QRduDMmkyNvwa32f2RnpXwW28PB80dpOf2v2CbNRvJ+vFUfpWcHAp+8xvCb79F/MABLBMmYCooSCWlRqJYx40Dk0Luz35KbOcutO5urNOnp5LwICUEZLeDyYQsCMh+P5I1nahsqawkumcPotuDkUwgSBIFf7yNyMZNiFYr1okT0BIJjKSK6PGQ94ufE928Ga2/P1U5Z+7coWMlWluxjB2bEk86PFlYVcl8dzVFvmM5fWoma5tXUXpAocPvIGt6AdGdvajdqQBIyW3CXelmvK+Gp+ueYVnZCXRFu/jphp+i6ip1gQOYZBOyw8xzm56jbksdJa4SZufMY1yek7f3dfNmXR8/PG08j21qZUvTABfMLMRukvnzG3WsGJ9LWaadAo+Nlv4IuqGjqqBIKQdLhsOM05o2/P63Y60oJ5KIY0QiiFnZGKqKff58TKWlRDdtxlRchLmmBkEQyP/Nr4lseBfJ68U+dw7W8eM/0rmiW7YOCZAcoue3v8M+b96QgE+1v5oqXxWBeAC7yc7jtY+zpHAJLzW+xKO1jyIgcGbVmZxYdiJOxUm1vxpFz6BAzyG65jujzqlrCXa8/NyINsPQ6W/YxzanmUK/jYm5NvIirXT1diFKEnWb1tOfV4hpwmzyHjtpqN8CZxdK1jTkeJBYVGXw5dSaTzBJuJYVs6lnJ7fvuoc/LPkDHovnI92bNB+fYDKBIAgIgoCqJokEBhAlGXfMyabOTZRYprO6toe363r54uIKBhMpB2hLf5Tfra3nG24zpX47TruJWFJDUnWUIziCTbLEzFI/M0tT1U2OGZNJOK5iVSTEI1QyTqgavaEEDouM82M40cwlbjIuHY8R15AcJgRZxBijE3ytGSOhIbnNxPf1D+1vn5VDsj1M30N7ARCsMpmXjcdUkA5m+DQjBIP0CzrxeAxdVdE1jfBAPxOWLKNx13ZWZaxhXcc6Sl3FfK/mCqbkTsJsxOkLxRiIqCR1HbMs4rKbeK62m66Ext83ppzNTrPMrvYg96xpINdtYTCWZHKhlxUTcphW7KM/nCCSUMl0mhmIJhERyDhYGSWhHnQMyx+v6pQpx47v/Gr0cBLRqiCaU8cRZBHHMQXEavuR3GYSraGUHfe4IgZXNmLEU+c1j/XhPb0C2fXPJ2qk+WiYZAmzLJLpMFPXFeLedxqZXuzlld2dTMw086NjShCc5lF2eEMyqN/8LgDTB8/inWQvudZ8WPBV8JYMHb851Mw3Vn+DpD4cjPL5SZ/n1IpT2dGzg1/U/4JwMsx1k6+jyFnExMyJyMjoQmphKGnQds21I67ZSCaJ79xForWV7O9+h2RjI4LNjrmqKlWBVjdIKZEcnJMLB8d4SUQQBAxRBE1LrfFkBcFsRrBa0DUdJBk5MxMkEcntxlJTc1Tue5r/XVRN569rG5hc6OWBdU1ctsSDRbJQ46hiyxPPMe/ci2k7sAf1UGEBE3T2diHocTSLhzverOcLSyr5wdM7+POFU/nLxdPI81jJc1txWhWOqUzNV1TNwGwSka0m3EuLcczORZAF9KhGz727UA8KPYguE+7lpaOuM9kWPhhgNPxekLNsmMd4ie8dno/YZuQgp0XQjgpqbx+DyThqMoGuqSRjBqIsU7NgId2BMF6HTG1PLx1hK795dT+VWXa+deJY7GYZCeN9A14OIVsU+DcWo1IyrMje1Lt/4Kk6jMTB+UiREyXHNvzuebkR33nV2CZm/rsuNU2a90Xt6cF/zedxLFxIbPcerOPHYRozBrWvD1Pp6DEWINHURP8DD4xsq60lvm9fWoTkKKJkZpJ53bXEavehh0MIoohckE+ivn5IgOQQA488TMb116NkZWGoGoau4bvwMxiJJIahk3HlVejxGAgCGTU16LEYrtNOxUiqGJpG9g1fQQ9HcK5YjqGqOBYvItHQgHXyFGzTpyHZP1pgthYIEFz58qj22M6dR0WEJB4J07Rz2wgBEoDWPbsY6Oogu7ScTFsmTpOTmbkz2d6znSpfFRWeCqZbxvHSD3/ExOOXI0oSmq4eMbYnKaj/ztfQfwy6oWEqco68f8cVk1QTWIDWvbv4+w9vZuryU9jx2soRfTVVpae5MS1CkuZTiXXCBIofuJ/wmjUYiQT2+fOP6H9Qe3qIbt2a+n97O/E9u8n88pdQu3uIb9yI54ILsE2bTmzHDsxVVVjGj8M6ZkzqHOPGUXL//YTWrsGIRrHPm4d1QkqQw3nCMuScHMLvrEXJz8c+ezamomGxcatsZWHhQubkzUHXdQwMbIqNx2sfJ7e+G61234jrjP/9KRIXX4rlIyTZH5HOnRQHOvl9w0vcMO0GnjvwHP3xfpaXLifXnkuyJ8Cu1W+M6OLOziGqybzzxANYXS7Kps6keyABc39Jft1f6S084Z+7pv9hBhMyLhkERRzyDyELuE8oRVejCDnZ/94LTJPmCLisJsIOhei2MJGNnUAqJtB1XBED0XrUaIRkOMjYBQvZtXrVUL+uXXv5rekhlhQtocJT8d7xMX31I2MhAHY8BnO/AMCu8C4mTptK/m9+TXjdOuSsbKzTptJTmsmHnQEnWluGBEiG2g4cQO3qfF8RkkT9gSEBkkOEXnmFxNVXfWQfd5r/XfavSxWvXHD+xQR7u8EAVU0im80MDPSzvXczf61/gHl58zi15ASy3vkBgfnf5Q+r9lPkt2M3ydxx8TRUzeDnL+1BfZ/ifF3B2Ahf3UdFNKfsf4YB1gkZqXfVwdM5FuQjfAj7YJqPh1kR+fz9m1AkEU03eHxTgkKfjc8vLEeRBBRJxCwLxFWdN/f10BOKc/7MIrqDMUrcFvRQAveJZQy+1DhkEzWP8aIszOa8uzfyyAVlFHW/hDMcJTHYw6ZgIb7SahbUTEUQRdY+9zhd9XWUTJjCzII8kq2tmAoLR13nQHvbCAESgEBnB/0HGlj/5N+Z/6XPc+2mbyGIAudXn8+BwAF6o71cPuFyFuQvwG56/5H7cJEFj8XDBWMv4PiS44kkI9z45o3MEl24AyPtCno4QrKtHVNahOQ/jkggwLaXnh/RNu+8i+hPRFPjJdC4fTMTlywjVNvC3b13Myd3DlbZyoGBA+S5ZpBUu7HaFc6cWkBf+ADtgRiKJPCl46qozhnOkxmf72Z8/nAC7mA0QYbDzF9WH8Bukbnm2ApmlnpJqDoJVWNuuY+kqjO9xMf0Eh+SAF6LiZa+KGKGhmNhIYEXG+CgMJRlnB/zGC+eCg8lvmEfV77XxtSP8Gju7NnJFS9fgX6YsNtNs27ikb2PUOgq5NTyU6n2V7/PEdJ80oiDQZKigJZUiUfC6KqGIeuEBwNYQl5W7e5ifL6LQDTJ1CIvv1i5d6hveyDGizs6sJtkMl1mbCaZwWiScFzFbZORRXEonkY6TNBf+hDi/oIgkOgM03P3jqEC2NYJGXhOKUdyHp1iPYIsYq3xYyp2YaipQgDCEWLdBFnCtbCQnrrA0DxCMIlYqkYWhzd0g0RrcFT/ZEd4VFuaj4cgCOQ58tjQuYE/b/szkiBxV/UvRwiQAAx0dJAoLOCV1SsJ7FiP2e5g4cWXUzx+ErLZjDx5CrLbTfjJp1I+iffI3bVOmQIWK75LLkYwi0gOZdj2IQm4l5Wgh+N4zjmHyPr1ZH/vu8S8mbwcc/PD+7aiiCLXLq6gwGMl120hltTZ3NSPz26iNxTHbTNR7LMxPt9NtivtCUjz30MsqbG1OcBn55W8735djfXEgoMUjR/9G8xymukcHM4zsh8UIQkHBsj4JC82TZpPEUfNQmEYRvM/GDK1o3Wu/wR6w3G+tmwMf9/YwvbWQeaW+5lV5kP7R4PuQQRBwJuXh93rpW3vbjY++8TQtpmnnsUv5vyAs1ZfxMaujQBcOv5SXBYnajI5+liJJBub+rEoEmdNK0CSBF6of2HUfg/seYBjC49FFocfC1tBQeo/NWNxLVtGoqkJPRpFGxxEcr2PqIJsQRqsw1pdTbKpacQmsayICBGk/QO4jitKVSEWBMJburCM87/3MdP8y2mLwV19HnbY53Cmo4BHAmZml/mJR3U2KDO40FfMEw2tVORX41VNvKKJXJJdwgs7OvDmllAtOHksCnoDnD+jkFOvOI61Tf38aotAYkDnrLxCTr9mIW6nGVkS2d0+yIV3rOPHZ1zIDY9sI6l78dqy6VwV4+RJxzLB7eJna2uZUTKTRdYsdmZ5WTJWYG3vYxzTU0qwtwdNTaKYzCTjw4FGJZOmsuXFZ1GTCR797XdYdObl5LhtWBx+wm+1Yan2DU+4BbBNy8ZImjAVT+eunvuRMhXKt7yDTbFT9+47xEJBJi89kY66fexYlQoEMVmtnHLRFfw48RjvmDbhrHbS2f00S5X5nGGaSKS7k2OrMj52Mkia90E2I8QDfGbsZ7h/9/0syC2gWBCGHWaqSt+991L25BMjgg4iyQjm2VNoD7bzjbe/gbfCy76BB7nDfwd7+3aT0BMjTvPEvicIxAMMxAc4Rh82GEgeD32JKBMWL2Xln343VGWgem4qYGygs52MwmJ6mhuxOl2jKiB/UggmkVjdANZJmYg2BUGARGsINa6yqTfIyl0px2Rc1blnTQNzykePt3o0SqK5GT2u4jcZ3LeuiRuXV/Pwhma2NA9wXE0250wrpLYzyM0njqW1P8J1iyoYiCTJcqWD1T8pBqNJ1ne8y727/wakKmT19rZwsWcZ5cVfosvl5s1tGazcvpc55X5MksicMh+NvRFe3RGnIvN4ZlumEQyJtLZ7mD015UxwyA629mxFFmTGOHNGnVcQUsk8vc1N9NbXk5GbmgMIkoRt2lRs06aO2N/ui8MbT0Hn32H6b6FqPITuhJlnQO5EIlu3De2r5OfRpMXpaDgw1LZ/0wZmlZTh9Gcw7cTTWP/U34kEBtj8wtMsv+4GSiZNHeEUjwQGWHXP7exdsxoASZY5/cbvUjxhyid059P8M8TUKPENHTiPKQQRBFEguqsXueawJFrZTEKy0d/SyKLPXsnO11+hbuN6AERJZsFnPsvVUwuwmkYbOk1WKyZV5Eebf0R3NOX0aAo28YN3fsCdc3+HXFVBcvfeEX3s2fnYFBvmqErswG5EqxVTUdGoClxHwlDV0Y2JBBj/XIULc3kZ5vIPDhZ1zJnzT53nfwlRFLEfIbHQuXDhe/ZxHCY8cjiSz4f79NMJvrxy1DarofHNFWPwe/rpPOBlz5MP4zrRSlZWAXKWDdukVBUiPZQkvrePcQ0XU2X18KI9j3tqH+bqSVdz+7bbebfzXY4tPJbvrvkuvbGUGFTDYAPffPvrfGfK7WxpHcRnN9ETSrC2LrV9U9MA1blORFGgoS/C67Vd9EeSnDY5n7ruEFkuC/keKzaTyOt7u5lQ4GZasTct0vRfju1ICbUTJ+JevnxUs2vZso99HkMbbcoxkslRgWOiIOK1eJmbN5dJmZN4ev/TPLBnOBnnwT0P8sM5P2CGWoC6L8LttbUU+awsKitDPXBgxLFiVhsWu4NQ30jBNJvVzObmANGkRqmpmSfv+P3QnH/icSfQ3djA4Ljx5MkWUFPrQZ+cQDBLRGIagiKmbBAG6JEkka3d9M0ZYFvPNpqCTWkRkn8hOim71/qnHiVxsIpldnklC86/hNWtq7HIduZVns+88my6BxMMRlVkUeDrJ1TzRm0Xf3y9juXjswkndB7a0ES208LlC0qZXuxDFAU03WBvxyDtgRh2k0xVjnOowondfGRTaF13iN+v2s+LOzqoznHyrRPHMr3Ed8R93w/JqsBhYlCmPAeZV08kVtsPAog2mdCbrSCC6DCRaBoWtzRiKrEDAfSYiiCLyFk2JFtaWOrThuhwYJgU6jetp2l7KoFCVkwsvvRqCqrHsrs2VTmofrCR6zf9jIfzT6Hg/tMJnv4U9x5w8eTmVm5cVk2u18JnZhXx7Lb2oWMX+W3s7QwSV3UaeiMArNrThVkWyHSY+f6zu5iU76Yi28FdbzUgiamAnmK/ld+v2g/AlceUM6fch0V5H6V+w6CuO8TeziAus0J1rotMpxlRkRA9o+fK5hIXmVdNJN4cxDrej9YfJ7q1e0iARMmzY853kKgPYOQ7kf2W9DzkX0gwlqA/mkTVDeZVZGAzy6yu7abEb+erM5xEO/uQ9g1Xhzpkh3esKEAQRBAg2N7J2WUTyNcMmHE5HBQtODBwgHfa3hkhQALwSO0jHFd0HI/UPgLAzJyZZFgzSOpJbIptxL66nsBIjrSxQWqOkWhooPP7tyBnZSI6XTgWLcQ24b2r+2qDgyRaWj7S2i5Nmk+aaEJjfX0/yyfk8PTWNv640sLlxxeSZxcYzC/E0DW2rHyOYE/KduH0Z7Dos1cSt9vJev4KHjn/QX61ro9ct4U3anvY0z7ISZNyWXegl3NmFHHfO410BeMsrs6iNxTnhPG5zCnzI7tTgezRbW1DAiSQqlAVrw8gZ9lQuyJYJ2WiZFqR/BaMmAbK8O9Esil4T68gfiBAsjWEqdiFqcSFaEr/lo4GMUUiGYux9u8PoB4Uus2vHsfM087Cqhvcu/dhLi6/lsee72JhVSaXzCvhD6v2s6NtkLnlPq46RqA/ksBjNzE2x4nLenSCGP9ZBEnENjETyZMKvgewjDnM5waYyz2ovVGie3pRchzInrRoWZqji2EYJJub0YJBlNxcZN/7r+0kn5/6M85A+cIXKLjpm9TfdhvC//2I0ieeeO9OhjE6cQ9G2UvSfPKYCgowHYphOUjPX/4yaj8jqWKbPh3J4fhEz5/s7ETt6sJQVUx5eR+6n2i3Y5kwgVBn54h2U0nJJ3p9h+htbSYWHBzVLkoSspKyNYiCyLnV5/Lo3kfpi/ZR6CxkjHcMPfXNyCYz3rwCNj7zOJXFM9HqA8OxPQaENnZiKssjLaP6wQiySKy2f/j+AeFNndgK8omGQ7zz2ENoySSJWBSz3UEkMDCiv2JOB3in+fRiHTcuVWThfZCcTpT8fJKtrQCE315DeM1aih+4H9uUlJ/fPmkSnHP2EftbasZiqRk79LcWDpOsqwNRwjZzBo758973/GbJDIcteQQE7JKVyD/uqOv//Ht8oBnuO4uiRIibT/gev29cRbGrmFMzT2FB/jHs7N2J8E49FvvId9OExcvY/dbrKBYLuZVjhoocASw5/zwUKV3Q7eOSjMTQE3a0YHKoGrCh6oTf7cS52EG7NUq5t/zjH7+7G7WzE8njxVSQ/wleeZr/dfSEhuQ2YR170K8ZThKrH2BH06sc2LKBBeddQuXMuSNESKxWO1pS44E9D1DprWQmM4988CMlpFt9IKXW6nbFzm2Bp/hbx99452vvcGDgADsDO5kjf3ixRTljdMqN5PMhvlcF74MY7zEOH8lf/a8g0dKCNjCAnJ2DkplOI/pPwepOCd3YfRn07djKlpeeHdo279yLmF81i3vq7+ettrfwm5wcZ3IwoNsxgGlFHtxWha8/th2TJHL94gpcR0hM7g3FeWJzK7e9XociCdywdAzLx+V87IJBktPE4Ev1OBen/DiCKBDZ0o1tclrQ92jhsihcvqCMJza3sqc9yKwyH/MrMqjtCnHT8rFYFJEHNzRz6qTUun93e5BMh5mTJubxZG0nN51ThT6QwLEgn8jmLrS+GPG9/QTG6fzuvIkUN96JY+0vYOrFBIuXo9SFePvh4WJ+/8/eWYfJVZ79/3POmTNuO7uz7prNxt2VEJIAgeLuFCkVqNIfb9+2VN9SRWtIoUUKQQokSBICJBD3ZJNs1t3G/Zzz+2PCLssmIVCCtPO5rlywzxydOfPM/dzyvacsP5dENErDrm1klVegD/jIjMcR5KHPkM5wdD+qKIqoSoLa51cyc/Y0Xu9Yy193/5WvjPsK9+24jx+/82OeOfOZDxUhORpukxtM8MPpP6Rn/3YEWU7mCL2HJCGlf/Q8ihSfPeGAD6PVBp3J/ISxi5bQsG0zrfv3AiAbTcy64DIObXqHrPJKxqSP5vXm17EZbCwrPJ++fh1TStIpdVt462APp9Vkk27VMyrPweRi5zFzcSApsnb6mFwWVmchCYONVXa1+tjZ7GFzYz9raru4/9IJ7Gj2srq2m4umFDB/RCZSppngv+qxTMpCtBypjWgPEtWL6G3yv1UM+W7Hu0MESACerH2SYnsxj+57lOfrnufRpY9S4ji6UHWKT56EKGIwW9j31hsc2pQUFhMliXmXX4ctGmVScRp7W30IAoTjgzaizaDj1lMrWbGtlfveqOMbp1QwItvOXa8eoL4nyMLqTCYVuch2GJlZnoH1OM/r0VDCcbyvNGCZmoMgiwiSSLTOg6/Bi21kOrqTuG6XLB9uXxiKHbi/nMxNE/QSxso09LlDfQ+CKGCZkEWsfqjP2DQqZed+kuzt3cuKgyuQBImoEkVSh+dOFdSMZuvaV/F2d4IgMP3ci1jz0B+JhZPeqqzSckonTiW3uuq4ayFRFLHUjKQhsxB3T4TQ9m4Eg4RlanaycZqqEXZlsFk08+c0E8vystnY0M/q2i4qMq18dWEF+9t9XDClgOv/toW4ojG7IgOXWc9LO9t5p74PgOpsO/deOp6SjE821pIixWfFzhYvMUVl8ofkBjftTuaFHlWExG6kyz9Ys2yyJ/0dH2wMkCLFfxInS4SkWRCEGYAmCIIe+Cqw7ySd6wtBQZqZbz75Dgurs5hZnsG2pn6e3dbKhZMLj7q9yWZHNhiRJB1bX3puyGub/7WCM0bV8Is5v8AT8WDVW1nVsIqAEib38ssIbdgwuLEg0Dd5Fo3vhojEOylKN2HV65DE4UmFRsmIwNETxONeL54VKzCUliKZLfjffhtTZSWGsmMEYgwWBDWCa/EYglt2ofQmi4dMkyZysFBPRqiPwnGZ+NY0Jw0cRcW+sJCQx4NqBeNH7ByT4pMnrqj86c3DvFvXzQ9nZrPyYCuTMmSm2RI8vN/PtyZlsP5wG0VmWJYj8fDefr4+MZ1DzR3YhQQXl9h4ZE8387NkDCJsOtjBbKfKyq3dTMvQ4dTB5rouJlriuKtySWga5UKYl2+eTldzO18qtxFSodgEOwIWzi8xsbaukyUVDqosKtsOdTIjy0Cx4qAlcgE6X/K5r93wFmNPXcrmF54ZuBdJ1mNJS8Pb1Ymmqaz+5x+RDUYu+u4v0Icz0RKDDgTb/IJkN/vNyQSgS4sXIcy08Oja25h69vkE+noRRBGT3U5H3YGB/WLhMJveWUdiIpyWMZs8KYOd9gYqxUIcssj1f9/GI1dNYeLHKGJK8SEYbITCLRzsO8gPp/8QAT32r9+M7zd3J18XRXJ++L/IH1CK7g53c/qKwS7pDf4GABp9jejF4Qm9Rp2RmBLjjzv/yLyxdyE5nSgeD2o4THpJKa/+7S8DAiQA+9evY8b5l7J7zauUT55KT0sTo+YvOuHb8nZ30nZgP/6ebrJKy8kuq8RgNh9zey2mYCh1EHizFaU/mdRsGOlC1IsDRczvMSrHRkm0j2hTDMMRYZZ4ezue55/HWFWFDPxGquXR4pH87KX9XD+7mLMzMzCZDexOxHlxdzs7mpMGciCaoC8Y5coZpYwtcJ7w/aUYSqynF9XTj2i3I4ejXGUdz1UzV3Ag1IQ/3EfW758mseU2imWZmquvJWPKKAqdGTy8voG5p1ayqb6fskwrv1xVS47DyOKabKx6lZb+8EDBZWe4ky2dWxjnHked1E7uxHG0bdk+cA0j58ynfltS3Cx0Igsg4ci//np49Izk2PhLBzoU64uLME2eTHjTJqTKShob64Ydor+thXGLT2fD0/8gGkwWUIT9Pl749c845/YfkV1egaRLOtC66usGBEgg2f3r1T/fy8U//hVm+/ED1SlOPkosjnV67pFObhqaomKdlktcTYDBRveE79AaMBFvUTDY9SRisQEBEgBVSbD1xecYf+VXiWou0vML6W0ZFLIbt/h0An7PgADJe/hiPtZ5NzPhxnOwfve3aKGkE85++jKMNTVEGxsJ79qFGgjiffppbKcsxLZkCQgCmqIgSBKaKKJ5vSDLiEYjqCqmyZNAkuB9DjzXNdcgHWceTvHFJNrcjBqLkWhuQVUUDBXlSDYrobff12FHEHCcfjrTSzPwJuLoYi4OAJbMdASrDq05gf+NFjRVQ3IYsM3OQ/OWI9e9ghpZTkughacPPM0VNVcAEElEBgRI3sMb9eJXuthQF8RhkhmZMyj4OG9EJrIk0tAdYl6lm7++XY+mweGeIOdPKqDdE+aVPe2cNT4fq1HHW4d6sJt0VGYdRzQyRYoTxDRuLIJejxYbLB52XXMNCZ8PJRRKzqPxOIIgoMXjqKEQksPBqHgW9476EaqmYtCZKNZno3t7O94VD+I89xxuc7loTLOg/+b3UG69ZbBb7ZIzaPCEqZm7kDcee3CgoMeS5kLvymLNG11Mdau88cgfhxT77HxtJTPOvxRvVxcYnUTcY2kvOJfuPX04fG+Q76gBRUv6IEQB0SJjnZmLJ7wJSBZdpPj0MNmdbHrhmQEBEoDOuoN4OtqQBInVza/yjREX4QnF2dqcDGidOS6XJzc3c86EPNYf6qW2M8g9aw4d2dvLrlYvf7liEpVZNjbW97Gt2cPh7gBj852E4glK3VaK04f6mgKRBHXdARRV41ev1LL+yLppW7OHy/6ykX/dMouyzH8/gKbPtQ4EdxN9YdRwgvDeXtTQ0KJ++8JCQps68HWHQSdgKHOSdlY5urRUscnnibhsIOzzDQiQACTiMba8+CxLbr6VfFMOe2PJoL0v5qNFJ5KfiOLw7OPh9VmUui3YzDq+8/QuRuc5mFPhZmdLcv3V3BdiZnkGa2uH2rynj8nl6oc3k26RGVeYxg+e3zPw2u0rdvHNU6vY2NCPompsONzHI9dMYU7FYGJiKJZAFASMskRth4/X9nYRSyQYU5DG3nYfGw/3MndEJtGESoHLTKFrqM0rSCKGYgeGYgeJ3jCRg/14X24AkWQBe54V3+tNoCUFUtMvG4mx4tjdDFN8suxo9uILx/nHxiYsBh09/ihXzCjGF47TvncHRenV2CZk4VvbjCCApmjYFxYSiYXQNJXR8xdzeMtGcnOXEovsQ185uL6u7a896m+kUWdkQtYESh2lmGQTAgIP73mY60ZfN2xbUa8n/coradm0+X2DIrZTF+F74QUAEl3dpC1ZguEoBZiJ3l40VUXx+YkeqCW0cSP+l1fiuvJKLAsXJG0RSIpGGo1HEnTFATtB0zREQUB0uZCPJ6qeIsUJYjXqWDo6m+a+MGVuK3XdAe78p8gPFuUybf5iGnZsGRAgAfD39tC0eyflS+YgeRqxB+tp6rNwzawSfrFyP5G4ysHuAD87ezTXPrx5oLPmzhYvX1lQznef3sk9l0zAH0ngNOnIPlqHqmY/9gUFxNoCxOp9hHckz6/LsZB+8Qhk9+C8rnMa0U0wwoRUt+eTjabXs/2VFwcESABa9+8h2L8AW6aNV9re5JKiSxid5+CMMbnc8vg2PEfsw9f3d9PqCfPDM2vo88d43dPFoupsrCfQje2zQDTqMFWmocaUZHfZ/vcl3Ix1o8VVfKuSoiSiXU/GVTXoc1KJailODmoshu+VV5GcDkSjEd+aNZhGjDhugbS+tISs736Xzp/+lPrf/AYEgewf/xh98bHbZurz87GfcQa+558fGNPl5aEvK/9E7yfFiWGZOpVuWYb3FcWkX3/dCQuQKOEw8c5OUBQ0UUyGv0QRBAH1iO9CsFpJ1NfT/v/+H8aRNVgXLCBeWYE+Nw+UBDq3O7nPMRANBjJuvIHw5s0oHk/yumfMwDRu3Me97eMSDQXpaW6koGY0zXt2DYxPXHYWzuycgb9zLDncMv4WusPdGHVGrLKVjU2vUj1nHr6uDrob64kFg1iqXPhWNyHoJNA07IuKCBylQVKK4cQTiWRX8zXJ909TVBynFNHX1obVksDbmRSorV3/JhOWLmf9k4OFaa68fDKLP1zYPkWKzzO6jAyyf/wjWm64cSDO4LzoIgylQ5/teFcXgk43RDws4fWieL2IRiO6jAzira14XngBU00NmqLgX7uWtLOWIzmdJHp7Ec3m4zdUAza0b6AoYwH2/DziLa0D4/Zly4blFH1kumvB3wbA6Oe/ya/LFxCQsnBlTgJrNo/tfZTCAz1UTp1J3aZ3SBwRbbWlu9n0/D+ZuHQ5G/75+JBDrn3qn5xSMQVIreE+DpGAj5hmQZdhxPd6I4JORNCJ2BYW4tf5iSpHaUxyggR37ED1+xGNRsIb1qNzOrEtWJASzU3xySALaDF1MK5p02OdmYu51wGaxsbnnuKMW28f2Nxks2PNzITkFMSLh1/knIpzji4Wbs8BaxYEjojjCQKMuwSU5JwUiAXoCnXxs1k/4/mG53EYHLx4+EXGZY474cs3lJeT/uUv0/vAA8kBnY6cO3+MPifn+PuVlGCsqSGyZzAGYpo8+aQJ9x0LLZHAv/YNkHVIViv+DRswFhZgPkm2e4pPlqKx49m95hXQVLa/8uKQ19595gmWf/9/B/5e1byGr0y+mXBCoDLTSlcgyl2vDuaEf//Z3dx98XjueqUWg05kbqWb0flO1tR2ceeLgyUx3/7nTjIsehZUf8zfaxEsk3KSv1WSiJZQsc0rQI3+V/f+PSk09gZp6Q9jN+p4dU8HWXYj00rT2dni4Wcv7+f3F47DYZJ5eEMjBzr9tPsiuG0Guv1RGnpD1Hb6uCLbheepg6BoIAnYFxQS3NyB0h9FDonoTX6sW+5LnnDvc0SXXsLWl3465Do2/+tZpiw/l3eeeZzO+joCfb2MDQTp6u9GSSTILq3AKYhYZT1jTjmNna+tHNi3fPL0AdGIUE8vmfpBu/qg5yD5tnw6gh0o2r/3/FS6KimcmE/wDo2uH/xwoNFB1vdvP2o8L8Xnn3BHB1Uz5tB5OJlnY3GmsePVwabW8UiYA+++jWw0kVc9kr7GpN9zddNqXNEzGZMjcu/aOq6ZXUx/KIbVKFPgMjOv6sSFykzvE86v7w7wu9cOIIkia2q7AHj7UC+zytPZ2+6lxx9F0TR8mkrmhCyCmzpQ/TE0VcNQ7EAnifxzayvjC5yMzP14+eNGaXgujlFnJKok4zq+mI8D/QdSIiSfIqpZT8jvHRAgAVAVZcD+Xbm7k7Mn5KJpQ5+ni6cW8rvXD+IJxfnGokqsRpkbH9tK9EiN2As72vGFE0QTCgJwak2ykWswmkAnCRg+pMm0FlEwjcrAv7oZLa6gJTRMozMIhuNsPdDNwuos9rR5eaO2m0A0weKRWTjMMjpJJM9pOulNfATdYE7P8TBUpWGdX0DgzRYEQcA2Lx9jufOkXtt/EwklQZpXxw9N14EgYMvPRhdRqJo+m9oNbw5sVzF1Jm8+9hAABSNHUbf53QEBEoDOw4conTCZ7U11LFmy7LjnPNwd4FCXH9GjIEoC9lOL8L/ehBpKIMgiOk8mxePSqe8J8sMX9zGuwMkVM4rp8IbJsOhx2wwc6gqiHMlRePNgDxdNKeTdhr6Bc+zr8LG2tjslQpLiP4aN9ckc4UlFx89tbNq9A1deAVbX8ObvWTYDBzoGc3fMDicAId/w5gApUvyncLKylW4AfgfkAS3AK8DNJ+lcXwhqch38cHkNP3phL9GESo7DyP2XTiDNcvTOVUarnaIx40nEosMUnlVFIRoO8+1t3x4Ym18wn3xbPsaphRTcfz89f3uUhE6m77Sz+cGhpNFammFFL4mEYgrj3ON47tBzxNSk81gURBYXLz6qOEmopQWlqwtTZSW99z9AeNcuTBMmIH/5euSCAkT9Ue4hGoDSeZhMPor/76tE+zVENYRh4nzW9a+jRLATPxhKdvtIaAg6gXhPmLAhyqGDG5m4dPlxkzRSnHy6fBGK414u7n8T3Q828NUrrsDzjycxjR3DT4wm/P/vVa6/7jo8Lz+PvC2b/y0qxvc/K5h07bX431oDb8H/TJmC52+P47rsUkLbtxNf1cn3ly2j7+FHcZ55Jue2thJZsQvvJZfQ/4+/Y5k2DVQN4xtv8LVrrsHzzDMYy0o51+3G970XufG66/CtWYlos3JuTQ3eXz5J+tVXs2T9BiKnncJ2wNfdSVd9HbMuvJxYKIQrPQNbWyeZX7qIFx74HWgaVdNnk1VWTkfTPtwFGej0mSAJSFYZNRAn0Zk04k2jM5BzLKitCc6/6oeEjUEyCorw9XQTCQxP9u1pauSbp15L4sd3YZvq4gwtH9/zzyK51vHYVTfS2O1LiZCcDBIRyvQumvyN/GDDDwAYn1nD1x/4IWUJF4a8AgylJcMW8GbZTJY5i87Q0I5TTqOTHHMOLqOLvsjgAurs8rN5eM/DZJozUfOzKHzwr3j++U8ie/ci2RyEj9JNSknEyS6rJLeyGst7KuvODy/ECfT18K/f/GKI0M3Ca29i3KKlx9xH0EtEG3wo/VH0JXZMNeko3hhiVOXrEwu5qsVLXNH41Sw3c7v34rn1BzTGYrguvxzH2WcRaWxEkCQ67vgfANKuuILrymTGZLkZvec1vD/8B0GjkXHXXscEZxE7mpPnfWpLC789fxxfe2IbT98wg3RrqovhR0FTFIIbN9F7372Ed+3GNHEirgsvQFMUvC++iDMUJt1ux7TgFLp27IZ4nOAD9+HKKeWlehNfmV+ORa9DEhS2NfVz7ewSHny7gYfWN1CZZeX2JdXsafMytTQDsy5ZcLCjeweLihZRP7GPyeMvRu4MYzBZ6GqoG3jm3MUn4DTVVLBlw7zvQbA7GaRuHyzE0zkc5P7kTnwvvkRo7x6KqkbS3Vg/5BDZ5VWYbI4BAZL3iEcj1O/YQiwSpmTcRODowijejnZi4VBKhORzgMFkJnywFduCArSEAqKIFk4gSzKdpz7IU/f8eeBznn/Vl1GPYuf5e7sx6XX8aYuPa+YtIhEKEg0FsDhdNO7cRv6kCehEHQl1MBlIQEBRFb7R90d+98cfUu63oLPZMFRUkOjrw/viS4S3bEHxenBddhmxjk6i+/ahxWIk+j0YSksJvv02nmeeQbLbybjxRnQFBajhMHm//x3eFc+i+v04zzsXuejo4oEpvpgoXi/el18GRUFXWIgo6+h/4AEitbU4zvkSeb/9Lf1PPYWo15N2ycWYJ45H1OsJH4pi0JsAiAQD4BIxVKShL3UkC2+BaHuArvHfprh0NiMyajBIBtqCbfxx5x8B+PXMn6ITdCS0wWdZFET0gpULJrmYPyKT+9bWUea2cO7EAt6t7+VAp48LpxSwqaF/QHfBE4pj0Ims2NrJKSMz6Q/GsBt17GnzMrnYRWUqHzHFJ4ChrIz8++7Du+IZ4h2dOJYvR3Kl4X/hBXSZmUnREacTyemk5557idbVYZ01k9JLLyV6sAMp3YVotaGFewm3d5Jxw5fp//s/0OIxsidOJDxnEfH7HsbS3cbhqMSKfj3mZoUZHfuZfeHlBL396PQGJJ2Orb1HBEm0OMH3FfK9h5KIo7faUBb8gB0HI7z1wCNAsmjk2q/fi5xnRS5K9mcVJJF4X5jmtDYWFiyk0Jaa4z9NBFGgv61l2HjA049JZ8JtzkTUjHhCMcYWOFmzv5s8p4mW/jDvHO7DZdXzr51tA/tdMaMYgK89vp3rZpfQ4gnzh9WH+PbiKl7a3U4krrJkVDYjcmyEYwp7230UpJlRNY3vPL2LWxaUDwiQvEc4rlDXHfhEREjej85lIu2scmzzCoh3BgluSHaZkVxGEp4oajCOfXERWkQBSSDeHUqJkHzOMMoS8Uhk2HhfWwuapvHntFtY5djND5vuR0DAcaTVajAhogHnTSygqS9MuzdCuzeSTMypdLP2QDIZodxtYVZ5Om8dSj6TEwqdhGIKiqpx84JyXtzZPuzcO1o8VGZZ2dfuRxIFntzUzJwKN75wnDcOdPPHdXVYDTK3La5kc30fVdlW6ntDrK3tYmSuAw049/5kEofDJPPXKycxsejo/itdugmzVUbTiWihBFpUQZBF9Pk2Ys1+tJhK35MHyPrKOCRHyj/waeAJxbEadLxV18v3lozgn5tb+OO6w4zNdzAt1EB15Qy0LiXph48oCAaJ8O4eTIuymXH+pXQePogzO4eXHnyIqacuYPT7REcEBBAgzZBGf7R/YPzmsTfT6G3knh33DIyZdWYqXBVHvUbz9Onk33cvfY8+hmQ2k3bZpZjGjaNkxQpizU1IzrSkGOD7ikQVvx//q6/R/bvfoSUSOM87l0RvL/r8fNzfvA3PP/6BvrQUQS/Tc/8DRA8cwDpvHmmXXJwURxUFUBTUWCwpmNbYSMxswTx+HILu81nEn2Ioij9GrMVPvDOEnGlCX2BHsh09nvZpIggC507I5ycv7eXSaYX8/vWD9Ifi3LuhhxlLXfS1tw7bp7elifHxpP3qsJiZXOzi5y/vH0h884TihGIKF04p5IlNTcSVpN370s42bju1iqsf2kRPIIYsCbxy2mg+2O/KNNaNaawbJRAn1jwYt0i0Bwlt78ax6NhF9ClOHglVO6rNGwkEqMrIZm7ubOySjpG5dvrDsQEBkvfY3xGgqS/M/g4/eU4TBzv9jP+QRJjPGlEvYZmYRbTZj39NMygacqYZ36tJARJdhgnLpCzCu3qItQYwlDiQ002f8VWn+E8j2t6OZDHT85vfEGtowDpvHsbiYhJeL7pjdN0WZRnneedimjCeRGcnck4O+vLy4xaQiiYT7q9/DWNNDb6XXsI8cSKOs89Gn3v8oroUJwfjqFEUPfQQfY89htLbS9olF2OZPv2E9g3v3UuiqxsNDRIJkCS0aBTRaiXe0Ejvn/6ElkjguvIK4k1NpN94I4IoEVi7FkskQsd3vkOipxfn+eeTdsnF6HNzj3kuU00NxU89SfRwPaLRiKGifEix/SdJWlYujTu3UzltJvnVown7vNgzs6icNnNA/P89BEEg05wsGNE0DUtUh6VyJIe3JcV7DVYbWl8C+ylFaIqKoBOJNvswlqTyHk4EwSCT8PiT79+R3KhoWwCpRI+qqYxecCpv/uNhIgE/h7duZNZFV6AmEtjdmeRVjcSRmXL0p/jiY5k+neIVzxBvakJyOjGUlyPZkr76RE8Pnmefpe8vf0Uwmcj8xtexzJ1LZOdOOn/+CxIdHdhOWYhlwYLkPokE7d/9HoLRSPq11xBra8N7zz34XngBuaiYrG9/C/OUKcfMObw17Rx89/4Z5/nnE2ttJbq/FsOpC8g4bRmS6d+0TaX3+Rs0FcvB17DUrYEJV6OJOnQ6GefkkWx8/mmmnXNhMs4IODKzyS6rRFGUIY2PINmYRQkH/r3r+i8mHomgs8hgEbCdUgSqiqCTiDb6qEvvZox9/Mc6bujQIZSuLnofeIDo4Xqsc+eQdvElhPftwzxq1Cd8Fyn+GxEQkgLgJUnREVEnEu8NEwomfbTRUBBVUZiwdDk6vR5JJ9OmdNET7gFgVMaoYxc6BnthwuXJnK94CKzZULcWxl0EQKmzlB3dO1jZMFjwPjd/LgW2ExdqkqxW0r98PdYF81F6e9EXFKAv/XBhNZ3LRe5dv8L3rxcJvPkmtnnzsC9dcsy13Mki2tqKYNDTc/c9RA8exDJjBoYrryDe04OckeoU/3nHbrIw7UsXkojFhjQ1gWRTgWBwMP+wyFaIOeKnVU1w8dQibvz71mHHW1fbzcaGPhp6Q9y95hCPXz+Nv28cbKqVbTfij8R5eU/HxxYhEWWRWEcA+8Ij9RSSQKI7hFDp/FjHS3F0Ntb3cu3Dm/FFEkgiPHzVFL7/7G5e3duJLAlcM6uEx95tYk6lmy5/hJvmlbO1qY/r55SypaGPhXlOFrls0BxAPKWISG0fsQYfvjVN2Obk41/djOw209brA50BYkGIeEl01w2z8VQlkfRDABn5hexa8wrF4yay+qE/oioKoiRxxrmXIvz5ISb8v9spLKuip6sDUSfR1942UJyfN2Myh4QG0o3p9EZ6yTJnsb51PZdVX0a2Jfvffs+MBjP6s7+EZfQY4u3t6LKyMZSXIRytbijF55p4dzdWo4nD2zYz68LLCAcDqB+oT4NkzsP4084goSkc8CRzyYvsxYQiOnqDMX545kj2tvt5YnMy9jGt1MXycXkf65oO9wQZU+B8X/Oh5Jza5o0wuTgdbyTG5oZ+qtIsuAJRrFOyUYJxRKuMltAgFMdmkNjZ4kUnCR+rWdvUnKlYZAvB+GD++uLixfx+6+8/1j2l+PdREuqQhlbvEejrJa4onD85nwq3lfEFTna0eDh7fB4rtrWi14l4QnFG5znY2+ZjXIFjIA77HusOdvPVBeU8+HY94wqcrK7t4uH1DWTbjdwwt4zJxS5E8eg2tKAXibX4sc3OQ02oyVyEqIJBFPn+it24LHou/fO7BGMK50zI4++bmlmxtRVJFLhlYTkXTi7AZTHgDSVrNx3mz2Ye1dkNOBYVYZ2UBQJITiPCMe45xUenq+4gu3/3MEoimReuN5k4/cZvADDj/EsJefoxO5yYLDbyRoykYcdW7O4sGndsG3assN9Pe/0hoprCsTKvGnuD3PrkdsYVpKGzmxk7Mp3Qpg5Es4xtTj5KMI4gi+QoAr+5YCxff2IH25s9HOoK8JX55Xzznztp6Q9T5rZw/ZxS7n/jMABtnvAHzWh2NHs+qbcpRYrPnI0N/VRl2Y5Zzw9Jn2zLvt2Mmnf0JvRZdiPdgSiKqiGJAkarFQSBsM9zkq46RYrPnpOSbalpWg9wyck49hcVoyxx4eRCppW68IUT5DpNZNmPXUSQU1ZB0NOH0WrHYLEMKc412ezIDjdLC8/hkH8Xi4oWsaxkGRbZAjJY580lNG4Sv371IE9sbEXTwGrQsWhkFne+tJfJJekU2Aq4efzNtAZaSagJiu3FRy260TQNUZJAEGj97ndJdCU7qIXefpv2xkby778PY/lROvpkj4GV34NgF3q9BX3EC6f/DnKLmW3RiDX4kfPTIKGhBmOIFhl9rpWQEuHtJx6lfNK0IR1YUnz6mCWYte0VlKefxPnVr9L1058ipTkR9Ab6H3qI9C9fT9ddd6ElElinTaPn3ntJu+giev/yFxIdHbi/9lW6f/1rbItPxffiS0R278Z96610/fSnmMaPI7J3L4HVq3F//Wt03nkncm4uWjSK54knybj5Jrp+8QsEWcY6bSq9f/wTriuvoOfuu1F8Ptw33kj3736P46zl9D/+BLG6OtynLmLhmeex4Y1XaTu4n8z0TKpH1ND7tVtJlBRjnT2b5Wecj1ZcxJ6332Ddow8CIAgiZ97wddxzXMS7ZOIdye+avtgOooDvlUZEi4xjdh62oJMzFnwDn74Pn9CPKEmoyqBacMXEKSg/vgshGEKLxfA88QQAqs+H4X+/y4QH/goUf9of5X8+WTXkPHY+90y6hKdCjWz11TEzZzKZVdNx2I8dAHOb3Nwx7Q6+uuarqEecvIuKFjHCNQKX0cVfTv0La1vWUuepo8JZwZrmNfjjfu4Yewd2vR2q7WTfcQdaPE4kGsFdVDJEYEEQRYwWKyUTJrFz9SrS8wqZuGz5CamZdjU2DBEgAXjzsYcoHTcJu/voqsFaTEENxXEsLUYNJVB8MUSTDt8rjZQaJX42v5Jfb2pkXqSZ7l/8YmC/7t/+FinTDQmF7l/dNTj+q1+RfeePmVpSSst99w6M9/74R3z5/+7iISEZp8myGcm2G2noCdHujaRESD4i4X37af/Otwd/X996i3hjI1nf/z66NBfRnoPI5WWo4QiOM8/A+8wKAOwt9fgjlfQGY0wqcnHVQ5uIKSojc+zcPL8Mh1FmXKEDTzCOLMpEYgrlznJm5M5gfdt6nqh9gvOqzuNd32EW5M8gsGE/9ds2Y0t3M++Ka8kuq/zwi8+oAk8z7PgHGOwQ9cKEK8A1GDjWFxaSceMNaPE41u5OGmv30d2YdFKUjJ9MfvUoGnZuQ5JllPd1TBMlCVEUeevxR8itHIHBbMGZMzxxs2TcRMyOz3fy/X8LSlTEXJOBGkygBhKIJgnRIiOpKnX1XQO2rGwwoqkqRrtz2DHyq0fxepvK2novN00ZSePKZ+jevxNLmosFV36Z7OIKbo3cyi83/3Jgn0urL6XeW8+Xx3yZvKLJ2C3JgK4SiRDesYNYbS0A9sWL8T7/Ao5ly0j094MkIegkQps20vdg0iZQvV7ab7+d/Lv/gNLfj+L3Y1u2FC0cBkmCWJxISwvG/PyT/G6m+DQIbNhAdO9eghveIeeXv6D1xpsGOlB6/vYo4U2byP31r1FCIQRBGBBe3Pf2WhzuLMYuWgKqhs6iJxGMoAbiCHoJQS+hzzSDMwtx1GSqgL/ofssj+x+jOdLLeZlTGN+4hZtG3cDvd909cD2XVV2PLpHJu/WHeWZbK/Oq3Fw1q5hOb5S1td3cMLeULY19rD3QM+Q+dKJApt1AXzBOocuMKAjYDDJ6KRUcSPHJEG1qRlMS2M87D9XjJd7WSu9DD2E/7TSiBw4ipTkxVFbS8pVb0EJJMUf/K6+S6Okl7YorEPV6Yo0NIMvoq6roeeCPOM8+i/DWrUT37sOWkcGOvLHYK8Zz/SObUbUYkigwdcGp1G/8F90H9+HIzqNo6YX8YY0HgPaEAWeGe0iHeZ2sx+HOIhYJ0SflsuH53w68ZrRYEXQiyGLSZo4qSHY9+iI78y3zMFhN2A0fPRid4uMTCQQomzSNna+9PGTcXVhM5ECEG2pu49E1HrKdJsrdVn557hgcJhlF1fjjusMsGpmF8UgXinEFTnr8UdbX9fCtxVWUuC389OX9zK10s3p/Fxa9RHW2ncfebWJxTTZ/evPwwPmqc2xcNKWAWELFrJcIxYZ2AzpZneYFnYicYUI067CfWoRvdROy20S8PYhtXgG+1xuxTs8DRSO8oxstqmIodyKZUkXznwc0RTnqurx0whT629vQ1dUx353Pi65xTEkro2T382BOp8lYhab10emPUJJhGdjvL2/VM7sig68trGBWRQZj8h0srsmmrjuIqmmUuq1sa0omFmsauI+y5s6w6kkoKmeMySUQTZBlN9LuCXOoO8DBLj+nVGdh0ks89k4T2XYjdzy3h3bvoJDKtxZXYTPo8EcTeMNxbn9mF3+6fBKF6ZZh5wKId4dReiKogRi6DBORfX0YR7hQQ3ES/RFUfwwlGE+JkHxKSKKAXhK4ZX45v1hZy1njcjltdDZVmXayO/2Isozo1KH0hJOieXoJ87hM/L19vPvsk1RNm4VO1uPt7GDdihconn4qtvRkInWVq4q7Nt/FJdWX4Il68Ea9zMybyfyC+QTiARwGB08ffJoyZxmXjryUcudR4gSAZDZjmz8f6+zZIIoDhUCG8jIM5WVH3Se0ZQvttw928+y9/wGyvn87nhXPYj/tNGynLUGLx2n/3ndRg0dskJdeItHVifu229AikSPimBHUSBgtGkPo6yNitWCqrv4kP4IUJwE1lsC3umlArAvAPCkL5xlliIakDRDvDROt85DoDmModaAvsiOZPyjPcXIoyrDw6/PH0dIfYnLxVHzhONlWGZuvg7IJk2ncMTRZvXTCZERcRPKm0awr5NW9dUgfSOhq9YRZd6CLuy+aQF8wRoHLhKqp3L36MD2BZEJaXNF4sLmHm2fkEH+nAzQN0xg35jFuBEEg1jhcJDt6sB9tQQGClBL9/7SxW62UTpzK/rfWDhl3ZueQ8Pv5WcXXWdUaxhuMkesYXuwoSwJNfSH+8lY9Jlnip2ePYnR+srvf5x19npX0S6rxPHcINXzE5ysJWKZm432pHn2xA6Ms4V/TjJxjwViZhuw2f7YXneI/BrWzk9avfwPtiHip78WXSHi8ZH7/9uMWrolGI6aaGqipOeFz6XNzSb/iclwXX4Qgfzq/QSmOjiCKmCdOwDR+HGjacQVk3k+ir4/owYOgaagJBQEt+ezodGjhCJ133jmwbfddvybze99FDQbp+/NfyLrjDtpuvXWgqK3vL38BQSDz1m8ct9mOvqAAfcGJF3B+XJzZOXzpez9kzUN/ZM8bqymbNJUxp5yGw338ojhvVyfr//43Flx1PdmlFewANE1FSjeiRRTUcBzJZsBQ7EDQPv+/SZ8HBBXkbDNqVEENJpCsMoZCGwldAGtaBtWz5xMNh9j60vP4e7qxpWdQPnk6emNKlDbFfw6CIGAsK8NYNtwH4H/99cE8lf5+2r71bfLu/gOtX/s6HMnH8j77HLYLLiC6bRu99943sG/nj+8k9//+D8+TT4GqEt27l6brrqfkqScxjhgx7Fzx7h4Ct92B0txM99q3kPPzMY4ahXPZ6eizjy0idcK4qyF3ArS9b0049SZIK0UQBE4vO50V/icZPX8mG597CoPZypiFizm0aT1VM+YQ6OtFbzINKbgyO5yItpTo08fFluFGVCSwiKjhBFo0geSQMJY5qUlzY9PbPvIx493dqO0dtH37O8k8AsD/8koSvX1kfufbH7J3ihQnhmCQEPUSSjCGltAQHXoMeTYsTcn5wJmTiyiJ7Ht7LTqdnnGnLWO7sB8Al9HFGWVnHPvg+ZPg1TuSAiQ6A0T9cMGjYEyul7It2dyz8B6eOvAUWzq3sKhwEcvKjuSmfwQksxnz2LEf+d4NxcW4v3IzGV++/jNbZyk9PbR9/RuoR/KcAq+9RqKzk+yf3JkSIfmcE969G1MigdnuwOxwIhuMxKOD8TBrWjohQ9K+kEWZbxctw7J/LSOWXExEgjyniZ0tQ5uk5aaZUOuT675IXOXVvZ2MyXOil0TmVLip7wnisugZW/DxxXI0RcNQ4kALxlH6I0hpRnQ5FrTh+gApPia9gSjffnonvkiyKNhi0OEJxVg8MguDnPQhvLy7g0NdAc6bmM+CI82jbppfxv1v1PHiRRMxHfahHPSgSzcRa/RhKHWQ6Iug+mIgCMinZbFP8vGrN7uZPvXbFLz1XQDskSYMZgvR0NA6oEQ0Sm7lCDRNw2x30Fa7jynLz+OdZx5HVRR27t7O+DQnXddeT/599yKvfJ3o5Zew87VV6GQ9oxcupiQzh1F/3EBw2iIOjk3HazZxy/hbWFi0EFH4ZNbsoixjrK7GmIqtfaFJeDz0/+hOpt1yE+tfe5GexgZmnD+81K94zHhsGRn0qsm50CAZOLPgOiJ+J99fsZtvLa7id68fHNj+9DEffx1lMegIRBI4TTL9R0TaTXoJi0HH91fs5uIpBSQUjdf3djCtJJvI/j70RXYSXSF06SYkh4FfPbeDM8fn4Y/E2dvmxyiLlLutlGedmJ1f5ariwdMe5K2Wt/DFfIxMH8mfd/2ZuJq8HqfBSVVa1ce+xxQfHVkRsLkyQBCGiInlVlUTFM38YuU+7rl4Ag9dNZnm/jAmWeSqmcX0BZOx1AlFaTyzpYVlo4cLMTlMMiXpFpr6wry8u50fPL8XgGyHkZ5AlCc2NyMJAqPy7PSH4qiaRkWmlWyHCS2mYihxooXiqMF40l4365D0IuG4wvq6XoIxBZtBR6bNyH1v1CVPqsAvV9YyMtuOJxzn90e+P7csrOCUEZnYTMPt3VhCwR9JYDfJyCchJiiIArpUg4BPHE1V2bbqXwMCJACxcJju5kYqRo1j3XNPkohEKK0eTXZbF9NPO5Oe5kbaavdROHose9etHnI8a5oLR1Y2BvOx12Ev7Wpne7OXyiwbfz/czZgpJcT/UYvjtOJkPDbfhqkmnfj2bsZnmll79TTqlDj7OwL89rUDdPqScbS67iCLBQGTLBFXVDKOkpc2r+ro9WspUnzRSCgqWxv7OWv88W2Y3pYmEtEoeVVHt4Gz7AYUVaM3GCXTZkQUJUw2+1GbbqdI8Z9CKnv9U0QSBcrcJ7ao0RkMjJgxhwPvvsUp19zEur8/hL+nG7s7i3lXXMdvNvmZVnY5N411UnSU7igum4klY3LJSTNjNujIcRh562APOlHEH4kzqXgUiqbQFezCqDMyOmM0NRnDk2oSHg+iLBNtbx8okH6PeEsL8abmo4uQpJfC5c/Codegrx4qFkFBsttMiaOEcJqHuN+PPs+GEjQhGiTUaAK77CYRi5KIx07ofUpx8rAGPHS+8CwAWiKBFo9jnjqNwOqkgSuIEqrfj3naNIIbkqq6UloaibY29KWlRPbuA8BQVo5/1SuIViuJ7uQzZJ4yld4//Sl57FgcFAXLjBn4X301eXINtHAYy7RpBN5YB4BoMqP09mIcNYrQtqTan5ybR3DrNozf/x49gopD0HHOJdcR2rKFxAsrIapBPI5l1iz6H/s7WiSC/PtfU7fl3YH71DSV1/7xIEurxmMrqUbOqCDW5MdY7sT3WlKx2jY7D9/rTWhxFWNVGq6ibJwxN1d/516ioSCBvl4suS5M6IlJWajBTjxPPjn0DdU0DPUHYM60T/iTSoEjHy54hMpDa/iu5iI65kzMWTVg+nBhgpl5M3l82eM0+hpxGBxUuapwGZNzanlaOeVp5dT21vJs3bO4zW7uXnA3E7MmDjmGIMuYZJnFN36DVff9hu7Gekx2B7MvupxAfx8mm53FX/4q1rT0pKjTCZA4Smf3WCQ8RKTh/XhDMYKRBPbJ2YiAaJYRTDoQwHF6KYnuMDMsemrOqSJy313D9k90dxPeuGnYuH/lKnJ/99vh2294m5qc09jb7uOSqYUIoobdpMNxFGdIiuMTb2wc/vva3Izi8w4IGYW3bsUyaya2xYsHREiMxUWkHZbp8EaQdZBu1dPujbC33cfBLj8/PLOGzQ0efvbyfi6cXMBNtlIK0+38z7T/YV3LOt5qfQudoOPqUVeTa8tFrZzL1DPORdLrsTicJ3bxlnQ4+176m+vxdHWid7hJL6rAqB+eMC7IMq7cfM79/o/oa29FkiTScvPZ9PzT1G54kynLz+Wdp59A01QEQWTy8vOoXf8m8WgUJZ50yLiLS1nyldtY/eD9RINB8kaMZM6l16SS8D4nKJKATgK5wIqUZkA06VBCMRBlAp7BIpiq6bPZ+tLzjFpwKvMuv5Z3nn6cSDBAdnklk8+7jNd7jfzm/HHc9K99LK5eyvJlF9AV0Xg3IpNxsJ88eR5/mFtFSO0h25JNmbMMWZQxy0Ofu8iuXbTf8T9wZN4MbdiA+2tfI97dhaGiAjUURsrJSSYGf4Dwrt0YKitI9PejdHUR2bMX8/RpqJEwgt8/bPsUX0wCa9agz8tHi8eJt7QMCJC8R3R/LfHmZkSLBXQ61FgMUa8n0NND7dvrmHv5Neh1RtSwgpxvRRcxIkgiGqDFFSzRLhp21JGWm8fY3Gn8QrIS79iBMdDNXvscYt5MfjJ1FN3hTmIROwGvG4+gcbgniF4SybIbWbG1jVynkYpMKzW5DrIdxiEiJItGZrGjxcOXJuSxp9VHhkVPdyDK1FIXRRkfLQkoRYpjkoijhsMQChGrr4d4AlNNDVo4TKytFbGnB11m5oAAyXuEt24l/YYvE29tRTKbESwWYofqcJx+Ot13/Rrtvfn5nXeYdedP6Ekr5adnj+a3rx1kQpGToDmd8rOvp1KN8MiWTho8Vr59WjaxhIqiqIy/+utse/Re+ttasaalM/uSK2netxu7K4POHgOqMpiREwuHkQw61HQdkl5CjamIFh0Jb5QSZwnpTven+pb+txOPxwn0dlM6YTK+3m4atm1GZzAw+Ywv4Uh3c9/8h/ndSwE2HO4DknHlP142kSklLnqDMcozrayp7eJrCyv4xcpaZpZncN/aQ/zfuWPY0ughnlAJxxRG5Tl4fV8nl0wt5OtP7OCGuaU8vL5xyLXsa/dzWk02T21p4coZxdy7tm7gtfkj3FSdYGLCx0Uyy9jmFWAanYGmaUQPeog3+7FMzia0sxulL5kUF9rShWN5GcZyJ7EGL0pUQZ9rJfmjoyHoJeRMM+JJEk1JMZSEzweaxpxLruKdZ54gFg6RN6KGcYuXcejdtymcNpdY7QF+Wn0zNt9mdNVnc9g1nYPeTAw6Dw+vb+ShKycNdGQBePNgD+WZVkbn2THoJAw6iQlFg2r7o/IcTC5OozcQY3yhkzW1XQOiOXaTjvJMK9l2I79cVTuwj1EW+dUrB+j2R5FEgV98aTQrtrXy9VMqhgiQAPxjYxOnjUp+FwBqOwO8sLONuZWZjMobmjQZ7wnT+8jeZELdEdLOrUQJxjCOTEc0SCiihqaohPb2IFn06NymT00Y4L+RApcZ0JhdkU5emgl/JIHbZmDD4V5qXAXUWOyoagxdRRpqMI5/fSuWcVlYc9xMOO0MDm/bTG9zcn6MhoL4+3robqzHkZVNcW4xdy+8m5UNK/FEPCwpXcKYjDGYZTNm2cxF1RexvHw5ekmPTvzwOUjQnfg85V/1yrAx30svkX7N1QTWrEVfWIgaDA4IkLxHePMW1GAIQZIQEBB1EpqqIkgiiX5P0j+dSpT83JPojgwRIAEIbe7EOi0Hfb6NeH+E8N5etIiC4o3S+8heHKeVYJ2Td0IC0J8EVqPMiJzBOTLW0oJmMuPIymbMKaexe82raJrGyLkLSc8rQKcaCU7+CwURPa+fPpaejiCNZoHvvlXHxCInDpNMU1+YF3a2Mbk4jTue28N5E/PZ0eIZct5HdrZRc/YoZl49kkyrAZ3LiKhP+pwNlWmEdw0VrjSOTE8JkHxGqKEQ1TPnEfL007R7B7LRxNSzzkMQRBKREEJMxerM4L6Xt3H3xRNYNjqHF3cNPvcXTSlk1Z4OAMJxhY31fSyszsRu+vx3mRREAdPIdOQcC7HWALzVhrEyjdD2bkSzjKHUgW9VAwD6QhuoSfE9Kc2IvsQOKiR6wogmHaJDj+qPIcgScoYpKTCZIsVxiDU0DAiQvEfo7bdRe3vhBDpvfxxSAiSfH44n/nE0Ys3NoGkoXi+S1Ua8pxfJ6USUZYJvvTVse//KVTjOOYe0iy4iWls7rKu258kncV12KXLWx+t+/UmTWzmCc7//YyLBACa740PjaZFggEBfD+WTprL6wQeYc8nVTF5+LiarHWQNKUtGjSaQLDKx3hCGo8QDUwxHFHUoRh2GbCtKKJ58/zwR7O5MTFYrWK3MuuAyxi5aiqiTsDpTYgMp/ntQQiH6//H4sPHgW28jZ2cTb20dGJMzM+l58cXh227YgGnSJMIbNyYH4nGidYePLkLS3Ey8uXnw75YW4i0tpF10IXwSIiS2LDj3r3B4LbTvgNK5UDQTdElbYYRrBBdPvIJmfzMLZ0wnXXby2j2/p+PwIZbcdCuaonDKtV/hzb8/hL+3G0dWNjMuuYaDIR2j//2r+69EkXTodAY0l4qsM6HGVCSrjkR/BIvB+vEOqtcTrTs0IEDyHuGNG4fFylKk+LgIkoCUaUTSjJDQEM06Ev4okl6HK7+QORdfQU9LEzWzFxCPRmjYtoX5V36JyUXTqUiroNA+vBnlAFkj4coX4eCrEOiEqiWQP3nIJhVpFXx3yneJJCLDcnE+LT7LdVa8qWlAgOQ9Irt2oXR3Q+UJNPVK8ZkRa2hA0evZsfZlJi8/j1Nv+Cpv/O0vBPp6cWbnMvviK8Fs4VdT7qBEE6lQRYQlP8XiSCceirJgRCar93cRTSRzDVwWPaVuC5OL0mjqOyI8FU5wyfQiXtzZNiQul59mYlSu45gC/8dCCcVRvDG0mIJcaEdKNyGIApFGH4ZC7cMPkOKE8ITiNPQM/k4vG53Dr189yAWTC/j5yv0Dy/uqLBv+aIL+YIx/XDSeUk3imi+loQUVSDcSeLsNLaJgnZlLeH8f5jEZBDd2ECqGbVof970S4pwJ+bTmVZB+bhHGhtXYMtws/eptvPbn+/D3dOPIzGbuZdfQ19aC1ZXBztdWMuvCy3nz7w8xdvGygcbFwWAAwW4HVSXW0ED0nXfJnD2HS3/+W+LBAP5f/47AL34LgLh1K+OmTCHzt7/C7Erlv6QYjtLZSWTHDgx796LTGxh76lIC/X3MOO8SNj7/TxLRKMVjJ1AyfhJ9ba2k2Uq4Y/JPsUp5RIOZ9MTCnFaTjUmWEIVkqspZ4/KYXpr+sa+pKsvK01vjXDmzhN+8mmza+k5dD6VuGwlVI8dpojrXQVOHH1XTMNakJ+t4atKTuQqBOCvOH8/Nq/Yxo8LNd57eSTShYjXo+MNF45k/4sQK5qtd1VS7krHj/kg/IiIv1b9EmbOMxcWLKXYUf+x7TPHR0Twe4rEoC6+6gbeffJRIwE9WSTlTzzofmSgjsu3U5NpxmPU4zIPxskAkzqVTC2nqDVGeacVq1DGuwMn2Zs/ANlfNKCHLYeTy6UV85e/JWrSrZxZTkWXj9hW78Ybj3Di3jL+8VU9tZzJPvCTDwh8vm0iJSQ+ihlxgRUwzIupF1ISKoBOYVZ5BNJ7M3xlT4ODd+t4h96QTBZr7Q9zx3J6BsW88sZ0/Xz6RU0YOFUvZ3+7jvjfqeOdwL/OqMrl2VgkVJzl3LcUng6ppBHp7h433trVQYLJzylkXIOkNsOo1gv98GLOqcd4376C18TB6s5mI38/hbZsG5uj2Q7XMu/y644qQbKhLnk8SBWZVufnd3ja+MSOH0LYuBIOEsdqFd2UD+hI7xhEuBG+MKlUlx27mb2YDRekWJhe76A/GiCUUbl86ApdFT22Hn1OqM3l9fxeiIHDh5AKMskhjb5Cij2jrpkjxeWNfu59ANMHk4uPHYTrqkqJRWWUVR33dbUvG27p8SRESALPdQcibEiFJ8Z9LKjv9c077wQN0Hj7EnIuvQjsia7vj1Zc487Sr+PM7bUwvO7qycocnRKsnjNOsZ8W2VrY3eyjPtHL70moKXWZkSWZS9iQmZU86/gVIEloshmg6itqdICAcbfw93FXJf0dBQEB2W+hfcQilNwKigHVOHvoqJ6UTJmP/kA4sKU4+gtGIzp1BvLUNjggnKB5PcqylBY4kjSv9/eiLjgQuRAEEAcXnQ3dEHEdLxBEMBrRoFNGcDEqoAT+S04nS1wdHEmAVjwddRsaRsaHni9bWgm5wzFBRjmHWLGLjxxCpLOG1R/6EqiggCMw5+wJcmzcTr29A0MtDjh1vaSF6FHGHoKcfxWyi/8H7cF37VfSFjgGnomjXk+iLoMVVdJlmpDQjvlcaMU/KQtkYIFbvwb20lMArrfj6oyDlYp1eg2VON75nnhpyHsNRBINSfEKkl0N6ORLwUUJfOlFHdXo11enHLj6oSq/iO+nf+dBjZZWUMvH0s1DicfQmC96uDmKhEBuff5rSCVNOWIAEwJmdi85gGCJGUjVtFrajqOlva+rnjmd3U5Zm4ueTSvC92ki8LQgCmMe60RSN6GEvznMryMo30Z053LEmudLR5eQMG9fl5KB8IHAOIGdns2xsDktH57BiWwuTitP46dmjjxS+pPgoiNajLMZFEZShUvbBt97GcdbZyZenz+RfcReLRrqYUuyi0xfltkVVtHtDRBUNkyyxYmsL4wqTQjyPb2pmTmUGhelW8mx5XFR9ERdVXzT0lJJ01G7eH0ZbZ5Bn7rpnQKl95JwFzL30aszHEDIxO5xDXuuqr8Pb2UHthjeZfu5FKEoCa5qL1v176WtrYc6lV2M+0p1QlvWMnD2fvKqRxCMRbBkZx3WupPh00QsCOrOe/icPJJ38OhH7KYVIDiPZYyax69VkUpglLQ1fTxfrn/gbYxcvY+F1N4EGOnsazVIGe9vb8UYSnDspn53NXn7xVojrZpfyrYc3c+uiSjIseg50WZhXVcyErGM/s+EtWwcESN7Dt3IlrmuvQQ0EQBDQEgqS2520dd6HlJaGGg4jaIAoJu1g9Uj3xI+YxJzi84ucnQ2igBoMHn2tI8uIBmNSHE8UB7pn1sxbyMGN6/F1d1FeMw0JPYG1LUTrPAAYR6RhnZPPil/8iKCnH7PDyTm3/5DM4nHocscB0Ly7neffOkjtKj+j8zI5e3weerNGQ0+IO8+qod0bZdWeZIeNpaOzuWJGERvqerh9aTUVmVbquoPYDDr0OhFBEFBVjfJxVgRRINtpoiLLOuDUSpHi30bTECQdmpJIrus0DaW/H11GBqKkQ7SYB9Z570cwmRBEEdFiQYvG0AJBJIcjWQz0gfnZ+8jDrLdVkpGVxi0Ly1m1u4MfPL+HMreF206tIoSMS4A7/7WXhKpxweQCJmc6mX7epajxGJJOh7e7C1mWeeeZxxl91iXkjhlP644tyWsRBESznti+Pjxvt4IKugwTzjNLcQt2DHJK3f/TRFAUJJ3Mqvt+y8wLL6dm9gIEUaRu60Zifh8IxXx5jsIZYyJEEiojc+1MKHSik0TmV7mxGnTc+NgWXt7dwXeXjCDNLDMq10EsofH3jU2UuS1cNKUQXzjOORPyOdSdtFPtRplIQhl2PYqm0dIfZmN9Hz9ePgpB0MiymxiTbyf9KMr+n/j7IQoDXd9FvUT0QD+6DNOAAMl7qIEYPX/ahRpTsC8sJLynl0RXiOhBDwDGkS6cZ5ShS0vN/ycbQaejdv069BYLp375FjRVIxoOsfHZfzJx6XIS/gCCrCMjowS55ogQbbefAinE7y8cT5s3jD8c48IpBcwqT6cvGKfAZWJaaTpG+eiu+iy7kT9cNJ4DnX4Odwe5YW4ZCVVFQGBMvoMMq54rHhwUFh2b7+C1fV10+5M+hfMn5XOwK4AggKIOT1j0ReJYDIPnrsm1s7vVx9uHevnT5ZOGvBZvDQwRINEX2IjWewht6QJAchmxzSug50+70GIqokXGsaQYQ2UaOvvJ/079NzIqz0F9t5/m3hBmvY4H3jjM4Z4gF03M43RDJr0P7kGLq4hWGcfSEmyz8ok1+9FyFLa9/MIQMfARM+ey+sEH6Kw7iE7Wc+Y3v0/VuIlUuY7d4elkJaHL+XnDxnQZbsK7d2OorDziUx7+PAtGI4KsA0VB0wRUNelf0TQNQdYhyJ//4v0USWHHo6HGFBL+GP7VTYQ2d4IGcr4V24JCfK81YhqV/pl1bhJMJtRgkN2vv4KroJClt3wTAG93J1JQwvdyw8D8qS+0kZlrxbq6g+cvGsf/7WjGE0q+tq3Jg04Uqe8J8nZdDxOK0gYSiN6jOxin3qWQnz3UL2ascGIcnUHkiBCJocKJeXSqO+tnRVxJ8NLdv2L2xVcyeuFiBEGkfvtmdLKetHAC8gtwW/X86bJJhGMJZpalc+rILLr8UWRJ4LV9XRzoDAwcLxBV8IUTXwgRkvfQpRkR9BLWOXmogTjxjiCmMRkE30mKrYgWGWNlGt4X65M7SALOM8vwvlSPFlVwnFZMcGsXia4QiGCdm49tdn5K3CzFcTmaj0K02RD0X5zvTopPD9FgQAMEvQHQEA0GBDRURUF3FCEROS8PLR4DkrblB9FlZiJ8zoTzDRYLBsuHx9JCXg9r//ZXAn3dVE2bzfZXXmT1X+9jytnnozPqibV68aw5CIqG5DTgPKscTU215T4RBJ2AqGj0Prp3YJ3sXF42ZDUjiCL2jFShWIr/PkRZRs7PJ7p//5BxXVYWSiAwdGNZRpeZBXv2Dt02M5No41Dx6aPmYACixTysm3Jy/BPMOXCVJP8dgyJHEUWOooG/K6fPoqPuIJ31BzGYLXi72plzyZVEQkE66w7S39VF1sijNIdLcUIE+voRc/KIHOwlsKEtGR9ym3CeWQbH8D18GGo8jmgdLmAimM0IhpT/M8Ung2jUEdzUSXh714D/y7GkhLELlpI7spq1f/sLI6bPYfO/ko2s5l19E2Z9JVNzHB9y5CNkj0r+O941COJnJkDyWXPU2LfBAKl15ece0WJB9XiomTaLnobDNO/ZydxLr0muXQRY/9RjzLjyRhaPOn/Yvqqq8a+d7XxlQTmxhIokCiiqxqb6PtIsg5/9ktHZOE06/rZhqP3R0h9mT5vvI4mQaKqWFLDY0Y1tTh79/9iPGkogGCQcy0pQjxLTS/HxcFn1VGVZqT3ibzXrdXT4Ijy1pYVvnVpFMKag14mUZ1r59lM7ePm8CehWHMbnjyPIItY5+SS8EZzLy+h/4gDBjR1YZ+SCLBJdUsSKw36yHNl861QLt6/YxX1vhMmw6PnRWbfxpzfrONDRxzeWf51Z6RKvHA6yJ26jQO7ClZtPWm4e76x4gkQ8RqCvF7PdQTQYZNSosUR/ew+QbOIKINrtWJxphA7XE/iAQF9440aE5jZIiZCkOAqC0Yig1yPu2QcZVjY+m6xvmXPJVUw7+wKc2TlEQkE8nR0c2rSBMRlZ/PodE9fPSWPFtgZ2tXqpyrKxbHQOty6qJKaoZNoMPLu9la8trED3McTw0ywGvnnqCA52+rnn4vF0+6PkOIy0Hmmo4g/Heaeul7umlRJYUYcaSH4fbQsLCW3uJNETRpdl5q6llcx7ZCNxJTlnBqIJvvbENl68ZfZHrmlIM6axuGQxi0sWf+T7SfHJIBsMKLE4jbu3s/Dam0BVSSQSvPLHP7Dg2pu595IJZDuGx4KtRplbT61kd6uPaEKh2x9jZI6dBSMyicQVLAYdr+zpYE5lBkXpFswGCbfNgEmvY0+rF284jsMkE1PUAQESgPqeIM9ua+Xrk5K58J4VdSR6wsnax5m5GKrT+NopFfjCcf6w5hAd3gg1uQ62NnkGjlGTa2dNbfewa35ic/MQEZIOb5hrH9lMS3+ybueJTc3sbPHw6DVTP5X8tRT/HpIkMfbUZbTs2z1kvHTCZJ78490kosm5bfwpSyi/+SZ0FismUeLgxvXUb9tM4eixnHLtTRitNiLBIGNPWUJazvEFc2dXuFl3sAdZEnlmawtLRueQyHeh7urFVJNBcFMHcrYZ48h0lP4o/tVNSVtTL/H48grurOvg3rWHyLIZufXUSh54ow6rQcekYheBaIJbFpSjaVCaYeGGR7cyKs/OX6+YTKb98xUDSZHio7CxIdkYcUrJ8Wt7Ow8fxGCx4MwaXmMJkHUkB7LLHwGSvhiz3UHYnxIhSfGfS0qE5HNOQc1oNr/wDM17dg6MVSy7gP95uY5FI7OwHqPLqS+iUJph5rvP7KahN6neeqgrwK9W1TK5OI28tBM7v2y3E/b5EK027MuX43vuuYHXnBddiC7v43UCECQR3+qGpAAJgKoRWNuCK8/KxGVnf2gXlhQnnz6dmfD1X0P3v98l0d6OcdQoguvXk/XtbxPetZvI3r1YZs8m+OabOM4+i8CbbyWL5JefiffZ59BlZSI5nfhWvULaxRfR9+BDgIYuNxffSy/juvxyun/3O5S+PgyVFQTWrMF96zfo+uX/Eas/jHnyZEKbNpH1ve8R2riJ0OYt2Bafin/VK4jf+w673llHWtNhtr/yUlKABEDTeHPFk5x33VeJbb0FNRBAX1yMf9UqMm68ia677sIm6xEEcUDUB6CwejSGSBTvgYMovc3EG9ZgmXQ5unQjGsnkZgBTTTr+dS0ggM5pILS5E2NNOqHtXSj9R8QiFI3AW304z7oE33PPwJFrk4uKMI0Z8+l9gCk+EyyONJ7+6f8MGZt+7sWYbB9NhTQejTD7wis48O7beDraKB47AUd2DtFQCJ1+0JHQ0h/imoc30xeM8avF5YS29yQFSAA0CG3vxr6oiPDuHkIbOzCWj8A6fz6+555H8XiApHPRNKIKOSMD/8svDyj5ixYLtoULUNraBoSEIFmc7x8zif9bWYuqwS0LyglE4iyuGarGmuLEMJSXYz/jDHwvvDAwlnbpJXiefXbYtorDSdv//oZXwxYe3+EFvOQ5Tfz85f0Uppu5aEoBv395P3FF41uLq/jTm4cH9q3v+eQ7rkRDQdY+/KcBARKAvetWUzltFmUTp5zQMapnzaNhx1b6WltY/9RjAMw4/1I66g4x59KrqZ41b9g+jsyUUNnnERnw/uvwYEFiQsW3sgHXFSOxF5Vzxq3fY/2Tj9HX3kbZhCnUbXmXHateZMeqF0EQqLj2+6zqbKXLFxnoCA9w51mjSCgqxelmntzczM3zy8h1GHltbyezK9xI4jE6HB8lAViQJHRZWcQP16MpCUJbt5J+9dW03nobJBJAUnzJOKKKeFc3kisNxePBOLIa2e0GWY+UnZrr/lOwLlhA929/h+3UU5FcLmynnIL/tdcGXnddfjmC1YIaiSBK0oAISf7I0Sy95ZscePdtRoyZQ/Sgd0CABCCyvx99iQPtSDJAyOvh3WefYsnNt6GTZZr7Qnz3mV14QkkRhl2tXnoDUb6zZAT9oTieUIJ71hwaON6cCjfff3Y3D145GatRZma5m5nlqYBxik8P0elE9PrQ4jF0mVko/X0Isoyck4MuKxMUFdFixTx9GqEN7wzsl/HlLxPv60PnchFraEQ0GpByshG7OoefRNKxs83Houw0uv1R1h3sYV6lm+IMC/+3aj/Xzy7jeyt2DWz++MZmTjWIHFy1guzySvauWz3kcAFrFmnzqnFmZFG/eT1ZpRUo/hiBNwd/XxI9YfzrWnGccexk4BQnB53RiMFiQVUUXvvT3QPjtvQMxp+6nKml6QjC0X/frUaZ+SMy+dcts6jvCWIzylRnWzFIEm3eZBC2rjvIxCIXI7KttPSHB5LCajv8nDoyi1V7Bp9Bm0E3kG/eG4wRjissGZX9mYkr6pxGzJOzibcP7a6GkBTTUXwxLNNyCGzswDTCNSBAAhDZ20e4PA3bjE+gY2eK49IZlygdP5mX7v01O19bOTA++6Ir2Ll6JVPmnoI9LW1I5+tSt41S93C/wNSSE+8MlO0wke0wMaVE4WBngDZPmByHkYpsKx3eKN7woMBTcYaFrU39A3+7bQZkSUTTwKCTkCVhIAkH4IJJhby6J1kMnOMwcu7EfH7y4j4A+kOxISIkWmJokZmhMg3/6qaBv22z8/A8ewiO2EJqMI53ZQMupyElQnISsRpkrCaZ6x7ZTCSe/IwuK8nE+3TdgE6HGojje7UR+7JSdC4Dqt3Auf/vTt5+4lH62lsYMWMOAPveXANAIh7jlQd+zwX/+/NjBlVPJrZTTqH/b48O+q9MJkwTJxDeuRNDWTkoCrHGRixz5hBct25gv4yv3AyyPCCiJkoSqiyjqipSWhr6woJP/V5SfHSkdBM6t4lE96A4spRmQM4wEW3wEto0+HsebwkgZ5mR7PqBddhngZyeTqypifIJU3j5gd8NjGeVlFM8ZgQx32ABXazJj6HcmRTH2d9PU1+Y4oxkAdPk4jT2tfsAWF/Xy/eXVtPaH6apL4QowIWTC9nZ3M/CEcPXhTqnEdc5FSTmFaBpGrp0I5IpJdbwWaHa08mrGjnE5kUQWHbLtxAdAqLRyLjCweSW/mCMdQe6icVV7CY9bx3qGXK8+VVu2n1h8r9gQuCSRcZxahHx3gg6txk1nEB7L+Y2JoPAhvaBbU2jMpLdRKMK+kIb0QZfUoAEQIXAmhYMJQ5MlSnB/xTHRpeVjWnCBMJbtw6MZdx4Azp3yp+WYjiGykpizS1oBgNqJILkzkALBBD1MubJk/A8/TTqka5lgsmEZc4clJ5uBJMJpbcXfXExsYaG5MFEkcxbv4HOcYKFn58zWmv3su/NpI+tasZc8qtH0bJvN+se/Ss1P5iD77XBdZ/iieJbWY/z/GOLFaYYRIxp9L1weMg62fN8Ha5Ljt0kJUWK/xYEWSb9mqsJrluHFkvGmKX0dKwzZ+BbtYrYe50jBYHIhndwnHsOwfXrh+SumCZOwPvMMwPHNI4fj3HEiKOeT19cjOuaa+j7858HxpwXX4y+tPQk3eHxScTjqKrKxNPPpvNwHQ63mz1vvD5km/Irv41bO0Y8PMWHYk13J+NDbw82JUl0h/G/2ZIUIvkY6Mxm5IICzFMmE9o4KAydceMN8EkK2qT4rybRHSa8rWvg73hLgND2Lrx5Xl76w12kFxSRiMWwu7MYMWM2SiyKnJoqPjGkjAwsc2YTXPfmwFj6tdcgpqfEfj/vGCorEbq6UJoP48ovYOvLz/Pi73858Lotw03WURr1ASRUjYXVmfzPc3uGaJb9/sJxHOj0M7XExY3zyphQmEZPIEooNlzMKqZ8NKHGRF8E32tNpJ1bgee5OrRwMndNiyp4nq8j46rjiwWlOHHSzHq+tXgEt6/YRZc/yhu1XVwwuYAH327gl6tqEQXQiSJfXVjBZWNz0b3ciOpPxl61uIp/dRP2RUVoEQXRIqOG4kguAwGjj6AS5W/vdpLrMFGcYR4oHr9waiG3PbmD8BHhsztXt1CeaWVMvoNXG8JcaY7xzjOPD7nOzJIyOg4dYO7Ss7Fv3kEsGEJfUoK+vBxdTg7mSROTGwrHEHw4Rp5FihSCw4nry9fjz3JTYjZgy8jk8LZN+Hp78Pd08dbjj7xvY4GwKY1fnlvAd5/eRdsRUZDaTj/feWYX508q4OmtLVw7q4QH3jjMlybkU5Lx8ezgLLuRrA8Us9d2+HGYZPa2+7l5ShGx5w6jBga/j75XGrAvLML3aiOJzhCWliAWg24gFxPAF07Q5Y+kGqt+AQnJRiS9TGfdQQ5t3DAwbjBbyCwoxOk8djMKl8XAnMpkHOCN2i5+tL2VYExBFJJuueXjctFLIi6LntsWVfHEpmbqugO8N3PmOU3U9wSHHXfD4V6+OqGAwNrmpAAJJGsf32xFzrdSWZpGLKHyt2umct/aOqaUuFh3sHvgmTTIItmO4bWR2fah91LfExz4DXmPfe1+GvtCKRGSLwjFY8ax+Iav8c6KJ5AkmckLF7Nvw1sDAiQA2157GecV12MqLEYLBBgxfQ712zbTtGsHTbt2AHDaTd/4UAESgAlFTuZWulm9v4v5VZn8YmUt/0gz8fj4EoSwghZVME/PRfFECW3vRg0dsTVjCr5nDrFocT5Paq10+CJ85+md3LqokrteOcD0snT2tPp453AfTrPMncuTNunuVh8HOv0pEZIUX2g21vdS4DKRcxRBq/fTefgQWaUVx8xjfs9+6fQNNp032R10NzV8YteaIsXnjZMiQiIIggE4Byh+/zk0TfvRyTjffzK5lSOZc/l1vPPUoyRiMcpmn0JrejVnZZjJc5pxWY5uUCY0jUBUxROOc8PcUkyyxPgMG/loGL1hIkoHxp7NIOnxpM2jp1slFkqQlm0hu9SB8L6CTn1GBtFQGOPoUVimTiHR05NM1NHJ6I/hkPtQFI1Yk2/4sDdGb6CJwlEpsYbPGkXT+I0vnR/eey9yawPmRQtQfX4SkTB5991DvLkRKTsX+5fOIu7zkPnIk3g9CeKyTNa5l6DUbif7rl+htLeimS3k3vMH4u2tZP34hyhdnaiSRN799xJrbiR93lzUvj4UJUHe/fcRbWzAml+A48LzUYJ+8u+7h0hjI7pMN7YzTqfO18ehnVuZWl5BPDJ0saVpKgE0su+5G6W9Bff/ux2lpwcVNXm+3h7OuPkbrH7sIQL9vRSNHse0U5aBL0TWXb8i4fNgX76EaMM2bEumEdkRQJ9nJby9G0QBFA3BKKEcMcLlLDORPb3D3j81pkuer70Tvc2KcdQo9AWpJPeTiqpA23boqwM1DhmVkFkD+k/WiaQoKp6OEIH+CBangbRsC5Iu6dTNqahi4dU38tbjjxCLhBm94FRq5i38yOfw93az9pE/Uzh6LKUTJtOybzd73nidyqkzsTgHVaSa+8L0BWOkW/RY40FiDcOV8xRPFNEiE2v2E/FEsUyeTP699xKt3Y+mqBhrRmIaPZrg9h3k/OQnxDs7QBCQs7IQHQ7k6pGk33Mf1B0EWY9WWcW3d8bJTzNz5tgcxhU46QrEkD+GknEK0OflkX7jDVjnziXR2YkuJwcpI4PQli1DtjMtXcb9XSY2dGucMjKLW/IySSga25r7qciysqfNxz+3tHDx1EKy7Ub2tPqGOFUrswY7sQQ8ETwdIQRRIC3bgtn+8To1hP0+uhrqho37uruOsvXRKRoznunnXsSm554GYPLycxg5Zz5jFy3BbP9iJmr+t6JFVBK9kWHjqjdKsEfD6qpi4pnn0bJ7G+ml5SRiURp3bcfscDLrwiuotWaxbdNhbl9azdmjXSxwtJMZb0Ew7wZjGovON6IJAkL0IGRZIbsfdu4CWy7IJpKVdUeiwIKAZXwNPe8TUAJIu/IKtHgcubgINRDAmp0NdjsF991LtO4wosmIvrwcNZFAcqUlC3YysxDNZgSTEdHpRP8hCcT+3gieziCSXsKVY8FoSRX7fF4xjx2L+xtfJ97WhhoMYpk7B+v8+SR6e9BlZaOGQwiyjCjLxF0FNO3pRW/S4cqxUD1rHiXFbjTZjL9h+JwXPewlu6KSw1s2AtB+YD99je30deuQTTqePW8SLYkYWzp9HOgM8OKudg51BWjtDzOjzIXDJKMTBa6aWYzDJHPPxeOZVHyCKpIpUhyFWDhBX0eQaCiBw23CmXni9rEhNxctGkXxeBDMFiRXGvqCQtRQENFiQVNVNE0l4+avEF9+FkpvD3JBIWKaE9XjSdqblRWoioKgqpinTKHv4UfQIoO/Ge7rruA3I2Kg1oJN5JbzPSRkhb+3pqOXJNbUDv2enT85n1DnJvraWiibNJXyydOp2/wuBrOZGedfSltGAX/d0sn3TruA2edfhMFsIfzOUb6rDV60eKp70GfBgXfeZuYFl7Jt5b/ob2/FXVTC+NPO4O0+gWVxBZNeRyQQp78zSCKm4O+LYrLpySy2YbEbKM+0UZ45KOgwb4SbjfV9A4HjJzc3U5Ru5qxxeaw70M3VM4t5ZEMjf7h4PE6znrcP9VCRZWPxyCz6gjG+urCcTl+U1/d1ctGUz3bdbihzIsgigl4aKM5EAI6sOUWzDsmkGxSffB+Rvb0pEZJPgYSqkV5RxbRzL2LzC8+gKQqj5p+Kt6uTw1s2MnrOAnKmnJgoI4CvJ0xXo594TMGebkTUCTjdZky2o6/TjLLE6HwHo/MH7dIcBywdlc2LuzoA2NXiZWpJOs19LQCIgsCuFi/nTszn7+828r0l1aza00G7N8Ip1ZnoJPjmaSOo7fDjCcX5xcr9JFSNaaUu0kxDr0POsYBOgMT75s/3/6+mDRRWvYcaiKME4qT4ZNA0jb72ID0tAURRwOzQI0oCRg1yHCZOH5ODBmQhEv7Az5zSH4W4gi7bjMntwuF2c9Z3/od4NELHoQM8+8uh4ZtAXy/ezo7ji5B4W6BtO4oq4JFHEvBpWKwCaYZOJCUIShykI+siQQeRfpAtYHJCPAxoyWdIU4/8f/K/Rp2evN/cRWjzFtCShUm9f/ozOXf+GE0Dpb8P85QpWOfMwbH8TJTeXuT8AqSMjKT4tARIIggCol6PCMgFBehzU/PkFwGdTY/rkmr8a5uJHvKgL3XgmF+IZDcQa/IP2z7W6McyPQdd2meb8GIaNYq0QweYePrZ7HjlJTRNZdyCZag7wsO2VbxRJLOMGEygkwQEAaqybEwrTefZ7cniKE2DX66s5c6zauj0RUmoGq/t6+RL4/Oozj26f0I06tDnDe/InOLTpz2sMeaU00jEozTt2oHFmcak089mw9P/4PSrbqQ37sDzdht6o0R6vpW0LAveSIzyLCveSIzvLRnBU1ta0EsCF04u5OmtzfzsS1/M2Kmgk9BnWRBNOiL7+zCPzyS4sQNRL6FGEgPb6dKNhHcku8HJeVZC24d3hkt0h6HyU7v0FF9A9Lk5OM49B8dZy1G8XuScHNRYHDkzc8h24UCM/vYQSkIlLduM9TP+DUnx2SCIIuaJE4gePowWi4MooDnTQBQQBIG83/2WeGMjmqqiLypCDYYQsrKR0tNpu+02nF//FmF3GYmEhtOlxzr6JBexR/3QUwexIGgKBLuTdnUiCgYbhPvBYIXMkRDsAX8HSDpIxJKFSPEIiBJEA5BZDfYc6DmAqgn0tw8WZ7/253tYcNWXEUSR5j07UTyxYZcS7wihRYcX3aUYTsIXO+o6WQ3FoXMPuEckP5ejoCgqfa0B+tpD6PQiBpMOo1VHWo4VKRWbT/EfgmncOIqeeJzovn0Iej3GmhoMJSUU3HM34e3bSfT0IudkI+fmokYi5P7yF8Tb2hB0MlJGOpLDQd5vf0P04CEklwvTqJoh4sCerhDe7jBGi460bAvp116DZfo04s0tyHl5GMsKkNrfhagPzBkQC0FGBbiKBy+y5xD014OvFRz5YC9K+hw8TUm/RyyYzE8SROivA4MjORdbji9AHA0F2LHqRZREgpJxE8muqCIaDFK3ZSMGi4WZF1yJN6OIlv4QvnAMu+nj5XX8N6MIOhRPdNh4rN6HFvtoheLvIZnNSC4XzvPPx376GSgeD3J2FpooYS77eMImX2R8vWG8nSF0hmR+hMGcyo/4JDhaDCh62Iuh0EBORRVVM+bQfnA/+dU17Fr9CmaHk6ljZh7/oB17oL8BQt2QVgIZI8H+2Yk1vn9N5sw2Y/scrcn0+fnYTjkF+6mnkujrQ5edjRpPYPyYDTtTfHwSMYW+jiBhXwxbuom0LPOQ2oYPos/LIxwMsmvta6iKwsKrb+CdZ56gv72VzOJS5l55E470o/8+O0wyCVXlu0tG8NTmFoyyyPmT8okrKjfNL0cUBIxy0m7Pdpi4cmYxD7wx2CDOKItUZX20RoWaokIi+e89AZLBm9dQ/cPXYik+PgadyJLROdiPNP9VVI3rZpeyck87eU4Tp47M5oF1dXx3YhFq3wfysLWk+IGixBDMOoylDlp8B9i5ahWSTub+sy6jMWKgPxzHrNfx9NYWBBgQIHmPQ10Bbp5XxlNbWnjbUsT4xaez47WVSLLM9LPPp2rmHKonTEFobCKqioizZqEvKyfR0U7RQw+iLyoCQF9Sgnn6dEIbBgv0LXPnoC8uPuq9v5fPqNNLpJ2MfMZwGDq3QO/hpJ8irQRyRn+y50jxb2E0BgmNG8OaJx7G5srAmuGmbOIUepsbKRw1hkR0MJd3/lU38HALXGiHb44pJCPdRJuaoCMU41BXgEy7ge8vHcFTW1pJqCqK+vHs6mNRlW3jieunsaWpj3RNGGyK+B7q0MYpSmuA388bQW8kzstNvbxyqBu7UYf7I4o2aEfUp94rNlYSKn1tATzdYcxWPen5ydibtzuEKIo4Mk3oj9FMPMXHJ6IovPX435i8/Fx2vb6K7sZ60nLymHH+JR+pcYosCdy+tJpX9nZQ1x1k0cgs3FYDmUca58yrysBt0/PkpmYK0y28vLuD+p4gC6ozWb1/aI7h0tE5CAmNaMPw2sf3nk+9TmRWeQaTi9JQNI2ZZens7/AjigLV2Tb6QnGe2doy0FDGKIucMzF/yLHeszPejyCAUXd0v2GKzx9Gq41R8xdRNmkaWiJO34b11G1+Z9h2Ib+Xg3t3MnHuIooLC5h+7sVseu6fAEw680sUj51wQufLsOq5elYx+9v9uG0GbEYd/9rZzutSgjPcJszjM9FUDUEvoQY/kLOlaKS/b/rWNIgdmVvre4IUuEzIkshZ4/No7BtshPz+hlfHIh5N0NsaxN8fwZZmJD3PgmzQoaoaoigQ9EbpavARDcVJy7aQWWQ/ro2fIsUnhaZpbG7oZ27V8X0hqqrQ09TA+CVnHnObjCN2Rtf7REjMDgdhr+cTudYUKT6PnCzL9znAC2wBhnvyU5wwRouFycuW4xwxnrpOH2+2Jwj6obmvn1OWZGH4gFGpxeNED9eT19mF05HB95eMoDcYY16Wkw0P7mfXEUO3tMbE7Ny9RCovZMOKVpr29gEgSgKLrxtF6bjBSVUyGjFXViDpdPhff53wnj3Y5s/HMnUKovzxHBGiTUbOsQxzmAtWCbOYKjr+PJBtN/LzaVEyn78YyhdChwD7XoDFP4M3vp1MTAlWwZaH6D9nDS8/1Ul/V/LrnlVgYNGyYuxvfQ0iPpj6ZVh9J0y6BvY+DN37Yf734bXroPpMFM9+YmomqrUYff9a7Lr90G+BnU/Cojth/f/DassD1wxo2URD1wwAYqEQZoeT0Hs/1IJAXlU1mcXZpD2+GGrOhkNPQvNGWPRjeP1mKJtPRrednMVZxE1jsHRvJOwIE+teh2vLb2HB/8C7d4LeCtkXoBUXo2bPwHFRJYmmAIZSB9HDXiRr8tlP9EbQZZoHu7EdQWf0Y37lPLjkKSiZ82l9bP/dNL0DL94G3cluvVjccO6DUDAVdJ9MMF5TNQ5t6mT1I/tRVQ1BFJh3SRUjpmUjSiIGs4Vxi5dROnEyca8Pgz+IrrsX1eZANJ54sMyZmZ0U1OnrRRAEwn4/mSXlWBxDC5DtRh2CAOPz7RzYtJoxBbOSBSXvQ7TrUUMJdCNd7H63nZrZ+VgmjMc8YfyQ7cw1Iwkn4gTWrwdRwDRyJKZRoxBkHf6q0fy/vXD6iFzufvUQ5ZlWxhc6SSgajT0B5lZlkeLjYywtxfiB7jr6X/8a/5q1hDZvwjp3LtKUadjrIlxemIHpSBfqtw52s2BEJjuaDwBJxdvbl1YjCgKPvTvYkey8ifmML0g+O33tQV6+fxeezuSclV1q55SrRuJwf3SxHkGUyK8eRfuhWnIqqwl7PXQ1HP5Q8RA1Hid2+DBKXx+6nBymfelCauYuBA3s7kwEMZU090VEdhqQHHoU7wec/jY9a/+wEwSYc56epl07CPm8GG12pn7pAixOF837diNOLmdSsYt/bWvit6UbMT59x+AxZt0K+ZMRlDgYnbDlQdh5pBOAqIPl9yaL2vSWpCCVIGFymij68714X1uH0teL48zlmCZORDIfXbnUOnv2Cd2nGokkn1+vD7kgH33+oCO4p9nPC3fvIHTkPSgdl8HsCypTCeyfY8xjxsCYZAFPrKkJ/9q1hHfvxup0YpkxA7WvD4/k5qWfbSZ6RIBu5Oxcps3SMPn3o2iH0RfUEPtAgEFfaKVjwwEkWSavaiSFNeN49bFWPO3JwrOa2bmk5ViY4rZRlW3jwskF9ASjPLm5mS9NyOXs8XkoqsaoPAcjsm1kf4jibooUxyMSjLPxX/XsWpMsRNcbJZZ9ZSy55c5h2x5rjjOWlJzYyd7rugKs3NVOvz0TfyTBda5GhN6DsHcFzL6Novt/g/fll1E8fhyzRmOKr0PwT04m6K78NlKoDwm4Imc8zrE/YatvcB69cV4plZk2skMVHLRY6W6sx2izM+Wsc7G7M/H3+ijLtHBqTRaVOQ7M+qTdJDqGrwf0eVYkWyoZ8rMgLTeXdY89xMQzzsZsc9B+cD/97W3MPXVSUoAkGGfjvw6TVWzn9Uf2ox0p1Cgd72b2+eVY04bOi06znglFTn68fBQ/e3k/gWgCRdUYm+/gofUNeMNxbppfRoc3zKnVmWTaDJj1Ege7/Pz17QY0DdxWA3+5chI242f7TEgmHaYqFxnXjML/ZguJzhDmSVnoC20gMpAwLWeZidZ5huxrOMr3OsUnT7HbitbVRnjEqKQwggCB/j7aDuxHkmUsDusJrf/DgTg9LT7efuoQva1J/6jeKDHljFLW/eMAi66uwZVzYh2DjLKOby0egdOs5/ntbdiMOs6fVEC7N8zbh3pZf6iH4nQLB7sCnD+5AG84xpUzCjHpZZ7b3squVh+lGVYC0QSPvtuIpkGmzcD3l1Zj+UDijJxjwX3dGPxrmkj0RZGzzch5VuKtgeQGR7QB3y9MIhglpI8pfpliOG0HPbzw+x0oRxIAcsocjJqbh9IW4P751RyKx0gYRTTT8PlMtMqIFhljoXNgTG80ojcaMVqtA/ZrIhal7WAtrtx8YpHhYpMDdB+Af1yAlkhwaOQfWf18w6C/7EtZVNn3IYW7oPFdyKoGRx4EuuHgqzDpSnAUQdtWVNcIYiETisePnGZEH9gCwR5MznIYVYZ31RsIIuT/+JuYLPUI8QAYW6A/BJZMcLnBHgPBCyOuTq4NU3zh0WdbcJ1biRKOI5l0CEdiYXLu8M9XX2jDOCoDQffZ+pREWaa3vQVbegZzLr6SeCxK7ea3SC89Cz6gY65LMxIKxGCki2sMSb9dkcuMJxRDloSBBB6DTqTUbcUgS7T0h/nukhGML3B+ujeW4mNR5JBpPpRMVp998ZUIosSu1auwuNJJmDN57tfbUI98zvkj0ph5bjmTi1zc9tR2bjt1BIFogupsGzFF5TevHeAX54yhMP2LPb/p7AasU3KIl4TQZZiIHPZgHp9JaHMnAPHWAPoiO7FGH4muMPocC9HDQxP+P2uxoRSff+S8PMxjxuJ/9VXC+/chZ2djmzMbQTdo1/p6w6x5ZD8ttf0A2NONLL15DOm5H03ESdM0Yo1NJNrbkFwu9KWlHzt3IsWHo2kasYYGEh0dSOnpGIqLEfT//jpD53Khc7mOvcG0aUcdznzocda/3EH968mkdLNdz+nuXNwFJ+kZiAbhwCpASIqObH8UiqbD7mdg0tXw1q8h1AfmdJjzLdj4Jxh1dtL2LpwOHTvBVQbb/pY8XtXSZLwl6iOaMw1Rykveh8NJZkkZW19+gYop01nwpWVIwvD3WZduRDCnEuBPBMGuH75ONukQjXHob0yKGFQtOeq+DTt6WPWn3QNd2EvHu3EXWAl54xTWHF/cIEWKLwqCIGCqrsZUXT1kXJ+Xhz4vb8hYtKkZpa8P0W5H9STFxkyjRiVFpSYML9BoO9jPv+7eSfyIaNLYhQVMWlaMdeaRQv3+Rnj6Omh5N/m3KS05hz53I1z2DGSPgd5m2PMMrPnJ4IFP+V/Q2aCvFjb+MRmnXvRjeP1HED+SO1Z9Biy9C2zHzqURBJH86lE07dlJ0Oth8/NPY3Gmsfxbd9DZKLPttQBFo0OMm5XFim2tXDHjBGM1KQaw6GVE+/DfZjnPimj6+GJapooKBEXFt3IlscZG9MVFWD6CMPV/Cl1NPv71hx2E/clipvKJmcw6vwKLI9Wl+99Fzhmew6UvsOERZCYuO5sX//B/5JRVoNMbiIVDVE6bhV4+TtFWxy545/6kDQlJAbTl98LYC0/SHRyfo67JbhpDep4VLZEg2tBAoqsLOSsLfXExgvTp2p1yVhbmKVMIvL6a8O7d2DLc2GbNRDSknu1Pk3g0wa61LWx49jBoIOlETvvyKIpHZxx3P9mcIH/kKFr37aH2nbcoGDmaymkzcReVsWttBLPNT0b+cLEQg6yjOtvO/62qZcQRn9za2m5unl82kHPwHpIocNWMEtxWA//Y2EyZ28INc8sYkWP/SPeoSzNirHYlhTBlES3+vkpQUUBK+cE+UUblO3h9fxd/WH0IgCy7gV+dN5azx+fytw2N3PniXmRJJN1tRrTph4nACLKI5DQgV1ppVep47c/3MfnMc9j52krk9i6+s8YDQHWOjZvmlaM7inCkURY52BVgfV0v6+vg9iULuWrpcgRJxJ6ROdhpPb9g0GYFYGiut87pIOfHPyKw9g2C72zAMmMm1jmzkex2Yk1NxFtbkZxp6EtL6OuK8cIfdhDyvT+fsQpr2ic4pzW8Ck9fm/RXAIw4HeZ8G3LHfnLnSPHxObwO8Z9Xokz/Fd7ODhLRKJXTZ7N33et0HDpA856dFI4ay9nf+R8yi8uwpLm4aEsnG+7fSyKu0g5UL8zHWW4h02Ykz2mkLxhjY30vX5qQT4Hrk20UCzAix86IHDs9rT5iZh1q6H1CTQJD4oFSkZ39Tx8mHlVYNiUTsTKTc6YVnnA8RVVU2g562PVGK4mYwqi5+eRXOmnc28eqP+0e8OcsuHwEte920FrrAaB8UiYzvlSOzZWaqz9J9LKO3Ioq3vr7I0xYdiY1cxfSWV9HLDK84cPxGFOQxsaGfqJxlUlFLt6t6+GOM2pw25Kfl1HWMbHIhcWg43evHeDrp1Tw5KZmAuE4Z4/P5dntbWgaLB2dzWmjshFlHXKuhXhzYMh5JPvQudRwREikxG2lxD0YbyhMh3/eMIMtjUn7d2JRGqPyhtZalLmtLB+Xy3PbB8WiL59eROnHqO9I8dlisiVtTa2qBHdxKTpZRjYaad2/FyUeRyfrOfju24wbNxmDOZfp51xIzdwFH7mOptBlobE3RKHLzPdW7EIWRWaWpzM+28nKZ+uZNCuXLJcBtS2AYJCGiooL0KMNFZF6z3YZneegItNKbWeAR9Y3MrMiaX9n2Q1UZB0/jqbEVXava2P904cGxqadVYqoEzm8rZuJpxWye10bjbuSyROiKLD4+qH1yylSnCwO9wTpDcaYUnycmCDg6+pCSSRw5eUfcxu9TiTdoqfTP5hTZ7I5iAQDKIkEki4lVJbiP4+T9VTna5p22kk69n8lJcX5BGUvcx1RYgmVonQzo/OdQ7ZRo1E8/3yazp/+FBQFwWxmzi9+xQoxnz2vNg84EAAO7wlTWbWYRMhN0969g8dQNNY/c4iMQit219CiDkNpCYbSaz+R+5HTTNhPKyG8txfJrANBQBM0ggY/Nkvmhx8gxUlHiHhxv3lHsiNl9thkQLVoBhx6FSIeKFtwZGwmtfvEAQESgM7mKI1tbsYEumD8ZfD275IFZWYXtG6B8ZfCuw+AEkPJX0DPyp30Pf4nACSXi4Jf3oFp9SWQPRpaNyU79Uy+Dt74ObirKSgvoX7HNvauW83085LKfzq9nglLl9O4cxuvPvIIE6b8lMJMGeP2R5NiJNseSd5LznhY8xPeb/7qS2fClt8m1Xf7DoGvDU75XxriU3n1mTiTliV497la5pxfgTXDhN5hIN4TwjIjl+DmDhyLi/G92ogWUdBlmTHPykPRx1HG3Ii08na44vnkvac4eXjaoWnDoAAJJLs/bfsbpJWD88TVT497mq4Qax6rRT1SBKepGm/8vZasEvuQ5ERdUwvtN96E6vWCIJBx4424rr4KyXpiCYzphUWc/Z0fsO/NNfR3tjN64WIqpszA+IH9yzItfH1hBTkOI4Hde4mXgsWcg3hEqVoJxVF8UaQcC/0ZZjY9e5jMIgeW0cMdyIIsY540CfOkScNeK3Vbuf+ySbR4Qvzx8om0eyIIgkBCVanItFGWmequ+UmjLyoi/corSL/yCgA6vBGmlAR5bW8Xj73biCQKXDGjmFBUYWppOk19LbhtBix6CQH4+ZdG44skcJpkxhQ4sR4RLql9p31AgASg47CPpr19jJ770Z1URouVsYuXkVs1kvrtm7G7s5i8/Fwsx+gYAMniZs9T/6Tz5z8fsFXyf/87HLNmfeTzp/h8IaebcCwvJ7K3B8mRdNQKJokdO3uSG2iAYGfErLk079mJNc2F2eEk4vcREQ0ookR5ppVKoR/j2v8devD1v4dlvwajA8K9gwIkAGoCXr0Dzrwb/O1gyYB4AOIhTC47puvPg/RPpuOQ4vfT+9cH6b3/ftA0JKeT/HvvxTxhPImEwuaVDQMCJACHt/dQMTmb8ompQMMXAX1hIemXX0765ZcT7+yk82c/J4HMxoyzBwRIAPa+2UZZRS6FhjhSy3qMlROIHDCTODK3ynkWEpkqc86+ggxXAT5fN3WHtlM9NY/dbxrw90bZ82YbU84owa0a+NbLu+jwRTl9bA7fX1JNXNHoC0Q5fWwuRS5zSoAkxb9Nd7N/QIAEIBZReOMftZz9jQkYrYOJl0ogQN9DD9Nzzz2gaYgOBwX33oN54sSjHfZDmVqazr4OL2WyB6F1T7LguHQO9BzAtPdZTK5uyLbA3r8npdQLxkLti8liiSOI7dtYULOPNsc83DYDBp3A1JJ07nrlADeOszNh6XLqtm7EYLZgd2cR/P/svXWcHdd5//8eusy0zKzVihktybJsycxOHCaHm6ZpGJukoX6bpr8mTZs06IDtxI5jRpkti5lXWma6zPP7Y1a7Wu2KbMHKmvfrpZd0z87Mnbs698w5z/k8n2dwALDyxl8Oc8s/zsRikMkmMqR7Y0gOA45rSgk+flS7tlXBcVUJslMfoy842SzewmJWvf8e9r36Iulkkur5i7F5AyiRKH0mC/H2GK4cK6891DhiQALQuLWHmnm540xIAHw2E+9cUMLsEjd9ES151yiL/OFD89nWPEg0mWZGkZuGAieLqvxksyqSCDfPLCQUT1PstZDvurBjbjaaItUXQ5AlZJ8J8biqFsYSB4aCWrKpDJJZQc2q+N7fQPD5ZiyzAmRjac3ct0Mzr1AKbZinnlp0p3OO6NhN/4CFvrY+fMUldDUeovtoI76iYpbc+S5cfW9An/20c9DDW7tIxTMjBiSgjdHNe/qQDRI7nmth6Z3VZ1zZuNRn5RvX1/OJlZVYDTIOs8J/3z2b5v4oBknEYVLY0TbE3o4gxV4LdpMBv93Id25sIJNVsZsVYsk0t8wqJBxPU+K1kHfcdyKb0sZTNZ1F9pvx3l1HNpVFMisoOVZCr7aR2NNPeiiBc20ZQ48d0dYAsoBzXRlK7qWdND1ZSERTvHz/wREDEoCOw0MUTfEgyhLBzih+FVod8M3t7XzvHbWkOyKo6SyxHT04ri5DDpgRlPH9yuHPYcV7P8LeF59DMVtY+b57kBUF8VQbo3v/Dv2NDC78N9Y/khgbL/trFznvq8C75xdQeaVmILn5N5A/E2rXwss/hiu/QTYwg4GXDtL9Hz+DbBbRaqXge1/F5jmCGO/H2voU1iXV4K+G+H5o2gvhbsipB3exJmhsegmSMc3opGc/FJxZZRidyY8gi8j2E8RbpU6MNW4Sw0kKkseIbVkhimtyzOts3gChQ/s4vPkNnP4cShqmE3elsIScpA4PgQiWWTlkIknkK0sw5lmZYVUI2I1kVJXmvgiVATs724YwKiLzy7xMLXByLGKbTWZI98VIpGMoXjOiXmF40mJP92IwGGlYuYaj2zbT29JE6YxZlM2Yw6bHO0cMSABa9w3Q3RRiyuJ8fnzHLF5v7MNrMXD3whLC8RT/dFUNlW+jGLzit6D4LVjm5pCNpZFcRqKbulCzKo41JQw+dAhBFrDMycVY5SbZFCS+rx/LrACGorOrKKtzeWKsrMBYefL5ePv+wZFkN4BgX5xd61tZemcN4llUW4u8+iptn/oU2UgUJImcz38e1+23nVVRAp0zJ/zii7T9w2dQYzGQZXK/8mWcN9+MeA6MSN4MfSEDR/aMmlNHg0m2PNHEqvfWIU9QtfIt07MfkhEtuT0R1vbEcxs0I5GmV0Zjag23wYs/0IxJXvkJLP2sprG44ktjE+jzNc0EK76MYe8DpLwf5OqP/yNdhw/SfmAvhTV1lE6dhq/rcQYq67FdVYyQ1p5d2XgGQ5WT7v44RacRHevAoFXFcV05ajCp6aIyWeQCGx3tLZR13g+2AORNB0f+mPPCA3HW37t/xIAEtNiYr9BGd3MIT54Vm57oonMZEdu1i5Z7PkqmV9t7dr/7XThLS0+amBELJVl/7/4RAxKA7c+2UDbdR0H1cPGf5tdGDUgAYgNw+DnwlMGG/4XrfgyDh7Vx9Hie/w6886/w5D9pr2vWadqk1KgOg71/17Rx9pPLZw0WK7VLrsDscNK2bzdFU6ZRVN9ALJxm2zNh1KzK3lc6KJvu40dPHuDKulwKJoiN65ycbNJAyp7GurwQURZBVcnG0pjqPWRa9iG757/pa5tqazDV1pzDu720SCUzvPHwkREDEoBDm7upnpdD2XQ9eeitYihzYl2Uh2RRUFVtP0mqdvPMT3ey/B0WrvrwJ7U9tkSCpe98H3Z/Dqp4ihjRwNFRAxLQivs89RXwVV+UWGr7gQnWZC+0suS2SsKPP0b7l78CqRSCwUD+D36Afc1Vo4n5FwhjaSnGD7wf3fbt4tHfEeG1BxtHXmfSWZ777V5u++Lckyd8R/sxvfJfVMx6L8lYjIGONjz5hZidLlIJlZY9gxTVDk5oQgIwv8zLV6+dwtHeCLIkUua1MPWEPI1j5DpNfHBpOXfMKcKgiOMKyp4JokHCua6c6O4enDdVkO6MIkja80rymiY05NZ587gtBj57VTWrpwTojyTx24z4bUYqcux8bEUF1zTkYVRE8hxGPLdZ6PvdHs0YRgDbwnwwiAwKfXQrh3n1oXtZ+/7P4LAGcN+Qx6DfBwwCWiHBeWVefIqBDy4p5RcvHx25h/cvLuPvO0aTy11WE67cN6dtNxQW4rn7nXjufudIW2TDG7R+/ONkw2EQRQL/+j02dpaOzR/a1kv1vFxs7nOUq9O5B5762qgBCcC+R7S8Dd2E5OIT6tEK/kX7sPRtpHbxMjz5Rex7+XksDidXvPuDbH70b1htDrw5+dg8XoL9MbY8cJj0ccZIe59tpdBdSms6yRO7OjApEj+5cyYzil1vavw7U3wFDkK3VZNpHNL2t7OAWSK2vQcEME0PcKgrNrLua32jm3/+h+mU1Zx5zk7bgUH+/pNtI/GX5t393PAPM3jh3v0jBiRWl4HuptCIAQnAoU3dFE/xULcof/xFdd40diVNxdwF+IpLOfTGqxgtNmoXL0M2O0nG0xhMZ5b+ajPKfHR5BavrcuiPJCnzV1PoHp8nUZvr4MvrtGf/0kofHquBfJeZjyyvQFWhxGsZMSNzXl1KbHcfokkeifEpxWe+ZzW1wDnOeOR4HGaFL62t45qpuRzsClOb52BmsQuToieyX5LEhjAHd7D01tvY8uyzJKMRFtxyJ2a7g+1PPUZhYSltn/gUlhkzCHzun3AGcs/6LQRBYEG5j6O9IX7/gXmYYxksiSyx/iTxcIon/3QAb4GVq68txb6yiODTTZBWQQRpdTHOQgtOs8JQLMXsEjet/VGum55HodvML18+wrqGPO6cW8iPnznEuxeU8I75xRN+j45nsDvKaw8eHtO24eEjzLmmhM7DQ8RCqREDEoBsVuXl+w/iL7Zh9+gxL53zy/aWQQBmlbhPeVx/h6a39+Sd3IQEIOAw0R0cNSGxOF0AxEJBbG49f1jn7cf5mpG8KghCg6qqO8/T9S87ZElkRvGpB7rE4cN0ffvbHFsFqdEoQ1/7Mkv/50+88WTXuOPjOEmFk/iKbJRP95PJqGTTWfa82k4inILz/BCXHAZkp4KaBkEUEO0KgpRFMemO0ZOCRBAh2EJwzmcZEGswr/o5GZObZF8L1pr3EUuJKCv+CxzFyG0hVr47h1DvALLBgNFiJBkdoGf1/5JMgzq7AoPTTyySwLLm/0jJDjLGGZg9AYIxC9LMBRinziEZDmLJK6ClYxD71fciCJDo78C69jZiaRFl2X8i2LzkCjYCZeV0H2nk1fvuZc66G8gtK+PBf/sealYLerTt28u6D32AWsUCrmItqAWQSUzwWYfI+Oron/4pItEktuuuI4SfwYjK4ttsJCLNzLjSRjye5vk/NBIosTNjaT7hcIziO0qIpbLY3llFJpJE7E0RfPAQgiyiLn8f8rz3ILWlkAtSSLog+PyhpqD3wPj2rt0T/5+/SWKhFJlUFmfASNVsA+lUGFGya2PmMOmBATq+9nXNgARAVen96U+xLFqIdQKDj2wmQ39HG+H+PuweL+78AsJ9fQT7epmyfBWxUBC710/HoQMESsvHuOKZFJmbZxXw6+f2cO3U6URCQ1hdBagpFUEA2Wcm4zIRzrcT6ovjzrMQDSYZiCRxW89OlOcwK0wxa8GPqQWnOVjnnKOqWXa2DjEYS/HBpeUIAjT3RwnYjZR4LCiSwPdvaWBWyckXLJl0Zswm7jE6Dg3RsHzsIikejdDf2kImlcSdV4DNM35b1WixEAsOUTJtJu68AoxWC5lMFlk++ViXOHyYru+MihzVaJT2z3+Bsr88gJJ79gEUncmF4jWR9llQU1kEAbIqxEMpRBGu/0wZqdggJmsdZTNm035wH5lkCkGSmL9yBUPdh5mb48Vs9sGLJ1QdyqY1Aa1igWR4/BuHu0DNQjyoGZVk0pr5WVbVEtHOEfF9++j72c9GXmcGB+n4xtcp+c1vSMpWOg8PjTtnoCsyrk1n8hPbvIXQE09g+eTn6d01vg9FQllQg2B2YXp4NfY7X0DtzyIIAjFTDANmikw1qENZzHIJ7mn5PP7QT1h0xzuJR+y4AkbCA62Iqpnvry7gD3sjlHmtDMXTWE0yNbl26vIc56VSgM7lR3Rw/Fy4vy1CIpYaY0IS37eP3v/v/xt5nR0aouOrX6Pk9787dTXYk+C2GlhU4Sfb1gYIMNQK5cshEdKSJBKhsSfE+qB/VESEbGRo2feJ+OdxXTrK2nVacjWZHn56lZeDr77I0caDVMyaRyaTJhGNkFddi5qFnLIkPY07UOKVZI/EUOPDzxWDhO/DDWQjaeQcM4aALtq5KKSTiIKMp7CY6avXks1mcPpz6G5pIxJK0yPFsAQT2L1GpizJJ5tRyWay7HmlnUQkTTR06vXdRBWm6vPHbuIer4GoP8UGL0C6P0aqJ4ZolJADlnO2rk91R+m/f79WJUMA6/w8HKuKkeyj6zRBFpGGK7gIooCp0oWh2I6ayqBmVYxVbrKRFIIiogQsSLaLk3h1uZHOyAztaqRkcS2JSAhBEMmtqMbu89PX0kRcBXM8eMprRIMJDm7som5RPrOvKUWUBBq39tDXFmaoO0agxEHTrj7mR9OY7Wf+/6pIInnHGZjZTQrVRgPp3hiiKcvKMg+rp5y8+qrZIE8oesiEkwSfaybyWgeomumN5/YalIA2V1ECFtzXVZK9MqUJLgBjmZP0QBzJaUTJs44x2dF58yQTGYrrPJRM9SFKAke299DbEh42JdFE2Ptf72D+zRUsmlLI4AMHUZMZBLOM545qJK+ZdFeM7FAKyWegq/UIwZ4urC43ssGIMxAgnU7Rtn0PzTu2cdU9n8Jsd9B2YK+25ZDNDgtqtGer6l4BNyxCFBTyKjK07Btd/2SzKtGIitcWAEmGUJdmbO0sADUDQy2QSZIIK3T/+3+NnheJ0PHtf6f0B59A6d4NsUEQRc1sOJ3UBPP2PDA5tJhfuBNC3eApBcWsmVnrvK2R3SY8d9SQ7o6iprPaM9AxOfaUstkMR7dvoXjqNHIrqomFQ7gCOYhGC0qOHcOMALJRImmS6euN8fpjR7my1EleviaaFxGoCNipCNhZWj0+YScdShJ8uonoxk5tPC6x47m1GkWvgDUpSfUnsNvdhCJBqhcsoXT6LByBHGKRMBa7zIzVRciKhCgKHNnRO2JsW51rpzp38hhtZCIp0l1RsukMit+CfA4rsEpmBcms4LyyBNvCPARFQjRIeO6uI/jEUfrv3QeAqcaN/6PTkHOsSGcoMNXRORXdLaFxbW0HB0knMhjMZ9bHUp2dtH/+C5oBCUAmQ9d3v4t51kzMU6eey9vVAVJtbXR8/guaAQlAOk3nt/4F8/TpmOrqLso9DXRGx7W1HxokGUufHxOSZFDbK0mENDMSe742N3aXQOeO0eOMtlFDkkwSsilNP3Tifvmx15kEUuc2qpZV8dLfn+TIts1c/bHP4MkrJDLUzz7zUrzZMLJRQiSLms4iuYyEohkiqbGVEnUmxhAKkTEYkIwSaiqLaFGIJrP09BgoC3Voib/xoXEmJPFIioYrCkAQ6GsN07itB4BMWiUeTpCIp9EtYHQuFzLhMF3f+/6IAQnAwG9/h2358hMqxI+SiKYnHKvDA8eNh32Hxv2c3oNQPB/aNmmFrqK9WrL+mBtKQbRvRJ+Ju0QzWR/3Zj0Tf550iv72NpKxKPteWc+MNdeSV1WDYjRhtNpIJzMsuiWXZAwOb+4mGkwST2fIqPq4e7YkIpBMduC15iKkVdS0iuwxkZZUIg8/Qc7UuWdcYVhnLMloms4j4/URQz3nTp9xOSNZFGS/BTWi6RElp5FoMsP0K4uBfjz5hUxffQ3ZdAZnIIeu1nak9CkuOFHMNNIDiVPvZZwvupsnXpPF27roGDYgAVCTSdq/+EXKamswlpZe4LvUudgcXwTqGLFQing4dXITkkSQofI1rP/dr1j7ic8w2N2JrCjYPD5QRQqqggR74xOfi1aJfWaxm5mnydU4Hrv5re0dKz4zjqVFxBsHyA6lUFMZBIOEaDdohiQ65xS7SWFx5fjYe5HHSpFnVD+ielQCn5pJqidKhgyReD+D3S0o/Qouc4B3f+EnhO4/QjY4iFu24XebmVfo4tOryykVBhnq7sJsc2Ct8rOqbj5dwTgeq5H/efEwLf3as3JGkYuF5ecuOTHV00vHl76oGZAAZLOEtu2hMzq+Px9fxPCtv3EYBo6Mb4/0jW/TufCkItC9GwD7kb9TUPcdjuzYwZK73kOorxeL08W6z3wetbUNuaMTCgqJR9JEJtCaBRSFZ3uGmFvm4d+fPsDqKTmnTUY/FyhmGdWiDI+PIrLXjOnmStKpLC8+3oQrzzaiuTi8uRshkT1j8zJVVTm8tXuMASxAX3uYeGQ0L8STb6P76Ph5U8veAd2E5BwjqCLpWJzCuqnYvT5koxGz1U54IEY0lDxjExIAoyKdVhMGUOi2jOvLtbnjtWeiVUGyGzR9vCgguUyIpnMbB85xmLh6ah5X61sMlyydjQcZ7GjHaLFi8yxgcN8ecsoqkCSJA6+9TM3CpQBUXXkVqUVLyUaiRA8exOl/c2aeBlmkOtdJ/MggyZYIaiqLVRFZe30ZTz12lL62CH/9wwGuflcNxnfUko6m2BWO8/+2HEXYIfLr982hcyhBKpPFapTJc5nItZuQRJFn93YhCAI/um0aVQH7GZn4xyOpMQXnQCtilM2CYpQwWmTmrC1FFAWa9/TR2Rgk1BcnHklj1z0bdM4zO1qHMCsSFf5T76z0tw2bkBScxoTEbqT7OC2zxaE9O2LBId2EROdtyTlV6giCsJPhGofA+wRBaAQSaApYVVXVaefy/XTGku7q4sRVUGZggMGuTtyVTqJbxm5ueVxpUjYreRVONj56BFUFo1Vm8S2VWJzn1ywhm8qQag8RfqWD7HDyvrHciTjbRsuRnXjy8sck2utcBKx+Olf8jL/+4g/4ixO4cvPY8ey9LHvHe9n224cwWqyUTp/Fpkd+xPybbmf3+j+RiEWZtupqXvzdH5m2ei37Xz1EX2sz82++g1f/v99QNX8R8XCYph1bWPbO9/Paf/+BvOpazHYHe158juXv+iAvPPhH7D4fedEatj7+CItufwd7Hn8EUKldvJwN//tzstksDSuuYv51N2GOtuBJ7mf7rp4RA5JjbHz6ecqnrcTQ8gaUXwGHngFrjlYRKD44clzKVc3unBye++mfmH/j7Rx65jESkQjTrryaF377RzLpNKIks+zuj1JY66Nt/xBpKUbTzr/wwu9e0z7LX/7Ije/5IuozQyCA46oSQs81k41qOzzmqV6c11cgTxJB9NsOox2KF8KOP49tr1oDhnMnv7G6DPiKLBTVdPPqn39JNpNBVgx4cj4L1Zq4ITM4SPLQeLFCurNzXFs2m2H/ay/x5M9+TCadRpJlrv7YZ3Dm5DLU1cGzv/wpqCpGi5VrPvFZgj09uPPGOl+ng/2U7HiAna9HufmdXyb42FGyw5UmDKUOlHl5PP3bvQiCwIzVxThzzNy3qYUPLyu/4FUCdN48XpsRWRLZ2jzAfd3aRsHUAgczilxcNSWHK6fkUBU4tThdkiXKZwToPjp2M7d4ythFTri/j+d/+wsOvPYSAM5AHjd+7sv4ikvHHBfq68Xpz+Hhf/sO0aFBAOqvWEXDqpNX80l3jTdFy/T1ke7v101ILnHUTJZkR4Twy21j5nYz5+RQe4WBzoM72PX801TMmc/Gvz2gjZ8GI1d+8GPEIxHa9u9h9/NPs+K9H8ay4nvYn//C6MVNLrDngmTQ/haEsXPevOmAClYvSMfNYUUFDOcuwXyicTx54CCZoSFMRU5KG3zsfql9zM9PVj1DZ3IT27sHgOy2DRRU19F6eKyZjMMtgeKFpldoXfV/PPadfybUp6213v0v/wk9KYLPNmuu0WiJ5cuuey8Ht7/Gka2bmHXN9bz+1z8Tj4SZsXotn5yzmBsfOEw8lcVvN3LP8nJ+tv4w37h+CobzWC1A5/LA7htvLppX5cJ8gllBunP8MzrZ2EhmaOhNmZAcQ3SXQNtGrZJWyybInQrV18DO+0640QIoXqRVdQW61vyO/oSRbFcnvc1NBHt7qFm4lMHOdgRRZLCrA09+Ea/efy8AZruDKz/0CZp3bWP704+jmMy8/7P/SXRTF6lhobHkNSHYC8kWilj8ugHJxSIrSBitFl743S9o378XAF9RCas+8FHsThPb+2LM8Vs5uquPTY8e1WJVFpm568rY8PdGHN4L53qfbA3R+3+7zvm6Xs2qhF9v1wxIAFSIvN6BqdKFearvlOeKBgkM2rNBtuvxhYtBNpLEvrCKWHCQ53/7v3Q3auv/QHklV7zrA4QyXtyOU29CIQhUzsrh5fsOkoimEQSYtrII2SDiK7TRvLufgmr3GSdAnoxEc5De/9s1YsZkmRXAubbsrA1rkk1BIq92jLxOtYYJv9qO67oKBEmLKwiSMOa6hkI7Bn0ufM4J9cXZPWzKJAgwdXkBilFGMUqoWZVMWkUQBRyiQPrBQyPzUTWZId2foP+P+1GHK0EZZ3jY1fU0u159BtlgZMV7P4zRamPJHe/ixT/8mp6jjXQdOYzBZEY0KGRTabKZtPY+qQTJeJxMKk02myGbSuErlDFaSzm0WRvbZEXE5pAg3K0lQbqKwVsFXXvBVwmFc0E2k+oen5CT7uoik1RQvJVaYk/nHiicrZlOFs6BngMw0ATeSnCVACIMHgXZrCX+6LztkSwKUunpRWMXmlBPD2Wz5nJ442tsfeLvAJhsdu7+538j8peDZIerDUrFdoIBKzNXF2N1nvmYnDw6RPSN0dhEqilE5I1OnNeUIZyB6EfnwpIZHCBrd3LohdfZ+9LzAFhdbq75xGcpqY/xyl9DhPsTIMDUZQV4CyffGiU9GGfgr4dIHNCMrUWbgu/9UzHkn/uUZ+k40/Tk4SHie/pHXsf3D2CsdmMsmXzfe51Lk7wKJzufbx3TVj7dj3IWguF0f/+YROiR9q5u0AXC55x0Xz+ZwcGxjdksqe7ui2ZC4isaPxaWTfNhsp4nnY0tVzPwtXhBNmiJ8zXXwPY/QeWV0DdcXXCwGfw1mlGJ1aftpSgWEGVt/yQznEAhm7W9FlmLs6ixII1bNnLjP38dxWxkyxMPjzy/7vjEd1BCdoIvtWlqMFHAeXUpxjJ9zXcmmLIymc4YwVdGf3+ONSVU1PmgabYWD535rjHnDHRGePY3e+kdjh3lV7touKKAXS+2I8kCDp8Zg1HfO9C5fMgEg8S2bh3XPtHe7THMdoVAmZ3uI2O1Ec7j90wK544/sWwpHH0FZt6tGTs5C8HoGJuob3ZrxkGKWTMqadmgadIOPj32Wt6K8fecSrFr/dM893//zYKb76BhxVU8+h8/INjTDUDFnPnULVnBQMt2+nsqKWnw4cqx8O6FJeQ7L1xs/O2C2ZnAliwieyRG6KXW0XH4mlJU0UQ2GkWy6ZZObwaTTaFkqpcDG8buL3ryJt/a9lIk2REhtq2HZJM29oh2A/a1pXQ1DlJYa+GV+35P885tALjz8ln94U8RzKZOfkFXiVbI53gzo5x6TX9zEcivdE24JqOvEzU19nOosZi29tJNSC47bB7TOHmY3WvCcqp4qjVAT3+Y1R/6GI/95w8Z6NA0XMUNM1h0+zuZvtJAVj1zg5ELRXooTqo5TPCZJhj2nLcvK0TxmEcKAuhcWARBQPFb6Ax28MBX/5GbP/BV7K8bhvdckyTqezGWOIjt7IW0SvrxJr57VyVitJWH/vPfiEfCIAjMXHMtdctXUVJWQL7LTLnPyoGu0HDCsJ2A/dwZPmcG+km1jdUtZra9Qen1a9mzYexenLfwHM5/rD4oWQJNL49t9+j7dZMCS66WR9Gzn3j+Qpr37KZ+2Uoe/P63SMVjCILI/FvuwGx3kLRZKQcsTgOuXAuDJ5g6tiSStA5EmVPqpsxn5ZVDvdw2p+i83n4mlCDVHNLGx4z2QLAtysc8JwfRb6Kw3strDx4mFc8giAIzrizC4T/z71UqkWEir8d4OIWv2E7vsHHaYGeUoikeupvGri/zq1xv+rPpTEwymcHu9/PIj79PsEdba5TPns+8G27FaLl4sbBsMkOqNUzohdYR/Y1pigfZZ0Eq0/eudDSObN3Eoz/5IYloBKPVxor3fIiX/vDrkfF21rob6G46wrQrr6Gn+SjZdJqepkaK66ZhikYxWt7cvC81ECPZFCL4dLNWvFUA25ICFq0u5vE/HiAWStEZTXPL37aOmVvfMCOfX71ylIe3a3owv93Ix6+owO8w8sk/anG4h7a1c++GZv74oQUUuE8fl7J7TZisyhgjJ5NVIZPOMP+Gcl74wwGiw5qJ2oW5GC0KmXQWWda1Djrnn51tQ0wtcCCdRlsz0N6Gye7AbB9vSHU8OQ4j+zpHY8YWhwuA6NB4014dnbcD59om9VrgOuAaoBK4avj1sXad84iSm6dVBTwO2e9nU2+KaJkZX4kWNBBEgVlXuHG13Es2q7JzfRuiJGJ1GUhG02x+sglRPL+T9Gw4RWxb70iSKkCicQglrvDSH35Nx8F95/X9dU5PIpXl+UfWEwsOUVTfwI5nniCnvJL2/XsJ9nRTNX8xG//+V2xuL9GhQXpbmpiydAUb/vpnRFlBVhTa9u+hbukK3vjbA6STSVw5uTRueYOq+YvZ/szjxCNh8qtr2fPicxTVN3Bk20bCA32Uz5rLlscexp2XT397GwMdbZoByYP3kc1kQFXZ+dyTPPE/P8WWU4Cl9QVkaXQiIBuNTF99DXVLriDY8BFUBBIN7+LIkp/z/LYgm6u/Td+SfwXZSCZ3Jn3WKTz7l79jdbmJBofobT5K3dIr2PDgfWTSWrJRNpPmpXt/Rv0SK94CG/FgC4c3vUTlvEXseO5J4uEQJlWb+BvLXcT39I0kKgHEdvWRmqCyls45wuKGnGkw/x5NQCUIMOV6qFkD9lMncZ0NTr+FBTd4eP0vv9D6IpBOJXnqf37MQKe2AJPcHowTCN6U/PFutwMd7Tz53/8x0s8y6TRP/uw/iAwMsOnvfx3ZRUlEI6z/zf+SSmgu2NHgEAffeI1nf/VzendupKS6hikLriC+o2/EgAQgeTSIGEniK7IhiAJbnmoilc7yk2cP0jaoV5+4lBCBlv4oB4cNSAB2tQXpjySpznVQm3v6BRFA5ewAJQ1e7YUAtYtyKawdu7nWtn/viAEJwFB3B5seeZBMeuxGbzIe45X77x0xIAHYvf7ZEYHMRCh5edr38zjkQADZ6z3tvetMbjKRFNEt3RPM7TIkIiFe/uNvqZ6/iDcevH90/EwmeP7X/0NPUyN1i5eTSadZ/5tf0O9ZCJ4y7SLOQljzHbD4QZQ0sew1P9LEXQA5U2HV17XAmS0HJJNmTGX2aH97y87ZZ5xoHDfW1yO53YiSyPRVReSUawEHQRSYtaaY3LJTByB0JifmqQ0AxF9+gRklg7gCw1WpZYGFN1XgD6ggG0jM/BCbnnp6xIAEwCRYCD3fMpLwCRDZ0IHXlY/JaiMZi7HhwfuYsmwFqCrbnnqUcMthPjA7AEBPKMFz+7o52hehY+jkFVh0dM4UX5GNJbdVIclarMAZMLP09qpxie0TjnG1tUhvwYAE0ObphfPAUw5mlzauT70V6m/UxAjearjmh9r4XrUGpt1BuuQKWruiKCYTWx77O6IkUTp9FjuefYJocIhUIkF+zRR2rR8V9MZCQV7/yx+JBYOgqkxbtYZ0W3TEgAQg0xcndTRMf2vr+PvUuWCIikLr3l0jBiQAvS1NHHzjNRSPC4/FQDYLGx85OrLxlYim2fViG1d/aCrdzUFi4fGVr8412WSGoaeOjl/Xt771dX02nia+b2Bce7I1PMHROpMNKb8UgKYdW0YMSAC6Gw/RtGMbof4B4uJpNl5Vla1PN5MY7l+qCtufbaF2UR6yQQIB6hbljYzdb4ZMPM3gI40jAgiA6JZukm1n388mOie+r59s/BSiZp1zTiyUZP3v95GIjPabnevbqF+aj2KUsDiNHN7STf2yAsREesx81DzFS/SNjhEDEoDEtn6qqxYA2trsxXv/D8VgoKf5KCve82FtMzWbZeuTj5COx8mkkmSSSeKRMKlkcrhaSRo1m0GQRAQhizsnBIJmHnXVO3JxRTbCrHdrSTmRXqi7DkoXQ9sWWPgJMLtRfONFOUpBPpIhDcko5M/SYnyKWUv4sQag7lrIm6ElUKZi2vqx7nqYcoNmdKKjc5FIxKIkwqERAxIApz+H2IaeEQMSgExziFyrzKbHj56VSXRygiqx8b39Y77bOpOHbGUNQ90dIwncAJHBAV7/y59QVZXShuH5ggq7Xmh7S8/980WiKThiQALa3m7ohVbU9PmtwB7b2z+uLb5br5ypc+7Ir3IxdXmBVkYHKKx1U7so76zGZNnnQ87JGdsoCMh5utn6+UDy+8bHqCTpoprb55Q5mLWmeMQILFBmZ/qqIsTzVanaVw2eSs2ExF0GCz8GwXYtWd7ogKqrtOP2Pw4rv6aZAS/9Jzj0HKz8Mhx4Smu3Du+bt2yA6/9La1/xJYRwJ/5SzWgy2NU55vllt3kJHzMgAciqBJ9pxphG5wwQswrhV8b+/kLPtWCRRCieBws/pcVNj2P/hk56W8KYrApGi0z7gUEMZpnFt1QQ6o/jK7bpxUZ0LisklwvL/Pnj2ifa1ziG0aJwxV21OPzavFuSRZbeWT3W/K9wHqz8KsjDZs8Vq8Dq1wxQG27T2ooXwE0/A0eB9tpZBDf+DBpfgpVf0fanm1+Hiis1o3XQCiVd++PhQhpj6Wtr5tlf/gw1m6Vy3hK2PPnIGH3F4U0bSETDbH/2rxTXqmx9qplsJssHl5Qjn69nzNsYo0lESKiEjxmQgDYOP92E87q7EK26YcabRZJFZl9dir9EMyUTRIE5a0sIlOr6iHNBuisyYkACkA0lSezuY/aVRXQfPjRiQAKa9nDvi89Raj+FqbmnCq77yajOJlAHV38P/LXn6ROcmrxK54RrMtntRjCONeAXrVbkQOAi3KXOxcaTZ2XV+6agDJvvWV0GVr9/ClbnKYo0GCz4pi5l9wvPjBiQADTv3EbX4YNEI4OoJxR6nQxkB5OazuhYyE2F0EutZIYSpzxP5/wjSxK1c5dh2MWYPdf47j6U3LHziEA6ywu/+6VmQALafvATfyfU08Vg00HNQOrZh6hThlhc6TunBiSgxaqUkrHGH8m9e2hY6CVQNvq8nrWmmJxzqWf0lMOKL2v7dqAVFFj7Q3CNN+TTuQiYTFB7LdRei5BNMnvdzTz365+Timv5A6qa5fUH/ogzkMOzv/kfIoMD9KfTlK0txubWxltZEam+toTf7G5jS/Mg4XiaeCrD3NK3qCc7A9IDCYLPt4wYkACEX20nG0yQSalsevQo6UQGq8uAKApsfaqZTPLMx3nFIFFQ7UKUxsZYnDkWahfkEijVvjuZdJbKOYEx68mCGjdFU87/7+ByIyWIbHvy0REDEoDGzRvoa2lCMVy8AueZUJLwax1jnwV7+skM6PpeHY2h7i6e+9XPSUS1gpd1i5ePGJCANt5ufuRBCqrrOLJ1E5sfeZCh7k6sLg/B/l56m4++6ffOBpOEnmvR8igAVAi/3IbHoSCIAvWrCok7JE6cBlcFbCMGJAB94QSbmvqJxMcG/pv7o+w9zmjhVDi8ZtZ+tAFXQIvHuQJmFtxYTrg/wcE3uogGk1icBhSjxL7XOimqczN9VRHr/3CARFTXoOmcPzJZlT3tQaYWnN44qr+jFU9ewWmPy3GY6AklyAx/98wO7drRkG5CovP25JzOxFRVbQIQBGGiGbWefX+eMVSUk/ed79D5jW+gJhJILhfhz32NX2wOE0kOcktDPmuXVzGt0ILLEiEufo3QzjDTVhaiGGWiQwnsXhM9zSHikRRm+9lVxTwbsmqWVGdkXHtmMIEky4T7xwvMdC4s8XCYjoNaFer0sMO4t6CIlt07AMikkqCqePIL6D7aqJ0kCKRTSby5JQy0twFgsFiIBYcwWW1EhhPVnTm57HvlhROuXczeV9aPafMUFNF9RKvak81kRpKWj5GKxzgaNrK74gfMcIH81Iuoapald76HTY88SCwcJHPznRxyvQ+5OcMLv/vdyLnOvHxu/syrhIIO+hr3DH+WQnqatM8iiCLp5NggbiadJjzQx6I7amnZ9hQArtw89r/6onaPJm3yIPvMxHZOUMWzX19onleKZoMjR0s6QAVnMbiLz/nbqJkwanasyDYZixEbGsSdm4fscpL3rW/S+vGPk+7uAVkm8I+fwVg7fuMuMjhA5gQH/3QqSXhgvKB2sKuDRDRCNpth25OP8NoDfxz5mbeohGW3vJfUi+PH1exQkrxKF8X1PpKxNAPdMdJZddxCUmeSI8DWlsFxzbvbz2xRfwyn38xVH6hnqDuKIAo4/WYU49jpYE/TkXHnNe/eQTIWxWwfXXil4jG6Dh8ad2x0YHxC5TEMlZXkfftf6Pzmt1CTSSSXi/wf/RDlRLGuzqWHysRzu1CCaGqIdDJBJpNBPcE6PBGNkE5qVbRBGwMjg4NsXf0nqsQuTGYzomxEFEQQFUiGoHgh3P0gJEKaMHO4YtHIwCZI2oaW6zQV6M8SY20tgc99ju5//3dIp5EDAfK+8XVkp/a9cOdaufYT0wn2xJAUEVfAMikTSHROj2XWTJy33crQ/Q8Q/ZfPsfyeTyHdsQ6Tx4EzYNaE5EMOogMh2o8zTzSYzWSSqTFmPCOksuRVT2HDg/cBoJhGk5PjkTB3TXOxrqyIzz63j6O9EX6wuo7eLb10JboorPWQU+JAUvT+pHP2GIwyDSsKKa73kIylsftMWOzjhTnG2hoCX/g83T/6t+Exzk/et745Msa9GbKZLN1Hg3S3eDDbltEbmYUvZEFAQC2bhlAuEgsmMaCQ6ExhMEn0qRWULbYS3fIs1qSXdDLOQHsbgbIKsuk0HQf24szJJad8fIJxT9MRymfPA8DhD5Dujo47Jt0RoU9poWzm7Df9uXTeOp2HD4xraz+wl2w8RlFGIhI+bi0uwIxVRUiKSPPufkw2hVBvHLPt/MWsANR4mtQEpiDp/rcu9hKNEsYyJ9ETYgSKXiHwkkCy2zEmk7QdZ6RzjPYDeylumMFAezfpVJLcCgfhgQRtBwYIDyQoqHaTW+4gFkoR6hsfI5IkAavLSGmDl7ZDAxTUvPlqbGosTWoC85Djk+DPlBNFdADGciei8eKJPC5H4pEUA53jn22ZdBar00AynqF8hp9EJIW5zEFIFEZEBrLPTGxX77hzlezonCARiRCPhElGo2SSCa7+2GcY7Gxn21OPMuOqdaioJBNxRFkmEYkgICCKEomENi6q2SyS1M+tn16E2aLiMEVAXQOZNBQtBEnWTEmjA1C0AGQTZJIYSwPkfu3LdP3rD1BTKSS3m/zvfBOl1ANqzfA6T2VEka69m/ZSHW4TxGGzs9NvAuvonE9UQSAyMHZvy19QBl3jx14xmKRmXi4te/sZ7IqSU+ogr9KFxXHyOY6SP746oaHciWC4eJW/dE5OJpUi3Dc+zt/VeAiT3UZhjUjTLtPInCAWOv9Ge2fLRGuq5NEg2UQaST5/83FjpWuM+QmAsWryVanVuXSxOo0svrWS+mX5ZDMqTr8Zo1k5q2sogQD5P/wBbZ/6NJnBQQSDgdyvfRVjZeV5uuvLG0NeHvn/9iPaPv0PZINBBKORvH/5Fsby8ot2T2abgbnXllE9P5dMKovDb8ZkObt+dFaIIpQvg6F2iPWBsxQyMVCsmoG7qMCV39AS6d1lULIIQh1QeaVm3le2EuIDcNefQc2CpwKsXihdCukYLlVmdcEC4pEw4RP2+bLx9Gji9jBqMkM6pouCz4R0Uh3/+0tkAIlmdTGZDpXogTYUg0SwP0ZBtZvelhALb9IMR0RJwOIwEOyLU1jrxu410d8WIRlNkzkwgMNvxltow6Cv0XXexkgWCzmf+ydaP/kpUq2tIIr47rkHU339Kc/zF9u55XOzCPXFMZhlnAEL4vGFXSxuWPIZqL8J0gltDM2kwF2imaEeo/ZazXwk2gcWH+RNg7JlMNQK5Su0cdWWAzPeAUMt2tjsLhlXnAUg0t83uqetZugc1uUdT39bK/7iUmRDjGkrCwn2J6iv1Yu6vBlSsThS3DjBcyyLYLLqhk5vEU+eles/NZ1gbxxZEXHq+ohzRnpw/F5UqiOC/7pSdr10eNzP2g/uIxaLYXWfZO3sKQLPuyCnDuJBsOdpRiQXiZOtyVRfKfk//AHtX/giajSKaLWS/6MfYig+9/pPncmPJItUz80hp9RBPJLC7jZhdZ3CgGQYFXHCIqjdRxuZWVtPPDL5RLPZVAY1dYLpb1Zbd+lcXPwFBUxduprMX8drdNXMCf9nFpH+tvEFcSIDAzz/m++jGE0YzGbeeOg+bv/G98mvqjmn9yp7POT/67/S+slPkunrQ1AUAl/8Aq4SN9d9wk+wd1jP6Lece/1Z6SK4+X80s1SDDYrmntvr67w1iueD7TvIkT6SfZFx+1gAkYF+gj3dxEJBZHuAzzy9h2/dUksimKIzluSbO5toHS58uq8zxIIKL8uq33yB2O6mIJ2Ng5gdRjKpLOlUloGOCHavGatTwZVjxV9kR81kUWPjXXDVRIZYOElOuYNAsYNgbwyL00gqkSY8lOBM7MtCA3Fa9vRjtissvq2SrsYgmXSWwlo3wZ44mx47yrqPTcPuNWEwS9hcJq7/1AwGOqOIooA714LpPOuWLkeSschI/trx9LW1kEgmkZXTFAQ6X6jqhPr4401JdC5voqEhBrtGDT2MNhuRwfH5NIrJRNOOLWTSaYxWbe8/MjQwkmf5ZlBT6vh5owqyKHDHV+bi9JvZ1RHk2ml5PLJDu0ezIo0YJwBcX5fD1Tlusr0J8iICn15Qxn+8PppPlM2e+Rw6r9LFzZ+bTSycwmxTiEfTWBwGtj7VzIIbKxjqiWKyKoiSiCgJPP1/u0nGMrQdGCQ8kMDiUMgtd2Jzn1vDNp3Lm+b+KLFUhrq805vxDXZ1UjJ1vLn0iQTsRrIq9EUSBOwmLMNa+9hb+D7r6Exmztcu5BagCBhAk4O6gA5BELqBD6mqunmikwRBqAH+fFxTOfA14LfD7aXAUeB2VVVPnuF6mSIaDDhvuB7z9GlkBgYYsrn51e4woUQLAPfvaOf+He38/F2zWVNcTLQlhM1tZM/L7fS2jIrSG64owGg9jwIJQLYbMdZ5iG7oHNOetmdIJ5PYff7z+v46p8fscFA4pYGW3duRFW2R3NN0hPzqOva/9hKSYkAQRHpbm6mau5DOQwdQs1kUo4mh7k4qZs+DTa8TD4ewub2EB/uxujR/ov62VgKl5XQfbRy5dndTI/nDzn4j79d8hKIpDfS1NiOIIpIsk0mPBhOMVittqouvPNOEx2rgK+/6HCViiO2P/ZVQXw8LbrmTzY88SNX8xRze9DqgmYvMve5mALY8+zR5lbNx5boRRJHeliaqFyyh4+B+1EwGxWQecR8EkA1G9gsmvvir13nwWs0xuK+1mUBZBd1HDjOQ6MI+zUayNYShzDmuMpvg0SfC5x1nofbnPGLz+ibsi8dv5JkbGii9/35SrW2IDgfG0hIEZfy4avN4kY1G0onRzUPFaJpwDPQUFGG2Oxjq7OSNh+4f87O+liaGhrpwVFaS2TjWACfjNrLzUa2KeKDUTsVsPx9YUka+6yIFYnTeFLIksaLGz+amsdOfRRVnLzYxmGT8xSdfQOWUjxfJls+ci9EyNtFBsVopqJ0yYk51DJvn5PckKgrOG2/EPHMmmYEBlLy8U1Yo0rl0kGwGzLUeIm+MnduJAQvmrB3FZEYUJURJGmMqZrY7kA0GDMOGDIrRhM3toSvuYMb9jcwpNfDzu+twWi5+wF6yWvG8+11Yly0lGwyhFBaMM9AxWRRMJed3Hq1z/pH9fnK+9CU8d72DbDKJoaQY+UTBjjMfizFOcf009r/2EqCZksWFKJLHROb4xHIBMlaVZJ+WvGN1e0hERjclzHYH+zcGqZjl4nuLq+jNpNl77yESUW2usfHRo1z7iemU1OsCQ503h7b5eWpzA8liwfPOd2JdsoTsUHDCMe5saT84xKP/tZ1515Xx1C/2UFjjZqArSm6Zk3Qqw95XOpi+sohXHzxE3cI8XvpzE9NWFtK4I4jV5UYxmjBarHgKi0hGIsiKgbyqGnavf4aqeYvGvV9uZTV9zU0ANG7ZSNmSBtgzdvNcrrBhNtnf0ufSeevk10zh0MbXx7QVTZlGKqPwzK+2s+JdowaO9Uvyad7TT3/76LipouIvto9UGz4fiBYFU62H6JbuMe1KwPKWry1IIralBSQaB8kMaGtB0xQvBr1C4CVDPBqiqH7auLVQ0ZRpBHu7kWQjL/+llbX3NPDMr/cQHjav2fx4E1e+bwpFU9w4/GaCPbEx5ydjaV79i2b0uOzO6rd0j6JVwVTtJr537Dgoec8+NmUocWCq947EuSS3EdvSAgRdUH5BMdkUPPnWMeMhaEnrkmxi/R/2k01rG/8tu/u5el0ZoUcbIQvJ9hCGcifJw2OrLSTE0eRys92ByWbHaLWRSiaIRyJEwyFyK6pHKgMaTGaS8TiK0UgmnSaTTA3HcbWf+4pLyak9OyMQEXDdUYNl/kIyg4PIeXkY9DiBziWKgIzdN1Z02XpwFzOWroATzKekPCtdm7vZ8lTzSNu0FYUsvLkCWZnYVMRY5sBY5yaxV4sPSh4jtkX5CJKeNDUZkYxGHL7xUtf82ilEBwcZ6nUzbUUhr/zlEKhg906+eL2hYPzayTzVi3iWZg1ni3mKh9jOHlLDe9dKoQ1zw5sXNOvoTISsSPgm6ONng3XePMr+8gCpzk4ktxtDSQmCpBtDnS9sCxdS9te/kO7qQvJ4tN+3eHHXJLIi4Z3AJOy84szX/pwOi0f7czqGC3rIQLjpdSRZxu4dO+YOJbqRZQHSo0Jj0aaQPZ+mK28jkk4DSMKYqr2i3cBQBiJDKQ5v6Sa/ysXL9x1kxbtq2ftqB9Xzcnnm13tRjxlLGkSufN8Uuo8GiQwm2f1SO7OvLuGNRzQh+KJbKpi2sghJ0tfpOm9fTHV1lPzxD6RaWhCtNgxlpYiG0+8fWxxGLI5TJCyLEnjPoEp73gnCc4MV/BMkjppObYxi9/oRRBE1m0UQRQqnNLDv5fVjjvEWFbPticdIzTfTcWiI8hm6hvLNYrBYSMhhOPE5ZlVQ/Lop+LnAZDVgsl58LcfbDWOJg8gr7WPaDFVutr3aTm5lDbtfeHbMzwqnNGC0n8H6pmDOubzNt8REazJBFLGvXk15TQ3p3l5kv183ILnMEQQB11nuzRosFoqmTBtnBpFbUUWotwuTw0U6lTlpDPZioPjMiBaZbHRUjywoIrJv8sULLzdkRcHsd5EqTZFpHGvYLBzrQwJIc+wkTSn8JWXjCgDavF4W3nIniVgMk9WGJ7+QcH8v2Wwlonhu+6Fl1kxKH7ifdHs7ksulxU5kGRNgOs95QfhrJp4f60wOPKUMxWVMtih2n59Q73F5BoKAzePDnV+AxenC5zDziVWVfPOZ/Vw/PZ//fqlxzKXmlXlY15CH+03OAbuODPHg/9vK/OvK2P1iG2abgUObR3U5hbVuLHYDs9eW4vRakJxGMkPHGbSJIPstGAyaaeuGh0fvz19sp3L2xBYk4cEEQ11RZIOIw2dmw98aiQwksLoM5FW5yK3QEodb9g7QuFX7/WQzWTzHFRM67fpS5y1jsTkoqp/KnhefH9PuKyohOpDCar04z0bJYcRU6SK+f2wOh+TXn9U6GlanB09hMf2t2t5/LDiE3esn1HfCeOv2kEmnceflEwsFMRhNWF0ebO4ziOWfBNln1uL1xxfPlAQMOVZsw5rhfJeZulw7y6r9DMVS+GwGjtXkrs2xs0axcuQhTXfbRCc5xTbePbOQ325txWs1UJN7dvtpZrsBs90w8m+r00B/R4TXHxo11bS5NXPKZCyDpIh0NwXZ/Lh2D75iG1d/uAHnSebDQz1Rgn1xzFYFV65lUs3tdSYnjT2a7qDCf+o9vUw6TaS/H/sEOo8TCTg0DWZ3UDMhMVltCKJINHh2RcZ1dC4VztcO5BPAWlVVfaqqeoFrgPuAjwE/PdlJqqruV1V1hqqqM4DZQBR4EPgC8KyqqlXAs8OvdSZAEEWM5eVYZs/GU17CTTMLmJKnPfBFAd6/uJS5pW4igzGSsRTpZHaMAQnA7pfbSUbHu0aeS0RFwjTXN5pgIQoY5nnYtu1JVn3wY+fc4VXn7EklRGoW34rDn8ORrRuZfe1N9LW24CsuxVdUwr6X17Pw1jtJhMMoJhP5NXXsfuFZFt56F6IoEgsFKZs5h70vPc+c62/GbLPT23yEuiVXcHjzBuqXX4nd66Nl9w5mrLmWjoP7KZrSgDuvgAOvv8z8m24n3NeLzeMlp7ySPS8+x8Jb34Fi1B7URouVGe/6BG0pM79+9xx+tK6eyvIqAoXl9Le1gCAgCILmymowkEpoIt8Za67lwIZXeeNvD2Awmtj3yqOs/81PWXTrO0jGYihGIwU1U7TPcsudGMxaEFsxmVnw/k/SnDLzxw8uoKyujlnXXE/jlo1MWbYSu9fHtvWP0uloZbB0CGmaDblgOPAgCcjzchlMTz4XbZ2zx5NfwDWf+OyYvrjuU/+MM5A75jglJwfL7FmYqionNCABcOfms+6Tn8Ng1hZIBrOZtZ/6HFa3l8V33I0oaV5hVreHK97zIdRslmw2QyYz3jk1FhqiQzqCUjq8yBPBOD+Xbbv6RwqpdB8NEQ+neM+iUqTzmLCnc364Zmouy6p8Y16vrD73gpP86lqmr147UpknUFrBzGuuQzxBPKum0yy85U6cAS1BWRBEZq27EWdO7rhrHo8gSSNzFd2A5O2DIAnYlhZgKDk2BglYlxewdXsvJoebK971AQ6+8QoLb70L2agF4o1WK6s+8DFyyqvY9vRjGMxmVn3goyB48QoSn15VxfdumTYpDEiOISgKpqoqLLNnveXkfJ3JjWQ2Y5pSh2XG9PEGJMMYTSZmrbsRb+Gw8EUQiEQHUFZ7kIYrsAhGCcdN5TQ2bqG/rRmTzc78m25nz4vPIUoy8264FW9hNQfeGOTQpi76Dg6SL8kjBiQAqLDp0SOkErpzus75RVAUTJWV52SMy6QzbHmqieJ6Lwfe6AIgr8pF99EQwd4Yaha8hTYObu6iclaAXS+0AZqZU6DIjcVVRiIeZdbaG0gnErTs28P01ddgMJnxFBSRzWSYf9PtI/MTu9fP/Jtux5WXjyjJNG3fQtgSxDTTp1njAkqtkx6pncIpDW/ps+m8dfKqaimfNVr9pqBmCuVz5tGxv5uy6T4MZolFt1QgSgJWp3Fcwv2Wx5sI9sVOvOw5RZBF7MsLUYqGNx4kAfuVxSiF5ya5yJBrxX/PdHwfasD/0em4b6tCdupihUsFQZQorp9GccOMkbbihhkUTqnH4fOTjEZQMyq9reERA5JjvPagZjR2xTuqMdm0WIEoCcy8qpj9G7Tx0uoy4M55a4Y3okHCsaYUOW80NuVcW4bhTSTIyU4j7lur8H90Or4PTsV/z3QMeRc40U4Hs83AirtrsTi09ZEoCsy/vgyb28TRHb0jBiQAvW1h9nTH4PpKUssKEefnY1hWiHSsX8kCltX5bN/yDAAmq40r3vMhkokY/pJS0okEmXQapy/A7GtvRDEZkQ0KssGAxW5HNhiRZBnZYECSFQRRxGC2kFv55sxzBEnCWFGBZfZs3YBE55Im2G/A7vez4JY7R+apmXQK4wwPSvmxvTCQZwaImGTa9g+OOX/H+lYGu6OcDNllwnNbzcgcInDPdAynMRvUuXjY7A7cBQXMvPo6BEHbjnfl5jP/hltRjCbaDyVo2dNPTpmDedeV4SuafM9WQ4kD2xWFI2oCQ5kT64K882oGCKD4LPjeU4//I9Pwf3gavvfWo+hJFzqTFKWgAMvs2RjLy3UDkguAobBQ+32XlV10A5K3G9lMhmw6hcFsweELMOPqa0eeX689/wDOW8oRzNq+tWhXUJcXMhBMXsxbvmRwFNox3lw5+vtzGLDdWsXhXQNEQ0l6W7V4qSAKpOIZ/EV2Dm7sGjEgAUgns7QfHGTH863seL6Vill+WvaNmo6+/mAj/W3jq7Hq6LzdUPx+LLNmYaqpPiMDksmIp6CIqz/2GWSDkaGuTqZfeTW+Iq0IFoJA/fJVSIqBBbe+myM7oadZ0/jovDmSsTgZexbT2twxzzHHrWXILr2QmM7kxVjmxLYkf2Q9rpQ76JAleg6H8ZeWU71gycixORVV1C5ahpg9v3rvC4UgCBhKSrRYsW5AonMWpFMp9r68nt989h5qFy8np6Jq5GfVC5fiLy3H6s6npznM0MDJY7AXA9ljxvOOOsRj+4YWGc9dtcjnoDiGzltnqK+TUHEYKWc4PikLyItcUGpEvj6H8MIU6zffy19+8HWWv+v9IwX8REliwS13YXV72fbUYwB0HNzP33/8PR77zx+x4a/3EQ2d+wRFQ16eFjupqECQz1etap1LkVBfD0/9/Cesev9HMTs0ww1JUVh+9/vpa21m9Qc/gWW4/cbpBfzrzQ1ML3SxsHy0aNoNM/JZWet/0wYkAAc3dY0ko+dXuccYkAC07hvAlWOh/eAAksOA564apOH9ccEo4b69hqRZJtibYO8rHWPO7WkOERlMkIil6G0NMdgVQc2q9LaF+esPN/PQv2/lge9v5sj2Hva/3kl+tYv9G7p47a+HSUbTvPjHAyMGJIFSO75ivcjVhSaVSDB15Rp8xaVagyAwZdkqfEUlDHZcvOe3aJBwXFM2qr+RBRzXlGIs0vuIjobD52Plez+MddhMZP+rL7Ps7vdhtmsaAUlRWHz73UgGBYvTxcyrr8eTX0gyHseVm4f/WJ9/E8guI5531CLatbmkYNbmkscXWgs4TKyblk80kWZ32xACAnNK3dyzvJzbanNpfmVsAdqB5jBLAk7es7CE331gPiXeiTUJmXSWUH+cRHTi2FUimqLrSJC+tjA7nhtrEhgeSBAa1tRNX1k45nnQ2xyms3FskSUAVVVp2dPHfd/dxMM/3safv7uRbc+0kEy8PdbDOuePxh5t/6TiNKbE4f5eVDWLw3/6HD2fTdP69oS1fiyIIma7g2hw8K3drI7OJOV8rS7nqKp6z7EXqqo+JQjCd1VV/UdBEM5UUb8KOKyqapMgCDcAVwy3/wZYD3z+XN7w2xGjIjGvzMvvPjCf5v4oZkWizG/FKEuEg3Fko0R4IDTuvGxaJZPJnvf7k/1mInPS2BYWYLCYGIh2MqVuFb1tzSOJzzoXj2xWZeOjISrmf4zcMkjEJK755HxCfUFmXfsxZCVBPCxw1Ue/RSwYomHlPGRjishghpUf+DrpRITcKitTV9zCUE+UpXd/CYEYmYyJqvlXM9AZYuHtn0OSYiTjCus+vYRgT5C5N34KSU6QjIgsf08DsVCY6WtmEQsOUVgboHLuAuLhEBaXB0QHleE0W59qwmRTaIuk6TUnsXv9hPv7RoQZhze9zpSlK9n21KOYbTYGO9tx5eQRD4c4um0zADuff4rZ627AU1BOyfTlxEIhjGYjt3/th6STYSwuN+7cfOYf9ztaetd7mLpiNelkgvKvfZfo0CCKxUoymuTg/hbsDbmIlR7SmSw7t/RQ7zFTeBH+L3XOLaIoUb1gCYHScqJDg1jdXlynMV04GYIgUDl3AXd/7z+IDg5gcXlw5+ZxaNMGUokEN33x6yQiESwOF9ueepT5N96G059D3eLl7D2uGorZ7qBsxhwQBFwr8kkNZkgnsjx9/0G6TzCaSiUyKOEMSUMag0kPMl9KVATs/Nc7Z3GkJ4IoQpnPhtV47v8PrS43y9/1AaZdeTXpVBJ3bv5IEOR4JFFmz4vPs/ZTnyPc34/RYiHY102wp5vc4zbydC4fFL8F73vryfTHEWSRuCiQ3xQiEe7A5vWx8r33kEzEufkL36Cn6Qj+4lKsbh/pVILq+YuZsXodyYSLwe4M3kIDn5yh9yOdyU9+VQ03ff7rDHS0oaoqqXicpCOJ8ZYciIFklXnx77/HV1RC0ZTpWD0zcPpk1tzzGSTFSF+HQk+LiWxaZaAjQl6VC5Hxa6FENE02oxva6Vw6ZLMQj6Qw2w0k41qQX82qyAaRZCKD0aKiGCSGYlqVoWMmO9msiiAJvPj7Pq58fxlGUwKb20c6lUQUZfKqp5JXWUdGTSHKCjd/4ZsMdrUz1N3NUHc3BXX1FNZNBVRcZflIFQqG2W6y6QwZc4bSQCVGsy7Wudj0Nh1hzvW3MP2qdahqFqvTzb5XX2TKFTeQTMSIDCZx+i3MWlOCxTVevJBOZ8ck258vlBwr/vc1kB6IISgSsteEcA4ryspOo248coniLyhi/+uvsOzu9xEZ6AdVW0e17NnJpkceZN2nvkAq0ckEj3SS8Qxt+wd4/aFGFt5UgdEiM9QTw2CWKa73UjrNRzadJRJMjD/5LDHkWvF/qEGbnxslZK/5TScNS2YFqUSvcn2xyS13cusX5hDqi4/0naZdvSQnMKsb6IySSmbZtb6VK983hWw2i3tdGbGWMAX1XhS/mcVl72Rqz5VYHC5EWSYWHOLZX/6UuiUr8JeWY/d4yWazgIqqgoqKoGob+8BIHzeaLbhycpEN+pimc3mjZlQG2tpw5uZzyxe/RTwawe71sXPLeurXrEAYyEM2SgzFsyQmEsKonHaOI1kUpFJ9PL5UEEWF8llzKZ89j1Q8jt3ro+vwAVRBoLfJiiffxoLry0glMxjOQ5z3rSJZFZxXlmCdGUBNZ5E8JiTzhel/ks2AZLs0E0t1dHR0LkVEScLidPHKn39P1fyFTF2+mopZ80gnk9g8Xv7yi0amz83FbBAJRtNs/8thlt755kwILzeMBhnvzBwGci2kwymMbhPIIioq2VQW2SCRjGeQZJFMJossS8QnKBqVSmSYvqoYo0Xm6M5eOg6NirCzWZXwQBy/nhyjozPpkWSZusXLya+pY8ezTxKNhFn94U8SHRpENhqRFIV0PE57yENvSy8AKT2R4k0jiAJbnnqEedfdgvH2POSsRFJI0h1vxoZecERn8iLZDTivLiNb4aL7SJDm5hAHHzlCoMRGb1MH069ax9QVq8mk01jdbva/8iILbr3rYt+2js5FpbfpCI/9548A+PN3v8o7v/F9wgP9SLKMpBg4um0zbYeqKarzMhktRE2VLgKfmEkmlESyKchu3SxrsmBzefjDv/0TDYtWk7+ghlQmzq7XH+S6hZ/naOcWXvnz70eOfflPv+f6z36FcF8PJpsNV0E+RzZtQpIV0ok4jVveACCTSvHq/fcSKC2nYs78k721js45Zff6ZzFZbTTt3MZ1n/ki0eAgFrsTQRAQRImC2rqRY+1mheXVAQAWV/o40htGlkTKfFYshre2lxELp7RYSCwzxoD1eFRUjFaZUH+clFHC+f56Qm0RejojhOIZXvvXTcy7vnxCLWU2q/LYT3fSfnAQSRG54p01NO/pI9QXHzkmPKBpMY6dn4imObipmwU3lJNKZHDnWcmvcmLXx+ILjmQwsHfDq6y559OEB/qQFQMIAn1tLZgcLlRVRbhIeYbnUn+j8/akpGEGt3z5XxjsaMdgMiEbTcy57maSca3QmtFqpbepies++yVQVbLpDCUNM/HkF4wrFHy2mMpdBD4+PJe0ysie8cUdSn1W3usrG9P2mdXVdDQFeTTTOu74Kp+V1VeUnPQ7N9gVZcuTTRza3I0rx8KSWyvJq3KNHD/UG2P97/fRum+AGauLRjTExyPJAivuruXozl6GuscWpIsMjtXNpZMZWvf389KfD5KMDV9LhQ1/a6Sg2k1ehfPkvyCdy57G3jAeqwHXaQojB3s0MxyHL3Daa3qHTdn6w6OG/RaHk1hwvIGOjs7bgfOlaOoXBOHzwJ+GX98BDAiCIAFn6m5xJ/DH4X/nqKraAaCqaocgCKf/NuuM4LUZ8Q47LIX64sQyCSwOmbgs4PCaMVkV4pFR57HSaT4cF6CilMFoYv/Gl9i9/hlkxYDBYiE6NIi3qIS6RcswWvQKbhcTm9PI1OUFbH68CZu7jG1PNyPKAvVLCnjxT03MWF3EgQ1dxKMp5q4r44U/NVK3KI/OI0MMdAyx8OYKXnvgMCVTvaRTBtr2d7Pwpgpe/1sj3gIrnjwHGx/rYt51ZWx+ogmTVaZydg5vPNrC7KtL2PVi23EV4DupnBOgal4uzbv7SaeshAeCpJMDdB0NMtQdY/bVJex5uYOiOjeL7vgIz/7yh0iKjKwYGOruIhmPMff6WxBlTSCZV1VD087tI5832NPNhgfvY9rqm2nZr2KyKdz0j3WY7SefZMhGI/6S0Ym4O3e0UmdPs5Hn/nRo5LUoCuSUjk/i15kchAbiZJJZrG4jiuH0izhBEHDnFeDOKzgn7+/OzR/TfyKD/bzx0P1sefRv2tgYHAJVZc66G5GNRhbf8S68hcXsfXk9uZXVzLr6egJl5SPnGxwqnUeGUKxjBcFmu4LDZ+KP39pAcb2XpbdX4XqL1ZV1Lix2k8K0Itd5fx/FaCRQOtqnslmVUF8MQQC7RwugyUUQAAEAAElEQVScZTMZ9r6ynl3rnx5z7hXv/tB5vz+dyYtkVpAKtLFHjafJpDOEejp4/tf/pc3tBEhENDfRm7/4TbpbBNJJBTVbhGwy0d0UxJNvxXaJJeSG+uNk0llsbiOyMhm3q3XOBdFggkQ0jcVpwHhc0o0zkIPRauPF3/+Snc89NeYcV24+1fMX4y6o5PWH4+SUOXjlgbbhn8YQZYF56zRhcOXsACa7gtNn0hI6j9snm36lJi7W0XmrhPrjZFJZbJ7zO14pBonpK4t4+f6D1C3KY+tTzYQHEkiyiK/QhppVads/wJSl+Rzd0UfVnBz2b+hEEAVa9vVTOz+X3uYs7lwnT/9yN+px34dZa0robu6jalY+8UiY1/7yJ80E4DgW3fZOKmYPizXc+gbDZKPj0AGe/b+fYbRYEQSBeCSMr7iU4mlrSMfTDHZlyGZUGrf1UDbdj9EiHxcfgKq5Odh9F2azX7TIGCx6AofOeAIlZbTu280Lv/sFMDrHBQgPDLH6/fUYzJKWRJQeDYfXLylg29MtJKJpQv1xVNVE084+Og4PIQigqpo4/rYvzD4n9ylZFCSLnqz+dsLuMWH3mAj1x5ENAgc2djPnmlKad/WNOa5qbg7P/noPlXMCZDJZUvEMiYxKwixjzNXi7r6iEp795c8I9nYTD4fIpLWxtvtoI0VTpxEoq5hQUDBRjEBHRwesLhNN29p59f57EURRExiEQhitVvIq5vDUL9pRVZh5VbEW+/AYCfePimfyKp04/Od/b07nwmGy2XjuVz+j8/ABFKNpRHBSNnMOzpx1FE3x8Oh/7eT6T8+4uDd6CgRZRMnR92t13n6oqkqoP042q2J3m5Dkc2c4qXPxiIWSI6a4Jqu+DnoztO7ZQeueHYiSNFyxbYhV7/8orkAOrz7VPHKc2a7gvACaorcLoijgLXAQHkiQTmYwWRQUozRivusvsnFwYxdWp5GBzih1i3LpPDxWqFpc7+W53+xl6vIC2g8MjvmZ1WVElPR1mY7ORCQTGaKDCWSjiM01ORLIBFHEFcjFbLez76X17H768ZGfSbLMglvfSdteTT9ksikXRMP5diWdTLH/5RfY//ILmB1O0okEqUScVR/46MW+tUlHNpMl1J8YjveZ9HjfJECQRZImmU2vd44kYwmiSOfhAzzzi//CYDYjSjLxcAhvUQnzbrztIt/x2aGvyXTOlJPpdE5koLN99EUyyb1f+gwmm51Za2/g1ft+z6x1NxILpcgpc2CyTY45wYnILiOy69LSy10OeAqLWPqO9/LC737JdvVxJFnm2n/4Ag5/gOKpM3j1/j+gZrW94M5D+xnoaGXK0hWjFxAgr6qa5l07RppkgxGD2UzL3t3n3YREf8brgPbcjYWC5NfUsfHhv7D1ib9jcThJRMJk0mlWf/gTY0xIQCs0FeqPoarQUOBCPEd9p2Z+Lgfe2E7Nglz6WsP4imz0HldstXJ2AKffTHQwxZ+/8wYCAvXL8tn8eBNVc3Lo29wDQDadobDWTeu+gZFzzXaFZDxD+8FBADKpLG37B2nbPzjmHrqOBilp8AIgG0TSySx9bWH62sJ48ixMX1V0yvwhnfOHoGZp2vQ6Ox9/GLPdQTqVIhWPMXvdjZTOmn7RDEiOoetvdE6Hv6gEg9HE777waRKRsYWk5998ByaLlcKaKeflvc90LqmqKqG+OGpWxe41kV/ooHSal6M7RjVHZruCN8920u9cKpHhlb8c4ugOzUC3pznEwz/Zzo3/OJP2g4PaeJpvHRmjj+7oo3peLnteHp2zS4pINqMSjScm3M8JnGC43dMSorMxRLA3Pu7Y8EAc0DXCOiensSdCue/0modgrzbPcPhPb1vgGS6o0h85zoTE6SQ6pJuQ6Lw9OV9ZTO8Avg48hJY+9fJwmwTcfrqTBUEwANcDXzybNxUE4cPAhwGKi4vP6obf7iTjaQ680cVrDx4mFU9TsyCXhhWFJJMZlt1VzYE3uhjoiFDS4KVsuu+MkvDPBf7iUuZefwuCKBILBnEGcshkMijGyRnkO19Mxr4riAJTlxVgtMgc2tzNsjuradzWQyKWYtHNFRzY2Mn8G8pp299Pf3uEpXdUsffVDhqWF9LbGqLj0CAr7q5lz8ttVMwK4Cu00by7jxV317Dv9U4cfjOzrymhaVcfy++q4eDmLlRVZf71ZTRu62HxrZU07eqjtzVM1dwcqubm8Nxv99HbGmL6qiJ2vdDGnLWl7HutE5vbODKZDJQ6eePRNubd9CUcvgxrP/Ul9r78LP1trXgK68irLMNgthDs6caTX0Cwp2vM57a6cnDnWllye9WYAEL30UZadu8gnUpRXD+NnIpKRPHk35Oa+TnIisjO9a1YXUbmrC3F9zatPDMZ+++Zkk5laNzWw0t/Pkg8kqJ8uo+FN1VedGMOu8fHnOtuRpJlokODOAO59DQdwerRgl7OQA7zb7qdGVdfi2IwjnO/TETSNO/sY/aaElx+M637BvDkW6lfVoCqagHv5t19bHnSwPJ31Fy2G3mXct+9EKiqSlfjIZp2biedzGKylbLzpRRTFuczdVkBFrcbT34hPU1Hxpxn8/ou0h1fPlwqfddgkhFFAUcgh6V3vYfI0MBw0MrHgQ2vYLZ7EESZrFFCViTSqQw5pQ5sbhPOwKVhkJRMpDm0sYtX/3qYZCxN9bxc5l5bitN/adz/xeBS6b/Ho6oqrXv7ef7e/YT64uRVOFn+jmqSsQ5adm1HlGWK6qeRW1E1zoQkUFJGxbzFtOwFSR7Ek2dh7rVlHNzYhc1tpGyaj63PNNGwohBfkQ1foR2DReb6T81g42NHSITTTL+yiLJp+th6sbkU++7xpBJpDm/p4eX7D5KIpamaHWDeDeW4zuN4VTLVC6pKV1OQudeWcXhLFw1XFBINJrG6jMy/oZyhnhjlM3yoKsy4soimXb00XFGIYpQY6IwgiLDmw1PZ/mwLiUia6vk59DSH6DoSo2JWMS5fEm9h8RgTkmlXXo3F6eKlP/6GvMpq8qrrsDpd5+1zXgpMtv6bV12Dt6BwzNwg1NdLIgI2j4lgb5zNjx/lyvdNYfdLbcxZV0rrvgEGu6JUz82hZmGebvp1mTDZ+u7xOHNyGerpYsqyVQDY3B62PPY3YqEQZpub7uYIkkFkye2VNG7tIdSfoGyGD4NRYqhHEwwHe+I07epj3rVliM+10rZ/AJvbyOJbK/EW2C7mx9N5i1yIvtvXHkYUYeXdtRzeqlVmOrSlGwSYdkURZofC9FXF5Fc7NSG3x0Q0mKBsmn/kGolYlPrlq+hsPIjN4yUeDrPtyUfwFhXjLSieUFAQGUqw4/kWtj3TgiAIzFpTosUIHLoQ6+3CZB57JztqVsXi9FOzaBnegiKCvd3YvT5EUaJ1fwpBEpiyMA9XjhVBgHUfn8aOZ1tpPzhI6TQf9cvyMenCtTfNZOy7NpeLhpVryKusJhGN4AzkcmDDK/hLKrD7c+g6EmTZXdV48nWTj8udydh/387Eoyn2vdrBG38/QiaVpX5pPjPXlGD3XF76hHPBZOq77YcGWf/7fQx0RvEV2rjinbXklOkFQs4Ghy+AMyeXoroG7D4/ob4eHD4/zpx8ZhcW4Qp007pvAG+BlSlLC0glx1cuvFS40H03ncpwZEcvL/3pALFQitLpPuZdW0Zfe5j5N5TT0xxmyW1VNG7rpnx6gGB/nMW3VbLv1Q4kRaR+SQFHtvcw/4Zy+trDLLqlkm3PNDPQofX32kV5ugnJZcRkGnsnO/0dEV5+4CAtu/uxODRtTEmDF0maHPqYvIpqmvILCPVp4vYZV63DZLcTCw5Sv8RLVs0hpyyXdCpzke/03HAx+q4o2yidMZvi+mkMdnVitFiQDUZsbv/pT76MCA8m2PFsC9ufb0EUBGZfU0L90gI98fI4LtbYm0pkWHZnNfte66T7aBBvgRV3oApnIJd4JEwmlcLh8xMe7MNkvXT2FPQ12YXjUp43qKpK675+nv/9qE5n2V3V+Aon1mBbjtMDuHLzmbZqDaH+XrKZNIvveBeOQCUFtQUIkqDHYC8BJlPfVQxGpl+1lqL6BqKDgzh8fjz5hQDkVlRx+1e/y+ZHHyIaHGLW2hsomTZjzPk5ZZXsev5pPAWFDHV3Mvf6W1CzWWLhELnllSTjcQym8zP+RQYTbH+uhe3P6c/4C8lk6r/HEASBGWvWse/lF2hYeRV2r49gTzcWl5tkLIZtODfhGNFgkl0vtrHlySYY1nM1rCjEeg4KC+ZVOFl7TwOHtnQTKHEQKHPQ3xahbf8AeZVOAqUOQv0JNjzcCCqUz/RzZJuW5O7wmzi4qYu6RXlsfqKZmvm5OHxm2vYP4M6zUj0vh5fvOzDm/XpbQxTWuDnwxmi+UPPufq7/hxkMdUdZclsVW59qZqgnRm659qy5XL8jk6HvWpxOSqfNxpWr6XEUgxGDxappGUKp019A57JlMvRfNZuls/EQzTu30bDyKkw2O5sfeZBYKAiArCgU1NZflHs7RiycYs/LbWx67CjZjErDikJmrCpiya1VePNtHNrcTU6Zgxmri09pihseiI8YkBwjk87Sun+ADX9rpLDGTSQ4asww2BUlr9LJnHWlHNrUjc1lpHSajy1PNlFY66ZyToBUMsPhLT0YTBKLbq4gcML+zlBPjPBAHGfAPGLUeQy7V19L6pyaI70RllefPh4Y7OkGwO49/bF2o4wiCfRHR/u62e6k++jhN3+jOjqTmPNiQqKqai/wyZP8+NAZXOIaYIuqqsdm+12CIOSpqtohCEIe0H2S9/0f4H8A5syZo050zOVK19EgL/xh/8jrfa910nBFIZlEhiNbu6mcFUCUchjoCpOKX7jNq6L6aTz6Hz+gv711pG35uz4wLqH+7c5k7bs2t4mZq0uoW5yPrIhUzg1oiegWhSlL8xElkZr5uaQSGYxmmdqFeQiCgKQUkIylMZgkqubmoGZVFJNEIppGMUpUzskhm85itCh0zwjy8n0HEUSB6FCSlj391C7Ko3ymn+p5w9e2yHQcGqSzcYicUgfdR0Mj9yiKAtFQcmTimM1kScUybHlqiLlrS9n46FFmrr4RR06a7c/10nkkxpqPfoXdLzxC+cyZdBzaP1KtNq+qlso505m9LmeMa3ZX4yH+/I0vkEpoRieCKHLb175LUd3Uk/7uLA4jDVcUUj0vB0kWkS+Qsc/FYLL23zOhpznE07/cM/K6cVsviklmxd21F9WYw52Xz4v3/oq+1tGKUkvueg/2EwJ9RvPESaOKSSI0kKC/I4LBIrHwlkpCfTGGuqI4jqsYfmhLN/OuK8PmvjwXXpdy370QdBzcz33f/MJIJWRJUVj2zi/y2t+O4AyYqZmXy/J3fYCHvv8t0ilt8VQ+ay4FNXWnuqzOOeBS6rtGq4FEWOC1B/440k9ESeb6z36JeNSGu9CGKAkIqrbZYbIql5QxUvfREM//fnSOvX9DJ2a7wqKbK/XKASfhUuq/xxjoiPDoT3eSSWtGXh2Hh2jbv5dnf/Edshlt7SQbjNz8xW8QKC2n+2gjACarjRlX30S438ZgZy+SIrHlyWY8+VZmX1OCxamQTmRZdHMV0WASZ8AysolVVOcht8JJNpM9ZTUXnQvHpdh3j6enOcSzv9k78vrgpm5MNgNLbqtEPE+CW5NVoWZBHqXTfYiiyPSVhYiyiCSLJGNpBBGyGRVRFEFQESWRTDqLrGj3U1DjIp3IEuyNUTM/F1ESESQVh9dPzfxcoqEkj/28hRV33UrnoQMkY1GqFyxmoKONHc88MXIfs9bdyNK73o2sXJ6bxDD5+q+3oIi/fvfrY+YGN/zTV0mnZdoPDjLYE2XWmhKe/fVeymb4kRWR2WtLMRhFvPlvT3NPnYmZbH33eFr37uWhH3yLTEoTOkiyzJK73gOCQFezTF9rGH+xna6jIQxmGV+hQtOuPvIrXSPXOLytm0U3V7L+j/spqvGw7M5qrC4jRXXu8zY261wYLkTfzSSz7NvcRU6pg7xKF8lYmvplBcSCCUxWGYvDQP0V+WQzWWRZQjFIGC2e0fPTKbY89jc2PHjfSFtuZTWz1l5P1bxFmO0Tj7fNu/rY8sSxeJXKxkeO4MoxUz0393x8TJ2LwGQeeyc7g11R0pkcJFnm1fvvHWkvmzWXhpULsXvsDHRFObSpk1lXl+ArsLP8nTWk4tr+ih5HeGtMxr472NXBS3/4FeH+0cpRy975Pnwl04gEJVw5FqxOI0Y98eGyZzL237czHYeGeOWBUcnKzhfasHlNzLqq5CLe1aXJZOm7wd4oj/10B4motp/V2xrm8Z/v4NbPz8Xm1qtInynOQA5rPvJp3nj4AXatf3qkfeqKqyibfTNGq7bnHOyN0dMUxF966cZoLnTf7W0J89T/7h55fXR7L7Iisuo9dSSiKQIldkRBoHp+YGS9ZbTIOPxmSuq9RIMJDmzo4tDGbpbcXoXBLFJU56F8RoCh7iih/hhVc05fmU/n7cFkGXsnO6lEhlf/coiW3ZqBeTSY5Imf7+TWL8whUDI5TKoCZZXMvvZmOg8fpGzmHLqPHqb9wL6Rn89aezNB+yrs/kvHWOBUXIy+m0mbqF18BU/817+NtFmcLq7/7NcuxNtfMjTt7GXr09rzJ4vKhoeP4MqxUjlbf7Yc42KNvYIAPa1hvPlWKmYH6GsN4cot4u//71skY7HhY0Ru/OevXlJ66059TXbBuJTnDQMdER79r7E6nWd+tZcb/3EGJuv4ff9AaTn1y1ex58Xnmb56LS/+/v9GivUZzBau/cw3aN49SH6N+4J+Dp03x2Tru4piIKe0Yly7KEkUTplKXnUtqpqdUJMSKKtg2d3vZ7CzA19xKXtfen4kuXHns09y9cf/kfplK8/LfR/d2cvWp054xgcsVM7JOS/vp6Mx2frvMQqnNCBJMi17d/HKn38/0p5TUcXMNevGHNuyr5+Nj4wWp9z8RBPOgJm6Rflv+T4Uo0zZdD+FtW5UFVLJDMI8gXQ8TTar8sh/7qBydg4M/+bi4RQWh4H+jgihvjjuPAupZAaDWWLLk03Mu6GM3AonAx0R9r/eid1rJhocNavobQmz+JZKelvD9LdHQICpywrw5tsoqvWQzaqUz/CTiKYxO5TLWqc5GfquJCuUTJ/J3//9X0HVbsFks3P1x7+EZLh8dX86p2cy9N/2A3u571tfGtWUG40suvUdvHjvryibOZeiKVoh9ItJ+8EBXn+oceT19mdacPrMNFxRyPwbypmxuhjFKJ02j0NSRAxmmWRsrFG5mtV+9YIk4C+y0bZvYORne1/pYOW7a/EV2oiGkrz8wEFQoWlXHwtvqqCw1s3868uRFXHC3DaTTeHQ5m4W3lTBlieaiAaTiJLA/OvL8eoFP3ROQTyVoTuUoNhz+oKdwd5urG4PsnL6+YAgCLgtBvrDoyYkFqeL6NDQW7pfHZ3JyjlVMwuC8OPhv/8uCMLDJ/45i0vdBfzxuNcPA+8Z/vd7gL+dkxu+jOg+EhzXlklnyaoqFqeRwe4YA11R4uEMXECdY6ivd4wBCcBrD/xxJMCiMzkwWRRkRUKWpREXaKNZQTFoE0yTVUEQBQwmGcUoIYpaErEoiShGCYNZHpNYrInetev0t0foODxE+8FBDm3uZqAzyusPHiYRTY9eWxCOrSMJD8ZHTBSObO9hytJ8smmVyFCC4noPjVu1NhhZe7L9uXbcedomcuu+ATY/EaPhyveRUzmH27/+Q2743Fe45cv/wvX/9CUCpYXjAgiHN20YMSABzaVwy6N/G1kgnAqjRXlbG5Bc6gx2Rce1HdzURTSYuAh3M8pAR/sYAxKADQ/ed8ZjoySL1C3KZef6VtQM9DSFQNUqCcQjo4s9T74VxaT3T52J2fn8UyMGJACZVIqOQxtw5Vg4tEnriyUNM7j7ez/mus98kVu/8m3WfPQfsLk9J7ukzmWIzW2gaceGkSRjgGwmzb5XXiSdzmK1G7A7TdhcJqxO4yVlQALQ2xwa13bgjS6ioeQER+tcqgz1xkeEDQD+YhuHNz4zZi6YTiY4sm0zN3/pW9z0hW9wwz99mXd89/+B6GfPKx34i2zkV7moW5SHwSShZlXi4TSh/jjbn2sh3B8f2Tw7hmKQLuuNLZ1zS19bZFzbgTc6iV2AKgFGs4Ji1NaAimF0vWg0K5htBowWeWR9ObL2VCRMFgM2twlREhnqibH7pTaCPXFAIJ3McuCNLqYszKe/08XaT32bqz/+z9QuWUHL7p1j3n/rYw8z0NF+3j+nzplzePP4ucGeF59DVbMc2tJNaYOPg5u6mH5lEQ6fGUEU6GsO4/SffiNAR+dCsfel50YMSAAy6TQ9zc1UzlvJYEcMu9fEUHcMh89Ex6EhDm3upr8tgtluGKkWkU2r7H2lnWs/Pp0pS/PJr3ZR0uBFMZ4X33CdtxmqqjLYGUPNQsveflQVIgMJMuksJpuCJ9eGw23G5bNic5nGJbgPdnWy8eG/jGnrPHSA0umzySkbL6Q89p77NnSOaz+0WY/l6+gAGEwSqXiMPS89P6b9yJaNxELdZNIqDo+Jgho3njxNCCNJo/srOm8/uhoPjTEgAdj+9GMk4xKRgQSSImB26ut+HZ0LTeve/nFt+1/vJBlPT3C0zqXAUG98xIDkGJHBJKH+2EnO0DkZkqJwdNvmMW27nn8KgUGyaW3PORFJk0pkULMnuYjOOCbSJBze3E00mMTqNOH0WbB7zZhtRhx+MwazTDSUIpPKsu2ZFoxWbb6Qzar0d0TY8XwbmbSKIIC30EbNgjwsDt1wR0fneCJDCZp2jZ2Lq+rE38eLhcFkomzGLO76lx9SOW/RGAMSgK1PPITBFBkVv+mcNYKY5I3jDHgBokOD9LU0XaQ7mnxkMln2vtoxrr1xW89FuBudE1HVLJl0lmQ8o2n/gNa9u0cMSI4ds/Xxv4/Zd5vstOw7yZospq/JdEY5UacD0NcWJtQ/sa7XbHew/N0f5K7v/IjGLRtHDEgAkrEobft2IkjiSGKkjs65RJLlkxbFEQSBwtp6ahcvw1NQNE4D/tK9vyI8OH5cfKtkM1n2vTb+GX94q/6Mv1wxmi04ArlsfuTBMe1dhw8S7B3bLw5PsPe77/VO1HO4NlGMMgaTjNVhxGI14PBaMJoV1KyKJI/umbUfGqR0mg9RFji8pYf6pQV0Hh6idkEeAOl4loObuuhuCtG8u4+quTkYjsuLKJ3mw5Vr5cbPzOSWf57NHV+ay6KbK7A4tO+sKAqY7QZcORZdpzkJSMZjmobhuL4WD4fobTrMOHGtjs4kQs1m2fLEI2M15YkE4YF+7vjm97nqI5+koHYKonhx87aO7uwd17bvtQ7SqcxZFZJ1eM0svnWsoUp+tYuhHm2t2t8ewZ1jIad01Ag4UGrH6jTS0xyi/cDgyFd64U0V2NwmFIOMK2A5aXFtd56VknoPGx5upHJOgDlrS7nqg1Oxugy6zk7nlHQOabnA+S7zaY8N9vbg8PrP+Noeq4G+yGg8xuxwkIhGyKTPvy5fR+dCc65H2t8N//2jN3sBQRAswGrgI8c1fw+4TxCEDwDNwG1v+g4vU2ye8Q/iod4Y8VBqxBVYECARTZ70oX0+SCfHB79TiTiZMzB30Hl7YLKNX7A7/GYU49gJtt1jwldko7cljNVlxOY20tcWweIwsuiWSmRZoGZ+LoIgIIhQUOMmncwgKyLpVJZNjx5l2soi7F4jrhwL3nwbpmGxRqCk+JT3GAuNN/GJDg2iZrNwCbnI64znWB84HpffjGK4uAuRiTYG04kE2cyZb7Z5C2zMuLKIyGASURToawvTun+AiplapQpZEVl0c6UeNNM5KbEJXBiT0SCKUcJXNFptx1tYjLfw1OOozuWLw28hHpngORocwu4yICuX9nPUOkEVRVeOBYPx0v5cOmMxWsbOCxSjRDI03oAmFhzC6nRRPnPOccfGCfXGaN6jUlDjJpOBgloPrhwLQ91Rmnb2U9bgA1HAPsGaTUfnXHFs8/R4XDkWZOPkN39yBSwMdUcoqffS2TiE1WXE4TXhzrGgGCXUbJauIyImewk213hxhibQ00Vrk4mJ3L5jYa2tak4O255uZsrifLJZUIwi7hyL1l8v8XmDztuLiWNFQ8iKgZoFeXQdDXJ0Ry8mm0zDFYVseFirJLHpsaM0rCggp9SBpEjklNgvaCxW5+2Dp8BGzYJcNvytkYYVBaCqCKJAUY2XvArXac/PpNMTGyyfQjwmCAKBYrsmCDgOX+GlWwFdR+dc4sqxEAtJE36PBDGDbBQJFNnxFdknjEvrvP2YaA80EY0CKqIo4i+y4y+cHFXYdXQuJ1y54w0uvYVWJGXyx0h0JsZkVbRCO8c9gkVJwGjWhadny8mEkYloAoPZSiadRZJFupujVM7VKyefKSfVxExQzKaozsOT/7ubkqleKmYFkGQRm9uIxWkgOpRk1wttVM/PxVtoxeYy4smz6sa9OjoToBglrC4jkcGxicoTfR8vNt7C4nFJf6AlsCSiCbyFusnQm8VoEknExpv0p9MXtzDVZEIUtXhf1wkFDr0FtpOcoXMhsXss7H6xA2+BjUw6i9GsEOwKjzsuGgpqOtZLBFfOBGuyAiuSQV+T6Yxyok4HQDFJYxLLT8RssyMrCono+O9JMhrGYAWzbWKjCB2d842sGCbcO0hEo2TT5z5nRpRE/MUOOhvHPuN9hfoz/nImm0lPqJ86cS/DV2jjyPaxieqBYgeCcP4N9WdfU0rTrj5KG7wc3dkHKmx9uol1H51GZCiBYpK55mPTSCcyXPuJaQx0RZi6tIAdz7eiqrDxkSPMuLIId54Vs92AZ/hvYORvncmLmsmSiIzX5SbjMbJp3YREZ/Kiqiqx4OC49mQsSmFt/YW/oZPgyRs/D/AV25Gks1+LVc0J4AqYGeiMYrIquHLNPPZTrXhgZDBBeCCBr9hG8VQvqCqxcBKr28i1n5xO2/4Bgr1xCqpd5JY7z+j9nF4z1fNy8RXZyWa08eCl+w6w9p6Gs753ncuL9kHNHOdMTEgiA/148gtRVZXo668TefU1JKcD5403Ivt844732gz0R0bjjBaHCxjOk/KMP15H51LmnO66q6q6efjvF97CNaKA94S2PmDVW7u7y5u8Cie+Iju9LdqkXFZEXH4z7hyLVo1zUzfuXAtTlhTgLzqNaLivGTJxCLZA3yGQzRCog6K5Ex6ebGkh2dyM5HRiKC9HsowGkX1FJSgmM6n4qDv31BWrsfvO3DlK5zySSUHnTujZB458SIQgnQKbH4ZawRaAdBySEXAUQLAVTG5AhWg/uIog1AmKFWQFQl3gLoFwN4gKGG34ZSvFtU6a92kJR6IosOzGHMxdr0JrmBheGjty2Lq+i6lL8ymZ6qF1/wBLbiuHTBqJJB5PHEd4CxiG308ygtUChhjOj09nxyt9DPUmcXmgxHsEs5iGpqD2+WwBGGrTPlM6Dsnw8GdpQ7XkkgxJlNfWse2pR8f8amauWI7UthHCXSBKYLRDsAOcBRAf1H4nvhrIbQBZD1pcaDIdh0g2tZGJhDG4FQxCD/gqwRqAjh3a/3VOPf7iSgpq3LTtHwA0QdrSO6ovuvDAW1iCwWweU7lgyvKV2H2BM76GyWrAX2wnMtTH0Z29+IrtrH5/PZlUlvxKJ65cy4QLSZ1JQt8hbfyVTGD2QCYBA43auJU7HZIh6DsMZjd4K2HgiDb+OfLBVQZdOyEVAXcZuEqg/zAMtYDVr13PaINEGIJt2vl500AZu7BqWLWGw5s3jGkrql/MrpcTVM468754NiTbO0g2HUU0mzFWVCDZ9USmS5bBFmjdiBLqYsqiJRx47cUxP65fvgaZBAy2gqvwnL51NpkkebiRdF8fSn4ehrKy87YBklPmIFBqp/uoNseWFJEFN5SjmHRx86Sjbas2DgqSJkhPxcFggdgA2HK0OZ0tl0wyQzIokQlHMXgtGLxmvBmV+oVedr+mVUzrPBJk6S1raN27c8xb1MyeCa//N5hd4KmAnHpskX2su9vD3p0Zju7opWKWj4JClWAwRiKapmyGj0xaxe4xEosksdiN0HsIOndo85ZgG8SHtPHd7IFERHsmSBKkk6Cmtfl3JqUdkztVc5fU0TmBQKmD3PJRgYEkiyy6ueKiGdKlurpIHjmCYDBgKK9Adjmhay9E+7Q+LwggyiDIRMRqiuu9xMIpSqd5yaSyiKSpneNi9yvdDPQkqV/gpSSni4wsYvN4x1QbL6ytw5Xthv0HtTWt2a2tV81uiA1qY0EyrK3pZJM2J/JVafMmnfNC3ZIr2PvS82PapixbQyatkl/pwuEzcWhzN/4iOxUzC/AX63NCnUlGNEj90is4vOm1Mc1Tll1Jy+5+Gnf0UFTnYdrKIgCcfjMr313L7pfbcfrMVM3OOeNNVB2dk+HJtSIIYLLI7H2tA5NFoXZhLib7mT3bnYEcSqfP5uj20SrnFqcLT0GRJoLs2A7tW7W5s70AJAMYHdRM87F/g0IslBo+x0BFWRT2PQZqFiLd4KvW5thduyGdgJx6sHi168UHwV+r/eneC737US0BktlcUt29yDYFg9KDaPNC3nRIx6B9u3ZdbyXkTtPirh3bIdypxT3ypg/HsXdoc35nkdaGAJ3bYbBZi/fmzQCL+5z/X+joHMNf7CCTKSSnvJquxgMj7XafH5PVT3GpX08QvczwFRQgSvIYc/GpK9ZxZHuE8hmBMzKN0tHROfcU1npwBswMdWt7cAaTxIyVRaQOHyLW3Y2Sm4ehrBRBL0RxyeDOsTBnbSmbHj060rbwpgqcEyQ3XgwmjINNBvoOazqJbAbUDKgqbqMbV24eg52j1ZIDpeUESvJp3hOnZU8/gVIHM68swq+bEZ4x/mI7hXVuWvcOaxJEgWV3Vk+Y/OIKWFjzoXq6jwaJBJPIikgiJrHuY9PYv6GTzsND+ItslE71YvecXjSrozNZSDY3k2xpQXK6hrWD57f/Wp1Glr+jmsd/tnMk17Nshu+tG6kmo1r8oe+wtoeQNx3sx5kyDbZA1y4tFmH1Q9E8cBZCy0bo2a/tRXgrARGCzVoMRVXxGLJYnC6iQ4Mjlyqqn05OWaFu/voW8BXlMGPN9bzyp1+PtImSRF5l9cW7qUmGIAjULcnn4KZu4hEt3mdzGymbridKTAZcAQvTVxXRuK2Htv2DFNW5KZ81h+1PPTTmuNnrbkAxmjRNRP8hCPdoul1PuRabvQhk43GSR46Q7utHKSzAUFIyotspqvXgCpgZPH5Ntqr4TSW+6bx98eZbqV+Wz+4X20falt1Rfdr4qmI0MWvNOp7475+MafeXTsXh95BraYIjezR9TXxQez6bHJoe8xzr13R0TsRXVIKkKGRSowags9Zej93jPcVZb54pi/M4uLFr5BlvdRspmz5eB5MJhUg2NpKJRjGWlqLk5Z2X+9G5+DhsChVz5nF40xsjbSabHW+BpmvQcr5aKKsqZbfLQHRQMycx2xVqFpw/M9rwYIKDGzvZub6N0gYvZdN8DHZFKZ3mQ1JEfIV2vPlWBHG8JrJkqo/wYAJ3noW9r3bgK7JTOs2v64wuUUw2G7OuuYFn/+9nI22CIJJXNQVXwHoR70xH59SIksSMNdfSsvsETfmi5aMvml7T4kXpGDiLUCO9JDN+Un1RZKcNgzOD6MqHnLrzdp+lDV52rm8l1BcHNOO/qUsLJhxfT4dilHH4zHQcHmLz403YfUZWvruOlr39tB8cxGxTKJ/hJ9SvvZcn34rDq8UDXYE3t3ejFQLNsmt9K1a3iTUfnKqP9zqnpW3YhKTgDE1Iiiuraf3kJwk/8yzIMqTT9P7vLyj++X9jnjFjzPEeq5GdA4Mjry0Obf8vFgzqJiQ6bzvOS3acIAiLgW8AJcPvIQCqqqrl5+P9dE6Pw2dm3cca6G0Nk81kcQWsyAaR+7+3CaNVpnSqj66jQ2x67Cj+IjuGk1WF6W/W/u47AA+8VxP3Angr4MafjzMiiW7ZQss9HyUb1BKdPO9/P76PfBjJqQ2s3sIibvvKt9nw0H30tTQzZdlKpixbiSzriZuTgsPPwR/vhOl3ahuorRthzXfhoY9A+RUgKbDvUbjq2/DoP4K3SjPd2PIbWPFlePqrYLBC/c3w8v+Dxf8AL/1IS/Zc/Gl49ptYZ7+PlVNK6JtST8JUiCu1C2/bo7Bbe7+mhc+w/s9HAXjlgcNYnAbWva+QwFPrtCT68uXw6E9g2efguX+BbBpmvw/W/yvMv4ecI//ClQYn2bUfQ/r7TVC3DgaaoGWD9ln+9lEoW6YZl+x7ZPiz/BNq8UKC8jrav/1vyNVVXHPn3WzduoFUMsm8pbMpNffAw1/VkteW/AM8+02Y9R7YuAPat2i/P0GAO+6F2nUX6T/w8iTd1kjP//e/DD74MACSx0PRl9+H+cWPwI0/g/vfrR0om7C9+2Guev8MelvDpBIZnAEz3vyLb8zhLSjk1q98hzceup+e5iNMWbqC+uVXIitnniSajKXZ8LdGQn1xSht8dB4d4vH/3sltX5iNwzc5RHc6J6F7H/z2esgk4bqfQLQHnvyiFnjwlMP0d8Dz39aO/fCL2pi76Zej5y/4uDY+b/o/KFsCsgV2PTD688X/oAlbkmF45utaQtBN/wPT7xhzG4V1U7n2H77Ahgf/jCAIzFp7K3ZfNTfNd5yXhIn4nr203PMR0t1alR/H9deT87l/QvbrCcCXHLFB7Zm8488w/S6KhP1c95F72PDk02SzWeqvuJ4DG2W2PNX4/7N31uFxXGffvoeWSbtasUWWZGamsMOpw6WU0rQppGmbMrxlprf9yvyW06ThpGEmQ8xsy2KmZd6d+f4YeWVZSuIkkilzX5cva8/OnJmRZs6c88Dv4Yr3ebDL/boY2ASgJhIE/v1v+n7wQ1BVBIuFiv/3MxxnnDEh/R+Ny2flohv1OXY2naOg1H5SvEcMjqJ7F+y4VQ8iCLTpwYGzr4R7vgrn/A88+DmY9zayyRyD2xSGbtPnEKLbzZRv3IRt4ydYvvYX1FUWEY+LuC1BnIUWLr7uajY+vRFJlll+0QWUb/k6dL+kH3Pm5fp4fetb8WoaKwtqUdd8AEmNw1++SeLM/7DzKQd2j5n+tgiZVI6zrpvOrIYw/OVSWP1JePqH0L9H70+U9XmqtxbaX4TePVA2TxfDO/goLP+IPt8+72tQteKE/JoNTm6cXgsXfnAOA+0R0qkcvjI7BaUnxjmXPHiQjo/eRKZNty/YzzyD0ltuRInv1Z9PWwGYPSCKRAvX8OCfWwn1p7C5THplLC1H3cUpbB1PUmzagVqqIfVYwX0xPPxFrrz6S7y0vZPO5jamzp/PvPm1WP5xsf5cJgL6enDmOth9J8y5Vl/3ls6FTEJPmC6argtM1p8HlpMkKeQ0o9gqc9Hb38vm9c+i5lSmr7qUA5sU0slOJFmkbnERV356IaIkHpdKKgYGr5XEvv3If/kHF77zBjY/9wSgsfiSKzBby3nwd/sAaN0xSFG1i9XX1lNSo48lDUtLEEXhdTlvDQzGQzFJvPRQCxXTClBVjYd+vxv/FAeX3TwPi/2VRZHNVhvnXH8jOx9/mAPrn6O0fgZL3nIF7qJiaNsAf71MtxcAFFTrtlxLAYUejSvfY2OwN4MgmygUDuBquRs2/V6fW6//pW4vXXkzHHgIBg7oIl8X/RDu+5jenyDClX+A+z8OsoVo5afp/Pan0NJpkCSKb3o3ntxdiHOu1N/d6385cuKX/lTvc/2vRtou/L4uMvj4V0fa1nwaHCXw4KdH2lZ+DM76oi5AZmAwSeRiWWad/R4KK5+nY89mimtnMve8i6mssCIUGPfem4pkEkdvL5ddfR1bdm0hOjRA3dLzKCidR8f+FNFA8uV9sQYGBpNKQbGNdZ9YwEB7hFxWw1dqRdz8FM1f+jKixYKaTFL2ve/iuugiY016iiCbJBacV8mU6V6igSROn4XCCsdJkcQ4nh2s5KtfxVRWdmJPLNgOh57U7cvisOC1msUhCKz7wHvZ/Mx62vfuoWbOXOaddQ7r72klOKhRM6eQvrYw//11L1d/YTEeQ2DtmJA6DzE/8TTTz5xHTrHgdIqUvEK9h8hgksf+vIeiKheqqtHfHmHt9TNZfU09alZFUgyRJINTi/iml2j/8IdRo1EAfDfeiO+G9096QZKqWT6u+cJiQgMJTBaZwgonNtcbLCK1+06456Mjn2dcBpf9TBdfDXXBnnvgkS+NfF99Bpz7P3Dfx6HvsM9P0uMzgm1gcsL6X+Lu28OV7/s961/cQ3/zAarnLcNfs4L7frGXaz5nx/06kzPe7ETb20klall+1fvY/8Ij2NwFzDxjHXbZ8OcfiX+Kk6s+t4jBziiCIOCrcOAuNISuTgaiwSSP/nkPFptCeb2H1t2DBHtMXP7Zr7LhrltJJxIsvuxKahYs1uMHXvgZ7L5rpIOzv6QXDDQd33s+F08Q+Mc/6P/JT0DTEKxWKn7xcxyrVgHgKbZx2ccXMNQZIZcDb6mNghIjqdRgNGabwvJ1U6lbVEQymsHpteCrePV7WYsHKEXlnHXXsu2lFzFZbMy74CoCfU6euW0HV16bodQbhKe/BxVL9DgbgNIF8Na/6QI+BgaThL+qhmv+59usv/PfBHu6mXPO+cxYfRaCODn2i8JjeMdn+/vp/dGPCN+jx8rJRX6m/OY3WGbOnJRzMjiBhLsxhds4a3ExvoKz2b99DyVTylly8cV4CBLf2qPnfIVCCCYTF/3oV8R8M0ES8ZU7JtUGtH99N+vvbgJg51OdSKZurvncInzlx7ZmdHjMzD6jghkrSxFF0YjHOMVx+2ew7MobOLjhISx2FzPOWIfZUoy3zJgvGpzcVM6ex8Uf+zQb7/kPkiSz/Oq3UT5tuv5ly3Ow+S+w6/bhfMwPE6v5DB3f+j5aIgGCgP+mD+CdfwhRkvUCepNAQYmdy29ZwGBHFDWn6eP76xRz1zSN3c915cXhI0NJ7v3pNq754mKWXVabH4t95RO3HrXYFRqWlDB1QRGCKCAa473BMdAV1IVwit3mV9wum06TDYUouu1uon0DFH3m0xRcdx2Zzk7aP/xh2j96E7V33zUqt81nNzEYS+c/W4dz5Y8UmjYwOF2YrOimPwKfBDYDuUk6hsHrIJdRCfbGESURTdVIRjMkoxm297bntwkPJl5eRV8yQWJQN7zlRpRYGTykVxU8QoQkGwrR/bWv5wVIAIb+9CccZ5yBffmyfFtp/TQu/cTnyKRSWB2GCtlJQ2xAT8jUVD3QfNs/Yeo5usM0l4aKxfDkd6BoBnRu1itKN5wPT38f7IV6dcpYPyy4Djb8Wk+Il2QYaoIlN+iB4poGzhLsT34V+4zL9GSwnh1w9hdh8+/JLP8k258PjzqteCjNwa1BpIXfoitaCbEIJWcuwS/uhVCHnoC5flj90uaFvr0I896G9OTXIB3REze336qLqOy9Tw+mr1iiX4t/ml6RMxUmXXsd3R/6CmQyZHfvQfzmd1l11pkUvvUcHM99Cpw36Ney+P2w4Tf6tbjKYPP/jZyspsGDn9X7d7xCFInBhJLcuz8vQAKQGxqi75+PUXF+A1LnZqi7ABofhmwSnvkR4mV/QdMg2BtH0/TFiaPAcgKvQKe0roFLPv6Z1z02hgcTtA9XU9r2+MgYH+iOGyIkJzsHH4FoL6y4CQLN+vs2OCwCNudqXczpMLH+0QIkQLZ1C70rfkNv/YXYvC5KUk/hEe/SK5kBbPwtnPUFvbrZtIt1B/RDn4OqlaMcaWabjWkrVlM9fyEgYLZOXpCBmkzS/4tf5AVIAML33ovrggtwnnvOpB3XYJLo2qILkAB4azA9+R2cq87EW/kuBFFg88MRsuk4AMGIBbvSOmEiJKlDh+j73vfzn7Vkkq7Pf4HqO/6DaYJU+sMDCXqaQkSGUhRVOSmudlE9x1ArPamJdkPjY/r81VsLgxZdSK+gOj/3w15IMmpl6LYRFXU1FKLn17dRde06LIkmKp6+Uf+isB4teTaFrrNYdfmHEBQLnsROlMDBkWPuuRvKF3C4vJoQaELKhvS5sqOI9h4Hof4Eof5Efpcdj7dT5+zHHB/QEzUPC5CALrS39e8w55rh+esiQINNf4KF79Kfu+kX6f2/7V9gMgLDDMZi95gRJYHeljDN2wcI9MQprnXj8LyycXUi0XI5Av/4Zz7xAiD29DPEz1yCe6ZDD77t3asH7FrchBSZUL+eAB0Pp4mHdYNtKOrCtvtOhBmXIT3/MyhboCc6J4bwP/spzi+ZT3r1dMwlKcTE8LO5+y59rdn0lL42jfTo693+vTDtQn1NePYX9XbXFOg/MEZo1WACSKdIPPE04m/+xJqzziS97kaeumeQTCqe3yQ8kKBiupfCCXRCGRhMFLnBXnp/9FOSW7Ygvfgia9asBlnGVVjBk/ePrGc0DXqbw+xf35MXIZHkE58AZ3B6EeyNE+5Psqd/pEp5X2uEUH/iVUVIAApKyljz9vew5C1Xo1itujB4JglP/yAvQBKd+3F6bOcS6iigsESh2BLHM/Qknv4terXfJ4bfn6DbgGdfDRt/p9tLV90Mz/xIt8HtuRsql0Pbev39+8Q3YMZbSKt+ur77J12ABCCXo/fnf8H27euxPP0dWHPL6JN+5Muw+PrRbY9/DZZ9eHTbcz+BMz83uu2Fn+vnVzb/VX83Bgavl9Z9EbY+NoineD6V85YS6Mnywl1hCt8hYy840WdncDzJ9LTR/cWvkguHmfujv9HakqJxa4LEM50A9DSFmba8FPurBLsYGBhMDk6vBadX9wUmDx6ke9MutC/9ikBCxmPNMPTs41hmzMBcU3OCz9TgWDFZZcrqPa95v2gwRW9TiGBvHF+Fg+IaF1bHG0xQH+bl7GCJTZswrVs3Icd43fTsBC0HqdhI3I8ogWSmMLKN85YWkl59BebyOQQOHqR1r76ePdLnHOyOGyIkx4CaSND///4fOcWBVrOQSExEy2WxtfXhKxy/2nXTtn7drtAyEiuz44kOauf7kQ0BEoNTjOzQEF1f+Z+8AAnA4G9/i33NauyLF0/usbMqyXiWUF8SR4GZbPoNhrAGWuGhL4xu23sfLP2gXvxqqBGe/9/R37c8A317RwRIQI/beOaHcP63Idyhx9wBciRIKnkmlfPOpac1zf6XdFtjoCduiJC8ToL9KXY9E8TiKKJ85gdJxVWeuyOK54punJUlk5bwe6JJRNL0NocZ7IziKbZRUuvG/iq+QE+R7XVXIjaYPEJ9CSIDSSIk6W+LADDYEWPBBYu4+svfQsupmO3DyZgdzaMFSACe/TFUrznuRUzSjQfp//GP85+1RILuL3yB6ttvRykuBiCTyhILpcmmczg8JlRVMxLIDMaQSeVIRjOE+hIoZplsRn3V+XCm+SD9n/4S3kuvoHbxhwkPpnn2tghqrgeAzn43pfu/qYv0dGzSY3OySejeCt3bDBESg0lFEATKp81k3ae+RDadwjLBOTPZTI6+lgi9zSEsDhOlde5Xfccndu7MC5AAZPv66f/5Lyj/yY8RJzFe2OAE0L8XQp14nv4sqz01LF69DCX0AvKTD5Bb9xd6vvUt1FAIAC2dJvDJG/Hfeh8DUQtNW/sprnZRXO1CNk2sXSIeTrPjiY5Rbbm0StfB0DGLkBxGkg2byalOLtDHlseGCPR4qZh2A+mUxot3RZm2bJB4VCOTylFS66ZwipFzaHDyYbE7mLH6LGoXLkEQREyH36OJMPTvh5236bk6Bx4mU30lXf/7V12ABEDT6P/577B/70NYi1onTIREVTX6W8P0NIWQTRIlU934yhy4fG/8HR8Lpdn55OjxW1U1+tsiL5+PPEEY8XcGr4WuYAK/04z5VeYJ0d4eFjf3IKYzTPnNr3GsWQOAubaWKb/8Jc1XXEnvD39I+Q9+kN/HazcRSWZJZ1VMsojNpceIJsKhybsgA4MTxGSJkIQ0TXtwkvo2eB0kYxme/fcBmrYN5NvOfvf0MduJkvDKL2RRhFwKwp1jv4sNjPqohkKkDxwYs1m2r3dMm6yYkJWJCeYwmCAyiZG/8+HAE7tfDxQ/ss1RPLKdmtOzLGw+iPbpbaKs92Vx60IlAFaPnjg/qu8iaH1hVJsgydgdMPrOArPDxn33u4gF9WNIiosr3rOWYr4DJjskg3pFzcPVOu1FEO4aey0dL73stWQjSbRUKn9MLZ0m8cijCCsq9CTQ9LCD3FqgiwUc2c+RRLr16zc4bmSOEDE4TGLXPtSr34IU6YHpl+giJEBOENnxTDebHmjNb1s128e5750xYQFmb4Q3MjZKsogoCag5bXS72TCynfQM6YrOOIv1MfXweAogmXXH12FSRy1QrAU0VX+VR3813AcJCormcemyr+DaNFwROJPQx0dR0sdC0CsLv8xYZbZOfqBBLhIhsWXLmPZ0a+s4Wxuc9CSCIz8Pvxtl0rTsDI/ZVFYEyE7cezLb1zemLTc0RG5oCCZAhCQaTPLwH3bR1xLJt53x9gbmnFnxhvs2mERSYX1+Gu4G9xR97OvaCq5yfY4oCJBLk42MXR6n9h0k51yNlA6ONNr99Piu4e6/xVBz+kzVZCnk8rf8FP8z7zti59jozg7PlTNJLJbR72cAq8uEGGwGUdHP+WjCnaBmwF0O6RgkQ4CmC0UG26CgRhevyiYMERKDcclmc2x9tI2tj4wkPkxd6Ofs66ZjtinH5RzUeJz4hvVj2pMHm3FPmwaKDczDwhOCiCyPfVYAZDUOilW//0F/rgMt+e+lnm1Ye7aBdBWUztfXpbnMyJotGdaPlQjo1b8Otx/eJpc21nGThSAS27IDLZUi8ehjZFe+nUxqdPC3xa6w86kO5p87xah8ZnDSocYSJHbuBHTBu+Sjj2H96GfY8EwCs23sXOINV1c1MHgFxqt+LQggKcfucBdEEeuRlYezSQjoNoXE9Ot4uu1CWvYlOWyhXXx+KYunzUAKd45+fwLEB8HiGm5LA0cEjYc7obBh9GdHEbmAFTUysr4CQFXJxlTdBqsdNRdIR0E+Kmkik9BtHEeiDe9/NOPNsw0MJohMKouo6PPqYG+SYK9uwyuvc0E08kq7GpyG5IJBsv39IElkw2kaN48ef8x2mVxWPUFnZ2BgcCTpeIYDhWfT+GQc0H3DMxdchD+WwpAJOr1JxjI8e9sBmraM+JYXXlDJkstqkCcgaUG3g20Ye9w9e3CfaBGSdAwQ9Pm2mtX/mZ2Aqpucw+1YbQlgBlI6iCQXjnlvSSYj0PdYyIXDZGJJus++nm1PRgF9nVLVG+fchgxWx1i7rHUcW4LdbTYq+RqckuRCITLNLWPasz1jYwcnmsaX+njyb/vyn30Vdi756Dycr7coUSY+vl0hORyzkU3ptpEjUWwj3x9JuEv3W6RHfImilmSwK0F/22hbiGyMt6+bwz6mZDTDoS3DfwcBtNAQajKJZDv9RDeymRxbHmlj26MjvsC6RUWc9c5px80XaDBxyC9j55UUEZPlqHiAxDhjTTapF+07zmTGidvJ9vWTCwRQiosZ7Ixy14+3kIrr8yJRFHjLJ+ZT3mAo+BqMEI+keeJve+kYLsIHsGxdLQsvqHpFwZrsUBA1Fkfr66XfkqC3dXTcjsWs6sJiik2PbzPZR2Ixx3uODAwmAdlkQjZNvA+5bc8QD/56Z/6z02fhLR+f/4oiJOm29jFtia1byUUihgjJ6UYuk8/jEYLNWIPNertiIxfPkNq9Z9Tm1g98godu6ybUPxKvfv4HZlG/qHhCT0uUBcx2OV+U6jCKZbLSHA1OZrRUHJsVeuJZDm0dWX+LssQLdx0iHkqjmCWu+NRC/JWGEInByYnZdlSsYzo6YhtyFEPvLnL2FeQGjs6ShGw4PZKnOAF0Nwa556fb0FTdPmK2y1x+y8IJKQwnSQJmm5xf1x1mosWqDAzeKF2hBGWeV5/XDv7oR3jjSZSP35QXIDmMua6Ogne/i6E//x/+m2/GVKHnDXmHC4QF4mmKXRZsLg8AcUOExOA0ZEK9FIIgLBQEYSHwpCAIPxQEYcXhtuF2gxPEUHdslAAJQMe+ABXTRxtuF11Ujcv/CoOrmgGrF2ZePva7krmjPkoFBVjnzx+zmVJefqynbXAicZTAvLfrP8sW3fnZ8hw0nD+8gaYHonS8pFd0AH1y7CqDwcaR+2GoSf85GQJnmd7W+iLUnaf/rFh1wZDmp2HaxXqbKINsQd72ZxasdowKpjBZZVxFdmLBEWNDLqOyZ7ekB7J3b9cVAjVVPz9B0PuefsnwtZj1/lufH7kWbfhaOjdD9Wr9tOwCon30AkCwWpG9Tt0I4ygZvpbnof780ddyJHPeCs43nvRscOyYKsaOMfYl85GGtkHFErj/5nx7eM5n2fxQ26htW3cNMtR9VNLwKYjbb2XRRdWj2ipmFOAtNZL4TnqmXaT/f+ARMDmh/Igp1MB+KJ4z8tlTDY6i/Mf49Pfy/BOjkzgDfWn6pfkjDcWzdWEoSYGmp/S2urV6UvsJQvJ4sK9ZPabdXDf1BJyNwRvGP12/xyD/3vW038rMxaMdWtMWOSkw9elGtQlCKSvTRfOOQC4pQfb7J6T/wY7YKAESgPV3HSI8aCSqn9S4K3XBxKoV+ry2bYM+f+vaos/9NA0UO4pnnGDfBXORhrboonbDqJrI9m3yKKGvdDJHc2/pyP1scesiJ0dyeK6cClPhasNsH3GWCQIsvqgKpbhOT9g8el/Q58qOYmh5QRe6c5WDt0ZXyS5boAswLHw32Lxv6NdlcPoS6k2MCjoEOLSl/7jOfUW7Hcc5545pt84dnp8EWnSBEIsbZAsF9jDTFnlGbTtriRWPIwayDQaGhU97do5vpyiepa8NcxmweEaSkV1lunhlQZUeFCxbwF6oiwXZ/SCbTujc6LRGUXCsHq64pqo4g03YPaMDbKavLOXAhh56DhnGeIOTD9Hjwb5s6ai2WPEMmncMUjnTNyrwUbFIVM8tPN6naPAmwltqo3bh6LXO3HMq3ljVUqsHFr0HgIDvgmEBkhG2PNZDKO2Dpmf09Z4g6jZRgNpzoH2j/nNh/Wgh87rzoO2Fkc8zL4dDTyKJISTvUfNXWUZxoovsJQKjv5uyfES89TCl88YIpOMq1+cAR2L36/NnA4NJItibQFakUaJUgigwd7UfZRyhKoPTG6moHKW8DHI5PH7TmDnvjBWlhPsNe5KBwclATPHSuCc+qm3Ptihxk2FjO90J9MRGCZAAbH2kjVDvxIzPosOB45xzxrRbFyyYkP7fEN4afb4smfX5vNmBLiIo6qK/1gLdnhbuxWWJsOTM0TFEZVOd+MoMn/OxIHk8mN72fna8NNoG27onROBl7LI1cwpRLCPB2qIoMO/cKUiSIURgcOohFXgxz5w5pl0ZJ65nIokGkrxwR+OotsGOGIPtbyCRw12RjynLI1vAN1yd1lGs20aOJJcGf4PuCDySWVdAYlDvc1hY1X3gD2PG2/IGD96yN54Y8maloCDL1LmeUW2z5juwZ4dOSwESgGBfnO2PjfYFNm7uY6g7/jJ7GJzMFJTYaVg2Op5m9hnleIrGie/21gyLyh1B0Uy9SMtxRiktGzPuKRUVyIW6v6Rtz9CoRDVV1djycCvZzOh4N4M3N0NdsVECJAAvPdBC6FXsaXJpGZLHQ+K5p5k3Uxt1K1ocCmX2ZqhfC83PgmfKiICYIEDR2MKuBganColoesz8NzKYpL/1lcWozFNrx7TZ16xG8ngm8vQMTgYcxeCbOs7a5HIkhwXr4sWjmuNlM0cJkAA8f3sj8XCKicRiU1hx+eg4cbvHRHGNa0KPY3BqIBVVMmueFVE6Iu7GLOH0WYmH9NyxTCpH45axoncGBict7jLw1upx3a3PQ91aJLVX9yMfiSAgF7pHci7fINlMjs0PtuYFSABSsSwde4cmpH+r08TKK+tGtTl9FooMgSCDk4zuUJJS1yuLUoceeID0w4/SWOTBddFF427jffe7QRQJ/O1v+TbfsAjJYFR/R5ntdkRJMkRIDE5LJjrq7cdHfT5yNaIBYz3sBseFbHqsgfbgxl6u/twiwquTBHvj+KuclFS7X9lxbfZAtB9mXaUr/O/4ty5KctYX9KS+I5CcTor/53/ovPlmMp2doCgU3XIL5umGoe6UQFZg9Sf1pMytf4MLvwcbfgOqCouvh63/gHO/Blv+AkPNsPJm2PZPOPNzsOsOaH0Bzvw8bPoDrL5FT5Lfey+s/Qas/5Xeh+KAbf+CC74LG34NZhcseBds/iuc/y3Y9EdKB/7FlddfSU9bGsnhoqxgkM1bxy4co6EsrPkkPPZVWPERPcFsx+2w9lt633Xn6oIgW/4GF34XNvxWD5xZ/H7Y+veRaxlsglU3Y9r2I8q+/WW6vvJd1HAY0eGg7HM3YvKKerL+nntg7Tdh/S9h0fV6AtyR1xLqgDnXwhmf0RPYDI4bljnzKfzIBxn47R8hl8NUU43/2jMQPSp46/V7MRWBZR8m66hEze0c00c2depXIBQlkblnV1Bc7aSvNYKn2EZJrRub07gfT3qmrIBL/xee+CbMvVYXIrnwe/DcT2D/g3DF72HT76HpSdjzAFzxO33bri3kfDNIxcZW+s0Idj0xqHoNLLhOr8JjcsLQIT3A5ewv6sr+JwhRUfB98EZSBxtJ7dsHooj3+uuxzJ376jsbnHwUz4Sr/w8e+xps/gtc/COUF3/JspLbqXr7OxgM2vC645RUOzEJg3py2gRhrq2l9LvfoeerX0NLJpF8Psp++EOUoqJX3/kYGG9OnU7lyGVO/ffGaY2nGi75MRx6HEwOWHkTRHpg9lW64MHyj8De+7As+CD+D7+b/j/8CzIZlIoKSj5+A9ILN0O6Hy7+ETz7YzSzi2j/2HshnjTpld8dxfrcuGgmzH+nvmZyV+jCJ/PfAQ9/Gd+GT3HFlX+kO9VAJitRWuehqMoJ6RX6cbb/Gy7/jT6+x/r1sbr2bP1A9efpc5lgO8y+Wv/ZVaYLN8x923H91RqcWmQzKpo2Tnv6+I1hgijiufoqElu3ktiyBQQBz7XXYl28DAY3wPRL9UCfTAJkM6ZEByvOmUrNdD9DXTF83jQl/ghK/1ZYcj3c+zFdYG3lzXrS89IbYdvf9aToJR/QA+ue/xmUztefv02/h3P+B5qfgbO+CJ1b9DVq64twzlf0pAuLW0+08BliaJOFY9VKYuedTfSxJ0n+4nuc/9t/0T5gJZ3IYveYObChl2xaJZUYO681MDjRSC4PRTd/hI7OTr2KqyyjOd2gJdj2WBtL31JLIpJGlASmLvDjn2I4Vw0mD7NNYc01DdQvLibQHaNwipPiGiey8gYri8y5FmIDZNWxNiRV1ciqsv4e3nu/bgvd9HuYuQ4qV8HDn4Op58Dyj8K9N+nv1uUf1UWs994PYhDmvUN/T2/4NaaDt1L+xa/T+a1fkQsGEWw2Sm+5HlNmO7z1b5CM6O/p/r26KN+5X4HEEAwchN5dup127dd0O0ffPuhYr5/Hhd8BBH1+0PoclC+Fi753QoLuDd48ZDM5tjzcyoK1lWTSOXJZFZvLjMmkYWowbFxvNpSycsq+/TU6Pv1Fck0Hmb5iPmgamVQOu8fM/g09eIpPz6Q3A4NTDVUax2+mgSqbj//JGBxXxrOJaZpuQ5sIBEEYYwdzX3sN1oUnQf2misWQjkOsF3IqSJKeBK9pegyFKIMkQ6wXsXQOs3L7Kby6jL5BG55SFyU1Lmwu4xk5FkSzGbmmDlXdO+a78XxOAP5KJ1d+eiHdh0Lk0iql9W6KKo3kG4NTE9njpvTrX6fj5pvJdncjKApFn/ss5oZpk3rcbFYlnRz7jGVe5rk7JsxOuOQn8MS3YN/9UDgdLv4B+IevxT8dVn1CFyY5+JAurnr+t8E3Ddb9Cp78NkR7YfY1uq/v6R/Aqk/p3z31PcRAI7NnvYT/xnX0dWXxFNkomerG5jJifF4v5ikzWHnufqqrJAL9STzWDM7+7ThXnP/qO5+i5NIv5ws0xB1ORUxWmZVX1FE7z89QdwxfuYOSWjeKeZyw/6oVcNWf4PFvQN8uqD4Dzvo8FM047udtrq+j9Nvfoucb30RLJpH9fsp+8P28CEkikh6zTzyUHpUcZ2CQTY0dt3JZldyriNWY6mZT9t1v0PWFr8BvvsmF7/80AaUUixyj1LwPb+RZWPAeCHdAuEsv4uYogYu+P6YQq4HBqYSa1UhGM2Pa0+M8S0dimTMH3wc/wOAf/giqinnaNApvvBHRZMxBTzuKZ4PKcDzityDaA7OuhIXvQSooouSLX6Tj4x8n094OioLm8QGdo7pIxTLkshP/vp4y08sVw3YQq12htM5NgeE/eVMiiCJFxVkuvshEX1BBMpswFRWy/p7RRUpiwYkVwzEwmHR89XDxT+D5n0I6iuJ0UnbLdXR890/kBgYQLBZKPv0RzDNm60V4JgA1pxELjX1WEpGx84XXS+UcH5ffsoCepjBWp0JZnQf3GymaZGAwCQxEU6yc6nvZ77MDA/R+45uoVZUcdMuc4ykYdzuluBjXhRcS/M8d+G++GdFuxzssQjIU0+0cgiBgdblJGCIkBqchEypComna2RPZn8HE4Sm2YXOZiIdHDLjFtS7cxTaKa9zH3pHFrv+LumDNZ2HR+/TqKCWzxt3cOmsmVbf+i0xHJ6LTgbm6GkE2Kr6dMnhrdAdqtEcPGJ91pS4+YyuE1Z/SxTXmXA2pMFgLYdmH9CT3eW+HZEAXqFn0Xr2KzuL36slkZrf+fTYNdp9epVKx6f1kEnpFyli/njQ2+2rEdIQSm5+S+iE98EUpp16OcnDLaJXrWatKYXq9LjaiZvTks/iAnmQ/762QSeqVrWMD+rXMvhrSseFruUU3Js+5BlIhsPpg6YdwihI1t/+LbG8PclEJJp9dr5w9721632a3/vPLXYuj2BAgOQFIBT4KP3wTznPPQY3HMRU6ka1AyWx9gxuf0+8RZxmuVI6yeg9dB4P5/S0OhYKS02PxY7ErVM0upGq2UXn5lMLq0oWaGi7Sx0+7D8I9ULV6WHV/JtSeCaF2vRqZpwounwLpMHazl9lrUmx/csT4K8oCvmlTYeH6kQrFjmI9aX3e23RhnpMgmNZSX0fln/5Iur0d0WrFVF1tODNOZerO0e/VSBcodqg+C1s6TK1ipTabApMXTDZwNkzoYQWTCfdll2GdN49cIIBcUoKptHTC+i8otSGbxFHByfVLinH6Xlkh1eAE4/SD82xdIVpNg2TRA6glkz63k22wIo0kiPimyTjOvwQ1kUbxe1AK/TD7aX2+5yqFmeuQchnm7pN4tHnPqMPULpkChf+n919QpYv6XfpTXbBRsepzUYC33wrJAD5rAb6jqxFZPbD0A7oQg6bB9ashPqTvb7KDmtPbRUmfz+TSetCjqupzdfENJpwanNa4Cy34q5yjKp3Y3Kbjnvhmrqmh4te/ItPWhqAomKqqEK1WqKiBSDekYoCmP6Oahl3NMNUFU+sBpRBkK8xco3dWvVoXs1TsULVSf56X3KA/H44ifX1WuVx/TlIxmHk5aFk9+Zlhx3gyBLXnAjkQFXCWgvU12EkMXjOmuhmUffu7ZK7fh6apmKq99CUy7HyqY6TymQDFtcbfweDkxDJ3IdV//iPp9jZEs0jYUoAo9hINpFh/9yEUi8S8cysoqjIShAwmH0eBmbqCiRFdzOMqg/O+gad7AOtj+0cFIZROdeOuqQGxBOa+VbczTLtIny8LAkzfATafPnf94FP6fNtZBqIIH3h82GZaos+VL/sZRHuxKzZqFpxDpq8P2e1E8VoQrO8ZrsYOvPcBSEd0u7EyXOXzPffpNmlbob62BLjudkgEwFIAluF59tv/Ndzm0QUDDQwmEbffiqPAzMb7m5EVEVESsDoVpn9q0Yk+NYMThG35Gmr++VeSoQi7ngrRcSCErIik4llMVpmC0hMnCm1gYDCCu9iO02chMjhS2dNbZsdVOE51cYPTivFiaIqqnLgn8G//snawk4HaMyDcrc+rNWGkEq4gDIuRDM/xJQXLzLVUxbqpEmUoOf6JrKc6BdWFlE510X0onG+zOpVXtMsWVjgprDCETQ1OD6xzZlP971vJdHYhuV2YKisnPXbQWWBh+ooS9j7fnW+TFBHvG52D+6fBlb/T49pMTrAdEZQum/Sx1T9djymz+8Hh17/z1eiJzWpWLwAnSvC2f+qC6JkklC4ALYfFW0uVYqFqwRs7TYMRXNOmYXcfJNOXQcuKmC56K5Lr9LURufxW/JUO+tui+Ta7x3TaxMG9GbF7zExdWMQxlU5oOB88lXp8r8UDvtpJPrvxEU0m3JdfjnXBAnLBIEppKUpJSf77ylletj7SNmqfOWdXjC+uYvCmpaDEhtkmj/iOgSkzC45pre44ey3Vt9aS7etD9nqo9foho0FuJlhWg8kKU8/UBRjnvU0XEDv8zjYwOEWxuU3MPWcKm+5vzrcJokBhheMV95M9HgpvugnXpZeiJhKYKiuRC8ZPvDQ4xZFkqJgP3ioomaMXeLAVQkElAJaZPqr++U8ynZ2IDjthxY8odaHmRkRH5pxVgd0z8bHmsiJRVuehrM4z4X0bnHpYps2j3NtNUVsrgilHe3L0fAD0mG0Dg1OKkll6wdbCBj2G3VKALZOg+v8Wkx0IIbmsmEqKEbwVE3ZIk0Vm7jlTeOrv+0a1V87yTtgxFEWivKGA8gZj7mBwcpLK5gjGMxQ6Xn7+0vv9H6AmEoSveyu88CQ218vHLBe89VrC999P9OmncV18cV6EZDA2Ivhjc7qIGyIkBqchhtXuTYLLZ+XSj83jpf+20HMoRPXcQuafNwWLTXl9HTq8gBcKXr1yoOL3o/gNA90pi6yA58i/87ACmOmICa7Vo/9vPsJhdTjQ23yEAcs0jjPXM849dGTbYYetqTzfVD7dxtrrRTY90IKmaSy5pJrymYVgVYAjHIWmylfp2zvOtQxPGMz6uZqcYKoaxyHzan0bnFAERcEy62VUIJ0jhgezVeSsd05jxxPtNG0boLjGxeJLqo3AQoOTA9cRwgne6tHfmWwjFXUA/HUAiMC8tQlMdhN7nuvCVWhl2VtqKKzygHCU0cDmHRkHTxJkrxfZe3Kdk8EbwFWi/zvOCKKIuboaqqsnvG9vqYN1n1jAxnubGOyOMW1ZCbPWlL3xSuMGx4eiV6+qJgAW1yusXRx6gmflrAxnXzedzQ+1IikCyy6rpbTeC+ajEkBl09g5osU5Mld+OY58BxhzTIMJwuIwcd57Z7LtsTZadw5SWudm8UXVOL3HX0hJdruR58wZ3SgIetLza+HIddnhZ8VxlGr14XWo9WWcHe7y8dsNJhXJ7UZauCz/uX5RCk2FnU92YHUoLF1XS1GlkWhhcPIil5Qhl+hjllnVuOzjZjbc20RkMMWsNWVMX1GKIAon+CwNDN4AooirvIjLPmblpf8209MUpmZeIfPOnYLZaweOWLu/nG3BedR60H6USO4Rc2XFDkr5y7yTbQWjk3pAt0cftkkfxuzU/71am4HBJGFzmbngg7PZ+nAb7XuHKJ/mYeGF1ZMSkGlw6qBU1qAAq4vj7Hyyg8YtfVTN9rHk0ho8RiUoA4OTAofHzCUfnstLD7XQdSBI5Swv89dWYnMZIumnO06vhcs+No+XHmyhuzFE9Rwf886rxOJ4nTE0L8O4drCTBVcpcIxC7u4JFj98E2G2KZz9rhlsf7yd5u0DlNS6WXyxEZNg8OZCKSpCKTp+44gkiyy+qBqrQ2H/hh4Kiu0svawGX/krJ2EeE4pVT/J/OZxF+r+jOVw46WjMTiPxeZKRSuqRjn/YwgnB6jBx3vtmsu2xdt0XWO9m8YXVOAqMoipvGoqmn+gzAIbjdmpqxv2uuNbNRR+aw8b7mkgncyw4v5KauUaBNYPRuItsvOXj89n0QDN9LRFqF/iZe04FJsuxpb2Yqqdiqj5SvmecytfS0bHxBganLoIgMHNVKaIksPuZTuweM8vW1eI/hpgL0WTC0jCxheQMTmLG87sOo/gLUfz6O9msarzl4/PZcG8T4YEkM1eXMWNlKaIRA2FwHJD9pch+3WY5JZ7hnHdPZ/ODrYiywNJLayitM4paGZyCyCZdjOQITMVgqpu8Q9bM86FmG9j6aBsmi8SydbUU1Zy+wqwGBkczGNWLEPid48fsJHbsIHzfffg+dCOtioDd7UEQxZftz7pwIZK/kPDDj4wSIQnERoodWN0eQ4TE4LTEECE5DcmFQiQPHiQXCGCqqsI8dSqCJOGf4mTt9TNJx7OYHQqS9PIDo4HByYzJKtOwtITK2T7QwGKf2ECgV0LLZEg1NpLu6ED2FWJuqEdyTICT2uCEUVBiZ81bG1hySQ0mm/yKieQvN74aGJxMOL1Wll5aw+wzy1AUCeUYnW8TSS4cJnnggP6sVFZirqsznhWDUxZN00gfOkSqpQXJ6aRw2jQu+shcMsksVofJSC49TckODJA6cAA1kcQ0tVYXtjkCi0Nh5uoyahcUIggiZpuxtDY4NfCW2jnzHdNIxTKYrK88932jpLu7SR88iKZqWBrqUcpeo8CIwWlNuquL9MFGNDTM9Q3Yy0pZsLaS6ctLkGQRk9UYVw1ObrJDQ6QOHCAXjeqVradNpfhjLjJp1UhWNDit8Fc6Wfv+WaTjWSwOBfEYfArZQEB/PiIRzNXVmKZORRCMdZPBmwNfmYPV57pJzBdQhDQWSwow/AdvZlJNTaSbm1Hsdpatnc6ii6owWWRkk2ErNTA4mfBVODj3vTNIx7KY7QqS/OpzntE+Yx/mhgbDZ3wSomYypA4cJNPViez3638n24gIVOEUJ+e9bybpxPDf3oihMZgEcpEI5q5GFtYkWbCsBlt5IYrVEKozMJhsXIVWll8+lXnnTUExyUhqmsSOHWR6elHKSjHX1SFaDGGGNwNaOk2ysZFMZydyYSHm+tM71s9b6jhuvkADg9eDokjUzvdT3uBBVTWsjhGfippIkDp40BirDQAoqnJxwQ2zSSezWBym15T4rq/ZD5HuaNfX7PX1SE5DsNzg9MZRYGHOHJmpJV4kScPqyxmCEQbjcnQ8rLmhAblgtDCJIAqUNxRw2U3zyGRUbE4jBsLg+JFqbSV96BCCxYK5vp4ZK8uomecHgddfhN3A4CQlGwzq8TXhMOaqKkx1dRMWX2NzmplzVgV1i4sQJQGz1Xh+DN5c9EdSAPgd4/tj+n7wQ6TCQnw3fIDYz3+AveCVi2kLkoTzvPMI3X0PaiKB22pGEGAonslvY3O56WnsnbiLMDA4STAi+k8zssEg/T/5X4K33aY3KAoVv/wFzjPOAEBWJGS3BLksxINgcYP4xh0N/e0RAj1xLDYZf5UL6wRXhzEwGI/XuohMJTJEh1KIEiQiGZKxDG6/Da83hyApYHr1qnORxx6n81OfAlUFwHvDDRR+6MbT2jl5ypGKgqaC5dhVGkVJxOZ+5UCfVxtfXyuh/jiB7jiiLOIrtyNKArFgGrNNPiHV6A1OP2wvo9j4Sgx0Rgl0xVAsEkVVrteVPJcLhej7yU8I/nv4WZFl/Vk588zX3JeBQZ5sCtLxl1VhP4ymaQx2xQh0xTBZJfxVztf1LBxJfMNG2j/4QbS0rlLqvOgiSr78JWy+capkGJwWpLu66PrCF0hs2IgybyHStTeQ6Vaw+2x4S2xYXSP3lMX+KuNkIgSSDCb7JJ+1gcGxI0kiNtfkBrmnmppo//BHyLS2AiCXlTHlj38gqhQS7EsgKyK+CgdOpwTpCFg88AoK0ganF6nGQ7R96EYQRCyf+TaxfTFsA70UTfViNQIXDE4BMv399Hzt66Q6ujDd9GVizTkc8R6Kp3oNARKD0xJZkVAtGn2tEcJDCewuM75y+7hz4ezgID3f/BaRhx4CQDCbmfL732FfvAiSIb26r2T4DgxOXxI7dtD5P1/DdP0niNmKsSZC+Ks17KVGNdc3I/EtW+j7yz/giutJRGUce7spqvcju4z7wcDgZESWh+MojhHDZ3zyo2ka4f/+l+7PfwE0DYDCj92E7/rrEa3W/HayIp30ybm5rEqoL04slCKdzOH2W/GW2o9JJHBcDvtcrB4wBAMnlVw0yuAf/ki6ahZRdyVSe4TCWISCedNP9KkZGLwpEAQBm9OMmskQ+Ne/6fve9/PflXz1K3iuuQZBfpnwWU2DRABMDr1a7SQQD6XobY2QS+fwljvwlhr+xMkg/Mij9P3yl5g/8TVigzZs2UGK6gWsntP39308fIEGpyAn0RwwncjS3x4hFkrj9lvxVzoR1ByBfx89Vn8VzzVXv/xYbXDaI5uklxXzDfbGGOiIIsoiRZVOHAUjMbeRJ56g85O3jKzZ3389hR/+sLFmNzhlCA8mGOqKIQgCdo8JSRZxFVpfUTg3sWsXbde/HzUcBsCyYAHlP/ohpvLyiTuxY4zhNDj5SATC9HemSSZyuJ0akY99hEx7OzASDyuPEw+rWGQUI6XB4Dhy9Fhmv/QyTDd+jlAgg91toqjSZRS2MjipCQ8mCPTESCdzFBTb8ZbZEXNJ/R1q9YzaNjs0RO/3v0/4nnsBEBSFit/+BsfKlRN6TkcKPxoYvJnIi5CMk0sU37KV+EsvUfzFLyA57ESDAZzeV88Ncl1wAcF/3Ur0uedwrV2L26oQiKXz39tcbuLh0MRdhIHBScKkzL4EQbgGeEjTtIggCF8GFgLf0jRty2Qcz2CE1P79IwnyAJkMPf/zFSz/uR3F79fb+vbCht/AoSehfi0s/SD4p73uY7buHuTB3+wkl9GNdTXzCjnjbQ2jDHoGBieKZCzDUHcMNaex6f4mTFYFURJo2toPgCgJXPw2O1XN34VVH4PqNS8bCJ/u7KT7q1/NG6YBhv7wB5znnYtt/vzjcTkGr0QmCc1Pw9M/gHQUVn0cGi6aMGPnMY2vx0h/e4R7f7aNZFRXvCusdDB1fhEb7m3C4lA4+7rpVM/xvf7AMQODVyAeTjHUHUfNqhSU2vOiNx37hvjvr3eSSeUAmDLDy5nvnIa70PpK3Y0huX//iAAJQDY78qwUFU3YdRi8iejYDM/+GPr2wNy3wvx3QEHVuJu27R7iv7/ZgZrVA4qnLvKz9NIavKWvz4mcDQbp+cY38gIkAJEHH8Rz5ZU41qx+XX0anPwktm3XBUimzSR41WfY8OgQsB+ApZfWMHWxH2/Jq9xT8SHY9wC8+HMwu+Gsz0H1GZMWpGhgcLIRefzxvAAJgOnM8+gM2njuth1EA7ph111k5ZLLkhS88AmYfiksvh58U0/QGRscT8IPPYgajaH8/A7u/8t+1GwEgIalxay+pg7rGxQQMzCYbJK7d5M6cID0//yBR/7ViKYFAViwtoLFZ9gx+ScwkMvA4CQgk8qy7dF2Nt3frDcIsOKKqVTO8lJYPrpyYHLPnrwACYCWStHzrW9R9bkrkDf9L9ScCSs+AkUzjuclGBgcF3KJBAN//BO5T/6Q+29rQ1M7AZi1poyFF9px+V6bjc3g1CYXjRJ48jl6zvowm29t0xsFOOvtDmb6tQmrYGVgYHBiMHzGpwaZtjZ6vv6NvAAJwMDPf4HjzDOxzp59As/s2NFUjYHOCG27hwh0x9m/oQfQq9Fe+MHZ1M5/bT5qALq2wrP/Cz3bYfY1sPA6KKie2BM3yJM6eJDUyst4+N+dpOL6/LCoysk51jZ8FXawGYL3BgbHg3RTE30/+OGotp7vfBfrkiVY6urG7jDUDFv/BrvugNL5sPqTUDZ/Qs8p0BPjib/upadJT6wy22Qu/shcyuo8E3qcNzvp9nb6fvZTtK/9gQf+0YSqRgGYuTrO8nVTDWF0gzcPo+aAV8PCd52wOWAqnmHTf1vY/pie+CwIcO57ZlDlj48Zq3u/8x2sSxaPP1YbvKnpaQrx31/vIBHR42995XbWXj8LX7mDdEcH3V85as3+xz/hPO88bAsWnKhTNjA4ZgY6I9z3s+3Ew3q8YkGJjZp5ftLJLIsuqsLhGZufo6ZSDPzmt/mkfYDk1q0ktmyZOBGSzs36u6R3F8y5Fha882VjOA1OIuJDxNqaeeoxiZZdQwDIJpELvvsnsh++Ei0SMeJhDU4a9LHsN/mxTC4tJb7uJu7/3x1oqm7jnXt2BUsvq8H8GotZGxgcD7oag+x+ppMDG3sBEEWBC99fR83BL0LfLj0+dvZV4CoDILlvX16ABEDLZOj56teo/vetyF7vCbkGA4PTiYHoy4uQDP7pj0huN56rrwYgFhiiZGr9q/ZpW7QI0WYj9sILuNauxWszMRQfyTOyutykE3GymQyyYryrDE4fJksC7n80TbtdEITVwAXAj4BfA8sm6XgGw+QGB8e0ZXt7USMRomYHuZRGLFSCOu1reBveie1fa6FtPbz7HrC/9spb0UCSF/7TmBcgAWjePkDDshLqDBGS04JUIkN0KIVi0dWkM8kcFqdCKppBUkRESSAVz2F3m/KOuVgoRSKSxupUSCdyaJruLE1EMlhsMtmsSi6rYrErJKMZFLOEazjJPZ3MEhlKophEBFHv2+ZSSEazCLKAIosk41lsLiWv2B+PpIiHMlgcCtl0DjWnYrYpxEJptjzUQjyUxmSV6ToYYtlbatlwb1P++tScxlP/zXDN6qWoezaQzE3FWlJCKpZFEEExSySjGaxOhURMxHzjp5EzcTKyDTHQR+qOv5MbHDrOfxWDcenYBP+8duTz3R+GK/8Ac6+ZkO4Pj6+F3/kO2qJzScbSWOwKqph9xf0igSSpWBa7x4TVYSKXU9n2aFtegARgoC1K1UwfsiKSjGZ46He7uPaLiymscL5CzwYGL080mCQ8kEQxS4iSgNkmk0llSUWzPPefg/Q264medo+ZC26YhWwWWX/3obwACUD73iF6m0J5EZLD47Mki7gLrQji+IHyuYFx5iJ9faiRCBgiJAavlf4D8Ld1kNLvWZ7+HoQ74ZIfgzzaIBCPpHnm1v15ARKAQ5v7qZ5diGKRcb7M3DQRSRPsiyMIAqIkIMoCDo+FVDxDOpRGqpuOddFyxDUXIFdUIcgSCVkg0x0llcwhigKapoEooGY1ZFlEFDU0TcBTYjvpKygajCXT0QGAdMV1bHxy9DzvpYdaMDtk1KyGmtMwWWRymRy5nIamqoCAbJJwhbeh7fovkYabUNweMspckk1RBFHEP8WBYjbU2A2OD5qmEeiNo6kaWk5FkARUVQMN0kkVSRFQTBKCANm0iqpq5DIqTp/lDSVJJrZvz/8sT59J9uJ307pzKC9AAhDqS9Dc5qQgHYMXfwE9O+GtfweL6w1ds8HJT3zzFjy/+TsP394y6r19YGMvdYuKKKp2kYxl0DTIJLNIsojJKmN3m4gGU6g5dXjNLmBzmcikVGxuBZshXmJwnMgNDGD/0R944s/NR+aysfXRDiqmzcKRCZHLiaTiWaxOhYISO8lomlB/Qh+Hh21iBcX2l11XGRgcD2LBFMHeOJIsoNgkRFFEVTVkWdBtsZJ+f6YT2REBEgANXnqgBZNFIpdREQUBTdDFnoWiahy/+DuS2w2iAKkUuYN7URN9EGyFrX+F1ufhfQ+Cs/gEXbmBwRsjGc8Q7I0jKwKaCumUbhtQzCLm62/mkb925gPhAHY/20XlLK8hQvImIxeJkD3rSjb//sBIowbP/ecQvgonmqZhssrkshrZdA5ZEUEQcXhMRrVqA4MJYLAzSiqexVloGdcuHA9lCPbF0FQNR6EZt89Gf3uERCSNzW0aI7R2NLlQaFRSR77d8BmfFGiqRmggQSYm47j2HWR9FaDmEIe6yfkriWl2iKSJhdKY7aN9B+HBBJlkDrvHRCqWJZtVcXrMxCIZNFXDXmAmHkiBAFa7TKA3QS6r4igwk8vp/gHXET60w7EWslnCYpOJBlIoZgmTVSYW1GMwzNbh9iN/Ho6faN8XoHN/AMUs5QVIDl/jk3/fh7/SmS82cEwMHoK/Xg7JoP752R9CoAnW/RIUY64yGaiCxI7N+ph0mL7WCN3dpaREAbs7jttvO4FnaGBwahMaSJBN6XFsyUgG2TQ8Dg+L/g12R4gHMyimYqoffYTeOx9BszoQtr1I4vGHUIPBsZ2mY/DoV2DvcBJIoEUviPSBJ8FbM2Hn3nUwmBcgAUjFs2x+sAX/B2cbfsQJJDfYh+0jn+Xhu9t0/9gwe57rpmaen+o5rz1e9lhJRjNEgykEEUBAkgSyWRWTWSKdzGKyyqgZFQ1wFVqRZL1QVXQoSTI+Emd2mMhgklQii8NjJp3KjsxZ4lmyGRW720Q8nEEQwOW3IkkiuZxKuD8xHLspkYhkMNtksmk91lcxSyRjGWyukbXo4Tg3i10mldB9NKIImbSKYpZIJ3KYLBLpVA6zRcbps5BJ54gMJhAQECRQc+Sv9/A+R8aWGhxnBhuPmgP+CALNJ2wO2NsazguQgK4Z+OxtB/F9uGGUaAToSXjjjtUGpw3JWJpgbwJREvCV2ZGOiLFKRNOE+hJkkllsHhO+Mn2truZUdj7VkRcgARjsjNG+dwhBAnM0YqzZDU5ZNFVjzzNdeQESgEBPnOo5Ggc29uIttTPrjHLEo3zMA30ptI98Fd9nv42081n6PvVpANItLRNzYgMH9XdJavjZeub7EGqDy342JobT4CTjwMN0JVfSsutQvimbVtnwcBerP/MVwl/5jN42MABAJpUj0BslFc1icSiIskA6kcVk1eMejr73DAwmEjUWI7lnL6V33kPGUYqqqtz38+2j/K47nuygcpYXt99CJq1hc5vIpnJkMypOrwWTRc6vxcxWfb1ymEwyS3goiSyLWOwK0aBut32txVoNDMZjqDtGd2MwL0ACoKoaT/27Ff+aGTiG7oVHvqznQ5z1BRCEcXNuMu3t5CKRVxUh0QXMo6TjWcx2GUESMFsV0okM2UwOAYFUIotskkDTkE2irgCpgayIOAt1u4GBwelMf0SPV/c5Rtuj0h0dRB9/At+HbkS02VBzOeLhEHbPq4v/CIqCbelS4i+8CIDXbiIQG5m729xuABLhEE7f5NkdDQyON5PlsTicwXoJ8GtN0+4RBOFrk3QsgyNQKiuHJwYjE23b8uVErX4ygykObOxj9zOdqKrG1AV+5l93iJK/T4WhptclQhIPpwn0xFh+ZQ0V9QVksxqZZJZQf3IiL8vgBDHUHWP3s504Csy4/Vb62iL4Sh0kIikyKRVvmYO+1hCaJiArAhUzvKiqRvueIRwFZiRZJNyfwF/pZKAzisWmYHHIDHbGKKp00toXJ5PSnWll9W7MVoWephC5tEpBqY2+1gieYhvdTVlS0Qy+Cgd9LWE0TUBSYMo0LxoC7fsGsTnNmCwigZ44/koXQz392F1mDm3pZ8H5lWx/XHdcZDOjHRWCAGabQmjqu2ncEcM/aCLe0s22R9tZdFE12x9vp7jahckmc3BjL8vWLSfYG8dsUxBKoPSXl5LyWFBiaRLRDIpZRtP0oFGr00QykkGSxVELWINJYv+DY9vW/wpmXDohDjOlspKyv/6FIUstz/5uF5HBJI4CM2ve2kDtOAWKNFWjdfcgz91+kCkzvDh9FipneVFMEn2tEc67fgZOrwVBEOjvDCNLMvPXVrLnOd2AHO5PGCIkBq+L7kNBnvnXAQY6ophtMgvOr8JTYkWSBEL9ybwACegJR50HgpRP91DWUEDFDC8lNS5EWSLQHSWX1cfMYF+c5+84iCSJ1MwrJBZKYbZKWOwKmbSK3W3GZNGnlUrllDFzEeu8eciGAInB66Fvr25ws7iJzXg/Sd9CJHsB2c4oil0P7D1sBEsnstQtKkYxi/S1hunYE2DRJdXY3CZigSSpeAZRhmxSw2xTcBVaGOiIEO5PYLYryCaJXFZPwG/fN0Q6meXpv++nvOGdVM8r5LnbGrE4DrDw/Epkk4TJniERSdO+J0DlTC+ySRwWWEvj8FoR0AWBvGUOI9HoFMMycyYAWvV0tPXdXHbzXGRFRpQEOvYPEQ9l6GuN0LZ7EE+JHV+ZncHOKJlUjt3PdpHLqJz5jnpaQp/BZbYztcpP4wv97HmuC1XVqF9UxJJLaygosZ/gKzU43cmksvQ2h4eD/TQkWSSTyiGIAs3b+nEV2uhtDtGwrBg0PXjwpQdaCPbGsblMnPmOadTMLRw3QT6TzhLoiaOpICkiuawe3CgIAulkFssnv4b1M99EMElkEhrZdBZ3oR4EZLbJzFxVpgtdKpBruIzglKvRTAWIvUkkm4zTZzUc16cxrg/dSMxSQGSwFafXwuprpmJ1mdE0Ddkssv2JNvxTXGx9uJX+dn1Ou+at9SQTWQpLHXQeCLBvfQ9zz65g22NtxIJpXH4r5713BqVTPSf68gzeBIjzFpNMWLHYFVZdXYe31I4gQi6tEoumSXYmeP4/jcRDaXwVDlZdXUf7niEkWaSnOUTH3gCSIrLk4mpmnVGOxW6o3hscf7oaAzz5t/0Ee+NYnQpnvmMaNrdJF1QQNZKxLPvX91De4MHptbLk0hpyWZV9L3YTD6V1EVNBT5AxWSUEUSCbVhFMLkz1uqCYIAoIgFRWQUBTkaovQ4x0Yml7ANvQIUOExOCUZKAjwhN/24e70IrJKrPvxW5UVaN2np+CcjsV9R4q5ySYc0aFPgdXBB745U7Cg4bP7M2GXFhIvLkPe4GZ8947A1EUkBWRvRt7iIXSKGaRRDRLX0sYq9PEtkfbiAZSOH0WznvvDMrqC070JRgYnJKkU1kOvdTH83c2kopl8ZXbOePt0yir8+S36WsNc2BjLzuf7kDNadTOK2TeeVN45A97iAX15/CMtzW8YkKqUlKCqaaGdPMRQm2yjDKlYhKvzuBYSMYz7H6mk00PtDBjZSlJ3wU0bulj+bpaWsMD9G+PsmKqzM47thDs0W1gZ79rOuXTPDRtG+DZWw/gn+KkqMbFjsfbqZ5biMWhsOe5LqavKCWbUTm4sQdBEJixqnRYgMSSX+vJisiydbXMWFVKNJDi6X/sp7spxKqr6jj4Uh/9rWFWXl3PgY3d9LdFWX11PQc29hALpbjgA7NIxUVUVSCdypKIptn5dAfpRJbSqR6cXgtTF/mRFYlUPIPFrhALpbA6lbwYejaTIxZIkc2p6KY1XURdEAQcXgtK396R5NPD7L4Tzvw8+BuO95/rTUHaV85g737e8vF5iJKIbJJo3zNAoDdOIpoh1N9D3aKiSU2CNzA4Hcmmcxx8qZdnbzvIwguqaN01SM+hEIpZYuWVU5m2vIT+tijP3X6Q/rYIJqvM8strEeau5el/HaCs+loWfeVclNLSsZ0H20YESA6TCED//gkRIUmlskQGEgR7E0xbUcLMlaWAgChBLJgmFkzhKTZESCYKxaH7fIu7h1h8SQ25tIogwRN/3UssmHr1Dl4nA+0RHv/rXgbao5jtMgvWVtK+d4iaeX72vdjN9BWl7Hi8ndlnVbDzyXZqFxYx/7xKBtrCPPG3fSQiGQpKbJz3vpn4yh007xjgqX/sIxXLUlhhZ8aqMp6/vRFvuZ1py0t44Y5DlNV7KKv3sPm/Lcw7bwozV5ey93k9BlLTNGoX+LE6TbTsGGDeeVPY+nAblbO8qKoeZ3Tee2eSSeV4/P/2kIhk8BTbmH1mOZvub2bGylIG2qOomkZ5QwH7Xuxm3rlT2PZ4G8vXTaW/Ocz2pzoQJYEZK8uIh1LIioRs1mNHy+o9NG7u49z3zqS42ihGcNzp3/8yc8DPgX/acT+d6FCKsmluVl5RRzatIptE7v3FNuJpGdHhQI1G89tKBQXjj9UGpwX97RE23NNE665BJEVk/rlTmLG6FHehjf7+MENNMZ7/TyOpeJbZZ5RTMz+Lt8xGJpVjoCPKOe+drhdSEwQ6DwYY7IyiWESsdh/uv95L4sdfJb1ti34wWUYp9Z/YCzZ40xIPp4kMJTFZdYHSZEwXd7A6TKQTWWKhFCaLTCadJRHNYPOYaFhajNNnRRCgZecA4cEENpeJQ1v6UMwi1XP8WBy6j7l5ez/P/vsgkaHDMe1Lqbj9NjquuRbrvHkTcxF9e0cESA6z49+w5lNQ+OoV4w1OEKkobPgN8bqVFFU7OONt08gOC8s99Ic9UDMjv6mpuopQf4zuxjDP/6eRZCyDt8zOqqvrEIBDW7oorfNQXl+Qv/cMDCYaySLi/vOdROJZ1GgKAYGq2T7mnFVBLqsiKyJ3/Xgr0YBeMDvYH0dTBXY80U42rVI5q4DFF9fwzK0H8muxs945nZq5hUQGkzz3n4O07hxkxZVTad42QE9TCMUisfqaeuoXFxmCoAavG1XVGOqOUtrg4fJbFiCbRIJ9MZ782wHi4TQpcxmOwxuv/xUseg+4ylGqKsf0ZVu1CrnwlW3FyXiaXU93sfm/LWQzKuXTC1iwtpKDh3qxOkxsuK+J6ctLiA6l6DoYZNm6WnIZFZfPQqAvjiSJpFNZZq8pN4pjGJzW9EdTuK0KZnl0QeHQ3fcAUHCNXvA+FgqApuEoOLYYDfvKFUSfeopMZycFdhPtQ/H8d1aXLkISDwUNERKD04rJmiV1CoLwW+A84PuCIJgBQyLrOGBuaKDsxz+i5+vfQA2FMM+ahfeHPyOnCXR3xNj5ZEd+20Nb+vEU2ygpmf+6VUgFQePKzy1kqDPOA7/aSSKSobzBw7J1tRN0RQYnimw6R09ziKHuGG27h5i5qpS9z3VTv6SYWCBFV2OQhRdWsX9DLxXTCkCA+3+xnaWX1nBocx+eEhtOr4V9L3Sz9LIaWrYPIJslyuo87Hyqg4UXVNG+d4hkNEP90mIe/eMeZq0uY7ArxmBHlLnnVrD3hW5q5hWSSWZp3TPEkourObipj6IqF2a7zP2/2MHSt9TQtFUXHPFVONj9TCeLL6mhbecgpXX6BCAymKSgxMZgZ2xYwQ/QoGSqm5q5hQx1RwkGRJq3D7DjiQ4Kpzg4420NPHvbAZLRLAWldt2htqoESRLobQ4jmyTKp3l4+G8t+rXc20UikmbashK2PdbGjJVlBHpiNO8YwGSRWXXVVOqWFGMyFqeTh3WcCZ/dD8LE/M7NDQ2E2uM88audJGN6AmU0kOLx/9uD9WPzKZ3qHrX9UE+M5/5zkFmry9j2eDvxUJqWHYMsOH8K57xrOrue7eLgpl5kRWT+2kqsTpGdT3cw7+wptOwcwOoyqj8YvHZi4RTP3X6QgQ7dIZuKZ8llc0SHUuxf343nqIT3BWsr6W8Ps/G+JpZcUkNfW4TND7VitsrMPWcKqXiW8ECcnU91Ut5QgCgK7Huxh459ASwOhQVrKzmwsRebS2H1tfV4Sx1YGhoo/8mP6fn6N8gFg5hnzqTk619DchqiOgavA8WC6q6mbd6veeoRlVgwTXGNhbrFMRKRIGa7Qv3iIkRRYM/zXWx/vB0BgdlnlXPRR6fwwh2NrL+7CafPwqqr6rA4ZQRB4KU7WmhYWkLrrgH2vdCDr9zBwgsq6WkOYXWaKJ3qJp3IUTnLR+uuQUxWhaIqJ32tEV68u4kll1SjahqR/iRmi8xAewTFImFzmRAlkVy/XrmuryWCpIiGCMkphnXuHPy/+TOZKaVc8ekStj/eQdO2fkwWmcUXVVE+x03H3gC+cgcmq0x3YxCb28zmB1sBKCi10X0oQuvuIJdfWEN/W4RdT3fm+z/4Uh8FpXaWXDJx1dIMDMZjqCdGIprGbFPI5lS9MplZpmNfAKvDxPp7DnHG2xpIRrOIksDG+5qJDCdHxsNpHv7DLt76xSV4yxxH9Rul51CYwc4oxTUudjzRQTSQYuEFlShmichQgtK6AsScRu++AJsfbCGTylG7wM+lN80jk86x6f5mhrpiLH1LNQcKP0Pf/gi5rMr+DbsREFhwfiVzzqrAZsyJT0vE2lkwlGbZFbUUVTrpPhhi++P7yGZUGpYWU7+kiLbdg/S363NaNacR7EvgK7cz2BVl0wMtLLqoig33NuWr9YX7Ezz0211c84XFOMapcm1gMJFkHT7MZJi1Wg/0zmZUpi7w469yUljuYNsTbcRDusJ9xbQC+tsitOwYwF/lomNvAIBcRmX9PU34K51UzhpH2dTAYBKJR1I88Zd9hPoTADQsLaZ9zxB7n+9GlAVmn1FO+TQPVbN8WOwKL97ZyFB3HE+xjdVX1zPYHUWSRdp2B2jefgCzVWbJpTXY3SYyyRyCCJJZQhQFFJOEhkYurZFJyWhUohV9CE9cwAgdNzjVSCezPPvvAwx2RKmeU8im+0cSz5u29TPXa8ZkFamoL+CRP+4mMpikcIqD82+YSU5TX6Fng9MRUVFwFlpZdGEVD/12F6lElqrZPqYtK8HpNRMZTBHsi6PmNDbe20Q6qdf3iAwm+e9vdnLtF5cY9iQDg9dBX0uEJ/6+D4Y10gc7Yzz77wNc8tG5ODz6WnGgI5ovXgHQtG0Ad5GN8no3Bzb1ERlM8vhf9nLpTXMprnaPdxhkr5eyH/2Qrs99nnRjI5LXS+m3vol56tRJv0aDV6a3KcT6u5uwOBQkWaRxcx+lU910N4boPhRm5uoytj/eTnhgxAb24G93ctlN83jsT3sAKJ9ewIZ7mhAlAW+pnY33N2OyypitMnueawNA0zR2P9vFqqvrdVH04bVeNqPy/H8aKa52sfnhVroPhaic6aVpWz99LWGqZvs4tKWP/tYoVbN9NG7pA+C8980im9VIxzN0N4dAA/8UJwNtESpn+XB6zdQtLmLX051k0znqlhQjmyTu/MFmGpaWsOQy3da86+kOLHYTggChwQQOl5ntT7aTimepnVfIirUz8Rz9S5MtIBnJI5OFZDVz3rtmsPHeZjoPBLG5TCxfV0vVXBt3fH8riy+q4bE/7eaqzy02hMsNDF4D/e0RnvjrPoprXPQ2heg5FAL0qt1P/+sAJQ1uXrz7EP1teoGWdCLLM//S5wQAXS1x7N4plBWVjO1cUvQ4yuxRAhUTUOF9oD2ivx8OBrngxll0HQhx/y93kB32oVTPK+SFOw+x6KJqQ6hhgpAtAhazg+krzLz0QAstO/U4vmVvqcFTMjlrrmQ8wxN/38fAsI8jFcuy/p4mll5aw5aHWqlbVMT2x9qpnOVl/T2HWHRBFZseaMFbauP52xvz68NAT5xH/ribCz4wm0d+vytfB2igI8beF7qpXeCncXMfotRL9VwfzdsGsDoUvOV2tj7ShttvZdvj7ajDVcMPbeln3rlTyGZUNt7XzJwzK9jycCuLL66maUuah367k4ZlxSQiekxcsDfOjifaqV3gZ9tj7SxfV8v6e5qwOU2YrTKbH2yhfkkxj/15D8suqwUN1KzG7mc6WXpZDZseaGH+eVM4tLkPq8uEKAk88sfdXPWZhUaS0/FGHsdvJltAPDFzwMIqKyZLBQ//bjeRoST+SicXfWAOJquM7xc/p+vzXyDb04NSXk7Z97+PUl5+Qs7TYHLRVI29z3fRukuv/p7LqGx+qBVvmR3FJJEcyPLEX/YhSAIrr6xj7wvd7HiyA1ehhbPfNYOz3jGN3c918dTG/YiywPzzpjDrzHI69gR4/vZDZNM5Gs79NHVLN5L+z18p/dT7MVcZwqEGx5/uxiBP37qfwY4YrkIry95SQ9P2fgLdcdZcW8/WR9to2z3EyqvqaN87SPueAFanwoLzq9j3YjepeIYll9Rgc5l46p/7KG/wsOHeZsx2EzVzC+luCvH4X/aSimcBPab9ib/u5ZKPzsV/yycnToREGeddolgNe8LJjqSAqwxfpY2F3hoe/v2w76rCwTnvbMAkxxEdDoo//3nM02cw0Bzjib/uzc87h7pivHBHI2e8bRr2AjMb7mnizHdMo7zBEFE3mBw0yUQ6kSQZy+IusoAsUFrr5oFf7CAZyzBlZgFv+fh81JzKvT/bzmU3zeXe/7c9v7/JouQFSEBfiz3y+11c++Ul7H6mi9adg5Q1eOjYG6CnadiOkMzx5N/2UVBso/QIMXMDg2MlHk4RDSawOU28eMcheg6FsLlNrLh8Kpd/egEv3HYQe3DzyA5mV34tZpk+ndLvf4/eb30bNRLBMm8uxZ//HJL9le3E3QdDbLinKf+5c18Au8vE1IVFbLq/mboFRex8Ul+bt+wY4JlbD7DyyjoiQ0kkWWT/+h6qZhfSsS9Aw9JxbGMGBqcJ/ZEUfudoG5SmqoTuvhvb8mUoZWUAxAK6j8/u8R5Tv/YVK/T91q/Ha6tnR0cw/53N5QEgEQ69wbM3MDi5mCxhkGuBh4ELNU0LAl7gM5N0LIMjEE0m3BdfTM2dd1Bz7z1U/umPiIqCJEt0HwyO2b515yDpC34CvjoA1HQaLZs9pmNFQwlEWSQZzvLk3/flHRCdB4JsvL+FZCw9YddlcPyJR9I0bxugY2+AactLePGuQ8gmvXJ245Y+Zq4u48W7DpGK64q8e5/vZvryUl76bwuhvgT+Cic7nuigep6f3c920dcaoXKGl5f+20JRtYv2vQE69wepX1zM+ruasLlMRIaStOwYYMaqUl684xCaqiFKAvs39DJjRSkb7mkiFkzhLrKy6+lO6hYXse3RdgY7Y5TWe9j6SBvl0wto3NxL96GwXlkbaNrez4xVZciKyMFNvSy7rBab20T1bB8v3nUIp9fKM//cn0+4C/Ul6DgQZMHaKrzDle0ByuoK2PlUJ/1tEapmeXnpgRaKqlx07A/QuT9Aw5JiXrzrEBaHQjSYonn7AGi6M/vJv++nvyVywv6ebwoazgfTEQmSogQrbwZ5YoycoslEJJjKC5AcJp3MERlMjNk+MpBg2lL92TmcfNTdGARUWnYOcmBDD5qqkUnpSZiKSSKVzLLx/mbmnFWB76hkTwMDAC2XQ029fDWW6FCKvqPGGlehleduO6iPlUeI5biLrCSiGZq2DuCrcDDUHaNlhz5upeJZNt3fjKSI7Fvfi2wS6W0O07ZniI59+iIrGc3w4l2HqF9cRPveAM/dfpB0KodgMuG66CKqD89F/vwnLNOnT84vxOD0p3g2Q0u+x3//kyIW1MfS3uYwBzf2EuyJo2VVmrf107k/QM+hMHULi7C5Tbh8Fp7514gxOTKY5NE/70HN6s626tk+mrb2U1ztRhAFBjujrL+niaIqF9seaaO/LYrNZaJwii6e075viJLh50dTNXJZjUQ4g2KRcfmtdOwLoOb0JGmLXSEeypBN5bA4TSSjuhiQwcmJpmnkEqMrUksuF+mKaZgdIgc29NK0tT8/p3vhzkPEgilqF/oY6oqhmCX626NEh0b6KKlx07F3SJ+LauQDH4+kaVs/mbRxXxhMLql4FlmRyKZzKLJENq2iaSrdjUFUFRSThCSJaJpGKpbJr4cOo2a1cSu2D3XFefGORrxlDrY92k5vs57A0b53iH0v9lBaV0A0kCQW0ucK6WQOTdODG1t3DnBgk17ddfqKEgqK7Dz3n0bMVpm9z3ejZjVyWZWX/ttC+97B4/WrMjjOpJM5clkVT6GV6FCKl/6rC9Voqsb+9T10HQxRWu/Jb19QaiMRySBJIvHwYVuTkBcgOUw8nCYSmLzKhQYGeSSBWCjD+nua8vdu4+Y+okMpDm7uZcHaqvymJptMLJiipNZNx76hMV31tYbHtBkYTDaRwWRegMRiVzBbFXY/24WqamTTKtsea2ewM46mQiyUwl/lwu23EuyN88ytB3B6LcQCKZq39edtCM/ddpBsRiU8lCQ8mCLSnyQRSpOIpsmmcmRSObKZHIlwmlggRVtjgmBf/FXO1MDg5CIeStN1MISr0MpQV3TM99FAgkB3gmduPZCfWw+0R3nq7/ux2Q1xvTcbyUSKXFrlmX8d0APANd0n27JjgPBgknQyS2QohSiJ+QSzw6RiWaJDxrzWwOD1EOqL5wVIDjPQHiVyxDPVfSg4Zr/WnYM0LB8JtExGM6/6HFpnzaLqb3+l5p67qbnzDpznnIMgSa+4j8Hk09uir7H8lc5hv6xemKR9r74eszpNeQGSw6hZXfwUQDFLJCK67cFVaGVw+J1fOMWRD0w/Ek1Vx13rJaKZfDKdv8pFd2NopJ9Dh3920nMoxNzzKsimc2STOfa+0I0oikiySNP2fhSLhKPATDaTY+sjbfoaVIODG3tJJ7KUTfOgaRqd+wPsea4Ls02heXs/3YdCuAosbLy/mVRMfw81bRtgy/MJcrPfPvpkz/wceKowmBy0HGy6v4XOA0FAt1898fd9xIJZfGUOwgMJZLOUX6MZGLxZeC3xieMRGh63S6e6aR+OXziSdCw3rn8uPDDyrDXtHCIRzozZhoIaWHNUmGvFUiia+brPF3Sf5N4Xu2l8qY9YOE10KM36u5vIHOFD6WsOk4yl2fV0hxF3OVEU1hEN5WjePpCPh0knsjz774NkkiqhwdiEHzIWTNHfelSMoAa5rEY8nEaxyESGklgcJtSshjrs6mjZOYjLP1oYJdSXIBpI5hNBDzPQHsVdZAN0IT5vqR5j1r53iJJad/5nz/A2h+luDFJU6RwWEhYA6G+L4CnR/TCyMrrQV3ggmRcMSUQzKGYpHzuRiGT0SuGaLsR29Hk7PGZ6m8P4Kpx07AtQUusm3J8gavhxjj9FM6Fs4ei2Mz8HBdXH7RSOjMtIx+CxP+8lMhxj0d8W4Zl/HUCUBOzLl1N9+23U3HM3Vf++FdviRcftHA2OL7GwXtDvaPpaIyTjGcKDCVRVY9qyErY/0Z6P4Q4PJOluCtC2Z4j963vyfo2X/ttKoDvO5v825ddN+zcH6K1aTfV3rsc5txzBcWwJZQYGE0UslOLRP+1hsEOfb4QHEjz1j/3ULSpmqDvGI3/cjafYRmmd7kdu36PPaxORDC/c0agXjQ2mefpfBxjojLHg/CqKql1EA6n8XDc6lMwLkBwmFc8SDSTx3XADknt8gd3XTPFsKJkzuu2sL45rT9Cy2VeMcTY4jshmWPYhBE3hsT/tHvFddUR56h/7weyi5u678Fx9FemcSGRo7LxzsDNGKp7B6jDphanGiSMzMJgoolHIpHNIJpF0IkesXx8DD+futO8JsP3xduweM55i65i4RneRLR8zfhhNg0Q4zaFhMeiSmvFjd4zYBYPXS3AgDprIi3cfyr+f46E0T/x1L6lIhlVXVGLZ90+0wumoNefDhd8DRxEAotmMZ906au66S8+5+cMfsNTXv+oxDxcrPpL2vUNomoZslrC59XV8qC+hF3PTADQSkQzZZI6iKl349rAPw8DgdGUgmsLvGC1CktiyhUxHB54rrsi3xYL6e8FecGxCa6a6OqTCQmIbNlBgNxGIZdCGJ1E2l/58xQ0REoPTjAkXIREEQQQ2app2p6ZpBwE0TevWNO2RiT6WwctjKi/H0tCA7HaTVTVyqopnnKoZvnI7clENuWSO0IMP0vae99L+sZuJbdz4qs4+QRBAgNBAYkwwT8feIcNJfoqTy6q0HaEyrWlQOtVD+x795appentRtZOuYYEb2SSRiGTwFNvyE1un10KgJ47ZJhML6Ual4mo3nft1Y1lmOGmorN5D6279eGpOQ1U1imtc+WT3w4GYvnIHvc168JDFoQuXODxmPagM8JY68gn4nfsCzD1HV6/e/GALy9bVMn/tFGSTyJlvb+DgS335aznsDKuYXsCC8yvpPhhk//oeZqwsZepCPw1LizFZZYa6Y5gsUj7xqbjWnT/Hw32U1Xlo2z12Qj7QYYiQTCql8+D6h+CC78I5X4H3PQSVyyf0EFaHXpnhSARRGLdCu9VpIpfVxhjkXIU2mrf3j9m++1CI6uHqx9mMiskqj9nG4M1NYscOuj7/BVrfeR2B224j2z/2PjLb9WDEw4iykHfaqjkNSRaZuaYMQRgeq/boY9WRY/CRZJI5Gl/qpbjaictnpW33WMPb4XG8fU+AeHDEeWAqK8vPRQwMXjfuckLmOWjq6MG0rzWCt8xOJJCiadsAzkILhRV2epv1qoIOj5lg72ijcC6j6s+DBs5CKy07B0DTcPl0pf7IYJJkNIO/ykUinAZNIz48dykosY0KTJZkAZNFJJfJkU5kKSixI6AhCALZTA6TVUKURTLJLIpZRJQmS/vR4I2Qam6m/6c/pfUd76Dvpz8l1TxSxToezpBNoovKHcVgRwyzRcHps5DLqjgKzFidI3OByGCSghKbnhwvCHiKbWP68E9xIsvGfWEwuciKhKqqSIqImlMRJH3u6im2IcnCcGCrhgAoVjkv4ngkVudoQb90KkuoN45vipNsKpevIqjmNHzlTsIDCRLhNFaHMu76p2l7P9OWlDBrdXnenuArt9M9ThJH4/B6zeD0Q0NAzWpkM7l8QtCRNG/rR0BAMev3ZHQohckiARqKRV8nSbJukzoSSRGx2I1KOwaTSyadRcsxbvJZ+94hsqkcuSMCrrWchtmmEB5IjFvR+OigcgOD44HFruTtTsU1LprGsVP1t4XR0EjFsySiacrqPSy8oIpkLIOsSBzaMnafyGASQRDyorvpVA41C6qqz0FyGRXFIpPLaqBB8IhKEAYGpwImq4TTZyEeTuP0ja36V7+4hNBAcmziTX8iL6xq8OYhm1IJ9IwNWGzdPUgyksFTYsXqUBAlIZ/4dRhRErDYDf+AgcHrwTqOv87mNmGxjdg8xpuXe8tHilKA7luxOF59fSkXFGCZNg2lxKgUd7LgHl5jRQaTebvsYXstgJpVx7WBHfb1ZtM5zDb9b3/kO//I/o5Et7WNvqd0e7FCwfD2sWAKV6HeTzw00mc8lMJZaMFslsllVNScRngwQX9bhFxWF7uctbqctt1DY4RTQF+DVs8ppKcphGwWObChh1xGpbyhgLbdg+OKYDduHiCx6htw+a9hzafgnbfDwveCaNiqJ4tELJePJ8mjDRc0WVGCzW0ilciNG29gYHA6kotECD/8MG3vu572mz5GbMMGtMw4QiCvwmHfRfiIMf5IFJM47rrN4hh51nxldkzWcQTERAmW3ADv+Lc+Vl7+G7jqj+Asfs3neSTRoSTN23S/4/zzp4wVqUD3S9YtLKZl56CxjpwgMpE06Xh23Di+wc4oFtvE+xTMVmXccV2SBSRFBDQUs4SaU/PtAEWVThye0YkRJqucn5scic1lIhXXnx27x0wyqt8vBSW2fGKor9xBLDg6AdhTbCM8mEQQyMe/uQqtxIIpRPkopwtgskioWXX4umSy6RwFJXbCAwmkI3zd0lH72j1mEtE07iIr0SH9OQ0PJjFZpHGvx2CScZXCNX8emQO+47bjOgdMNTfT97//S+s73kH/7t2EBxLksqPtZ4GeOLFhgRrF79fXWYWFx+X8DE4MFquEt2zs+txTbEVSxHwMjtVpGpPwXjXTR9O2sT6KroMBZqwpG9V2YGuIoRYr8ZAPTVXH7GNgMJmE+hP52N3DZFI54qEUdreZRCSDySJTVu+hbc/YuFzFJCIIwwXTMiqZZE4XNDNLlNW7SUYzWJ0Kojg2pt3qMCFM5DjvKoNr/w7rfgVrPg3v/A8suA6E0ceOb9tG52c/S+t17yJ4551kB43k5hNO1SrCA4lxfVfRYBpThZ5no5glrI7xciEUFLNEKpEhGc+MiSMzMJhIzFYZURTxltiIRzKEB8b62Vp2DJCOZ6me68N6lA0/nciMWYsJooDZrlBYrgs3RoaSeMaxIxi2OYPXiygIZNIqPYdGF6HSNF1AT7ZYSF5wGz3dZ9N6r8rghkHSXV2jtjVV6Pm/ktN5TMccz+ZVUGJHlHQxslxG9w24/FYSw/YCQRRQLBKiIhIeTCDJAv5hMRIDg9OV/kiKQudoW1vk0UcRTCac556bb4sFdB+O3XNswpWCIGBbMJ/Etu147QrpnEps2Cdnc3sAQ4TE4PRjwq2ImqapwHZBEConum+D14fba0PLapTXe0Y53qxOhekrSxHtXqLPPEPXJ28hsXUrsSefpO1915PYtesV+1Uz2nAg/dhAOEeBOR/InAuHSe7dS6qlxTDinUJYHQquIj1I57DTKRpI5pMjDjuPokOpfDCPKOqT01g4hcOrv6jVrIpilsgkRwJ2EpF0Pkl+pJ/kSD/54430LR1uC6aOmDTrCfXJWCavup9JZvNBYR37A7TvGWLB2kpWX1PPQHuEgmIbQ10xDmzszSuNHT4HURYon1bAxvuaGeqKMWWml2BvgnB/kmQ8Q8+hEIpFIpMeEYiIh1M4vZaXPe8jsR/lKDSYBErmwIqPwBmfImOpJbH/wJhF2huhoMjO0stqRrUtvrgap3+chVyZPR9QNgqBcYPU3H5rPsDRMGQYHE3ywAFa3/s+wvfdR3LXLnq+8lWCd96ZH8cO4/HbWXV1fX48UnMaJsvIezoWTGG2KSy/Yiolta58AOSRY/mRSIqIy2/F6jCRiKbHvacPj6F2j3ncwM3D5GIxkvv2k2pqel2BRAZvXiyusU5ni0MhnchisesBPIMdEdSsyqwzKuhtCSNII4nLR++noaFmVdx+K4JIvqqhpIiYLDLRQBLFImGySPS1hVHMEg1LS/KKvw3LSsimc9gLLDi8Zlp3DVA1x4e33IHLbyUeSuPyWZBNukiV02fRxfsMTiqyQwG6PvNZBn/7O1J79zL4m9/S9fnPkw0ESHd0YDJLSIowbmKw3WMmPlwZbbAzSuUsL7lsDn+lbgDuOBCgdkERikkkHkpSXl8w6t1vc5l0QSjRuC8MJhdXoRXJJCIpEpqmYXOaUFWNqrk++lrDTF9ZimQS9QBGs8SiC6tHxQcsvKCSgtLRY7CsSFgcCtFAcpTggyQLpOIZRFHAZJVJJXNjAiUB3H4bGhqtuwaonlOIxa7o66fCsc/a4WfK4DRE0/R70m0ad5z1lNgRRAF1WIQsHtYDVVVVwF9up3xaAc3bB5hzZsXITgKc8bYGPIagg8EkI8mSLmQ3zrjl9lvRYJR46cGXevGW2shmVGrmFo4SHC2tc1Naa4g2Ghx/3H4ba66tRxB0e+94gb6OAgsMJyPMXF2mV3Btj1AxvQA1p+Iex7ZlcSj5BAZJEfWkCkEXHNFUFVEWyWVUREnQk+47msiFw2QHB0ns2UO6o+N4XL6BwevG5jJz5tsbyGZyiKI4Zp0nCIwrHCGbxGFBNYM3E4IgjCuG4PZbkc0i2ayKq9BCoDvKvHMrRm2z+pr6ccdZAwODV8fnFZi+YkQQRBQFVl9dh9s3YqMorXWPmv9YHAozV5fx4p1N+bZll9VSWDF2jmRw8lNoT1JUrouUe8sc2Fwmmrb3M2NVGbIicmBTDwvPrxplA1t0cTX+aifTV5Sgabo4SHGNi3Qim3/nRwaTuAqto/z9rkIrqXiWqQv9+Xf9rDVlTF3o5/H/28u8c6cgKSKNm3uZc3YFoizQuLmPuUf+fFYFOVXTk35F3fbm9FqQZF3A9cW7D+Ers48qQHAYt9/KYEeUhRdWk8uouPxWREnQYzoKraMSgw/jKbKiuAtg/jvg3K9A/flgO7bKbgavD8Ukjvv3M1llshmVbFpl0YVV+MocJ+DsDAyOH9lAgMS+fUSfeorOj3+CxObNxJ56So9P3PnK8Ynj4a90MXVRES07Bpi+ohTZNDLmVc8txOYys/LKqaNEFaYu8GNz6Gs22SSy6pr6lxdDsBVAw4X6WDn/7VDwxsNgTTYZ93AcXueeoXxc3ZG4i6yEBhK4i6w0beun62AgL1Rh8NrRVJXgv29FUoSXjePLZMaKdr1RHAVmzrpu2qiE4LpFRfQ2h1mwtpKDm/pYcH4lBzf1MnN1GW17hnR78/D2q66uQ1b0pOOz3jkNb5md2WeU5/sSRYH5503h4KZeRElg/rn6z4pZom5xMW27BykosVE5y4fdPbIutblMeMvsBHvjzD1nCk1b+3EVWjHbZBKRDGuubcB8hHifIMCC86s4sKmH4hoXsVAK2SRRt6iI9j1DzF9bSeNLvcxYVcpQVyy/n7fMjqqqWOwKTq+FZDzD1IVFdO4b4sx3Thv3b2FwHCioHpkDNlxwXOaA6Y5OEnv30nnLpxj63e9J7d3LwFVXj1tQQLFIRsG2NxmyWWbB+ZWj8g+KqpxEBpO8cHsjjgITs88oQ1O1YQGnEWLh9Ljxtx6/je7G0cmfBV6J+OOP0vq+60nu3jM5F2Ng8DKYbfK4a3OzTSEVyyCIAoIwLF7qG/t+zOU06pfqdi5JHhb7N0ssuaSG5+9o5D8/eAlJEVlyVEz7kktrcI4Xu/5G8VbDgnfCuf8D9WvB6hn1dXLvXtre814i/32Q5M6ddH/xS4QfeGDiz8PgtSHJWB3j+67MFhktkyHV1ES2SR97Z6wcsa0KosCKK6YimyXUrMas1eXj+pUNDCYKs82E2SaRSmYxmccXMHT7rYiKiM1lQgNK6zz575q3D7D62vr8WszuMXPue6bz3G0HqV2g23CbtvYza035qPnF1IV+I07R4HWjahry8D15NGabjKqqtH3yKwTvuIfk7j30ff8HDP72d6jpNOn2dhJ79pAdCozT88tTWuehtG4k3kyxSMw9u4LwQJKGpcUc2NiLt8yO2Sax7LJaZqwqIRbUY3QtNhlPkY3BjihVs31v+PoNDE5m+iMp/I4RG6ymaUQefwLbiuWI9pE5TTSgCwLaPZ5j7ts6fz6Ztjbcmp6HFIjp/5usNkRJNkRIDE47JstqVwrsFgRhI5C3MGua9pZJOp7Bq2D3WmjZ1cHZ755OuD+JquqJl6IskovFGPzjn0bvkMsRe+EFbPPnv2yfTp+VXH8OT5GNKTMKaN+rT3wEUWDlVXUUFNtJNjbS86Uvk9i+HcFioeiWW3BfdSWS3ViAnuxY7CbOeGsD9/9ie16Qo33vEKuvrqevJUzngWB+gjpjZSkW+xBN2/qZc1Y5O57owGSRcXotHHypl/lrK9l0fzOZVA5fuZ3Gl3pZfEkNL951iFB/grJ6D627h1h1dR2DnTF6W8LUzvfTtK2fhqXFdB4I0rprkFlrytj9bBdOrwWb20TjS33MO3cKWx5uRdM0PMU2DmzqZf55U1h/TxNoukp6uD9BxbQC5pxVQTySYcaqUtA0BjpiPHPrATr3B2hYVkJ0KEn7Xn3yULeoiK6DQQY7o8w7Zwptu4YY7IixYG0lG+9rJp3M4it30Li5j6WX1PDCXYcI9SUoa9AViVddXcdARzRf/ba4xkVxjaEUeLyIb91K16c/Q6azE8njofQ738Zx5pkI0hsL9hYkDZNV5JKb5hILpLB7zEQDSWKBNJIk4vCMGG5NZpkpMwqoW1RE42a9irsg6IqWs88qp3N/gHRSd2a7i6z4KuxEBlOUNXjwVxmGDIPRJPfvR4uPVvQd/P0fcK9bN6bCXu28Qi6/ZQGhvgQOrwU1q1JS66KnKcxQd4xMMseUGV6eufUAq66pp7clTMvOAVZeWceL3Yfy1SaKqp0kohmqZvto2t6Py2fBW1bOi3ceQs3pCaFl9R7CAwkEUeDMdzRgd48vtpRubaX3O98l+vTToCgU3nADBe9+F3KBEdho8Or4yh00LC/hwPoevUGA+edNoXXXIKVTPfinOHj6XwdZemkNL9zRyMqr6tj83xaWravludsO5vuZsbIUk01ClAQ23dfMrDXlRAPJ/Fi8YG0luZyKySLjLbXx4j1NLHvLVKwOhWgwyYUfnIWoiKDqgiWHk+vWvK0BURSQZJFcJodjuhfJLJBLq5ROdY+pgmhwcpBuaSZ5lOhicvsOYhs20vOlL+L+398Rl2pYdGEVD/9uV74agK/cgbfcTm9LmOIqJ2aHgprTsHvMlNUXoGn6+z6XVbns5vkkImmioSRnv2s64cEEaLoKdUmNkXBsMPk4PGYE0UlkMIViMqGqKpJJRsnBwguqUFWN9Xcdwl/ppGqOj5JaFxd/eC7xiC6m5K9yYTKPNhuJooCv3I6v3IGaVVlwfiUv3n2I7kMhHB4zC86vIhFN69uV2fGV2xns1M1CsklkwfmVPHfnQWatLCfQE8fhNVM4xYG7yIrNZSIe1g2xNo+JqYuKjvvvzGDyUZNJJFnE6lRIJ/V3pbvISqgvAehV9aYvL8HqVLj4w3OIR9LY3WbUnMqBDT14SuwsubSaWCCFJAtUz/GRSedw+ix4S+2GwJPBpCOKApIJSmtdFJTYCPTo6zSTRWLKjAIUi4zVpXDJR+cSC6XxDAdAzDt3CgDnv38miVgGWRYpqnLhHCegzMDgeFC/pBiX30qgJ4bLZ6V15yCpeBbQ56vFNS6ymRyZZI7ugyHKGjxsfaSN1dfW07pzgDlnljPQHsnbPouqnZisMvFwGlkRMdtkzFYZSZEQRcikNUQRsqqGJAsIyRjZ2/9AwvdBer7+dTJtbYhuN6Xf/AbOc85BkI2Ac4OTk8qZPq7+3GKGOqNUzGggFcuQy2rD938SX4WDactK2L+hJ7/P8sunotgMEZI3G2J3C57iUopqnPQ16xXOJUVkxsoynF4rG+9rZv55U5i5ppx0MsdFUz1k0jkKim0UlNmRpONTjdjA4HQjNRgmFc+y9LIacll93tGxq5fyEhXbFL0acmmdh3PfM4NAbxw1q1JQYsdszXLpTXP1YhgFFly2NGabUTDgVCR1259ZItpJrVmMGmhl7SVu4pEs1lIbV3x6IdFACqtD5qrPLiIaTGFzm/GW2jFbZVZdXc+MlaUko1lmnVFOMpohm85Rv7SYeDCFqmpc+rG5xIZSCKKAySYT7I0jKSKXfmwe2XSOtj1DbHu0HYCN9zWz6IIqXIVmzNFeLr3ESiSQwmGNcdUt84mGslhdMrIik4ikkSSN6StLiQVThAeTVM/x0bJzkN3PdTF/7RS8ZfZ8gq9ilqiaXYimasRDKTY90Myqq+vpb4uQjGeYdUYZwZ44xTUuepv1JDxRFl454d5gUrC6ZVZcOZXH/rwXbVhwt3KWF7ffirvISjKaxepSxiRWGhicTiT37aPzs5/FVFZOdqB/9JeqSvSZZ7AtXPCa+rS5TJz59gZmn1FONpNj3ScXEA+lMVklfOUOTBaZVCrNZTfNIzSQwGxTMFklEAUu+tAcPMU2vKXH14drtiosvKCK3uYw4cEUhVMcY8b2uWdP4dE/72b5uqk8/59GNt2vccWnF1I61XNcz/V0IdvTw+Af/oj7ouuYvqKUgfZo3ufrr3JSUGRDUSbHBlU1u5BrvrSEYG8MxaTbBERJJJdVqZheQCad5dy6GWiqxkCHjehQko33NqOpGn2tES7+6Fz9ns1pdB0MMnNNGdOWFxMLpXF6Lag5lXPeNQO710wuneO8987E7jWTjGa45KZ5wyJmFi67eQFDXVFyORWby0QsmOLyTy1AHT4Pq1MvFnDNFxbjLbOTy2qUTPUQD6WwOk1kU1nOvm4GJqtEIpxm2vISkrEMb/nEAnKZHJUzC/CWO0jFMjQsKwH0QknpRJbaeYUkohkuvWkeqXiGq7+w5Lg/dwYnBi2TIfL443R/5at433Udqb17R33vKDAzbXkJ+9cfYT9bV2sU+HsTUt5QwLpPzGeoO04ikmaoK8aWh9sA6D4U4rKb55KIZLA4ZF6441B+v3g4xewz9Pjbw34Nt99KSZ2bA5t689spZolZNUmSv1uv77dtK9Y5s4/jFRq82SkosbPiiqk8d/tI/OLM1WUko2myGZWll9bQuKWP8ECCZW+p1eNyh9eN5dMKiIf12J3quYX0t0eYuboMNavy4G9G4t3u/MEWrvzsAt2uFUhhLzDj8cg4ncffJ5HcswctlRrVNvC73+O86CIUv/+4n4/BCDaPiZmry9jz3EhR16VvqcXkEOn7fz9n6M9/hmwW5yWXMO+TX6Zmnp94OI3TZ0EyCdz/8+2cf8MsvKX6HNPAYDLxWuKEcrq4tNkuUVrnprtRT+QWJYFl62pp2xegcloBgZ4Eq66eSjatC/2mEhk8xVau/sJiwgMJTFaZ+3++HTWnMdQVY+45U7C5TBSU2rjyMwuJDqUwW2W85XasDsMfYPD6sNgU1JzKiiun8sRf9nK4vnD1XB8uvxVJTZMbGhq1T/A//8F53rl0fvIW1GgUU20tZT/8IdZZM4/pmO5CK2uvn0lfa4RUPIur0DIcj2lisCfK7DPKiQZTPHd7IzaniQs+MBtV1RBEXRzb5bfhKbIaY7rBaU08nSWWzuF3jtga0o2NZDo68N1ww6htY8EhrE4Xknzs/jPrAt2ebe/WfYKD0RSZthjhgQRWVwUJQ4TE4DRjsiI5vz5J/Rq8TjKJHFsfbicRaRrVvuat9fiLCxEsYycPgvnVjboWp4lnb9vDkktqmL6ilHQii7vIRldjADXjZeDnvyCxfTsAWjJJ73e+g3n6NOxLl07MhRlMKhXTCrjmC4sJ9saxOk3MO6eCbEblso/NIxZKYbErTFteQiqR5eKPziUeTKFYJGrmFhKPZjj/hlnEw2lEWeDyWxYQC6WZutBPMpoBQeDyTy4gFkphd5tJJ7OoOY11H59PLJTC6jAxa00Z6WSOS2/SEzdMVpmpC4tIxjJceONs4qE0sklkysz5xMMZaub7SYTTiBJcccsCosE0NqcJX4WdQE+cu/93K9m07kxcccVUBjojLF9XS8e+AC6fhfrFfva9qDs3CkpsNG7uo6B0JKEkFkzRuLmP5etq0TRYdaGfeF8QxQWXf3I+sVAau9tEOpkbdS2KWaawwmE4So4Tmb4+Oj95C9ke/W+ZCwbp/PgnqL7rTix1dW+o71B/gmf+1TimffHF1TRt7+eiD84ZpbLu9Fo5420NNExTiHX04yz3oKhxdjwX5qIPzyXUF0eURTxFVnqbwyy/fCrF1U6cxoLO4CjEcZJvBLMZxhHWEWWR0qkeLA4TD/1mB0PdcWasKqVhaQmSIuIqtJLN5jj/hllkUioXf1gPrE0nMpx13TRS8Sxmm4wgQLA3QeeBAKHeBJoGM1aVcN77ZpKIpFHMEp5i2/9n777D2yrPxo9/zznaw5JteW/HI4kdZyckgUDYYRQoBVpoC7QUaGlL51s63q63/XXRQcumFAplU1pa9t4zIXsPJ47jvSVrS+f3hxIHISckYEd2fH+uy1eiR+cc3ZKPj57zjPvB1xuiYUkJ2UXDDxbQdZ3ehx5OJCABiETouukmLA3TcC5ZMqKfkzgyWRxGjv5UNVOOysfbG8JiMxAJxahfXERPq593H98BOsSiiZa75g09aCaNnFIHp1/VgLcniC3DNLTKT1SNMf+sSgzNm7C5Mjn2/EpsWXaMZg2/N8SCcyp5+z+NtDcO0NMyyPInGonsqT/MPaOcmSeVYjTLhLjxTtGG/x2Gt20lPuin96pLybrnv6xbNcjpX51OX7sfo0nF6bGwbVkHrdv6OOsbs5JWZYlGYqx9eTevP5yoK5hsBhqWFLPs8R1Jr5HhsfCpa+ZIx4U4LOwZFuwZyXXLgC/MG49sw+E207Z9gLbtA6x5affQ82d+bTrFk7P2e8z8SjezT1UZ6A5gthg47cpp+AfCuHJtxMMh9BgY7SZ0FI69sJaBrgDRcGI1VpNZI780g5bNvWQXO3nl3s2JFd1MKsdeVEtoMILBpJFXnpFY9U0ceVQV7/euwv7r69F1ePneTRx7YQ2+3jDxWBx3jo1IOEZBpRuAnpZBHr9hFdXz8tnybsdQR91ep3ypnipJWCMOo3goxOANf8B19f8w7bgiDGYNPQ5WpxHNoCYGNeTYyCnOIOSP8M5/GzFZDSx7YkfKsc77wRwykGudSA/NoFJYlUgs+uTNa1jwyUmJ1dgUcGZaiEXjdDf7WPFME4XVbkw2AxXTPZjtBqafUMJAd5BTL68n4E0kHbG6zERDMfIqMlBVBUVTEv8qiXYBzaRhssax2yPQ2UL0sdsJL3ub0MbFRJoSg4rj/f3s/ua3qHjkn1hqa9P8CQkxPEVVyClxklOyL4n0qw9tZvXzzQCc9IWp1ByVR9m0bEKDEZzZFrp2e/F2BskpkiTlE4keiYIxRnl9NjNOKCXkj+LINGO2anQ2+2jZ0kfLlr6kfc7/4dykc0sIcej6vYnVDhtXde0rVKBhcSHvXyM5tyyD3LLEdTnQ1Mz6l9p46+WBoe2PPsGF1QLmgoLDF7wYEarVSuDvdwJ3AuAFnCefTNGf/oiiquSW7ds27wP7WuxGCqv3kzy/yDH0X0+Rk65dXv7z55UEvJHEsSoyOP6zk1n36r7JHP6BMO881sixZxcQ/8aFACgkVnHKvOF6ck84YWhbX18QX0+QTKsBm9uEp8QBOtTMzycWiZNV5KBqTh597X6ioUQy1hXP7EQzaHhKHOhxWPb4DqYtKaao2o1mUnHl2Chv8BAJxdDjOlmFjv325YnRY7MYiEUSY14GOgOYbEYcbhOvPbyVmrl5vPrAFhZ9qoq8MklcLo5MMa+Xtp/8lPDmLRhzclCMqX1j6jBjFg+G1WGiuHb4vra+Tj8v/2PrUPKfvU78wlRq5+UPu8/hUDIli09cPYP+rgCNq7o45oJqfL0hYpHEYnK9HQEWf7qGNx/ZNhT79hWdkoTko1JVFJOJ/jYfGTlWTr2iHm9PCJPNQGgwTMAXJs86OtdfVVXwFDnwvK8OMZyOnQO88c/kcWj+gTCxSJyNKzpZ+3Ki/07VFE77cgOTZh5af4gj04wj88DjFfPK9/3fYISCykP/TCw2I64c24dvKCaE0LZt7P7WtyEeT6zg8j6G/Hy6mn1UzcmlvMFDYM8E54HuAH0dfjIkcfuEk1OaASg8eMf6pPKAN0L7Dh8v37OJnFIn88+qxOowkuGxYnOZeOc/2zn1ymn0tyfG3zqzLWx9p5WTvziFnrU7iAwGsfXsJPTr3w8dUzXJGB1xeKmqQt0xhWQX2enrCGDNMOJwWejvCvDJ787C5kokpAwHY3sWAazF2xPEmWWmvXEgUZ8ocWAwKuSUZVBY5ebFezamvM5b/27kqPydqD//AQEgAJgffABrQ8PhfcPDjXE2mT724qHi4+vrCFIxPZvSqVlDyUV8fQF2b+gnY8UKiCYSOnkffxzTaefy3GMRwoFo0jG6WwYpmCRtF2J06bpO7/3303PrbWgFBYR/ehfzz6rE1xMiEoziyrOyfVUHRqMRUKiZm0c8rrPxjRZevGcT7GkCOPq8auoXF7FlefvQoqshf5RlT+xAM6pc9LP5OLOs5Jam772KI0dWvgNvb4De1kHO+Np0+jsDWGxGHFkmVj7fzFEnpibiUjQN/7JlxH0+AMLbt9P6ox9ReucdGFwHd611ZllxZiXfP7XvGOCVezYnlfkHwvj6gtTMTV97mBDp0OVNLIj5/iQk3hdeBMDxgTlsg3292DP3P2Z+OJa6OjAase7YApTzzIObsG/du+j4WfS0bjjQ7kKMO6Mye07X9ZcVRSkDqnVdf05RFBsgd5BpFIvGMduMQ4Mg9tIMKprVSs6VV7DriiuHyhWrFfuCBR96XLPJSG6xk0eufS+pfNapZcT6+vC9+GLKPuGdOyUJyTihqAqeYiee4vE96DHkj/Dag1uGEpAAtGzpI+iPsm15J7nlGTSu6mTZEztYekV9YmDang4Qb3eQioZ9Ff+elkHeenQ7M+Y5CP3++xgzXJTccjPG3P0MSBKHXbStfSgByV56JEJk9+6PnYTEYBz+q0xVFXp2D7JzXXdSEhIAq9NEfk6cnd+4Gr/fj7GqGssFv+bRP65I2m7OaeW898xOTrvyMDf8inHBPGUKWnY2se7uobKcb1x9wAzhO9d00dOauJHZ8HorG2hl5smlTF1UiB7XeeZv69i6rAMAo0Vj9qllvPZg4mZn7hkVvPtYI5BYAbl4ciYbXm/ltQf3DX44/vOTD2qwS6y/H+9TT6WUB1aslCQk4qBZHcahCfG+3iAP/WoZ/oHwvg0U0AyJ725FVZjcYMd/1WeI7NxJ5d/vxD5zfsoxB3Z56bvii2iAetoneM11Nj2tgaRtopHYUHITgHcf20FZfTZ55dKhMt6ZKspxnHA8vudfGCqzL1lCcM2e1SIiEXy/+iGhhVenfGfPO7OCWEwHJXngYl+7P2mQWCwSJx79wGx5EnUDzSCrGor06drlY+Mbrcw5rRxVVYZWUtnLYPrw5pv3T9Z5v0h7O01fuhz/5n2dGVmXfZHcq69GMSayRMciMVY+34zBpBIJxXjpnk37ti2yc843Z2KRJD1HLNVkwnXG6bSdMB/37Q+SVeDgP39albTNks9NHvr/lmXtDHQHiYZjGM0a4WAsaVuDSa6n4vCKdXfjffifhFauInzFH3jl/i1Jz9cfW0TVrMRUtu7dPla/2My8MypSjqOoCgapD4gxwGDSiIRivHLf5qGE0y/elTyAMbvYQeu2PqYfX0JZnQdVVcivPLTXifb10fLN7zD45ptDZc7TT8f32mvJG8ZiRJqbJQmJGFds7xu0oKoKj/15VVLiNIvDyKlfqktDZCKdVIsZpbOFnWuDvPPfHUnPnfTF1FWsVE1BM0rdQIiPy+hInbBmNGkYMvafeGGgL8bbrwzsK9DhzZe8FE6JkiM5SMadjKVL6b33PojsGRejqmR+9iIUdeSusbFYnJXP70oae9PeOMBATxCL3UjkA20XamAw5Rj+997D+b4kJA63BYf7wyfh5+1pj4uGo3S3ZNOyqQ/NoKIoEByMDPXtWZ1Gzvv+XJxZsvBFukUHBgj5Y7xwV3L71+QFBbRtT6yEZ7ZK4ntx5Ip2dQ0tXjb49jvkfuubBFbs63dTLBbsRx894q+rx3RMFo2QP3ninLKf7Q+n/EoX+ZUuFODRP65Mem7SrBwGuoJJ3zGqNhaiHp+M+flkXXwxfmOM/16Xeq9++lfSPz7LYFRRVCUlYY4e14cSkADEYzov/mMj531/DnaXLIImxrZwc3MiAQkQ2rQZ27y5+N95F0hMLLU6TDx+w+qhSaIAtgwTZ1yV/r9JkR6aUR123EKgPzEurLPJS2eTF7PNwPk/nIvVacRiN/HoH5LH8hx9XhXW3iZi11xC7pevpPMPfxx6TnU4sM6YMervRYgPMpg0iidnUbxvCAR5FXvu7SMxOnYOsO29zqR95n+iks3vtrP4M7WUTs1KSkLmGGYxVIvNiDezAozGofaQcNOuw56ExFpfj+Z2E+vrGyrLvfpqDFmHNqFTjDyXx8I/f7M8pT48Z2kpxJLbscJrVmKxT09JQhINxuhpHZRxs2JUxQYG8D71dOL/ra2Y27fx7/uSz9H8ygzMNuNQrrv+dj8v3785qW75+j+3UlSbiXGYMZAWuwHNIFNbxchyZib6pv775+Q24FmnlqGaDBgrK4ls3z5UnnXx5/E+93zStqENG4h2dBx0EpLhGIzqnoWCkssHuoIMdAVkUUAxoXT6gkByEpLBN97APHkyxrzkJL+DvT3Y3Yc2J1g1m7FMmYJlw1ooKGfHzgGuOH8KFQ0e7vvZM/R21BLwhrE6ZSy8ODKMSk+moihfAi4HsoBJQBFwM3DCgfYToyce1ZmyqIA3H9k2VGZ3m3FkJgYd2I46itI778T77LNoLheOE47HOjV1ENwHKapC8ZQsdm/uo3VbooM8rzyD8mnZqBYN8+TJRNrbybrkYhRFoefOv2PIkRVqxxNd14n19KBYraAo6H4/WmYmsb5+FJMRxWAg7vMlGo58PlAUVJuNWF8fmsuFHgyix+NoDgexvj5UhwM9GkUPhxPH2XtsQA8E0LKyiPX2DmW/jQ8OJrYbGEDRNBSzmbjXi+ZyEfMnJtdrNhux/n5UpxM9HEaPRhPP9/Sg2O2EBqJ07/Ylva9d63s46QtTeeb2dbTtOXetTiOubCOf/M5M+jsClEzJZNeGXsLBKMWTM2ne2AtATomN8rwQ1i98Accxx2DMTT6nY35/ynvRHAde2UCMHM3tQrXbsS1ahH3BAkKbN9N3330YsrM/9rHdeVbqFxey9pV9q1hVzPDQsq0PSKxQMRzrlCmU3X0XvhdfItbbQ90cF62NA/S0JM7hsvpsBvtCODMtZBXKClQilbm8nNI778D30suEdzXhPP54bLNnH3Cf9sbU87FlSx+xWBxNU2lYUsL2lZ3EozqRYIwda7s5/aoGOnYOkFPqwJVjpb8zgLc7iMNtxlPsoKs5cS0tb8imsNRCpLMTze1OXNcHB8FkgmgMQ1biJiy0ZQu62YztqPno4VnokQi+l1/GXFmBde4c4qEQqjlxYxcbGECPxzG43UR7ehLfA0bj0DVfMRqJ9ieu1x+ngUWMf45MCydeOpWnbllDOBhD1RRmnlSa6JBTYMqcTLjjt4R37gSDAcVuJ9LRgWqzEff5iOs6iqpiqqqi+KYb8b30MlpeHkfNK+GJ2/c1RttcJvQ4qZ3cA5FhohLjjZaRQd4Pf4jz+OPxL38P25w5GEtLaP/lL8n78f8S6+un569/pe4CH13tFga6Eo1RVbNz6WkZZO5p5ZitxqRjBrzhpMbbWCSOZlCwOvclg1SURBITk0UGFYv02ZvEqXFVF5MXFrD+tX1127Jp2WQW7H+lslgoRLS9Az0aAaMxMYFjT8+FajSiA4W//Q3+t94muGkj9oULsdTVJb7bnU7iPh+ZboXJc7NZ9XI7044rYu3Lu9H1xP3YkosmSwKSCUCP6+T+4PvE3nuZSQs+RVezj772xL1RxXTP0KAbgJatfQBsXd7BtOOKWf7UzqHnckqdeIrlXlscXqrTiXnKFNA08ostSe1F2UUOqubkouwZ7bD3etvd4qO4NpPmTb1Dx5l1SimuXFkZUqRfTqkTV66V/o4AwcEIqqpQWO2iZcuetv6KDBQVph5dSGldNqr60Sa+GNxu8n/xfwy+8QaBFSuxzZmNpb6eXZd9KWVbxeEguGMHOomV7Akn/pZUi2VPvYPErCFVTYye0HUURUFXlMTgdl1PWmFTUVUZ4ChGVVl9Niue2UnIH2XXxh7mfaKSdx9rJB7TMVo05p9ZQYYllO4wxWGmOhzoTz7NzJPO49UHtzDYFwYFpi4swGDUKKhy07qnrgsw/YQS3Dky8EuIjyunIovccicdO7xDZfPPLD/gwMpgVEsZkBmLxgnFZCDyeGRtaKDsH3fjff55CEdwnnTiiE26ifT0JBa+0A3D98Ft7WXh2RU8ffu+1c0yPBbc2gD9H9jW0tAw1Bf2UcYRGEwGaufl4/LYePs/25l1ajkrntk5VP848dKpkoBkjFBtNjyZA5TVZ7NzbWKxicwCG5UzPTx50xpsGSbyZSVhMc5Fe3pRjAY0pxM9FkuMk7Lb0cNhMBoxFhViLCvHedKJxP1+cr/7XcJNTWiZmThPPAFr/cgnbVQ1hWnHFbPsiR1DZVkFdsx24/53OsyKajOpPSqfTW8lFlly5VqpX1zEo39aObSNqilUTN//wjTiw5nKy1GCbcw7s4J3H9+x7179rMoD9ocdLq4cGzNPLuW99/V9VEz3oBpS2+AG+0KE/VFJQiLGPIPHsycZ4GcxVVQQD4WwzppFpL0d53FL8FrVxGJtTyXqryaLxlHnTMLhkfrrROXKsTLr1FKWPbHvWlgyNYvuluQx3yF/lJA/Ska2leq5ubQ19tPTkkj6WDo1i7wKF5qa6COI+QYpvPZ3+F57HdViwXXG6ZL8XIw5BqPGnNPK6Wjy4t07Lm1OLl3NXmacVEpZXRZGc/L4sorpOax5aTeRUGJSvmZQKahy0dnUSk5GxtAihwaP54CvHenuJtbRgeJ0Yi4uHpH3Y540idK/35kY49yym4wTTsQ6e9aIHFt8PJ4iJ8dcUMNrD20Zqg/PPqWMzIw4gZ078XzrW2hWC7333ofm7Wb+Jyp59m/rh/Z3ZluIhGMyblaMOs1mwzp9OorJROanLyBqCzJ9cRGrXu0AHexuE1Wz8+hs9g6Ntwn4IikLBepxnYA3nBgLkWejf8+YNICF51Zjy5CxiWLkVc7MYdeGXjqbEv1ThTVu8sqdZBRmYb7xBgZfeYXgpk04jjkGQ14+3bf9FQDb0Ytwnngi0a5udCDc1oYhKwvVdOjnqSvPyrQlxax+oXmorGRKFh07BiityyZ1yUEhjlyd3sQYHc+e8ejxYJDAihVkXnhhyra+vl6yi0sP+TWsM6Zjevg/UHAG7hoX048vASCvrIndW6fw7mONLP6M3IeKI8NozXy6CpgHvA2g6/oWRVEk80Qa2TJMdO/2seCcSQz2h/Y0SuhY9nSuqWYz9qPmYz8qdZX4D5Nf4WLhuVX0tAyio+MpdpBTmkFwVxN537+G4MaN9N51N3o0Stall2AsLxvhdydGS7illf5//hPvs8+S+fnPMfDofzBNmoSWlcXAU0+RfcnFeJ9/AdXpwDJ5Mn3/fISsz34W/7JlxAZ9OBcvpvf+B3Cfcw6h7dsJ7diB+xNn0nv/AziWLCHu9eJfvozMz1xI3yOPYK2vQ7XZ8D73PFmXXIL3qacw5OZiLCtj4NFHybzkYgZffRUUBdvs2fQ9+BDuT19AcN06Iu0dZJxyMn333Y/ztKVE2zsIrluL+7zz8K3dSNmU02hcu294TzyuY3MaOPNzRbTvHMSS6cAdaSV4w2+wVFdjePxxZn3i05SdNZPdO/xMme6gYbqRWNNOzJ3r8NSdibn8mKTPS9d1/MuW0XnddVimTEG12el/9FE0j4fcb34D+7x5Q6t/i9ET6++n+KYb6XvoYbpuuAHL5MmU3P5XYiYT8UgE9WP8DoxmA3PPqKS0Lpv2xgE0o0pfu5/GlV0AlNXtP9GJta4Oa92+wRNnfdNDz+5BwsEonbt8GIwaM04qlQFhYr8s1dVYqqsPevvyhmy2Lu9IKquem4emJVZ7y6/M4NzvzqZ1Wz+appBf5cZT5KB8mgf/ypWceKqdXS0OOltD2A1BlpzixLttANVsJKtcY+CXP6J99WrsCxfgOG4J0a5O+h/5FzGvl8yLLsSYn4//3WVYpkzGXDmJ3nvvRTGZyPve9wjv3EnrNd/HNmc22VdcQaSlhc4//gnHsceimEwMPPkk2V+6DO/zLxBcswbHcceRsfRU2n/5/9CjUTxf+TLO449Hy5DmkImqZEoW5/9wLt7uIIqq0Lyhh9wyJwtPySH0868S3boFFIXsy75I/yOPYJk8OZHtPx5Hj8fR/X56/3EPisGA56tfRcvPw9SzmU9cWk5HexSzTSOn0Maz9+9Iel1VUyQT8BHEVFiI6dxzcZ97LuGBAaI7d+I47ji6b70Nze0m/6c/xVDg4JNLGujc6SXoj9DfGSC/IoOCanfK8ZxZVoxmbaijF2D9662c8dXpdO3yEQ5Gyat0kVvmPIzvUohUrj0T27p3+3BmW5h/ViUhX4TcygwKKl1Y95MEJLB+PXF/gHgwQHzQn0hKCUQ7OmHPhGRTWTkDTzyO/+13sDRMQ3O76f3HPzBVVqI5nMT6egnv2EHmrNlMr82lfTDCkgurMRp0sovtZJbIgPuJwFxfR3D5e/iXLcOi2Tj67FPp74thcZjILnaQXbAvMWPV7FxaNvcx2BeidVs/R51dSTQcJzPfRn6layi5rhCHi+Z0kvu9/8H71FP4f/EtZn/zp1TPySWu63iKEm2ie2XkWEGBbe91MmVhAfPOqCAYiFJc4yZ/khvNMHIrcQvxUbk8Vs786nR2beiht92PxWGksNrN1GOKiEXiBAcjZBXYKaxyY/qYq3ObiopQlyxBMRjpuuUWVKuV3O99j+5bbyW0aRMA7gvOZ/D1N7BMmYyakUGsvYPuv/4VPRIh6+LPYygsJNbTS3xwkHjAj2q2oFotRL1eiETQXC5QFGL9A6AoicfRKGgqzuOPx5ifPxIfmxBJPMUOTrh4Cm3bB4jH4mQV2TnxkqkMDoTIcKq4nDEchXnpDlMcZqaCAhwL5qNvep3jzp3NwICCxWkku8DGujfaycy3UTI5k4AvjM1lpmCSC1WTuoEQH5fdbeaUL02jbXsf3u4guWUZ5JVnDCUKHE5GoTulTc9iN5JR6D4MEYuRpqgqtunTsU2fPmLHjLS24l/+HnokjB6Po5gsTKorZ/n7Bq8D5OYYcG1+mVNPKaY7aMOek0G2xYepaQe+7OyhiUCeq79OeOs2Ov7frzDk55HzjT3jCLRDS3xjyzBTVp+N2WagaV03x312MiaLRnaRHXeuLHoxVmhWK5nmQWYvzqZypodoRMeda6WjycusU8sorMkkM19+X2J8inZ10f/EE/Tc+fdE8v/vX4P3uecJt7Rgmz2L/gcfArOZgt/8hoHHHqP7xpswlpaSfdkXIdNNeM2aURtDZXWYCHjDHHV2Jf7+MCargUgohtk2dhYJsLvMLP50DQ1LiolG4rhyrJhtBj7xjRlsfqsNo8VAzbw88splTMTHYayaBFu3UqSFyfx8FV5vHJfHgqc0I2XBiXTQjCozTiyloMpF9y4f7jwbeRUZiQTXCkmreeeWO7G5ZLKcGPvMVVWU3HwT3X+7g4EnnsCx+BhcnzwX+5zEYltdqzrJLXcOtZ85sywoKljtcn5PVJpBZfrxpeRXuuja5cOVayPDY+Gfv1metJ0r14rdnUjElFfp4riLaune7UMzaGQX2skpcxL1KpTcfDO9DzxA/yOP4Dh+CRmnn4YqfQNijPIUOzn3O7PpavYSCiQWXPUUOymuzRx21fS88gyOu6g2sZigDma7gRXPNLFgDsR6egBwf/rTmCfvf7Kjf/lyeh94gME33sRcW0v2ZZfhWHDUiLwfS22tJPwZgzSjypRFBWQV2elpGUQzqNjj/bgtcTK+8226/3YHesCP+7zzsC5YgKPUxaLzqvB2BzGaDehxndUv7GLyUQXpfiviCKcYjWRedBGDb7xO99/uQHPYqb/621R8fRre/kQyMpPFwPxPVGI0JdpSHVlmLHYjwcF9SXKMZg1ntoUMj5UzrmqgbXs//v4weRUZco8tRk1euYvjPz+Zrl0+opEYrhwbOXvGipvLyzGXlw9tG/N6yfzsZ7HOmI7/3WV033AjxvIybNMbiPkGiXZ0oNrtWCZNOqQYDAaNKQsKsDpM+AdCWB0mBrqDtGztxeGW+y0xsexNQpLjTNxDBlasQA+HsX+g3qvH4/j7erFnHvriVtbpM7DfdTeqruOatO/7xZ1rYdfG9ax9VWPWqeU4MiWhsBj/RqtnJaTrenjvYA5FURIZL0TamKwGZp5UyusPbcVT6kA1KOSUOMku/vid2ZpRJb/SRX7lvslCwZZWlHCEcFMT7T/7+VB5x69+Tb7NjuV9FSgxNumxGL3/uJuev92B52tfo/0Xv0xUZKdNo/vGG8m+7DI6//BH4oEA2ZdfTue1v8d9/nn03HUXkaYmcr71Ldp/8Uscxx+P9/nnCbz3Hjnf/jZtP/0Zlro6wtu3433qKXKuvpr2n/8cLScHpk6h+5Zb8Xz5y3T85jcAZH3uc3T96U9kfu6zdN94E9GuLnK+/jU6fv0bMs44nf5H/kVo40Zyv/Md2n/2c2zz5xF4bwWDr7xCzre+SdtPf4aprIwZ31mKv99K+64ABpPK3KMzMG96m47/+TalV15J/y3/xtfTQ/YVV9Bx7bUAhDb8BIvTybG33IypxE14yxb0ygzMJ52LsbAw5TMLbdxEy3e+i/nTlxCvnkzgwbuItrcTbWtj15cup/y+e7GO4IAnkSq4eTPxcISOa39PcPVqAAZfe43g+vUU33gjwTVrsc2a+bFeY+9qRDa3ifZtA2xb2YmiKjQsKaKoNvPgj+M0Y5ucqExWzpA8XWLkFddm0XB8MWte2o2u69TOz6dyuodYLJ5I3KBATomT3LLkBrXQ1m20/eKXmCsrcb3+OnlTJmMOTab79tsByLzoQjr+8hLRlhYABv77GJaGBjp+9euhY3T+7lqyr7oKLTubaGcnXdffMPRc209+Qu53vkOspwfv088QWLMW5/FL0IMB9GCQnr/9jaxLL6Hzj38aGpDZ//DDhDasx1xbi/fJJ2m95vuof76OjJNPHuVPUYxlrhwbrpxENuuimsT1Nx4KEfy/nzH4xpsoisLAM88Q2rgR06RJWGfPxlhWhsFup/1952vLt79N4e9+R7y/H+uO7ZSbjKh+CwyYWXL2TF74ZwsDXQEsTiMnX1YHCvj6Qjjc0iBwJIn5/fheeonum24GINrWRsv3vkfx9ddj1gOUN+x/hYjB/hDhQBSr08SpV9Tz/J0b8A+EcWSaOfELU8kty0i51gqRTtklDk7/agMdjQP0dQTYsaqT4z8/hazC/a+6GunqIjYwQKy/n2hvL5rJRNynE966DcVmhVgM6+zZ9Nx1F77nngMg3NiI95lnKb7uOvzLl+F74QWMubn0//tRlP/8l6wLL8Sdn4/ZVIW5uhpD1qE34orxKbJpMx2/3vNd/PbbKLf8mYq//Bnn3MUp21Y0eOhs8rLhjVZat/aRWWBjzmkVKd/DA90B4lEdR5YZg1FWqxajJ9TdTf/D/6T/X/9KPL74LCw1NeT/7KfYKpNXicoudHDyF6by8n2b2fBGK9lFdk76Qh2qphANx4D0D3IXE1c0HMPbE8Rg1HDl2jA7jGx4vYW3H20kFo1TWpfNsZ+pGfEkjANPPkX7L3859LjlO9+h+JabCa5eg6Kq+F5/ncDy5Vjq68n6/Odo/cEPhrZt/8Uvyfvx/xLt6UU1aCiKQmDFCqJ9fdjnzQVFYeCxxzAWFmGurSHWP4DvpRcxV1VhKi2j75+P4PnKlw84CVmI/Qn6IwQGwphtBmwZqe0BnlInO9d1s/mddlY9v4u6uS6qomvx3X4TvQ47tj//BWvd1DRELtIl0NhI53V/JrBsGYrRiLOmmngojOXnP2PacbW8+kCifmCxG5lxUgkZHis9rYNYHcZhB5cLIQ5eRraFjOwDTy7SdR1vd5B4XMfs7eD4k+28+nJwqE3vmMVmjD3N4Kk5TFGLsUqPx+l/8kl0f4B4IEA8HEbRVMrmZNNT76ZxbR+qpjBjcS4ZXRvp+r+fAeByOIhHIhiuuoqOG28k88ILUS0WLDNmEHjvPbpv3tMO3d7Orsu+RPn992GdNu2gYopGYvh6QqgGhYxsK0U1mUN9JGJsCrz5Jn2//wOZv/0z3rw6dm/qo3lzD2VTs8gp3n+brBBj3cDTT9Px/34FJCZTdN96K4NvvU3O1VfT+dvfAeD5xtX03v0PvE8/DUC0s5Pd69ZRcsvNdPzghwy+8ipl996DMW9kEzearAbqjy1i7au7sTnNhINRcsudeMbY35zJYkjpQyyZnEXJZOkvGSmx3btp+Z/vQSyGmpGBq6QY++LFGC+9FBjZdi9vb5BoKIY904LJfPD9FFaHkfJ6D+X1nveVmTjxkqm8cv9mwoEoWUV2llw0GbNN2pTF2BfavJnd3/4OcW9iBfD+R/5FpLUN7Wc/xVJaSn5lBhveaCEeBavTSMeOAaYeXZTmqEW6WRxGyuo9lO25FsZjcU69chq7NvZgMhsI+iNMWVCAbU+7mdGkUTDJTcEkd9Jxoi0ttP+//0do82YA+h98iMGXX6H4huuJud1ojrFVFxACEkl19ybYYe6Bt1VUhdzyDLat6CAe1/EUOTn6/GryPTG48QY0lwtzdTWac/gFskLbt9Nx7bUEVqwEwN/VRWj9eopvuhHbjBkj96bEmGMwahRVZ5KbrdN6zfcZfPVVMv98Ha0/+OHQNp1/uo5ci4Xs6dMpqnbTHO9joCtA07puTrqsDne+LY3vQEwU/nffoevPfwEgCrRedSVF1/+FohNPJByMMNgfRlX39fdnZFs59Yp6nrtjPb7eELYMEydeMgV3buJ8defahv4vxGjzFDvxFH/4IpWa04njpJPovfvuobG20c5Omteuo+SWW4gN+IlHIkQ6OjDmHto8s6wiB4HBCB07Bgj6IvR3+jn5C3XDjnEQ4kjW6Q2hKJBlS9xDDr71NhgMWGfPSdou4B0gHovh+AhJSNoNJSiAS43TF4wOlVudLiKDL6Ea6tnwRgtzT6/4WO9FiLFgtJKQvKwoyg8Aq6IoJwFfAf47Sq8lDpIrz0btgnxee2gLocEo5Q3ZuPPsZOaNfKVaNRqIoeN98cWU5/r/8yjuT55zyCu5iMMr2tFB7z33Jh7EYujBIPYTT8T77LMAKCYTsb4+bPPnM/jGGwAYPDlEdu7EVFFBcN06ACyTJ9N1442odjvRzk7QdeyLFtL918Rkdj0SQY9EcBxzNANPJTqdURTiPh+OJcfhfeklADRnBtH2diz1dfiXvweAqbSMgccex5CbQ3jHDgBss2bTdfPNoKrEB/0Qi+E4djG9372SOYtPID5nHmrIh3lzM72vvpp4OVUl2taGbd5cBt98M+lziHu99D3wIEW/+TXGnJwDfmahljbCV/+OV14PElzlp6T6YqYffRL+//cDiMcJrF0rSUhGWWjbNlSbfSgByV6xnh7CO3egoMDHTELStr2fF+7eSG/rIO5cK6d/uQFnphmnxyqrGIsxxe42s/CTVdQdUwS6TkaOlaAvwhv/3Mral3ajaAqzTy2jfnFR0sD20LatOBYcRc+df0ePRDDk5DDwxBNDz2su91ACEgDN7SayvTHl9WO9vcRDQcJbt6U8F9ywHlNZGeEdO4i2tKBluLAfs5iBJ58EQLXahhKQDO2zbj2OY4/Du+dx70MP4TzpJJk8JJKoZjN6OEzXX/6SVB7eto2MU07BXFlBz546yPv5XngB51mfILhyFfghputomVnYW9Zy+jllhE0lqBkZvPHPreze3Ictw8SxF9ZSNi0bTVapPTJ4vfQ/8q/kMl0nsG4dxsoKcLtTdtHjOrs29vDi3Rvx9YbILXdy3EWTOe/7cwj4ItgyTNhd0nArxp6OxgFefWAzA51BsoscHHdR7QETkABEe3sTEy28XgiHifT2YSorIx4Moug6xGKJicPPP5+0nx4IEGlpQdEMWKfW0XPXXYlyv5/uv/4VgILf/Br7/Pmj82bFmBONROh/7LGkMj0Uou/Bh7AtWoT2gbYiR6aFxZ+uYcYJJaAoZORYMBj2bRMKRNj0Vhtv/Xs70XCMmvn5zDujYsQnzQuxV3x3C/3/TW7mDm3eTHD9emwzk9sbNINK9dx88ipchAJRVFXhncca2b6iE7PNwMJzq6iek4vRPHZWYBUTQ1+nn7f/vZ2t73VgshhYeO4kqufmMf2EUsobcohH4zizLZgsI3tuRvv76bn77uRCXSe4ciW9995HrK9vX3EohPell1OOMfDkk7jOOptoSwuBtWuJ9fVhX7gQ4jqDb76OarUl6iiDfnwvvohlymSMuXnE+noZePIp3Od96pAHaQjR2eTlxXs20rnTizPLwpLPTaZ4cmZSm5Qz08LR51UzZbKBwPL3iD3zVwZWrgAg3t9PeFeTJCGZYGKtrQSWLQMS/WDBdesBiOzYSeasWZx6+TQGugMYjCoBX5T//mXVUJ/Dks9PobDKncbohTiyBQcjrH+thXcfbyQW1ZkyL4fK3vc4PitIrKYIrX0nwR/dQ+Q3v8VaI0lIJrpoewfxgQFQVRSTEU3T0KNRePsF5pSUM/3cKpR4FGu8ma73JT+P+3wAxPp6QVHo+dvfACj47W/ove++5BeJxQht3HRQSUj6O/y89Z/tbF3egcmsseCTVdTMyxvxursYOcHt2+l/5F9YPvVZtna6WfvMJgAaFhcw9egiST4mxq3YwAC9d/9j6LF1+nS6broJ85QpBFa8t6982rShyUN76cEgocYdAER27ya8c+eIJyEBUDWVvrYA615uweo0UlDpkrEFE1Bw82aIxQCIDwwQXLee8K5mnKefDhkjs4hELBJn++pOXrlvM0FfhJKpWRx9XjVZBR99cUDNqFI7P5+CSYm2ZUemGatDvjPE+BBubBxKQLKX/803E2PNSktRVRVFUXnv6T33ZIsKUGXYjfgARVHQDAqNKzqHxuPUH526cOQHRVpahhKQ7BVtbye8YyeK0YhWWztaIQtx2Lhzbcw7o5LXHtrCsid2YHEYOfYzNVQcfSya8cAX1MjulqEEJHvFensJ79ghSUgmiPD27YmFfn/0IwZffyPl+f5H/0P8mDN49ZGdtG7rx+YysfjTtZRP8yQlfhBiNAQbG+n/179Tyv3L3yM8+Sheuncj7dsHsLvNLPnsZEqnZqGoCkU1mXzqe3Pwe8NYHSYcmTJmV4xt4Y5Ev8NwY23DO3eg2myoViuR9kNPQuLrCbDhjRa2vNuB0axx1FmVZOZ/9PYJIcarTl+YbLsJw555Pv6338ZaX4/mSP578PX2AODIzD6k4+u6zsrlQWotLtzxID2DoaHnbC43eryf/El21r/Wwuyl5VKPEuPeaDXdXQN0AmuAK4AndF3/4YF3EaOtq8nL83duIDSYyK60Y3U3yx5vJBqNjfhrxXUddB0tK/UibMjKRlqNxz7FaETbO9lyz5du3OdLLfN695Xt+VKMD/rQXImOOj0WQzEa0SMRVKsl8bw/sC/L7tBxUo8d+7AySCQbCQRR91QE4qEQitUK8TiK0bDv2BkZBJ78D6Frf0TgL78m0tSEtnel7b3HHvBiGGaC6cF2dvvcZbz0jJfgYASAXdsGWddTiHneUYlQJYv2qFOtVhSzCQypA61UqxXF8vEaFbw9QZ64aTW9rYMA9HUEePq2tagGVRKQiDFJM6hkFdjJKnRgMGo0ru5i9QvNxOM6sUicd/7byO7NfUn7qBYrMa8P1eUCPnB9hqFr5l7xcBjFNkxCM11HMRiGva6qzgzig4NJx4z7vCnX/OQ3kzwh1ZhfIIOExLBUyzCTjhUFVIV4OIzmSa2fatnZxAPBxHmmaihGI4qqoERjGLpbsJtDvPmvbUN/L/6BME/dsobu3b5RfjficFEMhuRr3R6a05E4f4bR2+bn8RtX4+tNNBx17PDy3B3r0YwqOSVOSUAixqS+Dj+P37Cagc4gAN27fTx921oG+0IH3E9RVBSDAQUFRdVQzSbQ4+jxOOh64l9NQx2mTqBYLKCpxLxeNLcr5fnh9hFHLh0wZA/TVuTxpCQgGXrOqJFV6CCrwJ6UgASgvXGAVx/YQiQUQ9dh01ttrH+9BV3XRyN8IcBoGHblKNVs2e8uGR4rWYV2Vr/YzPYVnQCE/FFevHsjHTu9+91PiNEQj+useaGZrcs7QIdwIMpL/9hE5w4vqqqQmWcju8gxKpMYFaMRzeNJKVddbuKh5LpIzO/HMMy9myHbgx6NgKaiuVzo0Sh6MLDnsZvYnsmeismI6nQSG/CCqqCYzKhOJ4pZ6uji0Pi9YZ65fS2de67X3p4gj9+4mt42f8q2BqOG3d9G4Pc/IbwnAcleqlUSpE00ismEYkxdoVrZcy6YLAY8RU4MRo2nbl6T1OfwxI2r6e8KHNZ4hZhIWrf18ea/thENx9HjOuvf6qAtezrhxx8mdO2P8N99G3F/QK7dAgDFbEokHdF19GiUeDiMHg6hx2PEdmxFfeMplLeeI97bM2z7smIyJ/bfQzWZ0DIzU7ezf3j7WDyus/qlZrYu21OXD8Z4+d5NdOwc+FjvUYwu1WLBkJ/PQN3xrH7XSzyqE4/qrHyhhd2betMdnhAfndGY1OeqRyIoVmvyGDIAXUe1p050UC372tJG4zs3HIrx2sNbhv7OAt4IT922Vvp2J6Dhzi/N7UY1jVxCj65mH8/cto6gb894wfU9vPXvbUTCH39MbobHSk6JUxKQiHFFGWbMjmI2oxgT53Hrtn7efOR992SvtrB5WcfhDlOMccONx3n2jvUEfOED7qdaLMPOT1BtVukfEEeMSDjGW49uo3ljoq4b9EV4+q/r6DqIuq5iNsEw7daqVcbtTBR7x9aGtmweto3KcuJSXnqokdZt/QD4+8M8fdtaelrkXkqMPtVsHva8NEyfzfN/X0/79kQ76GBfiCduWk1P6755CHa3mZwSpyQgEeOCajaDMvy42b31WVVRhuZDHiw9rrP2lRa2vJPoQ4gEY7z6wBbad0gfgph4Or0hPI7Ed0I8HCa4bh3W2bNStvP1JhbOtg/z/XMgLVv66GzyYqytI2Owj94984gB7O7EsUomm/D1hmjbU68SYjwbrRnTP9V1/TZd18/Tdf1TwN8URblnlF5LHKThBkVuXd5BYODAjXIfhRLXwWTCueQ41PcNmFBMJtznfUomDY8DBo+HvGu+B0CsqxtzTTW+118n4/TTQFUJbdmKbd7cxEqvc+eiGI34334H59KlRDs6MRYVozoceJ97Dvf556GHwyiaAUNODgNPPknmRRcCEB/wYiovx/vCC7jP/SQoCpHmZizTphFYvhzncceBwUBg1Wocxx1HZOdOLLU1KFYrvpdfwnXOOYlO7AwXmtuN9+mnyLowcWw9GMJYVMjA00+T+ZlPJ72/8O7d5Hz5ysR72bwF2/z5hDZuxDpnNsr7OhpVuw3nKacc1Gc2EEit5DduGkQ7agmG/Hys06d/lF+FOASWyZOJ9PaRuecc2Mu2cCFaaSnmqqqPdXxvd5CAN5JUFvJHGegOfqzjCnE4xKIxNr3ZllLeuLoz6bF5ci3hnTvJuugiAHwvv4zrrE8MTcIPrFiB48QTh7bX/X7MlZX7EjsBqCqmigrMlZXYFy1M6rhQHQ6MhQVEOxOvm3HmGQQ3bsL7/Au4P3UuKAqhDRsTKxm/j/vcT+J98UUg0Tmd+alzP8anIY5kpsoKMs46K6ks44wzCO3aRWTbNtxnnZ3yXW8/djHR1lZUixnVZMJYXILq8YDJiOpyEcI21HG3l65DX3tq/VqMT7qq4rni8qSEI4bcHCxTp2LMyx92n/5OP/Fo8iT3npbBoUEQQoxFA10BIqHkQY++3hDengPXZ42FhahWK1qOB8VsxpCTS9zvx1RejrGwAFNpCbHBQbKvvCJpP/PUqUOTNeLBYEo93VhZiWWqrAg/kRiNRlxnn500yEux2XCedOIB9tq/tu2pDfSb324fSg4qxEizTpmC52tfSyozVVZirJp0wP0C3jBblrWnlPe2Sn1SHF6BgTCb30k9F7uaR3/gmGazkfPVryYNANays7HPn4d90aKkbR0LFmBfuDClb8F5yslEGncQ9wewTK7FsXgxwU2biXZ3YzvqKCy1tfjXrEEPBslYuhQt001g/XoAcr9xNQZXakI0IQ7E1xOkrz05GUQsEmdgPwkitKIiXOeck1TmPPVUDMXFoxajGJsMFRVkXXJxUpl17hyMZaVJZQNdQfwf6KcN+aN4u6TPQYjR0rwhddL/9kYwzpo39Nh1zjkYS+TaLcCQlYV15iwMmVl7xiO4MOTlYSwqwlRaiqm8DFN5GcRiZF922Qfal3NBASKJNgrV5cJUWUned7+T9BrG4mKs9fUfGkvAG2bLu8PU5ZtkEshYZiosxPPlL7OjNXWS1xaZbCvGMc1qxXPVVUP3+ANPPUXmhRcSaW7GXFU1lHyv+86/p/Yb1NZiLC0BwPXJczBVVIx4fP7+ELvW9SQXSt/uhGSZOhVjUWFSWc5Xv4pyiCsJH0hf+2BKWePqLvz9Iz8mV4jxwFRRjnXmzKSyrC9+AWNtDQDNG3tS9tn8VhvhQDSlXExcH3U8jpKfj/u885LKHMcfj1ZSgqmkZMTjFCId/P0hdqzuTi48yLquadIksj73uaQy21FHYfpAu7U4cpkqK3Cfdx4DDzyIbf685CSSBgPawhPo2JG8kIoe1+nvkMTpYvSZCgvJuvSSpEVLtcxMooVVdO1KbgONx3T6O+UeX4xPBpcLzeUi+/LLk8rNU6ZgLC3F4M5E1/VDrr8GBsNsfid1rpAskCUmoi5fiBxnYoxyaONG9Ehk2Dm9g72JfmNHZupCWQey8tkmLA4jnmNm4+jvpse7r67kyEocy5npRzOoQ4vWCTGejfxydgmliqJ8X9f1XymKYgIeAlZ82E4AiqK4gb8C9SQWSP0CsAl4ACgHdgDn67ouS0IcIqszNSO6O8+G0Tzyp4E5Pw9/0y7U3DyK/vxnguvXo8fiWBumYV+wYMRfT4wOx5IllN59F4HVa8hZchyx7h7ioRDFN91EePs2jGVluM87n2hfH8U33Uh4+3YM+fk4TzqJaEcHRdf9ifDOnWguF7b58wnvaqbgV/+PyO4WMJsovuEGQo2N5P3wB0Q7OonHYhTffBPhrdtwnnIK8f4BooM+Sm66kdD27RiLisg48wyiXd0UX/8Xwo07EgPVjzmGSEsLhddeS6R5F4rNRvEN1xNq3EHez35GtK0NFIXiPccxeDzYZs7EWFhI2b33EFi5CmNpCe5PnZt4LzfeQHh7I4rJhHXGDCyTa/f7GQW8YWLROHaXGZs7NYu7y2PBObMO+9K/YS4vH71flgDAmJ+PfVo9psICrPX1hLZuxVhSjKm6Gs1sxvwxBy+YbQZUVSEe39fBoShgse//OhoKRAgHYlgdRgym4Vf2FuJwUDWVnDJnSjZTT3HyKt7GvDwKfvF/BDdtouB3vyOyuxkt20PxDTcQ3LAezZ2JuWoSjmMXE23vwFxdhWKzkf/TnxLtaEePRjE3NEAkQnDzZgxFRRT+7rdEmppQrFbMVdVE2trwXHUV5upqrLNmEuvrw3H00WA2UXLrLYS2bMFUUYHrk58k0tKCubYWQ24O5ikrIa5jnTkDq0xYFvuhOZ3kfefbOE84gdDmTRjy8lAdThSrhfiAl0gwQPGNNxJYuxYtKxO1YR7ReByzoiSSphmMoKmJFbw0Dex2rHlZ2N0mBvuSBwrJikNHDmtZGXo8njg31q1FcziwTJ2KWlKCZrUMu4/FkTpo2GTR9rtqfMAXJhaJY8swoWqjlQ9UiAOz2FPPW82gYrbtO28D3jDRPfc4qpqYOKHZrBhKSoi2tmK0WtHDYVTdhUEzoAeDoMdBB+usWRT+8Q+ENiWuv+aqKsLbGzGWlGJtaCAWDFL4298Sbt6FMb8A25zZmIqKDtv7F2ODMmsmxTfeQHDtWlBULPV1OD6QgO5gZWSn3odnFdkxmuXeS4wey7y5Q+2dBo8H85TJ2GfMOOA+RrNGZr4tZcCONUPqk+LwMlo0MgvstG7tSyq3uw/PikD2eXMpu/deAitXojrs2GbOxDxpEvn/+yP8p55CaOs2jEWFGPLyUMxmim+8keCmzRAJY6qpQY/GsMyehRKPo+s6WjyOeXJtYmX6WAxrbg52TUOPx9HjcRzHLUExGjBkZ2M5iImdQnyQ2WrAaNZSEvlZ7Eai0RiBgQhGi4bFlqhnWysq0D/zaWzz5hFubMRUVoapuhrrpAMnqxJHHnN2No6lSzHX1hLavAVjURHm2hpsH2jTNNsPvc9BCPHxuPNTV5bLLrKRuWgptrIiTJUVmCZNwlwqky9EgmPRQgIbNxLv7UOPRdF1UND3JRzZ869iNlN8/fUEN25Ec7kwTaokNuDF842r0ZxO7PPmYa6uxlReTtk//kFg9Sq0zCysM2dgGuZ8i8Xi+AfCGE0qFrsJkzlRlw94+5Ljk9U9xzxDeTk5O7po3pzcR5tb5tzPHkKMD/a5cym/7178K1ei2u1Ypk/HvnABoW3bKL7uT4SbmkBRsEyfTtGf/kRw40YMubmYp0wm8O4yiq+/HuuM6WgOx4jHZjRrODLNKROVh+vb2ysSjhH0RTDbDPvt6xPjj33uXAp+/WuC69YT93qx1NWh1VRjsgzf//tRWIYZM+DMtiRWNRFiArJOnUru9/6H0KZNRHa3YK6twTxpEqY91/vMfHvKPtklDjSTjKEQ+xzqeJy97JWVcO4nsc6aSXjbdoylpZhrajDn5qJo0n8sjgxGi4Yz24L3A4tnWhzGlLaElH2zs3GefjqWKVMIbdmCsbgYc20NlsmTD1f4Is00m42cq7+O47jjCPf2UXTddQTXriEeCmOtryeam4nFsZugL3nhnwPdSwkxksx19UNjylSrDUt9HbGiXMy2nYT8yUnrhhsHKcR4YZk2DUXTKPz97wlt3owhPw/z1KnokQiKw4G5sADNnnrv9EF6XGewP4RqUDGaDWQV2lPmOjizpA9BTDyd3hCVnsTfUGDlKoBhk5D4ehPJ/WzuzIM+dk/rIDvWdDP3jApsmSquV59gQ18f/DExLs019yoAgr4eSqaWsW1lB4vOq0J530IGQow3o9Vjcilwj6Io3weWAE/quv7Hg9z3OuApXdc/tSeBiQ34AfC8ruu/VhTlGuAa4HujEfiRLLvQRnFtJs2bEvlbVIPCwnOrRq3ybduzagG1NTg+sJKhGB9UiwX73LnY585NffLYxallRx+dWvYhv/thh1Uce2xKkeOYY0bk2M4lS5Ie22bMwDbcRJHh3sv7RCIxmtZ08/rDW3HnWamem4eiKJTWZdG0ZzUNVVVY/JlasqYeWkY08fGYiosxFRfDMBXEj8udZ+Oosyt545FtQ2Vzz6jAnZc6YBGgdVsfrz28ha5dPsrrPcz7RAXZhSM/gEKIg6EoCpOPymfrso6hleGd2RZKpqTeMJmKioadEOw8ft811D5//oe+puMgtgEw5uZiqanZt99w13wSq44LcTAMOTlknHwSnHzSfrcJlE5jx4ZefCuDZHis2DKqKJudjdk6fN342AtrefLmteh7JoVUzcnFUyzX9COJraICKipwLjnuoLbPKrQz7bgi1ry0e6hs8adrcOUkT4iPxeK0bumjY6eX/s4AWYV2imszyS6S80ccfpn5NmYvLWP5kzuHyhadV4Ur10Y0EmP35l762gP0d/ixZZgpnZpFbnkGAOa8PMx5eQf3QkuXDv132PtJMaHZ7XZYtGhE2ooKqlx4ih10NSdWvDCaNaYdVzz0fS3EaLBVVUFVVaK+eZDMViOLzq3iP9etIhaNA5A/yYXJohEcjMjgCHHYmCwGFpxdyX+uW0k0kjgXc8uduHJTkzqNBsVgwDZjOrYZye12xrw8XGecMew+B9P+IMRoycixcswF1bxw18ahsmlLiujv9LNtRSe2DBOtW3uZfkIphdVuFEXB1tCAraEhjVGLscI2dSp8SCJld56N+WdX8ub7+hxmLy3D7pZEZUKMlqIaN+48K33tiRWpzDYD05aU4Jo0DU48Ic3RibFItVg+NPHk+zlPOP7AxzOZsM2ZjW3O7P1u09/pZ8WzTWx8s42yuixqjyqgq9nH9ONL6GgcGKrL51dkkFuRcdCxifQw5+ZQs8jKpmXd+AcSA8BtLhMlU7PSHJkQH49iMGCdPj158HZ19fDtvvX1ZJx6ytBD+8yZoxqb3WVm8adrePKWfX27lTNzUhZo2au72ceb/97Gro095JVnsOhT1eSVy/X1SLHfsY8jJKfUQcV0D42ruoDEeMF5Z1Sy9rXdOFwWaubnyeImYsLZ75hcoLDahTvfSl9b4p7MZDUw7dgiNFnIRbxPVqGdumMKWfdqy1DZovOqU8bjDMfe0ADSPiuOYDanmWMvrOWJG1YPJbcun5aNvz/Equd2EQpEaVzZwaLzaiiZnJmyUJatbirUyQKAE5nB40lqv7LPnwdAJBSlbW0Pc08v59UHtySWEwdqj8qXcY7isDEX5GMuyMf5gflkR59XzfN3bRg6LycvLCBLzksxjmkWC7ZZsxIPTj/tIx3D2xOkbVs/nbu8xKJximszmXNaOW3bBoYWWcktd5Jf6RqpsIUYF3Rdp8sXwuNMJOAJrF6NIS8P4zDj3wd7e7A4MzAYD37s5qrnmtCMKtOOLcIUtlGU201fzEjcMxk1Moj5uWuYkVWDr6ebyhlz2LG6i65dPnJKJTG9GL9GNAmJoiiz3vfwOuAW4HXgZUVRZum6/t6H7J8BLAYuAdB1PQyEFUU5Czhuz2Z/B15CkpAcMm93CHe+jcIaN/GYjqophPzhD99RCJGic4eXp25diy3DRF6Fa2gQcvXcPBZ8chJ2l5nsIrsknDjCxGI60XCM+Z+oJBqJYzCqRKMx4lEdPlDn7Ovw89+/rCISTNzAbV/Zia83yJlXzxhaGVOIw83vDVG3uBBVVUBRiIZjDPaH8RSnOzIhDq/etkEeu3710GBPgIWfnETb1n7KpnmG3aesLpvzrplDX4cfq8NIdpEDq1MGC01kZquReZ+oZNLMXPzeMBkeK9lFqZmne5p9bHijlc3vtA+VldVnccIlU2XAmTjsjGYDs04uo3RqNoN9IZweC54iB6qq0N7opbfFz+uPbB3qsFv1wi7O+fYssgo+PKu6EOkQCceZfmIJg30houE4igLP3r6OY86vpvaognSHJ0SSgio3J19WR2eTF1VT8HYHefm+TSz+TC2lU2TikTiMlMQE91hUR1UVfH1BunZ5cefZMJpkJUAh3k9RFKrn5pFV6GCgK4DRorHxjVaeu2PDng1g0SerePyG1Zz7vdnSHyAOWTyqY80wsehTVQQHoxhMKk3rerA4TEw/viTd4QlxRBrsC1E+zYNxrgF0nbhOUjuxEOkWi8Z576mdrH+9FZNFI7csgydvXgOA1Wlk7pkV2N1mLHYjniIHdresYjgehPwRJi8sQNMSfbSxSIyuZi+uHCu2DPkdCjEaQoEoc08vHxojGfCFh5IDv5/fG+Lpv66lt80PQOvWfh67fhXnfX8OGdmHJ2mrGN9sGWYWf6aG8oZsvN0hVE3hnf9ux+E2M5gZxuo0UjMvP91hCjFmDPaHKZ+Wg3GOJvdkYr98PUFUTWHemRXEojoGk4q/PySJ/YXYo2RKFud9fw697X7iMZ0da7qG5jG4cq2U1Wcn+i3+Z7Yk1xMHrW37AG/9exu1C/KZf2ZinoRmUAgORohFUu+lhDhcgv4wg/2hpPPS7w3j6wnKnBwxobXvGODl+zYR8kcBWPNiM6d9pYFPXTObnhY/RpNKdrEDR6YlzZEKcXj5QlFC0TiePXM0AqtXY91Pokpfby+OzIMftznYH2Lj221MWViIVfXCvy4iPyObeExl4Nx7cZtVuPd8Fusv8VrXdkpPTxx714YeSUIixrURTUIC/P4Dj3uBqXvKdeDAS35AJdAJ3KEoynRgOXA1kKfreiuAruutiqLkjmjUE0Rns5e1L+9OKssssFE4KRNHllQqhDgU7Y39AFTNyWXNS81D5VvebWfLu+0s/fK0/a6gIcav/nY/7zy2I6W8oiEnpaG2r90/lIBkr46dXrxdQSyl0uAhDr9oJMb6V1vZsaY7uTwco6wuO01RCZEebdv7UwYxbHyrjSkLCyibNvw+qqaSU+qUBgCRxGIzUlSbecBtfH0hNr/bnlS2c20P3bsHKa6VJCTi8DNZDRRWu1PKB/vDbHqnbSgBCUDQF6Flc68kIRFjVm/rIN6uIO881phU/sa/tlE8JQu7SyZxiLFjsC/EC3dvIDQYTSrvafFJEhJxWG1f2cnKZ3cllQ32hymsduPKsaUpKiHGLoNRI688g7zyDNa81My29zr3PanD1uUdFFa76WvzSxIScch8vUF8w9Rnu5u9VM7IwSn9t0KMuOZNfax8LrkuVFTrpqg2UwYsizFhsD/MxjfbAKicmcu61/at/B3wRnjzkW2cfFmd9O2NMxvfaGPjm61JZTXz8sircEsSEiFGgbcnyKsPbCEcSG6HK5mclVLHHugMDiUg2Svoi9DXEZAkJOKghf0xXrpnM3p8XyebtzvIvDOyWP96K9Vz81AUJY0RCjF27N7Yy8pnm5LKimrcFNW4sdhl/IRI6G0LsOal5PkOqkGheHIm+ZXu9AQlxBiiqgqeEicWh5H7/++docnHAP0dASw2I3pcp7dtUJKQiIPWvLGXypk5vPfkTqIfSDpSVpctiXBF2vS1B3j3sR0piUULq9wyX0tMWP6BMO2NA0l1AF2H957eyZlfn0FWgYxbEBNXpzcEQI7TTLS3l0hTE5kXnD/stoO93djdB54H8n5rXmomHtOZNcMHf70AvK2YYhcD0DMYxm1zwJl/Qv3jDEp7n8fu+jlZhXZ2behh1illH//NCZEm6kgeTNf1JcAJwM26ri/5wM+HJSCBRFKUWcBNuq7PBAaBaw729RVFuVxRlGWKoizr7Oz88B0mmHhUTykL+aPo0r+RdnLujj9WZ6LDw2DUUhJNAMTCEyfj60Q6f6OR1N/1/spN1tQ8X5pRxWiWFWXHiol07gIokNTQsFcoMPx5LcauiXbujoZIKPV7OuSPykTlw2DCnr+pt2LEh1ltTYxdE+HcNVm0YesK4ZDUFca7I/n8NVsNxOOpF9mwP0o8NszFV4wrR9q5G4/pw7YhyeDzI89YP3c/mAgHEtdNzTCi3UVinBrr52+6hQLDta1FMVq0YduDxeEzXs9dg0kbrsmASDg+7Crt4sg0Xs/f8SocHOZa7o8itfJDJ+fu6DCYFGyuxFiE/bXXRcPSXvdxpOPcDXjDKWWhQBSTRcYOiEMj196DE4/FiQ7Tt/HBiXQARouGqqbWBMxW+fscSUf6uRuLxZMSkOwVj+tk5tukDXicO9LP38NtuL7nUCAqfyejYDyfu/F46nd2PKqjS/fvhDCez93DLRYdvv957xgKs/RbHHbj+fx1ZJrRDCrRYfomhruXEkeWsX7uDtdnJuPCxF5j/fwdDUaTOuwcttBglHhMrtliYuvyJfpjPA4zgVWrALA2NAy7ra+vF0fmMEn//T2w8XF45zZYcQ9seorI9rfofO0ZTq18mIxHTodIAC7+L+7SWQB0Nu9ZsNZdSrOpjrL4BhjspmRqFq1b+4lI354Yx0Z8VKmu63Hgqo+4ezPQrOv623seP0wiKUm7oigFAHv+7djPa9+q6/ocXdfn5OTkfMQQjly55RkoH+g0qz+2CGemrKKVbnLujj/5k1y4cqw0reumak5u0nMGo0pW4cRZKXwinb+uHBvZH/jdunKtuHNTV4nNKrBTPTf53DjqrEpcObJSylgxkc5dAM2oMfXowpTyqtlH/ns/0ky0c3c05JU7U+rF1XNyyS6WzL+jbSKev+58O54PnFvOLMuEqi8eCSbCuevOtVI9Ny+pTFESqwaI8e1IPn89xQ7sLhOqIfl7veH4YhyyCsu4d6Sdu/ZMM1OPLkgqMxhVckplZZYjzVg/dyfNSo1p8oJ8HNJPIBj752+6FdW4+eAs9coZOeggbQppNl7PXWeWhdxyZ0ry8skL8lNWaBdHrvF6/o5X5fWelLK6xUWYbcY0RDO+ybk7OmxOM8dcUAMK7FjTldJep2oK2UVS7/g40nHuDtdHO2lGjozXEodMrr0Hx5FpYcqiD7TDmVSyC1Ovn+5cG3NOL08qqzumkMw86ccbSUf6uZvhsVBcm7xqqtVpJB7XmbKwYD97ifHiSD9/D7eyutTJPXXHyD3ZaBjP566n2IHFnnxOlEzNJLtIvp8ngvF87h5ujiwzdcck328ajCqqppBbnoFH+qEPu/F8/hZPzqSnbZCy+uTvapNFI6tArr9HurF87mYV2Cmblnxemm0GPCXSRioSxvL5O1qMFgNlU7NTxi7UH1eE2Sr3VmJ8CwejbF3eweZ32wgORg55/05vCIAcp5ng6tWgaVjq6lK20+NxBnt7cGRl7SsMDsBTP4Bra+D+C+GJ78CjX4H7LsB41ymcab+GysF7ofZUuOIVKJlHXm0FAO0btw4dps1zAgYlBmseonRKFrFonNYtfYf8XoQYK0YrveWziqJ8B3gAGNxbqOt6z4F20nW9TVGUXYqi1Oq6vgk4AVi/5+di4Nd7/n10lOI+ohVWuzn9qgaWP7kDf3+YusVF1HxgwIIQ4uC4c22c+fUZdDZ5MZhUMnKsbH67DXe+nbmnlcvAnyOULcPEyV+qY/ULzTSt66F4cibTTyzB7kqd3GaxGzn6vGpq5uXj7w/jyrXiKUmd9C7E4VTe4GHJ5yaz8rkmNIPK7FPKUgZCCDER5JQ6+cTXp/POY434B8JMWVhIWX2WdJaIUZGZZ2PJ5yaz7tXd7FrfS0G1i5knlcokTzHmZHhs1M7Pw2wzsP61FqwOE3PPKCenTAYliLHL5jJT3pCNI8vCyud24e0OMPXoQmrn58u9lxhzNE1l1illWBwmNr/dhivHyqxTyiTZkzjsCqvdnHJ5Pcuf3EEsGmf6CSWUN6ROxhVCpMoty+DMr03n3ccaCfgi1B1TiKfEybT8YmxOU7rDE+NUcU0mS6+cxsrndtHbNkjt/HymLCpAM4z4WiJCCKCo1s3SK6ex/MkdhIMxpp9QTNXM3A/fUYjDqKwum3O/O5vetkEcbjPObAvrX23B6bEw97RyckqkvW68Ka7N5KQvTGX5UztRFJhxYinFU7LQjPJ9L8Ro0Awqs04tx+Yys/HNVrIK7cxZWj7sAgGaQaVhSTEFk1z0dwVxus3klDkxyarx4hCYrUaOvbCWta/sZvvKTnLLMpiysABHtpnsAhlDKMT7DXdPNmmW3JOJZFkFDk6/qoEVzzbR2eSlosFD3eIiTBaZUCnE+2maysxTSrG6zGx8owVXno1pi4tQVJi8oEASX4pDkplvZ8HZkxjoCuDOtbF9ZSc5JQ5mLy3HnZe6WKsQh4vJYmDRuZNw59nYvqITT7GDmaeUDZtoVIiJpHhyJkuvqOe9p3YSCsRoOL6YKrm3EuNce+MAT9y0Gv9AGADNqLLo3Crqjy1CUQ5uPHCXL5GExOMw41+1GnN1NaottS4z2N+HHo9jz9yThKRnO9xzPnRvhZmfhZmfg8xyiPiJDXTy4i2vYcu0sfAr54JjX8Kj/Kk18GwXHdubh8qU/Ho6Gu14Vj9AwSVfQjOoNK3voXSYxKxCjAej1VvyhT3/XvW+Mh2oPIh9vwbcoyiKCdgOXAqowIOKonwRaALOG8FYJwxVVSiry6awyk0sGk/JEiyEODSuHCuuHCsA5dM8NCwpxmjSMJi0D9lTjGdZBQ4Wf7qGUCCKyWpA0/Y/MMiWYaZ8mqy+LcYOi93I1EWFTJqZg6IqmCwycEZMTKqmUjw5i7wKl9SLxWGRW5aBp9iRqD9YDDKRSIxZWQUOsgocTD26EE1TU1bjFmIscmRacWRaKarNJBaJYbHLBGAxdjmzrMw/s1LakERaGc0GqmblUjo1Cz2uywqTQhwCzaBSOjWbgkoXsbiORf5+xAgwmDRKpmRRUOUiEophdUh9VojRZDBqVM7IoXhyJno8sWKiEGONZlTJr3SRX+kCoGRqNnWLCtFMKka5jxyXTFYDNfPyh1ZtldUohRh9GdkW5p1RwbTjij60Hc5sM1I8OYviwxifOPK482wsOreK2UvLpD9YiAN4/z1ZXNrXxAHkV7o46YtTiQRjWGxGWYBCiP1wZlmZe1o59YsLpf9ZfGzuXBvuXBslU7KYvbQMo1nDYJRzSqRfZr4jcb91ahlGi4bBIOelEAaTRuWMXEqmZBGLyb2VGP/6O/08dv0qTFaNs781E82o8u5jjbxy/2a8PUEWnDPpQxORtG3bwvbGdlQF3BYD3WvWkLF06bDbDnR2ANBlD/C3V37Mea/dhgkIX3g/zppTk7bdtMHMpt4ZnPm56eBITiSSnZVYOKCrtXOozJGZxcb+HBa3vIc62ExBlYvmjb2H+pEIMWaMyogKXdcrPsa+K4E5wzx1wkcOSCQxmjWZSCTEKJCBoROHqqny+xbjmkwwEiJB6sXicJL6gxhPpENCjEdGkyYTccS4IXUCMRZIYlIhPjqjxYDUmMVIMxhlMK8Qh5PUhcR4Y3FI7eNIIMlHhDj8pB1OHE6Kqsg5J8RBknsycTAMBg2DQ9rLhDgYUgcRI0lRpF4rxh45L4UYntEsYxfE+KfrOs/fuQFd1znz6zNw59oAOOOq6bxy/2ZWPNOE1Wli5kml+z1Gy+aN3Pfj7/Ju9mLcOfXEmnYSHxjA2tAw7PbdnS28O7mX/2z+CXe3thOP65yfn0vfil/xU4uZJaVLAIhF4ix7fAc5pU5KpmSlHMdm0jARp7t7AD0eR1FVHFnZvOXLZnHeDtjyDEU1J/H2f7YT8IXlu0yMS6OSbltRFKOiKF9XFOXhPT9fVRRFvtOEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQogJavPbbbRu62fhuVVDCUggkfB38adrmDQzhzcf2crOtd37PcZ7TzyK0WwhbM7AFOwnsGo1ANbpqUlIovEo1+68ie3lfdzbF6VEN+C65Cl+c+6/ybPlcfWLV/PY9scAWPvqbrw9QRacPQlFUVKOpSgKbqNCH0bCO3YCYM/MojdsI2wtgC3PUDw5E4CWzX0f+TMSIp1GJQkJcBMwG7hxz8/sPWVCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSYYOKxOO88voOcUidTFhSkPK+oCidcMpXsYgfP3L6OvnZ/yjaRUJCty96i7tjjIasIk7+XvrfeRHU4MFVWpmz/63d+zcrwBm5r9FHk7UQ5704omcfkrMnctfQu5uTP4Uev/YjXdr7O8id3UFTrpnhK5n7fQ5bTTL/ZQXDtGgCcWdkA9DrqoPEVcgoNGMwazZt6P+KnJER6jVYSkrm6rl+s6/oLe34uBeaO0msJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBiDNu2opOBzgCzl5ahqMqw2xjNGkuvmIaqKjx5yxrCwWjS823bthCLRKiYMYdBxYwtFsC3bBnWhmkoanL6hOd2PscDG+/nj+0609U+WPpbqF069LzFYOEvx/+F0oxSvvfy9+kJ9LLg7CoUZfjYAPKyM+i1ugisTiQhMVltGC1WWtVyiAbRml6nsMrFbklCIsap0UpCElMUZdLeB4qiVAKxUXotMcbp8Tgxrxc9Hk93KEIM0SMRYj5fusMQo0jXdWI+H3pMvn6EGAtigQDxYDDdYYgJLObzoUci6Q5DjAOxQFCuV0KMMD0alfsvkSIeDBILyPVWjF+xwUHiUr8UYsTFIxFig4PpDkOIj0X6xcT7xXw+9Gj0wzcUQqSVXLvFSIr5/cRDoXSHIcaYmN9PPBxOdxhCjFnSPydGUzwcJuZPXSVVCDF6pH9YpJOMHRbiwIb+RqTdWgDxUEjqymLMkfZVMVHIuS4ErHmpGVeulcrpOQfcLsNj5eQv1tHbOsiL/9iI7m2DZXfAU9/H9Nw1nJS/hZJd99E9GKTUFkDr2I2loSHpGL3BXn76xk/4fwEDxwea2WKYDfO+lPJadqOdH035OYMxLyvn/oe8iowDxpbnstDjyCKwZvVQmSMrm2a/CwwWaHyZotpMetv8DPbL37wYfwyjdNzvAi8qirIdUIAy4NJRei0xhgUbGwmuXUukuRnNmYF15kysdVPTHZaY4AJr19J9598JbdyI65yzyVi6FFNh4UHtG/P7Ca1bR7ipCc3jwVpXh8HjGeWIxaEKNTYSWLmKyO7dGDzZWBqmY506Jd1hCTHhhJt2EVi7hlhfP+hxfG++Rdb552GbNw/VYkl3eOIIE/P5CK5fT6RpF1puTuI7OjubcEsLA08+Sf+//o25tpbsSy/BWl+f7nDFGBTz+QisWkVo82biwRCWmhqsc2ZjcLnSHZoQ41pw3Tq677yT4IaNuD7xCTLOOB1TYSF6PE5w40ZCmzejWqxY6qZiKilJd7jiMIj5AwRWriS4bi3oOpa6OqwzZ6LZbOkOTYiDEm5vJ7hqFaGtW1HtDqzTG7DNmJHusIQYd2L+AKH16wjv3ImW7cFaN5VwczPdt99OpKkJ9wUX4DzpZIy5B+5kFmKsCW7aRGDVKqIdnRgLC7A0NGCpqkp3WCINQjt3Ely1OtGflJWJdfp0rHV16Q5LCDGMxLV7NdGODrl2i48l1t+P75VX6LnzTlSHk+zLL8c+dw4YjYl2sE2bUC0WLFOnYiotTXe44jCJ9PYRXLWS4MaNqEYTlukNokxc/QAAnFRJREFU2KZPRzEa0x2aEGNCzO8nsHIVwXXrQI9jqavDNnu2jCcQI0KPxfAvf4/gmtXokSjmybVYZ8zA4HanOzQhjmiBdesIrFpFrKcXY2kJ1unTMZeVpTssMUGEduwgsGYt0bY2FE3DUl+PbfYsFE1Ld2hCjAnhpib6//1vIm3tWGfOgGgUY2kplro6qSNNMHo4jH/lSoKr16BHI5gnT8E2exaa05nu0MQEFu3vJ7hyJcENG1CMJiwNDdhmSDuaOPIEN28msGIlsb5eVJcLU2Ul9hkzUEymdIcmxGE10BWgdWs/88+qRFGVD92+ZGoWR51VSfjZ36D/4SEUPQJGGxkRBacrjnfN44TjJ3CUeTWTz2klpj8Mbxqh5lTIrODBl/+XX+7axrH+AKsGSumq+xTVw7yOruvsfizOvMhS3iz4L680v8Li4sX7jSsvw0KvZsG/YRN6OIxiMpHhyaGvqxdq50LjKxQv/R4Auzf3UjM3/6N+ZEKkxYgmIVEU5RvA68DLQDVQSyIJyUZd1yVNzwQT7enB//Y7tP/iF7AnU6qxtJTiG67HUj3cJVqI0RdqbKTp0i8Q93oB6PzdtUR3t5D3/Ws+9OZU13X6//Vv2v/v/4bKnEuXkv+TH0vD2xgS9Xrp/9e/6b711qEyx0knkvvd72KWwVxCHDahxkaavvQlos27AVCMRnK/8x12XfllSm+/HfuCo9IcoTiS6LEYff/8Jx2/+vVQWcZZZ5F3zffouf12eu+5F4Dw1q0Mvvwy5Q8+iLmyIl3hijEqsGYN3bfcgv+dd4fK8n78Y7Iu/EwaoxJifAvt2MHOS79AfGAAgM4//IFwczP5//sjAitW0PTFyyASARLtBaW33YpJBqAd8QIrV7L7m98k3t8PgOpwUHTdn3AsWpTmyIT4cLqu43/zLVp/8APYs0K6qaqKgl/9Cts0SXQnxMHSdZ2B//6Htp/8dKjMccLxKBYrvueeB6D9/35BrL8fz5e/jKJ8eEezEGNBuLWVrptvwfvkk0NlWZdegnbZZRizs9MYmTjcooEAA089Rdcf/zRUZlu4kPwf/RBzZWX6AhNCpAi3ttF9x50M/PvfQ2WZF15I9lVfkWu3OGS+V1+l5bv/M/TY/847lP7jbhQdmi69FH1PO5ihuIjS227DXCH9FBNB4L33aPnmN9HDYQAMeXkU/v732OfMTnNkQowNgVWraL3mGqIdHQAoZjPF1/8FxzHHpDkycSTwv/ceu7/+dWJ9fQCodjuFv/stzuOPT29gQhzBQtu30/mHPzL4+utDZZ6rrybrkovRrNY0RiYmgmh/P94XX6T/gQcJ79iRKDQYKLn5JhxHH53W2IQYC2KDg7T/v/9HtLMTS309bf/746HnMi/+PDlXXy2Lx0wg/lWraPnOd5PuxYr+9EecS5akOTIxkQWWL2f3N97XjpafT+G1v8M+Z06aIxNi5AS3bKHp0i8Q6+4GQLFaybn6alRNwzZb2ozFxLL5nXYAaubmHfQ+M+M3oDjvZWtgEY5P/pS8OXO4/bLPUHvUMRSe8Tn482sY9Eq6NzlwzfPC0z9I/ABXAGHNSOjYn/Dczc+z5KTiYV9j01tttGzp46oLL6e9Zx2/evtXLChYgFEbft5xboaFOAp9iong5i1Y6+tw5eTR0bgNTjkGXvoVHk8Mk9XA7k19koREjDvqCB+vGLgO6ACeBj69p8w+wq8jxoFISwv9Dz80lIAEINLURGDVqjRGJSa60JYtQwlI9up98EEiLS0fum+kqYmO3/0uqcz75JOEtmwZ0RjFxxPeuo2eO+5IKvM9+xzhbdvSFJEQE5P/3XeHEpAA6JEI3ueewzZvHv1PPpHGyMSRKNzUROfv/5BUNvDoowQ3bKD3gQeTyuM+n3x3ixR6NEpo69akBCQAnX/8I5Hdu/ezlxDiw4S2bB1KQLJX/z//SaSlha6/XD+UgAQS91v+99473CGKNPA+//xQAhJIfDcPPPZ4GiMS4uBFmpvpvuWWoQQkkEh0F9q0MY1RCTH+RHbtouO3v00q8z3/QsrE/J7b/0a0vf1whibExxLeujUpAQlAzz/uIbx9e5oiEukS3raNnvclSgfwv/EGoa1b0xSREGJ/wtu3JSUgAei9/37pVxSHLOb3p/RRo+uEt26l86abhhKQAESbd+N/d9lhjlCkQ7Svj9577hmaOAEQbW/Hv0x+/0LAnoS/b789NOkNQA+F6Ln7H8Tfd90U4qPyvfjSUAISgPjgIP2PPU70A2MHhRAjJ7R1W1ICEoCev95GaKvcY4nRF2lqQvf59iUgAYhG6fzTdcR8vrTFJcRYEdm1C99LL+M47jj6Hno46bnev98lfRkTjP+dd1LuxXrvu1/qyiJtov399Nx1d3I7WlsbgfdWpDEqIUae78WXhhKQAOiBAP533yWwYUMaoxLi8NN1nc3vtFFY7SbDc5BJS1c/iPLOrcTmfpl3LP/LEw+FaNveSmhwkJzyStr6gwB4BhR2bshi9eSfwdWr0U/7Pf8uquU3BSWEvracjtwTAYWsopKUl/D1hnj1wS0UVLloOLqM/5n7PzT7mnlw84Mp2+6V5zQD0G3JILhmNQAZObkEvANEC+cBOuquNyisdtO8qfeQPichxoIRTUKi6/p3dF1fCOQDPwB6gC8AaxVFWT+SryXGAUUh2t6RUhzrlYulSB/FmJp1TDWbQDN86L7xQAA9GEwtl8bpMUUPhZIGce0V9wfSEI0QE9dwk4Qi7e0YPNlozow0RCSOZHG/P6nheah80J/4nv8AxTR8FlIxgalqUjKEveJeL7GA1CGE+KiGu94qJhPEYoSHSfAT7eg8HGGJNIu2piYBjbS0oOt6GqIR4tDo0SjRjtR7nbjfn4ZohBi/4sEg8cFh/m7el9AcQLXbDqrdVoixIj7c/WMkgh5KbbMQR7hIZNjrnPRTCDH2DHvtjseH7RMW4kAUTUN1OFPKVYeTyK5dKeXR9rbDEZZIMz0WI9qW+ruOdnWlIRohxh5FUYj29KSUR1tbh+37FeJQDbfYRLStDUVR0hCNEBNDPDBMe8igHyJyXRejTzGZiAdS7+cjra3D3/8LMdEYDKBpENeTFt3YS+ZDTCzDtU1E21ohFktDNEIAsdiwbabSjiaONOFh+wvaMbgz0xCNEOnT2eSlt81Pzby8g9sh0AdPXQPF89BO/QVLr2wgGonz3J1bACOeklJa9yQhydy0lsEsN7vWr4XMMl4vmsz/mgJUHPdjnO4yelqaAcgqLE56CV3XeemejcSjcY7//BQUVWFh4ULm5c/j1tW3MhgZHDa0vAwLAL05RQTWrAUSSUgA+s0lYLDAjtcors1koDOAt0f6ocX4MqJJSN7HCmQArj0/LcDbo/RaYowylpbiPPWUlHJrw/Q0RCNEgrm2FmNFRVKZ56tfw1hU+KH7GgsLsU5PPn8Vmw1TWdmIxig+HlPVJMw11UllqtOJuboqTREJMTHZ5sxNKXMceyz+5e+RccrJaYhIHMmMRUWYp05NKlMdDszV1Xi+9rXkbSsqMNfWHs7wxDigqCqW+mmJ5AjvY1u4EGPhh9cThRDDM9fUYKpKrod7rvoKpooK3Oefl7K9dcaMwxSZSCfnqaemlGWceYYM+hXjgqm0lIwzz0wuVBQsNTXpCUiIccpYWIh1bnK7gWKxoFgtSWU53/oWxhzP4QxNiI/FXFWF5nYnlZkqKjBNqkxPQCJtTBUVWGfPTipTLJaUvgshRPqZq6rQPMn1DWNREaZJ0q8oDo1qNpN9+eXwvvYNxWbDVF2F+/zzU7Yfrh9NHHmM2dm4zj4rpdyx4Kg0RCPE2OQ4+uiUMtc5Z6PZ7WmIRhxpnMOMTck48ww0hyMN0QgxMZirq1GsySsYW2bOxFQp7WNi9BlLSjFXpd7Puz91LgaP9DUIYSorI/PznyPa05Myb0LzeDCWlqYpMpEO9kWLUspcZ52F4QP9XEIcLoasLDLOSm1Hsx01Pw3RCDF6nCccn1JmP3pRyjhbIY50m99uRzUoTJqVe3A7vPEX8PfA6deCZiAz384pX6pnoDuG0X46WYVltPUH0RRwNm1Fq6lm98Z1xGMxblp5EwX2As6pOgeAnt3NGM0WnFnZSS+x6a02dq7t5qhzJuHOtQGJRNrfmPUNeoI93LnuzmFD25uEZKCiluCa1QBk5CSSq/T39ELJPGh8laLaRLKh3Zt7D+mzEiLdRjQJiaIotyqK8jrwALAAeAM4T9f1ObquXzqSryXGPoPTifv888n83GdRrFYMhYUU/v73WGdIEhKRPqbCQkpuvJG8n/yYzM9/juKbbsT9yXMOarKTlpFBwS9/meigNBox19dT+tfbMEsHyZhi9Hgo+NWvsC9eDAYDloYGim+4QSYECXGYWaZPp/DaazHk5aHabWRecjHWhgaK/3wdlmnT0h2eOMIY3G4Kf/NrHCccn7j2T2+g5LZbMZeX4T7nHIpvupHMiz9P3k9+TMlNN2KSpBJiGNaZMyj6y58x19SA0Yhz6VLyf/RDNJst3aEJMW6ZCgooueF68n/6k8T914034P7Up1AUBffZZ5N9+eUoNhuG/HyK/vAHrNMb0h2yOAwcxxxD7jXXoGVmorpc5Hz72ziWLEl3WEIcFEXTyLr4YtyfvgDFbMZYUkLRn/6IbdasdIcmxLiiORwU/OynOJcuTbSz1k2l9K+34TjpJPJ++AOyLr6Ykr/ehvOkk9IdqhCHxFxZSfH1f8EyYwYYDNiPOZrC3/4GU0FBukMTh5nB7Sbvf3+E4+Q9/UlTplB84w1YP5BEVwiRfubycor//OdE4iCDAduCoyj84x8wHcQCFkJ8kH3uHErvvousy79Ezje/Sdk/7sZaU4PrjNPJ/vKVqHYbhrw8Cn/3OyzTZdzMRJFx5plkX3EFqt2OITeX/F/8H7YFC9IdlhBjhm3BAvJ/9jMMuTmodjvZX/4yzjPOSHdY4gjhWLSIvB/+EC0rCzUjg5xvfgPn8amTfYQQI8c6dSrFN1yPecoUMBpxnHQi+T/+X5nQLA4LzWbFtnAhBb/6FcaiQhSLJdGvd8EFsiCGEIBqNOL54hexH72InO9+F9uCo8BgwDp3LiU33yRjKicY+4IF5P/85++7F7sS52mnpzssMcG5zjqL7MsvT7Sj5uaS/8tfYD9KkvmKI4tt9mzyf/5ztOxsVKeT7CuvxHHSSVgnywKrYuKIx+JsXtZO+TQPFrvxw3cI+eDdv8Lk06FgX/9aWV022fm70EyVvPtEC639ATwm0NBxL1xE0OflydX/ZnXXar7U8CWMWuK1unfvIrOwCEXdl1rB1xvi1Qe3UFDlouG44qSXn5YzjZPKTuKudXfRG0xNIOJxmFAUGMgvI7R1GzHfIK6cRHKVgY4OKF8M7WvIdoew2I3s3ihJSMT4Yhjh45UCZmALsBtoBvpG+DXEOGKpribvmmvI/sIXUMxmDFlZ6Q5JCMwV5Zgryj/avlWTKPztb4l1d6M6HGgZGSMbnBgR1ro6iq/7E7HeXlSnE83pTHdIQkw4ms2K64zTsR81Hz0axZCbm3STJsRIs1RXU3TttSnXfs3lwrlkCU6Z3Cw+hGo04jz2WKwzZqAPDiYaeM3mdIclxLhnKivDVFaWUm7MzyfnG1eT+ZnPoJiMGLKzh9lbHIkMmZlkX3IxGactBV3HmJeX7pCEOCTmigryf/QjPFdcgWK2YMjKTHdIQoxL5spKCn/9K2Ld30G129FcLgAsFRVpjkyIj8c2Zw6lf72N+MAAamYm2gdWfhUTh3XyZIp+t6c/6X3XOSHE2GObNZOSW25OXLvdbklKLD4yxWTCPmcO9jlzksqN+fnkfO1rZF5wAYrBICtwTzCmggJyvnE17s98GsVgwCi/fyGSGJxOMi84H8fxx0MsiiEvTyYJixGjuVxkfe6zOE89BeJx6Y8Q4jBxLFyI9e93Evf5ZNyFOOxM+XmYzjkbx7GL0UOhxJhFTUt3WEKMGQaPh4w9iwA4Fi8m3teHmpGB5nCkOTJxuGl2O5nnn5dYNEjuxcQYYSooIOeb3yDzws+AtKOJI5TmdO65/h4HsRjG/Px0hyTEYde8sZfAQJjaeQd5/q/4BwT7YNHVKU+FfcuwZyisfRm2VmrkRAdRLBaKTjoF/clHuHX9Xym0F3L2pLOH9ulubqJk6r6FtXVd56V7NhKPxjn+81NQ1NQ60VUzruK5nc9xx7o7+NbsbyU9Z9BUcp1mOp0e0HWC69dhnzMHzWBgoKsDjj4aAGXXGxTVltO8uRdd16XuJcaNEU1Couv6qUri7K8DFgLfBuoVRekB3tR1/Scj+XpifFA0DaOs8iaOIKrZjCrZfsc81WpFlQHeQqSdDKQUh5Nc+8VIMLhcIBODhDgsFFXFWCCdKBOVMTc33SEI8ZEpBoO0dwoxAqSdVRypNIdDBuwKQK5zQowncu0Wo01RVRlMPIEpioJJfv9CHJAxR8YViNFjzMlJdwhCTDhaRoYs8CfSShZNFeLDaTabJOMVci8mxhxFUaQdVUwI0lYhJrJN77Rhthkoqz+IxSt1HZbdDsXzoGRe0lOxaJTu3c3MXDqLYCCHXVt2MdXXjnXaNNxFxfRMMrM9uoWfzP0JRs0IgK+nG19PN3mV1UPHWfvybnau7eaYC6px5w5fP57knsRpladx/8b7+fzUz+OxJtehSrNs7I7GAAiuWYN93jycnhz6Ozug6CIwWKHxFYpqZrLtvU4GuoK4cmTekxgfRnw5ej1hLfAE8CTwOjAJSE01JIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiCNOOBhl+4pOJs3ORTMeRGqD1pXQtRlmXpTyVF9bC/FYlNyyck64eAo+TcfTtZt4ZR26rrOyqhdn0MiZFWfsO9y2zQAUVNcA0L3bx+sPb6W0LptpxxUfMJQvT/8y4ViY29fcnvJcaZadpoEQxuJiAqvXAJCRk8dAZzsYTPzR8hVqXjmax3r7Adi9qffD37sQY8SIJiFRFOXriqLcryjKLuAV4AxgE/BJQFLKCiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQE0Djqi4Y9FG24RF2ffkr9Nz9D/RYbP87rH4QNBNMPSvlqa5dOwHwlJYT0HXCgCfQx4pGJ09veJ5dWhfTNjvp2LJlaJ/dG9aiGQzklFcSDkZ55vZ1mGwGTrh4CoqiHDD2sowyzqg8gwc3PUiHvyPpufJsG+0DIdSG6QTXJJKQuHPz6WtrZU1zP3/umoWJMLe9s4PBDI1mSUIixpERTUIClAMPA/N0Xa/Udf1zuq7fqOv6Kl3X4yP8WkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBiDtr24ibmrfk/okXsIbd9G+y9/ye5vfGP4RCSxKKx5GGpOAWtmytNdu3aiKCpZhcXs7g0AkBPoo89VwR9evY4CawE1HZlseeeNoX22r1hO8dRpaAYTz966lt6WQWYqOsEnG9EjB0iGsseV068krse5bfVtSeWl2bZETDXTibS0EGlvJ6uomKDPy99e2YzdqPKE6QcYFJ0tWSq7N/Wi6/qhfHRCpM2IJiHRdf1buq4/rOt660geVwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOODry+I8783YAn2UHrnHVQ9/TS513wP77PP0XXLLak7NL4Egx3QcMGwx+tq2om7oBCDycTObj8AZdl2sj4HrZYdzGg6ifK6hWx8/RUi4RAdO7bT29JMxcx5vHr/Jnas76HeYaBsZg7+lR1037fpQxODFDuLObv6bP655Z+0+valUCjLtidiqpgMgP+tt8gqLCaqaDy9oZNTpxVSag1xjKuTlaEAgwMh+tr9H+FTFOLwG9EkJEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJjYGm9+AE/3GpyXX4V93jwAsi+5BOfSU+m++RbCO3Yk77D6QbC4oPrkYY/X3bwTT0kpADu6fACUTynj3vY7yDcXULF7Fj3tcwkFPCz7z79465H7MZjdtG4vZu0rLVSZVeZcPJWsT0/GdXolwfXdDL7b9qHv44qGKwC4ZfW+xCnl2TYAmsyZaG43g2+8SWZhMdtt5fgjOp+cVQzlR3NC7DU6AxH6VJ3mjb2H9PkJkS6ShEQIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBAjIh4OE3/wVvzZlRRf9cWk5/K+/30Us5n2X/16X2HIBxv+C3XngMGccrxIOERvWyuekjIAGrfsIiM0yKYZJjb0bODrc7/GBd89CofbhslxFsufNrNzfRlG+6Xs2tBHvdPAzPosrPXZADgWFmKe5KL/sUZi/aEDvpd8ez6fqvkUj259lF3eXQC4bSYKXRY2tHmxLTiKwbfewunxsNk5mUxDjPmV2VB5LPODrwPQlWWgcXXXR/48hTicJAmJEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghRsTu2+/D5O/B+JnLUDQt6Tljbi7Zl12G7+WXCaxZkyjc9ARE/DDt/GGP19O8C3QdT2k5ANubuykY7OL2+KtMck3itIrTyCq0c8GP5nLcRdVkl9jJKsqj4fgSTluUzySjQuaZk1AUBQBFVcj8ZDV6PE7fk40f+n4um3YZmqpxy6pbhsrqilys2d2PfcECou3tdGzYxk5LMTO0TjRVgYrFVCqt5FjidLhUdm/sJeSPfIRPU4jDS5KQCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ4mPTw2H67/wr/a4Kqi8+fdhtMi+6CM3louv6GxIFqx8AVwmULhh2+65dOwHwlJQBsMsXw+AK0Ohr4qszv4qmJhKdqJpK3TElfObHJ3PRz05k3tFFaGu7sM8vwJhvTzqmIduK89gSAis7CW3vP+B7yrXlcn7t+fx3+3/Z0b8DgIYiF41dg0RmzQfgoadWEFdUavrXJXbKmYzizGO+dTdbgiFi8Tg713Yf+MMTYgwwpDsAcWTTdZ3ghg0E165FMRqxTmvAXDUp3WEJMaLiwSDBtWsJbtqEITsby7RpmIqK0h3WhBYbGCCwZg3h7Y0YCwuxNEzDmJOT7rCEOKLEw2GC69YT2rAB1eXCOq0eU2lpusMSE1Rw4yaCa9eComCZVo+lpibdIYlxKtrTQ3DtWkI7dmIqK8VaX48hOzvdYQlxRIv29ibq7jt2YiotxTKtHqP83R3xghs2Eli7FkVV5btbjDt6JEJw/XqC69ajZjixNjTIvZAQhyAeDBJct47gxk0YsjKxNDRIW6o4okj9VuwV8/kSbQxbtmLIy8PaMA1jfn66wxJCDCPa3Z24djftwlxRjmXaNAxud7rDEkegofvJ9etRHU6sDdMwlZWlOywxyvRYbKgdQbFasDY0YK6oSHdYQhw2MX+A4Lq1hDZvxuDxYJnWgKmwIN1hiQkkuGnPWALAUl+PpbY2zREJceSLtLURWLOWaFsb5qoqLNPq0RyOdIclJohobx/BdWsJN+7AWFyEddo0DB5PusMSIm1CW7YQWLsWPRrFUl+PdcqUdIckxpDQ9u0EVq9BD4ewTJ2Kpa4ORVHSHZaYwPR4fE872joUiwXrtGmYKyvTHZYQIyra00Ng7drEeAIZpy4miJ6HHkHr7yL4ySuwOk3DbqM57GRdeimdf/oTgXdfwrrtBTj6m6Cqw27ftWsnmtGIO68Af3cvHQYbYU8nU7OnckLpCcPuo8d1+v69FdVqwHXS8P1zzmOL8S9vp+8/W8n92iwUbf91oy/Wf5GHNz/M9Suv59pjr+WYmhx+/+xm3vQZqJ8yhX+1xJjkjmLesZVoJILBaISqE5m36nUeC5QQyXCyfWUnNfNkHIkY2yQJiRhVgZUrabr4EvRwGADN7ab073dKZ444oniffZaW7/7P0GNLXR3FN1wvg0nTRI9E6LnnXrquu26ozLn0VAp++lM0lyuNkQlxZBl8/XWav3IV6DoAxopySm+9FVNJSZojExNNYM0adl58CbrfD4Bqt1N619+x1tWlOTIx3sQDAbpuvoXeu+4aKnNf+Blyv/MdNJstjZEJceSKB4N033orPXfcOVTmvuACcv/nu2h2+/53FONaYM0adn7+YvRAANjz3X33XVinTk1zZEIcnME332LXlVdCPA6AsaSE0tv/KolIhDhIvhdfZPc3vzX02Dx5MsU33igTkMQRIR4M0n3LrfTceedQmfuCC8j93v/IfeUEo+s6/Y8+Svv//WKozL5wIYW//Y1MehBijIn5fHT+6Tr6HnpoqCzrC5eS8/Wvo1osaYxMHIkG336bXZdfMXQ/aSguouz22yURyRHOv3w5TV/4IkSjAGgeT2Lc1CRZwElMDN6nnqT1Bz8cemyZOZPi6/6EMTc3jVGJiSKwdi1NF19MfHDvWAIbpX//O9b6+jRHJsSRK9rdQ+v//pjBV18dKsv7/vfJ/PznZFKzGHXxcJieO++k+5ZbhsoyzjmH/B98H83pTGNkQqRHYMMGmi6+hPjAAACK2UzZXX/HOn16miMTY0FoyxZ2XnwJsZ6eRIHRSNmdd2CbPTu9gYkJzb98OU2XfiGpHa3s73dilnY0cYSIBwJ03XILvX+Xcepi7InEIrzV+hbL25fT5G0iEo+Qa82lzlPH4uLFeKwfbZyDHg7TcePN9DvLqbjw1ANum/nZi+i54w6C9/0Ua0YcGj693207GrfhKSlD1TRWP/MacUXFb9nJN2Z9Y9j2B13X6X+ykfDOATLPr0G1GYc9rmrScJ9RSfc/NjD4VguORftfWCvbms0ldZdw06qbOL/mfOYUzcXjMPOvFbuJLDqDxi433yqByLo43bt2kldZBbWnMee97wOfJlBqZee6HiLhGEaTdsDPRoh0Gj4VkBAjQI9G6bnr7qEEJACxvj58L72UvqCEGGGR9g7af/XrpLLgunUEN2xMU0Qi3NRE1403JpV5n3yK0NataYpIiCNPtK+Pjt/+digBCUCkcQfBdevSGJWYqPr++c+hBCQA8cFBBh5/PI0RifEq3NiYlIAEoO/e+wg3NqYpIiGOfKHGRnru/HtSWd8DDxDevj1NEYnDofehh4YSkMCe7+4nn0pjREIcvNjAAB3XXjs0YQwg8v/bu+/4OIqzgeO/R12yuiX3Indsig2YYqpDCKGXUEILIXRS6AESUgi8ISEkQCgJvSf0XkPvzb0bg3uVbMmW1dvN+8es5NPp7nSSTrd7p+frz3182tvbe3Z3dnZ2ZnZ27Vrq5s93MSql4kfT5i2U/uUv7aY1LF1Kw+LFLkWkVHQ1rlxFxaNavlW2fFD2j1vbTav5/HMavv3WpYiUUqE0rlzZbgASgIqHH6Fx1Sp3AlIJq6WqirJbb2t3Pdm8bj218+a5GJXqbb66Orb8699tN04AtGzZQu3XX7sYlVKx07hhI6U3/63dtPo5c2hYqn2qVGxUvvxK2wAkAL6aWipfftnFiJRKfA3fLms3AAlA2W230bR2rUsRqb6kcdUqyu+/v9207S++qPWzqs+qfve9tgFIAExDA1v/+yTGr25C9V3Vn322YwASgKYmtjzwID6/e7+UiiVffX3QerSaL79yMSqloqtx5ap2A5CA0099hfZTV+6pa67j0UWPcuhzh/Lz937Oo4sf5dut37KhegNvrnqTP37+Rw599lCu/uhqVlZ2Pa1ue+FFKC+ldLfjGT6pf9h5k7OzKfzZ2WS2LMBXMBGKxwedz/h8bFr+LYPG2M8/+XoWAAeMGsW0IdM6zN9cXkf5E0uo/mQ9/fYdTL89BoaNI2Pn/qSPy6fynTW0VIcvG52zyzkMzR7KTV/dRAvN/Gz/Ej78ZjPXbR3E8O2lHN+0HoBNy52+ImO+x4TUzeQkN1PaT2huaGHl3M1hf0Mpt6W4HYBKXKalhab16ztMb9q40YVolOodpqGBlsrKDtN9NdUuRKPAVkDQ1NRxut8N6kqpnjENDTRvKe8w3VeleZ+Kvca16zpOW9exDKpUZ3x+N8S3m65lCKV6jamrazeoWSs97hKXMSZoJ8OmdR3P50p5ka+hgeYtWzpMD1Y3pJTqyDQ20FyxtcN0X22NC9EoFX2+utrg5dsaTeN9ja+hsd2gua1aNC0o5TlB6yCMCVlXqFR3+RoaaNncsRNhyza9nkxkpqmJ5tJNHaa3bO5Yt6BUIjKNDe1uemyl10gqVprWBWmPWKMDISjVm4JdY5n6etunU6le5qurazfwY6sW7X+g+qimDR37UDauWwctLZCkz7Lu65rLyjpOW78e09QEaWkuRKT6OtPURPOmjvVowfroKBWvfHXBy6WhpivV22ZsmsFvPvkNpbWlTBs8jdMnns60IdNIT04HbH/fZVuX8eryV3nu2+d4Z807/GTiT7h4ysVkpmR2unxfYyOld/+bytxRlJx+BElJ0ul3Cg7bg+RNzWxd04+CEPNUbFxPY10tg8aMo2XbNl5Nrwdp5PqDftn+9xtaqHxrJTVfb0KShNzDS8g5eFinMYgI+ceMofT22Wz/32oKThwXct6MlAyu3ftafvX+r3hi8ROce8BZrNhcw8bKOi5c9AS+CkNGdg6lK74FjoC0fiSPOZg9li5nydZ89uyfwdIvNjJ+70GdxqWUWzw3CImIrAKqgBag2RgzVUQKgaeBEmAVcIoxpmNP1QTX0NzA1pqtVLdUs6F2Az6fjxG5IxidP9rt0IJKSk+n4NRT2RjwJNCc7x/qUkSqO8pqy1hXtY7c9FxaWlqoaa6hf0Z/tjZsJSslCwSqGqsoyiiisrGStKQ0UpNS2dawjf6Z/aluqkYQMlIy2NawjYL0Aupb6mnyNZGflk95fTl5aXk0+Zqoa66jMLOQivoKslOzMcZQ1WSXva1hG+kp6SRLMtsbt1OUUcT2xu0kSzIZKRlsbdhKYUYhdc11NPuayU3Lpby+nIK0Ahp8DTS0NJCfnk9FfQU5aTn4jI+aphr6Z/Zna71dFxFhe8N2ijLtuqQmpZKWnMa2ersuNU22ETwrJYuKhgoK0gsgq5nsY4+h+sWX2raZpKZSP7yYbdtXU1FfQWZKJiW5JWSkZLi0F/uYIQPJ2HVX6hcsaJuUnJ+PjOi8oKhUIllbtZay2jIKMwoZmTuSJGnfaFDXXMeqylU0+ZrITculor6CZEmm2dfM1vqtDM0eSm56Lmur1tLkayIvLY8B/QaQlZLFppSt5JxyEpUPPrxjgUlJpE8IPtKkUq2afE0s3LyQzXWb6Z/Zn8K0Quqb62nwNWAwpCan4jM+SmtKyUvPIyc1h9qWWnzGR11zHUUZRTT7mklPTictOY1R+aMoOPkkaj/7rN3v5B97rEtrqOJZ6ogRpA4f3u7m+JShQ0kbMaLHy15avpSy2jIyUjJoMS3kpOaQLMmU1ZWRJEn0z+xPXXMd6UnpNPma2NqwlX6p/chNy2Vi/4k9/n2l3NTY0siqbatooQVjDILgMz6SSCKrMIWUkpE0r1rdNn/KoEGUFSazft2njCsYx8B+4UecVvFFRMg/5RRqv/iy3fS8Y452KSKluialqIiC009jy11375goAhPGsLl6M8XZxe4Fp1Q3rdq2ivL6cnz4EOdfiqTQbJqpbqomOzWb2qZa+qX1IyslC5/xkZGSQV5aHmuq13Sp7jN1wADyTzqRbU89vWNiSgppY8f24hoqFTupI0aQWlJC06pVbdNSBg0iraTEtZiUO1KHDKbfwQdT89FHbdMkK4v00d5s01WqL0sbOZKUgQNpLi1tm5Y6qiQqdYJK+UstKiL/tNPYcscdOyaKkLnrLjH5/dWVqzHGsKl2E9WN1QzuN5jctFyG5w2Pye/3Vcm5uRScfgalf/5zu+lZ++7jUkRKxVbq4MHkHHkkVa+/3jZN0tJIGzPGlXiqG6tZvX01LaaFkbkjSZbktr9zUnNYX7OehuYGhmUPY3TBaFKTUjsso7SmlPXV68lJy6Ekt4TU5I7zKO/IO+EEqj/4sP20E3/kTjBK9aIVW1ewrmYdPp+PYbnDGJvvXn1r2qhRJPXr127Aqaz99yd1yBDXYlJ9R9rwEaSNH0fjsm/bpqUUF5Oq1/jKY7bVb2NpxVIafY0UpBdQmF5ITVMNG2o2kJSUxJDsITT7mqltqiU3LZfqxmpqW2oZ3G9w0L7AoeQcfjiVfvc3ABSc+mMkVcuwfUmLr4VV21dRUVdBanIqmcmZbKzZyE77TIGH2s/b79STqEpuIt+NQFWfl5yTQ8EZp1P6f+3r0fppPZqKI8sqlrGmag0DMwdS1VRFk6+JAVkDaPG1ICIUF+f0Wj91pbqi2dfMvfPv5b759zE8ZziPHP4Iew7cs8N8IsKEwglMKJzA2buczT9n/5OHFz3Mh+s+5JaDbmFC4YSwv1P5/POYzaWs2+tSjt0/snqB5G+ex5DM5nfXkrl4MRmTJnWYp3S5veYbNHY8L79xO+uzBjEopYlhuTt+w1fbRNm982kuq6Xf3oPI/f4IknPTI4oBIHVAFtnTBlP9xQZyDh5GSlHoQVemD5/O94Z/j7vm3MUBQw/gH6dMBqA8ZSllN9/MiGN+wKYV3+34wqTj2Wvxm/y9bALD9h7PknfWsn1LHblhfkMpN3luEBLH94wx/sPVXQu8Z4z5q4hc6/x9jTuhuaOmoYYttVuoaKrg/vn388n6TwDYtWhXfr3Xr9l9wO4uRxhc9vSDGXjddZTffx+SnkHxpZeQueceboelIrSkfAmXfnApg/oNYpeiXXhyyZP8fMrPeW3FawAcVnIYDy14iJ9M+gkzNs1gU+0mzph4BvfMu4ejRx/NhuoNzNs8j59P+Tn3zr+XfQftS1JSEu+sfocr97yShxY+xJj8MYzIHcFzy57jsj0u47llz9EvtR/7DdmPRxc/ynm7nseHaz+kqrGKH437EffPv5+Txp/EN1u/4dut33L+rudzz7x7+N6I71HdVM1n6z/jsj0u44EFD7BL0S4UZBTwynevcNVeV/HE4icozipmcvFk/rvkv1w85WLeWPkGPuPj8JLDeXDBg5w56Uxmlc5iQ/UGzpx0JvfOu5ejRh/FpppNzC6bzS+m/IJ759/LPoP2ISUphbdXvc3jp/2DtAyBNz8gefgwKs89lrlpK3jivRtZvX01gnDGxDO4YLcLKMgINQ6biobyunI2NZeS94craHroCcynX5O0y06kXXQ2HzUvYa+abIr76Q1BKvF9uv5Tfv3Rr6luqiYjOYM/7fcnDis5jJQkW/TbUreFe+bew4vfvcjle17OAwseoLy+nBRJ4fSJp7Ng8wJ+uvNPuXfBvby35j0AdirciR+O/CHFWcXc8MUNnD/5BH5wzum0vPAGKYMGMeCqK4Ne4CnVqr65nieXPskdc+6g2ddMYUYhv93ntwzpN4SFWxZSUVfBlIFT+MPnf2hLjxdNvoi8tDxmlM5gcvFk7p9/P7/a41dsb9xOenI61c3VTJo2jUE33sCWu/8FSUkU/+IXZO2zt9urq+JQanExw+66k813303tF1+StffeFP/ql6QO7NkACDM2zuDWWbfyg5E/4MlvnuTMiWcyNn8s9867lzmb5wAwbfA0ztv1PD7a+BH3z7+fFtPCwKyBXLjbhVQ3VrPX4L2isYpKxVx1YzWLtiwiOckOdCYISZKEz/hYUbmCf875J3++5gKGP/cV5us5pE/dg/qzj+fMr39BbXMtA7MG8s/v/ZOdi3Z2e1VUFG3bZQSZ111B04P/RZKTaP7ZSWwYW0j45gilvEFE8B11CLm+JmqefJakov7Unn8i72WuZFJdDpVNlYwt0MEUVPyYWzaXFdtWUNVURX2zfRJlcWYxNU013Db7NjsoaXoeF+52IZ+u/5TjxxzPgKwB/N8X/8fBIw7mjZVvsLJyJadPPJ0Ld72QgszwdZ+Smkr/884jKSuLyhdeJGXYMAZedSUZO+0Ui9VVqtctZwvmxstIfuR5zNdzSdpjV3J/fgEt/fPQLr19S3K/fqRffiFN/XNofvdjksaNpun8U1iaXcVkt4NTSrWTOmgQw+/5N5vvuJPamTPpt99+FP3i56T07+92aCoB5f/oR4Bh6xP/IbmoPwOuuJLMnXu/3mtB2QKSJZm31rzFY4seo8W0UJxZzE0H3ER1c7UOhN3Lcn54GL6GeioeeZTknByKr7iczN12czsspWIiKT2dAZdeQkpBAZWvvkr6qFEMuOpK0seFfnJkb9lYvZG/zfwb765+F4BfTvklSyuW8u6ad3ni8Cf417x/8daqtwAYXzCe3+7zW3buv3O7QVcXblnIpR9cSlltGcmSzC93/yWnTjiV7LTsmK+PikzFpKFk/P5Kmh98EozB97OT2DShmFy3A1MqiuaWzeWeeffw2Qb78J7JxZO5cuqVrvUpTx81iuEPPsDmW2+jfulScn54GP3POYfkbM0rVe+rz04l56Y/sP2+h2j5YiYyeRJN557MkpTNTGwuIj0l8hvOlOotqypXcd2n1zF/i33I74FDD+S8Xc/jjjl3MKt0FgD7DNqHiydfzCUfXMIvd/8ld825q62/5B+m/YEjRh0RdMC8QFl77smQv93M5n/egWlqouiiC+l34IG9un7KWxpbGnl1+av8+as/0+Rr4rHDH+OGL29g/pb57Jm7C7+76Tdw738xtbU0nXoU9+fPZ8G7r/HXA//KqLxRboev+qDK/XYm5VfnYp58GcnOJvnis9g4MhvthaPiwcxNM/n957/nJxN/wusrXufdNbYOamLhRK7Z6xpqGmvYnpzK6H/8mcYHHo9qP3WlumJD9Qau/eRa5pTN4dgxx3LdPteRlZrV6feKMou4cf8bOWr0Ufz2k99y2uunceXUKzl9p9MRkQ7z++rqKPvXvWzLHc3QHx1KWkYEwxjUb4c5/8FMPA7eXELpzX9jxCMPd1j++m8Wk5aZSWNeMn+rfgnqruOgPXfUORufoeLpb2jeUkfRz3YhY3z37uXNmT6cmq83sf39NRSeEr6H8x+n/ZEfvfIjrv3kWp486knSktPIO/44Nt96K8PKtvJtYyUNtbWkZ2XBpGOZmnYfNEPt8EySRJj//joOOCX29eZKRSKyYTDddxzwqPP+UeB490Jxx/aG7aSnpDOvbF7bACQAC7Ys4MO1H7oWV2dSCgsp/MmZjHrhBUqeeZq8o48mOavzE5NyX01TDf+Y+Q821mzkgKEH8PjixxlbMJZvKr5hReUKjhx1JPfNv4/8jHxqmmqYv2U+x445lnvm3QNAXnoen234jKNHH83DCx9me8N2xhWM482Vb3LI8EN46buX2Fy3mb0G7cUz3zzD5OLJzNg0gzVVazh05KE8uPBBBvcbzKaaTSytWMoxo4/hnnn3kJacRpIkMWPTDI4dcyz3LbiPupY6hmQP4f0173N4yeE8ufRJyuvL2a14N1767iWmDZnGe2veY0PNBg4adhCPLX6M0fmj+XbrtyzftpwjRx3JvfPvJTc9l7rmOuZtnte2Lj7jIz89n0/Wf8JRo4/i0UWPsr1hO+MLxvPGyjeYPnw6N6y+h6t3Xci2+//I/ecM5p/mXT7Z8Cmrt9uneRsMTyx5goVbFrq5S/uEFdtWICL8dOl1/N/3ynnvL8dyx0kZHLv0cnLSc5hfPt/tEJXqdeur1nPNx9dQ3VQNQH1LPdd9dh2rtq9qm2fB5gU8vexpDis5jGe+eYby+nIAmk0zjy1+jOPGHseKyhVtA5AALK1Yyuqq1by+4nUOKzmMuzc+zS/HfM72B29k5GOPkn3AAUiKV8e3U16wuHwxt866lWZfMwAV9RX8c/Y/qW6qZp/B+zB18FRumXlLu/R419y76J/ZnwmFE3hgwQPsWrwrL377ImKE+pZ6Gpsb2SDbKTj5ZEa98DyjnnuW/BN/RHJOjpurquJYxoQJDL3lFka/9ipD//H3Ht8MWVpTyt3z7mbakGncM/8eDht5GLM2zWJm6cy2AUgAvtj4BfO3zOfFb1+kxbTY79aW8ty3zzGrbBZrK9eG+gmlPG35tuU0+ZqobaqlsaWRJEli2dZlNJtmbp5xMzVNNVy25jZuPryWz/52CjW/u5CTl/6a2uZawB4HN311E1UNVS6viYqmRU2rOSv1cV6+7kCev2Zfzk1+gtu+uYf129e7HZpSnTLGUJbdwvXjF/G/G4/gsV9O4Jztd3HDzJvYUr+FivoKt0NUKmLb6rfx3dbv2Fi7kfL6cpp8TQhCTnoOt8y8hSZfEwCVDZU8uuhRhuUMY/6W+ZTWlnLF3lfwr3n/4shRR2Iw/GfJf1hQviCi300bNowBV13FqFdeZuTDD9Fv332RpHhpqlIqvNXVqzll8VXcfHg97/3lWP5+jI9rN97DhuoNboemYqysuozn6j7nt3uv5L2bjuHfZxRw+po/8eXGL9mwXdODUl6TMXEiQ2/9B6Nfe5Uhf7uZjPHj3Q5JJajUQQMpuvhiRr38EiMff5yc6QcjaWm9+pvrtq+jxdfCmuo1PLzw4bb65811m/nHzH+QLMlsrt3cqzH0dakDBlB03nmMevFFRj71JLk/+AFJGRmdf1GpBJE2YgQDr72G0a+8zPAH7idr6tSgndJ72xcbv2gbgCQzJZP6lnreXfMuE3Mm8m3lt20DkAAs27qMl797uV3bxPaG7dz45Y2U1ZYB0GJa+Ofsf7Js67LYrojqkgUNK/hJ8iO8+Jv9eOk3+3Nu2n+587uH2FS9ye3QlIqa2aWz2wYgAZi3eR4fr/vYxYgga8oUht3zb0a/+gqD//AH0kfpTcwqNmobavl7xTP836Hbee8vx3Lb8Un8eNm1rNy+kuXblrsdnlIAvLL8lbYBSAB8xscXG75oG4AE4KtNXzGrbBaXTLmEf8/9N9sbtwPQ0NLAHz77Ayu2rYjot5Kzs8k79lhKnnuWUS++QMHpp5OSnx/V9VHetnzbcv70xZ9o8jXxzJHP8P7a99vS36ztCzmz/l9svv0KvrjpJH5Z/D+e3vwWi8sX89yy5/AZn8vRq76moq6C+9Y/w8UD3uLNPx7KU5fvxqnVtzG/6hu3Q1OqUxV1FTyw4AEq6iowxrQNQAKwpGIJb656k9y0XFsflbqMzBt+E7V+6kp1xdur3uakV09i2dZl/PXAv/LnA/4c0QAk/vYdvC/PHfsc+w/Zn79+/Vcu++AyKhsqO8y35b778G0uZc1OJzDlByMiW/i8J6GxiqQDfknRpZdQ+9VXVL3zTrtZjDGsmjeHITvvym/euIT6xmJaTBb7ji5qm6fq/TXUf7OV/GNGd3sAEoDknDT67TOY2jllNG2pCztv/8z+3Lj/jSzbuoxbZtwCQEpBATmHH07GvAWkNjSybonTty6tH5N32ZVUmllYWsGYPQew+PMN1Nc0dTtWpXqTF3t2GuBtEZklIhc40wYaYzYCOP8PcC06l6QkpyBJwrzN8zp89uXGL2lsaXQhqsilFBWRUtD9TFvFXmVDJTNLZwK20grskx7mbp7bNs1nfIzJG8Oi8kUAJEkSdc11DM0e2lbBlZuey+a6zeSk5bC5znZeKckr4Zut37Rb9oSCCW3pu3XauIJxLNhiT7AtpoUmXxMluSVtDbgZKRlUNlRSlFnE+ip7s9LAfgNZU7WGZEmmtsneuDahcALzytove3zB+Lbfa2xp3LEuW+y6JCclU9dsBzdZUWnXJT89n9LaUrJTs9tukB6dP5olFUtYXrWSr5q/5fWyDxhbMDbosbqycmX3doaKWHl9OVvqt1BWW8acrQv59/qn+XDLF/jwsal2E+uq1rkdolK9bnPd5rZGh1bNvmZKa0rb/m7Ngwf3G8zK7R3zpmRJ5ttt33aYvmDLAjJTMxmSPQSAddXruHvtf0jO1efEqM6tq+6YB6+tWkt1YzXJkkyzr7ndYDmtyuvLqWuuo7KxksyUTGaVziI9JZ3aploaWhrablRPKSwkpbCwt1dD9QFJ6emkDhwYlU7A2+q3MbdsLiJCXXMdGSkZ7DdkP2ZsmtFh3jllc9hz4J7tpi0uX4wgbG3c2uNYlHJDTVMNxmcQhIaWBppNMwZDWW1Z2w0PAF9XzOW2NY+yoXlLh2XM3zKfbY3bYhi16m0bqjewtWErj254kSc2vsL2xu3MKZuj+1nFhfqmeiobKvmy9CvuW/8ML276X1tdU1ltWdtgkErFgy11WzAYahpr2Fy7mc11m6ltrmVr3VYMpt28pbWl5Kfns7RiKY2+Rnw+Hz7ja0v/QMQdHgEkKYnUAQN0AEmVcFrr376umMO/1z/N5+Uzmbt5LlWNOqheX5ORksGXG79kceU3/Hv907yz+RNaTAvzNs+j0eftNl2l+qqkzExbJ5iuT0VWvUtESC0uJiUvLya/V9VYRUpyChtrNnb4bOnWpdQ219LQ3BDkmyraUouLYrbflfIaSUkhdeBAkrOzXYvhq41ftb337wt27bRrWVK+pMP8M0tnsq1hW9vf2xq2sbh8cYf5NtToIINetqZqDZUNlTy+4SUe2/gSlQ2VzC6bzdZ6bXtViWNO2ZwO02ZsmkF1o7vtFclZWaQOHIikproah+pbKhormF06m1lb5/Hv9U/zabntm7O8cjn1zfUuR6cU1DfXt3sYMcDxo49nRmnHfmSzS2ez1+C92NrQvtzSYloorS3tMH84KQUFpPTv3/WAVdzbWLOxrd23KKuoQ5/FmqYanil9k8a8rLb7fAA+XvcxNY01MY1VqS11W5hZOpPS2lIe2PAcz2x6g7rmOr7d2vF+BqW8pqyujNlls5nUfxJLKjrWM83YNIOkpCQamhvISsliS0tl1PqpKxWJuuY6/vTFn7jyoyspyS3h2WOe5ajRR3V7eYUZhdxxyB1cvdfVfLzuY0559RQWbN7x8KqG5cspv/9BNg3cizGnHUpmdgQD8jfVw+d3wrC9YeieFJxyCukTJrDpTzfQvHlHOWVb6Ua2by7l85HrmN3wLVO/mQjAPqNtebf+mwq2v7eGrD0G0G+fwd1ex1Y5Bw9DUpKoem9Np/MeNOwgfjrppzz1zVM8vvhxAIouvhgamxhXXsXq+XPb5s3c60x2kZXMWPwde/xwBE0NLcx5e3WP41WqN3hxEJL9jTF7AEcAvxCRgyL9oohcICIzRWTm5s2J9aSO5pZmfC0+dinapcNnew7Yk7Tk3n06iupdXky7uWm5TC6eDEB6su1s9d2279i5aOe2aYKwonIFOxXakfeMMaQnp7OhegMleSUAVDdW0z+jP9VN9n+wNxyPzR/bcdn9d243bcW2FUwqnATYQUFSJIU1VWvavtvQ0kBOag7ldeUMzR4KwObazQzNHkqLaWkbjS0wbrAju/r/niCs2r6KCYUTADuycEZyBhtrNlKSa9elqrGqbV0KM+xNzqu3r2Zc/riQy/Y3MndkF/dCfPBS+i3MKKQgvaAtrbUShIGZAxncr+cFSJU4vJR2o6kos4js1Padd5IlmQFZO8Zwa81HS2tLGZHTcVTJFtPC6LzRHaZPKpxEbWNtuwFNDhh6QLRCVxGK17Q7pN+QoNOy07Jp9jWTmpzKsJxhHeYpyCggMyWT7NRs6pvrmVw8mfqWejJSM0hPTiczOTMW4asoidf021156Xlt13Dpyek0tjTy1aav2H3A7h3mnVw8uW3gvFYTCibgMz7y0/JjEa4Ko6+l3WjJTMlEkgSDIS05jWRJRhCKM4tJkvZVUnnpeeSkdrwReVLhJPLStHN+T3gt/Q7qN6jDtF2LdiU3VQe2U+15Le0CZKRmkJeeF/Q6qjizmKyUrj0ZQCUmL6bdYPpn9sdgyErNon9Gf/qn9yczJZP8jPwO8xZnFrO9YTvjC8aTKqlt5/TW+lCgrT5Yxbd4Sb9eVZxV3GHarv13pV9KPxei6Vu8lnYbWxqZOnBqh+k7F+1MSlKKCxEpL/Na+lUqUpp240O/tH40+5oZmDWww2dj88eSmZzZ5/obadpV8UzTb/ftNWivtvcbqjcwKncUAP+c+U/GF4zvMP/k4skUJO944Fpeeh4TCiZ0mG9QVsf6btWRW2l3WHbH/ge7Fe2m7U6qS7ye9+5WvFuHabsP2J3sNPcGflLe4PW02xsK0guCHhOjckeRnqKDjsaLRE676cnpTBs8rd20t1a/FbQf2W7FuzGvbB65ae37USRJUtBrfOUNXku//mmlqrEqaFrbtWhX/rfqf+2mTRsyre0+HNU3eCHtFmcWM7locofpY/LHuBCNiideSL9FGUXsWrQrS8uXBq1n2n3A7jSb5raHsAbrJ6tUb1lUvohTXzuV55Y9xzm7nMOjRzzK8JzhPV6uiPCTST/h0SMeBeCsN8/isUWP0VJTw9pfXUpTcgab9z2DKYdG+FszHoDKtXDIdXb5KSkMueVv+KqrWX/lVfjq6gBYOWcW80dX8nbdFxz1tY+W4YcxrCCTofmZNFfUU/7UN6QO7Ef+8WMRkR6vZ3JOGv32G0Lt3DKaSjsfpO2KqVdw6IhDuWXGLby18i3SR48i74TjGb55G6WffIQxzoPBhu/N/gWVzK1IISnbMH7vgcx7fx3bt9T1OGalos1zg5AYYzY4/5cBLwJ7A6UiMhjA+b8sxHfvM8ZMNcZMLS7u2NEvnmWnZdPka2KPAXu067Q2Pn88h4481MXIVDR4Me1mp2Vz9V5X0z+jP19u/JJTJpzCkvIlTC6azLDsYby9+m3O2eUcyuvKKcwoZHzBeF5d8SoX7nYhzb5m6pvr2XPgnry24jXO2eUcMpIzWFO1hkOGH8K7q9/lxHEnkp+ez9yyuRw/9nhmls7kgKEHMDBrIB+s/YCzJp3Fmqo1jMwdyai8Ubyx4g3O3+18qpuqSUlKYZeiXXht+Wucv9v5JEsyZXVl7DdkP95a9RZnTDyDnNQcFpcv5ohRR/Dp+k/5YckP6Z/Rny82fMGPJ/yYpRVL2aVoF4blDON/q/7HubueS3ldOQUZBUwomMCry1/lgt0uoMXXQm1zLVMHTuW15a9x7q7nkpmSyarKVRwy4hDeW/MePxr3I/LT85ldOpvjxx7P7NLZ7Ddkv3Y3Vp047sSggwglAi+l39F5o0khhd/u89u2G3+SJZlf7f4rttZtbRtYRynwVtqNpmE5w7jpwJvISLYjo6YkpXD9fte3uxlocvFkjhl9DG+vepvTdjqtraEiSZI4bafTeH3F64zPH8/+Q/Zv+86ovFGMyR/DEaOPaKtwnlw8mR+M/EHsVk4B8Zt2J/WfxC+m/KLtpvOc1Bwu3eNSslOz+br0a77e9DVXT726XXo8d5dzqairYNnWZZy/2/nMKp3FyeNPxmd89EvpR3pyOsNze14JomInXtNvdw3KHsSvdv8Vn6z9hAt2u4C3Vr7FbsW7MW3INCYWTmybb0rxFKYUT+EHJT9AsBVeBekFnDzhZPYcuCcj8jre6Kxiq6+l3WgZkz+GZEkmIyWDjOQMWkwLYwvGkpqUyhV7XkGK2JvvMlMyuW7v6yivL+fEcSe2Ow6u2/c6ctN1cIqe8Fr6Lckt4dgxx7b9PSBrABfsdgHD8/ScrtrzWtoF23iWmZzJZXtc1q7cev6u51OcUUxRRpHLESov8GLaDaYgo4Bx+eMY1G8QRZlFpKWk4TM+qpqquHSPS0mWZACyUrI4e+ez+W7rd0wunsyArAHcMesOzt/tfN5e/TYAJ4w9gV377+rm6qgoiZf061UlOSWcOO7Etr+LMou4eMrFbYOoq97jtbRb1K+Ig4cd3O7af3LxZKYNnsaw3I43wam+zWvpV6lIadqND8NzhpMsyYzIGcHpO53eVu+Wl57HVVOvAgMD+g3oZCmJRdOuimeafrtv2pBp7DdkP8A++TMzJZP9huzH7IrZTCiYwMHDDm6bd0TOCE4cdyJZWTtuustLz+P3+/6e/PR8wD4M6cLdLmx72JUKz620Ozp3NEeWHNn298CsgZyz6zkMye34ABWlQvF63rvXoL3a3VC8U8FOHDL8EBcjUl7h9bTbGzJSMzh9p9PbDUL1/RHfZ1TeqKAPZFPelMhpV0Q4YdwJ7W5Ormys5KChB7U9tBVgctFk9hm0D7fNvo2LJ19MZop9SFuKpPD7fX+v6dnDvJZ+x+SP4Td7/4ZkSea4V47j0JGHtkt/ew7ckz0G7EFR1o5+DqPzRvPjCT8mOSnZjZCVS7yQdgsyCzh1p1PbPczykOGHBB3QQSl/Xki/RVlFXLjbhWSlZZGZktn+HpzcURw9+miqGqrISMlgXME4huZq/wHV+5pamrh77t2c8foZVDdWc+8P7uXyPS8nNSk1qr+zW/FuPHPMMxw47EBumXkLP33gh6zeuoJFE8/mwAv2JSU1gjJF9Wb45O8w+nswenrb5Izx4xl84w3UzpjBmvPOp2H1au5f9ACzd9rGAYt8nJ3yQ76oSmb6hGJMk4/y/ywBY+j/k4kkpUWvLJNz0DAkLZnKt1d3Om+SJPGXA//C7gN255pPruH5Zc8z4IorkOxsxsxayIYFc9vmPXz6QbSQzLtvvcC+x40hKVl4/7ElGJ+JWuxKRYO0jZ7jASLSD0gyxlQ5798BbgC+D5QbY/4qItcChcaYq8Mta+rUqWbmzJm9H3QMVddVU9NUQ2VTJetr1tNiWhiZM5JxhePcDq0v6/mQWAG8lnY3Vm9kbdVactNz7YAcTbUUZhaytX6rfXqfwPbG7RRlFlHZUElaUhqpyalsa9hGUUYRVU1VJEkSmSmZVNRXUJhRSF1zHS2+FnLSc6ioqyA/PZ9GXyN1TXUUZhZSUV9Bdmo2BkNVYxVFmUVsa9hGRnIGyZJMZWMlxZnFVDZWkiIppCens7VhK/0z+lPTVIMxhuy0bMrryylML6S+pZ5GXyP56fmU15WTl55Hs2mmtrGW/hn9qWioICslCxGx65JRRGVj8HURhKzULCrqK+if0Z/a5lqafc3kpudSUVdBXnoeTb6mduuSmZLJqLxR9Ev11NMOo552wRvpt6axhrqmOtZWr2VjzUYKMwrJS8tjSM4Q8tL1SRYJIuHz3p4yxrB6+2pKa0vpn9GfkrySDk/YrGmsYcX2FTS3NJOdls3W+q2kJqXS7GumoqGC4TnDyU7NZs32NTT5mihIL6Aoq4ic1BxWbl+JwTAqd1TQJySrkPp82m1saWT+5vmU1ZYxIGsABekFNLY0UtNsRwVNS7I3vW2q3UReeh65KbnUtNRgMNQ11VGUWYTP5yMt2Z6jR+WPahvURPW6Pp9+e2LRlkVsrt1MRkoGzb5mctJySE1OZWP1RpIkiQFZA6htqiUtOY0mXxMV9RXkpOaQl57HpKJJnf+ACkfTrsvqmupYu30tzaa5bQRnn/GRJEnUNNdQXl/OwKyBFKYU0mAa2N60ndrmWnzGx4TCCQzJ7tMdQRM2/S7ftpwN1RuoaaphWM6whB20sw9L2LTban3lesoaythYbesdBmYOJC05TRuJ41/Cp91gvtv6HVvrt2IwYACB1KRUmnxNVDdWk52WTV1zHdmp2WSlZuEz9posJy2HtVVryUzJpCS3RJ+s6b4+mX69aNW2VayvWc/2hu0MyxnG2PyxZKZmuh2WlyV02v224lvWVq/FGMPQ7KHs1H8nt0NS0ZXQ6VclNE27fYzP+Fi1bRUAG2o2UNVUxdDsoeSl5jEyf6S7wXWNpl0VzzT9ekBlQyUrK1fiMz5Kcm0fipWVK2k2zRSkFbC2ei0NLQ2MyB7B6ILRpCWndVjG+qr1rK9eT05aDqPyRpGRkuHCmsRU3Kfd5RXLWV+znrqWOoZlD2NS/0lReQqqigtxn34j9d3W71hTtQZjDMNzh+uNmvGvz6Td3lDfXM/KbStZW72W9OR0BmcNZlT+KFKTo3ujnQpK026EttRtYWn5Upp8TfTP6E9eRh51zXWsr1qPiDAsZ5jtU9lUQ0FaAVVNVdQ01TA4ezAleSVRv3FUAQmcfptamli1fRWbazeTmZJJZkom66rXkSRJDO83nDpfHYP7DWZjzUaaWpoYmTuy3aAkyvMSLu0uKV/C2ip7Hh+WO4wxeWNci0X1uoRMv2uq1jA4azDbGrbR5GticL/BtPhaEBFSk1KZ0F8HtE0AvVGxFNUb/D9Z9wl/n/l3VlSu4JjRx3DN3tf0+v2UjZtKefCf5/BwyWqaUpM5Lv90rj7mV2SlZoX/os8HT50Gyz+ACz+GAR37VGx/4w2W3XAd905v5MuJSRw838dVtQcx++yrueLFxTx5/j5MmLGF2rmb6X/WJDIn9Y/6+m1/bw3b31lN8UW7kV7S+basbarlig+v4LMNn3HK+FM4r3YqW39xBQ1DBrHbSy+TnJuL8fk46I/PMMK3lv9ceRKLF6fzwRNL2fPwkex7fK+c/7RSVHVLSuezxNRA4EWnkj8F+K8x5i0RmQE8IyLnAmuAk12M0TXZmdlkZ2YzkIGM76+VxCo2BmcPZnD24N77gfyOk8YQnRPlWMZ2XHZ+x2WPJkojAud3nBStdVGR65fWj35p/SjqV8Tu7N75F5RKQCJCSV4JJXklIefpl9aPXYs6f0rxiNwRHaZNyZjSg+hUX5aWnMbUQVPdDkOpmNu5aOeg0yf11wFGVOLLTM3UOgzVwZj8MUGvz5WKF0PzhjKUoe2eLqhUvBpb0LEONVKD+g2KYiRKJYaS/BJK8kvcDkN5xLjCcfowCaWUUq5LkiRGF9g+Ea3/K6VUX5SXnseUAVPaTZs8YHLb+0jyyKE5QxmaowMRx5MxhWMYU6jtESqxjS0Y26N6XqUSSUZKBhOLJjKxaKLboSgVUlFmEQcMO6DD9J0KdRBrFX2pyamMKxjHuIIdbRXBBkwvziqOZVhKhTSx/0Qm9tfzuIpPmn6Vm3zGxyfrPuHhRQ8zq3QWI3JGcOchdzJ9+PRe/d2m0lK2PfccFY88ykF1DWTscgIfHl3G81VP8MELb/DTnX/KCWNPoCCjoOOXjYG3r4Nlb8ERfws6AEmLr4UPxjfxz8vyKK8r54hZmVx71A3kHXoYv7j7M8YU92On76qombuZ3B+O7JUBSACyDxhKzYxNbH3uWwZcsjtJaclh589KzeKu79/FHbPv4OFFD/NR1kccc8buHPLfOXx3+BEU//IX5B5xBKfvP46bP8xh4WNXsPMFD1G6egiz3lpNUkoSex1VooMpK0/w1CAkxpgVwOQg08uB78c+IqWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSyl0NLQ0s3LKQj9Z9xFsr32JjzUYG9RvEtXtfyynjTyE1OTUqv+OrraW5rIym0jKay+yrce0a6ubOo+Gbb8AYKgZNYdmkY9n11GmcffhI5m2ex7/m/ovbZt3GnXPu5OBhB3PwsIPZd/C+DOo3CKkuhTd+DUtegX0ugr0vaPu9Fl8LS7cu5YM1H/DSdy9RWlvKqJSh7Pv5IH507MUU/vBwHvp0JYs2bOfP4wZT88E6sqYOJGf68KisbzBJ6ckUnDSOLQ8upOK/S+l/5kQkJSnsd1KSUrhi6hV8b8T3+POXf+aBEQt47lcZHLagnv3vvJHBN9zItOEjyd7jAv5cOo2H/7Eve46+iJQhw1jwbDml35Yz7eSdKBqW3WvrpVQkPDUIiVJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkop1dfUNtWytWErlQ2VbGvYxvaG7Wys2cjq7atZUbmCRVsW0ehrJEVSmDZkGpfveTmHjjyU1KSOg48YY6C5GeP38lVX07KtkpbKSloqt9FSsdUZZKSUprIymp1BR3zV1R2Xl5FFXfEYysYcw8bCKeTuPI4jfzyegSW5AEwZMIX7Dr2H78oX8dqy5/li1Xu8sOwNZjc1cVBjC9OrqhDgw/EH8mV+Ns1f/Imapho2VG9gReUKqpuqEYQ9cnflsJqJJH20ghG770fGpAO54el5PDxnHfunpnHQt9VkHzCMvCNHISK9uj8yxhaQf9wYtr20nLK75pBz8HDSSnJJzk1DkkMPSLL7gN156uineGf1Ozw8416e2Xc5z+ybQnFTFmOq69m99H0+MUdwfs1PuXzp44wr38jQqlTqX05j7XP5rMoaRuqw0WSOHUPW2BKyhhaTXtyftOICktLSkbRUJCUFSQo/KIpS3aWDkCillFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUi76zSe/4f2173eYXphRyMjckZy202nsOXBP9hi4B3npeR3ma9q4keVHHoVpboampsh+NCUFX04BVS3ZNKTl0ZA3nMbifBrS8+wrzb5vSc6gYHA/hozL54h9BjFoTN6OQUBmPgxvXgMtDYwFLnNerWpSM/lkQAnPFA5gsdmOWf02qUmpZKZkUmCyGbYiiQHlRQwqTyeroZKU9HpSJh3HNduGYu7/GgGOIpVfFxdS/MNRZEwo7NqG7YHsfYeQnJfOtldXUPH0N23TMyb1p+isSSG/l5KUwhGjjuCIUUfw6eev8eTb/2J1RjmLcyqpmvAR6dvq+bT0KD5pupEJ+av434DfOt/cDHyLMR9g6mHNHUWUlqcF/5HkZCQ1lVEvPE/66NHRW2nV54kxxu0YeoWIbAZWux2HowjY4nYQvUDXC7YYYw6P5o93I+0m0n7QdYmdqKddcD3v9do291I8XooFeh6PF/JeSLzt2hs0pva8knZ7kxf3eU/pOlleS79e3C8aU2RiHZPX0m4wXtxPvaWvrGu01jMe0m9PxXOaiOfYoXfj7wtpt1W8p4NI9KV1dDPtemU7axzeigEij6Mv5L1e2SddEW8xuxFvX0i74M20oDFFLlRcsUq/Xt0u3ZVo6wPxt05ez3vjbXt2RtcneryedjvjxbTgxZjAm3ElSh8H8N721Xg6p3lvz3lxv/rT+HrG7Wu2aPLCtnY7Brd/3wsxxEPadXsbdUU8xQrxFW9grG6k3XjaXv407tiKJO54yHt7wov7zmsxeS0e0LQbr/sk1uI5pnhPv17c9tGSyOsG3qzrfQsbV3fE0/6Kp1ghvuJ1pdyg+oaEHYTES0RkpjFmqttxRJuulzfEW7zh6LqonvDaNvdSPF6KBbwXT3d5bT28Fg9oTH1RIm5fXSdv8uI6aEyR8WJMbutL26SvrGtfWc9oiOdtFc+xQ/zH7xV9YTvqOvadGDQO78XgpTi8IB63RbzFHG/xxhMvbluNKXJux+X270dboq0PJOY6uSnRtqeuj2rlxW3nxZjAm3F5Mabu8tq6aDyd82JM8cbr21Dj6xmvx9cVXlgXt2Nw+/e9EoPXxdM2iqdYIb7i9UKsXoihOzTu2IrXuKPJi9vAazF5LR7wZkyx5MX115gi48WYekMir2cirxsk3vrF0/rEU6wQX/HGU6wq/iS5HYBSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUspdOgiJUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJ9nA5CEhv3uR1AL9H18oZ4izccXRfVE17b5l6Kx0uxgPfi6S6vrYfX4gGNqS9KxO2r6+RNXlwHjSkyXozJbX1pm/SVde0r6xkN8byt4jl2iP/4vaIvbEddx9jwQgygcfjzQgzgnTi8IB63RbzFHG/xxhMvbluNKXJux+X270dboq0PJOY6uSnRtqeuj2rlxW3nxZjAm3F5Mabu8tq6aDyd82JM8cbr21Dj6xmvx9cVXlgXt2Nw+/fBGzF4XTxto3iKFeIrXi/E6oUYukPjjq14jTuavLgNvBaT1+IBb8YUS15cf40pMl6MqTck8nom8rpB4q1fPK1PPMUK8RVvPMWq4owYY9yOQSmllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkop5aIktwNQSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkq5Swch6UUicriIfCMi34nItW7H0xkReUhEykRkod+0QhF5R0S+df4v8PvsN866fSMiP/SbvqeILHA+u0NEJNbr4k9EhovIByKyREQWicilznTPrluIfTFZRL5wfv9VEcl1pqeKyKPO9CUi8ptYxxtmPeJu20drXUTkByIyy4l5logc4pV1STRey2tFZJWzf+eKyEwXfr9LebkLsVwvIuud7TNXRI6MRSzR5IU056X97Px2l/P7GMSUISJfi8g8J6Y/uR1TovPCsdFTwfLweEszXc0fQpW9vMwLac2L+Z7z+8kiMkdEXvNIPPki8pyILHW21TS3Y/ISL6Tl3pQIeWoofSGvjbbO0rtYdzifzxeRPdyIM5gIYp8uIpWy4xrnD27EGUywtBrwuWe3u9f1gTw8aFknEQWWn2Lwe67nh5Hs31jlbcHKCwGf9+r2EJEJfus4V0S2i8hlAfP0yrboanki4LsJnQeFIiK3iL22mC8iL4pIvtsxhRJv+6gv5fux5sW00FkZ0Q1eTIMSon45xjF4Lv30hBf3czTEujyZyBIhzQcr30ZaxvOCrpZRReu8Iua19O3lPNlr+aoEaedwO6auCLWvxcV+G17KKyVEvUAst4/mvb3Pa3mwPy9en/nz8vkCvHHdFi2xSqdu5zlhzkuxjKHL/cn6et4b6Xk62Dk+xnG63v4SqQhi9Uz7c2fnKre2q5fP7/66k+95iXisH1okRPuqdeCl4yXUMeEFgend5Vjiui6ip7yUZlt1dj50gxePp1Bl7UTjxTTaE/FeXolEPJZpwomn9YmnspmIXO4cAwtF5EknT/NErMHOQ+Fikz5ej6F6gTFGX73wApKB5cBoIA2YB0xyO65OYj4I2ANY6Dftb8C1zvtrgZud95OcdUoHRjnrmux89jUwDRDgTeAIl9drMLCH8z4HWObE79l1C7EvZgAHO+/PAW503p8OPOW8zwJWASVe2BfxuO2juC67A0Oc97sA6/2W5aljJJ5fXsxrnWOwyMXfjzgvdymW64Gr3E47PVgnT6Q5L+1n5/e6lEfGKCYBsp33qcBXwL5uxpTIL68cG1FYjw55eLylma7kD4Qpe3n15ZW05sV8z/nNK4D/Aq+F2/cxjOdR4DznfRqQ73ZMXnl5JS338jrGfZ4aZt0SOq/the3VaXoHjsReH4tTZvvK7bi7EPv01nzXa69gaTUetrvXX30kDw9a1nE7rl5a13blp17+LU/kh5Hs31jlbcHKC7HeHgH7ZxMwMhbboivlia6mo0R9AYcBKc77m4NtHy+84nEf9aV8X9NC52VEl2LyXBokRP1yX08/ibafo7ReMStPJvIrUdJ8sPJtJGU8r7y6UkZF67y6sl09l769nCd7LV8lSDuH2zFFY1/jYr8Nr+aV+NULxHL7aN4bk/3qqTy4s/3vpZeXzxdOTK5et0VxPWKWTt3Oc8Kcl2IZQ5f6k2neG/l5Otg5PoYxeqL9JYqxTsc75WHPtTfHMt+MQqye7F/Whfg91Q8twpi1r1r77eGp4yXUMeH2dnLi8Ux9RLB07HZMMVx3T6VZv7g8d+3mxeOJBLlG62QdPZlGe7hOcV1eiXAd465MkyjrEy9lM2AosBLIdP5+BjjbK7EGOw+Fig2tx9BXL7ySUL1lb+A7Y8wKY0wj8BRwnMsxhWWM+RioCJh8HDbDx/n/eL/pTxljGowxK4HvgL1FZDCQa4z5whhjgMf8vuMKY8xGY8xs530VsAR7cvDsuoXYFxOAj5337wAnts4O9BORFCATaAS2e2FfxOO2D6Wr62KMmWOM2eBMXwRkiEi6F9YlwcRdXtvbupiXuxFLvPNEmvPSfnbi6Wp+H4uYjDGm2vkz1XkZN2NKcJ44NnpJXKWZaJTpYxFnD3girXkx3xORYcBRwAN+k92MJxdb6fUggDGm0Rizzc2YPMYTadkFCbH/+0BeG22RpPfjgMecMtyXQL5z/ey2uD5WI7gm8+p297q4TheRCFPWSSghyk+9yRP5YZzt31jmU98HlhtjVvfS8tvpQd1OwudBoRhj3jbGNDt/fgkMczOeMOJuH8VZvhBPPJkWvFhv78U0GKZ+OVY8mX56wov7uadcKE8msoRL837ipj5M67x6jefSt1fzZK/lq2HaOeKGV/d1EF7IK2NaL9BK895e57k82J8Xr8/8eT0P8cB1W7TELJ26ned0o59Fb8TQ1f5kmvd64zzdGU+0v0TI0+emQB5tb46bbdiNfM8zvNYPLRLaVy0oTx0vXi1feqk+IhHqInrIU2m2lRev3bx4PCXQNVo4nkyjPRHP5ZVIxGOZJpx4Wp84LJulAJnO/dlZwAY8Eqvb9TlK6SAkvWcosNbv73V44AKpGwYaYzaCLVgAA5zpodZvqPM+cLoniEgJsDt2RL14W7eFwLHO+5OB4c7754AaYCOwBvi7MaYC9+NtJ863fTsRrou/E4E5xpgGPLYuCcCLea0B3haRWSJygcuxtIokncbSL0Vkvog8JCIFLsfSVV5Mc608sZ+7kUf2ZizJIjIXKAPeMca4HlMC8/Kx0RXB8vBESDNdLXt5medi9lC+dztwNeDzm+ZmPKOBzcDDIjJHRB4QkX4ux+QlnkvLvSBR89RQEimvjbZItoFXt1OkcU0TkXki8qaI7Byb0KLCq9vd6/rUdgso6ySa2+lYfupNnssPO9m/scjbOqtHi+X2OBV4MsRnscrnIykr9ak8KIxzsE9X9KK43kcJnu/HWlynBbd4KQ2GqF+OlYROP17azz10O7EtTyayREnziVgfpnVePefpbeWxPPl2vJWvhmrniEtB9rVb/Ta8mlcG1gu42a9F897o0W0WJR47X7Rx+botWtxOp67kOT3sT9zT3+5KfzK3948XRHqedrPfrOfaX8JItPZnN7arV/Zll3iof1mkbsdb/dAioX3VOvLs8eKx8uXteKc+IqHqIrrBs2nWy7x0PCXINVo4CZ1G47C8Eonbib8yTTi3Ez/rEzdlM2PMeuDv2PuyNwKVxpi38WCsfrQeQ8WMDkLSeyTItEQawS3U+nl2vUUkG3geuMwYsz3crEGmeWHdzgF+ISKzgByg0Zm+N9ACDAFGAVeKyGjcj7dNAmz7Nl1Yl9b5dwZuBi5snRRkNk8cI3HKi9tzf2PMHsAR2GP2IJfj8Zp/A2OAKdjC+T9cjabrvJjmPKOreWRvM8a0GGOmYJ+Mu7eI7OJySIksUY6NvpaHx+N+81TMXsn3RORooMwYM8utGIJIAfYA/m2M2R07cOK17obkKZ5Ky72kr+WpofSFfd2ZSLaBV7dTJHHNBkYaYyYDdwIv9XZQUeTV7e51fWa7eaWs0xtcKj95Kj/sZP/GKm/rrLwQk+0hImnYAcCfDfKx1/L5hM6DRORdEVkY5HWc3zzXAc3Af9yLNKy43UeJnO+7JG7Tglu8lgZdrl9O2PTjtf3cXR6tj4tniZLm+1J9WKLss1jw7LbyUp7s0Xw1Ydo5guxrN/tteC6vDFIv4NV+LZ7NTzxMt1kUeOl8EShB+gV5NZ32WlxR6E/cI11MN17dP1EVSb1sBNw8x3uq/aUTidb+7MZ29cq+jJiXz6XBePT6LBIJcw0XRZ48Xrx0THgwvff1dOzJNOtlXjqeIGGu0cJJ2DTqtbQUDR7M43skDtcnbs5pziDUx2Hvyx4C9BORM92NqtsSNp9S7tFBSHrPOmC439/DgA0uxdITpSIyGMD5v8yZHmr91jnvA6e7SkRSsYWh/xhjXnAmx9W6GWOWGmMOM8bsiX3ywnLno9OBt4wxTcaYMuAzYKrb8bZKhG3fqovrgogMA14EzjLGtO4vT6xLAvFcXmuM2eD8X4bd/3u7GY8jZDqNNWNMqVO54APuxxvbpys8l+b8uLqfu5pHxpIxZhvwIXC4V2JKQF4+NiIWIg9PhDTT1bKXl3kmZo/le/sDx4rIKuAp4BARecLFeMDuq3V+I5k/h61MTIRjKho8k5Z7SwLnqaEkUl4bbZFsA69up07jMsZsN8ZUO+/fAFJFpCh2IfaIV7e71/WJ7RairJNIQpWfepNn8sPO9m+s8rYI6tFidbwdAcw2xpQGiTGW+XwkZaWEzoOMMYcaY3YJ8noZQER+ChwNnGGM8WojeVzuoz6Q77shLtOCW7ycBgPql2MlIdOPl/dzN7hRnkxkCZHmE7Q+TOu8es6T28qDebIX89VQ7RxxJdi+drPfhkfzynb1Ah7o16J5b/ToNushD54vgnLpui1a3E6nMc1zotSfOCoi7E/m9v6JiU7qZSM6T7vcb9Yz7S8RSLT2Zze2q1f2ZUQ81r8sUl7shxYJ7avWkeeOFw+WL71WH5EQdRE94Lk062UePJ7axPk1WjgJmUbjtLwSiXgt04QSb+sTT2WzQ4GVxpjNxpgm4AVgP7wZa6s+XY+hYksHIek9M4BxIjJK7Gj5pwKvuBxTd7wC/NR5/1PgZb/pp4pIuoiMAsYBXxtjNgJVIrKviAhwlt93XOHE8SCwxBhzq99HcbVuIjLA+T8J+B1wj/PRGmzBQUSkH7AvsNTteJ1YE2LbQ9fXRUTygdeB3xhjPmud2QvrkmA8ldeKSD8RyWl9DxwGLHQrHj+hjrmYay3kOk7AG9unKzyV5gK4tp+7kd/HIqZiJy9GRDKxF4ZL3YwpwXn52IhImDw8EdJMl8peLsTXFZ5Ia17L94wxvzHGDDPGlGC3yfvGmDPdiseJaROwVkQmOJO+Dyx2MyaP8URa7i0JnqeGkkh5bbRFkt5fAc5y6jb2BSqd62e3dRq7iAxyzguIyN7Y+tbymEfaPV7d7l6X0Hk4hC3rJIww5afe5In8MJL9G4u8LcJ6tFjlU6dhB/4OFmcs8/lIykoJnweFIiKHA9cAxxpjat2OJ4y420d9Id93SdylBbd4MQ2GqV+OlYRLP17czz3hUnkykcV9mk/g+jCt8+o5z6VvL+bJXsxXw7RzxI1Q+9qtfhsezivb1Qt4oF+L5r3R47k8OJ548XzhzwPXbdHidjqNWZ7TjX4WvRFDV/uTad4bwXk6wvr+3uSJ9pcIJVr7sxvb1e18M2LdyPc8wYv90CKhfdWC8tTx4sXypdfqIxKhLqKHPJVmvcyLx1MCXaOFk3BpNF7LK5GI1zJNKPG2PnFWNlsD7CsiWc4x8X1gCd6MtZXWY6jYMcboq5dewJHAMmA5cJ3b8UQQ75PARqAJO+rRuUB/4D3gW+f/Qr/5r3PW7RvgCL/pU7GVh8uBuwBxeb0OAAwwH5jrvI708rqF2BeXOulpGfDX1t8GsoFngUXYk/GvvbIv4nHbR2tdsAPF1PjNOxcY4IV1SbQXHsprgdHAPOe1yI14QuQfIY85F2J5HFjgHEuvAIPdTkPxmOa8tJ+deLqc38cgpt2AOU5MC4E/ONNdiynRX144NnoYf9A8PN7STFfzB0KUvbz88kJa82K+5xfbdOA1572r8QBTgJnOdnoJKHA7Ji+9vJCWe3HdEiJPDbN+CZ/X9sI265DegYuAi5z3AtztfL4AmOp2zF2I/ZdOOp8HfAns53bMfrEHS6txsd29/krkPNxZv6BlHbfj6sX1bSs/xeC3XM8PQ+3fWOdtYcoLsd4eWdjOu3l+03p9W4TIo0PVNQ8B3giXjvrCC/gOWOuXbu9xO6YwscbVPupr+X5fTwvB8h8PxOS5NEiI+uW+nn4SbT9Hcd2mE6PyZCK/4j3Nhynfxk19WFfKqM78fb7Oqwvb1lPp2+t5spfyVYK0c7gdUzT2NS712/BiXknweoGYbR/Ne2Oyjz2VB3e2/92OKSA+r58vXL9ui+K6xCSdup3nhDkvxTKGLvcn6+t5b6htg1+9Nd7oN+t6+0sUY/VM+3OIfMP17RqrfDMKcXq2f1kX1mE6HumHFmG8U9C+aoHbxDPHS6hjwu1t5BdfW3p3OY4O6djtmGK8/p5Js34xee7azYvHEwl0jdbJenoujfZwfeK+vBLhesZVmSZR1ieeymbAn7ADJy3E1g+neyXWYOehcLHRx+sx9BX9V+sgBkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKqT4qye0AlFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRS7tJBSJRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWU6uN0EBKllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppfo4HYREKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSqk+TgchUUoppZRSSimllFJKqT5CRB4SkTIRWRjBvAeJyGwRaRaRk/ymTxGRL0RkkYjMF5Ef927USmnaVUopN0Qj73U+e0tEtonIa70XrVI7RKncMFJEZonIXKfscFHvRq2UUkopt2jZQSmlvKMrebIz/ykistjJe//b2/EppVQi6mJ5+DanzDtXRJaJyLYYhKiUUkqpGNI2YqWUUkq10kFIPEZESgILaSJyvYhc5VZMkYg0RhH5jYh8JyLfiMgPYxGbil9ifSoiR/hNO0VE3nIzLuV9InKCiBgR2clvWof8tQvLWyUiRV2Y/2wRuas7v+UGEXlDRPKd18/djke1JyItfo02c0Xk2iDzTI925YyzzP38/r5IRM6K0rLHichrIrLc6Yj1gYgc5Hx2tohsDljnSdH4XRVaJOmsm8vtUv7Z22KRz7Xmqd34Xtt5SuyNkUdGPbg+RtN12+ddzr9F5EMRmdqNWDTtRomm3179zSEi8lwsf9Preiu9hfm947tavhORVBH5q4h8KyILReRr/7oCL4skzfXkerWbBgAXRzjvGuBsILDjbi1wljFmZ+Bw4PbulIESXTwcX873DneOq6VOnE+LyAi/z693PlsoIicEfPdoEZkjIvPEdvS+MBrrEsIj2PQWCU27URAkDZd04bvt0qOI3CAihzrv28qbsaqXEpHf9tayVXT1JN2FWWZb+ovCsrp13d+N32lXN+fi7zxCz/NegFuAn3QpOBUVIjJQRP4rIiucutgvxLahTBeRSuc8/o2IfCwiR/t973oRWe8chwtF5Fg316MbHqHnaXcjsJ8xZgqwD3CtiAyJUnxxJVQ6itKyo96+0RtEpNr5v+0aT+vC3NW6T/z+7nb7rH86DDw3isgjEtBxOlaiWYZR3hSYjkPMc5mIZMUglnZ5mogc2xv1GMHW2Y164iAeQcsOMREiDbS1ZTn5eVxtt3iMWbUnto/Z435/p4jtt9Klcmqk5cOAskdbftud+l0RmSoid0Qw3yUiskRE/tOV5ft9P5Z1a48QYZ4sIuOA3wD7O3W+l/VeWO6L57TaHX7XYRG1owWmUxH5vLdiU73LSev/8Pv7KhG5vpPv9Lg+VUQeiFbajlX5OooeIcK81xhzuTFmilPuvRN4oRfjUoQ/JiSCfmGRlheUCkd2tN8tFJFXxa+tTGyf8K/FPgTk3YDvhW2LCPI7IfsuOPV0K2VHG6Ke6+NUuPTkNgnRv1KidF+n9KBNpLN6ws7KMl0s0z+CthF7nohcJzsewjRXRPYJM2+n5dFQ+aq42E6iukbsgIGX+f39PxF5wO/vf4jIFV1YXlv/rt4QavmRlF8jrSvoQixB8/8eLK9du4do33UVx1LcDkD1HU4B9VRgZ2AI8K6IjDfGtLgbmfIqY4wR+2SQZ0XkAyAZ+DORX8y0IyLJmt76jNOAT7F5zvXuhhIdIiKAGGN80V62MeZI5zdKgJ8D/4r2b6geqXMabGJtOlANfA5gjLknGgsVkQzgdeAqY8wrzrRdgKnAx85sTxtjfhmN31MRcyudxVo+vZTP+eXT0eh0PgV7TLzRjd+P+nkijmm6Jnr5d4SmECLtikiKMaY5hrHEO02/PRDu2s8YswHQBpH2YpbeRCQFOB54DVjcha/eCAwGdjHGNIjIQODg6EfYfaHyObfSXCfHwdEScEO3iIwB7gaKsYM0nG+MWWqMWeV87gtYxjK/9xtEpMz57rYorkYi8Pzx5VyP3Qkca4xZ4kw7FigB1ojIcOAMYBJggEF+300F7gP2NsasE5F053u9whjzsabdmOtWGg6WHo0xfwg2b7TqpSKo+/0tcFN3lq1irtvpLtQ1R6j01x1Ruu6PxHT86ubc+p1o5L3Oct4TkelRjFtFwKkvegl41BhzujNtJHAssBX4xBhztDN9CvCSiNQZY95zFnGbMebvIjIR+EREBsRL3VOUyg2Nfn+m00cf8NJJOnIjHlfrmAKu8abQxXpcFRemE5tzMBC7MoyKa5cBT2DPXRHpZt+YKfjlaU477itdXEZ35eNyPwUtO7groC3rbGAhsCHS78eifNDJcXU2XYxZeU4NsIuIZBpj6oAfAOu7sgCnPmwKXSwfBuS3x9PF+l1jzExgZgSz/hw4whizMtJlB4hZ3VpX8mTgfOBuY8xW57tlsYjRRXGbVmOkXTo1xvT6AL+q1zQAPxKRvxhjtkT4nen08FrOGHNeV+bvpAwyBffK113WxbzX32nAH2MSZN8W8piIpF9YF8oLSoXT1n4nIo8Cv8De1wNwLfBvY8zDIjIqyHc7a4vA+Sxs3wVntl8bY/QG3vgXLj2p0C4jRD2hU28RtizTlTK9thF7n4hMA44G9nD6UxYBaaHmj6Q8qtdQCeFz4GTsQ7mSgCIg1+/z/YhwAFcRSe5uED29fzdByq/5+LV7aN91Fc+0sSvOOCM83Sx2dMdlInKgM/1sEXlBRN4S+1TYv/l9598iMlPs6GZ/8pu+SkRuEvukopkisoczwtVyZ+CH1vl+LSIzxI6M5v/968SORvkuMCGC8I8DnjLGNDiNGd8Be0dhs6gEZoxZCLwKXIOtqHwCuM5Jk3NE5DhoG8HsExGZ7bz2c6ZPF5EPROS/wAK31kPFjohkA/sD52IHIQk2T7KI/F1EFjh526+c6d930tUCEXnIuXmm1a+ctLVARHZy5i8UkZecZXwpIrt1Etv1IvK4iLzv5NXn+33WIa910vUSEfkXMBsYHrC8vUTkc7FPG/5aRHI6ORY+FpEXxT6Z+B7nosJ/xL6/AmPEjoJ5i4hki8h7fut9XFf2hepdYkd7XioinwI/8pvebqRdsaMElzjvz3LS2DxxnowhIseIyFdO2n9X7BMNS4CLgMud9HCg/3LFjtT/pbOsF0WkwJketJwS4Azgi9YBSMDm9caYRzpZ3xOc+EREBjvLHyS2DPSy2DLQNyKijVpRJBGUF8PlLwHLusJJjwvFGWFVRG4UkUv95vmz2CfwTBeRj0TkGWdf/1VEznDS1gKxFZmISLGIPO/knzNEZH9n+vVi8/EPxT6d8xLnJ9rlc0Fi7HA8+P3OO05+eK+IrBaRIgmST/vlqaGOuUfEbzRg6fi0xjTgBuDHTpw/DnVch/j9oGV3tUMfTNf++Xeo68lMEXnKSTdPA5l+36/2e3+SiDzivD/ZWe95zrYKlXbvE5G3gcfEllGm+C3vM+mk/KTa64Ppt106c6Yliy2rtuZ1F/qtd9u1n5PW/UeRvl5ErhS/0a8l9HXBns76znK272Bn+iXONp0vIk/1dH96mYjkiS1bTXD+flKc6xcRqRY7IvpssdcLxc70cGXEm0TkI+y1/bHALc5+H9PZdhX7BIfzgV8ZYxoAjDGlxphnnM9Pc/bhQhG52e971U46mCX2vL63Xxo81pnnbLHXdK+KfVrKL51jY46zLoXOfGPEljdnic3LWq8JHxGRW8UOnHqziIx1fmues33GBKS5oNdrYfbDYLHH81xn/Vrz7cPE5gOzReRZsdfBrXnEH8ReI1wtIl/7LatEROa37hNgV+f94SIyG5gL5Bpj9gR+B7wvAXUvwDCxx/1cZ3+Nc5axN7YRc3m49VGWl44vxzXATa2deMA2PBtjWgeJbMY2RmYbY5qNMev8vpuDHei83PlegzHmmyhtqkjdh80f9gSuogs3LGna7R4JfZ7sLD22uxbyW17rNVRgvdTjfvkPIvKf1vzbb1q7878z7SUntkUicoEz7a9AprPs/zjTzvTL0+6VHjSeq94XYT54aZj02Zb+RORIcerUROQO2fE011Bl1sBYVkn7OoH7nfT2tthrq4lhzsERlTMleN3cI2Lb+z5w4jvYiXeJONdpzrLClRP+JH513MF+J8Jd0u28V8XcIUCjf0d0Y8xqY8ydgTMaY+Zir+s7DA7tlBOasZ2U4lmX066IDHeO4bXAzU7noL4mbDqS8NfpH4rIc06++x8REeezUO0b/Zy8LbAd+GwnT3sVeDswwFDndRH5mdh6jI+c/PouZ3q7conseLp2p+1iTr6+UILXhX0rO8rwSSLynUTxiVkqchK6jmpvsW2rc5z/JwR8r4Tg58aDnPlXSPAybT8ReV1sfcBCEfmxMz2SsvN1znm6td02S0TWikiqtC/DBGsXDnX8Ba1PCIi5tRyO2CfKfei8P1h2PE12jojkONO17aEXhcozxZZJhwAfiK1/irRe6GQJUv5z5utwHITI0872yzdHOvnjfOd//ycQ3xF4fESSnwaIqJ+CcxzMF5EM57hbJCK7SOjzx84SpC6rC7TsECPitGU5aWgq8B9nv2VGmJdeKqHbebNF5GHZ0Q5wooicKyK3+f3++SJya5C4qkXkBhH5CpjmHGMznLz1Puc4jThm5XlvAkc5708Dnmz9QEL0D5OAtlA65qVhyx7OMs4WkbvEthcE1qfN9ptvnIjMCvL96dJJ3YaI3AOMBl4RkctDxSUh+iBLQN2ahCj79LJQefJ4YLzYducvRaRbD7eLM/GaVs+WEP27JEi7dSjiV0Zx/n7NOQ6C1QG3XuuJ2DLGQrHng9byesjrVuW6Zuxxf3ngBxLkek86qed0joFHxdbhrhKRH4nI35z08JbYQfdbyxdTnffniq1T+FA61in4tw/3evnaRWHLw2IHqR0FvO9CbH1NuGPieum8X5h/eSHodb9SXfQFMNTv70ZgGEBng96Fa4ug874LQTl55x+c9z8UWy+W5OSr94jtp7NMRI6OZOVUzLWlJwnfPyvoOVKC34Nztey4HrpNRN533n9fRJ5w3ge9z9Lxaycv/VpExgYGHCrOgHmC1ldFMo8E6dMowesJA+st/Msyh4utW5snIu8503pUpkfbiL1mMLDFrz/lFudhTKHq/v3LowPF9ruY57xa7znzv4a6S2wfhteBAa0/Klrv5XWfYQcaAdgZO3BylYgUiL0/ciIwR0LcOykB7QytC3XOq4+KyP9J5H24I60/OlnCl1+D3sfjfDdZAvrsBC5cQrcZ9ne+M0dE7gVa27FLxOnv6/x9lYhc77wP1j84VHtIYLtH23LFtnG01lnPEZHvOdOD1s0p5TpjjL489MKO0rgwYNr1wFXO+w+BfzjvjwTedd6fDawA8oAMYDUw3Pms0Pk/2fn+bs7fq4CLnfe3AfOxHceLgTJn+mHYgqJgB615DTgI2BPbqTcL2wn9O78YLwIuCrJudwFn+v39IHCS29tcX95/Af2Ab5w095fWdIQdFWyZ83kWkOFMHwfMdN5Px44AP8rt9dBXzNLLmcCDzvvPsSM7tstfgYuB54EU5+9CJ+9cC4x3pj0GXOa8X4W9YAY7Et0Dzvs7gT867w8B5jrvzwbuChLb9cA87I29Rc7vDQmT15YAPmDfIMtKc/L9vZy/c7E3/oQ7FuqxjcrJwDutebCzfkUEnIOc5eU674ucvF7c3sd97QW0YG8IbH392C+9jnPSzTPAa37p7Cq/7y909u3O2Ly0qDXdO/8XtO5X4Dx2lDMCl9P2N7bMcLDz/gbgduf9hwQppwSsz63ApWHW92xgc8A6ZzqfPYGteH4NOM1v/o1Af+fYWghMdXu/xdsrWDpzpq+i8/JiJPlLa9mxH5ANLAJ2d9LmbGfeJOzNf/2dZW7DVpClY5/c8idnvkv90tx/gQOc9yOAJX7p9XPnu0XYmyJTCVLWDtgOoY6Hu4DfOO8Pxz4BvjXfbJdP+61zqGPuEfzKwEC1839bbAScRwh9XLf7fUKcT9xOX5quXU/XbemH0NeTVwAPOe93wzZeT/VPo877k4BHnPcLgKHO+/wwaXcWO/Lxn/qt53iccoq+NP2G2Q7B0tkFwO+c9+nY0a5HEXDt56zPR37LWuzE1PabBL8uSHViLXam/Zgdx8cGIN0/nkR4hUlvP8A29J4KvOU3vwHOcN7/Aee4J3wZ8V9+33+E9ufCsNsVmy/NCRH7EOzTToqx1y/vA8f7xXmE8/5F7I1qqcBk2l+7fceO46gSp04Le4xd5rx/DxjnvN8HeN9vXV4Dkp2/vwJOcN5nYK/P/NNcqOu1tnkC1u9K4DrnfbITZxHwMdDPmX4N8Ae/Y/xqv+/PBUb7zdd67HwIHAMswV5X7AzUYY+5uUApsL51n2DrXp7APqmrdd+nYcvfg7Flng7Xrfry/vHlTJ8NTA6zDoXO73/QuqyAzx8AyrAdnc8Aknp5m/ofU9lO2vXfxksC5m+3Tfyma9qNbHv7p+EXCX+e7Cw9tv3tzNta3lxF8Hqpg4GXnPd5wEqcc7bfPNMJqPtlx7VXax1Bf+dv/3LtROzA16nO3/8CznJ7e+sreLpzpnWaD3aSPh/BXs+01qm1lhmfpH2dWocya5D4/NNsMzDFmf4MO9ou5hJwDu4kvg75NR3rAh4BnsJe8x8HbMcOKpaEve6aQuflhGB13O1+J8Q+KSE6ee/01u2tr5gdT5cAt4X4rMP+cNKR/3Vca33CPk46jav2gWilXeezIcDXwEC318tL6cj5PNx1eiW283kStvx7AOHbN24ieDvw2cA6nPN8wO8HPa9jy3ut14tp2E53reXrdvuaHXW0IdvFiKwe94/suI48DHje7f2XyC86Xm+t8dvHoeqoctlRD3Ro6z7CL08k+Dn4WScdTwK+CxLLicD9fn/n0bWy88vA9/zme8Dvt08idLtwqOOvQ31CkJhXsaP9YirwofP+VWB/53228zva9tB76bg1b5lOkDwzyL7qSr3QKoKX/0IdB2fTPk9r+9tJFz913p/Djmu1oMcHEeSnAduhhAj7KQD/B/wd+9TV1ra7UOePOwmoy+pkf7TFgZYdej3dB0y7nvZtWa11Bl3JS0O1896Mcw3pN18/bPtHa/nhc2DXIHEZ4BS/vwv93j8OHNOVmPXl3RdQjW2LeA5bXp1L+/JBqP5h19O+LfRs2uelkZQ92r4TmK9g62SnOO9vwsnXA2L3X9b1hKjboP35JNy5IFQfZP+6tQ5ln17YJyVEkCdjyyUvOsfeKOx1Q77baUrTatC0ejZB+ncRot3aP90R/jrsNWB6YDoN+P6J2DbzZGAg9tphMGHKYPryRFrPxeZdedibXK93PgvXJyFoPafz2afsaCuupX078vHO+w+ddDnE+e3W/gOfBKR///bhXi9fx3C7+x9rkZSHrwHudDu99IVXJ8dEW9ondL+w6ezIzztc97u9fvqKjxc7zqvJTl51uN9nVwFbgKODfK8t/flNmxKYpzjTO+u78Ai2zbg1X/qPMz0LW4b4HrYPwBi/+d9y8tVx2LJihtvbUl+h0xPh+2cFq4MKdQ/OvsCzzjyfYOtoUrF1+Bc608PdZ9lat3oWQeqNQ8UZsI6h6qv88+RQ83To0+gXW5HfbwTWW3yILcsU075NvPX7Z9OFMj3aRuzpl7NP5jrp5l/s6E/Rlk5oX/fvv/+fZkd7VjLOdT07js0fseMaagi27/BJaL1XXLycNDACuBB7j/eN2LLh/tj2hc7unfRvZ/gQm6c+yY68MdI+3J3WHxFZ+TXcfTxB++wE/Eaoa8g72NG+clTAcv3bK/zL3sH6BwdtzwiynLa/se14Dzvvd8LWU2QQpm5OX/py85WC8hoTwfQXnP9nYTOgVu8ZYyoBRGQxMBJ7UjhF7BP/UrAVp5OwHTYBXnH+X4B9mmUVdoSrehHJxxbKDwPmOPNlYy/AcrCdP2ud32tdDsbvKUgBgo0QHWp9lWpjjKkR+0T2auAU4BhxRu3FnlRHYDs/3iX2yeot2JsaW31tOhlVVSWU04DbnfdPOX/PDpjnUOAeY0wzgDGmQkQmAyuNMcuceR4FfuG3LP+8t/WpbAdgC8YYY953RsLL6yS+l40xdUCd2FFI93aWEyyvXQOsNsZ8GWQ5E4CNxpgZzu9vBzsiKuGPhRXOfE86v/tcmFgFuElEDsLe5D4U2xC3qZN1VNFVZ4yZ4j/B2b8rjTHfOn8/gb2YC+cQ4DljzBaw6d6ZPgx42hmFNA1bQRuSk8bzjTEfOZMexVbstQpVTgm1vBex6X2ZMab12HraGBNslOtfYRuhvzTGPOk3/R1jTLmzvBewaXtmZ7+t2umQzvx0Vl6EzvOXA7BlxxpnnheAA40xd4hIuYjsjs1f5hhjysU+WGSGMWajM/9ydjzhcgG2sQBsfj5JdjyIJFd2jM7/urGj+zaISJmz/M6EOh4OAE4AMMa8JSJb/b4TKp8OdcxFm//vhyq7hx0JPoFpug4uWD59ELYyDWPMfHGe0t2Jz4BHROQZv2UG84pT9gF7vvi9iPwa25Hika6F3qdo+rWCpbPDgN1kxxMN8rB5XSN+137GmDkiMkBEhmAb1rYaY9aIfQpSq2DXBbsAuwDvOOuRjO0QB7Yu5T8i8hLwUgTxx4ug6c0Y846InIzt0D/Z7yMftiEK7MAUL0RQRnya0HqyXffCNpRtBhD7ZLODnOU0YjsTgE2nDcaYJhFZQPty6gd+x1ElttNN63d2E/s02f2AZ/3Sdrrf9581xrQ4aX2oMeZFAGNMvROTf7yphL5eC2YG8JDYp2+9ZIyZKyIHY+v2PnOWnYbtFNnKf1s/g61H+Su20S9wNPksbDlhLbDNGLOrE/NMIENE5jrzZWAbuZcBvxWRYdhjshR4HduoFKw8pOLs+BKR/tjOElnAfcaYv2MHkr4cexz814n7KqDGGHO3MeY8EdkVm6dehR1g5ezOfitKkrBpd0pXviQiuWjajVS7NNzJeRLCp8cuMcZ8JCJ3i8gAbF3c863n7ACBdb+XiMgJzvvh2HJCecB3vo/t3D7DWY9M7GA6yhsC012k+eAEwqdPsI33K/zSzJO0r1MLVmZdFybWlcY+sQ3aX2MFOweHiy/S/PpVY4xxyjOlxpgFACKyyPntYYQvJwSr4+6qbuW9yhtE5G7s9WAj8OtgswT8fbmInAlUYQdTi+d23R6lXWOfHLYIOJDw7SoJzz8dGWP2ovPr9HXO9+Zi86pqQrdvHAYcG6QdGGw7QLA61lDn9X1of734NJ1fg/W0Xewh7GASt2Prvh6O8HuqewLLDGdjO9RC6DqqPOBRERmH7auSGuFvvWSM8QGLRSRYndYC4O8icjO2U+QnXSw7P40tL3yAHawy8AmSodqFQx1/HeoTIlxPsPVxtzp1LC8YY9Y5v6NtD70vWJ75acA8+xJ5vRAEL/915ziY5vf9xwH/p+8FOz56mp+G+/4N2DRejx0oC0KfP74Armuty2o990RIyw7e0Nl1nn+aD9XOeyg2bwXAGLMVQOxTkI8WkSXYQRoWBPn9FuxNP62+JyJXY+vOCrE3ub0a8J1Irk2VBzltpCXYfmZvBHwcrn+Yf1tooO6WPVo9APxMRK7AlhX2juA7kdRthIsrVB9kfx3KPl1cr64Klyevw/YhagJWisg37CgPJaQ4T6vB+ncZgrRbs6PsGQ0HAE8aY1qAUhH5CNvGuJ3IymDKBcaY7SLyGLbM5592w/VJCOdNv7biZNq3I5cEzLs39oEnFQAi8izt6xSeddITxKZ87YZIysOnYvtYqxgIc0wE6qz/bofr/qgGqhJZpt+5chb25nREZA/sTcO7A2+LSAX2enw5MCbEsoLdV9Z+huB9FwB+bYxpd51tjKkVkfOxdVWXG2OW+338jJOvfisiK7BthXM7XVvV2zqkpwj6ZwU7R4aqt3wM2NMpIzRg7yWaii1nttYnhbvP8km//2/zDzyCOFuFa+/obJ4OfRqDLB861lu02hf42K8fZST914OV6f3LWNpG7DHGmGoR2RObrr+HrRe7NsKvH4IdZAenXFsZ8PlB7LiG2uDUo4HWe8WLz7D51H7YB0gPdd5XYgeRmUD4eycD2xnuxZ5P/+z8HVEfbiKvP+qs/BruPp5QfXb8hbqGPAjnuswY83rAcjuQ0P2DUwnenhHOAdiBZDHGLBWR1ey45oykbk6pmNJBSLynHDvivr9C2t8Q3OD830L7fdjg974FSBGRUdjO33sZY7aKyCPYgmngd3wB3/c5yxbgL8aYe/0DEpHL6PoAIuuwnX5bDcMOHKFUJHzOS4ATjTHf+H8oItdjb36ZjL3Aqff7uCZGMSqXORVOhwC7iIjBXtQYpxNAu1npmId1VqEVLO/tzuBKgZ8bQue1JYROv8HWAeyNQaGOhWC/Hc4Z2Bs293QaYFbR/hyi3BVq/zVj932r1n0WKs3cCdxqjHlFRKZjR+rtiVDllFaLsBdsABhjThCRqdgnVnVmKPZcMFBEkpzKROh62lZd01l5ETrfB+Hy2AewNykOwnbSDvzdwN/2/90kYFpgRwmnkqBD2Tjwh0Xkz9iRS3EqRkMdD+Hi72o+3XaMig00LcyyO3zH4Z8X+/9+0POJCqovpetAofLpSAbEbEt7xpiLRGQf57fmir2hPpgav+/Uisg72Kd2n8KOmwJU1/SZ9BsinQn26Vn/C/judDrmyc9hR2AfhB2gsMNPEnzbLDLGTAsy/1HYcsyx2AF1dg5xM3RCEJEk7BOl67B1U6E6n0RS9gp3Xd5hu2IHBxiIHVjuEmCEiOQ4g4W0CzPMcpv8bpJsS7PGGJ+IhKpPC5a2O2tEbV23TjtJEP56rQNjzMdO48RRwOMicguwFdtJ87RO4gHbIPSs02HThLjRwjgdllaKyMnGmGeddfmtMaZt0GGnTvFTbHnpKOB/2KccPOZ8R3WBV44vY8x52Gu0PYB5TuffKU4Hh2xnGYdin1Tynojcib0ZbgJOYzSAc5PGAhF5HFuPfXYEcfdYYNp1yte7GWPmhfqOiKRhn2qnabd7wp0nIfr1sI9j66dOxd7IG/Y3nfLAodjySK2IfEjwuiwBHjXG/CaawSrX+J+Lw6XP1nnC6bTM2sn8mc77DudgsQM2RVzO7OT3Ql0LtBC+nNBZvV2nupP3Klctwrn5CMAY8wsRKSL0AM67A0v8/r7Nr2NvXOtmuWEYUG6MqRORAuzToW6NVcwe0lk6CnedHipfDVXODdUOvA/h62E7nNdF5PgwvxOqjrZH7WLGmLUiUioih2AHQTkj0u+qqAtVR3UndjDSE5x22A8jXJ5/Wu5QnjDGLHM6+x4J/EVE3sZed0Radn7F+V4hdlCd9wPmDdXeEPT4AwisTzDGPBYwi3+7g3+9719F5HVnXb4UkUPRtodYiaQsKkReL+S/TP/l3Uj3jgN//ukx2PHR034G4b5fiK2zSHWm1RDi/AEsEZGvcOqyROQ8Y0zg8RWUlh08oyv1EOHaeYPloQ8AvwWWEnrgsPrWG4xFJANbLzbVOedfT+g6h86uTZV3vYLtuzId6O83PVz/sHD1YT3Nc5/HPqn7fWCWsQ8OOMGZBnBekO9Ecj4JF1en3w9W9jHG3BDZKnVdJ3nyS9jBOB5xrlPGY58Ym+jiNa2G6jfZFeH6z4QS7je6Wh+oYut27E3D/ufqcH0SwvFvKw5sRw7c750tzP94ikX5OuY6Kw+LyATs/S5fhF2Qirbb6XhMBArbDhDsut8YszTagaqEVGeMmSJ2gLPXsDcr34Ftm/3YuU46AVtOuQd4wxhjQuTPgW0RrTrruxDOrth78YYETNf+5d4ULD09Qvj+WcHOkSHrLZ36pJ9hb7ifjx2kYQy2vqiz+yxNiPcQ+WAcodo7BkYwT6i6jEBt9RZBfruraT1Ymb5tEBJtI/YmZ/9/CHwodrC9nxKi7r87iw8yTeu94sPn2EFHdsU+AHotcCV2IM6H6Nr1Tuvyvici/zB24I2I+nB3of6os34sXbmmzwwyT7hryLD3+jj878cLpjvtIVpPoeJKUuezqFgyxlQDG0Xk+wBOJ4PD6f7IyrnYDLzSKawe0cXv/w84R+xofYjIULFPHvwYOEFEMp2C5TERLOsV4FQRSXcK7eOAr7sYj1L/A37lXLQg9gndYEdO22jsDek/wQ4+ofqek7A3kYw0xpQYY4Zjb345IGC+t4GLxLnxzMlrlwIlIjLWmecnwEed/N7HOB0InQLzFuM8eSqM40QkQ+yAKdOxT14IldeGsxQYIiJ7Od/JcdYn3LGwt4iMEnuz04/peG6pov2IpXlAmVMQ/h52BD3lDUuBUSLSOkq0f0ezVdhK2NYRpkc509/Djtrb3/ms0JmeB6x33v/UbzmB6QEAY0dV3CoiBzqTIjlW/P0X2F9EjvWbltXZl5z0/TBwOrby+Qq/j38gIoUikgkcjx29U8VWZ/nLx8DxIpIlIv2wo5G2jmb6Ira8uxc2P+yKt4Fftv4hoQdBaNUuXRtjrjP2JvfW74U6Hj7FDpjQ+mTBwEEDgwl1zK3CdiIGOxBDsCdgBB5/qwh+XAfqzvlEhZYo6ToS/mWaXYDd/D4rFZGJznY4wS+uMcaYr4wxfwC2YAecDHruCPAAtgFyholshHXVPQmRfkOks/8BF4sdPRoRGe+sQzBPYW9aPongT5sMdl3wDVAsItOcaakisrOzLYcbYz4ArgbyiayRO55dji13ncaOp+eCrU9sHcX8dODTLpYR2/Z7qO1qjPmhkxbOM8bUAg8Cd4gdPAARGSz2iexfAQeLSJGIJDuxdqVs2innGm+liJzs/LaIyOQQ860Te6MbTv1XYDm3S3UXIjISe012P3Yb7AF8iS1Pj3XmyRKRoE/zNvbpLi3A72k/Qv1EbNl6CLau7hrseeAiEZmHfarGdc667iUipcDJwP3YJ+XdASzDDqZytojMdV5Twq2PascTx5fznb9h9/dEv+X4p935wJnO+6uxnYganE5E2U59SKspwOrOV797RORJbGfGCSKyTkTOxabdc520uwhbxsZJu+uwafdesU8fBluuPwhNu90V9DwZYt5Iyoadzf8IcBmAMWYRncsDtho7AMlO2Cf8tGryO9beA05qvV5y6hS03sujupAPRpI+lwKjxXYGB1tWjroQ5+CuljO7egxBF8oJfsL+TpTyXkTkE+BZ4PvOcn7YxXVT3fM+kCEiF/tNC1oXKyK7YdPs3bEIrLdFKe1OBL5y5v8I+Luxg6/1NZ2lo65cp0P49o1Q7cDhhDqvfwVMF/vk71Ts/m21iuB1tF1tFwuWhz4APIF9Iliwzr8qNkLVUfm3AZwd4rtdPgeLyBCg1hjzBPZm0D3oQtnZ6Sf0NfBP7NPgAtNOqHbhoMdfiPqEQKvYcRy0DTTk1MctMMbcjB1saCe07cFt/mmyO+W9QKGOg3Bp/3NsPSvY82lnfdh6mp+G+/592DLLf4CbnWlBzx8iMhpY4dRlvUL7to92tOzgKf7poSv1EKHaeQPPCQUAxpivsG0Op7PjCcfhtHYc3+Lkhyf5fdbdmJX3PATcEOTYjbR/WLD8rLOyR8jvOzd2/A/4N87NxsaYF1vb0owxoQaY7ExX4wK/urUQZZ+o6UqejN0+5WKfDPsB8GvnhtVEF69pNVj/rnDt1sGswt6QnCQiw7FPaG/lXwfs72PgxyKSLCLF2DYC7bseB5w+Jc8A5/pNDnW915361FC+xrZBFzjXXieGmTcW5ete18W8F2x9zlN+g7moGAhxTHRJiOt+pSLmtNtdAlzlnHfnYO+NyHMGtLkF+Ae2jrSDTtoiOuu7EJRTF3YldnCTI8QOat3qZKfcMAYYjb1mUx7hn56wD/HptH9WgHD1lh87y/0YW768CJjrnLs6u8/yx37/txtwK9J+ZETW3hFqnmB9GiHy8s4X2LLMqIDv+wtbpo9SXZm2EfciEZkgIuP8Jk3B9tlaRZC6/wDvARc7y0kWkdyAzz/G9ilMFpHB2EF8QOu94sVnwNFAhTGmxSlD5gPTsMd1V++dfBB4A/sgnpBtU4FfimL9UXfu4/EX6hrSvw7lCL/llgIDxLYxp2O3Zbj+waHaM8Ll2f6/PR7bX1fLKMqzdCQcbzoLuFtE/uH8/Senw2KXGWPmicgcbAFvBV28KdcY87ZzEfeFU66tBs40xswWkaeBudhCSlulr4hc5Hz3noBlLRKRZ4DF2FGhfqEdb1Q33IgdyXe+c7G1CntC/xfwvHMx9wHRf+qmig+nAX8NmPY8ttPAzX7THsA++WC+iDQB9xtj7hKRn7GjYDwDOxJvONdjL7LnA7W078gQytfYpw6PAG40xmwANgTLa7Ed1YMyxjSKyI+BO52GuTrsjUDhjoUvsNtnV2yh9cWAZZaLyGcishB4E7vNXhWRmdj8Xke7dkemiMz1+/stY8y1InIB8LqIbMFeWO3ifP48cJbznRnYmwNbz8N/Bj4SkRZsxe/Z2HT8rIisx3Zcax3c4FXgORE5DvhVQEw/Be5xLppWYEcKjoixT346GrhVRG7HXqRVAf/nN9uPRcR/8KCfY9P3J8aYT1rXTeyI7Djr/zgwFvhvDzpa9GVB01kXvt9Z/jJb7EjRrY34Dxhj5jifNYrIB9iRobtaNrwEW26ej722+RhbURxUYD5njPl1wCzXE/x4+BPwpJPvfgRsxKbbkDefhznm7gdeFpGvsZV4wcosHwDXOvvkL4Q4roP8ZtCyO1AWKs4Ep+k6cq0NB/Ox53z/DjfXYkebX4sdEbk13d/iVGALNi3PA9bQPu0Gi3eWiGwn/FM5lKbfVsHS2XygBJjtXBNuxnZSC7b8RWIHTl1vjNkYZJZQ1wUnYQe8yHPW43Zs3vuEM02wTwTf1tkGiRMd0hu28+J5wN7GmCoR+Rj4HfaJBzXAziIyC6hkR8NrpGXEp4D7ReQSbOeqByPYrr/DlhcXi0i9E8MfjDEbReQ32HOnYJ+k8nJ3NkInzgD+LSK/w96c9hQ2PQb6CbYx9QagCdu46vP7vKt1F9OBXzvpsxo4yxizWUTOxpZN0p35fkeI8gH2xudbaD+I2RLgKmPMTKcB5SbsdXOZMWayc415O/Z4E+zAUUc72/pMJ71sAoqNDijVGc8fX8aYBSJyKfCYk2eWY8/prU8oPAubrq8E6rGNgieKyBXYsu3VInIvtl6ihsg7rXeZCf2k58ODzDsDGBZk+hOE6PCkOueUE4KdJ4MNEOKfHk8K8nngsjuUC4wxpSKyBPtE00i8he2MMx/bOPul32f3Yc/5s40xZzh5+ttiB4Bowj5dqdcG0VE91mk+GEn6dOqlfg685dSp9ebNBu3OwWHiC1rOFJFwdXNBdaOcAAF1gMaYdjd5RCPvdT47MNh01buMMUZsJ5jbRORq7PVTDXCNM8uBYtuRs7D1R5cYY95zJdgoi1K54R3C3KzcV0SQjh4gwut0Z3n1Ydo3QrUDh4tvcbDzujHmSxG5HltHshH7lNjWgSBD1dH+h661i7WrxzXGPI29yf1htO7LbaHqqP4GPOpcz7wf4rtdPgdj6+BuEREfNg1e3MWyM9iyw7PYuoB2wrQLhzr+phNQnxDk9/6EvWb8LXbQnlaXie0k2YLt2/OmMaZB2x5cdR/wpohsNMZ8rxvlvUChjoPAtil/l2AHUf01Np111jbcpfw00n4KInIW0GyM+a/YAYk/F5FDCH3++DG2LqsJW5cV7CmLrTFo2SF2ssTemNLq1oDPH8Fe/9VhO8ZHmpdeT/B23v/DnhMWYvO2PwEvOJ89A0wxxmztLGjnOu1+YAE2jc2IQszKY4wx67CDggW6nsj6hwXmpZGUPfy1q09z+gz/B/gR9oaJaOlqXOBXtwY8RkDZJ4qxdTVPNtiHGF3RcfbEFcdpNWj/LgnRbh3CZ9iH0i3A9l+Y7fdZuzpgv+kvYvPnedinHF9tjNkkdiBr5X3/wO+GMUJf74Wt5+wKY8x6EbkJe620AXttVBli9liUr3tdV/JeZ/7rey8a1YnAY6KrOlz3RyUq1acYY+aIHYTgVGPM4yLyBPCliNRiz9M/Ax6RHQ8YiKgtIoK+C2DLob/z+3sf7M3RVxljNogdKOERcQbzxbYZfwQMBC5yBlpQHuKfnoi8f1brd8P1mf4EuA74whhTI7a/2SfO9+ZJ+Pss00XkK+yDhIKdIyOJM5L2jlDzdOjTCNxFQD1hmO2y2WmHecFpNykDfhAwW9gyvTEm1PlB24i9IxvbZpCPvUf3O+AC7EDJwer+/V0K3OfkmS3Y63r/AXdeBA7BXnctwxmgohvtHsodC4Ai7MOj/adlG2O2AEgX7500xtzq7PPHsXlgCZ23DXdoO+vm+nT5Pp4Aoa4hW5c721nuGgBjBxO5AXv8rKR9+0aw/sFB20OCtHv4D8D2L2x98gLs8Xu20xYX+VZRKobE6ACkSimlVEw4nR2rjTF/d+G3p2Mr2MJ21lQq3jgd7aYaY3rSsKJ6oKf5i1PBORs42RjzbRRDixqnI2eLMaZZ7Oi9/zbGTHE5LNWL+kK6dovYkY0/BHYyxvg6mV11g6Zf1dtEpNoYE2kFvlKqC/T4Uqo9sQNOLAD2MPYpSEr1mIhkG2Oqnc4QdwPfGmNuczsupZRSvStWbQkiMhU7oJR2rFVKKaU8TkRew563E2IgPpWYROQqIM8Y83u3Y1EqnM7SqvbvUvHGrx45BXsT5kPGmBc7+55SSinvcAY6e80Y85zbsSgVD/T6UynlRXofj1LuS3E7AKWUUkoppVTfJCKTgNeAFz1+o/sI4BnnxvxG4HyX41EeFkfpOuacpxT+GbhCByDxJk2/SimllPIKETkUeAi4VQcgUVF2voj8FEgD5gD3uhyPUkqpBCEi12Kf4nVGZ/MqpZRSyj3OE2K/BubpACTKy0TkRWAM9unDSnmWplWVoK532ikygLeBl9wNRymllFKq92iZXinlYXofj1IuE2OM2zEopZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaVclOR2AEoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKXfpICRKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSvVxOgiJUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJ9nA5CopRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaVUH6eDkCillFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkop1cfpICRKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSvVx/w82ZibOEFXGQAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "g = sns.PairGrid(df, diag_sharey=False, corner=True, hue=\"Continent\")\n", - "g.map_lower(sns.scatterplot)\n", - "g.map_diag(sns.kdeplot,warn_singular=False)\n", - "g.add_legend()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Lastly, we are going to create a loop that will allows us to visualize all the comparasions between the variables and the GDP through the years." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "for i in range(0, len(variables)):\n", - " df[variables[i]]=df[variables[i]]/df['GDP']" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Gender equality=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Gender equality=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Gender equality=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Gender equality=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Gender equality=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Gender equality=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Gender equality=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Gender equality=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Gender equality=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Gender equality=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Gender equality=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Gender equality=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Gender equality=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Gender equality=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Gender equality=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.4094000215185459e-10, - 1.4094000215185459e-10, - 8.962469658305836e-9, - 2.5477707006369427e-9, - 3.3520149452895594e-9, - 1.6547005342581326e-9, - 1.2593134743467773e-9, - 1.0095304435930712e-9, - 8.996105330465619e-10, - 8.730894545839847e-10, - 7.586104575994579e-10, - 7.008051772142372e-10, - 6.414515463917523e-10, - 5.496956552158396e-10, - 4.608098286089423e-10, - 3.019844280295471e-10, - 1.9063063447525332e-10, - 1.2102748541104705e-10, - 8.187915450006477e-11, - 9.03108015111723e-11, - 7.560108324502537e-11, - 6.065051265312393e-11, - 5.740203895608075e-11, - 5.393420645560483e-11, - 5.3160176974655224e-11, - 7.536594336153003e-11, - 1.0563142529937832e-10, - 9.788193546002293e-11, - 8.49023622833741e-11, - 8.303193554768116e-11, - 9.388089827452438e-11, - 1.4094000215185459e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Gender equality=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.3202769836497576e-10, - 3.161691231576318e-10, - 2.900837768670141e-10, - 3.492744935052997e-10, - 4.499255603035835e-10, - 4.402660288817027e-10, - 3.2407569704463066e-10, - 2.7418063410219224e-10, - 2.964360477731328e-10, - 2.4538343705233274e-10, - 1.942514786012038e-10, - 1.9013218821229698e-10, - 1.7532166466452196e-10, - 1.5919555998033528e-10, - 1.351566466324452e-10, - 1.4928630903653795e-10, - 1.3115112834191067e-10, - 9.237648181537336e-11, - 7.431946217956934e-11, - 7.958528387359921e-11, - 6.471078422045783e-11, - 6.11127086421602e-11, - 5.6495033974599753e-11, - 4.94862881599294e-11, - 4.62656824213325e-11, - 3.533976632539305e-11, - 4.7896749521988495e-11, - 5.588646811912854e-11, - 6.94247069120569e-11, - 8.22815680224595e-11, - 8.22815680224595e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Gender equality=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Gender equality=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Gender equality=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Gender equality=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Gender equality=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Gender equality=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Gender equality=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Gender equality=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.735510229690198e-10, - 4.824119028724745e-10, - 4.5046100936604393e-10, - 4.750280666904839e-10, - 6.951909251096087e-10, - 5.532422160016009e-10, - 5.335599651615994e-10, - 5.793283940397076e-10, - 5.379974012031352e-10, - 5.308793192948281e-10, - 5.820542875420046e-10, - 5.37814112284333e-10, - 4.99543089883136e-10, - 3.991459664737683e-10, - 3.4733189095387286e-10, - 3.179207571073888e-10, - 2.9919852060903156e-10, - 2.5010327587380905e-10, - 2.076659447167552e-10, - 2.1677372429366408e-10, - 2.1710388212343167e-10, - 1.9647154372081114e-10, - 1.9817821307471602e-10, - 1.8500244736164908e-10, - 1.7679218978052182e-10, - 1.9690835169122622e-10, - 1.838205093572893e-10, - 1.6669393500350525e-10, - 1.5140569497565858e-10, - 1.5017454309356892e-10, - 1.4202104701433394e-10, - 2.753040486656077e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Gender equality=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Gender equality=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.4050832195217785e-9, - 1.4050832195217785e-9, - 1.4050832195217785e-9, - 1.4050832195217785e-9, - 1.4050832195217785e-9, - 1.4050832195217785e-9, - 1.4050832195217785e-9, - 1.4050832195217785e-9, - 1.4050832195217785e-9, - 1.4050832195217785e-9, - 3.4324942791762014e-9, - 3.3112582781456954e-9, - 3.2362459546925565e-9, - 4.010695187165776e-9, - 3.3444816053511705e-9, - 3.161222339304531e-9, - 2.680965147453083e-9, - 2.1849963583394028e-9, - 1.7381228273464658e-9, - 1.6968325791855203e-9, - 1.5015015015015015e-9, - 1.251042535446205e-9, - 1.0746471396117085e-9, - 9.44228186464042e-10, - 9.300445305321219e-10, - 9.296342196125117e-10, - 8.827632703154136e-10, - 8.847721685122916e-10, - 8.76486974760798e-10, - 9.03724292997658e-10, - 9.371521408397222e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Gender equality=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.7548704975259587e-10, - 9.632834694359556e-10, - 1.325781062898583e-9, - 1.2822623663489707e-9, - 1.2515420882671187e-9, - 1.2069286636590207e-9, - 9.074881096821537e-10, - 7.528772520538217e-10, - 6.64909087767596e-10, - 5.856360500094971e-10, - 6.187600641448897e-10, - 6.483200077410536e-10, - 6.165224595565584e-10, - 5.552566737705608e-10, - 4.5864823975702183e-10, - 4.097367447291089e-10, - 3.813928634356565e-10, - 3.3490120389767507e-10, - 2.7874686140422327e-10, - 2.937604073195737e-10, - 3.15183316740983e-10, - 2.4336732882753275e-10, - 2.1405674508459422e-10, - 2.0619382021682244e-10, - 1.9756058837521281e-10, - 2.1942240598943342e-10, - 2.932060157641116e-10, - 2.647687185283302e-10, - 2.357558019870181e-10, - 2.27498722169455e-10, - 2.496532207950677e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Gender equality=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.4361560472225177e-10, - 2.5337425518050565e-10, - 2.4851357032443325e-10, - 1.853933119234237e-10, - 3.3698603020240276e-10, - 2.7612173672001217e-10, - 2.704276665534423e-10, - 2.780491868656863e-10, - 2.655303264098085e-10, - 2.5938481528024634e-10, - 2.83914028694131e-10, - 2.73885428523968e-10, - 2.415993526170886e-10, - 1.8784850886914668e-10, - 1.5935226255999882e-10, - 1.5376847445026883e-10, - 1.4346849645307694e-10, - 1.2537481147940394e-10, - 1.0824406819568795e-10, - 1.0739995851499502e-10, - 1.0906116629025015e-10, - 9.794027621190983e-11, - 9.948577601718446e-11, - 8.894522661334185e-11, - 8.244805440831253e-11, - 9.313810329244057e-11, - 8.871976168354559e-11, - 8.310583079467375e-11, - 7.504908385584879e-11, - 7.562203408395809e-11, - 7.352139338095499e-11, - 1.354433238188914e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Gender equality=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.5518753419907e-11, - 6.107686694925521e-11, - 6.276816939997856e-11, - 1.0809952122716481e-10, - 8.867071167927428e-11, - 6.808515922838764e-11, - 5.87362138923657e-11, - 5.508849166223334e-11, - 5.4940979483388636e-11, - 5.052834672209095e-11, - 4.3197317453964235e-11, - 4.0523912335088115e-11, - 3.145121592883285e-11, - 2.8595408453795458e-11, - 2.1996395926501712e-11, - 1.703247820190149e-11, - 1.2706265981213018e-11, - 1.0884326692345833e-11, - 8.83714340328379e-12, - 1.0169189300735941e-11, - 8.299751105983526e-12, - 7.407524571883693e-12, - 6.5861470009256996e-12, - 5.897467086184375e-12, - 5.4877074253889615e-12, - 6.162653437661587e-12, - 7.413814289730525e-12, - 7.984106952976405e-12, - 7.553051035565741e-12, - 6.694628958648723e-12, - 6.939725170086719e-12, - 1.309721850923735e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Gender equality=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.792123036811398e-10, - 6.063779258661795e-10, - 6.236453641350402e-10, - 6.704372304434292e-10, - 7.346781940441879e-10, - 6.187029941819213e-10, - 5.767856985368695e-10, - 5.804412827525614e-10, - 5.346901017576317e-10, - 5.181780192227328e-10, - 8.027253475738888e-10, - 7.525997683257725e-10, - 6.486840489541976e-10, - 5.240810971360851e-10, - 4.503810401348589e-10, - 3.722774231756256e-10, - 1.9568616677572212e-10, - 1.6110943209607536e-10, - 1.3947632689895e-10, - 1.5356201577415246e-10, - 1.2423412458546822e-10, - 1.0168462233189616e-10, - 9.692046199236844e-11, - 6.367090424159179e-11, - 7.301555439521165e-11, - 8.096089501643912e-11, - 7.121851128638674e-11, - 6.62181678171327e-11, - 5.943599930949475e-11, - 5.853298388922812e-11, - 5.836665429209352e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Gender equality=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.1274325996000224e-10, - 1.1507718152425483e-10, - 1.1235025038244718e-10, - 1.0741253717650316e-10, - 1.0549722455281876e-10, - 9.389888219141559e-11, - 7.671439041263932e-11, - 7.38429063237852e-11, - 7.127200955008579e-11, - 6.948430665180845e-11, - 6.675124970484549e-11, - 6.598286520421371e-11, - 6.509931099744048e-11, - 5.921814181319373e-11, - 5.471632089205672e-11, - 5.7601245310825453e-11, - 5.5695503128586875e-11, - 5.024375240655824e-11, - 4.365321620367175e-11, - 3.903284743482881e-11, - 3.4698403977136285e-11, - 2.720814741794528e-11, - 2.624558756246108e-11, - 2.333481882443214e-11, - 2.0244618041394563e-11, - 1.7941478911860693e-11, - 1.580740703294704e-11, - 1.20138917850212e-11, - 1.0947347971607668e-11, - 3.1777274442853115e-11, - 3.1777274442853115e-11, - 3.773551340088808e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Gender equality=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.0384894522595655e-11, - 1.2340864161153053e-11, - 1.1565703782129202e-11, - 1.193476834246765e-11, - 1.0185096294940746e-11, - 9.252013064205663e-12, - 8.483986572167841e-12, - 8.01536859341211e-12, - 7.911051725921173e-12, - 7.265006541500883e-12, - 7.1165016274848776e-12, - 6.866608369507725e-12, - 6.473271858575606e-12, - 5.485169084826999e-12, - 4.700472839954445e-12, - 4.2663073125279e-12, - 3.722375102585844e-12, - 2.8765497252333374e-12, - 2.9193534884496386e-12, - 2.6082680851722244e-12, - 2.088784893309394e-12, - 1.6455939874709147e-12, - 1.6414630420376149e-12, - 1.6157506637270995e-12, - 1.6346861199794264e-12, - 1.5845943351856897e-12, - 1.4525606879756646e-12, - 1.2571628678658258e-12, - 1.2340597507255995e-12, - 1.1612362222874991e-12, - 1.2530173053601777e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Gender equality=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.953306900250269e-10, - 4.680980992608237e-10, - 4.5606612474215634e-10, - 3.414017025766799e-10, - 2.76303586711774e-10, - 2.170121677472341e-10, - 1.825004712611568e-10, - 1.676370964501966e-10, - 1.6538279360805737e-10, - 1.5688375039380718e-10, - 1.443579226348706e-10, - 1.3767699674835607e-10, - 1.2833636950735607e-10, - 1.1377279527193242e-10, - 9.90581666333477e-11, - 7.807992020796476e-11, - 6.780001695609786e-11, - 5.812870106651672e-11, - 4.539479668598749e-11, - 4.244695978606523e-11, - 3.8815941377162646e-11, - 3.320066873390228e-11, - 2.887947596288793e-11, - 2.6281665556256748e-11, - 2.4166957857270577e-11, - 2.3286970510834868e-11, - 2.1921687028744586e-11, - 2.0109047717976976e-11, - 1.8351341096130635e-11, - 1.7180736914618822e-11, - 1.6595463373241836e-11, - 4.7459876423868416e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Gender equality=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Gender equality=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.297508964892277e-11, - 3.0011491086840215e-11, - 2.7337990530408645e-11, - 2.2150959379069084e-11, - 1.9786068065042202e-11, - 1.7315415187339653e-11, - 1.5393433326824016e-11, - 1.6222555017892425e-11, - 3.6670123206454394e-11, - 2.4999758713853424e-11, - 2.1209420278853307e-11, - 2.1814064077379703e-11, - 1.788811748648371e-11, - 1.490805157893934e-11, - 1.3627326667846193e-11, - 1.2243386565982814e-11, - 9.600337555201563e-12, - 8.09778912778507e-12, - 6.859669881234924e-12, - 6.486525528509165e-12, - 4.635183509189237e-12, - 3.919508490210205e-12, - 3.813176531298166e-12, - 3.83551498439054e-12, - 3.9289874571999674e-12, - 4.065728967152501e-12, - 3.755859015942817e-12, - 3.4461750786104727e-12, - 3.3580500818262655e-12, - 3.1275376084110964e-12, - 3.3068038277296336e-12, - 7.181151409569534e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Gender equality=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Gender equality=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Gender equality=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Gender equality=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Gender equality=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Gender equality=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Gender equality=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Gender equality=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Gender equality=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Gender equality=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Gender equality=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Gender equality=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Gender equality" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.027787280017320067, - 0.02590915495547286, - 0.025639503600193982, - 0.025367235356250902, - 0.02479982403832857, - 0.026184863830757656, - 0.027560929533922366, - 0.03239817929487367, - 0.03446480133908532, - 0.03484571488732721, - 0.039964927553349495, - 0.04030761114423895, - 0.04465318857303214, - 0.045068372455101355, - 0.05112300876252806, - 0.05490835493329209, - 0.059534274823216764, - 0.060737869945644465, - 0.06386976806025792, - 0.06497420286575983, - 0.06646344483345328, - 0.06682396400676578, - 0.07111752415181148, - 0.07266985601367922, - 0.07661953320413956, - 0.08215123698462214, - 0.08309666785819497, - 0.08599122843672959, - 0.0882818035669781, - 0.09016898737354952, - 0.08142730415799289, - 0.13317193140270442 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.06000771845574382, - 0.06235951762533657, - 0.06470520601957003, - 0.06400558077303235, - 0.05809887344670955, - 0.056923242455068634, - 0.05611674560978919, - 0.0577505588700204, - 0.0593775415184401, - 0.07086111914346274, - 0.07041731796612345, - 0.07253293417429126, - 0.07468827128008271, - 0.06793843554489881, - 0.06699016154278982, - 0.06934915994641765, - 0.07093306472722655, - 0.07357057474147194, - 0.07615321960158478, - 0.07144899519440916, - 0.0758562210731808, - 0.08224332352468718, - 0.08695878880261945, - 0.09001450385468654, - 0.09514168730664109, - 0.10446579531365721, - 0.10452739397750153, - 0.10547869410385596, - 0.10812838283581314, - 0.10832167502045639, - 0.0966825458276403, - 0.14454649169726186 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.05055344708226518, - 0.051699449950320844, - 0.054282354810226585, - 0.05604752406970493, - 0.05636402863818367, - 0.05523691889932047, - 0.05532286665753271, - 0.06347880672487391, - 0.06084469830560397, - 0.0679723050812535, - 0.07528078194206124, - 0.08665061985306892, - 0.08216814630527798, - 0.078297576335584, - 0.08741348419405097, - 0.09612045028929306, - 0.10151043198979529, - 0.10838652635102357, - 0.11411781397106732, - 0.11414990255259738, - 0.10795109217716681, - 0.112836987998754, - 0.11673303091226896, - 0.12728471406926306, - 0.12917011223263278, - 0.14021378269863127, - 0.13514083391598022, - 0.13201646984166834, - 0.13149950689792544, - 0.14475367396726235, - 0.1261242250658839 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.049242196172894395, - 0.04686164353987588, - 0.052244009617106485, - 0.056592978264372554, - 0.059561873469569704, - 0.05759641897931293, - 0.062323984478956394, - 0.06402693426728688, - 0.06696602478692075, - 0.07839735663441146, - 0.08076785877401813, - 0.08415222648099994, - 0.08409099320681425, - 0.08815399907194385, - 0.0917150325412903, - 0.09657653695216374, - 0.10417883210696331, - 0.10793488571112986, - 0.11174013096252124, - 0.1161393224077083, - 0.11577849625217496, - 0.12468572125120268, - 0.12464906930920072, - 0.12919767745893954, - 0.1257539290338198, - 0.12556779973607213, - 0.13314904150528992, - 0.1382518500102898, - 0.14239719359745318, - 0.14364296787307065, - 0.136693543499293 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.051530797740020666, - 0.04991608901017505, - 0.052469301312983635, - 0.05730236372037912, - 0.06299286415789468, - 0.06503380972857098, - 0.06797588367430528, - 0.07283187233797314, - 0.07795581213869646, - 0.08239946624961304, - 0.08811460255823926, - 0.08899601377912668, - 0.08538444621327478, - 0.08194926425886771, - 0.07938615797115715, - 0.08048494762531665, - 0.0832079350923267, - 0.08213309252198117, - 0.08220015126893923, - 0.076752481786122, - 0.08014080188385898, - 0.09013489124282287, - 0.09425779694468901, - 0.09594687087800118, - 0.10029783887239498, - 0.10158051911046637, - 0.10596333765916303, - 0.11002579039904105, - 0.10933295217779232, - 0.11263551607643595, - 0.07041479629006697 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.19671299406684273, - 0.19671299406684273, - 0.19671299406684273, - 0.04805265243236281, - 0.057692021641228546, - 0.0978770240513773, - 0.13403167173686417, - 0.1670494597797237, - 0.15553707825399798, - 0.15884914559203392, - 0.2038132653629083, - 0.22750951012896617, - 0.2169941303394547, - 0.21713785470592029, - 0.2076614600791213, - 0.19845946691854532, - 0.20191479406464605, - 0.20394301343358306, - 0.20054021470207262, - 0.18127251126667782, - 0.17898282013094186, - 0.19298768383397452, - 0.21426396878528603, - 0.19750806280036592, - 0.21368474580280736, - 0.2329253641358412, - 0.24962234915139003, - 0.2630422241292256, - 0.2614129971977849, - 0.27565445831206853, - 0.17978547316788457 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.04850119997586175, - 0.043122334974243774, - 0.05059517935873279, - 0.04373961983237225, - 0.06006133845638737, - 0.07475431808960742, - 0.06096387008939628, - 0.05594957116777862, - 0.062059998715209785, - 0.04930865402576601, - 0.06023709476367535, - 0.05119286940789306, - 0.05037874254814628, - 0.05131589112697602, - 0.058860841654243684, - 0.058792529756796885, - 0.06437197799577529, - 0.07297417213189304, - 0.07049355282594275, - 0.07035560853482989, - 0.07222911896514063, - 0.07555537405821812, - 0.08026501162345193, - 0.08373059176886954, - 0.08770139851476469, - 0.09224759565201944, - 0.1030657437374127, - 0.10990887807280506, - 0.11576036836188557, - 0.11752935580383565, - 0.11116207269145069 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.06654333777144023, - 0.06792971680949077, - 0.07434738069882439, - 0.07492942281881575, - 0.07840359107522908, - 0.06960924712122415, - 0.06349854391121806, - 0.06443248552889114, - 0.18757008145315912, - 0.1161511384571231, - 0.1473928771271239, - 0.1428683796213372, - 0.13028729899124927, - 0.12010689008261517, - 0.13742135907020042, - 0.1369137910507388, - 0.13096584336248757, - 0.1354149830569816, - 0.14233568090010312, - 0.11462428656745041, - 0.12631273926522402, - 0.14160165765076912, - 0.1442124904248947, - 0.15489379460865482, - 0.17425480876112937, - 0.1785427010506966, - 0.17036320612920566, - 0.19133436479594557, - 0.2051648446746458, - 0.21800025737400083, - 0.13690907174274589 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.3642388865303201, - 0.34887496889339425, - 0.3108110552881908, - 0.31848160178156387, - 0.29789650978007837, - 0.2515469230017558, - 0.2555624697770088, - 0.28493979583491613, - 0.2777992531251709, - 0.2790788754044656, - 0.3073270491671647, - 0.3069860515205237, - 0.28280732356283084, - 0.2311800776815786, - 0.20113092542784775, - 0.14091885783421026, - 0.1342753723036855, - 0.13840021301642397, - 0.14457320744799368, - 0.13277852001764004, - 0.13297509875092897, - 0.13575688063595573, - 0.13999200894187452, - 0.14858027284539613, - 0.15360726621758022, - 0.153335048877374, - 0.1538967257343531, - 0.15949931705267342, - 0.16537687477521437, - 0.17058487808076203, - 0.14807268502307308, - 0.22288245289666722 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.09154037232287676, - 0.09981103031157332, - 0.10497307765780325, - 0.10618035650288088, - 0.10815965245477661, - 0.09882095805051622, - 0.1026669593390113, - 0.11380191830728026, - 0.11046648871985242, - 0.11232666409353587, - 0.11711926829021228, - 0.11528587413783246, - 0.1177544197090226, - 0.11013122358912061, - 0.13171258664022945, - 0.13421073527742167, - 0.132209824085666, - 0.13930984673617877, - 0.14137113067869245, - 0.1451324753100884, - 0.14621761338338402, - 0.15051691003556542, - 0.15696810184970428, - 0.16254889322415975, - 0.17409438100791144, - 0.2191651672715307, - 0.19993592243067845, - 0.20908580817204436, - 0.2191608518461878, - 0.22139876342285272, - 0.1978296328249623 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.017084517581110927, - 7.5581469832703565, - 5.566806675490231, - 2.986772652643329, - 0.7722162435933886, - 0.23903967780016208, - 0.2954067260190191, - 0.14843274584705476, - 0.1494943104326659, - 0.08356971003537461, - 0.06372857409855986, - 0.08519869813096323, - 0.09360247180324334, - 0.14060055111375305, - 0.08414854801189685, - 0.006956275902972055, - 0.0054236905380467436, - 0.00944650853357821, - 0.009489840625920627, - 0.015493797861675715, - 0.015876061445399634, - 0.01162317039149073, - 0.012187934645611076, - 0.011522020061431949, - 0.015132062564715528, - 0.02947220050891494, - 0.031561353251793794, - 0.03019296362570679, - 0.0233344727042104, - 0.029736213482373878, - 0.020979631004196097 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.8772451081898531, - 2.0073096264367813, - 1.8070979123473352, - 1.930715864197916, - 1.873678370564291, - 1.697898544296785, - 1.5252047405751052, - 1.2230121186388405, - 1.3473117449801175, - 1.1149198643346376, - 0.7780086934999845, - 0.7878312969924826, - 0.7135683275637006, - 0.5871280482822221, - 0.4354106066902142, - 0.3102895904152604, - 0.2269524075970955, - 0.17334069728969634, - 0.11986937030337251, - 0.14128406735096322, - 0.11043074016612872, - 0.033260085505490165, - 0.047375730339805106, - 0.05180138997359284, - 0.06194569107283525, - 0.08719396022116488, - 0.09589083275273952, - 0.10879759963985663, - 0.096979162780135, - 0.10396089185023896, - 0.12725970330193645 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.02573033812035159, - 0.021962851418928533, - 0.02525290164933181, - 0.0246575800006676, - 0.024724513703319472, - 0.024245800531110015, - 0.01744920885623947, - 0.025613655188378524, - 0.03217975794178957, - 0.03322182987692404, - 0.0252166593356018, - 0.02719569319913825, - 0.027303648149701522, - 0.0264717208168257, - 0.022616070774756605, - 0.034008433899493186, - 0.03702461320658912, - 0.03882525846045466, - 0.017567985562765284, - 0.021971707969563516, - 0.01959679976723884, - 0.016561136219262987, - 0.01436822860917739, - 0.015145553302860887, - 0.015814915493646182, - 0.021103563929027357, - 0.02568748659795585, - 0.025337321869639943, - 0.025239783626089713, - 0.010746113830378013, - 0.01383684557256215 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.07075073629502222, - 0.07075073629502222, - 4.499086970807103, - 1.2789601974514828, - 1.6826842757929834, - 0.06865104311556854, - 0.043819386481739046, - 0.08380314118354802, - 0.07204373522060108, - 0.05162054091282351, - 0.04446291753036182, - 0.04482700316050868, - 0.051055694383505136, - 0.05315227168544039, - 0.05735665375958359, - 0.051574410541026204, - 0.04131571101343198, - 0.04175036753230726, - 0.032253754661511015, - 0.045616776062806355, - 0.04529593541975748, - 0.04449344352175416, - 0.06717542491282097, - 0.055368694544704555, - 0.05673335156005092, - 0.08333715425156313, - 0.11463528954475936, - 0.11405137049495435, - 0.09893525820306645, - 0.07735625147379475, - 0.06088112883496571, - 0.07075073629502222 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.1636202728665546, - 0.15580530918889138, - 0.14295068441238312, - 0.1721193388807141, - 0.22171928218346298, - 0.21695915170400562, - 0.1597015979117927, - 0.13511375824197777, - 0.14608102656184715, - 0.12092275772517577, - 0.09572538703841271, - 0.09369543766741588, - 0.08639694445098636, - 0.07845014464574583, - 0.06660398367554365, - 0.017044053292924913, - 0.024540474530824957, - 0.02670096018632459, - 0.03897832832931873, - 0.043157109812556015, - 0.047586369392198076, - 0.03393692602503848, - 0.03989336962127114, - 0.03838611108075025, - 0.034858998758656466, - 0.006182229642348998, - 0.009855732349904391, - 0.03442543802907466, - 0.04276484139940948, - 0.050684523753662475, - 0.050684523753662475 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0058314229117051326, - 0.005411851036507071, - 0.001044299170826459, - 0.0010408860021650435, - 0.001006583053167717, - 0.0009421341222136359, - 0.015525832663296078, - 0.016972427729041784, - 0.027727538957684518, - 0.02650470765591055, - 0.023160379304871748, - 0.03115267213315406, - 0.030084353557675678, - 0.03029515851629131, - 0.02972174689598885, - 0.030206612055008658, - 0.03522143692938165, - 0.03998312081964719, - 0.02997675328403989, - 0.033485035774004086, - 0.027811124449779866, - 0.029961681754838244, - 0.030740399323584404, - 0.032861112233689066, - 0.03376950692747449, - 0.043138613949769165, - 0.047113308685400694, - 0.049019791720806095, - 0.05017494992169589, - 0.05562196587061759, - 0.03004746298666388 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.050796073937795325, - 0.06894413258047966, - 0.06565877641620058, - 0.06310512692333178, - 0.07408528314598857, - 0.07546689958318431, - 0.0671435265288613, - 0.06542091352400295, - 0.06540715332901383, - 0.06479813009074076, - 0.05752511039303419, - 0.05757311033599084, - 0.05552860518877666, - 0.04644334787651357, - 0.036935755924645305, - 0.023895760133847418, - 0.02146507556898558, - 0.020645973541218315, - 0.019955594661829026, - 0.02000361043743792, - 0.021350908699710593, - 0.01763418022906186, - 0.017077646956700252, - 0.01764480276058094, - 0.016260993797443273, - 0.02045208361945001, - 0.01963388973372972, - 0.01777643851635024, - 0.018435257270591948, - 0.01785745625771922, - 0.02026038056960202, - 0.028349357138514733 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.11197351252609598, - 0.16422453333333342, - 0.1685302530553557, - 0.15191515463917535, - 0.14823312000000002, - 0.13733550000000008, - 0.1342457192676547, - 0.11597140278300119, - 0.09232712595685454, - 0.10225915474642397, - 0.09702665539547195, - 0.09117477557847782, - 0.10719226708894172, - 0.13498079041916175, - 0.17829347620028857, - 0.16125661467038074, - 0.1473915735794071, - 0.15072008055853975, - 0.15150396426577314, - 0.11262245442333531, - 0.1078527929719874, - 0.08064124060972934, - 0.07644079536633418, - 0.06199474844119539, - 0.0663017159624414, - 0.05493089242604035, - 0.04003378423267145, - 0.07895604380403455, - 0.09175733763014371, - 0.08002220777512627, - 0.0393598785653288 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0028713369525127427, - 0.002271232851013207, - 0.002002218254044777, - 0.0010073853135408254, - 0.0008027219855395284, - 0.0007770700443033506, - 0.0005911333172740245, - 0.0005442480835720883, - 0.0011458796255232149, - 0.0013903548693709965, - 0.003109468421589633, - 0.003928459302325577, - 0.013426495463632188, - 0.01252587745389649, - 0.010597087716853616, - 0.008851960214428726, - 0.007004847779716887, - 0.001607020857283627, - 0.0023835096834701045, - 0.0061083651874541175, - 0.00548456742290679, - 0.0011585216224487378, - 0.001858961665053243, - 0.0027464445378151273, - 0.001925006303724929, - 0.017347809751892245, - 0.0032637146396047386, - 0.0028244677511589833, - 0.002541443940410108, - 0.003209758142171166, - 0.006508049317893289 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.021029350036621753, - 0.021497080162835032, - 0.026741116741101616, - 0.027479954536910326, - 0.030296050756752294, - 0.07858202668371206, - 0.07516745241609868, - 0.07948690558349239, - 0.08636878646476064, - 0.10423644097570367, - 0.11791492907665711, - 0.09533214118243966, - 0.09608870418532263, - 0.10276541462952374, - 0.11664116516072115, - 0.12131750714624727, - 0.12285795288391288, - 0.1187122564537066, - 0.11482221434345553, - 0.1075620585315827, - 0.10775540358028064, - 0.11214406145831658, - 0.12340166144660504, - 0.12199755678704613, - 0.11803022193812167, - 0.12405063183316516, - 0.12613109785897814, - 0.13050372197311202, - 0.13851495568430608, - 0.1429883212863328, - 0.13551780933035146, - 0.3413051250955239 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0523108177322456, - 0.0544099039400468, - 0.05845040279210645, - 0.05837828379107774, - 0.08204901571027907, - 0.0854053139186191, - 0.07081945543569, - 0.10089306714905845, - 0.08368017565535849, - 0.06289746660032569, - 0.06988258554035148, - 0.07436388896772311, - 0.05818028251838264, - 0.05698166389319975, - 0.05583843908274291, - 0.054318681674000974, - 0.04624654507390556, - 0.04344837495078647, - 0.04757144748103286, - 0.05445478786629021, - 0.04628872913649903, - 0.04858346385686095, - 0.04862380328811686, - 0.060567997904508286, - 0.06536751496318688, - 0.06312501178429553, - 0.052226477699564865, - 0.061405389366768176, - 0.07431096726325156, - 0.08139900099887055, - 0.04870027805081204, - 0.11158551163079193 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.06200216205888574, - 0.05293596329575319, - 0.06653095798519187, - 0.06881825357699721, - 0.06590168874283545, - 0.0691901397257916, - 0.0723304977740684, - 0.07453232482996053, - 0.07998519335861509, - 0.08743982569627703, - 0.09805344011691498, - 0.11660685419218289, - 0.12223653547316071, - 0.12391189369616837, - 0.1276103323783964, - 0.14012054690337808, - 0.15816954013022483, - 0.16940173675744039, - 0.15917691272020307, - 0.15488394290205024, - 0.1537181667097113, - 0.1527687471349554, - 0.15210404340623293, - 0.13044743017900928, - 0.14356569333498073, - 0.13937929449481853, - 0.14173002433952295, - 0.1512726708652276, - 0.15235483494819485, - 0.15623271310461936, - 0.1156533961063282 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.048218454755974846, - 0.04085999838812451, - 0.04323139831647322, - 0.03634598324673962, - 0.061461913760745904, - 0.05754034868255871, - 0.04800072383737646, - 0.05435471350241367, - 0.05630804966305635, - 0.05327580313984341, - 0.054674835808641256, - 0.05299564864767319, - 0.05545060209913991, - 0.055556393612094225, - 0.058592868665766455, - 0.06130477928350659, - 0.060707288603848504, - 0.07783992580869377, - 0.06961664239259308, - 0.0562614731018193, - 0.05813657570585804, - 0.05781803308075253, - 0.06115624267147744, - 0.062205574644535015, - 0.058877990683890095, - 0.058265885921534616, - 0.05546316765740566, - 0.05396280776148927, - 0.05258472881190947, - 0.029319844588960108, - 0.027727968675937253, - 0.053749934944418674 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.028709741719211503, - 0.024626151328561666, - 0.023874320528647068, - 0.021208032774165105, - 0.023169819648507124, - 0.025704946072597216, - 0.029698571772880655, - 0.03083473576099566, - 0.034075383363721186, - 0.03326784464506488, - 0.03221079825669032, - 0.03490989434294661, - 0.03864065918921739, - 0.04304047317355295, - 0.03893927967116746, - 0.04005257497579899, - 0.04126838774686642, - 0.042944628753561184, - 0.04238350696977209, - 0.03824408726467095, - 0.03787295887689928, - 0.03728580924275951, - 0.04018182803515626, - 0.0416706274978349, - 0.044120412748597584, - 0.043746730249420614, - 0.045050715393606666, - 0.04233347868120239, - 0.041270975783643436, - 0.04008114807723514, - 0.025054112285979056, - 0.037686626236838355 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.02507609195694174, - 0.02507609195694174, - 0.02507609195694174, - 0.02507609195694174, - 0.02507609195694174, - 0.02507609195694174, - 0.02507609195694174, - 0.02507609195694174, - 0.02507609195694174, - 0.02507609195694174, - 0.06125867919452778, - 0.059095017236222167, - 0.05775629516290969, - 0.07157765456686803, - 0.07604939487893533, - 0.08545402386485774, - 0.12798857856172474, - 0.11333040725591624, - 0.10530709354990789, - 0.08059153394518835, - 0.0022290939834604608, - 0.0019550194367910717, - 0.0017677517885711994, - 0.0016349661047510731, - 0.0016951648197437294, - 0.0015008191190761344, - 0.00703459389227375, - 0.0029909689074718833, - 0.0029234633480980294, - 0.003200550007313901, - 0.016725068618597533 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.061700294859494256, - 0.15828741400438723, - 0.2178532723135833, - 0.2107022496330911, - 0.20565427203422365, - 0.19832336287284202, - 0.14911908143241326, - 0.12371331707800245, - 0.10925832674402215, - 0.0962321256878066, - 0.10167508687762765, - 0.10653239750156275, - 0.10130740212533068, - 0.09124016531840129, - 0.07536539981456611, - 0.03695510469402514, - 0.0396455369765339, - 0.03868935403023164, - 0.03891631761931607, - 0.04565672035526671, - 0.0220537433215653, - 0.025448783068389533, - 0.04844471385298628, - 0.038026184424747825, - 0.04091485562675543, - 0.04530262175098632, - 0.036897920555695206, - 0.049739455266859085, - 0.052484583427249314, - 0.06051757059044669, - 0.05573567834685873 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.029977930203660283, - 0.033509967907915036, - 0.03201577352994247, - 0.02244393572044908, - 0.03465731193399319, - 0.02230628857585813, - 0.04280090231057838, - 0.0403986922341779, - 0.04498203875396725, - 0.036301834072719544, - 0.06423999109067667, - 0.08528001635735265, - 0.08127170179402396, - 0.037196599343861436, - 0.05620489557650411, - 0.04392775078116035, - 0.043079264635576396, - 0.05184928391180667, - 0.04907605998301322, - 0.04102082655366002, - 0.045117270320355264, - 0.0591209758339197, - 0.05131834357490152, - 0.0551655182777212, - 0.05342610274048815, - 0.044759072828566004, - 0.046538873779586404, - 0.051041297445530306, - 0.050153796649485265, - 0.05301177809978127, - 0.03961561252713365, - 0.047580498336626725 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.017861268683711223, - 0.01804436393695953, - 0.022023000404598665, - 0.041891913950007666, - 0.010962230494628118, - 0.004290781404716597, - 0.0044943392488799375, - 0.004405059792957857, - 0.004611376172092481, - 0.016499480824973507, - 0.026392820176790448, - 0.02233228779040976, - 0.026458554755693225, - 0.03310504128658138, - 0.02446002253942023, - 0.008134513928006955, - 0.008710859976307675, - 0.003982496969647842, - 0.005399627784605816, - 0.005965675088323524, - 0.007246712759938457, - 0.005713543188308365, - 0.004538500450910022, - 0.0037673712027944685, - 0.0027574633474160897, - 0.005491619396639408, - 0.008018867047485573, - 0.012106444664242419, - 0.01095457600020456, - 0.010011231824561487, - 0.00817178159662278, - 0.00853264828277755 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.013397462690110483, - 0.014340837946735146, - 0.022544779913481704, - 0.022359081635288363, - 0.024979058597502386, - 0.02146899389811267, - 0.02082196371718099, - 0.022042257712528518, - 0.05713163737280295, - 0.05878729628081904, - 0.09828141377673397, - 0.09696469074117361, - 0.08737774139413042, - 0.08022436904547765, - 0.07698419416655161, - 0.1007838104778078, - 0.060803766995906394, - 0.06502271137130186, - 0.05435286923788884, - 0.058431114812143886, - 0.04173055303357024, - 0.04267154502309064, - 0.07754086526976126, - 0.03746052248073811, - 0.0360953403326759, - 0.018068716969237262, - 0.015894428083371125, - 0.014778459801689214, - 0.01326482679186019, - 0.013063293322592815, - 0.013026172161646879 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.009355655563429311, - 0.01112119514984583, - 0.012384187733931021, - 0.013111770318752896, - 0.012402140121334974, - 0.012349000216525772, - 0.004810716284117814, - 0.005527646490793582, - 0.005047213643724077, - 0.005203640104838468, - 0.00531992264473091, - 0.004525214781544176, - 0.006438681482473703, - 0.008310210211475247, - 0.00732375946554323, - 0.010399004451424701, - 0.012844397065848225, - 0.012827199607570268, - 0.012004342283945733, - 0.009444408440369444, - 0.010724422519102142, - 0.011029013008078025, - 0.010136463076961682, - 0.010171262306513915, - 0.009482790342053973, - 0.008594805529399905, - 0.009067108595285039, - 0.009107534961183295, - 0.010850622864533702, - 0.03366388538226899, - 0.03261798418697539, - 0.011042177470888126 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.014360759002520315, - 0.018161250213522568, - 0.016978341378290213, - 0.01802529961094811, - 0.01842869233824212, - 0.018772165463955652, - 0.018271980612170977, - 0.021462417110860083, - 0.02626528645752221, - 0.030526087960555545, - 0.03422623292938447, - 0.03460587733308101, - 0.037141007915319636, - 0.03888880919674792, - 0.05322984745859359, - 0.06320327365582563, - 0.07356034271703414, - 0.07087413158187474, - 0.08813827693281724, - 0.06892111448480809, - 0.06957628013170233, - 0.07566180823005839, - 0.07935336448796323, - 0.08008894453840651, - 0.0768046090252708, - 0.07402454125841457, - 0.07026073987187778, - 0.06964914789069465, - 0.07564386694808388, - 0.07459594587221877, - 0.07611794318259028 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.094274355657919, - 0.7366678233847238, - 0.7177325435925528, - 0.5372797914243748, - 0.4348318485756986, - 0.34152217561831716, - 0.0909663460086166, - 0.09424930089311052, - 0.09614253068415068, - 0.08691359771816919, - 0.08667891265764897, - 0.08597163574730679, - 0.08407458162393017, - 0.08272546358439174, - 0.08512398452692346, - 0.07245816595299129, - 0.0768400192169109, - 0.0778924594291324, - 0.07067465457378408, - 0.05438870447254491, - 0.06434820503858518, - 0.06550860837518185, - 0.06173790194732931, - 0.06255620439401467, - 0.05891367282094627, - 0.05821742627708717, - 0.06089357507984607, - 0.05840561192754646, - 0.06031678010718226, - 0.06351909334411408, - 0.028027893697030657, - 0.07468982232247484 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.07372015277924865, - 0.07260381646173421, - 0.08220534423391702, - 0.08439033779871039, - 0.07788867410529164, - 0.08655262362860999, - 0.09126000074298922, - 0.10400071403385025, - 0.115013437374335, - 0.11480082243099761, - 0.10906751418139018, - 0.10749884018546557, - 0.11395186985539538, - 0.10306161497778044, - 0.1094987122677023, - 0.10444444051247019, - 0.11014375290275383, - 0.11364192797021594, - 0.11255790829602227, - 0.1062816103826069, - 0.09996649785349533, - 0.1112464050678379, - 0.11617065210617437, - 0.1294530107951063, - 0.12664339779361622, - 0.14382965718058, - 0.15360598578148477, - 0.1548493758991654, - 0.15229033872645517, - 0.14842877021214865, - 0.06255120672996718 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.02344057801329139, - 0.02419783652773231, - 0.026486607396747346, - 0.024543262992008544, - 0.026456799584113573, - 0.026428270837362405, - 0.028420676045124795, - 0.0314810267661501, - 0.04547095277600345, - 0.031802493056997505, - 0.030667056251077872, - 0.03341574130277271, - 0.03331794228372537, - 0.0219073202826712, - 0.04843042399856343, - 0.04422320579156663, - 0.023923867490222232, - 0.02441093364862157, - 0.026126046480174064, - 0.02134725134931661, - 0.021342234934017042, - 0.02387061517512977, - 0.02513380523894222, - 0.024474797734981724, - 0.025728778612666564, - 0.025078625736979627, - 0.02430077097699589, - 0.024285740060051474, - 0.02925296879891624, - 0.027621060372505165, - 0.013574293497668434, - 0.027794222688821105 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0573569248245415, - 0.06397703437936318, - 0.07555156453161187, - 0.07442377762178495, - 0.0922508146662485, - 0.11014337409875492, - 0.1366007571946452, - 0.1607758326316122, - 0.10021166576880416, - 0.06043895274732025, - 0.06715693292234474, - 0.06237864921724897, - 0.06612713882077968, - 0.06509714608502472, - 0.07097743180996456, - 0.08016083718588522, - 0.08667433139202997, - 0.08656034067421026, - 0.07187787784801263, - 0.08003496626442488, - 0.08528266337582538, - 0.08055011743829946, - 0.07798311799923505, - 0.08214538106285409, - 0.08566359437316247, - 0.0947878354982265, - 0.09787678215533242, - 0.10598030173989371, - 0.11065047293407228, - 0.10945433499453594, - 0.08797038180349946, - 0.1990475808822071 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.036385961919900706, - 0.032885372200142614, - 0.03242919999509985, - 0.03465539789321257, - 0.03767244284059798, - 0.04188350533240213, - 0.039670940197929765, - 0.048075614835596504, - 0.06963695814322496, - 0.05520221338973683, - 0.05513746395217932, - 0.054457686010308363, - 0.04779703036529366, - 0.0491766723627092, - 0.055356761830621125, - 0.05253978362648072, - 0.052698261373267725, - 0.05951907008549105, - 0.08577833836312315, - 0.07566853616678411, - 0.07161460166517594, - 0.07130829613816936, - 0.07970674073577892, - 0.07449384124030668, - 0.07461823114139089, - 0.065796739224831, - 0.06259094339085781, - 0.0546339788299188, - 0.05968366041991733, - 0.062352834017736815, - 0.05424282780901277, - 0.12878258630117867 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.04123962582363035, - 0.038084864801121915, - 0.035502492753569787, - 0.027375699378530616, - 0.030083500854143252, - 0.04029528279477143, - 0.039845621459935206, - 0.038508191026890994, - 0.02152964390359698, - 0.01900485403800822, - 0.018775186676581443, - 0.016247054127100084, - 0.01590392389276771, - 0.016860255980996934, - 0.017427162987349115, - 0.017888956338071083, - 0.016319657759882495, - 0.016552868848627608, - 0.016064447559855165, - 0.016659514796873432, - 0.014544064150068505, - 0.013308500121430249, - 0.01354084624451273, - 0.014096590486028173, - 0.015994898645717823, - 0.01939934718049171, - 0.022320445775512617, - 0.013367287622379417, - 0.012672954778505508, - 0.012203489664541328, - 0.0156964221239467 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.009484916661117119, - 0.009538563881118962, - 0.012194232205954092, - 0.010635473541717655, - 0.009168778885175536, - 0.007805459302172553, - 0.0053596640733510085, - 0.0067112597620739714, - 0.007964173343683134, - 0.010253307173434516, - 0.012556049487961811, - 0.014635051395158753, - 0.01628895557225043, - 0.016294644898396108, - 0.0166283304135296, - 0.01581945660931969, - 0.015223999407043522, - 0.015315658615201434, - 0.01607266800013727, - 0.014759151115957282, - 0.013190205675439238, - 0.013451949435963033, - 0.015031152681648216, - 0.014663533085941018, - 0.015884999405227872, - 0.01830176873614368, - 0.018109569928022803, - 0.016310062305973788, - 0.018042954235128708, - 0.01789043995369365, - 0.019355998878502142, - 0.02599316999313251 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.01601671072502302, - 0.01145899314920579, - 0.012422383747765102, - 0.012188219553182647, - 0.0123547234307023, - 0.014201740677261616, - 0.015578021447724607, - 0.015129367618393902, - 0.015704288493452127, - 0.01604144540189579, - 0.016676487607338114, - 0.016490906856265027, - 0.03431296154584426, - 0.03374027835423144, - 0.030866293448631014, - 0.03191578300773698, - 0.033484065408198586, - 0.034484885708861726, - 0.031178433575459723, - 0.031260465994653125, - 0.029817277265527915, - 0.026964799243128765, - 0.02572919297457751, - 0.024432111770548166, - 0.025060506880244207, - 0.02186726414954544, - 0.023751760792361215, - 0.02373123035674707, - 0.02881966663293807, - 0.03224619206214486, - 0.023719733889918885 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.02601249306194367, - 0.020703833669688438, - 0.01832270647239188, - 0.016035605239345253, - 0.01710791292823335, - 0.01394829520453319, - 0.02084367938193667, - 0.020724326324601472, - 0.024420156886168044, - 0.02517668978995086, - 0.022044704222203858, - 0.019605259981018, - 0.01972598988356032, - 0.024070994596513084, - 0.024878293990908726, - 0.02485618142269671, - 0.024453985586666144, - 0.026425796063939636, - 0.026161372844908087, - 0.027333869731873954, - 0.021234917462513686, - 0.0199241703112896, - 0.021014568722282825, - 0.024944108404155355, - 0.027413645512169828, - 0.03057594703953478, - 0.031151558728592384, - 0.03244106665466695, - 0.027933793294769898, - 0.028566289844291402, - 0.012606160820983725, - 0.024604862946035904 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.023128373626363975, - 0.021541982662011957, - 0.020214629952489228, - 0.020710892731315524, - 0.025111836399324402, - 0.019933410718322775, - 0.020739061587797564, - 0.01389737742879641, - 0.014124416973702038, - 0.01236005803392389, - 0.009057482044095462, - 0.010137997164019197, - 0.009871510212623376, - 0.009507223438524849, - 0.009141565853366711, - 0.008604219160242102, - 0.007875624126993918, - 0.007587990764945057, - 0.0064186683028134755, - 0.005894702619125965, - 0.0041124909511845295, - 0.005121931176918962, - 0.004736598966159225, - 0.004983755224961166, - 0.0037710477008033156, - 0.008745021229169033, - 0.0070850074146300976, - 0.007998786178519738, - 0.007998786178519738, - 0.007998786178519738, - 0.007998786178519738 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.032355092907570854, - 0.03131636558662294, - 0.03307657579700478, - 0.03697393738193418, - 0.018377590708108578, - 0.017485283289405365, - 0.021708658173837225, - 0.019379683563236706, - 0.01887080819578815, - 0.02145917221488879, - 0.01999832933589746, - 0.02174062993573166, - 0.018598580837740544, - 0.019663799677116827, - 0.020215834812724823, - 0.019795299331560757, - 0.022396528193877198, - 0.0218012622323488, - 0.022236767135506704, - 0.022741105702605617, - 0.020706653155771956, - 0.019206643822248824, - 0.020093087537775316, - 0.02145195458104118, - 0.02214412832040663, - 0.02842458687602122, - 0.030300275075237026, - 0.030076237117592042, - 0.031590372094066295, - 0.03241893822632366, - 0.02072703208027884, - 0.039480190790327524 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.053926014662367204, - 0.054452523639619166, - 0.04970811325528492, - 0.04956410492520206, - 0.048482307407329575, - 0.04423458002501404, - 0.04478827937982092, - 0.04472786740163675, - 0.04731198397995484, - 0.050289013681410394, - 0.051307713539345615, - 0.05735534820989689, - 0.06190281355404495, - 0.06589224761104805, - 0.05956597484093556, - 0.055805225849228576, - 0.04882714542635083, - 0.05043963543688221, - 0.0574773081393436, - 0.04719678306191508, - 0.04823449909037271, - 0.049758156582427854, - 0.0444679995874267, - 0.041897253754468254, - 0.039373453372709165, - 0.03749020643739024, - 0.03635706898394715, - 0.03383140120703633, - 0.03203714212756587, - 0.03199769848896159, - 0.023934128986420205 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.1020889134296991, - 0.09203371181007466, - 0.09435962711073306, - 0.1048642412794011, - 0.1108824126414718, - 0.09604792905077505, - 0.1116434840314226, - 0.11089560793105915, - 0.15202361079068122, - 0.2504266970040808, - 0.15172991568009966, - 0.14309210999084382, - 0.1350582537634298, - 0.1403665216150015, - 0.14755740070384116, - 0.15768189186645293, - 0.15625613165608118, - 0.15206367065879062, - 0.14850007394565062, - 0.13424747672539267, - 0.1325000402326464, - 0.13462001479846838, - 0.13081685734650764, - 0.135870628676731, - 0.1360012313200238, - 0.13587403200237277, - 0.14458000965928855, - 0.1415466187611834, - 0.15582846631131048, - 0.16120625073404507, - 0.129024121966877 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.02251832254931291, - 0.02426386326106517, - 0.02467744332454492, - 0.024532704318793497, - 0.02515727499425022, - 0.026223505510455908, - 0.027071683049011273, - 0.0273766842492458, - 0.026535454495482332, - 0.02801239814217333, - 0.02817569901583254, - 0.026067535030034387, - 0.0256398368255138, - 0.025196094888005838, - 0.027227720215302398, - 0.02783746376346845, - 0.029234626143064383, - 0.03284954629714031, - 0.03545922168558474, - 0.034737513083600166, - 0.03754222388681704, - 0.04009623600031369, - 0.04091336045735099, - 0.04155914609981939, - 0.042069328091592285, - 0.04104422981559867, - 0.04065947839989642, - 0.04164416245747991, - 0.040733245905762425, - 0.03983740254071578, - 0.032644681938602677, - 0.03400234997972208 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Exports-Commercial services=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.015928707116680575, - 0.01790421940241229, - 0.021334422062047755, - 0.02471604862109922, - 0.028979771520109627, - 0.025090208609346888, - 0.02381137847834874, - 0.05978032829773108, - 0.060602903948276936, - 0.06033561689261606, - 0.06474046696952265, - 0.06695258073255039, - 0.06922783453444736, - 0.03452400262131079, - 0.040290007986495555, - 0.034109901473754735, - 0.03397086533238762, - 0.03795897171082451, - 0.03540194190125977, - 0.027956151028570995, - 0.029140708439610006, - 0.026523767679354184, - 0.02350915955707316, - 0.021501508448611192, - 0.020818352618790687, - 0.01955736783888417, - 0.018444495252734814, - 0.01716954753790507, - 0.016683162907283337, - 0.017000936052623303, - 0.015805633844158496 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Exports-Commercial services" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0009409195078243292, - 0.0011172077185017022, - 0.00109684323701867, - 0.001275512796349287, - 0.0015886087289224142, - 0.0016056974258554515, - 0.001839627559358377, - 0.0025791260229967063, - 0.0034327966362526162, - 0.004132221466887187, - 0.007054993353846135, - 0.007792203892469025, - 0.010273350520765603, - 0.011140290238481104, - 0.012982731275481321, - 0.015057620181436679, - 0.01724043717565103, - 0.01960282104031985, - 0.019439483619881046, - 0.02222843554716897, - 0.02466593927403171, - 0.02829903602478311, - 0.03450469501407389, - 0.03464776873520287, - 0.03675047064311952, - 0.050151809685597674, - 0.013531218721974018, - 0.012721014653719753, - 0.011804860239739114, - 0.012074948610587267, - 0.012206524577109067, - 0.01616875034288446 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0015072728670603786, - 0.001656061115411217, - 0.0015226913225044087, - 0.001493783397351765, - 0.0015516691288085856, - 0.00145837714535248, - 0.0015140049318595227, - 0.0018501121229724871, - 0.0017789797440039762, - 0.0019368426710990008, - 0.002225330800833056, - 0.0025194944352312345, - 0.002536949644248099, - 0.0022298184450474483, - 0.0020687541778426446, - 0.0022053349025129066, - 0.0026006920058359944, - 0.0031211107725861633, - 0.0034713124511361534, - 0.00468882936587807, - 0.005852892380412449, - 0.006843602738281782, - 0.009062211240756363, - 0.009230845052025656, - 0.002473055376406263, - 0.0028956179150522532, - 0.0028560696189545765, - 0.0027215981691714633, - 0.0025306583513053445, - 0.0025882353116126688, - 0.002685211086428579, - 0.0033762744653625647 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.007443300842045651, - 0.006830057235555437, - 0.007178503065913531, - 0.010424819049882949, - 0.010050928490631928, - 0.00918049405985926, - 0.007756805494077483, - 0.011102154773017122, - 0.011439794231515102, - 0.011150347229888894, - 0.017334038936927136, - 0.01757868361257659, - 0.01793148518898252, - 0.015526240599862903, - 0.020910471755646413, - 0.021490594745631714, - 0.022094410296034036, - 0.02293931929796239, - 0.02383012065635225, - 0.03196063459264379, - 0.03167124293227628, - 0.030700541255745485, - 0.03507433620769958, - 0.0363419906486852, - 0.03776350315323097, - 0.053711734106409205, - 0.017121923815483973, - 0.016319212603570867, - 0.015895066378352994, - 0.016537438724089856, - 0.016313142585330877 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0005525218744365898, - 0.0006116570931190842, - 0.0008256619605159407, - 0.0013341012301231804, - 0.0016317551355616528, - 0.0015099271238168408, - 0.0016123644768220975, - 0.0017806196822330767, - 0.002135609895844814, - 0.00253890994942273, - 0.002938402913063265, - 0.00334142753692351, - 0.003553658798860159, - 0.0035929327682405142, - 0.0038376186786312277, - 0.004721731625485121, - 0.0049733907262165715, - 0.004704166650563289, - 0.005684473889633907, - 0.008251716181154955, - 0.008919718184429852, - 0.010785858148682648, - 0.013180549091062912, - 0.0033755971956183494, - 0.003065200843004305, - 0.0032005907232037912, - 0.0034753202718947993, - 0.0035060111172024056, - 0.003262138211619914, - 0.0032872019883484825, - 0.003428787840248604 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0010474159004523677, - 0.000977188242969828, - 0.001087307946237334, - 0.0013407592196081866, - 0.0015530682835324114, - 0.0021086576289438726, - 0.002270502633875917, - 0.0037588297372455055, - 0.004680120433170926, - 0.0070640206600931146, - 0.010425104379420042, - 0.013401716397473791, - 0.016871798723816, - 0.01685966161588538, - 0.017853139402784334, - 0.02068967030700473, - 0.02077913459201161, - 0.021013531742788697, - 0.023763629833757422, - 0.03196102271942825, - 0.03900687726043013, - 0.03844573275122151, - 0.05013571242307814, - 0.055006019898436585, - 0.05185153319734699, - 0.057668116629065506, - 0.019889700216143624, - 0.018683074567348565, - 0.01725712196632745, - 0.017603343745462966, - 0.019135827667770788 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.00023855542853350737, - 0.00021686857139409762, - 0.00013012114283645856, - 0.00041205028564878546, - 0.00013012114283645856, - 0.000396177644198604, - 0.00037382919404540393, - 0.00004150898320162975, - 0.0003489335495374081, - 0.0003801107873605036, - 0.00004578800498625078, - 0, - 0, - 0, - 0.00014299730220390617, - 0.0005242436788864046, - 0.0005898453608434217, - 0.0007102428338946971, - 0.0008621829373279515, - 0.0012522984292028855, - 0.002846455945661148, - 0.00038068154180764075, - 0.0004204691771060614, - 0.00040835445386719035, - 0.0004122664082062169, - 0.00047938772764394776, - 0.00045984408134526906, - 0.0004277837584853207, - 0.00038632032125417864, - 0.00038633067718304526, - 0.000420385116177893 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0008336143745851238, - 0.0009707496075026399, - 0.0011766320781100648, - 0.0006351146893060479, - 0.00046027471995127816, - 0.0004778879035530041, - 0.0008302472580267976, - 0.0010730570513335738, - 0.0012823023440832941, - 0.0011586122188783283, - 0.0013122791031994051, - 0.0023990928260324384, - 0.0024513736527565447, - 0.002658069508187432, - 0.004409859274175822, - 0.0053765489182558855, - 0.006525990737130303, - 0.00717434846754717, - 0.008350682459389644, - 0.01433355099214664, - 0.01660573662398986, - 0.020454238202051934, - 0.0036960047064984606, - 0.0035364451867078883, - 0.0033965405496607357, - 0.0038562149888008586, - 0.003898491493732887, - 0.003499552493731208, - 0.003136718783242396, - 0.0030848910269810083, - 0.003088284004636227 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.000020430868213521716, - 0.00001902167124531583, - 0.00007743622570181918, - 0.00044113973939692824, - 0.0003258954781074934, - 0.00025570147452170925, - 0.00026052091002227236, - 0.00025147110570686044, - 0.0004846699836568867, - 0.0011431466842290593, - 0.0034570577607318373, - 0.006125774464753985, - 0.005027037192106896, - 0.005564061964306625, - 0.00517090629154548, - 0.005603621317705881, - 0.006631408133175916, - 0.006280910090455471, - 0.00685007158319045, - 0.00848453932769937, - 0.010305428327808064, - 0.014600916079228662, - 0.02374918999719182, - 0.0051453382237387855, - 0.005220719510736434, - 0.006281882222738229, - 0.006364342041521719, - 0.006151089710672147, - 0.005797048214710451, - 0.005992180876726294, - 0.006509701893402438 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0067642502405111755, - 0.006939242810940888, - 0.00669475364535732, - 0.007054322772886645, - 0.005836826998589364, - 0.007621196005294189, - 0.006634325417955691, - 0.008054876609071383, - 0.008558603583733905, - 0.007590014148499111, - 0.008104835700865875, - 0.008997068692552327, - 0.007780037021719578, - 0.007999279190059706, - 0.009984821676542235, - 0.01245206015068595, - 0.015317589552106974, - 0.016023204498224898, - 0.01468341992394819, - 0.015633760861841, - 0.01686826382189155, - 0.015351463829159034, - 0.018084922219998533, - 0.01934489655196428, - 0.020185961405445256, - 0.02666955354923994, - 0.009813859854158788, - 0.009309978392466233, - 0.008534631193206646, - 0.00872941273248256, - 0.008966223622876187, - 0.012365548619555302 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.002264941540318993, - 0.0025374020413899243, - 0.002410714888670443, - 0.002870879685732171, - 0.0030543592036580604, - 0.002911773434441828, - 0.003853579978237217, - 0.004618380906445264, - 0.005059265778161018, - 0.005406559844893762, - 0.006778778603323857, - 0.007379742877968424, - 0.00815427310589721, - 0.006706083026363557, - 0.00791639988221967, - 0.010734689605109501, - 0.010824910353317896, - 0.008810231216436589, - 0.009905764464851396, - 0.012321021641069694, - 0.01308974575242538, - 0.013548434736788436, - 0.014792770334707538, - 0.013758976181694456, - 0.012997552224120447, - 0.017767089585395, - 0.00731747953673593, - 0.006880387373545015, - 0.006276885664506878, - 0.006303429777576789, - 0.006278108548893204 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.0002645773732119637, - 0.0013722155248456342, - 0.0022857819905213266, - 0.0023958828186856703, - 0.004583473053892217, - 0.0066385328662682905, - 0.0061606685236768825, - 0.005734175165938144, - 0.0063708512352309565, - 0.005607481853713003, - 0.005990049894454043, - 0.007781402287419194, - 0.00740286631172051, - 0.0053633486594613896, - 0.005457052246828634, - 0.005533460093896721, - 0.0048517369777814155, - 0.001773937317941526, - 0.002501682110396807, - 0.0023616342383446978, - 0.00194578687128996, - 0.0016145831307889387 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.00007644306084711703, - 0.00009079767597616605, - 0.00009445350609331226, - 0.00008113808822805837, - 0.00007710799099826195, - 0.00006487377383246007, - 0.00005581547365551567, - 0.0000738308596325764, - 0.0003606576562783588, - 0.000592360031229964, - 0.00005537227943330984, - 0.000056202972983625156, - 0.00004937260613372252, - 0.000046708621899796553, - 0.0000484000695247835, - 0.00004552569877240127, - 0.000040880215681778815, - 0.00003887100221539949, - 0.00003649798141462173, - 0.000035676205465311596, - 0.00006719310842402622 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0005309395354706481, - 0.0007931861532360124, - 0.0007383607349035257, - 0.0007437431097170961, - 0.0009947190191491448, - 0.0018172598747450558, - 0.0014326998454154529, - 0.0019859388249984355, - 0.0011994170589323023, - 0.0009165884069872589, - 0.0010025411353537825, - 0.0016654180292711436, - 0.0011779238769997345, - 0.0007279259752059993, - 0.0005551804858211486, - 0.00036934017427962265, - 0.0004990505213316414, - 0.0008894272614321724, - 0.0014939085466187062, - 0.0033622242875922482, - 0.005039945039718907, - 0.0006677636013840473, - 0.0006360697094486601, - 0.00058478301024422, - 0.0005965106449810221, - 0.0006480208670287704, - 0.000644014915171692, - 0.0006520345456179654, - 0.0007194803523379545, - 0.0007359947186242139, - 0.0007779588680102067, - 0.0011064229593504235 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.0016470542253753842, - 0.005220531836493201, - 0.004593146992137237, - 0.003899042920325188, - 0.0033374691025504707, - 0.0033042992020713546, - 0.0026660518535119035, - 0.0035298004725649763, - 0.0032213688648862755, - 0.004208948099021621, - 0.007069545157935519, - 0.006826445321597831, - 0.007408439627730779, - 0.0017509229149066598, - 0.0016991402319752706, - 0.0018486245607395166, - 0.0018104780982813233, - 0.0017053138778737923, - 0.0015838226366638693, - 0.0015603803543550352, - 0.0016303627964470821 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.005953212860181963, - 0.006064606778968251, - 0.0057916415489919935, - 0.006107503714591935, - 0.00893816903712354, - 0.007271183410306754, - 0.007164948103598621, - 0.007945075118258848, - 0.007531963616843893, - 0.0075839902756404025, - 0.00881396492563607, - 0.009526992846179614, - 0.009990861797662719, - 0.006500377168287084, - 0.004465695740835509, - 0.004995897611687538, - 0.0047016910381419245, - 0.002858323152843532, - 0.0025513244636629928, - 0.003282573539304056, - 0.004776285406715497, - 0.004490778142189969, - 0.0027744949830460245, - 0.0033300440525096836, - 0.0033337955787184114, - 0.003938167033824525, - 0.002830027841863322, - 0.0025663538784605586, - 0.002330982183086787, - 0.002312027855759231, - 0.002186499855682218, - 0.0042384722217639155 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0.0003675642086744635, - 0.0008640246332091389, - 0.0015099762187962054, - 0.0013001879110934918, - 0.002023019330825166, - 0.002266860302687738, - 0.0020063811876603805, - 0.0013450394639443386, - 0.0010711215675273144, - 0.0009623756502011018, - 0.0009280563046814414, - 0.0008586642731581663, - 0.0009458070323870313, - 0.0009461625937392077, - 0.0007667148442904767, - 0.0007136597979513551, - 0.0007642716008434499, - 0.0009553837924272983, - 0.0005317653052129781, - 0.0005846628474645281, - 0.000626444408889795, - 0.0005314168652417826, - 0.0005007095975256008, - 0.0005225322692739326, - 0.000604302001769023, - 0.0007667102959462232 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.0011936578904896001, - 0.0031761618908115663, - 0.0027782644170226576, - 0.0025417990181882157, - 0.002144869603708253, - 0.0019914522829755, - 0.0021223632216999353, - 0.0020160918032357486, - 0.001978753305799501, - 0.0023594986167418276, - 0.0007381484172070993, - 0.0006914405122116857, - 0.0006244083776806619, - 0.0006291753235785313, - 0.0006116979929295455, - 0.0011268884541731764 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0000996949874169183, - 0.00014438811068549073, - 0.00030533457984821094, - 0.00035446261977128924, - 0.0006111057776964448, - 0.0014710700772087007, - 0.002351761077804926, - 0.0024983903905665544, - 0.0026794732195695014, - 0.005276574251092092, - 0.006327993247159554, - 0.008204910340724781, - 0.010055580505111347, - 0.011291769078024863, - 0.012052482408927196, - 0.013438868034462887, - 0.016328464271428703, - 0.01582759845958389, - 0.019400355082242898, - 0.022739626385984358, - 0.02032984496873843, - 0.02330983883252551, - 0.028534099214087207, - 0.03181897782077777, - 0.0328233530089029, - 0.007380989706276217, - 0.006765981202648631, - 0.005855824409307245, - 0.00574821082896782, - 0.005409001163856058, - 0.005836514511813937 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.0008675546689773862, - 0.0009793335782547468, - 0.0010204816409455156, - 0.000564913025425622, - 0.0006791513565770436, - 0.0009057052988004617, - 0.0010550434730995613, - 0.0009241432308124138, - 0.0008468536679238285, - 0.0007840835215914454, - 0.0009366537027691358, - 0.0002222147078298383, - 0.0002038404324232538, - 0.00018602299606846953, - 0.00017415687163023865, - 0.000168224098809101, - 0.00048108900374964055 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.000011717413853331426, - 0.000010179702727736951, - 0.000008972402465514296, - 0.000007758594801904491, - 0.000006817399412863345, - 0.0017072431948490356, - 0.004709478843203682, - 0.002297233833866556, - 0.002823825957082695, - 0.006852501865412229, - 0.00404296992792642, - 0.004106520952942757, - 0.005122826799464353, - 0.0075715449773424036, - 0.007414872851000283, - 0.008092181154917943, - 0.0066378606211619125, - 0.006841800618996652, - 0.008971010934560245, - 0.010958061252137587, - 0.010002790340062994, - 0.011841352063950995, - 0.013195551486719382, - 0.0031415035761450457, - 0.0032417146134655164, - 0.0032905307341941493, - 0.0031944518407598477, - 0.002893520582424725, - 0.002606493104026726, - 0.00242617305014153, - 0.00263230333248954 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.01059913595858232, - 0.008994872614312966, - 0.008466966209989421, - 0.006923757017343308, - 0.01096148170803338, - 0.01095818418284495, - 0.010366377814664058, - 0.01209739102762835, - 0.027471160870663834, - 0.019521240161417545, - 0.029541692531259964, - 0.03763860941808458, - 0.03193795604943906, - 0.026872827831865228, - 0.02599315223844034, - 0.02317847982462918, - 0.018350359498370987, - 0.01632745653565121, - 0.016376971865028293, - 0.017350529142257945, - 0.012524265841829318, - 0.010726014948352385, - 0.010543977848543901, - 0.0105016400272613, - 0.012333652912073155, - 0.012988261594780604, - 0.006089072928363294, - 0.0055870072035437545, - 0.005444137215625393, - 0.005070425834137335, - 0.005361055774821765, - 0.011642224709947285 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.11675311898181609, - 0.11119220161677429, - 0.09433601704932917, - 0.09134926311081987, - 0.0863868941607187, - 0.07247984555356232, - 0.06903467766337783, - 0.0769024917881677, - 0.11966333404730345, - 0.12370368342448043, - 0.13895114827463606, - 0.13230913165275518, - 0.12148415350716152, - 0.11284577635847384, - 0.10822926796233955, - 0.09235713587504414, - 0.08240316798072395, - 0.0658672591711799, - 0.05938073012474049, - 0.05903689175587228, - 0.04804943693247757, - 0.04322915505737488, - 0.04005031909112855, - 0.03470907116814671, - 0.03576671998740402, - 0.040069031298091515, - 0.028542920936533135, - 0.027686661146000997, - 0.026220976675808444, - 0.02413475753481054, - 0.02515852565143828, - 0.053869010752210116 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0000035289858902392397, - 0.000003024359424301523, - 0.000005625479208822636, - 0.000007640078900620054, - 0.000006470852906387066, - 0.00044477121610439463, - 0.0006653888176633678, - 0.00014392162535253577, - 0.00016695756803650249, - 0.00019697991218237132, - 0.00017529301706601126, - 0.00019537732455868038, - 0.0003204483949041552, - 0.0003144934526759537, - 0.0003794874989982818, - 0.0004053904863534074, - 0.0005222096178257499, - 0.0007896886201771916, - 0.0012469696891354407, - 0.001985291729515061, - 0.0021886830717901154, - 0.0022988725048907845, - 0.002443626777206255, - 0.00048803789217501277, - 0.00045071197749302534, - 0.0004564143888096913, - 0.000445966821187473, - 0.0004119708007558107, - 0.00038786079979449915, - 0.00040510518950369405, - 0.00040845089099028007, - 0.0007154600010587008 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.03193814398959765, - 0.022133674151985243, - 0.02180045258124657, - 0.016417830798869288, - 0.015041305193828075, - 0.023547943303655797, - 0.01813246354537453, - 0.013980438649519132, - 0.01412339966940066, - 0.012091973488744516, - 0.010734464755758144, - 0.01070692816180485, - 0.010236931355104815, - 0.012015033069894916, - 0.011660095342606237, - 0.011853312655717924, - 0.009315275652667427, - 0.009535513869460813, - 0.007254125526230148, - 0.008831777192410446, - 0.008145197057300631, - 0.0074791001846681564, - 0.008723742694780469, - 0.006547137840455386, - 0.006343518483859618, - 0.007120219457458317, - 0.00773669621788563, - 0.007199810760365493, - 0.006825833239882643, - 0.006572972669015847, - 0.007769653745192785 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.009876495789328376, - 0.011672190012421889, - 0.014927422183150697, - 0.013451145245256384, - 0.010255632267661572, - 0.0072712305306166965, - 0.007941898014789976, - 0.008359313925565966, - 0.008695037965597938, - 0.013954991400390988, - 0.0119704351015697, - 0.01609868275467528, - 0.02016495756459877, - 0.021415760966230317, - 0.01873180938189137, - 0.015347107289691261, - 0.013506355386646064, - 0.013363259329481658, - 0.012179104480096537, - 0.014301171562573085, - 0.015244213629441202, - 0.013355087348733904, - 0.0163420970381464, - 0.018997343970118697, - 0.006073860276027412, - 0.008277420564553562, - 0.008307469293724674, - 0.007229251503713126, - 0.007782046192540937, - 0.007944122820985977, - 0.010325550806025569, - 0.011933061132123158 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0007569735192479961, - 0.00052709260115942, - 0.0004458263756630803, - 0.00045196935399920406, - 0.0004661280298321939, - 0.0004534325717668465, - 0.001333824484497965, - 0.0015741363591352834, - 0.0016658401579537595, - 0.0020139459585289377, - 0.00249117050707459, - 0.002500960655460105, - 0.00962915925523066, - 0.008731298889759345, - 0.007573276286000432, - 0.006853275177016289, - 0.007430428075765304, - 0.005870681372956335, - 0.004475076845009716, - 0.004210507543133078, - 0.005240453956059791, - 0.004064785463073476, - 0.005040455740839611, - 0.005329467420008558, - 0.005166061873997845, - 0.004627159825989538, - 0.002108608474361051, - 0.0018265429245036583, - 0.002240036508682885, - 0.002601308290464786, - 0.0030199112602985346 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0051494891651009305, - 0.0038728690268193563, - 0.0036979058586162675, - 0.003129299447428376, - 0.002651392284360765, - 0.0026635257726815415, - 0.0024795296668289023, - 0.002665633775539848, - 0.0022882277686885723, - 0.0027895489788589355, - 0.0030727755504363612, - 0.003152018057602436, - 0.0034138070797286833, - 0.0033542745562477666, - 0.002306469826924342, - 0.0045884462151394405, - 0.003937132541659346, - 0.0040911812269896234, - 0.0038241203337501086, - 0.003815499130358335, - 0.0045685952435794, - 0.003935684463977307, - 0.0037840840255760795, - 0.0013635079318254314, - 0.001366129880970426, - 0.0014451880248328806, - 0.0014294431782144936, - 0.0012999762003272663, - 0.0012324147857255214, - 0.001200609461806012, - 0.001357845762467622, - 0.002500416503397938 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.010486607954646582, - 0.01020267307405454, - 0.005820025757378059, - 0.005854307083023606, - 0.005434283664743838, - 0.0051563509723912436, - 0.005104975732188539, - 0.004528428902668864, - 0.005404101879082843, - 0.005302475559579205, - 0.004965632152533677, - 0.005050312228858849, - 0.005012096209079459, - 0.005230270383153722, - 0.004432808777886819, - 0.003790709136638262, - 0.003669132567268681, - 0.0028179011164370994, - 0.002440263597199897, - 0.002577476671637689, - 0.0017508263036348083, - 0.0014979292480516316, - 0.0013526378628431475, - 0.0013130098090475906, - 0.0013164688193941035, - 0.001709551702038377, - 0.0017739669572428124, - 0.0016086835344441437, - 0.0015012714016539024, - 0.0015512549686593942, - 0.0018483888343863984, - 0.002657224039876616 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.029081453838752096, - 0.02730291084347471, - 0.03792071139879273, - 0.03549856086563952, - 0.03132870256864959, - 0.02558305145341543, - 0.022270752523665144, - 0.020517381519157343, - 0.014231877584492188, - 0.013435533043893945, - 0.01208565032542668, - 0.029233618243368946, - 0.02797661607764774, - 0.023980923186849034, - 0.020542202699717443, - 0.014613936866147752, - 0.009290124360741333, - 0.015581261568189833, - 0.017373781592790967, - 0.025250958087779826, - 0.011801175521557345, - 0.0074789158784944925, - 0.0070625750336792215, - 0.00677685920867937, - 0.007240959440956624, - 0.007734415171304517, - 0.007533023083160956, - 0.00680987470272335, - 0.006339888747967879, - 0.006752574897511481, - 0.007458572217447303 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0.0013896076069768182, - 0.05663212368358561, - 0.05061116232511646, - 0.0462486843232833, - 0.04188764103014648, - 0.046581625771267426, - 0.050100667531459905, - 0.050057526157684905, - 0.06376769743592325, - 0.07832882698881206, - 0.07429813764910348, - 0.08643558109682488, - 0.07376202324485497, - 0.07984699104310355, - 0.07100570760844205, - 0.06880752021236106, - 0.05798837182441901, - 0.04580909313580126, - 0.053178147237347324, - 0.04461130630469032, - 0.042887927006425644, - 0.04469460450231761, - 0.04294433909527625, - 0.047235094647192714, - 0.046720595430710166, - 0.02076701598847517, - 0.02019426338166926, - 0.019578239197611595, - 0.01907323497930154, - 0.01975971341310391 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.016113815128395357, - 0.010057762674344757, - 0.01072722272978027, - 0.010538365274688167, - 0.010112201663291817, - 0.009192317705725673, - 0.008911422371667367, - 0.008155354810124525, - 0.0076647239800827684, - 0.007620969692283328, - 0.007526082716480729, - 0.006820564936658311, - 0.0074158643336126135, - 0.00714105938669217, - 0.007112405961723592, - 0.007192037085156257, - 0.007480485473176118, - 0.007763430481201075, - 0.009128622530980122, - 0.010596353359455066, - 0.011900371700180186, - 0.013332984953616749, - 0.014466314359884902, - 0.0060735725897551876, - 0.005816343235790154, - 0.005589555869765422, - 0.005438441631404014, - 0.005216400173453534, - 0.004945890151618467, - 0.004756353812418579, - 0.004865358375375781, - 0.007856528419476656 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Renewable electricity=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0001884398197519623, - 0.0001956317679459385, - 0.00030685213989111284, - 0.000321542481151491, - 0.0008948749307603866, - 0.004199862265562983, - 0.0018987047554087583, - 0.003056351828599315, - 0.002783168175165806, - 0.002770573648272445, - 0.0026202238843833522, - 0.002489182213327122, - 0.0023576212739804506, - 0.0021923907630954213, - 0.002012941943299248, - 0.003252017024764784, - 0.004031783691250205, - 0.004407180139791107, - 0.006486941292361335, - 0.009410778971683742, - 0.011541499694822476, - 0.013318280917156486, - 0.0016773351295880558, - 0.0014953815688182933, - 0.0013661552377429672, - 0.0012937974430508581, - 0.001274019120253618, - 0.001162545343516025, - 0.0010299817928553778, - 0.0010022039048525155, - 0.0009720621387824505 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Renewable electricity" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.2705712328021275e-12, - 1.862012874374987e-12, - 1.595067198659794e-12, - 1.6173231438787789e-12, - 1.4784083474555872e-12, - 1.225929904255005e-12, - 1.1772975902868879e-12, - 1.3291201849586491e-12, - 1.2416308288536524e-12, - 1.3075496292250275e-12, - 1.3552487225679997e-12, - 1.3464960629548782e-12, - 1.197988240279147e-12, - 9.71362661853804e-13, - 8.385583351084698e-13, - 8.324948820024033e-13, - 7.580048820432411e-13, - 6.597426004702216e-13, - 4.779369136888399e-13, - 4.924864567148373e-13, - 4.853415285020804e-13, - 4.400803827090015e-13, - 4.4228426782890107e-13, - 3.8834384328565546e-13, - 3.6769496866925484e-13, - 4.139879371310098e-13, - 3.7753754053058894e-13, - 3.468036537111358e-13, - 3.1428439242875907e-13, - 3.111878460642692e-13, - 5.85229387994639e-13, - 7.751942666423907e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.9951468334464854e-12, - 4.750736856986246e-12, - 4.088576057635098e-12, - 4.127559416257058e-12, - 3.723145107398882e-12, - 3.0541601910318105e-12, - 3.0018527484405902e-12, - 3.1936458346635903e-12, - 2.933919371580692e-12, - 2.839630872113295e-12, - 3.0315463041576653e-12, - 2.9542906320630984e-12, - 2.75074883724744e-12, - 2.3040915126310853e-12, - 1.8257875556444477e-12, - 1.6568460839000634e-12, - 1.6073871137319854e-12, - 1.2967042767640214e-12, - 9.350566407017366e-13, - 1.0848286761714992e-12, - 1.1001109242577197e-12, - 1.0156509871374505e-12, - 1.0880615754276512e-12, - 1.0953537546610183e-12, - 9.979115342710147e-13, - 1.1110251950965763e-12, - 1.1565067249577635e-12, - 1.005721767110881e-12, - 8.957501346716182e-13, - 9.271235869289962e-13, - 1.4452167756062367e-12, - 1.8171563945398376e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 9.813605152645049e-12, - 1.400289332530932e-11, - 1.325965527759672e-11, - 1.7421657239973422e-11, - 1.576188131919937e-11, - 1.3056203894238308e-11, - 1.1139910674216447e-11, - 1.2120256302420439e-11, - 1.1262547404980348e-11, - 1.0909534791788533e-11, - 1.1071566021565075e-11, - 1.0932530685229252e-11, - 9.443540717705318e-12, - 7.627030011423906e-12, - 6.465550089529033e-12, - 5.915076328771342e-12, - 5.270703399825996e-12, - 4.580128531406103e-12, - 4.0949868739828024e-12, - 4.993849308025082e-12, - 4.235471383644854e-12, - 3.466330632154133e-12, - 3.728616502265016e-12, - 3.4591944472770782e-12, - 3.4022722375064445e-12, - 4.038773886035196e-12, - 3.665243602484279e-12, - 3.3825076186294307e-12, - 3.1145616873626765e-12, - 3.165508255747164e-12, - 4.747893428233571e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.329888224591144e-12, - 1.8900992469759256e-12, - 1.7886515914509777e-12, - 1.9314318207186515e-12, - 1.8237778385143432e-12, - 1.5225531391173544e-12, - 1.3717760936678125e-12, - 1.1862248666130633e-12, - 1.0402857779533759e-12, - 9.19465023490785e-13, - 9.265234181052948e-13, - 8.455460091979229e-13, - 7.791144605015994e-13, - 6.076533568259563e-13, - 5.285293521468494e-13, - 5.42276100254203e-13, - 4.96860623027252e-13, - 4.4105586734895383e-13, - 3.6748665418147667e-13, - 4.57581309842819e-13, - 4.897415139603784e-13, - 4.560932809947216e-13, - 4.3763544008264365e-13, - 3.7812691912780133e-13, - 4.0814136736104935e-13, - 3.8558144359299107e-13, - 4.150060350177296e-13, - 4.2978613660550304e-13, - 3.6886486796513266e-13, - 3.6475126543096714e-13, - 5.267740265658222e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.124599994978106e-11, - 1.770720585831391e-11, - 1.5786570241984475e-11, - 1.862588751384478e-11, - 1.7886671911715363e-11, - 1.4627184877756156e-11, - 1.3009870623500654e-11, - 1.3625334059542786e-11, - 1.243510229218565e-11, - 1.1355984220455372e-11, - 1.1180498380065621e-11, - 1.0448687758566163e-11, - 8.479638249856372e-12, - 6.292069834630753e-12, - 5.1260192951786554e-12, - 4.593852391008229e-12, - 3.816251859434296e-12, - 3.0664803731065903e-12, - 2.4818253528783663e-12, - 2.7690748177827837e-12, - 2.9533616428799265e-12, - 2.7689409351193187e-12, - 3.1855202117906357e-12, - 3.1730979736633904e-12, - 3.0921306454131773e-12, - 3.4459684677170847e-12, - 3.4227880767977364e-12, - 3.314186457272661e-12, - 2.9556770739673895e-12, - 2.8929410373869757e-12, - 4.708708713084129e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.219675669293411e-10, - 4.849181388738102e-10, - 4.896892325532976e-10, - 4.875205385664754e-10, - 4.608457142124574e-10, - 9.046055873357488e-10, - 8.261624934884263e-10, - 7.376146504942664e-10, - 6.672384520089559e-10, - 7.116518791139149e-10, - 7.564178633329495e-10, - 6.879027110480107e-10, - 5.743401106449874e-10, - 4.821963483832488e-10, - 4.044440200353056e-10, - 3.778923018653579e-10, - 2.8017654640062535e-10, - 2.0398835510547977e-10, - 1.8119975399060608e-10, - 2.1114702145330707e-10, - 2.358255652655312e-10, - 2.3096439369164034e-10, - 2.1418949665452334e-10, - 1.8322581262304796e-10, - 1.632085233499389e-10, - 1.8399944285317702e-10, - 1.4532893952825312e-10, - 1.2416741285173113e-10, - 1.0024438225800344e-10, - 9.944381225990188e-11, - 2.595319053150144e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.540929769095045e-10, - 2.9906105021196645e-10, - 2.6638525347240535e-10, - 2.5508704734423235e-10, - 2.1398261154217122e-10, - 1.607952181210771e-10, - 1.3720928083738312e-10, - 1.322181973340781e-10, - 1.1597966868135361e-10, - 1.1439090630017518e-10, - 1.0840819007456541e-10, - 1.005733277078286e-10, - 9.860750562773838e-11, - 8.355244745588512e-11, - 6.902899956426746e-11, - 5.6770604913188256e-11, - 4.5818316358532907e-11, - 3.437999996631603e-11, - 2.6180214584278736e-11, - 3.022257530364063e-11, - 2.719689584718388e-11, - 2.4436813998465778e-11, - 2.5234513922609448e-11, - 2.303191062983231e-11, - 2.1180617304132177e-11, - 2.4130833614697447e-11, - 2.2385358040699188e-11, - 1.9410879298626245e-11, - 1.6376928048848014e-11, - 1.5319433043266255e-11, - 2.80988908714154e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.5558810608918766e-10, - 2.0885794156613816e-10, - 1.8576090274645637e-10, - 1.955719574431927e-10, - 1.784706506676311e-10, - 1.4925660578606918e-10, - 1.390359008983472e-10, - 1.3858852154432109e-10, - 1.238677958828943e-10, - 1.222395524844982e-10, - 1.3337650491789617e-10, - 1.1642639527497794e-10, - 9.853510184632289e-11, - 7.42698488790087e-11, - 5.133556198607899e-11, - 4.905690019313082e-11, - 4.284460038125616e-11, - 3.5528063327840924e-11, - 3.1300163982168735e-11, - 3.531451743713443e-11, - 4.173328129771762e-11, - 4.3640203085256787e-11, - 5.3712503473119986e-11, - 5.7302465138118515e-11, - 5.763232518132109e-11, - 6.592276731759751e-11, - 6.404410347262407e-11, - 6.044702558693683e-11, - 5.786386438326445e-11, - 5.654560571869947e-11, - 8.06559872136031e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.385439513906494e-11, - 4.476559745027462e-11, - 3.9061272596836916e-11, - 3.8922211966258983e-11, - 3.5374708145250033e-11, - 3.045159490569492e-11, - 3.131705001051673e-11, - 3.2379287491866864e-11, - 2.973519020317136e-11, - 2.8675432559076727e-11, - 3.0665576945661816e-11, - 2.941641451261261e-11, - 2.68663159627182e-11, - 2.097046498824041e-11, - 1.6254361185144097e-11, - 1.667234673694378e-11, - 1.558224922289312e-11, - 1.4209160397207469e-11, - 1.2151316929496848e-11, - 1.3241778453861977e-11, - 1.3281495414164748e-11, - 1.1443523795754255e-11, - 1.143131184293766e-11, - 1.0646434118252564e-11, - 1.0935757363161886e-11, - 1.1859535012619215e-11, - 1.0989361846016628e-11, - 9.418562090863647e-12, - 8.106894213713482e-12, - 8.224499862414404e-12, - 1.3007287040746943e-11, - 1.7938682669089276e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 9.876960577621056e-12, - 1.2977086252595883e-11, - 1.1488778593918521e-11, - 1.154008758498178e-11, - 1.0524087436722186e-11, - 8.46779956853569e-12, - 8.390859566523543e-12, - 8.900879656669698e-12, - 7.967887009941722e-12, - 7.180412622404986e-12, - 7.856676192565313e-12, - 7.229135615295736e-12, - 6.204338353501307e-12, - 5.240743481832511e-12, - 5.027491012503274e-12, - 5.3987157877905515e-12, - 4.973055232467489e-12, - 3.936085006247992e-12, - 3.330286786438522e-12, - 3.591432217040156e-12, - 3.6111270513361335e-12, - 3.0709048659313505e-12, - 3.25417109556014e-12, - 2.3940549067362797e-12, - 2.5667811398256804e-12, - 3.030410722837469e-12, - 2.8824308730530454e-12, - 2.7222480198870344e-12, - 2.2974837047294966e-12, - 2.285226148967294e-12, - 3.4404825167673688e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.4242615839801097e-10, - 7.734252879294045e-8, - 5.67484042507888e-8, - 3.028262513955532e-8, - 7.781829468075428e-9, - 2.3910290414426737e-9, - 2.925137246664704e-9, - 1.4500461297951017e-9, - 1.4371352309945963e-9, - 7.903669679930308e-10, - 5.936202571972379e-10, - 7.79236658611352e-10, - 8.42736176843391e-10, - 1.2471734826745708e-9, - 7.305905864528176e-10, - 5.23272080166663e-10, - 3.9192420934187966e-10, - 2.807387129080317e-10, - 1.847821626311609e-10, - 2.1279343395356262e-10, - 1.666224805368455e-10, - 1.2150762028199882e-10, - 1.0041169813831427e-10, - 9.082087714284908e-11, - 9.114961751517127e-11, - 1.2226117968513404e-10, - 1.1860567256461617e-10, - 1.0303515656752622e-10, - 8.277349338839381e-11, - 7.771254544266544e-11, - 1.5408546554211538e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.3688955460409584e-10, - 6.421136764730996e-10, - 5.689134581922188e-10, - 5.96652567891946e-10, - 5.613977224933653e-10, - 4.915265747286012e-10, - 4.271834064355424e-10, - 3.266122047044586e-10, - 3.217787092164946e-10, - 2.3642127736020436e-10, - 1.4639729686078893e-10, - 1.3057017326355025e-10, - 1.260087425271332e-10, - 1.1047943281069493e-10, - 8.665766327307994e-11, - 6.422564866740795e-11, - 4.878277749814418e-11, - 2.9481098365210495e-11, - 1.3620190024204045e-11, - 1.605344084016116e-11, - 1.1668583170996251e-11, - 8.106081578291213e-12, - 7.2256849374988396e-12, - 6.944177340545214e-12, - 6.352297213107687e-12, - 7.604800030308565e-12, - 8.040482998329995e-12, - 7.759198080868787e-12, - 6.599941871115668e-12, - 6.6337333309142345e-12, - 1.7170775910495755e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.0264959702096754e-10, - 1.6410561876499372e-10, - 1.543165132181254e-10, - 1.4813437394600758e-10, - 1.3708771993859977e-10, - 1.2168472518593712e-10, - 1.0860222585817082e-10, - 1.0096524798055937e-10, - 1.0465899623692777e-10, - 9.378833209788778e-11, - 7.5715919583894e-11, - 7.01760223714587e-11, - 6.07378509302991e-11, - 4.913694480892135e-11, - 3.8085737164011183e-11, - 2.8734762565919778e-11, - 2.1520235141734632e-11, - 1.7021036288827317e-11, - 1.2806101538136337e-11, - 1.4514054040778899e-11, - 1.1663726006709267e-11, - 8.783285658341079e-12, - 7.448131155051047e-12, - 6.43412297666337e-12, - 5.581227824529331e-12, - 5.6124077951480835e-12, - 5.069387934134403e-12, - 4.201184827492951e-12, - 3.4579536193644584e-12, - 3.331611091676858e-12, - 1.450246796097499e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.455221900673734e-11, - 5.944490877587301e-11, - 5.587656643253962e-11, - 5.602855824580522e-11, - 5.3634222956115756e-11, - 4.925247938759707e-11, - 4.329948330480463e-11, - 4.024979900762812e-11, - 4.4012795886585554e-11, - 3.870960862040593e-11, - 3.2292970310264237e-11, - 3.274727418890336e-11, - 2.4577290843627458e-11, - 2.080556301789862e-11, - 1.6657502690672686e-11, - 1.2634731426465807e-11, - 1.055982644153144e-11, - 1.0313377957185307e-11, - 8.253226007299349e-12, - 9.461710135593699e-12, - 7.875694997682586e-12, - 6.346474569625442e-12, - 5.924115712446598e-12, - 5.95997713763611e-12, - 6.954449412797973e-12, - 9.323369266691417e-12, - 7.706196155812297e-12, - 5.17001315707812e-12, - 3.2039796986761104e-12, - 3.0392192584280742e-12, - 7.4854389973127e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.3907133106657651e-9, - 1.4400544343515347e-9, - 9.278396679572006e-8, - 2.6318471143200127e-8, - 3.5363758312151004e-8, - 1.791627060277627e-8, - 1.3647809297843234e-8, - 1.0832261197627287e-8, - 9.513381215380288e-9, - 9.235104005613572e-9, - 7.777653398212826e-9, - 6.999291841095181e-9, - 6.444984192146223e-9, - 5.481839837763055e-9, - 4.555105261270389e-9, - 2.968506904490863e-9, - 1.8848603620141567e-9, - 1.1664023675648035e-9, - 8.103989347878331e-10, - 8.606619142858872e-10, - 7.225573444624721e-10, - 5.743603710205172e-10, - 5.4029671357125e-10, - 5.002397443014679e-10, - 4.884091259546449e-10, - 6.850764366562389e-10, - 9.596615028743712e-10, - 8.895020511539634e-10, - 7.696398784723372e-10, - 7.472874199291306e-10, - 9.263616635039315e-10, - 1.3907133106657651e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.437643065880152e-9, - 9.243941992007579e-9, - 8.461163391193367e-9, - 1.0196952725720399e-8, - 1.3113830697132136e-8, - 1.232510111731866e-8, - 8.695599340461657e-9, - 7.017562181742558e-9, - 7.2045816568301615e-9, - 5.661486440008513e-9, - 4.2310562217139135e-9, - 3.895935105586141e-9, - 3.362435680439701e-9, - 2.842595880142761e-9, - 2.2367524468317214e-9, - 1.7854642332977124e-9, - 1.511910191515886e-9, - 1.280338006246127e-9, - 9.858476913275495e-10, - 1.0067538106416517e-9, - 7.800885235257845e-10, - 7.904929119302553e-10, - 7.629654402923122e-10, - 6.93302908447124e-10, - 6.766356054119878e-10, - 6.943085928956278e-10, - 9.343059346507183e-10, - 1.0767459382158803e-9, - 1.310275610402359e-9, - 1.5112380908286007e-9, - 1.9941836495794e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.750645260554814e-10, - 8.729017275098366e-10, - 7.773679728774809e-10, - 7.548162039595494e-10, - 6.726601652119625e-10, - 5.774273933652433e-10, - 4.778186461940237e-10, - 4.4704162421627035e-10, - 4.893935595227363e-10, - 4.2517835938657915e-10, - 3.275671108142681e-10, - 3.4443757094920173e-10, - 3.480159424355745e-10, - 3.3882309304058915e-10, - 3.0851592834245496e-10, - 2.5513165020497193e-10, - 2.2060534808780114e-10, - 2.0030709986642076e-10, - 1.4136664778283816e-10, - 1.4032299210436246e-10, - 7.923869694552931e-11, - 6.567951522159503e-11, - 5.754566765960335e-11, - 5.4038416309131365e-11, - 5.0485930790964766e-11, - 5.806065450064268e-11, - 5.94978682219922e-11, - 5.342785856284782e-11, - 4.5243006726458403e-11, - 4.530957440671947e-11, - 9.084127027335188e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.8175372517793703e-10, - 5.44234161574539e-10, - 5.15175284011372e-10, - 4.917350026214326e-10, - 5.725947550525047e-10, - 5.77765946115759e-10, - 5.085043911618191e-10, - 4.886087109284724e-10, - 4.810351488472119e-10, - 4.697716570746838e-10, - 4.0773571848761356e-10, - 3.965679600492248e-10, - 3.8266143653169927e-10, - 3.2005266754584694e-10, - 2.3554895564500326e-10, - 1.7965426389244667e-10, - 1.4577793699971726e-10, - 1.1579743620630927e-10, - 8.380082616056427e-11, - 9.496320510843974e-11, - 7.36319141929442e-11, - 5.3846488213366595e-11, - 5.1133890394111035e-11, - 5.0487473425997415e-11, - 4.9062244737321933e-11, - 6.25379273878069e-11, - 6.423628233049322e-11, - 5.973061827071674e-11, - 5.648590980857937e-11, - 5.588953533665371e-11, - 1.2056073672449848e-10, - 1.5724713272048887e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.874838097121905e-10, - 7.902919912348042e-10, - 7.059278780670806e-10, - 7.576435763565531e-10, - 6.778683487374448e-10, - 5.650004690768676e-10, - 4.838110032285303e-10, - 4.0006843608499e-10, - 3.512957460513603e-10, - 3.1639045054332864e-10, - 2.9677915948589077e-10, - 2.95186516299432e-10, - 3.232092954263619e-10, - 3.720335433868593e-10, - 4.0402390177216086e-10, - 3.4530994096506264e-10, - 2.907115061807646e-10, - 2.434876494453756e-10, - 1.9463428580381528e-10, - 1.5839531275709525e-10, - 1.2914205518267587e-10, - 1.2390372596469738e-10, - 9.698453345013735e-11, - 9.693721462849321e-11, - 9.015187543770514e-11, - 7.839289567314358e-11, - 7.691573688374446e-11, - 1.0626397370879839e-10, - 8.673957661885624e-11, - 9.74898487544296e-11, - 8.089553257069468e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.138845696562876e-10, - 9.135798765734035e-10, - 8.585833815080981e-10, - 9.423613174248783e-10, - 1.0025195250650377e-9, - 1.1168907572178338e-9, - 1.0113103721881747e-9, - 9.088352409485204e-10, - 1.0110170807761335e-9, - 7.521531674639861e-10, - 6.934898718974125e-10, - 7.637041927492875e-10, - 1.245978801374748e-9, - 9.476263896118366e-10, - 7.342483476920377e-10, - 4.994280049314725e-10, - 4.1901727058890163e-10, - 3.3192015821672016e-10, - 2.49711946354605e-10, - 3.3429416268969617e-10, - 2.749639192535691e-10, - 5.890592681982457e-10, - 2.4452308400348946e-10, - 2.9968151179768185e-10, - 4.671542908560129e-10, - 6.734398195610344e-10, - 6.958773846313953e-10, - 4.640574098120118e-10, - 3.223850927643539e-10, - 3.150247046845608e-10, - 9.254036819330091e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 9.168269866849745e-12, - 1.619243760382271e-11, - 1.623870166714133e-11, - 1.9292133155235925e-11, - 1.5313419297746986e-11, - 3.111155765552103e-11, - 2.6864967642968204e-11, - 2.4400128471895473e-11, - 2.275880157379839e-11, - 2.125184140044035e-11, - 1.7741785196075197e-11, - 1.689391673881998e-11, - 1.7169014463919274e-11, - 1.542740629550059e-11, - 1.364595137785372e-11, - 1.219708227930315e-11, - 1.0574425103756775e-11, - 8.539767309604543e-12, - 6.644777630971612e-12, - 6.491837927660449e-12, - 5.3695944870544684e-12, - 4.49877056841046e-12, - 4.2953813676461844e-12, - 4.2152874544592205e-12, - 3.5697639033307184e-12, - 3.3991130158509484e-12, - 3.197247375310892e-12, - 2.814703374811e-12, - 2.569309466054912e-12, - 2.3119377499086348e-12, - 4.86789623523652e-12, - 9.168269866849745e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.654746285381383e-10, - 1.9836319413318993e-10, - 1.8660962996382416e-10, - 1.6279093545715945e-10, - 2.2503604770303278e-10, - 1.718136658366273e-10, - 1.5875416069721138e-10, - 1.4860300380643145e-10, - 1.0222221792864406e-10, - 1.0850846469219124e-10, - 9.952498992829102e-11, - 1.3452215564859607e-10, - 1.1184033768033895e-10, - 8.36320175498491e-11, - 6.23905476668203e-11, - 4.898201091096489e-11, - 4.319120603135816e-11, - 3.446163645425725e-11, - 3.003392081402901e-11, - 3.5347251472934404e-11, - 3.050222198327662e-11, - 2.880433078204937e-11, - 2.675581043301853e-11, - 2.3930263511959777e-11, - 2.2461197200057074e-11, - 2.3614030074878276e-11, - 2.242170615225369e-11, - 2.2561214749549997e-11, - 2.3674586411859067e-11, - 2.3797497098580294e-11, - 3.4631483181157495e-11, - 4.925333418461395e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.4029907761358813e-9, - 1.4535987631586176e-9, - 1.3918276388498326e-9, - 1.4815763625568619e-9, - 1.3099600991897651e-9, - 1.1959943347836448e-9, - 1.072716425510629e-9, - 1.1801416226672946e-9, - 1.0960091674364354e-9, - 1.0962713569542656e-9, - 1.169151155647575e-9, - 1.1363526618686655e-9, - 1.0507415897786635e-9, - 8.431920697130201e-10, - 7.686241963868169e-10, - 7.29512263095228e-10, - 6.322768006037643e-10, - 5.407300291113978e-10, - 4.538022264204702e-10, - 4.445768626046552e-10, - 4.3522222291348996e-10, - 3.924219458960965e-10, - 3.991195209383329e-10, - 3.5946424451291894e-10, - 3.4129336446439137e-10, - 3.62621745625562e-10, - 3.4807303286914174e-10, - 3.193757067376688e-10, - 2.8917097758071396e-10, - 2.773828163628575e-10, - 3.690772703412808e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.607310676431584e-9, - 6.741361741680718e-9, - 6.2858616474778524e-9, - 6.615105362232292e-9, - 9.66116747800585e-9, - 7.644226829574197e-9, - 7.340260896193973e-9, - 7.920246505947154e-9, - 7.27987349981373e-9, - 7.095581116733152e-9, - 7.703072691804792e-9, - 7.011559576566156e-9, - 6.436969311853478e-9, - 5.037221888082357e-9, - 4.292029795358572e-9, - 3.845932829839343e-9, - 3.557897745191259e-9, - 2.9083438625364846e-9, - 2.3638317912008107e-9, - 2.4198140977141027e-9, - 2.368913417184871e-9, - 2.0994388671286055e-9, - 2.0604871579515794e-9, - 1.8759249049672545e-9, - 1.7350889854849865e-9, - 1.8751302064052954e-9, - 1.7063796164442717e-9, - 1.5059606756302726e-9, - 1.3336678755852065e-9, - 1.2915010869724179e-9, - 1.6816691223863433e-9, - 3.2598711785456197e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.682148330741405e-11, - 9.286494655001952e-11, - 8.532446242330503e-11, - 7.737948627252635e-11, - 7.341415984886373e-11, - 6.480906989327723e-11, - 6.70804669146342e-11, - 6.35590709788126e-11, - 6.889675016671404e-11, - 6.784736740534761e-11, - 6.543512238589706e-11, - 6.881803690312332e-11, - 6.747328270679259e-11, - 4.131555357845119e-11, - 2.95926658761021e-11, - 2.4301715993006735e-11, - 2.1391368724926844e-11, - 1.8043959714032303e-11, - 1.7619215159713395e-11, - 1.5314491278362782e-11, - 1.1620521630278712e-11, - 1.0039250772221201e-11, - 1.1118770402905314e-11, - 1.2422483823787073e-11, - 1.2198357508506174e-11, - 1.6180679888198537e-11, - 1.7213379478162238e-11, - 1.384196255690347e-11, - 1.2745709090219345e-11, - 1.3610543020257335e-11, - 2.3018515955065696e-11, - 2.920482329776714e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.3384299419808582e-8, - 2.5675553888462163e-8, - 2.5994039561152902e-8, - 2.633126010556794e-8, - 2.6612276034810016e-8, - 2.6757468610689982e-8, - 2.6593541163085714e-8, - 2.583947954941076e-8, - 2.5394537959220087e-8, - 2.4949594582373742e-8, - 5.9439360140663045e-8, - 5.676600475184967e-8, - 5.481122046741208e-8, - 6.939839551793062e-8, - 5.7235228709685505e-8, - 5.34035830402274e-8, - 4.4602323366766846e-8, - 3.5768390830554694e-8, - 2.8088064624702376e-8, - 2.7126696314747002e-8, - 2.3678679366011513e-8, - 1.9366137876025436e-8, - 1.6320308385504228e-8, - 1.4037525225172802e-8, - 1.3708856758479556e-8, - 1.3606746147111487e-8, - 1.2870688975095011e-8, - 1.2746618067715123e-8, - 1.2498703903445523e-8, - 1.2838909467426178e-8, - 1.5596689191668916e-8 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.435954754092334e-9, - 2.323714960527101e-8, - 3.2023294934638563e-8, - 3.090618685938002e-8, - 3.01192555131666e-8, - 2.9021463072413714e-8, - 2.173304373617563e-8, - 1.7944291139362965e-8, - 1.5762145092495434e-8, - 1.378921972169884e-8, - 1.4535558065518617e-8, - 1.5100298529909564e-8, - 1.4259283205607479e-8, - 1.276614434746302e-8, - 1.048076793011951e-8, - 9.308048413915307e-9, - 8.593326126662749e-9, - 7.48839112355949e-9, - 6.184198346677683e-9, - 6.46692579441679e-9, - 6.879100963848871e-9, - 5.25882011737085e-9, - 4.577756297987773e-9, - 4.360704537220067e-9, - 4.127323075603405e-9, - 4.521355577891306e-9, - 5.9948062206413835e-9, - 5.3755612834900445e-9, - 4.7548574854000185e-9, - 4.5642744424135785e-9, - 5.608883918175808e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.800207507851488e-9, - 5.745683423545021e-9, - 5.6429150310210976e-9, - 4.221405561622897e-9, - 7.664185990649888e-9, - 6.268883885510458e-9, - 6.122482205713983e-9, - 6.269082276629085e-9, - 5.9567305925714526e-9, - 5.7851463134322845e-9, - 6.2905886112912075e-9, - 6.015436906092613e-9, - 5.234652640036919e-9, - 4.009939559986864e-9, - 3.343210395563099e-9, - 3.1794194274815075e-9, - 2.916236282677987e-9, - 2.500391733460292e-9, - 2.101738990799608e-9, - 2.028427211023895e-9, - 1.9994547153212527e-9, - 1.738113489970527e-9, - 1.7045230130288426e-9, - 1.467003257370753e-9, - 1.3084506402340205e-9, - 1.4461243406342811e-9, - 1.3517934084431684e-9, - 1.244094282769285e-9, - 1.1049726321646211e-9, - 1.096267463080137e-9, - 1.44866723499641e-9, - 2.6687783839834534e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.176125541032845e-10, - 1.0295523809948847e-9, - 1.0547144699584187e-9, - 1.8146306516595784e-9, - 1.486121091664433e-9, - 1.1388377702861449e-9, - 9.775663925235635e-10, - 9.120817599976961e-10, - 9.050610351563758e-10, - 8.288332986446715e-10, - 7.019564086269188e-10, - 6.501386479906659e-10, - 4.937840740857602e-10, - 4.4198968648643496e-10, - 3.340519428729569e-10, - 2.5520330272340746e-10, - 1.8779861184860254e-10, - 1.5840323390900086e-10, - 1.265184386377482e-10, - 1.4291100645577737e-10, - 1.1442590360308166e-10, - 1.0019912023020766e-10, - 8.665174338875581e-11, - 7.523202269597413e-11, - 6.861463210513509e-11, - 7.588280317470084e-11, - 9.032496887778631e-11, - 9.59423498544696e-11, - 8.945329802453934e-11, - 7.803706095203339e-11, - 1.0219981666690233e-10, - 1.9287987603026226e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.93170967732711e-9, - 8.659076619448673e-9, - 8.877591544350657e-9, - 9.500095606533696e-9, - 1.0375493103672282e-8, - 8.698964357815922e-9, - 8.07067406279817e-9, - 8.076840427359813e-9, - 7.392090554815208e-9, - 7.118470637906912e-9, - 1.1043493724275447e-8, - 1.036706152159349e-8, - 8.93886602137152e-9, - 7.219216913128501e-9, - 6.198368978952625e-9, - 5.1150917092255595e-9, - 2.6872603001772745e-9, - 2.172560636503043e-9, - 1.835159808417131e-9, - 1.9774947936944624e-9, - 1.5563430147010773e-9, - 1.2293670995084675e-9, - 1.1351808741133934e-9, - 7.22346425622824e-10, - 7.376396354923032e-10, - 7.120510778464086e-10, - 9.365305413549646e-10, - 8.707755249746042e-10, - 7.8158933125487e-10, - 7.697145882264258e-10, - 7.67527337400283e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.7169604818633793e-9, - 2.245337581356446e-9, - 2.1728933116585228e-9, - 2.0538785480647683e-9, - 1.9906031054656185e-9, - 1.7403910390109516e-9, - 1.3917335695906007e-9, - 1.344407283994623e-9, - 1.299001151393e-9, - 1.2666136262758921e-9, - 1.21435742607835e-9, - 1.1555567494226375e-9, - 1.0945821271804491e-9, - 9.506485470800865e-10, - 8.339919109314911e-10, - 7.368639042709769e-10, - 6.694599731009924e-10, - 6.010408689969825e-10, - 5.202371841244014e-10, - 4.638077977324739e-10, - 4.1039538495233094e-10, - 3.6186835472776636e-10, - 3.431422979445348e-10, - 3.000857588917063e-10, - 2.56065499988511e-10, - 2.2278190202387197e-10, - 1.9266970903242907e-10, - 1.625879960467056e-10, - 1.437386766399649e-10, - 4.0568986230571216e-10, - 5.746719164865056e-10, - 5.746719164865056e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.6964584571718917e-10, - 2.3442705447542346e-10, - 2.1855711019469047e-10, - 2.2434977475537655e-10, - 1.8999278721829815e-10, - 1.7142129339484353e-10, - 1.561477689770883e-10, - 1.4696979596040333e-10, - 1.441077211364937e-10, - 1.3096627325620206e-10, - 1.273497998815178e-10, - 1.2174496324808813e-10, - 1.1380011631053048e-10, - 9.504700713988e-11, - 8.006785263441951e-11, - 6.82609170004464e-11, - 5.857955070465735e-11, - 4.447145925373789e-11, - 4.4632742933400644e-11, - 3.912402127758336e-11, - 3.074691390270568e-11, - 2.7020652353580798e-11, - 2.571625432525597e-11, - 2.5044135287770042e-11, - 2.250472351443678e-11, - 2.1515621085244603e-11, - 1.9417831875295244e-11, - 1.6568149550700425e-11, - 1.6041543377571343e-11, - 1.4840598389262485e-11, - 2.0469074577848495e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.556723427483995e-9, - 7.3730648866527486e-9, - 7.0751055677349494e-9, - 5.218135263660874e-9, - 4.164202036993632e-9, - 3.2296233642088206e-9, - 2.689245734171006e-9, - 2.43185543369638e-9, - 2.3804095526255154e-9, - 2.2657499117674837e-9, - 2.0931898782056237e-9, - 1.9577669451141272e-9, - 1.7693307737181825e-9, - 1.5088801014554736e-9, - 1.2745484442714662e-9, - 9.513604817714027e-10, - 7.784948337724526e-10, - 6.365738483555686e-10, - 4.90465548085742e-10, - 4.485228678762087e-10, - 4.2016099309878633e-10, - 3.564276338064442e-10, - 3.04004610114532e-10, - 2.73387733506834e-10, - 2.4886596239855637e-10, - 2.277983227881957e-10, - 2.0396911388414417e-10, - 1.7946207850790179e-10, - 1.5782153653804859e-10, - 1.4210378865215364e-10, - 2.0422338934969193e-10, - 5.840401441895129e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.081236307044613e-10, - 6.141414842039628e-10, - 5.465090328053957e-10, - 4.4045543045572105e-10, - 3.8170620456899725e-10, - 3.0706747573266057e-10, - 2.734994400907903e-10, - 3.3526295660834917e-10, - 4.5102043025630777e-10, - 3.830453843855161e-10, - 3.860205606359675e-10, - 3.8272111018849505e-10, - 3.2650573741235254e-10, - 2.73442435589968e-10, - 2.2724677153223062e-10, - 2.0431172946590335e-10, - 1.793845702492961e-10, - 1.5033705954259614e-10, - 1.3641839504543601e-10, - 1.3840454376857352e-10, - 1.1213561855434042e-10, - 1.1059299209002824e-10, - 1.0599705139085567e-10, - 9.932596256274999e-11, - 8.209368941150425e-11, - 8.043928569719798e-11, - 7.538111138996969e-11, - 6.893726127232061e-11, - 6.344117071444668e-11, - 5.7747728202766604e-11, - 8.644548219429479e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.893627111900498e-10, - 4.759822342449168e-10, - 4.3115917089594e-10, - 3.297961447894753e-10, - 2.70164631698015e-10, - 2.1758055771795125e-10, - 1.9096652767556578e-10, - 1.9972282805610002e-10, - 4.705300650304142e-10, - 3.2299689130220994e-10, - 2.7438929266744935e-10, - 2.728004556150275e-10, - 2.2661689488005655e-10, - 1.9755298518706373e-10, - 1.6870631127718745e-10, - 1.539168596866411e-10, - 1.1536863164452426e-10, - 9.546136166301194e-11, - 8.055212047192282e-11, - 7.496570359343494e-11, - 5.1821353047281367e-11, - 4.164757581951194e-11, - 3.9144981123780664e-11, - 3.833323211377759e-11, - 3.848162435333935e-11, - 3.838048251342986e-11, - 3.414612364031519e-11, - 3.031649537870966e-11, - 2.8428291744664133e-11, - 2.546709195420464e-11, - 3.904602284471745e-11, - 8.479347932227937e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 7.01216444847435e-10, - 8.672528234877994e-10, - 7.49226585088901e-10, - 7.365003892860842e-10, - 6.163267517228482e-10, - 5.128524994980592e-10, - 4.52624059019431e-10, - 4.1984486962446135e-10, - 5.086429946169644e-10, - 4.535256827527379e-10, - 4.435297778497161e-10, - 4.692019712307372e-10, - 4.388706971065198e-10, - 4.1843239343808064e-10, - 3.7862350716992375e-10, - 3.2945458948165374e-10, - 2.726926885229137e-10, - 2.1938657672203067e-10, - 1.8736450381628908e-10, - 1.9184573747105455e-10, - 1.5798915060287795e-10, - 1.395287704165435e-10, - 1.2278534374256436e-10, - 1.0936844259082952e-10, - 1.0225785946857264e-10, - 9.525328161824757e-11, - 8.442479687689368e-11, - 7.744743477849752e-11, - 7.00318713428879e-11, - 6.066504356540222e-11, - 9.797589782919999e-11, - 2.0978433977973925e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.073259979255267e-11, - 4.418589015071371e-11, - 3.946273589880831e-11, - 3.4329420027669186e-11, - 2.7091305073166498e-11, - 2.077364054424144e-11, - 1.8257220830574064e-11, - 1.8902877694254954e-11, - 3.1356719441029285e-11, - 2.2793390144947364e-11, - 1.8397089581868255e-11, - 1.8186524860350556e-11, - 1.4874544776156686e-11, - 1.253704728525727e-11, - 1.0590348328314197e-11, - 8.514269886114886e-12, - 7.263461138488683e-12, - 6.225407211570892e-12, - 6.817276733490533e-12, - 7.426304951066063e-12, - 5.768892997238691e-12, - 5.082893992734888e-12, - 4.794952760539449e-12, - 4.931444339022567e-12, - 3.75930164428174e-12, - 3.5680826041556065e-12, - 3.2930883739679273e-12, - 3.029740465096365e-12, - 2.898810162888633e-12, - 3.112467294411975e-12, - 5.3169565164970534e-12, - 9.313407802096272e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.186617024082301e-11, - 6.734947211696719e-11, - 5.7605844342922793e-11, - 4.141902530237275e-11, - 3.882054918489183e-11, - 5.668280684449623e-11, - 4.883501581079949e-11, - 3.9467361825043296e-11, - 3.6714001416350935e-11, - 3.060478963023213e-11, - 2.45936346571654e-11, - 2.3073680066974532e-11, - 2.1810466293268845e-11, - 2.217084168171568e-11, - 1.9827659404956295e-11, - 1.6957724610478463e-11, - 1.4609583760787016e-11, - 1.3099694749562998e-11, - 1.2378500132894303e-11, - 1.5343671749043835e-11, - 1.3159371362471406e-11, - 1.159688281682543e-11, - 1.1422957826100265e-11, - 1.0710560386904994e-11, - 1.0468687473155566e-11, - 1.1460339215135864e-11, - 1.2146605407963156e-11, - 1.132095289319395e-11, - 1.0479314836963431e-11, - 9.831153256358108e-12, - 1.505030228021088e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.75605314934423e-11, - 5.732478237555039e-11, - 6.017893205087288e-11, - 5.2430683791323063e-11, - 3.557493922785693e-11, - 2.3578855450014244e-11, - 2.010755982862038e-11, - 1.907821249283645e-11, - 1.875627452416438e-11, - 2.783327126258303e-11, - 2.515835739039888e-11, - 2.932228198114247e-11, - 3.242478233355983e-11, - 2.987995813068119e-11, - 2.560925272175387e-11, - 1.8639939786208253e-11, - 1.4102223903324333e-11, - 1.0507372846006112e-11, - 8.166970160515947e-12, - 8.056406814166443e-12, - 5.731520023243142e-12, - 4.58305888132411e-12, - 4.652713217448551e-12, - 4.517111216033533e-12, - 4.210022759206379e-12, - 5.659711405692581e-12, - 5.646844333821989e-12, - 4.584411290923528e-12, - 4.830631434145072e-12, - 4.835383188286651e-12, - 1.0158181165720358e-11, - 1.1739634923009157e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.096093065969215e-12, - 1.7921148627923303e-12, - 1.748338754142786e-12, - 1.900805644035021e-12, - 1.7479800655650675e-12, - 2.4028050996374363e-12, - 2.7925801528873607e-12, - 2.7316900348663656e-12, - 2.5422459922854774e-12, - 2.6100175630786323e-12, - 2.3574636741749572e-12, - 3.088984080792563e-12, - 1.0028242565130373e-11, - 1.0972906855918023e-11, - 9.109795051323695e-12, - 6.4406696259229595e-12, - 4.515016854886063e-12, - 3.895238842242107e-12, - 3.3189693618046795e-12, - 3.6939546065354925e-12, - 2.9979173082172016e-12, - 1.20717523815304e-12, - 1.1355677991843485e-12, - 1.123137262344728e-12, - 1.0449923105123469e-12, - 4.371589791530689e-13, - 2.3317072505136367e-13, - 9.322145189218409e-14, - 1.9054161517245538e-13, - 1.3276322850293738e-13, - 1.8504159438539234e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.2153786732679642e-9, - 1.0803265788381127e-9, - 1.0320771543011007e-9, - 1.0579328427780153e-9, - 8.065580060227867e-10, - 6.705707491082049e-10, - 6.430488031800098e-10, - 6.038090547495348e-10, - 6.320553883107507e-10, - 6.987820131234287e-10, - 6.725319925210285e-10, - 6.661521060703697e-10, - 6.245258666956399e-10, - 6.126233350169011e-10, - 5.12964880338693e-10, - 4.577928246729873e-10, - 3.7318152345901496e-10, - 2.8804656640869407e-10, - 2.398992632186772e-10, - 2.360478024824658e-10, - 1.8796312168118647e-10, - 1.64646685419672e-10, - 1.4243520944132572e-10, - 1.3624921551362277e-10, - 1.3959903226151586e-10, - 1.4888941511947253e-10, - 1.4789264741735457e-10, - 1.3122774745133238e-10, - 1.2485696378876167e-10, - 1.1979643136410027e-10, - 1.5889276440020332e-10, - 2.92594417833419e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.9929028947518357e-10, - 2.363634272948654e-10, - 1.950273017546558e-10, - 1.8763004064519361e-10, - 2.379376389715095e-10, - 1.7465957358166932e-10, - 1.9179733270333173e-10, - 1.2604326868267719e-10, - 1.0938211033679133e-10, - 1.0400411740643904e-10, - 9.057481751009685e-11, - 7.85165880942586e-11, - 1.0732710954834535e-10, - 1.287959758301565e-10, - 9.337202476687788e-11, - 7.071678500851924e-11, - 5.1341439361346145e-11, - 3.837405006862117e-11, - 2.6966004377812608e-11, - 2.53799692631117e-11, - 2.1058394544003918e-11, - 2.5246285583754148e-11, - 2.0089893332243647e-11, - 2.0080570835794936e-11, - 1.519614038437613e-11, - 4.1814093243716114e-11, - 4.22134102608226e-11, - 4.2498634370077564e-11, - 4.3012041574910925e-11, - 4.483748729866593e-11, - 5.5249209422498523e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.182983377813379e-10, - 4.829634303131786e-10, - 4.038070838370998e-10, - 3.5170992658969586e-10, - 2.826072311895071e-10, - 2.4689949055809803e-10, - 2.3281160352090908e-10, - 2.0907652396397184e-10, - 2.2530635587830556e-10, - 2.5932238682566523e-10, - 2.2455469898532488e-10, - 2.2604220833417162e-10, - 2.238600232070937e-10, - 2.277016621547128e-10, - 1.7961844247153758e-10, - 1.4187690250820678e-10, - 1.238100227838853e-10, - 9.394620824485945e-11, - 7.85756648567006e-11, - 8.012123170116573e-11, - 6.413944722026417e-11, - 5.317308647334106e-11, - 4.693717747122738e-11, - 4.344229210044761e-11, - 4.2585891933387655e-11, - 5.455194513747696e-11, - 5.6607441595255365e-11, - 5.300052250262719e-11, - 5.000026436156258e-11, - 4.875863671637731e-11, - 7.373003552162188e-11, - 1.0599351132417346e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.853472246610299e-10, - 5.045620253320678e-10, - 3.9204316509751587e-10, - 3.3571494585318844e-10, - 2.845193360312339e-10, - 2.1389555045719692e-10, - 1.9746392001808545e-10, - 1.6974219338588637e-10, - 1.7700973845661818e-10, - 1.9195519398375167e-10, - 1.8545885826548413e-10, - 1.9160347916219625e-10, - 1.9358499079869018e-10, - 1.7979082937659449e-10, - 1.3466330766222692e-10, - 1.0702248576994685e-10, - 8.301676048638878e-11, - 7.09077029362567e-11, - 6.524214191182639e-11, - 6.485314016249938e-11, - 4.8550007069449716e-11, - 4.0673614294713666e-11, - 3.7361159262600225e-11, - 3.405363890448004e-11, - 3.6078684831099345e-11, - 3.84553768244578e-11, - 3.785335360140475e-11, - 3.3389322050684306e-11, - 3.098413082268496e-11, - 3.2141968530969824e-11, - 5.044810471165196e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.5120903509165003e-9, - 2.4873975634791843e-9, - 2.0726189595539066e-9, - 1.8418288571787228e-9, - 1.6525560738020765e-9, - 1.5183190229158838e-9, - 1.498489799627169e-9, - 1.358742738781962e-9, - 1.2393804347522688e-9, - 1.158200989287523e-9, - 1.0823498627280579e-9, - 9.79583678067381e-10, - 9.596581172794558e-10, - 8.806282389074128e-10, - 7.995445732564888e-10, - 7.609536479471126e-10, - 6.180790666389948e-10, - 4.935893012540166e-10, - 4.022499501629226e-10, - 3.850943555991034e-10, - 3.0192294498748265e-10, - 2.5512937682438663e-10, - 2.1765065009430525e-10, - 1.943093878707813e-10, - 2.145476797131326e-10, - 2.1810032209206832e-10, - 2.074871566783694e-10, - 2.0787875705980377e-10, - 1.9865374592839577e-10, - 1.868185410297383e-10, - 2.3199670328714793e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.5894694576170863e-13, - 3.134068720463488e-13, - 2.9293008872429253e-13, - 2.7556808736279587e-13, - 2.5524080931441083e-13, - 2.395366710235297e-13, - 2.2296206502469305e-13, - 2.0518668803401803e-13, - 1.8978644283415693e-13, - 1.744427915157736e-13, - 1.5898800922727374e-13, - 1.4458758220341515e-13, - 1.408139130595745e-13, - 1.3091011292577063e-13, - 1.203563638032123e-13, - 1.081566984856036e-13, - 1.0061810238731988e-13, - 8.926187230024276e-14, - 9.107688667997442e-14, - 9.34325061584857e-14, - 9.471684651477414e-14, - 9.329210109835306e-14, - 8.520092418904971e-14, - 7.864235400855788e-14, - 7.702330207750478e-14, - 7.895472781428203e-14, - 7.628669904702689e-14, - 7.317205499516854e-14, - 6.646658490250661e-14, - 6.345288837920263e-14, - 7.369520904314356e-14, - 1.1900223160478114e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Employment-agriculture=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.1791822282829556e-10, - 1.5572288927503643e-10, - 1.3702939071473362e-10, - 1.2681815683621663e-10, - 9.622120407436347e-11, - 7.106412105887473e-11, - 5.846621350496481e-11, - 5.1892467135327863e-11, - 4.839447381280314e-11, - 4.5795359799039795e-11, - 4.1284622577206254e-11, - 3.733773194675455e-11, - 3.400768270971252e-11, - 2.95731821765556e-11, - 2.398551326530497e-11, - 1.9597842376697612e-11, - 1.5478909435404207e-11, - 1.1491848043782535e-11, - 8.61936265742449e-12, - 7.468094071388672e-12, - 6.0290804584079555e-12, - 4.608355778946666e-12, - 3.938008999445657e-12, - 3.28094741700022e-12, - 2.816045524058001e-12, - 2.5846280306345578e-12, - 2.465887906554351e-12, - 2.191641133074402e-12, - 1.876239079942932e-12, - 1.7738172860684828e-12, - 2.8902059418505307e-12 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Employment-agriculture" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.7688539230485052e-11, - 2.0182507905011075e-11, - 1.7531664070073895e-11, - 1.7737449764867025e-11, - 1.651645075607332e-11, - 1.392223201608773e-11, - 1.4123566578294444e-11, - 1.5673671252370723e-11, - 1.5359598520103378e-11, - 1.5412685754257672e-11, - 1.7212684169570594e-11, - 1.684661878928685e-11, - 1.5573846550089484e-11, - 1.2543769002627772e-11, - 1.1103792007192273e-11, - 1.0481708272369915e-11, - 9.900812622145045e-12, - 8.728452913995045e-12, - 7.833893530389527e-12, - 8.442625012192423e-12, - 8.32728400680697e-12, - 7.53204247669922e-12, - 7.992303976682889e-12, - 7.440132329901293e-12, - 7.212478299967234e-12, - 8.246997351241201e-12, - 7.890822896490022e-12, - 7.423765774832563e-12, - 6.874028269566616e-12, - 6.990153292843528e-12, - 8.14740072899799e-12, - 1.0792038921352209e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.8910396357886053e-11, - 2.2367066629754946e-11, - 2.004329872609799e-11, - 2.07965493942545e-11, - 1.9247009989621576e-11, - 1.682598761227118e-11, - 1.6510189670968377e-11, - 1.828086941892962e-11, - 1.751702936570658e-11, - 1.7613748538108557e-11, - 1.9236407093307023e-11, - 1.889439408789068e-11, - 1.691743764666114e-11, - 1.3087239460849048e-11, - 1.1440658794226711e-11, - 1.0824120845415935e-11, - 1.0256249835083018e-11, - 8.764968962454462e-12, - 7.934330956440775e-12, - 8.393537751278026e-12, - 8.411500805075377e-12, - 7.737794432365985e-12, - 8.108294353331978e-12, - 7.578567696442587e-12, - 7.188464971698535e-12, - 8.33063885886192e-12, - 8.180465515613183e-12, - 7.864667409313607e-12, - 7.251993008293059e-12, - 7.486614773948159e-12, - 9.124635141286908e-12, - 1.1472942588752542e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.471806717712366e-11, - 9.7035679234846e-11, - 9.197347008096885e-11, - 1.204019612955828e-10, - 1.1142471749864336e-10, - 9.532150955285943e-11, - 8.867369184337373e-11, - 9.52838582399446e-11, - 9.560240983590357e-11, - 9.118035822081541e-11, - 9.268156257317898e-11, - 9.793896853769714e-11, - 8.604114598166655e-11, - 6.75964252513373e-11, - 5.8086088503983176e-11, - 5.6193229074498657e-11, - 5.178525098574733e-11, - 4.407101375900527e-11, - 4.1200978502221015e-11, - 4.618165055267293e-11, - 4.013613464119458e-11, - 3.471556292743658e-11, - 3.5566657709851384e-11, - 3.2649342865075275e-11, - 3.196073954842464e-11, - 3.621038208554306e-11, - 3.529494014098995e-11, - 3.356630404244337e-11, - 3.2729902775993547e-11, - 3.450216588055735e-11, - 4.0987216027792035e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.1008511798705382e-11, - 2.6618896737265014e-11, - 2.531238875251549e-11, - 2.769013724509142e-11, - 2.435795743489524e-11, - 2.0365077152118054e-11, - 1.9289281883715306e-11, - 1.7222702827362087e-11, - 1.6130477509236814e-11, - 1.531057580342909e-11, - 1.5143243559783904e-11, - 1.4988671485590685e-11, - 1.3401889801025404e-11, - 1.1346103552830696e-11, - 9.20797219771955e-12, - 8.731430881834521e-12, - 8.119070285226113e-12, - 7.143817443765079e-12, - 7.485838954384411e-12, - 8.083936621316723e-12, - 7.711421159165255e-12, - 7.170384478295938e-12, - 7.013199418085523e-12, - 6.73137327023644e-12, - 6.1447948549142724e-12, - 6.311359446398984e-12, - 6.783328508106955e-12, - 6.7654268781096445e-12, - 6.250018148427686e-12, - 6.294565272256054e-12, - 8.32155526135434e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.9863757661228103e-11, - 5.603238994104847e-11, - 5.0371205944632046e-11, - 5.91152946081531e-11, - 5.7033794435873584e-11, - 4.9153198333225894e-11, - 4.586135096730147e-11, - 5.068827631535669e-11, - 4.927207573748769e-11, - 4.8321996880139335e-11, - 5.152388060630779e-11, - 5.0109102162454034e-11, - 4.379500316389371e-11, - 3.3840535476363364e-11, - 2.8258583517399047e-11, - 2.5630228096528832e-11, - 2.3325946891123752e-11, - 1.9748948210054293e-11, - 1.7054122500849663e-11, - 1.648705770097141e-11, - 1.615910768655812e-11, - 1.4695647995961646e-11, - 1.5603010970234642e-11, - 1.4574112139549008e-11, - 1.4184421381828155e-11, - 1.664436240238679e-11, - 1.5905421709051676e-11, - 1.528335172884071e-11, - 1.4306885099304433e-11, - 1.4665703027217012e-11, - 2.0877993172239995e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.232204491725986e-10, - 6.503888406471718e-10, - 6.31521298099947e-10, - 6.243646368985168e-10, - 6.297863511833693e-10, - 1.2770126165421505e-9, - 1.2107912070910013e-9, - 1.2261754017787501e-9, - 1.1433389217770696e-9, - 1.2286025402574842e-9, - 1.3356361089422808e-9, - 1.2756921652974634e-9, - 1.1014033256644868e-9, - 8.646377482489865e-10, - 7.064066583408577e-10, - 6.253790036064567e-10, - 5.770653855254187e-10, - 5.060893022566435e-10, - 4.36038425335475e-10, - 4.598630090861269e-10, - 4.5427452255855923e-10, - 4.424574991349929e-10, - 4.880023525669405e-10, - 4.691871239021014e-10, - 4.6253841108583336e-10, - 5.324621011802438e-10, - 5.157265063777679e-10, - 4.699861100360569e-10, - 4.404969663436291e-10, - 4.4452508358360446e-10, - 5.023660990069233e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.718313519783655e-10, - 3.6409391532601886e-10, - 3.299909240307594e-10, - 3.544148295974214e-10, - 3.01976308003445e-10, - 2.328298052227994e-10, - 2.0456543628267078e-10, - 2.0381808500647902e-10, - 1.8393024859394134e-10, - 1.8561320309154507e-10, - 1.8035127541832255e-10, - 1.6096969747982365e-10, - 1.433651768319084e-10, - 1.3106715445734882e-10, - 1.1383317098614439e-10, - 9.554316880861764e-11, - 8.699386363352815e-11, - 7.160363222768517e-11, - 5.976284976056629e-11, - 7.07467523582719e-11, - 6.314681313224401e-11, - 5.8053996596100906e-11, - 6.10201844281786e-11, - 5.861621431011848e-11, - 5.6297309377289775e-11, - 6.391636580683499e-11, - 6.654248889749047e-11, - 6.015093275992107e-11, - 5.416983905569105e-11, - 5.3793816455057563e-11, - 5.2177505376995566e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.1019488606817782e-10, - 2.392926228148347e-10, - 2.1329378956034182e-10, - 2.2240795895767906e-10, - 2.0256977543161484e-10, - 1.6949355439966883e-10, - 1.5679245870650573e-10, - 1.5689002233187286e-10, - 1.6091043298934155e-10, - 1.610223731491853e-10, - 1.7323615678781e-10, - 1.691740789050425e-10, - 1.4751151112575548e-10, - 1.1138007261946889e-10, - 9.320910960995634e-11, - 9.032762986555467e-11, - 8.049813127240992e-11, - 7.0366263496849e-11, - 6.243174154016446e-11, - 6.377741333112022e-11, - 6.593185581784574e-11, - 6.250973214890736e-11, - 6.833883512466675e-11, - 6.512975959998029e-11, - 6.362065027632177e-11, - 7.634776319278846e-11, - 7.89549383179621e-11, - 7.710998848958887e-11, - 7.191718817634105e-11, - 7.47766872265504e-11, - 1.0896383065014932e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.694107656805398e-10, - 1.9471308273721735e-10, - 1.7136724074071365e-10, - 1.7244484702212916e-10, - 1.5953011765086652e-10, - 1.3317385963033277e-10, - 1.2771286855302956e-10, - 1.3929202904117208e-10, - 1.3543485940277674e-10, - 1.3697927398214048e-10, - 1.5221277152104514e-10, - 1.4870225945464398e-10, - 1.3456479079403968e-10, - 1.1026651801087839e-10, - 8.866919562899834e-11, - 8.725300254214996e-11, - 8.373972421860872e-11, - 7.019787395792334e-11, - 6.073343875214895e-11, - 6.215172711117947e-11, - 6.350135246024264e-11, - 6.029856858518533e-11, - 6.370269720661703e-11, - 6.02290635315546e-11, - 5.818093868258511e-11, - 6.743964911481263e-11, - 6.457197449960829e-11, - 5.972278983103681e-11, - 5.589143358490134e-11, - 5.6987244983445745e-11, - 6.508976007244551e-11, - 8.976695503751306e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.298701783414189e-11, - 7.654954079818496e-11, - 6.796838455705447e-11, - 6.827885109490501e-11, - 6.158833209893023e-11, - 5.162483736140472e-11, - 5.14106634262467e-11, - 5.4892753903152276e-11, - 5.1962495608717786e-11, - 4.994972317914364e-11, - 5.169118082775597e-11, - 4.997835215876295e-11, - 4.427449431392164e-11, - 3.432342211610059e-11, - 3.049909996757443e-11, - 3.069972531186697e-11, - 2.8107978792236865e-11, - 2.331010961886321e-11, - 2.0097281355324936e-11, - 2.125026321779914e-11, - 2.0887893058475776e-11, - 1.8966704073731785e-11, - 2.0514388712097635e-11, - 1.8833233310129444e-11, - 1.8191640794038226e-11, - 2.146105626452916e-11, - 2.1018787464111803e-11, - 1.9811250622268644e-11, - 1.7690625413271155e-11, - 1.7699517310106076e-11, - 2.194052835775061e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.1480486810090523e-10, - 4.470368495761757e-8, - 3.3052060852074014e-8, - 1.770443440518279e-8, - 4.567377658725651e-9, - 1.4130570094422255e-9, - 1.782685225680411e-9, - 9.207865379145117e-10, - 9.559883526650122e-10, - 5.634245747007378e-10, - 4.28829132393125e-10, - 5.674965886227221e-10, - 5.961409169075106e-10, - 9.018515064292387e-10, - 5.195492990634708e-10, - 3.95156502827348e-10, - 3.156271569931444e-10, - 2.3019674299188379e-10, - 1.6001284108388064e-10, - 1.864629287582406e-10, - 1.5629881507737968e-10, - 1.1854664999596637e-10, - 1.0609970572994444e-10, - 9.960037673583456e-11, - 1.0240103406805276e-10, - 1.3623217271435415e-10, - 1.417145733403777e-10, - 1.2402675744942715e-10, - 1.0032217697127259e-10, - 9.753413497913083e-11, - 1.2420303788855249e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.979543672444599e-9, - 4.4773626632008356e-9, - 4.076559292879786e-9, - 4.3162991897754684e-9, - 4.2511641019117985e-9, - 3.896576808659487e-9, - 3.523435340888678e-9, - 2.9368544400324972e-9, - 3.318220981838232e-9, - 2.852386212803983e-9, - 2.0822200651817627e-9, - 2.1894737712123986e-9, - 2.017172762595468e-9, - 1.6916102050918052e-9, - 1.2923020455916356e-9, - 9.229629926757243e-10, - 6.826303974025619e-10, - 6.505914218122909e-10, - 5.168731971148475e-10, - 5.976583426794871e-10, - 4.50199516585127e-10, - 3.22514760687712e-10, - 2.77198683644033e-10, - 2.602053660599743e-10, - 2.5680738113367794e-10, - 3.3473484765426187e-10, - 3.595150255235177e-10, - 3.3836309949168104e-10, - 2.962882885308761e-10, - 3.044713658100203e-10, - 3.047687381320809e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.771554469984952e-10, - 6.465296157518273e-10, - 6.150536494063679e-10, - 6.01706045451523e-10, - 5.647069995344777e-10, - 5.115321797470462e-10, - 4.5737987115484853e-10, - 4.278338884227984e-10, - 4.445364312646495e-10, - 3.9587676015799447e-10, - 3.199237273510636e-10, - 3.2368084023854884e-10, - 3.043266632170892e-10, - 2.7214307422202655e-10, - 2.312879706689048e-10, - 1.9123289294641517e-10, - 1.5847536823394164e-10, - 1.3853340257503226e-10, - 1.1395528822112154e-10, - 1.4143314601068657e-10, - 1.2243460928026187e-10, - 1.0015226966895781e-10, - 9.327515981619956e-11, - 8.905236807092293e-11, - 8.632298846021403e-11, - 9.770057666876447e-11, - 9.766273891540508e-11, - 8.975494383688032e-11, - 8.194875810102396e-11, - 8.201995453049968e-11, - 9.566939822169415e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.9179616112932043e-10, - 1.9338502206593384e-10, - 1.891487484999656e-10, - 1.9154998343411555e-10, - 1.8413183126096377e-10, - 1.6791886309308659e-10, - 1.4660058345812591e-10, - 1.343668428484346e-10, - 1.472997954157813e-10, - 1.2967099624773122e-10, - 1.0479385981448032e-10, - 1.1415384651589251e-10, - 1.1049233450317026e-10, - 9.693817418912346e-11, - 8.035023220119742e-11, - 6.238208146679652e-11, - 5.370122706918956e-11, - 5.0100419606670795e-11, - 3.803409869305851e-11, - 4.761151322217165e-11, - 4.030614419742922e-11, - 3.319235919528282e-11, - 3.122389270443541e-11, - 3.1822261623366036e-11, - 3.044885319064433e-11, - 3.474101352084542e-11, - 3.7972786732201775e-11, - 3.591416434351757e-11, - 3.1518515978047526e-11, - 3.127495128876563e-11, - 3.222462306165215e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.497444078399623e-10, - 4.844812573970001e-10, - 2.9688180743138078e-8, - 8.063694170326178e-9, - 1.0173365646659603e-8, - 4.827588840258991e-9, - 3.604784760268892e-9, - 2.829209077797221e-9, - 2.500917256131382e-9, - 2.440285092173681e-9, - 2.063420466374541e-9, - 1.895677950897316e-9, - 1.848984039652717e-9, - 1.6092340358866803e-9, - 1.3709091961653565e-9, - 9.119929668893399e-10, - 5.885721021222974e-10, - 3.8214428864800464e-10, - 2.4829853836402743e-10, - 2.858336833377765e-10, - 2.5931172057735363e-10, - 2.1348980338218022e-10, - 2.050687836231696e-10, - 1.9389347375096915e-10, - 1.9004763521926768e-10, - 2.6491129882198016e-10, - 3.7842457912026447e-10, - 3.5164085033970814e-10, - 3.124406988706607e-10, - 3.0701058089569635e-10, - 2.9957718431469543e-10, - 4.497444078399623e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.4942225972074706e-9, - 1.9830127790395243e-9, - 1.811669887028566e-9, - 2.0919212811623102e-9, - 2.6491616899137344e-9, - 2.768392780650905e-9, - 2.1207514405801112e-9, - 1.864428311894907e-9, - 2.113786626561268e-9, - 1.8060221216668679e-9, - 1.4918513161366834e-9, - 1.493678424176811e-9, - 1.4147289634336994e-9, - 1.3329974727077945e-9, - 1.1720784560951762e-9, - 1.0020097472559518e-9, - 8.881554571410792e-10, - 7.893570441601321e-10, - 6.618147908636282e-10, - 7.33378403038968e-10, - 6.157231340743407e-10, - 4.98068552120956e-10, - 4.434860113128207e-10, - 3.8376617034350785e-10, - 3.349635301410723e-10, - 2.9119966643260707e-10, - 3.6018354787881245e-10, - 3.8934238745692887e-10, - 4.711623583676532e-10, - 5.595146520900802e-10, - 7.726333800835801e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.7782233393835725e-9, - 6.52472031890658e-10, - 6.022995467741605e-10, - 6.067345263271254e-10, - 5.844171025179787e-10, - 5.520698603752445e-10, - 5.026913732693597e-10, - 5.354396623679894e-10, - 6.56573236390064e-10, - 6.445011341137511e-10, - 5.736269028398249e-10, - 6.384947431717576e-10, - 6.801452481192137e-10, - 6.984470494958927e-10, - 6.763929175450674e-10, - 6.054952941913902e-10, - 5.683073089188228e-10, - 5.605272058545645e-10, - 4.300107698679378e-10, - 6.373433169694913e-10, - 5.674413929848059e-10, - 4.6440192381217703e-10, - 4.0819669065867176e-10, - 3.8727532660236805e-10, - 3.6677814313129147e-10, - 4.221784354500139e-10, - 4.3299008310449876e-10, - 3.9749335031617896e-10, - 3.549499722598298e-10, - 3.6349859579997054e-10, - 2.8090076793180714e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.436958460670614e-10, - 5.556088409433258e-10, - 5.262162568913952e-10, - 5.011452655090604e-10, - 5.834072778972718e-10, - 5.942872401582534e-10, - 5.27890185133182e-10, - 5.12686281365075e-10, - 5.140310914700613e-10, - 5.071889112645934e-10, - 4.544592285343677e-10, - 4.568477747514929e-10, - 4.3692466086790835e-10, - 3.6381679477194686e-10, - 3.0047139126116763e-10, - 2.593067910182858e-10, - 2.351587935845491e-10, - 2.102579090397874e-10, - 1.6894667337894864e-10, - 2.1550744463720534e-10, - 1.8733646893366174e-10, - 1.542899339369965e-10, - 1.4737466768708979e-10, - 1.476007656774437e-10, - 1.448014380640683e-10, - 1.8628831390012038e-10, - 1.9339620999800778e-10, - 1.8219014511203465e-10, - 1.767185671397051e-10, - 1.7709995850487116e-10, - 1.8985480333813653e-10, - 2.47627248051378e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.340710299504719e-10, - 5.707738707478847e-10, - 5.12949307822221e-10, - 4.6544949108792405e-10, - 4.1408159558977476e-10, - 3.6386758789361654e-10, - 3.2663156284907644e-10, - 2.8443361485349674e-10, - 2.6229297146833676e-10, - 2.489232111225209e-10, - 2.1334444987076335e-10, - 2.19993592691116e-10, - 2.414673993756762e-10, - 2.459880239520959e-10, - 2.5335585073223135e-10, - 2.400651836129613e-10, - 2.058159357447327e-10, - 1.6988936510301225e-10, - 1.4070910012369224e-10, - 1.256165815209545e-10, - 1.1589905136401787e-10, - 9.987725054841258e-11, - 8.906670069989218e-11, - 8.358928399095233e-11, - 7.984413020711568e-11, - 7.614615959486857e-11, - 7.670517457739721e-11, - 1.1266950782094294e-10, - 1.0760353245440508e-10, - 8.88871703609573e-11, - 6.284360415194337e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 9.533018494908676e-10, - 8.654474056240925e-10, - 8.104743467338353e-10, - 8.960424122358661e-10, - 9.581262111807322e-10, - 1.0515136943059912e-9, - 9.636138232000938e-10, - 8.697455899101574e-10, - 9.684479449536646e-10, - 7.454821921646561e-10, - 7.055096418732781e-10, - 7.812943202118541e-10, - 1.3031024403449638e-9, - 1.0458536323942225e-9, - 8.32973366737831e-10, - 6.002009268286828e-10, - 5.238170753017625e-10, - 4.304149793034147e-10, - 3.3841935493496094e-10, - 4.691541733218001e-10, - 3.942576081849702e-10, - 7.997257468396138e-10, - 3.2770000874869303e-10, - 3.8547929171668684e-10, - 6.696730854564629e-10, - 9.895856530669838e-10, - 1.0517243648016771e-9, - 7.272918369269e-10, - 5.237270404635406e-10, - 5.289223348815766e-10, - 1.0839240285449253e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 9.566779297735907e-11, - 1.1917634182303638e-10, - 1.1801973913704905e-10, - 1.1820479097823432e-10, - 1.1852864714262068e-10, - 2.4929004316225673e-10, - 2.2281585359418065e-10, - 2.0914396189223337e-10, - 2.0198435857217055e-10, - 1.950219205811736e-10, - 1.6926418791144107e-10, - 1.6588144787038704e-10, - 1.740013638772974e-10, - 1.620664754061468e-10, - 1.4877774961366168e-10, - 1.385840924848071e-10, - 1.2630923319727127e-10, - 1.0710989692580234e-10, - 8.679740189117691e-11, - 8.814473082755117e-11, - 7.704941956434744e-11, - 6.797718852294522e-11, - 6.768127762955768e-11, - 6.030580475982517e-11, - 5.685894242064795e-11, - 5.85847134085716e-11, - 5.4854735406090056e-11, - 4.89195422920221e-11, - 4.627433751385619e-11, - 4.329857135867577e-11, - 5.079484963152483e-11, - 9.566779297735907e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.810801320812342e-10, - 1.976966486046178e-10, - 1.8654652076428255e-10, - 1.639565085220906e-10, - 2.2243447371616513e-10, - 1.71046634262732e-10, - 1.5936030630277366e-10, - 1.526064891155669e-10, - 1.0323683303461195e-10, - 1.0811842558432131e-10, - 1.006915890903181e-10, - 1.3139950100345802e-10, - 1.0967595267945326e-10, - 8.340950839649089e-11, - 6.47629031295266e-11, - 5.259640925723926e-11, - 4.8056052821925375e-11, - 3.9261021853647875e-11, - 3.399258525958048e-11, - 3.896668433848381e-11, - 3.37454942494316e-11, - 3.154646402878658e-11, - 2.9560856525060664e-11, - 2.755321279985174e-11, - 2.967135908844606e-11, - 3.15046561948319e-11, - 3.079247723862141e-11, - 3.089652662734066e-11, - 3.424657947240803e-11, - 3.327181661878113e-11, - 3.7897492830254e-11, - 5.389829449011559e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.876646235505146e-10, - 6.225726721499677e-10, - 5.891240161078475e-10, - 6.197980497018599e-10, - 5.58923795353908e-10, - 4.980747719563742e-10, - 4.626813527833528e-10, - 5.02198782216805e-10, - 4.776801062180764e-10, - 4.748747922580993e-10, - 5.072412074097768e-10, - 5.083682808348975e-10, - 4.763614501882658e-10, - 3.8759944493623564e-10, - 3.267029979392511e-10, - 3.129460106247868e-10, - 2.957423529631441e-10, - 2.601171893577747e-10, - 2.2754970519512264e-10, - 2.2831658651366163e-10, - 2.3053797242176645e-10, - 2.155460012731137e-10, - 2.1767378999369284e-10, - 2.0266667831602003e-10, - 1.9867144604447026e-10, - 2.2000437292866048e-10, - 2.1536777470838377e-10, - 2.065958811914056e-10, - 1.9374030538039675e-10, - 1.9262463976371854e-10, - 1.809002500139797e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.7254986247006945e-9, - 1.8069771088671818e-9, - 1.6757150137573116e-9, - 1.7562465667557578e-9, - 2.5602889323822145e-9, - 2.018543814741328e-9, - 1.931487085515667e-9, - 2.082271757948657e-9, - 1.9214192900111972e-9, - 1.88538002881321e-9, - 2.0504940917102077e-9, - 1.9023253633222783e-9, - 1.776946106789926e-9, - 1.420959644996964e-9, - 1.245432942205548e-9, - 1.1426980286158676e-9, - 1.0788243702415515e-9, - 9.053738641150041e-10, - 7.535307023696136e-10, - 7.878176659714955e-10, - 7.908784277353583e-10, - 7.196471801549823e-10, - 7.270309388911289e-10, - 6.813376028592043e-10, - 6.541310925535191e-10, - 7.308112695429402e-10, - 6.832871053747151e-10, - 6.205776938810264e-10, - 5.653921106075724e-10, - 5.629399966290041e-10, - 5.174883157581475e-10, - 1.0031374325172064e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.2367232088361055e-10, - 2.3034701133192726e-10, - 2.1108142830127015e-10, - 1.9185220445637854e-10, - 1.8298169277678067e-10, - 1.6269231166318844e-10, - 1.700597086155311e-10, - 1.6345452804352567e-10, - 1.7969370523420612e-10, - 1.8037632239080573e-10, - 1.7956767675891129e-10, - 1.992917232921791e-10, - 2.0737770390778712e-10, - 1.3501151039249512e-10, - 1.0328113830580908e-10, - 9.087180150280188e-11, - 8.569711710484262e-11, - 7.773013114677557e-11, - 8.151654734973219e-11, - 7.657245349972755e-11, - 5.84620059631536e-11, - 5.2749716730679334e-11, - 5.395941786727567e-11, - 5.864509968312205e-11, - 6.143774793993865e-11, - 6.873183446071201e-11, - 7.209840745704436e-11, - 6.118776427131423e-11, - 5.713338164302535e-11, - 5.7509696107407725e-11, - 7.705014363838148e-11, - 9.775764147520107e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.9611580178177405e-9, - 4.9611580178177405e-9, - 4.9611580178177405e-9, - 5.147288086982122e-9, - 4.913107550395159e-9, - 4.702345156799649e-9, - 4.585254888506181e-9, - 4.6555088708166985e-9, - 4.753864714049792e-9, - 4.866271711076128e-9, - 1.2185354254611328e-8, - 1.207505472448488e-8, - 1.1866235167206042e-8, - 1.4545454698450401e-8, - 1.210702302862564e-8, - 1.140147491551549e-8, - 9.660411456315191e-9, - 7.8587035410437e-9, - 6.239861215390324e-9, - 6.091629218192138e-9, - 5.400400381307808e-9, - 4.507923444377272e-9, - 3.875893907547462e-9, - 3.40236903063007e-9, - 3.3326595677401036e-9, - 3.2971028052805827e-9, - 3.0837862229361846e-9, - 3.0642610448683893e-9, - 3.0034286221645794e-9, - 3.057600409727598e-9, - 3.3089569306965765e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.956798986247109e-10, - 6.880596210256826e-10, - 9.507744157805183e-10, - 9.232288967834822e-10, - 9.082619589874123e-10, - 8.827820885445944e-10, - 6.767268203060383e-10, - 5.764888816469198e-10, - 5.243283073992856e-10, - 4.768750533361319e-10, - 5.215263482092018e-10, - 5.742262749053295e-10, - 5.689621588934053e-10, - 5.37805766380269e-10, - 4.730628849739245e-10, - 4.4953973274051163e-10, - 4.478642056119964e-10, - 4.191049461137767e-10, - 3.727243610061983e-10, - 4.196577247422481e-10, - 4.826807485180515e-10, - 4.0051310564255734e-10, - 3.779630422507189e-10, - 3.9176826403029824e-10, - 4.0358806449246205e-10, - 4.858638989766025e-10, - 6.726983509403893e-10, - 6.240976936739211e-10, - 5.69181851949558e-10, - 5.583468737569053e-10, - 3.29566847262956e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 9.266633606598879e-10, - 8.395133300580525e-10, - 8.142961257763655e-10, - 6.000563552828791e-10, - 1.0828484822820444e-9, - 8.808283120482834e-10, - 8.581571697935773e-10, - 8.8048909174134e-10, - 8.443864346067985e-10, - 8.300314418792734e-10, - 9.160959614676244e-10, - 8.946924172581283e-10, - 8.069418746062138e-10, - 6.411895626083191e-10, - 5.550770377859832e-10, - 5.469032113719883e-10, - 5.222253307377904e-10, - 4.668122179300917e-10, - 4.152964165691552e-10, - 4.27093845953253e-10, - 4.467872431822727e-10, - 4.1494030479650057e-10, - 4.3674255924549234e-10, - 4.038113254315814e-10, - 3.869561999262523e-10, - 4.417850557387288e-10, - 4.237847260521439e-10, - 3.9946202879988783e-10, - 3.607359316423756e-10, - 3.634899124200585e-10, - 2.79660170162205e-10, - 5.151983830102132e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.218197552866484e-10, - 2.7321718637293245e-10, - 2.7889989777096193e-10, - 4.781602320561713e-10, - 3.913334007794931e-10, - 2.9775909376157296e-10, - 2.5432780167272666e-10, - 2.36696892146441e-10, - 2.329497578998424e-10, - 2.115453520106668e-10, - 1.7797294296679132e-10, - 1.6574280763396907e-10, - 1.2653872222095417e-10, - 1.1409568227590974e-10, - 8.64458357114529e-11, - 6.495051449421358e-11, - 4.709789208565742e-11, - 3.940126138067941e-11, - 3.134240294831078e-11, - 3.5422675417690426e-11, - 2.8357482945443714e-11, - 2.5062123859624435e-11, - 2.4039436134642773e-11, - 2.3216362920837713e-11, - 2.1749614390643278e-11, - 2.452735981990902e-11, - 2.9729394641918764e-11, - 3.206949676873784e-11, - 3.02625589683376e-11, - 2.6778515834594893e-11, - 2.7726993928384367e-11, - 5.232865699778274e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.3810082491322703e-9, - 2.1238387200435114e-9, - 2.182758774472641e-9, - 2.356586935340318e-9, - 2.5768837165649298e-9, - 2.1670072725246433e-9, - 2.014424090644615e-9, - 2.0286422167939647e-9, - 1.8674052160829425e-9, - 1.8123275925811285e-9, - 2.809538716508611e-9, - 2.6359807316251154e-9, - 2.2768810056428963e-9, - 1.8434552191919622e-9, - 1.588719080419195e-9, - 1.319723493560108e-9, - 6.961535159101254e-10, - 5.667024151062701e-10, - 4.864236834093374e-10, - 5.324762853034299e-10, - 4.3202416350680977e-10, - 3.553877434130948e-10, - 3.3922161697328955e-10, - 2.2396240081209432e-10, - 2.5595919918962503e-10, - 2.838119360419737e-10, - 2.496595864721158e-10, - 2.3213066512563529e-10, - 2.0835547866895412e-10, - 2.0518991886814423e-10, - 2.0460684323670184e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.703542387041719e-10, - 4.386661379143e-10, - 4.0083415765522206e-10, - 3.58192548476981e-10, - 3.2781873504687825e-10, - 2.7411883199189997e-10, - 2.1060118393000986e-10, - 2.0603465484146196e-10, - 2.0326276663961414e-10, - 2.0284540706600712e-10, - 2.0048796045194492e-10, - 2.0762608321579905e-10, - 2.1416531712937358e-10, - 2.0462465980893644e-10, - 1.993593881071581e-10, - 1.9858029265974208e-10, - 2.0217468273061525e-10, - 1.9205674309490677e-10, - 1.7504940696815154e-10, - 1.638403860416033e-10, - 1.529332082492133e-10, - 1.4054951521161e-10, - 1.3917659746932062e-10, - 1.2680807563500924e-10, - 1.12502238957298e-10, - 1.0231768647280734e-10, - 9.240558097770965e-11, - 8.177455705557319e-11, - 7.604757779957889e-11, - 2.258304938079911e-10, - 1.5742900004916124e-10, - 1.5742900004916124e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.102880291997056e-11, - 5.6200296519730937e-11, - 5.287839689774098e-11, - 5.467317541583543e-11, - 4.714681168175419e-11, - 4.3299422199291304e-11, - 4.013774163802439e-11, - 3.792070991617613e-11, - 3.771198439227956e-11, - 3.5264342417576543e-11, - 3.484239131663074e-11, - 3.4257507426667924e-11, - 3.285832810229112e-11, - 2.879713769534175e-11, - 2.574919054002626e-11, - 2.2916164063025762e-11, - 2.0653864221774743e-11, - 1.651139554824698e-11, - 1.703234241624871e-11, - 1.5716678375506388e-11, - 1.3016113545013267e-11, - 1.2671073912774127e-11, - 1.3328680235301965e-11, - 1.3125281677007112e-11, - 1.1990423064199078e-11, - 1.166578393085886e-11, - 1.0780905326415972e-11, - 9.37592089873674e-12, - 9.236937516634991e-12, - 8.75107646352306e-12, - 7.363593921705571e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.7423735980579754e-9, - 1.0527006024333262e-9, - 1.0722621255504337e-9, - 8.413655408153665e-10, - 7.042671585255695e-10, - 5.700186125656545e-10, - 4.968068384331491e-10, - 4.723640964771729e-10, - 4.2558505274746805e-10, - 4.1800802918086956e-10, - 3.9906944377839895e-10, - 4.2526893384056594e-10, - 4.1923213495109104e-10, - 4.148914562337909e-10, - 3.8192427308361596e-10, - 3.251594859613748e-10, - 3.041960841228289e-10, - 2.6338759539274e-10, - 2.1184238453460827e-10, - 2.0610357500394539e-10, - 1.8700658242279382e-10, - 1.570022785454512e-10, - 1.3599024690597751e-10, - 1.236990410004547e-10, - 1.151958365503068e-10, - 1.176768231303158e-10, - 1.206179946331536e-10, - 1.1520250310605191e-10, - 1.0863993680003327e-10, - 1.0476431780280969e-10, - 6.545225351793187e-11, - 1.871810261491929e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.391766603653039e-10, - 1.572764052019113e-10, - 1.414947909884006e-10, - 1.361633328540854e-10, - 1.2291771609506275e-10, - 1.167896150300325e-10, - 1.1358476735714732e-10, - 1.3130854964192234e-10, - 1.5579425269359742e-10, - 1.4502357721022014e-10, - 1.5056305382490583e-10, - 1.5652993771378463e-10, - 1.4832370673861968e-10, - 1.3836292312398278e-10, - 1.2845890735740855e-10, - 1.1821345134192879e-10, - 9.898168865406932e-11, - 8.336424129538313e-11, - 7.268784021871515e-11, - 7.376369301707888e-11, - 6.05092574776322e-11, - 5.242447971923739e-11, - 4.9854332146362023e-11, - 4.8152274479907894e-11, - 5.774054102370384e-11, - 5.900874789002269e-11, - 5.728577501476539e-11, - 5.007045429786619e-11, - 4.5024676340889e-11, - 4.196494139853991e-11, - 4.069037628939826e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.8000500498579236e-10, - 1.3024986771879428e-10, - 1.1981850825940433e-10, - 1.0410951391015094e-10, - 1.1125423587378848e-10, - 9.107908313051432e-11, - 8.264075037260906e-11, - 8.713829198844273e-11, - 1.862842330828955e-10, - 1.254987865637381e-10, - 1.0568351456864393e-10, - 1.1679873023350097e-10, - 9.588031089734254e-11, - 7.543473708979642e-11, - 7.012233040198772e-11, - 6.56245527943217e-11, - 5.099150760459783e-11, - 4.354296826104736e-11, - 3.614066179240881e-11, - 3.3915260635111764e-11, - 2.4698905908056343e-11, - 2.2385992520627955e-11, - 2.2955322385932335e-11, - 2.295829767121363e-11, - 2.4022951452939894e-11, - 2.5602477188093426e-11, - 2.3307787213524084e-11, - 2.168136480243899e-11, - 2.1385982685226852e-11, - 1.9980497952277057e-11, - 1.8051239460904856e-11, - 3.920059684585336e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.0632941496254583e-10, - 2.987817088449376e-10, - 2.4312211418766273e-10, - 2.4940386171085127e-10, - 1.9819777932443372e-10, - 1.7496765168084945e-10, - 1.5636872399530367e-10, - 1.6778918645869404e-10, - 2.1237086696320246e-10, - 1.7923839793798202e-10, - 1.8955489110017467e-10, - 1.9880580541204825e-10, - 1.8515598462590427e-10, - 1.7922970415795525e-10, - 1.6410176075154155e-10, - 1.4410728969538746e-10, - 1.2165806414455973e-10, - 1.0046135451018678e-10, - 8.578134175364575e-11, - 8.813766528501773e-11, - 7.544318431972941e-11, - 6.523866446748234e-11, - 5.830013258866685e-11, - 5.4877950695315145e-11, - 5.358284789388225e-11, - 5.2831471464717994e-11, - 4.8558927773836904e-11, - 4.7102207299553835e-11, - 4.4608697035290064e-11, - 4.105949599824939e-11, - 4.280119167624336e-11, - 9.164518964898678e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 9.293814511928509e-11, - 7.964847800781583e-11, - 7.407533202684974e-11, - 6.706882030449057e-11, - 5.680471058486617e-11, - 4.648150820595024e-11, - 4.3161203196326574e-11, - 5.5164106448190204e-11, - 7.299176058178477e-11, - 5.5295075808389304e-11, - 4.885641944098259e-11, - 5.017727840594289e-11, - 4.355547289048968e-11, - 3.9290336743595764e-11, - 3.4242127624213066e-11, - 2.851638602724052e-11, - 2.4828693285338568e-11, - 2.199359636862987e-11, - 2.4166004721335653e-11, - 2.5954987925890606e-11, - 2.1869349623837197e-11, - 1.9828872830088927e-11, - 1.9226743276983333e-11, - 2.011970856345671e-11, - 1.6842749532624266e-11, - 1.7321914877884617e-11, - 1.6798750723722007e-11, - 1.556128897411751e-11, - 1.4610003663282067e-11, - 1.4884133822262697e-11, - 1.6078954584339363e-11, - 2.8164582616146138e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 9.722354609367512e-11, - 8.133669967581536e-11, - 6.980440586722404e-11, - 5.032591517544309e-11, - 4.761153632670788e-11, - 6.893029196962784e-11, - 6.06605369994332e-11, - 4.973886641703089e-11, - 4.7312249006147195e-11, - 4.324987885054778e-11, - 3.82394996265922e-11, - 3.446515497938746e-11, - 3.362230878116534e-11, - 3.555287129625385e-11, - 3.331455743900406e-11, - 2.973299961507093e-11, - 2.6850877648938327e-11, - 2.488847087615994e-11, - 2.304527203272748e-11, - 2.6998638701404223e-11, - 2.3066713682798227e-11, - 2.058467876105281e-11, - 2.0031804216208913e-11, - 1.907499813642037e-11, - 1.8861882497009614e-11, - 2.147000196217306e-11, - 2.3875960316572205e-11, - 2.2443444353016975e-11, - 2.137583754298244e-11, - 2.0127080722181204e-11, - 2.3651759140220547e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.725150349332038e-11, - 6.835776218590585e-11, - 7.023414368910055e-11, - 6.239550092421188e-11, - 4.383578659358384e-11, - 2.959705443522481e-11, - 2.6868873655247916e-11, - 2.591692952107332e-11, - 2.6397717574147143e-11, - 3.6788611716043975e-11, - 3.332071175692402e-11, - 3.851897749366804e-11, - 4.319381077852632e-11, - 3.849641976266094e-11, - 3.230292211508746e-11, - 2.462894343985124e-11, - 1.979908942185568e-11, - 1.6097466484276146e-11, - 1.3703998515051233e-11, - 1.3617307272707118e-11, - 1.0213514235534135e-11, - 8.527776742833725e-12, - 9.33787775954896e-12, - 9.280904668413227e-12, - 9.31986624434633e-12, - 1.2301549474739293e-11, - 1.1633389614691614e-11, - 9.924814033925496e-12, - 1.1669485201402916e-11, - 1.1912525498303945e-11, - 1.548357068899723e-11, - 1.7894095825622406e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.6571636056547717e-10, - 1.2346827979681164e-10, - 1.0238446469588769e-10, - 9.894496244239149e-11, - 9.098974557453391e-11, - 1.0498708066967689e-10, - 9.186119039242182e-11, - 8.72774934898446e-11, - 8.329200662164873e-11, - 8.352056201851631e-11, - 8.015376534139856e-11, - 8.195112318166744e-11, - 2.069092386067429e-10, - 1.7078546750592337e-10, - 1.3780083638645994e-10, - 1.1703904712627668e-10, - 1.017813849075585e-10, - 8.322595204172689e-11, - 6.643470201833197e-11, - 6.964455932518519e-11, - 5.5095583844173596e-11, - 4.521248480686987e-11, - 4.3334731852889765e-11, - 4.338570658574649e-11, - 4.5903660936928795e-11, - 3.978146830554646e-11, - 4.103804760904014e-11, - 3.4864824616726816e-11, - 4.174766697145286e-11, - 4.8325816592869747e-11, - 6.017240889800833e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.856891148407308e-10, - 4.4465196851421373e-10, - 4.209495937520728e-10, - 4.3465683218738956e-10, - 3.413388990526568e-10, - 2.884861034412563e-10, - 2.761870312651698e-10, - 2.6277989276417996e-10, - 2.7116400279691267e-10, - 2.9350039415455614e-10, - 2.8118795499958866e-10, - 2.7714695506772484e-10, - 2.630639545346774e-10, - 2.273074446977756e-10, - 2.156699001809232e-10, - 1.8498405973274834e-10, - 1.675255580101377e-10, - 1.5943862663456715e-10, - 1.3637427403286835e-10, - 1.360668280711222e-10, - 1.1428266853886958e-10, - 9.594686119043274e-11, - 8.839911324264048e-11, - 8.460276261660571e-11, - 8.152822758816248e-11, - 8.729998383265521e-11, - 8.452497218096724e-11, - 7.41680808213765e-11, - 6.914532753763401e-11, - 6.652925385646299e-11, - 7.657017897633769e-11, - 1.4100080029165605e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.5708793093877803e-10, - 4.871255485331441e-10, - 4.4088089981162617e-10, - 4.3752594469454445e-10, - 4.0483634714697843e-10, - 3.043623758121161e-10, - 3.1739410546320435e-10, - 2.781805208185373e-10, - 2.682544308958914e-10, - 2.3178935312505447e-10, - 1.9489379300251535e-10, - 1.7973383539335455e-10, - 2.2272797336001385e-10, - 2.371424403278045e-10, - 1.806970966445787e-10, - 1.4191463448622243e-10, - 1.2088674431846018e-10, - 1.0040630436217614e-10, - 7.238409737283284e-11, - 6.786185168158837e-11, - 5.5011240459357826e-11, - 6.787111618481502e-11, - 5.670280931532364e-11, - 5.749242756527396e-11, - 4.291406832529405e-11, - 1.1312052857614493e-10, - 1.0730192084169894e-10, - 1.012551381720485e-10, - 1.2671840101912134e-10, - 1.2671840101912134e-10, - 1.2671840101912134e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.0529793490096553e-10, - 4.014188633196044e-10, - 3.3704797138530284e-10, - 2.9632727401355265e-10, - 2.4099335193924925e-10, - 2.1241571203458337e-10, - 2.0090550126853402e-10, - 1.8226223661764927e-10, - 1.9523841053622179e-10, - 2.1778439536232497e-10, - 1.8591086201040247e-10, - 1.8765575790141462e-10, - 1.884384754193399e-10, - 1.9621438266467206e-10, - 1.603156508480049e-10, - 1.299279296275433e-10, - 1.1892196530102982e-10, - 9.46737195917126e-11, - 8.117695761183633e-11, - 8.532781669771223e-11, - 6.979265522185041e-11, - 5.7893613787104046e-11, - 5.227823285186016e-11, - 5.139798618861109e-11, - 5.1926978688883196e-11, - 6.756808572448984e-11, - 6.862900793368926e-11, - 6.226679420988641e-11, - 5.981480119123692e-11, - 6.220822975121867e-11, - 7.143856056322434e-11, - 1.0269931140641073e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.294678690790981e-10, - 6.95127332384236e-10, - 5.758813566769694e-10, - 5.523575977836637e-10, - 4.5694998768836356e-10, - 3.5481336200808037e-10, - 3.4072457595080756e-10, - 3.212388757556092e-10, - 3.129542157660123e-10, - 3.115447375376687e-10, - 3.004073897292604e-10, - 3.3699669908999127e-10, - 3.421435554527153e-10, - 3.0934597211922366e-10, - 2.378783079242196e-10, - 1.8663876584732364e-10, - 1.504638420493937e-10, - 1.3467278461662227e-10, - 1.3104095950031103e-10, - 1.3394087436246884e-10, - 1.0506203147369457e-10, - 9.2685092286727e-11, - 8.921006645435495e-11, - 8.578068646912597e-11, - 9.015833327845152e-11, - 9.544149125332379e-11, - 9.187824019945015e-11, - 8.208358657193005e-11, - 7.504073957360255e-11, - 7.963906862694331e-11, - 9.549899178710645e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.789446963773209e-9, - 3.6588368185681037e-9, - 3.0557993425157136e-9, - 2.679782812276892e-9, - 2.4888467597529197e-9, - 2.0779724140513633e-9, - 1.9968446668573004e-9, - 1.874018591558053e-9, - 1.6822252190721533e-9, - 1.6324250258795062e-9, - 1.4939758616182968e-9, - 1.4659329312641096e-9, - 1.3619786563655257e-9, - 1.289966976878909e-9, - 1.1864209664467618e-9, - 1.0793066732116937e-9, - 9.579345205180842e-10, - 8.279802245567993e-10, - 7.032069102278823e-10, - 6.53099200286707e-10, - 5.215273979735331e-10, - 4.5015953918958214e-10, - 3.8469965287401067e-10, - 3.23652715654446e-10, - 3.39892750418142e-10, - 3.3928683529602125e-10, - 3.1624374286329427e-10, - 3.048778417816068e-10, - 3.1512252562720233e-10, - 2.934159022955171e-10, - 3.4996320994431413e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.763520327352708e-12, - 4.215565975391665e-12, - 3.9614577495432516e-12, - 3.748600702344719e-12, - 3.5184807229583888e-12, - 3.336497019878297e-12, - 3.1350943867740883e-12, - 2.929739389792906e-12, - 2.7496965646728414e-12, - 2.563686160808122e-12, - 2.383844810914343e-12, - 2.243470086667846e-12, - 2.080205585362896e-12, - 1.9592880900400313e-12, - 1.8331828977186667e-12, - 1.7074951702400243e-12, - 1.6178522661028141e-12, - 1.5319828346408925e-12, - 1.4585894448382098e-12, - 1.384185251976417e-12, - 1.3100273689858134e-12, - 1.2681290805296285e-12, - 1.2187436447842906e-12, - 1.1885719394901557e-12, - 1.1399448244975327e-12, - 1.0889172779676654e-12, - 1.0552104999161587e-12, - 1.0095696954637798e-12, - 9.640080972241145e-13, - 9.289316063671415e-13, - 1.071082018158297e-12, - 1.7295717326477788e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Employment-industry=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.036201443386692e-11, - 5.582026345887322e-11, - 5.0829707402647075e-11, - 5.0367492693249534e-11, - 4.022507249702219e-11, - 3.1311777020404734e-11, - 2.720704984884501e-11, - 2.4646322106027665e-11, - 2.2836750040641216e-11, - 2.1023818512130067e-11, - 1.8574365910089927e-11, - 1.6649298577714275e-11, - 1.4552377953221967e-11, - 1.3009791571206524e-11, - 1.1506908974652713e-11, - 1.0411353606175628e-11, - 9.156538581066349e-12, - 7.54856677855115e-12, - 5.9203707043375515e-12, - 5.449160572222054e-12, - 4.714839513869064e-12, - 3.906508576418287e-12, - 3.5512403302828422e-12, - 3.145112092453937e-12, - 2.85422915576604e-12, - 2.6379659433424494e-12, - 2.5638111144913093e-12, - 2.2834334556584902e-12, - 2.0381699575527894e-12, - 1.920176481082787e-12, - 1.7245910540345823e-12 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Employment-industry" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Employment-services=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.748574425310608e-11, - 3.1456246548634693e-11, - 2.778700788131771e-11, - 2.892835897869628e-11, - 2.735508936448618e-11, - 2.352470552863847e-11, - 2.4747275090296725e-11, - 2.8200856103302057e-11, - 2.806175109828133e-11, - 2.8838987398161405e-11, - 3.276724432031417e-11, - 3.3199865424319975e-11, - 3.1344953969173785e-11, - 2.6462635178513096e-11, - 2.3589783826568887e-11, - 2.3812165205991902e-11, - 2.273346880663385e-11, - 1.9806873727482403e-11, - 1.8388557128441935e-11, - 2.0379558265786658e-11, - 2.0602013085951175e-11, - 1.870208369100879e-11, - 1.9916968560665645e-11, - 1.8956535068819344e-11, - 1.813276147365699e-11, - 2.112231945716098e-11, - 2.0551299442342458e-11, - 1.9323466429446048e-11, - 1.7954439691425214e-11, - 1.8416662102526e-11, - 1.7266060021984854e-11, - 2.2870605972830366e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Employment-services=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.688632617669978e-11, - 5.167509157713832e-11, - 4.7221983218383456e-11, - 5.067977749294626e-11, - 4.8766746456429905e-11, - 4.257711662882665e-11, - 4.276705713639144e-11, - 4.736094146758246e-11, - 4.6077838769643296e-11, - 4.651904915674421e-11, - 5.0950484105517095e-11, - 5.0738307365919535e-11, - 4.693590037464579e-11, - 3.88225869707807e-11, - 3.391152670953849e-11, - 3.3041331784774865e-11, - 3.122554107073266e-11, - 2.7520199250807858e-11, - 2.525676778648351e-11, - 2.754650284080182e-11, - 2.8292884919011462e-11, - 2.6148648746484093e-11, - 2.8066025817771455e-11, - 2.6893070125884306e-11, - 2.6828065633408656e-11, - 3.155557543138959e-11, - 3.110032857143703e-11, - 2.9663014605406407e-11, - 2.7685843959640887e-11, - 2.8231463554753156e-11, - 2.7448762102448567e-11, - 3.4512949488663495e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Employment-services=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.8738112937925897e-10, - 2.5362012897840957e-10, - 2.4648187555289175e-10, - 3.3176282963119e-10, - 3.094306384608097e-10, - 2.6572554273233324e-10, - 2.429528732282411e-10, - 2.655641354458258e-10, - 2.6239888643069034e-10, - 2.627774771157143e-10, - 2.7671306191218794e-10, - 3.036768156420889e-10, - 2.7925897932877166e-10, - 2.2390567921059581e-10, - 1.951349788083541e-10, - 1.9285188912596558e-10, - 1.792984572681323e-10, - 1.549101218894591e-10, - 1.4786380878394434e-10, - 1.7790015764822658e-10, - 1.573175156796504e-10, - 1.3602298747418008e-10, - 1.4172363670663926e-10, - 1.342951279738041e-10, - 1.3646891528791755e-10, - 1.577497600438705e-10, - 1.549874413843357e-10, - 1.4788766964246287e-10, - 1.4418799502014036e-10, - 1.4964049944205305e-10, - 1.3903707703283388e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Employment-services=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.913936179549802e-11, - 5.899559384565245e-11, - 5.76691808685948e-11, - 6.459461658203549e-11, - 6.149989479438472e-11, - 5.237582671069283e-11, - 4.968643044042473e-11, - 4.570492213754618e-11, - 4.331701688077974e-11, - 4.308435108720759e-11, - 4.410011107592779e-11, - 4.499643163756107e-11, - 4.18703945473104e-11, - 3.6658513490830746e-11, - 3.155485392663102e-11, - 3.00255934416458e-11, - 2.8188557500764172e-11, - 2.4612204084285942e-11, - 2.6173214484739464e-11, - 3.268202271914219e-11, - 3.1941582952880346e-11, - 2.9758216081842064e-11, - 2.932524989856768e-11, - 2.856285276749759e-11, - 2.5842474631982578e-11, - 2.712599209429562e-11, - 2.952786370749929e-11, - 2.9855317819967306e-11, - 2.7854468220788674e-11, - 2.807890170625817e-11, - 2.7386376789976275e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Employment-services=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.2526767588551022e-10, - 9.953805904991513e-11, - 9.23419229194997e-11, - 1.1270757247951669e-10, - 1.1355869427527644e-10, - 9.892467764738368e-11, - 9.674924235137163e-11, - 1.0515571791177815e-10, - 9.978766247426139e-11, - 9.784101579928572e-11, - 1.0443488139919044e-10, - 9.873691727760118e-11, - 8.883161333039496e-11, - 7.006126251038922e-11, - 6.01558918267995e-11, - 5.645237412104491e-11, - 5.219775806919851e-11, - 4.5033840620227467e-11, - 4.174981395356082e-11, - 4.779838760891206e-11, - 5.121270086351407e-11, - 5.007055707678515e-11, - 5.669773387382465e-11, - 5.6045760634029705e-11, - 5.5651060080153234e-11, - 6.354131941036368e-11, - 6.178051528541217e-11, - 5.759065463462063e-11, - 5.310366652959441e-11, - 5.4226490629183164e-11, - 5.244967095357172e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Employment-services=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.2235126499988962e-9, - 1.0333787757843929e-9, - 1.0474751832877315e-9, - 1.0568005384759816e-9, - 1.0780536485451495e-9, - 2.220355536590044e-9, - 2.116703931811439e-9, - 2.1871082678899585e-9, - 2.0668497783362813e-9, - 2.283198854079061e-9, - 2.4867466136835353e-9, - 2.333111564714057e-9, - 2.0177620883047854e-9, - 1.511472563667409e-9, - 1.2726760259808592e-9, - 1.1810773148917255e-9, - 1.1091058905058052e-9, - 9.41484686790645e-10, - 7.961764989899611e-10, - 9.141778242924491e-10, - 9.646506958057933e-10, - 9.096102612249436e-10, - 1.046293837754237e-9, - 1.0458644918728598e-9, - 1.0886282284019608e-9, - 1.2770319008164627e-9, - 1.2509761943599298e-9, - 1.1849271379998418e-9, - 1.0657391339452544e-9, - 1.0625547045839017e-9, - 9.862501750088486e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Employment-services=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.851811190575941e-10, - 4.4724658578640885e-10, - 4.2454156604152255e-10, - 4.316697448715395e-10, - 3.865405313392438e-10, - 3.091513188149357e-10, - 2.824713415467112e-10, - 2.9148246112936914e-10, - 2.725464972520577e-10, - 2.8812393171340834e-10, - 2.918950049493267e-10, - 2.622763691425745e-10, - 2.603579936700225e-10, - 2.445056606987586e-10, - 2.0916452761029914e-10, - 1.7432953221418164e-10, - 1.5736081577910834e-10, - 1.2710110889460617e-10, - 1.014600411253373e-10, - 1.2646180857080444e-10, - 1.180407771394889e-10, - 1.0679512140541745e-10, - 1.1435767926052974e-10, - 1.1028446364198513e-10, - 1.0686165669577683e-10, - 1.2124017615248815e-10, - 1.2265399265623432e-10, - 1.1036851060851872e-10, - 9.970859482681178e-11, - 9.829551228869566e-11, - 8.682931282493818e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Employment-services=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.557568891558535e-10, - 5.029329978848187e-10, - 4.6134781549119277e-10, - 5.010612248720477e-10, - 4.765792531309999e-10, - 4.118254813048605e-10, - 3.897529825590217e-10, - 4.0298243730238256e-10, - 4.076074488599649e-10, - 4.1805505855592413e-10, - 4.5991899255855933e-10, - 4.4802520322525473e-10, - 4.0093372063241216e-10, - 3.084447048169785e-10, - 2.704558214701498e-10, - 2.640439151497155e-10, - 2.4222553311491315e-10, - 2.0768082694731102e-10, - 1.872390345048644e-10, - 2.0274154788541838e-10, - 2.289272371857825e-10, - 2.472120221527831e-10, - 2.9108043890490395e-10, - 2.961394837682219e-10, - 3.034509617488124e-10, - 3.6875870323445696e-10, - 3.7473824384248427e-10, - 3.6283228328803466e-10, - 3.4185421752598503e-10, - 3.561397999914525e-10, - 3.399406329727297e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Employment-services=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.9747790266867254e-10, - 3.3591459594912087e-10, - 3.0218662519257734e-10, - 3.1389897026601594e-10, - 2.9641059218219345e-10, - 2.51246402039595e-10, - 2.624647057262098e-10, - 2.982748122580942e-10, - 2.929993071249893e-10, - 2.9462511938110845e-10, - 3.240413688741433e-10, - 3.282385930288645e-10, - 3.0499797128398385e-10, - 2.5004420587761357e-10, - 2.2679810147818077e-10, - 2.124379720830532e-10, - 1.9801945878084153e-10, - 1.7253980219776646e-10, - 1.5856890453292245e-10, - 1.7351209287785403e-10, - 1.781402795139356e-10, - 1.5993135307376247e-10, - 1.6914922524782527e-10, - 1.6160263678839506e-10, - 1.568287055154639e-10, - 1.8250069240216077e-10, - 1.770676663056433e-10, - 1.7051671647667052e-10, - 1.5570070630971767e-10, - 1.5952382895391553e-10, - 1.5271604029928912e-10, - 2.1061460217083667e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Employment-services=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.412835972951332e-10, - 2.1581657889265166e-10, - 1.9608065624288522e-10, - 2.0305463573111458e-10, - 1.9167554208733373e-10, - 1.6099874002084367e-10, - 1.6217888467848909e-10, - 1.761222645481366e-10, - 1.6839867085059319e-10, - 1.6655872614850492e-10, - 1.7998495410470539e-10, - 1.7449557868849358e-10, - 1.6057417462885053e-10, - 1.3282871918937102e-10, - 1.1636135836696782e-10, - 1.0981279905019877e-10, - 1.0318067934490491e-10, - 9.06124495524974e-11, - 8.163929870554716e-11, - 8.990054263153505e-11, - 9.351166836093339e-11, - 8.842659943142727e-11, - 9.543184181156522e-11, - 9.27867315461346e-11, - 9.132809579624472e-11, - 1.0612968892907983e-10, - 1.0362721655921494e-10, - 9.738932205299027e-11, - 8.94158854416215e-11, - 8.988190025254533e-11, - 8.404731309321354e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Employment-services=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.970793857682016e-10, - 1.231742255261709e-7, - 9.081189336500047e-8, - 4.8917340901838914e-8, - 1.2702471563179033e-8, - 3.951441186739721e-9, - 4.87650668422005e-9, - 2.444996385957102e-9, - 2.45714723742885e-9, - 1.3575874567440363e-9, - 1.0454002778195123e-9, - 1.4174974865323953e-9, - 1.598009972085042e-9, - 2.4126921861483575e-9, - 1.4802923075670401e-9, - 1.083377394068327e-9, - 8.276002153368537e-10, - 6.148335152694024e-10, - 4.150000679355818e-10, - 4.963388723260559e-10, - 3.990853791649922e-10, - 2.983585371995162e-10, - 2.521989616998505e-10, - 2.3576776263442715e-10, - 2.4424770985397976e-10, - 3.411800646826719e-10, - 3.399108950515849e-10, - 3.071291457463784e-10, - 2.567209776309219e-10, - 2.5010933214273584e-10, - 3.213989338330585e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Employment-services=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.270180650758513e-9, - 9.407982430391089e-9, - 8.434305404102054e-9, - 9.060175758762521e-9, - 8.74777039740948e-9, - 7.900060984826943e-9, - 7.088816458399308e-9, - 5.587812604909139e-9, - 6.111845419189238e-9, - 4.980177882187464e-9, - 3.4020479741199924e-9, - 3.381710604617477e-9, - 3.021111174167181e-9, - 2.4475443825899266e-9, - 1.7722280465200098e-9, - 1.2586880037935495e-9, - 9.111046132338157e-10, - 5.743168944437424e-10, - 3.37121385331817e-10, - 4.089026144556787e-10, - 3.3734991239449885e-10, - 2.654741743535238e-10, - 2.508650661641607e-10, - 2.36051709500696e-10, - 2.217485201039052e-10, - 2.759367709043874e-10, - 2.9150045163573727e-10, - 2.746756120627551e-10, - 2.42561499018262e-10, - 2.559373756343575e-10, - 3.7055064805941865e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Employment-services=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.1925389842678296e-9, - 1.1289535572410326e-9, - 1.0745001582968327e-9, - 1.0479069214539696e-9, - 9.844011222367974e-10, - 8.878421598912306e-10, - 7.933807245221756e-10, - 7.396085075612134e-10, - 7.722565072525634e-10, - 6.946494310042404e-10, - 5.627897261672284e-10, - 5.739914583568884e-10, - 5.45547915793756e-10, - 4.829252755826076e-10, - 4.0710472958500866e-10, - 3.336886577857221e-10, - 2.7021850760753053e-10, - 2.321684970736321e-10, - 1.902213215508199e-10, - 2.3845643426597705e-10, - 2.1098230082432608e-10, - 1.7623605858120395e-10, - 1.6623481604869795e-10, - 1.608530750277452e-10, - 1.5615035369433806e-10, - 1.759112899362933e-10, - 1.7737257309414288e-10, - 1.6537627011345688e-10, - 1.5143941362769323e-10, - 1.5433268947292435e-10, - 1.6848345160113167e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Employment-services=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.137758582045434e-10, - 5.034666020163711e-10, - 4.843608577400922e-10, - 5.044826692540135e-10, - 5.020163313845171e-10, - 4.804558665993894e-10, - 4.4036900550633407e-10, - 4.2792524908144987e-10, - 4.900000280002136e-10, - 4.4992190142722505e-10, - 3.9057607821213846e-10, - 3.96171387897792e-10, - 3.923400666787555e-10, - 3.4567818452292345e-10, - 2.894772606758093e-10, - 2.2946499287507645e-10, - 2.010612138225881e-10, - 1.799912920389568e-10, - 1.460955731274811e-10, - 1.7597383315772848e-10, - 1.4113776626150587e-10, - 1.0943943451305518e-10, - 9.873978550296586e-11, - 9.614983876551553e-11, - 9.481055880690858e-11, - 1.0877773508404623e-10, - 1.0937527300484465e-10, - 1.0414091143813894e-10, - 9.241956106418503e-11, - 9.179450818451526e-11, - 1.0312352217335303e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Employment-services=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.683090942197317e-9, - 1.59896436204783e-9, - 1.0156719150544393e-7, - 2.9312102202397263e-8, - 3.826325047261109e-8, - 1.862365470244074e-8, - 1.4230242500313581e-8, - 1.157679009232984e-8, - 1.0475965069136236e-8, - 1.0154030456728908e-8, - 9.124187394532255e-9, - 8.625159638363432e-9, - 7.742319969192978e-9, - 6.6526916462804726e-9, - 5.594231477519057e-9, - 3.6698658077082407e-9, - 2.2923333068451056e-9, - 1.4774430835573435e-9, - 9.882813698282474e-10, - 1.111274440155644e-9, - 9.08157998061104e-10, - 7.284126708458184e-10, - 6.896855177647361e-10, - 6.542219304787671e-10, - 6.505476758668431e-10, - 9.34160902465956e-10, - 1.3026996008588126e-9, - 1.205905414996287e-9, - 1.0404784594990545e-9, - 1.021707992253552e-9, - 1.121115986368108e-9, - 1.683090942197317e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Employment-services=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.776522470622115e-9, - 5.6353981424027175e-9, - 5.198301045386113e-9, - 6.3390989800666105e-9, - 8.233038182343825e-9, - 8.38736164751388e-9, - 6.467686394671867e-9, - 5.740976658479454e-9, - 6.491554415284154e-9, - 5.620916697925551e-9, - 4.6371711232774534e-9, - 4.750769454734624e-9, - 4.57425894099459e-9, - 4.31483643179627e-9, - 3.799523584136846e-9, - 3.183978380907854e-9, - 2.8459794850194617e-9, - 2.549128952265332e-9, - 2.0679390918477665e-9, - 2.2391319799993408e-9, - 1.8397276151357815e-9, - 1.7673795385938029e-9, - 1.6183002740637829e-9, - 1.3972453763996391e-9, - 1.3016849855135648e-9, - 1.3704760949593791e-9, - 1.8989465016935775e-9, - 2.2596762511340855e-9, - 2.8473386673399008e-9, - 3.414685072932069e-9, - 2.7186964906212854e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Employment-services=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.204747638130116e-9, - 7.291815452806637e-9, - 6.65099310400383e-9, - 6.643663086018827e-9, - 6.483546558770488e-9, - 6.115514387910722e-9, - 5.565605183705235e-9, - 5.331666136582765e-9, - 5.998464727231231e-9, - 5.343908424531927e-9, - 4.225051836873855e-9, - 4.1579269530458236e-9, - 3.936402780793678e-9, - 3.5851457766095806e-9, - 3.0532578452788087e-9, - 2.3566700860105212e-9, - 1.8981195593018188e-9, - 1.6150502170298821e-9, - 1.0705116575557822e-9, - 1.2889462322293609e-9, - 8.919353929315866e-10, - 7.602822790930698e-10, - 6.784210548652512e-10, - 6.705878338026855e-10, - 6.61495165437617e-10, - 7.902347086616982e-10, - 8.385605981929584e-10, - 7.858347331251248e-10, - 6.927425751853057e-10, - 7.266565752898898e-10, - 9.801459342997967e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Employment-services=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.862135255576022e-10, - 1.0878121189268265e-9, - 1.041808150651276e-9, - 1.009498309076107e-9, - 1.194316073957482e-9, - 1.2223353557494277e-9, - 1.0939128107329334e-9, - 1.0743579045853967e-9, - 1.0801500776902933e-9, - 1.0787273089128486e-9, - 9.6294251012096e-10, - 9.73244648473653e-10, - 9.42206910566708e-10, - 7.896695692836629e-10, - 6.358649599688338e-10, - 5.300478903294959e-10, - 4.735646690801738e-10, - 4.1481117083058506e-10, - 3.321039092615416e-10, - 4.183337091200261e-10, - 3.5935104067332707e-10, - 2.918309494809972e-10, - 2.797774978837607e-10, - 2.7865843415944585e-10, - 2.738880058991698e-10, - 3.536586074088546e-10, - 3.672965656665101e-10, - 3.459790203624215e-10, - 3.385724300678193e-10, - 3.492513734818498e-10, - 3.7920547623270997e-10, - 4.945969597528534e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Employment-services=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.1101740188970275e-9, - 1.2761924333586523e-9, - 1.139958175558014e-9, - 9.23599494363845e-10, - 8.349072352818085e-10, - 7.332206474005019e-10, - 6.68197364175226e-10, - 5.904133307839661e-10, - 5.652560980683333e-10, - 5.370920810773871e-10, - 4.914935429591846e-10, - 5.19110384458016e-10, - 6.097756448978799e-10, - 6.274874384531716e-10, - 6.11938170946532e-10, - 5.306880137692362e-10, - 4.34345149947578e-10, - 3.532717648433449e-10, - 2.78838647004281e-10, - 2.447302869358622e-10, - 2.1161395726898666e-10, - 1.999663715419583e-10, - 1.7222188939448548e-10, - 1.661731358677616e-10, - 1.5723403506211836e-10, - 1.4907401639918925e-10, - 1.4715360783823143e-10, - 2.0527400317453146e-10, - 2.0611662723484323e-10, - 1.7302312543638955e-10, - 1.3063306689712583e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Employment-services=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.7212007511743103e-9, - 1.3464599169331997e-9, - 1.2827099614492747e-9, - 1.4234907644887445e-9, - 1.5352390249885136e-9, - 1.7463896306355779e-9, - 1.6112827695649245e-9, - 1.4788932577056743e-9, - 1.690288545138195e-9, - 1.2819402795522083e-9, - 1.213999159834043e-9, - 1.3869807088652306e-9, - 2.3332808381792924e-9, - 1.8137774901472325e-9, - 1.4518915952150364e-9, - 1.0130107375545766e-9, - 8.767885841165256e-10, - 7.189381924775918e-10, - 5.593272314538987e-10, - 7.831400243661966e-10, - 6.681516299125872e-10, - 1.4933977642224088e-9, - 6.491709286079517e-10, - 8.414898276311877e-10, - 1.3844489557800017e-9, - 2.096463015918201e-9, - 2.265132482013433e-9, - 1.5521373982546747e-9, - 1.1148518398129282e-9, - 1.135893441357806e-9, - 1.9570410496358557e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Employment-services=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.5781139521607714e-10, - 3.2727228614389705e-10, - 3.2838265013607827e-10, - 3.2514414143728614e-10, - 3.2879901016061146e-10, - 7.135778501312555e-10, - 6.579193993078953e-10, - 6.379762191105582e-10, - 6.374188549478177e-10, - 6.372138757857436e-10, - 5.679636655421136e-10, - 5.816552219914284e-10, - 6.34180510136759e-10, - 6.096186465564842e-10, - 5.752690297796922e-10, - 5.502005498848308e-10, - 5.118540854370622e-10, - 4.4250506832751604e-10, - 3.6804684512587677e-10, - 3.8624030456285057e-10, - 3.4373929703810174e-10, - 3.0873768807278824e-10, - 3.149946354726111e-10, - 2.7542142966388987e-10, - 2.6117163926593e-10, - 2.7129589043422446e-10, - 2.554036585732527e-10, - 2.2973609718288748e-10, - 2.1879276410913792e-10, - 2.0571219802763364e-10, - 1.8998009100876892e-10, - 3.5781139521607714e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Employment-services=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.1713109858772115e-10, - 2.70483155888106e-10, - 2.579213884346391e-10, - 2.2828473803781704e-10, - 3.17697954849375e-10, - 2.4715913975293154e-10, - 2.329790296740931e-10, - 2.2561740984362232e-10, - 1.5690259134950464e-10, - 1.734107222786886e-10, - 1.6434384079074973e-10, - 2.2973846165324786e-10, - 1.9471122801467227e-10, - 1.508618607722298e-10, - 1.1741944578159174e-10, - 9.59296906526609e-11, - 8.826731374132375e-11, - 7.30475168459187e-11, - 6.576571965398921e-11, - 7.97045840049926e-11, - 6.444076777340561e-11, - 5.887242937777987e-11, - 5.725925057814855e-11, - 5.292430281501851e-11, - 5.437974165874744e-11, - 6.059121700364319e-11, - 6.176892727534946e-11, - 6.295720267297571e-11, - 7.053562206928709e-11, - 7.43359667715732e-11, - 6.637102257903776e-11, - 9.43937092777626e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Employment-services=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.2228424264203657e-9, - 1.0215147289969077e-9, - 9.854330278342185e-10, - 1.0576369792402111e-9, - 9.397783939361182e-10, - 8.680438962087323e-10, - 7.814843442256621e-10, - 8.720786496150835e-10, - 8.180601181180037e-10, - 8.308507211094841e-10, - 8.973871731186874e-10, - 8.89517764538893e-10, - 8.404985475302676e-10, - 6.90111395651121e-10, - 5.819607055517003e-10, - 5.615704345551536e-10, - 5.286941213376516e-10, - 4.643142653625765e-10, - 3.9964433176906226e-10, - 4.036714928729176e-10, - 4.070083969401075e-10, - 3.7851257181832196e-10, - 4.008494950749484e-10, - 3.7397386124744165e-10, - 3.6845513558196465e-10, - 4.0571335345961743e-10, - 4.045042472916151e-10, - 3.858401450947378e-10, - 3.6394049571648567e-10, - 3.6422657804743154e-10, - 3.2168660869159264e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Employment-services=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.19740654301943e-9, - 5.234858242933122e-9, - 4.908737892080376e-9, - 5.202236190299607e-9, - 7.643127565709878e-9, - 6.144149812873088e-9, - 5.972822742246016e-9, - 6.549721250101207e-9, - 6.170061530264649e-9, - 6.1870194057344435e-9, - 6.876555400490725e-9, - 6.452232993577792e-9, - 6.06017118259789e-9, - 4.9448483856919925e-9, - 4.387297880308255e-9, - 4.0948195178661094e-9, - 3.9118068002498575e-9, - 3.3320902917528074e-9, - 2.816543614057952e-9, - 2.9859031570672235e-9, - 3.0431762157492474e-9, - 2.794386630453873e-9, - 2.8747165624348927e-9, - 2.728521752915543e-9, - 2.66198529609007e-9, - 3.020011536821911e-9, - 2.8623479314206478e-9, - 2.636145442311217e-9, - 2.4268169306021973e-9, - 2.4362601067240896e-9, - 1.8586427297627957e-9, - 3.6029298423278804e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Employment-services=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.74923778878409e-10, - 4.836077026923173e-10, - 4.468385709319879e-10, - 4.100637135956243e-10, - 3.95016364472271e-10, - 3.547903511026967e-10, - 3.755280951885893e-10, - 3.64784094956524e-10, - 4.0507890961919263e-10, - 4.117701674088893e-10, - 4.1396115226404027e-10, - 4.702812037951896e-10, - 4.998135424423141e-10, - 3.312350124163089e-10, - 2.5804648525781235e-10, - 2.3100478549838373e-10, - 2.220094945537204e-10, - 2.0445816675473223e-10, - 2.1718767326870367e-10, - 2.1137028812872983e-10, - 1.6951586010484759e-10, - 1.5547743878138445e-10, - 1.6512410992201708e-10, - 1.7837988782609946e-10, - 1.8872039805275306e-10, - 2.0354198709383828e-10, - 2.197255326594999e-10, - 1.8712863826373745e-10, - 1.7713077794934034e-10, - 1.866551952231653e-10, - 1.9804846468577235e-10, - 2.5127468803084047e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Employment-services=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.8450034693010227e-8, - 1.546059823934279e-8, - 1.542781310715308e-8, - 1.5357560018170388e-8, - 1.5310722838859597e-8, - 1.537629488989474e-8, - 1.5657310819136816e-8, - 1.6341117557173354e-8, - 1.668770553745057e-8, - 1.7020241470606708e-8, - 4.279176375958684e-8, - 4.153421751447594e-8, - 4.119740952180043e-8, - 4.9759359920726065e-8, - 4.214046737687904e-8, - 4.056902002107481e-8, - 3.510276923976488e-8, - 2.921340175553649e-8, - 2.360370896782549e-8, - 2.3342760439911596e-8, - 2.0975975899605656e-8, - 1.7827356130108422e-8, - 1.5625369027338595e-8, - 1.4034378326169809e-8, - 1.395996802485107e-8, - 1.4083958663547776e-8, - 1.3470967145815928e-8, - 1.3684476656341837e-8, - 1.3714099130533393e-8, - 1.4227632648195737e-8, - 1.2305669351745952e-8 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Employment-services=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.796751773761357e-9, - 3.5971756147306102e-9, - 4.90917789306863e-9, - 4.806652028501496e-9, - 4.730828929960984e-9, - 4.579432094602024e-9, - 3.5158683280249053e-9, - 2.992149274625343e-9, - 2.71092942480424e-9, - 2.4663643551710153e-9, - 2.6217747725888847e-9, - 2.8489033695004944e-9, - 2.786681463439148e-9, - 2.5605263930728716e-9, - 2.150405012693873e-9, - 1.949176183839288e-9, - 1.8557487789116924e-9, - 1.6611100297346072e-9, - 1.407273446365517e-9, - 1.5065712958593616e-9, - 1.643455865863697e-9, - 1.2940188965771495e-9, - 1.1601875163639004e-9, - 1.1393681469874365e-9, - 1.114241705516765e-9, - 1.2626191779149635e-9, - 1.7098099248588078e-9, - 1.5659179072968425e-9, - 1.4118403982305787e-9, - 1.377342298362335e-9, - 1.1946214059428357e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Employment-services=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.393761317328456e-9, - 1.8606116718682774e-9, - 1.8274030762121456e-9, - 1.358314970403508e-9, - 2.4847104236290266e-9, - 2.0543456931083335e-9, - 2.0336160043405693e-9, - 2.1187348604857853e-9, - 2.04989410637815e-9, - 2.031847719695263e-9, - 2.257116564219875e-9, - 2.220297846039899e-9, - 2.012522588867783e-9, - 1.6104878397097065e-9, - 1.4134546013274925e-9, - 1.3992930783920987e-9, - 1.343821601686782e-9, - 1.2119565109675713e-9, - 1.0911001991541689e-9, - 1.1244775601893531e-9, - 1.189130216501869e-9, - 1.1116221100976748e-9, - 1.1752585884753654e-9, - 1.0940263325839863e-9, - 1.0528616925358749e-9, - 1.2166940467083422e-9, - 1.181747198549706e-9, - 1.12663799541602e-9, - 1.0359275170063722e-9, - 1.0609771420442678e-9, - 7.224195168945322e-10, - 1.3308629782468121e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Employment-services=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.112438538512275e-10, - 7.33125958775729e-10, - 7.588671776234038e-10, - 1.3105264905230808e-9, - 1.0782358404898976e-9, - 8.329084652088946e-10, - 7.259796395593802e-10, - 6.876880182599417e-10, - 6.935382781175441e-10, - 6.438995573518313e-10, - 5.599812164730391e-10, - 5.350507307755583e-10, - 4.2805106798771405e-10, - 3.970949039406018e-10, - 3.1271543994304483e-10, - 2.475954615935747e-10, - 1.8868804658964256e-10, - 1.6500639099514628e-10, - 1.3671060799931985e-10, - 1.60673196123945e-10, - 1.338749836509255e-10, - 1.216562463492018e-10, - 1.0884706012183055e-10, - 9.813384871457972e-11, - 9.257762538278879e-11, - 1.0501161238361218e-10, - 1.2707277240094804e-10, - 1.3812505434741857e-10, - 1.3207768347025147e-10, - 1.1833872183499585e-10, - 1.0140374278704301e-10, - 1.913774601134251e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Employment-services=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.973086665605454e-9, - 4.376532807162302e-9, - 4.530783487175431e-9, - 4.904248379056404e-9, - 5.4145782060284125e-9, - 4.60160351922804e-9, - 4.334544447495378e-9, - 4.405549424660258e-9, - 4.107756645562575e-9, - 4.024947724778729e-9, - 6.2151008657938976e-9, - 5.81383313854309e-9, - 5.002975789422577e-9, - 4.040665278911325e-9, - 3.4735638149917798e-9, - 2.8721203766049818e-9, - 1.5087403533056528e-9, - 1.2884726739696084e-9, - 1.1653246473935315e-9, - 1.3290792055198088e-9, - 1.1174859364288187e-9, - 9.571065464885775e-10, - 9.486090587225282e-10, - 6.454637796048748e-10, - 7.920362151607683e-10, - 9.338839116609724e-10, - 8.364614069083e-10, - 7.91472673568482e-10, - 7.203643048291656e-10, - 7.201020209000927e-10, - 5.132844069205394e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Employment-services=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 9.775065734137517e-10, - 5.462330167061792e-10, - 5.799637995677329e-10, - 6.030177525698423e-10, - 6.42903760970135e-10, - 6.21511757167626e-10, - 5.512669259867459e-10, - 5.22341416336016e-10, - 4.983538938996184e-10, - 4.811727299372192e-10, - 4.588738498227424e-10, - 4.88967751921622e-10, - 5.187843928375766e-10, - 5.071566372700339e-10, - 5.025454277559237e-10, - 5.047309010495417e-10, - 5.208921908854938e-10, - 4.631217743909217e-10, - 3.9604381399923977e-10, - 3.4817300209664314e-10, - 3.042182542222641e-10, - 2.750355099166685e-10, - 2.6755502063946557e-10, - 2.3981527474277423e-10, - 2.0984991937975052e-10, - 1.87514094699341e-10, - 1.6651973726303592e-10, - 1.5610049876020095e-10, - 1.4512534461404517e-10, - 4.277221253147329e-10, - 3.2717443520434884e-10, - 3.2717443520434884e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Employment-services=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.087755794364842e-11, - 7.959857383943719e-11, - 7.553561298939363e-11, - 7.902010010281759e-11, - 6.844384593641012e-11, - 6.283967103799058e-11, - 5.823408169534661e-11, - 5.557055192578407e-11, - 5.553558221061867e-11, - 5.1719580571247907e-11, - 5.13242116920264e-11, - 4.999577648137097e-11, - 4.753970764041059e-11, - 4.071092457094938e-11, - 3.5197139334555527e-11, - 3.0717413580182134e-11, - 2.71307970625568e-11, - 2.1204280204681914e-11, - 2.1745012729418868e-11, - 1.9681245637545226e-11, - 1.5922509025983206e-11, - 1.516140560310172e-11, - 1.567050017402923e-11, - 1.5688938492792828e-11, - 1.454543702074694e-11, - 1.4356425039467233e-11, - 1.3378084268720649e-11, - 1.177081558653765e-11, - 1.1743312333696334e-11, - 1.1245411151374746e-11, - 9.758498701952369e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Employment-services=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.1529624617980296e-9, - 1.9764141968790334e-9, - 1.9884483889304515e-9, - 1.527203552522857e-9, - 1.271610450630525e-9, - 1.0233329001301955e-9, - 8.695133780677701e-10, - 8.210492798308158e-10, - 8.691784457204516e-10, - 8.025475568624728e-10, - 7.156944837530039e-10, - 6.764529960305619e-10, - 6.633564409144359e-10, - 6.045127816870116e-10, - 5.448199164834124e-10, - 4.5876291822172506e-10, - 4.241267669890006e-10, - 3.91787444202797e-10, - 3.0646530782743785e-10, - 2.886393301435167e-10, - 2.5540889952647954e-10, - 2.2436274025154401e-10, - 2.0177127548811115e-10, - 1.8689184395560353e-10, - 1.7303542481376405e-10, - 1.7201309752590174e-10, - 1.6256148282984883e-10, - 1.5224783324770683e-10, - 1.4134610657593228e-10, - 1.3492605448537816e-10, - 9.911878968370693e-11, - 2.834609316939609e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Employment-services=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.244653373581369e-10, - 2.4655239307594187e-10, - 2.092364227576333e-10, - 1.992407168806427e-10, - 1.7711603362543174e-10, - 1.66884499150468e-10, - 1.592590562446216e-10, - 1.9929336043097448e-10, - 2.729698485583907e-10, - 2.613897937168599e-10, - 2.5460425345301133e-10, - 2.9202851308323173e-10, - 2.697674601737636e-10, - 2.449424300765316e-10, - 2.226775388170912e-10, - 2.0573789958087374e-10, - 1.7257535938209106e-10, - 1.466100103626687e-10, - 1.340846956677633e-10, - 1.428062193577235e-10, - 1.2052013979636834e-10, - 1.0665576522318984e-10, - 9.568410038804669e-11, - 9.042825557592327e-11, - 1.0568580776525442e-10, - 1.0974431070985691e-10, - 1.092493901007356e-10, - 1.001409085957326e-10, - 8.894397304926112e-11, - 8.402174860440022e-11, - 7.221295870813354e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Employment-services=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.727841997583087e-10, - 2.5132479649354907e-10, - 2.3018587490275273e-10, - 1.9897890705937719e-10, - 1.8384084072357604e-10, - 1.8601702417792692e-10, - 1.6620510271822512e-10, - 1.7664045189524075e-10, - 3.9090352776901817e-10, - 2.657831425298641e-10, - 2.2597122903321234e-10, - 2.336597996786135e-10, - 1.8859187501324282e-10, - 1.5295660854997813e-10, - 1.5056248494092336e-10, - 1.3026963893351938e-10, - 1.0793521947092257e-10, - 9.236106490105289e-11, - 7.929778203272856e-11, - 7.644833658600088e-11, - 5.5913558118900695e-11, - 4.795238638704624e-11, - 4.684759738452033e-11, - 4.829461262616707e-11, - 4.975220654402019e-11, - 5.218072507426235e-11, - 4.985634469774623e-11, - 4.646428492200771e-11, - 4.6130015452280066e-11, - 4.3910627476692484e-11, - 3.738349862888619e-11, - 8.118309336111484e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Employment-services=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 9.657821188724173e-10, - 7.857607730266232e-10, - 6.626691594776033e-10, - 6.459087603622671e-10, - 5.523567056729507e-10, - 4.935954129994232e-10, - 4.476582826538613e-10, - 4.749953629408657e-10, - 6.214063094687824e-10, - 5.349127720933173e-10, - 5.620912036588712e-10, - 5.990782975514363e-10, - 5.621103261625012e-10, - 5.512462123826996e-10, - 5.098838349995573e-10, - 4.5736379237868957e-10, - 3.8902379592632614e-10, - 3.212583606453194e-10, - 2.7744042232197956e-10, - 2.8833689352049497e-10, - 2.464861276647122e-10, - 2.221871870383467e-10, - 2.0067157544618298e-10, - 1.8802214897797423e-10, - 1.8034629529134484e-10, - 1.7823686348264655e-10, - 1.74938229976056e-10, - 1.7136462590677223e-10, - 1.6330197614696122e-10, - 1.5399791382560854e-10, - 1.349417443062101e-10, - 2.8893498671841487e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Employment-services=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.2335195174216532e-10, - 1.4689313631536367e-10, - 1.4125578636705633e-10, - 1.3370138076085097e-10, - 1.1608710048233473e-10, - 9.670244181571418e-11, - 9.213832547112496e-11, - 1.014471931167448e-10, - 1.565227200342211e-10, - 1.2289134398574672e-10, - 1.0630393361676424e-10, - 1.1423182890374734e-10, - 1.0099704143389447e-10, - 9.047734976014412e-11, - 8.125570814729344e-11, - 6.993253003785636e-11, - 6.28550456480134e-11, - 5.706054910149245e-11, - 6.449678890241078e-11, - 7.256802746626557e-11, - 5.976922621310325e-11, - 5.4882488052810607e-11, - 5.419939232708977e-11, - 4.7899207455096406e-11, - 4.6762212269577663e-11, - 4.733337674444968e-11, - 4.656986905882426e-11, - 4.2982904559029434e-11, - 4.0467391643218627e-11, - 4.2557238002700236e-11, - 3.864146291898212e-11, - 6.768603450440899e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Employment-services=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.2368675244107162e-10, - 1.7065697825510254e-10, - 1.4795229344586616e-10, - 1.0796106988606411e-10, - 1.0302886919085747e-10, - 1.521076619319049e-10, - 1.3382789787917327e-10, - 1.1064849529604851e-10, - 1.059065010570365e-10, - 9.274733287094824e-11, - 7.84425338575675e-11, - 7.461283068538841e-11, - 7.40830568474386e-11, - 7.94009543814066e-11, - 7.469568845815826e-11, - 6.727247683853991e-11, - 6.106293535829366e-11, - 5.6996496529951067e-11, - 5.4676213142682856e-11, - 6.877431396231337e-11, - 5.830962824744893e-11, - 5.253752371466527e-11, - 5.1802947234046625e-11, - 4.868008752962451e-11, - 4.6694752654852045e-11, - 5.240353041403537e-11, - 5.669961203068793e-11, - 5.25233533938608e-11, - 4.995058215269613e-11, - 4.881703538814887e-11, - 5.441670669466093e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Employment-services=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.615358771674626e-10, - 1.6619516961190016e-10, - 1.742903776821678e-10, - 1.5669470726460542e-10, - 1.1093137268749709e-10, - 7.681975567830345e-11, - 7.061163306617565e-11, - 6.822866627709254e-11, - 7.062547482043598e-11, - 1.0214426664363624e-10, - 9.410354839636838e-11, - 1.1073536224030056e-10, - 1.2055819780726374e-10, - 1.1076006187833126e-10, - 9.15000429120003e-11, - 6.888477796195881e-11, - 5.638181177811355e-11, - 4.4971269852179507e-11, - 3.710221901748173e-11, - 3.831442166217467e-11, - 2.9327635433195006e-11, - 2.5113174333991402e-11, - 2.6573604683383145e-11, - 2.6645698588587216e-11, - 2.7185996262203967e-11, - 3.75205596033602e-11, - 3.84141349028278e-11, - 3.3956627532834857e-11, - 3.6834868259452995e-11, - 3.777776410400935e-11, - 4.368710025621237e-11, - 5.048842893091514e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Employment-services=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.362938084150102e-10, - 3.995699263774229e-10, - 3.3133816303306207e-10, - 3.202071934879599e-10, - 2.944623995745975e-10, - 2.8015932502696783e-10, - 2.7275425884805553e-10, - 2.514862152977334e-10, - 2.4867178964215577e-10, - 2.665744995328587e-10, - 2.693490253093346e-10, - 2.8712666426325923e-10, - 8.063525809755981e-10, - 6.020206879764525e-10, - 4.604090270667595e-10, - 3.7969760542091677e-10, - 3.237052178664731e-10, - 2.6066798044264196e-10, - 2.0682709580166037e-10, - 2.2698300129790847e-10, - 1.7796298222920187e-10, - 1.4220147265900743e-10, - 1.387041170691348e-10, - 1.3666044703495616e-10, - 1.430499460180097e-10, - 1.2791945059370158e-10, - 1.380908790928212e-10, - 1.2041104471880101e-10, - 1.4860339938822684e-10, - 1.7281346958766201e-10, - 1.947308655542656e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Employment-services=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.985373533619416e-9, - 1.3869530517599715e-9, - 1.3276316146535848e-9, - 1.3783271671432213e-9, - 1.0803866917556927e-9, - 9.168531169973669e-10, - 8.906398002523589e-10, - 8.530027819312396e-10, - 8.985347746488839e-10, - 1.0002525776212548e-9, - 9.788433101778936e-10, - 9.786631324487717e-10, - 9.379754620470534e-10, - 8.629169316460927e-10, - 7.692226734973491e-10, - 6.719641514508375e-10, - 5.874111468271764e-10, - 5.312662966671751e-10, - 4.5325365011290233e-10, - 4.55542463401554e-10, - 3.7565510390774857e-10, - 3.2160830827813924e-10, - 2.882444188216689e-10, - 2.761768202549414e-10, - 2.7690709206536053e-10, - 2.9066626656009975e-10, - 2.8875024006898644e-10, - 2.6847424882538524e-10, - 2.5528508134773846e-10, - 2.513667840279083e-10, - 2.5955819043258525e-10, - 4.779656135394218e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Employment-services=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.410152471370179e-9, - 1.1466617797400011e-9, - 1.019671631333595e-9, - 1.039706806167052e-9, - 1.0691787856245605e-9, - 8.128387335694774e-10, - 9.083794289271525e-10, - 7.606863273359895e-10, - 7.1727952412421e-10, - 6.848553882876475e-10, - 5.682054502752132e-10, - 5.553930241356734e-10, - 7.46553127789206e-10, - 8.299387687301839e-10, - 6.151882573207137e-10, - 4.746752514154333e-10, - 3.7279771785718523e-10, - 2.953152188080826e-10, - 2.171522860816948e-10, - 2.0998361953419397e-10, - 1.7825879759315515e-10, - 2.2285613797392791e-10, - 1.8547745551980146e-10, - 1.9196487463786894e-10, - 1.4920412733927666e-10, - 4.154598252661402e-10, - 4.209361542770311e-10, - 4.2669772643804986e-10, - 4.3240224126464415e-10, - 4.3816376990366893e-10, - 3.9093630408965064e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Employment-services=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.2647546138775173e-9, - 1.1493512969424834e-9, - 9.710884075054728e-10, - 8.569260598141307e-10, - 7.003372025456966e-10, - 6.216807877724455e-10, - 5.955118931053609e-10, - 5.462241413430031e-10, - 5.952638380982135e-10, - 6.831723558242414e-10, - 5.907700503757331e-10, - 6.046119869837776e-10, - 6.08495026644333e-10, - 6.327042346056084e-10, - 5.141716605216791e-10, - 4.149178244468986e-10, - 3.760087483853515e-10, - 2.9643737216315406e-10, - 2.5315154736974234e-10, - 2.6489059673729825e-10, - 2.1503116701119133e-10, - 1.8370241683906768e-10, - 1.669626330036577e-10, - 1.6686026552746743e-10, - 1.6790335016368086e-10, - 2.1865072889063888e-10, - 2.2833907742724888e-10, - 2.053650022398714e-10, - 1.8940854993108515e-10, - 1.9821915909380634e-10, - 2.2292797791625557e-10, - 3.2047887925962505e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Employment-services=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.9051283631609894e-9, - 1.4433804238398153e-9, - 1.207675631725949e-9, - 1.1404166486854039e-9, - 1.0126573263980954e-9, - 7.929520806744103e-10, - 7.432126849094236e-10, - 6.861492756947243e-10, - 7.358652833972171e-10, - 8.267508902762427e-10, - 7.9847487630424e-10, - 8.802488937173987e-10, - 8.98234348553707e-10, - 8.328545538982851e-10, - 6.35417309615866e-10, - 5.195795311399778e-10, - 4.1256421929567716e-10, - 3.7043655948617365e-10, - 3.603904463963105e-10, - 3.813457226622511e-10, - 3.040209889351432e-10, - 2.630702738021839e-10, - 2.4778911184710743e-10, - 2.3941721461411677e-10, - 2.5757879354194395e-10, - 2.7607514956683343e-10, - 2.6956541201387926e-10, - 2.454927420534408e-10, - 2.3006220242092825e-10, - 2.461831479975507e-10, - 2.494117227350653e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Employment-services=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.1206845032462818e-8, - 7.749841687720907e-9, - 6.548308453344325e-9, - 5.9136793325619445e-9, - 5.394408367121973e-9, - 5.040335579557809e-9, - 5.067464388527925e-9, - 4.694559481599835e-9, - 4.38606239839236e-9, - 4.224522351411138e-9, - 4.084288815518617e-9, - 3.814429996885764e-9, - 3.7107585405748345e-9, - 3.6192024719221172e-9, - 3.3878551307868472e-9, - 3.1495995702056126e-9, - 2.8262588532627595e-9, - 2.398390256511643e-9, - 2.1411123688928674e-9, - 2.2146176456555267e-9, - 1.8319844801550904e-9, - 1.6334360065196555e-9, - 1.5148740353093002e-9, - 1.4449553757515477e-9, - 1.368222059239179e-9, - 1.214345716190692e-9, - 1.1755906238725961e-9, - 1.1396977913453813e-9, - 1.088270115861477e-9, - 1.080332443579664e-9, - 1.0349751555841807e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Employment-services=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.2747441215025195e-11, - 1.170972556930061e-11, - 1.108226660046812e-11, - 1.0556153490241742e-11, - 9.948902437083142e-12, - 9.513401592797852e-12, - 9.028725118937679e-12, - 8.523408504936712e-12, - 8.094612401489238e-12, - 7.645370631667051e-12, - 7.212008481477591e-12, - 7.063056069991179e-12, - 6.921826657744511e-12, - 6.6371429916738765e-12, - 6.234787148901469e-12, - 5.85503630417012e-12, - 5.520242289185717e-12, - 5.298280416203387e-12, - 5.2471158198567505e-12, - 5.4433086090022144e-12, - 5.265456564146081e-12, - 5.072516322118501e-12, - 4.870035282060178e-12, - 4.6905398098956855e-12, - 4.488461426955669e-12, - 4.315094854945539e-12, - 4.2032372784799894e-12, - 4.034696948493449e-12, - 3.821100985904338e-12, - 3.673735472702375e-12, - 3.627868026568482e-12, - 5.85824230278711e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Employment-services=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.88371432679223e-11, - 4.9299204527341935e-11, - 4.637917660865967e-11, - 4.766923668342006e-11, - 4.075668001482949e-11, - 3.3762262879002e-11, - 3.010141685404129e-11, - 2.7454129673057605e-11, - 2.5946435893965067e-11, - 2.4588726519841262e-11, - 2.269374731631279e-11, - 2.0673502344449517e-11, - 1.9441705388764223e-11, - 1.7647540573086354e-11, - 1.564939640061823e-11, - 1.3735987804286823e-11, - 1.1700021443246545e-11, - 9.125879929319042e-12, - 7.226334793663057e-12, - 6.684042168975996e-12, - 5.684091834459139e-12, - 4.72753759859534e-12, - 4.23101563473455e-12, - 4.022817741690814e-12, - 3.8756421688071325e-12, - 3.817727875761084e-12, - 3.872423140097101e-12, - 3.6481321209019996e-12, - 3.2825188562757177e-12, - 3.308838018917488e-12, - 2.1774212091361724e-12 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Employment-services" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.22835836559245923, - 0.23664900996342533, - 0.2219469348906615, - 0.20313440593069826, - 0.2111071028394965, - 0.21994236280817686, - 0.22860027688432255, - 0.2536027330902781, - 0.264069062062529, - 0.2695923242760312, - 0.3084771157228944, - 0.3184470711701515, - 0.3259257911306028, - 0.3281171294600664, - 0.35713363859767006, - 0.3805957234815221, - 0.41432907910845657, - 0.433227580964573, - 0.4379919025796283, - 0.3811990693985028, - 0.42565473405085086, - 0.4505713628061014, - 0.46307120143080366, - 0.4541867785939135, - 0.4561926331287156, - 0.46920738356608, - 0.460732628543358, - 0.47163040683651886, - 0.4730104576793577, - 0.466242388472224, - 0.4341689531886594, - 0.3786046237528614 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.20975733380412362, - 0.21334884423905723, - 0.21330559345277583, - 0.20792579407224632, - 0.21660322731290862, - 0.22622926060086693, - 0.23055564872000003, - 0.25523195415760075, - 0.2612649197867294, - 0.26076535386534855, - 0.28594974249028626, - 0.2826589520218439, - 0.2753105025793071, - 0.26111968974639793, - 0.26468836321660727, - 0.27033051041817047, - 0.2793505509019559, - 0.27853257510199075, - 0.28119384856302565, - 0.24835547210267164, - 0.2678829984027377, - 0.28421337476419434, - 0.2920302718684949, - 0.2936473786704916, - 0.2966668449807301, - 0.3059262237813129, - 0.30247537183394446, - 0.3094863318710002, - 0.31713667210255503, - 0.3159205541436678, - 0.2787364407736468, - 0.27400965382518044 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.2792217777729759, - 0.26094722251536795, - 0.25957595123211835, - 0.3041023806320484, - 0.3359830649555833, - 0.3712403101994841, - 0.3602886680562685, - 0.391319850981966, - 0.40020994888302036, - 0.401114332826672, - 0.4325845846045381, - 0.42920745080042444, - 0.4124709044557739, - 0.4032570497098079, - 0.42690642408258994, - 0.4501548061553995, - 0.4748743300056254, - 0.476102603456699, - 0.49086922921600473, - 0.4345397880441178, - 0.4467885294890489, - 0.45271191191835664, - 0.4502752541619407, - 0.4252680913424142, - 0.43266161248068385, - 0.43766767516259925, - 0.4269147827048103, - 0.4373472193213799, - 0.45683061512671347, - 0.47809210952350945, - 0.44556676651679766 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.23080927212984736, - 0.22354671078420785, - 0.2267914828094083, - 0.24567207453647835, - 0.2579986674646675, - 0.2547326154322164, - 0.2604975246682647, - 0.2549977167391881, - 0.2411075428871366, - 0.23941284298012439, - 0.25250523441055933, - 0.25289945999336255, - 0.2429431689875802, - 0.2392961737184219, - 0.23823646143204322, - 0.25057299793663573, - 0.272741247167713, - 0.2534090835893767, - 0.2707962210524207, - 0.2635024917796958, - 0.2818995220801459, - 0.3071382065026306, - 0.2993688111981547, - 0.29773890154504173, - 0.2810983273299424, - 0.2718477355452524, - 0.28220781320197214, - 0.3004568596419037, - 0.30506397225875925, - 0.31004978089224267, - 0.28120833615931295 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.1572479815706068, - 0.15760719814785615, - 0.16187548921938563, - 0.17708887610621168, - 0.20311135433322064, - 0.21827099273103007, - 0.23032360799095739, - 0.2566978901068428, - 0.26101947326675023, - 0.26351509006702817, - 0.285633579326111, - 0.2786161916024839, - 0.2655399491963198, - 0.2562890612340541, - 0.25411984822622236, - 0.24979269040941024, - 0.252413025005405, - 0.25984738814678093, - 0.25623929174316284, - 0.23061694174725483, - 0.25951679346402323, - 0.2953496220492719, - 0.3145527248110997, - 0.3296257747356789, - 0.33482567591395945, - 0.3362651843465517, - 0.3388009049773752, - 0.35149462029646955, - 0.3516258760582704, - 0.3495465595178312, - 0.3062093786877831 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.393873244314921, - 0.393873244314921, - 0.393873244314921, - 0.393873244314921, - 0.393873244314921, - 0.2721147272978857, - 0.3022303954581719, - 0.30969151212589713, - 0.2907344475126819, - 0.3008359337406969, - 0.3497331261388971, - 0.37086579224457344, - 0.35863992560220337, - 0.3558076936438662, - 0.36577961338838555, - 0.36412914583629014, - 0.37600381221318313, - 0.3759530939754376, - 0.3614869158371401, - 0.3241295396351857, - 0.3580500914029841, - 0.38367344972118084, - 0.3905354757119078, - 0.3985586938506444, - 0.42780304204212705, - 0.4578909002457174, - 0.4699764081117214, - 0.4925343206501723, - 0.49510355782987064, - 0.5074747375165605, - 0.42024893620291826 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.4259213406388147, - 1.8719892086073804, - 1.6966486467394544, - 1.666466286446488, - 1.444512006403811, - 0.22941227612589066, - 0.22069150746590002, - 0.23333371604839143, - 0.25948644628670947, - 0.24091886202244467, - 0.27188326254570905, - 0.2718732566649779, - 0.28713122403701535, - 0.33350449506109875, - 0.3423546042133075, - 0.3461157158289002, - 0.3782095338549198, - 0.38516287890271184, - 0.37814869812713536, - 0.37142253238825873, - 0.3987921296283493, - 0.4239422303515539, - 0.442514731046751, - 0.4600260881604935, - 0.4721968345834957, - 0.4909122808576037, - 0.5192485914846732, - 0.5416102340143774, - 0.5524146204081449, - 0.5539584658810679, - 0.5618432634648173 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.14778588590651337, - 0.14199638467338388, - 0.14878838746388906, - 0.1404776759952479, - 0.14445609765965817, - 0.14425283199604524, - 0.14286957116799676, - 0.1622226531558089, - 0.1629658373403432, - 0.19256078882818847, - 0.2371838094775013, - 0.22788743917477047, - 0.201128547276336, - 0.18544582872611362, - 0.20708114686593712, - 0.21312230606920485, - 0.21174008992719587, - 0.2252026973398563, - 0.2336156902759653, - 0.18982186820514915, - 0.21798102149064488, - 0.2548977484028709, - 0.2874257946554547, - 0.3020720698484216, - 0.32485598183520015, - 0.3212716124387548, - 0.3128745626444283, - 0.3503409423480227, - 0.389929061011015, - 0.40132156109169953, - 0.3198400156558159 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.35697414390609633, - 0.34590488169480355, - 0.33155267721951176, - 0.314638980923504, - 0.3215853394466525, - 0.33533140345537793, - 0.3424927610735744, - 0.37028082738495705, - 0.38351021186462114, - 0.3935703788529819, - 0.4334627395198877, - 0.4461755551794838, - 0.45319386198579903, - 0.445704147191401, - 0.46867214974021415, - 0.4861975220469315, - 0.5084166886182366, - 0.5256086942237118, - 0.5324886061640879, - 0.4520741656084358, - 0.5126216032733596, - 0.5394867085163949, - 0.5397367619653025, - 0.5344129329672248, - 0.533865790462423, - 0.5308906055879584, - 0.5240639364980558, - 0.5405115314149775, - 0.5544065437552593, - 0.5544220654463063, - 0.5143500789938733, - 0.4793569610694716 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.5441474544852328, - 0.5510901411077911, - 0.533760697411377, - 0.5261208245471782, - 0.5473565075157737, - 0.5722097303267826, - 0.5738846572361269, - 0.6035995512754503, - 0.5934034162238917, - 0.5990502051451994, - 0.6603326939627037, - 0.6329840769816608, - 0.6014842248726391, - 0.5928414032487663, - 0.6267424417044851, - 0.6563208521591704, - 0.6818111833799212, - 0.6877545746725455, - 0.6979363347847182, - 0.6223701351701708, - 0.6980367247769437, - 0.7550306830535127, - 0.7950337383569747, - 0.7988047778603801, - 0.8057790815414854, - 0.8265889670844389, - 0.7953516475914707, - 0.8339176802421201, - 0.846834636757465, - 0.825377127008628, - 0.7785662952524386 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.07698318328520475, - 0.012904107265686082, - 0.005824075393281452, - 0.0007554868397612438, - 0.0003556599071183724, - 0.000053767593073831746, - 0.00009161773696006268, - 0.638470089465787, - 0.7789898864859103, - 0.77634883408788, - 0.7570377422038946, - 0.6527339139461177, - 0.7057005151709373, - 0.7739271820525324, - 0.5627090853057407, - 0.5434787058007519, - 0.5103194340967325, - 0.4589983917339572, - 0.5032830722158271, - 0.39400110256331244, - 0.39416829214279936, - 0.4441752303928204, - 0.4450843536123824, - 0.3966353653520256, - 0.3894172645147788, - 0.3451414644109569, - 0.28108523679298575, - 0.3391606341349785, - 0.40802642026531755, - 0.37815383049423346, - 0.2338740760413475 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.436994875335136, - 7.952265444663215, - 7.159095983110575, - 7.648827489348821, - 0.44875758078433653, - 0.44338668143118914, - 0.4372574216781119, - 0.482808096120087, - 0.510956309380741, - 0.6004078827780351, - 0.672833585991397, - 0.6589285714285725, - 0.6034277282787579, - 0.616975823867947, - 0.6416822494632595, - 0.6508504482050206, - 0.6281773016682377, - 0.6027737186026629, - 0.6136235262153137, - 0.5113487609063277, - 0.623196825992818, - 0.7261970914154107, - 0.7647241907598655, - 0.727178350242965, - 0.6799811813200143, - 0.5706147776658402, - 0.47713841490905334, - 0.528894226284169, - 0.5594186317161441, - 0.5218885992724073, - 0.4911887826212752 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.9897591579490195, - 4.907417374414853, - 4.664304126688808, - 4.548084834834777, - 4.26587290040036, - 3.848096804463576, - 3.43868084742766, - 3.2089190142743784, - 3.343114795451682, - 2.9958739520812796, - 2.4247111800572565, - 0.4915922532761198, - 0.4950334738408154, - 0.5592319921517446, - 0.6356772981386464, - 0.6758531138988386, - 0.6862779767151366, - 0.7238409750030895, - 0.7886788870153985, - 0.7965331786218639, - 0.8224241809209193, - 0.9007657120050063, - 1.0024649556148055, - 1.0054778839509428, - 0.9956083027528824, - 1.008704802353315, - 1.0100301392261437, - 0.9959493841035992, - 0.9304812279581327, - 0.968435334637252, - 0.7049596337563403 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.403347940771072, - 0.3830838856824924, - 0.3910679938531232, - 0.3435283039292354, - 0.3400095155057506, - 0.3733786423833606, - 0.4002284227669925, - 0.39158628004654367, - 0.29632375454764803, - 0.3466649385444792, - 0.4340527066140898, - 0.39633722261429655, - 0.4094879170178663, - 0.4585416577731511, - 0.5098530552503472, - 0.5705072712270286, - 0.5983190789271431, - 0.5993742956544058, - 0.6211150936512541, - 0.4708861707449629, - 0.4956977758929583, - 0.5604923973214675, - 0.5427084049637251, - 0.5191795760463335, - 0.4687529151140182, - 0.3332117124146324, - 0.3114420939156034, - 0.3485305485777777, - 0.4003914062457974, - 0.36049417053804705, - 0.2634263430284766 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.5029979513471005, - 0.5029979513471005, - 0.8620360573432068, - 0.574624203821656, - 0.247211102215105, - 0.324866435467242, - 0.2492863939105616, - 0.29034607225406134, - 0.2269952915189216, - 0.2797011999682125, - 0.4017083147877325, - 0.41498607871171656, - 0.4276783505154632, - 0.4200657664591055, - 0.4878900846404543, - 0.6294110600918356, - 0.6650414484002103, - 0.6812891169055553, - 0.6577613784718417, - 0.5163574568487275, - 0.5430472153538219, - 0.5642698053070156, - 0.5297468019151063, - 0.484158330755217, - 0.4327355665849346, - 0.3779477749172495, - 0.4642764939131342, - 0.48547864732761115, - 0.5409229386205863, - 0.4905062750164247, - 0.3569531230585306, - 0.5029979513471005 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.0532338069575677, - 1.0029284028578365, - 0.9201823888512779, - 1.1079428200697607, - 1.4272207200170361, - 1.39657946598012, - 1.0280090541288076, - 0.8697356108286467, - 0.9403325946992335, - 0.7783872636037389, - 0.6161902314830009, - 0.6031233219461256, - 0.5561424701193876, - 0.5049884287199492, - 0.42873395855014323, - 0.35516627460782063, - 0.3120209613622905, - 0.27471550404961453, - 0.22101630319892626, - 0.23667616415576634, - 0.2999507756288983, - 0.30340424787634757, - 0.24863715706137313, - 0.2235959723555865, - 0.2148408707905733, - 0.09051577545688423, - 0.0334255196463506, - 0.0374965801744747, - 0.06056570101618675, - 0.32625941132880903, - 0.32625941132880903 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.4723007411694005, - 0.4306549257017064, - 0.4471689049478896, - 0.4305104504954625, - 0.4300122803132488, - 0.44035348872265384, - 0.49810190150315803, - 0.5003694884637492, - 0.42222899689002663, - 0.49058365134959697, - 0.6033995743416014, - 0.5942821984459464, - 0.5848593040647168, - 0.569795753407415, - 0.5702761253209999, - 0.6316428921105651, - 0.6153163647119119, - 0.6268214103667037, - 0.6495275746951201, - 0.6049726901315546, - 0.5909438735494207, - 0.6391646363154327, - 0.6272274738386197, - 0.6603046812645312, - 0.6143961753846502, - 0.4965123924888401, - 0.4131893239173323, - 0.4571525986349043, - 0.506213051386994, - 0.4949201698789698, - 0.44245482033612304 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.23443685082847177, - 0.2911782217052009, - 0.2531959427934376, - 0.21783876996166365, - 0.22530725245238117, - 0.2619477597905598, - 0.2976044832518482, - 0.30906311379864515, - 0.22578354009804008, - 0.2815011311846906, - 0.42069717721341604, - 0.36689305443218584, - 0.3550453670790016, - 0.38248829422268654, - 0.40053223901903345, - 0.47205195091658736, - 0.4881068655491712, - 0.47068164842381166, - 0.4797334300158724, - 0.35371651856812286, - 0.3844454735012042, - 0.3878811864003854, - 0.3689054781000745, - 0.3320989788573574, - 0.30487657208090935, - 0.23171778013420521, - 0.20872485210225575, - 0.22632232291116658, - 0.25861150824153745, - 0.2271346191011216, - 0.18001174947508072, - 0.32509542895417193 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.20354906054279728, - 0.27466666666666667, - 0.2839683680805168, - 0.2583762886597934, - 0.22571428571428576, - 0.22549019607843138, - 0.2074978204010457, - 0.18841669800676952, - 0.16214335421015968, - 0.15052015604681424, - 0.1620111731843574, - 0.17479788123780338, - 0.18316178411190265, - 0.21796407185628752, - 0.2822996084895937, - 0.30343546889507866, - 0.29949813825481586, - 0.3024973147153608, - 0.33042992741485167, - 0.24956822107081203, - 0.21349245814685894, - 0.2056742761286557, - 0.16396966620887315, - 0.1701784562459686, - 0.14244131455399087, - 0.1318384549285977, - 0.10345463940355794, - 0.15818443804034557, - 0.1891197548113758, - 0.17500610661205132, - 0.13106746370623407 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.39676237018937227, - 0.33831421890658003, - 0.3058903678859654, - 0.28244749249892825, - 0.2703521621350451, - 0.29176029962546746, - 0.28653530377668296, - 0.26786345324757943, - 0.19369015853084307, - 0.20220544168764212, - 0.3155800428527709, - 0.26540697674418573, - 0.4476779947716446, - 0.573170731707317, - 0.6375596089087052, - 0.6371684315055217, - 0.7355965539211604, - 0.7269901227037042, - 0.23157205059450156, - 0.5923600739184371, - 0.6560497450460816, - 0.5482944513759742, - 0.7462245885769604, - 0.7043373349339743, - 0.47014326647564403, - 0.3996666073080953, - 0.2613844502717784, - 0.499423645068768, - 0.5694907682065063, - 0.5352355370688765, - 0.28480119772322904 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.08107163904881069, - 0.07963799238089474, - 0.09099881841960847, - 0.09751130928763152, - 0.11082462074278783, - 0.27405485042162425, - 0.27005920171449666, - 0.2787782784789387, - 0.2856957392576477, - 0.3262723715853241, - 0.35538361891400383, - 0.3128663600987972, - 0.3287882948586439, - 0.3460920456409818, - 0.3909183126275526, - 0.40736509328290704, - 0.40761514966004636, - 0.4042121249569833, - 0.3836817750025137, - 0.33122086941704937, - 0.34666425423821556, - 0.3527229156260031, - 0.3588930402436869, - 0.3361617422084572, - 0.32181382342519205, - 0.3148237327901924, - 0.30185485882109964, - 0.2944582357915916, - 0.29998048659910614, - 0.295134384738679, - 0.280316347848723, - 0.2887640868277173 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.1336510285192953, - 0.1384113011411059, - 0.1439223573398889, - 0.13673802849848007, - 0.2136213120721283, - 0.19891607502939707, - 0.2154265813695329, - 0.2458171768430526, - 0.20666229871922362, - 0.1881091249898175, - 0.19881198904616076, - 0.2718194187533693, - 0.2510511901644231, - 0.23006177895953572, - 0.23624753211016078, - 0.21876267559793452, - 0.2239483394232418, - 0.21889525694214876, - 0.23566290926257022, - 0.23370199145954146, - 0.2119413331555249, - 0.2299370125364033, - 0.24360875520861403, - 0.23793009505081772, - 0.2520554169740538, - 0.2453127733890918, - 0.23083509131126229, - 0.26039422343992447, - 0.3115287804248856, - 0.3259735457857503, - 0.28664856011233675, - 0.24008627654391632 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.24559320507562657, - 0.22318767749663623, - 0.22172154619387754, - 0.22060751496910044, - 0.20938501462521883, - 0.2267322003838056, - 0.21835974958686474, - 0.2392411786718748, - 0.23403804185449778, - 0.2515436795082892, - 0.2678743165864426, - 0.28209166125441043, - 0.28917614256129087, - 0.2750377699651798, - 0.28107599133760786, - 0.30919159231760646, - 0.3275535979745985, - 0.3457168007659871, - 0.35742350678351176, - 0.28003174420795174, - 0.32233018617834813, - 0.3470003426507503, - 0.34929547896461904, - 0.32777643517317034, - 0.34632408880282195, - 0.3480004048787886, - 0.3535153454944554, - 0.37223824014975837, - 0.38777478364185264, - 0.39316936240789924, - 0.3492672467992805 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.1705610164548523, - 0.15515729353023852, - 0.1498907125588257, - 0.13554006603149021, - 0.21221439084373397, - 0.2065685941950135, - 0.18084165394101775, - 0.18332932613660408, - 0.1858496590479103, - 0.19004257413082237, - 0.17764149598197676, - 0.17700680104360178, - 0.1961688005181969, - 0.18218026683733352, - 0.1910166287579002, - 0.19806637570701308, - 0.19252084644369075, - 0.2055438822722225, - 0.20846301261570652, - 0.19393866552884864, - 0.1998123882749521, - 0.21303548885652024, - 0.22474374421573878, - 0.223497423099059, - 0.21778296741322492, - 0.22677194501672507, - 0.21560858096268168, - 0.2193008314771668, - 0.22949091478330794, - 0.24310265699925868, - 0.20599575648326798, - 0.20569071443437464 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.23494920912061737, - 0.21098043799032917, - 0.20703736810146905, - 0.19914366630952895, - 0.19549337805110983, - 0.20037860607775357, - 0.21774743218972384, - 0.2166059185520419, - 0.22519271817541534, - 0.22269215974660175, - 0.24404303310691922, - 0.26356660634568835, - 0.28431167217680264, - 0.2391527336140344, - 0.22757518785665334, - 0.23599764491543576, - 0.26098249881711977, - 0.27958964394701996, - 0.32254673671067885, - 0.24982746488323673, - 0.2578341762672214, - 0.2769814847037518, - 0.2713914919376785, - 0.2837928032036096, - 0.29000619303346997, - 0.27713638412482905, - 0.28156088169895466, - 0.27340075781221757, - 0.27488588126817537, - 0.2734218049226496, - 0.27778011440401085, - 0.26033340718353043 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.270531248621598, - 0.08072068933165605, - 0.0921136444577633, - 0.08253950379830877, - 0.10560670023254905, - 0.11448197582235864, - 0.11786846210443971, - 0.10696502822496805, - 0.0993796911166272, - 0.08858590500891408, - 0.11196198024564458, - 0.18442755214394288, - 0.2128972555676021, - 0.22430381749533798, - 0.25697036988586885, - 0.27095348841945754, - 0.271869215107513, - 0.2743493282032965, - 0.26516240019771503, - 0.2711882211903997, - 0.28443954512404457, - 0.30098250260200815, - 0.28883977298021357, - 0.2674393599093923, - 0.3128403958228318, - 0.31078171376378144, - 0.33545317167644, - 0.3857905102966025, - 0.4487000288301373, - 0.40762734211106966, - 0.1798703779227375 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.201829143997954, - 0.19998880461067248, - 0.20547022248546287, - 0.16390717236618038, - 0.21481020513099724, - 0.21618487966597175, - 0.24262491972799113, - 0.2665065533146621, - 0.21979185003629084, - 0.19428600566928772, - 0.24856812731704558, - 0.2526121724904236, - 0.22986158365901263, - 0.19436911458591585, - 0.20547573705210068, - 0.2224545639876414, - 0.2417909405954173, - 0.26978641803772513, - 0.2700836547004064, - 0.19582415284761023, - 0.22368890297488975, - 0.2422968662326669, - 0.23876723843469044, - 0.23639108668171116, - 0.23609975533159802, - 0.20989149629421275, - 0.18949978755964855, - 0.18351098583002184, - 0.1873625346901809, - 0.19850090747318574, - 0.1503506912703355, - 0.21438321808344613 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.2097477284824844, - 0.24246867278452325, - 0.23974750301083078, - 0.20066539953150292, - 0.135492465113726, - 0.24155815961241528, - 0.23024699507882845, - 0.28649753966870917, - 0.18144089697365, - 0.21334331277272398, - 0.3602326560656154, - 0.28250958226307765, - 0.23239719401701914, - 0.26751381081189685, - 0.2025380337964414, - 0.21033955285697506, - 0.29516131877111645, - 0.21236336567882136, - 0.2567007222396283, - 0.1863034141620717, - 0.25660611295447056, - 0.31616940212957906, - 0.09163238303543814, - 0.18049906586889172, - 0.1843512606215975, - 0.10666309623647195, - 0.09218109698476239, - 0.13171562100948891, - 0.15496889180499554, - 0.1422092679124427, - 0.08829529543549336, - 0.18222024849560534 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.16877890410773477, - 0.1696354605856404, - 0.17225955492128556, - 0.20253919062007716, - 0.2525863592699334, - 0.24496445940890432, - 0.32112182172559467, - 0.3241029092918786, - 0.33871351757631823, - 0.3207833895373131, - 0.48802257619003736, - 0.4523301646673164, - 0.42616251893086726, - 0.4067904265112, - 0.39303325121410704, - 0.3644921695071388, - 0.2519211875941344, - 0.24525090604404878, - 0.250294572995074, - 0.29291865978504794, - 0.2947671798315733, - 0.36936608550259376, - 0.4035921817403692, - 0.25440783396728406, - 0.2823190176918964, - 0.3383170498927853, - 0.31193239489280095, - 0.33876874431915305, - 0.33454895882578545, - 0.37449599421384455, - 0.3222045535616252 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.05908316486608918, - 0.06662611968632924, - 0.07586676910371112, - 0.09017269035749761, - 0.09001543646282331, - 0.10864634213862968, - 0.0970650764952346, - 0.10520370557350567, - 0.11757331228718663, - 0.11758642385731298, - 0.123442012279919, - 0.13386559208064888, - 0.12409968932201944, - 0.11431148695941266, - 0.11146508946135335, - 0.1439284189792825, - 0.1635346356528874, - 0.16995334846490495, - 0.176588584820757, - 0.16940132905613378, - 0.16024112685691666, - 0.19922074955493804, - 0.20161588863489244, - 0.1953787411036867, - 0.18989659995010708, - 0.17336673786548526, - 0.16649714960303585, - 0.15036107627879375, - 0.14800958178109, - 0.49110455848435836, - 0.41028440074824474, - 0.17376353841472897 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.07053350234153405, - 0.08494240770535494, - 0.08842926925020876, - 0.09834217454863284, - 0.09888084916156713, - 0.10843968034882348, - 0.10385169271606283, - 0.10690717318102244, - 0.11018469179248029, - 0.1145206461280092, - 0.12997236311165647, - 0.12558379633910782, - 0.14264383924429208, - 0.14947913858226936, - 0.17859124963047857, - 0.1960524669494143, - 0.21267941422096578, - 0.20799699748945724, - 0.24097357260139166, - 0.20400519374452408, - 0.22400933248823898, - 0.2454041131957126, - 0.24534430661417908, - 0.2543086130051911, - 0.22967963008117254, - 0.19813189156404534, - 0.19158234910594601, - 0.18791764839298222, - 0.19941240676408017, - 0.18429386507998433, - 0.18663180162054843 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.36038613639137196, - 0.3091503933773974, - 0.3474559581813409, - 0.28722782666942304, - 0.3401312864457184, - 0.32812855333738133, - 0.4086848742563502, - 0.4310270675329919, - 0.4484830337712649, - 0.49966245972491125, - 0.5392149700862235, - 0.550619332822698, - 0.5473913368898875, - 0.5667325791542172, - 0.5973104141452561, - 0.6369949267013926, - 0.6771681432601871, - 0.70517874602272, - 0.7033669194027152, - 0.626088840664866, - 0.7200235607286599, - 0.7939087298732354, - 0.8002861880083865, - 0.8362614116936754, - 0.8640475934112362, - 0.8977924863732716, - 0.9362393906101064, - 1.0159343584416614, - 1.0583180509576104, - 1.0679554996664105, - 1.0554968938424258, - 0.8462022046752985 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.3413192824488077, - 0.3596430951701822, - 0.36972475668019894, - 0.36817289560112515, - 0.382421139088502, - 0.4153234506524314, - 0.3901842019711096, - 0.4823705870738862, - 0.5793730284440062, - 0.5643854286147346, - 0.6484025073868479, - 0.6325068975665297, - 0.6064575260096997, - 0.6152255163318915, - 0.6597185733911857, - 0.6840271690088691, - 0.686753420333012, - 0.6887227517024807, - 0.7141641810710683, - 0.6443861249176521, - 0.6648617315922388, - 0.708549093801611, - 0.6895123562979801, - 0.6717114107314837, - 0.6839413516121785, - 0.6763669027058654, - 0.6707088396930114, - 0.6667283246637669, - 0.6485646848666395, - 0.5948750053704305, - 0.5146186023111051 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.27305758978144745, - 0.28351261067257894, - 0.3030746350782742, - 0.2675481342172472, - 0.2651142785157338, - 0.26312165013142647, - 0.25824551982094324, - 0.27859243283131724, - 0.5296813456607803, - 0.3551412908386009, - 0.4097730847387032, - 0.3903213909551101, - 0.32687620887837565, - 0.3047765478096613, - 0.32216694618259867, - 0.3406726762799921, - 0.3103471631431654, - 0.2943571848512639, - 0.2980828416737327, - 0.24159119668627932, - 0.24299030936640836, - 0.263273530888836, - 0.2459437878817682, - 0.23923576379360492, - 0.23665984596936657, - 0.21160179259805834, - 0.19088993853666442, - 0.2017730443511063, - 0.21002746497245428, - 0.18446303603501146, - 0.17168335370418708, - 0.2433303757680068 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.1939321314323327, - 0.209651411784081, - 0.20779664540310586, - 0.22303130369815435, - 0.24075665856368578, - 0.25946041661569974, - 0.2888672137323018, - 0.35086145735812907, - 0.3780686840062127, - 0.3841115873494292, - 0.4334421928668532, - 0.411555015074608, - 0.4000567994362615, - 0.4230501837063696, - 0.4182684099122008, - 0.41230039216360964, - 0.41245459370823445, - 0.3801418633736686, - 0.33356833243874195, - 0.30219525599249053, - 0.3287482971995157, - 0.29105428877842143, - 0.2746707385743105, - 0.26177419808803526, - 0.2735450419129956, - 0.2720805723888114, - 0.26673003343290075, - 0.29552290854788127, - 0.3021360537334846, - 0.2838292001284105, - 0.25188108907362844, - 0.3037298786631263 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.2499434073840644, - 0.23776574751599205, - 0.24072388636193326, - 0.2367247041623345, - 0.24070842597479475, - 0.25724251971675266, - 0.24801971433687908, - 0.28345514719692794, - 0.39536681103460664, - 0.32590822939439057, - 0.3393916895731717, - 0.3178774104825417, - 0.297727544096379, - 0.3139783726332, - 0.3675433644871334, - 0.35283082795740955, - 0.3562641861612185, - 0.3739217969051282, - 0.4764188520957714, - 0.45185351911319926, - 0.47103736910741595, - 0.5333773190033346, - 0.5409405133519509, - 0.5129207110970266, - 0.47831420866297797, - 0.42989561527710973, - 0.40132650911120576, - 0.40934206940988493, - 0.41713290843089335, - 0.3927586106736082, - 0.3644585910557275, - 0.3975365538830426 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.187044710491717, - 0.16433390033604367, - 0.15256744442975026, - 0.1228129764542811, - 0.1338285838161039, - 0.2414919339240225, - 0.2600501496759239, - 0.2433293033953454, - 0.2459443276900143, - 0.24632650051521163, - 0.2540671693659622, - 0.22666721174249468, - 0.22552489873831244, - 0.2436044068786988, - 0.25840303952623145, - 0.26232550380995134, - 0.2732516189392871, - 0.27527235888679125, - 0.2770149582707892, - 0.2715499932719809, - 0.29697664768972015, - 0.31036707139949665, - 0.322655677637236, - 0.3130565294593949, - 0.31873441309381334, - 0.3452488584210738, - 0.37042171084187225, - 0.37651568457708146, - 0.39257551728902, - 0.38816218947349457, - 0.401736981906518 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.08197238058848197, - 0.08677605337920842, - 0.10868313400759132, - 0.10503271539985569, - 0.09513076427020048, - 0.07528875043387438, - 0.0673020968471254, - 0.06983649577286469, - 0.07030500334641632, - 0.09564898259565034, - 0.1018804818750998, - 0.12371710548036027, - 0.14230590318793604, - 0.1518078359787281, - 0.16545761629733313, - 0.15243829138111595, - 0.14374316387624003, - 0.13327675165405262, - 0.13534000512202035, - 0.10851371089020997, - 0.10865584774696481, - 0.11582512678280837, - 0.11877539067367854, - 0.117422306432624, - 0.11011942820784297, - 0.12900191417740542, - 0.1246667904438881, - 0.1251896786854836, - 0.14634999495298584, - 0.14105362128695328, - 0.16870854838818028, - 0.12069436244877335 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.10359536592526433, - 0.07675043348322157, - 0.06598187472037395, - 0.06909351533708312, - 0.07529948725916719, - 0.09680410259590147, - 0.10428596756013922, - 0.10560850101926184, - 0.10415581961091928, - 0.09827174514942351, - 0.10986375232557628, - 0.11579008082531701, - 0.28382596999168225, - 0.259309429264224, - 0.23847619423989105, - 0.23245876733857532, - 0.23026694603811498, - 0.2266275031150658, - 0.2206090038262426, - 0.19560985056081806, - 0.18933823405370867, - 0.18449209145315468, - 0.1623785946202456, - 0.14617173388438573, - 0.14405478589375575, - 0.10705652050453773, - 0.1252709516900092, - 0.11320283359673329, - 0.14436685749903372, - 0.17695944065872116, - 0.16591816632290657 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.15697191462001417, - 0.1220238666540612, - 0.12513505768679933, - 0.12450675104103506, - 0.12771482770164036, - 0.12599885251490492, - 0.1331651991799774, - 0.1447726025628612, - 0.13702901848867693, - 0.15396888007111775, - 0.16768373720816904, - 0.16601379521933743, - 0.17274807852987417, - 0.19014666947248968, - 0.2291223375085, - 0.2684876111170928, - 0.3053663645352107, - 0.3152211653054636, - 0.29727630209883915, - 0.2644205273902786, - 0.27826164152174687, - 0.3050275975638887, - 0.2744961437109722, - 0.24808299420850818, - 0.22606970375815122, - 0.21287325285895775, - 0.22600313740990738, - 0.24719871974697247, - 0.25194733115155726, - 0.2389596525005379, - 0.2233449477351914, - 0.2337113091879123 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.38175316473190163, - 0.30340181965911395, - 0.25501489416754236, - 0.2608726814539971, - 0.29866076430530636, - 0.26231262356888785, - 0.35334305873675775, - 0.29259010606999863, - 0.20920486481035966, - 0.229117089002201, - 0.29744219659782734, - 0.2273563156516478, - 0.30433570549214467, - 0.3385338940843956, - 0.36198353567210273, - 0.39658652743625145, - 0.36518621607943624, - 0.3113053885970775, - 0.3082166900572591, - 0.18071518869578967, - 0.2853040698801931, - 0.2994301460969869, - 0.26171014252178254, - 0.2476497830303854, - 0.16693827350294183, - 0.2710351103845145, - 0.2710351103845145, - 0.2710351103845145, - 0.2710351103845145, - 0.2710351103845145, - 0.2710351103845145 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.18862669028641624, - 0.19094538902440394, - 0.16518554695365428, - 0.15184495285478414, - 0.14998361834568774, - 0.14533742889210308, - 0.15199461701396993, - 0.14841543743470642, - 0.15007350836991123, - 0.18346578750154066, - 0.15915139715437962, - 0.15387135766500915, - 0.1481556967752714, - 0.1657529971176266, - 0.16770751424802316, - 0.1697104373916279, - 0.17728587750652466, - 0.1643314212636457, - 0.18109595135073872, - 0.16424495687575547, - 0.1634084475976913, - 0.19276505073317116, - 0.18811205283665386, - 0.18086439721436823, - 0.16634749109650857, - 0.15650211509496795, - 0.1471713927819752, - 0.1514528974840055, - 0.15899719677543114, - 0.15852321935617023, - 0.13521383481673396, - 0.16482039584255226 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.3249457681844207, - 0.31301016598608616, - 0.28961791930763603, - 0.2588068050875918, - 0.27463240683030454, - 0.28626252008486985, - 0.26645542674840195, - 0.2647044969632358, - 0.25521132070729735, - 0.2876613108237456, - 0.30531700127838085, - 0.32398630115213684, - 0.32803933627884596, - 0.3565904551243768, - 0.3980237038874104, - 0.40159816472750237, - 0.4379510678142429, - 0.4506900389166803, - 0.41424167749299035, - 0.3704077361182483, - 0.37745112542385145, - 0.3776195747188051, - 0.34121858719227516, - 0.3219947338368643, - 0.33110749721371197, - 0.2937634860142928, - 0.28148627884862676, - 0.2843684723447732, - 0.2850718354632767, - 0.2802311158838799, - 0.3154486823215377 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.34190268336164303, - 0.3340610643723278, - 0.3528175224063561, - 0.36037223884784647, - 0.35884658670624686, - 0.381292145025638, - 0.4001199301794422, - 0.416090683148745, - 0.43962841045747925, - 0.4255786576820662, - 0.42930322180550434, - 0.405085725028674, - 0.3922453520653289, - 0.4067171291804132, - 0.4220765346248721, - 0.4346452236137936, - 0.43314035109060584, - 0.40582137508471205, - 0.38806460650961916, - 0.3463230502570231, - 0.3282941134660107, - 0.3247247087693874, - 0.31651317335804213, - 0.3059164936130461, - 0.31362915283492127, - 0.29995657864746467, - 0.3126009630035081, - 0.3276268314793869, - 0.3373851077618178, - 0.3400479941423705, - 0.3151165520964677 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.09254732067513378, - 0.09660905122318808, - 0.09708914905648137, - 0.0954718039168286, - 0.09893147415563322, - 0.10639223880260988, - 0.10746635564283558, - 0.1111975452655526, - 0.10515261133558818, - 0.10309880805456828, - 0.10691319404412142, - 0.09703546878017007, - 0.09125281274175287, - 0.09034237803120357, - 0.09631480982112203, - 0.0998401410974582, - 0.10642137921520547, - 0.11481533548704533, - 0.1247399883749084, - 0.10954262140058608, - 0.12388210165877973, - 0.1361333735910483, - 0.13692035523691481, - 0.1362526986864446, - 0.13564134171224787, - 0.12438938548123672, - 0.11907713989909376, - 0.12197515934896853, - 0.12291519955972938, - 0.11756173117303646, - 0.10134142890073655, - 0.11394390590037949 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Exports-G&S=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.13614710169620825, - 0.1448787814483421, - 0.1565821967533919, - 0.16702294550299454, - 0.18536748569440345, - 0.17951018078113484, - 0.179232955527011, - 0.1949316445976449, - 0.18342321582160415, - 0.18162696158258518, - 0.20893444816764262, - 0.20312145744492857, - 0.22644745673895691, - 0.26980756534513667, - 0.3106133758288029, - 0.33829857565993143, - 0.3603502555235313, - 0.35434798528715766, - 0.326027140173082, - 0.2474985593892383, - 0.27185332720405025, - 0.2656818934516044, - 0.25492522224539615, - 0.24599254436896983, - 0.235100609074235, - 0.21354079882884855, - 0.19584380053648182, - 0.19692276988220186, - 0.19112103536413888, - 0.1840999235825248, - 0.18496911249680378 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Exports-G&S" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.184362845502563e-13, - 7.116313532601839e-13, - 6.051872436929359e-13, - 6.179622934621829e-13, - 5.623393730698811e-13, - 4.83410833891935e-13, - 5.205737542807771e-13, - 6.103102771333134e-13, - 6.074165268414726e-13, - 6.196054239213424e-13, - 7.084254404647942e-13, - 6.938052535835104e-13, - 6.447004963155486e-13, - 5.356485313274491e-13, - 4.832370281530078e-13, - 4.706933315399993e-13, - 4.441174015807839e-13, - 3.999324630346264e-13, - 3.684653379589023e-13, - 3.986795250260435e-13, - 4.088634753733075e-13, - 3.7073438836636934e-13, - 3.997569490468122e-13, - 3.8030913057315626e-13, - 3.779801564822754e-13, - 4.467495770412349e-13, - 3.991523026523237e-13, - 4.253763660129679e-13, - 3.9474119689052143e-13, - 3.9605724614098404e-13, - 3.9777310200608545e-13, - 4.769558502437216e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.3946016595383536e-12, - 1.3787378458466365e-12, - 1.2415571233166218e-12, - 1.3078164359405635e-12, - 1.2410483554502326e-12, - 1.0867564166652313e-12, - 1.089884257817427e-12, - 1.2182657952609011e-12, - 1.1842123950363043e-12, - 1.2122009801829847e-12, - 1.3839668356612292e-12, - 1.3791528167500274e-12, - 1.2521568209993242e-12, - 1.0246430491465297e-12, - 9.058171086563004e-13, - 8.830443159700802e-13, - 8.618697616689295e-13, - 7.441954876831169e-13, - 6.859357084922993e-13, - 7.404973730066441e-13, - 7.67431309406877e-13, - 7.015321044444298e-13, - 7.489738731052751e-13, - 7.077123460290898e-13, - 7.002888194129032e-13, - 8.035458862496121e-13, - 7.763961515266083e-13, - 7.282813089039506e-13, - 6.700211007343704e-13, - 6.816007475054099e-13, - 6.95733438631966e-13, - 8.99767426130255e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.13454632814635e-12, - 7.694298327294165e-12, - 7.350843413894797e-12, - 9.34477022939958e-12, - 8.208403806423989e-12, - 6.471986439917083e-12, - 5.4842637165373284e-12, - 5.668550639901252e-12, - 5.538957826750372e-12, - 5.473010747654889e-12, - 5.8591790963274336e-12, - 6.477008512495952e-12, - 6.1832707548215584e-12, - 5.114596691536422e-12, - 4.544061290498103e-12, - 4.512795432408131e-12, - 4.372556594743578e-12, - 3.826951839574877e-12, - 3.689351580905633e-12, - 4.444067596740894e-12, - 3.993444628791125e-12, - 3.3095618942363927e-12, - 3.4571153966718023e-12, - 3.220629358372721e-12, - 3.230440275200174e-12, - 3.662613641609179e-12, - 3.5876723364645314e-12, - 3.290089300527369e-12, - 3.1685713926720204e-12, - 3.2029697834628674e-12, - 3.0671442622776365e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.6740315069850321e-12, - 1.5925835614831663e-12, - 1.5173869705580429e-12, - 1.6582049187971735e-12, - 1.5256603631796218e-12, - 1.2700321602197727e-12, - 1.217011581545475e-12, - 1.1028685104216391e-12, - 1.0342375876223822e-12, - 9.965814754743425e-13, - 9.866873008648145e-13, - 9.91539574947264e-13, - 9.13637829990861e-13, - 8.264085652833005e-13, - 7.225987397896113e-13, - 6.915985070617354e-13, - 6.698417169920936e-13, - 5.98805774024618e-13, - 6.499069274033738e-13, - 7.791249229346487e-13, - 7.7074072520726e-13, - 7.140476608777463e-13, - 7.061008441640845e-13, - 6.528040559977593e-13, - 5.862983178689476e-13, - 6.088128133127353e-13, - 6.573989432004048e-13, - 6.44679223458677e-13, - 5.791522876669859e-13, - 5.662329425262566e-13, - 5.652575201159689e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.5346719299203203e-12, - 2.30436234601041e-12, - 2.076346078091702e-12, - 2.3996542850941975e-12, - 2.2429020114120988e-12, - 1.887378741955935e-12, - 1.7740733396974261e-12, - 1.9488972938829266e-12, - 1.8248916802909405e-12, - 1.8427879982851602e-12, - 2.038895053365253e-12, - 1.959128971819915e-12, - 1.763651815083626e-12, - 1.4325202680164049e-12, - 1.2253805206773279e-12, - 1.1527968792759235e-12, - 1.079023407603505e-12, - 9.362263125540259e-13, - 8.885547141222894e-13, - 9.252598408359937e-13, - 9.633584844027488e-13, - 9.049709608206444e-13, - 9.964186939859246e-13, - 9.37170755302645e-13, - 9.62644498178594e-13, - 1.1124121818857272e-12, - 1.086856931502518e-12, - 9.980653687839346e-13, - 8.867031624581223e-13, - 8.829571441027789e-13, - 9.598242238456879e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.170153795414433e-11, - 3.3180891423296934e-11, - 3.209654856632645e-11, - 3.2964022851902834e-11, - 3.187967999493235e-11, - 6.955118642597715e-11, - 6.071757504872373e-11, - 6.067723865866805e-11, - 5.621707186991575e-11, - 5.828365406194388e-11, - 6.364532693088859e-11, - 6.273191403946921e-11, - 5.24477779493415e-11, - 4.0302123141523e-11, - 3.408102369193097e-11, - 3.2765229930400286e-11, - 2.8902422681327665e-11, - 2.4445567306143064e-11, - 2.0777195374952274e-11, - 2.3777818276004154e-11, - 2.4161777213170207e-11, - 2.232075337212721e-11, - 2.6576982442030653e-11, - 2.4792371397164465e-11, - 2.502987737743091e-11, - 2.81082586446283e-11, - 2.73447876491058e-11, - 2.5260419164420323e-11, - 2.3615263994290087e-11, - 2.361589703889229e-11, - 2.5872414674869137e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.0793723595420535e-11, - 1.6045708294540856e-11, - 1.4542781090154546e-11, - 1.4284073750029464e-11, - 1.2381598235793433e-11, - 1.1384976525821568e-11, - 9.925512332801565e-12, - 9.475533026395887e-12, - 8.243372211964034e-12, - 8.057354009458426e-12, - 7.954966245058342e-12, - 6.862034065725971e-12, - 6.2791333318559036e-12, - 5.600768221051239e-12, - 4.821446139765565e-12, - 4.050377070861056e-12, - 3.685197081438632e-12, - 3.0534101664999325e-12, - 2.604903190877829e-12, - 3.1837174978590028e-12, - 2.9385151405403737e-12, - 2.517502943617349e-12, - 2.6678778792220487e-12, - 2.4759303927069733e-12, - 2.4332824541678453e-12, - 2.762593331230929e-12, - 2.9409875142676064e-12, - 2.810968748665091e-12, - 2.48547975423687e-12, - 2.4109272679780526e-12, - 2.313013182868459e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.4199453408397592e-11, - 1.3029844803041346e-11, - 1.1701474106052678e-11, - 1.2131342833415527e-11, - 1.140634173376227e-11, - 9.351368211079651e-12, - 8.63832491126482e-12, - 8.871341784658688e-12, - 8.585582567636278e-12, - 8.626198905532166e-12, - 9.581645678303318e-12, - 9.170321055020935e-12, - 8.281348270137488e-12, - 6.374458200671001e-12, - 5.436506614706725e-12, - 5.405941372012873e-12, - 5.1179555603342235e-12, - 4.4214094995218245e-12, - 4.2145641406011794e-12, - 4.527502309337978e-12, - 4.98106921135073e-12, - 4.9470674034172616e-12, - 5.5365195887677525e-12, - 5.399575039731537e-12, - 5.5211513942991316e-12, - 6.796688614351587e-12, - 7.144774746150013e-12, - 6.755255385575289e-12, - 6.366439609053142e-12, - 6.531992169939673e-12, - 7.096134557870164e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.770697469934561e-12, - 8.688438345373748e-12, - 7.740488517985876e-12, - 7.87899043881606e-12, - 7.222336437648455e-12, - 5.891180363373842e-12, - 6.111672081344188e-12, - 6.532251159048553e-12, - 6.276920187213839e-12, - 6.167749520308557e-12, - 6.893418732443772e-12, - 6.733878087278894e-12, - 6.483364184766314e-12, - 5.2616803061403204e-12, - 4.710447435445174e-12, - 4.460722767395119e-12, - 4.192933657245357e-12, - 3.5458662937059585e-12, - 3.286641912359147e-12, - 3.4597878678489074e-12, - 3.6708931394172335e-12, - 3.312598955137682e-12, - 3.517326849918677e-12, - 3.3473505208878353e-12, - 3.29880273695434e-12, - 3.9008181788914806e-12, - 3.865223906441819e-12, - 3.642802578862453e-12, - 3.2295756935937705e-12, - 3.280811343587631e-12, - 3.323651139982222e-12, - 4.562169147189641e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.089050340245172e-12, - 4.916025615689264e-12, - 4.380613340555433e-12, - 4.440671040984738e-12, - 4.14105695141896e-12, - 3.382698067346998e-12, - 3.3963003264417873e-12, - 3.742687903404993e-12, - 3.72139134404443e-12, - 3.690866257374723e-12, - 4.11996438081874e-12, - 3.962122549866878e-12, - 3.650852089338036e-12, - 3.0168753974643252e-12, - 2.61247271631194e-12, - 2.495082129228931e-12, - 2.343467062014699e-12, - 2.0269659834498304e-12, - 1.8594976246459826e-12, - 2.0538860809754845e-12, - 2.1123913538443413e-12, - 1.9441700070727797e-12, - 2.0502469762850093e-12, - 1.9152440123661184e-12, - 1.9166793983482204e-12, - 2.168311183043354e-12, - 2.117183747548268e-12, - 1.942749704525116e-12, - 1.7395234554351336e-12, - 1.7249063391723894e-12, - 1.6960922332115229e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.260386400007153e-11, - 1.4205620047300922e-8, - 1.0294904629027936e-8, - 5.433429733039574e-9, - 1.3812371730573097e-9, - 4.2027202100687773e-10, - 5.103655178526455e-10, - 2.5186785470277094e-10, - 2.489644059950897e-10, - 1.3654504641168785e-10, - 1.0214155918034627e-10, - 1.3398226366566078e-10, - 1.4449508934849925e-10, - 2.1330589511479132e-10, - 1.255873194670519e-10, - 9.076188473115193e-11, - 6.877479085890013e-11, - 4.994537459900681e-11, - 3.34537776428571e-11, - 3.917333632772807e-11, - 3.1353615050416354e-11, - 2.3154819756276812e-11, - 1.9463081182283702e-11, - 1.7763558208266456e-11, - 1.7844661212180444e-11, - 2.3816646407350696e-11, - 2.319293084419216e-11, - 2.0094258196484794e-11, - 1.615006762225249e-11, - 1.530005577194622e-11, - 2.121050589162258e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.452120137580627e-10, - 5.655539591315456e-10, - 4.96327958890343e-10, - 5.189619782316401e-10, - 4.945453043387011e-10, - 4.4089933753155533e-10, - 3.8987385946973106e-10, - 3.074049239427462e-10, - 3.322121448914267e-10, - 2.6861652368601825e-10, - 1.8220833462240522e-10, - 1.7812280701754427e-10, - 1.5472220645820298e-10, - 1.2144239636715974e-10, - 8.54917238035876e-11, - 5.7690803314187716e-11, - 3.996245673725579e-11, - 2.9004383909123493e-11, - 1.9181044036579165e-11, - 2.1779508182906082e-11, - 1.6543812693743774e-11, - 1.2081637637034658e-11, - 1.0688661159516757e-11, - 9.923128813675588e-12, - 9.455710005053486e-12, - 1.1926552057710774e-11, - 1.2568197310029742e-11, - 1.1707078064414827e-11, - 1.0178091853916092e-11, - 1.0466557417131237e-11, - 1.2651358990579331e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.784759704499657e-11, - 8.249895903787624e-11, - 7.450334987343808e-11, - 6.879978942213512e-11, - 6.10065638076515e-11, - 5.1989798835691635e-11, - 4.39302132701422e-11, - 3.883864168780104e-11, - 3.841460847600339e-11, - 3.277854807400864e-11, - 2.5340872020648343e-11, - 2.4518050298883434e-11, - 2.214609471857187e-11, - 1.8794277824736902e-11, - 1.5200470633743744e-11, - 1.1964512759217287e-11, - 9.368955515536543e-12, - 7.777722057819018e-12, - 6.14629483091804e-12, - 7.402956233788414e-12, - 6.2770168307267976e-12, - 5.027575649100301e-12, - 4.559644511384878e-12, - 4.23216616527183e-12, - 3.956470391166348e-12, - 4.302845996695681e-12, - 4.1759434523446415e-12, - 3.755133094014771e-12, - 3.346635846916413e-12, - 3.3244205983539607e-12, - 3.814764986116042e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.025067025200377e-11, - 4.357024346571876e-11, - 4.080594240863176e-11, - 4.066394928739617e-11, - 3.846868405128303e-11, - 3.4741834183877785e-11, - 2.9962990838432815e-11, - 2.731322508835392e-11, - 2.946677106585364e-11, - 2.5581732429301166e-11, - 2.095349468954191e-11, - 2.0799677575382064e-11, - 1.9556351380307513e-11, - 1.6686155066060314e-11, - 1.354629877167824e-11, - 1.0403102720991927e-11, - 8.837884851299477e-12, - 7.80354898524598e-12, - 6.075451739583081e-12, - 7.145222582409655e-12, - 5.622792067569053e-12, - 4.2771660822603284e-12, - 3.767791827422008e-12, - 3.5867010019547e-12, - 3.423016871913983e-12, - 3.831751986396676e-12, - 3.775571112987785e-12, - 3.4461914098143363e-12, - 2.9484241974073967e-12, - 2.868972434306218e-12, - 3.1966045797408097e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.825222883052816e-11, - 6.825222883052816e-11, - 4.340205198423904e-9, - 1.2337947084762372e-9, - 1.6232615836258724e-9, - 9.47316055862781e-10, - 6.485464392885903e-10, - 5.224320045594143e-10, - 4.4980526652328093e-10, - 4.5182379274721206e-10, - 3.7930522879972894e-10, - 3.153623297464067e-10, - 2.8865319587628856e-10, - 2.611054362275238e-10, - 2.3656824576211575e-10, - 1.5099221401477356e-10, - 9.388558747906226e-11, - 5.960603656494067e-11, - 3.8892598387530764e-11, - 4.10914146875834e-11, - 3.6288519957612173e-11, - 2.9718751200030727e-11, - 2.8701019478040376e-11, - 2.669743219552439e-11, - 2.6181387160017698e-11, - 3.6552482530342065e-11, - 5.01749270172047e-11, - 4.282334676376003e-11, - 3.67202716875593e-11, - 3.757195083532573e-11, - 3.9899381766672865e-11, - 6.825222883052816e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.5239628651354568e-9, - 1.4263864601548838e-9, - 1.2797722678634353e-9, - 1.4991792659896812e-9, - 1.8704905293687643e-9, - 1.7669343292452335e-9, - 1.2532655356109957e-9, - 1.021560485246888e-9, - 1.06527258127753e-9, - 8.524947781114109e-10, - 6.540317783516798e-10, - 6.216055006620696e-10, - 5.567281020867006e-10, - 4.905770376354012e-10, - 4.037399348204403e-10, - 3.2395129060928734e-10, - 2.755747508720227e-10, - 2.3509814622012517e-10, - 1.8356907158353627e-10, - 1.9104447393857492e-10, - 1.5122910272320997e-10, - 1.391536375781988e-10, - 1.2539072790662416e-10, - 1.0703884128992728e-10, - 9.748179286174758e-11, - 9.666604082205845e-11, - 1.2753307839388136e-10, - 1.449322406556067e-10, - 1.7550565907367983e-10, - 2.029612011220668e-10, - 1.9824372455544574e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.082956135389092e-10, - 3.176346913568538e-10, - 5.197443555629822e-10, - 4.881091264884675e-10, - 4.4276367443077754e-10, - 3.8731830943453027e-10, - 3.260293992475699e-10, - 2.9234502011659434e-10, - 3.0699622694111513e-10, - 2.558124353420292e-10, - 1.9049130034728512e-10, - 1.791075419923986e-10, - 1.634830900174089e-10, - 1.452363123348135e-10, - 1.2231606849217965e-10, - 9.494243582002796e-11, - 7.803141630576277e-11, - 6.840855511729434e-11, - 4.7105798915383874e-11, - 5.927044824982321e-11, - 4.42044217687075e-11, - 3.718828235641559e-11, - 3.3131659362010445e-11, - 3.23896918485616e-11, - 3.1607645863961294e-11, - 3.7339224763169805e-11, - 3.909289645861458e-11, - 3.611327333431975e-11, - 3.1560823101409715e-11, - 3.227313537747274e-11, - 3.7622653118627395e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.546066978484643e-11, - 6.17025333233833e-11, - 5.876225703563712e-11, - 5.6476832054097943e-11, - 6.630367923987657e-11, - 8.255851850364704e-11, - 6.834026097585614e-11, - 6.202050855874284e-11, - 5.802304825149156e-11, - 5.417279193551479e-11, - 4.588395654774055e-11, - 4.4533980993647425e-11, - 4.233588678892355e-11, - 3.543861371001503e-11, - 2.8570564326552902e-11, - 2.4186462811875938e-11, - 2.195214137608333e-11, - 1.9625553823707436e-11, - 1.5953151080470864e-11, - 2.0399233810107884e-11, - 1.774113535148542e-11, - 1.4544050840756256e-11, - 1.4120416311373082e-11, - 1.4254725530560306e-11, - 1.4134042595921067e-11, - 1.833361377100011e-11, - 1.907092789544283e-11, - 1.7901548756485453e-11, - 1.7283087385976015e-11, - 1.739561718229374e-11, - 2.0288370500114194e-11, - 2.5371660909560315e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.83689941843125e-11, - 9.008850476190479e-11, - 8.047150636746423e-11, - 8.808760309278355e-11, - 7.643842285714288e-11, - 6.38970784313726e-11, - 5.5197628596338254e-11, - 4.626667920270781e-11, - 4.160143354210159e-11, - 3.783456436931081e-11, - 3.34540135254337e-11, - 3.364546975188179e-11, - 3.726537344945898e-11, - 3.868550898203595e-11, - 3.873958376262108e-11, - 3.369394614670382e-11, - 2.8047191193135758e-11, - 2.3283122986036602e-11, - 1.894751535455051e-11, - 1.6674860871233938e-11, - 1.476365821316095e-11, - 1.4030274961709563e-11, - 1.2098883382098271e-11, - 1.1860594495807344e-11, - 1.1259985915492972e-11, - 1.0432145341462418e-11, - 1.0257437070938217e-11, - 1.4295792507204605e-11, - 1.3319290575562256e-11, - 1.0822194246631954e-11, - 8.85962083689155e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 9.406223928789595e-11, - 8.496860037857708e-11, - 8.023789060745366e-11, - 1.3403124732104576e-10, - 1.3489270592956734e-10, - 1.423419101123593e-10, - 1.2332965517241374e-10, - 1.0635652696303627e-10, - 1.1409263851828603e-10, - 8.255339805825235e-11, - 7.449659218447096e-11, - 8.065068313953481e-11, - 1.3040788866676937e-10, - 9.93313503866746e-11, - 7.737987412619893e-11, - 5.344978363366271e-11, - 4.5649774231973165e-11, - 3.6983696595734714e-11, - 2.857457444314184e-11, - 3.9426720755385665e-11, - 3.3140107471258293e-11, - 7.106752042185541e-11, - 2.988751113262343e-11, - 3.69907454981993e-11, - 5.8139079274116544e-11, - 8.461995812724251e-11, - 8.844475812823603e-11, - 6.010572962045799e-11, - 4.257916549378192e-11, - 4.234884247386119e-11, - 8.556619792627839e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.3064983940912953e-11, - 1.2778146474788095e-11, - 1.3663487277488535e-11, - 1.2953950083058168e-11, - 1.3416591157453105e-11, - 2.882540380262149e-11, - 2.632040714883919e-11, - 2.5620135331798585e-11, - 2.5689858331418917e-11, - 2.5305907434124406e-11, - 2.227160359676912e-11, - 2.2321373767358175e-11, - 2.3855025779192718e-11, - 2.3219820247939263e-11, - 2.1390950532851752e-11, - 1.990788131227854e-11, - 1.8683646863748498e-11, - 1.6186487360099543e-11, - 1.3658709032026634e-11, - 1.4233955501119227e-11, - 1.2912596364221518e-11, - 1.1361302448972229e-11, - 1.1802624326561282e-11, - 1.0300258781274636e-11, - 9.905290703209315e-12, - 1.0297313152338363e-11, - 9.748470120739433e-12, - 8.75372749566221e-12, - 8.26996502871237e-12, - 7.56405706628931e-12, - 7.123543976516315e-12, - 1.3663487277488535e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.0620364208841297e-11, - 2.010293645512448e-11, - 1.853474767873209e-11, - 1.591832267663158e-11, - 2.1493582498384214e-11, - 1.6255035567930612e-11, - 1.490558877634154e-11, - 1.3996391135333801e-11, - 9.446768195276473e-12, - 9.96936156706142e-12, - 9.124947133783702e-12, - 1.2148629731379682e-11, - 9.989460440987146e-12, - 7.479518863142867e-12, - 5.649634018708604e-12, - 4.489359444586002e-12, - 4.0211265028161035e-12, - 3.2480239761541217e-12, - 2.841151875367809e-12, - 3.3391215096197867e-12, - 2.7683661339211866e-12, - 2.5478003009107205e-12, - 2.414382609083904e-12, - 2.2103127262733626e-12, - 2.246119703754845e-12, - 2.430822026371058e-12, - 2.405446629257165e-12, - 2.4225949394703883e-12, - 2.6577709427590362e-12, - 2.7003785140476067e-12, - 2.832122153488271e-12, - 4.7278794092702906e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.984512791667268e-11, - 8.398646782261868e-11, - 8.043458009700332e-11, - 1.1356645735827841e-10, - 9.675841768364914e-11, - 8.449848522556914e-11, - 7.321347646805704e-11, - 7.75521624945952e-11, - 7.008526586593371e-11, - 6.826475105454695e-11, - 7.131230091429984e-11, - 6.880458221397591e-11, - 6.321496118044548e-11, - 5.055310820835416e-11, - 4.3571581549880015e-11, - 4.123957887633715e-11, - 3.719360864489557e-11, - 3.219835914938303e-11, - 2.7532974828407194e-11, - 2.7514248954218068e-11, - 2.7537970288953685e-11, - 2.541173865380927e-11, - 2.624500796691989e-11, - 2.40672535395573e-11, - 2.3182876582059616e-11, - 2.494568874943059e-11, - 2.4092152415692908e-11, - 2.2346271324355947e-11, - 2.0449425465712367e-11, - 1.9871454694024862e-11, - 2.0509903342845104e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.724162846012113e-10, - 8.74681695893921e-10, - 8.038798470000888e-10, - 8.341492851084897e-10, - 1.2008926666321983e-9, - 9.397214211798622e-10, - 8.907402504112072e-10, - 9.502640886234176e-10, - 8.667906701098513e-10, - 8.404578023464695e-10, - 9.060090738653833e-10, - 8.243922035444134e-10, - 7.553091519033015e-10, - 5.966661990259303e-10, - 5.145473870273803e-10, - 4.677068509559843e-10, - 4.380266341716222e-10, - 3.6493640853929795e-10, - 3.0224294925347176e-10, - 3.1469351232460205e-10, - 3.141183025923023e-10, - 2.8286288823119063e-10, - 2.833948446968439e-10, - 2.621748968325084e-10, - 2.4776162596384556e-10, - 2.723523801534932e-10, - 2.5052109418121997e-10, - 2.2370326077470408e-10, - 2.0007181121783453e-10, - 1.954843480955143e-10, - 1.8223329204039248e-10, - 4.185915595614191e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.2909610071303963e-11, - 2.135860857745948e-11, - 1.967560820541744e-11, - 1.7984508809234257e-11, - 2.1385863087324562e-11, - 1.830725190021251e-11, - 1.8519110047048386e-11, - 1.727457468724299e-11, - 1.849230616006262e-11, - 1.8176231000768917e-11, - 1.7752488850954386e-11, - 1.9582128738527303e-11, - 2.0327197824018686e-11, - 1.3237218573459755e-11, - 1.0175654891509487e-11, - 9.011020926163556e-12, - 8.579584348597582e-12, - 7.836062073226621e-12, - 8.259204553720867e-12, - 7.90894886048671e-12, - 6.224766142083307e-12, - 5.635075224190823e-12, - 5.8954806318074555e-12, - 6.328482196835655e-12, - 6.5871129194974135e-12, - 7.164493384264195e-12, - 7.593047051061343e-12, - 6.3704484236178346e-12, - 5.940587455123881e-12, - 6.137632887027668e-12, - 7.029529061482539e-12, - 1.001281445482284e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.0438786145573456e-9, - 3.0045362844107363e-9, - 2.96800412070317e-9, - 2.936155567727343e-9, - 2.9085222644100815e-9, - 2.8841674886050374e-9, - 2.861686157092689e-9, - 2.8377997423608185e-9, - 2.8115715222630787e-9, - 2.7815964135799474e-9, - 6.711670480549199e-9, - 6.385209713024283e-9, - 6.147788565264293e-9, - 7.500000000000001e-9, - 6.153846153846153e-9, - 5.7207586933614335e-9, - 4.770330652368186e-9, - 3.8208302986161695e-9, - 2.986095017381228e-9, - 2.8631221719457016e-9, - 2.487987987987988e-9, - 2.0354462051709757e-9, - 1.7169279133863064e-9, - 1.4811792818332607e-9, - 1.4325785918629786e-9, - 1.4068464523469344e-9, - 1.3126689829590202e-9, - 1.293831834421141e-9, - 1.260680432030948e-9, - 1.2793723574536844e-9, - 1.306702468377519e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.663285902895352e-10, - 1.6973054731461538e-9, - 2.3178440925361227e-9, - 2.222710221896916e-9, - 2.150864474550491e-9, - 2.056951279636017e-9, - 1.535210599265152e-9, - 1.2661244301682269e-9, - 1.1130578129229557e-9, - 9.771755805872752e-10, - 1.0299703239166079e-9, - 1.076766915713927e-9, - 1.0206088944773426e-9, - 9.150629983738842e-10, - 7.512658167220016e-10, - 6.658807440054775e-10, - 6.13933540741854e-10, - 5.335454608381245e-10, - 4.392254116126546e-10, - 4.5776264614884424e-10, - 4.855624125335373e-10, - 3.7054414152054913e-10, - 3.219413446072297e-10, - 3.062272792820123e-10, - 2.89623822558062e-10, - 3.173474911767177e-10, - 4.1819555162698433e-10, - 3.7234046645612603e-10, - 3.2682490035457477e-10, - 3.108932537532867e-10, - 3.3617589417347254e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.226366773308041e-10, - 5.36646672472311e-10, - 5.188963348374167e-10, - 3.812922448558414e-10, - 6.821720538063973e-10, - 5.502185807040776e-10, - 5.305790817778538e-10, - 5.374690782113717e-10, - 5.06100802137095e-10, - 4.880757607523301e-10, - 5.280800933710837e-10, - 5.043143690554664e-10, - 4.4091881852618664e-10, - 3.4006841722277856e-10, - 2.8630289839946453e-10, - 2.7422044610297936e-10, - 2.5389141588979517e-10, - 2.2007458575018039e-10, - 1.8830859730443184e-10, - 1.849785285489931e-10, - 1.858038736364895e-10, - 1.6483348486464425e-10, - 1.6527903588988244e-10, - 1.457515780103962e-10, - 1.332085732390303e-10, - 1.4830690647599619e-10, - 1.3923087933537755e-10, - 1.2850931635216387e-10, - 1.1437480379631357e-10, - 1.1358429519410505e-10, - 1.0888518359719433e-10, - 2.4261248969563277e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.2010556989839883e-10, - 1.3117275125135045e-10, - 1.3380081443762095e-10, - 2.2873858691668073e-10, - 1.8629716523815525e-10, - 1.4211642236272111e-10, - 1.218580650886947e-10, - 1.1366592112974147e-10, - 1.1279383087939686e-10, - 1.032630979177132e-10, - 8.79209401246352e-11, - 8.216898624478033e-11, - 6.353145617624236e-11, - 5.753396180903646e-11, - 4.407344530473393e-11, - 3.397979401279347e-11, - 2.5234644238689055e-11, - 2.1514685761870265e-11, - 1.7385606788726977e-11, - 1.990449319130715e-11, - 1.6154082235945936e-11, - 1.4326152522023061e-11, - 1.264101147711006e-11, - 1.1222879865008864e-11, - 1.0340670025241267e-11, - 1.1487186007801198e-11, - 1.3656245921683628e-11, - 1.4523090547464078e-11, - 1.356276197619755e-11, - 1.1865114057711755e-11, - 1.2139892564205034e-11, - 2.5937562539325787e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 9.512368313054362e-10, - 8.336180535845302e-10, - 8.423889756054056e-10, - 8.911786885669283e-10, - 9.62244764649375e-10, - 7.993642684830424e-10, - 7.356901584837772e-10, - 7.307755749854748e-10, - 6.64218778908418e-10, - 6.34638529043042e-10, - 9.684881318478969e-10, - 8.942766747130991e-10, - 7.591225082886497e-10, - 6.042655049979062e-10, - 5.120832426333346e-10, - 4.178814075146397e-10, - 2.1711380203766365e-10, - 1.7689815644149075e-10, - 1.5168050550260814e-10, - 1.6550146250059283e-10, - 1.3271310358842642e-10, - 1.0763317273831209e-10, - 1.0157264416800213e-10, - 6.59948922464099e-11, - 7.474967381209792e-11, - 8.179074419035764e-11, - 7.09336372412412e-11, - 6.499313171251574e-11, - 5.7504329331936174e-11, - 5.5840466630323616e-11, - 5.493761335243302e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.422543027425151e-10, - 1.3938471249885184e-10, - 1.3075203876087747e-10, - 1.2030204163768353e-10, - 1.1389258263302202e-10, - 9.78656981268003e-11, - 7.732810553594044e-11, - 7.20914044053684e-11, - 6.744082644023556e-11, - 6.375977500203842e-11, - 5.937816429885063e-11, - 5.6861023488262763e-11, - 5.432708816712717e-11, - 4.7806701994314436e-11, - 4.2728646939425065e-11, - 3.875123778285782e-11, - 3.625777253671005e-11, - 3.169124683043661e-11, - 2.6726681620698028e-11, - 2.324406064744056e-11, - 2.0159772710716182e-11, - 1.766974830885418e-11, - 1.670719116833237e-11, - 1.4587595310816436e-11, - 1.2447548007166028e-11, - 1.086741008375562e-11, - 9.439280199674089e-12, - 8.257548286904572e-12, - 7.429600156731071e-12, - 2.1301366301525874e-11, - 2.104714810598305e-11, - 3.0480214939787845e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.260206950316983e-11, - 1.465724436420148e-11, - 1.3452070068994475e-11, - 1.3602055479910383e-11, - 1.1375734051819319e-11, - 1.0133729909224464e-11, - 9.116891970451563e-12, - 8.449801571175046e-12, - 8.17844527425731e-12, - 7.364537131119445e-12, - 7.068821066580729e-12, - 6.68258326520492e-12, - 6.1677334268508376e-12, - 5.116017205418143e-12, - 4.288241371890441e-12, - 3.6227043808094058e-12, - 3.0831901206846747e-12, - 2.3201428212382034e-12, - 2.2879390339478165e-12, - 1.983028964183797e-12, - 1.5403296598947272e-12, - 1.3746195108673706e-12, - 1.334509453176581e-12, - 1.2823674434447411e-12, - 1.1441168153736008e-12, - 1.0909931997753474e-12, - 9.87450755685857e-13, - 8.459448937869142e-13, - 8.226242298336847e-13, - 7.67112648443122e-13, - 8.209769384719886e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.1610802908060836e-10, - 2.1280459743318985e-10, - 2.073346767097034e-10, - 1.552064663252445e-10, - 1.256118613435834e-10, - 1.308824496146652e-10, - 1.0256526484877012e-10, - 8.787909122800305e-11, - 8.133158272325133e-11, - 7.307296462787109e-11, - 6.44798721102422e-11, - 5.978241147695283e-11, - 5.4756850989805256e-11, - 4.8062685291543005e-11, - 4.169248168968012e-11, - 3.2862970860863387e-11, - 2.8611607155473296e-11, - 2.4633651763077195e-11, - 1.9348271120827555e-11, - 1.818616410389639e-11, - 1.671673208643138e-11, - 1.4379578524972344e-11, - 1.2591451519819137e-11, - 1.1552252104505743e-11, - 1.0719388418469349e-11, - 1.0422213024182537e-11, - 9.889116592967002e-12, - 9.125038986690884e-12, - 8.35597731243815e-12, - 7.826780149993019e-12, - 7.54540401370062e-12, - 2.1575989974235563e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.9358730007550626e-11, - 2.0919289105499436e-11, - 1.7971722138425137e-11, - 1.5175811432525186e-11, - 1.3028050277981853e-11, - 1.1029145483678718e-11, - 9.959837507146532e-12, - 1.1859053501786482e-11, - 1.5324314072392696e-11, - 1.3460271521345452e-11, - 1.3220749020675242e-11, - 1.3641297335585148e-11, - 1.2032686203393015e-11, - 1.047407999901226e-11, - 9.13845483976634e-12, - 8.282336847853353e-12, - 7.034689245253114e-12, - 5.9100378887831e-12, - 5.316027520135355e-12, - 5.484355242809385e-12, - 4.520604544073018e-12, - 4.1502711970896334e-12, - 3.86861574277057e-12, - 3.6590019262637e-12, - 3.775720678829448e-12, - 3.8325782552890534e-12, - 3.718253169889084e-12, - 3.3570212124170296e-12, - 3.0101987298323208e-12, - 2.7817390916344e-12, - 2.992163838778321e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.335955350729689e-11, - 2.126014028591761e-11, - 1.9366232491741483e-11, - 1.5691739624132538e-11, - 1.4016450617275897e-11, - 1.3298238863876853e-11, - 1.1553871242733338e-11, - 1.1953705540327018e-11, - 2.665394098206285e-11, - 1.802125463858634e-11, - 1.522230392585129e-11, - 1.5637567648613048e-11, - 1.2833446573874457e-11, - 1.0703981033678445e-11, - 9.792207591323765e-12, - 8.794249664823083e-12, - 6.884813503873121e-12, - 5.795703361457599e-12, - 4.8978042952017366e-12, - 4.618406176298526e-12, - 3.288331615233393e-12, - 2.767172994088405e-12, - 2.6746709669534282e-12, - 2.6695184291358162e-12, - 2.708756209778149e-12, - 2.775150429293521e-12, - 2.53466828447341e-12, - 2.3000757096097324e-12, - 2.217272496885857e-12, - 2.044516013727025e-12, - 2.3425398315636726e-12, - 5.087127658539058e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.553051958647542e-11, - 8.199411046627712e-11, - 6.91300953008856e-11, - 6.629954458704821e-11, - 5.544070296137263e-11, - 4.73156937965798e-11, - 4.184976403805319e-11, - 4.1676326211578516e-11, - 5.216644784696222e-11, - 4.495555797472623e-11, - 4.554815293950095e-11, - 4.771846291939054e-11, - 4.40294061529568e-11, - 4.193515411407346e-11, - 3.76728797935434e-11, - 3.261963553131284e-11, - 2.6861913015106225e-11, - 2.1534759933423522e-11, - 1.8136312010282354e-11, - 1.8389005844836144e-11, - 1.5261407255820883e-11, - 1.3325253623117728e-11, - 1.1663844120438296e-11, - 1.0493030546976767e-11, - 9.728278913867223e-12, - 9.15332134466542e-12, - 8.530356920649433e-12, - 8.036997779992678e-12, - 7.427010859598519e-12, - 6.7034075220809485e-12, - 6.888170206438836e-12, - 2.0417934783413832e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.5405078476756065e-12, - 5.171654615555604e-12, - 4.95042170376392e-12, - 4.212230167208524e-12, - 3.5719108043256606e-12, - 2.8839530441054792e-12, - 2.579610834980643e-12, - 2.6976529044737498e-12, - 3.819154368834995e-12, - 2.8642487230599914e-12, - 2.5686501510663033e-12, - 2.390176802311333e-12, - 1.8780507920253473e-12, - 1.6948493309369269e-12, - 1.4675197635681063e-12, - 1.1605506007742666e-12, - 1.0748023406886342e-12, - 1.0736695170659654e-12, - 1.1381224115233117e-12, - 1.2172359643611554e-12, - 1.0716155934563423e-12, - 9.926405401194502e-13, - 1.0145275064137364e-12, - 8.659207444121677e-13, - 8.118205274724896e-13, - 8.452876348807288e-13, - 7.812752084181141e-13, - 6.478225446862674e-13, - 5.664275058284389e-13, - 5.558842510678493e-13, - 5.11021518324162e-13, - 1.3963872155288604e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.3282114498607512e-11, - 1.075867093031861e-11, - 9.012616053861314e-12, - 6.3546451285734184e-12, - 5.867605767135099e-12, - 8.381612559315154e-12, - 7.1683088573099e-12, - 5.7552406104366924e-12, - 5.3580030214334675e-12, - 4.608211445283457e-12, - 3.8366635447610374e-12, - 3.5271280256550416e-12, - 3.3972002713107202e-12, - 3.5360915539494455e-12, - 3.241969278461728e-12, - 2.8433818936656304e-12, - 2.517974576595994e-12, - 2.2998086349835252e-12, - 2.1540752773492654e-12, - 2.626534316625776e-12, - 2.2121356910496144e-12, - 1.9627449459594653e-12, - 1.9099318325850733e-12, - 1.7811701654019621e-12, - 1.7052480190041604e-12, - 1.890145255748276e-12, - 2.0269067670690032e-12, - 1.8612267990563888e-12, - 1.7416440715903364e-12, - 1.6566439147814543e-12, - 1.9359058163919857e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 7.427206732477572e-12, - 8.236789251076411e-12, - 8.391533107245769e-12, - 7.312057760491612e-12, - 5.023127979650869e-12, - 3.363951486098679e-12, - 2.9820333677091177e-12, - 2.811347213487782e-12, - 2.8088098674488144e-12, - 3.944019438566526e-12, - 3.5090492905442656e-12, - 3.9858302727049615e-12, - 4.242879689905364e-12, - 3.756491070362607e-12, - 3.0375503288972767e-12, - 2.2161563873450693e-12, - 1.7379501416640154e-12, - 1.347062349120754e-12, - 1.0891258823829913e-12, - 1.0905843079176957e-12, - 8.130971631764196e-13, - 6.807696433239384e-13, - 7.183918845919844e-13, - 7.133557860929686e-13, - 7.157852902770445e-13, - 9.726935568338924e-13, - 9.728833054412224e-13, - 8.427369136118558e-13, - 9.024829562104768e-13, - 9.154211200997629e-13, - 1.1808408157048435e-12, - 1.6964927291912031e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.1202333057815367e-11, - 1.5628295624376803e-11, - 1.2784726949161861e-11, - 1.2160932431436528e-11, - 1.0985083903045369e-11, - 1.0746739500080902e-11, - 9.9871486194641e-12, - 9.103356905541574e-12, - 8.757368541210728e-12, - 9.089209693746185e-12, - 8.944287329072891e-12, - 9.348829116838964e-12, - 2.543899033847335e-11, - 1.9288803023067995e-11, - 1.4806453556751446e-11, - 1.2156764190654444e-11, - 1.030713894537583e-11, - 8.277382504523742e-12, - 6.5439009983269406e-12, - 7.0725715150345215e-12, - 5.5378851265388604e-12, - 4.409962140448161e-12, - 4.267537018952142e-12, - 4.206330166301792e-12, - 4.39276758097941e-12, - 3.86885710741349e-12, - 4.103804911430681e-12, - 3.5346467965841587e-12, - 4.308145854852846e-12, - 4.971983018567484e-12, - 5.7361122799977865e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.4812354127849147e-10, - 1.1047868487032058e-10, - 1.0212337006539511e-10, - 1.0197496914922561e-10, - 7.646704470526173e-11, - 6.218019673548809e-11, - 5.79703176850582e-11, - 5.329547787353542e-11, - 5.4088659540181845e-11, - 5.8122245509510815e-11, - 5.498142415717892e-11, - 5.360352660154387e-11, - 5.0184789637294925e-11, - 4.636390668356685e-11, - 4.0527969815956294e-11, - 3.543227091633464e-11, - 3.0256130305817664e-11, - 2.605436465609181e-11, - 2.1841450843305936e-11, - 2.1469424607699612e-11, - 1.7257631291028412e-11, - 1.4514291965525777e-11, - 1.2670712080152551e-11, - 1.1900059239526376e-11, - 1.1728708987599164e-11, - 1.223885734328673e-11, - 1.1970028934577575e-11, - 1.0781622235239214e-11, - 1.0126937283496985e-11, - 9.773672745109365e-12, - 1.0949716438627793e-11, - 2.552335121553768e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.094896108870373e-11, - 6.301777914147594e-11, - 5.450168861883254e-11, - 5.3575283608821024e-11, - 5.386976765417443e-11, - 3.9815147008341407e-11, - 4.283899119502682e-11, - 3.456288250732519e-11, - 3.1916802696388714e-11, - 2.92620036195374e-11, - 2.409068268467238e-11, - 2.2611150978177646e-11, - 2.948535056965695e-11, - 3.2300642147742913e-11, - 2.368981656942502e-11, - 1.8067485760604223e-11, - 1.4143421875120566e-11, - 1.1121528798506427e-11, - 8.007510259427066e-12, - 7.580636084266931e-12, - 6.284455869126142e-12, - 7.722393458599595e-12, - 6.339069601997147e-12, - 6.441955104195342e-12, - 4.902983954040595e-12, - 1.3348564694230618e-11, - 1.3217360853218951e-11, - 1.3086157012207283e-11, - 1.2960657686022206e-11, - 1.2835158359837133e-11, - 1.2721068063305249e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.441756869582259e-11, - 6.196166619638969e-11, - 5.152434567561164e-11, - 4.4667309569187817e-11, - 3.571450390478045e-11, - 3.0938105834347464e-11, - 2.8838995970952195e-11, - 2.5707975261113928e-11, - 2.7254145378908395e-11, - 3.048053237421132e-11, - 2.5749205436122213e-11, - 2.5618116064130772e-11, - 2.509110485115542e-11, - 2.5306055692228614e-11, - 1.990066368492541e-11, - 1.5540534014877512e-11, - 1.359992138761646e-11, - 1.036463801347002e-11, - 8.592535610444984e-12, - 8.747930005741938e-12, - 6.9513484600963006e-12, - 5.84575555512476e-12, - 5.203259811224775e-12, - 4.985395454793698e-12, - 4.940803251527377e-12, - 6.347924568282022e-12, - 6.516396837512242e-12, - 5.851539597662509e-12, - 5.4069708349235776e-12, - 5.531337891791586e-12, - 6.524519905056982e-12, - 1.2350409754102356e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.788273047782104e-11, - 6.760972501220552e-11, - 5.4955660925617e-11, - 5.038767153728489e-11, - 4.266036094454413e-11, - 3.2295368838478655e-11, - 2.9549111231053984e-11, - 2.6344176614959345e-11, - 2.662501129501898e-11, - 2.8068291804570518e-11, - 2.639321085945997e-11, - 2.8303777855869014e-11, - 2.8277748285556816e-11, - 2.5686292035307425e-11, - 1.9383049946789324e-11, - 1.552476654283587e-11, - 1.2281311828768618e-11, - 1.093280386559124e-11, - 1.0548963831572855e-11, - 1.0975146497146663e-11, - 8.620944041339294e-12, - 7.413221933173778e-12, - 6.921922509534316e-12, - 6.54131639656489e-12, - 6.858788554212207e-12, - 7.1745105140451574e-12, - 6.839957579144559e-12, - 6.057003502816028e-12, - 5.541521718748541e-12, - 5.823495040720754e-12, - 6.36909881085516e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.714598069534177e-10, - 4.43701708907698e-10, - 3.636132642282177e-10, - 3.1608497047995415e-10, - 2.8044820741190963e-10, - 2.4614386997096385e-10, - 2.3590510845559145e-10, - 2.1062891397324203e-10, - 1.869301487757051e-10, - 1.7250249504393321e-10, - 1.5739032157700928e-10, - 1.42399547726799e-10, - 1.3239783706038423e-10, - 1.2297530405971112e-10, - 1.10958301819656e-10, - 1.0059557732861502e-10, - 8.7076951362796e-11, - 7.245756787297513e-11, - 6.243152806530534e-11, - 6.18948099037749e-11, - 5.005494784782217e-11, - 4.370639889586125e-11, - 3.9232165865842975e-11, - 3.607481501696424e-11, - 3.504663310615886e-11, - 3.199749539168091e-11, - 3.0400861763955876e-11, - 2.928149123560981e-11, - 2.8099893635295498e-11, - 2.7109757604809473e-11, - 2.7826780902081815e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.4897698261185707e-13, - 3.349231560430124e-13, - 3.13787943457437e-13, - 2.9444960668851866e-13, - 2.746583203837504e-13, - 2.5890902960293593e-13, - 2.4476280675555257e-13, - 2.2978577517412314e-13, - 2.2057156564818404e-13, - 2.0844875886993364e-13, - 2.00539477256148e-13, - 1.9188568049276334e-13, - 1.8474968726266953e-13, - 1.786923041436769e-13, - 1.6796671805219294e-13, - 1.577860525188398e-13, - 1.5259205900382485e-13, - 1.4669393400964633e-13, - 1.4082933171658289e-13, - 1.3855694372283935e-13, - 1.288015747518255e-13, - 1.2189095153007993e-13, - 1.1610169455878538e-13, - 1.106652778532357e-13, - 1.0626362784135565e-13, - 1.0107849648741031e-13, - 9.711883965678223e-14, - 9.033934813458579e-14, - 8.390799867794218e-14, - 7.959604885021283e-14, - 7.815098818643413e-14, - 1.5074200414243141e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Fertility rate=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.537745812022742e-12, - 4.271245296012756e-12, - 3.835608371180627e-12, - 3.681957051714508e-12, - 3.0673831785073844e-12, - 2.259893471907472e-12, - 1.877865312971345e-12, - 1.6690863167410346e-12, - 1.5519272261661284e-12, - 1.457956109862933e-12, - 1.317541688555712e-12, - 1.1923287326584924e-12, - 1.0880282775796716e-12, - 9.660974681332571e-13, - 8.223604280551806e-13, - 7.051723760991164e-13, - 5.868178317744306e-13, - 4.554489861342251e-13, - 3.5261030411788626e-13, - 3.1812905940394313e-13, - 2.6728375209559705e-13, - 2.1611599988863198e-13, - 1.9209515009539788e-13, - 1.7209300832635768e-13, - 1.5808038602847625e-13, - 1.5052135879813922e-13, - 1.4911054619914126e-13, - 1.3671356892315522e-13, - 1.216280814047373e-13, - 1.1876802709172614e-13, - 1.1546771009291268e-13 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Fertility rate" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.012124254518073222, - 0.009928227843453468, - 0.009960003800910465, - 0.008285321899267575, - 0.0055957756389062524, - 0.010742671329944024, - 0.018010726402985, - 0.013965070534294128, - 0.03013789582821912, - 0.02431235058868551, - 0.018317801601245912, - 0.006832406441193596, - -0.016390498319849473, - -0.010433424567096707, - 0.010474197325466261, - 0.010217894056974167, - 0.020212323565429288, - 0.02621602789164132, - 0.017908348611693603, - 0.01261625155746728, - 0.017826895300988917, - 0.0027666783887746, - 0.009537229330823, - 0.006988480625967321, - 0.02263150388943155, - 0.020381547150398357, - 0.013572671631871947, - 0.009834301190873156, - 0.0070750676002234655, - 0.021996373887406863, - -0.00029413285705191594, - 0.01228815540568944 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.01705051983054992, - 0.00691653553693635, - 0.0067283183985679925, - -0.00011303971290079803, - 0.006198802131366839, - -0.004943705300653435, - 0.005224727343747643, - 0.008561990772077083, - 0.010766190747088218, - 0.053213065814875324, - 0.019039682897340704, - 0.02702478300431999, - 0.0009670542587759005, - 0.0055530824796375085, - 0.012036804624321745, - 0.015321440268827155, - 0.02218563827209846, - 0.01821001272468607, - 0.023206394516630636, - 0.026026823965610058, - 0.012729187972344562, - 0.007077293780111223, - 0.007105995156727304, - -0.00496957989081123, - 0.016557885878203855, - 0.0034455119030570133, - 0.016919498296904107, - 0.004894709756333455, - 0.022101009121519667, - 0.002030507903319939, - 0.01532669276749451, - 0.012429307485261231 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.04829759751865957, - 0.003323880968999452, - 0.0014919478221540653, - -0.010492080610150648, - 0.0018193565906828185, - -0.013245251249154991, - -0.001302469029242502, - 0.006889707648259556, - 0.016517557410785474, - 0.025160926165289733, - 0.06625772410108502, - -0.01415352993796646, - -0.006426311220604577, - 0.04885776453346326, - 0.029417375223984264, - 0.04460452835473712, - -0.0010631127028514938, - 0.019842795780993853, - -0.012887524128854055, - 0.04012022136312649, - 0.043358567723809825, - 0.0292541624117077, - 0.02393130179797672, - 0.04528701689076942, - 0.00828098990155135, - 0.009197706323562123, - -0.027868004360829812, - 0.028168702161471555, - 0.025517022880968666, - 0.013317665280902263, - 0.00930494199003292 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.012239560776419982, - 0.0002646302136130722, - 0.00266146099048905, - 0.01011462172643729, - 0.021193887355337882, - 0.020335086271057182, - 0.006543394484930297, - 0.014995688056652069, - 0.02912625976164849, - 0.06670816557008913, - 0.0769594310882094, - 0.012969713912914653, - 0.017455203049297457, - 0.02239549511587294, - 0.017168972547488073, - -0.03644368670239148, - -0.022591141210725415, - 0.05179358202835863, - 0.035129731845994834, - -0.02594816687015736, - -0.004948435659096067, - 0.020121023428741804, - -0.012771322898251756, - -0.002933076172653562, - 0.004044310308906419, - -0.0356867467036609, - 0.004585433164829603, - 0.017297067952959447, - -0.0012330062402121224, - -0.017531873127853703, - -0.03055503265463747 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.01949718250819853, - -0.013948697550900821, - -0.01756837403156445, - -0.012366784377418066, - -0.00973532794534098, - -0.005479469006188236, - -0.0039846061895650025, - 0.009100192448620231, - 0.009833309400015528, - 0.04017140176507732, - 0.031050349149969007, - 0.007543813426019628, - -0.00897770710880038, - 0.0034038292017706693, - 0.03451134201504418, - 0.01566130570152314, - 0.003744001497111177, - 0.0032014432841330352, - 0.0010364936305000806, - 0.004122455591457753, - 0.0008657587579504887, - 0.01225943790959672, - -0.017638191507658878, - -0.010525378789391011, - 0.009460203216577088, - 0.027851586469372296, - 0.010044710811863918, - 0.01110515564704812, - -0.014434370120606587, - 0.005314463203929017, - 0.01743721839287499 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.020780849325554074, - -0.020780849325554074, - -0.020780849325554074, - -0.0026820611071138776, - -0.002331852288570937, - -0.004434614522494794, - -0.019355448497077758, - -0.014438475396970867, - -0.032649518965698295, - -0.0588069361374424, - -0.044274462289830466, - -0.0390620569047363, - -0.015209309255561057, - -0.048733960472509136, - -0.02219129922563082, - -0.034376210376461484, - -0.01884011668183689, - -0.01582723605987994, - -0.013543666892613626, - -0.026868098330719185, - -0.01818514312414205, - -0.02072782908155435, - -0.027141255868895438, - -0.017048808482405906, - -0.016193598956375423, - -0.004582996047250645, - -0.04225397331923624, - -0.02300170517645541, - -0.01656948009481584, - -0.0153940816887444, - -0.013134298268013782 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.0013489396243286547, - -0.0034853419642865867, - -0.007049192179668407, - -0.01766868242216989, - -0.0166601398633345, - -0.02541941981104729, - -0.02774773730773771, - -0.030516236494942513, - -0.03462788785428503, - -0.0425745880835544, - -0.05415764245814536, - -0.03040247764692636, - -0.019595919302055904, - -0.01966695988441271, - -0.04597621282382953, - -0.02256125357132041, - -0.030961458944055283, - -0.04066163385846666, - -0.018567899867062972, - -0.018406435305479123, - -0.0185043091722397, - -0.025848887366946252, - -0.012097722924502388, - -0.008072684675756225, - -0.023921747278587976, - -0.021246854165648782, - -0.00930536912787693, - -0.014882939942256522, - -0.026020930166788053, - -0.01960385234774654, - -0.020959586849108754 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.010266511277294662, - -0.010794798431716735, - -0.009843004689209017, - -0.008979031778974977, - -0.008413249053248712, - -0.007692961504895995, - -0.007253450600093794, - -0.006873543555987518, - -0.004056655222051252, - -0.00017478959379693633, - 0.007793057733529097, - -0.007148507223199969, - 0.00398183304189573, - -0.004726868340981839, - -0.00446788957880632, - 0.003303831272892181, - -0.004300798370168289, - -0.0018372220182730364, - -0.007095639677887527, - -0.000980127995635838, - 0.003916643567731211, - 0.0025667163256163795, - -0.0040647546641093685, - -0.0024523919678549858, - 0.0013545092165097958, - 0.0016029166138659086, - -0.003033398510383724, - -0.0029317573197445925, - -0.002763012626348533, - -0.0028560175469553046, - -0.014061714304155624 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.039579451904758006, - 0.037909955698650015, - 0.03377379974837477, - 0.03460730774887871, - 0.03237046075379547, - 0.027333955019404804, - 0.02777029816216038, - 0.03096253959161179, - 0.03018662362765085, - 0.03032567179173364, - 0.0333952156438147, - 0.0333581616650827, - 0.0307308178099667, - 0.025120823460387433, - 0.02185557908262578, - 0.0006116531866154239, - 0.0166152905216158, - 0.026142076071053906, - 0.04999834159502102, - 0.0031315061847194715, - 0.019577332734141834, - 0.03512129026167843, - 0.03230488294803461, - 0.024593478337126266, - -0.005846430891866775, - 0.015279369629575967, - 0.005112044187800225, - -0.008173756362180106, - 0.003716545495049659, - 0.014464998061955937, - 0.022999179423384055, - 0.020972261504582455 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.009557437811555951, - 0.022018393406568915, - 0.018154495671784118, - 0.010108370702297325, - 0.027575768851120955, - 0.01764653127048658, - 0.03403510338906508, - 0.032306732730308194, - -0.0015544238928371847, - 0.035771080298886294, - 0.027315295543293434, - -0.002824493901588745, - 0.013309350062265891, - 0.04174683793466881, - 0.017582880303859395, - 0.08272811116197737, - 0.0358675777756504, - 0.031023418779132172, - 0.08095578252039211, - 0.05096784802536232, - 0.08936881038560632, - 0.043702579566935844, - -0.0020610499364181823, - 0.09938111996235295, - 0.0008810553356306257, - 0.08924567317768325, - 0.07309174538559628, - 0.07173298277998999, - 0.07776359875722066, - 0.04709400679221701, - -0.055705288746858254 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.011535203570758051, - 5.103144625290917, - 3.7586222693130975, - 2.016622968968463, - 0.5213885336946459, - 0.16139591485813465, - 0.19945407908784252, - 0.10021950762047983, - 0.10093625970554139, - 0.056424983206612975, - 0.043028553309213506, - 0.05752485092062625, - 0.06319894968356157, - 0.09493133016826176, - 0.05681580570786124, - -0.008539704461029867, - -0.0011974182337040646, - -0.0108502020680601, - -0.013844226264603663, - -0.013670365928359428, - -0.009177953215195558, - -0.009238240107363637, - -0.013348471892633884, - 0.01092066735913195, - 0.0456093954961665, - 0.04630155133255824, - 0.03937636255798898, - 0.02729550192335901, - 0.022314098061410135, - 0.013908290898835073, - 0.01975989198854554 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.7351367933550467, - 0.7860705858876122, - 0.7076668671373447, - 0.7560761581394039, - 0.7337400444439133, - 0.6649039519938417, - 0.597276358481209, - 0.4789365028616132, - 0.5276127403572421, - 0.43660713794861455, - 0.30467135785663485, - 0.30851792919799575, - 0.27943624936155675, - 0.22992172349789303, - 0.17050855841817322, - 0.12151066129519841, - 0.08887548271520813, - 0.06788091965590451, - 0.046941331274145986, - 0.05532741343760714, - 0.04324512545505166, - 0.054656521860702474, - 0.007730041726818197, - 0.04459275546423746, - 0.027678400503662465, - 0.018254441315636093, - 0.04697765424751375, - 0.004399721109591533, - 0.031140084392811528, - 0.04117967843104464, - 0.03575903494979456 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.015823591196480493, - -0.0012100744583431698, - 0.0005757863879373136, - -0.01028218077783023, - -0.0025843064670349083, - 0.013078184434412917, - 0.007106073496838835, - -0.018314060713702965, - -0.029183799221938023, - 0.004816645906114813, - 0.009925691365065317, - -0.0001066594432325075, - 0.0032389987219595957, - 0.0027177287384832416, - 0.0012920966063758828, - -0.03789566877048016, - -0.0032219164008475275, - -0.002919336833590203, - -0.0023361838166967783, - -0.0028299852570243815, - -0.002298984988930791, - -0.019185959696978786, - -0.010572134455680072, - -0.005252012438037775, - -0.003458445779643247, - -0.004204837057647615, - 0.002300419041393496, - 0.008511287627484973, - -0.0015439377268821703, - 0.011330224014091034, - -0.0006974440521510216 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.02217933772242255, - -0.02217933772242255, - -1.4103990232975487, - -0.4009356176100803, - -0.5274973065636964, - -0.13653347783297418, - -0.19748459456195583, - -0.28136471563815946, - -0.23006347398709534, - -0.11138809779873383, - -0.024498755770331292, - -0.03968537077658212, - -0.17107849504329892, - -0.32318627701672126, - -0.2708735790602799, - -0.034664113028548646, - -0.029999014883729334, - -0.019045760122346204, - 0.011070552963335758, - -0.003323008519303963, - -0.0062589191805015945, - -0.014140394097768905, - -0.011658454565548173, - -0.015392148344848923, - -0.008365669792130865, - -0.015793913188672317, - -0.05086324779231177, - -0.007417159093549699, - 0.007596193127902911, - 0.019259278208268536, - 0.00746649335516525, - -0.02217933772242255 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.018349703038400896, - -0.017473269695339765, - -0.016031647925698937, - -0.019302857160022405, - -0.024865396657003068, - -0.02433155705881757, - -0.01791023108016412, - -0.015152751530763236, - -0.016382709856136508, - -0.013561257758390127, - -0.01073542046237422, - -0.010507765493413496, - -0.009689253332279943, - -0.0087980348177459, - -0.007469510349842155, - 0.018037174140059755, - -0.05880659213497264, - -0.04236847338462099, - -0.0038506013608323726, - -0.005141209338234509, - -0.006103579270764174, - 0.015823392005205775, - 0.0004022217150898947, - 0.003304963915355112, - 0.005392373283744975, - 0.00036387727879353576, - 0, - -0.0038607475328903294, - -0.004795995792058605, - -0.005684173135935359, - -0.005684173135935359 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.01217476462863628, - -0.011924417538066388, - -0.008375279350028214, - -0.011366475143642276, - -0.005918708352626179, - -0.0033539974750805422, - -0.0039665491542822135, - -0.00407262495730356, - -0.007287320210471063, - -0.002571591524321348, - -0.004203521697652686, - -0.0002674049110141976, - -0.005293813286972966, - 0.002933340745228205, - -0.0028041365446038933, - -0.04197966002215468, - -0.03550796052345009, - -0.011837106267366122, - -0.038871564835415116, - -0.028448843395153068, - 0.003929571828731498, - -0.0052421990885232785, - -0.005486674581284018, - -0.007547041243016271, - 0.0007547106287945944, - -0.006329107971143667, - -0.02540552843839792, - -0.00610497468590581, - -0.00544412296416221, - -0.005657100313977312, - -0.03143238872090574 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.000070169059976879, - 0.0008454718607505894, - -0.029740059796135237, - -0.02858338748572116, - -0.03355683536971411, - -0.03418263678881254, - -0.030412575483192015, - -0.029632320099732767, - -0.029626087436803002, - -0.029350231130729536, - -0.026055926050519526, - -0.026077667564017932, - -0.02515161154149581, - -0.02103645572413411, - -0.016730003965522756, - -0.010668788283603445, - -0.015056314949264448, - -0.011407455975592784, - -0.01357160915277675, - -0.018457025349647813, - -0.012909691057943167, - -0.010185932045492523, - -0.007375165262310295, - -0.00936156477447898, - -0.007112749365357418, - -0.00860116050636747, - -0.009946145457617645, - -0.007282960719570598, - -0.003544116551332752, - -0.007859766083012745, - -0.007663250402039137, - -0.012840805487100017 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.016798935281837152, - -0.0051086133333333355, - -0.010870607476635505, - -0.010584252577319595, - -0.023372777142857147, - -0.008394387254901967, - -0.009330217959895375, - -0.009706568258743895, - -0.012153890048712592, - -0.011330526007802346, - -0.011859147309614822, - -0.005145595204906606, - -0.007271034573766168, - -0.0026990179640718577, - -0.013891415619204622, - -0.0589683119777159, - -0.09210425773028956, - -0.08366667964554272, - -0.046520603015075324, - -0.03246363845710998, - -0.023792185479860766, - 0.00469596820071475, - -0.009267092613602425, - -0.01349077617716619, - -0.014265593896713634, - -0.020474147878391098, - -0.023764165497896214, - -0.03058408760806915, - -0.03130718471852884, - -0.02839198701264535, - -0.015127337147736983 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.0018572051777954804, - 0.0025607037045737024, - -0.007369421113054879, - -0.017532791201625483, - 0.003441670513000728, - 0.006151024326593996, - 0.005878492432891696, - 0.009817669975086138, - 0.014080192110881157, - 0.009840356446151638, - -0.0011235894296500355, - 0.009029593023255806, - -0.013719437182838709, - -0.003045806067816776, - -0.0021435704498478825, - -0.01922502099076406, - 0.0007231668796051472, - -0.01120026886892054, - 0.0004561219570713308, - -0.003268372022378047, - 0.012544560455222065, - 0.0037752819039996183, - 0.0004854632248095007, - 0.01080410672268908, - -0.0018861172874880619, - 0.014183540519714799, - 0.016776638410599797, - -0.007773885539404865, - 0.005238758040217096, - -0.001956186331861494, - 0.001563664327313119 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.00022391828000714836, - -0.00006754559686166046, - -0.00004163769669554412, - 0.000048577312811468134, - 0.0013879232231848039, - -0.005269085019230914, - -0.005282233434698073, - -0.0061967613042319646, - -0.0052853866251654155, - -0.028342616326219337, - -0.035575678124981504, - -0.008286427795827486, - -0.004966632875896283, - -0.009731072465263495, - 0.01175764660322955, - -0.013130088903531314, - 0.006762442184295637, - -0.0010805875699707833, - -0.014143224048365417, - -0.013732881797329828, - 0.004085579582303356, - -0.004773653287368499, - -0.02608844341717318, - -0.02714101191739165, - -0.004899259693918529, - -0.0012256801868705664, - 0.008119754662624896, - -0.004161780199947333, - -0.003957233705209242, - -0.021796044039453056, - -0.003631989778883819, - -0.006840544834421447 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.004645720935368171, - -0.005219031579695779, - -0.004916094123844842, - -0.0034523001062987595, - -0.004277291782341323, - -0.004554950075659685, - -0.0033723550207471428, - -0.0029183292017218388, - -0.002076332250055013, - -0.0005382519155925179, - -0.00040830766239863145, - -0.014151096647527128, - -0.003908376397536222, - -0.003884391011797953, - -0.004903686669918074, - -0.017710552635108966, - -0.03457630248693793, - -0.02926744062742401, - -0.022456651323715774, - -0.010830582313490008, - -0.00980318216740013, - -0.016467111724931618, - -0.01094535258059768, - -0.010364560431608726, - -0.006695758453061504, - -0.01639098317353583, - -0.012299743113367062, - -0.00988013611306352, - -0.011451922646059357, - -0.008709541990806587, - -0.006378177993535134, - -0.015204802574436693 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.0054712519491340005, - -0.00912860764898542, - -0.011569695027974782, - -0.014795058218286186, - -0.014802166924593713, - -0.008202135108629166, - -0.007578619961553424, - -0.027351041283201195, - -0.007481489626643385, - -0.019971686393658084, - -0.009471447980743484, - -0.06912144207332699, - -0.010702195597614999, - -0.044180503632084596, - -0.014463539385653902, - -0.025608230240311478, - -0.029281640124668756, - -0.02775538714317625, - -0.023245301245474245, - -0.016053210469108056, - -0.0070872219168509835, - -0.022426056195779347, - -0.025261878015230367, - -0.027298786683098732, - -0.02810799821671256, - -0.02566046466120737, - -0.015237905710363927, - -0.015207038105848397, - -0.02340055974141429, - -0.0069048481074489194, - -0.011066336842791548 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.008989712939663878, - -0.0015976586718781242, - 0.0038558653542867206, - 0.00015337880309846647, - -0.009827466653129743, - -0.005532360437447997, - -0.0010308028270007083, - -0.02927974614818257, - -0.009270987104302771, - -0.021575445870920622, - -0.010384460559933278, - -0.005995196481734574, - -0.006314867985443816, - -0.005696210791337078, - -0.006359184399701881, - -0.0047531231148853345, - -0.018004374568952656, - -0.01951447447630189, - -0.016166280113793004, - -0.015105430502045087, - -0.01638389847543585, - -0.016343144772265627, - -0.01246652108446539, - -0.014696495807168301, - -0.018974267906008785, - -0.02125496621946432, - -0.013053738099427266, - -0.024093355475649992, - -0.00678405303041616, - -0.006728888661216338, - -0.0063635539900620385, - -0.012335581339499942 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0008973996136374599, - -0.00038481929393234125, - 0.014386756407428343, - 0.0019064545462606011, - 0.0057721382767048635, - 0.007252379866792746, - 0.0014187071934991214, - -0.008799678553199592, - 0.007083596798299923, - 0.0005336091701614013, - -0.004557742216060724, - -0.0037726511873984515, - -0.014579705956207771, - -0.0011703998447029846, - 0.002361167555762714, - -0.019429892891707688, - 0.01746030905049497, - -0.010822411655880286, - -0.0016161870469878295, - -0.019145206864227566, - -0.009235475522803028, - -0.0093685579202404, - -0.003975960693350739, - -0.00427215068628626, - 0.004985371205570611, - 0.0115191119796163, - 0.00703112793073131, - 0.014132023395519496, - -0.0038101293774929846, - -0.00509147835212236, - -0.015382435399581444, - -0.0019325020518467014 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.16279394679940337, - -0.16279394679940337, - -0.16279394679940337, - -0.16279394679940337, - -0.16279394679940337, - -0.16279394679940337, - -0.16279394679940337, - -0.16279394679940337, - -0.16279394679940337, - -0.16279394679940337, - -0.39769124227649055, - -0.3836447524830604, - -0.3749537710352241, - -0.4646820130342951, - -0.08400416014441794, - -0.08725196147319389, - -0.09638665910093029, - -0.0958759370688019, - -0.22858405411820104, - -0.12319197722645023, - -0.17396503791273912, - -0.144946682964826, - -0.12450938623665476, - -0.6290685386158327, - -0.15558740639734975, - -0.07210237816044383, - -0.09171903325971725, - -0.07309485784396536, - -0.03772684938847884, - -0.02611211948791855, - -0.10857911733565045 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.2656197611691699, - -0.6814272962499661, - -0.937858308353803, - -0.9070731566647688, - -0.8853416137726012, - -0.8537820508072481, - -0.6419576257462357, - -0.5325858135773284, - -0.4703570821108418, - -0.41427928829522365, - -0.4377112354939469, - -0.45862195708437353, - -0.43612835268417965, - -0.39278889956844487, - -0.3244480361844439, - -0.012626133647324258, - -0.012314157829826679, - -0.038208589442106394, - -0.047119959643634524, - -0.0751682016983959, - -0.09190639552512143, - -0.24895425273090524, - -0.3440957000702445, - -0.3637921543933939, - -0.27668586689778113, - -0.24241987945918278, - -0.2591463029930038, - -0.17346802611800533, - -0.11473669552581316, - -0.14375673022972488, - -0.21645376886434534 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.010388332593706959, - 0.003041733886754367, - 0.0003192188563102764, - 0.0010497406730392866, - 0.0010561072288116987, - -0.0006158800020117889, - -0.008403156418306256, - -0.007621672399300284, - -0.016913414004298383, - 0.0003314481630814181, - -0.014148183539602135, - -0.0034791237564447846, - -0.05136992021534729, - -0.02057045862221301, - -0.0040749294172536255, - -0.013187084089923437, - -0.003081418864533746, - -0.008245358343552934, - -0.0008374757024401362, - -0.029081976991799322, - -0.0012827546367164056, - -0.015219010747767155, - -0.026850401167855288, - -0.020901153690814495, - -0.020272374550173677, - -0.019823487995288, - -0.02078460374343488, - -0.02195588538727968, - -0.01643961064173809, - -0.022658144537976585, - -0.014478125350488634, - -0.014265164575121461 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.010879509895361522, - -0.014503177692615069, - -0.01876017730308054, - -0.04847790004294151, - -0.057908473052954, - -0.007621955759060236, - -0.009775209824195661, - -0.008622763246809266, - -0.005486161875103356, - -0.01692557513830974, - -0.016417393289309648, - -0.01608284184580944, - -0.019647267974306985, - -0.019114634743362762, - -0.013740861753432277, - -0.02820520964120733, - -0.019206517485904132, - -0.018751302974194802, - -0.021040668801972733, - -0.02383198837430461, - -0.014149784285566316, - -0.01981340521083804, - -0.012161945496786756, - -0.00852267303391586, - -0.005633194107447833, - -0.0033462494690617607, - -0.007704913787856743, - -0.005594581367092152, - -0.0005279036043196371, - -0.004507228047934789, - -0.006299297176263711, - -0.011679684000386372 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.002513085523620217, - -0.0030318896293308976, - -0.0035080051732596018, - -0.020951163451357162, - -0.042795004803073945, - -0.016472967220093657, - -0.017303570956106087, - -0.01187002423228988, - -0.022376780758556886, - -0.031569995821144996, - -0.03329303379062704, - -0.0168055528267145, - -0.009556737751217716, - -0.017917153528614192, - -0.01568114186489545, - -0.01349226450944261, - -0.031114589732756753, - -0.05571075269167413, - -0.09466663986429316, - -0.09081811174899151, - -0.07849577869277079, - -0.08191314062914902, - -0.0798001892848815, - -0.05135583712044371, - -0.061278111346246084, - -0.060131552763242634, - -0.0617939586690956, - -0.053621485753279546, - -0.04321271481482116, - -0.04817360306800691, - -0.019456071241818643 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.00010249845601124671, - -0.00004491464244136879, - -0.00011737576403840444, - -0.0004236165497955596, - -0.0003301223097489606, - -0.00004998378188219282, - -0.0002913495519129212, - -0.0028254220359353226, - -0.0037422999117613415, - -0.003503042909930847, - -0.0052536208923608906, - -0.0014544390456992457, - -0.000907506213712275, - -0.004413433178978045, - -0.006832230440415885, - -0.01168415421361103, - -0.006306518056976019, - -0.006491068659795717, - -0.012416745494461494, - -0.007030375491310092, - -0.01011299003004469, - -0.00751948284621753, - -0.009713450942283887, - -0.013708107941114973, - -0.014445524159262601, - -0.014205810496096672, - -0.010352534255074193, - -0.006742410433253468, - -0.0087666953503302, - -0.01996654732470408, - -0.016105830215907273, - -0.014236916076344159 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - -0.00027225540182546364, - -0.0009594182883738374, - -0.0019693061808878968, - -0.002721523421901088, - -0.005624592116845973, - -0.005565662280178524, - -0.00833055946219895, - -0.006139906392647095, - -0.004553488724814309, - -0.006564298816823601, - -0.008392289117095376, - -0.007666741206792574, - -0.004021953760261141, - -0.005065494732645402, - -0.0056420722876514805, - -0.00637301027824943, - -0.006740683864145192, - -0.020143330403013273, - -0.014521189154171072, - -0.0068206500041897685, - -0.013104775477730616, - -0.008449402197334005, - -0.014212187255283995, - -0.01122546940485349, - -0.01734903399377308, - -0.017174182335436765, - -0.010890528260072743, - -0.011365564874729478, - -0.013053437326516823, - -0.02001307864885255 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.9844275584270766, - -0.6627187258814972, - -0.6456842306860641, - -0.48334590912176106, - -0.39118202195494306, - -0.3072390756068708, - -0.09713080637121568, - -0.08270096758209698, - -0.061412144026458636, - -0.04922663456801239, - -0.04163924079556934, - -0.039773354616191754, - -0.039926870513399666, - -0.036660122920956, - -0.03544081072881995, - -0.03277621539396565, - -0.03487934205630368, - -0.0841703591443162, - -0.09360407076650619, - -0.06508533833863335, - -0.06124292972841218, - -0.04780896297681929, - -0.04600179637821793, - -0.040555530138365964, - -0.04323200238911736, - -0.05537124099242957, - -0.05650923767409716, - -0.060863384426410316, - -0.060771485558786385, - -0.05969351592445895, - -0.05686712115897536, - -0.06719221651142417 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.02698957022215728, - -0.018800764107458137, - -0.017643939247985005, - -0.012188417801789144, - -0.005954388887991669, - -0.006984780351225747, - -0.007674123201173949, - -0.022073224536121705, - -0.06320348618241947, - -0.04544858693406299, - -0.026813074124775432, - -0.03856694164467766, - -0.02361025023239934, - -0.030268955767701725, - -0.033451340469181946, - -0.040483099580780946, - -0.035519370242644746, - -0.02695223892707631, - -0.021352859224393197, - -0.0014737813623428905, - -0.01939387405544419, - 0.012680259271130024, - 0.0034247422571183532, - -0.009074862460565469, - 0.0018812308871472532, - -0.009809527264727298, - -0.005846059848441737, - 0.012998332761948991, - 0.008254180741006086, - 0.010297148123075918, - -0.004817290598854692 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.010297649424649311, - -0.012707722797342056, - -0.013879888335010332, - -0.0104299374447731, - -0.008479743456446658, - -0.018517599727489235, - -0.02460310458007244, - -0.02085293572157086, - 0.0025229044766040625, - 0.013325735411079571, - 0.027574399335090226, - 0.018556861930052255, - -0.0007415163831811611, - 0.002542563203810053, - 0.0058866828537014705, - -0.018439439909112728, - -0.0060028125729629156, - -0.005213426050089123, - -0.00670037540868349, - -0.004870912683301791, - -0.014708540626505513, - -0.01291018318507808, - -0.014943540296047327, - -0.013336693999716424, - -0.016539014644798726, - -0.012434716448618809, - -0.017315493045525796, - -0.01821750434998772, - -0.012003216189115772, - -0.01834619866712917, - -0.01336182486241641, - -0.0338247282763954 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.010493327634451845, - -0.010505133323988402, - -0.0037734406819731666, - -0.013927256630977302, - -0.0176190991413238, - -0.012747474059053585, - -0.014104881340772788, - -0.011540155600656367, - -0.02855327703821118, - -0.013007919891907797, - -0.02527796994674482, - -0.004244738469993582, - -0.01751924377368459, - -0.0021599476639577566, - -0.0011473439221839146, - -0.008097961397121649, - -0.012840309599110967, - -0.003935460528328428, - 0.0034687314230753053, - -0.0009517892581941226, - 0.007879203451852708, - 0.0014622786400415408, - 0.003656854430739853, - -0.0003184979729469667, - 0.003409767033922075, - -0.00032518132139834437, - -0.0019265632897025355, - -0.001868768269965219, - -0.0017698388751482407, - -0.0016290252134960811, - -0.009018529148636534, - -0.003635999931421339 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0003091391639849574, - 0.0004113128817050071, - 0.001052245886010274, - 0.0015565387413529926, - 0.0031351282331445337, - 0.002438122848915122, - 0.003557535730300179, - 0.0019485583959315271, - -0.004614550657808894, - -0.013585784943182307, - -0.011571595373111058, - -0.006899923682638705, - -0.0032489640993789946, - -0.002833571778137371, - -0.007689097537842927, - -0.005683168158556528, - 0.0032293442766344375, - 0.011089837781475397, - 0.007971630884067223, - 0.008876182115749675, - 0.016366349669653543, - 0.015858868925009675, - 0.016506839677985965, - 0.011344656007163018, - 0.012615152028937444, - 0.013360183820717766, - 0.011855917949452085, - 0.009949187208387526, - 0.015095727851852331, - 0.015504629066794073, - 0.015915237071583148, - 0.04705577218622263 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.010082158383092848, - -0.0152071210953331, - -0.012096676542808662, - -0.008765096627689734, - -0.020788603254727114, - -0.026456485058872884, - -0.022350718886526073, - -0.02563839791103496, - -0.02422927438691222, - -0.02322605747682353, - -0.025967099426415636, - -0.033904915689222076, - -0.03000147524482347, - -0.023267797991336908, - -0.02618650533228021, - -0.022273155112073863, - -0.015855840161423874, - -0.02163819037594526, - -0.026211761533927524, - -0.008881160232907165, - -0.011943010730597265, - -0.010394402052887051, - 0.00046929929155487113, - -0.025725470172951168, - -0.01749946524191542, - -0.021201193461785745, - -0.02875623507098759, - -0.02614019770187737, - -0.020925027529300307, - -0.01861388135558274, - -0.023270880284273012 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.0008292263891532505, - -0.0002597711705690293, - -0.005862494443841997, - -0.0021748823862435132, - -0.0038734617046568853, - -0.004516897764371294, - -0.013718999724393641, - -0.020241439874074136, - -0.030104510300192563, - -0.04484011168627505, - -0.046529463725792676, - -0.04413510463171406, - -0.027674042903834753, - -0.01772416148056065, - -0.012459329898654269, - -0.014074825741847275, - 0.008468812597657306, - -0.0196964860431646, - -0.014506596725409767, - -0.021615408457494902, - -0.025183793079536405, - -0.033010298765935066, - -0.036704561559084685, - -0.02408891095513841, - -0.027323262834443727, - -0.03418253589504403, - -0.033191161885578226, - -0.02304077533294175, - -0.03971872080036574, - -0.024685380788917553, - -0.028554433528009147, - -0.02182571102783219 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.012988816648031037, - -0.012855788542278255, - -0.01427109120643759, - -0.00881980351441587, - -0.010185238806185324, - -0.01593708682580601, - -0.019650165714454083, - -0.018805821410455545, - -0.016608828223886776, - -0.018939595195548622, - -0.03348754595885863, - -0.00746291178538196, - -0.028407043092968196, - -0.006883382965846813, - -0.020944754926267368, - -0.019896587497948634, - -0.013324146727315278, - -0.01728138286231442, - -0.023051952066278497, - -0.009927465374414, - -0.02447423704261307, - -0.01763971830886699, - -0.026134697700532974, - -0.016179859119007416, - -0.005975064710317651, - -0.01829974587757617, - -0.0026431398659970172, - -0.016098150692831187, - -0.019036609008813234, - -0.011337639096375576, - -0.0070005422724448065 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.001552419527714251, - 0.00020383521193786085, - 0.0021965004724111663, - -0.021835877154482226, - -0.07328507814952849, - -0.047811816333369395, - -0.06313134104464406, - -0.03532841832090638, - -0.02850208316570468, - -0.036104909269452895, - -0.0156479019339424, - -0.020562305116503306, - -0.03935620845388673, - -0.02170925778748569, - -0.02394892075481482, - -0.03390348169268126, - -0.0391065680458788, - -0.05310103000220533, - -0.051329911788901735, - -0.0498244591880012, - -0.05435108017840428, - -0.042731679856465324, - -0.06159675363399548, - -0.04639576829855891, - -0.0140603150374805, - -0.04280642997624339, - -0.029094360979820266, - -0.030143157024826697, - -0.031208783737910736, - -0.02972260532073725, - -0.004346925559611545, - -0.03532777788007197 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.0015638402096117992, - -0.032312973993017934, - -0.007830892684297628, - 0.008557394585125546, - -0.0077886063815218835, - -0.011549234725975736, - -0.02375848750591163, - -0.013839131924065495, - -0.0431615904731267, - -0.020596694560246414, - -0.0356835767618464, - -0.028306655002907532, - 0.002626661387001204, - -0.008634233110207473, - -0.007683183752245952, - -0.009772523678805326, - 0.011074926107994215, - -0.016421835848848484, - -0.004165171344429257, - -0.0036023182672436454, - 0.002334735122564872, - -0.0037537657237382647, - -0.004403515871639723, - -0.005196690142631221, - -0.0024628942652855077, - -0.002110670485839884, - -0.0001540219003180456, - -0.006776963613994006, - -0.006776963613994006, - -0.006776963613994006, - -0.006776963613994006 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.01011619183931802, - -0.008797051787514991, - -0.011617798475095555, - -0.010822190805661375, - -0.01588101927457073, - -0.007698506344549483, - -0.028651154610758515, - -0.044560493647884, - -0.02064964243269712, - -0.016155391126069073, - -0.021135105956114682, - -0.02571813628938736, - -0.013034230642763222, - -0.008271290169235303, - -0.02496710606358668, - -0.03735706682598883, - -0.03392474160798422, - -0.03689446409464154, - -0.03088123203985883, - -0.019492816105157657, - -0.0033058367044770114, - -0.018591840889026708, - -0.04218194093365139, - -0.022397218595232006, - -0.03219462081585885, - -0.025224042905853998, - -0.03302602483597011, - -0.03209951461239415, - -0.01846920414671385, - -0.033502338251357296, - -0.0213772615881947, - -0.031992433945097064 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.019740961967177825, - -0.018432768656572375, - -0.011711255849667312, - -0.012172963643125872, - -0.02931847338927264, - -0.03002162238146941, - -0.047170476102520266, - -0.04483344707025847, - -0.038544199142041886, - -0.0825166837989114, - -0.011217057053641179, - -0.03648962788512775, - -0.03164425799749897, - -0.030635520649161835, - -0.0468968731057246, - -0.04332182399222385, - -0.03472021199729183, - -0.04967112705072683, - -0.05189175012297244, - -0.03841444607320357, - -0.030013023735945516, - -0.02106225828753536, - -0.040476270146381936, - -0.04426291295417574, - -0.04128995725083696, - -0.02028569287338106, - -0.015317707517367166, - -0.009400550810509067, - -0.021676743997569838, - -0.011622514954809433, - 0.012638743296119134 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.028082767474058884, - -0.024012419448559415, - -0.02587562599645891, - -0.025503851695378273, - -0.027930391006782844, - -0.028621781932764007, - -0.03607164645662521, - -0.03200735051028837, - -0.04444962169441375, - -0.04310567478395376, - -0.04103183940939706, - -0.034640450087098366, - -0.03563798057413549, - -0.03601824838826572, - -0.04713785761191752, - -0.0688196317885016, - -0.06964659137186802, - -0.06739410287149748, - -0.07270713557476152, - -0.04359365624628188, - -0.042200434509385897, - -0.05444514392219361, - -0.038167940676795006, - -0.047133788627564864, - -0.05417020165594569, - -0.045025205898997694, - -0.03614516363231986, - -0.04382463272657029, - -0.038990457761698606, - -0.04206371349144011, - -0.02658606606315877 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.0018932965563132468, - 0.002390336415492433, - 0.004364811764808728, - 0.0047488109382743515, - 0.004672553489416289, - 0.005364050572865679, - 0.0006639315001061547, - -0.00008976917650130636, - -0.004015307290614015, - -0.006745536822528702, - -0.015874903998455432, - -0.002500042195240608, - 0.006211356721481386, - 0.006817100493905197, - 0.013129732784306028, - -0.006884672616297244, - -0.0010613400232988993, - 0.012266726669541542, - 0.00016930785005116213, - 0.010486172213397744, - 0.0057222984445284095, - 0.011138368771673743, - 0.007834471965454438, - 0.0062356830721447725, - 0.00774072761348738, - -0.01147930418231282, - -0.009313005874981293, - 0.0014629294608710325, - 0.0009346867512362252, - -0.008398549567074507, - 0.004791383394191676, - 0.0014847464863312217 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Foreign investment=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.007363008839425938, - -0.009006886596231008, - -0.016762090939395447, - -0.05197520595676024, - -0.056327503810060214, - -0.04608167837909061, - -0.04407078976792061, - -0.04333800820178559, - -0.039956538358342335, - -0.03380081569311068, - -0.030943490209674386, - -0.027890935795819225, - -0.03181773397642721, - -0.029780890283121378, - -0.03075907770578207, - -0.03953651621229981, - -0.036389913491946355, - -0.039177776852826605, - -0.02498578629282628, - -0.017085876249697582, - -0.030515004856305282, - -0.00835179763928135, - -0.020657024237050865, - -0.006589960693132033, - -0.013838489371755799, - -0.006156337114061915, - 0.003709948387116, - -0.0022575193953513852, - -0.006645533345387369, - -0.0035196108161807574, - -0.006965684085723031 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Foreign investment" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Education GExp=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.771149163998027e-12, - 5.470775076029322e-12, - 4.79673229812421e-12, - 4.626495244287346e-12, - 4.2608861546085005e-12, - 3.675535157690254e-12, - 3.3116818401544433e-12, - 4.6223448323771495e-12, - 4.139150574256989e-12, - 4.65823859157514e-12, - 5.24880561094375e-12, - 5.254715918665962e-12, - 4.919247037193938e-12, - 4.087149716447782e-12, - 3.633011084980733e-12, - 3.59152317989187e-12, - 3.1697593316259498e-12, - 2.937393058835183e-12, - 2.6797041059951267e-12, - 2.9858869491742655e-12, - 3.020601026757688e-12, - 2.844631513759173e-12, - 3.1285206915000953e-12, - 2.940997360552032e-12, - 2.8560977148843806e-12, - 3.2759133294894503e-12, - 3.1443805164812214e-12, - 2.993265217573172e-12, - 2.823576184898492e-12, - 2.629557483271405e-12, - 2.658210737090035e-12, - 3.5210633047332804e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Education GExp=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 7.595756957666872e-12, - 7.883890676386853e-12, - 6.827265598132271e-12, - 7.881514047022775e-12, - 7.553055854540166e-12, - 6.836497273984167e-12, - 6.723869365533974e-12, - 7.0230433381709726e-12, - 7.15000139119729e-12, - 6.83364823988323e-12, - 7.471717494117645e-12, - 7.40653967658633e-12, - 6.796063658539272e-12, - 5.531811310981579e-12, - 4.8138865878359176e-12, - 4.644482526716716e-12, - 4.397118929031302e-12, - 3.835115130416958e-12, - 3.4821214820662903e-12, - 3.777896801299101e-12, - 3.857447636587812e-12, - 3.561295878026951e-12, - 3.802131862734989e-12, - 3.6287768259419043e-12, - 3.5727593200007117e-12, - 4.183224521319606e-12, - 4.1260901179329545e-12, - 3.719409549802655e-12, - 3.4844069959741677e-12, - 3.739156801800635e-12, - 3.879255202585865e-12, - 4.877616642993815e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Education GExp=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.1433750228270504e-11, - 4.9111254028524424e-11, - 4.736803222621149e-11, - 6.324264264582519e-11, - 5.880243653860554e-11, - 3.811798127157637e-11, - 3.879225379273942e-11, - 5.022534178988443e-11, - 4.691645157215885e-11, - 4.527405670350301e-11, - 4.912967379183454e-11, - 5.284620128763326e-11, - 4.925870781950632e-11, - 3.8447380879532854e-11, - 3.370431457318693e-11, - 3.234838097149875e-11, - 3.0102688430380275e-11, - 2.5993899331909227e-11, - 2.50036822451065e-11, - 3.019764597589899e-11, - 2.666531833835736e-11, - 2.2810058723968594e-11, - 2.7396806184681938e-11, - 2.566243423394775e-11, - 2.6201139342452236e-11, - 3.0454890220322245e-11, - 3.028947607766956e-11, - 2.8993634717462596e-11, - 2.8205722094487595e-11, - 2.52261625137622e-11, - 2.488402181459206e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Education GExp=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.0153467301356539e-11, - 9.482627953580948e-12, - 9.422192984076918e-12, - 1.1765030530459944e-11, - 1.0326651434603339e-11, - 8.804360656792046e-12, - 8.186154349050039e-12, - 8.006870732807332e-12, - 7.318192691241339e-12, - 6.881982291128148e-12, - 7.128213853102452e-12, - 7.349473571212133e-12, - 7.469179909859598e-12, - 6.5142871911610365e-12, - 5.268533438535048e-12, - 5.109726176987429e-12, - 4.769924387966905e-12, - 4.134522022865864e-12, - 4.33263700233299e-12, - 5.10543263208409e-12, - 5.1310418133892896e-12, - 4.661336685049471e-12, - 4.592329374023691e-12, - 4.516205538285244e-12, - 4.325559891729706e-12, - 4.562784692363446e-12, - 4.939174099339089e-12, - 5.098627208481946e-12, - 4.600151453688941e-12, - 4.3378552423636365e-12, - 4.524694667530215e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Education GExp=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.8902483868016318e-11, - 1.7381372822492462e-11, - 1.5422750233309175e-11, - 1.913438606156357e-11, - 1.935124926384689e-11, - 1.734152931228555e-11, - 1.6706760572345062e-11, - 1.7539587857082073e-11, - 1.6911562617924177e-11, - 1.6806730712891026e-11, - 1.780361555471356e-11, - 1.704719305254713e-11, - 1.5098227702067573e-11, - 1.1983968688143326e-11, - 1.0019375585461061e-11, - 9.334846519196002e-12, - 8.63839940532856e-12, - 7.352049419770941e-12, - 6.69546184054675e-12, - 7.12381686851812e-12, - 7.41772672908793e-12, - 7.165350624735081e-12, - 6.9339118951099184e-12, - 7.005417469063044e-12, - 6.9564631870818096e-12, - 8.168668829825535e-12, - 8.079272292869609e-12, - 7.781473432668872e-12, - 7.058670689910227e-12, - 7.429554713555108e-12, - 8.076345079809474e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Education GExp=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.8523068015854366e-10, - 1.8523068015854366e-10, - 1.8523068015854366e-10, - 1.8523068015854366e-10, - 1.8523068015854366e-10, - 3.7597914732298956e-10, - 3.5477009790883756e-10, - 3.5453441417084474e-10, - 3.3114371885580793e-10, - 3.607314340241511e-10, - 3.9108217720001327e-10, - 3.669881031644562e-10, - 2.781397983354386e-10, - 2.2070986665224545e-10, - 1.8638221206069145e-10, - 1.8656847590670293e-10, - 1.6793190560077964e-10, - 1.4372028056555352e-10, - 1.3200486992870765e-10, - 1.4243865007468196e-10, - 1.4461237249732937e-10, - 1.3416561946468817e-10, - 1.4934076937198942e-10, - 1.606472658738996e-10, - 1.464273386493983e-10, - 1.7026725375348524e-10, - 1.6332580992479172e-10, - 1.5367425084148456e-10, - 1.3721189837794048e-10, - 1.372155765604773e-10, - 1.493109129059978e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Education GExp=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.747122715609901e-10, - 1.348186693008486e-10, - 1.221908287573218e-10, - 1.2001712731056847e-10, - 1.0403221642358611e-10, - 8.100988766106234e-11, - 7.195760730172102e-11, - 7.233485368496792e-11, - 6.456626750505008e-11, - 6.40583172552528e-11, - 6.891962041341142e-11, - 6.19756369690893e-11, - 5.972400408817118e-11, - 5.3456943693391957e-11, - 4.816189439534529e-11, - 4.0070348163219787e-11, - 3.688699604486942e-11, - 2.645667996158215e-11, - 2.1460111057354056e-11, - 2.5308348764290294e-11, - 2.3059299501666396e-11, - 2.0792795821915364e-11, - 2.2520439220930376e-11, - 2.226022731817673e-11, - 2.1346062611489385e-11, - 2.416532510699557e-11, - 2.3874788220376627e-11, - 2.1004754664439602e-11, - 1.8936547501241655e-11, - 1.9299342869244523e-11, - 1.932056962848595e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Education GExp=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.353508796374866e-11, - 5.984246170882693e-11, - 6.099483728675398e-11, - 6.5151790347568e-11, - 6.079755964733734e-11, - 5.179127440298817e-11, - 4.860158127518835e-11, - 4.951958542624877e-11, - 4.43589363258736e-11, - 4.6006744896239026e-11, - 5.3333508490222406e-11, - 5.367587149493722e-11, - 4.837575456307233e-11, - 3.6370979391015645e-11, - 3.19626330172322e-11, - 2.85994672121487e-11, - 2.5915517431349877e-11, - 2.2229671088273856e-11, - 1.991832517615986e-11, - 2.139729286937485e-11, - 2.38590018253418e-11, - 2.5050200224667533e-11, - 2.929027519020702e-11, - 2.967298795830086e-11, - 3.010770923882673e-11, - 3.6737686536355356e-11, - 3.6702940904700617e-11, - 3.5947565658304206e-11, - 3.501782261747082e-11, - 3.455670031150254e-11, - 3.754122615377853e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Education GExp=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.916301791688255e-11, - 6.168780517480314e-11, - 5.4957373082995974e-11, - 5.816365394173568e-11, - 5.2673833023494004e-11, - 4.358693396997811e-11, - 4.5188360447874304e-11, - 5.0382836773203957e-11, - 5.1736255712063364e-11, - 4.9346513305213516e-11, - 5.592397605449069e-11, - 5.4966269115190636e-11, - 4.912584765977775e-11, - 4.0948150831706457e-11, - 3.2751973609504866e-11, - 3.2464730158383045e-11, - 3.0851012247474724e-11, - 2.685682704230535e-11, - 2.4430280624333214e-11, - 2.634399472087067e-11, - 2.750398893846233e-11, - 2.5454867719781926e-11, - 2.6138575938187806e-11, - 2.496632936248791e-11, - 2.3523537431637073e-11, - 2.7995516360599762e-11, - 2.7672602670240775e-11, - 2.619536997632956e-11, - 2.3568653008259195e-11, - 2.4091450246990697e-11, - 2.474500140314518e-11, - 3.412646514424116e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Education GExp=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.450969804621062e-11, - 3.380405742024842e-11, - 3.161119746046315e-11, - 2.7341720284096923e-11, - 2.52193796646422e-11, - 2.137500306271296e-11, - 2.5469346776451255e-11, - 2.7527208077154055e-11, - 2.378994131223094e-11, - 2.3641207273167092e-11, - 2.6543803654608388e-11, - 2.585201467455958e-11, - 2.3702048580165905e-11, - 1.98793301614837e-11, - 1.8039640181223584e-11, - 1.7999478478455194e-11, - 1.6310367017332314e-11, - 1.386203107956391e-11, - 1.247911004092219e-11, - 1.3331280817521611e-11, - 1.377072669568675e-11, - 1.313166391554382e-11, - 1.4037122775705953e-11, - 1.3787750657935207e-11, - 1.3619407927915974e-11, - 1.5948385977149687e-11, - 1.6334021557715046e-11, - 1.4898323567665846e-11, - 1.4125750515632733e-11, - 1.260575947759113e-11, - 1.2555121439296832e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Education GExp=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Education GExp=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.5671921342926348e-9, - 1.6757746998073198e-9, - 1.5086307173058654e-9, - 1.6118314559586907e-9, - 1.5642144926796777e-9, - 1.4174671340678897e-9, - 1.2732960987284163e-9, - 1.0210147647280584e-9, - 7.648289927581872e-10, - 7.687024154167531e-10, - 5.448260167313112e-10, - 6.016097570720492e-10, - 6.201003503125599e-10, - 4.5466791966566035e-10, - 3.798167614223836e-10, - 3.086594863197706e-10, - 1.894680809092155e-10, - 1.4471108549440359e-10, - 1.3061085175030594e-10, - 1.5169632405845215e-10, - 1.1043011180360498e-10, - 7.812146437147666e-11, - 6.587651236944453e-11, - 6.616261345886784e-11, - 6.179107585373104e-11, - 7.131956187101493e-11, - 7.602357408139458e-11, - 5.314026560282214e-11, - 6.291884078031268e-11, - 4.8967669061544595e-11, - 6.453204405490447e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Education GExp=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.0251218470156437e-10, - 1.9917029705771633e-10, - 1.8930340902395989e-10, - 1.8458658363162915e-10, - 1.7313285338492528e-10, - 1.5617717531988933e-10, - 1.3956079819897332e-10, - 1.302357848426107e-10, - 1.3568219617504048e-10, - 1.2158923104734916e-10, - 9.84082683753291e-11, - 9.938531693196322e-11, - 9.349859129132241e-11, - 8.2573066880516e-11, - 6.945850754356827e-11, - 5.684754778537528e-11, - 4.6226454161265846e-11, - 3.981007316090548e-11, - 3.2546707813407634e-11, - 4.049602485198275e-11, - 3.5431707266181665e-11, - 2.928045269318498e-11, - 2.741035140903736e-11, - 2.632007501224297e-11, - 2.5469400209649265e-11, - 2.8669799048082936e-11, - 2.875732269394518e-11, - 2.662736905630692e-11, - 2.4318555903606498e-11, - 2.460996457794454e-11, - 2.8611183634180082e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Education GExp=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.5719754509889002e-10, - 1.112740631250742e-10, - 1.0738870960990728e-10, - 1.0960292094675373e-10, - 1.2437983622299075e-10, - 1.1751223535550418e-10, - 9.613052861355737e-11, - 7.408747093700293e-11, - 1.6339532018704426e-10, - 1.4426068304083073e-10, - 9.411707124933327e-11, - 1.1348118976088456e-10, - 1.1230725687056849e-10, - 9.941824929061425e-11, - 7.802613856263503e-11, - 5.873563705729042e-11, - 5.7319879575361873e-11, - 4.4453760512114643e-11, - 3.7047980786810736e-11, - 4.309317288127517e-11, - 3.500744653476388e-11, - 2.754785458142826e-11, - 2.512475816733878e-11, - 2.4765634632152794e-11, - 2.4447916262429824e-11, - 2.8262327023250706e-11, - 2.8671376856326224e-11, - 2.6853847444544533e-11, - 2.351007844203874e-11, - 2.331899528052395e-11, - 2.6411538203902023e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Education GExp=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.1612062374696266e-10, - 4.1612062374696266e-10, - 2.6461390716520407e-8, - 7.522207442362594e-9, - 9.896711569084348e-9, - 4.88544776441857e-9, - 7.592630678534394e-9, - 2.9806047358143088e-9, - 4.218485387225474e-9, - 4.715770153439645e-9, - 4.005288657932694e-9, - 3.657773803808828e-9, - 2.1858616278264925e-9, - 2.0848362446865496e-9, - 1.6399115523666765e-9, - 9.98296366497581e-10, - 4.813623681793685e-10, - 2.95893149317825e-10, - 1.5892416778204368e-10, - 2.109644574100961e-10, - 1.6444823221619678e-10, - 1.0947205373701715e-10, - 8.098954247688227e-11, - 8.715942947965585e-11, - 9.620304135348287e-11, - 1.437812659458976e-10, - 2.1672662664329238e-10, - 1.7007964801220776e-10, - 1.5729266506614773e-10, - 1.6756156441560316e-10, - 2.464967399379612e-10, - 4.046112664152476e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Education GExp=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.326678019157589e-9, - 4.120023727655232e-9, - 3.780103609624396e-9, - 4.55142230947438e-9, - 5.863013964223007e-9, - 5.737139880572092e-9, - 4.2230548892486225e-9, - 3.5728685549138568e-9, - 3.862880531660058e-9, - 3.1976101047829387e-9, - 3.158713524050633e-9, - 3.074693987002058e-9, - 2.2846298562485308e-9, - 2.0744893679239436e-9, - 1.7612364721597462e-9, - 1.4590208777391206e-9, - 1.2817801955506645e-9, - 1.1285296057166451e-9, - 4.6409678849615106e-10, - 9.722642307403098e-10, - 7.905479226615752e-10, - 7.465915526643887e-10, - 6.901791144604207e-10, - 6.045558368105263e-10, - 5.652108774342681e-10, - 5.756439557422361e-10, - 7.801827014974146e-10, - 9.103259847375267e-10, - 1.130848250243978e-9, - 1.3402716606840967e-9, - 1.3402716606840967e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Education GExp=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.596016235797158e-10, - 6.110964693884925e-10, - 6.41363102749513e-10, - 6.123064079792124e-10, - 6.003651011211658e-10, - 5.799370533857864e-10, - 5.261908704526735e-10, - 5.762012884019586e-10, - 7.138573411624218e-10, - 6.623201271999377e-10, - 4.60513251676591e-10, - 5.44108051307055e-10, - 5.492038898316084e-10, - 4.640425195504878e-10, - 4.16596259160641e-10, - 3.2345547447261176e-10, - 3.0160943669919526e-10, - 2.3866920592121113e-10, - 1.6491929173734176e-10, - 2.2627712196129513e-10, - 1.54545983776763e-10, - 1.29610378436707e-10, - 1.1491382096246829e-10, - 1.2320069388018658e-10, - 1.083558007390358e-10, - 1.2761253802603418e-10, - 1.336969617676223e-10, - 1.675815403960312e-10, - 1.387659868173784e-10, - 1.4105040309533365e-10, - 1.6499594860494015e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Education GExp=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.442700282160274e-10, - 3.31541079954067e-10, - 3.1574233842276465e-10, - 3.034622548391243e-10, - 3.5626403384293625e-10, - 3.6290800177067055e-10, - 3.228822593614876e-10, - 3.1459849460011385e-10, - 3.145323240684628e-10, - 3.1160363072536396e-10, - 2.7662886616088007e-10, - 2.7685969005161517e-10, - 2.670279985195216e-10, - 2.2333847907488762e-10, - 1.77618021285308e-10, - 1.468688479034609e-10, - 1.295133976879125e-10, - 1.1229020458335693e-10, - 6.683218522991816e-11, - 1.1046199117169723e-10, - 9.401935908021916e-11, - 7.577807575674579e-11, - 7.249917394301713e-11, - 7.225860640747766e-11, - 7.088818321697393e-11, - 9.131624314295802e-11, - 1.0067250470529123e-10, - 1.0321197811337308e-10, - 7.875410686805959e-11, - 8.420386918655926e-11, - 1.1412512194830016e-10, - 1.4583079825679797e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Education GExp=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.0369252106342026e-10, - 3.4910751904805523e-10, - 3.1184009565096957e-10, - 2.802223773592528e-10, - 2.515006169128419e-10, - 2.1696374059658443e-10, - 1.9299762622730147e-10, - 1.664067345124612e-10, - 1.5386724410989502e-10, - 1.4389012705365154e-10, - 1.307348276733897e-10, - 1.3499947213714487e-10, - 1.5329392461608106e-10, - 1.9120929466750094e-10, - 1.8720801899955373e-10, - 1.6789618163609106e-10, - 1.0256903407371801e-10, - 8.593856313943147e-11, - 6.720256911916223e-11, - 6.900651061907773e-11, - 5.960433065407157e-11, - 5.5309093296723445e-11, - 4.676315103522793e-11, - 4.5252535861426816e-11, - 4.2711292316096553e-11, - 3.962871693243904e-11, - 3.926214473471217e-11, - 5.536915205809842e-11, - 5.226950486837758e-11, - 4.3065651187798843e-11, - 3.573519533419591e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Education GExp=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.8159906535302994e-10, - 2.5437496100564746e-10, - 2.402123867347176e-10, - 2.6547679242993726e-10, - 2.8449217910284307e-10, - 3.186145162493097e-10, - 2.918716983137458e-10, - 2.6511701743201207e-10, - 2.98671336601376e-10, - 2.2622216209924613e-10, - 2.1266490823212304e-10, - 2.3860201321368973e-10, - 3.973622621251463e-10, - 3.0986241709966166e-10, - 2.457174821494528e-10, - 1.7194203959642847e-10, - 1.4807938990749744e-10, - 1.20544782864131e-10, - 9.339789062714655e-11, - 1.2912814364211063e-10, - 1.0884519310243619e-10, - 2.345496204277166e-10, - 9.940596033873655e-11, - 1.2424997603220676e-10, - 1.9781700314264024e-10, - 2.923170611063626e-10, - 3.1067242583798067e-10, - 2.1483720148752874e-10, - 1.5470550610324223e-10, - 1.5624016173527956e-10, - 3.201839936793975e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Education GExp=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.477916929666628e-11, - 6.477916929666628e-11, - 6.477916929666628e-11, - 6.477916929666628e-11, - 6.477916929666628e-11, - 1.391773581724954e-10, - 1.2708251228961986e-10, - 1.2201838589190956e-10, - 1.2070816055890194e-10, - 1.1950564054641419e-10, - 1.0328248780604429e-10, - 1.0263704356461155e-10, - 1.0370316549288007e-10, - 1.0668641287068821e-10, - 9.865948654377443e-11, - 9.240229051455802e-11, - 8.706845608465694e-11, - 7.425991840346501e-11, - 6.080520327915555e-11, - 6.2775496604193e-11, - 5.845302439001176e-11, - 5.324474304169384e-11, - 5.4474685198320523e-11, - 4.940425693046323e-11, - 4.7774953890911405e-11, - 5.162956306693117e-11, - 4.838689107646587e-11, - 4.419388377125957e-11, - 4.1540436348416454e-11, - 3.518677692545855e-11, - 3.4394523603758454e-11, - 6.477916929666628e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Education GExp=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.767256273323978e-11, - 4.7878615454247754e-11, - 4.533108896843898e-11, - 3.986865432884326e-11, - 5.4963007648809945e-11, - 4.238183353252181e-11, - 3.958177688679115e-11, - 3.783885066940961e-11, - 2.6028889996975988e-11, - 2.801688955565526e-11, - 2.3243752803476382e-11, - 2.965365929106554e-11, - 2.7685997525894517e-11, - 2.3585691361669013e-11, - 2.115976272634539e-11, - 1.4187254636708014e-11, - 1.4391701035346052e-11, - 1.0542685055369839e-11, - 9.32313791372663e-12, - 1.1063342708536335e-11, - 9.244779088105551e-12, - 8.563953150488427e-12, - 8.157484446401042e-12, - 7.499741364388682e-12, - 7.650146259539969e-12, - 8.310755983510933e-12, - 8.259380341058987e-12, - 8.362230719971173e-12, - 9.227211572101642e-12, - 9.439005474752816e-12, - 9.977188461361954e-12, - 1.4189683847491229e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Education GExp=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.050747875320466e-10, - 6.161539909435719e-10, - 4.521723035488541e-10, - 6.464676326692603e-10, - 4.2813035290511317e-10, - 5.245339461415242e-10, - 3.5316725859938524e-10, - 3.893755097922379e-10, - 6.030569388993663e-10, - 6.189578612849287e-10, - 3.9228744688262444e-10, - 3.8629938406185745e-10, - 3.6089852051068263e-10, - 2.927780173309181e-10, - 2.5564697892126263e-10, - 2.4450549991735766e-10, - 2.2207209503690734e-10, - 1.928512424274248e-10, - 1.888569675621503e-10, - 1.861764141669289e-10, - 1.6352439304654322e-10, - 1.5037131892305466e-10, - 1.551214495043206e-10, - 1.426924333047388e-10, - 1.384723748614911e-10, - 4.5918053904394816e-11, - 1.4754591597909952e-10, - 4.665128209277823e-11, - 4.5359451102846046e-11, - 4.988786369628383e-11, - 1.328673196369439e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Education GExp=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.7418483572257154e-9, - 2.7931526260973957e-9, - 2.608157766782665e-9, - 2.7504004027389018e-9, - 4.025137743382524e-9, - 3.2032583344057974e-9, - 3.0892986035328413e-9, - 3.35429664058798e-9, - 2.879445116629833e-9, - 2.5513089613213928e-9, - 2.929976506300988e-9, - 2.4170503518214895e-9, - 2.386662740653235e-9, - 1.838068298000912e-9, - 1.6832943664384325e-9, - 1.9775551633448263e-9, - 1.5348575877043077e-9, - 1.448091594844333e-9, - 1.1407469522677891e-9, - 1.443121482268823e-9, - 1.4915874399768273e-9, - 1.1837112644627555e-9, - 1.177475849527469e-9, - 1.3606850518275663e-9, - 1.2508280001623455e-9, - 1.3377543125216026e-9, - 1.1206417733779953e-9, - 9.806013671712667e-10, - 9.318813228743788e-10, - 7.857247604973237e-10, - 8.952511913286478e-10, - 1.6582813815270525e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Education GExp=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.6413439702590244e-10, - 1.5302234866776343e-10, - 1.4096460301431387e-10, - 1.2884883243421703e-10, - 1.2354759109240335e-10, - 1.1043811937927979e-10, - 1.1618775168158868e-10, - 1.1224103200099731e-10, - 1.239756831837501e-10, - 1.2517519602927914e-10, - 1.2497986171643654e-10, - 1.5116376810864878e-10, - 1.556742588767221e-10, - 9.944308395351183e-11, - 7.792850924882637e-11, - 6.897598891400437e-11, - 5.925405722091792e-11, - 5.412307754853087e-11, - 5.664184982333283e-11, - 5.5515056551332036e-11, - 4.323402135684073e-11, - 4.081514025984158e-11, - 4.531005052881529e-11, - 4.663819471434302e-11, - 4.981431489781915e-11, - 5.3933724606748746e-11, - 5.577734431037869e-11, - 4.907418521320997e-11, - 4.6688794386279256e-11, - 5.05142641611101e-11, - 5.821356570314547e-11, - 6.966012402260695e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Education GExp=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.09859099672104e-9, - 3.09859099672104e-9, - 3.09859099672104e-9, - 3.09859099672104e-9, - 3.09859099672104e-9, - 3.09859099672104e-9, - 3.09859099672104e-9, - 3.09859099672104e-9, - 3.09859099672104e-9, - 3.09859099672104e-9, - 7.569584293641905e-9, - 7.3022259079945086e-9, - 7.136803314609519e-9, - 8.844674696046824e-9, - 7.3754923886767276e-9, - 6.971355819434167e-9, - 5.912257973764991e-9, - 4.818511779055371e-9, - 3.739322184963824e-9, - 3.74197775601981e-9, - 3.3112195558773895e-9, - 2.758889354730202e-9, - 1.8571120506461815e-9, - 1.4708778233012602e-9, - 2.1370841732606244e-9, - 2.0500965231906474e-9, - 1.946733320583198e-9, - 2.460238759352251e-9, - 2.3804772562554467e-9, - 1.9929580816954786e-9, - 2.066675586056846e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Education GExp=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.0027263121762903e-9, - 5.13784204167621e-9, - 7.071286800973581e-9, - 6.8391721682347155e-9, - 6.675320154503656e-9, - 6.437366596856856e-9, - 4.840247663521471e-9, - 4.015603423661739e-9, - 3.546409726126894e-9, - 2.8316876368402606e-9, - 3.300265780679678e-9, - 3.457928946068447e-9, - 3.2883311225117058e-9, - 2.9615592636403593e-9, - 2.358964080261568e-9, - 2.185403092530419e-9, - 2.021386457766869e-9, - 1.786254555163267e-9, - 1.486745479341092e-9, - 1.5668228707279604e-9, - 1.7941135214958752e-9, - 1.3619113214436392e-9, - 1.204945011828654e-9, - 1.1180471247264764e-9, - 1.00655421301828e-9, - 1.2445852458657865e-9, - 1.670940084390079e-9, - 1.389293701656386e-9, - 1.12634483557806e-9, - 1.2371822484495289e-9, - 1.279289496944022e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Education GExp=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.3374460296468192e-9, - 1.3910208748419087e-9, - 1.3643357876138955e-9, - 1.0178065121803312e-9, - 1.8500482703252704e-9, - 1.5159042085846853e-9, - 1.4846438484550795e-9, - 1.5264858810830998e-9, - 1.457757524246084e-9, - 1.4240187599754036e-9, - 1.1057220752388255e-9, - 1.4363747606085441e-9, - 1.3263768357177523e-9, - 1.3426171874454011e-9, - 1.1073452617602158e-9, - 1.0957341207389838e-9, - 9.71408940112046e-10, - 8.934768746761598e-10, - 5.66499305654178e-10, - 7.081162399214188e-10, - 6.817736719880046e-10, - 4.853845065180718e-10, - 5.032726725856077e-10, - 4.098877766920104e-10, - 3.5397037860311074e-10, - 4.1117336781699117e-10, - 3.754232831087051e-10, - 4.4081577412964307e-10, - 4.223552211275856e-10, - 3.5528921250157803e-10, - 3.5265540500812514e-10, - 6.722991190891536e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Education GExp=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.216501005661934e-10, - 1.3382877944771685e-10, - 1.3753468241823582e-10, - 2.3686262421963404e-10, - 1.9429112378434454e-10, - 1.4918502230327128e-10, - 1.2870004974430314e-10, - 1.2070733108981641e-10, - 1.2038410929022962e-10, - 1.1071535439017693e-10, - 9.465194531151509e-11, - 8.879410482461316e-11, - 6.891443602369681e-11, - 6.265692400954165e-11, - 4.819747583873655e-11, - 3.7320771064176445e-11, - 2.7841376818110022e-11, - 2.3849228506712236e-11, - 1.9363536057743608e-11, - 2.228225284085021e-11, - 1.8186027144392643e-11, - 1.623102201702333e-11, - 1.4431257830062538e-11, - 1.2922254552331163e-11, - 1.2024408313480673e-11, - 1.3503318505298407e-11, - 1.966657528353414e-11, - 1.628787102765537e-11, - 1.7709714536395562e-11, - 1.568750185821223e-11, - 1.3002823949954822e-11, - 2.4786528746176406e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Education GExp=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.739876956612989e-9, - 3.3388365017167395e-9, - 3.433914423791258e-9, - 3.6915596719930813e-9, - 4.0452830926952475e-9, - 3.4067007596709987e-9, - 3.175895859322701e-9, - 3.1960242272823638e-9, - 2.9441091977497224e-9, - 2.853190413382485e-9, - 4.419964146129618e-9, - 4.14396281672067e-9, - 3.5717823626839298e-9, - 2.8856939250850666e-9, - 2.5197974250036246e-9, - 2.1806113068238616e-9, - 1.1820412960927485e-9, - 8.988706213350339e-10, - 8.38165565259876e-10, - 8.635993976655962e-10, - 6.427917177850112e-10, - 5.598955935278249e-10, - 5.336631867017942e-10, - 3.3780932406868095e-10, - 3.830604049938201e-10, - 4.818954341283142e-10, - 3.9336335501608145e-10, - 3.327072093958397e-10, - 2.7635019481612336e-10, - 3.2229415819282683e-10, - 3.2137831461320515e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Education GExp=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.5416509575381046e-10, - 3.573320244138106e-10, - 3.953678549489507e-10, - 3.652433192408514e-10, - 4.4133847365722564e-10, - 3.9281781601496874e-10, - 3.209279875918226e-10, - 3.1499818575719987e-10, - 2.981602600698715e-10, - 3.536100611637992e-10, - 3.8393294066335625e-10, - 3.442181098648438e-10, - 2.867805095140005e-10, - 2.7729265473968633e-10, - 2.4502345145918363e-10, - 2.1461373306524793e-10, - 2.4139169975722984e-10, - 2.280237390242497e-10, - 1.9443350635218635e-10, - 1.3690644413471953e-10, - 1.821666208799655e-10, - 1.3055223269483045e-10, - 1.16929640039926e-10, - 9.215799816298704e-11, - 8.413894665666276e-11, - 7.023043484533576e-11, - 5.15740593737436e-11, - 6.429426140446105e-11, - 4.2627076948923773e-11, - 9.82315028540212e-11, - 1.2546462810212546e-10, - 1.2383466450777607e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Education GExp=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.10407876972316e-11, - 4.877072029342717e-11, - 4.5707310022133254e-11, - 4.7165841953725424e-11, - 4.025119117069714e-11, - 3.656367458657357e-11, - 3.3528457219946395e-11, - 3.203477599614772e-11, - 3.36044158914827e-11, - 3.696398130852492e-11, - 3.571881201247561e-11, - 2.7136627693216364e-11, - 2.5582173750173317e-11, - 2.0422600910749478e-11, - 1.5789161338792016e-11, - 1.366249549652376e-11, - 1.2436678908179477e-11, - 1.0826702033141276e-11, - 1.0987806006479486e-11, - 8.339900132400835e-12, - 7.062289238748088e-12, - 7.440778076538842e-12, - 7.655849171203123e-12, - 7.567196121209575e-12, - 6.460229890223129e-12, - 5.957046246928324e-12, - 5.557591423789222e-12, - 4.968269465680453e-12, - 4.876966648532599e-12, - 4.589170276264355e-12, - 4.951886328585539e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Education GExp=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.5260274008603454e-9, - 1.7005270182751862e-9, - 1.656816740911313e-9, - 1.2402588693129996e-9, - 1.0037676187783577e-9, - 7.883711878586643e-10, - 6.629956043778471e-10, - 6.089992935859394e-10, - 6.008097647318685e-10, - 5.699340729951505e-10, - 5.244297042229449e-10, - 5.001589477403777e-10, - 4.662259131563018e-10, - 4.1331873086032145e-10, - 3.598627915960679e-10, - 2.836521107607223e-10, - 2.463068336646193e-10, - 2.1117245905708007e-10, - 1.8159169327888462e-10, - 1.4326990480022076e-10, - 1.4712681624984932e-10, - 1.3141023711917935e-10, - 1.2055570580889893e-10, - 1.0813743469269633e-10, - 8.779476962350889e-11, - 8.859150261402475e-11, - 7.601905373533736e-11, - 6.744762301873917e-11, - 6.561978714083885e-11, - 5.356407661491853e-11, - 5.313192598991134e-11, - 1.5627471699291178e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Education GExp=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.2288408888547352e-10, - 1.936343459398715e-10, - 1.706695499255885e-10, - 1.4758097265314208e-10, - 1.2967792003628826e-10, - 1.1166463697969256e-10, - 1.094820555670167e-10, - 1.4118738859900886e-10, - 1.7137369474183747e-10, - 1.498315256130471e-10, - 1.5049667607636e-10, - 2.015133061824155e-10, - 1.2079544363721135e-10, - 1.370255931093152e-10, - 1.2410756341586114e-10, - 1.0853040931053853e-10, - 9.921973932792176e-11, - 7.029929461929967e-11, - 6.233325202977618e-11, - 6.452832337439303e-11, - 4.755904652119041e-11, - 6.102770053597651e-11, - 5.3820542129321104e-11, - 4.550183198182452e-11, - 4.1489205587426645e-11, - 4.2506708670728773e-11, - 4.189760048745503e-11, - 3.470655971025836e-11, - 2.8596474169028345e-11, - 3.494924640477593e-11, - 3.343271800362848e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Education GExp=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.5380510465990968e-10, - 1.399820463494084e-10, - 1.2751208683547825e-10, - 1.0331831275935364e-10, - 9.228779366340031e-11, - 8.076397284959513e-11, - 7.179930817822214e-11, - 3.573699025146981e-11, - 1.7103978177796247e-10, - 1.166059151436553e-10, - 9.892670923706223e-11, - 7.225996100385135e-11, - 7.343864429519278e-11, - 6.933598133091812e-11, - 5.5172371621981906e-11, - 5.2992175182968323e-11, - 4.477867803147806e-11, - 3.457596359000307e-11, - 2.6801220845379436e-11, - 3.578419546904965e-11, - 2.205576655330719e-11, - 2.0164337219218402e-11, - 1.97091326015937e-11, - 1.92914672733672e-11, - 1.9837480384491054e-11, - 2.3817388447400493e-11, - 2.2619692280196468e-11, - 1.5862723559194727e-11, - 1.9188857610435804e-11, - 1.4587716191552083e-11, - 1.6305425381917226e-11, - 3.349491255025539e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Education GExp=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.977591508663922e-10, - 2.904226090431302e-10, - 2.4890317363776285e-10, - 2.424262198094886e-10, - 2.0556943192521334e-10, - 1.8008293992165393e-10, - 1.8559879355184068e-10, - 1.61202263441254e-10, - 2.4406527999785267e-10, - 1.756104746134514e-10, - 1.817475331171191e-10, - 1.7632655980174585e-10, - 1.6687678304862424e-10, - 1.6521555047184181e-10, - 1.3421660489266623e-10, - 1.1564294216507256e-10, - 1.0394228515496526e-10, - 8.762012246116825e-11, - 7.951561470911825e-11, - 7.507419439209684e-11, - 7.217639983271785e-11, - 6.42110052369984e-11, - 5.741934660032851e-11, - 5.297344141328445e-11, - 5.0555131050599166e-11, - 5.2264388319444534e-11, - 5.331633264867606e-11, - 5.227239223240295e-11, - 4.440060729993695e-11, - 4.639639088735418e-11, - 3.937527019316602e-11, - 8.908120643330396e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Education GExp=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Education GExp=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.347442441885725e-11, - 6.129937701844906e-11, - 4.156790422957485e-11, - 3.8334479863809365e-11, - 4.085335311801202e-11, - 6.698985714990111e-11, - 4.670704743318055e-11, - 3.83591914925346e-11, - 3.099250394865266e-11, - 2.7812472311580513e-11, - 2.7752426091036835e-11, - 2.7255331313470566e-11, - 2.7800457414688255e-11, - 3.0811396355938434e-11, - 2.8193153279385596e-11, - 2.49622599296917e-11, - 2.134979964605371e-11, - 1.8893455639273818e-11, - 1.565795551344683e-11, - 2.0737976322722376e-11, - 1.7623905025374882e-11, - 1.5604559732897993e-11, - 1.5058980445750016e-11, - 1.3265394746400707e-11, - 1.429727730784449e-11, - 1.622943505223298e-11, - 1.663373634282682e-11, - 1.5167056176879925e-11, - 1.3561632112495258e-11, - 1.512127266174628e-11, - 1.7874264611237043e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Education GExp=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.455872221822178e-11, - 3.9412185370919074e-11, - 4.114404141607739e-11, - 3.666340802039699e-11, - 2.5701852395565112e-11, - 1.7551531747750447e-11, - 1.5877891194980208e-11, - 1.528858663774519e-11, - 1.3464989823770579e-11, - 1.6010001084779934e-11, - 1.7472258046825745e-11, - 1.8948658509121192e-11, - 1.8903667095559237e-11, - 2.4188754258403967e-11, - 1.5557442003285822e-11, - 1.2633796102135271e-11, - 1.1218914765311446e-11, - 9.464265424216963e-12, - 8.304599460927622e-12, - 8.834069020282381e-12, - 6.4105466137621246e-12, - 5.8364243235655605e-12, - 6.37984740847628e-12, - 6.305640347034145e-12, - 6.288096425833335e-12, - 8.999001857168202e-12, - 8.870574084155957e-12, - 7.998445373453161e-12, - 8.424057247309378e-12, - 7.1907571765587176e-12, - 9.346347008156494e-12, - 1.0801412176993324e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Education GExp=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.0526183727897924e-10, - 7.842616101837661e-11, - 6.503387369803895e-11, - 6.284912666827813e-11, - 5.77960302775174e-11, - 5.76634853449007e-11, - 5.658197493231722e-11, - 5.0806053543323174e-11, - 5.225405965524501e-11, - 5.6000887528364895e-11, - 5.7093372317203055e-11, - 6.087145023505979e-11, - 1.6825148917760825e-10, - 1.1250929246739879e-10, - 9.194394891727034e-11, - 7.9517969220522e-11, - 6.669256404675705e-11, - 5.252162705037327e-11, - 4.355549679805333e-11, - 4.8113517558022255e-11, - 3.552170854234691e-11, - 2.8592247569788857e-11, - 2.6591078115831947e-11, - 2.6190708641638315e-11, - 2.6218533044475282e-11, - 2.347764105676555e-11, - 2.3954777874873087e-11, - 2.0608031533361675e-11, - 2.386217438310135e-11, - 2.7725543737104285e-11, - 3.8221080239109805e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Education GExp=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.877030280590152e-10, - 4.5197442120281846e-10, - 4.3155574034044314e-10, - 4.456083431194356e-10, - 3.458276510003165e-10, - 2.911395772806028e-10, - 2.809192043842382e-10, - 2.669325113856891e-10, - 2.796586254634618e-10, - 3.092706047081397e-10, - 2.9472304496778717e-10, - 2.843779581767533e-10, - 2.6613200507636746e-10, - 2.4958373633337185e-10, - 2.2875763105891638e-10, - 1.8772555689412713e-10, - 1.5833477755076968e-10, - 1.384127880978625e-10, - 1.2056696553712234e-10, - 1.2080739006786906e-10, - 9.188421208861524e-11, - 7.89031978186224e-11, - 7.458678799769769e-11, - 7.567463310099825e-11, - 8.078062700355876e-11, - 9.259414537535617e-11, - 9.312390697409755e-11, - 8.642320880824549e-11, - 7.696926384712796e-11, - 7.774674702247512e-11, - 7.899834455665312e-11, - 1.6293140979562014e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Education GExp=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.8231311211285875e-10, - 3.474350291529518e-10, - 3.0760298214232907e-10, - 3.093277259704843e-10, - 3.180451442537229e-10, - 2.400247903996246e-10, - 2.6338145049481373e-10, - 2.1643765434576008e-10, - 2.0343291852829938e-10, - 1.8963424924742307e-10, - 1.5861070947239886e-10, - 1.511731048877067e-10, - 2.000113648358831e-10, - 2.2219126526735494e-10, - 1.652220047294844e-10, - 1.2768725330497067e-10, - 1.0126457482112764e-10, - 8.065397480869851e-11, - 5.8805424922614e-11, - 5.633859986646136e-11, - 4.72536483834575e-11, - 5.870716838796857e-11, - 4.872919980535262e-11, - 5.0079525202030335e-11, - 3.8518532853426445e-11, - 8.944673437913605e-11, - 9.233441325548006e-11, - 1.3618462859635397e-10, - 1.0598859207699002e-10, - 1.0598859207699002e-10, - 1.0598859207699002e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Education GExp=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.0431730167125903e-10, - 2.960776213965868e-10, - 2.4923035679738784e-10, - 2.1911940881189195e-10, - 1.782027016592114e-10, - 1.5739069058006372e-10, - 1.4985352212962976e-10, - 1.365071414800742e-10, - 1.2672578189474245e-10, - 1.525990954469933e-10, - 1.331148782458348e-10, - 1.381762364852503e-10, - 1.562024390120922e-10, - 1.641935108202723e-10, - 1.3168107210992915e-10, - 1.0665798994532826e-10, - 8.520876891206674e-11, - 7.031739956049854e-11, - 5.720749960028612e-11, - 6.648461249890858e-11, - 5.557878876644457e-11, - 4.410300087448445e-11, - 4.050007101577813e-11, - 4.2559652731549615e-11, - 3.885727906372754e-11, - 4.870057649954717e-11, - 5.2778889083766464e-11, - 4.959777936806108e-11, - 3.841190380284489e-11, - 4.3708330463229436e-11, - 5.363952814413281e-11, - 7.711161256800376e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Education GExp=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.215752296465774e-10, - 4.564947219287324e-10, - 3.7575625621900895e-10, - 2.7422801155125737e-10, - 2.479005429959918e-10, - 2.0456393185979866e-10, - 2.0194869461498435e-10, - 1.7073262876637408e-10, - 1.859628339380616e-10, - 2.0821377817975195e-10, - 2.1099040811659415e-10, - 2.4332772817283045e-10, - 2.502351241946655e-10, - 2.331625287909739e-10, - 1.715651859572588e-10, - 1.317375985921465e-10, - 1.048613379072842e-10, - 9.646218125738924e-11, - 9.686749241817406e-11, - 9.882046384885416e-11, - 8.164985452391974e-11, - 7.036511568364091e-11, - 6.465720887524338e-11, - 7.057038996351195e-11, - 7.645886987983067e-11, - 8.033012218202594e-11, - 8.447319432314478e-11, - 7.692737416610639e-11, - 7.184665225664072e-11, - 6.181918684220739e-11, - 6.828252577492984e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Education GExp=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.786241077892989e-9, - 3.005141359843382e-9, - 2.525188670155067e-9, - 2.2567180139812716e-9, - 2.0621980258985584e-9, - 1.4460900964850918e-9, - 1.6367499101449392e-9, - 1.714348678367958e-9, - 1.5803436450308027e-9, - 1.5379794074274856e-9, - 1.253494986502933e-9, - 1.1988364788148803e-9, - 1.1605469327073876e-9, - 1.166743832441452e-9, - 1.097809570213259e-9, - 1.0790984843554022e-9, - 9.087760564959003e-10, - 7.819276529182816e-10, - 6.756422679961405e-10, - 7.613491041017625e-10, - 6.075871354295799e-10, - 5.38077934345999e-10, - 4.975807384302064e-10, - 4.4810709746617236e-10, - 4.4427383514844116e-10, - 4.1411474350971834e-10, - 3.9803548559638264e-10, - 3.573569195761965e-10, - 4.179205530808152e-10, - 3.8317324906579885e-10, - 3.482710032134378e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Education GExp=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Education GExp=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.612932590084768e-11, - 3.400746090564274e-11, - 2.8789125906342912e-11, - 3.3219946980568175e-11, - 2.3102929607534366e-11, - 1.7749085061050432e-11, - 1.50941854397076e-11, - 1.3558131793178993e-11, - 1.4140719427488768e-11, - 1.1546244861344005e-11, - 1.0762856993468861e-11, - 9.733906823342625e-12, - 8.865766545386405e-12, - 7.85258545301937e-12, - 6.667641648201543e-12, - 5.703301685534615e-12, - 4.737256134753795e-12, - 3.672195642152841e-12, - 2.8377626994215683e-12, - 2.5555295830067645e-12, - 2.2263356044592736e-12, - 1.731854597017329e-12, - 1.688558596952647e-12, - 1.3913108108959634e-12, - 1.2173535895716467e-12, - 1.1083281331590302e-12, - 1.0922512073921672e-12, - 9.874001565796807e-13, - 8.240979220328729e-13, - 9.12997914502834e-13, - 8.855390616405001e-13 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Education GExp" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Workers high education=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.208014095546713e-11, - 3.988997334726471e-11, - 3.497521299395365e-11, - 3.599252538819335e-11, - 3.380937326707962e-11, - 2.883146292477845e-11, - 2.9853773205626967e-11, - 3.598570157670531e-11, - 3.3297222549731636e-11, - 3.491203083330541e-11, - 3.917387219732912e-11, - 3.896101820763369e-11, - 3.620907517159481e-11, - 3.007226926111981e-11, - 2.649275855831646e-11, - 2.6098892514823877e-11, - 2.4880592887610032e-11, - 2.1578837178993696e-11, - 1.9600754934002466e-11, - 2.155507719742327e-11, - 2.161093527681857e-11, - 1.9840957499493445e-11, - 2.1025515464727145e-11, - 1.98135709552638e-11, - 1.8935005777315622e-11, - 2.1843074896105563e-11, - 2.125449987047572e-11, - 1.9930372258214917e-11, - 1.8464837237811173e-11, - 1.9044182003513414e-11, - 1.9199701291631256e-11, - 2.5673715228260564e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Workers high education=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.135196739551071e-11, - 6.134726857159126e-11, - 5.556087036328317e-11, - 5.886433886076629e-11, - 5.690170819397372e-11, - 4.963478951666256e-11, - 4.849465942905031e-11, - 5.359451771673243e-11, - 5.1406790892771274e-11, - 5.185675263287453e-11, - 5.680854478556463e-11, - 5.643638500121823e-11, - 5.204443256842089e-11, - 4.255792558624475e-11, - 3.6912046169913965e-11, - 3.5549360685486895e-11, - 3.354396954602405e-11, - 2.936941159259487e-11, - 2.6792444745794626e-11, - 2.892752885958617e-11, - 2.952153110402247e-11, - 2.719222329669296e-11, - 2.9198802564013314e-11, - 2.7789267480783776e-11, - 2.709767565347109e-11, - 3.1776960897840134e-11, - 3.1213552516581954e-11, - 2.9516585794060066e-11, - 2.7427870217089934e-11, - 2.8084882189676614e-11, - 2.96035211049773e-11, - 3.722225522481846e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Workers high education=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.1797813270686596e-10, - 3.036197979259786e-10, - 2.9284270290309435e-10, - 3.909840780949662e-10, - 3.6353345587626434e-10, - 3.114834789988296e-10, - 2.853920484263881e-10, - 3.069221940545504e-10, - 3.07454122466936e-10, - 2.9889935361767097e-10, - 3.167813268713036e-10, - 3.39114700612042e-10, - 3.097631413559782e-10, - 2.5040587208118903e-10, - 2.1637522037578954e-10, - 2.1322320317374534e-10, - 1.969068536394058e-10, - 1.7064541474410645e-10, - 1.6246668257684528e-10, - 1.919654011180953e-10, - 1.678255171240414e-10, - 1.440181991712964e-10, - 1.5017637103768112e-10, - 1.418610550711794e-10, - 1.4310162881662875e-10, - 1.6509478342611206e-10, - 1.6200764879613997e-10, - 1.544863313271972e-10, - 1.5045313086285763e-10, - 1.5722648622434134e-10, - 1.543364798096256e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Workers high education=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.989172232654915e-11, - 7.642229694781358e-11, - 7.592020859140803e-11, - 8.451191827026514e-11, - 7.900991738925573e-11, - 6.643530576364217e-11, - 6.296100378515608e-11, - 5.777235529427087e-11, - 5.282183120314492e-11, - 5.332897390821788e-11, - 5.399104650720546e-11, - 5.466850572015667e-11, - 5.03117383875587e-11, - 4.3653818637905396e-11, - 3.701357176782941e-11, - 3.5326537977355447e-11, - 3.3113000052448636e-11, - 2.8868232613086754e-11, - 2.9004222567284077e-11, - 3.5044132996330644e-11, - 3.40651345893286e-11, - 3.178820509570397e-11, - 3.077422857038306e-11, - 2.99897468789681e-11, - 2.7109009753505323e-11, - 2.833009030202178e-11, - 3.0765534784945987e-11, - 3.105575420319874e-11, - 2.8936931214710026e-11, - 2.9357268210121494e-11, - 3.164542965419015e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Workers high education=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.515591157694318e-10, - 1.4089589659904757e-10, - 1.3423340032274094e-10, - 1.5220663973875396e-10, - 1.5249849576227351e-10, - 1.3138433914908772e-10, - 1.2572577784067338e-10, - 1.37287107774565e-10, - 1.2972880709667941e-10, - 1.2634910724096802e-10, - 1.3456706791191387e-10, - 1.2670627291631004e-10, - 1.1427052538884486e-10, - 8.991819360329705e-11, - 7.728316181982359e-11, - 7.123071269977525e-11, - 6.547926508261032e-11, - 5.611251989434981e-11, - 5.066600278261812e-11, - 5.5461953016971715e-11, - 5.7822606865962406e-11, - 5.5486878697855823e-11, - 6.244978931694463e-11, - 6.049548162655971e-11, - 5.947247103350166e-11, - 6.798260209454655e-11, - 6.556829131527953e-11, - 6.130102187679334e-11, - 5.6383063342498185e-11, - 5.7205574771713486e-11, - 6.128048384304185e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Workers high education=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.5890416683476146e-9, - 1.5890416683476146e-9, - 1.5890416683476146e-9, - 1.5890416683476146e-9, - 1.5890416683476146e-9, - 3.225418872373989e-9, - 3.043472430044432e-9, - 3.0414505658483825e-9, - 2.8407883997568734e-9, - 3.0946130482085e-9, - 3.3549834983438767e-9, - 3.1482872449479374e-9, - 2.767174245021067e-9, - 2.110001927665245e-9, - 1.7796013822882985e-9, - 1.5615908118201554e-9, - 1.4065845884919307e-9, - 1.2526700911996945e-9, - 1.064866546571797e-9, - 1.1947561525134405e-9, - 1.2362223863615909e-9, - 1.1456404133664013e-9, - 1.2791921926228814e-9, - 1.2363921239036273e-9, - 1.2701804953641827e-9, - 1.4568451015724791e-9, - 1.3676217628457417e-9, - 1.2854351709740073e-9, - 1.1557021424514853e-9, - 1.1547691253691021e-9, - 1.247644801625756e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Workers high education=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.2139698799271858e-9, - 9.367733721323647e-10, - 8.490301476215815e-10, - 8.339264112856281e-10, - 7.228569358747803e-10, - 5.628887010520266e-10, - 4.999898811654075e-10, - 5.026111380609962e-10, - 4.585089569070685e-10, - 4.710611459870802e-10, - 4.705043103112594e-10, - 4.1821738525041374e-10, - 4.009100927084037e-10, - 3.6483037488837465e-10, - 3.1396238124582936e-10, - 2.594201125413896e-10, - 2.3103574940617314e-10, - 1.856753168284784e-10, - 1.499974487645478e-10, - 1.8395064747044834e-10, - 1.6749536873482458e-10, - 1.514476811254065e-10, - 1.6037355511435012e-10, - 1.53776395243433e-10, - 1.4795095073451776e-10, - 1.6830890199934227e-10, - 1.7013296172120594e-10, - 1.522101579745548e-10, - 1.3683757247875728e-10, - 1.3435896753836023e-10, - 1.337692583171935e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Workers high education=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.118416820176942e-10, - 7.558457828221162e-10, - 6.754159686214228e-10, - 7.261344115026555e-10, - 6.80178146659528e-10, - 5.875289175094991e-10, - 5.516873144081826e-10, - 5.601519050160079e-10, - 5.558472242333816e-10, - 5.77113752710376e-10, - 6.309321859107657e-10, - 5.910088334432064e-10, - 5.245069544787336e-10, - 4.0104732628714866e-10, - 3.3984391096194894e-10, - 3.29722094389551e-10, - 3.011551178596062e-10, - 2.566612487867559e-10, - 2.2795171810088511e-10, - 2.458433661858252e-10, - 2.7150192172909e-10, - 2.806400600864628e-10, - 3.2706784397178783e-10, - 3.2615106760384814e-10, - 3.2290241059144337e-10, - 3.897619682711001e-10, - 3.946711615098188e-10, - 3.7984552670926255e-10, - 3.5906719107225156e-10, - 3.7071494362535084e-10, - 3.9658918858788015e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Workers high education=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.601927196915762e-10, - 4.40781384702593e-10, - 3.926900452771261e-10, - 4.0238129402305647e-10, - 3.763733365435457e-10, - 3.1781357484626886e-10, - 3.2288696338299387e-10, - 3.600033506656275e-10, - 3.5098172806795907e-10, - 3.509633588981548e-10, - 3.937865574655828e-10, - 3.9400781255415556e-10, - 3.570048206026695e-10, - 2.9187075615392424e-10, - 2.541161611502456e-10, - 2.4034121566257116e-10, - 2.2710237937593193e-10, - 1.9838864731210122e-10, - 1.7490952698167408e-10, - 1.8869533080207062e-10, - 1.918296588480186e-10, - 1.7584573343748337e-10, - 1.8710224398385822e-10, - 1.787810700137828e-10, - 1.735260686748221e-10, - 2.012979244255673e-10, - 1.9422117863470106e-10, - 1.8554326906931604e-10, - 1.6853112142776423e-10, - 1.723549452335135e-10, - 1.773998810052982e-10, - 2.4384577338516724e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Workers high education=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.517849524646905e-10, - 2.447351224984951e-10, - 2.208237782848035e-10, - 2.2670285489109516e-10, - 2.1140711043192083e-10, - 1.7720657990155268e-10, - 1.8020370035098884e-10, - 1.9229458488030523e-10, - 1.8321573948439605e-10, - 1.7995768432858584e-10, - 1.9167414879224928e-10, - 1.8591854089901243e-10, - 1.6985958200679593e-10, - 1.375867532035483e-10, - 1.2128252465766941e-10, - 1.1583892907403946e-10, - 1.0828998253243695e-10, - 9.408892831143214e-11, - 8.400306687247002e-11, - 9.11971355366987e-11, - 9.406632004524048e-11, - 8.805101675217646e-11, - 9.543184181156522e-11, - 9.231932532783051e-11, - 9.04650248455629e-11, - 1.0520227992015651e-10, - 1.0207121248905732e-10, - 9.608216769288497e-11, - 8.816867226615862e-11, - 8.829982625279085e-11, - 8.793417606199394e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Workers high education=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.0070271309331857e-10, - 1.772698577982077e-7, - 1.3056467808029759e-7, - 7.005219197001681e-8, - 1.8111669962792186e-8, - 5.606470711082805e-9, - 6.928511502877245e-9, - 3.481362800584172e-9, - 3.5062608878470204e-9, - 1.960055903517005e-9, - 1.4946990701742148e-9, - 1.998262422747069e-9, - 2.1953657295696124e-9, - 3.2976653877535592e-9, - 1.9736320520112625e-9, - 1.4471055867467933e-9, - 1.1097610924453328e-9, - 8.960224795741151e-10, - 5.492558747285914e-10, - 6.474258159569555e-10, - 5.218864519225628e-10, - 3.891797120158385e-10, - 2.9807001662999435e-10, - 3.0809204393920474e-10, - 3.1648443949111865e-10, - 4.3346057164959033e-10, - 4.3390708901667025e-10, - 3.8612810829897095e-10, - 3.179434649233282e-10, - 3.074898653771509e-10, - 4.335050863229275e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Workers high education=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.1557462045114793e-8, - 1.235821828440232e-8, - 1.1125593265708102e-8, - 1.1886660523454513e-8, - 1.1535503040106617e-8, - 1.0453295574751959e-8, - 9.390087540152588e-9, - 7.529606059548357e-9, - 8.294870119842808e-9, - 6.864124433818438e-9, - 4.789894461126514e-9, - 4.850368379291746e-9, - 4.39316039574916e-9, - 3.6147171746726652e-9, - 2.68065237667069e-9, - 1.9103313406295503e-9, - 1.3972569833355934e-9, - 1.0671907046444085e-9, - 7.379887110154231e-10, - 8.698306038270735e-10, - 6.798787662388141e-10, - 5.070353930233885e-10, - 4.553144815669315e-10, - 4.249031547936896e-10, - 4.125017086073442e-10, - 5.150860667757005e-10, - 5.606457260432027e-10, - 5.240872770685369e-10, - 4.6400316740314955e-10, - 4.827316858647201e-10, - 6.095087990591247e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Workers high education=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.5940374419325693e-9, - 1.5677323875533673e-9, - 1.490066991842278e-9, - 1.4529393676772746e-9, - 1.3627834351345128e-9, - 1.2293199315490257e-9, - 1.0985271729846705e-9, - 1.0251270442049205e-9, - 1.0679974700059804e-9, - 9.5706728516552e-10, - 7.746025979483277e-10, - 7.822932560890026e-10, - 7.359569771367296e-10, - 6.499587197516807e-10, - 5.467298762707405e-10, - 4.474650243168262e-10, - 3.638630379175805e-10, - 3.133576741472386e-10, - 2.5618542875662484e-10, - 3.1875701681170833e-10, - 2.7889417171179007e-10, - 2.3047570188655244e-10, - 2.15755543336436e-10, - 2.0717363306221356e-10, - 2.0047770270009108e-10, - 2.2566905395186278e-10, - 2.2635798024419654e-10, - 2.1109657429743143e-10, - 1.9004533135696207e-10, - 1.9371281308178398e-10, - 2.2520767349432033e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Workers high education=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.562794811004325e-10, - 5.838483242856837e-10, - 5.631302754105004e-10, - 5.805787180107965e-10, - 5.710996749881883e-10, - 5.385565682881287e-10, - 4.86557207951393e-10, - 4.651523198528323e-10, - 5.259619946795033e-10, - 4.773669610177832e-10, - 4.0734698465562466e-10, - 4.192429376380193e-10, - 4.07151494228229e-10, - 3.577182359430789e-10, - 2.983599696208114e-10, - 2.350313713166741e-10, - 2.048243723531609e-10, - 1.8558871809035327e-10, - 1.4851638727518123e-10, - 1.7990844017127207e-10, - 1.4615157528085467e-10, - 1.1500874074564393e-10, - 1.04892625660675e-10, - 1.0339333120811503e-10, - 1.0594296351675199e-10, - 1.1799157106328548e-10, - 1.2350071659570486e-10, - 1.1038559478375342e-10, - 9.81028123628317e-11, - 9.434189925543784e-11, - 1.0773900108372458e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Workers high education=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Workers high education=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.5499053229881912e-8, - 1.4758774926297353e-8, - 1.3541110940223011e-8, - 1.6304133641067712e-8, - 2.100252552112165e-8, - 2.055161858648731e-8, - 1.5127853801776848e-8, - 1.2798752223019113e-8, - 1.383763495129012e-8, - 1.1454499041296451e-8, - 9.067659179186458e-9, - 8.87537070048e-9, - 8.184015449217027e-9, - 7.431248869435734e-9, - 6.309112374793306e-9, - 5.22651377048633e-9, - 4.5916010832985916e-9, - 4.042625855922942e-9, - 3.252405520334655e-9, - 3.4828510462371407e-9, - 2.9019551973590897e-9, - 2.674444958577834e-9, - 2.4723639674157137e-9, - 2.165643723353953e-9, - 1.974619339861638e-9, - 2.062075401036155e-9, - 2.7947753833311236e-9, - 3.2609754716018075e-9, - 4.050931718940987e-9, - 4.8011295778116545e-9, - 4.8011295778116545e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Workers high education=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.806566897393566e-9, - 5.982462945629152e-9, - 5.448803110612082e-9, - 5.4309943403488196e-9, - 5.252013047993795e-9, - 4.9157401242297115e-9, - 4.441095009328696e-9, - 4.284148848558926e-9, - 4.8474967487818465e-9, - 4.3511840931606626e-9, - 3.478157814288654e-9, - 3.4880730341239453e-9, - 3.3684565466825974e-9, - 3.1363092203386603e-9, - 2.7398960252739783e-9, - 2.182935996448064e-9, - 1.823151335151347e-9, - 1.612198805253647e-9, - 1.1140217443468285e-9, - 1.4021965911126143e-9, - 1.0439505567546846e-9, - 8.755117630596746e-10, - 7.762372365875374e-10, - 7.544251776526458e-10, - 7.319381309352675e-10, - 8.620164488621761e-10, - 9.031164334579414e-10, - 8.391388837770934e-10, - 7.414826174766811e-10, - 7.704898614062734e-10, - 9.17246481024526e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Workers high education=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.085601952070368e-10, - 1.0974368091108412e-9, - 1.045141267042626e-9, - 1.004492863093674e-9, - 1.17927245865193e-9, - 1.2012647106029027e-9, - 1.068775177064821e-9, - 1.0413550203578263e-9, - 1.0411359887460501e-9, - 1.03144169723394e-9, - 9.15671446294395e-10, - 9.164354983212206e-10, - 8.838915366962006e-10, - 7.392745051731451e-10, - 5.879348482152965e-10, - 4.861517608113299e-10, - 4.287033447421288e-10, - 3.7169271400526215e-10, - 2.933906013548867e-10, - 3.6564113001107523e-10, - 3.1121424059406785e-10, - 2.5083362119277717e-10, - 2.3998010179076317e-10, - 2.391837972464978e-10, - 2.346475483643795e-10, - 3.022666346767091e-10, - 3.1349554967052903e-10, - 2.9494931636589827e-10, - 2.8683177721076357e-10, - 2.9208101813365134e-10, - 3.459780798237977e-10, - 4.512585317121529e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Workers high education=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.781129222089412e-9, - 2.0474840857137054e-9, - 1.828914011573927e-9, - 1.6434789478852587e-9, - 1.4750284155447827e-9, - 1.2724727535509603e-9, - 1.1319136561665618e-9, - 9.75960476585868e-10, - 9.024174972990773e-10, - 8.439026063862024e-10, - 7.6674796303354e-10, - 7.91759717849293e-10, - 8.990550302206986e-10, - 9.534495834990179e-10, - 9.716755848257122e-10, - 8.5435749542038e-10, - 7.125922797933161e-10, - 5.868772975561078e-10, - 4.681909753915514e-10, - 4.041829621807856e-10, - 3.5363369256766845e-10, - 3.272177135820032e-10, - 2.7590614009517075e-10, - 2.6640398644344976e-10, - 2.456188652504223e-10, - 2.3022980219584513e-10, - 2.3354469440674485e-10, - 3.2150686267336066e-10, - 3.065559277496012e-10, - 2.5257615673347346e-10, - 2.095836948632584e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Workers high education=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Workers high education=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.6746424124752806e-10, - 3.6746424124752806e-10, - 3.6746424124752806e-10, - 3.6746424124752806e-10, - 3.6746424124752806e-10, - 7.894930249178639e-10, - 7.208841894911124e-10, - 6.921575882623443e-10, - 6.847252459973175e-10, - 6.77903869484289e-10, - 5.996534927948197e-10, - 6.07168124653915e-10, - 6.556211314129635e-10, - 6.251838244716491e-10, - 5.858723214317527e-10, - 5.567722714899794e-10, - 5.152761697474929e-10, - 4.433283556484845e-10, - 3.6651253959426977e-10, - 3.5964781924333845e-10, - 3.2008749861316905e-10, - 2.9222947988244734e-10, - 3.165038211393679e-10, - 2.767472294073408e-10, - 2.642589996576559e-10, - 2.7362860492669407e-10, - 2.579426415307519e-10, - 2.2872280224999705e-10, - 2.1199479687797024e-10, - 1.9787170672460163e-10, - 1.9061620748551746e-10, - 3.6746424124752806e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Workers high education=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.180993876783173e-10, - 5.203387426125393e-10, - 4.926525466809843e-10, - 4.33287497274188e-10, - 5.973310217692986e-10, - 4.606004112838194e-10, - 4.301697494850118e-10, - 4.112278475980332e-10, - 2.828786873665744e-10, - 3.0448401535827345e-10, - 2.8459515866337134e-10, - 3.8693853673713553e-10, - 3.249292365670475e-10, - 2.481474033906819e-10, - 1.929435602976877e-10, - 1.5381931421643816e-10, - 1.3628746282629284e-10, - 1.1188290944673723e-10, - 9.930403657092113e-11, - 1.1831702645293956e-10, - 1.0002669423882277e-10, - 9.343524407118185e-11, - 8.868256307696557e-11, - 8.2670081408058e-11, - 8.417890158424222e-11, - 9.208430089335378e-11, - 9.145756553220219e-11, - 9.314359744461651e-11, - 1.0184053992150177e-10, - 1.0402042484724578e-10, - 1.0400652235142028e-10, - 1.542116909861058e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Workers high education=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Workers high education=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.349381084577302e-9, - 8.505611056576446e-9, - 7.942271156674281e-9, - 8.375423475599426e-9, - 1.225720921029389e-8, - 9.75445067040979e-9, - 9.40742446859718e-9, - 1.0214387257843859e-8, - 9.4856628056552e-9, - 9.360160852199218e-9, - 1.0262448654700223e-8, - 9.482431160156762e-9, - 8.807658358441383e-9, - 7.037513638059294e-9, - 6.123957461264852e-9, - 5.605397152653988e-9, - 5.275297375231286e-9, - 4.409678069491178e-9, - 3.6614472921165754e-9, - 3.822030458097651e-9, - 3.8278516123240815e-9, - 3.1615077949707778e-9, - 3.4941650283999367e-9, - 3.2618574550158112e-9, - 3.1170988840859454e-9, - 3.813833526120914e-9, - 3.307193628176792e-9, - 2.677580922680248e-9, - 3.2660371344749204e-9, - 2.2079948143160465e-9, - 2.504033960519855e-9, - 4.854003697478133e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Workers high education=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 7.285875183906785e-10, - 6.792614789730173e-10, - 6.257375184734615e-10, - 5.719559871168718e-10, - 5.484239405525396e-10, - 4.902314005612411e-10, - 5.157538407486993e-10, - 4.982344739982192e-10, - 5.50324228122535e-10, - 5.556488285916483e-10, - 5.47467262896462e-10, - 6.282968562026359e-10, - 6.658241581328968e-10, - 4.3599581888749443e-10, - 3.282948643672549e-10, - 2.8535476668982223e-10, - 2.7476389679188426e-10, - 2.531258138937648e-10, - 2.7368301427128616e-10, - 2.603160050693034e-10, - 2.0272419826057146e-10, - 1.8380559343923504e-10, - 1.9380730568005805e-10, - 2.1125706452519037e-10, - 2.207509208390458e-10, - 2.410373228407926e-10, - 2.5671730411658595e-10, - 2.1971492462162898e-10, - 2.0472177628455578e-10, - 2.1142739554405012e-10, - 2.5098220791630884e-10, - 3.1843456143688355e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Workers high education=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.8454786591874384e-8, - 3.8454786591874384e-8, - 3.8454786591874384e-8, - 3.8454786591874384e-8, - 3.8454786591874384e-8, - 3.8454786591874384e-8, - 3.8454786591874384e-8, - 3.8454786591874384e-8, - 3.8454786591874384e-8, - 3.8454786591874384e-8, - 9.394164925581806e-8, - 9.06236219090342e-8, - 8.857065960041531e-8, - 1.0976604471869652e-7, - 9.15328890184894e-8, - 8.651738825035299e-8, - 7.337354910597408e-8, - 5.979970972293153e-8, - 4.7569525752946115e-8, - 4.6439480457910065e-8, - 3.936937120225696e-8, - 3.423894972876772e-8, - 2.9411301651870562e-8, - 2.5841952206123058e-8, - 2.9017388879557092e-8, - 2.544253964962303e-8, - 2.7274443226906503e-8, - 1.871883020517309e-8, - 2.398798811109256e-8, - 2.473342812886596e-8, - 2.5648292627375684e-8 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Workers high education=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.186690242829766e-9, - 2.1002331200254727e-8, - 2.8905814192291647e-8, - 2.7956982298733334e-8, - 2.7287192485754638e-8, - 2.6314492393490504e-8, - 1.9785832981228015e-8, - 1.641487464747084e-8, - 1.4496917389780596e-8, - 1.2768538727556927e-8, - 1.3490736852643394e-8, - 1.4135228059402092e-8, - 1.3441950681022633e-8, - 1.2106181548521261e-8, - 9.999841730317623e-9, - 8.93343142569842e-9, - 8.3154538507543e-9, - 7.301802871943345e-9, - 6.077477803777704e-9, - 6.404815990105197e-9, - 6.871896608861117e-9, - 5.306102933905862e-9, - 4.6670484842302635e-9, - 4.495614262097957e-9, - 4.307385147596242e-9, - 4.784035218672698e-9, - 6.392728670606963e-9, - 5.77271436128254e-9, - 5.140149906872479e-9, - 4.960121980952664e-9, - 5.4431533341047695e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Workers high education=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.515499397860349e-9, - 6.776494506351751e-9, - 6.646495488887186e-9, - 4.958344165110335e-9, - 9.01269144632325e-9, - 7.384875904753841e-9, - 7.2325879969904675e-9, - 7.436425559292036e-9, - 7.101608633852616e-9, - 6.937246937442167e-9, - 7.593280755186995e-9, - 7.32506584159566e-9, - 6.461574734897552e-9, - 5.024008407923208e-9, - 4.261876294587472e-9, - 4.112537880456718e-9, - 3.837064966826285e-9, - 3.4733002195253263e-9, - 2.894987625915988e-9, - 2.872411912334121e-9, - 2.9168409146212932e-9, - 2.61941270721353e-9, - 2.6607470998200326e-9, - 2.3788401038697817e-9, - 2.1260605131164534e-9, - 2.49097859150532e-9, - 2.3728100442765097e-9, - 2.2226654615114755e-9, - 2.0071877629934524e-9, - 2.0225113169608023e-9, - 1.966329680931608e-9, - 3.6224317230922676e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Workers high education=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.3686297663466202e-9, - 1.5056465246924991e-9, - 1.5473399478219341e-9, - 2.664833292641388e-9, - 2.1858807687832444e-9, - 1.678412605226263e-9, - 1.4479455272994173e-9, - 1.3580230972015303e-9, - 1.3543866762369139e-9, - 1.2456079272006859e-9, - 1.0648858422066293e-9, - 9.98981952118828e-10, - 7.753248705429545e-10, - 7.049244584924581e-10, - 5.422478057038157e-10, - 4.1987896387842533e-10, - 3.1323062514530633e-10, - 2.6831678631394084e-10, - 2.1785030762003968e-10, - 2.5068745818796336e-10, - 2.0460269219309073e-10, - 1.826078216732592e-10, - 1.623594961296329e-10, - 1.4538238888676626e-10, - 1.3528113058633024e-10, - 1.5191967425258703e-10, - 1.8364017392324775e-10, - 1.9682153795658524e-10, - 1.8619529145090366e-10, - 1.6424156038045098e-10, - 1.710757870626097e-10, - 3.2286825629014944e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Workers high education=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.3357195088729447e-8, - 1.329786809929717e-8, - 1.226443153309556e-8, - 1.3184627005791694e-8, - 1.4447971440002844e-8, - 1.2167236297810957e-8, - 1.1342902738939277e-8, - 1.1414792413592756e-8, - 1.0515062760909764e-8, - 1.0190340863876244e-8, - 1.4441028819125017e-8, - 1.4800411998984033e-8, - 1.275683515429336e-8, - 1.0306429107397864e-8, - 8.857064845177427e-9, - 7.3211014310787984e-9, - 4.195022200254543e-9, - 3.168332056823198e-9, - 2.7429015913752944e-9, - 3.0199067240054464e-9, - 2.3408815778064877e-9, - 1.9997007278132833e-9, - 1.9060101118686502e-9, - 1.2816952489484933e-9, - 1.4359030295576495e-9, - 1.6979523583786165e-9, - 1.4005628932595594e-9, - 1.0831636851207936e-9, - 1.1688513794108333e-9, - 1.1510929361799596e-9, - 1.1478219458490785e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Workers high education=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.5027684271670374e-9, - 2.5545787544945244e-9, - 2.494044074486194e-9, - 2.384432619942245e-9, - 2.341914921195443e-9, - 2.0844452943646058e-9, - 1.7029696879639131e-9, - 1.6392261017021164e-9, - 1.5821552020580648e-9, - 1.5424702898730631e-9, - 1.481799624159342e-9, - 1.4647423874891592e-9, - 1.4451285181262618e-9, - 1.3145734449947735e-9, - 1.2146382890468353e-9, - 1.1388245842108923e-9, - 1.1011464743611887e-9, - 9.933608229272107e-10, - 8.630604342727925e-10, - 7.717118963430117e-10, - 6.860163399039807e-10, - 6.147745492691261e-10, - 5.930252808529473e-10, - 5.339673011983174e-10, - 4.57431950082541e-10, - 4.053919747577454e-10, - 3.5011146860846826e-10, - 3.189287781421301e-10, - 2.8858424697136464e-10, - 8.376842354583929e-10, - 8.376842354583929e-10, - 8.376842354583929e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Workers high education=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.008036175311138e-10, - 2.386244907570058e-10, - 2.236358928529923e-10, - 2.3077217128675412e-10, - 2.2082306251340274e-10, - 1.788980801581858e-10, - 1.6404742398393528e-10, - 1.5498616821773323e-10, - 1.5296908423906435e-10, - 1.4047707386400618e-10, - 1.4775992133686306e-10, - 1.3277359705160873e-10, - 1.2516799314967382e-10, - 1.0606191450539549e-10, - 9.08889299083304e-11, - 8.201061450828075e-11, - 6.854886656866181e-11, - 5.2972690247192374e-11, - 5.376093682968013e-11, - 4.803218805691186e-11, - 3.744296220348213e-11, - 3.535490096832788e-11, - 3.458015516970475e-11, - 3.471372959582553e-11, - 3.1608494983319714e-11, - 3.0639913976234215e-11, - 2.8086894883174317e-11, - 2.4308658228928314e-11, - 2.2190861929130787e-11, - 2.0843029591724436e-11, - 2.299036146138996e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Workers high education=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.3495315072013819e-8, - 9.085074806504289e-9, - 8.85155241291914e-9, - 6.626089727505653e-9, - 5.362633940504871e-9, - 4.211877341562803e-9, - 3.542057607685442e-9, - 3.253582024793908e-9, - 3.209829422530214e-9, - 3.04487587218018e-9, - 2.8017685355278286e-9, - 2.6721018875505307e-9, - 2.4908144664775546e-9, - 2.2081575584750746e-9, - 1.9225689133971028e-9, - 1.5154129382182988e-9, - 1.3158955930414738e-9, - 1.1281900063857582e-9, - 8.810442178028416e-10, - 8.238311703765479e-10, - 7.475950151299055e-10, - 6.400351139257829e-10, - 5.591066722681434e-10, - 5.096890810819378e-10, - 4.714167847134513e-10, - 4.5404416508318103e-10, - 4.2640116419247606e-10, - 3.916348732733139e-10, - 3.5744335001728326e-10, - 3.327336107388343e-10, - 3.2239452837813335e-10, - 9.211242863390538e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Workers high education=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 9.970880229812282e-10, - 8.662371914473301e-10, - 7.635025226311345e-10, - 6.602141094422408e-10, - 5.801235142439439e-10, - 5.026888794337789e-10, - 4.6490831602667956e-10, - 5.666147022420655e-10, - 7.485738019091309e-10, - 6.717863381791996e-10, - 6.732577186850243e-10, - 7.073735626081538e-10, - 6.336113742374254e-10, - 5.588006846216313e-10, - 4.921725785974192e-10, - 4.494781259871168e-10, - 3.837267269759916e-10, - 3.236241933431237e-10, - 2.920367677639891e-10, - 3.020638993930565e-10, - 2.572816241536325e-10, - 2.3639557396726735e-10, - 2.2072238714441971e-10, - 2.038620832214869e-10, - 2.1036509374965132e-10, - 2.1223711507497284e-10, - 2.037660878215267e-10, - 1.8386923121912005e-10, - 1.6543262176926491e-10, - 1.521321038814546e-10, - 1.6260546530047414e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Workers high education=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.109987935309901e-10, - 7.46771613956443e-10, - 6.775916224322715e-10, - 5.444072718366351e-10, - 4.854935631662189e-10, - 4.237367511789555e-10, - 3.784585670714962e-10, - 4.1265544384001126e-10, - 9.099428984361134e-10, - 6.275653759593728e-10, - 5.287811596688429e-10, - 5.338261047830293e-10, - 4.398943618864664e-10, - 3.6482459554806747e-10, - 3.3348314591436997e-10, - 3.0517514796046996e-10, - 2.337270726541012e-10, - 1.8617974314224594e-10, - 1.653768359251306e-10, - 1.5873597162714778e-10, - 1.1125765043108804e-10, - 9.569199672202041e-11, - 9.578699247131429e-11, - 9.491255861116498e-11, - 9.700109159000888e-11, - 9.945935009555862e-11, - 9.18468455486226e-11, - 8.356482525339236e-11, - 7.853999478511124e-11, - 7.513239081197069e-11, - 7.771933998089567e-11, - 1.7573461191043412e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Workers high education=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.269918919731869e-9, - 1.238629156714829e-9, - 1.0615520915618588e-9, - 1.033928402466755e-9, - 8.767371553846883e-10, - 7.577768302887169e-10, - 6.776833276477418e-10, - 6.815856988303694e-10, - 8.610474783606797e-10, - 7.489646029880792e-10, - 7.666028888089961e-10, - 8.127271355083456e-10, - 7.608052317779388e-10, - 7.369262198068338e-10, - 6.75158518410399e-10, - 5.971090269061938e-10, - 5.024676236195213e-10, - 4.112147279655171e-10, - 3.531539058000637e-10, - 3.6834837863114936e-10, - 3.121869775362475e-10, - 2.7807553087944755e-10, - 2.445016655160184e-10, - 2.2592748299521894e-10, - 2.1342378872495615e-10, - 2.0610473252491332e-10, - 1.9866504288777145e-10, - 1.952668640004732e-10, - 1.8492977031483633e-10, - 1.7021620600557468e-10, - 1.7743657788585984e-10, - 3.799242075786072e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Workers high education=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.4905425846718783e-10, - 2.1344080627837345e-10, - 1.9850597260122834e-10, - 1.7973002673729776e-10, - 1.5222441822998462e-10, - 1.2456045409353973e-10, - 1.1566275013145452e-10, - 1.238671806216905e-10, - 1.8410695113673497e-10, - 1.4185345362999593e-10, - 1.2248623690343083e-10, - 1.2886483752044395e-10, - 1.1251387785664846e-10, - 9.67245265261887e-11, - 8.750906543254312e-11, - 7.4360805410079e-11, - 6.625415726257805e-11, - 5.957629318311697e-11, - 6.659734748636829e-11, - 7.352147761881537e-11, - 6.103663854261269e-11, - 5.599162771913399e-11, - 5.522408666519944e-11, - 5.144458971281182e-11, - 4.8015308106005585e-11, - 4.9079898722364963e-11, - 4.806975747088975e-11, - 4.4522406804006306e-11, - 4.188200799490964e-11, - 4.378042815754858e-11, - 4.356809541160694e-11, - 7.547502943489005e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Workers high education=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.0900586548241203e-10, - 2.5780218353445293e-10, - 2.222971234969896e-10, - 1.612204412872452e-10, - 1.5294972470170943e-10, - 2.2420088596494095e-10, - 1.9643231955028223e-10, - 1.6132436912719926e-10, - 1.5333060392492642e-10, - 1.3449594808357418e-10, - 1.1403887600172414e-10, - 1.0668457419002647e-10, - 1.043897585527746e-10, - 1.1143006929780803e-10, - 1.0348478044076176e-10, - 9.452108264628371e-11, - 8.583258738856514e-11, - 7.919663453745953e-11, - 7.491966037341038e-11, - 9.143984021736378e-11, - 7.67819074903464e-11, - 6.848005793853105e-11, - 6.733051113641642e-11, - 6.32354612805745e-11, - 6.069861595741746e-11, - 6.742229376724932e-11, - 7.336178818735827e-11, - 6.752879613823015e-11, - 6.340762597910763e-11, - 6.109022379789718e-11, - 7.517245149918324e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Workers high education=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.1365487533874084e-10, - 2.4366078986019703e-10, - 2.543677681187232e-10, - 2.2666682583423284e-10, - 1.588984116621583e-10, - 1.112521620463785e-10, - 9.925609128109584e-11, - 9.628552944376403e-11, - 9.777575627957335e-11, - 1.393331230986999e-10, - 1.27363896049495e-10, - 1.4991507133951294e-10, - 1.6563512315034775e-10, - 1.5033129410896013e-10, - 1.2474425502741073e-10, - 9.45455416074706e-11, - 7.576559621099346e-11, - 6.008098664926813e-11, - 4.930845115118532e-11, - 5.0342042422185644e-11, - 3.779382227748281e-11, - 3.159978953793573e-11, - 3.313283419125302e-11, - 3.295024481039857e-11, - 3.374532587724599e-11, - 4.5721591880961394e-11, - 4.6043498563698164e-11, - 4.005787025034547e-11, - 4.2974880609176665e-11, - 4.402967916766303e-11, - 5.7782593705023824e-11, - 6.677834781000802e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Workers high education=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.822632197132953e-10, - 4.3381979836896226e-10, - 3.5973942379029655e-10, - 3.476543426945134e-10, - 3.1970278636543215e-10, - 3.1896960479443655e-10, - 3.024227849627525e-10, - 2.810372408630667e-10, - 2.7531281859625155e-10, - 2.90291388430275e-10, - 2.8959605677939455e-10, - 3.0630919548493555e-10, - 8.42211552340787e-10, - 6.450837657573509e-10, - 5.109987667054651e-10, - 4.245307235741164e-10, - 3.652863671067105e-10, - 2.862453997356995e-10, - 2.319129707204199e-10, - 2.519096727200416e-10, - 1.979097479661879e-10, - 1.577627163111449e-10, - 1.5104883397526986e-10, - 1.4972144473005754e-10, - 1.5619784550632297e-10, - 1.383848410422798e-10, - 1.4762269682511996e-10, - 1.227881898985898e-10, - 1.5163301858365334e-10, - 1.7792486547884168e-10, - 1.984134797372911e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Workers high education=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.2486587402166738e-9, - 2.498388784288288e-9, - 2.385520000429326e-9, - 2.4631988767685212e-9, - 1.911638986685575e-9, - 1.6093385386822317e-9, - 1.5528431623563596e-9, - 1.4755286169361493e-9, - 1.5458750329896657e-9, - 1.7095618111674997e-9, - 1.6581070528536104e-9, - 1.649011563779387e-9, - 1.5404119358887978e-9, - 1.4024954538625313e-9, - 1.2613694262278115e-9, - 1.0665179643972927e-9, - 9.463783567815684e-10, - 8.58756536163549e-10, - 7.177068946610443e-10, - 7.183235857201595e-10, - 5.890369935284465e-10, - 5.073306831195728e-10, - 4.5585494920614604e-10, - 4.326571291157915e-10, - 4.329412636396236e-10, - 4.5235828625252044e-10, - 4.5144256583621647e-10, - 4.076164182351451e-10, - 3.917336674676445e-10, - 3.7562767219104225e-10, - 4.2471402467344524e-10, - 7.820932140246408e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Workers high education=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.4684665211112332e-9, - 1.334499635005469e-9, - 1.1815045489118448e-9, - 1.1881292983355357e-9, - 1.221612944315431e-9, - 9.219363860963813e-10, - 1.0116494310014041e-9, - 8.313380819143083e-10, - 7.813868284553379e-10, - 7.283860727060261e-10, - 6.092245057008712e-10, - 5.806566303551264e-10, - 7.682446240989918e-10, - 8.53437729418336e-10, - 6.34618522904617e-10, - 5.005154130952302e-10, - 3.98795434568475e-10, - 3.1176744532190095e-10, - 2.2389377812094193e-10, - 2.1404682937091358e-10, - 1.802679946349201e-10, - 2.2206620410950488e-10, - 1.8390383860273664e-10, - 1.923556996146624e-10, - 1.4794987183406472e-10, - 4.071026971181413e-10, - 3.9406789466641165e-10, - 4.2293272576194025e-10, - 4.071026971181413e-10, - 4.071026971181413e-10, - 4.071026971181413e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Workers high education=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.651713001533076e-9, - 1.606991301638229e-9, - 1.3527230244163653e-9, - 1.1892928020695075e-9, - 9.672132265315692e-10, - 8.542539268180978e-10, - 8.13345181058466e-10, - 7.409063472451524e-10, - 8.027397853784074e-10, - 9.169071679045088e-10, - 7.911444038228157e-10, - 8.046359727594646e-10, - 8.445025177238652e-10, - 8.756212545804352e-10, - 6.966086186939541e-10, - 5.587862551807045e-10, - 4.889580520571599e-10, - 3.6380510974807764e-10, - 3.1145361062859155e-10, - 3.314574705674748e-10, - 2.7229604008824385e-10, - 2.3556186017326795e-10, - 2.15787005209408e-10, - 2.0805193630241416e-10, - 2.0852131727569545e-10, - 2.7085158903494787e-10, - 2.792185926277415e-10, - 2.516322450782376e-10, - 2.3171877955566938e-10, - 2.383824164432529e-10, - 2.911339761006135e-10, - 4.1853109352731283e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Workers high education=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.5386327453020405e-9, - 2.2218701795541342e-9, - 1.8288965465941567e-9, - 1.7052291533956917e-9, - 1.4745890542098585e-9, - 1.1445522276841134e-9, - 1.077197087911443e-9, - 9.895428334906262e-10, - 1.071252173490373e-9, - 1.1182620286949116e-9, - 1.0796685528363645e-9, - 1.1843348830006208e-9, - 1.2054465670137482e-9, - 1.1626913567251395e-9, - 8.473305821860895e-10, - 6.836427311206904e-10, - 5.568260370885004e-10, - 4.842229839250667e-10, - 4.679620553527614e-10, - 4.849483247435077e-10, - 3.836411448275192e-10, - 3.3474464071437465e-10, - 3.185057759792311e-10, - 3.0263915783118727e-10, - 3.1822170349600905e-10, - 3.440895255047411e-10, - 3.312567860500086e-10, - 2.976522665654694e-10, - 2.774457365498933e-10, - 2.976890423316577e-10, - 3.1718983176632605e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Workers high education=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.3699365945920414e-8, - 1.0873193323079503e-8, - 9.136629961818849e-9, - 8.165250250648184e-9, - 7.461438621721452e-9, - 6.7578584586414686e-9, - 6.7000905053873086e-9, - 6.202851171045122e-9, - 5.7179945672224846e-9, - 5.489108043310589e-9, - 5.2116978331764585e-9, - 5.053149875169367e-9, - 4.870068829805524e-9, - 4.681630490266673e-9, - 4.271760287972229e-9, - 3.991887989230755e-9, - 3.5790477308053997e-9, - 3.012122222581504e-9, - 2.596606252855754e-9, - 2.585076037272094e-9, - 1.995559367183886e-9, - 1.7258065125178725e-9, - 1.6404254414383646e-9, - 1.5554565234463634e-9, - 1.4952973561247955e-9, - 1.382837548709469e-9, - 1.2678637868999232e-9, - 1.2381840559933665e-9, - 1.1964082470121294e-9, - 1.2282889123581412e-9, - 1.243878130905993e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Workers high education=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.2885759993131147e-11, - 1.2477757836589659e-11, - 1.178463018625907e-11, - 1.1203467432223014e-11, - 1.113316451579419e-11, - 1.0584117437673882e-11, - 9.97507516662041e-12, - 9.383793278990255e-12, - 8.854861502384576e-12, - 8.280841105791885e-12, - 7.735790589293178e-12, - 7.45334850898498e-12, - 7.176937668190554e-12, - 6.8151801593108485e-12, - 6.375612379263285e-12, - 5.975466082634921e-12, - 5.630270475829173e-12, - 5.378547161797926e-12, - 5.2831392022609564e-12, - 5.351952403492763e-12, - 5.10337066774315e-12, - 4.8904362555759e-12, - 4.666911282383131e-12, - 4.466528137683192e-12, - 4.241986882072142e-12, - 4.048622625695614e-12, - 3.924230490550049e-12, - 3.748149108387658e-12, - 3.5498977216680506e-12, - 3.4119922824144132e-12, - 3.419075875405533e-12, - 5.501049370278233e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Workers high education=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Workers high education" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.8261569940504945e-10, - 1.697674374128678e-10, - 1.5530438217774287e-10, - 1.866093486143464e-10, - 1.8467946298850752e-10, - 1.5942496633930588e-10, - 1.5248319463086423e-10, - 1.660528661951507e-10, - 1.582391392060979e-10, - 1.5432801754388556e-10, - 1.637533923005391e-10, - 1.560677537274175e-10, - 1.3824775918227935e-10, - 1.079723831141303e-10, - 9.165474229196792e-11, - 8.472683196392486e-11, - 7.755650230582534e-11, - 6.644414610549559e-11, - 5.982768043450267e-11, - 6.549181438744876e-11, - 6.873520691469163e-11, - 6.603840029816977e-11, - 7.389693074133376e-11, - 7.237550731568084e-11, - 7.15374086103241e-11, - 8.208703369452467e-11, - 7.968973812549588e-11, - 7.465225913324082e-11, - 6.92729812209441e-11, - 7.033796146135663e-11, - 7.693768341252881e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.1251211167566817e-9, - 2.097152772546098e-9, - 2.1251211167566817e-9, - 2.1251211167566817e-9, - 2.1251211167566817e-9, - 4.313546895969777e-9, - 4.070218961646088e-9, - 4.067515000898031e-9, - 3.799157402107917e-9, - 4.138612390055969e-9, - 4.4868214727904125e-9, - 4.217074838943957e-9, - 3.61931028544303e-9, - 2.8008888918596352e-9, - 2.3354128309086135e-9, - 2.140469427262734e-9, - 1.926655122488065e-9, - 1.6185475888794978e-9, - 1.3850219527080934e-9, - 1.5533446026445814e-9, - 1.6216722604710676e-9, - 1.569186299164748e-9, - 1.713362075404903e-9, - 1.6639960136774527e-9, - 1.6799367640823584e-9, - 1.9534481876004182e-9, - 1.873810144655746e-9, - 1.7431681278222117e-9, - 1.574209534099061e-9, - 1.5742517332821206e-9, - 1.7130195370829783e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.4966066326551275e-9, - 1.1548731687742517e-9, - 1.0467015461131836e-9, - 1.0280813543341107e-9, - 8.911526575567485e-10, - 6.939405807099771e-10, - 6.163976427961131e-10, - 6.196291813381291e-10, - 5.652591200039178e-10, - 5.807337126953061e-10, - 5.733541155614538e-10, - 5.172336059367894e-10, - 4.960150480180576e-10, - 4.53307526574553e-10, - 3.8705917662873936e-10, - 3.2253654606067733e-10, - 2.8652476025912086e-10, - 2.3015425684216962e-10, - 1.850469569849399e-10, - 2.2454927070634224e-10, - 2.0578512564071158e-10, - 1.8690611323017746e-10, - 1.980703483355902e-10, - 1.895194908083769e-10, - 1.820219461908142e-10, - 2.0665608048219305e-10, - 2.089216950371678e-10, - 1.8754239685714866e-10, - 1.6809799536651882e-10, - 1.6532052548989885e-10, - 1.6550235649917286e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 9.701604687594056e-10, - 8.808027739724229e-10, - 8.171248441949428e-10, - 8.728139774600135e-10, - 8.144819900200294e-10, - 6.938281813629775e-10, - 6.510970648288061e-10, - 6.633952204149749e-10, - 6.575591594668953e-10, - 6.660412147145277e-10, - 7.279756310383017e-10, - 7.042392943103999e-10, - 6.144376608649821e-10, - 4.692889355838284e-10, - 3.94126260518854e-10, - 3.7536723365298875e-10, - 3.4718041862736227e-10, - 2.945459882077415e-10, - 2.6683829452117217e-10, - 2.834370779754445e-10, - 3.196300542212136e-10, - 3.4406407235632296e-10, - 3.9239077626693704e-10, - 3.9751783496421483e-10, - 4.0334163209884657e-10, - 4.853247953967475e-10, - 4.916954647694862e-10, - 4.752200454337295e-10, - 4.6185431042925657e-10, - 4.6294308853021567e-10, - 5.029256562744395e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.3886821612079066e-10, - 1.9415417895053645e-7, - 1.4300049758869714e-7, - 7.67244131887688e-8, - 1.983674187324002e-8, - 6.140467032808315e-9, - 7.588427490711733e-9, - 3.812950179865232e-9, - 3.84021972106078e-9, - 2.146744231485155e-9, - 1.5311350609621075e-9, - 2.1885897852854803e-9, - 2.404466478480151e-9, - 3.6117562442099963e-9, - 2.1616134596605032e-9, - 1.584937228129252e-9, - 1.2154618749694314e-9, - 8.912425707265096e-10, - 6.015705361093068e-10, - 7.090908138009164e-10, - 5.715942734820554e-10, - 4.2624769032451557e-10, - 3.5412439497423803e-10, - 3.09839401998775e-10, - 3.5987023974083625e-10, - 4.747461437683134e-10, - 4.9999254919783e-10, - 4.57221815778228e-10, - 3.4822644498957564e-10, - 3.367771774030008e-10, - 4.747948983053812e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.2388168833957141e-8, - 1.3246480412088734e-8, - 1.1925258955255312e-8, - 1.2741028857518977e-8, - 1.236463149847595e-8, - 1.120463904149452e-8, - 1.006501162270459e-8, - 8.070805749113348e-9, - 8.891074104266146e-9, - 7.357491813643996e-9, - 5.134174012395127e-9, - 5.198994567752129e-9, - 4.708924198474753e-9, - 3.8745294141612515e-9, - 2.8733275608187507e-9, - 2.0476387535723463e-9, - 1.497686546269341e-9, - 1.1298239141379722e-9, - 7.895438020713237e-10, - 9.320343242696982e-10, - 7.335130675006438e-10, - 5.445622771726173e-10, - 4.8262253859099e-10, - 4.560663359304742e-10, - 4.4285316947977105e-10, - 5.637590658408765e-10, - 6.138796705619035e-10, - 5.660016330671558e-10, - 4.973539653293322e-10, - 5.16991046557157e-10, - 6.314071424364649e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.8499549585551198e-9, - 1.8194267134187516e-9, - 1.7292923915237248e-9, - 1.6862040482912422e-9, - 1.5815738745806185e-9, - 1.4266832404279012e-9, - 1.2748921307059835e-9, - 1.1897078504483891e-9, - 1.2394609834048452e-9, - 1.1107213188896583e-9, - 8.989625207591605e-10, - 9.078878890018569e-10, - 8.541124714653491e-10, - 7.543074741098977e-10, - 6.345055762122233e-10, - 4.984780964883216e-10, - 4.2228006289141616e-10, - 3.6366622755559196e-10, - 2.9731516448152266e-10, - 3.699324170893611e-10, - 3.2366972211445353e-10, - 2.674778247458101e-10, - 2.503943927108069e-10, - 2.404346847089515e-10, - 2.3266374454801627e-10, - 2.618994851492023e-10, - 2.626990163126841e-10, - 2.4324182513553033e-10, - 2.2215074685542705e-10, - 2.3382858258303477e-10, - 2.613640315627569e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.372965498228068e-10, - 6.559238365853859e-10, - 5.166149579991472e-10, - 6.522506005705844e-10, - 6.416013788328085e-10, - 6.050408570102505e-10, - 5.466222258121787e-10, - 5.225749249306249e-10, - 5.908914954416723e-10, - 5.362974517619395e-10, - 4.1870547336374286e-10, - 4.709980737776354e-10, - 4.5741395334548705e-10, - 4.0187820702133337e-10, - 3.202327340576788e-10, - 2.640457673327563e-10, - 2.3010974349279852e-10, - 2.0849946627100915e-10, - 1.6685059198640666e-10, - 2.0211796352350463e-10, - 1.6419384623309894e-10, - 1.2920645882307025e-10, - 1.178415190915222e-10, - 1.26467155271767e-10, - 1.1466695805781817e-10, - 1.3255751666540347e-10, - 1.344760646328189e-10, - 1.3844108756176338e-10, - 1.102682596631791e-10, - 1.0937203093628989e-10, - 1.393837687581972e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.5158507855063587e-9, - 3.5158507855063587e-9, - 2.2357531933539025e-7, - 6.355599178630075e-8, - 8.361844897467439e-8, - 4.127770742390821e-8, - 3.141448985654494e-8, - 2.518347061805105e-8, - 2.2441438562301945e-8, - 2.1779850985166375e-8, - 1.8924089204785753e-8, - 1.7482094474078852e-8, - 1.6001475016410272e-8, - 1.371255762503627e-8, - 1.1495236080230763e-8, - 7.533221032268876e-9, - 4.7554197227786516e-9, - 3.019118583465198e-9, - 2.0425350168185815e-9, - 2.2523478205819486e-9, - 1.8857015850355065e-9, - 1.5129063126037516e-9, - 1.4318331891636329e-9, - 1.3455149867036263e-9, - 1.3262000417088242e-9, - 1.8801553769828917e-9, - 2.635241618640992e-9, - 2.44193966518342e-9, - 2.1179511321684647e-9, - 2.0715633938256944e-9, - 2.341927237853287e-9, - 3.5158507855063587e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.074028095448398e-9, - 7.688389841747262e-9, - 7.054063790435621e-9, - 8.493424155491403e-9, - 8.90012752016699e-9, - 1.0706095618429092e-8, - 7.880656631586568e-9, - 6.667341772599763e-9, - 7.208534077157073e-9, - 5.967070743418495e-9, - 4.723677884501325e-9, - 4.623507728526011e-9, - 4.263355295997358e-9, - 3.871211438929318e-9, - 3.8997196675107255e-9, - 2.7226836632056703e-9, - 2.391934242678034e-9, - 2.1059528124710264e-9, - 1.6942979135231699e-9, - 1.8143454817849395e-9, - 1.475244081049203e-9, - 1.393216954288264e-9, - 1.2879455176399075e-9, - 1.1281636373362218e-9, - 1.0547418791162662e-9, - 1.074211080893603e-9, - 1.4559015077113184e-9, - 1.6987623170116492e-9, - 2.1102796426567146e-9, - 2.5010853583238485e-9, - 2.5010853583238485e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.767094028909055e-9, - 8.002379554780216e-9, - 7.288535007515933e-9, - 7.2647132905499095e-9, - 7.0253008198589836e-9, - 6.5754888286419e-9, - 5.94058471009065e-9, - 5.730647304784552e-9, - 6.484203784773441e-9, - 5.820316304948199e-9, - 4.652521751379677e-9, - 4.665784742427379e-9, - 4.505780987750617e-9, - 3.760950783090636e-9, - 3.6649935209202076e-9, - 2.919981710899281e-9, - 2.438719487655944e-9, - 2.156541022427692e-9, - 1.4222230673929812e-9, - 1.875633737221926e-9, - 1.337656928768823e-9, - 1.1711192357316822e-9, - 1.0383256943138388e-9, - 1.0091490197477616e-9, - 9.922557108472378e-10, - 1.182031187062657e-9, - 1.263164908771974e-9, - 1.182041808956975e-9, - 1.0453050331724616e-9, - 1.0306377774705258e-9, - 1.2269452486634384e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.2049677249636302e-9, - 1.635469990984448e-9, - 1.5575358548184428e-9, - 1.4969590231612404e-9, - 1.7574266703176387e-9, - 1.790200920098022e-9, - 1.5927566076581836e-9, - 1.5518933496827973e-9, - 1.551566934872247e-9, - 1.5371198863312407e-9, - 1.3645917100494829e-9, - 1.3657303488768396e-9, - 1.2310264082109663e-9, - 1.1017137918766863e-9, - 8.761778290352545e-10, - 7.24494211667066e-10, - 6.20784013297419e-10, - 5.539200750116028e-10, - 4.3939029148674524e-10, - 5.449016204288434e-10, - 4.637912151598014e-10, - 3.738081835646852e-10, - 3.5763358004200667e-10, - 3.564468764659841e-10, - 3.4968667045070374e-10, - 4.5045692488676835e-10, - 4.671909667479913e-10, - 4.395521926849132e-10, - 4.654246640056322e-10, - 4.3527767259857283e-10, - 5.155984949590784e-10, - 6.724941068715236e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.6412155503768758e-9, - 1.8866473464965835e-9, - 1.6852466844466833e-9, - 1.5143781666903166e-9, - 1.3591599884033208e-9, - 1.172515752736261e-9, - 1.042998043682228e-9, - 8.992955091977853e-10, - 8.315295774901834e-10, - 7.776112274323705e-10, - 7.065173399795406e-10, - 7.295643376014609e-10, - 8.284312434736365e-10, - 8.78552922231709e-10, - 8.95347210050686e-10, - 7.514661929556473e-10, - 6.178193125540284e-10, - 5.407761183000169e-10, - 4.3322964129935114e-10, - 3.729250819503269e-10, - 3.2901016253056105e-10, - 2.9890147995074113e-10, - 2.646405671100839e-10, - 2.51157873191005e-10, - 2.3082042613499638e-10, - 2.1416156790183242e-10, - 2.1218053791420382e-10, - 3.019010533929215e-10, - 2.824749318820613e-10, - 2.327354528489086e-10, - 1.9312019299279934e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.8129700407984777e-9, - 2.5410210205815518e-9, - 2.399547194754877e-9, - 2.651920249438621e-9, - 2.6740844787799694e-9, - 3.1827274982223742e-9, - 2.915586179535963e-9, - 2.648326358637445e-9, - 2.9835096251176835e-9, - 2.2597950165497206e-9, - 2.1243679017050508e-9, - 2.383460733446962e-9, - 3.969360257998887e-9, - 3.095300387371728e-9, - 2.59945651353625e-9, - 1.7175760350347155e-9, - 1.4792055042771641e-9, - 1.2041547877520669e-9, - 9.329770604123538e-10, - 1.2898963248823558e-9, - 1.0872843874614219e-9, - 2.3429802741592174e-9, - 9.929933111074471e-10, - 1.2411669751472982e-9, - 1.9760481189920894e-9, - 2.9200350302143086e-9, - 3.1033917860801006e-9, - 2.1460675328441817e-9, - 1.545395590249618e-9, - 1.5607256848664155e-9, - 3.1984054372986695e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.258455183439456e-10, - 6.129810218277132e-10, - 5.803655133467618e-10, - 5.104309771184504e-10, - 7.036811794085176e-10, - 5.426067437251342e-10, - 5.067581385056366e-10, - 4.8444377783408e-10, - 3.3324304464556003e-10, - 3.5869503379166947e-10, - 3.3526512034987103e-10, - 4.5582994347638975e-10, - 3.8278036813583934e-10, - 2.9232812481076314e-10, - 2.1367232280917951e-10, - 1.7425954761574984e-10, - 1.581871536480646e-10, - 1.3012041831672904e-10, - 1.1936240325198924e-10, - 1.3987456643461007e-10, - 1.192554456261633e-10, - 1.1219631075838213e-10, - 1.0779519518542849e-10, - 9.94553655551205e-11, - 1.016447749264662e-10, - 1.1060924869689867e-10, - 1.1057618293292631e-10, - 1.1193358118645491e-10, - 1.1813427611523714e-10, - 1.271243729117879e-10, - 1.277360909456025e-10, - 1.8166788704571218e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.0335319268777355e-9, - 1.9009284944352685e-9, - 1.8205359649992499e-9, - 1.9387552045205137e-9, - 1.1682380642415073e-9, - 1.5724254532300416e-9, - 1.4219218888334782e-9, - 1.5677035366897433e-9, - 1.4680163676486554e-9, - 1.474158667149287e-9, - 1.57942757674982e-9, - 1.5553184403867095e-9, - 1.4530494927443732e-9, - 1.1787827474809538e-9, - 8.772388130689582e-10, - 9.844279553304783e-10, - 8.941065887148935e-10, - 7.764576025076754e-10, - 5.961469404940763e-10, - 6.037167847569425e-10, - 6.583818521377893e-10, - 6.617721808796049e-10, - 7.065025087655504e-10, - 5.745082233601835e-10, - 6.866400760291435e-10, - 6.065658305163458e-10, - 5.940493135482068e-10, - 5.595431060430008e-10, - 6.244908008749571e-10, - 5.119878993613114e-10, - 5.34950354264617e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.234020768879144e-9, - 6.350669042601265e-9, - 5.930054316748662e-9, - 6.253465180968931e-9, - 9.15177975606048e-9, - 7.283108466646336e-9, - 7.024003207522262e-9, - 7.626517661817424e-9, - 7.0824194437919415e-9, - 6.9887140809088555e-9, - 7.66240244694687e-9, - 7.0800065529499916e-9, - 5.605622709077223e-9, - 5.254521950371959e-9, - 4.57242011288436e-9, - 4.185239829573556e-9, - 3.581077295409472e-9, - 3.2924625658849792e-9, - 2.733800054398476e-9, - 2.9751748536781083e-9, - 2.858044950840082e-9, - 2.9085955227156753e-9, - 2.6088996461273834e-9, - 2.301139733499719e-9, - 2.3273652244638874e-9, - 2.592182667693592e-9, - 2.419888919032603e-9, - 2.471852979598704e-9, - 1.9931669476439604e-9, - 1.9769595570348738e-9, - 1.8696235754161607e-9, - 3.6242159216076534e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 7.999245993204848e-10, - 7.457689744692755e-10, - 6.870044038776413e-10, - 6.279570432856176e-10, - 6.021209392569033e-10, - 5.382306816543564e-10, - 5.662520616880537e-10, - 5.470173478417592e-10, - 6.042072867918979e-10, - 6.10053226763811e-10, - 6.091012464064609e-10, - 6.825181622131302e-10, - 7.160469744761279e-10, - 4.691556857550636e-10, - 3.613399934203551e-10, - 3.1998355652641534e-10, - 3.0419568416886387e-10, - 2.663577986706804e-10, - 2.9238775553577226e-10, - 2.8171038792801196e-10, - 2.2253256072740687e-10, - 2.0319038558687956e-10, - 2.1576738417950464e-10, - 2.305721910197542e-10, - 2.4695744838596136e-10, - 2.7218129547787714e-10, - 2.8565298426648245e-10, - 2.2820012977476175e-10, - 2.283190475552941e-10, - 2.4494587090576585e-10, - 2.755562468973975e-10, - 3.496129600598059e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.1367203387756583e-8, - 2.1367203387756583e-8, - 2.1367203387756583e-8, - 2.1367203387756583e-8, - 2.1367203387756583e-8, - 2.1367203387756583e-8, - 2.1367203387756583e-8, - 2.1367203387756583e-8, - 2.1367203387756583e-8, - 2.1367203387756583e-8, - 5.219819180207071e-8, - 5.0354547058509715e-8, - 4.9213829163980366e-8, - 6.09909353409222e-8, - 5.085977662765864e-8, - 4.8072939552170495e-8, - 4.076963327525451e-8, - 3.127536648655149e-8, - 2.6431761086332445e-8, - 2.5803857259620927e-8, - 2.2833443260765666e-8, - 1.902469542744362e-8, - 1.634223772878693e-8, - 1.4358947160081016e-8, - 1.4143255265915171e-8, - 1.4137015637721111e-8, - 1.3424245680259671e-8, - 1.4245233329457364e-8, - 1.3328801594262552e-8, - 1.3743001486780036e-8, - 1.4251341216222866e-8 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.4530366100110975e-9, - 1.3989350706272815e-8, - 1.9253747040301007e-8, - 1.8621743764392132e-8, - 1.817560640450066e-8, - 1.752770486476388e-8, - 1.317905874119255e-8, - 8.326365973255388e-9, - 9.656188143678362e-9, - 8.50493997848457e-9, - 8.985985761208193e-9, - 9.415272083402134e-9, - 8.953489994052072e-9, - 7.64014783162451e-9, - 6.66075073470599e-9, - 5.950430170485942e-9, - 5.538804197060646e-9, - 4.863625860849514e-9, - 4.0481205441424425e-9, - 4.245577230263977e-9, - 4.577271482959905e-9, - 3.5343188390959165e-9, - 3.1086538625904652e-9, - 2.9944639932088787e-9, - 2.8690872876047056e-9, - 3.5132035801889744e-9, - 4.258104611838582e-9, - 4.588474408727175e-9, - 3.4237799149259447e-9, - 3.3038659030668875e-9, - 3.625606139278779e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.69463949574882e-9, - 5.922752946806843e-9, - 5.809131949542172e-9, - 4.3336635907641335e-9, - 7.877220998605947e-9, - 6.454486974893341e-9, - 6.321385169288224e-9, - 6.499542108935992e-9, - 6.206907335908671e-9, - 6.063252866648098e-9, - 6.474106435487475e-9, - 6.402212125782672e-9, - 5.647508570434987e-9, - 4.391055076473336e-9, - 3.7249407284303523e-9, - 3.5944168223701727e-9, - 3.353649562920494e-9, - 2.9538280204514717e-9, - 2.5302605168928682e-9, - 2.510529020908043e-9, - 2.5916754644716697e-9, - 2.2894041035539096e-9, - 2.3255309528246008e-9, - 2.0791402135677766e-9, - 1.9272654866116594e-9, - 2.1771508527664517e-9, - 2.0738698553918796e-9, - 1.9426413464356397e-9, - 1.754310761548048e-9, - 1.7677037664904423e-9, - 1.7186002144936913e-9, - 3.1660570435704343e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.0863611630912366e-9, - 1.1288379372202977e-9, - 1.228213843324847e-9, - 2.1152334008969415e-9, - 1.735060885525651e-9, - 1.3322538459965143e-9, - 1.1493187024045565e-9, - 1.0779420319921504e-9, - 1.0750555928646754e-9, - 9.887115638011734e-10, - 8.452619185589158e-10, - 7.929501623422326e-10, - 6.154205095107433e-10, - 5.220871333662461e-10, - 4.304136672845665e-10, - 3.3328239000245963e-10, - 2.973196312745366e-10, - 2.1297866174210686e-10, - 1.504602008835294e-10, - 1.9898523716638887e-10, - 1.6240507413178055e-10, - 1.4494646428161757e-10, - 1.2887418890875177e-10, - 1.1539847003737491e-10, - 1.0738051296397344e-10, - 1.2058749420453872e-10, - 1.4506953810396947e-10, - 1.5622871879126578e-10, - 1.5613669690014096e-10, - 1.3099690562169838e-10, - 1.3579281671345507e-10, - 2.562793408803989e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.1797588365652604e-8, - 1.0532490540315343e-8, - 1.083241757008389e-8, - 1.1645169598536799e-8, - 1.2761003985910352e-8, - 1.0746571000547892e-8, - 1.0018487900843267e-8, - 1.0081983626081124e-8, - 9.287307796895852e-9, - 9.00050092995507e-9, - 1.1618941394752173e-8, - 1.3072293041030088e-8, - 1.12673273841623e-8, - 9.1030345309141e-9, - 7.822900277878272e-9, - 6.466278323653174e-9, - 3.398973828890196e-9, - 2.798392713724828e-9, - 2.4226361663193522e-9, - 2.6672977519467876e-9, - 2.2205939851747766e-9, - 1.7662125831450368e-9, - 1.6834614281834773e-9, - 1.10593273272597e-9, - 1.268244774683906e-9, - 1.4062514885878182e-9, - 1.237031007267817e-9, - 1.1501774658678477e-9, - 1.1744500317963523e-9, - 1.0166895475772635e-9, - 1.0138004831280718e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.9536121678870054e-9, - 1.1408970335815682e-9, - 1.946802108526649e-9, - 1.8612415472647978e-9, - 1.8280530617778172e-9, - 1.6270772981481766e-9, - 1.3293048880734478e-9, - 1.279547889226071e-9, - 1.2349994592688173e-9, - 1.20402219166204e-9, - 1.1566638545959555e-9, - 8.795029804364078e-10, - 1.1280391052270365e-9, - 1.026130364218282e-9, - 9.481229327114967e-10, - 8.889442349732711e-10, - 8.595334380867673e-10, - 5.861386027762164e-10, - 6.736881238052471e-10, - 6.02383238670384e-10, - 5.354909605131748e-10, - 4.568572917645004e-10, - 4.338826673432486e-10, - 4.0679617042816087e-10, - 3.5337443447712507e-10, - 3.339028618430324e-10, - 3.2860763100764847e-10, - 2.919094067065627e-10, - 2.6971419430109723e-10, - 7.910895644292601e-10, - 7.934668636294073e-10, - 6.538799584790421e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.0830378457748336e-10, - 2.4753729603430664e-10, - 2.319888626579389e-10, - 2.393916864906367e-10, - 2.0429616303815652e-10, - 1.8558005880955796e-10, - 1.70174719390929e-10, - 1.6077501886595232e-10, - 1.5868259527451862e-10, - 1.4572399886027516e-10, - 1.4274523624014642e-10, - 1.2568892794823073e-10, - 1.298431123981402e-10, - 1.1002340726049973e-10, - 9.428370020858471e-11, - 8.150005599699494e-11, - 6.674162279304477e-11, - 5.4951260308003013e-11, - 5.576894849674805e-11, - 4.9826226622843843e-11, - 3.990244333091028e-11, - 3.801462474680708e-11, - 3.658336668776635e-11, - 3.601031366125379e-11, - 3.278909618649524e-11, - 3.1784337945949514e-11, - 2.9135961658104246e-11, - 2.5216605006141218e-11, - 2.7534215334409458e-11, - 2.329247537032148e-11, - 2.5133451888191865e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.4281657414191744e-8, - 9.61444214354581e-9, - 9.36731291344422e-9, - 7.012177409638619e-9, - 5.675102831413855e-9, - 4.457294175186711e-9, - 3.748445517896781e-9, - 3.4431610969528112e-9, - 3.396859126737586e-9, - 3.1473773064654094e-9, - 2.8921669646074056e-9, - 2.8277993903937153e-9, - 2.6359487498232156e-9, - 2.3368220451627553e-9, - 2.0345927775523214e-9, - 1.6037127187603985e-9, - 1.3925699364837892e-9, - 1.1939271579312482e-9, - 9.323807275540009e-10, - 8.821463652295035e-10, - 7.972551548645642e-10, - 6.819209673638787e-10, - 5.931663709371229e-10, - 5.398089702258248e-10, - 4.963741969282631e-10, - 4.782998073019889e-10, - 4.502577386227445e-10, - 4.130272610625668e-10, - 3.769250665700985e-10, - 3.6558267031893845e-10, - 3.40860436518164e-10, - 9.747961735748617e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.0932139724644462e-9, - 9.497482462252072e-10, - 8.371092687048777e-10, - 7.238631621533547e-10, - 6.360512982900371e-10, - 5.511514471474586e-10, - 5.097285849203818e-10, - 6.212401465246258e-10, - 8.207413195287184e-10, - 7.365510310838955e-10, - 7.330081529826194e-10, - 7.755691017960871e-10, - 6.946957454746132e-10, - 6.126728053803597e-10, - 5.396213046244606e-10, - 4.939107651332861e-10, - 4.2072054810561235e-10, - 3.548237285334426e-10, - 3.2019106401296926e-10, - 3.3118487814771494e-10, - 2.7351777068980323e-10, - 2.516003616812112e-10, - 2.346781542750784e-10, - 2.2292331759958832e-10, - 2.2904294943786835e-10, - 2.3142071635847455e-10, - 2.2570360401426074e-10, - 2.044413427711463e-10, - 1.8508825951159184e-10, - 1.7142096005083653e-10, - 1.8598506993309932e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.830933104028078e-10, - 8.037263066203029e-10, - 7.321283069824148e-10, - 5.932164022880608e-10, - 5.298831491723996e-10, - 4.637175359214332e-10, - 4.1224567210521617e-10, - 4.344500641686747e-10, - 9.820485960778736e-10, - 6.695090117096763e-10, - 5.680014024279954e-10, - 5.841941375908138e-10, - 4.790548579609185e-10, - 3.9924684847464625e-10, - 3.5191515396381286e-10, - 3.2788547015969174e-10, - 2.5230309549991424e-10, - 2.1686380488834226e-10, - 1.8068821027765148e-10, - 1.7158102319687875e-10, - 1.2413308327694404e-10, - 1.0393630833712382e-10, - 1.0211922763595577e-10, - 1.0271746523593351e-10, - 1.0677440849303405e-10, - 1.1060866030076148e-10, - 1.0234927046215637e-10, - 9.22907015810705e-11, - 9.177892599029702e-11, - 8.375739291162961e-11, - 9.069996791531702e-11, - 1.923156794507067e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.8526444774654442e-9, - 1.8320243674216e-9, - 1.570114257754746e-9, - 1.5292567732801097e-9, - 1.2837197701447928e-9, - 1.1208081213254162e-9, - 1.0023438919675445e-9, - 1.0081157883083824e-9, - 1.2735530673664489e-9, - 1.1077741837190667e-9, - 1.1067335798308715e-9, - 1.2020836973231734e-9, - 1.1252873516846509e-9, - 1.063782159007115e-9, - 9.986095118903215e-10, - 8.831685265676343e-10, - 7.431868734245561e-10, - 6.082170743288241e-10, - 5.253699628447476e-10, - 5.39111151003733e-10, - 4.552983105618554e-10, - 4.050515441562853e-10, - 3.622088599775863e-10, - 3.3954588325161057e-10, - 3.1890847716038335e-10, - 3.2039087952540436e-10, - 2.977462686101175e-10, - 2.888141709401307e-10, - 2.735248428811701e-10, - 2.5549952246132935e-10, - 2.624418556567506e-10, - 5.61936074477212e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.4572042839293564e-10, - 2.96284221106039e-10, - 2.75552686023614e-10, - 2.494891764594286e-10, - 2.1130773433159005e-10, - 1.729064735333991e-10, - 1.6055527727432816e-10, - 1.7194411776740543e-10, - 2.555649295412266e-10, - 1.9691145640234342e-10, - 1.7002718425740817e-10, - 1.788815300992873e-10, - 1.5618422384002596e-10, - 1.3941016952318665e-10, - 1.2351113110253584e-10, - 1.0478749611777901e-10, - 9.301592242121446e-11, - 8.354491346073591e-11, - 9.353794848312112e-11, - 1.0378387149773034e-10, - 8.562955259793431e-11, - 7.817119450175718e-11, - 7.66300256276843e-11, - 7.14665052697258e-11, - 6.600063321124844e-11, - 6.683567371721495e-11, - 6.530576966980273e-11, - 6.032751529184586e-11, - 5.679693387925183e-11, - 5.932213999087778e-11, - 5.981207242595247e-11, - 1.0476937704173939e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.351385707455936e-10, - 2.9684057410488347e-10, - 2.5595906464419853e-10, - 1.8563368119321185e-10, - 1.7611054905425883e-10, - 2.581511094756206e-10, - 2.2617761303898042e-10, - 1.8575334658647768e-10, - 1.7654910394054528e-10, - 1.5486235956792548e-10, - 1.2789201732703654e-10, - 1.2283957341451418e-10, - 1.1691996470513063e-10, - 1.2744940387122639e-10, - 1.1627335982072816e-10, - 1.0442479201008488e-10, - 9.404934407643768e-11, - 8.814999654424268e-11, - 8.371757992305631e-11, - 1.0381907889979753e-10, - 8.798338553518003e-11, - 7.922135123358374e-11, - 7.845240756542075e-11, - 7.372855924666434e-11, - 7.188641244247819e-11, - 8.061685616087822e-11, - 8.795590299987245e-11, - 8.194987491451424e-11, - 7.802623795215153e-11, - 7.322435359756307e-11, - 8.869209424279391e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.3327975028741824e-10, - 2.660418028060564e-10, - 2.7773225082659313e-10, - 2.4748688952319784e-10, - 1.7349373252001045e-10, - 1.1847709291514415e-10, - 1.0717961357676519e-10, - 1.0320166499733139e-10, - 1.0553110437608922e-10, - 1.5200463787362512e-10, - 1.3906267207313985e-10, - 1.6276969454367504e-10, - 1.7879408010658053e-10, - 1.632799533944849e-10, - 1.3240348911830448e-10, - 1.0222624326857111e-10, - 8.090742650274179e-11, - 6.442520292697918e-11, - 5.3092157225508136e-11, - 5.41682128801693e-11, - 4.0917068823312005e-11, - 3.4941042669649336e-11, - 3.7050464131154534e-11, - 3.699592419435357e-11, - 3.734845136764993e-11, - 5.1074955311821864e-11, - 5.1683905558466055e-11, - 4.510548019345241e-11, - 4.863365932159538e-11, - 4.853935362345674e-11, - 6.309010739444212e-11, - 7.291214991947509e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.005099669281574e-10, - 5.219204688179665e-10, - 4.3279575856805733e-10, - 4.1825642399889175e-10, - 3.8462843044416143e-10, - 3.8374635343729953e-10, - 3.6383918461635523e-10, - 3.3811063731538014e-10, - 3.312236921726249e-10, - 3.4924412881334114e-10, - 3.4840758833599106e-10, - 3.685148522769439e-10, - 1.0132489339911599e-9, - 7.760881884984618e-10, - 6.01360304124173e-10, - 4.982398637125371e-10, - 4.24028049480011e-10, - 3.443764756443425e-10, - 2.7386680137137935e-10, - 2.972685036639874e-10, - 2.3358962652769894e-10, - 1.8693925667312116e-10, - 1.8151727354111507e-10, - 1.795605689206366e-10, - 1.8808700072544866e-10, - 1.6675927923023255e-10, - 1.777926980573046e-10, - 1.5384452009616448e-10, - 1.8864356655570762e-10, - 2.191008052424927e-10, - 2.543585438595045e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.4707329794827144e-9, - 2.6691755098354053e-9, - 2.54859115739361e-9, - 2.502022104040757e-9, - 2.0423162315633147e-9, - 1.7193509038700693e-9, - 1.658993574435888e-9, - 1.576393903605045e-9, - 1.651549112480283e-9, - 1.8264253136318968e-9, - 1.7714531725385494e-9, - 1.7617359272324675e-9, - 1.6733752081316575e-9, - 1.560732032522495e-9, - 1.3130381244206965e-9, - 1.1557713390821474e-9, - 1.0006334130870645e-9, - 8.768714137795814e-10, - 7.603728239807614e-10, - 7.58658618308084e-10, - 6.213248862245989e-10, - 5.33666004957674e-10, - 4.871124618019383e-10, - 4.5563905190721674e-10, - 4.666977654254338e-10, - 4.960996233472773e-10, - 4.907538222597499e-10, - 4.4619145265032363e-10, - 4.241644398651813e-10, - 4.0120379509326003e-10, - 4.677782839917749e-10, - 8.355561257763598e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.962170156737165e-9, - 1.7831631299315293e-9, - 1.5787305550348471e-9, - 1.5875825686341706e-9, - 1.632323534761737e-9, - 1.2318946582721614e-9, - 1.3517695460220353e-9, - 1.1108368839467813e-9, - 1.0440918424904487e-9, - 9.732720452933575e-10, - 8.140479382087671e-10, - 7.565242627344668e-10, - 1.026531182570024e-9, - 1.1403665110669145e-9, - 8.479795137677075e-10, - 6.55337496655861e-10, - 5.197266856754803e-10, - 4.130620887083675e-10, - 3.018108617821591e-10, - 2.8961666548419587e-10, - 2.425229366122312e-10, - 2.9944881781764634e-10, - 2.5009600400919513e-10, - 2.570263658286012e-10, - 1.9769114176754218e-10, - 5.510858925886563e-10, - 5.540629275593865e-10, - 5.439720630525143e-10, - 5.439720630525143e-10, - 5.439720630525143e-10, - 5.439720630525143e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.953628331660782e-9, - 1.9007319871544965e-9, - 1.599986210035745e-9, - 1.370466010125597e-9, - 1.1440093771467912e-9, - 1.010402335221245e-9, - 9.387305307461058e-10, - 8.763360400638254e-10, - 9.494719640827065e-10, - 1.0845079133351041e-9, - 9.357570717845924e-10, - 9.517147540748738e-10, - 9.541313300258442e-10, - 9.876184434777209e-10, - 7.926424062447871e-10, - 6.376128195832917e-10, - 5.710957359853046e-10, - 4.4936931751367477e-10, - 3.8556239760323394e-10, - 4.012287363573693e-10, - 3.25835140742228e-10, - 2.7939167156444323e-10, - 2.5199298598328524e-10, - 2.446103805728032e-10, - 2.4713527573973266e-10, - 3.211274605248312e-10, - 3.346728310144405e-10, - 2.996936419439358e-10, - 2.8453924115748635e-10, - 2.9449741918405736e-10, - 3.523326575119993e-10, - 4.950340653836362e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.922165331677077e-9, - 2.5575467826905897e-9, - 2.1052033200042563e-9, - 1.962852454274587e-9, - 1.6973676167443687e-9, - 1.317469352832426e-9, - 1.239938305965486e-9, - 1.1390413865837745e-9, - 1.186164540406375e-9, - 1.287207272509344e-9, - 1.2427831558696032e-9, - 1.363262308266051e-9, - 1.372540835021686e-9, - 1.279215085930251e-9, - 9.75343935161977e-10, - 7.869263846182018e-10, - 6.251404467502349e-10, - 5.573786200645204e-10, - 5.439950360352978e-10, - 5.665323655316526e-10, - 4.427809062491902e-10, - 3.833587587596375e-10, - 3.622469846703914e-10, - 3.458063117075087e-10, - 3.713965106351146e-10, - 3.971568377203419e-10, - 3.8637676545943134e-10, - 3.4797912043103103e-10, - 3.251796364846122e-10, - 3.463467479948634e-10, - 3.825581013769598e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.6932447306068582e-8, - 1.3439291549589356e-8, - 1.1292895305830954e-8, - 1.009226778492883e-8, - 9.222355019093923e-9, - 8.35272834556932e-9, - 8.281327024638349e-9, - 7.666738082311352e-9, - 7.067454222924341e-9, - 6.7845499614784666e-9, - 6.318804253743515e-9, - 6.053567671314163e-9, - 5.833518215959379e-9, - 5.599478549890487e-9, - 5.196655629586839e-9, - 4.825835927641039e-9, - 4.257563372793958e-9, - 3.5973193391251003e-9, - 3.1398497991459683e-9, - 3.1455720543243958e-9, - 2.568146836605717e-9, - 2.2778441711848546e-9, - 2.0476279923242152e-9, - 1.898203625085847e-9, - 1.8592758406184804e-9, - 1.7134933839878154e-9, - 1.6434623023937204e-9, - 1.5981357461660165e-9, - 1.5678233510448812e-9, - 1.5094196821813571e-9, - 1.5637462849049543e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Literacy rate=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.15555913724496e-10, - 2.3519544920404057e-10, - 2.1120717058154927e-10, - 2.0274638488601392e-10, - 1.5977975897847106e-10, - 1.2275259377573293e-10, - 1.0439131973748926e-10, - 9.376797951226076e-11, - 8.762282160330959e-11, - 8.24203701933771e-11, - 7.505712366432604e-11, - 6.731965653591259e-11, - 6.131560221346376e-11, - 5.4308446260083956e-11, - 4.6113380147123115e-11, - 3.944400923071864e-11, - 3.276284247446252e-11, - 2.5396888818534214e-11, - 1.9625954277409237e-11, - 1.7674031292637918e-11, - 1.5627061002825024e-11, - 1.1940363937835142e-11, - 1.0567889039204422e-11, - 9.42150808850244e-12, - 8.60732998917238e-12, - 8.151446646637521e-12, - 8.026835221636166e-12, - 7.324505387506209e-12, - 6.9695689513656e-12, - 6.3142895383940985e-12, - 6.1243842334522444e-12 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Literacy rate" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 9.03102107089938e-12, - 8.560978685836797e-12, - 7.506198371385252e-12, - 7.724528668277286e-12, - 7.255991910579111e-12, - 6.187658673816769e-12, - 6.407061591148026e-12, - 7.233306988246678e-12, - 7.146076786370266e-12, - 7.289475575545203e-12, - 8.213628295243992e-12, - 8.222877079508271e-12, - 7.697916373916998e-12, - 6.3958033591337204e-12, - 5.685141507682444e-12, - 5.6202188840596935e-12, - 5.342765733302663e-12, - 4.670744093835053e-12, - 4.272061889378578e-12, - 4.690347353247571e-12, - 4.7063421625704464e-12, - 4.267446197022956e-12, - 4.536249067197869e-12, - 4.2851733022327466e-12, - 4.114069730419324e-12, - 4.7653288217731724e-12, - 4.6111457346116826e-12, - 4.335045768285022e-12, - 4.0228402230881166e-12, - 4.114880479386847e-12, - 4.159718713789129e-12, - 5.509959280793895e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 7.642732258487021e-12, - 7.642146916978498e-12, - 6.921324193201856e-12, - 7.332843600360385e-12, - 6.95847921842038e-12, - 6.058354736582036e-12, - 6.04107274333088e-12, - 6.676371872333751e-12, - 6.453292265085478e-12, - 6.4963256949032875e-12, - 7.102898574557631e-12, - 7.040938064460666e-12, - 6.4605963636667254e-12, - 5.258750040593301e-12, - 4.576263517690684e-12, - 4.415221579850401e-12, - 4.180068344094307e-12, - 3.6458061770334515e-12, - 3.3102370011817427e-12, - 3.5914122590822234e-12, - 3.6670363060328604e-12, - 3.3855031906024724e-12, - 3.6144510294135167e-12, - 3.4496531439608902e-12, - 3.3964007741525805e-12, - 3.976732192153692e-12, - 3.9224180571917185e-12, - 3.737740050988529e-12, - 3.4755105225258785e-12, - 3.554584543442191e-12, - 3.687767406956323e-12, - 4.636847729860629e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.749705801063555e-11, - 2.6255425571809476e-11, - 2.5323479703369635e-11, - 3.381022394556632e-11, - 3.14364401097089e-11, - 2.69354348944526e-11, - 2.467918672441798e-11, - 2.6851029346900665e-11, - 2.658699756840179e-11, - 2.6270451588743467e-11, - 2.7393564606206186e-11, - 2.9703478528643856e-11, - 2.698154511194862e-11, - 2.1535143964363882e-11, - 1.8695566452335052e-11, - 1.8357133962338158e-11, - 1.7017517557920952e-11, - 1.465641130049953e-11, - 1.39075033416338e-11, - 1.649344675079095e-11, - 1.4521616831967727e-11, - 1.2541497704474751e-11, - 1.3032058039809936e-11, - 1.2269064222372272e-11, - 1.237189892629854e-11, - 1.4254496334911399e-11, - 1.396283287705115e-11, - 1.330822638415565e-11, - 1.2962337515476448e-11, - 1.3486188561948915e-11, - 1.3303276318312641e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.2623844151034669e-11, - 1.2075633598059174e-11, - 1.1698290611006141e-11, - 1.3001834022386928e-11, - 1.210006494935562e-11, - 1.0249382345633253e-11, - 9.707953656258701e-12, - 8.84859618826664e-12, - 8.346478777303436e-12, - 8.186204977110671e-12, - 8.302612653618562e-12, - 8.39462953022837e-12, - 7.735093284585205e-12, - 6.708493059358558e-12, - 5.698207205198079e-12, - 5.422761021279517e-12, - 5.079019612357633e-12, - 4.4427525169568435e-12, - 4.695662616841131e-12, - 5.688848643649816e-12, - 5.539698962427181e-12, - 5.159087811577435e-12, - 5.075099817429358e-12, - 4.9227846845732674e-12, - 4.4701197715975014e-12, - 4.667564902064304e-12, - 5.068215316293623e-12, - 5.112973151568817e-12, - 4.757322362978813e-12, - 4.793873991940088e-12, - 5.000354985641263e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.8450920666331746e-11, - 1.71527723500023e-11, - 1.569147036115103e-11, - 1.8854426525740123e-11, - 1.865943690166368e-11, - 1.610780133221014e-11, - 1.5406426371056598e-11, - 1.6777463660383456e-11, - 1.5987989057416206e-11, - 1.559282152395136e-11, - 1.654513199042296e-11, - 1.5768599041477363e-11, - 1.3968122375462319e-11, - 1.0909192810278774e-11, - 9.260509278401179e-12, - 8.580969251753114e-12, - 7.854655687701984e-12, - 6.716406155278883e-12, - 6.066683910214252e-12, - 6.637733640779956e-12, - 6.961495617216944e-12, - 6.685979486659985e-12, - 7.473140204894434e-12, - 7.305504312989123e-12, - 7.219833736339455e-12, - 8.280361353886241e-12, - 8.029763896921589e-12, - 7.54263141294729e-12, - 6.9669534193138186e-12, - 7.106728233022367e-12, - 7.725414484611634e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.698834284490465e-10, - 7.698834284490465e-10, - 7.698834284490465e-10, - 7.698834284490465e-10, - 7.698834284490465e-10, - 1.5627007076722714e-9, - 1.4745484876235375e-9, - 1.4735689036578561e-9, - 1.3763490009531098e-9, - 1.499325883477542e-9, - 1.6254741770119029e-9, - 1.5253307865761352e-9, - 1.3111944487335375e-9, - 1.0146988450525294e-9, - 8.460673713731115e-10, - 7.754437750194735e-10, - 6.97983676998049e-10, - 5.863632698432964e-10, - 5.017622012318407e-10, - 5.627416991987649e-10, - 5.874952678544811e-10, - 5.619764146883093e-10, - 6.207124188763737e-10, - 6.02828208629684e-10, - 6.086031828073954e-10, - 7.076901999179466e-10, - 6.788391339463329e-10, - 6.315104791105081e-10, - 5.703005930593865e-10, - 5.703158808712083e-10, - 6.205883249715232e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.744360872141126e-10, - 4.432700014981934e-10, - 4.017509527961393e-10, - 3.946040446672002e-10, - 3.420472918853616e-10, - 2.6635222859792434e-10, - 2.3658925623470396e-10, - 2.3782960377510205e-10, - 2.1696097696766448e-10, - 2.229005233273535e-10, - 2.2006804429759935e-10, - 1.9852755045115594e-10, - 1.9038332262187098e-10, - 1.739910783424934e-10, - 1.4856325910334547e-10, - 1.2379781531099516e-10, - 1.0997556644608202e-10, - 8.833911855751713e-11, - 7.102577765055376e-11, - 8.618778083489729e-11, - 7.898561973509232e-11, - 7.173936959631392e-11, - 7.602448994174108e-11, - 7.27424510725537e-11, - 6.986470076739495e-11, - 7.931991458610016e-11, - 8.018951567679301e-11, - 7.198359160432901e-11, - 6.452033060655984e-11, - 6.345426628914458e-11, - 6.352405770341638e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.819459813465997e-10, - 2.6249906318535846e-10, - 2.3747109215224553e-10, - 2.5365535015323376e-10, - 2.367030314675479e-10, - 2.01638877051405e-10, - 1.892204504372294e-10, - 1.9279451437525968e-10, - 1.9109845069900103e-10, - 1.9356348763633154e-10, - 2.115627365769373e-10, - 2.0248068889486225e-10, - 1.7856657207483958e-10, - 1.363837568515656e-10, - 1.1454013936328672e-10, - 1.1134625512504127e-10, - 1.0089683818944613e-10, - 8.654673913957614e-11, - 7.75479801870617e-11, - 8.33060424918188e-11, - 9.289020961708118e-11, - 9.752790023879745e-11, - 1.1403577660447012e-10, - 1.1552579154774452e-10, - 1.1721829114050465e-10, - 1.4104406447827353e-10, - 1.4289549492300027e-10, - 1.3810744343842814e-10, - 1.3015832089619757e-10, - 1.345395402166679e-10, - 1.4615918940090785e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 9.191210362328685e-11, - 8.803516998954858e-11, - 7.843011544714165e-11, - 8.036570247592381e-11, - 7.517125680001454e-11, - 6.347539405607028e-11, - 6.448867782383868e-11, - 7.190175736218913e-11, - 7.009991157983337e-11, - 7.042281168710516e-11, - 7.755096073999243e-11, - 7.746491333486247e-11, - 7.136364894023353e-11, - 5.833602078546877e-11, - 5.0753412508669836e-11, - 4.840358747598959e-11, - 4.54977907488326e-11, - 3.931286543021824e-11, - 3.5412409337390814e-11, - 3.808255710653834e-11, - 3.900323960630811e-11, - 3.544249231720737e-11, - 3.7371597780385946e-11, - 3.556559928443325e-11, - 3.4569645120137946e-11, - 4.005538130002661e-11, - 3.865223906441819e-11, - 3.6667683853023384e-11, - 3.3613951096588226e-11, - 3.4381105175952574e-11, - 3.5313793362311116e-11, - 4.8702156797480235e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.303703065515978e-11, - 4.1832019214250256e-11, - 3.774490739975436e-11, - 3.874980462515344e-11, - 3.613533772894251e-11, - 3.028951864225743e-11, - 3.0411316648531034e-11, - 3.286847710041564e-11, - 3.12779517873673e-11, - 3.064537437941437e-11, - 3.281599535884694e-11, - 3.174332101355335e-11, - 2.891137203695439e-11, - 2.3617824540149288e-11, - 2.0808648961321845e-11, - 1.9989839280956933e-11, - 1.8665987645117076e-11, - 1.6145019751896906e-11, - 1.4392721727485855e-11, - 1.5719686765007897e-11, - 1.616746455176954e-11, - 1.5133596077782435e-11, - 1.6330455566921294e-11, - 1.5618358910366563e-11, - 1.535585248969042e-11, - 1.789509831788792e-11, - 1.747314297675378e-11, - 1.6429426513576593e-11, - 1.4988346754378194e-11, - 1.5051730475580723e-11, - 1.4991266835482493e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.1627850839941716e-10, - 1.841605498968236e-7, - 1.3563988379649088e-7, - 7.277520473537934e-8, - 1.8815692308471604e-8, - 5.8244009554560835e-9, - 7.197831059292708e-9, - 3.6166875503208595e-9, - 3.6425534561136244e-9, - 2.036245628577791e-9, - 1.5527998166890695e-9, - 2.0759372810586184e-9, - 2.280702229943735e-9, - 3.425849598614377e-9, - 2.050349498255565e-9, - 1.5033563174480614e-9, - 1.15289883783558e-9, - 8.453679586174017e-10, - 5.706061096930657e-10, - 6.725920343421076e-10, - 5.421728045789243e-10, - 4.0430759444231303e-10, - 3.4449149111230396e-10, - 3.2006795140134615e-10, - 3.2878656943934037e-10, - 4.5030970422760247e-10, - 4.507735782605671e-10, - 4.01137371227009e-10, - 3.3030230894094824e-10, - 3.194423654359636e-10, - 4.503559492397104e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.439832906088255e-9, - 6.886015325670501e-9, - 6.199195059658038e-9, - 6.623262727027395e-9, - 6.427597319894278e-9, - 5.824589910533924e-9, - 5.232169008738746e-9, - 4.19550630431505e-9, - 4.621912435530855e-9, - 3.824699075613477e-9, - 2.6689354329734262e-9, - 2.7026315789473744e-9, - 2.4478746949662288e-9, - 2.014125118195721e-9, - 1.4936629960523598e-9, - 1.0644391113633701e-9, - 7.785534111573879e-10, - 5.946400507320302e-10, - 4.1120827106913277e-10, - 4.84670745478755e-10, - 3.788293341465966e-10, - 2.825207814481711e-10, - 2.537018222138679e-10, - 2.385173964341901e-10, - 2.2984648935360782e-10, - 2.9306302101373283e-10, - 3.1239252883870464e-10, - 2.942287912265444e-10, - 2.585431692795406e-10, - 2.6875125762297973e-10, - 3.2822901814639313e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.0788647414372056e-9, - 1.0610611472776465e-9, - 1.0084962232311465e-9, - 9.833677766895195e-10, - 9.223490990266825e-10, - 8.320193084588451e-10, - 7.43497111966825e-10, - 6.938189746318474e-10, - 7.228342220974838e-10, - 6.477552672139715e-10, - 5.242608545875432e-10, - 5.29465989478454e-10, - 4.981050086784051e-10, - 4.399002982512232e-10, - 3.700337087965211e-10, - 3.028499990417333e-10, - 2.462671151849346e-10, - 2.1208444494651063e-10, - 1.7338954474018401e-10, - 2.1573878848600226e-10, - 1.8875910975302684e-10, - 1.5598887578320278e-10, - 1.4602608593252508e-10, - 1.402177403030703e-10, - 1.3568584977855754e-10, - 1.52735675547861e-10, - 1.5320194959305963e-10, - 1.418548206095359e-10, - 1.295548342719942e-10, - 1.3110728675555995e-10, - 1.5242340740726624e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.115515310595019e-10, - 6.330202010207708e-10, - 6.105572720061635e-10, - 6.294752275485592e-10, - 6.191978567485364e-10, - 5.839139600784277e-10, - 5.275351983964718e-10, - 5.043275843580902e-10, - 5.702586677946704e-10, - 5.175709461765792e-10, - 4.4165386691378944e-10, - 4.545517005377229e-10, - 4.4144191222538805e-10, - 3.878453704607743e-10, - 3.234879335775945e-10, - 2.548257821911104e-10, - 2.2207474093478423e-10, - 2.0121905424063112e-10, - 1.6102448087495374e-10, - 1.9506038165286634e-10, - 1.5846050372240059e-10, - 1.2469481054865536e-10, - 1.1372671329074e-10, - 1.1210114782061553e-10, - 1.1066300200046364e-10, - 1.279288557085767e-10, - 1.2978041156348154e-10, - 1.2155340118055624e-10, - 1.0641789794005999e-10, - 1.0555296384678262e-10, - 1.1955129728521258e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.251516534375877e-9, - 2.251516534375877e-9, - 1.4317545279143572e-7, - 4.070063694267516e-8, - 5.354843875100071e-8, - 2.6433841034773666e-8, - 2.0117532752689764e-8, - 1.612724883639931e-8, - 1.4371278265418826e-8, - 1.3947604036979155e-8, - 1.2118802060151339e-8, - 1.1195362705997438e-8, - 1.0247188453608243e-8, - 8.781388092073038e-9, - 7.361437012027853e-9, - 4.824201237772015e-9, - 3.0453243857421717e-9, - 1.9334140794414767e-9, - 1.3080194931385346e-9, - 1.4427150541409774e-9, - 1.2077273048392803e-9, - 9.688919396336548e-10, - 9.169975723233899e-10, - 8.615989481282871e-10, - 8.492338271701172e-10, - 1.203970945200442e-9, - 1.6874620191575684e-9, - 1.5636639189738662e-9, - 1.3563152374769012e-9, - 1.3264351703742066e-9, - 1.499747349935527e-9, - 2.251516534375877e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.4389215478655086e-8, - 3.274668998251311e-8, - 3.004494371603954e-8, - 3.6175523540655574e-8, - 4.660029003250982e-8, - 4.5599820164707555e-8, - 3.3565600195235876e-8, - 2.8397802209411056e-8, - 3.070286958802261e-8, - 2.5415180520300275e-8, - 2.011927314365535e-8, - 1.9692624507108305e-8, - 1.815864921485342e-8, - 1.6488414799029924e-8, - 1.3998624413877789e-8, - 1.1596560485958268e-8, - 1.0187819649599621e-8, - 8.969756384272753e-9, - 7.2164197776361825e-9, - 7.727731064126484e-9, - 6.283417147806455e-9, - 5.9340440091537556e-9, - 5.485667798933636e-9, - 4.805118580329144e-9, - 4.492397763111385e-9, - 4.575321746927554e-9, - 6.20103250478011e-9, - 7.235434739156508e-9, - 8.9881853882143e-9, - 1.0652720339974423e-8, - 1.0652720339974423e-8 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.612733423846512e-9, - 4.752465144010281e-9, - 4.3285260761503e-9, - 4.314378799233913e-9, - 4.172196162905404e-9, - 3.905061144504523e-9, - 3.528003336567761e-9, - 3.403325396173744e-9, - 3.850848646061463e-9, - 3.456578156163293e-9, - 2.7630465793107285e-9, - 2.7709232242796456e-9, - 2.6758999550374545e-9, - 2.4914822517016065e-9, - 2.176571836159948e-9, - 1.7341231076582536e-9, - 1.4483103784024152e-9, - 1.2807298092470179e-9, - 8.849782368557653e-10, - 1.11390417038545e-9, - 8.293137254901964e-10, - 6.955060440703679e-10, - 6.166424169932192e-10, - 5.993149298446517e-10, - 5.814512327875474e-10, - 6.847853741867479e-10, - 7.174351784539755e-10, - 6.666114495615871e-10, - 5.89033367439745e-10, - 6.120767054348278e-10, - 7.286600801631392e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.009855126258325e-10, - 1.087155898015761e-9, - 1.0353502664500995e-9, - 9.950826613076817e-10, - 1.1682249020148418e-9, - 1.1900111280833117e-9, - 1.0587627713528836e-9, - 1.0315994897488351e-9, - 1.0313825100497607e-9, - 1.0217790357476605e-9, - 9.070933335014739e-10, - 9.078502278032309e-10, - 8.756111416602166e-10, - 7.32348898705924e-10, - 5.824270086257913e-10, - 4.815974365986516e-10, - 4.2468720373349225e-10, - 3.6821065497858045e-10, - 2.9064208530036724e-10, - 3.6221576290187997e-10, - 3.0829875068840046e-10, - 2.4848378370078584e-10, - 2.377319412856512e-10, - 2.369430966116546e-10, - 2.324493438177621e-10, - 2.994349669466663e-10, - 3.1055868820560575e-10, - 2.921861980943603e-10, - 2.841447049563374e-10, - 2.8934477040160607e-10, - 3.42736918373785e-10, - 4.470310911826267e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.5338006263048004e-9, - 2.9127120000000014e-9, - 2.601778360891443e-9, - 2.3379819587628884e-9, - 2.098347428571429e-9, - 1.8101955882352954e-9, - 1.610238884045335e-9, - 1.3883828506957511e-9, - 1.283762004175365e-9, - 1.2005198309492855e-9, - 1.0907610996765662e-9, - 1.1263423473654862e-9, - 1.2789786223277916e-9, - 1.3563592814371264e-9, - 1.3822872450030916e-9, - 1.2153927576601676e-9, - 1.013720252549779e-9, - 8.348805048335153e-10, - 6.688442211055269e-10, - 5.757426597582041e-10, - 4.97297364495276e-10, - 4.6146087083363683e-10, - 3.901594315399769e-10, - 3.7755590195656817e-10, - 3.5635352112676106e-10, - 3.306346413519375e-10, - 3.2757621613641403e-10, - 4.619619596541785e-10, - 4.3610064452156634e-10, - 3.5931004678604266e-10, - 2.981497865072589e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.4877312156383624e-9, - 2.247225253312551e-9, - 2.1221087936275055e-9, - 2.3453021860265736e-9, - 2.5132898565265333e-9, - 2.8147368913857634e-9, - 2.5784827586206886e-9, - 2.342123825005301e-9, - 2.63855281745409e-9, - 1.998514922689678e-9, - 1.8787460463218036e-9, - 2.1078822674418587e-9, - 3.5104182684914706e-9, - 2.7374182034503276e-9, - 2.1707424696346868e-9, - 1.5189879222372923e-9, - 1.3081780658744005e-9, - 1.064929028928044e-9, - 8.251051817116057e-10, - 1.1407570311115613e-9, - 9.615713184759771e-10, - 2.0720822053249814e-9, - 8.781822846079381e-10, - 1.0976618247298925e-9, - 1.7475751671442225e-9, - 2.5824172280767134e-9, - 2.7445740653518214e-9, - 1.897936741199354e-9, - 1.3667151781263034e-9, - 1.380272789605902e-9, - 2.8286021291491576e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 7.124672545681993e-11, - 7.124672545681993e-11, - 7.124672545681993e-11, - 7.124672545681993e-11, - 7.124672545681993e-11, - 1.530728339863348e-10, - 1.3977043796280123e-10, - 1.3420070888084975e-10, - 1.327596705717622e-10, - 1.3143709088887552e-10, - 1.162653204712693e-10, - 1.1772231370456023e-10, - 1.2711674636663247e-10, - 1.2121533281975074e-10, - 1.1359332351928172e-10, - 1.0795118739756674e-10, - 9.990561170198851e-11, - 8.595582942949413e-11, - 7.106220239635479e-11, - 7.4055038755823e-11, - 6.562837756072984e-11, - 5.871277104502427e-11, - 5.95935785668996e-11, - 5.235115024146185e-11, - 4.9526453516046574e-11, - 5.131994257152453e-11, - 4.8272167157359255e-11, - 4.334643197208941e-11, - 4.121600693921375e-11, - 3.869982685078252e-11, - 3.7828474909776294e-11, - 7.124672545681993e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.092722794116525e-10, - 3.106090314352788e-10, - 2.940821388590111e-10, - 2.5864499188669165e-10, - 3.5656850994115496e-10, - 2.7494905897116756e-10, - 2.567838953706158e-10, - 2.454767884480825e-10, - 1.688605285385054e-10, - 1.8175753091747346e-10, - 1.6988515239085916e-10, - 2.3097761953581934e-10, - 1.9396202356250045e-10, - 1.4812816788034746e-10, - 1.1397097197914327e-10, - 9.203878139802362e-11, - 8.365379242465644e-11, - 6.839490162168191e-11, - 6.048317834268611e-11, - 7.177263023444745e-11, - 5.997483116723725e-11, - 5.555802247189498e-11, - 5.292108635150984e-11, - 4.8654026001104724e-11, - 4.96297668065319e-11, - 5.391542428790638e-11, - 5.3582128548462665e-11, - 5.4249362892513263e-11, - 5.986086318635626e-11, - 6.123486070784353e-11, - 6.47262836451954e-11, - 9.205454072609457e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.626899383057066e-9, - 1.5208118220109345e-9, - 1.4564948792508223e-9, - 1.5510745636415772e-9, - 1.3790532099469299e-9, - 1.25799746045344e-9, - 1.137589143854937e-9, - 1.254219755759099e-9, - 1.1744664006885138e-9, - 1.179380463328028e-9, - 1.2635994135301776e-9, - 1.2443112289893988e-9, - 1.162492357288342e-9, - 9.430690019111663e-10, - 8.234659946493876e-10, - 7.875781107849685e-10, - 7.153177377455436e-10, - 6.211942767130478e-10, - 5.307691653218662e-10, - 5.285405413349402e-10, - 5.267293888537694e-10, - 4.84361944061349e-10, - 4.996626177494249e-10, - 4.596274402148049e-10, - 4.4603418502316896e-10, - 4.852746900146759e-10, - 4.752610219407481e-10, - 4.4765480294813424e-10, - 4.1576264611448336e-10, - 4.096089107794377e-10, - 4.279797085141073e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.1742756968891848e-8, - 2.2149597940459044e-8, - 2.068259548717807e-8, - 2.1810574376331645e-8, - 3.191919476146117e-8, - 2.5401721174702073e-8, - 2.4498024686134006e-8, - 2.659944940633743e-8, - 2.470176639238395e-8, - 2.437494474590825e-8, - 2.6724606859428612e-8, - 2.4693350812597803e-8, - 2.2936164155491413e-8, - 1.8326501946381305e-8, - 1.594749567893925e-8, - 1.4597104476330679e-8, - 1.3737486360534677e-8, - 1.1483313266548889e-8, - 9.53483351885216e-9, - 9.95301071256909e-9, - 9.968169673495848e-9, - 9.0208505931241e-9, - 9.099211097459103e-9, - 8.49425522600486e-9, - 8.117287113637101e-9, - 9.040906319080016e-9, - 8.43998738677611e-9, - 7.653632958589513e-9, - 6.95168433788238e-9, - 6.8951568786104356e-9, - 6.520794930058132e-9, - 1.2640388748732331e-8 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 7.503092816597941e-10, - 6.995126590600326e-10, - 6.443929605470603e-10, - 5.890080120814885e-10, - 5.647743922238927e-10, - 5.048469274008984e-10, - 5.311302815345998e-10, - 5.130886006796736e-10, - 5.667313340676668e-10, - 5.722146796538363e-10, - 5.713217458714719e-10, - 6.401849779903157e-10, - 6.716341659079345e-10, - 4.400563076376383e-10, - 3.3892788286356993e-10, - 3.0013657867782564e-10, - 2.8532794899248575e-10, - 2.60301372317528e-10, - 2.742524070500188e-10, - 2.629240284525298e-10, - 2.0773180312495104e-10, - 1.8921805652104738e-10, - 1.9958538491905756e-10, - 2.1627095248941715e-10, - 2.2744033855851283e-10, - 2.5006504686622617e-10, - 2.679353599214565e-10, - 2.272913079537721e-10, - 2.1415756023253244e-10, - 2.2349129412234307e-10, - 2.584648726168516e-10, - 3.279282186649335e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.971505465420222e-8, - 7.971505465420222e-8, - 7.971505465420222e-8, - 7.971505465420222e-8, - 7.971505465420222e-8, - 7.971505465420222e-8, - 7.971505465420222e-8, - 7.971505465420222e-8, - 7.971505465420222e-8, - 7.971505465420222e-8, - 1.9473684210526315e-7, - 1.878587196467991e-7, - 1.8360302049622438e-7, - 2.2754010695187164e-7, - 1.8974358974358974e-7, - 1.793466807165437e-7, - 1.521000893655049e-7, - 1.2396212672978878e-7, - 9.860950173812282e-8, - 9.626696832579185e-8, - 8.518518518518517e-8, - 7.097581317764803e-8, - 6.096831438730426e-8, - 5.356921244539331e-8, - 5.2764526365522375e-8, - 5.274124805934983e-8, - 5.00821028692278e-8, - 5.0196074360264e-8, - 4.9726027701429264e-8, - 5.1271291556067124e-8, - 5.3167764790306894e-8 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.1801021563653012e-8, - 3.027462332513004e-8, - 4.166740483395547e-8, - 4.0299674370967654e-8, - 3.933417991696659e-8, - 3.79320437149978e-8, - 2.852105487572483e-8, - 2.366185649312011e-8, - 2.089714275841016e-8, - 1.8405704428869908e-8, - 1.9446744873125105e-8, - 2.0375771671861686e-8, - 1.9376420157491836e-8, - 1.7450924032789053e-8, - 1.4414658963792113e-8, - 1.2877440548629136e-8, - 1.1986632850834918e-8, - 1.0525466408212644e-8, - 8.76061564413273e-9, - 9.232469944329458e-9, - 9.905761383288038e-9, - 7.648687477436744e-9, - 6.727497702658675e-9, - 6.480377206814419e-9, - 6.209047063220974e-9, - 6.896132759667908e-9, - 9.215046209729222e-9, - 8.32130258231895e-9, - 7.409468062449139e-9, - 7.149959839611443e-9, - 7.846244082130698e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.6898802447566863e-8, - 1.7575727501021077e-8, - 1.7238557994838186e-8, - 1.286011607042149e-8, - 2.3375597628373335e-8, - 1.9153644470478177e-8, - 1.8758665803257112e-8, - 1.928734526224977e-8, - 1.8418953641960384e-8, - 1.7992660019939753e-8, - 1.969416979041622e-8, - 1.8998519225279244e-8, - 1.6758941759872045e-8, - 1.3030424898556475e-8, - 1.1053735279578584e-8, - 1.0666406511033646e-8, - 9.951931370628436e-9, - 8.696832756287986e-9, - 7.50853019717422e-9, - 7.449977122323488e-9, - 7.565209568333686e-9, - 6.793790493232812e-9, - 6.900996663058695e-9, - 6.1698338860788125e-9, - 5.7191467074566124e-9, - 6.460679765052294e-9, - 6.1541941354486124e-9, - 5.7647744627905366e-9, - 5.2059047834673775e-9, - 5.245648430957226e-9, - 5.099933987525578e-9, - 9.395251895570433e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.68882160042647e-9, - 6.258342966733684e-9, - 6.4316450911844685e-9, - 1.1076597608410153e-8, - 9.085792256736304e-9, - 6.976459315602119e-9, - 6.018504050171072e-9, - 5.6447341123235095e-9, - 5.629619031064555e-9, - 5.177471260790252e-9, - 4.426285128449535e-9, - 4.152350217268695e-9, - 3.2227012588410727e-9, - 2.9300761862322408e-9, - 2.2538973692688752e-9, - 1.7452612664215055e-9, - 1.3019687208749605e-9, - 1.115280675075703e-9, - 9.055126273898123e-10, - 1.0420029303487428e-9, - 8.504478299931119e-10, - 7.59024351132349e-10, - 6.7486052936152e-10, - 6.042937940976922e-10, - 5.623070875215222e-10, - 6.314665555790573e-10, - 7.596688375543878e-10, - 8.181048257816489e-10, - 7.739359627776362e-10, - 6.859763139628725e-10, - 7.110905057615524e-10, - 1.3420283232465203e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.460586687255407e-8, - 3.089495532288185e-8, - 3.1774731302680304e-8, - 3.415877689109272e-8, - 3.7431853986551374e-8, - 3.1522917553568894e-8, - 2.9387231340453502e-8, - 2.9573483356243004e-8, - 2.7242460684551336e-8, - 2.640117007939824e-8, - 4.0898856458889636e-8, - 3.834495819619811e-8, - 3.305045229421637e-8, - 2.6701931899083536e-8, - 2.2946913994871063e-8, - 1.8967534710798125e-8, - 9.970210197223042e-9, - 8.20852556529504e-9, - 7.106318855501504e-9, - 7.823984703693068e-9, - 6.329728647629607e-9, - 5.18083150781011e-9, - 4.9380975385111724e-9, - 3.244032571109102e-9, - 3.720142496436034e-9, - 4.124957601087574e-9, - 3.6285831500414046e-9, - 3.373815650282911e-9, - 3.0282641648187576e-9, - 2.9822555291561725e-9, - 2.973781036182165e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.715437399028866e-9, - 4.813052644803921e-9, - 4.698999945820247e-9, - 4.492482256645325e-9, - 4.412375146209121e-9, - 3.927279563935698e-9, - 3.2085457323461777e-9, - 3.0884471697527003e-9, - 2.9809205397790266e-9, - 2.9061506501387957e-9, - 2.791841742041257e-9, - 2.7597043973130788e-9, - 2.7227501301385634e-9, - 2.4767728084676118e-9, - 2.2884861229239163e-9, - 2.1456463878282482e-9, - 2.074657491539861e-9, - 1.8715797771442943e-9, - 1.6260823035867727e-9, - 1.4539735669473734e-9, - 1.2925155481483267e-9, - 1.1582897043639562e-9, - 1.1173121562304859e-9, - 9.933965728115397e-10, - 8.618423109050828e-10, - 7.637943879620695e-10, - 6.729438994026027e-10, - 5.966899586560529e-10, - 5.437182825898475e-10, - 1.5782712973283716e-9, - 1.5782712973283716e-9, - 1.5782712973283716e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.741808181543139e-10, - 6.823263794701524e-10, - 6.394677621139237e-10, - 6.598733416550365e-10, - 5.631339741472739e-10, - 5.115438023199313e-10, - 4.6907961757516e-10, - 4.4316972952975554e-10, - 4.3740204992618167e-10, - 4.016822116795839e-10, - 3.934713749836389e-10, - 3.796547767500822e-10, - 3.579072010606453e-10, - 3.0327499870008486e-10, - 2.598891433210813e-10, - 2.246515536282549e-10, - 1.960096375447346e-10, - 1.514708898172869e-10, - 1.5372481369179097e-10, - 1.3734394517064026e-10, - 1.0998944452483466e-10, - 1.0109432396362987e-10, - 1.0084054621584415e-10, - 9.926094910830148e-11, - 9.03817955736625e-11, - 8.76122207924168e-11, - 8.03120804381745e-11, - 6.950853496430152e-11, - 6.823116361761841e-11, - 6.420475073027583e-11, - 6.927932681336423e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 9.966406557025385e-9, - 6.70940608940514e-9, - 6.536947787970908e-9, - 4.893424403599079e-9, - 3.960351409535427e-9, - 3.1105077377103555e-9, - 2.615840088076581e-9, - 2.402798382452818e-9, - 2.3704867083821557e-9, - 2.2486670889779033e-9, - 2.069130224433145e-9, - 1.973370286726437e-9, - 1.8394879629387705e-9, - 1.630743398897698e-9, - 1.4198337217446503e-9, - 1.1191455229808282e-9, - 9.718002430374026e-10, - 8.331780486200729e-10, - 6.50658752499154e-10, - 6.084064236002682e-10, - 5.56361826405998e-10, - 4.758762518525994e-10, - 4.1393915546806033e-10, - 3.7670387297301334e-10, - 3.4639306262087825e-10, - 3.337799106552998e-10, - 3.142108474120057e-10, - 2.8822968395767e-10, - 2.6303588904453913e-10, - 2.4625722910953645e-10, - 2.3786830834979964e-10, - 6.80258228742114e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.206209519798828e-10, - 6.260517177558225e-10, - 5.518027516291292e-10, - 4.771535803171262e-10, - 4.1927006389109575e-10, - 3.6330607779659405e-10, - 3.360011007622116e-10, - 4.0950690081969045e-10, - 5.410133843008902e-10, - 4.855171252567421e-10, - 4.865805294862522e-10, - 5.112369202550193e-10, - 4.579271048939792e-10, - 4.038595109337015e-10, - 3.5570567888963916e-10, - 3.2484930876465637e-10, - 2.7732909524555546e-10, - 2.338914608495242e-10, - 2.110624225231274e-10, - 2.1830928636425706e-10, - 1.802964847344297e-10, - 1.658490439382797e-10, - 1.5469432261403774e-10, - 1.4631249575111674e-10, - 1.509797280546236e-10, - 1.532532917427027e-10, - 1.4877851005086446e-10, - 1.347629272608664e-10, - 1.2139489959651654e-10, - 1.1299666719650963e-10, - 1.2259698606586726e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.0589714504396913e-9, - 9.637975994745258e-10, - 8.779400387479805e-10, - 7.113622383449615e-10, - 6.354154430030696e-10, - 5.560721905877078e-10, - 4.943491159814341e-10, - 5.209757668603167e-10, - 1.1776348138301355e-9, - 8.028493941248929e-10, - 6.811253826694605e-10, - 7.005430863707082e-10, - 5.744641158516483e-10, - 4.787614278493663e-10, - 4.3763186213311773e-10, - 3.9318761429041954e-10, - 3.083079832013302e-10, - 2.6005471370372625e-10, - 2.2029339847165873e-10, - 2.0831013411555149e-10, - 1.4885560755224865e-10, - 1.2587221551417916e-10, - 1.2245744060511827e-10, - 1.2317482407014194e-10, - 1.2617662576836467e-10, - 1.305679816879832e-10, - 1.2061672954056363e-10, - 1.1067145109594776e-10, - 1.0784137977064922e-10, - 1.0043863633868779e-10, - 1.061956429248031e-10, - 2.306175481244616e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.666725052642418e-9, - 3.5763799477989923e-9, - 3.0650930451817126e-9, - 2.985333250065968e-9, - 2.5314640504058706e-9, - 2.187981645724489e-9, - 1.956722115588854e-9, - 1.967989702800699e-9, - 2.4861621567826563e-9, - 2.1625374901089083e-9, - 2.213465737180681e-9, - 2.3466434765457056e-9, - 2.1967257595710124e-9, - 2.1277782306647683e-9, - 1.949432058609734e-9, - 1.724074343721215e-9, - 1.450809650159718e-9, - 1.1873288299106984e-9, - 1.019685787584788e-9, - 1.0524239439010054e-9, - 8.888090011880589e-10, - 7.90719952259341e-10, - 7.070847564992381e-10, - 6.523361051695525e-10, - 6.225560659461678e-10, - 6.043476338795137e-10, - 5.812443346962012e-10, - 5.638075715358499e-10, - 5.339605633531232e-10, - 4.914770677313506e-10, - 5.123249486877399e-10, - 1.0969815382606725e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 7.234421074990441e-11, - 6.199936819818122e-11, - 5.7661161890432015e-11, - 5.220720582090371e-11, - 4.421749486031162e-11, - 3.618178543706385e-11, - 3.359721862585971e-11, - 3.5980406338133944e-11, - 5.347859601169221e-11, - 4.120498162998584e-11, - 3.5579275741121094e-11, - 3.7432104237878016e-11, - 3.268254773898101e-11, - 2.917246959211335e-11, - 2.584549411782318e-11, - 2.1927453747347892e-11, - 1.9464176664414316e-11, - 1.748230746612573e-11, - 1.9573413956567024e-11, - 2.171743887676561e-11, - 1.7918531538217796e-11, - 1.635782240550541e-11, - 1.6035322961820815e-11, - 1.4954823302821768e-11, - 1.3811054616751897e-11, - 1.398579218325661e-11, - 1.3665649976596707e-11, - 1.2623918408810342e-11, - 1.1885121667843396e-11, - 1.241353719704892e-11, - 1.2516058692527267e-11, - 2.1923662214803238e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.4047654239161258e-10, - 1.1719893830296616e-10, - 1.0105805352175687e-10, - 7.329210440560795e-11, - 6.953217037580179e-11, - 1.0192351919379264e-10, - 8.929970640301199e-11, - 7.333935083438426e-11, - 6.970532112251268e-11, - 6.114293566229316e-11, - 5.18429867793557e-11, - 4.849966224860998e-11, - 4.753231031532727e-11, - 5.0319720833634993e-11, - 4.691651124587753e-11, - 4.1824495189390234e-11, - 3.762608589620235e-11, - 3.4862857044153406e-11, - 3.3063388824223356e-11, - 4.0775723104977155e-11, - 3.469460677842771e-11, - 3.1088795648127916e-11, - 3.055557901302188e-11, - 2.8796892101432605e-11, - 2.7901293935556264e-11, - 3.131753087402336e-11, - 3.402903858711456e-11, - 3.1667604786912134e-11, - 3.0022704287160804e-11, - 2.8910523857574594e-11, - 3.4173998779021586e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 7.652428714716725e-11, - 8.727143820240421e-11, - 9.110633257322021e-11, - 8.118474825053813e-11, - 5.6912287454172416e-11, - 3.8864818174014875e-11, - 3.5158831898463175e-11, - 3.3853919324721975e-11, - 3.46180606087055e-11, - 4.986307873705671e-11, - 4.5617640777075453e-11, - 5.3394410911235813e-11, - 5.865099525111899e-11, - 5.356179447012015e-11, - 4.467425225480992e-11, - 3.353394533482671e-11, - 2.6994654148443668e-11, - 2.1401256237359483e-11, - 1.763122029412639e-11, - 1.7936452588965403e-11, - 1.3536528496088499e-11, - 1.1428979413467578e-11, - 1.2128694155449086e-11, - 1.2091461453616643e-11, - 1.2174050158864407e-11, - 1.6590722960258632e-11, - 1.6650950676984858e-11, - 1.448984112535623e-11, - 1.5597826815429628e-11, - 1.5922682659094186e-11, - 2.0695861893068475e-11, - 2.3917850949689344e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.8818220198127755e-10, - 1.4020663190840574e-10, - 1.1626452541801898e-10, - 1.123587366016713e-10, - 1.0332504661280298e-10, - 1.0308808896579588e-10, - 9.774030657753682e-11, - 9.082869230585367e-11, - 8.897861084652612e-11, - 9.381954903129552e-11, - 9.359482413585324e-11, - 9.899635927862916e-11, - 2.7219515004158935e-10, - 2.0848523381292511e-10, - 1.6154703224347352e-10, - 1.338451686553842e-10, - 1.1438043218481314e-10, - 9.251192210938301e-11, - 7.357048459657507e-11, - 7.988552114646211e-11, - 6.279102487891461e-11, - 5.017322195719465e-11, - 4.871952133224334e-11, - 4.8186211207419326e-11, - 5.053962701299841e-11, - 4.472472796923027e-11, - 4.771031933743712e-11, - 4.1328177929291706e-11, - 5.068406888062172e-11, - 5.885836595188923e-11, - 6.832986415044386e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.41950262977904e-9, - 1.8607242918327583e-9, - 1.7766630403427028e-9, - 1.8345159145933323e-9, - 1.4237308148794362e-9, - 1.1985865977066935e-9, - 1.1565105526304148e-9, - 1.0989290210128794e-9, - 1.151320900938581e-9, - 1.2732298553506142e-9, - 1.2349079098923489e-9, - 1.2281338651268028e-9, - 1.1665362160142398e-9, - 1.0880108839808746e-9, - 9.570352074056198e-10, - 8.401195219123502e-10, - 7.208675341318974e-10, - 6.254222019249687e-10, - 5.300678727258828e-10, - 5.288728729498864e-10, - 4.331353650811923e-10, - 3.7202697817773656e-10, - 3.316913158221008e-10, - 3.1763316015277166e-10, - 3.1824395087370983e-10, - 3.366607766836083e-10, - 3.329929686197244e-10, - 3.0283325750847727e-10, - 2.87094628400824e-10, - 2.796854851824847e-10, - 3.1631414124245744e-10, - 5.824793366688777e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.119588322706349e-10, - 6.470074653694563e-10, - 5.728306276462959e-10, - 5.7604251487421e-10, - 5.922764413201257e-10, - 4.469838048308283e-10, - 4.904795153368392e-10, - 4.030588927379345e-10, - 3.788409513876671e-10, - 3.531445152549683e-10, - 2.953712334832262e-10, - 2.8152062750807724e-10, - 3.7246919668131825e-10, - 4.137734980791947e-10, - 3.0768305304133095e-10, - 2.37784331425221e-10, - 1.8857895833494088e-10, - 1.5019707120543419e-10, - 1.0950982410125555e-10, - 1.0491600340625432e-10, - 8.799764187444942e-11, - 1.0932684683614812e-10, - 9.074547299507707e-11, - 9.326010318207483e-11, - 7.173075890477994e-11, - 1.9737621300016215e-10, - 1.9737621300016215e-10, - 1.9737621300016215e-10, - 1.9737621300016215e-10, - 1.9737621300016215e-10, - 1.9737621300016215e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 7.733452439148073e-10, - 7.524061861721097e-10, - 6.333557441852594e-10, - 5.568364063544303e-10, - 4.528569720619865e-10, - 3.99968524063891e-10, - 3.8081472195761286e-10, - 3.468982803286708e-10, - 3.758491908384684e-10, - 4.2930327287621576e-10, - 3.7042014041077836e-10, - 3.767370009430996e-10, - 3.7769360435018324e-10, - 3.909495033872479e-10, - 3.160191228936653e-10, - 2.540873877819125e-10, - 2.2893407249399865e-10, - 1.7945325526363627e-10, - 1.527745399262203e-10, - 1.592097443248656e-10, - 1.2911641216042326e-10, - 1.1046626942779167e-10, - 9.975161296130399e-11, - 9.68292030589852e-11, - 9.708429118773923e-11, - 1.2607257596695374e-10, - 1.3082294247854203e-10, - 1.1863395348685636e-10, - 1.1071273984071521e-10, - 1.1439882727573431e-10, - 1.3631125719204312e-10, - 1.9595960697130177e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.640298879755223e-10, - 6.686966547336982e-10, - 5.504268493341687e-10, - 5.132077656575313e-10, - 4.4379405094447635e-10, - 3.4446578061277826e-10, - 3.2419449876221415e-10, - 2.9781397156321335e-10, - 3.101348000754973e-10, - 3.365534514955612e-10, - 3.24938313744203e-10, - 3.564388152083057e-10, - 3.6279261238569346e-10, - 3.344638129147081e-10, - 2.550136056441861e-10, - 2.0574991803758383e-10, - 1.6344933680581065e-10, - 1.4573231707031527e-10, - 1.4083840893867718e-10, - 1.467606799037054e-10, - 1.157695776252039e-10, - 1.00296532037057e-10, - 9.47131635971975e-11, - 9.088155125375713e-11, - 9.710540034782812e-11, - 1.0372292343162427e-10, - 1.0102214054428333e-10, - 9.132430787916897e-11, - 8.502152788619654e-11, - 9.05558847758052e-11, - 1.0002371192714809e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.079354626842718e-9, - 3.2377857242559863e-9, - 2.720677282118649e-9, - 2.431422849845801e-9, - 2.221844009757734e-9, - 2.012334094850336e-9, - 1.9951321332178878e-9, - 1.847065749181987e-9, - 1.7026866561665084e-9, - 1.6345295382365367e-9, - 1.5519231877885385e-9, - 1.4584217415535899e-9, - 1.4054075642400696e-9, - 1.3490228741013506e-9, - 1.2519750277956344e-9, - 1.1626373768634574e-9, - 1.0257295079641795e-9, - 8.666639278441071e-10, - 7.564506520653221e-10, - 7.578292542080689e-10, - 6.187163314876692e-10, - 5.448684292528449e-10, - 4.933132567048794e-10, - 4.57314031499057e-10, - 4.479355739843672e-10, - 4.1281375560695745e-10, - 3.959419111795259e-10, - 3.85021865569813e-10, - 3.732768082681785e-10, - 3.6364844685783575e-10, - 3.7673677804677874e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.2303670681103794e-12, - 2.1597468971500924e-12, - 2.0397749990146202e-12, - 1.9391828516748197e-12, - 1.8251089988028385e-12, - 1.740894890656748e-12, - 1.6474419685469886e-12, - 1.5505585032043825e-12, - 1.4675346788998736e-12, - 1.3810054759502455e-12, - 1.2972641281647706e-12, - 1.2568724701077335e-12, - 1.216120188366001e-12, - 1.1607363346084996e-12, - 1.0889385084543828e-12, - 1.0202015063201602e-12, - 9.62748759369483e-13, - 9.202968501548567e-13, - 9.039720616942821e-13, - 9.204831925643175e-13, - 8.871366878297667e-13, - 8.557137267617118e-13, - 8.21139344659317e-13, - 7.923812626907322e-13, - 7.588221478067276e-13, - 7.292346098630633e-13, - 7.09519674504369e-13, - 6.805513056867693e-13, - 6.452595446178844e-13, - 6.205319165931012e-13, - 6.347530643539384e-13, - 1.0249924270093338e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Mortality-pollution=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.1231128950067867e-10, - 2.9396933663343025e-10, - 2.639865356162475e-10, - 2.534114519284828e-10, - 1.997077320726645e-10, - 1.534277073999832e-10, - 1.304780645942482e-10, - 1.172000173811306e-10, - 1.0951922253533042e-10, - 1.0301671070943733e-10, - 9.303693502520598e-11, - 8.414242214816037e-11, - 7.66379918020181e-11, - 6.787979093430054e-11, - 5.7636828508593814e-11, - 4.9300823068468005e-11, - 4.095007408110113e-11, - 3.1743414185112654e-11, - 2.453035881116406e-11, - 2.2090662350477135e-11, - 1.8514369306191632e-11, - 1.492418700211325e-11, - 1.3208739118823272e-11, - 1.1775884662040382e-11, - 1.0758248493604636e-11, - 1.0188442724654829e-11, - 1.0032691675607892e-11, - 9.154853961758522e-12, - 8.110937736280412e-12, - 7.89219142289949e-12, - 7.654829957336034e-12 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Mortality-pollution" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Net migration=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.343932521243101e-7, - 7.909651401500816e-7, - 0.0000012331084165658067, - 7.136839285449124e-7, - 6.703949243529836e-7, - 5.716895800982782e-7, - 5.919606338673243e-7, - 3.2366517114958e-7, - 6.602396565016229e-7, - 6.734885439874372e-7, - 7.588727754265302e-7, - 7.59727288235202e-7, - 3.966567915558749e-7, - 5.909204643505177e-7, - 5.2526106119578e-7, - 5.192627362405228e-7, - 4.936283107470121e-7, - 1.2578021923191931e-8, - 3.9470394157766346e-7, - 4.3335013294118516e-7, - 4.348279238646309e-7, - 3.9427748896226405e-7, - 5.49616473230761e-7, - 3.9591533000489084e-7, - 3.80106744838865e-7, - 4.4027781375168994e-7, - 4.2603254441732993e-7, - 7.367171855683141e-7, - 3.7167787675028635e-7, - 3.8018165148146466e-7, - 3.8432434143077577e-7, - 5.09075641312427e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Net migration=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.1563346617992862e-7, - 2.1561695124598708e-7, - 8.717300790551247e-8, - 2.0689021007443187e-7, - 1.9632782393269744e-7, - 1.7093154476870143e-7, - 1.704439474041455e-7, - 1.3327346000122235e-7, - 1.8207438548527395e-7, - 1.8328853865973854e-7, - 2.0040249844622202e-7, - 1.9865433311651962e-7, - 1.82280464678045e-7, - 1.4837134949582238e-7, - 1.2911554809166432e-7, - 1.2457188097336765e-7, - 1.1793722394306228e-7, - 1.676770156389859e-7, - 9.339564102212542e-8, - 1.0132877192538156e-7, - 1.0346244281937513e-7, - 9.551921525736362e-8, - 1.5792952518014023e-7, - 9.732915394553308e-8, - 9.582668170187838e-8, - 1.1220026001972798e-7, - 1.1066783093699922e-7, - 7.037586514972589e-8, - 9.80586988226421e-8, - 1.002897079223046e-7, - 1.040473539478381e-7, - 1.3082488229625827e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Net migration=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.830116448408478e-7, - 6.521701848562075e-7, - 5.502932825540574e-7, - 8.398271793501198e-7, - 7.808637076362191e-7, - 6.690612386477056e-7, - 6.130172875752512e-7, - 2.180527341546225e-7, - 6.604062490448957e-7, - 6.525434227690607e-7, - 6.804409261711581e-7, - 7.378179047189973e-7, - 5.310979885973186e-7, - 5.349210121059297e-7, - 4.643874842501958e-7, - 4.55981009216723e-7, - 4.2270568196233537e-7, - 5.34252654868056e-7, - 3.4545465661543827e-7, - 4.0968805426367447e-7, - 3.607088945411717e-7, - 3.115238354804281e-7, - 4.596660271769516e-7, - 3.04756739136937e-7, - 3.0731109605207444e-7, - 3.5407376979456863e-7, - 3.468290115365744e-7, - 3.6967295511543474e-7, - 3.2197726258581524e-7, - 3.349894315518322e-7, - 3.3044599303782025e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Net migration=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 9.915986891309684e-7, - 9.485369355799544e-7, - 1.7415448681137207e-7, - 0.0000010212896657030265, - 9.504560099624807e-7, - 8.050855172747856e-7, - 7.62556476816242e-7, - 3.2916841940614135e-7, - 6.556130854764388e-7, - 6.430236326701668e-7, - 6.521674162949469e-7, - 6.593953108358292e-7, - 5.561548887036945e-7, - 5.269498612400825e-7, - 4.4759224903833624e-7, - 4.259560444375858e-7, - 3.9895527300782793e-7, - 7.048536327272015e-7, - 3.68842710647638e-7, - 4.468571371934512e-7, - 4.351414801705035e-7, - 4.052446029803407e-7, - 4.781740659939124e-7, - 3.866830722634334e-7, - 3.5112639642427827e-7, - 3.6663564465356097e-7, - 3.981065992056267e-7, - 4.828610333175406e-7, - 3.736860628556311e-7, - 3.7655718095008495e-7, - 3.927761931808217e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Net migration=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0000018985056182328444, - 0.0000017649327783502188, - 5.060419941620898e-7, - 0.000001940024312878502, - 0.0000019199608752050784, - 0.0000016574105910271224, - 0.0000015852426852451845, - 0.0000015778814793131864, - 0.0000016450825191144508, - 0.0000016044217956744976, - 0.0000017024096849291168, - 0.0000016225084055850313, - 0.0000041032544651940295, - 0.0000011225002922749669, - 9.528591667961117e-7, - 8.829379643945658e-7, - 8.082040035865312e-7, - 0.0000015426350205422805, - 6.242308281451409e-7, - 6.82988932489908e-7, - 7.16302388352162e-7, - 6.879531839284158e-7, - -3.928622257086534e-7, - 7.516991283552872e-7, - 7.428840630245133e-7, - 8.52006945107988e-7, - 8.262217450864845e-7, - 1.5237639218075334e-7, - 7.168639683476267e-7, - 7.312460836854997e-7, - 7.949057430492167e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Net migration=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.00000152994993956632, - -0.00000152994993956632, - -0.000003113777261219314, - -0.00000152994993956632, - -0.00000152994993956632, - -0.000003105475147165961, - -0.000002930294751339162, - -0.000007809043500739404, - -0.0000027351479367109674, - -0.0000029795336021685813, - -0.0000032302216504333624, - -0.000003031211815329074, - -9.529244162626837e-8, - -0.0000020164590888695533, - -0.000001681346390724395, - -0.0000015409997317621727, - -0.0000013870672428847052, - -1.7341487239675408e-7, - -9.971263454752038e-7, - -0.0000011183077812377936, - -0.000001167499281495381, - -0.0000011167869704926115, - -6.730445954875564e-7, - -0.0000011979696500544935, - -0.000001209445960711012, - -0.000001406356519164639, - -0.000001349022272175303, - -7.116322593334301e-7, - -0.0000011333291841903724, - -0.000001133359564876472, - -0.0000012332634204096067 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Net migration=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.0000025345741926760837, - -0.0000019558323914389484, - -0.0000016960356384282186, - -0.0000017411044504352214, - -0.00000150920921923946, - -0.0000011752212296412188, - -0.0000010438985928357914, - -0.0000010493713563613014, - -9.572930832165219e-7, - -9.835000386194817e-7, - -9.710023414693456e-7, - -8.759596012656933e-7, - -9.216310972231476e-7, - -7.676977591388557e-7, - -6.555030418255013e-7, - -5.462309119865124e-7, - -4.852432476709575e-7, - -4.1595371349077246e-7, - -3.133857831267197e-7, - -3.802848217415862e-7, - -3.4850685364144276e-7, - -3.165343522540473e-7, - -3.3544151300138847e-7, - -3.2096023091908525e-7, - -3.0826278412079163e-7, - -3.499818569028468e-7, - -3.5381878242241555e-7, - -2.791519883809462e-7, - -2.846819141384505e-7, - -2.79978137396711e-7, - -2.8028607682012285e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Net migration=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.386286071037466e-7, - 4.0837467482641517e-7, - 0.000003950779027256658, - 3.946163459778209e-7, - 3.6824330850175093e-7, - 3.1369335131716374e-7, - 2.943737740627542e-7, - 0.000002077647290041589, - 2.9729541399898275e-7, - 3.011303178096931e-7, - 3.291320841552332e-7, - 3.1500297365891713e-7, - 7.348790817279974e-7, - 2.1217474714008632e-7, - 1.781922251433905e-7, - 1.732234400307911e-7, - 1.569670877550268e-7, - -0.0000011626394175377357, - 1.2064283509451777e-7, - 1.2960075971642393e-7, - 1.445110267694431e-7, - 1.517259683262118e-7, - -6.685099499574878e-7, - 1.7972562257892982e-7, - 1.823586756742439e-7, - 2.1942487439217494e-7, - 2.2230517916985384e-7, - -4.003114302563134e-7, - 2.024897206372264e-7, - 2.0930566502052836e-7, - 2.2738256937069859e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Net migration=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0000012184591337989352, - 0.0000011670634523713604, - 0.000001167947446640013, - 0.000001065390959033033, - 9.965293017612645e-7, - 8.414797465206754e-7, - 8.549126330861701e-7, - 3.058503380814374e-7, - 9.292995609481977e-7, - 9.335801787286647e-7, - 0.0000010280765288086142, - 0.0000010269358167305835, - 8.307894809338285e-7, - 7.733481723676937e-7, - 6.728271533868567e-7, - 6.416760246341773e-7, - 6.031544978320158e-7, - 3.9508915863703573e-7, - 4.694547497663672e-7, - 5.048523286450466e-7, - 5.170576199717602e-7, - 4.6985355340684963e-7, - 6.525911452406061e-7, - 4.7148555618708694e-7, - 4.582824044748326e-7, - 5.310056377651119e-7, - 5.124044807292178e-7, - 7.788839161349604e-7, - 4.4561297285259537e-7, - 4.5578297068948286e-7, - 4.6814741883999826e-7, - 6.456340943823519e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Net migration=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.766431287928243e-7, - 3.660973436299973e-7, - 5.135759447796212e-7, - 3.3912301643372424e-7, - 3.162422326778847e-7, - 2.6508192822268173e-7, - 2.66147856365615e-7, - 4.283770212927383e-7, - 2.737323055072976e-7, - 2.681962373699741e-7, - 2.871926566087352e-7, - 2.7780503354467194e-7, - 3.0814879889314457e-7, - 2.066938911598744e-7, - 1.8210909376026318e-7, - 1.749431941802112e-7, - 1.633573664734746e-7, - 7.744070678513878e-8, - 1.2595942751535558e-7, - 1.3757250248643443e-7, - 1.4149127717981843e-7, - 1.3244326780568472e-7, - 7.472315825719673e-8, - 1.3668572104205982e-7, - 1.3438836831798632e-7, - 1.5661084693575242e-7, - 1.5291806010831008e-7, - 9.593825701358596e-8, - 1.3117210297880894e-7, - 1.3172681232340888e-7, - 1.3119765837765288e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Net migration=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -5.529603139835321e-7, - -0.00024462823191587587, - -0.0002781899965597644, - -0.00009667037631949853, - -0.000024993678310980887, - -0.00000773679763934575, - -0.000009561182819286974, - -8.600588942900165e-7, - -0.000004838557509343689, - -0.000002704831019154163, - -0.0000020626495407879703, - -0.0000027575551165444235, - -0.000008087837787997545, - -0.000004550700628273933, - -0.0000027235657845769345, - -0.000001996971653716943, - -0.0000015314441906021401, - -0.0000011229379427394683, - -7.579601810095299e-7, - -8.934323895861137e-7, - -7.201910216456274e-7, - -5.370588436774099e-7, - -4.576025887633393e-7, - -4.251597700382316e-7, - -4.367410783943334e-7, - -5.981653878720278e-7, - -5.987815713303168e-7, - 2.0922705683532853e-7, - -4.3875449915426884e-7, - -4.243287777941888e-7, - -5.982268170736306e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Net migration=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.00004421710642885514, - 0.0000472806790123457, - -0.0000013251106401783808, - 0.00004547657014988179, - 0.000044133094588043716, - 0.000039992732068409486, - 0.000035925058504924517, - 0.000002611658418040504, - 0.000031734921860085316, - 0.000026261104682523776, - 0.000018325413688910898, - 0.000018556777777777818, - 0.00001104724816979738, - 0.000013829362657545659, - 0.00001025577163700165, - 0.000007308639550211507, - 0.00000534569445259185, - 0.000011473818136700765, - 0.00000282343348832849, - 0.0000033278406828732983, - 0.0000026011136050589366, - 0.0000019398409312525577, - 0.0000032373851175042707, - 0.0000016377053965628908, - 0.0000015781693143682193, - 0.00000201222593497342, - 0.000002144945978673022, - 0.000001241471692939006, - 0.0000017752061271153558, - 0.0000018452967855686636, - 0.0000022536822989144175 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Net migration=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.000009964749771390188, - 0.000009800309917145757, - 0.0000067870873980473305, - 0.000009082708380019584, - 0.000008519119793853264, - 0.000007684804123557562, - 0.000006867183986966827, - 0.000006321667532772669, - 0.0000066763347366451525, - 0.00000598288080328641, - 0.000004842245770253595, - 0.000004890322108947509, - 0.000010832791371187743, - 0.000004063063911602018, - 0.0000034177531005645655, - 0.0000027972222492844165, - 0.0000022746041143868735, - 0.0000019588817236541084, - 0.0000016014828921089196, - 0.0000019926344431110633, - 0.0000017434412521940483, - 0.0000014407645876251434, - 7.207868958278203e-7, - 0.000001295097190560281, - 0.0000012532391583773537, - 0.0000014107169597285973, - 0.0000014150236202457523, - 5.186647919909904e-7, - 0.0000011966110816399207, - 0.0000012109500436400116, - 0.0000014078327484247236 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Net migration=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.00000532570959045815, - 0.000004737930576173757, - -8.024050169734525e-7, - 0.000004711397713275176, - 0.000004634475256017757, - 0.000004370387865741284, - 0.000003948412929729743, - -0.0000021088967087853234, - 0.000004268182870176411, - 0.00000387383405343921, - 0.0000033056217744108895, - 0.0000034021574618892596, - 0.0000039450033999634564, - 0.000002902884357513964, - 0.0000024211918814740326, - 0.0000019072801517135791, - 0.0000016621502814193064, - 0.0000025797701143636987, - 0.0000012052108451194854, - 0.0000014599574309681683, - 0.0000011860203900153616, - 9.332962117733156e-7, - 0.000002340846314983752, - 8.390371350345595e-7, - 8.282731261714829e-7, - 9.575018870791109e-7, - 9.713601226998717e-7, - 9.801168780137573e-7, - 7.965000353690206e-7, - 7.900263119707692e-7, - 8.947988483076257e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Net migration=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -7.185708559710513e-7, - -7.185708559710513e-7, - -0.00025793091429638363, - -0.0000129895966029724, - -0.000017089968863980047, - -0.000008436352782203901, - -0.000006420504806167515, - -0.000028228742646360354, - -0.000004586589335193475, - -0.0000044513738267418975, - -0.000003867712200532703, - -0.000003572996795595354, - 0.0000058569337072164925, - -0.0000028025774901466904, - -0.0000023494005103436415, - -0.0000015396424409396436, - -9.719144039858729e-7, - 0.0000016211329102096224, - -4.1745404595570524e-7, - -4.604420956045861e-7, - -3.8544582283449145e-7, - -3.0922158455256463e-7, - 1.2196498227193258e-7, - -2.749790570966966e-7, - -2.710327322905318e-7, - -3.8424698173348074e-7, - -5.385530192701054e-7, - 1.468718441577644e-7, - -4.3286761890492593e-7, - -4.233314040618902e-7, - -4.78643936444473e-7, - -7.185708559710513e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Net migration=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.00001781184280355206, - -0.00001696109917561829, - -0.00001556173373143186, - -0.000018737058396760894, - -0.000024136550633851802, - -0.000023618358759831145, - -0.000017385252497414616, - -0.00001462296715211692, - -0.00001590250545434092, - -0.000013163754797851265, - -0.000010420747480527598, - -0.000010199765456344971, - -0.00001048657316913394, - -0.00000854014982291094, - -0.000007250566610939989, - -0.0000060064211864902375, - -0.000005276765973979236, - -0.0000030377082280167373, - -0.000003737733847504645, - -0.00000400256676479815, - -0.000003254486528642642, - -0.0000030735292331984348, - -0.000002118846249217364, - -0.0000024888039931696973, - -0.000002326830712879591, - -0.000002369781066466304, - -0.0000032118155258126174, - -0.000005588646811912854, - -0.0000046554171997155935, - -0.000005517560592319935, - -0.000005517560592319935 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Net migration=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.00002162464833403814, - 0.000022279715304531317, - 0.00000840810167296728, - 0.000020225951890249004, - 0.000019559394942926755, - 0.000018307057055642403, - 0.000016539397460122908, - -0.000012209792922243214, - 0.000018052907052505394, - 0.00001620455382913027, - 0.000012953254636236206, - 0.000012990180610892435, - 7.446845886004048e-7, - 0.000011680151999466057, - 0.00001020384145491793, - 0.000008129627040048717, - 0.000006789727420530877, - 0.0000063442459938581406, - 0.000004148807528384027, - 0.000005222019949793088, - 0.000003887850440176071, - 0.0000032605555611488108, - 0.000010133780211671387, - 0.00000280960840533944, - 0.000002725862796974423, - 0.0000032102967027157404, - 0.0000033633600754664716, - 0.000005404623440786894, - 0.000002761408097430649, - 0.0000028694360354879307, - 0.000003415982789536602 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Net migration=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.0000022291894192229357, - -0.0000030256182998338835, - -0.000002680640582223991, - -0.000002769373109592674, - -0.000003251238068347865, - -0.0000033118704067248993, - -0.0000029465985715892985, - -0.000003412643197345578, - -0.0000028703977067417057, - -0.0000028436706773952694, - -0.0000025244936761218686, - -0.0000025266001571285166, - -0.0000036156926233529764, - -0.0000020381697177305028, - -0.0000016209283496801247, - -0.0000013403137673129232, - -0.0000011819292685313717, - -0.0000010247517379341506, - -8.088738823858389e-7, - -0.0000010080676034821373, - -8.580134124289371e-7, - -6.915448690930642e-7, - -6.852993916320457e-7, - -6.594264635237593e-7, - -6.469200872874289e-7, - -8.333449850730178e-7, - -8.643029504069008e-7, - -2.9396165547513486e-7, - -7.907912937656071e-7, - -8.052633793241316e-7, - -9.538568425679113e-7, - -0.0000012441136110703935 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Net migration=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.000004839787215031313, - -0.0000055635420373333355, - -0.000004969630805463691, - -0.0000044657559381443324, - -0.0000040080324205714295, - -0.000003457636474509806, - -0.0000030757011752397545, - -0.0000026887837908988356, - -0.0000024521009547668745, - -0.000002293100912873863, - -0.00000208345185886504, - -0.0000021514152439364366, - -8.745442069147536e-7, - -0.000002590768287425151, - -0.0000026402930311147753, - -0.000002321509541318478, - -0.0000019362969078840812, - -0.00000217400890171859, - -0.0000012775526521496356, - -0.0000010997202916906548, - -9.49882718382231e-7, - -8.814317905331477e-7, - -0.0000010065468442109022, - -7.21165749301225e-7, - -6.806672938967144e-7, - -6.315419190637915e-7, - -6.257000516719569e-7, - -8.066899365994233e-7, - -8.329914760896013e-7, - -6.863145239661028e-7, - -5.694929229718192e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Net migration=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.0000014014611313378126, - -0.000001265972314886985, - 1.170258882716698e-7, - -0.0000013212238662666086, - -0.0000014158595685762993, - -0.0000015856794831460648, - -0.000001452585931034482, - -0.0000018687476994840625, - -0.0000014864263443729405, - -0.0000011258615749730302, - -0.0000010583898867462503, - -0.0000011874735697674409, - -0.0000010042530370598199, - -0.0000015421220701963118, - -0.0000012228858078450497, - -8.557204727765935e-7, - -7.369609307737055e-7, - -0.0000017559479975600035, - -4.648222581946071e-7, - -6.426444421942638e-7, - -5.417003329708728e-7, - -0.0000011673056371383493, - -4.947231961277833e-7, - -6.183667966386558e-7, - -9.84494890544413e-7, - -0.000001454802410845642, - -0.0000015461533185293805, - -2.638897580218351e-7, - -7.699377600413115e-7, - -7.775754282118101e-7, - -0.0000015934904523054352 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Net migration=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.813004039840574e-7, - 8.813004039840574e-7, - 0.000002089088156305535, - 8.813004039840574e-7, - 8.813004039840574e-7, - 0.000001893464570703693, - 0.0000017289179629216805, - 0.0000021379218644528827, - 0.0000016421968947694946, - 0.0000016258369848739083, - 0.0000014381667823143067, - 0.0000014561893470970146, - 8.496598887824229e-7, - 0.00000149939693506128, - 0.0000014051149897142664, - 0.0000013353234756268707, - 0.0000012358021423258091, - 0.0000015273067133727028, - 8.790179096421825e-7, - 9.160383884886954e-7, - 8.118031430390883e-7, - 7.262591860781486e-7, - 7.544779229343126e-8, - 6.475678645019613e-7, - 6.126272219772791e-7, - 6.348121381120094e-7, - 5.971120798070922e-7, - 1.4074079814729962e-7, - 5.098295161390016e-7, - 4.787051309239219e-7, - 4.679267714597177e-7, - 8.813004039840574e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Net migration=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0000031775525522723153, - 0.0000031912867279071618, - -7.572930614395135e-7, - 0.0000026573932059655654, - 0.0000036634876587674047, - 0.000002824905891147862, - 0.000002638271763863053, - -5.267689563952746e-7, - 0.000001734921747452817, - 0.0000018674292676997414, - 0.0000017454490282791471, - 0.00000237313064678817, - -1.664826827994183e-7, - 0.000001521911497554947, - 0.0000011709706204067849, - 9.456329720066876e-7, - 8.594831781622987e-7, - -7.338508757691192e-8, - 6.214216097154124e-7, - 7.37412692849875e-7, - 6.161987042941414e-7, - 5.70819138529365e-7, - 0.0000020022318258035897, - 4.998854885806135e-7, - 5.099105308913553e-7, - 5.539426112770031e-7, - 5.505182347711436e-7, - 0.0000016526381557047372, - 6.150277644051392e-7, - 6.291446110217301e-7, - 6.650164967489271e-7, - 9.457948878862136e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Net migration=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.00001570224636626313, - -0.000014678327470423275, - -0.000013841951853771353, - -0.000014970412543262873, - -0.000013310124449173222, - -0.00001214173799430373, - -0.000010979600328344344, - -0.000013604350544642293, - -0.000011335526317464025, - -0.000011382955078596078, - -0.000012195806025959069, - -0.00001200964342194594, - -0.000015503552095558236, - -0.000009102162040635296, - -0.00000794779693008898, - -0.000007601420012209736, - -0.000006903988940688253, - -0.000007149933473352584, - -0.0000051227926473480336, - -0.000005101282772020206, - -0.000005083802181172127, - -0.00000467488687702495, - -0.0000037358481522760866, - -0.0000044361583624096755, - -0.000004304961163516235, - -0.000004683696371931769, - -0.000004587048057497388, - -0.0000023439971327648374, - -0.000004012791182520288, - -0.000003953397547419084, - -0.000004130705864687314 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Net migration=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.000023430876165581555, - -0.000023869304486217918, - -0.000009910657018635098, - -0.00002350395895254671, - -0.000034397417992157864, - -0.00002737392429527807, - -0.000026400064331465557, - -0.00003766511829969074, - -0.000026619624651977662, - -0.000026267428399323974, - -0.000028799519527032522, - -0.00002661055568210816, - -0.000028900280468904728, - -0.00001974938128905715, - -0.000017185667711734386, - -0.000015730431419083834, - -0.000014804072096311474, - -0.000015578861596100742, - -0.000010275123056349352, - -0.000010725767749442805, - -0.000010742103660145478, - -0.000009721234223337607, - -0.000012117295415547252, - -0.000009153753712287737, - -0.000008747517595501847, - -0.000009742847086506534, - -0.000009095272489204495, - -0.00000476273148408158, - -0.000007491416801290609, - -0.000007430500520064134, - -0.000007027072911036231, - -0.00001362179524335881 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Net migration=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.000006909837892995378, - 0.0000064420355663340825, - 0.000006338834836587841, - 0.000005424362966902426, - 0.000005201187819173964, - 0.000004649296649243281, - 0.000004891348454795134, - 0.0000037869252797246193, - 0.000005219209921841527, - 0.0000052697078032323676, - 0.000005261484490744925, - 0.000005895667996613743, - 0.00000611196386950835, - 0.000004052619131726148, - 0.0000031212951582082084, - 0.000002764053644430825, - 0.0000026276762424123673, - 0.0000025886656233101655, - 0.0000025256780381115733, - 0.000002421351380275266, - 0.0000019130685437313827, - 0.0000017425695362527939, - 0.0000021171635496413205, - 0.000001991708298422954, - 0.0000020945707432683677, - 0.0000023029289104987835, - 0.000002467502332855445, - 0.000001905959520835053, - 0.0000019722453939163213, - 0.000002058202731365589, - 0.0000023802855895176464, - 0.00000301999573629272 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Net migration=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.000015401117169178213, - -0.000015401117169178213, - -0.00013582471122043857, - -0.000015401117169178213, - -0.000015401117169178213, - -0.000015401117169178213, - -0.000015401117169178213, - -0.000015401117169178213, - -0.000015401117169178213, - -0.000015401117169178213, - -0.000037623569794050344, - -0.00003629470198675497, - -0.00005393743257820928, - -0.00004396122994652406, - -0.00003665886287625418, - -0.000034650158061116965, - -0.000029386058981233244, - 0.000127884195193008, - -0.00001905156431054461, - -0.00001859898190045249, - -0.00001645795795795796, - -0.000013712677231025855, - 0.000008955392830097571, - -0.000010349685151832364, - -0.000010194218099162588, - -0.00001018972068117274, - -0.00000967596820592725, - -0.000007373101404269097, - -0.000009607173730353106, - -0.000009905721975547329, - -0.000010272124615744194 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Net migration=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.0000023601184871192304, - -0.000006054704485947278, - -0.000008333177931119574, - -0.000008059641785652651, - -0.000007866549916630286, - -0.0000075861328735907235, - -0.000005704003549291324, - -0.000010755389315054595, - -0.000004179276572461971, - -0.000003681007026105408, - -0.000003889207543753216, - -0.000004075006146941996, - 0.0000052851828218671365, - -0.0000034900578907466635, - -0.0000028828269588750497, - -0.0000025753944556127464, - -0.0000023972393946553414, - -0.000003827442330259144, - -0.0000017520594152582252, - -0.000001846426843629933, - -0.000001981080234756638, - -0.000001529681868669331, - -0.0000015289767506042443, - -0.0000012960283113468342, - -0.0000012417642559382806, - -0.000001379176398240784, - -0.0000018429422234279555, - -0.0000018912051323452157, - -0.0000014818397254493738, - -0.0000014299399682143641, - -0.0000015691917528328152 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Net migration=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.0000035730288692596926, - -0.0000037161557426474164, - -0.000003976217125190932, - -0.000002719101908210214, - -0.000004942461776301907, - -0.000004049785471893512, - -0.00000396627244278382, - -0.000004448786989850981, - -0.000003894444787343858, - -0.0000038043106241102796, - -0.000004164072420847255, - -0.000004016986285018197, - -0.000004348788347107594, - -0.0000027551114634141515, - -0.0000023371665175466495, - -0.0000022552709586039427, - -0.0000021042046146451284, - -0.0000022567466066292707, - -0.00000158757966687009, - -0.0000015751993915532603, - -0.0000015995637722570023, - -0.0000014364573844413443, - -0.0000011938293122062135, - -0.0000013045299903290138, - -0.0000012092381313219171, - -0.0000013660255149557949, - -0.0000013012231713586687, - -6.648466463573901e-7, - -0.000001100719896552449, - -0.0000011091231665647186, - -0.0000010783137695873398, - -0.0000019865020826770738 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Net migration=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.000003888767902044726, - -0.000004278081641230731, - -0.0000020037482717555155, - -0.0000075717468869513585, - -0.000006210871033465682, - -0.0000047689720230285664, - -0.000004114132418368838, - -0.0000017449646990623492, - -0.0000038482981760410246, - -0.0000035392187463236313, - -0.000003025722503149349, - -0.0000028384659209127636, - -0.0000017822355693005284, - -0.0000020029431442728604, - -0.0000015407204443638694, - -0.0000011930266881691435, - -8.90000518002747e-7, - -0.0000010884326692345833, - -6.189908363492549e-7, - -7.122929552005928e-7, - -5.813496108566447e-7, - -5.188542972295929e-7, - -6.5861470009257e-7, - -4.130834951329396e-7, - -3.8438219839448334e-7, - -4.316582668661098e-7, - -5.192948556241715e-7, - -7.984106952976404e-7, - -5.290475851909524e-7, - -4.6892007847491524e-7, - -4.860876519747029e-7, - -9.173844837540228e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Net migration=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.000007403312228278872, - -0.0000066094284352524765, - -0.0000024945814565401613, - -0.0000073076652462488115, - -0.000008007882113352542, - -0.000006743769831133815, - -0.000006286877596197097, - -0.000018428865617073134, - -0.000005828041905642922, - -0.000005648062682824904, - -0.000008749585879753253, - -0.000008203224584785672, - 0.000004054599647988212, - -0.000005712405346618758, - -0.000004909085780313942, - -0.000004057768071000842, - -0.0000021329498649303547, - -0.000001756068643432407, - -0.0000015202710417495206, - -0.000001673802937635896, - -0.000001354133322862916, - -0.0000011083471307243183, - -0.0000012115057749046055, - -6.940033055977143e-7, - -7.958585905746477e-7, - -8.82461611544934e-7, - -7.762710902449225e-7, - -8.277270977141587e-7, - -6.478434770735964e-7, - -6.380007444450031e-7, - -6.361877767856755e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Net migration=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.00005504165510285892, - -0.0000561810837997255, - -0.000025664550079925116, - -0.00005243917753566419, - -0.000051504115192386303, - -0.00004584176375561116, - -0.00003745223457275021, - -0.000014921946503743619, - -0.00003479524513957837, - -0.00003392248231199763, - -0.000032588194320816816, - -0.00003221306631152241, - -0.000027273861147561217, - -0.00002891050461615491, - -0.00002671269984659294, - -0.000025045381468930098, - -0.000024216752857204126, - -0.0000408830649925782, - -0.00001898069123795775, - -0.000016971726019960037, - -0.000015087082914283715, - -0.000013520311483707394, - -0.00001729838427628576, - -0.000011595571505692283, - -0.000010059984518012702, - -0.000008915505331565975, - -0.000007855039284822091, - -0.000007398567038167341, - -0.000006346633758639782, - -0.00001842261004762374, - -0.00001842261004762374, - -0.00001842261004762374 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Net migration=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.0000056046528026043135, - -0.000006660275533552343, - -0.0000019185698324762337, - -0.000006441108544097726, - -0.0000054968231376861975, - -0.000004993244836257735, - -0.000004578746468295665, - -0.0000016413126376310131, - -0.0000042695376569072305, - -0.000003920871722400928, - -0.00000384072468954187, - -0.0000037058590974430593, - -0.00000366837597451299, - -0.000002960306261863721, - -0.000002536811348318967, - -0.0000021928527039606263, - -0.0000019132752778712775, - -0.0000021827620938464596, - -0.0000015005276746391934, - -0.0000013406319105116535, - -0.000001073621112064617, - -9.867946964014922e-7, - -0.0000012858537528388493, - -9.688988886763742e-7, - -8.822283292128327e-7, - -8.551941536205035e-7, - -7.839365448635128e-7, - -0.0000010045110977434044, - -6.660131622364009e-7, - -6.267108282677629e-7, - -6.762444179782894e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Net migration=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.00007368452801080284, - -0.0000496045809592358, - -0.000039955041056410834, - -0.00003617850280064831, - -0.00002928002411890696, - -0.000022996883903514426, - -0.00001933966281014206, - -0.000008046617882297536, - -0.000017525694267398317, - -0.00001662504656585231, - -0.00001529767856728369, - -0.000014589697634347654, - -0.000018565966269537622, - -0.000012056557894460699, - -0.00001049724161280868, - -0.000008274166738473681, - -0.000007184800441290299, - -0.00001033359085855118, - -0.000004810508461568054, - -0.000004498124765954414, - -0.000004113343996894885, - -0.000003518290851238793, - -0.0000025670581123731574, - -0.000002785080753131795, - -0.000002560984160077635, - -0.000002467731477278232, - -0.000002323051729322411, - -0.0000017874664395873495, - -0.0000019447004517878616, - -0.0000018206509630488193, - -0.0000017586292440707283, - -0.000005029345955688948 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Net migration=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.000002042608876447368, - 0.0000017745512287559246, - 0.0000015640916287946157, - 0.0000013524976423549956, - 0.0000011884261091488706, - 0.0000010297955080763703, - 9.523992176848883e-7, - 0.000001160752304360008, - 0.000001533509035525072, - 0.0000013762042124807872, - 0.0000013792184447376779, - 0.0000014491072850594406, - 0.000002782901199117157, - 0.0000011447447088575639, - 0.000001008252084686815, - 9.207893272703547e-7, - 7.86092702535664e-7, - 2.2441410279363783e-7, - 5.982590105737866e-7, - 6.188003345078569e-7, - 5.110525847173597e-7, - 4.7010113759237016e-7, - 4.2085407957471724e-7, - 4.1472455350526907e-7, - 4.2795388038702636e-7, - 4.343983243872731e-7, - 4.217145011112491e-7, - 2.1303937096188543e-7, - 3.44095323331931e-7, - 3.202904311766431e-7, - 3.475026520888967e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Net migration=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.0000055518227043783266, - -0.000005052858972700635, - -2.765979773322374e-7, - -0.0000037294272893203555, - -0.0000033312643902839174, - -0.0000029152950362319943, - -0.000002591702207699302, - -3.136561487473709e-7, - -0.000006173933862120517, - -0.00000420906294749332, - -0.000003570905865746041, - -0.000003672706200618824, - -0.000005875761059692408, - -0.000002509981325758197, - -0.000002294353173866209, - -0.0000020613472848503542, - -0.0000016163526036207496, - -0.000003085685683682866, - -0.000001154922439837077, - -0.0000010920983107284211, - -7.803986985102095e-7, - -6.599046873755353e-7, - -4.951104671768165e-7, - -6.457631927626411e-7, - -6.615006055279378e-7, - -6.845229726440875e-7, - -6.323519839114845e-7, - -4.87168047677044e-7, - -5.653752236980377e-7, - -5.265651886936127e-7, - -5.567471920524188e-7, - -0.0000012090484017995378 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Net migration=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.00001851522252727083, - -0.000018059022595066976, - -0.000011566539050418249, - -0.000015074517082539055, - -0.000012782692877196728, - -0.000011048269634228238, - -0.000009880518684664213, - -0.000010088029980534732, - -0.000012553939799368843, - -0.000010919788715567187, - -0.00001117695220994432, - -0.000011849436632588805, - -0.000014759767166721097, - -0.000010744270940372235, - -0.00000984370735431709, - -0.000008705757772743953, - -0.000007325900669334623, - -0.000009924818860808123, - -0.00000514892962902199, - -0.0000053142417919534656, - -0.000004488063927612705, - -0.000003992760750436993, - -0.000003186535488038, - -0.00000329398795284182, - -0.0000031436128783064465, - -0.000003051668931938327, - -0.0000029350082280808405, - -0.0000010221539017480232, - -0.0000026962476076970528, - -0.0000024817261031172097, - -0.0000025869980145880265, - -0.000005539236511493338 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Net migration=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.270717057862081e-7, - 2.803021679834016e-7, - 2.008802370678475e-7, - 2.3603132420927255e-7, - 1.9990945121443763e-7, - 1.6357961692610892e-7, - 1.518946642962252e-7, - 2.798187425207814e-7, - 2.41779341280861e-7, - 1.862897319482699e-7, - 1.6085564120003487e-7, - 1.6923236921575078e-7, - 1.2949144268308556e-7, - 1.3189015807324163e-7, - 1.1684873966248923e-7, - 9.913508802364994e-8, - 8.799849217184953e-8, - 7.903836484984058e-8, - 8.849235929832032e-8, - 9.81856005491196e-8, - 8.101055515899184e-8, - 7.395451303784632e-8, - 7.24964773212681e-8, - 6.761148565563296e-8, - 6.244045163231664e-8, - 6.323044869426817e-8, - 6.178307016126574e-8, - 3.612103327344333e-8, - 5.373321482235257e-8, - 5.612220720625803e-8, - 5.658571188836419e-8, - 9.911794632006275e-8 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Net migration=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.000004979834736402557, - -0.000004154653396889542, - -0.000005558283813336034, - -0.0000025981744795911297, - -0.0000024648863891424523, - -0.000003613146171569968, - -0.0000031656372823910024, - -0.000004589144932169983, - -0.0000024710245107706254, - -0.000002167491523587598, - -0.0000018378122212246913, - -0.000001719292763457425, - -0.0000028572669002449017, - -0.0000017838130798724483, - -0.0000016631707218542122, - -0.0000014826608801062207, - -0.0000013338290247665022, - -5.342509605738433e-7, - -0.0000011720833198688005, - -0.0000014454823478928494, - -0.0000012299093148192242, - -0.0000011020848167651915, - -3.517446690649712e-7, - -0.0000010208377935967244, - -9.890892127991114e-7, - -0.0000011101933849571507, - -0.0000012063152005128931, - -2.588632543889275e-7, - -0.0000010642923234340084, - -0.0000010248659918763832, - -0.0000012114539787513393 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Net migration=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.150988284491582e-9, - 9.295721618294881e-9, - 0, - 8.647397532719527e-9, - 6.062015153312653e-9, - 4.139688057545237e-9, - 3.744944743485803e-9, - 0, - 3.6873444624282704e-9, - 5.31116833316984e-9, - 4.8589652958805996e-9, - 5.68730835685966e-9, - 0, - 5.705137225031394e-9, - 4.758480220104303e-9, - 3.571869869644017e-9, - 2.8753369408683413e-9, - 0, - 1.877990314138252e-9, - 1.9105021473356862e-9, - 1.441844011850925e-9, - 1.2173583155856704e-9, - 6.459442332152885e-9, - 1.287922623327033e-9, - 1.2967195634097447e-9, - 1.7671616884224648e-9, - 1.773576846691016e-9, - 1.5433861543824256e-9, - 1.6614033057451599e-9, - 1.6960053422302063e-9, - 2.20442076779413e-9, - 2.547611093798349e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Net migration=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -4.999326669176797e-7, - -3.724787714859902e-7, - -4.5893891612375913e-7, - -2.9849689423000395e-7, - -2.7449761756784757e-7, - -2.7386810602442013e-7, - -2.59660964842579e-7, - -4.37070399065762e-7, - -2.3638427944189896e-7, - -2.4924491722599815e-7, - -2.486479037193094e-7, - -2.6299784670513013e-7, - -0.0000012791125471879198, - -5.538705459691746e-7, - -4.2917256686236076e-7, - -3.555786435456322e-7, - -3.038678148268219e-7, - -4.1734701703481056e-7, - -1.9545041020644006e-7, - -2.122271990357139e-7, - -1.668132490517531e-7, - -1.332922688587126e-7, - 5.494682857019925e-8, - -1.2801349343324434e-7, - -1.342656757738805e-7, - -1.1881757305108794e-7, - -1.2674921929243947e-7, - 3.728858159033838e-8, - -1.3464940604876948e-7, - -1.5636558373183605e-7, - -1.8152795989842227e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Net migration=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.000018000518985895285, - -0.000013843342235057193, - -0.00000985922870274683, - -0.000013648358197312676, - -0.000010592215626722388, - -0.000008917196676173614, - -0.000008604160997301007, - -0.000004399155611503826, - -0.000008565551234013595, - -0.000009472524601777551, - -0.000009187418523235723, - -0.00000913702125566811, - -0.00001660866434550653, - -0.000008094539899610283, - -0.000007120112294586906, - -0.000006250287649402388, - -0.000005363081475816277, - -0.000011772011842611449, - -0.000003943577778911839, - -0.0000039346872673285025, - -0.0000032224231817920016, - -0.0000027677914466929798, - -0.0000032432506940139434, - -0.0000023631144928336112, - -0.0000023676586292331077, - -0.0000025046753939891265, - -0.000002477387782114701, - 0.0000023475264466437666, - -0.0000021359151445723114, - -0.000002080792896913042, - -0.000002353301308650367, - -0.000004333506494083603 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Net migration=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.0000027194769708251923, - -0.0000024713815213340486, - -3.7581662565233864e-8, - -0.000002200315920543507, - -0.0000022623248276806485, - -0.0000017073489483830038, - -0.000001873489991501368, - -5.288691829567117e-8, - -0.000001447062942696441, - -0.0000013489099833851768, - -0.0000011282327444974028, - -0.0000010753274327376447, - -2.4479622926396464e-7, - -0.0000015804951749463158, - -0.000001175260336880011, - -9.082674222491347e-7, - -7.203171182503599e-7, - -8.691461733165328e-7, - -4.182958778286166e-7, - -4.007488104675544e-7, - -3.361255591159244e-7, - -4.175969575595089e-7, - -0.000001130489268202255, - -3.5622664036847897e-7, - -2.739907675830499e-7, - -7.539200885123534e-7, - -7.539200885123534e-7, - -7.539200885123534e-7, - -7.539200885123534e-7, - -7.539200885123534e-7, - -7.539200885123534e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Net migration=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -0.000004875544639649498, - -0.000004743534633070901, - -0.0000049290482848147415, - -0.0000035105675990452042, - -0.0000028550306606759823, - -0.000002521596154980746, - -0.000002400841268436879, - -0.0000024282879623006957, - -0.0000023695361445980046, - -0.000002706536682452523, - -0.000002335308769542179, - -0.0000023751333314052183, - -0.0000023580330433754683, - -0.0000024647358610035074, - -0.0000019923382897544254, - -0.000001601890502657719, - -0.000001443311766334732, - -9.457671561191641e-7, - -9.63165022444046e-7, - -0.0000010037356816130837, - -8.140126756490079e-7, - -6.964331028200879e-7, - -5.213504571474855e-7, - -6.104584021826282e-7, - -6.12066601843221e-7, - -7.948228515002008e-7, - -8.247714729783672e-7, - -7.479261565963523e-7, - -6.97986972207683e-7, - -7.212258606297686e-7, - -8.593724789232197e-7, - -0.000001235424694047775 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Net migration=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.000002030441136045242, - 0.0000017770891121875092, - 7.853916703938138e-8, - 0.000001363870936371409, - 0.0000011794011087151235, - 9.154321079891161e-7, - 8.615603351729833e-7, - 2.2765700434911246e-7, - 8.241961024077518e-7, - 8.944047649828164e-7, - 8.635370543574104e-7, - 9.472509443313281e-7, - 6.069964933710041e-7, - 8.888514637300685e-7, - 6.777092405680383e-7, - 5.46788946213098e-7, - 4.3437339603194164e-7, - 6.173117268027121e-7, - 3.7428391682684233e-7, - 3.90022597702354e-7, - 3.0766245720524446e-7, - 2.66542196392773e-7, - 6.129401690027332e-7, - 2.415214942208444e-7, - 2.580616314903756e-7, - 2.756479737258499e-7, - 2.6847053111491404e-7, - 2.4269813832815135e-7, - 2.259482389190013e-7, - 2.406560220398847e-7, - 2.6581716562811635e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Net migration=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.00000792287703555852, - 0.000006288391303852195, - 0.000008080528295157714, - 0.000004722282327213393, - 0.000004315240642642349, - 0.00000390833282378808, - 0.000003874923365858758, - 0.000007097092503305397, - 0.000003306939023669657, - 0.0000031745650297775963, - 0.0000030141278977250957, - 0.000002832530432211356, - 0.0000025208065632927463, - 0.0000026200571726055114, - 0.0000024315719284478902, - 0.0000022580613397082416, - 0.0000019921604044593567, - 0.000001128485704157183, - 0.0000014691700153610309, - 0.0000014718475210591305, - 0.0000012016639548846137, - 0.0000010582373832179823, - 4.162039485109235e-7, - 8.881902089024388e-7, - 8.69975473369724e-7, - 8.017622696344054e-7, - 7.689939616569565e-7, - 3.470154153204323e-7, - 7.24974051697849e-7, - 7.06273955607624e-7, - 7.316939663927416e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Net migration=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.372478679032403e-7, - 8.107380667082485e-7, - 6.84590512101617e-7, - 7.279414815852717e-7, - 6.85119790274392e-7, - 6.535070196677927e-7, - 6.184261305601476e-7, - 5.820574646338267e-7, - 5.50891509541504e-7, - 5.184096854880664e-7, - 4.869743823529043e-7, - 4.718119321567657e-7, - 4.878098556445458e-7, - 4.3572380315503e-7, - 4.087719270593384e-7, - 3.829690404826029e-7, - 3.614021017587487e-7, - 3.756441388766375e-7, - 3.393381708863081e-7, - 3.455362130450459e-7, - 3.33018412549237e-7, - 3.212226828087845e-7, - 3.0633535523501105e-7, - 2.9744858245076123e-7, - 2.8485097114852954e-7, - 2.737442329734422e-7, - 2.6634352847465246e-7, - 2.4428358416063916e-7, - 2.422211956497571e-7, - 2.329387980847705e-7, - 2.3827721336723136e-7, - 3.847674835235067e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Net migration=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - -0.0000039725464882837515, - -0.000003739239967192091, - -0.000001827016379973664, - -0.0000032233505713445983, - -0.0000025402483880642797, - -0.0000019515743449802693, - -0.0000016596587914917972, - -3.982918319161991e-7, - -0.0000013930658849312845, - -0.0000013103550403752828, - -0.0000011834139909126226, - -0.0000010702772997888603, - -0.0000013366277786178097, - -8.634193965021711e-7, - -7.331306564475941e-7, - -6.270980849371938e-7, - -5.208779780132932e-7, - -6.135703399257909e-7, - -3.1202199224827704e-7, - -2.809894681827034e-7, - -2.3549962887249458e-7, - -1.8983312053983936e-7, - -1.8192301454205458e-7, - -1.4978725019968052e-7, - -1.368430912045534e-7, - -1.295952587292549e-7, - -1.276141318736515e-7, - -1.4150593595357143e-7, - -1.031697485943072e-7, - -1.0038733268985584e-7, - -9.736813521548488e-8 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Net migration" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.7446051246254499e-9, - 2.8914705511413785e-9, - 2.3546006016239114e-9, - 2.2589418524293387e-9, - 1.989955781476321e-9, - 1.601830139184316e-9, - 1.575336268723521e-9, - 1.696210488743846e-9, - 1.60295434914268e-9, - 1.5663260642952755e-9, - 1.6940608358940732e-9, - 1.6291575213775762e-9, - 1.4654908296844484e-9, - 1.1712314901413626e-9, - 1.0012955480405705e-9, - 9.533296282086255e-10, - 8.738761202533168e-10, - 7.385614098376677e-10, - 6.552274922834394e-10, - 7.009137826009338e-10, - 6.89773273201731e-10, - 6.187796985683287e-10, - 6.566220524768915e-10, - 6.245640088004228e-10, - 6.081109320276064e-10, - 7.171819876768625e-10, - 7.057934940040006e-10, - 6.708483326421072e-10, - 6.247973721483731e-10, - 6.360062140952296e-10, - 6.348770686920658e-10, - 1.0644093422310308e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.256632071933388e-9, - 2.25645924101684e-9, - 2.0436254504772817e-9, - 3.4600438308092253e-9, - 3.0122323956852758e-9, - 2.415222450140488e-9, - 2.2476527351217677e-9, - 2.353249013557639e-9, - 2.1821441886062238e-9, - 2.1250351989616634e-9, - 2.2524243314782756e-9, - 2.157285353358464e-9, - 1.908207070299502e-9, - 1.497930552799927e-9, - 1.2624825951897187e-9, - 1.1889235841823967e-9, - 1.1092263832679122e-9, - 9.603128641567493e-10, - 8.654392819584433e-10, - 9.293242031233383e-10, - 9.37173505428398e-10, - 8.554503422852227e-10, - 9.051032526232405e-10, - 8.599238455770549e-10, - 8.466491826702e-10, - 9.937730756474795e-10, - 9.846482442537975e-10, - 9.43683029368135e-10, - 8.832096327862155e-10, - 9.080680926443041e-10, - 9.447527841532435e-10, - 1.3690992888381565e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.145710750443148e-9, - 1.0939760654920615e-9, - 1.0551449876404014e-9, - 1.4087593310652634e-9, - 1.3098516712378706e-9, - 1.6198671262913855e-9, - 1.3333616160831379e-9, - 1.3239049191874633e-9, - 1.2259559989874157e-9, - 1.1602782785028364e-9, - 1.1832498045180727e-9, - 1.2747742868542987e-9, - 1.1579579777211283e-9, - 9.212256029200104e-10, - 7.919649677725265e-10, - 7.674301837033035e-10, - 6.996090551589725e-10, - 5.92363290061856e-10, - 5.54368535979014e-10, - 6.505748440589763e-10, - 5.667464346920738e-10, - 4.859830360483966e-10, - 5.013722329204656e-10, - 4.686100918267188e-10, - 4.708194869174722e-10, - 5.385031948744306e-10, - 5.216669505453832e-10, - 4.916650303035281e-10, - 4.734853842458758e-10, - 4.85128171881218e-10, - 4.74853057473104e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.3977761033804355e-9, - 3.2502222604911092e-9, - 4.5335114628739736e-9, - 4.738132123085787e-9, - 4.18679783573718e-9, - 3.4038347311621156e-9, - 3.1170972935421963e-9, - 2.7526828576977305e-9, - 2.513620710034281e-9, - 2.3864567118055236e-9, - 2.345788893946288e-9, - 2.309739733788197e-9, - 2.0873541588257466e-9, - 1.7908759732374583e-9, - 1.5158056992958077e-9, - 1.4444977908857611e-9, - 1.3569815442581587e-9, - 1.1866656360509364e-9, - 1.2443505934628995e-9, - 1.4832230014385534e-9, - 1.409813243191613e-9, - 1.2736965343510375e-9, - 1.2128753041943494e-9, - 1.1400883950649392e-9, - 1.0067487137771762e-9, - 1.027202507794876e-9, - 1.0944406987358693e-9, - 1.0866920473587928e-9, - 9.959350946844775e-10, - 9.879549009476526e-10, - 1.0127530568744441e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.005063908091195e-9, - 2.7936371330647684e-9, - 2.555637851352401e-9, - 4.679325855933685e-9, - 4.289785695776418e-9, - 3.4314497989526443e-9, - 3.0672794320558134e-9, - 3.1555189227913127e-9, - 2.882682875503831e-9, - 2.737406445315905e-9, - 2.8678228783399793e-9, - 2.7380021972019786e-9, - 2.4521814836922738e-9, - 1.944921748499196e-9, - 1.6734395049555261e-9, - 1.5619097567332435e-9, - 1.4249456176881578e-9, - 1.198776734987655e-9, - 1.051558544437137e-9, - 1.102936549402326e-9, - 1.096962945743276e-9, - 9.914159481229148e-10, - 1.0394458648625894e-9, - 9.55618998517264e-10, - 8.933632653551346e-10, - 9.777517598679812e-10, - 9.149064318916719e-10, - 8.373082750332397e-10, - 7.579200841011093e-10, - 7.602045655323926e-10, - 8.107783484355038e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.3294043426458183e-8, - 1.2947053712227628e-8, - 1.1125357712517207e-8, - 1.0344630855498456e-8, - 9.715711998455573e-9, - 1.8752408492067256e-8, - 1.6863850309159333e-8, - 1.6105485482232344e-8, - 1.4306275531033733e-8, - 1.4697617111272805e-8, - 1.4972677630504007e-8, - 1.314792170964218e-8, - 1.0563425699656106e-8, - 7.688844769552971e-9, - 6.0773853436660125e-9, - 5.329810735345114e-9, - 4.6204553266068035e-9, - 3.732904196748873e-9, - 3.0812439399589087e-9, - 3.3288945586405817e-9, - 3.3263816574295972e-9, - 3.0552520573195405e-9, - 3.2346985209050465e-9, - 3.0226315812981334e-9, - 2.9315815284525245e-9, - 3.3091992446867363e-9, - 3.05955666003981e-9, - 2.739510247408965e-9, - 2.393656010305594e-9, - 2.313393995646592e-9, - 2.412427854818879e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.6009241770205404e-8, - 3.550354360102718e-8, - 8.15374229263299e-8, - 7.47977693110598e-8, - 5.997108851129888e-8, - 4.226496841129068e-8, - 3.291649467349852e-8, - 2.8439149454057056e-8, - 2.2383045381096786e-8, - 2.023748550842806e-8, - 1.798286894959539e-8, - 1.4949805514184673e-8, - 1.350767162348842e-8, - 1.18350659621886e-8, - 9.815366775587786e-9, - 8.015826880558896e-9, - 7.007677914704171e-9, - 5.507792536976596e-9, - 4.270916814396096e-9, - 4.912021282411033e-9, - 4.232712234352836e-9, - 3.6229328075816584e-9, - 3.638744716472779e-9, - 3.312756478924214e-9, - 3.0360728803139703e-9, - 3.3088333762697717e-9, - 3.2372020840499554e-9, - 2.8261631743335508e-9, - 2.466753536910428e-9, - 2.3556768514202225e-9, - 2.281167349191285e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 9.960048254091837e-9, - 8.72143626597731e-9, - 7.52852194323242e-9, - 7.747516673158552e-9, - 6.998176582518806e-9, - 5.771547567775723e-9, - 5.2035623870238086e-9, - 5.050378039612781e-9, - 4.7289942691093374e-9, - 4.4954418686553805e-9, - 4.599189925585593e-9, - 4.1156400894933956e-9, - 3.4095863580956684e-9, - 2.4509544709556715e-9, - 1.9463523681659954e-9, - 1.7952566496609914e-9, - 1.5426980331864587e-9, - 1.260572070076435e-9, - 1.0845478388480369e-9, - 1.1348939122073865e-9, - 1.2419017155327158e-9, - 1.2756366661668796e-9, - 1.466764517919815e-9, - 1.4733724139422487e-9, - 1.4907108764607656e-9, - 1.7783816825521442e-9, - 1.7499520755063077e-9, - 1.6112535067816616e-9, - 1.4430596447187122e-9, - 1.4185147175018244e-9, - 1.4668875168134592e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.028116516225328e-9, - 1.94256877196826e-9, - 1.7306253065402193e-9, - 3.167354156404056e-9, - 2.7218873377260165e-9, - 2.099251594272651e-9, - 1.947305173504148e-9, - 2.0113694216350943e-9, - 1.8464225076256764e-9, - 1.772077287551339e-9, - 1.8804840806887053e-9, - 1.8227038431732343e-9, - 1.6325017731425972e-9, - 1.2925432056388178e-9, - 1.0847297967539238e-9, - 9.965444480350797e-10, - 9.040083913493535e-10, - 7.605626253166404e-10, - 6.735301383778253e-10, - 7.118700217300631e-10, - 7.137847771089064e-10, - 6.324052550717393e-10, - 6.497284319988668e-10, - 6.043827329380813e-10, - 5.761607520022992e-10, - 6.623536907782178e-10, - 6.366251140021819e-10, - 6.063349029290795e-10, - 5.624295085442212e-10, - 5.842540748854686e-10, - 6.116441333995062e-10, - 1.0746533338155475e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.077523050393971e-9, - 3.8595381231249874e-9, - 3.3722457414087108e-9, - 3.3404028658617675e-9, - 3.0095197334834602e-9, - 2.4408488015366575e-9, - 2.3840696409140388e-9, - 2.521516016973492e-9, - 2.3629693503595005e-9, - 2.288337079572329e-9, - 2.421676737795201e-9, - 2.3054455772617215e-9, - 2.0533405103617975e-9, - 1.6256648570336336e-9, - 1.37762369400868e-9, - 1.263591300533482e-9, - 1.1226842204070418e-9, - 9.215624413126556e-10, - 7.805687768994154e-10, - 8.135224756489488e-10, - 8.024726930805319e-10, - 7.246451844543998e-10, - 7.593065836590413e-10, - 7.090962950545987e-10, - 6.837277385920553e-10, - 7.863393567422284e-10, - 7.614209019797085e-10, - 7.159392429638853e-10, - 6.586120252653776e-10, - 6.690878729655957e-10, - 6.762483871772394e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.5269273063753322e-7, - 0.00006777157280290964, - 0.000050166889644891224, - 0.000027117727420970113, - 0.000007077556484980219, - 0.0000022121090339876684, - 0.00000276057427431169, - 0.0000013990464716960226, - 0.0000014192862747376417, - 7.974979051046416e-7, - 6.100166843112866e-7, - 8.157797741491605e-7, - 8.95304692955676e-7, - 0.000001341236083867642, - 7.997455106844243e-7, - 5.836865979247747e-7, - 4.456545041593461e-7, - 3.254497792216554e-7, - 2.1889696431767275e-7, - 2.5737616355424087e-7, - 2.069497418916038e-7, - 1.534484602448635e-7, - 1.2966824861201878e-7, - 1.1898771152029539e-7, - 1.2014062634559758e-7, - 1.6129601922400144e-7, - 1.5775874776860835e-7, - 1.3715586442566097e-7, - 1.249932234276189e-7, - 1.2088359625219234e-7, - 1.7042400328887908e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.5406091844694172e-8, - 2.5277777777777788e-8, - 2.1317907061693257e-8, - 2.137888601762007e-8, - 1.9662481252841147e-8, - 1.6957666828136742e-8, - 1.468098055194627e-8, - 1.1506662859935792e-8, - 1.2383605048785203e-8, - 1.0086231739487016e-8, - 6.9820251833060095e-9, - 7.070175438596507e-9, - 6.403722830713341e-9, - 5.311511387646945e-9, - 4.0020084493386015e-9, - 2.8968912524446147e-9, - 2.16812342347627e-9, - 1.7186853786980618e-9, - 1.231889757211326e-9, - 1.5133179394695305e-9, - 1.2307957269741745e-9, - 9.53656646238552e-10, - 8.831392545419452e-10, - 8.45378113943965e-10, - 8.146457850507619e-10, - 1.0263388499637056e-9, - 1.0676706681829145e-9, - 9.621405620277296e-10, - 8.018110946011069e-10, - 7.881102280505102e-10, - 9.071308307421414e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.3254060443250495e-8, - 1.2511598537368955e-8, - 1.1393979267949697e-8, - 1.0642664054848181e-8, - 9.577592106894984e-9, - 8.32019308458845e-9, - 7.190310278436022e-9, - 6.519615227802003e-9, - 6.660117878192537e-9, - 5.897296582679301e-9, - 4.772978164252222e-9, - 4.878443486236577e-9, - 4.707866352591141e-9, - 4.294456293713952e-9, - 3.754455363474757e-9, - 3.2056700081382733e-9, - 2.7237953324841943e-9, - 2.4504089434404884e-9, - 2.076236778881545e-9, - 2.65039242893224e-9, - 2.356900767117319e-9, - 1.9591290249188355e-9, - 1.8313326316217952e-9, - 1.7456724158389559e-9, - 1.666926710259427e-9, - 1.8372956948901742e-9, - 1.7952915848108083e-9, - 1.6104541791320253e-9, - 1.4210767927458227e-9, - 1.3925655138021997e-9, - 1.5660320834165196e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.7272764645241292e-7, - 1.443467569496109e-7, - 1.302886909832985e-7, - 1.2537612327911625e-7, - 1.1477723712608772e-7, - 1.0051412588781347e-7, - 8.430478869475754e-8, - 7.501646864107792e-8, - 7.925028463306578e-8, - 6.753156873589511e-8, - 5.4333451225941336e-8, - 5.296586302681495e-8, - 4.895416761381185e-8, - 4.1082879982141276e-8, - 3.278938624220205e-8, - 2.4712316296836835e-8, - 2.06102340212832e-8, - 1.7835653087350564e-8, - 1.3618784947596146e-8, - 1.570271029363218e-8, - 1.2112667895052794e-8, - 9.020634144230683e-9, - 7.762493584587784e-9, - 7.2095636644966955e-9, - 6.705887050732994e-9, - 7.2875123538649176e-9, - 6.927824120258489e-9, - 6.0849313135786206e-9, - 5.00812544786017e-9, - 4.6849374037132305e-9, - 5.0320098009056625e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.455082783287531e-7, - 5.400116182448309e-7, - 0.00003373473579386316, - 0.000009307643312101912, - 0.000011737080330931392, - 0.000005477472443527983, - 0.000003888445180414262, - 0.0000028741331729094735, - 0.0000023421360227867238, - 0.000002067912373182168, - 0.0000016344262308980318, - 0.0000013819878094664757, - 0.0000011650363711340203, - 9.274739942629253e-7, - 7.299227685165646e-7, - 4.533541225793576e-7, - 2.7441279832712716e-7, - 1.6868205779164684e-7, - 1.1135565012008808e-7, - 1.202714099125037e-7, - 9.839480984340052e-8, - 7.684419953150802e-8, - 7.017399262380872e-8, - 6.302212024337425e-8, - 5.868883538001937e-8, - 7.790954394998166e-8, - 1.010628661551802e-7, - 8.596480981776514e-8, - 6.872846226839134e-8, - 6.187954996690939e-8, - 6.456658778830414e-8, - 2.739362166017793e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.000009559210247006999, - 0.000009132987759180616, - 0.000008379166589395992, - 0.000010053517021056547, - 0.000012858512573028174, - 0.000012453540999359395, - 0.000009033847710630246, - 0.000007491199842357976, - 0.000007892471435137366, - 0.000006333902712778026, - 0.000004850381720080619, - 0.000004585379956678324, - 0.000004085322053790736, - 0.000003586272670938337, - 0.0000029473519826706235, - 0.000002367979433937565, - 0.000002018730627890026, - 0.000001726655009852051, - 0.0000013550667539200878, - 0.000001428913979308537, - 0.0000011601996502885885, - 0.0000011090734364379233, - 0.0000010432090498579717, - 9.233151644879627e-7, - 8.757399697121922e-7, - 9.161716620637064e-7, - 0.000001247774187380496, - 0.0000014628841894863086, - 0.000001848872511343958, - 0.0000021983440800453912, - 0.0000021721236870355677 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.03590026403799e-8, - 7.249036024650603e-8, - 6.6023927601446e-8, - 6.580813618181433e-8, - 1.136323556056611e-7, - 9.556170036366357e-8, - 7.776007354067719e-8, - 6.762451761228349e-8, - 6.908665381709527e-8, - 5.604915229103373e-8, - 4.080491794306753e-8, - 3.747686512986756e-8, - 3.361009776549827e-8, - 2.9583462728924456e-8, - 2.479434336553262e-8, - 1.9368128215403873e-8, - 1.614906377402322e-8, - 1.4494344779975527e-8, - 1.029464479607727e-8, - 1.3432981646577784e-8, - 1.0385654261704686e-8, - 9.058353301250432e-9, - 8.36299827128095e-9, - 8.45045170096355e-9, - 8.522198031580008e-9, - 1.0392475623093874e-8, - 1.1207428947277318e-8, - 1.063610105051883e-8, - 9.485732150977712e-9, - 9.834108105873115e-9, - 1.153148512762816e-8 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.3878302738244717e-7, - 4.598210086959619e-7, - 4.37909415514035e-7, - 4.2087791998689684e-7, - 4.941097719367e-7, - 6.371946909568025e-7, - 5.331520297514812e-7, - 4.891898747364295e-7, - 4.6364482976925053e-7, - 4.3959113364902366e-7, - 3.766901269645255e-7, - 3.666838123324357e-7, - 3.466327809288684e-7, - 2.863675754014271e-7, - 2.2670121693895236e-7, - 1.8785207054127681e-7, - 1.6693539662248498e-7, - 1.4632113552971756e-7, - 1.1672466846268269e-7, - 1.4693424538963383e-7, - 1.2629083028702505e-7, - 1.0296328051376224e-7, - 9.984263200111462e-8, - 1.0099401526400987e-7, - 1.0043027685711882e-7, - 1.3042591880204086e-7, - 1.3503366704473117e-7, - 1.2544017925028906e-7, - 1.1933505888437887e-7, - 1.178279438261188e-7, - 1.342328796005176e-7, - 1.8907526293259547e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.000001443703932042329, - 0.000001659599308505748, - 0.0000024882939971243687, - 0.00000211212731958763, - 0.0000017881041600000004, - 0.0000014524949558823539, - 0.0000012162848474280728, - 9.889518616021065e-7, - 8.633977313848293e-7, - 7.64154574122237e-7, - 6.586634519259043e-7, - 6.475382492333425e-7, - 7.036261546582215e-7, - 7.174256287425153e-7, - 7.06984710488358e-7, - 6.054754131847727e-7, - 4.962854136312113e-7, - 4.0472154940923883e-7, - 3.236309324399773e-7, - 2.795603339090387e-7, - 2.4282633018398804e-7, - 2.2625990080956876e-7, - 1.9119245237953043e-7, - 1.8370573532573624e-7, - 1.7086316901408475e-7, - 1.5486392241908425e-7, - 1.4924721340518196e-7, - 2.033226512968299e-7, - 1.847761234055977e-7, - 1.462810920501304e-7, - 1.1677122630230577e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.6116623091020153e-7, - 1.3630249415432593e-7, - 1.2059717010795531e-7, - 1.2512627518216878e-7, - 1.2636359987960246e-7, - 1.3408169475655408e-7, - 1.1687448275862063e-7, - 1.0143774118312249e-7, - 1.097256317689531e-7, - 8.016296296296287e-8, - 7.298105295378021e-8, - 7.965390988372085e-8, - 1.2957788712901755e-7, - 9.860797144556811e-8, - 7.599108200376226e-8, - 5.129489117096169e-8, - 4.2265614005928124e-8, - 3.265881097060274e-8, - 2.400723282532238e-8, - 3.162070602232742e-8, - 2.5476959133473384e-8, - 5.818545163492542e-8, - 2.130111132623427e-8, - 2.543400000000001e-8, - 3.857304297994271e-8, - 5.4270270259025225e-8, - 5.47769650038924e-8, - 3.592617391894744e-8, - 2.4559054383020638e-8, - 2.3593258114404083e-8, - 4.602871336723942e-8 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.408969438983727e-9, - 4.270177116665246e-9, - 4.108252740627019e-9, - 3.932449132356944e-9, - 3.75664552408687e-9, - 7.733160054634317e-9, - 6.834229856233073e-9, - 6.405033832949647e-9, - 6.215566394950684e-9, - 6.03415735444383e-9, - 5.239489117341617e-9, - 5.2057724436886705e-9, - 5.505640897827523e-9, - 5.131973831069966e-9, - 4.676504357871728e-9, - 4.325057313266147e-9, - 3.905401184714096e-9, - 3.2875313983098725e-9, - 2.676368661680895e-9, - 2.7554244939666614e-9, - 2.4120559545047458e-9, - 2.1311973385823745e-9, - 2.1360815174628945e-9, - 1.849287385152938e-9, - 1.7269938661114942e-9, - 1.762873351969901e-9, - 1.6393729495648629e-9, - 1.452386941402476e-9, - 1.3649456843505853e-9, - 1.2615138363047289e-9, - 1.2134588704824345e-9, - 3.02074773768641e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.116199731237098e-7, - 4.844567730210071e-7, - 4.32742498408586e-7, - 3.59455485183644e-7, - 4.6797704008585917e-7, - 3.4094273331864627e-7, - 3.0051981334393286e-7, - 2.7065659636185576e-7, - 1.7497356956091868e-7, - 1.7646472041414702e-7, - 1.5404500245226939e-7, - 1.9520582811543288e-7, - 1.5223937712064413e-7, - 1.0786337168849421e-7, - 7.688393723468558e-8, - 5.758744097043293e-8, - 4.8535355918142404e-8, - 3.6858394086379776e-8, - 3.025586631644541e-8, - 3.337427305901806e-8, - 2.598866450128802e-8, - 2.2489076778698605e-8, - 2.003165326511335e-8, - 1.72648706857139e-8, - 1.6539705547327048e-8, - 1.688617204896982e-8, - 1.576303434057671e-8, - 1.4988423760538804e-8, - 1.550216517023492e-8, - 1.4844854536834945e-8, - 1.4706478352689461e-8, - 6.851907622572419e-8 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0000015172576303373951, - 0.0000013564030816599355, - 0.0000012400081251006696, - 0.0000012581078527818626, - 0.0000010628259168554332, - 9.185174940377967e-7, - 7.864888203116026e-7, - 8.22216405262197e-7, - 7.322116291542993e-7, - 7.015272059461993e-7, - 7.202001952676583e-7, - 6.810006383992489e-7, - 6.113383942472969e-7, - 4.7647072770693075e-7, - 3.986682313403379e-7, - 3.647721755063334e-7, - 3.160946834188403e-7, - 2.622806222105539e-7, - 2.1436155902917733e-7, - 2.0453765429542155e-7, - 1.955764457880462e-7, - 1.7224936670580886e-7, - 1.6968176147360304e-7, - 1.4849429906573217e-7, - 1.3652643109395532e-7, - 1.4000817227592462e-7, - 1.2920130592393289e-7, - 1.1471268290617972e-7, - 1.0082455860051228e-7, - 9.414331075653675e-8, - 9.344078361041202e-8 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0000030263969376488668, - 0.00000310976495788822, - 0.000002951549236511853, - 0.000003180245045340405, - 0.000004767619364401696, - 0.0000038851829791723855, - 0.000003827301852956319, - 0.000004224131604540954, - 0.000003961659148916686, - 0.000003914097381258011, - 0.00000425115821498179, - 0.000003853668606279654, - 0.000003487096220578508, - 0.0000027055254024639083, - 0.0000022848484163777055, - 0.000002032512817438552, - 0.00000186477615101869, - 0.0000015249154020420242, - 0.0000012425543469309394, - 0.000001275682399793314, - 0.0000012565972697304225, - 0.0000011184282963124117, - 0.0000011072499876217348, - 0.0000010118048135419105, - 9.440702934279865e-7, - 0.0000010235858716200486, - 9.274532499258205e-7, - 8.171812962257552e-7, - 7.229405641237732e-7, - 6.996417427667814e-7, - 6.488332976454856e-7, - 0.0000017014551416885706 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.526519835895678e-7, - 4.082346196438239e-7, - 3.6584722833919203e-7, - 3.283634746937332e-7, - 3.1177891534740425e-7, - 2.778870809267944e-7, - 2.925137233332826e-7, - 2.821750584660613e-7, - 3.1223824261142144e-7, - 3.182424410406959e-7, - 3.1939323760835494e-7, - 3.6132424121082014e-7, - 3.838075519020601e-7, - 2.573999484339971e-7, - 2.0596807718933992e-7, - 1.8607775521442313e-7, - 1.7801567954903736e-7, - 1.5837552123554694e-7, - 1.5689009094425412e-7, - 1.3624134835361426e-7, - 9.750216835486455e-8, - 8.367060958366683e-8, - 8.558921120288997e-8, - 9.023263165397562e-8, - 9.260782966312134e-8, - 9.878290415364913e-8, - 1.0308248979861708e-7, - 8.592764937486491e-8, - 7.857384072660734e-8, - 7.974798346324023e-8, - 8.989032645923792e-8, - 1.6763028751992956e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.000007578550525027299, - 0.000007534992945222123, - 0.000007453029757416687, - 0.000007361699348147771, - 0.000007275520910683769, - 0.00000720058313897594, - 0.000007140164560536504, - 0.000007075999093511676, - 0.0000070019980439501955, - 0.000006896616802486062, - 0.000016469107551487414, - 0.000015394039735099338, - 0.00001450269687162891, - 0.000017220588235294117, - 0.000013696767001114828, - 0.000012343519494204426, - 0.000010025915996425379, - 0.000007874726875455208, - 0.000006081112398609502, - 0.00000579920814479638, - 0.000005047047047047047, - 0.000004155546288573811, - 0.0000035416787564469873, - 0.0000030920325679409163, - 0.0000030499260304583384, - 0.0000030123247496177422, - 0.0000028407322038750013, - 0.0000028315658632955036, - 0.0000027875207420642577, - 0.0000028494426958216158, - 0.0000029292252082180244 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.000010142978033959764, - 0.00002621039275565553, - 0.00003634912879878515, - 0.00003534904255483232, - 0.000034601920489501715, - 0.00003326295397044261, - 0.00002475471993822684, - 0.000020179261432905432, - 0.000017410929424232117, - 0.000014940914232428005, - 0.00001533641016130548, - 0.000015580982128896777, - 0.000014360393426539676, - 0.000012567044975067136, - 0.00001009982736651227, - 0.000008800091668009098, - 0.000007984949958278458, - 0.000006684053913448055, - 0.000005484065751266688, - 0.0000056516984421937525, - 0.000006145174152687052, - 0.000004579408259786422, - 0.000003955952126373374, - 0.0000037766460110913196, - 0.00000358973233666001, - 0.000003947158315285919, - 0.000005210270900128263, - 0.000004647069251198664, - 0.0000041036328481866044, - 0.000003916163003424998, - 0.000004260510536596969 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0000035446070487087634, - 0.0000037998537049420434, - 0.000003852540205026139, - 0.000002972905352233381, - 0.000005573411953517539, - 0.00000469176850976754, - 0.000004707063964029216, - 0.0000049411194167278225, - 0.000004796185775831568, - 0.000004731265492316787, - 0.000005207551114307751, - 0.000005034470651984738, - 0.000004442206763452869, - 0.000003452405128336424, - 0.0000029300631691115515, - 0.000002836567048184109, - 0.0000026436461613086974, - 0.000002312204064906994, - 0.0000019869641971561135, - 0.0000019668512402712758, - 0.0000019633191155570833, - 0.0000017410842902191212, - 0.0000017330090562940142, - 0.000001508540691771149, - 0.0000013695995971460851, - 0.000001502038191797189, - 0.00000140301431126359, - 0.0000012816304205718605, - 0.0000011305644155657915, - 0.0000011213235213969305, - 0.000001068486410005419, - 0.000002309160120369846 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.00001017736986958956, - 0.000011196250404199397, - 0.000011045544919268693, - 0.000019344157091384947, - 0.000016118089058596188, - 0.000012542262217151277, - 0.000010934979676555614, - 0.00001032791696551329, - 0.000010330808763499154, - 0.000009505695755440082, - 0.000008112009845574125, - 0.000007581767346450197, - 0.000005856426080721536, - 0.0000052948020837273105, - 0.000004043076881798549, - 0.0000031079106200082305, - 0.0000023031547134426465, - 0.000001962454986956646, - 0.0000015896842696720434, - 0.0000018288914087099232, - 0.0000014961518665364184, - 0.0000013403570028343522, - 0.0000011976710736773358, - 0.0000010787233971352426, - 0.000001009366831402451, - 0.0000011391808674764323, - 0.000001373077946800972, - 0.0000014762560528673685, - 0.0000013887820115931514, - 0.0000012207120335779256, - 0.0000012525671886410153, - 0.0000024009047181442676 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.000007858656156666707, - 0.0000069283225864655, - 0.000007071358872586188, - 0.000007592031197541392, - 0.000008343923919308352, - 0.0000070584731091244495, - 0.000006595400266344469, - 0.000006619497498830899, - 0.0000060428001850138745, - 0.0000057639531968240684, - 0.000008744087211122372, - 0.000008008037834870382, - 0.000006745016741025747, - 0.000005344579028593796, - 0.000004525541286535096, - 0.000003697831644403489, - 0.0000019255029595314114, - 0.0000015700516931342784, - 0.0000013425293845658436, - 0.000001454309070389111, - 0.0000011528616176219987, - 9.226608418840428e-7, - 8.584729920974035e-7, - 5.498778467564471e-7, - 6.146266830102929e-7, - 6.638590989110467e-7, - 5.686620079939765e-7, - 5.15210454701201e-7, - 4.517581717516422e-7, - 4.351781019704387e-7, - 4.2448608500282316e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.000011390154860969659, - 0.00001114887116027027, - 0.000010413078490674831, - 0.000009507991960982102, - 0.000008904113818537977, - 0.0000075442249695775765, - 0.000005859450523183385, - 0.000005353398248182548, - 0.000004899012866969055, - 0.000004524564492397634, - 0.000004112738892691864, - 0.000003843416236180096, - 0.0000035814762835989764, - 0.0000030753539415744483, - 0.0000026792489681549917, - 0.000002365207934641787, - 0.0000021502362892853535, - 0.0000018228810201242378, - 0.0000014889020716667342, - 0.000001253813125301571, - 0.0000010516912753450122, - 8.912922668734565e-7, - 8.147755190283453e-7, - 6.868637256427064e-7, - 5.655594337809818e-7, - 4.753928036591568e-7, - 3.969917366274414e-7, - 3.333174183142232e-7, - 2.870358146995625e-7, - 7.870807182502146e-7, - 7.443508765493914e-7, - 0.000001943655966223742 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.000007475790635812171, - 0.000008678547353751125, - 0.000007945676665145243, - 0.000008009705888639757, - 0.00000667641006508476, - 0.000005915952725157498, - 0.00000528477874043953, - 0.000004856257743563986, - 0.000004652688087412563, - 0.000004141060267161391, - 0.000003925847300458705, - 0.000003660092465999453, - 0.000003329135100183733, - 0.0000027203899027455646, - 0.0000022442252458758783, - 0.0000018636863727350094, - 0.0000015568833866565293, - 0.0000011465910767353082, - 0.0000011037591761249997, - 9.306680589815478e-7, - 7.003594292000151e-7, - 6.035561523786949e-7, - 5.634896403858827e-7, - 5.196216433697532e-7, - 4.4397421144193235e-7, - 4.0459827462936665e-7, - 3.4951006877829653e-7, - 2.855914487210947e-7, - 2.65168218719238e-7, - 2.3707578079339347e-7, - 2.4346928174223685e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.000004919312975439117, - 0.0000033116919568001184, - 0.000003226568361338364, - 0.0000024153425836302717, - 0.000003434944789203727, - 0.000002465161775756247, - 0.000001885432646429151, - 0.0000015714301421241428, - 0.000001414206644008455, - 0.0000012341521697646166, - 0.0000010571170276859758, - 9.529389817157881e-7, - 8.486171135690861e-7, - 7.286262637648489e-7, - 6.201701619025122e-7, - 4.819960229904561e-7, - 4.154333038956636e-7, - 3.552180334729207e-7, - 2.774630850773524e-7, - 2.598036918639099e-7, - 2.3814011323126808e-7, - 2.0407344381771936e-7, - 1.777307127369374e-7, - 1.619067405667888e-7, - 1.4887383083586615e-7, - 1.4328731699433482e-7, - 1.344189133742554e-7, - 1.2248197531156242e-7, - 1.1063004027907376e-7, - 1.0215666169432352e-7, - 9.67847423927464e-8, - 3.3576827436779714e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.8487017542652405e-7, - 3.1522467466710245e-7, - 2.612943046007073e-7, - 2.1250791162416403e-7, - 1.754253216917996e-7, - 1.4249277890295358e-7, - 1.2334791629119432e-7, - 1.405374414422827e-7, - 1.7327383139145746e-7, - 1.4515777857066206e-7, - 1.3583113057268254e-7, - 1.3335386462977268e-7, - 1.1187568700865102e-7, - 9.257904691289957e-8, - 7.660107335307937e-8, - 6.584669078146677e-8, - 5.294054598671254e-8, - 4.209665983972982e-8, - 3.5822269370673236e-8, - 3.492238632929367e-8, - 2.719691851839519e-8, - 2.356404790134452e-8, - 2.0716462456084795e-8, - 1.849485108892978e-8, - 1.8026734034229284e-8, - 1.7274013306673418e-8, - 1.5828581971752945e-8, - 1.3537648205164757e-8, - 1.1515737304814268e-8, - 1.0110905033860041e-8, - 1.0347983002730357e-8 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0000027088282430255227, - 0.0000023534325333360967, - 0.000002044678609459198, - 0.0000015779963730916602, - 0.0000013417271944643375, - 0.0000011176952085583282, - 9.484773897417808e-7, - 9.569685205054742e-7, - 0.0000020820143467038317, - 0.0000013727438937658955, - 0.0000011312377596616508, - 0.0000011336021190245864, - 9.069939981439596e-7, - 7.376077976928358e-7, - 6.971934999365367e-7, - 5.736936114879278e-7, - 4.3676872855068873e-7, - 3.569991314875326e-7, - 2.927530713799834e-7, - 2.6789721091344483e-7, - 1.8506830980232592e-7, - 1.5093915209842636e-7, - 1.415080705554839e-7, - 1.3685117464305448e-7, - 1.3446342159952187e-7, - 1.3331176792238725e-7, - 1.1793504620318044e-7, - 1.0367177720056437e-7, - 9.670320737067175e-8, - 8.656845383647148e-8, - 8.808664036306198e-8, - 3.500579000262405e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0000015949264042425231, - 0.0000015004381509937037, - 0.0000012435638570297445, - 0.0000011755313854984383, - 9.707727231310764e-7, - 8.200323650722598e-7, - 7.19972310176495e-7, - 7.13683177211126e-7, - 8.916220534090025e-7, - 7.70012809113077e-7, - 7.841070904615322e-7, - 8.267356744826008e-7, - 7.679999971960255e-7, - 7.355311140775295e-7, - 6.642489743983113e-7, - 5.778069458212116e-7, - 4.782658248463883e-7, - 3.856767157114892e-7, - 3.268390265799578e-7, - 3.335820213546265e-7, - 2.788806212691042e-7, - 2.4543059252524817e-7, - 2.163748078028149e-7, - 1.96324284523949e-7, - 1.8331788607077922e-7, - 1.7349215066327335e-7, - 1.620391198723805e-7, - 1.5224935453606583e-7, - 1.3944385878279593e-7, - 1.2442968008524604e-7, - 1.259926554426734e-7, - 3.662145573436159e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.121740918505631e-8, - 2.50205255172465e-8, - 2.1840923028253885e-8, - 1.849408432543428e-8, - 1.4548634284526921e-8, - 1.0951608713999083e-8, - 9.264637897169996e-9, - 8.981060450352751e-9, - 1.2041814594632743e-8, - 8.365616270439077e-9, - 6.520553119970339e-9, - 6.199121653053457e-9, - 4.897599348982909e-9, - 3.956071486150005e-9, - 3.168279352101934e-9, - 2.430203654340215e-9, - 1.9635081630248196e-9, - 1.6245754011204643e-9, - 1.6976356104768862e-9, - 1.7797706006324986e-9, - 1.4028899082360763e-9, - 1.2288315368038209e-9, - 1.1537610423749123e-9, - 1.0271410346523438e-9, - 9.020976649673556e-10, - 8.643901803017621e-10, - 7.966074010747837e-10, - 6.92776010239592e-10, - 6.139679924998125e-10, - 6.037217846564768e-10, - 5.739070815110063e-10, - 3.5814053016012328e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.339475733230583e-7, - 2.6717206472046473e-7, - 2.20650759857e-7, - 1.5317051290739285e-7, - 1.389980294174577e-7, - 1.9488776664591838e-7, - 1.6325300277104313e-7, - 1.2807208870912403e-7, - 1.1632621518990221e-7, - 9.749382703056494e-8, - 7.899486822039101e-8, - 7.064299578097261e-8, - 6.625770929459161e-8, - 6.709935962279098e-8, - 5.993552352184529e-8, - 5.126862575163756e-8, - 4.430138413244686e-8, - 3.947957326307944e-8, - 3.610846387124992e-8, - 4.303227606481935e-8, - 3.5421586413648717e-8, - 3.0707597881325255e-8, - 2.9200976096014067e-8, - 2.6607700576555302e-8, - 2.4881568063293877e-8, - 2.6912596422478165e-8, - 2.8157870403637462e-8, - 2.5177040121867088e-8, - 2.2913786024070136e-8, - 2.1184245438089806e-8, - 2.405495668824154e-8 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.964071642400473e-7, - 5.400117256234586e-7, - 5.363512068517899e-7, - 4.5294029980474144e-7, - 3.000648011944151e-7, - 1.930515605358817e-7, - 1.643693029463136e-7, - 1.4859153212102135e-7, - 1.4234159221924656e-7, - 1.9145421041234309e-7, - 1.6296482607368947e-7, - 1.767122851549248e-7, - 1.791680018475571e-7, - 1.5062508114466832e-7, - 1.1549265387265209e-7, - 7.963022249893081e-8, - 5.907315102297049e-8, - 4.335221698275549e-8, - 3.3252835278474096e-8, - 3.175112037061371e-8, - 2.2645389811851063e-8, - 1.822253296248294e-8, - 1.8582863142316995e-8, - 1.7920031150304826e-8, - 1.7556283237460683e-8, - 2.336240132169664e-8, - 2.456321513245646e-8, - 1.9579700701932032e-8, - 2.0636081376748e-8, - 2.058020046967739e-8, - 2.6065019107266878e-8, - 7.1605695166533e-8 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.2876331797974558e-7, - 9.489248098673039e-8, - 7.680014947819592e-8, - 7.17279588809391e-8, - 6.326134244872592e-8, - 6.028327909259229e-8, - 5.451410482647881e-8, - 4.836457134662073e-8, - 4.534898598670506e-8, - 4.592925441674926e-8, - 4.4190127681284996e-8, - 4.52257051862369e-8, - 1.2053333354661207e-7, - 8.945270577093662e-8, - 6.709060395464857e-8, - 5.392048222974049e-8, - 4.495236985188107e-8, - 3.562056790392108e-8, - 2.777700664674449e-8, - 2.9494575307496406e-8, - 2.2552836529817677e-8, - 1.740595835417264e-8, - 1.622946159868452e-8, - 1.535980770028979e-8, - 1.539368639320726e-8, - 1.2978578014830393e-8, - 1.313289316498927e-8, - 1.0743772570716245e-8, - 1.2390921050025678e-8, - 1.3486531596870858e-8, - 1.4690920792345428e-8 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0000014392064938638703, - 0.000001052692392395087, - 9.493886725436922e-7, - 9.195834000053056e-7, - 6.650092900110569e-7, - 5.185997222753468e-7, - 4.6093913543648527e-7, - 4.021495497240246e-7, - 3.8600780879042504e-7, - 3.90536857040251e-7, - 3.476681267443405e-7, - 3.186997770192902e-7, - 2.8093624144355457e-7, - 2.445044803437458e-7, - 2.0174122447188888e-7, - 1.6651195219123499e-7, - 1.3451681497634968e-7, - 1.0974740454123122e-7, - 8.730773647010823e-8, - 8.159043476588389e-8, - 6.254366218472866e-8, - 5.0337171413532246e-8, - 4.211285829835217e-8, - 3.803147587369102e-8, - 3.616227429255097e-8, - 3.647421841910204e-8, - 3.456039699352132e-8, - 3.020749895710539e-8, - 2.755030142963776e-8, - 2.589388623379624e-8, - 2.8265316846548233e-8, - 1.471033054446663e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.839810359585847e-7, - 2.507060430118006e-7, - 2.1686440437973497e-7, - 2.1426783718008907e-7, - 2.173106769525721e-7, - 1.6131464655845528e-7, - 1.7250419717150278e-7, - 1.3702837442995152e-7, - 1.240320895179044e-7, - 1.0779889425491108e-7, - 8.981505050511626e-8, - 8.356931691142951e-8, - 1.0818830712853319e-7, - 1.1739926100125591e-7, - 8.482626135726173e-8, - 6.360387246648614e-8, - 4.907413123837594e-8, - 3.8239479775973116e-8, - 2.7519882097121876e-8, - 2.6253258887033234e-8, - 2.2050276157557122e-8, - 2.7473899804633174e-8, - 2.288831626670629e-8, - 2.3651948133604236e-8, - 1.8305855523965517e-8, - 5.272112602738435e-8, - 6.613244038470751e-8, - 6.467778910392596e-8, - 6.334293263450291e-8, - 6.217921160987767e-8, - 6.127789826727577e-8 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.443305456019818e-7, - 5.185298740865575e-7, - 4.262655335594954e-7, - 3.647428957947561e-7, - 2.875152197488682e-7, - 2.4524556501182416e-7, - 2.2488653175064434e-7, - 1.9702884759748694e-7, - 2.052339743702815e-7, - 2.2551184896276025e-7, - 1.8719231852434414e-7, - 1.8311454662055955e-7, - 1.762706259437558e-7, - 1.750925465035158e-7, - 1.354953342050029e-7, - 1.0394234328289264e-7, - 8.925335123583596e-8, - 6.661110831866974e-8, - 5.402025150958757e-8, - 5.376125798905056e-8, - 4.170111149505562e-8, - 3.421468777412142e-8, - 2.9707108735692125e-8, - 2.777166223951219e-8, - 2.6866109661385456e-8, - 3.3719303020783085e-8, - 3.3854856060325403e-8, - 2.96616946947813e-8, - 2.6705708191307656e-8, - 2.656526280954349e-8, - 3.046003985037331e-8, - 8.446713287171788e-8 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.564908849344535e-8, - 5.7457602840911185e-8, - 8.835112391881656e-8, - 7.556122241400412e-8, - 6.009638017927968e-8, - 4.325564367615796e-8, - 3.8198569201982625e-8, - 3.341872985248864e-8, - 3.326900582628062e-8, - 3.4041117880519417e-8, - 3.040035528191812e-8, - 3.083970618541428e-8, - 2.958265451982947e-8, - 2.6188648750357183e-8, - 1.9403209125101117e-8, - 1.5313323939318987e-8, - 1.2009973008774783e-8, - 1.0690876698913247e-8, - 1.0370828294575319e-8, - 1.0801121975521717e-8, - 8.44248500863641e-9, - 7.1991502837666214e-9, - 6.678588294758908e-9, - 6.275496839538091e-9, - 6.517192481842377e-9, - 6.7030426802650464e-9, - 6.252990991792399e-9, - 5.407265343991901e-9, - 4.819006758450823e-9, - 4.921515476945935e-9, - 5.198860916371531e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.076444028942259e-7, - 1.6230616849489234e-7, - 1.3229731161546907e-7, - 1.1374467409149885e-7, - 1.0107959872717588e-7, - 9.08573162138435e-8, - 8.939562004632939e-8, - 8.077939907366715e-8, - 7.139591687015789e-8, - 6.446921225920073e-8, - 5.681504202504821e-8, - 4.9699006986847656e-8, - 4.5419394672651175e-8, - 4.2207625545917796e-8, - 3.8526441842466515e-8, - 3.5378107304557564e-8, - 3.090395341591648e-8, - 2.577674257493417e-8, - 2.2109137083969285e-8, - 2.1759131805373308e-8, - 1.744620728701282e-8, - 1.501311294336165e-8, - 1.3105618278983704e-8, - 1.1599682086521144e-8, - 1.0919631159790583e-8, - 9.779965368885859e-9, - 9.193329353996718e-9, - 8.807581731704305e-9, - 8.31462075069462e-9, - 7.741185821523027e-9, - 7.470059719210806e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.191197126884744e-9, - 5.841709389329129e-9, - 5.3494249598218006e-9, - 4.911818940392581e-9, - 4.4582061017373395e-9, - 4.103276167842687e-9, - 3.758521176813629e-9, - 3.4399082101916173e-9, - 3.183557184633019e-9, - 2.946318073690843e-9, - 2.7377150037089306e-9, - 2.6365971365417864e-9, - 2.5453486980108545e-9, - 2.428382594773045e-9, - 2.2780102346410743e-9, - 2.1295364074030292e-9, - 1.9967988366321194e-9, - 1.8863317618098906e-9, - 1.8207220743358215e-9, - 1.8132826800891065e-9, - 1.7029022285935295e-9, - 1.5984475058396966e-9, - 1.4931153316722496e-9, - 1.4056724445056492e-9, - 1.3173266594518446e-9, - 1.243043446631993e-9, - 1.1914595797278629e-9, - 1.1292034747289942e-9, - 1.0599237046065353e-9, - 1.0102072975995359e-9, - 1.023766013793709e-9, - 2.1148355754617078e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Mortality-infants=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.000003007125414775634, - 0.0000026825028020747087, - 0.0000022446866476376666, - 0.0000019877149076603977, - 0.0000014428555816780324, - 0.0000010244423839742871, - 8.107318798511127e-7, - 6.809248214801836e-7, - 5.946048338028639e-7, - 5.203943529191638e-7, - 4.3440901463144533e-7, - 3.6056409110371136e-7, - 2.9968854882956515e-7, - 2.4126537581679476e-7, - 1.8608461775631715e-7, - 1.4469988423926155e-7, - 1.0970477610216695e-7, - 7.799247016732649e-8, - 5.555963025217494e-8, - 4.625592603473821e-8, - 3.589389155677393e-8, - 2.6756008299937693e-8, - 2.1857591776626683e-8, - 1.7950021740969436e-8, - 1.5060688758513724e-8, - 1.3058383299072684e-8, - 1.1737626111909954e-8, - 9.753940456594096e-9, - 7.846666544021125e-9, - 6.9191479462252355e-9, - 6.076522204730734e-9 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Mortality-infants" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Health services use=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.6005307775786415e-11, - 5.309036956044761e-11, - 4.6549215943050873e-11, - 4.7903177513755024e-11, - 4.499757635158853e-11, - 3.8372375140977406e-11, - 3.9732988499707926e-11, - 4.485689723600196e-11, - 4.4315944638828375e-11, - 4.520522318876954e-11, - 5.093379241584606e-11, - 5.0991461989399526e-11, - 4.773638732250831e-11, - 3.9661957372775296e-11, - 3.5255184982333356e-11, - 3.4852794281693e-11, - 3.3132417280848387e-11, - 2.8965145379442756e-11, - 2.6492916218938808e-11, - 2.9087059889163762e-11, - 2.918642431365536e-11, - 2.6464763050542304e-11, - 2.8131764915440132e-11, - 2.6574715303325902e-11, - 2.551361514065247e-11, - 2.955244160353499e-11, - 2.8596286442935978e-11, - 2.688406681489958e-11, - 2.4947942615937783e-11, - 2.5518787366384415e-11, - 2.5796916554097998e-11, - 3.416966508330617e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Health services use=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 7.77316333300509e-11, - 7.77256800204262e-11, - 7.03944369825252e-11, - 7.457986106694537e-11, - 7.077232812131889e-11, - 6.161746781648974e-11, - 6.144169853435643e-11, - 6.790311014480684e-11, - 6.56342432464828e-11, - 6.607192164138115e-11, - 7.224675075178253e-11, - 7.161596136870389e-11, - 6.571258307627127e-11, - 5.3487844988059484e-11, - 4.654577577141295e-11, - 4.4907458175739054e-11, - 4.251538096420239e-11, - 3.7081134251821604e-11, - 3.3667838145476847e-11, - 3.6527344845210934e-11, - 3.729621006393551e-11, - 3.4432562274162283e-11, - 3.6760810205015894e-11, - 3.508445446285462e-11, - 3.4542581003413834e-11, - 4.0444430756324977e-11, - 3.9891721385278805e-11, - 3.801320553289286e-11, - 3.534601814568363e-11, - 3.6149910377410634e-11, - 3.75040648512915e-11, - 4.715980298074148e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Health services use=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.7862578872092966e-10, - 3.615289028915373e-10, - 3.4869630315134824e-10, - 4.655560861554667e-10, - 4.328698338023286e-10, - 3.708924161089787e-10, - 3.3982459268586594e-10, - 3.6973017842515404e-10, - 3.6609454437503636e-10, - 3.617358063904777e-10, - 3.763523307321137e-10, - 4.081872491703717e-10, - 3.708728439185955e-10, - 2.9608182194998727e-10, - 2.571034713564361e-10, - 2.5251032771874414e-10, - 2.341398873809059e-10, - 2.017024972182413e-10, - 1.914416049778901e-10, - 2.2709166687830126e-10, - 1.999891585467812e-10, - 1.7275914709599298e-10, - 1.7955709936995284e-10, - 1.690819306234484e-10, - 1.7053619395779024e-10, - 1.9652818851352627e-10, - 1.9253002630048533e-10, - 1.8352351454062568e-10, - 1.7875150340914087e-10, - 1.859732990903882e-10, - 1.8344890098715112e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Health services use=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 9.067078171161106e-11, - 8.673325849870219e-11, - 8.402299186358309e-11, - 9.338569459429043e-11, - 8.690873672021828e-11, - 7.361620582614563e-11, - 6.972739335988431e-11, - 6.355505690988428e-11, - 5.994859776650896e-11, - 5.879743092877693e-11, - 5.964042774282925e-11, - 6.030114591174693e-11, - 5.5562773413705114e-11, - 4.818786880937642e-11, - 4.093034698876844e-11, - 3.8951317082197354e-11, - 3.648178695119658e-11, - 3.1911187340713784e-11, - 3.372736360160921e-11, - 4.086058927727215e-11, - 3.9788832810099614e-11, - 3.7054657222249443e-11, - 3.645099266022807e-11, - 3.5356601107113644e-11, - 3.2105081442627225e-11, - 3.352277646942868e-11, - 3.639985706571466e-11, - 3.6720889831877034e-11, - 3.4166254121577707e-11, - 3.442837320426986e-11, - 3.5910868554207875e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Health services use=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.8619302081302617e-10, - 1.730930698213244e-10, - 1.5834669284942697e-10, - 1.9026490298290051e-10, - 1.8829721216732848e-10, - 1.625479965437714e-10, - 1.55470240094572e-10, - 1.693057325972788e-10, - 1.613389398371828e-10, - 1.5735120187474535e-10, - 1.669585458481672e-10, - 1.591230431483689e-10, - 1.4095452611518371e-10, - 1.1008656953683981e-10, - 9.34495748824477e-11, - 8.659234772795647e-11, - 7.9263102293102e-11, - 6.777687859420153e-11, - 6.122047638465399e-11, - 6.698319529108005e-11, - 7.025048259001703e-11, - 6.747027792363153e-11, - 7.54138820640777e-11, - 7.372232708211694e-11, - 7.285788303145572e-11, - 8.35599956843712e-11, - 8.103109246267935e-11, - 7.611523135591233e-11, - 7.030567115032643e-11, - 7.171597385195566e-11, - 7.795908049791572e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Health services use=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.0899054044211998e-9, - 2.0899054044211998e-9, - 2.0899054044211998e-9, - 2.0899054044211998e-9, - 2.0899054044211998e-9, - 4.2420664398977405e-9, - 4.002770730594434e-9, - 4.000111577600212e-9, - 3.73620097429074e-9, - 4.0700308008716764e-9, - 4.40277340636165e-9, - 4.1317980396411894e-9, - 3.5525908417351413e-9, - 2.7499098813257533e-9, - 2.293450358569676e-9, - 2.102508789311482e-9, - 1.892935916381699e-9, - 1.5905984237047605e-9, - 1.3614286418287833e-9, - 1.527246789902045e-9, - 1.5948053940339116e-9, - 1.5258944572743363e-9, - 1.6857852906305932e-9, - 1.6376194572637358e-9, - 1.6537260248897404e-9, - 1.9234660224829413e-9, - 1.845535523856076e-9, - 1.7173250252909177e-9, - 1.551007372530816e-9, - 1.551192263376603e-9, - 1.6880917661909465e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Health services use=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.4412465509074404e-9, - 1.1121539454081704e-9, - 1.0079836346099749e-9, - 9.900522112197058e-10, - 8.581885620519154e-10, - 6.682714393084138e-10, - 5.935968458801357e-10, - 5.967088485107415e-10, - 5.443499576300172e-10, - 5.592521389090041e-10, - 5.140151339528328e-10, - 4.673092759988933e-10, - 4.5157789923542415e-10, - 4.157478241932297e-10, - 3.576029301902423e-10, - 3.0017706513799187e-10, - 2.6861140083636237e-10, - 2.1733659056210072e-10, - 1.7600922852338464e-10, - 2.1512645100793055e-10, - 1.9856993270994785e-10, - 1.8164736736099188e-10, - 1.9387294133282872e-10, - 1.8682465746663792e-10, - 1.80707758769106e-10, - 2.0661621800502973e-10, - 2.1035528507899435e-10, - 1.8962148858907954e-10, - 1.7023487041869957e-10, - 1.6742550472069812e-10, - 1.6760965529034796e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Health services use=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.0058285091419329e-9, - 9.364525790148042e-10, - 8.471665155254403e-10, - 9.049030649841499e-10, - 8.444264965695741e-10, - 7.193368393513162e-10, - 6.750347093207072e-10, - 6.877850077473682e-10, - 6.817343834726285e-10, - 6.905282822748497e-10, - 7.474980193607295e-10, - 7.161820338709516e-10, - 6.323161603522097e-10, - 4.83485457813931e-10, - 4.06497405587053e-10, - 3.955918679954299e-10, - 3.5885058961567064e-10, - 3.0813712082277807e-10, - 2.763847162159098e-10, - 2.9720977842320526e-10, - 3.317361369303403e-10, - 3.4864323590800447e-10, - 4.080529333398557e-10, - 4.1378124776495626e-10, - 4.202398398259395e-10, - 5.057961472571625e-10, - 5.124543046311386e-10, - 4.953012721972217e-10, - 4.668097546935844e-10, - 4.825400167833353e-10, - 5.242335500883491e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Health services use=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.006481306110214e-10, - 5.753122624521091e-10, - 5.125429662671404e-10, - 5.251920808520708e-10, - 4.912462351821332e-10, - 4.1481344976981745e-10, - 4.2143528712198073e-10, - 4.698799662366135e-10, - 4.5810485438347635e-10, - 4.602150154848023e-10, - 5.068689205362449e-10, - 5.063065676631009e-10, - 4.664290859700363e-10, - 3.8127501003465313e-10, - 3.317101594459772e-10, - 3.1634655679382456e-10, - 2.97350062212304e-10, - 2.5692396450633857e-10, - 2.3142895610733443e-10, - 2.48874667368147e-10, - 2.548870271905098e-10, - 2.3161347895978448e-10, - 2.4421560962899967e-10, - 2.324094701110126e-10, - 2.2589701570621166e-10, - 2.6173889403588213e-10, - 2.5256538513697176e-10, - 2.3959313347997095e-10, - 2.196393014848081e-10, - 2.2465178279949253e-10, - 2.3074587595745e-10, - 3.182699370806246e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Health services use=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.0733190712538725e-10, - 2.9872679523442e-10, - 2.6954030514758287e-10, - 2.7671638063526024e-10, - 2.580462009063908e-10, - 2.1630059947267487e-10, - 2.171703716893519e-10, - 2.347172097563559e-10, - 2.2335910325251544e-10, - 2.188418022623901e-10, - 2.3487801015538194e-10, - 2.2714269436555618e-10, - 2.0681327110337104e-10, - 1.688957557173615e-10, - 1.4876394938943726e-10, - 1.428710248466907e-10, - 1.3337628041487407e-10, - 1.1533733832379493e-10, - 1.0279742290393532e-10, - 1.1225061342230898e-10, - 1.1542411642800173e-10, - 1.080232720862215e-10, - 1.1654613674272203e-10, - 1.1144769694829246e-10, - 1.095609917814333e-10, - 1.2766285549708602e-10, - 1.2463849971369783e-10, - 1.1718079076761803e-10, - 1.0689166098559257e-10, - 1.0733354130463233e-10, - 1.0689295305417134e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Health services use=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.658023084614034e-10, - 2.0606975267422189e-7, - 1.5177668247821178e-7, - 8.143312152921708e-8, - 2.1054156618088373e-8, - 6.51731798715181e-9, - 8.054142252563203e-9, - 4.046957447792741e-9, - 4.075900567328364e-9, - 2.27849359322655e-9, - 1.445485481850724e-9, - 1.9511477605358255e-9, - 2.164078356208903e-9, - 3.2813536567037872e-9, - 1.9821924499425855e-9, - 1.488761789367941e-9, - 1.1690726497677484e-9, - 8.774685884022587e-10, - 6.060519684671857e-10, - 7.307500283924986e-10, - 6.024282862301554e-10, - 4.593150096673133e-10, - 4.000023025193089e-10, - 3.797256593219746e-10, - 3.9842680932646947e-10, - 5.572104965920667e-10, - 5.693941632741922e-10, - 5.170936830627825e-10, - 4.331511268450608e-10, - 4.2311709517301187e-10, - 5.994935517820155e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Health services use=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.358614537149421e-8, - 1.4527458492975742e-8, - 1.3078470589995863e-8, - 1.397312811609155e-8, - 1.3560331898511136e-8, - 1.228816436821503e-8, - 1.1038331242064865e-8, - 8.851279123027533e-9, - 9.750870117153703e-9, - 8.068985391589613e-9, - 5.630665470408072e-9, - 5.701754385964925e-9, - 5.1642926054139845e-9, - 4.249209110117556e-9, - 3.1511877553847256e-9, - 2.245652133677996e-9, - 1.6425177450577802e-9, - 1.254514874962089e-9, - 8.675279980361451e-10, - 1.0225121212631964e-9, - 7.992180045286848e-10, - 5.960354038990951e-10, - 5.352359118436032e-10, - 5.032012582999791e-10, - 4.849082053873582e-10, - 6.182764156407865e-10, - 6.590559680141448e-10, - 6.20735846469503e-10, - 5.454497242184401e-10, - 5.669857755759066e-10, - 6.924662830092682e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Health services use=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.935284584747572e-9, - 1.903348216816781e-9, - 1.8090564272175567e-9, - 1.7639806235854158e-9, - 1.6545243574502761e-9, - 1.492489354808022e-9, - 1.3336968429211429e-9, - 1.2445834168439494e-9, - 1.2966314252607213e-9, - 1.161953612144445e-9, - 9.404273875131683e-10, - 9.49764440555139e-10, - 8.866461708941269e-10, - 7.830395362907361e-10, - 6.586743062003902e-10, - 5.390847056890562e-10, - 4.3836498507655257e-10, - 3.7804926906092404e-10, - 3.095079350565118e-10, - 3.856430945407533e-10, - 3.378880518584089e-10, - 2.7961810270767443e-10, - 2.621247302666889e-10, - 2.520493415910849e-10, - 2.442425761195718e-10, - 2.7531550694447256e-10, - 2.7653939499570285e-10, - 2.5641209882649416e-10, - 2.345032702935668e-10, - 2.3764142393357736e-10, - 2.76506566269796e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Health services use=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.436530418719026e-10, - 7.505421530923216e-10, - 7.239089191446578e-10, - 7.463390454850155e-10, - 7.341536523554775e-10, - 6.923192026277011e-10, - 6.254735678229665e-10, - 5.979573960161034e-10, - 6.761287675432765e-10, - 6.136594246044506e-10, - 5.194070865911286e-10, - 5.345755854718415e-10, - 5.191578172527636e-10, - 4.565961069561186e-10, - 3.8122289586974466e-10, - 3.0061530935302837e-10, - 2.62248655652984e-10, - 2.3786422570699835e-10, - 1.9054492969529033e-10, - 2.3105723133662786e-10, - 1.8789536986159624e-10, - 1.4800879471487728e-10, - 1.3512797636665135e-10, - 1.3333250359495358e-10, - 1.3175623004782107e-10, - 1.524682848330503e-10, - 1.548324492197178e-10, - 1.451648066577095e-10, - 1.2714205249708481e-10, - 1.2610867843104254e-10, - 1.4283309114123366e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Health services use=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.8995826792660985e-9, - 2.8995826792660985e-9, - 1.8438641541009502e-7, - 5.2415720742993625e-8, - 6.896157462471565e-8, - 3.404243603840548e-8, - 2.5908070684205523e-8, - 2.076924183157302e-8, - 1.8507840782467508e-8, - 1.7962218116287253e-8, - 1.1810871375211215e-8, - 1.1243556657551355e-8, - 1.0594531051853522e-8, - 9.33787593522255e-9, - 8.044037487751633e-9, - 5.456717214815258e-9, - 3.562205752485511e-9, - 2.336682360630913e-9, - 1.6319593490294287e-9, - 1.8567273067408963e-9, - 1.6020874149495362e-9, - 1.323834328529377e-9, - 1.2896507946913335e-9, - 1.246442411248582e-9, - 1.253809614254797e-9, - 1.811036411732403e-9, - 2.5383709906806574e-9, - 2.3522035557150782e-9, - 2.0403421885706435e-9, - 1.9954448585038156e-9, - 1.9314277167206036e-9, - 2.8995826792660985e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Health services use=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.791064179741274e-9, - 8.37117826921773e-9, - 7.680519163002074e-9, - 9.24770585066228e-9, - 1.1912634085084772e-8, - 1.1656879637205434e-8, - 8.580519835673636e-9, - 7.259453241714209e-9, - 7.848707604803118e-9, - 6.496992734025808e-9, - 4.68676671547378e-9, - 4.618756116924567e-9, - 4.288351379484699e-9, - 3.949539083439455e-9, - 3.3999187590289452e-9, - 2.8440109262598638e-9, - 2.5220964887132454e-9, - 2.2407639843638947e-9, - 1.8185753725187048e-9, - 1.9638881034875305e-9, - 1.6098267042452958e-9, - 1.5321931164857388e-9, - 1.427036294580318e-9, - 1.2589884350841054e-9, - 1.18514427083794e-9, - 1.2149526583843137e-9, - 1.6635439415717004e-9, - 1.960400701858885e-9, - 2.458884997444991e-9, - 2.9416723739140568e-9, - 2.968534446314629e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Health services use=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.167591007579306e-9, - 8.415008630974396e-9, - 7.6643559050843e-9, - 7.639305861843852e-9, - 7.387548494746262e-9, - 6.9145427140911235e-9, - 6.246900845709801e-9, - 6.026138375556796e-9, - 6.818550712365451e-9, - 6.120431005035635e-9, - 4.570347796390183e-9, - 4.583219413222853e-9, - 4.46372012057513e-9, - 4.1911857839337584e-9, - 3.69377418062972e-9, - 2.9693646066059822e-9, - 2.5017150978887224e-9, - 2.23118375118846e-9, - 1.5546191333921333e-9, - 1.9727278901316e-9, - 1.4804170529003606e-9, - 1.2515184410090682e-9, - 1.1183467943660424e-9, - 1.0950719821391595e-9, - 1.068462058923962e-9, - 1.2618219724926726e-9, - 1.3219880699749017e-9, - 1.2283406039801351e-9, - 1.085392964215552e-9, - 1.1278568102255214e-9, - 1.3426845200130093e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Health services use=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.3890250823211508e-9, - 1.8852860469184033e-9, - 1.7954475660521374e-9, - 1.7256176968895093e-9, - 2.0258714609845873e-9, - 2.0636519376364286e-9, - 1.836048246136005e-9, - 1.788943175106086e-9, - 1.7885669008294378e-9, - 1.77191308316011e-9, - 1.5418913023920348e-9, - 1.5482759772005024e-9, - 1.498101976531498e-9, - 1.256916492557499e-9, - 1.0026542139969805e-9, - 8.315284315513969e-10, - 7.353764985145066e-10, - 6.393636264945908e-10, - 5.060421608354305e-10, - 6.323069197976837e-10, - 5.395422541430657e-10, - 4.3591776262263717e-10, - 4.1659793002323775e-10, - 4.147070506635204e-10, - 4.0629454494738483e-10, - 5.226105612403732e-10, - 5.411687268823709e-10, - 5.082912606599216e-10, - 4.934118058259376e-10, - 5.01483414375166e-10, - 5.928277691544706e-10, - 7.752167654000039e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Health services use=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.194425065512317e-9, - 2.522585303303824e-9, - 2.2532979078050503e-9, - 2.024834219299658e-9, - 1.8172961777682293e-9, - 1.5677392021551649e-9, - 1.3945645651547803e-9, - 1.2024237804919152e-9, - 1.1118157801638597e-9, - 1.0397230079312533e-9, - 9.146263647085567e-10, - 9.47561733155004e-10, - 1.079493756549222e-9, - 1.1485453542514975e-9, - 1.1743161303226876e-9, - 1.0358897228339837e-9, - 8.668060625505887e-10, - 7.16178792888966e-10, - 5.755810191066436e-10, - 4.970407936884478e-10, - 4.306844875061329e-10, - 4.009176746432058e-10, - 3.400393933958317e-10, - 3.300907479915607e-10, - 3.125329598872774e-10, - 2.908866317134908e-10, - 2.890989947004872e-10, - 4.0898039846731967e-10, - 3.8730038439309025e-10, - 3.201091947416993e-10, - 2.6646069039947064e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Health services use=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.1620767167005843e-9, - 2.8563771704966074e-9, - 2.697345583177569e-9, - 2.9810396675665896e-9, - 3.1945634993380968e-9, - 3.577723321530626e-9, - 3.2774281418325114e-9, - 2.976999753077654e-9, - 3.353781299767699e-9, - 2.540249310411977e-9, - 2.3596702449771447e-9, - 2.6508270993396778e-9, - 4.420231670717367e-9, - 3.4512604367876265e-9, - 2.7402778771685356e-9, - 1.919948796785571e-9, - 1.6555813300135731e-9, - 1.3494349765628892e-9, - 1.0468574827239386e-9, - 1.4491644229552186e-9, - 1.2230707669233446e-9, - 2.6388940734631193e-9, - 1.1198087514274928e-9, - 1.4014295579179236e-9, - 2.2339910340492082e-9, - 3.3053247972960543e-9, - 3.5158140987864517e-9, - 2.4312898293465174e-9, - 1.7508021031563538e-9, - 1.7681697998587492e-9, - 3.623522030022573e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Health services use=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.625772826479231e-10, - 4.625772826479231e-10, - 4.625772826479231e-10, - 4.625772826479231e-10, - 4.625772826479231e-10, - 9.938423855778408e-10, - 9.074751011052085e-10, - 8.71313016078919e-10, - 8.619569147151689e-10, - 8.533699191462868e-10, - 7.549695901967366e-10, - 7.644306314040887e-10, - 8.254334179651459e-10, - 7.871125201589239e-10, - 7.376190119209611e-10, - 7.009817232394774e-10, - 6.487377264527e-10, - 5.581547266200024e-10, - 4.6144288054813136e-10, - 4.808768788848267e-10, - 4.2615830309358604e-10, - 3.812305143207952e-10, - 3.8692850352786856e-10, - 3.3988666356215297e-10, - 3.215305126988556e-10, - 3.331567931769553e-10, - 3.133554982429483e-10, - 2.8136652483126034e-10, - 2.6752479379565603e-10, - 2.5118097115822283e-10, - 2.4551425886920726e-10, - 4.625772826479231e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Health services use=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.175490035877278e-10, - 6.202182045966404e-10, - 5.872176199264224e-10, - 5.164573990479806e-10, - 7.119892168926945e-10, - 5.490130500154697e-10, - 5.127411969322602e-10, - 4.901633809483836e-10, - 3.3717749079428845e-10, - 3.62929979777626e-10, - 3.154764796148162e-10, - 4.297174031483777e-10, - 3.6416068737464887e-10, - 2.805840514017043e-10, - 2.1775035752300665e-10, - 1.773230238471881e-10, - 1.6248243471260825e-10, - 1.3389643311865647e-10, - 1.1931832909598965e-10, - 1.4264673114845643e-10, - 1.2006323535950206e-10, - 1.1200450737898014e-10, - 1.0741840153762589e-10, - 9.941236536558997e-11, - 1.020591386835646e-10, - 1.1156548468871368e-10, - 1.1154924475785461e-10, - 1.1360468641422958e-10, - 1.260747964956305e-10, - 1.2968780395920195e-10, - 1.378210733668043e-10, - 1.8381275557341052e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Health services use=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.5768106617211978e-9, - 2.4087808737536153e-9, - 2.3069106625041986e-9, - 2.4567133741275603e-9, - 2.1842524814255487e-9, - 1.992514904285824e-9, - 1.8018027820721533e-9, - 1.986531479720919e-9, - 1.8602118696736444e-9, - 1.8679951469517214e-9, - 1.7437067527889014e-9, - 1.7368249402459728e-9, - 1.6509085736260958e-9, - 1.3625701159070635e-9, - 1.2103870458476922e-9, - 1.173785311947397e-9, - 1.079949549712262e-9, - 9.498662878594116e-10, - 8.218495092338931e-10, - 8.285861263662155e-10, - 8.358866357229346e-10, - 7.779554221125409e-10, - 8.121083908482158e-10, - 7.558282541380688e-10, - 7.419863391645071e-10, - 8.165007212471881e-10, - 8.086781368616855e-10, - 7.701842453462637e-10, - 7.23168457622834e-10, - 7.201795089625303e-10, - 7.605175952886944e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Health services use=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.382332957905485e-9, - 6.5017563845286415e-9, - 6.071134908130815e-9, - 6.4022399676394375e-9, - 9.369507694325325e-9, - 7.456379265646065e-9, - 7.191109691452531e-9, - 7.807958431908981e-9, - 7.250915695289089e-9, - 7.1549810091477175e-9, - 6.231547835088464e-9, - 5.903269025379386e-9, - 5.612488503350964e-9, - 4.594322712092321e-9, - 4.097620717974876e-9, - 3.841530806150171e-9, - 3.7005382786267382e-9, - 3.1642783289479565e-9, - 2.6860337842131902e-9, - 2.8647857275176337e-9, - 2.929927651934589e-9, - 2.7062201397634698e-9, - 2.784644568682623e-9, - 2.6505065109530623e-9, - 2.5813482374818356e-9, - 2.9288654200627544e-9, - 2.784210931023391e-9, - 2.5699804348180135e-9, - 2.375101071329826e-9, - 2.3960684861695086e-9, - 2.303843517717136e-9, - 3.7104388292246892e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Health services use=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.963529503174617e-10, - 5.55979311747353e-10, - 5.121696513415733e-10, - 4.681491677517137e-10, - 4.488880562978082e-10, - 4.012571375209792e-10, - 4.2214739726453184e-10, - 4.078076977972397e-10, - 4.5044345228005265e-10, - 4.548016674825738e-10, - 3.8718652268956715e-10, - 4.4161587690209603e-10, - 4.715208204796504e-10, - 3.1430915428615113e-10, - 2.4618178124400255e-10, - 2.2160882436192542e-10, - 2.1407208250214456e-10, - 1.983684375735744e-10, - 2.1220974761933264e-10, - 2.0649156917884193e-10, - 1.6553058097684209e-10, - 1.5292910941593314e-10, - 1.6355445025043704e-10, - 1.7963605420928869e-10, - 1.9141925479175114e-10, - 2.1318561210008225e-10, - 2.313070746440248e-10, - 1.9863967457557156e-10, - 1.8941504648246056e-10, - 1.9999372270533077e-10, - 2.339438323046963e-10, - 2.606404658363992e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Health services use=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.470395329910185e-9, - 7.470395329910185e-9, - 7.470395329910185e-9, - 7.470395329910185e-9, - 7.470395329910185e-9, - 7.470395329910185e-9, - 7.470395329910185e-9, - 7.470395329910185e-9, - 7.470395329910185e-9, - 7.470395329910185e-9, - 1.5069375594965674e-8, - 1.4931122317880793e-8, - 1.498147991370011e-8, - 1.905203703208556e-8, - 1.6295538428093645e-8, - 1.579150271865121e-8, - 1.3597103458445041e-8, - 1.12450753605244e-8, - 9.072279971031286e-9, - 8.979260837104072e-9, - 8.052591501501501e-9, - 6.79735654295246e-9, - 5.9133047083156915e-9, - 5.260033552833863e-9, - 5.24326136235403e-9, - 5.30201536332104e-9, - 5.091535368381232e-9, - 5.158747792567171e-9, - 5.164282203329319e-9, - 5.439261443371205e-9, - 5.674010140860839e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Health services use=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.398811486538842e-9, - 6.15396843326148e-9, - 8.469796346937287e-9, - 8.191775708858846e-9, - 7.995518192172269e-9, - 7.710503847538402e-9, - 5.797517924618973e-9, - 4.8097813263345996e-9, - 4.24779378754046e-9, - 3.7413553533194925e-9, - 1.616322748732735e-9, - 1.907617657673744e-9, - 2.0230489442927557e-9, - 2.0128019918946674e-9, - 1.8223408959671972e-9, - 1.7725847301100844e-9, - 1.7863532253904002e-9, - 1.6898472503853663e-9, - 1.5162838713507253e-9, - 1.7159987394230593e-9, - 1.9696566045513514e-9, - 1.621472546772729e-9, - 1.515881646358075e-9, - 1.547746293645862e-9, - 1.567912739142022e-9, - 1.8369856712276748e-9, - 2.583984761016527e-9, - 2.45150705898067e-9, - 2.2893120324986558e-9, - 2.313103821398599e-9, - 2.653804320132081e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Health services use=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.306327858695573e-9, - 3.438771336239563e-9, - 3.372802582840968e-9, - 2.516140428389665e-9, - 4.573542408827732e-9, - 3.747497996073123e-9, - 3.6702186163611314e-9, - 3.773657166460238e-9, - 3.603752380879766e-9, - 3.520346087277346e-9, - 3.5521068727835417e-9, - 3.4295627210639267e-9, - 3.028134501702939e-9, - 2.3775209276971636e-9, - 2.036578509472833e-9, - 1.9843414059340045e-9, - 1.8693892559237093e-9, - 1.6494403619181574e-9, - 1.4378171560529914e-9, - 1.4403382159256133e-9, - 1.4766698449370566e-9, - 1.3388038208792901e-9, - 1.3729329160712686e-9, - 1.239171065304888e-9, - 1.1595719144619272e-9, - 1.3223378938864518e-9, - 1.2715195212986865e-9, - 1.2022781563184616e-9, - 1.095924850230023e-9, - 1.114628164794742e-9, - 1.0937808187507935e-9, - 1.8382239320313236e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Health services use=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.449935510722927e-10, - 7.095653788192721e-10, - 7.292142200923935e-10, - 1.2558548196891504e-9, - 1.0301390733606701e-9, - 7.909847739897936e-10, - 6.823726550278538e-10, - 6.399949507457761e-10, - 6.382812162290832e-10, - 5.870171027724793e-10, - 4.125194021515849e-10, - 3.87879547598891e-10, - 3.0699139451312604e-10, - 2.8468766767368976e-10, - 2.2340215358916683e-10, - 1.7650431119255278e-10, - 1.3437392196121247e-10, - 1.174884560329977e-10, - 9.738186315477371e-11, - 1.1441829603742676e-10, - 9.536494196370756e-11, - 8.692930384569937e-11, - 7.894854881882958e-11, - 7.221720607275505e-11, - 6.865408348710464e-11, - 7.87728322633661e-11, - 9.682938427658807e-11, - 1.0655412078563783e-10, - 1.0300501079520815e-10, - 9.329565301557864e-11, - 9.882761158251751e-11, - 1.521579818543575e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Health services use=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.5338076948592727e-9, - 2.262098384003692e-9, - 2.326514719984388e-9, - 2.5010722040971635e-9, - 2.740723704834983e-9, - 2.3080771637885082e-9, - 2.1517043100025964e-9, - 2.1653415002665622e-9, - 1.9946663022090873e-9, - 1.9330678276845158e-9, - 1.487115154580132e-9, - 1.415100558089186e-9, - 1.3404253157562116e-9, - 1.1822637931472218e-9, - 1.1028731196105894e-9, - 9.846129057725178e-10, - 5.565580178151394e-10, - 4.908299630812183e-10, - 4.535842249554137e-10, - 5.313945550925861e-10, - 4.561651243727694e-10, - 3.9514550586637683e-10, - 3.9765301952632213e-10, - 2.7520877849825263e-10, - 3.318100720523064e-10, - 3.8609038848741426e-10, - 3.557880483334579e-10, - 3.4598368545111076e-10, - 3.2430253859500416e-10, - 3.33047640834782e-10, - 3.4585853389808217e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Health services use=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.2329947173077743e-9, - 1.2585191962021674e-9, - 1.2286966445613533e-9, - 1.1746963052003155e-9, - 1.153749861503073e-9, - 1.0269068478611886e-9, - 8.389719984487538e-10, - 8.075685716395014e-10, - 7.794524594937326e-10, - 7.599015947194327e-10, - 4.437267534647981e-10, - 4.659023109565901e-10, - 4.870457296687924e-10, - 4.678486331085594e-10, - 4.5509593312679015e-10, - 4.4920989480279884e-10, - 4.561439291576031e-10, - 4.311601312369213e-10, - 3.916792409712093e-10, - 3.654682565060019e-10, - 3.3840957663603663e-10, - 3.1535127114415904e-10, - 3.158058986090701e-10, - 2.910547697700595e-10, - 2.613768777594194e-10, - 2.394513564062974e-10, - 2.1780591930259337e-10, - 1.9914392009627026e-10, - 1.8690665100496636e-10, - 5.582070532569994e-10, - 5.737354649901299e-10, - 4.126870971683654e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Health services use=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.3293885448430748e-10, - 1.5797756456365777e-10, - 1.4805460072374236e-10, - 1.5277906083023605e-10, - 1.3038120236230984e-10, - 1.1843664042549445e-10, - 1.0860499872292765e-10, - 1.0260613786295544e-10, - 1.0127075936320636e-10, - 9.300062175371333e-11, - 3.205599825172634e-11, - 3.624327958098323e-11, - 3.941026986752569e-11, - 3.786221822454941e-11, - 3.6295787627913247e-11, - 3.471987347813685e-11, - 3.322730870731273e-11, - 2.7956332633304824e-11, - 3.0697157140561414e-11, - 2.9512937425116576e-11, - 2.531399533580744e-11, - 2.4817310837617253e-11, - 2.6309972306406318e-11, - 2.7436079471999593e-11, - 2.6389173578963007e-11, - 2.6950812068664387e-11, - 2.596650041359318e-11, - 2.356939727235052e-11, - 2.4215792418187323e-11, - 2.3805856991507627e-11, - 2.6790190111357744e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Health services use=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.0986327239032562e-8, - 7.396018861562772e-9, - 7.205911893338742e-9, - 5.394197147166441e-9, - 4.365637335560006e-9, - 3.4288241895911846e-9, - 2.8835343057855833e-9, - 2.6486907962265196e-9, - 2.613072479539346e-9, - 2.4787863458910944e-9, - 1.6654698522682392e-9, - 1.6482938199732127e-9, - 1.5919378864141192e-9, - 1.4600907598084638e-9, - 1.3134365228754376e-9, - 1.069538286163661e-9, - 9.583100403663061e-10, - 8.468356530359271e-10, - 6.809058133474864e-10, - 6.548925721261561e-10, - 6.154405016428214e-10, - 5.404870135103007e-10, - 4.823053426629216e-10, - 4.499101487509512e-10, - 4.2374384673910913e-10, - 4.1791320154030335e-10, - 4.02379491252977e-10, - 3.7680884682288923e-10, - 3.5081789545993415e-10, - 3.3486453900490635e-10, - 3.291303649781734e-10, - 7.49873032496089e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Health services use=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.11876701289857e-9, - 9.71947885041862e-10, - 8.566760575767528e-10, - 7.407829099037239e-10, - 6.509185108877163e-10, - 5.640341906624689e-10, - 5.216431007141532e-10, - 6.35761159778471e-10, - 8.399255201080388e-10, - 7.537673480658801e-10, - 7.311638902939604e-10, - 7.705045909324845e-10, - 6.922442236309905e-10, - 6.123802016754336e-10, - 5.410380094309844e-10, - 4.956609741539916e-10, - 4.245053285230187e-10, - 3.591758139545412e-10, - 3.251837879315869e-10, - 3.3747099855878283e-10, - 2.7965238215198524e-10, - 2.5814518796319927e-10, - 2.4163661097345556e-10, - 2.2935977145611863e-10, - 2.3752642030002666e-10, - 2.4197500280113835e-10, - 2.3576030878541375e-10, - 2.1428599778708053e-10, - 1.9368944676537816e-10, - 1.8083237990405079e-10, - 1.9677936405321846e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Health services use=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.801799308832882e-10, - 5.280369215019312e-10, - 4.80998038983e-10, - 3.897348640556815e-10, - 3.4812580419484115e-10, - 3.046559234126098e-10, - 2.70839630117731e-10, - 2.854276045717631e-10, - 6.451921669937718e-10, - 4.3985803942086296e-10, - 2.3052884242439716e-10, - 2.5073271555112627e-10, - 2.1695350820591562e-10, - 1.903993028481689e-10, - 1.8292777291404757e-10, - 1.7243156008601263e-10, - 1.416211510918483e-10, - 1.2492632980383512e-10, - 1.1050989729507355e-10, - 1.0897151039824929e-10, - 8.108950176565894e-11, - 7.128946354937353e-11, - 7.202753656276102e-11, - 7.516154962944745e-11, - 7.979611026019607e-11, - 8.54974719900587e-11, - 8.170371353228602e-11, - 7.748284591636595e-11, - 7.797018673348485e-11, - 7.493230834395118e-11, - 8.168999872034772e-11, - 1.2634870663960686e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Health services use=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.3787829928036912e-9, - 1.344810908108818e-9, - 1.1525538733840685e-9, - 1.1225621375881584e-9, - 9.51895636973995e-10, - 8.227374123722586e-10, - 7.357778769565875e-10, - 7.400147797498386e-10, - 9.34860959005851e-10, - 8.131697549871674e-10, - 7.296648791350831e-10, - 7.787013179995647e-10, - 7.337690144137319e-10, - 7.154121593177485e-10, - 6.597377643036886e-10, - 5.872722729703457e-10, - 4.97394895321384e-10, - 4.149865278892019e-10, - 3.632846435979039e-10, - 3.821518192687683e-10, - 3.289259179750965e-10, - 2.9829699590809743e-10, - 2.718554500510526e-10, - 2.5555504395720307e-10, - 2.484532266280604e-10, - 2.456492097298036e-10, - 2.4058025192542173e-10, - 2.3758561552985914e-10, - 2.2903409558480687e-10, - 2.1453956031791567e-10, - 2.275476537446789e-10, - 4.1249329215002565e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Health services use=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.5282446128723173e-10, - 3.023724145708635e-10, - 2.812148777393969e-10, - 2.546158023998668e-10, - 2.1564978927606864e-10, - 1.764594405400867e-10, - 1.6385444584360142e-10, - 1.7547730981590093e-10, - 2.608164030353698e-10, - 2.0095768956839773e-10, - 1.735574426396151e-10, - 1.8259563042867324e-10, - 1.5942706214137076e-10, - 1.423047297176261e-10, - 1.260755810625521e-10, - 1.0696318901145314e-10, - 9.494720324104543e-11, - 8.527911387716454e-11, - 9.547502792672092e-11, - 1.0592808180154194e-10, - 8.739452002413281e-11, - 7.977862740500323e-11, - 7.820203716216662e-11, - 7.292911180440168e-11, - 6.734816436105888e-11, - 6.819700028887212e-11, - 6.663275567683166e-11, - 6.155040850985014e-11, - 5.794549415574055e-11, - 6.05188777546305e-11, - 6.101578221861795e-11, - 1.0692222957718023e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Health services use=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.2551019613813015e-10, - 2.7157167128892055e-10, - 2.3417024837855643e-10, - 1.6983139586350041e-10, - 1.6111893154261243e-10, - 2.361756928168871e-10, - 2.0692397785025087e-10, - 1.6994087459949414e-10, - 1.615201539286689e-10, - 1.4167951916420777e-10, - 1.0891019317286715e-10, - 1.0301798840480238e-10, - 1.0205811460676366e-10, - 1.0918770757943141e-10, - 1.0285755495924455e-10, - 9.262219978107984e-11, - 8.414946691534882e-11, - 7.872444545980273e-11, - 7.536858446125724e-11, - 9.381104213147005e-11, - 8.054539973214672e-11, - 7.281699889389344e-11, - 7.219259610636037e-11, - 6.861960653931348e-11, - 6.704348863981903e-11, - 7.587161162065218e-11, - 8.310637346269657e-11, - 7.795190212691104e-11, - 7.447744929950539e-11, - 7.226580175561297e-11, - 8.606266492605869e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Health services use=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.0927890938113963e-10, - 2.3867025865916575e-10, - 2.4915794226179507e-10, - 2.2202435600060266e-10, - 1.5564393858239319e-10, - 1.0628765146301941e-10, - 9.615250620596696e-11, - 9.258382637305195e-11, - 9.467360284124208e-11, - 1.3636573597096765e-10, - 1.1157068190882547e-10, - 1.3221438838075431e-10, - 1.4697660805933547e-10, - 1.3580805665841662e-10, - 1.1458652556593113e-10, - 8.699175603899887e-11, - 7.081167835903323e-11, - 5.675697354849449e-11, - 4.7264691958438964e-11, - 4.859430527437072e-11, - 3.705758431193023e-11, - 3.16114795304143e-11, - 3.388823103601447e-11, - 3.4122394680038914e-11, - 3.4694268599203464e-11, - 4.77402003771052e-11, - 4.8371425228243544e-11, - 4.248962146840981e-11, - 4.6162548330738096e-11, - 4.755439446581471e-11, - 6.234955170487123e-11, - 6.54106290708117e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Health services use=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.466657286283957e-10, - 4.818033949385022e-10, - 3.995291969777144e-10, - 3.861074188063472e-10, - 3.550642188790992e-10, - 3.542499421417531e-10, - 3.358729247711427e-10, - 3.1212198535211585e-10, - 3.0576440072231664e-10, - 3.2239970834195213e-10, - 3.068933884932905e-10, - 3.265774759836135e-10, - 9.033543129534582e-10, - 6.960568493729906e-10, - 5.425556120153938e-10, - 4.521757946318294e-10, - 3.886874113597772e-10, - 3.1620924348608746e-10, - 2.5292623970096436e-10, - 2.762207500228444e-10, - 2.1835775045696664e-10, - 1.754683602449746e-10, - 1.7134262531801851e-10, - 1.7030745099225124e-10, - 1.7951089145144497e-10, - 1.5964378727085525e-10, - 1.7114319756722788e-10, - 1.4201936215088157e-10, - 1.7416976731837753e-10, - 2.0225976581962837e-10, - 2.348074415258582e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Health services use=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.6986215946159765e-9, - 2.0753814001950384e-9, - 1.9816226641021478e-9, - 2.0461495688642264e-9, - 1.5879754271251719e-9, - 1.336858094625823e-9, - 1.2899280675775571e-9, - 1.2257038081113314e-9, - 1.284139726638495e-9, - 1.420112357089164e-9, - 1.2223549656635969e-9, - 1.2327411803001964e-9, - 1.1869400056740372e-9, - 1.1218074294506427e-9, - 9.995871142298023e-10, - 8.885824257848602e-10, - 7.71867901265004e-10, - 6.777331641977115e-10, - 5.807544314767697e-10, - 5.855555932432017e-10, - 4.845317952508268e-10, - 4.204154554539405e-10, - 3.785941441403258e-10, - 3.661248474988869e-10, - 3.703897903851311e-10, - 3.955690353593283e-10, - 3.9493850265826253e-10, - 3.6249313192761764e-10, - 3.46794407952789e-10, - 3.4089084525253285e-10, - 3.8896591626899913e-10, - 6.496753907210158e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Health services use=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.9410859227727206e-9, - 1.7640023917564231e-9, - 1.5617665194363631e-9, - 1.5705234149211115e-9, - 1.6147836230499945e-9, - 1.2186575008801895e-9, - 1.3372442892411794e-9, - 1.0989005364913624e-9, - 1.032872694848308e-9, - 9.628138822010486e-10, - 8.053006962182925e-10, - 7.675383775818497e-10, - 1.0155007306233412e-9, - 1.1281128569982307e-9, - 8.388676646225422e-10, - 6.358958993687432e-10, - 5.062008227214053e-10, - 4.0469144046260317e-10, - 2.9617932531474465e-10, - 2.843081081138319e-10, - 2.389236642633008e-10, - 2.974088971387762e-10, - 2.473372264688914e-10, - 2.5468078617716417e-10, - 1.96263655218386e-10, - 5.410804432923823e-10, - 5.421167325293799e-10, - 5.431530217093321e-10, - 5.441893108892845e-10, - 5.45225600126282e-10, - 5.462618893062343e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Health services use=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.76199023619175e-9, - 1.7142826753216238e-9, - 1.4430380817255316e-9, - 1.2686963796219993e-9, - 1.0317895783845814e-9, - 9.112885088903916e-10, - 8.676484754606019e-10, - 7.903732358870763e-10, - 8.563350065820079e-10, - 9.781248169884444e-10, - 7.488355127269984e-10, - 7.71405147571439e-10, - 7.831704100548666e-10, - 8.207892207677918e-10, - 6.716477018904849e-10, - 5.465794825206579e-10, - 4.983672770724105e-10, - 3.952637782623785e-10, - 3.4041907721848353e-10, - 3.588328470727396e-10, - 2.9430446551505315e-10, - 2.546085275367512e-10, - 2.3244949914858272e-10, - 2.280965771323824e-10, - 2.3115594754421192e-10, - 3.033629907606948e-10, - 3.1809393658573164e-10, - 2.9144349145390296e-10, - 2.747657967614331e-10, - 2.867831290597078e-10, - 3.4512768997035563e-10, - 4.4647447810442977e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Health services use=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.9251080476471516e-9, - 2.5601223158680083e-9, - 2.1073233285345315e-9, - 1.964829110831791e-9, - 1.6990769213955242e-9, - 1.3187960875187344e-9, - 1.2411869643542904e-9, - 1.140188438477978e-9, - 1.187359046856216e-9, - 1.2885035322919606e-9, - 1.1847257303573554e-9, - 1.3073339777293365e-9, - 1.3382292454940873e-9, - 1.2400694021526266e-9, - 9.503103767091954e-10, - 7.705927311501571e-10, - 6.152228944676845e-10, - 5.512502738453037e-10, - 5.353514608634122e-10, - 5.605736810065083e-10, - 4.443274635771557e-10, - 3.867784502513783e-10, - 3.6697420623318236e-10, - 3.5377873182306623e-10, - 3.797626703538863e-10, - 4.073723575834196e-10, - 3.9796542037302164e-10, - 3.609656531762884e-10, - 3.360534611349196e-10, - 3.579283845073045e-10, - 3.9535063496776505e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Health services use=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.6793576774354518e-8, - 1.3329069941949514e-8, - 1.1200277248478432e-8, - 1.000949660790048e-8, - 9.146718383585337e-9, - 8.28422390521021e-9, - 8.213408178270677e-9, - 7.603859753221767e-9, - 7.009490887320128e-9, - 6.7289068495549184e-9, - 6.2415650512951e-9, - 5.880803358669746e-9, - 5.681336770992546e-9, - 5.466724886064934e-9, - 5.08543275223545e-9, - 4.733308606215849e-9, - 4.185116567896001e-9, - 3.5436055915478364e-9, - 3.0992903664627575e-9, - 3.1132506978433213e-9, - 2.5482832743920074e-9, - 2.2496440055667573e-9, - 2.0415510691867196e-9, - 1.8967912880694942e-9, - 1.8618446210219675e-9, - 1.7193471564270128e-9, - 1.6522813380365365e-9, - 1.6097008776658906e-9, - 1.5633816795275019e-9, - 1.5256658123584157e-9, - 1.5831836590791148e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Health services use=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.6739814708402783e-11, - 1.620978151635404e-11, - 1.5309343479172716e-11, - 1.4554358377543125e-11, - 1.3698187576129523e-11, - 1.3066126339952242e-11, - 1.2364724036069787e-11, - 1.1637574105759337e-11, - 1.1014446435380874e-11, - 1.0365009468276734e-11, - 9.74245715975222e-12, - 9.439091464862475e-12, - 9.133019695644153e-12, - 8.717067026455553e-12, - 8.177848714168804e-12, - 7.661620251677376e-12, - 7.230137528065253e-12, - 6.911311400664172e-12, - 6.788697958718883e-12, - 6.912677561532264e-12, - 6.660913485860101e-12, - 6.423709937360737e-12, - 6.162967424730036e-12, - 5.94599137737764e-12, - 5.693098014966648e-12, - 5.470110755251694e-12, - 5.32126704770664e-12, - 5.1031097513910705e-12, - 4.8376405259711515e-12, - 4.651469662610051e-12, - 4.757289006888264e-12, - 7.692986303007575e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Health services use=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.0815454256714866e-10, - 1.959296857104707e-10, - 1.7594623829622042e-10, - 1.688979765726198e-10, - 1.3310460753170378e-10, - 1.0225910917927426e-10, - 8.696324072717707e-11, - 7.811346187912332e-11, - 7.299423503261455e-11, - 6.866033030307287e-11, - 4.704685837740222e-11, - 4.3096706139247407e-11, - 4.069791508371676e-11, - 3.731039425153576e-11, - 3.2738493969321446e-11, - 2.8894989203748118e-11, - 2.4725587495016173e-11, - 1.9718102832789153e-11, - 1.5657005524123063e-11, - 1.4471077044728768e-11, - 1.2434192885284146e-11, - 1.0263590528410396e-11, - 9.292371366085986e-12, - 8.466918219006498e-12, - 7.899049995804831e-12, - 7.632977581931093e-12, - 7.663477877394704e-12, - 7.124660567939272e-12, - 6.426542934634109e-12, - 6.362169557619528e-12, - 6.274391617666303e-12 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Health services use" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.4722642952861383e-12, - 1.3956365678823464e-12, - 1.223683099482007e-12, - 1.2592759630319702e-12, - 1.1828936875425543e-12, - 1.0087307808673703e-12, - 8.587905224369981e-13, - 9.892993967824981e-13, - 9.89789696786171e-13, - 1.0696348663443295e-12, - 1.2370853586528047e-12, - 1.2356774352285814e-12, - 1.1721136142790042e-12, - 9.891949344091186e-13, - 8.652749842558257e-13, - 8.57761318721993e-13, - 8.255641611099275e-13, - 7.182670267499543e-13, - 6.982498255481626e-13, - 8.040017544911238e-13, - 8.030902266210209e-13, - 7.482833548786098e-13, - 8.169954679363383e-13, - 7.595442895874404e-13, - 7.399771520618717e-13, - 8.72659775478753e-13, - 8.475833433772258e-13, - 8.312233508398117e-13, - 7.876394301038406e-13, - 6.708202274815246e-13, - 6.781298916995459e-13, - 8.982501816691557e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.6987690432039011e-12, - 1.6986389378959104e-12, - 1.5384198843722322e-12, - 1.629889323038257e-12, - 1.5466784239240522e-12, - 1.3466055241991002e-12, - 1.3843398447294722e-12, - 1.4777426439362726e-12, - 1.3936184025990162e-12, - 1.4115578121007024e-12, - 1.532951963906538e-12, - 1.5519388885916994e-12, - 1.4482991945185216e-12, - 1.1493025320675632e-12, - 9.881945697721736e-13, - 9.338011570390614e-13, - 8.838215844986371e-13, - 7.609248519037106e-13, - 7.033980618273994e-13, - 8.190160119534037e-13, - 8.235974520859805e-13, - 7.649177987171427e-13, - 8.298593251624702e-13, - 7.955646982097763e-13, - 7.969006649391074e-13, - 9.2941970944105e-13, - 8.986704579321373e-13, - 8.490758193352788e-13, - 7.857305201307114e-13, - 7.90086317251947e-13, - 8.196892024468087e-13, - 1.0306436383127811e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.2649302286043994e-11, - 1.2078121760447611e-11, - 1.1649404440959625e-11, - 1.5553509138355506e-11, - 1.4461511976700188e-11, - 1.2390942262048688e-11, - 1.1353014309026856e-11, - 1.2209535974998884e-11, - 1.2230652784416104e-11, - 1.2337333800840286e-11, - 1.2601692852455408e-11, - 1.3664308331113313e-11, - 1.2412154061483988e-11, - 1.0706196821883504e-11, - 8.727947300079068e-12, - 8.565591682943336e-12, - 8.213315765802127e-12, - 6.582825354985333e-12, - 6.702624655616093e-12, - 7.777759706114652e-12, - 6.389289548030867e-12, - 5.551389446404878e-12, - 5.846778539318895e-12, - 5.555875329431528e-12, - 5.3299515229930365e-12, - 6.3730071301347e-12, - 6.297547912725114e-12, - 6.2156625836631636e-12, - 5.964079510350009e-12, - 6.20396828419601e-12, - 6.119824291021219e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.475694767669929e-12, - 1.4116103703240483e-12, - 1.3674999499997081e-12, - 1.519880807097629e-12, - 1.41446633217243e-12, - 1.1981263170188828e-12, - 1.1116099368848053e-12, - 9.868749560406656e-13, - 9.38113973703771e-13, - 9.656874497346378e-13, - 9.729218097405542e-13, - 9.761920022626508e-13, - 9.052133044787367e-13, - 7.6923567624626e-13, - 6.333268269081749e-13, - 6.101745714661319e-13, - 5.789971944617867e-13, - 5.192515294981538e-13, - 5.487528272052194e-13, - 6.889484272246199e-13, - 6.606050869948309e-13, - 6.166941784855086e-13, - 5.800177121780352e-13, - 5.779919977333603e-13, - 5.32332958887198e-13, - 5.580276778022313e-13, - 6.097393561282727e-13, - 6.225304165745622e-13, - 5.86991527560764e-13, - 5.603914847281382e-13, - 5.84528579450045e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.0767674015013736e-12, - 1.930652627370546e-12, - 1.7661738791781506e-12, - 2.1221845289330273e-12, - 2.100237217888983e-12, - 1.8130345537518962e-12, - 1.225557874747293e-12, - 1.3181493949174603e-12, - 1.36954083234861e-12, - 1.3207277334034515e-12, - 1.4752909814005828e-12, - 1.4149211703551097e-12, - 1.3540754267631254e-12, - 1.1280876722895648e-12, - 9.736536871510105e-13, - 9.530596515613793e-13, - 9.338471553069685e-13, - 8.416063967482941e-13, - 8.119551698014023e-13, - 9.142908183750685e-13, - 9.562985433929652e-13, - 9.00520394677504e-13, - 9.803929599909842e-13, - 9.410301277831434e-13, - 9.058557655474067e-13, - 1.0223820711652912e-12, - 9.655831640411326e-13, - 9.221895442975282e-13, - 8.74901565605406e-13, - 7.999070503078898e-13, - 8.695440869790314e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.8689939507886162e-11, - 1.8689939507886162e-11, - 1.8689939507886162e-11, - 1.8689939507886162e-11, - 1.8689939507886162e-11, - 3.793662860644188e-11, - 3.5796616756185846e-11, - 3.5772836058504945e-11, - 3.3412694206673223e-11, - 3.5473205712440067e-11, - 4.8038943311374874e-11, - 3.95636432386321e-11, - 3.5100490717322334e-11, - 2.714848197237586e-11, - 2.455525840561776e-11, - 1.8701082635075268e-11, - 1.4550895206646371e-11, - 1.3066320897885536e-11, - 1.2530768933073258e-11, - 1.33907161403145e-11, - 1.2294703785759186e-11, - 1.1887779960850304e-11, - 1.3131302357756209e-11, - 1.3781332092326552e-11, - 1.3424586150117156e-11, - 1.674674102098787e-11, - 1.650516084716726e-11, - 1.5345882532661154e-11, - 1.5613705701585322e-11, - 1.3845173074244389e-11, - 1.506560321266327e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.1101186612735992e-11, - 8.56635423154577e-12, - 7.763983492861694e-12, - 7.625866890145788e-12, - 6.610188499847943e-12, - 5.1473538313437496e-12, - 3.997484485884363e-12, - 4.041973730438489e-12, - 3.782963651966801e-12, - 4.0098569077728125e-12, - 3.727917831133107e-12, - 3.262556715646384e-12, - 2.8022516233406525e-12, - 2.4737032362551224e-12, - 2.1657700867332294e-12, - 1.8384138895338863e-12, - 1.598330910549628e-12, - 1.3096798766829368e-12, - 1.1229381589970533e-12, - 1.5031012532570465e-12, - 1.5019772069414521e-12, - 1.4118459365303068e-12, - 1.7669375253319803e-12, - 1.6708307633823268e-12, - 1.732386503619589e-12, - 2.0996546466849373e-12, - 2.039818160255478e-12, - 1.964696218028128e-12, - 2.0590837857137817e-12, - 1.2262768080367405e-12, - 1.2276255525377265e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.265227489816856e-12, - 6.764116306240229e-12, - 6.119191692327814e-12, - 6.536230146181578e-12, - 6.099400186261079e-12, - 5.195861652551042e-12, - 4.875861722115183e-12, - 2.997395873855939e-12, - 4.9242543222244e-12, - 3.9850934992606035e-12, - 5.451581193881712e-12, - 4.10448897909049e-12, - 4.601330942914443e-12, - 2.7006948720889372e-12, - 2.1882976625456914e-12, - 2.33568941547804e-12, - 2.0514959295345427e-12, - 1.8079174801058923e-12, - 1.8595499901160525e-12, - 1.888179746435039e-12, - 2.0139001315459796e-12, - 2.374451008857331e-12, - 2.8904350811300424e-12, - 3.3959141282826305e-12, - 3.5390580437457437e-12, - 4.912063957143525e-12, - 5.145998124049526e-12, - 5.659853195607669e-12, - 5.552101244837366e-12, - 3.466835602270393e-12, - 3.766252512815362e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.485905333361597e-11, - 1.4232285352429097e-11, - 1.2679475525522307e-11, - 1.2992393952570935e-11, - 1.2152629195871891e-11, - 1.0261806970681426e-11, - 6.662860604156174e-12, - 7.777185442892837e-12, - 7.93343149647454e-12, - 8.493865621113284e-12, - 9.559651174826178e-12, - 1.0086134238848334e-11, - 9.636331466506123e-12, - 8.291188062696011e-12, - 7.185489013286267e-12, - 7.508060780491343e-12, - 7.015670122115577e-12, - 6.214079290353117e-12, - 5.947085958951556e-12, - 6.4634313294661675e-12, - 6.94945957455925e-12, - 6.182004601116664e-12, - 7.119460358329838e-12, - 6.8688562508207515e-12, - 6.9688111599732204e-12, - 7.984084692606414e-12, - 7.873410571619287e-12, - 7.306814896424205e-12, - 6.9752463709848965e-12, - 7.214414259306911e-12, - 5.709036332511153e-12, - 7.8734782122051e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.7588163492757854e-12, - 5.597572892621505e-12, - 5.050673490401354e-12, - 5.185139518444493e-12, - 4.8352958029897714e-12, - 4.053062502531477e-12, - 4.086504026115346e-12, - 4.425896386900275e-12, - 3.97723129129205e-12, - 4.077445352283511e-12, - 4.287158284179873e-12, - 4.161595725491463e-12, - 3.683414313464329e-12, - 3.0753165837352057e-12, - 2.7172905896565252e-12, - 2.5882902265477286e-12, - 2.3716295411843753e-12, - 1.9683960942768906e-12, - 1.7047390963484687e-12, - 1.911261477698807e-12, - 2.0109493645837492e-12, - 2.0781741340943704e-12, - 2.2842016123521366e-12, - 2.2001023584196437e-12, - 2.2144708501336915e-12, - 2.5926601312573867e-12, - 2.546806244754072e-12, - 2.3781654839812754e-12, - 2.3672179128699473e-12, - 2.0140829938339303e-12, - 2.0059923102102293e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.1911991631873979e-13, - 9.69380918504838e-11, - 7.139787278773743e-11, - 3.830727854053636e-11, - 9.904169542559135e-12, - 3.065837472305385e-12, - 3.788781086616512e-12, - 1.9037453468939267e-12, - 1.9173605948552288e-12, - 1.0718352322677586e-12, - 8.173599141615926e-13, - 1.092728051365223e-12, - 1.2005118488935526e-12, - 1.8032924165489338e-12, - 1.07925920127218e-12, - 7.913339358860094e-13, - 6.068607717507099e-13, - 5.126239259046135e-13, - 2.609896120899708e-13, - 4.0857055401713647e-13, - 2.659606673859863e-13, - 1.8713358166198136e-13, - 1.81332798071378e-13, - 1.6847678011779781e-13, - 1.6343012832450837e-13, - 2.2635407902252989e-13, - 2.1368228210487603e-13, - 2.3555470134635285e-13, - 1.909683921999464e-13, - 1.681474853268852e-13, - 2.3705753700925424e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.822237611144579e-11, - 7.294914857386124e-11, - 6.567310411864456e-11, - 7.01655970640165e-11, - 6.809275461731038e-11, - 6.170460776951283e-11, - 5.5428612387653983e-11, - 4.4446403073645315e-11, - 4.8963669264283414e-11, - 4.051814117768752e-11, - 2.827419897080512e-11, - 2.863116959064334e-11, - 2.5932323174999475e-11, - 2.1337261906151633e-11, - 1.582358427407255e-11, - 1.1276467334192934e-11, - 8.247848106216142e-12, - 6.299504627459631e-12, - 4.356262924538568e-12, - 5.134510533185764e-12, - 4.01324656914064e-12, - 2.992971912832509e-12, - 2.561639074083485e-12, - 2.5268083451780682e-12, - 2.4349503897457732e-12, - 3.207803527269093e-12, - 3.3094275748507607e-12, - 3.117004361851727e-12, - 2.7763936412442816e-12, - 2.8471001725285624e-12, - 3.4771963579216067e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.7028627513767618e-11, - 1.67476184477511e-11, - 1.5917942143115432e-11, - 1.5521318785504397e-11, - 1.455820979380733e-11, - 1.3132458911516705e-11, - 1.173523880331754e-11, - 1.0951127075717475e-11, - 1.1409099073814206e-11, - 1.0224064928448441e-11, - 8.27484898702696e-12, - 8.357005998755934e-12, - 7.862009323084582e-12, - 6.9433155375310425e-12, - 5.840552529541228e-12, - 4.780135663119844e-12, - 3.887040527237808e-12, - 3.3475067594175235e-12, - 2.736752679700203e-12, - 3.4051863299431565e-12, - 2.979343421245508e-12, - 1.3865614475924835e-12, - 2.3048522480453337e-12, - 2.2131742550622234e-12, - 1.7205064973749087e-12, - 2.499168903882221e-12, - 2.698987033726651e-12, - 2.2390136672500664e-12, - 3.02774621462425e-12, - 2.0693763219354353e-12, - 2.405826541017475e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.96899455397053e-12, - 2.6413175256407888e-12, - 2.5475895087657624e-12, - 2.6265258956975656e-12, - 2.5836429046526738e-12, - 2.4364185751646508e-12, - 2.2011745638924267e-12, - 2.104339300832831e-12, - 2.379440989348788e-12, - 2.159598080273314e-12, - 1.8428291815416166e-12, - 1.8966462223544682e-12, - 1.8419447869642972e-12, - 2.8882200646141055e-13, - 2.0541677024670428e-13, - 1.2878292218260418e-13, - 1.1262930409416476e-13, - 1.0868713789986778e-13, - 9.430609381708759e-14, - 1.7100992599387493e-13, - 1.6735852483942904e-12, - 1.3375864839068663e-12, - 1.191399417943279e-12, - 1.0917607127533208e-12, - 4.617484973662877e-13, - 5.337913830764905e-13, - 5.415171190346429e-13, - 5.071893887773641e-13, - 4.4403552748818244e-13, - 4.404265343226977e-13, - 4.988354814322314e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.973190350045042e-12, - 8.973190350045042e-12, - 5.706112176997945e-10, - 1.6220825256161725e-10, - 2.1341186108306896e-10, - 1.0534938725360358e-10, - 7.408855997950678e-11, - 9.325537472690995e-11, - 9.474023426146605e-11, - 8.575702895287544e-11, - 6.372327843835446e-11, - 5.957019207615318e-11, - 4.835742845360823e-11, - 4.465727502973481e-11, - 3.43660449930834e-11, - 1.6604613775204648e-11, - 8.180437101919308e-12, - 5.145483542250665e-12, - 3.38856880898518e-12, - 5.639006446357599e-12, - 4.1293311668432855e-12, - 3.1968885219461623e-12, - 3.0748837217798554e-12, - 2.827365937918944e-12, - 2.787985481435793e-12, - 4.188839132033839e-12, - 5.449789309758175e-12, - 4.519208960189259e-12, - 3.908904759526543e-12, - 5.286372580009291e-12, - 5.977090659775028e-12, - 8.973190350045042e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.8955730310998616e-11, - 1.9529948797075272e-11, - 1.7787798557673675e-11, - 1.7729661236215713e-11, - 1.714537086833607e-11, - 1.6047596750444787e-11, - 1.4498102023098191e-11, - 1.398574607345197e-11, - 1.582481398683233e-11, - 1.4204584853828847e-11, - 1.1354561597549671e-11, - 1.1386930161710435e-11, - 1.0996438169324205e-11, - 1.0238585519323677e-11, - 8.944481490187219e-12, - 7.1262669949457875e-12, - 5.95173802970888e-12, - 5.263076495996312e-12, - 3.636760950072874e-12, - 4.5775172996049204e-12, - 3.408011233064655e-12, - 2.858137201883553e-12, - 2.386143022491201e-12, - 1.8853402505465518e-12, - 2.292687022343923e-12, - 3.1968932042042932e-12, - 3.4652518433897593e-12, - 2.8221533706021997e-12, - 2.400611499545247e-12, - 2.51528971908202e-12, - 2.994381573528083e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.204959055836223e-12, - 5.7072768063941405e-12, - 5.435311138898849e-12, - 5.2239170147462636e-12, - 6.1328673284948825e-12, - 6.2472391706256915e-12, - 5.558220508617699e-12, - 5.415620567461799e-12, - 5.414481482252174e-12, - 5.3640658185509374e-12, - 4.761996649217143e-12, - 4.206433610835574e-12, - 6.455033525007782e-12, - 2.8913782878083784e-12, - 1.9168528330165125e-12, - 6.399334952308842e-13, - 2.2294938860787052e-12, - 1.9330071564363453e-12, - 1.525792975436505e-12, - 1.9015355813212806e-12, - 1.618485731858384e-12, - 1.3044732021129077e-12, - 1.2480289138982168e-12, - 1.2438876909880845e-12, - 1.2202966943876323e-12, - 1.571953245157604e-12, - 1.6303497975359807e-12, - 3.1921195166860118e-12, - 1.4916834717236666e-12, - 1.5189824202568816e-12, - 1.7992768732615998e-12, - 2.3467933008506586e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 9.652233115866381e-12, - 1.109565406666667e-11, - 9.911186773903655e-12, - 8.906283569587632e-12, - 7.993422342857143e-12, - 6.89573979166667e-12, - 3.143588491717523e-12, - 2.518722828130878e-12, - 2.3470800278357683e-12, - 2.0560969115734732e-12, - 1.9278125698324027e-12, - 4.290676540284358e-12, - 4.872127540248087e-12, - 5.166900598802396e-12, - 3.426396867916754e-12, - 2.6942880222841236e-12, - 2.4112392747288266e-12, - 1.955720998925893e-12, - 1.6597654941373515e-12, - 2.2898591441182127e-12, - 1.979371374109067e-12, - 2.252386696812776e-12, - 1.823574371529227e-12, - 2.2152373145560077e-12, - 2.082786525821599e-12, - 2.1817028519988544e-12, - 2.131140473905662e-12, - 2.8821081268011513e-12, - 2.8988478838959728e-12, - 1.3687518648653707e-12, - 1.1357686208368918e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.912107534713837e-11, - 1.912107534713837e-11, - 1.912107534713837e-11, - 1.912107534713837e-11, - 1.912107534713837e-11, - 4.108142758121017e-11, - 3.75113530966275e-11, - 3.601655865160157e-11, - 3.5629815234139166e-11, - 3.527486354187652e-11, - 2.9695144308859663e-11, - 3.1991344521457635e-11, - 3.409593056586089e-11, - 3.064260644679236e-11, - 2.8571228769644584e-11, - 2.8377072552659458e-11, - 2.686403512270022e-11, - 2.468355599204697e-11, - 2.0037095428546723e-11, - 1.9874304631500232e-11, - 1.6771076190667e-11, - 1.5308478170942002e-11, - 1.610369411680491e-11, - 1.3924386136626744e-11, - 1.3423534184864162e-11, - 1.4213791237220455e-11, - 1.4142397117893426e-11, - 1.1633241899240034e-11, - 1.1061482042013561e-11, - 1.0386193897198796e-11, - 1.0152341941041836e-11, - 1.912107534713837e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.36140884752745e-12, - 4.380259945705034e-12, - 4.147194972531903e-12, - 3.647454463520795e-12, - 5.028388114723611e-12, - 3.877377114746404e-12, - 2.4884343199660165e-12, - 2.5900961826617526e-12, - 1.3126188381499613e-12, - 1.7803657202272516e-12, - 1.705522979463855e-12, - 2.6090557804992395e-12, - 2.1349974327499778e-12, - 1.4922482491722986e-12, - 1.2281228235907036e-12, - 1.1244334471611336e-12, - 1.0007758098459596e-12, - 1.015385425749184e-12, - 8.993563076655378e-13, - 1.2466258993940292e-12, - 1.028220860861141e-12, - 9.536427256399005e-13, - 9.450502238012004e-13, - 8.542749058876373e-13, - 9.167342140355894e-13, - 1.0198808263903318e-12, - 1.0861764358802526e-12, - 1.1173273286904802e-12, - 8.441677955045581e-13, - 8.635441358545417e-13, - 9.127807597071383e-13, - 1.2981683620065756e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.044936315366662e-11, - 1.9115892206100946e-11, - 1.8307458363705795e-11, - 1.949628069236844e-11, - 1.7334052856694235e-11, - 1.5812438791920304e-11, - 1.4298962655358215e-11, - 1.576495481350934e-11, - 1.4762492499277516e-11, - 1.4824259964753137e-11, - 1.5882852717962088e-11, - 1.5378267616605846e-11, - 1.2450269470542719e-11, - 1.2114115075262558e-11, - 1.0350581815107833e-11, - 9.899487925957114e-12, - 8.85609978814946e-12, - 7.80812107114728e-12, - 6.67151977895528e-12, - 6.643507019397903e-12, - 7.665360845449537e-12, - 6.0882027463274625e-12, - 6.280525047264889e-12, - 5.777301619403867e-12, - 5.606440769157618e-12, - 6.099675535401578e-12, - 5.973808418432584e-12, - 5.6268111773255054e-12, - 5.2259417052260496e-12, - 5.148592134669672e-12, - 5.379504456729135e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.860622360167164e-11, - 5.970283765958996e-11, - 5.574862550865649e-11, - 5.878902112593173e-11, - 8.603616680496984e-11, - 6.846872975500956e-11, - 6.603287313605177e-11, - 7.169713030502657e-11, - 6.658204599442268e-11, - 6.570111895657623e-11, - 7.203448428878179e-11, - 6.65593623323926e-11, - 6.182297704861322e-11, - 4.9397924671777877e-11, - 4.298546403217421e-11, - 3.9345570117937e-11, - 3.702852395960174e-11, - 3.0952543228546534e-11, - 1.7260006662315455e-11, - 2.6827709667417875e-11, - 2.6757743323309917e-11, - 2.4315131135131663e-11, - 2.452634690897155e-11, - 2.289572669267068e-11, - 2.1879633033723305e-11, - 3.247300017033594e-11, - 2.2749451170906357e-11, - 2.062988263990524e-11, - 1.8737824614287528e-11, - 1.8585458429885715e-11, - 1.7576389520353954e-11, - 3.407136686852355e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.817261568464865e-12, - 6.3557267433976404e-12, - 5.854912730399416e-12, - 5.351688673500505e-12, - 5.131503572025399e-12, - 4.587006505522936e-12, - 4.82581535995915e-12, - 3.4533762634442528e-12, - 5.14928421895245e-12, - 5.1991055420320635e-12, - 5.190992403481743e-12, - 5.285254942859378e-12, - 6.102424559087617e-12, - 3.860060236695505e-12, - 3.1795110063235977e-12, - 2.9880379225578452e-12, - 2.9557935108143144e-12, - 2.6506605833676584e-12, - 2.809458106638347e-12, - 2.534078162116528e-12, - 1.7659359651120404e-12, - 1.6030283125175838e-12, - 1.6888330558035548e-12, - 1.8081947870879895e-12, - 2.0229598279053883e-12, - 2.3029635215779345e-12, - 2.5304594165038867e-12, - 2.18155088712493e-12, - 1.9458217306598946e-12, - 2.0306274326452466e-12, - 2.348395103138238e-12, - 2.9795345692301444e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.996630516559523e-11, - 1.0253051636752107e-10, - 1.411142423619782e-10, - 1.3648217447080394e-10, - 1.3321235195788318e-10, - 1.2846376277606096e-10, - 9.659173798298317e-11, - 8.013517916967727e-11, - 7.077197343185754e-11, - 6.233426454008229e-11, - 6.585993728463328e-11, - 6.900625545251812e-11, - 6.635719306844317e-11, - 5.910072713231882e-11, - 4.8817863427966324e-11, - 4.361179377075959e-11, - 4.504358686564656e-11, - 3.564640571257725e-11, - 2.9669417718063514e-11, - 3.126743809737068e-11, - 3.4845766975120967e-11, - 2.5903670812789975e-11, - 2.2783894151454088e-11, - 2.1946975661278268e-11, - 2.1028066797245688e-11, - 1.9630155360974685e-11, - 3.120842945219523e-11, - 2.8181604159128998e-11, - 2.5093510769495364e-11, - 2.4214638989542265e-11, - 2.6572732173968725e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.4470815882381006e-12, - 2.692064705566672e-12, - 2.766611679919721e-12, - 4.7646665639560004e-12, - 3.908309401783479e-12, - 3.0009668682565653e-12, - 2.5888965209958384e-12, - 2.4281170841657047e-12, - 2.421615239029493e-12, - 2.227121095687362e-12, - 1.9039937623125632e-12, - 1.7861589760229003e-12, - 1.3862647607565225e-12, - 1.2603902866151244e-12, - 9.695278111204404e-13, - 7.507348642124778e-13, - 5.600498502319324e-13, - 4.797448395096298e-13, - 3.895118240720718e-13, - 4.4822396707877114e-13, - 3.6582536291473386e-13, - 3.2649899138006024e-13, - 2.902954059774684e-13, - 2.599406909353866e-13, - 2.418798509530608e-13, - 2.716292213539972e-13, - 3.267762211770224e-13, - 3.519128207973566e-13, - 3.3291331281095265e-13, - 2.950769290673735e-13, - 3.058799530801889e-13, - 5.772817344921515e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.163032326432184e-11, - 4.6093818034717636e-11, - 4.740640235472509e-11, - 5.0963286072157267e-11, - 5.584656292026894e-11, - 4.7030708102738746e-11, - 4.3844364874280134e-11, - 4.4122244108435955e-11, - 4.064446808510637e-11, - 3.938930213121603e-11, - 6.101916729582916e-11, - 5.7208871389283594e-11, - 4.930971798125333e-11, - 3.983802459879951e-11, - 3.42357147658513e-11, - 2.829866832269518e-11, - 1.4875083967456515e-11, - 9.327027797622043e-12, - 1.0602292989223686e-11, - 1.16730166290722e-11, - 1.1695089903164515e-11, - 7.729556566559086e-12, - 7.367408918349887e-12, - 4.8399437859246004e-12, - 5.550277367352014e-12, - 6.15424243467462e-12, - 5.413675135434688e-12, - 5.033574026619342e-12, - 4.518027487511243e-12, - 4.449384770339675e-12, - 4.436741226013488e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.296128624526548e-12, - 2.728598869267555e-12, - 2.5572087861999955e-12, - 2.6388099714067962e-12, - 2.2519526891186412e-12, - 2.0456454309664393e-12, - 1.626507485683158e-12, - 1.6512220378230484e-12, - 1.6703157282558189e-12, - 1.5782427560691105e-12, - 1.6161361700969334e-12, - 1.515961729561329e-12, - 1.409237756883768e-12, - 1.1836281813075638e-12, - 1.0673363677684562e-12, - 1.0045447198078194e-12, - 8.558591189439731e-13, - 6.616639677981723e-13, - 7.162925719260033e-13, - 6.208721349943962e-13, - 4.705674287215783e-13, - 4.141521241400967e-13, - 4.070773628818551e-13, - 3.8046619462336587e-13, - 3.440638304749098e-13, - 3.2948470011516053e-13, - 2.918949753700858e-13, - 2.510717678300877e-13, - 2.416856659406058e-13, - 2.5675250952524443e-13, - 2.770455583929717e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.3297251908349406e-11, - 3.5879823330141965e-11, - 3.495756980951399e-11, - 2.6168516369547528e-11, - 2.1178731322254518e-11, - 1.6634030882751655e-11, - 1.3988701677827946e-11, - 1.2849420695595665e-11, - 1.2676627881789506e-11, - 1.2025174330740961e-11, - 1.1065066849501192e-11, - 1.0552972395649655e-11, - 5.496504110033942e-12, - 8.720710040437011e-12, - 7.592830485372017e-12, - 5.984843235033876e-12, - 5.1968863663553345e-12, - 4.455577854237631e-12, - 3.4795212537135365e-12, - 3.253568900259629e-12, - 2.9752505323242665e-12, - 1.4050523008187445e-12, - 2.2136182502166844e-12, - 2.181903874480435e-12, - 1.8524026901948684e-12, - 2.2827958447654633e-12, - 1.6803021822392784e-12, - 2.353831065548265e-12, - 1.406634373094212e-12, - 1.316907302447069e-12, - 1.272045955439736e-12, - 3.637810074528718e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.218980363401672e-12, - 2.7965439811221826e-12, - 2.464877293790874e-12, - 2.1314229084620208e-12, - 1.8728599257620233e-12, - 1.6228713960073203e-12, - 6.511318892494371e-13, - 6.80114387800377e-13, - 2.4166816904466927e-12, - 1.960699727296983e-12, - 1.9361157946435896e-12, - 2.097401420317787e-12, - 1.716668195663527e-12, - 1.6111039416662492e-12, - 1.378171531151597e-12, - 1.1561994340730997e-12, - 1.0493862399120848e-12, - 7.63665127456658e-13, - 6.977414816776753e-13, - 8.325925710038454e-13, - 8.053760334832459e-13, - 9.74760901169603e-13, - 6.910123629575122e-13, - 1.0506902540410275e-12, - 1.178083770713053e-12, - 1.5352491139798653e-12, - 6.645867026681465e-13, - 6.019797445181236e-13, - 5.422653850747504e-13, - 5.047508705319362e-13, - 5.476350495694053e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.3365005723012368e-12, - 1.2163841081319313e-12, - 1.1080254937426845e-12, - 8.977919454455343e-13, - 8.019414525953836e-13, - 7.018043788174802e-13, - 6.239052772871935e-13, - 6.575100870517212e-13, - 1.4862625446534366e-12, - 1.0132555266472017e-12, - 4.1019018819302296e-13, - 2.9642196786290815e-13, - 7.250163536358497e-13, - 6.042324578729289e-13, - 5.523238931090312e-13, - 4.96231953470242e-13, - 3.8910755887000603e-13, - 3.28208351179207e-13, - 2.7802662008433784e-13, - 1.5441637343868106e-13, - 1.878668254948943e-13, - 1.588600788072952e-13, - 1.5455037941139093e-13, - 9.281946262225108e-14, - 1.5924426714283942e-13, - 1.6478648426050742e-13, - 2.632857170175915e-13, - 2.3438913641806374e-13, - 2.1715070714849676e-13, - 1.267610140878456e-13, - 1.3402678371165408e-13, - 2.9105646325316506e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.425171355855754e-12, - 2.3654171181470483e-12, - 2.0272520435778318e-12, - 1.9744989280083314e-12, - 1.6743099128740717e-12, - 1.4471307060575045e-12, - 1.2941756902868423e-12, - 1.3016280706435536e-12, - 1.6443472477699976e-12, - 1.4303019456549828e-12, - 1.4639858800185372e-12, - 1.5520696152614967e-12, - 1.5731735285739924e-12, - 1.439237467361639e-12, - 1.289354047781747e-12, - 9.953457280273883e-13, - 9.595652676032753e-13, - 6.730333723759456e-13, - 6.744200147326952e-13, - 6.194640071525303e-13, - 5.87858129410242e-13, - 4.791284721519613e-13, - 4.676657434100286e-13, - 4.651945432491513e-13, - 4.117584811707804e-13, - 5.117701912598495e-13, - 3.8443490881401757e-13, - 3.729022364842909e-13, - 3.5316143010706404e-13, - 3.250628529845994e-13, - 3.388516380720687e-13, - 7.255434117088154e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.0701083540066363e-11, - 9.1708847417476e-12, - 8.529181589110353e-12, - 7.722437843910927e-12, - 6.540607762913149e-12, - 5.351973635171469e-12, - 3.6320396112139144e-12, - 3.946085247318368e-12, - 5.5050605863235895e-12, - 4.051494893761637e-12, - 3.688425415232836e-12, - 4.160715332762963e-12, - 3.5197350217198985e-12, - 3.2405917660757247e-12, - 3.07894219536101e-12, - 2.698574295569951e-12, - 2.581937276615045e-12, - 2.449723257611876e-12, - 2.8537751108470476e-12, - 3.333563304347784e-12, - 2.8982394392093567e-12, - 2.8662016830415302e-12, - 3.0118247576680425e-12, - 2.8824437086361696e-12, - 2.7472949843642877e-12, - 2.714062364069827e-12, - 2.6578289308629334e-12, - 2.6430544022301717e-12, - 2.6248899953566343e-12, - 1.836198048141914e-12, - 1.8513629255577305e-12, - 3.242926260898019e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.4537000555057828e-12, - 1.2128153228692587e-12, - 1.0457838405813138e-12, - 7.584521545636317e-13, - 7.195430512018049e-13, - 1.0547399799769533e-12, - 6.099388938431339e-13, - 5.519435613203523e-13, - 5.735209473066465e-13, - 5.732774975856969e-13, - 4.324439657428926e-13, - 4.284092781404464e-13, - 4.588745924991948e-13, - 5.390380122216692e-13, - 4.962156132207036e-13, - 4.540749826501538e-13, - 3.785368783268619e-13, - 3.7839024104625683e-13, - 3.998868228176572e-13, - 5.32795374870865e-13, - 4.678099772290178e-13, - 3.992326567031663e-13, - 3.5048164962729397e-13, - 3.3350253541885285e-13, - 3.3108268381458844e-13, - 3.668161804225526e-13, - 3.5974349839315273e-13, - 2.833948621298515e-13, - 2.5597832148489066e-13, - 2.991761430125202e-13, - 3.53644409779297e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.8496736641164717e-12, - 3.2498848188769513e-12, - 3.3926917354858753e-12, - 3.023223706384416e-12, - 2.119346063438436e-12, - 1.4472797191586148e-12, - 1.3092731870793713e-12, - 1.260679790995676e-12, - 1.2891355058257175e-12, - 1.8568418940707046e-12, - 1.5981583575382712e-12, - 1.8964480434620135e-12, - 1.9805597620451444e-12, - 1.790271631287404e-12, - 1.4394821020017234e-12, - 1.124295613389645e-12, - 8.920604657007604e-13, - 7.740097147142407e-13, - 6.657643130729251e-13, - 6.710632793703023e-13, - 5.251267603071228e-13, - 4.3562376850677126e-13, - 4.570935693018813e-13, - 4.835250072323014e-13, - 5.176251407179234e-13, - 7.449955944937007e-13, - 7.03588983739899e-13, - 5.301246489581835e-13, - 6.053313137153255e-13, - 5.929418113813085e-13, - 7.706893431029115e-13, - 8.906723929687193e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.494603162821065e-12, - 2.603681613654148e-12, - 2.1590691041553566e-12, - 2.08653736732151e-12, - 1.918778879671413e-12, - 1.9143785010279106e-12, - 1.5340451350772875e-12, - 1.432737255812524e-12, - 1.3758568581685961e-12, - 1.5990589828691146e-12, - 1.5441034820969112e-12, - 1.5802572974924333e-12, - 3.979165640795956e-12, - 3.2145131181840216e-12, - 2.452113899948303e-12, - 2.117068280453622e-12, - 1.9442953464919212e-12, - 1.6000736843933774e-12, - 1.3014508092826466e-12, - 1.75381754282372e-12, - 1.3243713006791824e-12, - 1.0675390387636635e-12, - 1.1628763642501735e-12, - 1.1204018710404803e-12, - 1.1285156714526517e-12, - 1.0468612830151184e-12, - 1.001109576623704e-12, - 8.655922739837215e-13, - 9.40513398476499e-13, - 1.0930185195431809e-12, - 1.268907244474862e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.998453926773561e-12, - 3.0750205681740065e-12, - 2.9361015039940235e-12, - 3.031708778553461e-12, - 2.3528480594968765e-12, - 1.980776226151969e-12, - 1.9112416343777446e-12, - 1.437722475065363e-12, - 1.8147267784434097e-12, - 1.962447706627261e-12, - 2.1772257453594998e-12, - 2.1326092906802826e-12, - 1.9376549916706014e-12, - 1.8411051155688886e-12, - 1.5815900078029748e-12, - 1.3883759248719391e-12, - 1.1913008843460067e-12, - 1.033568564216289e-12, - 8.759866350510526e-13, - 8.740117863825631e-13, - 7.157966187007434e-13, - 4.821795670215985e-13, - 5.481508587352466e-13, - 4.0631196417664404e-13, - 5.381261172441994e-13, - 6.16526511541719e-13, - 6.257558008115259e-13, - 5.727292514851249e-13, - 5.71268888907117e-13, - 4.622063694932226e-13, - 5.227386424706697e-13, - 9.626014711878323e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.0057496267430525e-12, - 4.549079569592283e-12, - 4.027545653703527e-12, - 4.050128284276413e-12, - 4.164268270415846e-12, - 3.142722461994232e-12, - 3.448538791199659e-12, - 2.8338884362789034e-12, - 2.6636132105499755e-12, - 2.4829427563754735e-12, - 2.0767414838351997e-12, - 1.979358513714377e-12, - 2.618813697857253e-12, - 2.9092223309602246e-12, - 2.163305317815538e-12, - 1.2993607960279345e-12, - 1.7300211836611828e-12, - 8.729662144338965e-13, - 7.533706193879149e-13, - 7.281655797103442e-13, - 4.787224315036883e-13, - 4.833131356085901e-13, - 6.559376530655715e-13, - 8.58558978803072e-13, - 6.98918807790996e-13, - 1.3877430263804175e-12, - 1.3877430263804175e-12, - 1.3877430263804175e-12, - 1.3877430263804175e-12, - 1.3877430263804175e-12, - 1.3877430263804175e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.3908393109422435e-12, - 4.271953161975568e-12, - 3.5960178474777957e-12, - 3.161562319059383e-12, - 2.57119599662669e-12, - 2.2709100914736425e-12, - 3.079761871658824e-12, - 2.565734686344434e-12, - 2.1339672224080797e-12, - 2.4374646403963756e-12, - 1.3013760554593803e-12, - 1.3423037522791574e-12, - 1.4233944916375556e-12, - 1.648538959958876e-12, - 1.311308538861201e-12, - 1.035989819480522e-12, - 9.250174010230485e-13, - 8.95083736727137e-13, - 8.309696259500496e-13, - 8.437255856005309e-13, - 6.805132847406524e-13, - 6.148791402338836e-13, - 6.302684345430715e-13, - 7.094963578735536e-13, - 8.019424842083443e-13, - 9.872845644979688e-13, - 9.438344936546489e-13, - 7.786876201031873e-13, - 7.020384600386109e-13, - 6.495247392810251e-13, - 7.739374248595177e-13, - 1.1126041731255145e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.0992306370091468e-11, - 9.620721143468643e-12, - 7.919141197784139e-12, - 7.383660090269173e-12, - 6.384986045679347e-12, - 4.955923130888935e-12, - 4.664274670373455e-12, - 4.284730830872194e-12, - 4.461993950904382e-12, - 4.842086293971593e-12, - 4.674976139377961e-12, - 5.128182444987859e-12, - 5.2195962578327125e-12, - 4.812022093807428e-12, - 3.668950293568081e-12, - 2.9601801844207286e-12, - 2.351590185717054e-12, - 2.0966905908680084e-12, - 2.087358822123944e-12, - 2.0420037367471292e-12, - 1.5076127565286927e-12, - 1.39321000866021e-12, - 1.3559331167946616e-12, - 1.3962711056259048e-12, - 1.4394244384366e-12, - 1.5608865074356645e-12, - 1.4747635331472572e-12, - 1.2853264644116398e-12, - 1.223227909388133e-12, - 1.3028522113289937e-12, - 1.4390684226900413e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.397384376986114e-11, - 5.871307528656138e-11, - 4.933597949326189e-11, - 4.4090722794593286e-11, - 4.02902803735963e-11, - 3.649108782200588e-11, - 2.6011214081871147e-11, - 2.355682652476048e-11, - 1.9479319959989037e-11, - 2.589501667164175e-11, - 2.7515664725636182e-11, - 2.644660048684059e-11, - 2.54852566398573e-11, - 2.104533581575536e-11, - 2.0124020918885023e-11, - 2.1082931871422835e-11, - 1.888839067326656e-11, - 1.3331746138106646e-11, - 1.2606753334913528e-11, - 1.6922034522719918e-11, - 1.287673491266097e-11, - 1.0939929123307548e-11, - 1.177303731859722e-11, - 1.0906252698844677e-11, - 1.0998260194022172e-11, - 7.971557642070316e-12, - 7.75655301965213e-12, - 7.282035867781338e-12, - 6.133915208142497e-12, - 6.594296366882484e-12, - 6.831636401065397e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.441342556441921e-13, - 4.3007162106203527e-13, - 4.061815491368961e-13, - 3.861505779478066e-13, - 3.6343498711159215e-13, - 3.4666538412965273e-13, - 3.0347739077893283e-13, - 2.891068791730319e-13, - 2.7629485047459195e-13, - 2.647429031395897e-13, - 2.5640864417129826e-13, - 2.502688242546098e-13, - 2.340126130283888e-13, - 2.2381702006919005e-13, - 2.0488664599334594e-13, - 1.9306891619268075e-13, - 1.8514020578298983e-13, - 1.8209491682977609e-13, - 1.8812882024693385e-13, - 1.9466489291170341e-13, - 1.8245666886387545e-13, - 1.7791446488179122e-13, - 1.6556515300745142e-13, - 1.614384477547617e-13, - 1.5514432610541098e-13, - 1.4899524161910419e-13, - 1.4731602294436765e-13, - 1.4416481610187673e-13, - 1.3743688690074295e-13, - 1.2356687148946985e-13, - 1.2639873668577435e-13, - 2.0410732166898868e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
R&D GExp=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.955127712971733e-12, - 3.722844191581072e-12, - 3.3431403153453753e-12, - 3.209216861513961e-12, - 2.5291099366858223e-12, - 1.9430171046508806e-12, - 6.520893088027006e-13, - 6.642339583127733e-13, - 6.286325631400167e-13, - 6.852210900542637e-13, - 7.373280291669296e-13, - 7.020554021169444e-13, - 7.193634960752695e-13, - 6.748046261673674e-13, - 6.213628562677134e-13, - 5.72152018701958e-13, - 4.972654337440119e-13, - 3.8691757437397876e-13, - 3.1471993267292227e-13, - 3.2632240178415557e-13, - 2.815301239343986e-13, - 2.3575977894713667e-13, - 2.2410788304052112e-13, - 2.0875393904972492e-13, - 1.9305948980408892e-13, - 1.859603244812975e-13, - 1.8697394238712976e-13, - 1.7188949093788717e-13, - 1.5405599910849268e-13, - 9.994715548929828e-14, - 9.694119655664956e-14 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "R&D GExp" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Ninis=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.439938469142343e-12, - 4.2088506163754415e-12, - 3.690286917114679e-12, - 3.797625065984004e-12, - 3.5672774277291664e-12, - 3.0420506788902223e-12, - 3.1499161622340778e-12, - 3.556124795203723e-12, - 3.513239641250299e-12, - 3.583739067116751e-12, - 4.038082067685627e-12, - 4.042629065497435e-12, - 3.7845416119033666e-12, - 4.00936912401547e-12, - 3.5816391227310888e-12, - 3.962254219464565e-12, - 3.359264094933657e-12, - 2.714870060221232e-12, - 2.250842689449452e-12, - 2.5796911001994605e-12, - 2.4414150529373885e-12, - 1.9976981899350626e-12, - 2.0129604965309033e-12, - 1.6738958211846668e-12, - 1.6353427521721532e-12, - 1.8376299496191396e-12, - 1.928035326775252e-12, - 1.6960867188548433e-12, - 1.4834223562417388e-12, - 1.4556389303405392e-12, - 1.931669333086886e-12, - 2.7088720070684525e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Ninis=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.954165517902455e-12, - 8.953479736355418e-12, - 8.1089694539765e-12, - 8.591102382476603e-12, - 8.1524999917968e-12, - 7.0979211678236754e-12, - 7.077673719291342e-12, - 7.821985224925205e-12, - 7.560626896592878e-12, - 7.611044527403354e-12, - 8.321700583300688e-12, - 8.249108132823859e-12, - 7.56918432153511e-12, - 5.161165236465252e-12, - 5.04332526637493e-12, - 5.093435837713947e-12, - 4.886801614418278e-12, - 4.002869525220791e-12, - 3.6003093808087746e-12, - 4.705860819581099e-12, - 4.78226885283015e-12, - 4.285977141914589e-12, - 4.657797718316388e-12, - 3.993773528613898e-12, - 3.914614607373729e-12, - 4.882771113582399e-12, - 4.77968868443083e-12, - 4.385101258556681e-12, - 3.955632581041794e-12, - 3.862404221884945e-12, - 4.326473558061275e-12, - 5.432494643309874e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Ninis=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.775765113833622e-11, - 2.6504251590441127e-11, - 2.5563473552079306e-11, - 3.413064775246331e-11, - 3.173436726427195e-11, - 2.7190705448211778e-11, - 2.4913074526347094e-11, - 2.7105499978514595e-11, - 2.683896593715746e-11, - 2.6519420010855092e-11, - 2.7653176913706155e-11, - 2.9984982185157766e-11, - 2.723725265812319e-11, - 1.947136001902948e-11, - 2.0435292477824867e-11, - 1.8531106863476004e-11, - 2.2075502303840113e-11, - 1.522638288990075e-11, - 1.51050942387441e-11, - 2.199126320824219e-11, - 1.5469555862375552e-11, - 1.311631671472303e-11, - 1.4172362980200642e-11, - 1.2678033127290445e-11, - 1.2303165892291054e-11, - 1.3304196163873923e-11, - 1.2566549626334917e-11, - 1.1367443546073415e-11, - 1.0837954388323777e-11, - 1.0245756750603556e-11, - 1.1954471526158937e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Ninis=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.062598364263744e-11, - 1.0164533366561162e-11, - 9.846909007442247e-12, - 1.0944152509586145e-11, - 1.0185098191042325e-11, - 8.627306218994275e-12, - 8.17156450291193e-12, - 7.44820969206269e-12, - 7.0255578174242374e-12, - 6.890649087657316e-12, - 6.988633984464593e-12, - 7.066088190489647e-12, - 6.510930722282438e-12, - 5.6468011378014564e-12, - 4.7964039978924245e-12, - 3.3086701603548836e-12, - 3.146783960464047e-12, - 3.831069076594997e-12, - 4.113808822761635e-12, - 5.449752216531666e-12, - 5.46744197349928e-12, - 5.323580380872562e-12, - 5.104520728023078e-12, - 4.723019427319872e-12, - 3.841711518583502e-12, - 3.737434279570876e-12, - 3.999483082208075e-12, - 3.819909807113291e-12, - 3.602465056937767e-12, - 3.654460622439943e-12, - 4.208994474987218e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Ninis=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.744548541078249e-11, - 2.5514508018317503e-11, - 2.3340841828914365e-11, - 2.804569471078593e-11, - 2.7755650382937874e-11, - 2.3960128302413216e-11, - 2.2916842896121634e-11, - 2.4956241612442718e-11, - 2.378190922601288e-11, - 2.3194103068767033e-11, - 2.4610651515684075e-11, - 2.3455569657889968e-11, - 2.0777385898759725e-11, - 1.2881662563078727e-11, - 1.1000362750864637e-11, - 1.1233268871723089e-11, - 9.385916786490117e-12, - 8.168235338721919e-12, - 8.738476156384724e-12, - 1.2128949755004773e-11, - 1.2523659921696377e-11, - 1.2325164205206538e-11, - 1.4040445521395255e-11, - 1.3747630224238802e-11, - 1.249979250850719e-11, - 1.3081298426021984e-11, - 1.1849984623961958e-11, - 1.0148267486730235e-11, - 8.754434102304434e-12, - 8.707536795945624e-12, - 1.0823383638127271e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Ninis=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.3102276343832956e-10, - 3.3102276343832956e-10, - 3.3102276343832956e-10, - 3.3102276343832956e-10, - 3.3102276343832956e-10, - 6.719062751133686e-10, - 6.340039246983968e-10, - 6.335827380883759e-10, - 5.917816034421057e-10, - 6.446573324005484e-10, - 6.988966564146999e-10, - 6.558385249922422e-10, - 5.637674403502227e-10, - 4.3628477160968e-10, - 3.637791761424653e-10, - 3.6522308129213007e-10, - 2.78800246558875e-10, - 2.125773300219517e-10, - 1.6423878087019353e-10, - 2.1289073780210035e-10, - 2.593253772423105e-10, - 2.5676780451734645e-10, - 2.900737781372464e-10, - 3.333385135066797e-10, - 3.3138871766857026e-10, - 3.6122104271635055e-10, - 3.231656649221539e-10, - 2.730615801478426e-10, - 2.179994048950404e-10, - 1.892484767428752e-10, - 2.1397185790450904e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Ninis=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.6532311459221937e-10, - 1.2757342180290985e-10, - 1.1562421004704891e-10, - 1.1356732480275497e-10, - 9.844145395977603e-11, - 7.66563608911544e-11, - 6.80905562696636e-11, - 6.844752917425581e-11, - 6.244152353174767e-11, - 6.415092919985407e-11, - 6.333573971987705e-11, - 5.7136370265532177e-11, - 5.4792455701919186e-11, - 5.007475613578264e-11, - 5.675978690790436e-11, - 4.543608422390222e-11, - 3.659081411947163e-11, - 2.4683674907746357e-11, - 1.694124082458015e-11, - 2.2990987721651224e-11, - 2.2445254899833612e-11, - 2.17678825951876e-11, - 2.3710011818220186e-11, - 2.34349691390709e-11, - 2.2083880823532126e-11, - 2.3000681877212558e-11, - 2.225841006933277e-11, - 1.8005393547693035e-11, - 1.4742639926326837e-11, - 1.3611693725396043e-11, - 1.446471306728852e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Ninis=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.5689771687792206e-10, - 1.4607586708514317e-10, - 1.3214826473228362e-10, - 1.4115450457152694e-10, - 1.3172085318601082e-10, - 1.1220830065423814e-10, - 1.0529767623719793e-10, - 1.0728657662575611e-10, - 1.0634274860163036e-10, - 1.0771449600387991e-10, - 1.177307446867323e-10, - 1.1267675335446257e-10, - 9.936899024220524e-11, - 6.754949154225183e-11, - 6.187657465323064e-11, - 8.38324368823827e-11, - 4.3758521017030135e-11, - 3.5528063327840924e-11, - 3.214307466665066e-11, - 3.736698607182374e-11, - 4.9743379468699224e-11, - 6.141430522831987e-11, - 8.333701531928972e-11, - 8.538862693856517e-11, - 8.133080545744337e-11, - 8.769261322194043e-11, - 8.185426937296994e-11, - 7.65095219168544e-11, - 6.644676671333365e-11, - 6.112774743422955e-11, - 6.995517744788141e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Ninis=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.44542198621252e-11, - 4.257910164209783e-11, - 3.793351972651124e-11, - 3.886968599784832e-11, - 3.635733973401815e-11, - 3.070051725471187e-11, - 3.1190602212180806e-11, - 3.477601321532707e-11, - 3.390453225244123e-11, - 3.4060706159862564e-11, - 3.75083076477559e-11, - 3.7466689948721494e-11, - 3.45157516267411e-11, - 2.8214807317517435e-11, - 2.4547402022924785e-11, - 2.341088534533427e-11, - 2.322468909444301e-11, - 1.911684451309307e-11, - 1.708128006291326e-11, - 2.0385367759638696e-11, - 1.891529678787695e-11, - 1.6864140621268002e-11, - 1.660959947939156e-11, - 1.7038943793559195e-11, - 1.7397794825583384e-11, - 1.9687350758967594e-11, - 1.9452433557103965e-11, - 1.5673637320262214e-11, - 1.5005443361121337e-11, - 1.597710211708467e-11, - 1.834932356175176e-11, - 2.355529142177476e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Ninis=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.4607459477378816e-11, - 1.4198459239097891e-11, - 1.2811227840906455e-11, - 1.315230610015173e-11, - 1.2264914041267418e-11, - 1.028074914603894e-11, - 1.0322089345722393e-11, - 1.1156089070701537e-11, - 1.0616239231983321e-11, - 1.040153229908599e-11, - 1.1138275924636471e-11, - 1.0774193022243635e-11, - 9.812984052016642e-12, - 8.240380018768643e-12, - 7.381754505859742e-12, - 6.7848725344364625e-12, - 6.676156294978171e-12, - 5.032060878296198e-12, - 4.107703882467659e-12, - 5.69121510613851e-12, - 5.699916244639937e-12, - 4.761007170021238e-12, - 5.781219557822971e-12, - 6.441148126500279e-12, - 6.198384488304679e-12, - 6.100008066410535e-12, - 5.828632584177271e-12, - 4.796912850679298e-12, - 4.573086632144567e-12, - 4.680319362849755e-12, - 4.946023781784313e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Ninis=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.4062117158588063e-10, - 1.0645019231585142e-7, - 7.84038260307412e-8, - 4.20662000859947e-8, - 1.0876021308118582e-8, - 3.3666743620188483e-9, - 4.160557192884082e-9, - 2.0905513449742446e-9, - 2.1055025961928477e-9, - 1.177009619518715e-9, - 8.97563779035074e-10, - 1.1999525573101429e-9, - 1.3183126957902795e-9, - 1.980241418816337e-9, - 1.1851620693264388e-9, - 8.689839881628012e-10, - 6.664092992613066e-10, - 5.198281303187411e-10, - 3.298270457351318e-10, - 3.887778975787149e-10, - 3.1339176250388944e-10, - 2.3370163266375985e-10, - 1.8641989332281095e-10, - 1.8500865141802854e-10, - 1.9004826803186304e-10, - 2.6029219962461274e-10, - 2.605603324035769e-10, - 2.3186915078236692e-10, - 1.9092440986320146e-10, - 1.846470444052216e-10, - 2.603189305962312e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Ninis=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Ninis=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Ninis=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.590293581904764e-10, - 1.4147787179945133e-10, - 1.364574832143096e-10, - 1.4068558223013703e-10, - 1.3838862465100071e-10, - 1.305027932010263e-10, - 1.1790233083886249e-10, - 1.1271550767208403e-10, - 1.2745088160643554e-10, - 1.1567535420230314e-10, - 9.870814400899475e-11, - 1.0159076615753758e-10, - 9.866077285372262e-11, - 8.668212722370875e-11, - 7.229845796636535e-11, - 5.6952699591408264e-11, - 4.9632952751276974e-11, - 4.497177738333939e-11, - 3.5988426317302314e-11, - 4.3673016816355363e-11, - 3.541538610420849e-11, - 3.0644829330131446e-11, - 2.5530765195375334e-11, - 2.4670288547292374e-11, - 2.4221579006891563e-11, - 2.859166613988461e-11, - 2.9005482604900006e-11, - 2.716677363736412e-11, - 2.3784039905287148e-11, - 2.1942909565935003e-11, - 2.671931019500027e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Ninis=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Ninis=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.927936110821436e-9, - 7.549275620532226e-9, - 6.9264271056672244e-9, - 8.339743591529308e-9, - 1.0743022688400545e-8, - 1.0512378834438206e-8, - 7.738063522687043e-9, - 6.54670246094138e-9, - 7.078102397067102e-9, - 5.859102180885635e-9, - 4.638207352478491e-9, - 4.53984968176008e-9, - 4.1862138705528224e-9, - 3.801165489703232e-9, - 3.2271803368556684e-9, - 2.673419249561463e-9, - 2.3486544303614265e-9, - 2.0678475665804326e-9, - 1.6636411779000357e-9, - 1.7815165977261454e-9, - 1.4485509195860725e-9, - 1.368007996942346e-9, - 1.2646413484521034e-9, - 1.1077505717865328e-9, - 1.035657311590903e-9, - 1.0547742363767394e-9, - 1.4295583320165453e-9, - 1.6680248021841206e-9, - 2.072096106821932e-9, - 2.4558305586873514e-9, - 2.4558305586873514e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Ninis=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Ninis=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.729538489329073e-10, - 5.062001374105912e-10, - 4.820784655647746e-10, - 4.633291148106734e-10, - 5.439473832646348e-10, - 5.540914579549768e-10, - 4.929797661239181e-10, - 4.803320337190367e-10, - 4.802310039093404e-10, - 4.757594464995753e-10, - 4.223596366452501e-10, - 4.2271206080102563e-10, - 4.0770093878497316e-10, - 3.4099535663105003e-10, - 2.711889181083585e-10, - 2.2424078186741496e-10, - 1.9774231209965518e-10, - 1.714457737720879e-10, - 1.3532839566512086e-10, - 1.8548071312276775e-10, - 1.5216435746636647e-10, - 1.2999151662415356e-10, - 1.0858179574566137e-10, - 1.0250053475152059e-10, - 1.0663671753923923e-10, - 1.2772679130221506e-10, - 1.446019388117706e-10, - 1.2316501152911952e-10, - 1.3230309374755806e-10, - 1.3472434156283772e-10, - 1.5958472514673084e-10, - 2.081460443681202e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Ninis=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.826021644914821e-10, - 7.846803316328267e-10, - 7.009152662739771e-10, - 6.298489032742091e-10, - 5.652917130606518e-10, - 4.876640308059124e-10, - 4.33795988597831e-10, - 3.7402829930225534e-10, - 3.4584359702364914e-10, - 3.2341827790769213e-10, - 2.9384943702858165e-10, - 3.034349728578884e-10, - 3.4455496098463106e-10, - 3.6540119681291743e-10, - 3.723861520881061e-10, - 3.2742502250305403e-10, - 2.730947460489307e-10, - 2.2491558087670331e-10, - 1.82166386555853e-10, - 1.5807810199395705e-10, - 1.510615034718311e-10, - 1.3602289485423634e-10, - 1.1303516774488731e-10, - 9.846269487181266e-11, - 9.600111481542708e-11, - 8.382757253930558e-11, - 8.305215360388483e-11, - 1.1411181394373655e-10, - 1.0848454110774026e-10, - 9.225260403287049e-11, - 8.265511674823972e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Ninis=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Ninis=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.704247486973948e-11, - 6.704247486973948e-11, - 6.704247486973948e-11, - 6.704247486973948e-11, - 6.704247486973948e-11, - 1.440400461911518e-10, - 1.315226210688481e-10, - 1.2628156023954305e-10, - 1.2492555722320953e-10, - 1.236810226206067e-10, - 1.0940453439704221e-10, - 1.1077555084168553e-10, - 1.1961562049575199e-10, - 1.140624478148188e-10, - 1.068902112845475e-10, - 1.0158101613590901e-10, - 9.401020775243744e-11, - 8.088359847396821e-11, - 6.686884046668724e-11, - 6.968507033735682e-11, - 6.175566420976944e-11, - 5.524814582116375e-11, - 5.947748673722753e-11, - 4.9019713667269686e-11, - 4.6503410372163575e-11, - 4.7687558424235124e-11, - 4.288073126260856e-11, - 3.819552393720592e-11, - 3.926226135992179e-11, - 3.88254751599469e-11, - 3.559622652463228e-11, - 6.704247486973948e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Ninis=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.1778634235386228e-10, - 2.187276693114982e-10, - 2.070896023903122e-10, - 1.8213512979018264e-10, - 2.5109185901297136e-10, - 1.9361628530329528e-10, - 1.8082456486087587e-10, - 1.7286221704248363e-10, - 1.18909838761823e-10, - 1.2799177452660556e-10, - 1.4454820926012305e-10, - 2.0039539116570721e-10, - 1.7123599851880336e-10, - 1.3159884927622383e-10, - 1.0406576761286673e-10, - 8.405945628102823e-11, - 6.920286768557345e-11, - 5.756326448695778e-11, - 4.8049083474962305e-11, - 5.3814068708731466e-11, - 4.155766852572287e-11, - 3.524238443343415e-11, - 3.26157417098141e-11, - 2.665530723640068e-11, - 2.640175889638052e-11, - 2.7640331616539006e-11, - 2.753845535655801e-11, - 2.8149133289625822e-11, - 3.135630174345306e-11, - 3.4191654584746465e-11, - 3.9335801139035157e-11, - 6.482385605311845e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Ninis=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Ninis=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.692484732617121e-9, - 4.78028845734318e-9, - 4.46368248945319e-9, - 4.707120969846476e-9, - 6.888746183838834e-9, - 5.482156148138263e-9, - 5.2871219129861835e-9, - 5.7406478126872716e-9, - 5.331093100602505e-9, - 5.260559010166311e-9, - 5.767659080791123e-9, - 5.329276864523561e-9, - 4.950043836594882e-9, - 3.955194399160649e-9, - 3.441761323274999e-9, - 3.1503221966560833e-9, - 2.964800880751893e-9, - 2.4783090874922582e-9, - 2.057791510951156e-9, - 2.1480417998107007e-9, - 2.1513133809083935e-9, - 1.9468645923798115e-9, - 1.9637762228026816e-9, - 1.8332156782145402e-9, - 1.7518590630207976e-9, - 2.0388454273697625e-9, - 1.550394720106725e-9, - 1.6917053278945543e-9, - 1.7052606339166717e-9, - 1.4034883334576415e-9, - 1.4073068423477125e-9, - 2.728027144976857e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Ninis=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.845571741178897e-10, - 2.652923939331831e-10, - 2.4438807350096797e-10, - 2.233831561831864e-10, - 2.141924790132732e-10, - 1.9146479796372358e-10, - 2.0143284335705914e-10, - 1.945904786870424e-10, - 2.149346554125116e-10, - 2.1701423161242284e-10, - 2.065852012804219e-10, - 2.5526175886685406e-10, - 2.763228312357223e-10, - 1.8546318205262824e-10, - 1.3822941343622844e-10, - 1.1860067683659774e-10, - 1.0972126716201922e-10, - 9.781567689424585e-11, - 1.0401109496146117e-10, - 9.971477145882764e-11, - 7.878294500220816e-11, - 7.176154790008592e-11, - 7.569339006731044e-11, - 7.97483529709941e-11, - 8.213560413841748e-11, - 8.796982617554668e-11, - 9.648145043565469e-11, - 8.129531155327931e-11, - 7.795631472394753e-11, - 8.367390083735727e-11, - 9.658895348526053e-11, - 1.2436781670937338e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Ninis=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.1362439854064777e-8, - 1.1362439854064777e-8, - 1.1362439854064777e-8, - 1.1362439854064777e-8, - 1.1362439854064777e-8, - 1.1362439854064777e-8, - 1.1362439854064777e-8, - 1.1362439854064777e-8, - 1.1362439854064777e-8, - 1.1362439854064777e-8, - 2.7757437605606894e-8, - 2.677704245838899e-8, - 2.6170442791046846e-8, - 3.243315570494709e-8, - 2.704570843623236e-8, - 2.556375180958949e-8, - 2.1680071910009317e-8, - 1.7669337558121215e-8, - 1.4055620201216933e-8, - 1.372171972132377e-8, - 1.2152152495818568e-8, - 1.0116764164845883e-8, - 8.690313369721038e-9, - 7.635658748285297e-9, - 4.687424398403516e-9, - 7.517642200739334e-9, - 3.86944555596675e-9, - 1.312117175405752e-8, - 7.087858139093231e-9, - 7.30811725681131e-9, - 7.578437124901083e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Ninis=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Ninis=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.0535021504862693e-9, - 1.0957028923284658e-9, - 1.0746831306652235e-9, - 8.017230793560033e-10, - 1.4572773690208326e-9, - 1.1940731126899198e-9, - 1.1694494225435506e-9, - 1.2024082637806632e-9, - 1.1482711471253436e-9, - 1.1216952256107408e-9, - 1.2277704464929431e-9, - 1.1844023221165134e-9, - 1.044782980254405e-9, - 8.12340442168765e-10, - 6.891100078880844e-10, - 6.649632263706733e-10, - 6.204215436555029e-10, - 4.6472262976765516e-10, - 4.680954602705042e-10, - 4.644451548441743e-10, - 3.9225666003714766e-10, - 4.235372841821974e-10, - 4.3022071224210857e-10, - 3.8463869184191593e-10, - 4.674804747854185e-10, - 4.027705541386285e-10, - 3.8366368127693014e-10, - 3.593865489854634e-10, - 3.245455943772692e-10, - 3.2702328581301657e-10, - 3.1793918177733357e-10, - 5.857171303738615e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Ninis=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.4262326199318765e-10, - 4.869353221412538e-10, - 5.004192309403987e-10, - 8.618234336708503e-10, - 7.06927249426768e-10, - 5.428089323811946e-10, - 4.682744656303206e-10, - 4.3919300012739883e-10, - 4.3801695928062155e-10, - 4.0283724456312095e-10, - 3.4439061367637126e-10, - 3.230768913491343e-10, - 2.5074481919258153e-10, - 2.2797689407968916e-10, - 1.7536626666388437e-10, - 1.357914325729493e-10, - 1.0130070561600513e-10, - 8.67752946239279e-11, - 7.045412583886512e-11, - 8.107386176477132e-11, - 6.616976574522211e-11, - 6.128491920451868e-11, - 5.250805700675377e-11, - 4.1989966853475574e-11, - 4.3750747483803435e-11, - 4.9131754570938134e-11, - 5.278635925122582e-11, - 6.365329273336601e-11, - 6.021669942906892e-11, - 6.277330232947746e-11, - 5.532695896263799e-11, - 1.0441757464816473e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Ninis=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.8249355804186195e-9, - 2.4861494382226343e-9, - 3.5120143288262384e-9, - 3.775519382175757e-9, - 4.1372877807533435e-9, - 3.4841817254078066e-9, - 3.248127468618381e-9, - 3.2687136300557344e-9, - 3.0110691217256388e-9, - 2.9180825081848553e-9, - 6.0946923698732315e-9, - 4.238211846402968e-9, - 3.653017894180736e-9, - 2.951325269869815e-9, - 2.536288662353928e-9, - 2.096453721426526e-9, - 1.155037629253041e-9, - 9.072762607884241e-10, - 7.854509738568304e-10, - 8.64773524790421e-10, - 6.289352557139329e-10, - 5.726296885830387e-10, - 5.458006598762302e-10, - 1.7636840353478387e-10, - 4.1118187997569854e-10, - 5.163281125999593e-10, - 4.010619600489869e-10, - 5.042513327713304e-10, - 3.347095853306988e-10, - 3.2962431848272655e-10, - 3.2868764523533576e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Ninis=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 9.467585339584056e-10, - 9.663575783654027e-10, - 9.43458246459094e-10, - 9.019939308306023e-10, - 8.859101438945604e-10, - 7.885133716677737e-10, - 6.442070579327759e-10, - 6.200938464892458e-10, - 5.985048090488741e-10, - 5.834926213959121e-10, - 5.605418482033551e-10, - 5.540893597477916e-10, - 5.46669736740845e-10, - 4.972827745684351e-10, - 4.594788528355436e-10, - 4.4626564474965104e-10, - 4.4918420936128994e-10, - 3.757730144737491e-10, - 3.26482395494547e-10, - 2.9192665837126137e-10, - 2.6075850125544265e-10, - 2.3255969056626242e-10, - 2.2433227916980446e-10, - 1.99452691940742e-10, - 1.7303942216343816e-10, - 1.533535054757706e-10, - 1.3043368624154476e-10, - 1.0968682955301087e-10, - 1.0916695113313601e-10, - 3.168829725011249e-10, - 3.168829725011249e-10, - 3.168829725011249e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Ninis=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 9.171592705615884e-11, - 1.0899039896376113e-10, - 1.0214444086330214e-10, - 1.0540389604807701e-10, - 9.96713490786333e-11, - 8.171069561400056e-11, - 7.492774162562127e-11, - 7.078906383132598e-11, - 6.986777202728228e-11, - 6.416211629044732e-11, - 6.883080732447725e-11, - 6.064359642466261e-11, - 5.7169779462277385e-11, - 4.844318510699219e-11, - 3.684700540896476e-11, - 3.70924950920565e-11, - 3.13093106752402e-11, - 2.419497942524464e-11, - 2.455500663466736e-11, - 2.1938432735121634e-11, - 1.6626728114997977e-11, - 1.6148152897626202e-11, - 1.504674455201147e-11, - 1.5855301466193147e-11, - 1.4437002957857189e-11, - 1.3994609010546604e-11, - 1.282853184624561e-11, - 1.1102843426672992e-11, - 1.1258327049378869e-11, - 1.0287391932452243e-11, - 1.0611803387019594e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Ninis=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.4597730375848544e-9, - 9.827223133514716e-10, - 9.574624589494942e-10, - 7.167366658144537e-10, - 5.800700758013705e-10, - 4.5559403007776324e-10, - 3.831403835834968e-10, - 3.5193630456351763e-10, - 3.472036348356975e-10, - 3.29360795007954e-10, - 3.030641481056442e-10, - 2.890382527796582e-10, - 2.694285965453683e-10, - 2.388539170371594e-10, - 2.0796211483020263e-10, - 1.639205113933075e-10, - 1.4233894479293777e-10, - 1.369253896620923e-10, - 9.530156111254883e-11, - 9.687339920745938e-11, - 7.107629956967915e-11, - 6.116300945278777e-11, - 6.058272021585593e-11, - 5.834529619813532e-11, - 5.2254330864108307e-11, - 5.112783806934018e-11, - 4.61329737813185e-11, - 4.3346168673084505e-11, - 3.3888811602083284e-11, - 3.606913497935301e-11, - 3.4840415252796463e-11, - 9.963697700180417e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Ninis=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.6429767240150384e-10, - 1.4273639941725747e-10, - 1.2580803745481712e-10, - 1.0878843087861866e-10, - 9.559130277252869e-11, - 8.283181718114467e-11, - 7.660643036800799e-11, - 9.3365354493477e-11, - 1.2334812016564568e-10, - 1.1069527380738576e-10, - 1.1093772420970948e-10, - 1.1655924770552291e-10, - 1.044048986598719e-10, - 9.207778019958154e-11, - 8.109896741275425e-11, - 7.406388221801306e-11, - 6.322953102164552e-11, - 5.332598574407959e-11, - 4.8121088703705403e-11, - 4.866699714441965e-11, - 3.6704261323711314e-11, - 3.384399240745709e-11, - 3.232231064392816e-11, - 3.418716336909616e-11, - 3.269999888800369e-11, - 3.386523997021021e-11, - 3.6214867238855086e-11, - 3.416185457821299e-11, - 2.9174253392204554e-11, - 2.7339681639276484e-11, - 3.0160852247263106e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Ninis=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.481162387310864e-10, - 2.2581707484217784e-10, - 2.057007109635754e-10, - 1.6667165378272883e-10, - 1.488773750077101e-10, - 1.30287308816769e-10, - 1.1582563743944511e-10, - 1.2206424232660337e-10, - 2.7591897825479353e-10, - 1.8810702767774424e-10, - 1.7803792856944466e-10, - 1.8604280600891103e-10, - 1.5874426273625685e-10, - 1.3425765502643794e-10, - 1.2233445855525978e-10, - 1.1144980098999516e-10, - 8.344064833190821e-11, - 6.947903230505603e-11, - 5.517134415428769e-11, - 5.1280617676780265e-11, - 3.529361107191745e-11, - 2.9004362400363024e-11, - 2.5003544086433118e-11, - 2.508426732905336e-11, - 2.50893917620597e-11, - 2.6624716639235897e-11, - 2.4123345416885317e-11, - 2.1120130875833636e-11, - 2.0858288002944705e-11, - 1.8363112990493157e-11, - 2.059666312046136e-11, - 5.403352337994442e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Ninis=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.5603078210283605e-10, - 4.4479455679840004e-10, - 3.812057786020456e-10, - 3.71286048809166e-10, - 3.1483831326263964e-10, - 2.7211938904645603e-10, - 2.433576294701585e-10, - 2.4475897986727287e-10, - 3.092041144385838e-10, - 2.689548981127937e-10, - 2.7528884680265523e-10, - 2.9185216905054305e-10, - 2.732068949322199e-10, - 2.6463188724013405e-10, - 2.4245096471127057e-10, - 2.1442321419873676e-10, - 1.9333683913981554e-10, - 1.6046890619837357e-10, - 1.3627010390239472e-10, - 1.4098616353201373e-10, - 1.2151535442137504e-10, - 1.0426231800486078e-10, - 9.479975404929713e-11, - 8.559269361731721e-11, - 7.849181629227482e-11, - 7.453185772151312e-11, - 6.967399931808817e-11, - 6.606168862029704e-11, - 5.734597882931931e-11, - 4.9784610708046946e-11, - 5.150913053199744e-11, - 1.3643164995010392e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Ninis=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Ninis=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.869269946441819e-11, - 6.565296007723254e-11, - 5.661109605101956e-11, - 4.105705797503761e-11, - 3.8950803410565633e-11, - 5.709591599936667e-11, - 5.002425912963371e-11, - 4.108352466447318e-11, - 3.904779967372091e-11, - 3.4251289065984106e-11, - 2.904160729264381e-11, - 2.716873066832779e-11, - 2.6626835675283845e-11, - 2.8188298211780934e-11, - 2.6281874941785822e-11, - 2.445650213822472e-11, - 2.1837482312879644e-11, - 2.0034268675227394e-11, - 1.9738933081571132e-11, - 2.459875979990916e-11, - 2.0968021496825095e-11, - 1.848385590067038e-11, - 1.76006790650037e-11, - 1.606191720825801e-11, - 1.541793624445174e-11, - 1.6853439639290498e-11, - 1.812718469798343e-11, - 1.616169545402137e-11, - 1.5076796980233686e-11, - 1.4415873693096307e-11, - 1.898658894403529e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Ninis=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.196436612452211e-11, - 5.926229614190158e-11, - 6.186640867353107e-11, - 5.5129085667990915e-11, - 3.8646697048809275e-11, - 2.672443615055834e-11, - 2.4693493975509255e-11, - 2.345997274791298e-11, - 2.3700056083273112e-11, - 3.321981713198723e-11, - 3.0976986202015585e-11, - 3.516173844006435e-11, - 3.779948847282139e-11, - 3.46091589570889e-11, - 2.8418203957750362e-11, - 2.1410134500291514e-11, - 1.7406586973837853e-11, - 1.375692743100244e-11, - 1.0820498298427948e-11, - 1.1283768014024764e-11, - 9.192076777833902e-12, - 7.426925534833545e-12, - 8.3318859216413e-12, - 8.45189096214253e-12, - 8.424117200285907e-12, - 1.227935401963327e-11, - 1.3298484554928579e-11, - 9.839430557205017e-12, - 1.0591816188043745e-11, - 1.282867651127718e-11, - 1.4053673477620446e-11, - 1.624158825904743e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Ninis=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.3639082863456876e-10, - 1.0161906123275136e-10, - 8.426628446055786e-11, - 8.143544409667323e-11, - 7.48879999163137e-11, - 7.471625758634665e-11, - 7.084028810776347e-11, - 6.583088345741739e-11, - 6.448998011681219e-11, - 6.799859869730428e-11, - 6.783572242961537e-11, - 7.175065086740275e-11, - 1.9728179218657851e-10, - 1.5110607431751566e-10, - 1.1708617158882482e-10, - 9.998133885375262e-11, - 8.389331797388359e-11, - 6.705085593764487e-11, - 5.371198558189726e-11, - 6.018443296663445e-11, - 4.593658972393913e-11, - 3.470628815311344e-11, - 3.37190368531049e-11, - 3.454552755715117e-11, - 3.737272433088511e-11, - 3.2415619776762365e-11, - 3.457951878733118e-11, - 2.9908549817250573e-11, - 3.624101553799819e-11, - 4.255061467336866e-11, - 4.952416697140022e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Ninis=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.273100103773637e-10, - 4.824342658084316e-10, - 4.606395118389446e-10, - 4.756391595763958e-10, - 3.691339621888138e-10, - 3.107603032918467e-10, - 2.9985115033264976e-10, - 2.849218542236228e-10, - 2.985056174051007e-10, - 3.3011323234052654e-10, - 3.2017741342170164e-10, - 3.1842109125867945e-10, - 2.506501050372078e-10, - 2.820910837294928e-10, - 2.8336629416479306e-10, - 2.178197202691992e-10, - 2.047534502269924e-10, - 1.6482175236069382e-10, - 1.3695494053250725e-10, - 1.31597472271584e-10, - 1.0160718346526245e-10, - 9.064882530037132e-11, - 7.843279605938578e-11, - 8.077525590739499e-11, - 8.237488636638789e-11, - 9.567698987799633e-11, - 8.634887931780028e-11, - 8.217728844140356e-11, - 7.943400810236152e-11, - 7.361987128976763e-11, - 8.201149475230542e-11, - 1.5102075700728757e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Ninis=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.3976485626046096e-10, - 3.0876841259149514e-10, - 2.7336933968936293e-10, - 2.749021339365199e-10, - 2.82649376382896e-10, - 2.1331203619561337e-10, - 2.340692951243203e-10, - 1.9234995135722714e-10, - 1.8079253400550303e-10, - 1.685295413529816e-10, - 1.4095866241006904e-10, - 1.3434880108809037e-10, - 1.7775177065823885e-10, - 1.9746323344412876e-10, - 1.468341757303028e-10, - 9.188371340875584e-11, - 6.943629728395535e-11, - 5.0789182209703946e-11, - 3.8138537610042625e-11, - 4.536252644392472e-11, - 4.781374566771018e-11, - 5.971899894503814e-11, - 5.148362886522345e-11, - 4.4506092369746046e-11, - 3.423174189862713e-11, - 9.419294711936704e-11, - 1.1534528587675694e-10, - 1.2977771230501992e-10, - 9.419294711936704e-11, - 9.419294711936704e-11, - 9.419294711936704e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Ninis=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.100267209446389e-10, - 4.962172625633898e-10, - 4.1770264437527806e-10, - 3.672375936494834e-10, - 2.986624128552044e-10, - 2.6378210303165137e-10, - 2.511500335145034e-10, - 2.2878189761888114e-10, - 2.478752302175625e-10, - 2.831285797368638e-10, - 2.442947326205761e-10, - 2.484607473330417e-10, - 3.056255869176926e-10, - 2.9680463810275563e-10, - 2.4546998701710584e-10, - 1.9035951932017981e-10, - 1.509836586251497e-10, - 1.2944885077904937e-10, - 1.054557267455386e-10, - 1.0740202898885885e-10, - 8.221574598767488e-11, - 6.983259390521034e-11, - 6.060584361371476e-11, - 5.7809651631025623e-11, - 5.6125214304059173e-11, - 7.135026508318996e-11, - 7.418014252199507e-11, - 6.983371860549194e-11, - 6.759461648365355e-11, - 7.405005406846543e-11, - 8.989824930139191e-11, - 1.292367627105796e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Ninis=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.497944893796179e-10, - 5.389219312319828e-10, - 5.241020902944111e-10, - 4.13608948442478e-10, - 4.3098892080120867e-10, - 2.7761491315535343e-10, - 2.6691586499932247e-10, - 2.400168739690057e-10, - 2.8512788619526794e-10, - 2.7123813878657513e-10, - 3.0862718981781145e-10, - 2.8726432725254023e-10, - 2.9238503575504914e-10, - 2.715370365011406e-10, - 2.0552282394612423e-10, - 1.6581979645732633e-10, - 1.284983086682217e-10, - 1.1744987985579662e-10, - 1.135057380645914e-10, - 1.3457896781563182e-10, - 8.781099827886503e-11, - 7.603507964738449e-11, - 6.693562393800163e-11, - 6.580830004877393e-11, - 7.154326494921263e-11, - 7.859163834378117e-11, - 6.827978821518303e-11, - 5.966762339723669e-11, - 5.329807917332996e-11, - 5.909397938241651e-11, - 8.250968189181108e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Ninis=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.3905039449438687e-9, - 2.6910446075803043e-9, - 2.2612564735716214e-9, - 2.020846314753771e-9, - 1.8466575155207622e-9, - 1.6725260025789297e-9, - 1.6582288099809112e-9, - 1.5351653097193901e-9, - 1.4151664547006816e-9, - 1.358518529144764e-9, - 1.289861306938975e-9, - 1.3526392585889753e-9, - 1.2401364279058902e-9, - 1.2517543206101395e-9, - 1.0837912620667811e-9, - 9.311078658741509e-10, - 8.130997127805083e-10, - 6.498119409590414e-10, - 5.623057966918861e-10, - 6.387882442104795e-10, - 5.06922526287907e-10, - 4.999693802641219e-10, - 3.758073092923437e-10, - 3.58000336046006e-10, - 3.577717298389386e-10, - 3.343260049249089e-10, - 3.512497568364272e-10, - 3.321433323960265e-10, - 3.047092302203145e-10, - 2.793694017182144e-10, - 3.2596623982564745e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Ninis=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.209045616581943e-12, - 2.1391005473004726e-12, - 2.0202755343784003e-12, - 1.920645009286486e-12, - 2.0981892121859375e-12, - 1.9673420858422444e-12, - 1.7799805187583069e-12, - 1.559885184234733e-12, - 1.3969164519507042e-12, - 1.2948224551780296e-12, - 1.208503984461794e-12, - 1.222851822239804e-12, - 1.2280071053297627e-12, - 1.1877910613168746e-12, - 1.075838524432181e-12, - 1.0086954450326424e-12, - 9.019435773285515e-13, - 8.504096431050094e-13, - 8.856207310142797e-13, - 1.0402151983794113e-12, - 1.0158715300412311e-12, - 9.271304264710306e-13, - 8.588006134522684e-13, - 8.567250111408686e-13, - 7.639570541092501e-13, - 6.820810707291344e-13, - 6.412350986717944e-13, - 5.613269176774929e-13, - 5.297920508614033e-13, - 4.85694523086355e-13, - 6.629112993835641e-13, - 9.402186025572965e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Ninis=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Ninis" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Suicide=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 7.50703626518511e-12, - 7.116313532601839e-12, - 6.239527396213991e-12, - 6.421014455505495e-12, - 6.031543275668887e-12, - 5.143491272610189e-12, - 5.325869947641797e-12, - 6.0126864339800515e-12, - 5.940176328670284e-12, - 6.05937657217195e-12, - 7.443600642564868e-12, - 7.451982353304371e-12, - 7.02434869119926e-12, - 5.756223023220349e-12, - 4.9744988192221386e-12, - 4.67180694737462e-12, - 4.274212586642131e-12, - 3.619826672722166e-12, - 3.337548351077014e-12, - 3.752277882598057e-12, - 3.882732284120618e-12, - 3.520643112543939e-12, - 3.657350810428282e-12, - 3.5888326406199254e-12, - 3.445533399226184e-12, - 3.96117958309895e-12, - 3.746555909371992e-12, - 3.413848542524455e-12, - 3.243414929864794e-12, - 3.1633143685286388e-12, - 3.4577661808372136e-12, - 4.5801536521599254e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Suicide=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.3831769566777285e-11, - 1.383071021933583e-11, - 1.2526169712542124e-11, - 1.327093499013676e-11, - 1.2593412647357708e-11, - 1.0964372927906975e-11, - 1.093309608341996e-11, - 1.2082856517404022e-11, - 1.1679128424079956e-11, - 1.1757010059178064e-11, - 1.4791603217120014e-11, - 1.4154463119276598e-11, - 1.3187609072226926e-11, - 1.0896997506796429e-11, - 9.19970500979055e-12, - 8.693889914963162e-12, - 7.972295295437598e-12, - 6.727827893700905e-12, - 6.210960146547188e-12, - 6.812575831661125e-12, - 6.880418636061656e-12, - 6.2823770547262374e-12, - 6.632703950882536e-12, - 6.045783860550014e-12, - 5.462252791420645e-12, - 6.477563776910139e-12, - 6.0251576342429505e-12, - 5.625876777776549e-12, - 5.087860764934791e-12, - 5.057037804072396e-12, - 6.6740986421771385e-12, - 8.391738339969417e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Suicide=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.751467967224602e-11, - 5.491759848770149e-11, - 5.2968278379548154e-11, - 7.071971841947622e-11, - 6.575455389614111e-11, - 5.633995132089669e-11, - 5.16206322319076e-11, - 5.616340305060056e-11, - 5.561113658057374e-11, - 5.494902790645509e-11, - 5.745039243801575e-11, - 6.6007730063653e-11, - 5.808527072711161e-11, - 4.3070287928727764e-11, - 3.842977548535539e-11, - 4.0028750445654036e-11, - 3.545316157900198e-11, - 2.9516383869061553e-11, - 2.8973965295070416e-11, - 3.596487694269692e-11, - 2.964830103193411e-11, - 2.4734620472714093e-11, - 2.71501209162707e-11, - 2.7094183491072102e-11, - 2.5431125570724776e-11, - 3.108272117473735e-11, - 2.8313522222909276e-11, - 2.7725471633657605e-11, - 2.6824837358416537e-11, - 2.7534301647312368e-11, - 2.782601963247061e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Suicide=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.49655092882095e-12, - 7.1710012562387625e-12, - 6.946919678057633e-12, - 7.721016653149339e-12, - 7.185509584055747e-12, - 6.086499153801776e-12, - 5.7649768270318885e-12, - 5.25465549006124e-12, - 4.956477795652294e-12, - 4.861300709233475e-12, - 5.174091943559393e-12, - 5.048943847890977e-12, - 4.65226625087371e-12, - 3.840369215140044e-12, - 3.385891237871322e-12, - 3.1043342078339262e-12, - 2.870750215680401e-12, - 2.4467332702081163e-12, - 2.756149796841533e-12, - 3.297883271681053e-12, - 3.1311341961544937e-12, - 3.1029296258038194e-12, - 3.0156390219507773e-12, - 3.1391670452351272e-12, - 2.7857268141839498e-12, - 2.9764181984178173e-12, - 3.121726825253319e-12, - 3.038143466874224e-12, - 2.792341386965825e-12, - 2.7443191692990354e-12, - 2.969413703429721e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Suicide=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.4760736533065396e-11, - 1.3722217880001839e-11, - 1.2553176288920823e-11, - 1.50835412205921e-11, - 1.4927549521330944e-11, - 1.288624106576811e-11, - 1.2325141096845278e-11, - 1.3421970928306764e-11, - 1.2790391245932964e-11, - 1.2474257219161085e-11, - 1.4372538900771457e-11, - 1.2742302255739283e-11, - 1.1710648052155277e-11, - 9.366478675491878e-12, - 7.950942309738386e-12, - 6.934116567073223e-12, - 5.950496733107563e-12, - 5.020343994854923e-12, - 4.77981156562335e-12, - 5.095633906053299e-12, - 4.851951490787567e-12, - 4.794995389422817e-12, - 5.81244238158456e-12, - 6.272402692970459e-12, - 6.2717747608605365e-12, - 6.607561080373869e-12, - 6.326480646059433e-12, - 6.247432079410887e-12, - 5.489114815216948e-12, - 5.52745529235073e-12, - 6.1803315876893075e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Suicide=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.930742856518019e-10, - 3.930742856518019e-10, - 3.930742856518019e-10, - 3.930742856518019e-10, - 3.930742856518019e-10, - 7.978577556777442e-10, - 7.528504602303273e-10, - 7.523503205295392e-10, - 7.027133983739469e-10, - 7.655008912121253e-10, - 9.523905037140164e-10, - 8.464511688887285e-10, - 7.202335704310982e-10, - 5.630864013390093e-10, - 4.814242507531507e-10, - 4.390540810673639e-10, - 3.598056701144873e-10, - 2.9896268124404693e-10, - 2.6006829584974276e-10, - 2.9008938296725067e-10, - 3.0284967328836633e-10, - 2.5961727326445833e-10, - 3.217213664035289e-10, - 2.801877589405573e-10, - 2.965869031709279e-10, - 3.508548596776299e-10, - 3.136045576540805e-10, - 2.7928773301506976e-10, - 2.6346280918799825e-10, - 2.6346987172641735e-10, - 3.168496729608129e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Suicide=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.580836422326671e-10, - 1.9915311559542112e-10, - 1.8049936533570315e-10, - 1.7728839004763542e-10, - 1.5367560094233853e-10, - 1.1966719153512726e-10, - 1.0629523165631306e-10, - 1.0685249715196245e-10, - 9.747660428113334e-11, - 1.0014513397806194e-10, - 9.87112599751765e-11, - 9.0096935824799e-11, - 8.690320531288571e-11, - 7.804349160481234e-11, - 6.898979842266176e-11, - 5.7815866253419904e-11, - 4.961958275007923e-11, - 3.6594305048892316e-11, - 3.185852823375762e-11, - 4.3662411399209187e-11, - 3.876339121563898e-11, - 3.4071468409858855e-11, - 3.710957952301346e-11, - 3.4931731121912334e-11, - 3.2075086895848863e-11, - 3.327669239891801e-11, - 2.919829330711724e-11, - 2.526073267381467e-11, - 2.8987806113911745e-11, - 2.8508842887163318e-11, - 2.8540198894894636e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Suicide=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.1525739643982893e-11, - 3.866154680610443e-11, - 3.4975361941988334e-11, - 3.735902168017736e-11, - 3.48622399607095e-11, - 2.9697899826592804e-11, - 2.7868881558961506e-11, - 2.8395279019399662e-11, - 2.8145478336646352e-11, - 2.8508535407307525e-11, - 2.6828607899249292e-11, - 2.274239621645192e-11, - 1.8762429674530245e-11, - 1.6306753536600234e-11, - 1.2865015653122783e-11, - 1.4926853042125096e-11, - 1.3526025409454735e-11, - 9.407254254301754e-12, - 9.55301205202934e-12, - 1.0866005542411148e-11, - 1.1779555567383482e-11, - 1.5547926125025683e-11, - 1.9832308974690454e-11, - 2.0928585425316034e-11, - 2.250930953060415e-11, - 2.555146095620897e-11, - 2.43336531209457e-11, - 2.551985367883998e-11, - 2.40509940786452e-11, - 2.48605672139495e-11, - 2.1526706699807623e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Suicide=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 9.828654508735648e-11, - 9.414073188787966e-11, - 8.386953158744813e-11, - 8.593935867523443e-11, - 8.038465914162774e-11, - 6.787764542306715e-11, - 6.896120413623998e-11, - 7.688840792725017e-11, - 7.496159753181165e-11, - 7.530689194572428e-11, - 8.292940427715239e-11, - 9.417303189728378e-11, - 7.631297971277696e-11, - 6.939317505199554e-11, - 5.805128881710602e-11, - 5.4414490495883723e-11, - 4.87688737438467e-11, - 4.111149326035894e-11, - 3.656967761639051e-11, - 3.982489632056297e-11, - 4.104262468376213e-11, - 3.822229563620402e-11, - 3.9814185870607254e-11, - 3.7657693359988145e-11, - 3.728098983544288e-11, - 4.1887980444472274e-11, - 3.9157497091404046e-11, - 3.6907341917422226e-11, - 3.4492747203688564e-11, - 3.2808113435876314e-11, - 3.776293444154184e-11, - 5.207982998132871e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Suicide=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.263903273774527e-11, - 3.172515909752264e-11, - 2.8625517363755314e-11, - 2.9387625551484985e-11, - 2.740482912435859e-11, - 2.2971394065186478e-11, - 2.3063764961915145e-11, - 2.4927261100242232e-11, - 2.3721015990565422e-11, - 2.3241272978256595e-11, - 2.2995150032476687e-11, - 2.2243495016796507e-11, - 2.110319126784992e-11, - 1.6549716466090013e-11, - 1.4733131016410357e-11, - 1.4299301091487443e-11, - 1.307981616008204e-11, - 9.899136198243359e-12, - 9.455072667691438e-12, - 1.090051272026095e-11, - 1.1565047635572372e-11, - 1.115688469967902e-11, - 1.2754443398982325e-11, - 1.345230913447631e-11, - 1.300203568470138e-11, - 1.541329636139252e-11, - 1.5177401563749632e-11, - 1.4510661373304876e-11, - 1.2472054963497184e-11, - 1.296426420524471e-11, - 1.1369289227785629e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Suicide=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.1423654260502628e-11, - 9.477769978045583e-9, - 6.9806677879285924e-9, - 3.7453550772602024e-9, - 9.683442180058956e-10, - 2.997511277341913e-10, - 3.7043431483576993e-10, - 1.8613178937403626e-10, - 1.8746297081064128e-10, - 1.0479479832827117e-10, - 7.857043013872789e-11, - 1.0504076788312584e-10, - 1.1540171070287876e-10, - 1.7334525265958232e-10, - 1.0374604651626027e-10, - 7.606862857926276e-11, - 5.833576010353134e-11, - 4.164928690924616e-11, - 2.7352623101132313e-11, - 3.313702432843939e-11, - 2.8155445244444802e-11, - 2.207271820523946e-11, - 1.8807125347009937e-11, - 1.7899938693550655e-11, - 1.7949732818925373e-11, - 2.458415162893702e-11, - 2.400924518032315e-11, - 2.08313681462761e-11, - 1.627321628603873e-11, - 1.5312816452323158e-11, - 2.317743999748976e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Suicide=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 9.72088701330411e-10, - 1.0394396551724145e-9, - 9.35764570714204e-10, - 9.997773167063505e-10, - 9.70241747338472e-10, - 8.792181605457856e-10, - 7.897926003697413e-10, - 6.3330902125262e-10, - 6.976747568823476e-10, - 5.773359047682369e-10, - 4.3919190669182963e-10, - 4.56140350877194e-10, - 4.028148232222908e-10, - 3.144414741486991e-10, - 2.2688551838770024e-10, - 1.5270434509010372e-10, - 1.1169120666392906e-10, - 1.0537924949681547e-10, - 7.200482383700004e-11, - 8.58910181861085e-11, - 6.553587637135215e-11, - 4.768283231192761e-11, - 3.9607457476426634e-11, - 3.37144843060986e-11, - 3.054921693940357e-11, - 3.771486135408798e-11, - 4.020241404886283e-11, - 3.600267909523117e-11, - 3.1636084004669526e-11, - 3.2885174983402584e-11, - 4.954596254931315e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Suicide=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.4930541302887836e-10, - 1.4684155182617518e-10, - 1.3956702760255536e-10, - 1.36089471106758e-10, - 1.2764502156548422e-10, - 1.15144171207193e-10, - 1.0289347600710906e-10, - 9.601845773241472e-11, - 1.0003391336888395e-10, - 8.964364484112914e-11, - 8.242492412162472e-11, - 8.324328170959239e-11, - 7.284899578477588e-11, - 6.031539738362291e-11, - 5.208884017793807e-11, - 4.3738848124857275e-11, - 3.736777067705589e-11, - 3.218100352936085e-11, - 2.694353071831013e-11, - 3.352430899691077e-11, - 2.89867737097884e-11, - 2.3384072786513027e-11, - 2.1089690655702892e-11, - 1.9225467134790262e-11, - 1.73638198985357e-11, - 1.8149577533109625e-11, - 1.680460141788588e-11, - 1.452261417574773e-11, - 1.4210767927458227e-11, - 1.533979223465418e-11, - 2.1094062048866645e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Suicide=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.26760894374994e-11, - 3.796608613051695e-11, - 3.661884713824301e-11, - 3.7753472428838314e-11, - 3.713707575720015e-11, - 3.502088506085672e-11, - 3.163950652270356e-11, - 3.0247604223149495e-11, - 3.420189381516422e-11, - 3.104188948394775e-11, - 1.6885213549870088e-11, - 1.79213932111647e-11, - 1.793192952886881e-11, - 1.6218145718192473e-11, - 1.3140489536007422e-11, - 1.1264700049069397e-11, - 1.0612890845150978e-11, - 1.033741855716504e-11, - 8.849613046891124e-12, - 1.1652352547960952e-11, - 1.0412577902905652e-11, - 9.087674364955766e-12, - 8.695949403354074e-12, - 8.705584956200727e-12, - 8.726114853083154e-12, - 9.629053655484267e-12, - 9.768418074670652e-12, - 9.003955643004165e-12, - 7.755665202322173e-12, - 7.566520705862553e-12, - 7.17022117528993e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Suicide=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.4965602860071925e-10, - 1.4965602860071925e-10, - 9.516727650332643e-9, - 2.7053302044921216e-9, - 3.559310606379834e-9, - 1.7570306988767273e-9, - 1.3371920707866435e-9, - 1.0719619315521161e-9, - 9.552443423270727e-10, - 9.270831445385204e-10, - 8.055245253720557e-10, - 5.956844006321016e-10, - 5.773063917525771e-10, - 5.222108724550476e-10, - 4.953705657546129e-10, - 3.397324815332405e-10, - 2.2399099550842267e-10, - 1.4825866962853263e-10, - 9.620800653757611e-11, - 1.0385742173784814e-10, - 8.694124573177917e-11, - 6.823182673476441e-11, - 6.314224285168883e-11, - 5.797927193977519e-11, - 5.581818582338799e-11, - 7.725009194556826e-11, - 1.0563142529937832e-10, - 9.788193546002293e-11, - 8.49023622833741e-11, - 8.510773393637319e-11, - 9.968669066781732e-11, - 1.4965602860071925e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Suicide=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.029728568529245e-9, - 9.805458406195355e-10, - 8.996464866568999e-10, - 1.083216629191103e-9, - 1.3953691376881803e-9, - 1.3654117109051208e-9, - 1.005066761767748e-9, - 8.503255398955989e-10, - 9.193469961604093e-10, - 7.610158327783013e-10, - 6.31964810382583e-10, - 6.185633856506728e-10, - 5.516788381443625e-10, - 5.009353620714551e-10, - 4.325012692238246e-10, - 3.523156893262296e-10, - 3.0427061775323275e-10, - 2.6789179726458273e-10, - 2.2295838653870803e-10, - 2.3477658742711767e-10, - 1.8442573502830483e-10, - 1.7111558419804855e-10, - 1.610108468276093e-10, - 1.4103592125579878e-10, - 1.318571949007976e-10, - 1.2957914319310786e-10, - 1.8200764818355628e-10, - 2.086428143114132e-10, - 2.730705138540905e-10, - 3.181553963535101e-10, - 3.189782120337347e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Suicide=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.942214382692691e-10, - 5.091926940011016e-10, - 4.6377065101610354e-10, - 4.6225487134649066e-10, - 4.4702101745415047e-10, - 4.1839940833977037e-10, - 3.78000357489403e-10, - 3.646420067329012e-10, - 4.125909263637282e-10, - 3.7034765958892426e-10, - 3.17827250310325e-10, - 3.1873328368337295e-10, - 2.929092715161593e-10, - 2.819673791350612e-10, - 2.3825183364274017e-10, - 1.930378227448891e-10, - 1.746570957257087e-10, - 1.6157630246530096e-10, - 1.1164846030833402e-10, - 1.3432981646577784e-10, - 1.0308723489395762e-10, - 7.871218680573736e-11, - 6.177864660043384e-11, - 5.893078159882475e-11, - 5.5016721469693717e-11, - 6.352368962771318e-11, - 6.255928272233183e-11, - 5.812752899702151e-11, - 5.136283537971803e-11, - 5.5643336857711624e-11, - 7.807072287462207e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Suicide=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.3667640986801256e-11, - 7.28416326034705e-11, - 6.937055105188794e-11, - 6.667254048600764e-11, - 7.827341898811717e-11, - 7.973313997016956e-11, - 7.093923598803022e-11, - 6.911924146606884e-11, - 6.910470338965196e-11, - 6.846125128852533e-11, - 8.213118713796041e-11, - 8.219971881518187e-11, - 7.751889382907351e-11, - 6.041510029565972e-11, - 4.687541316907777e-11, - 3.779134814355615e-11, - 3.161655239062216e-11, - 2.5930327815392988e-11, - 1.9882959557771602e-11, - 2.3321739261288043e-11, - 1.8609582536523167e-11, - 1.4999021148940794e-11, - 1.387168269071204e-11, - 1.3825653524623707e-11, - 1.309573767987392e-11, - 1.6267090759678047e-11, - 1.624653097252666e-11, - 1.4697494873961786e-11, - 1.4292993207059225e-11, - 1.4554565915573743e-11, - 2.2964063142549376e-11, - 2.995198256817197e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Suicide=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.375709812108555e-11, - 8.478693333333336e-11, - 7.573588066139461e-11, - 6.805695876288663e-11, - 6.108137142857143e-11, - 5.2693480392156894e-11, - 4.6872885789014797e-11, - 4.041481760060175e-11, - 3.7369380654140555e-11, - 3.494626137841353e-11, - 3.1050132314025294e-11, - 3.309729579035405e-11, - 3.75824755872262e-11, - 3.985628742514972e-11, - 3.9348856377498475e-11, - 3.45979572887651e-11, - 2.8857050348065334e-11, - 2.3766111707841117e-11, - 1.9039642657733087e-11, - 1.6389368643254662e-11, - 1.4612962042101773e-11, - 1.3983662752534448e-11, - 1.218128620051351e-11, - 1.178778757256503e-11, - 1.0798591549295789e-11, - 1.0019231556119318e-11, - 9.625747397947887e-12, - 1.2726224783861667e-11, - 1.2013791860098246e-11, - 9.898348396309715e-12, - 8.678923996584119e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Suicide=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.7836237018937073e-10, - 1.6111886204208898e-10, - 1.5214841211613057e-10, - 1.6815066438062564e-10, - 1.8019484298183973e-10, - 2.0180763108614195e-10, - 1.8486896551724125e-10, - 1.6792278606261925e-10, - 1.8917579657824522e-10, - 1.4328712693275782e-10, - 1.2803693500663197e-10, - 1.4951598837209288e-10, - 2.5388282331231774e-10, - 1.9417013682331945e-10, - 1.3284098562437583e-10, - 9.084350578053346e-11, - 7.641652123327514e-11, - 7.257513549022832e-11, - 6.19689566236811e-11, - 9.043553654152849e-11, - 7.489289824013173e-11, - 1.4697662374349657e-10, - 6.961945788964183e-11, - 7.32792316926771e-11, - 1.531255014326648e-10, - 2.011340261088956e-10, - 1.908605052400432e-10, - 1.4518292178854586e-10, - 1.1024962493925673e-10, - 8.638703133833879e-11, - 2.0280172428044372e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Suicide=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.6509333562829758e-11, - 2.6509333562829758e-11, - 2.6509333562829758e-11, - 2.6509333562829758e-11, - 2.6509333562829758e-11, - 5.695502199621419e-11, - 5.20054941251202e-11, - 4.993312090177072e-11, - 4.939694236209074e-11, - 4.890483966189979e-11, - 5.1337933714586445e-11, - 4.892355894215491e-11, - 4.870057165994361e-11, - 5.037520324976654e-11, - 4.499475801737782e-11, - 4.696577633530501e-11, - 3.5680575607853036e-11, - 2.9024046300868145e-11, - 2.4456472253290934e-11, - 2.8852612502268703e-11, - 2.8552605821875967e-11, - 2.1731350321859634e-11, - 2.3605248653122563e-11, - 1.767701176984426e-11, - 1.6401617722846592e-11, - 1.499608711505587e-11, - 1.6299692806381047e-11, - 1.43549872115361e-11, - 1.4452366069594434e-11, - 1.331877157851606e-11, - 1.4075140339806376e-11, - 2.6509333562829758e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Suicide=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.701102327461879e-11, - 1.708454916523388e-11, - 1.6175514075484345e-11, - 1.422635092035451e-11, - 1.961247620751553e-11, - 1.5123129853056087e-11, - 1.4123984306018736e-11, - 1.350205511341949e-11, - 9.287901219590257e-12, - 9.997280049334717e-12, - 9.344259003201764e-12, - 1.7843764599333682e-11, - 1.3319280587982864e-11, - 9.854019751696934e-12, - 7.337187037283902e-12, - 5.530227208464938e-12, - 4.846893552501554e-12, - 3.669254378845596e-12, - 3.1150134768765376e-12, - 3.696444475593859e-12, - 3.0888325064671542e-12, - 2.6229109321495485e-12, - 2.498420385693598e-12, - 2.4013789657197608e-12, - 2.4495378466743212e-12, - 2.6610617137807863e-12, - 2.6446114948812045e-12, - 2.6775436620768345e-12, - 2.9545061229317462e-12, - 3.1537267317344306e-12, - 3.560164912492677e-12, - 5.063311648250289e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Suicide=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.8843501282101334e-10, - 2.6962661732393446e-10, - 2.582237866370347e-10, - 2.7499193638492724e-10, - 2.4449405687551977e-10, - 2.230319326526923e-10, - 2.0168459261216342e-10, - 2.2236217869415384e-10, - 2.082226072911102e-10, - 2.0909382756151692e-10, - 2.547787004877547e-10, - 2.5088963680234314e-10, - 2.2728974806452307e-10, - 1.8438823662621578e-10, - 1.593264144433642e-10, - 1.5077870145374143e-10, - 1.3548788108011314e-10, - 1.176600157521659e-10, - 1.0053265249477304e-10, - 9.903407291815579e-11, - 9.869471237178569e-11, - 9.075620947789023e-11, - 9.05702097346208e-11, - 7.488838129772788e-11, - 6.994833451483505e-11, - 7.313712232400411e-11, - 6.969204395057813e-11, - 6.473216091510698e-11, - 6.096723120212383e-11, - 6.006485046052855e-11, - 7.587705422841758e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Suicide=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 9.173359816371296e-10, - 9.345007718501077e-10, - 8.726073267147935e-10, - 9.201972263318515e-10, - 1.3466841349266132e-9, - 1.0717092069973867e-9, - 1.0335818753701838e-9, - 1.122241860454062e-9, - 1.0421778229020732e-9, - 1.0283890813768384e-9, - 1.2971495550936104e-9, - 1.1678249295316944e-9, - 1.0704494783210057e-9, - 8.43908614830253e-10, - 7.244350868466491e-10, - 6.540084146209141e-10, - 5.983970412180631e-10, - 4.787691281012916e-10, - 4.034652640211244e-10, - 4.1496684364787126e-10, - 4.093958920041854e-10, - 3.64875724052935e-10, - 3.680452528530441e-10, - 3.4357597367163404e-10, - 3.2832835244954053e-10, - 3.6006098594967085e-10, - 3.3087691684312075e-10, - 2.952863991490665e-10, - 2.6387849695757636e-10, - 2.5744207387468957e-10, - 2.7511505678776687e-10, - 5.333032714150915e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Suicide=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.0740960150457206e-10, - 1.9336778233916318e-10, - 1.7813092604126733e-10, - 1.6282074613094586e-10, - 1.5612179469780038e-10, - 1.3955591726307031e-10, - 1.468214811316329e-10, - 1.41834180656934e-10, - 1.5666275632243458e-10, - 1.5817852928531653e-10, - 1.476079251155821e-10, - 1.6982992495706183e-10, - 1.882434859465145e-10, - 1.2739807752831283e-10, - 9.616638890938662e-11, - 8.446750311117585e-11, - 7.766712337050362e-11, - 7.385713678213598e-11, - 7.581218018799058e-11, - 7.268065223274469e-11, - 5.894120365483039e-11, - 4.8886787382600474e-11, - 5.271632427504519e-11, - 5.911904929641507e-11, - 6.322159353241246e-11, - 7.06642866000293e-11, - 7.540510705978705e-11, - 6.606390957825902e-11, - 5.952937948793577e-11, - 6.057722505046208e-11, - 7.14479982358771e-11, - 9.06498997385956e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Suicide=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.2340823190396282e-9, - 2.2340823190396282e-9, - 2.2340823190396282e-9, - 2.2340823190396282e-9, - 2.2340823190396282e-9, - 2.2340823190396282e-9, - 2.2340823190396282e-9, - 2.2340823190396282e-9, - 2.2340823190396282e-9, - 2.2340823190396282e-9, - 5.835240274599542e-9, - 5.298013245033113e-9, - 5.17799352750809e-9, - 6.41711229946524e-9, - 5.3511705685618726e-9, - 4.952581664910432e-9, - 4.289544235924933e-9, - 3.5688273852876916e-9, - 2.7809965237543453e-9, - 2.7149321266968325e-9, - 2.4524524524524525e-9, - 2.085070892410342e-9, - 1.791078566019514e-9, - 1.5422393712246022e-9, - 1.519072733202466e-9, - 1.3944513294187675e-9, - 1.3241449054731206e-9, - 1.3271582527684373e-9, - 1.2855142296491704e-9, - 1.355586439496487e-9, - 1.4900719039351585e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Suicide=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.455280522826847e-9, - 3.733411503685355e-9, - 5.13834860520551e-9, - 4.969682571292513e-9, - 4.850619550669563e-9, - 4.677710663581321e-9, - 3.5171646308109766e-9, - 2.9179371211743127e-9, - 2.5769976501621267e-9, - 2.2697580052510943e-9, - 2.2098573719460348e-9, - 2.29690517028259e-9, - 2.166636072155905e-9, - 1.951330596393685e-9, - 1.6249251922820203e-9, - 1.475052281024792e-9, - 1.3730143083683633e-9, - 1.2056443340316302e-9, - 1.0751664654162896e-9, - 1.2170074017525196e-9, - 1.3417804055544705e-9, - 1.063862894588929e-9, - 9.601973993794655e-10, - 9.013615569478238e-10, - 8.128207064580185e-10, - 8.714204123580356e-10, - 1.1393148041119764e-9, - 1.0136859509370356e-9, - 9.093438076642126e-10, - 8.839950347155965e-10, - 9.67584554310027e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Suicide=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.469702524176953e-10, - 8.80897827177558e-10, - 8.639988461612795e-10, - 6.44550747787103e-10, - 1.17158809833702e-9, - 9.599832379965756e-10, - 9.40186854050801e-10, - 9.666843396697028e-10, - 9.231604348181009e-10, - 9.01794541124323e-10, - 1.0126267023424006e-9, - 9.859875426862848e-10, - 8.53651045913713e-10, - 6.762546319289281e-10, - 5.683564031306624e-10, - 5.843202029110215e-10, - 5.59527136167e-10, - 4.76424283621735e-10, - 4.0411118793056837e-10, - 3.973798465054816e-10, - 3.9262019864490057e-10, - 3.525849943628754e-10, - 3.5151640859405174e-10, - 3.083434522595851e-10, - 2.7482684802770844e-10, - 2.949373270927285e-10, - 2.720739358295398e-10, - 2.493174923840213e-10, - 2.226456154390181e-10, - 2.2686610225187427e-10, - 2.556093776544535e-10, - 4.708912891436791e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Suicide=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.003953618036594e-11, - 8.805248318517627e-11, - 9.049077755163576e-11, - 1.5584347643582928e-10, - 1.2783360933762043e-10, - 9.815610455425884e-11, - 8.467804169482722e-11, - 7.941924214638641e-11, - 7.920657875521862e-11, - 7.284503319101445e-11, - 7.055561850814159e-11, - 6.618905681397725e-11, - 5.0321945486132565e-11, - 4.575265352607273e-11, - 3.519423348240274e-11, - 2.725196512304238e-11, - 1.9906483370567064e-11, - 1.7052111818008474e-11, - 1.3550286551701811e-11, - 1.5253783951103912e-11, - 1.2172968288775839e-11, - 1.0864369372096084e-11, - 9.22060580129598e-12, - 8.059871684451978e-12, - 7.1340196530056506e-12, - 7.600605906449292e-12, - 9.14370429066765e-12, - 9.580928343571686e-12, - 8.811892874826699e-12, - 7.810400451756845e-12, - 1.0004770453541687e-11, - 1.888182335081718e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Suicide=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.1869235006827916e-9, - 1.0596454254511486e-9, - 1.0898202738259827e-9, - 1.1715890601998924e-9, - 1.2838501440922183e-9, - 1.0811834823329074e-9, - 1.0079330081931795e-9, - 1.0143211416101008e-9, - 9.343709528214612e-10, - 9.055160885917256e-10, - 1.08367921922475e-9, - 1.09126966407237e-9, - 9.892431746551513e-10, - 8.385297554177362e-10, - 7.431287162225172e-10, - 6.421785549779541e-10, - 3.424507918575137e-10, - 2.8999697777293565e-10, - 2.615181129355313e-10, - 2.9176782997088967e-10, - 2.4225654294166306e-10, - 1.982850135471975e-10, - 1.8899490088511846e-10, - 1.225664906650642e-10, - 1.3690416449102184e-10, - 1.477536334050014e-10, - 1.2819332031549612e-10, - 1.1588179367998222e-10, - 9.806939886066634e-11, - 9.657942341722639e-11, - 1.0199572837543341e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Suicide=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.3893134350158874e-10, - 1.4180739000462562e-10, - 1.38447045383563e-10, - 1.323623966890804e-10, - 1.3000219390508754e-10, - 1.1570978044079003e-10, - 9.453366285234713e-11, - 9.099518842425742e-11, - 8.782712194382502e-11, - 8.562417016180749e-11, - 1.1242315739763451e-10, - 1.0557258432674195e-10, - 9.684950127338514e-11, - 8.477544512204576e-11, - 7.525893961293416e-11, - 7.056152550576119e-11, - 6.961937891073359e-11, - 6.154859669803385e-11, - 5.129252903931431e-11, - 4.488777455005313e-11, - 3.816824437484992e-11, - 3.109502562050889e-11, - 2.7745335423173142e-11, - 2.333481882443214e-11, - 2.0244618041394563e-11, - 1.7428865228664673e-11, - 1.5355766832005697e-11, - 1.4016207082524734e-11, - 1.3136817565929202e-11, - 3.919197181285218e-11, - 4.65007449347084e-11, - 4.65007449347084e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Suicide=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.4862744337613245e-11, - 5.33125331761812e-11, - 4.996384033879816e-11, - 5.1558199239460265e-11, - 4.3999615994144034e-11, - 3.9968696437368475e-11, - 3.665082199176509e-11, - 3.4626392323540315e-11, - 3.417574345597947e-11, - 3.138482825928382e-11, - 3.629415830017288e-11, - 3.419570968014848e-11, - 3.1265903076920184e-11, - 2.5176926099355933e-11, - 2.1434156150192272e-11, - 1.8893646669766417e-11, - 1.6591157600096903e-11, - 1.2574631656020018e-11, - 1.2594925050168441e-11, - 1.0805682067142072e-11, - 8.713216983519186e-12, - 8.063410538607482e-12, - 7.824307167045965e-12, - 7.378594697687088e-12, - 6.277194700720999e-12, - 5.847153096835196e-12, - 5.272795297351663e-12, - 4.5257863243169735e-12, - 4.664745857742766e-12, - 4.4243100069153714e-12, - 5.413034759155969e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Suicide=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.072354441949708e-9, - 7.219112908600259e-10, - 7.033553123801256e-10, - 5.265172924182575e-10, - 4.261215315066026e-10, - 3.3468098759240107e-10, - 2.8145628234498404e-10, - 2.585336554143032e-10, - 2.5505701947553736e-10, - 2.4194960616289375e-10, - 1.9568518401615792e-10, - 1.8662881781443822e-10, - 1.739670786655271e-10, - 1.5422534470195283e-10, - 1.386814332866868e-10, - 1.0931188829115064e-10, - 9.642669078200585e-11, - 8.654717714348044e-11, - 6.960535491851415e-11, - 6.508533833863335e-11, - 6.038035325336412e-11, - 5.3121069974243654e-11, - 4.749069380563793e-11, - 4.3802775927094575e-11, - 4.08153066033903e-11, - 3.984659398520633e-11, - 3.751044224918518e-11, - 3.440881498409394e-11, - 3.0993376073465075e-11, - 2.8634561524364704e-11, - 2.559389240228852e-11, - 7.31936760848104e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Suicide=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.0323658310777269e-10, - 8.96885387696403e-11, - 7.905158803826806e-11, - 6.835730367572694e-11, - 6.006487693228021e-11, - 5.2047443237612195e-11, - 4.81357161040601e-11, - 5.866620042551663e-11, - 7.750589690369621e-11, - 6.955547006245497e-11, - 6.970781398031546e-11, - 9.060947041918228e-11, - 8.19056610379475e-11, - 7.026498808114807e-11, - 6.073023785920669e-11, - 4.806713349200606e-11, - 4.0133804027405586e-11, - 3.194615075017892e-11, - 2.7798465405485073e-11, - 2.8397955949822057e-11, - 2.374636628209562e-11, - 2.1573859374085166e-11, - 1.9871303230095908e-11, - 1.7842987286721553e-11, - 1.9148648436196162e-11, - 1.9935387543766205e-11, - 2.0562883502965008e-11, - 1.8406643723435412e-11, - 1.7370327096737327e-11, - 1.6168628802102193e-11, - 1.7563316617395105e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Suicide=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.6144535364503054e-11, - 2.379482507599474e-11, - 2.1675121063395423e-11, - 1.7562546364833345e-11, - 1.5687525394426317e-11, - 1.3728650612819295e-11, - 1.220479356626761e-11, - 1.2862168621328992e-11, - 2.907416911368884e-11, - 1.9821237265983786e-11, - 2.1209420278853307e-11, - 2.119080510374028e-11, - 1.6865939344398927e-11, - 1.3630218586458825e-11, - 1.245927009631652e-11, - 1.0494331342270983e-11, - 7.954565402881296e-12, - 6.709596705879058e-12, - 5.487735904987939e-12, - 5.003891121992785e-12, - 3.4432791782548618e-12, - 2.9116348784418668e-12, - 2.723697522355833e-12, - 2.7396535602789574e-12, - 2.6941628277942633e-12, - 2.7879284346188578e-12, - 2.5754461823607888e-12, - 2.363091482475753e-12, - 2.3026629132522964e-12, - 2.14459721719618e-12, - 2.621823034842781e-12, - 5.693627189015845e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Suicide=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 4.1577335910092214e-11, - 4.055290437569052e-11, - 3.475537470238443e-11, - 3.3850970978069836e-11, - 2.8704505971124884e-11, - 2.480972708434896e-11, - 2.218745379447405e-11, - 2.231521801231894e-11, - 2.8190823592027962e-11, - 2.4521213440759763e-11, - 2.151316591212325e-11, - 1.9006291656687682e-11, - 2.0164329326515775e-11, - 2.0680349974063624e-11, - 1.894696385257841e-11, - 1.7687587759558903e-11, - 1.5667490822459157e-11, - 1.21810193133387e-11, - 1.1011725567870281e-11, - 1.3070059778468211e-11, - 1.1518043211940288e-11, - 1.1527774681966635e-11, - 9.163085397398334e-12, - 8.453599635026599e-12, - 7.731527816826057e-12, - 7.505397181009078e-12, - 6.90463032576481e-12, - 6.697498149993898e-12, - 6.3429440571105366e-12, - 5.83828050220827e-12, - 5.809300174105043e-12, - 1.2438775541832682e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Suicide=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 9.898805422121068e-11, - 8.483328185165772e-11, - 7.889734590373746e-11, - 7.143473772079752e-11, - 6.050247467471907e-11, - 4.9507272268762976e-11, - 4.597082841245682e-11, - 4.923172672120279e-11, - 7.317437161599837e-11, - 5.638047486444404e-11, - 4.8682862660412036e-11, - 5.1218074335242846e-11, - 3.029114180686044e-11, - 3.429543986194789e-11, - 3.202319758988823e-11, - 2.8559171466057987e-11, - 2.2502487168127766e-11, - 2.276963948027107e-11, - 2.7307299471113017e-11, - 3.6231044370018725e-11, - 2.9718540112166104e-11, - 2.752901819463105e-11, - 2.3622768460828714e-11, - 2.2322809417870542e-11, - 1.9537589457844148e-11, - 1.910254542103342e-11, - 1.8131984359191728e-11, - 1.588766316816131e-11, - 1.6581194131722984e-11, - 1.7318398235882886e-11, - 1.7125631528067797e-11, - 2.9997986591474677e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Suicide=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.7932768422471526e-11, - 1.496122686510617e-11, - 1.2900735170284223e-11, - 9.356226407091914e-12, - 8.87624572781012e-12, - 1.3011217640951459e-11, - 1.1399703664798669e-11, - 9.362257729130524e-12, - 8.898349576538744e-12, - 7.80530391220282e-12, - 4.9441540525271095e-12, - 5.0217633935890434e-12, - 5.0511174449530336e-12, - 5.484438237998364e-12, - 5.113516212084744e-12, - 4.672491288188009e-12, - 4.100935792501619e-12, - 3.894760596213322e-12, - 3.964003019797896e-12, - 5.110853577190596e-12, - 4.2541070981723354e-12, - 4.40495197194183e-12, - 4.0796277156350734e-12, - 4.080213594753394e-12, - 4.3334434722798555e-12, - 4.77869680911528e-12, - 5.1924418552545375e-12, - 5.0909773363155746e-12, - 4.417509622634014e-12, - 4.1750892764344775e-12, - 4.362539081191175e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Suicide=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.3462132120204005e-11, - 1.535276805834937e-11, - 1.6027401650004627e-11, - 1.4281999190562895e-11, - 1.001199438157013e-11, - 6.837088414559138e-12, - 6.185132300532318e-12, - 5.955572429700255e-12, - 6.089999959926118e-12, - 8.771899470131046e-12, - 6.102694418337854e-12, - 7.85737150533236e-12, - 8.63091568912788e-12, - 7.702866763261426e-12, - 6.574137455557314e-12, - 5.271222176377443e-12, - 4.2433068393874664e-12, - 3.5072292830455344e-12, - 3.0073318896335982e-12, - 3.0593949232014565e-12, - 2.2636335277739968e-12, - 1.9876485936465355e-12, - 2.1904665029908052e-12, - 2.264621543152281e-12, - 2.2800896618608923e-12, - 3.2737546978436772e-12, - 3.3413278950471287e-12, - 3.1984264691421776e-12, - 3.6516651407360335e-12, - 3.6744652290217354e-12, - 3.640810486874254e-12, - 4.207621939644346e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Suicide=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.18234343601816e-11, - 4.606203675687597e-11, - 3.8196344712310736e-11, - 3.6913177250298433e-11, - 3.3945342172501895e-11, - 3.3867494557894086e-11, - 3.2110589441617664e-11, - 2.983991917232828e-11, - 2.92321125441908e-11, - 3.082250430790055e-11, - 3.201928194121295e-11, - 3.252324000528063e-11, - 8.942417941007099e-11, - 7.602657022501403e-11, - 5.2836811297677425e-11, - 4.327325001640241e-11, - 3.6980139728924546e-11, - 2.88665020115744e-11, - 2.4062526916924927e-11, - 2.522700667783014e-11, - 2.0300857667619008e-11, - 1.6032796490080997e-11, - 1.666720466629377e-11, - 1.5579000615932563e-11, - 1.7669869594770123e-11, - 1.3955460231000423e-11, - 1.488705453010256e-11, - 1.3827849006417149e-11, - 1.7529828334651117e-11, - 1.8586852405859757e-11, - 2.2448386864797025e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Suicide=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.1037324203139126e-10, - 8.488280611412348e-11, - 8.104808705162722e-11, - 8.368722834177721e-11, - 6.494797066312294e-11, - 5.4677307234976714e-11, - 5.275787575770985e-11, - 5.013111261741069e-11, - 5.252113343092275e-11, - 5.808239480981284e-11, - 5.990946041731271e-11, - 5.573690467711625e-11, - 5.294139321504375e-11, - 5.108032319159036e-11, - 4.1935815034988034e-11, - 3.549800796812748e-11, - 3.045919158303792e-11, - 2.544753873247134e-11, - 2.2397234058840117e-11, - 2.7312683579571594e-11, - 2.3724159276747624e-11, - 1.9212660844859635e-11, - 1.6610519728180322e-11, - 1.5409433434641507e-11, - 1.4442996205536126e-11, - 1.4225103240152464e-11, - 1.3549009677797865e-11, - 1.2795771444020168e-11, - 1.2580046314903086e-11, - 1.2255389022080708e-11, - 1.4429667006600367e-11, - 2.6571631711890117e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Suicide=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.243049391886227e-11, - 6.582272480059209e-11, - 5.827641067384282e-11, - 5.860316914327222e-11, - 6.025471310540006e-11, - 4.5473496907644957e-11, - 4.989849404582872e-11, - 4.100483533056443e-11, - 3.8541044765450526e-11, - 3.592684085830891e-11, - 4.609840060142837e-11, - 4.637767562994336e-11, - 5.813103069592828e-11, - 5.859798094185127e-11, - 4.001658204294766e-11, - 3.023846989222464e-11, - 2.1256009754516456e-11, - 1.606153651618805e-11, - 1.1077583362843769e-11, - 9.703214187861672e-12, - 8.647167120610637e-12, - 1.1375047647691712e-11, - 8.392644901278805e-12, - 6.738446761710608e-12, - 4.353600973989534e-12, - 1.3120384101166848e-11, - 1.2549932618507421e-11, - 1.2549932618507421e-11, - 1.2549932618507421e-11, - 1.1979481135847993e-11, - 2.007989218961187e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Suicide=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.778513579573488e-11, - 8.540826978169895e-11, - 7.189443582643485e-11, - 6.320845693752994e-11, - 5.140538601784712e-11, - 4.540183246130655e-11, - 4.3227617087080376e-11, - 3.9377642631903174e-11, - 4.26639622032856e-11, - 4.87317228670299e-11, - 5.005677573118626e-11, - 4.9892197422194274e-11, - 4.797729568772598e-11, - 4.860453285354974e-11, - 3.8434758189770106e-11, - 2.8155629456914627e-11, - 2.536837019528093e-11, - 1.9885360718402936e-11, - 1.7341974802435815e-11, - 1.7642160857620238e-11, - 1.3260604492151578e-11, - 1.1046626942779168e-11, - 1.0244760250079868e-11, - 9.682920305898521e-12, - 9.970819094957001e-12, - 1.3970204363905683e-11, - 1.4850171848915582e-11, - 1.506971841589797e-11, - 1.1968944847644888e-11, - 1.2058254766901724e-11, - 1.5473169735313003e-11, - 2.2244063494039662e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Suicide=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.0416912316636415e-10, - 2.6621586188673585e-10, - 2.191312863071691e-10, - 2.0431393920445862e-10, - 1.766795376289714e-10, - 1.3713580594004548e-10, - 1.290655744962438e-10, - 1.1856318191570178e-10, - 1.2346824605552848e-10, - 1.339858163288214e-10, - 1.3228713958756092e-10, - 1.4511145441286753e-10, - 1.3766043790129078e-10, - 1.28233161473228e-10, - 1.018038504745565e-10, - 7.888435592745308e-11, - 6.46044809509133e-11, - 6.33618769870936e-11, - 5.606939732231484e-11, - 5.842712179741281e-11, - 5.3080122547524314e-11, - 4.638219070488406e-11, - 3.930783469448908e-11, - 3.520313052517075e-11, - 3.799776535349796e-11, - 4.09972029374009e-11, - 3.9929699819874836e-11, - 3.35698048725799e-11, - 2.9572705351720536e-11, - 3.221355584910066e-11, - 3.9820595020623524e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Suicide=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.1809118866117654e-9, - 9.372903309058639e-10, - 7.875952046304845e-10, - 7.038603915111558e-10, - 6.431904654856616e-10, - 5.825404922646144e-10, - 5.77560782770586e-10, - 5.346977887653434e-10, - 4.929022101220215e-10, - 4.731717483006627e-10, - 4.2627933055135823e-10, - 3.254846805183977e-10, - 4.2222544848414107e-10, - 4.573940216910159e-10, - 4.352359538688686e-10, - 3.2933075911153726e-10, - 3.69790895575069e-10, - 2.1201649736958843e-10, - 1.7856131271928205e-10, - 1.8213921989550152e-10, - 1.8322500803712096e-10, - 1.6135588677444763e-10, - 1.3973680232842074e-10, - 1.3150231807054428e-10, - 1.07658335378217e-10, - 1.187061013977088e-10, - 1.3084775605503648e-10, - 1.0079971587879224e-10, - 1.1534733989402941e-10, - 1.2641855877890425e-10, - 1.0905963810839153e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Suicide=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.2169513263473093e-12, - 2.146755938370242e-12, - 2.0275056757122765e-12, - 1.9275185939203847e-12, - 1.814130899561919e-12, - 1.7304233424422714e-12, - 1.6375325431722697e-12, - 1.5412318355159351e-12, - 1.4587074026358143e-12, - 1.3726986760949057e-12, - 1.072925218782893e-12, - 1.0773192600923429e-12, - 1.0789637761442713e-12, - 1.0210988808210108e-12, - 9.743134023012898e-13, - 9.12811874075933e-13, - 8.758842096519357e-13, - 8.580211234526484e-13, - 8.631913671817579e-13, - 8.85878561264907e-13, - 8.737962865090182e-13, - 8.621476645569126e-13, - 8.334873047293818e-13, - 8.042967704003672e-13, - 7.98760155586029e-13, - 7.895472467690309e-13, - 8.055448936102234e-13, - 8.135914105578669e-13, - 7.6169735718051e-13, - 7.511702148232278e-13, - 6.309350008089522e-13, - 1.0188270590273229e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Suicide=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.91250368469577e-11, - 2.741453174815751e-11, - 2.4618442673706837e-11, - 2.3632248090224963e-11, - 1.862403073721121e-11, - 1.4308120716715378e-11, - 1.216791888984515e-11, - 1.0929655569438175e-11, - 1.0213372039452729e-11, - 9.606970980977695e-12, - 1.1805041445079375e-11, - 9.631208923791204e-12, - 8.296215616544995e-12, - 7.709505980115768e-12, - 6.8018617494613815e-12, - 5.6431288161777926e-12, - 4.396591804625765e-12, - 3.239123896440067e-12, - 2.416033565252183e-12, - 2.097338838953907e-12, - 1.6756572042870864e-12, - 1.271270587580188e-12, - 1.0548238870400128e-12, - 8.986034435984675e-13, - 8.018570305792275e-13, - 7.322660698287854e-13, - 7.299740172137064e-13, - 6.579797434804262e-13, - 5.829511593954866e-13, - 5.672293746715694e-13, - 7.138621371038306e-13 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Suicide" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
International taxes=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
International taxes=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.000035914740156977844, - 0.00003411038469380892, - 0, - 0, - 0.000021872439552889305, - 0.000013116025718373482, - 0.000006227910044671011, - 0.00002684314464134189, - 0.000025280938770437958, - 0.000016073383162647312, - 0.000013912894115112886, - 0.000005081089324868522, - 0.0000033302043111684155, - -0.000002710695897213042, - -0.000005189577185010054, - 0.00003322795621949271, - -0.00010945745973195404, - -0.00003683391807724518, - -0.00003719750856998041, - -0.000035914122590822234, - -0.00004082885784036588, - -0.000005933356107241447, - -0.00004695060100062919, - -0.000013514105100052972, - -0.000040616751525948385, - -0.00004919668691324156, - -0.00004569414850130559, - -0.000048937421286138484, - -0.000045504106841318206, - -0.00004324133774496686, - -0.000015570139490630406, - -0.00001957725582545071 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
International taxes=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
International taxes=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
International taxes=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.002809270753230873, - 0.001928516372614156, - 0.0009821330600942122, - 0.00011675124580250673, - 0.00002265565139168737, - 0.0006738795764224109, - 0.0006445371322248713, - 0.0007018953035069692, - 0.0006688671576991375, - 0.0006523350857809993, - 0.0006921755680748331, - 0.0006596888441625446, - 0.0005843648177464467, - 0.0004563926558617657, - 0.0003874189866934834, - 0.0003589900201402412, - 0.00032860425446073176, - 0.0002809848992829111, - 0.00025380337759249577, - 0.00027769358722528047, - 0.0002912383646311677, - 0.0002797119812639977, - 0.0003126433243095236, - 0.00030563017574253396, - 0.00030204609553730456, - 0.0003464139075656044, - 0.0003359300119259068, - 0, - 0, - 0, - 0.00032319737083964496 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
International taxes=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.039564998880489005, - 0.0001086511542684429, - 0.0021565410739429066, - 0.0266787379157591, - 0.07561708286797977, - 0.1725914451950153, - 0.1637553800126638, - 0.19260147451064602, - 0.1600256945763657, - 0.18109702711280332, - 0.17377866586825777, - 0.13815677154353684, - 0.07573987307169897, - 0.05176007391679011, - 0.037911611590485506, - 0.03413984054341368, - 0.031231446750129944, - 0.02711274387199534, - 0.026867104412522897, - 0.027283683210133608, - 0.027214237133317346, - 0.027961983435019242, - 0.030674803437454382, - 0.018205191146624562, - 0.0019386325778885376, - 0.00044696118232000795, - -0.0011808932596297404, - -0.0005242960098823664, - 0.00014929023693805292, - -0.000027664336531273827, - 0.03189258980701375 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
International taxes=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.03298606250762184, - 0.025454062345012456, - 0.02306989817735898, - 0.022659498546269054, - 0.06766038383283789, - 0.041379470237060116, - 0.04049484182571305, - 0.04449107891201777, - 0.03373485586465559, - 0.0329057632722043, - 0.029253372220878773, - 0.02106277784601842, - 0.018897679675553527, - 0.01740369862787315, - 0.005969969488506468, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.003647766191544363 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
International taxes=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0000899377911086796, - 0.000049061688589673816, - 0.00004438390229223892, - 0.000047408777948799785, - 0.000044240349954667346, - 0.000014611512829811956, - 0.000027423253686554987, - 0.000020955925475571702, - 0.00007616242600322505, - 0.00001402633968379214, - 0.00007665316542642656, - 0.00012471636634828472, - 0.00010351685337671859, - 0.00002549044299871057, - 0.000021407819823308443, - 0.00004437713066577732, - 0.000021934095258575242, - 0.000021950259926704094, - 0.000005619418854134906, - 0.0000060366697457839705, - 0.0000033655873049667095, - 0.00001413447829547789, - 0, - 0.000020928585425316033, - 0.000021235197670381276, - 0, - 0, - 0, - 0.00003301116834323851, - 0, - 0.000027317494195562005 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
International taxes=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - -2.463004084022719e-7, - -2.3591123984127396e-7, - -2.1017220479299395e-7, - -2.1535907199430562e-7, - -2.014393156078821e-7, - -1.700974611960053e-7, - -1.7281279678283566e-7, - -1.9267791188560484e-7, - 0.0000010537895204811552, - 0.00003148313934247054, - -0.000025495511929553066, - -0.00002956830678925469, - -0.000007089721986219279, - -0.000004956655360856824, - 0.000013103005190146788, - 0.00000455563176244608, - 2.3789694509193514e-7, - -1.053482014796698e-7, - -9.489599887797538e-8, - 1.9912448160281485e-7, - 2.549231346817523e-7, - 1.8532022126644374e-7, - 1.7098116631549125e-7, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - -9.463173384671606e-8, - -1.305090476272346e-7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
International taxes=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0.00011275660224489994, - 0.0001287486398258978, - 0.00017034028278317597, - 0.00017122966306952904, - 0.00018789864582998594, - 0.0003497179067439163, - 0.00034523757890652913, - 0.000272231167355264, - 0.0001448100190782876, - 0.00008353837174253297, - 0.00008462851666390527, - 0.00005449923400034183, - 0.00005538802396636165, - 0.00006198325415486609, - 0.00007687730023762986, - 0.00006844620029216301, - 0.0000298253353357756, - 0.000051256174407125235, - 0.00010944251499234963, - 0.00012105343568515077, - 0, - 0, - 0, - 0, - 0, - 0.00005489502819319014 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
International taxes=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 5.173699066045227, - 2288.8312650754797, - 1685.7943082736638, - 904.4834195701885, - 233.85000128310782, - 72.38831017094674, - 89.45792558976642, - 44.9498415693339, - 45.27131483769211, - 25.30738890969454, - 19.298903977168877, - 25.80069486046155, - 28.34560698883222, - 42.57802051062465, - 25.482678231403906, - 18.684397629414388, - 14.328752314139214, - 10.506618356974815, - 7.091752846308719, - 8.359280408890053, - 6.7383707688163454, - 5.024919090356086, - 4.281497290554696, - 3.9779504053745005, - 2.469782542261001, - 4.524261595081406, - 3.5895865369032363, - 6.03123177369251, - 7.04466773673002, - 4.052282025923136, - 5.597229035263507 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
International taxes=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
International taxes=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0011218537115505701, - 0.001103340706704166, - 0.0010486812550843244, - 0.0010225515282191473, - 0.0009591014705976786, - 0.000865172355185937, - 0.0007731228601242228, - 0, - 0, - 0, - 0.0005451508080208604, - 0.0005505633492525912, - 0.0005179527435324221, - 0.00045742877985605344, - 0.00038477825223873257, - 0.00031491750765295554, - 0.00025607999463865235, - 0.00022053526506801124, - 0.00018029850901579475, - 0.0002243352213605843, - 0.00019628049720423634, - 0.000014972502412990624, - 0.00001292783354498561, - 0.0003439135181599736, - 0.00039142114150087995, - 0.0003588125275614307, - 0.000353815954344068, - 0.00013740077039630554, - 0.0000663196143880346, - 0.00010710860604557247, - 0.0001584969447599461 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
International taxes=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.14804844690136185, - 0.13170888337316508, - 0.1270351505396255, - 0.13097130107032612, - 0.128832947460283, - 0.12149162940442897, - 0.10976122374736122, - 0.10493254857108461, - 0.11865045104088277, - 0.10768801892480678, - 0.09189238756496965, - 0.09457596584857232, - 0.09184828736834079, - 0.08069676225571827, - 0.06730627940070993, - 0.05302013928301675, - 0.04620581792925375, - 0.04186649478911063, - 0.03350344039192493, - 0.0405850950987257, - 0.023049661085068424, - 0.02139178954203276, - 0.02426985128792351, - 0.023572045419866586, - 0.025809467885914584, - 0.03297415929578056, - 0.027002666049475866, - 0.029216173037432815, - 0.020533441478279197, - 0.02191258920275804, - 0.024874352897202395 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
International taxes=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.01661774079771762, - 0.01661774079771762, - 1.0567333291840408, - 0.30039869780608636, - 0.04087849266079523, - 0.053137729196738266, - 0.025967043841030546, - 0.009927116664028105, - 0.012594547462651866, - 0.012354215782363384, - 0.08944509548994539, - 0.08262947784048627, - 0.07563129962739976, - 0.0648126846639769, - 0.05433246893677105, - 0.03560592360808326, - 0.022476588785638296, - 0.014269925863867782, - 0.008957579502307085, - 0.009189124053761781, - 0.005477298481102088, - 0.006507800007680198, - 0.008339081209344632, - 0.009017799319377127, - 0.009026598050296456, - 0.01076037256344245, - 0.01886313177283648, - 0.021923106494658635, - 0.02251228587124806, - 0.027877972360133955, - 0.011069167089284118, - 0.01661774079771762 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
International taxes=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
International taxes=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
International taxes=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
International taxes=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.07070909185803755, - 0.09152709333333338, - 0.11804762976276051, - 0.11653412371134028, - 0.1268835428571429, - 0.12220898039215694, - 0.12206172624237135, - 0.1078578412937195, - 0.12205523451635349, - 0.11414088361508458, - 0.10370543869450165, - 0.10708836911067743, - 0.08568804433887572, - 0.10253029940119765, - 0.117208819287039, - 0.08643909006499538, - 0.0898627165290592, - 0.07949764366272853, - 0.0861144611948631, - 0.07449761082325854, - 0.06714016741256423, - 0.0587224848661658, - 0.05298142950976288, - 0.05814499569984945, - 0.057831366197183175, - 0.0663910716477761, - 0.031144707315272756, - 0.043921595389048974, - 0.041462799387028404, - 0.034161839875237174, - 0.02834695371477371 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
International taxes=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
International taxes=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.003263932779856264, - 0.0034513024149862123, - 0.005389768516700989, - 0.0034605552364741113, - 0.0025167674447084446, - 0.009025333328544936, - 0.008867254408419272, - 0.009394049621659482, - 0.009456971338780722, - 0.010634455535554473, - 0.010697919422583675, - 0.010342746132614935, - 0.011539559183152739, - 0.010970774732738218, - 0.01175764660322955, - 0.01234428837708539, - 0.012287092763867937, - 0.01236312741469672, - 0.01095926822671056, - 0.011550662538408238, - 0.011459396575376786, - 0.011098238734549718, - 0.009840679889326341, - 0.007811879432135021, - 0.008927625646788655, - 0.009564171115602298, - 0.010309555700036012, - 0.008472257158181111, - 0.00745367398218898, - 0.007579134920906498, - 0.004520117916583904, - 0.008513258887740096 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
International taxes=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.000022138851280287348, - 0.000030484343460713468, - 0.00004930608907522433, - 0.00008452029906546224, - 0.0001823013894709875, - 0.00030552976653871176, - 0.00034873016314216287, - 0.0007739156191338731, - 0.0007649454415124139, - 0.018614182946261406, - 0.017398306911930776, - 0.023654918972704695, - 0.019864071507764716, - 0.015170126940551632, - 0.011672014426440773, - 0.009425891221374804, - 0.00856716631482054, - 0.00700447021342732, - 0.0037299542859411667, - 0.0039356231862441296, - 0.004320121795123888, - 0.005747750639769812, - 0.006096046685129128, - 0.007146850520072401, - 0.007379998691171443, - 0.010080461225368424, - 0.011303758781349569, - 0.015630913256047135, - 0.02140506088191161, - 0.024059974191915842, - 0.006628759089769564, - 0.009427505168342185 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
International taxes=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.3322055644507157, - 0.35514518026837827, - 0.3644500221278127, - 0.3943393844793851, - 0.3658282700521132, - 0.303431037151733, - 0.28333203760406456, - 0.3637237291701387, - 0.3692751994669914, - 0.3913573500815389, - 0.31471660791135325, - 0.309912623399772, - 0.3395948910880368, - 0.25187509951573006, - 0.2321711890597372, - 0.22157076145242538, - 0.20108790800944396, - 0.18867762760829607, - 0.15870235862301743, - 0.15915292217458513, - 0.145962399325027, - 0.1346802419041135, - 0.09519865274490172, - 0.07574959768265176, - 0.07390650182844595, - 0.08007902123994114, - 0.09163148656424207, - 0.08234122329722625, - 0.08583085356028997, - 0.08518013344656439, - 0.10659416321043806 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
International taxes=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 36.525390600381805, - 37.20883775568007, - 34.7444383377742, - 36.63931623087051, - 53.620663560746685, - 42.672039666148635, - 41.1539310253554, - 44.684088623701584, - 41.496194217323854, - 40.94717054423291, - 44.89433909319103, - 41.48205698811886, - 38.5301806874079, - 30.786465713062267, - 26.790002280048686, - 24.521496671069734, - 23.077434747757284, - 19.29067703085408, - 16.017449814849208, - 16.71994055061632, - 16.745405903043245, - 15.15401620562457, - 15.28565305520045, - 14.269395110889407, - 13.636131005154304, - 13.161250667594752, - 12.70688767585256, - 13.220543124934524, - 14.118129700530282, - 11.583089421570781, - 10.954203378445873, - 21.2344339335018 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
International taxes=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.024015089464889602, - 0.025777888647021963, - 0.015370295760222846, - 0.025279109722666882, - 0.012956588998077537, - 0.03292859716784406, - 0.03798163489636123, - 0.026947507995327493, - 0.03465232004797595, - 0.03865584058515016, - 0.04756731283244775, - 0.056797034033466066, - 0.065652820715914, - 0.04059126077359267, - 0.05076881677911398, - 0.06275866245502078, - 0.07713069366247853, - 0.07929134074862647, - 0.07028706441351117, - 0.056736397327778326, - 0.06369906453881764, - 0.07342920950265976, - 0.08892210987527538, - 0.10921840502066224, - 0.10580330041193518, - 0.1321771877796264, - 0.1398093179862491, - 0.13092033919460375, - 0.13764107899221312, - 0.14235241240008237, - 0.06255603285564869, - 0.07936818730299075 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
International taxes=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
International taxes=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.1253899987395095, - 2.8871024531168294, - 3.973561137960357, - 3.843129193936235, - 3.7510559953143594, - 3.6173429900414646, - 2.719875541071862, - 2.256484026008671, - 1.9928304796069474, - 1.7552375082343112, - 1.8545150578878578, - 1.9431105631345655, - 1.8478086273291983, - 1.6641860426517565, - 1.374636335133592, - 1.2280413796908445, - 1.1430905922958374, - 1.003748240267131, - 0.8354454040719479, - 0.8804432127310865, - 0.37547669130111877, - 0.39003896565494905, - 0.4168654580502945, - 0.5125500164114983, - 0.6751548438899309, - 0.7926465147655091, - 1.0608614191545311, - 0.9101862815871272, - 1.0054945213053985, - 0.99954014071386, - 0.7482474775654586 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
International taxes=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.035170580985917, - 5.7186569394240125, - 7.6045152519276575, - 5.415956618989617, - 9.317663735096435, - 13.618324055031001, - 20.968851506683848, - 21.559821098365905, - 23.014398491026135, - 21.193468640497994, - 22.01457855339332, - 21.23696496648432, - 18.733515744542057, - 14.565697136060953, - 12.356109762957159, - 11.923145099208243, - 11.124488985734935, - 9.721511996519641, - 8.393201115116632, - 8.327749193072604, - 8.456558569735215, - 7.594249266671403, - 9.75311458138495, - 8.589410885641552, - 9.800325400668083, - 10.49666424105805, - 10.303321656849095, - 11.050305301331788, - 10.155315212403826, - 5.863701830324866, - 5.700819002796332, - 10.502220356838995 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
International taxes=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
International taxes=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0015760272491541247, - 0.0018062785655701755, - 0.0017295868706239139, - 0.002949672399989672, - 0.18202317115726993, - 0.1532892658560623, - 0.14290387652301476, - 0.14380958059422158, - 0.1324743114704092, - 0.12838329359376852, - 0.19888246924738967, - 0.05667890944742279, - 0.05827211518971799, - 0.04139757634929869, - 0.042886133974402385, - 0.03828672714285702, - 0.0265074085337281, - 0.032518162878768096, - 0.041670363063784466, - 0.04150502160538319, - 0.04759946081933825, - 0.054669074144745734, - 0.04821986781249156, - 0.03710365183464729, - 0.018090264366854465, - 0.020058794408340238, - 0.07817021220834008, - 0.016406150328144645, - 0.014725806704104843, - 0.014502076461757454, - 0.014460866798842198 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
International taxes=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 6.383296351590854, - 6.515438290818779, - 6.361044940699973, - 6.081481561887914, - 5.97304041793609, - 5.316365628628844, - 4.343414307952811, - 4.180836661053684, - 4.03527766265596, - 3.9340615243932335, - 3.7793213435218624, - 1.5424502774450215, - 1.6335504875582438, - 1.40643859758923, - 1.7367353440700861, - 1.8655953540615082, - 1.8887770358828868, - 1.7022258615092003, - 1.8035426022146008, - 1.656830563583575, - 1.7057788049988234, - 1.875886712872531, - 2.1287976041655465, - 1.9289501300119678, - 1.7963396638724392, - 1.8442456264448164, - 1.9854103233381484, - 0.8077403035621902, - 0.7360324474382387, - 2.136508782012798, - 2.136508782012798, - 2.136508782012798 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
International taxes=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.6431572875733942, - 0.8239748183118671, - 0.8249585193717117, - 0.7946049414731537, - 0.818545633935503, - 0.9924726934104059, - 1.0906419258118927, - 0.9664851296250387, - 0.9651799547692869, - 1.0552930551987938, - 1.014998161121658, - 0.8295137574700113, - 0.8710175682024993, - 0.8002148622781565, - 0.8123968223478468, - 0.7931309082978655, - 0.9181185013740805, - 0.8557242309759139, - 0.8330833934839228, - 0.6209466569396869, - 0.8105261220429392, - 0.819105377890231, - 1.0215043372339017, - 1.008810084404652, - 0.9220365325437957, - 0.9999012098228629, - 0.9736804803638476, - 0.5100636617277301, - 0.4164951658698899, - 0.3039043287508766, - 0.32792413446128194 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
International taxes=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
International taxes=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.0471384064168163, - 0.934038623783504, - 0.7492494402852368, - 0.8050628310248177, - 0.7851598903794715, - 0.7571121438804046, - 0.697642090400473, - 0.7005963914901553, - 0.8860075772118788, - 0.7951223838934783, - 0.6901610758961831, - 0.7721448121281919, - 0.7258863777932242, - 0.7400601521317788, - 0.6195698087683659, - 0.5889079987135144, - 0.44122242849238774, - 0.348382395807058, - 0.33117924834929746, - 0.272912272608011, - 0.2721818177699322, - 0.26792074364445917, - 0.29089620396447713, - 0.2618153910387568, - 0.25908896308515944, - 0.25008507755390585, - 0.23587584429086542, - 0.19845567182355195, - 0.185168386144304, - 0.18014322413878092, - 0.20077480844223689 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
International taxes=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 23.83533694365992, - 18.452779662537182, - 20.781559315772927, - 18.366309748016707, - 23.87895757335379, - 15.905445664941995, - 12.65340219464934, - 14.49462115770091, - 72.66970701713362, - 35.96393860692914, - 128.68446306799999, - 59.63279533884607, - 54.04971361901709, - 47.340598573698294, - 49.61047741038932, - 74.28461531069459, - 58.248375831112625, - 49.13192497702954, - 72.48436771989712, - 34.6604711676375, - 38.29257530755777, - 60.60847964368904, - 54.09949651174318, - 52.00684353477545, - 48.30993453955297, - 39.96930868092882, - 37.107038891563334, - 38.03718140699808, - 43.75827897704071, - 36.07537442756583, - 20.063456211807488, - 43.57038529109805 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
International taxes=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.8652441590204047, - 1.172732061824433, - 1.1343161292152495, - 1.2498100875303173, - 1.0557927360550747, - 1.157373768484879, - 1.1077878715955256, - 1.011485074732668, - 1.0227362315153534, - 1.0112548422969325, - 1.1354888003595454, - 1.2668453640848607, - 1.1486076439191069, - 1.2276085526270546, - 1.2944986747722735, - 1.330199692085985, - 1.5523428244346646, - 1.3427265810349178, - 1.4328897777935525, - 1.2519241998326072, - 1.2441454334610884, - 1.1318908482914114, - 1.1066945465842772, - 1.0740474452960358, - 1.2413371293974245, - 1.1993428902282568, - 1.2439789995780766, - 1.39485749652582, - 0.5201763985942084, - 0.478789612249068, - 0.49909930621993814, - 1.0686630156980372 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
International taxes=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 13.004313005531598, - 9.962239943649218, - 8.798249482598603, - 7.344662516462746, - 7.447951695251513, - 8.17708350877643, - 8.700860179740936, - 10.176311997487835, - 10.006998364491864, - 9.421464779720457, - 10.065849183407138, - 10.81583487964225, - 10.52423952189085, - 9.744087256799602, - 8.568715520114058, - 6.757613392176575, - 6.51185898708386, - 6.319865235345771, - 8.379035741361932, - 9.713656350039084, - 9.323130833495169, - 8.769502002306634, - 7.516467684102746, - 7.9067245057382305, - 5.864333482688447, - 5.810104335846983, - 5.436857097982122, - 5.305672433961827, - 4.840810582180638, - 4.663224629575356, - 4.138533537260118, - 7.249231852012423 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
International taxes=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.027073312924683263, - 0.034527382041734875, - 0.03875727801958387, - 0.025392618733441553, - 0.02415248250546924, - 0.031126942864414926, - 0.03626736032525596, - 0.03617608360094981, - 0.04081464974391485, - 0.045489011316709876, - 0.04642560655322956, - 0.039898514804930084, - 0.0391027173984695, - 0.0413957960442967, - 0.03859612689556333, - 0.03440715178527743, - 0.030953307210386322, - 0.028680121745758787, - 0.034163443389539985, - 0.035256440681690315, - 0.025148481007845645, - 0.02536894182493222, - 0.025944929181404584, - 0.025363775198457648, - 0.028006518704981817, - 0.03871368956837446, - 0.04811304647175326, - 0.04641719485969431, - 0.05500001314639697, - 0.052224200555647346, - 0.028113428692331428 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
International taxes=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0867668739565685, - 0.0989525046336452, - 0.10330069014329178, - 0.09205112626666193, - 0.06452985654893448, - 0.044066778085296174, - 0.03986475470104475, - 0.038385182802617275, - 0.03925160250993059, - 0.056537128657523285, - 0.05172344931339939, - 0.06054112092035242, - 0.06650128608966102, - 0.06073090835513361, - 0.050653790567724725, - 0.03802238108455317, - 0.03060782192579856, - 0.024265761520758374, - 0.019991115579017674, - 0.020337202462556204, - 0.009544833558880167, - 0.01018785583623757, - 0.012627202206729322, - 0.014953940591245513, - 0.014972470018146184, - 0.021623071616016957, - 0.017512798472255005, - 0.01567721278250687, - 0.021233961228763035, - 0.022863051469167353, - 0.023465951885902604, - 0.027119196219007307 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
International taxes=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.007202567663050326, - 0.008384989099244055, - 0.009516207696996652, - 0.01148973682068444, - 0.01084446861404599, - 0.007327392849910912, - 0.008547500043634065, - 0.010294032281746506, - 0.00905541343694101, - 0.007796898311600822, - 0.006937628374009843, - 0.005902937047061418, - 0.06142810096615266, - 0.08353940643151575, - 0.07813303941190307, - 0.07737760280258522, - 0.07787028423174573, - 0.08822820276870154, - 0.12160952181121615, - 0.10737935456720013, - 0.13096012464435672, - 0.12729436825491744, - 0.14209726074101134, - 0.14025411952184183, - 0.20907217702849357, - 0.1784715048900873, - 0.22427240032337842, - 0.20567480464508883, - 0.06435435195767453, - 0.07473338431141015, - 0.08675949314793471 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
International taxes=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0702029519552412, - 0.010312314565096292, - 0.018007133303254326, - 0.03473637223322467, - 0.0372484966980797, - 0.03905160198897419, - 0.04040094962612275, - 0.0400120228527162, - 0.048843753213683866, - 0.05264974817348506, - 0.05109349343241925, - 0.048069812948221345, - 0.03990831754466995, - 0.03802351151284397, - 0.035911585434444025, - 0.03468944223107568, - 0.02680740978180768, - 0.01564871051193379, - 0.01584960670364509, - 0.012355588719491007, - 0.012220904437265123, - 0.008036412589525825, - 0.007921267344536976, - 0.008479713331104697, - 0.008913837724305361, - 0.009349235361426185, - 0.008367845128440996, - 0.006860346195563973, - 0.006534957600857453, - 0.006234826878357453, - 0.00917799641426122, - 0.01690089871521256 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
International taxes=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
International taxes=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 84.49779122667408, - 82.20993319231259, - 69.20216018070755, - 60.84145054460483, - 49.48037656135489, - 43.701641808137495, - 41.60884562905915, - 37.903043561399784, - 16.726721282471523, - 46.90683573715557, - 17.460778664478585, - 41.16330281144156, - 41.26782388481016, - 20.78852398385817, - 34.529103372681014, - 27.762274630982493, - 25.013955428684543, - 19.607547621879743, - 23.086012599789942, - 20.08618533978519, - 19.543290460363895, - 15.739204212323264, - 11.939561722208738, - 11.348822255435064, - 10.399634866926082, - 16.142842784126536, - 14.80939252329873, - 13.36095493826349, - 11.973605160291559, - 13.381579273231036, - 14.893736326291512, - 21.41107621597558 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
International taxes=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.718933192714386, - 7.301744578526934, - 7.284562132907498, - 8.379891702402482, - 7.5299396145824256, - 7.291646197911992, - 7.902016662122316, - 7.247826820984257, - 7.512126805623172, - 7.123359989776999, - 7.04551030714061, - 7.188511504817624, - 6.260681998719121, - 4.195868362885344, - 2.620189201075343, - 2.32586863868573, - 2.0285807018586777, - 1.7304704622238778, - 1.7341327524644228, - 0.9454578235361751, - 1.2313071758041298, - 1.1612824407972218, - 1.171867629531934, - 1.0876330469807345, - 1.2939901025330507, - 1.3261986300788366, - 1.2300443574254094, - 1.1117958408154671, - 1.1627947705453445, - 1.150677926923243, - 1.4709545229380514 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
International taxes=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 4.851455652781619, - 4.438406696683957, - 4.353083651389839, - 4.337950552278539, - 4.489459913278718, - 5.497213096018193, - 3.6135011168152302, - 4.432165065955575, - 4.592869370818243, - 3.62402557705148, - 3.3236466553926207, - 3.455145070118376, - 3.631138856963613, - 4.151284981676689, - 4.96158240843748, - 5.545081707240576, - 5.9970719620964426, - 6.343090785910255, - 6.543939154436682, - 5.415403501994391, - 4.965061295617159, - 5.8521332637233785, - 5.739368713846233, - 5.981903058547493, - 6.486139519300726, - 6.694036246316366, - 7.566047472989734, - 7.603729834710384, - 7.566533610546829, - 7.486308421118996, - 2.782567697947174 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
International taxes=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0028659378341358184, - 0.0026550272006318804, - 0.002729924434771446, - 0.002806712022160923, - 0.0028296050793469568, - 0.0025930171266097877, - 0.0023609205955267367, - 0.002146299401803961, - 0.002168199732359588, - 0.0020590480141423582, - 0.002093179563189171, - 0.0019501368641461042, - 0.0018230830312512274, - 0.001872721529448319, - 0.0019062892028941765, - 0.001943361138531626, - 0.0019317951985934883, - 0.0019923388877074277, - 0.001987589879498651, - 0.0015974189900433843, - 0.001907877494886828, - 0.0020518471022675, - 0.0020684685311369243, - 0.002113096137226683, - 0.0021317253977983118, - 0.002090271506151095, - 0.0020023392077328558, - 0.0019706872549657977, - 0.002585113501911229, - 0.0012260471860430946, - 0.0012541453349508977, - 0.0020251804093331096 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
International taxes=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.6425373641827232, - 0.6048013282292104, - 0.5431158542036106, - 0.5213590793857305, - 0.4108710894762595, - 0.31565632757943923, - 0.26844060566010747, - 0.2411228565276612, - 0.22532068145118844, - 0.2119426610284997, - 0.19141065024677958, - 0.17311141787242842, - 0.15767208840722632, - 0.13965329917446037, - 0.11857981800457146, - 0.10142963758081947, - 0.0420583058996225, - 0.040862784453931045, - 0.03896343860502643, - 0.02955087025649226, - 0.033750693136467134, - 0.034282989570568724, - 0.033108694963757804, - 0.02794195809615686, - 0.02757470918025062, - 0.023575448955222972, - 0.023606411640681106, - 0.024761546039297817, - 0.020853554986975914, - 0.016237094350969063, - 0.015748755902860036 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "International taxes" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "Country=DEU
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "DEU", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DEU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 7.322182552640138e-12, - 6.941081000126116e-12, - 6.085884898299699e-12, - 6.262903009326693e-12, - 5.88302219124922e-12, - 5.016837634130502e-12, - 5.194725405697985e-12, - 5.864629681564377e-12, - 5.7939050694492666e-12, - 5.910170118985009e-12, - 6.6594558162532924e-12, - 6.6669545571200656e-12, - 6.241326260039891e-12, - 5.1855974422726364e-12, - 4.609406138025656e-12, - 4.6647816737695454e-12, - 4.3318142797043e-12, - 3.786951734829701e-12, - 3.4637076787477254e-12, - 3.802845690000257e-12, - 3.718010308430653e-12, - 3.459965361930019e-12, - 3.677905689014022e-12, - 3.474338166450894e-12, - 3.3356105986165426e-12, - 3.8896996507723525e-12, - 3.738630502640628e-12, - 3.514773826817341e-12, - 3.245929205004224e-12, - 3.336267938677867e-12, - 3.372621938414342e-12, - 4.467371673131175e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=FRA
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "FRA", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "FRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.0170349277582522e-11, - 1.0169570350964788e-11, - 9.2103559469948e-12, - 9.757973731283695e-12, - 9.259798943440232e-12, - 8.061983808226898e-12, - 8.03898628566134e-12, - 8.88439259052413e-12, - 8.587535727600345e-12, - 8.644801244310477e-12, - 1.0310186796883654e-11, - 9.369528715057553e-12, - 8.59725544971238e-12, - 6.9979325282451876e-12, - 6.089732936737252e-12, - 5.958273245385748e-12, - 5.5625074418112694e-12, - 4.851553209602865e-12, - 4.4050040423973125e-12, - 4.77917004538488e-12, - 4.687757752042008e-12, - 4.505162390133681e-12, - 4.809828235842234e-12, - 4.590528121881151e-12, - 4.519664040490876e-12, - 5.182051021528111e-12, - 5.219646627034093e-12, - 4.97389160599587e-12, - 4.417839664200421e-12, - 4.7301626068816285e-12, - 4.907391926700227e-12, - 6.170353659488762e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SWE
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "SWE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SWE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.415745650654505e-11, - 3.261507309920333e-11, - 3.1457389231519173e-11, - 4.199981152349239e-11, - 3.9051044491838386e-11, - 3.34597957911089e-11, - 3.0657034175443665e-11, - 3.335494534426105e-11, - 3.302695920163689e-11, - 3.263373875135022e-11, - 3.24537647348526e-11, - 3.6898321105582035e-11, - 3.3517074927953954e-11, - 2.675143439128758e-11, - 2.3224048104122877e-11, - 2.2028560754805792e-11, - 2.113953847750625e-11, - 1.820651981550942e-11, - 1.7276209706607322e-11, - 2.0488526074871423e-11, - 1.914029774102413e-11, - 1.5579327148447525e-11, - 1.6188712098341678e-11, - 1.5240904222902446e-11, - 1.53686477773353e-11, - 1.8075493269130705e-11, - 1.7344941285047984e-11, - 1.6531774552762242e-11, - 1.607689916850065e-11, - 1.67528431247321e-11, - 1.6525625470970592e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GBR
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "GBR", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.1405368759065235e-11, - 1.0910072442072591e-11, - 1.0569151256378592e-11, - 1.1746874390660885e-11, - 1.09321456368526e-11, - 9.260094136619956e-12, - 8.770925085958948e-12, - 7.994514295312207e-12, - 7.540862130102843e-12, - 7.396058235841727e-12, - 8.260497951752381e-12, - 7.584365288615023e-12, - 6.988488628420893e-12, - 6.060977642324818e-12, - 5.148206335826786e-12, - 5.458126854026992e-12, - 4.5887838062952875e-12, - 4.013930317494052e-12, - 4.242429094693856e-12, - 5.139751078914921e-12, - 4.841215180208102e-12, - 4.6611236836773516e-12, - 4.585242356790524e-12, - 4.447628945453586e-12, - 4.038656037121568e-12, - 3.7915509095754234e-12, - 4.579022359677456e-12, - 4.619460090852174e-12, - 3.947198627254159e-12, - 4.33116093706587e-12, - 4.517712026157628e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ESP
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "ESP", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ESP", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.2115012588554793e-11, - 2.055907037425528e-11, - 1.8807574475294758e-11, - 2.2598649005498212e-11, - 2.2364937199509215e-11, - 1.9306582889697524e-11, - 1.8465924779692685e-11, - 2.0109230686273746e-11, - 1.9162977591444514e-11, - 1.8689335374061293e-11, - 2.077333238797549e-11, - 1.8900019820825292e-11, - 1.6741993950225844e-11, - 1.307560423098666e-11, - 1.1099515464394787e-11, - 1.1120589444443681e-11, - 9.41447923134058e-12, - 8.050189438236285e-12, - 7.271441543293163e-12, - 7.95589367489848e-12, - 7.052909196028883e-12, - 8.013720463505795e-12, - 8.957200168815893e-12, - 8.75627415938676e-12, - 8.653590617717573e-12, - 9.468049548080024e-12, - 9.624361454633491e-12, - 9.040491348084096e-12, - 8.95147954481533e-12, - 8.518023960913475e-12, - 9.259572552969864e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=HRV
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "HRV", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "HRV", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.097661256809409e-10, - 2.097661256809409e-10, - 2.097661256809409e-10, - 2.097661256809409e-10, - 2.097661256809409e-10, - 4.257809181678886e-10, - 4.0176254215601877e-10, - 4.0149564001776373e-10, - 3.750066397667311e-10, - 4.08513510082719e-10, - 4.4288447822951066e-10, - 4.1559893051148355e-10, - 3.572543184612716e-10, - 2.76469706444242e-10, - 2.3052356759454704e-10, - 2.2520634705495132e-10, - 1.901759750919332e-10, - 1.597633444382897e-10, - 1.367125321525346e-10, - 1.533272981831001e-10, - 1.6681555774572308e-10, - 1.5311878510063862e-10, - 1.6912227807272465e-10, - 1.6424946050621458e-10, - 1.6582293762547977e-10, - 1.8080986234523314e-10, - 1.8495976121396912e-10, - 1.7206436927313773e-10, - 1.4827815419544048e-10, - 1.5539099599230319e-10, - 1.6908846685315655e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=POL
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "POL", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "POL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.6466157391805064e-10, - 1.2706293657721303e-10, - 1.151615396088986e-10, - 1.1311288499378533e-10, - 9.80475403441311e-11, - 7.634962035587994e-11, - 6.781809181355737e-11, - 6.81736362905728e-11, - 6.219166368803976e-11, - 6.389422916697542e-11, - 5.3246014939551086e-11, - 5.690773900003584e-11, - 5.457320361382603e-11, - 4.9874381929098906e-11, - 4.258552102635212e-11, - 3.46241910896187e-11, - 3.1524394561219926e-11, - 2.532232675485135e-11, - 2.0359473572443697e-11, - 2.4705647783385867e-11, - 2.3362237393941558e-11, - 2.0564024044705924e-11, - 2.1792349834487472e-11, - 2.085155642354152e-11, - 2.0026651956120812e-11, - 2.4340121547133112e-11, - 2.2986250615110273e-11, - 2.0634030057768614e-11, - 1.993490953569435e-11, - 1.8189106832856643e-11, - 1.820911247730648e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GRC
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "GRC", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GRC", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.0618943753977911e-10, - 9.886513629752903e-11, - 8.943884068560115e-11, - 9.553432481314727e-11, - 8.914956565598405e-11, - 7.594333793294764e-11, - 7.126618051793477e-11, - 7.261228177285595e-11, - 7.197349257304767e-11, - 7.290190050650964e-11, - 7.803292240410223e-11, - 7.626038989355409e-11, - 6.725360567818686e-11, - 5.136627364029074e-11, - 4.313930248845527e-11, - 4.3287873822162786e-11, - 3.800082003548161e-11, - 3.259613599115558e-11, - 2.920692949436617e-11, - 3.1375591003712186e-11, - 3.498528003512894e-11, - 3.673197547037317e-11, - 4.294934412331402e-11, - 4.351052909923203e-11, - 4.414797595672267e-11, - 5.360696508612642e-11, - 5.3818792381325644e-11, - 5.201546646892972e-11, - 4.800767053345258e-11, - 5.067168552725589e-11, - 5.504799905153757e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AUT
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "AUT", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AUT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 7.46590603810594e-11, - 7.15098753353013e-11, - 6.370780880895924e-11, - 6.528006211573733e-11, - 6.106067839938436e-11, - 5.156027433521839e-11, - 5.238335215651419e-11, - 5.840490460766579e-11, - 5.694128765452086e-11, - 5.7203575401787126e-11, - 6.650121600710461e-11, - 6.292378711932488e-11, - 5.7967805818903424e-11, - 4.738562524979124e-11, - 4.122636670965678e-11, - 4.0462868223392606e-11, - 3.6957290420032124e-11, - 3.193335238998381e-11, - 2.876506034281654e-11, - 3.093398821699729e-11, - 3.110062243117378e-11, - 2.878949637374204e-11, - 3.035648478527036e-11, - 2.888949463444029e-11, - 2.8080493434841467e-11, - 3.159924524779877e-11, - 3.139673379690126e-11, - 2.978470424348854e-11, - 2.627600360230034e-11, - 2.79273447795254e-11, - 2.8684955810902127e-11, - 3.9560157168567606e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NLD
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "NLD", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NLD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 3.214269326011642e-11, - 3.1242716832132016e-11, - 2.8190211132429678e-11, - 2.894072999449416e-11, - 2.698808581332407e-11, - 2.2622069689604237e-11, - 2.2713035908596316e-11, - 2.454819399207685e-11, - 2.336029216703228e-11, - 2.2887844573004952e-11, - 2.654023566248351e-11, - 2.370785843873561e-11, - 2.1592785305264037e-11, - 1.763923946677427e-11, - 1.5541174903083586e-11, - 1.562709333569699e-11, - 1.394090405728744e-11, - 1.2058090664336434e-11, - 1.0749367059535421e-11, - 1.1740425910916845e-11, - 1.2048891465223868e-11, - 1.1302697450209479e-11, - 1.2196585500783846e-11, - 1.1664748056267931e-11, - 1.1468692166022802e-11, - 1.2474320360279538e-11, - 1.3050014521032458e-11, - 1.2270503072037644e-11, - 1.051372352624631e-11, - 1.1241555198988462e-11, - 1.119639724530342e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IRQ
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "IRQ", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IRQ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.3723994886145212e-12, - 1.0495434801044008e-9, - 7.730209089866591e-10, - 4.1475083391134965e-10, - 1.0723190822937213e-10, - 3.319365657703334e-11, - 4.102092800768681e-11, - 2.0611747956555632e-11, - 2.075915951020814e-11, - 1.1604702117593804e-11, - 9.304393042744093e-12, - 1.1830907540520489e-11, - 1.299787688969266e-11, - 1.9524149510079272e-11, - 1.1685081028673526e-11, - 8.80794646707253e-12, - 6.570448769555636e-12, - 4.817809404637123e-12, - 3.251922968690175e-12, - 3.833147679073529e-12, - 3.537479017891783e-12, - 2.3041764370347533e-12, - 1.9632804020781107e-12, - 1.8240889906761142e-12, - 1.8737769869512343e-12, - 2.2185697811479753e-12, - 2.568989234294577e-12, - 2.286109119642608e-12, - 1.7152849598797582e-12, - 1.8205237337761974e-12, - 2.5666091381437557e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=QAT
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "QAT", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "QAT", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.231524377267924e-10, - 2.3861350574712656e-10, - 2.1481387944068205e-10, - 2.2950862930680371e-10, - 2.2272845143304542e-10, - 2.018330997479319e-10, - 1.8130459065091541e-10, - 1.4538225959572722e-10, - 1.601580416742496e-10, - 1.325330850568594e-10, - 9.24836803514526e-11, - 9.36513157894739e-11, - 8.48235060439247e-11, - 6.979325963368085e-11, - 5.175825888219412e-11, - 3.750239063242253e-11, - 2.6978353962574042e-11, - 2.060540682125231e-11, - 1.4249147367743683e-11, - 1.6794761591748e-11, - 1.3506784276534773e-11, - 9.789881509042637e-12, - 8.791249852031183e-12, - 8.265080667577158e-12, - 7.96461727348736e-12, - 1.0016077933380743e-11, - 1.0824994274632329e-11, - 1.0195586278261588e-11, - 8.672650615073198e-12, - 9.312741363834267e-12, - 1.1373758698427233e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARE
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "ARE", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.729591403626591e-11, - 6.618538637132229e-11, - 6.290656514926273e-11, - 6.133913809990201e-11, - 5.75330004731086e-11, - 5.189853529180218e-11, - 4.637682168246447e-11, - 4.327806839933937e-11, - 4.508794087379551e-11, - 4.040477096405979e-11, - 2.4727477236487414e-11, - 3.30262880457127e-11, - 3.1070096702206915e-11, - 2.7439484783056185e-11, - 2.308144450482139e-11, - 2.015308951575702e-11, - 1.536130524700177e-11, - 1.3229106511105928e-11, - 1.0815450213044018e-11, - 1.3457052034995242e-11, - 1.0870040141170649e-11, - 9.730055652144202e-12, - 9.108610698387121e-12, - 8.746305848520583e-12, - 8.463621927686258e-12, - 1.0582599823151611e-11, - 9.556216672971104e-12, - 8.848421351366296e-12, - 9.236999152847849e-12, - 8.17802673510001e-12, - 9.507653858749404e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SAU
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "SAU", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SAU", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.5472207724352372e-12, - 1.3764596963653557e-12, - 1.327615573537894e-12, - 1.3687513908463295e-12, - 1.3464039417949058e-12, - 1.2696814902541679e-12, - 1.1470896787115634e-12, - 1.096626288568368e-12, - 1.239988978956153e-12, - 1.1254230848761936e-12, - 9.497932621801923e-13, - 9.88391989221811e-13, - 9.598856394865067e-13, - 8.433435773460086e-13, - 7.034026751627503e-13, - 5.175672995518372e-13, - 4.828865334543695e-13, - 4.3753725055907837e-13, - 3.5013686402917056e-13, - 4.2414563274577864e-13, - 3.2184331699890203e-13, - 2.7114044826589334e-13, - 2.472910611578815e-13, - 2.4375637877362036e-13, - 2.406292277668385e-13, - 3.056842430312466e-13, - 2.821987443793744e-13, - 2.6430966564947707e-13, - 2.415698997444611e-13, - 2.2951779474449743e-13, - 2.599562258770453e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=AZE
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "AZE", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "AZE", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.2134934185274683e-10, - 1.2134934185274683e-10, - 7.716686375801326e-9, - 2.193630573248408e-9, - 2.886084867894311e-9, - 1.4246971599962523e-9, - 1.0842689014125754e-9, - 8.692057119336343e-10, - 7.745646689530899e-10, - 7.51730020396811e-10, - 6.543015196795324e-10, - 6.033932575814583e-10, - 5.522897814432989e-10, - 4.732879591408379e-10, - 3.9675726243229934e-10, - 1.3664795368337006e-10, - 1.6413297628319313e-10, - 1.0420466493891152e-10, - 7.049795202455577e-11, - 7.775760010111936e-11, - 5.613380430943134e-11, - 5.222009139433971e-11, - 4.9423155541185534e-11, - 4.643735175827576e-11, - 4.5770912375178155e-11, - 8.629400514895188e-11, - 9.094865718276473e-11, - 8.427634643107975e-11, - 9.360485441741995e-11, - 7.14904965065535e-11, - 8.08314534143655e-11, - 1.2134934185274683e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=YEM
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "YEM", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "YEM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.7713245223529976e-11, - 2.6389582812890334e-11, - 2.421232590916678e-11, - 2.9152777724575686e-11, - 3.755378676667244e-11, - 3.674753787732612e-11, - 2.7049518179991838e-11, - 2.288494359306298e-11, - 2.474252878746415e-11, - 2.048133754596804e-11, - 1.621352341391381e-11, - 1.5869699976119723e-11, - 1.4633514943998766e-11, - 1.3287522739691985e-11, - 1.1281074772254758e-11, - 2.0302938028969164e-11, - 8.210060634203608e-12, - 7.228459702052965e-12, - 5.8154979155513005e-12, - 6.227548463109139e-12, - 5.823970579841205e-12, - 4.7820694512490356e-12, - 4.4207364085124304e-12, - 3.872302048514475e-12, - 3.620289649469268e-12, - 1.2957914319310785e-12, - 4.9972275334607994e-12, - 5.830821507095744e-12, - 2.3604400350099343e-12, - 8.584710263676609e-12, - 8.584710263676609e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=OMN
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "OMN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "OMN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.21562910369694e-11, - 8.464501926252079e-11, - 7.709434198709253e-11, - 7.68423682238322e-11, - 7.430998731705357e-11, - 6.955210943829949e-11, - 6.283642306317349e-11, - 6.06158141062485e-11, - 6.858654360332104e-11, - 6.156428626932767e-11, - 4.92119613383729e-11, - 4.9352250376780326e-11, - 4.765981367042591e-11, - 4.4375194093386685e-11, - 3.876640005034416e-11, - 5.0189833913671164e-11, - 2.5795509522566204e-11, - 2.2810772112748372e-11, - 1.5762135572941275e-11, - 1.9839480585714882e-11, - 1.1231892757102845e-11, - 1.2387491694017683e-11, - 1.0982870506743793e-11, - 1.0674254780164483e-11, - 1.0356088747236465e-11, - 9.782648202667828e-12, - 1.2778066258178414e-11, - 1.187285698662567e-11, - 8.524045020463843e-12, - 1.0901551710898602e-11, - 1.297799029604107e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=DZA
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "DZA", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "DZA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.2635264424520176e-11, - 1.7149501489826086e-11, - 1.6332285893297344e-11, - 1.5697078600909907e-11, - 1.8428336482487647e-11, - 1.8772006527511392e-11, - 1.6701609914299006e-11, - 1.627311871153092e-11, - 1.626969593317932e-11, - 1.6118204507568728e-11, - 1.058579745333712e-11, - 1.4321017678022796e-11, - 1.3812457445907642e-11, - 1.1552546007755422e-11, - 9.187580981139244e-12, - 7.848972306738587e-12, - 6.699291101148046e-12, - 5.808393430648029e-12, - 4.584776556850863e-12, - 5.713826119015571e-12, - 4.032076216246686e-12, - 3.919744193589861e-12, - 3.750137665351117e-12, - 3.73769391838103e-12, - 3.666806550364698e-12, - 5.603109039444661e-12, - 4.898953954792654e-12, - 4.609134392474416e-12, - 5.431337418682505e-12, - 4.564311871123926e-12, - 5.406554205332947e-12, - 7.0517580580921394e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=EGY
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "EGY", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "EGY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 7.724718162839242e-12, - 8.879893333333336e-12, - 7.931959741193377e-12, - 7.1277319587628896e-12, - 6.397165714285714e-12, - 5.518686274509806e-12, - 4.909084568439404e-12, - 4.232719067318542e-12, - 3.9137647877522594e-12, - 3.65998699609883e-12, - 2.504042928550427e-12, - 3.4338444382492317e-12, - 3.8991818421747165e-12, - 4.135089820359282e-12, - 4.214135586235319e-12, - 3.2365831012070574e-12, - 3.090497005018609e-12, - 2.5452738990333057e-12, - 2.0390843104410916e-12, - 1.7552485127614666e-12, - 1.6439582297364495e-12, - 1.4068412223761926e-12, - 1.1894667701677895e-12, - 1.151042786497526e-12, - 1.0864037558685458e-12, - 1.2144523098326447e-12, - 9.986712925370929e-13, - 1.4083688760806906e-12, - 1.4416550232117895e-12, - 1.0954172225249415e-12, - 9.089598633646458e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBY
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "LBY", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBY", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.027552840562003e-12, - 1.8315354637568217e-12, - 1.7295629388952964e-12, - 1.9114702100300026e-12, - 2.04838366609812e-12, - 2.2940692883895093e-12, - 2.101517241379309e-12, - 1.9088797794897168e-12, - 2.150475592528646e-12, - 1.6288313556274703e-12, - 1.6723191511070296e-12, - 1.7179680232558124e-12, - 2.86106412425035e-12, - 2.231052944675788e-12, - 1.7692003994519143e-12, - 1.7534909255312274e-12, - 1.0661924153023626e-12, - 8.679393754545671e-13, - 6.724779366940207e-13, - 9.29740779181328e-13, - 1.3106257192023054e-12, - 1.6887902257586079e-12, - 7.157368828654405e-13, - 8.946172869147663e-13, - 1.4243102196752633e-12, - 1.0415869209210666e-12, - 2.2368851214133063e-12, - 1.5468580394197796e-12, - 3.6116256445618583e-13, - 1.124951119205923e-12, - 2.305369746427547e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ISR
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "ISR", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ISR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.5702038064964082e-11, - 1.5702038064964082e-11, - 1.5702038064964082e-11, - 1.5702038064964082e-11, - 1.5702038064964082e-11, - 3.373566224348184e-11, - 3.080395236660697e-11, - 2.9576441944260005e-11, - 2.925885207276369e-11, - 2.8967369251743082e-11, - 2.325306409425386e-11, - 2.5944774851511522e-11, - 2.801521020573705e-11, - 2.6714599973391816e-11, - 2.5034788313275465e-11, - 1.892650688139157e-11, - 2.2018158838736948e-11, - 1.8943771758682016e-11, - 1.566137109956027e-11, - 1.632096113878333e-11, - 1.3296138830485524e-11, - 1.2939684735507296e-11, - 1.3133805562081637e-11, - 1.1537649605163735e-11, - 1.0915115794380654e-11, - 1.286331028091459e-11, - 1.0638684112472552e-11, - 9.553103254108535e-12, - 1.1267492806109733e-11, - 8.529039761789342e-12, - 8.33700284699875e-12, - 1.5702038064964082e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=TUR
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "TUR", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "TUR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.4627384202216357e-11, - 1.4690607409514045e-11, - 1.3908949228439067e-11, - 1.223290905833194e-11, - 1.6864313216959347e-11, - 1.3004028454344491e-11, - 1.2144886381906378e-11, - 1.1610103899990855e-11, - 7.986450748902702e-12, - 8.596429144680505e-12, - 8.785905949827694e-12, - 1.0924349215814289e-11, - 9.173654504973198e-12, - 7.005890171851627e-12, - 5.39038674339124e-12, - 4.187172029266311e-12, - 3.9565012554494165e-12, - 3.2348146603902774e-12, - 2.8606207095982876e-12, - 3.3945681767536947e-12, - 2.985871422918249e-12, - 2.6276798611170932e-12, - 2.502962968213041e-12, - 2.301147495846241e-12, - 2.3472962669870454e-12, - 2.4528047100935948e-12, - 2.5342277107470327e-12, - 2.5657853179205847e-12, - 2.633364153047861e-12, - 2.8961723819761193e-12, - 3.0613032007298424e-12, - 4.353824200865074e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MAR
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "MAR", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MAR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.8230514752843586e-11, - 2.638964709477222e-11, - 2.5273597497386978e-11, - 2.6914776542212295e-11, - 2.3929803154272588e-11, - 2.1829202368764373e-11, - 1.9739836060374873e-11, - 2.1763650344333037e-11, - 2.0379742838831236e-11, - 2.0465013335142153e-11, - 2.5992574494205282e-11, - 2.1591714197534983e-11, - 2.0171965140726422e-11, - 1.636445600057665e-11, - 1.4289063695341714e-11, - 1.539867589314806e-11, - 1.2412438137661977e-11, - 1.0779175636650036e-11, - 9.21008816403727e-12, - 9.171416318072689e-12, - 9.65491751463121e-12, - 8.404814182082879e-12, - 8.670316707179428e-12, - 7.97561260820802e-12, - 7.73973779307006e-12, - 6.918376436054442e-12, - 8.246891867485078e-12, - 7.767859309812838e-12, - 5.842692990203533e-12, - 7.107673971162544e-12, - 7.426450339185731e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=SEN
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "SEN", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "SEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.0553422797595298e-10, - 1.0750893835443719e-10, - 1.0038845351586122e-10, - 1.0586339771959356e-10, - 1.5492826331014138e-10, - 1.2329397956607107e-10, - 1.1890764937887073e-10, - 1.2910747067170628e-10, - 1.198965636966987e-10, - 1.1831024829999028e-10, - 1.5964917601152128e-10, - 1.1985571645193708e-10, - 1.1132674574538459e-10, - 8.895252967129695e-11, - 7.740539284114882e-11, - 7.720932672608013e-11, - 6.667852745001275e-11, - 5.573730148044887e-11, - 4.627983910830545e-11, - 4.830957284258799e-11, - 3.721780836401686e-11, - 4.3785086886352194e-11, - 4.4165430342365286e-11, - 4.122911684059608e-11, - 3.9399402293944865e-11, - 4.1069456209884326e-11, - 4.096571351391019e-11, - 3.714893408649546e-11, - 3.2876665194714433e-11, - 3.346746960370965e-11, - 3.165040476319442e-11, - 6.135347370262115e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ZAF
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "ZAF", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ZAF", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.441195770830025e-11, - 7.869719119344358e-11, - 7.249606617273386e-11, - 6.626509976750678e-11, - 6.353874765573067e-11, - 5.679673506191883e-11, - 5.975368819017862e-11, - 5.772394707069822e-11, - 6.375890925600947e-11, - 6.437580144571533e-11, - 6.602818793116665e-11, - 7.202265600135569e-11, - 7.556078032602067e-11, - 4.950760351438897e-11, - 3.813036412285191e-11, - 3.3163880319879695e-11, - 3.21002170066056e-11, - 2.928465496638026e-11, - 3.085418660168262e-11, - 2.9579711344013564e-11, - 2.4055678239613704e-11, - 2.1287576970084152e-11, - 2.24539313091175e-11, - 2.4331105773722892e-11, - 2.5587693913491745e-11, - 2.7717705886787e-11, - 3.014350058447389e-11, - 2.5570927540727715e-11, - 2.3515339947101598e-11, - 2.514341502732796e-11, - 2.9078043454495624e-11, - 3.689287018290382e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=LBR
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "LBR", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "LBR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.7745709974823387e-9, - 2.7745709974823387e-9, - 2.7745709974823387e-9, - 2.7745709974823387e-9, - 2.7745709974823387e-9, - 2.7745709974823387e-9, - 2.7745709974823387e-9, - 2.7745709974823387e-9, - 2.7745709974823387e-9, - 2.7745709974823387e-9, - 7.299771167048055e-9, - 6.538631346578367e-9, - 6.390507011866236e-9, - 7.919786096256686e-9, - 6.604236343366778e-9, - 6.375131717597471e-9, - 5.294012511170689e-9, - 4.3146394756008745e-9, - 3.432213209733488e-9, - 3.3506787330316746e-9, - 2.687687687687688e-9, - 2.4703919933277734e-9, - 2.1220698850199207e-9, - 1.864535925537662e-9, - 1.8365279329574302e-9, - 1.7663050172637724e-9, - 1.7431632044495036e-9, - 1.7471301087556052e-9, - 1.7880334285120279e-9, - 1.7845542372393754e-9, - 1.8505630941115045e-9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MOZ
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "MOZ", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MOZ", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.091999277193034e-10, - 5.366865044000324e-10, - 7.386494493292106e-10, - 7.144033183944265e-10, - 6.972877348916804e-10, - 6.724316840385973e-10, - 5.056005182514856e-10, - 4.194601832871292e-10, - 3.704493488990892e-10, - 3.2628294214814835e-10, - 4.119174141307409e-10, - 3.612068614557299e-10, - 3.434910846100825e-10, - 3.093572896721696e-10, - 2.5553259072176927e-10, - 1.5218793375652616e-10, - 2.1249030962843718e-10, - 1.8658781360013323e-10, - 1.5530182278235296e-10, - 1.6366651264947677e-10, - 1.4678537322508637e-10, - 1.355903689181968e-10, - 1.1926018654713107e-10, - 1.1487941412080106e-10, - 1.1006947066619e-10, - 1.3729573403338833e-10, - 1.6335763735429075e-10, - 1.475140003229268e-10, - 1.549252413057547e-10, - 1.267492880658392e-10, - 1.3909250872868055e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CMR
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "CMR", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CMR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.612903532800681e-10, - 5.837742839358851e-10, - 5.725752660274943e-10, - 4.2714619067156825e-10, - 7.76415813586336e-10, - 6.361844814029081e-10, - 6.230653437391311e-10, - 6.406253265385413e-10, - 6.117818720481989e-10, - 5.976226144056876e-10, - 6.331282839879122e-10, - 6.310320273192223e-10, - 5.566449084297721e-10, - 4.32802964434514e-10, - 3.671476129382373e-10, - 3.905719251036828e-10, - 3.305514158278893e-10, - 2.888635656485467e-10, - 2.493943331228651e-10, - 2.4744950441854856e-10, - 3.0646187727560294e-10, - 2.2565439639224028e-10, - 2.2921522794359303e-10, - 2.0492980211713964e-10, - 1.899603173567521e-10, - 1.9155403243811942e-10, - 2.0441033091888906e-10, - 1.9147583415092836e-10, - 1.4134244126184858e-10, - 1.7423316652943947e-10, - 1.6939329034972033e-10, - 3.120614180787258e-10 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=NGA
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "NGA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "NGA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.1607898831027806e-10, - 2.377111661665013e-10, - 2.4429371530471653e-10, - 4.2072333661612546e-10, - 3.451064098557355e-10, - 2.6498743971688467e-10, - 2.286013444690873e-10, - 2.1440440954941218e-10, - 2.1383029214934856e-10, - 1.9665632544237796e-10, - 1.7998882272485097e-10, - 1.5771906680816294e-10, - 1.2240813239501747e-10, - 1.1129332970217192e-10, - 8.560997294594467e-11, - 7.10254341019292e-11, - 4.9452787198881065e-11, - 4.2361799486609986e-11, - 3.4394162125580514e-11, - 3.957848475846429e-11, - 3.242436098737564e-11, - 2.8830085633771335e-11, - 2.5633284127602825e-11, - 2.2952941899429585e-11, - 2.135815729961384e-11, - 2.2206094553707255e-11, - 2.8854565215631207e-11, - 3.1074144260984166e-11, - 2.7291691075177545e-11, - 2.6055495907060833e-11, - 2.700941036197751e-11, - 5.097437443795177e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=GHA
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "GHA", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GHA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.520438115338942e-10, - 5.821228088315323e-10, - 5.986995495696387e-10, - 6.43619741225692e-10, - 7.052910662824203e-10, - 5.939548744146444e-10, - 5.537142705953947e-10, - 5.57223631442459e-10, - 5.133024976873264e-10, - 4.974508984538235e-10, - 1.0636110855354028e-9, - 7.224957775927415e-10, - 6.227366869960297e-10, - 5.031178532506417e-10, - 4.3236579852946455e-10, - 3.508714713430271e-10, - 1.8785872010469322e-10, - 1.5466505481223234e-10, - 1.3389727382299202e-10, - 1.4741953514318638e-10, - 1.3230934268352367e-10, - 9.761723743862031e-11, - 9.304364351267371e-11, - 6.112406807192812e-11, - 7.009493221940319e-11, - 6.314949811282252e-11, - 6.836977083493127e-11, - 6.356944110444739e-11, - 4.086224952527764e-11, - 5.6191664533658984e-11, - 5.603198812040978e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BGD
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "BGD", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BGD", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.734373242183934e-12, - 3.811679275750756e-12, - 3.721355661790531e-12, - 3.557804740162069e-12, - 3.4943642097495054e-12, - 3.110194553989344e-12, - 2.540995949106369e-12, - 2.445884335777306e-12, - 2.3607290180800344e-12, - 2.3015152799756907e-12, - 4.3095543669093235e-12, - 2.1855377106237806e-12, - 2.156271915143292e-12, - 1.961471083215961e-12, - 1.8123581376175979e-12, - 2.304049812433018e-12, - 1.6430173422933126e-12, - 1.4821906959934679e-12, - 1.2877698780083165e-12, - 1.1514689993274498e-12, - 1.3879361590854516e-12, - 9.173032558050122e-13, - 8.848512378201163e-13, - 7.867167489379979e-13, - 6.825328368241595e-13, - 1.0764887347116416e-13, - 5.329354371107859e-13, - 4.725464102108339e-13, - 6.933320382018189e-14, - 1.2499061280855558e-12, - 1.2499061280855558e-12, - 1.2499061280855558e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IND
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "IND", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IND", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.2486797173969018e-11, - 1.4838655067370432e-11, - 1.3906602227632153e-11, - 1.4350365454983104e-11, - 1.2246559785036753e-11, - 1.1124620508400891e-11, - 1.0201145454374614e-11, - 9.637679196718721e-12, - 9.512248595247618e-12, - 8.735443865500662e-12, - 4.8676871131996564e-12, - 8.25640990349609e-12, - 7.78346208275131e-12, - 6.595367307595985e-12, - 5.651848542761226e-12, - 2.8401417251971455e-12, - 4.262651260332589e-12, - 3.294060371067205e-12, - 3.343076794773186e-12, - 2.98683956724865e-12, - 2.596061224541675e-12, - 2.1985135672611423e-12, - 2.1929946241622536e-12, - 2.158642886739405e-12, - 1.9655465906632625e-12, - 2.6335957850786166e-12, - 1.7465589712219394e-12, - 1.5116126323218691e-12, - 2.0510073057059466e-12, - 1.3962704336784889e-12, - 1.5066280079650779e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VNM
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "VNM", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VNM", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 8.115281742247647e-10, - 5.463224927372992e-10, - 5.322798415879568e-10, - 3.984537204294941e-10, - 3.2247698609116385e-10, - 2.532773122241053e-10, - 2.1299832779191013e-10, - 1.9565111790142947e-10, - 1.9302009600655941e-10, - 1.8310076823739455e-10, - 7.089577978290312e-11, - 1.606843526494147e-10, - 1.497828028116965e-10, - 1.3278549350404203e-10, - 1.1561188692407604e-10, - 4.563337558821051e-11, - 7.913015312298355e-11, - 6.784265288918796e-11, - 5.2980771598845844e-11, - 4.9540318399203245e-11, - 4.2266247277354885e-11, - 3.8748869375656626e-11, - 3.370555727935276e-11, - 3.067362388921343e-11, - 2.8205525036974463e-11, - 4.0674575158924904e-11, - 2.5585044505548128e-11, - 2.3469493025514466e-11, - 3.531613642055363e-11, - 2.005182895012846e-11, - 1.936874969694803e-11, - 5.53909491062571e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=THA
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "THA", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "THA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.827899597099898e-11, - 7.66938803507702e-11, - 6.759808017518471e-11, - 5.845325323754845e-11, - 5.136228717651245e-11, - 4.4506471384057556e-11, - 4.1161500701504105e-11, - 5.0166260012610536e-11, - 6.627633881825865e-11, - 5.947782149080154e-11, - 5.134809164822401e-11, - 6.262860093010269e-11, - 5.609793184180878e-11, - 4.947443179470744e-11, - 4.357539162202507e-11, - 3.597111858028146e-11, - 3.397394152162626e-11, - 2.8652654732362857e-11, - 2.5856004736410438e-11, - 2.6743775015744925e-11, - 2.2603022720365088e-11, - 2.0317182065544705e-11, - 1.895068335892944e-11, - 1.7923875495754695e-11, - 1.849563042542332e-11, - 2.0832479983235683e-11, - 1.822597227192216e-11, - 1.6509006406233618e-11, - 1.6383376693513615e-11, - 1.3842551067617947e-11, - 1.5018629154800716e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=IDN
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "IDN", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "IDN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 5.162956893602766e-12, - 4.698942033025268e-12, - 4.280348231618268e-12, - 3.4682073542085313e-12, - 3.0979329427551794e-12, - 2.71109929218918e-12, - 2.4101718465998744e-12, - 2.539988614230014e-12, - 5.7414935763248595e-12, - 3.9142479357690505e-12, - 3.02991718269333e-12, - 3.415459175544022e-12, - 2.8007681093123065e-12, - 2.334174932931074e-12, - 2.1336500039942043e-12, - 1.6790930147633574e-12, - 1.503138565785845e-12, - 1.267882412007491e-12, - 1.074028312833354e-12, - 1.0156045684637208e-12, - 7.81359505834757e-13, - 6.13683043610055e-13, - 5.970344969003986e-13, - 6.005320604131476e-13, - 6.151671790130235e-13, - 6.969821086547144e-13, - 5.880602116390468e-13, - 5.39572555165297e-13, - 5.468824418974204e-13, - 4.896830312597945e-13, - 5.177509993130969e-13, - 1.1243631349840299e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PHL
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "PHL", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.2778101236368338e-10, - 1.2463259278128885e-10, - 1.0681485158532813e-10, - 1.0403531747260126e-10, - 8.82185150179238e-11, - 7.624856123923246e-11, - 6.818944132835023e-11, - 6.85821033578602e-11, - 8.663979783949925e-11, - 7.536186264126832e-11, - 7.242765857081494e-11, - 8.177773756817485e-11, - 7.655328321960752e-11, - 7.415054374033701e-11, - 6.793539150252279e-11, - 5.2783485577209985e-11, - 5.0558992884075695e-11, - 4.137699928857261e-11, - 3.553483840751739e-11, - 3.667572426531905e-11, - 3.3498309008059673e-11, - 2.755565103607876e-11, - 2.4641063814503683e-11, - 2.2733138351859026e-11, - 2.1695339360780596e-11, - 2.1863548309896013e-11, - 2.0255674601130033e-11, - 1.9648024118209368e-11, - 1.977845283262649e-11, - 1.7127391982387347e-11, - 1.785391586841616e-11, - 3.8228503498565765e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=KOR
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "KOR", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "KOR", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 3.554571037943474e-11, - 3.0462860301277093e-11, - 2.8331319665432998e-11, - 2.5651564908831835e-11, - 2.1725888633194574e-11, - 1.777761140560125e-11, - 1.650770656629131e-11, - 1.767866550443191e-11, - 2.6276251625744865e-11, - 2.024571597405036e-11, - 1.748157340987523e-11, - 1.8391944874928113e-11, - 1.6058290834189568e-11, - 1.4333643900807888e-11, - 1.269896290252556e-11, - 1.1316705397411741e-11, - 9.5635570464543e-12, - 8.5897825342708e-12, - 9.617229857440065e-12, - 1.0670678199327883e-11, - 8.71452485053812e-12, - 8.037276398997717e-12, - 7.878819050387325e-12, - 7.347924766715719e-12, - 6.785943786694316e-12, - 6.849627000970554e-12, - 6.7145004580131865e-12, - 6.2026545450118136e-12, - 5.623691716003948e-12, - 6.0992855325500125e-12, - 6.1496585941697995e-12, - 1.077200427602954e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=MEX
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "MEX", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "MEX", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.1465734325127066e-11, - 1.7908764196267958e-11, - 1.5442331448229223e-11, - 1.1199512847592624e-11, - 1.0624970339713797e-11, - 1.5574580262637304e-11, - 1.3645579114661885e-11, - 1.1206732410878115e-11, - 1.0651428906132182e-11, - 9.343040414009264e-12, - 9.08311730221409e-12, - 7.41106555559141e-12, - 7.2632478541786185e-12, - 7.689182409673706e-12, - 7.169149729342811e-12, - 7.384815499380074e-12, - 5.749511981087269e-12, - 5.3272725423327595e-12, - 5.0523020306878625e-12, - 6.230797143670622e-12, - 4.925310662550637e-12, - 4.750571280509573e-12, - 4.6690922916901e-12, - 4.400353430649429e-12, - 4.2635001741307764e-12, - 4.1984264822941395e-12, - 5.199859629333472e-12, - 4.839017102043685e-12, - 4.090286687624088e-12, - 4.417717106083878e-12, - 5.222010494625423e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=BRA
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "BRA", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "BRA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.0920050941168738e-11, - 2.3858084811587028e-11, - 2.4906460282725826e-11, - 2.219411813377588e-11, - 1.5558563132120583e-11, - 1.0624783403157112e-11, - 9.611648559800604e-12, - 9.254914266230017e-12, - 9.463813625938423e-12, - 1.36314650701238e-11, - 1.3395414248251588e-11, - 1.4596853337406073e-11, - 1.6033887464302565e-11, - 1.464261230765091e-11, - 1.2212954445846702e-11, - 9.331184788821346e-12, - 7.379742575564501e-12, - 5.85063105298249e-12, - 4.819986444287262e-12, - 4.903430216127199e-12, - 3.843649730160247e-12, - 3.124430693166689e-12, - 3.315717258416082e-12, - 3.305538659594062e-12, - 3.3281165885805247e-12, - 4.3613071059408985e-12, - 4.552002369019206e-12, - 3.96120272102548e-12, - 3.870765049180195e-12, - 4.352909968409228e-12, - 5.657791809830828e-12, - 6.5386124970822985e-12 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=ARG
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "ARG", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "ARG", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 6.466110248529613e-11, - 4.8176263745970996e-11, - 3.9949539936868174e-11, - 3.860747565937126e-11, - 3.550341827221877e-11, - 3.5421997486743395e-11, - 3.358445120746942e-11, - 3.1209558183289573e-11, - 3.057385350140033e-11, - 3.2237243539324856e-11, - 3.078777109732014e-11, - 3.401604224837107e-11, - 9.35287094503807e-11, - 7.163740740789984e-11, - 5.550901784606572e-11, - 4.357515641186568e-11, - 3.930214850260121e-11, - 3.178793113081807e-11, - 2.527948230122918e-11, - 2.744938583754375e-11, - 2.145753444170428e-11, - 1.7239971755216506e-11, - 1.6740467104387372e-11, - 1.6557216933677167e-11, - 1.736587183830096e-11, - 1.60571861694041e-11, - 1.6393696193390047e-11, - 1.4200734822320533e-11, - 1.838726559015036e-11, - 2.022426559399502e-11, - 2.3478757832144994e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=PER
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "PER", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "PER", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 2.5122691625326965e-10, - 1.9320666160110096e-10, - 1.8447823587908973e-10, - 1.9048533792373645e-10, - 1.4783183030868636e-10, - 1.2445417958973258e-10, - 1.2008525065262602e-10, - 1.1410632323036705e-10, - 1.195463877578636e-10, - 1.3220469624806455e-10, - 1.2638963584813712e-10, - 1.2752219397678148e-10, - 1.2112625654545353e-10, - 1.1297264812540067e-10, - 9.937290455612344e-11, - 9.190039840637446e-11, - 7.485064301979873e-11, - 6.494016134228743e-11, - 5.503912888163117e-11, - 5.491504713650229e-11, - 4.4974227657491565e-11, - 3.8629092335043535e-11, - 3.4440874498898884e-11, - 3.2981158335111735e-11, - 3.3044579249562824e-11, - 3.493053128970772e-11, - 3.457603046622647e-11, - 3.1444423530027336e-11, - 2.8664534103243464e-11, - 2.9040895057680536e-11, - 3.284419917282794e-11, - 6.048122689824732e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=VEN
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "VEN", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "VEN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.5720709475571245e-10, - 1.4286523223764874e-10, - 1.2648630043981793e-10, - 1.2719551484505675e-10, - 1.3078011594467514e-10, - 9.869815806091123e-11, - 1.0830241321310553e-10, - 8.899913122883871e-11, - 8.365158579773921e-11, - 7.797757504473866e-11, - 7.811117879686474e-11, - 6.21623582127662e-11, - 8.224464342905409e-11, - 9.136501518280485e-11, - 6.793926373513782e-11, - 6.473781508744457e-11, - 4.16399780832066e-11, - 3.3164902428020735e-11, - 2.4180781969178972e-11, - 2.316642387351974e-11, - 2.2050276157557122e-11, - 2.4140378896767965e-11, - 2.003743970180315e-11, - 2.0592693303787622e-11, - 1.5838814972038117e-11, - 3.8904791117373e-11, - 4.358249327518032e-11, - 4.358249327518032e-11, - 2.3616691382100323e-11, - 4.358249327518032e-11, - 4.358249327518032e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=COL
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "COL", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "COL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.1516573767488075e-10, - 1.1204751583265741e-10, - 9.431865271515619e-11, - 8.29234756489976e-11, - 6.74389707043661e-11, - 5.956288020519025e-11, - 5.67105167023364e-11, - 5.165971688137773e-11, - 5.5971055176215155e-11, - 6.393137928507969e-11, - 5.586336171600387e-11, - 5.610326689720213e-11, - 5.6245723242419185e-11, - 5.821977739631719e-11, - 4.7061226139029616e-11, - 3.71516964297337e-11, - 3.4092614579511685e-11, - 2.672398477034151e-11, - 2.2751019324147938e-11, - 2.370934300621647e-11, - 1.7587749115906302e-11, - 1.645051742019276e-11, - 1.485490236261581e-11, - 1.4419700239324554e-11, - 1.4457687687687651e-11, - 1.969458078618899e-11, - 1.9482011163696395e-11, - 1.766684010033996e-11, - 1.7175435856370415e-11, - 1.7036149683494487e-11, - 2.029932505751777e-11, - 2.9182092821942506e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHL
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "CHL", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHL", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 2.7609261860933647e-10, - 2.416426547787682e-10, - 1.989042478275746e-10, - 1.8545462440806246e-10, - 1.6037103204584487e-10, - 1.2447740708507214e-10, - 1.171521029618001e-10, - 1.0761913972397936e-10, - 1.1207143911819107e-10, - 1.216181790631687e-10, - 1.1742089064847336e-10, - 1.2880402640481955e-10, - 1.311000576575574e-10, - 1.208630596669059e-10, - 9.215264385778544e-11, - 7.262240190022226e-11, - 5.906464670937248e-11, - 5.266236003222756e-11, - 5.089387959374925e-11, - 5.3033972965202634e-11, - 4.260137421702167e-11, - 3.624351953157287e-11, - 3.422589320898728e-11, - 3.284128783942587e-11, - 3.509036058023789e-11, - 3.7963409920033233e-11, - 3.6505728060320564e-11, - 3.3001283983608783e-11, - 3.0480049720466504e-11, - 3.2723603816711424e-11, - 3.614493226458306e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CRI
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "CRI", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CRI", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 8.894043564103437e-10, - 7.059206643442236e-10, - 5.931777078610617e-10, - 5.30112793013591e-10, - 4.844192089943901e-10, - 4.387406524394724e-10, - 4.349901818346296e-10, - 4.0270789724654477e-10, - 3.7122953705261216e-10, - 3.5636953022496165e-10, - 3.6966410696250594e-10, - 3.179734955833578e-10, - 3.0641503975706237e-10, - 2.94121725340552e-10, - 2.729627957597349e-10, - 2.704504112703836e-10, - 2.2363544637158934e-10, - 1.8895505379605424e-10, - 1.6492572156617323e-10, - 1.6522629233377639e-10, - 1.2746087515625805e-10, - 1.1879534852379622e-10, - 1.0755499330732991e-10, - 9.970623519378581e-11, - 9.766148995023972e-11, - 8.43344839780737e-11, - 8.632553256617991e-11, - 8.394468142037124e-11, - 7.801965906721156e-11, - 7.928472575269552e-11, - 8.213831899045649e-11 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=USA
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "USA", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "USA", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1.6008333858783218e-12, - 1.5501461564056225e-12, - 1.4640370030521474e-12, - 1.391837556547957e-12, - 1.3099616919226986e-12, - 1.2495174906924297e-12, - 1.182442182838312e-12, - 1.1129046219239876e-12, - 1.0533147402088866e-12, - 9.91208892738424e-13, - 8.963802509649805e-13, - 9.021131277931143e-13, - 8.728634073790859e-13, - 8.331119586596043e-13, - 7.815794738124464e-13, - 7.279482928555129e-13, - 6.910074930030891e-13, - 6.605378745547564e-13, - 6.488208496942568e-13, - 6.606716207683439e-13, - 6.243307818110237e-13, - 6.141837019298722e-13, - 5.893681341441984e-13, - 5.687271829808818e-13, - 5.446403175160166e-13, - 5.384273585605475e-13, - 5.092537453247147e-13, - 4.884618619613458e-13, - 4.788505041637983e-13, - 4.4538328389456714e-13, - 4.555904325054657e-13, - 7.356825344534661e-13 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=CHN
Year=%{x}
Alcohol per capita=%{y}", - "legendgroup": "CHN", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "CHN", - "showlegend": true, - "type": "scattergl", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1.6128231631712066e-11, - 1.5181025192604828e-11, - 1.3632667589055548e-11, - 1.3086554127983759e-11, - 1.0313212073317723e-11, - 7.92324096777198e-12, - 6.738086388096935e-12, - 6.052387765378706e-12, - 5.655739797299229e-12, - 5.3199401626346525e-12, - 3.1452592941085606e-12, - 4.345243095849985e-12, - 3.957702859696055e-12, - 3.505416000333888e-12, - 2.9764537881101686e-12, - 1.7585564217856374e-12, - 2.1147243225555332e-12, - 1.6392783545461904e-12, - 1.2667851666457395e-12, - 1.140795518010443e-12, - 1.1614604347362452e-12, - 7.707077937204891e-13, - 6.821194469525416e-13, - 6.081246560166373e-13, - 5.555723711870362e-13, - 6.463830122562736e-13, - 5.181035097785087e-13, - 4.727706305007507e-13, - 5.073834165108865e-13, - 4.075648099492017e-13, - 3.9530710161220697e-13 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "Country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Alcohol per capita" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "for i in range(0,len(variables)):\n", - " a=px.line(df, x=\"Year\", y=variables[i], color=\"Country\", width=800, height=600)\n", - " display(a)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3.9.12 ('base')", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "db2f77d7771d8a0072cf3f8e7f9965a22a9c65bf4f8ee5135b3d479c9967abaa" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/IQR.webp b/IQR.webp new file mode 100644 index 0000000..7d38a71 Binary files /dev/null and b/IQR.webp differ diff --git a/Logos/chart (1).jpeg b/Logos/chart (1).jpeg new file mode 100644 index 0000000..19246c0 Binary files /dev/null and b/Logos/chart (1).jpeg differ diff --git a/Logos/chart (2).jpeg b/Logos/chart (2).jpeg new file mode 100644 index 0000000..84bd840 Binary files /dev/null and b/Logos/chart (2).jpeg differ diff --git a/README.md b/README.md index 73a8811..07a35df 100644 --- a/README.md +++ b/README.md @@ -48,6 +48,13 @@ Therefore it is being utilized to get rid of all the outliers that may come from 2- **Substitution of the NaN values**. The developed Nan values´ treatment has been a mix, between the linear interpolation and backwards filling. The linear interpolation is a form of interpolation, which involves the generation of new values based on an existing set of values. Linear interpolation is achieved by geometrically rendering a straight line between two adjacent points on a graph or plane. On the other side, the backwards filling will help us to arrive to those values which have not been fullfilled with the linear interpolation. +3- **Scaling method**. The escalation process has been done dividing each value by the initial one of an indicator (value in 1990). Considering the start point as 1 (initial value divided by itself), each result will show the growth respect to the initial data. + +4- **Removing indicators**. +- Those indicators which have 20% of missing values of its total have been removed because a lack of data shows unreliable results. +- There are some indicators which represent exactly the same through different units, so, we are going to select only one type. For example, in monetary cases, indicators which are expressed with current US $ has been selected. Then, which are showed with the percentage and the total value, we have programmed to selct which ones which show a greater value. + + # Run the application ## Dependencies Dependecies are automatically managed by Poetry and there is NO need to use external dockers for running spark. @@ -71,10 +78,18 @@ Poetry will take care of: - From `scipy` import `stats` and `shapiro`. Scipy provides algorithms for optimization, integration, interpolation, eigenvalue problems, algebraic equations, differential equations, statistics and many other classes of problems. Extends NumPy providing additional tools for array computing and provides specialized data structures, such as sparse matrices and k-dimensional trees. Mainly used for statistical calculations. - The `plotly.express` module (usually imported as px) contains functions that can create entire figures at once, and is referred to as Plotly Express or PX. Plotly Express is a built-in part of the plotly library, and is the recommended starting point for creating most common figures. Every Plotly Express function uses graph objects internally and returns a plotly.graph_objects.Figure instance. Throughout the plotly documentation, you will find the Plotly Express way of building figures at the top of any applicable page, followed by a section on how to use graph objects to build similar figures. Therefore it will allow for interacting graphs. + - `seaborn` is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics. Used for the correlations matrix. - The `requests` library is the de facto standard for making HTTP requests in Python. It abstracts the complexities of making requests behind a beautiful, simple API so that you can focus on interacting with services and consuming data in your application. It allows for downloading data from the websites. +- The `functools` is a module for higher-order functions: functions that act on or return other functions. + +- The `ipywidgets` allows us having interactive widgets (sliders, buttons, dropdowns...) with which we can control and customize the display of our data. + +- `warnings` to avoid warning messages when showing the notebook. + +- `dash` and `itables`: both libraries can be used for making interactive tables designed for viewing, editing, and exploring large datasets in Python. At the begginning, we started with `dash` (which is a scratch in React.js) but as it is rendered with semantic HTML, we looked for an alternative that visualizes inside our notebook, so we found `itables`, which have a similar functionality. ## Running on local To start the execution of our code, you can directly run the notebooks on Visual Studio Code opening the files .ipynb, or with the command `poetry run jupyter notebook`. @@ -86,11 +101,8 @@ To start the execution of our code, you can directly run the notebooks on Visual - The Net Migration indicator measures the difference between the number of immigrants and emigrants, so the number of people entering the country minus the number of people leaving it. As the difference is measured, it is necessary to see the original data to draw the conclusions correctly. Taking into account whether this net value is positive or negative and extract conclusions according the type of correlation. - Something similar occurs with the indicator Direct Foreign Investment. This one shows us the difference between outflows and inflows, so, if countries invest outside more or less than which is invested in them. Again we should see which are the net values to extract conclusions correctly. - -- After treating the data, we realized that the indicators: Mortality Pollution and Gender Equality do not present sufficient data for analysis. Therefore, they have been eliminated. No conclusions will be drawn between this indicator and the countries. - ## Repository setup The code is divided in several notebooks that need to be excuted following the corresponding order, which coincides with the one described above in the main steps section. diff --git a/Visualization of correlation (Global).ipynb b/Visualization of correlation (Global).ipynb deleted file mode 100644 index d51c683..0000000 --- a/Visualization of correlation (Global).ipynb +++ /dev/null @@ -1,2997 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Visualization of correlation (Global)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This notebook has to be read next to the following document (url), and is also complemented by the following notebooks (url)." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import os\n", - "import numpy as np\n", - "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", - "import ipywidgets as widgets\n", - "from ipywidgets import Layout\n", - "from ipywidgets import interact, interact_manual\n", - "import plotly.express as px" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "df= pd.read_csv (os.getcwd()+'/Data/'+'GoldenDataFrame.csv')" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "columns=['Country','Year','Exports-Commercial services','Renewable electricity','Employment-agriculture','Employment-industry','Employment-services','Exports-G&S','Fertility rate','Foreign investment','GDP','Education GExp','Workers high education','Literacy rate','Net migration','Mortality-infants','Health services use','R&D GExp','Ninis','Suicide','International taxes','Alcohol per capita']\n", - "clist=df['Country'].unique()\n", - "countries_by_region = {\n", - " \"Europe\": ('DEU','FRA','SWE','GBR','ESP','HRV','POL','GRC','AUT','NLD'),\n", - " 'Persian Gulf': ('IRQ','QAT','ARE','SAU','AZE','YEM','YDR','OMN'),\n", - " 'North Africa':('DZA','EGY','LBY','ISR','TUR','MAR'),\n", - " 'South Africa':('SEN','ZAF','LBR','MOZ','CMR','NGA','GHA'),\n", - " 'Asia':('BGD','IND','VNM','THA','IDN','PHL','KOR'),\n", - " 'Latam':('MEX','BRA','ARG','PER','VEN','COL','CHL','PCZ','CRI'),\n", - " 'Pair':('USA','CHN')\n", - " }\n", - "\n", - "all_countries = {}\n", - "for region in countries_by_region.keys():\n", - " for country in countries_by_region[region]:\n", - " all_countries[country] = region" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the following cell, we have defined a function that will allow us to calculate the different posibilities of relations: cuadratic, cubic and logaritmic." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "def multcolumn(frame):\n", - " for u in range(3, len(columns)):\n", - " name2=columns[u]+'.^2'\n", - " name3=columns[u]+'.^3'\n", - " namelog=columns[u]+'.log'\n", - " frame.loc[:,name2] = frame[columns[u]]**2\n", - " frame.loc[:,name3] = frame[columns[u]]**3\n", - " frame.loc[:,namelog] = np.log(frame[columns[u]])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Moreover, we want to know the correlation between all the variables, so to acomplish this, we have created the following loop, which will help us create a new dataframe where we will have: the indicator, the type of relation, the value of the r^2, its behaviour, the country and the continent." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
IndicatorTypeGDP-R^2BehaviourCountryContinent
5Exports-G&SNone0.954928PositiveDEUEurope
7Health services useNone0.916594PositiveDEUEurope
4Exports-Commercial servicesNone0.911725PositiveDEUEurope
10Employment-servicesCuadratic0.883525PositiveDEUEurope
12Alcohol per capitaCubic0.875820NegativeDEUEurope
.....................
6SuicideNone0.922759NegativeCHNPair
5Renewable electricityNone0.912560PositiveCHNPair
2Exports-Commercial servicesNone0.879177PositiveCHNPair
14Alcohol per capitaCuadratic0.867314PositiveCHNPair
10Literacy rateCubic0.840397PositiveCHNPair
\n", - "

444 rows × 6 columns

\n", - "
" - ], - "text/plain": [ - " Indicator Type GDP-R^2 Behaviour Country \\\n", - "5 Exports-G&S None 0.954928 Positive DEU \n", - "7 Health services use None 0.916594 Positive DEU \n", - "4 Exports-Commercial services None 0.911725 Positive DEU \n", - "10 Employment-services Cuadratic 0.883525 Positive DEU \n", - "12 Alcohol per capita Cubic 0.875820 Negative DEU \n", - ".. ... ... ... ... ... \n", - "6 Suicide None 0.922759 Negative CHN \n", - "5 Renewable electricity None 0.912560 Positive CHN \n", - "2 Exports-Commercial services None 0.879177 Positive CHN \n", - "14 Alcohol per capita Cuadratic 0.867314 Positive CHN \n", - "10 Literacy rate Cubic 0.840397 Positive CHN \n", - "\n", - " Continent \n", - "5 Europe \n", - "7 Europe \n", - "4 Europe \n", - "10 Europe \n", - "12 Europe \n", - ".. ... \n", - "6 Pair \n", - "5 Pair \n", - "2 Pair \n", - "14 Pair \n", - "10 Pair \n", - "\n", - "[444 rows x 6 columns]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "multcolumn(df)\n", - "demo2=pd.DataFrame()\n", - "for i in range(0,len(clist)):\n", - " dat=df.loc[df.loc[:, 'Country'] == clist[i]]\n", - " cor=dat.corr() \n", - " cor.loc[:,'GDP-R^2'] = cor['GDP']**2\n", - " cor.loc[:,'Indicator']=cor.index\n", - " cor[['Indicator','Type']]=cor.Indicator.str.split('.',expand=True) \n", - " corcolumn=cor[['Indicator','Type','GDP-R^2','GDP']]\n", - " corcolumn=corcolumn.loc[corcolumn.loc[:, 'GDP-R^2'] >= 0.75]\n", - " id=corcolumn.groupby('Indicator')['GDP-R^2'].transform(max)==corcolumn['GDP-R^2']\n", - " corcolumn[id]\n", - " max_df=pd.DataFrame(corcolumn[id])\n", - " max_df['Behaviour']=np.where(max_df['GDP']>0, 'Positive', 'Negative')\n", - " max_df['Type']=max_df['Type'].replace(['^2','^3','log'],['Cuadratic','Cubic','Logarithmic'])\n", - " max_df['Country']= clist[i]\n", - " max_df.drop(\"GDP\",axis=1,inplace=True)\n", - " max_df=max_df.reset_index(drop=True)\n", - " max_df = max_df.drop(max_df[max_df['Indicator']=='Year'].index)\n", - " max_df = max_df.drop(max_df[max_df['Indicator']=='GDP'].index)\n", - " max_df = max_df.drop(max_df[max_df['Indicator']=='Unnamed: 0'].index)\n", - " max_df=max_df.sort_values(by = 'GDP-R^2',ascending = False)\n", - " demo2=pd.concat((demo2, max_df), axis = 0)\n", - "demo2['Continent']=demo2['Country'].map(all_countries)\n", - "demo2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that we’ve loaded the data, we can start right away to create widgets. These widgets are essentials to add interactivity to our visualizations. We’re going to use two widgets: both, multiple selection widgets. To create these widgets, we can use `ipywidgets` library that is available for Jupyter Notebook.\n", - "\n", - "The first widget that we are going to create is the multiple selection widget. We can do this by using `SelectMultiple()attribute` from `ipywidgets`. With this widget, we have the option to visualize the R^2 only in particular selection of indicators instead of all.\n", - "\n", - "The first argument that we should specify is `options` , which should contain the list of available options of our variable (in our case different indicators). The next one is `value` , which should contain the variable values that we want to display as default, and then `description` is for the text field to describe the name of the widget.The rest of options are just visual details." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "398af352ecdb4804a66d236c0ee701b7", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "interactive(children=(SelectMultiple(description='Indicator', index=(0,), layout=Layout(height='80px', width='…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "coloraxis": "coloraxis", - "customdata": [ - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - "Cuadratic", - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - "Cuadratic", - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - "Cuadratic", - "Positive" - ] - ], - "geo": "geo", - "hovertemplate": "%{hovertext}

Country=%{location}
Type=%{customdata[0]}
Behaviour=%{customdata[1]}
GDP-R^2=%{z}", - "hovertext": [ - "DEU", - "FRA", - "SWE", - "GBR", - "ESP", - "HRV", - "POL", - "AUT", - "NLD", - "IRQ", - "QAT", - "ARE", - "SAU", - "AZE", - "OMN", - "LBY", - "ISR", - "TUR", - "MAR", - "SEN", - "ZAF", - "MOZ", - "CMR", - "GHA", - "BGD", - "IND", - "VNM", - "THA", - "IDN", - "PHL", - "KOR", - "MEX", - "BRA", - "PER", - "VEN", - "COL", - "CHL", - "PAN", - "CRI", - "USA", - "CHN" - ], - "locationmode": "ISO-3", - "locations": [ - "DEU", - "FRA", - "SWE", - "GBR", - "ESP", - "HRV", - "POL", - "AUT", - "NLD", - "IRQ", - "QAT", - "ARE", - "SAU", - "AZE", - "OMN", - "LBY", - "ISR", - "TUR", - "MAR", - "SEN", - "ZAF", - "MOZ", - "CMR", - "GHA", - "BGD", - "IND", - "VNM", - "THA", - "IDN", - "PHL", - "KOR", - "MEX", - "BRA", - "PER", - "VEN", - "COL", - "CHL", - "PAN", - "CRI", - "USA", - "CHN" - ], - "name": "", - "type": "choropleth", - "z": [ - 0.9549275086975878, - 0.9597959560873485, - 0.9614287536762283, - 0.9615991157049506, - 0.8896193597099896, - 0.9173159879919209, - 0.9408925602809399, - 0.9815548322439229, - 0.9559419289908181, - 0.8340434734780782, - 0.9524834602986512, - 0.963959228898083, - 0.8298448185898075, - 0.9448163351979267, - 0.9382224731368217, - 0.891789395879511, - 0.9874778307869048, - 0.949243785588551, - 0.9823598695370912, - 0.9832570514426298, - 0.9766169128199659, - 0.9053611625071816, - 0.8533577839743397, - 0.9621004202724875, - 0.9580068244466282, - 0.9609762955619326, - 0.9813433533393643, - 0.954401583743531, - 0.9221607227308378, - 0.9409552672717009, - 0.9240288573980191, - 0.9200064331609529, - 0.9103082296426172, - 0.9499862167628553, - 0.7774845434226739, - 0.9646460860986581, - 0.9187381706336473, - 0.8316212368989154, - 0.979858690516683, - 0.9298018756712546, - 0.9816065401345386 - ] - } - ], - "layout": { - "coloraxis": { - "colorbar": { - "title": { - "text": "GDP-R^2" - } - }, - "colorscale": [ - [ - 0, - "rgb(255,245,240)" - ], - [ - 0.125, - "rgb(254,224,210)" - ], - [ - 0.25, - "rgb(252,187,161)" - ], - [ - 0.375, - "rgb(252,146,114)" - ], - [ - 0.5, - "rgb(251,106,74)" - ], - [ - 0.625, - "rgb(239,59,44)" - ], - [ - 0.75, - "rgb(203,24,29)" - ], - [ - 0.875, - "rgb(165,15,21)" - ], - [ - 1, - "rgb(103,0,13)" - ] - ] - }, - "geo": { - "center": {}, - "domain": { - "x": [ - 0, - 1 - ], - "y": [ - 0, - 1 - ] - }, - "projection": { - "type": "natural earth" - } - }, - "height": 500, - "legend": { - "tracegroupgap": 0 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Exports-G&S" - }, - "width": 700 - } - } - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "unique_tri = demo2['Indicator'].unique()\n", - "tri = widgets.SelectMultiple(\n", - " options = unique_tri.tolist(),\n", - " value = ['Exports-G&S'],\n", - " description='Indicator',\n", - " disabled=False,\n", - " layout = Layout(width='50%', height='80px')\n", - ")\n", - "\n", - "def graf1(tri):\n", - " dat=demo2.loc[demo2.loc[:, 'Indicator'].isin(np.array(tri))]\n", - " a=px.choropleth(dat, locations=\"Country\", locationmode='ISO-3', \n", - " color=\"GDP-R^2\", hover_name=\"Country\",hover_data = [dat.Type, dat.Behaviour],projection=\"natural earth\",\n", - " color_continuous_scale='Reds', width=700, height=500, title= dat.Indicator.unique().tolist()[0])\n", - " print(tri)\n", - " a.show()\n", - "widgets.interactive(graf1, tri=tri)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To wrap up, we can create the second widget that is exactly the same as the previous multiple selection widget. The purpose of this widget is to enable us to choose which Continent that we want to visualize. Below is the code implementation of this widget." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b312134fcc9347939c0556c6f008abc2", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "interactive(children=(SelectMultiple(description='Continent', index=(2,), layout=Layout(height='80px', width='…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "customdata": [ - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - "Cuadratic", - "Negative" - ], - [ - null, - "Negative" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - "Cuadratic", - "Positive" - ], - [ - null, - "Positive" - ], - [ - "Cuadratic", - "Positive" - ], - [ - "Logarithmic", - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - "Cuadratic", - "Positive" - ], - [ - "Logarithmic", - "Negative" - ], - [ - null, - "Positive" - ], - [ - "Logarithmic", - "Negative" - ], - [ - "Logarithmic", - "Negative" - ], - [ - "Cubic", - "Positive" - ], - [ - "Cuadratic", - "Positive" - ], - [ - "Cuadratic", - "Negative" - ], - [ - null, - "Positive" - ], - [ - "Cuadratic", - "Positive" - ], - [ - "Cuadratic", - "Positive" - ], - [ - "Logarithmic", - "Negative" - ], - [ - null, - "Positive" - ], - [ - "Logarithmic", - "Positive" - ], - [ - null, - "Positive" - ], - [ - "Logarithmic", - "Positive" - ], - [ - "Cuadratic", - "Negative" - ], - [ - null, - "Positive" - ], - [ - "Logarithmic", - "Negative" - ], - [ - "Logarithmic", - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Negative" - ], - [ - "Cubic", - "Negative" - ], - [ - "Logarithmic", - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - "Cubic", - "Negative" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - "Cuadratic", - "Negative" - ], - [ - "Cubic", - "Negative" - ], - [ - "Logarithmic", - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Negative" - ], - [ - null, - "Negative" - ], - [ - "Logarithmic", - "Negative" - ] - ], - "hovertemplate": "%{hovertext}

GDP-R^2=%{marker.color}
Indicator=%{y}
Type=%{customdata[0]}
Behaviour=%{customdata[1]}", - "hovertext": [ - "DZA", - "DZA", - "DZA", - "DZA", - "DZA", - "DZA", - "DZA", - "EGY", - "EGY", - "EGY", - "EGY", - "EGY", - "EGY", - "EGY", - "LBY", - "ISR", - "ISR", - "ISR", - "ISR", - "ISR", - "ISR", - "ISR", - "ISR", - "ISR", - "ISR", - "ISR", - "TUR", - "TUR", - "TUR", - "TUR", - "TUR", - "TUR", - "TUR", - "TUR", - "TUR", - "TUR", - "TUR", - "TUR", - "TUR", - "TUR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR" - ], - "legendgroup": "", - "marker": { - "color": [ - 0.9289158279901037, - 0.9213771435444178, - 0.9075918529847351, - 0.904864353429385, - 0.8758839689728439, - 0.8390883159750028, - 0.7857192483231298, - 0.905691549611508, - 0.8990802196732206, - 0.8962083637425559, - 0.8959887539281101, - 0.8840707210618246, - 0.8754106010601125, - 0.7712782533668188, - 0.891789395879511, - 0.9874778307869048, - 0.9581392726953888, - 0.9565210718293581, - 0.949567589871179, - 0.9433317723823056, - 0.9174191314064287, - 0.8927691475893725, - 0.877668819104662, - 0.8538660757824813, - 0.8265682104723039, - 0.7792227834792094, - 0.9646818981605869, - 0.949243785588551, - 0.9031967123122572, - 0.8890016031609888, - 0.8658018331423527, - 0.8635009656135182, - 0.8573494233376868, - 0.838814100901544, - 0.8316825506959581, - 0.8235704003004464, - 0.8222834157713641, - 0.8142252115949318, - 0.7735405976901415, - 0.757366189732593, - 0.9823598695370912, - 0.9725072632075309, - 0.9580573107996607, - 0.9555728136156069, - 0.9436859248182337, - 0.9345196406345899, - 0.9199277938333447, - 0.9157439992681066, - 0.9138972219088164, - 0.8931193245875468, - 0.8542386654476775, - 0.850688427514224, - 0.8040732343408238, - 0.7637341301563336 - ], - "coloraxis": "coloraxis", - "symbol": "circle" - }, - "mode": "markers", - "name": "", - "orientation": "h", - "showlegend": false, - "type": "scatter", - "x": [ - 0.9289158279901037, - 0.9213771435444178, - 0.9075918529847351, - 0.904864353429385, - 0.8758839689728439, - 0.8390883159750028, - 0.7857192483231298, - 0.905691549611508, - 0.8990802196732206, - 0.8962083637425559, - 0.8959887539281101, - 0.8840707210618246, - 0.8754106010601125, - 0.7712782533668188, - 0.891789395879511, - 0.9874778307869048, - 0.9581392726953888, - 0.9565210718293581, - 0.949567589871179, - 0.9433317723823056, - 0.9174191314064287, - 0.8927691475893725, - 0.877668819104662, - 0.8538660757824813, - 0.8265682104723039, - 0.7792227834792094, - 0.9646818981605869, - 0.949243785588551, - 0.9031967123122572, - 0.8890016031609888, - 0.8658018331423527, - 0.8635009656135182, - 0.8573494233376868, - 0.838814100901544, - 0.8316825506959581, - 0.8235704003004464, - 0.8222834157713641, - 0.8142252115949318, - 0.7735405976901415, - 0.757366189732593, - 0.9823598695370912, - 0.9725072632075309, - 0.9580573107996607, - 0.9555728136156069, - 0.9436859248182337, - 0.9345196406345899, - 0.9199277938333447, - 0.9157439992681066, - 0.9138972219088164, - 0.8931193245875468, - 0.8542386654476775, - 0.850688427514224, - 0.8040732343408238, - 0.7637341301563336 - ], - "xaxis": "x", - "y": [ - "Employment-industry", - "Health services use", - "Suicide", - "Employment-agriculture", - "Exports-Commercial services", - "Employment-services", - "Literacy rate", - "R&D GExp", - "Health services use", - "Alcohol per capita", - "International taxes", - "Renewable electricity", - "Literacy rate", - "Employment-industry", - "Exports-G&S", - "Exports-G&S", - "Employment-industry", - "Exports-Commercial services", - "Employment-agriculture", - "Mortality-infants", - "Employment-services", - "International taxes", - "Health services use", - "Renewable electricity", - "Alcohol per capita", - "Education GExp", - "Suicide", - "Exports-G&S", - "R&D GExp", - "Literacy rate", - "Net migration", - "Employment-agriculture", - "Exports-Commercial services", - "Fertility rate", - "Renewable electricity", - "Health services use", - "Mortality-infants", - "Foreign investment", - "Education GExp", - "Employment-services", - "Exports-G&S", - "Alcohol per capita", - "Exports-Commercial services", - "Health services use", - "Employment-agriculture", - "Suicide", - "R&D GExp", - "Literacy rate", - "Renewable electricity", - "Employment-services", - "Employment-industry", - "Mortality-infants", - "Education GExp", - "Fertility rate" - ], - "yaxis": "y" - } - ], - "layout": { - "coloraxis": { - "colorbar": { - "title": { - "text": "GDP-R^2" - } - }, - "colorscale": [ - [ - 0, - "rgb(247,251,255)" - ], - [ - 0.125, - "rgb(222,235,247)" - ], - [ - 0.25, - "rgb(198,219,239)" - ], - [ - 0.375, - "rgb(158,202,225)" - ], - [ - 0.5, - "rgb(107,174,214)" - ], - [ - 0.625, - "rgb(66,146,198)" - ], - [ - 0.75, - "rgb(33,113,181)" - ], - [ - 0.875, - "rgb(8,81,156)" - ], - [ - 1, - "rgb(8,48,107)" - ] - ] - }, - "height": 500, - "legend": { - "tracegroupgap": 0 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "North Africa" - }, - "width": 700, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "GDP-R^2" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Indicator" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "unique_tric = demo2['Continent'].unique()\n", - "tric = widgets.SelectMultiple(\n", - " options = unique_tric.tolist(),\n", - " value = ['North Africa'],\n", - " description='Continent',\n", - " disabled=False,\n", - " layout = Layout(width='50%', height='80px')\n", - ")\n", - "\n", - "def graf1(tric):\n", - " dat=demo2.loc[demo2.loc[:, 'Continent'].isin(np.array(tric))]\n", - " a=px.scatter(dat, x=\"GDP-R^2\", y='Indicator',\n", - " color=\"GDP-R^2\", hover_name=\"Country\",hover_data = [dat.Type, dat.Behaviour],\n", - " color_continuous_scale='Blues', width=700, height=500, title= dat.Continent.unique().tolist()[0])\n", - " a.show()\n", - "widgets.interactive(graf1, tric=tric)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3.9.12 ('base')", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "db2f77d7771d8a0072cf3f8e7f9965a22a9c65bf4f8ee5135b3d479c9967abaa" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/WDI-Complete code.ipynb b/WDI-Complete code.ipynb index 0431e37..f310345 100644 --- a/WDI-Complete code.ipynb +++ b/WDI-Complete code.ipynb @@ -4,7 +4,42 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# EXTRACTION" + "

Phrontistery - Data Driven Decisions

\n", + "

The Big Three

\n", + "\n", + "
\n", + " \n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Introduction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The starting point of this project is to check if this hypothesis is validated: there exists a relationship between GDP (Gross Domestic Product) growth of a country and social and economical indicators such as population growth, fertility rates, investment in specific sectors or prices. To demostrate the validity of this assumption has been used the correlation as a decision making tool. So, through Python language and the availabe libraries such as Pandas, it has been developed an algorithim that allows us to extract reliable conclusions, being able to take the data from the database files, perform statistical computations on them and get useful numerical and visual results to make conclusions.\n", + "\n", + "This tool has been developed for all available datasets, but in our case we have extracted data from World Bank, updated on June 22, 2022.\n", + "\n", + "The steps of the project have been as follows:\n", + "\n", + "* [Extraction](#Extraction)\n", + "* [Integration](#Integration)\n", + "* [Normalization](#Normalization)\n", + "* [Categorization of variables](#Categorization-of-variables)\n", + "* [Correlation study](#Correlation-study)\n", + "* [Visualization of results](#Visualization-of-results)\n", + "* [Spurious correlations](#Spurious-correlations)\n", + "\n", + "\n", + "Along the project all steps are explained, as well as, assumptions and special terms that's important to take attention.\n", + "\n" ] }, { @@ -24,16 +59,100 @@ "import numpy as np\n", "import glob\n", "import os\n", + "from zipfile import ZipFile\n", "import warnings\n", "warnings.filterwarnings(\"ignore\")\n", "import functools as ft\n", - "from pyspark.sql.functions import concat, col, lit, split\n", "import ipywidgets as widgets\n", "from ipywidgets import Layout\n", "from ipywidgets import interact, interact_manual\n", "import plotly.express as px\n", "from scipy import stats\n", - "from scipy.stats import shapiro" + "from scipy.stats import shapiro\n", + "from scipy.stats import pearsonr\n", + "from scipy.stats import spearmanr\n", + "from pandas.api.types import is_numeric_dtype" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Extraction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This step has been depreciated due to security features added to the World Bank website. However, the data is still obtainable by openinng the `url`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the following cells we are going to import the data from the [World Bank website](https://www.worldbank.org/en/home), Data sections, and decompress it. So later on, we can process it in the integration, and subsequent parts." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To download the data, we are going to use the `request` library as just to be sure that we do not run into any inconvinient we are going to use the `stream` and `verify` to have a simple and cleaner download. Therefore, at the end we will have the data downloaded in our working directory data by design. (It can be obtained with the following function `os.getcwd()`)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "url = 'https://databank.worldbank.org/data/download/WDI_csv.zip'\n", + "r = requests.get(url, allow_redirects=True, stream = True,verify=False)\n", + "open('WDI_csv.zip', 'wb').write(r.content)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then we extract all the files that are contained in WDI_csv.zip , into the default directory in a new folder called Data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "zip_name = \"WDI_csv.zip\"\n", + "with ZipFile(zip_name, 'r') as zip:\n", + " zip.printdir()\n", + " zip.extractall('Data') " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally we are going to delete the WDI_csv.zip." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "os.remove(os.getcwd()+'/Data/'+\"/**.zip\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Integration" ] }, { @@ -441,13 +560,6 @@ "df" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# INTEGRATION" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -470,7 +582,7 @@ "source": [ "FILTER 1: BY COUNTRY\n", "\n", - "From the almost two hundred countries we have information about in the worldwide database, we have decided to study 50 of them, grouping them by geographical and economical similiarities. With this, we can keep in our dataframe the selected countries." + "From the almost two hundred countries we have information about in the worldwide database, we have decided to study 50 of them, making an initial grouping by geographical and economical similiarities. With this, we can keep in our dataframe the selected countries." ] }, { @@ -885,53 +997,90 @@ "df3" ] }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "BronzeDataFrame=df3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Normalization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Taking as reference both works of https://www.pluralsight.com/guides/cleaning-up-data-from-outliers and https://careerfoundry.com/en/blog/data-analytics/how-to-find-outliers/, for normalizing our data we need to start computing the outliers and removing them from our dataframe. As there is not a direct function of pandas that performs this step, it´s been step-by-step code, where we begin with the computation of the quartiles, then the IQR (Inter Quartile Range) and finally the upper and lower limit." + ] + }, { "cell_type": "markdown", "metadata": {}, "source": [ - "FILTER 3: BY INDICATOR" + "##### IQR explanation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "As there are lots of indicators that have very similar meaning we have decided to select some indicators to perform the study (**Indicator group** = *Name of the selected indicator*):\n", - "- **GDP** = *GDP (current US$), measures the monetary value of final goods and services produced in a country at a given period of time.*\n", - "- **Literacy** = *Literacy rate, % of people ages 15 and above which are able to expand one's knowledge of reading and writing in order to develop one's thinking and learning for the purpose of understanding oneself and the world. Government expenditure on education, total % of government expenditure incurred on education service.*\n", - "- **Migration** = *Net migration, difference between the number of immigrants (people coming into an area) and the number of emigrants (people leaving an area) throughout the year.*\n", - "- **Exports** = *Commercial service exports (current US$)* and *Exports of goods and services (current US$). Exports term is referred to the goods and services which are produced in a country and sold to buyers in another one.*\n", - "- **International trading** = *Taxes on international trade. This one reflects the amount of money that a government collects thanks to all kinds of taxes (on products that enter and leave, customs...)..*\n", - "- **Fertility** = *Fertility rate, mean of total births per woman. How many childs have born during a year per women.*\n", - "- **Healthcare** = *% of people using at least basic sanitation services. Amount of children covert by sanitation.*\n", - "- **Employment** = *Employment in agriculture (% of total employment), *Employment in services (% of total employment), and *Employment in industry (% of total employment). Amount of people employed in these three relevant sectors.*\n", - "- **Renewable energy** = *Electricity production from renewable sources, excluding hydroelectric. The units are KWh.*\n", - "- **Mortality** = *Number of infant deaths.*\n", - "- **Outside investment** = *Foreign direct investment, which is the net inflow of investment to acquire a lasting management interest (BoP, current US$).*\n", - "- **Pollution** = *Mortality rate over 100,000 population attributed to household and ambient air pollution and age-standardized.*\n", - "- **Alcoholism** = *Total alcohol consumed per capita measure in liters of pure alcohol, taking into account people who are 15 or more years of age.*\n", - "- **Tech adoption** = *% of GDP which goes to the research and development expenditure.*\n", - "- **Workers high education** = *Labor force with advanced education. % of total working-age population with high level education. It measures the probability of having a good job according to the studies.*\n", - "- **Optimisim and pessimisim** = *Suicide mortality rate per 100,000 population.*\n", - "- **Gender equality** = *Rate of gender equality in a country between (**1=low to **6=high). It assesses the extent to which the country has installed institutions and programs to enforce laws and policies that promote equal access for men and women in education, health, the economy, and protection under law.*\n", - "- **Education** = *Share of youth not in education, employment or training, total, Total number of young people.* and *Government expenditure on education of total. *\n", + "The interquartile range (IQR) measures the spread of the middle half of your data. It is the range for the middle 50% of your sample. Use the IQR to assess the variability where most of your values lie. Larger values indicate that the central portion of your data spread out further. Conversely, smaller values show that the middle values cluster more tightly.\n", + "\n", + "To visualize the interquartile range, imagine dividing your data into quarters. Statisticians refer to these quarters as quartiles and label them from low to high as Q1, Q2, Q3, and Q4. The lowest quartile (Q1) covers the smallest quarter of values in your dataset. The upper quartile (Q4) comprises the highest quarter of values. The interquartile range is the middle half of the data that lies between the upper and lower quartiles. In other words, the interquartile range includes the 50% of data points that are above Q1 and below Q4. The IQR is the red area in the graph below, containing Q2 and Q3 (not labeled).\n", + "\n", + "https://camo.githubusercontent.com/a5f6cf8164048f8c28f9b00b94e1264480c8c3b20a1b3d0bdca47083f3a86a19/68747470733a2f2f69302e77702e636f6d2f7374617469737469637362796a696d2e636f6d2f77702d636f6e74656e742f75706c6f6164732f323031382f30332f696e7465727175617274696c655f72616e67652e706e673f773d3537362673736c3d31\n", + "\n", + "When measuring variability, statisticians prefer using the interquartile range instead of the full data range because extreme values and outliers affect it less. Typically, use the IQR with a measure of central tendency, such as the median, to understand your data’s center and spread. This combination creates a fuller picture of your data’s distribution.\n", "\n", - "To acomplish this, we use the function `isin` that will allow us to only select the the indicators afromentioned, that have been compilied in the list called *indicators_list*" + "Therefore it is being utilized to get rid of all the outliers that may come from errors when creating the data or from unexpected years." ] }, { - "cell_type": "code", - "execution_count": 10, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "indicators_list=['GDP (current US$)','Literacy rate, adult total (% of people ages 15 and above)', 'Government expenditure on education, total (% of government expenditure)','Net migration','Commercial service exports (current US$)','Exports of goods and services (current US$)','Taxes on international trade (current LCU)','Fertility rate, total (births per woman)','People using at least basic sanitation services (% of population)','Employment in agriculture (% of total employment) (modeled ILO estimate)','Employment in services (% of total employment) (modeled ILO estimate)','Employment in industry (% of total employment) (modeled ILO estimate)','Electricity production from renewable sources, excluding hydroelectric (kWh)','Number of infant deaths','Number of infant deaths','Foreign direct investment, net (BoP, current US$)','Mortality rate attributed to household and ambient air pollution, age-standardized (per 100,000 population)','Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)','Research and development expenditure (% of GDP)','Labor force with advanced education (% of total working-age population with advanced education)','Suicide mortality rate (per 100,000 population)','CPIA gender equality rating (1=low to 6=high)','Share of youth not in education, employment or training, total (% of youth population)','Government expenditure on education, total (% of government expenditure)']" + "Firstly, we compute the first quartile (Q1=25%) and the third quartile (Q3=75%). For that, we have grouped the data by country code and indicator name, so we get the Q1 and Q3 values for each indicator in each geographical area. " ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grouped=BronzeDataFrame.groupby(['Country Code','Indicator Name'])\n", + "grouped" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, "outputs": [ { "data": { @@ -954,180 +1103,135 @@ " \n", " \n", " \n", - " Country Code\n", - " Indicator Name\n", + " \n", " Date\n", " Value\n", " \n", + " \n", + " Country Code\n", + " Indicator Name\n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " 5334\n", - " DZA\n", - " Commercial service exports (current US$)\n", - " 1990\n", - " 4.795977e+08\n", + " ARE\n", + " Access to clean fuels and technologies for cooking (% of population)\n", + " 10.0\n", + " 0.00\n", " \n", " \n", - " 5335\n", - " DZA\n", - " Commercial service exports (current US$)\n", - " 1991\n", - " 3.747657e+08\n", + " Access to clean fuels and technologies for cooking, rural (% of rural population)\n", + " 10.0\n", + " 0.00\n", " \n", " \n", - " 5336\n", - " DZA\n", - " Commercial service exports (current US$)\n", - " 2005\n", - " 2.466000e+09\n", + " Access to clean fuels and technologies for cooking, urban (% of urban population)\n", + " 10.0\n", + " 0.00\n", " \n", " \n", - " 5337\n", - " DZA\n", - " Commercial service exports (current US$)\n", - " 2006\n", - " 2.512000e+09\n", + " Access to electricity (% of population)\n", + " 15.0\n", + " 0.00\n", " \n", " \n", - " 5338\n", - " DZA\n", - " Commercial service exports (current US$)\n", - " 2007\n", - " 2.786733e+09\n", + " Access to electricity, rural (% of rural population)\n", + " 15.0\n", + " 0.00\n", " \n", " \n", " ...\n", - " ...\n", - " ...\n", + " ...\n", " ...\n", " ...\n", " \n", " \n", - " 1768492\n", - " YEM\n", - " Total alcohol consumption per capita (liters o...\n", - " 2000\n", - " 7.900000e-01\n", + " ZAF\n", + " Women who believe a husband is justified in beating his wife when she refuses sex with him (%)\n", + " 0.0\n", + " 0.00\n", " \n", " \n", - " 1768493\n", - " YEM\n", - " Total alcohol consumption per capita (liters o...\n", - " 2005\n", - " 3.400000e-01\n", + " Women who were first married by age 15 (% of women ages 20-24)\n", + " 9.0\n", + " 0.15\n", " \n", " \n", - " 1768494\n", - " YEM\n", - " Total alcohol consumption per capita (liters o...\n", - " 2010\n", - " 1.800000e-01\n", + " Women who were first married by age 18 (% of women ages 20-24)\n", + " 9.0\n", + " 2.15\n", " \n", " \n", - " 1768495\n", - " YEM\n", - " Total alcohol consumption per capita (liters o...\n", - " 2015\n", - " 5.500000e-02\n", + " Women's share of population ages 15+ living with HIV (%)\n", + " 15.0\n", + " 4.90\n", " \n", " \n", - " 1768496\n", - " YEM\n", - " Total alcohol consumption per capita (liters o...\n", - " 2018\n", - " 5.100000e-02\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 15.0\n", + " 85000.00\n", " \n", " \n", "\n", - "

20377 rows × 4 columns

\n", + "

59239 rows × 2 columns

\n", "" ], "text/plain": [ - " Country Code Indicator Name Date \\\n", - "5334 DZA Commercial service exports (current US$) 1990 \n", - "5335 DZA Commercial service exports (current US$) 1991 \n", - "5336 DZA Commercial service exports (current US$) 2005 \n", - "5337 DZA Commercial service exports (current US$) 2006 \n", - "5338 DZA Commercial service exports (current US$) 2007 \n", - "... ... ... ... \n", - "1768492 YEM Total alcohol consumption per capita (liters o... 2000 \n", - "1768493 YEM Total alcohol consumption per capita (liters o... 2005 \n", - "1768494 YEM Total alcohol consumption per capita (liters o... 2010 \n", - "1768495 YEM Total alcohol consumption per capita (liters o... 2015 \n", - "1768496 YEM Total alcohol consumption per capita (liters o... 2018 \n", - "\n", - " Value \n", - "5334 4.795977e+08 \n", - "5335 3.747657e+08 \n", - "5336 2.466000e+09 \n", - "5337 2.512000e+09 \n", - "5338 2.786733e+09 \n", - "... ... \n", - "1768492 7.900000e-01 \n", - "1768493 3.400000e-01 \n", - "1768494 1.800000e-01 \n", - "1768495 5.500000e-02 \n", - "1768496 5.100000e-02 \n", - "\n", - "[20377 rows x 4 columns]" + " Date \\\n", + "Country Code Indicator Name \n", + "ARE Access to clean fuels and technologies for cook... 10.0 \n", + " Access to clean fuels and technologies for cook... 10.0 \n", + " Access to clean fuels and technologies for cook... 10.0 \n", + " Access to electricity (% of population) 15.0 \n", + " Access to electricity, rural (% of rural popula... 15.0 \n", + "... ... \n", + "ZAF Women who believe a husband is justified in bea... 0.0 \n", + " Women who were first married by age 15 (% of wo... 9.0 \n", + " Women who were first married by age 18 (% of wo... 9.0 \n", + " Women's share of population ages 15+ living wit... 15.0 \n", + " Young people (ages 15-24) newly infected with HIV 15.0 \n", + "\n", + " Value \n", + "Country Code Indicator Name \n", + "ARE Access to clean fuels and technologies for cook... 0.00 \n", + " Access to clean fuels and technologies for cook... 0.00 \n", + " Access to clean fuels and technologies for cook... 0.00 \n", + " Access to electricity (% of population) 0.00 \n", + " Access to electricity, rural (% of rural popula... 0.00 \n", + "... ... \n", + "ZAF Women who believe a husband is justified in bea... 0.00 \n", + " Women who were first married by age 15 (% of wo... 0.15 \n", + " Women who were first married by age 18 (% of wo... 2.15 \n", + " Women's share of population ages 15+ living wit... 4.90 \n", + " Young people (ages 15-24) newly infected with HIV 85000.00 \n", + "\n", + "[59239 rows x 2 columns]" ] }, - "execution_count": 11, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "BronzeDataFrame=df3.loc[df3['Indicator Name'].isin(indicators_list)]\n", - "pd.set_option('display.max_rows', 10)\n", - "BronzeDataFrame" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# NORMALIZATION" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Taking as reference both works of https://www.pluralsight.com/guides/cleaning-up-data-from-outliers and https://careerfoundry.com/en/blog/data-analytics/how-to-find-outliers/, for normalizing our data we need to start computing the outliers and removing them from our dataframe. As there is not a direct function of pandas that performs this step, it´s been step-by-step code, where we begin with the computation of the quartiles, then the IQR (Inter Quartile Range) and finally the upper and lower limit." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### IQR explanation" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The interquartile range (IQR) measures the spread of the middle half of your data. It is the range for the middle 50% of your sample. Use the IQR to assess the variability where most of your values lie. Larger values indicate that the central portion of your data spread out further. Conversely, smaller values show that the middle values cluster more tightly.\n", - "\n", - "To visualize the interquartile range, imagine dividing your data into quarters. Statisticians refer to these quarters as quartiles and label them from low to high as Q1, Q2, Q3, and Q4. The lowest quartile (Q1) covers the smallest quarter of values in your dataset. The upper quartile (Q4) comprises the highest quarter of values. The interquartile range is the middle half of the data that lies between the upper and lower quartiles. In other words, the interquartile range includes the 50% of data points that are above Q1 and below Q4.\n", - "\n", - "When measuring variability, statisticians prefer using the interquartile range instead of the full data range because extreme values and outliers affect it less. Typically, use the IQR with a measure of central tendency, such as the median, to understand your data’s center and spread. This combination creates a fuller picture of your data’s distribution.\n", - "\n", - "Therefore it is being utilized to get rid of all the outliers that may come from errors when creating the data or from unexpected years." + "Q1=BronzeDataFrame.groupby(['Country Code','Indicator Name']).quantile(0.25)\n", + "Q3=BronzeDataFrame.groupby(['Country Code','Indicator Name']).quantile(0.75)\n", + "IQR=Q3-Q1\n", + "IQR" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Firstly, what we have done is to change the name of our indicators, as their original denomination is not easy to handle." + "Once we got the quartiles, we compute the upper and lower limit, with a basic mathematical expression." ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -1151,396 +1255,100 @@ " \n", " \n", " \n", + " \n", + " Lower limit\n", + " \n", + " \n", " Country Code\n", " Indicator Name\n", - " 1960\n", - " 1961\n", - " 1962\n", - " 1963\n", - " 1964\n", - " 1965\n", - " 1966\n", - " 1967\n", - " ...\n", - " 2013\n", - " 2014\n", - " 2015\n", - " 2016\n", - " 2017\n", - " 2018\n", - " 2019\n", - " 2020\n", - " 2021\n", - " Unnamed: 66\n", + " \n", " \n", " \n", " \n", " \n", - " 0\n", - " AFE\n", - " Access to clean fuels and technologies for coo...\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " ...\n", - " 16.936004\n", - " 17.337896\n", - " 17.687093\n", - " 18.140971\n", - " 18.491344\n", - " 18.825520\n", - " 19.272212\n", - " 19.628009\n", - " NaN\n", - " NaN\n", + " ARE\n", + " Access to clean fuels and technologies for cooking (% of population)\n", + " 100.000\n", " \n", " \n", - " 1\n", - " AFE\n", - " Access to clean fuels and technologies for coo...\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " ...\n", - " 6.499471\n", - " 6.680066\n", - " 6.859110\n", - " 7.016238\n", - " 7.180364\n", - " 7.322294\n", - " 7.517191\n", - " 7.651598\n", - " NaN\n", - " NaN\n", + " Access to clean fuels and technologies for cooking, rural (% of rural population)\n", + " 100.000\n", " \n", " \n", - " 2\n", - " AFE\n", - " Access to clean fuels and technologies for coo...\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " ...\n", - " 37.855399\n", - " 38.046781\n", - " 38.326255\n", - " 38.468426\n", - " 38.670044\n", - " 38.722783\n", - " 38.927016\n", - " 39.042839\n", - " NaN\n", - " NaN\n", + " Access to clean fuels and technologies for cooking, urban (% of urban population)\n", + " 100.000\n", " \n", " \n", - " 3\n", - " AFE\n", - " Access to electricity (% of population)\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " ...\n", - " 31.794160\n", - " 32.001027\n", - " 33.871910\n", - " 38.880173\n", - " 40.261358\n", - " 43.061877\n", - " 44.270860\n", - " 45.803485\n", - " NaN\n", - " NaN\n", + " Access to electricity (% of population)\n", + " 100.000\n", " \n", " \n", - " 4\n", - " AFE\n", - " Access to electricity, rural (% of rural popul...\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " ...\n", - " 18.663502\n", - " 17.633986\n", - " 16.464681\n", - " 24.531436\n", - " 25.345111\n", - " 27.449908\n", - " 29.641760\n", - " 30.404935\n", - " NaN\n", - " NaN\n", + " Access to electricity, rural (% of rural population)\n", + " 100.000\n", " \n", " \n", " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", + " ...\n", " ...\n", " \n", " \n", - " 384365\n", - " ZWE\n", - " Women who believe a husband is justified in be...\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " ...\n", - " NaN\n", - " NaN\n", - " 14.500000\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", + " ZAF\n", + " Women who believe a husband is justified in beating his wife when she refuses sex with him (%)\n", + " 1.000\n", " \n", " \n", - " 384366\n", - " ZWE\n", - " Women who were first married by age 15 (% of w...\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " ...\n", - " NaN\n", - " NaN\n", - " 3.700000\n", - " NaN\n", - " NaN\n", - " NaN\n", - " 5.418352\n", - " NaN\n", - " NaN\n", - " NaN\n", + " Women who were first married by age 15 (% of women ages 20-24)\n", + " 0.625\n", " \n", " \n", - " 384367\n", - " ZWE\n", - " Women who were first married by age 18 (% of w...\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " ...\n", - " NaN\n", - " 33.500000\n", - " 32.400000\n", - " NaN\n", - " NaN\n", - " NaN\n", - " 33.658057\n", - " NaN\n", - " NaN\n", - " NaN\n", + " Women who were first married by age 18 (% of women ages 20-24)\n", + " 1.375\n", " \n", " \n", - " 384368\n", - " ZWE\n", - " Women's share of population ages 15+ living wi...\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " ...\n", - " 59.200000\n", - " 59.400000\n", - " 59.500000\n", - " 59.700000\n", - " 59.900000\n", - " 60.000000\n", - " 60.200000\n", - " 60.400000\n", - " NaN\n", - " NaN\n", + " Women's share of population ages 15+ living with HIV (%)\n", + " 49.850\n", " \n", " \n", - " 384369\n", - " ZWE\n", - " Young people (ages 15-24) newly infected with HIV\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " ...\n", - " 18000.000000\n", - " 17000.000000\n", - " 15000.000000\n", - " 14000.000000\n", - " 12000.000000\n", - " 9700.000000\n", - " 9600.000000\n", - " 7500.000000\n", - " NaN\n", - " NaN\n", + " Young people (ages 15-24) newly infected with HIV\n", + " -22500.000\n", " \n", " \n", "\n", - "

384370 rows × 65 columns

\n", + "

59239 rows × 1 columns

\n", "" ], "text/plain": [ - " Country Code Indicator Name 1960 \\\n", - "0 AFE Access to clean fuels and technologies for coo... NaN \n", - "1 AFE Access to clean fuels and technologies for coo... NaN \n", - "2 AFE Access to clean fuels and technologies for coo... NaN \n", - "3 AFE Access to electricity (% of population) NaN \n", - "4 AFE Access to electricity, rural (% of rural popul... NaN \n", - "... ... ... ... \n", - "384365 ZWE Women who believe a husband is justified in be... NaN \n", - "384366 ZWE Women who were first married by age 15 (% of w... NaN \n", - "384367 ZWE Women who were first married by age 18 (% of w... NaN \n", - "384368 ZWE Women's share of population ages 15+ living wi... NaN \n", - "384369 ZWE Young people (ages 15-24) newly infected with HIV NaN \n", - "\n", - " 1961 1962 1963 1964 1965 1966 1967 ... 2013 \\\n", - "0 NaN NaN NaN NaN NaN NaN NaN ... 16.936004 \n", - "1 NaN NaN NaN NaN NaN NaN NaN ... 6.499471 \n", - "2 NaN NaN NaN NaN NaN NaN NaN ... 37.855399 \n", - "3 NaN NaN NaN NaN NaN NaN NaN ... 31.794160 \n", - "4 NaN NaN NaN NaN NaN NaN NaN ... 18.663502 \n", - "... ... ... ... ... ... ... ... ... ... \n", - "384365 NaN NaN NaN NaN NaN NaN NaN ... NaN \n", - "384366 NaN NaN NaN NaN NaN NaN NaN ... NaN \n", - "384367 NaN NaN NaN NaN NaN NaN NaN ... NaN \n", - "384368 NaN NaN NaN NaN NaN NaN NaN ... 59.200000 \n", - "384369 NaN NaN NaN NaN NaN NaN NaN ... 18000.000000 \n", - "\n", - " 2014 2015 2016 2017 2018 \\\n", - "0 17.337896 17.687093 18.140971 18.491344 18.825520 \n", - "1 6.680066 6.859110 7.016238 7.180364 7.322294 \n", - "2 38.046781 38.326255 38.468426 38.670044 38.722783 \n", - "3 32.001027 33.871910 38.880173 40.261358 43.061877 \n", - "4 17.633986 16.464681 24.531436 25.345111 27.449908 \n", - "... ... ... ... ... ... \n", - "384365 NaN 14.500000 NaN NaN NaN \n", - "384366 NaN 3.700000 NaN NaN NaN \n", - "384367 33.500000 32.400000 NaN NaN NaN \n", - "384368 59.400000 59.500000 59.700000 59.900000 60.000000 \n", - "384369 17000.000000 15000.000000 14000.000000 12000.000000 9700.000000 \n", - "\n", - " 2019 2020 2021 Unnamed: 66 \n", - "0 19.272212 19.628009 NaN NaN \n", - "1 7.517191 7.651598 NaN NaN \n", - "2 38.927016 39.042839 NaN NaN \n", - "3 44.270860 45.803485 NaN NaN \n", - "4 29.641760 30.404935 NaN NaN \n", - "... ... ... ... ... \n", - "384365 NaN NaN NaN NaN \n", - "384366 5.418352 NaN NaN NaN \n", - "384367 33.658057 NaN NaN NaN \n", - "384368 60.200000 60.400000 NaN NaN \n", - "384369 9600.000000 7500.000000 NaN NaN \n", - "\n", - "[384370 rows x 65 columns]" + " Lower limit\n", + "Country Code Indicator Name \n", + "ARE Access to clean fuels and technologies for cook... 100.000\n", + " Access to clean fuels and technologies for cook... 100.000\n", + " Access to clean fuels and technologies for cook... 100.000\n", + " Access to electricity (% of population) 100.000\n", + " Access to electricity, rural (% of rural popula... 100.000\n", + "... ...\n", + "ZAF Women who believe a husband is justified in bea... 1.000\n", + " Women who were first married by age 15 (% of wo... 0.625\n", + " Women who were first married by age 18 (% of wo... 1.375\n", + " Women's share of population ages 15+ living wit... 49.850\n", + " Young people (ages 15-24) newly infected with HIV -22500.000\n", + "\n", + "[59239 rows x 1 columns]" ] }, - "execution_count": 12, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "BronzeDataFrame['Indicator Name']=BronzeDataFrame['Indicator Name'].replace(['CPIA gender equality rating (1=low to 6=high)','Commercial service exports (current US$)','Electricity production from renewable sources, excluding hydroelectric (kWh)','Employment in agriculture (% of total employment) (modeled ILO estimate)','Employment in industry (% of total employment) (modeled ILO estimate)','Employment in services (% of total employment) (modeled ILO estimate)','Exports of goods and services (current US$)','Fertility rate, total (births per woman)','Foreign direct investment, net (BoP, current US$)','GDP (current US$)','Government expenditure on education, total (% of government expenditure)','Labor force with advanced education (% of total working-age population with advanced education)','Literacy rate, adult total (% of people ages 15 and above)','Mortality rate attributed to household and ambient air pollution, age-standardized (per 100,000 population)','Net migration','Number of infant deaths','People using at least basic sanitation services (% of population)','Research and development expenditure (% of GDP)','Share of youth not in education, employment or training, total (% of youth population)','Suicide mortality rate (per 100,000 population)','Taxes on international trade (current LCU)','Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)'],['Gender equality','Exports-Commercial services','Renewable electricity','Employment-agriculture','Employment-industry','Employment-services','Exports-G&S','Fertility rate','Foreign investment','GDP','Education GExp','Workers high education','Literacy rate','Mortality-pollution','Net migration','Mortality-infants','Health services use','R&D GExp','Ninis','Suicide','International taxes','Alcohol per capita'])\n", - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Secondly, we compute the first quartile (Q1=25%) and the third quartile (Q3=75%). For that, we have grouped the data by country code and indicator name, so we get the Q1 and Q3 values for each indicator in each geographical area. " + "lower_limit=Q1 - 1.5 * IQR\n", + "lower=lower_limit.drop(['Date'],axis=1)\n", + "lower.rename(columns={\"Value\":\"Lower limit\"})" ] }, { "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "grouped=BronzeDataFrame.groupby(['Country Code','Indicator Name'])\n", - "grouped" - ] - }, - { - "cell_type": "code", - "execution_count": 14, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -1565,96 +1373,83 @@ " \n", " \n", " \n", - " Date\n", - " Value\n", + " Upper limit\n", " \n", " \n", " Country Code\n", " Indicator Name\n", " \n", - " \n", " \n", " \n", " \n", " \n", " ARE\n", - " Alcohol per capita\n", - " 10.0\n", - " 6.400000e-01\n", + " Access to clean fuels and technologies for cooking (% of population)\n", + " 100.000\n", " \n", " \n", - " Education GExp\n", - " 0.0\n", - " 0.000000e+00\n", + " Access to clean fuels and technologies for cooking, rural (% of rural population)\n", + " 100.000\n", " \n", " \n", - " Employment-agriculture\n", - " 14.0\n", - " 5.130000e+00\n", + " Access to clean fuels and technologies for cooking, urban (% of urban population)\n", + " 100.000\n", " \n", " \n", - " Employment-industry\n", - " 14.0\n", - " 1.449997e+00\n", + " Access to electricity (% of population)\n", + " 100.000\n", " \n", " \n", - " Employment-services\n", - " 14.0\n", - " 3.830002e+00\n", + " Access to electricity, rural (% of rural population)\n", + " 100.000\n", " \n", " \n", " ...\n", " ...\n", " ...\n", - " ...\n", " \n", " \n", " ZAF\n", - " Ninis\n", - " 12.5\n", - " 2.997499e+00\n", + " Women who believe a husband is justified in beating his wife when she refuses sex with him (%)\n", + " 1.000\n", " \n", " \n", - " R&D GExp\n", - " 8.0\n", - " 1.011100e-01\n", + " Women who were first married by age 15 (% of women ages 20-24)\n", + " 1.225\n", " \n", " \n", - " Renewable electricity\n", - " 12.5\n", - " 2.292500e+08\n", + " Women who were first married by age 18 (% of women ages 20-24)\n", + " 9.975\n", " \n", " \n", - " Suicide\n", - " 9.5\n", - " 1.025000e+00\n", + " Women's share of population ages 15+ living with HIV (%)\n", + " 69.450\n", " \n", " \n", - " Workers high education\n", - " 10.5\n", - " 1.712500e+00\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 317500.000\n", " \n", " \n", "\n", - "

978 rows × 2 columns

\n", + "

59239 rows × 1 columns

\n", "" ], "text/plain": [ - " Date Value\n", - "Country Code Indicator Name \n", - "ARE Alcohol per capita 10.0 6.400000e-01\n", - " Education GExp 0.0 0.000000e+00\n", - " Employment-agriculture 14.0 5.130000e+00\n", - " Employment-industry 14.0 1.449997e+00\n", - " Employment-services 14.0 3.830002e+00\n", - "... ... ...\n", - "ZAF Ninis 12.5 2.997499e+00\n", - " R&D GExp 8.0 1.011100e-01\n", - " Renewable electricity 12.5 2.292500e+08\n", - " Suicide 9.5 1.025000e+00\n", - " Workers high education 10.5 1.712500e+00\n", - "\n", - "[978 rows x 2 columns]" + " Upper limit\n", + "Country Code Indicator Name \n", + "ARE Access to clean fuels and technologies for cook... 100.000\n", + " Access to clean fuels and technologies for cook... 100.000\n", + " Access to clean fuels and technologies for cook... 100.000\n", + " Access to electricity (% of population) 100.000\n", + " Access to electricity, rural (% of rural popula... 100.000\n", + "... ...\n", + "ZAF Women who believe a husband is justified in bea... 1.000\n", + " Women who were first married by age 15 (% of wo... 1.225\n", + " Women who were first married by age 18 (% of wo... 9.975\n", + " Women's share of population ages 15+ living wit... 69.450\n", + " Young people (ages 15-24) newly infected with HIV 317500.000\n", + "\n", + "[59239 rows x 1 columns]" ] }, "execution_count": 14, @@ -1663,17 +1458,16 @@ } ], "source": [ - "Q1=BronzeDataFrame.groupby(['Country Code','Indicator Name']).quantile(0.25)\n", - "Q3=BronzeDataFrame.groupby(['Country Code','Indicator Name']).quantile(0.75)\n", - "IQR=Q3-Q1\n", - "IQR" + "upper_limit=Q3 + 1.5 * IQR\n", + "upper=upper_limit.drop(['Date'],axis=1)\n", + "upper.rename(columns={\"Value\":\"Upper limit\"})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Once we got the quartiles, we compute the upper and lower limit, with a basic mathematical expression." + "Thirdly, we join the three tables we have (main dataframe, upper limit and lower limit) by matching country code and indicator name.." ] }, { @@ -1702,84 +1496,147 @@ " \n", " \n", " \n", - " \n", - " Lower limit\n", - " \n", - " \n", " Country Code\n", " Indicator Name\n", - " \n", + " Date\n", + " Value_x\n", + " Value_y\n", + " Value\n", " \n", " \n", " \n", " \n", - " ARE\n", - " Alcohol per capita\n", - " 2.190000e+00\n", + " 0\n", + " DZA\n", + " Access to clean fuels and technologies for coo...\n", + " 2000\n", + " 97.1\n", + " 97.0\n", + " 101.0\n", " \n", " \n", - " Education GExp\n", - " 1.026766e+01\n", + " 1\n", + " DZA\n", + " Access to clean fuels and technologies for coo...\n", + " 2001\n", + " 97.3\n", + " 97.0\n", + " 101.0\n", " \n", " \n", - " Employment-agriculture\n", - " -4.905000e+00\n", + " 2\n", + " DZA\n", + " Access to clean fuels and technologies for coo...\n", + " 2002\n", + " 97.8\n", + " 97.0\n", + " 101.0\n", " \n", " \n", - " Employment-industry\n", - " 3.131501e+01\n", + " 3\n", + " DZA\n", + " Access to clean fuels and technologies for coo...\n", + " 2003\n", + " 98.0\n", + " 97.0\n", + " 101.0\n", " \n", " \n", - " Employment-services\n", - " 5.269500e+01\n", + " 4\n", + " DZA\n", + " Access to clean fuels and technologies for coo...\n", + " 2004\n", + " 98.2\n", + " 97.0\n", + " 101.0\n", " \n", " \n", " ...\n", - " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", " ...\n", " \n", " \n", - " ZAF\n", - " Ninis\n", - " 2.684375e+01\n", + " 1225413\n", + " YEM\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2016\n", + " 200.0\n", + " -50.0\n", + " 350.0\n", " \n", " \n", - " R&D GExp\n", - " 5.828450e-01\n", + " 1225414\n", + " YEM\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2017\n", + " 200.0\n", + " -50.0\n", + " 350.0\n", " \n", " \n", - " Renewable electricity\n", - " -2.623750e+08\n", + " 1225415\n", + " YEM\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2018\n", + " 200.0\n", + " -50.0\n", + " 350.0\n", " \n", " \n", - " Suicide\n", - " 2.203750e+01\n", + " 1225416\n", + " YEM\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2019\n", + " 200.0\n", + " -50.0\n", + " 350.0\n", " \n", " \n", - " Workers high education\n", - " 8.050875e+01\n", + " 1225417\n", + " YEM\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2020\n", + " 200.0\n", + " -50.0\n", + " 350.0\n", " \n", " \n", "\n", - "

978 rows × 1 columns

\n", + "

1225418 rows × 6 columns

\n", "" ], "text/plain": [ - " Lower limit\n", - "Country Code Indicator Name \n", - "ARE Alcohol per capita 2.190000e+00\n", - " Education GExp 1.026766e+01\n", - " Employment-agriculture -4.905000e+00\n", - " Employment-industry 3.131501e+01\n", - " Employment-services 5.269500e+01\n", - "... ...\n", - "ZAF Ninis 2.684375e+01\n", - " R&D GExp 5.828450e-01\n", - " Renewable electricity -2.623750e+08\n", - " Suicide 2.203750e+01\n", - " Workers high education 8.050875e+01\n", - "\n", - "[978 rows x 1 columns]" + " Country Code Indicator Name Date \\\n", + "0 DZA Access to clean fuels and technologies for coo... 2000 \n", + "1 DZA Access to clean fuels and technologies for coo... 2001 \n", + "2 DZA Access to clean fuels and technologies for coo... 2002 \n", + "3 DZA Access to clean fuels and technologies for coo... 2003 \n", + "4 DZA Access to clean fuels and technologies for coo... 2004 \n", + "... ... ... ... \n", + "1225413 YEM Young people (ages 15-24) newly infected with HIV 2016 \n", + "1225414 YEM Young people (ages 15-24) newly infected with HIV 2017 \n", + "1225415 YEM Young people (ages 15-24) newly infected with HIV 2018 \n", + "1225416 YEM Young people (ages 15-24) newly infected with HIV 2019 \n", + "1225417 YEM Young people (ages 15-24) newly infected with HIV 2020 \n", + "\n", + " Value_x Value_y Value \n", + "0 97.1 97.0 101.0 \n", + "1 97.3 97.0 101.0 \n", + "2 97.8 97.0 101.0 \n", + "3 98.0 97.0 101.0 \n", + "4 98.2 97.0 101.0 \n", + "... ... ... ... \n", + "1225413 200.0 -50.0 350.0 \n", + "1225414 200.0 -50.0 350.0 \n", + "1225415 200.0 -50.0 350.0 \n", + "1225416 200.0 -50.0 350.0 \n", + "1225417 200.0 -50.0 350.0 \n", + "\n", + "[1225418 rows x 6 columns]" ] }, "execution_count": 15, @@ -1788,9 +1645,9 @@ } ], "source": [ - "lower_limit=Q1 - 1.5 * IQR\n", - "lower=lower_limit.drop(['Date'],axis=1)\n", - "lower.rename(columns={\"Value\":\"Lower limit\"})" + "dfs = [BronzeDataFrame,lower,upper]\n", + "df_joined = ft.reduce(lambda left, right: pd.merge(left, right, on=['Country Code','Indicator Name']), dfs)\n", + "df_joined" ] }, { @@ -1800,103 +1657,8 @@ "outputs": [ { "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Upper limit
Country CodeIndicator Name
AREAlcohol per capita4.750000e+00
Education GExp1.026766e+01
Employment-agriculture1.561500e+01
Employment-industry3.711499e+01
Employment-services6.801500e+01
.........
ZAFNinis3.883375e+01
R&D GExp9.872850e-01
Renewable electricity6.546250e+08
Suicide2.613750e+01
Workers high education8.735875e+01
\n", - "

978 rows × 1 columns

\n", - "
" - ], "text/plain": [ - " Upper limit\n", - "Country Code Indicator Name \n", - "ARE Alcohol per capita 4.750000e+00\n", - " Education GExp 1.026766e+01\n", - " Employment-agriculture 1.561500e+01\n", - " Employment-industry 3.711499e+01\n", - " Employment-services 6.801500e+01\n", - "... ...\n", - "ZAF Ninis 3.883375e+01\n", - " R&D GExp 9.872850e-01\n", - " Renewable electricity 6.546250e+08\n", - " Suicide 2.613750e+01\n", - " Workers high education 8.735875e+01\n", - "\n", - "[978 rows x 1 columns]" + "['Country Code', 'Indicator Name', 'Date', 'Value_x', 'Value_y', 'Value']" ] }, "execution_count": 16, @@ -1905,16 +1667,14 @@ } ], "source": [ - "upper_limit=Q3 + 1.5 * IQR\n", - "upper=upper_limit.drop(['Date'],axis=1)\n", - "upper.rename(columns={\"Value\":\"Upper limit\"})" + "list(df_joined)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Thirdly, we join the three tables we have (main dataframe, upper limit and lower limit) by matching country code and indicator name.." + "We rename the columns of the new table, as the columns headers are not saved after the joining. " ] }, { @@ -1943,59 +1703,59 @@ " \n", " \n", " \n", - " Country Code\n", - " Indicator Name\n", - " Date\n", - " Value_x\n", - " Value_y\n", - " Value\n", + " Country\n", + " Indicator\n", + " Year\n", + " Real value\n", + " Lower value\n", + " Upper value\n", " \n", " \n", " \n", " \n", " 0\n", " DZA\n", - " Exports-Commercial services\n", - " 1990\n", - " 4.795977e+08\n", - " 1.736231e+09\n", - " 4.453536e+09\n", + " Access to clean fuels and technologies for coo...\n", + " 2000\n", + " 97.1\n", + " 97.0\n", + " 101.0\n", " \n", " \n", " 1\n", " DZA\n", - " Exports-Commercial services\n", - " 1991\n", - " 3.747657e+08\n", - " 1.736231e+09\n", - " 4.453536e+09\n", + " Access to clean fuels and technologies for coo...\n", + " 2001\n", + " 97.3\n", + " 97.0\n", + " 101.0\n", " \n", " \n", " 2\n", " DZA\n", - " Exports-Commercial services\n", - " 2005\n", - " 2.466000e+09\n", - " 1.736231e+09\n", - " 4.453536e+09\n", + " Access to clean fuels and technologies for coo...\n", + " 2002\n", + " 97.8\n", + " 97.0\n", + " 101.0\n", " \n", " \n", " 3\n", " DZA\n", - " Exports-Commercial services\n", - " 2006\n", - " 2.512000e+09\n", - " 1.736231e+09\n", - " 4.453536e+09\n", + " Access to clean fuels and technologies for coo...\n", + " 2003\n", + " 98.0\n", + " 97.0\n", + " 101.0\n", " \n", " \n", " 4\n", " DZA\n", - " Exports-Commercial services\n", - " 2007\n", - " 2.786733e+09\n", - " 1.736231e+09\n", - " 4.453536e+09\n", + " Access to clean fuels and technologies for coo...\n", + " 2004\n", + " 98.2\n", + " 97.0\n", + " 101.0\n", " \n", " \n", " ...\n", @@ -2007,83 +1767,83 @@ " ...\n", " \n", " \n", - " 20372\n", + " 1225413\n", " YEM\n", - " Alcohol per capita\n", - " 2000\n", - " 7.900000e-01\n", - " -3.725000e-01\n", - " 7.675000e-01\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2016\n", + " 200.0\n", + " -50.0\n", + " 350.0\n", " \n", " \n", - " 20373\n", + " 1225414\n", " YEM\n", - " Alcohol per capita\n", - " 2005\n", - " 3.400000e-01\n", - " -3.725000e-01\n", - " 7.675000e-01\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2017\n", + " 200.0\n", + " -50.0\n", + " 350.0\n", " \n", " \n", - " 20374\n", + " 1225415\n", " YEM\n", - " Alcohol per capita\n", - " 2010\n", - " 1.800000e-01\n", - " -3.725000e-01\n", - " 7.675000e-01\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2018\n", + " 200.0\n", + " -50.0\n", + " 350.0\n", " \n", " \n", - " 20375\n", + " 1225416\n", " YEM\n", - " Alcohol per capita\n", - " 2015\n", - " 5.500000e-02\n", - " -3.725000e-01\n", - " 7.675000e-01\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2019\n", + " 200.0\n", + " -50.0\n", + " 350.0\n", " \n", " \n", - " 20376\n", + " 1225417\n", " YEM\n", - " Alcohol per capita\n", - " 2018\n", - " 5.100000e-02\n", - " -3.725000e-01\n", - " 7.675000e-01\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2020\n", + " 200.0\n", + " -50.0\n", + " 350.0\n", " \n", " \n", "\n", - "

20377 rows × 6 columns

\n", + "

1225418 rows × 6 columns

\n", "" ], "text/plain": [ - " Country Code Indicator Name Date Value_x \\\n", - "0 DZA Exports-Commercial services 1990 4.795977e+08 \n", - "1 DZA Exports-Commercial services 1991 3.747657e+08 \n", - "2 DZA Exports-Commercial services 2005 2.466000e+09 \n", - "3 DZA Exports-Commercial services 2006 2.512000e+09 \n", - "4 DZA Exports-Commercial services 2007 2.786733e+09 \n", - "... ... ... ... ... \n", - "20372 YEM Alcohol per capita 2000 7.900000e-01 \n", - "20373 YEM Alcohol per capita 2005 3.400000e-01 \n", - "20374 YEM Alcohol per capita 2010 1.800000e-01 \n", - "20375 YEM Alcohol per capita 2015 5.500000e-02 \n", - "20376 YEM Alcohol per capita 2018 5.100000e-02 \n", - "\n", - " Value_y Value \n", - "0 1.736231e+09 4.453536e+09 \n", - "1 1.736231e+09 4.453536e+09 \n", - "2 1.736231e+09 4.453536e+09 \n", - "3 1.736231e+09 4.453536e+09 \n", - "4 1.736231e+09 4.453536e+09 \n", - "... ... ... \n", - "20372 -3.725000e-01 7.675000e-01 \n", - "20373 -3.725000e-01 7.675000e-01 \n", - "20374 -3.725000e-01 7.675000e-01 \n", - "20375 -3.725000e-01 7.675000e-01 \n", - "20376 -3.725000e-01 7.675000e-01 \n", - "\n", - "[20377 rows x 6 columns]" + " Country Indicator Year \\\n", + "0 DZA Access to clean fuels and technologies for coo... 2000 \n", + "1 DZA Access to clean fuels and technologies for coo... 2001 \n", + "2 DZA Access to clean fuels and technologies for coo... 2002 \n", + "3 DZA Access to clean fuels and technologies for coo... 2003 \n", + "4 DZA Access to clean fuels and technologies for coo... 2004 \n", + "... ... ... ... \n", + "1225413 YEM Young people (ages 15-24) newly infected with HIV 2016 \n", + "1225414 YEM Young people (ages 15-24) newly infected with HIV 2017 \n", + "1225415 YEM Young people (ages 15-24) newly infected with HIV 2018 \n", + "1225416 YEM Young people (ages 15-24) newly infected with HIV 2019 \n", + "1225417 YEM Young people (ages 15-24) newly infected with HIV 2020 \n", + "\n", + " Real value Lower value Upper value \n", + "0 97.1 97.0 101.0 \n", + "1 97.3 97.0 101.0 \n", + "2 97.8 97.0 101.0 \n", + "3 98.0 97.0 101.0 \n", + "4 98.2 97.0 101.0 \n", + "... ... ... ... \n", + "1225413 200.0 -50.0 350.0 \n", + "1225414 200.0 -50.0 350.0 \n", + "1225415 200.0 -50.0 350.0 \n", + "1225416 200.0 -50.0 350.0 \n", + "1225417 200.0 -50.0 350.0 \n", + "\n", + "[1225418 rows x 6 columns]" ] }, "execution_count": 17, @@ -2092,41 +1852,20 @@ } ], "source": [ - "dfs = [BronzeDataFrame,lower,upper]\n", - "df_joined = ft.reduce(lambda left, right: pd.merge(left, right, on=['Country Code','Indicator Name']), dfs)\n", - "df_joined" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['Country Code', 'Indicator Name', 'Date', 'Value_x', 'Value_y', 'Value']" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list(df_joined)" + "renamed=df_joined.set_axis(['Country','Indicator','Year', 'Real value', 'Lower value', 'Upper value'], axis=1, inplace=False)\n", + "renamed" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We rename the columns of the new table, as the columns headers are not saved after the joining. " + "Now that we have the table correctly defined, we remove from our dataframe the values that are outside our range, as it means that they are outliers." ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -2162,47 +1901,47 @@ " \n", " 0\n", " DZA\n", - " Exports-Commercial services\n", - " 1990\n", - " 4.795977e+08\n", - " 1.736231e+09\n", - " 4.453536e+09\n", + " Access to clean fuels and technologies for coo...\n", + " 2000\n", + " 97.1\n", + " 97.0\n", + " 101.0\n", " \n", " \n", " 1\n", " DZA\n", - " Exports-Commercial services\n", - " 1991\n", - " 3.747657e+08\n", - " 1.736231e+09\n", - " 4.453536e+09\n", + " Access to clean fuels and technologies for coo...\n", + " 2001\n", + " 97.3\n", + " 97.0\n", + " 101.0\n", " \n", " \n", " 2\n", " DZA\n", - " Exports-Commercial services\n", - " 2005\n", - " 2.466000e+09\n", - " 1.736231e+09\n", - " 4.453536e+09\n", + " Access to clean fuels and technologies for coo...\n", + " 2002\n", + " 97.8\n", + " 97.0\n", + " 101.0\n", " \n", " \n", " 3\n", " DZA\n", - " Exports-Commercial services\n", - " 2006\n", - " 2.512000e+09\n", - " 1.736231e+09\n", - " 4.453536e+09\n", + " Access to clean fuels and technologies for coo...\n", + " 2003\n", + " 98.0\n", + " 97.0\n", + " 101.0\n", " \n", " \n", " 4\n", " DZA\n", - " Exports-Commercial services\n", - " 2007\n", - " 2.786733e+09\n", - " 1.736231e+09\n", - " 4.453536e+09\n", + " Access to clean fuels and technologies for coo...\n", + " 2004\n", + " 98.2\n", + " 97.0\n", + " 101.0\n", " \n", " \n", " ...\n", @@ -2214,105 +1953,105 @@ " ...\n", " \n", " \n", - " 20372\n", + " 1225413\n", " YEM\n", - " Alcohol per capita\n", - " 2000\n", - " 7.900000e-01\n", - " -3.725000e-01\n", - " 7.675000e-01\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2016\n", + " 200.0\n", + " -50.0\n", + " 350.0\n", " \n", " \n", - " 20373\n", + " 1225414\n", " YEM\n", - " Alcohol per capita\n", - " 2005\n", - " 3.400000e-01\n", - " -3.725000e-01\n", - " 7.675000e-01\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2017\n", + " 200.0\n", + " -50.0\n", + " 350.0\n", " \n", " \n", - " 20374\n", + " 1225415\n", " YEM\n", - " Alcohol per capita\n", - " 2010\n", - " 1.800000e-01\n", - " -3.725000e-01\n", - " 7.675000e-01\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2018\n", + " 200.0\n", + " -50.0\n", + " 350.0\n", " \n", " \n", - " 20375\n", + " 1225416\n", " YEM\n", - " Alcohol per capita\n", - " 2015\n", - " 5.500000e-02\n", - " -3.725000e-01\n", - " 7.675000e-01\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2019\n", + " 200.0\n", + " -50.0\n", + " 350.0\n", " \n", " \n", - " 20376\n", + " 1225417\n", " YEM\n", - " Alcohol per capita\n", - " 2018\n", - " 5.100000e-02\n", - " -3.725000e-01\n", - " 7.675000e-01\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2020\n", + " 200.0\n", + " -50.0\n", + " 350.0\n", " \n", " \n", "\n", - "

20377 rows × 6 columns

\n", + "

1189068 rows × 6 columns

\n", "" ], "text/plain": [ - " Country Indicator Year Real value Lower value \\\n", - "0 DZA Exports-Commercial services 1990 4.795977e+08 1.736231e+09 \n", - "1 DZA Exports-Commercial services 1991 3.747657e+08 1.736231e+09 \n", - "2 DZA Exports-Commercial services 2005 2.466000e+09 1.736231e+09 \n", - "3 DZA Exports-Commercial services 2006 2.512000e+09 1.736231e+09 \n", - "4 DZA Exports-Commercial services 2007 2.786733e+09 1.736231e+09 \n", - "... ... ... ... ... ... \n", - "20372 YEM Alcohol per capita 2000 7.900000e-01 -3.725000e-01 \n", - "20373 YEM Alcohol per capita 2005 3.400000e-01 -3.725000e-01 \n", - "20374 YEM Alcohol per capita 2010 1.800000e-01 -3.725000e-01 \n", - "20375 YEM Alcohol per capita 2015 5.500000e-02 -3.725000e-01 \n", - "20376 YEM Alcohol per capita 2018 5.100000e-02 -3.725000e-01 \n", - "\n", - " Upper value \n", - "0 4.453536e+09 \n", - "1 4.453536e+09 \n", - "2 4.453536e+09 \n", - "3 4.453536e+09 \n", - "4 4.453536e+09 \n", - "... ... \n", - "20372 7.675000e-01 \n", - "20373 7.675000e-01 \n", - "20374 7.675000e-01 \n", - "20375 7.675000e-01 \n", - "20376 7.675000e-01 \n", + " Country Indicator Year \\\n", + "0 DZA Access to clean fuels and technologies for coo... 2000 \n", + "1 DZA Access to clean fuels and technologies for coo... 2001 \n", + "2 DZA Access to clean fuels and technologies for coo... 2002 \n", + "3 DZA Access to clean fuels and technologies for coo... 2003 \n", + "4 DZA Access to clean fuels and technologies for coo... 2004 \n", + "... ... ... ... \n", + "1225413 YEM Young people (ages 15-24) newly infected with HIV 2016 \n", + "1225414 YEM Young people (ages 15-24) newly infected with HIV 2017 \n", + "1225415 YEM Young people (ages 15-24) newly infected with HIV 2018 \n", + "1225416 YEM Young people (ages 15-24) newly infected with HIV 2019 \n", + "1225417 YEM Young people (ages 15-24) newly infected with HIV 2020 \n", "\n", - "[20377 rows x 6 columns]" + " Real value Lower value Upper value \n", + "0 97.1 97.0 101.0 \n", + "1 97.3 97.0 101.0 \n", + "2 97.8 97.0 101.0 \n", + "3 98.0 97.0 101.0 \n", + "4 98.2 97.0 101.0 \n", + "... ... ... ... \n", + "1225413 200.0 -50.0 350.0 \n", + "1225414 200.0 -50.0 350.0 \n", + "1225415 200.0 -50.0 350.0 \n", + "1225416 200.0 -50.0 350.0 \n", + "1225417 200.0 -50.0 350.0 \n", + "\n", + "[1189068 rows x 6 columns]" ] }, - "execution_count": 19, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "renamed=df_joined.set_axis(['Country','Indicator','Year', 'Real value', 'Lower value', 'Upper value'], axis=1, inplace=False)\n", - "renamed" + "sin_outliers=renamed.loc[~((renamed['Real value']renamed['Upper value']))]\n", + "sin_outliers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Now that we have the table correctly defined, we remove from our dataframe the values that are outside our range, as it means that they are outliers." + "From the data above, we can perceive that our data comes down from 1225418 rows to 1189068, so 36.350 were outliers. The next steps are to order and display data better, removing those columns that we just do not need and pivoting the rows and columns. " ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -2340,55 +2079,43 @@ " Indicator\n", " Year\n", " Real value\n", - " Lower value\n", - " Upper value\n", " \n", " \n", " \n", " \n", - " 2\n", + " 0\n", " DZA\n", - " Exports-Commercial services\n", - " 2005\n", - " 2.466000e+09\n", - " 1.736231e+09\n", - " 4.453536e+09\n", + " Access to clean fuels and technologies for coo...\n", + " 2000\n", + " 97.1\n", " \n", " \n", - " 3\n", + " 1\n", " DZA\n", - " Exports-Commercial services\n", - " 2006\n", - " 2.512000e+09\n", - " 1.736231e+09\n", - " 4.453536e+09\n", + " Access to clean fuels and technologies for coo...\n", + " 2001\n", + " 97.3\n", " \n", " \n", - " 4\n", + " 2\n", " DZA\n", - " Exports-Commercial services\n", - " 2007\n", - " 2.786733e+09\n", - " 1.736231e+09\n", - " 4.453536e+09\n", + " Access to clean fuels and technologies for coo...\n", + " 2002\n", + " 97.8\n", " \n", " \n", - " 5\n", + " 3\n", " DZA\n", - " Exports-Commercial services\n", - " 2008\n", - " 3.412421e+09\n", - " 1.736231e+09\n", - " 4.453536e+09\n", + " Access to clean fuels and technologies for coo...\n", + " 2003\n", + " 98.0\n", " \n", " \n", - " 6\n", + " 4\n", " DZA\n", - " Exports-Commercial services\n", - " 2009\n", - " 2.744716e+09\n", - " 1.736231e+09\n", - " 4.453536e+09\n", + " Access to clean fuels and technologies for coo...\n", + " 2004\n", + " 98.2\n", " \n", " \n", " ...\n", @@ -2396,251 +2123,99 @@ " ...\n", " ...\n", " ...\n", - " ...\n", - " ...\n", " \n", " \n", - " 20371\n", + " 1225413\n", " YEM\n", - " Suicide\n", - " 2019\n", - " 5.800000e+00\n", - " 5.400000e+00\n", - " 6.200000e+00\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2016\n", + " 200.0\n", " \n", " \n", - " 20373\n", + " 1225414\n", " YEM\n", - " Alcohol per capita\n", - " 2005\n", - " 3.400000e-01\n", - " -3.725000e-01\n", - " 7.675000e-01\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2017\n", + " 200.0\n", " \n", " \n", - " 20374\n", + " 1225415\n", " YEM\n", - " Alcohol per capita\n", - " 2010\n", - " 1.800000e-01\n", - " -3.725000e-01\n", - " 7.675000e-01\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2018\n", + " 200.0\n", " \n", " \n", - " 20375\n", + " 1225416\n", " YEM\n", - " Alcohol per capita\n", - " 2015\n", - " 5.500000e-02\n", - " -3.725000e-01\n", - " 7.675000e-01\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2019\n", + " 200.0\n", " \n", " \n", - " 20376\n", + " 1225417\n", " YEM\n", - " Alcohol per capita\n", - " 2018\n", - " 5.100000e-02\n", - " -3.725000e-01\n", - " 7.675000e-01\n", + " Young people (ages 15-24) newly infected with HIV\n", + " 2020\n", + " 200.0\n", " \n", " \n", "\n", - "

19847 rows × 6 columns

\n", + "

1189068 rows × 4 columns

\n", "" ], "text/plain": [ - " Country Indicator Year Real value Lower value \\\n", - "2 DZA Exports-Commercial services 2005 2.466000e+09 1.736231e+09 \n", - "3 DZA Exports-Commercial services 2006 2.512000e+09 1.736231e+09 \n", - "4 DZA Exports-Commercial services 2007 2.786733e+09 1.736231e+09 \n", - "5 DZA Exports-Commercial services 2008 3.412421e+09 1.736231e+09 \n", - "6 DZA Exports-Commercial services 2009 2.744716e+09 1.736231e+09 \n", - "... ... ... ... ... ... \n", - "20371 YEM Suicide 2019 5.800000e+00 5.400000e+00 \n", - "20373 YEM Alcohol per capita 2005 3.400000e-01 -3.725000e-01 \n", - "20374 YEM Alcohol per capita 2010 1.800000e-01 -3.725000e-01 \n", - "20375 YEM Alcohol per capita 2015 5.500000e-02 -3.725000e-01 \n", - "20376 YEM Alcohol per capita 2018 5.100000e-02 -3.725000e-01 \n", - "\n", - " Upper value \n", - "2 4.453536e+09 \n", - "3 4.453536e+09 \n", - "4 4.453536e+09 \n", - "5 4.453536e+09 \n", - "6 4.453536e+09 \n", + " Country Indicator Year \\\n", + "0 DZA Access to clean fuels and technologies for coo... 2000 \n", + "1 DZA Access to clean fuels and technologies for coo... 2001 \n", + "2 DZA Access to clean fuels and technologies for coo... 2002 \n", + "3 DZA Access to clean fuels and technologies for coo... 2003 \n", + "4 DZA Access to clean fuels and technologies for coo... 2004 \n", + "... ... ... ... \n", + "1225413 YEM Young people (ages 15-24) newly infected with HIV 2016 \n", + "1225414 YEM Young people (ages 15-24) newly infected with HIV 2017 \n", + "1225415 YEM Young people (ages 15-24) newly infected with HIV 2018 \n", + "1225416 YEM Young people (ages 15-24) newly infected with HIV 2019 \n", + "1225417 YEM Young people (ages 15-24) newly infected with HIV 2020 \n", + "\n", + " Real value \n", + "0 97.1 \n", + "1 97.3 \n", + "2 97.8 \n", + "3 98.0 \n", + "4 98.2 \n", "... ... \n", - "20371 6.200000e+00 \n", - "20373 7.675000e-01 \n", - "20374 7.675000e-01 \n", - "20375 7.675000e-01 \n", - "20376 7.675000e-01 \n", + "1225413 200.0 \n", + "1225414 200.0 \n", + "1225415 200.0 \n", + "1225416 200.0 \n", + "1225417 200.0 \n", "\n", - "[19847 rows x 6 columns]" + "[1189068 rows x 4 columns]" ] }, - "execution_count": 20, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "sin_outliers=renamed.loc[~((renamed['Real value']renamed['Upper value']))]\n", - "sin_outliers" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From the data above, we can perceive that our data comes down from 19944 rows to 19424, so 500 were outliers. The next steps are to order and display data better, removing those columns that we just do not need and pivoting the rows and columns. " + "df_limpio=sin_outliers.drop(['Lower value','Upper value'],axis=1)\n", + "df_limpio" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 20, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
CountryIndicatorYearReal value
2DZAExports-Commercial services20052.466000e+09
3DZAExports-Commercial services20062.512000e+09
4DZAExports-Commercial services20072.786733e+09
5DZAExports-Commercial services20083.412421e+09
6DZAExports-Commercial services20092.744716e+09
...............
20371YEMSuicide20195.800000e+00
20373YEMAlcohol per capita20053.400000e-01
20374YEMAlcohol per capita20101.800000e-01
20375YEMAlcohol per capita20155.500000e-02
20376YEMAlcohol per capita20185.100000e-02
\n", - "

19847 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " Country Indicator Year Real value\n", - "2 DZA Exports-Commercial services 2005 2.466000e+09\n", - "3 DZA Exports-Commercial services 2006 2.512000e+09\n", - "4 DZA Exports-Commercial services 2007 2.786733e+09\n", - "5 DZA Exports-Commercial services 2008 3.412421e+09\n", - "6 DZA Exports-Commercial services 2009 2.744716e+09\n", - "... ... ... ... ...\n", - "20371 YEM Suicide 2019 5.800000e+00\n", - "20373 YEM Alcohol per capita 2005 3.400000e-01\n", - "20374 YEM Alcohol per capita 2010 1.800000e-01\n", - "20375 YEM Alcohol per capita 2015 5.500000e-02\n", - "20376 YEM Alcohol per capita 2018 5.100000e-02\n", - "\n", - "[19847 rows x 4 columns]" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "df_limpio=sin_outliers.drop(['Lower value','Upper value'],axis=1)\n", - "df_limpio" + "cols=df_limpio['Indicator'].unique().tolist()" ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -2666,25 +2241,25 @@ " Indicator\n", " Country\n", " Year\n", - " Alcohol per capita\n", - " Education GExp\n", - " Employment-agriculture\n", - " Employment-industry\n", - " Employment-services\n", - " Exports-Commercial services\n", - " Exports-G&S\n", - " Fertility rate\n", + " ARI treatment (% of children under 5 taken to a health provider)\n", + " Access to clean fuels and technologies for cooking (% of population)\n", + " Access to clean fuels and technologies for cooking, rural (% of rural population)\n", + " Access to clean fuels and technologies for cooking, urban (% of urban population)\n", + " Access to electricity (% of population)\n", + " Access to electricity, rural (% of rural population)\n", + " Access to electricity, urban (% of urban population)\n", + " Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+)\n", " ...\n", - " International taxes\n", - " Literacy rate\n", - " Mortality-infants\n", - " Mortality-pollution\n", - " Net migration\n", - " Ninis\n", - " R&D GExp\n", - " Renewable electricity\n", - " Suicide\n", - " Workers high education\n", + " Women who believe a husband is justified in beating his wife (any of five reasons) (%)\n", + " Women who believe a husband is justified in beating his wife when she argues with him (%)\n", + " Women who believe a husband is justified in beating his wife when she burns the food (%)\n", + " Women who believe a husband is justified in beating his wife when she goes out without telling him (%)\n", + " Women who believe a husband is justified in beating his wife when she neglects the children (%)\n", + " Women who believe a husband is justified in beating his wife when she refuses sex with him (%)\n", + " Women who were first married by age 15 (% of women ages 20-24)\n", + " Women who were first married by age 18 (% of women ages 20-24)\n", + " Women's share of population ages 15+ living with HIV (%)\n", + " Young people (ages 15-24) newly infected with HIV\n", " \n", " \n", " \n", @@ -2696,21 +2271,21 @@ " NaN\n", " NaN\n", " NaN\n", + " 100.000000\n", + " 100.000000\n", + " 100.000000\n", " NaN\n", - " NaN\n", - " NaN\n", - " 4.454\n", " ...\n", " NaN\n", " NaN\n", - " 672.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", - " 0.0\n", " NaN\n", " NaN\n", + " 18.8\n", + " 100.0\n", " \n", " \n", " 1\n", @@ -2718,23 +2293,23 @@ " 1991\n", " NaN\n", " NaN\n", - " 8.46\n", - " 33.330002\n", - " 58.200001\n", " NaN\n", " NaN\n", - " 4.253\n", + " 100.000000\n", + " 100.000000\n", + " 100.000000\n", + " NaN\n", " ...\n", " NaN\n", " NaN\n", - " 645.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", - " 0.0\n", " NaN\n", " NaN\n", + " 18.2\n", + " 100.0\n", " \n", " \n", " 2\n", @@ -2742,23 +2317,23 @@ " 1992\n", " NaN\n", " NaN\n", - " 8.37\n", - " 33.360001\n", - " 58.279999\n", " NaN\n", " NaN\n", - " 4.041\n", + " 100.000000\n", + " 100.000000\n", + " 100.000000\n", + " NaN\n", " ...\n", " NaN\n", " NaN\n", - " 618.0\n", " NaN\n", - " 368126.0\n", " NaN\n", " NaN\n", - " 0.0\n", " NaN\n", " NaN\n", + " NaN\n", + " 19.4\n", + " 100.0\n", " \n", " \n", " 3\n", @@ -2766,23 +2341,23 @@ " 1993\n", " NaN\n", " NaN\n", - " 8.24\n", - " 33.470001\n", - " 58.290001\n", " NaN\n", " NaN\n", - " 3.827\n", + " 100.000000\n", + " 100.000000\n", + " 100.000000\n", + " NaN\n", " ...\n", " NaN\n", " NaN\n", - " 592.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", - " 0.0\n", " NaN\n", " NaN\n", + " 20.0\n", + " 100.0\n", " \n", " \n", " 4\n", @@ -2790,23 +2365,23 @@ " 1994\n", " NaN\n", " NaN\n", - " 8.13\n", - " 33.490002\n", - " 58.380001\n", " NaN\n", " NaN\n", - " 3.618\n", + " 100.000000\n", + " 100.000000\n", + " 100.000000\n", + " NaN\n", " ...\n", " NaN\n", " NaN\n", - " 568.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", - " 0.0\n", " NaN\n", " NaN\n", + " 20.0\n", + " 100.0\n", " \n", " \n", " ...\n", @@ -2833,107 +2408,107 @@ " ...\n", " \n", " \n", - " 1504\n", + " 1531\n", " ZAF\n", " 2017\n", " NaN\n", - " 18.719290\n", - " 5.28\n", - " 23.340000\n", - " 71.379997\n", - " 1.614806e+10\n", - " 1.042884e+11\n", - " 2.430\n", + " 85.2\n", + " 64.6\n", + " 94.20\n", + " 84.400002\n", + " 76.738983\n", + " 88.373024\n", + " 69.218491\n", " ...\n", - " 4.993941e+10\n", - " 87.046669\n", - " 32777.0\n", " NaN\n", - " 727026.0\n", - " 31.010000\n", - " 0.83215\n", " NaN\n", - " 25.2\n", - " 83.809998\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " 63.3\n", + " 100000.0\n", " \n", " \n", - " 1505\n", + " 1532\n", " ZAF\n", " 2018\n", - " 9.52\n", - " 18.901590\n", - " 5.16\n", - " 23.129999\n", - " 71.709999\n", - " 1.670823e+10\n", - " 1.112854e+11\n", - " 2.405\n", + " NaN\n", + " 85.7\n", + " 65.5\n", + " 94.65\n", + " 84.699997\n", + " 77.168495\n", + " 88.518814\n", + " NaN\n", " ...\n", - " 5.572291e+10\n", " NaN\n", - " 31810.0\n", " NaN\n", " NaN\n", - " 31.559999\n", " NaN\n", " NaN\n", - " 24.1\n", - " 82.879997\n", + " NaN\n", + " NaN\n", + " NaN\n", + " 63.7\n", + " 92000.0\n", " \n", " \n", - " 1506\n", + " 1533\n", " ZAF\n", " 2019\n", " NaN\n", - " 19.596230\n", - " 5.28\n", - " 22.309999\n", - " 72.410004\n", - " 1.554886e+10\n", - " 1.060698e+11\n", - " 2.381\n", + " 86.3\n", + " 65.5\n", + " 94.90\n", + " 85.000000\n", + " 77.611824\n", + " 88.662704\n", + " NaN\n", " ...\n", - " 5.522342e+10\n", - " 95.022972\n", - " 30937.0\n", " NaN\n", " NaN\n", - " 32.459999\n", " NaN\n", " NaN\n", - " 23.5\n", - " 82.019997\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " 64.1\n", + " 85000.0\n", " \n", " \n", - " 1507\n", + " 1534\n", " ZAF\n", " 2020\n", " NaN\n", - " 19.527281\n", - " NaN\n", - " NaN\n", + " 86.8\n", + " 65.9\n", + " 95.20\n", + " 84.385536\n", + " 75.264854\n", + " 88.806267\n", " NaN\n", - " 8.404204e+09\n", - " 9.317915e+10\n", - " 2.358\n", " ...\n", " NaN\n", " NaN\n", - " 30153.0\n", " NaN\n", " NaN\n", - " 32.400002\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 64.4\n", + " 79000.0\n", " \n", " \n", - " 1508\n", + " 1535\n", " ZAF\n", " 2021\n", " NaN\n", - " 18.417240\n", + " NaN\n", " NaN\n", " NaN\n", " NaN\n", @@ -2954,92 +2529,274 @@ " \n", " \n", "\n", - "

1509 rows × 24 columns

\n", + "

1536 rows × 1438 columns

\n", "" ], "text/plain": [ - "Indicator Country Year Alcohol per capita Education GExp \\\n", - "0 ARE 1990 NaN NaN \n", - "1 ARE 1991 NaN NaN \n", - "2 ARE 1992 NaN NaN \n", - "3 ARE 1993 NaN NaN \n", - "4 ARE 1994 NaN NaN \n", - "... ... ... ... ... \n", - "1504 ZAF 2017 NaN 18.719290 \n", - "1505 ZAF 2018 9.52 18.901590 \n", - "1506 ZAF 2019 NaN 19.596230 \n", - "1507 ZAF 2020 NaN 19.527281 \n", - "1508 ZAF 2021 NaN 18.417240 \n", - "\n", - "Indicator Employment-agriculture Employment-industry Employment-services \\\n", - "0 NaN NaN NaN \n", - "1 8.46 33.330002 58.200001 \n", - "2 8.37 33.360001 58.279999 \n", - "3 8.24 33.470001 58.290001 \n", - "4 8.13 33.490002 58.380001 \n", - "... ... ... ... \n", - "1504 5.28 23.340000 71.379997 \n", - "1505 5.16 23.129999 71.709999 \n", - "1506 5.28 22.309999 72.410004 \n", - "1507 NaN NaN NaN \n", - "1508 NaN NaN NaN \n", - "\n", - "Indicator Exports-Commercial services Exports-G&S Fertility rate ... \\\n", - "0 NaN NaN 4.454 ... \n", - "1 NaN NaN 4.253 ... \n", - "2 NaN NaN 4.041 ... \n", - "3 NaN NaN 3.827 ... \n", - "4 NaN NaN 3.618 ... \n", - "... ... ... ... ... \n", - "1504 1.614806e+10 1.042884e+11 2.430 ... \n", - "1505 1.670823e+10 1.112854e+11 2.405 ... \n", - "1506 1.554886e+10 1.060698e+11 2.381 ... \n", - "1507 8.404204e+09 9.317915e+10 2.358 ... \n", - "1508 NaN NaN NaN ... \n", - "\n", - "Indicator International taxes Literacy rate Mortality-infants \\\n", - "0 NaN NaN 672.0 \n", - "1 NaN NaN 645.0 \n", - "2 NaN NaN 618.0 \n", - "3 NaN NaN 592.0 \n", - "4 NaN NaN 568.0 \n", - "... ... ... ... \n", - "1504 4.993941e+10 87.046669 32777.0 \n", - "1505 5.572291e+10 NaN 31810.0 \n", - "1506 5.522342e+10 95.022972 30937.0 \n", - "1507 NaN NaN 30153.0 \n", - "1508 NaN NaN NaN \n", - "\n", - "Indicator Mortality-pollution Net migration Ninis R&D GExp \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN 368126.0 NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - "... ... ... ... ... \n", - "1504 NaN 727026.0 31.010000 0.83215 \n", - "1505 NaN NaN 31.559999 NaN \n", - "1506 NaN NaN 32.459999 NaN \n", - "1507 NaN NaN 32.400002 NaN \n", - "1508 NaN NaN NaN NaN \n", - "\n", - "Indicator Renewable electricity Suicide Workers high education \n", - "0 0.0 NaN NaN \n", - "1 0.0 NaN NaN \n", - "2 0.0 NaN NaN \n", - "3 0.0 NaN NaN \n", - "4 0.0 NaN NaN \n", - "... ... ... ... \n", - "1504 NaN 25.2 83.809998 \n", - "1505 NaN 24.1 82.879997 \n", - "1506 NaN 23.5 82.019997 \n", - "1507 NaN NaN NaN \n", - "1508 NaN NaN NaN \n", - "\n", - "[1509 rows x 24 columns]" + "Indicator Country Year \\\n", + "0 ARE 1990 \n", + "1 ARE 1991 \n", + "2 ARE 1992 \n", + "3 ARE 1993 \n", + "4 ARE 1994 \n", + "... ... ... \n", + "1531 ZAF 2017 \n", + "1532 ZAF 2018 \n", + "1533 ZAF 2019 \n", + "1534 ZAF 2020 \n", + "1535 ZAF 2021 \n", + "\n", + "Indicator ARI treatment (% of children under 5 taken to a health provider) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 NaN \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking (% of population) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 85.2 \n", + "1532 85.7 \n", + "1533 86.3 \n", + "1534 86.8 \n", + "1535 NaN \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, rural (% of rural population) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 64.6 \n", + "1532 65.5 \n", + "1533 65.5 \n", + "1534 65.9 \n", + "1535 NaN \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, urban (% of urban population) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 94.20 \n", + "1532 94.65 \n", + "1533 94.90 \n", + "1534 95.20 \n", + "1535 NaN \n", + "\n", + "Indicator Access to electricity (% of population) \\\n", + "0 100.000000 \n", + "1 100.000000 \n", + "2 100.000000 \n", + "3 100.000000 \n", + "4 100.000000 \n", + "... ... \n", + "1531 84.400002 \n", + "1532 84.699997 \n", + "1533 85.000000 \n", + "1534 84.385536 \n", + "1535 NaN \n", + "\n", + "Indicator Access to electricity, rural (% of rural population) \\\n", + "0 100.000000 \n", + "1 100.000000 \n", + "2 100.000000 \n", + "3 100.000000 \n", + "4 100.000000 \n", + "... ... \n", + "1531 76.738983 \n", + "1532 77.168495 \n", + "1533 77.611824 \n", + "1534 75.264854 \n", + "1535 NaN \n", + "\n", + "Indicator Access to electricity, urban (% of urban population) \\\n", + "0 100.000000 \n", + "1 100.000000 \n", + "2 100.000000 \n", + "3 100.000000 \n", + "4 100.000000 \n", + "... ... \n", + "1531 88.373024 \n", + "1532 88.518814 \n", + "1533 88.662704 \n", + "1534 88.806267 \n", + "1535 NaN \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 69.218491 \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator ... \\\n", + "0 ... \n", + "1 ... \n", + "2 ... \n", + "3 ... \n", + "4 ... \n", + "... ... \n", + "1531 ... \n", + "1532 ... \n", + "1533 ... \n", + "1534 ... \n", + "1535 ... \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife (any of five reasons) (%) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 NaN \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she argues with him (%) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 NaN \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she burns the food (%) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 NaN \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she goes out without telling him (%) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 NaN \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she neglects the children (%) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 NaN \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she refuses sex with him (%) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 NaN \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator Women who were first married by age 15 (% of women ages 20-24) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 NaN \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator Women who were first married by age 18 (% of women ages 20-24) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 NaN \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator Women's share of population ages 15+ living with HIV (%) \\\n", + "0 18.8 \n", + "1 18.2 \n", + "2 19.4 \n", + "3 20.0 \n", + "4 20.0 \n", + "... ... \n", + "1531 63.3 \n", + "1532 63.7 \n", + "1533 64.1 \n", + "1534 64.4 \n", + "1535 NaN \n", + "\n", + "Indicator Young people (ages 15-24) newly infected with HIV \n", + "0 100.0 \n", + "1 100.0 \n", + "2 100.0 \n", + "3 100.0 \n", + "4 100.0 \n", + "... ... \n", + "1531 100000.0 \n", + "1532 92000.0 \n", + "1533 85000.0 \n", + "1534 79000.0 \n", + "1535 NaN \n", + "\n", + "[1536 rows x 1438 columns]" ] }, - "execution_count": 22, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -3058,16 +2815,16 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "13351" + "1016628" ] }, - "execution_count": 23, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -3092,20 +2849,19 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "df=SilverDataFrame\n", "europe_list=['DEU','FRA','SWE','GBR','ESP','HRV','POL','GRC','AUT','NLD']\n", - "persian_list=['IRQ','QAT','ARE','SAU','AZE','YEM','YDR','OMN']\n", + "persian_list=['IRQ','QAT','ARE','SAU','AZE','YEM','OMN']\n", "naf_list=['DZA','EGY','LBY','ISR','TUR','MAR']\n", "saf_list=['SEN','ZAF','LBR','MOZ','CMR','NGA','GHA']\n", "asia_list=['BGD','IND','VNM','THA','IDN','PHL','KOR']\n", "latam_list=['MEX','BRA','ARG','PER','VEN','COL','CHL','PAN','CRI']\n", "two_list=['USA','CHN']\n", - "country_list=europe_list+persian_list+naf_list+saf_list+asia_list+latam_list+two_list\n", - "col_to_scale=['Gender equality','Exports-Commercial services','Renewable electricity','Employment-agriculture','Employment-industry','Employment-services','Exports-G&S','Fertility rate','Foreign investment','GDP','Education GExp','Workers high education','Literacy rate','Mortality-pollution','Net migration','Mortality-infants','Health services use','R&D GExp','Ninis','Suicide','International taxes','Alcohol per capita']\n" + "country_list=europe_list+persian_list+naf_list+saf_list+asia_list+latam_list+two_list\n" ] }, { @@ -3117,16 +2873,16 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "8519" + "685787" ] }, - "execution_count": 25, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -3147,21 +2903,21 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Here we attempt the backward filling. (Filling the previous cell with future values)" + "Here we attempt the backward filling, filling the previous cell with future values." ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "4500" + "498648" ] }, - "execution_count": 26, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -3182,21 +2938,21 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Here we will attempt the forward filling. (Filling the next cell with previous values)" + "Here we will attempt the forward filling, which concists of filling the next cell with previous values." ] }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "8519" + "685787" ] }, - "execution_count": 27, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -3213,6 +2969,13 @@ "data.isna().sum().sum()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The linear interpolation a form of interpolation, which involves the generation of new values based on an existing set of values. Linear interpolation is achieved by geometrically rendering a straight line between two adjacent points on a graph or plane. Whereas the backwards filling, will help us to arrive to those values which have not been fullfilled with the linear interpolation." + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -3222,16 +2985,16 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "8519" + "685787" ] }, - "execution_count": 28, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -3252,16 +3015,16 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2447" + "310048" ] }, - "execution_count": 29, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -3289,16 +3052,16 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2447" + "310048" ] }, - "execution_count": 30, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -3323,19 +3086,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Therefore, the preferred method for the Nan values´ treatment that we are going to develop is a mix, between the linear interpolation and backwards filling. The linear interpolation a form of interpolation, which involves the generation of new values based on an existing set of values. Linear interpolation is achieved by geometrically rendering a straight line between two adjacent points on a graph or plane. Whereas the backwards filling, will help us to arrive to those values which have not been fullfilled with the linear interpolation." + "##### Conclusion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Moreover, we are also going to scale all the values between the max and min of each country for each variable." + "Therefore, the preferred method for the Nan values´ treatment that we are going to develop is a mix, between the linear interpolation and backwards filling." ] }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -3361,147 +3124,147 @@ " Indicator\n", " Country\n", " Year\n", - " Alcohol per capita\n", - " Education GExp\n", - " Employment-agriculture\n", - " Employment-industry\n", - " Employment-services\n", - " Exports-Commercial services\n", - " Exports-G&S\n", - " Fertility rate\n", + " ARI treatment (% of children under 5 taken to a health provider)\n", + " Access to clean fuels and technologies for cooking (% of population)\n", + " Access to clean fuels and technologies for cooking, rural (% of rural population)\n", + " Access to clean fuels and technologies for cooking, urban (% of urban population)\n", + " Access to electricity (% of population)\n", + " Access to electricity, rural (% of rural population)\n", + " Access to electricity, urban (% of urban population)\n", + " Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+)\n", " ...\n", - " International taxes\n", - " Literacy rate\n", - " Mortality-infants\n", - " Mortality-pollution\n", - " Net migration\n", - " Ninis\n", - " R&D GExp\n", - " Renewable electricity\n", - " Suicide\n", - " Workers high education\n", + " Women who believe a husband is justified in beating his wife (any of five reasons) (%)\n", + " Women who believe a husband is justified in beating his wife when she argues with him (%)\n", + " Women who believe a husband is justified in beating his wife when she burns the food (%)\n", + " Women who believe a husband is justified in beating his wife when she goes out without telling him (%)\n", + " Women who believe a husband is justified in beating his wife when she neglects the children (%)\n", + " Women who believe a husband is justified in beating his wife when she refuses sex with him (%)\n", + " Women who were first married by age 15 (% of women ages 20-24)\n", + " Women who were first married by age 18 (% of women ages 20-24)\n", + " Women's share of population ages 15+ living with HIV (%)\n", + " Young people (ages 15-24) newly infected with HIV\n", " \n", " \n", " \n", " \n", - " 347\n", + " 352\n", " DEU\n", " 1990\n", - " 1.00000\n", - " 0.443529\n", - " 1.000000\n", - " 1.000000\n", - " 0.000000\n", - " 0.002386\n", - " 0.000000\n", - " 0.636364\n", + " NaN\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 98.133621\n", " ...\n", " NaN\n", " NaN\n", - " 1.000000\n", " NaN\n", - " 0.966124\n", - " 0.77758\n", - " 0.000000\n", - " 0.000000\n", - " 0.956522\n", - " 1.0\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " 19.1\n", + " 500.0\n", " \n", " \n", - " 348\n", + " 353\n", " DEU\n", " 1991\n", - " 1.00000\n", - " 0.443529\n", - " 1.000000\n", - " 1.000000\n", - " 0.000000\n", - " 0.000000\n", - " 0.025535\n", - " 0.272727\n", + " NaN\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 98.133621\n", " ...\n", " NaN\n", " NaN\n", - " 1.000000\n", " NaN\n", - " 0.966124\n", - " 0.77758\n", - " 0.000000\n", - " 0.002525\n", - " 0.956522\n", - " 1.0\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " 19.1\n", + " 500.0\n", " \n", " \n", - " 349\n", + " 354\n", " DEU\n", " 1992\n", - " 1.00000\n", - " 0.443529\n", - " 0.964758\n", - " 0.966793\n", - " 0.034321\n", - " 0.018415\n", - " 0.046400\n", - " 0.151515\n", + " NaN\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 98.133621\n", " ...\n", " NaN\n", " NaN\n", - " 0.875324\n", " NaN\n", - " 0.966124\n", - " 0.77758\n", - " 0.000000\n", - " 0.004025\n", - " 0.956522\n", - " 1.0\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " 19.1\n", + " 500.0\n", " \n", " \n", - " 350\n", + " 355\n", " DEU\n", " 1993\n", - " 1.00000\n", - " 0.443529\n", - " 0.942731\n", - " 0.907021\n", - " 0.088143\n", - " 0.012182\n", - " 0.010957\n", - " 0.121212\n", + " NaN\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 98.133621\n", " ...\n", " NaN\n", " NaN\n", - " 0.765220\n", " NaN\n", - " 0.823187\n", - " 0.77758\n", - " 0.000000\n", - " 0.005848\n", - " 0.956522\n", - " 1.0\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " 19.1\n", + " 500.0\n", " \n", " \n", - " 351\n", + " 356\n", " DEU\n", " 1994\n", - " 1.00000\n", - " 0.380220\n", - " 0.903084\n", - " 0.876660\n", - " 0.119345\n", - " 0.018513\n", - " 0.041261\n", - " 0.000000\n", + " NaN\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 98.133621\n", " ...\n", " NaN\n", " NaN\n", - " 0.670984\n", " NaN\n", - " 0.680250\n", - " 0.77758\n", - " 0.000000\n", - " 0.011012\n", - " 0.956522\n", - " 1.0\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " 19.1\n", + " 500.0\n", " \n", " \n", " ...\n", @@ -3528,213 +3291,395 @@ " ...\n", " \n", " \n", - " 247\n", + " 251\n", " CHN\n", - " 2016\n", - " 0.99002\n", - " 0.246406\n", - " 0.068956\n", - " 0.831461\n", - " 0.867725\n", - " 0.849888\n", - " 0.804316\n", - " 0.588235\n", + " 2017\n", + " NaN\n", + " 73.2\n", + " 55.2\n", + " 86.2\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 80.229118\n", " ...\n", - " 0.790308\n", - " 0.977482\n", - " 0.042573\n", " NaN\n", - " 0.264203\n", " NaN\n", - " 0.974482\n", - " 1.000000\n", - " 0.016129\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", " NaN\n", " \n", " \n", - " 248\n", + " 252\n", " CHN\n", - " 2017\n", - " 0.98004\n", - " 0.212024\n", - " 0.048007\n", - " 0.753933\n", - " 0.917460\n", - " 0.867490\n", - " 0.888169\n", - " 0.647059\n", + " 2018\n", + " NaN\n", + " 75.6\n", + " 59.0\n", + " 87.4\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 80.229118\n", " ...\n", - " 1.000000\n", - " 0.988741\n", - " 0.030745\n", " NaN\n", - " 0.243061\n", " NaN\n", - " 0.984436\n", - " 1.000000\n", - " 0.000000\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", " NaN\n", " \n", " \n", - " 249\n", + " 253\n", " CHN\n", - " 2018\n", - " 0.97006\n", - " 0.000000\n", - " 0.021530\n", - " 0.777528\n", - " 0.942152\n", - " 0.953748\n", - " 0.974699\n", - " 0.698529\n", + " 2019\n", + " NaN\n", + " 77.6\n", + " 61.9\n", + " 88.4\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 80.229118\n", " ...\n", - " 0.920304\n", - " 1.000000\n", - " 0.019650\n", " NaN\n", - " 0.243061\n", " NaN\n", - " 1.000000\n", - " 1.000000\n", - " 0.000000\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", " NaN\n", " \n", " \n", - " 250\n", + " 254\n", " CHN\n", - " 2019\n", - " 0.97006\n", - " 0.000000\n", - " 0.000000\n", - " 0.676405\n", - " 1.000000\n", - " 1.000000\n", - " 0.964730\n", - " 0.742647\n", + " 2020\n", + " NaN\n", + " 79.4\n", + " 65.2\n", + " 89.4\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 80.229118\n", " ...\n", - " 0.920304\n", - " 1.000000\n", - " 0.009383\n", " NaN\n", - " 0.243061\n", " NaN\n", - " 1.000000\n", - " 1.000000\n", - " 0.000000\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", " NaN\n", " \n", " \n", - " 251\n", + " 255\n", " CHN\n", - " 2020\n", - " 0.97006\n", - " 0.000000\n", - " 0.000000\n", - " 0.676405\n", - " 1.000000\n", - " 0.957514\n", - " 1.000000\n", - " 0.772059\n", + " 2021\n", + " NaN\n", + " 79.4\n", + " 65.2\n", + " 89.4\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 80.229118\n", " ...\n", - " 0.920304\n", - " 1.000000\n", - " 0.000000\n", " NaN\n", - " 0.243061\n", " NaN\n", - " 1.000000\n", - " 1.000000\n", - " 0.000000\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", " NaN\n", " \n", " \n", "\n", - "

1509 rows × 24 columns

\n", + "

1536 rows × 1438 columns

\n", "" ], "text/plain": [ - "Indicator Country Year Alcohol per capita Education GExp \\\n", - "347 DEU 1990 1.00000 0.443529 \n", - "348 DEU 1991 1.00000 0.443529 \n", - "349 DEU 1992 1.00000 0.443529 \n", - "350 DEU 1993 1.00000 0.443529 \n", - "351 DEU 1994 1.00000 0.380220 \n", - ".. ... ... ... ... \n", - "247 CHN 2016 0.99002 0.246406 \n", - "248 CHN 2017 0.98004 0.212024 \n", - "249 CHN 2018 0.97006 0.000000 \n", - "250 CHN 2019 0.97006 0.000000 \n", - "251 CHN 2020 0.97006 0.000000 \n", - "\n", - "Indicator Employment-agriculture Employment-industry Employment-services \\\n", - "347 1.000000 1.000000 0.000000 \n", - "348 1.000000 1.000000 0.000000 \n", - "349 0.964758 0.966793 0.034321 \n", - "350 0.942731 0.907021 0.088143 \n", - "351 0.903084 0.876660 0.119345 \n", - ".. ... ... ... \n", - "247 0.068956 0.831461 0.867725 \n", - "248 0.048007 0.753933 0.917460 \n", - "249 0.021530 0.777528 0.942152 \n", - "250 0.000000 0.676405 1.000000 \n", - "251 0.000000 0.676405 1.000000 \n", - "\n", - "Indicator Exports-Commercial services Exports-G&S Fertility rate ... \\\n", - "347 0.002386 0.000000 0.636364 ... \n", - "348 0.000000 0.025535 0.272727 ... \n", - "349 0.018415 0.046400 0.151515 ... \n", - "350 0.012182 0.010957 0.121212 ... \n", - "351 0.018513 0.041261 0.000000 ... \n", - ".. ... ... ... ... \n", - "247 0.849888 0.804316 0.588235 ... \n", - "248 0.867490 0.888169 0.647059 ... \n", - "249 0.953748 0.974699 0.698529 ... \n", - "250 1.000000 0.964730 0.742647 ... \n", - "251 0.957514 1.000000 0.772059 ... \n", - "\n", - "Indicator International taxes Literacy rate Mortality-infants \\\n", - "347 NaN NaN 1.000000 \n", - "348 NaN NaN 1.000000 \n", - "349 NaN NaN 0.875324 \n", - "350 NaN NaN 0.765220 \n", - "351 NaN NaN 0.670984 \n", - ".. ... ... ... \n", - "247 0.790308 0.977482 0.042573 \n", - "248 1.000000 0.988741 0.030745 \n", - "249 0.920304 1.000000 0.019650 \n", - "250 0.920304 1.000000 0.009383 \n", - "251 0.920304 1.000000 0.000000 \n", - "\n", - "Indicator Mortality-pollution Net migration Ninis R&D GExp \\\n", - "347 NaN 0.966124 0.77758 0.000000 \n", - "348 NaN 0.966124 0.77758 0.000000 \n", - "349 NaN 0.966124 0.77758 0.000000 \n", - "350 NaN 0.823187 0.77758 0.000000 \n", - "351 NaN 0.680250 0.77758 0.000000 \n", - ".. ... ... ... ... \n", - "247 NaN 0.264203 NaN 0.974482 \n", - "248 NaN 0.243061 NaN 0.984436 \n", - "249 NaN 0.243061 NaN 1.000000 \n", - "250 NaN 0.243061 NaN 1.000000 \n", - "251 NaN 0.243061 NaN 1.000000 \n", - "\n", - "Indicator Renewable electricity Suicide Workers high education \n", - "347 0.000000 0.956522 1.0 \n", - "348 0.002525 0.956522 1.0 \n", - "349 0.004025 0.956522 1.0 \n", - "350 0.005848 0.956522 1.0 \n", - "351 0.011012 0.956522 1.0 \n", - ".. ... ... ... \n", - "247 1.000000 0.016129 NaN \n", - "248 1.000000 0.000000 NaN \n", - "249 1.000000 0.000000 NaN \n", - "250 1.000000 0.000000 NaN \n", - "251 1.000000 0.000000 NaN \n", - "\n", - "[1509 rows x 24 columns]" + "Indicator Country Year \\\n", + "352 DEU 1990 \n", + "353 DEU 1991 \n", + "354 DEU 1992 \n", + "355 DEU 1993 \n", + "356 DEU 1994 \n", + ".. ... ... \n", + "251 CHN 2017 \n", + "252 CHN 2018 \n", + "253 CHN 2019 \n", + "254 CHN 2020 \n", + "255 CHN 2021 \n", + "\n", + "Indicator ARI treatment (% of children under 5 taken to a health provider) \\\n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking (% of population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 73.2 \n", + "252 75.6 \n", + "253 77.6 \n", + "254 79.4 \n", + "255 79.4 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, rural (% of rural population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 55.2 \n", + "252 59.0 \n", + "253 61.9 \n", + "254 65.2 \n", + "255 65.2 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, urban (% of urban population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 86.2 \n", + "252 87.4 \n", + "253 88.4 \n", + "254 89.4 \n", + "255 89.4 \n", + "\n", + "Indicator Access to electricity (% of population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 100.0 \n", + "252 100.0 \n", + "253 100.0 \n", + "254 100.0 \n", + "255 100.0 \n", + "\n", + "Indicator Access to electricity, rural (% of rural population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 100.0 \n", + "252 100.0 \n", + "253 100.0 \n", + "254 100.0 \n", + "255 100.0 \n", + "\n", + "Indicator Access to electricity, urban (% of urban population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 100.0 \n", + "252 100.0 \n", + "253 100.0 \n", + "254 100.0 \n", + "255 100.0 \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+) \\\n", + "352 98.133621 \n", + "353 98.133621 \n", + "354 98.133621 \n", + "355 98.133621 \n", + "356 98.133621 \n", + ".. ... \n", + "251 80.229118 \n", + "252 80.229118 \n", + "253 80.229118 \n", + "254 80.229118 \n", + "255 80.229118 \n", + "\n", + "Indicator ... \\\n", + "352 ... \n", + "353 ... \n", + "354 ... \n", + "355 ... \n", + "356 ... \n", + ".. ... \n", + "251 ... \n", + "252 ... \n", + "253 ... \n", + "254 ... \n", + "255 ... \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife (any of five reasons) (%) \\\n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she argues with him (%) \\\n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she burns the food (%) \\\n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she goes out without telling him (%) \\\n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she neglects the children (%) \\\n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she refuses sex with him (%) \\\n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Women who were first married by age 15 (% of women ages 20-24) \\\n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Women who were first married by age 18 (% of women ages 20-24) \\\n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Women's share of population ages 15+ living with HIV (%) \\\n", + "352 19.1 \n", + "353 19.1 \n", + "354 19.1 \n", + "355 19.1 \n", + "356 19.1 \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Young people (ages 15-24) newly infected with HIV \n", + "352 500.0 \n", + "353 500.0 \n", + "354 500.0 \n", + "355 500.0 \n", + "356 500.0 \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "[1536 rows x 1438 columns]" ] }, - "execution_count": 31, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -3743,14 +3688,14 @@ "dat=df.loc[df.loc[:, 'Country'] == country_list[0]]\n", "datc=dat.interpolate(method=\"linear\")\n", "datf=datc.fillna(method='bfill')\n", - "datr[col_to_scale]=(datr[col_to_scale]-datr[col_to_scale].min())/(datr[col_to_scale].max()-datr[col_to_scale].min())\n", + "datr=datf.fillna(method='ffill')\n", "data=datr\n", "\n", "for i in range(1,len(country_list)):\n", " dat=df.loc[df.loc[:, 'Country'] == country_list[i]]\n", " datc=dat.interpolate(method=\"linear\")\n", " datc=datc.fillna(method='bfill')\n", - " datc[col_to_scale]=(datc[col_to_scale]-datc[col_to_scale].min())/(datc[col_to_scale].max()-datc[col_to_scale].min())\n", + " datc=datc.fillna(method='ffill')\n", " data=pd.concat((data, datc), axis = 0)\n", "data" ] @@ -3759,7 +3704,43 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now, we will drop the columns which have over 1000 missing values, because the absence of data creates an unreliable source." + "Now, we will drop the columns which have over X% missing values because the absence of data creates an unreliable source. This % can be adjusted in the following slider. We have predetermined that 20% is a great starting point." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9498d0b6c1d4484d991a48ffc80661e3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatSlider(value=0.2, continuous_update=False, description='% that creates unreliable source:', max=1.0, read…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Slider1=widgets.FloatSlider(\n", + " value=0.2,\n", + " min=0,\n", + " max=1.0,\n", + " step=0.05,\n", + " description='% that creates unreliable source:',\n", + " disabled=False,\n", + " continuous_update=False,\n", + " orientation='horizontal',\n", + " readout=True,\n", + " readout_format='.1f',\n", + ")\n", + "Slider1" ] }, { @@ -3771,8 +3752,384 @@ "name": "stdout", "output_type": "stream", "text": [ - "Gender equality\n", - "Mortality-pollution\n" + "Adults (ages 15+) and children (ages 0-14) newly infected with HIV\n", + "Adults (ages 15-49) newly infected with HIV\n", + "Antiretroviral therapy coverage (% of people living with HIV)\n", + "Antiretroviral therapy coverage for PMTCT (% of pregnant women living with HIV)\n", + "ARI treatment (% of children under 5 taken to a health provider)\n", + "Average transaction cost of sending remittances to a specific country (%)\n", + "Average working hours of children, study and work, ages 7-14 (hours per week)\n", + "Average working hours of children, study and work, female, ages 7-14 (hours per week)\n", + "Average working hours of children, study and work, male, ages 7-14 (hours per week)\n", + "Average working hours of children, working only, ages 7-14 (hours per week)\n", + "Average working hours of children, working only, female, ages 7-14 (hours per week)\n", + "Average working hours of children, working only, male, ages 7-14 (hours per week)\n", + "Bank capital to assets ratio (%)\n", + "Bank liquid reserves to bank assets ratio (%)\n", + "Bank nonperforming loans to total gross loans (%)\n", + "Battle-related deaths (number of people)\n", + "Borrowers from commercial banks (per 1,000 adults)\n", + "Bribery incidence (% of firms experiencing at least one bribe payment request)\n", + "Changes in inventories (constant LCU)\n", + "Children (0-14) living with HIV\n", + "Children (ages 0-14) newly infected with HIV\n", + "Children in employment, female (% of female children ages 7-14)\n", + "Children in employment, male (% of male children ages 7-14)\n", + "Children in employment, study and work (% of children in employment, ages 7-14)\n", + "Children in employment, study and work, female (% of female children in employment, ages 7-14)\n", + "Children in employment, study and work, male (% of male children in employment, ages 7-14)\n", + "Children in employment, total (% of children ages 7-14)\n", + "Children in employment, unpaid family workers (% of children in employment, ages 7-14)\n", + "Children in employment, unpaid family workers, female (% of female children in employment, ages 7-14)\n", + "Children in employment, unpaid family workers, male (% of male children in employment, ages 7-14)\n", + "Children in employment, wage workers (% of children in employment, ages 7-14)\n", + "Children in employment, wage workers, female (% of female children in employment, ages 7-14)\n", + "Children in employment, wage workers, male (% of male children in employment, ages 7-14)\n", + "Children in employment, work only (% of children in employment, ages 7-14)\n", + "Children in employment, work only, female (% of female children in employment, ages 7-14)\n", + "Children in employment, work only, male (% of male children in employment, ages 7-14)\n", + "Claims on other sectors of the domestic economy (annual growth as % of broad money)\n", + "Commercial banks and other lending (PPG + PNG) (NFL, current US$)\n", + "Completeness of birth registration, rural (%)\n", + "Completeness of birth registration, urban (%)\n", + "Consumption of iodized salt (% of households)\n", + "Debt service (PPG and IMF only, % of exports of goods, services and primary income)\n", + "Debt service on external debt, public and publicly guaranteed (PPG) (TDS, current US$)\n", + "Debt service on external debt, total (TDS, current US$)\n", + "Demand for family planning satisfied by modern methods (% of married women with demand for family planning)\n", + "Diarrhea treatment (% of children under 5 receiving oral rehydration and continued feeding)\n", + "Diarrhea treatment (% of children under 5 who received ORS packet)\n", + "Disaster risk reduction progress score (1-5 scale; 5=best)\n", + "Exclusive breastfeeding (% of children under 6 months)\n", + "External debt stocks (% of GNI)\n", + "External debt stocks, long-term (DOD, current US$)\n", + "External debt stocks, private nonguaranteed (PNG) (DOD, current US$)\n", + "External debt stocks, public and publicly guaranteed (PPG) (DOD, current US$)\n", + "External debt stocks, short-term (DOD, current US$)\n", + "External debt stocks, total (DOD, current US$)\n", + "Financial intermediary services indirectly Measured (FISIM) (constant LCU)\n", + "Financial intermediary services indirectly Measured (FISIM) (current LCU)\n", + "Firms competing against unregistered firms (% of firms)\n", + "Firms formally registered when operations started (% of firms)\n", + "Firms that do not report all sales for tax purposes (% of firms)\n", + "Gross fixed capital formation, private sector (% of GDP)\n", + "Gross fixed capital formation, private sector (current LCU)\n", + "IBRD loans and IDA credits (DOD, current US$)\n", + "IFC, private nonguaranteed (NFL, current US$)\n", + "IMF repurchases and charges (TDS, current US$)\n", + "Incidence of HIV, ages 15-24 (per 1,000 uninfected population ages 15-24)\n", + "Incidence of HIV, ages 15-49 (per 1,000 uninfected population ages 15-49)\n", + "Incidence of HIV, all (per 1,000 uninfected population)\n", + "Incidence of malaria (per 1,000 population at risk)\n", + "Informal payments to public officials (% of firms)\n", + "Intentional homicides, female (per 100,000 female)\n", + "Intentional homicides, male (per 100,000 male)\n", + "Interest rate spread (lending rate minus deposit rate, %)\n", + "Internally displaced persons, new displacement associated with conflict and violence (number of cases)\n", + "Internally displaced persons, total displaced by conflict and violence (number of people)\n", + "International tourism, number of departures\n", + "Investment in energy with private participation (current US$)\n", + "Investment in ICT with private participation (current US$)\n", + "Investment in transport with private participation (current US$)\n", + "Investment in water and sanitation with private participation (current US$)\n", + "Lending interest rate (%)\n", + "Merchandise exports to low- and middle-income economies within region (% of total merchandise exports)\n", + "Merchandise imports from low- and middle-income economies within region (% of total merchandise imports)\n", + "Methodology assessment of statistical capacity (scale 0 - 100)\n", + "Multilateral debt service (% of public and publicly guaranteed debt service)\n", + "Multilateral debt service (TDS, current US$)\n", + "Net bilateral aid flows from DAC donors, Australia (current US$)\n", + "Net bilateral aid flows from DAC donors, Belgium (current US$)\n", + "Net bilateral aid flows from DAC donors, Canada (current US$)\n", + "Net bilateral aid flows from DAC donors, Czech Republic (current US$)\n", + "Net bilateral aid flows from DAC donors, Denmark (current US$)\n", + "Net bilateral aid flows from DAC donors, Finland (current US$)\n", + "Net bilateral aid flows from DAC donors, Greece (current US$)\n", + "Net bilateral aid flows from DAC donors, Hungary (current US$)\n", + "Net bilateral aid flows from DAC donors, Ireland (current US$)\n", + "Net bilateral aid flows from DAC donors, Italy (current US$)\n", + "Net bilateral aid flows from DAC donors, Korea, Rep. (current US$)\n", + "Net bilateral aid flows from DAC donors, Luxembourg (current US$)\n", + "Net bilateral aid flows from DAC donors, Netherlands (current US$)\n", + "Net bilateral aid flows from DAC donors, New Zealand (current US$)\n", + "Net bilateral aid flows from DAC donors, Norway (current US$)\n", + "Net bilateral aid flows from DAC donors, Poland (current US$)\n", + "Net bilateral aid flows from DAC donors, Portugal (current US$)\n", + "Net bilateral aid flows from DAC donors, Slovenia (current US$)\n", + "Net bilateral aid flows from DAC donors, Spain (current US$)\n", + "Net bilateral aid flows from DAC donors, Sweden (current US$)\n", + "Net bilateral aid flows from DAC donors, Switzerland (current US$)\n", + "Net financial flows, bilateral (NFL, current US$)\n", + "Net financial flows, IBRD (NFL, current US$)\n", + "Net financial flows, IMF nonconcessional (NFL, current US$)\n", + "Net financial flows, multilateral (NFL, current US$)\n", + "Net financial flows, others (NFL, current US$)\n", + "Net financial flows, RDB concessional (NFL, current US$)\n", + "Net financial flows, RDB nonconcessional (NFL, current US$)\n", + "Net flows on external debt, private nonguaranteed (PNG) (NFL, current US$)\n", + "Net intake rate in grade 1 (% of official school-age population)\n", + "Net intake rate in grade 1, female (% of official school-age population)\n", + "Net intake rate in grade 1, male (% of official school-age population)\n", + "Net ODA received (% of GNI)\n", + "Net ODA received (% of gross capital formation)\n", + "Net ODA received (% of imports of goods, services and primary income)\n", + "Net ODA received per capita (current US$)\n", + "Net official development assistance received (constant 2018 US$)\n", + "Net official development assistance received (current US$)\n", + "Net official flows from UN agencies, FAO (current US$)\n", + "Net official flows from UN agencies, IAEA (current US$)\n", + "Net official flows from UN agencies, IFAD (current US$)\n", + "Net official flows from UN agencies, ILO (current US$)\n", + "Net official flows from UN agencies, UNAIDS (current US$)\n", + "Net official flows from UN agencies, UNDP (current US$)\n", + "Net official flows from UN agencies, UNFPA (current US$)\n", + "Net official flows from UN agencies, UNHCR (current US$)\n", + "Net official flows from UN agencies, UNICEF (current US$)\n", + "Net official flows from UN agencies, WFP (current US$)\n", + "Net official flows from UN agencies, WHO (current US$)\n", + "Net secondary income (Net current transfers from abroad) (constant LCU)\n", + "Newborns protected against tetanus (%)\n", + "People using safely managed drinking water services (% of population)\n", + "People using safely managed drinking water services, rural (% of rural population)\n", + "People using safely managed drinking water services, urban (% of urban population)\n", + "People using safely managed sanitation services, rural (% of rural population)\n", + "People using safely managed sanitation services, urban (% of urban population)\n", + "People with basic handwashing facilities including soap and water (% of population)\n", + "People with basic handwashing facilities including soap and water, rural (% of rural population)\n", + "People with basic handwashing facilities including soap and water, urban (% of urban population)\n", + "Periodicity and timeliness assessment of statistical capacity (scale 0 - 100)\n", + "PNG, commercial banks and other creditors (NFL, current US$)\n", + "Portfolio investment, bonds (PPG + PNG) (NFL, current US$)\n", + "Power outages in firms in a typical month (number)\n", + "PPG, bonds (NFL, current US$)\n", + "PPG, commercial banks (NFL, current US$)\n", + "PPG, IBRD (DOD, current US$)\n", + "PPG, official creditors (NFL, current US$)\n", + "PPG, other private creditors (NFL, current US$)\n", + "PPG, private creditors (NFL, current US$)\n", + "Present value of external debt (% of exports of goods, services and primary income)\n", + "Present value of external debt (% of GNI)\n", + "Present value of external debt (current US$)\n", + "Prevalence of HIV, female (% ages 15-24)\n", + "Prevalence of HIV, male (% ages 15-24)\n", + "Prevalence of HIV, total (% of population ages 15-49)\n", + "Prevalence of moderate or severe food insecurity in the population (%)\n", + "Prevalence of overweight, weight for height, female (% of children under 5)\n", + "Prevalence of overweight, weight for height, male (% of children under 5)\n", + "Prevalence of severe food insecurity in the population (%)\n", + "Prevalence of severe wasting, weight for height (% of children under 5)\n", + "Prevalence of severe wasting, weight for height, female (% of children under 5)\n", + "Prevalence of severe wasting, weight for height, male (% of children under 5)\n", + "Prevalence of stunting, height for age, female (% of children under 5)\n", + "Prevalence of stunting, height for age, male (% of children under 5)\n", + "Prevalence of underweight, weight for age, female (% of children under 5)\n", + "Prevalence of underweight, weight for age, male (% of children under 5)\n", + "Prevalence of wasting, weight for height, female (% of children under 5)\n", + "Prevalence of wasting, weight for height, male (% of children under 5)\n", + "Primary government expenditures as a proportion of original approved budget (%)\n", + "Proportion of time spent on unpaid domestic and care work, female (% of 24 hour day)\n", + "Proportion of time spent on unpaid domestic and care work, male (% of 24 hour day)\n", + "Public and publicly guaranteed debt service (% of exports of goods, services and primary income)\n", + "Public and publicly guaranteed debt service (% of GNI)\n", + "Public private partnerships investment in energy (current US$)\n", + "Public private partnerships investment in transport (current US$)\n", + "Public private partnerships investment in water and sanitation (current US$)\n", + "Real effective exchange rate index (2010 = 100)\n", + "Real interest rate (%)\n", + "Risk premium on lending (lending rate minus treasury bill rate, %)\n", + "Short-term debt (% of exports of goods, services and primary income)\n", + "Short-term debt (% of total external debt)\n", + "Short-term debt (% of total reserves)\n", + "Source data assessment of statistical capacity (scale 0 - 100)\n", + "Statistical Capacity Score (Overall Average) (scale 0 - 100)\n", + "Technicians in R&D (per million people)\n", + "Time required to obtain an operating license (days)\n", + "Total debt service (% of exports of goods, services and primary income)\n", + "Total debt service (% of GNI)\n", + "Total reserves (% of total external debt)\n", + "Trained teachers in primary education (% of total teachers)\n", + "Trained teachers in primary education, female (% of female teachers)\n", + "Trained teachers in primary education, male (% of male teachers)\n", + "Unmet need for contraception (% of married women ages 15-49)\n", + "Use of IMF credit (DOD, current US$)\n", + "Women who believe a husband is justified in beating his wife (any of five reasons) (%)\n", + "Women who were first married by age 15 (% of women ages 20-24)\n", + "Women who were first married by age 18 (% of women ages 20-24)\n", + "Women's share of population ages 15+ living with HIV (%)\n", + "Young people (ages 15-24) newly infected with HIV\n", + "Adequacy of social insurance programs (% of total welfare of beneficiary households)\n", + "Adequacy of social protection and labor programs (% of total welfare of beneficiary households)\n", + "Adequacy of social safety net programs (% of total welfare of beneficiary households)\n", + "Adequacy of unemployment benefits and ALMP (% of total welfare of beneficiary households)\n", + "Annualized average growth rate in per capita real survey mean consumption or income, bottom 40% of population (%)\n", + "Annualized average growth rate in per capita real survey mean consumption or income, total population (%)\n", + "Benefit incidence of social insurance programs to poorest quintile (% of total social insurance benefits)\n", + "Benefit incidence of social protection and labor programs to poorest quintile (% of total SPL benefits)\n", + "Benefit incidence of social safety net programs to poorest quintile (% of total safety net benefits)\n", + "Benefit incidence of unemployment benefits and ALMP to poorest quintile (% of total U/ALMP benefits)\n", + "Children in employment, self-employed (% of children in employment, ages 7-14)\n", + "Children in employment, self-employed, female (% of female children in employment, ages 7-14)\n", + "Children in employment, self-employed, male (% of male children in employment, ages 7-14)\n", + "Compensation of employees (% of expense)\n", + "Compensation of employees (current LCU)\n", + "Completeness of death registration with cause-of-death information (%)\n", + "Coverage of social insurance programs (% of population)\n", + "Coverage of social insurance programs in 2nd quintile (% of population)\n", + "Coverage of social insurance programs in 3rd quintile (% of population)\n", + "Coverage of social insurance programs in 4th quintile (% of population)\n", + "Coverage of social insurance programs in poorest quintile (% of population)\n", + "Coverage of social insurance programs in richest quintile (% of population)\n", + "Coverage of social protection and labor programs (% of population)\n", + "Coverage of social safety net programs (% of population)\n", + "Coverage of social safety net programs in 2nd quintile (% of population)\n", + "Coverage of social safety net programs in 3rd quintile (% of population)\n", + "Coverage of social safety net programs in 4th quintile (% of population)\n", + "Coverage of social safety net programs in poorest quintile (% of population)\n", + "Coverage of social safety net programs in richest quintile (% of population)\n", + "Coverage of unemployment benefits and ALMP (% of population)\n", + "Coverage of unemployment benefits and ALMP in 2nd quintile (% of population)\n", + "Coverage of unemployment benefits and ALMP in 3rd quintile (% of population)\n", + "Coverage of unemployment benefits and ALMP in 4th quintile (% of population)\n", + "Coverage of unemployment benefits and ALMP in poorest quintile (% of population)\n", + "Coverage of unemployment benefits and ALMP in richest quintile (% of population)\n", + "Current education expenditure, tertiary (% of total expenditure in tertiary public institutions)\n", + "Depositors with commercial banks (per 1,000 adults)\n", + "Domestic credit provided by financial sector (% of GDP)\n", + "Expenditure on primary education (% of government expenditure on education)\n", + "Expenditure on secondary education (% of government expenditure on education)\n", + "Expense (% of GDP)\n", + "Expense (current LCU)\n", + "Female share of employment in senior and middle management (%)\n", + "Firms experiencing electrical outages (% of firms)\n", + "Firms experiencing losses due to theft and vandalism (% of firms)\n", + "Firms that spend on R&D (% of firms)\n", + "Firms visited or required meetings with tax officials (% of firms)\n", + "Firms with female top manager (% of firms)\n", + "Goods and services expense (% of expense)\n", + "Goods and services expense (current LCU)\n", + "Interest payments (% of expense)\n", + "Losses due to theft and vandalism (% of annual sales of affected firms)\n", + "Net acquisition of financial assets (% of GDP)\n", + "Net acquisition of financial assets (current LCU)\n", + "Net bilateral aid flows from DAC donors, Slovak Republic (current US$)\n", + "Net incurrence of liabilities, total (% of GDP)\n", + "Net incurrence of liabilities, total (current LCU)\n", + "Net investment in nonfinancial assets (% of GDP)\n", + "Net investment in nonfinancial assets (current LCU)\n", + "Net lending (+) / net borrowing (-) (% of GDP)\n", + "Net lending (+) / net borrowing (-) (current LCU)\n", + "Net ODA received (% of central government expense)\n", + "Number of visits or required meetings with tax officials (average for affected firms)\n", + "Other expense (% of expense)\n", + "Other expense (current LCU)\n", + "PNG, bonds (NFL, current US$)\n", + "Population living in slums (% of urban population)\n", + "Public private partnerships investment in ICT (current US$)\n", + "S&P Global Equity Indices (annual % change)\n", + "Subsidies and other transfers (% of expense)\n", + "Subsidies and other transfers (current LCU)\n", + "Survey mean consumption or income per capita, bottom 40% of population (2011 PPP $ per day)\n", + "Survey mean consumption or income per capita, total population (2011 PPP $ per day)\n", + "Value lost due to electrical outages (% of sales for affected firms)\n", + "Average transaction cost of sending remittances from a specific country (%)\n", + "Educational attainment, at least Bachelor's or equivalent, population 25+, female (%) (cumulative)\n", + "Educational attainment, at least Bachelor's or equivalent, population 25+, male (%) (cumulative)\n", + "Educational attainment, at least Bachelor's or equivalent, population 25+, total (%) (cumulative)\n", + "Educational attainment, at least completed post-secondary, population 25+, female (%) (cumulative)\n", + "Educational attainment, at least completed post-secondary, population 25+, male (%) (cumulative)\n", + "Educational attainment, at least completed post-secondary, population 25+, total (%) (cumulative)\n", + "Educational attainment, at least Master's or equivalent, population 25+, female (%) (cumulative)\n", + "Educational attainment, at least Master's or equivalent, population 25+, male (%) (cumulative)\n", + "Educational attainment, at least Master's or equivalent, population 25+, total (%) (cumulative)\n", + "Educational attainment, Doctoral or equivalent, population 25+, female (%) (cumulative)\n", + "Educational attainment, Doctoral or equivalent, population 25+, male (%) (cumulative)\n", + "Educational attainment, Doctoral or equivalent, population 25+, total (%) (cumulative)\n", + "Multidimensional poverty headcount ratio (% of total population)\n", + "Multidimensional poverty headcount ratio, children (% of population ages 0-17)\n", + "Multidimensional poverty headcount ratio, female (% of female population)\n", + "Multidimensional poverty headcount ratio, male (% of male population)\n", + "Net ODA provided to the least developed countries (% of GNI)\n", + "Net ODA provided, to the least developed countries (current US$)\n", + "Net ODA provided, total (% of GNI)\n", + "Net ODA provided, total (constant 2015 US$)\n", + "Net ODA provided, total (current US$)\n", + "Net primary income (Net income from abroad) (constant LCU)\n", + "Number of surgical procedures (per 100,000 population)\n", + "Proportion of women subjected to physical and/or sexual violence in the last 12 months (% of ever-partnered women ages 15-49)\n", + "Wholesale price index (2010 = 100)\n", + "Central government debt, total (% of GDP)\n", + "Central government debt, total (current LCU)\n", + "Child employment in agriculture (% of economically active children ages 7-14)\n", + "Child employment in agriculture, female (% of female economically active children ages 7-14)\n", + "Child employment in agriculture, male (% of male economically active children ages 7-14)\n", + "Child employment in manufacturing (% of economically active children ages 7-14)\n", + "Child employment in manufacturing, female (% of female economically active children ages 7-14)\n", + "Child employment in manufacturing, male (% of male economically active children ages 7-14)\n", + "Child employment in services (% of economically active children ages 7-14)\n", + "Child employment in services, female (% of female economically active children ages 7-14)\n", + "Child employment in services, male (% of male economically active children ages 7-14)\n", + "Children with fever receiving antimalarial drugs (% of children under age 5 with fever)\n", + "Claims on other sectors of the domestic economy (% of GDP)\n", + "Condom use, population ages 15-24, female (% of females ages 15-24)\n", + "Condom use, population ages 15-24, male (% of males ages 15-24)\n", + "CPIA building human resources rating (1=low to 6=high)\n", + "CPIA business regulatory environment rating (1=low to 6=high)\n", + "CPIA debt policy rating (1=low to 6=high)\n", + "CPIA economic management cluster average (1=low to 6=high)\n", + "CPIA efficiency of revenue mobilization rating (1=low to 6=high)\n", + "CPIA equity of public resource use rating (1=low to 6=high)\n", + "CPIA financial sector rating (1=low to 6=high)\n", + "CPIA fiscal policy rating (1=low to 6=high)\n", + "CPIA gender equality rating (1=low to 6=high)\n", + "CPIA macroeconomic management rating (1=low to 6=high)\n", + "CPIA policies for social inclusion/equity cluster average (1=low to 6=high)\n", + "CPIA policy and institutions for environmental sustainability rating (1=low to 6=high)\n", + "CPIA property rights and rule-based governance rating (1=low to 6=high)\n", + "CPIA public sector management and institutions cluster average (1=low to 6=high)\n", + "CPIA quality of budgetary and financial management rating (1=low to 6=high)\n", + "CPIA quality of public administration rating (1=low to 6=high)\n", + "CPIA social protection rating (1=low to 6=high)\n", + "CPIA structural policies cluster average (1=low to 6=high)\n", + "CPIA trade rating (1=low to 6=high)\n", + "CPIA transparency, accountability, and corruption in the public sector rating (1=low to 6=high)\n", + "Female headed households (% of households with a female head)\n", + "IDA resource allocation index (1=low to 6=high)\n", + "Net financial flows, IDA (NFL, current US$)\n", + "PPG, IDA (DOD, current US$)\n", + "Teenage mothers (% of women ages 15-19 who have had children or are currently pregnant)\n", + "Trained teachers in lower secondary education (% of total teachers)\n", + "Trained teachers in lower secondary education, female (% of female teachers)\n", + "Trained teachers in lower secondary education, male (% of male teachers)\n", + "Trained teachers in preprimary education (% of total teachers)\n", + "Trained teachers in preprimary education, female (% of female teachers)\n", + "Trained teachers in preprimary education, male (% of male teachers)\n", + "Trained teachers in upper secondary education (% of total teachers)\n", + "Trained teachers in upper secondary education, female (% of female teachers)\n", + "Trained teachers in upper secondary education, male (% of male teachers)\n", + "Use of insecticide-treated bed nets (% of under-5 population)\n", + "Vitamin A supplementation coverage rate (% of children ages 6-59 months)\n", + "Wanted fertility rate (births per woman)\n", + "Women participating in the three decisions (own health care, major household purchases, and visiting family) (% of women age 15-49)\n", + "Women who believe a husband is justified in beating his wife when she argues with him (%)\n", + "Women who believe a husband is justified in beating his wife when she burns the food (%)\n", + "Women who believe a husband is justified in beating his wife when she goes out without telling him (%)\n", + "Women who believe a husband is justified in beating his wife when she neglects the children (%)\n", + "Women who believe a husband is justified in beating his wife when she refuses sex with him (%)\n", + "Community health workers (per 1,000 people)\n", + "Net bilateral aid flows from DAC donors, Iceland (current US$)\n", + "Trained teachers in secondary education (% of total teachers)\n", + "Trained teachers in secondary education, female (% of female teachers)\n", + "Trained teachers in secondary education, male (% of male teachers)\n", + "Women making their own informed decisions regarding sexual relations, contraceptive use and reproductive health care (% of women age 15-49)\n", + "Female genital mutilation prevalence (%)\n", + "Net official flows from UN agencies, UNPBF (current US$)\n", + "Multidimensional poverty headcount ratio, household (% of total households)\n", + "Multidimensional poverty index (scale 0-1)\n", + "Multidimensional poverty intensity (average share of deprivations experienced by the poor)\n", + "Net financial flows, IMF concessional (NFL, current US$)\n", + "Net official aid received (constant 2018 US$)\n", + "Net official aid received (current US$)\n", + "Multidimensional poverty index, children (population ages 0-17) (scale 0-1)\n" ] }, { @@ -3798,147 +4155,147 @@ " Indicator\n", " Country\n", " Year\n", - " Alcohol per capita\n", - " Education GExp\n", - " Employment-agriculture\n", - " Employment-industry\n", - " Employment-services\n", - " Exports-Commercial services\n", - " Exports-G&S\n", - " Fertility rate\n", + " Access to clean fuels and technologies for cooking (% of population)\n", + " Access to clean fuels and technologies for cooking, rural (% of rural population)\n", + " Access to clean fuels and technologies for cooking, urban (% of urban population)\n", + " Access to electricity (% of population)\n", + " Access to electricity, rural (% of rural population)\n", + " Access to electricity, urban (% of urban population)\n", + " Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+)\n", + " Account ownership at a financial institution or with a mobile-money-service provider, female (% of population ages 15+)\n", " ...\n", - " Health services use\n", - " International taxes\n", - " Literacy rate\n", - " Mortality-infants\n", - " Net migration\n", - " Ninis\n", - " R&D GExp\n", - " Renewable electricity\n", - " Suicide\n", - " Workers high education\n", + " Urban population growth (annual %)\n", + " Urban population living in areas where elevation is below 5 meters (% of total population)\n", + " Vulnerable employment, female (% of female employment) (modeled ILO estimate)\n", + " Vulnerable employment, male (% of male employment) (modeled ILO estimate)\n", + " Vulnerable employment, total (% of total employment) (modeled ILO estimate)\n", + " Wage and salaried workers, female (% of female employment) (modeled ILO estimate)\n", + " Wage and salaried workers, male (% of male employment) (modeled ILO estimate)\n", + " Wage and salaried workers, total (% of total employment) (modeled ILO estimate)\n", + " Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal)\n", + " Women Business and the Law Index Score (scale 1-100)\n", " \n", " \n", " \n", " \n", - " 347\n", + " 352\n", " DEU\n", " 1990\n", - " 1.00000\n", - " 0.443529\n", - " 1.000000\n", - " 1.000000\n", - " 0.000000\n", - " 0.002386\n", - " 0.000000\n", - " 0.636364\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 98.133621\n", + " 98.704536\n", " ...\n", - " 0.000000\n", - " NaN\n", - " NaN\n", - " 1.000000\n", - " 0.966124\n", - " 0.77758\n", - " 0.000000\n", - " 0.000000\n", - " 0.956522\n", - " 1.0\n", + " 1.056365\n", + " 3.031776\n", + " 5.700000\n", + " 4.800000\n", + " 5.170000\n", + " 92.050003\n", + " 89.110001\n", + " 90.330002\n", + " 54.519497\n", + " 71.250\n", " \n", " \n", - " 348\n", + " 353\n", " DEU\n", " 1991\n", - " 1.00000\n", - " 0.443529\n", - " 1.000000\n", - " 1.000000\n", - " 0.000000\n", - " 0.000000\n", - " 0.025535\n", - " 0.272727\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 98.133621\n", + " 98.704536\n", " ...\n", - " 0.000000\n", - " NaN\n", - " NaN\n", - " 1.000000\n", - " 0.966124\n", - " 0.77758\n", - " 0.000000\n", - " 0.002525\n", - " 0.956522\n", - " 1.0\n", + " 0.934908\n", + " 3.029378\n", + " 5.700000\n", + " 4.800000\n", + " 5.170000\n", + " 92.050003\n", + " 89.110001\n", + " 90.330002\n", + " 54.519497\n", + " 71.250\n", " \n", " \n", - " 349\n", + " 354\n", " DEU\n", " 1992\n", - " 1.00000\n", - " 0.443529\n", - " 0.964758\n", - " 0.966793\n", - " 0.034321\n", - " 0.018415\n", - " 0.046400\n", - " 0.151515\n", - " ...\n", - " 0.000000\n", - " NaN\n", - " NaN\n", - " 0.875324\n", - " 0.966124\n", - " 0.77758\n", - " 0.000000\n", - " 0.004025\n", - " 0.956522\n", - " 1.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 98.133621\n", + " 98.704536\n", + " ...\n", + " 0.884470\n", + " 3.026980\n", + " 5.740000\n", + " 4.930000\n", + " 5.270000\n", + " 91.910004\n", + " 88.589996\n", + " 89.970001\n", + " 54.519497\n", + " 71.250\n", " \n", " \n", - " 350\n", + " 355\n", " DEU\n", " 1993\n", - " 1.00000\n", - " 0.443529\n", - " 0.942731\n", - " 0.907021\n", - " 0.088143\n", - " 0.012182\n", - " 0.010957\n", - " 0.121212\n", - " ...\n", - " 0.000000\n", - " NaN\n", - " NaN\n", - " 0.765220\n", - " 0.823187\n", - " 0.77758\n", - " 0.000000\n", - " 0.005848\n", - " 0.956522\n", - " 1.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 98.133621\n", + " 98.704536\n", + " ...\n", + " 0.843967\n", + " 3.024581\n", + " 5.850000\n", + " 5.040000\n", + " 5.380000\n", + " 91.669998\n", + " 88.250000\n", + " 89.669998\n", + " 56.039631\n", + " 71.250\n", " \n", " \n", - " 351\n", + " 356\n", " DEU\n", " 1994\n", - " 1.00000\n", - " 0.380220\n", - " 0.903084\n", - " 0.876660\n", - " 0.119345\n", - " 0.018513\n", - " 0.041261\n", - " 0.000000\n", - " ...\n", - " 0.000000\n", - " NaN\n", - " NaN\n", - " 0.670984\n", - " 0.680250\n", - " 0.77758\n", - " 0.000000\n", - " 0.011012\n", - " 0.956522\n", - " 1.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 98.133621\n", + " 98.704536\n", + " ...\n", + " 0.636245\n", + " 3.022183\n", + " 5.610000\n", + " 5.200000\n", + " 5.370000\n", + " 91.629997\n", + " 87.739998\n", + " 89.370003\n", + " 57.559764\n", + " 71.250\n", " \n", " \n", " ...\n", @@ -3965,281 +4322,427 @@ " ...\n", " \n", " \n", - " 247\n", - " CHN\n", - " 2016\n", - " 0.99002\n", - " 0.246406\n", - " 0.068956\n", - " 0.831461\n", - " 0.867725\n", - " 0.849888\n", - " 0.804316\n", - " 0.588235\n", - " ...\n", - " 0.822241\n", - " 0.790308\n", - " 0.977482\n", - " 0.042573\n", - " 0.264203\n", - " NaN\n", - " 0.974482\n", - " 1.000000\n", - " 0.016129\n", - " NaN\n", - " \n", - " \n", - " 248\n", + " 251\n", " CHN\n", " 2017\n", - " 0.98004\n", - " 0.212024\n", - " 0.048007\n", - " 0.753933\n", - " 0.917460\n", - " 0.867490\n", - " 0.888169\n", - " 0.647059\n", + " 73.2\n", + " 55.2\n", + " 86.2\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 80.229118\n", + " 76.364731\n", " ...\n", - " 0.868064\n", - " 1.000000\n", - " 0.988741\n", - " 0.030745\n", - " 0.243061\n", - " NaN\n", - " 0.984436\n", - " 1.000000\n", - " 0.000000\n", - " NaN\n", + " 2.739664\n", + " 4.203002\n", + " 46.530001\n", + " 42.949999\n", + " 44.530002\n", + " 52.430000\n", + " 54.169998\n", + " 53.400002\n", + " 21.358958\n", + " 75.625\n", " \n", " \n", - " 249\n", + " 252\n", " CHN\n", " 2018\n", - " 0.97006\n", - " 0.000000\n", - " 0.021530\n", - " 0.777528\n", - " 0.942152\n", - " 0.953748\n", - " 0.974699\n", - " 0.698529\n", + " 75.6\n", + " 59.0\n", + " 87.4\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 80.229118\n", + " 76.364731\n", " ...\n", - " 0.912945\n", - " 0.920304\n", - " 1.000000\n", - " 0.019650\n", - " 0.243061\n", - " NaN\n", - " 1.000000\n", - " 1.000000\n", - " 0.000000\n", - " NaN\n", + " 2.503401\n", + " 4.203002\n", + " 45.720001\n", + " 41.940001\n", + " 43.609999\n", + " 53.209999\n", + " 55.139999\n", + " 54.290001\n", + " 21.358958\n", + " 75.625\n", " \n", " \n", - " 250\n", + " 253\n", " CHN\n", " 2019\n", - " 0.97006\n", - " 0.000000\n", - " 0.000000\n", - " 0.676405\n", - " 1.000000\n", - " 1.000000\n", - " 0.964730\n", - " 0.742647\n", + " 77.6\n", + " 61.9\n", + " 88.4\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 80.229118\n", + " 76.364731\n", " ...\n", - " 0.956910\n", - " 0.920304\n", - " 1.000000\n", - " 0.009383\n", - " 0.243061\n", - " NaN\n", - " 1.000000\n", - " 1.000000\n", - " 0.000000\n", - " NaN\n", + " 2.290177\n", + " 4.203002\n", + " 44.760000\n", + " 40.819999\n", + " 42.540000\n", + " 54.150002\n", + " 56.279999\n", + " 55.340000\n", + " 21.358958\n", + " 75.625\n", " \n", " \n", - " 251\n", + " 254\n", " CHN\n", " 2020\n", - " 0.97006\n", - " 0.000000\n", - " 0.000000\n", - " 0.676405\n", - " 1.000000\n", - " 0.957514\n", - " 1.000000\n", - " 0.772059\n", + " 79.4\n", + " 65.2\n", + " 89.4\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 80.229118\n", + " 76.364731\n", " ...\n", - " 1.000000\n", - " 0.920304\n", - " 1.000000\n", - " 0.000000\n", - " 0.243061\n", - " NaN\n", - " 1.000000\n", - " 1.000000\n", - " 0.000000\n", - " NaN\n", + " 2.066047\n", + " 4.203002\n", + " 44.760000\n", + " 40.819999\n", + " 42.540000\n", + " 54.150002\n", + " 56.279999\n", + " 55.340000\n", + " 21.358958\n", + " 75.625\n", + " \n", + " \n", + " 255\n", + " CHN\n", + " 2021\n", + " 79.4\n", + " 65.2\n", + " 89.4\n", + " 100.0\n", + " 100.0\n", + " 100.0\n", + " 80.229118\n", + " 76.364731\n", + " ...\n", + " 2.066047\n", + " 4.203002\n", + " 44.760000\n", + " 40.819999\n", + " 42.540000\n", + " 54.150002\n", + " 56.279999\n", + " 55.340000\n", + " 21.358958\n", + " 75.625\n", " \n", " \n", "\n", - "

1509 rows × 22 columns

\n", + "

1536 rows × 1060 columns

\n", "" ], "text/plain": [ - "Indicator Country Year Alcohol per capita Education GExp \\\n", - "347 DEU 1990 1.00000 0.443529 \n", - "348 DEU 1991 1.00000 0.443529 \n", - "349 DEU 1992 1.00000 0.443529 \n", - "350 DEU 1993 1.00000 0.443529 \n", - "351 DEU 1994 1.00000 0.380220 \n", - ".. ... ... ... ... \n", - "247 CHN 2016 0.99002 0.246406 \n", - "248 CHN 2017 0.98004 0.212024 \n", - "249 CHN 2018 0.97006 0.000000 \n", - "250 CHN 2019 0.97006 0.000000 \n", - "251 CHN 2020 0.97006 0.000000 \n", - "\n", - "Indicator Employment-agriculture Employment-industry Employment-services \\\n", - "347 1.000000 1.000000 0.000000 \n", - "348 1.000000 1.000000 0.000000 \n", - "349 0.964758 0.966793 0.034321 \n", - "350 0.942731 0.907021 0.088143 \n", - "351 0.903084 0.876660 0.119345 \n", - ".. ... ... ... \n", - "247 0.068956 0.831461 0.867725 \n", - "248 0.048007 0.753933 0.917460 \n", - "249 0.021530 0.777528 0.942152 \n", - "250 0.000000 0.676405 1.000000 \n", - "251 0.000000 0.676405 1.000000 \n", - "\n", - "Indicator Exports-Commercial services Exports-G&S Fertility rate ... \\\n", - "347 0.002386 0.000000 0.636364 ... \n", - "348 0.000000 0.025535 0.272727 ... \n", - "349 0.018415 0.046400 0.151515 ... \n", - "350 0.012182 0.010957 0.121212 ... \n", - "351 0.018513 0.041261 0.000000 ... \n", - ".. ... ... ... ... \n", - "247 0.849888 0.804316 0.588235 ... \n", - "248 0.867490 0.888169 0.647059 ... \n", - "249 0.953748 0.974699 0.698529 ... \n", - "250 1.000000 0.964730 0.742647 ... \n", - "251 0.957514 1.000000 0.772059 ... \n", - "\n", - "Indicator Health services use International taxes Literacy rate \\\n", - "347 0.000000 NaN NaN \n", - "348 0.000000 NaN NaN \n", - "349 0.000000 NaN NaN \n", - "350 0.000000 NaN NaN \n", - "351 0.000000 NaN NaN \n", - ".. ... ... ... \n", - "247 0.822241 0.790308 0.977482 \n", - "248 0.868064 1.000000 0.988741 \n", - "249 0.912945 0.920304 1.000000 \n", - "250 0.956910 0.920304 1.000000 \n", - "251 1.000000 0.920304 1.000000 \n", - "\n", - "Indicator Mortality-infants Net migration Ninis R&D GExp \\\n", - "347 1.000000 0.966124 0.77758 0.000000 \n", - "348 1.000000 0.966124 0.77758 0.000000 \n", - "349 0.875324 0.966124 0.77758 0.000000 \n", - "350 0.765220 0.823187 0.77758 0.000000 \n", - "351 0.670984 0.680250 0.77758 0.000000 \n", - ".. ... ... ... ... \n", - "247 0.042573 0.264203 NaN 0.974482 \n", - "248 0.030745 0.243061 NaN 0.984436 \n", - "249 0.019650 0.243061 NaN 1.000000 \n", - "250 0.009383 0.243061 NaN 1.000000 \n", - "251 0.000000 0.243061 NaN 1.000000 \n", - "\n", - "Indicator Renewable electricity Suicide Workers high education \n", - "347 0.000000 0.956522 1.0 \n", - "348 0.002525 0.956522 1.0 \n", - "349 0.004025 0.956522 1.0 \n", - "350 0.005848 0.956522 1.0 \n", - "351 0.011012 0.956522 1.0 \n", - ".. ... ... ... \n", - "247 1.000000 0.016129 NaN \n", - "248 1.000000 0.000000 NaN \n", - "249 1.000000 0.000000 NaN \n", - "250 1.000000 0.000000 NaN \n", - "251 1.000000 0.000000 NaN \n", - "\n", - "[1509 rows x 22 columns]" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "for i in range(0, len(col_to_scale)):\n", - " if data[col_to_scale[i]].isna().sum()>1000:\n", - " del(data[col_to_scale[i]])\n", - " print(col_to_scale[i])\n", - "data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As a result we have dropped the *Gender equality* and *Mortality-pollution* variables." - ] + "Indicator Country Year \\\n", + "352 DEU 1990 \n", + "353 DEU 1991 \n", + "354 DEU 1992 \n", + "355 DEU 1993 \n", + "356 DEU 1994 \n", + ".. ... ... \n", + "251 CHN 2017 \n", + "252 CHN 2018 \n", + "253 CHN 2019 \n", + "254 CHN 2020 \n", + "255 CHN 2021 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking (% of population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 73.2 \n", + "252 75.6 \n", + "253 77.6 \n", + "254 79.4 \n", + "255 79.4 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, rural (% of rural population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 55.2 \n", + "252 59.0 \n", + "253 61.9 \n", + "254 65.2 \n", + "255 65.2 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, urban (% of urban population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 86.2 \n", + "252 87.4 \n", + "253 88.4 \n", + "254 89.4 \n", + "255 89.4 \n", + "\n", + "Indicator Access to electricity (% of population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 100.0 \n", + "252 100.0 \n", + "253 100.0 \n", + "254 100.0 \n", + "255 100.0 \n", + "\n", + "Indicator Access to electricity, rural (% of rural population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 100.0 \n", + "252 100.0 \n", + "253 100.0 \n", + "254 100.0 \n", + "255 100.0 \n", + "\n", + "Indicator Access to electricity, urban (% of urban population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 100.0 \n", + "252 100.0 \n", + "253 100.0 \n", + "254 100.0 \n", + "255 100.0 \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+) \\\n", + "352 98.133621 \n", + "353 98.133621 \n", + "354 98.133621 \n", + "355 98.133621 \n", + "356 98.133621 \n", + ".. ... \n", + "251 80.229118 \n", + "252 80.229118 \n", + "253 80.229118 \n", + "254 80.229118 \n", + "255 80.229118 \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider, female (% of population ages 15+) \\\n", + "352 98.704536 \n", + "353 98.704536 \n", + "354 98.704536 \n", + "355 98.704536 \n", + "356 98.704536 \n", + ".. ... \n", + "251 76.364731 \n", + "252 76.364731 \n", + "253 76.364731 \n", + "254 76.364731 \n", + "255 76.364731 \n", + "\n", + "Indicator ... Urban population growth (annual %) \\\n", + "352 ... 1.056365 \n", + "353 ... 0.934908 \n", + "354 ... 0.884470 \n", + "355 ... 0.843967 \n", + "356 ... 0.636245 \n", + ".. ... ... \n", + "251 ... 2.739664 \n", + "252 ... 2.503401 \n", + "253 ... 2.290177 \n", + "254 ... 2.066047 \n", + "255 ... 2.066047 \n", + "\n", + "Indicator Urban population living in areas where elevation is below 5 meters (% of total population) \\\n", + "352 3.031776 \n", + "353 3.029378 \n", + "354 3.026980 \n", + "355 3.024581 \n", + "356 3.022183 \n", + ".. ... \n", + "251 4.203002 \n", + "252 4.203002 \n", + "253 4.203002 \n", + "254 4.203002 \n", + "255 4.203002 \n", + "\n", + "Indicator Vulnerable employment, female (% of female employment) (modeled ILO estimate) \\\n", + "352 5.700000 \n", + "353 5.700000 \n", + "354 5.740000 \n", + "355 5.850000 \n", + "356 5.610000 \n", + ".. ... \n", + "251 46.530001 \n", + "252 45.720001 \n", + "253 44.760000 \n", + "254 44.760000 \n", + "255 44.760000 \n", + "\n", + "Indicator Vulnerable employment, male (% of male employment) (modeled ILO estimate) \\\n", + "352 4.800000 \n", + "353 4.800000 \n", + "354 4.930000 \n", + "355 5.040000 \n", + "356 5.200000 \n", + ".. ... \n", + "251 42.949999 \n", + "252 41.940001 \n", + "253 40.819999 \n", + "254 40.819999 \n", + "255 40.819999 \n", + "\n", + "Indicator Vulnerable employment, total (% of total employment) (modeled ILO estimate) \\\n", + "352 5.170000 \n", + "353 5.170000 \n", + "354 5.270000 \n", + "355 5.380000 \n", + "356 5.370000 \n", + ".. ... \n", + "251 44.530002 \n", + "252 43.609999 \n", + "253 42.540000 \n", + "254 42.540000 \n", + "255 42.540000 \n", + "\n", + "Indicator Wage and salaried workers, female (% of female employment) (modeled ILO estimate) \\\n", + "352 92.050003 \n", + "353 92.050003 \n", + "354 91.910004 \n", + "355 91.669998 \n", + "356 91.629997 \n", + ".. ... \n", + "251 52.430000 \n", + "252 53.209999 \n", + "253 54.150002 \n", + "254 54.150002 \n", + "255 54.150002 \n", + "\n", + "Indicator Wage and salaried workers, male (% of male employment) (modeled ILO estimate) \\\n", + "352 89.110001 \n", + "353 89.110001 \n", + "354 88.589996 \n", + "355 88.250000 \n", + "356 87.739998 \n", + ".. ... \n", + "251 54.169998 \n", + "252 55.139999 \n", + "253 56.279999 \n", + "254 56.279999 \n", + "255 56.279999 \n", + "\n", + "Indicator Wage and salaried workers, total (% of total employment) (modeled ILO estimate) \\\n", + "352 90.330002 \n", + "353 90.330002 \n", + "354 89.970001 \n", + "355 89.669998 \n", + "356 89.370003 \n", + ".. ... \n", + "251 53.400002 \n", + "252 54.290001 \n", + "253 55.340000 \n", + "254 55.340000 \n", + "255 55.340000 \n", + "\n", + "Indicator Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal) \\\n", + "352 54.519497 \n", + "353 54.519497 \n", + "354 54.519497 \n", + "355 56.039631 \n", + "356 57.559764 \n", + ".. ... \n", + "251 21.358958 \n", + "252 21.358958 \n", + "253 21.358958 \n", + "254 21.358958 \n", + "255 21.358958 \n", + "\n", + "Indicator Women Business and the Law Index Score (scale 1-100) \n", + "352 71.250 \n", + "353 71.250 \n", + "354 71.250 \n", + "355 71.250 \n", + "356 71.250 \n", + ".. ... \n", + "251 75.625 \n", + "252 75.625 \n", + "253 75.625 \n", + "254 75.625 \n", + "255 75.625 \n", + "\n", + "[1536 rows x 1060 columns]" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "number_1=len(data.index)*Slider1.value\n", + "for i in range(0, len(cols)):\n", + " if data[cols[i]].isna().sum()>number_1:\n", + " del(data[cols[i]])\n", + " print(cols[i])\n", + "data" + ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "For the next part of analyzing this data, we think it is gonna be interesting to have it classify by the categories of the Country groups defined before, to which we call \"Continent\". This category is useful as it groups the nations with similar economies or geographical proximity, so we can extract common conclusions from them." + "Afterwards, we have scaled the values. The escalation process has been done dividing each value by the initial one of an indicator (value in 1990). Considering the start point as 1 (initial value divided by itself), each result will show the growth respect to the initial data." ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 33, "metadata": {}, + "outputs": [], "source": [ - "We create a dictionary with the regions and the countries included in each one. Where we will relate the countries and regions so then we can apply the .map function and arrive to the final dataframe." + "columns=data.columns.values.tolist()" ] }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 34, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'DEU': 'Europe', 'FRA': 'Europe', 'SWE': 'Europe', 'GBR': 'Europe', 'ESP': 'Europe', 'HRV': 'Europe', 'POL': 'Europe', 'GRC': 'Europe', 'AUT': 'Europe', 'NLD': 'Europe', 'IRQ': 'Persian Gulf', 'QAT': 'Persian Gulf', 'ARE': 'Persian Gulf', 'SAU': 'Persian Gulf', 'AZE': 'Persian Gulf', 'YEM': 'Persian Gulf', 'YDR': 'Persian Gulf', 'OMN': 'Persian Gulf', 'DZA': 'North Africa', 'EGY': 'North Africa', 'LBY': 'North Africa', 'ISR': 'North Africa', 'TUR': 'North Africa', 'MAR': 'North Africa', 'SEN': 'South Africa', 'ZAF': 'South Africa', 'LBR': 'South Africa', 'MOZ': 'South Africa', 'CMR': 'South Africa', 'NGA': 'South Africa', 'GHA': 'South Africa', 'BGD': 'Asia', 'IND': 'Asia', 'VNM': 'Asia', 'THA': 'Asia', 'IDN': 'Asia', 'PHL': 'Asia', 'KOR': 'Asia', 'MEX': 'Latam', 'BRA': 'Latam', 'ARG': 'Latam', 'PER': 'Latam', 'VEN': 'Latam', 'COL': 'Latam', 'CHL': 'Latam', 'PAN': 'Latam', 'CRI': 'Latam', 'USA': 'Pair', 'CHN': 'Pair'}\n" - ] - } - ], + "outputs": [], "source": [ - "countries_by_region = {\n", - " \"Europe\": ('DEU','FRA','SWE','GBR','ESP','HRV','POL','GRC','AUT','NLD'),\n", - " 'Persian Gulf': ('IRQ','QAT','ARE','SAU','AZE','YEM','YDR','OMN'),\n", - " 'North Africa':('DZA','EGY','LBY','ISR','TUR','MAR'),\n", - " 'South Africa':('SEN','ZAF','LBR','MOZ','CMR','NGA','GHA'),\n", - " 'Asia':('BGD','IND','VNM','THA','IDN','PHL','KOR'),\n", - " 'Latam':('MEX','BRA','ARG','PER','VEN','COL','CHL','PAN','CRI'),\n", - " 'Pair':('USA','CHN')\n", - " }\n", - "\n", - "all_countries = {}\n", - "for region in countries_by_region.keys():\n", - " for country in countries_by_region[region]:\n", - " all_countries[country] = region\n", - "\n", - "print(all_countries)" + "datae=data.loc[data.loc[:, 'Country'] == country_list[0]]\n", + "for i in range(2,len(columns)):\n", + " a=columns[i]\n", + " datae[a]=datae[a]/datae.iloc[0,i]\n", + "datau=datae" ] }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 35, "metadata": {}, "outputs": [ { @@ -4265,147 +4768,147 @@ " Indicator\n", " Country\n", " Year\n", - " Alcohol per capita\n", - " Education GExp\n", - " Employment-agriculture\n", - " Employment-industry\n", - " Employment-services\n", - " Exports-Commercial services\n", - " Exports-G&S\n", - " Fertility rate\n", + " Access to clean fuels and technologies for cooking (% of population)\n", + " Access to clean fuels and technologies for cooking, rural (% of rural population)\n", + " Access to clean fuels and technologies for cooking, urban (% of urban population)\n", + " Access to electricity (% of population)\n", + " Access to electricity, rural (% of rural population)\n", + " Access to electricity, urban (% of urban population)\n", + " Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+)\n", + " Account ownership at a financial institution or with a mobile-money-service provider, female (% of population ages 15+)\n", " ...\n", - " International taxes\n", - " Literacy rate\n", - " Mortality-infants\n", - " Net migration\n", - " Ninis\n", - " R&D GExp\n", - " Renewable electricity\n", - " Suicide\n", - " Workers high education\n", - " Continent\n", + " Urban population growth (annual %)\n", + " Urban population living in areas where elevation is below 5 meters (% of total population)\n", + " Vulnerable employment, female (% of female employment) (modeled ILO estimate)\n", + " Vulnerable employment, male (% of male employment) (modeled ILO estimate)\n", + " Vulnerable employment, total (% of total employment) (modeled ILO estimate)\n", + " Wage and salaried workers, female (% of female employment) (modeled ILO estimate)\n", + " Wage and salaried workers, male (% of male employment) (modeled ILO estimate)\n", + " Wage and salaried workers, total (% of total employment) (modeled ILO estimate)\n", + " Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal)\n", + " Women Business and the Law Index Score (scale 1-100)\n", " \n", " \n", " \n", " \n", - " 347\n", + " 352\n", " DEU\n", " 1990\n", - " 1.00000\n", - " 0.443529\n", " 1.000000\n", " 1.000000\n", - " 0.000000\n", - " 0.002386\n", - " 0.000000\n", - " 0.636364\n", - " ...\n", - " NaN\n", - " NaN\n", " 1.000000\n", - " 0.966124\n", - " 0.77758\n", - " 0.000000\n", - " 0.000000\n", - " 0.956522\n", + " 1.000000\n", + " 1.000000\n", " 1.0\n", - " Europe\n", + " 1.000000\n", + " 1.000000\n", + " ...\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", " \n", " \n", - " 348\n", + " 353\n", " DEU\n", " 1991\n", - " 1.00000\n", - " 0.443529\n", " 1.000000\n", " 1.000000\n", - " 0.000000\n", - " 0.000000\n", - " 0.025535\n", - " 0.272727\n", - " ...\n", - " NaN\n", - " NaN\n", " 1.000000\n", - " 0.966124\n", - " 0.77758\n", - " 0.000000\n", - " 0.002525\n", - " 0.956522\n", + " 1.000000\n", + " 1.000000\n", " 1.0\n", - " Europe\n", + " 1.000000\n", + " 1.000000\n", + " ...\n", + " 0.885023\n", + " 0.999209\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", " \n", " \n", - " 349\n", + " 354\n", " DEU\n", " 1992\n", - " 1.00000\n", - " 0.443529\n", - " 0.964758\n", - " 0.966793\n", - " 0.034321\n", - " 0.018415\n", - " 0.046400\n", - " 0.151515\n", - " ...\n", - " NaN\n", - " NaN\n", - " 0.875324\n", - " 0.966124\n", - " 0.77758\n", - " 0.000000\n", - " 0.004025\n", - " 0.956522\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", " 1.0\n", - " Europe\n", + " 1.000000\n", + " 1.000000\n", + " ...\n", + " 0.837277\n", + " 0.998418\n", + " 1.007018\n", + " 1.027083\n", + " 1.019342\n", + " 0.998479\n", + " 0.994164\n", + " 0.996015\n", + " 1.000000\n", + " 1.000000\n", " \n", " \n", - " 350\n", + " 355\n", " DEU\n", " 1993\n", - " 1.00000\n", - " 0.443529\n", - " 0.942731\n", - " 0.907021\n", - " 0.088143\n", - " 0.012182\n", - " 0.010957\n", - " 0.121212\n", - " ...\n", - " NaN\n", - " NaN\n", - " 0.765220\n", - " 0.823187\n", - " 0.77758\n", - " 0.000000\n", - " 0.005848\n", - " 0.956522\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", " 1.0\n", - " Europe\n", + " 1.000000\n", + " 1.000000\n", + " ...\n", + " 0.798935\n", + " 0.997627\n", + " 1.026316\n", + " 1.050000\n", + " 1.040619\n", + " 0.995872\n", + " 0.990349\n", + " 0.992693\n", + " 1.027882\n", + " 1.000000\n", " \n", " \n", - " 351\n", + " 356\n", " DEU\n", " 1994\n", - " 1.00000\n", - " 0.380220\n", - " 0.903084\n", - " 0.876660\n", - " 0.119345\n", - " 0.018513\n", - " 0.041261\n", - " 0.000000\n", - " ...\n", - " NaN\n", - " NaN\n", - " 0.670984\n", - " 0.680250\n", - " 0.77758\n", - " 0.000000\n", - " 0.011012\n", - " 0.956522\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", + " 1.000000\n", " 1.0\n", - " Europe\n", + " 1.000000\n", + " 1.000000\n", + " ...\n", + " 0.602296\n", + " 0.996836\n", + " 0.984210\n", + " 1.083333\n", + " 1.038685\n", + " 0.995437\n", + " 0.984626\n", + " 0.989372\n", + " 1.055765\n", + " 1.000000\n", " \n", " \n", " ...\n", @@ -4432,450 +4935,411 @@ " ...\n", " \n", " \n", - " 247\n", - " CHN\n", - " 2016\n", - " 0.99002\n", - " 0.246406\n", - " 0.068956\n", - " 0.831461\n", - " 0.867725\n", - " 0.849888\n", - " 0.804316\n", - " 0.588235\n", - " ...\n", - " 0.790308\n", - " 0.977482\n", - " 0.042573\n", - " 0.264203\n", - " NaN\n", - " 0.974482\n", - " 1.000000\n", - " 0.016129\n", - " NaN\n", - " Pair\n", - " \n", - " \n", - " 248\n", + " 251\n", " CHN\n", " 2017\n", - " 0.98004\n", - " 0.212024\n", - " 0.048007\n", - " 0.753933\n", - " 0.917460\n", - " 0.867490\n", - " 0.888169\n", - " 0.647059\n", + " 1.742857\n", + " 2.348936\n", + " 1.261156\n", + " 1.030696\n", + " 1.048707\n", + " 1.0\n", + " 1.257169\n", + " 1.272562\n", " ...\n", - " 1.000000\n", - " 0.988741\n", - " 0.030745\n", - " 0.243061\n", - " NaN\n", - " 0.984436\n", - " 1.000000\n", - " 0.000000\n", - " NaN\n", - " Pair\n", + " 0.635700\n", + " 1.362819\n", + " 0.707250\n", + " 0.617275\n", + " 0.656204\n", + " 1.555786\n", + " 1.984976\n", + " 1.768798\n", + " 8.610987\n", + " 1.273684\n", " \n", " \n", - " 249\n", + " 252\n", " CHN\n", " 2018\n", - " 0.97006\n", - " 0.000000\n", - " 0.021530\n", - " 0.777528\n", - " 0.942152\n", - " 0.953748\n", - " 0.974699\n", - " 0.698529\n", + " 1.800000\n", + " 2.510638\n", + " 1.278713\n", + " 1.030696\n", + " 1.048707\n", + " 1.0\n", + " 1.257169\n", + " 1.272562\n", " ...\n", - " 0.920304\n", - " 1.000000\n", - " 0.019650\n", - " 0.243061\n", - " NaN\n", - " 1.000000\n", - " 1.000000\n", - " 0.000000\n", - " NaN\n", - " Pair\n", + " 0.580879\n", + " 1.362819\n", + " 0.694938\n", + " 0.602759\n", + " 0.642647\n", + " 1.578932\n", + " 2.020520\n", + " 1.798278\n", + " 8.610987\n", + " 1.273684\n", " \n", " \n", - " 250\n", + " 253\n", " CHN\n", " 2019\n", - " 0.97006\n", - " 0.000000\n", - " 0.000000\n", - " 0.676405\n", - " 1.000000\n", - " 1.000000\n", - " 0.964730\n", - " 0.742647\n", + " 1.847619\n", + " 2.634043\n", + " 1.293343\n", + " 1.030696\n", + " 1.048707\n", + " 1.0\n", + " 1.257169\n", + " 1.272562\n", " ...\n", - " 0.920304\n", - " 1.000000\n", - " 0.009383\n", - " 0.243061\n", - " NaN\n", - " 1.000000\n", - " 1.000000\n", - " 0.000000\n", - " NaN\n", - " Pair\n", + " 0.531403\n", + " 1.362819\n", + " 0.680347\n", + " 0.586663\n", + " 0.626879\n", + " 1.606825\n", + " 2.062294\n", + " 1.833057\n", + " 8.610987\n", + " 1.273684\n", " \n", " \n", - " 251\n", + " 254\n", " CHN\n", " 2020\n", - " 0.97006\n", - " 0.000000\n", - " 0.000000\n", - " 0.676405\n", - " 1.000000\n", - " 0.957514\n", - " 1.000000\n", - " 0.772059\n", + " 1.890476\n", + " 2.774468\n", + " 1.307974\n", + " 1.030696\n", + " 1.048707\n", + " 1.0\n", + " 1.257169\n", + " 1.272562\n", " ...\n", - " 0.920304\n", - " 1.000000\n", - " 0.000000\n", - " 0.243061\n", - " NaN\n", - " 1.000000\n", - " 1.000000\n", - " 0.000000\n", - " NaN\n", - " Pair\n", + " 0.479397\n", + " 1.362819\n", + " 0.680347\n", + " 0.586663\n", + " 0.626879\n", + " 1.606825\n", + " 2.062294\n", + " 1.833057\n", + " 8.610987\n", + " 1.273684\n", + " \n", + " \n", + " 255\n", + " CHN\n", + " 2021\n", + " 1.890476\n", + " 2.774468\n", + " 1.307974\n", + " 1.030696\n", + " 1.048707\n", + " 1.0\n", + " 1.257169\n", + " 1.272562\n", + " ...\n", + " 0.479397\n", + " 1.362819\n", + " 0.680347\n", + " 0.586663\n", + " 0.626879\n", + " 1.606825\n", + " 2.062294\n", + " 1.833057\n", + " 8.610987\n", + " 1.273684\n", " \n", " \n", "\n", - "

1509 rows × 23 columns

\n", + "

1536 rows × 1060 columns

\n", "" ], "text/plain": [ - "Indicator Country Year Alcohol per capita Education GExp \\\n", - "347 DEU 1990 1.00000 0.443529 \n", - "348 DEU 1991 1.00000 0.443529 \n", - "349 DEU 1992 1.00000 0.443529 \n", - "350 DEU 1993 1.00000 0.443529 \n", - "351 DEU 1994 1.00000 0.380220 \n", - ".. ... ... ... ... \n", - "247 CHN 2016 0.99002 0.246406 \n", - "248 CHN 2017 0.98004 0.212024 \n", - "249 CHN 2018 0.97006 0.000000 \n", - "250 CHN 2019 0.97006 0.000000 \n", - "251 CHN 2020 0.97006 0.000000 \n", - "\n", - "Indicator Employment-agriculture Employment-industry Employment-services \\\n", - "347 1.000000 1.000000 0.000000 \n", - "348 1.000000 1.000000 0.000000 \n", - "349 0.964758 0.966793 0.034321 \n", - "350 0.942731 0.907021 0.088143 \n", - "351 0.903084 0.876660 0.119345 \n", - ".. ... ... ... \n", - "247 0.068956 0.831461 0.867725 \n", - "248 0.048007 0.753933 0.917460 \n", - "249 0.021530 0.777528 0.942152 \n", - "250 0.000000 0.676405 1.000000 \n", - "251 0.000000 0.676405 1.000000 \n", - "\n", - "Indicator Exports-Commercial services Exports-G&S Fertility rate ... \\\n", - "347 0.002386 0.000000 0.636364 ... \n", - "348 0.000000 0.025535 0.272727 ... \n", - "349 0.018415 0.046400 0.151515 ... \n", - "350 0.012182 0.010957 0.121212 ... \n", - "351 0.018513 0.041261 0.000000 ... \n", - ".. ... ... ... ... \n", - "247 0.849888 0.804316 0.588235 ... \n", - "248 0.867490 0.888169 0.647059 ... \n", - "249 0.953748 0.974699 0.698529 ... \n", - "250 1.000000 0.964730 0.742647 ... \n", - "251 0.957514 1.000000 0.772059 ... \n", - "\n", - "Indicator International taxes Literacy rate Mortality-infants \\\n", - "347 NaN NaN 1.000000 \n", - "348 NaN NaN 1.000000 \n", - "349 NaN NaN 0.875324 \n", - "350 NaN NaN 0.765220 \n", - "351 NaN NaN 0.670984 \n", - ".. ... ... ... \n", - "247 0.790308 0.977482 0.042573 \n", - "248 1.000000 0.988741 0.030745 \n", - "249 0.920304 1.000000 0.019650 \n", - "250 0.920304 1.000000 0.009383 \n", - "251 0.920304 1.000000 0.000000 \n", - "\n", - "Indicator Net migration Ninis R&D GExp Renewable electricity Suicide \\\n", - "347 0.966124 0.77758 0.000000 0.000000 0.956522 \n", - "348 0.966124 0.77758 0.000000 0.002525 0.956522 \n", - "349 0.966124 0.77758 0.000000 0.004025 0.956522 \n", - "350 0.823187 0.77758 0.000000 0.005848 0.956522 \n", - "351 0.680250 0.77758 0.000000 0.011012 0.956522 \n", - ".. ... ... ... ... ... \n", - "247 0.264203 NaN 0.974482 1.000000 0.016129 \n", - "248 0.243061 NaN 0.984436 1.000000 0.000000 \n", - "249 0.243061 NaN 1.000000 1.000000 0.000000 \n", - "250 0.243061 NaN 1.000000 1.000000 0.000000 \n", - "251 0.243061 NaN 1.000000 1.000000 0.000000 \n", - "\n", - "Indicator Workers high education Continent \n", - "347 1.0 Europe \n", - "348 1.0 Europe \n", - "349 1.0 Europe \n", - "350 1.0 Europe \n", - "351 1.0 Europe \n", - ".. ... ... \n", - "247 NaN Pair \n", - "248 NaN Pair \n", - "249 NaN Pair \n", - "250 NaN Pair \n", - "251 NaN Pair \n", - "\n", - "[1509 rows x 23 columns]" + "Indicator Country Year \\\n", + "352 DEU 1990 \n", + "353 DEU 1991 \n", + "354 DEU 1992 \n", + "355 DEU 1993 \n", + "356 DEU 1994 \n", + ".. ... ... \n", + "251 CHN 2017 \n", + "252 CHN 2018 \n", + "253 CHN 2019 \n", + "254 CHN 2020 \n", + "255 CHN 2021 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking (% of population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.742857 \n", + "252 1.800000 \n", + "253 1.847619 \n", + "254 1.890476 \n", + "255 1.890476 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, rural (% of rural population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 2.348936 \n", + "252 2.510638 \n", + "253 2.634043 \n", + "254 2.774468 \n", + "255 2.774468 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, urban (% of urban population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.261156 \n", + "252 1.278713 \n", + "253 1.293343 \n", + "254 1.307974 \n", + "255 1.307974 \n", + "\n", + "Indicator Access to electricity (% of population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.030696 \n", + "252 1.030696 \n", + "253 1.030696 \n", + "254 1.030696 \n", + "255 1.030696 \n", + "\n", + "Indicator Access to electricity, rural (% of rural population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.048707 \n", + "252 1.048707 \n", + "253 1.048707 \n", + "254 1.048707 \n", + "255 1.048707 \n", + "\n", + "Indicator Access to electricity, urban (% of urban population) \\\n", + "352 1.0 \n", + "353 1.0 \n", + "354 1.0 \n", + "355 1.0 \n", + "356 1.0 \n", + ".. ... \n", + "251 1.0 \n", + "252 1.0 \n", + "253 1.0 \n", + "254 1.0 \n", + "255 1.0 \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.257169 \n", + "252 1.257169 \n", + "253 1.257169 \n", + "254 1.257169 \n", + "255 1.257169 \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider, female (% of population ages 15+) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.272562 \n", + "252 1.272562 \n", + "253 1.272562 \n", + "254 1.272562 \n", + "255 1.272562 \n", + "\n", + "Indicator ... Urban population growth (annual %) \\\n", + "352 ... 1.000000 \n", + "353 ... 0.885023 \n", + "354 ... 0.837277 \n", + "355 ... 0.798935 \n", + "356 ... 0.602296 \n", + ".. ... ... \n", + "251 ... 0.635700 \n", + "252 ... 0.580879 \n", + "253 ... 0.531403 \n", + "254 ... 0.479397 \n", + "255 ... 0.479397 \n", + "\n", + "Indicator Urban population living in areas where elevation is below 5 meters (% of total population) \\\n", + "352 1.000000 \n", + "353 0.999209 \n", + "354 0.998418 \n", + "355 0.997627 \n", + "356 0.996836 \n", + ".. ... \n", + "251 1.362819 \n", + "252 1.362819 \n", + "253 1.362819 \n", + "254 1.362819 \n", + "255 1.362819 \n", + "\n", + "Indicator Vulnerable employment, female (% of female employment) (modeled ILO estimate) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.007018 \n", + "355 1.026316 \n", + "356 0.984210 \n", + ".. ... \n", + "251 0.707250 \n", + "252 0.694938 \n", + "253 0.680347 \n", + "254 0.680347 \n", + "255 0.680347 \n", + "\n", + "Indicator Vulnerable employment, male (% of male employment) (modeled ILO estimate) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.027083 \n", + "355 1.050000 \n", + "356 1.083333 \n", + ".. ... \n", + "251 0.617275 \n", + "252 0.602759 \n", + "253 0.586663 \n", + "254 0.586663 \n", + "255 0.586663 \n", + "\n", + "Indicator Vulnerable employment, total (% of total employment) (modeled ILO estimate) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.019342 \n", + "355 1.040619 \n", + "356 1.038685 \n", + ".. ... \n", + "251 0.656204 \n", + "252 0.642647 \n", + "253 0.626879 \n", + "254 0.626879 \n", + "255 0.626879 \n", + "\n", + "Indicator Wage and salaried workers, female (% of female employment) (modeled ILO estimate) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 0.998479 \n", + "355 0.995872 \n", + "356 0.995437 \n", + ".. ... \n", + "251 1.555786 \n", + "252 1.578932 \n", + "253 1.606825 \n", + "254 1.606825 \n", + "255 1.606825 \n", + "\n", + "Indicator Wage and salaried workers, male (% of male employment) (modeled ILO estimate) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 0.994164 \n", + "355 0.990349 \n", + "356 0.984626 \n", + ".. ... \n", + "251 1.984976 \n", + "252 2.020520 \n", + "253 2.062294 \n", + "254 2.062294 \n", + "255 2.062294 \n", + "\n", + "Indicator Wage and salaried workers, total (% of total employment) (modeled ILO estimate) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 0.996015 \n", + "355 0.992693 \n", + "356 0.989372 \n", + ".. ... \n", + "251 1.768798 \n", + "252 1.798278 \n", + "253 1.833057 \n", + "254 1.833057 \n", + "255 1.833057 \n", + "\n", + "Indicator Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.027882 \n", + "356 1.055765 \n", + ".. ... \n", + "251 8.610987 \n", + "252 8.610987 \n", + "253 8.610987 \n", + "254 8.610987 \n", + "255 8.610987 \n", + "\n", + "Indicator Women Business and the Law Index Score (scale 1-100) \n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.273684 \n", + "252 1.273684 \n", + "253 1.273684 \n", + "254 1.273684 \n", + "255 1.273684 \n", + "\n", + "[1536 rows x 1060 columns]" ] }, - "execution_count": 34, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "data['Continent']=data['Country'].map(all_countries)\n", - "Goldendataframe=data\n", - "Goldendataframe" + "for u in range(1,len(country_list)):\n", + " datae=data.loc[data.loc[:, 'Country'] == country_list[u]] \n", + " for i in range(2,len(columns)):\n", + " a=columns[i]\n", + " datae[a]=datae[a]/datae.iloc[0,i]\n", + " datau=pd.concat((datau, datae), axis = 0)\n", + "datau" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "With that all, we export our dataframe all-in-one and by the continent category." - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "Goldendataframe.to_csv(os.getcwd()+'/Data/GoldenDataFrame.csv')" + "As later on we want to study the correlations with time moved, we need to create new columns for it. The reason why is because, maybe the effect of a variable does not happen until a couple of years later. The time movements that have been considered are those of the Fibonacci serie within our time period. \n", + "\n", + "The following pictures helps to realize the behaviour that we were explaining. \n", + "\n", + "![](https://raw.githubusercontent.com/devonfw-forge/python-data-driven-decisions/main-the-big-three/Logos/Time%20moved.JPG)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, - "outputs": [], - "source": [ - "for region, data in Goldendataframe.groupby('Continent'):\n", - " data.to_csv(os.getcwd()+'/Data/{}.csv'.format(region))" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "columns=['Country','Year','Exports-Commercial services','Renewable electricity','Employment-agriculture','Employment-industry','Employment-services','Exports-G&S','Fertility rate','Foreign investment','GDP','Education GExp','Workers high education','Literacy rate','Net migration','Mortality-infants','Health services use','R&D GExp','Ninis','Suicide','International taxes','Alcohol per capita']\n", - "clist=Goldendataframe['Country'].unique()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the following cell, we have defined a function that will allow us to calculate the different posibilities of relations: cuadratic, cubic and logaritmic." - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "def multcolumn(frame):\n", - " for u in range(3, len(columns)):\n", - " name2=columns[u]+'.^2'\n", - " name3=columns[u]+'.^3'\n", - " namelog=columns[u]+'.log'\n", - " frame.loc[:,name2] = frame[columns[u]]**2\n", - " frame.loc[:,name3] = frame[columns[u]]**3\n", - " frame.loc[:,namelog] = np.log(frame[columns[u]])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Moreover, we want to know the correlation between all the variables, so to acomplish this, we have created the following loop, which will help us create a new dataframe where we will have: the *Indicator*, the *Type* of relation, the value of the *R^2*, its *Behaviour*, the *Country* and the *Continent*." - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "df= pd.read_csv (os.getcwd()+'/Data/'+'GoldenDataFrame.csv')\n", - "multcolumn(df)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Firstly we need to calculate the correlation table for each country, therefore we use the basic function `corr()` which provides the Pearson correlation table, as well as a filter for the countries." - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "dat=df.loc[df.loc[:, 'Country'] == clist[0]]\n", - "cor=dat.corr()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Then we calculate the coefficient of determination which is the correlation squared." - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "cor.loc[:,'R^2 Pearson'] = cor['GDP']**2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Moreover, we are going to create new columns to know which *Indicator* are we talking about, and the *Type* of correlation that is being analyzed (linear, cuadratic, cubic or logarithmic)" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "cor.loc[:,'Indicator']=cor.index\n", - "cor[['Indicator','Type']]=cor.Indicator.str.split('.',expand=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we can apply the filter we have consider that is enough, R^2>=0.75 to filter the correlations." - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [], - "source": [ - "corcolumn=cor[['Indicator','Type','R^2 Pearson','GDP']]\n", - "corcolumn=corcolumn.loc[corcolumn.loc[:, 'R^2 Pearson'] >= 0.75]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Furthermore, we add all the columns that we have created into a data frame, thanks to the following cell." - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [], - "source": [ - "id=corcolumn.groupby('Indicator')['R^2 Pearson'].transform(max)==corcolumn['R^2 Pearson']\n", - "corcolumn[id]\n", - "max_df=pd.DataFrame(corcolumn[id])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here, we conmute the values, by expressions. For example if the correlation is positive, we want in the new column called *Behaviour* the word Positive. Or for the *Type* column if the greatest correlation is cuadratic we want to put, Cuadratic." - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [], - "source": [ - "max_df['Behaviour']=np.where(max_df['GDP']>0, 'Positive', 'Negative')\n", - "max_df['Type']=max_df['Type'].replace(['^2','^3','log'],['Cuadratic','Cubic','Logarithmic'])\n", - "max_df['Country']= clist[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In addition, we also drop the columns which do not add any value, as *GDP*, *Year*, and *Unnamed:0*." - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "max_df.drop(\"GDP\",axis=1,inplace=True)\n", - "max_df=max_df.reset_index(drop=True)\n", - "max_df = max_df.drop(max_df[max_df['Indicator']=='Year'].index)\n", - "max_df = max_df.drop(max_df[max_df['Indicator']=='GDP'].index)\n", - "max_df = max_df.drop(max_df[max_df['Indicator']=='Unnamed: 0'].index)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And finnally we sort the values in descending order by the column *R^2 Pearson*." - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "max_df=max_df.sort_values(by = 'R^2 Pearson',ascending = False)\n", - "demo2=max_df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So, we can do it with all the countries and create just one dataframe." - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, "outputs": [ { "data": { @@ -4897,60 +5361,150 @@ "\n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4960,456 +5514,22517 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
IndicatorTypeR^2 PearsonBehaviourCountryContinentYearAccess to clean fuels and technologies for cooking (% of population)Access to clean fuels and technologies for cooking, rural (% of rural population)Access to clean fuels and technologies for cooking, urban (% of urban population)Access to electricity (% of population)Access to electricity, rural (% of rural population)Access to electricity, urban (% of urban population)Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+)Account ownership at a financial institution or with a mobile-money-service provider, female (% of population ages 15+)...Wage and salaried workers, total (% of total employment) (modeled ILO estimate)Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal)Women Business and the Law Index Score (scale 1-100)GDP (current US$)+1GDP (current US$)+2GDP (current US$)+3GDP (current US$)+5GDP (current US$)+8GDP (current US$)+13GDP (current US$)+21
5Exports-G&SNone0.954928Positive352DEUEurope19901.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...1.0000001.0000001.000000NaNNaNNaNNaNNaNNaNNaN
7Health services useNone0.916594Positive353DEUEurope19911.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...1.0000001.0000001.0000001.000000NaNNaNNaNNaNNaNNaN
4Exports-Commercial servicesNone0.911725Positive354DEUEurope19921.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...0.9960151.0000001.0000001.0549051.000000NaNNaNNaNNaNNaN
10Employment-servicesCuadratic0.883525Positive355DEUEurope19931.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...0.9926931.0278821.0000001.2031421.0549051.000000NaNNaNNaNNaN
12Alcohol per capitaCubic0.875820Negative356DEUEurope19941.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...0.9893721.0557651.0000001.1691361.2031421.054905NaNNaNNaNNaN
.........................................................
6SuicideNone0.922759NegativeCHNPair
5Renewable electricityNone0.912560Positive251CHNPair20171.7428572.3489361.2611561.0306961.0487071.01.2571691.272562...1.7687988.6109871.27368431.12936230.65348629.02993823.64429214.1377065.4186062.393592
2Exports-Commercial servicesNone0.879177Positive252CHNPair20181.8000002.5106381.2787131.0306961.0487071.01.2571691.272562...1.7982788.6109871.27368434.11428431.12936230.65348626.52125916.8685896.3348092.664772
14Alcohol per capitaCuadratic0.867314Positive253CHNPair20191.8476192.6340431.2933431.0306961.0487071.01.2571691.272562...1.8330578.6109871.27368438.50495534.11428431.12936229.02993820.9265197.6266362.851657
10Literacy rateCubic0.840397Positive254CHNPair20201.8904762.7744681.3079741.0306961.0487071.01.2571691.272562...1.8330578.6109871.27368439.57218938.50495534.11428430.65348623.6442929.8386173.031657
255CHN20211.8904762.7744681.3079741.0306961.0487071.01.2571691.272562...1.8330578.6109871.27368440.79924639.57218938.50495531.12936226.52125912.7316233.356853
\n", - "

444 rows × 6 columns

\n", + "

1536 rows × 1067 columns

\n", "" ], "text/plain": [ - " Indicator Type R^2 Pearson Behaviour Country \\\n", - "5 Exports-G&S None 0.954928 Positive DEU \n", - "7 Health services use None 0.916594 Positive DEU \n", - "4 Exports-Commercial services None 0.911725 Positive DEU \n", - "10 Employment-services Cuadratic 0.883525 Positive DEU \n", - "12 Alcohol per capita Cubic 0.875820 Negative DEU \n", - ".. ... ... ... ... ... \n", - "6 Suicide None 0.922759 Negative CHN \n", - "5 Renewable electricity None 0.912560 Positive CHN \n", - "2 Exports-Commercial services None 0.879177 Positive CHN \n", - "14 Alcohol per capita Cuadratic 0.867314 Positive CHN \n", - "10 Literacy rate Cubic 0.840397 Positive CHN \n", - "\n", - " Continent \n", - "5 Europe \n", - "7 Europe \n", - "4 Europe \n", - "10 Europe \n", - "12 Europe \n", - ".. ... \n", - "6 Pair \n", - "5 Pair \n", - "2 Pair \n", - "14 Pair \n", - "10 Pair \n", - "\n", - "[444 rows x 6 columns]" + "Indicator Country Year \\\n", + "352 DEU 1990 \n", + "353 DEU 1991 \n", + "354 DEU 1992 \n", + "355 DEU 1993 \n", + "356 DEU 1994 \n", + ".. ... ... \n", + "251 CHN 2017 \n", + "252 CHN 2018 \n", + "253 CHN 2019 \n", + "254 CHN 2020 \n", + "255 CHN 2021 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking (% of population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.742857 \n", + "252 1.800000 \n", + "253 1.847619 \n", + "254 1.890476 \n", + "255 1.890476 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, rural (% of rural population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 2.348936 \n", + "252 2.510638 \n", + "253 2.634043 \n", + "254 2.774468 \n", + "255 2.774468 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, urban (% of urban population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.261156 \n", + "252 1.278713 \n", + "253 1.293343 \n", + "254 1.307974 \n", + "255 1.307974 \n", + "\n", + "Indicator Access to electricity (% of population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.030696 \n", + "252 1.030696 \n", + "253 1.030696 \n", + "254 1.030696 \n", + "255 1.030696 \n", + "\n", + "Indicator Access to electricity, rural (% of rural population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.048707 \n", + "252 1.048707 \n", + "253 1.048707 \n", + "254 1.048707 \n", + "255 1.048707 \n", + "\n", + "Indicator Access to electricity, urban (% of urban population) \\\n", + "352 1.0 \n", + "353 1.0 \n", + "354 1.0 \n", + "355 1.0 \n", + "356 1.0 \n", + ".. ... \n", + "251 1.0 \n", + "252 1.0 \n", + "253 1.0 \n", + "254 1.0 \n", + "255 1.0 \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.257169 \n", + "252 1.257169 \n", + "253 1.257169 \n", + "254 1.257169 \n", + "255 1.257169 \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider, female (% of population ages 15+) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.272562 \n", + "252 1.272562 \n", + "253 1.272562 \n", + "254 1.272562 \n", + "255 1.272562 \n", + "\n", + "Indicator ... \\\n", + "352 ... \n", + "353 ... \n", + "354 ... \n", + "355 ... \n", + "356 ... \n", + ".. ... \n", + "251 ... \n", + "252 ... \n", + "253 ... \n", + "254 ... \n", + "255 ... \n", + "\n", + "Indicator Wage and salaried workers, total (% of total employment) (modeled ILO estimate) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 0.996015 \n", + "355 0.992693 \n", + "356 0.989372 \n", + ".. ... \n", + "251 1.768798 \n", + "252 1.798278 \n", + "253 1.833057 \n", + "254 1.833057 \n", + "255 1.833057 \n", + "\n", + "Indicator Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.027882 \n", + "356 1.055765 \n", + ".. ... \n", + "251 8.610987 \n", + "252 8.610987 \n", + "253 8.610987 \n", + "254 8.610987 \n", + "255 8.610987 \n", + "\n", + "Indicator Women Business and the Law Index Score (scale 1-100) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.273684 \n", + "252 1.273684 \n", + "253 1.273684 \n", + "254 1.273684 \n", + "255 1.273684 \n", + "\n", + "Indicator GDP (current US$)+1 GDP (current US$)+2 GDP (current US$)+3 \\\n", + "352 NaN NaN NaN \n", + "353 1.000000 NaN NaN \n", + "354 1.054905 1.000000 NaN \n", + "355 1.203142 1.054905 1.000000 \n", + "356 1.169136 1.203142 1.054905 \n", + ".. ... ... ... \n", + "251 31.129362 30.653486 29.029938 \n", + "252 34.114284 31.129362 30.653486 \n", + "253 38.504955 34.114284 31.129362 \n", + "254 39.572189 38.504955 34.114284 \n", + "255 40.799246 39.572189 38.504955 \n", + "\n", + "Indicator GDP (current US$)+5 GDP (current US$)+8 GDP (current US$)+13 \\\n", + "352 NaN NaN NaN \n", + "353 NaN NaN NaN \n", + "354 NaN NaN NaN \n", + "355 NaN NaN NaN \n", + "356 NaN NaN NaN \n", + ".. ... ... ... \n", + "251 23.644292 14.137706 5.418606 \n", + "252 26.521259 16.868589 6.334809 \n", + "253 29.029938 20.926519 7.626636 \n", + "254 30.653486 23.644292 9.838617 \n", + "255 31.129362 26.521259 12.731623 \n", + "\n", + "Indicator GDP (current US$)+21 \n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 2.393592 \n", + "252 2.664772 \n", + "253 2.851657 \n", + "254 3.031657 \n", + "255 3.356853 \n", + "\n", + "[1536 rows x 1067 columns]" ] }, - "execution_count": 48, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "for i in range(1,len(clist)):\n", - " dat=df.loc[df.loc[:, 'Country'] == clist[i]]\n", - " cor=dat.corr() \n", - " cor.loc[:,'R^2 Pearson'] = cor['GDP']**2\n", - " cor.loc[:,'Indicator']=cor.index\n", - " cor[['Indicator','Type']]=cor.Indicator.str.split('.',expand=True) \n", - " corcolumn=cor[['Indicator','Type','R^2 Pearson','GDP']]\n", - " corcolumn=corcolumn.loc[corcolumn.loc[:, 'R^2 Pearson'] >= 0.75]\n", - " id=corcolumn.groupby('Indicator')['R^2 Pearson'].transform(max)==corcolumn['R^2 Pearson']\n", - " corcolumn[id]\n", - " max_df=pd.DataFrame(corcolumn[id])\n", - " max_df['Behaviour']=np.where(max_df['GDP']>0, 'Positive', 'Negative')\n", - " max_df['Type']=max_df['Type'].replace(['^2','^3','log'],['Cuadratic','Cubic','Logarithmic'])\n", - " max_df['Country']= clist[i]\n", - " max_df.drop(\"GDP\",axis=1,inplace=True)\n", - " max_df=max_df.reset_index(drop=True)\n", - " max_df = max_df.drop(max_df[max_df['Indicator']=='Year'].index)\n", - " max_df = max_df.drop(max_df[max_df['Indicator']=='GDP'].index)\n", - " max_df = max_df.drop(max_df[max_df['Indicator']=='Unnamed: 0'].index)\n", - " max_df=max_df.sort_values(by = 'R^2 Pearson',ascending = False)\n", - " demo2=pd.concat((demo2, max_df), axis = 0)\n", - "demo2['Continent']=demo2['Country'].map(all_countries)\n", - "demo2" + "shifted=pd.DataFrame()\n", + "for i in range(0,len(country_list)):\n", + " dat=datau.loc[datau.loc[:, 'Country'] == country_list[i]]\n", + " dat['GDP (current US$)+1']=dat['GDP (current US$)'].shift(periods=1)\n", + " dat['GDP (current US$)+2']=dat['GDP (current US$)'].shift(periods=2)\n", + " dat['GDP (current US$)+3']=dat['GDP (current US$)'].shift(periods=3)\n", + " dat['GDP (current US$)+5']=dat['GDP (current US$)'].shift(periods=5)\n", + " dat['GDP (current US$)+8']=dat['GDP (current US$)'].shift(periods=8)\n", + " dat['GDP (current US$)+13']=dat['GDP (current US$)'].shift(periods=13)\n", + " dat['GDP (current US$)+21']=dat['GDP (current US$)'].shift(periods=21)\n", + " shifted=pd.concat((shifted, dat), axis = 0)\n", + "shifted" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "data=shifted" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the next part of analyzing this data, we think it is gonna be interesting to have it classify by the categories of the Country groups defined before, to which we call \"Continent\". This category is useful as it groups the nations with similar economies or geographical proximity, so we can extract common conclusions from them." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Now that we’ve loaded the data, we can start right away to create widgets. These widgets are essentials to add interactivity to our visualizations. We’re going to use two widgets: both, multiple selection widgets. To create these widgets, we can use `ipywidgets` library that is available for Jupyter Notebook.\n", + "We create a dictionary with the regions and the countries included in each one. Where we will relate the countries and regions so then we can apply the .map function and arrive to the final dataframe." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'DEU': 'Europe', 'FRA': 'Europe', 'SWE': 'Europe', 'GBR': 'Europe', 'ESP': 'Europe', 'HRV': 'Europe', 'POL': 'Europe', 'GRC': 'Europe', 'AUT': 'Europe', 'NLD': 'Europe', 'IRQ': 'Persian Gulf', 'QAT': 'Persian Gulf', 'ARE': 'Persian Gulf', 'SAU': 'Persian Gulf', 'AZE': 'Persian Gulf', 'YEM': 'Persian Gulf', 'YDR': 'Persian Gulf', 'OMN': 'Persian Gulf', 'DZA': 'North Africa', 'EGY': 'North Africa', 'LBY': 'North Africa', 'ISR': 'North Africa', 'TUR': 'North Africa', 'MAR': 'North Africa', 'SEN': 'South Africa', 'ZAF': 'South Africa', 'LBR': 'South Africa', 'MOZ': 'South Africa', 'CMR': 'South Africa', 'NGA': 'South Africa', 'GHA': 'South Africa', 'BGD': 'Asia', 'IND': 'Asia', 'VNM': 'Asia', 'THA': 'Asia', 'IDN': 'Asia', 'PHL': 'Asia', 'KOR': 'Asia', 'MEX': 'Latam', 'BRA': 'Latam', 'ARG': 'Latam', 'PER': 'Latam', 'VEN': 'Latam', 'COL': 'Latam', 'CHL': 'Latam', 'PAN': 'Latam', 'CRI': 'Latam', 'USA': 'Pair', 'CHN': 'Pair'}\n" + ] + } + ], + "source": [ + "countries_by_region = {\n", + " \"Europe\": ('DEU','FRA','SWE','GBR','ESP','HRV','POL','GRC','AUT','NLD'),\n", + " 'Persian Gulf': ('IRQ','QAT','ARE','SAU','AZE','YEM','YDR','OMN'),\n", + " 'North Africa':('DZA','EGY','LBY','ISR','TUR','MAR'),\n", + " 'South Africa':('SEN','ZAF','LBR','MOZ','CMR','NGA','GHA'),\n", + " 'Asia':('BGD','IND','VNM','THA','IDN','PHL','KOR'),\n", + " 'Latam':('MEX','BRA','ARG','PER','VEN','COL','CHL','PAN','CRI'),\n", + " 'Pair':('USA','CHN')\n", + " }\n", "\n", - "The first widget that we are going to create is the multiple selection widget. We can do this by using `SelectMultiple()attribute` from `ipywidgets`. With this widget, we have the option to visualize the R^2 only in particular selection of indicators instead of all.\n", + "all_countries = {}\n", + "for region in countries_by_region.keys():\n", + " for country in countries_by_region[region]:\n", + " all_countries[country] = region\n", "\n", - "The first argument that we should specify is `options` , which should contain the list of available options of our variable (in our case different indicators). The next one is `value` , which should contain the variable values that we want to display as default, and then `description` is for the text field to describe the name of the widget.The rest of options are just visual details." + "print(all_countries)" ] }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 39, "metadata": {}, "outputs": [ { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "db323d6bd0264921b895b26f4aff87d8", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "interactive(children=(SelectMultiple(description='Indicator', index=(0,), layout=Layout(height='80px', width='…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "coloraxis": "coloraxis", - "customdata": [ - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - "Cuadratic", - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - "Cuadratic", - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - null, - "Positive" - ], - [ - "Cuadratic", - "Positive" - ] - ], - "geo": "geo", - "hovertemplate": "%{hovertext}

Country=%{location}
Type=%{customdata[0]}
Behaviour=%{customdata[1]}
R^2 Pearson=%{z}", - "hovertext": [ - "DEU", - "FRA", - "SWE", - "GBR", - "ESP", - "HRV", - "POL", - "AUT", - "NLD", - "IRQ", - "QAT", - "ARE", - "SAU", - "AZE", - "OMN", - "LBY", - "ISR", - "TUR", - "MAR", - "SEN", - "ZAF", - "MOZ", - "CMR", - "GHA", - "BGD", - "IND", - "VNM", - "THA", - "IDN", - "PHL", - "KOR", - "MEX", - "BRA", - "PER", - "VEN", - "COL", - "CHL", - "PAN", - "CRI", - "USA", - "CHN" - ], - "locationmode": "ISO-3", - "locations": [ + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorCountryYearAccess to clean fuels and technologies for cooking (% of population)Access to clean fuels and technologies for cooking, rural (% of rural population)Access to clean fuels and technologies for cooking, urban (% of urban population)Access to electricity (% of population)Access to electricity, rural (% of rural population)Access to electricity, urban (% of urban population)Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+)Account ownership at a financial institution or with a mobile-money-service provider, female (% of population ages 15+)...Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal)Women Business and the Law Index Score (scale 1-100)GDP (current US$)+1GDP (current US$)+2GDP (current US$)+3GDP (current US$)+5GDP (current US$)+8GDP (current US$)+13GDP (current US$)+21Continent
352DEU19901.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...1.0000001.000000NaNNaNNaNNaNNaNNaNNaNEurope
353DEU19911.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...1.0000001.0000001.000000NaNNaNNaNNaNNaNNaNEurope
354DEU19921.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...1.0000001.0000001.0549051.000000NaNNaNNaNNaNNaNEurope
355DEU19931.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...1.0278821.0000001.2031421.0549051.000000NaNNaNNaNNaNEurope
356DEU19941.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...1.0557651.0000001.1691361.2031421.054905NaNNaNNaNNaNEurope
..................................................................
251CHN20171.7428572.3489361.2611561.0306961.0487071.01.2571691.272562...8.6109871.27368431.12936230.65348629.02993823.64429214.1377065.4186062.393592Pair
252CHN20181.8000002.5106381.2787131.0306961.0487071.01.2571691.272562...8.6109871.27368434.11428431.12936230.65348626.52125916.8685896.3348092.664772Pair
253CHN20191.8476192.6340431.2933431.0306961.0487071.01.2571691.272562...8.6109871.27368438.50495534.11428431.12936229.02993820.9265197.6266362.851657Pair
254CHN20201.8904762.7744681.3079741.0306961.0487071.01.2571691.272562...8.6109871.27368439.57218938.50495534.11428430.65348623.6442929.8386173.031657Pair
255CHN20211.8904762.7744681.3079741.0306961.0487071.01.2571691.272562...8.6109871.27368440.79924639.57218938.50495531.12936226.52125912.7316233.356853Pair
\n", + "

1536 rows × 1068 columns

\n", + "
" + ], + "text/plain": [ + "Indicator Country Year \\\n", + "352 DEU 1990 \n", + "353 DEU 1991 \n", + "354 DEU 1992 \n", + "355 DEU 1993 \n", + "356 DEU 1994 \n", + ".. ... ... \n", + "251 CHN 2017 \n", + "252 CHN 2018 \n", + "253 CHN 2019 \n", + "254 CHN 2020 \n", + "255 CHN 2021 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking (% of population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.742857 \n", + "252 1.800000 \n", + "253 1.847619 \n", + "254 1.890476 \n", + "255 1.890476 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, rural (% of rural population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 2.348936 \n", + "252 2.510638 \n", + "253 2.634043 \n", + "254 2.774468 \n", + "255 2.774468 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, urban (% of urban population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.261156 \n", + "252 1.278713 \n", + "253 1.293343 \n", + "254 1.307974 \n", + "255 1.307974 \n", + "\n", + "Indicator Access to electricity (% of population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.030696 \n", + "252 1.030696 \n", + "253 1.030696 \n", + "254 1.030696 \n", + "255 1.030696 \n", + "\n", + "Indicator Access to electricity, rural (% of rural population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.048707 \n", + "252 1.048707 \n", + "253 1.048707 \n", + "254 1.048707 \n", + "255 1.048707 \n", + "\n", + "Indicator Access to electricity, urban (% of urban population) \\\n", + "352 1.0 \n", + "353 1.0 \n", + "354 1.0 \n", + "355 1.0 \n", + "356 1.0 \n", + ".. ... \n", + "251 1.0 \n", + "252 1.0 \n", + "253 1.0 \n", + "254 1.0 \n", + "255 1.0 \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.257169 \n", + "252 1.257169 \n", + "253 1.257169 \n", + "254 1.257169 \n", + "255 1.257169 \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider, female (% of population ages 15+) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.272562 \n", + "252 1.272562 \n", + "253 1.272562 \n", + "254 1.272562 \n", + "255 1.272562 \n", + "\n", + "Indicator ... \\\n", + "352 ... \n", + "353 ... \n", + "354 ... \n", + "355 ... \n", + "356 ... \n", + ".. ... \n", + "251 ... \n", + "252 ... \n", + "253 ... \n", + "254 ... \n", + "255 ... \n", + "\n", + "Indicator Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.027882 \n", + "356 1.055765 \n", + ".. ... \n", + "251 8.610987 \n", + "252 8.610987 \n", + "253 8.610987 \n", + "254 8.610987 \n", + "255 8.610987 \n", + "\n", + "Indicator Women Business and the Law Index Score (scale 1-100) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.273684 \n", + "252 1.273684 \n", + "253 1.273684 \n", + "254 1.273684 \n", + "255 1.273684 \n", + "\n", + "Indicator GDP (current US$)+1 GDP (current US$)+2 GDP (current US$)+3 \\\n", + "352 NaN NaN NaN \n", + "353 1.000000 NaN NaN \n", + "354 1.054905 1.000000 NaN \n", + "355 1.203142 1.054905 1.000000 \n", + "356 1.169136 1.203142 1.054905 \n", + ".. ... ... ... \n", + "251 31.129362 30.653486 29.029938 \n", + "252 34.114284 31.129362 30.653486 \n", + "253 38.504955 34.114284 31.129362 \n", + "254 39.572189 38.504955 34.114284 \n", + "255 40.799246 39.572189 38.504955 \n", + "\n", + "Indicator GDP (current US$)+5 GDP (current US$)+8 GDP (current US$)+13 \\\n", + "352 NaN NaN NaN \n", + "353 NaN NaN NaN \n", + "354 NaN NaN NaN \n", + "355 NaN NaN NaN \n", + "356 NaN NaN NaN \n", + ".. ... ... ... \n", + "251 23.644292 14.137706 5.418606 \n", + "252 26.521259 16.868589 6.334809 \n", + "253 29.029938 20.926519 7.626636 \n", + "254 30.653486 23.644292 9.838617 \n", + "255 31.129362 26.521259 12.731623 \n", + "\n", + "Indicator GDP (current US$)+21 Continent \n", + "352 NaN Europe \n", + "353 NaN Europe \n", + "354 NaN Europe \n", + "355 NaN Europe \n", + "356 NaN Europe \n", + ".. ... ... \n", + "251 2.393592 Pair \n", + "252 2.664772 Pair \n", + "253 2.851657 Pair \n", + "254 3.031657 Pair \n", + "255 3.356853 Pair \n", + "\n", + "[1536 rows x 1068 columns]" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data['Continent']=data['Country'].map(all_countries)\n", + "Goldendataframe=data\n", + "Goldendataframe" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With that all, we export our dataframe all-in-one and by the continent category." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "Goldendataframe.to_csv(os.getcwd()+'/Data/GoldenDataFrame.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "for region, data in Goldendataframe.groupby('Continent'):\n", + " data.to_csv(os.getcwd()+'/Data/{}.csv'.format(region))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Categorization of variables" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this section, we are going to attempt a categorization of the whole of the variables, which most of them come the same sources and just differ in the units that are measured, or the total that they are refering, between others. For a simpler treatment of the data, the variables have been pivoted into the same column." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "columns_golden=list(Goldendataframe.columns)\n", + "del columns_golden[0:2]" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicator0Short indicator
0DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...
1DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...
2DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...
3DEU1990EuropeAccess to electricity (% of population)1.000000Access to electricity (% of population)
4DEU1990EuropeAccess to electricity, rural (% of rural popul...1.000000Access to electricity, rural (% of rural popul...
.....................
1540358CHN2021PairGDP (current US$)+338.504955GDP (current US$)+3
1540359CHN2021PairGDP (current US$)+531.129362GDP (current US$)+5
1540360CHN2021PairGDP (current US$)+826.521259GDP (current US$)+8
1540361CHN2021PairGDP (current US$)+1312.731623GDP (current US$)+13
1540362CHN2021PairGDP (current US$)+213.356853GDP (current US$)+21
\n", + "

1540363 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "1 DEU 1990 Europe \n", + "2 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "4 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator 0 \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "1 Access to clean fuels and technologies for coo... 1.000000 \n", + "2 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity (% of population) 1.000000 \n", + "4 Access to electricity, rural (% of rural popul... 1.000000 \n", + "... ... ... \n", + "1540358 GDP (current US$)+3 38.504955 \n", + "1540359 GDP (current US$)+5 31.129362 \n", + "1540360 GDP (current US$)+8 26.521259 \n", + "1540361 GDP (current US$)+13 12.731623 \n", + "1540362 GDP (current US$)+21 3.356853 \n", + "\n", + " Short indicator \n", + "0 Access to clean fuels and technologies for coo... \n", + "1 Access to clean fuels and technologies for coo... \n", + "2 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity (% of population) \n", + "4 Access to electricity, rural (% of rural popul... \n", + "... ... \n", + "1540358 GDP (current US$)+3 \n", + "1540359 GDP (current US$)+5 \n", + "1540360 GDP (current US$)+8 \n", + "1540361 GDP (current US$)+13 \n", + "1540362 GDP (current US$)+21 \n", + "\n", + "[1540363 rows x 6 columns]" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Categorization=Goldendataframe.set_index(['Country','Year', 'Continent']).stack().reset_index()\n", + "Categorization['Short indicator']=Categorization['Indicator']\n", + "Categorization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " There are some indicators which represent exactly the same through different units, so, we are going to select only one type. For example, in monetary cases, indicators which are expressed with current US $ has been selected. Then, which are showed with the percentage and the total value, we have programmed to selct which ones which show a greater value.\n", + "\n", + "The links used to learn about these functions have been:\n", + "\n", + "https://www.geeksforgeeks.org/how-to-drop-rows-that-contain-a-specific-string-in-pandas/ \n", + "\n", + "https://www.statology.org/pandas-drop-rows-that-contain-string/ " + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicator0Short indicator
0DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...
1DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...
2DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...
3DEU1990EuropeAccess to electricity (% of population)1.000000Access to electricity (% of population)
4DEU1990EuropeAccess to electricity, rural (% of rural popul...1.000000Access to electricity, rural (% of rural popul...
.....................
1540358CHN2021PairGDP (current US$)+338.504955GDP (current US$)+3
1540359CHN2021PairGDP (current US$)+531.129362GDP (current US$)+5
1540360CHN2021PairGDP (current US$)+826.521259GDP (current US$)+8
1540361CHN2021PairGDP (current US$)+1312.731623GDP (current US$)+13
1540362CHN2021PairGDP (current US$)+213.356853GDP (current US$)+21
\n", + "

1372098 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "1 DEU 1990 Europe \n", + "2 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "4 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator 0 \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "1 Access to clean fuels and technologies for coo... 1.000000 \n", + "2 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity (% of population) 1.000000 \n", + "4 Access to electricity, rural (% of rural popul... 1.000000 \n", + "... ... ... \n", + "1540358 GDP (current US$)+3 38.504955 \n", + "1540359 GDP (current US$)+5 31.129362 \n", + "1540360 GDP (current US$)+8 26.521259 \n", + "1540361 GDP (current US$)+13 12.731623 \n", + "1540362 GDP (current US$)+21 3.356853 \n", + "\n", + " Short indicator \n", + "0 Access to clean fuels and technologies for coo... \n", + "1 Access to clean fuels and technologies for coo... \n", + "2 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity (% of population) \n", + "4 Access to electricity, rural (% of rural popul... \n", + "... ... \n", + "1540358 GDP (current US$)+3 \n", + "1540359 GDP (current US$)+5 \n", + "1540360 GDP (current US$)+8 \n", + "1540361 GDP (current US$)+13 \n", + "1540362 GDP (current US$)+21 \n", + "\n", + "[1372098 rows x 6 columns]" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import re\n", + "discard=[\"annual % growth\",\"constant 2015 US[$]\",\"% of GNI\",\"constant LCU\",\"current LCU\"]\n", + "Categorization2=Categorization[~Categorization['Short indicator'].str.contains('|'.join(discard))]\n", + "Categorization2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To check previous step." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "#Categorization2.apply(lambda row: row.astype(str).str.contains('US').any(), axis=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we are going to structure the indicators in a same way to work better. The first step consist of making a new column that shows the units of each variable. Units are showed inside the parenthesis of the indicator name." + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicator0Short indicatorUnits
0DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of population)
1DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of rural population)
2DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of urban population)
3DEU1990EuropeAccess to electricity (% of population)1.000000Access to electricity (% of population)(% of population)
4DEU1990EuropeAccess to electricity, rural (% of rural popul...1.000000Access to electricity, rural (% of rural popul...(% of rural population)
........................
1540358CHN2021PairGDP (current US$)+338.504955GDP (current US$)+3(current US$)
1540359CHN2021PairGDP (current US$)+531.129362GDP (current US$)+5(current US$)
1540360CHN2021PairGDP (current US$)+826.521259GDP (current US$)+8(current US$)
1540361CHN2021PairGDP (current US$)+1312.731623GDP (current US$)+13(current US$)
1540362CHN2021PairGDP (current US$)+213.356853GDP (current US$)+21(current US$)
\n", + "

1372098 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "1 DEU 1990 Europe \n", + "2 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "4 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator 0 \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "1 Access to clean fuels and technologies for coo... 1.000000 \n", + "2 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity (% of population) 1.000000 \n", + "4 Access to electricity, rural (% of rural popul... 1.000000 \n", + "... ... ... \n", + "1540358 GDP (current US$)+3 38.504955 \n", + "1540359 GDP (current US$)+5 31.129362 \n", + "1540360 GDP (current US$)+8 26.521259 \n", + "1540361 GDP (current US$)+13 12.731623 \n", + "1540362 GDP (current US$)+21 3.356853 \n", + "\n", + " Short indicator \\\n", + "0 Access to clean fuels and technologies for coo... \n", + "1 Access to clean fuels and technologies for coo... \n", + "2 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity (% of population) \n", + "4 Access to electricity, rural (% of rural popul... \n", + "... ... \n", + "1540358 GDP (current US$)+3 \n", + "1540359 GDP (current US$)+5 \n", + "1540360 GDP (current US$)+8 \n", + "1540361 GDP (current US$)+13 \n", + "1540362 GDP (current US$)+21 \n", + "\n", + " Units \n", + "0 (% of population) \n", + "1 (% of rural population) \n", + "2 (% of urban population) \n", + "3 (% of population) \n", + "4 (% of rural population) \n", + "... ... \n", + "1540358 (current US$) \n", + "1540359 (current US$) \n", + "1540360 (current US$) \n", + "1540361 (current US$) \n", + "1540362 (current US$) \n", + "\n", + "[1372098 rows x 7 columns]" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Categorization2['Units']=Categorization2['Short indicator'].str.extract(' (\\(.*\\))')\n", + "Categorization2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, short indicator refers to the original indicator name without the units. The extracted information from the origin column has been deleted." + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicator0Short indicatorUnits
0DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of population)
1DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of rural population)
2DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of urban population)
3DEU1990EuropeAccess to electricity (% of population)1.000000Access to electricity(% of population)
4DEU1990EuropeAccess to electricity, rural (% of rural popul...1.000000Access to electricity, rural(% of rural population)
........................
1540358CHN2021PairGDP (current US$)+338.504955GDP+3(current US$)
1540359CHN2021PairGDP (current US$)+531.129362GDP+5(current US$)
1540360CHN2021PairGDP (current US$)+826.521259GDP+8(current US$)
1540361CHN2021PairGDP (current US$)+1312.731623GDP+13(current US$)
1540362CHN2021PairGDP (current US$)+213.356853GDP+21(current US$)
\n", + "

1372098 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "1 DEU 1990 Europe \n", + "2 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "4 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator 0 \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "1 Access to clean fuels and technologies for coo... 1.000000 \n", + "2 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity (% of population) 1.000000 \n", + "4 Access to electricity, rural (% of rural popul... 1.000000 \n", + "... ... ... \n", + "1540358 GDP (current US$)+3 38.504955 \n", + "1540359 GDP (current US$)+5 31.129362 \n", + "1540360 GDP (current US$)+8 26.521259 \n", + "1540361 GDP (current US$)+13 12.731623 \n", + "1540362 GDP (current US$)+21 3.356853 \n", + "\n", + " Short indicator \\\n", + "0 Access to clean fuels and technologies for coo... \n", + "1 Access to clean fuels and technologies for coo... \n", + "2 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity \n", + "4 Access to electricity, rural \n", + "... ... \n", + "1540358 GDP+3 \n", + "1540359 GDP+5 \n", + "1540360 GDP+8 \n", + "1540361 GDP+13 \n", + "1540362 GDP+21 \n", + "\n", + " Units \n", + "0 (% of population) \n", + "1 (% of rural population) \n", + "2 (% of urban population) \n", + "3 (% of population) \n", + "4 (% of rural population) \n", + "... ... \n", + "1540358 (current US$) \n", + "1540359 (current US$) \n", + "1540360 (current US$) \n", + "1540361 (current US$) \n", + "1540362 (current US$) \n", + "\n", + "[1372098 rows x 7 columns]" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Categorization2['Short indicator']=Categorization2['Short indicator'].str.replace(r\" (\\(.*\\))\",\"\")\n", + "Categorization2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In some cases there are extra information in indicators name. The information of the second parenthesis is extracted as a new column too." + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicator0Short indicatorUnits
151DEU1990EuropeContributing family workers, female (% of fema...1.000000Contributing family workers, female(% of female employment) (modeled ILO estimate)
152DEU1990EuropeContributing family workers, male (% of male e...1.000000Contributing family workers, male(% of male employment) (modeled ILO estimate)
153DEU1990EuropeContributing family workers, total (% of total...1.000000Contributing family workers, total(% of total employment) (modeled ILO estimate)
1151DEU1991EuropeContributing family workers, female (% of fema...1.000000Contributing family workers, female(% of female employment) (modeled ILO estimate)
1152DEU1991EuropeContributing family workers, male (% of male e...1.000000Contributing family workers, male(% of male employment) (modeled ILO estimate)
........................
1538535CHN2020PairContributing family workers, male (% of male e...0.252894Contributing family workers, male(% of male employment) (modeled ILO estimate)
1538536CHN2020PairContributing family workers, total (% of total...0.329385Contributing family workers, total(% of total employment) (modeled ILO estimate)
1539524CHN2021PairContributing family workers, female (% of fema...0.386565Contributing family workers, female(% of female employment) (modeled ILO estimate)
1539525CHN2021PairContributing family workers, male (% of male e...0.252894Contributing family workers, male(% of male employment) (modeled ILO estimate)
1539526CHN2021PairContributing family workers, total (% of total...0.329385Contributing family workers, total(% of total employment) (modeled ILO estimate)
\n", + "

4545 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "151 DEU 1990 Europe \n", + "152 DEU 1990 Europe \n", + "153 DEU 1990 Europe \n", + "1151 DEU 1991 Europe \n", + "1152 DEU 1991 Europe \n", + "... ... ... ... \n", + "1538535 CHN 2020 Pair \n", + "1538536 CHN 2020 Pair \n", + "1539524 CHN 2021 Pair \n", + "1539525 CHN 2021 Pair \n", + "1539526 CHN 2021 Pair \n", + "\n", + " Indicator 0 \\\n", + "151 Contributing family workers, female (% of fema... 1.000000 \n", + "152 Contributing family workers, male (% of male e... 1.000000 \n", + "153 Contributing family workers, total (% of total... 1.000000 \n", + "1151 Contributing family workers, female (% of fema... 1.000000 \n", + "1152 Contributing family workers, male (% of male e... 1.000000 \n", + "... ... ... \n", + "1538535 Contributing family workers, male (% of male e... 0.252894 \n", + "1538536 Contributing family workers, total (% of total... 0.329385 \n", + "1539524 Contributing family workers, female (% of fema... 0.386565 \n", + "1539525 Contributing family workers, male (% of male e... 0.252894 \n", + "1539526 Contributing family workers, total (% of total... 0.329385 \n", + "\n", + " Short indicator \\\n", + "151 Contributing family workers, female \n", + "152 Contributing family workers, male \n", + "153 Contributing family workers, total \n", + "1151 Contributing family workers, female \n", + "1152 Contributing family workers, male \n", + "... ... \n", + "1538535 Contributing family workers, male \n", + "1538536 Contributing family workers, total \n", + "1539524 Contributing family workers, female \n", + "1539525 Contributing family workers, male \n", + "1539526 Contributing family workers, total \n", + "\n", + " Units \n", + "151 (% of female employment) (modeled ILO estimate) \n", + "152 (% of male employment) (modeled ILO estimate) \n", + "153 (% of total employment) (modeled ILO estimate) \n", + "1151 (% of female employment) (modeled ILO estimate) \n", + "1152 (% of male employment) (modeled ILO estimate) \n", + "... ... \n", + "1538535 (% of male employment) (modeled ILO estimate) \n", + "1538536 (% of total employment) (modeled ILO estimate) \n", + "1539524 (% of female employment) (modeled ILO estimate) \n", + "1539525 (% of male employment) (modeled ILO estimate) \n", + "1539526 (% of total employment) (modeled ILO estimate) \n", + "\n", + "[4545 rows x 7 columns]" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "two_parent=Categorization2[Categorization2['Short indicator'].str.contains('Contributing family workers')]\n", + "two_parent" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Moreover, there are some inidcators with an extra parenthesis adding some more information. As this information isn't related with units, another column named as 'other specification' has been created." + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicator0Short indicatorUnitsOther specification
0DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of population)None
1DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of rural population)None
2DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of urban population)None
3DEU1990EuropeAccess to electricity (% of population)1.000000Access to electricity(% of population)None
4DEU1990EuropeAccess to electricity, rural (% of rural popul...1.000000Access to electricity, rural(% of rural population)None
...........................
1540358CHN2021PairGDP (current US$)+338.504955GDP+3(current US$)None
1540359CHN2021PairGDP (current US$)+531.129362GDP+5(current US$)None
1540360CHN2021PairGDP (current US$)+826.521259GDP+8(current US$)None
1540361CHN2021PairGDP (current US$)+1312.731623GDP+13(current US$)None
1540362CHN2021PairGDP (current US$)+213.356853GDP+21(current US$)None
\n", + "

1372098 rows × 8 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "1 DEU 1990 Europe \n", + "2 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "4 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator 0 \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "1 Access to clean fuels and technologies for coo... 1.000000 \n", + "2 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity (% of population) 1.000000 \n", + "4 Access to electricity, rural (% of rural popul... 1.000000 \n", + "... ... ... \n", + "1540358 GDP (current US$)+3 38.504955 \n", + "1540359 GDP (current US$)+5 31.129362 \n", + "1540360 GDP (current US$)+8 26.521259 \n", + "1540361 GDP (current US$)+13 12.731623 \n", + "1540362 GDP (current US$)+21 3.356853 \n", + "\n", + " Short indicator \\\n", + "0 Access to clean fuels and technologies for coo... \n", + "1 Access to clean fuels and technologies for coo... \n", + "2 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity \n", + "4 Access to electricity, rural \n", + "... ... \n", + "1540358 GDP+3 \n", + "1540359 GDP+5 \n", + "1540360 GDP+8 \n", + "1540361 GDP+13 \n", + "1540362 GDP+21 \n", + "\n", + " Units Other specification \n", + "0 (% of population) None \n", + "1 (% of rural population) None \n", + "2 (% of urban population) None \n", + "3 (% of population) None \n", + "4 (% of rural population) None \n", + "... ... ... \n", + "1540358 (current US$) None \n", + "1540359 (current US$) None \n", + "1540360 (current US$) None \n", + "1540361 (current US$) None \n", + "1540362 (current US$) None \n", + "\n", + "[1372098 rows x 8 columns]" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Categorization2[['Units','Other specification']]=Categorization2['Units'].str.split(\"\\) \", n=1,expand=True)\n", + "Categorization2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At the end of the variable name, separated by the last \",\" it is informing us about to which subgroup makes reference the variable. Thus, there are some indicators that have information divided for small groups. This information is shown as a new column named 'Subgroup'." + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicator0Short indicatorUnitsOther specificationSubgroup
0DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of population)NoneNaN
1DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of rural population)Nonerural
2DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of urban population)Noneurban
3DEU1990EuropeAccess to electricity (% of population)1.000000Access to electricity(% of population)NoneNaN
4DEU1990EuropeAccess to electricity, rural (% of rural popul...1.000000Access to electricity, rural(% of rural population)Nonerural
..............................
1540358CHN2021PairGDP (current US$)+338.504955GDP+3(current US$)NoneNaN
1540359CHN2021PairGDP (current US$)+531.129362GDP+5(current US$)NoneNaN
1540360CHN2021PairGDP (current US$)+826.521259GDP+8(current US$)NoneNaN
1540361CHN2021PairGDP (current US$)+1312.731623GDP+13(current US$)NoneNaN
1540362CHN2021PairGDP (current US$)+213.356853GDP+21(current US$)NoneNaN
\n", + "

1372098 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "1 DEU 1990 Europe \n", + "2 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "4 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator 0 \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "1 Access to clean fuels and technologies for coo... 1.000000 \n", + "2 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity (% of population) 1.000000 \n", + "4 Access to electricity, rural (% of rural popul... 1.000000 \n", + "... ... ... \n", + "1540358 GDP (current US$)+3 38.504955 \n", + "1540359 GDP (current US$)+5 31.129362 \n", + "1540360 GDP (current US$)+8 26.521259 \n", + "1540361 GDP (current US$)+13 12.731623 \n", + "1540362 GDP (current US$)+21 3.356853 \n", + "\n", + " Short indicator \\\n", + "0 Access to clean fuels and technologies for coo... \n", + "1 Access to clean fuels and technologies for coo... \n", + "2 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity \n", + "4 Access to electricity, rural \n", + "... ... \n", + "1540358 GDP+3 \n", + "1540359 GDP+5 \n", + "1540360 GDP+8 \n", + "1540361 GDP+13 \n", + "1540362 GDP+21 \n", + "\n", + " Units Other specification Subgroup \n", + "0 (% of population) None NaN \n", + "1 (% of rural population) None rural \n", + "2 (% of urban population) None urban \n", + "3 (% of population) None NaN \n", + "4 (% of rural population) None rural \n", + "... ... ... ... \n", + "1540358 (current US$) None NaN \n", + "1540359 (current US$) None NaN \n", + "1540360 (current US$) None NaN \n", + "1540361 (current US$) None NaN \n", + "1540362 (current US$) None NaN \n", + "\n", + "[1372098 rows x 9 columns]" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Categorization2[['Subgroup']]=Categorization2['Short indicator'].str.extract(',(?P[^,]*?)$')\n", + "Categorization2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As before, information which is shown as a new column is deleted from the origin one." + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicator0Short indicatorUnitsOther specificationSubgroup
0DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of population)NoneNaN
1DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of rural population)Nonerural
2DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of urban population)Noneurban
3DEU1990EuropeAccess to electricity (% of population)1.000000Access to electricity(% of population)NoneNaN
4DEU1990EuropeAccess to electricity, rural (% of rural popul...1.000000Access to electricity(% of rural population)Nonerural
..............................
1540358CHN2021PairGDP (current US$)+338.504955GDP+3(current US$)NoneNaN
1540359CHN2021PairGDP (current US$)+531.129362GDP+5(current US$)NoneNaN
1540360CHN2021PairGDP (current US$)+826.521259GDP+8(current US$)NoneNaN
1540361CHN2021PairGDP (current US$)+1312.731623GDP+13(current US$)NoneNaN
1540362CHN2021PairGDP (current US$)+213.356853GDP+21(current US$)NoneNaN
\n", + "

1372098 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "1 DEU 1990 Europe \n", + "2 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "4 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator 0 \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "1 Access to clean fuels and technologies for coo... 1.000000 \n", + "2 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity (% of population) 1.000000 \n", + "4 Access to electricity, rural (% of rural popul... 1.000000 \n", + "... ... ... \n", + "1540358 GDP (current US$)+3 38.504955 \n", + "1540359 GDP (current US$)+5 31.129362 \n", + "1540360 GDP (current US$)+8 26.521259 \n", + "1540361 GDP (current US$)+13 12.731623 \n", + "1540362 GDP (current US$)+21 3.356853 \n", + "\n", + " Short indicator \\\n", + "0 Access to clean fuels and technologies for coo... \n", + "1 Access to clean fuels and technologies for coo... \n", + "2 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity \n", + "4 Access to electricity \n", + "... ... \n", + "1540358 GDP+3 \n", + "1540359 GDP+5 \n", + "1540360 GDP+8 \n", + "1540361 GDP+13 \n", + "1540362 GDP+21 \n", + "\n", + " Units Other specification Subgroup \n", + "0 (% of population) None NaN \n", + "1 (% of rural population) None rural \n", + "2 (% of urban population) None urban \n", + "3 (% of population) None NaN \n", + "4 (% of rural population) None rural \n", + "... ... ... ... \n", + "1540358 (current US$) None NaN \n", + "1540359 (current US$) None NaN \n", + "1540360 (current US$) None NaN \n", + "1540361 (current US$) None NaN \n", + "1540362 (current US$) None NaN \n", + "\n", + "[1372098 rows x 9 columns]" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Categorization2['Short indicator']=Categorization2['Short indicator'].str.replace(',(?P[^,]*?)$',\"\")\n", + "Categorization2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All the indicators don't have these elements. So, a checking point is needed." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "Categorization2['Subgroup']=Categorization2['Subgroup'].replace(['None'],['total'])\n", + "Categorization2['Subgroup']=Categorization2['Subgroup'].fillna('total')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are some duplicate variables which should be removed too." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicator0Short indicatorUnitsOther specificationSubgroup
0DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of population)Nonetotal
1DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of rural population)Nonerural
2DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of urban population)Noneurban
3DEU1990EuropeAccess to electricity (% of population)1.000000Access to electricity(% of population)Nonetotal
4DEU1990EuropeAccess to electricity, rural (% of rural popul...1.000000Access to electricity(% of rural population)Nonerural
..............................
1540358CHN2021PairGDP (current US$)+338.504955GDP+3(current US$)Nonetotal
1540359CHN2021PairGDP (current US$)+531.129362GDP+5(current US$)Nonetotal
1540360CHN2021PairGDP (current US$)+826.521259GDP+8(current US$)Nonetotal
1540361CHN2021PairGDP (current US$)+1312.731623GDP+13(current US$)Nonetotal
1540362CHN2021PairGDP (current US$)+213.356853GDP+21(current US$)Nonetotal
\n", + "

1157276 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "1 DEU 1990 Europe \n", + "2 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "4 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator 0 \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "1 Access to clean fuels and technologies for coo... 1.000000 \n", + "2 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity (% of population) 1.000000 \n", + "4 Access to electricity, rural (% of rural popul... 1.000000 \n", + "... ... ... \n", + "1540358 GDP (current US$)+3 38.504955 \n", + "1540359 GDP (current US$)+5 31.129362 \n", + "1540360 GDP (current US$)+8 26.521259 \n", + "1540361 GDP (current US$)+13 12.731623 \n", + "1540362 GDP (current US$)+21 3.356853 \n", + "\n", + " Short indicator \\\n", + "0 Access to clean fuels and technologies for coo... \n", + "1 Access to clean fuels and technologies for coo... \n", + "2 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity \n", + "4 Access to electricity \n", + "... ... \n", + "1540358 GDP+3 \n", + "1540359 GDP+5 \n", + "1540360 GDP+8 \n", + "1540361 GDP+13 \n", + "1540362 GDP+21 \n", + "\n", + " Units Other specification Subgroup \n", + "0 (% of population) None total \n", + "1 (% of rural population) None rural \n", + "2 (% of urban population) None urban \n", + "3 (% of population) None total \n", + "4 (% of rural population) None rural \n", + "... ... ... ... \n", + "1540358 (current US$) None total \n", + "1540359 (current US$) None total \n", + "1540360 (current US$) None total \n", + "1540361 (current US$) None total \n", + "1540362 (current US$) None total \n", + "\n", + "[1157276 rows x 9 columns]" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Categorization2.drop_duplicates(subset=['Country','Year','Short indicator','Continent','Subgroup'], keep='first')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Reordering columns, categorization3 is our df after all these division in categories." + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicatorShort indicatorValueSubgroupUnitsOther specification
0DEU1990EuropeAccess to clean fuels and technologies for coo...Access to clean fuels and technologies for coo...1.000000total(% of population)None
1DEU1990EuropeAccess to clean fuels and technologies for coo...Access to clean fuels and technologies for coo...1.000000rural(% of rural population)None
2DEU1990EuropeAccess to clean fuels and technologies for coo...Access to clean fuels and technologies for coo...1.000000urban(% of urban population)None
3DEU1990EuropeAccess to electricity (% of population)Access to electricity1.000000total(% of population)None
4DEU1990EuropeAccess to electricity, rural (% of rural popul...Access to electricity1.000000rural(% of rural population)None
..............................
1540358CHN2021PairGDP (current US$)+3GDP+338.504955total(current US$)None
1540359CHN2021PairGDP (current US$)+5GDP+531.129362total(current US$)None
1540360CHN2021PairGDP (current US$)+8GDP+826.521259total(current US$)None
1540361CHN2021PairGDP (current US$)+13GDP+1312.731623total(current US$)None
1540362CHN2021PairGDP (current US$)+21GDP+213.356853total(current US$)None
\n", + "

1372098 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "1 DEU 1990 Europe \n", + "2 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "4 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator \\\n", + "0 Access to clean fuels and technologies for coo... \n", + "1 Access to clean fuels and technologies for coo... \n", + "2 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity (% of population) \n", + "4 Access to electricity, rural (% of rural popul... \n", + "... ... \n", + "1540358 GDP (current US$)+3 \n", + "1540359 GDP (current US$)+5 \n", + "1540360 GDP (current US$)+8 \n", + "1540361 GDP (current US$)+13 \n", + "1540362 GDP (current US$)+21 \n", + "\n", + " Short indicator Value \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "1 Access to clean fuels and technologies for coo... 1.000000 \n", + "2 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity 1.000000 \n", + "4 Access to electricity 1.000000 \n", + "... ... ... \n", + "1540358 GDP+3 38.504955 \n", + "1540359 GDP+5 31.129362 \n", + "1540360 GDP+8 26.521259 \n", + "1540361 GDP+13 12.731623 \n", + "1540362 GDP+21 3.356853 \n", + "\n", + " Subgroup Units Other specification \n", + "0 total (% of population) None \n", + "1 rural (% of rural population) None \n", + "2 urban (% of urban population) None \n", + "3 total (% of population) None \n", + "4 rural (% of rural population) None \n", + "... ... ... ... \n", + "1540358 total (current US$) None \n", + "1540359 total (current US$) None \n", + "1540360 total (current US$) None \n", + "1540361 total (current US$) None \n", + "1540362 total (current US$) None \n", + "\n", + "[1372098 rows x 9 columns]" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Categorization2.rename(columns={Categorization2.columns[4]:'Value'},inplace=True)\n", + "Categorization3=Categorization2[['Country','Year','Continent','Indicator','Short indicator','Value','Subgroup','Units','Other specification']]\n", + "Categorization3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "------------------------------" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicatorShort indicatorValueSubgroupUnitsOther specification
0DEU1990EuropeAccess to clean fuels and technologies for coo...Access to clean fuels and technologies for coo...1.000000total(% of population)None
3DEU1990EuropeAccess to electricity (% of population)Access to electricity1.000000total(% of population)None
6DEU1990EuropeAccount ownership at a financial institution o...Account ownership at a financial institution o...1.000000total(% of population ages 15+)None
20DEU1990EuropeAdjusted net national income (current US$)Adjusted net national income1.000000total(current US$)None
23DEU1990EuropeAdjusted net national income per capita (curre...Adjusted net national income per capita1.000000total(current US$)None
..............................
1540358CHN2021PairGDP (current US$)+3GDP+338.504955total(current US$)None
1540359CHN2021PairGDP (current US$)+5GDP+531.129362total(current US$)None
1540360CHN2021PairGDP (current US$)+8GDP+826.521259total(current US$)None
1540361CHN2021PairGDP (current US$)+13GDP+1312.731623total(current US$)None
1540362CHN2021PairGDP (current US$)+21GDP+213.356853total(current US$)None
\n", + "

687830 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "6 DEU 1990 Europe \n", + "20 DEU 1990 Europe \n", + "23 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator \\\n", + "0 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity (% of population) \n", + "6 Account ownership at a financial institution o... \n", + "20 Adjusted net national income (current US$) \n", + "23 Adjusted net national income per capita (curre... \n", + "... ... \n", + "1540358 GDP (current US$)+3 \n", + "1540359 GDP (current US$)+5 \n", + "1540360 GDP (current US$)+8 \n", + "1540361 GDP (current US$)+13 \n", + "1540362 GDP (current US$)+21 \n", + "\n", + " Short indicator Value \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity 1.000000 \n", + "6 Account ownership at a financial institution o... 1.000000 \n", + "20 Adjusted net national income 1.000000 \n", + "23 Adjusted net national income per capita 1.000000 \n", + "... ... ... \n", + "1540358 GDP+3 38.504955 \n", + "1540359 GDP+5 31.129362 \n", + "1540360 GDP+8 26.521259 \n", + "1540361 GDP+13 12.731623 \n", + "1540362 GDP+21 3.356853 \n", + "\n", + " Subgroup Units Other specification \n", + "0 total (% of population) None \n", + "3 total (% of population) None \n", + "6 total (% of population ages 15+) None \n", + "20 total (current US$) None \n", + "23 total (current US$) None \n", + "... ... ... ... \n", + "1540358 total (current US$) None \n", + "1540359 total (current US$) None \n", + "1540360 total (current US$) None \n", + "1540361 total (current US$) None \n", + "1540362 total (current US$) None \n", + "\n", + "[687830 rows x 9 columns]" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Categorization4=Categorization3.loc[Categorization3['Subgroup']=='total']\n", + "Categorization4" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "Categorization4.to_csv(os.getcwd()+'/Data/Categorization.csv')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Correlation study" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the correlation study, we are going to check if the indicators are related in a relevantly way to GDP(current US$), through both Pearson and Spearman correlations and their respective p-values. Thus, our hypotheses are as follow:\n", + "\n", + "- H_0: the indicator and the GDP are uncorrelated.​\n", + "- H_1: the indicator and the GDP are correlated.​\n", + "\n", + "**If p-value < α then reject H_0 and accept H_1.​**\n", + "\n", + "P-value: is the probability of obtaining test results at least as extreme as the result actually observed. (Marging of the error)\n", + "\n", + "​Confidence level (α): probability that a population parameter will fall between a set of values for a certain proportion of times. α = 1 - p-value.\n", + "\n", + "​Significance level: probability of the study rejecting the null hypothesis when it is actually true.​ \n", + "\n", + "At the end we want to follow a process that checks if with Pearson and Spearman the correlation is relevant, as the image below ilustrates. \n", + "\n", + "![](https://raw.githubusercontent.com/devonfw-forge/python-data-driven-decisions/main-the-big-three/Logos/Spearman%20and%20pearson%20process.JPG)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "Categorization4= pd.read_csv (os.getcwd()+'/Data/'+'Categorization.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "indicators_list=Categorization4['Indicator'].unique().tolist()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "columns=indicators_list+['Country','Year','Continent']\n", + "clist=Categorization4['Country'].unique()\n", + "common=['Unnamed: 0','Country','Year']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The correlation between two variables does not always need to be a linear one, since data of these variables can follow a different distribution that better adjusts. Therefore, we have computed four types (linear, quadratic, cubic and logarithmic) for each indicator in each country and we chose the one with the highest correlation. In the following cell, we have defined a function that will allow us to calculate the different posibilities of relations: cuadratic, cubic and logaritmic." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def multcolumn(frame):\n", + " for u in range(0, len(columns)-3):\n", + " name=columns[u]+'¨l'\n", + " name2=columns[u]+'¨^2'\n", + " name3=columns[u]+'¨^3'\n", + " namelog=columns[u]+'¨log'\n", + " frame.loc[:,name2] = frame[columns[u]]**2\n", + " frame.loc[:,name3] = frame[columns[u]]**3\n", + " frame.loc[:,namelog] = np.log(frame[columns[u]])\n", + " frame.rename(columns={columns[u]:name}, inplace=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Moreover, we want to know the correlation between all the variables, so to acomplish this, we have created the following loop, which will help us create a new dataframe where we will have: the *Indicator*, the *Type* of relation, the value of the *R^2*, its *Behaviour*, the *Country* and the *Continent*." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "df= pd.read_csv (os.getcwd()+'/Data/'+'GoldenDataFrame.csv')\n", + "df_study=df[[c for c in df.columns if c in columns]]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "multcolumn(df_study)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Firstly we are going to create two lists for the variables, which their level of confidence for each correlation, so later on, we can calculate only the correlations of those variables. Which will be filtered by the values that we want from the following sliders. The predetermined values for each case are 0.05 for the values and 0.75 for them to be a relevant correlations." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6434ddd4744e467a83205b4cae63765e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatSlider(value=0.05, continuous_update=False, description='Level of confidence (Pearson):', max=1.0, step=0…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b6dee10d62ff4aa9b999eee272823db6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatSlider(value=0.75, continuous_update=False, description='Relevant correlation (Pearson):', max=1.0, step=…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ca03a412b61b4158971b64365a74db1b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatSlider(value=0.05, continuous_update=False, description='Level of confidence (Spearman):', max=1.0, step=…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fa5db6230c794dc9804df49d39aa197b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatSlider(value=0.75, continuous_update=False, description='Relevant correlation (Spearman):', max=1.0, step…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "apv=widgets.FloatSlider(value=0.05,min=0,max=1.0,step=0.025,description='Level of confidence (Pearson):',disabled=False,continuous_update=False,orientation='horizontal',readout=True)\n", + "cpv=widgets.FloatSlider( value=0.05, min=0, max=1.0, step=0.05, description='Level of confidence (Spearman):', disabled=False, continuous_update=False, orientation='horizontal', readout=True)\n", + "bcor=widgets.FloatSlider( value=0.75, min=0, max=1.0, step=0.05, description='Relevant correlation (Pearson):', disabled=False, continuous_update=False, orientation='horizontal', readout=True)\n", + "dcor=widgets.FloatSlider( value=0.75, min=0, max=1.0, step=0.05, description='Relevant correlation (Spearman):', disabled=False, continuous_update=False, orientation='horizontal', readout=True)\n", + "display(apv,bcor,cpv,dcor)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the following block, we check the hypotheses set before and extract only the variables that deny H_0." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "dat=df_study.loc[df_study.loc[:, 'Country'] == clist[0]]\n", + "listacorpe=[]\n", + "listacorsp=[]\n", + "clmns=dat.columns.values.tolist()\n", + "dat.replace([np.inf, -np.inf], np.nan, inplace=True)\n", + "for c in range(0, len(clmns)):\n", + " if dat[clmns[c]].isna().sum()>=1:\n", + " del(dat[clmns[c]])\n", + "pilares=dat.columns.values.tolist()\n", + "for u in range(0,len(pilares)):\n", + " if is_numeric_dtype(dat[pilares[u]]):\n", + " correlation, pvalue=pearsonr(dat[pilares[u]], dat['GDP (current US$)¨l'])\n", + " if pvalue<=apv.value:\n", + " listacorpe.append(pilares[u])\n", + " else:\n", + " pass\n", + " correlation, pvalue=spearmanr(dat[pilares[u]], dat['GDP (current US$)¨l'])\n", + " if pvalue<=cpv.value:\n", + " listacorsp.append(pilares[u])\n", + " else:\n", + " pass\n", + " else:\n", + " pass" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Secondly, we need to calculate the correlation table for each country, therefore we use the basic function `corr()` which provides either the Pearson correlation table or the Spearman correlation table, as well as a filter for the countries." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "dat=df_study.loc[df_study.loc[:, 'Country'] == clist[0]]\n", + "\n", + "datp=dat[dat.columns[dat.columns.isin(listacorpe)]]\n", + "corp=datp.corr('pearson')\n", + "\n", + "datsp=dat[dat.columns[dat.columns.isin(listacorsp)]]\n", + "cors=datsp.corr('spearman')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then we calculate the coefficient of determination which is the correlation squared." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "corp.loc[:,'R^2 Pearson'] = corp['GDP (current US$)¨l']**2\n", + "\n", + "cors.loc[:,'R^2 Spearman'] = cors['GDP (current US$)¨l']**2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Moreover, we are going to create new columns to know which *Indicator* are we talking about, and the *Type* of correlation that is being analyzed (linear, cuadratic, cubic or logarithmic)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "corp.loc[:,'Indicator']=corp.index\n", + "corp[['Indicator','Type']]=corp.Indicator.str.split('¨',1, expand=True)\n", + "\n", + "cors.loc[:,'Indicator']=cors.index\n", + "cors[['Indicator','Type']]=cors.Indicator.str.split('¨',1, expand=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we can apply the filter we have consider that is enough, selected on the slider. If is not varied it is R^2>=0.75 to filter the correlations." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "corpcolumn=corp[['Indicator','R^2 Pearson','Type','GDP (current US$)¨l']]\n", + "corpcolumn=corpcolumn.loc[corpcolumn.loc[:, 'R^2 Pearson'] >=bcor.value]\n", + "\n", + "corscolumn=cors[['Indicator','R^2 Spearman','Type','GDP (current US$)¨l']]\n", + "corscolumn=corscolumn.loc[corscolumn.loc[:, 'R^2 Spearman'] >= dcor.value]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Furthermore, we add all the columns that we have created into a data frame, thanks to the following cell." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "idp=corpcolumn.groupby('Indicator')['R^2 Pearson'].transform(max)==corpcolumn['R^2 Pearson']\n", + "corpcolumn[idp]\n", + "maxp_df=pd.DataFrame(corpcolumn[idp])\n", + "\n", + "ids=corscolumn.groupby('Indicator')['R^2 Spearman'].transform(max)==corscolumn['R^2 Spearman']\n", + "corscolumn[ids]\n", + "maxs_df=pd.DataFrame(corscolumn[ids])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we conmute the values, by expressions. For example if the correlation is positive, we want in the new column called *Behaviour* the word Positive. Or for the *Type* column if the greatest correlation is cuadratic we want to put, Cuadratic. We also add the country." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "maxp_df['Behaviour']=np.where(maxp_df['GDP (current US$)¨l']>0, 'Positive', 'Negative')\n", + "maxp_df['Type']=maxp_df['Type'].replace(['l','^2','^3','log'],['Linear','Cuadratic','Cubic','Logarithmic'])\n", + "maxp_df['Country']= clist[0]\n", + "\n", + "maxs_df['Behaviour']=np.where(maxs_df['GDP (current US$)¨l']>0, 'Positive', 'Negative')\n", + "maxs_df['Type']=maxs_df['Type'].replace(['l','^2','^3','log'],['Linear','Cuadratic','Cubic','Logarithmic'])\n", + "maxs_df['Country']= clist[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In addition, we also drop the columns which do not add any value, as *GDP*, *Year*, and *Unnamed:0*." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "maxp_df.drop(\"GDP (current US$)¨l\",axis=1,inplace=True)\n", + "maxp_df=maxp_df.reset_index(drop=True)\n", + "maxp_df = maxp_df.drop(maxp_df[maxp_df['Indicator']=='Year'].index)\n", + "maxp_df = maxp_df.drop(maxp_df[maxp_df['Indicator']=='GDP (current US$)'].index)\n", + "maxp_df = maxp_df.drop(maxp_df[maxp_df['Indicator']=='Unnamed: 0'].index)\n", + "\n", + "maxs_df.drop(\"GDP (current US$)¨l\",axis=1,inplace=True)\n", + "maxs_df=maxs_df.reset_index(drop=True)\n", + "maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='Year'].index)\n", + "maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='GDP (current US$)'].index)\n", + "maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='Unnamed: 0'].index)\n", + "maxs_df=maxs_df.sort_values(by = 'R^2 Spearman',ascending = False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And finally we sort the values in descending order by the column *R^2 Pearson*." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "maxp_df_deu=maxp_df.sort_values(by = 'R^2 Pearson',ascending = False)\n", + "pearsondf= maxp_df_deu\n", + "spearmandf=maxs_df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So, we can do it with all the countries and create just one dataframe, where we match both data frames, the Pearson and the Spearman, only where there is a case in both sides. Meaning if there is a relevant correlation for Country x in Variable y for Pearson, it will only appear if there is also a relevant correlation for Country x in Variable y for Spearman." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorR^2 SpearmanTypeBehaviourCountryR^2 Pearson
0Adjusted net national income (current US$)0.996519LinearPositiveDEU0.999141
1Gross value added at basic prices (GVA) (curre...0.996519LinearPositiveDEU0.999851
2GNI (current US$)0.996337LinearPositiveDEU0.999362
3Gross national expenditure (current US$)0.990490LinearPositiveDEU0.997181
4Final consumption expenditure (current US$)0.988302LinearPositiveDEU0.996540
.....................
5965Prevalence of anemia among women of reproducti...0.793298LogarithmicNegativeCHN0.752969
5966Logistics performance index: Ability to track ...0.788049LogarithmicPositiveCHN0.926947
5967Logistics performance index: Competence and qu...0.788049LogarithmicPositiveCHN0.890297
5968Out-of-pocket expenditure (% of current health...0.782573LogarithmicNegativeCHN0.929883
5969Domestic general government health expenditure...0.758910CubicPositiveCHN0.797637
\n", + "

5970 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " Indicator R^2 Spearman \\\n", + "0 Adjusted net national income (current US$) 0.996519 \n", + "1 Gross value added at basic prices (GVA) (curre... 0.996519 \n", + "2 GNI (current US$) 0.996337 \n", + "3 Gross national expenditure (current US$) 0.990490 \n", + "4 Final consumption expenditure (current US$) 0.988302 \n", + "... ... ... \n", + "5965 Prevalence of anemia among women of reproducti... 0.793298 \n", + "5966 Logistics performance index: Ability to track ... 0.788049 \n", + "5967 Logistics performance index: Competence and qu... 0.788049 \n", + "5968 Out-of-pocket expenditure (% of current health... 0.782573 \n", + "5969 Domestic general government health expenditure... 0.758910 \n", + "\n", + " Type Behaviour Country R^2 Pearson \n", + "0 Linear Positive DEU 0.999141 \n", + "1 Linear Positive DEU 0.999851 \n", + "2 Linear Positive DEU 0.999362 \n", + "3 Linear Positive DEU 0.997181 \n", + "4 Linear Positive DEU 0.996540 \n", + "... ... ... ... ... \n", + "5965 Logarithmic Negative CHN 0.752969 \n", + "5966 Logarithmic Positive CHN 0.926947 \n", + "5967 Logarithmic Positive CHN 0.890297 \n", + "5968 Logarithmic Negative CHN 0.929883 \n", + "5969 Cubic Positive CHN 0.797637 \n", + "\n", + "[5970 rows x 6 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pearsondf\n", + "spearmandf\n", + "for i in range(1,len(clist)):\n", + " dat=df_study.loc[df_study.loc[:, 'Country'] == clist[i]]\n", + " listacorpe=[]\n", + " listacorsp=[]\n", + " clmns=dat.columns.values.tolist()\n", + " dat.replace([np.inf, -np.inf], np.nan, inplace=True)\n", + " for c in range(0, len(clmns)):\n", + " if dat[clmns[c]].isna().sum()>=1:\n", + " del(dat[clmns[c]])\n", + " pilares=dat.columns.values.tolist()\n", + " for u in range(0,len(pilares)):\n", + " if is_numeric_dtype(dat[pilares[u]]):\n", + " correlation, pvalue=pearsonr(dat[pilares[u]], dat['GDP (current US$)¨l'])\n", + " if pvalue<=apv.value:\n", + " listacorpe.append(pilares[u])\n", + " else:\n", + " pass\n", + " correlation, pvalue=spearmanr(dat[pilares[u]], dat['GDP (current US$)¨l'])\n", + " if pvalue<=cpv.value:\n", + " listacorsp.append(pilares[u])\n", + " else:\n", + " pass\n", + " else:\n", + " pass\n", + " \n", + " dat=df_study.loc[df_study.loc[:, 'Country'] == clist[i]]\n", + "\n", + " datp=dat[dat.columns[dat.columns.isin(listacorpe)]]\n", + " corp=datp.corr('pearson')\n", + "\n", + " datsp=dat[dat.columns[dat.columns.isin(listacorsp)]]\n", + " cors=datsp.corr('spearman')\n", + "\n", + "\n", + " corp.loc[:,'R^2 Pearson'] = corp['GDP (current US$)¨l']**2\n", + "\n", + " cors.loc[:,'R^2 Spearman'] = cors['GDP (current US$)¨l']**2\n", + "\n", + "\n", + " corp.loc[:,'Indicator']=corp.index\n", + " corp[['Indicator','Type']]=corp.Indicator.str.split('¨',1, expand=True)\n", + "\n", + " cors.loc[:,'Indicator']=cors.index\n", + " cors[['Indicator','Type']]=cors.Indicator.str.split('¨',1, expand=True)\n", + "\n", + "\n", + " corpcolumn=corp[['Indicator','R^2 Pearson','Type','GDP (current US$)¨l']]\n", + " corpcolumn=corpcolumn.loc[corpcolumn.loc[:, 'R^2 Pearson'] >= bcor.value]\n", + " \n", + " corscolumn=cors[['Indicator','R^2 Spearman','Type','GDP (current US$)¨l']]\n", + " corscolumn=corscolumn.loc[corscolumn.loc[:, 'R^2 Spearman'] >= dcor.value]\n", + "\n", + "\n", + " idp=corpcolumn.groupby('Indicator')['R^2 Pearson'].transform(max)==corpcolumn['R^2 Pearson']\n", + " corpcolumn[idp]\n", + " maxp_df=pd.DataFrame(corpcolumn[idp])\n", + "\n", + " ids=corscolumn.groupby('Indicator')['R^2 Spearman'].transform(max)==corscolumn['R^2 Spearman']\n", + " corscolumn[ids]\n", + " maxs_df=pd.DataFrame(corscolumn[ids])\n", + "\n", + "\n", + " maxp_df['Behaviour']=np.where(maxp_df['GDP (current US$)¨l']>0, 'Positive', 'Negative')\n", + " maxp_df['Type']=maxp_df['Type'].replace(['l','^2','^3','log'],['Linear','Cuadratic','Cubic','Logarithmic'])\n", + " maxp_df['Country']= clist[i]\n", + "\n", + " maxs_df['Behaviour']=np.where(maxs_df['GDP (current US$)¨l']>0, 'Positive', 'Negative')\n", + " maxs_df['Type']=maxs_df['Type'].replace(['l','^2','^3','log'],['Linear','Cuadratic','Cubic','Logarithmic'])\n", + " maxs_df['Country']= clist[i]\n", + "\n", + "\n", + " maxp_df.drop(\"GDP (current US$)¨l\",axis=1,inplace=True)\n", + " maxp_df=maxp_df.reset_index(drop=True)\n", + " maxp_df = maxp_df.drop(maxp_df[maxp_df['Indicator']=='Year'].index)\n", + " maxp_df = maxp_df.drop(maxp_df[maxp_df['Indicator']=='GDP (current US$)'].index)\n", + " maxp_df = maxp_df.drop(maxp_df[maxp_df['Indicator']=='Unnamed: 0'].index)\n", + "\n", + " maxs_df.drop(\"GDP (current US$)¨l\",axis=1,inplace=True)\n", + " maxs_df=maxs_df.reset_index(drop=True)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='Year'].index)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='GDP (current US$)'].index)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='Unnamed: 0'].index)\n", + " maxs_df=maxs_df.sort_values(by = 'R^2 Spearman',ascending = False)\n", + "\n", + "\n", + " maxp_df=maxp_df.sort_values(by = 'R^2 Pearson',ascending = False)\n", + " pearsondf=pd.concat((pearsondf, maxp_df), axis = 0)\n", + " spearmandf=pd.concat((spearmandf, maxs_df), axis = 0)\n", + "\n", + "corrtable=spearmandf.merge(pearsondf, left_on=('Indicator', 'Country','Type','Behaviour'), right_on=('Indicator', 'Country','Type','Behaviour'))\n", + "display(corrtable)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, a table has been created showing the number of times a variable has a high relationship in our 48 countries. These that appear many times will be interesting for us to draw conclusions. Then, we will checck if they are primary or seconday variable type." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "columnssf=corrtable.Indicator.to_list()\n", + "columnsf=np.unique(columnssf)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorNumber of times repeated
127GDP per capita (current US$)46
178Industry (including construction), value added...46
132GNI (current US$)46
152Households and NPISHs Final consumption expend...45
108Final consumption expenditure (current US$)45
.........
250Net official development assistance and offici...1
248Net capital account (BoP, current US$)1
246Natural gas rents (% of GDP)1
29Arms exports (SIPRI trend indicator values)1
142Gross fixed capital formation (% of GDP)1
\n", + "

405 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " Indicator \\\n", + "127 GDP per capita (current US$) \n", + "178 Industry (including construction), value added... \n", + "132 GNI (current US$) \n", + "152 Households and NPISHs Final consumption expend... \n", + "108 Final consumption expenditure (current US$) \n", + ".. ... \n", + "250 Net official development assistance and offici... \n", + "248 Net capital account (BoP, current US$) \n", + "246 Natural gas rents (% of GDP) \n", + "29 Arms exports (SIPRI trend indicator values) \n", + "142 Gross fixed capital formation (% of GDP) \n", + "\n", + " Number of times repeated \n", + "127 46 \n", + "178 46 \n", + "132 46 \n", + "152 45 \n", + "108 45 \n", + ".. ... \n", + "250 1 \n", + "248 1 \n", + "246 1 \n", + "29 1 \n", + "142 1 \n", + "\n", + "[405 rows x 2 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "powerind=[]\n", + "for i in range(0, len(columnsf)):\n", + " powerind.append(columnssf.count(columnsf[i]))\n", + "\n", + "df_indicators = pd.DataFrame(list(zip(columnsf,powerind)), columns = ['Indicator','Number of times repeated'])\n", + "df_indicators=df_indicators.sort_values(by = 'Number of times repeated',ascending = False)\n", + "df_indicators\n", + "display(df_indicators)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "#To get list of all number of times repeated.\n", + "#from IPython.display import HTML\n", + "\n", + "#HTML(df_indicators.to_html(index=False))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "While for the temporal diferences, we want to know which works better in each case, the process to be followed is described in the following picture.\n", + "\n", + "![](https://raw.githubusercontent.com/devonfw-forge/python-data-driven-decisions/main-the-big-three/Logos/Temporal%20process.JPG)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "df= pd.read_csv (os.getcwd()+'/Data/'+'GoldenDataFrame.csv')\n", + "df_study=df[[c for c in df.columns if c in columns]]" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "moveddf=pd.DataFrame()\n", + "dat=df_study.loc[df_study.loc[:, 'Country'] == clist[0]]\n", + "clmns=dat.columns.values.tolist()\n", + "dat.replace([np.inf, -np.inf], np.nan, inplace=True)\n", + "tempdiffs=['GDP (current US$)+1','GDP (current US$)+2','GDP (current US$)+3','GDP (current US$)+5','GDP (current US$)+8','GDP (current US$)+13','GDP (current US$)+21']\n", + "cors=dat.corr('spearman')\n", + "for f in range(0, len(tempdiffs)):\n", + " cors.loc[:,'R^2 Spearman'] = cors[tempdiffs[f]]**2\n", + " cors.loc[:,'Indicator']=cors.index\n", + " corscolumn=cors[['Indicator','R^2 Spearman',tempdiffs[f]]]\n", + " corscolumn=corscolumn.loc[corscolumn.loc[:, 'R^2 Spearman'] >= dcor.value]\n", + " ids=corscolumn.groupby('Indicator')['R^2 Spearman'].transform(max)==corscolumn['R^2 Spearman']\n", + " corscolumn[ids]\n", + " maxs_df=pd.DataFrame(corscolumn[ids])\n", + " maxs_df['Behaviour']=np.where(maxs_df[tempdiffs[f]]>0, 'Positive', 'Negative')\n", + " maxs_df['Country']= clist[0]\n", + " maxs_df[['Variable','Moved']]=tempdiffs[f].split('+')\n", + " maxs_df.drop(tempdiffs[f],axis=1,inplace=True)\n", + " maxs_df.drop(columns='Variable',inplace=True)\n", + " maxs_df=maxs_df.reset_index(drop=True)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='Year'].index)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='GDP (current US$)'].index)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator'].isin(tempdiffs)].index)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='Unnamed: 0'].index)\n", + " maxs_df=maxs_df.sort_values(by = 'R^2 Spearman',ascending = False)\n", + " moveddf=pd.concat((moveddf,maxs_df),axis=0)\n", + "ids=moveddf.groupby('Indicator')['R^2 Spearman'].transform(max)==moveddf['R^2 Spearman']\n", + "moveddf[ids]\n", + "moveddf=pd.DataFrame(moveddf[ids])\n", + "temporaldf=moveddf" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorR^2 SpearmanBehaviourCountryMoved
4Adjusted savings: education expenditure (curre...0.824514PositiveDEU1
35General government final consumption expenditu...0.822917PositiveDEU1
45Individuals using the Internet (% of population)0.822917PositiveDEU1
78Surface area (sq. km)0.821642PositiveDEU1
5Adolescent fertility rate (births per 1,000 wo...0.817804NegativeDEU1
..................
167Pump price for diesel fuel (US$ per liter)0.787248NegativeCHN21
168Pump price for gasoline (US$ per liter)0.787248NegativeCHN21
30Chemicals (% of value added in manufacturing)0.781385NegativeCHN21
162Proportion of population pushed below the $1.9...0.769754PositiveCHN21
38Depth of credit information index (0=low to 8=...0.750000PositiveCHN21
\n", + "

9700 rows × 5 columns

\n", + "
" + ], + "text/plain": [ + " Indicator R^2 Spearman \\\n", + "4 Adjusted savings: education expenditure (curre... 0.824514 \n", + "35 General government final consumption expenditu... 0.822917 \n", + "45 Individuals using the Internet (% of population) 0.822917 \n", + "78 Surface area (sq. km) 0.821642 \n", + "5 Adolescent fertility rate (births per 1,000 wo... 0.817804 \n", + ".. ... ... \n", + "167 Pump price for diesel fuel (US$ per liter) 0.787248 \n", + "168 Pump price for gasoline (US$ per liter) 0.787248 \n", + "30 Chemicals (% of value added in manufacturing) 0.781385 \n", + "162 Proportion of population pushed below the $1.9... 0.769754 \n", + "38 Depth of credit information index (0=low to 8=... 0.750000 \n", + "\n", + " Behaviour Country Moved \n", + "4 Positive DEU 1 \n", + "35 Positive DEU 1 \n", + "45 Positive DEU 1 \n", + "78 Positive DEU 1 \n", + "5 Negative DEU 1 \n", + ".. ... ... ... \n", + "167 Negative CHN 21 \n", + "168 Negative CHN 21 \n", + "30 Negative CHN 21 \n", + "162 Positive CHN 21 \n", + "38 Positive CHN 21 \n", + "\n", + "[9700 rows x 5 columns]" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "for i in range(1,len(clist)):\n", + " dat=df_study.loc[df_study.loc[:, 'Country'] == clist[i]]\n", + " clmns=dat.columns.values.tolist()\n", + " dat.replace([np.inf, -np.inf], np.nan, inplace=True)\n", + " tempdiffs=['GDP (current US$)+1','GDP (current US$)+2','GDP (current US$)+3','GDP (current US$)+5','GDP (current US$)+8','GDP (current US$)+13','GDP (current US$)+21']\n", + " cors=dat.corr('spearman')\n", + " moveddf=pd.DataFrame()\n", + " for f in range(0, len(tempdiffs)):\n", + " cors.loc[:,'R^2 Spearman'] = cors[tempdiffs[f]]**2\n", + " cors.loc[:,'Indicator']=cors.index\n", + " corscolumn=cors[['Indicator','R^2 Spearman',tempdiffs[f]]]\n", + " corscolumn=corscolumn.loc[corscolumn.loc[:, 'R^2 Spearman'] >= dcor.value]\n", + " ids=corscolumn.groupby('Indicator')['R^2 Spearman'].transform(max)==corscolumn['R^2 Spearman']\n", + " corscolumn[ids]\n", + " maxs_df=pd.DataFrame(corscolumn[ids])\n", + " maxs_df['Behaviour']=np.where(maxs_df[tempdiffs[f]]>0, 'Positive', 'Negative')\n", + " maxs_df['Country']= clist[i]\n", + " maxs_df[['Variable','Moved']]=tempdiffs[f].split('+')\n", + " maxs_df.drop(tempdiffs[f],axis=1,inplace=True)\n", + " maxs_df.drop(columns='Variable',inplace=True)\n", + " maxs_df=maxs_df.reset_index(drop=True)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='Year'].index)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator'].isin(tempdiffs)].index)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='Unnamed: 0'].index)\n", + " maxs_df=maxs_df.sort_values(by = 'R^2 Spearman',ascending = False)\n", + " moveddf=pd.concat((moveddf,maxs_df),axis=0)\n", + " ids=moveddf.groupby('Indicator')['R^2 Spearman'].transform(max)==moveddf['R^2 Spearman']\n", + " moveddf[ids]\n", + " moveddf=pd.DataFrame(moveddf[ids])\n", + " temporaldf=pd.concat((temporaldf,moveddf),axis=0)\n", + "temporaldf" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorR^2 SpearmanBehaviourCountryMovedType
4Adjusted savings: education expenditure (curre...0.824514PositiveDEU1Does not apply
35General government final consumption expenditu...0.822917PositiveDEU1Does not apply
45Individuals using the Internet (% of population)0.822917PositiveDEU1Does not apply
78Surface area (sq. km)0.821642PositiveDEU1Does not apply
5Adolescent fertility rate (births per 1,000 wo...0.817804NegativeDEU1Does not apply
.....................
5965Prevalence of anemia among women of reproducti...0.793298NegativeCHNDoes not applyLogarithmic
5966Logistics performance index: Ability to track ...0.788049PositiveCHNDoes not applyLogarithmic
5967Logistics performance index: Competence and qu...0.788049PositiveCHNDoes not applyLogarithmic
5968Out-of-pocket expenditure (% of current health...0.782573NegativeCHNDoes not applyLogarithmic
5969Domestic general government health expenditure...0.758910PositiveCHNDoes not applyCubic
\n", + "

15670 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " Indicator R^2 Spearman \\\n", + "4 Adjusted savings: education expenditure (curre... 0.824514 \n", + "35 General government final consumption expenditu... 0.822917 \n", + "45 Individuals using the Internet (% of population) 0.822917 \n", + "78 Surface area (sq. km) 0.821642 \n", + "5 Adolescent fertility rate (births per 1,000 wo... 0.817804 \n", + "... ... ... \n", + "5965 Prevalence of anemia among women of reproducti... 0.793298 \n", + "5966 Logistics performance index: Ability to track ... 0.788049 \n", + "5967 Logistics performance index: Competence and qu... 0.788049 \n", + "5968 Out-of-pocket expenditure (% of current health... 0.782573 \n", + "5969 Domestic general government health expenditure... 0.758910 \n", + "\n", + " Behaviour Country Moved Type \n", + "4 Positive DEU 1 Does not apply \n", + "35 Positive DEU 1 Does not apply \n", + "45 Positive DEU 1 Does not apply \n", + "78 Positive DEU 1 Does not apply \n", + "5 Negative DEU 1 Does not apply \n", + "... ... ... ... ... \n", + "5965 Negative CHN Does not apply Logarithmic \n", + "5966 Positive CHN Does not apply Logarithmic \n", + "5967 Positive CHN Does not apply Logarithmic \n", + "5968 Negative CHN Does not apply Logarithmic \n", + "5969 Positive CHN Does not apply Cubic \n", + "\n", + "[15670 rows x 6 columns]" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "alist=['Indicator','R^2 Spearman','Behaviour','Country','Type']\n", + "forcomparassion=corrtable[alist]\n", + "\n", + "quarterfinal=pd.concat((temporaldf,forcomparassion),axis=0)\n", + "quarterfinal.fillna('Does not apply',inplace=True)\n", + "quarterfinal" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "quarterfinal.to_csv(os.getcwd()+'/Data/Quarterfinal.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "quarterfinal= pd.read_csv (os.getcwd()+'/Data/'+'Quarterfinal.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "#To understand better the data, we categorize it (Area label and Primary/Secondary).\n", + "categories= pd.read_excel (os.getcwd()+'/Data/'+'dfindicators - Copy.xlsx')" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "categories.rename(columns={'Type':'Group'}, inplace=True)\n", + "quarterfinal.drop(columns=('Unnamed: 0'), inplace=True)\n", + "clist=quarterfinal['Country'].unique()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To sum up, we compare both of the highest correlations and decide which is best, by comparing the R^2. So the process of searching for correlations is as follows.\n", + "\n", + "![](https://raw.githubusercontent.com/devonfw-forge/python-data-driven-decisions/main-the-big-three/Logos/Final%20table%20process.JPG)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorR^2 SpearmanBehaviourCountryMovedTypeContinentNumber of times repeated_xGroupLevelNumber of times repeated_y
0Adolescent fertility rate (births per 1,000 wo...0.817804NegativeDEU1Does not applyEurope22Demographysecondary40
1Adolescent fertility rate (births per 1,000 wo...0.759333NegativeSWE3Does not applyEurope22Demographysecondary40
2Adolescent fertility rate (births per 1,000 wo...0.936963NegativeGBR13Does not applyEurope22Demographysecondary40
3Adolescent fertility rate (births per 1,000 wo...0.786708NegativeHRV8Does not applyEurope22Demographysecondary40
4Adolescent fertility rate (births per 1,000 wo...0.924056NegativePOL21Does not applyEurope22Demographysecondary40
....................................
6640Completeness of birth registration (%)0.839228PositivePER5Does not applyLatam11Demoraphysecondary21
6641Completeness of birth registration (%)0.792184NegativeVEN1Does not applyLatam11Demoraphysecondary21
6642Completeness of birth registration (%)0.840648PositiveCOL2Does not applyLatam11Demoraphysecondary21
6643Completeness of birth registration (%)0.963636PositivePAN21Does not applyLatam11Demoraphysecondary21
6644Completeness of birth registration (%)0.789474PositiveCRI13Does not applyLatam11Demoraphysecondary21
\n", + "

6645 rows × 11 columns

\n", + "
" + ], + "text/plain": [ + " Indicator R^2 Spearman \\\n", + "0 Adolescent fertility rate (births per 1,000 wo... 0.817804 \n", + "1 Adolescent fertility rate (births per 1,000 wo... 0.759333 \n", + "2 Adolescent fertility rate (births per 1,000 wo... 0.936963 \n", + "3 Adolescent fertility rate (births per 1,000 wo... 0.786708 \n", + "4 Adolescent fertility rate (births per 1,000 wo... 0.924056 \n", + "... ... ... \n", + "6640 Completeness of birth registration (%) 0.839228 \n", + "6641 Completeness of birth registration (%) 0.792184 \n", + "6642 Completeness of birth registration (%) 0.840648 \n", + "6643 Completeness of birth registration (%) 0.963636 \n", + "6644 Completeness of birth registration (%) 0.789474 \n", + "\n", + " Behaviour Country Moved Type Continent \\\n", + "0 Negative DEU 1 Does not apply Europe \n", + "1 Negative SWE 3 Does not apply Europe \n", + "2 Negative GBR 13 Does not apply Europe \n", + "3 Negative HRV 8 Does not apply Europe \n", + "4 Negative POL 21 Does not apply Europe \n", + "... ... ... ... ... ... \n", + "6640 Positive PER 5 Does not apply Latam \n", + "6641 Negative VEN 1 Does not apply Latam \n", + "6642 Positive COL 2 Does not apply Latam \n", + "6643 Positive PAN 21 Does not apply Latam \n", + "6644 Positive CRI 13 Does not apply Latam \n", + "\n", + " Number of times repeated_x Group Level \\\n", + "0 22 Demography secondary \n", + "1 22 Demography secondary \n", + "2 22 Demography secondary \n", + "3 22 Demography secondary \n", + "4 22 Demography secondary \n", + "... ... ... ... \n", + "6640 11 Demoraphy secondary \n", + "6641 11 Demoraphy secondary \n", + "6642 11 Demoraphy secondary \n", + "6643 11 Demoraphy secondary \n", + "6644 11 Demoraphy secondary \n", + "\n", + " Number of times repeated_y \n", + "0 40 \n", + "1 40 \n", + "2 40 \n", + "3 40 \n", + "4 40 \n", + "... ... \n", + "6640 21 \n", + "6641 21 \n", + "6642 21 \n", + "6643 21 \n", + "6644 21 \n", + "\n", + "[6645 rows x 11 columns]" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "final=pd.DataFrame()\n", + "for i in range(0,len(clist)):\n", + " dat=quarterfinal.loc[quarterfinal.loc[:, 'Country'] == clist[i]]\n", + " ids=dat.groupby('Indicator')['R^2 Spearman'].transform(max)==dat['R^2 Spearman']\n", + " dat[ids]\n", + " semifinal=pd.DataFrame(dat[ids])\n", + " final=pd.concat((final,semifinal), axis=0)\n", + "final_indicators_list=categories.Indicator.unique()\n", + "final['Continent']=final['Country'].map(all_countries)\n", + "final=final.loc[final.loc[:, 'Indicator'].isin(np.array(final_indicators_list))]\n", + "final=pd.merge(final,categories, left_on='Indicator',right_on='Indicator')\n", + "\n", + "columnssf=final.Indicator.to_list()\n", + "columnsf=np.unique(columnssf)\n", + "powerind=[]\n", + "for i in range(0, len(columnsf)):\n", + " powerind.append(columnssf.count(columnsf[i]))\n", + "final_indicators = pd.DataFrame(list(zip(columnsf,powerind)), columns = ['Indicator','Number of times repeated'])\n", + "\n", + "final=pd.merge(final,final_indicators, left_on='Indicator',right_on='Indicator')\n", + "final" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The former table final collects the indicators that have shown a high correlation with the GDP (according to the criteria established, see above). It provides detail of each case specifying the numerical value of the correlation (R^2 Spearman); the alignment with the GDP (Behaviour); the country and continent where it applies; if there is any temporal displacement; the group of interest it belongs to and the number of times repeated.\n", + "Moreover, if we focus over the column of \"Number of times repeated\". It reflects the number of times a high correlation of each indicator is repeated over the whole sample (aggregating all countries).\n", + "\n", + "In addition we have used the `itables` library to if wanted any one can search through the table as they wish." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */\n", + "!function(e,t){\"use strict\";\"object\"==typeof module&&\"object\"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error(\"jQuery requires a window with a document\");return t(e)}:t(e)}(\"undefined\"!=typeof window?window:this,function(C,e){\"use strict\";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return\"function\"==typeof e&&\"number\"!=typeof e.nodeType&&\"function\"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement(\"script\");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+\"\":\"object\"==typeof e||\"function\"==typeof e?n[o.call(e)]||\"object\":typeof e}var f=\"3.6.0\",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&\"length\"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&(\"array\"===n||0===t||\"number\"==typeof t&&0+~]|\"+M+\")\"+M+\"*\"),U=new RegExp(M+\"|>\"),X=new RegExp(F),V=new RegExp(\"^\"+I+\"$\"),G={ID:new RegExp(\"^#(\"+I+\")\"),CLASS:new RegExp(\"^\\\\.(\"+I+\")\"),TAG:new RegExp(\"^(\"+I+\"|[*])\"),ATTR:new RegExp(\"^\"+W),PSEUDO:new RegExp(\"^\"+F),CHILD:new RegExp(\"^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\\\(\"+M+\"*(even|odd|(([+-]|)(\\\\d*)n|)\"+M+\"*(?:([+-]|)\"+M+\"*(\\\\d+)|))\"+M+\"*\\\\)|)\",\"i\"),bool:new RegExp(\"^(?:\"+R+\")$\",\"i\"),needsContext:new RegExp(\"^\"+M+\"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\\\(\"+M+\"*((?:-\\\\d)?\\\\d*)\"+M+\"*\\\\)|)(?=[^-]|$)\",\"i\")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\\d$/i,K=/^[^{]+\\{\\s*\\[native \\w/,Z=/^(?:#([\\w-]+)|(\\w+)|\\.([\\w-]+))$/,ee=/[+~]/,te=new RegExp(\"\\\\\\\\[\\\\da-fA-F]{1,6}\"+M+\"?|\\\\\\\\([^\\\\r\\\\n\\\\f])\",\"g\"),ne=function(e,t){var n=\"0x\"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\\0-\\x1f\\x7f]|^-?\\d)|^-$|[^\\0-\\x1f\\x7f-\\uFFFF\\w-]/g,ie=function(e,t){return t?\"\\0\"===e?\"\\ufffd\":e.slice(0,-1)+\"\\\\\"+e.charCodeAt(e.length-1).toString(16)+\" \":\"\\\\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&\"fieldset\"===e.nodeName.toLowerCase()},{dir:\"parentNode\",next:\"legend\"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],\"string\"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+\" \"]&&(!v||!v.test(t))&&(1!==p||\"object\"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute(\"id\"))?s=s.replace(re,ie):e.setAttribute(\"id\",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?\"#\"+s:\":scope\")+\" \"+xe(l[o]);c=l.join(\",\")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute(\"id\")}}}return g(t.replace($,\"$1\"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+\" \")>b.cacheLength&&delete e[r.shift()],e[t+\" \"]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement(\"fieldset\");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split(\"|\"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return\"input\"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return(\"input\"===t||\"button\"===t)&&e.type===n}}function ge(t){return function(e){return\"form\"in e?e.parentNode&&!1===e.disabled?\"label\"in e?\"label\"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:\"label\"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&\"undefined\"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||\"HTML\")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener(\"unload\",oe,!1):n.attachEvent&&n.attachEvent(\"onunload\",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement(\"div\")),\"undefined\"!=typeof e.querySelectorAll&&!e.querySelectorAll(\":scope fieldset div\").length}),d.attributes=ce(function(e){return e.className=\"i\",!e.getAttribute(\"className\")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment(\"\")),!e.getElementsByTagName(\"*\").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute(\"id\")===t}},b.find.ID=function(e,t){if(\"undefined\"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t=\"undefined\"!=typeof e.getAttributeNode&&e.getAttributeNode(\"id\");return t&&t.value===n}},b.find.ID=function(e,t){if(\"undefined\"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode(\"id\"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode(\"id\"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return\"undefined\"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if(\"*\"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if(\"undefined\"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML=\"\",e.querySelectorAll(\"[msallowcapture^='']\").length&&v.push(\"[*^$]=\"+M+\"*(?:''|\\\"\\\")\"),e.querySelectorAll(\"[selected]\").length||v.push(\"\\\\[\"+M+\"*(?:value|\"+R+\")\"),e.querySelectorAll(\"[id~=\"+S+\"-]\").length||v.push(\"~=\"),(t=C.createElement(\"input\")).setAttribute(\"name\",\"\"),e.appendChild(t),e.querySelectorAll(\"[name='']\").length||v.push(\"\\\\[\"+M+\"*name\"+M+\"*=\"+M+\"*(?:''|\\\"\\\")\"),e.querySelectorAll(\":checked\").length||v.push(\":checked\"),e.querySelectorAll(\"a#\"+S+\"+*\").length||v.push(\".#.+[+~]\"),e.querySelectorAll(\"\\\\\\f\"),v.push(\"[\\\\r\\\\n\\\\f]\")}),ce(function(e){e.innerHTML=\"\";var t=C.createElement(\"input\");t.setAttribute(\"type\",\"hidden\"),e.appendChild(t).setAttribute(\"name\",\"D\"),e.querySelectorAll(\"[name=d]\").length&&v.push(\"name\"+M+\"*[*^$|!~]?=\"),2!==e.querySelectorAll(\":enabled\").length&&v.push(\":enabled\",\":disabled\"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(\":disabled\").length&&v.push(\":enabled\",\":disabled\"),e.querySelectorAll(\"*,:x\"),v.push(\",.*:\")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,\"*\"),c.call(e,\"[s!='']:x\"),s.push(\"!=\",F)}),v=v.length&&new RegExp(v.join(\"|\")),s=s.length&&new RegExp(s.join(\"|\")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+\" \"]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0\":{dir:\"parentNode\",first:!0},\" \":{dir:\"parentNode\"},\"+\":{dir:\"previousSibling\",first:!0},\"~\":{dir:\"previousSibling\"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||\"\").replace(te,ne),\"~=\"===e[2]&&(e[3]=\" \"+e[3]+\" \"),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),\"nth\"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*(\"even\"===e[3]||\"odd\"===e[3])),e[5]=+(e[7]+e[8]||\"odd\"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||\"\":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(\")\",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return\"*\"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+\" \"];return t||(t=new RegExp(\"(^|\"+M+\")\"+e+\"(\"+M+\"|$)\"))&&m(e,function(e){return t.test(\"string\"==typeof e.className&&e.className||\"undefined\"!=typeof e.getAttribute&&e.getAttribute(\"class\")||\"\")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?\"!=\"===r:!r||(t+=\"\",\"=\"===r?t===i:\"!=\"===r?t!==i:\"^=\"===r?i&&0===t.indexOf(i):\"*=\"===r?i&&-1\",\"#\"===e.firstChild.getAttribute(\"href\")})||fe(\"type|href|height|width\",function(e,t,n){if(!n)return e.getAttribute(t,\"type\"===t.toLowerCase()?1:2)}),d.attributes&&ce(function(e){return e.innerHTML=\"\",e.firstChild.setAttribute(\"value\",\"\"),\"\"===e.firstChild.getAttribute(\"value\")})||fe(\"value\",function(e,t,n){if(!n&&\"input\"===e.nodeName.toLowerCase())return e.defaultValue}),ce(function(e){return null==e.getAttribute(\"disabled\")})||fe(R,function(e,t,n){var r;if(!n)return!0===e[t]?t.toLowerCase():(r=e.getAttributeNode(t))&&r.specified?r.value:null}),se}(C);S.find=d,S.expr=d.selectors,S.expr[\":\"]=S.expr.pseudos,S.uniqueSort=S.unique=d.uniqueSort,S.text=d.getText,S.isXMLDoc=d.isXML,S.contains=d.contains,S.escapeSelector=d.escape;var h=function(e,t,n){var r=[],i=void 0!==n;while((e=e[t])&&9!==e.nodeType)if(1===e.nodeType){if(i&&S(e).is(n))break;r.push(e)}return r},T=function(e,t){for(var n=[];e;e=e.nextSibling)1===e.nodeType&&e!==t&&n.push(e);return n},k=S.expr.match.needsContext;function A(e,t){return e.nodeName&&e.nodeName.toLowerCase()===t.toLowerCase()}var N=/^<([a-z][^\\/\\0>:\\x20\\t\\r\\n\\f]*)[\\x20\\t\\r\\n\\f]*\\/?>(?:<\\/\\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):\"string\"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,\"string\"==typeof e){if(!(r=\"<\"===e[0]&&\">\"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\\x20\\t\\r\\n\\f]*)/i,he=/^$|^module$|\\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement(\"div\")),(fe=E.createElement(\"input\")).setAttribute(\"type\",\"radio\"),fe.setAttribute(\"checked\",\"checked\"),fe.setAttribute(\"name\",\"t\"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML=\"\",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML=\"\",y.option=!!ce.lastChild;var ge={thead:[1,\"\",\"
\"],col:[2,\"\",\"
\"],tr:[2,\"\",\"
\"],td:[3,\"\",\"
\"],_default:[0,\"\",\"\"]};function ve(e,t){var n;return n=\"undefined\"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||\"*\"):\"undefined\"!=typeof e.querySelectorAll?e.querySelectorAll(t||\"*\"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n\",\"\"]);var me=/<|&#?\\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\\s*$/g;function je(e,t){return A(e,\"table\")&&A(11!==t.nodeType?t:t.firstChild,\"tr\")&&S(e).children(\"tbody\")[0]||e}function De(e){return e.type=(null!==e.getAttribute(\"type\"))+\"/\"+e.type,e}function qe(e){return\"true/\"===(e.type||\"\").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute(\"type\"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,\"handle events\"),s)for(n=0,r=s[i].length;n\").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on(\"load error\",i=function(e){r.remove(),i=null,e&&t(\"error\"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\\?(?=&|$)|\\?\\?/;S.ajaxSetup({jsonp:\"callback\",jsonpCallback:function(){var e=zt.pop()||S.expando+\"_\"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter(\"json jsonp\",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?\"url\":\"string\"==typeof e.data&&0===(e.contentType||\"\").indexOf(\"application/x-www-form-urlencoded\")&&Ut.test(e.data)&&\"data\");if(a||\"jsonp\"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,\"$1\"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?\"&\":\"?\")+e.jsonp+\"=\"+r),e.converters[\"script json\"]=function(){return o||S.error(r+\" was not called\"),o[0]},e.dataTypes[0]=\"json\",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),\"script\"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument(\"\").body).innerHTML=\"
\",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return\"string\"!=typeof e?[]:(\"boolean\"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument(\"\")).createElement(\"base\")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(\" \");return-1\").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,\"position\"),c=S(e),f={};\"static\"===l&&(e.style.position=\"relative\"),s=c.offset(),o=S.css(e,\"top\"),u=S.css(e,\"left\"),(\"absolute\"===l||\"fixed\"===l)&&-1<(o+u).indexOf(\"auto\")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),\"using\"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if(\"fixed\"===S.css(r,\"position\"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&\"static\"===S.css(e,\"position\"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,\"borderTopWidth\",!0),i.left+=S.css(e,\"borderLeftWidth\",!0))}return{top:t.top-i.top-S.css(r,\"marginTop\",!0),left:t.left-i.left-S.css(r,\"marginLeft\",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&\"static\"===S.css(e,\"position\"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:\"pageXOffset\",scrollTop:\"pageYOffset\"},function(t,i){var o=\"pageYOffset\"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each([\"top\",\"left\"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+\"px\":t})}),S.each({Height:\"height\",Width:\"width\"},function(a,s){S.each({padding:\"inner\"+a,content:s,\"\":\"outer\"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||\"boolean\"!=typeof e),i=r||(!0===e||!0===t?\"margin\":\"border\");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf(\"outer\")?e[\"inner\"+a]:e.document.documentElement[\"client\"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body[\"scroll\"+a],r[\"scroll\"+a],e.body[\"offset\"+a],r[\"offset\"+a],r[\"client\"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each([\"ajaxStart\",\"ajaxStop\",\"ajaxComplete\",\"ajaxError\",\"ajaxSuccess\",\"ajaxSend\"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,\"**\"):this.off(t,e||\"**\",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each(\"blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu\".split(\" \"),function(e,n){S.fn[n]=function(e,t){return 0" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:itables.downsample:showing 744x11 of 6645x11 as nbytes=584760>65536=maxBytes. See https://mwouts.github.io/itables/downsampling.html\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorR^2 SpearmanBehaviourCountryMovedTypeContinentNumber of times repeated_xGroupLevelNumber of times repeated_y
Loading... (need help?)
\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:itables.downsample:showing 744x11 of 6645x11 as nbytes=584760>65536=maxBytes. See https://mwouts.github.io/itables/downsampling.html\n" + ] + }, + { + "data": { + "text/html": [ + "
NoneIndicatorR^2 SpearmanBehaviourCountryMovedTypeContinentNumber of times repeated_xGroupLevelNumber of times repeated_y
Loading... (need help?)
\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from itables import init_notebook_mode,show\n", + "\n", + "init_notebook_mode(all_interactive=False)\n", + "\n", + "import itables.options as opt\n", + "\n", + "show(pd.DataFrame(final),dom=\"ftpr\")\n", + "\n", + "opt.lengthMenu=[5,10,20,50,100,200]\n", + "\n", + "opt.classes=[\"display\",\"nowrap\"]\n", + "\n", + "show(final,columnDefs=[{\"className\": \"dt-left\", \"targets\": \"_all\"}],column_filters=\"header\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, there is a recount by the different columns, *Behaviour*, *Relationship* and *Time moved*." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Type of behaviourNumber of times repeated
1Positive4723
0Negative1922
\n", + "
" + ], + "text/plain": [ + " Type of behaviour Number of times repeated\n", + "1 Positive 4723\n", + "0 Negative 1922" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "columnssf=final.Behaviour.to_list()\n", + "columnsf=np.unique(columnssf)\n", + "powerind=[]\n", + "for i in range(0, len(columnsf)):\n", + " powerind.append(columnssf.count(columnsf[i]))\n", + "\n", + "final_Behaviour = pd.DataFrame(list(zip(columnsf,powerind)), columns = ['Type of behaviour','Number of times repeated'])\n", + "final_Behaviour=final_Behaviour.sort_values(by = 'Number of times repeated',ascending = False)\n", + "final_Behaviour" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Type of relationshipNumber of times repeated
3Linear1294
4Logarithmic687
1Cubic419
0Cuadratic253
\n", + "
" + ], + "text/plain": [ + " Type of relationship Number of times repeated\n", + "3 Linear 1294\n", + "4 Logarithmic 687\n", + "1 Cubic 419\n", + "0 Cuadratic 253" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "columnssf=final.Type.to_list()\n", + "columnsf=np.unique(columnssf)\n", + "powerind=[]\n", + "for i in range(0, len(columnsf)):\n", + " powerind.append(columnssf.count(columnsf[i]))\n", + "\n", + "final_type = pd.DataFrame(list(zip(columnsf,powerind)), columns = ['Type of relationship','Number of times repeated'])\n", + "final_type=final_type.sort_values(by = 'Number of times repeated',ascending = False)\n", + "final_type.drop([2], inplace=True)\n", + "final_type" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the table above, we can observe which is the most common type of relationship." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Time movedNumber of times repeated
7Does not apply2653
68902
55741
113607
01516
321474
22414
43338
\n", + "
" + ], + "text/plain": [ + " Time moved Number of times repeated\n", + "7 Does not apply 2653\n", + "6 8 902\n", + "5 5 741\n", + "1 13 607\n", + "0 1 516\n", + "3 21 474\n", + "2 2 414\n", + "4 3 338" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "columnssf=final.Moved.to_list()\n", + "columnsf=np.unique(columnssf)\n", + "powerind=[]\n", + "for i in range(0, len(columnsf)):\n", + " powerind.append(columnssf.count(columnsf[i]))\n", + "\n", + "final_moved = pd.DataFrame(list(zip(columnsf,powerind)), columns = ['Time moved','Number of times repeated'])\n", + "final_moved=final_moved.sort_values(by = 'Number of times repeated',ascending = False)\n", + "final_moved" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As said, the temporary displacement shows us correlation of an indicator with the GDP comparing different periods of time. In this table, we have made a recount to see which range of displacement is most repeated. As we can see, no displacement is the most common case, what means correlation year-by-year is majority in our sample." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visualization of results" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "#Needed imports\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import seaborn as sns\n", + "\n", + "import plotly.express as px\n", + "\n", + "import plotly.graph_objects as go\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we’ve loaded the data, we can start right away to create widgets. These widgets are essentials to add interactivity to our visualizations." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Principal
Indicator=%{x}
count=%{y}", + "legendgroup": "Principal", + "marker": { + "color": "#636efa", + "pattern": { + "shape": "" + } + }, + "name": "Principal", + "offsetgroup": "Principal", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Agriculture
Indicator=%{x}
count=%{y}", + "legendgroup": "Agriculture", + "marker": { + "color": "#EF553B", + "pattern": { + "shape": "" + } + }, + "name": "Agriculture", + "offsetgroup": "Agriculture", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Mortality
Indicator=%{x}
count=%{y}", + "legendgroup": "Mortality", + "marker": { + "color": "#00cc96", + "pattern": { + "shape": "" + } + }, + "name": "Mortality", + "offsetgroup": "Mortality", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Economy
Indicator=%{x}
count=%{y}", + "legendgroup": "Economy", + "marker": { + "color": "#ab63fa", + "pattern": { + "shape": "" + } + }, + "name": "Economy", + "offsetgroup": "Economy", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Health
Indicator=%{x}
count=%{y}", + "legendgroup": "Health", + "marker": { + "color": "#FFA15A", + "pattern": { + "shape": "" + } + }, + "name": "Health", + "offsetgroup": "Health", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Exports
Indicator=%{x}
count=%{y}", + "legendgroup": "Exports", + "marker": { + "color": "#19d3f3", + "pattern": { + "shape": "" + } + }, + "name": "Exports", + "offsetgroup": "Exports", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Environment
Indicator=%{x}
count=%{y}", + "legendgroup": "Environment", + "marker": { + "color": "#FF6692", + "pattern": { + "shape": "" + } + }, + "name": "Environment", + "offsetgroup": "Environment", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Equality
Indicator=%{x}
count=%{y}", + "legendgroup": "Equality", + "marker": { + "color": "#B6E880", + "pattern": { + "shape": "" + } + }, + "name": "Equality", + "offsetgroup": "Equality", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Internet
Indicator=%{x}
count=%{y}", + "legendgroup": "Internet", + "marker": { + "color": "#FF97FF", + "pattern": { + "shape": "" + } + }, + "name": "Internet", + "offsetgroup": "Internet", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Employment
Indicator=%{x}
count=%{y}", + "legendgroup": "Employment", + "marker": { + "color": "#FECB52", + "pattern": { + "shape": "" + } + }, + "name": "Employment", + "offsetgroup": "Employment", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Demography
Indicator=%{x}
count=%{y}", + "legendgroup": "Demography", + "marker": { + "color": "#636efa", + "pattern": { + "shape": "" + } + }, + "name": "Demography", + "offsetgroup": "Demography", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=A&D
Indicator=%{x}
count=%{y}", + "legendgroup": "A&D", + "marker": { + "color": "#EF553B", + "pattern": { + "shape": "" + } + }, + "name": "A&D", + "offsetgroup": "A&D", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ], + "xaxis": "x", + "yaxis": "y" + } + ], + "layout": { + "barmode": "relative", + "height": 700, + "legend": { + "title": { + "text": "Group" + }, + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Indicators frequency by continents" + }, + "updatemenus": [ + { + "buttons": [ + { + "args": [ + { + "x": [ + [ + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)" + ], + [ + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)" + ], + [ + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)" + ], + [ + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)" + ], + [ + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)" + ], + [ + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)" + ], + [ + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)" + ], + [ + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)" + ], + [ + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)" + ], + [ + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)" + ], + [ + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city" + ], + [ + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ] + ] + } + ], + "label": "Europe", + "method": "update" + }, + { + "args": [ + { + "x": [ + [ + "GDP per unit of energy use (PPP $ per kg of oil equivalent)" + ], + [ + "Agricultural land (% of land area)", + "Agricultural land (% of land area)" + ], + [ + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)" + ], + [ + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)" + ], + [ + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Current health expenditure (% of GDP)" + ], + [ + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)" + ], + [ + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)" + ], + [ + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)" + ], + [ + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)" + ], + [ + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)" + ], + [ + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city" + ], + [ + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ] + ] + } + ], + "label": "Persian Gulf", + "method": "update" + }, + { + "args": [ + { + "x": [ + [ + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)" + ], + [ + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)" + ], + [ + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)" + ], + [ + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)" + ], + [ + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)" + ], + [ + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)" + ], + [ + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Access to electricity (% of population)", + "Access to electricity (% of population)" + ], + [ + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)" + ], + [ + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)" + ], + [ + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)" + ], + [ + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city" + ], + [ + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ] + ] + } + ], + "label": "North Africa", + "method": "update" + }, + { + "args": [ + { + "x": [ + [ + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)" + ], + [ + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)" + ], + [ + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)" + ], + [ + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)" + ], + [ + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)" + ], + [ + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)" + ], + [ + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)" + ], + [ + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)" + ], + [ + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)" + ], + [ + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)" + ], + [ + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city" + ], + [ + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ] + ] + } + ], + "label": "South Africa", + "method": "update" + }, + { + "args": [ + { + "x": [ + [ + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)" + ], + [ + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)" + ], + [ + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)" + ], + [ + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)" + ], + [ + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)" + ], + [ + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)" + ], + [ + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)" + ], + [ + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)" + ], + [ + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)" + ], + [ + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)" + ], + [ + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city" + ], + [ + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ] + ] + } + ], + "label": "Asia", + "method": "update" + }, + { + "args": [ + { + "x": [ + [ + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)" + ], + [ + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)" + ], + [ + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)" + ], + [ + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)" + ], + [ + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)" + ], + [ + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)" + ], + [ + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)" + ], + [ + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)" + ], + [ + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)" + ], + [ + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)" + ], + [ + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city" + ], + [ + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ] + ] + } + ], + "label": "Latam", + "method": "update" + }, + { + "args": [ + { + "x": [ + [ + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)" + ], + [ + "Agricultural land (% of land area)", + "Agricultural land (% of land area)" + ], + [ + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)" + ], + [ + "Gross value added at basic prices (GVA) (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)" + ], + [ + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)" + ], + [ + "Export value index (2000 = 100)", + "Export value index (2000 = 100)" + ], + [ + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Access to electricity (% of population)" + ], + [ + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)" + ], + [ + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)" + ], + [ + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)" + ], + [ + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city" + ], + [ + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ] + ] + } + ], + "label": "Pair", + "method": "update" + } + ], + "direction": "down", + "showactive": true, + "type": "dropdown" + } + ], + "xaxis": { + "anchor": "y", + "categoryorder": "total descending", + "domain": [ + 0, + 1 + ], + "title": { + "text": "Indicator" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "count" + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#COUNT HISTOGRAM: Graph for seeing the frequency of the primary indicators for each region.\n", + "selected_primary=final.loc[final['Level']=='primary']\n", + "\n", + "fig=px.histogram(selected_primary,x='Indicator',histfunc=\"count\",height=700,color='Group',text_auto=True,title=\"Indicators frequency by continents\").update_xaxes(categoryorder=\"total descending\")\n", + "continents=list(selected_primary['Continent'].unique())\n", + "buttons = []\n", + "\n", + "for continent in continents:\n", + " selected_primary_c = selected_primary.loc[(selected_primary['Continent'] == continent)]\n", + " fig_continent = px.histogram(selected_primary_c, x='Indicator', color='Group').update_xaxes(categoryorder=\"total descending\")\n", + " buttons.append(\n", + " dict(\n", + " label=continent,\n", + " method=\"update\",\n", + " args=[\n", + " {\n", + " \"x\": [trace['x'] for trace in fig_continent._data],\n", + " }\n", + " ]\n", + " )\n", + " )\n", + "\n", + "fig.update_layout(\n", + " updatemenus=[\n", + " dict(\n", + " type=\"dropdown\",\n", + " direction=\"down\",\n", + " showactive=True,\n", + " buttons=buttons\n", + " )\n", + " ]\n", + ")\n", + "\n", + "\n", + "\n", + "fig.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "branchvalues": "total", + "customdata": [ + [ + 0.9194369973190348 + ], + [ + 0.9150177303560064 + ], + [ + 0.9832058480308432 + ], + [ + 0.9792614678275988 + ], + [ + 0.9104552048233484 + ], + [ + 0.7818744360024455 + ], + [ + 0.9139430100959351 + ], + [ + 0.9206651788481804 + ], + [ + 0.9773557492735576 + ], + [ + 0.9929947676208064 + ], + [ + 0.9667829842995462 + ], + [ + 0.9886242163794032 + ], + [ + 0.9842229467473992 + ], + [ + 0.7869703117696519 + ], + [ + 0.9545454545454548 + ], + [ + 0.9364502164502164 + ], + [ + 0.7568829071309779 + ], + [ + 0.8405722943067688 + ], + [ + 0.7712684989429177 + ], + [ + 0.8553134080531343 + ], + [ + 0.7522123063336182 + ], + [ + 0.9985339932335306 + ], + [ + 0.9883020564051679 + ], + [ + 0.953621170127054 + ], + [ + 0.9622333213753728 + ], + [ + 0.8553134080531343 + ], + [ + 0.8553134080531343 + ], + [ + 0.8598347107438016 + ], + [ + 0.8507923269391159 + ], + [ + 0.8430578512396696 + ], + [ + 0.8385429638854296 + ], + [ + 0.9545454545454548 + ], + [ + 0.9545454545454548 + ], + [ + 0.8673029726406383 + ], + [ + 0.8358612257146861 + ], + [ + 0.8490800833801486 + ], + [ + 0.8003212087852895 + ], + [ + 0.904913008013858 + ], + [ + 0.7976314145122237 + ], + [ + 0.8890631162040309 + ], + [ + 0.8232860332235971 + ], + [ + 0.8258303273081601 + ], + [ + 0.9919502705663622 + ], + [ + 0.9965191088563604 + ], + [ + 0.9550538402276436 + ], + [ + 0.9737764107803116 + ], + [ + 0.8530611929128231 + ], + [ + 0.8399280642635364 + ], + [ + 0.8490800833801486 + ], + [ + 0.82454262425017 + ], + [ + 0.8462362704327265 + ], + [ + 0.8460152283133167 + ], + [ + 0.8536368018578387 + ], + [ + 0.8276242108365519 + ], + [ + 0.8298946640273919 + ], + [ + 0.8442479234380643 + ], + [ + 0.9731456263408548 + ], + [ + 0.8590707598082956 + ], + [ + 0.9929855448480356 + ], + [ + 0.917314235445159 + ], + [ + 0.9416437009068946 + ], + [ + 0.8977160492573557 + ], + [ + 0.909065387196842 + ], + [ + 0.9356248965935622 + ], + [ + 0.9890174067689452 + ], + [ + 0.9992663243093578 + ], + [ + 0.9255861016232882 + ], + [ + 0.9701400724878312 + ], + [ + 0.9099770642201834 + ], + [ + 0.9943501037415146 + ], + [ + 0.9947856385396152 + ], + [ + 0.9956476370717128 + ], + [ + 0.9904302907657898 + ], + [ + 0.8041381029540074 + ], + [ + 0.993779175279743 + ], + [ + 0.7813852813852814 + ], + [ + 0.8832034632034632 + ], + [ + 0.9990150209905604 + ], + [ + 0.9929855448480356 + ], + [ + 0.9947856385396152 + ], + [ + 0.9859234217934404 + ], + [ + 0.978073311070348 + ], + [ + 0.9820100634702482 + ], + [ + 1 + ], + [ + 0.9992656508417233 + ], + [ + 1 + ], + [ + 0.9974294410273912 + ], + [ + 0.949825316001485 + ], + [ + 0.9991101224022378 + ], + [ + 0.9990150209905604 + ], + [ + 0.997391304347826 + ], + [ + 0.9937731747479652 + ], + [ + 0.8244642857142859 + ], + [ + 0.9985875706214687 + ], + [ + 0.878685196514601 + ], + [ + 0.9786956521739132 + ], + [ + 0.7763614794595731 + ], + [ + 0.7822341892305151 + ], + [ + 0.833174972830306 + ], + [ + 0.7707081956166206 + ], + [ + 0.8268991218112046 + ], + [ + 0.7862727272727271 + ], + [ + 0.8546502548557862 + ], + [ + 0.775995920023485 + ], + [ + 0.831081385436793 + ], + [ + 0.9985339932335306 + ], + [ + 0.9941424251920344 + ], + [ + 0.9890311615492476 + ], + [ + 0.9358035287465732 + ], + [ + 0.7714797416324134 + ], + [ + 0.7643053750286719 + ], + [ + 0.7707081956166206 + ], + [ + 0.7521112125156584 + ], + [ + 0.8598347107438016 + ], + [ + 0.90662100456621 + ], + [ + 0.7822341892305151 + ], + [ + 0.7563441975980676 + ], + [ + 0.9055353950321428 + ], + [ + 0.8710617614475394 + ], + [ + 0.8630005695842037 + ], + [ + 0.8952232922255726 + ], + [ + 0.7757575757575756 + ], + [ + 0.8398859728050183 + ], + [ + 0.8668958338409165 + ], + [ + 0.8490459410817468 + ], + [ + 0.8534540516685338 + ], + [ + 0.9919502705663622 + ], + [ + 1 + ], + [ + 0.9839330712663648 + ], + [ + 0.9464739502688859 + ], + [ + 0.8862820694208641 + ], + [ + 0.8874398840030436 + ], + [ + 0.8952232922255726 + ], + [ + 0.848613775065388 + ], + [ + 0.9018993376896012 + ], + [ + 0.8965017504270001 + ], + [ + 0.8895952017025273 + ], + [ + 0.7552008456659621 + ], + [ + 0.8658008658008658 + ], + [ + 0.9636752136752136 + ], + [ + 0.9364502164502164 + ], + [ + 0.984461621950468 + ], + [ + 1 + ], + [ + 0.9818181818181816 + ], + [ + 0.996521739130435 + ], + [ + 0.8586700336700335 + ], + [ + 0.9890311615492476 + ], + [ + 0.999122807017544 + ], + [ + 0.9818536963567754 + ], + [ + 1 + ], + [ + 1 + ], + [ + 0.9970690618433798 + ], + [ + 0.9970690618433798 + ], + [ + 1 + ], + [ + 1 + ], + [ + 0.9982456140350876 + ], + [ + 0.9477543538038498 + ], + [ + 0.9977822580645164 + ], + [ + 0.9576803072122886 + ], + [ + 0.8041630667784955 + ], + [ + 0.8119647131227026 + ], + [ + 0.8679516484927489 + ], + [ + 0.8129887361537077 + ], + [ + 0.8296247866194634 + ], + [ + 0.8330381744436689 + ], + [ + 0.9303687863484544 + ], + [ + 0.8870930627862177 + ], + [ + 0.8486878358300123 + ], + [ + 0.9978013931164152 + ], + [ + 0.99268071993084 + ], + [ + 0.9875732201051683 + ], + [ + 0.9658331436022252 + ], + [ + 0.7726587251245717 + ], + [ + 0.8119189817879228 + ], + [ + 0.8216057600038706 + ], + [ + 0.9095579316931844 + ], + [ + 0.822054489456517 + ], + [ + 0.7805172292400585 + ], + [ + 0.892391114486425 + ], + [ + 0.9000234404536862 + ], + [ + 0.8397480840731469 + ], + [ + 0.8550497957993816 + ], + [ + 0.9350943180643897 + ], + [ + 0.897855261911528 + ], + [ + 0.9129853629164147 + ], + [ + 0.9978013931164152 + ], + [ + 1 + ], + [ + 0.9868446526492484 + ], + [ + 0.955770578544058 + ], + [ + 0.8995898027497777 + ], + [ + 0.8995898027497777 + ], + [ + 0.9000234404536862 + ], + [ + 0.8974216292028354 + ], + [ + 0.9068929556529068 + ], + [ + 0.7766774350616475 + ], + [ + 0.9370415079706567 + ], + [ + 0.8857699681136173 + ], + [ + 0.9897824784878032 + ], + [ + 0.998221036598569 + ], + [ + 0.8084175084175085 + ], + [ + 0.9913111768722972 + ], + [ + 0.8675319709415152 + ], + [ + 0.9280169976669376 + ], + [ + 0.999122807017544 + ], + [ + 0.8998911634924976 + ], + [ + 1 + ], + [ + 0.9992668621947256 + ], + [ + 1 + ], + [ + 0.9960351014549488 + ], + [ + 0.999122807017544 + ], + [ + 0.999122807017544 + ], + [ + 1 + ], + [ + 0.9982456140350876 + ], + [ + 0.9380859781477626 + ], + [ + 0.934372987530004 + ], + [ + 0.9969759694040504 + ], + [ + 0.792782754772987 + ], + [ + 0.7714560308712177 + ], + [ + 0.8085316277505704 + ], + [ + 0.8017888630248555 + ], + [ + 0.8557422839635942 + ], + [ + 0.7920446151287672 + ], + [ + 0.8210527935710153 + ], + [ + 0.79241896667796 + ], + [ + 0.7793718426037994 + ], + [ + 0.996336999414424 + ], + [ + 0.9965191088563604 + ], + [ + 0.9672749544015236 + ], + [ + 0.9477180531985372 + ], + [ + 0.8462714704650187 + ], + [ + 0.793236950671892 + ], + [ + 0.7965452139741043 + ], + [ + 0.7966912350949062 + ], + [ + 0.8584751140436623 + ], + [ + 0.8075842215036355 + ], + [ + 0.8935463671803986 + ], + [ + 0.8694866227116197 + ], + [ + 0.7559911987169416 + ], + [ + 0.8672820048414341 + ], + [ + 0.9978013931164152 + ], + [ + 0.9540512424216696 + ], + [ + 0.8485601299189015 + ], + [ + 0.7802288530146114 + ], + [ + 0.7559911987169416 + ], + [ + 0.8075842215036355 + ], + [ + 0.865081443540125 + ], + [ + 0.8408374965151522 + ], + [ + 0.8521832338962485 + ], + [ + 0.8227635041015324 + ], + [ + 0.8786356094048401 + ], + [ + 0.8701066680233348 + ], + [ + 0.8985904473621558 + ], + [ + 0.919319387113138 + ], + [ + 0.9208092958092956 + ], + [ + 0.8586700336700335 + ], + [ + 0.9416562889165628 + ], + [ + 0.932398585032895 + ], + [ + 0.9970690618433798 + ], + [ + 0.9970690618433798 + ], + [ + 0.9948736810887512 + ], + [ + 0.9622333213753728 + ], + [ + 0.7902969671765014 + ], + [ + 0.9908884770316014 + ], + [ + 0.946198347107438 + ], + [ + 0.92385752642948 + ], + [ + 0.8863636363636365 + ], + [ + 0.8259976777571356 + ], + [ + 0.8190486045187014 + ], + [ + 0.7940051262578318 + ], + [ + 0.7606873345935727 + ], + [ + 0.8224948407969244 + ], + [ + 0.9006445563787115 + ], + [ + 0.7834335706711103 + ], + [ + 0.7736264668325739 + ], + [ + 0.7922752675949607 + ], + [ + 0.800012400217004 + ], + [ + 0.9985339932335306 + ], + [ + 0.9768478574449928 + ], + [ + 0.9853883242696474 + ], + [ + 0.8067839857133676 + ], + [ + 0.8017627702025453 + ], + [ + 0.8021928166351607 + ], + [ + 0.7910710359728593 + ], + [ + 0.828891493383743 + ], + [ + 0.8284602000869942 + ], + [ + 0.7644903235840163 + ], + [ + 0.7893527624833871 + ], + [ + 0.780089044997152 + ], + [ + 0.7928741020793951 + ], + [ + 0.7604961330297303 + ], + [ + 0.8921379258150505 + ], + [ + 0.7921764122864366 + ], + [ + 0.863925779862748 + ], + [ + 0.7916704805491989 + ], + [ + 0.7984383476710843 + ], + [ + 0.996336999414424 + ], + [ + 0.9833831528957327 + ], + [ + 0.991220090045964 + ], + [ + 0.9301373709233364 + ], + [ + 0.7916704805491989 + ], + [ + 0.81573077081821 + ], + [ + 0.7928741020793951 + ], + [ + 0.7802662901330503 + ], + [ + 0.8037512287334593 + ], + [ + 0.8025417478298693 + ], + [ + 0.7893527624833871 + ], + [ + 0.9222946747399472 + ], + [ + 0.9344444444444444 + ], + [ + 0.8801077325173712 + ], + [ + 0.9000168618023969 + ], + [ + 0.934334074623178 + ], + [ + 0.824723044297354 + ], + [ + 0.936963017728694 + ], + [ + 0.907326978222119 + ], + [ + 0.9883020564051679 + ], + [ + 0.9914003253458398 + ], + [ + 0.9716068390573318 + ], + [ + 0.8868080394461477 + ], + [ + 0.9312885573197214 + ], + [ + 0.9677933860111212 + ], + [ + 0.9344444444444444 + ], + [ + 0.9360867018160518 + ], + [ + 0.9310557094490612 + ], + [ + 0.9275512725475664 + ], + [ + 0.9290762303990062 + ], + [ + 0.8220626497774737 + ], + [ + 0.8242647792818613 + ], + [ + 0.8580430671412884 + ], + [ + 0.7589099863492517 + ], + [ + 0.8806041934635603 + ], + [ + 0.7737464548987709 + ], + [ + 0.838169467510867 + ], + [ + 1 + ], + [ + 0.9890311615492476 + ], + [ + 0.9853883242696474 + ], + [ + 0.9450477324262084 + ], + [ + 0.8580430671412884 + ], + [ + 0.8398311720625258 + ], + [ + 0.8578858011832347 + ], + [ + 0.8672259606948435 + ], + [ + 0.7905217546826223 + ], + [ + 0.8549939348739194 + ], + [ + 0.8210461476724114 + ], + [ + 0.8919696969696971 + ], + [ + 0.8363949697251979 + ], + [ + 0.8053911900065747 + ], + [ + 0.769382100421295 + ], + [ + 0.923526237747262 + ], + [ + 0.8619283887468031 + ], + [ + 0.84746622922539 + ], + [ + 0.9782982623788444 + ], + [ + 0.9817522080920388 + ], + [ + 0.8134050821718116 + ], + [ + 0.84746622922539 + ], + [ + 0.84746622922539 + ], + [ + 0.8483379501385041 + ], + [ + 0.8465945179292698 + ], + [ + 0.8803334593572778 + ], + [ + 0.9004149252037746 + ], + [ + 0.796839893191436 + ], + [ + 0.9028882720019862 + ], + [ + 0.7676281237741422 + ], + [ + 0.8291492133323973 + ], + [ + 0.7913646289079624 + ], + [ + 0.9904289157282716 + ], + [ + 0.9926335425715881 + ], + [ + 0.9461330864231152 + ], + [ + 0.9454153674378072 + ], + [ + 0.7598160347464082 + ], + [ + 0.7867084930870223 + ], + [ + 0.7871436798157215 + ], + [ + 0.7860877112960002 + ], + [ + 0.8101813436763873 + ], + [ + 0.8238243435953363 + ], + [ + 0.8818618218586448 + ], + [ + 0.7794331008589288 + ], + [ + 0.9025957850286672 + ], + [ + 0.8025699565810901 + ], + [ + 0.9170617535185012 + ], + [ + 0.7631048593350384 + ], + [ + 0.8250833206612556 + ], + [ + 0.9088064577345945 + ], + [ + 0.9278150139590884 + ], + [ + 0.9992668621947256 + ], + [ + 0.8068812492978317 + ], + [ + 0.9934114381393974 + ], + [ + 0.984660563345966 + ], + [ + 0.870252992498577 + ], + [ + 0.8985858297326429 + ], + [ + 0.9025957850286672 + ], + [ + 0.90741737640829 + ], + [ + 0.9024751306250636 + ], + [ + 0.8824223337513897 + ], + [ + 0.9791710812316362 + ], + [ + 0.756628065305478 + ], + [ + 0.9859234217934404 + ], + [ + 0.992671182389769 + ], + [ + 0.7925192834831389 + ], + [ + 0.9807828100228472 + ], + [ + 0.9925507389082384 + ], + [ + 0.928723519908324 + ], + [ + 0.9761788895853514 + ], + [ + 0.9506223327256856 + ], + [ + 0.9992668621947256 + ], + [ + 0.9985339932335306 + ], + [ + 0.9985339932335306 + ], + [ + 0.9904901783696456 + ], + [ + 0.992671182389769 + ], + [ + 0.992671182389769 + ], + [ + 0.9928936489808848 + ], + [ + 0.988714605208294 + ], + [ + 0.948060941828255 + ], + [ + 0.9939538727034296 + ], + [ + 0.915641381346678 + ], + [ + 0.971001604361102 + ], + [ + 0.7554660388288974 + ], + [ + 0.8668958338409165 + ], + [ + 0.996336999414424 + ], + [ + 1 + ], + [ + 0.8683978095980386 + ], + [ + 0.9507590560548307 + ], + [ + 0.7506209000762774 + ], + [ + 0.7650792722152087 + ], + [ + 0.7882882882882881 + ], + [ + 0.9873000604890544 + ], + [ + 0.9682695039010508 + ], + [ + 0.939548148620228 + ], + [ + 0.978469168274726 + ], + [ + 0.9770862304997938 + ], + [ + 0.9364530503181744 + ], + [ + 0.9928507310737632 + ], + [ + 0.998339483394834 + ], + [ + 0.9869953764615554 + ], + [ + 0.9779823259487208 + ], + [ + 0.9862539184209972 + ], + [ + 0.9848040830545792 + ], + [ + 0.9846235837724948 + ], + [ + 0.9834028714566064 + ], + [ + 0.9808836171606353 + ], + [ + 0.9814823072033312 + ], + [ + 0.9838663951689132 + ], + [ + 0.9289464621791536 + ], + [ + 0.950300482513086 + ], + [ + 0.9486101335940044 + ], + [ + 0.951299790877642 + ], + [ + 0.932353379320096 + ], + [ + 0.9363191484705866 + ], + [ + 0.7500718937727315 + ], + [ + 0.8881896291715989 + ], + [ + 0.9329580322176916 + ], + [ + 0.9417014747671419 + ], + [ + 1 + ], + [ + 1 + ], + [ + 0.995605205829548 + ], + [ + 0.9883020564051679 + ], + [ + 0.9514741813067672 + ], + [ + 0.9514741813067672 + ], + [ + 0.9319643313838056 + ], + [ + 0.9419954799687824 + ], + [ + 0.9441436310000064 + ], + [ + 0.9555403520366936 + ], + [ + 0.8732908588456849 + ], + [ + 0.8482458889462429 + ], + [ + 0.8657481566722074 + ], + [ + 0.9060155127964962 + ], + [ + 0.8321093615368212 + ], + [ + 0.993758325008325 + ], + [ + 0.8271094654395285 + ], + [ + 0.855139156857862 + ], + [ + 0.8622230550415498 + ], + [ + 0.8892009084674849 + ], + [ + 0.8659230906299106 + ], + [ + 0.914656355102988 + ], + [ + 0.9248539005931276 + ], + [ + 0.9527305856232412 + ], + [ + 0.8571281012005368 + ], + [ + 0.8846977863333716 + ], + [ + 0.9593583027873251 + ], + [ + 0.9188951371295636 + ], + [ + 0.7800217784035494 + ], + [ + 0.996336999414424 + ], + [ + 0.9948736810887512 + ], + [ + 0.9868446526492484 + ], + [ + 0.9853883242696474 + ], + [ + 0.9531775071717112 + ], + [ + 0.9531775071717112 + ], + [ + 0.9527305856232412 + ], + [ + 0.9238927452772132 + ], + [ + 0.9555403520366936 + ], + [ + 0.9097297101659864 + ], + [ + 0.9320839327803117 + ], + [ + 0.8458383400350413 + ], + [ + 0.9517981773305488 + ], + [ + 0.9434321361058602 + ], + [ + 0.8384981048972464 + ], + [ + 0.9061435934718377 + ], + [ + 0.9328333806952732 + ], + [ + 0.9258691777106102 + ], + [ + 0.9978013931164152 + ], + [ + 0.9875732201051683 + ], + [ + 0.9883020564051679 + ], + [ + 0.9564875857045522 + ], + [ + 0.9429977116704804 + ], + [ + 0.9429977116704804 + ], + [ + 0.9434321361058602 + ], + [ + 0.938293658314696 + ], + [ + 0.9000657462195923 + ], + [ + 0.9038201493163326 + ], + [ + 0.936556104044048 + ], + [ + 0.952612204076308 + ], + [ + 0.7799127011297503 + ], + [ + 0.92448876432027 + ], + [ + 0.9365262267264388 + ], + [ + 0.9565966865742668 + ], + [ + 0.94491648331435 + ], + [ + 0.9086443302842008 + ], + [ + 0.9378841050418828 + ], + [ + 0.9211354224331691 + ], + [ + 0.8980181937554507 + ], + [ + 0.9376349250962784 + ], + [ + 0.9956044009241408 + ], + [ + 0.9941413527735856 + ], + [ + 0.9724980906333768 + ], + [ + 0.9083271241193304 + ], + [ + 0.9391877740213088 + ], + [ + 0.9358184932420454 + ], + [ + 0.9373115797727772 + ], + [ + 0.9463111401682168 + ], + [ + 0.9762481841119351 + ], + [ + 0.9502409737496426 + ], + [ + 0.9365262267264388 + ], + [ + 0.9521230391509398 + ], + [ + 0.8295449908182004 + ], + [ + 0.943947221044588 + ], + [ + 0.8708608667318343 + ], + [ + 0.943947221044588 + ], + [ + 0.8871943647917209 + ], + [ + 0.9412635914006205 + ], + [ + 0.9985339932335306 + ], + [ + 1 + ], + [ + 0.9407755311560884 + ], + [ + 0.9421985228698097 + ], + [ + 0.948072129659398 + ], + [ + 0.9350049149338372 + ], + [ + 0.9638336347197108 + ], + [ + 0.958536231884058 + ], + [ + 0.943947221044588 + ], + [ + 0.9667491997801664 + ], + [ + 0.8387538514207465 + ], + [ + 0.887458515283843 + ], + [ + 0.8623785126533147 + ], + [ + 0.8705701323251417 + ], + [ + 0.8001582377938935 + ], + [ + 0.8878997468865361 + ], + [ + 0.8684059865492091 + ], + [ + 0.8859445107741636 + ], + [ + 0.8677050513455755 + ], + [ + 0.8430977292102612 + ], + [ + 0.9904901783696456 + ], + [ + 0.992130773157018 + ], + [ + 0.9372227566431792 + ], + [ + 0.8621233137385207 + ], + [ + 0.8677050513455755 + ], + [ + 0.8831178664041944 + ], + [ + 0.8705701323251417 + ], + [ + 0.8614957734733332 + ], + [ + 0.8689482041587903 + ], + [ + 0.8660854435766022 + ], + [ + 0.8711152458705146 + ], + [ + 0.8873673399520713 + ], + [ + 0.9299160466862331 + ], + [ + 0.9652200677131424 + ], + [ + 0.8999564578859198 + ], + [ + 0.8950764254021453 + ], + [ + 0.9398812902982936 + ], + [ + 0.9752792033119024 + ], + [ + 0.9978013931164152 + ], + [ + 0.9721444518798692 + ], + [ + 0.9805263157894736 + ], + [ + 0.9479012434878824 + ], + [ + 0.880780406807804 + ], + [ + 0.8571885156262036 + ], + [ + 0.986135349716446 + ], + [ + 0.9743634159016108 + ], + [ + 0.9625071374155625 + ], + [ + 0.880780406807804 + ], + [ + 0.981787734953484 + ], + [ + 0.8919696969696971 + ], + [ + 0.9773557492735576 + ], + [ + 0.7714763488785488 + ], + [ + 0.9545454545454548 + ], + [ + 0.9884853681548044 + ], + [ + 0.9894860390412652 + ], + [ + 0.8047278408758268 + ], + [ + 0.9882730260033812 + ], + [ + 0.9461654371370272 + ], + [ + 0.9970690618433798 + ], + [ + 0.9978013931164152 + ], + [ + 0.996336999414424 + ], + [ + 0.9802996435295532 + ], + [ + 0.9991101223581756 + ], + [ + 0.999777530589544 + ], + [ + 1 + ], + [ + 0.9982456140350876 + ], + [ + 0.9421304353743684 + ], + [ + 0.932626333246618 + ], + [ + 0.9977753058954394 + ], + [ + 0.9203132832080203 + ], + [ + 0.9939130434782611 + ], + [ + 0.9281390141743808 + ], + [ + 0.8796487671810186 + ], + [ + 0.9357441792403746 + ], + [ + 0.7832517257911142 + ], + [ + 0.9134801839907836 + ], + [ + 0.9223744981227123 + ], + [ + 0.905289786165362 + ], + [ + 0.996336999414424 + ], + [ + 0.998350675275288 + ], + [ + 0.996336999414424 + ], + [ + 0.9613309146374462 + ], + [ + 0.937103645050706 + ], + [ + 0.937103645050706 + ], + [ + 0.9357441792403746 + ], + [ + 0.904567225435328 + ], + [ + 0.939105864661958 + ], + [ + 0.9093117324398052 + ], + [ + 0.9214972959512142 + ], + [ + 0.9414868925909092 + ], + [ + 0.8586028659246839 + ], + [ + 0.9230788696114616 + ], + [ + 0.9143112638406732 + ], + [ + 0.9391302151973808 + ], + [ + 0.996336999414424 + ], + [ + 0.9992668621947256 + ], + [ + 0.9890311615492476 + ], + [ + 0.9414868925909092 + ], + [ + 0.941314332676578 + ], + [ + 0.902432554260779 + ], + [ + 0.941241408860912 + ], + [ + 0.8318181818181817 + ], + [ + 0.909072064464046 + ], + [ + 0.9772426641825802 + ], + [ + 0.9505847966970496 + ], + [ + 0.8082508107205724 + ], + [ + 0.9532628651995616 + ], + [ + 0.7740137221269299 + ], + [ + 0.9536631479971994 + ], + [ + 0.9886242163794032 + ], + [ + 0.968708052390917 + ], + [ + 0.9970690618433798 + ], + [ + 0.9906529437430028 + ], + [ + 0.9884575916336614 + ], + [ + 0.9789725394962472 + ], + [ + 0.9851370084561714 + ], + [ + 0.9851370084561714 + ], + [ + 0.9860141582025238 + ], + [ + 0.9842598587858048 + ], + [ + 0.8230247277595698 + ], + [ + 0.9772426641825802 + ], + [ + 0.8553636363636363 + ], + [ + 0.9772426641825802 + ], + [ + 0.9565269894940224 + ], + [ + 0.8991005792297246 + ], + [ + 0.9694396869310692 + ], + [ + 0.9544594777956544 + ], + [ + 0.995605205829548 + ], + [ + 0.9887359375145636 + ], + [ + 0.7606385491732779 + ], + [ + 0.9826843100189036 + ], + [ + 0.9800758121375232 + ], + [ + 0.9000657462195923 + ], + [ + 0.9169832716276728 + ], + [ + 0.9783368141256884 + ], + [ + 0.7733211512105985 + ], + [ + 0.8315151515151515 + ], + [ + 0.9514804555247768 + ], + [ + 0.9248167539267018 + ], + [ + 0.8084175084175085 + ], + [ + 0.8131377716690427 + ], + [ + 0.9581772940528424 + ], + [ + 1 + ], + [ + 1 + ], + [ + 0.977084365603192 + ], + [ + 0.9230788696114616 + ], + [ + 0.9822495603003196 + ], + [ + 0.9822495603003196 + ], + [ + 0.9826843100189036 + ], + [ + 0.909072064464046 + ], + [ + 0.9163600219843964 + ], + [ + 0.9783368141256884 + ], + [ + 0.8722470169622666 + ], + [ + 0.7806171146277026 + ], + [ + 0.7993113894954217 + ], + [ + 0.8647701376567242 + ], + [ + 0.8843935880633129 + ], + [ + 0.8237517359346237 + ], + [ + 0.9143045157420016 + ], + [ + 0.9985339932335306 + ], + [ + 0.9948736810887512 + ], + [ + 0.9817522080920388 + ], + [ + 0.9875732201051683 + ], + [ + 0.9376831513747739 + ], + [ + 0.9355427814530765 + ], + [ + 0.8050748795127288 + ], + [ + 0.9031438311232313 + ], + [ + 0.7770347430724859 + ], + [ + 0.7558559856410743 + ], + [ + 0.8035224554513878 + ], + [ + 0.8975645313091688 + ], + [ + 0.7715736896162309 + ], + [ + 0.7524584849903713 + ], + [ + 0.760960813749392 + ], + [ + 0.7628286200410923 + ], + [ + 0.9063380676482872 + ], + [ + 0.7975398606698341 + ], + [ + 0.8173907278944466 + ], + [ + 0.8252050839377624 + ], + [ + 0.7829559806346367 + ], + [ + 0.9853883242696474 + ], + [ + 0.9914003253458398 + ], + [ + 0.9890311615492476 + ], + [ + 0.8937267418365915 + ], + [ + 0.7598493905068002 + ], + [ + 0.7664643536742591 + ], + [ + 0.8726620562837514 + ], + [ + 0.807857176503839 + ], + [ + 0.8859552362571937 + ], + [ + 0.7621748136686876 + ], + [ + 0.9006445563787115 + ], + [ + 0.8965017504270001 + ], + [ + 0.9001503179694077 + ], + [ + 0.8486878358300123 + ], + [ + 0.995605205829548 + ], + [ + 0.9875732201051683 + ], + [ + 0.9948736810887512 + ], + [ + 0.9027223454052724 + ], + [ + 0.884737671188568 + ], + [ + 0.884575512524494 + ], + [ + 0.8798196380081303 + ], + [ + 0.8878885108220647 + ], + [ + 0.8408502506153573 + ], + [ + 0.9290762303990062 + ], + [ + 0.90727093221948 + ], + [ + 0.9413092648977816 + ], + [ + 0.9219048551109622 + ], + [ + 0.9403303455027593 + ], + [ + 0.92049050384555 + ], + [ + 0.9992668621947256 + ], + [ + 0.9970690618433798 + ], + [ + 0.9883020564051679 + ], + [ + 0.9716068390573318 + ], + [ + 0.9526427685969672 + ], + [ + 0.9413092648977816 + ], + [ + 0.9417436672967864 + ], + [ + 0.9452382460255262 + ], + [ + 0.8258664204370577 + ], + [ + 0.8249965343560833 + ], + [ + 0.9498970784947516 + ], + [ + 0.8977159303535192 + ], + [ + 0.8550758611268748 + ], + [ + 0.9971775822743564 + ], + [ + 1 + ], + [ + 0.9364192202560784 + ], + [ + 0.9964912280701756 + ], + [ + 0.8485069801940157 + ], + [ + 0.9097417836628494 + ], + [ + 0.999122807017544 + ], + [ + 0.9877189123128628 + ], + [ + 1 + ], + [ + 0.9976169999054124 + ], + [ + 0.9992668621947256 + ], + [ + 0.9679854547640152 + ], + [ + 0.9236004688155952 + ], + [ + 0.999122807017544 + ], + [ + 0.9937805570643936 + ], + [ + 0.9982456140350876 + ], + [ + 0.931003010693105 + ], + [ + 0.9341554258408444 + ], + [ + 0.9954182612676434 + ], + [ + 0.9912311643305796 + ], + [ + 0.9545454545454548 + ], + [ + 0.7761808341851454 + ], + [ + 0.8182545315351611 + ], + [ + 0.9104377104377104 + ], + [ + 0.7694545454545454 + ], + [ + 0.8553134080531343 + ], + [ + 0.9292464661560496 + ], + [ + 0.9992555369697762 + ], + [ + 0.9985113511553524 + ], + [ + 0.9762465658458932 + ], + [ + 0.9572793819640072 + ], + [ + 0.9503788875440718 + ], + [ + 0.8231479245485526 + ], + [ + 0.8911007105869436 + ], + [ + 0.9024231247013856 + ], + [ + 0.8658008658008658 + ], + [ + 0.9686137921250751 + ], + [ + 0.9819054691235874 + ], + [ + 1 + ], + [ + 0.7690913021991601 + ], + [ + 0.9861142727065788 + ], + [ + 0.9679847507357018 + ], + [ + 0.9989920981077092 + ], + [ + 0.999122807017544 + ], + [ + 0.9672169872900396 + ], + [ + 1 + ], + [ + 0.9954545454545456 + ], + [ + 1 + ], + [ + 0.9992668621947256 + ], + [ + 1 + ], + [ + 0.8534197605902789 + ], + [ + 1 + ], + [ + 0.9982456140350876 + ], + [ + 0.936341359994194 + ], + [ + 0.9054813423400642 + ], + [ + 0.9977822580645164 + ], + [ + 0.86918360351979 + ], + [ + 0.9939130434782611 + ], + [ + 0.8257949554417174 + ], + [ + 0.7957985346108523 + ], + [ + 0.9136739322359624 + ], + [ + 0.8585000323687447 + ], + [ + 0.8766608932307983 + ], + [ + 0.7697689156812739 + ], + [ + 0.8566176867322529 + ], + [ + 0.9882827814745488 + ], + [ + 0.9585725924710128 + ], + [ + 0.9649045221259104 + ], + [ + 0.8401802481694282 + ], + [ + 0.9245562130177516 + ], + [ + 0.9542133966338968 + ], + [ + 0.944622600300256 + ], + [ + 0.9332845830090168 + ], + [ + 0.8278906432659406 + ], + [ + 0.9418179668098864 + ], + [ + 0.798853868337832 + ], + [ + 0.7739306525397351 + ], + [ + 0.7679975248125409 + ], + [ + 0.9228068405104872 + ], + [ + 0.7685979300090726 + ], + [ + 0.917451425335698 + ], + [ + 0.8374157216227878 + ], + [ + 0.8207867897037397 + ], + [ + 0.9992668621947256 + ], + [ + 0.9992668621947256 + ], + [ + 0.991220090045964 + ], + [ + 0.9365130082728363 + ], + [ + 0.7654094979252105 + ], + [ + 0.7550919222167469 + ], + [ + 0.7698155009451796 + ], + [ + 0.7909076419763443 + ], + [ + 0.7698457560674342 + ], + [ + 0.9286682581951208 + ], + [ + 0.8868922607689099 + ], + [ + 0.8880997664985122 + ], + [ + 0.9610802559263656 + ], + [ + 0.8164912211499714 + ], + [ + 0.9412585118107386 + ], + [ + 0.9078412687095335 + ], + [ + 0.9242220901098175 + ], + [ + 0.9456508016611644 + ], + [ + 0.9384233122417885 + ], + [ + 0.9986424009336514 + ], + [ + 0.9661371305519347 + ], + [ + 0.996359618118611 + ], + [ + 0.9920320694899843 + ], + [ + 0.9467383688039666 + ], + [ + 0.934428236729514 + ], + [ + 0.9783881137485578 + ], + [ + 0.9460013624159498 + ], + [ + 0.9555842763365257 + ], + [ + 0.8941530308332932 + ], + [ + 0.9558248635508322 + ], + [ + 0.8763764496262759 + ], + [ + 0.9356915211255111 + ], + [ + 0.8418086358878542 + ], + [ + 0.8416592129599482 + ], + [ + 0.8415070737965716 + ], + [ + 0.802202194476025 + ], + [ + 0.9033523939458318 + ], + [ + 0.8200759187451886 + ], + [ + 0.856898450536545 + ], + [ + 0.8540567799876048 + ], + [ + 0.8374790158038531 + ], + [ + 0.9927778823467517 + ], + [ + 0.9890234429386014 + ], + [ + 0.9716629095264668 + ], + [ + 0.9077159665231064 + ], + [ + 0.8588659166840533 + ], + [ + 0.8673577505339979 + ], + [ + 0.8639165764309158 + ], + [ + 0.842645116284908 + ], + [ + 0.8530563045983492 + ], + [ + 0.851072524965996 + ], + [ + 0.8704573772019558 + ], + [ + 0.8417225276657303 + ], + [ + 0.8697824343899775 + ], + [ + 0.8797533135230232 + ], + [ + 0.8067115696702831 + ], + [ + 0.9153499728608172 + ], + [ + 0.9122957748275933 + ], + [ + 0.7938508184967689 + ], + [ + 0.8937527133000729 + ], + [ + 0.8006666785588092 + ], + [ + 0.8862405116622968 + ], + [ + 0.9085125104626818 + ], + [ + 0.8789631520435636 + ], + [ + 0.9974807485770172 + ], + [ + 0.9960155803017176 + ], + [ + 0.9858052271222297 + ], + [ + 0.9615914602764132 + ], + [ + 0.9169353611273545 + ], + [ + 0.9165612351287777 + ], + [ + 0.9549874334268079 + ], + [ + 0.9051741499518738 + ], + [ + 0.8990067804864585 + ], + [ + 0.8926342138286003 + ], + [ + 0.9258249723444921 + ], + [ + 0.852052172334274 + ], + [ + 0.8857985176694988 + ], + [ + 0.8929375166442781 + ], + [ + 0.8718049611136595 + ], + [ + 0.9357165305962992 + ], + [ + 0.9217295663529694 + ], + [ + 0.8980091091634662 + ], + [ + 0.900340278528574 + ], + [ + 0.8879688080398852 + ], + [ + 0.9304518743906068 + ], + [ + 0.8970921018969952 + ], + [ + 0.9966696009557061 + ], + [ + 0.9885781489207478 + ], + [ + 0.964419505907156 + ], + [ + 0.9419917249272495 + ], + [ + 0.8978231297748687 + ], + [ + 0.9679937870446894 + ], + [ + 0.9306400155184964 + ], + [ + 0.9313766952176744 + ], + [ + 0.8880521153961992 + ], + [ + 0.8914796231786531 + ], + [ + 0.9305171145449818 + ], + [ + 0.8932658637785106 + ], + [ + 0.898388139488992 + ], + [ + 0.9636752136752136 + ], + [ + 0.8976111240012502 + ], + [ + 0.9908604005702278 + ], + [ + 1 + ], + [ + 0.959655930086227 + ], + [ + 0.9965064838338525 + ], + [ + 0.853618757941474 + ], + [ + 0.9510419642385431 + ], + [ + 0.999122807017544 + ], + [ + 0.9847950373863604 + ], + [ + 1 + ], + [ + 0.9976169999054124 + ], + [ + 0.9996335655193981 + ], + [ + 0.9827424829179762 + ], + [ + 0.9617399092325175 + ], + [ + 0.9995615959600626 + ], + [ + 0.9992268037105778 + ], + [ + 0.9982456140350876 + ], + [ + 0.931003010693105 + ], + [ + 0.9410040236447396 + ], + [ + 0.9966016615523431 + ], + [ + 0.9747445277534733 + ], + [ + 0.8857836553786925 + ], + [ + 0.8103127496818208 + ], + [ + 0.8933621267643042 + ], + [ + 0.8958961678329496 + ], + [ + 0.9506554582589484 + ], + [ + 0.8585000323687447 + ], + [ + 0.9057551009602689 + ], + [ + 0.8591560778970743 + ], + [ + 0.915580671631156 + ], + [ + 0.9408031482198341 + ], + [ + 0.9356248965935622 + ], + [ + 0.9833969787350744 + ], + [ + 0.9863034159844548 + ], + [ + 0.9264191604401815 + ], + [ + 0.9455645962492288 + ], + [ + 0.8878558482587918 + ], + [ + 0.9222251985351745 + ], + [ + 0.9778985314325723 + ], + [ + 0.9416917918323214 + ], + [ + 0.9374085375674432 + ], + [ + 0.9273453266925932 + ], + [ + 0.9747641075839333 + ], + [ + 0.8169371422195695 + ], + [ + 0.8887558080451063 + ], + [ + 0.8333777462346407 + ], + [ + 0.905041744113866 + ], + [ + 0.8252518864802031 + ], + [ + 0.868977990049962 + ], + [ + 0.8910158776253886 + ], + [ + 0.8613357070961393 + ], + [ + 0.8855129343887855 + ], + [ + 0.8874651525776813 + ], + [ + 0.8892399648499411 + ], + [ + 0.8803348783076717 + ], + [ + 0.9775219109294593 + ], + [ + 0.9950131950031115 + ], + [ + 0.9768312268951708 + ], + [ + 0.936051079155285 + ], + [ + 0.8962571474387728 + ], + [ + 0.8799679910087169 + ], + [ + 0.8585586589686451 + ], + [ + 0.8950979128079615 + ], + [ + 0.8644757842141394 + ], + [ + 0.8409320015706357 + ], + [ + 0.8609638845139348 + ], + [ + 0.933440586806712 + ], + [ + 0.8745139302030989 + ], + [ + 0.8769951532708808 + ], + [ + 0.8669121532489861 + ], + [ + 0.8916123606295077 + ], + [ + 0.91271334762741 + ], + [ + 0.8302797665212317 + ], + [ + 0.9059753878539454 + ], + [ + 0.857115021887757 + ], + [ + 0.8961790031980065 + ], + [ + 0.9120775227299308 + ], + [ + 0.8922074475884191 + ], + [ + 0.9916488377720988 + ], + [ + 0.9885675985110315 + ], + [ + 0.9739316584584679 + ], + [ + 0.9481708958643573 + ], + [ + 0.9027265481853378 + ], + [ + 0.9167882911277941 + ], + [ + 0.9466593000827263 + ], + [ + 0.9087132053377553 + ], + [ + 0.8981245330911611 + ], + [ + 0.8854184331504679 + ], + [ + 0.9251319676291814 + ], + [ + 0.8756022402743829 + ], + [ + 0.8925781053983015 + ] + ], + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "labels=%{label}
R^2 Spearman_sum=%{value}
parent=%{parent}
id=%{id}
R^2 Spearman=%{color}", + "ids": [ + "Consumer price index (2010 = 100)/Persian Gulf/ARE", + "Current health expenditure per capita (current US$)/Persian Gulf/ARE", + "Export value index (2000 = 100)/Persian Gulf/ARE", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf/ARE", + "GNI (current US$)/Persian Gulf/ARE", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf/ARE", + "Industry (including construction), value added (current US$)/Persian Gulf/ARE", + "Number of deaths ages 5-9 years/Persian Gulf/ARE", + "Number of infant deaths/Persian Gulf/ARE", + "Population in largest city/Persian Gulf/ARE", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf/ARE", + "Ratio of female to male labor force participation rate (%) (national estimate)/Persian Gulf/ARE", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf/ARE", + "Suicide mortality rate (per 100,000 population)/Persian Gulf/ARE", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf/ARE", + "CO2 emissions (kg per PPP $ of GDP)/Latam/ARG", + "Current health expenditure (% of GDP)/Latam/ARG", + "Current health expenditure per capita (current US$)/Latam/ARG", + "Employment in industry (% of total employment) (modeled ILO estimate)/Latam/ARG", + "Fixed broadband subscriptions (per 100 people)/Latam/ARG", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam/ARG", + "GNI (current US$)/Latam/ARG", + "Gross value added at basic prices (GVA) (current US$)/Latam/ARG", + "Households and NPISHs Final consumption expenditure (current US$)/Latam/ARG", + "Industry (including construction), value added (current US$)/Latam/ARG", + "Number of deaths ages 5-9 years/Latam/ARG", + "Number of infant deaths/Latam/ARG", + "Population in largest city/Latam/ARG", + "Prevalence of current tobacco use (% of adults)/Latam/ARG", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam/ARG", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam/ARG", + "Renewable internal freshwater resources per capita (cubic meters)/Latam/ARG", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam/ARG", + "Agricultural land (% of land area)/Europe/AUT", + "CO2 emissions (kg per PPP $ of GDP)/Europe/AUT", + "Consumer price index (2010 = 100)/Europe/AUT", + "Current health expenditure (% of GDP)/Europe/AUT", + "Current health expenditure per capita (current US$)/Europe/AUT", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/AUT", + "Export value index (2000 = 100)/Europe/AUT", + "Fixed broadband subscriptions (per 100 people)/Europe/AUT", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe/AUT", + "GNI (current US$)/Europe/AUT", + "Gross value added at basic prices (GVA) (current US$)/Europe/AUT", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/AUT", + "Industry (including construction), value added (current US$)/Europe/AUT", + "Number of deaths ages 5-9 years/Europe/AUT", + "Number of infant deaths/Europe/AUT", + "Population in largest city/Europe/AUT", + "Prevalence of current tobacco use (% of adults)/Europe/AUT", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe/AUT", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe/AUT", + "Renewable internal freshwater resources per capita (cubic meters)/Europe/AUT", + "Suicide mortality rate (per 100,000 population)/Europe/AUT", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe/AUT", + "Access to electricity (% of population)/Persian Gulf/AZE", + "Agricultural land (% of land area)/Persian Gulf/AZE", + "CO2 emissions (kg per PPP $ of GDP)/Persian Gulf/AZE", + "Consumer price index (2010 = 100)/Persian Gulf/AZE", + "Current health expenditure per capita (current US$)/Persian Gulf/AZE", + "Employment in industry (% of total employment) (modeled ILO estimate)/Persian Gulf/AZE", + "Export value index (2000 = 100)/Persian Gulf/AZE", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf/AZE", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Persian Gulf/AZE", + "GNI (current US$)/Persian Gulf/AZE", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf/AZE", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf/AZE", + "Industry (including construction), value added (current US$)/Persian Gulf/AZE", + "Number of deaths ages 5-9 years/Persian Gulf/AZE", + "Number of infant deaths/Persian Gulf/AZE", + "Population in largest city/Persian Gulf/AZE", + "Prevalence of current tobacco use (% of adults)/Persian Gulf/AZE", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf/AZE", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf/AZE", + "Access to electricity (% of population)/Asia/BGD", + "Agricultural land (% of land area)/Asia/BGD", + "CO2 emissions (kg per PPP $ of GDP)/Asia/BGD", + "Consumer price index (2010 = 100)/Asia/BGD", + "Current health expenditure per capita (current US$)/Asia/BGD", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia/BGD", + "Export value index (2000 = 100)/Asia/BGD", + "Fixed broadband subscriptions (per 100 people)/Asia/BGD", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia/BGD", + "GNI (current US$)/Asia/BGD", + "Gross value added at basic prices (GVA) (current US$)/Asia/BGD", + "Households and NPISHs Final consumption expenditure (current US$)/Asia/BGD", + "Industry (including construction), value added (current US$)/Asia/BGD", + "Number of deaths ages 5-9 years/Asia/BGD", + "Number of infant deaths/Asia/BGD", + "Population in largest city/Asia/BGD", + "Prevalence of current tobacco use (% of adults)/Asia/BGD", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Asia/BGD", + "Ratio of female to male labor force participation rate (%) (national estimate)/Asia/BGD", + "Renewable internal freshwater resources per capita (cubic meters)/Asia/BGD", + "Suicide mortality rate (per 100,000 population)/Asia/BGD", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia/BGD", + "Access to electricity (% of population)/Latam/BRA", + "Agricultural land (% of land area)/Latam/BRA", + "CO2 emissions (kg per PPP $ of GDP)/Latam/BRA", + "Consumer price index (2010 = 100)/Latam/BRA", + "Current health expenditure per capita (current US$)/Latam/BRA", + "Employment in industry (% of total employment) (modeled ILO estimate)/Latam/BRA", + "Export value index (2000 = 100)/Latam/BRA", + "Fixed broadband subscriptions (per 100 people)/Latam/BRA", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam/BRA", + "GNI (current US$)/Latam/BRA", + "Gross value added at basic prices (GVA) (current US$)/Latam/BRA", + "Households and NPISHs Final consumption expenditure (current US$)/Latam/BRA", + "Industry (including construction), value added (current US$)/Latam/BRA", + "Number of deaths ages 5-9 years/Latam/BRA", + "Number of infant deaths/Latam/BRA", + "Population in largest city/Latam/BRA", + "Prevalence of current tobacco use (% of adults)/Latam/BRA", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam/BRA", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam/BRA", + "Renewable internal freshwater resources per capita (cubic meters)/Latam/BRA", + "Suicide mortality rate (per 100,000 population)/Latam/BRA", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam/BRA", + "Access to electricity (% of population)/Latam/CHL", + "CO2 emissions (kg per PPP $ of GDP)/Latam/CHL", + "Consumer price index (2010 = 100)/Latam/CHL", + "Current health expenditure (% of GDP)/Latam/CHL", + "Current health expenditure per capita (current US$)/Latam/CHL", + "Export value index (2000 = 100)/Latam/CHL", + "Fixed broadband subscriptions (per 100 people)/Latam/CHL", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam/CHL", + "GNI (current US$)/Latam/CHL", + "Gross value added at basic prices (GVA) (current US$)/Latam/CHL", + "Households and NPISHs Final consumption expenditure (current US$)/Latam/CHL", + "Industry (including construction), value added (current US$)/Latam/CHL", + "Number of deaths ages 5-9 years/Latam/CHL", + "Number of infant deaths/Latam/CHL", + "Population in largest city/Latam/CHL", + "Prevalence of current tobacco use (% of adults)/Latam/CHL", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam/CHL", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam/CHL", + "Renewable internal freshwater resources per capita (cubic meters)/Latam/CHL", + "Suicide mortality rate (per 100,000 population)/Latam/CHL", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam/CHL", + "Access to electricity (% of population)/Pair/CHN", + "Agricultural land (% of land area)/Pair/CHN", + "CO2 emissions (kg per PPP $ of GDP)/Pair/CHN", + "Consumer price index (2010 = 100)/Pair/CHN", + "Current health expenditure (% of GDP)/Pair/CHN", + "Current health expenditure per capita (current US$)/Pair/CHN", + "Employment in industry (% of total employment) (modeled ILO estimate)/Pair/CHN", + "Export value index (2000 = 100)/Pair/CHN", + "Fixed broadband subscriptions (per 100 people)/Pair/CHN", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Pair/CHN", + "GNI (current US$)/Pair/CHN", + "Households and NPISHs Final consumption expenditure (current US$)/Pair/CHN", + "Industry (including construction), value added (current US$)/Pair/CHN", + "Number of deaths ages 5-9 years/Pair/CHN", + "Number of infant deaths/Pair/CHN", + "Population in largest city/Pair/CHN", + "Prevalence of current tobacco use (% of adults)/Pair/CHN", + "Ratio of female to male labor force participation rate (%) (national estimate)/Pair/CHN", + "Renewable internal freshwater resources per capita (cubic meters)/Pair/CHN", + "Suicide mortality rate (per 100,000 population)/Pair/CHN", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Pair/CHN", + "Access to electricity (% of population)/South Africa/CMR", + "Agricultural land (% of land area)/South Africa/CMR", + "Consumer price index (2010 = 100)/South Africa/CMR", + "Current health expenditure (% of GDP)/South Africa/CMR", + "Current health expenditure per capita (current US$)/South Africa/CMR", + "Employment in industry (% of total employment) (modeled ILO estimate)/South Africa/CMR", + "Fixed broadband subscriptions (per 100 people)/South Africa/CMR", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa/CMR", + "GNI (current US$)/South Africa/CMR", + "Gross value added at basic prices (GVA) (current US$)/South Africa/CMR", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa/CMR", + "Industry (including construction), value added (current US$)/South Africa/CMR", + "Number of deaths ages 5-9 years/South Africa/CMR", + "Number of infant deaths/South Africa/CMR", + "Population in largest city/South Africa/CMR", + "Prevalence of current tobacco use (% of adults)/South Africa/CMR", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa/CMR", + "Access to electricity (% of population)/Latam/COL", + "CO2 emissions (kg per PPP $ of GDP)/Latam/COL", + "Consumer price index (2010 = 100)/Latam/COL", + "Current health expenditure (% of GDP)/Latam/COL", + "Current health expenditure per capita (current US$)/Latam/COL", + "Export value index (2000 = 100)/Latam/COL", + "Fixed broadband subscriptions (per 100 people)/Latam/COL", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam/COL", + "GNI (current US$)/Latam/COL", + "Gross value added at basic prices (GVA) (current US$)/Latam/COL", + "Households and NPISHs Final consumption expenditure (current US$)/Latam/COL", + "Industry (including construction), value added (current US$)/Latam/COL", + "Number of deaths ages 5-9 years/Latam/COL", + "Number of infant deaths/Latam/COL", + "Population in largest city/Latam/COL", + "Prevalence of current tobacco use (% of adults)/Latam/COL", + "Renewable internal freshwater resources per capita (cubic meters)/Latam/COL", + "Suicide mortality rate (per 100,000 population)/Latam/COL", + "Access to electricity (% of population)/Latam/CRI", + "Agricultural land (% of land area)/Latam/CRI", + "CO2 emissions (kg per PPP $ of GDP)/Latam/CRI", + "Consumer price index (2010 = 100)/Latam/CRI", + "Current health expenditure (% of GDP)/Latam/CRI", + "Current health expenditure per capita (current US$)/Latam/CRI", + "Employment in industry (% of total employment) (modeled ILO estimate)/Latam/CRI", + "Export value index (2000 = 100)/Latam/CRI", + "Fixed broadband subscriptions (per 100 people)/Latam/CRI", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam/CRI", + "GNI (current US$)/Latam/CRI", + "Gross value added at basic prices (GVA) (current US$)/Latam/CRI", + "Households and NPISHs Final consumption expenditure (current US$)/Latam/CRI", + "Industry (including construction), value added (current US$)/Latam/CRI", + "Number of deaths ages 5-9 years/Latam/CRI", + "Number of infant deaths/Latam/CRI", + "Population in largest city/Latam/CRI", + "Prevalence of current tobacco use (% of adults)/Latam/CRI", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam/CRI", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam/CRI", + "Renewable internal freshwater resources per capita (cubic meters)/Latam/CRI", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam/CRI", + "Agricultural land (% of land area)/Europe/DEU", + "CO2 emissions (kg per PPP $ of GDP)/Europe/DEU", + "Consumer price index (2010 = 100)/Europe/DEU", + "Current health expenditure per capita (current US$)/Europe/DEU", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/DEU", + "Export value index (2000 = 100)/Europe/DEU", + "Fixed broadband subscriptions (per 100 people)/Europe/DEU", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe/DEU", + "GNI (current US$)/Europe/DEU", + "Gross value added at basic prices (GVA) (current US$)/Europe/DEU", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/DEU", + "Industry (including construction), value added (current US$)/Europe/DEU", + "Number of deaths ages 5-9 years/Europe/DEU", + "Prevalence of current tobacco use (% of adults)/Europe/DEU", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe/DEU", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe/DEU", + "Agricultural land (% of land area)/North Africa/DZA", + "Consumer price index (2010 = 100)/North Africa/DZA", + "Current health expenditure per capita (current US$)/North Africa/DZA", + "Employment in industry (% of total employment) (modeled ILO estimate)/North Africa/DZA", + "Export value index (2000 = 100)/North Africa/DZA", + "Fixed broadband subscriptions (per 100 people)/North Africa/DZA", + "GNI (current US$)/North Africa/DZA", + "Gross value added at basic prices (GVA) (current US$)/North Africa/DZA", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa/DZA", + "Industry (including construction), value added (current US$)/North Africa/DZA", + "Number of deaths ages 5-9 years/North Africa/DZA", + "Population in largest city/North Africa/DZA", + "Prevalence of current tobacco use (% of adults)/North Africa/DZA", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/North Africa/DZA", + "Ratio of female to male labor force participation rate (%) (national estimate)/North Africa/DZA", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa/DZA", + "Suicide mortality rate (per 100,000 population)/North Africa/DZA", + "Access to electricity (% of population)/North Africa/EGY", + "Agricultural land (% of land area)/North Africa/EGY", + "CO2 emissions (kg per PPP $ of GDP)/North Africa/EGY", + "Consumer price index (2010 = 100)/North Africa/EGY", + "Employment in industry (% of total employment) (modeled ILO estimate)/North Africa/EGY", + "Fixed broadband subscriptions (per 100 people)/North Africa/EGY", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/North Africa/EGY", + "GNI (current US$)/North Africa/EGY", + "Gross value added at basic prices (GVA) (current US$)/North Africa/EGY", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa/EGY", + "Industry (including construction), value added (current US$)/North Africa/EGY", + "Number of deaths ages 5-9 years/North Africa/EGY", + "Number of infant deaths/North Africa/EGY", + "Population in largest city/North Africa/EGY", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa/EGY", + "Suicide mortality rate (per 100,000 population)/North Africa/EGY", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/North Africa/EGY", + "Agricultural land (% of land area)/Europe/ESP", + "CO2 emissions (kg per PPP $ of GDP)/Europe/ESP", + "Consumer price index (2010 = 100)/Europe/ESP", + "Current health expenditure (% of GDP)/Europe/ESP", + "Current health expenditure per capita (current US$)/Europe/ESP", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/ESP", + "Export value index (2000 = 100)/Europe/ESP", + "Fixed broadband subscriptions (per 100 people)/Europe/ESP", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe/ESP", + "GNI (current US$)/Europe/ESP", + "Gross value added at basic prices (GVA) (current US$)/Europe/ESP", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/ESP", + "Industry (including construction), value added (current US$)/Europe/ESP", + "Number of deaths ages 5-9 years/Europe/ESP", + "Population in largest city/Europe/ESP", + "Prevalence of current tobacco use (% of adults)/Europe/ESP", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe/ESP", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe/ESP", + "Renewable internal freshwater resources per capita (cubic meters)/Europe/ESP", + "Agricultural land (% of land area)/Europe/FRA", + "CO2 emissions (kg per PPP $ of GDP)/Europe/FRA", + "Consumer price index (2010 = 100)/Europe/FRA", + "Current health expenditure (% of GDP)/Europe/FRA", + "Current health expenditure per capita (current US$)/Europe/FRA", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/FRA", + "Export value index (2000 = 100)/Europe/FRA", + "Fixed broadband subscriptions (per 100 people)/Europe/FRA", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe/FRA", + "GNI (current US$)/Europe/FRA", + "Gross value added at basic prices (GVA) (current US$)/Europe/FRA", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/FRA", + "Industry (including construction), value added (current US$)/Europe/FRA", + "Number of deaths ages 5-9 years/Europe/FRA", + "Number of infant deaths/Europe/FRA", + "Population in largest city/Europe/FRA", + "Prevalence of current tobacco use (% of adults)/Europe/FRA", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe/FRA", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe/FRA", + "Renewable internal freshwater resources per capita (cubic meters)/Europe/FRA", + "CO2 emissions (kg per PPP $ of GDP)/Europe/GBR", + "Consumer price index (2010 = 100)/Europe/GBR", + "Current health expenditure (% of GDP)/Europe/GBR", + "Current health expenditure per capita (current US$)/Europe/GBR", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/GBR", + "Export value index (2000 = 100)/Europe/GBR", + "Fixed broadband subscriptions (per 100 people)/Europe/GBR", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe/GBR", + "GNI (current US$)/Europe/GBR", + "Gross value added at basic prices (GVA) (current US$)/Europe/GBR", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/GBR", + "Industry (including construction), value added (current US$)/Europe/GBR", + "Number of deaths ages 5-9 years/Europe/GBR", + "Number of infant deaths/Europe/GBR", + "Population in largest city/Europe/GBR", + "Prevalence of current tobacco use (% of adults)/Europe/GBR", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe/GBR", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe/GBR", + "Renewable internal freshwater resources per capita (cubic meters)/Europe/GBR", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe/GBR", + "Access to electricity (% of population)/South Africa/GHA", + "Consumer price index (2010 = 100)/South Africa/GHA", + "Current health expenditure per capita (current US$)/South Africa/GHA", + "Export value index (2000 = 100)/South Africa/GHA", + "Fixed broadband subscriptions (per 100 people)/South Africa/GHA", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa/GHA", + "GNI (current US$)/South Africa/GHA", + "Gross value added at basic prices (GVA) (current US$)/South Africa/GHA", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa/GHA", + "Industry (including construction), value added (current US$)/South Africa/GHA", + "Number of deaths ages 5-9 years/South Africa/GHA", + "Number of infant deaths/South Africa/GHA", + "Population in largest city/South Africa/GHA", + "Prevalence of current tobacco use (% of adults)/South Africa/GHA", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa/GHA", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa/GHA", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/South Africa/GHA", + "Agricultural land (% of land area)/Europe/GRC", + "CO2 emissions (kg per PPP $ of GDP)/Europe/GRC", + "Consumer price index (2010 = 100)/Europe/GRC", + "Current health expenditure (% of GDP)/Europe/GRC", + "Current health expenditure per capita (current US$)/Europe/GRC", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/GRC", + "Fixed broadband subscriptions (per 100 people)/Europe/GRC", + "Gross value added at basic prices (GVA) (current US$)/Europe/GRC", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/GRC", + "Industry (including construction), value added (current US$)/Europe/GRC", + "Number of deaths ages 5-9 years/Europe/GRC", + "Number of infant deaths/Europe/GRC", + "Population in largest city/Europe/GRC", + "Prevalence of current tobacco use (% of adults)/Europe/GRC", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe/GRC", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe/GRC", + "CO2 emissions (kg per PPP $ of GDP)/Europe/HRV", + "Current health expenditure per capita (current US$)/Europe/HRV", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/HRV", + "Fixed broadband subscriptions (per 100 people)/Europe/HRV", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe/HRV", + "GNI (current US$)/Europe/HRV", + "Gross value added at basic prices (GVA) (current US$)/Europe/HRV", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/HRV", + "Industry (including construction), value added (current US$)/Europe/HRV", + "Number of deaths ages 5-9 years/Europe/HRV", + "Number of infant deaths/Europe/HRV", + "Population in largest city/Europe/HRV", + "Prevalence of current tobacco use (% of adults)/Europe/HRV", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe/HRV", + "Access to electricity (% of population)/Asia/IDN", + "Agricultural land (% of land area)/Asia/IDN", + "CO2 emissions (kg per PPP $ of GDP)/Asia/IDN", + "Consumer price index (2010 = 100)/Asia/IDN", + "Current health expenditure (% of GDP)/Asia/IDN", + "Current health expenditure per capita (current US$)/Asia/IDN", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia/IDN", + "Export value index (2000 = 100)/Asia/IDN", + "Fixed broadband subscriptions (per 100 people)/Asia/IDN", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia/IDN", + "GNI (current US$)/Asia/IDN", + "Gross value added at basic prices (GVA) (current US$)/Asia/IDN", + "Households and NPISHs Final consumption expenditure (current US$)/Asia/IDN", + "Industry (including construction), value added (current US$)/Asia/IDN", + "Number of deaths ages 5-9 years/Asia/IDN", + "Number of infant deaths/Asia/IDN", + "Population in largest city/Asia/IDN", + "Prevalence of current tobacco use (% of adults)/Asia/IDN", + "Renewable internal freshwater resources per capita (cubic meters)/Asia/IDN", + "Suicide mortality rate (per 100,000 population)/Asia/IDN", + "Access to electricity (% of population)/Asia/IND", + "Agricultural land (% of land area)/Asia/IND", + "CO2 emissions (kg per PPP $ of GDP)/Asia/IND", + "Consumer price index (2010 = 100)/Asia/IND", + "Current health expenditure (% of GDP)/Asia/IND", + "Current health expenditure per capita (current US$)/Asia/IND", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia/IND", + "Export value index (2000 = 100)/Asia/IND", + "Fixed broadband subscriptions (per 100 people)/Asia/IND", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia/IND", + "GNI (current US$)/Asia/IND", + "Gross value added at basic prices (GVA) (current US$)/Asia/IND", + "Households and NPISHs Final consumption expenditure (current US$)/Asia/IND", + "Industry (including construction), value added (current US$)/Asia/IND", + "Number of deaths ages 5-9 years/Asia/IND", + "Number of infant deaths/Asia/IND", + "Population in largest city/Asia/IND", + "Prevalence of current tobacco use (% of adults)/Asia/IND", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Asia/IND", + "Renewable internal freshwater resources per capita (cubic meters)/Asia/IND", + "Suicide mortality rate (per 100,000 population)/Asia/IND", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia/IND", + "Access to electricity (% of population)/Persian Gulf/IRQ", + "Export value index (2000 = 100)/Persian Gulf/IRQ", + "GNI (current US$)/Persian Gulf/IRQ", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf/IRQ", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf/IRQ", + "Industry (including construction), value added (current US$)/Persian Gulf/IRQ", + "Number of infant deaths/Persian Gulf/IRQ", + "Prevalence of current tobacco use (% of adults)/Persian Gulf/IRQ", + "Agricultural land (% of land area)/North Africa/ISR", + "CO2 emissions (kg per PPP $ of GDP)/North Africa/ISR", + "Consumer price index (2010 = 100)/North Africa/ISR", + "Current health expenditure per capita (current US$)/North Africa/ISR", + "Employment in industry (% of total employment) (modeled ILO estimate)/North Africa/ISR", + "Fixed broadband subscriptions (per 100 people)/North Africa/ISR", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/North Africa/ISR", + "GNI (current US$)/North Africa/ISR", + "Gross value added at basic prices (GVA) (current US$)/North Africa/ISR", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa/ISR", + "Industry (including construction), value added (current US$)/North Africa/ISR", + "Number of deaths ages 5-9 years/North Africa/ISR", + "Number of infant deaths/North Africa/ISR", + "Population in largest city/North Africa/ISR", + "Prevalence of current tobacco use (% of adults)/North Africa/ISR", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/North Africa/ISR", + "Ratio of female to male labor force participation rate (%) (national estimate)/North Africa/ISR", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa/ISR", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/North Africa/ISR", + "Agricultural land (% of land area)/Asia/KOR", + "CO2 emissions (kg per PPP $ of GDP)/Asia/KOR", + "Consumer price index (2010 = 100)/Asia/KOR", + "Current health expenditure (% of GDP)/Asia/KOR", + "Current health expenditure per capita (current US$)/Asia/KOR", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia/KOR", + "Export value index (2000 = 100)/Asia/KOR", + "Fixed broadband subscriptions (per 100 people)/Asia/KOR", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia/KOR", + "GNI (current US$)/Asia/KOR", + "Gross value added at basic prices (GVA) (current US$)/Asia/KOR", + "Households and NPISHs Final consumption expenditure (current US$)/Asia/KOR", + "Industry (including construction), value added (current US$)/Asia/KOR", + "Number of deaths ages 5-9 years/Asia/KOR", + "Number of infant deaths/Asia/KOR", + "Prevalence of current tobacco use (% of adults)/Asia/KOR", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Asia/KOR", + "Ratio of female to male labor force participation rate (%) (national estimate)/Asia/KOR", + "Renewable internal freshwater resources per capita (cubic meters)/Asia/KOR", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia/KOR", + "Access to electricity (% of population)/South Africa/LBR", + "Agricultural land (% of land area)/South Africa/LBR", + "Consumer price index (2010 = 100)/South Africa/LBR", + "Current health expenditure per capita (current US$)/South Africa/LBR", + "Fixed broadband subscriptions (per 100 people)/South Africa/LBR", + "GNI (current US$)/South Africa/LBR", + "Industry (including construction), value added (current US$)/South Africa/LBR", + "Number of infant deaths/South Africa/LBR", + "Prevalence of current tobacco use (% of adults)/South Africa/LBR", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa/LBR", + "Access to electricity (% of population)/North Africa/MAR", + "CO2 emissions (kg per PPP $ of GDP)/North Africa/MAR", + "Consumer price index (2010 = 100)/North Africa/MAR", + "Current health expenditure per capita (current US$)/North Africa/MAR", + "Employment in industry (% of total employment) (modeled ILO estimate)/North Africa/MAR", + "Export value index (2000 = 100)/North Africa/MAR", + "Fixed broadband subscriptions (per 100 people)/North Africa/MAR", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/North Africa/MAR", + "GNI (current US$)/North Africa/MAR", + "Gross value added at basic prices (GVA) (current US$)/North Africa/MAR", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa/MAR", + "Industry (including construction), value added (current US$)/North Africa/MAR", + "Number of deaths ages 5-9 years/North Africa/MAR", + "Number of infant deaths/North Africa/MAR", + "Population in largest city/North Africa/MAR", + "Prevalence of current tobacco use (% of adults)/North Africa/MAR", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa/MAR", + "Suicide mortality rate (per 100,000 population)/North Africa/MAR", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/North Africa/MAR", + "Access to electricity (% of population)/Latam/MEX", + "CO2 emissions (kg per PPP $ of GDP)/Latam/MEX", + "Consumer price index (2010 = 100)/Latam/MEX", + "Current health expenditure per capita (current US$)/Latam/MEX", + "Export value index (2000 = 100)/Latam/MEX", + "Fixed broadband subscriptions (per 100 people)/Latam/MEX", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam/MEX", + "GNI (current US$)/Latam/MEX", + "Gross value added at basic prices (GVA) (current US$)/Latam/MEX", + "Households and NPISHs Final consumption expenditure (current US$)/Latam/MEX", + "Industry (including construction), value added (current US$)/Latam/MEX", + "Number of deaths ages 5-9 years/Latam/MEX", + "Number of infant deaths/Latam/MEX", + "Population in largest city/Latam/MEX", + "Prevalence of current tobacco use (% of adults)/Latam/MEX", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam/MEX", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam/MEX", + "Renewable internal freshwater resources per capita (cubic meters)/Latam/MEX", + "Suicide mortality rate (per 100,000 population)/Latam/MEX", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam/MEX", + "Access to electricity (% of population)/South Africa/MOZ", + "Agricultural land (% of land area)/South Africa/MOZ", + "Consumer price index (2010 = 100)/South Africa/MOZ", + "Current health expenditure (% of GDP)/South Africa/MOZ", + "Current health expenditure per capita (current US$)/South Africa/MOZ", + "Employment in industry (% of total employment) (modeled ILO estimate)/South Africa/MOZ", + "Export value index (2000 = 100)/South Africa/MOZ", + "Fixed broadband subscriptions (per 100 people)/South Africa/MOZ", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa/MOZ", + "GNI (current US$)/South Africa/MOZ", + "Gross value added at basic prices (GVA) (current US$)/South Africa/MOZ", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa/MOZ", + "Industry (including construction), value added (current US$)/South Africa/MOZ", + "Number of deaths ages 5-9 years/South Africa/MOZ", + "Number of infant deaths/South Africa/MOZ", + "Population in largest city/South Africa/MOZ", + "Prevalence of current tobacco use (% of adults)/South Africa/MOZ", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa/MOZ", + "Ratio of female to male labor force participation rate (%) (national estimate)/South Africa/MOZ", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa/MOZ", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/South Africa/MOZ", + "Access to electricity (% of population)/South Africa/NGA", + "Agricultural land (% of land area)/South Africa/NGA", + "CO2 emissions (kg per PPP $ of GDP)/South Africa/NGA", + "Consumer price index (2010 = 100)/South Africa/NGA", + "Current health expenditure per capita (current US$)/South Africa/NGA", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa/NGA", + "GNI (current US$)/South Africa/NGA", + "Gross value added at basic prices (GVA) (current US$)/South Africa/NGA", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa/NGA", + "Industry (including construction), value added (current US$)/South Africa/NGA", + "Number of deaths ages 5-9 years/South Africa/NGA", + "Population in largest city/South Africa/NGA", + "Prevalence of current tobacco use (% of adults)/South Africa/NGA", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa/NGA", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa/NGA", + "Suicide mortality rate (per 100,000 population)/South Africa/NGA", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/South Africa/NGA", + "Agricultural land (% of land area)/Europe/NLD", + "CO2 emissions (kg per PPP $ of GDP)/Europe/NLD", + "Consumer price index (2010 = 100)/Europe/NLD", + "Current health expenditure (% of GDP)/Europe/NLD", + "Current health expenditure per capita (current US$)/Europe/NLD", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/NLD", + "Export value index (2000 = 100)/Europe/NLD", + "Fixed broadband subscriptions (per 100 people)/Europe/NLD", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe/NLD", + "GNI (current US$)/Europe/NLD", + "Gross value added at basic prices (GVA) (current US$)/Europe/NLD", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/NLD", + "Industry (including construction), value added (current US$)/Europe/NLD", + "Number of deaths ages 5-9 years/Europe/NLD", + "Number of infant deaths/Europe/NLD", + "Population in largest city/Europe/NLD", + "Prevalence of current tobacco use (% of adults)/Europe/NLD", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe/NLD", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe/NLD", + "Renewable internal freshwater resources per capita (cubic meters)/Europe/NLD", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe/NLD", + "CO2 emissions (kg per PPP $ of GDP)/Persian Gulf/OMN", + "Consumer price index (2010 = 100)/Persian Gulf/OMN", + "Current health expenditure per capita (current US$)/Persian Gulf/OMN", + "Employment in industry (% of total employment) (modeled ILO estimate)/Persian Gulf/OMN", + "Export value index (2000 = 100)/Persian Gulf/OMN", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf/OMN", + "GNI (current US$)/Persian Gulf/OMN", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf/OMN", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf/OMN", + "Industry (including construction), value added (current US$)/Persian Gulf/OMN", + "Number of deaths ages 5-9 years/Persian Gulf/OMN", + "Number of infant deaths/Persian Gulf/OMN", + "Population in largest city/Persian Gulf/OMN", + "Prevalence of current tobacco use (% of adults)/Persian Gulf/OMN", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf/OMN", + "Ratio of female to male labor force participation rate (%) (national estimate)/Persian Gulf/OMN", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf/OMN", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf/OMN", + "Access to electricity (% of population)/Latam/PAN", + "Agricultural land (% of land area)/Latam/PAN", + "CO2 emissions (kg per PPP $ of GDP)/Latam/PAN", + "Consumer price index (2010 = 100)/Latam/PAN", + "Current health expenditure per capita (current US$)/Latam/PAN", + "Export value index (2000 = 100)/Latam/PAN", + "Fixed broadband subscriptions (per 100 people)/Latam/PAN", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam/PAN", + "GNI (current US$)/Latam/PAN", + "Gross value added at basic prices (GVA) (current US$)/Latam/PAN", + "Households and NPISHs Final consumption expenditure (current US$)/Latam/PAN", + "Industry (including construction), value added (current US$)/Latam/PAN", + "Number of deaths ages 5-9 years/Latam/PAN", + "Number of infant deaths/Latam/PAN", + "Population in largest city/Latam/PAN", + "Prevalence of current tobacco use (% of adults)/Latam/PAN", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam/PAN", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam/PAN", + "Renewable internal freshwater resources per capita (cubic meters)/Latam/PAN", + "Suicide mortality rate (per 100,000 population)/Latam/PAN", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam/PAN", + "Access to electricity (% of population)/Latam/PER", + "CO2 emissions (kg per PPP $ of GDP)/Latam/PER", + "Consumer price index (2010 = 100)/Latam/PER", + "Current health expenditure (% of GDP)/Latam/PER", + "Current health expenditure per capita (current US$)/Latam/PER", + "Export value index (2000 = 100)/Latam/PER", + "Fixed broadband subscriptions (per 100 people)/Latam/PER", + "GNI (current US$)/Latam/PER", + "Gross value added at basic prices (GVA) (current US$)/Latam/PER", + "Households and NPISHs Final consumption expenditure (current US$)/Latam/PER", + "Industry (including construction), value added (current US$)/Latam/PER", + "Number of deaths ages 5-9 years/Latam/PER", + "Number of infant deaths/Latam/PER", + "Population in largest city/Latam/PER", + "Prevalence of current tobacco use (% of adults)/Latam/PER", + "Renewable internal freshwater resources per capita (cubic meters)/Latam/PER", + "Access to electricity (% of population)/Asia/PHL", + "Agricultural land (% of land area)/Asia/PHL", + "Consumer price index (2010 = 100)/Asia/PHL", + "Current health expenditure per capita (current US$)/Asia/PHL", + "Export value index (2000 = 100)/Asia/PHL", + "Fixed broadband subscriptions (per 100 people)/Asia/PHL", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia/PHL", + "GNI (current US$)/Asia/PHL", + "Households and NPISHs Final consumption expenditure (current US$)/Asia/PHL", + "Industry (including construction), value added (current US$)/Asia/PHL", + "Number of infant deaths/Asia/PHL", + "Population in largest city/Asia/PHL", + "Prevalence of current tobacco use (% of adults)/Asia/PHL", + "Renewable internal freshwater resources per capita (cubic meters)/Asia/PHL", + "Suicide mortality rate (per 100,000 population)/Asia/PHL", + "Agricultural land (% of land area)/Europe/POL", + "CO2 emissions (kg per PPP $ of GDP)/Europe/POL", + "Consumer price index (2010 = 100)/Europe/POL", + "Current health expenditure (% of GDP)/Europe/POL", + "Current health expenditure per capita (current US$)/Europe/POL", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/POL", + "Export value index (2000 = 100)/Europe/POL", + "Fixed broadband subscriptions (per 100 people)/Europe/POL", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe/POL", + "GNI (current US$)/Europe/POL", + "Gross value added at basic prices (GVA) (current US$)/Europe/POL", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/POL", + "Industry (including construction), value added (current US$)/Europe/POL", + "Number of deaths ages 5-9 years/Europe/POL", + "Number of infant deaths/Europe/POL", + "Population in largest city/Europe/POL", + "Prevalence of current tobacco use (% of adults)/Europe/POL", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe/POL", + "Renewable internal freshwater resources per capita (cubic meters)/Europe/POL", + "Suicide mortality rate (per 100,000 population)/Europe/POL", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe/POL", + "Consumer price index (2010 = 100)/Persian Gulf/QAT", + "Current health expenditure per capita (current US$)/Persian Gulf/QAT", + "Export value index (2000 = 100)/Persian Gulf/QAT", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf/QAT", + "GNI (current US$)/Persian Gulf/QAT", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf/QAT", + "Number of deaths ages 5-9 years/Persian Gulf/QAT", + "Population in largest city/Persian Gulf/QAT", + "Prevalence of current tobacco use (% of adults)/Persian Gulf/QAT", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf/QAT", + "Ratio of female to male labor force participation rate (%) (national estimate)/Persian Gulf/QAT", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf/QAT", + "Suicide mortality rate (per 100,000 population)/Persian Gulf/QAT", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf/QAT", + "Consumer price index (2010 = 100)/Persian Gulf/SAU", + "Current health expenditure per capita (current US$)/Persian Gulf/SAU", + "Employment in industry (% of total employment) (modeled ILO estimate)/Persian Gulf/SAU", + "Export value index (2000 = 100)/Persian Gulf/SAU", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf/SAU", + "GNI (current US$)/Persian Gulf/SAU", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf/SAU", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf/SAU", + "Industry (including construction), value added (current US$)/Persian Gulf/SAU", + "Number of deaths ages 5-9 years/Persian Gulf/SAU", + "Number of infant deaths/Persian Gulf/SAU", + "Population in largest city/Persian Gulf/SAU", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf/SAU", + "Ratio of female to male labor force participation rate (%) (national estimate)/Persian Gulf/SAU", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf/SAU", + "Suicide mortality rate (per 100,000 population)/Persian Gulf/SAU", + "Access to electricity (% of population)/South Africa/SEN", + "Consumer price index (2010 = 100)/South Africa/SEN", + "Current health expenditure per capita (current US$)/South Africa/SEN", + "Employment in industry (% of total employment) (modeled ILO estimate)/South Africa/SEN", + "Export value index (2000 = 100)/South Africa/SEN", + "Fixed broadband subscriptions (per 100 people)/South Africa/SEN", + "GNI (current US$)/South Africa/SEN", + "Gross value added at basic prices (GVA) (current US$)/South Africa/SEN", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa/SEN", + "Industry (including construction), value added (current US$)/South Africa/SEN", + "Number of deaths ages 5-9 years/South Africa/SEN", + "Number of infant deaths/South Africa/SEN", + "Population in largest city/South Africa/SEN", + "Prevalence of current tobacco use (% of adults)/South Africa/SEN", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa/SEN", + "Ratio of female to male labor force participation rate (%) (national estimate)/South Africa/SEN", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa/SEN", + "Suicide mortality rate (per 100,000 population)/South Africa/SEN", + "Agricultural land (% of land area)/Europe/SWE", + "CO2 emissions (kg per PPP $ of GDP)/Europe/SWE", + "Consumer price index (2010 = 100)/Europe/SWE", + "Current health expenditure (% of GDP)/Europe/SWE", + "Current health expenditure per capita (current US$)/Europe/SWE", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/SWE", + "Export value index (2000 = 100)/Europe/SWE", + "Fixed broadband subscriptions (per 100 people)/Europe/SWE", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe/SWE", + "GNI (current US$)/Europe/SWE", + "Gross value added at basic prices (GVA) (current US$)/Europe/SWE", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/SWE", + "Industry (including construction), value added (current US$)/Europe/SWE", + "Number of infant deaths/Europe/SWE", + "Prevalence of current tobacco use (% of adults)/Europe/SWE", + "Access to electricity (% of population)/Asia/THA", + "CO2 emissions (kg per PPP $ of GDP)/Asia/THA", + "Consumer price index (2010 = 100)/Asia/THA", + "Current health expenditure (% of GDP)/Asia/THA", + "Current health expenditure per capita (current US$)/Asia/THA", + "Export value index (2000 = 100)/Asia/THA", + "Fixed broadband subscriptions (per 100 people)/Asia/THA", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia/THA", + "GNI (current US$)/Asia/THA", + "Households and NPISHs Final consumption expenditure (current US$)/Asia/THA", + "Industry (including construction), value added (current US$)/Asia/THA", + "Number of deaths ages 5-9 years/Asia/THA", + "Number of infant deaths/Asia/THA", + "Population in largest city/Asia/THA", + "Prevalence of current tobacco use (% of adults)/Asia/THA", + "Renewable internal freshwater resources per capita (cubic meters)/Asia/THA", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia/THA", + "Agricultural land (% of land area)/North Africa/TUR", + "CO2 emissions (kg per PPP $ of GDP)/North Africa/TUR", + "Consumer price index (2010 = 100)/North Africa/TUR", + "Export value index (2000 = 100)/North Africa/TUR", + "Fixed broadband subscriptions (per 100 people)/North Africa/TUR", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/North Africa/TUR", + "GNI (current US$)/North Africa/TUR", + "Gross value added at basic prices (GVA) (current US$)/North Africa/TUR", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa/TUR", + "Industry (including construction), value added (current US$)/North Africa/TUR", + "Number of deaths ages 5-9 years/North Africa/TUR", + "Number of infant deaths/North Africa/TUR", + "Population in largest city/North Africa/TUR", + "Prevalence of current tobacco use (% of adults)/North Africa/TUR", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/North Africa/TUR", + "Ratio of female to male labor force participation rate (%) (national estimate)/North Africa/TUR", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa/TUR", + "Suicide mortality rate (per 100,000 population)/North Africa/TUR", + "Agricultural land (% of land area)/Pair/USA", + "CO2 emissions (kg per PPP $ of GDP)/Pair/USA", + "Consumer price index (2010 = 100)/Pair/USA", + "Current health expenditure (% of GDP)/Pair/USA", + "Current health expenditure per capita (current US$)/Pair/USA", + "Employment in industry (% of total employment) (modeled ILO estimate)/Pair/USA", + "Export value index (2000 = 100)/Pair/USA", + "Fixed broadband subscriptions (per 100 people)/Pair/USA", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Pair/USA", + "GNI (current US$)/Pair/USA", + "Gross value added at basic prices (GVA) (current US$)/Pair/USA", + "Households and NPISHs Final consumption expenditure (current US$)/Pair/USA", + "Industry (including construction), value added (current US$)/Pair/USA", + "Number of deaths ages 5-9 years/Pair/USA", + "Number of infant deaths/Pair/USA", + "Population in largest city/Pair/USA", + "Prevalence of current tobacco use (% of adults)/Pair/USA", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Pair/USA", + "Ratio of female to male labor force participation rate (%) (national estimate)/Pair/USA", + "Renewable internal freshwater resources per capita (cubic meters)/Pair/USA", + "Suicide mortality rate (per 100,000 population)/Pair/USA", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Pair/USA", + "Agricultural land (% of land area)/Latam/VEN", + "Consumer price index (2010 = 100)/Latam/VEN", + "Current health expenditure per capita (current US$)/Latam/VEN", + "Employment in industry (% of total employment) (modeled ILO estimate)/Latam/VEN", + "Export value index (2000 = 100)/Latam/VEN", + "Fixed broadband subscriptions (per 100 people)/Latam/VEN", + "GNI (current US$)/Latam/VEN", + "Gross value added at basic prices (GVA) (current US$)/Latam/VEN", + "Households and NPISHs Final consumption expenditure (current US$)/Latam/VEN", + "Industry (including construction), value added (current US$)/Latam/VEN", + "Population in largest city/Latam/VEN", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam/VEN", + "Renewable internal freshwater resources per capita (cubic meters)/Latam/VEN", + "Suicide mortality rate (per 100,000 population)/Latam/VEN", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam/VEN", + "Access to electricity (% of population)/Asia/VNM", + "Agricultural land (% of land area)/Asia/VNM", + "Consumer price index (2010 = 100)/Asia/VNM", + "Current health expenditure (% of GDP)/Asia/VNM", + "Current health expenditure per capita (current US$)/Asia/VNM", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia/VNM", + "Export value index (2000 = 100)/Asia/VNM", + "Fixed broadband subscriptions (per 100 people)/Asia/VNM", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia/VNM", + "GNI (current US$)/Asia/VNM", + "Gross value added at basic prices (GVA) (current US$)/Asia/VNM", + "Households and NPISHs Final consumption expenditure (current US$)/Asia/VNM", + "Industry (including construction), value added (current US$)/Asia/VNM", + "Number of deaths ages 5-9 years/Asia/VNM", + "Number of infant deaths/Asia/VNM", + "Population in largest city/Asia/VNM", + "Prevalence of current tobacco use (% of adults)/Asia/VNM", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Asia/VNM", + "Ratio of female to male labor force participation rate (%) (national estimate)/Asia/VNM", + "Renewable internal freshwater resources per capita (cubic meters)/Asia/VNM", + "Suicide mortality rate (per 100,000 population)/Asia/VNM", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia/VNM", + "Access to electricity (% of population)/Persian Gulf/YEM", + "Agricultural land (% of land area)/Persian Gulf/YEM", + "Consumer price index (2010 = 100)/Persian Gulf/YEM", + "Current health expenditure (% of GDP)/Persian Gulf/YEM", + "Current health expenditure per capita (current US$)/Persian Gulf/YEM", + "Employment in industry (% of total employment) (modeled ILO estimate)/Persian Gulf/YEM", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf/YEM", + "GNI (current US$)/Persian Gulf/YEM", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf/YEM", + "Industry (including construction), value added (current US$)/Persian Gulf/YEM", + "Number of deaths ages 5-9 years/Persian Gulf/YEM", + "Population in largest city/Persian Gulf/YEM", + "Prevalence of current tobacco use (% of adults)/Persian Gulf/YEM", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf/YEM", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf/YEM", + "Suicide mortality rate (per 100,000 population)/Persian Gulf/YEM", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf/YEM", + "Access to electricity (% of population)/South Africa/ZAF", + "CO2 emissions (kg per PPP $ of GDP)/South Africa/ZAF", + "Consumer price index (2010 = 100)/South Africa/ZAF", + "Current health expenditure per capita (current US$)/South Africa/ZAF", + "Employment in industry (% of total employment) (modeled ILO estimate)/South Africa/ZAF", + "Export value index (2000 = 100)/South Africa/ZAF", + "Fixed broadband subscriptions (per 100 people)/South Africa/ZAF", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa/ZAF", + "GNI (current US$)/South Africa/ZAF", + "Gross value added at basic prices (GVA) (current US$)/South Africa/ZAF", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa/ZAF", + "Industry (including construction), value added (current US$)/South Africa/ZAF", + "Population in largest city/South Africa/ZAF", + "Prevalence of current tobacco use (% of adults)/South Africa/ZAF", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa/ZAF", + "Ratio of female to male labor force participation rate (%) (national estimate)/South Africa/ZAF", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa/ZAF", + "Access to electricity (% of population)/Asia", + "Agricultural land (% of land area)/Asia", + "CO2 emissions (kg per PPP $ of GDP)/Asia", + "Consumer price index (2010 = 100)/Asia", + "Current health expenditure (% of GDP)/Asia", + "Current health expenditure per capita (current US$)/Asia", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia", + "Export value index (2000 = 100)/Asia", + "Fixed broadband subscriptions (per 100 people)/Asia", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia", + "GNI (current US$)/Asia", + "Gross value added at basic prices (GVA) (current US$)/Asia", + "Households and NPISHs Final consumption expenditure (current US$)/Asia", + "Industry (including construction), value added (current US$)/Asia", + "Number of deaths ages 5-9 years/Asia", + "Number of infant deaths/Asia", + "Population in largest city/Asia", + "Prevalence of current tobacco use (% of adults)/Asia", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Asia", + "Ratio of female to male labor force participation rate (%) (national estimate)/Asia", + "Renewable internal freshwater resources per capita (cubic meters)/Asia", + "Suicide mortality rate (per 100,000 population)/Asia", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia", + "Agricultural land (% of land area)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure (% of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Export value index (2000 = 100)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Number of infant deaths/Europe", + "Population in largest city/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe", + "Renewable internal freshwater resources per capita (cubic meters)/Europe", + "Suicide mortality rate (per 100,000 population)/Europe", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe", + "Access to electricity (% of population)/Latam", + "Agricultural land (% of land area)/Latam", + "CO2 emissions (kg per PPP $ of GDP)/Latam", + "Consumer price index (2010 = 100)/Latam", + "Current health expenditure (% of GDP)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Employment in industry (% of total employment) (modeled ILO estimate)/Latam", + "Export value index (2000 = 100)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Number of deaths ages 5-9 years/Latam", + "Number of infant deaths/Latam", + "Population in largest city/Latam", + "Prevalence of current tobacco use (% of adults)/Latam", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Suicide mortality rate (per 100,000 population)/Latam", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam", + "Access to electricity (% of population)/North Africa", + "Agricultural land (% of land area)/North Africa", + "CO2 emissions (kg per PPP $ of GDP)/North Africa", + "Consumer price index (2010 = 100)/North Africa", + "Current health expenditure per capita (current US$)/North Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/North Africa", + "Export value index (2000 = 100)/North Africa", + "Fixed broadband subscriptions (per 100 people)/North Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/North Africa", + "GNI (current US$)/North Africa", + "Gross value added at basic prices (GVA) (current US$)/North Africa", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa", + "Industry (including construction), value added (current US$)/North Africa", + "Number of deaths ages 5-9 years/North Africa", + "Number of infant deaths/North Africa", + "Population in largest city/North Africa", + "Prevalence of current tobacco use (% of adults)/North Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/North Africa", + "Ratio of female to male labor force participation rate (%) (national estimate)/North Africa", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa", + "Suicide mortality rate (per 100,000 population)/North Africa", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/North Africa", + "Access to electricity (% of population)/Pair", + "Agricultural land (% of land area)/Pair", + "CO2 emissions (kg per PPP $ of GDP)/Pair", + "Consumer price index (2010 = 100)/Pair", + "Current health expenditure (% of GDP)/Pair", + "Current health expenditure per capita (current US$)/Pair", + "Employment in industry (% of total employment) (modeled ILO estimate)/Pair", + "Export value index (2000 = 100)/Pair", + "Fixed broadband subscriptions (per 100 people)/Pair", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Pair", + "GNI (current US$)/Pair", + "Gross value added at basic prices (GVA) (current US$)/Pair", + "Households and NPISHs Final consumption expenditure (current US$)/Pair", + "Industry (including construction), value added (current US$)/Pair", + "Number of deaths ages 5-9 years/Pair", + "Number of infant deaths/Pair", + "Population in largest city/Pair", + "Prevalence of current tobacco use (% of adults)/Pair", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Pair", + "Ratio of female to male labor force participation rate (%) (national estimate)/Pair", + "Renewable internal freshwater resources per capita (cubic meters)/Pair", + "Suicide mortality rate (per 100,000 population)/Pair", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Pair", + "Access to electricity (% of population)/Persian Gulf", + "Agricultural land (% of land area)/Persian Gulf", + "CO2 emissions (kg per PPP $ of GDP)/Persian Gulf", + "Consumer price index (2010 = 100)/Persian Gulf", + "Current health expenditure (% of GDP)/Persian Gulf", + "Current health expenditure per capita (current US$)/Persian Gulf", + "Employment in industry (% of total employment) (modeled ILO estimate)/Persian Gulf", + "Export value index (2000 = 100)/Persian Gulf", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Persian Gulf", + "GNI (current US$)/Persian Gulf", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf", + "Industry (including construction), value added (current US$)/Persian Gulf", + "Number of deaths ages 5-9 years/Persian Gulf", + "Number of infant deaths/Persian Gulf", + "Population in largest city/Persian Gulf", + "Prevalence of current tobacco use (% of adults)/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (national estimate)/Persian Gulf", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf", + "Suicide mortality rate (per 100,000 population)/Persian Gulf", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf", + "Access to electricity (% of population)/South Africa", + "Agricultural land (% of land area)/South Africa", + "CO2 emissions (kg per PPP $ of GDP)/South Africa", + "Consumer price index (2010 = 100)/South Africa", + "Current health expenditure (% of GDP)/South Africa", + "Current health expenditure per capita (current US$)/South Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/South Africa", + "Export value index (2000 = 100)/South Africa", + "Fixed broadband subscriptions (per 100 people)/South Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa", + "GNI (current US$)/South Africa", + "Gross value added at basic prices (GVA) (current US$)/South Africa", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa", + "Industry (including construction), value added (current US$)/South Africa", + "Number of deaths ages 5-9 years/South Africa", + "Number of infant deaths/South Africa", + "Population in largest city/South Africa", + "Prevalence of current tobacco use (% of adults)/South Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa", + "Ratio of female to male labor force participation rate (%) (national estimate)/South Africa", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa", + "Suicide mortality rate (per 100,000 population)/South Africa", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/South Africa", + "Access to electricity (% of population)", + "Agricultural land (% of land area)", + "CO2 emissions (kg per PPP $ of GDP)", + "Consumer price index (2010 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Export value index (2000 = 100)", + "Fixed broadband subscriptions (per 100 people)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Population in largest city", + "Prevalence of current tobacco use (% of adults)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Suicide mortality rate (per 100,000 population)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ], + "labels": [ + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IRQ", + "IRQ", + "IRQ", + "IRQ", + "IRQ", + "IRQ", + "IRQ", + "IRQ", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "LBR", + "LBR", + "LBR", + "LBR", + "LBR", + "LBR", + "LBR", + "LBR", + "LBR", + "LBR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "Access to electricity (% of population)", + "Agricultural land (% of land area)", + "CO2 emissions (kg per PPP $ of GDP)", + "Consumer price index (2010 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Export value index (2000 = 100)", + "Fixed broadband subscriptions (per 100 people)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Population in largest city", + "Prevalence of current tobacco use (% of adults)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Suicide mortality rate (per 100,000 population)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ], + "marker": { + "coloraxis": "coloraxis", + "colors": [ + 0.9194369973190348, + 0.9150177303560064, + 0.9832058480308432, + 0.9792614678275988, + 0.9104552048233484, + 0.7818744360024455, + 0.9139430100959351, + 0.9206651788481804, + 0.9773557492735576, + 0.9929947676208064, + 0.9667829842995462, + 0.9886242163794032, + 0.9842229467473992, + 0.7869703117696519, + 0.9545454545454548, + 0.9364502164502164, + 0.7568829071309779, + 0.8405722943067688, + 0.7712684989429177, + 0.8553134080531343, + 0.7522123063336182, + 0.9985339932335306, + 0.9883020564051679, + 0.953621170127054, + 0.9622333213753728, + 0.8553134080531343, + 0.8553134080531343, + 0.8598347107438016, + 0.8507923269391159, + 0.8430578512396696, + 0.8385429638854296, + 0.9545454545454548, + 0.9545454545454548, + 0.8673029726406383, + 0.8358612257146861, + 0.8490800833801486, + 0.8003212087852895, + 0.904913008013858, + 0.7976314145122237, + 0.8890631162040309, + 0.8232860332235971, + 0.8258303273081601, + 0.9919502705663622, + 0.9965191088563604, + 0.9550538402276436, + 0.9737764107803116, + 0.8530611929128231, + 0.8399280642635364, + 0.8490800833801486, + 0.82454262425017, + 0.8462362704327265, + 0.8460152283133167, + 0.8536368018578387, + 0.8276242108365519, + 0.8298946640273919, + 0.8442479234380643, + 0.9731456263408548, + 0.8590707598082956, + 0.9929855448480356, + 0.917314235445159, + 0.9416437009068946, + 0.8977160492573557, + 0.909065387196842, + 0.9356248965935622, + 0.9890174067689452, + 0.9992663243093578, + 0.9255861016232882, + 0.9701400724878312, + 0.9099770642201834, + 0.9943501037415146, + 0.9947856385396152, + 0.9956476370717128, + 0.9904302907657898, + 0.8041381029540074, + 0.993779175279743, + 0.7813852813852814, + 0.8832034632034632, + 0.9990150209905604, + 0.9929855448480356, + 0.9947856385396152, + 0.9859234217934404, + 0.978073311070348, + 0.9820100634702482, + 1, + 0.9992656508417233, + 1, + 0.9974294410273912, + 0.949825316001485, + 0.9991101224022378, + 0.9990150209905604, + 0.997391304347826, + 0.9937731747479652, + 0.8244642857142859, + 0.9985875706214687, + 0.878685196514601, + 0.9786956521739132, + 0.7763614794595731, + 0.7822341892305151, + 0.833174972830306, + 0.7707081956166206, + 0.8268991218112046, + 0.7862727272727271, + 0.8546502548557862, + 0.775995920023485, + 0.831081385436793, + 0.9985339932335306, + 0.9941424251920344, + 0.9890311615492476, + 0.9358035287465732, + 0.7714797416324134, + 0.7643053750286719, + 0.7707081956166206, + 0.7521112125156584, + 0.8598347107438016, + 0.90662100456621, + 0.7822341892305151, + 0.7563441975980676, + 0.9055353950321428, + 0.8710617614475394, + 0.8630005695842037, + 0.8952232922255726, + 0.7757575757575756, + 0.8398859728050183, + 0.8668958338409165, + 0.8490459410817468, + 0.8534540516685338, + 0.9919502705663622, + 1, + 0.9839330712663648, + 0.9464739502688859, + 0.8862820694208641, + 0.8874398840030436, + 0.8952232922255726, + 0.848613775065388, + 0.9018993376896012, + 0.8965017504270001, + 0.8895952017025273, + 0.7552008456659621, + 0.8658008658008658, + 0.9636752136752136, + 0.9364502164502164, + 0.984461621950468, + 1, + 0.9818181818181816, + 0.996521739130435, + 0.8586700336700335, + 0.9890311615492476, + 0.999122807017544, + 0.9818536963567754, + 1, + 1, + 0.9970690618433798, + 0.9970690618433798, + 1, + 1, + 0.9982456140350876, + 0.9477543538038498, + 0.9977822580645164, + 0.9576803072122886, + 0.8041630667784955, + 0.8119647131227026, + 0.8679516484927489, + 0.8129887361537077, + 0.8296247866194634, + 0.8330381744436689, + 0.9303687863484544, + 0.8870930627862177, + 0.8486878358300123, + 0.9978013931164152, + 0.99268071993084, + 0.9875732201051683, + 0.9658331436022252, + 0.7726587251245717, + 0.8119189817879228, + 0.8216057600038706, + 0.9095579316931844, + 0.822054489456517, + 0.7805172292400585, + 0.892391114486425, + 0.9000234404536862, + 0.8397480840731469, + 0.8550497957993816, + 0.9350943180643897, + 0.897855261911528, + 0.9129853629164147, + 0.9978013931164152, + 1, + 0.9868446526492484, + 0.955770578544058, + 0.8995898027497777, + 0.8995898027497777, + 0.9000234404536862, + 0.8974216292028354, + 0.9068929556529068, + 0.7766774350616475, + 0.9370415079706567, + 0.8857699681136173, + 0.9897824784878032, + 0.998221036598569, + 0.8084175084175085, + 0.9913111768722972, + 0.8675319709415152, + 0.9280169976669376, + 0.999122807017544, + 0.8998911634924976, + 1, + 0.9992668621947256, + 1, + 0.9960351014549488, + 0.999122807017544, + 0.999122807017544, + 1, + 0.9982456140350876, + 0.9380859781477626, + 0.934372987530004, + 0.9969759694040504, + 0.792782754772987, + 0.7714560308712177, + 0.8085316277505704, + 0.8017888630248555, + 0.8557422839635942, + 0.7920446151287672, + 0.8210527935710153, + 0.79241896667796, + 0.7793718426037994, + 0.996336999414424, + 0.9965191088563604, + 0.9672749544015236, + 0.9477180531985372, + 0.8462714704650187, + 0.793236950671892, + 0.7965452139741043, + 0.7966912350949062, + 0.8584751140436623, + 0.8075842215036355, + 0.8935463671803986, + 0.8694866227116197, + 0.7559911987169416, + 0.8672820048414341, + 0.9978013931164152, + 0.9540512424216696, + 0.8485601299189015, + 0.7802288530146114, + 0.7559911987169416, + 0.8075842215036355, + 0.865081443540125, + 0.8408374965151522, + 0.8521832338962485, + 0.8227635041015324, + 0.8786356094048401, + 0.8701066680233348, + 0.8985904473621558, + 0.919319387113138, + 0.9208092958092956, + 0.8586700336700335, + 0.9416562889165628, + 0.932398585032895, + 0.9970690618433798, + 0.9970690618433798, + 0.9948736810887512, + 0.9622333213753728, + 0.7902969671765014, + 0.9908884770316014, + 0.946198347107438, + 0.92385752642948, + 0.8863636363636365, + 0.8259976777571356, + 0.8190486045187014, + 0.7940051262578318, + 0.7606873345935727, + 0.8224948407969244, + 0.9006445563787115, + 0.7834335706711103, + 0.7736264668325739, + 0.7922752675949607, + 0.800012400217004, + 0.9985339932335306, + 0.9768478574449928, + 0.9853883242696474, + 0.8067839857133676, + 0.8017627702025453, + 0.8021928166351607, + 0.7910710359728593, + 0.828891493383743, + 0.8284602000869942, + 0.7644903235840163, + 0.7893527624833871, + 0.780089044997152, + 0.7928741020793951, + 0.7604961330297303, + 0.8921379258150505, + 0.7921764122864366, + 0.863925779862748, + 0.7916704805491989, + 0.7984383476710843, + 0.996336999414424, + 0.9833831528957327, + 0.991220090045964, + 0.9301373709233364, + 0.7916704805491989, + 0.81573077081821, + 0.7928741020793951, + 0.7802662901330503, + 0.8037512287334593, + 0.8025417478298693, + 0.7893527624833871, + 0.9222946747399472, + 0.9344444444444444, + 0.8801077325173712, + 0.9000168618023969, + 0.934334074623178, + 0.824723044297354, + 0.936963017728694, + 0.907326978222119, + 0.9883020564051679, + 0.9914003253458398, + 0.9716068390573318, + 0.8868080394461477, + 0.9312885573197214, + 0.9677933860111212, + 0.9344444444444444, + 0.9360867018160518, + 0.9310557094490612, + 0.9275512725475664, + 0.9290762303990062, + 0.8220626497774737, + 0.8242647792818613, + 0.8580430671412884, + 0.7589099863492517, + 0.8806041934635603, + 0.7737464548987709, + 0.838169467510867, + 1, + 0.9890311615492476, + 0.9853883242696474, + 0.9450477324262084, + 0.8580430671412884, + 0.8398311720625258, + 0.8578858011832347, + 0.8672259606948435, + 0.7905217546826223, + 0.8549939348739194, + 0.8210461476724114, + 0.8919696969696971, + 0.8363949697251979, + 0.8053911900065747, + 0.769382100421295, + 0.923526237747262, + 0.8619283887468031, + 0.84746622922539, + 0.9782982623788444, + 0.9817522080920388, + 0.8134050821718116, + 0.84746622922539, + 0.84746622922539, + 0.8483379501385041, + 0.8465945179292698, + 0.8803334593572778, + 0.9004149252037746, + 0.796839893191436, + 0.9028882720019862, + 0.7676281237741422, + 0.8291492133323973, + 0.7913646289079624, + 0.9904289157282716, + 0.9926335425715881, + 0.9461330864231152, + 0.9454153674378072, + 0.7598160347464082, + 0.7867084930870223, + 0.7871436798157215, + 0.7860877112960002, + 0.8101813436763873, + 0.8238243435953363, + 0.8818618218586448, + 0.7794331008589288, + 0.9025957850286672, + 0.8025699565810901, + 0.9170617535185012, + 0.7631048593350384, + 0.8250833206612556, + 0.9088064577345945, + 0.9278150139590884, + 0.9992668621947256, + 0.8068812492978317, + 0.9934114381393974, + 0.984660563345966, + 0.870252992498577, + 0.8985858297326429, + 0.9025957850286672, + 0.90741737640829, + 0.9024751306250636, + 0.8824223337513897, + 0.9791710812316362, + 0.756628065305478, + 0.9859234217934404, + 0.992671182389769, + 0.7925192834831389, + 0.9807828100228472, + 0.9925507389082384, + 0.928723519908324, + 0.9761788895853514, + 0.9506223327256856, + 0.9992668621947256, + 0.9985339932335306, + 0.9985339932335306, + 0.9904901783696456, + 0.992671182389769, + 0.992671182389769, + 0.9928936489808848, + 0.988714605208294, + 0.948060941828255, + 0.9939538727034296, + 0.915641381346678, + 0.971001604361102, + 0.7554660388288974, + 0.8668958338409165, + 0.996336999414424, + 1, + 0.8683978095980386, + 0.9507590560548307, + 0.7506209000762774, + 0.7650792722152087, + 0.7882882882882881, + 0.9873000604890544, + 0.9682695039010508, + 0.939548148620228, + 0.978469168274726, + 0.9770862304997938, + 0.9364530503181744, + 0.9928507310737632, + 0.998339483394834, + 0.9869953764615554, + 0.9779823259487208, + 0.9862539184209972, + 0.9848040830545792, + 0.9846235837724948, + 0.9834028714566064, + 0.9808836171606353, + 0.9814823072033312, + 0.9838663951689132, + 0.9289464621791536, + 0.950300482513086, + 0.9486101335940044, + 0.951299790877642, + 0.932353379320096, + 0.9363191484705866, + 0.7500718937727315, + 0.8881896291715989, + 0.9329580322176916, + 0.9417014747671419, + 1, + 1, + 0.995605205829548, + 0.9883020564051679, + 0.9514741813067672, + 0.9514741813067672, + 0.9319643313838056, + 0.9419954799687824, + 0.9441436310000064, + 0.9555403520366936, + 0.8732908588456849, + 0.8482458889462429, + 0.8657481566722074, + 0.9060155127964962, + 0.8321093615368212, + 0.993758325008325, + 0.8271094654395285, + 0.855139156857862, + 0.8622230550415498, + 0.8892009084674849, + 0.8659230906299106, + 0.914656355102988, + 0.9248539005931276, + 0.9527305856232412, + 0.8571281012005368, + 0.8846977863333716, + 0.9593583027873251, + 0.9188951371295636, + 0.7800217784035494, + 0.996336999414424, + 0.9948736810887512, + 0.9868446526492484, + 0.9853883242696474, + 0.9531775071717112, + 0.9531775071717112, + 0.9527305856232412, + 0.9238927452772132, + 0.9555403520366936, + 0.9097297101659864, + 0.9320839327803117, + 0.8458383400350413, + 0.9517981773305488, + 0.9434321361058602, + 0.8384981048972464, + 0.9061435934718377, + 0.9328333806952732, + 0.9258691777106102, + 0.9978013931164152, + 0.9875732201051683, + 0.9883020564051679, + 0.9564875857045522, + 0.9429977116704804, + 0.9429977116704804, + 0.9434321361058602, + 0.938293658314696, + 0.9000657462195923, + 0.9038201493163326, + 0.936556104044048, + 0.952612204076308, + 0.7799127011297503, + 0.92448876432027, + 0.9365262267264388, + 0.9565966865742668, + 0.94491648331435, + 0.9086443302842008, + 0.9378841050418828, + 0.9211354224331691, + 0.8980181937554507, + 0.9376349250962784, + 0.9956044009241408, + 0.9941413527735856, + 0.9724980906333768, + 0.9083271241193304, + 0.9391877740213088, + 0.9358184932420454, + 0.9373115797727772, + 0.9463111401682168, + 0.9762481841119351, + 0.9502409737496426, + 0.9365262267264388, + 0.9521230391509398, + 0.8295449908182004, + 0.943947221044588, + 0.8708608667318343, + 0.943947221044588, + 0.8871943647917209, + 0.9412635914006205, + 0.9985339932335306, + 1, + 0.9407755311560884, + 0.9421985228698097, + 0.948072129659398, + 0.9350049149338372, + 0.9638336347197108, + 0.958536231884058, + 0.943947221044588, + 0.9667491997801664, + 0.8387538514207465, + 0.887458515283843, + 0.8623785126533147, + 0.8705701323251417, + 0.8001582377938935, + 0.8878997468865361, + 0.8684059865492091, + 0.8859445107741636, + 0.8677050513455755, + 0.8430977292102612, + 0.9904901783696456, + 0.992130773157018, + 0.9372227566431792, + 0.8621233137385207, + 0.8677050513455755, + 0.8831178664041944, + 0.8705701323251417, + 0.8614957734733332, + 0.8689482041587903, + 0.8660854435766022, + 0.8711152458705146, + 0.8873673399520713, + 0.9299160466862331, + 0.9652200677131424, + 0.8999564578859198, + 0.8950764254021453, + 0.9398812902982936, + 0.9752792033119024, + 0.9978013931164152, + 0.9721444518798692, + 0.9805263157894736, + 0.9479012434878824, + 0.880780406807804, + 0.8571885156262036, + 0.986135349716446, + 0.9743634159016108, + 0.9625071374155625, + 0.880780406807804, + 0.981787734953484, + 0.8919696969696971, + 0.9773557492735576, + 0.7714763488785488, + 0.9545454545454548, + 0.9884853681548044, + 0.9894860390412652, + 0.8047278408758268, + 0.9882730260033812, + 0.9461654371370272, + 0.9970690618433798, + 0.9978013931164152, + 0.996336999414424, + 0.9802996435295532, + 0.9991101223581756, + 0.999777530589544, + 1, + 0.9982456140350876, + 0.9421304353743684, + 0.932626333246618, + 0.9977753058954394, + 0.9203132832080203, + 0.9939130434782611, + 0.9281390141743808, + 0.8796487671810186, + 0.9357441792403746, + 0.7832517257911142, + 0.9134801839907836, + 0.9223744981227123, + 0.905289786165362, + 0.996336999414424, + 0.998350675275288, + 0.996336999414424, + 0.9613309146374462, + 0.937103645050706, + 0.937103645050706, + 0.9357441792403746, + 0.904567225435328, + 0.939105864661958, + 0.9093117324398052, + 0.9214972959512142, + 0.9414868925909092, + 0.8586028659246839, + 0.9230788696114616, + 0.9143112638406732, + 0.9391302151973808, + 0.996336999414424, + 0.9992668621947256, + 0.9890311615492476, + 0.9414868925909092, + 0.941314332676578, + 0.902432554260779, + 0.941241408860912, + 0.8318181818181817, + 0.909072064464046, + 0.9772426641825802, + 0.9505847966970496, + 0.8082508107205724, + 0.9532628651995616, + 0.7740137221269299, + 0.9536631479971994, + 0.9886242163794032, + 0.968708052390917, + 0.9970690618433798, + 0.9906529437430028, + 0.9884575916336614, + 0.9789725394962472, + 0.9851370084561714, + 0.9851370084561714, + 0.9860141582025238, + 0.9842598587858048, + 0.8230247277595698, + 0.9772426641825802, + 0.8553636363636363, + 0.9772426641825802, + 0.9565269894940224, + 0.8991005792297246, + 0.9694396869310692, + 0.9544594777956544, + 0.995605205829548, + 0.9887359375145636, + 0.7606385491732779, + 0.9826843100189036, + 0.9800758121375232, + 0.9000657462195923, + 0.9169832716276728, + 0.9783368141256884, + 0.7733211512105985, + 0.8315151515151515, + 0.9514804555247768, + 0.9248167539267018, + 0.8084175084175085, + 0.8131377716690427, + 0.9581772940528424, + 1, + 1, + 0.977084365603192, + 0.9230788696114616, + 0.9822495603003196, + 0.9822495603003196, + 0.9826843100189036, + 0.909072064464046, + 0.9163600219843964, + 0.9783368141256884, + 0.8722470169622666, + 0.7806171146277026, + 0.7993113894954217, + 0.8647701376567242, + 0.8843935880633129, + 0.8237517359346237, + 0.9143045157420016, + 0.9985339932335306, + 0.9948736810887512, + 0.9817522080920388, + 0.9875732201051683, + 0.9376831513747739, + 0.9355427814530765, + 0.8050748795127288, + 0.9031438311232313, + 0.7770347430724859, + 0.7558559856410743, + 0.8035224554513878, + 0.8975645313091688, + 0.7715736896162309, + 0.7524584849903713, + 0.760960813749392, + 0.7628286200410923, + 0.9063380676482872, + 0.7975398606698341, + 0.8173907278944466, + 0.8252050839377624, + 0.7829559806346367, + 0.9853883242696474, + 0.9914003253458398, + 0.9890311615492476, + 0.8937267418365915, + 0.7598493905068002, + 0.7664643536742591, + 0.8726620562837514, + 0.807857176503839, + 0.8859552362571937, + 0.7621748136686876, + 0.9006445563787115, + 0.8965017504270001, + 0.9001503179694077, + 0.8486878358300123, + 0.995605205829548, + 0.9875732201051683, + 0.9948736810887512, + 0.9027223454052724, + 0.884737671188568, + 0.884575512524494, + 0.8798196380081303, + 0.8878885108220647, + 0.8408502506153573, + 0.9290762303990062, + 0.90727093221948, + 0.9413092648977816, + 0.9219048551109622, + 0.9403303455027593, + 0.92049050384555, + 0.9992668621947256, + 0.9970690618433798, + 0.9883020564051679, + 0.9716068390573318, + 0.9526427685969672, + 0.9413092648977816, + 0.9417436672967864, + 0.9452382460255262, + 0.8258664204370577, + 0.8249965343560833, + 0.9498970784947516, + 0.8977159303535192, + 0.8550758611268748, + 0.9971775822743564, + 1, + 0.9364192202560784, + 0.9964912280701756, + 0.8485069801940157, + 0.9097417836628494, + 0.999122807017544, + 0.9877189123128628, + 1, + 0.9976169999054124, + 0.9992668621947256, + 0.9679854547640152, + 0.9236004688155952, + 0.999122807017544, + 0.9937805570643936, + 0.9982456140350876, + 0.931003010693105, + 0.9341554258408444, + 0.9954182612676434, + 0.9912311643305796, + 0.9545454545454548, + 0.7761808341851454, + 0.8182545315351611, + 0.9104377104377104, + 0.7694545454545454, + 0.8553134080531343, + 0.9292464661560496, + 0.9992555369697762, + 0.9985113511553524, + 0.9762465658458932, + 0.9572793819640072, + 0.9503788875440718, + 0.8231479245485526, + 0.8911007105869436, + 0.9024231247013856, + 0.8658008658008658, + 0.9686137921250751, + 0.9819054691235874, + 1, + 0.7690913021991601, + 0.9861142727065788, + 0.9679847507357018, + 0.9989920981077092, + 0.999122807017544, + 0.9672169872900396, + 1, + 0.9954545454545456, + 1, + 0.9992668621947256, + 1, + 0.8534197605902789, + 1, + 0.9982456140350876, + 0.936341359994194, + 0.9054813423400642, + 0.9977822580645164, + 0.86918360351979, + 0.9939130434782611, + 0.8257949554417174, + 0.7957985346108523, + 0.9136739322359624, + 0.8585000323687447, + 0.8766608932307983, + 0.7697689156812739, + 0.8566176867322529, + 0.9882827814745488, + 0.9585725924710128, + 0.9649045221259104, + 0.8401802481694282, + 0.9245562130177516, + 0.9542133966338968, + 0.944622600300256, + 0.9332845830090168, + 0.8278906432659406, + 0.9418179668098864, + 0.798853868337832, + 0.7739306525397351, + 0.7679975248125409, + 0.9228068405104872, + 0.7685979300090726, + 0.917451425335698, + 0.8374157216227878, + 0.8207867897037397, + 0.9992668621947256, + 0.9992668621947256, + 0.991220090045964, + 0.9365130082728363, + 0.7654094979252105, + 0.7550919222167469, + 0.7698155009451796, + 0.7909076419763443, + 0.7698457560674342, + 0.9286682581951208, + 0.8868922607689099, + 0.8880997664985122, + 0.9610802559263656, + 0.8164912211499714, + 0.9412585118107386, + 0.9078412687095335, + 0.9242220901098175, + 0.9456508016611644, + 0.9384233122417885, + 0.9986424009336514, + 0.9661371305519347, + 0.996359618118611, + 0.9920320694899843, + 0.9467383688039666, + 0.934428236729514, + 0.9783881137485578, + 0.9460013624159498, + 0.9555842763365257, + 0.8941530308332932, + 0.9558248635508322, + 0.8763764496262759, + 0.9356915211255111, + 0.8418086358878542, + 0.8416592129599482, + 0.8415070737965716, + 0.802202194476025, + 0.9033523939458318, + 0.8200759187451886, + 0.856898450536545, + 0.8540567799876048, + 0.8374790158038531, + 0.9927778823467517, + 0.9890234429386014, + 0.9716629095264668, + 0.9077159665231064, + 0.8588659166840533, + 0.8673577505339979, + 0.8639165764309158, + 0.842645116284908, + 0.8530563045983492, + 0.851072524965996, + 0.8704573772019558, + 0.8417225276657303, + 0.8697824343899775, + 0.8797533135230232, + 0.8067115696702831, + 0.9153499728608172, + 0.9122957748275933, + 0.7938508184967689, + 0.8937527133000729, + 0.8006666785588092, + 0.8862405116622968, + 0.9085125104626818, + 0.8789631520435636, + 0.9974807485770172, + 0.9960155803017176, + 0.9858052271222297, + 0.9615914602764132, + 0.9169353611273545, + 0.9165612351287777, + 0.9549874334268079, + 0.9051741499518738, + 0.8990067804864585, + 0.8926342138286003, + 0.9258249723444921, + 0.852052172334274, + 0.8857985176694988, + 0.8929375166442781, + 0.8718049611136595, + 0.9357165305962992, + 0.9217295663529694, + 0.8980091091634662, + 0.900340278528574, + 0.8879688080398852, + 0.9304518743906068, + 0.8970921018969952, + 0.9966696009557061, + 0.9885781489207478, + 0.964419505907156, + 0.9419917249272495, + 0.8978231297748687, + 0.9679937870446894, + 0.9306400155184964, + 0.9313766952176744, + 0.8880521153961992, + 0.8914796231786531, + 0.9305171145449818, + 0.8932658637785106, + 0.898388139488992, + 0.9636752136752136, + 0.8976111240012502, + 0.9908604005702278, + 1, + 0.959655930086227, + 0.9965064838338525, + 0.853618757941474, + 0.9510419642385431, + 0.999122807017544, + 0.9847950373863604, + 1, + 0.9976169999054124, + 0.9996335655193981, + 0.9827424829179762, + 0.9617399092325175, + 0.9995615959600626, + 0.9992268037105778, + 0.9982456140350876, + 0.931003010693105, + 0.9410040236447396, + 0.9966016615523431, + 0.9747445277534733, + 0.8857836553786925, + 0.8103127496818208, + 0.8933621267643042, + 0.8958961678329496, + 0.9506554582589484, + 0.8585000323687447, + 0.9057551009602689, + 0.8591560778970743, + 0.915580671631156, + 0.9408031482198341, + 0.9356248965935622, + 0.9833969787350744, + 0.9863034159844548, + 0.9264191604401815, + 0.9455645962492288, + 0.8878558482587918, + 0.9222251985351745, + 0.9778985314325723, + 0.9416917918323214, + 0.9374085375674432, + 0.9273453266925932, + 0.9747641075839333, + 0.8169371422195695, + 0.8887558080451063, + 0.8333777462346407, + 0.905041744113866, + 0.8252518864802031, + 0.868977990049962, + 0.8910158776253886, + 0.8613357070961393, + 0.8855129343887855, + 0.8874651525776813, + 0.8892399648499411, + 0.8803348783076717, + 0.9775219109294593, + 0.9950131950031115, + 0.9768312268951708, + 0.936051079155285, + 0.8962571474387728, + 0.8799679910087169, + 0.8585586589686451, + 0.8950979128079615, + 0.8644757842141394, + 0.8409320015706357, + 0.8609638845139348, + 0.933440586806712, + 0.8745139302030989, + 0.8769951532708808, + 0.8669121532489861, + 0.8916123606295077, + 0.91271334762741, + 0.8302797665212317, + 0.9059753878539454, + 0.857115021887757, + 0.8961790031980065, + 0.9120775227299308, + 0.8922074475884191, + 0.9916488377720988, + 0.9885675985110315, + 0.9739316584584679, + 0.9481708958643573, + 0.9027265481853378, + 0.9167882911277941, + 0.9466593000827263, + 0.9087132053377553, + 0.8981245330911611, + 0.8854184331504679, + 0.9251319676291814, + 0.8756022402743829, + 0.8925781053983015 + ] + }, + "name": "", + "parents": [ + "Consumer price index (2010 = 100)/Persian Gulf", + "Current health expenditure per capita (current US$)/Persian Gulf", + "Export value index (2000 = 100)/Persian Gulf", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf", + "GNI (current US$)/Persian Gulf", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf", + "Industry (including construction), value added (current US$)/Persian Gulf", + "Number of deaths ages 5-9 years/Persian Gulf", + "Number of infant deaths/Persian Gulf", + "Population in largest city/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (national estimate)/Persian Gulf", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf", + "Suicide mortality rate (per 100,000 population)/Persian Gulf", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf", + "CO2 emissions (kg per PPP $ of GDP)/Latam", + "Current health expenditure (% of GDP)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Employment in industry (% of total employment) (modeled ILO estimate)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Number of deaths ages 5-9 years/Latam", + "Number of infant deaths/Latam", + "Population in largest city/Latam", + "Prevalence of current tobacco use (% of adults)/Latam", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam", + "Agricultural land (% of land area)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure (% of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Export value index (2000 = 100)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Number of infant deaths/Europe", + "Population in largest city/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe", + "Renewable internal freshwater resources per capita (cubic meters)/Europe", + "Suicide mortality rate (per 100,000 population)/Europe", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe", + "Access to electricity (% of population)/Persian Gulf", + "Agricultural land (% of land area)/Persian Gulf", + "CO2 emissions (kg per PPP $ of GDP)/Persian Gulf", + "Consumer price index (2010 = 100)/Persian Gulf", + "Current health expenditure per capita (current US$)/Persian Gulf", + "Employment in industry (% of total employment) (modeled ILO estimate)/Persian Gulf", + "Export value index (2000 = 100)/Persian Gulf", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Persian Gulf", + "GNI (current US$)/Persian Gulf", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf", + "Industry (including construction), value added (current US$)/Persian Gulf", + "Number of deaths ages 5-9 years/Persian Gulf", + "Number of infant deaths/Persian Gulf", + "Population in largest city/Persian Gulf", + "Prevalence of current tobacco use (% of adults)/Persian Gulf", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf", + "Access to electricity (% of population)/Asia", + "Agricultural land (% of land area)/Asia", + "CO2 emissions (kg per PPP $ of GDP)/Asia", + "Consumer price index (2010 = 100)/Asia", + "Current health expenditure per capita (current US$)/Asia", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia", + "Export value index (2000 = 100)/Asia", + "Fixed broadband subscriptions (per 100 people)/Asia", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia", + "GNI (current US$)/Asia", + "Gross value added at basic prices (GVA) (current US$)/Asia", + "Households and NPISHs Final consumption expenditure (current US$)/Asia", + "Industry (including construction), value added (current US$)/Asia", + "Number of deaths ages 5-9 years/Asia", + "Number of infant deaths/Asia", + "Population in largest city/Asia", + "Prevalence of current tobacco use (% of adults)/Asia", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Asia", + "Ratio of female to male labor force participation rate (%) (national estimate)/Asia", + "Renewable internal freshwater resources per capita (cubic meters)/Asia", + "Suicide mortality rate (per 100,000 population)/Asia", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia", + "Access to electricity (% of population)/Latam", + "Agricultural land (% of land area)/Latam", + "CO2 emissions (kg per PPP $ of GDP)/Latam", + "Consumer price index (2010 = 100)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Employment in industry (% of total employment) (modeled ILO estimate)/Latam", + "Export value index (2000 = 100)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Number of deaths ages 5-9 years/Latam", + "Number of infant deaths/Latam", + "Population in largest city/Latam", + "Prevalence of current tobacco use (% of adults)/Latam", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Suicide mortality rate (per 100,000 population)/Latam", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam", + "Access to electricity (% of population)/Latam", + "CO2 emissions (kg per PPP $ of GDP)/Latam", + "Consumer price index (2010 = 100)/Latam", + "Current health expenditure (% of GDP)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Export value index (2000 = 100)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Number of deaths ages 5-9 years/Latam", + "Number of infant deaths/Latam", + "Population in largest city/Latam", + "Prevalence of current tobacco use (% of adults)/Latam", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Suicide mortality rate (per 100,000 population)/Latam", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam", + "Access to electricity (% of population)/Pair", + "Agricultural land (% of land area)/Pair", + "CO2 emissions (kg per PPP $ of GDP)/Pair", + "Consumer price index (2010 = 100)/Pair", + "Current health expenditure (% of GDP)/Pair", + "Current health expenditure per capita (current US$)/Pair", + "Employment in industry (% of total employment) (modeled ILO estimate)/Pair", + "Export value index (2000 = 100)/Pair", + "Fixed broadband subscriptions (per 100 people)/Pair", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Pair", + "GNI (current US$)/Pair", + "Households and NPISHs Final consumption expenditure (current US$)/Pair", + "Industry (including construction), value added (current US$)/Pair", + "Number of deaths ages 5-9 years/Pair", + "Number of infant deaths/Pair", + "Population in largest city/Pair", + "Prevalence of current tobacco use (% of adults)/Pair", + "Ratio of female to male labor force participation rate (%) (national estimate)/Pair", + "Renewable internal freshwater resources per capita (cubic meters)/Pair", + "Suicide mortality rate (per 100,000 population)/Pair", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Pair", + "Access to electricity (% of population)/South Africa", + "Agricultural land (% of land area)/South Africa", + "Consumer price index (2010 = 100)/South Africa", + "Current health expenditure (% of GDP)/South Africa", + "Current health expenditure per capita (current US$)/South Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/South Africa", + "Fixed broadband subscriptions (per 100 people)/South Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa", + "GNI (current US$)/South Africa", + "Gross value added at basic prices (GVA) (current US$)/South Africa", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa", + "Industry (including construction), value added (current US$)/South Africa", + "Number of deaths ages 5-9 years/South Africa", + "Number of infant deaths/South Africa", + "Population in largest city/South Africa", + "Prevalence of current tobacco use (% of adults)/South Africa", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa", + "Access to electricity (% of population)/Latam", + "CO2 emissions (kg per PPP $ of GDP)/Latam", + "Consumer price index (2010 = 100)/Latam", + "Current health expenditure (% of GDP)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Export value index (2000 = 100)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Number of deaths ages 5-9 years/Latam", + "Number of infant deaths/Latam", + "Population in largest city/Latam", + "Prevalence of current tobacco use (% of adults)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Suicide mortality rate (per 100,000 population)/Latam", + "Access to electricity (% of population)/Latam", + "Agricultural land (% of land area)/Latam", + "CO2 emissions (kg per PPP $ of GDP)/Latam", + "Consumer price index (2010 = 100)/Latam", + "Current health expenditure (% of GDP)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Employment in industry (% of total employment) (modeled ILO estimate)/Latam", + "Export value index (2000 = 100)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Number of deaths ages 5-9 years/Latam", + "Number of infant deaths/Latam", + "Population in largest city/Latam", + "Prevalence of current tobacco use (% of adults)/Latam", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam", + "Agricultural land (% of land area)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Export value index (2000 = 100)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe", + "Agricultural land (% of land area)/North Africa", + "Consumer price index (2010 = 100)/North Africa", + "Current health expenditure per capita (current US$)/North Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/North Africa", + "Export value index (2000 = 100)/North Africa", + "Fixed broadband subscriptions (per 100 people)/North Africa", + "GNI (current US$)/North Africa", + "Gross value added at basic prices (GVA) (current US$)/North Africa", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa", + "Industry (including construction), value added (current US$)/North Africa", + "Number of deaths ages 5-9 years/North Africa", + "Population in largest city/North Africa", + "Prevalence of current tobacco use (% of adults)/North Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/North Africa", + "Ratio of female to male labor force participation rate (%) (national estimate)/North Africa", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa", + "Suicide mortality rate (per 100,000 population)/North Africa", + "Access to electricity (% of population)/North Africa", + "Agricultural land (% of land area)/North Africa", + "CO2 emissions (kg per PPP $ of GDP)/North Africa", + "Consumer price index (2010 = 100)/North Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/North Africa", + "Fixed broadband subscriptions (per 100 people)/North Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/North Africa", + "GNI (current US$)/North Africa", + "Gross value added at basic prices (GVA) (current US$)/North Africa", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa", + "Industry (including construction), value added (current US$)/North Africa", + "Number of deaths ages 5-9 years/North Africa", + "Number of infant deaths/North Africa", + "Population in largest city/North Africa", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa", + "Suicide mortality rate (per 100,000 population)/North Africa", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/North Africa", + "Agricultural land (% of land area)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure (% of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Export value index (2000 = 100)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Population in largest city/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe", + "Renewable internal freshwater resources per capita (cubic meters)/Europe", + "Agricultural land (% of land area)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure (% of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Export value index (2000 = 100)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Number of infant deaths/Europe", + "Population in largest city/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe", + "Renewable internal freshwater resources per capita (cubic meters)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure (% of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Export value index (2000 = 100)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Number of infant deaths/Europe", + "Population in largest city/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe", + "Renewable internal freshwater resources per capita (cubic meters)/Europe", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe", + "Access to electricity (% of population)/South Africa", + "Consumer price index (2010 = 100)/South Africa", + "Current health expenditure per capita (current US$)/South Africa", + "Export value index (2000 = 100)/South Africa", + "Fixed broadband subscriptions (per 100 people)/South Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa", + "GNI (current US$)/South Africa", + "Gross value added at basic prices (GVA) (current US$)/South Africa", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa", + "Industry (including construction), value added (current US$)/South Africa", + "Number of deaths ages 5-9 years/South Africa", + "Number of infant deaths/South Africa", + "Population in largest city/South Africa", + "Prevalence of current tobacco use (% of adults)/South Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/South Africa", + "Agricultural land (% of land area)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure (% of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Number of infant deaths/Europe", + "Population in largest city/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Number of infant deaths/Europe", + "Population in largest city/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe", + "Access to electricity (% of population)/Asia", + "Agricultural land (% of land area)/Asia", + "CO2 emissions (kg per PPP $ of GDP)/Asia", + "Consumer price index (2010 = 100)/Asia", + "Current health expenditure (% of GDP)/Asia", + "Current health expenditure per capita (current US$)/Asia", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia", + "Export value index (2000 = 100)/Asia", + "Fixed broadband subscriptions (per 100 people)/Asia", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia", + "GNI (current US$)/Asia", + "Gross value added at basic prices (GVA) (current US$)/Asia", + "Households and NPISHs Final consumption expenditure (current US$)/Asia", + "Industry (including construction), value added (current US$)/Asia", + "Number of deaths ages 5-9 years/Asia", + "Number of infant deaths/Asia", + "Population in largest city/Asia", + "Prevalence of current tobacco use (% of adults)/Asia", + "Renewable internal freshwater resources per capita (cubic meters)/Asia", + "Suicide mortality rate (per 100,000 population)/Asia", + "Access to electricity (% of population)/Asia", + "Agricultural land (% of land area)/Asia", + "CO2 emissions (kg per PPP $ of GDP)/Asia", + "Consumer price index (2010 = 100)/Asia", + "Current health expenditure (% of GDP)/Asia", + "Current health expenditure per capita (current US$)/Asia", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia", + "Export value index (2000 = 100)/Asia", + "Fixed broadband subscriptions (per 100 people)/Asia", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia", + "GNI (current US$)/Asia", + "Gross value added at basic prices (GVA) (current US$)/Asia", + "Households and NPISHs Final consumption expenditure (current US$)/Asia", + "Industry (including construction), value added (current US$)/Asia", + "Number of deaths ages 5-9 years/Asia", + "Number of infant deaths/Asia", + "Population in largest city/Asia", + "Prevalence of current tobacco use (% of adults)/Asia", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Asia", + "Renewable internal freshwater resources per capita (cubic meters)/Asia", + "Suicide mortality rate (per 100,000 population)/Asia", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia", + "Access to electricity (% of population)/Persian Gulf", + "Export value index (2000 = 100)/Persian Gulf", + "GNI (current US$)/Persian Gulf", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf", + "Industry (including construction), value added (current US$)/Persian Gulf", + "Number of infant deaths/Persian Gulf", + "Prevalence of current tobacco use (% of adults)/Persian Gulf", + "Agricultural land (% of land area)/North Africa", + "CO2 emissions (kg per PPP $ of GDP)/North Africa", + "Consumer price index (2010 = 100)/North Africa", + "Current health expenditure per capita (current US$)/North Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/North Africa", + "Fixed broadband subscriptions (per 100 people)/North Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/North Africa", + "GNI (current US$)/North Africa", + "Gross value added at basic prices (GVA) (current US$)/North Africa", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa", + "Industry (including construction), value added (current US$)/North Africa", + "Number of deaths ages 5-9 years/North Africa", + "Number of infant deaths/North Africa", + "Population in largest city/North Africa", + "Prevalence of current tobacco use (% of adults)/North Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/North Africa", + "Ratio of female to male labor force participation rate (%) (national estimate)/North Africa", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/North Africa", + "Agricultural land (% of land area)/Asia", + "CO2 emissions (kg per PPP $ of GDP)/Asia", + "Consumer price index (2010 = 100)/Asia", + "Current health expenditure (% of GDP)/Asia", + "Current health expenditure per capita (current US$)/Asia", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia", + "Export value index (2000 = 100)/Asia", + "Fixed broadband subscriptions (per 100 people)/Asia", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia", + "GNI (current US$)/Asia", + "Gross value added at basic prices (GVA) (current US$)/Asia", + "Households and NPISHs Final consumption expenditure (current US$)/Asia", + "Industry (including construction), value added (current US$)/Asia", + "Number of deaths ages 5-9 years/Asia", + "Number of infant deaths/Asia", + "Prevalence of current tobacco use (% of adults)/Asia", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Asia", + "Ratio of female to male labor force participation rate (%) (national estimate)/Asia", + "Renewable internal freshwater resources per capita (cubic meters)/Asia", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia", + "Access to electricity (% of population)/South Africa", + "Agricultural land (% of land area)/South Africa", + "Consumer price index (2010 = 100)/South Africa", + "Current health expenditure per capita (current US$)/South Africa", + "Fixed broadband subscriptions (per 100 people)/South Africa", + "GNI (current US$)/South Africa", + "Industry (including construction), value added (current US$)/South Africa", + "Number of infant deaths/South Africa", + "Prevalence of current tobacco use (% of adults)/South Africa", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa", + "Access to electricity (% of population)/North Africa", + "CO2 emissions (kg per PPP $ of GDP)/North Africa", + "Consumer price index (2010 = 100)/North Africa", + "Current health expenditure per capita (current US$)/North Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/North Africa", + "Export value index (2000 = 100)/North Africa", + "Fixed broadband subscriptions (per 100 people)/North Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/North Africa", + "GNI (current US$)/North Africa", + "Gross value added at basic prices (GVA) (current US$)/North Africa", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa", + "Industry (including construction), value added (current US$)/North Africa", + "Number of deaths ages 5-9 years/North Africa", + "Number of infant deaths/North Africa", + "Population in largest city/North Africa", + "Prevalence of current tobacco use (% of adults)/North Africa", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa", + "Suicide mortality rate (per 100,000 population)/North Africa", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/North Africa", + "Access to electricity (% of population)/Latam", + "CO2 emissions (kg per PPP $ of GDP)/Latam", + "Consumer price index (2010 = 100)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Export value index (2000 = 100)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Number of deaths ages 5-9 years/Latam", + "Number of infant deaths/Latam", + "Population in largest city/Latam", + "Prevalence of current tobacco use (% of adults)/Latam", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Suicide mortality rate (per 100,000 population)/Latam", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam", + "Access to electricity (% of population)/South Africa", + "Agricultural land (% of land area)/South Africa", + "Consumer price index (2010 = 100)/South Africa", + "Current health expenditure (% of GDP)/South Africa", + "Current health expenditure per capita (current US$)/South Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/South Africa", + "Export value index (2000 = 100)/South Africa", + "Fixed broadband subscriptions (per 100 people)/South Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa", + "GNI (current US$)/South Africa", + "Gross value added at basic prices (GVA) (current US$)/South Africa", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa", + "Industry (including construction), value added (current US$)/South Africa", + "Number of deaths ages 5-9 years/South Africa", + "Number of infant deaths/South Africa", + "Population in largest city/South Africa", + "Prevalence of current tobacco use (% of adults)/South Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa", + "Ratio of female to male labor force participation rate (%) (national estimate)/South Africa", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/South Africa", + "Access to electricity (% of population)/South Africa", + "Agricultural land (% of land area)/South Africa", + "CO2 emissions (kg per PPP $ of GDP)/South Africa", + "Consumer price index (2010 = 100)/South Africa", + "Current health expenditure per capita (current US$)/South Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa", + "GNI (current US$)/South Africa", + "Gross value added at basic prices (GVA) (current US$)/South Africa", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa", + "Industry (including construction), value added (current US$)/South Africa", + "Number of deaths ages 5-9 years/South Africa", + "Population in largest city/South Africa", + "Prevalence of current tobacco use (% of adults)/South Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa", + "Suicide mortality rate (per 100,000 population)/South Africa", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/South Africa", + "Agricultural land (% of land area)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure (% of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Export value index (2000 = 100)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Number of infant deaths/Europe", + "Population in largest city/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe", + "Renewable internal freshwater resources per capita (cubic meters)/Europe", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Persian Gulf", + "Consumer price index (2010 = 100)/Persian Gulf", + "Current health expenditure per capita (current US$)/Persian Gulf", + "Employment in industry (% of total employment) (modeled ILO estimate)/Persian Gulf", + "Export value index (2000 = 100)/Persian Gulf", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf", + "GNI (current US$)/Persian Gulf", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf", + "Industry (including construction), value added (current US$)/Persian Gulf", + "Number of deaths ages 5-9 years/Persian Gulf", + "Number of infant deaths/Persian Gulf", + "Population in largest city/Persian Gulf", + "Prevalence of current tobacco use (% of adults)/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (national estimate)/Persian Gulf", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf", + "Access to electricity (% of population)/Latam", + "Agricultural land (% of land area)/Latam", + "CO2 emissions (kg per PPP $ of GDP)/Latam", + "Consumer price index (2010 = 100)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Export value index (2000 = 100)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Number of deaths ages 5-9 years/Latam", + "Number of infant deaths/Latam", + "Population in largest city/Latam", + "Prevalence of current tobacco use (% of adults)/Latam", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Suicide mortality rate (per 100,000 population)/Latam", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam", + "Access to electricity (% of population)/Latam", + "CO2 emissions (kg per PPP $ of GDP)/Latam", + "Consumer price index (2010 = 100)/Latam", + "Current health expenditure (% of GDP)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Export value index (2000 = 100)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Number of deaths ages 5-9 years/Latam", + "Number of infant deaths/Latam", + "Population in largest city/Latam", + "Prevalence of current tobacco use (% of adults)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Access to electricity (% of population)/Asia", + "Agricultural land (% of land area)/Asia", + "Consumer price index (2010 = 100)/Asia", + "Current health expenditure per capita (current US$)/Asia", + "Export value index (2000 = 100)/Asia", + "Fixed broadband subscriptions (per 100 people)/Asia", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia", + "GNI (current US$)/Asia", + "Households and NPISHs Final consumption expenditure (current US$)/Asia", + "Industry (including construction), value added (current US$)/Asia", + "Number of infant deaths/Asia", + "Population in largest city/Asia", + "Prevalence of current tobacco use (% of adults)/Asia", + "Renewable internal freshwater resources per capita (cubic meters)/Asia", + "Suicide mortality rate (per 100,000 population)/Asia", + "Agricultural land (% of land area)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure (% of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Export value index (2000 = 100)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Number of infant deaths/Europe", + "Population in largest city/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe", + "Renewable internal freshwater resources per capita (cubic meters)/Europe", + "Suicide mortality rate (per 100,000 population)/Europe", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe", + "Consumer price index (2010 = 100)/Persian Gulf", + "Current health expenditure per capita (current US$)/Persian Gulf", + "Export value index (2000 = 100)/Persian Gulf", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf", + "GNI (current US$)/Persian Gulf", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf", + "Number of deaths ages 5-9 years/Persian Gulf", + "Population in largest city/Persian Gulf", + "Prevalence of current tobacco use (% of adults)/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (national estimate)/Persian Gulf", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf", + "Suicide mortality rate (per 100,000 population)/Persian Gulf", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf", + "Consumer price index (2010 = 100)/Persian Gulf", + "Current health expenditure per capita (current US$)/Persian Gulf", + "Employment in industry (% of total employment) (modeled ILO estimate)/Persian Gulf", + "Export value index (2000 = 100)/Persian Gulf", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf", + "GNI (current US$)/Persian Gulf", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf", + "Industry (including construction), value added (current US$)/Persian Gulf", + "Number of deaths ages 5-9 years/Persian Gulf", + "Number of infant deaths/Persian Gulf", + "Population in largest city/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (national estimate)/Persian Gulf", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf", + "Suicide mortality rate (per 100,000 population)/Persian Gulf", + "Access to electricity (% of population)/South Africa", + "Consumer price index (2010 = 100)/South Africa", + "Current health expenditure per capita (current US$)/South Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/South Africa", + "Export value index (2000 = 100)/South Africa", + "Fixed broadband subscriptions (per 100 people)/South Africa", + "GNI (current US$)/South Africa", + "Gross value added at basic prices (GVA) (current US$)/South Africa", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa", + "Industry (including construction), value added (current US$)/South Africa", + "Number of deaths ages 5-9 years/South Africa", + "Number of infant deaths/South Africa", + "Population in largest city/South Africa", + "Prevalence of current tobacco use (% of adults)/South Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa", + "Ratio of female to male labor force participation rate (%) (national estimate)/South Africa", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa", + "Suicide mortality rate (per 100,000 population)/South Africa", + "Agricultural land (% of land area)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure (% of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Export value index (2000 = 100)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of infant deaths/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Access to electricity (% of population)/Asia", + "CO2 emissions (kg per PPP $ of GDP)/Asia", + "Consumer price index (2010 = 100)/Asia", + "Current health expenditure (% of GDP)/Asia", + "Current health expenditure per capita (current US$)/Asia", + "Export value index (2000 = 100)/Asia", + "Fixed broadband subscriptions (per 100 people)/Asia", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia", + "GNI (current US$)/Asia", + "Households and NPISHs Final consumption expenditure (current US$)/Asia", + "Industry (including construction), value added (current US$)/Asia", + "Number of deaths ages 5-9 years/Asia", + "Number of infant deaths/Asia", + "Population in largest city/Asia", + "Prevalence of current tobacco use (% of adults)/Asia", + "Renewable internal freshwater resources per capita (cubic meters)/Asia", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia", + "Agricultural land (% of land area)/North Africa", + "CO2 emissions (kg per PPP $ of GDP)/North Africa", + "Consumer price index (2010 = 100)/North Africa", + "Export value index (2000 = 100)/North Africa", + "Fixed broadband subscriptions (per 100 people)/North Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/North Africa", + "GNI (current US$)/North Africa", + "Gross value added at basic prices (GVA) (current US$)/North Africa", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa", + "Industry (including construction), value added (current US$)/North Africa", + "Number of deaths ages 5-9 years/North Africa", + "Number of infant deaths/North Africa", + "Population in largest city/North Africa", + "Prevalence of current tobacco use (% of adults)/North Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/North Africa", + "Ratio of female to male labor force participation rate (%) (national estimate)/North Africa", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa", + "Suicide mortality rate (per 100,000 population)/North Africa", + "Agricultural land (% of land area)/Pair", + "CO2 emissions (kg per PPP $ of GDP)/Pair", + "Consumer price index (2010 = 100)/Pair", + "Current health expenditure (% of GDP)/Pair", + "Current health expenditure per capita (current US$)/Pair", + "Employment in industry (% of total employment) (modeled ILO estimate)/Pair", + "Export value index (2000 = 100)/Pair", + "Fixed broadband subscriptions (per 100 people)/Pair", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Pair", + "GNI (current US$)/Pair", + "Gross value added at basic prices (GVA) (current US$)/Pair", + "Households and NPISHs Final consumption expenditure (current US$)/Pair", + "Industry (including construction), value added (current US$)/Pair", + "Number of deaths ages 5-9 years/Pair", + "Number of infant deaths/Pair", + "Population in largest city/Pair", + "Prevalence of current tobacco use (% of adults)/Pair", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Pair", + "Ratio of female to male labor force participation rate (%) (national estimate)/Pair", + "Renewable internal freshwater resources per capita (cubic meters)/Pair", + "Suicide mortality rate (per 100,000 population)/Pair", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Pair", + "Agricultural land (% of land area)/Latam", + "Consumer price index (2010 = 100)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Employment in industry (% of total employment) (modeled ILO estimate)/Latam", + "Export value index (2000 = 100)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Population in largest city/Latam", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Suicide mortality rate (per 100,000 population)/Latam", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam", + "Access to electricity (% of population)/Asia", + "Agricultural land (% of land area)/Asia", + "Consumer price index (2010 = 100)/Asia", + "Current health expenditure (% of GDP)/Asia", + "Current health expenditure per capita (current US$)/Asia", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia", + "Export value index (2000 = 100)/Asia", + "Fixed broadband subscriptions (per 100 people)/Asia", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia", + "GNI (current US$)/Asia", + "Gross value added at basic prices (GVA) (current US$)/Asia", + "Households and NPISHs Final consumption expenditure (current US$)/Asia", + "Industry (including construction), value added (current US$)/Asia", + "Number of deaths ages 5-9 years/Asia", + "Number of infant deaths/Asia", + "Population in largest city/Asia", + "Prevalence of current tobacco use (% of adults)/Asia", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Asia", + "Ratio of female to male labor force participation rate (%) (national estimate)/Asia", + "Renewable internal freshwater resources per capita (cubic meters)/Asia", + "Suicide mortality rate (per 100,000 population)/Asia", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia", + "Access to electricity (% of population)/Persian Gulf", + "Agricultural land (% of land area)/Persian Gulf", + "Consumer price index (2010 = 100)/Persian Gulf", + "Current health expenditure (% of GDP)/Persian Gulf", + "Current health expenditure per capita (current US$)/Persian Gulf", + "Employment in industry (% of total employment) (modeled ILO estimate)/Persian Gulf", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf", + "GNI (current US$)/Persian Gulf", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf", + "Industry (including construction), value added (current US$)/Persian Gulf", + "Number of deaths ages 5-9 years/Persian Gulf", + "Population in largest city/Persian Gulf", + "Prevalence of current tobacco use (% of adults)/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf", + "Suicide mortality rate (per 100,000 population)/Persian Gulf", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf", + "Access to electricity (% of population)/South Africa", + "CO2 emissions (kg per PPP $ of GDP)/South Africa", + "Consumer price index (2010 = 100)/South Africa", + "Current health expenditure per capita (current US$)/South Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/South Africa", + "Export value index (2000 = 100)/South Africa", + "Fixed broadband subscriptions (per 100 people)/South Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa", + "GNI (current US$)/South Africa", + "Gross value added at basic prices (GVA) (current US$)/South Africa", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa", + "Industry (including construction), value added (current US$)/South Africa", + "Population in largest city/South Africa", + "Prevalence of current tobacco use (% of adults)/South Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa", + "Ratio of female to male labor force participation rate (%) (national estimate)/South Africa", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa", + "Access to electricity (% of population)", + "Agricultural land (% of land area)", + "CO2 emissions (kg per PPP $ of GDP)", + "Consumer price index (2010 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Export value index (2000 = 100)", + "Fixed broadband subscriptions (per 100 people)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Population in largest city", + "Prevalence of current tobacco use (% of adults)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Suicide mortality rate (per 100,000 population)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Agricultural land (% of land area)", + "CO2 emissions (kg per PPP $ of GDP)", + "Consumer price index (2010 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Export value index (2000 = 100)", + "Fixed broadband subscriptions (per 100 people)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Population in largest city", + "Prevalence of current tobacco use (% of adults)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Suicide mortality rate (per 100,000 population)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Access to electricity (% of population)", + "Agricultural land (% of land area)", + "CO2 emissions (kg per PPP $ of GDP)", + "Consumer price index (2010 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Export value index (2000 = 100)", + "Fixed broadband subscriptions (per 100 people)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Population in largest city", + "Prevalence of current tobacco use (% of adults)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Suicide mortality rate (per 100,000 population)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Access to electricity (% of population)", + "Agricultural land (% of land area)", + "CO2 emissions (kg per PPP $ of GDP)", + "Consumer price index (2010 = 100)", + "Current health expenditure per capita (current US$)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Export value index (2000 = 100)", + "Fixed broadband subscriptions (per 100 people)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Population in largest city", + "Prevalence of current tobacco use (% of adults)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Suicide mortality rate (per 100,000 population)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Access to electricity (% of population)", + "Agricultural land (% of land area)", + "CO2 emissions (kg per PPP $ of GDP)", + "Consumer price index (2010 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Export value index (2000 = 100)", + "Fixed broadband subscriptions (per 100 people)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Population in largest city", + "Prevalence of current tobacco use (% of adults)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Suicide mortality rate (per 100,000 population)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Access to electricity (% of population)", + "Agricultural land (% of land area)", + "CO2 emissions (kg per PPP $ of GDP)", + "Consumer price index (2010 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Export value index (2000 = 100)", + "Fixed broadband subscriptions (per 100 people)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Population in largest city", + "Prevalence of current tobacco use (% of adults)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Suicide mortality rate (per 100,000 population)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Access to electricity (% of population)", + "Agricultural land (% of land area)", + "CO2 emissions (kg per PPP $ of GDP)", + "Consumer price index (2010 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Export value index (2000 = 100)", + "Fixed broadband subscriptions (per 100 people)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Population in largest city", + "Prevalence of current tobacco use (% of adults)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Suicide mortality rate (per 100,000 population)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "" + ], + "type": "treemap", + "values": [ + 0.9194369973190348, + 0.9150177303560064, + 0.9832058480308432, + 0.9792614678275988, + 0.9104552048233484, + 0.7818744360024457, + 0.9139430100959351, + 0.9206651788481804, + 0.9773557492735576, + 0.9929947676208064, + 0.9667829842995462, + 0.9886242163794032, + 0.9842229467473992, + 0.7869703117696519, + 0.9545454545454548, + 0.9364502164502164, + 0.7568829071309779, + 0.8405722943067688, + 0.7712684989429177, + 0.8553134080531342, + 0.7522123063336182, + 0.9985339932335306, + 0.988302056405168, + 0.953621170127054, + 0.9622333213753728, + 0.8553134080531342, + 0.8553134080531342, + 0.8598347107438016, + 0.8507923269391159, + 0.8430578512396695, + 0.8385429638854297, + 0.9545454545454548, + 0.9545454545454548, + 0.8673029726406383, + 0.8358612257146861, + 0.8490800833801486, + 0.8003212087852895, + 0.904913008013858, + 0.7976314145122237, + 0.8890631162040309, + 0.8232860332235971, + 0.82583032730816, + 0.9919502705663622, + 0.9965191088563604, + 0.9550538402276436, + 0.9737764107803116, + 0.8530611929128231, + 0.8399280642635364, + 0.8490800833801486, + 0.82454262425017, + 0.8462362704327265, + 0.8460152283133167, + 0.8536368018578387, + 0.8276242108365519, + 0.8298946640273919, + 0.8442479234380643, + 0.9731456263408548, + 0.8590707598082956, + 0.9929855448480356, + 0.917314235445159, + 0.9416437009068946, + 0.8977160492573557, + 0.909065387196842, + 0.9356248965935622, + 0.9890174067689452, + 0.9992663243093578, + 0.9255861016232884, + 0.9701400724878312, + 0.9099770642201834, + 0.9943501037415146, + 0.9947856385396152, + 0.9956476370717128, + 0.9904302907657898, + 0.8041381029540074, + 0.993779175279743, + 0.7813852813852814, + 0.8832034632034632, + 0.9990150209905604, + 0.9929855448480356, + 0.9947856385396152, + 0.9859234217934404, + 0.978073311070348, + 0.9820100634702482, + 1, + 0.9992656508417233, + 1, + 0.9974294410273912, + 0.949825316001485, + 0.9991101224022378, + 0.9990150209905604, + 0.997391304347826, + 0.9937731747479652, + 0.8244642857142858, + 0.9985875706214687, + 0.878685196514601, + 0.9786956521739132, + 0.7763614794595731, + 0.7822341892305151, + 0.833174972830306, + 0.7707081956166205, + 0.8268991218112046, + 0.7862727272727271, + 0.8546502548557862, + 0.775995920023485, + 0.831081385436793, + 0.9985339932335306, + 0.9941424251920344, + 0.9890311615492476, + 0.9358035287465732, + 0.7714797416324134, + 0.7643053750286719, + 0.7707081956166205, + 0.7521112125156584, + 0.8598347107438016, + 0.90662100456621, + 0.7822341892305151, + 0.7563441975980676, + 0.9055353950321428, + 0.8710617614475394, + 0.8630005695842037, + 0.8952232922255726, + 0.7757575757575756, + 0.8398859728050183, + 0.8668958338409165, + 0.8490459410817468, + 0.8534540516685339, + 0.9919502705663622, + 1, + 0.9839330712663648, + 0.946473950268886, + 0.8862820694208641, + 0.8874398840030436, + 0.8952232922255726, + 0.8486137750653879, + 0.9018993376896012, + 0.8965017504270001, + 0.8895952017025271, + 0.7552008456659621, + 0.8658008658008658, + 0.9636752136752136, + 0.9364502164502164, + 0.984461621950468, + 1, + 0.9818181818181816, + 0.996521739130435, + 0.8586700336700335, + 0.9890311615492476, + 0.999122807017544, + 0.9818536963567754, + 1, + 1, + 0.9970690618433798, + 0.9970690618433798, + 1, + 7, + 0.9982456140350876, + 0.9477543538038498, + 0.9977822580645164, + 0.9576803072122886, + 0.8041630667784956, + 0.8119647131227026, + 0.8679516484927489, + 0.8129887361537077, + 0.8296247866194635, + 0.8330381744436689, + 0.9303687863484544, + 0.8870930627862177, + 0.8486878358300123, + 0.9978013931164152, + 0.99268071993084, + 0.9875732201051683, + 0.9658331436022252, + 0.7726587251245716, + 0.8119189817879228, + 0.8216057600038708, + 0.9095579316931844, + 0.822054489456517, + 0.7805172292400586, + 0.892391114486425, + 0.9000234404536862, + 0.8397480840731469, + 0.8550497957993816, + 0.9350943180643898, + 0.897855261911528, + 0.9129853629164149, + 0.9978013931164152, + 1, + 0.9868446526492484, + 0.955770578544058, + 0.8995898027497777, + 0.8995898027497777, + 0.9000234404536862, + 0.8974216292028354, + 0.9068929556529068, + 0.7766774350616475, + 0.9370415079706566, + 0.8857699681136173, + 0.9897824784878032, + 0.998221036598569, + 0.8084175084175084, + 0.9913111768722972, + 0.8675319709415152, + 0.9280169976669376, + 0.999122807017544, + 0.8998911634924976, + 1, + 0.9992668621947256, + 1, + 0.9960351014549488, + 0.999122807017544, + 0.999122807017544, + 2, + 0.9982456140350876, + 0.9380859781477626, + 0.934372987530004, + 0.9969759694040504, + 0.792782754772987, + 0.7714560308712177, + 0.8085316277505704, + 0.8017888630248555, + 0.8557422839635942, + 0.7920446151287672, + 0.8210527935710153, + 0.79241896667796, + 0.7793718426037994, + 0.996336999414424, + 0.9965191088563604, + 0.9672749544015236, + 0.9477180531985372, + 0.8462714704650187, + 0.7932369506718919, + 0.7965452139741044, + 0.7966912350949062, + 0.8584751140436623, + 0.8075842215036355, + 0.8935463671803986, + 0.8694866227116197, + 0.7559911987169416, + 0.8672820048414341, + 0.9978013931164152, + 0.9540512424216696, + 0.8485601299189015, + 0.7802288530146115, + 0.7559911987169416, + 0.8075842215036355, + 0.865081443540125, + 0.8408374965151522, + 0.8521832338962485, + 0.8227635041015324, + 0.8786356094048401, + 0.8701066680233348, + 0.8985904473621558, + 0.919319387113138, + 0.9208092958092956, + 0.8586700336700335, + 0.9416562889165628, + 0.932398585032895, + 0.9970690618433798, + 0.9970690618433798, + 0.9948736810887512, + 0.9622333213753728, + 0.7902969671765014, + 0.9908884770316014, + 0.946198347107438, + 0.92385752642948, + 0.8863636363636364, + 0.8259976777571356, + 0.8190486045187013, + 0.7940051262578318, + 0.7606873345935727, + 0.8224948407969243, + 0.9006445563787115, + 0.7834335706711103, + 0.7736264668325739, + 0.7922752675949607, + 0.8000124002170039, + 0.9985339932335306, + 0.9768478574449928, + 0.9853883242696474, + 0.8067839857133676, + 0.8017627702025454, + 0.8021928166351607, + 0.7910710359728593, + 0.828891493383743, + 0.8284602000869942, + 0.7644903235840163, + 0.7893527624833871, + 0.780089044997152, + 0.7928741020793951, + 0.7604961330297303, + 0.8921379258150505, + 0.7921764122864366, + 0.863925779862748, + 0.791670480549199, + 0.7984383476710845, + 0.996336999414424, + 0.9833831528957327, + 0.991220090045964, + 0.9301373709233364, + 0.791670480549199, + 0.81573077081821, + 0.7928741020793951, + 0.7802662901330503, + 0.8037512287334593, + 0.8025417478298693, + 0.7893527624833871, + 0.9222946747399472, + 0.9344444444444444, + 0.8801077325173712, + 0.9000168618023969, + 0.934334074623178, + 0.8247230442973539, + 0.936963017728694, + 0.907326978222119, + 0.988302056405168, + 0.9914003253458398, + 0.9716068390573318, + 0.8868080394461477, + 0.9312885573197214, + 0.9677933860111212, + 0.9344444444444444, + 0.9360867018160518, + 0.9310557094490612, + 0.9275512725475664, + 0.9290762303990062, + 0.8220626497774737, + 0.8242647792818613, + 0.8580430671412884, + 0.7589099863492517, + 0.8806041934635603, + 0.7737464548987709, + 0.838169467510867, + 1, + 0.9890311615492476, + 0.9853883242696474, + 0.9450477324262084, + 0.8580430671412884, + 0.8398311720625257, + 0.8578858011832347, + 0.8672259606948435, + 0.7905217546826223, + 0.8549939348739194, + 0.8210461476724114, + 0.8919696969696971, + 0.8363949697251979, + 0.8053911900065747, + 0.769382100421295, + 0.923526237747262, + 0.8619283887468031, + 0.8474662292253902, + 0.9782982623788444, + 0.9817522080920388, + 0.8134050821718116, + 0.8474662292253902, + 0.8474662292253902, + 0.8483379501385041, + 0.8465945179292698, + 0.8803334593572778, + 0.9004149252037746, + 0.796839893191436, + 0.9028882720019862, + 0.7676281237741422, + 0.8291492133323973, + 0.7913646289079624, + 0.9904289157282716, + 0.9926335425715882, + 0.9461330864231152, + 0.9454153674378072, + 0.7598160347464082, + 0.7867084930870223, + 0.7871436798157214, + 0.7860877112960002, + 0.8101813436763873, + 0.8238243435953362, + 0.8818618218586448, + 0.7794331008589289, + 0.9025957850286672, + 0.8025699565810901, + 0.9170617535185012, + 0.7631048593350384, + 0.8250833206612556, + 0.9088064577345945, + 0.9278150139590884, + 0.9992668621947256, + 0.8068812492978317, + 0.9934114381393974, + 0.984660563345966, + 0.870252992498577, + 0.8985858297326429, + 0.9025957850286672, + 0.90741737640829, + 0.9024751306250636, + 0.8824223337513897, + 0.9791710812316362, + 0.756628065305478, + 0.9859234217934404, + 0.992671182389769, + 0.792519283483139, + 0.9807828100228472, + 0.9925507389082384, + 0.928723519908324, + 0.9761788895853514, + 0.9506223327256856, + 0.9992668621947256, + 0.9985339932335306, + 0.9985339932335306, + 0.9904901783696456, + 0.992671182389769, + 0.992671182389769, + 0.9928936489808848, + 0.988714605208294, + 0.948060941828255, + 0.9939538727034296, + 0.915641381346678, + 0.971001604361102, + 0.7554660388288974, + 0.8668958338409165, + 0.996336999414424, + 1, + 0.8683978095980386, + 0.9507590560548308, + 0.7506209000762775, + 0.7650792722152088, + 0.7882882882882881, + 0.9873000604890544, + 0.9682695039010508, + 0.939548148620228, + 0.978469168274726, + 0.9770862304997938, + 0.9364530503181744, + 0.9928507310737632, + 0.998339483394834, + 0.9869953764615554, + 0.9779823259487208, + 0.9862539184209972, + 0.9848040830545792, + 0.9846235837724948, + 0.9834028714566064, + 0.9808836171606352, + 0.9814823072033312, + 0.9838663951689132, + 0.9289464621791536, + 0.950300482513086, + 0.9486101335940044, + 0.951299790877642, + 0.932353379320096, + 0.9363191484705866, + 0.7500718937727315, + 0.8881896291715989, + 0.9329580322176916, + 0.941701474767142, + 1, + 1, + 0.995605205829548, + 0.988302056405168, + 0.9514741813067672, + 0.9514741813067672, + 0.9319643313838056, + 0.9419954799687824, + 0.9441436310000064, + 0.9555403520366936, + 0.8732908588456849, + 0.8482458889462429, + 0.8657481566722074, + 0.9060155127964962, + 0.8321093615368212, + 0.993758325008325, + 0.8271094654395285, + 0.855139156857862, + 0.8622230550415498, + 0.8892009084674849, + 0.8659230906299106, + 0.914656355102988, + 0.9248539005931276, + 0.9527305856232412, + 0.8571281012005368, + 0.8846977863333716, + 0.9593583027873251, + 0.9188951371295636, + 0.7800217784035494, + 0.996336999414424, + 0.9948736810887512, + 0.9868446526492484, + 0.9853883242696474, + 0.9531775071717112, + 0.9531775071717112, + 0.9527305856232412, + 0.9238927452772132, + 0.9555403520366936, + 0.9097297101659864, + 0.9320839327803117, + 0.8458383400350413, + 0.9517981773305488, + 0.9434321361058602, + 0.8384981048972464, + 0.9061435934718378, + 0.9328333806952732, + 0.9258691777106102, + 0.9978013931164152, + 0.9875732201051683, + 0.988302056405168, + 0.9564875857045522, + 0.9429977116704804, + 0.9429977116704804, + 0.9434321361058602, + 0.938293658314696, + 0.9000657462195923, + 0.9038201493163326, + 0.936556104044048, + 0.952612204076308, + 0.7799127011297503, + 0.92448876432027, + 0.9365262267264388, + 0.9565966865742668, + 0.94491648331435, + 0.9086443302842008, + 0.9378841050418828, + 0.9211354224331691, + 0.8980181937554507, + 0.9376349250962784, + 0.9956044009241408, + 0.9941413527735856, + 0.9724980906333768, + 0.9083271241193304, + 0.9391877740213088, + 0.9358184932420454, + 0.9373115797727772, + 0.9463111401682168, + 0.9762481841119351, + 0.9502409737496426, + 0.9365262267264388, + 0.9521230391509398, + 0.8295449908182004, + 0.943947221044588, + 0.8708608667318343, + 0.943947221044588, + 0.8871943647917209, + 0.9412635914006204, + 0.9985339932335306, + 1, + 0.9407755311560884, + 0.9421985228698097, + 0.948072129659398, + 0.9350049149338372, + 0.9638336347197108, + 0.958536231884058, + 0.943947221044588, + 0.9667491997801664, + 0.8387538514207465, + 0.8874585152838429, + 0.8623785126533147, + 0.8705701323251417, + 0.8001582377938935, + 0.8878997468865361, + 0.8684059865492091, + 0.8859445107741636, + 0.8677050513455755, + 0.8430977292102613, + 0.9904901783696456, + 0.992130773157018, + 0.9372227566431792, + 0.8621233137385207, + 0.8677050513455755, + 0.8831178664041945, + 0.8705701323251417, + 0.8614957734733332, + 0.8689482041587903, + 0.8660854435766022, + 0.8711152458705146, + 0.8873673399520713, + 0.9299160466862332, + 0.9652200677131424, + 0.8999564578859198, + 0.8950764254021453, + 0.9398812902982936, + 0.9752792033119024, + 0.9978013931164152, + 0.9721444518798692, + 0.9805263157894736, + 0.9479012434878824, + 0.880780406807804, + 0.8571885156262036, + 0.986135349716446, + 0.9743634159016108, + 0.9625071374155624, + 0.880780406807804, + 0.981787734953484, + 0.8919696969696971, + 0.9773557492735576, + 0.7714763488785487, + 0.9545454545454548, + 0.9884853681548044, + 0.9894860390412652, + 0.8047278408758268, + 0.9882730260033812, + 0.9461654371370272, + 0.9970690618433798, + 0.9978013931164152, + 0.996336999414424, + 0.9802996435295532, + 0.9991101223581756, + 0.999777530589544, + 6, + 0.9982456140350876, + 0.9421304353743684, + 0.932626333246618, + 0.9977753058954394, + 0.9203132832080202, + 0.9939130434782611, + 0.9281390141743808, + 0.8796487671810186, + 0.9357441792403746, + 0.7832517257911142, + 0.9134801839907836, + 0.9223744981227122, + 0.905289786165362, + 0.996336999414424, + 0.998350675275288, + 0.996336999414424, + 0.9613309146374462, + 0.937103645050706, + 0.937103645050706, + 0.9357441792403746, + 0.904567225435328, + 0.939105864661958, + 0.9093117324398052, + 0.9214972959512142, + 0.9414868925909092, + 0.8586028659246839, + 0.9230788696114616, + 0.9143112638406732, + 0.9391302151973808, + 0.996336999414424, + 0.9992668621947256, + 0.9890311615492476, + 0.9414868925909092, + 0.941314332676578, + 0.902432554260779, + 0.941241408860912, + 0.8318181818181817, + 0.909072064464046, + 0.9772426641825802, + 0.9505847966970496, + 0.8082508107205724, + 0.9532628651995616, + 0.7740137221269299, + 0.9536631479971994, + 0.9886242163794032, + 0.968708052390917, + 0.9970690618433798, + 0.9906529437430028, + 0.9884575916336614, + 0.9789725394962472, + 0.9851370084561714, + 0.9851370084561714, + 0.9860141582025238, + 0.9842598587858048, + 0.8230247277595697, + 0.9772426641825802, + 0.8553636363636363, + 0.9772426641825802, + 0.9565269894940224, + 0.8991005792297246, + 0.9694396869310692, + 0.9544594777956544, + 0.995605205829548, + 0.9887359375145636, + 0.7606385491732779, + 0.9826843100189036, + 0.9800758121375232, + 0.9000657462195923, + 0.9169832716276728, + 0.9783368141256884, + 0.7733211512105985, + 0.8315151515151515, + 0.9514804555247768, + 0.9248167539267018, + 0.8084175084175084, + 0.8131377716690428, + 0.9581772940528424, + 1, + 1, + 0.977084365603192, + 0.9230788696114616, + 0.9822495603003196, + 0.9822495603003196, + 0.9826843100189036, + 0.909072064464046, + 0.9163600219843964, + 0.9783368141256884, + 0.8722470169622666, + 0.7806171146277027, + 0.7993113894954217, + 0.8647701376567242, + 0.8843935880633129, + 0.8237517359346238, + 0.9143045157420016, + 0.9985339932335306, + 0.9948736810887512, + 0.9817522080920388, + 0.9875732201051683, + 0.937683151374774, + 0.9355427814530765, + 0.8050748795127288, + 0.9031438311232312, + 0.7770347430724859, + 0.7558559856410743, + 0.8035224554513879, + 0.8975645313091688, + 0.7715736896162307, + 0.7524584849903713, + 0.760960813749392, + 0.7628286200410923, + 0.9063380676482872, + 0.7975398606698341, + 0.8173907278944466, + 0.8252050839377624, + 0.7829559806346367, + 0.9853883242696474, + 0.9914003253458398, + 0.9890311615492476, + 0.8937267418365915, + 0.7598493905068002, + 0.7664643536742591, + 0.8726620562837514, + 0.807857176503839, + 0.8859552362571937, + 0.7621748136686876, + 0.9006445563787115, + 0.8965017504270001, + 0.9001503179694077, + 0.8486878358300123, + 0.995605205829548, + 0.9875732201051683, + 0.9948736810887512, + 0.9027223454052724, + 0.884737671188568, + 0.884575512524494, + 0.8798196380081305, + 0.8878885108220647, + 0.8408502506153573, + 0.9290762303990062, + 0.90727093221948, + 0.9413092648977816, + 0.9219048551109622, + 0.9403303455027592, + 0.92049050384555, + 0.9992668621947256, + 0.9970690618433798, + 0.988302056405168, + 0.9716068390573318, + 0.9526427685969672, + 0.9413092648977816, + 0.9417436672967864, + 0.9452382460255262, + 0.8258664204370576, + 0.8249965343560833, + 0.9498970784947516, + 0.8977159303535192, + 0.8550758611268748, + 0.9971775822743564, + 1, + 0.9364192202560784, + 0.9964912280701756, + 0.8485069801940157, + 0.9097417836628494, + 0.999122807017544, + 0.9877189123128628, + 1, + 0.9976169999054124, + 0.9992668621947256, + 0.9679854547640152, + 0.9236004688155952, + 0.999122807017544, + 0.9937805570643936, + 0.9982456140350876, + 0.931003010693105, + 0.9341554258408444, + 0.9954182612676434, + 0.9912311643305796, + 0.9545454545454548, + 0.7761808341851455, + 0.8182545315351611, + 0.9104377104377104, + 0.7694545454545454, + 0.8553134080531342, + 0.9292464661560496, + 0.9992555369697762, + 0.9985113511553524, + 0.9762465658458932, + 0.9572793819640072, + 0.9503788875440718, + 0.8231479245485526, + 0.8911007105869436, + 0.9024231247013856, + 0.8658008658008658, + 0.9686137921250751, + 0.9819054691235874, + 2, + 0.76909130219916, + 0.9861142727065788, + 0.9679847507357018, + 0.9989920981077092, + 0.999122807017544, + 0.9672169872900396, + 1, + 0.9954545454545456, + 1, + 0.9992668621947256, + 1, + 0.8534197605902789, + 7, + 0.9982456140350876, + 0.936341359994194, + 0.9054813423400642, + 0.9977822580645164, + 0.8691836035197901, + 0.9939130434782611, + 0.8257949554417174, + 0.7957985346108523, + 0.9136739322359624, + 0.8585000323687447, + 0.8766608932307983, + 0.7697689156812738, + 0.856617686732253, + 0.9882827814745488, + 0.9585725924710128, + 0.9649045221259104, + 0.8401802481694282, + 0.9245562130177516, + 0.9542133966338968, + 0.944622600300256, + 0.9332845830090168, + 0.8278906432659405, + 0.9418179668098864, + 0.7988538683378321, + 0.7739306525397351, + 0.7679975248125409, + 0.9228068405104872, + 0.7685979300090726, + 0.917451425335698, + 0.8374157216227879, + 0.8207867897037397, + 0.9992668621947256, + 0.9992668621947256, + 0.991220090045964, + 0.9365130082728363, + 0.7654094979252105, + 0.7550919222167469, + 0.7698155009451796, + 0.7909076419763443, + 0.7698457560674341, + 5.547362180955347, + 5.273578416137292, + 4.405027295953676, + 7.673023908134741, + 4.058708735252173, + 6.572510951869945, + 4.468497881291325, + 6.4464926096807895, + 6.609601079435611, + 6.557183923239597, + 6.990475929633424, + 4.800135438827631, + 6.97439071950237, + 6.9440539439808955, + 5.6669460176018704, + 6.521485640201173, + 11.720394300201184, + 6.605985423652212, + 3.8201709565391964, + 2.674089259054356, + 6.677469103734149, + 4.37775069695064, + 4.657751409474319, + 6.707234336847761, + 8.366096224203087, + 7.526381760300574, + 6.404039684106168, + 9.027369825457244, + 8.169136169088635, + 6.829389587433532, + 8.49476355999494, + 7.497106287165944, + 8.934836799244854, + 9.88978540059558, + 9.713140852343352, + 9.03886690474268, + 7.684178795222853, + 6.885731208772446, + 6.87065736702104, + 8.37010581800269, + 5.955761579489162, + 6.790784780412599, + 5.184914028377343, + 1.6829878472001882, + 4.3267486616159045, + 6.116315081600807, + 3.2156613404078267, + 7.300791750895977, + 7.250092179930649, + 3.9640578011703234, + 8.005620399961677, + 3.1945277426117054, + 7.073216744951541, + 8.132975997107504, + 6.121658884695495, + 8.977282641493835, + 8.963947983444152, + 8.870652676671824, + 8.651714006225397, + 7.290999307953095, + 7.2856501641629015, + 14.255344841929988, + 7.188291055543197, + 5.385074059414795, + 6.235633113520147, + 8.294781755723843, + 5.063571090311391, + 6.1582910805603275, + 1.784763023126323, + 3.4744300800931125, + 3.7387442804148, + 4.5907028717350045, + 2.6902226170011634, + 3.591323610989751, + 2.637254356615229, + 4.645250006890113, + 3.569363917600169, + 4.983325047642708, + 4.941402530592015, + 4.805575896523624, + 4.677439663665684, + 4.438362360083119, + 3.8701793321556734, + 4.632880405303596, + 3.7176153062994706, + 2.647587534112845, + 2.658662075455663, + 4.635924856231371, + 3.572444886287982, + 2.687028072716601, + 0.9636752136752136, + 1.7915260775770911, + 1.9816392042248245, + 2, + 1.91823740207426, + 1.9930129672006105, + 1.7071770138640492, + 1.8987729452120972, + 1.998245614035088, + 1.9695726086696381, + 2, + 0.9976169999054124, + 1.9992668621947256, + 1.965054516607395, + 1.9206695306589752, + 1.999122807017544, + 7.993780557064394, + 1.9964912280701752, + 0.931003010693105, + 1.8819097796446942, + 1.9932005193321598, + 1.9489114715428681, + 1.7587085213239504, + 2.425508917708679, + 1.768944160951707, + 1.788986806494529, + 5.699323987134974, + 0.8585000323687447, + 5.43286665007431, + 3.414906550407822, + 5.470276480027521, + 5.632860516917093, + 0.9356248965935622, + 6.877498991427229, + 4.92998336866024, + 5.522204966131001, + 5.670726773863851, + 5.294491007519193, + 4.561764829017873, + 5.863840588932426, + 4.669379533959952, + 4.683050532699003, + 3.7027479167992765, + 5.846399183727066, + 3.2604291232084575, + 4.4239863727941975, + 5.817980119454812, + 3.614173252935983, + 1.6447915192715694, + 6.04490013801831, + 1.7745412699338134, + 6.007473195572874, + 3.5212444094627227, + 3.542942777167051, + 5.304336273813553, + 4.386542609541518, + 6.816850108141871, + 5.96999377753715, + 5.859207464302283, + 6.54063190825344, + 4.455644847321341, + 4.38533448358712, + 5.122292433331659, + 6.234365329083419, + 4.272156414696281, + 2.497004601367061, + 5.996813174250196, + 1.8643137310893352, + 2.6119230382440977, + 22.65560453652118, + 25.84554766495077, + 29.226077081458463, + 40.78442484525425, + 18.97808492490548, + 39.72907660713783, + 28.06681337771601, + 33.89834550108776, + 40.818033048193904, + 31.037053127505924, + 45.58026951758392, + 40.49286549956218, + 43.74443943766918, + 43.48848771733934, + 36.75129186636045, + 35.50926846491473, + 56.459190493784284, + 38.782233694611115, + 27.69480408764439, + 26.4408315262538, + 38.629502621376126, + 21.77040884659086, + 26.624437156729396 + ] + } + ], + "layout": { + "coloraxis": { + "colorbar": { + "title": { + "text": "R^2 Spearman" + } + }, + "colorscale": [ + [ + 0, + "rgb(5,48,97)" + ], + [ + 0.1, + "rgb(33,102,172)" + ], + [ + 0.2, + "rgb(67,147,195)" + ], + [ + 0.3, + "rgb(146,197,222)" + ], + [ + 0.4, + "rgb(209,229,240)" + ], + [ + 0.5, + "rgb(247,247,247)" + ], + [ + 0.6, + "rgb(253,219,199)" + ], + [ + 0.7, + "rgb(244,165,130)" + ], + [ + 0.8, + "rgb(214,96,77)" + ], + [ + 0.9, + "rgb(178,24,43)" + ], + [ + 1, + "rgb(103,0,31)" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "branchvalues": "total", + "customdata": [ + [ + 0.9545454545454548 + ], + [ + 0.9545454545454548 + ], + [ + 0.8298946640273919 + ], + [ + 0.8041381029540074 + ], + [ + 0.9786956521739132 + ], + [ + 0.9055353950321428 + ], + [ + 0.8658008658008658 + ], + [ + 0.8041630667784955 + ], + [ + 0.792782754772987 + ], + [ + 0.8259976777571356 + ], + [ + 0.8220626497774737 + ], + [ + 0.8210461476724114 + ], + [ + 0.8101813436763873 + ], + [ + 0.971001604361102 + ], + [ + 0.9289464621791536 + ], + [ + 0.8732908588456849 + ], + [ + 0.9320839327803117 + ], + [ + 0.7799127011297503 + ], + [ + 0.9521230391509398 + ], + [ + 0.8387538514207465 + ], + [ + 0.8873673399520713 + ], + [ + 0.8919696969696971 + ], + [ + 0.9939130434782611 + ], + [ + 0.9772426641825802 + ], + [ + 0.8315151515151515 + ], + [ + 0.8408502506153573 + ], + [ + 0.9545454545454548 + ], + [ + 0.8658008658008658 + ], + [ + 0.9939130434782611 + ], + [ + 0.9418179668098864 + ], + [ + 0.8673029726406383 + ], + [ + 0.9731456263408548 + ], + [ + 0.7813852813852814 + ], + [ + 0.7822341892305151 + ], + [ + 0.9364502164502164 + ], + [ + 0.8679516484927489 + ], + [ + 0.8857699681136173 + ], + [ + 0.7714560308712177 + ], + [ + 0.8584751140436623 + ], + [ + 0.8985904473621558 + ], + [ + 0.8190486045187014 + ], + [ + 0.7893527624833871 + ], + [ + 0.8919696969696971 + ], + [ + 0.8818618218586448 + ], + [ + 0.756628065305478 + ], + [ + 0.7882882882882881 + ], + [ + 0.950300482513086 + ], + [ + 0.8657481566722074 + ], + [ + 0.9365262267264388 + ], + [ + 0.943947221044588 + ], + [ + 0.887458515283843 + ], + [ + 0.7714763488785488 + ], + [ + 0.9214972959512142 + ], + [ + 0.909072064464046 + ], + [ + 0.7715736896162309 + ], + [ + 0.9290762303990062 + ], + [ + 0.8550758611268748 + ], + [ + 0.7761808341851454 + ], + [ + 0.9819054691235874 + ], + [ + 0.7957985346108523 + ], + [ + 0.9929947676208064 + ], + [ + 0.8598347107438016 + ], + [ + 0.8490800833801486 + ], + [ + 0.9947856385396152 + ], + [ + 0.9990150209905604 + ], + [ + 0.7707081956166206 + ], + [ + 0.8952232922255726 + ], + [ + 1 + ], + [ + 0.8216057600038706 + ], + [ + 0.9000234404536862 + ], + [ + 1 + ], + [ + 0.8075842215036355 + ], + [ + 0.946198347107438 + ], + [ + 0.8021928166351607 + ], + [ + 0.7928741020793951 + ], + [ + 0.9344444444444444 + ], + [ + 0.8578858011832347 + ], + [ + 0.8483379501385041 + ], + [ + 0.7871436798157215 + ], + [ + 0.9025957850286672 + ], + [ + 0.9928936489808848 + ], + [ + 0.9846235837724948 + ], + [ + 0.9527305856232412 + ], + [ + 0.9434321361058602 + ], + [ + 0.9373115797727772 + ], + [ + 0.9350049149338372 + ], + [ + 0.8705701323251417 + ], + [ + 0.986135349716446 + ], + [ + 1 + ], + [ + 0.9357441792403746 + ], + [ + 0.941314332676578 + ], + [ + 0.9860141582025238 + ], + [ + 0.9826843100189036 + ], + [ + 0.9826843100189036 + ], + [ + 0.8050748795127288 + ], + [ + 0.884575512524494 + ], + [ + 0.9417436672967864 + ], + [ + 0.9937805570643936 + ], + [ + 0.9503788875440718 + ], + [ + 1 + ], + [ + 0.9245562130177516 + ], + [ + 0.7654094979252105 + ], + [ + 0.8851870524742678 + ], + [ + 0.9760183009804816 + ], + [ + 0.9563486904543473 + ], + [ + 0.9761317906901431 + ], + [ + 0.9991429106537756 + ], + [ + 0.9456237038288926 + ], + [ + 0.9650751509200628 + ], + [ + 0.9992688773416403 + ], + [ + 0.9565325400753372 + ], + [ + 0.9695419255177564 + ], + [ + 0.9987068093750369 + ], + [ + 0.9475024401781991 + ], + [ + 0.8857395145550301 + ], + [ + 0.9753277328120716 + ], + [ + 0.9168763739323124 + ], + [ + 0.9450570112882524 + ], + [ + 0.9561427615655672 + ], + [ + 0.9583497755641666 + ], + [ + 0.9028572378928654 + ], + [ + 0.9691937864973333 + ], + [ + 0.9432189294688625 + ], + [ + 0.9959122759401721 + ], + [ + 0.9568210784484368 + ], + [ + 0.9850037718095089 + ], + [ + 0.9873834917666393 + ], + [ + 0.86399109137214 + ], + [ + 0.9834901908565283 + ], + [ + 0.9751694139594816 + ], + [ + 0.9664949318756285 + ], + [ + 0.9658991512978881 + ], + [ + 0.9338839388947628 + ], + [ + 0.9729988505742541 + ], + [ + 0.9920443424912717 + ], + [ + 0.978264239074848 + ], + [ + 0.982089188379848 + ], + [ + 0.9814197405280587 + ], + [ + 0.9805854024658918 + ], + [ + 0.9712344546795939 + ], + [ + 0.9585968264597382 + ], + [ + 0.9327668804010679 + ], + [ + 0.9682230338987912 + ], + [ + 0.979979971601552 + ], + [ + 0.9931318361728348 + ], + [ + 0.9547263868647838 + ], + [ + 0.9991229961585949 + ], + [ + 0.9571215257648876 + ], + [ + 0.9472118045082988 + ], + [ + 0.7712684989429177 + ], + [ + 0.7976314145122237 + ], + [ + 0.9416437009068946 + ], + [ + 0.9947856385396152 + ], + [ + 0.7862727272727271 + ], + [ + 0.8586700336700335 + ], + [ + 0.9303687863484544 + ], + [ + 0.8675319709415152 + ], + [ + 0.7920446151287672 + ], + [ + 0.8694866227116197 + ], + [ + 0.8586700336700335 + ], + [ + 0.7834335706711103 + ], + [ + 0.7921764122864366 + ], + [ + 0.934334074623178 + ], + [ + 0.8619283887468031 + ], + [ + 0.7676281237741422 + ], + [ + 0.7631048593350384 + ], + [ + 0.9925507389082384 + ], + [ + 0.978469168274726 + ], + [ + 0.7500718937727315 + ], + [ + 0.8846977863333716 + ], + [ + 0.9378841050418828 + ], + [ + 0.8684059865492091 + ], + [ + 0.8950764254021453 + ], + [ + 0.7740137221269299 + ], + [ + 0.8084175084175085 + ], + [ + 0.8843935880633129 + ], + [ + 0.7975398606698341 + ], + [ + 0.8485069801940157 + ], + [ + 0.7694545454545454 + ], + [ + 0.9679847507357018 + ], + [ + 0.7697689156812739 + ], + [ + 0.7685979300090726 + ], + [ + 0.9842229467473992 + ], + [ + 0.9455844136023616 + ], + [ + 0.8448425241372852 + ], + [ + 0.9027230491457534 + ], + [ + 0.9614867110807936 + ], + [ + 0.7980731830235919 + ], + [ + 0.8746942653979919 + ], + [ + 0.982173625627045 + ], + [ + 0.8170407525717691 + ], + [ + 0.86364166104721 + ], + [ + 0.9753325360829251 + ], + [ + 0.8085316277505704 + ], + [ + 0.8227635041015324 + ], + [ + 0.9050828653095765 + ], + [ + 0.7795272007374761 + ], + [ + 0.7847482435439043 + ], + [ + 0.9256978729594237 + ], + [ + 0.8399105171503202 + ], + [ + 0.8363949697251979 + ], + [ + 0.796839893191436 + ], + [ + 0.8383432015465867 + ], + [ + 0.9863864764646757 + ], + [ + 0.7554660388288974 + ], + [ + 0.9855862184585922 + ], + [ + 0.9520878541945509 + ], + [ + 0.8571756370037503 + ], + [ + 0.9320075788738773 + ], + [ + 0.9137979468970369 + ], + [ + 0.9305464260268369 + ], + [ + 0.8839893265526511 + ], + [ + 0.8667688956398026 + ], + [ + 0.9565556274733968 + ], + [ + 0.9768781082130975 + ], + [ + 0.9163601262566885 + ], + [ + 0.9255520299748177 + ], + [ + 0.9772426641825802 + ], + [ + 0.9783368141256884 + ], + [ + 0.9783368141256884 + ], + [ + 0.792235381129738 + ], + [ + 0.7524584849903713 + ], + [ + 0.8575423023217223 + ], + [ + 0.9290731879016672 + ], + [ + 0.9962986984489235 + ], + [ + 0.8911007105869436 + ], + [ + 0.9834143597963373 + ], + [ + 0.8828238788355364 + ], + [ + 0.7810872522403144 + ], + [ + 0.9778255798991798 + ], + [ + 0.8408064685157908 + ], + [ + 0.8461257638092973 + ], + [ + 0.9170015014667736 + ], + [ + 0.8838474478521062 + ], + [ + 0.8992086440167721 + ], + [ + 0.9477543538038498 + ], + [ + 0.936233164174384 + ], + [ + 0.796618231225969 + ], + [ + 0.8465483817977032 + ], + [ + 0.8286759028531826 + ], + [ + 0.8031469436294986 + ], + [ + 0.9293067948377257 + ], + [ + 0.7905217546826223 + ], + [ + 0.8904874214357624 + ], + [ + 0.948060941828255 + ], + [ + 0.9811830535079085 + ], + [ + 0.9430707787644872 + ], + [ + 0.9019468547619269 + ], + [ + 0.9634201249462099 + ], + [ + 0.958536231884058 + ], + [ + 0.8675191856081045 + ], + [ + 0.923455550886179 + ], + [ + 0.9374024748908731 + ], + [ + 0.8230247277595698 + ], + [ + 0.9086032637241696 + ], + [ + 0.9127305916495537 + ], + [ + 0.7665916695558189 + ], + [ + 0.8254317065802806 + ], + [ + 0.9325818823090927 + ], + [ + 0.8231479245485526 + ], + [ + 0.9211698832963091 + ], + [ + 0.944622600300256 + ], + [ + 0.7805040946287232 + ], + [ + 0.9832058480308432 + ], + [ + 0.8890631162040309 + ], + [ + 0.8977160492573557 + ], + [ + 0.9859234217934404 + ], + [ + 0.8546502548557862 + ], + [ + 0.8668958338409165 + ], + [ + 0.9890311615492476 + ], + [ + 0.9350943180643897 + ], + [ + 0.9280169976669376 + ], + [ + 0.8210527935710153 + ], + [ + 0.7559911987169416 + ], + [ + 0.7736264668325739 + ], + [ + 0.863925779862748 + ], + [ + 0.824723044297354 + ], + [ + 0.8806041934635603 + ], + [ + 0.8250833206612556 + ], + [ + 0.928723519908324 + ], + [ + 0.8668958338409165 + ], + [ + 0.8881896291715989 + ], + [ + 0.9593583027873251 + ], + [ + 0.9061435934718377 + ], + [ + 0.9211354224331691 + ], + [ + 0.8859445107741636 + ], + [ + 0.9398812902982936 + ], + [ + 0.8047278408758268 + ], + [ + 0.9223744981227123 + ], + [ + 0.9230788696114616 + ], + [ + 0.9536631479971994 + ], + [ + 0.9694396869310692 + ], + [ + 0.8131377716690427 + ], + [ + 0.8237517359346237 + ], + [ + 0.8173907278944466 + ], + [ + 0.8965017504270001 + ], + [ + 0.9219048551109622 + ], + [ + 0.9097417836628494 + ], + [ + 0.8553134080531343 + ], + [ + 0.9989920981077092 + ], + [ + 0.917451425335698 + ], + [ + 0.9150177303560064 + ], + [ + 0.818251045869449 + ], + [ + 0.8456287897798366 + ], + [ + 0.9580847637833185 + ], + [ + 0.9951933007390439 + ], + [ + 0.7912762864700013 + ], + [ + 0.8227036939088314 + ], + [ + 0.9922499420681911 + ], + [ + 0.8589952456968621 + ], + [ + 0.8647618655419143 + ], + [ + 0.9409418177584535 + ], + [ + 0.8256742643429589 + ], + [ + 0.8795442701574369 + ], + [ + 0.8406025749327211 + ], + [ + 0.8151093945882026 + ], + [ + 0.9059966318464586 + ], + [ + 0.8166754057049967 + ], + [ + 0.8511791199028763 + ], + [ + 0.8485266432095069 + ], + [ + 0.8787529330292853 + ], + [ + 0.9296027452970655 + ], + [ + 0.7650792722152087 + ], + [ + 0.9619755843239752 + ], + [ + 0.933549766771479 + ], + [ + 0.8616019267536854 + ], + [ + 0.8917618172659301 + ], + [ + 0.8911984476376517 + ], + [ + 0.933616428382211 + ], + [ + 0.9271005715678781 + ], + [ + 0.851440816574498 + ], + [ + 0.9386368447253942 + ], + [ + 0.9938851274719704 + ], + [ + 0.8711690044217546 + ], + [ + 0.8810631396615008 + ], + [ + 0.921688151199631 + ], + [ + 0.9413328398731196 + ], + [ + 0.9248167539267018 + ], + [ + 0.8843734470618795 + ], + [ + 0.8173749505019134 + ], + [ + 0.8519312620027872 + ], + [ + 0.9452382460255262 + ], + [ + 0.9778974468240862 + ], + [ + 0.9104377104377104 + ], + [ + 0.9298937661136578 + ], + [ + 0.8983798996067152 + ], + [ + 0.8473313810536809 + ], + [ + 0.9792614678275988 + ], + [ + 0.8553134080531343 + ], + [ + 0.8232860332235971 + ], + [ + 0.909065387196842 + ], + [ + 0.978073311070348 + ], + [ + 0.775995920023485 + ], + [ + 0.8490459410817468 + ], + [ + 0.999122807017544 + ], + [ + 0.8870930627862177 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.79241896667796 + ], + [ + 0.8672820048414341 + ], + [ + 0.9416562889165628 + ], + [ + 0.7922752675949607 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.7737464548987709 + ], + [ + 0.84746622922539 + ], + [ + 0.8291492133323973 + ], + [ + 0.9088064577345945 + ], + [ + 0.9761788895853514 + ], + [ + 0.9770862304997938 + ], + [ + 0.9329580322176916 + ], + [ + 0.993758325008325 + ], + [ + 0.9188951371295636 + ], + [ + 0.9328333806952732 + ], + [ + 0.8980181937554507 + ], + [ + 0.8677050513455755 + ], + [ + 0.9752792033119024 + ], + [ + 0.9882730260033812 + ], + [ + 0.905289786165362 + ], + [ + 0.9143112638406732 + ], + [ + 0.9886242163794032 + ], + [ + 0.9544594777956544 + ], + [ + 0.9581772940528424 + ], + [ + 0.9143045157420016 + ], + [ + 0.8252050839377624 + ], + [ + 0.9001503179694077 + ], + [ + 0.9403303455027593 + ], + [ + 0.999122807017544 + ], + [ + 0.9292464661560496 + ], + [ + 0.999122807017544 + ], + [ + 0.8566176867322529 + ], + [ + 0.8374157216227878 + ], + [ + 0.902115011699789 + ], + [ + 0.8553134080531343 + ], + [ + 0.8403328845275041 + ], + [ + 0.9540326981535171 + ], + [ + 0.9451327413498781 + ], + [ + 0.7640931217937306 + ], + [ + 0.8475441687513058 + ], + [ + 0.9852944941444919 + ], + [ + 0.7927752189233835 + ], + [ + 0.8625290260955841 + ], + [ + 0.999122807017544 + ], + [ + 0.8462714704650187 + ], + [ + 0.8219143476518825 + ], + [ + 0.8967294298470624 + ], + [ + 0.8017627702025453 + ], + [ + 0.8038806981974395 + ], + [ + 0.9498918260670621 + ], + [ + 0.8490347926552761 + ], + [ + 0.84746622922539 + ], + [ + 0.7734960799030078 + ], + [ + 0.8839061116873433 + ], + [ + 0.9683581632195862 + ], + [ + 0.7506209000762774 + ], + [ + 0.9855295339596895 + ], + [ + 0.9514741813067672 + ], + [ + 0.8622230550415498 + ], + [ + 0.9391417960180795 + ], + [ + 0.9462242522861426 + ], + [ + 0.9375061608356837 + ], + [ + 0.9575017523170773 + ], + [ + 0.8754792997928964 + ], + [ + 0.8691445841404749 + ], + [ + 0.9744970451625167 + ], + [ + 0.937103645050706 + ], + [ + 0.8900437264297159 + ], + [ + 0.9458526284056905 + ], + [ + 0.7670322793380222 + ], + [ + 0.9484258109649947 + ], + [ + 0.9239645181768363 + ], + [ + 0.7598493905068002 + ], + [ + 0.8938204854275072 + ], + [ + 0.9311584694225717 + ], + [ + 0.9725009394724591 + ], + [ + 0.9024231247013856 + ], + [ + 0.9122905881685385 + ], + [ + 0.8340807178909053 + ], + [ + 0.7522123063336182 + ], + [ + 0.8258303273081601 + ], + [ + 0.9356248965935622 + ], + [ + 0.9820100634702482 + ], + [ + 0.831081385436793 + ], + [ + 0.8534540516685338 + ], + [ + 0.9818536963567754 + ], + [ + 0.8486878358300123 + ], + [ + 0.9129853629164147 + ], + [ + 0.8998911634924976 + ], + [ + 0.7793718426037994 + ], + [ + 0.932398585032895 + ], + [ + 0.800012400217004 + ], + [ + 0.7984383476710843 + ], + [ + 0.907326978222119 + ], + [ + 0.838169467510867 + ], + [ + 0.7913646289079624 + ], + [ + 0.9278150139590884 + ], + [ + 0.9506223327256856 + ], + [ + 0.9364530503181744 + ], + [ + 0.9417014747671419 + ], + [ + 0.7800217784035494 + ], + [ + 0.9258691777106102 + ], + [ + 0.9376349250962784 + ], + [ + 0.9412635914006205 + ], + [ + 0.8430977292102612 + ], + [ + 0.9461654371370272 + ], + [ + 0.9391302151973808 + ], + [ + 0.968708052390917 + ], + [ + 0.7829559806346367 + ], + [ + 0.8486878358300123 + ], + [ + 0.92049050384555 + ], + [ + 0.9877189123128628 + ], + [ + 0.9672169872900396 + ], + [ + 0.8207867897037397 + ], + [ + 0.9362140743781505 + ], + [ + 0.8858224702081742 + ], + [ + 0.8712125971231403 + ], + [ + 0.9425776320387591 + ], + [ + 0.9678656579115078 + ], + [ + 0.845177507471658 + ], + [ + 0.8879860624446922 + ], + [ + 0.9795627481067839 + ], + [ + 0.8824880919819519 + ], + [ + 0.9060192863120934 + ], + [ + 0.9588725646716739 + ], + [ + 0.8548969538448014 + ], + [ + 0.8547392699937022 + ], + [ + 0.9247396362407979 + ], + [ + 0.8395580144256808 + ], + [ + 0.843740089474864 + ], + [ + 0.9249447572901628 + ], + [ + 0.8729860253752311 + ], + [ + 0.8710910410616529 + ], + [ + 0.8575684497498801 + ], + [ + 0.8888834395003661 + ], + [ + 0.9640476737469745 + ], + [ + 0.8803783826512939 + ], + [ + 0.967740576800573 + ], + [ + 0.9413063102753655 + ], + [ + 0.8769302051353558 + ], + [ + 0.9362422825085444 + ], + [ + 0.9286586070011535 + ], + [ + 0.944006114581395 + ], + [ + 0.9349278697154183 + ], + [ + 0.8845188412899909 + ], + [ + 0.9419319078423727 + ], + [ + 0.9716723266470112 + ], + [ + 0.9323330403577166 + ], + [ + 0.9321432828327338 + ], + [ + 0.9480786135178261 + ], + [ + 0.9268920735200938 + ], + [ + 0.9399304836605225 + ], + [ + 0.8875449132554921 + ], + [ + 0.8467449877524531 + ], + [ + 0.8941433348547955 + ], + [ + 0.9354636184177275 + ], + [ + 0.9665685689064893 + ], + [ + 0.9008265654584171 + ], + [ + 0.9750500171734773 + ], + [ + 0.897225206532872 + ], + [ + 0.8557013378255032 + ], + [ + 0.9429696266354753 + ], + [ + 0.8781202677770228 + ], + [ + 0.9169335093602933 + ], + [ + 0.9266807039100117 + ], + [ + 0.9737719189464245 + ], + [ + 0.927766227902817 + ], + [ + 0.897409840515961 + ] + ], + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "labels=%{label}
R^2 Spearman_sum=%{value}
parent=%{parent}
id=%{id}
R^2 Spearman=%{color}", + "ids": [ + "Persian Gulf/ARE/A&D", + "Latam/ARG/A&D", + "Europe/AUT/A&D", + "Persian Gulf/AZE/A&D", + "Asia/BGD/A&D", + "Latam/BRA/A&D", + "Latam/CHL/A&D", + "Pair/CHN/A&D", + "Latam/CRI/A&D", + "North Africa/EGY/A&D", + "Europe/GBR/A&D", + "South Africa/GHA/A&D", + "Europe/HRV/A&D", + "Asia/IND/A&D", + "North Africa/ISR/A&D", + "Asia/KOR/A&D", + "North Africa/MAR/A&D", + "Latam/MEX/A&D", + "South Africa/MOZ/A&D", + "South Africa/NGA/A&D", + "Europe/NLD/A&D", + "Persian Gulf/OMN/A&D", + "Latam/PAN/A&D", + "Europe/POL/A&D", + "Persian Gulf/QAT/A&D", + "Asia/THA/A&D", + "Pair/USA/A&D", + "Latam/VEN/A&D", + "Asia/VNM/A&D", + "Persian Gulf/YEM/A&D", + "Europe/AUT/Agriculture", + "Persian Gulf/AZE/Agriculture", + "Asia/BGD/Agriculture", + "Latam/BRA/Agriculture", + "Pair/CHN/Agriculture", + "South Africa/CMR/Agriculture", + "Latam/CRI/Agriculture", + "Europe/DEU/Agriculture", + "North Africa/DZA/Agriculture", + "North Africa/EGY/Agriculture", + "Europe/ESP/Agriculture", + "Europe/FRA/Agriculture", + "Europe/GRC/Agriculture", + "Asia/IDN/Agriculture", + "Asia/IND/Agriculture", + "North Africa/ISR/Agriculture", + "Asia/KOR/Agriculture", + "South Africa/LBR/Agriculture", + "South Africa/MOZ/Agriculture", + "South Africa/NGA/Agriculture", + "Europe/NLD/Agriculture", + "Latam/PAN/Agriculture", + "Asia/PHL/Agriculture", + "Europe/POL/Agriculture", + "Europe/SWE/Agriculture", + "North Africa/TUR/Agriculture", + "Pair/USA/Agriculture", + "Latam/VEN/Agriculture", + "Asia/VNM/Agriculture", + "Persian Gulf/YEM/Agriculture", + "Persian Gulf/ARE/Demography", + "Latam/ARG/Demography", + "Europe/AUT/Demography", + "Persian Gulf/AZE/Demography", + "Asia/BGD/Demography", + "Latam/BRA/Demography", + "Latam/CHL/Demography", + "Pair/CHN/Demography", + "South Africa/CMR/Demography", + "Latam/COL/Demography", + "Latam/CRI/Demography", + "North Africa/DZA/Demography", + "North Africa/EGY/Demography", + "Europe/ESP/Demography", + "Europe/FRA/Demography", + "Europe/GBR/Demography", + "South Africa/GHA/Demography", + "Europe/GRC/Demography", + "Europe/HRV/Demography", + "Asia/IDN/Demography", + "Asia/IND/Demography", + "North Africa/ISR/Demography", + "North Africa/MAR/Demography", + "Latam/MEX/Demography", + "South Africa/MOZ/Demography", + "South Africa/NGA/Demography", + "Europe/NLD/Demography", + "Persian Gulf/OMN/Demography", + "Latam/PAN/Demography", + "Latam/PER/Demography", + "Asia/PHL/Demography", + "Europe/POL/Demography", + "Persian Gulf/QAT/Demography", + "Persian Gulf/SAU/Demography", + "South Africa/SEN/Demography", + "Asia/THA/Demography", + "North Africa/TUR/Demography", + "Pair/USA/Demography", + "Latam/VEN/Demography", + "Asia/VNM/Demography", + "Persian Gulf/YEM/Demography", + "South Africa/ZAF/Demography", + "Persian Gulf/ARE/Economy", + "Latam/ARG/Economy", + "Europe/AUT/Economy", + "Persian Gulf/AZE/Economy", + "Asia/BGD/Economy", + "Latam/BRA/Economy", + "Latam/CHL/Economy", + "Pair/CHN/Economy", + "South Africa/CMR/Economy", + "Latam/COL/Economy", + "Latam/CRI/Economy", + "Europe/DEU/Economy", + "North Africa/DZA/Economy", + "North Africa/EGY/Economy", + "Europe/ESP/Economy", + "Europe/FRA/Economy", + "Europe/GBR/Economy", + "South Africa/GHA/Economy", + "Europe/GRC/Economy", + "Europe/HRV/Economy", + "Asia/IDN/Economy", + "Asia/IND/Economy", + "Persian Gulf/IRQ/Economy", + "North Africa/ISR/Economy", + "Asia/KOR/Economy", + "South Africa/LBR/Economy", + "North Africa/MAR/Economy", + "Latam/MEX/Economy", + "South Africa/MOZ/Economy", + "South Africa/NGA/Economy", + "Europe/NLD/Economy", + "Persian Gulf/OMN/Economy", + "Latam/PAN/Economy", + "Latam/PER/Economy", + "Asia/PHL/Economy", + "Europe/POL/Economy", + "Persian Gulf/QAT/Economy", + "Persian Gulf/SAU/Economy", + "South Africa/SEN/Economy", + "Europe/SWE/Economy", + "Asia/THA/Economy", + "North Africa/TUR/Economy", + "Pair/USA/Economy", + "Latam/VEN/Economy", + "Asia/VNM/Economy", + "Persian Gulf/YEM/Economy", + "South Africa/ZAF/Economy", + "Latam/ARG/Employment", + "Europe/AUT/Employment", + "Persian Gulf/AZE/Employment", + "Asia/BGD/Employment", + "Latam/BRA/Employment", + "Pair/CHN/Employment", + "South Africa/CMR/Employment", + "Latam/CRI/Employment", + "Europe/DEU/Employment", + "North Africa/DZA/Employment", + "North Africa/EGY/Employment", + "Europe/ESP/Employment", + "Europe/FRA/Employment", + "Europe/GBR/Employment", + "Europe/GRC/Employment", + "Europe/HRV/Employment", + "Asia/IDN/Employment", + "Asia/IND/Employment", + "North Africa/ISR/Employment", + "Asia/KOR/Employment", + "North Africa/MAR/Employment", + "South Africa/MOZ/Employment", + "Europe/NLD/Employment", + "Persian Gulf/OMN/Employment", + "Europe/POL/Employment", + "Persian Gulf/SAU/Employment", + "South Africa/SEN/Employment", + "Europe/SWE/Employment", + "Pair/USA/Employment", + "Latam/VEN/Employment", + "Asia/VNM/Employment", + "Persian Gulf/YEM/Employment", + "South Africa/ZAF/Employment", + "Persian Gulf/ARE/Environment", + "Latam/ARG/Environment", + "Europe/AUT/Environment", + "Persian Gulf/AZE/Environment", + "Asia/BGD/Environment", + "Latam/BRA/Environment", + "Latam/CHL/Environment", + "Pair/CHN/Environment", + "South Africa/CMR/Environment", + "Latam/COL/Environment", + "Latam/CRI/Environment", + "Europe/DEU/Environment", + "North Africa/DZA/Environment", + "North Africa/EGY/Environment", + "Europe/ESP/Environment", + "Europe/FRA/Environment", + "Europe/GBR/Environment", + "South Africa/GHA/Environment", + "Europe/GRC/Environment", + "Europe/HRV/Environment", + "Asia/IDN/Environment", + "Asia/IND/Environment", + "Persian Gulf/IRQ/Environment", + "North Africa/ISR/Environment", + "Asia/KOR/Environment", + "South Africa/LBR/Environment", + "North Africa/MAR/Environment", + "Latam/MEX/Environment", + "South Africa/MOZ/Environment", + "South Africa/NGA/Environment", + "Europe/NLD/Environment", + "Persian Gulf/OMN/Environment", + "Latam/PAN/Environment", + "Latam/PER/Environment", + "Asia/PHL/Environment", + "Europe/POL/Environment", + "Persian Gulf/QAT/Environment", + "Persian Gulf/SAU/Environment", + "South Africa/SEN/Environment", + "Europe/SWE/Environment", + "Asia/THA/Environment", + "North Africa/TUR/Environment", + "Pair/USA/Environment", + "Latam/VEN/Environment", + "Asia/VNM/Environment", + "Persian Gulf/YEM/Environment", + "South Africa/ZAF/Environment", + "Persian Gulf/ARE/Equality", + "Latam/ARG/Equality", + "Europe/AUT/Equality", + "Asia/BGD/Equality", + "Latam/BRA/Equality", + "Latam/CHL/Equality", + "Pair/CHN/Equality", + "Latam/CRI/Equality", + "Europe/DEU/Equality", + "North Africa/DZA/Equality", + "Europe/ESP/Equality", + "Europe/FRA/Equality", + "Europe/GBR/Equality", + "South Africa/GHA/Equality", + "Europe/GRC/Equality", + "Asia/IND/Equality", + "North Africa/ISR/Equality", + "Asia/KOR/Equality", + "Latam/MEX/Equality", + "South Africa/MOZ/Equality", + "South Africa/NGA/Equality", + "Europe/NLD/Equality", + "Persian Gulf/OMN/Equality", + "Latam/PAN/Equality", + "Europe/POL/Equality", + "Persian Gulf/QAT/Equality", + "Persian Gulf/SAU/Equality", + "South Africa/SEN/Equality", + "North Africa/TUR/Equality", + "Pair/USA/Equality", + "Latam/VEN/Equality", + "Asia/VNM/Equality", + "Persian Gulf/YEM/Equality", + "South Africa/ZAF/Equality", + "Persian Gulf/ARE/Exports", + "Europe/AUT/Exports", + "Persian Gulf/AZE/Exports", + "Asia/BGD/Exports", + "Latam/BRA/Exports", + "Latam/CHL/Exports", + "Pair/CHN/Exports", + "Latam/COL/Exports", + "Latam/CRI/Exports", + "Europe/DEU/Exports", + "North Africa/DZA/Exports", + "Europe/ESP/Exports", + "Europe/FRA/Exports", + "Europe/GBR/Exports", + "South Africa/GHA/Exports", + "Asia/IDN/Exports", + "Asia/IND/Exports", + "Persian Gulf/IRQ/Exports", + "Asia/KOR/Exports", + "North Africa/MAR/Exports", + "Latam/MEX/Exports", + "South Africa/MOZ/Exports", + "Europe/NLD/Exports", + "Persian Gulf/OMN/Exports", + "Latam/PAN/Exports", + "Latam/PER/Exports", + "Asia/PHL/Exports", + "Europe/POL/Exports", + "Persian Gulf/QAT/Exports", + "Persian Gulf/SAU/Exports", + "South Africa/SEN/Exports", + "Europe/SWE/Exports", + "Asia/THA/Exports", + "North Africa/TUR/Exports", + "Pair/USA/Exports", + "Latam/VEN/Exports", + "Asia/VNM/Exports", + "South Africa/ZAF/Exports", + "Persian Gulf/ARE/Health", + "Latam/ARG/Health", + "Europe/AUT/Health", + "Persian Gulf/AZE/Health", + "Asia/BGD/Health", + "Latam/BRA/Health", + "Latam/CHL/Health", + "Pair/CHN/Health", + "South Africa/CMR/Health", + "Latam/COL/Health", + "Latam/CRI/Health", + "Europe/DEU/Health", + "North Africa/DZA/Health", + "Europe/ESP/Health", + "Europe/FRA/Health", + "Europe/GBR/Health", + "South Africa/GHA/Health", + "Europe/GRC/Health", + "Europe/HRV/Health", + "Asia/IDN/Health", + "Asia/IND/Health", + "Persian Gulf/IRQ/Health", + "North Africa/ISR/Health", + "Asia/KOR/Health", + "South Africa/LBR/Health", + "North Africa/MAR/Health", + "Latam/MEX/Health", + "South Africa/MOZ/Health", + "South Africa/NGA/Health", + "Europe/NLD/Health", + "Persian Gulf/OMN/Health", + "Latam/PAN/Health", + "Latam/PER/Health", + "Asia/PHL/Health", + "Europe/POL/Health", + "Persian Gulf/QAT/Health", + "Persian Gulf/SAU/Health", + "South Africa/SEN/Health", + "Europe/SWE/Health", + "Asia/THA/Health", + "North Africa/TUR/Health", + "Pair/USA/Health", + "Latam/VEN/Health", + "Asia/VNM/Health", + "Persian Gulf/YEM/Health", + "South Africa/ZAF/Health", + "Persian Gulf/ARE/Internet", + "Latam/ARG/Internet", + "Europe/AUT/Internet", + "Persian Gulf/AZE/Internet", + "Asia/BGD/Internet", + "Latam/BRA/Internet", + "Latam/CHL/Internet", + "Pair/CHN/Internet", + "South Africa/CMR/Internet", + "Latam/COL/Internet", + "Latam/CRI/Internet", + "Europe/DEU/Internet", + "North Africa/DZA/Internet", + "North Africa/EGY/Internet", + "Europe/ESP/Internet", + "Europe/FRA/Internet", + "Europe/GBR/Internet", + "South Africa/GHA/Internet", + "Europe/GRC/Internet", + "Europe/HRV/Internet", + "Asia/IDN/Internet", + "Asia/IND/Internet", + "North Africa/ISR/Internet", + "Asia/KOR/Internet", + "South Africa/LBR/Internet", + "North Africa/MAR/Internet", + "Latam/MEX/Internet", + "South Africa/MOZ/Internet", + "Europe/NLD/Internet", + "Persian Gulf/OMN/Internet", + "Latam/PAN/Internet", + "Latam/PER/Internet", + "Asia/PHL/Internet", + "Europe/POL/Internet", + "Persian Gulf/QAT/Internet", + "Persian Gulf/SAU/Internet", + "South Africa/SEN/Internet", + "Europe/SWE/Internet", + "Asia/THA/Internet", + "North Africa/TUR/Internet", + "Pair/USA/Internet", + "Latam/VEN/Internet", + "Asia/VNM/Internet", + "Persian Gulf/YEM/Internet", + "South Africa/ZAF/Internet", + "Persian Gulf/ARE/Mortality", + "Latam/ARG/Mortality", + "Europe/AUT/Mortality", + "Persian Gulf/AZE/Mortality", + "Asia/BGD/Mortality", + "Latam/BRA/Mortality", + "Latam/CHL/Mortality", + "Pair/CHN/Mortality", + "South Africa/CMR/Mortality", + "Latam/COL/Mortality", + "Latam/CRI/Mortality", + "Europe/DEU/Mortality", + "North Africa/DZA/Mortality", + "North Africa/EGY/Mortality", + "Europe/ESP/Mortality", + "Europe/FRA/Mortality", + "Europe/GBR/Mortality", + "South Africa/GHA/Mortality", + "Europe/GRC/Mortality", + "Europe/HRV/Mortality", + "Asia/IDN/Mortality", + "Asia/IND/Mortality", + "Persian Gulf/IRQ/Mortality", + "North Africa/ISR/Mortality", + "Asia/KOR/Mortality", + "South Africa/LBR/Mortality", + "North Africa/MAR/Mortality", + "Latam/MEX/Mortality", + "South Africa/MOZ/Mortality", + "South Africa/NGA/Mortality", + "Europe/NLD/Mortality", + "Persian Gulf/OMN/Mortality", + "Latam/PAN/Mortality", + "Latam/PER/Mortality", + "Asia/PHL/Mortality", + "Europe/POL/Mortality", + "Persian Gulf/QAT/Mortality", + "Persian Gulf/SAU/Mortality", + "South Africa/SEN/Mortality", + "Europe/SWE/Mortality", + "Asia/THA/Mortality", + "North Africa/TUR/Mortality", + "Pair/USA/Mortality", + "Latam/VEN/Mortality", + "Asia/VNM/Mortality", + "Persian Gulf/YEM/Mortality", + "Latam/ARG/Principal", + "Europe/AUT/Principal", + "Persian Gulf/AZE/Principal", + "Asia/BGD/Principal", + "Latam/BRA/Principal", + "Latam/CHL/Principal", + "Pair/CHN/Principal", + "South Africa/CMR/Principal", + "Latam/COL/Principal", + "Latam/CRI/Principal", + "Europe/DEU/Principal", + "North Africa/EGY/Principal", + "Europe/ESP/Principal", + "Europe/FRA/Principal", + "Europe/GBR/Principal", + "South Africa/GHA/Principal", + "Europe/HRV/Principal", + "Asia/IDN/Principal", + "Asia/IND/Principal", + "North Africa/ISR/Principal", + "Asia/KOR/Principal", + "North Africa/MAR/Principal", + "Latam/MEX/Principal", + "South Africa/MOZ/Principal", + "South Africa/NGA/Principal", + "Europe/NLD/Principal", + "Latam/PAN/Principal", + "Asia/PHL/Principal", + "Europe/POL/Principal", + "Europe/SWE/Principal", + "Asia/THA/Principal", + "North Africa/TUR/Principal", + "Pair/USA/Principal", + "Asia/VNM/Principal", + "South Africa/ZAF/Principal", + "Persian Gulf/ARE", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "South Africa/CMR", + "Latam/COL", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "North Africa/EGY", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Europe/GRC", + "Europe/HRV", + "Asia/IDN", + "Asia/IND", + "Persian Gulf/IRQ", + "North Africa/ISR", + "Asia/KOR", + "South Africa/LBR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Latam/PER", + "Asia/PHL", + "Europe/POL", + "Persian Gulf/QAT", + "Persian Gulf/SAU", + "South Africa/SEN", + "Europe/SWE", + "Asia/THA", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "South Africa/ZAF", + "Asia", + "Europe", + "Latam", + "North Africa", + "Pair", + "Persian Gulf", + "South Africa" + ], + "labels": [ + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "ARE", + "ARG", + "AUT", + "AZE", + "BGD", + "BRA", + "CHL", + "CHN", + "CMR", + "COL", + "CRI", "DEU", + "DZA", + "EGY", + "ESP", "FRA", - "SWE", "GBR", - "ESP", + "GHA", + "GRC", "HRV", - "POL", - "AUT", - "NLD", + "IDN", + "IND", "IRQ", - "QAT", - "ARE", - "SAU", - "AZE", - "OMN", - "LBY", "ISR", - "TUR", - "MAR", - "SEN", - "ZAF", - "MOZ", - "CMR", - "GHA", - "BGD", - "IND", - "VNM", - "THA", - "IDN", - "PHL", "KOR", + "LBR", + "MAR", "MEX", - "BRA", - "PER", - "VEN", - "COL", - "CHL", + "MOZ", + "NGA", + "NLD", + "OMN", "PAN", - "CRI", + "PER", + "PHL", + "POL", + "QAT", + "SAU", + "SEN", + "SWE", + "THA", + "TUR", "USA", - "CHN" + "VEN", + "VNM", + "YEM", + "ZAF", + "Asia", + "Europe", + "Latam", + "North Africa", + "Pair", + "Persian Gulf", + "South Africa" ], + "marker": { + "coloraxis": "coloraxis", + "colors": [ + 0.9545454545454548, + 0.9545454545454548, + 0.8298946640273919, + 0.8041381029540074, + 0.9786956521739132, + 0.9055353950321428, + 0.8658008658008658, + 0.8041630667784955, + 0.792782754772987, + 0.8259976777571356, + 0.8220626497774737, + 0.8210461476724114, + 0.8101813436763873, + 0.971001604361102, + 0.9289464621791536, + 0.8732908588456849, + 0.9320839327803117, + 0.7799127011297503, + 0.9521230391509398, + 0.8387538514207465, + 0.8873673399520713, + 0.8919696969696971, + 0.9939130434782611, + 0.9772426641825802, + 0.8315151515151515, + 0.8408502506153573, + 0.9545454545454548, + 0.8658008658008658, + 0.9939130434782611, + 0.9418179668098864, + 0.8673029726406383, + 0.9731456263408548, + 0.7813852813852814, + 0.7822341892305151, + 0.9364502164502164, + 0.8679516484927489, + 0.8857699681136173, + 0.7714560308712177, + 0.8584751140436623, + 0.8985904473621558, + 0.8190486045187014, + 0.7893527624833871, + 0.8919696969696971, + 0.8818618218586448, + 0.756628065305478, + 0.7882882882882881, + 0.950300482513086, + 0.8657481566722074, + 0.9365262267264388, + 0.943947221044588, + 0.887458515283843, + 0.7714763488785488, + 0.9214972959512142, + 0.909072064464046, + 0.7715736896162309, + 0.9290762303990062, + 0.8550758611268748, + 0.7761808341851454, + 0.9819054691235874, + 0.7957985346108523, + 0.9929947676208064, + 0.8598347107438016, + 0.8490800833801486, + 0.9947856385396152, + 0.9990150209905604, + 0.7707081956166206, + 0.8952232922255726, + 1, + 0.8216057600038706, + 0.9000234404536862, + 1, + 0.8075842215036355, + 0.946198347107438, + 0.8021928166351607, + 0.7928741020793951, + 0.9344444444444444, + 0.8578858011832347, + 0.8483379501385041, + 0.7871436798157215, + 0.9025957850286672, + 0.9928936489808848, + 0.9846235837724948, + 0.9527305856232412, + 0.9434321361058602, + 0.9373115797727772, + 0.9350049149338372, + 0.8705701323251417, + 0.986135349716446, + 1, + 0.9357441792403746, + 0.941314332676578, + 0.9860141582025238, + 0.9826843100189036, + 0.9826843100189036, + 0.8050748795127288, + 0.884575512524494, + 0.9417436672967864, + 0.9937805570643936, + 0.9503788875440718, + 1, + 0.9245562130177516, + 0.7654094979252105, + 0.8851870524742678, + 0.9760183009804816, + 0.9563486904543473, + 0.9761317906901431, + 0.9991429106537756, + 0.9456237038288926, + 0.9650751509200628, + 0.9992688773416403, + 0.9565325400753372, + 0.9695419255177564, + 0.9987068093750369, + 0.9475024401781991, + 0.8857395145550301, + 0.9753277328120716, + 0.9168763739323124, + 0.9450570112882524, + 0.9561427615655672, + 0.9583497755641666, + 0.9028572378928654, + 0.9691937864973333, + 0.9432189294688625, + 0.9959122759401721, + 0.9568210784484368, + 0.9850037718095089, + 0.9873834917666393, + 0.86399109137214, + 0.9834901908565283, + 0.9751694139594816, + 0.9664949318756285, + 0.9658991512978881, + 0.9338839388947628, + 0.9729988505742541, + 0.9920443424912717, + 0.978264239074848, + 0.982089188379848, + 0.9814197405280587, + 0.9805854024658918, + 0.9712344546795939, + 0.9585968264597382, + 0.9327668804010679, + 0.9682230338987912, + 0.979979971601552, + 0.9931318361728348, + 0.9547263868647838, + 0.9991229961585949, + 0.9571215257648876, + 0.9472118045082988, + 0.7712684989429177, + 0.7976314145122237, + 0.9416437009068946, + 0.9947856385396152, + 0.7862727272727271, + 0.8586700336700335, + 0.9303687863484544, + 0.8675319709415152, + 0.7920446151287672, + 0.8694866227116197, + 0.8586700336700335, + 0.7834335706711103, + 0.7921764122864366, + 0.934334074623178, + 0.8619283887468031, + 0.7676281237741422, + 0.7631048593350384, + 0.9925507389082384, + 0.978469168274726, + 0.7500718937727315, + 0.8846977863333716, + 0.9378841050418828, + 0.8684059865492091, + 0.8950764254021453, + 0.7740137221269299, + 0.8084175084175085, + 0.8843935880633129, + 0.7975398606698341, + 0.8485069801940157, + 0.7694545454545454, + 0.9679847507357018, + 0.7697689156812739, + 0.7685979300090726, + 0.9842229467473992, + 0.9455844136023616, + 0.8448425241372852, + 0.9027230491457534, + 0.9614867110807936, + 0.7980731830235919, + 0.8746942653979919, + 0.982173625627045, + 0.8170407525717691, + 0.86364166104721, + 0.9753325360829251, + 0.8085316277505704, + 0.8227635041015324, + 0.9050828653095765, + 0.7795272007374761, + 0.7847482435439043, + 0.9256978729594237, + 0.8399105171503202, + 0.8363949697251979, + 0.796839893191436, + 0.8383432015465867, + 0.9863864764646757, + 0.7554660388288974, + 0.9855862184585922, + 0.9520878541945509, + 0.8571756370037503, + 0.9320075788738773, + 0.9137979468970369, + 0.9305464260268369, + 0.8839893265526511, + 0.8667688956398026, + 0.9565556274733968, + 0.9768781082130975, + 0.9163601262566885, + 0.9255520299748177, + 0.9772426641825802, + 0.9783368141256884, + 0.9783368141256884, + 0.792235381129738, + 0.7524584849903713, + 0.8575423023217223, + 0.9290731879016672, + 0.9962986984489235, + 0.8911007105869436, + 0.9834143597963373, + 0.8828238788355364, + 0.7810872522403144, + 0.9778255798991798, + 0.8408064685157908, + 0.8461257638092973, + 0.9170015014667736, + 0.8838474478521062, + 0.8992086440167721, + 0.9477543538038498, + 0.936233164174384, + 0.796618231225969, + 0.8465483817977032, + 0.8286759028531826, + 0.8031469436294986, + 0.9293067948377257, + 0.7905217546826223, + 0.8904874214357624, + 0.948060941828255, + 0.9811830535079085, + 0.9430707787644872, + 0.9019468547619269, + 0.9634201249462099, + 0.958536231884058, + 0.8675191856081045, + 0.923455550886179, + 0.9374024748908731, + 0.8230247277595698, + 0.9086032637241696, + 0.9127305916495537, + 0.7665916695558189, + 0.8254317065802806, + 0.9325818823090927, + 0.8231479245485526, + 0.9211698832963091, + 0.944622600300256, + 0.7805040946287232, + 0.9832058480308432, + 0.8890631162040309, + 0.8977160492573557, + 0.9859234217934404, + 0.8546502548557862, + 0.8668958338409165, + 0.9890311615492476, + 0.9350943180643897, + 0.9280169976669376, + 0.8210527935710153, + 0.7559911987169416, + 0.7736264668325739, + 0.863925779862748, + 0.824723044297354, + 0.8806041934635603, + 0.8250833206612556, + 0.928723519908324, + 0.8668958338409165, + 0.8881896291715989, + 0.9593583027873251, + 0.9061435934718377, + 0.9211354224331691, + 0.8859445107741636, + 0.9398812902982936, + 0.8047278408758268, + 0.9223744981227123, + 0.9230788696114616, + 0.9536631479971994, + 0.9694396869310692, + 0.8131377716690427, + 0.8237517359346237, + 0.8173907278944466, + 0.8965017504270001, + 0.9219048551109622, + 0.9097417836628494, + 0.8553134080531343, + 0.9989920981077092, + 0.917451425335698, + 0.9150177303560064, + 0.818251045869449, + 0.8456287897798366, + 0.9580847637833185, + 0.9951933007390439, + 0.7912762864700013, + 0.8227036939088314, + 0.9922499420681911, + 0.8589952456968621, + 0.8647618655419143, + 0.9409418177584535, + 0.8256742643429589, + 0.8795442701574369, + 0.8406025749327211, + 0.8151093945882026, + 0.9059966318464586, + 0.8166754057049967, + 0.8511791199028763, + 0.8485266432095069, + 0.8787529330292853, + 0.9296027452970655, + 0.7650792722152087, + 0.9619755843239752, + 0.933549766771479, + 0.8616019267536854, + 0.8917618172659301, + 0.8911984476376517, + 0.933616428382211, + 0.9271005715678781, + 0.851440816574498, + 0.9386368447253942, + 0.9938851274719704, + 0.8711690044217546, + 0.8810631396615008, + 0.921688151199631, + 0.9413328398731196, + 0.9248167539267018, + 0.8843734470618795, + 0.8173749505019134, + 0.8519312620027872, + 0.9452382460255262, + 0.9778974468240862, + 0.9104377104377104, + 0.9298937661136578, + 0.8983798996067152, + 0.8473313810536809, + 0.9792614678275988, + 0.8553134080531343, + 0.8232860332235971, + 0.909065387196842, + 0.978073311070348, + 0.775995920023485, + 0.8490459410817468, + 0.999122807017544, + 0.8870930627862177, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8672820048414341, + 0.9416562889165628, + 0.7922752675949607, + 0.7916704805491989, + 0.936963017728694, + 0.7737464548987709, + 0.84746622922539, + 0.8291492133323973, + 0.9088064577345945, + 0.9761788895853514, + 0.9770862304997938, + 0.9329580322176916, + 0.993758325008325, + 0.9188951371295636, + 0.9328333806952732, + 0.8980181937554507, + 0.8677050513455755, + 0.9752792033119024, + 0.9882730260033812, + 0.905289786165362, + 0.9143112638406732, + 0.9886242163794032, + 0.9544594777956544, + 0.9581772940528424, + 0.9143045157420016, + 0.8252050839377624, + 0.9001503179694077, + 0.9403303455027593, + 0.999122807017544, + 0.9292464661560496, + 0.999122807017544, + 0.8566176867322529, + 0.8374157216227878, + 0.902115011699789, + 0.8553134080531343, + 0.8403328845275041, + 0.9540326981535171, + 0.9451327413498781, + 0.7640931217937306, + 0.8475441687513058, + 0.9852944941444919, + 0.7927752189233835, + 0.8625290260955841, + 0.999122807017544, + 0.8462714704650187, + 0.8219143476518825, + 0.8967294298470624, + 0.8017627702025453, + 0.8038806981974395, + 0.9498918260670621, + 0.8490347926552761, + 0.84746622922539, + 0.7734960799030078, + 0.8839061116873433, + 0.9683581632195862, + 0.7506209000762774, + 0.9855295339596895, + 0.9514741813067672, + 0.8622230550415498, + 0.9391417960180795, + 0.9462242522861426, + 0.9375061608356837, + 0.9575017523170773, + 0.8754792997928964, + 0.8691445841404749, + 0.9744970451625167, + 0.937103645050706, + 0.8900437264297159, + 0.9458526284056905, + 0.7670322793380222, + 0.9484258109649947, + 0.9239645181768363, + 0.7598493905068002, + 0.8938204854275072, + 0.9311584694225717, + 0.9725009394724591, + 0.9024231247013856, + 0.9122905881685385, + 0.8340807178909053, + 0.7522123063336182, + 0.8258303273081601, + 0.9356248965935622, + 0.9820100634702482, + 0.831081385436793, + 0.8534540516685338, + 0.9818536963567754, + 0.8486878358300123, + 0.9129853629164147, + 0.8998911634924976, + 0.7793718426037994, + 0.932398585032895, + 0.800012400217004, + 0.7984383476710843, + 0.907326978222119, + 0.838169467510867, + 0.7913646289079624, + 0.9278150139590884, + 0.9506223327256856, + 0.9364530503181744, + 0.9417014747671419, + 0.7800217784035494, + 0.9258691777106102, + 0.9376349250962784, + 0.9412635914006205, + 0.8430977292102612, + 0.9461654371370272, + 0.9391302151973808, + 0.968708052390917, + 0.7829559806346367, + 0.8486878358300123, + 0.92049050384555, + 0.9877189123128628, + 0.9672169872900396, + 0.8207867897037397, + 0.9362140743781505, + 0.8858224702081742, + 0.8712125971231403, + 0.9425776320387591, + 0.9678656579115078, + 0.845177507471658, + 0.8879860624446922, + 0.9795627481067839, + 0.8824880919819519, + 0.9060192863120934, + 0.9588725646716739, + 0.8548969538448014, + 0.8547392699937022, + 0.9247396362407979, + 0.8395580144256808, + 0.843740089474864, + 0.9249447572901628, + 0.8729860253752311, + 0.8710910410616529, + 0.8575684497498801, + 0.8888834395003661, + 0.9640476737469745, + 0.8803783826512939, + 0.967740576800573, + 0.9413063102753655, + 0.8769302051353558, + 0.9362422825085444, + 0.9286586070011535, + 0.944006114581395, + 0.9349278697154183, + 0.8845188412899909, + 0.9419319078423727, + 0.9716723266470112, + 0.9323330403577166, + 0.9321432828327338, + 0.9480786135178261, + 0.9268920735200938, + 0.9399304836605225, + 0.8875449132554921, + 0.8467449877524531, + 0.8941433348547955, + 0.9354636184177275, + 0.9665685689064893, + 0.9008265654584171, + 0.9750500171734773, + 0.897225206532872, + 0.8557013378255032, + 0.9429696266354753, + 0.8781202677770228, + 0.9169335093602933, + 0.9266807039100117, + 0.9737719189464245, + 0.927766227902817, + 0.897409840515961 + ] + }, "name": "", - "type": "choropleth", - "z": [ - 0.9549275086975878, - 0.9597959560873485, - 0.9614287536762283, - 0.9615991157049506, - 0.8896193597099896, - 0.9173159879919209, - 0.9408925602809399, - 0.9815548322439229, - 0.9559419289908181, - 0.8340434734780782, - 0.9524834602986512, - 0.963959228898083, - 0.8298448185898075, - 0.9448163351979267, - 0.9382224731368217, - 0.891789395879511, - 0.9874778307869048, - 0.949243785588551, - 0.9823598695370912, - 0.9832570514426298, - 0.9766169128199659, - 0.9053611625071816, - 0.8533577839743397, - 0.9621004202724875, - 0.9580068244466282, - 0.9609762955619326, - 0.9813433533393643, - 0.954401583743531, - 0.9221607227308378, - 0.9409552672717009, - 0.9240288573980191, - 0.9200064331609529, - 0.9103082296426172, - 0.9499862167628553, - 0.7774845434226739, - 0.9646460860986581, - 0.9187381706336473, - 0.8316212368989154, - 0.979858690516683, - 0.9298018756712546, - 0.9816065401345386 + "parents": [ + "Persian Gulf/ARE", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "Latam/CRI", + "North Africa/EGY", + "Europe/GBR", + "South Africa/GHA", + "Europe/HRV", + "Asia/IND", + "North Africa/ISR", + "Asia/KOR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Europe/POL", + "Persian Gulf/QAT", + "Asia/THA", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Pair/CHN", + "South Africa/CMR", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "North Africa/EGY", + "Europe/ESP", + "Europe/FRA", + "Europe/GRC", + "Asia/IDN", + "Asia/IND", + "North Africa/ISR", + "Asia/KOR", + "South Africa/LBR", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Latam/PAN", + "Asia/PHL", + "Europe/POL", + "Europe/SWE", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "Persian Gulf/ARE", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "South Africa/CMR", + "Latam/COL", + "Latam/CRI", + "North Africa/DZA", + "North Africa/EGY", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Europe/GRC", + "Europe/HRV", + "Asia/IDN", + "Asia/IND", + "North Africa/ISR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Latam/PER", + "Asia/PHL", + "Europe/POL", + "Persian Gulf/QAT", + "Persian Gulf/SAU", + "South Africa/SEN", + "Asia/THA", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "South Africa/ZAF", + "Persian Gulf/ARE", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "South Africa/CMR", + "Latam/COL", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "North Africa/EGY", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Europe/GRC", + "Europe/HRV", + "Asia/IDN", + "Asia/IND", + "Persian Gulf/IRQ", + "North Africa/ISR", + "Asia/KOR", + "South Africa/LBR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Latam/PER", + "Asia/PHL", + "Europe/POL", + "Persian Gulf/QAT", + "Persian Gulf/SAU", + "South Africa/SEN", + "Europe/SWE", + "Asia/THA", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "South Africa/ZAF", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Pair/CHN", + "South Africa/CMR", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "North Africa/EGY", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "Europe/GRC", + "Europe/HRV", + "Asia/IDN", + "Asia/IND", + "North Africa/ISR", + "Asia/KOR", + "North Africa/MAR", + "South Africa/MOZ", + "Europe/NLD", + "Persian Gulf/OMN", + "Europe/POL", + "Persian Gulf/SAU", + "South Africa/SEN", + "Europe/SWE", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "South Africa/ZAF", + "Persian Gulf/ARE", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "South Africa/CMR", + "Latam/COL", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "North Africa/EGY", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Europe/GRC", + "Europe/HRV", + "Asia/IDN", + "Asia/IND", + "Persian Gulf/IRQ", + "North Africa/ISR", + "Asia/KOR", + "South Africa/LBR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Latam/PER", + "Asia/PHL", + "Europe/POL", + "Persian Gulf/QAT", + "Persian Gulf/SAU", + "South Africa/SEN", + "Europe/SWE", + "Asia/THA", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "South Africa/ZAF", + "Persian Gulf/ARE", + "Latam/ARG", + "Europe/AUT", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Europe/GRC", + "Asia/IND", + "North Africa/ISR", + "Asia/KOR", + "Latam/MEX", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Europe/POL", + "Persian Gulf/QAT", + "Persian Gulf/SAU", + "South Africa/SEN", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "South Africa/ZAF", + "Persian Gulf/ARE", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "Latam/COL", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Asia/IDN", + "Asia/IND", + "Persian Gulf/IRQ", + "Asia/KOR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Latam/PER", + "Asia/PHL", + "Europe/POL", + "Persian Gulf/QAT", + "Persian Gulf/SAU", + "South Africa/SEN", + "Europe/SWE", + "Asia/THA", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "South Africa/ZAF", + "Persian Gulf/ARE", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "South Africa/CMR", + "Latam/COL", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Europe/GRC", + "Europe/HRV", + "Asia/IDN", + "Asia/IND", + "Persian Gulf/IRQ", + "North Africa/ISR", + "Asia/KOR", + "South Africa/LBR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Latam/PER", + "Asia/PHL", + "Europe/POL", + "Persian Gulf/QAT", + "Persian Gulf/SAU", + "South Africa/SEN", + "Europe/SWE", + "Asia/THA", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "South Africa/ZAF", + "Persian Gulf/ARE", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "South Africa/CMR", + "Latam/COL", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "North Africa/EGY", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Europe/GRC", + "Europe/HRV", + "Asia/IDN", + "Asia/IND", + "North Africa/ISR", + "Asia/KOR", + "South Africa/LBR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Latam/PER", + "Asia/PHL", + "Europe/POL", + "Persian Gulf/QAT", + "Persian Gulf/SAU", + "South Africa/SEN", + "Europe/SWE", + "Asia/THA", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "South Africa/ZAF", + "Persian Gulf/ARE", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "South Africa/CMR", + "Latam/COL", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "North Africa/EGY", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Europe/GRC", + "Europe/HRV", + "Asia/IDN", + "Asia/IND", + "Persian Gulf/IRQ", + "North Africa/ISR", + "Asia/KOR", + "South Africa/LBR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Latam/PER", + "Asia/PHL", + "Europe/POL", + "Persian Gulf/QAT", + "Persian Gulf/SAU", + "South Africa/SEN", + "Europe/SWE", + "Asia/THA", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "South Africa/CMR", + "Latam/COL", + "Latam/CRI", + "Europe/DEU", + "North Africa/EGY", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Europe/HRV", + "Asia/IDN", + "Asia/IND", + "North Africa/ISR", + "Asia/KOR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Latam/PAN", + "Asia/PHL", + "Europe/POL", + "Europe/SWE", + "Asia/THA", + "North Africa/TUR", + "Pair/USA", + "Asia/VNM", + "South Africa/ZAF", + "Persian Gulf", + "Latam", + "Europe", + "Persian Gulf", + "Asia", + "Latam", + "Latam", + "Pair", + "South Africa", + "Latam", + "Latam", + "Europe", + "North Africa", + "North Africa", + "Europe", + "Europe", + "Europe", + "South Africa", + "Europe", + "Europe", + "Asia", + "Asia", + "Persian Gulf", + "North Africa", + "Asia", + "South Africa", + "North Africa", + "Latam", + "South Africa", + "South Africa", + "Europe", + "Persian Gulf", + "Latam", + "Latam", + "Asia", + "Europe", + "Persian Gulf", + "Persian Gulf", + "South Africa", + "Europe", + "Asia", + "North Africa", + "Pair", + "Latam", + "Asia", + "Persian Gulf", + "South Africa", + "", + "", + "", + "", + "", + "", + "" + ], + "type": "treemap", + "values": [ + 0.9545454545454548, + 0.9545454545454548, + 0.8298946640273919, + 0.8041381029540074, + 0.9786956521739132, + 0.9055353950321428, + 0.8658008658008658, + 0.8041630667784956, + 0.792782754772987, + 0.8259976777571356, + 0.8220626497774737, + 0.8210461476724114, + 0.8101813436763873, + 0.971001604361102, + 0.9289464621791536, + 0.8732908588456849, + 0.9320839327803117, + 0.7799127011297503, + 0.9521230391509398, + 0.8387538514207465, + 0.8873673399520713, + 0.8919696969696971, + 0.9939130434782611, + 0.9772426641825802, + 0.8315151515151515, + 0.8408502506153573, + 0.9545454545454548, + 0.8658008658008658, + 0.9939130434782611, + 0.9418179668098864, + 0.8673029726406383, + 0.9731456263408548, + 0.7813852813852814, + 0.7822341892305151, + 0.9364502164502164, + 0.8679516484927489, + 0.8857699681136173, + 0.7714560308712177, + 0.8584751140436623, + 0.8985904473621558, + 0.8190486045187013, + 0.7893527624833871, + 0.8919696969696971, + 0.8818618218586448, + 0.756628065305478, + 0.7882882882882881, + 0.950300482513086, + 0.8657481566722074, + 0.9365262267264388, + 0.943947221044588, + 0.8874585152838429, + 0.7714763488785487, + 0.9214972959512142, + 0.909072064464046, + 0.7715736896162307, + 0.9290762303990062, + 0.8550758611268748, + 0.7761808341851455, + 0.9819054691235874, + 0.7957985346108523, + 0.9929947676208064, + 0.8598347107438016, + 0.8490800833801486, + 0.9947856385396152, + 0.9990150209905604, + 0.7707081956166205, + 0.8952232922255726, + 7, + 0.8216057600038708, + 0.9000234404536862, + 2, + 0.8075842215036355, + 0.946198347107438, + 0.8021928166351607, + 0.7928741020793951, + 0.9344444444444444, + 0.8578858011832347, + 0.8483379501385041, + 0.7871436798157214, + 0.9025957850286672, + 0.9928936489808848, + 0.9846235837724948, + 0.9527305856232412, + 0.9434321361058602, + 0.9373115797727772, + 0.9350049149338372, + 0.8705701323251417, + 0.986135349716446, + 6, + 0.9357441792403746, + 0.941314332676578, + 0.9860141582025238, + 0.9826843100189036, + 0.9826843100189036, + 0.8050748795127288, + 0.884575512524494, + 0.9417436672967864, + 0.9937805570643936, + 0.9503788875440718, + 7, + 0.9245562130177516, + 0.7654094979252105, + 3.525709648240764, + 3.9026905411411255, + 4.766379713810826, + 4.876995450037458, + 4.995710112859674, + 4.6882193043380065, + 4.817580584327185, + 3.99706906184338, + 4.756877212908356, + 4.840440064763408, + 4.993523000248244, + 4.7096379788957, + 4.388225839975234, + 4.872054421960179, + 4.528241495255111, + 4.693951715358852, + 4.772561704698932, + 4.777510285386392, + 3.5788467426492696, + 3.874610912160782, + 4.6868158980065875, + 4.979496209421201, + 3.8154938650672934, + 4.924437420779924, + 4.935207053112358, + 2.588264135093887, + 4.916174243045312, + 4.873596391437164, + 4.8271676550247005, + 4.825455268304017, + 4.652537154233505, + 4.863593471986783, + 4.959992466058576, + 4.888099767981957, + 3.9261219157493064, + 4.9057369334133405, + 2.940868132838134, + 4.85164369073943, + 4.762044492014911, + 4.620507366750719, + 3.864007343280661, + 4.8975540843983865, + 4.964869316864153, + 4.74954736747019, + 5.994721407649271, + 3.8254338283074345, + 4.694264347520792, + 0.7712684989429177, + 0.7976314145122237, + 0.9416437009068946, + 0.9947856385396152, + 0.7862727272727271, + 0.8586700336700335, + 0.9303687863484544, + 0.8675319709415152, + 0.7920446151287672, + 0.8694866227116197, + 0.8586700336700335, + 0.7834335706711103, + 0.7921764122864366, + 0.934334074623178, + 0.8619283887468031, + 0.7676281237741422, + 0.7631048593350384, + 0.9925507389082384, + 0.978469168274726, + 0.7500718937727315, + 0.8846977863333716, + 0.9378841050418828, + 0.8684059865492091, + 0.8950764254021453, + 0.7740137221269299, + 0.8084175084175084, + 0.8843935880633129, + 0.7975398606698341, + 0.8485069801940157, + 0.7694545454545454, + 0.9679847507357018, + 0.7697689156812738, + 0.7685979300090726, + 0.9842229467473992, + 1.8909956709956712, + 1.6894980275725249, + 2.69374897401215, + 2.875570209104675, + 2.3917706415203943, + 2.62365753273427, + 2.9459190936901978, + 1.6340192025792195, + 2.5798012993793904, + 2.9237999558625103, + 0.8085316277505704, + 0.8227635041015324, + 2.713283581565953, + 1.558495449841848, + 1.5694418074805392, + 1.8513709051389533, + 1.6792587141557807, + 0.8363949697251979, + 0.796839893191436, + 2.5057325750793287, + 2.959048375728506, + 0.7554660388288974, + 1.9711664556579676, + 1.9041504856306979, + 1.7141689795761534, + 2.7950506077328092, + 2.734192621409638, + 1.8610149910467089, + 2.6443530785946225, + 1.7334937585238293, + 1.911703781639717, + 2.9296765097144517, + 2.7468936460173574, + 1.8505531413007172, + 1.9544853283651604, + 0.9783368141256884, + 0.9783368141256884, + 1.5841395700790906, + 0.7524584849903713, + 2.5684077436096553, + 1.8571680107142314, + 1.992595843542, + 0.8911007105869436, + 1.9663960501895916, + 1.7590795384507343, + 2.3426302769450014, + 1.9554072006789496, + 1.6816008151250992, + 1.6922514987460433, + 1.8182374604622509, + 1.7664557153100116, + 1.7984010881166013, + 0.9477543538038498, + 1.8724589656777666, + 1.5932364490690105, + 1.6930207304114007, + 1.657351693470737, + 1.6062929765633287, + 1.8586069819966275, + 0.7905217546826223, + 1.7807483845610523, + 0.948060941828255, + 1.9623659243639664, + 1.8861391109687888, + 1.803885895535925, + 1.9264891578615777, + 0.958536231884058, + 1.7350336477353925, + 1.8432875442233665, + 1.8747567686209865, + 0.8230247277595697, + 1.8170490178472651, + 1.8254320864484423, + 1.5328907287135602, + 1.650862954793141, + 1.8651584365339495, + 0.8231479245485526, + 1.8418227023342582, + 0.944622600300256, + 1.5607231429215238, + 0.9832058480308432, + 0.8890631162040309, + 0.8977160492573557, + 0.9859234217934404, + 0.8546502548557862, + 0.8668958338409165, + 0.9890311615492476, + 0.9350943180643898, + 0.9280169976669376, + 0.8210527935710153, + 0.7559911987169416, + 0.7736264668325739, + 0.863925779862748, + 0.8247230442973539, + 0.8806041934635603, + 0.8250833206612556, + 0.928723519908324, + 0.8668958338409165, + 0.8881896291715989, + 0.9593583027873251, + 0.9061435934718378, + 0.9211354224331691, + 0.8859445107741636, + 0.9398812902982936, + 0.8047278408758268, + 0.9223744981227122, + 0.9230788696114616, + 0.9536631479971994, + 0.9694396869310692, + 0.8131377716690428, + 0.8237517359346238, + 0.8173907278944466, + 0.8965017504270001, + 0.9219048551109622, + 0.9097417836628494, + 0.8553134080531342, + 0.9989920981077092, + 0.917451425335698, + 0.9150177303560064, + 2.4482475283768625, + 2.5297768410493173, + 1.9129618725168718, + 1.9903768491958616, + 1.5790103343268629, + 2.464257323627982, + 2.976585534983704, + 2.5722208927563166, + 2.592219509075364, + 2.7979742993248933, + 1.6489792346354861, + 1.7586278107205235, + 2.514210433148495, + 2.432900348977831, + 2.71621129613582, + 1.6261359470440953, + 2.5395028560978266, + 1.6889759832979863, + 2.6270490865078813, + 2.7620166987142802, + 0.7650792722152088, + 1.9229510200768343, + 2.8006368591744883, + 1.7213102700043061, + 1.78102084647775, + 1.7767917632119423, + 2.7998719537667673, + 1.8510279995114316, + 2.549553758153763, + 1.8743198737875306, + 1.9877316530763527, + 2.601299135217226, + 1.761035420185463, + 2.745773534705939, + 1.8791763913672477, + 0.9248167539267018, + 1.7679139687799554, + 2.4356310413636386, + 2.5426390080555294, + 0.9452382460255262, + 2.9311560623613415, + 0.9104377104377104, + 2.7534511889408266, + 2.68937432223344, + 1.6778987627272341, + 0.9792614678275988, + 0.8553134080531342, + 0.8232860332235971, + 0.909065387196842, + 0.978073311070348, + 0.775995920023485, + 0.8490459410817468, + 0.999122807017544, + 0.8870930627862177, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8672820048414341, + 0.9416562889165628, + 0.7922752675949607, + 0.791670480549199, + 0.936963017728694, + 0.7737464548987709, + 0.8474662292253902, + 0.8291492133323973, + 0.9088064577345945, + 0.9761788895853514, + 0.9770862304997938, + 0.9329580322176916, + 0.993758325008325, + 0.9188951371295636, + 0.9328333806952732, + 0.8980181937554507, + 0.8677050513455755, + 0.9752792033119024, + 0.9882730260033812, + 0.905289786165362, + 0.9143112638406732, + 0.9886242163794032, + 0.9544594777956544, + 0.9581772940528424, + 0.9143045157420016, + 0.8252050839377624, + 0.9001503179694077, + 0.9403303455027592, + 0.999122807017544, + 0.9292464661560496, + 0.999122807017544, + 0.856617686732253, + 0.8374157216227879, + 2.68499123989139, + 1.7106268161062683, + 2.5206134680129115, + 1.904327167961698, + 2.8276206349183237, + 2.292129314259153, + 2.52892279908987, + 2.9547493690556683, + 1.5845777069124942, + 2.575857040561203, + 1.998245614035088, + 0.8462714704650187, + 1.6346268081217818, + 2.6675490805717392, + 0.8017627702025454, + 1.607401251367409, + 1.8990819433308426, + 1.6978742392038142, + 1.6949324584507803, + 1.5465245278334305, + 2.65126115598261, + 2.900983746126216, + 0.7506209000762775, + 1.9710580014755763, + 1.9029483626135344, + 0.8622230550415498, + 2.816084724509409, + 2.838607627417269, + 1.875006267263354, + 1.9148213294395644, + 1.75082291774977, + 1.7379689224340076, + 2.9192009361557396, + 1.874207290101412, + 1.773305074409091, + 2.825637653275979, + 1.5339597003838765, + 2.8367461375629057, + 2.7707904641370193, + 0.7598493905068002, + 1.7874600165938404, + 2.7916679638482678, + 2.9139544401637187, + 0.9024231247013856, + 2.722603364110069, + 1.6680708914353688, + 0.7522123063336182, + 0.82583032730816, + 0.9356248965935622, + 0.9820100634702482, + 0.831081385436793, + 0.8534540516685339, + 0.9818536963567754, + 0.8486878358300123, + 0.9129853629164149, + 0.8998911634924976, + 0.7793718426037994, + 0.932398585032895, + 0.8000124002170039, + 0.7984383476710845, + 0.907326978222119, + 0.838169467510867, + 0.7913646289079624, + 0.9278150139590884, + 0.9506223327256856, + 0.9364530503181744, + 0.941701474767142, + 0.7800217784035494, + 0.9258691777106102, + 0.9376349250962784, + 0.9412635914006204, + 0.8430977292102613, + 0.9461654371370272, + 0.9391302151973808, + 0.968708052390917, + 0.7829559806346367, + 0.8486878358300123, + 0.92049050384555, + 0.9877189123128628, + 0.9672169872900396, + 0.8207867897037397, + 13.975356303939213, + 15.827335750363954, + 19.080608160487813, + 17.84415286631731, + 21.207403655964193, + 18.4240633772225, + 18.563239312513545, + 26.391368395199112, + 14.90340210861769, + 16.234276297125383, + 21.9591174971536, + 13.563001009668547, + 14.456083855147766, + 15.656398463944091, + 15.830650968388248, + 16.73842598468021, + 18.45768704039444, + 14.742753005201548, + 13.880127676564522, + 11.892418305990246, + 17.680125974153697, + 21.118204771593522, + 6.9535559100285935, + 18.3458456056869, + 18.765594242787802, + 8.745472921396429, + 17.73611794482264, + 18.51526528812527, + 19.810183516940047, + 15.853163486533486, + 18.531990501836525, + 16.91921555976989, + 25.175914029999152, + 14.8739083028464, + 13.950347528921885, + 19.81199620326359, + 12.88748868282299, + 14.979392366961466, + 15.845303942977203, + 12.563111626364439, + 15.133279778905958, + 16.796036861934617, + 21.216226455389158, + 13.423031844938595, + 28.18812986897686, + 15.17514049757925, + 14.385177894711061, + 136.04308582130392, + 160.35001747763857, + 162.9961517002884, + 82.99048273153602, + 47.60759485058827, + 98.7343021874187, + 104.28545687637747 ] } ], @@ -5417,1169 +28032,3340 @@ "coloraxis": { "colorbar": { "title": { - "text": "R^2 Pearson" + "text": "R^2 Spearman" + } + }, + "colorscale": [ + [ + 0, + "rgb(5,48,97)" + ], + [ + 0.1, + "rgb(33,102,172)" + ], + [ + 0.2, + "rgb(67,147,195)" + ], + [ + 0.3, + "rgb(146,197,222)" + ], + [ + 0.4, + "rgb(209,229,240)" + ], + [ + 0.5, + "rgb(247,247,247)" + ], + [ + 0.6, + "rgb(253,219,199)" + ], + [ + 0.7, + "rgb(244,165,130)" + ], + [ + 0.8, + "rgb(214,96,77)" + ], + [ + 0.9, + "rgb(178,24,43)" + ], + [ + 1, + "rgb(103,0,31)" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 } - }, - "colorscale": [ + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "branchvalues": "total", + "customdata": [ + [ + 0.9545454545454548 + ], + [ + 0.9929947676208064 + ], + [ + 0.8851870524742678 + ], + [ + 0.9842229467473992 + ], + [ + 0.9778255798991798 + ], + [ + 0.9832058480308432 + ], + [ + 0.9150177303560064 + ], + [ + 0.9792614678275988 + ], + [ + 0.902115011699789 + ], + [ + 0.9545454545454548 + ], + [ + 0.8598347107438016 + ], + [ + 0.9760183009804816 + ], + [ + 0.7712684989429177 + ], + [ + 0.9455844136023616 + ], + [ + 0.8408064685157908 + ], + [ + 0.818251045869449 + ], + [ + 0.8553134080531343 + ], + [ + 0.8553134080531343 + ], + [ + 0.7522123063336182 + ], + [ + 0.8298946640273919 + ], + [ + 0.8673029726406383 + ], + [ + 0.8490800833801486 + ], + [ + 0.9563486904543473 + ], + [ + 0.7976314145122237 + ], + [ + 0.8448425241372852 + ], + [ + 0.8461257638092973 + ], + [ + 0.8890631162040309 + ], + [ + 0.8456287897798366 + ], + [ + 0.8232860332235971 + ], + [ + 0.8403328845275041 + ], + [ + 0.8258303273081601 + ], + [ + 0.8041381029540074 + ], + [ + 0.9731456263408548 + ], + [ + 0.9947856385396152 + ], + [ + 0.9761317906901431 + ], + [ + 0.9416437009068946 + ], + [ + 0.9027230491457534 + ], + [ + 0.8977160492573557 + ], + [ + 0.9580847637833185 + ], + [ + 0.909065387196842 + ], + [ + 0.9540326981535171 + ], + [ + 0.9356248965935622 + ], + [ + 0.9786956521739132 + ], + [ + 0.7813852813852814 + ], + [ + 0.9990150209905604 + ], + [ + 0.9991429106537756 + ], + [ + 0.9947856385396152 + ], + [ + 0.9614867110807936 + ], + [ + 0.9170015014667736 + ], + [ + 0.9859234217934404 + ], + [ + 0.9951933007390439 + ], + [ + 0.978073311070348 + ], + [ + 0.9451327413498781 + ], + [ + 0.9820100634702482 + ], + [ + 0.9055353950321428 + ], + [ + 0.7822341892305151 + ], + [ + 0.7707081956166206 + ], + [ + 0.9456237038288926 + ], + [ + 0.7862727272727271 + ], + [ + 0.7980731830235919 + ], + [ + 0.8838474478521062 + ], + [ + 0.8546502548557862 + ], + [ + 0.7912762864700013 + ], + [ + 0.775995920023485 + ], + [ + 0.7640931217937306 + ], + [ + 0.831081385436793 + ], + [ + 0.8658008658008658 + ], + [ + 0.8952232922255726 + ], + [ + 0.9650751509200628 + ], + [ + 0.8746942653979919 + ], + [ + 0.8992086440167721 + ], + [ + 0.8668958338409165 + ], + [ + 0.8227036939088314 + ], + [ + 0.8490459410817468 + ], + [ + 0.8475441687513058 + ], + [ + 0.8534540516685338 + ], + [ + 0.8041630667784955 + ], + [ + 0.9364502164502164 + ], + [ + 1 + ], + [ + 0.9992688773416403 + ], + [ + 0.8586700336700335 + ], + [ + 0.982173625627045 + ], + [ + 0.9477543538038498 + ], + [ + 0.9890311615492476 + ], + [ + 0.9922499420681911 + ], + [ + 0.999122807017544 + ], + [ + 0.9852944941444919 + ], + [ + 0.9818536963567754 + ], + [ + 0.8679516484927489 + ], + [ + 0.8216057600038706 + ], + [ + 0.9565325400753372 + ], + [ + 0.9303687863484544 + ], + [ + 0.8170407525717691 + ], + [ + 0.8589952456968621 + ], + [ + 0.8870930627862177 + ], + [ + 0.7927752189233835 + ], + [ + 0.8486878358300123 + ], + [ + 0.9000234404536862 + ], + [ + 0.9695419255177564 + ], + [ + 0.86364166104721 + ], + [ + 0.9350943180643897 + ], + [ + 0.8647618655419143 + ], + [ + 0.897855261911528 + ], + [ + 0.8625290260955841 + ], + [ + 0.9129853629164147 + ], + [ + 0.792782754772987 + ], + [ + 0.8857699681136173 + ], + [ + 1 + ], + [ + 0.9987068093750369 + ], + [ + 0.8675319709415152 + ], + [ + 0.9753325360829251 + ], + [ + 0.936233164174384 + ], + [ + 0.9280169976669376 + ], + [ + 0.9409418177584535 + ], + [ + 0.999122807017544 + ], + [ + 0.999122807017544 + ], + [ + 0.8998911634924976 + ], + [ + 0.7714560308712177 + ], + [ + 0.9475024401781991 + ], + [ + 0.7920446151287672 + ], + [ + 0.8085316277505704 + ], + [ + 0.796618231225969 + ], + [ + 0.8210527935710153 + ], + [ + 0.8256742643429589 + ], + [ + 0.79241896667796 + ], + [ + 0.8462714704650187 + ], + [ + 0.7793718426037994 + ], + [ + 0.8584751140436623 + ], + [ + 0.8075842215036355 + ], + [ + 0.8857395145550301 + ], + [ + 0.8694866227116197 + ], + [ + 0.8227635041015324 + ], + [ + 0.8465483817977032 + ], + [ + 0.7559911987169416 + ], + [ + 0.8795442701574369 + ], + [ + 0.8672820048414341 + ], + [ + 0.8219143476518825 + ], + [ + 0.8259976777571356 + ], + [ + 0.8985904473621558 + ], + [ + 0.946198347107438 + ], + [ + 0.9753277328120716 + ], + [ + 0.8586700336700335 + ], + [ + 0.9050828653095765 + ], + [ + 0.9416562889165628 + ], + [ + 0.8967294298470624 + ], + [ + 0.932398585032895 + ], + [ + 0.8190486045187014 + ], + [ + 0.8021928166351607 + ], + [ + 0.9168763739323124 + ], + [ + 0.7834335706711103 + ], + [ + 0.7795272007374761 + ], + [ + 0.8286759028531826 + ], + [ + 0.7736264668325739 + ], + [ + 0.8406025749327211 + ], + [ + 0.7922752675949607 + ], + [ + 0.8017627702025453 + ], + [ + 0.800012400217004 + ], + [ + 0.7893527624833871 + ], + [ + 0.7928741020793951 + ], + [ + 0.9450570112882524 + ], + [ + 0.7921764122864366 + ], + [ + 0.7847482435439043 + ], + [ + 0.8031469436294986 + ], + [ + 0.863925779862748 + ], + [ + 0.8151093945882026 + ], + [ + 0.7916704805491989 + ], + [ + 0.8038806981974395 + ], + [ + 0.7984383476710843 + ], + [ + 0.8220626497774737 + ], + [ + 0.9344444444444444 + ], + [ + 0.9561427615655672 + ], + [ + 0.934334074623178 + ], + [ + 0.9256978729594237 + ], + [ + 0.9293067948377257 + ], + [ + 0.824723044297354 + ], + [ + 0.9059966318464586 + ], + [ + 0.936963017728694 + ], + [ + 0.9498918260670621 + ], + [ + 0.907326978222119 + ], + [ + 0.8210461476724114 + ], + [ + 0.8578858011832347 + ], + [ + 0.9583497755641666 + ], + [ + 0.8399105171503202 + ], + [ + 0.7905217546826223 + ], + [ + 0.8806041934635603 + ], + [ + 0.8166754057049967 + ], + [ + 0.7737464548987709 + ], + [ + 0.8490347926552761 + ], + [ + 0.838169467510867 + ], + [ + 0.8919696969696971 + ], + [ + 0.8483379501385041 + ], + [ + 0.9028572378928654 + ], + [ + 0.8619283887468031 + ], + [ + 0.8363949697251979 + ], + [ + 0.8904874214357624 + ], + [ + 0.8511791199028763 + ], + [ + 0.84746622922539 + ], + [ + 0.84746622922539 + ], + [ + 0.8101813436763873 + ], + [ + 0.7871436798157215 + ], + [ + 0.9691937864973333 + ], + [ + 0.7676281237741422 + ], + [ + 0.796839893191436 + ], + [ + 0.8485266432095069 + ], + [ + 0.8291492133323973 + ], + [ + 0.7734960799030078 + ], + [ + 0.7913646289079624 + ], + [ + 0.8818618218586448 + ], + [ + 0.9025957850286672 + ], + [ + 0.9432189294688625 + ], + [ + 0.7631048593350384 + ], + [ + 0.8383432015465867 + ], + [ + 0.8250833206612556 + ], + [ + 0.8787529330292853 + ], + [ + 0.9088064577345945 + ], + [ + 0.8839061116873433 + ], + [ + 0.9278150139590884 + ], + [ + 0.971001604361102 + ], + [ + 0.756628065305478 + ], + [ + 0.9928936489808848 + ], + [ + 0.9959122759401721 + ], + [ + 0.9925507389082384 + ], + [ + 0.9863864764646757 + ], + [ + 0.948060941828255 + ], + [ + 0.928723519908324 + ], + [ + 0.9296027452970655 + ], + [ + 0.9761788895853514 + ], + [ + 0.9683581632195862 + ], + [ + 0.9506223327256856 + ], + [ + 0.9568210784484368 + ], + [ + 0.7554660388288974 + ], + [ + 0.8668958338409165 + ], + [ + 0.7650792722152087 + ], + [ + 0.7506209000762774 + ], + [ + 0.9289464621791536 + ], + [ + 0.7882882882882881 + ], + [ + 0.9846235837724948 + ], + [ + 0.9850037718095089 + ], + [ + 0.978469168274726 + ], + [ + 0.9855862184585922 + ], + [ + 0.9811830535079085 + ], + [ + 0.9619755843239752 + ], + [ + 0.9770862304997938 + ], + [ + 0.9855295339596895 + ], + [ + 0.9364530503181744 + ], + [ + 0.8732908588456849 + ], + [ + 0.950300482513086 + ], + [ + 0.9873834917666393 + ], + [ + 0.7500718937727315 + ], + [ + 0.9520878541945509 + ], + [ + 0.9430707787644872 + ], + [ + 0.8881896291715989 + ], + [ + 0.933549766771479 + ], + [ + 0.9329580322176916 + ], + [ + 0.9514741813067672 + ], + [ + 0.9417014747671419 + ], + [ + 0.8657481566722074 + ], + [ + 0.86399109137214 + ], + [ + 0.8571756370037503 + ], + [ + 0.8616019267536854 + ], + [ + 0.993758325008325 + ], + [ + 0.8622230550415498 + ], + [ + 0.9320839327803117 + ], + [ + 0.9527305856232412 + ], + [ + 0.9834901908565283 + ], + [ + 0.8846977863333716 + ], + [ + 0.9320075788738773 + ], + [ + 0.9593583027873251 + ], + [ + 0.8917618172659301 + ], + [ + 0.9188951371295636 + ], + [ + 0.9391417960180795 + ], + [ + 0.7800217784035494 + ], + [ + 0.7799127011297503 + ], + [ + 0.9434321361058602 + ], + [ + 0.9751694139594816 + ], + [ + 0.9137979468970369 + ], + [ + 0.9019468547619269 + ], + [ + 0.9061435934718377 + ], + [ + 0.8911984476376517 + ], + [ + 0.9328333806952732 + ], + [ + 0.9462242522861426 + ], + [ + 0.9258691777106102 + ], + [ + 0.9521230391509398 + ], + [ + 0.9365262267264388 + ], + [ + 0.9373115797727772 + ], + [ + 0.9664949318756285 + ], + [ + 0.9378841050418828 + ], + [ + 0.9305464260268369 + ], + [ + 0.9634201249462099 + ], + [ + 0.9211354224331691 + ], + [ + 0.933616428382211 + ], + [ + 0.8980181937554507 + ], + [ + 0.9375061608356837 + ], + [ + 0.9376349250962784 + ], + [ + 0.8387538514207465 + ], + [ + 0.943947221044588 + ], + [ + 0.9350049149338372 + ], + [ + 0.9658991512978881 + ], + [ + 0.8839893265526511 + ], + [ + 0.958536231884058 + ], + [ + 0.9271005715678781 + ], + [ + 0.9575017523170773 + ], + [ + 0.9412635914006205 + ], + [ + 0.8873673399520713 + ], + [ + 0.887458515283843 + ], + [ + 0.8705701323251417 + ], + [ + 0.9338839388947628 + ], + [ + 0.8684059865492091 + ], + [ + 0.8667688956398026 + ], + [ + 0.8675191856081045 + ], + [ + 0.8859445107741636 + ], + [ + 0.851440816574498 + ], + [ + 0.8677050513455755 + ], + [ + 0.8754792997928964 + ], + [ + 0.8430977292102612 + ], + [ + 0.8919696969696971 + ], + [ + 0.986135349716446 + ], + [ + 0.9729988505742541 + ], + [ + 0.8950764254021453 + ], + [ + 0.9565556274733968 + ], + [ + 0.923455550886179 + ], + [ + 0.9398812902982936 + ], + [ + 0.9386368447253942 + ], + [ + 0.9752792033119024 + ], + [ + 0.8691445841404749 + ], + [ + 0.9939130434782611 + ], + [ + 0.7714763488785488 + ], + [ + 1 + ], + [ + 0.9920443424912717 + ], + [ + 0.9768781082130975 + ], + [ + 0.9374024748908731 + ], + [ + 0.8047278408758268 + ], + [ + 0.9938851274719704 + ], + [ + 0.9882730260033812 + ], + [ + 0.9744970451625167 + ], + [ + 0.9461654371370272 + ], + [ + 0.9357441792403746 + ], + [ + 0.978264239074848 + ], + [ + 0.9163601262566885 + ], + [ + 0.9223744981227123 + ], + [ + 0.8711690044217546 + ], + [ + 0.905289786165362 + ], + [ + 0.937103645050706 + ], + [ + 0.9214972959512142 + ], + [ + 0.941314332676578 + ], + [ + 0.982089188379848 + ], + [ + 0.9255520299748177 + ], + [ + 0.9230788696114616 + ], + [ + 0.8810631396615008 + ], + [ + 0.9143112638406732 + ], + [ + 0.8900437264297159 + ], + [ + 0.9391302151973808 + ], + [ + 0.9772426641825802 + ], + [ + 0.909072064464046 + ], + [ + 0.9860141582025238 + ], + [ + 0.9814197405280587 + ], + [ + 0.7740137221269299 + ], + [ + 0.9772426641825802 + ], + [ + 0.8230247277595698 + ], + [ + 0.9536631479971994 + ], + [ + 0.921688151199631 + ], + [ + 0.9886242163794032 + ], + [ + 0.9458526284056905 + ], + [ + 0.968708052390917 + ], + [ + 0.8315151515151515 + ], + [ + 0.9826843100189036 + ], + [ + 0.9805854024658918 + ], + [ + 0.9783368141256884 + ], + [ + 0.9086032637241696 + ], + [ + 0.9694396869310692 + ], + [ + 0.9413328398731196 + ], + [ + 0.9544594777956544 + ], + [ + 0.7670322793380222 + ], + [ + 0.9826843100189036 + ], + [ + 0.9712344546795939 + ], + [ + 0.8084175084175085 + ], + [ + 0.9783368141256884 + ], + [ + 0.9127305916495537 + ], + [ + 0.8131377716690427 + ], + [ + 0.9248167539267018 + ], + [ + 0.9581772940528424 + ], + [ + 0.9484258109649947 + ], + [ + 0.8050748795127288 + ], + [ + 0.9585968264597382 + ], + [ + 0.8843935880633129 + ], + [ + 0.792235381129738 + ], + [ + 0.7665916695558189 + ], + [ + 0.8237517359346237 + ], + [ + 0.8843734470618795 + ], + [ + 0.9143045157420016 + ], + [ + 0.9239645181768363 + ], + [ + 0.7715736896162309 + ], + [ + 0.9327668804010679 + ], + [ + 0.7975398606698341 + ], + [ + 0.7524584849903713 + ], + [ + 0.8173907278944466 + ], + [ + 0.8173749505019134 + ], + [ + 0.8252050839377624 + ], + [ + 0.7598493905068002 + ], + [ + 0.7829559806346367 + ], + [ + 0.8408502506153573 + ], + [ + 0.884575512524494 + ], + [ + 0.9682230338987912 + ], + [ + 0.8575423023217223 + ], + [ + 0.8965017504270001 + ], + [ + 0.8519312620027872 + ], + [ + 0.9001503179694077 + ], + [ + 0.8938204854275072 + ], + [ + 0.8486878358300123 + ], + [ + 0.9290762303990062 + ], + [ + 0.9417436672967864 + ], + [ + 0.979979971601552 + ], + [ + 0.9290731879016672 + ], + [ + 0.8254317065802806 + ], + [ + 0.9219048551109622 + ], [ - 0, - "rgb(255,245,240)" + 0.9452382460255262 ], [ - 0.125, - "rgb(254,224,210)" + 0.9403303455027593 ], [ - 0.25, - "rgb(252,187,161)" + 0.9311584694225717 ], [ - 0.375, - "rgb(252,146,114)" + 0.92049050384555 ], [ - 0.5, - "rgb(251,106,74)" + 0.9545454545454548 ], [ - 0.625, - "rgb(239,59,44)" + 0.8550758611268748 ], [ - 0.75, - "rgb(203,24,29)" + 0.9937805570643936 ], [ - 0.875, - "rgb(165,15,21)" + 0.9931318361728348 ], [ - 1, - "rgb(103,0,13)" - ] - ] - }, - "geo": { - "center": {}, - "domain": { - "x": [ - 0, - 1 + 0.8485069801940157 ], - "y": [ - 0, - 1 - ] - }, - "projection": { - "type": "natural earth" - } - }, - "height": 500, - "legend": { - "tracegroupgap": 0 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } + [ + 0.9962986984489235 ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } + [ + 0.9325818823090927 ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } + [ + 0.9097417836628494 ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } + [ + 0.9778974468240862 ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } + [ + 0.999122807017544 ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } + [ + 0.9725009394724591 ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } + [ + 0.9877189123128628 ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } + [ + 0.8658008658008658 + ], + [ + 0.7761808341851454 + ], + [ + 0.9503788875440718 + ], + [ + 0.9547263868647838 ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } + [ + 0.7694545454545454 ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } + [ + 0.8911007105869436 ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } + [ + 0.8231479245485526 ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } + [ + 0.8553134080531343 ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } + [ + 0.9104377104377104 ], - "pie": [ - { - "automargin": true, - "type": "pie" - } + [ + 0.9292464661560496 ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } + [ + 0.9024231247013856 ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } + [ + 0.9939130434782611 ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } + [ + 0.9819054691235874 ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } + [ + 1 ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } + [ + 0.9991229961585949 ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } + [ + 0.9679847507357018 ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } + [ + 0.9834143597963373 + ], + [ + 0.9211698832963091 + ], + [ + 0.9989920981077092 + ], + [ + 0.9298937661136578 + ], + [ + 0.999122807017544 + ], + [ + 0.9122905881685385 + ], + [ + 0.9672169872900396 + ], + [ + 0.9418179668098864 + ], + [ + 0.7957985346108523 + ], + [ + 0.9245562130177516 + ], + [ + 0.9571215257648876 + ], + [ + 0.7697689156812739 + ], + [ + 0.8828238788355364 + ], + [ + 0.944622600300256 + ], + [ + 0.8983798996067152 + ], + [ + 0.8566176867322529 + ], + [ + 0.8340807178909053 + ], + [ + 0.7654094979252105 + ], + [ + 0.9472118045082988 ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } + [ + 0.7685979300090726 ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } + [ + 0.7810872522403144 ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } + [ + 0.7805040946287232 ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" + [ + 0.917451425335698 + ], + [ + 0.8473313810536809 + ], + [ + 0.8374157216227878 + ], + [ + 0.8207867897037397 + ], + [ + 0.9356915211255111 + ], + [ + 0.8868922607689099 + ], + [ + 0.9783881137485578 + ], + [ + 0.9834825170884762 + ], + [ + 0.9078412687095335 + ], + [ + 0.9288265325384094 + ], + [ + 0.9302892268132428 + ], + [ + 0.9242220901098175 + ], + [ + 0.9136981917088984 + ], + [ + 0.9456508016611644 + ], + [ + 0.9232986117159362 + ], + [ + 0.9384233122417885 + ], + [ + 0.8697824343899775 + ], + [ + 0.8418086358878542 + ], + [ + 0.8639165764309158 + ], + [ + 0.9451179054753562 ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Exports-G&S" - }, - "width": 700 - } - } - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "unique_tri = demo2['Indicator'].unique()\n", - "tri = widgets.SelectMultiple(\n", - " options = unique_tri.tolist(),\n", - " value = ['Exports-G&S'],\n", - " description='Indicator',\n", - " disabled=False,\n", - " layout = Layout(width='50%', height='80px')\n", - ")\n", - "\n", - "def graf1(tri):\n", - " dat=demo2.loc[demo2.loc[:, 'Indicator'].isin(np.array(tri))]\n", - " a=px.choropleth(dat, locations=\"Country\", locationmode='ISO-3', \n", - " color=\"R^2 Pearson\", hover_name=\"Country\",hover_data = [dat.Type, dat.Behaviour],projection=\"natural earth\",\n", - " color_continuous_scale='Reds', width=700, height=500, title= dat.Indicator.unique().tolist()[0])\n", - " print(tri)\n", - " a.show()\n", - "widgets.interactive(graf1, tri=tri)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To wrap up, we can create the second widget that is exactly the same as the previous multiple selection widget. The purpose of this widget is to enable us to choose which Continent we want to visualize. Below is the code implementation of this widget." - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "786cecc29fe64b678f77a5ac0c6a2652", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "interactive(children=(SelectMultiple(description='Continent', index=(2,), layout=Layout(height='80px', width='…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "customdata": [ [ - null, - "Positive" + 0.8200759187451886 ], [ - null, - "Positive" + 0.8526780228484186 ], [ - "Cuadratic", - "Negative" + 0.8519994363177413 ], [ - null, - "Negative" + 0.856898450536545 ], [ - null, - "Positive" + 0.8547884175142144 ], [ - null, - "Positive" + 0.8540567799876048 ], [ - null, - "Positive" + 0.8606883836837109 ], [ - null, - "Positive" + 0.8374790158038531 ], [ - null, - "Positive" + 0.8857985176694988 ], [ - "Cuadratic", - "Positive" + 0.8067115696702831 ], [ - null, - "Positive" + 0.9549874334268079 ], [ - "Cuadratic", - "Positive" + 0.9730200669858708 ], [ - "Logarithmic", - "Positive" + 0.8006666785588092 ], [ - null, - "Positive" + 0.9093241244311725 ], [ - null, - "Positive" + 0.8955872822512388 ], [ - "Cuadratic", - "Positive" + 0.8862405116622968 ], [ - "Logarithmic", - "Negative" + 0.8773670374324827 ], [ - null, - "Positive" + 0.9085125104626818 ], [ - "Logarithmic", - "Negative" + 0.9000686264025657 ], [ - "Logarithmic", - "Negative" + 0.8789631520435636 ], [ - "Cubic", - "Positive" + 0.898388139488992 ], [ - "Cuadratic", - "Positive" + 0.8718049611136595 ], [ - "Cuadratic", - "Negative" + 0.9306400155184964 ], [ - null, - "Positive" + 0.9635531525502393 ], [ - "Cuadratic", - "Positive" + 0.900340278528574 ], [ - "Cuadratic", - "Positive" + 0.9258287236010101 ], [ - "Logarithmic", - "Negative" + 0.8897694460204704 ], [ - null, - "Positive" + 0.8879688080398852 ], [ - "Logarithmic", - "Positive" + 0.9173678773055751 ], [ - null, - "Positive" + 0.9304518743906068 ], [ - "Logarithmic", - "Positive" + 0.9193106084617566 ], [ - "Cuadratic", - "Negative" + 0.8970921018969952 ], [ - null, - "Positive" + 0.8857836553786925 ], [ - "Logarithmic", - "Negative" + 0.8976111240012502 ], [ - "Logarithmic", - "Positive" + 0.9992268037105778 ], [ - null, - "Positive" + 0.9958689870380286 ], [ - null, - "Negative" + 0.853618757941474 ], [ - "Cubic", - "Negative" + 0.9878728209828004 ], [ - "Logarithmic", - "Positive" + 0.9376939412277037 ], [ - null, - "Positive" + 0.9510419642385431 ], [ - null, - "Positive" + 0.9851288785024326 ], [ - "Cubic", - "Negative" + 0.999122807017544 ], [ - null, - "Positive" + 0.9789421825176071 ], [ - null, - "Positive" + 0.9847950373863604 ], [ - "Cuadratic", - "Negative" + 0.8887558080451063 ], [ - "Cubic", - "Negative" + 0.8933621267643042 ], [ - "Logarithmic", - "Positive" + 0.9778985314325723 ], [ - null, - "Positive" + 0.9589557751596074 ], [ - null, - "Positive" + 0.8591560778970743 ], [ - null, - "Positive" + 0.9210937389206877 ], [ - null, - "Positive" + 0.932965128471987 ], [ - null, - "Negative" + 0.915580671631156 ], [ - null, - "Negative" + 0.9173632130767951 ], [ - "Logarithmic", - "Negative" + 0.9408031482198341 + ], + [ + 0.8821805940697954 + ], + [ + 0.9356248965935622 + ], + [ + 0.8745139302030989 + ], + [ + 0.905041744113866 + ], + [ + 0.8585586589686451 + ], + [ + 0.9510420939651661 + ], + [ + 0.8855129343887855 + ], + [ + 0.844675536943791 + ], + [ + 0.8557909658954573 + ], + [ + 0.8874651525776813 + ], + [ + 0.8801104988813591 + ], + [ + 0.8892399648499411 + ], + [ + 0.8960598802732446 + ], + [ + 0.8803348783076717 + ], + [ + 0.8925781053983015 + ], + [ + 0.8669121532489861 + ], + [ + 0.9466593000827263 + ], + [ + 0.9635769468803167 + ], + [ + 0.857115021887757 + ], + [ + 0.9022594876692729 + ], + [ + 0.8919186422010325 + ], + [ + 0.8961790031980065 + ], + [ + 0.8923289881657289 + ], + [ + 0.9120775227299308 + ], + [ + 0.9017568137619744 + ], + [ + 0.8922074475884191 + ] + ], + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 ] + }, + "hovertemplate": "labels=%{label}
R^2 Spearman_sum=%{value}
parent=%{parent}
id=%{id}
R^2 Spearman=%{color}", + "ids": [ + "A&D/Persian Gulf/ARE", + "Demography/Persian Gulf/ARE", + "Economy/Persian Gulf/ARE", + "Environment/Persian Gulf/ARE", + "Equality/Persian Gulf/ARE", + "Exports/Persian Gulf/ARE", + "Health/Persian Gulf/ARE", + "Internet/Persian Gulf/ARE", + "Mortality/Persian Gulf/ARE", + "A&D/Latam/ARG", + "Demography/Latam/ARG", + "Economy/Latam/ARG", + "Employment/Latam/ARG", + "Environment/Latam/ARG", + "Equality/Latam/ARG", + "Health/Latam/ARG", + "Internet/Latam/ARG", + "Mortality/Latam/ARG", + "Principal/Latam/ARG", + "A&D/Europe/AUT", + "Agriculture/Europe/AUT", + "Demography/Europe/AUT", + "Economy/Europe/AUT", + "Employment/Europe/AUT", + "Environment/Europe/AUT", + "Equality/Europe/AUT", + "Exports/Europe/AUT", + "Health/Europe/AUT", + "Internet/Europe/AUT", + "Mortality/Europe/AUT", + "Principal/Europe/AUT", + "A&D/Persian Gulf/AZE", + "Agriculture/Persian Gulf/AZE", + "Demography/Persian Gulf/AZE", + "Economy/Persian Gulf/AZE", + "Employment/Persian Gulf/AZE", + "Environment/Persian Gulf/AZE", + "Exports/Persian Gulf/AZE", + "Health/Persian Gulf/AZE", + "Internet/Persian Gulf/AZE", + "Mortality/Persian Gulf/AZE", + "Principal/Persian Gulf/AZE", + "A&D/Asia/BGD", + "Agriculture/Asia/BGD", + "Demography/Asia/BGD", + "Economy/Asia/BGD", + "Employment/Asia/BGD", + "Environment/Asia/BGD", + "Equality/Asia/BGD", + "Exports/Asia/BGD", + "Health/Asia/BGD", + "Internet/Asia/BGD", + "Mortality/Asia/BGD", + "Principal/Asia/BGD", + "A&D/Latam/BRA", + "Agriculture/Latam/BRA", + "Demography/Latam/BRA", + "Economy/Latam/BRA", + "Employment/Latam/BRA", + "Environment/Latam/BRA", + "Equality/Latam/BRA", + "Exports/Latam/BRA", + "Health/Latam/BRA", + "Internet/Latam/BRA", + "Mortality/Latam/BRA", + "Principal/Latam/BRA", + "A&D/Latam/CHL", + "Demography/Latam/CHL", + "Economy/Latam/CHL", + "Environment/Latam/CHL", + "Equality/Latam/CHL", + "Exports/Latam/CHL", + "Health/Latam/CHL", + "Internet/Latam/CHL", + "Mortality/Latam/CHL", + "Principal/Latam/CHL", + "A&D/Pair/CHN", + "Agriculture/Pair/CHN", + "Demography/Pair/CHN", + "Economy/Pair/CHN", + "Employment/Pair/CHN", + "Environment/Pair/CHN", + "Equality/Pair/CHN", + "Exports/Pair/CHN", + "Health/Pair/CHN", + "Internet/Pair/CHN", + "Mortality/Pair/CHN", + "Principal/Pair/CHN", + "Agriculture/South Africa/CMR", + "Demography/South Africa/CMR", + "Economy/South Africa/CMR", + "Employment/South Africa/CMR", + "Environment/South Africa/CMR", + "Health/South Africa/CMR", + "Internet/South Africa/CMR", + "Mortality/South Africa/CMR", + "Principal/South Africa/CMR", + "Demography/Latam/COL", + "Economy/Latam/COL", + "Environment/Latam/COL", + "Exports/Latam/COL", + "Health/Latam/COL", + "Internet/Latam/COL", + "Mortality/Latam/COL", + "Principal/Latam/COL", + "A&D/Latam/CRI", + "Agriculture/Latam/CRI", + "Demography/Latam/CRI", + "Economy/Latam/CRI", + "Employment/Latam/CRI", + "Environment/Latam/CRI", + "Equality/Latam/CRI", + "Exports/Latam/CRI", + "Health/Latam/CRI", + "Internet/Latam/CRI", + "Mortality/Latam/CRI", + "Principal/Latam/CRI", + "Agriculture/Europe/DEU", + "Economy/Europe/DEU", + "Employment/Europe/DEU", + "Environment/Europe/DEU", + "Equality/Europe/DEU", + "Exports/Europe/DEU", + "Health/Europe/DEU", + "Internet/Europe/DEU", + "Mortality/Europe/DEU", + "Principal/Europe/DEU", + "Agriculture/North Africa/DZA", + "Demography/North Africa/DZA", + "Economy/North Africa/DZA", + "Employment/North Africa/DZA", + "Environment/North Africa/DZA", + "Equality/North Africa/DZA", + "Exports/North Africa/DZA", + "Health/North Africa/DZA", + "Internet/North Africa/DZA", + "Mortality/North Africa/DZA", + "A&D/North Africa/EGY", + "Agriculture/North Africa/EGY", + "Demography/North Africa/EGY", + "Economy/North Africa/EGY", + "Employment/North Africa/EGY", + "Environment/North Africa/EGY", + "Internet/North Africa/EGY", + "Mortality/North Africa/EGY", + "Principal/North Africa/EGY", + "Agriculture/Europe/ESP", + "Demography/Europe/ESP", + "Economy/Europe/ESP", + "Employment/Europe/ESP", + "Environment/Europe/ESP", + "Equality/Europe/ESP", + "Exports/Europe/ESP", + "Health/Europe/ESP", + "Internet/Europe/ESP", + "Mortality/Europe/ESP", + "Principal/Europe/ESP", + "Agriculture/Europe/FRA", + "Demography/Europe/FRA", + "Economy/Europe/FRA", + "Employment/Europe/FRA", + "Environment/Europe/FRA", + "Equality/Europe/FRA", + "Exports/Europe/FRA", + "Health/Europe/FRA", + "Internet/Europe/FRA", + "Mortality/Europe/FRA", + "Principal/Europe/FRA", + "A&D/Europe/GBR", + "Demography/Europe/GBR", + "Economy/Europe/GBR", + "Employment/Europe/GBR", + "Environment/Europe/GBR", + "Equality/Europe/GBR", + "Exports/Europe/GBR", + "Health/Europe/GBR", + "Internet/Europe/GBR", + "Mortality/Europe/GBR", + "Principal/Europe/GBR", + "A&D/South Africa/GHA", + "Demography/South Africa/GHA", + "Economy/South Africa/GHA", + "Environment/South Africa/GHA", + "Equality/South Africa/GHA", + "Exports/South Africa/GHA", + "Health/South Africa/GHA", + "Internet/South Africa/GHA", + "Mortality/South Africa/GHA", + "Principal/South Africa/GHA", + "Agriculture/Europe/GRC", + "Demography/Europe/GRC", + "Economy/Europe/GRC", + "Employment/Europe/GRC", + "Environment/Europe/GRC", + "Equality/Europe/GRC", + "Health/Europe/GRC", + "Internet/Europe/GRC", + "Mortality/Europe/GRC", + "A&D/Europe/HRV", + "Demography/Europe/HRV", + "Economy/Europe/HRV", + "Employment/Europe/HRV", + "Environment/Europe/HRV", + "Health/Europe/HRV", + "Internet/Europe/HRV", + "Mortality/Europe/HRV", + "Principal/Europe/HRV", + "Agriculture/Asia/IDN", + "Demography/Asia/IDN", + "Economy/Asia/IDN", + "Employment/Asia/IDN", + "Environment/Asia/IDN", + "Exports/Asia/IDN", + "Health/Asia/IDN", + "Internet/Asia/IDN", + "Mortality/Asia/IDN", + "Principal/Asia/IDN", + "A&D/Asia/IND", + "Agriculture/Asia/IND", + "Demography/Asia/IND", + "Economy/Asia/IND", + "Employment/Asia/IND", + "Environment/Asia/IND", + "Equality/Asia/IND", + "Exports/Asia/IND", + "Health/Asia/IND", + "Internet/Asia/IND", + "Mortality/Asia/IND", + "Principal/Asia/IND", + "Economy/Persian Gulf/IRQ", + "Environment/Persian Gulf/IRQ", + "Exports/Persian Gulf/IRQ", + "Health/Persian Gulf/IRQ", + "Mortality/Persian Gulf/IRQ", + "A&D/North Africa/ISR", + "Agriculture/North Africa/ISR", + "Demography/North Africa/ISR", + "Economy/North Africa/ISR", + "Employment/North Africa/ISR", + "Environment/North Africa/ISR", + "Equality/North Africa/ISR", + "Health/North Africa/ISR", + "Internet/North Africa/ISR", + "Mortality/North Africa/ISR", + "Principal/North Africa/ISR", + "A&D/Asia/KOR", + "Agriculture/Asia/KOR", + "Economy/Asia/KOR", + "Employment/Asia/KOR", + "Environment/Asia/KOR", + "Equality/Asia/KOR", + "Exports/Asia/KOR", + "Health/Asia/KOR", + "Internet/Asia/KOR", + "Mortality/Asia/KOR", + "Principal/Asia/KOR", + "Agriculture/South Africa/LBR", + "Economy/South Africa/LBR", + "Environment/South Africa/LBR", + "Health/South Africa/LBR", + "Internet/South Africa/LBR", + "Mortality/South Africa/LBR", + "A&D/North Africa/MAR", + "Demography/North Africa/MAR", + "Economy/North Africa/MAR", + "Employment/North Africa/MAR", + "Environment/North Africa/MAR", + "Exports/North Africa/MAR", + "Health/North Africa/MAR", + "Internet/North Africa/MAR", + "Mortality/North Africa/MAR", + "Principal/North Africa/MAR", + "A&D/Latam/MEX", + "Demography/Latam/MEX", + "Economy/Latam/MEX", + "Environment/Latam/MEX", + "Equality/Latam/MEX", + "Exports/Latam/MEX", + "Health/Latam/MEX", + "Internet/Latam/MEX", + "Mortality/Latam/MEX", + "Principal/Latam/MEX", + "A&D/South Africa/MOZ", + "Agriculture/South Africa/MOZ", + "Demography/South Africa/MOZ", + "Economy/South Africa/MOZ", + "Employment/South Africa/MOZ", + "Environment/South Africa/MOZ", + "Equality/South Africa/MOZ", + "Exports/South Africa/MOZ", + "Health/South Africa/MOZ", + "Internet/South Africa/MOZ", + "Mortality/South Africa/MOZ", + "Principal/South Africa/MOZ", + "A&D/South Africa/NGA", + "Agriculture/South Africa/NGA", + "Demography/South Africa/NGA", + "Economy/South Africa/NGA", + "Environment/South Africa/NGA", + "Equality/South Africa/NGA", + "Health/South Africa/NGA", + "Mortality/South Africa/NGA", + "Principal/South Africa/NGA", + "A&D/Europe/NLD", + "Agriculture/Europe/NLD", + "Demography/Europe/NLD", + "Economy/Europe/NLD", + "Employment/Europe/NLD", + "Environment/Europe/NLD", + "Equality/Europe/NLD", + "Exports/Europe/NLD", + "Health/Europe/NLD", + "Internet/Europe/NLD", + "Mortality/Europe/NLD", + "Principal/Europe/NLD", + "A&D/Persian Gulf/OMN", + "Demography/Persian Gulf/OMN", + "Economy/Persian Gulf/OMN", + "Employment/Persian Gulf/OMN", + "Environment/Persian Gulf/OMN", + "Equality/Persian Gulf/OMN", + "Exports/Persian Gulf/OMN", + "Health/Persian Gulf/OMN", + "Internet/Persian Gulf/OMN", + "Mortality/Persian Gulf/OMN", + "A&D/Latam/PAN", + "Agriculture/Latam/PAN", + "Demography/Latam/PAN", + "Economy/Latam/PAN", + "Environment/Latam/PAN", + "Equality/Latam/PAN", + "Exports/Latam/PAN", + "Health/Latam/PAN", + "Internet/Latam/PAN", + "Mortality/Latam/PAN", + "Principal/Latam/PAN", + "Demography/Latam/PER", + "Economy/Latam/PER", + "Environment/Latam/PER", + "Exports/Latam/PER", + "Health/Latam/PER", + "Internet/Latam/PER", + "Mortality/Latam/PER", + "Agriculture/Asia/PHL", + "Demography/Asia/PHL", + "Economy/Asia/PHL", + "Environment/Asia/PHL", + "Exports/Asia/PHL", + "Health/Asia/PHL", + "Internet/Asia/PHL", + "Mortality/Asia/PHL", + "Principal/Asia/PHL", + "A&D/Europe/POL", + "Agriculture/Europe/POL", + "Demography/Europe/POL", + "Economy/Europe/POL", + "Employment/Europe/POL", + "Environment/Europe/POL", + "Equality/Europe/POL", + "Exports/Europe/POL", + "Health/Europe/POL", + "Internet/Europe/POL", + "Mortality/Europe/POL", + "Principal/Europe/POL", + "A&D/Persian Gulf/QAT", + "Demography/Persian Gulf/QAT", + "Economy/Persian Gulf/QAT", + "Environment/Persian Gulf/QAT", + "Equality/Persian Gulf/QAT", + "Exports/Persian Gulf/QAT", + "Health/Persian Gulf/QAT", + "Internet/Persian Gulf/QAT", + "Mortality/Persian Gulf/QAT", + "Demography/Persian Gulf/SAU", + "Economy/Persian Gulf/SAU", + "Employment/Persian Gulf/SAU", + "Environment/Persian Gulf/SAU", + "Equality/Persian Gulf/SAU", + "Exports/Persian Gulf/SAU", + "Health/Persian Gulf/SAU", + "Internet/Persian Gulf/SAU", + "Mortality/Persian Gulf/SAU", + "Demography/South Africa/SEN", + "Economy/South Africa/SEN", + "Employment/South Africa/SEN", + "Environment/South Africa/SEN", + "Equality/South Africa/SEN", + "Exports/South Africa/SEN", + "Health/South Africa/SEN", + "Internet/South Africa/SEN", + "Mortality/South Africa/SEN", + "Agriculture/Europe/SWE", + "Economy/Europe/SWE", + "Employment/Europe/SWE", + "Environment/Europe/SWE", + "Exports/Europe/SWE", + "Health/Europe/SWE", + "Internet/Europe/SWE", + "Mortality/Europe/SWE", + "Principal/Europe/SWE", + "A&D/Asia/THA", + "Demography/Asia/THA", + "Economy/Asia/THA", + "Environment/Asia/THA", + "Exports/Asia/THA", + "Health/Asia/THA", + "Internet/Asia/THA", + "Mortality/Asia/THA", + "Principal/Asia/THA", + "Agriculture/North Africa/TUR", + "Demography/North Africa/TUR", + "Economy/North Africa/TUR", + "Environment/North Africa/TUR", + "Equality/North Africa/TUR", + "Exports/North Africa/TUR", + "Health/North Africa/TUR", + "Internet/North Africa/TUR", + "Mortality/North Africa/TUR", + "Principal/North Africa/TUR", + "A&D/Pair/USA", + "Agriculture/Pair/USA", + "Demography/Pair/USA", + "Economy/Pair/USA", + "Employment/Pair/USA", + "Environment/Pair/USA", + "Equality/Pair/USA", + "Exports/Pair/USA", + "Health/Pair/USA", + "Internet/Pair/USA", + "Mortality/Pair/USA", + "Principal/Pair/USA", + "A&D/Latam/VEN", + "Agriculture/Latam/VEN", + "Demography/Latam/VEN", + "Economy/Latam/VEN", + "Employment/Latam/VEN", + "Environment/Latam/VEN", + "Equality/Latam/VEN", + "Exports/Latam/VEN", + "Health/Latam/VEN", + "Internet/Latam/VEN", + "Mortality/Latam/VEN", + "A&D/Asia/VNM", + "Agriculture/Asia/VNM", + "Demography/Asia/VNM", + "Economy/Asia/VNM", + "Employment/Asia/VNM", + "Environment/Asia/VNM", + "Equality/Asia/VNM", + "Exports/Asia/VNM", + "Health/Asia/VNM", + "Internet/Asia/VNM", + "Mortality/Asia/VNM", + "Principal/Asia/VNM", + "A&D/Persian Gulf/YEM", + "Agriculture/Persian Gulf/YEM", + "Demography/Persian Gulf/YEM", + "Economy/Persian Gulf/YEM", + "Employment/Persian Gulf/YEM", + "Environment/Persian Gulf/YEM", + "Equality/Persian Gulf/YEM", + "Health/Persian Gulf/YEM", + "Internet/Persian Gulf/YEM", + "Mortality/Persian Gulf/YEM", + "Demography/South Africa/ZAF", + "Economy/South Africa/ZAF", + "Employment/South Africa/ZAF", + "Environment/South Africa/ZAF", + "Equality/South Africa/ZAF", + "Exports/South Africa/ZAF", + "Health/South Africa/ZAF", + "Internet/South Africa/ZAF", + "Principal/South Africa/ZAF", + "A&D/Asia", + "Agriculture/Asia", + "Demography/Asia", + "Economy/Asia", + "Employment/Asia", + "Environment/Asia", + "Equality/Asia", + "Exports/Asia", + "Health/Asia", + "Internet/Asia", + "Mortality/Asia", + "Principal/Asia", + "A&D/Europe", + "Agriculture/Europe", + "Demography/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Equality/Europe", + "Exports/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "A&D/Latam", + "Agriculture/Latam", + "Demography/Latam", + "Economy/Latam", + "Employment/Latam", + "Environment/Latam", + "Equality/Latam", + "Exports/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "Principal/Latam", + "A&D/North Africa", + "Agriculture/North Africa", + "Demography/North Africa", + "Economy/North Africa", + "Employment/North Africa", + "Environment/North Africa", + "Equality/North Africa", + "Exports/North Africa", + "Health/North Africa", + "Internet/North Africa", + "Mortality/North Africa", + "Principal/North Africa", + "A&D/Pair", + "Agriculture/Pair", + "Demography/Pair", + "Economy/Pair", + "Employment/Pair", + "Environment/Pair", + "Equality/Pair", + "Exports/Pair", + "Health/Pair", + "Internet/Pair", + "Mortality/Pair", + "Principal/Pair", + "A&D/Persian Gulf", + "Agriculture/Persian Gulf", + "Demography/Persian Gulf", + "Economy/Persian Gulf", + "Employment/Persian Gulf", + "Environment/Persian Gulf", + "Equality/Persian Gulf", + "Exports/Persian Gulf", + "Health/Persian Gulf", + "Internet/Persian Gulf", + "Mortality/Persian Gulf", + "Principal/Persian Gulf", + "A&D/South Africa", + "Agriculture/South Africa", + "Demography/South Africa", + "Economy/South Africa", + "Employment/South Africa", + "Environment/South Africa", + "Equality/South Africa", + "Exports/South Africa", + "Health/South Africa", + "Internet/South Africa", + "Mortality/South Africa", + "Principal/South Africa", + "A&D", + "Agriculture", + "Demography", + "Economy", + "Employment", + "Environment", + "Equality", + "Exports", + "Health", + "Internet", + "Mortality", + "Principal" ], - "hovertemplate": "%{hovertext}

R^2 Pearson=%{marker.color}
Indicator=%{y}
Type=%{customdata[0]}
Behaviour=%{customdata[1]}", - "hovertext": [ + "labels": [ + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", "DZA", "DZA", "DZA", @@ -6587,6 +31373,10 @@ "DZA", "DZA", "DZA", + "DZA", + "DZA", + "DZA", + "EGY", "EGY", "EGY", "EGY", @@ -6594,7 +31384,95 @@ "EGY", "EGY", "EGY", - "LBY", + "EGY", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IRQ", + "IRQ", + "IRQ", + "IRQ", + "IRQ", "ISR", "ISR", "ISR", @@ -6606,6 +31484,170 @@ "ISR", "ISR", "ISR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "LBR", + "LBR", + "LBR", + "LBR", + "LBR", + "LBR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", "TUR", "TUR", "TUR", @@ -6616,257 +31658,1937 @@ "TUR", "TUR", "TUR", - "TUR", - "TUR", - "TUR", - "TUR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR", - "MAR" + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "A&D", + "Agriculture", + "Demography", + "Economy", + "Employment", + "Environment", + "Equality", + "Exports", + "Health", + "Internet", + "Mortality", + "Principal" ], - "legendgroup": "", "marker": { - "color": [ - 0.9289158279901037, - 0.9213771435444178, - 0.9075918529847351, - 0.904864353429385, - 0.8758839689728439, - 0.8390883159750028, - 0.7857192483231298, - 0.905691549611508, - 0.8990802196732206, - 0.8962083637425559, - 0.8959887539281101, - 0.8840707210618246, - 0.8754106010601125, - 0.7712782533668188, - 0.891789395879511, - 0.9874778307869048, - 0.9581392726953888, - 0.9565210718293581, - 0.949567589871179, - 0.9433317723823056, - 0.9174191314064287, - 0.8927691475893725, - 0.877668819104662, - 0.8538660757824813, - 0.8265682104723039, - 0.7792227834792094, - 0.9646818981605869, - 0.949243785588551, - 0.9031967123122572, - 0.8890016031609888, - 0.8658018331423527, - 0.8635009656135182, - 0.8573494233376868, - 0.838814100901544, - 0.8316825506959581, - 0.8235704003004464, - 0.8222834157713641, - 0.8142252115949318, - 0.7735405976901415, - 0.757366189732593, - 0.9823598695370912, - 0.9725072632075309, - 0.9580573107996607, - 0.9555728136156069, - 0.9436859248182337, - 0.9345196406345899, - 0.9199277938333447, - 0.9157439992681066, - 0.9138972219088164, - 0.8931193245875468, - 0.8542386654476775, - 0.850688427514224, - 0.8040732343408238, - 0.7637341301563336 - ], "coloraxis": "coloraxis", - "symbol": "circle" + "colors": [ + 0.9545454545454548, + 0.9929947676208064, + 0.8851870524742678, + 0.9842229467473992, + 0.9778255798991798, + 0.9832058480308432, + 0.9150177303560064, + 0.9792614678275988, + 0.902115011699789, + 0.9545454545454548, + 0.8598347107438016, + 0.9760183009804816, + 0.7712684989429177, + 0.9455844136023616, + 0.8408064685157908, + 0.818251045869449, + 0.8553134080531343, + 0.8553134080531343, + 0.7522123063336182, + 0.8298946640273919, + 0.8673029726406383, + 0.8490800833801486, + 0.9563486904543473, + 0.7976314145122237, + 0.8448425241372852, + 0.8461257638092973, + 0.8890631162040309, + 0.8456287897798366, + 0.8232860332235971, + 0.8403328845275041, + 0.8258303273081601, + 0.8041381029540074, + 0.9731456263408548, + 0.9947856385396152, + 0.9761317906901431, + 0.9416437009068946, + 0.9027230491457534, + 0.8977160492573557, + 0.9580847637833185, + 0.909065387196842, + 0.9540326981535171, + 0.9356248965935622, + 0.9786956521739132, + 0.7813852813852814, + 0.9990150209905604, + 0.9991429106537756, + 0.9947856385396152, + 0.9614867110807936, + 0.9170015014667736, + 0.9859234217934404, + 0.9951933007390439, + 0.978073311070348, + 0.9451327413498781, + 0.9820100634702482, + 0.9055353950321428, + 0.7822341892305151, + 0.7707081956166206, + 0.9456237038288926, + 0.7862727272727271, + 0.7980731830235919, + 0.8838474478521062, + 0.8546502548557862, + 0.7912762864700013, + 0.775995920023485, + 0.7640931217937306, + 0.831081385436793, + 0.8658008658008658, + 0.8952232922255726, + 0.9650751509200628, + 0.8746942653979919, + 0.8992086440167721, + 0.8668958338409165, + 0.8227036939088314, + 0.8490459410817468, + 0.8475441687513058, + 0.8534540516685338, + 0.8041630667784955, + 0.9364502164502164, + 1, + 0.9992688773416403, + 0.8586700336700335, + 0.982173625627045, + 0.9477543538038498, + 0.9890311615492476, + 0.9922499420681911, + 0.999122807017544, + 0.9852944941444919, + 0.9818536963567754, + 0.8679516484927489, + 0.8216057600038706, + 0.9565325400753372, + 0.9303687863484544, + 0.8170407525717691, + 0.8589952456968621, + 0.8870930627862177, + 0.7927752189233835, + 0.8486878358300123, + 0.9000234404536862, + 0.9695419255177564, + 0.86364166104721, + 0.9350943180643897, + 0.8647618655419143, + 0.897855261911528, + 0.8625290260955841, + 0.9129853629164147, + 0.792782754772987, + 0.8857699681136173, + 1, + 0.9987068093750369, + 0.8675319709415152, + 0.9753325360829251, + 0.936233164174384, + 0.9280169976669376, + 0.9409418177584535, + 0.999122807017544, + 0.999122807017544, + 0.8998911634924976, + 0.7714560308712177, + 0.9475024401781991, + 0.7920446151287672, + 0.8085316277505704, + 0.796618231225969, + 0.8210527935710153, + 0.8256742643429589, + 0.79241896667796, + 0.8462714704650187, + 0.7793718426037994, + 0.8584751140436623, + 0.8075842215036355, + 0.8857395145550301, + 0.8694866227116197, + 0.8227635041015324, + 0.8465483817977032, + 0.7559911987169416, + 0.8795442701574369, + 0.8672820048414341, + 0.8219143476518825, + 0.8259976777571356, + 0.8985904473621558, + 0.946198347107438, + 0.9753277328120716, + 0.8586700336700335, + 0.9050828653095765, + 0.9416562889165628, + 0.8967294298470624, + 0.932398585032895, + 0.8190486045187014, + 0.8021928166351607, + 0.9168763739323124, + 0.7834335706711103, + 0.7795272007374761, + 0.8286759028531826, + 0.7736264668325739, + 0.8406025749327211, + 0.7922752675949607, + 0.8017627702025453, + 0.800012400217004, + 0.7893527624833871, + 0.7928741020793951, + 0.9450570112882524, + 0.7921764122864366, + 0.7847482435439043, + 0.8031469436294986, + 0.863925779862748, + 0.8151093945882026, + 0.7916704805491989, + 0.8038806981974395, + 0.7984383476710843, + 0.8220626497774737, + 0.9344444444444444, + 0.9561427615655672, + 0.934334074623178, + 0.9256978729594237, + 0.9293067948377257, + 0.824723044297354, + 0.9059966318464586, + 0.936963017728694, + 0.9498918260670621, + 0.907326978222119, + 0.8210461476724114, + 0.8578858011832347, + 0.9583497755641666, + 0.8399105171503202, + 0.7905217546826223, + 0.8806041934635603, + 0.8166754057049967, + 0.7737464548987709, + 0.8490347926552761, + 0.838169467510867, + 0.8919696969696971, + 0.8483379501385041, + 0.9028572378928654, + 0.8619283887468031, + 0.8363949697251979, + 0.8904874214357624, + 0.8511791199028763, + 0.84746622922539, + 0.84746622922539, + 0.8101813436763873, + 0.7871436798157215, + 0.9691937864973333, + 0.7676281237741422, + 0.796839893191436, + 0.8485266432095069, + 0.8291492133323973, + 0.7734960799030078, + 0.7913646289079624, + 0.8818618218586448, + 0.9025957850286672, + 0.9432189294688625, + 0.7631048593350384, + 0.8383432015465867, + 0.8250833206612556, + 0.8787529330292853, + 0.9088064577345945, + 0.8839061116873433, + 0.9278150139590884, + 0.971001604361102, + 0.756628065305478, + 0.9928936489808848, + 0.9959122759401721, + 0.9925507389082384, + 0.9863864764646757, + 0.948060941828255, + 0.928723519908324, + 0.9296027452970655, + 0.9761788895853514, + 0.9683581632195862, + 0.9506223327256856, + 0.9568210784484368, + 0.7554660388288974, + 0.8668958338409165, + 0.7650792722152087, + 0.7506209000762774, + 0.9289464621791536, + 0.7882882882882881, + 0.9846235837724948, + 0.9850037718095089, + 0.978469168274726, + 0.9855862184585922, + 0.9811830535079085, + 0.9619755843239752, + 0.9770862304997938, + 0.9855295339596895, + 0.9364530503181744, + 0.8732908588456849, + 0.950300482513086, + 0.9873834917666393, + 0.7500718937727315, + 0.9520878541945509, + 0.9430707787644872, + 0.8881896291715989, + 0.933549766771479, + 0.9329580322176916, + 0.9514741813067672, + 0.9417014747671419, + 0.8657481566722074, + 0.86399109137214, + 0.8571756370037503, + 0.8616019267536854, + 0.993758325008325, + 0.8622230550415498, + 0.9320839327803117, + 0.9527305856232412, + 0.9834901908565283, + 0.8846977863333716, + 0.9320075788738773, + 0.9593583027873251, + 0.8917618172659301, + 0.9188951371295636, + 0.9391417960180795, + 0.7800217784035494, + 0.7799127011297503, + 0.9434321361058602, + 0.9751694139594816, + 0.9137979468970369, + 0.9019468547619269, + 0.9061435934718377, + 0.8911984476376517, + 0.9328333806952732, + 0.9462242522861426, + 0.9258691777106102, + 0.9521230391509398, + 0.9365262267264388, + 0.9373115797727772, + 0.9664949318756285, + 0.9378841050418828, + 0.9305464260268369, + 0.9634201249462099, + 0.9211354224331691, + 0.933616428382211, + 0.8980181937554507, + 0.9375061608356837, + 0.9376349250962784, + 0.8387538514207465, + 0.943947221044588, + 0.9350049149338372, + 0.9658991512978881, + 0.8839893265526511, + 0.958536231884058, + 0.9271005715678781, + 0.9575017523170773, + 0.9412635914006205, + 0.8873673399520713, + 0.887458515283843, + 0.8705701323251417, + 0.9338839388947628, + 0.8684059865492091, + 0.8667688956398026, + 0.8675191856081045, + 0.8859445107741636, + 0.851440816574498, + 0.8677050513455755, + 0.8754792997928964, + 0.8430977292102612, + 0.8919696969696971, + 0.986135349716446, + 0.9729988505742541, + 0.8950764254021453, + 0.9565556274733968, + 0.923455550886179, + 0.9398812902982936, + 0.9386368447253942, + 0.9752792033119024, + 0.8691445841404749, + 0.9939130434782611, + 0.7714763488785488, + 1, + 0.9920443424912717, + 0.9768781082130975, + 0.9374024748908731, + 0.8047278408758268, + 0.9938851274719704, + 0.9882730260033812, + 0.9744970451625167, + 0.9461654371370272, + 0.9357441792403746, + 0.978264239074848, + 0.9163601262566885, + 0.9223744981227123, + 0.8711690044217546, + 0.905289786165362, + 0.937103645050706, + 0.9214972959512142, + 0.941314332676578, + 0.982089188379848, + 0.9255520299748177, + 0.9230788696114616, + 0.8810631396615008, + 0.9143112638406732, + 0.8900437264297159, + 0.9391302151973808, + 0.9772426641825802, + 0.909072064464046, + 0.9860141582025238, + 0.9814197405280587, + 0.7740137221269299, + 0.9772426641825802, + 0.8230247277595698, + 0.9536631479971994, + 0.921688151199631, + 0.9886242163794032, + 0.9458526284056905, + 0.968708052390917, + 0.8315151515151515, + 0.9826843100189036, + 0.9805854024658918, + 0.9783368141256884, + 0.9086032637241696, + 0.9694396869310692, + 0.9413328398731196, + 0.9544594777956544, + 0.7670322793380222, + 0.9826843100189036, + 0.9712344546795939, + 0.8084175084175085, + 0.9783368141256884, + 0.9127305916495537, + 0.8131377716690427, + 0.9248167539267018, + 0.9581772940528424, + 0.9484258109649947, + 0.8050748795127288, + 0.9585968264597382, + 0.8843935880633129, + 0.792235381129738, + 0.7665916695558189, + 0.8237517359346237, + 0.8843734470618795, + 0.9143045157420016, + 0.9239645181768363, + 0.7715736896162309, + 0.9327668804010679, + 0.7975398606698341, + 0.7524584849903713, + 0.8173907278944466, + 0.8173749505019134, + 0.8252050839377624, + 0.7598493905068002, + 0.7829559806346367, + 0.8408502506153573, + 0.884575512524494, + 0.9682230338987912, + 0.8575423023217223, + 0.8965017504270001, + 0.8519312620027872, + 0.9001503179694077, + 0.8938204854275072, + 0.8486878358300123, + 0.9290762303990062, + 0.9417436672967864, + 0.979979971601552, + 0.9290731879016672, + 0.8254317065802806, + 0.9219048551109622, + 0.9452382460255262, + 0.9403303455027593, + 0.9311584694225717, + 0.92049050384555, + 0.9545454545454548, + 0.8550758611268748, + 0.9937805570643936, + 0.9931318361728348, + 0.8485069801940157, + 0.9962986984489235, + 0.9325818823090927, + 0.9097417836628494, + 0.9778974468240862, + 0.999122807017544, + 0.9725009394724591, + 0.9877189123128628, + 0.8658008658008658, + 0.7761808341851454, + 0.9503788875440718, + 0.9547263868647838, + 0.7694545454545454, + 0.8911007105869436, + 0.8231479245485526, + 0.8553134080531343, + 0.9104377104377104, + 0.9292464661560496, + 0.9024231247013856, + 0.9939130434782611, + 0.9819054691235874, + 1, + 0.9991229961585949, + 0.9679847507357018, + 0.9834143597963373, + 0.9211698832963091, + 0.9989920981077092, + 0.9298937661136578, + 0.999122807017544, + 0.9122905881685385, + 0.9672169872900396, + 0.9418179668098864, + 0.7957985346108523, + 0.9245562130177516, + 0.9571215257648876, + 0.7697689156812739, + 0.8828238788355364, + 0.944622600300256, + 0.8983798996067152, + 0.8566176867322529, + 0.8340807178909053, + 0.7654094979252105, + 0.9472118045082988, + 0.7685979300090726, + 0.7810872522403144, + 0.7805040946287232, + 0.917451425335698, + 0.8473313810536809, + 0.8374157216227878, + 0.8207867897037397, + 0.9356915211255111, + 0.8868922607689099, + 0.9783881137485578, + 0.9834825170884762, + 0.9078412687095335, + 0.9288265325384094, + 0.9302892268132428, + 0.9242220901098175, + 0.9136981917088984, + 0.9456508016611644, + 0.9232986117159362, + 0.9384233122417885, + 0.8697824343899775, + 0.8418086358878542, + 0.8639165764309158, + 0.9451179054753562, + 0.8200759187451886, + 0.8526780228484186, + 0.8519994363177413, + 0.856898450536545, + 0.8547884175142144, + 0.8540567799876048, + 0.8606883836837109, + 0.8374790158038531, + 0.8857985176694988, + 0.8067115696702831, + 0.9549874334268079, + 0.9730200669858708, + 0.8006666785588092, + 0.9093241244311725, + 0.8955872822512388, + 0.8862405116622968, + 0.8773670374324827, + 0.9085125104626818, + 0.9000686264025657, + 0.8789631520435636, + 0.898388139488992, + 0.8718049611136595, + 0.9306400155184964, + 0.9635531525502393, + 0.900340278528574, + 0.9258287236010101, + 0.8897694460204704, + 0.8879688080398852, + 0.9173678773055751, + 0.9304518743906068, + 0.9193106084617566, + 0.8970921018969952, + 0.8857836553786925, + 0.8976111240012502, + 0.9992268037105778, + 0.9958689870380286, + 0.853618757941474, + 0.9878728209828004, + 0.9376939412277037, + 0.9510419642385431, + 0.9851288785024326, + 0.999122807017544, + 0.9789421825176071, + 0.9847950373863604, + 0.8887558080451063, + 0.8933621267643042, + 0.9778985314325723, + 0.9589557751596074, + 0.8591560778970743, + 0.9210937389206877, + 0.932965128471987, + 0.915580671631156, + 0.9173632130767951, + 0.9408031482198341, + 0.8821805940697954, + 0.9356248965935622, + 0.8745139302030989, + 0.905041744113866, + 0.8585586589686451, + 0.9510420939651661, + 0.8855129343887855, + 0.844675536943791, + 0.8557909658954573, + 0.8874651525776813, + 0.8801104988813591, + 0.8892399648499411, + 0.8960598802732446, + 0.8803348783076717, + 0.8925781053983015, + 0.8669121532489861, + 0.9466593000827263, + 0.9635769468803167, + 0.857115021887757, + 0.9022594876692729, + 0.8919186422010325, + 0.8961790031980065, + 0.8923289881657289, + 0.9120775227299308, + 0.9017568137619744, + 0.8922074475884191 + ] }, - "mode": "markers", "name": "", - "orientation": "h", - "showlegend": false, - "type": "scatter", - "x": [ - 0.9289158279901037, - 0.9213771435444178, - 0.9075918529847351, - 0.904864353429385, - 0.8758839689728439, - 0.8390883159750028, - 0.7857192483231298, - 0.905691549611508, - 0.8990802196732206, - 0.8962083637425559, - 0.8959887539281101, - 0.8840707210618246, - 0.8754106010601125, - 0.7712782533668188, - 0.891789395879511, - 0.9874778307869048, - 0.9581392726953888, - 0.9565210718293581, - 0.949567589871179, - 0.9433317723823056, - 0.9174191314064287, - 0.8927691475893725, - 0.877668819104662, - 0.8538660757824813, - 0.8265682104723039, - 0.7792227834792094, - 0.9646818981605869, - 0.949243785588551, - 0.9031967123122572, - 0.8890016031609888, - 0.8658018331423527, - 0.8635009656135182, - 0.8573494233376868, - 0.838814100901544, - 0.8316825506959581, - 0.8235704003004464, - 0.8222834157713641, - 0.8142252115949318, - 0.7735405976901415, - 0.757366189732593, - 0.9823598695370912, - 0.9725072632075309, - 0.9580573107996607, - 0.9555728136156069, - 0.9436859248182337, - 0.9345196406345899, - 0.9199277938333447, - 0.9157439992681066, - 0.9138972219088164, - 0.8931193245875468, - 0.8542386654476775, - 0.850688427514224, - 0.8040732343408238, - 0.7637341301563336 - ], - "xaxis": "x", - "y": [ - "Employment-industry", - "Health services use", - "Suicide", - "Employment-agriculture", - "Exports-Commercial services", - "Employment-services", - "Literacy rate", - "R&D GExp", - "Health services use", - "Alcohol per capita", - "International taxes", - "Renewable electricity", - "Literacy rate", - "Employment-industry", - "Exports-G&S", - "Exports-G&S", - "Employment-industry", - "Exports-Commercial services", - "Employment-agriculture", - "Mortality-infants", - "Employment-services", - "International taxes", - "Health services use", - "Renewable electricity", - "Alcohol per capita", - "Education GExp", - "Suicide", - "Exports-G&S", - "R&D GExp", - "Literacy rate", - "Net migration", - "Employment-agriculture", - "Exports-Commercial services", - "Fertility rate", - "Renewable electricity", - "Health services use", - "Mortality-infants", - "Foreign investment", - "Education GExp", - "Employment-services", - "Exports-G&S", - "Alcohol per capita", - "Exports-Commercial services", - "Health services use", - "Employment-agriculture", - "Suicide", - "R&D GExp", - "Literacy rate", - "Renewable electricity", - "Employment-services", - "Employment-industry", - "Mortality-infants", - "Education GExp", - "Fertility rate" + "parents": [ + "A&D/Persian Gulf", + "Demography/Persian Gulf", + "Economy/Persian Gulf", + "Environment/Persian Gulf", + "Equality/Persian Gulf", + "Exports/Persian Gulf", + "Health/Persian Gulf", + "Internet/Persian Gulf", + "Mortality/Persian Gulf", + "A&D/Latam", + "Demography/Latam", + "Economy/Latam", + "Employment/Latam", + "Environment/Latam", + "Equality/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "Principal/Latam", + "A&D/Europe", + "Agriculture/Europe", + "Demography/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Equality/Europe", + "Exports/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "A&D/Persian Gulf", + "Agriculture/Persian Gulf", + "Demography/Persian Gulf", + "Economy/Persian Gulf", + "Employment/Persian Gulf", + "Environment/Persian Gulf", + "Exports/Persian Gulf", + "Health/Persian Gulf", + "Internet/Persian Gulf", + "Mortality/Persian Gulf", + "Principal/Persian Gulf", + "A&D/Asia", + "Agriculture/Asia", + "Demography/Asia", + "Economy/Asia", + "Employment/Asia", + "Environment/Asia", + "Equality/Asia", + "Exports/Asia", + "Health/Asia", + "Internet/Asia", + "Mortality/Asia", + "Principal/Asia", + "A&D/Latam", + "Agriculture/Latam", + "Demography/Latam", + "Economy/Latam", + "Employment/Latam", + "Environment/Latam", + "Equality/Latam", + "Exports/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "Principal/Latam", + "A&D/Latam", + "Demography/Latam", + "Economy/Latam", + "Environment/Latam", + "Equality/Latam", + "Exports/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "Principal/Latam", + "A&D/Pair", + "Agriculture/Pair", + "Demography/Pair", + "Economy/Pair", + "Employment/Pair", + "Environment/Pair", + "Equality/Pair", + "Exports/Pair", + "Health/Pair", + "Internet/Pair", + "Mortality/Pair", + "Principal/Pair", + "Agriculture/South Africa", + "Demography/South Africa", + "Economy/South Africa", + "Employment/South Africa", + "Environment/South Africa", + "Health/South Africa", + "Internet/South Africa", + "Mortality/South Africa", + "Principal/South Africa", + "Demography/Latam", + "Economy/Latam", + "Environment/Latam", + "Exports/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "Principal/Latam", + "A&D/Latam", + "Agriculture/Latam", + "Demography/Latam", + "Economy/Latam", + "Employment/Latam", + "Environment/Latam", + "Equality/Latam", + "Exports/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "Principal/Latam", + "Agriculture/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Equality/Europe", + "Exports/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "Agriculture/North Africa", + "Demography/North Africa", + "Economy/North Africa", + "Employment/North Africa", + "Environment/North Africa", + "Equality/North Africa", + "Exports/North Africa", + "Health/North Africa", + "Internet/North Africa", + "Mortality/North Africa", + "A&D/North Africa", + "Agriculture/North Africa", + "Demography/North Africa", + "Economy/North Africa", + "Employment/North Africa", + "Environment/North Africa", + "Internet/North Africa", + "Mortality/North Africa", + "Principal/North Africa", + "Agriculture/Europe", + "Demography/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Equality/Europe", + "Exports/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "Agriculture/Europe", + "Demography/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Equality/Europe", + "Exports/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "A&D/Europe", + "Demography/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Equality/Europe", + "Exports/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "A&D/South Africa", + "Demography/South Africa", + "Economy/South Africa", + "Environment/South Africa", + "Equality/South Africa", + "Exports/South Africa", + "Health/South Africa", + "Internet/South Africa", + "Mortality/South Africa", + "Principal/South Africa", + "Agriculture/Europe", + "Demography/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Equality/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "A&D/Europe", + "Demography/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "Agriculture/Asia", + "Demography/Asia", + "Economy/Asia", + "Employment/Asia", + "Environment/Asia", + "Exports/Asia", + "Health/Asia", + "Internet/Asia", + "Mortality/Asia", + "Principal/Asia", + "A&D/Asia", + "Agriculture/Asia", + "Demography/Asia", + "Economy/Asia", + "Employment/Asia", + "Environment/Asia", + "Equality/Asia", + "Exports/Asia", + "Health/Asia", + "Internet/Asia", + "Mortality/Asia", + "Principal/Asia", + "Economy/Persian Gulf", + "Environment/Persian Gulf", + "Exports/Persian Gulf", + "Health/Persian Gulf", + "Mortality/Persian Gulf", + "A&D/North Africa", + "Agriculture/North Africa", + "Demography/North Africa", + "Economy/North Africa", + "Employment/North Africa", + "Environment/North Africa", + "Equality/North Africa", + "Health/North Africa", + "Internet/North Africa", + "Mortality/North Africa", + "Principal/North Africa", + "A&D/Asia", + "Agriculture/Asia", + "Economy/Asia", + "Employment/Asia", + "Environment/Asia", + "Equality/Asia", + "Exports/Asia", + "Health/Asia", + "Internet/Asia", + "Mortality/Asia", + "Principal/Asia", + "Agriculture/South Africa", + "Economy/South Africa", + "Environment/South Africa", + "Health/South Africa", + "Internet/South Africa", + "Mortality/South Africa", + "A&D/North Africa", + "Demography/North Africa", + "Economy/North Africa", + "Employment/North Africa", + "Environment/North Africa", + "Exports/North Africa", + "Health/North Africa", + "Internet/North Africa", + "Mortality/North Africa", + "Principal/North Africa", + "A&D/Latam", + "Demography/Latam", + "Economy/Latam", + "Environment/Latam", + "Equality/Latam", + "Exports/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "Principal/Latam", + "A&D/South Africa", + "Agriculture/South Africa", + "Demography/South Africa", + "Economy/South Africa", + "Employment/South Africa", + "Environment/South Africa", + "Equality/South Africa", + "Exports/South Africa", + "Health/South Africa", + "Internet/South Africa", + "Mortality/South Africa", + "Principal/South Africa", + "A&D/South Africa", + "Agriculture/South Africa", + "Demography/South Africa", + "Economy/South Africa", + "Environment/South Africa", + "Equality/South Africa", + "Health/South Africa", + "Mortality/South Africa", + "Principal/South Africa", + "A&D/Europe", + "Agriculture/Europe", + "Demography/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Equality/Europe", + "Exports/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "A&D/Persian Gulf", + "Demography/Persian Gulf", + "Economy/Persian Gulf", + "Employment/Persian Gulf", + "Environment/Persian Gulf", + "Equality/Persian Gulf", + "Exports/Persian Gulf", + "Health/Persian Gulf", + "Internet/Persian Gulf", + "Mortality/Persian Gulf", + "A&D/Latam", + "Agriculture/Latam", + "Demography/Latam", + "Economy/Latam", + "Environment/Latam", + "Equality/Latam", + "Exports/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "Principal/Latam", + "Demography/Latam", + "Economy/Latam", + "Environment/Latam", + "Exports/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "Agriculture/Asia", + "Demography/Asia", + "Economy/Asia", + "Environment/Asia", + "Exports/Asia", + "Health/Asia", + "Internet/Asia", + "Mortality/Asia", + "Principal/Asia", + "A&D/Europe", + "Agriculture/Europe", + "Demography/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Equality/Europe", + "Exports/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "A&D/Persian Gulf", + "Demography/Persian Gulf", + "Economy/Persian Gulf", + "Environment/Persian Gulf", + "Equality/Persian Gulf", + "Exports/Persian Gulf", + "Health/Persian Gulf", + "Internet/Persian Gulf", + "Mortality/Persian Gulf", + "Demography/Persian Gulf", + "Economy/Persian Gulf", + "Employment/Persian Gulf", + "Environment/Persian Gulf", + "Equality/Persian Gulf", + "Exports/Persian Gulf", + "Health/Persian Gulf", + "Internet/Persian Gulf", + "Mortality/Persian Gulf", + "Demography/South Africa", + "Economy/South Africa", + "Employment/South Africa", + "Environment/South Africa", + "Equality/South Africa", + "Exports/South Africa", + "Health/South Africa", + "Internet/South Africa", + "Mortality/South Africa", + "Agriculture/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Exports/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "A&D/Asia", + "Demography/Asia", + "Economy/Asia", + "Environment/Asia", + "Exports/Asia", + "Health/Asia", + "Internet/Asia", + "Mortality/Asia", + "Principal/Asia", + "Agriculture/North Africa", + "Demography/North Africa", + "Economy/North Africa", + "Environment/North Africa", + "Equality/North Africa", + "Exports/North Africa", + "Health/North Africa", + "Internet/North Africa", + "Mortality/North Africa", + "Principal/North Africa", + "A&D/Pair", + "Agriculture/Pair", + "Demography/Pair", + "Economy/Pair", + "Employment/Pair", + "Environment/Pair", + "Equality/Pair", + "Exports/Pair", + "Health/Pair", + "Internet/Pair", + "Mortality/Pair", + "Principal/Pair", + "A&D/Latam", + "Agriculture/Latam", + "Demography/Latam", + "Economy/Latam", + "Employment/Latam", + "Environment/Latam", + "Equality/Latam", + "Exports/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "A&D/Asia", + "Agriculture/Asia", + "Demography/Asia", + "Economy/Asia", + "Employment/Asia", + "Environment/Asia", + "Equality/Asia", + "Exports/Asia", + "Health/Asia", + "Internet/Asia", + "Mortality/Asia", + "Principal/Asia", + "A&D/Persian Gulf", + "Agriculture/Persian Gulf", + "Demography/Persian Gulf", + "Economy/Persian Gulf", + "Employment/Persian Gulf", + "Environment/Persian Gulf", + "Equality/Persian Gulf", + "Health/Persian Gulf", + "Internet/Persian Gulf", + "Mortality/Persian Gulf", + "Demography/South Africa", + "Economy/South Africa", + "Employment/South Africa", + "Environment/South Africa", + "Equality/South Africa", + "Exports/South Africa", + "Health/South Africa", + "Internet/South Africa", + "Principal/South Africa", + "A&D", + "Agriculture", + "Demography", + "Economy", + "Employment", + "Environment", + "Equality", + "Exports", + "Health", + "Internet", + "Mortality", + "Principal", + "A&D", + "Agriculture", + "Demography", + "Economy", + "Employment", + "Environment", + "Equality", + "Exports", + "Health", + "Internet", + "Mortality", + "Principal", + "A&D", + "Agriculture", + "Demography", + "Economy", + "Employment", + "Environment", + "Equality", + "Exports", + "Health", + "Internet", + "Mortality", + "Principal", + "A&D", + "Agriculture", + "Demography", + "Economy", + "Employment", + "Environment", + "Equality", + "Exports", + "Health", + "Internet", + "Mortality", + "Principal", + "A&D", + "Agriculture", + "Demography", + "Economy", + "Employment", + "Environment", + "Equality", + "Exports", + "Health", + "Internet", + "Mortality", + "Principal", + "A&D", + "Agriculture", + "Demography", + "Economy", + "Employment", + "Environment", + "Equality", + "Exports", + "Health", + "Internet", + "Mortality", + "Principal", + "A&D", + "Agriculture", + "Demography", + "Economy", + "Employment", + "Environment", + "Equality", + "Exports", + "Health", + "Internet", + "Mortality", + "Principal", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "" ], - "yaxis": "y" + "type": "treemap", + "values": [ + 0.9545454545454548, + 0.9929947676208064, + 3.525709648240764, + 0.9842229467473992, + 1.9554072006789496, + 0.9832058480308432, + 0.9150177303560064, + 0.9792614678275988, + 2.68499123989139, + 0.9545454545454548, + 0.8598347107438016, + 3.9026905411411255, + 0.7712684989429177, + 1.8909956709956712, + 1.6816008151250992, + 2.4482475283768625, + 0.8553134080531342, + 1.7106268161062683, + 0.7522123063336182, + 0.8298946640273919, + 0.8673029726406383, + 0.8490800833801486, + 4.766379713810826, + 0.7976314145122237, + 1.6894980275725249, + 1.6922514987460433, + 0.8890631162040309, + 2.5297768410493173, + 0.8232860332235971, + 2.5206134680129115, + 0.82583032730816, + 0.8041381029540074, + 0.9731456263408548, + 0.9947856385396152, + 4.876995450037458, + 0.9416437009068946, + 2.69374897401215, + 0.8977160492573557, + 1.9129618725168718, + 0.909065387196842, + 1.904327167961698, + 0.9356248965935622, + 0.9786956521739132, + 0.7813852813852814, + 0.9990150209905604, + 4.995710112859674, + 0.9947856385396152, + 2.875570209104675, + 1.8182374604622509, + 0.9859234217934404, + 1.9903768491958616, + 0.978073311070348, + 2.8276206349183237, + 0.9820100634702482, + 0.9055353950321428, + 0.7822341892305151, + 0.7707081956166205, + 4.6882193043380065, + 0.7862727272727271, + 2.3917706415203943, + 1.7664557153100116, + 0.8546502548557862, + 1.5790103343268629, + 0.775995920023485, + 2.292129314259153, + 0.831081385436793, + 0.8658008658008658, + 0.8952232922255726, + 4.817580584327185, + 2.62365753273427, + 1.7984010881166013, + 0.8668958338409165, + 2.464257323627982, + 0.8490459410817468, + 2.52892279908987, + 0.8534540516685339, + 0.8041630667784956, + 0.9364502164502164, + 7, + 3.99706906184338, + 0.8586700336700335, + 2.9459190936901978, + 0.9477543538038498, + 0.9890311615492476, + 2.976585534983704, + 0.999122807017544, + 2.9547493690556683, + 0.9818536963567754, + 0.8679516484927489, + 0.8216057600038708, + 4.756877212908356, + 0.9303687863484544, + 1.6340192025792195, + 2.5722208927563166, + 0.8870930627862177, + 1.5845777069124942, + 0.8486878358300123, + 0.9000234404536862, + 4.840440064763408, + 2.5798012993793904, + 0.9350943180643898, + 2.592219509075364, + 0.897855261911528, + 2.575857040561203, + 0.9129853629164149, + 0.792782754772987, + 0.8857699681136173, + 2, + 4.993523000248244, + 0.8675319709415152, + 2.9237999558625103, + 1.8724589656777666, + 0.9280169976669376, + 2.7979742993248933, + 0.999122807017544, + 1.998245614035088, + 0.8998911634924976, + 0.7714560308712177, + 4.7096379788957, + 0.7920446151287672, + 0.8085316277505704, + 1.5932364490690105, + 0.8210527935710153, + 1.6489792346354861, + 0.79241896667796, + 0.8462714704650187, + 0.7793718426037994, + 0.8584751140436623, + 0.8075842215036355, + 4.388225839975234, + 0.8694866227116197, + 0.8227635041015324, + 1.6930207304114007, + 0.7559911987169416, + 1.7586278107205235, + 0.8672820048414341, + 1.6346268081217818, + 0.8259976777571356, + 0.8985904473621558, + 0.946198347107438, + 4.872054421960179, + 0.8586700336700335, + 2.713283581565953, + 0.9416562889165628, + 2.6675490805717392, + 0.932398585032895, + 0.8190486045187013, + 0.8021928166351607, + 4.528241495255111, + 0.7834335706711103, + 1.558495449841848, + 1.657351693470737, + 0.7736264668325739, + 2.514210433148495, + 0.7922752675949607, + 0.8017627702025454, + 0.8000124002170039, + 0.7893527624833871, + 0.7928741020793951, + 4.693951715358852, + 0.7921764122864366, + 1.5694418074805392, + 1.6062929765633287, + 0.863925779862748, + 2.432900348977831, + 0.791670480549199, + 1.607401251367409, + 0.7984383476710845, + 0.8220626497774737, + 0.9344444444444444, + 4.772561704698932, + 0.934334074623178, + 1.8513709051389533, + 1.8586069819966275, + 0.8247230442973539, + 2.71621129613582, + 0.936963017728694, + 1.8990819433308426, + 0.907326978222119, + 0.8210461476724114, + 0.8578858011832347, + 4.777510285386392, + 1.6792587141557807, + 0.7905217546826223, + 0.8806041934635603, + 1.6261359470440953, + 0.7737464548987709, + 1.6978742392038142, + 0.838169467510867, + 0.8919696969696971, + 0.8483379501385041, + 3.5788467426492696, + 0.8619283887468031, + 0.8363949697251979, + 1.7807483845610523, + 2.5395028560978266, + 0.8474662292253902, + 1.6949324584507803, + 0.8101813436763873, + 0.7871436798157214, + 3.874610912160782, + 0.7676281237741422, + 0.796839893191436, + 1.6889759832979863, + 0.8291492133323973, + 1.5465245278334305, + 0.7913646289079624, + 0.8818618218586448, + 0.9025957850286672, + 4.6868158980065875, + 0.7631048593350384, + 2.5057325750793287, + 0.8250833206612556, + 2.6270490865078813, + 0.9088064577345945, + 2.65126115598261, + 0.9278150139590884, + 0.971001604361102, + 0.756628065305478, + 0.9928936489808848, + 4.979496209421201, + 0.9925507389082384, + 2.959048375728506, + 0.948060941828255, + 0.928723519908324, + 2.7620166987142802, + 0.9761788895853514, + 2.900983746126216, + 0.9506223327256856, + 3.8154938650672934, + 0.7554660388288974, + 0.8668958338409165, + 0.7650792722152088, + 0.7506209000762775, + 0.9289464621791536, + 0.7882882882882881, + 0.9846235837724948, + 4.924437420779924, + 0.978469168274726, + 1.9711664556579676, + 1.9623659243639664, + 1.9229510200768343, + 0.9770862304997938, + 1.9710580014755763, + 0.9364530503181744, + 0.8732908588456849, + 0.950300482513086, + 4.935207053112358, + 0.7500718937727315, + 1.9041504856306979, + 1.8861391109687888, + 0.8881896291715989, + 2.8006368591744883, + 0.9329580322176916, + 1.9029483626135344, + 0.941701474767142, + 0.8657481566722074, + 2.588264135093887, + 1.7141689795761534, + 1.7213102700043061, + 0.993758325008325, + 0.8622230550415498, + 0.9320839327803117, + 0.9527305856232412, + 4.916174243045312, + 0.8846977863333716, + 2.7950506077328092, + 0.9593583027873251, + 1.78102084647775, + 0.9188951371295636, + 2.816084724509409, + 0.7800217784035494, + 0.7799127011297503, + 0.9434321361058602, + 4.873596391437164, + 2.734192621409638, + 1.803885895535925, + 0.9061435934718378, + 1.7767917632119423, + 0.9328333806952732, + 2.838607627417269, + 0.9258691777106102, + 0.9521230391509398, + 0.9365262267264388, + 0.9373115797727772, + 4.8271676550247005, + 0.9378841050418828, + 1.8610149910467089, + 1.9264891578615777, + 0.9211354224331691, + 2.7998719537667673, + 0.8980181937554507, + 1.875006267263354, + 0.9376349250962784, + 0.8387538514207465, + 0.943947221044588, + 0.9350049149338372, + 4.825455268304017, + 2.6443530785946225, + 0.958536231884058, + 1.8510279995114316, + 1.9148213294395644, + 0.9412635914006204, + 0.8873673399520713, + 0.8874585152838429, + 0.8705701323251417, + 4.652537154233505, + 0.8684059865492091, + 1.7334937585238293, + 1.7350336477353925, + 0.8859445107741636, + 2.549553758153763, + 0.8677050513455755, + 1.75082291774977, + 0.8430977292102613, + 0.8919696969696971, + 0.986135349716446, + 4.863593471986783, + 0.8950764254021453, + 1.911703781639717, + 1.8432875442233665, + 0.9398812902982936, + 1.8743198737875306, + 0.9752792033119024, + 1.7379689224340076, + 0.9939130434782611, + 0.7714763488785487, + 6, + 4.959992466058576, + 2.9296765097144517, + 1.8747567686209865, + 0.8047278408758268, + 1.9877316530763527, + 0.9882730260033812, + 2.9192009361557396, + 0.9461654371370272, + 0.9357441792403746, + 4.888099767981957, + 2.7468936460173574, + 0.9223744981227122, + 2.601299135217226, + 0.905289786165362, + 1.874207290101412, + 0.9214972959512142, + 0.941314332676578, + 3.9261219157493064, + 1.8505531413007172, + 0.9230788696114616, + 1.761035420185463, + 0.9143112638406732, + 1.773305074409091, + 0.9391302151973808, + 0.9772426641825802, + 0.909072064464046, + 0.9860141582025238, + 4.9057369334133405, + 0.7740137221269299, + 1.9544853283651604, + 0.8230247277595697, + 0.9536631479971994, + 2.745773534705939, + 0.9886242163794032, + 2.825637653275979, + 0.968708052390917, + 0.8315151515151515, + 0.9826843100189036, + 2.940868132838134, + 0.9783368141256884, + 1.8170490178472651, + 0.9694396869310692, + 1.8791763913672477, + 0.9544594777956544, + 1.5339597003838765, + 0.9826843100189036, + 4.85164369073943, + 0.8084175084175084, + 0.9783368141256884, + 1.8254320864484423, + 0.8131377716690428, + 0.9248167539267018, + 0.9581772940528424, + 2.8367461375629057, + 0.8050748795127288, + 4.762044492014911, + 0.8843935880633129, + 1.5841395700790906, + 1.5328907287135602, + 0.8237517359346238, + 1.7679139687799554, + 0.9143045157420016, + 2.7707904641370193, + 0.7715736896162307, + 4.620507366750719, + 0.7975398606698341, + 0.7524584849903713, + 0.8173907278944466, + 2.4356310413636386, + 0.8252050839377624, + 0.7598493905068002, + 0.7829559806346367, + 0.8408502506153573, + 0.884575512524494, + 3.864007343280661, + 2.5684077436096553, + 0.8965017504270001, + 2.5426390080555294, + 0.9001503179694077, + 1.7874600165938404, + 0.8486878358300123, + 0.9290762303990062, + 0.9417436672967864, + 4.8975540843983865, + 1.8571680107142314, + 1.650862954793141, + 0.9219048551109622, + 0.9452382460255262, + 0.9403303455027592, + 2.7916679638482678, + 0.92049050384555, + 0.9545454545454548, + 0.8550758611268748, + 0.9937805570643936, + 4.964869316864153, + 0.8485069801940157, + 1.992595843542, + 1.8651584365339495, + 0.9097417836628494, + 2.9311560623613415, + 0.999122807017544, + 2.9139544401637187, + 0.9877189123128628, + 0.8658008658008658, + 0.7761808341851455, + 0.9503788875440718, + 4.74954736747019, + 0.7694545454545454, + 0.8911007105869436, + 0.8231479245485526, + 0.8553134080531342, + 0.9104377104377104, + 0.9292464661560496, + 0.9024231247013856, + 0.9939130434782611, + 0.9819054691235874, + 7, + 5.994721407649271, + 0.9679847507357018, + 1.9663960501895916, + 1.8418227023342582, + 0.9989920981077092, + 2.7534511889408266, + 0.999122807017544, + 2.722603364110069, + 0.9672169872900396, + 0.9418179668098864, + 0.7957985346108523, + 0.9245562130177516, + 3.8254338283074345, + 0.7697689156812738, + 1.7590795384507343, + 0.944622600300256, + 2.68937432223344, + 0.856617686732253, + 1.6680708914353688, + 0.7654094979252105, + 4.694264347520792, + 0.7685979300090726, + 2.3426302769450014, + 1.5607231429215238, + 0.917451425335698, + 1.6778987627272341, + 0.8374157216227879, + 0.8207867897037397, + 4.657751409474319, + 5.273578416137292, + 11.720394300201184, + 33.38207994007906, + 4.468497881291325, + 16.629858580643173, + 6.4942602155935525, + 6.4464926096807895, + 17.23720511077433, + 6.609601079435611, + 16.566182354753686, + 6.557183923239597, + 4.3267486616159045, + 6.707234336847761, + 6.87065736702104, + 45.10301171722704, + 8.169136169088635, + 13.551010252580431, + 12.746546359901762, + 6.829389587433532, + 23.801515327566104, + 8.49476355999494, + 16.25289785119549, + 7.497106287165944, + 6.1582910805603275, + 3.2156613404078267, + 14.255344841929988, + 42.713689487765855, + 3.1945277426117054, + 21.711888588220628, + 11.620707172934942, + 7.073216744951541, + 19.157969256675194, + 8.132975997107504, + 19.640220562427388, + 6.121658884695495, + 2.687028072716601, + 3.4744300800931125, + 4.632880405303596, + 23.998446010159036, + 3.591323610989751, + 10.159432159772493, + 5.306249609568508, + 2.637254356615229, + 6.407837923300634, + 4.645250006890113, + 11.880986578526773, + 3.569363917600169, + 1.7587085213239504, + 1.7915260775770911, + 7.993780557064394, + 8.961938378707533, + 1.7071770138640492, + 4.938514937232198, + 2.812912790337799, + 1.8987729452120972, + 5.907741597345046, + 1.998245614035088, + 5.868703809219387, + 1.9695726086696381, + 4.4239863727941975, + 1.768944160951707, + 5.863840588932426, + 28.6997380872173, + 3.414906550407822, + 10.060894907930274, + 8.38579844949828, + 5.470276480027521, + 10.960746216403008, + 5.632860516917093, + 13.116684959745523, + 0.9356248965935622, + 2.6119230382440977, + 3.614173252935983, + 5.122292433331659, + 31.231583396253054, + 3.5212444094627227, + 13.459584812976576, + 6.769161016063342, + 3.542942777167051, + 14.016379794590106, + 5.304336273813553, + 10.705293061997796, + 4.386542609541518, + 26.624437156729396, + 25.84554766495077, + 56.459190493784284, + 214.0904870174089, + 28.06681337771601, + 90.51118423935577, + 54.13563561389819, + 33.89834550108776, + 97.48939522665442, + 40.818033048193904, + 94.03096917786604, + 31.037053127505924 + ] } ], "layout": { "coloraxis": { "colorbar": { "title": { - "text": "R^2 Pearson" + "text": "R^2 Spearman" } }, "colorscale": [ [ 0, - "rgb(247,251,255)" + "rgb(5,48,97)" + ], + [ + 0.1, + "rgb(33,102,172)" ], [ - 0.125, - "rgb(222,235,247)" + 0.2, + "rgb(67,147,195)" ], [ - 0.25, - "rgb(198,219,239)" + 0.3, + "rgb(146,197,222)" ], [ - 0.375, - "rgb(158,202,225)" + 0.4, + "rgb(209,229,240)" ], [ 0.5, - "rgb(107,174,214)" + "rgb(247,247,247)" + ], + [ + 0.6, + "rgb(253,219,199)" ], [ - 0.625, - "rgb(66,146,198)" + 0.7, + "rgb(244,165,130)" ], [ - 0.75, - "rgb(33,113,181)" + 0.8, + "rgb(214,96,77)" ], [ - 0.875, - "rgb(8,81,156)" + 0.9, + "rgb(178,24,43)" ], [ 1, - "rgb(8,48,107)" + "rgb(103,0,31)" ] ] }, - "height": 500, "legend": { "tracegroupgap": 0 }, + "margin": { + "t": 60 + }, "template": { "data": { "bar": [ @@ -7239,10 +33961,11 @@ ], "scatter": [ { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } }, "type": "scatter" } @@ -7682,2238 +34405,1380 @@ "zerolinewidth": 2 } } - }, - "title": { - "text": "North Africa" - }, - "width": 700, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "R^2 Pearson" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Indicator" - } } } - } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#TREEMAP: Graph for seeing the correlation worldwide.\n", + "\n", + "#By indicator.\n", + "\n", + "fig2=px.treemap(selected_primary,path=['Indicator','Continent','Country'],values='R^2 Spearman',color='R^2 Spearman',color_continuous_scale='RdBu_r')\n", + "\n", + "fig2.show()\n", + "\n", + "#By continent\n", + "\n", + "fig2d=px.treemap(selected_primary,path=['Continent','Country','Group'],values='R^2 Spearman',color='R^2 Spearman',color_continuous_scale='RdBu_r')\n", + "fig2d.show()\n", + "\n", + "#By group of interest\n", + "\n", + "fig2dd=px.treemap(selected_primary,path=['Group','Continent','Country'],values='R^2 Spearman',color='R^2 Spearman',color_continuous_scale='RdBu_r')\n", + "\n", + "fig2dd.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "lastdf=final.dropna()\n", + "\n", + "lastdf.isna().sum()\n", + "\n", + "from ipywidgets import widgets, HBox\n", + "\n", + "out = widgets.Output()\n", + "\n", + "def output_treemap(path):\n", + "\n", + " figA = px.treemap(lastdf, path=path, values='R^2 Spearman',\n", + "\n", + " color='R^2 Spearman',\n", + "\n", + " color_continuous_scale='RdBu_r')\n", + "\n", + " figA.update_layout(margin = dict(t=50, l=25, r=25, b=25))\n", + "\n", + " out.clear_output(wait=True)\n", + "\n", + " with out:\n", + "\n", + " figA.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "path_1_dropdown = widgets.Dropdown(\n", + "\n", + " options=['Continent', 'Country','Group','Indicator'],\n", + "\n", + " value='Continent',\n", + "\n", + " description='Path 1',\n", + "\n", + " disabled=False,\n", + "\n", + ")\n", + "\n", + "path_2_dropdown = widgets.Dropdown(\n", + "\n", + " options=['Continent', 'Country','Group','Indicator'],\n", + "\n", + " value='Country',\n", + "\n", + " description='Path 2',\n", + "\n", + " disabled=False,\n", + "\n", + ")\n", + "\n", + "path_3_dropdown=widgets.Dropdown(\n", + "\n", + " options=['Continent', 'Country','Group','Indicator'],\n", + "\n", + " value='Group',\n", + "\n", + " description='Path 3',\n", + "\n", + " disabled=False,\n", + "\n", + ")\n", + "\n", + "path_4_dropdown=widgets.Dropdown(\n", + "\n", + " options=['Continent', 'Country','Group','Indicator'],\n", + "\n", + " value='Indicator',\n", + "\n", + " description='Path 4',\n", + "\n", + " disabled=False,\n", + "\n", + ")\n", + "\n", + "ok_button = widgets.Button(\n", + "\n", + " description='Ready to go',\n", + "\n", + " disabled=False,\n", + "\n", + " button_style='info', # 'success', 'info', 'warning', 'danger' or ''\n", + "\n", + " icon='check' # (FontAwesome names without the `fa-` prefix)\n", + "\n", + ")\n", + "\n", + "ok_button.on_click(lambda _: output_treemap([px.Constant(\"World\"), path_1_dropdown.value, path_2_dropdown.value,path_3_dropdown.value,path_4_dropdown.value]))" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "feee0f4cb986435db09003ffbb625805", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(Dropdown(description='Path 1', options=('Continent', 'Country', 'Group', 'Indicator'), value='C…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "20e40d9a00f846989c56c5c2bc8271e3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display(HBox([path_1_dropdown, path_2_dropdown, path_3_dropdown,path_4_dropdown,ok_button]), out)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Spurious correlations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "However, there is an interesting phenomenon, in some cases there are correlations that have a high coefficient and also an adequate graphics, but they do not make sense in the analysis, these are called **spurious correlations**. Here are some examples:\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "Therefore, we have to be carefull with our results because correlation does not imply causation, it may have happened by chance that both variables are really similar.\n", + "So, after some thought and experimenting, we have developed a method that we think, it will allow us to find out if the correlation has happened by chance or if there is really a correlation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This method, consists of the following:\n", + "\n", + "\n", + "Firstly we have classified the indicators by a group, which can be one of the following: *A&D*, *Agriculture*, *Demography*, *Economy*, *Employment*, *Environment*, *Equality*, *Exports*, *Health*, *Mortality* or *Principal*. Moreover inside each group we have also assigned each varible a level, *primary* or *secondary*, depending on their level of relevance. For example we have consider more relevant the *Population in the largest city* over the *Rural population*, thus the first will be *primary* and the latter *secondary*, while both are part of the *Demography* group. \n", + "\n", + "With this set, we can expose our hypothesis:\n", + "\n", + "\"It is assumed that the correlation in the primary indicators can be caused by randomness, however if this correlation also appears in the secondary indicators for at least X% of the countries that appears in the primaries (Pareto's rule), we can suppose that there is no randomness affecting each group. Furthermore, the first assumption has to happen in Y% of the secondary indicators to avoid any fortuity.\" \n", + "\n", + "This hypothesis can be used in a global level, all the countries, or in the different regions. \n", + "\n", + "For example if, X and Y =80% a primary indicator is repeated 20 times the secondary indicators must have repeated 18 times. And if there are 10 secondary indicators, it has to happen for, at least, 8 indicators.\n", + "\n", + "Finally, we will finish with two possible errors of 20%, which combined (20%*20%), leaves us with a 4% of margin of error, which is lower than the wildly spread of 5%.\n", + "\n", + "**This will only work if the data has been collected by independent sources and uses different methods to collect it. Therefore, this step has only been developed for this data (WDI), which we have checked that comes from different sources and is gathered differently.**\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1c0d4097f473414f859204345da95d46", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatSlider(value=0.8, continuous_update=False, description='% of primary indicators:', max=1.0, step=0.05)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "352b09b697b2410da7213568d23a6e38", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatSlider(value=0.8, continuous_update=False, description='% of secondary indicators:', max=1.0, step=0.05)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "limita=widgets.FloatSlider( value=0.8, min=0, max=1.0, step=0.05, description='% of primary indicators:', disabled=False, continuous_update=False, orientation='horizontal', readout=True)\n", + "limitb=widgets.FloatSlider( value=0.8, min=0, max=1.0, step=0.05, description='% of secondary indicators:', disabled=False, continuous_update=False, orientation='horizontal', readout=True)\n", + "display(limita,limitb)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The margin of error in this combination is: 3.9999999999999982\n" + ] + } + ], + "source": [ + "a=(1-limita.value)*(1-limitb.value)*100\n", + "print('The margin of error in this combination is:',a)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Once we have selected both percentages and we agree with the margin of error, we can proceed to put into action our method. Firstly, we filter the primary indicators and get the minimun of times thatthe secondary have to be repeated." + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Min
Group
A&D13.0
Agriculture10.0
Demography24.0
Economy26.0
Employment11.0
Environment13.0
Equality14.0
Exports28.0
Health9.0
Internet27.0
Mortality14.0
Principal23.0
\n", + "
" + ], + "text/plain": [ + " Min\n", + "Group \n", + "A&D 13.0\n", + "Agriculture 10.0\n", + "Demography 24.0\n", + "Economy 26.0\n", + "Employment 11.0\n", + "Environment 13.0\n", + "Equality 14.0\n", + "Exports 28.0\n", + "Health 9.0\n", + "Internet 27.0\n", + "Mortality 14.0\n", + "Principal 23.0" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "selected_p=categories.loc[categories['Level']=='primary']\n", + "minprimary=selected_p.groupby('Group').min()\n", + "minprimary['Min']=round(minprimary['Number of times repeated']*limita.value)\n", + "minprimary.drop(columns=['Indicator','Number of times repeated','Level'], inplace=True)\n", + "minprimary\n" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [], + "source": [ + "grouplist=minprimary.index.to_list()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then, we test if the repetition are accomplished. \n", + "\n", + "- H_0 data has correlation buy has not happened by randomness.\n", + "- H_1 data has correlation due to randomness \n", + "\n", + "**If Number of times repeated the secondary indicator < Minimun per group, then H_0 denied and H_1 accepted**" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorR^2 SpearmanBehaviourCountryMovedTypeContinentNumber of times repeated_xGroupLevelNumber of times repeated_yMin
0Adolescent fertility rate (births per 1,000 wo...0.817804NegativeDEU1Does not applyEurope22Demographysecondary4024.0
1Adolescent fertility rate (births per 1,000 wo...0.759333NegativeSWE3Does not applyEurope22Demographysecondary4024.0
2Adolescent fertility rate (births per 1,000 wo...0.936963NegativeGBR13Does not applyEurope22Demographysecondary4024.0
3Adolescent fertility rate (births per 1,000 wo...0.786708NegativeHRV8Does not applyEurope22Demographysecondary4024.0
4Adolescent fertility rate (births per 1,000 wo...0.924056NegativePOL21Does not applyEurope22Demographysecondary4024.0
.......................................
4585Crop production index (2014-2016 = 100)0.851083PositiveCOL8Does not applyLatam21Agriculturesecondary2710.0
4586Crop production index (2014-2016 = 100)0.882284PositiveCHLDoes not applyCuadraticLatam21Agriculturesecondary2710.0
4587Crop production index (2014-2016 = 100)0.967446PositiveCRIDoes not applyCubicLatam21Agriculturesecondary2710.0
4588Crop production index (2014-2016 = 100)0.845314PositiveUSADoes not applyLinearPair21Agriculturesecondary2710.0
4589Crop production index (2014-2016 = 100)0.998717PositiveCHNDoes not applyCubicPair21Agriculturesecondary2710.0
\n", + "

4590 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " Indicator R^2 Spearman \\\n", + "0 Adolescent fertility rate (births per 1,000 wo... 0.817804 \n", + "1 Adolescent fertility rate (births per 1,000 wo... 0.759333 \n", + "2 Adolescent fertility rate (births per 1,000 wo... 0.936963 \n", + "3 Adolescent fertility rate (births per 1,000 wo... 0.786708 \n", + "4 Adolescent fertility rate (births per 1,000 wo... 0.924056 \n", + "... ... ... \n", + "4585 Crop production index (2014-2016 = 100) 0.851083 \n", + "4586 Crop production index (2014-2016 = 100) 0.882284 \n", + "4587 Crop production index (2014-2016 = 100) 0.967446 \n", + "4588 Crop production index (2014-2016 = 100) 0.845314 \n", + "4589 Crop production index (2014-2016 = 100) 0.998717 \n", + "\n", + " Behaviour Country Moved Type Continent \\\n", + "0 Negative DEU 1 Does not apply Europe \n", + "1 Negative SWE 3 Does not apply Europe \n", + "2 Negative GBR 13 Does not apply Europe \n", + "3 Negative HRV 8 Does not apply Europe \n", + "4 Negative POL 21 Does not apply Europe \n", + "... ... ... ... ... ... \n", + "4585 Positive COL 8 Does not apply Latam \n", + "4586 Positive CHL Does not apply Cuadratic Latam \n", + "4587 Positive CRI Does not apply Cubic Latam \n", + "4588 Positive USA Does not apply Linear Pair \n", + "4589 Positive CHN Does not apply Cubic Pair \n", + "\n", + " Number of times repeated_x Group Level \\\n", + "0 22 Demography secondary \n", + "1 22 Demography secondary \n", + "2 22 Demography secondary \n", + "3 22 Demography secondary \n", + "4 22 Demography secondary \n", + "... ... ... ... \n", + "4585 21 Agriculture secondary \n", + "4586 21 Agriculture secondary \n", + "4587 21 Agriculture secondary \n", + "4588 21 Agriculture secondary \n", + "4589 21 Agriculture secondary \n", + "\n", + " Number of times repeated_y Min \n", + "0 40 24.0 \n", + "1 40 24.0 \n", + "2 40 24.0 \n", + "3 40 24.0 \n", + "4 40 24.0 \n", + "... ... ... \n", + "4585 27 10.0 \n", + "4586 27 10.0 \n", + "4587 27 10.0 \n", + "4588 27 10.0 \n", + "4589 27 10.0 \n", + "\n", + "[4590 rows x 12 columns]" + ] }, + "execution_count": 52, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], "source": [ - "unique_tric = demo2['Continent'].unique()\n", - "tric = widgets.SelectMultiple(\n", - " options = unique_tric.tolist(),\n", - " value = ['North Africa'],\n", - " description='Continent',\n", - " disabled=False,\n", - " layout = Layout(width='50%', height='80px')\n", - ")\n", - "\n", - "def graf1(tric):\n", - " dat=demo2.loc[demo2.loc[:, 'Continent'].isin(np.array(tric))]\n", - " a=px.scatter(dat, x=\"R^2 Pearson\", y='Indicator',\n", - " color=\"R^2 Pearson\", hover_name=\"Country\",hover_data = [dat.Type, dat.Behaviour],\n", - " color_continuous_scale='Blues', width=700, height=500, title= dat.Continent.unique().tolist()[0])\n", - " a.show()\n", - "widgets.interactive(graf1, tric=tric)" + "secondary=final.loc[final['Level']=='secondary']\n", + "secondary=pd.merge(secondary,minprimary, left_on='Group',right_on='Group')\n", + "secondaryp=secondary.loc[:,['Group','Min']]\n", + "secondary" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Does it have some global casuallity implied?% of count (Global)
Group
AgricultureNo100.000000
DemographyYes37.728195
EconomyYes54.372937
EmploymentNo100.000000
EnvironmentYes73.529412
EqualityYes58.928571
ExportsYes60.183066
HealthNo100.000000
InternetYes37.190083
MortalityNo92.337165
PrincipalNo100.000000
\n", + "
" + ], + "text/plain": [ + " Does it have some global casuallity implied? % of count (Global)\n", + "Group \n", + "Agriculture No 100.000000\n", + "Demography Yes 37.728195\n", + "Economy Yes 54.372937\n", + "Employment No 100.000000\n", + "Environment Yes 73.529412\n", + "Equality Yes 58.928571\n", + "Exports Yes 60.183066\n", + "Health No 100.000000\n", + "Internet Yes 37.190083\n", + "Mortality No 92.337165\n", + "Principal No 100.000000" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "secondary=final.loc[final['Level']=='secondary']\n", + "secondary=pd.merge(secondary,minprimary, left_on='Group',right_on='Group')\n", + "secondaryp=secondary.loc[:,['Group','Min']]\n", + "Global_Count=secondaryp.groupby('Group').count()\n", + "Global_Count.rename(columns={'Min':'Global Count'},inplace=True)\n", + "secondary['H_0']=np.where(secondary['Number of times repeated_x']-secondary['Min']>0,'Not Discarded', 'Denied')\n", + "seco=secondary.groupby(['H_0','Group']).count()\n", + "sec=seco.loc['Not Discarded']\n", + "secondarycount=sec.drop(columns=['Indicator','R^2 Spearman','Behaviour','Country','Moved','Type','Continent','Number of times repeated_x','Number of times repeated_y','Level'])\n", + "secondarycount.rename(columns={'Min':'Secondary Count'},inplace=True)\n", + "continentlist=final['Continent'].unique()\n", + "namescontinents=['European', 'North African', 'Asian', 'Pair', 'Persian', 'South African', 'Latino-American']\n", + "finalcount=pd.merge(Global_Count,secondarycount, left_on='Group',right_on='Group')\n", + "finalcount['Does it have some global casuallity implied?']=np.where(finalcount['Secondary Count']/finalcount['Global Count']>limitb.value,'No', 'Yes')\n", + "finalcount['% of count (Global)']=finalcount['Secondary Count']/finalcount['Global Count']*100\n", + "finalcount.drop(columns=['Global Count','Secondary Count'],inplace=True)\n", + "finalcount" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Now, if we execute the following loop, it will provide with the variables that follow a normal distribution." + "As we can see, in a Global situation for the groups that have a **NO**, we do not need to worry about casualities, however for the rest of the groups correlation can still be a great indicator as a basis for decision making, if we carefully analyze the variables and found some sort of real relationship between them. " ] }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 56, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "DEU-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "DEU-Renewable electricity\n", - "Statistical=0.806, p=0.000\n", - "DEU-Employment-agriculture\n", - "Statistical=0.888, p=0.003\n", - "DEU-Employment-industry\n", - "Statistical=0.906, p=0.009\n", - "DEU-Employment-services\n", - "Statistical=0.877, p=0.002\n", - "DEU-Exports-G&S\n", - "Statistical=0.887, p=0.003\n", - "DEU-Fertility rate\n", - "Statistical=0.893, p=0.004\n", - "DEU-Foreign investment\n", - "Statistical=0.851, p=0.000\n", - "DEU-GDP\n", - "Statistical=0.927, p=0.031\n", - "DEU-Education GExp\n", - "Statistical=0.972, p=0.548\n", - "Data is NORMAL ( H0 not denied )\n", - "DEU-Workers high education\n", - "Statistical=0.887, p=0.003\n", - "DEU-Literacy rate\n", - "Statistical=0.809, p=0.000\n", - "DEU-Net migration\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "DEU-Mortality-infants\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "DEU-Health services use\n", - "Statistical=0.804, p=0.000\n", - "DEU-R&D GExp\n", - "Statistical=0.879, p=0.002\n", - "DEU-Ninis\n", - "Statistical=0.819, p=0.000\n", - "DEU-Suicide\n", - "Statistical=0.892, p=0.004\n", - "DEU-International taxes\n", - "Statistical=0.824, p=0.000\n", - "DEU-Alcohol per capita\n", - "Statistical=0.826, p=0.000\n", - "FRA-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "FRA-Renewable electricity\n", - "Statistical=0.796, p=0.000\n", - "FRA-Employment-agriculture\n", - "Statistical=0.936, p=0.058\n", - "Data is NORMAL ( H0 not denied )\n", - "FRA-Employment-industry\n", - "Statistical=0.904, p=0.008\n", - "FRA-Employment-services\n", - "Statistical=0.906, p=0.009\n", - "FRA-Exports-G&S\n", - "Statistical=0.915, p=0.015\n", - "FRA-Fertility rate\n", - "Statistical=0.876, p=0.002\n", - "FRA-Foreign investment\n", - "Statistical=0.884, p=0.002\n", - "FRA-GDP\n", - "Statistical=0.915, p=0.015\n", - "FRA-Education GExp\n", - "Statistical=0.957, p=0.223\n", - "Data is NORMAL ( H0 not denied )\n", - "FRA-Workers high education\n", - "Statistical=0.846, p=0.000\n", - "FRA-Literacy rate\n", - "Statistical=0.856, p=0.001\n", - "FRA-Net migration\n", - "Statistical=0.888, p=0.003\n", - "FRA-Mortality-infants\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "FRA-Health services use\n", - "Statistical=0.755, p=0.000\n", - "FRA-R&D GExp\n", - "Statistical=0.896, p=0.005\n", - "FRA-Ninis\n", - "Statistical=0.840, p=0.000\n", - "FRA-Suicide\n", - "Statistical=0.902, p=0.007\n", - "FRA-International taxes\n", - "Statistical=0.754, p=0.000\n", - "FRA-Alcohol per capita\n", - "Statistical=0.811, p=0.000\n", - "SWE-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "SWE-Renewable electricity\n", - "Statistical=0.832, p=0.000\n", - "SWE-Employment-agriculture\n", - "Statistical=0.883, p=0.003\n", - "SWE-Employment-industry\n", - "Statistical=0.898, p=0.006\n", - "SWE-Employment-services\n", - "Statistical=0.893, p=0.005\n", - "SWE-Exports-G&S\n", - "Statistical=0.898, p=0.006\n", - "SWE-Fertility rate\n", - "Statistical=0.850, p=0.001\n", - "SWE-Foreign investment\n", - "Statistical=0.863, p=0.001\n", - "SWE-GDP\n", - "Statistical=0.964, p=0.367\n", - "Data is NORMAL ( H0 not denied )\n", - "SWE-Education GExp\n", - "Statistical=0.976, p=0.700\n", - "Data is NORMAL ( H0 not denied )\n", - "SWE-Workers high education\n", - "Statistical=0.864, p=0.001\n", - "SWE-Literacy rate\n", - "Statistical=0.830, p=0.000\n", - "SWE-Net migration\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "SWE-Mortality-infants\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "SWE-Health services use\n", - "Statistical=0.791, p=0.000\n", - "SWE-R&D GExp\n", - "Statistical=0.932, p=0.051\n", - "Data is NORMAL ( H0 not denied )\n", - "SWE-Ninis\n", - "Statistical=0.820, p=0.000\n", - "SWE-Suicide\n", - "Statistical=0.955, p=0.215\n", - "Data is NORMAL ( H0 not denied )\n", - "SWE-International taxes\n", - "Statistical=0.832, p=0.000\n", - "SWE-Alcohol per capita\n", - "Statistical=0.927, p=0.037\n", - "GBR-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "GBR-Renewable electricity\n", - "Statistical=0.759, p=0.000\n", - "GBR-Employment-agriculture\n", - "Statistical=0.944, p=0.110\n", - "Data is NORMAL ( H0 not denied )\n", - "GBR-Employment-industry\n", - "Statistical=0.846, p=0.000\n", - "GBR-Employment-services\n", - "Statistical=0.896, p=0.006\n", - "GBR-Exports-G&S\n", - "Statistical=0.896, p=0.006\n", - "GBR-Fertility rate\n", - "Statistical=0.885, p=0.003\n", - "GBR-Foreign investment\n", - "Statistical=0.881, p=0.003\n", - "GBR-GDP\n", - "Statistical=0.971, p=0.533\n", - "Data is NORMAL ( H0 not denied )\n", - "GBR-Education GExp\n", - "Statistical=0.973, p=0.593\n", - "Data is NORMAL ( H0 not denied )\n", - "GBR-Workers high education\n", - "Statistical=0.882, p=0.003\n", - "GBR-Literacy rate\n", - "Statistical=0.847, p=0.000\n", - "GBR-Net migration\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "GBR-Mortality-infants\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "GBR-Health services use\n", - "Statistical=0.917, p=0.020\n", - "GBR-R&D GExp\n", - "Statistical=0.936, p=0.063\n", - "Data is NORMAL ( H0 not denied )\n", - "GBR-Ninis\n", - "Statistical=0.773, p=0.000\n", - "GBR-Suicide\n", - "Statistical=0.941, p=0.088\n", - "Data is NORMAL ( H0 not denied )\n", - "GBR-International taxes\n", - "Statistical=0.810, p=0.000\n", - "GBR-Alcohol per capita\n", - "Statistical=0.891, p=0.004\n", - "ESP-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "ESP-Renewable electricity\n", - "Statistical=0.793, p=0.000\n", - "ESP-Employment-agriculture\n", - "Statistical=0.908, p=0.012\n", - "ESP-Employment-industry\n", - "Statistical=0.823, p=0.000\n", - "ESP-Employment-services\n", - "Statistical=0.798, p=0.000\n", - "ESP-Exports-G&S\n", - "Statistical=0.866, p=0.001\n", - "ESP-Fertility rate\n", - "Statistical=0.905, p=0.009\n", - "ESP-Foreign investment\n", - "Statistical=0.897, p=0.006\n", - "ESP-GDP\n", - "Statistical=0.960, p=0.283\n", - "Data is NORMAL ( H0 not denied )\n", - "ESP-Education GExp\n", - "Statistical=0.989, p=0.980\n", - "Data is NORMAL ( H0 not denied )\n", - "ESP-Workers high education\n", - "Statistical=0.850, p=0.001\n", - "ESP-Literacy rate\n", - "Statistical=0.848, p=0.000\n", - "ESP-Net migration\n", - "Statistical=0.363, p=0.000\n", - "ESP-Mortality-infants\n", - "Statistical=0.712, p=0.000\n", - "ESP-Health services use\n", - "Statistical=0.923, p=0.029\n", - "ESP-R&D GExp\n", - "Statistical=0.901, p=0.008\n", - "ESP-Ninis\n", - "Statistical=0.711, p=0.000\n", - "ESP-Suicide\n", - "Statistical=0.852, p=0.001\n", - "ESP-International taxes\n", - "Statistical=0.820, p=0.000\n", - "ESP-Alcohol per capita\n", - "Statistical=0.841, p=0.000\n", - "HRV-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "HRV-Renewable electricity\n", - "Statistical=0.700, p=0.000\n", - "HRV-Employment-agriculture\n", - "Statistical=0.829, p=0.000\n", - "HRV-Employment-industry\n", - "Statistical=0.944, p=0.103\n", - "Data is NORMAL ( H0 not denied )\n", - "HRV-Employment-services\n", - "Statistical=0.956, p=0.232\n", - "Data is NORMAL ( H0 not denied )\n", - "HRV-Exports-G&S\n", - "Statistical=0.928, p=0.040\n", - "HRV-Fertility rate\n", - "Statistical=0.911, p=0.013\n", - "HRV-Foreign investment\n", - "Statistical=0.866, p=0.001\n", - "HRV-GDP\n", - "Statistical=0.976, p=0.703\n", - "Data is NORMAL ( H0 not denied )\n", - "HRV-Education GExp\n", - "Statistical=0.931, p=0.048\n", - "HRV-Workers high education\n", - "Statistical=0.827, p=0.000\n", - "HRV-Literacy rate\n", - "Statistical=0.835, p=0.000\n", - "HRV-Net migration\n", - "Statistical=0.878, p=0.002\n", - "HRV-Mortality-infants\n", - "Statistical=0.855, p=0.001\n", - "HRV-Health services use\n", - "Statistical=0.893, p=0.005\n", - "HRV-R&D GExp\n", - "Statistical=0.817, p=0.000\n", - "HRV-Ninis\n", - "Statistical=0.822, p=0.000\n", - "HRV-Suicide\n", - "Statistical=0.910, p=0.013\n", - "HRV-International taxes\n", - "Statistical=0.716, p=0.000\n", - "HRV-Alcohol per capita\n", - "Statistical=0.846, p=0.000\n", - "POL-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "POL-Renewable electricity\n", - "Statistical=0.813, p=0.000\n", - "POL-Employment-agriculture\n", - "Statistical=0.848, p=0.000\n", - "POL-Employment-industry\n", - "Statistical=0.935, p=0.060\n", - "Data is NORMAL ( H0 not denied )\n", - "POL-Employment-services\n", - "Statistical=0.959, p=0.275\n", - "Data is NORMAL ( H0 not denied )\n", - "POL-Exports-G&S\n", - "Statistical=0.884, p=0.003\n", - "POL-Fertility rate\n", - "Statistical=0.877, p=0.002\n", - "POL-Foreign investment\n", - "Statistical=0.858, p=0.001\n", - "POL-GDP\n", - "Statistical=0.904, p=0.009\n", - "POL-Education GExp\n", - "Statistical=0.974, p=0.628\n", - "Data is NORMAL ( H0 not denied )\n", - "POL-Workers high education\n", - "Statistical=0.879, p=0.002\n", - "POL-Literacy rate\n", - "Statistical=0.836, p=0.000\n", - "POL-Net migration\n", - "Statistical=0.753, p=0.000\n", - "POL-Mortality-infants\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "POL-Health services use\n", - "Statistical=0.797, p=0.000\n", - "POL-R&D GExp\n", - "Statistical=0.930, p=0.045\n", - "POL-Ninis\n", - "Statistical=0.805, p=0.000\n", - "POL-Suicide\n", - "Statistical=0.801, p=0.000\n", - "POL-International taxes\n", - "Statistical=0.733, p=0.000\n", - "POL-Alcohol per capita\n", - "Statistical=0.795, p=0.000\n", - "GRC-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "GRC-Renewable electricity\n", - "Statistical=0.808, p=0.000\n", - "GRC-Employment-agriculture\n", - "Statistical=0.825, p=0.000\n", - "GRC-Employment-industry\n", - "Statistical=0.837, p=0.000\n", - "GRC-Employment-services\n", - "Statistical=0.819, p=0.000\n", - "GRC-Exports-G&S\n", - "Statistical=0.917, p=0.019\n", - "GRC-Fertility rate\n", - "Statistical=0.903, p=0.008\n", - "GRC-Foreign investment\n", - "Statistical=0.890, p=0.004\n", - "GRC-GDP\n", - "Statistical=0.941, p=0.089\n", - "Data is NORMAL ( H0 not denied )\n", - "GRC-Education GExp\n", - "Statistical=0.944, p=0.105\n", - "Data is NORMAL ( H0 not denied )\n", - "GRC-Workers high education\n", - "Statistical=0.943, p=0.097\n", - "Data is NORMAL ( H0 not denied )\n", - "GRC-Literacy rate\n", - "Statistical=0.816, p=0.000\n", - "GRC-Net migration\n", - "Statistical=0.908, p=0.012\n", - "GRC-Mortality-infants\n", - "Statistical=0.885, p=0.003\n", - "GRC-Health services use\n", - "Statistical=0.883, p=0.003\n", - "GRC-R&D GExp\n", - "Statistical=0.916, p=0.019\n", - "GRC-Ninis\n", - "Statistical=0.809, p=0.000\n", - "GRC-Suicide\n", - "Statistical=0.815, p=0.000\n", - "GRC-International taxes\n", - "Statistical=0.791, p=0.000\n", - "GRC-Alcohol per capita\n", - "Statistical=0.809, p=0.000\n", - "AUT-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "AUT-Renewable electricity\n", - "Statistical=0.807, p=0.000\n", - "AUT-Employment-agriculture\n", - "Statistical=0.979, p=0.780\n", - "Data is NORMAL ( H0 not denied )\n", - "AUT-Employment-industry\n", - "Statistical=0.935, p=0.053\n", - "Data is NORMAL ( H0 not denied )\n", - "AUT-Employment-services\n", - "Statistical=0.882, p=0.002\n", - "AUT-Exports-G&S\n", - "Statistical=0.897, p=0.005\n", - "AUT-Fertility rate\n", - "Statistical=0.791, p=0.000\n", - "AUT-Foreign investment\n", - "Statistical=0.856, p=0.001\n", - "AUT-GDP\n", - "Statistical=0.980, p=0.804\n", - "Data is NORMAL ( H0 not denied )\n", - "AUT-Education GExp\n", - "Statistical=0.793, p=0.000\n", - "AUT-Workers high education\n", - "Statistical=0.854, p=0.000\n", - "AUT-Literacy rate\n", - "Statistical=0.806, p=0.000\n", - "AUT-Net migration\n", - "Statistical=0.650, p=0.000\n", - "AUT-Mortality-infants\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "AUT-Health services use\n", - "Statistical=0.803, p=0.000\n", - "AUT-R&D GExp\n", - "Statistical=0.939, p=0.069\n", - "Data is NORMAL ( H0 not denied )\n", - "AUT-Ninis\n", - "Statistical=0.784, p=0.000\n", - "AUT-Suicide\n", - "Statistical=0.881, p=0.002\n", - "AUT-International taxes\n", - "Statistical=0.826, p=0.000\n", - "AUT-Alcohol per capita\n", - "Statistical=0.838, p=0.000\n", - "NLD-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "NLD-Renewable electricity\n", - "Statistical=0.814, p=0.000\n", - "NLD-Employment-agriculture\n", - "Statistical=0.945, p=0.115\n", - "Data is NORMAL ( H0 not denied )\n", - "NLD-Employment-industry\n", - "Statistical=0.935, p=0.059\n", - "Data is NORMAL ( H0 not denied )\n", - "NLD-Employment-services\n", - "Statistical=0.910, p=0.013\n", - "NLD-Exports-G&S\n", - "Statistical=0.921, p=0.025\n", - "NLD-Fertility rate\n", - "Statistical=0.895, p=0.005\n", - "NLD-Foreign investment\n", - "Statistical=0.874, p=0.002\n", - "NLD-GDP\n", - "Statistical=0.939, p=0.076\n", - "Data is NORMAL ( H0 not denied )\n", - "NLD-Education GExp\n", - "Statistical=0.914, p=0.017\n", - "NLD-Workers high education\n", - "Statistical=0.863, p=0.001\n", - "NLD-Literacy rate\n", - "Statistical=0.841, p=0.000\n", - "NLD-Net migration\n", - "Statistical=0.883, p=0.003\n", - "NLD-Mortality-infants\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "NLD-Health services use\n", - "Statistical=0.903, p=0.008\n", - "NLD-R&D GExp\n", - "Statistical=0.811, p=0.000\n", - "NLD-Ninis\n", - "Statistical=0.848, p=0.000\n", - "NLD-Suicide\n", - "Statistical=0.921, p=0.025\n", - "NLD-International taxes\n", - "Statistical=0.849, p=0.000\n", - "NLD-Alcohol per capita\n", - "Statistical=0.787, p=0.000\n", - "IRQ-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "IRQ-Renewable electricity\n", - "Statistical=0.838, p=0.000\n", - "IRQ-Employment-agriculture\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "IRQ-Employment-industry\n", - "Statistical=0.916, p=0.019\n", - "IRQ-Employment-services\n", - "Statistical=0.904, p=0.009\n", - "IRQ-Exports-G&S\n", - "Statistical=0.904, p=0.009\n", - "IRQ-Fertility rate\n", - "Statistical=0.741, p=0.000\n", - "IRQ-Foreign investment\n", - "Statistical=0.901, p=0.007\n", - "IRQ-GDP\n", - "Statistical=0.965, p=0.390\n", - "Data is NORMAL ( H0 not denied )\n", - "IRQ-Education GExp\n", - "Statistical=0.744, p=0.000\n", - "IRQ-Workers high education\n", - "Statistical=0.869, p=0.001\n", - "IRQ-Literacy rate\n", - "Statistical=0.815, p=0.000\n", - "IRQ-Net migration\n", - "Statistical=0.442, p=0.000\n", - "IRQ-Mortality-infants\n", - "Statistical=0.734, p=0.000\n", - "IRQ-Health services use\n", - "Statistical=0.862, p=0.001\n", - "IRQ-R&D GExp\n", - "Statistical=0.961, p=0.314\n", - "Data is NORMAL ( H0 not denied )\n", - "IRQ-Ninis\n", - "Statistical=0.674, p=0.000\n", - "IRQ-Suicide\n", - "Statistical=0.661, p=0.000\n", - "IRQ-International taxes\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "IRQ-Alcohol per capita\n", - "Statistical=0.837, p=0.000\n", - "QAT-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "QAT-Renewable electricity\n", - "Statistical=0.719, p=0.000\n", - "QAT-Employment-agriculture\n", - "Statistical=0.876, p=0.002\n", - "QAT-Employment-industry\n", - "Statistical=0.873, p=0.002\n", - "QAT-Employment-services\n", - "Statistical=0.860, p=0.001\n", - "QAT-Exports-G&S\n", - "Statistical=0.858, p=0.001\n", - "QAT-Fertility rate\n", - "Statistical=0.616, p=0.000\n", - "QAT-Foreign investment\n", - "Statistical=0.844, p=0.000\n", - "QAT-GDP\n", - "Statistical=0.879, p=0.002\n", - "QAT-Education GExp\n", - "Statistical=0.581, p=0.000\n", - "QAT-Workers high education\n", - "Statistical=0.823, p=0.000\n", - "QAT-Literacy rate\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "QAT-Net migration\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "QAT-Mortality-infants\n", - "Statistical=0.686, p=0.000\n", - "QAT-Health services use\n", - "Statistical=0.922, p=0.026\n", - "QAT-R&D GExp\n", - "Statistical=0.894, p=0.005\n", - "QAT-Ninis\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "QAT-Suicide\n", - "Statistical=0.589, p=0.000\n", - "QAT-International taxes\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "QAT-Alcohol per capita\n", - "Statistical=0.844, p=0.000\n", - "ARE-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "ARE-Renewable electricity\n", - "Statistical=0.850, p=0.001\n", - "ARE-Employment-agriculture\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "ARE-Employment-industry\n", - "Statistical=0.867, p=0.001\n", - "ARE-Employment-services\n", - "Statistical=0.902, p=0.008\n", - "ARE-Exports-G&S\n", - "Statistical=0.874, p=0.002\n", - "ARE-Fertility rate\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "ARE-Foreign investment\n", - "Statistical=0.780, p=0.000\n", - "ARE-GDP\n", - "Statistical=0.904, p=0.009\n", - "ARE-Education GExp\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "ARE-Workers high education\n", - "Statistical=0.855, p=0.001\n", - "ARE-Literacy rate\n", - "Statistical=0.742, p=0.000\n", - "ARE-Net migration\n", - "Statistical=0.580, p=0.000\n", - "ARE-Mortality-infants\n", - "Statistical=0.761, p=0.000\n", - "ARE-Health services use\n", - "Statistical=0.920, p=0.024\n", - "ARE-R&D GExp\n", - "Statistical=0.893, p=0.005\n", - "ARE-Ninis\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "ARE-Suicide\n", - "Statistical=0.575, p=0.000\n", - "ARE-International taxes\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "ARE-Alcohol per capita\n", - "Statistical=0.772, p=0.000\n", - "SAU-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "SAU-Renewable electricity\n", - "Statistical=0.903, p=0.009\n", - "SAU-Employment-agriculture\n", - "Statistical=0.911, p=0.014\n", - "SAU-Employment-industry\n", - "Statistical=0.936, p=0.063\n", - "Data is NORMAL ( H0 not denied )\n", - "SAU-Employment-services\n", - "Statistical=0.915, p=0.018\n", - "SAU-Exports-G&S\n", - "Statistical=0.918, p=0.021\n", - "SAU-Fertility rate\n", - "Statistical=0.909, p=0.012\n", - "SAU-Foreign investment\n", - "Statistical=0.880, p=0.002\n", - "SAU-GDP\n", - "Statistical=0.922, p=0.027\n", - "SAU-Education GExp\n", - "Statistical=0.887, p=0.003\n", - "SAU-Workers high education\n", - "Statistical=0.838, p=0.000\n", - "SAU-Literacy rate\n", - "Statistical=0.808, p=0.000\n", - "SAU-Net migration\n", - "Statistical=0.664, p=0.000\n", - "SAU-Mortality-infants\n", - "Statistical=0.919, p=0.022\n", - "SAU-Health services use\n", - "Statistical=0.913, p=0.016\n", - "SAU-R&D GExp\n", - "Statistical=0.930, p=0.043\n", - "SAU-Ninis\n", - "Statistical=0.749, p=0.000\n", - "SAU-Suicide\n", - "Statistical=0.640, p=0.000\n", - "SAU-International taxes\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "SAU-Alcohol per capita\n", - "Statistical=0.778, p=0.000\n", - "AZE-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "AZE-Renewable electricity\n", - "Statistical=0.927, p=0.032\n", - "AZE-Employment-agriculture\n", - "Statistical=0.841, p=0.000\n", - "AZE-Employment-industry\n", - "Statistical=0.933, p=0.047\n", - "AZE-Employment-services\n", - "Statistical=0.906, p=0.009\n", - "AZE-Exports-G&S\n", - "Statistical=0.843, p=0.000\n", - "AZE-Fertility rate\n", - "Statistical=0.800, p=0.000\n", - "AZE-Foreign investment\n", - "Statistical=0.851, p=0.000\n", - "AZE-GDP\n", - "Statistical=0.913, p=0.014\n", - "AZE-Education GExp\n", - "Statistical=0.933, p=0.048\n", - "AZE-Workers high education\n", - "Statistical=0.854, p=0.001\n", - "AZE-Literacy rate\n", - "Statistical=0.808, p=0.000\n", - "AZE-Net migration\n", - "Statistical=0.833, p=0.000\n", - "AZE-Mortality-infants\n", - "Statistical=0.687, p=0.000\n", - "AZE-Health services use\n", - "Statistical=0.874, p=0.001\n", - "AZE-R&D GExp\n", - "Statistical=0.802, p=0.000\n", - "AZE-Ninis\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "AZE-Suicide\n", - "Statistical=0.860, p=0.001\n", - "AZE-International taxes\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "AZE-Alcohol per capita\n", - "Statistical=0.866, p=0.001\n", - "YEM-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "YEM-Renewable electricity\n", - "Statistical=0.740, p=0.000\n", - "YEM-Employment-agriculture\n", - "Statistical=0.730, p=0.000\n", - "YEM-Employment-industry\n", - "Statistical=0.820, p=0.000\n", - "YEM-Employment-services\n", - "Statistical=0.942, p=0.091\n", - "Data is NORMAL ( H0 not denied )\n", - "YEM-Exports-G&S\n", - "Statistical=0.880, p=0.002\n", - "YEM-Fertility rate\n", - "Statistical=0.615, p=0.000\n", - "YEM-Foreign investment\n", - "Statistical=0.529, p=0.000\n", - "YEM-GDP\n", - "Statistical=0.931, p=0.046\n", - "YEM-Education GExp\n", - "Statistical=0.707, p=0.000\n", - "YEM-Workers high education\n", - "Statistical=0.900, p=0.007\n", - "YEM-Literacy rate\n", - "Statistical=0.857, p=0.001\n", - "YEM-Net migration\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "YEM-Mortality-infants\n", - "Statistical=0.722, p=0.000\n", - "YEM-Health services use\n", - "Statistical=0.848, p=0.000\n", - "YEM-R&D GExp\n", - "Statistical=0.897, p=0.006\n", - "YEM-Ninis\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "YEM-Suicide\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "YEM-International taxes\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "YEM-Alcohol per capita\n", - "Statistical=0.863, p=0.001\n", - "OMN-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "OMN-Renewable electricity\n", - "Statistical=0.706, p=0.000\n", - "OMN-Employment-agriculture\n", - "Statistical=0.945, p=0.116\n", - "Data is NORMAL ( H0 not denied )\n", - "OMN-Employment-industry\n", - "Statistical=0.935, p=0.062\n", - "Data is NORMAL ( H0 not denied )\n", - "OMN-Employment-services\n", - "Statistical=0.840, p=0.000\n", - "OMN-Exports-G&S\n", - "Statistical=0.846, p=0.000\n", - "OMN-Fertility rate\n", - "Statistical=0.882, p=0.003\n", - "OMN-Foreign investment\n", - "Statistical=0.880, p=0.002\n", - "OMN-GDP\n", - "Statistical=0.733, p=0.000\n", - "OMN-Education GExp\n", - "Statistical=0.820, p=0.000\n", - "OMN-Workers high education\n", - "Statistical=0.828, p=0.000\n", - "OMN-Literacy rate\n", - "Statistical=0.798, p=0.000\n", - "OMN-Net migration\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "OMN-Mortality-infants\n", - "Statistical=0.788, p=0.000\n", - "OMN-Health services use\n", - "Statistical=0.815, p=0.000\n", - "OMN-R&D GExp\n", - "Statistical=0.939, p=0.076\n", - "Data is NORMAL ( H0 not denied )\n", - "OMN-Ninis\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "OMN-Suicide\n", - "Statistical=0.601, p=0.000\n", - "OMN-International taxes\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "OMN-Alcohol per capita\n", - "Statistical=0.852, p=0.001\n", - "DZA-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "DZA-Renewable electricity\n", - "Statistical=0.845, p=0.000\n", - "DZA-Employment-agriculture\n", - "Statistical=0.725, p=0.000\n", - "DZA-Employment-industry\n", - "Statistical=0.827, p=0.000\n", - "DZA-Employment-services\n", - "Statistical=0.782, p=0.000\n", - "DZA-Exports-G&S\n", - "Statistical=0.904, p=0.008\n", - "DZA-Fertility rate\n", - "Statistical=0.781, p=0.000\n", - "DZA-Foreign investment\n", - "Statistical=0.896, p=0.005\n", - "DZA-GDP\n", - "Statistical=0.922, p=0.023\n", - "DZA-Education GExp\n", - "Statistical=0.968, p=0.446\n", - "Data is NORMAL ( H0 not denied )\n", - "DZA-Workers high education\n", - "Statistical=0.863, p=0.001\n", - "DZA-Literacy rate\n", - "Statistical=0.851, p=0.000\n", - "DZA-Net migration\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "DZA-Mortality-infants\n", - "Statistical=0.808, p=0.000\n", - "DZA-Health services use\n", - "Statistical=0.783, p=0.000\n", - "DZA-R&D GExp\n", - "Statistical=0.891, p=0.004\n", - "DZA-Ninis\n", - "Statistical=0.662, p=0.000\n", - "DZA-Suicide\n", - "Statistical=0.863, p=0.001\n", - "DZA-International taxes\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "DZA-Alcohol per capita\n", - "Statistical=0.813, p=0.000\n", - "EGY-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "EGY-Renewable electricity\n", - "Statistical=0.827, p=0.000\n", - "EGY-Employment-agriculture\n", - "Statistical=0.658, p=0.000\n", - "EGY-Employment-industry\n", - "Statistical=0.944, p=0.108\n", - "Data is NORMAL ( H0 not denied )\n", - "EGY-Employment-services\n", - "Statistical=0.919, p=0.022\n", - "EGY-Exports-G&S\n", - "Statistical=0.952, p=0.181\n", - "Data is NORMAL ( H0 not denied )\n", - "EGY-Fertility rate\n", - "Statistical=0.919, p=0.022\n", - "EGY-Foreign investment\n", - "Statistical=0.855, p=0.001\n", - "EGY-GDP\n", - "Statistical=0.881, p=0.002\n", - "EGY-Education GExp\n", - "Statistical=0.874, p=0.002\n", - "EGY-Workers high education\n", - "Statistical=0.868, p=0.001\n", - "EGY-Literacy rate\n", - "Statistical=0.855, p=0.001\n", - "EGY-Net migration\n", - "Statistical=0.880, p=0.002\n", - "EGY-Mortality-infants\n", - "Statistical=0.784, p=0.000\n", - "EGY-Health services use\n", - "Statistical=0.827, p=0.000\n", - "EGY-R&D GExp\n", - "Statistical=0.926, p=0.034\n", - "EGY-Ninis\n", - "Statistical=0.814, p=0.000\n", - "EGY-Suicide\n", - "Statistical=0.763, p=0.000\n", - "EGY-International taxes\n", - "Statistical=0.804, p=0.000\n", - "EGY-Alcohol per capita\n", - "Statistical=0.823, p=0.000\n", - "LBY-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "LBY-Renewable electricity\n", - "Statistical=0.887, p=0.003\n", - "LBY-Employment-agriculture\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "LBY-Employment-industry\n", - "Statistical=0.917, p=0.020\n", - "LBY-Employment-services\n", - "Statistical=0.911, p=0.014\n", - "LBY-Exports-G&S\n", - "Statistical=0.869, p=0.001\n", - "LBY-Fertility rate\n", - "Statistical=0.865, p=0.001\n", - "LBY-Foreign investment\n", - "Statistical=0.831, p=0.000\n", - "LBY-GDP\n", - "Statistical=0.813, p=0.000\n", - "LBY-Education GExp\n", - "Statistical=0.975, p=0.673\n", - "Data is NORMAL ( H0 not denied )\n", - "LBY-Workers high education\n", - "Statistical=0.849, p=0.000\n", - "LBY-Literacy rate\n", - "Statistical=0.826, p=0.000\n", - "LBY-Net migration\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "LBY-Mortality-infants\n", - "Statistical=0.722, p=0.000\n", - "LBY-Health services use\n", - "Statistical=0.954, p=0.195\n", - "Data is NORMAL ( H0 not denied )\n", - "LBY-R&D GExp\n", - "Statistical=0.946, p=0.122\n", - "Data is NORMAL ( H0 not denied )\n", - "LBY-Ninis\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "LBY-Suicide\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "LBY-International taxes\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "LBY-Alcohol per capita\n", - "Statistical=0.927, p=0.037\n", - "ISR-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "ISR-Renewable electricity\n", - "Statistical=0.814, p=0.000\n", - "ISR-Employment-agriculture\n", - "Statistical=0.830, p=0.000\n", - "ISR-Employment-industry\n", - "Statistical=0.892, p=0.004\n", - "ISR-Employment-services\n", - "Statistical=0.850, p=0.000\n", - "ISR-Exports-G&S\n", - "Statistical=0.861, p=0.001\n", - "ISR-Fertility rate\n", - "Statistical=0.890, p=0.003\n", - "ISR-Foreign investment\n", - "Statistical=0.913, p=0.014\n", - "ISR-GDP\n", - "Statistical=0.962, p=0.307\n", - "Data is NORMAL ( H0 not denied )\n", - "ISR-Education GExp\n", - "Statistical=0.855, p=0.001\n", - "ISR-Workers high education\n", - "Statistical=0.845, p=0.000\n", - "ISR-Literacy rate\n", - "Statistical=0.656, p=0.000\n", - "ISR-Net migration\n", - "Statistical=0.915, p=0.015\n", - "ISR-Mortality-infants\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "ISR-Health services use\n", - "Statistical=0.909, p=0.010\n", - "ISR-R&D GExp\n", - "Statistical=0.898, p=0.005\n", - "ISR-Ninis\n", - "Statistical=0.537, p=0.000\n", - "ISR-Suicide\n", - "Statistical=0.818, p=0.000\n", - "ISR-International taxes\n", - "Statistical=0.680, p=0.000\n", - "ISR-Alcohol per capita\n", - "Statistical=0.844, p=0.000\n", - "TUR-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "TUR-Renewable electricity\n", - "Statistical=0.866, p=0.001\n", - "TUR-Employment-agriculture\n", - "Statistical=0.754, p=0.000\n", - "TUR-Employment-industry\n", - "Statistical=0.916, p=0.016\n", - "TUR-Employment-services\n", - "Statistical=0.895, p=0.005\n", - "TUR-Exports-G&S\n", - "Statistical=0.941, p=0.082\n", - "Data is NORMAL ( H0 not denied )\n", - "TUR-Fertility rate\n", - "Statistical=0.908, p=0.010\n", - "TUR-Foreign investment\n", - "Statistical=0.877, p=0.002\n", - "TUR-GDP\n", - "Statistical=0.878, p=0.002\n", - "TUR-Education GExp\n", - "Statistical=0.859, p=0.001\n", - "TUR-Workers high education\n", - "Statistical=0.861, p=0.001\n", - "TUR-Literacy rate\n", - "Statistical=0.845, p=0.000\n", - "TUR-Net migration\n", - "Statistical=0.755, p=0.000\n", - "TUR-Mortality-infants\n", - "Statistical=0.906, p=0.009\n", - "TUR-Health services use\n", - "Statistical=0.904, p=0.008\n", - "TUR-R&D GExp\n", - "Statistical=0.735, p=0.000\n", - "TUR-Ninis\n", - "Statistical=0.806, p=0.000\n", - "TUR-Suicide\n", - "Statistical=0.844, p=0.000\n", - "TUR-International taxes\n", - "Statistical=0.690, p=0.000\n", - "TUR-Alcohol per capita\n", - "Statistical=0.775, p=0.000\n", - "MAR-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "MAR-Renewable electricity\n", - "Statistical=0.775, p=0.000\n", - "MAR-Employment-agriculture\n", - "Statistical=0.865, p=0.001\n", - "MAR-Employment-industry\n", - "Statistical=0.868, p=0.001\n", - "MAR-Employment-services\n", - "Statistical=0.878, p=0.002\n", - "MAR-Exports-G&S\n", - "Statistical=0.893, p=0.005\n", - "MAR-Fertility rate\n", - "Statistical=0.863, p=0.001\n", - "MAR-Foreign investment\n", - "Statistical=0.875, p=0.002\n", - "MAR-GDP\n", - "Statistical=0.799, p=0.000\n", - "MAR-Education GExp\n", - "Statistical=0.903, p=0.009\n", - "MAR-Workers high education\n", - "Statistical=0.861, p=0.001\n", - "MAR-Literacy rate\n", - "Statistical=0.856, p=0.001\n", - "MAR-Net migration\n", - "Statistical=0.931, p=0.046\n", - "MAR-Mortality-infants\n", - "Statistical=0.858, p=0.001\n", - "MAR-Health services use\n", - "Statistical=0.940, p=0.085\n", - "Data is NORMAL ( H0 not denied )\n", - "MAR-R&D GExp\n", - "Statistical=0.919, p=0.023\n", - "MAR-Ninis\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "MAR-Suicide\n", - "Statistical=0.786, p=0.000\n", - "MAR-International taxes\n", - "Statistical=0.784, p=0.000\n", - "MAR-Alcohol per capita\n", - "Statistical=0.754, p=0.000\n", - "SEN-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "SEN-Renewable electricity\n", - "Statistical=0.860, p=0.001\n", - "SEN-Employment-agriculture\n", - "Statistical=0.938, p=0.064\n", - "Data is NORMAL ( H0 not denied )\n", - "SEN-Employment-industry\n", - "Statistical=0.892, p=0.004\n", - "SEN-Employment-services\n", - "Statistical=0.937, p=0.062\n", - "Data is NORMAL ( H0 not denied )\n", - "SEN-Exports-G&S\n", - "Statistical=0.904, p=0.008\n", - "SEN-Fertility rate\n", - "Statistical=0.818, p=0.000\n", - "SEN-Foreign investment\n", - "Statistical=0.865, p=0.001\n", - "SEN-GDP\n", - "Statistical=0.942, p=0.084\n", - "Data is NORMAL ( H0 not denied )\n", - "SEN-Education GExp\n", - "Statistical=0.884, p=0.002\n", - "SEN-Workers high education\n", - "Statistical=0.879, p=0.002\n", - "SEN-Literacy rate\n", - "Statistical=0.853, p=0.000\n", - "SEN-Net migration\n", - "Statistical=0.453, p=0.000\n", - "SEN-Mortality-infants\n", - "Statistical=0.792, p=0.000\n", - "SEN-Health services use\n", - "Statistical=0.935, p=0.054\n", - "Data is NORMAL ( H0 not denied )\n", - "SEN-R&D GExp\n", - "Statistical=0.815, p=0.000\n", - "SEN-Ninis\n", - "Statistical=0.546, p=0.000\n", - "SEN-Suicide\n", - "Statistical=0.689, p=0.000\n", - "SEN-International taxes\n", - "Statistical=0.895, p=0.005\n", - "SEN-Alcohol per capita\n", - "Statistical=0.850, p=0.000\n", - "ZAF-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "ZAF-Renewable electricity\n", - "Statistical=0.839, p=0.000\n", - "ZAF-Employment-agriculture\n", - "Statistical=0.840, p=0.000\n", - "ZAF-Employment-industry\n", - "Statistical=0.832, p=0.000\n", - "ZAF-Employment-services\n", - "Statistical=0.910, p=0.011\n", - "ZAF-Exports-G&S\n", - "Statistical=0.871, p=0.001\n", - "ZAF-Fertility rate\n", - "Statistical=0.866, p=0.001\n", - "ZAF-Foreign investment\n", - "Statistical=0.861, p=0.001\n", - "ZAF-GDP\n", - "Statistical=0.834, p=0.000\n", - "ZAF-Education GExp\n", - "Statistical=0.968, p=0.458\n", - "Data is NORMAL ( H0 not denied )\n", - "ZAF-Workers high education\n", - "Statistical=0.886, p=0.003\n", - "ZAF-Literacy rate\n", - "Statistical=0.855, p=0.001\n", - "ZAF-Net migration\n", - "Statistical=0.858, p=0.001\n", - "ZAF-Mortality-infants\n", - "Statistical=0.768, p=0.000\n", - "ZAF-Health services use\n", - "Statistical=0.863, p=0.001\n", - "ZAF-R&D GExp\n", - "Statistical=0.957, p=0.232\n", - "Data is NORMAL ( H0 not denied )\n", - "ZAF-Ninis\n", - "Statistical=0.789, p=0.000\n", - "ZAF-Suicide\n", - "Statistical=0.885, p=0.003\n", - "ZAF-International taxes\n", - "Statistical=0.803, p=0.000\n", - "ZAF-Alcohol per capita\n", - "Statistical=0.846, p=0.000\n", - "LBR-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "LBR-Renewable electricity\n", - "Statistical=0.852, p=0.001\n", - "LBR-Employment-agriculture\n", - "Statistical=0.816, p=0.000\n", - "LBR-Employment-industry\n", - "Statistical=0.925, p=0.032\n", - "LBR-Employment-services\n", - "Statistical=0.877, p=0.002\n", - "LBR-Exports-G&S\n", - "Statistical=0.917, p=0.020\n", - "LBR-Fertility rate\n", - "Statistical=0.825, p=0.000\n", - "LBR-Foreign investment\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "LBR-GDP\n", - "Statistical=0.940, p=0.082\n", - "Data is NORMAL ( H0 not denied )\n", - "LBR-Education GExp\n", - "Statistical=0.542, p=0.000\n", - "LBR-Workers high education\n", - "Statistical=0.750, p=0.000\n", - "LBR-Literacy rate\n", - "Statistical=0.862, p=0.001\n", - "LBR-Net migration\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "LBR-Mortality-infants\n", - "Statistical=0.705, p=0.000\n", - "LBR-Health services use\n", - "Statistical=0.848, p=0.000\n", - "LBR-R&D GExp\n", - "Statistical=0.946, p=0.120\n", - "Data is NORMAL ( H0 not denied )\n", - "LBR-Ninis\n", - "Statistical=0.671, p=0.000\n", - "LBR-Suicide\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "LBR-International taxes\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "LBR-Alcohol per capita\n", - "Statistical=0.849, p=0.000\n", - "MOZ-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "MOZ-Renewable electricity\n", - "Statistical=0.799, p=0.000\n", - "MOZ-Employment-agriculture\n", - "Statistical=0.864, p=0.001\n", - "MOZ-Employment-industry\n", - "Statistical=0.900, p=0.007\n", - "MOZ-Employment-services\n", - "Statistical=0.843, p=0.000\n", - "MOZ-Exports-G&S\n", - "Statistical=0.920, p=0.023\n", - "MOZ-Fertility rate\n", - "Statistical=0.758, p=0.000\n", - "MOZ-Foreign investment\n", - "Statistical=0.885, p=0.003\n", - "MOZ-GDP\n", - "Statistical=0.943, p=0.098\n", - "Data is NORMAL ( H0 not denied )\n", - "MOZ-Education GExp\n", - "Statistical=0.718, p=0.000\n", - "MOZ-Workers high education\n", - "Statistical=0.912, p=0.015\n", - "MOZ-Literacy rate\n", - "Statistical=0.850, p=0.000\n", - "MOZ-Net migration\n", - "Statistical=0.633, p=0.000\n", - "MOZ-Mortality-infants\n", - "Statistical=0.901, p=0.008\n", - "MOZ-Health services use\n", - "Statistical=0.870, p=0.001\n", - "MOZ-R&D GExp\n", - "Statistical=0.873, p=0.002\n", - "MOZ-Ninis\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "MOZ-Suicide\n", - "Statistical=0.831, p=0.000\n", - "MOZ-International taxes\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "MOZ-Alcohol per capita\n", - "Statistical=0.788, p=0.000\n", - "CMR-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "CMR-Renewable electricity\n", - "Statistical=0.932, p=0.046\n", - "CMR-Employment-agriculture\n", - "Statistical=0.844, p=0.000\n", - "CMR-Employment-industry\n", - "Statistical=0.845, p=0.000\n", - "CMR-Employment-services\n", - "Statistical=0.818, p=0.000\n", - "CMR-Exports-G&S\n", - "Statistical=0.858, p=0.001\n", - "CMR-Fertility rate\n", - "Statistical=0.921, p=0.022\n", - "CMR-Foreign investment\n", - "Statistical=0.871, p=0.001\n", - "CMR-GDP\n", - "Statistical=0.967, p=0.427\n", - "Data is NORMAL ( H0 not denied )\n", - "CMR-Education GExp\n", - "Statistical=0.869, p=0.001\n", - "CMR-Workers high education\n", - "Statistical=0.877, p=0.002\n", - "CMR-Literacy rate\n", - "Statistical=0.827, p=0.000\n", - "CMR-Net migration\n", - "Statistical=0.908, p=0.010\n", - "CMR-Mortality-infants\n", - "Statistical=0.756, p=0.000\n", - "CMR-Health services use\n", - "Statistical=0.855, p=0.001\n", - "CMR-R&D GExp\n", - "Statistical=0.815, p=0.000\n", - "CMR-Ninis\n", - "Statistical=0.643, p=0.000\n", - "CMR-Suicide\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "CMR-International taxes\n", - "Statistical=0.703, p=0.000\n", - "CMR-Alcohol per capita\n", - "Statistical=0.815, p=0.000\n", - "NGA-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "NGA-Renewable electricity\n", - "Statistical=0.741, p=0.000\n", - "NGA-Employment-agriculture\n", - "Statistical=0.446, p=0.000\n", - "NGA-Employment-industry\n", - "Statistical=0.879, p=0.002\n", - "NGA-Employment-services\n", - "Statistical=0.941, p=0.082\n", - "Data is NORMAL ( H0 not denied )\n", - "NGA-Exports-G&S\n", - "Statistical=0.883, p=0.002\n", - "NGA-Fertility rate\n", - "Statistical=0.945, p=0.105\n", - "Data is NORMAL ( H0 not denied )\n", - "NGA-Foreign investment\n", - "Statistical=0.898, p=0.005\n", - "NGA-GDP\n", - "Statistical=0.962, p=0.305\n", - "Data is NORMAL ( H0 not denied )\n", - "NGA-Education GExp\n", - "Statistical=0.885, p=0.003\n", - "NGA-Workers high education\n", - "Statistical=0.857, p=0.001\n", - "NGA-Literacy rate\n", - "Statistical=0.835, p=0.000\n", - "NGA-Net migration\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "NGA-Mortality-infants\n", - "Statistical=0.868, p=0.001\n", - "NGA-Health services use\n", - "Statistical=0.956, p=0.214\n", - "Data is NORMAL ( H0 not denied )\n", - "NGA-R&D GExp\n", - "Statistical=0.749, p=0.000\n", - "NGA-Ninis\n", - "Statistical=0.743, p=0.000\n", - "NGA-Suicide\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "NGA-International taxes\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "NGA-Alcohol per capita\n", - "Statistical=0.771, p=0.000\n", - "GHA-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "GHA-Renewable electricity\n", - "Statistical=0.865, p=0.001\n", - "GHA-Employment-agriculture\n", - "Statistical=0.827, p=0.000\n", - "GHA-Employment-industry\n", - "Statistical=0.745, p=0.000\n", - "GHA-Employment-services\n", - "Statistical=0.935, p=0.058\n", - "Data is NORMAL ( H0 not denied )\n", - "GHA-Exports-G&S\n", - "Statistical=0.783, p=0.000\n", - "GHA-Fertility rate\n", - "Statistical=0.892, p=0.005\n", - "GHA-Foreign investment\n", - "Statistical=0.823, p=0.000\n", - "GHA-GDP\n", - "Statistical=0.958, p=0.265\n", - "Data is NORMAL ( H0 not denied )\n", - "GHA-Education GExp\n", - "Statistical=0.759, p=0.000\n", - "GHA-Workers high education\n", - "Statistical=0.801, p=0.000\n", - "GHA-Literacy rate\n", - "Statistical=0.839, p=0.000\n", - "GHA-Net migration\n", - "Statistical=0.770, p=0.000\n", - "GHA-Mortality-infants\n", - "Statistical=0.841, p=0.000\n", - "GHA-Health services use\n", - "Statistical=0.909, p=0.012\n", - "GHA-R&D GExp\n", - "Statistical=0.960, p=0.288\n", - "Data is NORMAL ( H0 not denied )\n", - "GHA-Ninis\n", - "Statistical=0.947, p=0.129\n", - "Data is NORMAL ( H0 not denied )\n", - "GHA-Suicide\n", - "Statistical=0.656, p=0.000\n", - "GHA-International taxes\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "GHA-Alcohol per capita\n", - "Statistical=0.850, p=0.001\n", - "BGD-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "BGD-Renewable electricity\n", - "Statistical=0.808, p=0.000\n", - "BGD-Employment-agriculture\n", - "Statistical=0.978, p=0.734\n", - "Data is NORMAL ( H0 not denied )\n", - "BGD-Employment-industry\n", - "Statistical=0.885, p=0.003\n", - "BGD-Employment-services\n", - "Statistical=0.899, p=0.006\n", - "BGD-Exports-G&S\n", - "Statistical=0.895, p=0.005\n", - "BGD-Fertility rate\n", - "Statistical=0.827, p=0.000\n", - "BGD-Foreign investment\n", - "Statistical=0.855, p=0.001\n", - "BGD-GDP\n", - "Statistical=0.904, p=0.008\n", - "BGD-Education GExp\n", - "Statistical=0.862, p=0.001\n", - "BGD-Workers high education\n", - "Statistical=0.814, p=0.000\n", - "BGD-Literacy rate\n", - "Statistical=0.853, p=0.000\n", - "BGD-Net migration\n", - "Statistical=0.761, p=0.000\n", - "BGD-Mortality-infants\n", - "Statistical=0.894, p=0.004\n", - "BGD-Health services use\n", - "Statistical=0.917, p=0.017\n", - "BGD-R&D GExp\n", - "Statistical=0.922, p=0.023\n", - "BGD-Ninis\n", - "Statistical=0.788, p=0.000\n", - "BGD-Suicide\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "BGD-International taxes\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "BGD-Alcohol per capita\n", - "Statistical=0.836, p=0.000\n", - "IND-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "IND-Renewable electricity\n", - "Statistical=0.743, p=0.000\n", - "IND-Employment-agriculture\n", - "Statistical=0.892, p=0.005\n", - "IND-Employment-industry\n", - "Statistical=0.892, p=0.005\n", - "IND-Employment-services\n", - "Statistical=0.843, p=0.000\n", - "IND-Exports-G&S\n", - "Statistical=0.922, p=0.027\n", - "IND-Fertility rate\n", - "Statistical=0.848, p=0.000\n", - "IND-Foreign investment\n", - "Statistical=0.832, p=0.000\n", - "IND-GDP\n", - "Statistical=0.930, p=0.044\n", - "IND-Education GExp\n", - "Statistical=0.829, p=0.000\n", - "IND-Workers high education\n", - "Statistical=0.858, p=0.001\n", - "IND-Literacy rate\n", - "Statistical=0.854, p=0.001\n", - "IND-Net migration\n", - "Statistical=0.884, p=0.003\n", - "IND-Mortality-infants\n", - "Statistical=0.784, p=0.000\n", - "IND-Health services use\n", - "Statistical=0.939, p=0.078\n", - "Data is NORMAL ( H0 not denied )\n", - "IND-R&D GExp\n", - "Statistical=0.793, p=0.000\n", - "IND-Ninis\n", - "Statistical=0.894, p=0.005\n", - "IND-Suicide\n", - "Statistical=0.909, p=0.012\n", - "IND-International taxes\n", - "Statistical=0.781, p=0.000\n", - "IND-Alcohol per capita\n", - "Statistical=0.855, p=0.001\n", - "VNM-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "VNM-Renewable electricity\n", - "Statistical=0.774, p=0.000\n", - "VNM-Employment-agriculture\n", - "Statistical=0.695, p=0.000\n", - "VNM-Employment-industry\n", - "Statistical=0.907, p=0.010\n", - "VNM-Employment-services\n", - "Statistical=0.905, p=0.008\n", - "VNM-Exports-G&S\n", - "Statistical=0.905, p=0.008\n", - "VNM-Fertility rate\n", - "Statistical=0.855, p=0.001\n", - "VNM-Foreign investment\n", - "Statistical=0.806, p=0.000\n", - "VNM-GDP\n", - "Statistical=0.727, p=0.000\n", - "VNM-Education GExp\n", - "Statistical=0.814, p=0.000\n", - "VNM-Workers high education\n", - "Statistical=0.855, p=0.001\n", - "VNM-Literacy rate\n", - "Statistical=0.853, p=0.000\n", - "VNM-Net migration\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "VNM-Mortality-infants\n", - "Statistical=0.846, p=0.000\n", - "VNM-Health services use\n", - "Statistical=0.694, p=0.000\n", - "VNM-R&D GExp\n", - "Statistical=0.881, p=0.002\n", - "VNM-Ninis\n", - "Statistical=0.688, p=0.000\n", - "VNM-Suicide\n", - "Statistical=0.631, p=0.000\n", - "VNM-International taxes\n", - "Statistical=0.772, p=0.000\n", - "VNM-Alcohol per capita\n", - "Statistical=0.780, p=0.000\n", - "THA-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "THA-Renewable electricity\n", - "Statistical=0.791, p=0.000\n", - "THA-Employment-agriculture\n", - "Statistical=0.980, p=0.810\n", - "Data is NORMAL ( H0 not denied )\n", - "THA-Employment-industry\n", - "Statistical=0.929, p=0.040\n", - "THA-Employment-services\n", - "Statistical=0.945, p=0.117\n", - "Data is NORMAL ( H0 not denied )\n", - "THA-Exports-G&S\n", - "Statistical=0.928, p=0.039\n", - "THA-Fertility rate\n", - "Statistical=0.863, p=0.001\n", - "THA-Foreign investment\n", - "Statistical=0.879, p=0.002\n", - "THA-GDP\n", - "Statistical=0.790, p=0.000\n", - "THA-Education GExp\n", - "Statistical=0.935, p=0.059\n", - "Data is NORMAL ( H0 not denied )\n", - "THA-Workers high education\n", - "Statistical=0.883, p=0.003\n", - "THA-Literacy rate\n", - "Statistical=0.849, p=0.000\n", - "THA-Net migration\n", - "Statistical=0.956, p=0.231\n", - "Data is NORMAL ( H0 not denied )\n", - "THA-Mortality-infants\n", - "Statistical=0.823, p=0.000\n", - "THA-Health services use\n", - "Statistical=0.905, p=0.010\n", - "THA-R&D GExp\n", - "Statistical=0.774, p=0.000\n", - "THA-Ninis\n", - "Statistical=0.787, p=0.000\n", - "THA-Suicide\n", - "Statistical=0.825, p=0.000\n", - "THA-International taxes\n", - "Statistical=0.806, p=0.000\n", - "THA-Alcohol per capita\n", - "Statistical=0.788, p=0.000\n", - "IDN-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "IDN-Renewable electricity\n", - "Statistical=0.810, p=0.000\n", - "IDN-Employment-agriculture\n", - "Statistical=0.885, p=0.003\n", - "IDN-Employment-industry\n", - "Statistical=0.946, p=0.108\n", - "Data is NORMAL ( H0 not denied )\n", - "IDN-Employment-services\n", - "Statistical=0.924, p=0.027\n", - "IDN-Exports-G&S\n", - "Statistical=0.950, p=0.147\n", - "Data is NORMAL ( H0 not denied )\n", - "IDN-Fertility rate\n", - "Statistical=0.888, p=0.003\n", - "IDN-Foreign investment\n", - "Statistical=0.877, p=0.002\n", - "IDN-GDP\n", - "Statistical=0.919, p=0.020\n", - "IDN-Education GExp\n", - "Statistical=0.922, p=0.024\n", - "IDN-Workers high education\n", - "Statistical=0.830, p=0.000\n", - "IDN-Literacy rate\n", - "Statistical=0.853, p=0.000\n", - "IDN-Net migration\n", - "Statistical=0.879, p=0.002\n", - "IDN-Mortality-infants\n", - "Statistical=0.785, p=0.000\n", - "IDN-Health services use\n", - "Statistical=0.951, p=0.149\n", - "Data is NORMAL ( H0 not denied )\n", - "IDN-R&D GExp\n", - "Statistical=0.893, p=0.004\n", - "IDN-Ninis\n", - "Statistical=0.835, p=0.000\n", - "IDN-Suicide\n", - "Statistical=0.678, p=0.000\n", - "IDN-International taxes\n", - "Statistical=0.874, p=0.001\n", - "IDN-Alcohol per capita\n", - "Statistical=0.804, p=0.000\n", - "PHL-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "PHL-Renewable electricity\n", - "Statistical=0.845, p=0.000\n", - "PHL-Employment-agriculture\n", - "Statistical=0.960, p=0.271\n", - "Data is NORMAL ( H0 not denied )\n", - "PHL-Employment-industry\n", - "Statistical=0.946, p=0.112\n", - "Data is NORMAL ( H0 not denied )\n", - "PHL-Employment-services\n", - "Statistical=0.900, p=0.006\n", - "PHL-Exports-G&S\n", - "Statistical=0.945, p=0.106\n", - "Data is NORMAL ( H0 not denied )\n", - "PHL-Fertility rate\n", - "Statistical=0.880, p=0.002\n", - "PHL-Foreign investment\n", - "Statistical=0.943, p=0.089\n", - "Data is NORMAL ( H0 not denied )\n", - "PHL-GDP\n", - "Statistical=0.943, p=0.089\n", - "Data is NORMAL ( H0 not denied )\n", - "PHL-Education GExp\n", - "Statistical=0.981, p=0.832\n", - "Data is NORMAL ( H0 not denied )\n", - "PHL-Workers high education\n", - "Statistical=0.849, p=0.000\n", - "PHL-Literacy rate\n", - "Statistical=0.805, p=0.000\n", - "PHL-Net migration\n", - "Statistical=0.856, p=0.001\n", - "PHL-Mortality-infants\n", - "Statistical=0.914, p=0.014\n", - "PHL-Health services use\n", - "Statistical=0.982, p=0.854\n", - "Data is NORMAL ( H0 not denied )\n", - "PHL-R&D GExp\n", - "Statistical=0.949, p=0.136\n", - "Data is NORMAL ( H0 not denied )\n", - "PHL-Ninis\n", - "Statistical=0.617, p=0.000\n", - "PHL-Suicide\n", - "Statistical=0.874, p=0.001\n", - "PHL-International taxes\n", - "Statistical=0.846, p=0.000\n", - "PHL-Alcohol per capita\n", - "Statistical=0.891, p=0.004\n", - "KOR-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "KOR-Renewable electricity\n", - "Statistical=0.778, p=0.000\n", - "KOR-Employment-agriculture\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "KOR-Employment-industry\n", - "Statistical=0.910, p=0.011\n", - "KOR-Employment-services\n", - "Statistical=0.819, p=0.000\n", - "KOR-Exports-G&S\n", - "Statistical=0.864, p=0.001\n", - "KOR-Fertility rate\n", - "Statistical=0.891, p=0.004\n", - "KOR-Foreign investment\n", - "Statistical=0.870, p=0.001\n", - "KOR-GDP\n", - "Statistical=0.953, p=0.176\n", - "Data is NORMAL ( H0 not denied )\n", - "KOR-Education GExp\n", - "Statistical=0.904, p=0.008\n", - "KOR-Workers high education\n", - "Statistical=0.914, p=0.014\n", - "KOR-Literacy rate\n", - "Statistical=0.731, p=0.000\n", - "KOR-Net migration\n", - "Statistical=0.963, p=0.335\n", - "Data is NORMAL ( H0 not denied )\n", - "KOR-Mortality-infants\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "KOR-Health services use\n", - "Statistical=0.841, p=0.000\n", - "KOR-R&D GExp\n", - "Statistical=0.798, p=0.000\n", - "KOR-Ninis\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "KOR-Suicide\n", - "Statistical=0.828, p=0.000\n", - "KOR-International taxes\n", - "Statistical=0.746, p=0.000\n", - "KOR-Alcohol per capita\n", - "Statistical=0.847, p=0.000\n", - "MEX-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "MEX-Renewable electricity\n", - "Statistical=0.734, p=0.000\n", - "MEX-Employment-agriculture\n", - "Statistical=0.964, p=0.361\n", - "Data is NORMAL ( H0 not denied )\n", - "MEX-Employment-industry\n", - "Statistical=0.852, p=0.001\n", - "MEX-Employment-services\n", - "Statistical=0.960, p=0.291\n", - "Data is NORMAL ( H0 not denied )\n", - "MEX-Exports-G&S\n", - "Statistical=0.872, p=0.002\n", - "MEX-Fertility rate\n", - "Statistical=0.951, p=0.169\n", - "Data is NORMAL ( H0 not denied )\n", - "MEX-Foreign investment\n", - "Statistical=0.927, p=0.036\n", - "MEX-GDP\n", - "Statistical=0.929, p=0.042\n", - "MEX-Education GExp\n", - "Statistical=0.967, p=0.445\n", - "Data is NORMAL ( H0 not denied )\n", - "MEX-Workers high education\n", - "Statistical=0.928, p=0.039\n", - "MEX-Literacy rate\n", - "Statistical=0.856, p=0.001\n", - "MEX-Net migration\n", - "Statistical=0.926, p=0.035\n", - "MEX-Mortality-infants\n", - "Statistical=0.931, p=0.046\n", - "MEX-Health services use\n", - "Statistical=0.927, p=0.036\n", - "MEX-R&D GExp\n", - "Statistical=0.780, p=0.000\n", - "MEX-Ninis\n", - "Statistical=0.751, p=0.000\n", - "MEX-Suicide\n", - "Statistical=0.928, p=0.038\n", - "MEX-International taxes\n", - "Statistical=0.862, p=0.001\n", - "MEX-Alcohol per capita\n", - "Statistical=0.846, p=0.000\n", - "BRA-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "BRA-Renewable electricity\n", - "Statistical=0.824, p=0.000\n", - "BRA-Employment-agriculture\n", - "Statistical=0.875, p=0.002\n", - "BRA-Employment-industry\n", - "Statistical=0.904, p=0.008\n", - "BRA-Employment-services\n", - "Statistical=0.890, p=0.003\n", - "BRA-Exports-G&S\n", - "Statistical=0.932, p=0.045\n", - "BRA-Fertility rate\n", - "Statistical=0.846, p=0.000\n", - "BRA-Foreign investment\n", - "Statistical=0.866, p=0.001\n", - "BRA-GDP\n", - "Statistical=0.861, p=0.001\n", - "BRA-Education GExp\n", - "Statistical=0.937, p=0.062\n", - "Data is NORMAL ( H0 not denied )\n", - "BRA-Workers high education\n", - "Statistical=0.907, p=0.009\n", - "BRA-Literacy rate\n", - "Statistical=0.856, p=0.001\n", - "BRA-Net migration\n", - "Statistical=0.672, p=0.000\n", - "BRA-Mortality-infants\n", - "Statistical=0.785, p=0.000\n", - "BRA-Health services use\n", - "Statistical=0.861, p=0.001\n", - "BRA-R&D GExp\n", - "Statistical=0.679, p=0.000\n", - "BRA-Ninis\n", - "Statistical=0.834, p=0.000\n", - "BRA-Suicide\n", - "Statistical=0.906, p=0.009\n", - "BRA-International taxes\n", - "Statistical=0.797, p=0.000\n", - "BRA-Alcohol per capita\n", - "Statistical=0.842, p=0.000\n", - "ARG-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "ARG-Renewable electricity\n", - "Statistical=0.767, p=0.000\n", - "ARG-Employment-agriculture\n", - "Statistical=0.879, p=0.002\n", - "ARG-Employment-industry\n", - "Statistical=0.956, p=0.227\n", - "Data is NORMAL ( H0 not denied )\n", - "ARG-Employment-services\n", - "Statistical=0.915, p=0.017\n", - "ARG-Exports-G&S\n", - "Statistical=0.932, p=0.048\n", - "ARG-Fertility rate\n", - "Statistical=0.864, p=0.001\n", - "ARG-Foreign investment\n", - "Statistical=0.907, p=0.011\n", - "ARG-GDP\n", - "Statistical=0.880, p=0.002\n", - "ARG-Education GExp\n", - "Statistical=0.898, p=0.006\n", - "ARG-Workers high education\n", - "Statistical=0.931, p=0.047\n", - "ARG-Literacy rate\n", - "Statistical=0.827, p=0.000\n", - "ARG-Net migration\n", - "Statistical=0.776, p=0.000\n", - "ARG-Mortality-infants\n", - "Statistical=0.745, p=0.000\n", - "ARG-Health services use\n", - "Statistical=0.954, p=0.204\n", - "Data is NORMAL ( H0 not denied )\n", - "ARG-R&D GExp\n", - "Statistical=0.737, p=0.000\n", - "ARG-Ninis\n", - "Statistical=0.772, p=0.000\n", - "ARG-Suicide\n", - "Statistical=0.843, p=0.000\n", - "ARG-International taxes\n", - "Statistical=0.871, p=0.001\n", - "ARG-Alcohol per capita\n", - "Statistical=0.909, p=0.012\n", - "PER-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "PER-Renewable electricity\n", - "Statistical=0.918, p=0.018\n", - "PER-Employment-agriculture\n", - "Statistical=0.866, p=0.001\n", - "PER-Employment-industry\n", - "Statistical=0.811, p=0.000\n", - "PER-Employment-services\n", - "Statistical=0.951, p=0.154\n", - "Data is NORMAL ( H0 not denied )\n", - "PER-Exports-G&S\n", - "Statistical=0.904, p=0.008\n", - "PER-Fertility rate\n", - "Statistical=0.861, p=0.001\n", - "PER-Foreign investment\n", - "Statistical=0.848, p=0.000\n", - "PER-GDP\n", - "Statistical=0.905, p=0.008\n", - "PER-Education GExp\n", - "Statistical=0.915, p=0.015\n", - "PER-Workers high education\n", - "Statistical=0.845, p=0.000\n", - "PER-Literacy rate\n", - "Statistical=0.858, p=0.001\n", - "PER-Net migration\n", - "Statistical=0.936, p=0.058\n", - "Data is NORMAL ( H0 not denied )\n", - "PER-Mortality-infants\n", - "Statistical=0.772, p=0.000\n", - "PER-Health services use\n", - "Statistical=0.865, p=0.001\n", - "PER-R&D GExp\n", - "Statistical=0.919, p=0.019\n", - "PER-Ninis\n", - "Statistical=0.854, p=0.001\n", - "PER-Suicide\n", - "Statistical=0.873, p=0.001\n", - "PER-International taxes\n", - "Statistical=0.770, p=0.000\n", - "PER-Alcohol per capita\n", - "Statistical=0.924, p=0.026\n", - "VEN-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "VEN-Renewable electricity\n", - "Statistical=0.683, p=0.000\n", - "VEN-Employment-agriculture\n", - "Statistical=0.407, p=0.000\n", - "VEN-Employment-industry\n", - "Statistical=0.909, p=0.012\n", - "VEN-Employment-services\n", - "Statistical=0.959, p=0.272\n", - "Data is NORMAL ( H0 not denied )\n", - "VEN-Exports-G&S\n", - "Statistical=0.958, p=0.263\n", - "Data is NORMAL ( H0 not denied )\n", - "VEN-Fertility rate\n", - "Statistical=0.946, p=0.119\n", - "Data is NORMAL ( H0 not denied )\n", - "VEN-Foreign investment\n", - "Statistical=0.874, p=0.002\n", - "VEN-GDP\n", - "Statistical=0.936, p=0.066\n", - "Data is NORMAL ( H0 not denied )\n", - "VEN-Education GExp\n", - "Statistical=0.941, p=0.087\n", - "Data is NORMAL ( H0 not denied )\n", - "VEN-Workers high education\n", - "Statistical=0.818, p=0.000\n", - "VEN-Literacy rate\n", - "Statistical=0.781, p=0.000\n", - "VEN-Net migration\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "VEN-Mortality-infants\n", - "Statistical=0.834, p=0.000\n", - "VEN-Health services use\n", - "Statistical=0.914, p=0.016\n", - "VEN-R&D GExp\n", - "Statistical=0.775, p=0.000\n", - "VEN-Ninis\n", - "Statistical=0.759, p=0.000\n", - "VEN-Suicide\n", - "Statistical=0.716, p=0.000\n", - "VEN-International taxes\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "VEN-Alcohol per capita\n", - "Statistical=0.826, p=0.000\n", - "COL-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "COL-Renewable electricity\n", - "Statistical=0.900, p=0.006\n", - "COL-Employment-agriculture\n", - "Statistical=0.898, p=0.006\n", - "COL-Employment-industry\n", - "Statistical=0.883, p=0.002\n", - "COL-Employment-services\n", - "Statistical=0.889, p=0.003\n", - "COL-Exports-G&S\n", - "Statistical=0.925, p=0.028\n", - "COL-Fertility rate\n", - "Statistical=0.851, p=0.000\n", - "COL-Foreign investment\n", - "Statistical=0.886, p=0.003\n", - "COL-GDP\n", - "Statistical=0.901, p=0.007\n", - "COL-Education GExp\n", - "Statistical=0.907, p=0.010\n", - "COL-Workers high education\n", - "Statistical=0.880, p=0.002\n", - "COL-Literacy rate\n", - "Statistical=0.855, p=0.001\n", - "COL-Net migration\n", - "Statistical=0.826, p=0.000\n", - "COL-Mortality-infants\n", - "Statistical=0.927, p=0.033\n", - "COL-Health services use\n", - "Statistical=0.921, p=0.023\n", - "COL-R&D GExp\n", - "Statistical=0.797, p=0.000\n", - "COL-Ninis\n", - "Statistical=0.827, p=0.000\n", - "COL-Suicide\n", - "Statistical=0.907, p=0.009\n", - "COL-International taxes\n", - "Statistical=0.798, p=0.000\n", - "COL-Alcohol per capita\n", - "Statistical=0.832, p=0.000\n", - "CHL-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "CHL-Renewable electricity\n", - "Statistical=0.771, p=0.000\n", - "CHL-Employment-agriculture\n", - "Statistical=0.933, p=0.053\n", - "Data is NORMAL ( H0 not denied )\n", - "CHL-Employment-industry\n", - "Statistical=0.925, p=0.033\n", - "CHL-Employment-services\n", - "Statistical=0.843, p=0.000\n", - "CHL-Exports-G&S\n", - "Statistical=0.921, p=0.025\n", - "CHL-Fertility rate\n", - "Statistical=0.924, p=0.031\n", - "CHL-Foreign investment\n", - "Statistical=0.847, p=0.000\n", - "CHL-GDP\n", - "Statistical=0.912, p=0.015\n", - "CHL-Education GExp\n", - "Statistical=0.963, p=0.348\n", - "Data is NORMAL ( H0 not denied )\n", - "CHL-Workers high education\n", - "Statistical=0.865, p=0.001\n", - "CHL-Literacy rate\n", - "Statistical=0.835, p=0.000\n", - "CHL-Net migration\n", - "Statistical=0.867, p=0.001\n", - "CHL-Mortality-infants\n", - "Statistical=0.851, p=0.001\n", - "CHL-Health services use\n", - "Statistical=0.848, p=0.000\n", - "CHL-R&D GExp\n", - "Statistical=0.833, p=0.000\n", - "CHL-Ninis\n", - "Statistical=0.984, p=0.910\n", - "Data is NORMAL ( H0 not denied )\n", - "CHL-Suicide\n", - "Statistical=0.728, p=0.000\n", - "CHL-International taxes\n", - "Statistical=0.903, p=0.009\n", - "CHL-Alcohol per capita\n", - "Statistical=0.925, p=0.032\n", - "PAN-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "PAN-Renewable electricity\n", - "Statistical=0.759, p=0.000\n", - "PAN-Employment-agriculture\n", - "Statistical=0.910, p=0.011\n", - "PAN-Employment-industry\n", - "Statistical=0.932, p=0.043\n", - "PAN-Employment-services\n", - "Statistical=0.949, p=0.134\n", - "Data is NORMAL ( H0 not denied )\n", - "PAN-Exports-G&S\n", - "Statistical=0.924, p=0.027\n", - "PAN-Fertility rate\n", - "Statistical=0.846, p=0.000\n", - "PAN-Foreign investment\n", - "Statistical=0.858, p=0.001\n", - "PAN-GDP\n", - "Statistical=0.970, p=0.510\n", - "Data is NORMAL ( H0 not denied )\n", - "PAN-Education GExp\n", - "Statistical=0.866, p=0.001\n", - "PAN-Workers high education\n", - "Statistical=0.839, p=0.000\n", - "PAN-Literacy rate\n", - "Statistical=0.850, p=0.000\n", - "PAN-Net migration\n", - "Statistical=0.541, p=0.000\n", - "PAN-Mortality-infants\n", - "Statistical=0.942, p=0.086\n", - "Data is NORMAL ( H0 not denied )\n", - "PAN-Health services use\n", - "Statistical=0.922, p=0.023\n", - "PAN-R&D GExp\n", - "Statistical=0.863, p=0.001\n", - "PAN-Ninis\n", - "Statistical=0.874, p=0.001\n", - "PAN-Suicide\n", - "Statistical=0.911, p=0.012\n", - "PAN-International taxes\n", - "Statistical=0.928, p=0.033\n", - "PAN-Alcohol per capita\n", - "Statistical=0.812, p=0.000\n", - "CRI-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "CRI-Renewable electricity\n", - "Statistical=0.764, p=0.000\n", - "CRI-Employment-agriculture\n", - "Statistical=0.941, p=0.086\n", - "Data is NORMAL ( H0 not denied )\n", - "CRI-Employment-industry\n", - "Statistical=0.904, p=0.009\n", - "CRI-Employment-services\n", - "Statistical=0.951, p=0.163\n", - "Data is NORMAL ( H0 not denied )\n", - "CRI-Exports-G&S\n", - "Statistical=0.938, p=0.071\n", - "Data is NORMAL ( H0 not denied )\n", - "CRI-Fertility rate\n", - "Statistical=0.913, p=0.016\n", - "CRI-Foreign investment\n", - "Statistical=0.927, p=0.037\n", - "CRI-GDP\n", - "Statistical=0.856, p=0.001\n", - "CRI-Education GExp\n", - "Statistical=0.888, p=0.004\n", - "CRI-Workers high education\n", - "Statistical=0.861, p=0.001\n", - "CRI-Literacy rate\n", - "Statistical=0.852, p=0.001\n", - "CRI-Net migration\n", - "Statistical=0.821, p=0.000\n", - "CRI-Mortality-infants\n", - "Statistical=0.816, p=0.000\n", - "CRI-Health services use\n", - "Statistical=0.915, p=0.017\n", - "CRI-R&D GExp\n", - "Statistical=0.838, p=0.000\n", - "CRI-Ninis\n", - "Statistical=0.830, p=0.000\n", - "CRI-Suicide\n", - "Statistical=0.929, p=0.042\n", - "CRI-International taxes\n", - "Statistical=0.927, p=0.037\n", - "CRI-Alcohol per capita\n", - "Statistical=0.914, p=0.017\n", - "USA-Exports-Commercial services\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "USA-Renewable electricity\n", - "Statistical=0.831, p=0.000\n", - "USA-Employment-agriculture\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "USA-Employment-industry\n", - "Statistical=0.853, p=0.000\n", - "USA-Employment-services\n", - "Statistical=0.836, p=0.000\n", - "USA-Exports-G&S\n", - "Statistical=0.833, p=0.000\n", - "USA-Fertility rate\n", - "Statistical=0.901, p=0.007\n", - "USA-Foreign investment\n", - "Statistical=0.901, p=0.006\n", - "USA-GDP\n", - "Statistical=0.890, p=0.004\n", - "USA-Education GExp\n", - "Statistical=0.953, p=0.176\n", - "Data is NORMAL ( H0 not denied )\n", - "USA-Workers high education\n", - "Statistical=0.943, p=0.092\n", - "Data is NORMAL ( H0 not denied )\n", - "USA-Literacy rate\n", - "Statistical=0.690, p=0.000\n", - "USA-Net migration\n", - "Statistical=0.838, p=0.000\n", - "USA-Mortality-infants\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "USA-Health services use\n", - "Statistical=0.937, p=0.062\n", - "Data is NORMAL ( H0 not denied )\n", - "USA-R&D GExp\n", - "Statistical=0.939, p=0.071\n", - "Data is NORMAL ( H0 not denied )\n", - "USA-Ninis\n", - "Statistical=0.939, p=0.068\n", - "Data is NORMAL ( H0 not denied )\n", - "USA-Suicide\n", - "Statistical=0.884, p=0.002\n", - "USA-International taxes\n", - "Statistical=0.764, p=0.000\n", - "USA-Alcohol per capita\n", - "Statistical=0.835, p=0.000\n", - "CHN-Exports-Commercial services\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "CHN-Renewable electricity\n", - "Statistical=0.717, p=0.000\n", - "CHN-Employment-agriculture\n", - "Statistical=0.929, p=0.042\n", - "CHN-Employment-industry\n", - "Statistical=0.923, p=0.028\n", - "CHN-Employment-services\n", - "Statistical=0.878, p=0.002\n", - "CHN-Exports-G&S\n", - "Statistical=0.955, p=0.209\n", - "Data is NORMAL ( H0 not denied )\n", - "CHN-Fertility rate\n", - "Statistical=0.897, p=0.006\n", - "CHN-Foreign investment\n", - "Statistical=0.839, p=0.000\n", - "CHN-GDP\n", - "Statistical=0.876, p=0.002\n", - "CHN-Education GExp\n", - "Statistical=0.933, p=0.054\n", - "Data is NORMAL ( H0 not denied )\n", - "CHN-Workers high education\n", - "Statistical=0.824, p=0.000\n", - "CHN-Literacy rate\n", - "Statistical=0.846, p=0.000\n", - "CHN-Net migration\n", - "Statistical=0.718, p=0.000\n", - "CHN-Mortality-infants\n", - "Statistical=0.858, p=0.001\n", - "CHN-Health services use\n", - "Statistical=0.896, p=0.006\n", - "CHN-R&D GExp\n", - "Statistical=0.874, p=0.002\n", - "CHN-Ninis\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "CHN-Suicide\n", - "Statistical=0.867, p=0.001\n", - "CHN-International taxes\n", - "Statistical=0.704, p=0.000\n", - "CHN-Alcohol per capita\n", - "Statistical=0.822, p=0.000\n" - ] + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Does it have some global casuallity implied?% of count (Global)Does it have some European casuallity implied?% of count (European)Does it have some North African casuallity implied?% of count (North African)Does it have some Asian casuallity implied?% of count (Asian)Does it have some Pair casuallity implied?% of count (Pair)Does it have some Persian casuallity implied?% of count (Persian)Does it have some South African casuallity implied?% of count (South African)Does it have some Latino-American casuallity implied?% of count (Latino-American)
Group
AgricultureNo100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000
DemographyYes37.728195Yes36.250000Yes39.682540Yes35.294118Yes40.298507Yes37.037037Yes36.842105Yes40.540541
EconomyYes54.372937Yes61.643836Yes54.362416Yes53.676471Yes53.488372Yes49.321267Yes53.488372Yes54.385965
EmploymentNo100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000
EnvironmentYes73.529412Yes62.184874Yes76.543210No81.333333No81.081081Yes72.727273Yes76.923077Yes65.789474
EqualityYes58.928571Yes77.777778Yes75.000000Yes55.555556Yes50.000000Yes50.000000Yes63.636364Yes33.333333
ExportsYes60.183066Yes59.047619Yes56.140351Yes68.421053Yes60.000000Yes62.025316Yes59.523810Yes58.333333
HealthNo100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000
InternetYes37.190083Yes47.619048Yes35.294118Yes26.315789Yes42.857143Yes36.842105Yes37.500000Yes28.571429
MortalityNo92.337165No96.296296No92.753623No90.476190No92.753623No90.217391No91.578947No88.461538
PrincipalNo100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000
\n", + "
" + ], + "text/plain": [ + " Does it have some global casuallity implied? % of count (Global) \\\n", + "Group \n", + "Agriculture No 100.000000 \n", + "Demography Yes 37.728195 \n", + "Economy Yes 54.372937 \n", + "Employment No 100.000000 \n", + "Environment Yes 73.529412 \n", + "Equality Yes 58.928571 \n", + "Exports Yes 60.183066 \n", + "Health No 100.000000 \n", + "Internet Yes 37.190083 \n", + "Mortality No 92.337165 \n", + "Principal No 100.000000 \n", + "\n", + " Does it have some European casuallity implied? \\\n", + "Group \n", + "Agriculture No \n", + "Demography Yes \n", + "Economy Yes \n", + "Employment No \n", + "Environment Yes \n", + "Equality Yes \n", + "Exports Yes \n", + "Health No \n", + "Internet Yes \n", + "Mortality No \n", + "Principal No \n", + "\n", + " % of count (European) \\\n", + "Group \n", + "Agriculture 100.000000 \n", + "Demography 36.250000 \n", + "Economy 61.643836 \n", + "Employment 100.000000 \n", + "Environment 62.184874 \n", + "Equality 77.777778 \n", + "Exports 59.047619 \n", + "Health 100.000000 \n", + "Internet 47.619048 \n", + "Mortality 96.296296 \n", + "Principal 100.000000 \n", + "\n", + " Does it have some North African casuallity implied? \\\n", + "Group \n", + "Agriculture No \n", + "Demography Yes \n", + "Economy Yes \n", + "Employment No \n", + "Environment Yes \n", + "Equality Yes \n", + "Exports Yes \n", + "Health No \n", + "Internet Yes \n", + "Mortality No \n", + "Principal No \n", + "\n", + " % of count (North African) \\\n", + "Group \n", + "Agriculture 100.000000 \n", + "Demography 39.682540 \n", + "Economy 54.362416 \n", + "Employment 100.000000 \n", + "Environment 76.543210 \n", + "Equality 75.000000 \n", + "Exports 56.140351 \n", + "Health 100.000000 \n", + "Internet 35.294118 \n", + "Mortality 92.753623 \n", + "Principal 100.000000 \n", + "\n", + " Does it have some Asian casuallity implied? % of count (Asian) \\\n", + "Group \n", + "Agriculture No 100.000000 \n", + "Demography Yes 35.294118 \n", + "Economy Yes 53.676471 \n", + "Employment No 100.000000 \n", + "Environment No 81.333333 \n", + "Equality Yes 55.555556 \n", + "Exports Yes 68.421053 \n", + "Health No 100.000000 \n", + "Internet Yes 26.315789 \n", + "Mortality No 90.476190 \n", + "Principal No 100.000000 \n", + "\n", + " Does it have some Pair casuallity implied? % of count (Pair) \\\n", + "Group \n", + "Agriculture No 100.000000 \n", + "Demography Yes 40.298507 \n", + "Economy Yes 53.488372 \n", + "Employment No 100.000000 \n", + "Environment No 81.081081 \n", + "Equality Yes 50.000000 \n", + "Exports Yes 60.000000 \n", + "Health No 100.000000 \n", + "Internet Yes 42.857143 \n", + "Mortality No 92.753623 \n", + "Principal No 100.000000 \n", + "\n", + " Does it have some Persian casuallity implied? \\\n", + "Group \n", + "Agriculture No \n", + "Demography Yes \n", + "Economy Yes \n", + "Employment No \n", + "Environment Yes \n", + "Equality Yes \n", + "Exports Yes \n", + "Health No \n", + "Internet Yes \n", + "Mortality No \n", + "Principal No \n", + "\n", + " % of count (Persian) \\\n", + "Group \n", + "Agriculture 100.000000 \n", + "Demography 37.037037 \n", + "Economy 49.321267 \n", + "Employment 100.000000 \n", + "Environment 72.727273 \n", + "Equality 50.000000 \n", + "Exports 62.025316 \n", + "Health 100.000000 \n", + "Internet 36.842105 \n", + "Mortality 90.217391 \n", + "Principal 100.000000 \n", + "\n", + " Does it have some South African casuallity implied? \\\n", + "Group \n", + "Agriculture No \n", + "Demography Yes \n", + "Economy Yes \n", + "Employment No \n", + "Environment Yes \n", + "Equality Yes \n", + "Exports Yes \n", + "Health No \n", + "Internet Yes \n", + "Mortality No \n", + "Principal No \n", + "\n", + " % of count (South African) \\\n", + "Group \n", + "Agriculture 100.000000 \n", + "Demography 36.842105 \n", + "Economy 53.488372 \n", + "Employment 100.000000 \n", + "Environment 76.923077 \n", + "Equality 63.636364 \n", + "Exports 59.523810 \n", + "Health 100.000000 \n", + "Internet 37.500000 \n", + "Mortality 91.578947 \n", + "Principal 100.000000 \n", + "\n", + " Does it have some Latino-American casuallity implied? \\\n", + "Group \n", + "Agriculture No \n", + "Demography Yes \n", + "Economy Yes \n", + "Employment No \n", + "Environment Yes \n", + "Equality Yes \n", + "Exports Yes \n", + "Health No \n", + "Internet Yes \n", + "Mortality No \n", + "Principal No \n", + "\n", + " % of count (Latino-American) \n", + "Group \n", + "Agriculture 100.000000 \n", + "Demography 40.540541 \n", + "Economy 54.385965 \n", + "Employment 100.000000 \n", + "Environment 65.789474 \n", + "Equality 33.333333 \n", + "Exports 58.333333 \n", + "Health 100.000000 \n", + "Internet 28.571429 \n", + "Mortality 88.461538 \n", + "Principal 100.000000 " + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "for i in range(0,len(clist)):\n", - " dat=df.loc[df.loc[:, 'Country'] == clist[i]]\n", - " for e in range(2,len(columns)):\n", - " data=dat.iloc[:, e]\n", - " stat, p = shapiro(data)\n", - " print(clist[i] +\"-\"+ columns[e])\n", - " print('Statistical=%.3f, p=%.3f' % (stat, p))\n", - " alpha = 0.05\n", - " if p > alpha:\n", - " print('Data is NORMAL ( H0 not denied )')\n", - " else:\n", - " pass" + "for i in range(0,len(continentlist)):\n", + " apfinal=final.loc[final['Continent']==continentlist[i]]\n", + " \n", + " selected_p=categories.loc[categories['Level']=='primary']\n", + " minprimary=selected_p.groupby('Group').min()\n", + " minprimary['Min']=round(minprimary['Number of times repeated']*limita.value)\n", + " minprimary.drop(columns=['Indicator','Number of times repeated','Level'], inplace=True)\n", + "\n", + " grouplist=minprimary.index.to_list()\n", + "\n", + " secondary=apfinal.loc[apfinal['Level']=='secondary']\n", + " secondary=pd.merge(secondary,minprimary, left_on='Group',right_on='Group')\n", + "\n", + " secondaryp=secondary.loc[:,['Group','Min']]\n", + " Global_Count=secondaryp.groupby('Group').count()\n", + " Global_Count.rename(columns={'Min':'Global Count'},inplace=True)\n", + "\n", + " secondary['H_0']=np.where(secondary['Number of times repeated_x']-secondary['Min']>0,'Not Discarded', 'Denied')\n", + " seco=secondary.groupby(['H_0','Group']).count()\n", + " sec=seco.loc['Not Discarded']\n", + " secondarycount=sec.drop(columns=['Indicator','R^2 Spearman','Behaviour','Country','Moved','Type','Continent','Number of times repeated_x','Number of times repeated_y','Level'])\n", + " secondarycount.rename(columns={'Min':'Secondary Count'},inplace=True)\n", + "\n", + " apfinalcount=pd.merge(Global_Count,secondarycount, left_on='Group',right_on='Group')\n", + " apfinalcount['Does it have some '+namescontinents[i]+' casuallity implied?']=np.where(apfinalcount['Secondary Count']/apfinalcount['Global Count']>limitb.value,'No', 'Yes')\n", + " apfinalcount['% of count ('+namescontinents[i]+')']=apfinalcount['Secondary Count']/apfinalcount['Global Count']*100\n", + " apfinalcount.drop(columns=['Global Count','Secondary Count'],inplace=True)\n", + " finalcount=pd.merge(finalcount,apfinalcount, left_on='Group',right_on='Group')\n", + "\n", + "finalcount" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we can observe into much more detail the differnt regions that we defined before, and for groups that have a **NO**, we do not need to worry about casualities. Meanwhile, for the rest of the groups correlation can still be a great indicator as a basis for decision making, if we carefully analyze the variables and found some sort of real relationship between them. " ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3.10.4 ('.venv': poetry)", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -9927,11 +35792,11 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.9.12" }, "vscode": { "interpreter": { - "hash": "ad72b07258a3fa24452fee21e868a537ead700a3a6ac2a1adaf5006160c747dc" + "hash": "e21cf16a31979fe9d2d6e9786ebc932e404e707404f15260e38504afc6c53159" } } }, diff --git a/WDI-Correlation and visualization of results.ipynb b/WDI-Correlation and visualization of results.ipynb new file mode 100644 index 0000000..8d8f7f5 --- /dev/null +++ b/WDI-Correlation and visualization of results.ipynb @@ -0,0 +1,206377 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Correlation study" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import libraries and functions." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import glob\n", + "import os\n", + "from zipfile import ZipFile\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", + "import functools as ft\n", + "import ipywidgets as widgets\n", + "from ipywidgets import Layout\n", + "from ipywidgets import interact, interact_manual\n", + "import plotly.express as px\n", + "from scipy import stats\n", + "from scipy.stats import shapiro\n", + "from scipy.stats import pearsonr\n", + "from scipy.stats import spearmanr\n", + "from pandas.api.types import is_numeric_dtype" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the correlation study, we are going to check if the indicators are related in a relevantly way to GDP(current US$), through both Pearson and Spearman correlations and their respective p-values. Thus, our hypotheses are as follow:\n", + "\n", + "- H_0: the indicator and the GDP are uncorrelated.​\n", + "- H_1: the indicator and the GDP are correlated.​\n", + "\n", + "**If p-value < α then reject H_0 and accept H_1.​**\n", + "\n", + "P-value: is the probability of obtaining test results at least as extreme as the result actually observed. (Marging of the error)\n", + "\n", + "​Confidence level (α): probability that a population parameter will fall between a set of values for a certain proportion of times. α = 1 - p-value.\n", + "\n", + "​Significance level: probability of the study rejecting the null hypothesis when it is actually true.​ \n", + "\n", + "At the end we want to follow a process that checks if with Pearson and Spearman the correlation is relevant, as the image below ilustrates. \n", + "\n", + "![](https://raw.githubusercontent.com/devonfw-forge/python-data-driven-decisions/main-the-big-three/Logos/Spearman%20and%20pearson%20process.JPG)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [], + "source": [ + "Categorization4= pd.read_csv (os.getcwd()+'/Data/'+'Categorization.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [], + "source": [ + "indicators_list=Categorization4['Indicator'].unique().tolist()" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "columns=indicators_list+['Country','Year','Continent']\n", + "clist=Categorization4['Country'].unique()\n", + "common=['Unnamed: 0','Country','Year']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The correlation between two variables does not always need to be a linear one, since data of these variables can follow a different distribution that better adjusts. Therefore, we have computed four types (linear, quadratic, cubic and logarithmic) for each indicator in each country and we chose the one with the highest correlation. In the following cell, we have defined a function that will allow us to calculate the different posibilities of relations: cuadratic, cubic and logaritmic." + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [], + "source": [ + "def multcolumn(frame):\n", + " for u in range(0, len(columns)-3):\n", + " name=columns[u]+'¨l'\n", + " name2=columns[u]+'¨^2'\n", + " name3=columns[u]+'¨^3'\n", + " namelog=columns[u]+'¨log'\n", + " frame.loc[:,name2] = frame[columns[u]]**2\n", + " frame.loc[:,name3] = frame[columns[u]]**3\n", + " frame.loc[:,namelog] = np.log(frame[columns[u]])\n", + " frame.rename(columns={columns[u]:name}, inplace=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Moreover, we want to know the correlation between all the variables, so to acomplish this, we have created the following loop, which will help us create a new dataframe where we will have: the *Indicator*, the *Type* of relation, the value of the *R^2*, its *Behaviour*, the *Country* and the *Continent*." + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "df= pd.read_csv (os.getcwd()+'/Data/'+'GoldenDataFrame.csv')\n", + "df_study=df[[c for c in df.columns if c in columns]]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "multcolumn(df_study)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Firstly we are going to create two lists for the variables, which their level of confidence for each correlation, so later on, we can calculate only the correlations of those variables. Which will be filtered by the values that we want from the following sliders. The predetermined values for each case are 0.05 for the values and 0.75 for them to be a relevant correlations." + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b20e00c8aeca422da078f4eaca6d3986", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatSlider(value=0.05, continuous_update=False, description='Level of confidence (Pearson):', max=1.0, step=0…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4500dbbc0fff401197dd1817a20a276b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatSlider(value=0.75, continuous_update=False, description='Relevant correlation (Pearson):', max=1.0, step=…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "987be8a539424a90b91f2e4a5abfc97d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatSlider(value=0.05, continuous_update=False, description='Level of confidence (Spearman):', max=1.0, step=…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b7a8261513664525a5402f32530114c9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatSlider(value=0.75, continuous_update=False, description='Relevant correlation (Spearman):', max=1.0, step…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "apv=widgets.FloatSlider(value=0.05,min=0,max=1.0,step=0.025,description='Level of confidence (Pearson):',disabled=False,continuous_update=False,orientation='horizontal',readout=True)\n", + "cpv=widgets.FloatSlider( value=0.05, min=0, max=1.0, step=0.05, description='Level of confidence (Spearman):', disabled=False, continuous_update=False, orientation='horizontal', readout=True)\n", + "bcor=widgets.FloatSlider( value=0.75, min=0, max=1.0, step=0.05, description='Relevant correlation (Pearson):', disabled=False, continuous_update=False, orientation='horizontal', readout=True)\n", + "dcor=widgets.FloatSlider( value=0.75, min=0, max=1.0, step=0.05, description='Relevant correlation (Spearman):', disabled=False, continuous_update=False, orientation='horizontal', readout=True)\n", + "display(apv,bcor,cpv,dcor)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the following block, we check the hypotheses set before and extract only the variables that deny H_0." + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "dat=df_study.loc[df_study.loc[:, 'Country'] == clist[0]]\n", + "listacorpe=[]\n", + "listacorsp=[]\n", + "clmns=dat.columns.values.tolist()\n", + "dat.replace([np.inf, -np.inf], np.nan, inplace=True)\n", + "for c in range(0, len(clmns)):\n", + " if dat[clmns[c]].isna().sum()>=1:\n", + " del(dat[clmns[c]])\n", + "pilares=dat.columns.values.tolist()\n", + "for u in range(0,len(pilares)):\n", + " if is_numeric_dtype(dat[pilares[u]]):\n", + " correlation, pvalue=pearsonr(dat[pilares[u]], dat['GDP (current US$)¨l'])\n", + " if pvalue<=apv.value:\n", + " listacorpe.append(pilares[u])\n", + " else:\n", + " pass\n", + " correlation, pvalue=spearmanr(dat[pilares[u]], dat['GDP (current US$)¨l'])\n", + " if pvalue<=cpv.value:\n", + " listacorsp.append(pilares[u])\n", + " else:\n", + " pass\n", + " else:\n", + " pass" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Secondly, we need to calculate the correlation table for each country, therefore we use the basic function `corr()` which provides either the Pearson correlation table or the Spearman correlation table, as well as a filter for the countries." + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [], + "source": [ + "dat=df_study.loc[df_study.loc[:, 'Country'] == clist[0]]\n", + "\n", + "datp=dat[dat.columns[dat.columns.isin(listacorpe)]]\n", + "corp=datp.corr('pearson')\n", + "\n", + "datsp=dat[dat.columns[dat.columns.isin(listacorsp)]]\n", + "cors=datsp.corr('spearman')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then we calculate the coefficient of determination which is the correlation squared." + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "corp.loc[:,'R^2 Pearson'] = corp['GDP (current US$)¨l']**2\n", + "\n", + "cors.loc[:,'R^2 Spearman'] = cors['GDP (current US$)¨l']**2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Moreover, we are going to create new columns to know which *Indicator* are we talking about, and the *Type* of correlation that is being analyzed (linear, cuadratic, cubic or logarithmic)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "corp.loc[:,'Indicator']=corp.index\n", + "corp[['Indicator','Type']]=corp.Indicator.str.split('¨',1, expand=True)\n", + "\n", + "cors.loc[:,'Indicator']=cors.index\n", + "cors[['Indicator','Type']]=cors.Indicator.str.split('¨',1, expand=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we can apply the filter we have consider that is enough, selected on the slider. If is not varied it is R^2>=0.75 to filter the correlations." + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "corpcolumn=corp[['Indicator','R^2 Pearson','Type','GDP (current US$)¨l']]\n", + "corpcolumn=corpcolumn.loc[corpcolumn.loc[:, 'R^2 Pearson'] >=bcor.value]\n", + "\n", + "corscolumn=cors[['Indicator','R^2 Spearman','Type','GDP (current US$)¨l']]\n", + "corscolumn=corscolumn.loc[corscolumn.loc[:, 'R^2 Spearman'] >= dcor.value]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Furthermore, we add all the columns that we have created into a data frame, thanks to the following cell." + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [], + "source": [ + "idp=corpcolumn.groupby('Indicator')['R^2 Pearson'].transform(max)==corpcolumn['R^2 Pearson']\n", + "corpcolumn[idp]\n", + "maxp_df=pd.DataFrame(corpcolumn[idp])\n", + "\n", + "ids=corscolumn.groupby('Indicator')['R^2 Spearman'].transform(max)==corscolumn['R^2 Spearman']\n", + "corscolumn[ids]\n", + "maxs_df=pd.DataFrame(corscolumn[ids])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we conmute the values, by expressions. For example if the correlation is positive, we want in the new column called *Behaviour* the word Positive. Or for the *Type* column if the greatest correlation is cuadratic we want to put, Cuadratic. We also add the country." + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "maxp_df['Behaviour']=np.where(maxp_df['GDP (current US$)¨l']>0, 'Positive', 'Negative')\n", + "maxp_df['Type']=maxp_df['Type'].replace(['l','^2','^3','log'],['Linear','Cuadratic','Cubic','Logarithmic'])\n", + "maxp_df['Country']= clist[0]\n", + "\n", + "maxs_df['Behaviour']=np.where(maxs_df['GDP (current US$)¨l']>0, 'Positive', 'Negative')\n", + "maxs_df['Type']=maxs_df['Type'].replace(['l','^2','^3','log'],['Linear','Cuadratic','Cubic','Logarithmic'])\n", + "maxs_df['Country']= clist[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In addition, we also drop the columns which do not add any value, as *GDP*, *Year*, and *Unnamed:0*." + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "maxp_df.drop(\"GDP (current US$)¨l\",axis=1,inplace=True)\n", + "maxp_df=maxp_df.reset_index(drop=True)\n", + "maxp_df = maxp_df.drop(maxp_df[maxp_df['Indicator']=='Year'].index)\n", + "maxp_df = maxp_df.drop(maxp_df[maxp_df['Indicator']=='GDP (current US$)'].index)\n", + "maxp_df = maxp_df.drop(maxp_df[maxp_df['Indicator']=='Unnamed: 0'].index)\n", + "\n", + "maxs_df.drop(\"GDP (current US$)¨l\",axis=1,inplace=True)\n", + "maxs_df=maxs_df.reset_index(drop=True)\n", + "maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='Year'].index)\n", + "maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='GDP (current US$)'].index)\n", + "maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='Unnamed: 0'].index)\n", + "maxs_df=maxs_df.sort_values(by = 'R^2 Spearman',ascending = False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And finally we sort the values in descending order by the column *R^2 Pearson*." + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "maxp_df_deu=maxp_df.sort_values(by = 'R^2 Pearson',ascending = False)\n", + "pearsondf= maxp_df_deu\n", + "spearmandf=maxs_df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So, we can do it with all the countries and create just one dataframe, where we match both data frames, the Pearson and the Spearman, only where there is a case in both sides. Meaning if there is a relevant correlation for Country x in Variable y for Pearson, it will only appear if there is also a relevant correlation for Country x in Variable y for Spearman." + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorR^2 SpearmanTypeBehaviourCountryR^2 Pearson
0Adjusted net national income (current US$)0.996519LinearPositiveDEU0.999141
1Gross value added at basic prices (GVA) (curre...0.996519LinearPositiveDEU0.999851
2GNI (current US$)0.996337LinearPositiveDEU0.999362
3Gross national expenditure (current US$)0.990490LinearPositiveDEU0.997181
4Final consumption expenditure (current US$)0.988302LinearPositiveDEU0.996540
.....................
5965Prevalence of anemia among women of reproducti...0.793298LogarithmicNegativeCHN0.752969
5966Logistics performance index: Ability to track ...0.788049LogarithmicPositiveCHN0.926947
5967Logistics performance index: Competence and qu...0.788049LogarithmicPositiveCHN0.890297
5968Out-of-pocket expenditure (% of current health...0.782573LogarithmicNegativeCHN0.929883
5969Domestic general government health expenditure...0.758910CubicPositiveCHN0.797637
\n", + "

5970 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " Indicator R^2 Spearman \\\n", + "0 Adjusted net national income (current US$) 0.996519 \n", + "1 Gross value added at basic prices (GVA) (curre... 0.996519 \n", + "2 GNI (current US$) 0.996337 \n", + "3 Gross national expenditure (current US$) 0.990490 \n", + "4 Final consumption expenditure (current US$) 0.988302 \n", + "... ... ... \n", + "5965 Prevalence of anemia among women of reproducti... 0.793298 \n", + "5966 Logistics performance index: Ability to track ... 0.788049 \n", + "5967 Logistics performance index: Competence and qu... 0.788049 \n", + "5968 Out-of-pocket expenditure (% of current health... 0.782573 \n", + "5969 Domestic general government health expenditure... 0.758910 \n", + "\n", + " Type Behaviour Country R^2 Pearson \n", + "0 Linear Positive DEU 0.999141 \n", + "1 Linear Positive DEU 0.999851 \n", + "2 Linear Positive DEU 0.999362 \n", + "3 Linear Positive DEU 0.997181 \n", + "4 Linear Positive DEU 0.996540 \n", + "... ... ... ... ... \n", + "5965 Logarithmic Negative CHN 0.752969 \n", + "5966 Logarithmic Positive CHN 0.926947 \n", + "5967 Logarithmic Positive CHN 0.890297 \n", + "5968 Logarithmic Negative CHN 0.929883 \n", + "5969 Cubic Positive CHN 0.797637 \n", + "\n", + "[5970 rows x 6 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pearsondf\n", + "spearmandf\n", + "for i in range(1,len(clist)):\n", + " dat=df_study.loc[df_study.loc[:, 'Country'] == clist[i]]\n", + " listacorpe=[]\n", + " listacorsp=[]\n", + " clmns=dat.columns.values.tolist()\n", + " dat.replace([np.inf, -np.inf], np.nan, inplace=True)\n", + " for c in range(0, len(clmns)):\n", + " if dat[clmns[c]].isna().sum()>=1:\n", + " del(dat[clmns[c]])\n", + " pilares=dat.columns.values.tolist()\n", + " for u in range(0,len(pilares)):\n", + " if is_numeric_dtype(dat[pilares[u]]):\n", + " correlation, pvalue=pearsonr(dat[pilares[u]], dat['GDP (current US$)¨l'])\n", + " if pvalue<=apv.value:\n", + " listacorpe.append(pilares[u])\n", + " else:\n", + " pass\n", + " correlation, pvalue=spearmanr(dat[pilares[u]], dat['GDP (current US$)¨l'])\n", + " if pvalue<=cpv.value:\n", + " listacorsp.append(pilares[u])\n", + " else:\n", + " pass\n", + " else:\n", + " pass\n", + " \n", + " dat=df_study.loc[df_study.loc[:, 'Country'] == clist[i]]\n", + "\n", + " datp=dat[dat.columns[dat.columns.isin(listacorpe)]]\n", + " corp=datp.corr('pearson')\n", + "\n", + " datsp=dat[dat.columns[dat.columns.isin(listacorsp)]]\n", + " cors=datsp.corr('spearman')\n", + "\n", + "\n", + " corp.loc[:,'R^2 Pearson'] = corp['GDP (current US$)¨l']**2\n", + "\n", + " cors.loc[:,'R^2 Spearman'] = cors['GDP (current US$)¨l']**2\n", + "\n", + "\n", + " corp.loc[:,'Indicator']=corp.index\n", + " corp[['Indicator','Type']]=corp.Indicator.str.split('¨',1, expand=True)\n", + "\n", + " cors.loc[:,'Indicator']=cors.index\n", + " cors[['Indicator','Type']]=cors.Indicator.str.split('¨',1, expand=True)\n", + "\n", + "\n", + " corpcolumn=corp[['Indicator','R^2 Pearson','Type','GDP (current US$)¨l']]\n", + " corpcolumn=corpcolumn.loc[corpcolumn.loc[:, 'R^2 Pearson'] >= bcor.value]\n", + " \n", + " corscolumn=cors[['Indicator','R^2 Spearman','Type','GDP (current US$)¨l']]\n", + " corscolumn=corscolumn.loc[corscolumn.loc[:, 'R^2 Spearman'] >= dcor.value]\n", + "\n", + "\n", + " idp=corpcolumn.groupby('Indicator')['R^2 Pearson'].transform(max)==corpcolumn['R^2 Pearson']\n", + " corpcolumn[idp]\n", + " maxp_df=pd.DataFrame(corpcolumn[idp])\n", + "\n", + " ids=corscolumn.groupby('Indicator')['R^2 Spearman'].transform(max)==corscolumn['R^2 Spearman']\n", + " corscolumn[ids]\n", + " maxs_df=pd.DataFrame(corscolumn[ids])\n", + "\n", + "\n", + " maxp_df['Behaviour']=np.where(maxp_df['GDP (current US$)¨l']>0, 'Positive', 'Negative')\n", + " maxp_df['Type']=maxp_df['Type'].replace(['l','^2','^3','log'],['Linear','Cuadratic','Cubic','Logarithmic'])\n", + " maxp_df['Country']= clist[i]\n", + "\n", + " maxs_df['Behaviour']=np.where(maxs_df['GDP (current US$)¨l']>0, 'Positive', 'Negative')\n", + " maxs_df['Type']=maxs_df['Type'].replace(['l','^2','^3','log'],['Linear','Cuadratic','Cubic','Logarithmic'])\n", + " maxs_df['Country']= clist[i]\n", + "\n", + "\n", + " maxp_df.drop(\"GDP (current US$)¨l\",axis=1,inplace=True)\n", + " maxp_df=maxp_df.reset_index(drop=True)\n", + " maxp_df = maxp_df.drop(maxp_df[maxp_df['Indicator']=='Year'].index)\n", + " maxp_df = maxp_df.drop(maxp_df[maxp_df['Indicator']=='GDP (current US$)'].index)\n", + " maxp_df = maxp_df.drop(maxp_df[maxp_df['Indicator']=='Unnamed: 0'].index)\n", + "\n", + " maxs_df.drop(\"GDP (current US$)¨l\",axis=1,inplace=True)\n", + " maxs_df=maxs_df.reset_index(drop=True)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='Year'].index)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='GDP (current US$)'].index)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='Unnamed: 0'].index)\n", + " maxs_df=maxs_df.sort_values(by = 'R^2 Spearman',ascending = False)\n", + "\n", + "\n", + " maxp_df=maxp_df.sort_values(by = 'R^2 Pearson',ascending = False)\n", + " pearsondf=pd.concat((pearsondf, maxp_df), axis = 0)\n", + " spearmandf=pd.concat((spearmandf, maxs_df), axis = 0)\n", + "\n", + "corrtable=spearmandf.merge(pearsondf, left_on=('Indicator', 'Country','Type','Behaviour'), right_on=('Indicator', 'Country','Type','Behaviour'))\n", + "display(corrtable)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, a table has been created showing the number of times a variable has a high relationship in our 48 countries. These that appear many times will be interesting for us to draw conclusions. Then, we will checck if they are primary or seconday variable type." + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "columnssf=corrtable.Indicator.to_list()\n", + "columnsf=np.unique(columnssf)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorNumber of times repeated
127GDP per capita (current US$)46
178Industry (including construction), value added...46
132GNI (current US$)46
152Households and NPISHs Final consumption expend...45
108Final consumption expenditure (current US$)45
.........
250Net official development assistance and offici...1
248Net capital account (BoP, current US$)1
246Natural gas rents (% of GDP)1
29Arms exports (SIPRI trend indicator values)1
142Gross fixed capital formation (% of GDP)1
\n", + "

405 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " Indicator \\\n", + "127 GDP per capita (current US$) \n", + "178 Industry (including construction), value added... \n", + "132 GNI (current US$) \n", + "152 Households and NPISHs Final consumption expend... \n", + "108 Final consumption expenditure (current US$) \n", + ".. ... \n", + "250 Net official development assistance and offici... \n", + "248 Net capital account (BoP, current US$) \n", + "246 Natural gas rents (% of GDP) \n", + "29 Arms exports (SIPRI trend indicator values) \n", + "142 Gross fixed capital formation (% of GDP) \n", + "\n", + " Number of times repeated \n", + "127 46 \n", + "178 46 \n", + "132 46 \n", + "152 45 \n", + "108 45 \n", + ".. ... \n", + "250 1 \n", + "248 1 \n", + "246 1 \n", + "29 1 \n", + "142 1 \n", + "\n", + "[405 rows x 2 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "powerind=[]\n", + "for i in range(0, len(columnsf)):\n", + " powerind.append(columnssf.count(columnsf[i]))\n", + "\n", + "df_indicators = pd.DataFrame(list(zip(columnsf,powerind)), columns = ['Indicator','Number of times repeated'])\n", + "df_indicators=df_indicators.sort_values(by = 'Number of times repeated',ascending = False)\n", + "df_indicators\n", + "display(df_indicators)" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [], + "source": [ + "#To get list of all number of times repeated.\n", + "#from IPython.display import HTML\n", + "\n", + "#HTML(df_indicators.to_html(index=False))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "While for the temporal diferences, we want to know which works better in each case, the process to be followed is described in the following picture.\n", + "\n", + "![](https://raw.githubusercontent.com/devonfw-forge/python-data-driven-decisions/main-the-big-three/Logos/Temporal%20process.JPG)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "df= pd.read_csv (os.getcwd()+'/Data/'+'GoldenDataFrame.csv')\n", + "df_study=df[[c for c in df.columns if c in columns]]" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [], + "source": [ + "moveddf=pd.DataFrame()\n", + "dat=df_study.loc[df_study.loc[:, 'Country'] == clist[0]]\n", + "clmns=dat.columns.values.tolist()\n", + "dat.replace([np.inf, -np.inf], np.nan, inplace=True)\n", + "tempdiffs=['GDP (current US$)+1','GDP (current US$)+2','GDP (current US$)+3','GDP (current US$)+5','GDP (current US$)+8','GDP (current US$)+13','GDP (current US$)+21']\n", + "cors=dat.corr('spearman')\n", + "for f in range(0, len(tempdiffs)):\n", + " cors.loc[:,'R^2 Spearman'] = cors[tempdiffs[f]]**2\n", + " cors.loc[:,'Indicator']=cors.index\n", + " corscolumn=cors[['Indicator','R^2 Spearman',tempdiffs[f]]]\n", + " corscolumn=corscolumn.loc[corscolumn.loc[:, 'R^2 Spearman'] >= dcor.value]\n", + " ids=corscolumn.groupby('Indicator')['R^2 Spearman'].transform(max)==corscolumn['R^2 Spearman']\n", + " corscolumn[ids]\n", + " maxs_df=pd.DataFrame(corscolumn[ids])\n", + " maxs_df['Behaviour']=np.where(maxs_df[tempdiffs[f]]>0, 'Positive', 'Negative')\n", + " maxs_df['Country']= clist[0]\n", + " maxs_df[['Variable','Moved']]=tempdiffs[f].split('+')\n", + " maxs_df.drop(tempdiffs[f],axis=1,inplace=True)\n", + " maxs_df.drop(columns='Variable',inplace=True)\n", + " maxs_df=maxs_df.reset_index(drop=True)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='Year'].index)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='GDP (current US$)'].index)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator'].isin(tempdiffs)].index)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='Unnamed: 0'].index)\n", + " maxs_df=maxs_df.sort_values(by = 'R^2 Spearman',ascending = False)\n", + " moveddf=pd.concat((moveddf,maxs_df),axis=0)\n", + "ids=moveddf.groupby('Indicator')['R^2 Spearman'].transform(max)==moveddf['R^2 Spearman']\n", + "moveddf[ids]\n", + "moveddf=pd.DataFrame(moveddf[ids])\n", + "temporaldf=moveddf" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorR^2 SpearmanBehaviourCountryMoved
4Adjusted savings: education expenditure (curre...0.824514PositiveDEU1
35General government final consumption expenditu...0.822917PositiveDEU1
45Individuals using the Internet (% of population)0.822917PositiveDEU1
78Surface area (sq. km)0.821642PositiveDEU1
5Adolescent fertility rate (births per 1,000 wo...0.817804NegativeDEU1
..................
167Pump price for diesel fuel (US$ per liter)0.787248NegativeCHN21
168Pump price for gasoline (US$ per liter)0.787248NegativeCHN21
30Chemicals (% of value added in manufacturing)0.781385NegativeCHN21
162Proportion of population pushed below the $1.9...0.769754PositiveCHN21
38Depth of credit information index (0=low to 8=...0.750000PositiveCHN21
\n", + "

9700 rows × 5 columns

\n", + "
" + ], + "text/plain": [ + " Indicator R^2 Spearman \\\n", + "4 Adjusted savings: education expenditure (curre... 0.824514 \n", + "35 General government final consumption expenditu... 0.822917 \n", + "45 Individuals using the Internet (% of population) 0.822917 \n", + "78 Surface area (sq. km) 0.821642 \n", + "5 Adolescent fertility rate (births per 1,000 wo... 0.817804 \n", + ".. ... ... \n", + "167 Pump price for diesel fuel (US$ per liter) 0.787248 \n", + "168 Pump price for gasoline (US$ per liter) 0.787248 \n", + "30 Chemicals (% of value added in manufacturing) 0.781385 \n", + "162 Proportion of population pushed below the $1.9... 0.769754 \n", + "38 Depth of credit information index (0=low to 8=... 0.750000 \n", + "\n", + " Behaviour Country Moved \n", + "4 Positive DEU 1 \n", + "35 Positive DEU 1 \n", + "45 Positive DEU 1 \n", + "78 Positive DEU 1 \n", + "5 Negative DEU 1 \n", + ".. ... ... ... \n", + "167 Negative CHN 21 \n", + "168 Negative CHN 21 \n", + "30 Negative CHN 21 \n", + "162 Positive CHN 21 \n", + "38 Positive CHN 21 \n", + "\n", + "[9700 rows x 5 columns]" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "for i in range(1,len(clist)):\n", + " dat=df_study.loc[df_study.loc[:, 'Country'] == clist[i]]\n", + " clmns=dat.columns.values.tolist()\n", + " dat.replace([np.inf, -np.inf], np.nan, inplace=True)\n", + " tempdiffs=['GDP (current US$)+1','GDP (current US$)+2','GDP (current US$)+3','GDP (current US$)+5','GDP (current US$)+8','GDP (current US$)+13','GDP (current US$)+21']\n", + " cors=dat.corr('spearman')\n", + " moveddf=pd.DataFrame()\n", + " for f in range(0, len(tempdiffs)):\n", + " cors.loc[:,'R^2 Spearman'] = cors[tempdiffs[f]]**2\n", + " cors.loc[:,'Indicator']=cors.index\n", + " corscolumn=cors[['Indicator','R^2 Spearman',tempdiffs[f]]]\n", + " corscolumn=corscolumn.loc[corscolumn.loc[:, 'R^2 Spearman'] >= dcor.value]\n", + " ids=corscolumn.groupby('Indicator')['R^2 Spearman'].transform(max)==corscolumn['R^2 Spearman']\n", + " corscolumn[ids]\n", + " maxs_df=pd.DataFrame(corscolumn[ids])\n", + " maxs_df['Behaviour']=np.where(maxs_df[tempdiffs[f]]>0, 'Positive', 'Negative')\n", + " maxs_df['Country']= clist[i]\n", + " maxs_df[['Variable','Moved']]=tempdiffs[f].split('+')\n", + " maxs_df.drop(tempdiffs[f],axis=1,inplace=True)\n", + " maxs_df.drop(columns='Variable',inplace=True)\n", + " maxs_df=maxs_df.reset_index(drop=True)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='Year'].index)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator'].isin(tempdiffs)].index)\n", + " maxs_df = maxs_df.drop(maxs_df[maxs_df['Indicator']=='Unnamed: 0'].index)\n", + " maxs_df=maxs_df.sort_values(by = 'R^2 Spearman',ascending = False)\n", + " moveddf=pd.concat((moveddf,maxs_df),axis=0)\n", + " ids=moveddf.groupby('Indicator')['R^2 Spearman'].transform(max)==moveddf['R^2 Spearman']\n", + " moveddf[ids]\n", + " moveddf=pd.DataFrame(moveddf[ids])\n", + " temporaldf=pd.concat((temporaldf,moveddf),axis=0)\n", + "temporaldf" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorR^2 SpearmanBehaviourCountryMovedType
4Adjusted savings: education expenditure (curre...0.824514PositiveDEU1Does not apply
35General government final consumption expenditu...0.822917PositiveDEU1Does not apply
45Individuals using the Internet (% of population)0.822917PositiveDEU1Does not apply
78Surface area (sq. km)0.821642PositiveDEU1Does not apply
5Adolescent fertility rate (births per 1,000 wo...0.817804NegativeDEU1Does not apply
.....................
5965Prevalence of anemia among women of reproducti...0.793298NegativeCHNDoes not applyLogarithmic
5966Logistics performance index: Ability to track ...0.788049PositiveCHNDoes not applyLogarithmic
5967Logistics performance index: Competence and qu...0.788049PositiveCHNDoes not applyLogarithmic
5968Out-of-pocket expenditure (% of current health...0.782573NegativeCHNDoes not applyLogarithmic
5969Domestic general government health expenditure...0.758910PositiveCHNDoes not applyCubic
\n", + "

15670 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " Indicator R^2 Spearman \\\n", + "4 Adjusted savings: education expenditure (curre... 0.824514 \n", + "35 General government final consumption expenditu... 0.822917 \n", + "45 Individuals using the Internet (% of population) 0.822917 \n", + "78 Surface area (sq. km) 0.821642 \n", + "5 Adolescent fertility rate (births per 1,000 wo... 0.817804 \n", + "... ... ... \n", + "5965 Prevalence of anemia among women of reproducti... 0.793298 \n", + "5966 Logistics performance index: Ability to track ... 0.788049 \n", + "5967 Logistics performance index: Competence and qu... 0.788049 \n", + "5968 Out-of-pocket expenditure (% of current health... 0.782573 \n", + "5969 Domestic general government health expenditure... 0.758910 \n", + "\n", + " Behaviour Country Moved Type \n", + "4 Positive DEU 1 Does not apply \n", + "35 Positive DEU 1 Does not apply \n", + "45 Positive DEU 1 Does not apply \n", + "78 Positive DEU 1 Does not apply \n", + "5 Negative DEU 1 Does not apply \n", + "... ... ... ... ... \n", + "5965 Negative CHN Does not apply Logarithmic \n", + "5966 Positive CHN Does not apply Logarithmic \n", + "5967 Positive CHN Does not apply Logarithmic \n", + "5968 Negative CHN Does not apply Logarithmic \n", + "5969 Positive CHN Does not apply Cubic \n", + "\n", + "[15670 rows x 6 columns]" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "alist=['Indicator','R^2 Spearman','Behaviour','Country','Type']\n", + "forcomparassion=corrtable[alist]\n", + "\n", + "quarterfinal=pd.concat((temporaldf,forcomparassion),axis=0)\n", + "quarterfinal.fillna('Does not apply',inplace=True)\n", + "quarterfinal" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [], + "source": [ + "quarterfinal.to_csv(os.getcwd()+'/Data/Quarterfinal.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [], + "source": [ + "quarterfinal= pd.read_csv (os.getcwd()+'/Data/'+'Quarterfinal.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [], + "source": [ + "#To understand better the data, we categorize it (Area label and Primary/Secondary).\n", + "categories= pd.read_excel (os.getcwd()+'/Data/'+'dfindicators - Copy.xlsx')" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [], + "source": [ + "categories.rename(columns={'Type':'Group'}, inplace=True)\n", + "quarterfinal.drop(columns=('Unnamed: 0'), inplace=True)\n", + "clist=quarterfinal['Country'].unique()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To sum up, we compare both of the highest correlations and decide which is best, by comparing the R^2. So the process of searching for correlations is as follows.\n", + "\n", + "![](https://raw.githubusercontent.com/devonfw-forge/python-data-driven-decisions/main-the-big-three/Logos/Final%20table%20process.JPG)" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorR^2 SpearmanBehaviourCountryMovedTypeContinentNumber of times repeated_xGroupLevelNumber of times repeated_y
0Adolescent fertility rate (births per 1,000 wo...0.817804NegativeDEU1Does not applyEurope22Demographysecondary40
1Adolescent fertility rate (births per 1,000 wo...0.759333NegativeSWE3Does not applyEurope22Demographysecondary40
2Adolescent fertility rate (births per 1,000 wo...0.936963NegativeGBR13Does not applyEurope22Demographysecondary40
3Adolescent fertility rate (births per 1,000 wo...0.786708NegativeHRV8Does not applyEurope22Demographysecondary40
4Adolescent fertility rate (births per 1,000 wo...0.924056NegativePOL21Does not applyEurope22Demographysecondary40
....................................
6640Completeness of birth registration (%)0.839228PositivePER5Does not applyLatam11Demoraphysecondary21
6641Completeness of birth registration (%)0.792184NegativeVEN1Does not applyLatam11Demoraphysecondary21
6642Completeness of birth registration (%)0.840648PositiveCOL2Does not applyLatam11Demoraphysecondary21
6643Completeness of birth registration (%)0.963636PositivePAN21Does not applyLatam11Demoraphysecondary21
6644Completeness of birth registration (%)0.789474PositiveCRI13Does not applyLatam11Demoraphysecondary21
\n", + "

6645 rows × 11 columns

\n", + "
" + ], + "text/plain": [ + " Indicator R^2 Spearman \\\n", + "0 Adolescent fertility rate (births per 1,000 wo... 0.817804 \n", + "1 Adolescent fertility rate (births per 1,000 wo... 0.759333 \n", + "2 Adolescent fertility rate (births per 1,000 wo... 0.936963 \n", + "3 Adolescent fertility rate (births per 1,000 wo... 0.786708 \n", + "4 Adolescent fertility rate (births per 1,000 wo... 0.924056 \n", + "... ... ... \n", + "6640 Completeness of birth registration (%) 0.839228 \n", + "6641 Completeness of birth registration (%) 0.792184 \n", + "6642 Completeness of birth registration (%) 0.840648 \n", + "6643 Completeness of birth registration (%) 0.963636 \n", + "6644 Completeness of birth registration (%) 0.789474 \n", + "\n", + " Behaviour Country Moved Type Continent \\\n", + "0 Negative DEU 1 Does not apply Europe \n", + "1 Negative SWE 3 Does not apply Europe \n", + "2 Negative GBR 13 Does not apply Europe \n", + "3 Negative HRV 8 Does not apply Europe \n", + "4 Negative POL 21 Does not apply Europe \n", + "... ... ... ... ... ... \n", + "6640 Positive PER 5 Does not apply Latam \n", + "6641 Negative VEN 1 Does not apply Latam \n", + "6642 Positive COL 2 Does not apply Latam \n", + "6643 Positive PAN 21 Does not apply Latam \n", + "6644 Positive CRI 13 Does not apply Latam \n", + "\n", + " Number of times repeated_x Group Level \\\n", + "0 22 Demography secondary \n", + "1 22 Demography secondary \n", + "2 22 Demography secondary \n", + "3 22 Demography secondary \n", + "4 22 Demography secondary \n", + "... ... ... ... \n", + "6640 11 Demoraphy secondary \n", + "6641 11 Demoraphy secondary \n", + "6642 11 Demoraphy secondary \n", + "6643 11 Demoraphy secondary \n", + "6644 11 Demoraphy secondary \n", + "\n", + " Number of times repeated_y \n", + "0 40 \n", + "1 40 \n", + "2 40 \n", + "3 40 \n", + "4 40 \n", + "... ... \n", + "6640 21 \n", + "6641 21 \n", + "6642 21 \n", + "6643 21 \n", + "6644 21 \n", + "\n", + "[6645 rows x 11 columns]" + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "final=pd.DataFrame()\n", + "for i in range(0,len(clist)):\n", + " dat=quarterfinal.loc[quarterfinal.loc[:, 'Country'] == clist[i]]\n", + " ids=dat.groupby('Indicator')['R^2 Spearman'].transform(max)==dat['R^2 Spearman']\n", + " dat[ids]\n", + " semifinal=pd.DataFrame(dat[ids])\n", + " final=pd.concat((final,semifinal), axis=0)\n", + "final_indicators_list=categories.Indicator.unique()\n", + "final['Continent']=final['Country'].map(all_countries)\n", + "final=final.loc[final.loc[:, 'Indicator'].isin(np.array(final_indicators_list))]\n", + "final=pd.merge(final,categories, left_on='Indicator',right_on='Indicator')\n", + "\n", + "columnssf=final.Indicator.to_list()\n", + "columnsf=np.unique(columnssf)\n", + "powerind=[]\n", + "for i in range(0, len(columnsf)):\n", + " powerind.append(columnssf.count(columnsf[i]))\n", + "final_indicators = pd.DataFrame(list(zip(columnsf,powerind)), columns = ['Indicator','Number of times repeated'])\n", + "\n", + "final=pd.merge(final,final_indicators, left_on='Indicator',right_on='Indicator')\n", + "final" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The former table final collects the indicators that have shown a high correlation with the GDP (according to the criteria established, see above). It provides detail of each case specifying the numerical value of the correlation (R^2 Spearman); the alignment with the GDP (Behaviour); the country and continent where it applies; if there is any temporal displacement; the group of interest it belongs to and the number of times repeated.\n", + "Moreover, if we focus over the column of \"Number of times repeated\". It reflects the number of times a high correlation of each indicator is repeated over the whole sample (aggregating all countries).\n", + "\n", + "In addition we have used the `itables` library to if wanted any one can search through the table as they wish." + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": "/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */\n!function(e,t){\"use strict\";\"object\"==typeof module&&\"object\"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error(\"jQuery requires a window with a document\");return t(e)}:t(e)}(\"undefined\"!=typeof window?window:this,function(C,e){\"use strict\";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return\"function\"==typeof e&&\"number\"!=typeof e.nodeType&&\"function\"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement(\"script\");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+\"\":\"object\"==typeof e||\"function\"==typeof e?n[o.call(e)]||\"object\":typeof e}var f=\"3.6.0\",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&\"length\"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&(\"array\"===n||0===t||\"number\"==typeof t&&0+~]|\"+M+\")\"+M+\"*\"),U=new RegExp(M+\"|>\"),X=new RegExp(F),V=new RegExp(\"^\"+I+\"$\"),G={ID:new RegExp(\"^#(\"+I+\")\"),CLASS:new RegExp(\"^\\\\.(\"+I+\")\"),TAG:new RegExp(\"^(\"+I+\"|[*])\"),ATTR:new RegExp(\"^\"+W),PSEUDO:new RegExp(\"^\"+F),CHILD:new RegExp(\"^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\\\(\"+M+\"*(even|odd|(([+-]|)(\\\\d*)n|)\"+M+\"*(?:([+-]|)\"+M+\"*(\\\\d+)|))\"+M+\"*\\\\)|)\",\"i\"),bool:new RegExp(\"^(?:\"+R+\")$\",\"i\"),needsContext:new RegExp(\"^\"+M+\"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\\\(\"+M+\"*((?:-\\\\d)?\\\\d*)\"+M+\"*\\\\)|)(?=[^-]|$)\",\"i\")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\\d$/i,K=/^[^{]+\\{\\s*\\[native \\w/,Z=/^(?:#([\\w-]+)|(\\w+)|\\.([\\w-]+))$/,ee=/[+~]/,te=new RegExp(\"\\\\\\\\[\\\\da-fA-F]{1,6}\"+M+\"?|\\\\\\\\([^\\\\r\\\\n\\\\f])\",\"g\"),ne=function(e,t){var n=\"0x\"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\\0-\\x1f\\x7f]|^-?\\d)|^-$|[^\\0-\\x1f\\x7f-\\uFFFF\\w-]/g,ie=function(e,t){return t?\"\\0\"===e?\"\\ufffd\":e.slice(0,-1)+\"\\\\\"+e.charCodeAt(e.length-1).toString(16)+\" \":\"\\\\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&\"fieldset\"===e.nodeName.toLowerCase()},{dir:\"parentNode\",next:\"legend\"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],\"string\"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+\" \"]&&(!v||!v.test(t))&&(1!==p||\"object\"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute(\"id\"))?s=s.replace(re,ie):e.setAttribute(\"id\",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?\"#\"+s:\":scope\")+\" \"+xe(l[o]);c=l.join(\",\")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute(\"id\")}}}return g(t.replace($,\"$1\"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+\" \")>b.cacheLength&&delete e[r.shift()],e[t+\" \"]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement(\"fieldset\");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split(\"|\"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return\"input\"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return(\"input\"===t||\"button\"===t)&&e.type===n}}function ge(t){return function(e){return\"form\"in e?e.parentNode&&!1===e.disabled?\"label\"in e?\"label\"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:\"label\"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&\"undefined\"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||\"HTML\")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener(\"unload\",oe,!1):n.attachEvent&&n.attachEvent(\"onunload\",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement(\"div\")),\"undefined\"!=typeof e.querySelectorAll&&!e.querySelectorAll(\":scope fieldset div\").length}),d.attributes=ce(function(e){return e.className=\"i\",!e.getAttribute(\"className\")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment(\"\")),!e.getElementsByTagName(\"*\").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute(\"id\")===t}},b.find.ID=function(e,t){if(\"undefined\"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t=\"undefined\"!=typeof e.getAttributeNode&&e.getAttributeNode(\"id\");return t&&t.value===n}},b.find.ID=function(e,t){if(\"undefined\"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode(\"id\"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode(\"id\"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return\"undefined\"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if(\"*\"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if(\"undefined\"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML=\"\",e.querySelectorAll(\"[msallowcapture^='']\").length&&v.push(\"[*^$]=\"+M+\"*(?:''|\\\"\\\")\"),e.querySelectorAll(\"[selected]\").length||v.push(\"\\\\[\"+M+\"*(?:value|\"+R+\")\"),e.querySelectorAll(\"[id~=\"+S+\"-]\").length||v.push(\"~=\"),(t=C.createElement(\"input\")).setAttribute(\"name\",\"\"),e.appendChild(t),e.querySelectorAll(\"[name='']\").length||v.push(\"\\\\[\"+M+\"*name\"+M+\"*=\"+M+\"*(?:''|\\\"\\\")\"),e.querySelectorAll(\":checked\").length||v.push(\":checked\"),e.querySelectorAll(\"a#\"+S+\"+*\").length||v.push(\".#.+[+~]\"),e.querySelectorAll(\"\\\\\\f\"),v.push(\"[\\\\r\\\\n\\\\f]\")}),ce(function(e){e.innerHTML=\"\";var t=C.createElement(\"input\");t.setAttribute(\"type\",\"hidden\"),e.appendChild(t).setAttribute(\"name\",\"D\"),e.querySelectorAll(\"[name=d]\").length&&v.push(\"name\"+M+\"*[*^$|!~]?=\"),2!==e.querySelectorAll(\":enabled\").length&&v.push(\":enabled\",\":disabled\"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(\":disabled\").length&&v.push(\":enabled\",\":disabled\"),e.querySelectorAll(\"*,:x\"),v.push(\",.*:\")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,\"*\"),c.call(e,\"[s!='']:x\"),s.push(\"!=\",F)}),v=v.length&&new RegExp(v.join(\"|\")),s=s.length&&new RegExp(s.join(\"|\")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+\" \"]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0\":{dir:\"parentNode\",first:!0},\" \":{dir:\"parentNode\"},\"+\":{dir:\"previousSibling\",first:!0},\"~\":{dir:\"previousSibling\"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||\"\").replace(te,ne),\"~=\"===e[2]&&(e[3]=\" \"+e[3]+\" \"),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),\"nth\"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*(\"even\"===e[3]||\"odd\"===e[3])),e[5]=+(e[7]+e[8]||\"odd\"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||\"\":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(\")\",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return\"*\"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+\" \"];return t||(t=new RegExp(\"(^|\"+M+\")\"+e+\"(\"+M+\"|$)\"))&&m(e,function(e){return t.test(\"string\"==typeof e.className&&e.className||\"undefined\"!=typeof e.getAttribute&&e.getAttribute(\"class\")||\"\")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?\"!=\"===r:!r||(t+=\"\",\"=\"===r?t===i:\"!=\"===r?t!==i:\"^=\"===r?i&&0===t.indexOf(i):\"*=\"===r?i&&-1\",\"#\"===e.firstChild.getAttribute(\"href\")})||fe(\"type|href|height|width\",function(e,t,n){if(!n)return e.getAttribute(t,\"type\"===t.toLowerCase()?1:2)}),d.attributes&&ce(function(e){return e.innerHTML=\"\",e.firstChild.setAttribute(\"value\",\"\"),\"\"===e.firstChild.getAttribute(\"value\")})||fe(\"value\",function(e,t,n){if(!n&&\"input\"===e.nodeName.toLowerCase())return e.defaultValue}),ce(function(e){return null==e.getAttribute(\"disabled\")})||fe(R,function(e,t,n){var r;if(!n)return!0===e[t]?t.toLowerCase():(r=e.getAttributeNode(t))&&r.specified?r.value:null}),se}(C);S.find=d,S.expr=d.selectors,S.expr[\":\"]=S.expr.pseudos,S.uniqueSort=S.unique=d.uniqueSort,S.text=d.getText,S.isXMLDoc=d.isXML,S.contains=d.contains,S.escapeSelector=d.escape;var h=function(e,t,n){var r=[],i=void 0!==n;while((e=e[t])&&9!==e.nodeType)if(1===e.nodeType){if(i&&S(e).is(n))break;r.push(e)}return r},T=function(e,t){for(var n=[];e;e=e.nextSibling)1===e.nodeType&&e!==t&&n.push(e);return n},k=S.expr.match.needsContext;function A(e,t){return e.nodeName&&e.nodeName.toLowerCase()===t.toLowerCase()}var N=/^<([a-z][^\\/\\0>:\\x20\\t\\r\\n\\f]*)[\\x20\\t\\r\\n\\f]*\\/?>(?:<\\/\\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):\"string\"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,\"string\"==typeof e){if(!(r=\"<\"===e[0]&&\">\"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\\x20\\t\\r\\n\\f]*)/i,he=/^$|^module$|\\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement(\"div\")),(fe=E.createElement(\"input\")).setAttribute(\"type\",\"radio\"),fe.setAttribute(\"checked\",\"checked\"),fe.setAttribute(\"name\",\"t\"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML=\"\",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML=\"\",y.option=!!ce.lastChild;var ge={thead:[1,\"\",\"
\"],col:[2,\"\",\"
\"],tr:[2,\"\",\"
\"],td:[3,\"\",\"
\"],_default:[0,\"\",\"\"]};function ve(e,t){var n;return n=\"undefined\"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||\"*\"):\"undefined\"!=typeof e.querySelectorAll?e.querySelectorAll(t||\"*\"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n\",\"\"]);var me=/<|&#?\\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\\s*$/g;function je(e,t){return A(e,\"table\")&&A(11!==t.nodeType?t:t.firstChild,\"tr\")&&S(e).children(\"tbody\")[0]||e}function De(e){return e.type=(null!==e.getAttribute(\"type\"))+\"/\"+e.type,e}function qe(e){return\"true/\"===(e.type||\"\").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute(\"type\"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,\"handle events\"),s)for(n=0,r=s[i].length;n\").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on(\"load error\",i=function(e){r.remove(),i=null,e&&t(\"error\"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\\?(?=&|$)|\\?\\?/;S.ajaxSetup({jsonp:\"callback\",jsonpCallback:function(){var e=zt.pop()||S.expando+\"_\"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter(\"json jsonp\",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?\"url\":\"string\"==typeof e.data&&0===(e.contentType||\"\").indexOf(\"application/x-www-form-urlencoded\")&&Ut.test(e.data)&&\"data\");if(a||\"jsonp\"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,\"$1\"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?\"&\":\"?\")+e.jsonp+\"=\"+r),e.converters[\"script json\"]=function(){return o||S.error(r+\" was not called\"),o[0]},e.dataTypes[0]=\"json\",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),\"script\"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument(\"\").body).innerHTML=\"
\",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return\"string\"!=typeof e?[]:(\"boolean\"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument(\"\")).createElement(\"base\")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(\" \");return-1\").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,\"position\"),c=S(e),f={};\"static\"===l&&(e.style.position=\"relative\"),s=c.offset(),o=S.css(e,\"top\"),u=S.css(e,\"left\"),(\"absolute\"===l||\"fixed\"===l)&&-1<(o+u).indexOf(\"auto\")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),\"using\"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if(\"fixed\"===S.css(r,\"position\"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&\"static\"===S.css(e,\"position\"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,\"borderTopWidth\",!0),i.left+=S.css(e,\"borderLeftWidth\",!0))}return{top:t.top-i.top-S.css(r,\"marginTop\",!0),left:t.left-i.left-S.css(r,\"marginLeft\",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&\"static\"===S.css(e,\"position\"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:\"pageXOffset\",scrollTop:\"pageYOffset\"},function(t,i){var o=\"pageYOffset\"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each([\"top\",\"left\"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+\"px\":t})}),S.each({Height:\"height\",Width:\"width\"},function(a,s){S.each({padding:\"inner\"+a,content:s,\"\":\"outer\"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||\"boolean\"!=typeof e),i=r||(!0===e||!0===t?\"margin\":\"border\");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf(\"outer\")?e[\"inner\"+a]:e.document.documentElement[\"client\"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body[\"scroll\"+a],r[\"scroll\"+a],e.body[\"offset\"+a],r[\"offset\"+a],r[\"client\"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each([\"ajaxStart\",\"ajaxStop\",\"ajaxComplete\",\"ajaxError\",\"ajaxSuccess\",\"ajaxSend\"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,\"**\"):this.off(t,e||\"**\",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each(\"blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu\".split(\" \"),function(e,n){S.fn[n]=function(e,t){return 0" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:itables.downsample:showing 744x11 of 6645x11 as nbytes=584760>65536=maxBytes. See https://mwouts.github.io/itables/downsampling.html\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorR^2 SpearmanBehaviourCountryMovedTypeContinentNumber of times repeated_xGroupLevelNumber of times repeated_y
Loading... (need help?)
\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:itables.downsample:showing 744x11 of 6645x11 as nbytes=584760>65536=maxBytes. See https://mwouts.github.io/itables/downsampling.html\n" + ] + }, + { + "data": { + "text/html": [ + "
NoneIndicatorR^2 SpearmanBehaviourCountryMovedTypeContinentNumber of times repeated_xGroupLevelNumber of times repeated_y
Loading... (need help?)
\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from itables import init_notebook_mode,show\n", + "\n", + "init_notebook_mode(all_interactive=False)\n", + "\n", + "import itables.options as opt\n", + "\n", + "show(pd.DataFrame(final),dom=\"ftpr\")\n", + "\n", + "opt.lengthMenu=[5,10,20,50,100,200]\n", + "\n", + "opt.classes=[\"display\",\"nowrap\"]\n", + "\n", + "show(final,columnDefs=[{\"className\": \"dt-left\", \"targets\": \"_all\"}],column_filters=\"header\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, there is a recount by the different columns, *Behaviour*, *Relationship* and *Time moved*." + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Type of behaviourNumber of times repeated
1Positive4723
0Negative1922
\n", + "
" + ], + "text/plain": [ + " Type of behaviour Number of times repeated\n", + "1 Positive 4723\n", + "0 Negative 1922" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "columnssf=final.Behaviour.to_list()\n", + "columnsf=np.unique(columnssf)\n", + "powerind=[]\n", + "for i in range(0, len(columnsf)):\n", + " powerind.append(columnssf.count(columnsf[i]))\n", + "\n", + "final_Behaviour = pd.DataFrame(list(zip(columnsf,powerind)), columns = ['Type of behaviour','Number of times repeated'])\n", + "final_Behaviour=final_Behaviour.sort_values(by = 'Number of times repeated',ascending = False)\n", + "final_Behaviour" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Type of relationshipNumber of times repeated
3Linear1294
4Logarithmic687
1Cubic419
0Cuadratic253
\n", + "
" + ], + "text/plain": [ + " Type of relationship Number of times repeated\n", + "3 Linear 1294\n", + "4 Logarithmic 687\n", + "1 Cubic 419\n", + "0 Cuadratic 253" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "columnssf=final.Type.to_list()\n", + "columnsf=np.unique(columnssf)\n", + "powerind=[]\n", + "for i in range(0, len(columnsf)):\n", + " powerind.append(columnssf.count(columnsf[i]))\n", + "\n", + "final_type = pd.DataFrame(list(zip(columnsf,powerind)), columns = ['Type of relationship','Number of times repeated'])\n", + "final_type=final_type.sort_values(by = 'Number of times repeated',ascending = False)\n", + "final_type.drop([2], inplace=True)\n", + "final_type" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the table above, we can observe which is the most common type of relationship." + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Time movedNumber of times repeated
7Does not apply2653
68902
55741
113607
01516
321474
22414
43338
\n", + "
" + ], + "text/plain": [ + " Time moved Number of times repeated\n", + "7 Does not apply 2653\n", + "6 8 902\n", + "5 5 741\n", + "1 13 607\n", + "0 1 516\n", + "3 21 474\n", + "2 2 414\n", + "4 3 338" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "columnssf=final.Moved.to_list()\n", + "columnsf=np.unique(columnssf)\n", + "powerind=[]\n", + "for i in range(0, len(columnsf)):\n", + " powerind.append(columnssf.count(columnsf[i]))\n", + "\n", + "final_moved = pd.DataFrame(list(zip(columnsf,powerind)), columns = ['Time moved','Number of times repeated'])\n", + "final_moved=final_moved.sort_values(by = 'Number of times repeated',ascending = False)\n", + "final_moved" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As said, the temporary displacement shows us correlation of an indicator with the GDP comparing different periods of time. In this table, we have made a recount to see which range of displacement is most repeated. As we can see, no displacement is the most common case, what means correlation year-by-year is majority in our sample." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visualization of results" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [], + "source": [ + "#Needed imports\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import seaborn as sns\n", + "\n", + "import plotly.express as px\n", + "\n", + "import plotly.graph_objects as go\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we’ve loaded the data, we can start right away to create widgets. These widgets are essentials to add interactivity to our visualizations." + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Principal
Indicator=%{x}
count=%{y}", + "legendgroup": "Principal", + "marker": { + "color": "#636efa", + "pattern": { + "shape": "" + } + }, + "name": "Principal", + "offsetgroup": "Principal", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Agriculture
Indicator=%{x}
count=%{y}", + "legendgroup": "Agriculture", + "marker": { + "color": "#EF553B", + "pattern": { + "shape": "" + } + }, + "name": "Agriculture", + "offsetgroup": "Agriculture", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Mortality
Indicator=%{x}
count=%{y}", + "legendgroup": "Mortality", + "marker": { + "color": "#00cc96", + "pattern": { + "shape": "" + } + }, + "name": "Mortality", + "offsetgroup": "Mortality", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Economy
Indicator=%{x}
count=%{y}", + "legendgroup": "Economy", + "marker": { + "color": "#ab63fa", + "pattern": { + "shape": "" + } + }, + "name": "Economy", + "offsetgroup": "Economy", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Health
Indicator=%{x}
count=%{y}", + "legendgroup": "Health", + "marker": { + "color": "#FFA15A", + "pattern": { + "shape": "" + } + }, + "name": "Health", + "offsetgroup": "Health", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Exports
Indicator=%{x}
count=%{y}", + "legendgroup": "Exports", + "marker": { + "color": "#19d3f3", + "pattern": { + "shape": "" + } + }, + "name": "Exports", + "offsetgroup": "Exports", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Environment
Indicator=%{x}
count=%{y}", + "legendgroup": "Environment", + "marker": { + "color": "#FF6692", + "pattern": { + "shape": "" + } + }, + "name": "Environment", + "offsetgroup": "Environment", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Equality
Indicator=%{x}
count=%{y}", + "legendgroup": "Equality", + "marker": { + "color": "#B6E880", + "pattern": { + "shape": "" + } + }, + "name": "Equality", + "offsetgroup": "Equality", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Internet
Indicator=%{x}
count=%{y}", + "legendgroup": "Internet", + "marker": { + "color": "#FF97FF", + "pattern": { + "shape": "" + } + }, + "name": "Internet", + "offsetgroup": "Internet", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Employment
Indicator=%{x}
count=%{y}", + "legendgroup": "Employment", + "marker": { + "color": "#FECB52", + "pattern": { + "shape": "" + } + }, + "name": "Employment", + "offsetgroup": "Employment", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=Demography
Indicator=%{x}
count=%{y}", + "legendgroup": "Demography", + "marker": { + "color": "#636efa", + "pattern": { + "shape": "" + } + }, + "name": "Demography", + "offsetgroup": "Demography", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city" + ], + "xaxis": "x", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "bingroup": "x", + "histfunc": "count", + "hovertemplate": "Group=A&D
Indicator=%{x}
count=%{y}", + "legendgroup": "A&D", + "marker": { + "color": "#EF553B", + "pattern": { + "shape": "" + } + }, + "name": "A&D", + "offsetgroup": "A&D", + "orientation": "v", + "showlegend": true, + "texttemplate": "%{value}", + "type": "histogram", + "x": [ + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ], + "xaxis": "x", + "yaxis": "y" + } + ], + "layout": { + "barmode": "relative", + "height": 700, + "legend": { + "title": { + "text": "Group" + }, + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Indicators frequency by continents" + }, + "updatemenus": [ + { + "buttons": [ + { + "args": [ + { + "x": [ + [ + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)" + ], + [ + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)" + ], + [ + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)" + ], + [ + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)" + ], + [ + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)" + ], + [ + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)" + ], + [ + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)" + ], + [ + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)" + ], + [ + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)" + ], + [ + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)" + ], + [ + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city" + ], + [ + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ] + ] + } + ], + "label": "Europe", + "method": "update" + }, + { + "args": [ + { + "x": [ + [ + "GDP per unit of energy use (PPP $ per kg of oil equivalent)" + ], + [ + "Agricultural land (% of land area)", + "Agricultural land (% of land area)" + ], + [ + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)" + ], + [ + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)" + ], + [ + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Current health expenditure (% of GDP)" + ], + [ + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)" + ], + [ + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)" + ], + [ + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)" + ], + [ + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)" + ], + [ + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)" + ], + [ + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city" + ], + [ + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ] + ] + } + ], + "label": "Persian Gulf", + "method": "update" + }, + { + "args": [ + { + "x": [ + [ + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)" + ], + [ + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)" + ], + [ + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)" + ], + [ + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)" + ], + [ + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)" + ], + [ + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)" + ], + [ + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Access to electricity (% of population)", + "Access to electricity (% of population)" + ], + [ + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)" + ], + [ + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)" + ], + [ + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)" + ], + [ + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city" + ], + [ + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ] + ] + } + ], + "label": "North Africa", + "method": "update" + }, + { + "args": [ + { + "x": [ + [ + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)" + ], + [ + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)" + ], + [ + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)" + ], + [ + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)" + ], + [ + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)" + ], + [ + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)" + ], + [ + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)" + ], + [ + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)" + ], + [ + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)" + ], + [ + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)" + ], + [ + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city" + ], + [ + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ] + ] + } + ], + "label": "South Africa", + "method": "update" + }, + { + "args": [ + { + "x": [ + [ + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)" + ], + [ + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)" + ], + [ + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)" + ], + [ + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)" + ], + [ + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)" + ], + [ + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)" + ], + [ + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)" + ], + [ + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)" + ], + [ + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)" + ], + [ + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)" + ], + [ + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city" + ], + [ + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ] + ] + } + ], + "label": "Asia", + "method": "update" + }, + { + "args": [ + { + "x": [ + [ + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)" + ], + [ + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)" + ], + [ + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)" + ], + [ + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)" + ], + [ + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)" + ], + [ + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)" + ], + [ + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)" + ], + [ + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)" + ], + [ + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)" + ], + [ + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)" + ], + [ + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city" + ], + [ + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ] + ] + } + ], + "label": "Latam", + "method": "update" + }, + { + "args": [ + { + "x": [ + [ + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)" + ], + [ + "Agricultural land (% of land area)", + "Agricultural land (% of land area)" + ], + [ + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)" + ], + [ + "Gross value added at basic prices (GVA) (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)" + ], + [ + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)" + ], + [ + "Export value index (2000 = 100)", + "Export value index (2000 = 100)" + ], + [ + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Access to electricity (% of population)" + ], + [ + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)" + ], + [ + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)" + ], + [ + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)" + ], + [ + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city" + ], + [ + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ] + ] + } + ], + "label": "Pair", + "method": "update" + } + ], + "direction": "down", + "showactive": true, + "type": "dropdown" + } + ], + "xaxis": { + "anchor": "y", + "categoryorder": "total descending", + "domain": [ + 0, + 1 + ], + "title": { + "text": "Indicator" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "count" + } + } + } + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#COUNT HISTOGRAM: Graph for seeing the frequency of the primary indicators for each region.\n", + "selected_primary=final.loc[final['Level']=='primary']\n", + "\n", + "fig=px.histogram(selected_primary,x='Indicator',histfunc=\"count\",height=700,color='Group',text_auto=True,title=\"Indicators frequency by continents\").update_xaxes(categoryorder=\"total descending\")\n", + "continents=list(selected_primary['Continent'].unique())\n", + "buttons = []\n", + "\n", + "for continent in continents:\n", + " selected_primary_c = selected_primary.loc[(selected_primary['Continent'] == continent)]\n", + " fig_continent = px.histogram(selected_primary_c, x='Indicator', color='Group').update_xaxes(categoryorder=\"total descending\")\n", + " buttons.append(\n", + " dict(\n", + " label=continent,\n", + " method=\"update\",\n", + " args=[\n", + " {\n", + " \"x\": [trace['x'] for trace in fig_continent._data],\n", + " }\n", + " ]\n", + " )\n", + " )\n", + "\n", + "fig.update_layout(\n", + " updatemenus=[\n", + " dict(\n", + " type=\"dropdown\",\n", + " direction=\"down\",\n", + " showactive=True,\n", + " buttons=buttons\n", + " )\n", + " ]\n", + ")\n", + "\n", + "\n", + "\n", + "fig.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "branchvalues": "total", + "customdata": [ + [ + 0.9194369973190348 + ], + [ + 0.9150177303560064 + ], + [ + 0.9832058480308432 + ], + [ + 0.9792614678275988 + ], + [ + 0.9104552048233484 + ], + [ + 0.7818744360024455 + ], + [ + 0.9139430100959351 + ], + [ + 0.9206651788481804 + ], + [ + 0.9773557492735576 + ], + [ + 0.9929947676208064 + ], + [ + 0.9667829842995462 + ], + [ + 0.9886242163794032 + ], + [ + 0.9842229467473992 + ], + [ + 0.7869703117696519 + ], + [ + 0.9545454545454548 + ], + [ + 0.9364502164502164 + ], + [ + 0.7568829071309779 + ], + [ + 0.8405722943067688 + ], + [ + 0.7712684989429177 + ], + [ + 0.8553134080531343 + ], + [ + 0.7522123063336182 + ], + [ + 0.9985339932335306 + ], + [ + 0.9883020564051679 + ], + [ + 0.953621170127054 + ], + [ + 0.9622333213753728 + ], + [ + 0.8553134080531343 + ], + [ + 0.8553134080531343 + ], + [ + 0.8598347107438016 + ], + [ + 0.8507923269391159 + ], + [ + 0.8430578512396696 + ], + [ + 0.8385429638854296 + ], + [ + 0.9545454545454548 + ], + [ + 0.9545454545454548 + ], + [ + 0.8673029726406383 + ], + [ + 0.8358612257146861 + ], + [ + 0.8490800833801486 + ], + [ + 0.8003212087852895 + ], + [ + 0.904913008013858 + ], + [ + 0.7976314145122237 + ], + [ + 0.8890631162040309 + ], + [ + 0.8232860332235971 + ], + [ + 0.8258303273081601 + ], + [ + 0.9919502705663622 + ], + [ + 0.9965191088563604 + ], + [ + 0.9550538402276436 + ], + [ + 0.9737764107803116 + ], + [ + 0.8530611929128231 + ], + [ + 0.8399280642635364 + ], + [ + 0.8490800833801486 + ], + [ + 0.82454262425017 + ], + [ + 0.8462362704327265 + ], + [ + 0.8460152283133167 + ], + [ + 0.8536368018578387 + ], + [ + 0.8276242108365519 + ], + [ + 0.8298946640273919 + ], + [ + 0.8442479234380643 + ], + [ + 0.9731456263408548 + ], + [ + 0.8590707598082956 + ], + [ + 0.9929855448480356 + ], + [ + 0.917314235445159 + ], + [ + 0.9416437009068946 + ], + [ + 0.8977160492573557 + ], + [ + 0.909065387196842 + ], + [ + 0.9356248965935622 + ], + [ + 0.9890174067689452 + ], + [ + 0.9992663243093578 + ], + [ + 0.9255861016232882 + ], + [ + 0.9701400724878312 + ], + [ + 0.9099770642201834 + ], + [ + 0.9943501037415146 + ], + [ + 0.9947856385396152 + ], + [ + 0.9956476370717128 + ], + [ + 0.9904302907657898 + ], + [ + 0.8041381029540074 + ], + [ + 0.993779175279743 + ], + [ + 0.7813852813852814 + ], + [ + 0.8832034632034632 + ], + [ + 0.9990150209905604 + ], + [ + 0.9929855448480356 + ], + [ + 0.9947856385396152 + ], + [ + 0.9859234217934404 + ], + [ + 0.978073311070348 + ], + [ + 0.9820100634702482 + ], + [ + 1 + ], + [ + 0.9992656508417233 + ], + [ + 1 + ], + [ + 0.9974294410273912 + ], + [ + 0.949825316001485 + ], + [ + 0.9991101224022378 + ], + [ + 0.9990150209905604 + ], + [ + 0.997391304347826 + ], + [ + 0.9937731747479652 + ], + [ + 0.8244642857142859 + ], + [ + 0.9985875706214687 + ], + [ + 0.878685196514601 + ], + [ + 0.9786956521739132 + ], + [ + 0.7763614794595731 + ], + [ + 0.7822341892305151 + ], + [ + 0.833174972830306 + ], + [ + 0.7707081956166206 + ], + [ + 0.8268991218112046 + ], + [ + 0.7862727272727271 + ], + [ + 0.8546502548557862 + ], + [ + 0.775995920023485 + ], + [ + 0.831081385436793 + ], + [ + 0.9985339932335306 + ], + [ + 0.9941424251920344 + ], + [ + 0.9890311615492476 + ], + [ + 0.9358035287465732 + ], + [ + 0.7714797416324134 + ], + [ + 0.7643053750286719 + ], + [ + 0.7707081956166206 + ], + [ + 0.7521112125156584 + ], + [ + 0.8598347107438016 + ], + [ + 0.90662100456621 + ], + [ + 0.7822341892305151 + ], + [ + 0.7563441975980676 + ], + [ + 0.9055353950321428 + ], + [ + 0.8710617614475394 + ], + [ + 0.8630005695842037 + ], + [ + 0.8952232922255726 + ], + [ + 0.7757575757575756 + ], + [ + 0.8398859728050183 + ], + [ + 0.8668958338409165 + ], + [ + 0.8490459410817468 + ], + [ + 0.8534540516685338 + ], + [ + 0.9919502705663622 + ], + [ + 1 + ], + [ + 0.9839330712663648 + ], + [ + 0.9464739502688859 + ], + [ + 0.8862820694208641 + ], + [ + 0.8874398840030436 + ], + [ + 0.8952232922255726 + ], + [ + 0.848613775065388 + ], + [ + 0.9018993376896012 + ], + [ + 0.8965017504270001 + ], + [ + 0.8895952017025273 + ], + [ + 0.7552008456659621 + ], + [ + 0.8658008658008658 + ], + [ + 0.9636752136752136 + ], + [ + 0.9364502164502164 + ], + [ + 0.984461621950468 + ], + [ + 1 + ], + [ + 0.9818181818181816 + ], + [ + 0.996521739130435 + ], + [ + 0.8586700336700335 + ], + [ + 0.9890311615492476 + ], + [ + 0.999122807017544 + ], + [ + 0.9818536963567754 + ], + [ + 1 + ], + [ + 1 + ], + [ + 0.9970690618433798 + ], + [ + 0.9970690618433798 + ], + [ + 1 + ], + [ + 1 + ], + [ + 0.9982456140350876 + ], + [ + 0.9477543538038498 + ], + [ + 0.9977822580645164 + ], + [ + 0.9576803072122886 + ], + [ + 0.8041630667784955 + ], + [ + 0.8119647131227026 + ], + [ + 0.8679516484927489 + ], + [ + 0.8129887361537077 + ], + [ + 0.8296247866194634 + ], + [ + 0.8330381744436689 + ], + [ + 0.9303687863484544 + ], + [ + 0.8870930627862177 + ], + [ + 0.8486878358300123 + ], + [ + 0.9978013931164152 + ], + [ + 0.99268071993084 + ], + [ + 0.9875732201051683 + ], + [ + 0.9658331436022252 + ], + [ + 0.7726587251245717 + ], + [ + 0.8119189817879228 + ], + [ + 0.8216057600038706 + ], + [ + 0.9095579316931844 + ], + [ + 0.822054489456517 + ], + [ + 0.7805172292400585 + ], + [ + 0.892391114486425 + ], + [ + 0.9000234404536862 + ], + [ + 0.8397480840731469 + ], + [ + 0.8550497957993816 + ], + [ + 0.9350943180643897 + ], + [ + 0.897855261911528 + ], + [ + 0.9129853629164147 + ], + [ + 0.9978013931164152 + ], + [ + 1 + ], + [ + 0.9868446526492484 + ], + [ + 0.955770578544058 + ], + [ + 0.8995898027497777 + ], + [ + 0.8995898027497777 + ], + [ + 0.9000234404536862 + ], + [ + 0.8974216292028354 + ], + [ + 0.9068929556529068 + ], + [ + 0.7766774350616475 + ], + [ + 0.9370415079706567 + ], + [ + 0.8857699681136173 + ], + [ + 0.9897824784878032 + ], + [ + 0.998221036598569 + ], + [ + 0.8084175084175085 + ], + [ + 0.9913111768722972 + ], + [ + 0.8675319709415152 + ], + [ + 0.9280169976669376 + ], + [ + 0.999122807017544 + ], + [ + 0.8998911634924976 + ], + [ + 1 + ], + [ + 0.9992668621947256 + ], + [ + 1 + ], + [ + 0.9960351014549488 + ], + [ + 0.999122807017544 + ], + [ + 0.999122807017544 + ], + [ + 1 + ], + [ + 0.9982456140350876 + ], + [ + 0.9380859781477626 + ], + [ + 0.934372987530004 + ], + [ + 0.9969759694040504 + ], + [ + 0.792782754772987 + ], + [ + 0.7714560308712177 + ], + [ + 0.8085316277505704 + ], + [ + 0.8017888630248555 + ], + [ + 0.8557422839635942 + ], + [ + 0.7920446151287672 + ], + [ + 0.8210527935710153 + ], + [ + 0.79241896667796 + ], + [ + 0.7793718426037994 + ], + [ + 0.996336999414424 + ], + [ + 0.9965191088563604 + ], + [ + 0.9672749544015236 + ], + [ + 0.9477180531985372 + ], + [ + 0.8462714704650187 + ], + [ + 0.793236950671892 + ], + [ + 0.7965452139741043 + ], + [ + 0.7966912350949062 + ], + [ + 0.8584751140436623 + ], + [ + 0.8075842215036355 + ], + [ + 0.8935463671803986 + ], + [ + 0.8694866227116197 + ], + [ + 0.7559911987169416 + ], + [ + 0.8672820048414341 + ], + [ + 0.9978013931164152 + ], + [ + 0.9540512424216696 + ], + [ + 0.8485601299189015 + ], + [ + 0.7802288530146114 + ], + [ + 0.7559911987169416 + ], + [ + 0.8075842215036355 + ], + [ + 0.865081443540125 + ], + [ + 0.8408374965151522 + ], + [ + 0.8521832338962485 + ], + [ + 0.8227635041015324 + ], + [ + 0.8786356094048401 + ], + [ + 0.8701066680233348 + ], + [ + 0.8985904473621558 + ], + [ + 0.919319387113138 + ], + [ + 0.9208092958092956 + ], + [ + 0.8586700336700335 + ], + [ + 0.9416562889165628 + ], + [ + 0.932398585032895 + ], + [ + 0.9970690618433798 + ], + [ + 0.9970690618433798 + ], + [ + 0.9948736810887512 + ], + [ + 0.9622333213753728 + ], + [ + 0.7902969671765014 + ], + [ + 0.9908884770316014 + ], + [ + 0.946198347107438 + ], + [ + 0.92385752642948 + ], + [ + 0.8863636363636365 + ], + [ + 0.8259976777571356 + ], + [ + 0.8190486045187014 + ], + [ + 0.7940051262578318 + ], + [ + 0.7606873345935727 + ], + [ + 0.8224948407969244 + ], + [ + 0.9006445563787115 + ], + [ + 0.7834335706711103 + ], + [ + 0.7736264668325739 + ], + [ + 0.7922752675949607 + ], + [ + 0.800012400217004 + ], + [ + 0.9985339932335306 + ], + [ + 0.9768478574449928 + ], + [ + 0.9853883242696474 + ], + [ + 0.8067839857133676 + ], + [ + 0.8017627702025453 + ], + [ + 0.8021928166351607 + ], + [ + 0.7910710359728593 + ], + [ + 0.828891493383743 + ], + [ + 0.8284602000869942 + ], + [ + 0.7644903235840163 + ], + [ + 0.7893527624833871 + ], + [ + 0.780089044997152 + ], + [ + 0.7928741020793951 + ], + [ + 0.7604961330297303 + ], + [ + 0.8921379258150505 + ], + [ + 0.7921764122864366 + ], + [ + 0.863925779862748 + ], + [ + 0.7916704805491989 + ], + [ + 0.7984383476710843 + ], + [ + 0.996336999414424 + ], + [ + 0.9833831528957327 + ], + [ + 0.991220090045964 + ], + [ + 0.9301373709233364 + ], + [ + 0.7916704805491989 + ], + [ + 0.81573077081821 + ], + [ + 0.7928741020793951 + ], + [ + 0.7802662901330503 + ], + [ + 0.8037512287334593 + ], + [ + 0.8025417478298693 + ], + [ + 0.7893527624833871 + ], + [ + 0.9222946747399472 + ], + [ + 0.9344444444444444 + ], + [ + 0.8801077325173712 + ], + [ + 0.9000168618023969 + ], + [ + 0.934334074623178 + ], + [ + 0.824723044297354 + ], + [ + 0.936963017728694 + ], + [ + 0.907326978222119 + ], + [ + 0.9883020564051679 + ], + [ + 0.9914003253458398 + ], + [ + 0.9716068390573318 + ], + [ + 0.8868080394461477 + ], + [ + 0.9312885573197214 + ], + [ + 0.9677933860111212 + ], + [ + 0.9344444444444444 + ], + [ + 0.9360867018160518 + ], + [ + 0.9310557094490612 + ], + [ + 0.9275512725475664 + ], + [ + 0.9290762303990062 + ], + [ + 0.8220626497774737 + ], + [ + 0.8242647792818613 + ], + [ + 0.8580430671412884 + ], + [ + 0.7589099863492517 + ], + [ + 0.8806041934635603 + ], + [ + 0.7737464548987709 + ], + [ + 0.838169467510867 + ], + [ + 1 + ], + [ + 0.9890311615492476 + ], + [ + 0.9853883242696474 + ], + [ + 0.9450477324262084 + ], + [ + 0.8580430671412884 + ], + [ + 0.8398311720625258 + ], + [ + 0.8578858011832347 + ], + [ + 0.8672259606948435 + ], + [ + 0.7905217546826223 + ], + [ + 0.8549939348739194 + ], + [ + 0.8210461476724114 + ], + [ + 0.8919696969696971 + ], + [ + 0.8363949697251979 + ], + [ + 0.8053911900065747 + ], + [ + 0.769382100421295 + ], + [ + 0.923526237747262 + ], + [ + 0.8619283887468031 + ], + [ + 0.84746622922539 + ], + [ + 0.9782982623788444 + ], + [ + 0.9817522080920388 + ], + [ + 0.8134050821718116 + ], + [ + 0.84746622922539 + ], + [ + 0.84746622922539 + ], + [ + 0.8483379501385041 + ], + [ + 0.8465945179292698 + ], + [ + 0.8803334593572778 + ], + [ + 0.9004149252037746 + ], + [ + 0.796839893191436 + ], + [ + 0.9028882720019862 + ], + [ + 0.7676281237741422 + ], + [ + 0.8291492133323973 + ], + [ + 0.7913646289079624 + ], + [ + 0.9904289157282716 + ], + [ + 0.9926335425715881 + ], + [ + 0.9461330864231152 + ], + [ + 0.9454153674378072 + ], + [ + 0.7598160347464082 + ], + [ + 0.7867084930870223 + ], + [ + 0.7871436798157215 + ], + [ + 0.7860877112960002 + ], + [ + 0.8101813436763873 + ], + [ + 0.8238243435953363 + ], + [ + 0.8818618218586448 + ], + [ + 0.7794331008589288 + ], + [ + 0.9025957850286672 + ], + [ + 0.8025699565810901 + ], + [ + 0.9170617535185012 + ], + [ + 0.7631048593350384 + ], + [ + 0.8250833206612556 + ], + [ + 0.9088064577345945 + ], + [ + 0.9278150139590884 + ], + [ + 0.9992668621947256 + ], + [ + 0.8068812492978317 + ], + [ + 0.9934114381393974 + ], + [ + 0.984660563345966 + ], + [ + 0.870252992498577 + ], + [ + 0.8985858297326429 + ], + [ + 0.9025957850286672 + ], + [ + 0.90741737640829 + ], + [ + 0.9024751306250636 + ], + [ + 0.8824223337513897 + ], + [ + 0.9791710812316362 + ], + [ + 0.756628065305478 + ], + [ + 0.9859234217934404 + ], + [ + 0.992671182389769 + ], + [ + 0.7925192834831389 + ], + [ + 0.9807828100228472 + ], + [ + 0.9925507389082384 + ], + [ + 0.928723519908324 + ], + [ + 0.9761788895853514 + ], + [ + 0.9506223327256856 + ], + [ + 0.9992668621947256 + ], + [ + 0.9985339932335306 + ], + [ + 0.9985339932335306 + ], + [ + 0.9904901783696456 + ], + [ + 0.992671182389769 + ], + [ + 0.992671182389769 + ], + [ + 0.9928936489808848 + ], + [ + 0.988714605208294 + ], + [ + 0.948060941828255 + ], + [ + 0.9939538727034296 + ], + [ + 0.915641381346678 + ], + [ + 0.971001604361102 + ], + [ + 0.7554660388288974 + ], + [ + 0.8668958338409165 + ], + [ + 0.996336999414424 + ], + [ + 1 + ], + [ + 0.8683978095980386 + ], + [ + 0.9507590560548307 + ], + [ + 0.7506209000762774 + ], + [ + 0.7650792722152087 + ], + [ + 0.7882882882882881 + ], + [ + 0.9873000604890544 + ], + [ + 0.9682695039010508 + ], + [ + 0.939548148620228 + ], + [ + 0.978469168274726 + ], + [ + 0.9770862304997938 + ], + [ + 0.9364530503181744 + ], + [ + 0.9928507310737632 + ], + [ + 0.998339483394834 + ], + [ + 0.9869953764615554 + ], + [ + 0.9779823259487208 + ], + [ + 0.9862539184209972 + ], + [ + 0.9848040830545792 + ], + [ + 0.9846235837724948 + ], + [ + 0.9834028714566064 + ], + [ + 0.9808836171606353 + ], + [ + 0.9814823072033312 + ], + [ + 0.9838663951689132 + ], + [ + 0.9289464621791536 + ], + [ + 0.950300482513086 + ], + [ + 0.9486101335940044 + ], + [ + 0.951299790877642 + ], + [ + 0.932353379320096 + ], + [ + 0.9363191484705866 + ], + [ + 0.7500718937727315 + ], + [ + 0.8881896291715989 + ], + [ + 0.9329580322176916 + ], + [ + 0.9417014747671419 + ], + [ + 1 + ], + [ + 1 + ], + [ + 0.995605205829548 + ], + [ + 0.9883020564051679 + ], + [ + 0.9514741813067672 + ], + [ + 0.9514741813067672 + ], + [ + 0.9319643313838056 + ], + [ + 0.9419954799687824 + ], + [ + 0.9441436310000064 + ], + [ + 0.9555403520366936 + ], + [ + 0.8732908588456849 + ], + [ + 0.8482458889462429 + ], + [ + 0.8657481566722074 + ], + [ + 0.9060155127964962 + ], + [ + 0.8321093615368212 + ], + [ + 0.993758325008325 + ], + [ + 0.8271094654395285 + ], + [ + 0.855139156857862 + ], + [ + 0.8622230550415498 + ], + [ + 0.8892009084674849 + ], + [ + 0.8659230906299106 + ], + [ + 0.914656355102988 + ], + [ + 0.9248539005931276 + ], + [ + 0.9527305856232412 + ], + [ + 0.8571281012005368 + ], + [ + 0.8846977863333716 + ], + [ + 0.9593583027873251 + ], + [ + 0.9188951371295636 + ], + [ + 0.7800217784035494 + ], + [ + 0.996336999414424 + ], + [ + 0.9948736810887512 + ], + [ + 0.9868446526492484 + ], + [ + 0.9853883242696474 + ], + [ + 0.9531775071717112 + ], + [ + 0.9531775071717112 + ], + [ + 0.9527305856232412 + ], + [ + 0.9238927452772132 + ], + [ + 0.9555403520366936 + ], + [ + 0.9097297101659864 + ], + [ + 0.9320839327803117 + ], + [ + 0.8458383400350413 + ], + [ + 0.9517981773305488 + ], + [ + 0.9434321361058602 + ], + [ + 0.8384981048972464 + ], + [ + 0.9061435934718377 + ], + [ + 0.9328333806952732 + ], + [ + 0.9258691777106102 + ], + [ + 0.9978013931164152 + ], + [ + 0.9875732201051683 + ], + [ + 0.9883020564051679 + ], + [ + 0.9564875857045522 + ], + [ + 0.9429977116704804 + ], + [ + 0.9429977116704804 + ], + [ + 0.9434321361058602 + ], + [ + 0.938293658314696 + ], + [ + 0.9000657462195923 + ], + [ + 0.9038201493163326 + ], + [ + 0.936556104044048 + ], + [ + 0.952612204076308 + ], + [ + 0.7799127011297503 + ], + [ + 0.92448876432027 + ], + [ + 0.9365262267264388 + ], + [ + 0.9565966865742668 + ], + [ + 0.94491648331435 + ], + [ + 0.9086443302842008 + ], + [ + 0.9378841050418828 + ], + [ + 0.9211354224331691 + ], + [ + 0.8980181937554507 + ], + [ + 0.9376349250962784 + ], + [ + 0.9956044009241408 + ], + [ + 0.9941413527735856 + ], + [ + 0.9724980906333768 + ], + [ + 0.9083271241193304 + ], + [ + 0.9391877740213088 + ], + [ + 0.9358184932420454 + ], + [ + 0.9373115797727772 + ], + [ + 0.9463111401682168 + ], + [ + 0.9762481841119351 + ], + [ + 0.9502409737496426 + ], + [ + 0.9365262267264388 + ], + [ + 0.9521230391509398 + ], + [ + 0.8295449908182004 + ], + [ + 0.943947221044588 + ], + [ + 0.8708608667318343 + ], + [ + 0.943947221044588 + ], + [ + 0.8871943647917209 + ], + [ + 0.9412635914006205 + ], + [ + 0.9985339932335306 + ], + [ + 1 + ], + [ + 0.9407755311560884 + ], + [ + 0.9421985228698097 + ], + [ + 0.948072129659398 + ], + [ + 0.9350049149338372 + ], + [ + 0.9638336347197108 + ], + [ + 0.958536231884058 + ], + [ + 0.943947221044588 + ], + [ + 0.9667491997801664 + ], + [ + 0.8387538514207465 + ], + [ + 0.887458515283843 + ], + [ + 0.8623785126533147 + ], + [ + 0.8705701323251417 + ], + [ + 0.8001582377938935 + ], + [ + 0.8878997468865361 + ], + [ + 0.8684059865492091 + ], + [ + 0.8859445107741636 + ], + [ + 0.8677050513455755 + ], + [ + 0.8430977292102612 + ], + [ + 0.9904901783696456 + ], + [ + 0.992130773157018 + ], + [ + 0.9372227566431792 + ], + [ + 0.8621233137385207 + ], + [ + 0.8677050513455755 + ], + [ + 0.8831178664041944 + ], + [ + 0.8705701323251417 + ], + [ + 0.8614957734733332 + ], + [ + 0.8689482041587903 + ], + [ + 0.8660854435766022 + ], + [ + 0.8711152458705146 + ], + [ + 0.8873673399520713 + ], + [ + 0.9299160466862331 + ], + [ + 0.9652200677131424 + ], + [ + 0.8999564578859198 + ], + [ + 0.8950764254021453 + ], + [ + 0.9398812902982936 + ], + [ + 0.9752792033119024 + ], + [ + 0.9978013931164152 + ], + [ + 0.9721444518798692 + ], + [ + 0.9805263157894736 + ], + [ + 0.9479012434878824 + ], + [ + 0.880780406807804 + ], + [ + 0.8571885156262036 + ], + [ + 0.986135349716446 + ], + [ + 0.9743634159016108 + ], + [ + 0.9625071374155625 + ], + [ + 0.880780406807804 + ], + [ + 0.981787734953484 + ], + [ + 0.8919696969696971 + ], + [ + 0.9773557492735576 + ], + [ + 0.7714763488785488 + ], + [ + 0.9545454545454548 + ], + [ + 0.9884853681548044 + ], + [ + 0.9894860390412652 + ], + [ + 0.8047278408758268 + ], + [ + 0.9882730260033812 + ], + [ + 0.9461654371370272 + ], + [ + 0.9970690618433798 + ], + [ + 0.9978013931164152 + ], + [ + 0.996336999414424 + ], + [ + 0.9802996435295532 + ], + [ + 0.9991101223581756 + ], + [ + 0.999777530589544 + ], + [ + 1 + ], + [ + 0.9982456140350876 + ], + [ + 0.9421304353743684 + ], + [ + 0.932626333246618 + ], + [ + 0.9977753058954394 + ], + [ + 0.9203132832080203 + ], + [ + 0.9939130434782611 + ], + [ + 0.9281390141743808 + ], + [ + 0.8796487671810186 + ], + [ + 0.9357441792403746 + ], + [ + 0.7832517257911142 + ], + [ + 0.9134801839907836 + ], + [ + 0.9223744981227123 + ], + [ + 0.905289786165362 + ], + [ + 0.996336999414424 + ], + [ + 0.998350675275288 + ], + [ + 0.996336999414424 + ], + [ + 0.9613309146374462 + ], + [ + 0.937103645050706 + ], + [ + 0.937103645050706 + ], + [ + 0.9357441792403746 + ], + [ + 0.904567225435328 + ], + [ + 0.939105864661958 + ], + [ + 0.9093117324398052 + ], + [ + 0.9214972959512142 + ], + [ + 0.9414868925909092 + ], + [ + 0.8586028659246839 + ], + [ + 0.9230788696114616 + ], + [ + 0.9143112638406732 + ], + [ + 0.9391302151973808 + ], + [ + 0.996336999414424 + ], + [ + 0.9992668621947256 + ], + [ + 0.9890311615492476 + ], + [ + 0.9414868925909092 + ], + [ + 0.941314332676578 + ], + [ + 0.902432554260779 + ], + [ + 0.941241408860912 + ], + [ + 0.8318181818181817 + ], + [ + 0.909072064464046 + ], + [ + 0.9772426641825802 + ], + [ + 0.9505847966970496 + ], + [ + 0.8082508107205724 + ], + [ + 0.9532628651995616 + ], + [ + 0.7740137221269299 + ], + [ + 0.9536631479971994 + ], + [ + 0.9886242163794032 + ], + [ + 0.968708052390917 + ], + [ + 0.9970690618433798 + ], + [ + 0.9906529437430028 + ], + [ + 0.9884575916336614 + ], + [ + 0.9789725394962472 + ], + [ + 0.9851370084561714 + ], + [ + 0.9851370084561714 + ], + [ + 0.9860141582025238 + ], + [ + 0.9842598587858048 + ], + [ + 0.8230247277595698 + ], + [ + 0.9772426641825802 + ], + [ + 0.8553636363636363 + ], + [ + 0.9772426641825802 + ], + [ + 0.9565269894940224 + ], + [ + 0.8991005792297246 + ], + [ + 0.9694396869310692 + ], + [ + 0.9544594777956544 + ], + [ + 0.995605205829548 + ], + [ + 0.9887359375145636 + ], + [ + 0.7606385491732779 + ], + [ + 0.9826843100189036 + ], + [ + 0.9800758121375232 + ], + [ + 0.9000657462195923 + ], + [ + 0.9169832716276728 + ], + [ + 0.9783368141256884 + ], + [ + 0.7733211512105985 + ], + [ + 0.8315151515151515 + ], + [ + 0.9514804555247768 + ], + [ + 0.9248167539267018 + ], + [ + 0.8084175084175085 + ], + [ + 0.8131377716690427 + ], + [ + 0.9581772940528424 + ], + [ + 1 + ], + [ + 1 + ], + [ + 0.977084365603192 + ], + [ + 0.9230788696114616 + ], + [ + 0.9822495603003196 + ], + [ + 0.9822495603003196 + ], + [ + 0.9826843100189036 + ], + [ + 0.909072064464046 + ], + [ + 0.9163600219843964 + ], + [ + 0.9783368141256884 + ], + [ + 0.8722470169622666 + ], + [ + 0.7806171146277026 + ], + [ + 0.7993113894954217 + ], + [ + 0.8647701376567242 + ], + [ + 0.8843935880633129 + ], + [ + 0.8237517359346237 + ], + [ + 0.9143045157420016 + ], + [ + 0.9985339932335306 + ], + [ + 0.9948736810887512 + ], + [ + 0.9817522080920388 + ], + [ + 0.9875732201051683 + ], + [ + 0.9376831513747739 + ], + [ + 0.9355427814530765 + ], + [ + 0.8050748795127288 + ], + [ + 0.9031438311232313 + ], + [ + 0.7770347430724859 + ], + [ + 0.7558559856410743 + ], + [ + 0.8035224554513878 + ], + [ + 0.8975645313091688 + ], + [ + 0.7715736896162309 + ], + [ + 0.7524584849903713 + ], + [ + 0.760960813749392 + ], + [ + 0.7628286200410923 + ], + [ + 0.9063380676482872 + ], + [ + 0.7975398606698341 + ], + [ + 0.8173907278944466 + ], + [ + 0.8252050839377624 + ], + [ + 0.7829559806346367 + ], + [ + 0.9853883242696474 + ], + [ + 0.9914003253458398 + ], + [ + 0.9890311615492476 + ], + [ + 0.8937267418365915 + ], + [ + 0.7598493905068002 + ], + [ + 0.7664643536742591 + ], + [ + 0.8726620562837514 + ], + [ + 0.807857176503839 + ], + [ + 0.8859552362571937 + ], + [ + 0.7621748136686876 + ], + [ + 0.9006445563787115 + ], + [ + 0.8965017504270001 + ], + [ + 0.9001503179694077 + ], + [ + 0.8486878358300123 + ], + [ + 0.995605205829548 + ], + [ + 0.9875732201051683 + ], + [ + 0.9948736810887512 + ], + [ + 0.9027223454052724 + ], + [ + 0.884737671188568 + ], + [ + 0.884575512524494 + ], + [ + 0.8798196380081303 + ], + [ + 0.8878885108220647 + ], + [ + 0.8408502506153573 + ], + [ + 0.9290762303990062 + ], + [ + 0.90727093221948 + ], + [ + 0.9413092648977816 + ], + [ + 0.9219048551109622 + ], + [ + 0.9403303455027593 + ], + [ + 0.92049050384555 + ], + [ + 0.9992668621947256 + ], + [ + 0.9970690618433798 + ], + [ + 0.9883020564051679 + ], + [ + 0.9716068390573318 + ], + [ + 0.9526427685969672 + ], + [ + 0.9413092648977816 + ], + [ + 0.9417436672967864 + ], + [ + 0.9452382460255262 + ], + [ + 0.8258664204370577 + ], + [ + 0.8249965343560833 + ], + [ + 0.9498970784947516 + ], + [ + 0.8977159303535192 + ], + [ + 0.8550758611268748 + ], + [ + 0.9971775822743564 + ], + [ + 1 + ], + [ + 0.9364192202560784 + ], + [ + 0.9964912280701756 + ], + [ + 0.8485069801940157 + ], + [ + 0.9097417836628494 + ], + [ + 0.999122807017544 + ], + [ + 0.9877189123128628 + ], + [ + 1 + ], + [ + 0.9976169999054124 + ], + [ + 0.9992668621947256 + ], + [ + 0.9679854547640152 + ], + [ + 0.9236004688155952 + ], + [ + 0.999122807017544 + ], + [ + 0.9937805570643936 + ], + [ + 0.9982456140350876 + ], + [ + 0.931003010693105 + ], + [ + 0.9341554258408444 + ], + [ + 0.9954182612676434 + ], + [ + 0.9912311643305796 + ], + [ + 0.9545454545454548 + ], + [ + 0.7761808341851454 + ], + [ + 0.8182545315351611 + ], + [ + 0.9104377104377104 + ], + [ + 0.7694545454545454 + ], + [ + 0.8553134080531343 + ], + [ + 0.9292464661560496 + ], + [ + 0.9992555369697762 + ], + [ + 0.9985113511553524 + ], + [ + 0.9762465658458932 + ], + [ + 0.9572793819640072 + ], + [ + 0.9503788875440718 + ], + [ + 0.8231479245485526 + ], + [ + 0.8911007105869436 + ], + [ + 0.9024231247013856 + ], + [ + 0.8658008658008658 + ], + [ + 0.9686137921250751 + ], + [ + 0.9819054691235874 + ], + [ + 1 + ], + [ + 0.7690913021991601 + ], + [ + 0.9861142727065788 + ], + [ + 0.9679847507357018 + ], + [ + 0.9989920981077092 + ], + [ + 0.999122807017544 + ], + [ + 0.9672169872900396 + ], + [ + 1 + ], + [ + 0.9954545454545456 + ], + [ + 1 + ], + [ + 0.9992668621947256 + ], + [ + 1 + ], + [ + 0.8534197605902789 + ], + [ + 1 + ], + [ + 0.9982456140350876 + ], + [ + 0.936341359994194 + ], + [ + 0.9054813423400642 + ], + [ + 0.9977822580645164 + ], + [ + 0.86918360351979 + ], + [ + 0.9939130434782611 + ], + [ + 0.8257949554417174 + ], + [ + 0.7957985346108523 + ], + [ + 0.9136739322359624 + ], + [ + 0.8585000323687447 + ], + [ + 0.8766608932307983 + ], + [ + 0.7697689156812739 + ], + [ + 0.8566176867322529 + ], + [ + 0.9882827814745488 + ], + [ + 0.9585725924710128 + ], + [ + 0.9649045221259104 + ], + [ + 0.8401802481694282 + ], + [ + 0.9245562130177516 + ], + [ + 0.9542133966338968 + ], + [ + 0.944622600300256 + ], + [ + 0.9332845830090168 + ], + [ + 0.8278906432659406 + ], + [ + 0.9418179668098864 + ], + [ + 0.798853868337832 + ], + [ + 0.7739306525397351 + ], + [ + 0.7679975248125409 + ], + [ + 0.9228068405104872 + ], + [ + 0.7685979300090726 + ], + [ + 0.917451425335698 + ], + [ + 0.8374157216227878 + ], + [ + 0.8207867897037397 + ], + [ + 0.9992668621947256 + ], + [ + 0.9992668621947256 + ], + [ + 0.991220090045964 + ], + [ + 0.9365130082728363 + ], + [ + 0.7654094979252105 + ], + [ + 0.7550919222167469 + ], + [ + 0.7698155009451796 + ], + [ + 0.7909076419763443 + ], + [ + 0.7698457560674342 + ], + [ + 0.9286682581951208 + ], + [ + 0.8868922607689099 + ], + [ + 0.8880997664985122 + ], + [ + 0.9610802559263656 + ], + [ + 0.8164912211499714 + ], + [ + 0.9412585118107386 + ], + [ + 0.9078412687095335 + ], + [ + 0.9242220901098175 + ], + [ + 0.9456508016611644 + ], + [ + 0.9384233122417885 + ], + [ + 0.9986424009336514 + ], + [ + 0.9661371305519347 + ], + [ + 0.996359618118611 + ], + [ + 0.9920320694899843 + ], + [ + 0.9467383688039666 + ], + [ + 0.934428236729514 + ], + [ + 0.9783881137485578 + ], + [ + 0.9460013624159498 + ], + [ + 0.9555842763365257 + ], + [ + 0.8941530308332932 + ], + [ + 0.9558248635508322 + ], + [ + 0.8763764496262759 + ], + [ + 0.9356915211255111 + ], + [ + 0.8418086358878542 + ], + [ + 0.8416592129599482 + ], + [ + 0.8415070737965716 + ], + [ + 0.802202194476025 + ], + [ + 0.9033523939458318 + ], + [ + 0.8200759187451886 + ], + [ + 0.856898450536545 + ], + [ + 0.8540567799876048 + ], + [ + 0.8374790158038531 + ], + [ + 0.9927778823467517 + ], + [ + 0.9890234429386014 + ], + [ + 0.9716629095264668 + ], + [ + 0.9077159665231064 + ], + [ + 0.8588659166840533 + ], + [ + 0.8673577505339979 + ], + [ + 0.8639165764309158 + ], + [ + 0.842645116284908 + ], + [ + 0.8530563045983492 + ], + [ + 0.851072524965996 + ], + [ + 0.8704573772019558 + ], + [ + 0.8417225276657303 + ], + [ + 0.8697824343899775 + ], + [ + 0.8797533135230232 + ], + [ + 0.8067115696702831 + ], + [ + 0.9153499728608172 + ], + [ + 0.9122957748275933 + ], + [ + 0.7938508184967689 + ], + [ + 0.8937527133000729 + ], + [ + 0.8006666785588092 + ], + [ + 0.8862405116622968 + ], + [ + 0.9085125104626818 + ], + [ + 0.8789631520435636 + ], + [ + 0.9974807485770172 + ], + [ + 0.9960155803017176 + ], + [ + 0.9858052271222297 + ], + [ + 0.9615914602764132 + ], + [ + 0.9169353611273545 + ], + [ + 0.9165612351287777 + ], + [ + 0.9549874334268079 + ], + [ + 0.9051741499518738 + ], + [ + 0.8990067804864585 + ], + [ + 0.8926342138286003 + ], + [ + 0.9258249723444921 + ], + [ + 0.852052172334274 + ], + [ + 0.8857985176694988 + ], + [ + 0.8929375166442781 + ], + [ + 0.8718049611136595 + ], + [ + 0.9357165305962992 + ], + [ + 0.9217295663529694 + ], + [ + 0.8980091091634662 + ], + [ + 0.900340278528574 + ], + [ + 0.8879688080398852 + ], + [ + 0.9304518743906068 + ], + [ + 0.8970921018969952 + ], + [ + 0.9966696009557061 + ], + [ + 0.9885781489207478 + ], + [ + 0.964419505907156 + ], + [ + 0.9419917249272495 + ], + [ + 0.8978231297748687 + ], + [ + 0.9679937870446894 + ], + [ + 0.9306400155184964 + ], + [ + 0.9313766952176744 + ], + [ + 0.8880521153961992 + ], + [ + 0.8914796231786531 + ], + [ + 0.9305171145449818 + ], + [ + 0.8932658637785106 + ], + [ + 0.898388139488992 + ], + [ + 0.9636752136752136 + ], + [ + 0.8976111240012502 + ], + [ + 0.9908604005702278 + ], + [ + 1 + ], + [ + 0.959655930086227 + ], + [ + 0.9965064838338525 + ], + [ + 0.853618757941474 + ], + [ + 0.9510419642385431 + ], + [ + 0.999122807017544 + ], + [ + 0.9847950373863604 + ], + [ + 1 + ], + [ + 0.9976169999054124 + ], + [ + 0.9996335655193981 + ], + [ + 0.9827424829179762 + ], + [ + 0.9617399092325175 + ], + [ + 0.9995615959600626 + ], + [ + 0.9992268037105778 + ], + [ + 0.9982456140350876 + ], + [ + 0.931003010693105 + ], + [ + 0.9410040236447396 + ], + [ + 0.9966016615523431 + ], + [ + 0.9747445277534733 + ], + [ + 0.8857836553786925 + ], + [ + 0.8103127496818208 + ], + [ + 0.8933621267643042 + ], + [ + 0.8958961678329496 + ], + [ + 0.9506554582589484 + ], + [ + 0.8585000323687447 + ], + [ + 0.9057551009602689 + ], + [ + 0.8591560778970743 + ], + [ + 0.915580671631156 + ], + [ + 0.9408031482198341 + ], + [ + 0.9356248965935622 + ], + [ + 0.9833969787350744 + ], + [ + 0.9863034159844548 + ], + [ + 0.9264191604401815 + ], + [ + 0.9455645962492288 + ], + [ + 0.8878558482587918 + ], + [ + 0.9222251985351745 + ], + [ + 0.9778985314325723 + ], + [ + 0.9416917918323214 + ], + [ + 0.9374085375674432 + ], + [ + 0.9273453266925932 + ], + [ + 0.9747641075839333 + ], + [ + 0.8169371422195695 + ], + [ + 0.8887558080451063 + ], + [ + 0.8333777462346407 + ], + [ + 0.905041744113866 + ], + [ + 0.8252518864802031 + ], + [ + 0.868977990049962 + ], + [ + 0.8910158776253886 + ], + [ + 0.8613357070961393 + ], + [ + 0.8855129343887855 + ], + [ + 0.8874651525776813 + ], + [ + 0.8892399648499411 + ], + [ + 0.8803348783076717 + ], + [ + 0.9775219109294593 + ], + [ + 0.9950131950031115 + ], + [ + 0.9768312268951708 + ], + [ + 0.936051079155285 + ], + [ + 0.8962571474387728 + ], + [ + 0.8799679910087169 + ], + [ + 0.8585586589686451 + ], + [ + 0.8950979128079615 + ], + [ + 0.8644757842141394 + ], + [ + 0.8409320015706357 + ], + [ + 0.8609638845139348 + ], + [ + 0.933440586806712 + ], + [ + 0.8745139302030989 + ], + [ + 0.8769951532708808 + ], + [ + 0.8669121532489861 + ], + [ + 0.8916123606295077 + ], + [ + 0.91271334762741 + ], + [ + 0.8302797665212317 + ], + [ + 0.9059753878539454 + ], + [ + 0.857115021887757 + ], + [ + 0.8961790031980065 + ], + [ + 0.9120775227299308 + ], + [ + 0.8922074475884191 + ], + [ + 0.9916488377720988 + ], + [ + 0.9885675985110315 + ], + [ + 0.9739316584584679 + ], + [ + 0.9481708958643573 + ], + [ + 0.9027265481853378 + ], + [ + 0.9167882911277941 + ], + [ + 0.9466593000827263 + ], + [ + 0.9087132053377553 + ], + [ + 0.8981245330911611 + ], + [ + 0.8854184331504679 + ], + [ + 0.9251319676291814 + ], + [ + 0.8756022402743829 + ], + [ + 0.8925781053983015 + ] + ], + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "labels=%{label}
R^2 Spearman_sum=%{value}
parent=%{parent}
id=%{id}
R^2 Spearman=%{color}", + "ids": [ + "Consumer price index (2010 = 100)/Persian Gulf/ARE", + "Current health expenditure per capita (current US$)/Persian Gulf/ARE", + "Export value index (2000 = 100)/Persian Gulf/ARE", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf/ARE", + "GNI (current US$)/Persian Gulf/ARE", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf/ARE", + "Industry (including construction), value added (current US$)/Persian Gulf/ARE", + "Number of deaths ages 5-9 years/Persian Gulf/ARE", + "Number of infant deaths/Persian Gulf/ARE", + "Population in largest city/Persian Gulf/ARE", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf/ARE", + "Ratio of female to male labor force participation rate (%) (national estimate)/Persian Gulf/ARE", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf/ARE", + "Suicide mortality rate (per 100,000 population)/Persian Gulf/ARE", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf/ARE", + "CO2 emissions (kg per PPP $ of GDP)/Latam/ARG", + "Current health expenditure (% of GDP)/Latam/ARG", + "Current health expenditure per capita (current US$)/Latam/ARG", + "Employment in industry (% of total employment) (modeled ILO estimate)/Latam/ARG", + "Fixed broadband subscriptions (per 100 people)/Latam/ARG", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam/ARG", + "GNI (current US$)/Latam/ARG", + "Gross value added at basic prices (GVA) (current US$)/Latam/ARG", + "Households and NPISHs Final consumption expenditure (current US$)/Latam/ARG", + "Industry (including construction), value added (current US$)/Latam/ARG", + "Number of deaths ages 5-9 years/Latam/ARG", + "Number of infant deaths/Latam/ARG", + "Population in largest city/Latam/ARG", + "Prevalence of current tobacco use (% of adults)/Latam/ARG", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam/ARG", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam/ARG", + "Renewable internal freshwater resources per capita (cubic meters)/Latam/ARG", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam/ARG", + "Agricultural land (% of land area)/Europe/AUT", + "CO2 emissions (kg per PPP $ of GDP)/Europe/AUT", + "Consumer price index (2010 = 100)/Europe/AUT", + "Current health expenditure (% of GDP)/Europe/AUT", + "Current health expenditure per capita (current US$)/Europe/AUT", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/AUT", + "Export value index (2000 = 100)/Europe/AUT", + "Fixed broadband subscriptions (per 100 people)/Europe/AUT", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe/AUT", + "GNI (current US$)/Europe/AUT", + "Gross value added at basic prices (GVA) (current US$)/Europe/AUT", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/AUT", + "Industry (including construction), value added (current US$)/Europe/AUT", + "Number of deaths ages 5-9 years/Europe/AUT", + "Number of infant deaths/Europe/AUT", + "Population in largest city/Europe/AUT", + "Prevalence of current tobacco use (% of adults)/Europe/AUT", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe/AUT", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe/AUT", + "Renewable internal freshwater resources per capita (cubic meters)/Europe/AUT", + "Suicide mortality rate (per 100,000 population)/Europe/AUT", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe/AUT", + "Access to electricity (% of population)/Persian Gulf/AZE", + "Agricultural land (% of land area)/Persian Gulf/AZE", + "CO2 emissions (kg per PPP $ of GDP)/Persian Gulf/AZE", + "Consumer price index (2010 = 100)/Persian Gulf/AZE", + "Current health expenditure per capita (current US$)/Persian Gulf/AZE", + "Employment in industry (% of total employment) (modeled ILO estimate)/Persian Gulf/AZE", + "Export value index (2000 = 100)/Persian Gulf/AZE", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf/AZE", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Persian Gulf/AZE", + "GNI (current US$)/Persian Gulf/AZE", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf/AZE", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf/AZE", + "Industry (including construction), value added (current US$)/Persian Gulf/AZE", + "Number of deaths ages 5-9 years/Persian Gulf/AZE", + "Number of infant deaths/Persian Gulf/AZE", + "Population in largest city/Persian Gulf/AZE", + "Prevalence of current tobacco use (% of adults)/Persian Gulf/AZE", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf/AZE", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf/AZE", + "Access to electricity (% of population)/Asia/BGD", + "Agricultural land (% of land area)/Asia/BGD", + "CO2 emissions (kg per PPP $ of GDP)/Asia/BGD", + "Consumer price index (2010 = 100)/Asia/BGD", + "Current health expenditure per capita (current US$)/Asia/BGD", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia/BGD", + "Export value index (2000 = 100)/Asia/BGD", + "Fixed broadband subscriptions (per 100 people)/Asia/BGD", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia/BGD", + "GNI (current US$)/Asia/BGD", + "Gross value added at basic prices (GVA) (current US$)/Asia/BGD", + "Households and NPISHs Final consumption expenditure (current US$)/Asia/BGD", + "Industry (including construction), value added (current US$)/Asia/BGD", + "Number of deaths ages 5-9 years/Asia/BGD", + "Number of infant deaths/Asia/BGD", + "Population in largest city/Asia/BGD", + "Prevalence of current tobacco use (% of adults)/Asia/BGD", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Asia/BGD", + "Ratio of female to male labor force participation rate (%) (national estimate)/Asia/BGD", + "Renewable internal freshwater resources per capita (cubic meters)/Asia/BGD", + "Suicide mortality rate (per 100,000 population)/Asia/BGD", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia/BGD", + "Access to electricity (% of population)/Latam/BRA", + "Agricultural land (% of land area)/Latam/BRA", + "CO2 emissions (kg per PPP $ of GDP)/Latam/BRA", + "Consumer price index (2010 = 100)/Latam/BRA", + "Current health expenditure per capita (current US$)/Latam/BRA", + "Employment in industry (% of total employment) (modeled ILO estimate)/Latam/BRA", + "Export value index (2000 = 100)/Latam/BRA", + "Fixed broadband subscriptions (per 100 people)/Latam/BRA", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam/BRA", + "GNI (current US$)/Latam/BRA", + "Gross value added at basic prices (GVA) (current US$)/Latam/BRA", + "Households and NPISHs Final consumption expenditure (current US$)/Latam/BRA", + "Industry (including construction), value added (current US$)/Latam/BRA", + "Number of deaths ages 5-9 years/Latam/BRA", + "Number of infant deaths/Latam/BRA", + "Population in largest city/Latam/BRA", + "Prevalence of current tobacco use (% of adults)/Latam/BRA", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam/BRA", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam/BRA", + "Renewable internal freshwater resources per capita (cubic meters)/Latam/BRA", + "Suicide mortality rate (per 100,000 population)/Latam/BRA", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam/BRA", + "Access to electricity (% of population)/Latam/CHL", + "CO2 emissions (kg per PPP $ of GDP)/Latam/CHL", + "Consumer price index (2010 = 100)/Latam/CHL", + "Current health expenditure (% of GDP)/Latam/CHL", + "Current health expenditure per capita (current US$)/Latam/CHL", + "Export value index (2000 = 100)/Latam/CHL", + "Fixed broadband subscriptions (per 100 people)/Latam/CHL", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam/CHL", + "GNI (current US$)/Latam/CHL", + "Gross value added at basic prices (GVA) (current US$)/Latam/CHL", + "Households and NPISHs Final consumption expenditure (current US$)/Latam/CHL", + "Industry (including construction), value added (current US$)/Latam/CHL", + "Number of deaths ages 5-9 years/Latam/CHL", + "Number of infant deaths/Latam/CHL", + "Population in largest city/Latam/CHL", + "Prevalence of current tobacco use (% of adults)/Latam/CHL", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam/CHL", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam/CHL", + "Renewable internal freshwater resources per capita (cubic meters)/Latam/CHL", + "Suicide mortality rate (per 100,000 population)/Latam/CHL", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam/CHL", + "Access to electricity (% of population)/Pair/CHN", + "Agricultural land (% of land area)/Pair/CHN", + "CO2 emissions (kg per PPP $ of GDP)/Pair/CHN", + "Consumer price index (2010 = 100)/Pair/CHN", + "Current health expenditure (% of GDP)/Pair/CHN", + "Current health expenditure per capita (current US$)/Pair/CHN", + "Employment in industry (% of total employment) (modeled ILO estimate)/Pair/CHN", + "Export value index (2000 = 100)/Pair/CHN", + "Fixed broadband subscriptions (per 100 people)/Pair/CHN", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Pair/CHN", + "GNI (current US$)/Pair/CHN", + "Households and NPISHs Final consumption expenditure (current US$)/Pair/CHN", + "Industry (including construction), value added (current US$)/Pair/CHN", + "Number of deaths ages 5-9 years/Pair/CHN", + "Number of infant deaths/Pair/CHN", + "Population in largest city/Pair/CHN", + "Prevalence of current tobacco use (% of adults)/Pair/CHN", + "Ratio of female to male labor force participation rate (%) (national estimate)/Pair/CHN", + "Renewable internal freshwater resources per capita (cubic meters)/Pair/CHN", + "Suicide mortality rate (per 100,000 population)/Pair/CHN", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Pair/CHN", + "Access to electricity (% of population)/South Africa/CMR", + "Agricultural land (% of land area)/South Africa/CMR", + "Consumer price index (2010 = 100)/South Africa/CMR", + "Current health expenditure (% of GDP)/South Africa/CMR", + "Current health expenditure per capita (current US$)/South Africa/CMR", + "Employment in industry (% of total employment) (modeled ILO estimate)/South Africa/CMR", + "Fixed broadband subscriptions (per 100 people)/South Africa/CMR", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa/CMR", + "GNI (current US$)/South Africa/CMR", + "Gross value added at basic prices (GVA) (current US$)/South Africa/CMR", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa/CMR", + "Industry (including construction), value added (current US$)/South Africa/CMR", + "Number of deaths ages 5-9 years/South Africa/CMR", + "Number of infant deaths/South Africa/CMR", + "Population in largest city/South Africa/CMR", + "Prevalence of current tobacco use (% of adults)/South Africa/CMR", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa/CMR", + "Access to electricity (% of population)/Latam/COL", + "CO2 emissions (kg per PPP $ of GDP)/Latam/COL", + "Consumer price index (2010 = 100)/Latam/COL", + "Current health expenditure (% of GDP)/Latam/COL", + "Current health expenditure per capita (current US$)/Latam/COL", + "Export value index (2000 = 100)/Latam/COL", + "Fixed broadband subscriptions (per 100 people)/Latam/COL", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam/COL", + "GNI (current US$)/Latam/COL", + "Gross value added at basic prices (GVA) (current US$)/Latam/COL", + "Households and NPISHs Final consumption expenditure (current US$)/Latam/COL", + "Industry (including construction), value added (current US$)/Latam/COL", + "Number of deaths ages 5-9 years/Latam/COL", + "Number of infant deaths/Latam/COL", + "Population in largest city/Latam/COL", + "Prevalence of current tobacco use (% of adults)/Latam/COL", + "Renewable internal freshwater resources per capita (cubic meters)/Latam/COL", + "Suicide mortality rate (per 100,000 population)/Latam/COL", + "Access to electricity (% of population)/Latam/CRI", + "Agricultural land (% of land area)/Latam/CRI", + "CO2 emissions (kg per PPP $ of GDP)/Latam/CRI", + "Consumer price index (2010 = 100)/Latam/CRI", + "Current health expenditure (% of GDP)/Latam/CRI", + "Current health expenditure per capita (current US$)/Latam/CRI", + "Employment in industry (% of total employment) (modeled ILO estimate)/Latam/CRI", + "Export value index (2000 = 100)/Latam/CRI", + "Fixed broadband subscriptions (per 100 people)/Latam/CRI", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam/CRI", + "GNI (current US$)/Latam/CRI", + "Gross value added at basic prices (GVA) (current US$)/Latam/CRI", + "Households and NPISHs Final consumption expenditure (current US$)/Latam/CRI", + "Industry (including construction), value added (current US$)/Latam/CRI", + "Number of deaths ages 5-9 years/Latam/CRI", + "Number of infant deaths/Latam/CRI", + "Population in largest city/Latam/CRI", + "Prevalence of current tobacco use (% of adults)/Latam/CRI", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam/CRI", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam/CRI", + "Renewable internal freshwater resources per capita (cubic meters)/Latam/CRI", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam/CRI", + "Agricultural land (% of land area)/Europe/DEU", + "CO2 emissions (kg per PPP $ of GDP)/Europe/DEU", + "Consumer price index (2010 = 100)/Europe/DEU", + "Current health expenditure per capita (current US$)/Europe/DEU", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/DEU", + "Export value index (2000 = 100)/Europe/DEU", + "Fixed broadband subscriptions (per 100 people)/Europe/DEU", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe/DEU", + "GNI (current US$)/Europe/DEU", + "Gross value added at basic prices (GVA) (current US$)/Europe/DEU", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/DEU", + "Industry (including construction), value added (current US$)/Europe/DEU", + "Number of deaths ages 5-9 years/Europe/DEU", + "Prevalence of current tobacco use (% of adults)/Europe/DEU", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe/DEU", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe/DEU", + "Agricultural land (% of land area)/North Africa/DZA", + "Consumer price index (2010 = 100)/North Africa/DZA", + "Current health expenditure per capita (current US$)/North Africa/DZA", + "Employment in industry (% of total employment) (modeled ILO estimate)/North Africa/DZA", + "Export value index (2000 = 100)/North Africa/DZA", + "Fixed broadband subscriptions (per 100 people)/North Africa/DZA", + "GNI (current US$)/North Africa/DZA", + "Gross value added at basic prices (GVA) (current US$)/North Africa/DZA", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa/DZA", + "Industry (including construction), value added (current US$)/North Africa/DZA", + "Number of deaths ages 5-9 years/North Africa/DZA", + "Population in largest city/North Africa/DZA", + "Prevalence of current tobacco use (% of adults)/North Africa/DZA", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/North Africa/DZA", + "Ratio of female to male labor force participation rate (%) (national estimate)/North Africa/DZA", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa/DZA", + "Suicide mortality rate (per 100,000 population)/North Africa/DZA", + "Access to electricity (% of population)/North Africa/EGY", + "Agricultural land (% of land area)/North Africa/EGY", + "CO2 emissions (kg per PPP $ of GDP)/North Africa/EGY", + "Consumer price index (2010 = 100)/North Africa/EGY", + "Employment in industry (% of total employment) (modeled ILO estimate)/North Africa/EGY", + "Fixed broadband subscriptions (per 100 people)/North Africa/EGY", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/North Africa/EGY", + "GNI (current US$)/North Africa/EGY", + "Gross value added at basic prices (GVA) (current US$)/North Africa/EGY", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa/EGY", + "Industry (including construction), value added (current US$)/North Africa/EGY", + "Number of deaths ages 5-9 years/North Africa/EGY", + "Number of infant deaths/North Africa/EGY", + "Population in largest city/North Africa/EGY", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa/EGY", + "Suicide mortality rate (per 100,000 population)/North Africa/EGY", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/North Africa/EGY", + "Agricultural land (% of land area)/Europe/ESP", + "CO2 emissions (kg per PPP $ of GDP)/Europe/ESP", + "Consumer price index (2010 = 100)/Europe/ESP", + "Current health expenditure (% of GDP)/Europe/ESP", + "Current health expenditure per capita (current US$)/Europe/ESP", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/ESP", + "Export value index (2000 = 100)/Europe/ESP", + "Fixed broadband subscriptions (per 100 people)/Europe/ESP", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe/ESP", + "GNI (current US$)/Europe/ESP", + "Gross value added at basic prices (GVA) (current US$)/Europe/ESP", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/ESP", + "Industry (including construction), value added (current US$)/Europe/ESP", + "Number of deaths ages 5-9 years/Europe/ESP", + "Population in largest city/Europe/ESP", + "Prevalence of current tobacco use (% of adults)/Europe/ESP", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe/ESP", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe/ESP", + "Renewable internal freshwater resources per capita (cubic meters)/Europe/ESP", + "Agricultural land (% of land area)/Europe/FRA", + "CO2 emissions (kg per PPP $ of GDP)/Europe/FRA", + "Consumer price index (2010 = 100)/Europe/FRA", + "Current health expenditure (% of GDP)/Europe/FRA", + "Current health expenditure per capita (current US$)/Europe/FRA", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/FRA", + "Export value index (2000 = 100)/Europe/FRA", + "Fixed broadband subscriptions (per 100 people)/Europe/FRA", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe/FRA", + "GNI (current US$)/Europe/FRA", + "Gross value added at basic prices (GVA) (current US$)/Europe/FRA", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/FRA", + "Industry (including construction), value added (current US$)/Europe/FRA", + "Number of deaths ages 5-9 years/Europe/FRA", + "Number of infant deaths/Europe/FRA", + "Population in largest city/Europe/FRA", + "Prevalence of current tobacco use (% of adults)/Europe/FRA", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe/FRA", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe/FRA", + "Renewable internal freshwater resources per capita (cubic meters)/Europe/FRA", + "CO2 emissions (kg per PPP $ of GDP)/Europe/GBR", + "Consumer price index (2010 = 100)/Europe/GBR", + "Current health expenditure (% of GDP)/Europe/GBR", + "Current health expenditure per capita (current US$)/Europe/GBR", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/GBR", + "Export value index (2000 = 100)/Europe/GBR", + "Fixed broadband subscriptions (per 100 people)/Europe/GBR", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe/GBR", + "GNI (current US$)/Europe/GBR", + "Gross value added at basic prices (GVA) (current US$)/Europe/GBR", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/GBR", + "Industry (including construction), value added (current US$)/Europe/GBR", + "Number of deaths ages 5-9 years/Europe/GBR", + "Number of infant deaths/Europe/GBR", + "Population in largest city/Europe/GBR", + "Prevalence of current tobacco use (% of adults)/Europe/GBR", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe/GBR", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe/GBR", + "Renewable internal freshwater resources per capita (cubic meters)/Europe/GBR", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe/GBR", + "Access to electricity (% of population)/South Africa/GHA", + "Consumer price index (2010 = 100)/South Africa/GHA", + "Current health expenditure per capita (current US$)/South Africa/GHA", + "Export value index (2000 = 100)/South Africa/GHA", + "Fixed broadband subscriptions (per 100 people)/South Africa/GHA", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa/GHA", + "GNI (current US$)/South Africa/GHA", + "Gross value added at basic prices (GVA) (current US$)/South Africa/GHA", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa/GHA", + "Industry (including construction), value added (current US$)/South Africa/GHA", + "Number of deaths ages 5-9 years/South Africa/GHA", + "Number of infant deaths/South Africa/GHA", + "Population in largest city/South Africa/GHA", + "Prevalence of current tobacco use (% of adults)/South Africa/GHA", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa/GHA", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa/GHA", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/South Africa/GHA", + "Agricultural land (% of land area)/Europe/GRC", + "CO2 emissions (kg per PPP $ of GDP)/Europe/GRC", + "Consumer price index (2010 = 100)/Europe/GRC", + "Current health expenditure (% of GDP)/Europe/GRC", + "Current health expenditure per capita (current US$)/Europe/GRC", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/GRC", + "Fixed broadband subscriptions (per 100 people)/Europe/GRC", + "Gross value added at basic prices (GVA) (current US$)/Europe/GRC", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/GRC", + "Industry (including construction), value added (current US$)/Europe/GRC", + "Number of deaths ages 5-9 years/Europe/GRC", + "Number of infant deaths/Europe/GRC", + "Population in largest city/Europe/GRC", + "Prevalence of current tobacco use (% of adults)/Europe/GRC", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe/GRC", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe/GRC", + "CO2 emissions (kg per PPP $ of GDP)/Europe/HRV", + "Current health expenditure per capita (current US$)/Europe/HRV", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/HRV", + "Fixed broadband subscriptions (per 100 people)/Europe/HRV", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe/HRV", + "GNI (current US$)/Europe/HRV", + "Gross value added at basic prices (GVA) (current US$)/Europe/HRV", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/HRV", + "Industry (including construction), value added (current US$)/Europe/HRV", + "Number of deaths ages 5-9 years/Europe/HRV", + "Number of infant deaths/Europe/HRV", + "Population in largest city/Europe/HRV", + "Prevalence of current tobacco use (% of adults)/Europe/HRV", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe/HRV", + "Access to electricity (% of population)/Asia/IDN", + "Agricultural land (% of land area)/Asia/IDN", + "CO2 emissions (kg per PPP $ of GDP)/Asia/IDN", + "Consumer price index (2010 = 100)/Asia/IDN", + "Current health expenditure (% of GDP)/Asia/IDN", + "Current health expenditure per capita (current US$)/Asia/IDN", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia/IDN", + "Export value index (2000 = 100)/Asia/IDN", + "Fixed broadband subscriptions (per 100 people)/Asia/IDN", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia/IDN", + "GNI (current US$)/Asia/IDN", + "Gross value added at basic prices (GVA) (current US$)/Asia/IDN", + "Households and NPISHs Final consumption expenditure (current US$)/Asia/IDN", + "Industry (including construction), value added (current US$)/Asia/IDN", + "Number of deaths ages 5-9 years/Asia/IDN", + "Number of infant deaths/Asia/IDN", + "Population in largest city/Asia/IDN", + "Prevalence of current tobacco use (% of adults)/Asia/IDN", + "Renewable internal freshwater resources per capita (cubic meters)/Asia/IDN", + "Suicide mortality rate (per 100,000 population)/Asia/IDN", + "Access to electricity (% of population)/Asia/IND", + "Agricultural land (% of land area)/Asia/IND", + "CO2 emissions (kg per PPP $ of GDP)/Asia/IND", + "Consumer price index (2010 = 100)/Asia/IND", + "Current health expenditure (% of GDP)/Asia/IND", + "Current health expenditure per capita (current US$)/Asia/IND", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia/IND", + "Export value index (2000 = 100)/Asia/IND", + "Fixed broadband subscriptions (per 100 people)/Asia/IND", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia/IND", + "GNI (current US$)/Asia/IND", + "Gross value added at basic prices (GVA) (current US$)/Asia/IND", + "Households and NPISHs Final consumption expenditure (current US$)/Asia/IND", + "Industry (including construction), value added (current US$)/Asia/IND", + "Number of deaths ages 5-9 years/Asia/IND", + "Number of infant deaths/Asia/IND", + "Population in largest city/Asia/IND", + "Prevalence of current tobacco use (% of adults)/Asia/IND", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Asia/IND", + "Renewable internal freshwater resources per capita (cubic meters)/Asia/IND", + "Suicide mortality rate (per 100,000 population)/Asia/IND", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia/IND", + "Access to electricity (% of population)/Persian Gulf/IRQ", + "Export value index (2000 = 100)/Persian Gulf/IRQ", + "GNI (current US$)/Persian Gulf/IRQ", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf/IRQ", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf/IRQ", + "Industry (including construction), value added (current US$)/Persian Gulf/IRQ", + "Number of infant deaths/Persian Gulf/IRQ", + "Prevalence of current tobacco use (% of adults)/Persian Gulf/IRQ", + "Agricultural land (% of land area)/North Africa/ISR", + "CO2 emissions (kg per PPP $ of GDP)/North Africa/ISR", + "Consumer price index (2010 = 100)/North Africa/ISR", + "Current health expenditure per capita (current US$)/North Africa/ISR", + "Employment in industry (% of total employment) (modeled ILO estimate)/North Africa/ISR", + "Fixed broadband subscriptions (per 100 people)/North Africa/ISR", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/North Africa/ISR", + "GNI (current US$)/North Africa/ISR", + "Gross value added at basic prices (GVA) (current US$)/North Africa/ISR", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa/ISR", + "Industry (including construction), value added (current US$)/North Africa/ISR", + "Number of deaths ages 5-9 years/North Africa/ISR", + "Number of infant deaths/North Africa/ISR", + "Population in largest city/North Africa/ISR", + "Prevalence of current tobacco use (% of adults)/North Africa/ISR", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/North Africa/ISR", + "Ratio of female to male labor force participation rate (%) (national estimate)/North Africa/ISR", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa/ISR", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/North Africa/ISR", + "Agricultural land (% of land area)/Asia/KOR", + "CO2 emissions (kg per PPP $ of GDP)/Asia/KOR", + "Consumer price index (2010 = 100)/Asia/KOR", + "Current health expenditure (% of GDP)/Asia/KOR", + "Current health expenditure per capita (current US$)/Asia/KOR", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia/KOR", + "Export value index (2000 = 100)/Asia/KOR", + "Fixed broadband subscriptions (per 100 people)/Asia/KOR", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia/KOR", + "GNI (current US$)/Asia/KOR", + "Gross value added at basic prices (GVA) (current US$)/Asia/KOR", + "Households and NPISHs Final consumption expenditure (current US$)/Asia/KOR", + "Industry (including construction), value added (current US$)/Asia/KOR", + "Number of deaths ages 5-9 years/Asia/KOR", + "Number of infant deaths/Asia/KOR", + "Prevalence of current tobacco use (% of adults)/Asia/KOR", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Asia/KOR", + "Ratio of female to male labor force participation rate (%) (national estimate)/Asia/KOR", + "Renewable internal freshwater resources per capita (cubic meters)/Asia/KOR", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia/KOR", + "Access to electricity (% of population)/South Africa/LBR", + "Agricultural land (% of land area)/South Africa/LBR", + "Consumer price index (2010 = 100)/South Africa/LBR", + "Current health expenditure per capita (current US$)/South Africa/LBR", + "Fixed broadband subscriptions (per 100 people)/South Africa/LBR", + "GNI (current US$)/South Africa/LBR", + "Industry (including construction), value added (current US$)/South Africa/LBR", + "Number of infant deaths/South Africa/LBR", + "Prevalence of current tobacco use (% of adults)/South Africa/LBR", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa/LBR", + "Access to electricity (% of population)/North Africa/MAR", + "CO2 emissions (kg per PPP $ of GDP)/North Africa/MAR", + "Consumer price index (2010 = 100)/North Africa/MAR", + "Current health expenditure per capita (current US$)/North Africa/MAR", + "Employment in industry (% of total employment) (modeled ILO estimate)/North Africa/MAR", + "Export value index (2000 = 100)/North Africa/MAR", + "Fixed broadband subscriptions (per 100 people)/North Africa/MAR", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/North Africa/MAR", + "GNI (current US$)/North Africa/MAR", + "Gross value added at basic prices (GVA) (current US$)/North Africa/MAR", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa/MAR", + "Industry (including construction), value added (current US$)/North Africa/MAR", + "Number of deaths ages 5-9 years/North Africa/MAR", + "Number of infant deaths/North Africa/MAR", + "Population in largest city/North Africa/MAR", + "Prevalence of current tobacco use (% of adults)/North Africa/MAR", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa/MAR", + "Suicide mortality rate (per 100,000 population)/North Africa/MAR", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/North Africa/MAR", + "Access to electricity (% of population)/Latam/MEX", + "CO2 emissions (kg per PPP $ of GDP)/Latam/MEX", + "Consumer price index (2010 = 100)/Latam/MEX", + "Current health expenditure per capita (current US$)/Latam/MEX", + "Export value index (2000 = 100)/Latam/MEX", + "Fixed broadband subscriptions (per 100 people)/Latam/MEX", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam/MEX", + "GNI (current US$)/Latam/MEX", + "Gross value added at basic prices (GVA) (current US$)/Latam/MEX", + "Households and NPISHs Final consumption expenditure (current US$)/Latam/MEX", + "Industry (including construction), value added (current US$)/Latam/MEX", + "Number of deaths ages 5-9 years/Latam/MEX", + "Number of infant deaths/Latam/MEX", + "Population in largest city/Latam/MEX", + "Prevalence of current tobacco use (% of adults)/Latam/MEX", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam/MEX", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam/MEX", + "Renewable internal freshwater resources per capita (cubic meters)/Latam/MEX", + "Suicide mortality rate (per 100,000 population)/Latam/MEX", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam/MEX", + "Access to electricity (% of population)/South Africa/MOZ", + "Agricultural land (% of land area)/South Africa/MOZ", + "Consumer price index (2010 = 100)/South Africa/MOZ", + "Current health expenditure (% of GDP)/South Africa/MOZ", + "Current health expenditure per capita (current US$)/South Africa/MOZ", + "Employment in industry (% of total employment) (modeled ILO estimate)/South Africa/MOZ", + "Export value index (2000 = 100)/South Africa/MOZ", + "Fixed broadband subscriptions (per 100 people)/South Africa/MOZ", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa/MOZ", + "GNI (current US$)/South Africa/MOZ", + "Gross value added at basic prices (GVA) (current US$)/South Africa/MOZ", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa/MOZ", + "Industry (including construction), value added (current US$)/South Africa/MOZ", + "Number of deaths ages 5-9 years/South Africa/MOZ", + "Number of infant deaths/South Africa/MOZ", + "Population in largest city/South Africa/MOZ", + "Prevalence of current tobacco use (% of adults)/South Africa/MOZ", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa/MOZ", + "Ratio of female to male labor force participation rate (%) (national estimate)/South Africa/MOZ", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa/MOZ", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/South Africa/MOZ", + "Access to electricity (% of population)/South Africa/NGA", + "Agricultural land (% of land area)/South Africa/NGA", + "CO2 emissions (kg per PPP $ of GDP)/South Africa/NGA", + "Consumer price index (2010 = 100)/South Africa/NGA", + "Current health expenditure per capita (current US$)/South Africa/NGA", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa/NGA", + "GNI (current US$)/South Africa/NGA", + "Gross value added at basic prices (GVA) (current US$)/South Africa/NGA", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa/NGA", + "Industry (including construction), value added (current US$)/South Africa/NGA", + "Number of deaths ages 5-9 years/South Africa/NGA", + "Population in largest city/South Africa/NGA", + "Prevalence of current tobacco use (% of adults)/South Africa/NGA", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa/NGA", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa/NGA", + "Suicide mortality rate (per 100,000 population)/South Africa/NGA", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/South Africa/NGA", + "Agricultural land (% of land area)/Europe/NLD", + "CO2 emissions (kg per PPP $ of GDP)/Europe/NLD", + "Consumer price index (2010 = 100)/Europe/NLD", + "Current health expenditure (% of GDP)/Europe/NLD", + "Current health expenditure per capita (current US$)/Europe/NLD", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/NLD", + "Export value index (2000 = 100)/Europe/NLD", + "Fixed broadband subscriptions (per 100 people)/Europe/NLD", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe/NLD", + "GNI (current US$)/Europe/NLD", + "Gross value added at basic prices (GVA) (current US$)/Europe/NLD", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/NLD", + "Industry (including construction), value added (current US$)/Europe/NLD", + "Number of deaths ages 5-9 years/Europe/NLD", + "Number of infant deaths/Europe/NLD", + "Population in largest city/Europe/NLD", + "Prevalence of current tobacco use (% of adults)/Europe/NLD", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe/NLD", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe/NLD", + "Renewable internal freshwater resources per capita (cubic meters)/Europe/NLD", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe/NLD", + "CO2 emissions (kg per PPP $ of GDP)/Persian Gulf/OMN", + "Consumer price index (2010 = 100)/Persian Gulf/OMN", + "Current health expenditure per capita (current US$)/Persian Gulf/OMN", + "Employment in industry (% of total employment) (modeled ILO estimate)/Persian Gulf/OMN", + "Export value index (2000 = 100)/Persian Gulf/OMN", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf/OMN", + "GNI (current US$)/Persian Gulf/OMN", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf/OMN", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf/OMN", + "Industry (including construction), value added (current US$)/Persian Gulf/OMN", + "Number of deaths ages 5-9 years/Persian Gulf/OMN", + "Number of infant deaths/Persian Gulf/OMN", + "Population in largest city/Persian Gulf/OMN", + "Prevalence of current tobacco use (% of adults)/Persian Gulf/OMN", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf/OMN", + "Ratio of female to male labor force participation rate (%) (national estimate)/Persian Gulf/OMN", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf/OMN", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf/OMN", + "Access to electricity (% of population)/Latam/PAN", + "Agricultural land (% of land area)/Latam/PAN", + "CO2 emissions (kg per PPP $ of GDP)/Latam/PAN", + "Consumer price index (2010 = 100)/Latam/PAN", + "Current health expenditure per capita (current US$)/Latam/PAN", + "Export value index (2000 = 100)/Latam/PAN", + "Fixed broadband subscriptions (per 100 people)/Latam/PAN", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam/PAN", + "GNI (current US$)/Latam/PAN", + "Gross value added at basic prices (GVA) (current US$)/Latam/PAN", + "Households and NPISHs Final consumption expenditure (current US$)/Latam/PAN", + "Industry (including construction), value added (current US$)/Latam/PAN", + "Number of deaths ages 5-9 years/Latam/PAN", + "Number of infant deaths/Latam/PAN", + "Population in largest city/Latam/PAN", + "Prevalence of current tobacco use (% of adults)/Latam/PAN", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam/PAN", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam/PAN", + "Renewable internal freshwater resources per capita (cubic meters)/Latam/PAN", + "Suicide mortality rate (per 100,000 population)/Latam/PAN", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam/PAN", + "Access to electricity (% of population)/Latam/PER", + "CO2 emissions (kg per PPP $ of GDP)/Latam/PER", + "Consumer price index (2010 = 100)/Latam/PER", + "Current health expenditure (% of GDP)/Latam/PER", + "Current health expenditure per capita (current US$)/Latam/PER", + "Export value index (2000 = 100)/Latam/PER", + "Fixed broadband subscriptions (per 100 people)/Latam/PER", + "GNI (current US$)/Latam/PER", + "Gross value added at basic prices (GVA) (current US$)/Latam/PER", + "Households and NPISHs Final consumption expenditure (current US$)/Latam/PER", + "Industry (including construction), value added (current US$)/Latam/PER", + "Number of deaths ages 5-9 years/Latam/PER", + "Number of infant deaths/Latam/PER", + "Population in largest city/Latam/PER", + "Prevalence of current tobacco use (% of adults)/Latam/PER", + "Renewable internal freshwater resources per capita (cubic meters)/Latam/PER", + "Access to electricity (% of population)/Asia/PHL", + "Agricultural land (% of land area)/Asia/PHL", + "Consumer price index (2010 = 100)/Asia/PHL", + "Current health expenditure per capita (current US$)/Asia/PHL", + "Export value index (2000 = 100)/Asia/PHL", + "Fixed broadband subscriptions (per 100 people)/Asia/PHL", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia/PHL", + "GNI (current US$)/Asia/PHL", + "Households and NPISHs Final consumption expenditure (current US$)/Asia/PHL", + "Industry (including construction), value added (current US$)/Asia/PHL", + "Number of infant deaths/Asia/PHL", + "Population in largest city/Asia/PHL", + "Prevalence of current tobacco use (% of adults)/Asia/PHL", + "Renewable internal freshwater resources per capita (cubic meters)/Asia/PHL", + "Suicide mortality rate (per 100,000 population)/Asia/PHL", + "Agricultural land (% of land area)/Europe/POL", + "CO2 emissions (kg per PPP $ of GDP)/Europe/POL", + "Consumer price index (2010 = 100)/Europe/POL", + "Current health expenditure (% of GDP)/Europe/POL", + "Current health expenditure per capita (current US$)/Europe/POL", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/POL", + "Export value index (2000 = 100)/Europe/POL", + "Fixed broadband subscriptions (per 100 people)/Europe/POL", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe/POL", + "GNI (current US$)/Europe/POL", + "Gross value added at basic prices (GVA) (current US$)/Europe/POL", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/POL", + "Industry (including construction), value added (current US$)/Europe/POL", + "Number of deaths ages 5-9 years/Europe/POL", + "Number of infant deaths/Europe/POL", + "Population in largest city/Europe/POL", + "Prevalence of current tobacco use (% of adults)/Europe/POL", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe/POL", + "Renewable internal freshwater resources per capita (cubic meters)/Europe/POL", + "Suicide mortality rate (per 100,000 population)/Europe/POL", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe/POL", + "Consumer price index (2010 = 100)/Persian Gulf/QAT", + "Current health expenditure per capita (current US$)/Persian Gulf/QAT", + "Export value index (2000 = 100)/Persian Gulf/QAT", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf/QAT", + "GNI (current US$)/Persian Gulf/QAT", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf/QAT", + "Number of deaths ages 5-9 years/Persian Gulf/QAT", + "Population in largest city/Persian Gulf/QAT", + "Prevalence of current tobacco use (% of adults)/Persian Gulf/QAT", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf/QAT", + "Ratio of female to male labor force participation rate (%) (national estimate)/Persian Gulf/QAT", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf/QAT", + "Suicide mortality rate (per 100,000 population)/Persian Gulf/QAT", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf/QAT", + "Consumer price index (2010 = 100)/Persian Gulf/SAU", + "Current health expenditure per capita (current US$)/Persian Gulf/SAU", + "Employment in industry (% of total employment) (modeled ILO estimate)/Persian Gulf/SAU", + "Export value index (2000 = 100)/Persian Gulf/SAU", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf/SAU", + "GNI (current US$)/Persian Gulf/SAU", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf/SAU", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf/SAU", + "Industry (including construction), value added (current US$)/Persian Gulf/SAU", + "Number of deaths ages 5-9 years/Persian Gulf/SAU", + "Number of infant deaths/Persian Gulf/SAU", + "Population in largest city/Persian Gulf/SAU", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf/SAU", + "Ratio of female to male labor force participation rate (%) (national estimate)/Persian Gulf/SAU", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf/SAU", + "Suicide mortality rate (per 100,000 population)/Persian Gulf/SAU", + "Access to electricity (% of population)/South Africa/SEN", + "Consumer price index (2010 = 100)/South Africa/SEN", + "Current health expenditure per capita (current US$)/South Africa/SEN", + "Employment in industry (% of total employment) (modeled ILO estimate)/South Africa/SEN", + "Export value index (2000 = 100)/South Africa/SEN", + "Fixed broadband subscriptions (per 100 people)/South Africa/SEN", + "GNI (current US$)/South Africa/SEN", + "Gross value added at basic prices (GVA) (current US$)/South Africa/SEN", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa/SEN", + "Industry (including construction), value added (current US$)/South Africa/SEN", + "Number of deaths ages 5-9 years/South Africa/SEN", + "Number of infant deaths/South Africa/SEN", + "Population in largest city/South Africa/SEN", + "Prevalence of current tobacco use (% of adults)/South Africa/SEN", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa/SEN", + "Ratio of female to male labor force participation rate (%) (national estimate)/South Africa/SEN", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa/SEN", + "Suicide mortality rate (per 100,000 population)/South Africa/SEN", + "Agricultural land (% of land area)/Europe/SWE", + "CO2 emissions (kg per PPP $ of GDP)/Europe/SWE", + "Consumer price index (2010 = 100)/Europe/SWE", + "Current health expenditure (% of GDP)/Europe/SWE", + "Current health expenditure per capita (current US$)/Europe/SWE", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe/SWE", + "Export value index (2000 = 100)/Europe/SWE", + "Fixed broadband subscriptions (per 100 people)/Europe/SWE", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe/SWE", + "GNI (current US$)/Europe/SWE", + "Gross value added at basic prices (GVA) (current US$)/Europe/SWE", + "Households and NPISHs Final consumption expenditure (current US$)/Europe/SWE", + "Industry (including construction), value added (current US$)/Europe/SWE", + "Number of infant deaths/Europe/SWE", + "Prevalence of current tobacco use (% of adults)/Europe/SWE", + "Access to electricity (% of population)/Asia/THA", + "CO2 emissions (kg per PPP $ of GDP)/Asia/THA", + "Consumer price index (2010 = 100)/Asia/THA", + "Current health expenditure (% of GDP)/Asia/THA", + "Current health expenditure per capita (current US$)/Asia/THA", + "Export value index (2000 = 100)/Asia/THA", + "Fixed broadband subscriptions (per 100 people)/Asia/THA", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia/THA", + "GNI (current US$)/Asia/THA", + "Households and NPISHs Final consumption expenditure (current US$)/Asia/THA", + "Industry (including construction), value added (current US$)/Asia/THA", + "Number of deaths ages 5-9 years/Asia/THA", + "Number of infant deaths/Asia/THA", + "Population in largest city/Asia/THA", + "Prevalence of current tobacco use (% of adults)/Asia/THA", + "Renewable internal freshwater resources per capita (cubic meters)/Asia/THA", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia/THA", + "Agricultural land (% of land area)/North Africa/TUR", + "CO2 emissions (kg per PPP $ of GDP)/North Africa/TUR", + "Consumer price index (2010 = 100)/North Africa/TUR", + "Export value index (2000 = 100)/North Africa/TUR", + "Fixed broadband subscriptions (per 100 people)/North Africa/TUR", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/North Africa/TUR", + "GNI (current US$)/North Africa/TUR", + "Gross value added at basic prices (GVA) (current US$)/North Africa/TUR", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa/TUR", + "Industry (including construction), value added (current US$)/North Africa/TUR", + "Number of deaths ages 5-9 years/North Africa/TUR", + "Number of infant deaths/North Africa/TUR", + "Population in largest city/North Africa/TUR", + "Prevalence of current tobacco use (% of adults)/North Africa/TUR", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/North Africa/TUR", + "Ratio of female to male labor force participation rate (%) (national estimate)/North Africa/TUR", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa/TUR", + "Suicide mortality rate (per 100,000 population)/North Africa/TUR", + "Agricultural land (% of land area)/Pair/USA", + "CO2 emissions (kg per PPP $ of GDP)/Pair/USA", + "Consumer price index (2010 = 100)/Pair/USA", + "Current health expenditure (% of GDP)/Pair/USA", + "Current health expenditure per capita (current US$)/Pair/USA", + "Employment in industry (% of total employment) (modeled ILO estimate)/Pair/USA", + "Export value index (2000 = 100)/Pair/USA", + "Fixed broadband subscriptions (per 100 people)/Pair/USA", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Pair/USA", + "GNI (current US$)/Pair/USA", + "Gross value added at basic prices (GVA) (current US$)/Pair/USA", + "Households and NPISHs Final consumption expenditure (current US$)/Pair/USA", + "Industry (including construction), value added (current US$)/Pair/USA", + "Number of deaths ages 5-9 years/Pair/USA", + "Number of infant deaths/Pair/USA", + "Population in largest city/Pair/USA", + "Prevalence of current tobacco use (% of adults)/Pair/USA", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Pair/USA", + "Ratio of female to male labor force participation rate (%) (national estimate)/Pair/USA", + "Renewable internal freshwater resources per capita (cubic meters)/Pair/USA", + "Suicide mortality rate (per 100,000 population)/Pair/USA", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Pair/USA", + "Agricultural land (% of land area)/Latam/VEN", + "Consumer price index (2010 = 100)/Latam/VEN", + "Current health expenditure per capita (current US$)/Latam/VEN", + "Employment in industry (% of total employment) (modeled ILO estimate)/Latam/VEN", + "Export value index (2000 = 100)/Latam/VEN", + "Fixed broadband subscriptions (per 100 people)/Latam/VEN", + "GNI (current US$)/Latam/VEN", + "Gross value added at basic prices (GVA) (current US$)/Latam/VEN", + "Households and NPISHs Final consumption expenditure (current US$)/Latam/VEN", + "Industry (including construction), value added (current US$)/Latam/VEN", + "Population in largest city/Latam/VEN", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam/VEN", + "Renewable internal freshwater resources per capita (cubic meters)/Latam/VEN", + "Suicide mortality rate (per 100,000 population)/Latam/VEN", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam/VEN", + "Access to electricity (% of population)/Asia/VNM", + "Agricultural land (% of land area)/Asia/VNM", + "Consumer price index (2010 = 100)/Asia/VNM", + "Current health expenditure (% of GDP)/Asia/VNM", + "Current health expenditure per capita (current US$)/Asia/VNM", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia/VNM", + "Export value index (2000 = 100)/Asia/VNM", + "Fixed broadband subscriptions (per 100 people)/Asia/VNM", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia/VNM", + "GNI (current US$)/Asia/VNM", + "Gross value added at basic prices (GVA) (current US$)/Asia/VNM", + "Households and NPISHs Final consumption expenditure (current US$)/Asia/VNM", + "Industry (including construction), value added (current US$)/Asia/VNM", + "Number of deaths ages 5-9 years/Asia/VNM", + "Number of infant deaths/Asia/VNM", + "Population in largest city/Asia/VNM", + "Prevalence of current tobacco use (% of adults)/Asia/VNM", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Asia/VNM", + "Ratio of female to male labor force participation rate (%) (national estimate)/Asia/VNM", + "Renewable internal freshwater resources per capita (cubic meters)/Asia/VNM", + "Suicide mortality rate (per 100,000 population)/Asia/VNM", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia/VNM", + "Access to electricity (% of population)/Persian Gulf/YEM", + "Agricultural land (% of land area)/Persian Gulf/YEM", + "Consumer price index (2010 = 100)/Persian Gulf/YEM", + "Current health expenditure (% of GDP)/Persian Gulf/YEM", + "Current health expenditure per capita (current US$)/Persian Gulf/YEM", + "Employment in industry (% of total employment) (modeled ILO estimate)/Persian Gulf/YEM", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf/YEM", + "GNI (current US$)/Persian Gulf/YEM", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf/YEM", + "Industry (including construction), value added (current US$)/Persian Gulf/YEM", + "Number of deaths ages 5-9 years/Persian Gulf/YEM", + "Population in largest city/Persian Gulf/YEM", + "Prevalence of current tobacco use (% of adults)/Persian Gulf/YEM", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf/YEM", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf/YEM", + "Suicide mortality rate (per 100,000 population)/Persian Gulf/YEM", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf/YEM", + "Access to electricity (% of population)/South Africa/ZAF", + "CO2 emissions (kg per PPP $ of GDP)/South Africa/ZAF", + "Consumer price index (2010 = 100)/South Africa/ZAF", + "Current health expenditure per capita (current US$)/South Africa/ZAF", + "Employment in industry (% of total employment) (modeled ILO estimate)/South Africa/ZAF", + "Export value index (2000 = 100)/South Africa/ZAF", + "Fixed broadband subscriptions (per 100 people)/South Africa/ZAF", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa/ZAF", + "GNI (current US$)/South Africa/ZAF", + "Gross value added at basic prices (GVA) (current US$)/South Africa/ZAF", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa/ZAF", + "Industry (including construction), value added (current US$)/South Africa/ZAF", + "Population in largest city/South Africa/ZAF", + "Prevalence of current tobacco use (% of adults)/South Africa/ZAF", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa/ZAF", + "Ratio of female to male labor force participation rate (%) (national estimate)/South Africa/ZAF", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa/ZAF", + "Access to electricity (% of population)/Asia", + "Agricultural land (% of land area)/Asia", + "CO2 emissions (kg per PPP $ of GDP)/Asia", + "Consumer price index (2010 = 100)/Asia", + "Current health expenditure (% of GDP)/Asia", + "Current health expenditure per capita (current US$)/Asia", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia", + "Export value index (2000 = 100)/Asia", + "Fixed broadband subscriptions (per 100 people)/Asia", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia", + "GNI (current US$)/Asia", + "Gross value added at basic prices (GVA) (current US$)/Asia", + "Households and NPISHs Final consumption expenditure (current US$)/Asia", + "Industry (including construction), value added (current US$)/Asia", + "Number of deaths ages 5-9 years/Asia", + "Number of infant deaths/Asia", + "Population in largest city/Asia", + "Prevalence of current tobacco use (% of adults)/Asia", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Asia", + "Ratio of female to male labor force participation rate (%) (national estimate)/Asia", + "Renewable internal freshwater resources per capita (cubic meters)/Asia", + "Suicide mortality rate (per 100,000 population)/Asia", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia", + "Agricultural land (% of land area)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure (% of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Export value index (2000 = 100)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Number of infant deaths/Europe", + "Population in largest city/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe", + "Renewable internal freshwater resources per capita (cubic meters)/Europe", + "Suicide mortality rate (per 100,000 population)/Europe", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe", + "Access to electricity (% of population)/Latam", + "Agricultural land (% of land area)/Latam", + "CO2 emissions (kg per PPP $ of GDP)/Latam", + "Consumer price index (2010 = 100)/Latam", + "Current health expenditure (% of GDP)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Employment in industry (% of total employment) (modeled ILO estimate)/Latam", + "Export value index (2000 = 100)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Number of deaths ages 5-9 years/Latam", + "Number of infant deaths/Latam", + "Population in largest city/Latam", + "Prevalence of current tobacco use (% of adults)/Latam", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Suicide mortality rate (per 100,000 population)/Latam", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam", + "Access to electricity (% of population)/North Africa", + "Agricultural land (% of land area)/North Africa", + "CO2 emissions (kg per PPP $ of GDP)/North Africa", + "Consumer price index (2010 = 100)/North Africa", + "Current health expenditure per capita (current US$)/North Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/North Africa", + "Export value index (2000 = 100)/North Africa", + "Fixed broadband subscriptions (per 100 people)/North Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/North Africa", + "GNI (current US$)/North Africa", + "Gross value added at basic prices (GVA) (current US$)/North Africa", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa", + "Industry (including construction), value added (current US$)/North Africa", + "Number of deaths ages 5-9 years/North Africa", + "Number of infant deaths/North Africa", + "Population in largest city/North Africa", + "Prevalence of current tobacco use (% of adults)/North Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/North Africa", + "Ratio of female to male labor force participation rate (%) (national estimate)/North Africa", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa", + "Suicide mortality rate (per 100,000 population)/North Africa", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/North Africa", + "Access to electricity (% of population)/Pair", + "Agricultural land (% of land area)/Pair", + "CO2 emissions (kg per PPP $ of GDP)/Pair", + "Consumer price index (2010 = 100)/Pair", + "Current health expenditure (% of GDP)/Pair", + "Current health expenditure per capita (current US$)/Pair", + "Employment in industry (% of total employment) (modeled ILO estimate)/Pair", + "Export value index (2000 = 100)/Pair", + "Fixed broadband subscriptions (per 100 people)/Pair", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Pair", + "GNI (current US$)/Pair", + "Gross value added at basic prices (GVA) (current US$)/Pair", + "Households and NPISHs Final consumption expenditure (current US$)/Pair", + "Industry (including construction), value added (current US$)/Pair", + "Number of deaths ages 5-9 years/Pair", + "Number of infant deaths/Pair", + "Population in largest city/Pair", + "Prevalence of current tobacco use (% of adults)/Pair", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Pair", + "Ratio of female to male labor force participation rate (%) (national estimate)/Pair", + "Renewable internal freshwater resources per capita (cubic meters)/Pair", + "Suicide mortality rate (per 100,000 population)/Pair", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Pair", + "Access to electricity (% of population)/Persian Gulf", + "Agricultural land (% of land area)/Persian Gulf", + "CO2 emissions (kg per PPP $ of GDP)/Persian Gulf", + "Consumer price index (2010 = 100)/Persian Gulf", + "Current health expenditure (% of GDP)/Persian Gulf", + "Current health expenditure per capita (current US$)/Persian Gulf", + "Employment in industry (% of total employment) (modeled ILO estimate)/Persian Gulf", + "Export value index (2000 = 100)/Persian Gulf", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Persian Gulf", + "GNI (current US$)/Persian Gulf", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf", + "Industry (including construction), value added (current US$)/Persian Gulf", + "Number of deaths ages 5-9 years/Persian Gulf", + "Number of infant deaths/Persian Gulf", + "Population in largest city/Persian Gulf", + "Prevalence of current tobacco use (% of adults)/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (national estimate)/Persian Gulf", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf", + "Suicide mortality rate (per 100,000 population)/Persian Gulf", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf", + "Access to electricity (% of population)/South Africa", + "Agricultural land (% of land area)/South Africa", + "CO2 emissions (kg per PPP $ of GDP)/South Africa", + "Consumer price index (2010 = 100)/South Africa", + "Current health expenditure (% of GDP)/South Africa", + "Current health expenditure per capita (current US$)/South Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/South Africa", + "Export value index (2000 = 100)/South Africa", + "Fixed broadband subscriptions (per 100 people)/South Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa", + "GNI (current US$)/South Africa", + "Gross value added at basic prices (GVA) (current US$)/South Africa", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa", + "Industry (including construction), value added (current US$)/South Africa", + "Number of deaths ages 5-9 years/South Africa", + "Number of infant deaths/South Africa", + "Population in largest city/South Africa", + "Prevalence of current tobacco use (% of adults)/South Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa", + "Ratio of female to male labor force participation rate (%) (national estimate)/South Africa", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa", + "Suicide mortality rate (per 100,000 population)/South Africa", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/South Africa", + "Access to electricity (% of population)", + "Agricultural land (% of land area)", + "CO2 emissions (kg per PPP $ of GDP)", + "Consumer price index (2010 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Export value index (2000 = 100)", + "Fixed broadband subscriptions (per 100 people)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Population in largest city", + "Prevalence of current tobacco use (% of adults)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Suicide mortality rate (per 100,000 population)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ], + "labels": [ + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IRQ", + "IRQ", + "IRQ", + "IRQ", + "IRQ", + "IRQ", + "IRQ", + "IRQ", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "LBR", + "LBR", + "LBR", + "LBR", + "LBR", + "LBR", + "LBR", + "LBR", + "LBR", + "LBR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "Access to electricity (% of population)", + "Agricultural land (% of land area)", + "CO2 emissions (kg per PPP $ of GDP)", + "Consumer price index (2010 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Export value index (2000 = 100)", + "Fixed broadband subscriptions (per 100 people)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Population in largest city", + "Prevalence of current tobacco use (% of adults)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Suicide mortality rate (per 100,000 population)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)" + ], + "marker": { + "coloraxis": "coloraxis", + "colors": [ + 0.9194369973190348, + 0.9150177303560064, + 0.9832058480308432, + 0.9792614678275988, + 0.9104552048233484, + 0.7818744360024455, + 0.9139430100959351, + 0.9206651788481804, + 0.9773557492735576, + 0.9929947676208064, + 0.9667829842995462, + 0.9886242163794032, + 0.9842229467473992, + 0.7869703117696519, + 0.9545454545454548, + 0.9364502164502164, + 0.7568829071309779, + 0.8405722943067688, + 0.7712684989429177, + 0.8553134080531343, + 0.7522123063336182, + 0.9985339932335306, + 0.9883020564051679, + 0.953621170127054, + 0.9622333213753728, + 0.8553134080531343, + 0.8553134080531343, + 0.8598347107438016, + 0.8507923269391159, + 0.8430578512396696, + 0.8385429638854296, + 0.9545454545454548, + 0.9545454545454548, + 0.8673029726406383, + 0.8358612257146861, + 0.8490800833801486, + 0.8003212087852895, + 0.904913008013858, + 0.7976314145122237, + 0.8890631162040309, + 0.8232860332235971, + 0.8258303273081601, + 0.9919502705663622, + 0.9965191088563604, + 0.9550538402276436, + 0.9737764107803116, + 0.8530611929128231, + 0.8399280642635364, + 0.8490800833801486, + 0.82454262425017, + 0.8462362704327265, + 0.8460152283133167, + 0.8536368018578387, + 0.8276242108365519, + 0.8298946640273919, + 0.8442479234380643, + 0.9731456263408548, + 0.8590707598082956, + 0.9929855448480356, + 0.917314235445159, + 0.9416437009068946, + 0.8977160492573557, + 0.909065387196842, + 0.9356248965935622, + 0.9890174067689452, + 0.9992663243093578, + 0.9255861016232882, + 0.9701400724878312, + 0.9099770642201834, + 0.9943501037415146, + 0.9947856385396152, + 0.9956476370717128, + 0.9904302907657898, + 0.8041381029540074, + 0.993779175279743, + 0.7813852813852814, + 0.8832034632034632, + 0.9990150209905604, + 0.9929855448480356, + 0.9947856385396152, + 0.9859234217934404, + 0.978073311070348, + 0.9820100634702482, + 1, + 0.9992656508417233, + 1, + 0.9974294410273912, + 0.949825316001485, + 0.9991101224022378, + 0.9990150209905604, + 0.997391304347826, + 0.9937731747479652, + 0.8244642857142859, + 0.9985875706214687, + 0.878685196514601, + 0.9786956521739132, + 0.7763614794595731, + 0.7822341892305151, + 0.833174972830306, + 0.7707081956166206, + 0.8268991218112046, + 0.7862727272727271, + 0.8546502548557862, + 0.775995920023485, + 0.831081385436793, + 0.9985339932335306, + 0.9941424251920344, + 0.9890311615492476, + 0.9358035287465732, + 0.7714797416324134, + 0.7643053750286719, + 0.7707081956166206, + 0.7521112125156584, + 0.8598347107438016, + 0.90662100456621, + 0.7822341892305151, + 0.7563441975980676, + 0.9055353950321428, + 0.8710617614475394, + 0.8630005695842037, + 0.8952232922255726, + 0.7757575757575756, + 0.8398859728050183, + 0.8668958338409165, + 0.8490459410817468, + 0.8534540516685338, + 0.9919502705663622, + 1, + 0.9839330712663648, + 0.9464739502688859, + 0.8862820694208641, + 0.8874398840030436, + 0.8952232922255726, + 0.848613775065388, + 0.9018993376896012, + 0.8965017504270001, + 0.8895952017025273, + 0.7552008456659621, + 0.8658008658008658, + 0.9636752136752136, + 0.9364502164502164, + 0.984461621950468, + 1, + 0.9818181818181816, + 0.996521739130435, + 0.8586700336700335, + 0.9890311615492476, + 0.999122807017544, + 0.9818536963567754, + 1, + 1, + 0.9970690618433798, + 0.9970690618433798, + 1, + 1, + 0.9982456140350876, + 0.9477543538038498, + 0.9977822580645164, + 0.9576803072122886, + 0.8041630667784955, + 0.8119647131227026, + 0.8679516484927489, + 0.8129887361537077, + 0.8296247866194634, + 0.8330381744436689, + 0.9303687863484544, + 0.8870930627862177, + 0.8486878358300123, + 0.9978013931164152, + 0.99268071993084, + 0.9875732201051683, + 0.9658331436022252, + 0.7726587251245717, + 0.8119189817879228, + 0.8216057600038706, + 0.9095579316931844, + 0.822054489456517, + 0.7805172292400585, + 0.892391114486425, + 0.9000234404536862, + 0.8397480840731469, + 0.8550497957993816, + 0.9350943180643897, + 0.897855261911528, + 0.9129853629164147, + 0.9978013931164152, + 1, + 0.9868446526492484, + 0.955770578544058, + 0.8995898027497777, + 0.8995898027497777, + 0.9000234404536862, + 0.8974216292028354, + 0.9068929556529068, + 0.7766774350616475, + 0.9370415079706567, + 0.8857699681136173, + 0.9897824784878032, + 0.998221036598569, + 0.8084175084175085, + 0.9913111768722972, + 0.8675319709415152, + 0.9280169976669376, + 0.999122807017544, + 0.8998911634924976, + 1, + 0.9992668621947256, + 1, + 0.9960351014549488, + 0.999122807017544, + 0.999122807017544, + 1, + 0.9982456140350876, + 0.9380859781477626, + 0.934372987530004, + 0.9969759694040504, + 0.792782754772987, + 0.7714560308712177, + 0.8085316277505704, + 0.8017888630248555, + 0.8557422839635942, + 0.7920446151287672, + 0.8210527935710153, + 0.79241896667796, + 0.7793718426037994, + 0.996336999414424, + 0.9965191088563604, + 0.9672749544015236, + 0.9477180531985372, + 0.8462714704650187, + 0.793236950671892, + 0.7965452139741043, + 0.7966912350949062, + 0.8584751140436623, + 0.8075842215036355, + 0.8935463671803986, + 0.8694866227116197, + 0.7559911987169416, + 0.8672820048414341, + 0.9978013931164152, + 0.9540512424216696, + 0.8485601299189015, + 0.7802288530146114, + 0.7559911987169416, + 0.8075842215036355, + 0.865081443540125, + 0.8408374965151522, + 0.8521832338962485, + 0.8227635041015324, + 0.8786356094048401, + 0.8701066680233348, + 0.8985904473621558, + 0.919319387113138, + 0.9208092958092956, + 0.8586700336700335, + 0.9416562889165628, + 0.932398585032895, + 0.9970690618433798, + 0.9970690618433798, + 0.9948736810887512, + 0.9622333213753728, + 0.7902969671765014, + 0.9908884770316014, + 0.946198347107438, + 0.92385752642948, + 0.8863636363636365, + 0.8259976777571356, + 0.8190486045187014, + 0.7940051262578318, + 0.7606873345935727, + 0.8224948407969244, + 0.9006445563787115, + 0.7834335706711103, + 0.7736264668325739, + 0.7922752675949607, + 0.800012400217004, + 0.9985339932335306, + 0.9768478574449928, + 0.9853883242696474, + 0.8067839857133676, + 0.8017627702025453, + 0.8021928166351607, + 0.7910710359728593, + 0.828891493383743, + 0.8284602000869942, + 0.7644903235840163, + 0.7893527624833871, + 0.780089044997152, + 0.7928741020793951, + 0.7604961330297303, + 0.8921379258150505, + 0.7921764122864366, + 0.863925779862748, + 0.7916704805491989, + 0.7984383476710843, + 0.996336999414424, + 0.9833831528957327, + 0.991220090045964, + 0.9301373709233364, + 0.7916704805491989, + 0.81573077081821, + 0.7928741020793951, + 0.7802662901330503, + 0.8037512287334593, + 0.8025417478298693, + 0.7893527624833871, + 0.9222946747399472, + 0.9344444444444444, + 0.8801077325173712, + 0.9000168618023969, + 0.934334074623178, + 0.824723044297354, + 0.936963017728694, + 0.907326978222119, + 0.9883020564051679, + 0.9914003253458398, + 0.9716068390573318, + 0.8868080394461477, + 0.9312885573197214, + 0.9677933860111212, + 0.9344444444444444, + 0.9360867018160518, + 0.9310557094490612, + 0.9275512725475664, + 0.9290762303990062, + 0.8220626497774737, + 0.8242647792818613, + 0.8580430671412884, + 0.7589099863492517, + 0.8806041934635603, + 0.7737464548987709, + 0.838169467510867, + 1, + 0.9890311615492476, + 0.9853883242696474, + 0.9450477324262084, + 0.8580430671412884, + 0.8398311720625258, + 0.8578858011832347, + 0.8672259606948435, + 0.7905217546826223, + 0.8549939348739194, + 0.8210461476724114, + 0.8919696969696971, + 0.8363949697251979, + 0.8053911900065747, + 0.769382100421295, + 0.923526237747262, + 0.8619283887468031, + 0.84746622922539, + 0.9782982623788444, + 0.9817522080920388, + 0.8134050821718116, + 0.84746622922539, + 0.84746622922539, + 0.8483379501385041, + 0.8465945179292698, + 0.8803334593572778, + 0.9004149252037746, + 0.796839893191436, + 0.9028882720019862, + 0.7676281237741422, + 0.8291492133323973, + 0.7913646289079624, + 0.9904289157282716, + 0.9926335425715881, + 0.9461330864231152, + 0.9454153674378072, + 0.7598160347464082, + 0.7867084930870223, + 0.7871436798157215, + 0.7860877112960002, + 0.8101813436763873, + 0.8238243435953363, + 0.8818618218586448, + 0.7794331008589288, + 0.9025957850286672, + 0.8025699565810901, + 0.9170617535185012, + 0.7631048593350384, + 0.8250833206612556, + 0.9088064577345945, + 0.9278150139590884, + 0.9992668621947256, + 0.8068812492978317, + 0.9934114381393974, + 0.984660563345966, + 0.870252992498577, + 0.8985858297326429, + 0.9025957850286672, + 0.90741737640829, + 0.9024751306250636, + 0.8824223337513897, + 0.9791710812316362, + 0.756628065305478, + 0.9859234217934404, + 0.992671182389769, + 0.7925192834831389, + 0.9807828100228472, + 0.9925507389082384, + 0.928723519908324, + 0.9761788895853514, + 0.9506223327256856, + 0.9992668621947256, + 0.9985339932335306, + 0.9985339932335306, + 0.9904901783696456, + 0.992671182389769, + 0.992671182389769, + 0.9928936489808848, + 0.988714605208294, + 0.948060941828255, + 0.9939538727034296, + 0.915641381346678, + 0.971001604361102, + 0.7554660388288974, + 0.8668958338409165, + 0.996336999414424, + 1, + 0.8683978095980386, + 0.9507590560548307, + 0.7506209000762774, + 0.7650792722152087, + 0.7882882882882881, + 0.9873000604890544, + 0.9682695039010508, + 0.939548148620228, + 0.978469168274726, + 0.9770862304997938, + 0.9364530503181744, + 0.9928507310737632, + 0.998339483394834, + 0.9869953764615554, + 0.9779823259487208, + 0.9862539184209972, + 0.9848040830545792, + 0.9846235837724948, + 0.9834028714566064, + 0.9808836171606353, + 0.9814823072033312, + 0.9838663951689132, + 0.9289464621791536, + 0.950300482513086, + 0.9486101335940044, + 0.951299790877642, + 0.932353379320096, + 0.9363191484705866, + 0.7500718937727315, + 0.8881896291715989, + 0.9329580322176916, + 0.9417014747671419, + 1, + 1, + 0.995605205829548, + 0.9883020564051679, + 0.9514741813067672, + 0.9514741813067672, + 0.9319643313838056, + 0.9419954799687824, + 0.9441436310000064, + 0.9555403520366936, + 0.8732908588456849, + 0.8482458889462429, + 0.8657481566722074, + 0.9060155127964962, + 0.8321093615368212, + 0.993758325008325, + 0.8271094654395285, + 0.855139156857862, + 0.8622230550415498, + 0.8892009084674849, + 0.8659230906299106, + 0.914656355102988, + 0.9248539005931276, + 0.9527305856232412, + 0.8571281012005368, + 0.8846977863333716, + 0.9593583027873251, + 0.9188951371295636, + 0.7800217784035494, + 0.996336999414424, + 0.9948736810887512, + 0.9868446526492484, + 0.9853883242696474, + 0.9531775071717112, + 0.9531775071717112, + 0.9527305856232412, + 0.9238927452772132, + 0.9555403520366936, + 0.9097297101659864, + 0.9320839327803117, + 0.8458383400350413, + 0.9517981773305488, + 0.9434321361058602, + 0.8384981048972464, + 0.9061435934718377, + 0.9328333806952732, + 0.9258691777106102, + 0.9978013931164152, + 0.9875732201051683, + 0.9883020564051679, + 0.9564875857045522, + 0.9429977116704804, + 0.9429977116704804, + 0.9434321361058602, + 0.938293658314696, + 0.9000657462195923, + 0.9038201493163326, + 0.936556104044048, + 0.952612204076308, + 0.7799127011297503, + 0.92448876432027, + 0.9365262267264388, + 0.9565966865742668, + 0.94491648331435, + 0.9086443302842008, + 0.9378841050418828, + 0.9211354224331691, + 0.8980181937554507, + 0.9376349250962784, + 0.9956044009241408, + 0.9941413527735856, + 0.9724980906333768, + 0.9083271241193304, + 0.9391877740213088, + 0.9358184932420454, + 0.9373115797727772, + 0.9463111401682168, + 0.9762481841119351, + 0.9502409737496426, + 0.9365262267264388, + 0.9521230391509398, + 0.8295449908182004, + 0.943947221044588, + 0.8708608667318343, + 0.943947221044588, + 0.8871943647917209, + 0.9412635914006205, + 0.9985339932335306, + 1, + 0.9407755311560884, + 0.9421985228698097, + 0.948072129659398, + 0.9350049149338372, + 0.9638336347197108, + 0.958536231884058, + 0.943947221044588, + 0.9667491997801664, + 0.8387538514207465, + 0.887458515283843, + 0.8623785126533147, + 0.8705701323251417, + 0.8001582377938935, + 0.8878997468865361, + 0.8684059865492091, + 0.8859445107741636, + 0.8677050513455755, + 0.8430977292102612, + 0.9904901783696456, + 0.992130773157018, + 0.9372227566431792, + 0.8621233137385207, + 0.8677050513455755, + 0.8831178664041944, + 0.8705701323251417, + 0.8614957734733332, + 0.8689482041587903, + 0.8660854435766022, + 0.8711152458705146, + 0.8873673399520713, + 0.9299160466862331, + 0.9652200677131424, + 0.8999564578859198, + 0.8950764254021453, + 0.9398812902982936, + 0.9752792033119024, + 0.9978013931164152, + 0.9721444518798692, + 0.9805263157894736, + 0.9479012434878824, + 0.880780406807804, + 0.8571885156262036, + 0.986135349716446, + 0.9743634159016108, + 0.9625071374155625, + 0.880780406807804, + 0.981787734953484, + 0.8919696969696971, + 0.9773557492735576, + 0.7714763488785488, + 0.9545454545454548, + 0.9884853681548044, + 0.9894860390412652, + 0.8047278408758268, + 0.9882730260033812, + 0.9461654371370272, + 0.9970690618433798, + 0.9978013931164152, + 0.996336999414424, + 0.9802996435295532, + 0.9991101223581756, + 0.999777530589544, + 1, + 0.9982456140350876, + 0.9421304353743684, + 0.932626333246618, + 0.9977753058954394, + 0.9203132832080203, + 0.9939130434782611, + 0.9281390141743808, + 0.8796487671810186, + 0.9357441792403746, + 0.7832517257911142, + 0.9134801839907836, + 0.9223744981227123, + 0.905289786165362, + 0.996336999414424, + 0.998350675275288, + 0.996336999414424, + 0.9613309146374462, + 0.937103645050706, + 0.937103645050706, + 0.9357441792403746, + 0.904567225435328, + 0.939105864661958, + 0.9093117324398052, + 0.9214972959512142, + 0.9414868925909092, + 0.8586028659246839, + 0.9230788696114616, + 0.9143112638406732, + 0.9391302151973808, + 0.996336999414424, + 0.9992668621947256, + 0.9890311615492476, + 0.9414868925909092, + 0.941314332676578, + 0.902432554260779, + 0.941241408860912, + 0.8318181818181817, + 0.909072064464046, + 0.9772426641825802, + 0.9505847966970496, + 0.8082508107205724, + 0.9532628651995616, + 0.7740137221269299, + 0.9536631479971994, + 0.9886242163794032, + 0.968708052390917, + 0.9970690618433798, + 0.9906529437430028, + 0.9884575916336614, + 0.9789725394962472, + 0.9851370084561714, + 0.9851370084561714, + 0.9860141582025238, + 0.9842598587858048, + 0.8230247277595698, + 0.9772426641825802, + 0.8553636363636363, + 0.9772426641825802, + 0.9565269894940224, + 0.8991005792297246, + 0.9694396869310692, + 0.9544594777956544, + 0.995605205829548, + 0.9887359375145636, + 0.7606385491732779, + 0.9826843100189036, + 0.9800758121375232, + 0.9000657462195923, + 0.9169832716276728, + 0.9783368141256884, + 0.7733211512105985, + 0.8315151515151515, + 0.9514804555247768, + 0.9248167539267018, + 0.8084175084175085, + 0.8131377716690427, + 0.9581772940528424, + 1, + 1, + 0.977084365603192, + 0.9230788696114616, + 0.9822495603003196, + 0.9822495603003196, + 0.9826843100189036, + 0.909072064464046, + 0.9163600219843964, + 0.9783368141256884, + 0.8722470169622666, + 0.7806171146277026, + 0.7993113894954217, + 0.8647701376567242, + 0.8843935880633129, + 0.8237517359346237, + 0.9143045157420016, + 0.9985339932335306, + 0.9948736810887512, + 0.9817522080920388, + 0.9875732201051683, + 0.9376831513747739, + 0.9355427814530765, + 0.8050748795127288, + 0.9031438311232313, + 0.7770347430724859, + 0.7558559856410743, + 0.8035224554513878, + 0.8975645313091688, + 0.7715736896162309, + 0.7524584849903713, + 0.760960813749392, + 0.7628286200410923, + 0.9063380676482872, + 0.7975398606698341, + 0.8173907278944466, + 0.8252050839377624, + 0.7829559806346367, + 0.9853883242696474, + 0.9914003253458398, + 0.9890311615492476, + 0.8937267418365915, + 0.7598493905068002, + 0.7664643536742591, + 0.8726620562837514, + 0.807857176503839, + 0.8859552362571937, + 0.7621748136686876, + 0.9006445563787115, + 0.8965017504270001, + 0.9001503179694077, + 0.8486878358300123, + 0.995605205829548, + 0.9875732201051683, + 0.9948736810887512, + 0.9027223454052724, + 0.884737671188568, + 0.884575512524494, + 0.8798196380081303, + 0.8878885108220647, + 0.8408502506153573, + 0.9290762303990062, + 0.90727093221948, + 0.9413092648977816, + 0.9219048551109622, + 0.9403303455027593, + 0.92049050384555, + 0.9992668621947256, + 0.9970690618433798, + 0.9883020564051679, + 0.9716068390573318, + 0.9526427685969672, + 0.9413092648977816, + 0.9417436672967864, + 0.9452382460255262, + 0.8258664204370577, + 0.8249965343560833, + 0.9498970784947516, + 0.8977159303535192, + 0.8550758611268748, + 0.9971775822743564, + 1, + 0.9364192202560784, + 0.9964912280701756, + 0.8485069801940157, + 0.9097417836628494, + 0.999122807017544, + 0.9877189123128628, + 1, + 0.9976169999054124, + 0.9992668621947256, + 0.9679854547640152, + 0.9236004688155952, + 0.999122807017544, + 0.9937805570643936, + 0.9982456140350876, + 0.931003010693105, + 0.9341554258408444, + 0.9954182612676434, + 0.9912311643305796, + 0.9545454545454548, + 0.7761808341851454, + 0.8182545315351611, + 0.9104377104377104, + 0.7694545454545454, + 0.8553134080531343, + 0.9292464661560496, + 0.9992555369697762, + 0.9985113511553524, + 0.9762465658458932, + 0.9572793819640072, + 0.9503788875440718, + 0.8231479245485526, + 0.8911007105869436, + 0.9024231247013856, + 0.8658008658008658, + 0.9686137921250751, + 0.9819054691235874, + 1, + 0.7690913021991601, + 0.9861142727065788, + 0.9679847507357018, + 0.9989920981077092, + 0.999122807017544, + 0.9672169872900396, + 1, + 0.9954545454545456, + 1, + 0.9992668621947256, + 1, + 0.8534197605902789, + 1, + 0.9982456140350876, + 0.936341359994194, + 0.9054813423400642, + 0.9977822580645164, + 0.86918360351979, + 0.9939130434782611, + 0.8257949554417174, + 0.7957985346108523, + 0.9136739322359624, + 0.8585000323687447, + 0.8766608932307983, + 0.7697689156812739, + 0.8566176867322529, + 0.9882827814745488, + 0.9585725924710128, + 0.9649045221259104, + 0.8401802481694282, + 0.9245562130177516, + 0.9542133966338968, + 0.944622600300256, + 0.9332845830090168, + 0.8278906432659406, + 0.9418179668098864, + 0.798853868337832, + 0.7739306525397351, + 0.7679975248125409, + 0.9228068405104872, + 0.7685979300090726, + 0.917451425335698, + 0.8374157216227878, + 0.8207867897037397, + 0.9992668621947256, + 0.9992668621947256, + 0.991220090045964, + 0.9365130082728363, + 0.7654094979252105, + 0.7550919222167469, + 0.7698155009451796, + 0.7909076419763443, + 0.7698457560674342, + 0.9286682581951208, + 0.8868922607689099, + 0.8880997664985122, + 0.9610802559263656, + 0.8164912211499714, + 0.9412585118107386, + 0.9078412687095335, + 0.9242220901098175, + 0.9456508016611644, + 0.9384233122417885, + 0.9986424009336514, + 0.9661371305519347, + 0.996359618118611, + 0.9920320694899843, + 0.9467383688039666, + 0.934428236729514, + 0.9783881137485578, + 0.9460013624159498, + 0.9555842763365257, + 0.8941530308332932, + 0.9558248635508322, + 0.8763764496262759, + 0.9356915211255111, + 0.8418086358878542, + 0.8416592129599482, + 0.8415070737965716, + 0.802202194476025, + 0.9033523939458318, + 0.8200759187451886, + 0.856898450536545, + 0.8540567799876048, + 0.8374790158038531, + 0.9927778823467517, + 0.9890234429386014, + 0.9716629095264668, + 0.9077159665231064, + 0.8588659166840533, + 0.8673577505339979, + 0.8639165764309158, + 0.842645116284908, + 0.8530563045983492, + 0.851072524965996, + 0.8704573772019558, + 0.8417225276657303, + 0.8697824343899775, + 0.8797533135230232, + 0.8067115696702831, + 0.9153499728608172, + 0.9122957748275933, + 0.7938508184967689, + 0.8937527133000729, + 0.8006666785588092, + 0.8862405116622968, + 0.9085125104626818, + 0.8789631520435636, + 0.9974807485770172, + 0.9960155803017176, + 0.9858052271222297, + 0.9615914602764132, + 0.9169353611273545, + 0.9165612351287777, + 0.9549874334268079, + 0.9051741499518738, + 0.8990067804864585, + 0.8926342138286003, + 0.9258249723444921, + 0.852052172334274, + 0.8857985176694988, + 0.8929375166442781, + 0.8718049611136595, + 0.9357165305962992, + 0.9217295663529694, + 0.8980091091634662, + 0.900340278528574, + 0.8879688080398852, + 0.9304518743906068, + 0.8970921018969952, + 0.9966696009557061, + 0.9885781489207478, + 0.964419505907156, + 0.9419917249272495, + 0.8978231297748687, + 0.9679937870446894, + 0.9306400155184964, + 0.9313766952176744, + 0.8880521153961992, + 0.8914796231786531, + 0.9305171145449818, + 0.8932658637785106, + 0.898388139488992, + 0.9636752136752136, + 0.8976111240012502, + 0.9908604005702278, + 1, + 0.959655930086227, + 0.9965064838338525, + 0.853618757941474, + 0.9510419642385431, + 0.999122807017544, + 0.9847950373863604, + 1, + 0.9976169999054124, + 0.9996335655193981, + 0.9827424829179762, + 0.9617399092325175, + 0.9995615959600626, + 0.9992268037105778, + 0.9982456140350876, + 0.931003010693105, + 0.9410040236447396, + 0.9966016615523431, + 0.9747445277534733, + 0.8857836553786925, + 0.8103127496818208, + 0.8933621267643042, + 0.8958961678329496, + 0.9506554582589484, + 0.8585000323687447, + 0.9057551009602689, + 0.8591560778970743, + 0.915580671631156, + 0.9408031482198341, + 0.9356248965935622, + 0.9833969787350744, + 0.9863034159844548, + 0.9264191604401815, + 0.9455645962492288, + 0.8878558482587918, + 0.9222251985351745, + 0.9778985314325723, + 0.9416917918323214, + 0.9374085375674432, + 0.9273453266925932, + 0.9747641075839333, + 0.8169371422195695, + 0.8887558080451063, + 0.8333777462346407, + 0.905041744113866, + 0.8252518864802031, + 0.868977990049962, + 0.8910158776253886, + 0.8613357070961393, + 0.8855129343887855, + 0.8874651525776813, + 0.8892399648499411, + 0.8803348783076717, + 0.9775219109294593, + 0.9950131950031115, + 0.9768312268951708, + 0.936051079155285, + 0.8962571474387728, + 0.8799679910087169, + 0.8585586589686451, + 0.8950979128079615, + 0.8644757842141394, + 0.8409320015706357, + 0.8609638845139348, + 0.933440586806712, + 0.8745139302030989, + 0.8769951532708808, + 0.8669121532489861, + 0.8916123606295077, + 0.91271334762741, + 0.8302797665212317, + 0.9059753878539454, + 0.857115021887757, + 0.8961790031980065, + 0.9120775227299308, + 0.8922074475884191, + 0.9916488377720988, + 0.9885675985110315, + 0.9739316584584679, + 0.9481708958643573, + 0.9027265481853378, + 0.9167882911277941, + 0.9466593000827263, + 0.9087132053377553, + 0.8981245330911611, + 0.8854184331504679, + 0.9251319676291814, + 0.8756022402743829, + 0.8925781053983015 + ] + }, + "name": "", + "parents": [ + "Consumer price index (2010 = 100)/Persian Gulf", + "Current health expenditure per capita (current US$)/Persian Gulf", + "Export value index (2000 = 100)/Persian Gulf", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf", + "GNI (current US$)/Persian Gulf", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf", + "Industry (including construction), value added (current US$)/Persian Gulf", + "Number of deaths ages 5-9 years/Persian Gulf", + "Number of infant deaths/Persian Gulf", + "Population in largest city/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (national estimate)/Persian Gulf", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf", + "Suicide mortality rate (per 100,000 population)/Persian Gulf", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf", + "CO2 emissions (kg per PPP $ of GDP)/Latam", + "Current health expenditure (% of GDP)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Employment in industry (% of total employment) (modeled ILO estimate)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Number of deaths ages 5-9 years/Latam", + "Number of infant deaths/Latam", + "Population in largest city/Latam", + "Prevalence of current tobacco use (% of adults)/Latam", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam", + "Agricultural land (% of land area)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure (% of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Export value index (2000 = 100)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Number of infant deaths/Europe", + "Population in largest city/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe", + "Renewable internal freshwater resources per capita (cubic meters)/Europe", + "Suicide mortality rate (per 100,000 population)/Europe", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe", + "Access to electricity (% of population)/Persian Gulf", + "Agricultural land (% of land area)/Persian Gulf", + "CO2 emissions (kg per PPP $ of GDP)/Persian Gulf", + "Consumer price index (2010 = 100)/Persian Gulf", + "Current health expenditure per capita (current US$)/Persian Gulf", + "Employment in industry (% of total employment) (modeled ILO estimate)/Persian Gulf", + "Export value index (2000 = 100)/Persian Gulf", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Persian Gulf", + "GNI (current US$)/Persian Gulf", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf", + "Industry (including construction), value added (current US$)/Persian Gulf", + "Number of deaths ages 5-9 years/Persian Gulf", + "Number of infant deaths/Persian Gulf", + "Population in largest city/Persian Gulf", + "Prevalence of current tobacco use (% of adults)/Persian Gulf", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf", + "Access to electricity (% of population)/Asia", + "Agricultural land (% of land area)/Asia", + "CO2 emissions (kg per PPP $ of GDP)/Asia", + "Consumer price index (2010 = 100)/Asia", + "Current health expenditure per capita (current US$)/Asia", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia", + "Export value index (2000 = 100)/Asia", + "Fixed broadband subscriptions (per 100 people)/Asia", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia", + "GNI (current US$)/Asia", + "Gross value added at basic prices (GVA) (current US$)/Asia", + "Households and NPISHs Final consumption expenditure (current US$)/Asia", + "Industry (including construction), value added (current US$)/Asia", + "Number of deaths ages 5-9 years/Asia", + "Number of infant deaths/Asia", + "Population in largest city/Asia", + "Prevalence of current tobacco use (% of adults)/Asia", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Asia", + "Ratio of female to male labor force participation rate (%) (national estimate)/Asia", + "Renewable internal freshwater resources per capita (cubic meters)/Asia", + "Suicide mortality rate (per 100,000 population)/Asia", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia", + "Access to electricity (% of population)/Latam", + "Agricultural land (% of land area)/Latam", + "CO2 emissions (kg per PPP $ of GDP)/Latam", + "Consumer price index (2010 = 100)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Employment in industry (% of total employment) (modeled ILO estimate)/Latam", + "Export value index (2000 = 100)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Number of deaths ages 5-9 years/Latam", + "Number of infant deaths/Latam", + "Population in largest city/Latam", + "Prevalence of current tobacco use (% of adults)/Latam", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Suicide mortality rate (per 100,000 population)/Latam", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam", + "Access to electricity (% of population)/Latam", + "CO2 emissions (kg per PPP $ of GDP)/Latam", + "Consumer price index (2010 = 100)/Latam", + "Current health expenditure (% of GDP)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Export value index (2000 = 100)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Number of deaths ages 5-9 years/Latam", + "Number of infant deaths/Latam", + "Population in largest city/Latam", + "Prevalence of current tobacco use (% of adults)/Latam", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Suicide mortality rate (per 100,000 population)/Latam", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam", + "Access to electricity (% of population)/Pair", + "Agricultural land (% of land area)/Pair", + "CO2 emissions (kg per PPP $ of GDP)/Pair", + "Consumer price index (2010 = 100)/Pair", + "Current health expenditure (% of GDP)/Pair", + "Current health expenditure per capita (current US$)/Pair", + "Employment in industry (% of total employment) (modeled ILO estimate)/Pair", + "Export value index (2000 = 100)/Pair", + "Fixed broadband subscriptions (per 100 people)/Pair", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Pair", + "GNI (current US$)/Pair", + "Households and NPISHs Final consumption expenditure (current US$)/Pair", + "Industry (including construction), value added (current US$)/Pair", + "Number of deaths ages 5-9 years/Pair", + "Number of infant deaths/Pair", + "Population in largest city/Pair", + "Prevalence of current tobacco use (% of adults)/Pair", + "Ratio of female to male labor force participation rate (%) (national estimate)/Pair", + "Renewable internal freshwater resources per capita (cubic meters)/Pair", + "Suicide mortality rate (per 100,000 population)/Pair", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Pair", + "Access to electricity (% of population)/South Africa", + "Agricultural land (% of land area)/South Africa", + "Consumer price index (2010 = 100)/South Africa", + "Current health expenditure (% of GDP)/South Africa", + "Current health expenditure per capita (current US$)/South Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/South Africa", + "Fixed broadband subscriptions (per 100 people)/South Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa", + "GNI (current US$)/South Africa", + "Gross value added at basic prices (GVA) (current US$)/South Africa", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa", + "Industry (including construction), value added (current US$)/South Africa", + "Number of deaths ages 5-9 years/South Africa", + "Number of infant deaths/South Africa", + "Population in largest city/South Africa", + "Prevalence of current tobacco use (% of adults)/South Africa", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa", + "Access to electricity (% of population)/Latam", + "CO2 emissions (kg per PPP $ of GDP)/Latam", + "Consumer price index (2010 = 100)/Latam", + "Current health expenditure (% of GDP)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Export value index (2000 = 100)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Number of deaths ages 5-9 years/Latam", + "Number of infant deaths/Latam", + "Population in largest city/Latam", + "Prevalence of current tobacco use (% of adults)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Suicide mortality rate (per 100,000 population)/Latam", + "Access to electricity (% of population)/Latam", + "Agricultural land (% of land area)/Latam", + "CO2 emissions (kg per PPP $ of GDP)/Latam", + "Consumer price index (2010 = 100)/Latam", + "Current health expenditure (% of GDP)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Employment in industry (% of total employment) (modeled ILO estimate)/Latam", + "Export value index (2000 = 100)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Number of deaths ages 5-9 years/Latam", + "Number of infant deaths/Latam", + "Population in largest city/Latam", + "Prevalence of current tobacco use (% of adults)/Latam", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam", + "Agricultural land (% of land area)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Export value index (2000 = 100)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe", + "Agricultural land (% of land area)/North Africa", + "Consumer price index (2010 = 100)/North Africa", + "Current health expenditure per capita (current US$)/North Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/North Africa", + "Export value index (2000 = 100)/North Africa", + "Fixed broadband subscriptions (per 100 people)/North Africa", + "GNI (current US$)/North Africa", + "Gross value added at basic prices (GVA) (current US$)/North Africa", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa", + "Industry (including construction), value added (current US$)/North Africa", + "Number of deaths ages 5-9 years/North Africa", + "Population in largest city/North Africa", + "Prevalence of current tobacco use (% of adults)/North Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/North Africa", + "Ratio of female to male labor force participation rate (%) (national estimate)/North Africa", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa", + "Suicide mortality rate (per 100,000 population)/North Africa", + "Access to electricity (% of population)/North Africa", + "Agricultural land (% of land area)/North Africa", + "CO2 emissions (kg per PPP $ of GDP)/North Africa", + "Consumer price index (2010 = 100)/North Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/North Africa", + "Fixed broadband subscriptions (per 100 people)/North Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/North Africa", + "GNI (current US$)/North Africa", + "Gross value added at basic prices (GVA) (current US$)/North Africa", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa", + "Industry (including construction), value added (current US$)/North Africa", + "Number of deaths ages 5-9 years/North Africa", + "Number of infant deaths/North Africa", + "Population in largest city/North Africa", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa", + "Suicide mortality rate (per 100,000 population)/North Africa", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/North Africa", + "Agricultural land (% of land area)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure (% of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Export value index (2000 = 100)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Population in largest city/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe", + "Renewable internal freshwater resources per capita (cubic meters)/Europe", + "Agricultural land (% of land area)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure (% of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Export value index (2000 = 100)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Number of infant deaths/Europe", + "Population in largest city/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe", + "Renewable internal freshwater resources per capita (cubic meters)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure (% of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Export value index (2000 = 100)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Number of infant deaths/Europe", + "Population in largest city/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe", + "Renewable internal freshwater resources per capita (cubic meters)/Europe", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe", + "Access to electricity (% of population)/South Africa", + "Consumer price index (2010 = 100)/South Africa", + "Current health expenditure per capita (current US$)/South Africa", + "Export value index (2000 = 100)/South Africa", + "Fixed broadband subscriptions (per 100 people)/South Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa", + "GNI (current US$)/South Africa", + "Gross value added at basic prices (GVA) (current US$)/South Africa", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa", + "Industry (including construction), value added (current US$)/South Africa", + "Number of deaths ages 5-9 years/South Africa", + "Number of infant deaths/South Africa", + "Population in largest city/South Africa", + "Prevalence of current tobacco use (% of adults)/South Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/South Africa", + "Agricultural land (% of land area)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure (% of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Number of infant deaths/Europe", + "Population in largest city/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Number of infant deaths/Europe", + "Population in largest city/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe", + "Access to electricity (% of population)/Asia", + "Agricultural land (% of land area)/Asia", + "CO2 emissions (kg per PPP $ of GDP)/Asia", + "Consumer price index (2010 = 100)/Asia", + "Current health expenditure (% of GDP)/Asia", + "Current health expenditure per capita (current US$)/Asia", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia", + "Export value index (2000 = 100)/Asia", + "Fixed broadband subscriptions (per 100 people)/Asia", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia", + "GNI (current US$)/Asia", + "Gross value added at basic prices (GVA) (current US$)/Asia", + "Households and NPISHs Final consumption expenditure (current US$)/Asia", + "Industry (including construction), value added (current US$)/Asia", + "Number of deaths ages 5-9 years/Asia", + "Number of infant deaths/Asia", + "Population in largest city/Asia", + "Prevalence of current tobacco use (% of adults)/Asia", + "Renewable internal freshwater resources per capita (cubic meters)/Asia", + "Suicide mortality rate (per 100,000 population)/Asia", + "Access to electricity (% of population)/Asia", + "Agricultural land (% of land area)/Asia", + "CO2 emissions (kg per PPP $ of GDP)/Asia", + "Consumer price index (2010 = 100)/Asia", + "Current health expenditure (% of GDP)/Asia", + "Current health expenditure per capita (current US$)/Asia", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia", + "Export value index (2000 = 100)/Asia", + "Fixed broadband subscriptions (per 100 people)/Asia", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia", + "GNI (current US$)/Asia", + "Gross value added at basic prices (GVA) (current US$)/Asia", + "Households and NPISHs Final consumption expenditure (current US$)/Asia", + "Industry (including construction), value added (current US$)/Asia", + "Number of deaths ages 5-9 years/Asia", + "Number of infant deaths/Asia", + "Population in largest city/Asia", + "Prevalence of current tobacco use (% of adults)/Asia", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Asia", + "Renewable internal freshwater resources per capita (cubic meters)/Asia", + "Suicide mortality rate (per 100,000 population)/Asia", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia", + "Access to electricity (% of population)/Persian Gulf", + "Export value index (2000 = 100)/Persian Gulf", + "GNI (current US$)/Persian Gulf", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf", + "Industry (including construction), value added (current US$)/Persian Gulf", + "Number of infant deaths/Persian Gulf", + "Prevalence of current tobacco use (% of adults)/Persian Gulf", + "Agricultural land (% of land area)/North Africa", + "CO2 emissions (kg per PPP $ of GDP)/North Africa", + "Consumer price index (2010 = 100)/North Africa", + "Current health expenditure per capita (current US$)/North Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/North Africa", + "Fixed broadband subscriptions (per 100 people)/North Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/North Africa", + "GNI (current US$)/North Africa", + "Gross value added at basic prices (GVA) (current US$)/North Africa", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa", + "Industry (including construction), value added (current US$)/North Africa", + "Number of deaths ages 5-9 years/North Africa", + "Number of infant deaths/North Africa", + "Population in largest city/North Africa", + "Prevalence of current tobacco use (% of adults)/North Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/North Africa", + "Ratio of female to male labor force participation rate (%) (national estimate)/North Africa", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/North Africa", + "Agricultural land (% of land area)/Asia", + "CO2 emissions (kg per PPP $ of GDP)/Asia", + "Consumer price index (2010 = 100)/Asia", + "Current health expenditure (% of GDP)/Asia", + "Current health expenditure per capita (current US$)/Asia", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia", + "Export value index (2000 = 100)/Asia", + "Fixed broadband subscriptions (per 100 people)/Asia", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia", + "GNI (current US$)/Asia", + "Gross value added at basic prices (GVA) (current US$)/Asia", + "Households and NPISHs Final consumption expenditure (current US$)/Asia", + "Industry (including construction), value added (current US$)/Asia", + "Number of deaths ages 5-9 years/Asia", + "Number of infant deaths/Asia", + "Prevalence of current tobacco use (% of adults)/Asia", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Asia", + "Ratio of female to male labor force participation rate (%) (national estimate)/Asia", + "Renewable internal freshwater resources per capita (cubic meters)/Asia", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia", + "Access to electricity (% of population)/South Africa", + "Agricultural land (% of land area)/South Africa", + "Consumer price index (2010 = 100)/South Africa", + "Current health expenditure per capita (current US$)/South Africa", + "Fixed broadband subscriptions (per 100 people)/South Africa", + "GNI (current US$)/South Africa", + "Industry (including construction), value added (current US$)/South Africa", + "Number of infant deaths/South Africa", + "Prevalence of current tobacco use (% of adults)/South Africa", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa", + "Access to electricity (% of population)/North Africa", + "CO2 emissions (kg per PPP $ of GDP)/North Africa", + "Consumer price index (2010 = 100)/North Africa", + "Current health expenditure per capita (current US$)/North Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/North Africa", + "Export value index (2000 = 100)/North Africa", + "Fixed broadband subscriptions (per 100 people)/North Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/North Africa", + "GNI (current US$)/North Africa", + "Gross value added at basic prices (GVA) (current US$)/North Africa", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa", + "Industry (including construction), value added (current US$)/North Africa", + "Number of deaths ages 5-9 years/North Africa", + "Number of infant deaths/North Africa", + "Population in largest city/North Africa", + "Prevalence of current tobacco use (% of adults)/North Africa", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa", + "Suicide mortality rate (per 100,000 population)/North Africa", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/North Africa", + "Access to electricity (% of population)/Latam", + "CO2 emissions (kg per PPP $ of GDP)/Latam", + "Consumer price index (2010 = 100)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Export value index (2000 = 100)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Number of deaths ages 5-9 years/Latam", + "Number of infant deaths/Latam", + "Population in largest city/Latam", + "Prevalence of current tobacco use (% of adults)/Latam", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Suicide mortality rate (per 100,000 population)/Latam", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam", + "Access to electricity (% of population)/South Africa", + "Agricultural land (% of land area)/South Africa", + "Consumer price index (2010 = 100)/South Africa", + "Current health expenditure (% of GDP)/South Africa", + "Current health expenditure per capita (current US$)/South Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/South Africa", + "Export value index (2000 = 100)/South Africa", + "Fixed broadband subscriptions (per 100 people)/South Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa", + "GNI (current US$)/South Africa", + "Gross value added at basic prices (GVA) (current US$)/South Africa", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa", + "Industry (including construction), value added (current US$)/South Africa", + "Number of deaths ages 5-9 years/South Africa", + "Number of infant deaths/South Africa", + "Population in largest city/South Africa", + "Prevalence of current tobacco use (% of adults)/South Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa", + "Ratio of female to male labor force participation rate (%) (national estimate)/South Africa", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/South Africa", + "Access to electricity (% of population)/South Africa", + "Agricultural land (% of land area)/South Africa", + "CO2 emissions (kg per PPP $ of GDP)/South Africa", + "Consumer price index (2010 = 100)/South Africa", + "Current health expenditure per capita (current US$)/South Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa", + "GNI (current US$)/South Africa", + "Gross value added at basic prices (GVA) (current US$)/South Africa", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa", + "Industry (including construction), value added (current US$)/South Africa", + "Number of deaths ages 5-9 years/South Africa", + "Population in largest city/South Africa", + "Prevalence of current tobacco use (% of adults)/South Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa", + "Suicide mortality rate (per 100,000 population)/South Africa", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/South Africa", + "Agricultural land (% of land area)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure (% of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Export value index (2000 = 100)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Number of infant deaths/Europe", + "Population in largest city/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Europe", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe", + "Renewable internal freshwater resources per capita (cubic meters)/Europe", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Persian Gulf", + "Consumer price index (2010 = 100)/Persian Gulf", + "Current health expenditure per capita (current US$)/Persian Gulf", + "Employment in industry (% of total employment) (modeled ILO estimate)/Persian Gulf", + "Export value index (2000 = 100)/Persian Gulf", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf", + "GNI (current US$)/Persian Gulf", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf", + "Industry (including construction), value added (current US$)/Persian Gulf", + "Number of deaths ages 5-9 years/Persian Gulf", + "Number of infant deaths/Persian Gulf", + "Population in largest city/Persian Gulf", + "Prevalence of current tobacco use (% of adults)/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (national estimate)/Persian Gulf", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf", + "Access to electricity (% of population)/Latam", + "Agricultural land (% of land area)/Latam", + "CO2 emissions (kg per PPP $ of GDP)/Latam", + "Consumer price index (2010 = 100)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Export value index (2000 = 100)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Number of deaths ages 5-9 years/Latam", + "Number of infant deaths/Latam", + "Population in largest city/Latam", + "Prevalence of current tobacco use (% of adults)/Latam", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Latam", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Suicide mortality rate (per 100,000 population)/Latam", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam", + "Access to electricity (% of population)/Latam", + "CO2 emissions (kg per PPP $ of GDP)/Latam", + "Consumer price index (2010 = 100)/Latam", + "Current health expenditure (% of GDP)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Export value index (2000 = 100)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Number of deaths ages 5-9 years/Latam", + "Number of infant deaths/Latam", + "Population in largest city/Latam", + "Prevalence of current tobacco use (% of adults)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Access to electricity (% of population)/Asia", + "Agricultural land (% of land area)/Asia", + "Consumer price index (2010 = 100)/Asia", + "Current health expenditure per capita (current US$)/Asia", + "Export value index (2000 = 100)/Asia", + "Fixed broadband subscriptions (per 100 people)/Asia", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia", + "GNI (current US$)/Asia", + "Households and NPISHs Final consumption expenditure (current US$)/Asia", + "Industry (including construction), value added (current US$)/Asia", + "Number of infant deaths/Asia", + "Population in largest city/Asia", + "Prevalence of current tobacco use (% of adults)/Asia", + "Renewable internal freshwater resources per capita (cubic meters)/Asia", + "Suicide mortality rate (per 100,000 population)/Asia", + "Agricultural land (% of land area)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure (% of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Export value index (2000 = 100)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of deaths ages 5-9 years/Europe", + "Number of infant deaths/Europe", + "Population in largest city/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Ratio of female to male labor force participation rate (%) (national estimate)/Europe", + "Renewable internal freshwater resources per capita (cubic meters)/Europe", + "Suicide mortality rate (per 100,000 population)/Europe", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Europe", + "Consumer price index (2010 = 100)/Persian Gulf", + "Current health expenditure per capita (current US$)/Persian Gulf", + "Export value index (2000 = 100)/Persian Gulf", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf", + "GNI (current US$)/Persian Gulf", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf", + "Number of deaths ages 5-9 years/Persian Gulf", + "Population in largest city/Persian Gulf", + "Prevalence of current tobacco use (% of adults)/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (national estimate)/Persian Gulf", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf", + "Suicide mortality rate (per 100,000 population)/Persian Gulf", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf", + "Consumer price index (2010 = 100)/Persian Gulf", + "Current health expenditure per capita (current US$)/Persian Gulf", + "Employment in industry (% of total employment) (modeled ILO estimate)/Persian Gulf", + "Export value index (2000 = 100)/Persian Gulf", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf", + "GNI (current US$)/Persian Gulf", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf", + "Households and NPISHs Final consumption expenditure (current US$)/Persian Gulf", + "Industry (including construction), value added (current US$)/Persian Gulf", + "Number of deaths ages 5-9 years/Persian Gulf", + "Number of infant deaths/Persian Gulf", + "Population in largest city/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (national estimate)/Persian Gulf", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf", + "Suicide mortality rate (per 100,000 population)/Persian Gulf", + "Access to electricity (% of population)/South Africa", + "Consumer price index (2010 = 100)/South Africa", + "Current health expenditure per capita (current US$)/South Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/South Africa", + "Export value index (2000 = 100)/South Africa", + "Fixed broadband subscriptions (per 100 people)/South Africa", + "GNI (current US$)/South Africa", + "Gross value added at basic prices (GVA) (current US$)/South Africa", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa", + "Industry (including construction), value added (current US$)/South Africa", + "Number of deaths ages 5-9 years/South Africa", + "Number of infant deaths/South Africa", + "Population in largest city/South Africa", + "Prevalence of current tobacco use (% of adults)/South Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa", + "Ratio of female to male labor force participation rate (%) (national estimate)/South Africa", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa", + "Suicide mortality rate (per 100,000 population)/South Africa", + "Agricultural land (% of land area)/Europe", + "CO2 emissions (kg per PPP $ of GDP)/Europe", + "Consumer price index (2010 = 100)/Europe", + "Current health expenditure (% of GDP)/Europe", + "Current health expenditure per capita (current US$)/Europe", + "Employment in industry (% of total employment) (modeled ILO estimate)/Europe", + "Export value index (2000 = 100)/Europe", + "Fixed broadband subscriptions (per 100 people)/Europe", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Europe", + "GNI (current US$)/Europe", + "Gross value added at basic prices (GVA) (current US$)/Europe", + "Households and NPISHs Final consumption expenditure (current US$)/Europe", + "Industry (including construction), value added (current US$)/Europe", + "Number of infant deaths/Europe", + "Prevalence of current tobacco use (% of adults)/Europe", + "Access to electricity (% of population)/Asia", + "CO2 emissions (kg per PPP $ of GDP)/Asia", + "Consumer price index (2010 = 100)/Asia", + "Current health expenditure (% of GDP)/Asia", + "Current health expenditure per capita (current US$)/Asia", + "Export value index (2000 = 100)/Asia", + "Fixed broadband subscriptions (per 100 people)/Asia", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia", + "GNI (current US$)/Asia", + "Households and NPISHs Final consumption expenditure (current US$)/Asia", + "Industry (including construction), value added (current US$)/Asia", + "Number of deaths ages 5-9 years/Asia", + "Number of infant deaths/Asia", + "Population in largest city/Asia", + "Prevalence of current tobacco use (% of adults)/Asia", + "Renewable internal freshwater resources per capita (cubic meters)/Asia", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia", + "Agricultural land (% of land area)/North Africa", + "CO2 emissions (kg per PPP $ of GDP)/North Africa", + "Consumer price index (2010 = 100)/North Africa", + "Export value index (2000 = 100)/North Africa", + "Fixed broadband subscriptions (per 100 people)/North Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/North Africa", + "GNI (current US$)/North Africa", + "Gross value added at basic prices (GVA) (current US$)/North Africa", + "Households and NPISHs Final consumption expenditure (current US$)/North Africa", + "Industry (including construction), value added (current US$)/North Africa", + "Number of deaths ages 5-9 years/North Africa", + "Number of infant deaths/North Africa", + "Population in largest city/North Africa", + "Prevalence of current tobacco use (% of adults)/North Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/North Africa", + "Ratio of female to male labor force participation rate (%) (national estimate)/North Africa", + "Renewable internal freshwater resources per capita (cubic meters)/North Africa", + "Suicide mortality rate (per 100,000 population)/North Africa", + "Agricultural land (% of land area)/Pair", + "CO2 emissions (kg per PPP $ of GDP)/Pair", + "Consumer price index (2010 = 100)/Pair", + "Current health expenditure (% of GDP)/Pair", + "Current health expenditure per capita (current US$)/Pair", + "Employment in industry (% of total employment) (modeled ILO estimate)/Pair", + "Export value index (2000 = 100)/Pair", + "Fixed broadband subscriptions (per 100 people)/Pair", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Pair", + "GNI (current US$)/Pair", + "Gross value added at basic prices (GVA) (current US$)/Pair", + "Households and NPISHs Final consumption expenditure (current US$)/Pair", + "Industry (including construction), value added (current US$)/Pair", + "Number of deaths ages 5-9 years/Pair", + "Number of infant deaths/Pair", + "Population in largest city/Pair", + "Prevalence of current tobacco use (% of adults)/Pair", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Pair", + "Ratio of female to male labor force participation rate (%) (national estimate)/Pair", + "Renewable internal freshwater resources per capita (cubic meters)/Pair", + "Suicide mortality rate (per 100,000 population)/Pair", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Pair", + "Agricultural land (% of land area)/Latam", + "Consumer price index (2010 = 100)/Latam", + "Current health expenditure per capita (current US$)/Latam", + "Employment in industry (% of total employment) (modeled ILO estimate)/Latam", + "Export value index (2000 = 100)/Latam", + "Fixed broadband subscriptions (per 100 people)/Latam", + "GNI (current US$)/Latam", + "Gross value added at basic prices (GVA) (current US$)/Latam", + "Households and NPISHs Final consumption expenditure (current US$)/Latam", + "Industry (including construction), value added (current US$)/Latam", + "Population in largest city/Latam", + "Ratio of female to male labor force participation rate (%) (national estimate)/Latam", + "Renewable internal freshwater resources per capita (cubic meters)/Latam", + "Suicide mortality rate (per 100,000 population)/Latam", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Latam", + "Access to electricity (% of population)/Asia", + "Agricultural land (% of land area)/Asia", + "Consumer price index (2010 = 100)/Asia", + "Current health expenditure (% of GDP)/Asia", + "Current health expenditure per capita (current US$)/Asia", + "Employment in industry (% of total employment) (modeled ILO estimate)/Asia", + "Export value index (2000 = 100)/Asia", + "Fixed broadband subscriptions (per 100 people)/Asia", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/Asia", + "GNI (current US$)/Asia", + "Gross value added at basic prices (GVA) (current US$)/Asia", + "Households and NPISHs Final consumption expenditure (current US$)/Asia", + "Industry (including construction), value added (current US$)/Asia", + "Number of deaths ages 5-9 years/Asia", + "Number of infant deaths/Asia", + "Population in largest city/Asia", + "Prevalence of current tobacco use (% of adults)/Asia", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Asia", + "Ratio of female to male labor force participation rate (%) (national estimate)/Asia", + "Renewable internal freshwater resources per capita (cubic meters)/Asia", + "Suicide mortality rate (per 100,000 population)/Asia", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Asia", + "Access to electricity (% of population)/Persian Gulf", + "Agricultural land (% of land area)/Persian Gulf", + "Consumer price index (2010 = 100)/Persian Gulf", + "Current health expenditure (% of GDP)/Persian Gulf", + "Current health expenditure per capita (current US$)/Persian Gulf", + "Employment in industry (% of total employment) (modeled ILO estimate)/Persian Gulf", + "Fixed broadband subscriptions (per 100 people)/Persian Gulf", + "GNI (current US$)/Persian Gulf", + "Gross value added at basic prices (GVA) (current US$)/Persian Gulf", + "Industry (including construction), value added (current US$)/Persian Gulf", + "Number of deaths ages 5-9 years/Persian Gulf", + "Population in largest city/Persian Gulf", + "Prevalence of current tobacco use (% of adults)/Persian Gulf", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/Persian Gulf", + "Renewable internal freshwater resources per capita (cubic meters)/Persian Gulf", + "Suicide mortality rate (per 100,000 population)/Persian Gulf", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)/Persian Gulf", + "Access to electricity (% of population)/South Africa", + "CO2 emissions (kg per PPP $ of GDP)/South Africa", + "Consumer price index (2010 = 100)/South Africa", + "Current health expenditure per capita (current US$)/South Africa", + "Employment in industry (% of total employment) (modeled ILO estimate)/South Africa", + "Export value index (2000 = 100)/South Africa", + "Fixed broadband subscriptions (per 100 people)/South Africa", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)/South Africa", + "GNI (current US$)/South Africa", + "Gross value added at basic prices (GVA) (current US$)/South Africa", + "Households and NPISHs Final consumption expenditure (current US$)/South Africa", + "Industry (including construction), value added (current US$)/South Africa", + "Population in largest city/South Africa", + "Prevalence of current tobacco use (% of adults)/South Africa", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)/South Africa", + "Ratio of female to male labor force participation rate (%) (national estimate)/South Africa", + "Renewable internal freshwater resources per capita (cubic meters)/South Africa", + "Access to electricity (% of population)", + "Agricultural land (% of land area)", + "CO2 emissions (kg per PPP $ of GDP)", + "Consumer price index (2010 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Export value index (2000 = 100)", + "Fixed broadband subscriptions (per 100 people)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Population in largest city", + "Prevalence of current tobacco use (% of adults)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Suicide mortality rate (per 100,000 population)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Agricultural land (% of land area)", + "CO2 emissions (kg per PPP $ of GDP)", + "Consumer price index (2010 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Export value index (2000 = 100)", + "Fixed broadband subscriptions (per 100 people)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Population in largest city", + "Prevalence of current tobacco use (% of adults)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Suicide mortality rate (per 100,000 population)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Access to electricity (% of population)", + "Agricultural land (% of land area)", + "CO2 emissions (kg per PPP $ of GDP)", + "Consumer price index (2010 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Export value index (2000 = 100)", + "Fixed broadband subscriptions (per 100 people)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Population in largest city", + "Prevalence of current tobacco use (% of adults)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Suicide mortality rate (per 100,000 population)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Access to electricity (% of population)", + "Agricultural land (% of land area)", + "CO2 emissions (kg per PPP $ of GDP)", + "Consumer price index (2010 = 100)", + "Current health expenditure per capita (current US$)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Export value index (2000 = 100)", + "Fixed broadband subscriptions (per 100 people)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Population in largest city", + "Prevalence of current tobacco use (% of adults)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Suicide mortality rate (per 100,000 population)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Access to electricity (% of population)", + "Agricultural land (% of land area)", + "CO2 emissions (kg per PPP $ of GDP)", + "Consumer price index (2010 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Export value index (2000 = 100)", + "Fixed broadband subscriptions (per 100 people)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Population in largest city", + "Prevalence of current tobacco use (% of adults)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Suicide mortality rate (per 100,000 population)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Access to electricity (% of population)", + "Agricultural land (% of land area)", + "CO2 emissions (kg per PPP $ of GDP)", + "Consumer price index (2010 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Export value index (2000 = 100)", + "Fixed broadband subscriptions (per 100 people)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Population in largest city", + "Prevalence of current tobacco use (% of adults)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Suicide mortality rate (per 100,000 population)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Access to electricity (% of population)", + "Agricultural land (% of land area)", + "CO2 emissions (kg per PPP $ of GDP)", + "Consumer price index (2010 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Export value index (2000 = 100)", + "Fixed broadband subscriptions (per 100 people)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Industry (including construction), value added (current US$)", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Population in largest city", + "Prevalence of current tobacco use (% of adults)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Suicide mortality rate (per 100,000 population)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "" + ], + "type": "treemap", + "values": [ + 0.9194369973190348, + 0.9150177303560064, + 0.9832058480308432, + 0.9792614678275988, + 0.9104552048233484, + 0.7818744360024457, + 0.9139430100959351, + 0.9206651788481804, + 0.9773557492735576, + 0.9929947676208064, + 0.9667829842995462, + 0.9886242163794032, + 0.9842229467473992, + 0.7869703117696519, + 0.9545454545454548, + 0.9364502164502164, + 0.7568829071309779, + 0.8405722943067688, + 0.7712684989429177, + 0.8553134080531342, + 0.7522123063336182, + 0.9985339932335306, + 0.988302056405168, + 0.953621170127054, + 0.9622333213753728, + 0.8553134080531342, + 0.8553134080531342, + 0.8598347107438016, + 0.8507923269391159, + 0.8430578512396695, + 0.8385429638854297, + 0.9545454545454548, + 0.9545454545454548, + 0.8673029726406383, + 0.8358612257146861, + 0.8490800833801486, + 0.8003212087852895, + 0.904913008013858, + 0.7976314145122237, + 0.8890631162040309, + 0.8232860332235971, + 0.82583032730816, + 0.9919502705663622, + 0.9965191088563604, + 0.9550538402276436, + 0.9737764107803116, + 0.8530611929128231, + 0.8399280642635364, + 0.8490800833801486, + 0.82454262425017, + 0.8462362704327265, + 0.8460152283133167, + 0.8536368018578387, + 0.8276242108365519, + 0.8298946640273919, + 0.8442479234380643, + 0.9731456263408548, + 0.8590707598082956, + 0.9929855448480356, + 0.917314235445159, + 0.9416437009068946, + 0.8977160492573557, + 0.909065387196842, + 0.9356248965935622, + 0.9890174067689452, + 0.9992663243093578, + 0.9255861016232884, + 0.9701400724878312, + 0.9099770642201834, + 0.9943501037415146, + 0.9947856385396152, + 0.9956476370717128, + 0.9904302907657898, + 0.8041381029540074, + 0.993779175279743, + 0.7813852813852814, + 0.8832034632034632, + 0.9990150209905604, + 0.9929855448480356, + 0.9947856385396152, + 0.9859234217934404, + 0.978073311070348, + 0.9820100634702482, + 1, + 0.9992656508417233, + 1, + 0.9974294410273912, + 0.949825316001485, + 0.9991101224022378, + 0.9990150209905604, + 0.997391304347826, + 0.9937731747479652, + 0.8244642857142858, + 0.9985875706214687, + 0.878685196514601, + 0.9786956521739132, + 0.7763614794595731, + 0.7822341892305151, + 0.833174972830306, + 0.7707081956166205, + 0.8268991218112046, + 0.7862727272727271, + 0.8546502548557862, + 0.775995920023485, + 0.831081385436793, + 0.9985339932335306, + 0.9941424251920344, + 0.9890311615492476, + 0.9358035287465732, + 0.7714797416324134, + 0.7643053750286719, + 0.7707081956166205, + 0.7521112125156584, + 0.8598347107438016, + 0.90662100456621, + 0.7822341892305151, + 0.7563441975980676, + 0.9055353950321428, + 0.8710617614475394, + 0.8630005695842037, + 0.8952232922255726, + 0.7757575757575756, + 0.8398859728050183, + 0.8668958338409165, + 0.8490459410817468, + 0.8534540516685339, + 0.9919502705663622, + 1, + 0.9839330712663648, + 0.946473950268886, + 0.8862820694208641, + 0.8874398840030436, + 0.8952232922255726, + 0.8486137750653879, + 0.9018993376896012, + 0.8965017504270001, + 0.8895952017025271, + 0.7552008456659621, + 0.8658008658008658, + 0.9636752136752136, + 0.9364502164502164, + 0.984461621950468, + 1, + 0.9818181818181816, + 0.996521739130435, + 0.8586700336700335, + 0.9890311615492476, + 0.999122807017544, + 0.9818536963567754, + 1, + 1, + 0.9970690618433798, + 0.9970690618433798, + 1, + 7, + 0.9982456140350876, + 0.9477543538038498, + 0.9977822580645164, + 0.9576803072122886, + 0.8041630667784956, + 0.8119647131227026, + 0.8679516484927489, + 0.8129887361537077, + 0.8296247866194635, + 0.8330381744436689, + 0.9303687863484544, + 0.8870930627862177, + 0.8486878358300123, + 0.9978013931164152, + 0.99268071993084, + 0.9875732201051683, + 0.9658331436022252, + 0.7726587251245716, + 0.8119189817879228, + 0.8216057600038708, + 0.9095579316931844, + 0.822054489456517, + 0.7805172292400586, + 0.892391114486425, + 0.9000234404536862, + 0.8397480840731469, + 0.8550497957993816, + 0.9350943180643898, + 0.897855261911528, + 0.9129853629164149, + 0.9978013931164152, + 1, + 0.9868446526492484, + 0.955770578544058, + 0.8995898027497777, + 0.8995898027497777, + 0.9000234404536862, + 0.8974216292028354, + 0.9068929556529068, + 0.7766774350616475, + 0.9370415079706566, + 0.8857699681136173, + 0.9897824784878032, + 0.998221036598569, + 0.8084175084175084, + 0.9913111768722972, + 0.8675319709415152, + 0.9280169976669376, + 0.999122807017544, + 0.8998911634924976, + 1, + 0.9992668621947256, + 1, + 0.9960351014549488, + 0.999122807017544, + 0.999122807017544, + 2, + 0.9982456140350876, + 0.9380859781477626, + 0.934372987530004, + 0.9969759694040504, + 0.792782754772987, + 0.7714560308712177, + 0.8085316277505704, + 0.8017888630248555, + 0.8557422839635942, + 0.7920446151287672, + 0.8210527935710153, + 0.79241896667796, + 0.7793718426037994, + 0.996336999414424, + 0.9965191088563604, + 0.9672749544015236, + 0.9477180531985372, + 0.8462714704650187, + 0.7932369506718919, + 0.7965452139741044, + 0.7966912350949062, + 0.8584751140436623, + 0.8075842215036355, + 0.8935463671803986, + 0.8694866227116197, + 0.7559911987169416, + 0.8672820048414341, + 0.9978013931164152, + 0.9540512424216696, + 0.8485601299189015, + 0.7802288530146115, + 0.7559911987169416, + 0.8075842215036355, + 0.865081443540125, + 0.8408374965151522, + 0.8521832338962485, + 0.8227635041015324, + 0.8786356094048401, + 0.8701066680233348, + 0.8985904473621558, + 0.919319387113138, + 0.9208092958092956, + 0.8586700336700335, + 0.9416562889165628, + 0.932398585032895, + 0.9970690618433798, + 0.9970690618433798, + 0.9948736810887512, + 0.9622333213753728, + 0.7902969671765014, + 0.9908884770316014, + 0.946198347107438, + 0.92385752642948, + 0.8863636363636364, + 0.8259976777571356, + 0.8190486045187013, + 0.7940051262578318, + 0.7606873345935727, + 0.8224948407969243, + 0.9006445563787115, + 0.7834335706711103, + 0.7736264668325739, + 0.7922752675949607, + 0.8000124002170039, + 0.9985339932335306, + 0.9768478574449928, + 0.9853883242696474, + 0.8067839857133676, + 0.8017627702025454, + 0.8021928166351607, + 0.7910710359728593, + 0.828891493383743, + 0.8284602000869942, + 0.7644903235840163, + 0.7893527624833871, + 0.780089044997152, + 0.7928741020793951, + 0.7604961330297303, + 0.8921379258150505, + 0.7921764122864366, + 0.863925779862748, + 0.791670480549199, + 0.7984383476710845, + 0.996336999414424, + 0.9833831528957327, + 0.991220090045964, + 0.9301373709233364, + 0.791670480549199, + 0.81573077081821, + 0.7928741020793951, + 0.7802662901330503, + 0.8037512287334593, + 0.8025417478298693, + 0.7893527624833871, + 0.9222946747399472, + 0.9344444444444444, + 0.8801077325173712, + 0.9000168618023969, + 0.934334074623178, + 0.8247230442973539, + 0.936963017728694, + 0.907326978222119, + 0.988302056405168, + 0.9914003253458398, + 0.9716068390573318, + 0.8868080394461477, + 0.9312885573197214, + 0.9677933860111212, + 0.9344444444444444, + 0.9360867018160518, + 0.9310557094490612, + 0.9275512725475664, + 0.9290762303990062, + 0.8220626497774737, + 0.8242647792818613, + 0.8580430671412884, + 0.7589099863492517, + 0.8806041934635603, + 0.7737464548987709, + 0.838169467510867, + 1, + 0.9890311615492476, + 0.9853883242696474, + 0.9450477324262084, + 0.8580430671412884, + 0.8398311720625257, + 0.8578858011832347, + 0.8672259606948435, + 0.7905217546826223, + 0.8549939348739194, + 0.8210461476724114, + 0.8919696969696971, + 0.8363949697251979, + 0.8053911900065747, + 0.769382100421295, + 0.923526237747262, + 0.8619283887468031, + 0.8474662292253902, + 0.9782982623788444, + 0.9817522080920388, + 0.8134050821718116, + 0.8474662292253902, + 0.8474662292253902, + 0.8483379501385041, + 0.8465945179292698, + 0.8803334593572778, + 0.9004149252037746, + 0.796839893191436, + 0.9028882720019862, + 0.7676281237741422, + 0.8291492133323973, + 0.7913646289079624, + 0.9904289157282716, + 0.9926335425715882, + 0.9461330864231152, + 0.9454153674378072, + 0.7598160347464082, + 0.7867084930870223, + 0.7871436798157214, + 0.7860877112960002, + 0.8101813436763873, + 0.8238243435953362, + 0.8818618218586448, + 0.7794331008589289, + 0.9025957850286672, + 0.8025699565810901, + 0.9170617535185012, + 0.7631048593350384, + 0.8250833206612556, + 0.9088064577345945, + 0.9278150139590884, + 0.9992668621947256, + 0.8068812492978317, + 0.9934114381393974, + 0.984660563345966, + 0.870252992498577, + 0.8985858297326429, + 0.9025957850286672, + 0.90741737640829, + 0.9024751306250636, + 0.8824223337513897, + 0.9791710812316362, + 0.756628065305478, + 0.9859234217934404, + 0.992671182389769, + 0.792519283483139, + 0.9807828100228472, + 0.9925507389082384, + 0.928723519908324, + 0.9761788895853514, + 0.9506223327256856, + 0.9992668621947256, + 0.9985339932335306, + 0.9985339932335306, + 0.9904901783696456, + 0.992671182389769, + 0.992671182389769, + 0.9928936489808848, + 0.988714605208294, + 0.948060941828255, + 0.9939538727034296, + 0.915641381346678, + 0.971001604361102, + 0.7554660388288974, + 0.8668958338409165, + 0.996336999414424, + 1, + 0.8683978095980386, + 0.9507590560548308, + 0.7506209000762775, + 0.7650792722152088, + 0.7882882882882881, + 0.9873000604890544, + 0.9682695039010508, + 0.939548148620228, + 0.978469168274726, + 0.9770862304997938, + 0.9364530503181744, + 0.9928507310737632, + 0.998339483394834, + 0.9869953764615554, + 0.9779823259487208, + 0.9862539184209972, + 0.9848040830545792, + 0.9846235837724948, + 0.9834028714566064, + 0.9808836171606352, + 0.9814823072033312, + 0.9838663951689132, + 0.9289464621791536, + 0.950300482513086, + 0.9486101335940044, + 0.951299790877642, + 0.932353379320096, + 0.9363191484705866, + 0.7500718937727315, + 0.8881896291715989, + 0.9329580322176916, + 0.941701474767142, + 1, + 1, + 0.995605205829548, + 0.988302056405168, + 0.9514741813067672, + 0.9514741813067672, + 0.9319643313838056, + 0.9419954799687824, + 0.9441436310000064, + 0.9555403520366936, + 0.8732908588456849, + 0.8482458889462429, + 0.8657481566722074, + 0.9060155127964962, + 0.8321093615368212, + 0.993758325008325, + 0.8271094654395285, + 0.855139156857862, + 0.8622230550415498, + 0.8892009084674849, + 0.8659230906299106, + 0.914656355102988, + 0.9248539005931276, + 0.9527305856232412, + 0.8571281012005368, + 0.8846977863333716, + 0.9593583027873251, + 0.9188951371295636, + 0.7800217784035494, + 0.996336999414424, + 0.9948736810887512, + 0.9868446526492484, + 0.9853883242696474, + 0.9531775071717112, + 0.9531775071717112, + 0.9527305856232412, + 0.9238927452772132, + 0.9555403520366936, + 0.9097297101659864, + 0.9320839327803117, + 0.8458383400350413, + 0.9517981773305488, + 0.9434321361058602, + 0.8384981048972464, + 0.9061435934718378, + 0.9328333806952732, + 0.9258691777106102, + 0.9978013931164152, + 0.9875732201051683, + 0.988302056405168, + 0.9564875857045522, + 0.9429977116704804, + 0.9429977116704804, + 0.9434321361058602, + 0.938293658314696, + 0.9000657462195923, + 0.9038201493163326, + 0.936556104044048, + 0.952612204076308, + 0.7799127011297503, + 0.92448876432027, + 0.9365262267264388, + 0.9565966865742668, + 0.94491648331435, + 0.9086443302842008, + 0.9378841050418828, + 0.9211354224331691, + 0.8980181937554507, + 0.9376349250962784, + 0.9956044009241408, + 0.9941413527735856, + 0.9724980906333768, + 0.9083271241193304, + 0.9391877740213088, + 0.9358184932420454, + 0.9373115797727772, + 0.9463111401682168, + 0.9762481841119351, + 0.9502409737496426, + 0.9365262267264388, + 0.9521230391509398, + 0.8295449908182004, + 0.943947221044588, + 0.8708608667318343, + 0.943947221044588, + 0.8871943647917209, + 0.9412635914006204, + 0.9985339932335306, + 1, + 0.9407755311560884, + 0.9421985228698097, + 0.948072129659398, + 0.9350049149338372, + 0.9638336347197108, + 0.958536231884058, + 0.943947221044588, + 0.9667491997801664, + 0.8387538514207465, + 0.8874585152838429, + 0.8623785126533147, + 0.8705701323251417, + 0.8001582377938935, + 0.8878997468865361, + 0.8684059865492091, + 0.8859445107741636, + 0.8677050513455755, + 0.8430977292102613, + 0.9904901783696456, + 0.992130773157018, + 0.9372227566431792, + 0.8621233137385207, + 0.8677050513455755, + 0.8831178664041945, + 0.8705701323251417, + 0.8614957734733332, + 0.8689482041587903, + 0.8660854435766022, + 0.8711152458705146, + 0.8873673399520713, + 0.9299160466862332, + 0.9652200677131424, + 0.8999564578859198, + 0.8950764254021453, + 0.9398812902982936, + 0.9752792033119024, + 0.9978013931164152, + 0.9721444518798692, + 0.9805263157894736, + 0.9479012434878824, + 0.880780406807804, + 0.8571885156262036, + 0.986135349716446, + 0.9743634159016108, + 0.9625071374155624, + 0.880780406807804, + 0.981787734953484, + 0.8919696969696971, + 0.9773557492735576, + 0.7714763488785487, + 0.9545454545454548, + 0.9884853681548044, + 0.9894860390412652, + 0.8047278408758268, + 0.9882730260033812, + 0.9461654371370272, + 0.9970690618433798, + 0.9978013931164152, + 0.996336999414424, + 0.9802996435295532, + 0.9991101223581756, + 0.999777530589544, + 6, + 0.9982456140350876, + 0.9421304353743684, + 0.932626333246618, + 0.9977753058954394, + 0.9203132832080202, + 0.9939130434782611, + 0.9281390141743808, + 0.8796487671810186, + 0.9357441792403746, + 0.7832517257911142, + 0.9134801839907836, + 0.9223744981227122, + 0.905289786165362, + 0.996336999414424, + 0.998350675275288, + 0.996336999414424, + 0.9613309146374462, + 0.937103645050706, + 0.937103645050706, + 0.9357441792403746, + 0.904567225435328, + 0.939105864661958, + 0.9093117324398052, + 0.9214972959512142, + 0.9414868925909092, + 0.8586028659246839, + 0.9230788696114616, + 0.9143112638406732, + 0.9391302151973808, + 0.996336999414424, + 0.9992668621947256, + 0.9890311615492476, + 0.9414868925909092, + 0.941314332676578, + 0.902432554260779, + 0.941241408860912, + 0.8318181818181817, + 0.909072064464046, + 0.9772426641825802, + 0.9505847966970496, + 0.8082508107205724, + 0.9532628651995616, + 0.7740137221269299, + 0.9536631479971994, + 0.9886242163794032, + 0.968708052390917, + 0.9970690618433798, + 0.9906529437430028, + 0.9884575916336614, + 0.9789725394962472, + 0.9851370084561714, + 0.9851370084561714, + 0.9860141582025238, + 0.9842598587858048, + 0.8230247277595697, + 0.9772426641825802, + 0.8553636363636363, + 0.9772426641825802, + 0.9565269894940224, + 0.8991005792297246, + 0.9694396869310692, + 0.9544594777956544, + 0.995605205829548, + 0.9887359375145636, + 0.7606385491732779, + 0.9826843100189036, + 0.9800758121375232, + 0.9000657462195923, + 0.9169832716276728, + 0.9783368141256884, + 0.7733211512105985, + 0.8315151515151515, + 0.9514804555247768, + 0.9248167539267018, + 0.8084175084175084, + 0.8131377716690428, + 0.9581772940528424, + 1, + 1, + 0.977084365603192, + 0.9230788696114616, + 0.9822495603003196, + 0.9822495603003196, + 0.9826843100189036, + 0.909072064464046, + 0.9163600219843964, + 0.9783368141256884, + 0.8722470169622666, + 0.7806171146277027, + 0.7993113894954217, + 0.8647701376567242, + 0.8843935880633129, + 0.8237517359346238, + 0.9143045157420016, + 0.9985339932335306, + 0.9948736810887512, + 0.9817522080920388, + 0.9875732201051683, + 0.937683151374774, + 0.9355427814530765, + 0.8050748795127288, + 0.9031438311232312, + 0.7770347430724859, + 0.7558559856410743, + 0.8035224554513879, + 0.8975645313091688, + 0.7715736896162307, + 0.7524584849903713, + 0.760960813749392, + 0.7628286200410923, + 0.9063380676482872, + 0.7975398606698341, + 0.8173907278944466, + 0.8252050839377624, + 0.7829559806346367, + 0.9853883242696474, + 0.9914003253458398, + 0.9890311615492476, + 0.8937267418365915, + 0.7598493905068002, + 0.7664643536742591, + 0.8726620562837514, + 0.807857176503839, + 0.8859552362571937, + 0.7621748136686876, + 0.9006445563787115, + 0.8965017504270001, + 0.9001503179694077, + 0.8486878358300123, + 0.995605205829548, + 0.9875732201051683, + 0.9948736810887512, + 0.9027223454052724, + 0.884737671188568, + 0.884575512524494, + 0.8798196380081305, + 0.8878885108220647, + 0.8408502506153573, + 0.9290762303990062, + 0.90727093221948, + 0.9413092648977816, + 0.9219048551109622, + 0.9403303455027592, + 0.92049050384555, + 0.9992668621947256, + 0.9970690618433798, + 0.988302056405168, + 0.9716068390573318, + 0.9526427685969672, + 0.9413092648977816, + 0.9417436672967864, + 0.9452382460255262, + 0.8258664204370576, + 0.8249965343560833, + 0.9498970784947516, + 0.8977159303535192, + 0.8550758611268748, + 0.9971775822743564, + 1, + 0.9364192202560784, + 0.9964912280701756, + 0.8485069801940157, + 0.9097417836628494, + 0.999122807017544, + 0.9877189123128628, + 1, + 0.9976169999054124, + 0.9992668621947256, + 0.9679854547640152, + 0.9236004688155952, + 0.999122807017544, + 0.9937805570643936, + 0.9982456140350876, + 0.931003010693105, + 0.9341554258408444, + 0.9954182612676434, + 0.9912311643305796, + 0.9545454545454548, + 0.7761808341851455, + 0.8182545315351611, + 0.9104377104377104, + 0.7694545454545454, + 0.8553134080531342, + 0.9292464661560496, + 0.9992555369697762, + 0.9985113511553524, + 0.9762465658458932, + 0.9572793819640072, + 0.9503788875440718, + 0.8231479245485526, + 0.8911007105869436, + 0.9024231247013856, + 0.8658008658008658, + 0.9686137921250751, + 0.9819054691235874, + 2, + 0.76909130219916, + 0.9861142727065788, + 0.9679847507357018, + 0.9989920981077092, + 0.999122807017544, + 0.9672169872900396, + 1, + 0.9954545454545456, + 1, + 0.9992668621947256, + 1, + 0.8534197605902789, + 7, + 0.9982456140350876, + 0.936341359994194, + 0.9054813423400642, + 0.9977822580645164, + 0.8691836035197901, + 0.9939130434782611, + 0.8257949554417174, + 0.7957985346108523, + 0.9136739322359624, + 0.8585000323687447, + 0.8766608932307983, + 0.7697689156812738, + 0.856617686732253, + 0.9882827814745488, + 0.9585725924710128, + 0.9649045221259104, + 0.8401802481694282, + 0.9245562130177516, + 0.9542133966338968, + 0.944622600300256, + 0.9332845830090168, + 0.8278906432659405, + 0.9418179668098864, + 0.7988538683378321, + 0.7739306525397351, + 0.7679975248125409, + 0.9228068405104872, + 0.7685979300090726, + 0.917451425335698, + 0.8374157216227879, + 0.8207867897037397, + 0.9992668621947256, + 0.9992668621947256, + 0.991220090045964, + 0.9365130082728363, + 0.7654094979252105, + 0.7550919222167469, + 0.7698155009451796, + 0.7909076419763443, + 0.7698457560674341, + 5.547362180955347, + 5.273578416137292, + 4.405027295953676, + 7.673023908134741, + 4.058708735252173, + 6.572510951869945, + 4.468497881291325, + 6.4464926096807895, + 6.609601079435611, + 6.557183923239597, + 6.990475929633424, + 4.800135438827631, + 6.97439071950237, + 6.9440539439808955, + 5.6669460176018704, + 6.521485640201173, + 11.720394300201184, + 6.605985423652212, + 3.8201709565391964, + 2.674089259054356, + 6.677469103734149, + 4.37775069695064, + 4.657751409474319, + 6.707234336847761, + 8.366096224203087, + 7.526381760300574, + 6.404039684106168, + 9.027369825457244, + 8.169136169088635, + 6.829389587433532, + 8.49476355999494, + 7.497106287165944, + 8.934836799244854, + 9.88978540059558, + 9.713140852343352, + 9.03886690474268, + 7.684178795222853, + 6.885731208772446, + 6.87065736702104, + 8.37010581800269, + 5.955761579489162, + 6.790784780412599, + 5.184914028377343, + 1.6829878472001882, + 4.3267486616159045, + 6.116315081600807, + 3.2156613404078267, + 7.300791750895977, + 7.250092179930649, + 3.9640578011703234, + 8.005620399961677, + 3.1945277426117054, + 7.073216744951541, + 8.132975997107504, + 6.121658884695495, + 8.977282641493835, + 8.963947983444152, + 8.870652676671824, + 8.651714006225397, + 7.290999307953095, + 7.2856501641629015, + 14.255344841929988, + 7.188291055543197, + 5.385074059414795, + 6.235633113520147, + 8.294781755723843, + 5.063571090311391, + 6.1582910805603275, + 1.784763023126323, + 3.4744300800931125, + 3.7387442804148, + 4.5907028717350045, + 2.6902226170011634, + 3.591323610989751, + 2.637254356615229, + 4.645250006890113, + 3.569363917600169, + 4.983325047642708, + 4.941402530592015, + 4.805575896523624, + 4.677439663665684, + 4.438362360083119, + 3.8701793321556734, + 4.632880405303596, + 3.7176153062994706, + 2.647587534112845, + 2.658662075455663, + 4.635924856231371, + 3.572444886287982, + 2.687028072716601, + 0.9636752136752136, + 1.7915260775770911, + 1.9816392042248245, + 2, + 1.91823740207426, + 1.9930129672006105, + 1.7071770138640492, + 1.8987729452120972, + 1.998245614035088, + 1.9695726086696381, + 2, + 0.9976169999054124, + 1.9992668621947256, + 1.965054516607395, + 1.9206695306589752, + 1.999122807017544, + 7.993780557064394, + 1.9964912280701752, + 0.931003010693105, + 1.8819097796446942, + 1.9932005193321598, + 1.9489114715428681, + 1.7587085213239504, + 2.425508917708679, + 1.768944160951707, + 1.788986806494529, + 5.699323987134974, + 0.8585000323687447, + 5.43286665007431, + 3.414906550407822, + 5.470276480027521, + 5.632860516917093, + 0.9356248965935622, + 6.877498991427229, + 4.92998336866024, + 5.522204966131001, + 5.670726773863851, + 5.294491007519193, + 4.561764829017873, + 5.863840588932426, + 4.669379533959952, + 4.683050532699003, + 3.7027479167992765, + 5.846399183727066, + 3.2604291232084575, + 4.4239863727941975, + 5.817980119454812, + 3.614173252935983, + 1.6447915192715694, + 6.04490013801831, + 1.7745412699338134, + 6.007473195572874, + 3.5212444094627227, + 3.542942777167051, + 5.304336273813553, + 4.386542609541518, + 6.816850108141871, + 5.96999377753715, + 5.859207464302283, + 6.54063190825344, + 4.455644847321341, + 4.38533448358712, + 5.122292433331659, + 6.234365329083419, + 4.272156414696281, + 2.497004601367061, + 5.996813174250196, + 1.8643137310893352, + 2.6119230382440977, + 22.65560453652118, + 25.84554766495077, + 29.226077081458463, + 40.78442484525425, + 18.97808492490548, + 39.72907660713783, + 28.06681337771601, + 33.89834550108776, + 40.818033048193904, + 31.037053127505924, + 45.58026951758392, + 40.49286549956218, + 43.74443943766918, + 43.48848771733934, + 36.75129186636045, + 35.50926846491473, + 56.459190493784284, + 38.782233694611115, + 27.69480408764439, + 26.4408315262538, + 38.629502621376126, + 21.77040884659086, + 26.624437156729396 + ] + } + ], + "layout": { + "coloraxis": { + "colorbar": { + "title": { + "text": "R^2 Spearman" + } + }, + "colorscale": [ + [ + 0, + "rgb(5,48,97)" + ], + [ + 0.1, + "rgb(33,102,172)" + ], + [ + 0.2, + "rgb(67,147,195)" + ], + [ + 0.3, + "rgb(146,197,222)" + ], + [ + 0.4, + "rgb(209,229,240)" + ], + [ + 0.5, + "rgb(247,247,247)" + ], + [ + 0.6, + "rgb(253,219,199)" + ], + [ + 0.7, + "rgb(244,165,130)" + ], + [ + 0.8, + "rgb(214,96,77)" + ], + [ + 0.9, + "rgb(178,24,43)" + ], + [ + 1, + "rgb(103,0,31)" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "branchvalues": "total", + "customdata": [ + [ + 0.9545454545454548 + ], + [ + 0.9545454545454548 + ], + [ + 0.8298946640273919 + ], + [ + 0.8041381029540074 + ], + [ + 0.9786956521739132 + ], + [ + 0.9055353950321428 + ], + [ + 0.8658008658008658 + ], + [ + 0.8041630667784955 + ], + [ + 0.792782754772987 + ], + [ + 0.8259976777571356 + ], + [ + 0.8220626497774737 + ], + [ + 0.8210461476724114 + ], + [ + 0.8101813436763873 + ], + [ + 0.971001604361102 + ], + [ + 0.9289464621791536 + ], + [ + 0.8732908588456849 + ], + [ + 0.9320839327803117 + ], + [ + 0.7799127011297503 + ], + [ + 0.9521230391509398 + ], + [ + 0.8387538514207465 + ], + [ + 0.8873673399520713 + ], + [ + 0.8919696969696971 + ], + [ + 0.9939130434782611 + ], + [ + 0.9772426641825802 + ], + [ + 0.8315151515151515 + ], + [ + 0.8408502506153573 + ], + [ + 0.9545454545454548 + ], + [ + 0.8658008658008658 + ], + [ + 0.9939130434782611 + ], + [ + 0.9418179668098864 + ], + [ + 0.8673029726406383 + ], + [ + 0.9731456263408548 + ], + [ + 0.7813852813852814 + ], + [ + 0.7822341892305151 + ], + [ + 0.9364502164502164 + ], + [ + 0.8679516484927489 + ], + [ + 0.8857699681136173 + ], + [ + 0.7714560308712177 + ], + [ + 0.8584751140436623 + ], + [ + 0.8985904473621558 + ], + [ + 0.8190486045187014 + ], + [ + 0.7893527624833871 + ], + [ + 0.8919696969696971 + ], + [ + 0.8818618218586448 + ], + [ + 0.756628065305478 + ], + [ + 0.7882882882882881 + ], + [ + 0.950300482513086 + ], + [ + 0.8657481566722074 + ], + [ + 0.9365262267264388 + ], + [ + 0.943947221044588 + ], + [ + 0.887458515283843 + ], + [ + 0.7714763488785488 + ], + [ + 0.9214972959512142 + ], + [ + 0.909072064464046 + ], + [ + 0.7715736896162309 + ], + [ + 0.9290762303990062 + ], + [ + 0.8550758611268748 + ], + [ + 0.7761808341851454 + ], + [ + 0.9819054691235874 + ], + [ + 0.7957985346108523 + ], + [ + 0.9929947676208064 + ], + [ + 0.8598347107438016 + ], + [ + 0.8490800833801486 + ], + [ + 0.9947856385396152 + ], + [ + 0.9990150209905604 + ], + [ + 0.7707081956166206 + ], + [ + 0.8952232922255726 + ], + [ + 1 + ], + [ + 0.8216057600038706 + ], + [ + 0.9000234404536862 + ], + [ + 1 + ], + [ + 0.8075842215036355 + ], + [ + 0.946198347107438 + ], + [ + 0.8021928166351607 + ], + [ + 0.7928741020793951 + ], + [ + 0.9344444444444444 + ], + [ + 0.8578858011832347 + ], + [ + 0.8483379501385041 + ], + [ + 0.7871436798157215 + ], + [ + 0.9025957850286672 + ], + [ + 0.9928936489808848 + ], + [ + 0.9846235837724948 + ], + [ + 0.9527305856232412 + ], + [ + 0.9434321361058602 + ], + [ + 0.9373115797727772 + ], + [ + 0.9350049149338372 + ], + [ + 0.8705701323251417 + ], + [ + 0.986135349716446 + ], + [ + 1 + ], + [ + 0.9357441792403746 + ], + [ + 0.941314332676578 + ], + [ + 0.9860141582025238 + ], + [ + 0.9826843100189036 + ], + [ + 0.9826843100189036 + ], + [ + 0.8050748795127288 + ], + [ + 0.884575512524494 + ], + [ + 0.9417436672967864 + ], + [ + 0.9937805570643936 + ], + [ + 0.9503788875440718 + ], + [ + 1 + ], + [ + 0.9245562130177516 + ], + [ + 0.7654094979252105 + ], + [ + 0.8851870524742678 + ], + [ + 0.9760183009804816 + ], + [ + 0.9563486904543473 + ], + [ + 0.9761317906901431 + ], + [ + 0.9991429106537756 + ], + [ + 0.9456237038288926 + ], + [ + 0.9650751509200628 + ], + [ + 0.9992688773416403 + ], + [ + 0.9565325400753372 + ], + [ + 0.9695419255177564 + ], + [ + 0.9987068093750369 + ], + [ + 0.9475024401781991 + ], + [ + 0.8857395145550301 + ], + [ + 0.9753277328120716 + ], + [ + 0.9168763739323124 + ], + [ + 0.9450570112882524 + ], + [ + 0.9561427615655672 + ], + [ + 0.9583497755641666 + ], + [ + 0.9028572378928654 + ], + [ + 0.9691937864973333 + ], + [ + 0.9432189294688625 + ], + [ + 0.9959122759401721 + ], + [ + 0.9568210784484368 + ], + [ + 0.9850037718095089 + ], + [ + 0.9873834917666393 + ], + [ + 0.86399109137214 + ], + [ + 0.9834901908565283 + ], + [ + 0.9751694139594816 + ], + [ + 0.9664949318756285 + ], + [ + 0.9658991512978881 + ], + [ + 0.9338839388947628 + ], + [ + 0.9729988505742541 + ], + [ + 0.9920443424912717 + ], + [ + 0.978264239074848 + ], + [ + 0.982089188379848 + ], + [ + 0.9814197405280587 + ], + [ + 0.9805854024658918 + ], + [ + 0.9712344546795939 + ], + [ + 0.9585968264597382 + ], + [ + 0.9327668804010679 + ], + [ + 0.9682230338987912 + ], + [ + 0.979979971601552 + ], + [ + 0.9931318361728348 + ], + [ + 0.9547263868647838 + ], + [ + 0.9991229961585949 + ], + [ + 0.9571215257648876 + ], + [ + 0.9472118045082988 + ], + [ + 0.7712684989429177 + ], + [ + 0.7976314145122237 + ], + [ + 0.9416437009068946 + ], + [ + 0.9947856385396152 + ], + [ + 0.7862727272727271 + ], + [ + 0.8586700336700335 + ], + [ + 0.9303687863484544 + ], + [ + 0.8675319709415152 + ], + [ + 0.7920446151287672 + ], + [ + 0.8694866227116197 + ], + [ + 0.8586700336700335 + ], + [ + 0.7834335706711103 + ], + [ + 0.7921764122864366 + ], + [ + 0.934334074623178 + ], + [ + 0.8619283887468031 + ], + [ + 0.7676281237741422 + ], + [ + 0.7631048593350384 + ], + [ + 0.9925507389082384 + ], + [ + 0.978469168274726 + ], + [ + 0.7500718937727315 + ], + [ + 0.8846977863333716 + ], + [ + 0.9378841050418828 + ], + [ + 0.8684059865492091 + ], + [ + 0.8950764254021453 + ], + [ + 0.7740137221269299 + ], + [ + 0.8084175084175085 + ], + [ + 0.8843935880633129 + ], + [ + 0.7975398606698341 + ], + [ + 0.8485069801940157 + ], + [ + 0.7694545454545454 + ], + [ + 0.9679847507357018 + ], + [ + 0.7697689156812739 + ], + [ + 0.7685979300090726 + ], + [ + 0.9842229467473992 + ], + [ + 0.9455844136023616 + ], + [ + 0.8448425241372852 + ], + [ + 0.9027230491457534 + ], + [ + 0.9614867110807936 + ], + [ + 0.7980731830235919 + ], + [ + 0.8746942653979919 + ], + [ + 0.982173625627045 + ], + [ + 0.8170407525717691 + ], + [ + 0.86364166104721 + ], + [ + 0.9753325360829251 + ], + [ + 0.8085316277505704 + ], + [ + 0.8227635041015324 + ], + [ + 0.9050828653095765 + ], + [ + 0.7795272007374761 + ], + [ + 0.7847482435439043 + ], + [ + 0.9256978729594237 + ], + [ + 0.8399105171503202 + ], + [ + 0.8363949697251979 + ], + [ + 0.796839893191436 + ], + [ + 0.8383432015465867 + ], + [ + 0.9863864764646757 + ], + [ + 0.7554660388288974 + ], + [ + 0.9855862184585922 + ], + [ + 0.9520878541945509 + ], + [ + 0.8571756370037503 + ], + [ + 0.9320075788738773 + ], + [ + 0.9137979468970369 + ], + [ + 0.9305464260268369 + ], + [ + 0.8839893265526511 + ], + [ + 0.8667688956398026 + ], + [ + 0.9565556274733968 + ], + [ + 0.9768781082130975 + ], + [ + 0.9163601262566885 + ], + [ + 0.9255520299748177 + ], + [ + 0.9772426641825802 + ], + [ + 0.9783368141256884 + ], + [ + 0.9783368141256884 + ], + [ + 0.792235381129738 + ], + [ + 0.7524584849903713 + ], + [ + 0.8575423023217223 + ], + [ + 0.9290731879016672 + ], + [ + 0.9962986984489235 + ], + [ + 0.8911007105869436 + ], + [ + 0.9834143597963373 + ], + [ + 0.8828238788355364 + ], + [ + 0.7810872522403144 + ], + [ + 0.9778255798991798 + ], + [ + 0.8408064685157908 + ], + [ + 0.8461257638092973 + ], + [ + 0.9170015014667736 + ], + [ + 0.8838474478521062 + ], + [ + 0.8992086440167721 + ], + [ + 0.9477543538038498 + ], + [ + 0.936233164174384 + ], + [ + 0.796618231225969 + ], + [ + 0.8465483817977032 + ], + [ + 0.8286759028531826 + ], + [ + 0.8031469436294986 + ], + [ + 0.9293067948377257 + ], + [ + 0.7905217546826223 + ], + [ + 0.8904874214357624 + ], + [ + 0.948060941828255 + ], + [ + 0.9811830535079085 + ], + [ + 0.9430707787644872 + ], + [ + 0.9019468547619269 + ], + [ + 0.9634201249462099 + ], + [ + 0.958536231884058 + ], + [ + 0.8675191856081045 + ], + [ + 0.923455550886179 + ], + [ + 0.9374024748908731 + ], + [ + 0.8230247277595698 + ], + [ + 0.9086032637241696 + ], + [ + 0.9127305916495537 + ], + [ + 0.7665916695558189 + ], + [ + 0.8254317065802806 + ], + [ + 0.9325818823090927 + ], + [ + 0.8231479245485526 + ], + [ + 0.9211698832963091 + ], + [ + 0.944622600300256 + ], + [ + 0.7805040946287232 + ], + [ + 0.9832058480308432 + ], + [ + 0.8890631162040309 + ], + [ + 0.8977160492573557 + ], + [ + 0.9859234217934404 + ], + [ + 0.8546502548557862 + ], + [ + 0.8668958338409165 + ], + [ + 0.9890311615492476 + ], + [ + 0.9350943180643897 + ], + [ + 0.9280169976669376 + ], + [ + 0.8210527935710153 + ], + [ + 0.7559911987169416 + ], + [ + 0.7736264668325739 + ], + [ + 0.863925779862748 + ], + [ + 0.824723044297354 + ], + [ + 0.8806041934635603 + ], + [ + 0.8250833206612556 + ], + [ + 0.928723519908324 + ], + [ + 0.8668958338409165 + ], + [ + 0.8881896291715989 + ], + [ + 0.9593583027873251 + ], + [ + 0.9061435934718377 + ], + [ + 0.9211354224331691 + ], + [ + 0.8859445107741636 + ], + [ + 0.9398812902982936 + ], + [ + 0.8047278408758268 + ], + [ + 0.9223744981227123 + ], + [ + 0.9230788696114616 + ], + [ + 0.9536631479971994 + ], + [ + 0.9694396869310692 + ], + [ + 0.8131377716690427 + ], + [ + 0.8237517359346237 + ], + [ + 0.8173907278944466 + ], + [ + 0.8965017504270001 + ], + [ + 0.9219048551109622 + ], + [ + 0.9097417836628494 + ], + [ + 0.8553134080531343 + ], + [ + 0.9989920981077092 + ], + [ + 0.917451425335698 + ], + [ + 0.9150177303560064 + ], + [ + 0.818251045869449 + ], + [ + 0.8456287897798366 + ], + [ + 0.9580847637833185 + ], + [ + 0.9951933007390439 + ], + [ + 0.7912762864700013 + ], + [ + 0.8227036939088314 + ], + [ + 0.9922499420681911 + ], + [ + 0.8589952456968621 + ], + [ + 0.8647618655419143 + ], + [ + 0.9409418177584535 + ], + [ + 0.8256742643429589 + ], + [ + 0.8795442701574369 + ], + [ + 0.8406025749327211 + ], + [ + 0.8151093945882026 + ], + [ + 0.9059966318464586 + ], + [ + 0.8166754057049967 + ], + [ + 0.8511791199028763 + ], + [ + 0.8485266432095069 + ], + [ + 0.8787529330292853 + ], + [ + 0.9296027452970655 + ], + [ + 0.7650792722152087 + ], + [ + 0.9619755843239752 + ], + [ + 0.933549766771479 + ], + [ + 0.8616019267536854 + ], + [ + 0.8917618172659301 + ], + [ + 0.8911984476376517 + ], + [ + 0.933616428382211 + ], + [ + 0.9271005715678781 + ], + [ + 0.851440816574498 + ], + [ + 0.9386368447253942 + ], + [ + 0.9938851274719704 + ], + [ + 0.8711690044217546 + ], + [ + 0.8810631396615008 + ], + [ + 0.921688151199631 + ], + [ + 0.9413328398731196 + ], + [ + 0.9248167539267018 + ], + [ + 0.8843734470618795 + ], + [ + 0.8173749505019134 + ], + [ + 0.8519312620027872 + ], + [ + 0.9452382460255262 + ], + [ + 0.9778974468240862 + ], + [ + 0.9104377104377104 + ], + [ + 0.9298937661136578 + ], + [ + 0.8983798996067152 + ], + [ + 0.8473313810536809 + ], + [ + 0.9792614678275988 + ], + [ + 0.8553134080531343 + ], + [ + 0.8232860332235971 + ], + [ + 0.909065387196842 + ], + [ + 0.978073311070348 + ], + [ + 0.775995920023485 + ], + [ + 0.8490459410817468 + ], + [ + 0.999122807017544 + ], + [ + 0.8870930627862177 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.79241896667796 + ], + [ + 0.8672820048414341 + ], + [ + 0.9416562889165628 + ], + [ + 0.7922752675949607 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.7737464548987709 + ], + [ + 0.84746622922539 + ], + [ + 0.8291492133323973 + ], + [ + 0.9088064577345945 + ], + [ + 0.9761788895853514 + ], + [ + 0.9770862304997938 + ], + [ + 0.9329580322176916 + ], + [ + 0.993758325008325 + ], + [ + 0.9188951371295636 + ], + [ + 0.9328333806952732 + ], + [ + 0.8980181937554507 + ], + [ + 0.8677050513455755 + ], + [ + 0.9752792033119024 + ], + [ + 0.9882730260033812 + ], + [ + 0.905289786165362 + ], + [ + 0.9143112638406732 + ], + [ + 0.9886242163794032 + ], + [ + 0.9544594777956544 + ], + [ + 0.9581772940528424 + ], + [ + 0.9143045157420016 + ], + [ + 0.8252050839377624 + ], + [ + 0.9001503179694077 + ], + [ + 0.9403303455027593 + ], + [ + 0.999122807017544 + ], + [ + 0.9292464661560496 + ], + [ + 0.999122807017544 + ], + [ + 0.8566176867322529 + ], + [ + 0.8374157216227878 + ], + [ + 0.902115011699789 + ], + [ + 0.8553134080531343 + ], + [ + 0.8403328845275041 + ], + [ + 0.9540326981535171 + ], + [ + 0.9451327413498781 + ], + [ + 0.7640931217937306 + ], + [ + 0.8475441687513058 + ], + [ + 0.9852944941444919 + ], + [ + 0.7927752189233835 + ], + [ + 0.8625290260955841 + ], + [ + 0.999122807017544 + ], + [ + 0.8462714704650187 + ], + [ + 0.8219143476518825 + ], + [ + 0.8967294298470624 + ], + [ + 0.8017627702025453 + ], + [ + 0.8038806981974395 + ], + [ + 0.9498918260670621 + ], + [ + 0.8490347926552761 + ], + [ + 0.84746622922539 + ], + [ + 0.7734960799030078 + ], + [ + 0.8839061116873433 + ], + [ + 0.9683581632195862 + ], + [ + 0.7506209000762774 + ], + [ + 0.9855295339596895 + ], + [ + 0.9514741813067672 + ], + [ + 0.8622230550415498 + ], + [ + 0.9391417960180795 + ], + [ + 0.9462242522861426 + ], + [ + 0.9375061608356837 + ], + [ + 0.9575017523170773 + ], + [ + 0.8754792997928964 + ], + [ + 0.8691445841404749 + ], + [ + 0.9744970451625167 + ], + [ + 0.937103645050706 + ], + [ + 0.8900437264297159 + ], + [ + 0.9458526284056905 + ], + [ + 0.7670322793380222 + ], + [ + 0.9484258109649947 + ], + [ + 0.9239645181768363 + ], + [ + 0.7598493905068002 + ], + [ + 0.8938204854275072 + ], + [ + 0.9311584694225717 + ], + [ + 0.9725009394724591 + ], + [ + 0.9024231247013856 + ], + [ + 0.9122905881685385 + ], + [ + 0.8340807178909053 + ], + [ + 0.7522123063336182 + ], + [ + 0.8258303273081601 + ], + [ + 0.9356248965935622 + ], + [ + 0.9820100634702482 + ], + [ + 0.831081385436793 + ], + [ + 0.8534540516685338 + ], + [ + 0.9818536963567754 + ], + [ + 0.8486878358300123 + ], + [ + 0.9129853629164147 + ], + [ + 0.8998911634924976 + ], + [ + 0.7793718426037994 + ], + [ + 0.932398585032895 + ], + [ + 0.800012400217004 + ], + [ + 0.7984383476710843 + ], + [ + 0.907326978222119 + ], + [ + 0.838169467510867 + ], + [ + 0.7913646289079624 + ], + [ + 0.9278150139590884 + ], + [ + 0.9506223327256856 + ], + [ + 0.9364530503181744 + ], + [ + 0.9417014747671419 + ], + [ + 0.7800217784035494 + ], + [ + 0.9258691777106102 + ], + [ + 0.9376349250962784 + ], + [ + 0.9412635914006205 + ], + [ + 0.8430977292102612 + ], + [ + 0.9461654371370272 + ], + [ + 0.9391302151973808 + ], + [ + 0.968708052390917 + ], + [ + 0.7829559806346367 + ], + [ + 0.8486878358300123 + ], + [ + 0.92049050384555 + ], + [ + 0.9877189123128628 + ], + [ + 0.9672169872900396 + ], + [ + 0.8207867897037397 + ], + [ + 0.9362140743781505 + ], + [ + 0.8858224702081742 + ], + [ + 0.8712125971231403 + ], + [ + 0.9425776320387591 + ], + [ + 0.9678656579115078 + ], + [ + 0.845177507471658 + ], + [ + 0.8879860624446922 + ], + [ + 0.9795627481067839 + ], + [ + 0.8824880919819519 + ], + [ + 0.9060192863120934 + ], + [ + 0.9588725646716739 + ], + [ + 0.8548969538448014 + ], + [ + 0.8547392699937022 + ], + [ + 0.9247396362407979 + ], + [ + 0.8395580144256808 + ], + [ + 0.843740089474864 + ], + [ + 0.9249447572901628 + ], + [ + 0.8729860253752311 + ], + [ + 0.8710910410616529 + ], + [ + 0.8575684497498801 + ], + [ + 0.8888834395003661 + ], + [ + 0.9640476737469745 + ], + [ + 0.8803783826512939 + ], + [ + 0.967740576800573 + ], + [ + 0.9413063102753655 + ], + [ + 0.8769302051353558 + ], + [ + 0.9362422825085444 + ], + [ + 0.9286586070011535 + ], + [ + 0.944006114581395 + ], + [ + 0.9349278697154183 + ], + [ + 0.8845188412899909 + ], + [ + 0.9419319078423727 + ], + [ + 0.9716723266470112 + ], + [ + 0.9323330403577166 + ], + [ + 0.9321432828327338 + ], + [ + 0.9480786135178261 + ], + [ + 0.9268920735200938 + ], + [ + 0.9399304836605225 + ], + [ + 0.8875449132554921 + ], + [ + 0.8467449877524531 + ], + [ + 0.8941433348547955 + ], + [ + 0.9354636184177275 + ], + [ + 0.9665685689064893 + ], + [ + 0.9008265654584171 + ], + [ + 0.9750500171734773 + ], + [ + 0.897225206532872 + ], + [ + 0.8557013378255032 + ], + [ + 0.9429696266354753 + ], + [ + 0.8781202677770228 + ], + [ + 0.9169335093602933 + ], + [ + 0.9266807039100117 + ], + [ + 0.9737719189464245 + ], + [ + 0.927766227902817 + ], + [ + 0.897409840515961 + ] + ], + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "labels=%{label}
R^2 Spearman_sum=%{value}
parent=%{parent}
id=%{id}
R^2 Spearman=%{color}", + "ids": [ + "Persian Gulf/ARE/A&D", + "Latam/ARG/A&D", + "Europe/AUT/A&D", + "Persian Gulf/AZE/A&D", + "Asia/BGD/A&D", + "Latam/BRA/A&D", + "Latam/CHL/A&D", + "Pair/CHN/A&D", + "Latam/CRI/A&D", + "North Africa/EGY/A&D", + "Europe/GBR/A&D", + "South Africa/GHA/A&D", + "Europe/HRV/A&D", + "Asia/IND/A&D", + "North Africa/ISR/A&D", + "Asia/KOR/A&D", + "North Africa/MAR/A&D", + "Latam/MEX/A&D", + "South Africa/MOZ/A&D", + "South Africa/NGA/A&D", + "Europe/NLD/A&D", + "Persian Gulf/OMN/A&D", + "Latam/PAN/A&D", + "Europe/POL/A&D", + "Persian Gulf/QAT/A&D", + "Asia/THA/A&D", + "Pair/USA/A&D", + "Latam/VEN/A&D", + "Asia/VNM/A&D", + "Persian Gulf/YEM/A&D", + "Europe/AUT/Agriculture", + "Persian Gulf/AZE/Agriculture", + "Asia/BGD/Agriculture", + "Latam/BRA/Agriculture", + "Pair/CHN/Agriculture", + "South Africa/CMR/Agriculture", + "Latam/CRI/Agriculture", + "Europe/DEU/Agriculture", + "North Africa/DZA/Agriculture", + "North Africa/EGY/Agriculture", + "Europe/ESP/Agriculture", + "Europe/FRA/Agriculture", + "Europe/GRC/Agriculture", + "Asia/IDN/Agriculture", + "Asia/IND/Agriculture", + "North Africa/ISR/Agriculture", + "Asia/KOR/Agriculture", + "South Africa/LBR/Agriculture", + "South Africa/MOZ/Agriculture", + "South Africa/NGA/Agriculture", + "Europe/NLD/Agriculture", + "Latam/PAN/Agriculture", + "Asia/PHL/Agriculture", + "Europe/POL/Agriculture", + "Europe/SWE/Agriculture", + "North Africa/TUR/Agriculture", + "Pair/USA/Agriculture", + "Latam/VEN/Agriculture", + "Asia/VNM/Agriculture", + "Persian Gulf/YEM/Agriculture", + "Persian Gulf/ARE/Demography", + "Latam/ARG/Demography", + "Europe/AUT/Demography", + "Persian Gulf/AZE/Demography", + "Asia/BGD/Demography", + "Latam/BRA/Demography", + "Latam/CHL/Demography", + "Pair/CHN/Demography", + "South Africa/CMR/Demography", + "Latam/COL/Demography", + "Latam/CRI/Demography", + "North Africa/DZA/Demography", + "North Africa/EGY/Demography", + "Europe/ESP/Demography", + "Europe/FRA/Demography", + "Europe/GBR/Demography", + "South Africa/GHA/Demography", + "Europe/GRC/Demography", + "Europe/HRV/Demography", + "Asia/IDN/Demography", + "Asia/IND/Demography", + "North Africa/ISR/Demography", + "North Africa/MAR/Demography", + "Latam/MEX/Demography", + "South Africa/MOZ/Demography", + "South Africa/NGA/Demography", + "Europe/NLD/Demography", + "Persian Gulf/OMN/Demography", + "Latam/PAN/Demography", + "Latam/PER/Demography", + "Asia/PHL/Demography", + "Europe/POL/Demography", + "Persian Gulf/QAT/Demography", + "Persian Gulf/SAU/Demography", + "South Africa/SEN/Demography", + "Asia/THA/Demography", + "North Africa/TUR/Demography", + "Pair/USA/Demography", + "Latam/VEN/Demography", + "Asia/VNM/Demography", + "Persian Gulf/YEM/Demography", + "South Africa/ZAF/Demography", + "Persian Gulf/ARE/Economy", + "Latam/ARG/Economy", + "Europe/AUT/Economy", + "Persian Gulf/AZE/Economy", + "Asia/BGD/Economy", + "Latam/BRA/Economy", + "Latam/CHL/Economy", + "Pair/CHN/Economy", + "South Africa/CMR/Economy", + "Latam/COL/Economy", + "Latam/CRI/Economy", + "Europe/DEU/Economy", + "North Africa/DZA/Economy", + "North Africa/EGY/Economy", + "Europe/ESP/Economy", + "Europe/FRA/Economy", + "Europe/GBR/Economy", + "South Africa/GHA/Economy", + "Europe/GRC/Economy", + "Europe/HRV/Economy", + "Asia/IDN/Economy", + "Asia/IND/Economy", + "Persian Gulf/IRQ/Economy", + "North Africa/ISR/Economy", + "Asia/KOR/Economy", + "South Africa/LBR/Economy", + "North Africa/MAR/Economy", + "Latam/MEX/Economy", + "South Africa/MOZ/Economy", + "South Africa/NGA/Economy", + "Europe/NLD/Economy", + "Persian Gulf/OMN/Economy", + "Latam/PAN/Economy", + "Latam/PER/Economy", + "Asia/PHL/Economy", + "Europe/POL/Economy", + "Persian Gulf/QAT/Economy", + "Persian Gulf/SAU/Economy", + "South Africa/SEN/Economy", + "Europe/SWE/Economy", + "Asia/THA/Economy", + "North Africa/TUR/Economy", + "Pair/USA/Economy", + "Latam/VEN/Economy", + "Asia/VNM/Economy", + "Persian Gulf/YEM/Economy", + "South Africa/ZAF/Economy", + "Latam/ARG/Employment", + "Europe/AUT/Employment", + "Persian Gulf/AZE/Employment", + "Asia/BGD/Employment", + "Latam/BRA/Employment", + "Pair/CHN/Employment", + "South Africa/CMR/Employment", + "Latam/CRI/Employment", + "Europe/DEU/Employment", + "North Africa/DZA/Employment", + "North Africa/EGY/Employment", + "Europe/ESP/Employment", + "Europe/FRA/Employment", + "Europe/GBR/Employment", + "Europe/GRC/Employment", + "Europe/HRV/Employment", + "Asia/IDN/Employment", + "Asia/IND/Employment", + "North Africa/ISR/Employment", + "Asia/KOR/Employment", + "North Africa/MAR/Employment", + "South Africa/MOZ/Employment", + "Europe/NLD/Employment", + "Persian Gulf/OMN/Employment", + "Europe/POL/Employment", + "Persian Gulf/SAU/Employment", + "South Africa/SEN/Employment", + "Europe/SWE/Employment", + "Pair/USA/Employment", + "Latam/VEN/Employment", + "Asia/VNM/Employment", + "Persian Gulf/YEM/Employment", + "South Africa/ZAF/Employment", + "Persian Gulf/ARE/Environment", + "Latam/ARG/Environment", + "Europe/AUT/Environment", + "Persian Gulf/AZE/Environment", + "Asia/BGD/Environment", + "Latam/BRA/Environment", + "Latam/CHL/Environment", + "Pair/CHN/Environment", + "South Africa/CMR/Environment", + "Latam/COL/Environment", + "Latam/CRI/Environment", + "Europe/DEU/Environment", + "North Africa/DZA/Environment", + "North Africa/EGY/Environment", + "Europe/ESP/Environment", + "Europe/FRA/Environment", + "Europe/GBR/Environment", + "South Africa/GHA/Environment", + "Europe/GRC/Environment", + "Europe/HRV/Environment", + "Asia/IDN/Environment", + "Asia/IND/Environment", + "Persian Gulf/IRQ/Environment", + "North Africa/ISR/Environment", + "Asia/KOR/Environment", + "South Africa/LBR/Environment", + "North Africa/MAR/Environment", + "Latam/MEX/Environment", + "South Africa/MOZ/Environment", + "South Africa/NGA/Environment", + "Europe/NLD/Environment", + "Persian Gulf/OMN/Environment", + "Latam/PAN/Environment", + "Latam/PER/Environment", + "Asia/PHL/Environment", + "Europe/POL/Environment", + "Persian Gulf/QAT/Environment", + "Persian Gulf/SAU/Environment", + "South Africa/SEN/Environment", + "Europe/SWE/Environment", + "Asia/THA/Environment", + "North Africa/TUR/Environment", + "Pair/USA/Environment", + "Latam/VEN/Environment", + "Asia/VNM/Environment", + "Persian Gulf/YEM/Environment", + "South Africa/ZAF/Environment", + "Persian Gulf/ARE/Equality", + "Latam/ARG/Equality", + "Europe/AUT/Equality", + "Asia/BGD/Equality", + "Latam/BRA/Equality", + "Latam/CHL/Equality", + "Pair/CHN/Equality", + "Latam/CRI/Equality", + "Europe/DEU/Equality", + "North Africa/DZA/Equality", + "Europe/ESP/Equality", + "Europe/FRA/Equality", + "Europe/GBR/Equality", + "South Africa/GHA/Equality", + "Europe/GRC/Equality", + "Asia/IND/Equality", + "North Africa/ISR/Equality", + "Asia/KOR/Equality", + "Latam/MEX/Equality", + "South Africa/MOZ/Equality", + "South Africa/NGA/Equality", + "Europe/NLD/Equality", + "Persian Gulf/OMN/Equality", + "Latam/PAN/Equality", + "Europe/POL/Equality", + "Persian Gulf/QAT/Equality", + "Persian Gulf/SAU/Equality", + "South Africa/SEN/Equality", + "North Africa/TUR/Equality", + "Pair/USA/Equality", + "Latam/VEN/Equality", + "Asia/VNM/Equality", + "Persian Gulf/YEM/Equality", + "South Africa/ZAF/Equality", + "Persian Gulf/ARE/Exports", + "Europe/AUT/Exports", + "Persian Gulf/AZE/Exports", + "Asia/BGD/Exports", + "Latam/BRA/Exports", + "Latam/CHL/Exports", + "Pair/CHN/Exports", + "Latam/COL/Exports", + "Latam/CRI/Exports", + "Europe/DEU/Exports", + "North Africa/DZA/Exports", + "Europe/ESP/Exports", + "Europe/FRA/Exports", + "Europe/GBR/Exports", + "South Africa/GHA/Exports", + "Asia/IDN/Exports", + "Asia/IND/Exports", + "Persian Gulf/IRQ/Exports", + "Asia/KOR/Exports", + "North Africa/MAR/Exports", + "Latam/MEX/Exports", + "South Africa/MOZ/Exports", + "Europe/NLD/Exports", + "Persian Gulf/OMN/Exports", + "Latam/PAN/Exports", + "Latam/PER/Exports", + "Asia/PHL/Exports", + "Europe/POL/Exports", + "Persian Gulf/QAT/Exports", + "Persian Gulf/SAU/Exports", + "South Africa/SEN/Exports", + "Europe/SWE/Exports", + "Asia/THA/Exports", + "North Africa/TUR/Exports", + "Pair/USA/Exports", + "Latam/VEN/Exports", + "Asia/VNM/Exports", + "South Africa/ZAF/Exports", + "Persian Gulf/ARE/Health", + "Latam/ARG/Health", + "Europe/AUT/Health", + "Persian Gulf/AZE/Health", + "Asia/BGD/Health", + "Latam/BRA/Health", + "Latam/CHL/Health", + "Pair/CHN/Health", + "South Africa/CMR/Health", + "Latam/COL/Health", + "Latam/CRI/Health", + "Europe/DEU/Health", + "North Africa/DZA/Health", + "Europe/ESP/Health", + "Europe/FRA/Health", + "Europe/GBR/Health", + "South Africa/GHA/Health", + "Europe/GRC/Health", + "Europe/HRV/Health", + "Asia/IDN/Health", + "Asia/IND/Health", + "Persian Gulf/IRQ/Health", + "North Africa/ISR/Health", + "Asia/KOR/Health", + "South Africa/LBR/Health", + "North Africa/MAR/Health", + "Latam/MEX/Health", + "South Africa/MOZ/Health", + "South Africa/NGA/Health", + "Europe/NLD/Health", + "Persian Gulf/OMN/Health", + "Latam/PAN/Health", + "Latam/PER/Health", + "Asia/PHL/Health", + "Europe/POL/Health", + "Persian Gulf/QAT/Health", + "Persian Gulf/SAU/Health", + "South Africa/SEN/Health", + "Europe/SWE/Health", + "Asia/THA/Health", + "North Africa/TUR/Health", + "Pair/USA/Health", + "Latam/VEN/Health", + "Asia/VNM/Health", + "Persian Gulf/YEM/Health", + "South Africa/ZAF/Health", + "Persian Gulf/ARE/Internet", + "Latam/ARG/Internet", + "Europe/AUT/Internet", + "Persian Gulf/AZE/Internet", + "Asia/BGD/Internet", + "Latam/BRA/Internet", + "Latam/CHL/Internet", + "Pair/CHN/Internet", + "South Africa/CMR/Internet", + "Latam/COL/Internet", + "Latam/CRI/Internet", + "Europe/DEU/Internet", + "North Africa/DZA/Internet", + "North Africa/EGY/Internet", + "Europe/ESP/Internet", + "Europe/FRA/Internet", + "Europe/GBR/Internet", + "South Africa/GHA/Internet", + "Europe/GRC/Internet", + "Europe/HRV/Internet", + "Asia/IDN/Internet", + "Asia/IND/Internet", + "North Africa/ISR/Internet", + "Asia/KOR/Internet", + "South Africa/LBR/Internet", + "North Africa/MAR/Internet", + "Latam/MEX/Internet", + "South Africa/MOZ/Internet", + "Europe/NLD/Internet", + "Persian Gulf/OMN/Internet", + "Latam/PAN/Internet", + "Latam/PER/Internet", + "Asia/PHL/Internet", + "Europe/POL/Internet", + "Persian Gulf/QAT/Internet", + "Persian Gulf/SAU/Internet", + "South Africa/SEN/Internet", + "Europe/SWE/Internet", + "Asia/THA/Internet", + "North Africa/TUR/Internet", + "Pair/USA/Internet", + "Latam/VEN/Internet", + "Asia/VNM/Internet", + "Persian Gulf/YEM/Internet", + "South Africa/ZAF/Internet", + "Persian Gulf/ARE/Mortality", + "Latam/ARG/Mortality", + "Europe/AUT/Mortality", + "Persian Gulf/AZE/Mortality", + "Asia/BGD/Mortality", + "Latam/BRA/Mortality", + "Latam/CHL/Mortality", + "Pair/CHN/Mortality", + "South Africa/CMR/Mortality", + "Latam/COL/Mortality", + "Latam/CRI/Mortality", + "Europe/DEU/Mortality", + "North Africa/DZA/Mortality", + "North Africa/EGY/Mortality", + "Europe/ESP/Mortality", + "Europe/FRA/Mortality", + "Europe/GBR/Mortality", + "South Africa/GHA/Mortality", + "Europe/GRC/Mortality", + "Europe/HRV/Mortality", + "Asia/IDN/Mortality", + "Asia/IND/Mortality", + "Persian Gulf/IRQ/Mortality", + "North Africa/ISR/Mortality", + "Asia/KOR/Mortality", + "South Africa/LBR/Mortality", + "North Africa/MAR/Mortality", + "Latam/MEX/Mortality", + "South Africa/MOZ/Mortality", + "South Africa/NGA/Mortality", + "Europe/NLD/Mortality", + "Persian Gulf/OMN/Mortality", + "Latam/PAN/Mortality", + "Latam/PER/Mortality", + "Asia/PHL/Mortality", + "Europe/POL/Mortality", + "Persian Gulf/QAT/Mortality", + "Persian Gulf/SAU/Mortality", + "South Africa/SEN/Mortality", + "Europe/SWE/Mortality", + "Asia/THA/Mortality", + "North Africa/TUR/Mortality", + "Pair/USA/Mortality", + "Latam/VEN/Mortality", + "Asia/VNM/Mortality", + "Persian Gulf/YEM/Mortality", + "Latam/ARG/Principal", + "Europe/AUT/Principal", + "Persian Gulf/AZE/Principal", + "Asia/BGD/Principal", + "Latam/BRA/Principal", + "Latam/CHL/Principal", + "Pair/CHN/Principal", + "South Africa/CMR/Principal", + "Latam/COL/Principal", + "Latam/CRI/Principal", + "Europe/DEU/Principal", + "North Africa/EGY/Principal", + "Europe/ESP/Principal", + "Europe/FRA/Principal", + "Europe/GBR/Principal", + "South Africa/GHA/Principal", + "Europe/HRV/Principal", + "Asia/IDN/Principal", + "Asia/IND/Principal", + "North Africa/ISR/Principal", + "Asia/KOR/Principal", + "North Africa/MAR/Principal", + "Latam/MEX/Principal", + "South Africa/MOZ/Principal", + "South Africa/NGA/Principal", + "Europe/NLD/Principal", + "Latam/PAN/Principal", + "Asia/PHL/Principal", + "Europe/POL/Principal", + "Europe/SWE/Principal", + "Asia/THA/Principal", + "North Africa/TUR/Principal", + "Pair/USA/Principal", + "Asia/VNM/Principal", + "South Africa/ZAF/Principal", + "Persian Gulf/ARE", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "South Africa/CMR", + "Latam/COL", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "North Africa/EGY", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Europe/GRC", + "Europe/HRV", + "Asia/IDN", + "Asia/IND", + "Persian Gulf/IRQ", + "North Africa/ISR", + "Asia/KOR", + "South Africa/LBR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Latam/PER", + "Asia/PHL", + "Europe/POL", + "Persian Gulf/QAT", + "Persian Gulf/SAU", + "South Africa/SEN", + "Europe/SWE", + "Asia/THA", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "South Africa/ZAF", + "Asia", + "Europe", + "Latam", + "North Africa", + "Pair", + "Persian Gulf", + "South Africa" + ], + "labels": [ + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "ARE", + "ARG", + "AUT", + "AZE", + "BGD", + "BRA", + "CHL", + "CHN", + "CMR", + "COL", + "CRI", + "DEU", + "DZA", + "EGY", + "ESP", + "FRA", + "GBR", + "GHA", + "GRC", + "HRV", + "IDN", + "IND", + "IRQ", + "ISR", + "KOR", + "LBR", + "MAR", + "MEX", + "MOZ", + "NGA", + "NLD", + "OMN", + "PAN", + "PER", + "PHL", + "POL", + "QAT", + "SAU", + "SEN", + "SWE", + "THA", + "TUR", + "USA", + "VEN", + "VNM", + "YEM", + "ZAF", + "Asia", + "Europe", + "Latam", + "North Africa", + "Pair", + "Persian Gulf", + "South Africa" + ], + "marker": { + "coloraxis": "coloraxis", + "colors": [ + 0.9545454545454548, + 0.9545454545454548, + 0.8298946640273919, + 0.8041381029540074, + 0.9786956521739132, + 0.9055353950321428, + 0.8658008658008658, + 0.8041630667784955, + 0.792782754772987, + 0.8259976777571356, + 0.8220626497774737, + 0.8210461476724114, + 0.8101813436763873, + 0.971001604361102, + 0.9289464621791536, + 0.8732908588456849, + 0.9320839327803117, + 0.7799127011297503, + 0.9521230391509398, + 0.8387538514207465, + 0.8873673399520713, + 0.8919696969696971, + 0.9939130434782611, + 0.9772426641825802, + 0.8315151515151515, + 0.8408502506153573, + 0.9545454545454548, + 0.8658008658008658, + 0.9939130434782611, + 0.9418179668098864, + 0.8673029726406383, + 0.9731456263408548, + 0.7813852813852814, + 0.7822341892305151, + 0.9364502164502164, + 0.8679516484927489, + 0.8857699681136173, + 0.7714560308712177, + 0.8584751140436623, + 0.8985904473621558, + 0.8190486045187014, + 0.7893527624833871, + 0.8919696969696971, + 0.8818618218586448, + 0.756628065305478, + 0.7882882882882881, + 0.950300482513086, + 0.8657481566722074, + 0.9365262267264388, + 0.943947221044588, + 0.887458515283843, + 0.7714763488785488, + 0.9214972959512142, + 0.909072064464046, + 0.7715736896162309, + 0.9290762303990062, + 0.8550758611268748, + 0.7761808341851454, + 0.9819054691235874, + 0.7957985346108523, + 0.9929947676208064, + 0.8598347107438016, + 0.8490800833801486, + 0.9947856385396152, + 0.9990150209905604, + 0.7707081956166206, + 0.8952232922255726, + 1, + 0.8216057600038706, + 0.9000234404536862, + 1, + 0.8075842215036355, + 0.946198347107438, + 0.8021928166351607, + 0.7928741020793951, + 0.9344444444444444, + 0.8578858011832347, + 0.8483379501385041, + 0.7871436798157215, + 0.9025957850286672, + 0.9928936489808848, + 0.9846235837724948, + 0.9527305856232412, + 0.9434321361058602, + 0.9373115797727772, + 0.9350049149338372, + 0.8705701323251417, + 0.986135349716446, + 1, + 0.9357441792403746, + 0.941314332676578, + 0.9860141582025238, + 0.9826843100189036, + 0.9826843100189036, + 0.8050748795127288, + 0.884575512524494, + 0.9417436672967864, + 0.9937805570643936, + 0.9503788875440718, + 1, + 0.9245562130177516, + 0.7654094979252105, + 0.8851870524742678, + 0.9760183009804816, + 0.9563486904543473, + 0.9761317906901431, + 0.9991429106537756, + 0.9456237038288926, + 0.9650751509200628, + 0.9992688773416403, + 0.9565325400753372, + 0.9695419255177564, + 0.9987068093750369, + 0.9475024401781991, + 0.8857395145550301, + 0.9753277328120716, + 0.9168763739323124, + 0.9450570112882524, + 0.9561427615655672, + 0.9583497755641666, + 0.9028572378928654, + 0.9691937864973333, + 0.9432189294688625, + 0.9959122759401721, + 0.9568210784484368, + 0.9850037718095089, + 0.9873834917666393, + 0.86399109137214, + 0.9834901908565283, + 0.9751694139594816, + 0.9664949318756285, + 0.9658991512978881, + 0.9338839388947628, + 0.9729988505742541, + 0.9920443424912717, + 0.978264239074848, + 0.982089188379848, + 0.9814197405280587, + 0.9805854024658918, + 0.9712344546795939, + 0.9585968264597382, + 0.9327668804010679, + 0.9682230338987912, + 0.979979971601552, + 0.9931318361728348, + 0.9547263868647838, + 0.9991229961585949, + 0.9571215257648876, + 0.9472118045082988, + 0.7712684989429177, + 0.7976314145122237, + 0.9416437009068946, + 0.9947856385396152, + 0.7862727272727271, + 0.8586700336700335, + 0.9303687863484544, + 0.8675319709415152, + 0.7920446151287672, + 0.8694866227116197, + 0.8586700336700335, + 0.7834335706711103, + 0.7921764122864366, + 0.934334074623178, + 0.8619283887468031, + 0.7676281237741422, + 0.7631048593350384, + 0.9925507389082384, + 0.978469168274726, + 0.7500718937727315, + 0.8846977863333716, + 0.9378841050418828, + 0.8684059865492091, + 0.8950764254021453, + 0.7740137221269299, + 0.8084175084175085, + 0.8843935880633129, + 0.7975398606698341, + 0.8485069801940157, + 0.7694545454545454, + 0.9679847507357018, + 0.7697689156812739, + 0.7685979300090726, + 0.9842229467473992, + 0.9455844136023616, + 0.8448425241372852, + 0.9027230491457534, + 0.9614867110807936, + 0.7980731830235919, + 0.8746942653979919, + 0.982173625627045, + 0.8170407525717691, + 0.86364166104721, + 0.9753325360829251, + 0.8085316277505704, + 0.8227635041015324, + 0.9050828653095765, + 0.7795272007374761, + 0.7847482435439043, + 0.9256978729594237, + 0.8399105171503202, + 0.8363949697251979, + 0.796839893191436, + 0.8383432015465867, + 0.9863864764646757, + 0.7554660388288974, + 0.9855862184585922, + 0.9520878541945509, + 0.8571756370037503, + 0.9320075788738773, + 0.9137979468970369, + 0.9305464260268369, + 0.8839893265526511, + 0.8667688956398026, + 0.9565556274733968, + 0.9768781082130975, + 0.9163601262566885, + 0.9255520299748177, + 0.9772426641825802, + 0.9783368141256884, + 0.9783368141256884, + 0.792235381129738, + 0.7524584849903713, + 0.8575423023217223, + 0.9290731879016672, + 0.9962986984489235, + 0.8911007105869436, + 0.9834143597963373, + 0.8828238788355364, + 0.7810872522403144, + 0.9778255798991798, + 0.8408064685157908, + 0.8461257638092973, + 0.9170015014667736, + 0.8838474478521062, + 0.8992086440167721, + 0.9477543538038498, + 0.936233164174384, + 0.796618231225969, + 0.8465483817977032, + 0.8286759028531826, + 0.8031469436294986, + 0.9293067948377257, + 0.7905217546826223, + 0.8904874214357624, + 0.948060941828255, + 0.9811830535079085, + 0.9430707787644872, + 0.9019468547619269, + 0.9634201249462099, + 0.958536231884058, + 0.8675191856081045, + 0.923455550886179, + 0.9374024748908731, + 0.8230247277595698, + 0.9086032637241696, + 0.9127305916495537, + 0.7665916695558189, + 0.8254317065802806, + 0.9325818823090927, + 0.8231479245485526, + 0.9211698832963091, + 0.944622600300256, + 0.7805040946287232, + 0.9832058480308432, + 0.8890631162040309, + 0.8977160492573557, + 0.9859234217934404, + 0.8546502548557862, + 0.8668958338409165, + 0.9890311615492476, + 0.9350943180643897, + 0.9280169976669376, + 0.8210527935710153, + 0.7559911987169416, + 0.7736264668325739, + 0.863925779862748, + 0.824723044297354, + 0.8806041934635603, + 0.8250833206612556, + 0.928723519908324, + 0.8668958338409165, + 0.8881896291715989, + 0.9593583027873251, + 0.9061435934718377, + 0.9211354224331691, + 0.8859445107741636, + 0.9398812902982936, + 0.8047278408758268, + 0.9223744981227123, + 0.9230788696114616, + 0.9536631479971994, + 0.9694396869310692, + 0.8131377716690427, + 0.8237517359346237, + 0.8173907278944466, + 0.8965017504270001, + 0.9219048551109622, + 0.9097417836628494, + 0.8553134080531343, + 0.9989920981077092, + 0.917451425335698, + 0.9150177303560064, + 0.818251045869449, + 0.8456287897798366, + 0.9580847637833185, + 0.9951933007390439, + 0.7912762864700013, + 0.8227036939088314, + 0.9922499420681911, + 0.8589952456968621, + 0.8647618655419143, + 0.9409418177584535, + 0.8256742643429589, + 0.8795442701574369, + 0.8406025749327211, + 0.8151093945882026, + 0.9059966318464586, + 0.8166754057049967, + 0.8511791199028763, + 0.8485266432095069, + 0.8787529330292853, + 0.9296027452970655, + 0.7650792722152087, + 0.9619755843239752, + 0.933549766771479, + 0.8616019267536854, + 0.8917618172659301, + 0.8911984476376517, + 0.933616428382211, + 0.9271005715678781, + 0.851440816574498, + 0.9386368447253942, + 0.9938851274719704, + 0.8711690044217546, + 0.8810631396615008, + 0.921688151199631, + 0.9413328398731196, + 0.9248167539267018, + 0.8843734470618795, + 0.8173749505019134, + 0.8519312620027872, + 0.9452382460255262, + 0.9778974468240862, + 0.9104377104377104, + 0.9298937661136578, + 0.8983798996067152, + 0.8473313810536809, + 0.9792614678275988, + 0.8553134080531343, + 0.8232860332235971, + 0.909065387196842, + 0.978073311070348, + 0.775995920023485, + 0.8490459410817468, + 0.999122807017544, + 0.8870930627862177, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8672820048414341, + 0.9416562889165628, + 0.7922752675949607, + 0.7916704805491989, + 0.936963017728694, + 0.7737464548987709, + 0.84746622922539, + 0.8291492133323973, + 0.9088064577345945, + 0.9761788895853514, + 0.9770862304997938, + 0.9329580322176916, + 0.993758325008325, + 0.9188951371295636, + 0.9328333806952732, + 0.8980181937554507, + 0.8677050513455755, + 0.9752792033119024, + 0.9882730260033812, + 0.905289786165362, + 0.9143112638406732, + 0.9886242163794032, + 0.9544594777956544, + 0.9581772940528424, + 0.9143045157420016, + 0.8252050839377624, + 0.9001503179694077, + 0.9403303455027593, + 0.999122807017544, + 0.9292464661560496, + 0.999122807017544, + 0.8566176867322529, + 0.8374157216227878, + 0.902115011699789, + 0.8553134080531343, + 0.8403328845275041, + 0.9540326981535171, + 0.9451327413498781, + 0.7640931217937306, + 0.8475441687513058, + 0.9852944941444919, + 0.7927752189233835, + 0.8625290260955841, + 0.999122807017544, + 0.8462714704650187, + 0.8219143476518825, + 0.8967294298470624, + 0.8017627702025453, + 0.8038806981974395, + 0.9498918260670621, + 0.8490347926552761, + 0.84746622922539, + 0.7734960799030078, + 0.8839061116873433, + 0.9683581632195862, + 0.7506209000762774, + 0.9855295339596895, + 0.9514741813067672, + 0.8622230550415498, + 0.9391417960180795, + 0.9462242522861426, + 0.9375061608356837, + 0.9575017523170773, + 0.8754792997928964, + 0.8691445841404749, + 0.9744970451625167, + 0.937103645050706, + 0.8900437264297159, + 0.9458526284056905, + 0.7670322793380222, + 0.9484258109649947, + 0.9239645181768363, + 0.7598493905068002, + 0.8938204854275072, + 0.9311584694225717, + 0.9725009394724591, + 0.9024231247013856, + 0.9122905881685385, + 0.8340807178909053, + 0.7522123063336182, + 0.8258303273081601, + 0.9356248965935622, + 0.9820100634702482, + 0.831081385436793, + 0.8534540516685338, + 0.9818536963567754, + 0.8486878358300123, + 0.9129853629164147, + 0.8998911634924976, + 0.7793718426037994, + 0.932398585032895, + 0.800012400217004, + 0.7984383476710843, + 0.907326978222119, + 0.838169467510867, + 0.7913646289079624, + 0.9278150139590884, + 0.9506223327256856, + 0.9364530503181744, + 0.9417014747671419, + 0.7800217784035494, + 0.9258691777106102, + 0.9376349250962784, + 0.9412635914006205, + 0.8430977292102612, + 0.9461654371370272, + 0.9391302151973808, + 0.968708052390917, + 0.7829559806346367, + 0.8486878358300123, + 0.92049050384555, + 0.9877189123128628, + 0.9672169872900396, + 0.8207867897037397, + 0.9362140743781505, + 0.8858224702081742, + 0.8712125971231403, + 0.9425776320387591, + 0.9678656579115078, + 0.845177507471658, + 0.8879860624446922, + 0.9795627481067839, + 0.8824880919819519, + 0.9060192863120934, + 0.9588725646716739, + 0.8548969538448014, + 0.8547392699937022, + 0.9247396362407979, + 0.8395580144256808, + 0.843740089474864, + 0.9249447572901628, + 0.8729860253752311, + 0.8710910410616529, + 0.8575684497498801, + 0.8888834395003661, + 0.9640476737469745, + 0.8803783826512939, + 0.967740576800573, + 0.9413063102753655, + 0.8769302051353558, + 0.9362422825085444, + 0.9286586070011535, + 0.944006114581395, + 0.9349278697154183, + 0.8845188412899909, + 0.9419319078423727, + 0.9716723266470112, + 0.9323330403577166, + 0.9321432828327338, + 0.9480786135178261, + 0.9268920735200938, + 0.9399304836605225, + 0.8875449132554921, + 0.8467449877524531, + 0.8941433348547955, + 0.9354636184177275, + 0.9665685689064893, + 0.9008265654584171, + 0.9750500171734773, + 0.897225206532872, + 0.8557013378255032, + 0.9429696266354753, + 0.8781202677770228, + 0.9169335093602933, + 0.9266807039100117, + 0.9737719189464245, + 0.927766227902817, + 0.897409840515961 + ] + }, + "name": "", + "parents": [ + "Persian Gulf/ARE", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "Latam/CRI", + "North Africa/EGY", + "Europe/GBR", + "South Africa/GHA", + "Europe/HRV", + "Asia/IND", + "North Africa/ISR", + "Asia/KOR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Europe/POL", + "Persian Gulf/QAT", + "Asia/THA", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Pair/CHN", + "South Africa/CMR", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "North Africa/EGY", + "Europe/ESP", + "Europe/FRA", + "Europe/GRC", + "Asia/IDN", + "Asia/IND", + "North Africa/ISR", + "Asia/KOR", + "South Africa/LBR", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Latam/PAN", + "Asia/PHL", + "Europe/POL", + "Europe/SWE", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "Persian Gulf/ARE", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "South Africa/CMR", + "Latam/COL", + "Latam/CRI", + "North Africa/DZA", + "North Africa/EGY", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Europe/GRC", + "Europe/HRV", + "Asia/IDN", + "Asia/IND", + "North Africa/ISR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Latam/PER", + "Asia/PHL", + "Europe/POL", + "Persian Gulf/QAT", + "Persian Gulf/SAU", + "South Africa/SEN", + "Asia/THA", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "South Africa/ZAF", + "Persian Gulf/ARE", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "South Africa/CMR", + "Latam/COL", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "North Africa/EGY", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Europe/GRC", + "Europe/HRV", + "Asia/IDN", + "Asia/IND", + "Persian Gulf/IRQ", + "North Africa/ISR", + "Asia/KOR", + "South Africa/LBR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Latam/PER", + "Asia/PHL", + "Europe/POL", + "Persian Gulf/QAT", + "Persian Gulf/SAU", + "South Africa/SEN", + "Europe/SWE", + "Asia/THA", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "South Africa/ZAF", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Pair/CHN", + "South Africa/CMR", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "North Africa/EGY", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "Europe/GRC", + "Europe/HRV", + "Asia/IDN", + "Asia/IND", + "North Africa/ISR", + "Asia/KOR", + "North Africa/MAR", + "South Africa/MOZ", + "Europe/NLD", + "Persian Gulf/OMN", + "Europe/POL", + "Persian Gulf/SAU", + "South Africa/SEN", + "Europe/SWE", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "South Africa/ZAF", + "Persian Gulf/ARE", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "South Africa/CMR", + "Latam/COL", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "North Africa/EGY", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Europe/GRC", + "Europe/HRV", + "Asia/IDN", + "Asia/IND", + "Persian Gulf/IRQ", + "North Africa/ISR", + "Asia/KOR", + "South Africa/LBR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Latam/PER", + "Asia/PHL", + "Europe/POL", + "Persian Gulf/QAT", + "Persian Gulf/SAU", + "South Africa/SEN", + "Europe/SWE", + "Asia/THA", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "South Africa/ZAF", + "Persian Gulf/ARE", + "Latam/ARG", + "Europe/AUT", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Europe/GRC", + "Asia/IND", + "North Africa/ISR", + "Asia/KOR", + "Latam/MEX", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Europe/POL", + "Persian Gulf/QAT", + "Persian Gulf/SAU", + "South Africa/SEN", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "South Africa/ZAF", + "Persian Gulf/ARE", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "Latam/COL", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Asia/IDN", + "Asia/IND", + "Persian Gulf/IRQ", + "Asia/KOR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Latam/PER", + "Asia/PHL", + "Europe/POL", + "Persian Gulf/QAT", + "Persian Gulf/SAU", + "South Africa/SEN", + "Europe/SWE", + "Asia/THA", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "South Africa/ZAF", + "Persian Gulf/ARE", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "South Africa/CMR", + "Latam/COL", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Europe/GRC", + "Europe/HRV", + "Asia/IDN", + "Asia/IND", + "Persian Gulf/IRQ", + "North Africa/ISR", + "Asia/KOR", + "South Africa/LBR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Latam/PER", + "Asia/PHL", + "Europe/POL", + "Persian Gulf/QAT", + "Persian Gulf/SAU", + "South Africa/SEN", + "Europe/SWE", + "Asia/THA", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "South Africa/ZAF", + "Persian Gulf/ARE", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "South Africa/CMR", + "Latam/COL", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "North Africa/EGY", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Europe/GRC", + "Europe/HRV", + "Asia/IDN", + "Asia/IND", + "North Africa/ISR", + "Asia/KOR", + "South Africa/LBR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Latam/PER", + "Asia/PHL", + "Europe/POL", + "Persian Gulf/QAT", + "Persian Gulf/SAU", + "South Africa/SEN", + "Europe/SWE", + "Asia/THA", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "South Africa/ZAF", + "Persian Gulf/ARE", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "South Africa/CMR", + "Latam/COL", + "Latam/CRI", + "Europe/DEU", + "North Africa/DZA", + "North Africa/EGY", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Europe/GRC", + "Europe/HRV", + "Asia/IDN", + "Asia/IND", + "Persian Gulf/IRQ", + "North Africa/ISR", + "Asia/KOR", + "South Africa/LBR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Persian Gulf/OMN", + "Latam/PAN", + "Latam/PER", + "Asia/PHL", + "Europe/POL", + "Persian Gulf/QAT", + "Persian Gulf/SAU", + "South Africa/SEN", + "Europe/SWE", + "Asia/THA", + "North Africa/TUR", + "Pair/USA", + "Latam/VEN", + "Asia/VNM", + "Persian Gulf/YEM", + "Latam/ARG", + "Europe/AUT", + "Persian Gulf/AZE", + "Asia/BGD", + "Latam/BRA", + "Latam/CHL", + "Pair/CHN", + "South Africa/CMR", + "Latam/COL", + "Latam/CRI", + "Europe/DEU", + "North Africa/EGY", + "Europe/ESP", + "Europe/FRA", + "Europe/GBR", + "South Africa/GHA", + "Europe/HRV", + "Asia/IDN", + "Asia/IND", + "North Africa/ISR", + "Asia/KOR", + "North Africa/MAR", + "Latam/MEX", + "South Africa/MOZ", + "South Africa/NGA", + "Europe/NLD", + "Latam/PAN", + "Asia/PHL", + "Europe/POL", + "Europe/SWE", + "Asia/THA", + "North Africa/TUR", + "Pair/USA", + "Asia/VNM", + "South Africa/ZAF", + "Persian Gulf", + "Latam", + "Europe", + "Persian Gulf", + "Asia", + "Latam", + "Latam", + "Pair", + "South Africa", + "Latam", + "Latam", + "Europe", + "North Africa", + "North Africa", + "Europe", + "Europe", + "Europe", + "South Africa", + "Europe", + "Europe", + "Asia", + "Asia", + "Persian Gulf", + "North Africa", + "Asia", + "South Africa", + "North Africa", + "Latam", + "South Africa", + "South Africa", + "Europe", + "Persian Gulf", + "Latam", + "Latam", + "Asia", + "Europe", + "Persian Gulf", + "Persian Gulf", + "South Africa", + "Europe", + "Asia", + "North Africa", + "Pair", + "Latam", + "Asia", + "Persian Gulf", + "South Africa", + "", + "", + "", + "", + "", + "", + "" + ], + "type": "treemap", + "values": [ + 0.9545454545454548, + 0.9545454545454548, + 0.8298946640273919, + 0.8041381029540074, + 0.9786956521739132, + 0.9055353950321428, + 0.8658008658008658, + 0.8041630667784956, + 0.792782754772987, + 0.8259976777571356, + 0.8220626497774737, + 0.8210461476724114, + 0.8101813436763873, + 0.971001604361102, + 0.9289464621791536, + 0.8732908588456849, + 0.9320839327803117, + 0.7799127011297503, + 0.9521230391509398, + 0.8387538514207465, + 0.8873673399520713, + 0.8919696969696971, + 0.9939130434782611, + 0.9772426641825802, + 0.8315151515151515, + 0.8408502506153573, + 0.9545454545454548, + 0.8658008658008658, + 0.9939130434782611, + 0.9418179668098864, + 0.8673029726406383, + 0.9731456263408548, + 0.7813852813852814, + 0.7822341892305151, + 0.9364502164502164, + 0.8679516484927489, + 0.8857699681136173, + 0.7714560308712177, + 0.8584751140436623, + 0.8985904473621558, + 0.8190486045187013, + 0.7893527624833871, + 0.8919696969696971, + 0.8818618218586448, + 0.756628065305478, + 0.7882882882882881, + 0.950300482513086, + 0.8657481566722074, + 0.9365262267264388, + 0.943947221044588, + 0.8874585152838429, + 0.7714763488785487, + 0.9214972959512142, + 0.909072064464046, + 0.7715736896162307, + 0.9290762303990062, + 0.8550758611268748, + 0.7761808341851455, + 0.9819054691235874, + 0.7957985346108523, + 0.9929947676208064, + 0.8598347107438016, + 0.8490800833801486, + 0.9947856385396152, + 0.9990150209905604, + 0.7707081956166205, + 0.8952232922255726, + 7, + 0.8216057600038708, + 0.9000234404536862, + 2, + 0.8075842215036355, + 0.946198347107438, + 0.8021928166351607, + 0.7928741020793951, + 0.9344444444444444, + 0.8578858011832347, + 0.8483379501385041, + 0.7871436798157214, + 0.9025957850286672, + 0.9928936489808848, + 0.9846235837724948, + 0.9527305856232412, + 0.9434321361058602, + 0.9373115797727772, + 0.9350049149338372, + 0.8705701323251417, + 0.986135349716446, + 6, + 0.9357441792403746, + 0.941314332676578, + 0.9860141582025238, + 0.9826843100189036, + 0.9826843100189036, + 0.8050748795127288, + 0.884575512524494, + 0.9417436672967864, + 0.9937805570643936, + 0.9503788875440718, + 7, + 0.9245562130177516, + 0.7654094979252105, + 3.525709648240764, + 3.9026905411411255, + 4.766379713810826, + 4.876995450037458, + 4.995710112859674, + 4.6882193043380065, + 4.817580584327185, + 3.99706906184338, + 4.756877212908356, + 4.840440064763408, + 4.993523000248244, + 4.7096379788957, + 4.388225839975234, + 4.872054421960179, + 4.528241495255111, + 4.693951715358852, + 4.772561704698932, + 4.777510285386392, + 3.5788467426492696, + 3.874610912160782, + 4.6868158980065875, + 4.979496209421201, + 3.8154938650672934, + 4.924437420779924, + 4.935207053112358, + 2.588264135093887, + 4.916174243045312, + 4.873596391437164, + 4.8271676550247005, + 4.825455268304017, + 4.652537154233505, + 4.863593471986783, + 4.959992466058576, + 4.888099767981957, + 3.9261219157493064, + 4.9057369334133405, + 2.940868132838134, + 4.85164369073943, + 4.762044492014911, + 4.620507366750719, + 3.864007343280661, + 4.8975540843983865, + 4.964869316864153, + 4.74954736747019, + 5.994721407649271, + 3.8254338283074345, + 4.694264347520792, + 0.7712684989429177, + 0.7976314145122237, + 0.9416437009068946, + 0.9947856385396152, + 0.7862727272727271, + 0.8586700336700335, + 0.9303687863484544, + 0.8675319709415152, + 0.7920446151287672, + 0.8694866227116197, + 0.8586700336700335, + 0.7834335706711103, + 0.7921764122864366, + 0.934334074623178, + 0.8619283887468031, + 0.7676281237741422, + 0.7631048593350384, + 0.9925507389082384, + 0.978469168274726, + 0.7500718937727315, + 0.8846977863333716, + 0.9378841050418828, + 0.8684059865492091, + 0.8950764254021453, + 0.7740137221269299, + 0.8084175084175084, + 0.8843935880633129, + 0.7975398606698341, + 0.8485069801940157, + 0.7694545454545454, + 0.9679847507357018, + 0.7697689156812738, + 0.7685979300090726, + 0.9842229467473992, + 1.8909956709956712, + 1.6894980275725249, + 2.69374897401215, + 2.875570209104675, + 2.3917706415203943, + 2.62365753273427, + 2.9459190936901978, + 1.6340192025792195, + 2.5798012993793904, + 2.9237999558625103, + 0.8085316277505704, + 0.8227635041015324, + 2.713283581565953, + 1.558495449841848, + 1.5694418074805392, + 1.8513709051389533, + 1.6792587141557807, + 0.8363949697251979, + 0.796839893191436, + 2.5057325750793287, + 2.959048375728506, + 0.7554660388288974, + 1.9711664556579676, + 1.9041504856306979, + 1.7141689795761534, + 2.7950506077328092, + 2.734192621409638, + 1.8610149910467089, + 2.6443530785946225, + 1.7334937585238293, + 1.911703781639717, + 2.9296765097144517, + 2.7468936460173574, + 1.8505531413007172, + 1.9544853283651604, + 0.9783368141256884, + 0.9783368141256884, + 1.5841395700790906, + 0.7524584849903713, + 2.5684077436096553, + 1.8571680107142314, + 1.992595843542, + 0.8911007105869436, + 1.9663960501895916, + 1.7590795384507343, + 2.3426302769450014, + 1.9554072006789496, + 1.6816008151250992, + 1.6922514987460433, + 1.8182374604622509, + 1.7664557153100116, + 1.7984010881166013, + 0.9477543538038498, + 1.8724589656777666, + 1.5932364490690105, + 1.6930207304114007, + 1.657351693470737, + 1.6062929765633287, + 1.8586069819966275, + 0.7905217546826223, + 1.7807483845610523, + 0.948060941828255, + 1.9623659243639664, + 1.8861391109687888, + 1.803885895535925, + 1.9264891578615777, + 0.958536231884058, + 1.7350336477353925, + 1.8432875442233665, + 1.8747567686209865, + 0.8230247277595697, + 1.8170490178472651, + 1.8254320864484423, + 1.5328907287135602, + 1.650862954793141, + 1.8651584365339495, + 0.8231479245485526, + 1.8418227023342582, + 0.944622600300256, + 1.5607231429215238, + 0.9832058480308432, + 0.8890631162040309, + 0.8977160492573557, + 0.9859234217934404, + 0.8546502548557862, + 0.8668958338409165, + 0.9890311615492476, + 0.9350943180643898, + 0.9280169976669376, + 0.8210527935710153, + 0.7559911987169416, + 0.7736264668325739, + 0.863925779862748, + 0.8247230442973539, + 0.8806041934635603, + 0.8250833206612556, + 0.928723519908324, + 0.8668958338409165, + 0.8881896291715989, + 0.9593583027873251, + 0.9061435934718378, + 0.9211354224331691, + 0.8859445107741636, + 0.9398812902982936, + 0.8047278408758268, + 0.9223744981227122, + 0.9230788696114616, + 0.9536631479971994, + 0.9694396869310692, + 0.8131377716690428, + 0.8237517359346238, + 0.8173907278944466, + 0.8965017504270001, + 0.9219048551109622, + 0.9097417836628494, + 0.8553134080531342, + 0.9989920981077092, + 0.917451425335698, + 0.9150177303560064, + 2.4482475283768625, + 2.5297768410493173, + 1.9129618725168718, + 1.9903768491958616, + 1.5790103343268629, + 2.464257323627982, + 2.976585534983704, + 2.5722208927563166, + 2.592219509075364, + 2.7979742993248933, + 1.6489792346354861, + 1.7586278107205235, + 2.514210433148495, + 2.432900348977831, + 2.71621129613582, + 1.6261359470440953, + 2.5395028560978266, + 1.6889759832979863, + 2.6270490865078813, + 2.7620166987142802, + 0.7650792722152088, + 1.9229510200768343, + 2.8006368591744883, + 1.7213102700043061, + 1.78102084647775, + 1.7767917632119423, + 2.7998719537667673, + 1.8510279995114316, + 2.549553758153763, + 1.8743198737875306, + 1.9877316530763527, + 2.601299135217226, + 1.761035420185463, + 2.745773534705939, + 1.8791763913672477, + 0.9248167539267018, + 1.7679139687799554, + 2.4356310413636386, + 2.5426390080555294, + 0.9452382460255262, + 2.9311560623613415, + 0.9104377104377104, + 2.7534511889408266, + 2.68937432223344, + 1.6778987627272341, + 0.9792614678275988, + 0.8553134080531342, + 0.8232860332235971, + 0.909065387196842, + 0.978073311070348, + 0.775995920023485, + 0.8490459410817468, + 0.999122807017544, + 0.8870930627862177, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8672820048414341, + 0.9416562889165628, + 0.7922752675949607, + 0.791670480549199, + 0.936963017728694, + 0.7737464548987709, + 0.8474662292253902, + 0.8291492133323973, + 0.9088064577345945, + 0.9761788895853514, + 0.9770862304997938, + 0.9329580322176916, + 0.993758325008325, + 0.9188951371295636, + 0.9328333806952732, + 0.8980181937554507, + 0.8677050513455755, + 0.9752792033119024, + 0.9882730260033812, + 0.905289786165362, + 0.9143112638406732, + 0.9886242163794032, + 0.9544594777956544, + 0.9581772940528424, + 0.9143045157420016, + 0.8252050839377624, + 0.9001503179694077, + 0.9403303455027592, + 0.999122807017544, + 0.9292464661560496, + 0.999122807017544, + 0.856617686732253, + 0.8374157216227879, + 2.68499123989139, + 1.7106268161062683, + 2.5206134680129115, + 1.904327167961698, + 2.8276206349183237, + 2.292129314259153, + 2.52892279908987, + 2.9547493690556683, + 1.5845777069124942, + 2.575857040561203, + 1.998245614035088, + 0.8462714704650187, + 1.6346268081217818, + 2.6675490805717392, + 0.8017627702025454, + 1.607401251367409, + 1.8990819433308426, + 1.6978742392038142, + 1.6949324584507803, + 1.5465245278334305, + 2.65126115598261, + 2.900983746126216, + 0.7506209000762775, + 1.9710580014755763, + 1.9029483626135344, + 0.8622230550415498, + 2.816084724509409, + 2.838607627417269, + 1.875006267263354, + 1.9148213294395644, + 1.75082291774977, + 1.7379689224340076, + 2.9192009361557396, + 1.874207290101412, + 1.773305074409091, + 2.825637653275979, + 1.5339597003838765, + 2.8367461375629057, + 2.7707904641370193, + 0.7598493905068002, + 1.7874600165938404, + 2.7916679638482678, + 2.9139544401637187, + 0.9024231247013856, + 2.722603364110069, + 1.6680708914353688, + 0.7522123063336182, + 0.82583032730816, + 0.9356248965935622, + 0.9820100634702482, + 0.831081385436793, + 0.8534540516685339, + 0.9818536963567754, + 0.8486878358300123, + 0.9129853629164149, + 0.8998911634924976, + 0.7793718426037994, + 0.932398585032895, + 0.8000124002170039, + 0.7984383476710845, + 0.907326978222119, + 0.838169467510867, + 0.7913646289079624, + 0.9278150139590884, + 0.9506223327256856, + 0.9364530503181744, + 0.941701474767142, + 0.7800217784035494, + 0.9258691777106102, + 0.9376349250962784, + 0.9412635914006204, + 0.8430977292102613, + 0.9461654371370272, + 0.9391302151973808, + 0.968708052390917, + 0.7829559806346367, + 0.8486878358300123, + 0.92049050384555, + 0.9877189123128628, + 0.9672169872900396, + 0.8207867897037397, + 13.975356303939213, + 15.827335750363954, + 19.080608160487813, + 17.84415286631731, + 21.207403655964193, + 18.4240633772225, + 18.563239312513545, + 26.391368395199112, + 14.90340210861769, + 16.234276297125383, + 21.9591174971536, + 13.563001009668547, + 14.456083855147766, + 15.656398463944091, + 15.830650968388248, + 16.73842598468021, + 18.45768704039444, + 14.742753005201548, + 13.880127676564522, + 11.892418305990246, + 17.680125974153697, + 21.118204771593522, + 6.9535559100285935, + 18.3458456056869, + 18.765594242787802, + 8.745472921396429, + 17.73611794482264, + 18.51526528812527, + 19.810183516940047, + 15.853163486533486, + 18.531990501836525, + 16.91921555976989, + 25.175914029999152, + 14.8739083028464, + 13.950347528921885, + 19.81199620326359, + 12.88748868282299, + 14.979392366961466, + 15.845303942977203, + 12.563111626364439, + 15.133279778905958, + 16.796036861934617, + 21.216226455389158, + 13.423031844938595, + 28.18812986897686, + 15.17514049757925, + 14.385177894711061, + 136.04308582130392, + 160.35001747763857, + 162.9961517002884, + 82.99048273153602, + 47.60759485058827, + 98.7343021874187, + 104.28545687637747 + ] + } + ], + "layout": { + "coloraxis": { + "colorbar": { + "title": { + "text": "R^2 Spearman" + } + }, + "colorscale": [ + [ + 0, + "rgb(5,48,97)" + ], + [ + 0.1, + "rgb(33,102,172)" + ], + [ + 0.2, + "rgb(67,147,195)" + ], + [ + 0.3, + "rgb(146,197,222)" + ], + [ + 0.4, + "rgb(209,229,240)" + ], + [ + 0.5, + "rgb(247,247,247)" + ], + [ + 0.6, + "rgb(253,219,199)" + ], + [ + 0.7, + "rgb(244,165,130)" + ], + [ + 0.8, + "rgb(214,96,77)" + ], + [ + 0.9, + "rgb(178,24,43)" + ], + [ + 1, + "rgb(103,0,31)" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "branchvalues": "total", + "customdata": [ + [ + 0.9545454545454548 + ], + [ + 0.9929947676208064 + ], + [ + 0.8851870524742678 + ], + [ + 0.9842229467473992 + ], + [ + 0.9778255798991798 + ], + [ + 0.9832058480308432 + ], + [ + 0.9150177303560064 + ], + [ + 0.9792614678275988 + ], + [ + 0.902115011699789 + ], + [ + 0.9545454545454548 + ], + [ + 0.8598347107438016 + ], + [ + 0.9760183009804816 + ], + [ + 0.7712684989429177 + ], + [ + 0.9455844136023616 + ], + [ + 0.8408064685157908 + ], + [ + 0.818251045869449 + ], + [ + 0.8553134080531343 + ], + [ + 0.8553134080531343 + ], + [ + 0.7522123063336182 + ], + [ + 0.8298946640273919 + ], + [ + 0.8673029726406383 + ], + [ + 0.8490800833801486 + ], + [ + 0.9563486904543473 + ], + [ + 0.7976314145122237 + ], + [ + 0.8448425241372852 + ], + [ + 0.8461257638092973 + ], + [ + 0.8890631162040309 + ], + [ + 0.8456287897798366 + ], + [ + 0.8232860332235971 + ], + [ + 0.8403328845275041 + ], + [ + 0.8258303273081601 + ], + [ + 0.8041381029540074 + ], + [ + 0.9731456263408548 + ], + [ + 0.9947856385396152 + ], + [ + 0.9761317906901431 + ], + [ + 0.9416437009068946 + ], + [ + 0.9027230491457534 + ], + [ + 0.8977160492573557 + ], + [ + 0.9580847637833185 + ], + [ + 0.909065387196842 + ], + [ + 0.9540326981535171 + ], + [ + 0.9356248965935622 + ], + [ + 0.9786956521739132 + ], + [ + 0.7813852813852814 + ], + [ + 0.9990150209905604 + ], + [ + 0.9991429106537756 + ], + [ + 0.9947856385396152 + ], + [ + 0.9614867110807936 + ], + [ + 0.9170015014667736 + ], + [ + 0.9859234217934404 + ], + [ + 0.9951933007390439 + ], + [ + 0.978073311070348 + ], + [ + 0.9451327413498781 + ], + [ + 0.9820100634702482 + ], + [ + 0.9055353950321428 + ], + [ + 0.7822341892305151 + ], + [ + 0.7707081956166206 + ], + [ + 0.9456237038288926 + ], + [ + 0.7862727272727271 + ], + [ + 0.7980731830235919 + ], + [ + 0.8838474478521062 + ], + [ + 0.8546502548557862 + ], + [ + 0.7912762864700013 + ], + [ + 0.775995920023485 + ], + [ + 0.7640931217937306 + ], + [ + 0.831081385436793 + ], + [ + 0.8658008658008658 + ], + [ + 0.8952232922255726 + ], + [ + 0.9650751509200628 + ], + [ + 0.8746942653979919 + ], + [ + 0.8992086440167721 + ], + [ + 0.8668958338409165 + ], + [ + 0.8227036939088314 + ], + [ + 0.8490459410817468 + ], + [ + 0.8475441687513058 + ], + [ + 0.8534540516685338 + ], + [ + 0.8041630667784955 + ], + [ + 0.9364502164502164 + ], + [ + 1 + ], + [ + 0.9992688773416403 + ], + [ + 0.8586700336700335 + ], + [ + 0.982173625627045 + ], + [ + 0.9477543538038498 + ], + [ + 0.9890311615492476 + ], + [ + 0.9922499420681911 + ], + [ + 0.999122807017544 + ], + [ + 0.9852944941444919 + ], + [ + 0.9818536963567754 + ], + [ + 0.8679516484927489 + ], + [ + 0.8216057600038706 + ], + [ + 0.9565325400753372 + ], + [ + 0.9303687863484544 + ], + [ + 0.8170407525717691 + ], + [ + 0.8589952456968621 + ], + [ + 0.8870930627862177 + ], + [ + 0.7927752189233835 + ], + [ + 0.8486878358300123 + ], + [ + 0.9000234404536862 + ], + [ + 0.9695419255177564 + ], + [ + 0.86364166104721 + ], + [ + 0.9350943180643897 + ], + [ + 0.8647618655419143 + ], + [ + 0.897855261911528 + ], + [ + 0.8625290260955841 + ], + [ + 0.9129853629164147 + ], + [ + 0.792782754772987 + ], + [ + 0.8857699681136173 + ], + [ + 1 + ], + [ + 0.9987068093750369 + ], + [ + 0.8675319709415152 + ], + [ + 0.9753325360829251 + ], + [ + 0.936233164174384 + ], + [ + 0.9280169976669376 + ], + [ + 0.9409418177584535 + ], + [ + 0.999122807017544 + ], + [ + 0.999122807017544 + ], + [ + 0.8998911634924976 + ], + [ + 0.7714560308712177 + ], + [ + 0.9475024401781991 + ], + [ + 0.7920446151287672 + ], + [ + 0.8085316277505704 + ], + [ + 0.796618231225969 + ], + [ + 0.8210527935710153 + ], + [ + 0.8256742643429589 + ], + [ + 0.79241896667796 + ], + [ + 0.8462714704650187 + ], + [ + 0.7793718426037994 + ], + [ + 0.8584751140436623 + ], + [ + 0.8075842215036355 + ], + [ + 0.8857395145550301 + ], + [ + 0.8694866227116197 + ], + [ + 0.8227635041015324 + ], + [ + 0.8465483817977032 + ], + [ + 0.7559911987169416 + ], + [ + 0.8795442701574369 + ], + [ + 0.8672820048414341 + ], + [ + 0.8219143476518825 + ], + [ + 0.8259976777571356 + ], + [ + 0.8985904473621558 + ], + [ + 0.946198347107438 + ], + [ + 0.9753277328120716 + ], + [ + 0.8586700336700335 + ], + [ + 0.9050828653095765 + ], + [ + 0.9416562889165628 + ], + [ + 0.8967294298470624 + ], + [ + 0.932398585032895 + ], + [ + 0.8190486045187014 + ], + [ + 0.8021928166351607 + ], + [ + 0.9168763739323124 + ], + [ + 0.7834335706711103 + ], + [ + 0.7795272007374761 + ], + [ + 0.8286759028531826 + ], + [ + 0.7736264668325739 + ], + [ + 0.8406025749327211 + ], + [ + 0.7922752675949607 + ], + [ + 0.8017627702025453 + ], + [ + 0.800012400217004 + ], + [ + 0.7893527624833871 + ], + [ + 0.7928741020793951 + ], + [ + 0.9450570112882524 + ], + [ + 0.7921764122864366 + ], + [ + 0.7847482435439043 + ], + [ + 0.8031469436294986 + ], + [ + 0.863925779862748 + ], + [ + 0.8151093945882026 + ], + [ + 0.7916704805491989 + ], + [ + 0.8038806981974395 + ], + [ + 0.7984383476710843 + ], + [ + 0.8220626497774737 + ], + [ + 0.9344444444444444 + ], + [ + 0.9561427615655672 + ], + [ + 0.934334074623178 + ], + [ + 0.9256978729594237 + ], + [ + 0.9293067948377257 + ], + [ + 0.824723044297354 + ], + [ + 0.9059966318464586 + ], + [ + 0.936963017728694 + ], + [ + 0.9498918260670621 + ], + [ + 0.907326978222119 + ], + [ + 0.8210461476724114 + ], + [ + 0.8578858011832347 + ], + [ + 0.9583497755641666 + ], + [ + 0.8399105171503202 + ], + [ + 0.7905217546826223 + ], + [ + 0.8806041934635603 + ], + [ + 0.8166754057049967 + ], + [ + 0.7737464548987709 + ], + [ + 0.8490347926552761 + ], + [ + 0.838169467510867 + ], + [ + 0.8919696969696971 + ], + [ + 0.8483379501385041 + ], + [ + 0.9028572378928654 + ], + [ + 0.8619283887468031 + ], + [ + 0.8363949697251979 + ], + [ + 0.8904874214357624 + ], + [ + 0.8511791199028763 + ], + [ + 0.84746622922539 + ], + [ + 0.84746622922539 + ], + [ + 0.8101813436763873 + ], + [ + 0.7871436798157215 + ], + [ + 0.9691937864973333 + ], + [ + 0.7676281237741422 + ], + [ + 0.796839893191436 + ], + [ + 0.8485266432095069 + ], + [ + 0.8291492133323973 + ], + [ + 0.7734960799030078 + ], + [ + 0.7913646289079624 + ], + [ + 0.8818618218586448 + ], + [ + 0.9025957850286672 + ], + [ + 0.9432189294688625 + ], + [ + 0.7631048593350384 + ], + [ + 0.8383432015465867 + ], + [ + 0.8250833206612556 + ], + [ + 0.8787529330292853 + ], + [ + 0.9088064577345945 + ], + [ + 0.8839061116873433 + ], + [ + 0.9278150139590884 + ], + [ + 0.971001604361102 + ], + [ + 0.756628065305478 + ], + [ + 0.9928936489808848 + ], + [ + 0.9959122759401721 + ], + [ + 0.9925507389082384 + ], + [ + 0.9863864764646757 + ], + [ + 0.948060941828255 + ], + [ + 0.928723519908324 + ], + [ + 0.9296027452970655 + ], + [ + 0.9761788895853514 + ], + [ + 0.9683581632195862 + ], + [ + 0.9506223327256856 + ], + [ + 0.9568210784484368 + ], + [ + 0.7554660388288974 + ], + [ + 0.8668958338409165 + ], + [ + 0.7650792722152087 + ], + [ + 0.7506209000762774 + ], + [ + 0.9289464621791536 + ], + [ + 0.7882882882882881 + ], + [ + 0.9846235837724948 + ], + [ + 0.9850037718095089 + ], + [ + 0.978469168274726 + ], + [ + 0.9855862184585922 + ], + [ + 0.9811830535079085 + ], + [ + 0.9619755843239752 + ], + [ + 0.9770862304997938 + ], + [ + 0.9855295339596895 + ], + [ + 0.9364530503181744 + ], + [ + 0.8732908588456849 + ], + [ + 0.950300482513086 + ], + [ + 0.9873834917666393 + ], + [ + 0.7500718937727315 + ], + [ + 0.9520878541945509 + ], + [ + 0.9430707787644872 + ], + [ + 0.8881896291715989 + ], + [ + 0.933549766771479 + ], + [ + 0.9329580322176916 + ], + [ + 0.9514741813067672 + ], + [ + 0.9417014747671419 + ], + [ + 0.8657481566722074 + ], + [ + 0.86399109137214 + ], + [ + 0.8571756370037503 + ], + [ + 0.8616019267536854 + ], + [ + 0.993758325008325 + ], + [ + 0.8622230550415498 + ], + [ + 0.9320839327803117 + ], + [ + 0.9527305856232412 + ], + [ + 0.9834901908565283 + ], + [ + 0.8846977863333716 + ], + [ + 0.9320075788738773 + ], + [ + 0.9593583027873251 + ], + [ + 0.8917618172659301 + ], + [ + 0.9188951371295636 + ], + [ + 0.9391417960180795 + ], + [ + 0.7800217784035494 + ], + [ + 0.7799127011297503 + ], + [ + 0.9434321361058602 + ], + [ + 0.9751694139594816 + ], + [ + 0.9137979468970369 + ], + [ + 0.9019468547619269 + ], + [ + 0.9061435934718377 + ], + [ + 0.8911984476376517 + ], + [ + 0.9328333806952732 + ], + [ + 0.9462242522861426 + ], + [ + 0.9258691777106102 + ], + [ + 0.9521230391509398 + ], + [ + 0.9365262267264388 + ], + [ + 0.9373115797727772 + ], + [ + 0.9664949318756285 + ], + [ + 0.9378841050418828 + ], + [ + 0.9305464260268369 + ], + [ + 0.9634201249462099 + ], + [ + 0.9211354224331691 + ], + [ + 0.933616428382211 + ], + [ + 0.8980181937554507 + ], + [ + 0.9375061608356837 + ], + [ + 0.9376349250962784 + ], + [ + 0.8387538514207465 + ], + [ + 0.943947221044588 + ], + [ + 0.9350049149338372 + ], + [ + 0.9658991512978881 + ], + [ + 0.8839893265526511 + ], + [ + 0.958536231884058 + ], + [ + 0.9271005715678781 + ], + [ + 0.9575017523170773 + ], + [ + 0.9412635914006205 + ], + [ + 0.8873673399520713 + ], + [ + 0.887458515283843 + ], + [ + 0.8705701323251417 + ], + [ + 0.9338839388947628 + ], + [ + 0.8684059865492091 + ], + [ + 0.8667688956398026 + ], + [ + 0.8675191856081045 + ], + [ + 0.8859445107741636 + ], + [ + 0.851440816574498 + ], + [ + 0.8677050513455755 + ], + [ + 0.8754792997928964 + ], + [ + 0.8430977292102612 + ], + [ + 0.8919696969696971 + ], + [ + 0.986135349716446 + ], + [ + 0.9729988505742541 + ], + [ + 0.8950764254021453 + ], + [ + 0.9565556274733968 + ], + [ + 0.923455550886179 + ], + [ + 0.9398812902982936 + ], + [ + 0.9386368447253942 + ], + [ + 0.9752792033119024 + ], + [ + 0.8691445841404749 + ], + [ + 0.9939130434782611 + ], + [ + 0.7714763488785488 + ], + [ + 1 + ], + [ + 0.9920443424912717 + ], + [ + 0.9768781082130975 + ], + [ + 0.9374024748908731 + ], + [ + 0.8047278408758268 + ], + [ + 0.9938851274719704 + ], + [ + 0.9882730260033812 + ], + [ + 0.9744970451625167 + ], + [ + 0.9461654371370272 + ], + [ + 0.9357441792403746 + ], + [ + 0.978264239074848 + ], + [ + 0.9163601262566885 + ], + [ + 0.9223744981227123 + ], + [ + 0.8711690044217546 + ], + [ + 0.905289786165362 + ], + [ + 0.937103645050706 + ], + [ + 0.9214972959512142 + ], + [ + 0.941314332676578 + ], + [ + 0.982089188379848 + ], + [ + 0.9255520299748177 + ], + [ + 0.9230788696114616 + ], + [ + 0.8810631396615008 + ], + [ + 0.9143112638406732 + ], + [ + 0.8900437264297159 + ], + [ + 0.9391302151973808 + ], + [ + 0.9772426641825802 + ], + [ + 0.909072064464046 + ], + [ + 0.9860141582025238 + ], + [ + 0.9814197405280587 + ], + [ + 0.7740137221269299 + ], + [ + 0.9772426641825802 + ], + [ + 0.8230247277595698 + ], + [ + 0.9536631479971994 + ], + [ + 0.921688151199631 + ], + [ + 0.9886242163794032 + ], + [ + 0.9458526284056905 + ], + [ + 0.968708052390917 + ], + [ + 0.8315151515151515 + ], + [ + 0.9826843100189036 + ], + [ + 0.9805854024658918 + ], + [ + 0.9783368141256884 + ], + [ + 0.9086032637241696 + ], + [ + 0.9694396869310692 + ], + [ + 0.9413328398731196 + ], + [ + 0.9544594777956544 + ], + [ + 0.7670322793380222 + ], + [ + 0.9826843100189036 + ], + [ + 0.9712344546795939 + ], + [ + 0.8084175084175085 + ], + [ + 0.9783368141256884 + ], + [ + 0.9127305916495537 + ], + [ + 0.8131377716690427 + ], + [ + 0.9248167539267018 + ], + [ + 0.9581772940528424 + ], + [ + 0.9484258109649947 + ], + [ + 0.8050748795127288 + ], + [ + 0.9585968264597382 + ], + [ + 0.8843935880633129 + ], + [ + 0.792235381129738 + ], + [ + 0.7665916695558189 + ], + [ + 0.8237517359346237 + ], + [ + 0.8843734470618795 + ], + [ + 0.9143045157420016 + ], + [ + 0.9239645181768363 + ], + [ + 0.7715736896162309 + ], + [ + 0.9327668804010679 + ], + [ + 0.7975398606698341 + ], + [ + 0.7524584849903713 + ], + [ + 0.8173907278944466 + ], + [ + 0.8173749505019134 + ], + [ + 0.8252050839377624 + ], + [ + 0.7598493905068002 + ], + [ + 0.7829559806346367 + ], + [ + 0.8408502506153573 + ], + [ + 0.884575512524494 + ], + [ + 0.9682230338987912 + ], + [ + 0.8575423023217223 + ], + [ + 0.8965017504270001 + ], + [ + 0.8519312620027872 + ], + [ + 0.9001503179694077 + ], + [ + 0.8938204854275072 + ], + [ + 0.8486878358300123 + ], + [ + 0.9290762303990062 + ], + [ + 0.9417436672967864 + ], + [ + 0.979979971601552 + ], + [ + 0.9290731879016672 + ], + [ + 0.8254317065802806 + ], + [ + 0.9219048551109622 + ], + [ + 0.9452382460255262 + ], + [ + 0.9403303455027593 + ], + [ + 0.9311584694225717 + ], + [ + 0.92049050384555 + ], + [ + 0.9545454545454548 + ], + [ + 0.8550758611268748 + ], + [ + 0.9937805570643936 + ], + [ + 0.9931318361728348 + ], + [ + 0.8485069801940157 + ], + [ + 0.9962986984489235 + ], + [ + 0.9325818823090927 + ], + [ + 0.9097417836628494 + ], + [ + 0.9778974468240862 + ], + [ + 0.999122807017544 + ], + [ + 0.9725009394724591 + ], + [ + 0.9877189123128628 + ], + [ + 0.8658008658008658 + ], + [ + 0.7761808341851454 + ], + [ + 0.9503788875440718 + ], + [ + 0.9547263868647838 + ], + [ + 0.7694545454545454 + ], + [ + 0.8911007105869436 + ], + [ + 0.8231479245485526 + ], + [ + 0.8553134080531343 + ], + [ + 0.9104377104377104 + ], + [ + 0.9292464661560496 + ], + [ + 0.9024231247013856 + ], + [ + 0.9939130434782611 + ], + [ + 0.9819054691235874 + ], + [ + 1 + ], + [ + 0.9991229961585949 + ], + [ + 0.9679847507357018 + ], + [ + 0.9834143597963373 + ], + [ + 0.9211698832963091 + ], + [ + 0.9989920981077092 + ], + [ + 0.9298937661136578 + ], + [ + 0.999122807017544 + ], + [ + 0.9122905881685385 + ], + [ + 0.9672169872900396 + ], + [ + 0.9418179668098864 + ], + [ + 0.7957985346108523 + ], + [ + 0.9245562130177516 + ], + [ + 0.9571215257648876 + ], + [ + 0.7697689156812739 + ], + [ + 0.8828238788355364 + ], + [ + 0.944622600300256 + ], + [ + 0.8983798996067152 + ], + [ + 0.8566176867322529 + ], + [ + 0.8340807178909053 + ], + [ + 0.7654094979252105 + ], + [ + 0.9472118045082988 + ], + [ + 0.7685979300090726 + ], + [ + 0.7810872522403144 + ], + [ + 0.7805040946287232 + ], + [ + 0.917451425335698 + ], + [ + 0.8473313810536809 + ], + [ + 0.8374157216227878 + ], + [ + 0.8207867897037397 + ], + [ + 0.9356915211255111 + ], + [ + 0.8868922607689099 + ], + [ + 0.9783881137485578 + ], + [ + 0.9834825170884762 + ], + [ + 0.9078412687095335 + ], + [ + 0.9288265325384094 + ], + [ + 0.9302892268132428 + ], + [ + 0.9242220901098175 + ], + [ + 0.9136981917088984 + ], + [ + 0.9456508016611644 + ], + [ + 0.9232986117159362 + ], + [ + 0.9384233122417885 + ], + [ + 0.8697824343899775 + ], + [ + 0.8418086358878542 + ], + [ + 0.8639165764309158 + ], + [ + 0.9451179054753562 + ], + [ + 0.8200759187451886 + ], + [ + 0.8526780228484186 + ], + [ + 0.8519994363177413 + ], + [ + 0.856898450536545 + ], + [ + 0.8547884175142144 + ], + [ + 0.8540567799876048 + ], + [ + 0.8606883836837109 + ], + [ + 0.8374790158038531 + ], + [ + 0.8857985176694988 + ], + [ + 0.8067115696702831 + ], + [ + 0.9549874334268079 + ], + [ + 0.9730200669858708 + ], + [ + 0.8006666785588092 + ], + [ + 0.9093241244311725 + ], + [ + 0.8955872822512388 + ], + [ + 0.8862405116622968 + ], + [ + 0.8773670374324827 + ], + [ + 0.9085125104626818 + ], + [ + 0.9000686264025657 + ], + [ + 0.8789631520435636 + ], + [ + 0.898388139488992 + ], + [ + 0.8718049611136595 + ], + [ + 0.9306400155184964 + ], + [ + 0.9635531525502393 + ], + [ + 0.900340278528574 + ], + [ + 0.9258287236010101 + ], + [ + 0.8897694460204704 + ], + [ + 0.8879688080398852 + ], + [ + 0.9173678773055751 + ], + [ + 0.9304518743906068 + ], + [ + 0.9193106084617566 + ], + [ + 0.8970921018969952 + ], + [ + 0.8857836553786925 + ], + [ + 0.8976111240012502 + ], + [ + 0.9992268037105778 + ], + [ + 0.9958689870380286 + ], + [ + 0.853618757941474 + ], + [ + 0.9878728209828004 + ], + [ + 0.9376939412277037 + ], + [ + 0.9510419642385431 + ], + [ + 0.9851288785024326 + ], + [ + 0.999122807017544 + ], + [ + 0.9789421825176071 + ], + [ + 0.9847950373863604 + ], + [ + 0.8887558080451063 + ], + [ + 0.8933621267643042 + ], + [ + 0.9778985314325723 + ], + [ + 0.9589557751596074 + ], + [ + 0.8591560778970743 + ], + [ + 0.9210937389206877 + ], + [ + 0.932965128471987 + ], + [ + 0.915580671631156 + ], + [ + 0.9173632130767951 + ], + [ + 0.9408031482198341 + ], + [ + 0.8821805940697954 + ], + [ + 0.9356248965935622 + ], + [ + 0.8745139302030989 + ], + [ + 0.905041744113866 + ], + [ + 0.8585586589686451 + ], + [ + 0.9510420939651661 + ], + [ + 0.8855129343887855 + ], + [ + 0.844675536943791 + ], + [ + 0.8557909658954573 + ], + [ + 0.8874651525776813 + ], + [ + 0.8801104988813591 + ], + [ + 0.8892399648499411 + ], + [ + 0.8960598802732446 + ], + [ + 0.8803348783076717 + ], + [ + 0.8925781053983015 + ], + [ + 0.8669121532489861 + ], + [ + 0.9466593000827263 + ], + [ + 0.9635769468803167 + ], + [ + 0.857115021887757 + ], + [ + 0.9022594876692729 + ], + [ + 0.8919186422010325 + ], + [ + 0.8961790031980065 + ], + [ + 0.8923289881657289 + ], + [ + 0.9120775227299308 + ], + [ + 0.9017568137619744 + ], + [ + 0.8922074475884191 + ] + ], + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "labels=%{label}
R^2 Spearman_sum=%{value}
parent=%{parent}
id=%{id}
R^2 Spearman=%{color}", + "ids": [ + "A&D/Persian Gulf/ARE", + "Demography/Persian Gulf/ARE", + "Economy/Persian Gulf/ARE", + "Environment/Persian Gulf/ARE", + "Equality/Persian Gulf/ARE", + "Exports/Persian Gulf/ARE", + "Health/Persian Gulf/ARE", + "Internet/Persian Gulf/ARE", + "Mortality/Persian Gulf/ARE", + "A&D/Latam/ARG", + "Demography/Latam/ARG", + "Economy/Latam/ARG", + "Employment/Latam/ARG", + "Environment/Latam/ARG", + "Equality/Latam/ARG", + "Health/Latam/ARG", + "Internet/Latam/ARG", + "Mortality/Latam/ARG", + "Principal/Latam/ARG", + "A&D/Europe/AUT", + "Agriculture/Europe/AUT", + "Demography/Europe/AUT", + "Economy/Europe/AUT", + "Employment/Europe/AUT", + "Environment/Europe/AUT", + "Equality/Europe/AUT", + "Exports/Europe/AUT", + "Health/Europe/AUT", + "Internet/Europe/AUT", + "Mortality/Europe/AUT", + "Principal/Europe/AUT", + "A&D/Persian Gulf/AZE", + "Agriculture/Persian Gulf/AZE", + "Demography/Persian Gulf/AZE", + "Economy/Persian Gulf/AZE", + "Employment/Persian Gulf/AZE", + "Environment/Persian Gulf/AZE", + "Exports/Persian Gulf/AZE", + "Health/Persian Gulf/AZE", + "Internet/Persian Gulf/AZE", + "Mortality/Persian Gulf/AZE", + "Principal/Persian Gulf/AZE", + "A&D/Asia/BGD", + "Agriculture/Asia/BGD", + "Demography/Asia/BGD", + "Economy/Asia/BGD", + "Employment/Asia/BGD", + "Environment/Asia/BGD", + "Equality/Asia/BGD", + "Exports/Asia/BGD", + "Health/Asia/BGD", + "Internet/Asia/BGD", + "Mortality/Asia/BGD", + "Principal/Asia/BGD", + "A&D/Latam/BRA", + "Agriculture/Latam/BRA", + "Demography/Latam/BRA", + "Economy/Latam/BRA", + "Employment/Latam/BRA", + "Environment/Latam/BRA", + "Equality/Latam/BRA", + "Exports/Latam/BRA", + "Health/Latam/BRA", + "Internet/Latam/BRA", + "Mortality/Latam/BRA", + "Principal/Latam/BRA", + "A&D/Latam/CHL", + "Demography/Latam/CHL", + "Economy/Latam/CHL", + "Environment/Latam/CHL", + "Equality/Latam/CHL", + "Exports/Latam/CHL", + "Health/Latam/CHL", + "Internet/Latam/CHL", + "Mortality/Latam/CHL", + "Principal/Latam/CHL", + "A&D/Pair/CHN", + "Agriculture/Pair/CHN", + "Demography/Pair/CHN", + "Economy/Pair/CHN", + "Employment/Pair/CHN", + "Environment/Pair/CHN", + "Equality/Pair/CHN", + "Exports/Pair/CHN", + "Health/Pair/CHN", + "Internet/Pair/CHN", + "Mortality/Pair/CHN", + "Principal/Pair/CHN", + "Agriculture/South Africa/CMR", + "Demography/South Africa/CMR", + "Economy/South Africa/CMR", + "Employment/South Africa/CMR", + "Environment/South Africa/CMR", + "Health/South Africa/CMR", + "Internet/South Africa/CMR", + "Mortality/South Africa/CMR", + "Principal/South Africa/CMR", + "Demography/Latam/COL", + "Economy/Latam/COL", + "Environment/Latam/COL", + "Exports/Latam/COL", + "Health/Latam/COL", + "Internet/Latam/COL", + "Mortality/Latam/COL", + "Principal/Latam/COL", + "A&D/Latam/CRI", + "Agriculture/Latam/CRI", + "Demography/Latam/CRI", + "Economy/Latam/CRI", + "Employment/Latam/CRI", + "Environment/Latam/CRI", + "Equality/Latam/CRI", + "Exports/Latam/CRI", + "Health/Latam/CRI", + "Internet/Latam/CRI", + "Mortality/Latam/CRI", + "Principal/Latam/CRI", + "Agriculture/Europe/DEU", + "Economy/Europe/DEU", + "Employment/Europe/DEU", + "Environment/Europe/DEU", + "Equality/Europe/DEU", + "Exports/Europe/DEU", + "Health/Europe/DEU", + "Internet/Europe/DEU", + "Mortality/Europe/DEU", + "Principal/Europe/DEU", + "Agriculture/North Africa/DZA", + "Demography/North Africa/DZA", + "Economy/North Africa/DZA", + "Employment/North Africa/DZA", + "Environment/North Africa/DZA", + "Equality/North Africa/DZA", + "Exports/North Africa/DZA", + "Health/North Africa/DZA", + "Internet/North Africa/DZA", + "Mortality/North Africa/DZA", + "A&D/North Africa/EGY", + "Agriculture/North Africa/EGY", + "Demography/North Africa/EGY", + "Economy/North Africa/EGY", + "Employment/North Africa/EGY", + "Environment/North Africa/EGY", + "Internet/North Africa/EGY", + "Mortality/North Africa/EGY", + "Principal/North Africa/EGY", + "Agriculture/Europe/ESP", + "Demography/Europe/ESP", + "Economy/Europe/ESP", + "Employment/Europe/ESP", + "Environment/Europe/ESP", + "Equality/Europe/ESP", + "Exports/Europe/ESP", + "Health/Europe/ESP", + "Internet/Europe/ESP", + "Mortality/Europe/ESP", + "Principal/Europe/ESP", + "Agriculture/Europe/FRA", + "Demography/Europe/FRA", + "Economy/Europe/FRA", + "Employment/Europe/FRA", + "Environment/Europe/FRA", + "Equality/Europe/FRA", + "Exports/Europe/FRA", + "Health/Europe/FRA", + "Internet/Europe/FRA", + "Mortality/Europe/FRA", + "Principal/Europe/FRA", + "A&D/Europe/GBR", + "Demography/Europe/GBR", + "Economy/Europe/GBR", + "Employment/Europe/GBR", + "Environment/Europe/GBR", + "Equality/Europe/GBR", + "Exports/Europe/GBR", + "Health/Europe/GBR", + "Internet/Europe/GBR", + "Mortality/Europe/GBR", + "Principal/Europe/GBR", + "A&D/South Africa/GHA", + "Demography/South Africa/GHA", + "Economy/South Africa/GHA", + "Environment/South Africa/GHA", + "Equality/South Africa/GHA", + "Exports/South Africa/GHA", + "Health/South Africa/GHA", + "Internet/South Africa/GHA", + "Mortality/South Africa/GHA", + "Principal/South Africa/GHA", + "Agriculture/Europe/GRC", + "Demography/Europe/GRC", + "Economy/Europe/GRC", + "Employment/Europe/GRC", + "Environment/Europe/GRC", + "Equality/Europe/GRC", + "Health/Europe/GRC", + "Internet/Europe/GRC", + "Mortality/Europe/GRC", + "A&D/Europe/HRV", + "Demography/Europe/HRV", + "Economy/Europe/HRV", + "Employment/Europe/HRV", + "Environment/Europe/HRV", + "Health/Europe/HRV", + "Internet/Europe/HRV", + "Mortality/Europe/HRV", + "Principal/Europe/HRV", + "Agriculture/Asia/IDN", + "Demography/Asia/IDN", + "Economy/Asia/IDN", + "Employment/Asia/IDN", + "Environment/Asia/IDN", + "Exports/Asia/IDN", + "Health/Asia/IDN", + "Internet/Asia/IDN", + "Mortality/Asia/IDN", + "Principal/Asia/IDN", + "A&D/Asia/IND", + "Agriculture/Asia/IND", + "Demography/Asia/IND", + "Economy/Asia/IND", + "Employment/Asia/IND", + "Environment/Asia/IND", + "Equality/Asia/IND", + "Exports/Asia/IND", + "Health/Asia/IND", + "Internet/Asia/IND", + "Mortality/Asia/IND", + "Principal/Asia/IND", + "Economy/Persian Gulf/IRQ", + "Environment/Persian Gulf/IRQ", + "Exports/Persian Gulf/IRQ", + "Health/Persian Gulf/IRQ", + "Mortality/Persian Gulf/IRQ", + "A&D/North Africa/ISR", + "Agriculture/North Africa/ISR", + "Demography/North Africa/ISR", + "Economy/North Africa/ISR", + "Employment/North Africa/ISR", + "Environment/North Africa/ISR", + "Equality/North Africa/ISR", + "Health/North Africa/ISR", + "Internet/North Africa/ISR", + "Mortality/North Africa/ISR", + "Principal/North Africa/ISR", + "A&D/Asia/KOR", + "Agriculture/Asia/KOR", + "Economy/Asia/KOR", + "Employment/Asia/KOR", + "Environment/Asia/KOR", + "Equality/Asia/KOR", + "Exports/Asia/KOR", + "Health/Asia/KOR", + "Internet/Asia/KOR", + "Mortality/Asia/KOR", + "Principal/Asia/KOR", + "Agriculture/South Africa/LBR", + "Economy/South Africa/LBR", + "Environment/South Africa/LBR", + "Health/South Africa/LBR", + "Internet/South Africa/LBR", + "Mortality/South Africa/LBR", + "A&D/North Africa/MAR", + "Demography/North Africa/MAR", + "Economy/North Africa/MAR", + "Employment/North Africa/MAR", + "Environment/North Africa/MAR", + "Exports/North Africa/MAR", + "Health/North Africa/MAR", + "Internet/North Africa/MAR", + "Mortality/North Africa/MAR", + "Principal/North Africa/MAR", + "A&D/Latam/MEX", + "Demography/Latam/MEX", + "Economy/Latam/MEX", + "Environment/Latam/MEX", + "Equality/Latam/MEX", + "Exports/Latam/MEX", + "Health/Latam/MEX", + "Internet/Latam/MEX", + "Mortality/Latam/MEX", + "Principal/Latam/MEX", + "A&D/South Africa/MOZ", + "Agriculture/South Africa/MOZ", + "Demography/South Africa/MOZ", + "Economy/South Africa/MOZ", + "Employment/South Africa/MOZ", + "Environment/South Africa/MOZ", + "Equality/South Africa/MOZ", + "Exports/South Africa/MOZ", + "Health/South Africa/MOZ", + "Internet/South Africa/MOZ", + "Mortality/South Africa/MOZ", + "Principal/South Africa/MOZ", + "A&D/South Africa/NGA", + "Agriculture/South Africa/NGA", + "Demography/South Africa/NGA", + "Economy/South Africa/NGA", + "Environment/South Africa/NGA", + "Equality/South Africa/NGA", + "Health/South Africa/NGA", + "Mortality/South Africa/NGA", + "Principal/South Africa/NGA", + "A&D/Europe/NLD", + "Agriculture/Europe/NLD", + "Demography/Europe/NLD", + "Economy/Europe/NLD", + "Employment/Europe/NLD", + "Environment/Europe/NLD", + "Equality/Europe/NLD", + "Exports/Europe/NLD", + "Health/Europe/NLD", + "Internet/Europe/NLD", + "Mortality/Europe/NLD", + "Principal/Europe/NLD", + "A&D/Persian Gulf/OMN", + "Demography/Persian Gulf/OMN", + "Economy/Persian Gulf/OMN", + "Employment/Persian Gulf/OMN", + "Environment/Persian Gulf/OMN", + "Equality/Persian Gulf/OMN", + "Exports/Persian Gulf/OMN", + "Health/Persian Gulf/OMN", + "Internet/Persian Gulf/OMN", + "Mortality/Persian Gulf/OMN", + "A&D/Latam/PAN", + "Agriculture/Latam/PAN", + "Demography/Latam/PAN", + "Economy/Latam/PAN", + "Environment/Latam/PAN", + "Equality/Latam/PAN", + "Exports/Latam/PAN", + "Health/Latam/PAN", + "Internet/Latam/PAN", + "Mortality/Latam/PAN", + "Principal/Latam/PAN", + "Demography/Latam/PER", + "Economy/Latam/PER", + "Environment/Latam/PER", + "Exports/Latam/PER", + "Health/Latam/PER", + "Internet/Latam/PER", + "Mortality/Latam/PER", + "Agriculture/Asia/PHL", + "Demography/Asia/PHL", + "Economy/Asia/PHL", + "Environment/Asia/PHL", + "Exports/Asia/PHL", + "Health/Asia/PHL", + "Internet/Asia/PHL", + "Mortality/Asia/PHL", + "Principal/Asia/PHL", + "A&D/Europe/POL", + "Agriculture/Europe/POL", + "Demography/Europe/POL", + "Economy/Europe/POL", + "Employment/Europe/POL", + "Environment/Europe/POL", + "Equality/Europe/POL", + "Exports/Europe/POL", + "Health/Europe/POL", + "Internet/Europe/POL", + "Mortality/Europe/POL", + "Principal/Europe/POL", + "A&D/Persian Gulf/QAT", + "Demography/Persian Gulf/QAT", + "Economy/Persian Gulf/QAT", + "Environment/Persian Gulf/QAT", + "Equality/Persian Gulf/QAT", + "Exports/Persian Gulf/QAT", + "Health/Persian Gulf/QAT", + "Internet/Persian Gulf/QAT", + "Mortality/Persian Gulf/QAT", + "Demography/Persian Gulf/SAU", + "Economy/Persian Gulf/SAU", + "Employment/Persian Gulf/SAU", + "Environment/Persian Gulf/SAU", + "Equality/Persian Gulf/SAU", + "Exports/Persian Gulf/SAU", + "Health/Persian Gulf/SAU", + "Internet/Persian Gulf/SAU", + "Mortality/Persian Gulf/SAU", + "Demography/South Africa/SEN", + "Economy/South Africa/SEN", + "Employment/South Africa/SEN", + "Environment/South Africa/SEN", + "Equality/South Africa/SEN", + "Exports/South Africa/SEN", + "Health/South Africa/SEN", + "Internet/South Africa/SEN", + "Mortality/South Africa/SEN", + "Agriculture/Europe/SWE", + "Economy/Europe/SWE", + "Employment/Europe/SWE", + "Environment/Europe/SWE", + "Exports/Europe/SWE", + "Health/Europe/SWE", + "Internet/Europe/SWE", + "Mortality/Europe/SWE", + "Principal/Europe/SWE", + "A&D/Asia/THA", + "Demography/Asia/THA", + "Economy/Asia/THA", + "Environment/Asia/THA", + "Exports/Asia/THA", + "Health/Asia/THA", + "Internet/Asia/THA", + "Mortality/Asia/THA", + "Principal/Asia/THA", + "Agriculture/North Africa/TUR", + "Demography/North Africa/TUR", + "Economy/North Africa/TUR", + "Environment/North Africa/TUR", + "Equality/North Africa/TUR", + "Exports/North Africa/TUR", + "Health/North Africa/TUR", + "Internet/North Africa/TUR", + "Mortality/North Africa/TUR", + "Principal/North Africa/TUR", + "A&D/Pair/USA", + "Agriculture/Pair/USA", + "Demography/Pair/USA", + "Economy/Pair/USA", + "Employment/Pair/USA", + "Environment/Pair/USA", + "Equality/Pair/USA", + "Exports/Pair/USA", + "Health/Pair/USA", + "Internet/Pair/USA", + "Mortality/Pair/USA", + "Principal/Pair/USA", + "A&D/Latam/VEN", + "Agriculture/Latam/VEN", + "Demography/Latam/VEN", + "Economy/Latam/VEN", + "Employment/Latam/VEN", + "Environment/Latam/VEN", + "Equality/Latam/VEN", + "Exports/Latam/VEN", + "Health/Latam/VEN", + "Internet/Latam/VEN", + "Mortality/Latam/VEN", + "A&D/Asia/VNM", + "Agriculture/Asia/VNM", + "Demography/Asia/VNM", + "Economy/Asia/VNM", + "Employment/Asia/VNM", + "Environment/Asia/VNM", + "Equality/Asia/VNM", + "Exports/Asia/VNM", + "Health/Asia/VNM", + "Internet/Asia/VNM", + "Mortality/Asia/VNM", + "Principal/Asia/VNM", + "A&D/Persian Gulf/YEM", + "Agriculture/Persian Gulf/YEM", + "Demography/Persian Gulf/YEM", + "Economy/Persian Gulf/YEM", + "Employment/Persian Gulf/YEM", + "Environment/Persian Gulf/YEM", + "Equality/Persian Gulf/YEM", + "Health/Persian Gulf/YEM", + "Internet/Persian Gulf/YEM", + "Mortality/Persian Gulf/YEM", + "Demography/South Africa/ZAF", + "Economy/South Africa/ZAF", + "Employment/South Africa/ZAF", + "Environment/South Africa/ZAF", + "Equality/South Africa/ZAF", + "Exports/South Africa/ZAF", + "Health/South Africa/ZAF", + "Internet/South Africa/ZAF", + "Principal/South Africa/ZAF", + "A&D/Asia", + "Agriculture/Asia", + "Demography/Asia", + "Economy/Asia", + "Employment/Asia", + "Environment/Asia", + "Equality/Asia", + "Exports/Asia", + "Health/Asia", + "Internet/Asia", + "Mortality/Asia", + "Principal/Asia", + "A&D/Europe", + "Agriculture/Europe", + "Demography/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Equality/Europe", + "Exports/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "A&D/Latam", + "Agriculture/Latam", + "Demography/Latam", + "Economy/Latam", + "Employment/Latam", + "Environment/Latam", + "Equality/Latam", + "Exports/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "Principal/Latam", + "A&D/North Africa", + "Agriculture/North Africa", + "Demography/North Africa", + "Economy/North Africa", + "Employment/North Africa", + "Environment/North Africa", + "Equality/North Africa", + "Exports/North Africa", + "Health/North Africa", + "Internet/North Africa", + "Mortality/North Africa", + "Principal/North Africa", + "A&D/Pair", + "Agriculture/Pair", + "Demography/Pair", + "Economy/Pair", + "Employment/Pair", + "Environment/Pair", + "Equality/Pair", + "Exports/Pair", + "Health/Pair", + "Internet/Pair", + "Mortality/Pair", + "Principal/Pair", + "A&D/Persian Gulf", + "Agriculture/Persian Gulf", + "Demography/Persian Gulf", + "Economy/Persian Gulf", + "Employment/Persian Gulf", + "Environment/Persian Gulf", + "Equality/Persian Gulf", + "Exports/Persian Gulf", + "Health/Persian Gulf", + "Internet/Persian Gulf", + "Mortality/Persian Gulf", + "Principal/Persian Gulf", + "A&D/South Africa", + "Agriculture/South Africa", + "Demography/South Africa", + "Economy/South Africa", + "Employment/South Africa", + "Environment/South Africa", + "Equality/South Africa", + "Exports/South Africa", + "Health/South Africa", + "Internet/South Africa", + "Mortality/South Africa", + "Principal/South Africa", + "A&D", + "Agriculture", + "Demography", + "Economy", + "Employment", + "Environment", + "Equality", + "Exports", + "Health", + "Internet", + "Mortality", + "Principal" + ], + "labels": [ + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARE", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "ARG", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AUT", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "AZE", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BGD", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "BRA", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHL", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CHN", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "CMR", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "COL", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "CRI", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DEU", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "DZA", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "EGY", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "ESP", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "FRA", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GBR", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GHA", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "GRC", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "HRV", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IDN", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IND", + "IRQ", + "IRQ", + "IRQ", + "IRQ", + "IRQ", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "ISR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "KOR", + "LBR", + "LBR", + "LBR", + "LBR", + "LBR", + "LBR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MAR", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MEX", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "MOZ", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NGA", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "NLD", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "OMN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PAN", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PER", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "PHL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "POL", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "QAT", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SAU", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SEN", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "SWE", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "THA", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "TUR", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "USA", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VEN", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "VNM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "YEM", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "ZAF", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Asia", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Europe", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "Latam", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "North Africa", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Pair", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "Persian Gulf", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "South Africa", + "A&D", + "Agriculture", + "Demography", + "Economy", + "Employment", + "Environment", + "Equality", + "Exports", + "Health", + "Internet", + "Mortality", + "Principal" + ], + "marker": { + "coloraxis": "coloraxis", + "colors": [ + 0.9545454545454548, + 0.9929947676208064, + 0.8851870524742678, + 0.9842229467473992, + 0.9778255798991798, + 0.9832058480308432, + 0.9150177303560064, + 0.9792614678275988, + 0.902115011699789, + 0.9545454545454548, + 0.8598347107438016, + 0.9760183009804816, + 0.7712684989429177, + 0.9455844136023616, + 0.8408064685157908, + 0.818251045869449, + 0.8553134080531343, + 0.8553134080531343, + 0.7522123063336182, + 0.8298946640273919, + 0.8673029726406383, + 0.8490800833801486, + 0.9563486904543473, + 0.7976314145122237, + 0.8448425241372852, + 0.8461257638092973, + 0.8890631162040309, + 0.8456287897798366, + 0.8232860332235971, + 0.8403328845275041, + 0.8258303273081601, + 0.8041381029540074, + 0.9731456263408548, + 0.9947856385396152, + 0.9761317906901431, + 0.9416437009068946, + 0.9027230491457534, + 0.8977160492573557, + 0.9580847637833185, + 0.909065387196842, + 0.9540326981535171, + 0.9356248965935622, + 0.9786956521739132, + 0.7813852813852814, + 0.9990150209905604, + 0.9991429106537756, + 0.9947856385396152, + 0.9614867110807936, + 0.9170015014667736, + 0.9859234217934404, + 0.9951933007390439, + 0.978073311070348, + 0.9451327413498781, + 0.9820100634702482, + 0.9055353950321428, + 0.7822341892305151, + 0.7707081956166206, + 0.9456237038288926, + 0.7862727272727271, + 0.7980731830235919, + 0.8838474478521062, + 0.8546502548557862, + 0.7912762864700013, + 0.775995920023485, + 0.7640931217937306, + 0.831081385436793, + 0.8658008658008658, + 0.8952232922255726, + 0.9650751509200628, + 0.8746942653979919, + 0.8992086440167721, + 0.8668958338409165, + 0.8227036939088314, + 0.8490459410817468, + 0.8475441687513058, + 0.8534540516685338, + 0.8041630667784955, + 0.9364502164502164, + 1, + 0.9992688773416403, + 0.8586700336700335, + 0.982173625627045, + 0.9477543538038498, + 0.9890311615492476, + 0.9922499420681911, + 0.999122807017544, + 0.9852944941444919, + 0.9818536963567754, + 0.8679516484927489, + 0.8216057600038706, + 0.9565325400753372, + 0.9303687863484544, + 0.8170407525717691, + 0.8589952456968621, + 0.8870930627862177, + 0.7927752189233835, + 0.8486878358300123, + 0.9000234404536862, + 0.9695419255177564, + 0.86364166104721, + 0.9350943180643897, + 0.8647618655419143, + 0.897855261911528, + 0.8625290260955841, + 0.9129853629164147, + 0.792782754772987, + 0.8857699681136173, + 1, + 0.9987068093750369, + 0.8675319709415152, + 0.9753325360829251, + 0.936233164174384, + 0.9280169976669376, + 0.9409418177584535, + 0.999122807017544, + 0.999122807017544, + 0.8998911634924976, + 0.7714560308712177, + 0.9475024401781991, + 0.7920446151287672, + 0.8085316277505704, + 0.796618231225969, + 0.8210527935710153, + 0.8256742643429589, + 0.79241896667796, + 0.8462714704650187, + 0.7793718426037994, + 0.8584751140436623, + 0.8075842215036355, + 0.8857395145550301, + 0.8694866227116197, + 0.8227635041015324, + 0.8465483817977032, + 0.7559911987169416, + 0.8795442701574369, + 0.8672820048414341, + 0.8219143476518825, + 0.8259976777571356, + 0.8985904473621558, + 0.946198347107438, + 0.9753277328120716, + 0.8586700336700335, + 0.9050828653095765, + 0.9416562889165628, + 0.8967294298470624, + 0.932398585032895, + 0.8190486045187014, + 0.8021928166351607, + 0.9168763739323124, + 0.7834335706711103, + 0.7795272007374761, + 0.8286759028531826, + 0.7736264668325739, + 0.8406025749327211, + 0.7922752675949607, + 0.8017627702025453, + 0.800012400217004, + 0.7893527624833871, + 0.7928741020793951, + 0.9450570112882524, + 0.7921764122864366, + 0.7847482435439043, + 0.8031469436294986, + 0.863925779862748, + 0.8151093945882026, + 0.7916704805491989, + 0.8038806981974395, + 0.7984383476710843, + 0.8220626497774737, + 0.9344444444444444, + 0.9561427615655672, + 0.934334074623178, + 0.9256978729594237, + 0.9293067948377257, + 0.824723044297354, + 0.9059966318464586, + 0.936963017728694, + 0.9498918260670621, + 0.907326978222119, + 0.8210461476724114, + 0.8578858011832347, + 0.9583497755641666, + 0.8399105171503202, + 0.7905217546826223, + 0.8806041934635603, + 0.8166754057049967, + 0.7737464548987709, + 0.8490347926552761, + 0.838169467510867, + 0.8919696969696971, + 0.8483379501385041, + 0.9028572378928654, + 0.8619283887468031, + 0.8363949697251979, + 0.8904874214357624, + 0.8511791199028763, + 0.84746622922539, + 0.84746622922539, + 0.8101813436763873, + 0.7871436798157215, + 0.9691937864973333, + 0.7676281237741422, + 0.796839893191436, + 0.8485266432095069, + 0.8291492133323973, + 0.7734960799030078, + 0.7913646289079624, + 0.8818618218586448, + 0.9025957850286672, + 0.9432189294688625, + 0.7631048593350384, + 0.8383432015465867, + 0.8250833206612556, + 0.8787529330292853, + 0.9088064577345945, + 0.8839061116873433, + 0.9278150139590884, + 0.971001604361102, + 0.756628065305478, + 0.9928936489808848, + 0.9959122759401721, + 0.9925507389082384, + 0.9863864764646757, + 0.948060941828255, + 0.928723519908324, + 0.9296027452970655, + 0.9761788895853514, + 0.9683581632195862, + 0.9506223327256856, + 0.9568210784484368, + 0.7554660388288974, + 0.8668958338409165, + 0.7650792722152087, + 0.7506209000762774, + 0.9289464621791536, + 0.7882882882882881, + 0.9846235837724948, + 0.9850037718095089, + 0.978469168274726, + 0.9855862184585922, + 0.9811830535079085, + 0.9619755843239752, + 0.9770862304997938, + 0.9855295339596895, + 0.9364530503181744, + 0.8732908588456849, + 0.950300482513086, + 0.9873834917666393, + 0.7500718937727315, + 0.9520878541945509, + 0.9430707787644872, + 0.8881896291715989, + 0.933549766771479, + 0.9329580322176916, + 0.9514741813067672, + 0.9417014747671419, + 0.8657481566722074, + 0.86399109137214, + 0.8571756370037503, + 0.8616019267536854, + 0.993758325008325, + 0.8622230550415498, + 0.9320839327803117, + 0.9527305856232412, + 0.9834901908565283, + 0.8846977863333716, + 0.9320075788738773, + 0.9593583027873251, + 0.8917618172659301, + 0.9188951371295636, + 0.9391417960180795, + 0.7800217784035494, + 0.7799127011297503, + 0.9434321361058602, + 0.9751694139594816, + 0.9137979468970369, + 0.9019468547619269, + 0.9061435934718377, + 0.8911984476376517, + 0.9328333806952732, + 0.9462242522861426, + 0.9258691777106102, + 0.9521230391509398, + 0.9365262267264388, + 0.9373115797727772, + 0.9664949318756285, + 0.9378841050418828, + 0.9305464260268369, + 0.9634201249462099, + 0.9211354224331691, + 0.933616428382211, + 0.8980181937554507, + 0.9375061608356837, + 0.9376349250962784, + 0.8387538514207465, + 0.943947221044588, + 0.9350049149338372, + 0.9658991512978881, + 0.8839893265526511, + 0.958536231884058, + 0.9271005715678781, + 0.9575017523170773, + 0.9412635914006205, + 0.8873673399520713, + 0.887458515283843, + 0.8705701323251417, + 0.9338839388947628, + 0.8684059865492091, + 0.8667688956398026, + 0.8675191856081045, + 0.8859445107741636, + 0.851440816574498, + 0.8677050513455755, + 0.8754792997928964, + 0.8430977292102612, + 0.8919696969696971, + 0.986135349716446, + 0.9729988505742541, + 0.8950764254021453, + 0.9565556274733968, + 0.923455550886179, + 0.9398812902982936, + 0.9386368447253942, + 0.9752792033119024, + 0.8691445841404749, + 0.9939130434782611, + 0.7714763488785488, + 1, + 0.9920443424912717, + 0.9768781082130975, + 0.9374024748908731, + 0.8047278408758268, + 0.9938851274719704, + 0.9882730260033812, + 0.9744970451625167, + 0.9461654371370272, + 0.9357441792403746, + 0.978264239074848, + 0.9163601262566885, + 0.9223744981227123, + 0.8711690044217546, + 0.905289786165362, + 0.937103645050706, + 0.9214972959512142, + 0.941314332676578, + 0.982089188379848, + 0.9255520299748177, + 0.9230788696114616, + 0.8810631396615008, + 0.9143112638406732, + 0.8900437264297159, + 0.9391302151973808, + 0.9772426641825802, + 0.909072064464046, + 0.9860141582025238, + 0.9814197405280587, + 0.7740137221269299, + 0.9772426641825802, + 0.8230247277595698, + 0.9536631479971994, + 0.921688151199631, + 0.9886242163794032, + 0.9458526284056905, + 0.968708052390917, + 0.8315151515151515, + 0.9826843100189036, + 0.9805854024658918, + 0.9783368141256884, + 0.9086032637241696, + 0.9694396869310692, + 0.9413328398731196, + 0.9544594777956544, + 0.7670322793380222, + 0.9826843100189036, + 0.9712344546795939, + 0.8084175084175085, + 0.9783368141256884, + 0.9127305916495537, + 0.8131377716690427, + 0.9248167539267018, + 0.9581772940528424, + 0.9484258109649947, + 0.8050748795127288, + 0.9585968264597382, + 0.8843935880633129, + 0.792235381129738, + 0.7665916695558189, + 0.8237517359346237, + 0.8843734470618795, + 0.9143045157420016, + 0.9239645181768363, + 0.7715736896162309, + 0.9327668804010679, + 0.7975398606698341, + 0.7524584849903713, + 0.8173907278944466, + 0.8173749505019134, + 0.8252050839377624, + 0.7598493905068002, + 0.7829559806346367, + 0.8408502506153573, + 0.884575512524494, + 0.9682230338987912, + 0.8575423023217223, + 0.8965017504270001, + 0.8519312620027872, + 0.9001503179694077, + 0.8938204854275072, + 0.8486878358300123, + 0.9290762303990062, + 0.9417436672967864, + 0.979979971601552, + 0.9290731879016672, + 0.8254317065802806, + 0.9219048551109622, + 0.9452382460255262, + 0.9403303455027593, + 0.9311584694225717, + 0.92049050384555, + 0.9545454545454548, + 0.8550758611268748, + 0.9937805570643936, + 0.9931318361728348, + 0.8485069801940157, + 0.9962986984489235, + 0.9325818823090927, + 0.9097417836628494, + 0.9778974468240862, + 0.999122807017544, + 0.9725009394724591, + 0.9877189123128628, + 0.8658008658008658, + 0.7761808341851454, + 0.9503788875440718, + 0.9547263868647838, + 0.7694545454545454, + 0.8911007105869436, + 0.8231479245485526, + 0.8553134080531343, + 0.9104377104377104, + 0.9292464661560496, + 0.9024231247013856, + 0.9939130434782611, + 0.9819054691235874, + 1, + 0.9991229961585949, + 0.9679847507357018, + 0.9834143597963373, + 0.9211698832963091, + 0.9989920981077092, + 0.9298937661136578, + 0.999122807017544, + 0.9122905881685385, + 0.9672169872900396, + 0.9418179668098864, + 0.7957985346108523, + 0.9245562130177516, + 0.9571215257648876, + 0.7697689156812739, + 0.8828238788355364, + 0.944622600300256, + 0.8983798996067152, + 0.8566176867322529, + 0.8340807178909053, + 0.7654094979252105, + 0.9472118045082988, + 0.7685979300090726, + 0.7810872522403144, + 0.7805040946287232, + 0.917451425335698, + 0.8473313810536809, + 0.8374157216227878, + 0.8207867897037397, + 0.9356915211255111, + 0.8868922607689099, + 0.9783881137485578, + 0.9834825170884762, + 0.9078412687095335, + 0.9288265325384094, + 0.9302892268132428, + 0.9242220901098175, + 0.9136981917088984, + 0.9456508016611644, + 0.9232986117159362, + 0.9384233122417885, + 0.8697824343899775, + 0.8418086358878542, + 0.8639165764309158, + 0.9451179054753562, + 0.8200759187451886, + 0.8526780228484186, + 0.8519994363177413, + 0.856898450536545, + 0.8547884175142144, + 0.8540567799876048, + 0.8606883836837109, + 0.8374790158038531, + 0.8857985176694988, + 0.8067115696702831, + 0.9549874334268079, + 0.9730200669858708, + 0.8006666785588092, + 0.9093241244311725, + 0.8955872822512388, + 0.8862405116622968, + 0.8773670374324827, + 0.9085125104626818, + 0.9000686264025657, + 0.8789631520435636, + 0.898388139488992, + 0.8718049611136595, + 0.9306400155184964, + 0.9635531525502393, + 0.900340278528574, + 0.9258287236010101, + 0.8897694460204704, + 0.8879688080398852, + 0.9173678773055751, + 0.9304518743906068, + 0.9193106084617566, + 0.8970921018969952, + 0.8857836553786925, + 0.8976111240012502, + 0.9992268037105778, + 0.9958689870380286, + 0.853618757941474, + 0.9878728209828004, + 0.9376939412277037, + 0.9510419642385431, + 0.9851288785024326, + 0.999122807017544, + 0.9789421825176071, + 0.9847950373863604, + 0.8887558080451063, + 0.8933621267643042, + 0.9778985314325723, + 0.9589557751596074, + 0.8591560778970743, + 0.9210937389206877, + 0.932965128471987, + 0.915580671631156, + 0.9173632130767951, + 0.9408031482198341, + 0.8821805940697954, + 0.9356248965935622, + 0.8745139302030989, + 0.905041744113866, + 0.8585586589686451, + 0.9510420939651661, + 0.8855129343887855, + 0.844675536943791, + 0.8557909658954573, + 0.8874651525776813, + 0.8801104988813591, + 0.8892399648499411, + 0.8960598802732446, + 0.8803348783076717, + 0.8925781053983015, + 0.8669121532489861, + 0.9466593000827263, + 0.9635769468803167, + 0.857115021887757, + 0.9022594876692729, + 0.8919186422010325, + 0.8961790031980065, + 0.8923289881657289, + 0.9120775227299308, + 0.9017568137619744, + 0.8922074475884191 + ] + }, + "name": "", + "parents": [ + "A&D/Persian Gulf", + "Demography/Persian Gulf", + "Economy/Persian Gulf", + "Environment/Persian Gulf", + "Equality/Persian Gulf", + "Exports/Persian Gulf", + "Health/Persian Gulf", + "Internet/Persian Gulf", + "Mortality/Persian Gulf", + "A&D/Latam", + "Demography/Latam", + "Economy/Latam", + "Employment/Latam", + "Environment/Latam", + "Equality/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "Principal/Latam", + "A&D/Europe", + "Agriculture/Europe", + "Demography/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Equality/Europe", + "Exports/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "A&D/Persian Gulf", + "Agriculture/Persian Gulf", + "Demography/Persian Gulf", + "Economy/Persian Gulf", + "Employment/Persian Gulf", + "Environment/Persian Gulf", + "Exports/Persian Gulf", + "Health/Persian Gulf", + "Internet/Persian Gulf", + "Mortality/Persian Gulf", + "Principal/Persian Gulf", + "A&D/Asia", + "Agriculture/Asia", + "Demography/Asia", + "Economy/Asia", + "Employment/Asia", + "Environment/Asia", + "Equality/Asia", + "Exports/Asia", + "Health/Asia", + "Internet/Asia", + "Mortality/Asia", + "Principal/Asia", + "A&D/Latam", + "Agriculture/Latam", + "Demography/Latam", + "Economy/Latam", + "Employment/Latam", + "Environment/Latam", + "Equality/Latam", + "Exports/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "Principal/Latam", + "A&D/Latam", + "Demography/Latam", + "Economy/Latam", + "Environment/Latam", + "Equality/Latam", + "Exports/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "Principal/Latam", + "A&D/Pair", + "Agriculture/Pair", + "Demography/Pair", + "Economy/Pair", + "Employment/Pair", + "Environment/Pair", + "Equality/Pair", + "Exports/Pair", + "Health/Pair", + "Internet/Pair", + "Mortality/Pair", + "Principal/Pair", + "Agriculture/South Africa", + "Demography/South Africa", + "Economy/South Africa", + "Employment/South Africa", + "Environment/South Africa", + "Health/South Africa", + "Internet/South Africa", + "Mortality/South Africa", + "Principal/South Africa", + "Demography/Latam", + "Economy/Latam", + "Environment/Latam", + "Exports/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "Principal/Latam", + "A&D/Latam", + "Agriculture/Latam", + "Demography/Latam", + "Economy/Latam", + "Employment/Latam", + "Environment/Latam", + "Equality/Latam", + "Exports/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "Principal/Latam", + "Agriculture/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Equality/Europe", + "Exports/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "Agriculture/North Africa", + "Demography/North Africa", + "Economy/North Africa", + "Employment/North Africa", + "Environment/North Africa", + "Equality/North Africa", + "Exports/North Africa", + "Health/North Africa", + "Internet/North Africa", + "Mortality/North Africa", + "A&D/North Africa", + "Agriculture/North Africa", + "Demography/North Africa", + "Economy/North Africa", + "Employment/North Africa", + "Environment/North Africa", + "Internet/North Africa", + "Mortality/North Africa", + "Principal/North Africa", + "Agriculture/Europe", + "Demography/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Equality/Europe", + "Exports/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "Agriculture/Europe", + "Demography/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Equality/Europe", + "Exports/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "A&D/Europe", + "Demography/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Equality/Europe", + "Exports/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "A&D/South Africa", + "Demography/South Africa", + "Economy/South Africa", + "Environment/South Africa", + "Equality/South Africa", + "Exports/South Africa", + "Health/South Africa", + "Internet/South Africa", + "Mortality/South Africa", + "Principal/South Africa", + "Agriculture/Europe", + "Demography/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Equality/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "A&D/Europe", + "Demography/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "Agriculture/Asia", + "Demography/Asia", + "Economy/Asia", + "Employment/Asia", + "Environment/Asia", + "Exports/Asia", + "Health/Asia", + "Internet/Asia", + "Mortality/Asia", + "Principal/Asia", + "A&D/Asia", + "Agriculture/Asia", + "Demography/Asia", + "Economy/Asia", + "Employment/Asia", + "Environment/Asia", + "Equality/Asia", + "Exports/Asia", + "Health/Asia", + "Internet/Asia", + "Mortality/Asia", + "Principal/Asia", + "Economy/Persian Gulf", + "Environment/Persian Gulf", + "Exports/Persian Gulf", + "Health/Persian Gulf", + "Mortality/Persian Gulf", + "A&D/North Africa", + "Agriculture/North Africa", + "Demography/North Africa", + "Economy/North Africa", + "Employment/North Africa", + "Environment/North Africa", + "Equality/North Africa", + "Health/North Africa", + "Internet/North Africa", + "Mortality/North Africa", + "Principal/North Africa", + "A&D/Asia", + "Agriculture/Asia", + "Economy/Asia", + "Employment/Asia", + "Environment/Asia", + "Equality/Asia", + "Exports/Asia", + "Health/Asia", + "Internet/Asia", + "Mortality/Asia", + "Principal/Asia", + "Agriculture/South Africa", + "Economy/South Africa", + "Environment/South Africa", + "Health/South Africa", + "Internet/South Africa", + "Mortality/South Africa", + "A&D/North Africa", + "Demography/North Africa", + "Economy/North Africa", + "Employment/North Africa", + "Environment/North Africa", + "Exports/North Africa", + "Health/North Africa", + "Internet/North Africa", + "Mortality/North Africa", + "Principal/North Africa", + "A&D/Latam", + "Demography/Latam", + "Economy/Latam", + "Environment/Latam", + "Equality/Latam", + "Exports/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "Principal/Latam", + "A&D/South Africa", + "Agriculture/South Africa", + "Demography/South Africa", + "Economy/South Africa", + "Employment/South Africa", + "Environment/South Africa", + "Equality/South Africa", + "Exports/South Africa", + "Health/South Africa", + "Internet/South Africa", + "Mortality/South Africa", + "Principal/South Africa", + "A&D/South Africa", + "Agriculture/South Africa", + "Demography/South Africa", + "Economy/South Africa", + "Environment/South Africa", + "Equality/South Africa", + "Health/South Africa", + "Mortality/South Africa", + "Principal/South Africa", + "A&D/Europe", + "Agriculture/Europe", + "Demography/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Equality/Europe", + "Exports/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "A&D/Persian Gulf", + "Demography/Persian Gulf", + "Economy/Persian Gulf", + "Employment/Persian Gulf", + "Environment/Persian Gulf", + "Equality/Persian Gulf", + "Exports/Persian Gulf", + "Health/Persian Gulf", + "Internet/Persian Gulf", + "Mortality/Persian Gulf", + "A&D/Latam", + "Agriculture/Latam", + "Demography/Latam", + "Economy/Latam", + "Environment/Latam", + "Equality/Latam", + "Exports/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "Principal/Latam", + "Demography/Latam", + "Economy/Latam", + "Environment/Latam", + "Exports/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "Agriculture/Asia", + "Demography/Asia", + "Economy/Asia", + "Environment/Asia", + "Exports/Asia", + "Health/Asia", + "Internet/Asia", + "Mortality/Asia", + "Principal/Asia", + "A&D/Europe", + "Agriculture/Europe", + "Demography/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Equality/Europe", + "Exports/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "A&D/Persian Gulf", + "Demography/Persian Gulf", + "Economy/Persian Gulf", + "Environment/Persian Gulf", + "Equality/Persian Gulf", + "Exports/Persian Gulf", + "Health/Persian Gulf", + "Internet/Persian Gulf", + "Mortality/Persian Gulf", + "Demography/Persian Gulf", + "Economy/Persian Gulf", + "Employment/Persian Gulf", + "Environment/Persian Gulf", + "Equality/Persian Gulf", + "Exports/Persian Gulf", + "Health/Persian Gulf", + "Internet/Persian Gulf", + "Mortality/Persian Gulf", + "Demography/South Africa", + "Economy/South Africa", + "Employment/South Africa", + "Environment/South Africa", + "Equality/South Africa", + "Exports/South Africa", + "Health/South Africa", + "Internet/South Africa", + "Mortality/South Africa", + "Agriculture/Europe", + "Economy/Europe", + "Employment/Europe", + "Environment/Europe", + "Exports/Europe", + "Health/Europe", + "Internet/Europe", + "Mortality/Europe", + "Principal/Europe", + "A&D/Asia", + "Demography/Asia", + "Economy/Asia", + "Environment/Asia", + "Exports/Asia", + "Health/Asia", + "Internet/Asia", + "Mortality/Asia", + "Principal/Asia", + "Agriculture/North Africa", + "Demography/North Africa", + "Economy/North Africa", + "Environment/North Africa", + "Equality/North Africa", + "Exports/North Africa", + "Health/North Africa", + "Internet/North Africa", + "Mortality/North Africa", + "Principal/North Africa", + "A&D/Pair", + "Agriculture/Pair", + "Demography/Pair", + "Economy/Pair", + "Employment/Pair", + "Environment/Pair", + "Equality/Pair", + "Exports/Pair", + "Health/Pair", + "Internet/Pair", + "Mortality/Pair", + "Principal/Pair", + "A&D/Latam", + "Agriculture/Latam", + "Demography/Latam", + "Economy/Latam", + "Employment/Latam", + "Environment/Latam", + "Equality/Latam", + "Exports/Latam", + "Health/Latam", + "Internet/Latam", + "Mortality/Latam", + "A&D/Asia", + "Agriculture/Asia", + "Demography/Asia", + "Economy/Asia", + "Employment/Asia", + "Environment/Asia", + "Equality/Asia", + "Exports/Asia", + "Health/Asia", + "Internet/Asia", + "Mortality/Asia", + "Principal/Asia", + "A&D/Persian Gulf", + "Agriculture/Persian Gulf", + "Demography/Persian Gulf", + "Economy/Persian Gulf", + "Employment/Persian Gulf", + "Environment/Persian Gulf", + "Equality/Persian Gulf", + "Health/Persian Gulf", + "Internet/Persian Gulf", + "Mortality/Persian Gulf", + "Demography/South Africa", + "Economy/South Africa", + "Employment/South Africa", + "Environment/South Africa", + "Equality/South Africa", + "Exports/South Africa", + "Health/South Africa", + "Internet/South Africa", + "Principal/South Africa", + "A&D", + "Agriculture", + "Demography", + "Economy", + "Employment", + "Environment", + "Equality", + "Exports", + "Health", + "Internet", + "Mortality", + "Principal", + "A&D", + "Agriculture", + "Demography", + "Economy", + "Employment", + "Environment", + "Equality", + "Exports", + "Health", + "Internet", + "Mortality", + "Principal", + "A&D", + "Agriculture", + "Demography", + "Economy", + "Employment", + "Environment", + "Equality", + "Exports", + "Health", + "Internet", + "Mortality", + "Principal", + "A&D", + "Agriculture", + "Demography", + "Economy", + "Employment", + "Environment", + "Equality", + "Exports", + "Health", + "Internet", + "Mortality", + "Principal", + "A&D", + "Agriculture", + "Demography", + "Economy", + "Employment", + "Environment", + "Equality", + "Exports", + "Health", + "Internet", + "Mortality", + "Principal", + "A&D", + "Agriculture", + "Demography", + "Economy", + "Employment", + "Environment", + "Equality", + "Exports", + "Health", + "Internet", + "Mortality", + "Principal", + "A&D", + "Agriculture", + "Demography", + "Economy", + "Employment", + "Environment", + "Equality", + "Exports", + "Health", + "Internet", + "Mortality", + "Principal", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "" + ], + "type": "treemap", + "values": [ + 0.9545454545454548, + 0.9929947676208064, + 3.525709648240764, + 0.9842229467473992, + 1.9554072006789496, + 0.9832058480308432, + 0.9150177303560064, + 0.9792614678275988, + 2.68499123989139, + 0.9545454545454548, + 0.8598347107438016, + 3.9026905411411255, + 0.7712684989429177, + 1.8909956709956712, + 1.6816008151250992, + 2.4482475283768625, + 0.8553134080531342, + 1.7106268161062683, + 0.7522123063336182, + 0.8298946640273919, + 0.8673029726406383, + 0.8490800833801486, + 4.766379713810826, + 0.7976314145122237, + 1.6894980275725249, + 1.6922514987460433, + 0.8890631162040309, + 2.5297768410493173, + 0.8232860332235971, + 2.5206134680129115, + 0.82583032730816, + 0.8041381029540074, + 0.9731456263408548, + 0.9947856385396152, + 4.876995450037458, + 0.9416437009068946, + 2.69374897401215, + 0.8977160492573557, + 1.9129618725168718, + 0.909065387196842, + 1.904327167961698, + 0.9356248965935622, + 0.9786956521739132, + 0.7813852813852814, + 0.9990150209905604, + 4.995710112859674, + 0.9947856385396152, + 2.875570209104675, + 1.8182374604622509, + 0.9859234217934404, + 1.9903768491958616, + 0.978073311070348, + 2.8276206349183237, + 0.9820100634702482, + 0.9055353950321428, + 0.7822341892305151, + 0.7707081956166205, + 4.6882193043380065, + 0.7862727272727271, + 2.3917706415203943, + 1.7664557153100116, + 0.8546502548557862, + 1.5790103343268629, + 0.775995920023485, + 2.292129314259153, + 0.831081385436793, + 0.8658008658008658, + 0.8952232922255726, + 4.817580584327185, + 2.62365753273427, + 1.7984010881166013, + 0.8668958338409165, + 2.464257323627982, + 0.8490459410817468, + 2.52892279908987, + 0.8534540516685339, + 0.8041630667784956, + 0.9364502164502164, + 7, + 3.99706906184338, + 0.8586700336700335, + 2.9459190936901978, + 0.9477543538038498, + 0.9890311615492476, + 2.976585534983704, + 0.999122807017544, + 2.9547493690556683, + 0.9818536963567754, + 0.8679516484927489, + 0.8216057600038708, + 4.756877212908356, + 0.9303687863484544, + 1.6340192025792195, + 2.5722208927563166, + 0.8870930627862177, + 1.5845777069124942, + 0.8486878358300123, + 0.9000234404536862, + 4.840440064763408, + 2.5798012993793904, + 0.9350943180643898, + 2.592219509075364, + 0.897855261911528, + 2.575857040561203, + 0.9129853629164149, + 0.792782754772987, + 0.8857699681136173, + 2, + 4.993523000248244, + 0.8675319709415152, + 2.9237999558625103, + 1.8724589656777666, + 0.9280169976669376, + 2.7979742993248933, + 0.999122807017544, + 1.998245614035088, + 0.8998911634924976, + 0.7714560308712177, + 4.7096379788957, + 0.7920446151287672, + 0.8085316277505704, + 1.5932364490690105, + 0.8210527935710153, + 1.6489792346354861, + 0.79241896667796, + 0.8462714704650187, + 0.7793718426037994, + 0.8584751140436623, + 0.8075842215036355, + 4.388225839975234, + 0.8694866227116197, + 0.8227635041015324, + 1.6930207304114007, + 0.7559911987169416, + 1.7586278107205235, + 0.8672820048414341, + 1.6346268081217818, + 0.8259976777571356, + 0.8985904473621558, + 0.946198347107438, + 4.872054421960179, + 0.8586700336700335, + 2.713283581565953, + 0.9416562889165628, + 2.6675490805717392, + 0.932398585032895, + 0.8190486045187013, + 0.8021928166351607, + 4.528241495255111, + 0.7834335706711103, + 1.558495449841848, + 1.657351693470737, + 0.7736264668325739, + 2.514210433148495, + 0.7922752675949607, + 0.8017627702025454, + 0.8000124002170039, + 0.7893527624833871, + 0.7928741020793951, + 4.693951715358852, + 0.7921764122864366, + 1.5694418074805392, + 1.6062929765633287, + 0.863925779862748, + 2.432900348977831, + 0.791670480549199, + 1.607401251367409, + 0.7984383476710845, + 0.8220626497774737, + 0.9344444444444444, + 4.772561704698932, + 0.934334074623178, + 1.8513709051389533, + 1.8586069819966275, + 0.8247230442973539, + 2.71621129613582, + 0.936963017728694, + 1.8990819433308426, + 0.907326978222119, + 0.8210461476724114, + 0.8578858011832347, + 4.777510285386392, + 1.6792587141557807, + 0.7905217546826223, + 0.8806041934635603, + 1.6261359470440953, + 0.7737464548987709, + 1.6978742392038142, + 0.838169467510867, + 0.8919696969696971, + 0.8483379501385041, + 3.5788467426492696, + 0.8619283887468031, + 0.8363949697251979, + 1.7807483845610523, + 2.5395028560978266, + 0.8474662292253902, + 1.6949324584507803, + 0.8101813436763873, + 0.7871436798157214, + 3.874610912160782, + 0.7676281237741422, + 0.796839893191436, + 1.6889759832979863, + 0.8291492133323973, + 1.5465245278334305, + 0.7913646289079624, + 0.8818618218586448, + 0.9025957850286672, + 4.6868158980065875, + 0.7631048593350384, + 2.5057325750793287, + 0.8250833206612556, + 2.6270490865078813, + 0.9088064577345945, + 2.65126115598261, + 0.9278150139590884, + 0.971001604361102, + 0.756628065305478, + 0.9928936489808848, + 4.979496209421201, + 0.9925507389082384, + 2.959048375728506, + 0.948060941828255, + 0.928723519908324, + 2.7620166987142802, + 0.9761788895853514, + 2.900983746126216, + 0.9506223327256856, + 3.8154938650672934, + 0.7554660388288974, + 0.8668958338409165, + 0.7650792722152088, + 0.7506209000762775, + 0.9289464621791536, + 0.7882882882882881, + 0.9846235837724948, + 4.924437420779924, + 0.978469168274726, + 1.9711664556579676, + 1.9623659243639664, + 1.9229510200768343, + 0.9770862304997938, + 1.9710580014755763, + 0.9364530503181744, + 0.8732908588456849, + 0.950300482513086, + 4.935207053112358, + 0.7500718937727315, + 1.9041504856306979, + 1.8861391109687888, + 0.8881896291715989, + 2.8006368591744883, + 0.9329580322176916, + 1.9029483626135344, + 0.941701474767142, + 0.8657481566722074, + 2.588264135093887, + 1.7141689795761534, + 1.7213102700043061, + 0.993758325008325, + 0.8622230550415498, + 0.9320839327803117, + 0.9527305856232412, + 4.916174243045312, + 0.8846977863333716, + 2.7950506077328092, + 0.9593583027873251, + 1.78102084647775, + 0.9188951371295636, + 2.816084724509409, + 0.7800217784035494, + 0.7799127011297503, + 0.9434321361058602, + 4.873596391437164, + 2.734192621409638, + 1.803885895535925, + 0.9061435934718378, + 1.7767917632119423, + 0.9328333806952732, + 2.838607627417269, + 0.9258691777106102, + 0.9521230391509398, + 0.9365262267264388, + 0.9373115797727772, + 4.8271676550247005, + 0.9378841050418828, + 1.8610149910467089, + 1.9264891578615777, + 0.9211354224331691, + 2.7998719537667673, + 0.8980181937554507, + 1.875006267263354, + 0.9376349250962784, + 0.8387538514207465, + 0.943947221044588, + 0.9350049149338372, + 4.825455268304017, + 2.6443530785946225, + 0.958536231884058, + 1.8510279995114316, + 1.9148213294395644, + 0.9412635914006204, + 0.8873673399520713, + 0.8874585152838429, + 0.8705701323251417, + 4.652537154233505, + 0.8684059865492091, + 1.7334937585238293, + 1.7350336477353925, + 0.8859445107741636, + 2.549553758153763, + 0.8677050513455755, + 1.75082291774977, + 0.8430977292102613, + 0.8919696969696971, + 0.986135349716446, + 4.863593471986783, + 0.8950764254021453, + 1.911703781639717, + 1.8432875442233665, + 0.9398812902982936, + 1.8743198737875306, + 0.9752792033119024, + 1.7379689224340076, + 0.9939130434782611, + 0.7714763488785487, + 6, + 4.959992466058576, + 2.9296765097144517, + 1.8747567686209865, + 0.8047278408758268, + 1.9877316530763527, + 0.9882730260033812, + 2.9192009361557396, + 0.9461654371370272, + 0.9357441792403746, + 4.888099767981957, + 2.7468936460173574, + 0.9223744981227122, + 2.601299135217226, + 0.905289786165362, + 1.874207290101412, + 0.9214972959512142, + 0.941314332676578, + 3.9261219157493064, + 1.8505531413007172, + 0.9230788696114616, + 1.761035420185463, + 0.9143112638406732, + 1.773305074409091, + 0.9391302151973808, + 0.9772426641825802, + 0.909072064464046, + 0.9860141582025238, + 4.9057369334133405, + 0.7740137221269299, + 1.9544853283651604, + 0.8230247277595697, + 0.9536631479971994, + 2.745773534705939, + 0.9886242163794032, + 2.825637653275979, + 0.968708052390917, + 0.8315151515151515, + 0.9826843100189036, + 2.940868132838134, + 0.9783368141256884, + 1.8170490178472651, + 0.9694396869310692, + 1.8791763913672477, + 0.9544594777956544, + 1.5339597003838765, + 0.9826843100189036, + 4.85164369073943, + 0.8084175084175084, + 0.9783368141256884, + 1.8254320864484423, + 0.8131377716690428, + 0.9248167539267018, + 0.9581772940528424, + 2.8367461375629057, + 0.8050748795127288, + 4.762044492014911, + 0.8843935880633129, + 1.5841395700790906, + 1.5328907287135602, + 0.8237517359346238, + 1.7679139687799554, + 0.9143045157420016, + 2.7707904641370193, + 0.7715736896162307, + 4.620507366750719, + 0.7975398606698341, + 0.7524584849903713, + 0.8173907278944466, + 2.4356310413636386, + 0.8252050839377624, + 0.7598493905068002, + 0.7829559806346367, + 0.8408502506153573, + 0.884575512524494, + 3.864007343280661, + 2.5684077436096553, + 0.8965017504270001, + 2.5426390080555294, + 0.9001503179694077, + 1.7874600165938404, + 0.8486878358300123, + 0.9290762303990062, + 0.9417436672967864, + 4.8975540843983865, + 1.8571680107142314, + 1.650862954793141, + 0.9219048551109622, + 0.9452382460255262, + 0.9403303455027592, + 2.7916679638482678, + 0.92049050384555, + 0.9545454545454548, + 0.8550758611268748, + 0.9937805570643936, + 4.964869316864153, + 0.8485069801940157, + 1.992595843542, + 1.8651584365339495, + 0.9097417836628494, + 2.9311560623613415, + 0.999122807017544, + 2.9139544401637187, + 0.9877189123128628, + 0.8658008658008658, + 0.7761808341851455, + 0.9503788875440718, + 4.74954736747019, + 0.7694545454545454, + 0.8911007105869436, + 0.8231479245485526, + 0.8553134080531342, + 0.9104377104377104, + 0.9292464661560496, + 0.9024231247013856, + 0.9939130434782611, + 0.9819054691235874, + 7, + 5.994721407649271, + 0.9679847507357018, + 1.9663960501895916, + 1.8418227023342582, + 0.9989920981077092, + 2.7534511889408266, + 0.999122807017544, + 2.722603364110069, + 0.9672169872900396, + 0.9418179668098864, + 0.7957985346108523, + 0.9245562130177516, + 3.8254338283074345, + 0.7697689156812738, + 1.7590795384507343, + 0.944622600300256, + 2.68937432223344, + 0.856617686732253, + 1.6680708914353688, + 0.7654094979252105, + 4.694264347520792, + 0.7685979300090726, + 2.3426302769450014, + 1.5607231429215238, + 0.917451425335698, + 1.6778987627272341, + 0.8374157216227879, + 0.8207867897037397, + 4.657751409474319, + 5.273578416137292, + 11.720394300201184, + 33.38207994007906, + 4.468497881291325, + 16.629858580643173, + 6.4942602155935525, + 6.4464926096807895, + 17.23720511077433, + 6.609601079435611, + 16.566182354753686, + 6.557183923239597, + 4.3267486616159045, + 6.707234336847761, + 6.87065736702104, + 45.10301171722704, + 8.169136169088635, + 13.551010252580431, + 12.746546359901762, + 6.829389587433532, + 23.801515327566104, + 8.49476355999494, + 16.25289785119549, + 7.497106287165944, + 6.1582910805603275, + 3.2156613404078267, + 14.255344841929988, + 42.713689487765855, + 3.1945277426117054, + 21.711888588220628, + 11.620707172934942, + 7.073216744951541, + 19.157969256675194, + 8.132975997107504, + 19.640220562427388, + 6.121658884695495, + 2.687028072716601, + 3.4744300800931125, + 4.632880405303596, + 23.998446010159036, + 3.591323610989751, + 10.159432159772493, + 5.306249609568508, + 2.637254356615229, + 6.407837923300634, + 4.645250006890113, + 11.880986578526773, + 3.569363917600169, + 1.7587085213239504, + 1.7915260775770911, + 7.993780557064394, + 8.961938378707533, + 1.7071770138640492, + 4.938514937232198, + 2.812912790337799, + 1.8987729452120972, + 5.907741597345046, + 1.998245614035088, + 5.868703809219387, + 1.9695726086696381, + 4.4239863727941975, + 1.768944160951707, + 5.863840588932426, + 28.6997380872173, + 3.414906550407822, + 10.060894907930274, + 8.38579844949828, + 5.470276480027521, + 10.960746216403008, + 5.632860516917093, + 13.116684959745523, + 0.9356248965935622, + 2.6119230382440977, + 3.614173252935983, + 5.122292433331659, + 31.231583396253054, + 3.5212444094627227, + 13.459584812976576, + 6.769161016063342, + 3.542942777167051, + 14.016379794590106, + 5.304336273813553, + 10.705293061997796, + 4.386542609541518, + 26.624437156729396, + 25.84554766495077, + 56.459190493784284, + 214.0904870174089, + 28.06681337771601, + 90.51118423935577, + 54.13563561389819, + 33.89834550108776, + 97.48939522665442, + 40.818033048193904, + 94.03096917786604, + 31.037053127505924 + ] + } + ], + "layout": { + "coloraxis": { + "colorbar": { + "title": { + "text": "R^2 Spearman" + } + }, + "colorscale": [ + [ + 0, + "rgb(5,48,97)" + ], + [ + 0.1, + "rgb(33,102,172)" + ], + [ + 0.2, + "rgb(67,147,195)" + ], + [ + 0.3, + "rgb(146,197,222)" + ], + [ + 0.4, + "rgb(209,229,240)" + ], + [ + 0.5, + "rgb(247,247,247)" + ], + [ + 0.6, + "rgb(253,219,199)" + ], + [ + 0.7, + "rgb(244,165,130)" + ], + [ + 0.8, + "rgb(214,96,77)" + ], + [ + 0.9, + "rgb(178,24,43)" + ], + [ + 1, + "rgb(103,0,31)" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#TREEMAP: Graph for seeing the correlation worldwide.\n", + "\n", + "#By indicator.\n", + "\n", + "fig2=px.treemap(selected_primary,path=['Indicator','Continent','Country'],values='R^2 Spearman',color='R^2 Spearman',color_continuous_scale='RdBu_r')\n", + "\n", + "fig2.show()\n", + "\n", + "#By continent\n", + "\n", + "fig2d=px.treemap(selected_primary,path=['Continent','Country','Group'],values='R^2 Spearman',color='R^2 Spearman',color_continuous_scale='RdBu_r')\n", + "fig2d.show()\n", + "\n", + "#By group of interest\n", + "\n", + "fig2dd=px.treemap(selected_primary,path=['Group','Continent','Country'],values='R^2 Spearman',color='R^2 Spearman',color_continuous_scale='RdBu_r')\n", + "\n", + "fig2dd.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "lastdf=final.dropna()\n", + "\n", + "lastdf.isna().sum()\n", + "\n", + "from ipywidgets import widgets, HBox\n", + "\n", + "out = widgets.Output()\n", + "\n", + "def output_treemap(path):\n", + "\n", + " figA = px.treemap(lastdf, path=path, values='R^2 Spearman',\n", + "\n", + " color='R^2 Spearman',\n", + "\n", + " color_continuous_scale='RdBu_r')\n", + "\n", + " figA.update_layout(margin = dict(t=50, l=25, r=25, b=25))\n", + "\n", + " out.clear_output(wait=True)\n", + "\n", + " with out:\n", + "\n", + " figA.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": {}, + "outputs": [], + "source": [ + "path_1_dropdown = widgets.Dropdown(\n", + "\n", + " options=['Continent', 'Country','Group','Indicator'],\n", + "\n", + " value='Continent',\n", + "\n", + " description='Path 1',\n", + "\n", + " disabled=False,\n", + "\n", + ")\n", + "\n", + "path_2_dropdown = widgets.Dropdown(\n", + "\n", + " options=['Continent', 'Country','Group','Indicator'],\n", + "\n", + " value='Country',\n", + "\n", + " description='Path 2',\n", + "\n", + " disabled=False,\n", + "\n", + ")\n", + "\n", + "path_3_dropdown=widgets.Dropdown(\n", + "\n", + " options=['Continent', 'Country','Group','Indicator'],\n", + "\n", + " value='Group',\n", + "\n", + " description='Path 3',\n", + "\n", + " disabled=False,\n", + "\n", + ")\n", + "\n", + "path_4_dropdown=widgets.Dropdown(\n", + "\n", + " options=['Continent', 'Country','Group','Indicator'],\n", + "\n", + " value='Indicator',\n", + "\n", + " description='Path 4',\n", + "\n", + " disabled=False,\n", + "\n", + ")\n", + "\n", + "ok_button = widgets.Button(\n", + "\n", + " description='Ready to go',\n", + "\n", + " disabled=False,\n", + "\n", + " button_style='info', # 'success', 'info', 'warning', 'danger' or ''\n", + "\n", + " icon='check' # (FontAwesome names without the `fa-` prefix)\n", + "\n", + ")\n", + "\n", + "ok_button.on_click(lambda _: output_treemap([px.Constant(\"World\"), path_1_dropdown.value, path_2_dropdown.value,path_3_dropdown.value,path_4_dropdown.value]))" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "efff9c080b6049fd9f89865b23843ce6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(Dropdown(description='Path 1', options=('Continent', 'Country', 'Group', 'Indicator'), value='C…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e53ca788e13c4c0dbaba5cb95476da99", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "branchvalues": "total", + "customdata": [ + [ + 0.8531021111589834 + ], + [ + 0.9960831758177524 + ], + [ + 0.9956171156600898 + ], + [ + 0.7534091311886248 + ], + [ + 0.999122807017544 + ], + [ + 0.872263164968203 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.8536839205362883 + ], + [ + 0.8975114391781058 + ], + [ + 0.8640740055556022 + ], + [ + 0.908313797791604 + ], + [ + 0.9891493795585866 + ], + [ + 0.766483106515241 + ], + [ + 0.9231736856070656 + ], + [ + 0.9602036241270692 + ], + [ + 0.9626281577206024 + ], + [ + 0.9457244866279326 + ], + [ + 0.9047503889161738 + ], + [ + 0.8269184820807403 + ], + [ + 0.8789838022165389 + ], + [ + 0.8800026263331926 + ], + [ + 0.957737379733654 + ], + [ + 0.999122807017544 + ], + [ + 0.9509004506686832 + ], + [ + 0.7562762148337596 + ], + [ + 0.8442479234380643 + ], + [ + 0.993779175279743 + ], + [ + 0.7763614794595731 + ], + [ + 0.8710617614475394 + ], + [ + 0.9636752136752136 + ], + [ + 0.8119647131227026 + ], + [ + 0.7805172292400585 + ], + [ + 0.9370415079706567 + ], + [ + 0.8701066680233348 + ], + [ + 0.8242647792818613 + ], + [ + 0.8238243435953363 + ], + [ + 0.9791710812316362 + ], + [ + 0.7554660388288974 + ], + [ + 0.8482458889462429 + ], + [ + 0.914656355102988 + ], + [ + 0.8458383400350413 + ], + [ + 0.92448876432027 + ], + [ + 0.8295449908182004 + ], + [ + 0.9773557492735576 + ], + [ + 0.9281390141743808 + ], + [ + 0.9093117324398052 + ], + [ + 0.7806171146277026 + ], + [ + 0.8726620562837514 + ], + [ + 0.9686137921250751 + ], + [ + 0.8257949554417174 + ], + [ + 0.798853868337832 + ], + [ + 0.9506066908754583 + ], + [ + 0.992130773157018 + ], + [ + 0.992130773157018 + ], + [ + 0.8297391428809981 + ], + [ + 0.9981637899375688 + ], + [ + 0.9559378978139692 + ], + [ + 0.9725030984517492 + ], + [ + 0.9994500458295142 + ], + [ + 0.9674464520962212 + ], + [ + 0.9537877101584162 + ], + [ + 0.9973311596620504 + ], + [ + 0.9965191088563604 + ], + [ + 0.9588085805762212 + ], + [ + 0.9804758872197188 + ], + [ + 0.9761230584660866 + ], + [ + 0.9804758872197188 + ], + [ + 0.9815561030337692 + ], + [ + 0.9979840393589112 + ], + [ + 0.9327029435145744 + ], + [ + 0.9855664265688792 + ], + [ + 0.9965191088563604 + ], + [ + 0.990099472619818 + ], + [ + 0.995055254321861 + ], + [ + 0.8099484766436214 + ], + [ + 0.9906701465266744 + ], + [ + 0.931003010693105 + ], + [ + 0.983380118113322 + ], + [ + 0.9892105958643824 + ], + [ + 0.9957870470931044 + ], + [ + 0.9654908347220116 + ], + [ + 0.9987789987789988 + ], + [ + 0.987752121170142 + ], + [ + 0.9645628577173472 + ], + [ + 0.9994500458295142 + ], + [ + 0.94949459763166 + ], + [ + 0.9746742674843129 + ], + [ + 0.9965191088563604 + ], + [ + 0.9899402366995218 + ], + [ + 0.987752121170142 + ], + [ + 0.9987169080982063 + ], + [ + 0.9987169080982063 + ], + [ + 0.9985113511553524 + ], + [ + 0.9987169080982063 + ], + [ + 0.9632178831505792 + ], + [ + 0.9892105958643824 + ], + [ + 0.9537877101584162 + ], + [ + 0.9444982054870336 + ], + [ + 0.8409895539377414 + ], + [ + 0.9935457940810306 + ], + [ + 0.9402260743372878 + ], + [ + 0.9725030984517492 + ], + [ + 0.9994500458295142 + ], + [ + 0.9022126610505616 + ], + [ + 0.9552208996034384 + ], + [ + 0.9963384890035256 + ], + [ + 0.987752121170142 + ], + [ + 0.9133941210450609 + ], + [ + 0.9444982054870336 + ], + [ + 0.960245535909425 + ], + [ + 0.9790238683337896 + ], + [ + 0.9094946702782724 + ], + [ + 0.920417502503307 + ], + [ + 0.9384151778567814 + ], + [ + 0.963122674479988 + ], + [ + 0.992130773157018 + ], + [ + 0.7576460378790729 + ], + [ + 0.9455819726942684 + ], + [ + 0.987752121170142 + ], + [ + 0.968168023170972 + ], + [ + 0.9133941210450609 + ], + [ + 0.8731664917240823 + ], + [ + 0.9746742674843129 + ], + [ + 0.9833831528957327 + ], + [ + 0.8527482577723561 + ], + [ + 0.9964422727546304 + ], + [ + 0.9746742674843129 + ], + [ + 0.9797497432807476 + ], + [ + 0.9987169080982063 + ], + [ + 0.948780020349246 + ], + [ + 0.960245535909425 + ], + [ + 0.9036065776616928 + ], + [ + 0.926761544632836 + ], + [ + 0.9660041169227584 + ], + [ + 0.9710569973901052 + ], + [ + 0.9979840393589112 + ], + [ + 0.9947945803202288 + ], + [ + 0.9987169080982063 + ], + [ + 0.9411662012310432 + ], + [ + 0.9395149939510422 + ], + [ + 0.9612865740616352 + ], + [ + 0.9104377104377104 + ], + [ + 0.8466632549513022 + ], + [ + 0.965460306668771 + ], + [ + 0.9991930603515944 + ], + [ + 0.7661643396391405 + ], + [ + 0.8993946860474129 + ], + [ + 0.9987169080982063 + ], + [ + 0.8053363980490009 + ], + [ + 0.8802332979851536 + ], + [ + 0.9951653583795466 + ], + [ + 0.8038391193200114 + ], + [ + 0.8486048045950245 + ], + [ + 0.9280303030303032 + ], + [ + 0.7681025602181487 + ], + [ + 0.8667078642628765 + ], + [ + 0.8561382296156173 + ], + [ + 0.9288810671989122 + ], + [ + 0.9927523497097036 + ], + [ + 0.975268289884998 + ], + [ + 0.9652833528240462 + ], + [ + 0.8533855094586799 + ], + [ + 0.9552208996034384 + ], + [ + 0.9383191940615055 + ], + [ + 0.9334429906542056 + ], + [ + 0.906974409725021 + ], + [ + 0.872086805029541 + ], + [ + 0.9775003787304952 + ], + [ + 0.9866063032322202 + ], + [ + 0.941241325810687 + ], + [ + 0.9394303111483416 + ], + [ + 0.9755497899678774 + ], + [ + 0.9757801848204816 + ], + [ + 0.97062869262233 + ], + [ + 0.798490964605047 + ], + [ + 0.9022126610505616 + ], + [ + 0.9410307160918406 + ], + [ + 0.9994500458295142 + ], + [ + 0.9434119359795824 + ], + [ + 0.9987169080982063 + ], + [ + 0.8056786244402121 + ], + [ + 0.7609962981315767 + ], + [ + 0.8417508417508417 + ], + [ + 0.9573727012110692 + ], + [ + 0.9833831528957327 + ], + [ + 0.8473209929380159 + ], + [ + 0.9946751263076096 + ], + [ + 0.9580905063976388 + ], + [ + 0.9638426316026611 + ], + [ + 0.9987169080982063 + ], + [ + 0.9015161062330156 + ], + [ + 0.9703343503473024 + ], + [ + 0.9987789987789988 + ], + [ + 0.9826559329887096 + ], + [ + 0.8594361209082695 + ], + [ + 0.9516399434309798 + ], + [ + 0.920417502503307 + ], + [ + 0.9423609294481023 + ], + [ + 0.968168023170972 + ], + [ + 0.9957870470931044 + ], + [ + 0.94521116881737 + ], + [ + 0.9694172098634408 + ], + [ + 0.9466379024540816 + ], + [ + 0.995055254321861 + ], + [ + 0.9879041307837876 + ], + [ + 0.9833831528957327 + ], + [ + 0.9333963910884244 + ], + [ + 0.9899402366995218 + ], + [ + 0.8869505922195406 + ], + [ + 0.9203611665699089 + ], + [ + 0.9884812240212558 + ], + [ + 0.9588085805762212 + ], + [ + 0.9214805336789016 + ], + [ + 0.9881107335844111 + ], + [ + 0.9236131934032984 + ], + [ + 0.9812023001507028 + ], + [ + 0.8379122722898551 + ], + [ + 0.9523555966814456 + ], + [ + 0.9248788062414784 + ], + [ + 0.8139160327981961 + ], + [ + 0.937383366744383 + ], + [ + 0.94521116881737 + ], + [ + 0.9768478574449928 + ], + [ + 0.9972514396116292 + ], + [ + 0.9933098124967774 + ], + [ + 0.9991101223581756 + ], + [ + 0.9286467697656632 + ], + [ + 0.919010674275554 + ], + [ + 0.9473516727604566 + ], + [ + 0.9459244011397192 + ], + [ + 0.907679698406929 + ], + [ + 0.9012628558280068 + ], + [ + 0.923234386862968 + ], + [ + 0.9345449630236856 + ], + [ + 0.9965224965914254 + ], + [ + 0.9537877101584162 + ], + [ + 0.9105923002381252 + ], + [ + 0.9964912280701756 + ], + [ + 0.9732265524705908 + ], + [ + 0.948780020349246 + ], + [ + 0.9833831528957327 + ], + [ + 0.923234386862968 + ], + [ + 0.9717799134249206 + ], + [ + 0.9001238035739624 + ], + [ + 0.8238720996776804 + ], + [ + 0.9369854844016412 + ], + [ + 0.9338360345735434 + ], + [ + 0.986111412381384 + ], + [ + 0.9689798997219612 + ], + [ + 0.9935924757554138 + ], + [ + 0.7605829143427332 + ], + [ + 0.9660041169227584 + ], + [ + 0.9211213201052028 + ], + [ + 0.917590135458235 + ], + [ + 0.9870232873110416 + ], + [ + 0.8507175025705549 + ], + [ + 0.9481552134363872 + ], + [ + 0.9964912280701756 + ], + [ + 0.9553309445702832 + ], + [ + 0.9403778017040136 + ], + [ + 0.9696119722965126 + ], + [ + 0.9725030984517492 + ], + [ + 0.9480657120588448 + ], + [ + 0.9480657120588448 + ], + [ + 0.8911000630113791 + ], + [ + 0.9008198204074828 + ], + [ + 0.9739502754814452 + ], + [ + 0.992130773157018 + ], + [ + 0.9940520578006032 + ], + [ + 0.9979840393589112 + ], + [ + 0.9871951628595732 + ], + [ + 0.9050015702408756 + ], + [ + 0.7835109416675496 + ], + [ + 0.9993324432576768 + ], + [ + 0.7596801346801346 + ], + [ + 0.9906701465266744 + ], + [ + 0.9480657120588448 + ], + [ + 0.8159024043178598 + ], + [ + 0.7811662552209668 + ], + [ + 0.8197944468080158 + ], + [ + 0.9848383996858172 + ], + [ + 0.9221336649411492 + ], + [ + 0.8994280557324552 + ], + [ + 0.786819255636605 + ], + [ + 0.8020486431706626 + ], + [ + 0.8608954878607267 + ], + [ + 0.9309395848776872 + ], + [ + 0.8507175025705549 + ], + [ + 0.9280303030303032 + ], + [ + 0.934334074623178 + ], + [ + 0.8656659267144711 + ], + [ + 0.7814049860815456 + ], + [ + 0.819882410141537 + ], + [ + 0.9043039394552778 + ], + [ + 0.7905837844375335 + ], + [ + 0.9809244351623316 + ], + [ + 0.7920033670033668 + ], + [ + 0.9476817042606516 + ], + [ + 0.9732265524705908 + ], + [ + 0.999014778325123 + ], + [ + 0.8814330280498146 + ], + [ + 0.8106107934390158 + ], + [ + 0.9859927106498643 + ], + [ + 0.843965803045393 + ], + [ + 0.7596801346801346 + ], + [ + 0.8513250555967384 + ], + [ + 0.8046783090893074 + ], + [ + 0.8073122788801593 + ], + [ + 0.9239392804329155 + ], + [ + 0.97062869262233 + ], + [ + 0.9464820597794912 + ], + [ + 0.8731889608367804 + ], + [ + 0.819882410141537 + ], + [ + 0.9189961343104286 + ], + [ + 0.8073122788801593 + ], + [ + 0.941972584550496 + ], + [ + 0.9545041703849207 + ], + [ + 0.8766192814819845 + ], + [ + 0.9739502754814452 + ], + [ + 0.9331273751154144 + ], + [ + 0.8493650107294191 + ], + [ + 0.9873818298349624 + ], + [ + 0.9964912280701756 + ], + [ + 0.895536084777682 + ], + [ + 0.9773557492735576 + ], + [ + 0.8385429638854296 + ], + [ + 0.8492357350911255 + ], + [ + 0.992105287563838 + ], + [ + 0.9991101224022378 + ], + [ + 0.7779288650281017 + ], + [ + 0.8958436239049176 + ], + [ + 0.9954545454545456 + ], + [ + 0.8217563751752737 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8178037731982906 + ], + [ + 0.9416562889165628 + ], + [ + 0.936963017728694 + ], + [ + 0.8442717785843921 + ], + [ + 0.7686035765445222 + ], + [ + 0.7867084930870223 + ], + [ + 0.992671182389769 + ], + [ + 0.9848040830545792 + ], + [ + 0.951008471157725 + ], + [ + 0.8630706569122703 + ], + [ + 0.9026819923371648 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.84746622922539 + ], + [ + 0.8979659609796596 + ], + [ + 0.999777530589544 + ], + [ + 0.940760842211224 + ], + [ + 0.78115400581154 + ], + [ + 0.9240556247405564 + ], + [ + 0.9822495603003196 + ], + [ + 0.9822495603003196 + ], + [ + 0.8052224642752426 + ], + [ + 0.7593325960761085 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9505705348293196 + ], + [ + 0.9416562889165628 + ], + [ + 0.9271888077994948 + ], + [ + 0.8673029726406383 + ], + [ + 0.9731456263408548 + ], + [ + 0.7813852813852814 + ], + [ + 0.7822341892305151 + ], + [ + 0.9364502164502164 + ], + [ + 0.8679516484927489 + ], + [ + 0.8857699681136173 + ], + [ + 0.7714560308712177 + ], + [ + 0.8584751140436623 + ], + [ + 0.8985904473621558 + ], + [ + 0.8190486045187014 + ], + [ + 0.7893527624833871 + ], + [ + 0.8919696969696971 + ], + [ + 0.8818618218586448 + ], + [ + 0.756628065305478 + ], + [ + 0.7882882882882881 + ], + [ + 0.950300482513086 + ], + [ + 0.8657481566722074 + ], + [ + 0.9365262267264388 + ], + [ + 0.943947221044588 + ], + [ + 0.887458515283843 + ], + [ + 0.7714763488785488 + ], + [ + 0.9214972959512142 + ], + [ + 0.909072064464046 + ], + [ + 0.7715736896162309 + ], + [ + 0.9290762303990062 + ], + [ + 0.8550758611268748 + ], + [ + 0.7761808341851454 + ], + [ + 0.9819054691235874 + ], + [ + 0.7957985346108523 + ], + [ + 0.9657498873425368 + ], + [ + 0.9364502164502164 + ], + [ + 0.8516827062939479 + ], + [ + 0.9754181770220984 + ], + [ + 0.9731874212360307 + ], + [ + 0.8135371179039302 + ], + [ + 0.8727427378014051 + ], + [ + 0.848344463643581 + ], + [ + 0.8895327800940938 + ], + [ + 0.7627248531396743 + ], + [ + 0.7582569516718274 + ], + [ + 0.7709571931840405 + ], + [ + 0.8921633972095838 + ], + [ + 0.9321707396546104 + ], + [ + 0.8986401163657464 + ], + [ + 0.7580471889891207 + ], + [ + 0.9369652591790605 + ], + [ + 0.8679796630864033 + ], + [ + 0.9098066660834573 + ], + [ + 0.980489676524778 + ], + [ + 0.927246096495326 + ], + [ + 0.9018122770586843 + ], + [ + 0.8810674463937621 + ], + [ + 0.8400216450216451 + ], + [ + 0.7689831576535288 + ], + [ + 0.7729944320019908 + ], + [ + 0.8837147279244052 + ], + [ + 0.881149648377826 + ], + [ + 0.9563110356768192 + ], + [ + 0.983927829355058 + ], + [ + 0.9839066269313416 + ], + [ + 0.7583206652119362 + ], + [ + 0.7925815424300344 + ], + [ + 0.8317161572052402 + ], + [ + 0.7744952514390555 + ], + [ + 0.9360718475073312 + ], + [ + 0.96130346341869 + ], + [ + 0.7958679833679831 + ], + [ + 0.7906981399616313 + ], + [ + 0.8413581378299119 + ], + [ + 0.9203347173341052 + ], + [ + 0.8430006636564963 + ], + [ + 0.9727275146860328 + ], + [ + 0.8287881529651736 + ], + [ + 0.8315151515151515 + ], + [ + 0.853720508166969 + ], + [ + 0.8093402654155926 + ], + [ + 0.8962455479058957 + ], + [ + 0.805605027801719 + ], + [ + 0.8210295170320834 + ], + [ + 0.8039070101933912 + ], + [ + 0.8039838558691283 + ], + [ + 0.7826760060360987 + ], + [ + 0.9269812868749552 + ], + [ + 0.794976794976795 + ], + [ + 0.8900713624983871 + ], + [ + 0.9133288665033964 + ], + [ + 0.810208371742399 + ], + [ + 0.7896057754229846 + ], + [ + 0.923877773549558 + ], + [ + 0.9296009475992656 + ], + [ + 0.895080529300567 + ], + [ + 0.8085490374609781 + ], + [ + 0.9819008264462812 + ], + [ + 0.8587224361306279 + ], + [ + 0.7739174537660428 + ], + [ + 0.7862254487513007 + ], + [ + 0.8193724468472356 + ], + [ + 0.8893524283935244 + ], + [ + 0.997064221767242 + ], + [ + 0.7952666762372825 + ], + [ + 0.9020216682958616 + ], + [ + 0.9983501374885428 + ], + [ + 0.8831534562926947 + ], + [ + 0.8860521920074892 + ], + [ + 0.7872481572481572 + ], + [ + 0.9226825090266608 + ], + [ + 0.7803152709359605 + ], + [ + 0.9122593875476056 + ], + [ + 0.8775850757693318 + ], + [ + 0.9799040094031604 + ], + [ + 0.8206267324852857 + ], + [ + 0.8177880557075959 + ], + [ + 0.9576966355531912 + ], + [ + 0.9220659824046918 + ], + [ + 0.797922077922078 + ], + [ + 0.7896320346320348 + ], + [ + 0.8632950463543738 + ], + [ + 0.9492492880197456 + ], + [ + 0.8832034632034632 + ], + [ + 0.8047193670665553 + ], + [ + 0.9956521739130436 + ], + [ + 0.7685862920068351 + ], + [ + 0.8475960459042418 + ], + [ + 0.9795419233757146 + ], + [ + 0.8269899956502829 + ], + [ + 0.7884382884382883 + ], + [ + 0.8207547087216158 + ], + [ + 0.9545454545454548 + ], + [ + 0.8429554406857294 + ], + [ + 0.8993321115511173 + ], + [ + 0.7984889287851585 + ], + [ + 0.761374210879955 + ], + [ + 0.8305523603886544 + ], + [ + 0.7718491195125222 + ], + [ + 0.980407916624232 + ], + [ + 0.950300482513086 + ], + [ + 0.8240213521788208 + ], + [ + 0.8952485002194801 + ], + [ + 0.9038846565773924 + ], + [ + 0.7965911235687182 + ], + [ + 0.8955324322950189 + ], + [ + 0.7910020962422152 + ], + [ + 0.9427138643067844 + ], + [ + 0.826115183440325 + ], + [ + 0.8573048573048573 + ], + [ + 0.7936317271895962 + ], + [ + 0.9007792207792208 + ], + [ + 0.854365955487306 + ], + [ + 0.9456364522650812 + ], + [ + 0.997982406795966 + ], + [ + 0.8774985212108586 + ], + [ + 0.9977822580645164 + ], + [ + 0.8221159804806326 + ], + [ + 0.9077567136073359 + ], + [ + 0.8205465606720966 + ], + [ + 0.8626119406890994 + ], + [ + 0.7556531232200494 + ], + [ + 0.7862587810898044 + ], + [ + 0.8404814885133853 + ], + [ + 0.8206267324852857 + ], + [ + 0.992492576897818 + ], + [ + 0.9526883899349432 + ], + [ + 0.8172714912841496 + ], + [ + 0.942686481353632 + ], + [ + 0.9073962406670544 + ], + [ + 0.793330615828421 + ], + [ + 0.9250332915366597 + ], + [ + 0.7896320346320348 + ], + [ + 0.9844717839591371 + ], + [ + 0.7676353790613718 + ], + [ + 0.9020216682958616 + ], + [ + 0.8820943870496513 + ], + [ + 0.9628828555154738 + ], + [ + 0.9505406805522968 + ], + [ + 0.7685960591133002 + ], + [ + 0.952282255405342 + ], + [ + 0.9961515326042576 + ], + [ + 0.8792822185970635 + ], + [ + 0.917989916458992 + ], + [ + 0.7624864249098158 + ], + [ + 0.8475960459042418 + ], + [ + 0.9795419233757146 + ], + [ + 0.8269899956502829 + ], + [ + 0.7884382884382883 + ], + [ + 0.8207547087216158 + ], + [ + 0.9545454545454548 + ], + [ + 0.8429554406857294 + ], + [ + 0.8993321115511173 + ], + [ + 0.7834739702517162 + ], + [ + 0.761374210879955 + ], + [ + 0.8305523603886544 + ], + [ + 0.7811065974284784 + ], + [ + 0.980407916624232 + ], + [ + 0.950300482513086 + ], + [ + 0.8240213521788208 + ], + [ + 0.8952485002194801 + ], + [ + 0.9038846565773924 + ], + [ + 0.798508237019148 + ], + [ + 0.8955324322950189 + ], + [ + 0.7839982383292353 + ], + [ + 0.9427138643067844 + ], + [ + 0.8245984899369047 + ], + [ + 0.8573048573048573 + ], + [ + 0.8243136284936928 + ], + [ + 0.8553134080531343 + ], + [ + 0.8473904773631097 + ], + [ + 0.9982456140350876 + ], + [ + 0.9590236663403416 + ], + [ + 0.9014436252397446 + ], + [ + 0.8327140244007301 + ], + [ + 0.8669485569807114 + ], + [ + 0.7949843218068803 + ], + [ + 0.903497324397646 + ], + [ + 0.9416562889165628 + ], + [ + 0.7707143966920784 + ], + [ + 0.855320123139272 + ], + [ + 0.7774854369415835 + ], + [ + 0.8503120994598766 + ], + [ + 0.926867994896457 + ], + [ + 0.8667552028246747 + ], + [ + 0.8775319334595817 + ], + [ + 0.901968773482508 + ], + [ + 0.935627556261994 + ], + [ + 0.9050659282343974 + ], + [ + 0.861924622573884 + ], + [ + 0.9675940297571454 + ], + [ + 0.9116934339203904 + ], + [ + 0.9072582435684412 + ], + [ + 0.9237413014402296 + ], + [ + 0.9238605624457716 + ], + [ + 0.8365273593813229 + ], + [ + 0.8893524283935244 + ], + [ + 0.9102500533059372 + ], + [ + 0.8349825924909352 + ], + [ + 0.8784817670545184 + ], + [ + 0.9947399253846392 + ], + [ + 0.8930927589221841 + ], + [ + 0.8055002075550022 + ], + [ + 0.8605298779944784 + ], + [ + 0.9775071835696456 + ], + [ + 0.9505926587353696 + ], + [ + 0.7588336685332704 + ], + [ + 0.8428335962794538 + ], + [ + 0.9238783245212608 + ], + [ + 0.8585749771698774 + ], + [ + 0.8765915866073055 + ], + [ + 0.9822182852411184 + ], + [ + 0.9533886386596292 + ], + [ + 0.8440336134453781 + ], + [ + 0.7834747760490336 + ], + [ + 0.924617649948652 + ], + [ + 0.9395524842975836 + ], + [ + 0.9389258424390616 + ], + [ + 0.9550800035134204 + ], + [ + 0.7946561709764253 + ], + [ + 0.9558099289684048 + ], + [ + 0.8428529645259684 + ], + [ + 0.7972573636925488 + ], + [ + 0.9379369101877942 + ], + [ + 0.8553636363636363 + ], + [ + 0.8995050491578671 + ], + [ + 0.9706054674756964 + ], + [ + 0.7736264668325739 + ], + [ + 0.9622333213753728 + ], + [ + 0.8220723881235561 + ], + [ + 0.8256741778557297 + ], + [ + 0.8127858031447691 + ], + [ + 0.7817740006858703 + ], + [ + 0.7968179052727826 + ], + [ + 0.8018268268268267 + ], + [ + 0.9281390141743808 + ], + [ + 0.9400806090461262 + ], + [ + 0.8107701860758095 + ], + [ + 0.8909257783846486 + ], + [ + 0.8991789819376026 + ], + [ + 0.8738739499371329 + ], + [ + 0.9781810760439292 + ], + [ + 0.8591088340319827 + ], + [ + 0.9192322609917452 + ], + [ + 0.8578880235734736 + ], + [ + 0.927227398337575 + ], + [ + 0.8549844211383769 + ], + [ + 0.9954545454545456 + ], + [ + 0.7996032354193273 + ], + [ + 0.7663762728169506 + ], + [ + 0.8072044088993242 + ], + [ + 0.9545454545454548 + ], + [ + 0.9222946747399472 + ], + [ + 0.8012891170808603 + ], + [ + 0.9007792207792208 + ], + [ + 0.761725650275299 + ], + [ + 0.9189132122341251 + ], + [ + 0.7700791802515137 + ], + [ + 0.7905809884612046 + ], + [ + 0.9364502164502164 + ], + [ + 0.9272003238960064 + ], + [ + 0.9520381744611566 + ], + [ + 0.7670786695244899 + ], + [ + 0.8558592375366569 + ], + [ + 0.833174972830306 + ], + [ + 0.9256214544793848 + ], + [ + 0.8228255528255527 + ], + [ + 0.8485714285714286 + ], + [ + 0.9702872224809812 + ], + [ + 0.7517555862267378 + ], + [ + 0.7565364592835857 + ], + [ + 0.7612860365462939 + ], + [ + 0.987527533398501 + ], + [ + 0.955555772482297 + ], + [ + 0.7996032354193273 + ], + [ + 0.7663762728169506 + ], + [ + 0.8072044088993242 + ], + [ + 0.9545454545454548 + ], + [ + 0.9222946747399472 + ], + [ + 0.8012891170808603 + ], + [ + 0.9007792207792208 + ], + [ + 0.761725650275299 + ], + [ + 0.9189132122341251 + ], + [ + 0.7700791802515137 + ], + [ + 0.7905809884612046 + ], + [ + 0.9364502164502164 + ], + [ + 0.933977462236232 + ], + [ + 0.9520381744611566 + ], + [ + 0.7670786695244899 + ], + [ + 0.8558592375366569 + ], + [ + 0.833174972830306 + ], + [ + 0.9256214544793848 + ], + [ + 0.8228255528255527 + ], + [ + 0.8485714285714286 + ], + [ + 0.9702872224809812 + ], + [ + 0.7517555862267378 + ], + [ + 0.7565364592835857 + ], + [ + 0.7612860365462939 + ], + [ + 0.987527533398501 + ], + [ + 0.955555772482297 + ], + [ + 0.9364502164502164 + ], + [ + 0.8358612257146861 + ], + [ + 0.8590707598082956 + ], + [ + 0.8832034632034632 + ], + [ + 0.833174972830306 + ], + [ + 0.8630005695842037 + ], + [ + 0.984461621950468 + ], + [ + 0.892391114486425 + ], + [ + 0.9897824784878032 + ], + [ + 0.8085316277505704 + ], + [ + 0.919319387113138 + ], + [ + 0.7940051262578318 + ], + [ + 0.780089044997152 + ], + [ + 0.9222946747399472 + ], + [ + 0.8363949697251979 + ], + [ + 0.796839893191436 + ], + [ + 0.7794331008589288 + ], + [ + 0.9859234217934404 + ], + [ + 0.9873000604890544 + ], + [ + 0.9486101335940044 + ], + [ + 0.9248539005931276 + ], + [ + 0.9517981773305488 + ], + [ + 0.8708608667318343 + ], + [ + 0.8623785126533147 + ], + [ + 0.9299160466862331 + ], + [ + 0.9545454545454548 + ], + [ + 0.8796487671810186 + ], + [ + 0.9772426641825802 + ], + [ + 0.7524584849903713 + ], + [ + 0.807857176503839 + ], + [ + 0.90727093221948 + ], + [ + 0.9971775822743564 + ], + [ + 0.7739306525397351 + ], + [ + 0.9847748699555192 + ], + [ + 0.7535520524804752 + ], + [ + 1 + ], + [ + 0.8551111044973793 + ], + [ + 0.9256631478531152 + ], + [ + 0.989570259523299 + ], + [ + 0.7687418116400186 + ], + [ + 0.9641837718077296 + ], + [ + 0.7942756598240468 + ], + [ + 0.8294322792944961 + ], + [ + 0.9215082393282026 + ], + [ + 0.9054494643688868 + ], + [ + 0.8530098192637454 + ], + [ + 0.9025093300004408 + ], + [ + 0.992492576897818 + ], + [ + 0.9598649249543808 + ], + [ + 0.8332737181503951 + ], + [ + 0.9529394346692732 + ], + [ + 0.8214507035663541 + ], + [ + 0.9309630572047876 + ], + [ + 0.7830101580101578 + ], + [ + 0.9732801304295486 + ], + [ + 0.9004189790402766 + ], + [ + 0.9446639459426616 + ], + [ + 0.9036078185699322 + ], + [ + 0.97145319916461 + ], + [ + 0.9609332238642584 + ], + [ + 0.7899791515690191 + ], + [ + 0.7611733870967741 + ], + [ + 0.863207096556374 + ], + [ + 0.9415725119950472 + ], + [ + 0.9939556858911696 + ], + [ + 0.783163286086673 + ], + [ + 0.9977977617253442 + ], + [ + 0.8662090859332238 + ], + [ + 0.8955509185594555 + ], + [ + 0.9764731504349176 + ], + [ + 0.7530954708374062 + ], + [ + 0.7828061257738677 + ], + [ + 0.8462219807137138 + ], + [ + 0.8842041598248496 + ], + [ + 0.915537959944108 + ], + [ + 0.7865763787648619 + ], + [ + 0.7856202453035243 + ], + [ + 0.903206652230566 + ], + [ + 0.989570259523299 + ], + [ + 0.7882882882882881 + ], + [ + 0.9483953947649668 + ], + [ + 0.9364334975369458 + ], + [ + 0.9056925711224626 + ], + [ + 0.7591535837096157 + ], + [ + 0.8418627955566073 + ], + [ + 0.7573046594982078 + ], + [ + 0.880681818181818 + ], + [ + 0.8409090909090906 + ], + [ + 0.806797048126061 + ], + [ + 0.7826760060360987 + ], + [ + 0.7688448083650483 + ], + [ + 0.8584408270788305 + ], + [ + 0.8956871084108602 + ], + [ + 0.913923675716727 + ], + [ + 0.9910308796338216 + ], + [ + 0.9590266687613186 + ], + [ + 0.7872481572481572 + ], + [ + 0.8646083304603533 + ], + [ + 0.9939410487486168 + ], + [ + 0.8340069434398959 + ], + [ + 0.982598363716604 + ], + [ + 0.9106424097900995 + ], + [ + 0.8008517246406788 + ], + [ + 0.8727928390787971 + ], + [ + 0.7681285613827205 + ], + [ + 0.8812869326621475 + ], + [ + 0.928402586493192 + ], + [ + 0.8532026469355432 + ], + [ + 0.8994624945374701 + ], + [ + 0.9440584784614404 + ], + [ + 0.9003302615524813 + ], + [ + 0.8228255528255527 + ], + [ + 0.9795723406491688 + ], + [ + 0.866515864516721 + ], + [ + 0.955439293598234 + ], + [ + 0.8529365775827682 + ], + [ + 0.934359451290398 + ], + [ + 0.8332769785018068 + ], + [ + 0.9365108715713024 + ], + [ + 0.877525810880078 + ], + [ + 0.9692015664722224 + ], + [ + 0.8409090909090906 + ], + [ + 0.940544771679814 + ], + [ + 0.923587693351357 + ], + [ + 0.7954434590943897 + ], + [ + 0.991568586771984 + ], + [ + 0.7612354435027383 + ], + [ + 0.937924041385235 + ], + [ + 0.8376851905173242 + ], + [ + 0.8927174779953235 + ], + [ + 0.7909951819239077 + ], + [ + 0.8443928295282409 + ], + [ + 0.8202350197681522 + ], + [ + 0.9660981642663024 + ], + [ + 0.8152462729809101 + ], + [ + 0.922004885973844 + ], + [ + 0.7639604667778042 + ], + [ + 0.7872481572481572 + ], + [ + 0.9000298090512994 + ], + [ + 0.8014712850828469 + ], + [ + 0.8228255528255527 + ], + [ + 0.8498088450201552 + ], + [ + 0.7879169357174485 + ], + [ + 0.8556523719936285 + ], + [ + 0.9755199210863276 + ], + [ + 0.8557823298777246 + ], + [ + 0.8293705854653898 + ], + [ + 0.8537505886046147 + ], + [ + 0.8046317312743457 + ], + [ + 0.8779697795654818 + ], + [ + 0.8749239196591598 + ], + [ + 0.8555086871328603 + ], + [ + 0.9225963809255304 + ], + [ + 0.9678016420122257 + ], + [ + 0.9415762523485668 + ], + [ + 0.8057522792271018 + ], + [ + 0.8959576525733801 + ], + [ + 0.9001590894975678 + ], + [ + 0.767145966241361 + ], + [ + 0.8489857866410283 + ], + [ + 0.9644777226717816 + ], + [ + 0.9098253673621896 + ], + [ + 0.8791269994277514 + ], + [ + 0.8664155045733993 + ], + [ + 0.8498893415734232 + ], + [ + 0.947101370798582 + ], + [ + 0.8538593322386425 + ], + [ + 0.8042480240124439 + ], + [ + 0.8931085516844227 + ], + [ + 0.8808798536293945 + ], + [ + 0.7934170900130808 + ], + [ + 0.9012551319648092 + ], + [ + 0.9348648660475504 + ], + [ + 0.8291496315254414 + ], + [ + 0.8722929363621342 + ], + [ + 0.911251618573038 + ], + [ + 0.9109734587383088 + ], + [ + 0.9170938628158845 + ], + [ + 0.7650216450216449 + ], + [ + 0.8491510263929617 + ], + [ + 0.797922077922078 + ], + [ + 0.9976169999054124 + ], + [ + 0.9935999513470776 + ], + [ + 0.8049044578239981 + ], + [ + 0.836149001293594 + ], + [ + 0.9772426641825802 + ], + [ + 0.7947818492500476 + ], + [ + 0.774258455570617 + ], + [ + 0.8948565585013833 + ], + [ + 0.96130346341869 + ], + [ + 0.7882882882882881 + ], + [ + 0.9031253085247768 + ], + [ + 0.7502958618442489 + ], + [ + 0.9074753238868364 + ], + [ + 0.9391271623435224 + ], + [ + 0.7795953486477678 + ], + [ + 0.8889322557418088 + ], + [ + 0.8774400397180557 + ], + [ + 0.9117791157331387 + ], + [ + 0.9837385506159468 + ], + [ + 0.7764964848815781 + ], + [ + 0.763706420963152 + ], + [ + 0.982244407057744 + ], + [ + 0.982258229908174 + ], + [ + 0.8665750946042498 + ], + [ + 0.7595972992524718 + ], + [ + 0.7801043792183331 + ], + [ + 0.905255061999686 + ], + [ + 0.8220123627076744 + ], + [ + 0.8030465628225144 + ], + [ + 0.9789271593959374 + ], + [ + 0.7848592675970836 + ], + [ + 0.78340962656552 + ], + [ + 0.9151319857390936 + ], + [ + 0.8905339474233814 + ], + [ + 0.8105036440440168 + ], + [ + 0.8827179393030227 + ], + [ + 0.9303783215638728 + ], + [ + 0.9188270726931117 + ], + [ + 0.9157320003100056 + ], + [ + 0.9358530842881808 + ], + [ + 0.7937577290427829 + ], + [ + 0.9414073611117948 + ], + [ + 0.8901453226576379 + ], + [ + 0.8602487024132297 + ], + [ + 0.7556614611768913 + ], + [ + 0.9600221996115068 + ], + [ + 0.7680433097131317 + ], + [ + 0.8925061445921794 + ], + [ + 0.9773557492735576 + ], + [ + 0.8013333235492676 + ], + [ + 0.7689202564616309 + ], + [ + 0.8185297955632884 + ], + [ + 0.7566698570378733 + ], + [ + 0.7828314585807773 + ], + [ + 0.8694189151801024 + ], + [ + 0.8065343721704722 + ], + [ + 0.9807788363703636 + ], + [ + 0.8356411205726275 + ], + [ + 0.8778270939877454 + ], + [ + 0.8142980219813145 + ], + [ + 0.9079854938491076 + ], + [ + 0.8369284370856844 + ], + [ + 0.8951910290953499 + ], + [ + 0.8385429638854296 + ], + [ + 0.9335217836825552 + ], + [ + 0.8814450312694764 + ], + [ + 0.8433770449321196 + ], + [ + 0.9773557492735576 + ], + [ + 0.8751169590643275 + ], + [ + 0.7872836439659993 + ], + [ + 0.8460813462362223 + ], + [ + 0.9068505777317312 + ], + [ + 0.974712351554919 + ], + [ + 0.8582253898196657 + ], + [ + 0.7694393172704596 + ], + [ + 0.9593583027873251 + ], + [ + 0.7791177041387707 + ], + [ + 0.8285988264418827 + ], + [ + 0.9708841861711646 + ], + [ + 0.8292663783394395 + ], + [ + 0.8455377025736512 + ], + [ + 0.784953771420362 + ], + [ + 0.7591712665406429 + ], + [ + 0.8668958338409165 + ], + [ + 0.8033611495393503 + ], + [ + 0.7791177041387707 + ], + [ + 0.7800515724165504 + ], + [ + 0.8797549464963943 + ], + [ + 0.9913485744394356 + ], + [ + 0.9893735932410646 + ], + [ + 0.8883723399394137 + ], + [ + 0.8371159751352832 + ], + [ + 0.8604416000492892 + ], + [ + 0.9391164837414664 + ], + [ + 0.9875732201051683 + ], + [ + 0.8696289027548957 + ], + [ + 0.9116740607637536 + ], + [ + 0.9335682269765724 + ], + [ + 0.8903543205412945 + ], + [ + 0.8274478901761246 + ], + [ + 0.8184361507912837 + ], + [ + 0.8985858297326429 + ], + [ + 0.8811309071018276 + ], + [ + 0.9600766541682176 + ], + [ + 0.9142379797053092 + ], + [ + 0.8539724989309248 + ], + [ + 0.9209665616774528 + ], + [ + 0.7653056658292261 + ], + [ + 0.9409789458067938 + ], + [ + 0.9813761990559404 + ], + [ + 0.937050978278692 + ], + [ + 0.8764803941254208 + ], + [ + 0.9622333213753728 + ], + [ + 0.8137991281050442 + ], + [ + 0.9349229298096128 + ], + [ + 0.9954545454545456 + ], + [ + 0.8383046372479713 + ], + [ + 0.8091752787787085 + ], + [ + 0.8992810605226834 + ], + [ + 0.8526177936134408 + ], + [ + 0.7653579292773433 + ], + [ + 0.916749204599586 + ], + [ + 0.8841900402810652 + ], + [ + 0.8889595044710776 + ], + [ + 0.8674196841123456 + ], + [ + 0.9890311615492476 + ], + [ + 0.9817061821644611 + ], + [ + 0.9631360021073514 + ], + [ + 0.9146441554557286 + ], + [ + 0.9372227566431792 + ], + [ + 0.8277684278026405 + ], + [ + 0.8085158042512651 + ], + [ + 0.8164472422898458 + ], + [ + 0.9476735033728184 + ], + [ + 0.9195597006085118 + ], + [ + 0.9400644385653472 + ], + [ + 0.8518992260665973 + ], + [ + 0.9457607069255074 + ], + [ + 0.805969235202997 + ], + [ + 0.8496241912512923 + ], + [ + 0.8197634340126408 + ], + [ + 0.9579224065577792 + ], + [ + 0.8608612476370511 + ], + [ + 0.9529052383428788 + ], + [ + 0.9845238804935112 + ], + [ + 0.9083435256044582 + ], + [ + 0.8553134080531343 + ], + [ + 0.7923275652679538 + ], + [ + 0.7819131922573495 + ], + [ + 0.7906170310433895 + ], + [ + 0.8406484670606788 + ], + [ + 0.7894736842105264 + ], + [ + 0.8681498428014106 + ], + [ + 0.8408063572139095 + ], + [ + 0.7738548847622624 + ], + [ + 0.8107066154287429 + ], + [ + 0.909636086500905 + ], + [ + 0.9320839327803117 + ], + [ + 0.894689054121916 + ], + [ + 0.8861995746607623 + ], + [ + 0.8134896030245747 + ], + [ + 0.9636363636363636 + ], + [ + 0.8392276737347159 + ], + [ + 0.901982337361457 + ], + [ + 0.8985728391457872 + ], + [ + 0.792183707284576 + ], + [ + 0.781322126609299 + ], + [ + 0.9194369973190348 + ], + [ + 0.8490800833801486 + ], + [ + 0.9929855448480356 + ], + [ + 0.9990150209905604 + ], + [ + 0.7707081956166206 + ], + [ + 0.8952232922255726 + ], + [ + 1 + ], + [ + 0.8129887361537077 + ], + [ + 0.9000234404536862 + ], + [ + 0.998221036598569 + ], + [ + 0.8017888630248555 + ], + [ + 0.8075842215036355 + ], + [ + 0.9208092958092956 + ], + [ + 0.7606873345935727 + ], + [ + 0.7928741020793951 + ], + [ + 0.9344444444444444 + ], + [ + 0.8580430671412884 + ], + [ + 0.8053911900065747 + ], + [ + 0.9025957850286672 + ], + [ + 0.992671182389769 + ], + [ + 0.9682695039010508 + ], + [ + 0.951299790877642 + ], + [ + 0.9060155127964962 + ], + [ + 0.9527305856232412 + ], + [ + 0.9434321361058602 + ], + [ + 0.9565966865742668 + ], + [ + 0.943947221044588 + ], + [ + 0.8705701323251417 + ], + [ + 0.9652200677131424 + ], + [ + 0.9884853681548044 + ], + [ + 0.9357441792403746 + ], + [ + 0.9414868925909092 + ], + [ + 0.9505847966970496 + ], + [ + 0.9565269894940224 + ], + [ + 0.9514804555247768 + ], + [ + 0.7993113894954217 + ], + [ + 0.760960813749392 + ], + [ + 0.8859552362571937 + ], + [ + 0.9413092648977816 + ], + [ + 1 + ], + [ + 0.8182545315351611 + ], + [ + 1 + ], + [ + 0.9136739322359624 + ], + [ + 0.7679975248125409 + ], + [ + 0.9492028179458656 + ], + [ + 0.9839615421047646 + ], + [ + 0.9954545454545456 + ], + [ + 0.9954545454545456 + ], + [ + 0.8398210820058983 + ], + [ + 0.8626784395302913 + ], + [ + 0.9781810760439292 + ], + [ + 0.775848555122794 + ], + [ + 0.7830044520223547 + ], + [ + 0.7890565881306622 + ], + [ + 0.7666456034744639 + ], + [ + 0.8730814336484439 + ], + [ + 0.8997733824632729 + ], + [ + 0.9780525030525028 + ], + [ + 0.9501767000609233 + ], + [ + 0.9341770866436075 + ], + [ + 0.7890266466291772 + ], + [ + 0.931285458781014 + ], + [ + 0.9135836385836384 + ], + [ + 0.8161327222259138 + ], + [ + 0.8595055413469735 + ], + [ + 0.8885272049623901 + ], + [ + 0.8850443888003645 + ], + [ + 0.9111695674516778 + ], + [ + 0.8969355419044592 + ], + [ + 0.9369652591790605 + ], + [ + 0.9474196440005122 + ], + [ + 0.9540293886604132 + ], + [ + 0.7751893805092811 + ], + [ + 0.884220727546821 + ], + [ + 0.9248167539267018 + ], + [ + 0.9416562889165628 + ], + [ + 0.9947833674785644 + ], + [ + 0.8179413224638157 + ], + [ + 0.963749256395003 + ], + [ + 0.9894860390412652 + ], + [ + 0.7661643396391405 + ], + [ + 0.8822836096135876 + ], + [ + 0.9987169080982063 + ], + [ + 0.8212112306855328 + ], + [ + 0.8510831692167852 + ], + [ + 0.9674464520962212 + ], + [ + 0.8140738302718742 + ], + [ + 0.9084937590490597 + ], + [ + 0.8588550489464593 + ], + [ + 0.9132111582886344 + ], + [ + 0.9652833528240462 + ], + [ + 0.8704495461768502 + ], + [ + 0.908214664444781 + ], + [ + 0.8330370179351025 + ], + [ + 0.8542414865764498 + ], + [ + 0.951833769945225 + ], + [ + 0.9369276682149368 + ], + [ + 0.9172096473904445 + ], + [ + 0.7660118606375093 + ], + [ + 0.8049385749385749 + ], + [ + 0.819882410141537 + ], + [ + 0.9479738077588338 + ], + [ + 0.8453139910143218 + ], + [ + 0.9957870470931044 + ], + [ + 0.835084520570639 + ], + [ + 0.7568829071309779 + ], + [ + 0.8003212087852895 + ], + [ + 0.7757575757575756 + ], + [ + 0.9818181818181816 + ], + [ + 0.8296247866194634 + ], + [ + 0.8397480840731469 + ], + [ + 0.8084175084175085 + ], + [ + 0.8224948407969244 + ], + [ + 0.7604961330297303 + ], + [ + 0.8801077325173712 + ], + [ + 0.769382100421295 + ], + [ + 0.8025699565810901 + ], + [ + 0.7925192834831389 + ], + [ + 0.932353379320096 + ], + [ + 0.94491648331435 + ], + [ + 0.8001582377938935 + ], + [ + 0.7832517257911142 + ], + [ + 0.8082508107205724 + ], + [ + 0.7628286200410923 + ], + [ + 0.7621748136686876 + ], + [ + 0.9364192202560784 + ], + [ + 0.7690913021991601 + ], + [ + 0.8585000323687447 + ], + [ + 0.9150177303560064 + ], + [ + 0.8405722943067688 + ], + [ + 0.904913008013858 + ], + [ + 0.917314235445159 + ], + [ + 0.9929855448480356 + ], + [ + 0.8268991218112046 + ], + [ + 0.8398859728050183 + ], + [ + 0.996521739130435 + ], + [ + 0.8330381744436689 + ], + [ + 0.8550497957993816 + ], + [ + 0.9913111768722972 + ], + [ + 0.8557422839635942 + ], + [ + 0.8935463671803986 + ], + [ + 0.9006445563787115 + ], + [ + 0.8921379258150505 + ], + [ + 0.9000168618023969 + ], + [ + 0.7589099863492517 + ], + [ + 0.923526237747262 + ], + [ + 0.9028882720019862 + ], + [ + 0.9170617535185012 + ], + [ + 0.9807828100228472 + ], + [ + 0.939548148620228 + ], + [ + 0.9363191484705866 + ], + [ + 0.8321093615368212 + ], + [ + 0.8571281012005368 + ], + [ + 0.8384981048972464 + ], + [ + 0.9086443302842008 + ], + [ + 0.8871943647917209 + ], + [ + 0.8878997468865361 + ], + [ + 0.8999564578859198 + ], + [ + 0.9894860390412652 + ], + [ + 0.9134801839907836 + ], + [ + 0.8586028659246839 + ], + [ + 0.9532628651995616 + ], + [ + 0.8991005792297246 + ], + [ + 0.9248167539267018 + ], + [ + 0.8647701376567242 + ], + [ + 0.9063380676482872 + ], + [ + 0.9006445563787115 + ], + [ + 0.9964912280701756 + ], + [ + 0.9104377104377104 + ], + [ + 0.9861142727065788 + ], + [ + 0.8766608932307983 + ], + [ + 0.9228068405104872 + ], + [ + 0.945216049382716 + ], + [ + 0.872288139441828 + ], + [ + 0.8287614081607514 + ], + [ + 0.9364502164502164 + ], + [ + 0.9107716613157442 + ], + [ + 0.7558233373684017 + ], + [ + 0.9637205387205386 + ], + [ + 0.911011004178706 + ], + [ + 0.825019069412662 + ], + [ + 0.7745592680619333 + ], + [ + 0.9563893487499426 + ], + [ + 0.8643469043976432 + ], + [ + 0.8938717567128639 + ], + [ + 0.8935795415901516 + ], + [ + 0.9090909090909088 + ], + [ + 0.8890241171514016 + ], + [ + 0.8412491105292438 + ], + [ + 0.8993946860474129 + ], + [ + 0.9779240761641758 + ], + [ + 0.8448498489942445 + ], + [ + 0.9637205387205386 + ], + [ + 0.8307739463601531 + ], + [ + 0.7840680498436611 + ], + [ + 0.9234588281480026 + ], + [ + 0.7533766040551628 + ], + [ + 0.8411108025383495 + ], + [ + 0.8186320718389478 + ], + [ + 0.7507073140597975 + ], + [ + 0.8665855131372373 + ], + [ + 0.8141166099294752 + ], + [ + 0.8465178639695039 + ], + [ + 0.8674324881574892 + ], + [ + 0.894897491091307 + ], + [ + 0.926797128906551 + ], + [ + 0.8002254756609835 + ], + [ + 0.8899568476668683 + ], + [ + 0.8050891517303731 + ], + [ + 0.7551272091668285 + ], + [ + 0.9170723522722332 + ], + [ + 0.8862820694208641 + ], + [ + 0.7731935891169762 + ], + [ + 0.85279684719044 + ], + [ + 0.8545871559633028 + ], + [ + 0.973043266390798 + ], + [ + 0.9110701550899905 + ], + [ + 0.8806793706489482 + ], + [ + 0.9750233018591332 + ], + [ + 0.8832528651475978 + ], + [ + 0.9637205387205386 + ], + [ + 0.8045977011494252 + ], + [ + 0.7840680498436611 + ], + [ + 0.9718089459310836 + ], + [ + 0.7632159853061836 + ], + [ + 0.8411108025383495 + ], + [ + 0.8186320718389478 + ], + [ + 0.8665855131372373 + ], + [ + 0.8141166099294752 + ], + [ + 0.8465178639695039 + ], + [ + 0.8674324881574892 + ], + [ + 0.8941741955127749 + ], + [ + 0.8055806456563269 + ], + [ + 0.9200506754154923 + ], + [ + 0.8002254756609835 + ], + [ + 0.8055002075550022 + ], + [ + 0.8899568476668683 + ], + [ + 0.8050891517303731 + ], + [ + 0.7551272091668285 + ], + [ + 0.9170723522722332 + ], + [ + 0.8862820694208641 + ], + [ + 0.7643684665873062 + ], + [ + 0.8962930952966316 + ], + [ + 0.8545871559633028 + ], + [ + 0.973043266390798 + ], + [ + 0.8391999316061071 + ], + [ + 0.9106199738197148 + ], + [ + 0.8336184977583577 + ], + [ + 0.9825055596738328 + ], + [ + 0.8275801175590107 + ], + [ + 0.8536656603794738 + ], + [ + 0.9947833674785644 + ], + [ + 0.8871943647917209 + ], + [ + 0.9947833674785644 + ], + [ + 0.8474509259804291 + ], + [ + 0.8970952216775002 + ], + [ + 0.9064029668710988 + ], + [ + 0.8689528166230794 + ], + [ + 0.8668563557933111 + ], + [ + 0.9192140588692024 + ], + [ + 0.8446191193563313 + ], + [ + 0.9070510179197603 + ], + [ + 0.9569231352909934 + ], + [ + 0.9360907526607608 + ], + [ + 0.9363191484705866 + ], + [ + 0.7585150816808764 + ], + [ + 0.8079450438253487 + ], + [ + 0.889311351984684 + ], + [ + 0.9157961667726409 + ], + [ + 0.8495199813878911 + ], + [ + 0.9008127437155956 + ], + [ + 0.9894860390412652 + ], + [ + 0.9084777593712244 + ], + [ + 0.8247288683081853 + ], + [ + 0.9554572159761404 + ], + [ + 0.8803742636840193 + ], + [ + 0.8617666872995883 + ], + [ + 0.9141959372906489 + ], + [ + 0.9034890695907855 + ], + [ + 0.8086181910936574 + ], + [ + 0.9964912280701756 + ], + [ + 0.9859927106498643 + ], + [ + 0.9106199738197148 + ], + [ + 0.7805873465692333 + ], + [ + 0.8878997468865361 + ], + [ + 0.9016573566020095 + ], + [ + 0.996521739130435 + ], + [ + 0.8072721768598793 + ], + [ + 0.8440081063581091 + ], + [ + 0.996521739130435 + ], + [ + 0.8612922801795058 + ], + [ + 0.8405722943067688 + ], + [ + 0.9620426435996664 + ], + [ + 0.8550497957993816 + ], + [ + 0.8140134601423378 + ], + [ + 0.8065264393377811 + ], + [ + 0.8107867382196149 + ], + [ + 0.8640740055556022 + ], + [ + 0.8801559604997237 + ], + [ + 0.7852248168921702 + ], + [ + 0.8640589559565321 + ], + [ + 0.7885457047794436 + ], + [ + 0.8947102177469851 + ], + [ + 0.9459249756326831 + ], + [ + 0.9206503306171988 + ], + [ + 0.8390959753949685 + ], + [ + 0.8829679585824524 + ], + [ + 0.8550497957993816 + ], + [ + 0.9034890695907855 + ], + [ + 0.996521739130435 + ], + [ + 0.8773484472624222 + ], + [ + 0.8453843932985197 + ], + [ + 0.9372480427854252 + ], + [ + 0.7528181818181818 + ], + [ + 0.9513991845811716 + ], + [ + 0.8133380704513155 + ], + [ + 0.8550497957993816 + ], + [ + 0.8822645386075115 + ], + [ + 0.9964912280701756 + ], + [ + 0.984385006449655 + ], + [ + 0.8868917142282169 + ], + [ + 0.8515915595209063 + ], + [ + 0.7801554360634969 + ], + [ + 0.985677698237539 + ], + [ + 0.8248130810601166 + ], + [ + 0.8900224404233377 + ], + [ + 0.9847846012832264 + ], + [ + 0.8665750946042498 + ], + [ + 0.8066554677866482 + ], + [ + 0.9191871761989552 + ], + [ + 0.8436840954545581 + ], + [ + 0.863729744412587 + ], + [ + 0.8256985978203084 + ], + [ + 0.8998085943818406 + ], + [ + 0.8162326248169407 + ], + [ + 0.9119926726575672 + ], + [ + 0.9789271593959374 + ], + [ + 0.9477427513951896 + ], + [ + 0.9452267008277976 + ], + [ + 0.880636467189412 + ], + [ + 0.8867623702302508 + ], + [ + 0.808133830455259 + ], + [ + 0.9714444301275637 + ], + [ + 0.9847846012832264 + ], + [ + 0.9286461770540784 + ], + [ + 0.9203870504644208 + ], + [ + 0.941002197457228 + ], + [ + 0.9704634209196064 + ], + [ + 0.8113283188178101 + ], + [ + 0.7634010982542299 + ], + [ + 0.8902061446452669 + ], + [ + 0.9354771486059212 + ], + [ + 0.9847846012832264 + ], + [ + 0.7809840281171203 + ], + [ + 0.9894860390412652 + ], + [ + 0.8185297955632884 + ], + [ + 0.8802332979851536 + ], + [ + 0.9723196833760273 + ], + [ + 0.9982608695652172 + ], + [ + 0.8258211640188051 + ], + [ + 0.9080000797822109 + ], + [ + 0.9964912280701756 + ], + [ + 0.839409582008935 + ], + [ + 0.8941141728869741 + ], + [ + 0.7725808179227283 + ], + [ + 0.8028188725754469 + ], + [ + 0.8251527896182628 + ], + [ + 0.8315151515151515 + ], + [ + 0.817899229361741 + ], + [ + 0.7620751217250173 + ], + [ + 0.8246468823065852 + ], + [ + 0.8720941750410174 + ], + [ + 0.9294859277773437 + ], + [ + 0.9927523497097036 + ], + [ + 0.9828742809481747 + ], + [ + 0.9543209471735604 + ], + [ + 0.8753860783148016 + ], + [ + 0.939845912034176 + ], + [ + 0.9151374298073564 + ], + [ + 0.9378841050418828 + ], + [ + 0.939845912034176 + ], + [ + 0.7510938991373108 + ], + [ + 0.8610822831727207 + ], + [ + 0.8417508417508417 + ], + [ + 0.8698065557551617 + ], + [ + 0.9372803249238462 + ], + [ + 0.9790245861131704 + ], + [ + 0.9300633742947678 + ], + [ + 0.8054841390869845 + ], + [ + 0.7589199371000429 + ], + [ + 0.896639903044993 + ], + [ + 0.8974694288349275 + ], + [ + 0.9926781739019452 + ], + [ + 0.8458809671812189 + ], + [ + 0.7712684989429177 + ], + [ + 0.7976314145122237 + ], + [ + 0.9416437009068946 + ], + [ + 0.9947856385396152 + ], + [ + 0.7862727272727271 + ], + [ + 0.8586700336700335 + ], + [ + 0.9303687863484544 + ], + [ + 0.8675319709415152 + ], + [ + 0.7920446151287672 + ], + [ + 0.8694866227116197 + ], + [ + 0.8586700336700335 + ], + [ + 0.7834335706711103 + ], + [ + 0.7921764122864366 + ], + [ + 0.934334074623178 + ], + [ + 0.8619283887468031 + ], + [ + 0.7676281237741422 + ], + [ + 0.7631048593350384 + ], + [ + 0.9925507389082384 + ], + [ + 0.978469168274726 + ], + [ + 0.7500718937727315 + ], + [ + 0.8846977863333716 + ], + [ + 0.9378841050418828 + ], + [ + 0.8684059865492091 + ], + [ + 0.8950764254021453 + ], + [ + 0.7740137221269299 + ], + [ + 0.8084175084175085 + ], + [ + 0.8843935880633129 + ], + [ + 0.7975398606698341 + ], + [ + 0.8485069801940157 + ], + [ + 0.7694545454545454 + ], + [ + 0.9679847507357018 + ], + [ + 0.7697689156812739 + ], + [ + 0.7685979300090726 + ], + [ + 0.9457912457912456 + ], + [ + 0.7920033670033668 + ], + [ + 0.81753438081967 + ], + [ + 0.9637205387205386 + ], + [ + 0.8196988466882366 + ], + [ + 0.8876132688068014 + ], + [ + 0.9992667277726852 + ], + [ + 0.813403640566796 + ], + [ + 0.924902134017138 + ], + [ + 0.8505352830088105 + ], + [ + 0.7966210086663266 + ], + [ + 0.8107701860758095 + ], + [ + 0.7920033670033668 + ], + [ + 0.8396249227545072 + ], + [ + 0.7665777912437509 + ], + [ + 0.9309395848776872 + ], + [ + 0.8562069694591002 + ], + [ + 0.8351865579441562 + ], + [ + 0.7614932582627626 + ], + [ + 0.9217240750865684 + ], + [ + 0.9927523497097036 + ], + [ + 0.9824776408025137 + ], + [ + 0.9261759464210148 + ], + [ + 0.8795946591645603 + ], + [ + 0.9517275376077332 + ], + [ + 0.8343766589132309 + ], + [ + 0.9378841050418828 + ], + [ + 0.939845912034176 + ], + [ + 0.8426835486603141 + ], + [ + 0.8084175084175085 + ], + [ + 0.825 + ], + [ + 0.9279912144543816 + ], + [ + 0.9380615545835612 + ], + [ + 0.954821445486407 + ], + [ + 0.8054841390869845 + ], + [ + 0.7644397158986019 + ], + [ + 0.7992420095977141 + ], + [ + 0.9046488352723072 + ], + [ + 0.8607131176664159 + ], + [ + 0.9425530200949087 + ], + [ + 0.9831998467809452 + ], + [ + 0.911913216712972 + ], + [ + 0.8106537530266346 + ], + [ + 0.8669221312020842 + ], + [ + 0.9668646925956867 + ], + [ + 0.9859927106498643 + ], + [ + 0.8221148524429848 + ], + [ + 0.8287744007907092 + ], + [ + 0.82603603526253 + ], + [ + 0.8081220122922833 + ], + [ + 0.9241691376328144 + ], + [ + 0.8905062719442627 + ], + [ + 0.9072244170820468 + ], + [ + 0.9697143291871126 + ], + [ + 0.9165806743803824 + ], + [ + 0.9299779576625525 + ], + [ + 0.8626009468114731 + ], + [ + 0.9129479515242416 + ], + [ + 0.9489917104460288 + ], + [ + 0.857590973901184 + ], + [ + 0.7832356477938764 + ], + [ + 0.8727427378014051 + ], + [ + 0.7882094994286454 + ], + [ + 0.895848674816511 + ], + [ + 0.9755497899678774 + ], + [ + 0.8250670301619656 + ], + [ + 0.7636588119091294 + ], + [ + 0.8344665413033981 + ], + [ + 0.9956140350877192 + ], + [ + 0.7763975155279506 + ], + [ + 0.9842098239836105 + ], + [ + 0.8099989097144443 + ], + [ + 0.8954915979223954 + ], + [ + 0.9774655289026236 + ], + [ + 0.8046862811072518 + ], + [ + 0.8922196480686242 + ], + [ + 0.8757413004727584 + ], + [ + 0.875097886791886 + ], + [ + 0.9781962076503552 + ], + [ + 0.9571952337305224 + ], + [ + 0.8651037425957864 + ], + [ + 0.9276048900878147 + ], + [ + 0.8334407352378117 + ], + [ + 0.7931151679937852 + ], + [ + 0.8060125046665569 + ], + [ + 0.9001590894975678 + ], + [ + 0.8984134418359582 + ], + [ + 0.9307180976298852 + ], + [ + 0.8949088289552438 + ], + [ + 0.9140478958381776 + ], + [ + 0.9195604324464297 + ], + [ + 0.8595611909902062 + ], + [ + 0.8168393183171508 + ], + [ + 0.826467375579422 + ], + [ + 0.94513113161729 + ], + [ + 0.9542466061552302 + ], + [ + 0.8949088289552438 + ], + [ + 0.9053910284366296 + ], + [ + 0.817437533227007 + ], + [ + 0.7978783990223038 + ], + [ + 0.7521903939726886 + ], + [ + 0.754943158980426 + ], + [ + 0.7928605555934748 + ], + [ + 0.8989607068123694 + ], + [ + 0.7975892455476461 + ], + [ + 0.7725199492096488 + ], + [ + 0.773030766193022 + ], + [ + 0.9767351231527428 + ], + [ + 0.9424631082284728 + ], + [ + 0.866898864682116 + ], + [ + 0.7899138991389913 + ], + [ + 0.9376349250962784 + ], + [ + 0.9303020409693342 + ], + [ + 0.8287563928270861 + ], + [ + 0.8603115680426934 + ], + [ + 0.8114732228923959 + ], + [ + 0.9669758970781992 + ], + [ + 0.8105976841695943 + ], + [ + 0.7959269589012261 + ], + [ + 0.8302139037433156 + ], + [ + 0.986986590623621 + ], + [ + 0.751078143739283 + ], + [ + 0.7653353783714458 + ], + [ + 0.8172644988912497 + ], + [ + 0.7803817180307603 + ], + [ + 0.8605730020712427 + ], + [ + 0.912175623606646 + ], + [ + 0.9956171156600898 + ], + [ + 0.8729948690203866 + ], + [ + 0.8364452091564932 + ], + [ + 0.8308541973619359 + ], + [ + 0.901193983595923 + ], + [ + 0.8421276190184838 + ], + [ + 0.8119707766428466 + ], + [ + 0.778036674438649 + ], + [ + 0.7873355614633314 + ], + [ + 0.7837805015771132 + ], + [ + 0.8219385637193856 + ], + [ + 0.8521396824062815 + ], + [ + 0.7718977095748232 + ], + [ + 0.8817091503055309 + ], + [ + 0.7708107321002571 + ], + [ + 0.7512636527567177 + ], + [ + 0.8438110321297421 + ], + [ + 0.9832058480308432 + ], + [ + 0.8890631162040309 + ], + [ + 0.8977160492573557 + ], + [ + 0.9859234217934404 + ], + [ + 0.8546502548557862 + ], + [ + 0.8668958338409165 + ], + [ + 0.9890311615492476 + ], + [ + 0.9350943180643897 + ], + [ + 0.9280169976669376 + ], + [ + 0.8210527935710153 + ], + [ + 0.7559911987169416 + ], + [ + 0.7736264668325739 + ], + [ + 0.863925779862748 + ], + [ + 0.824723044297354 + ], + [ + 0.8806041934635603 + ], + [ + 0.8250833206612556 + ], + [ + 0.928723519908324 + ], + [ + 0.8668958338409165 + ], + [ + 0.8881896291715989 + ], + [ + 0.9593583027873251 + ], + [ + 0.9061435934718377 + ], + [ + 0.9211354224331691 + ], + [ + 0.8859445107741636 + ], + [ + 0.9398812902982936 + ], + [ + 0.8047278408758268 + ], + [ + 0.9223744981227123 + ], + [ + 0.9230788696114616 + ], + [ + 0.9536631479971994 + ], + [ + 0.9694396869310692 + ], + [ + 0.8131377716690427 + ], + [ + 0.8237517359346237 + ], + [ + 0.8173907278944466 + ], + [ + 0.8965017504270001 + ], + [ + 0.9219048551109622 + ], + [ + 0.9097417836628494 + ], + [ + 0.8553134080531343 + ], + [ + 0.9989920981077092 + ], + [ + 0.917451425335698 + ], + [ + 0.9683628785480636 + ], + [ + 0.7970900578406114 + ], + [ + 0.8376203239523712 + ], + [ + 0.9801024844208264 + ], + [ + 0.7557162849632163 + ], + [ + 0.8961803319477781 + ], + [ + 0.996336999414424 + ], + [ + 0.9196524296187878 + ], + [ + 0.8854275250970148 + ], + [ + 0.8283188405797101 + ], + [ + 0.8569170829836921 + ], + [ + 0.7593988263019269 + ], + [ + 0.8392807687593222 + ], + [ + 0.9868446526492484 + ], + [ + 0.7732691595705294 + ], + [ + 0.9521895754027829 + ], + [ + 0.9372227566431792 + ], + [ + 0.9200506754154923 + ], + [ + 0.917500751704446 + ], + [ + 0.8740937766410911 + ], + [ + 0.8518450184501843 + ], + [ + 0.7975089687046684 + ], + [ + 0.8722498962224988 + ], + [ + 0.8978908677866823 + ], + [ + 0.9773557492735576 + ], + [ + 0.8912733076127769 + ], + [ + 0.8868080394461477 + ], + [ + 0.8826697225277056 + ], + [ + 0.9463791440512886 + ], + [ + 0.9521895754027829 + ], + [ + 0.8485714285714286 + ], + [ + 0.999122807017544 + ], + [ + 0.9265379339453412 + ], + [ + 0.789227895392279 + ], + [ + 0.8469796766499825 + ], + [ + 0.953644173755992 + ], + [ + 0.9926761940480948 + ], + [ + 0.8153042353997382 + ], + [ + 0.8607621561631246 + ], + [ + 0.9832058480308432 + ], + [ + 0.9570294209353524 + ], + [ + 0.9992668621947256 + ], + [ + 0.8641670664322122 + ], + [ + 0.7757761746311366 + ], + [ + 0.8357747120217831 + ], + [ + 0.866213238722621 + ], + [ + 0.8792285183078618 + ], + [ + 0.7957371772064827 + ], + [ + 0.878036507710379 + ], + [ + 0.9658331436022252 + ], + [ + 0.7622935296404183 + ], + [ + 0.9857187253140862 + ], + [ + 0.8942561574169895 + ], + [ + 0.9622333213753728 + ], + [ + 0.9131318215287682 + ], + [ + 0.8411490111317951 + ], + [ + 0.8916483082566217 + ], + [ + 0.9500441996469742 + ], + [ + 0.8499116091074294 + ], + [ + 0.9308446996969624 + ], + [ + 0.971973367585848 + ], + [ + 0.950603792184588 + ], + [ + 0.8131377716690427 + ], + [ + 0.8886194359553156 + ], + [ + 0.8284169872492293 + ], + [ + 0.8757940351900098 + ], + [ + 0.9023840086111148 + ], + [ + 0.9230788696114616 + ], + [ + 0.7524570024570024 + ], + [ + 0.9981688711071728 + ], + [ + 0.9020646721236415 + ], + [ + 0.9272440944881892 + ], + [ + 0.917451425335698 + ], + [ + 0.952871096782223 + ], + [ + 0.9954192028862328 + ], + [ + 0.8614426005287826 + ], + [ + 0.8553282796247272 + ], + [ + 0.991220090045964 + ], + [ + 0.962952748132584 + ], + [ + 0.9970690618433798 + ], + [ + 0.8655309124484051 + ], + [ + 0.7810606403025839 + ], + [ + 0.7757761746311366 + ], + [ + 0.8580430671412884 + ], + [ + 0.866213238722621 + ], + [ + 0.8806041934635603 + ], + [ + 0.7777808036382947 + ], + [ + 0.8317573749391951 + ], + [ + 0.9716068390573318 + ], + [ + 0.819882410141537 + ], + [ + 0.9848040830545792 + ], + [ + 0.8737365714482546 + ], + [ + 0.962952748132584 + ], + [ + 0.9154671960778832 + ], + [ + 0.9112764606124896 + ], + [ + 0.8916483082566217 + ], + [ + 0.9529052383428788 + ], + [ + 0.8696289027548957 + ], + [ + 0.9188566733401607 + ], + [ + 0.9507590560548307 + ], + [ + 0.9507917513638928 + ], + [ + 0.9853649117096728 + ], + [ + 0.8131377716690427 + ], + [ + 0.8951137084436364 + ], + [ + 0.8371159751352832 + ], + [ + 0.8703128420935895 + ], + [ + 0.9022988912306722 + ], + [ + 0.9400644385653472 + ], + [ + 0.7531344790477525 + ], + [ + 0.9992668621947256 + ], + [ + 0.9020646721236415 + ], + [ + 0.8645269531463561 + ], + [ + 0.9839330712663648 + ], + [ + 0.975224136149363 + ], + [ + 0.9372677626851672 + ], + [ + 1 + ], + [ + 0.9904901783696456 + ], + [ + 0.9875732201051683 + ], + [ + 1 + ], + [ + 0.9919502705663622 + ], + [ + 0.9890311615492476 + ], + [ + 1 + ], + [ + 0.9883020564051679 + ], + [ + 0.9132421335802218 + ], + [ + 0.996336999414424 + ], + [ + 0.9890311615492476 + ], + [ + 0.9883020564051679 + ], + [ + 0.9897605355374068 + ], + [ + 0.991220090045964 + ], + [ + 0.978122813016422 + ], + [ + 0.9511647444887732 + ], + [ + 0.9919502705663622 + ], + [ + 0.9985339932335306 + ], + [ + 0.8938717567128639 + ], + [ + 0.9891891050899508 + ], + [ + 0.9970690618433798 + ], + [ + 0.9897605355374068 + ], + [ + 0.9978013931164152 + ], + [ + 0.9855637890579251 + ], + [ + 0.9586402202505121 + ], + [ + 0.9607952743931896 + ], + [ + 0.9805263157894736 + ], + [ + 0.99268071993084 + ], + [ + 0.9941424251920344 + ], + [ + 0.996336999414424 + ], + [ + 0.9884575916336614 + ], + [ + 0.9719327874122964 + ], + [ + 0.9753656599277568 + ], + [ + 0.9883020564051679 + ], + [ + 0.9919502705663622 + ], + [ + 0.9883020564051679 + ], + [ + 0.9934114381393974 + ], + [ + 0.9992668621947256 + ], + [ + 0.977723489335005 + ], + [ + 0.9995652173913042 + ], + [ + 0.9948736810887512 + ], + [ + 0.9090909090909088 + ], + [ + 0.8174876847290639 + ], + [ + 0.8553636363636363 + ], + [ + 0.8455433455433455 + ], + [ + 0.8397417807252716 + ], + [ + 0.8437332724582007 + ], + [ + 0.832909538499891 + ], + [ + 0.7619786952586509 + ], + [ + 0.8177290491628549 + ], + [ + 0.9175438596491228 + ], + [ + 0.882198952879581 + ], + [ + 0.8767128866853765 + ], + [ + 0.8150509397735729 + ], + [ + 0.9294196742835898 + ], + [ + 0.8917391304347826 + ], + [ + 0.8253968253968254 + ], + [ + 0.8829402079402078 + ], + [ + 0.8107452697678261 + ], + [ + 0.9637205387205386 + ], + [ + 0.852293824358888 + ], + [ + 0.8709558996012198 + ], + [ + 0.7596801346801346 + ], + [ + 0.8181614349775784 + ], + [ + 0.9017543859649124 + ], + [ + 0.7897773279352229 + ], + [ + 0.805168828270855 + ], + [ + 0.9090909090909088 + ], + [ + 0.945216049382716 + ], + [ + 0.8771929824561405 + ], + [ + 0.8174876847290639 + ], + [ + 0.7599743651365856 + ], + [ + 0.8553636363636363 + ], + [ + 0.8455433455433455 + ], + [ + 0.9416562889165628 + ], + [ + 0.8437332724582007 + ], + [ + 0.832909538499891 + ], + [ + 0.8177290491628549 + ], + [ + 0.9175438596491228 + ], + [ + 0.882198952879581 + ], + [ + 0.8767128866853765 + ], + [ + 0.8150509397735729 + ], + [ + 0.9294196742835898 + ], + [ + 0.8917391304347826 + ], + [ + 0.8253968253968254 + ], + [ + 0.8829402079402078 + ], + [ + 0.8107452697678261 + ], + [ + 0.8417508417508417 + ], + [ + 0.852293824358888 + ], + [ + 0.8709558996012198 + ], + [ + 0.7596801346801346 + ], + [ + 0.8181614349775784 + ], + [ + 0.9017543859649124 + ], + [ + 0.7897773279352229 + ], + [ + 0.805168828270855 + ], + [ + 0.9090909090909088 + ], + [ + 0.9789848244395952 + ], + [ + 0.8771929824561405 + ], + [ + 0.8174876847290639 + ], + [ + 0.8813770455902434 + ], + [ + 0.8553636363636363 + ], + [ + 0.8455433455433455 + ], + [ + 0.8325561291955809 + ], + [ + 0.8437332724582007 + ], + [ + 0.832909538499891 + ], + [ + 0.8177290491628549 + ], + [ + 0.882198952879581 + ], + [ + 0.8150509397735729 + ], + [ + 0.9294196742835898 + ], + [ + 0.8917391304347826 + ], + [ + 0.8253968253968254 + ], + [ + 0.7862727272727271 + ], + [ + 0.8107452697678261 + ], + [ + 0.9825055596738328 + ], + [ + 0.852293824358888 + ], + [ + 0.8709558996012198 + ], + [ + 0.826664274308378 + ], + [ + 0.8181614349775784 + ], + [ + 0.9017543859649124 + ], + [ + 0.7897773279352229 + ], + [ + 0.805168828270855 + ], + [ + 0.9792614678275988 + ], + [ + 0.8553134080531343 + ], + [ + 0.8343739357475309 + ], + [ + 0.9649169511660014 + ], + [ + 0.9815789473684212 + ], + [ + 0.775995920023485 + ], + [ + 0.8490459410817468 + ], + [ + 0.999122807017544 + ], + [ + 0.8887919536466066 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.79241896667796 + ], + [ + 0.8672820048414341 + ], + [ + 0.9416562889165628 + ], + [ + 0.7922752675949607 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8515555890726042 + ], + [ + 0.84746622922539 + ], + [ + 0.8469364035600904 + ], + [ + 0.9088064577345945 + ], + [ + 0.9830807073527456 + ], + [ + 0.9729066716260472 + ], + [ + 0.9309198460265768 + ], + [ + 0.993758325008325 + ], + [ + 0.9220836669819068 + ], + [ + 0.9328333806952732 + ], + [ + 0.9120932616135702 + ], + [ + 0.8672722972717296 + ], + [ + 0.9787330446229278 + ], + [ + 0.9956171156600898 + ], + [ + 0.9044025274049858 + ], + [ + 0.9162907640884717 + ], + [ + 0.9886242163794032 + ], + [ + 0.9856590419138828 + ], + [ + 0.9735969760860068 + ], + [ + 0.9237640299437498 + ], + [ + 0.8150558110147776 + ], + [ + 0.9001503179694077 + ], + [ + 0.9403303455027593 + ], + [ + 0.999122807017544 + ], + [ + 0.9090741230371568 + ], + [ + 0.999122807017544 + ], + [ + 0.903135734615762 + ], + [ + 0.8282546041121969 + ], + [ + 0.9792614678275988 + ], + [ + 0.8553134080531343 + ], + [ + 0.8232860332235971 + ], + [ + 0.909065387196842 + ], + [ + 0.978073311070348 + ], + [ + 0.775995920023485 + ], + [ + 0.8490459410817468 + ], + [ + 0.999122807017544 + ], + [ + 0.8870930627862177 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.79241896667796 + ], + [ + 0.8672820048414341 + ], + [ + 0.9416562889165628 + ], + [ + 0.7922752675949607 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.7737464548987709 + ], + [ + 0.84746622922539 + ], + [ + 0.8291492133323973 + ], + [ + 0.9088064577345945 + ], + [ + 0.9761788895853514 + ], + [ + 0.9770862304997938 + ], + [ + 0.9329580322176916 + ], + [ + 0.993758325008325 + ], + [ + 0.9188951371295636 + ], + [ + 0.9328333806952732 + ], + [ + 0.8980181937554507 + ], + [ + 0.8677050513455755 + ], + [ + 0.9752792033119024 + ], + [ + 0.9882730260033812 + ], + [ + 0.905289786165362 + ], + [ + 0.9143112638406732 + ], + [ + 0.9886242163794032 + ], + [ + 0.9544594777956544 + ], + [ + 0.9581772940528424 + ], + [ + 0.9143045157420016 + ], + [ + 0.8252050839377624 + ], + [ + 0.9001503179694077 + ], + [ + 0.9403303455027593 + ], + [ + 0.999122807017544 + ], + [ + 0.9292464661560496 + ], + [ + 0.999122807017544 + ], + [ + 0.8566176867322529 + ], + [ + 0.8374157216227878 + ], + [ + 0.9280303030303032 + ], + [ + 0.986111279729024 + ], + [ + 0.9950777781016508 + ], + [ + 0.7644397158986019 + ], + [ + 0.8788591215600511 + ], + [ + 0.995055254321861 + ], + [ + 0.8218760444455504 + ], + [ + 0.8963051106025932 + ], + [ + 0.9855308977062668 + ], + [ + 0.8161330049261083 + ], + [ + 0.919010674275554 + ], + [ + 0.8602150725639578 + ], + [ + 0.9437855111487105 + ], + [ + 0.982329825041006 + ], + [ + 0.8843548391463373 + ], + [ + 0.8689327225675706 + ], + [ + 0.931003010693105 + ], + [ + 0.9349500075746098 + ], + [ + 0.8343765747325528 + ], + [ + 0.8587642661603542 + ], + [ + 0.8586700336700335 + ], + [ + 0.9617123795404005 + ], + [ + 0.9664559126905398 + ], + [ + 0.9369276682149368 + ], + [ + 0.9421777653794547 + ], + [ + 0.8002254756609835 + ], + [ + 0.91015350877193 + ], + [ + 0.8195948305972756 + ], + [ + 0.8049385749385749 + ], + [ + 0.8079714438079046 + ], + [ + 0.9248788062414784 + ], + [ + 0.9466765601812077 + ], + [ + 0.9943237305426308 + ], + [ + 0.8922259540680743 + ], + [ + 0.7615894748339839 + ], + [ + 0.92882506393551 + ], + [ + 0.8553134080531343 + ], + [ + 0.8492357350911255 + ], + [ + 0.9943501037415146 + ], + [ + 0.9908190857034046 + ], + [ + 0.7714797416324134 + ], + [ + 0.8958436239049176 + ], + [ + 1 + ], + [ + 0.8217563751752737 + ], + [ + 0.8995898027497777 + ], + [ + 0.9692982456140352 + ], + [ + 0.9108481442025624 + ], + [ + 0.7872481572481572 + ], + [ + 0.7785693212549879 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8833898132089024 + ], + [ + 0.8276770122994085 + ], + [ + 0.895416975651959 + ], + [ + 0.992671182389769 + ], + [ + 0.9514741813067672 + ], + [ + 0.8630706569122703 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8398017274912394 + ], + [ + 0.9988878509623264 + ], + [ + 0.937103645050706 + ], + [ + 0.9851370084561714 + ], + [ + 0.8052224642752426 + ], + [ + 0.9408748628296816 + ], + [ + 0.950672972897766 + ], + [ + 0.9505705348293196 + ], + [ + 1 + ], + [ + 0.7647361516158825 + ], + [ + 0.907644799841382 + ], + [ + 0.8492357350911255 + ], + [ + 0.9514212739063944 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8950014677832712 + ], + [ + 0.9943546343400722 + ], + [ + 0.8210917926103164 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8091752787787085 + ], + [ + 0.8045413788925241 + ], + [ + 0.92385752642948 + ], + [ + 0.7939937969249388 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8564021794854101 + ], + [ + 0.8929190984699815 + ], + [ + 0.7960647061252278 + ], + [ + 0.9048525852298742 + ], + [ + 0.992671182389769 + ], + [ + 0.987968431853366 + ], + [ + 0.9531702386026508 + ], + [ + 0.8651058220157922 + ], + [ + 0.957204861709126 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.8819809439955775 + ], + [ + 0.9883020564051679 + ], + [ + 0.937103645050706 + ], + [ + 0.9407755311560884 + ], + [ + 0.9851370084561714 + ], + [ + 0.8030210815765354 + ], + [ + 0.94362258995985 + ], + [ + 0.7901596681791947 + ], + [ + 0.8868080394461477 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9443944345284628 + ], + [ + 0.9992668621947256 + ], + [ + 0.9385224385224383 + ], + [ + 0.7647361516158825 + ], + [ + 0.907644799841382 + ], + [ + 0.8492357350911255 + ], + [ + 0.9514212739063944 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8950014677832712 + ], + [ + 0.9943546343400722 + ], + [ + 0.8171099429462456 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8091752787787085 + ], + [ + 0.8045413788925241 + ], + [ + 0.92385752642948 + ], + [ + 0.7939937969249388 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8532214540129998 + ], + [ + 0.8929190984699815 + ], + [ + 0.7960647061252278 + ], + [ + 0.9048525852298742 + ], + [ + 0.992671182389769 + ], + [ + 0.987968431853366 + ], + [ + 0.9531702386026508 + ], + [ + 0.8651058220157922 + ], + [ + 0.957204861709126 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.8744221238514268 + ], + [ + 0.9883020564051679 + ], + [ + 0.937103645050706 + ], + [ + 0.9407755311560884 + ], + [ + 0.9851370084561714 + ], + [ + 0.8030210815765354 + ], + [ + 0.94362258995985 + ], + [ + 0.7901596681791947 + ], + [ + 0.8868080394461477 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9443944345284628 + ], + [ + 0.9992668621947256 + ], + [ + 0.9385224385224383 + ], + [ + 0.7647361516158825 + ], + [ + 0.7823572752988579 + ], + [ + 0.9716068390573318 + ], + [ + 0.9615141634622412 + ], + [ + 0.9956019844379308 + ], + [ + 0.9939526010712452 + ], + [ + 0.9868446526492484 + ], + [ + 0.9788481543433862 + ], + [ + 1 + ], + [ + 0.9280169976669376 + ], + [ + 0.975224136149363 + ], + [ + 0.9970690618433798 + ], + [ + 0.9883020564051679 + ], + [ + 0.9301373709233364 + ], + [ + 0.9795737645144298 + ], + [ + 0.9824788936394012 + ], + [ + 0.9883020564051679 + ], + [ + 0.9414868925909092 + ], + [ + 0.9188566733401607 + ], + [ + 0.9978013931164152 + ], + [ + 0.9692438828447324 + ], + [ + 0.9883020564051679 + ], + [ + 0.9934114381393974 + ], + [ + 0.9486152933634998 + ], + [ + 0.9721523399735842 + ], + [ + 0.9934114381393974 + ], + [ + 0.9708841861711646 + ], + [ + 0.9500441996469742 + ], + [ + 0.9174366159265968 + ], + [ + 0.9329682990823176 + ], + [ + 0.9716068390573318 + ], + [ + 0.8840480861242009 + ], + [ + 0.9948736810887512 + ], + [ + 0.9579224065577792 + ], + [ + 0.9679962630672924 + ], + [ + 0.9978013931164152 + ], + [ + 0.8764803941254208 + ], + [ + 0.9414868925909092 + ], + [ + 0.9181539149158895 + ], + [ + 0.9429104219927898 + ], + [ + 0.9919502705663622 + ], + [ + 0.9651126414686952 + ], + [ + 1 + ], + [ + 0.9962804570068788 + ], + [ + 1 + ], + [ + 0.9513949869239996 + ], + [ + 0.917451425335698 + ], + [ + 0.8893524283935244 + ], + [ + 0.8711567490387903 + ], + [ + 0.8402268612783098 + ], + [ + 0.9991101224022378 + ], + [ + 0.875683873894971 + ], + [ + 0.893318343627618 + ], + [ + 0.9998166819431716 + ], + [ + 0.8181684978110831 + ], + [ + 0.8501131405958162 + ], + [ + 0.9791710812316362 + ], + [ + 0.9416562889165628 + ], + [ + 0.7704074975067344 + ], + [ + 0.8205779056365766 + ], + [ + 0.8524355521406097 + ], + [ + 0.8149410602532909 + ], + [ + 0.9678129927260984 + ], + [ + 0.992671182389769 + ], + [ + 0.9904289157282716 + ], + [ + 0.9512909738881008 + ], + [ + 0.9430833061919088 + ], + [ + 0.9498925099667804 + ], + [ + 0.9491784964871592 + ], + [ + 0.9608990650462856 + ], + [ + 0.9498609989321576 + ], + [ + 0.7794361831100473 + ], + [ + 0.9505758519634429 + ], + [ + 0.9773557492735576 + ], + [ + 0.8637008456171156 + ], + [ + 0.9301795973691914 + ], + [ + 0.8828315614940658 + ], + [ + 0.959175062021937 + ], + [ + 0.9531601641545472 + ], + [ + 0.999122807017544 + ], + [ + 0.9998166819431716 + ], + [ + 0.7587536069598175 + ], + [ + 0.7522123063336182 + ], + [ + 0.8258303273081601 + ], + [ + 0.9356248965935622 + ], + [ + 0.9820100634702482 + ], + [ + 0.831081385436793 + ], + [ + 0.8534540516685338 + ], + [ + 0.9818536963567754 + ], + [ + 0.8486878358300123 + ], + [ + 0.9129853629164147 + ], + [ + 0.8998911634924976 + ], + [ + 0.7793718426037994 + ], + [ + 0.932398585032895 + ], + [ + 0.800012400217004 + ], + [ + 0.7984383476710843 + ], + [ + 0.907326978222119 + ], + [ + 0.838169467510867 + ], + [ + 0.7913646289079624 + ], + [ + 0.9278150139590884 + ], + [ + 0.9506223327256856 + ], + [ + 0.9364530503181744 + ], + [ + 0.9417014747671419 + ], + [ + 0.7800217784035494 + ], + [ + 0.9258691777106102 + ], + [ + 0.9376349250962784 + ], + [ + 0.9412635914006205 + ], + [ + 0.8430977292102612 + ], + [ + 0.9461654371370272 + ], + [ + 0.9391302151973808 + ], + [ + 0.968708052390917 + ], + [ + 0.7829559806346367 + ], + [ + 0.8486878358300123 + ], + [ + 0.92049050384555 + ], + [ + 0.9877189123128628 + ], + [ + 0.9672169872900396 + ], + [ + 0.8207867897037397 + ], + [ + 0.8168393183171508 + ], + [ + 0.826467375579422 + ], + [ + 0.94513113161729 + ], + [ + 0.9585637037072424 + ], + [ + 0.8949088289552438 + ], + [ + 0.9053910284366296 + ], + [ + 0.817437533227007 + ], + [ + 0.7978783990223038 + ], + [ + 0.7521903939726886 + ], + [ + 0.754943158980426 + ], + [ + 0.7928605555934748 + ], + [ + 0.8989607068123694 + ], + [ + 0.7975892455476461 + ], + [ + 0.7725199492096488 + ], + [ + 0.7662703504995123 + ], + [ + 0.9767351231527428 + ], + [ + 0.9424631082284728 + ], + [ + 0.866898864682116 + ], + [ + 0.7783625730994154 + ], + [ + 0.9376349250962784 + ], + [ + 0.9303020409693342 + ], + [ + 0.8287563928270861 + ], + [ + 0.8603115680426934 + ], + [ + 0.8114732228923959 + ], + [ + 0.9669758970781992 + ], + [ + 0.8105976841695943 + ], + [ + 0.7959269589012261 + ], + [ + 0.8302139037433156 + ], + [ + 0.986986590623621 + ], + [ + 0.751078143739283 + ], + [ + 0.9104552048233484 + ], + [ + 0.9985339932335306 + ], + [ + 0.9919502705663622 + ], + [ + 0.9890174067689452 + ], + [ + 1 + ], + [ + 0.9985339932335306 + ], + [ + 0.9919502705663622 + ], + [ + 1 + ], + [ + 0.9978013931164152 + ], + [ + 0.9978013931164152 + ], + [ + 1 + ], + [ + 0.996336999414424 + ], + [ + 0.9978013931164152 + ], + [ + 0.9970690618433798 + ], + [ + 0.9985339932335306 + ], + [ + 0.996336999414424 + ], + [ + 0.9883020564051679 + ], + [ + 1 + ], + [ + 0.9904289157282716 + ], + [ + 0.9992668621947256 + ], + [ + 0.9992668621947256 + ], + [ + 0.996336999414424 + ], + [ + 0.9928507310737632 + ], + [ + 1 + ], + [ + 0.8271094654395285 + ], + [ + 0.996336999414424 + ], + [ + 0.9978013931164152 + ], + [ + 0.9956044009241408 + ], + [ + 0.9985339932335306 + ], + [ + 0.9904901783696456 + ], + [ + 0.9978013931164152 + ], + [ + 0.9970690618433798 + ], + [ + 0.996336999414424 + ], + [ + 0.996336999414424 + ], + [ + 0.9970690618433798 + ], + [ + 0.995605205829548 + ], + [ + 1 + ], + [ + 0.9985339932335306 + ], + [ + 0.9853883242696474 + ], + [ + 0.995605205829548 + ], + [ + 0.9992668621947256 + ], + [ + 1 + ], + [ + 0.9992555369697762 + ], + [ + 1 + ], + [ + 0.9882827814745488 + ], + [ + 0.9992668621947256 + ], + [ + 0.9859927106498643 + ], + [ + 0.9550538402276436 + ], + [ + 0.9795737645144298 + ], + [ + 0.9350474891783676 + ], + [ + 0.9946751263076096 + ], + [ + 0.99268071993084 + ], + [ + 0.9529052383428788 + ], + [ + 1 + ], + [ + 0.9832058480308432 + ], + [ + 0.928723519908324 + ], + [ + 0.999122807017544 + ], + [ + 0.9701618021290772 + ], + [ + 0.9181539149158895 + ], + [ + 0.9414868925909092 + ], + [ + 0.916749204599586 + ], + [ + 0.94362258995985 + ], + [ + 0.8771670219049115 + ], + [ + 0.9020646721236415 + ], + [ + 0.9479012434878824 + ], + [ + 0.7967703326479759 + ], + [ + 0.9802996435295532 + ], + [ + 0.9917846709962562 + ], + [ + 0.8938717567128639 + ], + [ + 0.9862646747457392 + ], + [ + 0.9839330712663648 + ], + [ + 0.9600766541682176 + ], + [ + 0.9759484021000084 + ], + [ + 0.9473421475334106 + ], + [ + 0.8472097261066925 + ], + [ + 0.9414868925909092 + ], + [ + 0.9650851977230176 + ], + [ + 0.999122807017544 + ], + [ + 0.9550538402276436 + ], + [ + 0.9441436310000064 + ], + [ + 0.9884575916336614 + ], + [ + 0.94958838214302 + ], + [ + 0.9436364293412104 + ], + [ + 0.9802996435295532 + ], + [ + 0.9817522080920388 + ], + [ + 0.9766729368947332 + ], + [ + 0.975224136149363 + ], + [ + 0.999122807017544 + ], + [ + 0.9763146820695155 + ], + [ + 0.999122807017544 + ], + [ + 0.9716068390573318 + ], + [ + 0.8353033499302194 + ], + [ + 0.9286573911418808 + ], + [ + 0.989388886675146 + ], + [ + 0.811997387314498 + ], + [ + 0.8668958338409165 + ], + [ + 0.9719327874122964 + ], + [ + 0.9416700490012928 + ], + [ + 0.9868446526492484 + ], + [ + 0.8626461571750742 + ], + [ + 0.7693359990306556 + ], + [ + 0.8443573586609718 + ], + [ + 0.8171099429462456 + ], + [ + 0.8861176478495414 + ], + [ + 0.842673863199572 + ], + [ + 0.928723519908324 + ], + [ + 0.758875943584108 + ], + [ + 0.887167247405612 + ], + [ + 0.8928699826089762 + ], + [ + 0.8759576634165684 + ], + [ + 0.9564875857045522 + ], + [ + 0.9061435934718377 + ], + [ + 0.8423092165265303 + ], + [ + 0.8930336617991886 + ], + [ + 0.9400644385653472 + ], + [ + 0.9237835099442904 + ], + [ + 0.9466976131633718 + ], + [ + 0.950603792184588 + ], + [ + 0.8131377716690427 + ], + [ + 0.8598012719162864 + ], + [ + 0.787554569047141 + ], + [ + 0.884737671188568 + ], + [ + 0.9070294784580498 + ], + [ + 0.9069463429223856 + ], + [ + 0.7524570024570024 + ], + [ + 0.9981688711071728 + ], + [ + 0.8971961746848013 + ], + [ + 0.8404738376904276 + ], + [ + 0.8288697152121746 + ], + [ + 0.8829742996323185 + ], + [ + 0.9945048317633112 + ], + [ + 0.885610204525967 + ], + [ + 0.9329682990823176 + ], + [ + 0.9407755311560884 + ], + [ + 0.9274938109996211 + ], + [ + 0.955770578544058 + ], + [ + 0.8609445180643548 + ], + [ + 0.8868080394461477 + ], + [ + 0.8826697225277056 + ], + [ + 0.860081980641546 + ], + [ + 0.8494179248503486 + ], + [ + 0.8806041934635603 + ], + [ + 0.7745935959659945 + ], + [ + 0.804564602812277 + ], + [ + 0.8457610658751216 + ], + [ + 0.9141259733731866 + ], + [ + 0.9083435256044582 + ], + [ + 0.9249744348616508 + ], + [ + 0.878036507710379 + ], + [ + 0.8567036918158099 + ], + [ + 0.9407755311560884 + ], + [ + 0.912541525908588 + ], + [ + 0.8711093063931175 + ], + [ + 0.8951137084436364 + ], + [ + 0.9041552036871964 + ], + [ + 0.953621170127054 + ], + [ + 0.9464739502688859 + ], + [ + 0.9727686004162333 + ], + [ + 0.9824788936394012 + ], + [ + 0.895416975651959 + ], + [ + 0.8388354220573428 + ], + [ + 0.8451861367189766 + ], + [ + 0.9020646721236415 + ], + [ + 0.8838860538503512 + ], + [ + 0.9586402202505121 + ], + [ + 0.99782684342909 + ], + [ + 0.7818532483566868 + ], + [ + 0.8978908677866823 + ], + [ + 0.9346434038598216 + ], + [ + 0.9486152933634998 + ], + [ + 0.975224136149363 + ], + [ + 0.927916573470583 + ], + [ + 0.9974294410273912 + ], + [ + 0.9586402202505121 + ], + [ + 0.9507590560548307 + ], + [ + 0.9978013931164152 + ], + [ + 0.954337370755309 + ], + [ + 0.911841187081034 + ], + [ + 0.975224136149363 + ], + [ + 0.9365130082728363 + ], + [ + 0.8902640300903737 + ], + [ + 0.9500441996469742 + ], + [ + 0.7528067405931878 + ], + [ + 0.9139430100959351 + ], + [ + 0.9486152933634998 + ], + [ + 0.8723662731741496 + ], + [ + 0.8503425879277244 + ], + [ + 0.9643924081792452 + ], + [ + 0.9716068390573318 + ], + [ + 0.9322331995088968 + ], + [ + 0.9730529513619054 + ], + [ + 0.8909560347514579 + ], + [ + 0.9730529513619054 + ], + [ + 0.9225158405279774 + ], + [ + 0.8806041934635603 + ], + [ + 0.9223744981227123 + ], + [ + 0.928723519908324 + ], + [ + 0.8985858297326429 + ], + [ + 0.8868080394461477 + ], + [ + 0.934385376226286 + ], + [ + 0.865978265648834 + ], + [ + 0.9669995060071396 + ], + [ + 0.9215535536561092 + ], + [ + 0.8916483082566217 + ], + [ + 0.8806041934635603 + ], + [ + 0.8614426005287826 + ], + [ + 0.9500441996469742 + ], + [ + 0.9615141634622412 + ], + [ + 0.9836858501848198 + ], + [ + 0.9992668621947256 + ], + [ + 0.8840480861242009 + ], + [ + 0.8659737769303842 + ], + [ + 0.8881896291715989 + ], + [ + 0.9658331436022252 + ], + [ + 0.9117779886590568 + ], + [ + 0.9891164188197914 + ], + [ + 0.9393536148186856 + ], + [ + 0.8999765601568034 + ], + [ + 0.9992668621947256 + ], + [ + 0.8902640300903737 + ], + [ + 0.8937267418365915 + ], + [ + 0.986116354037408 + ], + [ + 0.9745001390427974 + ], + [ + 0.8682618306097468 + ], + [ + 0.917451425335698 + ], + [ + 0.9237835099442904 + ], + [ + 0.9372227566431792 + ], + [ + 0.8605814190983236 + ], + [ + 0.9658331436022252 + ], + [ + 0.99268071993084 + ], + [ + 0.9331273751154144 + ], + [ + 0.9874932258547676 + ], + [ + 0.9817522080920388 + ], + [ + 0.9322601637764528 + ], + [ + 0.9730529513619054 + ], + [ + 0.7966912350949062 + ], + [ + 0.9636724437338746 + ], + [ + 0.9146441554557286 + ], + [ + 0.9665539145798344 + ], + [ + 0.912541525908588 + ], + [ + 0.8923408506058652 + ], + [ + 0.9403639696255566 + ], + [ + 0.9824501714706848 + ], + [ + 0.8958075950132784 + ], + [ + 0.7947875585169598 + ], + [ + 0.8888808273004442 + ], + [ + 0.9817522080920388 + ], + [ + 0.9579224065577792 + ], + [ + 0.9643924081792452 + ], + [ + 0.9978013931164152 + ], + [ + 0.909042520211614 + ], + [ + 0.8839798882716039 + ], + [ + 0.9322601637764528 + ], + [ + 0.977397740533538 + ], + [ + 0.9407327353741834 + ], + [ + 0.9974294410273912 + ], + [ + 0.957204861709126 + ], + [ + 0.9636724437338746 + ], + [ + 1 + ], + [ + 0.9507590560548307 + ], + [ + 0.9244884191211992 + ], + [ + 0.9737764107803116 + ], + [ + 0.9294303109937904 + ], + [ + 0.866213238722621 + ], + [ + 0.889572294273369 + ], + [ + 0.9365130082728363 + ], + [ + 0.9386430599161039 + ], + [ + 0.8614426005287826 + ], + [ + 0.8592127013521056 + ], + [ + 0.9586402202505121 + ], + [ + 0.984660563345966 + ], + [ + 0.942257835125676 + ], + [ + 0.977397740533538 + ], + [ + 0.8944200907180742 + ], + [ + 0.9723297607875788 + ], + [ + 0.9466282499343924 + ], + [ + 0.879916221463671 + ], + [ + 0.917451425335698 + ], + [ + 0.9358035287465732 + ], + [ + 0.9365130082728363 + ], + [ + 0.8785410839961321 + ], + [ + 0.8800026263331926 + ], + [ + 0.9180818572622022 + ], + [ + 0.9300900041631704 + ], + [ + 0.9111411170975592 + ], + [ + 0.8958075950132784 + ], + [ + 0.8751079450986783 + ], + [ + 0.9687178405771408 + ], + [ + 0.9643924081792452 + ], + [ + 0.9741087373430196 + ], + [ + 0.9965539092032524 + ], + [ + 0.8485601299189015 + ], + [ + 0.9039239850807016 + ], + [ + 0.991220090045964 + ], + [ + 0.99268071993084 + ], + [ + 0.9411779284976856 + ], + [ + 1 + ], + [ + 0.9941424251920344 + ], + [ + 0.9839330712663648 + ], + [ + 1 + ], + [ + 0.9948736810887512 + ], + [ + 0.9853883242696474 + ], + [ + 1 + ], + [ + 0.9904901783696456 + ], + [ + 0.9062481548474688 + ], + [ + 0.9948736810887512 + ], + [ + 0.9766729368947332 + ], + [ + 0.99268071993084 + ], + [ + 0.9883020564051679 + ], + [ + 0.996336999414424 + ], + [ + 0.9832058480308432 + ], + [ + 0.9721523399735842 + ], + [ + 0.995605205829548 + ], + [ + 0.995605205829548 + ], + [ + 0.8966477542865559 + ], + [ + 0.989920889126398 + ], + [ + 0.9941424251920344 + ], + [ + 0.9853883242696474 + ], + [ + 0.99268071993084 + ], + [ + 0.989208622446052 + ], + [ + 0.9737764107803116 + ], + [ + 0.9788481543433862 + ], + [ + 0.9508557261229018 + ], + [ + 0.9883020564051679 + ], + [ + 0.9868446526492484 + ], + [ + 0.9948736810887512 + ], + [ + 0.9789725394962472 + ], + [ + 0.9778375229520267 + ], + [ + 0.9630457249445452 + ], + [ + 0.9897605355374068 + ], + [ + 0.9759484021000084 + ], + [ + 0.9745001390427974 + ], + [ + 0.9839330712663648 + ], + [ + 1 + ], + [ + 0.9910847398800986 + ], + [ + 1 + ], + [ + 0.9824788936394012 + ], + [ + 0.8935362109939026 + ], + [ + 0.8492357350911255 + ], + [ + 0.7799775750856683 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8924773755936107 + ], + [ + 0.9921175854473762 + ], + [ + 0.8244173938759 + ], + [ + 0.8995898027497777 + ], + [ + 0.997783274463504 + ], + [ + 0.8019358454012121 + ], + [ + 0.8034463924540262 + ], + [ + 0.9208092958092956 + ], + [ + 0.7862626472757531 + ], + [ + 0.7901234941467935 + ], + [ + 0.9234208215886514 + ], + [ + 0.8754121720256093 + ], + [ + 0.8661215058187304 + ], + [ + 0.992671182389769 + ], + [ + 0.9798792330613568 + ], + [ + 0.9514741813067672 + ], + [ + 0.9550538402276436 + ], + [ + 0.9429977116704804 + ], + [ + 0.9378841050418828 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.9438416558070334 + ], + [ + 0.9894860390412652 + ], + [ + 0.9369022368540908 + ], + [ + 0.9407755311560884 + ], + [ + 0.937924041385235 + ], + [ + 0.9677933860111212 + ], + [ + 0.9970690618433798 + ], + [ + 0.9443944345284628 + ], + [ + 0.9965539092032524 + ], + [ + 0.7647361516158825 + ], + [ + 0.8833587699039136 + ], + [ + 0.8455377025736512 + ], + [ + 0.9378994747569932 + ], + [ + 1 + ], + [ + 0.8854275250970148 + ], + [ + 0.9372227566431792 + ], + [ + 0.9978013931164152 + ], + [ + 0.8621233137385207 + ], + [ + 0.9034580909885984 + ], + [ + 0.9687178405771408 + ], + [ + 0.9788481543433862 + ], + [ + 0.8364452091564932 + ], + [ + 0.8257495162906913 + ], + [ + 0.9450477324262084 + ], + [ + 0.7908116150724073 + ], + [ + 0.7922257273375911 + ], + [ + 0.8186576980160944 + ], + [ + 0.9593583027873251 + ], + [ + 0.9941424251920344 + ], + [ + 0.9848040830545792 + ], + [ + 0.9795737645144298 + ], + [ + 0.9181539149158895 + ], + [ + 0.9579224065577792 + ], + [ + 0.8038532129267693 + ], + [ + 0.7895079901300617 + ], + [ + 0.9393536148186856 + ], + [ + 0.9329682990823176 + ], + [ + 0.9386430599161039 + ], + [ + 0.9097417836628494 + ], + [ + 0.934365235861341 + ], + [ + 0.8682618306097468 + ], + [ + 0.8062236581276447 + ], + [ + 0.7999671002057498 + ], + [ + 0.9579224065577792 + ], + [ + 0.962952748132584 + ], + [ + 0.9421985228698097 + ], + [ + 0.9758471017566333 + ], + [ + 0.8492357350911255 + ], + [ + 0.9883020564051679 + ], + [ + 0.9965191088563604 + ], + [ + 0.9992663243093578 + ], + [ + 0.9992656508417233 + ], + [ + 0.9941424251920344 + ], + [ + 1 + ], + [ + 0.99268071993084 + ], + [ + 1 + ], + [ + 0.9992668621947256 + ], + [ + 0.9965191088563604 + ], + [ + 0.9540512424216696 + ], + [ + 0.9970690618433798 + ], + [ + 0.9768478574449928 + ], + [ + 0.9833831528957327 + ], + [ + 0.9914003253458398 + ], + [ + 0.9890311615492476 + ], + [ + 0.9782982623788444 + ], + [ + 0.9926335425715881 + ], + [ + 0.8068812492978317 + ], + [ + 0.9985339932335306 + ], + [ + 1 + ], + [ + 0.998339483394834 + ], + [ + 1 + ], + [ + 0.9948736810887512 + ], + [ + 0.9875732201051683 + ], + [ + 0.9941413527735856 + ], + [ + 1 + ], + [ + 0.992130773157018 + ], + [ + 0.9721444518798692 + ], + [ + 0.9978013931164152 + ], + [ + 0.998350675275288 + ], + [ + 0.9906529437430028 + ], + [ + 1 + ], + [ + 0.9948736810887512 + ], + [ + 0.9914003253458398 + ], + [ + 0.9970690618433798 + ], + [ + 0.9976169999054124 + ], + [ + 0.9985113511553524 + ], + [ + 0.9954545454545456 + ], + [ + 0.9585725924710128 + ], + [ + 0.9992668621947256 + ], + [ + 0.8558690511962423 + ], + [ + 0.9477543538038498 + ], + [ + 0.7858966339146662 + ], + [ + 0.8467583491924263 + ], + [ + 0.8327122834222226 + ], + [ + 0.8908526998828004 + ], + [ + 0.8135527713116105 + ], + [ + 0.9336872890005498 + ], + [ + 0.8135527713116105 + ], + [ + 0.7969931938295922 + ], + [ + 0.9404358147459344 + ], + [ + 0.7922931599671659 + ], + [ + 0.9455558136112772 + ], + [ + 0.7617997236100775 + ], + [ + 0.8361266348371678 + ], + [ + 0.8706162391527938 + ], + [ + 0.8909999999999999 + ], + [ + 0.8169671679245643 + ], + [ + 0.911393892174019 + ], + [ + 0.950028839221341 + ], + [ + 0.8316766353632711 + ], + [ + 0.8481140741645349 + ], + [ + 0.9263157894736842 + ], + [ + 0.7693317755435274 + ], + [ + 0.8485714285714286 + ], + [ + 0.9975371888373946 + ], + [ + 0.7657492944145039 + ], + [ + 0.782707509881423 + ], + [ + 0.8344731368348524 + ], + [ + 0.7893527624833871 + ], + [ + 0.934334074623178 + ], + [ + 0.9652014577830238 + ], + [ + 0.9712575474049576 + ], + [ + 0.7951570680628274 + ], + [ + 0.8023077073631943 + ], + [ + 0.8378558855512396 + ], + [ + 0.7750750175798774 + ], + [ + 0.8711152458705146 + ], + [ + 0.9450509667184974 + ], + [ + 0.8728200371057514 + ], + [ + 0.8266151860146821 + ], + [ + 0.9508561924475392 + ], + [ + 0.8678771151093215 + ], + [ + 0.7818744360024455 + ], + [ + 0.953621170127054 + ], + [ + 0.9550538402276436 + ], + [ + 0.9255861016232882 + ], + [ + 1 + ], + [ + 0.9890311615492476 + ], + [ + 0.9839330712663648 + ], + [ + 1 + ], + [ + 0.9875732201051683 + ], + [ + 0.9868446526492484 + ], + [ + 1 + ], + [ + 0.9672749544015236 + ], + [ + 0.8485601299189015 + ], + [ + 0.9948736810887512 + ], + [ + 0.9853883242696474 + ], + [ + 0.991220090045964 + ], + [ + 0.9716068390573318 + ], + [ + 0.9853883242696474 + ], + [ + 0.9817522080920388 + ], + [ + 0.9461330864231152 + ], + [ + 0.9934114381393974 + ], + [ + 0.9985339932335306 + ], + [ + 0.8683978095980386 + ], + [ + 0.9869953764615554 + ], + [ + 0.995605205829548 + ], + [ + 0.9868446526492484 + ], + [ + 0.9883020564051679 + ], + [ + 0.9724980906333768 + ], + [ + 0.9407755311560884 + ], + [ + 0.9372227566431792 + ], + [ + 0.9805263157894736 + ], + [ + 0.996336999414424 + ], + [ + 0.996336999414424 + ], + [ + 0.9992668621947256 + ], + [ + 0.9884575916336614 + ], + [ + 0.9887359375145636 + ], + [ + 0.977084365603192 + ], + [ + 0.9817522080920388 + ], + [ + 0.9890311615492476 + ], + [ + 0.9875732201051683 + ], + [ + 0.9883020564051679 + ], + [ + 0.9992668621947256 + ], + [ + 0.9762465658458932 + ], + [ + 1 + ], + [ + 0.991220090045964 + ], + [ + 0.8205020227371977 + ], + [ + 0.8608078181360623 + ], + [ + 0.8831761147394912 + ], + [ + 0.9956171156600898 + ], + [ + 0.8264159807642062 + ], + [ + 0.9851370084561714 + ], + [ + 0.8032496864185852 + ], + [ + 0.7921163153910715 + ], + [ + 0.8189876505853204 + ], + [ + 0.8866880766446407 + ], + [ + 0.7712492904983538 + ], + [ + 0.766650468421388 + ], + [ + 0.9874185848252344 + ], + [ + 0.9860765405159552 + ], + [ + 0.8021177944862157 + ], + [ + 0.9104948113042188 + ], + [ + 0.9076355564584256 + ], + [ + 0.9302834429286485 + ], + [ + 0.8899966113703928 + ], + [ + 0.7950194069243905 + ], + [ + 0.7994718538953012 + ], + [ + 0.9755497899678774 + ], + [ + 0.8737705484182898 + ], + [ + 0.8391756392041623 + ], + [ + 0.8000318742722583 + ], + [ + 0.863706643974955 + ], + [ + 0.999122807017544 + ], + [ + 0.788531116445173 + ], + [ + 0.7673011362392835 + ], + [ + 0.856290549490185 + ], + [ + 0.8500013228910797 + ], + [ + 0.8217519251079187 + ], + [ + 0.9886242163794032 + ], + [ + 0.8335855838820181 + ], + [ + 0.7737677036875701 + ], + [ + 0.80781838380708 + ], + [ + 0.8821104163000745 + ], + [ + 0.7790490801674135 + ], + [ + 0.821180494612969 + ], + [ + 0.8346691294875438 + ], + [ + 0.8306511043531097 + ], + [ + 0.7751893805092811 + ], + [ + 0.7785693212549879 + ], + [ + 0.8213296424597536 + ], + [ + 0.7990961561862842 + ], + [ + 0.8708980045995849 + ], + [ + 0.8508997225351951 + ], + [ + 0.9550538402276436 + ], + [ + 0.8404738376904276 + ], + [ + 0.8608516172237797 + ], + [ + 0.8898770040500942 + ], + [ + 0.9910308796338216 + ], + [ + 0.9443350267709892 + ], + [ + 0.9379327738576018 + ], + [ + 0.9687178405771408 + ], + [ + 0.954337370755309 + ], + [ + 0.8992810605226834 + ], + [ + 0.8104222403360605 + ], + [ + 0.8617768931040987 + ], + [ + 0.8019358454012121 + ], + [ + 0.8489486269748123 + ], + [ + 0.8334307196417515 + ], + [ + 0.8472653300897576 + ], + [ + 0.8641393141487438 + ], + [ + 0.8327404310943477 + ], + [ + 0.8764803941254208 + ], + [ + 0.912541525908588 + ], + [ + 0.8614426005287826 + ], + [ + 0.8750187225119483 + ], + [ + 0.8930336617991886 + ], + [ + 0.9188566733401607 + ], + [ + 0.909042520211614 + ], + [ + 0.9278339260751618 + ], + [ + 0.8855898697110776 + ], + [ + 0.8914924863272463 + ], + [ + 0.9636724437338746 + ], + [ + 0.8594020739640472 + ], + [ + 0.933676703232262 + ], + [ + 0.9471874624563446 + ], + [ + 0.9767901752344744 + ], + [ + 0.8923668029454429 + ], + [ + 0.887801301315952 + ], + [ + 0.8244173938759 + ], + [ + 0.8598281139548333 + ], + [ + 0.9048525852298742 + ], + [ + 0.9202629967209424 + ], + [ + 0.9586402202505121 + ], + [ + 0.99818613436632 + ], + [ + 0.8116526550439349 + ], + [ + 0.9097417836628494 + ], + [ + 0.8938131796635373 + ], + [ + 0.8689452322602814 + ], + [ + 0.7632159853061836 + ], + [ + 0.931092626752598 + ], + [ + 0.9714033929661204 + ], + [ + 0.916047252707554 + ], + [ + 0.9665539145798344 + ], + [ + 0.9992668621947256 + ], + [ + 0.877193998855128 + ], + [ + 0.8621233137385207 + ], + [ + 0.8404336601367269 + ], + [ + 0.8899568476668683 + ], + [ + 0.7657793910062513 + ], + [ + 0.8125492090556029 + ], + [ + 0.8944200907180742 + ], + [ + 0.9832058480308432 + ], + [ + 0.866243248832523 + ], + [ + 0.9723297607875788 + ], + [ + 0.9358035287465732 + ], + [ + 0.9111411170975592 + ], + [ + 0.8984030086479471 + ], + [ + 0.8744221238514268 + ], + [ + 0.831385641452182 + ], + [ + 0.917611437505964 + ], + [ + 0.8478847935907573 + ], + [ + 0.9679962630672924 + ], + [ + 0.8637608966376091 + ], + [ + 0.9294733352278108 + ], + [ + 0.8427886110852929 + ], + [ + 0.928226607524593 + ], + [ + 0.8025926314878588 + ], + [ + 0.9041552036871964 + ], + [ + 0.9045462110180228 + ], + [ + 0.9607952743931896 + ], + [ + 0.7731216272312162 + ], + [ + 0.9960877143127782 + ], + [ + 0.7917919558851796 + ], + [ + 0.7813854250011384 + ], + [ + 0.8594020739640472 + ], + [ + 0.8448171762300786 + ], + [ + 0.9066838594697112 + ], + [ + 0.993041786971632 + ], + [ + 0.9218534208170824 + ], + [ + 0.9280169976669376 + ], + [ + 0.9579224065577792 + ], + [ + 0.7649434377260497 + ], + [ + 0.9324432641365908 + ], + [ + 0.9890311615492476 + ], + [ + 0.8689452322602814 + ], + [ + 0.8861176478495414 + ], + [ + 0.8937267418365915 + ], + [ + 0.8573639669960287 + ], + [ + 0.853295011850143 + ], + [ + 0.9251935971421876 + ], + [ + 0.8902640300903737 + ], + [ + 0.7921163153910715 + ], + [ + 0.8692840854028374 + ], + [ + 0.9120241323975692 + ], + [ + 0.9322601637764528 + ], + [ + 0.9682695039010508 + ], + [ + 0.8869907346430809 + ], + [ + 0.9308446996969624 + ], + [ + 0.928723519908324 + ], + [ + 0.8601704114565033 + ], + [ + 0.8874986998868335 + ], + [ + 0.8888808273004442 + ], + [ + 0.975224136149363 + ], + [ + 0.8091752787787085 + ], + [ + 0.9507590560548307 + ], + [ + 0.9664158428720082 + ], + [ + 0.9817522080920388 + ], + [ + 0.8284169872492293 + ], + [ + 0.9136988002866576 + ], + [ + 0.8445121446112305 + ], + [ + 0.9139430100959351 + ], + [ + 0.8914848829801818 + ], + [ + 0.9672749544015236 + ], + [ + 0.99782684342909 + ], + [ + 0.772138724992434 + ], + [ + 0.90276124713408 + ], + [ + 0.961144204800487 + ], + [ + 0.8634855466902354 + ], + [ + 0.9379327738576018 + ], + [ + 0.908277884446819 + ], + [ + 0.9946871424565764 + ], + [ + 0.9479012434878824 + ], + [ + 0.933676703232262 + ], + [ + 0.9839330712663648 + ], + [ + 0.957204861709126 + ], + [ + 0.9897605355374068 + ], + [ + 0.8668958338409165 + ], + [ + 0.8916483082566217 + ], + [ + 0.9153455696596016 + ], + [ + 0.8573639669960287 + ], + [ + 0.8634855466902354 + ], + [ + 0.9251935971421876 + ], + [ + 0.909042520211614 + ], + [ + 0.8723662731741496 + ], + [ + 0.8537487234650945 + ], + [ + 0.8792285183078618 + ], + [ + 0.9350943180643897 + ], + [ + 0.8079714438079046 + ], + [ + 0.9551004697947988 + ], + [ + 0.8806041934635603 + ], + [ + 0.9273107442696306 + ], + [ + 0.9223744981227123 + ], + [ + 0.9616766085585506 + ], + [ + 0.8730512878891623 + ], + [ + 0.8965017504270001 + ], + [ + 0.975224136149363 + ], + [ + 0.8277497162434753 + ], + [ + 0.9514741813067672 + ], + [ + 0.9622333213753728 + ], + [ + 0.9746102461941208 + ], + [ + 0.940760842211224 + ], + [ + 0.8337648336821305 + ], + [ + 0.9132421335802218 + ], + [ + 0.838458313625102 + ], + [ + 0.9104413159581644 + ], + [ + 0.9230788696114616 + ], + [ + 0.9615141634622412 + ], + [ + 0.9608062684964296 + ], + [ + 0.9992668621947256 + ], + [ + 0.90276124713408 + ], + [ + 0.9316696874472936 + ], + [ + 0.8231087698825403 + ], + [ + 0.9544682296975874 + ], + [ + 0.7552770595350544 + ], + [ + 0.992615515771526 + ], + [ + 0.8512496250257213 + ], + [ + 0.8744043956043956 + ], + [ + 0.9547348484848484 + ], + [ + 0.7548367420848981 + ], + [ + 0.8010008340283569 + ], + [ + 0.8674088334090595 + ], + [ + 0.7996294165768151 + ], + [ + 0.908313797791604 + ], + [ + 0.9891493795585866 + ], + [ + 0.7540999753755234 + ], + [ + 0.9272544060904362 + ], + [ + 0.8780091446372676 + ], + [ + 0.9182823930924128 + ], + [ + 0.8762510425354463 + ], + [ + 0.9053124690879792 + ], + [ + 0.9546304163126592 + ], + [ + 0.9085090856109872 + ], + [ + 0.8064763169544045 + ], + [ + 0.9027775208335084 + ], + [ + 0.8873519569623151 + ], + [ + 0.902977283394997 + ], + [ + 0.9964912280701756 + ], + [ + 0.996521739130435 + ], + [ + 0.9338039426824476 + ], + [ + 0.9139430100959351 + ], + [ + 0.9622333213753728 + ], + [ + 0.9737764107803116 + ], + [ + 0.9701400724878312 + ], + [ + 0.9974294410273912 + ], + [ + 0.9358035287465732 + ], + [ + 0.9464739502688859 + ], + [ + 0.9970690618433798 + ], + [ + 0.9658331436022252 + ], + [ + 0.955770578544058 + ], + [ + 0.9960351014549488 + ], + [ + 0.9477180531985372 + ], + [ + 0.7802288530146114 + ], + [ + 0.9622333213753728 + ], + [ + 0.8067839857133676 + ], + [ + 0.9301373709233364 + ], + [ + 0.8868080394461477 + ], + [ + 0.9450477324262084 + ], + [ + 0.8134050821718116 + ], + [ + 0.9454153674378072 + ], + [ + 0.984660563345966 + ], + [ + 0.9904901783696456 + ], + [ + 0.9507590560548307 + ], + [ + 0.9779823259487208 + ], + [ + 0.9883020564051679 + ], + [ + 0.855139156857862 + ], + [ + 0.9853883242696474 + ], + [ + 0.9564875857045522 + ], + [ + 0.9083271241193304 + ], + [ + 0.9421985228698097 + ], + [ + 0.8621233137385207 + ], + [ + 0.9479012434878824 + ], + [ + 0.9802996435295532 + ], + [ + 0.9613309146374462 + ], + [ + 0.9890311615492476 + ], + [ + 0.9789725394962472 + ], + [ + 0.9230788696114616 + ], + [ + 0.9875732201051683 + ], + [ + 0.8937267418365915 + ], + [ + 0.9948736810887512 + ], + [ + 0.9716068390573318 + ], + [ + 0.9679854547640152 + ], + [ + 0.9572793819640072 + ], + [ + 0.9992668621947256 + ], + [ + 0.9649045221259104 + ], + [ + 0.9365130082728363 + ], + [ + 0.7854822169733378 + ], + [ + 0.9877224033535164 + ], + [ + 0.8267536096879368 + ], + [ + 0.8281155906857192 + ], + [ + 0.7782426513939189 + ], + [ + 0.7770132902980824 + ], + [ + 0.7813852813852814 + ], + [ + 0.8531626502908053 + ], + [ + 0.986652250762675 + ], + [ + 0.8443985380581599 + ], + [ + 0.8507060144843345 + ], + [ + 0.9095966218704222 + ], + [ + 0.7793195367381812 + ], + [ + 0.8485714285714286 + ], + [ + 0.793478260869565 + ], + [ + 0.9357129295614204 + ], + [ + 0.9013778530474436 + ], + [ + 0.8068636548636549 + ], + [ + 0.8283693657758276 + ], + [ + 0.7842947575142669 + ], + [ + 0.929941088884573 + ], + [ + 0.8318189568317447 + ], + [ + 0.9721324228139152 + ], + [ + 0.8929555666008868 + ], + [ + 0.9899175068744273 + ], + [ + 0.7829559806346367 + ], + [ + 0.8330585670487148 + ], + [ + 0.9004712036731742 + ], + [ + 0.8079059133534838 + ], + [ + 0.907326978222119 + ], + [ + 0.8418462145170219 + ], + [ + 0.8355962235887732 + ], + [ + 0.9840600196897172 + ], + [ + 0.9727233543942168 + ], + [ + 0.9456931798893302 + ], + [ + 0.7835307826762479 + ], + [ + 0.9334823561531638 + ], + [ + 0.943912095206486 + ], + [ + 0.9719476865439598 + ], + [ + 0.8989607068123694 + ], + [ + 0.9899175068744273 + ], + [ + 0.91218688144154 + ], + [ + 0.968708052390917 + ], + [ + 0.9275641323723166 + ], + [ + 0.7750817305162342 + ], + [ + 0.7705110005585539 + ], + [ + 0.8746911090742437 + ], + [ + 0.906777236648719 + ], + [ + 0.9877189123128628 + ], + [ + 0.905810189680844 + ], + [ + 0.9039758195768428 + ], + [ + 0.9545454545454548 + ], + [ + 0.8475303670578501 + ], + [ + 0.9511957748205524 + ], + [ + 0.8592904322283405 + ], + [ + 0.9090909090909088 + ], + [ + 0.864748396641959 + ], + [ + 0.8793851481338977 + ], + [ + 0.9499999999999998 + ], + [ + 0.7977657605606996 + ], + [ + 0.828074328074328 + ], + [ + 0.8757161620920398 + ], + [ + 0.8518139443215275 + ], + [ + 0.8919696969696971 + ], + [ + 0.9006463378910865 + ], + [ + 0.9123913868449176 + ], + [ + 0.7538355364442323 + ], + [ + 0.9728462804245892 + ], + [ + 0.8226075640111686 + ], + [ + 0.7627425872585156 + ], + [ + 0.9397093147093144 + ], + [ + 0.9405901494832792 + ], + [ + 0.9373208866593992 + ], + [ + 0.9185281385281384 + ], + [ + 0.9805093555093556 + ], + [ + 0.9045454545454543 + ], + [ + 0.7521739130434782 + ], + [ + 0.8676160350867449 + ], + [ + 0.9096320346320348 + ], + [ + 0.9705446224256292 + ], + [ + 0.7511156903867726 + ], + [ + 0.9498970784947516 + ], + [ + 0.8553636363636363 + ], + [ + 0.8803749979451918 + ], + [ + 0.8868951612903225 + ], + [ + 0.8716773908739449 + ], + [ + 0.7640091133472566 + ], + [ + 0.9754511278195488 + ], + [ + 0.9090909090909088 + ], + [ + 0.919377312007859 + ], + [ + 0.9895652173913044 + ], + [ + 0.9090909090909088 + ], + [ + 0.9895652173913044 + ], + [ + 0.904833326772871 + ], + [ + 0.8896985935172833 + ], + [ + 0.9613560315981924 + ], + [ + 0.9209973066564064 + ], + [ + 0.7738377192982457 + ], + [ + 0.8766948621553885 + ], + [ + 0.8955979105301095 + ], + [ + 0.7862727272727271 + ], + [ + 0.8120276073976656 + ], + [ + 0.9062605084545612 + ], + [ + 0.9819906110654324 + ], + [ + 0.9482809390239644 + ], + [ + 0.9270810254564676 + ], + [ + 0.8858122880872292 + ], + [ + 0.9272543317870856 + ], + [ + 0.9248843536331894 + ], + [ + 0.9592356458451337 + ], + [ + 0.9740750470337556 + ], + [ + 0.8618048445021776 + ], + [ + 0.9826209215251775 + ], + [ + 0.9119804816878757 + ], + [ + 0.901982337361457 + ], + [ + 0.968471177944862 + ], + [ + 0.9722529273134676 + ], + [ + 0.9674022810471118 + ], + [ + 0.8998470475108667 + ], + [ + 0.8758239471864051 + ], + [ + 0.957737379733654 + ], + [ + 0.9619347444028424 + ], + [ + 0.9817460256655812 + ], + [ + 0.9619598036238828 + ], + [ + 0.9754511278195488 + ], + [ + 0.9045454545454543 + ], + [ + 0.9108776132404182 + ], + [ + 0.9895652173913044 + ], + [ + 0.9090909090909088 + ], + [ + 0.9808695652173912 + ], + [ + 0.903936979364855 + ], + [ + 0.8946016606830777 + ], + [ + 0.9582023810487048 + ], + [ + 0.9363189044244398 + ], + [ + 0.7701982739613846 + ], + [ + 0.877299976398395 + ], + [ + 0.8623579834310708 + ], + [ + 0.7862727272727271 + ], + [ + 0.8480601581866628 + ], + [ + 0.8902466538134809 + ], + [ + 0.9819906110654324 + ], + [ + 0.9507874084663184 + ], + [ + 0.925065002188018 + ], + [ + 0.8906569786528593 + ], + [ + 0.9272543317870856 + ], + [ + 0.9318691420627104 + ], + [ + 0.9592356458451337 + ], + [ + 0.9670573870573872 + ], + [ + 0.8638081223124702 + ], + [ + 0.9815789473684212 + ], + [ + 0.9119804816878757 + ], + [ + 0.9027305623701912 + ], + [ + 0.968471177944862 + ], + [ + 0.9722529273134676 + ], + [ + 0.9664533537113174 + ], + [ + 0.8980586357606626 + ], + [ + 0.8824347249543827 + ], + [ + 0.957737379733654 + ], + [ + 0.9606072393507964 + ], + [ + 0.7604223245592875 + ], + [ + 0.9401709401709404 + ], + [ + 0.9616481164026224 + ], + [ + 0.9809453113164672 + ], + [ + 0.825 + ], + [ + 0.8965328341856458 + ], + [ + 0.9930434993747648 + ], + [ + 0.9919417254554761 + ], + [ + 0.7662935746676578 + ], + [ + 0.916200245724204 + ], + [ + 0.8929657620169505 + ], + [ + 0.9764831764168632 + ], + [ + 0.8651113127255622 + ], + [ + 0.8576748602878727 + ], + [ + 0.8002254756609835 + ], + [ + 0.8303849683667892 + ], + [ + 0.945960433937275 + ], + [ + 0.9927523497097036 + ], + [ + 0.9224700032216755 + ], + [ + 0.924592891635332 + ], + [ + 0.8627825284444037 + ], + [ + 0.9427557668775548 + ], + [ + 0.9416944402363276 + ], + [ + 0.7977840705338264 + ], + [ + 0.891911538610805 + ], + [ + 0.7757575757575756 + ], + [ + 0.9186470619844704 + ], + [ + 0.9755497899678774 + ], + [ + 0.9380936401545896 + ], + [ + 0.9430730858023998 + ], + [ + 0.8821269989132121 + ], + [ + 0.8635778359926967 + ], + [ + 0.9686187299234 + ], + [ + 0.82231768595902 + ], + [ + 0.8454690660447776 + ], + [ + 0.936633843357067 + ], + [ + 0.9928614899602092 + ], + [ + 0.7920033670033668 + ], + [ + 0.9790238683337896 + ], + [ + 0.851784484740942 + ], + [ + 0.7835174551354922 + ], + [ + 0.970437888198758 + ], + [ + 0.973913043478261 + ], + [ + 0.8004960204410251 + ], + [ + 0.8608354753566684 + ], + [ + 0.973913043478261 + ], + [ + 0.8932535416128451 + ], + [ + 0.8985806100405787 + ], + [ + 0.9473716579271056 + ], + [ + 0.8802936186789987 + ], + [ + 0.8429844720496896 + ], + [ + 0.7998641304347827 + ], + [ + 0.7548105590062113 + ], + [ + 0.851091804125718 + ], + [ + 0.7982289247602901 + ], + [ + 0.8918317295952493 + ], + [ + 0.9704182624797956 + ], + [ + 0.9250441174468548 + ], + [ + 0.9234004788164912 + ], + [ + 0.8072112569313484 + ], + [ + 0.9458344577995612 + ], + [ + 0.8199687206756333 + ], + [ + 0.9636939983093828 + ], + [ + 0.973913043478261 + ], + [ + 0.8946764860972011 + ], + [ + 0.8953883830144143 + ], + [ + 0.9685626687981476 + ], + [ + 0.8854475897922277 + ], + [ + 0.890074370350509 + ], + [ + 0.9467502582887196 + ], + [ + 0.973913043478261 + ], + [ + 0.7675727377454222 + ], + [ + 0.9240556247405564 + ], + [ + 0.9038176307865486 + ], + [ + 0.8004417918113229 + ], + [ + 0.8571885156262036 + ], + [ + 0.7888661250305931 + ], + [ + 0.7588020905133782 + ], + [ + 0.8150670283151774 + ], + [ + 0.8394858977004067 + ], + [ + 0.8506509425026048 + ], + [ + 0.86632058337082 + ], + [ + 0.907644799841382 + ], + [ + 0.7869039663743268 + ], + [ + 0.8377993482174306 + ], + [ + 0.9661635604440372 + ], + [ + 0.7796002893491529 + ], + [ + 0.8462255001833667 + ], + [ + 0.8698618053513671 + ], + [ + 0.853295011850143 + ], + [ + 0.9457912457912456 + ], + [ + 0.9954545454545456 + ], + [ + 0.786253632545592 + ], + [ + 0.921913236929922 + ], + [ + 0.9090909090909088 + ], + [ + 0.9764931810396176 + ], + [ + 0.9895652173913044 + ], + [ + 0.8409090909090906 + ], + [ + 0.982608695652174 + ], + [ + 0.904833326772871 + ], + [ + 0.9398297385891607 + ], + [ + 0.8728218919864725 + ], + [ + 0.910662682746664 + ], + [ + 0.7508707607699359 + ], + [ + 0.920196146646124 + ], + [ + 0.8941510995342954 + ], + [ + 0.7896297048496517 + ], + [ + 0.9062605084545612 + ], + [ + 0.9819906110654324 + ], + [ + 0.9395768590554164 + ], + [ + 0.8846891981591173 + ], + [ + 0.8753550543024229 + ], + [ + 0.9272543317870856 + ], + [ + 0.9159873721905482 + ], + [ + 0.9592356458451337 + ], + [ + 0.9719230769230768 + ], + [ + 0.853205915989843 + ], + [ + 0.9789473684210526 + ], + [ + 0.9119804816878757 + ], + [ + 0.9021731519130232 + ], + [ + 0.9408793468279631 + ], + [ + 0.9502457651288154 + ], + [ + 0.9343996875499296 + ], + [ + 0.8998470475108667 + ], + [ + 0.7828140592083379 + ], + [ + 0.956227485420032 + ], + [ + 0.9688644688644692 + ], + [ + 0.9878260869565216 + ], + [ + 0.9619598036238828 + ], + [ + 0.9853883242696474 + ], + [ + 0.9069463429223856 + ], + [ + 0.8484535647736858 + ], + [ + 0.9859234217934404 + ], + [ + 0.8546502548557862 + ], + [ + 0.8668958338409165 + ], + [ + 0.9890311615492476 + ], + [ + 0.9365130082728363 + ], + [ + 0.9280169976669376 + ], + [ + 0.8580430671412884 + ], + [ + 0.7643022445960241 + ], + [ + 0.7736264668325739 + ], + [ + 0.8826697225277056 + ], + [ + 0.8391298861361308 + ], + [ + 0.8806041934635603 + ], + [ + 0.8250833206612556 + ], + [ + 0.928723519908324 + ], + [ + 0.8668958338409165 + ], + [ + 0.7521491867834005 + ], + [ + 0.8881896291715989 + ], + [ + 0.9616904586883988 + ], + [ + 0.9061435934718377 + ], + [ + 0.9211354224331691 + ], + [ + 0.90276124713408 + ], + [ + 0.9434394218523597 + ], + [ + 0.8047278408758268 + ], + [ + 0.9216703954780426 + ], + [ + 0.9230788696114616 + ], + [ + 0.9564875857045522 + ], + [ + 0.9694396869310692 + ], + [ + 0.8131377716690427 + ], + [ + 0.8237517359346237 + ], + [ + 0.8025926314878588 + ], + [ + 0.8965017504270001 + ], + [ + 0.9230777619327238 + ], + [ + 0.9104413159581644 + ], + [ + 0.8553134080531343 + ], + [ + 0.9989920981077092 + ], + [ + 0.917451425335698 + ], + [ + 0.9521895754027829 + ], + [ + 0.9069463429223856 + ], + [ + 0.8444028672449848 + ], + [ + 0.9910308796338216 + ], + [ + 0.8526177936134408 + ], + [ + 0.8634855466902354 + ], + [ + 0.9883020564051679 + ], + [ + 0.9464739502688859 + ], + [ + 0.9216703954780426 + ], + [ + 0.8566851356948486 + ], + [ + 0.7694393172704596 + ], + [ + 0.7752390906012949 + ], + [ + 0.7768521470048189 + ], + [ + 0.8785410839961321 + ], + [ + 0.8290845270990632 + ], + [ + 0.8351044837311526 + ], + [ + 0.8264159807642062 + ], + [ + 0.9237835099442904 + ], + [ + 0.8868080394461477 + ], + [ + 0.8944200907180742 + ], + [ + 0.9486152933634998 + ], + [ + 0.9061435934718377 + ], + [ + 0.8987505869438153 + ], + [ + 0.7765308864041348 + ], + [ + 0.9062481548474688 + ], + [ + 0.9414868925909092 + ], + [ + 0.8971961746848013 + ], + [ + 0.9273107442696306 + ], + [ + 0.9564875857045522 + ], + [ + 0.9694396869310692 + ], + [ + 0.917451425335698 + ], + [ + 0.7980007746070045 + ], + [ + 0.900672328635003 + ], + [ + 0.9230777619327238 + ], + [ + 0.909042520211614 + ], + [ + 0.8722498962224988 + ], + [ + 0.99818613436632 + ], + [ + 0.917451425335698 + ], + [ + 0.9350943180643897 + ], + [ + 0.8450773104028045 + ], + [ + 0.7755025814626396 + ], + [ + 0.8499116091074294 + ], + [ + 0.9954545454545456 + ], + [ + 0.8248656842171965 + ], + [ + 0.8771670219049115 + ], + [ + 0.8017627702025453 + ], + [ + 0.8252966318058891 + ], + [ + 0.7989505012531329 + ], + [ + 0.9084382663648368 + ], + [ + 0.7700826611531227 + ], + [ + 0.8173907278944466 + ], + [ + 0.9586402202505121 + ], + [ + 0.8279882714725023 + ], + [ + 0.8750287541127237 + ], + [ + 0.8058469213257959 + ], + [ + 0.8887595093929513 + ], + [ + 0.8741986118728367 + ], + [ + 0.9013332512757184 + ], + [ + 0.8951137084436364 + ], + [ + 0.8085158042512651 + ], + [ + 0.7847209561813264 + ], + [ + 0.9207931801334324 + ], + [ + 0.8813228755976849 + ], + [ + 0.8806041934635603 + ], + [ + 0.904598717548413 + ], + [ + 0.8357423547232772 + ], + [ + 0.8519408442208185 + ], + [ + 0.7585436044093791 + ], + [ + 0.754716608935201 + ], + [ + 0.7526949335249729 + ], + [ + 0.8630753385715217 + ], + [ + 0.945504664970314 + ], + [ + 0.8607621561631246 + ], + [ + 0.8190996579799222 + ], + [ + 0.8138788692223808 + ], + [ + 0.80834947374926 + ], + [ + 0.8461416361416363 + ], + [ + 0.8321563840156672 + ], + [ + 0.9049823065264198 + ], + [ + 0.7611003116070912 + ], + [ + 0.8564208333192405 + ], + [ + 0.9567242111117616 + ], + [ + 0.8830433688448956 + ], + [ + 0.8498282229301768 + ], + [ + 0.8787054248059898 + ], + [ + 0.7583865519843361 + ], + [ + 0.8560065732377481 + ], + [ + 0.7845811712379542 + ], + [ + 0.911841187081034 + ], + [ + 0.7575987286674309 + ], + [ + 0.9032923617208078 + ], + [ + 0.8054515169551613 + ], + [ + 0.9457116500465104 + ], + [ + 0.7972151720771685 + ], + [ + 0.9550538402276436 + ], + [ + 0.8404738376904276 + ], + [ + 0.8951137084436364 + ], + [ + 0.8898770040500942 + ], + [ + 0.9910308796338216 + ], + [ + 0.9443350267709892 + ], + [ + 0.9379327738576018 + ], + [ + 0.9687178405771408 + ], + [ + 0.954337370755309 + ], + [ + 0.8992810605226834 + ], + [ + 0.8655309124484051 + ], + [ + 0.8902640300903737 + ], + [ + 0.8553282796247272 + ], + [ + 0.8614426005287826 + ], + [ + 0.8958075950132784 + ], + [ + 0.8438384213475643 + ], + [ + 0.8771670219049115 + ], + [ + 0.8280046113614686 + ], + [ + 0.8607621561631246 + ], + [ + 0.912541525908588 + ], + [ + 0.8614426005287826 + ], + [ + 0.8946208326427901 + ], + [ + 0.8930336617991886 + ], + [ + 0.9188566733401607 + ], + [ + 0.909042520211614 + ], + [ + 0.9278339260751618 + ], + [ + 0.8773278519419312 + ], + [ + 0.9111411170975592 + ], + [ + 0.9636724437338746 + ], + [ + 0.8566851356948486 + ], + [ + 0.933676703232262 + ], + [ + 0.9471874624563446 + ], + [ + 0.9832058480308432 + ], + [ + 0.8923668029454429 + ], + [ + 0.887801301315952 + ], + [ + 0.8244173938759 + ], + [ + 0.8424917813524705 + ], + [ + 0.9048525852298742 + ], + [ + 0.9202629967209424 + ], + [ + 0.9586402202505121 + ], + [ + 0.99818613436632 + ], + [ + 0.8116526550439349 + ], + [ + 0.9097417836628494 + ], + [ + 0.9329682990823176 + ], + [ + 0.8438384213475643 + ], + [ + 0.8958075950132784 + ], + [ + 0.8921838780119076 + ], + [ + 0.986652250762675 + ], + [ + 0.9479012434878824 + ], + [ + 0.9393536148186856 + ], + [ + 0.9687178405771408 + ], + [ + 0.7643022445960241 + ], + [ + 0.955770578544058 + ], + [ + 0.8478847935907573 + ], + [ + 0.8634855466902354 + ], + [ + 0.8614426005287826 + ], + [ + 0.8580430671412884 + ], + [ + 0.8587224361306279 + ], + [ + 0.8923408506058652 + ], + [ + 0.8351044837311526 + ], + [ + 0.8052224642752426 + ], + [ + 0.911841187081034 + ], + [ + 0.8295875223215042 + ], + [ + 0.889572294273369 + ], + [ + 0.912541525908588 + ], + [ + 0.8958075950132784 + ], + [ + 0.8960129675540568 + ], + [ + 0.8930336617991886 + ], + [ + 0.9550538402276436 + ], + [ + 0.909042520211614 + ], + [ + 0.887315997105363 + ], + [ + 0.8703128420935895 + ], + [ + 0.9111411170975592 + ], + [ + 0.9550538402276436 + ], + [ + 0.8614426005287826 + ], + [ + 0.9372227566431792 + ], + [ + 0.962952748132584 + ], + [ + 0.9824788936394012 + ], + [ + 0.9017863969504004 + ], + [ + 0.877949549206721 + ], + [ + 0.8614426005287826 + ], + [ + 0.8344345242846016 + ], + [ + 0.9013683659572824 + ], + [ + 0.9223744981227123 + ], + [ + 0.9586402202505121 + ], + [ + 0.99782684342909 + ], + [ + 0.8327803954481456 + ], + [ + 0.9377053197580578 + ], + [ + 0.7520783733062728 + ], + [ + 0.8576638516480299 + ], + [ + 0.7973458704289155 + ], + [ + 0.8055002075550022 + ], + [ + 0.8274342134261912 + ], + [ + 0.7682652462041775 + ], + [ + 0.8985858297326429 + ], + [ + 0.9295420779390244 + ], + [ + 0.9497666282126442 + ], + [ + 0.9045462110180228 + ], + [ + 0.8937267418365915 + ], + [ + 0.9450477324262084 + ], + [ + 0.9335682269765724 + ], + [ + 0.9463791440512886 + ], + [ + 0.8655309124484051 + ], + [ + 0.7591412700557859 + ], + [ + 0.8317573749391951 + ], + [ + 0.9191871761989552 + ], + [ + 0.9144998770732076 + ], + [ + 0.8299318662677443 + ], + [ + 0.7999671002057498 + ], + [ + 0.9590943683409436 + ], + [ + 0.9721268361679862 + ], + [ + 0.7512346093262124 + ], + [ + 0.9031905016766244 + ], + [ + 0.9258990440072554 + ], + [ + 0.8277497162434753 + ], + [ + 0.9045462110180228 + ], + [ + 0.9715042130082729 + ], + [ + 0.8091792146047655 + ], + [ + 0.8478274566824184 + ], + [ + 0.8594020739640472 + ], + [ + 0.7511865272235565 + ], + [ + 0.7739458321143061 + ], + [ + 0.8799003347391113 + ], + [ + 0.8438384213475643 + ], + [ + 0.8735155491890395 + ], + [ + 0.8971961746848013 + ], + [ + 0.955770578544058 + ], + [ + 0.962303313592256 + ], + [ + 0.9187077430559348 + ], + [ + 0.9203925414202916 + ], + [ + 0.9514626397110274 + ], + [ + 0.9041122896824668 + ], + [ + 0.7840680498436611 + ], + [ + 0.8292520377479811 + ], + [ + 0.97941509455445 + ], + [ + 0.8836172394187662 + ], + [ + 0.9375944096516282 + ], + [ + 0.9096320346320348 + ], + [ + 0.8897178357319816 + ], + [ + 0.977084365603192 + ], + [ + 0.8159983921213949 + ], + [ + 0.8647743756870857 + ], + [ + 0.9324532116794522 + ], + [ + 0.9496978544622346 + ], + [ + 0.8933384348345432 + ], + [ + 0.9146441554557286 + ], + [ + 0.893013468013468 + ], + [ + 0.7745935959659945 + ], + [ + 0.9240556247405564 + ], + [ + 0.9248385202583678 + ], + [ + 0.9493296120831972 + ], + [ + 0.784239798606639 + ], + [ + 0.7934206675600327 + ], + [ + 0.847568697165119 + ], + [ + 0.8111354653251885 + ], + [ + 0.7558928791805505 + ], + [ + 0.7550475642500958 + ], + [ + 0.8290845270990632 + ], + [ + 0.9166360018268416 + ], + [ + 0.9214315504311476 + ], + [ + 0.8905928806265223 + ], + [ + 0.8833857030636293 + ], + [ + 0.8371864728096656 + ], + [ + 0.7786506591658736 + ], + [ + 0.8732444148742633 + ], + [ + 0.9824788936394012 + ], + [ + 0.9261641390813252 + ], + [ + 0.7920585237916445 + ], + [ + 0.8270827140818009 + ], + [ + 0.8181481481481481 + ], + [ + 0.9685059666773832 + ], + [ + 0.7724990486505474 + ], + [ + 0.8453837597330368 + ], + [ + 0.9028925619834708 + ], + [ + 0.974712351554919 + ], + [ + 0.7990739031960405 + ], + [ + 0.8124766840771211 + ], + [ + 0.8338302155859407 + ], + [ + 0.8257495162906913 + ], + [ + 0.9242514144040864 + ], + [ + 0.8874986998868335 + ], + [ + 0.8316014689297133 + ], + [ + 0.8491709060650188 + ], + [ + 0.9290397110203914 + ], + [ + 0.9429104219927898 + ], + [ + 0.9020663048206212 + ], + [ + 0.9497666282126442 + ], + [ + 0.8735827515879028 + ], + [ + 0.8190930086640767 + ], + [ + 0.9097417836628494 + ], + [ + 0.8836172394187662 + ], + [ + 0.7561436787677326 + ], + [ + 0.9111759366075987 + ], + [ + 0.9685059666773832 + ], + [ + 0.7694393172704596 + ], + [ + 0.9182355818184244 + ], + [ + 0.9443350267709892 + ], + [ + 0.8991822088005293 + ], + [ + 0.9609732144249478 + ], + [ + 0.8388412496816188 + ], + [ + 0.9434738042076424 + ], + [ + 0.9514940210071012 + ], + [ + 0.7974547159339365 + ], + [ + 0.9158098573783174 + ], + [ + 0.8885435517508157 + ], + [ + 0.7927757091445906 + ], + [ + 0.8089575535557855 + ], + [ + 0.8566665569299595 + ], + [ + 0.8314583644863298 + ], + [ + 0.7943437531819572 + ], + [ + 0.8869909377863762 + ], + [ + 0.7623509827444914 + ], + [ + 0.9602434075673276 + ], + [ + 0.8173534679942144 + ], + [ + 0.9145746409758626 + ], + [ + 0.7598389563652722 + ], + [ + 0.8919299119395553 + ], + [ + 0.9546749386121294 + ], + [ + 0.9061863080667324 + ], + [ + 0.9429340786658 + ], + [ + 0.8532240586756394 + ], + [ + 0.8877384763770779 + ], + [ + 0.958686173433348 + ], + [ + 0.9554765128325876 + ], + [ + 0.927589597885256 + ], + [ + 0.9529605866177816 + ], + [ + 0.9690193870107546 + ], + [ + 0.8907469811519957 + ], + [ + 0.9842229467473992 + ], + [ + 0.9364502164502164 + ], + [ + 0.8550444275316389 + ], + [ + 0.9174603174603174 + ], + [ + 0.9919369945954868 + ], + [ + 0.7974492252661268 + ], + [ + 0.9534048316392292 + ], + [ + 0.7523489859050253 + ], + [ + 0.8139854059928581 + ], + [ + 0.9461387983232418 + ], + [ + 0.8098519486211259 + ], + [ + 0.7647244706969056 + ], + [ + 0.906310774345067 + ], + [ + 0.7678224795898994 + ], + [ + 0.9290762303990062 + ], + [ + 0.8524886899155711 + ], + [ + 0.980320788530466 + ], + [ + 0.9254995395026632 + ], + [ + 0.8657481566722074 + ], + [ + 0.9421659088682972 + ], + [ + 0.8474906647205496 + ], + [ + 0.9013546930437588 + ], + [ + 0.9748919688627304 + ], + [ + 0.8388843744066832 + ], + [ + 0.95990063654712 + ], + [ + 0.9796267593595076 + ], + [ + 0.9345104268491364 + ], + [ + 0.9405500820824608 + ], + [ + 0.8701948495342146 + ], + [ + 0.9783368141256884 + ], + [ + 0.7696261546646032 + ], + [ + 0.7607570099969941 + ], + [ + 0.7567551932941814 + ], + [ + 0.89138879753655 + ], + [ + 0.928489598568463 + ], + [ + 0.9086142870609782 + ], + [ + 0.9545454545454548 + ], + [ + 0.9545454545454548 + ], + [ + 0.8077423038829434 + ], + [ + 0.9174603174603174 + ], + [ + 0.948338703873867 + ], + [ + 0.9649045221259104 + ], + [ + 0.8289700533295026 + ], + [ + 0.9245393784589186 + ], + [ + 0.7559638453436506 + ], + [ + 0.8235522434404595 + ], + [ + 0.9007792207792208 + ], + [ + 0.7664355652861399 + ], + [ + 0.9290762303990062 + ], + [ + 0.8491308962278107 + ], + [ + 0.7573901281365926 + ], + [ + 0.8315151515151515 + ], + [ + 0.7505974060116345 + ], + [ + 0.9502677159519249 + ], + [ + 0.8378061008189606 + ], + [ + 0.8657481566722074 + ], + [ + 0.9421659088682972 + ], + [ + 0.9391737997679988 + ], + [ + 0.943947221044588 + ], + [ + 0.9530072970035708 + ], + [ + 0.946585394605002 + ], + [ + 0.8072282340152606 + ], + [ + 0.8919696969696971 + ], + [ + 0.9783368141256884 + ], + [ + 0.8060213664465975 + ], + [ + 0.7894137547439006 + ], + [ + 0.8886194359553156 + ], + [ + 0.8969404465407047 + ], + [ + 0.8395077004692013 + ], + [ + 0.8087262766581881 + ], + [ + 0.9417675428322848 + ], + [ + 0.838458313625102 + ], + [ + 0.9578918616552848 + ], + [ + 0.9877224033535164 + ], + [ + 0.9600766541682176 + ], + [ + 0.9372227566431792 + ], + [ + 0.9996947496947498 + ], + [ + 0.9464739502688859 + ], + [ + 0.9273107442696306 + ], + [ + 0.8427440270131528 + ], + [ + 0.8930336617991886 + ], + [ + 0.8499116091074294 + ], + [ + 0.8297523357929766 + ], + [ + 0.8628042957923382 + ], + [ + 0.94362258995985 + ], + [ + 0.8861176478495414 + ], + [ + 0.992955297959396 + ], + [ + 0.954141881439958 + ], + [ + 0.9716068390573318 + ], + [ + 0.9372227566431792 + ], + [ + 0.9209665616774528 + ], + [ + 0.8810186818949944 + ], + [ + 0.8078565985679013 + ], + [ + 0.7888565809250084 + ], + [ + 0.8999765601568034 + ], + [ + 0.7784705964389922 + ], + [ + 0.8951137084436364 + ], + [ + 0.9694396869310692 + ], + [ + 0.906901471095239 + ], + [ + 0.9521895754027829 + ], + [ + 0.7517286913985001 + ], + [ + 0.8687571885281811 + ], + [ + 0.7912430201328434 + ], + [ + 0.9975369458128078 + ], + [ + 0.9160401958804216 + ], + [ + 0.974218139790659 + ], + [ + 0.8509546425853288 + ], + [ + 0.900767299923892 + ], + [ + 0.9978013931164152 + ], + [ + 0.7966912350949062 + ], + [ + 0.8415390235407055 + ], + [ + 0.9095917165921852 + ], + [ + 0.7732064980993626 + ], + [ + 0.8864392836204776 + ], + [ + 0.804143123374405 + ], + [ + 0.8771670219049115 + ], + [ + 0.9813338311457538 + ], + [ + 0.9514741813067672 + ], + [ + 0.9586402202505121 + ], + [ + 0.9396223310702196 + ], + [ + 0.9574611462809792 + ], + [ + 0.9733296560462246 + ], + [ + 0.9277579783254948 + ], + [ + 0.9766303162486368 + ], + [ + 0.8371159751352832 + ], + [ + 0.7645789491661855 + ], + [ + 0.8881896291715989 + ], + [ + 0.9463791440512886 + ], + [ + 0.9564875857045522 + ], + [ + 0.7686245437524821 + ], + [ + 0.9510994238916862 + ], + [ + 0.8438384213475643 + ], + [ + 0.9041552036871964 + ], + [ + 0.9970690618433798 + ], + [ + 0.7655848997001549 + ], + [ + 0.8569756194651065 + ], + [ + 0.8565438206194017 + ], + [ + 0.7732064980993626 + ], + [ + 0.8167257771569466 + ], + [ + 0.8510568256152782 + ], + [ + 0.8573767226280884 + ], + [ + 0.9514741813067672 + ], + [ + 0.946103858087934 + ], + [ + 0.9425383776528816 + ], + [ + 0.9032923617208078 + ], + [ + 0.905550235616632 + ], + [ + 0.9177635419435248 + ], + [ + 0.9424705422602816 + ], + [ + 0.7733034132276329 + ], + [ + 0.7944363835998364 + ], + [ + 0.8881896291715989 + ], + [ + 0.922836204777124 + ], + [ + 0.9493296120831972 + ], + [ + 0.7731216272312162 + ], + [ + 0.7701503489229721 + ], + [ + 0.9110701550899905 + ], + [ + 0.8749551130106945 + ], + [ + 0.9779240761641758 + ], + [ + 0.8757411810482202 + ], + [ + 0.9637205387205386 + ], + [ + 0.8307739463601531 + ], + [ + 0.7840680498436611 + ], + [ + 0.9718089459310836 + ], + [ + 0.7533766040551628 + ], + [ + 0.8411108025383495 + ], + [ + 0.8186320718389478 + ], + [ + 0.7507073140597975 + ], + [ + 0.8665855131372373 + ], + [ + 0.8141166099294752 + ], + [ + 0.8465178639695039 + ], + [ + 0.8674324881574892 + ], + [ + 0.894897491091307 + ], + [ + 0.8007950286452882 + ], + [ + 0.9200506754154923 + ], + [ + 0.8002254756609835 + ], + [ + 0.8055002075550022 + ], + [ + 0.8899568476668683 + ], + [ + 0.8050891517303731 + ], + [ + 0.7551272091668285 + ], + [ + 0.9170723522722332 + ], + [ + 0.8862820694208641 + ], + [ + 0.7731935891169762 + ], + [ + 0.8962930952966316 + ], + [ + 0.8545871559633028 + ], + [ + 0.973043266390798 + ], + [ + 0.8475513005495156 + ], + [ + 0.8919753086419753 + ], + [ + 0.9230719517449376 + ], + [ + 0.9818181818181816 + ], + [ + 0.8724508253662056 + ], + [ + 0.7850116015543995 + ], + [ + 0.7799035733456022 + ], + [ + 0.7709127626361537 + ], + [ + 0.8079919101295913 + ], + [ + 0.767668950942458 + ], + [ + 0.8706501932048896 + ], + [ + 0.8797516915893117 + ], + [ + 0.8063085414053331 + ], + [ + 0.9356832150292386 + ], + [ + 0.8438519069076046 + ], + [ + 0.8284948236315168 + ], + [ + 0.9064297442948914 + ], + [ + 0.9731718245680656 + ], + [ + 0.8146948605443374 + ], + [ + 0.8586700336700335 + ], + [ + 0.7917861568922506 + ], + [ + 0.8919445048153332 + ], + [ + 0.9275512725475664 + ], + [ + 0.8749102030655429 + ], + [ + 0.7586973969785762 + ], + [ + 0.8582940089755703 + ], + [ + 0.8288372093023257 + ], + [ + 0.9457912457912456 + ], + [ + 0.9067894216205786 + ], + [ + 0.8854903716972683 + ], + [ + 0.7712402158145529 + ], + [ + 0.8514488517233563 + ], + [ + 0.8119647131227026 + ], + [ + 0.7960368686049766 + ], + [ + 0.8764803941254208 + ], + [ + 0.7593988263019269 + ], + [ + 0.8332839656913731 + ], + [ + 0.8409641575217711 + ], + [ + 0.7830059960631146 + ], + [ + 0.8189152639403684 + ], + [ + 0.7914909068376863 + ], + [ + 0.8521396824062815 + ], + [ + 0.9429498910675382 + ], + [ + 0.787554569047141 + ], + [ + 0.9170262364403312 + ], + [ + 0.8143114753878038 + ], + [ + 0.8129887361537077 + ], + [ + 0.9416562889165628 + ], + [ + 0.8249965343560833 + ], + [ + 0.8184361507912837 + ], + [ + 0.7583136897041756 + ], + [ + 0.8954939454973427 + ], + [ + 0.9669995060071396 + ], + [ + 0.7678622085216633 + ], + [ + 0.7965505290883048 + ], + [ + 0.8025926314878588 + ], + [ + 0.8861176478495414 + ], + [ + 0.9066317021702632 + ], + [ + 0.781819981750254 + ], + [ + 0.8492357350911255 + ], + [ + 0.925730625364325 + ], + [ + 0.7682652462041775 + ], + [ + 0.7697542997542998 + ], + [ + 0.9647167592568326 + ], + [ + 0.7591823779426875 + ], + [ + 0.9809290093211468 + ], + [ + 0.8217563751752737 + ], + [ + 0.7791177041387707 + ], + [ + 0.9954545454545456 + ], + [ + 0.8281880073317623 + ], + [ + 0.8580430671412884 + ], + [ + 0.9032397543084568 + ], + [ + 0.7617771431813454 + ], + [ + 0.7866182087539877 + ], + [ + 0.7593988263019269 + ], + [ + 0.7752390906012949 + ], + [ + 0.8085158042512651 + ], + [ + 0.8909560347514579 + ], + [ + 0.9051334791710912 + ], + [ + 0.9066317021702632 + ], + [ + 0.7803249362542886 + ], + [ + 0.8737365714482546 + ], + [ + 0.9248568831411556 + ], + [ + 0.8383783163850447 + ], + [ + 0.9706054674756964 + ], + [ + 0.7623802782704252 + ], + [ + 0.9687833580671199 + ], + [ + 0.7739714809841708 + ], + [ + 0.8782693798816119 + ], + [ + 0.860081980641546 + ], + [ + 0.8833857030636293 + ], + [ + 0.792475110421586 + ], + [ + 0.8157848104775258 + ], + [ + 0.8701372997711668 + ], + [ + 0.9563298076485244 + ], + [ + 0.8490800833801486 + ], + [ + 0.7888565809250084 + ], + [ + 0.7741636141636141 + ], + [ + 0.8401837065840431 + ], + [ + 0.9484588138867748 + ], + [ + 0.9176863587872164 + ], + [ + 0.8973789818590386 + ], + [ + 0.8252966318058891 + ], + [ + 0.7617771431813454 + ], + [ + 0.8289524716549913 + ], + [ + 0.8621233137385207 + ], + [ + 0.7908116150724073 + ], + [ + 0.9316463142933343 + ], + [ + 0.7524570024570024 + ], + [ + 0.8718713242231872 + ], + [ + 0.7728726352092181 + ], + [ + 0.7603048533875102 + ], + [ + 0.973201661164624 + ], + [ + 0.8391298861361308 + ], + [ + 0.7893505683000169 + ], + [ + 0.8608078181360623 + ], + [ + 0.8171099429462456 + ], + [ + 0.8507008302142539 + ], + [ + 0.7796040841350689 + ], + [ + 0.8137991281050442 + ], + [ + 0.8701372997711668 + ], + [ + 0.7906337827256119 + ], + [ + 0.9493296120831972 + ], + [ + 0.782031346414908 + ], + [ + 0.7993113894954217 + ], + [ + 0.7720161433138532 + ], + [ + 0.864620467059047 + ], + [ + 0.8900050041356494 + ], + [ + 0.84746622922539 + ], + [ + 0.9115157598761456 + ], + [ + 0.9054424800276306 + ], + [ + 0.830044253645252 + ], + [ + 0.9288938029152748 + ], + [ + 0.8783604524820522 + ], + [ + 0.7944363835998364 + ], + [ + 0.7921163153910715 + ], + [ + 0.7869039663743268 + ], + [ + 0.948066117973837 + ], + [ + 0.9230788696114616 + ], + [ + 0.7965825732022186 + ], + [ + 0.7641898999679713 + ], + [ + 0.7858832626449197 + ], + [ + 0.8508778496367884 + ], + [ + 0.7802946460653972 + ], + [ + 0.7884721011749333 + ], + [ + 0.9513173145378848 + ], + [ + 0.8649568301570332 + ], + [ + 0.7764651372019794 + ], + [ + 0.8624508476571697 + ], + [ + 0.7631497975708502 + ], + [ + 0.838327526611037 + ], + [ + 0.8166721221205311 + ], + [ + 0.8852917218205886 + ], + [ + 0.763935088255619 + ], + [ + 0.849984522961002 + ], + [ + 0.8818076679096488 + ], + [ + 0.7698644841737025 + ], + [ + 0.8836658805318403 + ], + [ + 0.9201199939290072 + ], + [ + 0.8893648150618828 + ], + [ + 0.8891377897432868 + ], + [ + 0.8205353126405759 + ], + [ + 0.8024182735874719 + ], + [ + 0.922961632460186 + ], + [ + 0.946516510443614 + ], + [ + 0.8942981283868459 + ], + [ + 0.8132787513211815 + ], + [ + 0.9842229467473992 + ], + [ + 0.983927829355058 + ], + [ + 0.9897436575227496 + ], + [ + 0.7789928908269387 + ], + [ + 0.9491102207390418 + ], + [ + 0.8027373398034093 + ], + [ + 0.8097807158117007 + ], + [ + 0.7742275740436659 + ], + [ + 0.8269035371638741 + ], + [ + 0.8164279646777108 + ], + [ + 0.7959065093927479 + ], + [ + 0.9299044396563476 + ], + [ + 0.9815561030337692 + ], + [ + 0.8847353302545712 + ], + [ + 0.8534614846726633 + ], + [ + 0.8781863560189622 + ], + [ + 0.9215082393282026 + ], + [ + 0.8660956368114106 + ], + [ + 0.9778877366568356 + ], + [ + 0.8883570187308942 + ], + [ + 0.8645713114309883 + ], + [ + 0.9608961698823448 + ], + [ + 0.7504350893637566 + ], + [ + 0.7899138991389913 + ], + [ + 0.9237157509601476 + ], + [ + 0.8085999198472382 + ], + [ + 0.9842229467473992 + ], + [ + 0.7915641555108558 + ], + [ + 0.9869637610219488 + ], + [ + 0.8388856048166393 + ], + [ + 0.9083168071393158 + ], + [ + 0.996947496947497 + ], + [ + 0.836399552488273 + ], + [ + 0.8254759949956995 + ], + [ + 0.8054112554112555 + ], + [ + 0.8315151515151515 + ], + [ + 0.9072515573214316 + ], + [ + 0.8455703241525074 + ], + [ + 0.8837147279244052 + ], + [ + 0.992492576897818 + ], + [ + 0.7771153106793246 + ], + [ + 0.9632800296944952 + ], + [ + 0.8751296156972389 + ], + [ + 0.9439627106557767 + ], + [ + 0.7599245853190747 + ], + [ + 0.948022748326122 + ], + [ + 0.797922077922078 + ], + [ + 0.8079059133534838 + ], + [ + 0.9002093642315044 + ], + [ + 0.9417677188802858 + ], + [ + 0.9120792735085574 + ], + [ + 0.9325279623513651 + ], + [ + 0.9765978165772758 + ], + [ + 0.9783368141256884 + ], + [ + 0.803590017884114 + ], + [ + 0.8886194359553156 + ], + [ + 0.9424689576609075 + ], + [ + 0.8695613682942084 + ], + [ + 0.9090909090909088 + ], + [ + 0.8277566532211718 + ], + [ + 0.7800435531915323 + ], + [ + 0.9027223454052724 + ], + [ + 0.8465029384806168 + ], + [ + 0.8272613669834734 + ], + [ + 0.8224835092471747 + ], + [ + 0.7714797416324134 + ], + [ + 0.8924773755936107 + ], + [ + 0.9954545454545456 + ], + [ + 0.8217563751752737 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8019358454012121 + ], + [ + 0.8434706308388399 + ], + [ + 0.8017627702025453 + ], + [ + 0.7916704805491989 + ], + [ + 0.8995057307947333 + ], + [ + 0.84746622922539 + ], + [ + 0.8294442768393521 + ], + [ + 0.90276124713408 + ], + [ + 0.996221188255952 + ], + [ + 0.8143962421732175 + ], + [ + 0.980394402239746 + ], + [ + 0.9514741813067672 + ], + [ + 0.7581308936708563 + ], + [ + 0.9531775071717112 + ], + [ + 0.9001377198115018 + ], + [ + 0.8004102325039334 + ], + [ + 0.8735155491890395 + ], + [ + 0.8677050513455755 + ], + [ + 0.8445527067336185 + ], + [ + 0.9636363636363636 + ], + [ + 0.937103645050706 + ], + [ + 0.9694957490472002 + ], + [ + 0.9822495603003196 + ], + [ + 0.901072927769024 + ], + [ + 0.9510994238916862 + ], + [ + 0.9362530022505056 + ], + [ + 0.8219385637193856 + ], + [ + 0.9996947496947498 + ], + [ + 0.7644937203650517 + ], + [ + 0.758657620282485 + ], + [ + 0.8385429638854296 + ], + [ + 0.8490535457456533 + ], + [ + 0.7757575757575756 + ], + [ + 0.999122807017544 + ], + [ + 0.8217563751752737 + ], + [ + 0.8636588686952739 + ], + [ + 0.8019358454012121 + ], + [ + 0.8455800687861758 + ], + [ + 0.8017627702025453 + ], + [ + 0.7768542199488491 + ], + [ + 0.8884642600370833 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.9926207992132684 + ], + [ + 0.9493296120831972 + ], + [ + 0.8445196063887654 + ], + [ + 0.9531775071717112 + ], + [ + 0.8571885156262036 + ], + [ + 0.8838874680306906 + ], + [ + 0.8891221903616687 + ], + [ + 0.9954545454545456 + ], + [ + 0.937103645050706 + ], + [ + 0.7996865517613174 + ], + [ + 0.9851370084561714 + ], + [ + 0.788353581901969 + ], + [ + 0.8469074304690744 + ], + [ + 0.8276687406622917 + ], + [ + 0.8844613609427292 + ], + [ + 0.9313089878738736 + ], + [ + 0.8709970502763632 + ], + [ + 0.8035084471465264 + ], + [ + 1 + ], + [ + 0.932761391647538 + ], + [ + 0.8392430039425867 + ], + [ + 0.945216049382716 + ], + [ + 0.7537357583191043 + ], + [ + 0.9719327874122964 + ], + [ + 0.9954545454545456 + ], + [ + 0.8217563751752737 + ], + [ + 0.8348054919908466 + ], + [ + 0.8788633070234552 + ], + [ + 0.8019358454012121 + ], + [ + 0.8725525105676494 + ], + [ + 0.8033211036934772 + ], + [ + 0.7916704805491989 + ], + [ + 0.8547301773579906 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.974712351554919 + ], + [ + 0.9500266403708978 + ], + [ + 0.951008471157725 + ], + [ + 0.7628108176190548 + ], + [ + 0.9531775071717112 + ], + [ + 0.7716841489148686 + ], + [ + 0.9391877740213088 + ], + [ + 0.8677050513455755 + ], + [ + 0.8967939861988315 + ], + [ + 0.937103645050706 + ], + [ + 0.8551520659154248 + ], + [ + 0.9851370084561714 + ], + [ + 0.8893524283935244 + ], + [ + 0.8733160901863194 + ], + [ + 0.8916710007549704 + ], + [ + 0.9391302151973808 + ], + [ + 0.9965169569202568 + ], + [ + 0.9136739322359624 + ], + [ + 0.9206651788481804 + ], + [ + 0.8553134080531343 + ], + [ + 0.8530611929128231 + ], + [ + 0.9099770642201834 + ], + [ + 0.949825316001485 + ], + [ + 0.7714797416324134 + ], + [ + 0.8862820694208641 + ], + [ + 0.9970690618433798 + ], + [ + 0.7726587251245717 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8462714704650187 + ], + [ + 0.7559911987169416 + ], + [ + 0.7902969671765014 + ], + [ + 0.8017627702025453 + ], + [ + 0.7916704805491989 + ], + [ + 0.9312885573197214 + ], + [ + 0.8580430671412884 + ], + [ + 0.84746622922539 + ], + [ + 0.7598160347464082 + ], + [ + 0.870252992498577 + ], + [ + 0.992671182389769 + ], + [ + 0.9862539184209972 + ], + [ + 0.9514741813067672 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.948072129659398 + ], + [ + 0.8677050513455755 + ], + [ + 0.880780406807804 + ], + [ + 0.9991101223581756 + ], + [ + 0.937103645050706 + ], + [ + 0.9851370084561714 + ], + [ + 0.7606385491732779 + ], + [ + 0.9822495603003196 + ], + [ + 0.9376831513747739 + ], + [ + 0.9027223454052724 + ], + [ + 0.9526427685969672 + ], + [ + 0.9236004688155952 + ], + [ + 1 + ], + [ + 0.8401802481694282 + ], + [ + 0.9773557492735576 + ], + [ + 0.8553134080531343 + ], + [ + 0.8399280642635364 + ], + [ + 0.9943501037415146 + ], + [ + 0.9991101224022378 + ], + [ + 0.7643053750286719 + ], + [ + 0.8874398840030436 + ], + [ + 1 + ], + [ + 0.8119189817879228 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.9908884770316014 + ], + [ + 0.81573077081821 + ], + [ + 0.9677933860111212 + ], + [ + 0.8398311720625258 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.8985858297326429 + ], + [ + 0.992671182389769 + ], + [ + 0.7506209000762774 + ], + [ + 0.9848040830545792 + ], + [ + 0.9514741813067672 + ], + [ + 0.8622230550415498 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9358184932420454 + ], + [ + 0.8831178664041944 + ], + [ + 0.8571885156262036 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9414868925909092 + ], + [ + 0.9851370084561714 + ], + [ + 0.9822495603003196 + ], + [ + 0.9355427814530765 + ], + [ + 0.7598493905068002 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.8534197605902789 + ], + [ + 0.9090909090909088 + ], + [ + 0.8755816117625161 + ], + [ + 0.986521739130435 + ], + [ + 0.7574533557466553 + ], + [ + 0.9090909090909088 + ], + [ + 0.9891304347826086 + ], + [ + 0.8981981278894755 + ], + [ + 0.8661577367496762 + ], + [ + 0.9416316165688026 + ], + [ + 0.8216969791585356 + ], + [ + 0.7977855477855479 + ], + [ + 0.7730257320319432 + ], + [ + 0.8155778185409907 + ], + [ + 0.806941459089035 + ], + [ + 0.8844523908637408 + ], + [ + 0.9819906110654324 + ], + [ + 0.9267146997929604 + ], + [ + 0.930689847575993 + ], + [ + 0.9272543317870856 + ], + [ + 0.9161147326586146 + ], + [ + 0.9592356458451337 + ], + [ + 0.8911833569094192 + ], + [ + 0.8682065217391305 + ], + [ + 0.8974752586594693 + ], + [ + 0.9606049878058373 + ], + [ + 0.9119804816878757 + ], + [ + 0.8291255500470529 + ], + [ + 0.9571129080563042 + ], + [ + 0.9252515037745752 + ], + [ + 0.8839422379842073 + ], + [ + 0.8731842629559791 + ], + [ + 0.956227485420032 + ], + [ + 0.9623460662981315 + ], + [ + 0.9060336327100176 + ], + [ + 0.9466681074558329 + ], + [ + 0.9773557492735576 + ], + [ + 0.8385429638854296 + ], + [ + 0.7548029253094148 + ], + [ + 0.9943501037415146 + ], + [ + 0.9991101224022378 + ], + [ + 0.7643053750286719 + ], + [ + 0.836061944840571 + ], + [ + 1 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8310447482966568 + ], + [ + 0.9416562889165628 + ], + [ + 0.8111421417088542 + ], + [ + 0.9107768322387694 + ], + [ + 0.7741435607326606 + ], + [ + 0.8710025282890884 + ], + [ + 0.7867084930870223 + ], + [ + 0.90276124713408 + ], + [ + 0.992671182389769 + ], + [ + 0.9470902930560504 + ], + [ + 0.9514741813067672 + ], + [ + 0.9531775071717112 + ], + [ + 0.9531702386026508 + ], + [ + 0.79960452652037 + ], + [ + 0.9133288665033964 + ], + [ + 0.842339274227116 + ], + [ + 0.8546919803903434 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.8941624677316798 + ], + [ + 0.9851370084561714 + ], + [ + 0.7831708752610594 + ], + [ + 0.9822495603003196 + ], + [ + 0.9315717953934872 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9773557492735576 + ], + [ + 0.7647361516158825 + ], + [ + 0.95942299709423 + ], + [ + 0.8553134080531343 + ], + [ + 0.8335272614441825 + ], + [ + 0.9943501037415146 + ], + [ + 0.9991101224022378 + ], + [ + 0.7643053750286719 + ], + [ + 0.8924773755936107 + ], + [ + 1 + ], + [ + 0.8591091351396698 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.9416562889165628 + ], + [ + 0.7916704805491989 + ], + [ + 0.950603792184588 + ], + [ + 0.8460152283133167 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.8881896291715989 + ], + [ + 0.992671182389769 + ], + [ + 0.7614851364851365 + ], + [ + 0.9848040830545792 + ], + [ + 0.9514741813067672 + ], + [ + 0.8605291005291005 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.8888976303496794 + ], + [ + 0.8637008456171156 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.941303736239802 + ], + [ + 0.9851370084561714 + ], + [ + 0.9822495603003196 + ], + [ + 0.9400644385653472 + ], + [ + 0.7589913068467564 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.8297199580886333 + ], + [ + 0.9090909090909088 + ], + [ + 0.8388354220573428 + ], + [ + 0.9440241802550384 + ], + [ + 0.8417508417508417 + ], + [ + 0.8349403911738127 + ], + [ + 0.7751196172248803 + ], + [ + 0.9824561403508774 + ], + [ + 0.8289326387041065 + ], + [ + 0.9363636363636364 + ], + [ + 0.8484963605932038 + ], + [ + 0.7878050123409911 + ], + [ + 0.7845412529955496 + ], + [ + 0.8978080587826363 + ], + [ + 0.8211938237064843 + ], + [ + 0.903572413997316 + ], + [ + 0.9759433010492332 + ], + [ + 0.930358431350264 + ], + [ + 0.773824015559919 + ], + [ + 0.9069851553477366 + ], + [ + 0.859207814594905 + ], + [ + 0.9063976387881104 + ], + [ + 0.982273978187496 + ], + [ + 0.8258268246116464 + ], + [ + 0.8378181818181819 + ], + [ + 0.8545698249141326 + ], + [ + 0.7874000986198109 + ], + [ + 0.880561913058948 + ], + [ + 0.9424238274563508 + ], + [ + 0.99359825065929 + ], + [ + 0.94959978379972 + ], + [ + 0.8034795384843756 + ], + [ + 0.8256241274761228 + ], + [ + 0.7845614802232331 + ], + [ + 0.8780499051174888 + ], + [ + 0.9016573566020095 + ], + [ + 0.996521739130435 + ], + [ + 0.8072721768598793 + ], + [ + 0.8757575757575757 + ], + [ + 0.996521739130435 + ], + [ + 0.8052552577805061 + ], + [ + 0.8262184063662379 + ], + [ + 0.9518172850747404 + ], + [ + 0.8509007531737288 + ], + [ + 0.8092916186648054 + ], + [ + 0.8448511242895973 + ], + [ + 0.8221400000560604 + ], + [ + 0.8780499051174888 + ], + [ + 0.8585150396488364 + ], + [ + 0.758257861793882 + ], + [ + 0.9127647109937574 + ], + [ + 0.8185902535630862 + ], + [ + 0.7647917209753416 + ], + [ + 0.8892853956679526 + ], + [ + 0.9240400548084888 + ], + [ + 0.9264066297227525 + ], + [ + 0.8454089009226885 + ], + [ + 0.8738453625296769 + ], + [ + 0.8228190336839921 + ], + [ + 0.9964912280701756 + ], + [ + 0.8440081063581091 + ], + [ + 0.8488300159492314 + ], + [ + 0.8886054092841905 + ], + [ + 0.9651624660242156 + ], + [ + 0.8337216929170275 + ], + [ + 0.8550497957993816 + ], + [ + 0.9818181818181816 + ], + [ + 0.9104377104377104 + ], + [ + 0.9930465133925186 + ], + [ + 0.8868917142282169 + ], + [ + 0.7519552584840934 + ], + [ + 0.9616732614626587 + ], + [ + 0.996521739130435 + ], + [ + 0.7508148487315153 + ], + [ + 0.9090909090909088 + ], + [ + 0.999122807017544 + ], + [ + 0.9090273199933117 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.8507462616258913 + ], + [ + 0.9136683713678436 + ], + [ + 0.8674088334090595 + ], + [ + 0.8594701086956521 + ], + [ + 0.908313797791604 + ], + [ + 0.9891493795585866 + ], + [ + 0.7642455368060652 + ], + [ + 0.8891663542156248 + ], + [ + 0.924175824175824 + ], + [ + 0.9395716586151368 + ], + [ + 0.9484409722518364 + ], + [ + 0.9641388361295768 + ], + [ + 0.9059750088690924 + ], + [ + 0.999122807017544 + ], + [ + 0.9047503889161738 + ], + [ + 0.9033269863614518 + ], + [ + 0.9033269863614518 + ], + [ + 0.8658678644015689 + ], + [ + 0.9443498545350396 + ], + [ + 0.8906789023521027 + ], + [ + 0.999122807017544 + ], + [ + 0.9551184069702588 + ], + [ + 0.7562762148337596 + ], + [ + 0.9773557492735576 + ], + [ + 0.8409090909090906 + ], + [ + 0.9960831758177524 + ], + [ + 0.9978260869565218 + ], + [ + 0.7508148487315153 + ], + [ + 0.8490484481225223 + ], + [ + 0.999122807017544 + ], + [ + 0.9090273199933117 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.8507462616258913 + ], + [ + 0.9416562889165628 + ], + [ + 0.786316100259506 + ], + [ + 0.7917643088450543 + ], + [ + 0.8674088334090595 + ], + [ + 0.7940883223309813 + ], + [ + 0.8392760078156812 + ], + [ + 0.908313797791604 + ], + [ + 0.9891493795585866 + ], + [ + 0.766483106515241 + ], + [ + 0.8959840947127665 + ], + [ + 0.8891663542156248 + ], + [ + 0.924175824175824 + ], + [ + 0.9395716586151368 + ], + [ + 0.9484409722518364 + ], + [ + 0.9641388361295768 + ], + [ + 0.974712351554919 + ], + [ + 0.999122807017544 + ], + [ + 0.9047503889161738 + ], + [ + 0.9033269863614518 + ], + [ + 0.9773557492735576 + ], + [ + 0.8895761362866625 + ], + [ + 0.9748201493966672 + ], + [ + 0.9033269863614518 + ], + [ + 0.7646806860332477 + ], + [ + 0.8800026263331926 + ], + [ + 0.9443498545350396 + ], + [ + 0.9956140350877192 + ], + [ + 0.932409671284977 + ], + [ + 0.999122807017544 + ], + [ + 0.9551184069702588 + ], + [ + 0.7562762148337596 + ], + [ + 0.9833457647662114 + ], + [ + 0.8409090909090906 + ], + [ + 0.8227240115332337 + ], + [ + 0.9947765595830976 + ], + [ + 0.9978260869565218 + ], + [ + 0.7508148487315153 + ], + [ + 0.8569860866157161 + ], + [ + 0.999122807017544 + ], + [ + 0.9090273199933117 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.79241896667796 + ], + [ + 0.8521396824062815 + ], + [ + 0.9416562889165628 + ], + [ + 0.8683896350563016 + ], + [ + 0.783774936061381 + ], + [ + 0.936963017728694 + ], + [ + 0.8674088334090595 + ], + [ + 0.84746622922539 + ], + [ + 0.7880796625738841 + ], + [ + 0.908313797791604 + ], + [ + 0.9891493795585866 + ], + [ + 0.766483106515241 + ], + [ + 0.8356411205726275 + ], + [ + 0.8959840947127665 + ], + [ + 0.8891663542156248 + ], + [ + 0.924175824175824 + ], + [ + 0.9395716586151368 + ], + [ + 0.9484409722518364 + ], + [ + 0.9641388361295768 + ], + [ + 0.8643546462063086 + ], + [ + 0.9753454579899592 + ], + [ + 0.999122807017544 + ], + [ + 0.9047503889161738 + ], + [ + 0.9033269863614518 + ], + [ + 0.9851370084561714 + ], + [ + 0.9748201493966672 + ], + [ + 0.9033269863614518 + ], + [ + 0.7684710351377019 + ], + [ + 0.8800026263331926 + ], + [ + 0.9443498545350396 + ], + [ + 0.999122807017544 + ], + [ + 0.90662100456621 + ], + [ + 0.999122807017544 + ], + [ + 0.9551184069702588 + ], + [ + 0.7562762148337596 + ], + [ + 0.9833457647662114 + ], + [ + 0.8409090909090906 + ], + [ + 0.7928783407950074 + ], + [ + 0.8919753086419753 + ], + [ + 0.9978260869565218 + ], + [ + 0.7508148487315153 + ], + [ + 0.8490459410817468 + ], + [ + 0.999122807017544 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.79241896667796 + ], + [ + 0.8507462616258913 + ], + [ + 0.9416562889165628 + ], + [ + 0.7684372454295727 + ], + [ + 0.936963017728694 + ], + [ + 0.8674088334090595 + ], + [ + 0.84746622922539 + ], + [ + 0.9891493795585866 + ], + [ + 0.984323635061576 + ], + [ + 0.9353365093463604 + ], + [ + 0.924175824175824 + ], + [ + 0.9395716586151368 + ], + [ + 0.963346594676518 + ], + [ + 0.8643546462063086 + ], + [ + 0.9047503889161738 + ], + [ + 0.9033269863614518 + ], + [ + 0.9851370084561714 + ], + [ + 0.9447497776699816 + ], + [ + 0.9787330446229278 + ], + [ + 0.9033269863614518 + ], + [ + 0.7646806860332477 + ], + [ + 0.8800026263331926 + ], + [ + 0.9443498545350396 + ], + [ + 0.8849247249134843 + ], + [ + 0.90662100456621 + ], + [ + 0.8830204170152121 + ], + [ + 0.7610810810810811 + ], + [ + 0.918761685155179 + ], + [ + 0.849564043730598 + ], + [ + 0.9295382499658214 + ], + [ + 0.8737807294339347 + ], + [ + 0.7524570024570024 + ], + [ + 0.8764855553630885 + ], + [ + 0.8881376171456311 + ], + [ + 0.8144653876435873 + ], + [ + 0.7569047619047621 + ], + [ + 0.9011440242078431 + ], + [ + 0.9721444518798692 + ], + [ + 0.8580395542059102 + ], + [ + 0.7556448396101646 + ], + [ + 0.8943463267997412 + ], + [ + 0.7708422347381368 + ], + [ + 0.8312540974287805 + ], + [ + 0.927155204148788 + ], + [ + 0.9242507691836442 + ], + [ + 0.8039533480013239 + ], + [ + 0.9253381976987183 + ], + [ + 0.9487056115959976 + ], + [ + 0.996333638863428 + ], + [ + 0.9061372721317869 + ], + [ + 0.8039194902068957 + ], + [ + 0.9773557492735576 + ], + [ + 0.8553134080531343 + ], + [ + 0.8316014689297133 + ], + [ + 0.9590943683409436 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8958436239049176 + ], + [ + 0.9997983870967744 + ], + [ + 0.8210917926103164 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.9416562889165628 + ], + [ + 0.7854916126103976 + ], + [ + 0.8580430671412884 + ], + [ + 0.8452862219584866 + ], + [ + 0.90276124713408 + ], + [ + 0.992671182389769 + ], + [ + 0.9514741813067672 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.856399568810636 + ], + [ + 0.9607331879409255 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9414868925909092 + ], + [ + 0.8733160901863194 + ], + [ + 0.8902640300903737 + ], + [ + 0.9822495603003196 + ], + [ + 0.7724990486505474 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9505705348293196 + ], + [ + 0.890082588516155 + ], + [ + 0.9271888077994948 + ], + [ + 0.7647361516158825 + ], + [ + 0.9773557492735576 + ], + [ + 0.8553134080531343 + ], + [ + 0.9590943683409436 + ], + [ + 0.9991101224022378 + ], + [ + 0.8219385637193856 + ], + [ + 0.8478847935907573 + ], + [ + 0.9954545454545456 + ], + [ + 0.8210917926103164 + ], + [ + 0.8995898027497777 + ], + [ + 0.9479012434878824 + ], + [ + 0.8019358454012121 + ], + [ + 0.9416562889165628 + ], + [ + 0.8188858158239665 + ], + [ + 0.8055002075550022 + ], + [ + 0.8580430671412884 + ], + [ + 0.84746622922539 + ], + [ + 0.895416975651959 + ], + [ + 0.992671182389769 + ], + [ + 0.8356411205726275 + ], + [ + 0.8716815273032167 + ], + [ + 0.9429977116704804 + ], + [ + 0.8677050513455755 + ], + [ + 0.9607331879409255 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9414868925909092 + ], + [ + 0.9240556247405564 + ], + [ + 0.8819809439955775 + ], + [ + 0.9822495603003196 + ], + [ + 0.7999671002057498 + ], + [ + 0.9413092648977816 + ], + [ + 0.9954545454545456 + ], + [ + 0.9326966113459272 + ], + [ + 0.7838827173142349 + ], + [ + 0.9271888077994948 + ], + [ + 0.8469712140023324 + ], + [ + 0.9773557492735576 + ], + [ + 0.8553134080531343 + ], + [ + 0.8394616500465105 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8958436239049176 + ], + [ + 0.9994500458295142 + ], + [ + 0.8184361507912837 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8019358454012121 + ], + [ + 0.8089287811425218 + ], + [ + 0.8553636363636363 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.84746622922539 + ], + [ + 0.8181109552382406 + ], + [ + 0.8966477542865559 + ], + [ + 0.992671182389769 + ], + [ + 0.9775526793347032 + ], + [ + 0.9514741813067672 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9341361232572516 + ], + [ + 0.7767581669691469 + ], + [ + 0.8677050513455755 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9230017232221136 + ], + [ + 0.9851370084561714 + ], + [ + 0.8553134080531343 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.9824561403508774 + ], + [ + 0.9505705348293196 + ], + [ + 0.8909999999999999 + ], + [ + 0.8933113072408856 + ], + [ + 0.7647361516158825 + ], + [ + 0.9929947676208064 + ], + [ + 0.8598347107438016 + ], + [ + 0.8490800833801486 + ], + [ + 0.9947856385396152 + ], + [ + 0.9990150209905604 + ], + [ + 0.7707081956166206 + ], + [ + 0.8952232922255726 + ], + [ + 1 + ], + [ + 0.8216057600038706 + ], + [ + 0.9000234404536862 + ], + [ + 1 + ], + [ + 0.8075842215036355 + ], + [ + 0.946198347107438 + ], + [ + 0.8021928166351607 + ], + [ + 0.7928741020793951 + ], + [ + 0.9344444444444444 + ], + [ + 0.8578858011832347 + ], + [ + 0.8483379501385041 + ], + [ + 0.7871436798157215 + ], + [ + 0.9025957850286672 + ], + [ + 0.9928936489808848 + ], + [ + 0.9846235837724948 + ], + [ + 0.9527305856232412 + ], + [ + 0.9434321361058602 + ], + [ + 0.9373115797727772 + ], + [ + 0.9350049149338372 + ], + [ + 0.8705701323251417 + ], + [ + 0.986135349716446 + ], + [ + 1 + ], + [ + 0.9357441792403746 + ], + [ + 0.941314332676578 + ], + [ + 0.9860141582025238 + ], + [ + 0.9826843100189036 + ], + [ + 0.9826843100189036 + ], + [ + 0.8050748795127288 + ], + [ + 0.884575512524494 + ], + [ + 0.9417436672967864 + ], + [ + 0.9937805570643936 + ], + [ + 0.9503788875440718 + ], + [ + 1 + ], + [ + 0.9245562130177516 + ], + [ + 0.7654094979252105 + ], + [ + 1 + ], + [ + 0.9090909090909088 + ], + [ + 0.8238490179500522 + ], + [ + 0.9637205387205386 + ], + [ + 0.9819008264462812 + ], + [ + 0.7757575757575756 + ], + [ + 0.8216057600038706 + ], + [ + 0.9000234404536862 + ], + [ + 1 + ], + [ + 0.8075842215036355 + ], + [ + 0.9217516347489824 + ], + [ + 0.799080529300567 + ], + [ + 0.9344444444444444 + ], + [ + 0.8948549687825181 + ], + [ + 0.9721268082486919 + ], + [ + 0.8409090909090906 + ], + [ + 0.9499201807471164 + ], + [ + 0.9527305856232412 + ], + [ + 0.9434321361058602 + ], + [ + 0.9206147765314164 + ], + [ + 0.9350049149338372 + ], + [ + 0.8640914933837429 + ], + [ + 0.9964943059402892 + ], + [ + 0.816272967863894 + ], + [ + 0.9860141582025238 + ], + [ + 0.928736342351717 + ], + [ + 0.9792393194706994 + ], + [ + 0.8994380853277835 + ], + [ + 0.9292599608634763 + ], + [ + 1 + ], + [ + 0.8362207611956006 + ], + [ + 0.9902353003770102 + ], + [ + 0.895080529300567 + ], + [ + 0.7602465480841565 + ], + [ + 0.9929947676208064 + ], + [ + 0.8598347107438016 + ], + [ + 0.8490800833801486 + ], + [ + 0.9947856385396152 + ], + [ + 0.9990150209905604 + ], + [ + 0.7707081956166206 + ], + [ + 0.8952232922255726 + ], + [ + 1 + ], + [ + 0.8216057600038706 + ], + [ + 0.9000234404536862 + ], + [ + 1 + ], + [ + 0.8011324661116951 + ], + [ + 0.8075842215036355 + ], + [ + 0.946198347107438 + ], + [ + 0.8021928166351607 + ], + [ + 0.7928741020793951 + ], + [ + 0.9344444444444444 + ], + [ + 0.8578858011832347 + ], + [ + 0.8483379501385041 + ], + [ + 0.9025957850286672 + ], + [ + 0.9928936489808848 + ], + [ + 0.9846235837724948 + ], + [ + 0.951299790877642 + ], + [ + 0.9527305856232412 + ], + [ + 0.9434321361058602 + ], + [ + 0.9396223310702196 + ], + [ + 0.9350049149338372 + ], + [ + 0.8705701323251417 + ], + [ + 0.986135349716446 + ], + [ + 1 + ], + [ + 0.9357441792403746 + ], + [ + 0.941314332676578 + ], + [ + 0.9860141582025238 + ], + [ + 0.9826843100189036 + ], + [ + 0.8050748795127288 + ], + [ + 0.884575512524494 + ], + [ + 0.9417436672967864 + ], + [ + 1 + ], + [ + 0.9503788875440718 + ], + [ + 1 + ], + [ + 0.9245562130177516 + ], + [ + 0.7654094979252105 + ], + [ + 0.9819008264462812 + ], + [ + 0.8598347107438016 + ], + [ + 0.8131334593572779 + ], + [ + 0.7690913021991601 + ], + [ + 0.9990150209905604 + ], + [ + 0.7707081956166206 + ], + [ + 1 + ], + [ + 0.8216057600038706 + ], + [ + 0.9000234404536862 + ], + [ + 1 + ], + [ + 0.8475686570924664 + ], + [ + 0.9583379501385041 + ], + [ + 0.8578858011832347 + ], + [ + 0.8245991597474406 + ], + [ + 0.8852652399934414 + ], + [ + 0.9928936489808848 + ], + [ + 0.81331932016418 + ], + [ + 0.8180035444849115 + ], + [ + 0.8711111111111112 + ], + [ + 0.7763165596167769 + ], + [ + 0.9350049149338372 + ], + [ + 1 + ], + [ + 0.9349642299687824 + ], + [ + 0.9860141582025238 + ], + [ + 0.9826843100189036 + ], + [ + 0.884575512524494 + ], + [ + 0.9417436672967864 + ], + [ + 0.996520316855316 + ], + [ + 1 + ], + [ + 0.9245562130177516 + ], + [ + 0.7654094979252105 + ], + [ + 0.8580139372822299 + ], + [ + 0.9830434782608694 + ], + [ + 0.8893524283935244 + ], + [ + 0.9954545454545456 + ], + [ + 0.9159300003279972 + ], + [ + 0.8181818181818182 + ], + [ + 0.7500000000000002 + ], + [ + 0.8938595877462214 + ], + [ + 0.9042008986509023 + ], + [ + 0.957287033071265 + ], + [ + 0.90234375 + ], + [ + 0.9223350132140808 + ], + [ + 0.8347334184691517 + ], + [ + 0.9207931801334324 + ], + [ + 0.8467468534925462 + ], + [ + 0.8855595367052747 + ], + [ + 0.7719095384164608 + ], + [ + 0.89266067021096 + ], + [ + 0.8763416775577225 + ], + [ + 0.9545454545454548 + ], + [ + 0.911370421730973 + ], + [ + 0.8444352108196725 + ], + [ + 0.889643133181266 + ], + [ + 0.7993302204531539 + ], + [ + 0.9838876285414652 + ], + [ + 0.981598371482293 + ], + [ + 0.8584226317602837 + ], + [ + 0.9320791500266458 + ], + [ + 0.9545454545454548 + ], + [ + 0.8557709287004716 + ], + [ + 0.8980542801375592 + ], + [ + 0.8619577717071254 + ], + [ + 0.9666063921681544 + ], + [ + 0.9199136660983444 + ], + [ + 0.954105606965682 + ], + [ + 0.8784735812133071 + ], + [ + 0.8146320346320346 + ], + [ + 0.8985141146494671 + ], + [ + 0.810999117201063 + ], + [ + 0.8039130434782609 + ], + [ + 0.8999203521041261 + ], + [ + 0.9046926758835667 + ], + [ + 0.9502900712294152 + ], + [ + 0.912840025574134 + ], + [ + 0.9565342960288808 + ], + [ + 0.908022550608102 + ], + [ + 0.7889688874990176 + ], + [ + 0.9947765595830976 + ], + [ + 0.9939130434782611 + ], + [ + 0.7541751489851583 + ], + [ + 0.8333567358870508 + ], + [ + 0.9077642484940728 + ], + [ + 0.89655436679566 + ], + [ + 0.8211280822082608 + ], + [ + 0.7590923827347885 + ], + [ + 0.891518378456824 + ], + [ + 0.9280303030303032 + ], + [ + 0.7756218002597997 + ], + [ + 0.8987662245043503 + ], + [ + 0.8668602157771254 + ], + [ + 0.801511385184123 + ], + [ + 0.9878450565293272 + ], + [ + 0.8198448448448448 + ], + [ + 0.8761625640592721 + ], + [ + 0.9331326790672908 + ], + [ + 0.8095673945542065 + ], + [ + 0.9692603418275338 + ], + [ + 0.8574834373128851 + ], + [ + 0.984385006449655 + ], + [ + 0.996521739130435 + ], + [ + 0.7993577556225364 + ], + [ + 0.904913008013858 + ], + [ + 0.908522355957097 + ], + [ + 0.8922324960716342 + ], + [ + 0.9027775208335084 + ], + [ + 0.8863636363636365 + ], + [ + 0.893013468013468 + ], + [ + 0.8159728122344945 + ], + [ + 0.94712477473252 + ], + [ + 0.9501526150902738 + ], + [ + 0.9360797940299664 + ], + [ + 0.7541751489851583 + ], + [ + 0.7667799490229397 + ], + [ + 0.7911852166525064 + ], + [ + 0.8545853753924373 + ], + [ + 0.8991709050477996 + ], + [ + 0.9636363636363636 + ], + [ + 0.8911305509993319 + ], + [ + 0.9280303030303032 + ], + [ + 0.7559479094211299 + ], + [ + 0.9484006454368564 + ], + [ + 0.8396074640434158 + ], + [ + 0.7602400762912697 + ], + [ + 0.8236580766813324 + ], + [ + 0.8818556180808311 + ], + [ + 0.9202063402841564 + ], + [ + 0.8401634217686861 + ], + [ + 0.9479922753053344 + ], + [ + 0.9495079748317234 + ], + [ + 0.9185105083088952 + ], + [ + 0.8116459489241595 + ], + [ + 0.9143375393297604 + ], + [ + 0.9496030156557552 + ], + [ + 0.8340405157441468 + ], + [ + 0.904913008013858 + ], + [ + 0.8855604489099591 + ], + [ + 0.8008650649412102 + ], + [ + 0.917917299639148 + ], + [ + 0.880492540216932 + ], + [ + 0.9964912280701756 + ], + [ + 0.8884778012684991 + ], + [ + 0.9772727272727272 + ], + [ + 0.9305426817265549 + ], + [ + 0.7903598392225994 + ], + [ + 0.913366781280282 + ], + [ + 0.9096320346320348 + ], + [ + 0.9904188832431408 + ], + [ + 0.996521739130435 + ], + [ + 0.7541751489851583 + ], + [ + 0.8171186929707505 + ], + [ + 0.9908763972444158 + ], + [ + 0.9077642484940728 + ], + [ + 0.89655436679566 + ], + [ + 0.772467875442053 + ], + [ + 0.860588835859315 + ], + [ + 0.9234883720930234 + ], + [ + 0.7875052854122622 + ], + [ + 0.933111940667877 + ], + [ + 0.8330354177655357 + ], + [ + 0.98656936388704 + ], + [ + 0.7578096064482999 + ], + [ + 0.8236580766813324 + ], + [ + 0.9347318308522028 + ], + [ + 0.8932895451827312 + ], + [ + 0.9285799156049388 + ], + [ + 0.9331326790672908 + ], + [ + 0.9644254304363626 + ], + [ + 0.9670876387294297 + ], + [ + 0.984385006449655 + ], + [ + 0.9939130434782611 + ], + [ + 0.8081449326727791 + ], + [ + 0.904913008013858 + ], + [ + 0.958843983408048 + ], + [ + 0.9074265343943518 + ], + [ + 0.914550550747443 + ], + [ + 0.9956140350877192 + ], + [ + 0.7875052854122622 + ], + [ + 0.8930995950038103 + ], + [ + 0.9583981105619436 + ], + [ + 0.7913282390616106 + ], + [ + 0.8553636363636363 + ], + [ + 0.9520786868217588 + ], + [ + 0.8227791822609921 + ], + [ + 0.7541751489851583 + ], + [ + 0.7533175355450237 + ], + [ + 0.7932981415505088 + ], + [ + 0.8738851187127049 + ], + [ + 0.8977552028386393 + ], + [ + 0.9636363636363636 + ], + [ + 0.8909590821089839 + ], + [ + 0.9280303030303032 + ], + [ + 0.7559479094211299 + ], + [ + 0.7751825777502708 + ], + [ + 0.9484006454368564 + ], + [ + 0.8164106024837708 + ], + [ + 0.8378181818181819 + ], + [ + 0.7561931059330722 + ], + [ + 0.8198448448448448 + ], + [ + 0.8746812582275244 + ], + [ + 0.917685782192232 + ], + [ + 0.8430950344725274 + ], + [ + 0.9479922753053344 + ], + [ + 0.9401658822908944 + ], + [ + 0.9345885985711606 + ], + [ + 0.7898873359402224 + ], + [ + 0.9291147879324685 + ], + [ + 0.9688056850309468 + ], + [ + 0.8399373186372248 + ], + [ + 0.904913008013858 + ], + [ + 0.8926128930190145 + ], + [ + 0.8013821571709653 + ], + [ + 0.9027775208335084 + ], + [ + 0.9068677230102368 + ], + [ + 0.9964912280701756 + ], + [ + 0.8884778012684991 + ], + [ + 0.9772727272727272 + ], + [ + 0.937931239097852 + ], + [ + 0.7893307769071134 + ], + [ + 0.8507923269391159 + ], + [ + 0.82454262425017 + ], + [ + 0.9956476370717128 + ], + [ + 0.997391304347826 + ], + [ + 0.7521112125156584 + ], + [ + 0.848613775065388 + ], + [ + 0.9982456140350876 + ], + [ + 0.9095579316931844 + ], + [ + 0.8974216292028354 + ], + [ + 0.9982456140350876 + ], + [ + 0.793236950671892 + ], + [ + 0.865081443540125 + ], + [ + 0.7910710359728593 + ], + [ + 0.7802662901330503 + ], + [ + 0.9360867018160518 + ], + [ + 0.8672259606948435 + ], + [ + 0.8465945179292698 + ], + [ + 0.7860877112960002 + ], + [ + 0.90741737640829 + ], + [ + 0.988714605208294 + ], + [ + 0.7650792722152087 + ], + [ + 0.9834028714566064 + ], + [ + 0.9319643313838056 + ], + [ + 0.8892009084674849 + ], + [ + 0.9238927452772132 + ], + [ + 0.938293658314696 + ], + [ + 0.9463111401682168 + ], + [ + 0.9638336347197108 + ], + [ + 0.8614957734733332 + ], + [ + 0.9743634159016108 + ], + [ + 0.9982456140350876 + ], + [ + 0.904567225435328 + ], + [ + 0.902432554260779 + ], + [ + 0.9842598587858048 + ], + [ + 0.9800758121375232 + ], + [ + 0.9031438311232313 + ], + [ + 0.7664643536742591 + ], + [ + 0.8798196380081303 + ], + [ + 0.9452382460255262 + ], + [ + 0.9982456140350876 + ], + [ + 0.9982456140350876 + ], + [ + 0.9542133966338968 + ], + [ + 0.7550919222167469 + ], + [ + 0.8650485436893204 + ], + [ + 0.9590943683409436 + ], + [ + 0.9899999999999998 + ], + [ + 0.7905998956595828 + ], + [ + 0.9964912280701756 + ], + [ + 0.8794606193667226 + ], + [ + 0.9543859649122808 + ], + [ + 0.8482253411306041 + ], + [ + 0.9416562889165628 + ], + [ + 0.8635977474267438 + ], + [ + 0.908313797791604 + ], + [ + 0.9882608695652176 + ], + [ + 0.9329580322176916 + ], + [ + 0.8517155377371683 + ], + [ + 0.9278910038068524 + ], + [ + 0.7982464236271342 + ], + [ + 0.8646739607798208 + ], + [ + 0.9813471226782764 + ], + [ + 0.9960869565217392 + ], + [ + 0.9094579806240582 + ], + [ + 0.9134140956933028 + ], + [ + 0.9851370084561714 + ], + [ + 0.97920631307383 + ], + [ + 0.977065643648764 + ], + [ + 0.8834465198075598 + ], + [ + 0.9747949320291138 + ], + [ + 0.932911746603152 + ], + [ + 0.999122807017544 + ], + [ + 0.959866019149962 + ], + [ + 0.7617844033057979 + ], + [ + 0.7748830995323981 + ], + [ + 0.8909999999999999 + ], + [ + 0.7596175070890622 + ], + [ + 0.8999999999999999 + ], + [ + 0.9123145440909052 + ], + [ + 0.8741654144553147 + ], + [ + 0.8398585426427478 + ], + [ + 0.8724872612693206 + ], + [ + 0.7669652718124924 + ], + [ + 0.8631126133046548 + ], + [ + 0.8409246558039661 + ], + [ + 0.8097354943626018 + ], + [ + 0.95990063654712 + ], + [ + 0.8969342300921225 + ], + [ + 0.9611031655225016 + ], + [ + 0.827297433674167 + ], + [ + 0.8779350849682387 + ], + [ + 0.8367440082204682 + ], + [ + 0.893013468013468 + ], + [ + 0.9964912280701756 + ], + [ + 0.7824996118615121 + ], + [ + 0.8861176478495414 + ], + [ + 0.9315029605665132 + ], + [ + 0.9240556247405564 + ], + [ + 0.7895079901300617 + ], + [ + 0.8675786978032918 + ], + [ + 0.7532931318639005 + ], + [ + 0.90662100456621 + ], + [ + 0.7716841489148686 + ], + [ + 0.7502640132876188 + ], + [ + 0.8438384213475643 + ], + [ + 0.8979659609796596 + ], + [ + 0.8433356634883351 + ], + [ + 0.8893524283935244 + ], + [ + 0.8088096745504153 + ], + [ + 0.916047252707554 + ], + [ + 0.8157092458590421 + ], + [ + 0.7713701554506877 + ], + [ + 0.8990439807701138 + ], + [ + 0.8907570363540729 + ], + [ + 0.9537544911348904 + ], + [ + 0.808038039840766 + ], + [ + 0.9851370084561714 + ], + [ + 0.8932164255129278 + ], + [ + 0.9471843568535036 + ], + [ + 0.9133288665033964 + ], + [ + 0.9132421335802218 + ], + [ + 0.8276330050739579 + ], + [ + 0.8868080394461477 + ], + [ + 0.8668829861852336 + ], + [ + 0.8964265087723556 + ], + [ + 0.9911660095629562 + ], + [ + 0.9182659870037116 + ], + [ + 0.8633272832102701 + ], + [ + 0.8186320718389478 + ], + [ + 0.8881896291715989 + ], + [ + 0.8840480861242009 + ], + [ + 0.8197634340126408 + ], + [ + 0.7611003116070912 + ], + [ + 0.8939095129169344 + ], + [ + 0.901240425894056 + ], + [ + 0.8290845270990632 + ], + [ + 0.8844734722345178 + ], + [ + 0.900672328635003 + ], + [ + 0.8611114838221064 + ], + [ + 0.9020646721236415 + ], + [ + 0.7524570024570024 + ], + [ + 0.9671031943607348 + ], + [ + 0.7643684665873062 + ], + [ + 0.9177602214566852 + ], + [ + 0.9280169976669376 + ], + [ + 0.9651126414686952 + ], + [ + 0.8767768595041323 + ], + [ + 0.933676703232262 + ], + [ + 0.8344383939714739 + ], + [ + 0.849693862814132 + ], + [ + 0.7954107032792184 + ], + [ + 0.933676703232262 + ], + [ + 0.938108321790696 + ], + [ + 0.928906596493303 + ], + [ + 0.7642353146981488 + ], + [ + 0.8546502548557862 + ], + [ + 0.8224212265843107 + ], + [ + 0.7710819445257563 + ], + [ + 0.8864829929760666 + ], + [ + 0.8716815273032167 + ], + [ + 0.8660098479761721 + ], + [ + 0.9025093300004408 + ], + [ + 0.8121071884193809 + ], + [ + 0.9607952743931896 + ], + [ + 0.8722498962224988 + ], + [ + 0.9310204439345414 + ], + [ + 0.9777167277167276 + ], + [ + 0.8010759771629337 + ], + [ + 0.8522718489127074 + ], + [ + 0.9093424633191152 + ], + [ + 0.8425177354450203 + ], + [ + 0.7805733235714439 + ], + [ + 0.8924918014613418 + ], + [ + 0.9893784849790032 + ], + [ + 0.8451386855821716 + ], + [ + 0.8875135039917615 + ], + [ + 0.9706691109074244 + ], + [ + 0.768635972404227 + ], + [ + 0.8133865875461221 + ], + [ + 0.9501902748414376 + ], + [ + 0.8687372572217293 + ], + [ + 0.7972263500644203 + ], + [ + 0.879221174323091 + ], + [ + 0.8580430671412884 + ], + [ + 0.8347523783886707 + ], + [ + 0.9006369722354359 + ], + [ + 0.992671182389769 + ], + [ + 0.9563291529742204 + ], + [ + 0.947447712690609 + ], + [ + 0.7790788334554246 + ], + [ + 0.9533492330474672 + ], + [ + 0.8986916130118449 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8636563261069188 + ], + [ + 0.9225521327977664 + ], + [ + 0.9272525027808675 + ], + [ + 0.9347188997515521 + ], + [ + 0.7847695804918372 + ], + [ + 0.9443983271522132 + ], + [ + 0.9774342481963584 + ], + [ + 0.97920631307383 + ], + [ + 0.9390325835747532 + ], + [ + 0.7859442359319205 + ], + [ + 0.9452608121807992 + ], + [ + 0.8231219423433573 + ], + [ + 0.9939505041246564 + ], + [ + 0.8711884810416023 + ], + [ + 0.9664525827971132 + ], + [ + 0.8922813036020585 + ], + [ + 0.8517879419237278 + ], + [ + 0.9226251523770824 + ], + [ + 0.9989000916590284 + ], + [ + 0.912544997503788 + ], + [ + 0.8862043421277565 + ], + [ + 0.7932768442135997 + ], + [ + 0.8376774696711561 + ], + [ + 0.7841809006211181 + ], + [ + 0.7925277144429594 + ], + [ + 0.8649220965924544 + ], + [ + 0.8539211685273398 + ], + [ + 0.8363949697251979 + ], + [ + 0.8264854203894482 + ], + [ + 0.9072225728615328 + ], + [ + 0.992671182389769 + ], + [ + 0.8515020101968744 + ], + [ + 0.9309305726600986 + ], + [ + 0.9543209471735604 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8914844044126526 + ], + [ + 0.9256464785119556 + ], + [ + 0.9954545454545456 + ], + [ + 0.9374817381090278 + ], + [ + 0.7688326686368462 + ], + [ + 0.8925869273677869 + ], + [ + 0.9703270521983972 + ], + [ + 0.9809453113164672 + ], + [ + 0.8066868740036242 + ], + [ + 0.8351972694191357 + ], + [ + 0.8433153659377112 + ], + [ + 0.9392359594194456 + ], + [ + 0.8888965657897014 + ], + [ + 0.8930757789029354 + ], + [ + 0.999083409715857 + ], + [ + 0.9743963538884604 + ], + [ + 0.7953195319531954 + ], + [ + 0.8454219118804093 + ], + [ + 0.9502704567873635 + ], + [ + 0.9458992126856904 + ], + [ + 0.7644077516403233 + ], + [ + 0.8706106552426165 + ], + [ + 0.9965172600923464 + ], + [ + 0.8217563751752737 + ], + [ + 0.9124729676453814 + ], + [ + 0.9818515123739688 + ], + [ + 0.8086304821445487 + ], + [ + 0.9321596244131456 + ], + [ + 0.7740195848021936 + ], + [ + 0.8328682787543888 + ], + [ + 0.8700240408314942 + ], + [ + 0.8580430671412884 + ], + [ + 0.8444444444444444 + ], + [ + 0.8063613046642976 + ], + [ + 0.870252992498577 + ], + [ + 0.992671182389769 + ], + [ + 0.9630275323942066 + ], + [ + 0.9518090954793984 + ], + [ + 0.8248761807094434 + ], + [ + 0.9566474322858416 + ], + [ + 0.9285566337630128 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8389228250888328 + ], + [ + 0.908538082241886 + ], + [ + 0.9906562847608452 + ], + [ + 0.937727360640436 + ], + [ + 0.8522952375426849 + ], + [ + 0.9459029430545072 + ], + [ + 0.970027764388316 + ], + [ + 0.9817818865916694 + ], + [ + 0.8466376695566143 + ], + [ + 0.7811519654537372 + ], + [ + 0.9366631199668156 + ], + [ + 0.9535299764377344 + ], + [ + 0.9032200335646016 + ], + [ + 0.9998166819431716 + ], + [ + 0.8480421626051209 + ], + [ + 0.9780701754385964 + ], + [ + 0.8055944055944054 + ], + [ + 0.8519962283651035 + ], + [ + 0.9944372261358286 + ], + [ + 0.8909859611558665 + ], + [ + 0.9930339138405136 + ], + [ + 0.8688321482439127 + ], + [ + 0.8739386859650123 + ], + [ + 0.7999172993636504 + ], + [ + 0.8106128029621074 + ], + [ + 0.9095679827050769 + ], + [ + 0.8277677156441022 + ], + [ + 0.779649885583524 + ], + [ + 0.8288552731227062 + ], + [ + 0.8574961012970123 + ], + [ + 0.841109866865746 + ], + [ + 0.792355474053602 + ], + [ + 0.8966775300321758 + ], + [ + 0.992671182389769 + ], + [ + 0.9572785040629562 + ], + [ + 0.9291879754864996 + ], + [ + 0.889317620077831 + ], + [ + 0.9515562365156858 + ], + [ + 0.9348478408783754 + ], + [ + 0.8753775156331067 + ], + [ + 0.9532353404791928 + ], + [ + 0.9954545454545456 + ], + [ + 0.937189056965018 + ], + [ + 0.9715579478946336 + ], + [ + 0.959737826278744 + ], + [ + 0.961743440323128 + ], + [ + 0.9796080671884818 + ], + [ + 0.8052224642752426 + ], + [ + 0.7647985836235606 + ], + [ + 0.8987594276173578 + ], + [ + 0.935391253108552 + ], + [ + 0.9994500458295142 + ], + [ + 0.8855041459997729 + ], + [ + 0.9090909090909088 + ], + [ + 0.778450363196126 + ], + [ + 0.8409090909090906 + ], + [ + 0.9903940886699508 + ], + [ + 0.9132561051004052 + ], + [ + 0.8590718015934052 + ], + [ + 0.9118814562362948 + ], + [ + 0.7681025602181487 + ], + [ + 0.7961600220298013 + ], + [ + 0.8228255528255527 + ], + [ + 0.7862727272727271 + ], + [ + 0.8598109918146062 + ], + [ + 0.9327132807405768 + ], + [ + 0.8460922217047043 + ], + [ + 0.9090909090909088 + ], + [ + 0.7565260131563887 + ], + [ + 0.8064786173763172 + ], + [ + 0.8049646954986759 + ], + [ + 0.8147984533079082 + ], + [ + 0.8706455071105871 + ], + [ + 0.889459843292596 + ], + [ + 0.8753408574458414 + ], + [ + 0.78943545201723 + ], + [ + 0.9225337271553442 + ], + [ + 0.8471976396567684 + ], + [ + 0.9582046990267186 + ], + [ + 0.7739383306543302 + ], + [ + 0.8439728108918513 + ], + [ + 0.9681818181818184 + ], + [ + 0.9147990007027552 + ], + [ + 0.8965678134850725 + ], + [ + 0.9229230100043496 + ], + [ + 0.8814426843808552 + ], + [ + 0.8299673329703665 + ], + [ + 0.953884157786154 + ], + [ + 0.9568896321070232 + ], + [ + 0.927359277258842 + ], + [ + 0.926999815931348 + ], + [ + 0.9084797370520777 + ], + [ + 0.7588691796008868 + ], + [ + 0.8925148498881217 + ], + [ + 0.941101152368758 + ], + [ + 0.7976890157802166 + ], + [ + 0.8191512279190005 + ], + [ + 0.9383783723654014 + ], + [ + 0.9687898089171972 + ], + [ + 0.8227272727272728 + ], + [ + 0.9667829842995462 + ], + [ + 0.8430578512396696 + ], + [ + 0.8462362704327265 + ], + [ + 0.9937731747479652 + ], + [ + 0.8598347107438016 + ], + [ + 0.9018993376896012 + ], + [ + 0.9380859781477626 + ], + [ + 0.7965452139741043 + ], + [ + 0.8408374965151522 + ], + [ + 0.828891493383743 + ], + [ + 0.8037512287334593 + ], + [ + 0.9310557094490612 + ], + [ + 0.7905217546826223 + ], + [ + 0.8803334593572778 + ], + [ + 0.948060941828255 + ], + [ + 0.9808836171606353 + ], + [ + 0.9419954799687824 + ], + [ + 0.9000657462195923 + ], + [ + 0.9762481841119351 + ], + [ + 0.958536231884058 + ], + [ + 0.8689482041587903 + ], + [ + 0.9625071374155625 + ], + [ + 0.9421304353743684 + ], + [ + 0.9000657462195923 + ], + [ + 0.909072064464046 + ], + [ + 0.7770347430724859 + ], + [ + 0.8258664204370577 + ], + [ + 0.931003010693105 + ], + [ + 0.936341359994194 + ], + [ + 0.944622600300256 + ], + [ + 0.7698155009451796 + ], + [ + 0.9886242163794032 + ], + [ + 0.8385429638854296 + ], + [ + 0.8460152283133167 + ], + [ + 0.8244642857142859 + ], + [ + 0.90662100456621 + ], + [ + 0.8965017504270001 + ], + [ + 0.9477543538038498 + ], + [ + 0.934372987530004 + ], + [ + 0.7966912350949062 + ], + [ + 0.8521832338962485 + ], + [ + 0.8284602000869942 + ], + [ + 0.8025417478298693 + ], + [ + 0.9275512725475664 + ], + [ + 0.9004149252037746 + ], + [ + 0.9814823072033312 + ], + [ + 0.9441436310000064 + ], + [ + 0.9038201493163326 + ], + [ + 0.9502409737496426 + ], + [ + 0.8660854435766022 + ], + [ + 0.880780406807804 + ], + [ + 0.932626333246618 + ], + [ + 0.8230247277595698 + ], + [ + 0.9169832716276728 + ], + [ + 0.9163600219843964 + ], + [ + 0.7558559856410743 + ], + [ + 0.8249965343560833 + ], + [ + 0.9341554258408444 + ], + [ + 0.8231479245485526 + ], + [ + 0.9054813423400642 + ], + [ + 0.7909076419763443 + ], + [ + 0.7862727272727271 + ], + [ + 0.8658008658008658 + ], + [ + 0.996330951542531 + ], + [ + 0.9364502164502164 + ], + [ + 0.7650216450216449 + ], + [ + 0.794733291750721 + ], + [ + 0.894436842425348 + ], + [ + 0.9071691672620463 + ], + [ + 0.8475960459042418 + ], + [ + 0.825019069412662 + ], + [ + 0.9011154934052964 + ], + [ + 0.9888403534005904 + ], + [ + 0.9064975857191632 + ], + [ + 0.8040148172573156 + ], + [ + 0.7544972303681978 + ], + [ + 0.8394258450740808 + ], + [ + 0.8722248098121411 + ], + [ + 0.8832034632034632 + ], + [ + 0.9242506379637506 + ], + [ + 0.8626119406890994 + ], + [ + 0.878664636798608 + ], + [ + 0.796428039082196 + ], + [ + 0.7737936507936508 + ], + [ + 0.9772426641825802 + ], + [ + 0.9771984786553624 + ], + [ + 0.7754989006737327 + ], + [ + 0.9842229467473992 + ], + [ + 0.9545454545454548 + ], + [ + 0.8536368018578387 + ], + [ + 0.9904302907657898 + ], + [ + 0.9985875706214687 + ], + [ + 0.7822341892305151 + ], + [ + 0.8895952017025273 + ], + [ + 0.9977822580645164 + ], + [ + 0.822054489456517 + ], + [ + 0.9068929556529068 + ], + [ + 0.9969759694040504 + ], + [ + 0.8227635041015324 + ], + [ + 0.92385752642948 + ], + [ + 0.7644903235840163 + ], + [ + 0.7893527624833871 + ], + [ + 0.9290762303990062 + ], + [ + 0.8549939348739194 + ], + [ + 0.9024751306250636 + ], + [ + 0.9939538727034296 + ], + [ + 0.9838663951689132 + ], + [ + 0.9555403520366936 + ], + [ + 0.8659230906299106 + ], + [ + 0.9555403520366936 + ], + [ + 0.936556104044048 + ], + [ + 0.9365262267264388 + ], + [ + 0.943947221044588 + ], + [ + 0.8711152458705146 + ], + [ + 0.981787734953484 + ], + [ + 0.9977753058954394 + ], + [ + 0.939105864661958 + ], + [ + 0.941241408860912 + ], + [ + 0.9772426641825802 + ], + [ + 0.9783368141256884 + ], + [ + 0.9783368141256884 + ], + [ + 0.8035224554513878 + ], + [ + 0.8878885108220647 + ], + [ + 0.9498970784947516 + ], + [ + 0.9954182612676434 + ], + [ + 0.8911007105869436 + ], + [ + 0.9977822580645164 + ], + [ + 0.9332845830090168 + ], + [ + 0.7698457560674342 + ], + [ + 0.8237875450920827 + ], + [ + 0.7694629219019462 + ], + [ + 0.9545454545454548 + ], + [ + 0.7676911617909391 + ], + [ + 0.8737944824901346 + ], + [ + 0.7706024497958504 + ], + [ + 0.7971142965635086 + ], + [ + 0.797381306659819 + ], + [ + 0.8620542233987611 + ], + [ + 0.8139854059928581 + ], + [ + 0.9887078033035884 + ], + [ + 0.9359939732913412 + ], + [ + 0.816825438145235 + ], + [ + 0.8422527112008905 + ], + [ + 0.8452819441807481 + ], + [ + 0.8400216450216451 + ], + [ + 0.8999203521041261 + ], + [ + 0.929916690661292 + ], + [ + 0.830854814143431 + ], + [ + 0.9513142174432496 + ], + [ + 0.9688527588701455 + ], + [ + 0.9228795379537954 + ], + [ + 0.7730756056428137 + ], + [ + 0.958302500539574 + ], + [ + 0.8026224595457895 + ], + [ + 0.804211768109809 + ], + [ + 0.999122807017544 + ], + [ + 0.9565843431073292 + ], + [ + 0.8024218124622581 + ], + [ + 0.8815110224684692 + ], + [ + 0.8108800084863914 + ], + [ + 0.9608990650462856 + ], + [ + 0.7587225856098497 + ], + [ + 0.8465945179292698 + ], + [ + 0.8955974273031978 + ], + [ + 0.9430511599324012 + ], + [ + 0.7968522430480871 + ], + [ + 0.942185445331794 + ], + [ + 0.8678328134388728 + ], + [ + 0.8589010971043637 + ], + [ + 0.9773557492735576 + ], + [ + 0.8072544965953004 + ], + [ + 0.9954545454545456 + ], + [ + 0.8468840523666226 + ], + [ + 0.7893040004872826 + ], + [ + 0.999122807017544 + ], + [ + 0.8702035016515567 + ], + [ + 0.7949970358330488 + ], + [ + 0.9294585399607892 + ], + [ + 0.8407994285729776 + ], + [ + 0.8788200589970502 + ], + [ + 0.8314481030702937 + ], + [ + 0.831385641452182 + ], + [ + 0.9804378566350936 + ], + [ + 0.9129349807104162 + ], + [ + 0.8141494511694449 + ], + [ + 0.9133990354371988 + ], + [ + 0.9851370084561714 + ], + [ + 0.9095532047456912 + ], + [ + 0.8505448360551613 + ], + [ + 0.963157894736842 + ], + [ + 0.7634237761904064 + ], + [ + 0.9011822106778054 + ], + [ + 0.9956171156600898 + ], + [ + 0.95942299709423 + ], + [ + 0.8553134080531343 + ], + [ + 0.8472097261066925 + ], + [ + 0.9805098186910532 + ], + [ + 0.8553134080531343 + ], + [ + 0.7714797416324134 + ], + [ + 0.9997983870967744 + ], + [ + 0.8217563751752737 + ], + [ + 0.8946470109877639 + ], + [ + 0.999122807017544 + ], + [ + 0.8354069917967499 + ], + [ + 0.9416562889165628 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8580430671412884 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.8909560347514579 + ], + [ + 0.992671182389769 + ], + [ + 0.9848040830545792 + ], + [ + 0.8630706569122703 + ], + [ + 0.8702378201869908 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.907644799841382 + ], + [ + 0.999122807017544 + ], + [ + 0.9414868925909092 + ], + [ + 0.9335682269765724 + ], + [ + 0.8893524283935244 + ], + [ + 0.9822495603003196 + ], + [ + 0.8052224642752426 + ], + [ + 0.9379369101877942 + ], + [ + 0.9090909090909088 + ], + [ + 0.756404071529602 + ], + [ + 0.9271888077994948 + ], + [ + 0.9921175854473762 + ], + [ + 0.8553134080531343 + ], + [ + 0.9943501037415146 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8958436239049176 + ], + [ + 1 + ], + [ + 0.8217563751752737 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8019358454012121 + ], + [ + 0.8089287811425218 + ], + [ + 0.8017627702025453 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8580430671412884 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.90276124713408 + ], + [ + 0.992671182389769 + ], + [ + 0.8072821072057714 + ], + [ + 0.9848040830545792 + ], + [ + 0.8189889492826025 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.974712351554919 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9773557492735576 + ], + [ + 0.9822495603003196 + ], + [ + 0.9822495603003196 + ], + [ + 0.8052224642752426 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9503668087629396 + ], + [ + 1 + ], + [ + 0.9271888077994948 + ], + [ + 0.7647361516158825 + ], + [ + 0.9807297003570874 + ], + [ + 0.9364502164502164 + ], + [ + 0.7901612469857595 + ], + [ + 0.824287208001439 + ], + [ + 0.9807297003570874 + ], + [ + 0.7614649785030472 + ], + [ + 0.8658008658008658 + ], + [ + 0.9939130434782611 + ], + [ + 0.9066651512935219 + ], + [ + 0.8939526037506182 + ], + [ + 0.9842229467473992 + ], + [ + 0.865081443540125 + ], + [ + 0.9167169276268624 + ], + [ + 0.8794346322201474 + ], + [ + 0.765130456168069 + ], + [ + 0.8734544866674276 + ], + [ + 0.909520787797598 + ], + [ + 0.8854931946173012 + ], + [ + 0.7673924006226841 + ], + [ + 0.8798233135618779 + ], + [ + 0.9852364106660584 + ], + [ + 0.7637569649841349 + ], + [ + 0.9348260838243078 + ], + [ + 0.933522474466579 + ], + [ + 0.8377846225826576 + ], + [ + 0.9583806183156228 + ], + [ + 0.9331326790672908 + ], + [ + 0.9383147514181556 + ], + [ + 0.9589825216566162 + ], + [ + 0.8060876415101113 + ], + [ + 0.9783224922971588 + ], + [ + 0.9583806183156228 + ], + [ + 0.899590944489805 + ], + [ + 0.8941653123998358 + ], + [ + 0.9668188169538892 + ], + [ + 0.9783224922971588 + ], + [ + 0.9679972612119138 + ], + [ + 0.8797605429806478 + ], + [ + 0.7963975193082085 + ], + [ + 0.8839816990630294 + ], + [ + 0.9431528211472392 + ], + [ + 0.8367334869051766 + ], + [ + 0.8658008658008658 + ], + [ + 0.9921746738179468 + ], + [ + 0.9020614173817516 + ], + [ + 0.7562166685686029 + ], + [ + 0.8984134398306008 + ], + [ + 0.9687833580671199 + ], + [ + 0.8324262590094272 + ], + [ + 0.7778237575832933 + ], + [ + 0.8480007561436672 + ], + [ + 0.9579079093729875 + ], + [ + 0.845860397670802 + ], + [ + 0.7551254672930834 + ], + [ + 0.8899966113703928 + ], + [ + 0.7908116150724073 + ], + [ + 0.8910183976510794 + ], + [ + 0.9586402202505121 + ], + [ + 0.9614055686011409 + ], + [ + 0.9466976131633718 + ], + [ + 0.8344345242846016 + ], + [ + 0.7881948755231197 + ], + [ + 0.8703128420935895 + ], + [ + 0.7758848540806752 + ], + [ + 0.9184591472656428 + ], + [ + 0.9495128094164198 + ], + [ + 0.8796487671810186 + ], + [ + 0.7514068195240423 + ], + [ + 0.8716815273032167 + ], + [ + 0.9882425857143352 + ], + [ + 0.9633770826635396 + ], + [ + 0.7728726352092181 + ], + [ + 0.7549603797492292 + ], + [ + 0.8460813462362223 + ], + [ + 0.9172118090262832 + ], + [ + 0.992952541754412 + ], + [ + 0.8606043918383145 + ], + [ + 0.7745935959659945 + ], + [ + 0.9636724437338746 + ], + [ + 0.7960368686049766 + ], + [ + 0.8285988264418827 + ], + [ + 0.9708841861711646 + ], + [ + 0.8299341990318011 + ], + [ + 0.8419381421530754 + ], + [ + 0.784953771420362 + ], + [ + 0.7591712665406429 + ], + [ + 0.8689452322602814 + ], + [ + 0.7766626862314431 + ], + [ + 0.7843042441238667 + ], + [ + 0.7800515724165504 + ], + [ + 0.8797549464963943 + ], + [ + 0.9919502705663622 + ], + [ + 0.9893735932410646 + ], + [ + 0.8894092494980258 + ], + [ + 0.8411462167336957 + ], + [ + 0.8604416000492892 + ], + [ + 0.9391164837414664 + ], + [ + 0.9875732201051683 + ], + [ + 0.8668958338409165 + ], + [ + 0.910974119092226 + ], + [ + 0.9335682269765724 + ], + [ + 0.8903543205412945 + ], + [ + 0.7579050997201501 + ], + [ + 0.9129974387310056 + ], + [ + 0.8184361507912837 + ], + [ + 0.8985858297326429 + ], + [ + 0.8811309071018276 + ], + [ + 0.9600766541682176 + ], + [ + 0.9142379797053092 + ], + [ + 0.8553282796247272 + ], + [ + 0.9209665616774528 + ], + [ + 0.7653056658292261 + ], + [ + 0.9428934497795352 + ], + [ + 0.9766567420679494 + ], + [ + 0.9320892949781068 + ], + [ + 0.8764803941254208 + ], + [ + 0.9615141634622412 + ], + [ + 0.8025926314878588 + ], + [ + 0.935632010504501 + ], + [ + 0.9954545454545456 + ], + [ + 0.8383046372479713 + ], + [ + 0.8085158042512651 + ], + [ + 0.8799003347391113 + ], + [ + 0.8519408442208185 + ], + [ + 0.7642901122754603 + ], + [ + 0.9104413159581644 + ], + [ + 0.89138879753655 + ], + [ + 0.8889595044710776 + ], + [ + 0.8674196841123456 + ], + [ + 0.9890311615492476 + ], + [ + 0.9817061821644611 + ], + [ + 0.9645756670815068 + ], + [ + 0.9013683659572824 + ], + [ + 0.9379327738576018 + ], + [ + 0.8277684278026405 + ], + [ + 0.8025926314878588 + ], + [ + 0.8164472422898458 + ], + [ + 0.9476735033728184 + ], + [ + 0.9280169976669376 + ], + [ + 0.9400644385653472 + ], + [ + 0.8571175858480748 + ], + [ + 0.9457607069255074 + ], + [ + 0.7890197773695017 + ], + [ + 0.9341554258408444 + ], + [ + 0.8197634340126408 + ], + [ + 0.9579224065577792 + ], + [ + 0.8701372997711668 + ], + [ + 0.9529052383428788 + ], + [ + 0.9845238804935112 + ], + [ + 0.909042520211614 + ], + [ + 0.7869703117696519 + ], + [ + 0.8276242108365519 + ], + [ + 0.878685196514601 + ], + [ + 0.7563441975980676 + ], + [ + 0.7552008456659621 + ], + [ + 0.9576803072122886 + ], + [ + 0.7766774350616475 + ], + [ + 0.8786356094048401 + ], + [ + 0.8863636363636365 + ], + [ + 0.8824223337513897 + ], + [ + 0.915641381346678 + ], + [ + 0.9097297101659864 + ], + [ + 0.952612204076308 + ], + [ + 0.9667491997801664 + ], + [ + 0.9203132832080203 + ], + [ + 0.8318181818181817 + ], + [ + 0.8553636363636363 + ], + [ + 0.7733211512105985 + ], + [ + 0.8722470169622666 + ], + [ + 0.8975645313091688 + ], + [ + 0.8977159303535192 + ], + [ + 0.9912311643305796 + ], + [ + 0.9024231247013856 + ], + [ + 0.86918360351979 + ], + [ + 0.8278906432659406 + ], + [ + 0.8317573749391951 + ], + [ + 0.9643924081792452 + ], + [ + 0.938598748759861 + ], + [ + 0.984466571720076 + ], + [ + 0.9883020564051679 + ], + [ + 0.977397740533538 + ], + [ + 0.8324262590094272 + ], + [ + 0.957204861709126 + ], + [ + 0.9815689054392762 + ], + [ + 0.9723297607875788 + ], + [ + 0.9166058436529154 + ], + [ + 0.7521706555006759 + ], + [ + 0.9280169976669376 + ], + [ + 0.9358035287465732 + ], + [ + 0.8764803941254208 + ], + [ + 0.9153455696596016 + ], + [ + 0.8469432605765171 + ], + [ + 0.99268071993084 + ], + [ + 0.988226739831974 + ], + [ + 0.996336999414424 + ], + [ + 0.9244884191211992 + ], + [ + 0.8507008302142539 + ], + [ + 0.9593509283699424 + ], + [ + 0.8061755182821719 + ], + [ + 0.9615141634622412 + ], + [ + 0.9839330712663648 + ], + [ + 0.9555873521968756 + ], + [ + 0.9775173594082412 + ], + [ + 0.8128624949482813 + ], + [ + 0.9514741813067672 + ], + [ + 0.9817522080920388 + ], + [ + 0.981025791388756 + ], + [ + 0.9818181818181816 + ], + [ + 0.9710861248452468 + ], + [ + 0.9773557492735576 + ], + [ + 0.890085589718168 + ], + [ + 0.954337370755309 + ], + [ + 0.8919753086419753 + ], + [ + 0.8552031760963528 + ], + [ + 0.9545454545454548 + ], + [ + 0.8563472606128697 + ], + [ + 0.8478228971791203 + ], + [ + 0.8853335760168058 + ], + [ + 0.825019069412662 + ], + [ + 0.8305431015989557 + ], + [ + 0.7900733399481583 + ], + [ + 0.9108949697942603 + ], + [ + 0.917855352912078 + ], + [ + 0.8955772084667657 + ], + [ + 0.82987479094277 + ], + [ + 0.9090909090909088 + ], + [ + 0.9331273751154144 + ], + [ + 0.841981268119079 + ], + [ + 0.9061617983216465 + ], + [ + 0.7650216450216449 + ], + [ + 0.8414755340099983 + ], + [ + 0.9939138029238658 + ], + [ + 0.8766192814819845 + ], + [ + 0.8315151515151515 + ], + [ + 0.8473382904078122 + ], + [ + 0.914059797380776 + ], + [ + 0.7659476739028936 + ], + [ + 0.8559376367887911 + ], + [ + 0.8114111498257839 + ], + [ + 0.7943527200862163 + ], + [ + 0.7697780793564009 + ], + [ + 0.8192024956758094 + ], + [ + 0.9625172175038818 + ], + [ + 0.9466379024540816 + ], + [ + 0.9248249108281914 + ], + [ + 0.7835010344179048 + ], + [ + 0.7696916201990726 + ], + [ + 0.8741784037558686 + ], + [ + 0.8788591215600511 + ], + [ + 0.7847145200343669 + ], + [ + 0.995553782140972 + ], + [ + 0.885547201336675 + ], + [ + 0.932238896428148 + ], + [ + 0.8666467850773247 + ], + [ + 0.9318181818181815 + ], + [ + 0.874330829529188 + ], + [ + 0.8477600534912598 + ], + [ + 0.8513796499579376 + ], + [ + 0.7928688716866057 + ], + [ + 0.8300839482005723 + ], + [ + 0.8104640050546934 + ], + [ + 0.7623555471966228 + ], + [ + 0.8477133966865695 + ], + [ + 0.8069468267581477 + ], + [ + 0.7970641933918771 + ], + [ + 0.7517470662254077 + ], + [ + 0.811386593204775 + ], + [ + 0.8200234516324811 + ], + [ + 0.8169486429889492 + ], + [ + 0.8731362653208361 + ], + [ + 0.8763157894736843 + ], + [ + 0.8185744024917364 + ], + [ + 0.9052173913043478 + ], + [ + 0.8415792985968426 + ], + [ + 0.7820239132603559 + ], + [ + 0.8373297473297473 + ], + [ + 0.7516072325464591 + ], + [ + 0.9659417587369664 + ], + [ + 0.7649602377888222 + ], + [ + 0.7936066126855602 + ], + [ + 0.9090909090909088 + ], + [ + 0.945216049382716 + ], + [ + 0.8771929824561405 + ], + [ + 0.8174876847290639 + ], + [ + 0.8553636363636363 + ], + [ + 0.8455433455433455 + ], + [ + 0.9233441393338415 + ], + [ + 0.8437332724582007 + ], + [ + 0.832909538499891 + ], + [ + 0.840948616293985 + ], + [ + 0.8177290491628549 + ], + [ + 0.9175438596491228 + ], + [ + 0.882198952879581 + ], + [ + 0.8150509397735729 + ], + [ + 0.9294196742835898 + ], + [ + 0.8917391304347826 + ], + [ + 0.8253968253968254 + ], + [ + 0.7862727272727271 + ], + [ + 0.8107452697678261 + ], + [ + 0.9637205387205386 + ], + [ + 0.852293824358888 + ], + [ + 0.8709558996012198 + ], + [ + 0.7596801346801346 + ], + [ + 0.8181614349775784 + ], + [ + 0.9017543859649124 + ], + [ + 0.7897773279352229 + ], + [ + 0.805168828270855 + ], + [ + 0.9090909090909088 + ], + [ + 0.8771929824561405 + ], + [ + 0.8174876847290639 + ], + [ + 0.8813770455902434 + ], + [ + 0.8553636363636363 + ], + [ + 0.8455433455433455 + ], + [ + 0.8049385749385749 + ], + [ + 0.8437332724582007 + ], + [ + 0.832909538499891 + ], + [ + 0.8177290491628549 + ], + [ + 0.9175438596491228 + ], + [ + 0.8767128866853765 + ], + [ + 0.8150509397735729 + ], + [ + 0.9294196742835898 + ], + [ + 0.8917391304347826 + ], + [ + 0.8253968253968254 + ], + [ + 0.7862727272727271 + ], + [ + 0.8107452697678261 + ], + [ + 0.9637205387205386 + ], + [ + 0.852293824358888 + ], + [ + 0.7596801346801346 + ], + [ + 0.8181614349775784 + ], + [ + 0.9017543859649124 + ], + [ + 0.805168828270855 + ], + [ + 0.9545454545454548 + ], + [ + 0.9545454545454548 + ], + [ + 0.8298946640273919 + ], + [ + 0.8041381029540074 + ], + [ + 0.9786956521739132 + ], + [ + 0.9055353950321428 + ], + [ + 0.8658008658008658 + ], + [ + 0.8041630667784955 + ], + [ + 0.792782754772987 + ], + [ + 0.8259976777571356 + ], + [ + 0.8220626497774737 + ], + [ + 0.8210461476724114 + ], + [ + 0.8101813436763873 + ], + [ + 0.971001604361102 + ], + [ + 0.9289464621791536 + ], + [ + 0.8732908588456849 + ], + [ + 0.9320839327803117 + ], + [ + 0.7799127011297503 + ], + [ + 0.9521230391509398 + ], + [ + 0.8387538514207465 + ], + [ + 0.8873673399520713 + ], + [ + 0.8919696969696971 + ], + [ + 0.9939130434782611 + ], + [ + 0.9772426641825802 + ], + [ + 0.8315151515151515 + ], + [ + 0.8408502506153573 + ], + [ + 0.9545454545454548 + ], + [ + 0.8658008658008658 + ], + [ + 0.9939130434782611 + ], + [ + 0.9418179668098864 + ], + [ + 0.7650216450216449 + ], + [ + 0.8654908035026879 + ], + [ + 0.9992656508417233 + ], + [ + 0.7803152709359605 + ], + [ + 0.833023231770358 + ], + [ + 0.9983501374885428 + ], + [ + 0.8042480240124439 + ], + [ + 0.7697542997542998 + ], + [ + 0.9203347173341052 + ], + [ + 0.8077175608822436 + ], + [ + 0.863207096556374 + ], + [ + 0.9891326164874552 + ], + [ + 0.8157646741278424 + ], + [ + 0.8722929363621342 + ], + [ + 0.8412806151509398 + ], + [ + 0.9100844696456204 + ], + [ + 0.9172591608126068 + ], + [ + 0.9170938628158845 + ], + [ + 0.8485714285714286 + ], + [ + 0.8571645021645024 + ], + [ + 0.8877796694698104 + ], + [ + 0.8146320346320346 + ], + [ + 0.9983501374885428 + ], + [ + 0.9617032985121432 + ], + [ + 0.9108802545427966 + ], + [ + 0.9508984239139112 + ], + [ + 0.9181661424871335 + ], + [ + 0.9529605866177816 + ], + [ + 0.8319465220643232 + ], + [ + 0.8402426098282156 + ], + [ + 0.9191026771713572 + ], + [ + 0.819087310370122 + ], + [ + 0.8628923192823611 + ], + [ + 0.9602434075673276 + ], + [ + 0.7593235251819751 + ], + [ + 0.9456277248027678 + ], + [ + 0.9435343652049158 + ], + [ + 0.9302009048080272 + ], + [ + 0.7932712550607288 + ], + [ + 0.8786981717234608 + ], + [ + 0.8486842544219593 + ], + [ + 0.9126746767131658 + ], + [ + 0.9486042010676804 + ], + [ + 0.9038724480869904 + ], + [ + 0.958686173433348 + ], + [ + 0.7865058108244474 + ], + [ + 0.8704285747314824 + ], + [ + 0.9240999622367164 + ], + [ + 0.806845704003599 + ], + [ + 0.9624336598289146 + ], + [ + 0.8942981283868459 + ], + [ + 0.8045481228624208 + ], + [ + 0.9823493170094518 + ], + [ + 0.8126984126984126 + ], + [ + 0.998531571416838 + ], + [ + 0.8419809946143553 + ], + [ + 0.9228410057516631 + ], + [ + 0.9946871424565764 + ], + [ + 0.814372836946585 + ], + [ + 0.8452819441807481 + ], + [ + 0.9757439972091474 + ], + [ + 0.7999757977078849 + ], + [ + 0.811708695128781 + ], + [ + 0.9226825090266608 + ], + [ + 0.915537959944108 + ], + [ + 0.8447134792639336 + ], + [ + 0.7824996118615121 + ], + [ + 0.9004189790402766 + ], + [ + 0.992492576897818 + ], + [ + 0.8141116751269034 + ], + [ + 0.9641837718077296 + ], + [ + 0.8643778677462887 + ], + [ + 0.9569910794861844 + ], + [ + 0.8929721958656435 + ], + [ + 0.9134879224116806 + ], + [ + 0.8981798632747807 + ], + [ + 0.81115791740409 + ], + [ + 0.9732801304295486 + ], + [ + 0.9270758346340522 + ], + [ + 0.9377496859510692 + ], + [ + 0.9314133822181484 + ], + [ + 0.97145319916461 + ], + [ + 0.969655719759168 + ], + [ + 0.774258455570617 + ], + [ + 0.7646989654610622 + ], + [ + 0.9179126246763072 + ], + [ + 0.9344663297510818 + ], + [ + 0.9954192028862328 + ], + [ + 0.7896845621854086 + ], + [ + 0.9455885850178358 + ], + [ + 0.9633770826635396 + ], + [ + 0.8393119121793614 + ], + [ + 0.9022475277597836 + ], + [ + 0.8956434074042219 + ], + [ + 0.8868725897920605 + ], + [ + 0.947727507922727 + ], + [ + 0.8100165040010109 + ], + [ + 0.7541551246537396 + ], + [ + 0.7542451891577083 + ], + [ + 0.917562326869806 + ], + [ + 0.8951137084436364 + ], + [ + 0.9046867398146928 + ], + [ + 0.9823446334538573 + ], + [ + 0.7795168102658113 + ], + [ + 0.98334457368405 + ], + [ + 0.949870071311262 + ], + [ + 0.7943210699040147 + ], + [ + 0.8322736882141543 + ], + [ + 0.9149338374291116 + ], + [ + 0.8997612989216043 + ], + [ + 0.957120046591764 + ], + [ + 0.8238720996776804 + ], + [ + 0.9493296120831972 + ], + [ + 0.9088759068464726 + ], + [ + 0.929966729678639 + ], + [ + 0.909593974766178 + ], + [ + 0.9088759068464726 + ], + [ + 0.7862360164041836 + ], + [ + 0.9165811787189776 + ], + [ + 0.9386430599161039 + ], + [ + 0.8032011401974772 + ], + [ + 0.7862727272727271 + ], + [ + 0.9754897598639012 + ], + [ + 0.7600017202867505 + ], + [ + 0.9455885850178358 + ], + [ + 0.9633770826635396 + ], + [ + 0.8436837588803084 + ], + [ + 0.8980736820318737 + ], + [ + 0.8859552362571937 + ], + [ + 0.8868725897920605 + ], + [ + 0.947727507922727 + ], + [ + 0.8057328891947176 + ], + [ + 0.761469327784964 + ], + [ + 0.8875623268698062 + ], + [ + 0.8965017504270001 + ], + [ + 0.9039894860912128 + ], + [ + 0.984298575553884 + ], + [ + 0.7714232447296058 + ], + [ + 0.98334457368405 + ], + [ + 0.949870071311262 + ], + [ + 0.7943210699040147 + ], + [ + 0.8202771072840704 + ], + [ + 0.9149338374291116 + ], + [ + 0.8933801982348771 + ], + [ + 0.957120046591764 + ], + [ + 0.8238720996776804 + ], + [ + 0.9529052383428788 + ], + [ + 0.90120315914534 + ], + [ + 0.929966729678639 + ], + [ + 0.945128934703434 + ], + [ + 0.9095750421335858 + ], + [ + 0.7766558276104735 + ], + [ + 0.9151778010434616 + ], + [ + 0.9471874624563446 + ], + [ + 0.8378181818181819 + ], + [ + 0.9754897598639012 + ], + [ + 0.7691572905827265 + ], + [ + 0.7959133007990622 + ], + [ + 0.8262184063662379 + ], + [ + 0.9894645159690536 + ], + [ + 0.996521739130435 + ], + [ + 0.7819131922573495 + ], + [ + 0.850401606425703 + ], + [ + 0.996521739130435 + ], + [ + 0.9077642484940728 + ], + [ + 0.89655436679566 + ], + [ + 0.9964912280701756 + ], + [ + 0.7938737011467188 + ], + [ + 0.8802936186789987 + ], + [ + 0.9280303030303032 + ], + [ + 0.7987525608923287 + ], + [ + 0.755239120734144 + ], + [ + 0.9308288388816562 + ], + [ + 0.8668602157771254 + ], + [ + 0.8448511242895973 + ], + [ + 0.7961445704225082 + ], + [ + 0.9099056220340456 + ], + [ + 0.9878450565293272 + ], + [ + 0.7642455368060652 + ], + [ + 0.9778493899137112 + ], + [ + 0.8965968223131894 + ], + [ + 0.8932895451827312 + ], + [ + 0.9285799156049388 + ], + [ + 0.9432927941623594 + ], + [ + 0.9496993493645752 + ], + [ + 0.9692603418275338 + ], + [ + 0.8702493159014899 + ], + [ + 0.9739749369603424 + ], + [ + 0.996521739130435 + ], + [ + 0.8907367280606716 + ], + [ + 0.904913008013858 + ], + [ + 0.968471177944862 + ], + [ + 0.825 + ], + [ + 0.9027775208335084 + ], + [ + 0.7617903311136486 + ], + [ + 0.884146408684465 + ], + [ + 0.9446018376578228 + ], + [ + 0.9964912280701756 + ], + [ + 0.908597321143829 + ], + [ + 0.996521739130435 + ], + [ + 0.9619598036238828 + ], + [ + 0.760301236816147 + ], + [ + 0.9921175854473762 + ], + [ + 0.8553134080531343 + ], + [ + 0.9943501037415146 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8958436239049176 + ], + [ + 1 + ], + [ + 0.8217563751752737 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8089287811425218 + ], + [ + 0.9416562889165628 + ], + [ + 0.7955445656901864 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8580430671412884 + ], + [ + 0.90276124713408 + ], + [ + 0.992671182389769 + ], + [ + 0.9848040830545792 + ], + [ + 0.9514741813067672 + ], + [ + 0.8630706569122703 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.9857005881574218 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9414868925909092 + ], + [ + 0.9851370084561714 + ], + [ + 0.9822495603003196 + ], + [ + 0.9822495603003196 + ], + [ + 0.8052224642752426 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.8931621545809378 + ], + [ + 1 + ], + [ + 0.9271888077994948 + ], + [ + 0.7647361516158825 + ], + [ + 0.9921175854473762 + ], + [ + 0.8553134080531343 + ], + [ + 0.9943501037415146 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8958436239049176 + ], + [ + 1 + ], + [ + 0.8217563751752737 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8019358454012121 + ], + [ + 0.8089287811425218 + ], + [ + 0.8017627702025453 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8580430671412884 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.90276124713408 + ], + [ + 0.992671182389769 + ], + [ + 0.8072821072057714 + ], + [ + 0.9848040830545792 + ], + [ + 0.8189889492826025 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.974712351554919 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9773557492735576 + ], + [ + 0.9822495603003196 + ], + [ + 0.9822495603003196 + ], + [ + 0.8052224642752426 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9503668087629396 + ], + [ + 1 + ], + [ + 0.9271888077994948 + ], + [ + 0.7647361516158825 + ], + [ + 0.8653436259062406 + ], + [ + 0.9166666666666666 + ], + [ + 0.8513043478260871 + ], + [ + 0.888762154374558 + ], + [ + 0.9072684799014413 + ], + [ + 0.8911473104418144 + ], + [ + 0.8931451612903224 + ], + [ + 0.8046414142652472 + ], + [ + 0.8069790866112391 + ], + [ + 0.8818832214815736 + ], + [ + 0.8945874001774624 + ], + [ + 0.8064644137224782 + ], + [ + 0.8411703547857459 + ], + [ + 0.8850692346282528 + ], + [ + 0.755864605581299 + ], + [ + 0.8544702845816942 + ], + [ + 0.9105444641861692 + ], + [ + 0.9339130434782608 + ], + [ + 0.8908740092733132 + ], + [ + 0.8673913043478261 + ], + [ + 0.8286547121919265 + ], + [ + 0.95706340378198 + ], + [ + 0.9119365546072284 + ], + [ + 0.9110759625390218 + ], + [ + 0.9018301785200464 + ], + [ + 0.9107392505404756 + ], + [ + 0.812383779297877 + ], + [ + 0.8091839475036197 + ], + [ + 0.92656200324369 + ], + [ + 0.9618472252807516 + ], + [ + 0.9614035087719296 + ], + [ + 0.7500000000000002 + ], + [ + 0.8598402189827489 + ], + [ + 0.9545454545454548 + ], + [ + 0.9545454545454548 + ], + [ + 0.8298946640273919 + ], + [ + 0.8041381029540074 + ], + [ + 0.9786956521739132 + ], + [ + 0.9055353950321428 + ], + [ + 0.8658008658008658 + ], + [ + 0.8041630667784955 + ], + [ + 0.792782754772987 + ], + [ + 0.8259976777571356 + ], + [ + 0.8220626497774737 + ], + [ + 0.8210461476724114 + ], + [ + 0.8101813436763873 + ], + [ + 0.971001604361102 + ], + [ + 0.9289464621791536 + ], + [ + 0.8732908588456849 + ], + [ + 0.9320839327803117 + ], + [ + 0.7799127011297503 + ], + [ + 0.9521230391509398 + ], + [ + 0.8387538514207465 + ], + [ + 0.8873673399520713 + ], + [ + 0.8919696969696971 + ], + [ + 0.9939130434782611 + ], + [ + 0.9772426641825802 + ], + [ + 0.8315151515151515 + ], + [ + 0.8408502506153573 + ], + [ + 0.9545454545454548 + ], + [ + 0.8658008658008658 + ], + [ + 0.9939130434782611 + ], + [ + 0.9418179668098864 + ], + [ + 0.912126399896816 + ], + [ + 0.8887138991962918 + ], + [ + 0.8348061215534456 + ], + [ + 0.9654149311197341 + ], + [ + 0.9378050392345934 + ], + [ + 0.7862793427792023 + ], + [ + 0.8443604690958973 + ], + [ + 0.9593698200373342 + ], + [ + 0.8512088827319056 + ], + [ + 0.8685180682717806 + ], + [ + 0.8468774244700616 + ], + [ + 0.7714560308712177 + ], + [ + 0.8438870652966832 + ], + [ + 0.8969414245866957 + ], + [ + 0.7886269744426645 + ], + [ + 0.7869777589350374 + ], + [ + 0.8088224211621804 + ], + [ + 0.8437355447339081 + ], + [ + 0.7910699721201396 + ], + [ + 0.8676659390892717 + ], + [ + 0.9527613124711042 + ], + [ + 0.8204485735368444 + ], + [ + 0.9271303344105843 + ], + [ + 0.8146456352114138 + ], + [ + 0.8976037629362695 + ], + [ + 0.8683719728292518 + ], + [ + 0.8802027440346276 + ], + [ + 0.9196776036942447 + ], + [ + 0.8365367223192828 + ], + [ + 0.9120870195043488 + ], + [ + 0.8288691920804903 + ], + [ + 0.8922059565791751 + ], + [ + 0.8856333436369807 + ], + [ + 0.8958383344884892 + ], + [ + 0.8547177456502489 + ], + [ + 0.8876177172043811 + ], + [ + 0.8044462631285333 + ], + [ + 0.7769360074394543 + ], + [ + 0.870165794962474 + ], + [ + 0.9088771460360435 + ], + [ + 0.8639440219481173 + ], + [ + 0.8216171045177142 + ], + [ + 0.9553836542485572 + ], + [ + 0.8590281921783777 + ], + [ + 0.7787593370202928 + ], + [ + 0.980480932194884 + ], + [ + 0.859475457715449 + ], + [ + 0.8392883910692737 + ], + [ + 0.9697334753456728 + ], + [ + 0.9875342767410386 + ], + [ + 0.7762805813227043 + ], + [ + 0.8819115666628253 + ], + [ + 0.9996664755680739 + ], + [ + 0.8213533116534559 + ], + [ + 0.8993451012599613 + ], + [ + 0.994957229074001 + ], + [ + 0.8044910674094043 + ], + [ + 0.8264324715896463 + ], + [ + 0.9192754972628756 + ], + [ + 0.7970964194386293 + ], + [ + 0.7945612011511877 + ], + [ + 0.9286518512105283 + ], + [ + 0.8566385381298418 + ], + [ + 0.8419664159663934 + ], + [ + 0.8037444492468451 + ], + [ + 0.8979338496600437 + ], + [ + 0.9911725943373176 + ], + [ + 0.8072821072057714 + ], + [ + 0.9582948583751757 + ], + [ + 0.9361559940016043 + ], + [ + 0.848885751747483 + ], + [ + 0.9282065099530084 + ], + [ + 0.9375384371708221 + ], + [ + 0.9244381440159178 + ], + [ + 0.922778749811867 + ], + [ + 0.863030950010363 + ], + [ + 0.9604336230108552 + ], + [ + 0.9997485909897145 + ], + [ + 0.9281372808943766 + ], + [ + 0.9220884721293067 + ], + [ + 0.9635181750863282 + ], + [ + 0.9383494988405086 + ], + [ + 0.9820953369402764 + ], + [ + 0.8113952633989926 + ], + [ + 0.7593325960761085 + ], + [ + 0.8846768686559165 + ], + [ + 0.9402013525622738 + ], + [ + 0.98884684307581 + ], + [ + 0.9345641592934529 + ], + [ + 0.9797300792648269 + ], + [ + 0.9211896852548491 + ], + [ + 0.7727183435914119 + ], + [ + 0.8553134080531343 + ], + [ + 0.7923275652679538 + ], + [ + 0.7819131922573495 + ], + [ + 0.7906170310433895 + ], + [ + 0.8406484670606788 + ], + [ + 0.7894736842105264 + ], + [ + 0.8681498428014106 + ], + [ + 0.8408063572139095 + ], + [ + 0.7738548847622624 + ], + [ + 0.8107066154287429 + ], + [ + 0.909636086500905 + ], + [ + 0.9320839327803117 + ], + [ + 0.894689054121916 + ], + [ + 0.8861995746607623 + ], + [ + 0.8134896030245747 + ], + [ + 0.9636363636363636 + ], + [ + 0.8392276737347159 + ], + [ + 0.901982337361457 + ], + [ + 0.8985728391457872 + ], + [ + 0.792183707284576 + ], + [ + 0.781322126609299 + ], + [ + 0.9062315973735743 + ], + [ + 0.9367756029417319 + ], + [ + 0.9319511232326471 + ], + [ + 0.9114862576701875 + ], + [ + 0.9712199515753038 + ], + [ + 0.8980313754953725 + ], + [ + 0.9114891155371125 + ], + [ + 0.9718991822232025 + ], + [ + 0.8957817018995955 + ], + [ + 0.885216820326823 + ], + [ + 0.9629347112101692 + ], + [ + 0.9112715002623073 + ], + [ + 0.8614427822576298 + ], + [ + 0.9049664936619728 + ], + [ + 0.8820162243309974 + ], + [ + 0.888454039780395 + ], + [ + 0.9041504983342782 + ], + [ + 0.8799225737707326 + ], + [ + 0.8876439844627072 + ], + [ + 0.8799233569935232 + ], + [ + 0.918126588116288 + ], + [ + 0.9555805365011201 + ], + [ + 0.8931008593563526 + ], + [ + 0.9515523658057982 + ], + [ + 0.9349917026220693 + ], + [ + 0.8474827234526232 + ], + [ + 0.9150998524663875 + ], + [ + 0.9019272454814691 + ], + [ + 0.9301521751223218 + ], + [ + 0.9063992024260691 + ], + [ + 0.9084458145791406 + ], + [ + 0.9168300877742804 + ], + [ + 0.9333616542847242 + ], + [ + 0.9154663449613054 + ], + [ + 0.9251461704126609 + ], + [ + 0.917690844476884 + ], + [ + 0.9147435499325136 + ], + [ + 0.9222813943309438 + ], + [ + 0.8949753018246851 + ], + [ + 0.880217317459482 + ], + [ + 0.9102208157579199 + ], + [ + 0.9310777500028851 + ], + [ + 0.9593888728040101 + ], + [ + 0.9143927587731583 + ], + [ + 0.9653623648480182 + ], + [ + 0.895914543937476 + ], + [ + 0.8635374376096991 + ], + [ + 0.9681319140967855 + ], + [ + 0.7944051293641291 + ], + [ + 0.8332891527009144 + ], + [ + 0.9572275212696914 + ], + [ + 0.9858336693217798 + ], + [ + 0.8109702628253749 + ], + [ + 0.8979224069109053 + ], + [ + 0.9560034436331701 + ], + [ + 0.8639809350471249 + ], + [ + 0.9097687059679831 + ], + [ + 0.8322745922557433 + ], + [ + 0.7971859524323482 + ], + [ + 0.8358842439381247 + ], + [ + 0.8283017039354447 + ], + [ + 0.8143104247154894 + ], + [ + 0.7738369426049334 + ], + [ + 0.8995325759943457 + ], + [ + 0.8642235928871177 + ], + [ + 0.8487681619367479 + ], + [ + 0.764572997619905 + ], + [ + 0.8781835807412907 + ], + [ + 0.9926851552084225 + ], + [ + 0.9812777311360182 + ], + [ + 0.8861726828683071 + ], + [ + 0.8774954149924378 + ], + [ + 0.926345302298229 + ], + [ + 0.8766210768243543 + ], + [ + 0.9378841050418827 + ], + [ + 0.939845912034176 + ], + [ + 0.823816185944173 + ], + [ + 0.856345527603842 + ], + [ + 0.8334595938340698 + ], + [ + 0.8998404410917807 + ], + [ + 0.9376711024759753 + ], + [ + 0.911890053248672 + ], + [ + 0.9300633742947678 + ], + [ + 0.8084175084175085 + ], + [ + 0.8334508286707701 + ], + [ + 0.7740091154092624 + ], + [ + 0.7992420095977141 + ], + [ + 0.9006621739097868 + ], + [ + 0.854653633074874 + ], + [ + 0.8760061398599419 + ], + [ + 0.9813930191848028 + ], + [ + 0.8468484447398872 + ], + [ + 0.8096121652455617 + ], + [ + 0.9446374125411141 + ], + [ + 0.8908978309617703 + ], + [ + 0.8171053577998276 + ], + [ + 0.8734377849868722 + ], + [ + 0.9519939718593139 + ], + [ + 0.8280300613338275 + ], + [ + 0.876595396020583 + ], + [ + 0.9655210912171963 + ], + [ + 0.8261344387971954 + ], + [ + 0.8625542828389395 + ], + [ + 0.8903288184273107 + ], + [ + 0.7940378215823586 + ], + [ + 0.821308528676284 + ], + [ + 0.8862838943076522 + ], + [ + 0.801335608067006 + ], + [ + 0.7898913315911535 + ], + [ + 0.8939243895233296 + ], + [ + 0.8298894470003665 + ], + [ + 0.8095100145922008 + ], + [ + 0.8059795113616446 + ], + [ + 0.8742160601633633 + ], + [ + 0.9583180594822122 + ], + [ + 0.7551458714415599 + ], + [ + 0.9136540178884357 + ], + [ + 0.9206422293761181 + ], + [ + 0.8591683975024862 + ], + [ + 0.904109564575604 + ], + [ + 0.8472694098632094 + ], + [ + 0.9130149998360988 + ], + [ + 0.880145246772824 + ], + [ + 0.8361423023057717 + ], + [ + 0.9167552503585765 + ], + [ + 0.9112809824102042 + ], + [ + 0.8970011148753945 + ], + [ + 0.8914866076962089 + ], + [ + 0.923955848833383 + ], + [ + 0.9413970359062177 + ], + [ + 0.9010745526527456 + ], + [ + 0.8041496126372355 + ], + [ + 0.7790726657769016 + ], + [ + 0.8538666204813453 + ], + [ + 0.8917500286633246 + ], + [ + 0.9410172873790268 + ], + [ + 0.828568031294484 + ], + [ + 0.9472721492692258 + ], + [ + 0.8601896132182887 + ], + [ + 0.7893633567566072 + ], + [ + 0.9778255798991798 + ], + [ + 0.8408064685157908 + ], + [ + 0.8526279870536415 + ], + [ + 0.8833001568387581 + ], + [ + 0.9124677847409535 + ], + [ + 0.8503633201346489 + ], + [ + 0.8833774822775062 + ], + [ + 0.9417491009932606 + ], + [ + 0.9147990007027552 + ], + [ + 0.8911473104418144 + ], + [ + 0.9223179978964999 + ], + [ + 0.7993105223748839 + ], + [ + 0.850350519784385 + ], + [ + 0.9028697210251827 + ], + [ + 0.8286759028531826 + ], + [ + 0.8031469436294986 + ], + [ + 0.9091537502090101 + ], + [ + 0.8093089826039098 + ], + [ + 0.8904874214357624 + ], + [ + 0.8411703547857459 + ], + [ + 0.9300497863013258 + ], + [ + 0.9285163775070171 + ], + [ + 0.9184586012318386 + ], + [ + 0.9105444641861692 + ], + [ + 0.9164299777201611 + ], + [ + 0.9326776376702162 + ], + [ + 0.915238611353349 + ], + [ + 0.8549571170132747 + ], + [ + 0.923455550886179 + ], + [ + 0.9049110370735057 + ], + [ + 0.9119365546072284 + ], + [ + 0.9018909142690755 + ], + [ + 0.891364561195284 + ], + [ + 0.9086032637241696 + ], + [ + 0.9120677703982908 + ], + [ + 0.7772353780844471 + ], + [ + 0.812383779297877 + ], + [ + 0.8141980933100278 + ], + [ + 0.8822295931235452 + ], + [ + 0.9449596208074079 + ], + [ + 0.8978862439049966 + ], + [ + 0.9095010430865866 + ], + [ + 0.8584872270322912 + ], + [ + 0.8086861251474953 + ], + [ + 0.9214310387816568 + ], + [ + 0.8513156916323267 + ], + [ + 0.8861426594528754 + ], + [ + 0.9563580635481227 + ], + [ + 0.8379543933348044 + ], + [ + 0.8656705863743085 + ], + [ + 0.98211089011857 + ], + [ + 0.8110596347942214 + ], + [ + 0.9034463518857324 + ], + [ + 0.9635607491657863 + ], + [ + 0.8422382578141601 + ], + [ + 0.804708761453583 + ], + [ + 0.7698095150780381 + ], + [ + 0.7928287729663905 + ], + [ + 0.8372182500994741 + ], + [ + 0.8427896430369138 + ], + [ + 0.855443432650397 + ], + [ + 0.7939358902616885 + ], + [ + 0.7798108510703752 + ], + [ + 0.8567241066808098 + ], + [ + 0.9583038937015214 + ], + [ + 0.8148887053291618 + ], + [ + 0.9152406569855351 + ], + [ + 0.9028534602763532 + ], + [ + 0.8325119458879734 + ], + [ + 0.9302053778183247 + ], + [ + 0.8963386566638 + ], + [ + 0.8746814563549781 + ], + [ + 0.872251181030881 + ], + [ + 0.8686053557864637 + ], + [ + 0.9141058135529145 + ], + [ + 0.8632595037764901 + ], + [ + 0.9040022099272385 + ], + [ + 0.9059581070774078 + ], + [ + 0.9346013746176656 + ], + [ + 0.9298936488832736 + ], + [ + 0.8340239458302267 + ], + [ + 0.8702365021705257 + ], + [ + 0.8123721793207034 + ], + [ + 0.885883024060232 + ], + [ + 0.9117402687572846 + ], + [ + 0.936386353394425 + ], + [ + 0.8186788756172888 + ], + [ + 0.9671464581990991 + ], + [ + 0.848055950280692 + ], + [ + 0.8634065231167884 + ], + [ + 0.943821429875099 + ], + [ + 0.8448605670142738 + ], + [ + 0.8391308618400675 + ], + [ + 0.9254219485466432 + ], + [ + 0.969801679066684 + ], + [ + 0.7878255517886145 + ], + [ + 0.8357804468910168 + ], + [ + 0.9631549837457787 + ], + [ + 0.8766588491633124 + ], + [ + 0.883163649863375 + ], + [ + 0.9511620798446823 + ], + [ + 0.8066657873420849 + ], + [ + 0.8646146885061549 + ], + [ + 0.9029578211833432 + ], + [ + 0.8173068258119696 + ], + [ + 0.8033478921612156 + ], + [ + 0.8925053259258572 + ], + [ + 0.852437315787378 + ], + [ + 0.8476096224149778 + ], + [ + 0.8281685537387745 + ], + [ + 0.8864038761069699 + ], + [ + 0.966688404418 + ], + [ + 0.7614570139762271 + ], + [ + 0.9218212088326015 + ], + [ + 0.9097340269655556 + ], + [ + 0.864077528054265 + ], + [ + 0.8950383362559432 + ], + [ + 0.9073710788569305 + ], + [ + 0.9205839250299366 + ], + [ + 0.925130070799764 + ], + [ + 0.8576299437359549 + ], + [ + 0.9440950401078382 + ], + [ + 0.980790485473866 + ], + [ + 0.8716713610396803 + ], + [ + 0.8830330753654165 + ], + [ + 0.947413628857759 + ], + [ + 0.9115868956816537 + ], + [ + 0.9072478086555293 + ], + [ + 0.8887067486958385 + ], + [ + 0.8045206061109993 + ], + [ + 0.8778102296487642 + ], + [ + 0.9274293484428641 + ], + [ + 0.9658288014409694 + ], + [ + 0.8926838484147005 + ], + [ + 0.9632179959347835 + ], + [ + 0.9170977504366647 + ], + [ + 0.8054854384428153 + ], + [ + 0.9159799347276768 + ], + [ + 0.870259402604351 + ], + [ + 0.8402275254009515 + ], + [ + 0.9026564018866784 + ], + [ + 0.969798543419344 + ], + [ + 0.894474990496069 + ], + [ + 0.924076352335974 + ], + [ + 0.9429126764126102 + ], + [ + 0.8042639289221745 + ], + [ + 0.9218541569170036 + ], + [ + 0.9413543287285013 + ], + [ + 0.84560906239862 + ], + [ + 0.8512530801436985 + ], + [ + 0.8482251915257588 + ], + [ + 0.8418517009699383 + ], + [ + 0.8389250838766459 + ], + [ + 0.8780942953472136 + ], + [ + 0.8631072832356894 + ], + [ + 0.8400551602999186 + ], + [ + 0.8516270815329701 + ], + [ + 0.8873583533901547 + ], + [ + 0.9362723793519837 + ], + [ + 0.8578184506948072 + ], + [ + 0.9200868381562568 + ], + [ + 0.919241753809882 + ], + [ + 0.8090814478617769 + ], + [ + 0.9172442173513957 + ], + [ + 0.9208280320409932 + ], + [ + 0.8851201873403441 + ], + [ + 0.8620858836911702 + ], + [ + 0.8599934079935148 + ], + [ + 0.9464224065318294 + ], + [ + 0.8754179254812067 + ], + [ + 0.9307199381091358 + ], + [ + 0.930707642611767 + ], + [ + 0.9336712798542302 + ], + [ + 0.8756742763151554 + ], + [ + 0.899951826176289 + ], + [ + 0.8561565549568945 + ], + [ + 0.834305428035956 + ], + [ + 0.9043158701608425 + ], + [ + 0.8929659797398322 + ], + [ + 0.9503845826556759 + ], + [ + 0.8991612275139281 + ], + [ + 0.9813148595805599 + ], + [ + 0.8159243483663714 + ], + [ + 0.8774146105790617 + ], + [ + 0.8805473871785698 + ], + [ + 0.8168386335588215 + ], + [ + 0.8698762473047957 + ], + [ + 0.9165009998924976 + ], + [ + 0.9879292185766946 + ], + [ + 0.7704147258241087 + ], + [ + 0.8621323162821838 + ], + [ + 0.9420676506545669 + ], + [ + 0.8430911690338843 + ], + [ + 0.8642044705519123 + ], + [ + 0.8992599156815553 + ], + [ + 0.7848229577759359 + ], + [ + 0.8552257489567264 + ], + [ + 0.9107485390958536 + ], + [ + 0.8109378539976589 + ], + [ + 0.7760442198468392 + ], + [ + 0.8071817939237914 + ], + [ + 0.8488411028364334 + ], + [ + 0.8511599723642802 + ], + [ + 0.7930656733224284 + ], + [ + 0.9026466655874603 + ], + [ + 0.9432330473846552 + ], + [ + 0.8831072264534608 + ], + [ + 0.8943189089693644 + ], + [ + 0.8433884446453952 + ], + [ + 0.8957915181159275 + ], + [ + 0.8920211727858403 + ], + [ + 0.8656532195191253 + ], + [ + 0.8888272271166328 + ], + [ + 0.8185276031664389 + ], + [ + 0.8970283977981403 + ], + [ + 0.9482255936318409 + ], + [ + 0.8981625474527939 + ], + [ + 0.886392267992047 + ], + [ + 0.8763210075301389 + ], + [ + 0.8874771779807347 + ], + [ + 0.8847685034814367 + ], + [ + 0.811961856252122 + ], + [ + 0.7847145200343669 + ], + [ + 0.833222298535868 + ], + [ + 0.9240469682401297 + ], + [ + 0.9470088142769943 + ], + [ + 0.8108332314185674 + ], + [ + 0.9884763288693144 + ], + [ + 0.8537121244334758 + ], + [ + 0.7863842496662736 + ], + [ + 0.9710999057276702 + ], + [ + 0.8545775806305325 + ], + [ + 0.8288670673568047 + ], + [ + 0.9580430413202744 + ], + [ + 0.9851481216084019 + ], + [ + 0.8019990309518411 + ], + [ + 0.8765697319346342 + ], + [ + 0.9984485134812963 + ], + [ + 0.8827784956633106 + ], + [ + 0.897855261911528 + ], + [ + 0.9991228070175441 + ], + [ + 0.7869726824623813 + ], + [ + 0.8574600215751925 + ], + [ + 0.9104950845796125 + ], + [ + 0.7922752675949607 + ], + [ + 0.7825474175827186 + ], + [ + 0.9207382729968335 + ], + [ + 0.8317161986111055 + ], + [ + 0.84746622922539 + ], + [ + 0.8245418106987256 + ], + [ + 0.8914409068710273 + ], + [ + 0.9828315609612513 + ], + [ + 0.766483106515241 + ], + [ + 0.9500231063419912 + ], + [ + 0.9418084238960098 + ], + [ + 0.993758325008325 + ], + [ + 0.9340450649002454 + ], + [ + 0.9369761491626559 + ], + [ + 0.9242059912005234 + ], + [ + 0.9626281577206024 + ], + [ + 0.9004406503802566 + ], + [ + 0.9591920700382297 + ], + [ + 0.9770335633523987 + ], + [ + 0.9120886429915576 + ], + [ + 0.8878004962368867 + ], + [ + 0.9886242163794032 + ], + [ + 0.9651107579751624 + ], + [ + 0.8934452569589426 + ], + [ + 0.906094156405893 + ], + [ + 0.8004902860629857 + ], + [ + 0.8914046330636394 + ], + [ + 0.941658321518602 + ], + [ + 0.9765693239986738 + ], + [ + 0.8760032261652501 + ], + [ + 0.9991228070175441 + ], + [ + 0.9051910717095266 + ], + [ + 0.7935775831141221 + ], + [ + 0.929941088884573 + ], + [ + 0.8318189568317447 + ], + [ + 0.9721324228139152 + ], + [ + 0.8929555666008868 + ], + [ + 0.9899175068744273 + ], + [ + 0.7829559806346367 + ], + [ + 0.8330585670487148 + ], + [ + 0.9004712036731742 + ], + [ + 0.8079059133534838 + ], + [ + 0.907326978222119 + ], + [ + 0.8418462145170219 + ], + [ + 0.8355962235887732 + ], + [ + 0.9840600196897172 + ], + [ + 0.9727233543942168 + ], + [ + 0.9456931798893302 + ], + [ + 0.7835307826762479 + ], + [ + 0.9334823561531638 + ], + [ + 0.943912095206486 + ], + [ + 0.9719476865439598 + ], + [ + 0.8989607068123694 + ], + [ + 0.9899175068744273 + ], + [ + 0.91218688144154 + ], + [ + 0.968708052390917 + ], + [ + 0.9275641323723166 + ], + [ + 0.7750817305162342 + ], + [ + 0.7705110005585539 + ], + [ + 0.8746911090742437 + ], + [ + 0.906777236648719 + ], + [ + 0.9877189123128628 + ], + [ + 0.905810189680844 + ], + [ + 0.9039758195768428 + ], + [ + 0.9417675428322848 + ], + [ + 0.838458313625102 + ], + [ + 0.9578918616552848 + ], + [ + 0.9877224033535164 + ], + [ + 0.9600766541682176 + ], + [ + 0.9372227566431792 + ], + [ + 0.9996947496947498 + ], + [ + 0.9464739502688859 + ], + [ + 0.9273107442696306 + ], + [ + 0.8427440270131528 + ], + [ + 0.8930336617991886 + ], + [ + 0.8499116091074294 + ], + [ + 0.8297523357929766 + ], + [ + 0.8628042957923382 + ], + [ + 0.94362258995985 + ], + [ + 0.8861176478495414 + ], + [ + 0.992955297959396 + ], + [ + 0.954141881439958 + ], + [ + 0.9716068390573318 + ], + [ + 0.9372227566431792 + ], + [ + 0.9209665616774528 + ], + [ + 0.8810186818949944 + ], + [ + 0.8078565985679013 + ], + [ + 0.7888565809250084 + ], + [ + 0.8999765601568034 + ], + [ + 0.7784705964389922 + ], + [ + 0.8951137084436364 + ], + [ + 0.9694396869310692 + ], + [ + 0.906901471095239 + ], + [ + 0.9521895754027829 + ], + [ + 0.7517286913985001 + ], + [ + 0.8687571885281811 + ], + [ + 0.7912430201328434 + ], + [ + 0.9975369458128078 + ], + [ + 0.9160401958804216 + ], + [ + 0.9315711806648126 + ], + [ + 0.8609644958918051 + ], + [ + 0.8386594508420274 + ], + [ + 0.9351549836986592 + ], + [ + 0.9427180341404985 + ], + [ + 0.7681163618132653 + ], + [ + 0.8787858747853352 + ], + [ + 0.9893011313753898 + ], + [ + 0.8546700127495449 + ], + [ + 0.8758173885709947 + ], + [ + 0.9485066687801922 + ], + [ + 0.8003973221301792 + ], + [ + 0.8309934593862532 + ], + [ + 0.9026473100549586 + ], + [ + 0.7957711145179299 + ], + [ + 0.7958134120303104 + ], + [ + 0.8809153393318552 + ], + [ + 0.8550588891603323 + ], + [ + 0.8368966677964681 + ], + [ + 0.8049966847322658 + ], + [ + 0.8894131781606722 + ], + [ + 0.984770563952946 + ], + [ + 0.7945822416508489 + ], + [ + 0.9385796426731732 + ], + [ + 0.9400075247083102 + ], + [ + 0.8370209052650499 + ], + [ + 0.9406181150608247 + ], + [ + 0.9074883728808776 + ], + [ + 0.9137808792941257 + ], + [ + 0.9328829711123616 + ], + [ + 0.8601818483687415 + ], + [ + 0.8898049062435895 + ], + [ + 0.9722307756700375 + ], + [ + 0.9238623216857789 + ], + [ + 0.871665184175204 + ], + [ + 0.9528158707854402 + ], + [ + 0.9020360939999567 + ], + [ + 0.9516904425166645 + ], + [ + 0.8907461235222609 + ], + [ + 0.7809088432800615 + ], + [ + 0.8762088523996857 + ], + [ + 0.9320039039158255 + ], + [ + 0.9272893269521203 + ], + [ + 0.9058370878370338 + ], + [ + 0.9524516791586732 + ], + [ + 0.8829855968328181 + ], + [ + 0.7823245649207289 + ], + [ + 0.8748693498469887 + ], + [ + 0.8742883854021798 + ], + [ + 0.8746611748024347 + ], + [ + 0.9376819623311556 + ], + [ + 0.9947028289732674 + ], + [ + 0.8548763233394239 + ], + [ + 0.9049914056584369 + ], + [ + 0.9941197065722382 + ], + [ + 0.8487320955708422 + ], + [ + 0.9092712562873475 + ], + [ + 0.9763749646497006 + ], + [ + 0.8545982831576736 + ], + [ + 0.850548231352957 + ], + [ + 0.9407255024549774 + ], + [ + 0.8503648922153408 + ], + [ + 0.8359536461222336 + ], + [ + 0.9109614334891537 + ], + [ + 0.8647394698759232 + ], + [ + 0.9043414337084982 + ], + [ + 0.8450197352772266 + ], + [ + 0.9399452292694473 + ], + [ + 0.9846994595492535 + ], + [ + 0.9486152933634998 + ], + [ + 0.9754185212178655 + ], + [ + 0.9588847492141126 + ], + [ + 0.8651058220157922 + ], + [ + 0.9272067154146025 + ], + [ + 0.9405616327785196 + ], + [ + 0.9367871439736926 + ], + [ + 0.9386593272049244 + ], + [ + 0.8902973666791916 + ], + [ + 0.9017097117882626 + ], + [ + 0.9739530318740881 + ], + [ + 0.9085982902991971 + ], + [ + 0.9479750510619678 + ], + [ + 0.9829223011990686 + ], + [ + 0.8379245523453007 + ], + [ + 0.939761065723693 + ], + [ + 0.8491109021102726 + ], + [ + 0.8703455431007857 + ], + [ + 0.9177162151766173 + ], + [ + 0.9445085979284547 + ], + [ + 0.9970392628794374 + ], + [ + 0.9623118653922792 + ], + [ + 0.9932823846253213 + ], + [ + 0.9428523442680733 + ], + [ + 0.8098315966162147 + ], + [ + 0.9090909090909088 + ], + [ + 0.8237875450920827 + ], + [ + 0.945216049382716 + ], + [ + 0.8771929824561405 + ], + [ + 0.7694629219019462 + ], + [ + 0.8174876847290637 + ], + [ + 0.9545454545454548 + ], + [ + 0.8813770455902434 + ], + [ + 0.8553636363636361 + ], + [ + 0.8455433455433456 + ], + [ + 0.7676911617909391 + ], + [ + 0.8737944824901346 + ], + [ + 0.8588924177547349 + ], + [ + 0.7706024497958504 + ], + [ + 0.7971142965635086 + ], + [ + 0.797381306659819 + ], + [ + 0.8483876994316057 + ], + [ + 0.8282595845401285 + ], + [ + 0.8034089244055879 + ], + [ + 0.817729049162855 + ], + [ + 0.9363500515543048 + ], + [ + 0.9359939732913412 + ], + [ + 0.882198952879581 + ], + [ + 0.8576806647865884 + ], + [ + 0.815050939773573 + ], + [ + 0.9091975633632599 + ], + [ + 0.8917391304347826 + ], + [ + 0.8452819441807481 + ], + [ + 0.8400216450216451 + ], + [ + 0.8253968253968254 + ], + [ + 0.8210322890105873 + ], + [ + 0.8348289163941287 + ], + [ + 0.9554938655160816 + ], + [ + 0.852293824358888 + ], + [ + 0.858005568338311 + ], + [ + 0.8161148760137403 + ], + [ + 0.9688527588701455 + ], + [ + 0.8467761176075351 + ], + [ + 0.9017543859649124 + ], + [ + 0.7897773279352229 + ], + [ + 0.805168828270855 + ], + [ + 0.8317573749391951 + ], + [ + 0.9643924081792452 + ], + [ + 0.938598748759861 + ], + [ + 0.984466571720076 + ], + [ + 0.9883020564051679 + ], + [ + 0.977397740533538 + ], + [ + 0.8324262590094272 + ], + [ + 0.957204861709126 + ], + [ + 0.9815689054392762 + ], + [ + 0.9723297607875788 + ], + [ + 0.9166058436529154 + ], + [ + 0.7521706555006759 + ], + [ + 0.9280169976669376 + ], + [ + 0.9358035287465732 + ], + [ + 0.8764803941254208 + ], + [ + 0.9153455696596016 + ], + [ + 0.8469432605765171 + ], + [ + 0.99268071993084 + ], + [ + 0.988226739831974 + ], + [ + 0.996336999414424 + ], + [ + 0.9244884191211992 + ], + [ + 0.8507008302142539 + ], + [ + 0.9593509283699424 + ], + [ + 0.8061755182821719 + ], + [ + 0.9615141634622412 + ], + [ + 0.9839330712663648 + ], + [ + 0.9555873521968756 + ], + [ + 0.9775173594082412 + ], + [ + 0.8128624949482813 + ], + [ + 0.9514741813067672 + ], + [ + 0.9817522080920388 + ], + [ + 0.981025791388756 + ], + [ + 0.9818181818181816 + ], + [ + 0.9710861248452468 + ], + [ + 0.9773557492735576 + ], + [ + 0.890085589718168 + ], + [ + 0.954337370755309 + ], + [ + 0.9807297003570874 + ], + [ + 0.9364502164502164 + ], + [ + 0.7901612469857595 + ], + [ + 0.824287208001439 + ], + [ + 0.9807297003570874 + ], + [ + 0.7614649785030472 + ], + [ + 0.8658008658008658 + ], + [ + 0.9939130434782611 + ], + [ + 0.9066651512935219 + ], + [ + 0.8939526037506182 + ], + [ + 0.9842229467473992 + ], + [ + 0.865081443540125 + ], + [ + 0.9167169276268624 + ], + [ + 0.8794346322201474 + ], + [ + 0.765130456168069 + ], + [ + 0.8734544866674276 + ], + [ + 0.909520787797598 + ], + [ + 0.8854931946173012 + ], + [ + 0.7673924006226841 + ], + [ + 0.8798233135618779 + ], + [ + 0.9852364106660584 + ], + [ + 0.7637569649841349 + ], + [ + 0.9348260838243078 + ], + [ + 0.933522474466579 + ], + [ + 0.8377846225826576 + ], + [ + 0.9583806183156228 + ], + [ + 0.9331326790672908 + ], + [ + 0.9383147514181556 + ], + [ + 0.9589825216566162 + ], + [ + 0.8060876415101113 + ], + [ + 0.9783224922971588 + ], + [ + 0.9583806183156228 + ], + [ + 0.899590944489805 + ], + [ + 0.8941653123998358 + ], + [ + 0.9668188169538892 + ], + [ + 0.9783224922971588 + ], + [ + 0.9679972612119138 + ], + [ + 0.8797605429806478 + ], + [ + 0.7963975193082085 + ], + [ + 0.8839816990630294 + ], + [ + 0.9431528211472392 + ], + [ + 0.8367334869051766 + ], + [ + 0.8658008658008658 + ], + [ + 0.9921746738179468 + ], + [ + 0.9020614173817516 + ], + [ + 0.7562166685686029 + ], + [ + 0.8168393183171508 + ], + [ + 0.826467375579422 + ], + [ + 0.94513113161729 + ], + [ + 0.9585637037072424 + ], + [ + 0.8949088289552438 + ], + [ + 0.9053910284366296 + ], + [ + 0.817437533227007 + ], + [ + 0.7978783990223038 + ], + [ + 0.7521903939726886 + ], + [ + 0.754943158980426 + ], + [ + 0.7928605555934748 + ], + [ + 0.8989607068123694 + ], + [ + 0.7975892455476461 + ], + [ + 0.7725199492096488 + ], + [ + 0.7662703504995123 + ], + [ + 0.9767351231527428 + ], + [ + 0.9424631082284728 + ], + [ + 0.866898864682116 + ], + [ + 0.7783625730994154 + ], + [ + 0.9376349250962784 + ], + [ + 0.9303020409693342 + ], + [ + 0.8287563928270861 + ], + [ + 0.8603115680426934 + ], + [ + 0.8114732228923959 + ], + [ + 0.9669758970781992 + ], + [ + 0.8105976841695943 + ], + [ + 0.7959269589012261 + ], + [ + 0.8302139037433156 + ], + [ + 0.986986590623621 + ], + [ + 0.751078143739283 + ], + [ + 0.9319865517177697 + ], + [ + 0.8782639830593114 + ], + [ + 0.8578369301463997 + ], + [ + 0.9189313114771297 + ], + [ + 0.9633417717529799 + ], + [ + 0.8343138912267726 + ], + [ + 0.8818418640888517 + ], + [ + 0.9736024773604863 + ], + [ + 0.8613042225346038 + ], + [ + 0.888024195606103 + ], + [ + 0.941782855514232 + ], + [ + 0.8404355723269926 + ], + [ + 0.8454461341922117 + ], + [ + 0.8945900568243629 + ], + [ + 0.8289908029078139 + ], + [ + 0.8273210174189225 + ], + [ + 0.8916495568044747 + ], + [ + 0.854433147885652 + ], + [ + 0.8505264662318455 + ], + [ + 0.8308969974341954 + ], + [ + 0.8899385122095016 + ], + [ + 0.9625463006926477 + ], + [ + 0.822879325367078 + ], + [ + 0.9328941076717102 + ], + [ + 0.9254546321964118 + ], + [ + 0.8536794132479856 + ], + [ + 0.9149236519168374 + ], + [ + 0.8988039859606616 + ], + [ + 0.9131258134142545 + ], + [ + 0.905813040144688 + ], + [ + 0.8670687350210408 + ], + [ + 0.9214606820661353 + ], + [ + 0.9408298439101216 + ], + [ + 0.9049472424037028 + ], + [ + 0.9020513700091627 + ], + [ + 0.9349510800595612 + ], + [ + 0.9123902818135722 + ], + [ + 0.914220218308289 + ], + [ + 0.8665729766490252 + ], + [ + 0.8246776811045251 + ], + [ + 0.8835807215942634 + ], + [ + 0.917454975120021 + ], + [ + 0.9496273615183636 + ], + [ + 0.8917539300260674 + ], + [ + 0.9646948055738331 + ], + [ + 0.8878652466688929 + ], + [ + 0.8283471179008514 + ], + [ + 0.9319439135020179 + ], + [ + 0.8611711731084291 + ], + [ + 0.8995765609336107 + ], + [ + 0.9025233427813701 + ], + [ + 0.9630284898620637 + ], + [ + 0.9104667843695463 + ], + [ + 0.871798757072994 + ], + [ + 0.900245383469288 + ] + ], + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "labels=%{label}
R^2 Spearman_sum=%{value}
parent=%{parent}
id=%{id}
R^2 Spearman=%{color}", + "ids": [ + "World/Latam/ARG/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Persian Gulf/AZE/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Asia/BGD/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Latam/BRA/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Pair/CHN/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/South Africa/CMR/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Latam/COL/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Latam/CRI/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/North Africa/DZA/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/North Africa/EGY/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/South Africa/GHA/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Asia/IDN/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Asia/IND/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Persian Gulf/IRQ/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/North Africa/MAR/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/South Africa/MOZ/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/South Africa/NGA/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Latam/PAN/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Latam/PER/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Asia/PHL/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/South Africa/SEN/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Asia/THA/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/North Africa/TUR/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Asia/VNM/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Persian Gulf/YEM/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/South Africa/ZAF/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Persian Gulf/AZE/Environment/Access to electricity (% of population)", + "World/Asia/BGD/Environment/Access to electricity (% of population)", + "World/Latam/BRA/Environment/Access to electricity (% of population)", + "World/Latam/CHL/Environment/Access to electricity (% of population)", + "World/Pair/CHN/Environment/Access to electricity (% of population)", + "World/South Africa/CMR/Environment/Access to electricity (% of population)", + "World/Latam/COL/Environment/Access to electricity (% of population)", + "World/Latam/CRI/Environment/Access to electricity (% of population)", + "World/North Africa/EGY/Environment/Access to electricity (% of population)", + "World/South Africa/GHA/Environment/Access to electricity (% of population)", + "World/Asia/IDN/Environment/Access to electricity (% of population)", + "World/Asia/IND/Environment/Access to electricity (% of population)", + "World/Persian Gulf/IRQ/Environment/Access to electricity (% of population)", + "World/South Africa/LBR/Environment/Access to electricity (% of population)", + "World/North Africa/MAR/Environment/Access to electricity (% of population)", + "World/Latam/MEX/Environment/Access to electricity (% of population)", + "World/South Africa/MOZ/Environment/Access to electricity (% of population)", + "World/South Africa/NGA/Environment/Access to electricity (% of population)", + "World/Latam/PAN/Environment/Access to electricity (% of population)", + "World/Latam/PER/Environment/Access to electricity (% of population)", + "World/Asia/PHL/Environment/Access to electricity (% of population)", + "World/South Africa/SEN/Environment/Access to electricity (% of population)", + "World/Asia/THA/Environment/Access to electricity (% of population)", + "World/Asia/VNM/Environment/Access to electricity (% of population)", + "World/Persian Gulf/YEM/Environment/Access to electricity (% of population)", + "World/South Africa/ZAF/Environment/Access to electricity (% of population)", + "World/Persian Gulf/ARE/Economy/Adjusted net national income (current US$)", + "World/Latam/ARG/Economy/Adjusted net national income (current US$)", + "World/Europe/AUT/Economy/Adjusted net national income (current US$)", + "World/Persian Gulf/AZE/Economy/Adjusted net national income (current US$)", + "World/Asia/BGD/Economy/Adjusted net national income (current US$)", + "World/Latam/BRA/Economy/Adjusted net national income (current US$)", + "World/Latam/CHL/Economy/Adjusted net national income (current US$)", + "World/Pair/CHN/Economy/Adjusted net national income (current US$)", + "World/South Africa/CMR/Economy/Adjusted net national income (current US$)", + "World/Latam/COL/Economy/Adjusted net national income (current US$)", + "World/Latam/CRI/Economy/Adjusted net national income (current US$)", + "World/Europe/DEU/Economy/Adjusted net national income (current US$)", + "World/North Africa/DZA/Economy/Adjusted net national income (current US$)", + "World/North Africa/EGY/Economy/Adjusted net national income (current US$)", + "World/Europe/ESP/Economy/Adjusted net national income (current US$)", + "World/Europe/FRA/Economy/Adjusted net national income (current US$)", + "World/Europe/GBR/Economy/Adjusted net national income (current US$)", + "World/South Africa/GHA/Economy/Adjusted net national income (current US$)", + "World/Europe/HRV/Economy/Adjusted net national income (current US$)", + "World/Asia/IDN/Economy/Adjusted net national income (current US$)", + "World/Asia/IND/Economy/Adjusted net national income (current US$)", + "World/North Africa/ISR/Economy/Adjusted net national income (current US$)", + "World/Asia/KOR/Economy/Adjusted net national income (current US$)", + "World/South Africa/LBR/Economy/Adjusted net national income (current US$)", + "World/North Africa/MAR/Economy/Adjusted net national income (current US$)", + "World/Latam/MEX/Economy/Adjusted net national income (current US$)", + "World/South Africa/MOZ/Economy/Adjusted net national income (current US$)", + "World/South Africa/NGA/Economy/Adjusted net national income (current US$)", + "World/Europe/NLD/Economy/Adjusted net national income (current US$)", + "World/Persian Gulf/OMN/Economy/Adjusted net national income (current US$)", + "World/Latam/PAN/Economy/Adjusted net national income (current US$)", + "World/Latam/PER/Economy/Adjusted net national income (current US$)", + "World/Asia/PHL/Economy/Adjusted net national income (current US$)", + "World/Europe/POL/Economy/Adjusted net national income (current US$)", + "World/Persian Gulf/QAT/Economy/Adjusted net national income (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted net national income (current US$)", + "World/South Africa/SEN/Economy/Adjusted net national income (current US$)", + "World/Europe/SWE/Economy/Adjusted net national income (current US$)", + "World/Asia/THA/Economy/Adjusted net national income (current US$)", + "World/North Africa/TUR/Economy/Adjusted net national income (current US$)", + "World/Pair/USA/Economy/Adjusted net national income (current US$)", + "World/Latam/VEN/Economy/Adjusted net national income (current US$)", + "World/Asia/VNM/Economy/Adjusted net national income (current US$)", + "World/Persian Gulf/YEM/Economy/Adjusted net national income (current US$)", + "World/South Africa/ZAF/Economy/Adjusted net national income (current US$)", + "World/Latam/ARG/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/AUT/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/AZE/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/BGD/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/BRA/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/CHL/Economy/Adjusted net national income per capita (current US$)", + "World/Pair/CHN/Economy/Adjusted net national income per capita (current US$)", + "World/South Africa/CMR/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/COL/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/CRI/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/DEU/Economy/Adjusted net national income per capita (current US$)", + "World/North Africa/DZA/Economy/Adjusted net national income per capita (current US$)", + "World/North Africa/EGY/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/ESP/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/FRA/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/GBR/Economy/Adjusted net national income per capita (current US$)", + "World/South Africa/GHA/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/HRV/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/IDN/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/IND/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/IRQ/Economy/Adjusted net national income per capita (current US$)", + "World/North Africa/ISR/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/KOR/Economy/Adjusted net national income per capita (current US$)", + "World/North Africa/MAR/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/MEX/Economy/Adjusted net national income per capita (current US$)", + "World/South Africa/MOZ/Economy/Adjusted net national income per capita (current US$)", + "World/South Africa/NGA/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/NLD/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/OMN/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/PAN/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/PER/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/PHL/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/POL/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/QAT/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted net national income per capita (current US$)", + "World/South Africa/SEN/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/SWE/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/THA/Economy/Adjusted net national income per capita (current US$)", + "World/North Africa/TUR/Economy/Adjusted net national income per capita (current US$)", + "World/Pair/USA/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/VEN/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/VNM/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/YEM/Economy/Adjusted net national income per capita (current US$)", + "World/South Africa/ZAF/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/ARE/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/ARG/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Europe/AUT/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Persian Gulf/AZE/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/BGD/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/BRA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/CHL/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Pair/CHN/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/CMR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/COL/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/CRI/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Europe/DEU/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/North Africa/DZA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/North Africa/EGY/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Europe/FRA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Europe/GBR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/GHA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/IDN/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/IND/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/North Africa/ISR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/KOR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/LBR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/North Africa/MAR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/MEX/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/MOZ/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/NGA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Europe/NLD/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Persian Gulf/OMN/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/PAN/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/PER/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/PHL/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Europe/POL/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Persian Gulf/QAT/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/SEN/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/THA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/North Africa/TUR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Pair/USA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/VEN/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/VNM/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Persian Gulf/YEM/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/ZAF/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Persian Gulf/ARE/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/ARG/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/AUT/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Persian Gulf/AZE/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/BGD/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/BRA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/CHL/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Pair/CHN/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/CMR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/COL/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/CRI/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/DEU/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/North Africa/DZA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/North Africa/EGY/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/ESP/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/FRA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/GBR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/GHA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/GRC/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/HRV/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/IDN/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/IND/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/North Africa/ISR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/KOR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/LBR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/North Africa/MAR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/MEX/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/MOZ/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/NGA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/NLD/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Persian Gulf/OMN/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/PAN/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/PER/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/PHL/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/POL/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Persian Gulf/QAT/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/SEN/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/SWE/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/THA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/North Africa/TUR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Pair/USA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/VEN/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/VNM/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Persian Gulf/YEM/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/ZAF/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/ARG/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/AUT/Economy/Adjusted savings: education expenditure (current US$)", + "World/Persian Gulf/AZE/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/BGD/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/BRA/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/CHL/Economy/Adjusted savings: education expenditure (current US$)", + "World/Pair/CHN/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/CMR/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/COL/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/CRI/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/DEU/Economy/Adjusted savings: education expenditure (current US$)", + "World/North Africa/DZA/Economy/Adjusted savings: education expenditure (current US$)", + "World/North Africa/EGY/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/ESP/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/FRA/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/GBR/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/GHA/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/HRV/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/IDN/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/IND/Economy/Adjusted savings: education expenditure (current US$)", + "World/North Africa/ISR/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/KOR/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/LBR/Economy/Adjusted savings: education expenditure (current US$)", + "World/North Africa/MAR/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/MEX/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/MOZ/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/NGA/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/NLD/Economy/Adjusted savings: education expenditure (current US$)", + "World/Persian Gulf/OMN/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/PAN/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/PER/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/PHL/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/POL/Economy/Adjusted savings: education expenditure (current US$)", + "World/Persian Gulf/QAT/Economy/Adjusted savings: education expenditure (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/SEN/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/SWE/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/THA/Economy/Adjusted savings: education expenditure (current US$)", + "World/North Africa/TUR/Economy/Adjusted savings: education expenditure (current US$)", + "World/Pair/USA/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/VEN/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/VNM/Economy/Adjusted savings: education expenditure (current US$)", + "World/Persian Gulf/YEM/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/ZAF/Economy/Adjusted savings: education expenditure (current US$)", + "World/Persian Gulf/AZE/Economy/Adjusted savings: net national savings (current US$)", + "World/Asia/BGD/Economy/Adjusted savings: net national savings (current US$)", + "World/Latam/CHL/Economy/Adjusted savings: net national savings (current US$)", + "World/Pair/CHN/Economy/Adjusted savings: net national savings (current US$)", + "World/Latam/CRI/Economy/Adjusted savings: net national savings (current US$)", + "World/Europe/DEU/Economy/Adjusted savings: net national savings (current US$)", + "World/North Africa/DZA/Economy/Adjusted savings: net national savings (current US$)", + "World/Europe/GRC/Economy/Adjusted savings: net national savings (current US$)", + "World/Asia/IND/Economy/Adjusted savings: net national savings (current US$)", + "World/North Africa/ISR/Economy/Adjusted savings: net national savings (current US$)", + "World/Asia/KOR/Economy/Adjusted savings: net national savings (current US$)", + "World/South Africa/LBR/Economy/Adjusted savings: net national savings (current US$)", + "World/North Africa/MAR/Economy/Adjusted savings: net national savings (current US$)", + "World/Europe/NLD/Economy/Adjusted savings: net national savings (current US$)", + "World/Latam/PAN/Economy/Adjusted savings: net national savings (current US$)", + "World/Latam/PER/Economy/Adjusted savings: net national savings (current US$)", + "World/Asia/PHL/Economy/Adjusted savings: net national savings (current US$)", + "World/Europe/POL/Economy/Adjusted savings: net national savings (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted savings: net national savings (current US$)", + "World/South Africa/SEN/Economy/Adjusted savings: net national savings (current US$)", + "World/Asia/THA/Economy/Adjusted savings: net national savings (current US$)", + "World/North Africa/TUR/Economy/Adjusted savings: net national savings (current US$)", + "World/Asia/VNM/Economy/Adjusted savings: net national savings (current US$)", + "World/Persian Gulf/ARE/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Europe/AUT/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/BGD/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Latam/CHL/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Pair/CHN/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/South Africa/CMR/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Latam/COL/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Latam/CRI/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/North Africa/EGY/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Europe/FRA/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Europe/GBR/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/South Africa/GHA/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Europe/GRC/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/IDN/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/IND/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/North Africa/ISR/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/KOR/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/North Africa/MAR/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/South Africa/MOZ/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/South Africa/NGA/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Latam/PAN/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/PHL/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Persian Gulf/QAT/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/THA/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/North Africa/TUR/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Latam/VEN/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/VNM/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Persian Gulf/YEM/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Persian Gulf/ARE/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/ARG/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/AUT/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Persian Gulf/AZE/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Asia/BGD/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/BRA/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/CHL/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Pair/CHN/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/South Africa/CMR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/COL/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/CRI/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/DEU/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/North Africa/EGY/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/GBR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/South Africa/GHA/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/GRC/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/HRV/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Asia/IND/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/North Africa/ISR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Asia/KOR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/South Africa/LBR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/North Africa/MAR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/MEX/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/South Africa/MOZ/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/South Africa/NGA/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/NLD/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Persian Gulf/OMN/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/PAN/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/PER/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Asia/PHL/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/POL/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Persian Gulf/QAT/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Persian Gulf/SAU/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/South Africa/SEN/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/SWE/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/North Africa/TUR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Pair/USA/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/VEN/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Asia/VNM/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Persian Gulf/YEM/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/AUT/Agriculture/Agricultural land (% of land area)", + "World/Persian Gulf/AZE/Agriculture/Agricultural land (% of land area)", + "World/Asia/BGD/Agriculture/Agricultural land (% of land area)", + "World/Latam/BRA/Agriculture/Agricultural land (% of land area)", + "World/Pair/CHN/Agriculture/Agricultural land (% of land area)", + "World/South Africa/CMR/Agriculture/Agricultural land (% of land area)", + "World/Latam/CRI/Agriculture/Agricultural land (% of land area)", + "World/Europe/DEU/Agriculture/Agricultural land (% of land area)", + "World/North Africa/DZA/Agriculture/Agricultural land (% of land area)", + "World/North Africa/EGY/Agriculture/Agricultural land (% of land area)", + "World/Europe/ESP/Agriculture/Agricultural land (% of land area)", + "World/Europe/FRA/Agriculture/Agricultural land (% of land area)", + "World/Europe/GRC/Agriculture/Agricultural land (% of land area)", + "World/Asia/IDN/Agriculture/Agricultural land (% of land area)", + "World/Asia/IND/Agriculture/Agricultural land (% of land area)", + "World/North Africa/ISR/Agriculture/Agricultural land (% of land area)", + "World/Asia/KOR/Agriculture/Agricultural land (% of land area)", + "World/South Africa/LBR/Agriculture/Agricultural land (% of land area)", + "World/South Africa/MOZ/Agriculture/Agricultural land (% of land area)", + "World/South Africa/NGA/Agriculture/Agricultural land (% of land area)", + "World/Europe/NLD/Agriculture/Agricultural land (% of land area)", + "World/Latam/PAN/Agriculture/Agricultural land (% of land area)", + "World/Asia/PHL/Agriculture/Agricultural land (% of land area)", + "World/Europe/POL/Agriculture/Agricultural land (% of land area)", + "World/Europe/SWE/Agriculture/Agricultural land (% of land area)", + "World/North Africa/TUR/Agriculture/Agricultural land (% of land area)", + "World/Pair/USA/Agriculture/Agricultural land (% of land area)", + "World/Latam/VEN/Agriculture/Agricultural land (% of land area)", + "World/Asia/VNM/Agriculture/Agricultural land (% of land area)", + "World/Persian Gulf/YEM/Agriculture/Agricultural land (% of land area)", + "World/Persian Gulf/ARE/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/ARG/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/AUT/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/AZE/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/BGD/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/CHL/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Pair/CHN/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/CRI/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/DZA/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/FRA/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/GHA/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/HRV/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IDN/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IND/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/ISR/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/LBR/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/MAR/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/MEX/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/NGA/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/OMN/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/PER/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/PHL/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/QAT/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/SAU/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/SWE/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/TUR/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/VNM/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/YEM/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/ARE/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/AZE/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/BGD/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/BRA/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/CRI/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/DZA/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/GHA/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IDN/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IND/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/ISR/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/LBR/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/MAR/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/NGA/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/NLD/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/OMN/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/PER/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/PHL/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/QAT/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Pair/USA/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/VNM/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/YEM/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/ARG/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Europe/AUT/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Latam/BRA/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Latam/CHL/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Latam/COL/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/North Africa/DZA/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/North Africa/EGY/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Europe/GRC/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Europe/HRV/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Asia/IDN/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Asia/KOR/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/North Africa/MAR/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Latam/MEX/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Asia/PHL/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Europe/POL/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Asia/THA/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/North Africa/TUR/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Pair/USA/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Latam/VEN/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Asia/VNM/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Asia/BGD/Agriculture/Aquaculture production (metric tons)", + "World/Latam/BRA/Agriculture/Aquaculture production (metric tons)", + "World/Latam/CHL/Agriculture/Aquaculture production (metric tons)", + "World/Pair/CHN/Agriculture/Aquaculture production (metric tons)", + "World/South Africa/CMR/Agriculture/Aquaculture production (metric tons)", + "World/Latam/COL/Agriculture/Aquaculture production (metric tons)", + "World/Latam/CRI/Agriculture/Aquaculture production (metric tons)", + "World/North Africa/EGY/Agriculture/Aquaculture production (metric tons)", + "World/Europe/FRA/Agriculture/Aquaculture production (metric tons)", + "World/South Africa/GHA/Agriculture/Aquaculture production (metric tons)", + "World/Asia/IDN/Agriculture/Aquaculture production (metric tons)", + "World/Asia/IND/Agriculture/Aquaculture production (metric tons)", + "World/Asia/KOR/Agriculture/Aquaculture production (metric tons)", + "World/Latam/MEX/Agriculture/Aquaculture production (metric tons)", + "World/South Africa/NGA/Agriculture/Aquaculture production (metric tons)", + "World/Latam/PER/Agriculture/Aquaculture production (metric tons)", + "World/Asia/PHL/Agriculture/Aquaculture production (metric tons)", + "World/Europe/POL/Agriculture/Aquaculture production (metric tons)", + "World/Persian Gulf/SAU/Agriculture/Aquaculture production (metric tons)", + "World/North Africa/TUR/Agriculture/Aquaculture production (metric tons)", + "World/Pair/USA/Agriculture/Aquaculture production (metric tons)", + "World/Latam/VEN/Agriculture/Aquaculture production (metric tons)", + "World/Asia/VNM/Agriculture/Aquaculture production (metric tons)", + "World/South Africa/ZAF/Agriculture/Aquaculture production (metric tons)", + "World/Europe/AUT/Agriculture/Arable land (% of land area)", + "World/Persian Gulf/AZE/Agriculture/Arable land (% of land area)", + "World/Asia/BGD/Agriculture/Arable land (% of land area)", + "World/Latam/BRA/Agriculture/Arable land (% of land area)", + "World/Latam/CHL/Agriculture/Arable land (% of land area)", + "World/Pair/CHN/Agriculture/Arable land (% of land area)", + "World/South Africa/CMR/Agriculture/Arable land (% of land area)", + "World/Latam/COL/Agriculture/Arable land (% of land area)", + "World/Latam/CRI/Agriculture/Arable land (% of land area)", + "World/South Africa/GHA/Agriculture/Arable land (% of land area)", + "World/Europe/GRC/Agriculture/Arable land (% of land area)", + "World/Asia/IDN/Agriculture/Arable land (% of land area)", + "World/Asia/IND/Agriculture/Arable land (% of land area)", + "World/Asia/KOR/Agriculture/Arable land (% of land area)", + "World/South Africa/LBR/Agriculture/Arable land (% of land area)", + "World/North Africa/MAR/Agriculture/Arable land (% of land area)", + "World/South Africa/MOZ/Agriculture/Arable land (% of land area)", + "World/Latam/PAN/Agriculture/Arable land (% of land area)", + "World/Europe/POL/Agriculture/Arable land (% of land area)", + "World/Europe/SWE/Agriculture/Arable land (% of land area)", + "World/North Africa/TUR/Agriculture/Arable land (% of land area)", + "World/Pair/USA/Agriculture/Arable land (% of land area)", + "World/Persian Gulf/YEM/Agriculture/Arable land (% of land area)", + "World/Persian Gulf/ARE/Agriculture/Arable land (hectares per person)", + "World/Latam/ARG/Agriculture/Arable land (hectares per person)", + "World/Europe/AUT/Agriculture/Arable land (hectares per person)", + "World/Persian Gulf/AZE/Agriculture/Arable land (hectares per person)", + "World/Asia/BGD/Agriculture/Arable land (hectares per person)", + "World/Latam/CHL/Agriculture/Arable land (hectares per person)", + "World/Pair/CHN/Agriculture/Arable land (hectares per person)", + "World/South Africa/CMR/Agriculture/Arable land (hectares per person)", + "World/Latam/COL/Agriculture/Arable land (hectares per person)", + "World/North Africa/DZA/Agriculture/Arable land (hectares per person)", + "World/North Africa/EGY/Agriculture/Arable land (hectares per person)", + "World/Europe/ESP/Agriculture/Arable land (hectares per person)", + "World/Europe/FRA/Agriculture/Arable land (hectares per person)", + "World/South Africa/GHA/Agriculture/Arable land (hectares per person)", + "World/Europe/GRC/Agriculture/Arable land (hectares per person)", + "World/Asia/IND/Agriculture/Arable land (hectares per person)", + "World/Asia/KOR/Agriculture/Arable land (hectares per person)", + "World/South Africa/LBR/Agriculture/Arable land (hectares per person)", + "World/North Africa/MAR/Agriculture/Arable land (hectares per person)", + "World/Latam/MEX/Agriculture/Arable land (hectares per person)", + "World/South Africa/MOZ/Agriculture/Arable land (hectares per person)", + "World/South Africa/NGA/Agriculture/Arable land (hectares per person)", + "World/Persian Gulf/OMN/Agriculture/Arable land (hectares per person)", + "World/Latam/PAN/Agriculture/Arable land (hectares per person)", + "World/Latam/PER/Agriculture/Arable land (hectares per person)", + "World/Asia/PHL/Agriculture/Arable land (hectares per person)", + "World/Europe/POL/Agriculture/Arable land (hectares per person)", + "World/Persian Gulf/QAT/Agriculture/Arable land (hectares per person)", + "World/Persian Gulf/SAU/Agriculture/Arable land (hectares per person)", + "World/Europe/SWE/Agriculture/Arable land (hectares per person)", + "World/North Africa/TUR/Agriculture/Arable land (hectares per person)", + "World/Pair/USA/Agriculture/Arable land (hectares per person)", + "World/Latam/VEN/Agriculture/Arable land (hectares per person)", + "World/Persian Gulf/YEM/Agriculture/Arable land (hectares per person)", + "World/South Africa/ZAF/Agriculture/Arable land (hectares per person)", + "World/Europe/AUT/Agriculture/Arable land (hectares)", + "World/Persian Gulf/AZE/Agriculture/Arable land (hectares)", + "World/Asia/BGD/Agriculture/Arable land (hectares)", + "World/Latam/BRA/Agriculture/Arable land (hectares)", + "World/Latam/CHL/Agriculture/Arable land (hectares)", + "World/Pair/CHN/Agriculture/Arable land (hectares)", + "World/South Africa/CMR/Agriculture/Arable land (hectares)", + "World/Latam/COL/Agriculture/Arable land (hectares)", + "World/Latam/CRI/Agriculture/Arable land (hectares)", + "World/South Africa/GHA/Agriculture/Arable land (hectares)", + "World/Europe/GRC/Agriculture/Arable land (hectares)", + "World/Asia/IDN/Agriculture/Arable land (hectares)", + "World/Asia/IND/Agriculture/Arable land (hectares)", + "World/Asia/KOR/Agriculture/Arable land (hectares)", + "World/South Africa/LBR/Agriculture/Arable land (hectares)", + "World/North Africa/MAR/Agriculture/Arable land (hectares)", + "World/South Africa/MOZ/Agriculture/Arable land (hectares)", + "World/Latam/PAN/Agriculture/Arable land (hectares)", + "World/Europe/POL/Agriculture/Arable land (hectares)", + "World/Europe/SWE/Agriculture/Arable land (hectares)", + "World/North Africa/TUR/Agriculture/Arable land (hectares)", + "World/Pair/USA/Agriculture/Arable land (hectares)", + "World/Persian Gulf/YEM/Agriculture/Arable land (hectares)", + "World/Persian Gulf/ARE/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/ARG/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Persian Gulf/AZE/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Asia/BGD/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Pair/CHN/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/CMR/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/COL/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/CRI/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Europe/DEU/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/North Africa/DZA/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/North Africa/EGY/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Europe/FRA/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/GHA/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Europe/HRV/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Asia/IDN/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Asia/IND/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/North Africa/ISR/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/LBR/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/North Africa/MAR/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/MEX/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/MOZ/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/NGA/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/PAN/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/PER/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Asia/PHL/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Europe/POL/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Persian Gulf/SAU/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/SEN/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Asia/THA/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/North Africa/TUR/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Pair/USA/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/VEN/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Asia/VNM/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Persian Gulf/YEM/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/ZAF/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Persian Gulf/ARE/Mortality/Births attended by skilled health staff (% of total)", + "World/Asia/BGD/Mortality/Births attended by skilled health staff (% of total)", + "World/Pair/CHN/Mortality/Births attended by skilled health staff (% of total)", + "World/Latam/CRI/Mortality/Births attended by skilled health staff (% of total)", + "World/North Africa/DZA/Mortality/Births attended by skilled health staff (% of total)", + "World/North Africa/EGY/Mortality/Births attended by skilled health staff (% of total)", + "World/South Africa/GHA/Mortality/Births attended by skilled health staff (% of total)", + "World/Asia/IDN/Mortality/Births attended by skilled health staff (% of total)", + "World/Asia/IND/Mortality/Births attended by skilled health staff (% of total)", + "World/North Africa/MAR/Mortality/Births attended by skilled health staff (% of total)", + "World/Latam/MEX/Mortality/Births attended by skilled health staff (% of total)", + "World/South Africa/MOZ/Mortality/Births attended by skilled health staff (% of total)", + "World/Latam/PER/Mortality/Births attended by skilled health staff (% of total)", + "World/Asia/PHL/Mortality/Births attended by skilled health staff (% of total)", + "World/Persian Gulf/SAU/Mortality/Births attended by skilled health staff (% of total)", + "World/North Africa/TUR/Mortality/Births attended by skilled health staff (% of total)", + "World/Pair/USA/Mortality/Births attended by skilled health staff (% of total)", + "World/Asia/VNM/Mortality/Births attended by skilled health staff (% of total)", + "World/Persian Gulf/YEM/Mortality/Births attended by skilled health staff (% of total)", + "World/South Africa/ZAF/Mortality/Births attended by skilled health staff (% of total)", + "World/Persian Gulf/ARE/Economy/Broad money (% of GDP)", + "World/Latam/ARG/Economy/Broad money (% of GDP)", + "World/Persian Gulf/AZE/Economy/Broad money (% of GDP)", + "World/Asia/BGD/Economy/Broad money (% of GDP)", + "World/Latam/BRA/Economy/Broad money (% of GDP)", + "World/Pair/CHN/Economy/Broad money (% of GDP)", + "World/South Africa/CMR/Economy/Broad money (% of GDP)", + "World/North Africa/DZA/Economy/Broad money (% of GDP)", + "World/Europe/GBR/Economy/Broad money (% of GDP)", + "World/Europe/HRV/Economy/Broad money (% of GDP)", + "World/Asia/IND/Economy/Broad money (% of GDP)", + "World/North Africa/ISR/Economy/Broad money (% of GDP)", + "World/Asia/KOR/Economy/Broad money (% of GDP)", + "World/North Africa/MAR/Economy/Broad money (% of GDP)", + "World/Latam/MEX/Economy/Broad money (% of GDP)", + "World/South Africa/MOZ/Economy/Broad money (% of GDP)", + "World/Latam/PER/Economy/Broad money (% of GDP)", + "World/Asia/PHL/Economy/Broad money (% of GDP)", + "World/Europe/POL/Economy/Broad money (% of GDP)", + "World/Persian Gulf/QAT/Economy/Broad money (% of GDP)", + "World/South Africa/SEN/Economy/Broad money (% of GDP)", + "World/North Africa/TUR/Economy/Broad money (% of GDP)", + "World/Pair/USA/Economy/Broad money (% of GDP)", + "World/Latam/VEN/Economy/Broad money (% of GDP)", + "World/Asia/VNM/Economy/Broad money (% of GDP)", + "World/Europe/AUT/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Persian Gulf/AZE/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Asia/BGD/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Pair/CHN/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Latam/CRI/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/DEU/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/North Africa/EGY/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/FRA/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/GBR/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/GRC/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/HRV/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Asia/IND/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/North Africa/ISR/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Asia/KOR/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Latam/MEX/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/South Africa/NGA/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/NLD/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Persian Gulf/OMN/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Latam/PAN/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Asia/PHL/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/POL/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Persian Gulf/SAU/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/SWE/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Asia/THA/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Pair/USA/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Asia/VNM/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/AUT/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Persian Gulf/AZE/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Asia/BGD/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Pair/CHN/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Latam/CRI/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/DEU/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/North Africa/EGY/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/FRA/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/GBR/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/GRC/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/HRV/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Asia/IND/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/North Africa/ISR/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Asia/KOR/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Latam/MEX/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/South Africa/NGA/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/NLD/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Persian Gulf/OMN/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Latam/PAN/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Asia/PHL/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/POL/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Persian Gulf/SAU/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/SWE/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Asia/THA/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Pair/USA/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Asia/VNM/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Latam/ARG/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/AUT/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Persian Gulf/AZE/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Asia/BGD/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/BRA/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/CHL/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Pair/CHN/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/COL/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/CRI/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/DEU/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/North Africa/EGY/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/ESP/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/FRA/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/GBR/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/GRC/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/HRV/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Asia/IDN/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Asia/IND/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/North Africa/ISR/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Asia/KOR/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/North Africa/MAR/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/MEX/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/South Africa/NGA/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/NLD/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Persian Gulf/OMN/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/PAN/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/PER/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/POL/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/SWE/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Asia/THA/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/North Africa/TUR/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Pair/USA/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/South Africa/ZAF/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Persian Gulf/ARE/Environment/CO2 emissions (kt)", + "World/Latam/ARG/Environment/CO2 emissions (kt)", + "World/Asia/BGD/Environment/CO2 emissions (kt)", + "World/Latam/BRA/Environment/CO2 emissions (kt)", + "World/Latam/CHL/Environment/CO2 emissions (kt)", + "World/Pair/CHN/Environment/CO2 emissions (kt)", + "World/Latam/COL/Environment/CO2 emissions (kt)", + "World/Latam/CRI/Environment/CO2 emissions (kt)", + "World/Europe/DEU/Environment/CO2 emissions (kt)", + "World/North Africa/DZA/Environment/CO2 emissions (kt)", + "World/North Africa/EGY/Environment/CO2 emissions (kt)", + "World/Europe/GBR/Environment/CO2 emissions (kt)", + "World/South Africa/GHA/Environment/CO2 emissions (kt)", + "World/Asia/IDN/Environment/CO2 emissions (kt)", + "World/Asia/IND/Environment/CO2 emissions (kt)", + "World/Asia/KOR/Environment/CO2 emissions (kt)", + "World/South Africa/LBR/Environment/CO2 emissions (kt)", + "World/North Africa/MAR/Environment/CO2 emissions (kt)", + "World/Latam/MEX/Environment/CO2 emissions (kt)", + "World/South Africa/MOZ/Environment/CO2 emissions (kt)", + "World/South Africa/NGA/Environment/CO2 emissions (kt)", + "World/Persian Gulf/OMN/Environment/CO2 emissions (kt)", + "World/Latam/PAN/Environment/CO2 emissions (kt)", + "World/Latam/PER/Environment/CO2 emissions (kt)", + "World/Asia/PHL/Environment/CO2 emissions (kt)", + "World/Persian Gulf/QAT/Environment/CO2 emissions (kt)", + "World/Persian Gulf/SAU/Environment/CO2 emissions (kt)", + "World/South Africa/SEN/Environment/CO2 emissions (kt)", + "World/Europe/SWE/Environment/CO2 emissions (kt)", + "World/Asia/THA/Environment/CO2 emissions (kt)", + "World/North Africa/TUR/Environment/CO2 emissions (kt)", + "World/Asia/VNM/Environment/CO2 emissions (kt)", + "World/South Africa/ZAF/Environment/CO2 emissions (kt)", + "World/Asia/BGD/Environment/CO2 emissions (metric tons per capita)", + "World/Latam/BRA/Environment/CO2 emissions (metric tons per capita)", + "World/Latam/CHL/Environment/CO2 emissions (metric tons per capita)", + "World/Pair/CHN/Environment/CO2 emissions (metric tons per capita)", + "World/Latam/CRI/Environment/CO2 emissions (metric tons per capita)", + "World/Europe/DEU/Environment/CO2 emissions (metric tons per capita)", + "World/North Africa/DZA/Environment/CO2 emissions (metric tons per capita)", + "World/North Africa/EGY/Environment/CO2 emissions (metric tons per capita)", + "World/Europe/GBR/Environment/CO2 emissions (metric tons per capita)", + "World/South Africa/GHA/Environment/CO2 emissions (metric tons per capita)", + "World/Europe/GRC/Environment/CO2 emissions (metric tons per capita)", + "World/Asia/IDN/Environment/CO2 emissions (metric tons per capita)", + "World/Asia/IND/Environment/CO2 emissions (metric tons per capita)", + "World/North Africa/ISR/Environment/CO2 emissions (metric tons per capita)", + "World/Asia/KOR/Environment/CO2 emissions (metric tons per capita)", + "World/North Africa/MAR/Environment/CO2 emissions (metric tons per capita)", + "World/South Africa/MOZ/Environment/CO2 emissions (metric tons per capita)", + "World/Europe/NLD/Environment/CO2 emissions (metric tons per capita)", + "World/Persian Gulf/OMN/Environment/CO2 emissions (metric tons per capita)", + "World/Latam/PAN/Environment/CO2 emissions (metric tons per capita)", + "World/Latam/PER/Environment/CO2 emissions (metric tons per capita)", + "World/Asia/PHL/Environment/CO2 emissions (metric tons per capita)", + "World/Persian Gulf/SAU/Environment/CO2 emissions (metric tons per capita)", + "World/South Africa/SEN/Environment/CO2 emissions (metric tons per capita)", + "World/Europe/SWE/Environment/CO2 emissions (metric tons per capita)", + "World/Asia/THA/Environment/CO2 emissions (metric tons per capita)", + "World/North Africa/TUR/Environment/CO2 emissions (metric tons per capita)", + "World/Pair/USA/Environment/CO2 emissions (metric tons per capita)", + "World/Asia/VNM/Environment/CO2 emissions (metric tons per capita)", + "World/Persian Gulf/ARE/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Latam/ARG/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Persian Gulf/AZE/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Asia/BGD/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Latam/BRA/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Pair/CHN/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Latam/COL/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/North Africa/DZA/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/North Africa/EGY/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Europe/ESP/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Asia/IND/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/North Africa/ISR/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Asia/KOR/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/North Africa/MAR/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Latam/MEX/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/South Africa/NGA/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Europe/NLD/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Persian Gulf/OMN/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Latam/PER/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Europe/POL/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Persian Gulf/QAT/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Persian Gulf/SAU/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Asia/THA/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/North Africa/TUR/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Pair/USA/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Asia/VNM/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Persian Gulf/ARE/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Asia/BGD/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Latam/BRA/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Latam/CHL/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Pair/CHN/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/South Africa/CMR/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Latam/CRI/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/North Africa/DZA/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/North Africa/EGY/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Europe/GBR/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/South Africa/GHA/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Asia/IDN/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Asia/IND/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/North Africa/MAR/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/South Africa/MOZ/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Europe/NLD/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Persian Gulf/OMN/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Latam/PAN/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Latam/PER/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Asia/PHL/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Europe/POL/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Persian Gulf/SAU/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Asia/THA/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Asia/VNM/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Persian Gulf/ARE/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Europe/AUT/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Asia/BGD/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Latam/BRA/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Latam/CHL/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Pair/CHN/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/South Africa/CMR/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Asia/IDN/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Asia/IND/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Asia/KOR/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/North Africa/MAR/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Latam/MEX/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/South Africa/NGA/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Persian Gulf/OMN/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Persian Gulf/QAT/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Persian Gulf/SAU/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/South Africa/SEN/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Asia/VNM/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Persian Gulf/ARE/Industry/Capture fisheries production (metric tons)", + "World/Persian Gulf/AZE/Industry/Capture fisheries production (metric tons)", + "World/Asia/BGD/Industry/Capture fisheries production (metric tons)", + "World/Latam/CHL/Industry/Capture fisheries production (metric tons)", + "World/South Africa/CMR/Industry/Capture fisheries production (metric tons)", + "World/Latam/CRI/Industry/Capture fisheries production (metric tons)", + "World/Europe/GRC/Industry/Capture fisheries production (metric tons)", + "World/Europe/HRV/Industry/Capture fisheries production (metric tons)", + "World/Asia/IDN/Industry/Capture fisheries production (metric tons)", + "World/Asia/IND/Industry/Capture fisheries production (metric tons)", + "World/North Africa/ISR/Industry/Capture fisheries production (metric tons)", + "World/North Africa/MAR/Industry/Capture fisheries production (metric tons)", + "World/South Africa/MOZ/Industry/Capture fisheries production (metric tons)", + "World/South Africa/NGA/Industry/Capture fisheries production (metric tons)", + "World/Persian Gulf/OMN/Industry/Capture fisheries production (metric tons)", + "World/Asia/PHL/Industry/Capture fisheries production (metric tons)", + "World/Persian Gulf/SAU/Industry/Capture fisheries production (metric tons)", + "World/Asia/THA/Industry/Capture fisheries production (metric tons)", + "World/Asia/VNM/Industry/Capture fisheries production (metric tons)", + "World/Asia/BGD/Agriculture/Cereal yield (kg per hectare)", + "World/Latam/BRA/Agriculture/Cereal yield (kg per hectare)", + "World/Latam/CHL/Agriculture/Cereal yield (kg per hectare)", + "World/Pair/CHN/Agriculture/Cereal yield (kg per hectare)", + "World/Latam/COL/Agriculture/Cereal yield (kg per hectare)", + "World/South Africa/GHA/Agriculture/Cereal yield (kg per hectare)", + "World/Asia/IDN/Agriculture/Cereal yield (kg per hectare)", + "World/Asia/IND/Agriculture/Cereal yield (kg per hectare)", + "World/North Africa/ISR/Agriculture/Cereal yield (kg per hectare)", + "World/Latam/MEX/Agriculture/Cereal yield (kg per hectare)", + "World/Latam/PAN/Agriculture/Cereal yield (kg per hectare)", + "World/Latam/PER/Agriculture/Cereal yield (kg per hectare)", + "World/Asia/PHL/Agriculture/Cereal yield (kg per hectare)", + "World/Persian Gulf/QAT/Agriculture/Cereal yield (kg per hectare)", + "World/Persian Gulf/SAU/Agriculture/Cereal yield (kg per hectare)", + "World/North Africa/TUR/Agriculture/Cereal yield (kg per hectare)", + "World/Pair/USA/Agriculture/Cereal yield (kg per hectare)", + "World/Asia/VNM/Agriculture/Cereal yield (kg per hectare)", + "World/Europe/AUT/Environment/Combustible renewables and waste (% of total energy)", + "World/Persian Gulf/AZE/Environment/Combustible renewables and waste (% of total energy)", + "World/Asia/BGD/Environment/Combustible renewables and waste (% of total energy)", + "World/Pair/CHN/Environment/Combustible renewables and waste (% of total energy)", + "World/Latam/COL/Environment/Combustible renewables and waste (% of total energy)", + "World/Europe/DEU/Environment/Combustible renewables and waste (% of total energy)", + "World/North Africa/DZA/Environment/Combustible renewables and waste (% of total energy)", + "World/Europe/GBR/Environment/Combustible renewables and waste (% of total energy)", + "World/South Africa/GHA/Environment/Combustible renewables and waste (% of total energy)", + "World/Asia/IDN/Environment/Combustible renewables and waste (% of total energy)", + "World/Asia/IND/Environment/Combustible renewables and waste (% of total energy)", + "World/Asia/KOR/Environment/Combustible renewables and waste (% of total energy)", + "World/North Africa/MAR/Environment/Combustible renewables and waste (% of total energy)", + "World/Latam/MEX/Environment/Combustible renewables and waste (% of total energy)", + "World/South Africa/MOZ/Environment/Combustible renewables and waste (% of total energy)", + "World/Europe/NLD/Environment/Combustible renewables and waste (% of total energy)", + "World/Latam/PAN/Environment/Combustible renewables and waste (% of total energy)", + "World/Latam/PER/Environment/Combustible renewables and waste (% of total energy)", + "World/Asia/PHL/Environment/Combustible renewables and waste (% of total energy)", + "World/Europe/POL/Environment/Combustible renewables and waste (% of total energy)", + "World/Persian Gulf/SAU/Environment/Combustible renewables and waste (% of total energy)", + "World/Europe/SWE/Environment/Combustible renewables and waste (% of total energy)", + "World/North Africa/TUR/Environment/Combustible renewables and waste (% of total energy)", + "World/Pair/USA/Environment/Combustible renewables and waste (% of total energy)", + "World/Asia/VNM/Environment/Combustible renewables and waste (% of total energy)", + "World/Persian Gulf/ARE/Economy/Commercial bank branches (per 100,000 adults)", + "World/Asia/BGD/Economy/Commercial bank branches (per 100,000 adults)", + "World/Pair/CHN/Economy/Commercial bank branches (per 100,000 adults)", + "World/South Africa/CMR/Economy/Commercial bank branches (per 100,000 adults)", + "World/Latam/CRI/Economy/Commercial bank branches (per 100,000 adults)", + "World/Europe/DEU/Economy/Commercial bank branches (per 100,000 adults)", + "World/North Africa/DZA/Economy/Commercial bank branches (per 100,000 adults)", + "World/North Africa/EGY/Economy/Commercial bank branches (per 100,000 adults)", + "World/Europe/FRA/Economy/Commercial bank branches (per 100,000 adults)", + "World/Europe/GBR/Economy/Commercial bank branches (per 100,000 adults)", + "World/South Africa/GHA/Economy/Commercial bank branches (per 100,000 adults)", + "World/Asia/IDN/Economy/Commercial bank branches (per 100,000 adults)", + "World/Asia/IND/Economy/Commercial bank branches (per 100,000 adults)", + "World/North Africa/ISR/Economy/Commercial bank branches (per 100,000 adults)", + "World/North Africa/MAR/Economy/Commercial bank branches (per 100,000 adults)", + "World/Latam/MEX/Economy/Commercial bank branches (per 100,000 adults)", + "World/South Africa/MOZ/Economy/Commercial bank branches (per 100,000 adults)", + "World/Europe/NLD/Economy/Commercial bank branches (per 100,000 adults)", + "World/Persian Gulf/OMN/Economy/Commercial bank branches (per 100,000 adults)", + "World/Europe/POL/Economy/Commercial bank branches (per 100,000 adults)", + "World/Persian Gulf/QAT/Economy/Commercial bank branches (per 100,000 adults)", + "World/South Africa/SEN/Economy/Commercial bank branches (per 100,000 adults)", + "World/North Africa/TUR/Economy/Commercial bank branches (per 100,000 adults)", + "World/Pair/USA/Economy/Commercial bank branches (per 100,000 adults)", + "World/Persian Gulf/YEM/Economy/Commercial bank branches (per 100,000 adults)", + "World/South Africa/ZAF/Economy/Commercial bank branches (per 100,000 adults)", + "World/Europe/AUT/Exports/Commercial service exports (current US$)", + "World/Persian Gulf/AZE/Exports/Commercial service exports (current US$)", + "World/Asia/BGD/Exports/Commercial service exports (current US$)", + "World/Latam/BRA/Exports/Commercial service exports (current US$)", + "World/Latam/CHL/Exports/Commercial service exports (current US$)", + "World/Pair/CHN/Exports/Commercial service exports (current US$)", + "World/South Africa/CMR/Exports/Commercial service exports (current US$)", + "World/Latam/COL/Exports/Commercial service exports (current US$)", + "World/Latam/CRI/Exports/Commercial service exports (current US$)", + "World/Europe/DEU/Exports/Commercial service exports (current US$)", + "World/North Africa/DZA/Exports/Commercial service exports (current US$)", + "World/Europe/ESP/Exports/Commercial service exports (current US$)", + "World/Europe/FRA/Exports/Commercial service exports (current US$)", + "World/Europe/GBR/Exports/Commercial service exports (current US$)", + "World/South Africa/GHA/Exports/Commercial service exports (current US$)", + "World/Europe/GRC/Exports/Commercial service exports (current US$)", + "World/Europe/HRV/Exports/Commercial service exports (current US$)", + "World/Asia/IDN/Exports/Commercial service exports (current US$)", + "World/Asia/IND/Exports/Commercial service exports (current US$)", + "World/North Africa/ISR/Exports/Commercial service exports (current US$)", + "World/Asia/KOR/Exports/Commercial service exports (current US$)", + "World/North Africa/MAR/Exports/Commercial service exports (current US$)", + "World/Europe/NLD/Exports/Commercial service exports (current US$)", + "World/Persian Gulf/OMN/Exports/Commercial service exports (current US$)", + "World/Latam/PAN/Exports/Commercial service exports (current US$)", + "World/Latam/PER/Exports/Commercial service exports (current US$)", + "World/Asia/PHL/Exports/Commercial service exports (current US$)", + "World/Europe/POL/Exports/Commercial service exports (current US$)", + "World/Persian Gulf/QAT/Exports/Commercial service exports (current US$)", + "World/South Africa/SEN/Exports/Commercial service exports (current US$)", + "World/Europe/SWE/Exports/Commercial service exports (current US$)", + "World/Asia/THA/Exports/Commercial service exports (current US$)", + "World/North Africa/TUR/Exports/Commercial service exports (current US$)", + "World/Pair/USA/Exports/Commercial service exports (current US$)", + "World/Asia/VNM/Exports/Commercial service exports (current US$)", + "World/South Africa/ZAF/Exports/Commercial service exports (current US$)", + "World/Latam/ARG/Imports/Commercial service imports (current US$)", + "World/Europe/AUT/Imports/Commercial service imports (current US$)", + "World/Persian Gulf/AZE/Imports/Commercial service imports (current US$)", + "World/Asia/BGD/Imports/Commercial service imports (current US$)", + "World/Latam/BRA/Imports/Commercial service imports (current US$)", + "World/Latam/CHL/Imports/Commercial service imports (current US$)", + "World/Pair/CHN/Imports/Commercial service imports (current US$)", + "World/South Africa/CMR/Imports/Commercial service imports (current US$)", + "World/Latam/COL/Imports/Commercial service imports (current US$)", + "World/Latam/CRI/Imports/Commercial service imports (current US$)", + "World/Europe/DEU/Imports/Commercial service imports (current US$)", + "World/North Africa/DZA/Imports/Commercial service imports (current US$)", + "World/North Africa/EGY/Imports/Commercial service imports (current US$)", + "World/Europe/ESP/Imports/Commercial service imports (current US$)", + "World/Europe/FRA/Imports/Commercial service imports (current US$)", + "World/Europe/GBR/Imports/Commercial service imports (current US$)", + "World/South Africa/GHA/Imports/Commercial service imports (current US$)", + "World/Europe/HRV/Imports/Commercial service imports (current US$)", + "World/Asia/IDN/Imports/Commercial service imports (current US$)", + "World/Asia/IND/Imports/Commercial service imports (current US$)", + "World/North Africa/ISR/Imports/Commercial service imports (current US$)", + "World/Asia/KOR/Imports/Commercial service imports (current US$)", + "World/North Africa/MAR/Imports/Commercial service imports (current US$)", + "World/Latam/MEX/Imports/Commercial service imports (current US$)", + "World/South Africa/MOZ/Imports/Commercial service imports (current US$)", + "World/South Africa/NGA/Imports/Commercial service imports (current US$)", + "World/Europe/NLD/Imports/Commercial service imports (current US$)", + "World/Persian Gulf/OMN/Imports/Commercial service imports (current US$)", + "World/Latam/PAN/Imports/Commercial service imports (current US$)", + "World/Latam/PER/Imports/Commercial service imports (current US$)", + "World/Asia/PHL/Imports/Commercial service imports (current US$)", + "World/Europe/POL/Imports/Commercial service imports (current US$)", + "World/Persian Gulf/QAT/Imports/Commercial service imports (current US$)", + "World/South Africa/SEN/Imports/Commercial service imports (current US$)", + "World/Europe/SWE/Imports/Commercial service imports (current US$)", + "World/Asia/THA/Imports/Commercial service imports (current US$)", + "World/North Africa/TUR/Imports/Commercial service imports (current US$)", + "World/Pair/USA/Imports/Commercial service imports (current US$)", + "World/Asia/VNM/Imports/Commercial service imports (current US$)", + "World/South Africa/ZAF/Imports/Commercial service imports (current US$)", + "World/Latam/ARG/Demoraphy/Completeness of birth registration (%)", + "World/Asia/BGD/Demoraphy/Completeness of birth registration (%)", + "World/Latam/BRA/Demoraphy/Completeness of birth registration (%)", + "World/South Africa/CMR/Demoraphy/Completeness of birth registration (%)", + "World/Latam/COL/Demoraphy/Completeness of birth registration (%)", + "World/Latam/CRI/Demoraphy/Completeness of birth registration (%)", + "World/North Africa/DZA/Demoraphy/Completeness of birth registration (%)", + "World/North Africa/EGY/Demoraphy/Completeness of birth registration (%)", + "World/South Africa/GHA/Demoraphy/Completeness of birth registration (%)", + "World/Asia/IND/Demoraphy/Completeness of birth registration (%)", + "World/South Africa/LBR/Demoraphy/Completeness of birth registration (%)", + "World/North Africa/MAR/Demoraphy/Completeness of birth registration (%)", + "World/Latam/MEX/Demoraphy/Completeness of birth registration (%)", + "World/South Africa/MOZ/Demoraphy/Completeness of birth registration (%)", + "World/South Africa/NGA/Demoraphy/Completeness of birth registration (%)", + "World/Latam/PAN/Demoraphy/Completeness of birth registration (%)", + "World/Latam/PER/Demoraphy/Completeness of birth registration (%)", + "World/Asia/PHL/Demoraphy/Completeness of birth registration (%)", + "World/North Africa/TUR/Demoraphy/Completeness of birth registration (%)", + "World/Latam/VEN/Demoraphy/Completeness of birth registration (%)", + "World/Asia/VNM/Demoraphy/Completeness of birth registration (%)", + "World/Persian Gulf/ARE/Economy/Consumer price index (2010 = 100)", + "World/Europe/AUT/Economy/Consumer price index (2010 = 100)", + "World/Persian Gulf/AZE/Economy/Consumer price index (2010 = 100)", + "World/Asia/BGD/Economy/Consumer price index (2010 = 100)", + "World/Latam/BRA/Economy/Consumer price index (2010 = 100)", + "World/Latam/CHL/Economy/Consumer price index (2010 = 100)", + "World/Pair/CHN/Economy/Consumer price index (2010 = 100)", + "World/South Africa/CMR/Economy/Consumer price index (2010 = 100)", + "World/Latam/COL/Economy/Consumer price index (2010 = 100)", + "World/Latam/CRI/Economy/Consumer price index (2010 = 100)", + "World/Europe/DEU/Economy/Consumer price index (2010 = 100)", + "World/North Africa/DZA/Economy/Consumer price index (2010 = 100)", + "World/North Africa/EGY/Economy/Consumer price index (2010 = 100)", + "World/Europe/ESP/Economy/Consumer price index (2010 = 100)", + "World/Europe/FRA/Economy/Consumer price index (2010 = 100)", + "World/Europe/GBR/Economy/Consumer price index (2010 = 100)", + "World/South Africa/GHA/Economy/Consumer price index (2010 = 100)", + "World/Europe/GRC/Economy/Consumer price index (2010 = 100)", + "World/Asia/IDN/Economy/Consumer price index (2010 = 100)", + "World/Asia/IND/Economy/Consumer price index (2010 = 100)", + "World/North Africa/ISR/Economy/Consumer price index (2010 = 100)", + "World/Asia/KOR/Economy/Consumer price index (2010 = 100)", + "World/South Africa/LBR/Economy/Consumer price index (2010 = 100)", + "World/North Africa/MAR/Economy/Consumer price index (2010 = 100)", + "World/Latam/MEX/Economy/Consumer price index (2010 = 100)", + "World/South Africa/MOZ/Economy/Consumer price index (2010 = 100)", + "World/South Africa/NGA/Economy/Consumer price index (2010 = 100)", + "World/Europe/NLD/Economy/Consumer price index (2010 = 100)", + "World/Persian Gulf/OMN/Economy/Consumer price index (2010 = 100)", + "World/Latam/PAN/Economy/Consumer price index (2010 = 100)", + "World/Latam/PER/Economy/Consumer price index (2010 = 100)", + "World/Asia/PHL/Economy/Consumer price index (2010 = 100)", + "World/Europe/POL/Economy/Consumer price index (2010 = 100)", + "World/Persian Gulf/QAT/Economy/Consumer price index (2010 = 100)", + "World/Persian Gulf/SAU/Economy/Consumer price index (2010 = 100)", + "World/South Africa/SEN/Economy/Consumer price index (2010 = 100)", + "World/Europe/SWE/Economy/Consumer price index (2010 = 100)", + "World/Asia/THA/Economy/Consumer price index (2010 = 100)", + "World/North Africa/TUR/Economy/Consumer price index (2010 = 100)", + "World/Pair/USA/Economy/Consumer price index (2010 = 100)", + "World/Latam/VEN/Economy/Consumer price index (2010 = 100)", + "World/Asia/VNM/Economy/Consumer price index (2010 = 100)", + "World/Persian Gulf/YEM/Economy/Consumer price index (2010 = 100)", + "World/South Africa/ZAF/Economy/Consumer price index (2010 = 100)", + "World/Persian Gulf/ARE/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/BGD/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Latam/CHL/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Pair/CHN/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/South Africa/CMR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Latam/COL/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Latam/CRI/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/DEU/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/ESP/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/FRA/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/GBR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/South Africa/GHA/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/IDN/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/IND/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/North Africa/ISR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/KOR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/South Africa/LBR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/North Africa/MAR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Latam/MEX/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/South Africa/MOZ/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/NLD/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Persian Gulf/OMN/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Latam/PAN/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Latam/PER/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/PHL/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/POL/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Persian Gulf/QAT/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Persian Gulf/SAU/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/SWE/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/THA/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/North Africa/TUR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Pair/USA/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/VNM/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/South Africa/ZAF/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Persian Gulf/AZE/Agriculture/Crop production index (2014-2016 = 100)", + "World/Asia/BGD/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/BRA/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/CHL/Agriculture/Crop production index (2014-2016 = 100)", + "World/Pair/CHN/Agriculture/Crop production index (2014-2016 = 100)", + "World/South Africa/CMR/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/COL/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/CRI/Agriculture/Crop production index (2014-2016 = 100)", + "World/North Africa/DZA/Agriculture/Crop production index (2014-2016 = 100)", + "World/North Africa/EGY/Agriculture/Crop production index (2014-2016 = 100)", + "World/South Africa/GHA/Agriculture/Crop production index (2014-2016 = 100)", + "World/Asia/IDN/Agriculture/Crop production index (2014-2016 = 100)", + "World/Asia/IND/Agriculture/Crop production index (2014-2016 = 100)", + "World/North Africa/MAR/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/MEX/Agriculture/Crop production index (2014-2016 = 100)", + "World/South Africa/MOZ/Agriculture/Crop production index (2014-2016 = 100)", + "World/South Africa/NGA/Agriculture/Crop production index (2014-2016 = 100)", + "World/Persian Gulf/OMN/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/PER/Agriculture/Crop production index (2014-2016 = 100)", + "World/Asia/PHL/Agriculture/Crop production index (2014-2016 = 100)", + "World/Persian Gulf/QAT/Agriculture/Crop production index (2014-2016 = 100)", + "World/South Africa/SEN/Agriculture/Crop production index (2014-2016 = 100)", + "World/Asia/THA/Agriculture/Crop production index (2014-2016 = 100)", + "World/North Africa/TUR/Agriculture/Crop production index (2014-2016 = 100)", + "World/Pair/USA/Agriculture/Crop production index (2014-2016 = 100)", + "World/Asia/VNM/Agriculture/Crop production index (2014-2016 = 100)", + "World/Persian Gulf/YEM/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/ARG/Health/Current health expenditure (% of GDP)", + "World/Europe/AUT/Health/Current health expenditure (% of GDP)", + "World/Latam/CHL/Health/Current health expenditure (% of GDP)", + "World/Pair/CHN/Health/Current health expenditure (% of GDP)", + "World/South Africa/CMR/Health/Current health expenditure (% of GDP)", + "World/Latam/COL/Health/Current health expenditure (% of GDP)", + "World/Latam/CRI/Health/Current health expenditure (% of GDP)", + "World/Europe/ESP/Health/Current health expenditure (% of GDP)", + "World/Europe/FRA/Health/Current health expenditure (% of GDP)", + "World/Europe/GBR/Health/Current health expenditure (% of GDP)", + "World/Europe/GRC/Health/Current health expenditure (% of GDP)", + "World/Asia/IDN/Health/Current health expenditure (% of GDP)", + "World/Asia/IND/Health/Current health expenditure (% of GDP)", + "World/Asia/KOR/Health/Current health expenditure (% of GDP)", + "World/South Africa/MOZ/Health/Current health expenditure (% of GDP)", + "World/Europe/NLD/Health/Current health expenditure (% of GDP)", + "World/Latam/PER/Health/Current health expenditure (% of GDP)", + "World/Europe/POL/Health/Current health expenditure (% of GDP)", + "World/Europe/SWE/Health/Current health expenditure (% of GDP)", + "World/Asia/THA/Health/Current health expenditure (% of GDP)", + "World/Pair/USA/Health/Current health expenditure (% of GDP)", + "World/Asia/VNM/Health/Current health expenditure (% of GDP)", + "World/Persian Gulf/YEM/Health/Current health expenditure (% of GDP)", + "World/Persian Gulf/ARE/Health/Current health expenditure per capita (current US$)", + "World/Latam/ARG/Health/Current health expenditure per capita (current US$)", + "World/Europe/AUT/Health/Current health expenditure per capita (current US$)", + "World/Persian Gulf/AZE/Health/Current health expenditure per capita (current US$)", + "World/Asia/BGD/Health/Current health expenditure per capita (current US$)", + "World/Latam/BRA/Health/Current health expenditure per capita (current US$)", + "World/Latam/CHL/Health/Current health expenditure per capita (current US$)", + "World/Pair/CHN/Health/Current health expenditure per capita (current US$)", + "World/South Africa/CMR/Health/Current health expenditure per capita (current US$)", + "World/Latam/COL/Health/Current health expenditure per capita (current US$)", + "World/Latam/CRI/Health/Current health expenditure per capita (current US$)", + "World/Europe/DEU/Health/Current health expenditure per capita (current US$)", + "World/North Africa/DZA/Health/Current health expenditure per capita (current US$)", + "World/Europe/ESP/Health/Current health expenditure per capita (current US$)", + "World/Europe/FRA/Health/Current health expenditure per capita (current US$)", + "World/Europe/GBR/Health/Current health expenditure per capita (current US$)", + "World/South Africa/GHA/Health/Current health expenditure per capita (current US$)", + "World/Europe/GRC/Health/Current health expenditure per capita (current US$)", + "World/Europe/HRV/Health/Current health expenditure per capita (current US$)", + "World/Asia/IDN/Health/Current health expenditure per capita (current US$)", + "World/Asia/IND/Health/Current health expenditure per capita (current US$)", + "World/North Africa/ISR/Health/Current health expenditure per capita (current US$)", + "World/Asia/KOR/Health/Current health expenditure per capita (current US$)", + "World/South Africa/LBR/Health/Current health expenditure per capita (current US$)", + "World/North Africa/MAR/Health/Current health expenditure per capita (current US$)", + "World/Latam/MEX/Health/Current health expenditure per capita (current US$)", + "World/South Africa/MOZ/Health/Current health expenditure per capita (current US$)", + "World/South Africa/NGA/Health/Current health expenditure per capita (current US$)", + "World/Europe/NLD/Health/Current health expenditure per capita (current US$)", + "World/Persian Gulf/OMN/Health/Current health expenditure per capita (current US$)", + "World/Latam/PAN/Health/Current health expenditure per capita (current US$)", + "World/Latam/PER/Health/Current health expenditure per capita (current US$)", + "World/Asia/PHL/Health/Current health expenditure per capita (current US$)", + "World/Europe/POL/Health/Current health expenditure per capita (current US$)", + "World/Persian Gulf/QAT/Health/Current health expenditure per capita (current US$)", + "World/Persian Gulf/SAU/Health/Current health expenditure per capita (current US$)", + "World/South Africa/SEN/Health/Current health expenditure per capita (current US$)", + "World/Europe/SWE/Health/Current health expenditure per capita (current US$)", + "World/Asia/THA/Health/Current health expenditure per capita (current US$)", + "World/Pair/USA/Health/Current health expenditure per capita (current US$)", + "World/Latam/VEN/Health/Current health expenditure per capita (current US$)", + "World/Asia/VNM/Health/Current health expenditure per capita (current US$)", + "World/Persian Gulf/YEM/Health/Current health expenditure per capita (current US$)", + "World/South Africa/ZAF/Health/Current health expenditure per capita (current US$)", + "World/Persian Gulf/AZE/Economy/Customs and other import duties (% of tax revenue)", + "World/Asia/BGD/Economy/Customs and other import duties (% of tax revenue)", + "World/Latam/CHL/Economy/Customs and other import duties (% of tax revenue)", + "World/Pair/CHN/Economy/Customs and other import duties (% of tax revenue)", + "World/South Africa/CMR/Economy/Customs and other import duties (% of tax revenue)", + "World/Latam/COL/Economy/Customs and other import duties (% of tax revenue)", + "World/Latam/CRI/Economy/Customs and other import duties (% of tax revenue)", + "World/North Africa/EGY/Economy/Customs and other import duties (% of tax revenue)", + "World/Europe/ESP/Economy/Customs and other import duties (% of tax revenue)", + "World/Europe/HRV/Economy/Customs and other import duties (% of tax revenue)", + "World/Asia/IND/Economy/Customs and other import duties (% of tax revenue)", + "World/Asia/KOR/Economy/Customs and other import duties (% of tax revenue)", + "World/North Africa/MAR/Economy/Customs and other import duties (% of tax revenue)", + "World/Latam/MEX/Economy/Customs and other import duties (% of tax revenue)", + "World/Latam/PAN/Economy/Customs and other import duties (% of tax revenue)", + "World/Latam/PER/Economy/Customs and other import duties (% of tax revenue)", + "World/Europe/POL/Economy/Customs and other import duties (% of tax revenue)", + "World/Asia/THA/Economy/Customs and other import duties (% of tax revenue)", + "World/Asia/BGD/Economy/Domestic credit to private sector (% of GDP)", + "World/Latam/CHL/Economy/Domestic credit to private sector (% of GDP)", + "World/Pair/CHN/Economy/Domestic credit to private sector (% of GDP)", + "World/South Africa/CMR/Economy/Domestic credit to private sector (% of GDP)", + "World/Latam/COL/Economy/Domestic credit to private sector (% of GDP)", + "World/Latam/CRI/Economy/Domestic credit to private sector (% of GDP)", + "World/Europe/DEU/Economy/Domestic credit to private sector (% of GDP)", + "World/North Africa/DZA/Economy/Domestic credit to private sector (% of GDP)", + "World/North Africa/EGY/Economy/Domestic credit to private sector (% of GDP)", + "World/Europe/FRA/Economy/Domestic credit to private sector (% of GDP)", + "World/Europe/GRC/Economy/Domestic credit to private sector (% of GDP)", + "World/Europe/HRV/Economy/Domestic credit to private sector (% of GDP)", + "World/Asia/IND/Economy/Domestic credit to private sector (% of GDP)", + "World/Asia/KOR/Economy/Domestic credit to private sector (% of GDP)", + "World/South Africa/LBR/Economy/Domestic credit to private sector (% of GDP)", + "World/Latam/MEX/Economy/Domestic credit to private sector (% of GDP)", + "World/Persian Gulf/OMN/Economy/Domestic credit to private sector (% of GDP)", + "World/Latam/PER/Economy/Domestic credit to private sector (% of GDP)", + "World/Europe/POL/Economy/Domestic credit to private sector (% of GDP)", + "World/Persian Gulf/QAT/Economy/Domestic credit to private sector (% of GDP)", + "World/Persian Gulf/SAU/Economy/Domestic credit to private sector (% of GDP)", + "World/South Africa/SEN/Economy/Domestic credit to private sector (% of GDP)", + "World/Europe/SWE/Economy/Domestic credit to private sector (% of GDP)", + "World/North Africa/TUR/Economy/Domestic credit to private sector (% of GDP)", + "World/Latam/VEN/Economy/Domestic credit to private sector (% of GDP)", + "World/Asia/VNM/Economy/Domestic credit to private sector (% of GDP)", + "World/Persian Gulf/ARE/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Persian Gulf/AZE/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Asia/BGD/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/CHL/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Pair/CHN/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/South Africa/CMR/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/COL/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/CRI/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Europe/DEU/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/North Africa/DZA/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/North Africa/EGY/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Europe/GRC/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Europe/HRV/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Asia/IND/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Asia/KOR/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/South Africa/LBR/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/North Africa/MAR/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/MEX/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Persian Gulf/OMN/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/PAN/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/PER/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Europe/POL/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Persian Gulf/QAT/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Persian Gulf/SAU/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/South Africa/SEN/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Europe/SWE/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/North Africa/TUR/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/VEN/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Asia/VNM/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/ARG/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/AUT/Health/Domestic general government health expenditure per capita (current US$)", + "World/Persian Gulf/AZE/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/BGD/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/BRA/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/CHL/Health/Domestic general government health expenditure per capita (current US$)", + "World/Pair/CHN/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/COL/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/CRI/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/DEU/Health/Domestic general government health expenditure per capita (current US$)", + "World/North Africa/DZA/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/ESP/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/FRA/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/GBR/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/GRC/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/HRV/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/IDN/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/IND/Health/Domestic general government health expenditure per capita (current US$)", + "World/North Africa/ISR/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/KOR/Health/Domestic general government health expenditure per capita (current US$)", + "World/South Africa/LBR/Health/Domestic general government health expenditure per capita (current US$)", + "World/North Africa/MAR/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/MEX/Health/Domestic general government health expenditure per capita (current US$)", + "World/South Africa/MOZ/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/NLD/Health/Domestic general government health expenditure per capita (current US$)", + "World/Persian Gulf/OMN/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/PAN/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/PER/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/PHL/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/POL/Health/Domestic general government health expenditure per capita (current US$)", + "World/Persian Gulf/QAT/Health/Domestic general government health expenditure per capita (current US$)", + "World/Persian Gulf/SAU/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/SWE/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/THA/Health/Domestic general government health expenditure per capita (current US$)", + "World/North Africa/TUR/Health/Domestic general government health expenditure per capita (current US$)", + "World/Pair/USA/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/VNM/Health/Domestic general government health expenditure per capita (current US$)", + "World/South Africa/ZAF/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/ARG/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/AUT/Health/Domestic private health expenditure per capita (current US$)", + "World/Persian Gulf/AZE/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/BGD/Health/Domestic private health expenditure per capita (current US$)", + "World/Latam/BRA/Health/Domestic private health expenditure per capita (current US$)", + "World/Latam/CHL/Health/Domestic private health expenditure per capita (current US$)", + "World/Pair/CHN/Health/Domestic private health expenditure per capita (current US$)", + "World/South Africa/CMR/Health/Domestic private health expenditure per capita (current US$)", + "World/Latam/COL/Health/Domestic private health expenditure per capita (current US$)", + "World/Latam/CRI/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/DEU/Health/Domestic private health expenditure per capita (current US$)", + "World/North Africa/DZA/Health/Domestic private health expenditure per capita (current US$)", + "World/North Africa/EGY/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/ESP/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/FRA/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/GBR/Health/Domestic private health expenditure per capita (current US$)", + "World/South Africa/GHA/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/HRV/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/IDN/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/IND/Health/Domestic private health expenditure per capita (current US$)", + "World/North Africa/ISR/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/KOR/Health/Domestic private health expenditure per capita (current US$)", + "World/South Africa/LBR/Health/Domestic private health expenditure per capita (current US$)", + "World/North Africa/MAR/Health/Domestic private health expenditure per capita (current US$)", + "World/South Africa/NGA/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/NLD/Health/Domestic private health expenditure per capita (current US$)", + "World/Latam/PAN/Health/Domestic private health expenditure per capita (current US$)", + "World/Latam/PER/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/PHL/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/POL/Health/Domestic private health expenditure per capita (current US$)", + "World/Persian Gulf/QAT/Health/Domestic private health expenditure per capita (current US$)", + "World/Persian Gulf/SAU/Health/Domestic private health expenditure per capita (current US$)", + "World/South Africa/SEN/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/SWE/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/THA/Health/Domestic private health expenditure per capita (current US$)", + "World/Pair/USA/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/VNM/Health/Domestic private health expenditure per capita (current US$)", + "World/Persian Gulf/YEM/Health/Domestic private health expenditure per capita (current US$)", + "World/South Africa/ZAF/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/AUT/Environment/Electric power consumption (kWh per capita)", + "World/Asia/BGD/Environment/Electric power consumption (kWh per capita)", + "World/Latam/BRA/Environment/Electric power consumption (kWh per capita)", + "World/Latam/CHL/Environment/Electric power consumption (kWh per capita)", + "World/Pair/CHN/Environment/Electric power consumption (kWh per capita)", + "World/South Africa/CMR/Environment/Electric power consumption (kWh per capita)", + "World/Latam/COL/Environment/Electric power consumption (kWh per capita)", + "World/Latam/CRI/Environment/Electric power consumption (kWh per capita)", + "World/North Africa/DZA/Environment/Electric power consumption (kWh per capita)", + "World/North Africa/EGY/Environment/Electric power consumption (kWh per capita)", + "World/Europe/GBR/Environment/Electric power consumption (kWh per capita)", + "World/Europe/GRC/Environment/Electric power consumption (kWh per capita)", + "World/Europe/HRV/Environment/Electric power consumption (kWh per capita)", + "World/Asia/IDN/Environment/Electric power consumption (kWh per capita)", + "World/Asia/IND/Environment/Electric power consumption (kWh per capita)", + "World/Asia/KOR/Environment/Electric power consumption (kWh per capita)", + "World/North Africa/MAR/Environment/Electric power consumption (kWh per capita)", + "World/Latam/MEX/Environment/Electric power consumption (kWh per capita)", + "World/South Africa/MOZ/Environment/Electric power consumption (kWh per capita)", + "World/South Africa/NGA/Environment/Electric power consumption (kWh per capita)", + "World/Persian Gulf/OMN/Environment/Electric power consumption (kWh per capita)", + "World/Latam/PAN/Environment/Electric power consumption (kWh per capita)", + "World/Latam/PER/Environment/Electric power consumption (kWh per capita)", + "World/Asia/PHL/Environment/Electric power consumption (kWh per capita)", + "World/Europe/POL/Environment/Electric power consumption (kWh per capita)", + "World/Persian Gulf/SAU/Environment/Electric power consumption (kWh per capita)", + "World/South Africa/SEN/Environment/Electric power consumption (kWh per capita)", + "World/Europe/SWE/Environment/Electric power consumption (kWh per capita)", + "World/Asia/THA/Environment/Electric power consumption (kWh per capita)", + "World/North Africa/TUR/Environment/Electric power consumption (kWh per capita)", + "World/Asia/VNM/Environment/Electric power consumption (kWh per capita)", + "World/Persian Gulf/YEM/Environment/Electric power consumption (kWh per capita)", + "World/Persian Gulf/ARE/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/ARG/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/AUT/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/AZE/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Asia/BGD/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/BRA/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/CHL/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Pair/CHN/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/CMR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/COL/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/CRI/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/DEU/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/North Africa/DZA/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/North Africa/EGY/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/ESP/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/FRA/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/GBR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/GHA/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Asia/IDN/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Asia/IND/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/North Africa/ISR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Asia/KOR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/LBR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/North Africa/MAR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/MEX/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/MOZ/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/NGA/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/NLD/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/OMN/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/PAN/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/PER/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Asia/PHL/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/POL/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/QAT/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/SEN/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/SWE/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/North Africa/TUR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/VEN/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Asia/VNM/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/ZAF/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/ARG/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/AUT/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/AZE/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Asia/BGD/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Latam/BRA/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Pair/CHN/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/South Africa/CMR/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Latam/CRI/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/DEU/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/North Africa/DZA/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/North Africa/EGY/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/ESP/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/FRA/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/GBR/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/GRC/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/HRV/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Asia/IDN/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Asia/IND/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/North Africa/ISR/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Asia/KOR/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/North Africa/MAR/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/South Africa/MOZ/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/NLD/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/OMN/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/POL/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/SAU/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/South Africa/SEN/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/SWE/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Pair/USA/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Latam/VEN/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Asia/VNM/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/YEM/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/South Africa/ZAF/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/ARE/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/ARG/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/AUT/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/BGD/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/BRA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/CHL/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Pair/CHN/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/CMR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/COL/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/CRI/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/DEU/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/North Africa/DZA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/North Africa/EGY/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/ESP/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/FRA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/GBR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/GHA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/GRC/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/HRV/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/IDN/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/IND/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/North Africa/ISR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/KOR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/LBR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/North Africa/MAR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/MEX/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/MOZ/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/NGA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/NLD/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/OMN/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/PAN/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/PER/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/PHL/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/POL/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/SEN/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/SWE/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/THA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/North Africa/TUR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Pair/USA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/VEN/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/VNM/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/YEM/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/ZAF/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/AZE/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/BGD/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Pair/CHN/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/South Africa/CMR/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Latam/CRI/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Europe/DEU/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/North Africa/DZA/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Europe/GBR/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/South Africa/GHA/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/IDN/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/IND/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/North Africa/ISR/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/KOR/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Latam/MEX/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/South Africa/MOZ/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/South Africa/NGA/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Europe/NLD/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Persian Gulf/OMN/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Latam/PAN/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Latam/PER/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/PHL/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Europe/POL/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Europe/SWE/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/THA/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/North Africa/TUR/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Pair/USA/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Latam/VEN/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/BGD/Environment/Energy use (kg of oil equivalent per capita)", + "World/Latam/BRA/Environment/Energy use (kg of oil equivalent per capita)", + "World/Latam/CHL/Environment/Energy use (kg of oil equivalent per capita)", + "World/Pair/CHN/Environment/Energy use (kg of oil equivalent per capita)", + "World/Latam/CRI/Environment/Energy use (kg of oil equivalent per capita)", + "World/North Africa/DZA/Environment/Energy use (kg of oil equivalent per capita)", + "World/Europe/GBR/Environment/Energy use (kg of oil equivalent per capita)", + "World/Asia/IDN/Environment/Energy use (kg of oil equivalent per capita)", + "World/Asia/IND/Environment/Energy use (kg of oil equivalent per capita)", + "World/Asia/KOR/Environment/Energy use (kg of oil equivalent per capita)", + "World/North Africa/MAR/Environment/Energy use (kg of oil equivalent per capita)", + "World/South Africa/MOZ/Environment/Energy use (kg of oil equivalent per capita)", + "World/South Africa/NGA/Environment/Energy use (kg of oil equivalent per capita)", + "World/Europe/NLD/Environment/Energy use (kg of oil equivalent per capita)", + "World/Persian Gulf/OMN/Environment/Energy use (kg of oil equivalent per capita)", + "World/Latam/PAN/Environment/Energy use (kg of oil equivalent per capita)", + "World/Latam/PER/Environment/Energy use (kg of oil equivalent per capita)", + "World/Persian Gulf/SAU/Environment/Energy use (kg of oil equivalent per capita)", + "World/Asia/THA/Environment/Energy use (kg of oil equivalent per capita)", + "World/North Africa/TUR/Environment/Energy use (kg of oil equivalent per capita)", + "World/Pair/USA/Environment/Energy use (kg of oil equivalent per capita)", + "World/Asia/VNM/Environment/Energy use (kg of oil equivalent per capita)", + "World/Europe/AUT/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Persian Gulf/AZE/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Asia/BGD/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Pair/CHN/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/South Africa/CMR/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Latam/COL/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Latam/CRI/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/DEU/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/North Africa/DZA/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/ESP/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/FRA/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/GBR/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/South Africa/GHA/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/HRV/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Asia/IDN/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Asia/IND/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/North Africa/ISR/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Asia/KOR/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Latam/MEX/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/South Africa/MOZ/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/South Africa/NGA/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/NLD/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Latam/PAN/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Asia/PHL/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/POL/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Persian Gulf/SAU/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/SWE/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/North Africa/TUR/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Pair/USA/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/South Africa/ZAF/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Persian Gulf/ARE/Exports/Export unit value index (2000 = 100)", + "World/Europe/AUT/Exports/Export unit value index (2000 = 100)", + "World/Persian Gulf/AZE/Exports/Export unit value index (2000 = 100)", + "World/Asia/BGD/Exports/Export unit value index (2000 = 100)", + "World/Latam/BRA/Exports/Export unit value index (2000 = 100)", + "World/Latam/CRI/Exports/Export unit value index (2000 = 100)", + "World/Europe/DEU/Exports/Export unit value index (2000 = 100)", + "World/North Africa/DZA/Exports/Export unit value index (2000 = 100)", + "World/Europe/ESP/Exports/Export unit value index (2000 = 100)", + "World/Europe/FRA/Exports/Export unit value index (2000 = 100)", + "World/South Africa/GHA/Exports/Export unit value index (2000 = 100)", + "World/Europe/GRC/Exports/Export unit value index (2000 = 100)", + "World/Europe/HRV/Exports/Export unit value index (2000 = 100)", + "World/Latam/MEX/Exports/Export unit value index (2000 = 100)", + "World/Europe/NLD/Exports/Export unit value index (2000 = 100)", + "World/Latam/PAN/Exports/Export unit value index (2000 = 100)", + "World/Europe/POL/Exports/Export unit value index (2000 = 100)", + "World/Europe/SWE/Exports/Export unit value index (2000 = 100)", + "World/Asia/THA/Exports/Export unit value index (2000 = 100)", + "World/Asia/VNM/Exports/Export unit value index (2000 = 100)", + "World/Persian Gulf/YEM/Exports/Export unit value index (2000 = 100)", + "World/South Africa/ZAF/Exports/Export unit value index (2000 = 100)", + "World/Persian Gulf/ARE/Exports/Export value index (2000 = 100)", + "World/Europe/AUT/Exports/Export value index (2000 = 100)", + "World/Persian Gulf/AZE/Exports/Export value index (2000 = 100)", + "World/Asia/BGD/Exports/Export value index (2000 = 100)", + "World/Latam/BRA/Exports/Export value index (2000 = 100)", + "World/Latam/CHL/Exports/Export value index (2000 = 100)", + "World/Pair/CHN/Exports/Export value index (2000 = 100)", + "World/Latam/COL/Exports/Export value index (2000 = 100)", + "World/Latam/CRI/Exports/Export value index (2000 = 100)", + "World/Europe/DEU/Exports/Export value index (2000 = 100)", + "World/North Africa/DZA/Exports/Export value index (2000 = 100)", + "World/Europe/ESP/Exports/Export value index (2000 = 100)", + "World/Europe/FRA/Exports/Export value index (2000 = 100)", + "World/Europe/GBR/Exports/Export value index (2000 = 100)", + "World/South Africa/GHA/Exports/Export value index (2000 = 100)", + "World/Asia/IDN/Exports/Export value index (2000 = 100)", + "World/Asia/IND/Exports/Export value index (2000 = 100)", + "World/Persian Gulf/IRQ/Exports/Export value index (2000 = 100)", + "World/Asia/KOR/Exports/Export value index (2000 = 100)", + "World/North Africa/MAR/Exports/Export value index (2000 = 100)", + "World/Latam/MEX/Exports/Export value index (2000 = 100)", + "World/South Africa/MOZ/Exports/Export value index (2000 = 100)", + "World/Europe/NLD/Exports/Export value index (2000 = 100)", + "World/Persian Gulf/OMN/Exports/Export value index (2000 = 100)", + "World/Latam/PAN/Exports/Export value index (2000 = 100)", + "World/Latam/PER/Exports/Export value index (2000 = 100)", + "World/Asia/PHL/Exports/Export value index (2000 = 100)", + "World/Europe/POL/Exports/Export value index (2000 = 100)", + "World/Persian Gulf/QAT/Exports/Export value index (2000 = 100)", + "World/Persian Gulf/SAU/Exports/Export value index (2000 = 100)", + "World/South Africa/SEN/Exports/Export value index (2000 = 100)", + "World/Europe/SWE/Exports/Export value index (2000 = 100)", + "World/Asia/THA/Exports/Export value index (2000 = 100)", + "World/North Africa/TUR/Exports/Export value index (2000 = 100)", + "World/Pair/USA/Exports/Export value index (2000 = 100)", + "World/Latam/VEN/Exports/Export value index (2000 = 100)", + "World/Asia/VNM/Exports/Export value index (2000 = 100)", + "World/South Africa/ZAF/Exports/Export value index (2000 = 100)", + "World/Persian Gulf/ARE/Exports/Export volume index (2000 = 100)", + "World/Europe/AUT/Exports/Export volume index (2000 = 100)", + "World/Persian Gulf/AZE/Exports/Export volume index (2000 = 100)", + "World/Asia/BGD/Exports/Export volume index (2000 = 100)", + "World/Latam/BRA/Exports/Export volume index (2000 = 100)", + "World/Latam/CHL/Exports/Export volume index (2000 = 100)", + "World/Pair/CHN/Exports/Export volume index (2000 = 100)", + "World/Latam/COL/Exports/Export volume index (2000 = 100)", + "World/Latam/CRI/Exports/Export volume index (2000 = 100)", + "World/Europe/ESP/Exports/Export volume index (2000 = 100)", + "World/South Africa/GHA/Exports/Export volume index (2000 = 100)", + "World/Europe/GRC/Exports/Export volume index (2000 = 100)", + "World/Asia/IDN/Exports/Export volume index (2000 = 100)", + "World/Asia/IND/Exports/Export volume index (2000 = 100)", + "World/North Africa/ISR/Exports/Export volume index (2000 = 100)", + "World/Asia/KOR/Exports/Export volume index (2000 = 100)", + "World/North Africa/MAR/Exports/Export volume index (2000 = 100)", + "World/Latam/MEX/Exports/Export volume index (2000 = 100)", + "World/South Africa/MOZ/Exports/Export volume index (2000 = 100)", + "World/Europe/NLD/Exports/Export volume index (2000 = 100)", + "World/Persian Gulf/OMN/Exports/Export volume index (2000 = 100)", + "World/Latam/PAN/Exports/Export volume index (2000 = 100)", + "World/Latam/PER/Exports/Export volume index (2000 = 100)", + "World/Asia/PHL/Exports/Export volume index (2000 = 100)", + "World/Europe/POL/Exports/Export volume index (2000 = 100)", + "World/Persian Gulf/QAT/Exports/Export volume index (2000 = 100)", + "World/Persian Gulf/SAU/Exports/Export volume index (2000 = 100)", + "World/Asia/THA/Exports/Export volume index (2000 = 100)", + "World/North Africa/TUR/Exports/Export volume index (2000 = 100)", + "World/Pair/USA/Exports/Export volume index (2000 = 100)", + "World/Latam/VEN/Exports/Export volume index (2000 = 100)", + "World/Asia/VNM/Exports/Export volume index (2000 = 100)", + "World/Persian Gulf/YEM/Exports/Export volume index (2000 = 100)", + "World/South Africa/ZAF/Exports/Export volume index (2000 = 100)", + "World/Europe/AUT/Exports/Exports of goods and services (BoP, current US$)", + "World/Persian Gulf/AZE/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/BGD/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/BRA/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/CHL/Exports/Exports of goods and services (BoP, current US$)", + "World/Pair/CHN/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/COL/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/CRI/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/DEU/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/ESP/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/FRA/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/GBR/Exports/Exports of goods and services (BoP, current US$)", + "World/South Africa/GHA/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/HRV/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/IDN/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/IND/Exports/Exports of goods and services (BoP, current US$)", + "World/Persian Gulf/IRQ/Exports/Exports of goods and services (BoP, current US$)", + "World/North Africa/ISR/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/KOR/Exports/Exports of goods and services (BoP, current US$)", + "World/North Africa/MAR/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/MEX/Exports/Exports of goods and services (BoP, current US$)", + "World/South Africa/MOZ/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/NLD/Exports/Exports of goods and services (BoP, current US$)", + "World/Persian Gulf/OMN/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/PAN/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/PER/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/PHL/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/POL/Exports/Exports of goods and services (BoP, current US$)", + "World/Persian Gulf/SAU/Exports/Exports of goods and services (BoP, current US$)", + "World/South Africa/SEN/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/SWE/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/THA/Exports/Exports of goods and services (BoP, current US$)", + "World/North Africa/TUR/Exports/Exports of goods and services (BoP, current US$)", + "World/Pair/USA/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/VEN/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/VNM/Exports/Exports of goods and services (BoP, current US$)", + "World/South Africa/ZAF/Exports/Exports of goods and services (BoP, current US$)", + "World/Persian Gulf/ARE/Exports/Exports of goods and services (current US$)", + "World/Europe/AUT/Exports/Exports of goods and services (current US$)", + "World/Persian Gulf/AZE/Exports/Exports of goods and services (current US$)", + "World/Asia/BGD/Exports/Exports of goods and services (current US$)", + "World/Latam/BRA/Exports/Exports of goods and services (current US$)", + "World/Latam/CHL/Exports/Exports of goods and services (current US$)", + "World/Pair/CHN/Exports/Exports of goods and services (current US$)", + "World/Latam/COL/Exports/Exports of goods and services (current US$)", + "World/Latam/CRI/Exports/Exports of goods and services (current US$)", + "World/Europe/DEU/Exports/Exports of goods and services (current US$)", + "World/North Africa/DZA/Exports/Exports of goods and services (current US$)", + "World/Europe/ESP/Exports/Exports of goods and services (current US$)", + "World/Europe/FRA/Exports/Exports of goods and services (current US$)", + "World/Europe/GBR/Exports/Exports of goods and services (current US$)", + "World/South Africa/GHA/Exports/Exports of goods and services (current US$)", + "World/Europe/HRV/Exports/Exports of goods and services (current US$)", + "World/Asia/IDN/Exports/Exports of goods and services (current US$)", + "World/Asia/IND/Exports/Exports of goods and services (current US$)", + "World/Persian Gulf/IRQ/Exports/Exports of goods and services (current US$)", + "World/North Africa/ISR/Exports/Exports of goods and services (current US$)", + "World/Asia/KOR/Exports/Exports of goods and services (current US$)", + "World/North Africa/MAR/Exports/Exports of goods and services (current US$)", + "World/Latam/MEX/Exports/Exports of goods and services (current US$)", + "World/South Africa/MOZ/Exports/Exports of goods and services (current US$)", + "World/Europe/NLD/Exports/Exports of goods and services (current US$)", + "World/Persian Gulf/OMN/Exports/Exports of goods and services (current US$)", + "World/Latam/PAN/Exports/Exports of goods and services (current US$)", + "World/Latam/PER/Exports/Exports of goods and services (current US$)", + "World/Asia/PHL/Exports/Exports of goods and services (current US$)", + "World/Europe/POL/Exports/Exports of goods and services (current US$)", + "World/Persian Gulf/QAT/Exports/Exports of goods and services (current US$)", + "World/Persian Gulf/SAU/Exports/Exports of goods and services (current US$)", + "World/South Africa/SEN/Exports/Exports of goods and services (current US$)", + "World/Europe/SWE/Exports/Exports of goods and services (current US$)", + "World/Asia/THA/Exports/Exports of goods and services (current US$)", + "World/North Africa/TUR/Exports/Exports of goods and services (current US$)", + "World/Pair/USA/Exports/Exports of goods and services (current US$)", + "World/Latam/VEN/Exports/Exports of goods and services (current US$)", + "World/Asia/VNM/Exports/Exports of goods and services (current US$)", + "World/South Africa/ZAF/Exports/Exports of goods and services (current US$)", + "World/Persian Gulf/ARE/Economy/Final consumption expenditure (current US$)", + "World/Latam/ARG/Economy/Final consumption expenditure (current US$)", + "World/Europe/AUT/Economy/Final consumption expenditure (current US$)", + "World/Persian Gulf/AZE/Economy/Final consumption expenditure (current US$)", + "World/Asia/BGD/Economy/Final consumption expenditure (current US$)", + "World/Latam/BRA/Economy/Final consumption expenditure (current US$)", + "World/Latam/CHL/Economy/Final consumption expenditure (current US$)", + "World/Pair/CHN/Economy/Final consumption expenditure (current US$)", + "World/South Africa/CMR/Economy/Final consumption expenditure (current US$)", + "World/Latam/COL/Economy/Final consumption expenditure (current US$)", + "World/Latam/CRI/Economy/Final consumption expenditure (current US$)", + "World/Europe/DEU/Economy/Final consumption expenditure (current US$)", + "World/North Africa/DZA/Economy/Final consumption expenditure (current US$)", + "World/North Africa/EGY/Economy/Final consumption expenditure (current US$)", + "World/Europe/ESP/Economy/Final consumption expenditure (current US$)", + "World/Europe/FRA/Economy/Final consumption expenditure (current US$)", + "World/Europe/GBR/Economy/Final consumption expenditure (current US$)", + "World/South Africa/GHA/Economy/Final consumption expenditure (current US$)", + "World/Europe/GRC/Economy/Final consumption expenditure (current US$)", + "World/Europe/HRV/Economy/Final consumption expenditure (current US$)", + "World/Asia/IDN/Economy/Final consumption expenditure (current US$)", + "World/Asia/IND/Economy/Final consumption expenditure (current US$)", + "World/Persian Gulf/IRQ/Economy/Final consumption expenditure (current US$)", + "World/North Africa/ISR/Economy/Final consumption expenditure (current US$)", + "World/Asia/KOR/Economy/Final consumption expenditure (current US$)", + "World/North Africa/MAR/Economy/Final consumption expenditure (current US$)", + "World/Latam/MEX/Economy/Final consumption expenditure (current US$)", + "World/South Africa/MOZ/Economy/Final consumption expenditure (current US$)", + "World/South Africa/NGA/Economy/Final consumption expenditure (current US$)", + "World/Europe/NLD/Economy/Final consumption expenditure (current US$)", + "World/Persian Gulf/OMN/Economy/Final consumption expenditure (current US$)", + "World/Latam/PAN/Economy/Final consumption expenditure (current US$)", + "World/Latam/PER/Economy/Final consumption expenditure (current US$)", + "World/Asia/PHL/Economy/Final consumption expenditure (current US$)", + "World/Europe/POL/Economy/Final consumption expenditure (current US$)", + "World/Persian Gulf/QAT/Economy/Final consumption expenditure (current US$)", + "World/Persian Gulf/SAU/Economy/Final consumption expenditure (current US$)", + "World/South Africa/SEN/Economy/Final consumption expenditure (current US$)", + "World/Europe/SWE/Economy/Final consumption expenditure (current US$)", + "World/Asia/THA/Economy/Final consumption expenditure (current US$)", + "World/North Africa/TUR/Economy/Final consumption expenditure (current US$)", + "World/Pair/USA/Economy/Final consumption expenditure (current US$)", + "World/Latam/VEN/Economy/Final consumption expenditure (current US$)", + "World/Asia/VNM/Economy/Final consumption expenditure (current US$)", + "World/South Africa/ZAF/Economy/Final consumption expenditure (current US$)", + "World/Latam/ARG/R&D/Firms offering formal training (% of firms)", + "World/Latam/CHL/R&D/Firms offering formal training (% of firms)", + "World/Latam/COL/R&D/Firms offering formal training (% of firms)", + "World/Latam/CRI/R&D/Firms offering formal training (% of firms)", + "World/North Africa/EGY/R&D/Firms offering formal training (% of firms)", + "World/South Africa/GHA/R&D/Firms offering formal training (% of firms)", + "World/Europe/GRC/R&D/Firms offering formal training (% of firms)", + "World/Europe/HRV/R&D/Firms offering formal training (% of firms)", + "World/Asia/IDN/R&D/Firms offering formal training (% of firms)", + "World/Asia/IND/R&D/Firms offering formal training (% of firms)", + "World/South Africa/LBR/R&D/Firms offering formal training (% of firms)", + "World/North Africa/MAR/R&D/Firms offering formal training (% of firms)", + "World/Latam/MEX/R&D/Firms offering formal training (% of firms)", + "World/South Africa/MOZ/R&D/Firms offering formal training (% of firms)", + "World/South Africa/NGA/R&D/Firms offering formal training (% of firms)", + "World/Latam/PAN/R&D/Firms offering formal training (% of firms)", + "World/Latam/PER/R&D/Firms offering formal training (% of firms)", + "World/Asia/PHL/R&D/Firms offering formal training (% of firms)", + "World/Europe/POL/R&D/Firms offering formal training (% of firms)", + "World/South Africa/SEN/R&D/Firms offering formal training (% of firms)", + "World/Asia/THA/R&D/Firms offering formal training (% of firms)", + "World/North Africa/TUR/R&D/Firms offering formal training (% of firms)", + "World/Latam/VEN/R&D/Firms offering formal training (% of firms)", + "World/Asia/VNM/R&D/Firms offering formal training (% of firms)", + "World/Persian Gulf/YEM/R&D/Firms offering formal training (% of firms)", + "World/South Africa/ZAF/R&D/Firms offering formal training (% of firms)", + "World/Latam/ARG/Economy/Firms using banks to finance investment (% of firms)", + "World/Persian Gulf/AZE/Economy/Firms using banks to finance investment (% of firms)", + "World/Asia/BGD/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/CHL/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/CMR/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/COL/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/CRI/Economy/Firms using banks to finance investment (% of firms)", + "World/North Africa/EGY/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/GHA/Economy/Firms using banks to finance investment (% of firms)", + "World/Europe/GRC/Economy/Firms using banks to finance investment (% of firms)", + "World/Asia/IDN/Economy/Firms using banks to finance investment (% of firms)", + "World/Asia/IND/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/LBR/Economy/Firms using banks to finance investment (% of firms)", + "World/North Africa/MAR/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/MEX/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/MOZ/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/NGA/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/PAN/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/PER/Economy/Firms using banks to finance investment (% of firms)", + "World/Asia/PHL/Economy/Firms using banks to finance investment (% of firms)", + "World/Europe/POL/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/SEN/Economy/Firms using banks to finance investment (% of firms)", + "World/Asia/THA/Economy/Firms using banks to finance investment (% of firms)", + "World/North Africa/TUR/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/VEN/Economy/Firms using banks to finance investment (% of firms)", + "World/Asia/VNM/Economy/Firms using banks to finance investment (% of firms)", + "World/Persian Gulf/YEM/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/ZAF/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/ARG/Economy/Firms using banks to finance working capital (% of firms)", + "World/Persian Gulf/AZE/Economy/Firms using banks to finance working capital (% of firms)", + "World/Asia/BGD/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/CHL/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/CMR/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/COL/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/CRI/Economy/Firms using banks to finance working capital (% of firms)", + "World/North Africa/EGY/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/GHA/Economy/Firms using banks to finance working capital (% of firms)", + "World/Europe/GRC/Economy/Firms using banks to finance working capital (% of firms)", + "World/Asia/IDN/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/LBR/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/MEX/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/MOZ/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/NGA/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/PAN/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/PER/Economy/Firms using banks to finance working capital (% of firms)", + "World/Asia/PHL/Economy/Firms using banks to finance working capital (% of firms)", + "World/Europe/POL/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/SEN/Economy/Firms using banks to finance working capital (% of firms)", + "World/Asia/THA/Economy/Firms using banks to finance working capital (% of firms)", + "World/North Africa/TUR/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/VEN/Economy/Firms using banks to finance working capital (% of firms)", + "World/Asia/VNM/Economy/Firms using banks to finance working capital (% of firms)", + "World/Persian Gulf/YEM/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/ZAF/Economy/Firms using banks to finance working capital (% of firms)", + "World/Persian Gulf/ARE/Internet/Fixed broadband subscriptions", + "World/Latam/ARG/Internet/Fixed broadband subscriptions", + "World/Europe/AUT/Internet/Fixed broadband subscriptions", + "World/Persian Gulf/AZE/Internet/Fixed broadband subscriptions", + "World/Asia/BGD/Internet/Fixed broadband subscriptions", + "World/Latam/BRA/Internet/Fixed broadband subscriptions", + "World/Latam/CHL/Internet/Fixed broadband subscriptions", + "World/Pair/CHN/Internet/Fixed broadband subscriptions", + "World/South Africa/CMR/Internet/Fixed broadband subscriptions", + "World/Latam/COL/Internet/Fixed broadband subscriptions", + "World/Latam/CRI/Internet/Fixed broadband subscriptions", + "World/Europe/DEU/Internet/Fixed broadband subscriptions", + "World/North Africa/DZA/Internet/Fixed broadband subscriptions", + "World/North Africa/EGY/Internet/Fixed broadband subscriptions", + "World/Europe/ESP/Internet/Fixed broadband subscriptions", + "World/Europe/FRA/Internet/Fixed broadband subscriptions", + "World/Europe/GBR/Internet/Fixed broadband subscriptions", + "World/South Africa/GHA/Internet/Fixed broadband subscriptions", + "World/Europe/GRC/Internet/Fixed broadband subscriptions", + "World/Europe/HRV/Internet/Fixed broadband subscriptions", + "World/Asia/IDN/Internet/Fixed broadband subscriptions", + "World/Asia/IND/Internet/Fixed broadband subscriptions", + "World/North Africa/ISR/Internet/Fixed broadband subscriptions", + "World/Asia/KOR/Internet/Fixed broadband subscriptions", + "World/South Africa/LBR/Internet/Fixed broadband subscriptions", + "World/North Africa/MAR/Internet/Fixed broadband subscriptions", + "World/Latam/MEX/Internet/Fixed broadband subscriptions", + "World/South Africa/MOZ/Internet/Fixed broadband subscriptions", + "World/Europe/NLD/Internet/Fixed broadband subscriptions", + "World/Persian Gulf/OMN/Internet/Fixed broadband subscriptions", + "World/Latam/PAN/Internet/Fixed broadband subscriptions", + "World/Latam/PER/Internet/Fixed broadband subscriptions", + "World/Asia/PHL/Internet/Fixed broadband subscriptions", + "World/Europe/POL/Internet/Fixed broadband subscriptions", + "World/Persian Gulf/QAT/Internet/Fixed broadband subscriptions", + "World/Persian Gulf/SAU/Internet/Fixed broadband subscriptions", + "World/South Africa/SEN/Internet/Fixed broadband subscriptions", + "World/Europe/SWE/Internet/Fixed broadband subscriptions", + "World/Asia/THA/Internet/Fixed broadband subscriptions", + "World/North Africa/TUR/Internet/Fixed broadband subscriptions", + "World/Pair/USA/Internet/Fixed broadband subscriptions", + "World/Latam/VEN/Internet/Fixed broadband subscriptions", + "World/Asia/VNM/Internet/Fixed broadband subscriptions", + "World/Persian Gulf/YEM/Internet/Fixed broadband subscriptions", + "World/South Africa/ZAF/Internet/Fixed broadband subscriptions", + "World/Persian Gulf/ARE/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/ARG/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/AUT/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Persian Gulf/AZE/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/BGD/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/BRA/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/CHL/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Pair/CHN/Internet/Fixed broadband subscriptions (per 100 people)", + "World/South Africa/CMR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/COL/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/CRI/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/DEU/Internet/Fixed broadband subscriptions (per 100 people)", + "World/North Africa/DZA/Internet/Fixed broadband subscriptions (per 100 people)", + "World/North Africa/EGY/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/ESP/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/FRA/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/GBR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/South Africa/GHA/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/GRC/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/HRV/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/IDN/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/IND/Internet/Fixed broadband subscriptions (per 100 people)", + "World/North Africa/ISR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/KOR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/South Africa/LBR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/North Africa/MAR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/MEX/Internet/Fixed broadband subscriptions (per 100 people)", + "World/South Africa/MOZ/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/NLD/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Persian Gulf/OMN/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/PAN/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/PER/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/PHL/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/POL/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Persian Gulf/QAT/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Persian Gulf/SAU/Internet/Fixed broadband subscriptions (per 100 people)", + "World/South Africa/SEN/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/SWE/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/THA/Internet/Fixed broadband subscriptions (per 100 people)", + "World/North Africa/TUR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Pair/USA/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/VEN/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/VNM/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Persian Gulf/YEM/Internet/Fixed broadband subscriptions (per 100 people)", + "World/South Africa/ZAF/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Persian Gulf/ARE/Industry/Food production index (2014-2016 = 100)", + "World/Persian Gulf/AZE/Industry/Food production index (2014-2016 = 100)", + "World/Asia/BGD/Industry/Food production index (2014-2016 = 100)", + "World/Latam/BRA/Industry/Food production index (2014-2016 = 100)", + "World/Latam/CHL/Industry/Food production index (2014-2016 = 100)", + "World/Pair/CHN/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/CMR/Industry/Food production index (2014-2016 = 100)", + "World/Latam/COL/Industry/Food production index (2014-2016 = 100)", + "World/Latam/CRI/Industry/Food production index (2014-2016 = 100)", + "World/North Africa/DZA/Industry/Food production index (2014-2016 = 100)", + "World/North Africa/EGY/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/GHA/Industry/Food production index (2014-2016 = 100)", + "World/Asia/IDN/Industry/Food production index (2014-2016 = 100)", + "World/Asia/IND/Industry/Food production index (2014-2016 = 100)", + "World/North Africa/ISR/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/LBR/Industry/Food production index (2014-2016 = 100)", + "World/North Africa/MAR/Industry/Food production index (2014-2016 = 100)", + "World/Latam/MEX/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/MOZ/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/NGA/Industry/Food production index (2014-2016 = 100)", + "World/Europe/NLD/Industry/Food production index (2014-2016 = 100)", + "World/Persian Gulf/OMN/Industry/Food production index (2014-2016 = 100)", + "World/Latam/PAN/Industry/Food production index (2014-2016 = 100)", + "World/Latam/PER/Industry/Food production index (2014-2016 = 100)", + "World/Asia/PHL/Industry/Food production index (2014-2016 = 100)", + "World/Europe/POL/Industry/Food production index (2014-2016 = 100)", + "World/Persian Gulf/QAT/Industry/Food production index (2014-2016 = 100)", + "World/Persian Gulf/SAU/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/SEN/Industry/Food production index (2014-2016 = 100)", + "World/Asia/THA/Industry/Food production index (2014-2016 = 100)", + "World/North Africa/TUR/Industry/Food production index (2014-2016 = 100)", + "World/Pair/USA/Industry/Food production index (2014-2016 = 100)", + "World/Asia/VNM/Industry/Food production index (2014-2016 = 100)", + "World/Persian Gulf/YEM/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/ZAF/Industry/Food production index (2014-2016 = 100)", + "World/Persian Gulf/ARE/Demography/Forest area (% of land area)", + "World/Latam/ARG/Demography/Forest area (% of land area)", + "World/Europe/AUT/Demography/Forest area (% of land area)", + "World/Persian Gulf/AZE/Demography/Forest area (% of land area)", + "World/Asia/BGD/Demography/Forest area (% of land area)", + "World/Latam/BRA/Demography/Forest area (% of land area)", + "World/Latam/CHL/Demography/Forest area (% of land area)", + "World/Pair/CHN/Demography/Forest area (% of land area)", + "World/South Africa/CMR/Demography/Forest area (% of land area)", + "World/Latam/COL/Demography/Forest area (% of land area)", + "World/Latam/CRI/Demography/Forest area (% of land area)", + "World/North Africa/DZA/Demography/Forest area (% of land area)", + "World/North Africa/EGY/Demography/Forest area (% of land area)", + "World/Europe/ESP/Demography/Forest area (% of land area)", + "World/Europe/FRA/Demography/Forest area (% of land area)", + "World/Europe/GBR/Demography/Forest area (% of land area)", + "World/Europe/GRC/Demography/Forest area (% of land area)", + "World/Europe/HRV/Demography/Forest area (% of land area)", + "World/Asia/IDN/Demography/Forest area (% of land area)", + "World/Asia/IND/Demography/Forest area (% of land area)", + "World/Asia/KOR/Demography/Forest area (% of land area)", + "World/South Africa/LBR/Demography/Forest area (% of land area)", + "World/North Africa/MAR/Demography/Forest area (% of land area)", + "World/Latam/MEX/Demography/Forest area (% of land area)", + "World/South Africa/MOZ/Demography/Forest area (% of land area)", + "World/South Africa/NGA/Demography/Forest area (% of land area)", + "World/Europe/NLD/Demography/Forest area (% of land area)", + "World/Latam/PAN/Demography/Forest area (% of land area)", + "World/Latam/PER/Demography/Forest area (% of land area)", + "World/Europe/POL/Demography/Forest area (% of land area)", + "World/South Africa/SEN/Demography/Forest area (% of land area)", + "World/North Africa/TUR/Demography/Forest area (% of land area)", + "World/Pair/USA/Demography/Forest area (% of land area)", + "World/Latam/VEN/Demography/Forest area (% of land area)", + "World/Asia/VNM/Demography/Forest area (% of land area)", + "World/South Africa/ZAF/Demography/Forest area (% of land area)", + "World/Persian Gulf/ARE/Principal/GDP deflator (base year varies by country)", + "World/Europe/AUT/Principal/GDP deflator (base year varies by country)", + "World/Persian Gulf/AZE/Principal/GDP deflator (base year varies by country)", + "World/Asia/BGD/Principal/GDP deflator (base year varies by country)", + "World/Latam/BRA/Principal/GDP deflator (base year varies by country)", + "World/Latam/CHL/Principal/GDP deflator (base year varies by country)", + "World/Pair/CHN/Principal/GDP deflator (base year varies by country)", + "World/South Africa/CMR/Principal/GDP deflator (base year varies by country)", + "World/Latam/COL/Principal/GDP deflator (base year varies by country)", + "World/Latam/CRI/Principal/GDP deflator (base year varies by country)", + "World/Europe/DEU/Principal/GDP deflator (base year varies by country)", + "World/North Africa/DZA/Principal/GDP deflator (base year varies by country)", + "World/North Africa/EGY/Principal/GDP deflator (base year varies by country)", + "World/Europe/ESP/Principal/GDP deflator (base year varies by country)", + "World/Europe/FRA/Principal/GDP deflator (base year varies by country)", + "World/Europe/GBR/Principal/GDP deflator (base year varies by country)", + "World/South Africa/GHA/Principal/GDP deflator (base year varies by country)", + "World/Europe/GRC/Principal/GDP deflator (base year varies by country)", + "World/Europe/HRV/Principal/GDP deflator (base year varies by country)", + "World/Asia/IDN/Principal/GDP deflator (base year varies by country)", + "World/Asia/IND/Principal/GDP deflator (base year varies by country)", + "World/North Africa/ISR/Principal/GDP deflator (base year varies by country)", + "World/Asia/KOR/Principal/GDP deflator (base year varies by country)", + "World/South Africa/LBR/Principal/GDP deflator (base year varies by country)", + "World/North Africa/MAR/Principal/GDP deflator (base year varies by country)", + "World/Latam/MEX/Principal/GDP deflator (base year varies by country)", + "World/South Africa/MOZ/Principal/GDP deflator (base year varies by country)", + "World/South Africa/NGA/Principal/GDP deflator (base year varies by country)", + "World/Europe/NLD/Principal/GDP deflator (base year varies by country)", + "World/Persian Gulf/OMN/Principal/GDP deflator (base year varies by country)", + "World/Latam/PAN/Principal/GDP deflator (base year varies by country)", + "World/Latam/PER/Principal/GDP deflator (base year varies by country)", + "World/Asia/PHL/Principal/GDP deflator (base year varies by country)", + "World/Europe/POL/Principal/GDP deflator (base year varies by country)", + "World/Persian Gulf/QAT/Principal/GDP deflator (base year varies by country)", + "World/Persian Gulf/SAU/Principal/GDP deflator (base year varies by country)", + "World/South Africa/SEN/Principal/GDP deflator (base year varies by country)", + "World/Asia/THA/Principal/GDP deflator (base year varies by country)", + "World/North Africa/TUR/Principal/GDP deflator (base year varies by country)", + "World/Pair/USA/Principal/GDP deflator (base year varies by country)", + "World/Latam/VEN/Principal/GDP deflator (base year varies by country)", + "World/Asia/VNM/Principal/GDP deflator (base year varies by country)", + "World/Persian Gulf/YEM/Principal/GDP deflator (base year varies by country)", + "World/South Africa/ZAF/Principal/GDP deflator (base year varies by country)", + "World/Persian Gulf/ARE/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/AUT/Principal/GDP deflator: linked series (base year varies by country)", + "World/Persian Gulf/AZE/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/BGD/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/BRA/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/CHL/Principal/GDP deflator: linked series (base year varies by country)", + "World/Pair/CHN/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/CMR/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/COL/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/CRI/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/DEU/Principal/GDP deflator: linked series (base year varies by country)", + "World/North Africa/DZA/Principal/GDP deflator: linked series (base year varies by country)", + "World/North Africa/EGY/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/ESP/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/FRA/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/GBR/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/GHA/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/GRC/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/HRV/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/IDN/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/IND/Principal/GDP deflator: linked series (base year varies by country)", + "World/North Africa/ISR/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/KOR/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/LBR/Principal/GDP deflator: linked series (base year varies by country)", + "World/North Africa/MAR/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/MEX/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/MOZ/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/NGA/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/NLD/Principal/GDP deflator: linked series (base year varies by country)", + "World/Persian Gulf/OMN/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/PAN/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/PER/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/PHL/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/POL/Principal/GDP deflator: linked series (base year varies by country)", + "World/Persian Gulf/QAT/Principal/GDP deflator: linked series (base year varies by country)", + "World/Persian Gulf/SAU/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/SEN/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/THA/Principal/GDP deflator: linked series (base year varies by country)", + "World/North Africa/TUR/Principal/GDP deflator: linked series (base year varies by country)", + "World/Pair/USA/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/VEN/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/VNM/Principal/GDP deflator: linked series (base year varies by country)", + "World/Persian Gulf/YEM/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/ZAF/Principal/GDP deflator: linked series (base year varies by country)", + "World/Persian Gulf/ARE/Principal/GDP per capita (current US$)", + "World/Latam/ARG/Principal/GDP per capita (current US$)", + "World/Europe/AUT/Principal/GDP per capita (current US$)", + "World/Persian Gulf/AZE/Principal/GDP per capita (current US$)", + "World/Asia/BGD/Principal/GDP per capita (current US$)", + "World/Latam/BRA/Principal/GDP per capita (current US$)", + "World/Latam/CHL/Principal/GDP per capita (current US$)", + "World/Pair/CHN/Principal/GDP per capita (current US$)", + "World/South Africa/CMR/Principal/GDP per capita (current US$)", + "World/Latam/COL/Principal/GDP per capita (current US$)", + "World/Latam/CRI/Principal/GDP per capita (current US$)", + "World/Europe/DEU/Principal/GDP per capita (current US$)", + "World/North Africa/DZA/Principal/GDP per capita (current US$)", + "World/North Africa/EGY/Principal/GDP per capita (current US$)", + "World/Europe/ESP/Principal/GDP per capita (current US$)", + "World/Europe/FRA/Principal/GDP per capita (current US$)", + "World/Europe/GBR/Principal/GDP per capita (current US$)", + "World/South Africa/GHA/Principal/GDP per capita (current US$)", + "World/Europe/GRC/Principal/GDP per capita (current US$)", + "World/Europe/HRV/Principal/GDP per capita (current US$)", + "World/Asia/IDN/Principal/GDP per capita (current US$)", + "World/Asia/IND/Principal/GDP per capita (current US$)", + "World/Persian Gulf/IRQ/Principal/GDP per capita (current US$)", + "World/North Africa/ISR/Principal/GDP per capita (current US$)", + "World/Asia/KOR/Principal/GDP per capita (current US$)", + "World/North Africa/MAR/Principal/GDP per capita (current US$)", + "World/Latam/MEX/Principal/GDP per capita (current US$)", + "World/South Africa/MOZ/Principal/GDP per capita (current US$)", + "World/South Africa/NGA/Principal/GDP per capita (current US$)", + "World/Europe/NLD/Principal/GDP per capita (current US$)", + "World/Persian Gulf/OMN/Principal/GDP per capita (current US$)", + "World/Latam/PAN/Principal/GDP per capita (current US$)", + "World/Latam/PER/Principal/GDP per capita (current US$)", + "World/Asia/PHL/Principal/GDP per capita (current US$)", + "World/Europe/POL/Principal/GDP per capita (current US$)", + "World/Persian Gulf/QAT/Principal/GDP per capita (current US$)", + "World/Persian Gulf/SAU/Principal/GDP per capita (current US$)", + "World/South Africa/SEN/Principal/GDP per capita (current US$)", + "World/Europe/SWE/Principal/GDP per capita (current US$)", + "World/Asia/THA/Principal/GDP per capita (current US$)", + "World/North Africa/TUR/Principal/GDP per capita (current US$)", + "World/Pair/USA/Principal/GDP per capita (current US$)", + "World/Latam/VEN/Principal/GDP per capita (current US$)", + "World/Asia/VNM/Principal/GDP per capita (current US$)", + "World/Persian Gulf/YEM/Principal/GDP per capita (current US$)", + "World/South Africa/ZAF/Principal/GDP per capita (current US$)", + "World/Persian Gulf/ARE/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/ARG/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Persian Gulf/AZE/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/BGD/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/BRA/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/CHL/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Pair/CHN/Principal/GDP per person employed (constant 2017 PPP $)", + "World/South Africa/CMR/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/COL/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/CRI/Principal/GDP per person employed (constant 2017 PPP $)", + "World/North Africa/EGY/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Europe/FRA/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Europe/GBR/Principal/GDP per person employed (constant 2017 PPP $)", + "World/South Africa/GHA/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Europe/GRC/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/IDN/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/IND/Principal/GDP per person employed (constant 2017 PPP $)", + "World/North Africa/ISR/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/KOR/Principal/GDP per person employed (constant 2017 PPP $)", + "World/North Africa/MAR/Principal/GDP per person employed (constant 2017 PPP $)", + "World/South Africa/MOZ/Principal/GDP per person employed (constant 2017 PPP $)", + "World/South Africa/NGA/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Persian Gulf/OMN/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/PAN/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/PER/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/PHL/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Europe/POL/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Persian Gulf/QAT/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Persian Gulf/SAU/Principal/GDP per person employed (constant 2017 PPP $)", + "World/South Africa/SEN/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/THA/Principal/GDP per person employed (constant 2017 PPP $)", + "World/North Africa/TUR/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Pair/USA/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/VNM/Principal/GDP per person employed (constant 2017 PPP $)", + "World/South Africa/ZAF/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/ARG/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/AUT/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Persian Gulf/AZE/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/BGD/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Latam/BRA/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Latam/CHL/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Pair/CHN/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/South Africa/CMR/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Latam/COL/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Latam/CRI/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/DEU/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/North Africa/EGY/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/ESP/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/FRA/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/GBR/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/South Africa/GHA/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/HRV/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/IDN/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/IND/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/North Africa/ISR/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/KOR/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/North Africa/MAR/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Latam/MEX/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/South Africa/MOZ/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/South Africa/NGA/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/NLD/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Latam/PAN/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/PHL/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/POL/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/SWE/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/THA/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/North Africa/TUR/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Pair/USA/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/VNM/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/South Africa/ZAF/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/AUT/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Persian Gulf/AZE/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Asia/BGD/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Pair/CHN/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/South Africa/CMR/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Latam/COL/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Latam/CRI/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/DEU/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/North Africa/DZA/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/ESP/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/FRA/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/GBR/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/South Africa/GHA/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/HRV/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Asia/IDN/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Asia/IND/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/North Africa/ISR/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Asia/KOR/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Latam/MEX/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/South Africa/MOZ/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/South Africa/NGA/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/NLD/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Latam/PAN/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Asia/PHL/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/POL/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Persian Gulf/SAU/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/SWE/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/North Africa/TUR/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Pair/USA/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/South Africa/ZAF/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Persian Gulf/ARE/Economy/GNI (current US$)", + "World/Latam/ARG/Economy/GNI (current US$)", + "World/Europe/AUT/Economy/GNI (current US$)", + "World/Persian Gulf/AZE/Economy/GNI (current US$)", + "World/Asia/BGD/Economy/GNI (current US$)", + "World/Latam/BRA/Economy/GNI (current US$)", + "World/Latam/CHL/Economy/GNI (current US$)", + "World/Pair/CHN/Economy/GNI (current US$)", + "World/South Africa/CMR/Economy/GNI (current US$)", + "World/Latam/COL/Economy/GNI (current US$)", + "World/Latam/CRI/Economy/GNI (current US$)", + "World/Europe/DEU/Economy/GNI (current US$)", + "World/North Africa/DZA/Economy/GNI (current US$)", + "World/North Africa/EGY/Economy/GNI (current US$)", + "World/Europe/ESP/Economy/GNI (current US$)", + "World/Europe/FRA/Economy/GNI (current US$)", + "World/Europe/GBR/Economy/GNI (current US$)", + "World/South Africa/GHA/Economy/GNI (current US$)", + "World/Europe/HRV/Economy/GNI (current US$)", + "World/Asia/IDN/Economy/GNI (current US$)", + "World/Asia/IND/Economy/GNI (current US$)", + "World/Persian Gulf/IRQ/Economy/GNI (current US$)", + "World/North Africa/ISR/Economy/GNI (current US$)", + "World/Asia/KOR/Economy/GNI (current US$)", + "World/South Africa/LBR/Economy/GNI (current US$)", + "World/North Africa/MAR/Economy/GNI (current US$)", + "World/Latam/MEX/Economy/GNI (current US$)", + "World/South Africa/MOZ/Economy/GNI (current US$)", + "World/South Africa/NGA/Economy/GNI (current US$)", + "World/Europe/NLD/Economy/GNI (current US$)", + "World/Persian Gulf/OMN/Economy/GNI (current US$)", + "World/Latam/PAN/Economy/GNI (current US$)", + "World/Latam/PER/Economy/GNI (current US$)", + "World/Asia/PHL/Economy/GNI (current US$)", + "World/Europe/POL/Economy/GNI (current US$)", + "World/Persian Gulf/QAT/Economy/GNI (current US$)", + "World/Persian Gulf/SAU/Economy/GNI (current US$)", + "World/South Africa/SEN/Economy/GNI (current US$)", + "World/Europe/SWE/Economy/GNI (current US$)", + "World/Asia/THA/Economy/GNI (current US$)", + "World/North Africa/TUR/Economy/GNI (current US$)", + "World/Pair/USA/Economy/GNI (current US$)", + "World/Latam/VEN/Economy/GNI (current US$)", + "World/Asia/VNM/Economy/GNI (current US$)", + "World/Persian Gulf/YEM/Economy/GNI (current US$)", + "World/South Africa/ZAF/Economy/GNI (current US$)", + "World/Persian Gulf/ARE/Economy/General government final consumption expenditure (current US$)", + "World/Latam/ARG/Economy/General government final consumption expenditure (current US$)", + "World/Europe/AUT/Economy/General government final consumption expenditure (current US$)", + "World/Persian Gulf/AZE/Economy/General government final consumption expenditure (current US$)", + "World/Asia/BGD/Economy/General government final consumption expenditure (current US$)", + "World/Latam/BRA/Economy/General government final consumption expenditure (current US$)", + "World/Latam/CHL/Economy/General government final consumption expenditure (current US$)", + "World/Pair/CHN/Economy/General government final consumption expenditure (current US$)", + "World/South Africa/CMR/Economy/General government final consumption expenditure (current US$)", + "World/Latam/COL/Economy/General government final consumption expenditure (current US$)", + "World/Latam/CRI/Economy/General government final consumption expenditure (current US$)", + "World/Europe/DEU/Economy/General government final consumption expenditure (current US$)", + "World/North Africa/DZA/Economy/General government final consumption expenditure (current US$)", + "World/North Africa/EGY/Economy/General government final consumption expenditure (current US$)", + "World/Europe/ESP/Economy/General government final consumption expenditure (current US$)", + "World/Europe/FRA/Economy/General government final consumption expenditure (current US$)", + "World/Europe/GBR/Economy/General government final consumption expenditure (current US$)", + "World/South Africa/GHA/Economy/General government final consumption expenditure (current US$)", + "World/Europe/GRC/Economy/General government final consumption expenditure (current US$)", + "World/Europe/HRV/Economy/General government final consumption expenditure (current US$)", + "World/Asia/IDN/Economy/General government final consumption expenditure (current US$)", + "World/Asia/IND/Economy/General government final consumption expenditure (current US$)", + "World/Persian Gulf/IRQ/Economy/General government final consumption expenditure (current US$)", + "World/North Africa/ISR/Economy/General government final consumption expenditure (current US$)", + "World/Asia/KOR/Economy/General government final consumption expenditure (current US$)", + "World/North Africa/MAR/Economy/General government final consumption expenditure (current US$)", + "World/Latam/MEX/Economy/General government final consumption expenditure (current US$)", + "World/South Africa/MOZ/Economy/General government final consumption expenditure (current US$)", + "World/South Africa/NGA/Economy/General government final consumption expenditure (current US$)", + "World/Europe/NLD/Economy/General government final consumption expenditure (current US$)", + "World/Persian Gulf/OMN/Economy/General government final consumption expenditure (current US$)", + "World/Latam/PAN/Economy/General government final consumption expenditure (current US$)", + "World/Latam/PER/Economy/General government final consumption expenditure (current US$)", + "World/Asia/PHL/Economy/General government final consumption expenditure (current US$)", + "World/Europe/POL/Economy/General government final consumption expenditure (current US$)", + "World/Persian Gulf/QAT/Economy/General government final consumption expenditure (current US$)", + "World/Persian Gulf/SAU/Economy/General government final consumption expenditure (current US$)", + "World/South Africa/SEN/Economy/General government final consumption expenditure (current US$)", + "World/Europe/SWE/Economy/General government final consumption expenditure (current US$)", + "World/Asia/THA/Economy/General government final consumption expenditure (current US$)", + "World/North Africa/TUR/Economy/General government final consumption expenditure (current US$)", + "World/Pair/USA/Economy/General government final consumption expenditure (current US$)", + "World/Latam/VEN/Economy/General government final consumption expenditure (current US$)", + "World/Asia/VNM/Economy/General government final consumption expenditure (current US$)", + "World/South Africa/ZAF/Economy/General government final consumption expenditure (current US$)", + "World/Europe/AUT/Exports/Goods exports (BoP, current US$)", + "World/Persian Gulf/AZE/Exports/Goods exports (BoP, current US$)", + "World/Asia/BGD/Exports/Goods exports (BoP, current US$)", + "World/Latam/BRA/Exports/Goods exports (BoP, current US$)", + "World/Latam/CHL/Exports/Goods exports (BoP, current US$)", + "World/Pair/CHN/Exports/Goods exports (BoP, current US$)", + "World/Latam/COL/Exports/Goods exports (BoP, current US$)", + "World/Latam/CRI/Exports/Goods exports (BoP, current US$)", + "World/Europe/DEU/Exports/Goods exports (BoP, current US$)", + "World/Europe/ESP/Exports/Goods exports (BoP, current US$)", + "World/Europe/FRA/Exports/Goods exports (BoP, current US$)", + "World/Europe/GBR/Exports/Goods exports (BoP, current US$)", + "World/South Africa/GHA/Exports/Goods exports (BoP, current US$)", + "World/Asia/IDN/Exports/Goods exports (BoP, current US$)", + "World/Asia/IND/Exports/Goods exports (BoP, current US$)", + "World/Persian Gulf/IRQ/Exports/Goods exports (BoP, current US$)", + "World/North Africa/ISR/Exports/Goods exports (BoP, current US$)", + "World/Asia/KOR/Exports/Goods exports (BoP, current US$)", + "World/South Africa/LBR/Exports/Goods exports (BoP, current US$)", + "World/North Africa/MAR/Exports/Goods exports (BoP, current US$)", + "World/Latam/MEX/Exports/Goods exports (BoP, current US$)", + "World/South Africa/MOZ/Exports/Goods exports (BoP, current US$)", + "World/Europe/NLD/Exports/Goods exports (BoP, current US$)", + "World/Persian Gulf/OMN/Exports/Goods exports (BoP, current US$)", + "World/Latam/PER/Exports/Goods exports (BoP, current US$)", + "World/Asia/PHL/Exports/Goods exports (BoP, current US$)", + "World/Europe/POL/Exports/Goods exports (BoP, current US$)", + "World/Persian Gulf/SAU/Exports/Goods exports (BoP, current US$)", + "World/South Africa/SEN/Exports/Goods exports (BoP, current US$)", + "World/Europe/SWE/Exports/Goods exports (BoP, current US$)", + "World/Asia/THA/Exports/Goods exports (BoP, current US$)", + "World/North Africa/TUR/Exports/Goods exports (BoP, current US$)", + "World/Pair/USA/Exports/Goods exports (BoP, current US$)", + "World/Latam/VEN/Exports/Goods exports (BoP, current US$)", + "World/Asia/VNM/Exports/Goods exports (BoP, current US$)", + "World/South Africa/ZAF/Exports/Goods exports (BoP, current US$)", + "World/Latam/ARG/Imports/Goods imports (BoP, current US$)", + "World/Europe/AUT/Imports/Goods imports (BoP, current US$)", + "World/Persian Gulf/AZE/Imports/Goods imports (BoP, current US$)", + "World/Asia/BGD/Imports/Goods imports (BoP, current US$)", + "World/Latam/BRA/Imports/Goods imports (BoP, current US$)", + "World/Latam/CHL/Imports/Goods imports (BoP, current US$)", + "World/Pair/CHN/Imports/Goods imports (BoP, current US$)", + "World/Latam/COL/Imports/Goods imports (BoP, current US$)", + "World/Latam/CRI/Imports/Goods imports (BoP, current US$)", + "World/Europe/DEU/Imports/Goods imports (BoP, current US$)", + "World/North Africa/DZA/Imports/Goods imports (BoP, current US$)", + "World/North Africa/EGY/Imports/Goods imports (BoP, current US$)", + "World/Europe/ESP/Imports/Goods imports (BoP, current US$)", + "World/Europe/FRA/Imports/Goods imports (BoP, current US$)", + "World/Europe/GBR/Imports/Goods imports (BoP, current US$)", + "World/South Africa/GHA/Imports/Goods imports (BoP, current US$)", + "World/Europe/GRC/Imports/Goods imports (BoP, current US$)", + "World/Europe/HRV/Imports/Goods imports (BoP, current US$)", + "World/Asia/IDN/Imports/Goods imports (BoP, current US$)", + "World/Asia/IND/Imports/Goods imports (BoP, current US$)", + "World/North Africa/ISR/Imports/Goods imports (BoP, current US$)", + "World/Asia/KOR/Imports/Goods imports (BoP, current US$)", + "World/South Africa/LBR/Imports/Goods imports (BoP, current US$)", + "World/North Africa/MAR/Imports/Goods imports (BoP, current US$)", + "World/Latam/MEX/Imports/Goods imports (BoP, current US$)", + "World/South Africa/MOZ/Imports/Goods imports (BoP, current US$)", + "World/South Africa/NGA/Imports/Goods imports (BoP, current US$)", + "World/Europe/NLD/Imports/Goods imports (BoP, current US$)", + "World/Persian Gulf/OMN/Imports/Goods imports (BoP, current US$)", + "World/Latam/PER/Imports/Goods imports (BoP, current US$)", + "World/Asia/PHL/Imports/Goods imports (BoP, current US$)", + "World/Europe/POL/Imports/Goods imports (BoP, current US$)", + "World/Persian Gulf/SAU/Imports/Goods imports (BoP, current US$)", + "World/South Africa/SEN/Imports/Goods imports (BoP, current US$)", + "World/Europe/SWE/Imports/Goods imports (BoP, current US$)", + "World/Asia/THA/Imports/Goods imports (BoP, current US$)", + "World/North Africa/TUR/Imports/Goods imports (BoP, current US$)", + "World/Pair/USA/Imports/Goods imports (BoP, current US$)", + "World/Asia/VNM/Imports/Goods imports (BoP, current US$)", + "World/Persian Gulf/YEM/Imports/Goods imports (BoP, current US$)", + "World/South Africa/ZAF/Imports/Goods imports (BoP, current US$)", + "World/Persian Gulf/ARE/Economy/Gross capital formation (current US$)", + "World/Latam/ARG/Economy/Gross capital formation (current US$)", + "World/Europe/AUT/Economy/Gross capital formation (current US$)", + "World/Persian Gulf/AZE/Economy/Gross capital formation (current US$)", + "World/Asia/BGD/Economy/Gross capital formation (current US$)", + "World/Latam/BRA/Economy/Gross capital formation (current US$)", + "World/Latam/CHL/Economy/Gross capital formation (current US$)", + "World/Pair/CHN/Economy/Gross capital formation (current US$)", + "World/South Africa/CMR/Economy/Gross capital formation (current US$)", + "World/Latam/COL/Economy/Gross capital formation (current US$)", + "World/Latam/CRI/Economy/Gross capital formation (current US$)", + "World/Europe/DEU/Economy/Gross capital formation (current US$)", + "World/North Africa/DZA/Economy/Gross capital formation (current US$)", + "World/North Africa/EGY/Economy/Gross capital formation (current US$)", + "World/Europe/ESP/Economy/Gross capital formation (current US$)", + "World/Europe/FRA/Economy/Gross capital formation (current US$)", + "World/Europe/GBR/Economy/Gross capital formation (current US$)", + "World/South Africa/GHA/Economy/Gross capital formation (current US$)", + "World/Europe/HRV/Economy/Gross capital formation (current US$)", + "World/Asia/IDN/Economy/Gross capital formation (current US$)", + "World/Asia/IND/Economy/Gross capital formation (current US$)", + "World/North Africa/ISR/Economy/Gross capital formation (current US$)", + "World/Asia/KOR/Economy/Gross capital formation (current US$)", + "World/North Africa/MAR/Economy/Gross capital formation (current US$)", + "World/Latam/MEX/Economy/Gross capital formation (current US$)", + "World/South Africa/MOZ/Economy/Gross capital formation (current US$)", + "World/South Africa/NGA/Economy/Gross capital formation (current US$)", + "World/Europe/NLD/Economy/Gross capital formation (current US$)", + "World/Persian Gulf/OMN/Economy/Gross capital formation (current US$)", + "World/Latam/PAN/Economy/Gross capital formation (current US$)", + "World/Latam/PER/Economy/Gross capital formation (current US$)", + "World/Asia/PHL/Economy/Gross capital formation (current US$)", + "World/Europe/POL/Economy/Gross capital formation (current US$)", + "World/Persian Gulf/QAT/Economy/Gross capital formation (current US$)", + "World/Persian Gulf/SAU/Economy/Gross capital formation (current US$)", + "World/South Africa/SEN/Economy/Gross capital formation (current US$)", + "World/Europe/SWE/Economy/Gross capital formation (current US$)", + "World/Asia/THA/Economy/Gross capital formation (current US$)", + "World/North Africa/TUR/Economy/Gross capital formation (current US$)", + "World/Pair/USA/Economy/Gross capital formation (current US$)", + "World/Latam/VEN/Economy/Gross capital formation (current US$)", + "World/Asia/VNM/Economy/Gross capital formation (current US$)", + "World/South Africa/ZAF/Economy/Gross capital formation (current US$)", + "World/Persian Gulf/ARE/Economy/Gross domestic savings (current US$)", + "World/Latam/ARG/Economy/Gross domestic savings (current US$)", + "World/Europe/AUT/Economy/Gross domestic savings (current US$)", + "World/Persian Gulf/AZE/Economy/Gross domestic savings (current US$)", + "World/Asia/BGD/Economy/Gross domestic savings (current US$)", + "World/Latam/BRA/Economy/Gross domestic savings (current US$)", + "World/Latam/CHL/Economy/Gross domestic savings (current US$)", + "World/Pair/CHN/Economy/Gross domestic savings (current US$)", + "World/South Africa/CMR/Economy/Gross domestic savings (current US$)", + "World/Latam/COL/Economy/Gross domestic savings (current US$)", + "World/Latam/CRI/Economy/Gross domestic savings (current US$)", + "World/Europe/DEU/Economy/Gross domestic savings (current US$)", + "World/North Africa/DZA/Economy/Gross domestic savings (current US$)", + "World/Europe/ESP/Economy/Gross domestic savings (current US$)", + "World/Europe/FRA/Economy/Gross domestic savings (current US$)", + "World/Europe/GBR/Economy/Gross domestic savings (current US$)", + "World/Europe/HRV/Economy/Gross domestic savings (current US$)", + "World/Asia/IDN/Economy/Gross domestic savings (current US$)", + "World/Asia/IND/Economy/Gross domestic savings (current US$)", + "World/Persian Gulf/IRQ/Economy/Gross domestic savings (current US$)", + "World/North Africa/ISR/Economy/Gross domestic savings (current US$)", + "World/Asia/KOR/Economy/Gross domestic savings (current US$)", + "World/North Africa/MAR/Economy/Gross domestic savings (current US$)", + "World/Latam/MEX/Economy/Gross domestic savings (current US$)", + "World/South Africa/NGA/Economy/Gross domestic savings (current US$)", + "World/Europe/NLD/Economy/Gross domestic savings (current US$)", + "World/Persian Gulf/OMN/Economy/Gross domestic savings (current US$)", + "World/Latam/PAN/Economy/Gross domestic savings (current US$)", + "World/Latam/PER/Economy/Gross domestic savings (current US$)", + "World/Asia/PHL/Economy/Gross domestic savings (current US$)", + "World/Europe/POL/Economy/Gross domestic savings (current US$)", + "World/Persian Gulf/QAT/Economy/Gross domestic savings (current US$)", + "World/Persian Gulf/SAU/Economy/Gross domestic savings (current US$)", + "World/South Africa/SEN/Economy/Gross domestic savings (current US$)", + "World/Europe/SWE/Economy/Gross domestic savings (current US$)", + "World/Asia/THA/Economy/Gross domestic savings (current US$)", + "World/North Africa/TUR/Economy/Gross domestic savings (current US$)", + "World/Pair/USA/Economy/Gross domestic savings (current US$)", + "World/Asia/VNM/Economy/Gross domestic savings (current US$)", + "World/South Africa/ZAF/Economy/Gross domestic savings (current US$)", + "World/Persian Gulf/ARE/Economy/Gross fixed capital formation (current US$)", + "World/Latam/ARG/Economy/Gross fixed capital formation (current US$)", + "World/Europe/AUT/Economy/Gross fixed capital formation (current US$)", + "World/Persian Gulf/AZE/Economy/Gross fixed capital formation (current US$)", + "World/Asia/BGD/Economy/Gross fixed capital formation (current US$)", + "World/Latam/BRA/Economy/Gross fixed capital formation (current US$)", + "World/Latam/CHL/Economy/Gross fixed capital formation (current US$)", + "World/Pair/CHN/Economy/Gross fixed capital formation (current US$)", + "World/South Africa/CMR/Economy/Gross fixed capital formation (current US$)", + "World/Latam/COL/Economy/Gross fixed capital formation (current US$)", + "World/Latam/CRI/Economy/Gross fixed capital formation (current US$)", + "World/Europe/DEU/Economy/Gross fixed capital formation (current US$)", + "World/North Africa/DZA/Economy/Gross fixed capital formation (current US$)", + "World/North Africa/EGY/Economy/Gross fixed capital formation (current US$)", + "World/Europe/FRA/Economy/Gross fixed capital formation (current US$)", + "World/Europe/GBR/Economy/Gross fixed capital formation (current US$)", + "World/South Africa/GHA/Economy/Gross fixed capital formation (current US$)", + "World/Europe/HRV/Economy/Gross fixed capital formation (current US$)", + "World/Asia/IDN/Economy/Gross fixed capital formation (current US$)", + "World/Asia/IND/Economy/Gross fixed capital formation (current US$)", + "World/North Africa/ISR/Economy/Gross fixed capital formation (current US$)", + "World/Asia/KOR/Economy/Gross fixed capital formation (current US$)", + "World/North Africa/MAR/Economy/Gross fixed capital formation (current US$)", + "World/Latam/MEX/Economy/Gross fixed capital formation (current US$)", + "World/South Africa/MOZ/Economy/Gross fixed capital formation (current US$)", + "World/South Africa/NGA/Economy/Gross fixed capital formation (current US$)", + "World/Europe/NLD/Economy/Gross fixed capital formation (current US$)", + "World/Persian Gulf/OMN/Economy/Gross fixed capital formation (current US$)", + "World/Latam/PAN/Economy/Gross fixed capital formation (current US$)", + "World/Latam/PER/Economy/Gross fixed capital formation (current US$)", + "World/Asia/PHL/Economy/Gross fixed capital formation (current US$)", + "World/Europe/POL/Economy/Gross fixed capital formation (current US$)", + "World/Persian Gulf/SAU/Economy/Gross fixed capital formation (current US$)", + "World/South Africa/SEN/Economy/Gross fixed capital formation (current US$)", + "World/Europe/SWE/Economy/Gross fixed capital formation (current US$)", + "World/Asia/THA/Economy/Gross fixed capital formation (current US$)", + "World/North Africa/TUR/Economy/Gross fixed capital formation (current US$)", + "World/Pair/USA/Economy/Gross fixed capital formation (current US$)", + "World/Latam/VEN/Economy/Gross fixed capital formation (current US$)", + "World/Asia/VNM/Economy/Gross fixed capital formation (current US$)", + "World/South Africa/ZAF/Economy/Gross fixed capital formation (current US$)", + "World/Persian Gulf/ARE/Economy/Gross national expenditure (current US$)", + "World/Latam/ARG/Economy/Gross national expenditure (current US$)", + "World/Europe/AUT/Economy/Gross national expenditure (current US$)", + "World/Persian Gulf/AZE/Economy/Gross national expenditure (current US$)", + "World/Asia/BGD/Economy/Gross national expenditure (current US$)", + "World/Latam/BRA/Economy/Gross national expenditure (current US$)", + "World/Latam/CHL/Economy/Gross national expenditure (current US$)", + "World/Pair/CHN/Economy/Gross national expenditure (current US$)", + "World/South Africa/CMR/Economy/Gross national expenditure (current US$)", + "World/Latam/COL/Economy/Gross national expenditure (current US$)", + "World/Latam/CRI/Economy/Gross national expenditure (current US$)", + "World/Europe/DEU/Economy/Gross national expenditure (current US$)", + "World/North Africa/DZA/Economy/Gross national expenditure (current US$)", + "World/North Africa/EGY/Economy/Gross national expenditure (current US$)", + "World/Europe/ESP/Economy/Gross national expenditure (current US$)", + "World/Europe/FRA/Economy/Gross national expenditure (current US$)", + "World/Europe/GBR/Economy/Gross national expenditure (current US$)", + "World/South Africa/GHA/Economy/Gross national expenditure (current US$)", + "World/Europe/GRC/Economy/Gross national expenditure (current US$)", + "World/Europe/HRV/Economy/Gross national expenditure (current US$)", + "World/Asia/IDN/Economy/Gross national expenditure (current US$)", + "World/Asia/IND/Economy/Gross national expenditure (current US$)", + "World/Persian Gulf/IRQ/Economy/Gross national expenditure (current US$)", + "World/North Africa/ISR/Economy/Gross national expenditure (current US$)", + "World/Asia/KOR/Economy/Gross national expenditure (current US$)", + "World/North Africa/MAR/Economy/Gross national expenditure (current US$)", + "World/Latam/MEX/Economy/Gross national expenditure (current US$)", + "World/South Africa/MOZ/Economy/Gross national expenditure (current US$)", + "World/South Africa/NGA/Economy/Gross national expenditure (current US$)", + "World/Europe/NLD/Economy/Gross national expenditure (current US$)", + "World/Persian Gulf/OMN/Economy/Gross national expenditure (current US$)", + "World/Latam/PAN/Economy/Gross national expenditure (current US$)", + "World/Latam/PER/Economy/Gross national expenditure (current US$)", + "World/Asia/PHL/Economy/Gross national expenditure (current US$)", + "World/Europe/POL/Economy/Gross national expenditure (current US$)", + "World/Persian Gulf/QAT/Economy/Gross national expenditure (current US$)", + "World/Persian Gulf/SAU/Economy/Gross national expenditure (current US$)", + "World/South Africa/SEN/Economy/Gross national expenditure (current US$)", + "World/Europe/SWE/Economy/Gross national expenditure (current US$)", + "World/Asia/THA/Economy/Gross national expenditure (current US$)", + "World/North Africa/TUR/Economy/Gross national expenditure (current US$)", + "World/Pair/USA/Economy/Gross national expenditure (current US$)", + "World/Latam/VEN/Economy/Gross national expenditure (current US$)", + "World/Asia/VNM/Economy/Gross national expenditure (current US$)", + "World/South Africa/ZAF/Economy/Gross national expenditure (current US$)", + "World/Persian Gulf/ARE/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/AUT/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Persian Gulf/AZE/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Asia/BGD/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/BRA/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/CHL/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Pair/CHN/Economy/Gross national expenditure deflator (base year varies by country)", + "World/South Africa/CMR/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/COL/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/CRI/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/DEU/Economy/Gross national expenditure deflator (base year varies by country)", + "World/North Africa/DZA/Economy/Gross national expenditure deflator (base year varies by country)", + "World/North Africa/EGY/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/ESP/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/FRA/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/GBR/Economy/Gross national expenditure deflator (base year varies by country)", + "World/South Africa/GHA/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/GRC/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Asia/IND/Economy/Gross national expenditure deflator (base year varies by country)", + "World/North Africa/ISR/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Asia/KOR/Economy/Gross national expenditure deflator (base year varies by country)", + "World/North Africa/MAR/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/MEX/Economy/Gross national expenditure deflator (base year varies by country)", + "World/South Africa/MOZ/Economy/Gross national expenditure deflator (base year varies by country)", + "World/South Africa/NGA/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/NLD/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Persian Gulf/OMN/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/PAN/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/PER/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Asia/PHL/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/POL/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Persian Gulf/SAU/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Pair/USA/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/VEN/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Asia/VNM/Economy/Gross national expenditure deflator (base year varies by country)", + "World/South Africa/ZAF/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/ARG/Economy/Gross savings (current US$)", + "World/Europe/AUT/Economy/Gross savings (current US$)", + "World/Persian Gulf/AZE/Economy/Gross savings (current US$)", + "World/Asia/BGD/Economy/Gross savings (current US$)", + "World/Latam/BRA/Economy/Gross savings (current US$)", + "World/Latam/CHL/Economy/Gross savings (current US$)", + "World/Pair/CHN/Economy/Gross savings (current US$)", + "World/South Africa/CMR/Economy/Gross savings (current US$)", + "World/Latam/COL/Economy/Gross savings (current US$)", + "World/Latam/CRI/Economy/Gross savings (current US$)", + "World/Europe/DEU/Economy/Gross savings (current US$)", + "World/North Africa/EGY/Economy/Gross savings (current US$)", + "World/Europe/ESP/Economy/Gross savings (current US$)", + "World/Europe/FRA/Economy/Gross savings (current US$)", + "World/Europe/GBR/Economy/Gross savings (current US$)", + "World/South Africa/GHA/Economy/Gross savings (current US$)", + "World/Europe/HRV/Economy/Gross savings (current US$)", + "World/Asia/IDN/Economy/Gross savings (current US$)", + "World/Asia/IND/Economy/Gross savings (current US$)", + "World/North Africa/ISR/Economy/Gross savings (current US$)", + "World/Asia/KOR/Economy/Gross savings (current US$)", + "World/North Africa/MAR/Economy/Gross savings (current US$)", + "World/Latam/MEX/Economy/Gross savings (current US$)", + "World/South Africa/MOZ/Economy/Gross savings (current US$)", + "World/South Africa/NGA/Economy/Gross savings (current US$)", + "World/Europe/NLD/Economy/Gross savings (current US$)", + "World/Latam/PAN/Economy/Gross savings (current US$)", + "World/Latam/PER/Economy/Gross savings (current US$)", + "World/Asia/PHL/Economy/Gross savings (current US$)", + "World/Europe/POL/Economy/Gross savings (current US$)", + "World/Persian Gulf/SAU/Economy/Gross savings (current US$)", + "World/South Africa/SEN/Economy/Gross savings (current US$)", + "World/Europe/SWE/Economy/Gross savings (current US$)", + "World/Asia/THA/Economy/Gross savings (current US$)", + "World/North Africa/TUR/Economy/Gross savings (current US$)", + "World/Pair/USA/Economy/Gross savings (current US$)", + "World/Asia/VNM/Economy/Gross savings (current US$)", + "World/South Africa/ZAF/Economy/Gross savings (current US$)", + "World/Latam/ARG/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/AUT/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Persian Gulf/AZE/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Asia/BGD/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/BRA/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/CHL/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/South Africa/CMR/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/COL/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/CRI/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/DEU/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/North Africa/DZA/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/North Africa/EGY/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/ESP/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/FRA/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/GBR/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/South Africa/GHA/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/GRC/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/HRV/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Asia/IDN/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Asia/IND/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Persian Gulf/IRQ/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/North Africa/ISR/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Asia/KOR/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/North Africa/MAR/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/MEX/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/South Africa/MOZ/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/South Africa/NGA/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/NLD/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Persian Gulf/OMN/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/PAN/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/PER/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/POL/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Persian Gulf/SAU/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/South Africa/SEN/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/SWE/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/North Africa/TUR/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Pair/USA/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/VEN/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Asia/VNM/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Persian Gulf/YEM/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/South Africa/ZAF/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/AUT/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Pair/CHN/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/DEU/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/ESP/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/FRA/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/GBR/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IND/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/ISR/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/MEX/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/POL/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/SAU/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/SWE/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Pair/USA/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/VEN/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/ZAF/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/ARE/Health/Hospital beds (per 1,000 people)", + "World/Latam/ARG/Health/Hospital beds (per 1,000 people)", + "World/Europe/AUT/Health/Hospital beds (per 1,000 people)", + "World/Persian Gulf/AZE/Health/Hospital beds (per 1,000 people)", + "World/Asia/BGD/Health/Hospital beds (per 1,000 people)", + "World/Latam/BRA/Health/Hospital beds (per 1,000 people)", + "World/Latam/CHL/Health/Hospital beds (per 1,000 people)", + "World/Pair/CHN/Health/Hospital beds (per 1,000 people)", + "World/South Africa/CMR/Health/Hospital beds (per 1,000 people)", + "World/Latam/COL/Health/Hospital beds (per 1,000 people)", + "World/Latam/CRI/Health/Hospital beds (per 1,000 people)", + "World/Europe/DEU/Health/Hospital beds (per 1,000 people)", + "World/North Africa/EGY/Health/Hospital beds (per 1,000 people)", + "World/Europe/ESP/Health/Hospital beds (per 1,000 people)", + "World/Europe/FRA/Health/Hospital beds (per 1,000 people)", + "World/Europe/GBR/Health/Hospital beds (per 1,000 people)", + "World/North Africa/ISR/Health/Hospital beds (per 1,000 people)", + "World/Asia/KOR/Health/Hospital beds (per 1,000 people)", + "World/South Africa/LBR/Health/Hospital beds (per 1,000 people)", + "World/Latam/MEX/Health/Hospital beds (per 1,000 people)", + "World/South Africa/MOZ/Health/Hospital beds (per 1,000 people)", + "World/South Africa/NGA/Health/Hospital beds (per 1,000 people)", + "World/Europe/NLD/Health/Hospital beds (per 1,000 people)", + "World/Persian Gulf/OMN/Health/Hospital beds (per 1,000 people)", + "World/Persian Gulf/SAU/Health/Hospital beds (per 1,000 people)", + "World/North Africa/TUR/Health/Hospital beds (per 1,000 people)", + "World/Pair/USA/Health/Hospital beds (per 1,000 people)", + "World/South Africa/ZAF/Health/Hospital beds (per 1,000 people)", + "World/Persian Gulf/ARE/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/ARG/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/AUT/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Persian Gulf/AZE/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/BGD/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/BRA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/CHL/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Pair/CHN/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/South Africa/CMR/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/COL/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/CRI/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/DEU/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/North Africa/DZA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/North Africa/EGY/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/ESP/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/FRA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/GBR/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/South Africa/GHA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/GRC/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/HRV/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/IDN/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/IND/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Persian Gulf/IRQ/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/North Africa/ISR/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/KOR/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/North Africa/MAR/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/MEX/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/South Africa/MOZ/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/South Africa/NGA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/NLD/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Persian Gulf/OMN/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/PAN/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/PER/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/PHL/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/POL/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Persian Gulf/QAT/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Persian Gulf/SAU/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/South Africa/SEN/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/SWE/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/THA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/North Africa/TUR/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Pair/USA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/VEN/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/VNM/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/South Africa/ZAF/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/AUT/Exports/ICT service exports (BoP, current US$)", + "World/Asia/BGD/Exports/ICT service exports (BoP, current US$)", + "World/Latam/CHL/Exports/ICT service exports (BoP, current US$)", + "World/Pair/CHN/Exports/ICT service exports (BoP, current US$)", + "World/South Africa/CMR/Exports/ICT service exports (BoP, current US$)", + "World/Latam/CRI/Exports/ICT service exports (BoP, current US$)", + "World/Europe/DEU/Exports/ICT service exports (BoP, current US$)", + "World/North Africa/DZA/Exports/ICT service exports (BoP, current US$)", + "World/Europe/ESP/Exports/ICT service exports (BoP, current US$)", + "World/Europe/GBR/Exports/ICT service exports (BoP, current US$)", + "World/Europe/GRC/Exports/ICT service exports (BoP, current US$)", + "World/Europe/HRV/Exports/ICT service exports (BoP, current US$)", + "World/Asia/IND/Exports/ICT service exports (BoP, current US$)", + "World/North Africa/ISR/Exports/ICT service exports (BoP, current US$)", + "World/Asia/KOR/Exports/ICT service exports (BoP, current US$)", + "World/North Africa/MAR/Exports/ICT service exports (BoP, current US$)", + "World/Latam/MEX/Exports/ICT service exports (BoP, current US$)", + "World/South Africa/NGA/Exports/ICT service exports (BoP, current US$)", + "World/Europe/NLD/Exports/ICT service exports (BoP, current US$)", + "World/Persian Gulf/OMN/Exports/ICT service exports (BoP, current US$)", + "World/Latam/PAN/Exports/ICT service exports (BoP, current US$)", + "World/Europe/POL/Exports/ICT service exports (BoP, current US$)", + "World/Persian Gulf/QAT/Exports/ICT service exports (BoP, current US$)", + "World/Persian Gulf/SAU/Exports/ICT service exports (BoP, current US$)", + "World/Europe/SWE/Exports/ICT service exports (BoP, current US$)", + "World/Asia/THA/Exports/ICT service exports (BoP, current US$)", + "World/Pair/USA/Exports/ICT service exports (BoP, current US$)", + "World/South Africa/ZAF/Exports/ICT service exports (BoP, current US$)", + "World/Persian Gulf/ARE/Imports/Import unit value index (2000 = 100)", + "World/Europe/AUT/Imports/Import unit value index (2000 = 100)", + "World/Persian Gulf/AZE/Imports/Import unit value index (2000 = 100)", + "World/Asia/BGD/Imports/Import unit value index (2000 = 100)", + "World/Latam/CRI/Imports/Import unit value index (2000 = 100)", + "World/Europe/DEU/Imports/Import unit value index (2000 = 100)", + "World/North Africa/EGY/Imports/Import unit value index (2000 = 100)", + "World/Europe/ESP/Imports/Import unit value index (2000 = 100)", + "World/Europe/FRA/Imports/Import unit value index (2000 = 100)", + "World/Europe/GRC/Imports/Import unit value index (2000 = 100)", + "World/Europe/HRV/Imports/Import unit value index (2000 = 100)", + "World/Latam/MEX/Imports/Import unit value index (2000 = 100)", + "World/South Africa/MOZ/Imports/Import unit value index (2000 = 100)", + "World/Europe/NLD/Imports/Import unit value index (2000 = 100)", + "World/Latam/PAN/Imports/Import unit value index (2000 = 100)", + "World/Europe/POL/Imports/Import unit value index (2000 = 100)", + "World/Persian Gulf/QAT/Imports/Import unit value index (2000 = 100)", + "World/Europe/SWE/Imports/Import unit value index (2000 = 100)", + "World/Asia/THA/Imports/Import unit value index (2000 = 100)", + "World/Persian Gulf/ARE/Imports/Import value index (2000 = 100)", + "World/Latam/ARG/Imports/Import value index (2000 = 100)", + "World/Europe/AUT/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/AZE/Imports/Import value index (2000 = 100)", + "World/Asia/BGD/Imports/Import value index (2000 = 100)", + "World/Latam/BRA/Imports/Import value index (2000 = 100)", + "World/Latam/CHL/Imports/Import value index (2000 = 100)", + "World/Pair/CHN/Imports/Import value index (2000 = 100)", + "World/Latam/COL/Imports/Import value index (2000 = 100)", + "World/Latam/CRI/Imports/Import value index (2000 = 100)", + "World/Europe/DEU/Imports/Import value index (2000 = 100)", + "World/North Africa/DZA/Imports/Import value index (2000 = 100)", + "World/North Africa/EGY/Imports/Import value index (2000 = 100)", + "World/Europe/ESP/Imports/Import value index (2000 = 100)", + "World/Europe/FRA/Imports/Import value index (2000 = 100)", + "World/Europe/GBR/Imports/Import value index (2000 = 100)", + "World/Europe/GRC/Imports/Import value index (2000 = 100)", + "World/Europe/HRV/Imports/Import value index (2000 = 100)", + "World/Asia/IDN/Imports/Import value index (2000 = 100)", + "World/Asia/IND/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/IRQ/Imports/Import value index (2000 = 100)", + "World/North Africa/ISR/Imports/Import value index (2000 = 100)", + "World/Asia/KOR/Imports/Import value index (2000 = 100)", + "World/North Africa/MAR/Imports/Import value index (2000 = 100)", + "World/Latam/MEX/Imports/Import value index (2000 = 100)", + "World/South Africa/MOZ/Imports/Import value index (2000 = 100)", + "World/South Africa/NGA/Imports/Import value index (2000 = 100)", + "World/Europe/NLD/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/OMN/Imports/Import value index (2000 = 100)", + "World/Latam/PAN/Imports/Import value index (2000 = 100)", + "World/Latam/PER/Imports/Import value index (2000 = 100)", + "World/Asia/PHL/Imports/Import value index (2000 = 100)", + "World/Europe/POL/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/QAT/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/SAU/Imports/Import value index (2000 = 100)", + "World/South Africa/SEN/Imports/Import value index (2000 = 100)", + "World/Europe/SWE/Imports/Import value index (2000 = 100)", + "World/Asia/THA/Imports/Import value index (2000 = 100)", + "World/North Africa/TUR/Imports/Import value index (2000 = 100)", + "World/Pair/USA/Imports/Import value index (2000 = 100)", + "World/Asia/VNM/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/YEM/Imports/Import value index (2000 = 100)", + "World/South Africa/ZAF/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/ARE/Imports/Import volume index (2000 = 100)", + "World/Latam/ARG/Imports/Import volume index (2000 = 100)", + "World/Europe/AUT/Imports/Import volume index (2000 = 100)", + "World/Persian Gulf/AZE/Imports/Import volume index (2000 = 100)", + "World/Asia/BGD/Imports/Import volume index (2000 = 100)", + "World/Latam/BRA/Imports/Import volume index (2000 = 100)", + "World/Latam/CHL/Imports/Import volume index (2000 = 100)", + "World/Pair/CHN/Imports/Import volume index (2000 = 100)", + "World/Latam/COL/Imports/Import volume index (2000 = 100)", + "World/Latam/CRI/Imports/Import volume index (2000 = 100)", + "World/Europe/DEU/Imports/Import volume index (2000 = 100)", + "World/North Africa/DZA/Imports/Import volume index (2000 = 100)", + "World/North Africa/EGY/Imports/Import volume index (2000 = 100)", + "World/Europe/GBR/Imports/Import volume index (2000 = 100)", + "World/Asia/IDN/Imports/Import volume index (2000 = 100)", + "World/Asia/IND/Imports/Import volume index (2000 = 100)", + "World/North Africa/ISR/Imports/Import volume index (2000 = 100)", + "World/Asia/KOR/Imports/Import volume index (2000 = 100)", + "World/North Africa/MAR/Imports/Import volume index (2000 = 100)", + "World/Latam/MEX/Imports/Import volume index (2000 = 100)", + "World/South Africa/MOZ/Imports/Import volume index (2000 = 100)", + "World/South Africa/NGA/Imports/Import volume index (2000 = 100)", + "World/Europe/NLD/Imports/Import volume index (2000 = 100)", + "World/Persian Gulf/OMN/Imports/Import volume index (2000 = 100)", + "World/Latam/PAN/Imports/Import volume index (2000 = 100)", + "World/Latam/PER/Imports/Import volume index (2000 = 100)", + "World/Asia/PHL/Imports/Import volume index (2000 = 100)", + "World/Europe/POL/Imports/Import volume index (2000 = 100)", + "World/Persian Gulf/QAT/Imports/Import volume index (2000 = 100)", + "World/Persian Gulf/SAU/Imports/Import volume index (2000 = 100)", + "World/South Africa/SEN/Imports/Import volume index (2000 = 100)", + "World/Asia/THA/Imports/Import volume index (2000 = 100)", + "World/North Africa/TUR/Imports/Import volume index (2000 = 100)", + "World/Pair/USA/Imports/Import volume index (2000 = 100)", + "World/Latam/VEN/Imports/Import volume index (2000 = 100)", + "World/Asia/VNM/Imports/Import volume index (2000 = 100)", + "World/Persian Gulf/YEM/Imports/Import volume index (2000 = 100)", + "World/South Africa/ZAF/Imports/Import volume index (2000 = 100)", + "World/Latam/ARG/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/AUT/Imports/Imports of goods and services (BoP, current US$)", + "World/Persian Gulf/AZE/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/BGD/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/BRA/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/CHL/Imports/Imports of goods and services (BoP, current US$)", + "World/Pair/CHN/Imports/Imports of goods and services (BoP, current US$)", + "World/South Africa/CMR/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/COL/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/CRI/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/DEU/Imports/Imports of goods and services (BoP, current US$)", + "World/North Africa/DZA/Imports/Imports of goods and services (BoP, current US$)", + "World/North Africa/EGY/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/ESP/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/FRA/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/GBR/Imports/Imports of goods and services (BoP, current US$)", + "World/South Africa/GHA/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/GRC/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/HRV/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/IDN/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/IND/Imports/Imports of goods and services (BoP, current US$)", + "World/North Africa/ISR/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/KOR/Imports/Imports of goods and services (BoP, current US$)", + "World/North Africa/MAR/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/MEX/Imports/Imports of goods and services (BoP, current US$)", + "World/South Africa/MOZ/Imports/Imports of goods and services (BoP, current US$)", + "World/South Africa/NGA/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/NLD/Imports/Imports of goods and services (BoP, current US$)", + "World/Persian Gulf/OMN/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/PAN/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/PER/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/PHL/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/POL/Imports/Imports of goods and services (BoP, current US$)", + "World/Persian Gulf/SAU/Imports/Imports of goods and services (BoP, current US$)", + "World/South Africa/SEN/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/SWE/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/THA/Imports/Imports of goods and services (BoP, current US$)", + "World/North Africa/TUR/Imports/Imports of goods and services (BoP, current US$)", + "World/Pair/USA/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/VNM/Imports/Imports of goods and services (BoP, current US$)", + "World/Persian Gulf/YEM/Imports/Imports of goods and services (BoP, current US$)", + "World/South Africa/ZAF/Imports/Imports of goods and services (BoP, current US$)", + "World/Persian Gulf/ARE/Imports/Imports of goods and services (current US$)", + "World/Latam/ARG/Imports/Imports of goods and services (current US$)", + "World/Europe/AUT/Imports/Imports of goods and services (current US$)", + "World/Persian Gulf/AZE/Imports/Imports of goods and services (current US$)", + "World/Asia/BGD/Imports/Imports of goods and services (current US$)", + "World/Latam/BRA/Imports/Imports of goods and services (current US$)", + "World/Latam/CHL/Imports/Imports of goods and services (current US$)", + "World/Pair/CHN/Imports/Imports of goods and services (current US$)", + "World/Latam/COL/Imports/Imports of goods and services (current US$)", + "World/Latam/CRI/Imports/Imports of goods and services (current US$)", + "World/Europe/DEU/Imports/Imports of goods and services (current US$)", + "World/North Africa/DZA/Imports/Imports of goods and services (current US$)", + "World/North Africa/EGY/Imports/Imports of goods and services (current US$)", + "World/Europe/ESP/Imports/Imports of goods and services (current US$)", + "World/Europe/FRA/Imports/Imports of goods and services (current US$)", + "World/Europe/GBR/Imports/Imports of goods and services (current US$)", + "World/South Africa/GHA/Imports/Imports of goods and services (current US$)", + "World/Europe/GRC/Imports/Imports of goods and services (current US$)", + "World/Europe/HRV/Imports/Imports of goods and services (current US$)", + "World/Asia/IDN/Imports/Imports of goods and services (current US$)", + "World/Asia/IND/Imports/Imports of goods and services (current US$)", + "World/Persian Gulf/IRQ/Imports/Imports of goods and services (current US$)", + "World/North Africa/ISR/Imports/Imports of goods and services (current US$)", + "World/Asia/KOR/Imports/Imports of goods and services (current US$)", + "World/North Africa/MAR/Imports/Imports of goods and services (current US$)", + "World/Latam/MEX/Imports/Imports of goods and services (current US$)", + "World/South Africa/MOZ/Imports/Imports of goods and services (current US$)", + "World/South Africa/NGA/Imports/Imports of goods and services (current US$)", + "World/Europe/NLD/Imports/Imports of goods and services (current US$)", + "World/Persian Gulf/OMN/Imports/Imports of goods and services (current US$)", + "World/Latam/PAN/Imports/Imports of goods and services (current US$)", + "World/Latam/PER/Imports/Imports of goods and services (current US$)", + "World/Asia/PHL/Imports/Imports of goods and services (current US$)", + "World/Europe/POL/Imports/Imports of goods and services (current US$)", + "World/Persian Gulf/QAT/Imports/Imports of goods and services (current US$)", + "World/Persian Gulf/SAU/Imports/Imports of goods and services (current US$)", + "World/South Africa/SEN/Imports/Imports of goods and services (current US$)", + "World/Europe/SWE/Imports/Imports of goods and services (current US$)", + "World/Asia/THA/Imports/Imports of goods and services (current US$)", + "World/North Africa/TUR/Imports/Imports of goods and services (current US$)", + "World/Pair/USA/Imports/Imports of goods and services (current US$)", + "World/Latam/VEN/Imports/Imports of goods and services (current US$)", + "World/Asia/VNM/Imports/Imports of goods and services (current US$)", + "World/South Africa/ZAF/Imports/Imports of goods and services (current US$)", + "World/Persian Gulf/ARE/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Europe/AUT/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/AZE/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Latam/BRA/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Pair/CHN/Health/Incidence of tuberculosis (per 100,000 people)", + "World/South Africa/CMR/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Latam/CRI/Health/Incidence of tuberculosis (per 100,000 people)", + "World/North Africa/EGY/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Europe/ESP/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Europe/GBR/Health/Incidence of tuberculosis (per 100,000 people)", + "World/South Africa/GHA/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Europe/HRV/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Asia/IDN/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Asia/IND/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/IRQ/Health/Incidence of tuberculosis (per 100,000 people)", + "World/North Africa/ISR/Health/Incidence of tuberculosis (per 100,000 people)", + "World/South Africa/LBR/Health/Incidence of tuberculosis (per 100,000 people)", + "World/South Africa/MOZ/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/OMN/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Latam/PER/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Europe/POL/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/QAT/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/SAU/Health/Incidence of tuberculosis (per 100,000 people)", + "World/South Africa/SEN/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Asia/THA/Health/Incidence of tuberculosis (per 100,000 people)", + "World/North Africa/TUR/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Pair/USA/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Asia/VNM/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/YEM/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/ARE/Economy/Industry (including construction), value added (current US$)", + "World/Latam/ARG/Economy/Industry (including construction), value added (current US$)", + "World/Europe/AUT/Economy/Industry (including construction), value added (current US$)", + "World/Persian Gulf/AZE/Economy/Industry (including construction), value added (current US$)", + "World/Asia/BGD/Economy/Industry (including construction), value added (current US$)", + "World/Latam/BRA/Economy/Industry (including construction), value added (current US$)", + "World/Latam/CHL/Economy/Industry (including construction), value added (current US$)", + "World/Pair/CHN/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/CMR/Economy/Industry (including construction), value added (current US$)", + "World/Latam/COL/Economy/Industry (including construction), value added (current US$)", + "World/Latam/CRI/Economy/Industry (including construction), value added (current US$)", + "World/Europe/DEU/Economy/Industry (including construction), value added (current US$)", + "World/North Africa/DZA/Economy/Industry (including construction), value added (current US$)", + "World/North Africa/EGY/Economy/Industry (including construction), value added (current US$)", + "World/Europe/ESP/Economy/Industry (including construction), value added (current US$)", + "World/Europe/FRA/Economy/Industry (including construction), value added (current US$)", + "World/Europe/GBR/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/GHA/Economy/Industry (including construction), value added (current US$)", + "World/Europe/GRC/Economy/Industry (including construction), value added (current US$)", + "World/Europe/HRV/Economy/Industry (including construction), value added (current US$)", + "World/Asia/IDN/Economy/Industry (including construction), value added (current US$)", + "World/Asia/IND/Economy/Industry (including construction), value added (current US$)", + "World/Persian Gulf/IRQ/Economy/Industry (including construction), value added (current US$)", + "World/North Africa/ISR/Economy/Industry (including construction), value added (current US$)", + "World/Asia/KOR/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/LBR/Economy/Industry (including construction), value added (current US$)", + "World/North Africa/MAR/Economy/Industry (including construction), value added (current US$)", + "World/Latam/MEX/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/MOZ/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/NGA/Economy/Industry (including construction), value added (current US$)", + "World/Europe/NLD/Economy/Industry (including construction), value added (current US$)", + "World/Persian Gulf/OMN/Economy/Industry (including construction), value added (current US$)", + "World/Latam/PAN/Economy/Industry (including construction), value added (current US$)", + "World/Latam/PER/Economy/Industry (including construction), value added (current US$)", + "World/Asia/PHL/Economy/Industry (including construction), value added (current US$)", + "World/Europe/POL/Economy/Industry (including construction), value added (current US$)", + "World/Persian Gulf/SAU/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/SEN/Economy/Industry (including construction), value added (current US$)", + "World/Europe/SWE/Economy/Industry (including construction), value added (current US$)", + "World/Asia/THA/Economy/Industry (including construction), value added (current US$)", + "World/North Africa/TUR/Economy/Industry (including construction), value added (current US$)", + "World/Pair/USA/Economy/Industry (including construction), value added (current US$)", + "World/Latam/VEN/Economy/Industry (including construction), value added (current US$)", + "World/Asia/VNM/Economy/Industry (including construction), value added (current US$)", + "World/Persian Gulf/YEM/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/ZAF/Economy/Industry (including construction), value added (current US$)", + "World/Latam/BRA/Mortality/Intentional homicides (per 100,000 people)", + "World/Pair/CHN/Mortality/Intentional homicides (per 100,000 people)", + "World/Latam/COL/Mortality/Intentional homicides (per 100,000 people)", + "World/Latam/CRI/Mortality/Intentional homicides (per 100,000 people)", + "World/North Africa/EGY/Mortality/Intentional homicides (per 100,000 people)", + "World/Europe/ESP/Mortality/Intentional homicides (per 100,000 people)", + "World/Europe/GBR/Mortality/Intentional homicides (per 100,000 people)", + "World/Asia/IDN/Mortality/Intentional homicides (per 100,000 people)", + "World/Asia/IND/Mortality/Intentional homicides (per 100,000 people)", + "World/Persian Gulf/IRQ/Mortality/Intentional homicides (per 100,000 people)", + "World/North Africa/ISR/Mortality/Intentional homicides (per 100,000 people)", + "World/South Africa/MOZ/Mortality/Intentional homicides (per 100,000 people)", + "World/Europe/NLD/Mortality/Intentional homicides (per 100,000 people)", + "World/Latam/PAN/Mortality/Intentional homicides (per 100,000 people)", + "World/Latam/PER/Mortality/Intentional homicides (per 100,000 people)", + "World/Europe/POL/Mortality/Intentional homicides (per 100,000 people)", + "World/Asia/THA/Mortality/Intentional homicides (per 100,000 people)", + "World/Asia/VNM/Mortality/Intentional homicides (per 100,000 people)", + "World/Persian Gulf/YEM/Mortality/Intentional homicides (per 100,000 people)", + "World/South Africa/ZAF/Mortality/Intentional homicides (per 100,000 people)", + "World/Persian Gulf/ARE/Migration/International migrant stock (% of population)", + "World/Europe/AUT/Migration/International migrant stock (% of population)", + "World/Persian Gulf/AZE/Migration/International migrant stock (% of population)", + "World/Latam/CHL/Migration/International migrant stock (% of population)", + "World/Pair/CHN/Migration/International migrant stock (% of population)", + "World/Europe/DEU/Migration/International migrant stock (% of population)", + "World/North Africa/DZA/Migration/International migrant stock (% of population)", + "World/Europe/ESP/Migration/International migrant stock (% of population)", + "World/Europe/FRA/Migration/International migrant stock (% of population)", + "World/Europe/GBR/Migration/International migrant stock (% of population)", + "World/Europe/GRC/Migration/International migrant stock (% of population)", + "World/Europe/HRV/Migration/International migrant stock (% of population)", + "World/Asia/IND/Migration/International migrant stock (% of population)", + "World/North Africa/ISR/Migration/International migrant stock (% of population)", + "World/Asia/KOR/Migration/International migrant stock (% of population)", + "World/North Africa/MAR/Migration/International migrant stock (% of population)", + "World/Latam/MEX/Migration/International migrant stock (% of population)", + "World/South Africa/MOZ/Migration/International migrant stock (% of population)", + "World/South Africa/NGA/Migration/International migrant stock (% of population)", + "World/Europe/NLD/Migration/International migrant stock (% of population)", + "World/Latam/PAN/Migration/International migrant stock (% of population)", + "World/Latam/PER/Migration/International migrant stock (% of population)", + "World/Europe/POL/Migration/International migrant stock (% of population)", + "World/Persian Gulf/SAU/Migration/International migrant stock (% of population)", + "World/South Africa/SEN/Migration/International migrant stock (% of population)", + "World/Europe/SWE/Migration/International migrant stock (% of population)", + "World/Asia/THA/Migration/International migrant stock (% of population)", + "World/North Africa/TUR/Migration/International migrant stock (% of population)", + "World/Pair/USA/Migration/International migrant stock (% of population)", + "World/Asia/VNM/Migration/International migrant stock (% of population)", + "World/Persian Gulf/YEM/Migration/International migrant stock (% of population)", + "World/Persian Gulf/ARE/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Europe/AUT/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Persian Gulf/AZE/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/BRA/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/CHL/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Pair/CHN/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/COL/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/CRI/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Europe/DEU/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/North Africa/DZA/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/North Africa/EGY/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/South Africa/GHA/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Europe/GRC/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Asia/IDN/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Asia/IND/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Persian Gulf/IRQ/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/North Africa/ISR/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Asia/KOR/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/South Africa/LBR/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/MEX/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/South Africa/MOZ/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/South Africa/NGA/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Europe/NLD/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Persian Gulf/OMN/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/PAN/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/PER/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Asia/PHL/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Europe/POL/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Persian Gulf/QAT/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Europe/SWE/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/North Africa/TUR/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Pair/USA/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/VEN/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Asia/VNM/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Persian Gulf/YEM/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/South Africa/ZAF/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Persian Gulf/ARE/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/ARG/Mortality/Lifetime risk of maternal death (%)", + "World/Persian Gulf/AZE/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/BGD/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/CHL/Mortality/Lifetime risk of maternal death (%)", + "World/Pair/CHN/Mortality/Lifetime risk of maternal death (%)", + "World/South Africa/CMR/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/COL/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/CRI/Mortality/Lifetime risk of maternal death (%)", + "World/North Africa/EGY/Mortality/Lifetime risk of maternal death (%)", + "World/Europe/ESP/Mortality/Lifetime risk of maternal death (%)", + "World/Europe/GBR/Mortality/Lifetime risk of maternal death (%)", + "World/South Africa/GHA/Mortality/Lifetime risk of maternal death (%)", + "World/Europe/GRC/Mortality/Lifetime risk of maternal death (%)", + "World/Europe/HRV/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/IDN/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/IND/Mortality/Lifetime risk of maternal death (%)", + "World/North Africa/ISR/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/KOR/Mortality/Lifetime risk of maternal death (%)", + "World/South Africa/LBR/Mortality/Lifetime risk of maternal death (%)", + "World/North Africa/MAR/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/MEX/Mortality/Lifetime risk of maternal death (%)", + "World/South Africa/MOZ/Mortality/Lifetime risk of maternal death (%)", + "World/South Africa/NGA/Mortality/Lifetime risk of maternal death (%)", + "World/Europe/NLD/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/PAN/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/PER/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/PHL/Mortality/Lifetime risk of maternal death (%)", + "World/Europe/POL/Mortality/Lifetime risk of maternal death (%)", + "World/Persian Gulf/QAT/Mortality/Lifetime risk of maternal death (%)", + "World/Persian Gulf/SAU/Mortality/Lifetime risk of maternal death (%)", + "World/South Africa/SEN/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/THA/Mortality/Lifetime risk of maternal death (%)", + "World/North Africa/TUR/Mortality/Lifetime risk of maternal death (%)", + "World/Pair/USA/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/VNM/Mortality/Lifetime risk of maternal death (%)", + "World/Persian Gulf/YEM/Mortality/Lifetime risk of maternal death (%)", + "World/Persian Gulf/ARE/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/ARG/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Persian Gulf/AZE/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/BGD/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/CHL/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Pair/CHN/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/South Africa/CMR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/COL/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/CRI/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/North Africa/EGY/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Europe/ESP/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Europe/GBR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/South Africa/GHA/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Europe/GRC/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Europe/HRV/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/IDN/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/IND/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/North Africa/ISR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/KOR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/South Africa/LBR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/North Africa/MAR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/MEX/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/South Africa/MOZ/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/South Africa/NGA/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Europe/NLD/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/PAN/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/PER/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/PHL/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Europe/POL/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Persian Gulf/QAT/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Persian Gulf/SAU/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/South Africa/SEN/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/THA/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/North Africa/TUR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Pair/USA/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/VEN/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/VNM/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Persian Gulf/YEM/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Persian Gulf/ARE/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/ARG/Industry/Livestock production index (2014-2016 = 100)", + "World/Europe/AUT/Industry/Livestock production index (2014-2016 = 100)", + "World/Persian Gulf/AZE/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/BGD/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/BRA/Industry/Livestock production index (2014-2016 = 100)", + "World/Pair/CHN/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/COL/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/CRI/Industry/Livestock production index (2014-2016 = 100)", + "World/North Africa/DZA/Industry/Livestock production index (2014-2016 = 100)", + "World/North Africa/EGY/Industry/Livestock production index (2014-2016 = 100)", + "World/Europe/GBR/Industry/Livestock production index (2014-2016 = 100)", + "World/South Africa/GHA/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/IDN/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/IND/Industry/Livestock production index (2014-2016 = 100)", + "World/North Africa/ISR/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/KOR/Industry/Livestock production index (2014-2016 = 100)", + "World/South Africa/LBR/Industry/Livestock production index (2014-2016 = 100)", + "World/North Africa/MAR/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/MEX/Industry/Livestock production index (2014-2016 = 100)", + "World/South Africa/MOZ/Industry/Livestock production index (2014-2016 = 100)", + "World/South Africa/NGA/Industry/Livestock production index (2014-2016 = 100)", + "World/Europe/NLD/Industry/Livestock production index (2014-2016 = 100)", + "World/Persian Gulf/OMN/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/PAN/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/PER/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/PHL/Industry/Livestock production index (2014-2016 = 100)", + "World/Europe/POL/Industry/Livestock production index (2014-2016 = 100)", + "World/Persian Gulf/QAT/Industry/Livestock production index (2014-2016 = 100)", + "World/Persian Gulf/SAU/Industry/Livestock production index (2014-2016 = 100)", + "World/South Africa/SEN/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/THA/Industry/Livestock production index (2014-2016 = 100)", + "World/North Africa/TUR/Industry/Livestock production index (2014-2016 = 100)", + "World/Pair/USA/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/VEN/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/VNM/Industry/Livestock production index (2014-2016 = 100)", + "World/Persian Gulf/YEM/Industry/Livestock production index (2014-2016 = 100)", + "World/South Africa/ZAF/Industry/Livestock production index (2014-2016 = 100)", + "World/Persian Gulf/ARE/Health/Low-birthweight babies (% of births)", + "World/Asia/BGD/Health/Low-birthweight babies (% of births)", + "World/Latam/BRA/Health/Low-birthweight babies (% of births)", + "World/Latam/CHL/Health/Low-birthweight babies (% of births)", + "World/Pair/CHN/Health/Low-birthweight babies (% of births)", + "World/South Africa/CMR/Health/Low-birthweight babies (% of births)", + "World/Latam/COL/Health/Low-birthweight babies (% of births)", + "World/Latam/CRI/Health/Low-birthweight babies (% of births)", + "World/North Africa/DZA/Health/Low-birthweight babies (% of births)", + "World/Europe/ESP/Health/Low-birthweight babies (% of births)", + "World/Europe/FRA/Health/Low-birthweight babies (% of births)", + "World/Europe/GBR/Health/Low-birthweight babies (% of births)", + "World/South Africa/GHA/Health/Low-birthweight babies (% of births)", + "World/Europe/HRV/Health/Low-birthweight babies (% of births)", + "World/Asia/IDN/Health/Low-birthweight babies (% of births)", + "World/North Africa/ISR/Health/Low-birthweight babies (% of births)", + "World/Asia/KOR/Health/Low-birthweight babies (% of births)", + "World/North Africa/MAR/Health/Low-birthweight babies (% of births)", + "World/Latam/MEX/Health/Low-birthweight babies (% of births)", + "World/South Africa/MOZ/Health/Low-birthweight babies (% of births)", + "World/Europe/NLD/Health/Low-birthweight babies (% of births)", + "World/Persian Gulf/OMN/Health/Low-birthweight babies (% of births)", + "World/Latam/PAN/Health/Low-birthweight babies (% of births)", + "World/Latam/PER/Health/Low-birthweight babies (% of births)", + "World/Asia/PHL/Health/Low-birthweight babies (% of births)", + "World/Persian Gulf/QAT/Health/Low-birthweight babies (% of births)", + "World/South Africa/SEN/Health/Low-birthweight babies (% of births)", + "World/Asia/THA/Health/Low-birthweight babies (% of births)", + "World/North Africa/TUR/Health/Low-birthweight babies (% of births)", + "World/Asia/VNM/Health/Low-birthweight babies (% of births)", + "World/South Africa/ZAF/Health/Low-birthweight babies (% of births)", + "World/Persian Gulf/ARE/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Asia/BGD/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Latam/CHL/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Pair/CHN/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Latam/COL/Economy/Market capitalization of listed domestic companies (current US$)", + "World/South Africa/GHA/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Europe/HRV/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Asia/IDN/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Asia/IND/Economy/Market capitalization of listed domestic companies (current US$)", + "World/North Africa/ISR/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Asia/KOR/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Latam/MEX/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Persian Gulf/OMN/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Latam/PAN/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Europe/POL/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Persian Gulf/QAT/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Persian Gulf/SAU/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Asia/THA/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Pair/USA/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Asia/VNM/Economy/Market capitalization of listed domestic companies (current US$)", + "World/South Africa/ZAF/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Persian Gulf/ARE/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Latam/ARG/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Persian Gulf/AZE/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/BGD/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Latam/CHL/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Pair/CHN/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/South Africa/CMR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Latam/CRI/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/North Africa/DZA/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/North Africa/EGY/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Europe/ESP/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Europe/GBR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/South Africa/GHA/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Europe/HRV/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/IDN/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/IND/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/North Africa/ISR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/KOR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/South Africa/LBR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/North Africa/MAR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Latam/MEX/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/South Africa/MOZ/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/South Africa/NGA/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Europe/NLD/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Latam/PAN/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Latam/PER/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/PHL/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Europe/POL/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Persian Gulf/QAT/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Persian Gulf/SAU/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/South Africa/SEN/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/THA/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/North Africa/TUR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Pair/USA/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/VNM/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Persian Gulf/YEM/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Persian Gulf/ARE/Exports/Merchandise exports (current US$)", + "World/Europe/AUT/Exports/Merchandise exports (current US$)", + "World/Persian Gulf/AZE/Exports/Merchandise exports (current US$)", + "World/Asia/BGD/Exports/Merchandise exports (current US$)", + "World/Latam/BRA/Exports/Merchandise exports (current US$)", + "World/Latam/CHL/Exports/Merchandise exports (current US$)", + "World/Pair/CHN/Exports/Merchandise exports (current US$)", + "World/Latam/COL/Exports/Merchandise exports (current US$)", + "World/Latam/CRI/Exports/Merchandise exports (current US$)", + "World/Europe/DEU/Exports/Merchandise exports (current US$)", + "World/North Africa/EGY/Exports/Merchandise exports (current US$)", + "World/Europe/ESP/Exports/Merchandise exports (current US$)", + "World/Europe/FRA/Exports/Merchandise exports (current US$)", + "World/Europe/GBR/Exports/Merchandise exports (current US$)", + "World/South Africa/GHA/Exports/Merchandise exports (current US$)", + "World/Asia/IDN/Exports/Merchandise exports (current US$)", + "World/Asia/IND/Exports/Merchandise exports (current US$)", + "World/Persian Gulf/IRQ/Exports/Merchandise exports (current US$)", + "World/North Africa/ISR/Exports/Merchandise exports (current US$)", + "World/Asia/KOR/Exports/Merchandise exports (current US$)", + "World/North Africa/MAR/Exports/Merchandise exports (current US$)", + "World/Latam/MEX/Exports/Merchandise exports (current US$)", + "World/South Africa/MOZ/Exports/Merchandise exports (current US$)", + "World/Europe/NLD/Exports/Merchandise exports (current US$)", + "World/Persian Gulf/OMN/Exports/Merchandise exports (current US$)", + "World/Latam/PAN/Exports/Merchandise exports (current US$)", + "World/Latam/PER/Exports/Merchandise exports (current US$)", + "World/Asia/PHL/Exports/Merchandise exports (current US$)", + "World/Europe/POL/Exports/Merchandise exports (current US$)", + "World/Persian Gulf/QAT/Exports/Merchandise exports (current US$)", + "World/Persian Gulf/SAU/Exports/Merchandise exports (current US$)", + "World/South Africa/SEN/Exports/Merchandise exports (current US$)", + "World/Europe/SWE/Exports/Merchandise exports (current US$)", + "World/Asia/THA/Exports/Merchandise exports (current US$)", + "World/North Africa/TUR/Exports/Merchandise exports (current US$)", + "World/Pair/USA/Exports/Merchandise exports (current US$)", + "World/Latam/VEN/Exports/Merchandise exports (current US$)", + "World/Asia/VNM/Exports/Merchandise exports (current US$)", + "World/South Africa/ZAF/Exports/Merchandise exports (current US$)", + "World/Persian Gulf/ARE/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/AUT/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Persian Gulf/AZE/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/BGD/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/BRA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/CHL/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Pair/CHN/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/COL/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/CRI/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/DEU/Exports/Merchandise exports by the reporting economy (current US$)", + "World/North Africa/DZA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/North Africa/EGY/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/ESP/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/FRA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/GBR/Exports/Merchandise exports by the reporting economy (current US$)", + "World/South Africa/GHA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/IDN/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/IND/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Persian Gulf/IRQ/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/KOR/Exports/Merchandise exports by the reporting economy (current US$)", + "World/North Africa/MAR/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/MEX/Exports/Merchandise exports by the reporting economy (current US$)", + "World/South Africa/MOZ/Exports/Merchandise exports by the reporting economy (current US$)", + "World/South Africa/NGA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/NLD/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Persian Gulf/OMN/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/PER/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/PHL/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/POL/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Persian Gulf/QAT/Exports/Merchandise exports by the reporting economy (current US$)", + "World/South Africa/SEN/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/SWE/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/THA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/North Africa/TUR/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Pair/USA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/VEN/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/VNM/Exports/Merchandise exports by the reporting economy (current US$)", + "World/South Africa/ZAF/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Persian Gulf/ARE/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Persian Gulf/AZE/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Asia/BGD/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Latam/CHL/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Pair/CHN/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Latam/COL/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/DEU/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/ESP/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/GBR/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/GRC/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Asia/IDN/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Persian Gulf/IRQ/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/North Africa/ISR/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Asia/KOR/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/South Africa/LBR/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Latam/MEX/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/South Africa/MOZ/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/South Africa/NGA/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/NLD/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Latam/PAN/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Latam/PER/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Asia/PHL/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/POL/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Persian Gulf/QAT/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/SWE/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Asia/THA/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Pair/USA/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Latam/VEN/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/South Africa/ZAF/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Persian Gulf/ARE/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Europe/AUT/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Latam/BRA/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Latam/CHL/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Pair/CHN/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Latam/COL/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Europe/DEU/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Europe/ESP/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Europe/FRA/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Europe/GRC/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Asia/IDN/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Asia/IND/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Persian Gulf/IRQ/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/North Africa/ISR/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Asia/KOR/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Latam/MEX/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/South Africa/MOZ/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/South Africa/NGA/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Europe/NLD/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Persian Gulf/OMN/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Latam/PAN/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Latam/PER/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Asia/PHL/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Persian Gulf/QAT/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Persian Gulf/SAU/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Pair/USA/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/South Africa/ZAF/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Persian Gulf/ARE/Imports/Merchandise imports (current US$)", + "World/Latam/ARG/Imports/Merchandise imports (current US$)", + "World/Europe/AUT/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/AZE/Imports/Merchandise imports (current US$)", + "World/Asia/BGD/Imports/Merchandise imports (current US$)", + "World/Latam/BRA/Imports/Merchandise imports (current US$)", + "World/Latam/CHL/Imports/Merchandise imports (current US$)", + "World/Pair/CHN/Imports/Merchandise imports (current US$)", + "World/Latam/COL/Imports/Merchandise imports (current US$)", + "World/Latam/CRI/Imports/Merchandise imports (current US$)", + "World/Europe/DEU/Imports/Merchandise imports (current US$)", + "World/North Africa/DZA/Imports/Merchandise imports (current US$)", + "World/North Africa/EGY/Imports/Merchandise imports (current US$)", + "World/Europe/ESP/Imports/Merchandise imports (current US$)", + "World/Europe/FRA/Imports/Merchandise imports (current US$)", + "World/Europe/GBR/Imports/Merchandise imports (current US$)", + "World/Europe/GRC/Imports/Merchandise imports (current US$)", + "World/Europe/HRV/Imports/Merchandise imports (current US$)", + "World/Asia/IDN/Imports/Merchandise imports (current US$)", + "World/Asia/IND/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/IRQ/Imports/Merchandise imports (current US$)", + "World/North Africa/ISR/Imports/Merchandise imports (current US$)", + "World/Asia/KOR/Imports/Merchandise imports (current US$)", + "World/North Africa/MAR/Imports/Merchandise imports (current US$)", + "World/Latam/MEX/Imports/Merchandise imports (current US$)", + "World/South Africa/MOZ/Imports/Merchandise imports (current US$)", + "World/South Africa/NGA/Imports/Merchandise imports (current US$)", + "World/Europe/NLD/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/OMN/Imports/Merchandise imports (current US$)", + "World/Latam/PAN/Imports/Merchandise imports (current US$)", + "World/Latam/PER/Imports/Merchandise imports (current US$)", + "World/Asia/PHL/Imports/Merchandise imports (current US$)", + "World/Europe/POL/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/QAT/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/SAU/Imports/Merchandise imports (current US$)", + "World/South Africa/SEN/Imports/Merchandise imports (current US$)", + "World/Europe/SWE/Imports/Merchandise imports (current US$)", + "World/Asia/THA/Imports/Merchandise imports (current US$)", + "World/North Africa/TUR/Imports/Merchandise imports (current US$)", + "World/Pair/USA/Imports/Merchandise imports (current US$)", + "World/Asia/VNM/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/YEM/Imports/Merchandise imports (current US$)", + "World/South Africa/ZAF/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/ARE/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/ARG/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/AUT/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Persian Gulf/AZE/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/BGD/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/BRA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/CHL/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Pair/CHN/Imports/Merchandise imports by the reporting economy (current US$)", + "World/South Africa/CMR/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/COL/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/CRI/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/DEU/Imports/Merchandise imports by the reporting economy (current US$)", + "World/North Africa/DZA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/North Africa/EGY/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/ESP/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/FRA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/GBR/Imports/Merchandise imports by the reporting economy (current US$)", + "World/South Africa/GHA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/GRC/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/HRV/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/IDN/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/IND/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Persian Gulf/IRQ/Imports/Merchandise imports by the reporting economy (current US$)", + "World/North Africa/ISR/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/KOR/Imports/Merchandise imports by the reporting economy (current US$)", + "World/North Africa/MAR/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/MEX/Imports/Merchandise imports by the reporting economy (current US$)", + "World/South Africa/MOZ/Imports/Merchandise imports by the reporting economy (current US$)", + "World/South Africa/NGA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/NLD/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Persian Gulf/OMN/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/PAN/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/PER/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/PHL/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/POL/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Persian Gulf/QAT/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Persian Gulf/SAU/Imports/Merchandise imports by the reporting economy (current US$)", + "World/South Africa/SEN/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/SWE/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/THA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/North Africa/TUR/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Pair/USA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/VNM/Imports/Merchandise imports by the reporting economy (current US$)", + "World/South Africa/ZAF/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/BGD/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Latam/BRA/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Pair/CHN/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Latam/COL/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Latam/CRI/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/North Africa/DZA/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Europe/GRC/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Asia/IDN/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Asia/KOR/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Latam/MEX/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/South Africa/NGA/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Persian Gulf/OMN/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Asia/PHL/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Persian Gulf/QAT/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Persian Gulf/SAU/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Asia/THA/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/North Africa/TUR/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Pair/USA/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Latam/VEN/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Asia/VNM/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Persian Gulf/YEM/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Europe/AUT/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Persian Gulf/AZE/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/BGD/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/BRA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/CHL/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Pair/CHN/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/South Africa/CMR/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/COL/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/CRI/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/DEU/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/North Africa/DZA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/North Africa/EGY/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/ESP/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/FRA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/GBR/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/South Africa/GHA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/GRC/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/IDN/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/IND/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/North Africa/ISR/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/KOR/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/North Africa/MAR/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/MEX/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/South Africa/MOZ/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/South Africa/NGA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/NLD/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/PAN/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/PER/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/PHL/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/POL/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Persian Gulf/QAT/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Persian Gulf/SAU/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/SWE/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/THA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/North Africa/TUR/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Pair/USA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/VEN/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/VNM/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/ARG/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/BRA/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/CHL/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/COL/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/CRI/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/North Africa/DZA/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/North Africa/EGY/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Europe/ESP/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Europe/GBR/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/North Africa/ISR/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/South Africa/LBR/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/North Africa/MAR/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/MEX/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/PAN/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/PER/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Europe/POL/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Persian Gulf/SAU/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Europe/SWE/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/North Africa/TUR/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Pair/USA/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/VEN/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/South Africa/ZAF/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Europe/AUT/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Persian Gulf/AZE/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Asia/BGD/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Pair/CHN/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/South Africa/CMR/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Latam/COL/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Latam/CRI/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/North Africa/DZA/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/North Africa/EGY/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Europe/ESP/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Europe/FRA/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Europe/GBR/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/South Africa/GHA/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Europe/GRC/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Asia/IND/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/North Africa/ISR/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Asia/KOR/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/North Africa/MAR/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Latam/MEX/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/South Africa/MOZ/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Europe/NLD/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Persian Gulf/OMN/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Latam/PER/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Europe/POL/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Persian Gulf/QAT/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Persian Gulf/SAU/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/South Africa/SEN/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/North Africa/TUR/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Pair/USA/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Persian Gulf/YEM/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Persian Gulf/ARE/Environment/Methane emissions (% change from 1990)", + "World/Europe/AUT/Environment/Methane emissions (% change from 1990)", + "World/Persian Gulf/AZE/Environment/Methane emissions (% change from 1990)", + "World/Asia/BGD/Environment/Methane emissions (% change from 1990)", + "World/Latam/CHL/Environment/Methane emissions (% change from 1990)", + "World/Pair/CHN/Environment/Methane emissions (% change from 1990)", + "World/Latam/COL/Environment/Methane emissions (% change from 1990)", + "World/Europe/DEU/Environment/Methane emissions (% change from 1990)", + "World/North Africa/DZA/Environment/Methane emissions (% change from 1990)", + "World/North Africa/EGY/Environment/Methane emissions (% change from 1990)", + "World/Europe/ESP/Environment/Methane emissions (% change from 1990)", + "World/Europe/FRA/Environment/Methane emissions (% change from 1990)", + "World/Europe/GBR/Environment/Methane emissions (% change from 1990)", + "World/South Africa/GHA/Environment/Methane emissions (% change from 1990)", + "World/Asia/IND/Environment/Methane emissions (% change from 1990)", + "World/Asia/KOR/Environment/Methane emissions (% change from 1990)", + "World/North Africa/MAR/Environment/Methane emissions (% change from 1990)", + "World/Latam/MEX/Environment/Methane emissions (% change from 1990)", + "World/Europe/NLD/Environment/Methane emissions (% change from 1990)", + "World/Persian Gulf/OMN/Environment/Methane emissions (% change from 1990)", + "World/Latam/PAN/Environment/Methane emissions (% change from 1990)", + "World/Latam/PER/Environment/Methane emissions (% change from 1990)", + "World/Asia/PHL/Environment/Methane emissions (% change from 1990)", + "World/Europe/POL/Environment/Methane emissions (% change from 1990)", + "World/Persian Gulf/QAT/Environment/Methane emissions (% change from 1990)", + "World/Persian Gulf/SAU/Environment/Methane emissions (% change from 1990)", + "World/North Africa/TUR/Environment/Methane emissions (% change from 1990)", + "World/Pair/USA/Environment/Methane emissions (% change from 1990)", + "World/Asia/VNM/Environment/Methane emissions (% change from 1990)", + "World/Persian Gulf/YEM/Environment/Methane emissions (% change from 1990)", + "World/Persian Gulf/ARE/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/ARG/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Europe/AUT/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Persian Gulf/AZE/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Asia/BGD/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/BRA/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Pair/CHN/Environment/Methane emissions (kt of CO2 equivalent)", + "World/South Africa/CMR/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/COL/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/CRI/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Europe/DEU/Environment/Methane emissions (kt of CO2 equivalent)", + "World/North Africa/DZA/Environment/Methane emissions (kt of CO2 equivalent)", + "World/North Africa/EGY/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Europe/FRA/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Europe/GBR/Environment/Methane emissions (kt of CO2 equivalent)", + "World/South Africa/GHA/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Asia/IND/Environment/Methane emissions (kt of CO2 equivalent)", + "World/North Africa/ISR/Environment/Methane emissions (kt of CO2 equivalent)", + "World/South Africa/LBR/Environment/Methane emissions (kt of CO2 equivalent)", + "World/North Africa/MAR/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/MEX/Environment/Methane emissions (kt of CO2 equivalent)", + "World/South Africa/MOZ/Environment/Methane emissions (kt of CO2 equivalent)", + "World/South Africa/NGA/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Europe/NLD/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Persian Gulf/OMN/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/PAN/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/PER/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Asia/PHL/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Europe/POL/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Persian Gulf/QAT/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Persian Gulf/SAU/Environment/Methane emissions (kt of CO2 equivalent)", + "World/South Africa/SEN/Environment/Methane emissions (kt of CO2 equivalent)", + "World/North Africa/TUR/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Pair/USA/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Asia/VNM/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Persian Gulf/YEM/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Persian Gulf/ARE/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/ARG/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/AUT/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/AZE/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/BGD/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Pair/CHN/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/CMR/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/COL/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/DEU/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/DZA/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/EGY/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/FRA/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/GBR/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/GHA/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/GRC/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/IND/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/IRQ/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/ISR/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/KOR/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/LBR/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/MAR/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/MOZ/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/NGA/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/OMN/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/PAN/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/PER/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/POL/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/QAT/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/SEN/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/SWE/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/THA/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Pair/USA/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/VNM/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/YEM/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/ARE/Military/Military expenditure (current USD)", + "World/Europe/AUT/Military/Military expenditure (current USD)", + "World/Persian Gulf/AZE/Military/Military expenditure (current USD)", + "World/Asia/BGD/Military/Military expenditure (current USD)", + "World/Latam/BRA/Military/Military expenditure (current USD)", + "World/Latam/CHL/Military/Military expenditure (current USD)", + "World/Pair/CHN/Military/Military expenditure (current USD)", + "World/South Africa/CMR/Military/Military expenditure (current USD)", + "World/Latam/COL/Military/Military expenditure (current USD)", + "World/North Africa/DZA/Military/Military expenditure (current USD)", + "World/North Africa/EGY/Military/Military expenditure (current USD)", + "World/Europe/ESP/Military/Military expenditure (current USD)", + "World/Europe/FRA/Military/Military expenditure (current USD)", + "World/South Africa/GHA/Military/Military expenditure (current USD)", + "World/Europe/GRC/Military/Military expenditure (current USD)", + "World/Asia/IDN/Military/Military expenditure (current USD)", + "World/Asia/IND/Military/Military expenditure (current USD)", + "World/North Africa/ISR/Military/Military expenditure (current USD)", + "World/Asia/KOR/Military/Military expenditure (current USD)", + "World/North Africa/MAR/Military/Military expenditure (current USD)", + "World/Latam/MEX/Military/Military expenditure (current USD)", + "World/South Africa/MOZ/Military/Military expenditure (current USD)", + "World/South Africa/NGA/Military/Military expenditure (current USD)", + "World/Europe/NLD/Military/Military expenditure (current USD)", + "World/Persian Gulf/OMN/Military/Military expenditure (current USD)", + "World/Latam/PER/Military/Military expenditure (current USD)", + "World/Asia/PHL/Military/Military expenditure (current USD)", + "World/Europe/POL/Military/Military expenditure (current USD)", + "World/Persian Gulf/SAU/Military/Military expenditure (current USD)", + "World/South Africa/SEN/Military/Military expenditure (current USD)", + "World/Asia/THA/Military/Military expenditure (current USD)", + "World/North Africa/TUR/Military/Military expenditure (current USD)", + "World/Pair/USA/Military/Military expenditure (current USD)", + "World/Asia/VNM/Military/Military expenditure (current USD)", + "World/Persian Gulf/YEM/Military/Military expenditure (current USD)", + "World/Persian Gulf/ARE/Internet/Mobile cellular subscriptions", + "World/Latam/BRA/Internet/Mobile cellular subscriptions", + "World/Latam/CHL/Internet/Mobile cellular subscriptions", + "World/Pair/CHN/Internet/Mobile cellular subscriptions", + "World/Europe/DEU/Internet/Mobile cellular subscriptions", + "World/North Africa/DZA/Internet/Mobile cellular subscriptions", + "World/North Africa/EGY/Internet/Mobile cellular subscriptions", + "World/Europe/FRA/Internet/Mobile cellular subscriptions", + "World/Europe/GBR/Internet/Mobile cellular subscriptions", + "World/Europe/HRV/Internet/Mobile cellular subscriptions", + "World/Asia/IDN/Internet/Mobile cellular subscriptions", + "World/North Africa/ISR/Internet/Mobile cellular subscriptions", + "World/Asia/KOR/Internet/Mobile cellular subscriptions", + "World/North Africa/MAR/Internet/Mobile cellular subscriptions", + "World/Latam/MEX/Internet/Mobile cellular subscriptions", + "World/Europe/NLD/Internet/Mobile cellular subscriptions", + "World/Persian Gulf/OMN/Internet/Mobile cellular subscriptions", + "World/Latam/PER/Internet/Mobile cellular subscriptions", + "World/Persian Gulf/QAT/Internet/Mobile cellular subscriptions", + "World/Persian Gulf/SAU/Internet/Mobile cellular subscriptions", + "World/Europe/SWE/Internet/Mobile cellular subscriptions", + "World/Asia/THA/Internet/Mobile cellular subscriptions", + "World/North Africa/TUR/Internet/Mobile cellular subscriptions", + "World/Pair/USA/Internet/Mobile cellular subscriptions", + "World/South Africa/ZAF/Internet/Mobile cellular subscriptions", + "World/Persian Gulf/ARE/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Latam/BRA/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Latam/CHL/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Pair/CHN/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Europe/DEU/Internet/Mobile cellular subscriptions (per 100 people)", + "World/North Africa/DZA/Internet/Mobile cellular subscriptions (per 100 people)", + "World/North Africa/EGY/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Europe/FRA/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Europe/HRV/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Asia/IDN/Internet/Mobile cellular subscriptions (per 100 people)", + "World/North Africa/ISR/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Asia/KOR/Internet/Mobile cellular subscriptions (per 100 people)", + "World/North Africa/MAR/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Latam/MEX/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Europe/NLD/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Persian Gulf/OMN/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Latam/PER/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Persian Gulf/QAT/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Persian Gulf/SAU/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Europe/SWE/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Asia/THA/Internet/Mobile cellular subscriptions (per 100 people)", + "World/North Africa/TUR/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Pair/USA/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Latam/VEN/Internet/Mobile cellular subscriptions (per 100 people)", + "World/South Africa/ZAF/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Persian Gulf/ARE/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Persian Gulf/AZE/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Asia/BGD/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/CHL/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Pair/CHN/Economy/Monetary Sector credit to private sector (% GDP)", + "World/South Africa/CMR/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/COL/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/CRI/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/DEU/Economy/Monetary Sector credit to private sector (% GDP)", + "World/North Africa/DZA/Economy/Monetary Sector credit to private sector (% GDP)", + "World/North Africa/EGY/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/FRA/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/GRC/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/HRV/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Asia/IND/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Asia/KOR/Economy/Monetary Sector credit to private sector (% GDP)", + "World/South Africa/LBR/Economy/Monetary Sector credit to private sector (% GDP)", + "World/North Africa/MAR/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/MEX/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Persian Gulf/OMN/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/PAN/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/PER/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/POL/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Persian Gulf/QAT/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Persian Gulf/SAU/Economy/Monetary Sector credit to private sector (% GDP)", + "World/South Africa/SEN/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/SWE/Economy/Monetary Sector credit to private sector (% GDP)", + "World/North Africa/TUR/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/VEN/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Asia/VNM/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/AUT/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Persian Gulf/AZE/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Asia/BGD/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Pair/CHN/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/South Africa/CMR/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/DEU/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/North Africa/DZA/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/ESP/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/GBR/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/GRC/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/HRV/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Asia/IDN/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/North Africa/ISR/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Asia/KOR/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/North Africa/MAR/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Latam/MEX/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/South Africa/MOZ/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/South Africa/NGA/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/NLD/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Persian Gulf/OMN/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Asia/PHL/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/POL/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Persian Gulf/QAT/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Persian Gulf/SAU/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/SWE/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Asia/THA/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/North Africa/TUR/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Latam/VEN/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Asia/VNM/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Persian Gulf/YEM/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Persian Gulf/ARE/Economy/Net barter terms of trade index (2000 = 100)", + "World/Europe/AUT/Economy/Net barter terms of trade index (2000 = 100)", + "World/Latam/BRA/Economy/Net barter terms of trade index (2000 = 100)", + "World/Latam/COL/Economy/Net barter terms of trade index (2000 = 100)", + "World/North Africa/DZA/Economy/Net barter terms of trade index (2000 = 100)", + "World/North Africa/EGY/Economy/Net barter terms of trade index (2000 = 100)", + "World/Europe/ESP/Economy/Net barter terms of trade index (2000 = 100)", + "World/South Africa/GHA/Economy/Net barter terms of trade index (2000 = 100)", + "World/Asia/KOR/Economy/Net barter terms of trade index (2000 = 100)", + "World/South Africa/LBR/Economy/Net barter terms of trade index (2000 = 100)", + "World/Europe/NLD/Economy/Net barter terms of trade index (2000 = 100)", + "World/Europe/SWE/Economy/Net barter terms of trade index (2000 = 100)", + "World/Asia/VNM/Economy/Net barter terms of trade index (2000 = 100)", + "World/South Africa/ZAF/Economy/Net barter terms of trade index (2000 = 100)", + "World/Asia/BGD/Economy/Net primary income (BoP, current US$)", + "World/Latam/BRA/Economy/Net primary income (BoP, current US$)", + "World/Latam/COL/Economy/Net primary income (BoP, current US$)", + "World/Latam/CRI/Economy/Net primary income (BoP, current US$)", + "World/North Africa/EGY/Economy/Net primary income (BoP, current US$)", + "World/Europe/FRA/Economy/Net primary income (BoP, current US$)", + "World/South Africa/GHA/Economy/Net primary income (BoP, current US$)", + "World/Asia/IDN/Economy/Net primary income (BoP, current US$)", + "World/Asia/IND/Economy/Net primary income (BoP, current US$)", + "World/Asia/KOR/Economy/Net primary income (BoP, current US$)", + "World/Latam/MEX/Economy/Net primary income (BoP, current US$)", + "World/Persian Gulf/OMN/Economy/Net primary income (BoP, current US$)", + "World/Latam/PAN/Economy/Net primary income (BoP, current US$)", + "World/Europe/POL/Economy/Net primary income (BoP, current US$)", + "World/Persian Gulf/QAT/Economy/Net primary income (BoP, current US$)", + "World/Asia/THA/Economy/Net primary income (BoP, current US$)", + "World/North Africa/TUR/Economy/Net primary income (BoP, current US$)", + "World/Pair/USA/Economy/Net primary income (BoP, current US$)", + "World/Latam/VEN/Economy/Net primary income (BoP, current US$)", + "World/Asia/VNM/Economy/Net primary income (BoP, current US$)", + "World/South Africa/ZAF/Economy/Net primary income (BoP, current US$)", + "World/Asia/BGD/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Latam/BRA/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Latam/COL/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Latam/CRI/Economy/Net primary income (Net income from abroad) (current US$)", + "World/North Africa/EGY/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Europe/FRA/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Asia/IND/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Asia/KOR/Economy/Net primary income (Net income from abroad) (current US$)", + "World/South Africa/LBR/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Latam/MEX/Economy/Net primary income (Net income from abroad) (current US$)", + "World/South Africa/NGA/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Persian Gulf/OMN/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Latam/PAN/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Asia/PHL/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Europe/POL/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Persian Gulf/SAU/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Asia/THA/Economy/Net primary income (Net income from abroad) (current US$)", + "World/North Africa/TUR/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Pair/USA/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Asia/VNM/Economy/Net primary income (Net income from abroad) (current US$)", + "World/South Africa/ZAF/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Asia/BGD/Economy/Net secondary income (BoP, current US$)", + "World/Latam/COL/Economy/Net secondary income (BoP, current US$)", + "World/Latam/CRI/Economy/Net secondary income (BoP, current US$)", + "World/Europe/DEU/Economy/Net secondary income (BoP, current US$)", + "World/North Africa/EGY/Economy/Net secondary income (BoP, current US$)", + "World/Europe/ESP/Economy/Net secondary income (BoP, current US$)", + "World/Europe/FRA/Economy/Net secondary income (BoP, current US$)", + "World/Europe/GBR/Economy/Net secondary income (BoP, current US$)", + "World/Asia/IND/Economy/Net secondary income (BoP, current US$)", + "World/Asia/KOR/Economy/Net secondary income (BoP, current US$)", + "World/North Africa/MAR/Economy/Net secondary income (BoP, current US$)", + "World/Latam/MEX/Economy/Net secondary income (BoP, current US$)", + "World/South Africa/NGA/Economy/Net secondary income (BoP, current US$)", + "World/Persian Gulf/OMN/Economy/Net secondary income (BoP, current US$)", + "World/Latam/PER/Economy/Net secondary income (BoP, current US$)", + "World/Asia/PHL/Economy/Net secondary income (BoP, current US$)", + "World/Europe/POL/Economy/Net secondary income (BoP, current US$)", + "World/Persian Gulf/SAU/Economy/Net secondary income (BoP, current US$)", + "World/South Africa/SEN/Economy/Net secondary income (BoP, current US$)", + "World/Europe/SWE/Economy/Net secondary income (BoP, current US$)", + "World/Asia/THA/Economy/Net secondary income (BoP, current US$)", + "World/Pair/USA/Economy/Net secondary income (BoP, current US$)", + "World/Latam/VEN/Economy/Net secondary income (BoP, current US$)", + "World/Asia/VNM/Economy/Net secondary income (BoP, current US$)", + "World/Persian Gulf/YEM/Economy/Net secondary income (BoP, current US$)", + "World/South Africa/ZAF/Economy/Net secondary income (BoP, current US$)", + "World/Persian Gulf/ARE/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/AUT/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Latam/COL/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Latam/CRI/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/North Africa/DZA/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/North Africa/EGY/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/ESP/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/FRA/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/GBR/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/South Africa/GHA/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Asia/IND/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/North Africa/ISR/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/North Africa/MAR/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Latam/MEX/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/South Africa/NGA/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Persian Gulf/OMN/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Latam/PAN/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Latam/PER/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Asia/PHL/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/POL/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Persian Gulf/QAT/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Persian Gulf/SAU/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/South Africa/SEN/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/SWE/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Asia/THA/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Pair/USA/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Asia/VNM/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Persian Gulf/YEM/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/South Africa/ZAF/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/AUT/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Persian Gulf/AZE/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Asia/BGD/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Latam/CHL/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Pair/CHN/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Latam/COL/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Latam/CRI/Environment/Nitrous oxide emissions (% change from 1990)", + "World/North Africa/DZA/Environment/Nitrous oxide emissions (% change from 1990)", + "World/North Africa/EGY/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Europe/ESP/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Europe/FRA/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Europe/GBR/Environment/Nitrous oxide emissions (% change from 1990)", + "World/South Africa/GHA/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Europe/GRC/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Asia/IND/Environment/Nitrous oxide emissions (% change from 1990)", + "World/South Africa/NGA/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Europe/NLD/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Persian Gulf/OMN/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Latam/PAN/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Latam/PER/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Persian Gulf/QAT/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Europe/SWE/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Pair/USA/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Asia/VNM/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Persian Gulf/YEM/Environment/Nitrous oxide emissions (% change from 1990)", + "World/South Africa/ZAF/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Persian Gulf/ARE/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/AZE/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/BGD/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/BRA/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Pair/CHN/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/CRI/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/DZA/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/FRA/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/GBR/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/GHA/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/GRC/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IDN/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IND/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/ISR/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/LBR/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/MAR/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/NGA/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/NLD/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/OMN/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/PER/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/PHL/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/QAT/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/SWE/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/TUR/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/VNM/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/YEM/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/ARE/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/AUT/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/BGD/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/BRA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/CHL/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Pair/CHN/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/CMR/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/DZA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/EGY/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/FRA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/GBR/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/GHA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/IDN/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/IND/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/ISR/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/KOR/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/LBR/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/MAR/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/MEX/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/MOZ/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/NGA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/NLD/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/OMN/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/PAN/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/PER/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/PHL/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/QAT/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/SAU/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/SEN/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/THA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Pair/USA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/VEN/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/VNM/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/YEM/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/ZAF/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/ARG/Mortality/Number of deaths ages 10-14 years", + "World/Europe/AUT/Mortality/Number of deaths ages 10-14 years", + "World/Persian Gulf/AZE/Mortality/Number of deaths ages 10-14 years", + "World/Asia/BGD/Mortality/Number of deaths ages 10-14 years", + "World/Latam/BRA/Mortality/Number of deaths ages 10-14 years", + "World/Latam/CHL/Mortality/Number of deaths ages 10-14 years", + "World/Pair/CHN/Mortality/Number of deaths ages 10-14 years", + "World/South Africa/CMR/Mortality/Number of deaths ages 10-14 years", + "World/Latam/COL/Mortality/Number of deaths ages 10-14 years", + "World/Latam/CRI/Mortality/Number of deaths ages 10-14 years", + "World/Europe/DEU/Mortality/Number of deaths ages 10-14 years", + "World/North Africa/DZA/Mortality/Number of deaths ages 10-14 years", + "World/Europe/ESP/Mortality/Number of deaths ages 10-14 years", + "World/Europe/FRA/Mortality/Number of deaths ages 10-14 years", + "World/Europe/GBR/Mortality/Number of deaths ages 10-14 years", + "World/Europe/GRC/Mortality/Number of deaths ages 10-14 years", + "World/Europe/HRV/Mortality/Number of deaths ages 10-14 years", + "World/Asia/IDN/Mortality/Number of deaths ages 10-14 years", + "World/Asia/IND/Mortality/Number of deaths ages 10-14 years", + "World/Persian Gulf/IRQ/Mortality/Number of deaths ages 10-14 years", + "World/North Africa/ISR/Mortality/Number of deaths ages 10-14 years", + "World/Asia/KOR/Mortality/Number of deaths ages 10-14 years", + "World/South Africa/LBR/Mortality/Number of deaths ages 10-14 years", + "World/North Africa/MAR/Mortality/Number of deaths ages 10-14 years", + "World/Latam/MEX/Mortality/Number of deaths ages 10-14 years", + "World/South Africa/MOZ/Mortality/Number of deaths ages 10-14 years", + "World/South Africa/NGA/Mortality/Number of deaths ages 10-14 years", + "World/Europe/NLD/Mortality/Number of deaths ages 10-14 years", + "World/Persian Gulf/OMN/Mortality/Number of deaths ages 10-14 years", + "World/Latam/PAN/Mortality/Number of deaths ages 10-14 years", + "World/Latam/PER/Mortality/Number of deaths ages 10-14 years", + "World/Europe/POL/Mortality/Number of deaths ages 10-14 years", + "World/Persian Gulf/SAU/Mortality/Number of deaths ages 10-14 years", + "World/South Africa/SEN/Mortality/Number of deaths ages 10-14 years", + "World/Asia/THA/Mortality/Number of deaths ages 10-14 years", + "World/North Africa/TUR/Mortality/Number of deaths ages 10-14 years", + "World/Pair/USA/Mortality/Number of deaths ages 10-14 years", + "World/Asia/VNM/Mortality/Number of deaths ages 10-14 years", + "World/Persian Gulf/YEM/Mortality/Number of deaths ages 10-14 years", + "World/Persian Gulf/ARE/Mortality/Number of deaths ages 15-19 years", + "World/Latam/ARG/Mortality/Number of deaths ages 15-19 years", + "World/Europe/AUT/Mortality/Number of deaths ages 15-19 years", + "World/Latam/CHL/Mortality/Number of deaths ages 15-19 years", + "World/Pair/CHN/Mortality/Number of deaths ages 15-19 years", + "World/South Africa/CMR/Mortality/Number of deaths ages 15-19 years", + "World/Latam/COL/Mortality/Number of deaths ages 15-19 years", + "World/Europe/DEU/Mortality/Number of deaths ages 15-19 years", + "World/North Africa/DZA/Mortality/Number of deaths ages 15-19 years", + "World/Europe/ESP/Mortality/Number of deaths ages 15-19 years", + "World/Europe/FRA/Mortality/Number of deaths ages 15-19 years", + "World/Europe/GBR/Mortality/Number of deaths ages 15-19 years", + "World/Europe/GRC/Mortality/Number of deaths ages 15-19 years", + "World/Europe/HRV/Mortality/Number of deaths ages 15-19 years", + "World/Asia/IND/Mortality/Number of deaths ages 15-19 years", + "World/Asia/KOR/Mortality/Number of deaths ages 15-19 years", + "World/South Africa/LBR/Mortality/Number of deaths ages 15-19 years", + "World/North Africa/MAR/Mortality/Number of deaths ages 15-19 years", + "World/South Africa/NGA/Mortality/Number of deaths ages 15-19 years", + "World/Europe/NLD/Mortality/Number of deaths ages 15-19 years", + "World/Persian Gulf/OMN/Mortality/Number of deaths ages 15-19 years", + "World/Latam/PAN/Mortality/Number of deaths ages 15-19 years", + "World/Latam/PER/Mortality/Number of deaths ages 15-19 years", + "World/Asia/PHL/Mortality/Number of deaths ages 15-19 years", + "World/Europe/POL/Mortality/Number of deaths ages 15-19 years", + "World/Persian Gulf/QAT/Mortality/Number of deaths ages 15-19 years", + "World/Persian Gulf/SAU/Mortality/Number of deaths ages 15-19 years", + "World/South Africa/SEN/Mortality/Number of deaths ages 15-19 years", + "World/Asia/THA/Mortality/Number of deaths ages 15-19 years", + "World/North Africa/TUR/Mortality/Number of deaths ages 15-19 years", + "World/Pair/USA/Mortality/Number of deaths ages 15-19 years", + "World/Latam/VEN/Mortality/Number of deaths ages 15-19 years", + "World/Asia/VNM/Mortality/Number of deaths ages 15-19 years", + "World/Persian Gulf/YEM/Mortality/Number of deaths ages 15-19 years", + "World/Europe/AUT/Mortality/Number of deaths ages 20-24 years", + "World/Persian Gulf/AZE/Mortality/Number of deaths ages 20-24 years", + "World/Asia/BGD/Mortality/Number of deaths ages 20-24 years", + "World/Latam/CHL/Mortality/Number of deaths ages 20-24 years", + "World/Pair/CHN/Mortality/Number of deaths ages 20-24 years", + "World/South Africa/CMR/Mortality/Number of deaths ages 20-24 years", + "World/Latam/COL/Mortality/Number of deaths ages 20-24 years", + "World/Latam/CRI/Mortality/Number of deaths ages 20-24 years", + "World/Europe/DEU/Mortality/Number of deaths ages 20-24 years", + "World/North Africa/DZA/Mortality/Number of deaths ages 20-24 years", + "World/Europe/ESP/Mortality/Number of deaths ages 20-24 years", + "World/Europe/FRA/Mortality/Number of deaths ages 20-24 years", + "World/Europe/GBR/Mortality/Number of deaths ages 20-24 years", + "World/Europe/GRC/Mortality/Number of deaths ages 20-24 years", + "World/Europe/HRV/Mortality/Number of deaths ages 20-24 years", + "World/Asia/IND/Mortality/Number of deaths ages 20-24 years", + "World/North Africa/ISR/Mortality/Number of deaths ages 20-24 years", + "World/Asia/KOR/Mortality/Number of deaths ages 20-24 years", + "World/South Africa/LBR/Mortality/Number of deaths ages 20-24 years", + "World/North Africa/MAR/Mortality/Number of deaths ages 20-24 years", + "World/Latam/MEX/Mortality/Number of deaths ages 20-24 years", + "World/South Africa/MOZ/Mortality/Number of deaths ages 20-24 years", + "World/Europe/NLD/Mortality/Number of deaths ages 20-24 years", + "World/Persian Gulf/OMN/Mortality/Number of deaths ages 20-24 years", + "World/Latam/PER/Mortality/Number of deaths ages 20-24 years", + "World/Asia/PHL/Mortality/Number of deaths ages 20-24 years", + "World/Europe/POL/Mortality/Number of deaths ages 20-24 years", + "World/Persian Gulf/QAT/Mortality/Number of deaths ages 20-24 years", + "World/South Africa/SEN/Mortality/Number of deaths ages 20-24 years", + "World/North Africa/TUR/Mortality/Number of deaths ages 20-24 years", + "World/Latam/VEN/Mortality/Number of deaths ages 20-24 years", + "World/Asia/VNM/Mortality/Number of deaths ages 20-24 years", + "World/Persian Gulf/YEM/Mortality/Number of deaths ages 20-24 years", + "World/Persian Gulf/ARE/Mortality/Number of deaths ages 5-9 years", + "World/Latam/ARG/Mortality/Number of deaths ages 5-9 years", + "World/Europe/AUT/Mortality/Number of deaths ages 5-9 years", + "World/Persian Gulf/AZE/Mortality/Number of deaths ages 5-9 years", + "World/Asia/BGD/Mortality/Number of deaths ages 5-9 years", + "World/Latam/BRA/Mortality/Number of deaths ages 5-9 years", + "World/Latam/CHL/Mortality/Number of deaths ages 5-9 years", + "World/Pair/CHN/Mortality/Number of deaths ages 5-9 years", + "World/South Africa/CMR/Mortality/Number of deaths ages 5-9 years", + "World/Latam/COL/Mortality/Number of deaths ages 5-9 years", + "World/Latam/CRI/Mortality/Number of deaths ages 5-9 years", + "World/Europe/DEU/Mortality/Number of deaths ages 5-9 years", + "World/North Africa/DZA/Mortality/Number of deaths ages 5-9 years", + "World/North Africa/EGY/Mortality/Number of deaths ages 5-9 years", + "World/Europe/ESP/Mortality/Number of deaths ages 5-9 years", + "World/Europe/FRA/Mortality/Number of deaths ages 5-9 years", + "World/Europe/GBR/Mortality/Number of deaths ages 5-9 years", + "World/South Africa/GHA/Mortality/Number of deaths ages 5-9 years", + "World/Europe/GRC/Mortality/Number of deaths ages 5-9 years", + "World/Europe/HRV/Mortality/Number of deaths ages 5-9 years", + "World/Asia/IDN/Mortality/Number of deaths ages 5-9 years", + "World/Asia/IND/Mortality/Number of deaths ages 5-9 years", + "World/North Africa/ISR/Mortality/Number of deaths ages 5-9 years", + "World/Asia/KOR/Mortality/Number of deaths ages 5-9 years", + "World/North Africa/MAR/Mortality/Number of deaths ages 5-9 years", + "World/Latam/MEX/Mortality/Number of deaths ages 5-9 years", + "World/South Africa/MOZ/Mortality/Number of deaths ages 5-9 years", + "World/South Africa/NGA/Mortality/Number of deaths ages 5-9 years", + "World/Europe/NLD/Mortality/Number of deaths ages 5-9 years", + "World/Persian Gulf/OMN/Mortality/Number of deaths ages 5-9 years", + "World/Latam/PAN/Mortality/Number of deaths ages 5-9 years", + "World/Latam/PER/Mortality/Number of deaths ages 5-9 years", + "World/Europe/POL/Mortality/Number of deaths ages 5-9 years", + "World/Persian Gulf/QAT/Mortality/Number of deaths ages 5-9 years", + "World/Persian Gulf/SAU/Mortality/Number of deaths ages 5-9 years", + "World/South Africa/SEN/Mortality/Number of deaths ages 5-9 years", + "World/Asia/THA/Mortality/Number of deaths ages 5-9 years", + "World/North Africa/TUR/Mortality/Number of deaths ages 5-9 years", + "World/Pair/USA/Mortality/Number of deaths ages 5-9 years", + "World/Asia/VNM/Mortality/Number of deaths ages 5-9 years", + "World/Persian Gulf/YEM/Mortality/Number of deaths ages 5-9 years", + "World/Persian Gulf/ARE/Mortality/Number of infant deaths", + "World/Latam/ARG/Mortality/Number of infant deaths", + "World/Europe/AUT/Mortality/Number of infant deaths", + "World/Persian Gulf/AZE/Mortality/Number of infant deaths", + "World/Asia/BGD/Mortality/Number of infant deaths", + "World/Latam/BRA/Mortality/Number of infant deaths", + "World/Latam/CHL/Mortality/Number of infant deaths", + "World/Pair/CHN/Mortality/Number of infant deaths", + "World/South Africa/CMR/Mortality/Number of infant deaths", + "World/Latam/COL/Mortality/Number of infant deaths", + "World/Latam/CRI/Mortality/Number of infant deaths", + "World/North Africa/EGY/Mortality/Number of infant deaths", + "World/Europe/FRA/Mortality/Number of infant deaths", + "World/Europe/GBR/Mortality/Number of infant deaths", + "World/South Africa/GHA/Mortality/Number of infant deaths", + "World/Europe/GRC/Mortality/Number of infant deaths", + "World/Europe/HRV/Mortality/Number of infant deaths", + "World/Asia/IDN/Mortality/Number of infant deaths", + "World/Asia/IND/Mortality/Number of infant deaths", + "World/Persian Gulf/IRQ/Mortality/Number of infant deaths", + "World/North Africa/ISR/Mortality/Number of infant deaths", + "World/Asia/KOR/Mortality/Number of infant deaths", + "World/South Africa/LBR/Mortality/Number of infant deaths", + "World/North Africa/MAR/Mortality/Number of infant deaths", + "World/Latam/MEX/Mortality/Number of infant deaths", + "World/South Africa/MOZ/Mortality/Number of infant deaths", + "World/Europe/NLD/Mortality/Number of infant deaths", + "World/Persian Gulf/OMN/Mortality/Number of infant deaths", + "World/Latam/PAN/Mortality/Number of infant deaths", + "World/Latam/PER/Mortality/Number of infant deaths", + "World/Asia/PHL/Mortality/Number of infant deaths", + "World/Europe/POL/Mortality/Number of infant deaths", + "World/Persian Gulf/SAU/Mortality/Number of infant deaths", + "World/South Africa/SEN/Mortality/Number of infant deaths", + "World/Europe/SWE/Mortality/Number of infant deaths", + "World/Asia/THA/Mortality/Number of infant deaths", + "World/North Africa/TUR/Mortality/Number of infant deaths", + "World/Pair/USA/Mortality/Number of infant deaths", + "World/Asia/VNM/Mortality/Number of infant deaths", + "World/Latam/ARG/Mortality/Number of maternal deaths", + "World/Persian Gulf/AZE/Mortality/Number of maternal deaths", + "World/Asia/BGD/Mortality/Number of maternal deaths", + "World/Latam/BRA/Mortality/Number of maternal deaths", + "World/Latam/CHL/Mortality/Number of maternal deaths", + "World/Pair/CHN/Mortality/Number of maternal deaths", + "World/South Africa/CMR/Mortality/Number of maternal deaths", + "World/Latam/COL/Mortality/Number of maternal deaths", + "World/Latam/CRI/Mortality/Number of maternal deaths", + "World/North Africa/DZA/Mortality/Number of maternal deaths", + "World/North Africa/EGY/Mortality/Number of maternal deaths", + "World/Europe/FRA/Mortality/Number of maternal deaths", + "World/Europe/GBR/Mortality/Number of maternal deaths", + "World/Europe/HRV/Mortality/Number of maternal deaths", + "World/Asia/IDN/Mortality/Number of maternal deaths", + "World/Asia/IND/Mortality/Number of maternal deaths", + "World/North Africa/ISR/Mortality/Number of maternal deaths", + "World/Asia/KOR/Mortality/Number of maternal deaths", + "World/North Africa/MAR/Mortality/Number of maternal deaths", + "World/Latam/MEX/Mortality/Number of maternal deaths", + "World/South Africa/MOZ/Mortality/Number of maternal deaths", + "World/South Africa/NGA/Mortality/Number of maternal deaths", + "World/Europe/NLD/Mortality/Number of maternal deaths", + "World/Persian Gulf/OMN/Mortality/Number of maternal deaths", + "World/Latam/PAN/Mortality/Number of maternal deaths", + "World/Latam/PER/Mortality/Number of maternal deaths", + "World/Asia/PHL/Mortality/Number of maternal deaths", + "World/Europe/POL/Mortality/Number of maternal deaths", + "World/Persian Gulf/SAU/Mortality/Number of maternal deaths", + "World/South Africa/SEN/Mortality/Number of maternal deaths", + "World/Asia/THA/Mortality/Number of maternal deaths", + "World/North Africa/TUR/Mortality/Number of maternal deaths", + "World/Pair/USA/Mortality/Number of maternal deaths", + "World/Asia/VNM/Mortality/Number of maternal deaths", + "World/Persian Gulf/YEM/Mortality/Number of maternal deaths", + "World/Persian Gulf/ARE/Mortality/Number of neonatal deaths", + "World/Latam/ARG/Mortality/Number of neonatal deaths", + "World/Europe/AUT/Mortality/Number of neonatal deaths", + "World/Persian Gulf/AZE/Mortality/Number of neonatal deaths", + "World/Asia/BGD/Mortality/Number of neonatal deaths", + "World/Latam/BRA/Mortality/Number of neonatal deaths", + "World/Latam/CHL/Mortality/Number of neonatal deaths", + "World/Pair/CHN/Mortality/Number of neonatal deaths", + "World/Latam/COL/Mortality/Number of neonatal deaths", + "World/Latam/CRI/Mortality/Number of neonatal deaths", + "World/North Africa/DZA/Mortality/Number of neonatal deaths", + "World/North Africa/EGY/Mortality/Number of neonatal deaths", + "World/Europe/FRA/Mortality/Number of neonatal deaths", + "World/Europe/GBR/Mortality/Number of neonatal deaths", + "World/South Africa/GHA/Mortality/Number of neonatal deaths", + "World/Europe/GRC/Mortality/Number of neonatal deaths", + "World/Europe/HRV/Mortality/Number of neonatal deaths", + "World/Asia/IDN/Mortality/Number of neonatal deaths", + "World/Asia/IND/Mortality/Number of neonatal deaths", + "World/North Africa/ISR/Mortality/Number of neonatal deaths", + "World/Asia/KOR/Mortality/Number of neonatal deaths", + "World/North Africa/MAR/Mortality/Number of neonatal deaths", + "World/Latam/MEX/Mortality/Number of neonatal deaths", + "World/South Africa/MOZ/Mortality/Number of neonatal deaths", + "World/South Africa/NGA/Mortality/Number of neonatal deaths", + "World/Europe/NLD/Mortality/Number of neonatal deaths", + "World/Persian Gulf/OMN/Mortality/Number of neonatal deaths", + "World/Latam/PAN/Mortality/Number of neonatal deaths", + "World/Latam/PER/Mortality/Number of neonatal deaths", + "World/Asia/PHL/Mortality/Number of neonatal deaths", + "World/Europe/POL/Mortality/Number of neonatal deaths", + "World/Persian Gulf/QAT/Mortality/Number of neonatal deaths", + "World/Persian Gulf/SAU/Mortality/Number of neonatal deaths", + "World/South Africa/SEN/Mortality/Number of neonatal deaths", + "World/Asia/THA/Mortality/Number of neonatal deaths", + "World/North Africa/TUR/Mortality/Number of neonatal deaths", + "World/Pair/USA/Mortality/Number of neonatal deaths", + "World/Asia/VNM/Mortality/Number of neonatal deaths", + "World/South Africa/ZAF/Mortality/Number of neonatal deaths", + "World/Persian Gulf/ARE/Mortality/Number of under-five deaths", + "World/Latam/ARG/Mortality/Number of under-five deaths", + "World/Europe/AUT/Mortality/Number of under-five deaths", + "World/Persian Gulf/AZE/Mortality/Number of under-five deaths", + "World/Asia/BGD/Mortality/Number of under-five deaths", + "World/Latam/BRA/Mortality/Number of under-five deaths", + "World/Latam/CHL/Mortality/Number of under-five deaths", + "World/Pair/CHN/Mortality/Number of under-five deaths", + "World/South Africa/CMR/Mortality/Number of under-five deaths", + "World/Latam/COL/Mortality/Number of under-five deaths", + "World/Latam/CRI/Mortality/Number of under-five deaths", + "World/North Africa/EGY/Mortality/Number of under-five deaths", + "World/Europe/FRA/Mortality/Number of under-five deaths", + "World/Europe/GBR/Mortality/Number of under-five deaths", + "World/South Africa/GHA/Mortality/Number of under-five deaths", + "World/Europe/GRC/Mortality/Number of under-five deaths", + "World/Europe/HRV/Mortality/Number of under-five deaths", + "World/Asia/IDN/Mortality/Number of under-five deaths", + "World/Asia/IND/Mortality/Number of under-five deaths", + "World/Persian Gulf/IRQ/Mortality/Number of under-five deaths", + "World/North Africa/ISR/Mortality/Number of under-five deaths", + "World/Asia/KOR/Mortality/Number of under-five deaths", + "World/South Africa/LBR/Mortality/Number of under-five deaths", + "World/North Africa/MAR/Mortality/Number of under-five deaths", + "World/Latam/MEX/Mortality/Number of under-five deaths", + "World/South Africa/MOZ/Mortality/Number of under-five deaths", + "World/Europe/NLD/Mortality/Number of under-five deaths", + "World/Persian Gulf/OMN/Mortality/Number of under-five deaths", + "World/Latam/PAN/Mortality/Number of under-five deaths", + "World/Latam/PER/Mortality/Number of under-five deaths", + "World/Asia/PHL/Mortality/Number of under-five deaths", + "World/Europe/POL/Mortality/Number of under-five deaths", + "World/Persian Gulf/SAU/Mortality/Number of under-five deaths", + "World/South Africa/SEN/Mortality/Number of under-five deaths", + "World/Europe/SWE/Mortality/Number of under-five deaths", + "World/Asia/THA/Mortality/Number of under-five deaths", + "World/North Africa/TUR/Mortality/Number of under-five deaths", + "World/Pair/USA/Mortality/Number of under-five deaths", + "World/Asia/VNM/Mortality/Number of under-five deaths", + "World/Latam/ARG/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/AUT/Health/Nurses and midwives (per 1,000 people)", + "World/Persian Gulf/AZE/Health/Nurses and midwives (per 1,000 people)", + "World/Asia/BGD/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/BRA/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/CHL/Health/Nurses and midwives (per 1,000 people)", + "World/Pair/CHN/Health/Nurses and midwives (per 1,000 people)", + "World/South Africa/CMR/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/CRI/Health/Nurses and midwives (per 1,000 people)", + "World/North Africa/EGY/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/ESP/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/FRA/Health/Nurses and midwives (per 1,000 people)", + "World/South Africa/GHA/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/HRV/Health/Nurses and midwives (per 1,000 people)", + "World/Asia/IDN/Health/Nurses and midwives (per 1,000 people)", + "World/Asia/IND/Health/Nurses and midwives (per 1,000 people)", + "World/Asia/KOR/Health/Nurses and midwives (per 1,000 people)", + "World/South Africa/LBR/Health/Nurses and midwives (per 1,000 people)", + "World/South Africa/MOZ/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/NLD/Health/Nurses and midwives (per 1,000 people)", + "World/Persian Gulf/OMN/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/PAN/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/PER/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/POL/Health/Nurses and midwives (per 1,000 people)", + "World/Persian Gulf/SAU/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/SWE/Health/Nurses and midwives (per 1,000 people)", + "World/Asia/THA/Health/Nurses and midwives (per 1,000 people)", + "World/North Africa/TUR/Health/Nurses and midwives (per 1,000 people)", + "World/Pair/USA/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/VEN/Health/Nurses and midwives (per 1,000 people)", + "World/Persian Gulf/YEM/Health/Nurses and midwives (per 1,000 people)", + "World/South Africa/ZAF/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/ARG/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/AUT/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Persian Gulf/AZE/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Asia/BGD/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/BRA/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/CHL/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Pair/CHN/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/South Africa/CMR/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/COL/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/CRI/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/DEU/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/North Africa/DZA/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/North Africa/EGY/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/ESP/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/FRA/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/GBR/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/South Africa/GHA/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/GRC/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/HRV/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Asia/IDN/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Asia/IND/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/North Africa/ISR/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Asia/KOR/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/South Africa/LBR/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/South Africa/NGA/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/NLD/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/PAN/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/PER/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Asia/PHL/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/POL/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Persian Gulf/SAU/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/South Africa/SEN/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/SWE/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Pair/USA/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/VEN/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Asia/VNM/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Persian Gulf/YEM/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/ARG/Health/People practicing open defecation (% of population)", + "World/Persian Gulf/AZE/Health/People practicing open defecation (% of population)", + "World/Asia/BGD/Health/People practicing open defecation (% of population)", + "World/Latam/BRA/Health/People practicing open defecation (% of population)", + "World/Latam/CHL/Health/People practicing open defecation (% of population)", + "World/Pair/CHN/Health/People practicing open defecation (% of population)", + "World/South Africa/CMR/Health/People practicing open defecation (% of population)", + "World/Latam/COL/Health/People practicing open defecation (% of population)", + "World/Latam/CRI/Health/People practicing open defecation (% of population)", + "World/North Africa/DZA/Health/People practicing open defecation (% of population)", + "World/North Africa/EGY/Health/People practicing open defecation (% of population)", + "World/South Africa/GHA/Health/People practicing open defecation (% of population)", + "World/Europe/GRC/Health/People practicing open defecation (% of population)", + "World/Asia/IDN/Health/People practicing open defecation (% of population)", + "World/Asia/IND/Health/People practicing open defecation (% of population)", + "World/Persian Gulf/IRQ/Health/People practicing open defecation (% of population)", + "World/South Africa/LBR/Health/People practicing open defecation (% of population)", + "World/North Africa/MAR/Health/People practicing open defecation (% of population)", + "World/Latam/MEX/Health/People practicing open defecation (% of population)", + "World/South Africa/MOZ/Health/People practicing open defecation (% of population)", + "World/South Africa/NGA/Health/People practicing open defecation (% of population)", + "World/Persian Gulf/OMN/Health/People practicing open defecation (% of population)", + "World/Latam/PAN/Health/People practicing open defecation (% of population)", + "World/Latam/PER/Health/People practicing open defecation (% of population)", + "World/Asia/PHL/Health/People practicing open defecation (% of population)", + "World/South Africa/SEN/Health/People practicing open defecation (% of population)", + "World/Asia/THA/Health/People practicing open defecation (% of population)", + "World/North Africa/TUR/Health/People practicing open defecation (% of population)", + "World/Latam/VEN/Health/People practicing open defecation (% of population)", + "World/Asia/VNM/Health/People practicing open defecation (% of population)", + "World/Persian Gulf/YEM/Health/People practicing open defecation (% of population)", + "World/South Africa/ZAF/Health/People practicing open defecation (% of population)", + "World/Persian Gulf/ARE/Health/People using at least basic drinking water services (% of population)", + "World/Latam/ARG/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/AZE/Health/People using at least basic drinking water services (% of population)", + "World/Asia/BGD/Health/People using at least basic drinking water services (% of population)", + "World/Latam/BRA/Health/People using at least basic drinking water services (% of population)", + "World/Latam/CHL/Health/People using at least basic drinking water services (% of population)", + "World/Pair/CHN/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/CMR/Health/People using at least basic drinking water services (% of population)", + "World/Latam/COL/Health/People using at least basic drinking water services (% of population)", + "World/Latam/CRI/Health/People using at least basic drinking water services (% of population)", + "World/North Africa/DZA/Health/People using at least basic drinking water services (% of population)", + "World/North Africa/EGY/Health/People using at least basic drinking water services (% of population)", + "World/Europe/ESP/Health/People using at least basic drinking water services (% of population)", + "World/Europe/FRA/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/GHA/Health/People using at least basic drinking water services (% of population)", + "World/Europe/GRC/Health/People using at least basic drinking water services (% of population)", + "World/Europe/HRV/Health/People using at least basic drinking water services (% of population)", + "World/Asia/IDN/Health/People using at least basic drinking water services (% of population)", + "World/Asia/IND/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/IRQ/Health/People using at least basic drinking water services (% of population)", + "World/Asia/KOR/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/LBR/Health/People using at least basic drinking water services (% of population)", + "World/North Africa/MAR/Health/People using at least basic drinking water services (% of population)", + "World/Latam/MEX/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/MOZ/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/NGA/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/OMN/Health/People using at least basic drinking water services (% of population)", + "World/Latam/PAN/Health/People using at least basic drinking water services (% of population)", + "World/Latam/PER/Health/People using at least basic drinking water services (% of population)", + "World/Asia/PHL/Health/People using at least basic drinking water services (% of population)", + "World/Europe/POL/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/QAT/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/SAU/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/SEN/Health/People using at least basic drinking water services (% of population)", + "World/Europe/SWE/Health/People using at least basic drinking water services (% of population)", + "World/Asia/THA/Health/People using at least basic drinking water services (% of population)", + "World/North Africa/TUR/Health/People using at least basic drinking water services (% of population)", + "World/Pair/USA/Health/People using at least basic drinking water services (% of population)", + "World/Latam/VEN/Health/People using at least basic drinking water services (% of population)", + "World/Asia/VNM/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/YEM/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/ZAF/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/ARE/Health/People using at least basic sanitation services (% of population)", + "World/Latam/ARG/Health/People using at least basic sanitation services (% of population)", + "World/Europe/AUT/Health/People using at least basic sanitation services (% of population)", + "World/Persian Gulf/AZE/Health/People using at least basic sanitation services (% of population)", + "World/Asia/BGD/Health/People using at least basic sanitation services (% of population)", + "World/Latam/BRA/Health/People using at least basic sanitation services (% of population)", + "World/Latam/CHL/Health/People using at least basic sanitation services (% of population)", + "World/Pair/CHN/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/CMR/Health/People using at least basic sanitation services (% of population)", + "World/Latam/COL/Health/People using at least basic sanitation services (% of population)", + "World/Latam/CRI/Health/People using at least basic sanitation services (% of population)", + "World/Europe/DEU/Health/People using at least basic sanitation services (% of population)", + "World/North Africa/DZA/Health/People using at least basic sanitation services (% of population)", + "World/North Africa/EGY/Health/People using at least basic sanitation services (% of population)", + "World/Europe/ESP/Health/People using at least basic sanitation services (% of population)", + "World/Europe/FRA/Health/People using at least basic sanitation services (% of population)", + "World/Europe/GBR/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/GHA/Health/People using at least basic sanitation services (% of population)", + "World/Europe/GRC/Health/People using at least basic sanitation services (% of population)", + "World/Europe/HRV/Health/People using at least basic sanitation services (% of population)", + "World/Asia/IDN/Health/People using at least basic sanitation services (% of population)", + "World/Asia/IND/Health/People using at least basic sanitation services (% of population)", + "World/Persian Gulf/IRQ/Health/People using at least basic sanitation services (% of population)", + "World/North Africa/ISR/Health/People using at least basic sanitation services (% of population)", + "World/Asia/KOR/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/LBR/Health/People using at least basic sanitation services (% of population)", + "World/North Africa/MAR/Health/People using at least basic sanitation services (% of population)", + "World/Latam/MEX/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/MOZ/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/NGA/Health/People using at least basic sanitation services (% of population)", + "World/Europe/NLD/Health/People using at least basic sanitation services (% of population)", + "World/Persian Gulf/OMN/Health/People using at least basic sanitation services (% of population)", + "World/Latam/PAN/Health/People using at least basic sanitation services (% of population)", + "World/Latam/PER/Health/People using at least basic sanitation services (% of population)", + "World/Asia/PHL/Health/People using at least basic sanitation services (% of population)", + "World/Europe/POL/Health/People using at least basic sanitation services (% of population)", + "World/Persian Gulf/SAU/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/SEN/Health/People using at least basic sanitation services (% of population)", + "World/Europe/SWE/Health/People using at least basic sanitation services (% of population)", + "World/Asia/THA/Health/People using at least basic sanitation services (% of population)", + "World/North Africa/TUR/Health/People using at least basic sanitation services (% of population)", + "World/Pair/USA/Health/People using at least basic sanitation services (% of population)", + "World/Latam/VEN/Health/People using at least basic sanitation services (% of population)", + "World/Asia/VNM/Health/People using at least basic sanitation services (% of population)", + "World/Persian Gulf/YEM/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/ZAF/Health/People using at least basic sanitation services (% of population)", + "World/Persian Gulf/ARE/Health/People using safely managed sanitation services (% of population)", + "World/Latam/ARG/Health/People using safely managed sanitation services (% of population)", + "World/Europe/AUT/Health/People using safely managed sanitation services (% of population)", + "World/Persian Gulf/AZE/Health/People using safely managed sanitation services (% of population)", + "World/Asia/BGD/Health/People using safely managed sanitation services (% of population)", + "World/Latam/BRA/Health/People using safely managed sanitation services (% of population)", + "World/Latam/CHL/Health/People using safely managed sanitation services (% of population)", + "World/Pair/CHN/Health/People using safely managed sanitation services (% of population)", + "World/Latam/COL/Health/People using safely managed sanitation services (% of population)", + "World/Latam/CRI/Health/People using safely managed sanitation services (% of population)", + "World/Europe/DEU/Health/People using safely managed sanitation services (% of population)", + "World/North Africa/DZA/Health/People using safely managed sanitation services (% of population)", + "World/North Africa/EGY/Health/People using safely managed sanitation services (% of population)", + "World/Europe/FRA/Health/People using safely managed sanitation services (% of population)", + "World/Europe/GBR/Health/People using safely managed sanitation services (% of population)", + "World/South Africa/GHA/Health/People using safely managed sanitation services (% of population)", + "World/Europe/GRC/Health/People using safely managed sanitation services (% of population)", + "World/Asia/IND/Health/People using safely managed sanitation services (% of population)", + "World/North Africa/ISR/Health/People using safely managed sanitation services (% of population)", + "World/Asia/KOR/Health/People using safely managed sanitation services (% of population)", + "World/North Africa/MAR/Health/People using safely managed sanitation services (% of population)", + "World/Latam/MEX/Health/People using safely managed sanitation services (% of population)", + "World/South Africa/NGA/Health/People using safely managed sanitation services (% of population)", + "World/Europe/NLD/Health/People using safely managed sanitation services (% of population)", + "World/Latam/PER/Health/People using safely managed sanitation services (% of population)", + "World/Asia/PHL/Health/People using safely managed sanitation services (% of population)", + "World/Europe/POL/Health/People using safely managed sanitation services (% of population)", + "World/Persian Gulf/QAT/Health/People using safely managed sanitation services (% of population)", + "World/Persian Gulf/SAU/Health/People using safely managed sanitation services (% of population)", + "World/South Africa/SEN/Health/People using safely managed sanitation services (% of population)", + "World/Europe/SWE/Health/People using safely managed sanitation services (% of population)", + "World/Asia/THA/Health/People using safely managed sanitation services (% of population)", + "World/North Africa/TUR/Health/People using safely managed sanitation services (% of population)", + "World/Pair/USA/Health/People using safely managed sanitation services (% of population)", + "World/Latam/VEN/Health/People using safely managed sanitation services (% of population)", + "World/Persian Gulf/YEM/Health/People using safely managed sanitation services (% of population)", + "World/Europe/AUT/Agriculture/Permanent cropland (% of land area)", + "World/Persian Gulf/AZE/Agriculture/Permanent cropland (% of land area)", + "World/Latam/CHL/Agriculture/Permanent cropland (% of land area)", + "World/Pair/CHN/Agriculture/Permanent cropland (% of land area)", + "World/South Africa/CMR/Agriculture/Permanent cropland (% of land area)", + "World/Latam/COL/Agriculture/Permanent cropland (% of land area)", + "World/Latam/CRI/Agriculture/Permanent cropland (% of land area)", + "World/North Africa/DZA/Agriculture/Permanent cropland (% of land area)", + "World/Europe/FRA/Agriculture/Permanent cropland (% of land area)", + "World/Europe/GRC/Agriculture/Permanent cropland (% of land area)", + "World/Asia/IDN/Agriculture/Permanent cropland (% of land area)", + "World/Asia/IND/Agriculture/Permanent cropland (% of land area)", + "World/North Africa/MAR/Agriculture/Permanent cropland (% of land area)", + "World/Latam/MEX/Agriculture/Permanent cropland (% of land area)", + "World/South Africa/MOZ/Agriculture/Permanent cropland (% of land area)", + "World/Europe/NLD/Agriculture/Permanent cropland (% of land area)", + "World/Persian Gulf/OMN/Agriculture/Permanent cropland (% of land area)", + "World/Latam/PER/Agriculture/Permanent cropland (% of land area)", + "World/Asia/PHL/Agriculture/Permanent cropland (% of land area)", + "World/South Africa/SEN/Agriculture/Permanent cropland (% of land area)", + "World/Asia/THA/Agriculture/Permanent cropland (% of land area)", + "World/North Africa/TUR/Agriculture/Permanent cropland (% of land area)", + "World/Asia/VNM/Agriculture/Permanent cropland (% of land area)", + "World/Persian Gulf/YEM/Agriculture/Permanent cropland (% of land area)", + "World/South Africa/ZAF/Agriculture/Permanent cropland (% of land area)", + "World/Persian Gulf/ARE/Demography/Population ages 0-14 (% of total population)", + "World/Latam/ARG/Demography/Population ages 0-14 (% of total population)", + "World/Europe/AUT/Demography/Population ages 0-14 (% of total population)", + "World/Persian Gulf/AZE/Demography/Population ages 0-14 (% of total population)", + "World/Asia/BGD/Demography/Population ages 0-14 (% of total population)", + "World/Latam/BRA/Demography/Population ages 0-14 (% of total population)", + "World/Latam/CHL/Demography/Population ages 0-14 (% of total population)", + "World/Pair/CHN/Demography/Population ages 0-14 (% of total population)", + "World/South Africa/CMR/Demography/Population ages 0-14 (% of total population)", + "World/Latam/COL/Demography/Population ages 0-14 (% of total population)", + "World/Latam/CRI/Demography/Population ages 0-14 (% of total population)", + "World/North Africa/EGY/Demography/Population ages 0-14 (% of total population)", + "World/Europe/FRA/Demography/Population ages 0-14 (% of total population)", + "World/South Africa/GHA/Demography/Population ages 0-14 (% of total population)", + "World/Europe/HRV/Demography/Population ages 0-14 (% of total population)", + "World/Asia/IDN/Demography/Population ages 0-14 (% of total population)", + "World/Asia/IND/Demography/Population ages 0-14 (% of total population)", + "World/Asia/KOR/Demography/Population ages 0-14 (% of total population)", + "World/North Africa/MAR/Demography/Population ages 0-14 (% of total population)", + "World/Latam/MEX/Demography/Population ages 0-14 (% of total population)", + "World/Europe/NLD/Demography/Population ages 0-14 (% of total population)", + "World/Persian Gulf/OMN/Demography/Population ages 0-14 (% of total population)", + "World/Latam/PAN/Demography/Population ages 0-14 (% of total population)", + "World/Latam/PER/Demography/Population ages 0-14 (% of total population)", + "World/Asia/PHL/Demography/Population ages 0-14 (% of total population)", + "World/Europe/POL/Demography/Population ages 0-14 (% of total population)", + "World/Persian Gulf/QAT/Demography/Population ages 0-14 (% of total population)", + "World/Persian Gulf/SAU/Demography/Population ages 0-14 (% of total population)", + "World/South Africa/SEN/Demography/Population ages 0-14 (% of total population)", + "World/Asia/THA/Demography/Population ages 0-14 (% of total population)", + "World/North Africa/TUR/Demography/Population ages 0-14 (% of total population)", + "World/Pair/USA/Demography/Population ages 0-14 (% of total population)", + "World/Latam/VEN/Demography/Population ages 0-14 (% of total population)", + "World/Asia/VNM/Demography/Population ages 0-14 (% of total population)", + "World/Persian Gulf/YEM/Demography/Population ages 0-14 (% of total population)", + "World/South Africa/ZAF/Demography/Population ages 0-14 (% of total population)", + "World/Persian Gulf/ARE/Demography/Population ages 15-64 (% of total population)", + "World/Latam/ARG/Demography/Population ages 15-64 (% of total population)", + "World/Persian Gulf/AZE/Demography/Population ages 15-64 (% of total population)", + "World/Asia/BGD/Demography/Population ages 15-64 (% of total population)", + "World/Latam/BRA/Demography/Population ages 15-64 (% of total population)", + "World/Latam/CHL/Demography/Population ages 15-64 (% of total population)", + "World/Pair/CHN/Demography/Population ages 15-64 (% of total population)", + "World/South Africa/CMR/Demography/Population ages 15-64 (% of total population)", + "World/Latam/COL/Demography/Population ages 15-64 (% of total population)", + "World/Latam/CRI/Demography/Population ages 15-64 (% of total population)", + "World/Europe/DEU/Demography/Population ages 15-64 (% of total population)", + "World/North Africa/EGY/Demography/Population ages 15-64 (% of total population)", + "World/Europe/FRA/Demography/Population ages 15-64 (% of total population)", + "World/Europe/GBR/Demography/Population ages 15-64 (% of total population)", + "World/South Africa/GHA/Demography/Population ages 15-64 (% of total population)", + "World/Europe/GRC/Demography/Population ages 15-64 (% of total population)", + "World/Asia/IDN/Demography/Population ages 15-64 (% of total population)", + "World/Asia/IND/Demography/Population ages 15-64 (% of total population)", + "World/North Africa/ISR/Demography/Population ages 15-64 (% of total population)", + "World/North Africa/MAR/Demography/Population ages 15-64 (% of total population)", + "World/Latam/MEX/Demography/Population ages 15-64 (% of total population)", + "World/Europe/NLD/Demography/Population ages 15-64 (% of total population)", + "World/Persian Gulf/OMN/Demography/Population ages 15-64 (% of total population)", + "World/Latam/PAN/Demography/Population ages 15-64 (% of total population)", + "World/Latam/PER/Demography/Population ages 15-64 (% of total population)", + "World/Asia/PHL/Demography/Population ages 15-64 (% of total population)", + "World/Europe/POL/Demography/Population ages 15-64 (% of total population)", + "World/Persian Gulf/QAT/Demography/Population ages 15-64 (% of total population)", + "World/Persian Gulf/SAU/Demography/Population ages 15-64 (% of total population)", + "World/South Africa/SEN/Demography/Population ages 15-64 (% of total population)", + "World/North Africa/TUR/Demography/Population ages 15-64 (% of total population)", + "World/Pair/USA/Demography/Population ages 15-64 (% of total population)", + "World/Latam/VEN/Demography/Population ages 15-64 (% of total population)", + "World/Asia/VNM/Demography/Population ages 15-64 (% of total population)", + "World/Persian Gulf/YEM/Demography/Population ages 15-64 (% of total population)", + "World/South Africa/ZAF/Demography/Population ages 15-64 (% of total population)", + "World/Persian Gulf/ARE/Demography/Population ages 65 and above (% of total population)", + "World/Latam/ARG/Demography/Population ages 65 and above (% of total population)", + "World/Europe/AUT/Demography/Population ages 65 and above (% of total population)", + "World/Asia/BGD/Demography/Population ages 65 and above (% of total population)", + "World/Latam/BRA/Demography/Population ages 65 and above (% of total population)", + "World/Latam/CHL/Demography/Population ages 65 and above (% of total population)", + "World/Pair/CHN/Demography/Population ages 65 and above (% of total population)", + "World/South Africa/CMR/Demography/Population ages 65 and above (% of total population)", + "World/Latam/COL/Demography/Population ages 65 and above (% of total population)", + "World/Latam/CRI/Demography/Population ages 65 and above (% of total population)", + "World/Europe/DEU/Demography/Population ages 65 and above (% of total population)", + "World/North Africa/DZA/Demography/Population ages 65 and above (% of total population)", + "World/North Africa/EGY/Demography/Population ages 65 and above (% of total population)", + "World/Europe/FRA/Demography/Population ages 65 and above (% of total population)", + "World/Europe/GBR/Demography/Population ages 65 and above (% of total population)", + "World/Europe/GRC/Demography/Population ages 65 and above (% of total population)", + "World/Europe/HRV/Demography/Population ages 65 and above (% of total population)", + "World/Asia/IDN/Demography/Population ages 65 and above (% of total population)", + "World/Asia/IND/Demography/Population ages 65 and above (% of total population)", + "World/North Africa/ISR/Demography/Population ages 65 and above (% of total population)", + "World/Asia/KOR/Demography/Population ages 65 and above (% of total population)", + "World/North Africa/MAR/Demography/Population ages 65 and above (% of total population)", + "World/Latam/MEX/Demography/Population ages 65 and above (% of total population)", + "World/South Africa/MOZ/Demography/Population ages 65 and above (% of total population)", + "World/South Africa/NGA/Demography/Population ages 65 and above (% of total population)", + "World/Europe/NLD/Demography/Population ages 65 and above (% of total population)", + "World/Latam/PAN/Demography/Population ages 65 and above (% of total population)", + "World/Latam/PER/Demography/Population ages 65 and above (% of total population)", + "World/Asia/PHL/Demography/Population ages 65 and above (% of total population)", + "World/Europe/POL/Demography/Population ages 65 and above (% of total population)", + "World/Persian Gulf/QAT/Demography/Population ages 65 and above (% of total population)", + "World/Asia/THA/Demography/Population ages 65 and above (% of total population)", + "World/North Africa/TUR/Demography/Population ages 65 and above (% of total population)", + "World/Pair/USA/Demography/Population ages 65 and above (% of total population)", + "World/Latam/VEN/Demography/Population ages 65 and above (% of total population)", + "World/Asia/VNM/Demography/Population ages 65 and above (% of total population)", + "World/Persian Gulf/YEM/Demography/Population ages 65 and above (% of total population)", + "World/South Africa/ZAF/Demography/Population ages 65 and above (% of total population)", + "World/Persian Gulf/ARE/Demography/Population in largest city", + "World/Latam/ARG/Demography/Population in largest city", + "World/Europe/AUT/Demography/Population in largest city", + "World/Persian Gulf/AZE/Demography/Population in largest city", + "World/Asia/BGD/Demography/Population in largest city", + "World/Latam/BRA/Demography/Population in largest city", + "World/Latam/CHL/Demography/Population in largest city", + "World/Pair/CHN/Demography/Population in largest city", + "World/South Africa/CMR/Demography/Population in largest city", + "World/Latam/COL/Demography/Population in largest city", + "World/Latam/CRI/Demography/Population in largest city", + "World/North Africa/DZA/Demography/Population in largest city", + "World/North Africa/EGY/Demography/Population in largest city", + "World/Europe/ESP/Demography/Population in largest city", + "World/Europe/FRA/Demography/Population in largest city", + "World/Europe/GBR/Demography/Population in largest city", + "World/South Africa/GHA/Demography/Population in largest city", + "World/Europe/GRC/Demography/Population in largest city", + "World/Europe/HRV/Demography/Population in largest city", + "World/Asia/IDN/Demography/Population in largest city", + "World/Asia/IND/Demography/Population in largest city", + "World/North Africa/ISR/Demography/Population in largest city", + "World/North Africa/MAR/Demography/Population in largest city", + "World/Latam/MEX/Demography/Population in largest city", + "World/South Africa/MOZ/Demography/Population in largest city", + "World/South Africa/NGA/Demography/Population in largest city", + "World/Europe/NLD/Demography/Population in largest city", + "World/Persian Gulf/OMN/Demography/Population in largest city", + "World/Latam/PAN/Demography/Population in largest city", + "World/Latam/PER/Demography/Population in largest city", + "World/Asia/PHL/Demography/Population in largest city", + "World/Europe/POL/Demography/Population in largest city", + "World/Persian Gulf/QAT/Demography/Population in largest city", + "World/Persian Gulf/SAU/Demography/Population in largest city", + "World/South Africa/SEN/Demography/Population in largest city", + "World/Asia/THA/Demography/Population in largest city", + "World/North Africa/TUR/Demography/Population in largest city", + "World/Pair/USA/Demography/Population in largest city", + "World/Latam/VEN/Demography/Population in largest city", + "World/Asia/VNM/Demography/Population in largest city", + "World/Persian Gulf/YEM/Demography/Population in largest city", + "World/South Africa/ZAF/Demography/Population in largest city", + "World/Persian Gulf/ARE/Demography/Population in the largest city (% of urban population)", + "World/Latam/ARG/Demography/Population in the largest city (% of urban population)", + "World/Europe/AUT/Demography/Population in the largest city (% of urban population)", + "World/Persian Gulf/AZE/Demography/Population in the largest city (% of urban population)", + "World/Asia/BGD/Demography/Population in the largest city (% of urban population)", + "World/Latam/CHL/Demography/Population in the largest city (% of urban population)", + "World/South Africa/CMR/Demography/Population in the largest city (% of urban population)", + "World/Latam/COL/Demography/Population in the largest city (% of urban population)", + "World/Latam/CRI/Demography/Population in the largest city (% of urban population)", + "World/North Africa/DZA/Demography/Population in the largest city (% of urban population)", + "World/North Africa/EGY/Demography/Population in the largest city (% of urban population)", + "World/Europe/FRA/Demography/Population in the largest city (% of urban population)", + "World/Europe/GBR/Demography/Population in the largest city (% of urban population)", + "World/Asia/IDN/Demography/Population in the largest city (% of urban population)", + "World/Asia/IND/Demography/Population in the largest city (% of urban population)", + "World/North Africa/ISR/Demography/Population in the largest city (% of urban population)", + "World/Asia/KOR/Demography/Population in the largest city (% of urban population)", + "World/North Africa/MAR/Demography/Population in the largest city (% of urban population)", + "World/Latam/MEX/Demography/Population in the largest city (% of urban population)", + "World/South Africa/MOZ/Demography/Population in the largest city (% of urban population)", + "World/South Africa/NGA/Demography/Population in the largest city (% of urban population)", + "World/Europe/NLD/Demography/Population in the largest city (% of urban population)", + "World/Latam/PAN/Demography/Population in the largest city (% of urban population)", + "World/Latam/PER/Demography/Population in the largest city (% of urban population)", + "World/Europe/POL/Demography/Population in the largest city (% of urban population)", + "World/Persian Gulf/QAT/Demography/Population in the largest city (% of urban population)", + "World/Persian Gulf/SAU/Demography/Population in the largest city (% of urban population)", + "World/South Africa/SEN/Demography/Population in the largest city (% of urban population)", + "World/North Africa/TUR/Demography/Population in the largest city (% of urban population)", + "World/Pair/USA/Demography/Population in the largest city (% of urban population)", + "World/Latam/VEN/Demography/Population in the largest city (% of urban population)", + "World/Asia/VNM/Demography/Population in the largest city (% of urban population)", + "World/Persian Gulf/YEM/Demography/Population in the largest city (% of urban population)", + "World/South Africa/ZAF/Demography/Population in the largest city (% of urban population)", + "World/Persian Gulf/ARE/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/ARG/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/AUT/Demography/Population in urban agglomerations of more than 1 million", + "World/Persian Gulf/AZE/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/BGD/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/BRA/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/CHL/Demography/Population in urban agglomerations of more than 1 million", + "World/Pair/CHN/Demography/Population in urban agglomerations of more than 1 million", + "World/South Africa/CMR/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/COL/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/CRI/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/DEU/Demography/Population in urban agglomerations of more than 1 million", + "World/North Africa/DZA/Demography/Population in urban agglomerations of more than 1 million", + "World/North Africa/EGY/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/ESP/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/FRA/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/GBR/Demography/Population in urban agglomerations of more than 1 million", + "World/South Africa/GHA/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/GRC/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/IDN/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/IND/Demography/Population in urban agglomerations of more than 1 million", + "World/North Africa/ISR/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/KOR/Demography/Population in urban agglomerations of more than 1 million", + "World/North Africa/MAR/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/MEX/Demography/Population in urban agglomerations of more than 1 million", + "World/South Africa/MOZ/Demography/Population in urban agglomerations of more than 1 million", + "World/South Africa/NGA/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/NLD/Demography/Population in urban agglomerations of more than 1 million", + "World/Persian Gulf/OMN/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/PAN/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/PER/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/PHL/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/POL/Demography/Population in urban agglomerations of more than 1 million", + "World/Persian Gulf/SAU/Demography/Population in urban agglomerations of more than 1 million", + "World/South Africa/SEN/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/THA/Demography/Population in urban agglomerations of more than 1 million", + "World/North Africa/TUR/Demography/Population in urban agglomerations of more than 1 million", + "World/Pair/USA/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/VEN/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/VNM/Demography/Population in urban agglomerations of more than 1 million", + "World/Persian Gulf/YEM/Demography/Population in urban agglomerations of more than 1 million", + "World/South Africa/ZAF/Demography/Population in urban agglomerations of more than 1 million", + "World/Persian Gulf/ARE/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/ARG/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Europe/AUT/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Persian Gulf/AZE/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Asia/BGD/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/BRA/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Pair/CHN/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/South Africa/CMR/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/COL/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/CRI/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/North Africa/DZA/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Europe/GBR/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/South Africa/GHA/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Europe/GRC/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Asia/IDN/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Asia/IND/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Asia/KOR/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/North Africa/MAR/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/MEX/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/South Africa/MOZ/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/South Africa/NGA/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/PAN/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/PER/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Europe/POL/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Persian Gulf/SAU/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Asia/THA/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/North Africa/TUR/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Pair/USA/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Asia/VNM/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Persian Gulf/YEM/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/South Africa/ZAF/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Persian Gulf/AZE/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Asia/BGD/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Latam/CHL/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Pair/CHN/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/South Africa/CMR/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/North Africa/EGY/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Europe/GBR/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/South Africa/GHA/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Asia/IDN/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Asia/IND/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/South Africa/LBR/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/North Africa/MAR/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/South Africa/MOZ/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Latam/PAN/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Latam/PER/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/South Africa/SEN/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Europe/SWE/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Asia/THA/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/North Africa/TUR/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Asia/VNM/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Persian Gulf/YEM/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/South Africa/ZAF/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Persian Gulf/ARE/Health/Pregnant women receiving prenatal care (%)", + "World/Persian Gulf/AZE/Health/Pregnant women receiving prenatal care (%)", + "World/Asia/BGD/Health/Pregnant women receiving prenatal care (%)", + "World/Pair/CHN/Health/Pregnant women receiving prenatal care (%)", + "World/South Africa/CMR/Health/Pregnant women receiving prenatal care (%)", + "World/Latam/COL/Health/Pregnant women receiving prenatal care (%)", + "World/Latam/CRI/Health/Pregnant women receiving prenatal care (%)", + "World/North Africa/DZA/Health/Pregnant women receiving prenatal care (%)", + "World/North Africa/EGY/Health/Pregnant women receiving prenatal care (%)", + "World/Asia/IDN/Health/Pregnant women receiving prenatal care (%)", + "World/Asia/IND/Health/Pregnant women receiving prenatal care (%)", + "World/South Africa/LBR/Health/Pregnant women receiving prenatal care (%)", + "World/North Africa/MAR/Health/Pregnant women receiving prenatal care (%)", + "World/South Africa/MOZ/Health/Pregnant women receiving prenatal care (%)", + "World/South Africa/NGA/Health/Pregnant women receiving prenatal care (%)", + "World/Latam/PER/Health/Pregnant women receiving prenatal care (%)", + "World/Asia/PHL/Health/Pregnant women receiving prenatal care (%)", + "World/Persian Gulf/QAT/Health/Pregnant women receiving prenatal care (%)", + "World/Persian Gulf/SAU/Health/Pregnant women receiving prenatal care (%)", + "World/South Africa/SEN/Health/Pregnant women receiving prenatal care (%)", + "World/North Africa/TUR/Health/Pregnant women receiving prenatal care (%)", + "World/Latam/VEN/Health/Pregnant women receiving prenatal care (%)", + "World/Asia/VNM/Health/Pregnant women receiving prenatal care (%)", + "World/Persian Gulf/YEM/Health/Pregnant women receiving prenatal care (%)", + "World/Europe/AUT/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Persian Gulf/AZE/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Asia/BGD/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/BRA/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Pair/CHN/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/South Africa/CMR/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/COL/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/CRI/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Europe/DEU/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/North Africa/DZA/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/North Africa/EGY/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Europe/ESP/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Europe/GBR/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/South Africa/GHA/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Europe/GRC/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Asia/IND/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/North Africa/ISR/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/North Africa/MAR/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/MEX/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/South Africa/MOZ/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/South Africa/NGA/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Europe/NLD/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Persian Gulf/OMN/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/PAN/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/PER/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Asia/PHL/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Persian Gulf/QAT/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Persian Gulf/SAU/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/South Africa/SEN/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Pair/USA/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/VEN/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Asia/VNM/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Persian Gulf/YEM/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Persian Gulf/AZE/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Asia/BGD/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/BRA/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/CHL/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Pair/CHN/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/CMR/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/COL/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/CRI/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/North Africa/DZA/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/North Africa/EGY/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Europe/ESP/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Europe/GBR/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/GHA/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Persian Gulf/IRQ/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/North Africa/ISR/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Asia/KOR/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/LBR/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/North Africa/MAR/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/MEX/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/MOZ/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/NGA/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Europe/NLD/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Persian Gulf/OMN/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/PAN/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/PER/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Asia/PHL/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Persian Gulf/QAT/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Persian Gulf/SAU/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/SEN/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Asia/THA/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Pair/USA/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/VEN/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Asia/VNM/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Persian Gulf/YEM/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/ZAF/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Persian Gulf/ARE/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/ARG/Health/Prevalence of anemia among pregnant women (%)", + "World/Persian Gulf/AZE/Health/Prevalence of anemia among pregnant women (%)", + "World/Asia/BGD/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/BRA/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/CHL/Health/Prevalence of anemia among pregnant women (%)", + "World/Pair/CHN/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/CMR/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/COL/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/CRI/Health/Prevalence of anemia among pregnant women (%)", + "World/North Africa/DZA/Health/Prevalence of anemia among pregnant women (%)", + "World/North Africa/EGY/Health/Prevalence of anemia among pregnant women (%)", + "World/Europe/GBR/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/GHA/Health/Prevalence of anemia among pregnant women (%)", + "World/Europe/HRV/Health/Prevalence of anemia among pregnant women (%)", + "World/Asia/IND/Health/Prevalence of anemia among pregnant women (%)", + "World/Persian Gulf/IRQ/Health/Prevalence of anemia among pregnant women (%)", + "World/North Africa/ISR/Health/Prevalence of anemia among pregnant women (%)", + "World/Asia/KOR/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/LBR/Health/Prevalence of anemia among pregnant women (%)", + "World/North Africa/MAR/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/MEX/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/MOZ/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/NGA/Health/Prevalence of anemia among pregnant women (%)", + "World/Persian Gulf/OMN/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/PAN/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/PER/Health/Prevalence of anemia among pregnant women (%)", + "World/Asia/PHL/Health/Prevalence of anemia among pregnant women (%)", + "World/Persian Gulf/QAT/Health/Prevalence of anemia among pregnant women (%)", + "World/Persian Gulf/SAU/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/SEN/Health/Prevalence of anemia among pregnant women (%)", + "World/Pair/USA/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/VEN/Health/Prevalence of anemia among pregnant women (%)", + "World/Asia/VNM/Health/Prevalence of anemia among pregnant women (%)", + "World/Persian Gulf/YEM/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/ZAF/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/ARG/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Persian Gulf/AZE/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Asia/BGD/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/BRA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/CHL/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Pair/CHN/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/CMR/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/COL/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/CRI/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/North Africa/DZA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/North Africa/EGY/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Europe/ESP/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Europe/FRA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Europe/GBR/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/GHA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Europe/GRC/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Persian Gulf/IRQ/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/North Africa/ISR/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Asia/KOR/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/LBR/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/North Africa/MAR/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/MEX/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/MOZ/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/NGA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Europe/NLD/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Persian Gulf/OMN/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/PAN/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/PER/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Asia/PHL/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Persian Gulf/QAT/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Persian Gulf/SAU/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/SEN/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Asia/THA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Pair/USA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/VEN/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Asia/VNM/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Persian Gulf/YEM/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/ZAF/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/ARG/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/AUT/Health/Prevalence of current tobacco use (% of adults)", + "World/Persian Gulf/AZE/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/BGD/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/BRA/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/CHL/Health/Prevalence of current tobacco use (% of adults)", + "World/Pair/CHN/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/CMR/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/COL/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/CRI/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/DEU/Health/Prevalence of current tobacco use (% of adults)", + "World/North Africa/DZA/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/ESP/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/FRA/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/GBR/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/GHA/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/GRC/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/HRV/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/IDN/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/IND/Health/Prevalence of current tobacco use (% of adults)", + "World/Persian Gulf/IRQ/Health/Prevalence of current tobacco use (% of adults)", + "World/North Africa/ISR/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/KOR/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/LBR/Health/Prevalence of current tobacco use (% of adults)", + "World/North Africa/MAR/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/MEX/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/MOZ/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/NGA/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/NLD/Health/Prevalence of current tobacco use (% of adults)", + "World/Persian Gulf/OMN/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/PAN/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/PER/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/PHL/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/POL/Health/Prevalence of current tobacco use (% of adults)", + "World/Persian Gulf/QAT/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/SEN/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/SWE/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/THA/Health/Prevalence of current tobacco use (% of adults)", + "World/North Africa/TUR/Health/Prevalence of current tobacco use (% of adults)", + "World/Pair/USA/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/VNM/Health/Prevalence of current tobacco use (% of adults)", + "World/Persian Gulf/YEM/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/ZAF/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/ARG/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Persian Gulf/AZE/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/BGD/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/CHL/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Pair/CHN/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/COL/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/CRI/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/North Africa/DZA/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/North Africa/EGY/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Europe/GRC/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/IDN/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/IND/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/KOR/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/North Africa/MAR/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/MEX/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/South Africa/NGA/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Europe/NLD/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Persian Gulf/OMN/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/PAN/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/PER/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/PHL/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Europe/POL/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Persian Gulf/QAT/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Persian Gulf/SAU/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/THA/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Pair/USA/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/VEN/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/VNM/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Persian Gulf/YEM/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/South Africa/ZAF/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Persian Gulf/AZE/Health/Prevalence of undernourishment (% of population)", + "World/Asia/BGD/Health/Prevalence of undernourishment (% of population)", + "World/Latam/BRA/Health/Prevalence of undernourishment (% of population)", + "World/Pair/CHN/Health/Prevalence of undernourishment (% of population)", + "World/South Africa/CMR/Health/Prevalence of undernourishment (% of population)", + "World/North Africa/DZA/Health/Prevalence of undernourishment (% of population)", + "World/South Africa/GHA/Health/Prevalence of undernourishment (% of population)", + "World/Asia/IDN/Health/Prevalence of undernourishment (% of population)", + "World/Persian Gulf/IRQ/Health/Prevalence of undernourishment (% of population)", + "World/North Africa/MAR/Health/Prevalence of undernourishment (% of population)", + "World/Latam/MEX/Health/Prevalence of undernourishment (% of population)", + "World/South Africa/MOZ/Health/Prevalence of undernourishment (% of population)", + "World/South Africa/NGA/Health/Prevalence of undernourishment (% of population)", + "World/Persian Gulf/OMN/Health/Prevalence of undernourishment (% of population)", + "World/Latam/PAN/Health/Prevalence of undernourishment (% of population)", + "World/Asia/PHL/Health/Prevalence of undernourishment (% of population)", + "World/South Africa/SEN/Health/Prevalence of undernourishment (% of population)", + "World/Asia/THA/Health/Prevalence of undernourishment (% of population)", + "World/Latam/VEN/Health/Prevalence of undernourishment (% of population)", + "World/Asia/VNM/Health/Prevalence of undernourishment (% of population)", + "World/Persian Gulf/YEM/Health/Prevalence of undernourishment (% of population)", + "World/Persian Gulf/ARE/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Persian Gulf/AZE/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Asia/BGD/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Latam/BRA/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Pair/CHN/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/South Africa/CMR/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Latam/CRI/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Europe/GBR/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Asia/IDN/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/South Africa/NGA/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Europe/NLD/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Persian Gulf/OMN/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Latam/PAN/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Persian Gulf/QAT/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Persian Gulf/SAU/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Latam/VEN/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Asia/VNM/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Persian Gulf/YEM/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Persian Gulf/AZE/Economy/Primary income payments (BoP, current US$)", + "World/Asia/BGD/Economy/Primary income payments (BoP, current US$)", + "World/Latam/BRA/Economy/Primary income payments (BoP, current US$)", + "World/Pair/CHN/Economy/Primary income payments (BoP, current US$)", + "World/Latam/COL/Economy/Primary income payments (BoP, current US$)", + "World/Latam/CRI/Economy/Primary income payments (BoP, current US$)", + "World/North Africa/EGY/Economy/Primary income payments (BoP, current US$)", + "World/Europe/ESP/Economy/Primary income payments (BoP, current US$)", + "World/South Africa/GHA/Economy/Primary income payments (BoP, current US$)", + "World/Europe/GRC/Economy/Primary income payments (BoP, current US$)", + "World/Europe/HRV/Economy/Primary income payments (BoP, current US$)", + "World/Asia/IDN/Economy/Primary income payments (BoP, current US$)", + "World/Asia/IND/Economy/Primary income payments (BoP, current US$)", + "World/North Africa/ISR/Economy/Primary income payments (BoP, current US$)", + "World/Asia/KOR/Economy/Primary income payments (BoP, current US$)", + "World/Latam/MEX/Economy/Primary income payments (BoP, current US$)", + "World/Europe/NLD/Economy/Primary income payments (BoP, current US$)", + "World/Persian Gulf/OMN/Economy/Primary income payments (BoP, current US$)", + "World/Latam/PAN/Economy/Primary income payments (BoP, current US$)", + "World/Latam/PER/Economy/Primary income payments (BoP, current US$)", + "World/Asia/PHL/Economy/Primary income payments (BoP, current US$)", + "World/Europe/POL/Economy/Primary income payments (BoP, current US$)", + "World/Persian Gulf/SAU/Economy/Primary income payments (BoP, current US$)", + "World/South Africa/SEN/Economy/Primary income payments (BoP, current US$)", + "World/Asia/THA/Economy/Primary income payments (BoP, current US$)", + "World/North Africa/TUR/Economy/Primary income payments (BoP, current US$)", + "World/Pair/USA/Economy/Primary income payments (BoP, current US$)", + "World/Latam/VEN/Economy/Primary income payments (BoP, current US$)", + "World/Asia/VNM/Economy/Primary income payments (BoP, current US$)", + "World/South Africa/ZAF/Economy/Primary income payments (BoP, current US$)", + "World/Persian Gulf/AZE/Economy/Primary income receipts (BoP, current US$)", + "World/Latam/CHL/Economy/Primary income receipts (BoP, current US$)", + "World/Pair/CHN/Economy/Primary income receipts (BoP, current US$)", + "World/Latam/COL/Economy/Primary income receipts (BoP, current US$)", + "World/Europe/ESP/Economy/Primary income receipts (BoP, current US$)", + "World/South Africa/GHA/Economy/Primary income receipts (BoP, current US$)", + "World/Europe/GRC/Economy/Primary income receipts (BoP, current US$)", + "World/Europe/HRV/Economy/Primary income receipts (BoP, current US$)", + "World/Asia/IND/Economy/Primary income receipts (BoP, current US$)", + "World/North Africa/ISR/Economy/Primary income receipts (BoP, current US$)", + "World/Asia/KOR/Economy/Primary income receipts (BoP, current US$)", + "World/South Africa/LBR/Economy/Primary income receipts (BoP, current US$)", + "World/Latam/MEX/Economy/Primary income receipts (BoP, current US$)", + "World/Europe/NLD/Economy/Primary income receipts (BoP, current US$)", + "World/Latam/PER/Economy/Primary income receipts (BoP, current US$)", + "World/Asia/PHL/Economy/Primary income receipts (BoP, current US$)", + "World/Europe/POL/Economy/Primary income receipts (BoP, current US$)", + "World/Persian Gulf/QAT/Economy/Primary income receipts (BoP, current US$)", + "World/South Africa/SEN/Economy/Primary income receipts (BoP, current US$)", + "World/Asia/THA/Economy/Primary income receipts (BoP, current US$)", + "World/Pair/USA/Economy/Primary income receipts (BoP, current US$)", + "World/Asia/VNM/Economy/Primary income receipts (BoP, current US$)", + "World/Persian Gulf/YEM/Economy/Primary income receipts (BoP, current US$)", + "World/Persian Gulf/ARE/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/ARG/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/AUT/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Persian Gulf/AZE/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Asia/BGD/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/BRA/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/CHL/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Pair/CHN/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/South Africa/CMR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/COL/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/CRI/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/DEU/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/North Africa/DZA/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/North Africa/EGY/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/ESP/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/FRA/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/GBR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/South Africa/GHA/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/HRV/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Asia/IDN/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Asia/IND/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/North Africa/ISR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Asia/KOR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/South Africa/LBR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/North Africa/MAR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/MEX/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/South Africa/MOZ/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/South Africa/NGA/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/NLD/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Persian Gulf/OMN/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/PAN/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/PER/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Asia/PHL/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/POL/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Persian Gulf/QAT/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Persian Gulf/SAU/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/South Africa/SEN/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/SWE/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/North Africa/TUR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Pair/USA/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Asia/VNM/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Persian Gulf/YEM/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Persian Gulf/ARE/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Latam/ARG/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/AUT/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Latam/CHL/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Pair/CHN/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/South Africa/CMR/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Latam/COL/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/DEU/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/North Africa/DZA/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/ESP/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/FRA/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/GBR/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/South Africa/GHA/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/GRC/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/HRV/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Asia/IDN/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Asia/IND/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/North Africa/ISR/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Asia/KOR/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/North Africa/MAR/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/South Africa/MOZ/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/South Africa/NGA/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/NLD/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Persian Gulf/OMN/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Latam/PAN/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Latam/PER/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Asia/PHL/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/POL/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Persian Gulf/QAT/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Persian Gulf/SAU/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/South Africa/SEN/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/SWE/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Asia/THA/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/North Africa/TUR/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Pair/USA/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Latam/VEN/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Asia/VNM/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Persian Gulf/ARE/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/ARG/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/AUT/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Persian Gulf/AZE/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/BGD/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/BRA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/CHL/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Pair/CHN/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/South Africa/CMR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/COL/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/CRI/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/North Africa/DZA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/North Africa/EGY/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/ESP/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/FRA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/GBR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/South Africa/GHA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/GRC/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/HRV/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/IDN/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/IND/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/North Africa/ISR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/KOR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/South Africa/LBR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/North Africa/MAR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/MEX/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/South Africa/MOZ/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/South Africa/NGA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/NLD/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Persian Gulf/OMN/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/PAN/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/PER/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/PHL/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/POL/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Persian Gulf/QAT/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Persian Gulf/SAU/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/South Africa/SEN/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/SWE/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/THA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/North Africa/TUR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Pair/USA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/VNM/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Persian Gulf/YEM/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Persian Gulf/ARE/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/ARG/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/AUT/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/BGD/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/CHL/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Pair/CHN/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/South Africa/CMR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/COL/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/DEU/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/North Africa/DZA/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/North Africa/EGY/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/ESP/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/FRA/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/GBR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/South Africa/GHA/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/GRC/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/HRV/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/IDN/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/IND/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/North Africa/ISR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/KOR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/South Africa/LBR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/North Africa/MAR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/South Africa/NGA/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/NLD/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Persian Gulf/OMN/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/PAN/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/PER/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/PHL/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/POL/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Persian Gulf/QAT/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Persian Gulf/SAU/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/South Africa/SEN/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/THA/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/North Africa/TUR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/VEN/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/VNM/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Persian Gulf/YEM/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/ARG/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Persian Gulf/AZE/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Latam/CHL/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Pair/CHN/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Latam/COL/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Latam/CRI/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/North Africa/EGY/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Europe/ESP/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/South Africa/GHA/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Europe/GRC/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Asia/IND/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Latam/MEX/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/South Africa/MOZ/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/South Africa/NGA/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Latam/PAN/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Latam/PER/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Asia/PHL/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Persian Gulf/SAU/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/South Africa/SEN/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Asia/THA/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/North Africa/TUR/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Pair/USA/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Asia/VNM/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Persian Gulf/YEM/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Persian Gulf/AZE/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Asia/BGD/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Latam/BRA/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Latam/CHL/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Pair/CHN/Equality/Proportion of seats held by women in national parliaments (%)", + "World/South Africa/CMR/Equality/Proportion of seats held by women in national parliaments (%)", + "World/North Africa/DZA/Equality/Proportion of seats held by women in national parliaments (%)", + "World/North Africa/EGY/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Europe/GBR/Equality/Proportion of seats held by women in national parliaments (%)", + "World/South Africa/GHA/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Asia/IND/Equality/Proportion of seats held by women in national parliaments (%)", + "World/North Africa/ISR/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Asia/KOR/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Latam/MEX/Equality/Proportion of seats held by women in national parliaments (%)", + "World/South Africa/MOZ/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Latam/PAN/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Asia/PHL/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Europe/POL/Equality/Proportion of seats held by women in national parliaments (%)", + "World/South Africa/SEN/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Asia/THA/Equality/Proportion of seats held by women in national parliaments (%)", + "World/North Africa/TUR/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Pair/USA/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Asia/VNM/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Persian Gulf/ARE/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Latam/ARG/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/AUT/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Asia/BGD/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Latam/BRA/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Latam/CHL/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Latam/CRI/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/DEU/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/North Africa/DZA/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/ESP/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/FRA/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/GBR/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/South Africa/GHA/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/GRC/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Asia/IND/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/North Africa/ISR/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Asia/KOR/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Latam/MEX/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/South Africa/MOZ/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/South Africa/NGA/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/NLD/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Persian Gulf/OMN/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Latam/PAN/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Persian Gulf/QAT/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Persian Gulf/SAU/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/South Africa/SEN/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/North Africa/TUR/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Pair/USA/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Asia/VNM/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Persian Gulf/YEM/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/South Africa/ZAF/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Persian Gulf/ARE/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/ARG/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/AUT/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Asia/BGD/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/BRA/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/CHL/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Pair/CHN/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/CRI/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/DEU/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/North Africa/DZA/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/ESP/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/FRA/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/GBR/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/GRC/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/North Africa/ISR/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Asia/KOR/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/MEX/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/South Africa/MOZ/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/NLD/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Persian Gulf/OMN/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/PAN/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/POL/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Persian Gulf/QAT/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Persian Gulf/SAU/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/South Africa/SEN/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/North Africa/TUR/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Pair/USA/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/VEN/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Asia/VNM/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/South Africa/ZAF/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Persian Gulf/ARE/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Latam/ARG/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Asia/BGD/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Pair/CHN/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Latam/CRI/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Europe/DEU/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/North Africa/EGY/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Europe/GBR/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/South Africa/GHA/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Europe/GRC/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Asia/IDN/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Asia/IND/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Asia/KOR/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/North Africa/MAR/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Latam/MEX/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/South Africa/MOZ/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Europe/NLD/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Latam/PAN/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Asia/PHL/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Europe/POL/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Persian Gulf/SAU/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Europe/SWE/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/North Africa/TUR/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Pair/USA/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Asia/VNM/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/South Africa/ZAF/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Persian Gulf/ARE/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/ARG/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/AUT/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Persian Gulf/AZE/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/BGD/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/BRA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/CHL/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Pair/CHN/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/CMR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/COL/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/CRI/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/North Africa/DZA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/North Africa/EGY/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/ESP/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/FRA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/GBR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/GHA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/IDN/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/IND/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/North Africa/ISR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/KOR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/LBR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/North Africa/MAR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/MEX/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/MOZ/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/NGA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/NLD/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Persian Gulf/OMN/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/PAN/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/PER/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/PHL/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/POL/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Persian Gulf/QAT/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Persian Gulf/SAU/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/SEN/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/THA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/North Africa/TUR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Pair/USA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/VEN/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/VNM/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Persian Gulf/YEM/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/ZAF/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/AUT/R&D/Researchers in R&D (per million people)", + "World/Latam/BRA/R&D/Researchers in R&D (per million people)", + "World/Pair/CHN/R&D/Researchers in R&D (per million people)", + "World/Europe/DEU/R&D/Researchers in R&D (per million people)", + "World/North Africa/DZA/R&D/Researchers in R&D (per million people)", + "World/Europe/ESP/R&D/Researchers in R&D (per million people)", + "World/Europe/FRA/R&D/Researchers in R&D (per million people)", + "World/Europe/GBR/R&D/Researchers in R&D (per million people)", + "World/South Africa/GHA/R&D/Researchers in R&D (per million people)", + "World/Europe/GRC/R&D/Researchers in R&D (per million people)", + "World/Asia/IND/R&D/Researchers in R&D (per million people)", + "World/Asia/KOR/R&D/Researchers in R&D (per million people)", + "World/North Africa/MAR/R&D/Researchers in R&D (per million people)", + "World/South Africa/MOZ/R&D/Researchers in R&D (per million people)", + "World/Europe/NLD/R&D/Researchers in R&D (per million people)", + "World/Persian Gulf/OMN/R&D/Researchers in R&D (per million people)", + "World/Asia/PHL/R&D/Researchers in R&D (per million people)", + "World/Europe/POL/R&D/Researchers in R&D (per million people)", + "World/Asia/THA/R&D/Researchers in R&D (per million people)", + "World/North Africa/TUR/R&D/Researchers in R&D (per million people)", + "World/Pair/USA/R&D/Researchers in R&D (per million people)", + "World/Latam/VEN/R&D/Researchers in R&D (per million people)", + "World/Persian Gulf/AZE/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Asia/BGD/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Latam/BRA/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Latam/CHL/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Pair/CHN/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Latam/CRI/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/North Africa/EGY/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Europe/ESP/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/South Africa/GHA/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Asia/IND/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Asia/KOR/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/North Africa/MAR/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Latam/MEX/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Latam/PAN/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Latam/PER/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Europe/POL/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Asia/THA/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Pair/USA/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Asia/VNM/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Persian Gulf/AZE/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Asia/BGD/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/BRA/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/CHL/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Pair/CHN/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/South Africa/CMR/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/COL/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/CRI/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/North Africa/DZA/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/North Africa/EGY/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/South Africa/GHA/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Asia/IDN/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Asia/IND/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/North Africa/MAR/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/MEX/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/South Africa/MOZ/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/PAN/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/PER/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Asia/PHL/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Europe/POL/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/South Africa/SEN/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Asia/THA/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Asia/VNM/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Persian Gulf/ARE/Demography/Rural population", + "World/Latam/ARG/Demography/Rural population", + "World/Europe/AUT/Demography/Rural population", + "World/Persian Gulf/AZE/Demography/Rural population", + "World/Asia/BGD/Demography/Rural population", + "World/Latam/BRA/Demography/Rural population", + "World/Pair/CHN/Demography/Rural population", + "World/South Africa/CMR/Demography/Rural population", + "World/Latam/COL/Demography/Rural population", + "World/Latam/CRI/Demography/Rural population", + "World/North Africa/DZA/Demography/Rural population", + "World/North Africa/EGY/Demography/Rural population", + "World/Europe/FRA/Demography/Rural population", + "World/Europe/GBR/Demography/Rural population", + "World/South Africa/GHA/Demography/Rural population", + "World/Europe/GRC/Demography/Rural population", + "World/Europe/HRV/Demography/Rural population", + "World/Asia/IDN/Demography/Rural population", + "World/Asia/IND/Demography/Rural population", + "World/North Africa/ISR/Demography/Rural population", + "World/South Africa/LBR/Demography/Rural population", + "World/North Africa/MAR/Demography/Rural population", + "World/South Africa/MOZ/Demography/Rural population", + "World/South Africa/NGA/Demography/Rural population", + "World/Europe/NLD/Demography/Rural population", + "World/Persian Gulf/OMN/Demography/Rural population", + "World/Latam/PAN/Demography/Rural population", + "World/Asia/PHL/Demography/Rural population", + "World/Europe/POL/Demography/Rural population", + "World/Persian Gulf/QAT/Demography/Rural population", + "World/Persian Gulf/SAU/Demography/Rural population", + "World/South Africa/SEN/Demography/Rural population", + "World/North Africa/TUR/Demography/Rural population", + "World/Pair/USA/Demography/Rural population", + "World/Asia/VNM/Demography/Rural population", + "World/Persian Gulf/YEM/Demography/Rural population", + "World/Persian Gulf/ARE/Demography/Rural population (% of total population)", + "World/Latam/ARG/Demography/Rural population (% of total population)", + "World/Persian Gulf/AZE/Demography/Rural population (% of total population)", + "World/Asia/BGD/Demography/Rural population (% of total population)", + "World/Latam/BRA/Demography/Rural population (% of total population)", + "World/Latam/CHL/Demography/Rural population (% of total population)", + "World/Pair/CHN/Demography/Rural population (% of total population)", + "World/South Africa/CMR/Demography/Rural population (% of total population)", + "World/Latam/COL/Demography/Rural population (% of total population)", + "World/Latam/CRI/Demography/Rural population (% of total population)", + "World/Europe/DEU/Demography/Rural population (% of total population)", + "World/North Africa/DZA/Demography/Rural population (% of total population)", + "World/Europe/ESP/Demography/Rural population (% of total population)", + "World/Europe/FRA/Demography/Rural population (% of total population)", + "World/Europe/GBR/Demography/Rural population (% of total population)", + "World/South Africa/GHA/Demography/Rural population (% of total population)", + "World/Europe/GRC/Demography/Rural population (% of total population)", + "World/Europe/HRV/Demography/Rural population (% of total population)", + "World/Asia/IDN/Demography/Rural population (% of total population)", + "World/Asia/IND/Demography/Rural population (% of total population)", + "World/Persian Gulf/IRQ/Demography/Rural population (% of total population)", + "World/North Africa/ISR/Demography/Rural population (% of total population)", + "World/South Africa/LBR/Demography/Rural population (% of total population)", + "World/North Africa/MAR/Demography/Rural population (% of total population)", + "World/Latam/MEX/Demography/Rural population (% of total population)", + "World/South Africa/MOZ/Demography/Rural population (% of total population)", + "World/South Africa/NGA/Demography/Rural population (% of total population)", + "World/Europe/NLD/Demography/Rural population (% of total population)", + "World/Persian Gulf/OMN/Demography/Rural population (% of total population)", + "World/Latam/PAN/Demography/Rural population (% of total population)", + "World/Latam/PER/Demography/Rural population (% of total population)", + "World/Europe/POL/Demography/Rural population (% of total population)", + "World/Persian Gulf/QAT/Demography/Rural population (% of total population)", + "World/Persian Gulf/SAU/Demography/Rural population (% of total population)", + "World/South Africa/SEN/Demography/Rural population (% of total population)", + "World/Asia/THA/Demography/Rural population (% of total population)", + "World/North Africa/TUR/Demography/Rural population (% of total population)", + "World/Pair/USA/Demography/Rural population (% of total population)", + "World/Latam/VEN/Demography/Rural population (% of total population)", + "World/Asia/VNM/Demography/Rural population (% of total population)", + "World/Persian Gulf/YEM/Demography/Rural population (% of total population)", + "World/South Africa/ZAF/Demography/Rural population (% of total population)", + "World/Persian Gulf/ARE/industry/Scientific and technical journal articles", + "World/Latam/ARG/industry/Scientific and technical journal articles", + "World/Europe/AUT/industry/Scientific and technical journal articles", + "World/Persian Gulf/AZE/industry/Scientific and technical journal articles", + "World/Asia/BGD/industry/Scientific and technical journal articles", + "World/Latam/BRA/industry/Scientific and technical journal articles", + "World/Latam/CHL/industry/Scientific and technical journal articles", + "World/Pair/CHN/industry/Scientific and technical journal articles", + "World/South Africa/CMR/industry/Scientific and technical journal articles", + "World/Latam/COL/industry/Scientific and technical journal articles", + "World/Latam/CRI/industry/Scientific and technical journal articles", + "World/North Africa/DZA/industry/Scientific and technical journal articles", + "World/North Africa/EGY/industry/Scientific and technical journal articles", + "World/Europe/ESP/industry/Scientific and technical journal articles", + "World/Europe/FRA/industry/Scientific and technical journal articles", + "World/Europe/GBR/industry/Scientific and technical journal articles", + "World/South Africa/GHA/industry/Scientific and technical journal articles", + "World/Europe/GRC/industry/Scientific and technical journal articles", + "World/Europe/HRV/industry/Scientific and technical journal articles", + "World/Asia/IDN/industry/Scientific and technical journal articles", + "World/Asia/IND/industry/Scientific and technical journal articles", + "World/Persian Gulf/IRQ/industry/Scientific and technical journal articles", + "World/North Africa/ISR/industry/Scientific and technical journal articles", + "World/Asia/KOR/industry/Scientific and technical journal articles", + "World/South Africa/LBR/industry/Scientific and technical journal articles", + "World/North Africa/MAR/industry/Scientific and technical journal articles", + "World/Latam/MEX/industry/Scientific and technical journal articles", + "World/South Africa/MOZ/industry/Scientific and technical journal articles", + "World/South Africa/NGA/industry/Scientific and technical journal articles", + "World/Europe/NLD/industry/Scientific and technical journal articles", + "World/Persian Gulf/OMN/industry/Scientific and technical journal articles", + "World/Latam/PAN/industry/Scientific and technical journal articles", + "World/Latam/PER/industry/Scientific and technical journal articles", + "World/Asia/PHL/industry/Scientific and technical journal articles", + "World/Europe/POL/industry/Scientific and technical journal articles", + "World/Persian Gulf/QAT/industry/Scientific and technical journal articles", + "World/Persian Gulf/SAU/industry/Scientific and technical journal articles", + "World/South Africa/SEN/industry/Scientific and technical journal articles", + "World/Europe/SWE/industry/Scientific and technical journal articles", + "World/Asia/THA/industry/Scientific and technical journal articles", + "World/North Africa/TUR/industry/Scientific and technical journal articles", + "World/Pair/USA/industry/Scientific and technical journal articles", + "World/Latam/VEN/industry/Scientific and technical journal articles", + "World/Asia/VNM/industry/Scientific and technical journal articles", + "World/Persian Gulf/YEM/industry/Scientific and technical journal articles", + "World/South Africa/ZAF/industry/Scientific and technical journal articles", + "World/Persian Gulf/AZE/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/BGD/Economy/Secondary income receipts (BoP, current US$)", + "World/Latam/CHL/Economy/Secondary income receipts (BoP, current US$)", + "World/South Africa/CMR/Economy/Secondary income receipts (BoP, current US$)", + "World/Latam/COL/Economy/Secondary income receipts (BoP, current US$)", + "World/Latam/CRI/Economy/Secondary income receipts (BoP, current US$)", + "World/Europe/DEU/Economy/Secondary income receipts (BoP, current US$)", + "World/North Africa/DZA/Economy/Secondary income receipts (BoP, current US$)", + "World/North Africa/EGY/Economy/Secondary income receipts (BoP, current US$)", + "World/South Africa/GHA/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/IDN/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/IND/Economy/Secondary income receipts (BoP, current US$)", + "World/North Africa/ISR/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/KOR/Economy/Secondary income receipts (BoP, current US$)", + "World/North Africa/MAR/Economy/Secondary income receipts (BoP, current US$)", + "World/Latam/MEX/Economy/Secondary income receipts (BoP, current US$)", + "World/South Africa/NGA/Economy/Secondary income receipts (BoP, current US$)", + "World/Europe/NLD/Economy/Secondary income receipts (BoP, current US$)", + "World/Latam/PER/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/PHL/Economy/Secondary income receipts (BoP, current US$)", + "World/South Africa/SEN/Economy/Secondary income receipts (BoP, current US$)", + "World/Europe/SWE/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/THA/Economy/Secondary income receipts (BoP, current US$)", + "World/Pair/USA/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/VNM/Economy/Secondary income receipts (BoP, current US$)", + "World/Persian Gulf/YEM/Economy/Secondary income receipts (BoP, current US$)", + "World/South Africa/ZAF/Economy/Secondary income receipts (BoP, current US$)", + "World/Europe/AUT/Exports/Service exports (BoP, current US$)", + "World/Persian Gulf/AZE/Exports/Service exports (BoP, current US$)", + "World/Asia/BGD/Exports/Service exports (BoP, current US$)", + "World/Latam/BRA/Exports/Service exports (BoP, current US$)", + "World/Latam/CHL/Exports/Service exports (BoP, current US$)", + "World/Pair/CHN/Exports/Service exports (BoP, current US$)", + "World/South Africa/CMR/Exports/Service exports (BoP, current US$)", + "World/Latam/COL/Exports/Service exports (BoP, current US$)", + "World/Latam/CRI/Exports/Service exports (BoP, current US$)", + "World/Europe/DEU/Exports/Service exports (BoP, current US$)", + "World/North Africa/DZA/Exports/Service exports (BoP, current US$)", + "World/Europe/ESP/Exports/Service exports (BoP, current US$)", + "World/Europe/FRA/Exports/Service exports (BoP, current US$)", + "World/Europe/GBR/Exports/Service exports (BoP, current US$)", + "World/South Africa/GHA/Exports/Service exports (BoP, current US$)", + "World/Europe/GRC/Exports/Service exports (BoP, current US$)", + "World/Europe/HRV/Exports/Service exports (BoP, current US$)", + "World/Asia/IDN/Exports/Service exports (BoP, current US$)", + "World/Asia/IND/Exports/Service exports (BoP, current US$)", + "World/North Africa/ISR/Exports/Service exports (BoP, current US$)", + "World/Asia/KOR/Exports/Service exports (BoP, current US$)", + "World/North Africa/MAR/Exports/Service exports (BoP, current US$)", + "World/Europe/NLD/Exports/Service exports (BoP, current US$)", + "World/Persian Gulf/OMN/Exports/Service exports (BoP, current US$)", + "World/Latam/PAN/Exports/Service exports (BoP, current US$)", + "World/Latam/PER/Exports/Service exports (BoP, current US$)", + "World/Asia/PHL/Exports/Service exports (BoP, current US$)", + "World/Europe/POL/Exports/Service exports (BoP, current US$)", + "World/Persian Gulf/QAT/Exports/Service exports (BoP, current US$)", + "World/Persian Gulf/SAU/Exports/Service exports (BoP, current US$)", + "World/South Africa/SEN/Exports/Service exports (BoP, current US$)", + "World/Europe/SWE/Exports/Service exports (BoP, current US$)", + "World/Asia/THA/Exports/Service exports (BoP, current US$)", + "World/North Africa/TUR/Exports/Service exports (BoP, current US$)", + "World/Pair/USA/Exports/Service exports (BoP, current US$)", + "World/Asia/VNM/Exports/Service exports (BoP, current US$)", + "World/South Africa/ZAF/Exports/Service exports (BoP, current US$)", + "World/Latam/ARG/Imports/Service imports (BoP, current US$)", + "World/Europe/AUT/Imports/Service imports (BoP, current US$)", + "World/Persian Gulf/AZE/Imports/Service imports (BoP, current US$)", + "World/Asia/BGD/Imports/Service imports (BoP, current US$)", + "World/Latam/BRA/Imports/Service imports (BoP, current US$)", + "World/Latam/CHL/Imports/Service imports (BoP, current US$)", + "World/Pair/CHN/Imports/Service imports (BoP, current US$)", + "World/South Africa/CMR/Imports/Service imports (BoP, current US$)", + "World/Latam/COL/Imports/Service imports (BoP, current US$)", + "World/Latam/CRI/Imports/Service imports (BoP, current US$)", + "World/Europe/DEU/Imports/Service imports (BoP, current US$)", + "World/North Africa/DZA/Imports/Service imports (BoP, current US$)", + "World/North Africa/EGY/Imports/Service imports (BoP, current US$)", + "World/Europe/ESP/Imports/Service imports (BoP, current US$)", + "World/Europe/FRA/Imports/Service imports (BoP, current US$)", + "World/Europe/GBR/Imports/Service imports (BoP, current US$)", + "World/South Africa/GHA/Imports/Service imports (BoP, current US$)", + "World/Europe/HRV/Imports/Service imports (BoP, current US$)", + "World/Asia/IDN/Imports/Service imports (BoP, current US$)", + "World/Asia/IND/Imports/Service imports (BoP, current US$)", + "World/North Africa/ISR/Imports/Service imports (BoP, current US$)", + "World/Asia/KOR/Imports/Service imports (BoP, current US$)", + "World/North Africa/MAR/Imports/Service imports (BoP, current US$)", + "World/Latam/MEX/Imports/Service imports (BoP, current US$)", + "World/South Africa/MOZ/Imports/Service imports (BoP, current US$)", + "World/South Africa/NGA/Imports/Service imports (BoP, current US$)", + "World/Europe/NLD/Imports/Service imports (BoP, current US$)", + "World/Persian Gulf/OMN/Imports/Service imports (BoP, current US$)", + "World/Latam/PAN/Imports/Service imports (BoP, current US$)", + "World/Latam/PER/Imports/Service imports (BoP, current US$)", + "World/Asia/PHL/Imports/Service imports (BoP, current US$)", + "World/Europe/POL/Imports/Service imports (BoP, current US$)", + "World/Persian Gulf/QAT/Imports/Service imports (BoP, current US$)", + "World/South Africa/SEN/Imports/Service imports (BoP, current US$)", + "World/Europe/SWE/Imports/Service imports (BoP, current US$)", + "World/Asia/THA/Imports/Service imports (BoP, current US$)", + "World/North Africa/TUR/Imports/Service imports (BoP, current US$)", + "World/Pair/USA/Imports/Service imports (BoP, current US$)", + "World/Asia/VNM/Imports/Service imports (BoP, current US$)", + "World/South Africa/ZAF/Imports/Service imports (BoP, current US$)", + "World/Persian Gulf/ARE/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Europe/AUT/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Asia/BGD/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/BRA/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/CHL/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Pair/CHN/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/COL/Mortality/Suicide mortality rate (per 100,000 population)", + "World/North Africa/DZA/Mortality/Suicide mortality rate (per 100,000 population)", + "World/North Africa/EGY/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Asia/IDN/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Asia/IND/Mortality/Suicide mortality rate (per 100,000 population)", + "World/North Africa/MAR/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/MEX/Mortality/Suicide mortality rate (per 100,000 population)", + "World/South Africa/NGA/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/PAN/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Asia/PHL/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Europe/POL/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Persian Gulf/QAT/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Persian Gulf/SAU/Mortality/Suicide mortality rate (per 100,000 population)", + "World/South Africa/SEN/Mortality/Suicide mortality rate (per 100,000 population)", + "World/North Africa/TUR/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Pair/USA/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/VEN/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Asia/VNM/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Persian Gulf/YEM/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/ARG/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/AUT/Taxes/Taxes less subsidies on products (current US$)", + "World/Persian Gulf/AZE/Taxes/Taxes less subsidies on products (current US$)", + "World/Asia/BGD/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/BRA/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/CHL/Taxes/Taxes less subsidies on products (current US$)", + "World/South Africa/CMR/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/COL/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/CRI/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/DEU/Taxes/Taxes less subsidies on products (current US$)", + "World/North Africa/DZA/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/ESP/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/FRA/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/GBR/Taxes/Taxes less subsidies on products (current US$)", + "World/South Africa/GHA/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/GRC/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/HRV/Taxes/Taxes less subsidies on products (current US$)", + "World/Asia/IND/Taxes/Taxes less subsidies on products (current US$)", + "World/North Africa/ISR/Taxes/Taxes less subsidies on products (current US$)", + "World/Asia/KOR/Taxes/Taxes less subsidies on products (current US$)", + "World/North Africa/MAR/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/MEX/Taxes/Taxes less subsidies on products (current US$)", + "World/South Africa/MOZ/Taxes/Taxes less subsidies on products (current US$)", + "World/South Africa/NGA/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/NLD/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/PAN/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/PER/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/POL/Taxes/Taxes less subsidies on products (current US$)", + "World/Persian Gulf/SAU/Taxes/Taxes less subsidies on products (current US$)", + "World/South Africa/SEN/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/SWE/Taxes/Taxes less subsidies on products (current US$)", + "World/North Africa/TUR/Taxes/Taxes less subsidies on products (current US$)", + "World/Pair/USA/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/VEN/Taxes/Taxes less subsidies on products (current US$)", + "World/Asia/VNM/Taxes/Taxes less subsidies on products (current US$)", + "World/Persian Gulf/YEM/Taxes/Taxes less subsidies on products (current US$)", + "World/South Africa/ZAF/Taxes/Taxes less subsidies on products (current US$)", + "World/Persian Gulf/AZE/Economy/Taxes on international trade (% of revenue)", + "World/Latam/CHL/Economy/Taxes on international trade (% of revenue)", + "World/Pair/CHN/Economy/Taxes on international trade (% of revenue)", + "World/South Africa/CMR/Economy/Taxes on international trade (% of revenue)", + "World/Latam/COL/Economy/Taxes on international trade (% of revenue)", + "World/North Africa/EGY/Economy/Taxes on international trade (% of revenue)", + "World/Europe/ESP/Economy/Taxes on international trade (% of revenue)", + "World/South Africa/GHA/Economy/Taxes on international trade (% of revenue)", + "World/Europe/HRV/Economy/Taxes on international trade (% of revenue)", + "World/Asia/IND/Economy/Taxes on international trade (% of revenue)", + "World/Asia/KOR/Economy/Taxes on international trade (% of revenue)", + "World/North Africa/MAR/Economy/Taxes on international trade (% of revenue)", + "World/Latam/MEX/Economy/Taxes on international trade (% of revenue)", + "World/Latam/PAN/Economy/Taxes on international trade (% of revenue)", + "World/Latam/PER/Economy/Taxes on international trade (% of revenue)", + "World/Europe/POL/Economy/Taxes on international trade (% of revenue)", + "World/Asia/THA/Economy/Taxes on international trade (% of revenue)", + "World/Latam/ARG/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/AUT/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Asia/BGD/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Latam/CHL/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Pair/CHN/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Latam/COL/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Latam/CRI/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/DEU/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/North Africa/DZA/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/ESP/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/FRA/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/GBR/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/GRC/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/North Africa/ISR/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Asia/KOR/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/North Africa/MAR/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Latam/MEX/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Persian Gulf/OMN/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Latam/PER/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/POL/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/SWE/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Pair/USA/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Persian Gulf/ARE/Industry/Time required to start a business (days)", + "World/Persian Gulf/AZE/Industry/Time required to start a business (days)", + "World/Latam/CHL/Industry/Time required to start a business (days)", + "World/Pair/CHN/Industry/Time required to start a business (days)", + "World/South Africa/CMR/Industry/Time required to start a business (days)", + "World/Latam/COL/Industry/Time required to start a business (days)", + "World/Latam/CRI/Industry/Time required to start a business (days)", + "World/Europe/DEU/Industry/Time required to start a business (days)", + "World/North Africa/DZA/Industry/Time required to start a business (days)", + "World/Europe/ESP/Industry/Time required to start a business (days)", + "World/Europe/FRA/Industry/Time required to start a business (days)", + "World/Europe/GBR/Industry/Time required to start a business (days)", + "World/Asia/IND/Industry/Time required to start a business (days)", + "World/Asia/KOR/Industry/Time required to start a business (days)", + "World/South Africa/LBR/Industry/Time required to start a business (days)", + "World/North Africa/MAR/Industry/Time required to start a business (days)", + "World/South Africa/MOZ/Industry/Time required to start a business (days)", + "World/Europe/NLD/Industry/Time required to start a business (days)", + "World/Persian Gulf/OMN/Industry/Time required to start a business (days)", + "World/Latam/PAN/Industry/Time required to start a business (days)", + "World/Latam/PER/Industry/Time required to start a business (days)", + "World/Europe/POL/Industry/Time required to start a business (days)", + "World/Persian Gulf/SAU/Industry/Time required to start a business (days)", + "World/South Africa/SEN/Industry/Time required to start a business (days)", + "World/Asia/THA/Industry/Time required to start a business (days)", + "World/Latam/VEN/Industry/Time required to start a business (days)", + "World/Asia/VNM/Industry/Time required to start a business (days)", + "World/Persian Gulf/YEM/Industry/Time required to start a business (days)", + "World/South Africa/ZAF/Industry/Time required to start a business (days)", + "World/Latam/ARG/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Persian Gulf/AZE/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Asia/BGD/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/CHL/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/COL/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/CRI/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/North Africa/EGY/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/South Africa/GHA/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Europe/GRC/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Europe/HRV/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Asia/IDN/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Asia/IND/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/South Africa/LBR/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/MEX/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/South Africa/MOZ/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/South Africa/NGA/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/PAN/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/PER/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Asia/PHL/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Europe/POL/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/South Africa/SEN/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Asia/THA/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/North Africa/TUR/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/VEN/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Asia/VNM/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Persian Gulf/YEM/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/South Africa/ZAF/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/ARG/R&D/Time to obtain an electrical connection (days)", + "World/Asia/BGD/R&D/Time to obtain an electrical connection (days)", + "World/Latam/CHL/R&D/Time to obtain an electrical connection (days)", + "World/South Africa/CMR/R&D/Time to obtain an electrical connection (days)", + "World/Latam/COL/R&D/Time to obtain an electrical connection (days)", + "World/Latam/CRI/R&D/Time to obtain an electrical connection (days)", + "World/North Africa/EGY/R&D/Time to obtain an electrical connection (days)", + "World/South Africa/GHA/R&D/Time to obtain an electrical connection (days)", + "World/Europe/GRC/R&D/Time to obtain an electrical connection (days)", + "World/Asia/IDN/R&D/Time to obtain an electrical connection (days)", + "World/Asia/IND/R&D/Time to obtain an electrical connection (days)", + "World/North Africa/MAR/R&D/Time to obtain an electrical connection (days)", + "World/Latam/MEX/R&D/Time to obtain an electrical connection (days)", + "World/South Africa/MOZ/R&D/Time to obtain an electrical connection (days)", + "World/South Africa/NGA/R&D/Time to obtain an electrical connection (days)", + "World/Latam/PAN/R&D/Time to obtain an electrical connection (days)", + "World/Latam/PER/R&D/Time to obtain an electrical connection (days)", + "World/Asia/PHL/R&D/Time to obtain an electrical connection (days)", + "World/Europe/POL/R&D/Time to obtain an electrical connection (days)", + "World/South Africa/SEN/R&D/Time to obtain an electrical connection (days)", + "World/North Africa/TUR/R&D/Time to obtain an electrical connection (days)", + "World/Latam/VEN/R&D/Time to obtain an electrical connection (days)", + "World/Asia/VNM/R&D/Time to obtain an electrical connection (days)", + "World/South Africa/ZAF/R&D/Time to obtain an electrical connection (days)", + "World/Persian Gulf/ARE/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/ARG/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Europe/AUT/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Persian Gulf/AZE/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Asia/BGD/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/BRA/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/CHL/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Pair/CHN/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/CRI/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/North Africa/EGY/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Europe/GBR/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/South Africa/GHA/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Europe/HRV/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Asia/IND/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/North Africa/ISR/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Asia/KOR/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/North Africa/MAR/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/MEX/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/South Africa/MOZ/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/South Africa/NGA/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Europe/NLD/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Persian Gulf/OMN/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/PAN/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Europe/POL/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Persian Gulf/QAT/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Asia/THA/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Pair/USA/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/VEN/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Asia/VNM/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Persian Gulf/YEM/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Persian Gulf/ARE/Industry/Total fisheries production (metric tons)", + "World/Persian Gulf/AZE/Industry/Total fisheries production (metric tons)", + "World/Asia/BGD/Industry/Total fisheries production (metric tons)", + "World/Latam/BRA/Industry/Total fisheries production (metric tons)", + "World/Latam/CHL/Industry/Total fisheries production (metric tons)", + "World/Pair/CHN/Industry/Total fisheries production (metric tons)", + "World/South Africa/CMR/Industry/Total fisheries production (metric tons)", + "World/Latam/CRI/Industry/Total fisheries production (metric tons)", + "World/North Africa/EGY/Industry/Total fisheries production (metric tons)", + "World/Europe/HRV/Industry/Total fisheries production (metric tons)", + "World/Asia/IDN/Industry/Total fisheries production (metric tons)", + "World/Asia/IND/Industry/Total fisheries production (metric tons)", + "World/North Africa/ISR/Industry/Total fisheries production (metric tons)", + "World/North Africa/MAR/Industry/Total fisheries production (metric tons)", + "World/Latam/MEX/Industry/Total fisheries production (metric tons)", + "World/South Africa/MOZ/Industry/Total fisheries production (metric tons)", + "World/South Africa/NGA/Industry/Total fisheries production (metric tons)", + "World/Persian Gulf/OMN/Industry/Total fisheries production (metric tons)", + "World/Asia/PHL/Industry/Total fisheries production (metric tons)", + "World/Europe/POL/Industry/Total fisheries production (metric tons)", + "World/Persian Gulf/SAU/Industry/Total fisheries production (metric tons)", + "World/Asia/THA/Industry/Total fisheries production (metric tons)", + "World/Asia/VNM/Industry/Total fisheries production (metric tons)", + "World/Persian Gulf/ARE/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Persian Gulf/AZE/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Asia/BGD/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Latam/CHL/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Pair/CHN/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Latam/CRI/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/North Africa/DZA/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/North Africa/EGY/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Europe/GBR/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Europe/HRV/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Asia/IND/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Persian Gulf/IRQ/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/North Africa/ISR/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Asia/KOR/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/North Africa/MAR/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Latam/MEX/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/South Africa/MOZ/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Europe/NLD/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Persian Gulf/OMN/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Latam/PAN/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Asia/PHL/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Persian Gulf/QAT/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Europe/SWE/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Asia/THA/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/North Africa/TUR/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Pair/USA/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Asia/VNM/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Persian Gulf/YEM/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/South Africa/ZAF/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Persian Gulf/ARE/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Persian Gulf/AZE/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/BGD/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/BRA/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/CHL/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Pair/CHN/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/CMR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/COL/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/CRI/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Europe/DEU/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/North Africa/DZA/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/North Africa/EGY/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Europe/GBR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/GHA/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Europe/GRC/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/IDN/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/IND/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/North Africa/ISR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/KOR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/LBR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/North Africa/MAR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/MEX/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/MOZ/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/NGA/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Europe/NLD/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Persian Gulf/OMN/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/PAN/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/PER/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/PHL/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Persian Gulf/QAT/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Persian Gulf/SAU/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/SEN/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Europe/SWE/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/THA/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/North Africa/TUR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/VNM/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/ZAF/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Persian Gulf/ARE/Economy/Total reserves (includes gold, current US$)", + "World/Asia/BGD/Economy/Total reserves (includes gold, current US$)", + "World/Latam/BRA/Economy/Total reserves (includes gold, current US$)", + "World/Latam/CHL/Economy/Total reserves (includes gold, current US$)", + "World/Pair/CHN/Economy/Total reserves (includes gold, current US$)", + "World/Latam/COL/Economy/Total reserves (includes gold, current US$)", + "World/Latam/CRI/Economy/Total reserves (includes gold, current US$)", + "World/North Africa/DZA/Economy/Total reserves (includes gold, current US$)", + "World/Europe/ESP/Economy/Total reserves (includes gold, current US$)", + "World/Europe/FRA/Economy/Total reserves (includes gold, current US$)", + "World/Europe/GBR/Economy/Total reserves (includes gold, current US$)", + "World/South Africa/GHA/Economy/Total reserves (includes gold, current US$)", + "World/Asia/IDN/Economy/Total reserves (includes gold, current US$)", + "World/Asia/IND/Economy/Total reserves (includes gold, current US$)", + "World/Persian Gulf/IRQ/Economy/Total reserves (includes gold, current US$)", + "World/North Africa/ISR/Economy/Total reserves (includes gold, current US$)", + "World/Asia/KOR/Economy/Total reserves (includes gold, current US$)", + "World/South Africa/LBR/Economy/Total reserves (includes gold, current US$)", + "World/North Africa/MAR/Economy/Total reserves (includes gold, current US$)", + "World/Latam/MEX/Economy/Total reserves (includes gold, current US$)", + "World/South Africa/MOZ/Economy/Total reserves (includes gold, current US$)", + "World/Persian Gulf/OMN/Economy/Total reserves (includes gold, current US$)", + "World/Latam/PAN/Economy/Total reserves (includes gold, current US$)", + "World/Latam/PER/Economy/Total reserves (includes gold, current US$)", + "World/Asia/PHL/Economy/Total reserves (includes gold, current US$)", + "World/Europe/POL/Economy/Total reserves (includes gold, current US$)", + "World/Persian Gulf/QAT/Economy/Total reserves (includes gold, current US$)", + "World/Persian Gulf/SAU/Economy/Total reserves (includes gold, current US$)", + "World/Europe/SWE/Economy/Total reserves (includes gold, current US$)", + "World/Asia/THA/Economy/Total reserves (includes gold, current US$)", + "World/North Africa/TUR/Economy/Total reserves (includes gold, current US$)", + "World/Pair/USA/Economy/Total reserves (includes gold, current US$)", + "World/Latam/VEN/Economy/Total reserves (includes gold, current US$)", + "World/Asia/VNM/Economy/Total reserves (includes gold, current US$)", + "World/South Africa/ZAF/Economy/Total reserves (includes gold, current US$)", + "World/Persian Gulf/ARE/Economy/Total reserves minus gold (current US$)", + "World/Asia/BGD/Economy/Total reserves minus gold (current US$)", + "World/Latam/BRA/Economy/Total reserves minus gold (current US$)", + "World/Latam/CHL/Economy/Total reserves minus gold (current US$)", + "World/Pair/CHN/Economy/Total reserves minus gold (current US$)", + "World/Latam/COL/Economy/Total reserves minus gold (current US$)", + "World/Latam/CRI/Economy/Total reserves minus gold (current US$)", + "World/North Africa/DZA/Economy/Total reserves minus gold (current US$)", + "World/Europe/FRA/Economy/Total reserves minus gold (current US$)", + "World/Europe/GBR/Economy/Total reserves minus gold (current US$)", + "World/South Africa/GHA/Economy/Total reserves minus gold (current US$)", + "World/Asia/IDN/Economy/Total reserves minus gold (current US$)", + "World/Asia/IND/Economy/Total reserves minus gold (current US$)", + "World/Persian Gulf/IRQ/Economy/Total reserves minus gold (current US$)", + "World/North Africa/ISR/Economy/Total reserves minus gold (current US$)", + "World/Asia/KOR/Economy/Total reserves minus gold (current US$)", + "World/South Africa/LBR/Economy/Total reserves minus gold (current US$)", + "World/North Africa/MAR/Economy/Total reserves minus gold (current US$)", + "World/Latam/MEX/Economy/Total reserves minus gold (current US$)", + "World/South Africa/MOZ/Economy/Total reserves minus gold (current US$)", + "World/Persian Gulf/OMN/Economy/Total reserves minus gold (current US$)", + "World/Latam/PAN/Economy/Total reserves minus gold (current US$)", + "World/Latam/PER/Economy/Total reserves minus gold (current US$)", + "World/Asia/PHL/Economy/Total reserves minus gold (current US$)", + "World/Europe/POL/Economy/Total reserves minus gold (current US$)", + "World/Persian Gulf/QAT/Economy/Total reserves minus gold (current US$)", + "World/Persian Gulf/SAU/Economy/Total reserves minus gold (current US$)", + "World/Europe/SWE/Economy/Total reserves minus gold (current US$)", + "World/Asia/THA/Economy/Total reserves minus gold (current US$)", + "World/North Africa/TUR/Economy/Total reserves minus gold (current US$)", + "World/Latam/VEN/Economy/Total reserves minus gold (current US$)", + "World/Asia/VNM/Economy/Total reserves minus gold (current US$)", + "World/South Africa/ZAF/Economy/Total reserves minus gold (current US$)", + "World/Latam/ARG/Health/UHC service coverage index", + "World/Europe/AUT/Health/UHC service coverage index", + "World/Persian Gulf/AZE/Health/UHC service coverage index", + "World/Asia/BGD/Health/UHC service coverage index", + "World/Latam/BRA/Health/UHC service coverage index", + "World/Latam/CHL/Health/UHC service coverage index", + "World/Pair/CHN/Health/UHC service coverage index", + "World/South Africa/CMR/Health/UHC service coverage index", + "World/Latam/COL/Health/UHC service coverage index", + "World/Latam/CRI/Health/UHC service coverage index", + "World/Europe/DEU/Health/UHC service coverage index", + "World/North Africa/DZA/Health/UHC service coverage index", + "World/North Africa/EGY/Health/UHC service coverage index", + "World/Europe/ESP/Health/UHC service coverage index", + "World/Europe/FRA/Health/UHC service coverage index", + "World/Europe/GBR/Health/UHC service coverage index", + "World/South Africa/GHA/Health/UHC service coverage index", + "World/Europe/GRC/Health/UHC service coverage index", + "World/Europe/HRV/Health/UHC service coverage index", + "World/Asia/IDN/Health/UHC service coverage index", + "World/Asia/IND/Health/UHC service coverage index", + "World/Persian Gulf/IRQ/Health/UHC service coverage index", + "World/North Africa/ISR/Health/UHC service coverage index", + "World/Asia/KOR/Health/UHC service coverage index", + "World/South Africa/LBR/Health/UHC service coverage index", + "World/North Africa/MAR/Health/UHC service coverage index", + "World/Latam/MEX/Health/UHC service coverage index", + "World/South Africa/MOZ/Health/UHC service coverage index", + "World/South Africa/NGA/Health/UHC service coverage index", + "World/Europe/NLD/Health/UHC service coverage index", + "World/Persian Gulf/OMN/Health/UHC service coverage index", + "World/Latam/PAN/Health/UHC service coverage index", + "World/Latam/PER/Health/UHC service coverage index", + "World/Asia/PHL/Health/UHC service coverage index", + "World/Europe/POL/Health/UHC service coverage index", + "World/Persian Gulf/QAT/Health/UHC service coverage index", + "World/South Africa/SEN/Health/UHC service coverage index", + "World/Europe/SWE/Health/UHC service coverage index", + "World/Asia/THA/Health/UHC service coverage index", + "World/North Africa/TUR/Health/UHC service coverage index", + "World/Pair/USA/Health/UHC service coverage index", + "World/Latam/VEN/Health/UHC service coverage index", + "World/Asia/VNM/Health/UHC service coverage index", + "World/Persian Gulf/YEM/Health/UHC service coverage index", + "World/South Africa/ZAF/Health/UHC service coverage index", + "World/Persian Gulf/ARE/Demography/Urban population", + "World/Latam/ARG/Demography/Urban population", + "World/Persian Gulf/AZE/Demography/Urban population", + "World/Asia/BGD/Demography/Urban population", + "World/Latam/BRA/Demography/Urban population", + "World/Latam/CHL/Demography/Urban population", + "World/Pair/CHN/Demography/Urban population", + "World/South Africa/CMR/Demography/Urban population", + "World/Latam/COL/Demography/Urban population", + "World/Latam/CRI/Demography/Urban population", + "World/North Africa/DZA/Demography/Urban population", + "World/North Africa/EGY/Demography/Urban population", + "World/Europe/ESP/Demography/Urban population", + "World/Europe/FRA/Demography/Urban population", + "World/Europe/GBR/Demography/Urban population", + "World/South Africa/GHA/Demography/Urban population", + "World/Asia/IDN/Demography/Urban population", + "World/Asia/IND/Demography/Urban population", + "World/North Africa/ISR/Demography/Urban population", + "World/Asia/KOR/Demography/Urban population", + "World/South Africa/LBR/Demography/Urban population", + "World/North Africa/MAR/Demography/Urban population", + "World/Latam/MEX/Demography/Urban population", + "World/South Africa/MOZ/Demography/Urban population", + "World/South Africa/NGA/Demography/Urban population", + "World/Europe/NLD/Demography/Urban population", + "World/Persian Gulf/OMN/Demography/Urban population", + "World/Latam/PAN/Demography/Urban population", + "World/Latam/PER/Demography/Urban population", + "World/Asia/PHL/Demography/Urban population", + "World/Europe/POL/Demography/Urban population", + "World/Persian Gulf/QAT/Demography/Urban population", + "World/Persian Gulf/SAU/Demography/Urban population", + "World/South Africa/SEN/Demography/Urban population", + "World/Asia/THA/Demography/Urban population", + "World/North Africa/TUR/Demography/Urban population", + "World/Pair/USA/Demography/Urban population", + "World/Latam/VEN/Demography/Urban population", + "World/Asia/VNM/Demography/Urban population", + "World/Persian Gulf/YEM/Demography/Urban population", + "World/South Africa/ZAF/Demography/Urban population", + "World/Persian Gulf/ARE/Demography/Urban population (% of total population)", + "World/Latam/ARG/Demography/Urban population (% of total population)", + "World/Persian Gulf/AZE/Demography/Urban population (% of total population)", + "World/Asia/BGD/Demography/Urban population (% of total population)", + "World/Latam/BRA/Demography/Urban population (% of total population)", + "World/Latam/CHL/Demography/Urban population (% of total population)", + "World/Pair/CHN/Demography/Urban population (% of total population)", + "World/South Africa/CMR/Demography/Urban population (% of total population)", + "World/Latam/COL/Demography/Urban population (% of total population)", + "World/Latam/CRI/Demography/Urban population (% of total population)", + "World/Europe/DEU/Demography/Urban population (% of total population)", + "World/North Africa/DZA/Demography/Urban population (% of total population)", + "World/Europe/ESP/Demography/Urban population (% of total population)", + "World/Europe/FRA/Demography/Urban population (% of total population)", + "World/Europe/GBR/Demography/Urban population (% of total population)", + "World/South Africa/GHA/Demography/Urban population (% of total population)", + "World/Europe/GRC/Demography/Urban population (% of total population)", + "World/Europe/HRV/Demography/Urban population (% of total population)", + "World/Asia/IDN/Demography/Urban population (% of total population)", + "World/Asia/IND/Demography/Urban population (% of total population)", + "World/Persian Gulf/IRQ/Demography/Urban population (% of total population)", + "World/North Africa/ISR/Demography/Urban population (% of total population)", + "World/South Africa/LBR/Demography/Urban population (% of total population)", + "World/North Africa/MAR/Demography/Urban population (% of total population)", + "World/Latam/MEX/Demography/Urban population (% of total population)", + "World/South Africa/MOZ/Demography/Urban population (% of total population)", + "World/South Africa/NGA/Demography/Urban population (% of total population)", + "World/Europe/NLD/Demography/Urban population (% of total population)", + "World/Persian Gulf/OMN/Demography/Urban population (% of total population)", + "World/Latam/PAN/Demography/Urban population (% of total population)", + "World/Latam/PER/Demography/Urban population (% of total population)", + "World/Europe/POL/Demography/Urban population (% of total population)", + "World/Persian Gulf/QAT/Demography/Urban population (% of total population)", + "World/Persian Gulf/SAU/Demography/Urban population (% of total population)", + "World/South Africa/SEN/Demography/Urban population (% of total population)", + "World/Asia/THA/Demography/Urban population (% of total population)", + "World/North Africa/TUR/Demography/Urban population (% of total population)", + "World/Pair/USA/Demography/Urban population (% of total population)", + "World/Latam/VEN/Demography/Urban population (% of total population)", + "World/Asia/VNM/Demography/Urban population (% of total population)", + "World/Persian Gulf/YEM/Demography/Urban population (% of total population)", + "World/South Africa/ZAF/Demography/Urban population (% of total population)", + "World/Europe/AUT/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Persian Gulf/AZE/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Asia/BGD/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/CHL/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Pair/CHN/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/COL/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/CRI/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Europe/DEU/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/North Africa/DZA/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/North Africa/EGY/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Europe/GBR/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/South Africa/GHA/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Europe/HRV/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Asia/IND/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/North Africa/ISR/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Asia/KOR/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/North Africa/MAR/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/MEX/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/South Africa/MOZ/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/South Africa/NGA/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Europe/NLD/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/PAN/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/PER/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Asia/PHL/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Europe/POL/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Persian Gulf/SAU/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Europe/SWE/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Asia/THA/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/North Africa/TUR/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/VEN/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Asia/VNM/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Persian Gulf/YEM/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/South Africa/ZAF/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Persian Gulf/ARE/A&D", + "World/Latam/ARG/A&D", + "World/Europe/AUT/A&D", + "World/Persian Gulf/AZE/A&D", + "World/Asia/BGD/A&D", + "World/Latam/BRA/A&D", + "World/Latam/CHL/A&D", + "World/Pair/CHN/A&D", + "World/Latam/CRI/A&D", + "World/North Africa/EGY/A&D", + "World/Europe/GBR/A&D", + "World/South Africa/GHA/A&D", + "World/Europe/HRV/A&D", + "World/Asia/IND/A&D", + "World/North Africa/ISR/A&D", + "World/Asia/KOR/A&D", + "World/North Africa/MAR/A&D", + "World/Latam/MEX/A&D", + "World/South Africa/MOZ/A&D", + "World/South Africa/NGA/A&D", + "World/Europe/NLD/A&D", + "World/Persian Gulf/OMN/A&D", + "World/Latam/PAN/A&D", + "World/Europe/POL/A&D", + "World/Persian Gulf/QAT/A&D", + "World/Asia/THA/A&D", + "World/Pair/USA/A&D", + "World/Latam/VEN/A&D", + "World/Asia/VNM/A&D", + "World/Persian Gulf/YEM/A&D", + "World/Persian Gulf/ARE/Agriculture", + "World/Latam/ARG/Agriculture", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/Latam/CRI/Agriculture", + "World/Europe/DEU/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/North Africa/EGY/Agriculture", + "World/Europe/ESP/Agriculture", + "World/Europe/FRA/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Europe/HRV/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/ISR/Agriculture", + "World/Asia/KOR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Europe/NLD/Agriculture", + "World/Persian Gulf/OMN/Agriculture", + "World/Latam/PAN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Europe/POL/Agriculture", + "World/Persian Gulf/QAT/Agriculture", + "World/Persian Gulf/SAU/Agriculture", + "World/South Africa/SEN/Agriculture", + "World/Europe/SWE/Agriculture", + "World/Asia/THA/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Latam/VEN/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/South Africa/ZAF/Agriculture", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/Persian Gulf/IRQ/Demography", + "World/North Africa/ISR/Demography", + "World/Asia/KOR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Europe/SWE/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Latam/ARG/Demoraphy", + "World/Asia/BGD/Demoraphy", + "World/Latam/BRA/Demoraphy", + "World/South Africa/CMR/Demoraphy", + "World/Latam/COL/Demoraphy", + "World/Latam/CRI/Demoraphy", + "World/North Africa/DZA/Demoraphy", + "World/North Africa/EGY/Demoraphy", + "World/South Africa/GHA/Demoraphy", + "World/Asia/IND/Demoraphy", + "World/South Africa/LBR/Demoraphy", + "World/North Africa/MAR/Demoraphy", + "World/Latam/MEX/Demoraphy", + "World/South Africa/MOZ/Demoraphy", + "World/South Africa/NGA/Demoraphy", + "World/Latam/PAN/Demoraphy", + "World/Latam/PER/Demoraphy", + "World/Asia/PHL/Demoraphy", + "World/North Africa/TUR/Demoraphy", + "World/Latam/VEN/Demoraphy", + "World/Asia/VNM/Demoraphy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Employment", + "World/Latam/ARG/Employment", + "World/Europe/AUT/Employment", + "World/Persian Gulf/AZE/Employment", + "World/Asia/BGD/Employment", + "World/Latam/BRA/Employment", + "World/Latam/CHL/Employment", + "World/Pair/CHN/Employment", + "World/South Africa/CMR/Employment", + "World/Latam/COL/Employment", + "World/Latam/CRI/Employment", + "World/Europe/DEU/Employment", + "World/North Africa/DZA/Employment", + "World/North Africa/EGY/Employment", + "World/Europe/ESP/Employment", + "World/Europe/FRA/Employment", + "World/Europe/GBR/Employment", + "World/South Africa/GHA/Employment", + "World/Europe/GRC/Employment", + "World/Europe/HRV/Employment", + "World/Asia/IDN/Employment", + "World/Asia/IND/Employment", + "World/North Africa/ISR/Employment", + "World/Asia/KOR/Employment", + "World/South Africa/LBR/Employment", + "World/North Africa/MAR/Employment", + "World/Latam/MEX/Employment", + "World/South Africa/MOZ/Employment", + "World/South Africa/NGA/Employment", + "World/Europe/NLD/Employment", + "World/Persian Gulf/OMN/Employment", + "World/Latam/PAN/Employment", + "World/Latam/PER/Employment", + "World/Asia/PHL/Employment", + "World/Europe/POL/Employment", + "World/Persian Gulf/QAT/Employment", + "World/Persian Gulf/SAU/Employment", + "World/South Africa/SEN/Employment", + "World/Europe/SWE/Employment", + "World/Asia/THA/Employment", + "World/North Africa/TUR/Employment", + "World/Pair/USA/Employment", + "World/Latam/VEN/Employment", + "World/Asia/VNM/Employment", + "World/Persian Gulf/YEM/Employment", + "World/South Africa/ZAF/Employment", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Persian Gulf/IRQ/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Latam/VEN/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Equality", + "World/Latam/ARG/Equality", + "World/Europe/AUT/Equality", + "World/Persian Gulf/AZE/Equality", + "World/Asia/BGD/Equality", + "World/Latam/BRA/Equality", + "World/Latam/CHL/Equality", + "World/Pair/CHN/Equality", + "World/South Africa/CMR/Equality", + "World/Latam/COL/Equality", + "World/Latam/CRI/Equality", + "World/Europe/DEU/Equality", + "World/North Africa/DZA/Equality", + "World/North Africa/EGY/Equality", + "World/Europe/ESP/Equality", + "World/Europe/FRA/Equality", + "World/Europe/GBR/Equality", + "World/South Africa/GHA/Equality", + "World/Europe/GRC/Equality", + "World/Europe/HRV/Equality", + "World/Asia/IND/Equality", + "World/North Africa/ISR/Equality", + "World/Asia/KOR/Equality", + "World/North Africa/MAR/Equality", + "World/Latam/MEX/Equality", + "World/South Africa/MOZ/Equality", + "World/South Africa/NGA/Equality", + "World/Europe/NLD/Equality", + "World/Persian Gulf/OMN/Equality", + "World/Latam/PAN/Equality", + "World/Latam/PER/Equality", + "World/Asia/PHL/Equality", + "World/Europe/POL/Equality", + "World/Persian Gulf/QAT/Equality", + "World/Persian Gulf/SAU/Equality", + "World/South Africa/SEN/Equality", + "World/Europe/SWE/Equality", + "World/Asia/THA/Equality", + "World/North Africa/TUR/Equality", + "World/Pair/USA/Equality", + "World/Latam/VEN/Equality", + "World/Asia/VNM/Equality", + "World/Persian Gulf/YEM/Equality", + "World/South Africa/ZAF/Equality", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/South Africa/CMR/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/North Africa/EGY/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/GRC/Exports", + "World/Europe/HRV/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/South Africa/LBR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/South Africa/NGA/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/Persian Gulf/YEM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/Persian Gulf/IRQ/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/South Africa/LBR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Latam/VEN/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Industry", + "World/Latam/ARG/Industry", + "World/Europe/AUT/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Asia/BGD/Industry", + "World/Latam/BRA/Industry", + "World/Latam/CHL/Industry", + "World/Pair/CHN/Industry", + "World/South Africa/CMR/Industry", + "World/Latam/COL/Industry", + "World/Latam/CRI/Industry", + "World/Europe/DEU/Industry", + "World/North Africa/DZA/Industry", + "World/North Africa/EGY/Industry", + "World/Europe/ESP/Industry", + "World/Europe/FRA/Industry", + "World/Europe/GBR/Industry", + "World/South Africa/GHA/Industry", + "World/Europe/GRC/Industry", + "World/Europe/HRV/Industry", + "World/Asia/IDN/Industry", + "World/Asia/IND/Industry", + "World/North Africa/ISR/Industry", + "World/Asia/KOR/Industry", + "World/South Africa/LBR/Industry", + "World/North Africa/MAR/Industry", + "World/Latam/MEX/Industry", + "World/South Africa/MOZ/Industry", + "World/South Africa/NGA/Industry", + "World/Europe/NLD/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Latam/PAN/Industry", + "World/Latam/PER/Industry", + "World/Asia/PHL/Industry", + "World/Europe/POL/Industry", + "World/Persian Gulf/QAT/Industry", + "World/Persian Gulf/SAU/Industry", + "World/South Africa/SEN/Industry", + "World/Europe/SWE/Industry", + "World/Asia/THA/Industry", + "World/North Africa/TUR/Industry", + "World/Pair/USA/Industry", + "World/Latam/VEN/Industry", + "World/Asia/VNM/Industry", + "World/Persian Gulf/YEM/Industry", + "World/South Africa/ZAF/Industry", + "World/Persian Gulf/ARE/Internet", + "World/Latam/ARG/Internet", + "World/Europe/AUT/Internet", + "World/Persian Gulf/AZE/Internet", + "World/Asia/BGD/Internet", + "World/Latam/BRA/Internet", + "World/Latam/CHL/Internet", + "World/Pair/CHN/Internet", + "World/South Africa/CMR/Internet", + "World/Latam/COL/Internet", + "World/Latam/CRI/Internet", + "World/Europe/DEU/Internet", + "World/North Africa/DZA/Internet", + "World/North Africa/EGY/Internet", + "World/Europe/ESP/Internet", + "World/Europe/FRA/Internet", + "World/Europe/GBR/Internet", + "World/South Africa/GHA/Internet", + "World/Europe/GRC/Internet", + "World/Europe/HRV/Internet", + "World/Asia/IDN/Internet", + "World/Asia/IND/Internet", + "World/Persian Gulf/IRQ/Internet", + "World/North Africa/ISR/Internet", + "World/Asia/KOR/Internet", + "World/South Africa/LBR/Internet", + "World/North Africa/MAR/Internet", + "World/Latam/MEX/Internet", + "World/South Africa/MOZ/Internet", + "World/South Africa/NGA/Internet", + "World/Europe/NLD/Internet", + "World/Persian Gulf/OMN/Internet", + "World/Latam/PAN/Internet", + "World/Latam/PER/Internet", + "World/Asia/PHL/Internet", + "World/Europe/POL/Internet", + "World/Persian Gulf/QAT/Internet", + "World/Persian Gulf/SAU/Internet", + "World/South Africa/SEN/Internet", + "World/Europe/SWE/Internet", + "World/Asia/THA/Internet", + "World/North Africa/TUR/Internet", + "World/Pair/USA/Internet", + "World/Latam/VEN/Internet", + "World/Asia/VNM/Internet", + "World/Persian Gulf/YEM/Internet", + "World/South Africa/ZAF/Internet", + "World/Persian Gulf/ARE/Migration", + "World/Europe/AUT/Migration", + "World/Persian Gulf/AZE/Migration", + "World/Latam/CHL/Migration", + "World/Pair/CHN/Migration", + "World/Europe/DEU/Migration", + "World/North Africa/DZA/Migration", + "World/Europe/ESP/Migration", + "World/Europe/FRA/Migration", + "World/Europe/GBR/Migration", + "World/Europe/GRC/Migration", + "World/Europe/HRV/Migration", + "World/Asia/IND/Migration", + "World/North Africa/ISR/Migration", + "World/Asia/KOR/Migration", + "World/North Africa/MAR/Migration", + "World/Latam/MEX/Migration", + "World/South Africa/MOZ/Migration", + "World/South Africa/NGA/Migration", + "World/Europe/NLD/Migration", + "World/Latam/PAN/Migration", + "World/Latam/PER/Migration", + "World/Europe/POL/Migration", + "World/Persian Gulf/SAU/Migration", + "World/South Africa/SEN/Migration", + "World/Europe/SWE/Migration", + "World/Asia/THA/Migration", + "World/North Africa/TUR/Migration", + "World/Pair/USA/Migration", + "World/Asia/VNM/Migration", + "World/Persian Gulf/YEM/Migration", + "World/Persian Gulf/ARE/Military", + "World/Europe/AUT/Military", + "World/Persian Gulf/AZE/Military", + "World/Asia/BGD/Military", + "World/Latam/BRA/Military", + "World/Latam/CHL/Military", + "World/Pair/CHN/Military", + "World/South Africa/CMR/Military", + "World/Latam/COL/Military", + "World/North Africa/DZA/Military", + "World/North Africa/EGY/Military", + "World/Europe/ESP/Military", + "World/Europe/FRA/Military", + "World/South Africa/GHA/Military", + "World/Europe/GRC/Military", + "World/Asia/IDN/Military", + "World/Asia/IND/Military", + "World/North Africa/ISR/Military", + "World/Asia/KOR/Military", + "World/North Africa/MAR/Military", + "World/Latam/MEX/Military", + "World/South Africa/MOZ/Military", + "World/South Africa/NGA/Military", + "World/Europe/NLD/Military", + "World/Persian Gulf/OMN/Military", + "World/Latam/PER/Military", + "World/Asia/PHL/Military", + "World/Europe/POL/Military", + "World/Persian Gulf/SAU/Military", + "World/South Africa/SEN/Military", + "World/Asia/THA/Military", + "World/North Africa/TUR/Military", + "World/Pair/USA/Military", + "World/Asia/VNM/Military", + "World/Persian Gulf/YEM/Military", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/Persian Gulf/IRQ/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Europe/SWE/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/South Africa/ZAF/Mortality", + "World/Persian Gulf/ARE/Principal", + "World/Latam/ARG/Principal", + "World/Europe/AUT/Principal", + "World/Persian Gulf/AZE/Principal", + "World/Asia/BGD/Principal", + "World/Latam/BRA/Principal", + "World/Latam/CHL/Principal", + "World/Pair/CHN/Principal", + "World/South Africa/CMR/Principal", + "World/Latam/COL/Principal", + "World/Latam/CRI/Principal", + "World/Europe/DEU/Principal", + "World/North Africa/DZA/Principal", + "World/North Africa/EGY/Principal", + "World/Europe/ESP/Principal", + "World/Europe/FRA/Principal", + "World/Europe/GBR/Principal", + "World/South Africa/GHA/Principal", + "World/Europe/GRC/Principal", + "World/Europe/HRV/Principal", + "World/Asia/IDN/Principal", + "World/Asia/IND/Principal", + "World/Persian Gulf/IRQ/Principal", + "World/North Africa/ISR/Principal", + "World/Asia/KOR/Principal", + "World/South Africa/LBR/Principal", + "World/North Africa/MAR/Principal", + "World/Latam/MEX/Principal", + "World/South Africa/MOZ/Principal", + "World/South Africa/NGA/Principal", + "World/Europe/NLD/Principal", + "World/Persian Gulf/OMN/Principal", + "World/Latam/PAN/Principal", + "World/Latam/PER/Principal", + "World/Asia/PHL/Principal", + "World/Europe/POL/Principal", + "World/Persian Gulf/QAT/Principal", + "World/Persian Gulf/SAU/Principal", + "World/South Africa/SEN/Principal", + "World/Europe/SWE/Principal", + "World/Asia/THA/Principal", + "World/North Africa/TUR/Principal", + "World/Pair/USA/Principal", + "World/Latam/VEN/Principal", + "World/Asia/VNM/Principal", + "World/Persian Gulf/YEM/Principal", + "World/South Africa/ZAF/Principal", + "World/Latam/ARG/R&D", + "World/Europe/AUT/R&D", + "World/Persian Gulf/AZE/R&D", + "World/Asia/BGD/R&D", + "World/Latam/BRA/R&D", + "World/Latam/CHL/R&D", + "World/Pair/CHN/R&D", + "World/South Africa/CMR/R&D", + "World/Latam/COL/R&D", + "World/Latam/CRI/R&D", + "World/Europe/DEU/R&D", + "World/North Africa/DZA/R&D", + "World/North Africa/EGY/R&D", + "World/Europe/ESP/R&D", + "World/Europe/FRA/R&D", + "World/Europe/GBR/R&D", + "World/South Africa/GHA/R&D", + "World/Europe/GRC/R&D", + "World/Europe/HRV/R&D", + "World/Asia/IDN/R&D", + "World/Asia/IND/R&D", + "World/Asia/KOR/R&D", + "World/South Africa/LBR/R&D", + "World/North Africa/MAR/R&D", + "World/Latam/MEX/R&D", + "World/South Africa/MOZ/R&D", + "World/South Africa/NGA/R&D", + "World/Europe/NLD/R&D", + "World/Persian Gulf/OMN/R&D", + "World/Latam/PAN/R&D", + "World/Latam/PER/R&D", + "World/Asia/PHL/R&D", + "World/Europe/POL/R&D", + "World/South Africa/SEN/R&D", + "World/Asia/THA/R&D", + "World/North Africa/TUR/R&D", + "World/Pair/USA/R&D", + "World/Latam/VEN/R&D", + "World/Asia/VNM/R&D", + "World/Persian Gulf/YEM/R&D", + "World/South Africa/ZAF/R&D", + "World/Latam/ARG/Taxes", + "World/Europe/AUT/Taxes", + "World/Persian Gulf/AZE/Taxes", + "World/Asia/BGD/Taxes", + "World/Latam/BRA/Taxes", + "World/Latam/CHL/Taxes", + "World/South Africa/CMR/Taxes", + "World/Latam/COL/Taxes", + "World/Latam/CRI/Taxes", + "World/Europe/DEU/Taxes", + "World/North Africa/DZA/Taxes", + "World/Europe/ESP/Taxes", + "World/Europe/FRA/Taxes", + "World/Europe/GBR/Taxes", + "World/South Africa/GHA/Taxes", + "World/Europe/GRC/Taxes", + "World/Europe/HRV/Taxes", + "World/Asia/IND/Taxes", + "World/North Africa/ISR/Taxes", + "World/Asia/KOR/Taxes", + "World/North Africa/MAR/Taxes", + "World/Latam/MEX/Taxes", + "World/South Africa/MOZ/Taxes", + "World/South Africa/NGA/Taxes", + "World/Europe/NLD/Taxes", + "World/Latam/PAN/Taxes", + "World/Latam/PER/Taxes", + "World/Europe/POL/Taxes", + "World/Persian Gulf/SAU/Taxes", + "World/South Africa/SEN/Taxes", + "World/Europe/SWE/Taxes", + "World/North Africa/TUR/Taxes", + "World/Pair/USA/Taxes", + "World/Latam/VEN/Taxes", + "World/Asia/VNM/Taxes", + "World/Persian Gulf/YEM/Taxes", + "World/South Africa/ZAF/Taxes", + "World/Persian Gulf/ARE/industry", + "World/Latam/ARG/industry", + "World/Europe/AUT/industry", + "World/Persian Gulf/AZE/industry", + "World/Asia/BGD/industry", + "World/Latam/BRA/industry", + "World/Latam/CHL/industry", + "World/Pair/CHN/industry", + "World/South Africa/CMR/industry", + "World/Latam/COL/industry", + "World/Latam/CRI/industry", + "World/North Africa/DZA/industry", + "World/North Africa/EGY/industry", + "World/Europe/ESP/industry", + "World/Europe/FRA/industry", + "World/Europe/GBR/industry", + "World/South Africa/GHA/industry", + "World/Europe/GRC/industry", + "World/Europe/HRV/industry", + "World/Asia/IDN/industry", + "World/Asia/IND/industry", + "World/Persian Gulf/IRQ/industry", + "World/North Africa/ISR/industry", + "World/Asia/KOR/industry", + "World/South Africa/LBR/industry", + "World/North Africa/MAR/industry", + "World/Latam/MEX/industry", + "World/South Africa/MOZ/industry", + "World/South Africa/NGA/industry", + "World/Europe/NLD/industry", + "World/Persian Gulf/OMN/industry", + "World/Latam/PAN/industry", + "World/Latam/PER/industry", + "World/Asia/PHL/industry", + "World/Europe/POL/industry", + "World/Persian Gulf/QAT/industry", + "World/Persian Gulf/SAU/industry", + "World/South Africa/SEN/industry", + "World/Europe/SWE/industry", + "World/Asia/THA/industry", + "World/North Africa/TUR/industry", + "World/Pair/USA/industry", + "World/Latam/VEN/industry", + "World/Asia/VNM/industry", + "World/Persian Gulf/YEM/industry", + "World/South Africa/ZAF/industry", + "World/Europe/AUT/principal", + "World/Persian Gulf/AZE/principal", + "World/Asia/BGD/principal", + "World/Pair/CHN/principal", + "World/South Africa/CMR/principal", + "World/Latam/COL/principal", + "World/Latam/CRI/principal", + "World/Europe/DEU/principal", + "World/North Africa/DZA/principal", + "World/Europe/ESP/principal", + "World/Europe/FRA/principal", + "World/Europe/GBR/principal", + "World/South Africa/GHA/principal", + "World/Europe/HRV/principal", + "World/Asia/IDN/principal", + "World/Asia/IND/principal", + "World/North Africa/ISR/principal", + "World/Asia/KOR/principal", + "World/Latam/MEX/principal", + "World/South Africa/MOZ/principal", + "World/South Africa/NGA/principal", + "World/Europe/NLD/principal", + "World/Latam/PAN/principal", + "World/Asia/PHL/principal", + "World/Europe/POL/principal", + "World/Persian Gulf/SAU/principal", + "World/Europe/SWE/principal", + "World/North Africa/TUR/principal", + "World/Pair/USA/principal", + "World/South Africa/ZAF/principal", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Asia", + "World/Europe", + "World/Latam", + "World/North Africa", + "World/Pair", + "World/Persian Gulf", + "World/South Africa", + "World" + ], + "labels": [ + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "ARE", + "ARG", + "AUT", + "AZE", + "BGD", + "BRA", + "CHL", + "CHN", + "CMR", + "COL", + "CRI", + "DEU", + "DZA", + "EGY", + "ESP", + "FRA", + "GBR", + "GHA", + "GRC", + "HRV", + "IDN", + "IND", + "IRQ", + "ISR", + "KOR", + "LBR", + "MAR", + "MEX", + "MOZ", + "NGA", + "NLD", + "OMN", + "PAN", + "PER", + "PHL", + "POL", + "QAT", + "SAU", + "SEN", + "SWE", + "THA", + "TUR", + "USA", + "VEN", + "VNM", + "YEM", + "ZAF", + "Asia", + "Europe", + "Latam", + "North Africa", + "Pair", + "Persian Gulf", + "South Africa", + "World" + ], + "marker": { + "coloraxis": "coloraxis", + "colors": [ + 0.8531021111589834, + 0.9960831758177524, + 0.9956171156600898, + 0.7534091311886248, + 0.999122807017544, + 0.872263164968203, + 0.897855261911528, + 0.999122807017544, + 0.8536839205362883, + 0.8975114391781058, + 0.8640740055556022, + 0.908313797791604, + 0.9891493795585866, + 0.766483106515241, + 0.9231736856070656, + 0.9602036241270692, + 0.9626281577206024, + 0.9457244866279326, + 0.9047503889161738, + 0.8269184820807403, + 0.8789838022165389, + 0.8800026263331926, + 0.957737379733654, + 0.999122807017544, + 0.9509004506686832, + 0.7562762148337596, + 0.8442479234380643, + 0.993779175279743, + 0.7763614794595731, + 0.8710617614475394, + 0.9636752136752136, + 0.8119647131227026, + 0.7805172292400585, + 0.9370415079706567, + 0.8701066680233348, + 0.8242647792818613, + 0.8238243435953363, + 0.9791710812316362, + 0.7554660388288974, + 0.8482458889462429, + 0.914656355102988, + 0.8458383400350413, + 0.92448876432027, + 0.8295449908182004, + 0.9773557492735576, + 0.9281390141743808, + 0.9093117324398052, + 0.7806171146277026, + 0.8726620562837514, + 0.9686137921250751, + 0.8257949554417174, + 0.798853868337832, + 0.9506066908754583, + 0.992130773157018, + 0.992130773157018, + 0.8297391428809981, + 0.9981637899375688, + 0.9559378978139692, + 0.9725030984517492, + 0.9994500458295142, + 0.9674464520962212, + 0.9537877101584162, + 0.9973311596620504, + 0.9965191088563604, + 0.9588085805762212, + 0.9804758872197188, + 0.9761230584660866, + 0.9804758872197188, + 0.9815561030337692, + 0.9979840393589112, + 0.9327029435145744, + 0.9855664265688792, + 0.9965191088563604, + 0.990099472619818, + 0.995055254321861, + 0.8099484766436214, + 0.9906701465266744, + 0.931003010693105, + 0.983380118113322, + 0.9892105958643824, + 0.9957870470931044, + 0.9654908347220116, + 0.9987789987789988, + 0.987752121170142, + 0.9645628577173472, + 0.9994500458295142, + 0.94949459763166, + 0.9746742674843129, + 0.9965191088563604, + 0.9899402366995218, + 0.987752121170142, + 0.9987169080982063, + 0.9987169080982063, + 0.9985113511553524, + 0.9987169080982063, + 0.9632178831505792, + 0.9892105958643824, + 0.9537877101584162, + 0.9444982054870336, + 0.8409895539377414, + 0.9935457940810306, + 0.9402260743372878, + 0.9725030984517492, + 0.9994500458295142, + 0.9022126610505616, + 0.9552208996034384, + 0.9963384890035256, + 0.987752121170142, + 0.9133941210450609, + 0.9444982054870336, + 0.960245535909425, + 0.9790238683337896, + 0.9094946702782724, + 0.920417502503307, + 0.9384151778567814, + 0.963122674479988, + 0.992130773157018, + 0.7576460378790729, + 0.9455819726942684, + 0.987752121170142, + 0.968168023170972, + 0.9133941210450609, + 0.8731664917240823, + 0.9746742674843129, + 0.9833831528957327, + 0.8527482577723561, + 0.9964422727546304, + 0.9746742674843129, + 0.9797497432807476, + 0.9987169080982063, + 0.948780020349246, + 0.960245535909425, + 0.9036065776616928, + 0.926761544632836, + 0.9660041169227584, + 0.9710569973901052, + 0.9979840393589112, + 0.9947945803202288, + 0.9987169080982063, + 0.9411662012310432, + 0.9395149939510422, + 0.9612865740616352, + 0.9104377104377104, + 0.8466632549513022, + 0.965460306668771, + 0.9991930603515944, + 0.7661643396391405, + 0.8993946860474129, + 0.9987169080982063, + 0.8053363980490009, + 0.8802332979851536, + 0.9951653583795466, + 0.8038391193200114, + 0.8486048045950245, + 0.9280303030303032, + 0.7681025602181487, + 0.8667078642628765, + 0.8561382296156173, + 0.9288810671989122, + 0.9927523497097036, + 0.975268289884998, + 0.9652833528240462, + 0.8533855094586799, + 0.9552208996034384, + 0.9383191940615055, + 0.9334429906542056, + 0.906974409725021, + 0.872086805029541, + 0.9775003787304952, + 0.9866063032322202, + 0.941241325810687, + 0.9394303111483416, + 0.9755497899678774, + 0.9757801848204816, + 0.97062869262233, + 0.798490964605047, + 0.9022126610505616, + 0.9410307160918406, + 0.9994500458295142, + 0.9434119359795824, + 0.9987169080982063, + 0.8056786244402121, + 0.7609962981315767, + 0.8417508417508417, + 0.9573727012110692, + 0.9833831528957327, + 0.8473209929380159, + 0.9946751263076096, + 0.9580905063976388, + 0.9638426316026611, + 0.9987169080982063, + 0.9015161062330156, + 0.9703343503473024, + 0.9987789987789988, + 0.9826559329887096, + 0.8594361209082695, + 0.9516399434309798, + 0.920417502503307, + 0.9423609294481023, + 0.968168023170972, + 0.9957870470931044, + 0.94521116881737, + 0.9694172098634408, + 0.9466379024540816, + 0.995055254321861, + 0.9879041307837876, + 0.9833831528957327, + 0.9333963910884244, + 0.9899402366995218, + 0.8869505922195406, + 0.9203611665699089, + 0.9884812240212558, + 0.9588085805762212, + 0.9214805336789016, + 0.9881107335844111, + 0.9236131934032984, + 0.9812023001507028, + 0.8379122722898551, + 0.9523555966814456, + 0.9248788062414784, + 0.8139160327981961, + 0.937383366744383, + 0.94521116881737, + 0.9768478574449928, + 0.9972514396116292, + 0.9933098124967774, + 0.9991101223581756, + 0.9286467697656632, + 0.919010674275554, + 0.9473516727604566, + 0.9459244011397192, + 0.907679698406929, + 0.9012628558280068, + 0.923234386862968, + 0.9345449630236856, + 0.9965224965914254, + 0.9537877101584162, + 0.9105923002381252, + 0.9964912280701756, + 0.9732265524705908, + 0.948780020349246, + 0.9833831528957327, + 0.923234386862968, + 0.9717799134249206, + 0.9001238035739624, + 0.8238720996776804, + 0.9369854844016412, + 0.9338360345735434, + 0.986111412381384, + 0.9689798997219612, + 0.9935924757554138, + 0.7605829143427332, + 0.9660041169227584, + 0.9211213201052028, + 0.917590135458235, + 0.9870232873110416, + 0.8507175025705549, + 0.9481552134363872, + 0.9964912280701756, + 0.9553309445702832, + 0.9403778017040136, + 0.9696119722965126, + 0.9725030984517492, + 0.9480657120588448, + 0.9480657120588448, + 0.8911000630113791, + 0.9008198204074828, + 0.9739502754814452, + 0.992130773157018, + 0.9940520578006032, + 0.9979840393589112, + 0.9871951628595732, + 0.9050015702408756, + 0.7835109416675496, + 0.9993324432576768, + 0.7596801346801346, + 0.9906701465266744, + 0.9480657120588448, + 0.8159024043178598, + 0.7811662552209668, + 0.8197944468080158, + 0.9848383996858172, + 0.9221336649411492, + 0.8994280557324552, + 0.786819255636605, + 0.8020486431706626, + 0.8608954878607267, + 0.9309395848776872, + 0.8507175025705549, + 0.9280303030303032, + 0.934334074623178, + 0.8656659267144711, + 0.7814049860815456, + 0.819882410141537, + 0.9043039394552778, + 0.7905837844375335, + 0.9809244351623316, + 0.7920033670033668, + 0.9476817042606516, + 0.9732265524705908, + 0.999014778325123, + 0.8814330280498146, + 0.8106107934390158, + 0.9859927106498643, + 0.843965803045393, + 0.7596801346801346, + 0.8513250555967384, + 0.8046783090893074, + 0.8073122788801593, + 0.9239392804329155, + 0.97062869262233, + 0.9464820597794912, + 0.8731889608367804, + 0.819882410141537, + 0.9189961343104286, + 0.8073122788801593, + 0.941972584550496, + 0.9545041703849207, + 0.8766192814819845, + 0.9739502754814452, + 0.9331273751154144, + 0.8493650107294191, + 0.9873818298349624, + 0.9964912280701756, + 0.895536084777682, + 0.9773557492735576, + 0.8385429638854296, + 0.8492357350911255, + 0.992105287563838, + 0.9991101224022378, + 0.7779288650281017, + 0.8958436239049176, + 0.9954545454545456, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8178037731982906, + 0.9416562889165628, + 0.936963017728694, + 0.8442717785843921, + 0.7686035765445222, + 0.7867084930870223, + 0.992671182389769, + 0.9848040830545792, + 0.951008471157725, + 0.8630706569122703, + 0.9026819923371648, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.84746622922539, + 0.8979659609796596, + 0.999777530589544, + 0.940760842211224, + 0.78115400581154, + 0.9240556247405564, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.7593325960761085, + 0.9413092648977816, + 0.999122807017544, + 0.9505705348293196, + 0.9416562889165628, + 0.9271888077994948, + 0.8673029726406383, + 0.9731456263408548, + 0.7813852813852814, + 0.7822341892305151, + 0.9364502164502164, + 0.8679516484927489, + 0.8857699681136173, + 0.7714560308712177, + 0.8584751140436623, + 0.8985904473621558, + 0.8190486045187014, + 0.7893527624833871, + 0.8919696969696971, + 0.8818618218586448, + 0.756628065305478, + 0.7882882882882881, + 0.950300482513086, + 0.8657481566722074, + 0.9365262267264388, + 0.943947221044588, + 0.887458515283843, + 0.7714763488785488, + 0.9214972959512142, + 0.909072064464046, + 0.7715736896162309, + 0.9290762303990062, + 0.8550758611268748, + 0.7761808341851454, + 0.9819054691235874, + 0.7957985346108523, + 0.9657498873425368, + 0.9364502164502164, + 0.8516827062939479, + 0.9754181770220984, + 0.9731874212360307, + 0.8135371179039302, + 0.8727427378014051, + 0.848344463643581, + 0.8895327800940938, + 0.7627248531396743, + 0.7582569516718274, + 0.7709571931840405, + 0.8921633972095838, + 0.9321707396546104, + 0.8986401163657464, + 0.7580471889891207, + 0.9369652591790605, + 0.8679796630864033, + 0.9098066660834573, + 0.980489676524778, + 0.927246096495326, + 0.9018122770586843, + 0.8810674463937621, + 0.8400216450216451, + 0.7689831576535288, + 0.7729944320019908, + 0.8837147279244052, + 0.881149648377826, + 0.9563110356768192, + 0.983927829355058, + 0.9839066269313416, + 0.7583206652119362, + 0.7925815424300344, + 0.8317161572052402, + 0.7744952514390555, + 0.9360718475073312, + 0.96130346341869, + 0.7958679833679831, + 0.7906981399616313, + 0.8413581378299119, + 0.9203347173341052, + 0.8430006636564963, + 0.9727275146860328, + 0.8287881529651736, + 0.8315151515151515, + 0.853720508166969, + 0.8093402654155926, + 0.8962455479058957, + 0.805605027801719, + 0.8210295170320834, + 0.8039070101933912, + 0.8039838558691283, + 0.7826760060360987, + 0.9269812868749552, + 0.794976794976795, + 0.8900713624983871, + 0.9133288665033964, + 0.810208371742399, + 0.7896057754229846, + 0.923877773549558, + 0.9296009475992656, + 0.895080529300567, + 0.8085490374609781, + 0.9819008264462812, + 0.8587224361306279, + 0.7739174537660428, + 0.7862254487513007, + 0.8193724468472356, + 0.8893524283935244, + 0.997064221767242, + 0.7952666762372825, + 0.9020216682958616, + 0.9983501374885428, + 0.8831534562926947, + 0.8860521920074892, + 0.7872481572481572, + 0.9226825090266608, + 0.7803152709359605, + 0.9122593875476056, + 0.8775850757693318, + 0.9799040094031604, + 0.8206267324852857, + 0.8177880557075959, + 0.9576966355531912, + 0.9220659824046918, + 0.797922077922078, + 0.7896320346320348, + 0.8632950463543738, + 0.9492492880197456, + 0.8832034632034632, + 0.8047193670665553, + 0.9956521739130436, + 0.7685862920068351, + 0.8475960459042418, + 0.9795419233757146, + 0.8269899956502829, + 0.7884382884382883, + 0.8207547087216158, + 0.9545454545454548, + 0.8429554406857294, + 0.8993321115511173, + 0.7984889287851585, + 0.761374210879955, + 0.8305523603886544, + 0.7718491195125222, + 0.980407916624232, + 0.950300482513086, + 0.8240213521788208, + 0.8952485002194801, + 0.9038846565773924, + 0.7965911235687182, + 0.8955324322950189, + 0.7910020962422152, + 0.9427138643067844, + 0.826115183440325, + 0.8573048573048573, + 0.7936317271895962, + 0.9007792207792208, + 0.854365955487306, + 0.9456364522650812, + 0.997982406795966, + 0.8774985212108586, + 0.9977822580645164, + 0.8221159804806326, + 0.9077567136073359, + 0.8205465606720966, + 0.8626119406890994, + 0.7556531232200494, + 0.7862587810898044, + 0.8404814885133853, + 0.8206267324852857, + 0.992492576897818, + 0.9526883899349432, + 0.8172714912841496, + 0.942686481353632, + 0.9073962406670544, + 0.793330615828421, + 0.9250332915366597, + 0.7896320346320348, + 0.9844717839591371, + 0.7676353790613718, + 0.9020216682958616, + 0.8820943870496513, + 0.9628828555154738, + 0.9505406805522968, + 0.7685960591133002, + 0.952282255405342, + 0.9961515326042576, + 0.8792822185970635, + 0.917989916458992, + 0.7624864249098158, + 0.8475960459042418, + 0.9795419233757146, + 0.8269899956502829, + 0.7884382884382883, + 0.8207547087216158, + 0.9545454545454548, + 0.8429554406857294, + 0.8993321115511173, + 0.7834739702517162, + 0.761374210879955, + 0.8305523603886544, + 0.7811065974284784, + 0.980407916624232, + 0.950300482513086, + 0.8240213521788208, + 0.8952485002194801, + 0.9038846565773924, + 0.798508237019148, + 0.8955324322950189, + 0.7839982383292353, + 0.9427138643067844, + 0.8245984899369047, + 0.8573048573048573, + 0.8243136284936928, + 0.8553134080531343, + 0.8473904773631097, + 0.9982456140350876, + 0.9590236663403416, + 0.9014436252397446, + 0.8327140244007301, + 0.8669485569807114, + 0.7949843218068803, + 0.903497324397646, + 0.9416562889165628, + 0.7707143966920784, + 0.855320123139272, + 0.7774854369415835, + 0.8503120994598766, + 0.926867994896457, + 0.8667552028246747, + 0.8775319334595817, + 0.901968773482508, + 0.935627556261994, + 0.9050659282343974, + 0.861924622573884, + 0.9675940297571454, + 0.9116934339203904, + 0.9072582435684412, + 0.9237413014402296, + 0.9238605624457716, + 0.8365273593813229, + 0.8893524283935244, + 0.9102500533059372, + 0.8349825924909352, + 0.8784817670545184, + 0.9947399253846392, + 0.8930927589221841, + 0.8055002075550022, + 0.8605298779944784, + 0.9775071835696456, + 0.9505926587353696, + 0.7588336685332704, + 0.8428335962794538, + 0.9238783245212608, + 0.8585749771698774, + 0.8765915866073055, + 0.9822182852411184, + 0.9533886386596292, + 0.8440336134453781, + 0.7834747760490336, + 0.924617649948652, + 0.9395524842975836, + 0.9389258424390616, + 0.9550800035134204, + 0.7946561709764253, + 0.9558099289684048, + 0.8428529645259684, + 0.7972573636925488, + 0.9379369101877942, + 0.8553636363636363, + 0.8995050491578671, + 0.9706054674756964, + 0.7736264668325739, + 0.9622333213753728, + 0.8220723881235561, + 0.8256741778557297, + 0.8127858031447691, + 0.7817740006858703, + 0.7968179052727826, + 0.8018268268268267, + 0.9281390141743808, + 0.9400806090461262, + 0.8107701860758095, + 0.8909257783846486, + 0.8991789819376026, + 0.8738739499371329, + 0.9781810760439292, + 0.8591088340319827, + 0.9192322609917452, + 0.8578880235734736, + 0.927227398337575, + 0.8549844211383769, + 0.9954545454545456, + 0.7996032354193273, + 0.7663762728169506, + 0.8072044088993242, + 0.9545454545454548, + 0.9222946747399472, + 0.8012891170808603, + 0.9007792207792208, + 0.761725650275299, + 0.9189132122341251, + 0.7700791802515137, + 0.7905809884612046, + 0.9364502164502164, + 0.9272003238960064, + 0.9520381744611566, + 0.7670786695244899, + 0.8558592375366569, + 0.833174972830306, + 0.9256214544793848, + 0.8228255528255527, + 0.8485714285714286, + 0.9702872224809812, + 0.7517555862267378, + 0.7565364592835857, + 0.7612860365462939, + 0.987527533398501, + 0.955555772482297, + 0.7996032354193273, + 0.7663762728169506, + 0.8072044088993242, + 0.9545454545454548, + 0.9222946747399472, + 0.8012891170808603, + 0.9007792207792208, + 0.761725650275299, + 0.9189132122341251, + 0.7700791802515137, + 0.7905809884612046, + 0.9364502164502164, + 0.933977462236232, + 0.9520381744611566, + 0.7670786695244899, + 0.8558592375366569, + 0.833174972830306, + 0.9256214544793848, + 0.8228255528255527, + 0.8485714285714286, + 0.9702872224809812, + 0.7517555862267378, + 0.7565364592835857, + 0.7612860365462939, + 0.987527533398501, + 0.955555772482297, + 0.9364502164502164, + 0.8358612257146861, + 0.8590707598082956, + 0.8832034632034632, + 0.833174972830306, + 0.8630005695842037, + 0.984461621950468, + 0.892391114486425, + 0.9897824784878032, + 0.8085316277505704, + 0.919319387113138, + 0.7940051262578318, + 0.780089044997152, + 0.9222946747399472, + 0.8363949697251979, + 0.796839893191436, + 0.7794331008589288, + 0.9859234217934404, + 0.9873000604890544, + 0.9486101335940044, + 0.9248539005931276, + 0.9517981773305488, + 0.8708608667318343, + 0.8623785126533147, + 0.9299160466862331, + 0.9545454545454548, + 0.8796487671810186, + 0.9772426641825802, + 0.7524584849903713, + 0.807857176503839, + 0.90727093221948, + 0.9971775822743564, + 0.7739306525397351, + 0.9847748699555192, + 0.7535520524804752, + 1, + 0.8551111044973793, + 0.9256631478531152, + 0.989570259523299, + 0.7687418116400186, + 0.9641837718077296, + 0.7942756598240468, + 0.8294322792944961, + 0.9215082393282026, + 0.9054494643688868, + 0.8530098192637454, + 0.9025093300004408, + 0.992492576897818, + 0.9598649249543808, + 0.8332737181503951, + 0.9529394346692732, + 0.8214507035663541, + 0.9309630572047876, + 0.7830101580101578, + 0.9732801304295486, + 0.9004189790402766, + 0.9446639459426616, + 0.9036078185699322, + 0.97145319916461, + 0.9609332238642584, + 0.7899791515690191, + 0.7611733870967741, + 0.863207096556374, + 0.9415725119950472, + 0.9939556858911696, + 0.783163286086673, + 0.9977977617253442, + 0.8662090859332238, + 0.8955509185594555, + 0.9764731504349176, + 0.7530954708374062, + 0.7828061257738677, + 0.8462219807137138, + 0.8842041598248496, + 0.915537959944108, + 0.7865763787648619, + 0.7856202453035243, + 0.903206652230566, + 0.989570259523299, + 0.7882882882882881, + 0.9483953947649668, + 0.9364334975369458, + 0.9056925711224626, + 0.7591535837096157, + 0.8418627955566073, + 0.7573046594982078, + 0.880681818181818, + 0.8409090909090906, + 0.806797048126061, + 0.7826760060360987, + 0.7688448083650483, + 0.8584408270788305, + 0.8956871084108602, + 0.913923675716727, + 0.9910308796338216, + 0.9590266687613186, + 0.7872481572481572, + 0.8646083304603533, + 0.9939410487486168, + 0.8340069434398959, + 0.982598363716604, + 0.9106424097900995, + 0.8008517246406788, + 0.8727928390787971, + 0.7681285613827205, + 0.8812869326621475, + 0.928402586493192, + 0.8532026469355432, + 0.8994624945374701, + 0.9440584784614404, + 0.9003302615524813, + 0.8228255528255527, + 0.9795723406491688, + 0.866515864516721, + 0.955439293598234, + 0.8529365775827682, + 0.934359451290398, + 0.8332769785018068, + 0.9365108715713024, + 0.877525810880078, + 0.9692015664722224, + 0.8409090909090906, + 0.940544771679814, + 0.923587693351357, + 0.7954434590943897, + 0.991568586771984, + 0.7612354435027383, + 0.937924041385235, + 0.8376851905173242, + 0.8927174779953235, + 0.7909951819239077, + 0.8443928295282409, + 0.8202350197681522, + 0.9660981642663024, + 0.8152462729809101, + 0.922004885973844, + 0.7639604667778042, + 0.7872481572481572, + 0.9000298090512994, + 0.8014712850828469, + 0.8228255528255527, + 0.8498088450201552, + 0.7879169357174485, + 0.8556523719936285, + 0.9755199210863276, + 0.8557823298777246, + 0.8293705854653898, + 0.8537505886046147, + 0.8046317312743457, + 0.8779697795654818, + 0.8749239196591598, + 0.8555086871328603, + 0.9225963809255304, + 0.9678016420122257, + 0.9415762523485668, + 0.8057522792271018, + 0.8959576525733801, + 0.9001590894975678, + 0.767145966241361, + 0.8489857866410283, + 0.9644777226717816, + 0.9098253673621896, + 0.8791269994277514, + 0.8664155045733993, + 0.8498893415734232, + 0.947101370798582, + 0.8538593322386425, + 0.8042480240124439, + 0.8931085516844227, + 0.8808798536293945, + 0.7934170900130808, + 0.9012551319648092, + 0.9348648660475504, + 0.8291496315254414, + 0.8722929363621342, + 0.911251618573038, + 0.9109734587383088, + 0.9170938628158845, + 0.7650216450216449, + 0.8491510263929617, + 0.797922077922078, + 0.9976169999054124, + 0.9935999513470776, + 0.8049044578239981, + 0.836149001293594, + 0.9772426641825802, + 0.7947818492500476, + 0.774258455570617, + 0.8948565585013833, + 0.96130346341869, + 0.7882882882882881, + 0.9031253085247768, + 0.7502958618442489, + 0.9074753238868364, + 0.9391271623435224, + 0.7795953486477678, + 0.8889322557418088, + 0.8774400397180557, + 0.9117791157331387, + 0.9837385506159468, + 0.7764964848815781, + 0.763706420963152, + 0.982244407057744, + 0.982258229908174, + 0.8665750946042498, + 0.7595972992524718, + 0.7801043792183331, + 0.905255061999686, + 0.8220123627076744, + 0.8030465628225144, + 0.9789271593959374, + 0.7848592675970836, + 0.78340962656552, + 0.9151319857390936, + 0.8905339474233814, + 0.8105036440440168, + 0.8827179393030227, + 0.9303783215638728, + 0.9188270726931117, + 0.9157320003100056, + 0.9358530842881808, + 0.7937577290427829, + 0.9414073611117948, + 0.8901453226576379, + 0.8602487024132297, + 0.7556614611768913, + 0.9600221996115068, + 0.7680433097131317, + 0.8925061445921794, + 0.9773557492735576, + 0.8013333235492676, + 0.7689202564616309, + 0.8185297955632884, + 0.7566698570378733, + 0.7828314585807773, + 0.8694189151801024, + 0.8065343721704722, + 0.9807788363703636, + 0.8356411205726275, + 0.8778270939877454, + 0.8142980219813145, + 0.9079854938491076, + 0.8369284370856844, + 0.8951910290953499, + 0.8385429638854296, + 0.9335217836825552, + 0.8814450312694764, + 0.8433770449321196, + 0.9773557492735576, + 0.8751169590643275, + 0.7872836439659993, + 0.8460813462362223, + 0.9068505777317312, + 0.974712351554919, + 0.8582253898196657, + 0.7694393172704596, + 0.9593583027873251, + 0.7791177041387707, + 0.8285988264418827, + 0.9708841861711646, + 0.8292663783394395, + 0.8455377025736512, + 0.784953771420362, + 0.7591712665406429, + 0.8668958338409165, + 0.8033611495393503, + 0.7791177041387707, + 0.7800515724165504, + 0.8797549464963943, + 0.9913485744394356, + 0.9893735932410646, + 0.8883723399394137, + 0.8371159751352832, + 0.8604416000492892, + 0.9391164837414664, + 0.9875732201051683, + 0.8696289027548957, + 0.9116740607637536, + 0.9335682269765724, + 0.8903543205412945, + 0.8274478901761246, + 0.8184361507912837, + 0.8985858297326429, + 0.8811309071018276, + 0.9600766541682176, + 0.9142379797053092, + 0.8539724989309248, + 0.9209665616774528, + 0.7653056658292261, + 0.9409789458067938, + 0.9813761990559404, + 0.937050978278692, + 0.8764803941254208, + 0.9622333213753728, + 0.8137991281050442, + 0.9349229298096128, + 0.9954545454545456, + 0.8383046372479713, + 0.8091752787787085, + 0.8992810605226834, + 0.8526177936134408, + 0.7653579292773433, + 0.916749204599586, + 0.8841900402810652, + 0.8889595044710776, + 0.8674196841123456, + 0.9890311615492476, + 0.9817061821644611, + 0.9631360021073514, + 0.9146441554557286, + 0.9372227566431792, + 0.8277684278026405, + 0.8085158042512651, + 0.8164472422898458, + 0.9476735033728184, + 0.9195597006085118, + 0.9400644385653472, + 0.8518992260665973, + 0.9457607069255074, + 0.805969235202997, + 0.8496241912512923, + 0.8197634340126408, + 0.9579224065577792, + 0.8608612476370511, + 0.9529052383428788, + 0.9845238804935112, + 0.9083435256044582, + 0.8553134080531343, + 0.7923275652679538, + 0.7819131922573495, + 0.7906170310433895, + 0.8406484670606788, + 0.7894736842105264, + 0.8681498428014106, + 0.8408063572139095, + 0.7738548847622624, + 0.8107066154287429, + 0.909636086500905, + 0.9320839327803117, + 0.894689054121916, + 0.8861995746607623, + 0.8134896030245747, + 0.9636363636363636, + 0.8392276737347159, + 0.901982337361457, + 0.8985728391457872, + 0.792183707284576, + 0.781322126609299, + 0.9194369973190348, + 0.8490800833801486, + 0.9929855448480356, + 0.9990150209905604, + 0.7707081956166206, + 0.8952232922255726, + 1, + 0.8129887361537077, + 0.9000234404536862, + 0.998221036598569, + 0.8017888630248555, + 0.8075842215036355, + 0.9208092958092956, + 0.7606873345935727, + 0.7928741020793951, + 0.9344444444444444, + 0.8580430671412884, + 0.8053911900065747, + 0.9025957850286672, + 0.992671182389769, + 0.9682695039010508, + 0.951299790877642, + 0.9060155127964962, + 0.9527305856232412, + 0.9434321361058602, + 0.9565966865742668, + 0.943947221044588, + 0.8705701323251417, + 0.9652200677131424, + 0.9884853681548044, + 0.9357441792403746, + 0.9414868925909092, + 0.9505847966970496, + 0.9565269894940224, + 0.9514804555247768, + 0.7993113894954217, + 0.760960813749392, + 0.8859552362571937, + 0.9413092648977816, + 1, + 0.8182545315351611, + 1, + 0.9136739322359624, + 0.7679975248125409, + 0.9492028179458656, + 0.9839615421047646, + 0.9954545454545456, + 0.9954545454545456, + 0.8398210820058983, + 0.8626784395302913, + 0.9781810760439292, + 0.775848555122794, + 0.7830044520223547, + 0.7890565881306622, + 0.7666456034744639, + 0.8730814336484439, + 0.8997733824632729, + 0.9780525030525028, + 0.9501767000609233, + 0.9341770866436075, + 0.7890266466291772, + 0.931285458781014, + 0.9135836385836384, + 0.8161327222259138, + 0.8595055413469735, + 0.8885272049623901, + 0.8850443888003645, + 0.9111695674516778, + 0.8969355419044592, + 0.9369652591790605, + 0.9474196440005122, + 0.9540293886604132, + 0.7751893805092811, + 0.884220727546821, + 0.9248167539267018, + 0.9416562889165628, + 0.9947833674785644, + 0.8179413224638157, + 0.963749256395003, + 0.9894860390412652, + 0.7661643396391405, + 0.8822836096135876, + 0.9987169080982063, + 0.8212112306855328, + 0.8510831692167852, + 0.9674464520962212, + 0.8140738302718742, + 0.9084937590490597, + 0.8588550489464593, + 0.9132111582886344, + 0.9652833528240462, + 0.8704495461768502, + 0.908214664444781, + 0.8330370179351025, + 0.8542414865764498, + 0.951833769945225, + 0.9369276682149368, + 0.9172096473904445, + 0.7660118606375093, + 0.8049385749385749, + 0.819882410141537, + 0.9479738077588338, + 0.8453139910143218, + 0.9957870470931044, + 0.835084520570639, + 0.7568829071309779, + 0.8003212087852895, + 0.7757575757575756, + 0.9818181818181816, + 0.8296247866194634, + 0.8397480840731469, + 0.8084175084175085, + 0.8224948407969244, + 0.7604961330297303, + 0.8801077325173712, + 0.769382100421295, + 0.8025699565810901, + 0.7925192834831389, + 0.932353379320096, + 0.94491648331435, + 0.8001582377938935, + 0.7832517257911142, + 0.8082508107205724, + 0.7628286200410923, + 0.7621748136686876, + 0.9364192202560784, + 0.7690913021991601, + 0.8585000323687447, + 0.9150177303560064, + 0.8405722943067688, + 0.904913008013858, + 0.917314235445159, + 0.9929855448480356, + 0.8268991218112046, + 0.8398859728050183, + 0.996521739130435, + 0.8330381744436689, + 0.8550497957993816, + 0.9913111768722972, + 0.8557422839635942, + 0.8935463671803986, + 0.9006445563787115, + 0.8921379258150505, + 0.9000168618023969, + 0.7589099863492517, + 0.923526237747262, + 0.9028882720019862, + 0.9170617535185012, + 0.9807828100228472, + 0.939548148620228, + 0.9363191484705866, + 0.8321093615368212, + 0.8571281012005368, + 0.8384981048972464, + 0.9086443302842008, + 0.8871943647917209, + 0.8878997468865361, + 0.8999564578859198, + 0.9894860390412652, + 0.9134801839907836, + 0.8586028659246839, + 0.9532628651995616, + 0.8991005792297246, + 0.9248167539267018, + 0.8647701376567242, + 0.9063380676482872, + 0.9006445563787115, + 0.9964912280701756, + 0.9104377104377104, + 0.9861142727065788, + 0.8766608932307983, + 0.9228068405104872, + 0.945216049382716, + 0.872288139441828, + 0.8287614081607514, + 0.9364502164502164, + 0.9107716613157442, + 0.7558233373684017, + 0.9637205387205386, + 0.911011004178706, + 0.825019069412662, + 0.7745592680619333, + 0.9563893487499426, + 0.8643469043976432, + 0.8938717567128639, + 0.8935795415901516, + 0.9090909090909088, + 0.8890241171514016, + 0.8412491105292438, + 0.8993946860474129, + 0.9779240761641758, + 0.8448498489942445, + 0.9637205387205386, + 0.8307739463601531, + 0.7840680498436611, + 0.9234588281480026, + 0.7533766040551628, + 0.8411108025383495, + 0.8186320718389478, + 0.7507073140597975, + 0.8665855131372373, + 0.8141166099294752, + 0.8465178639695039, + 0.8674324881574892, + 0.894897491091307, + 0.926797128906551, + 0.8002254756609835, + 0.8899568476668683, + 0.8050891517303731, + 0.7551272091668285, + 0.9170723522722332, + 0.8862820694208641, + 0.7731935891169762, + 0.85279684719044, + 0.8545871559633028, + 0.973043266390798, + 0.9110701550899905, + 0.8806793706489482, + 0.9750233018591332, + 0.8832528651475978, + 0.9637205387205386, + 0.8045977011494252, + 0.7840680498436611, + 0.9718089459310836, + 0.7632159853061836, + 0.8411108025383495, + 0.8186320718389478, + 0.8665855131372373, + 0.8141166099294752, + 0.8465178639695039, + 0.8674324881574892, + 0.8941741955127749, + 0.8055806456563269, + 0.9200506754154923, + 0.8002254756609835, + 0.8055002075550022, + 0.8899568476668683, + 0.8050891517303731, + 0.7551272091668285, + 0.9170723522722332, + 0.8862820694208641, + 0.7643684665873062, + 0.8962930952966316, + 0.8545871559633028, + 0.973043266390798, + 0.8391999316061071, + 0.9106199738197148, + 0.8336184977583577, + 0.9825055596738328, + 0.8275801175590107, + 0.8536656603794738, + 0.9947833674785644, + 0.8871943647917209, + 0.9947833674785644, + 0.8474509259804291, + 0.8970952216775002, + 0.9064029668710988, + 0.8689528166230794, + 0.8668563557933111, + 0.9192140588692024, + 0.8446191193563313, + 0.9070510179197603, + 0.9569231352909934, + 0.9360907526607608, + 0.9363191484705866, + 0.7585150816808764, + 0.8079450438253487, + 0.889311351984684, + 0.9157961667726409, + 0.8495199813878911, + 0.9008127437155956, + 0.9894860390412652, + 0.9084777593712244, + 0.8247288683081853, + 0.9554572159761404, + 0.8803742636840193, + 0.8617666872995883, + 0.9141959372906489, + 0.9034890695907855, + 0.8086181910936574, + 0.9964912280701756, + 0.9859927106498643, + 0.9106199738197148, + 0.7805873465692333, + 0.8878997468865361, + 0.9016573566020095, + 0.996521739130435, + 0.8072721768598793, + 0.8440081063581091, + 0.996521739130435, + 0.8612922801795058, + 0.8405722943067688, + 0.9620426435996664, + 0.8550497957993816, + 0.8140134601423378, + 0.8065264393377811, + 0.8107867382196149, + 0.8640740055556022, + 0.8801559604997237, + 0.7852248168921702, + 0.8640589559565321, + 0.7885457047794436, + 0.8947102177469851, + 0.9459249756326831, + 0.9206503306171988, + 0.8390959753949685, + 0.8829679585824524, + 0.8550497957993816, + 0.9034890695907855, + 0.996521739130435, + 0.8773484472624222, + 0.8453843932985197, + 0.9372480427854252, + 0.7528181818181818, + 0.9513991845811716, + 0.8133380704513155, + 0.8550497957993816, + 0.8822645386075115, + 0.9964912280701756, + 0.984385006449655, + 0.8868917142282169, + 0.8515915595209063, + 0.7801554360634969, + 0.985677698237539, + 0.8248130810601166, + 0.8900224404233377, + 0.9847846012832264, + 0.8665750946042498, + 0.8066554677866482, + 0.9191871761989552, + 0.8436840954545581, + 0.863729744412587, + 0.8256985978203084, + 0.8998085943818406, + 0.8162326248169407, + 0.9119926726575672, + 0.9789271593959374, + 0.9477427513951896, + 0.9452267008277976, + 0.880636467189412, + 0.8867623702302508, + 0.808133830455259, + 0.9714444301275637, + 0.9847846012832264, + 0.9286461770540784, + 0.9203870504644208, + 0.941002197457228, + 0.9704634209196064, + 0.8113283188178101, + 0.7634010982542299, + 0.8902061446452669, + 0.9354771486059212, + 0.9847846012832264, + 0.7809840281171203, + 0.9894860390412652, + 0.8185297955632884, + 0.8802332979851536, + 0.9723196833760273, + 0.9982608695652172, + 0.8258211640188051, + 0.9080000797822109, + 0.9964912280701756, + 0.839409582008935, + 0.8941141728869741, + 0.7725808179227283, + 0.8028188725754469, + 0.8251527896182628, + 0.8315151515151515, + 0.817899229361741, + 0.7620751217250173, + 0.8246468823065852, + 0.8720941750410174, + 0.9294859277773437, + 0.9927523497097036, + 0.9828742809481747, + 0.9543209471735604, + 0.8753860783148016, + 0.939845912034176, + 0.9151374298073564, + 0.9378841050418828, + 0.939845912034176, + 0.7510938991373108, + 0.8610822831727207, + 0.8417508417508417, + 0.8698065557551617, + 0.9372803249238462, + 0.9790245861131704, + 0.9300633742947678, + 0.8054841390869845, + 0.7589199371000429, + 0.896639903044993, + 0.8974694288349275, + 0.9926781739019452, + 0.8458809671812189, + 0.7712684989429177, + 0.7976314145122237, + 0.9416437009068946, + 0.9947856385396152, + 0.7862727272727271, + 0.8586700336700335, + 0.9303687863484544, + 0.8675319709415152, + 0.7920446151287672, + 0.8694866227116197, + 0.8586700336700335, + 0.7834335706711103, + 0.7921764122864366, + 0.934334074623178, + 0.8619283887468031, + 0.7676281237741422, + 0.7631048593350384, + 0.9925507389082384, + 0.978469168274726, + 0.7500718937727315, + 0.8846977863333716, + 0.9378841050418828, + 0.8684059865492091, + 0.8950764254021453, + 0.7740137221269299, + 0.8084175084175085, + 0.8843935880633129, + 0.7975398606698341, + 0.8485069801940157, + 0.7694545454545454, + 0.9679847507357018, + 0.7697689156812739, + 0.7685979300090726, + 0.9457912457912456, + 0.7920033670033668, + 0.81753438081967, + 0.9637205387205386, + 0.8196988466882366, + 0.8876132688068014, + 0.9992667277726852, + 0.813403640566796, + 0.924902134017138, + 0.8505352830088105, + 0.7966210086663266, + 0.8107701860758095, + 0.7920033670033668, + 0.8396249227545072, + 0.7665777912437509, + 0.9309395848776872, + 0.8562069694591002, + 0.8351865579441562, + 0.7614932582627626, + 0.9217240750865684, + 0.9927523497097036, + 0.9824776408025137, + 0.9261759464210148, + 0.8795946591645603, + 0.9517275376077332, + 0.8343766589132309, + 0.9378841050418828, + 0.939845912034176, + 0.8426835486603141, + 0.8084175084175085, + 0.825, + 0.9279912144543816, + 0.9380615545835612, + 0.954821445486407, + 0.8054841390869845, + 0.7644397158986019, + 0.7992420095977141, + 0.9046488352723072, + 0.8607131176664159, + 0.9425530200949087, + 0.9831998467809452, + 0.911913216712972, + 0.8106537530266346, + 0.8669221312020842, + 0.9668646925956867, + 0.9859927106498643, + 0.8221148524429848, + 0.8287744007907092, + 0.82603603526253, + 0.8081220122922833, + 0.9241691376328144, + 0.8905062719442627, + 0.9072244170820468, + 0.9697143291871126, + 0.9165806743803824, + 0.9299779576625525, + 0.8626009468114731, + 0.9129479515242416, + 0.9489917104460288, + 0.857590973901184, + 0.7832356477938764, + 0.8727427378014051, + 0.7882094994286454, + 0.895848674816511, + 0.9755497899678774, + 0.8250670301619656, + 0.7636588119091294, + 0.8344665413033981, + 0.9956140350877192, + 0.7763975155279506, + 0.9842098239836105, + 0.8099989097144443, + 0.8954915979223954, + 0.9774655289026236, + 0.8046862811072518, + 0.8922196480686242, + 0.8757413004727584, + 0.875097886791886, + 0.9781962076503552, + 0.9571952337305224, + 0.8651037425957864, + 0.9276048900878147, + 0.8334407352378117, + 0.7931151679937852, + 0.8060125046665569, + 0.9001590894975678, + 0.8984134418359582, + 0.9307180976298852, + 0.8949088289552438, + 0.9140478958381776, + 0.9195604324464297, + 0.8595611909902062, + 0.8168393183171508, + 0.826467375579422, + 0.94513113161729, + 0.9542466061552302, + 0.8949088289552438, + 0.9053910284366296, + 0.817437533227007, + 0.7978783990223038, + 0.7521903939726886, + 0.754943158980426, + 0.7928605555934748, + 0.8989607068123694, + 0.7975892455476461, + 0.7725199492096488, + 0.773030766193022, + 0.9767351231527428, + 0.9424631082284728, + 0.866898864682116, + 0.7899138991389913, + 0.9376349250962784, + 0.9303020409693342, + 0.8287563928270861, + 0.8603115680426934, + 0.8114732228923959, + 0.9669758970781992, + 0.8105976841695943, + 0.7959269589012261, + 0.8302139037433156, + 0.986986590623621, + 0.751078143739283, + 0.7653353783714458, + 0.8172644988912497, + 0.7803817180307603, + 0.8605730020712427, + 0.912175623606646, + 0.9956171156600898, + 0.8729948690203866, + 0.8364452091564932, + 0.8308541973619359, + 0.901193983595923, + 0.8421276190184838, + 0.8119707766428466, + 0.778036674438649, + 0.7873355614633314, + 0.7837805015771132, + 0.8219385637193856, + 0.8521396824062815, + 0.7718977095748232, + 0.8817091503055309, + 0.7708107321002571, + 0.7512636527567177, + 0.8438110321297421, + 0.9832058480308432, + 0.8890631162040309, + 0.8977160492573557, + 0.9859234217934404, + 0.8546502548557862, + 0.8668958338409165, + 0.9890311615492476, + 0.9350943180643897, + 0.9280169976669376, + 0.8210527935710153, + 0.7559911987169416, + 0.7736264668325739, + 0.863925779862748, + 0.824723044297354, + 0.8806041934635603, + 0.8250833206612556, + 0.928723519908324, + 0.8668958338409165, + 0.8881896291715989, + 0.9593583027873251, + 0.9061435934718377, + 0.9211354224331691, + 0.8859445107741636, + 0.9398812902982936, + 0.8047278408758268, + 0.9223744981227123, + 0.9230788696114616, + 0.9536631479971994, + 0.9694396869310692, + 0.8131377716690427, + 0.8237517359346237, + 0.8173907278944466, + 0.8965017504270001, + 0.9219048551109622, + 0.9097417836628494, + 0.8553134080531343, + 0.9989920981077092, + 0.917451425335698, + 0.9683628785480636, + 0.7970900578406114, + 0.8376203239523712, + 0.9801024844208264, + 0.7557162849632163, + 0.8961803319477781, + 0.996336999414424, + 0.9196524296187878, + 0.8854275250970148, + 0.8283188405797101, + 0.8569170829836921, + 0.7593988263019269, + 0.8392807687593222, + 0.9868446526492484, + 0.7732691595705294, + 0.9521895754027829, + 0.9372227566431792, + 0.9200506754154923, + 0.917500751704446, + 0.8740937766410911, + 0.8518450184501843, + 0.7975089687046684, + 0.8722498962224988, + 0.8978908677866823, + 0.9773557492735576, + 0.8912733076127769, + 0.8868080394461477, + 0.8826697225277056, + 0.9463791440512886, + 0.9521895754027829, + 0.8485714285714286, + 0.999122807017544, + 0.9265379339453412, + 0.789227895392279, + 0.8469796766499825, + 0.953644173755992, + 0.9926761940480948, + 0.8153042353997382, + 0.8607621561631246, + 0.9832058480308432, + 0.9570294209353524, + 0.9992668621947256, + 0.8641670664322122, + 0.7757761746311366, + 0.8357747120217831, + 0.866213238722621, + 0.8792285183078618, + 0.7957371772064827, + 0.878036507710379, + 0.9658331436022252, + 0.7622935296404183, + 0.9857187253140862, + 0.8942561574169895, + 0.9622333213753728, + 0.9131318215287682, + 0.8411490111317951, + 0.8916483082566217, + 0.9500441996469742, + 0.8499116091074294, + 0.9308446996969624, + 0.971973367585848, + 0.950603792184588, + 0.8131377716690427, + 0.8886194359553156, + 0.8284169872492293, + 0.8757940351900098, + 0.9023840086111148, + 0.9230788696114616, + 0.7524570024570024, + 0.9981688711071728, + 0.9020646721236415, + 0.9272440944881892, + 0.917451425335698, + 0.952871096782223, + 0.9954192028862328, + 0.8614426005287826, + 0.8553282796247272, + 0.991220090045964, + 0.962952748132584, + 0.9970690618433798, + 0.8655309124484051, + 0.7810606403025839, + 0.7757761746311366, + 0.8580430671412884, + 0.866213238722621, + 0.8806041934635603, + 0.7777808036382947, + 0.8317573749391951, + 0.9716068390573318, + 0.819882410141537, + 0.9848040830545792, + 0.8737365714482546, + 0.962952748132584, + 0.9154671960778832, + 0.9112764606124896, + 0.8916483082566217, + 0.9529052383428788, + 0.8696289027548957, + 0.9188566733401607, + 0.9507590560548307, + 0.9507917513638928, + 0.9853649117096728, + 0.8131377716690427, + 0.8951137084436364, + 0.8371159751352832, + 0.8703128420935895, + 0.9022988912306722, + 0.9400644385653472, + 0.7531344790477525, + 0.9992668621947256, + 0.9020646721236415, + 0.8645269531463561, + 0.9839330712663648, + 0.975224136149363, + 0.9372677626851672, + 1, + 0.9904901783696456, + 0.9875732201051683, + 1, + 0.9919502705663622, + 0.9890311615492476, + 1, + 0.9883020564051679, + 0.9132421335802218, + 0.996336999414424, + 0.9890311615492476, + 0.9883020564051679, + 0.9897605355374068, + 0.991220090045964, + 0.978122813016422, + 0.9511647444887732, + 0.9919502705663622, + 0.9985339932335306, + 0.8938717567128639, + 0.9891891050899508, + 0.9970690618433798, + 0.9897605355374068, + 0.9978013931164152, + 0.9855637890579251, + 0.9586402202505121, + 0.9607952743931896, + 0.9805263157894736, + 0.99268071993084, + 0.9941424251920344, + 0.996336999414424, + 0.9884575916336614, + 0.9719327874122964, + 0.9753656599277568, + 0.9883020564051679, + 0.9919502705663622, + 0.9883020564051679, + 0.9934114381393974, + 0.9992668621947256, + 0.977723489335005, + 0.9995652173913042, + 0.9948736810887512, + 0.9090909090909088, + 0.8174876847290639, + 0.8553636363636363, + 0.8455433455433455, + 0.8397417807252716, + 0.8437332724582007, + 0.832909538499891, + 0.7619786952586509, + 0.8177290491628549, + 0.9175438596491228, + 0.882198952879581, + 0.8767128866853765, + 0.8150509397735729, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.8829402079402078, + 0.8107452697678261, + 0.9637205387205386, + 0.852293824358888, + 0.8709558996012198, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352229, + 0.805168828270855, + 0.9090909090909088, + 0.945216049382716, + 0.8771929824561405, + 0.8174876847290639, + 0.7599743651365856, + 0.8553636363636363, + 0.8455433455433455, + 0.9416562889165628, + 0.8437332724582007, + 0.832909538499891, + 0.8177290491628549, + 0.9175438596491228, + 0.882198952879581, + 0.8767128866853765, + 0.8150509397735729, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.8829402079402078, + 0.8107452697678261, + 0.8417508417508417, + 0.852293824358888, + 0.8709558996012198, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352229, + 0.805168828270855, + 0.9090909090909088, + 0.9789848244395952, + 0.8771929824561405, + 0.8174876847290639, + 0.8813770455902434, + 0.8553636363636363, + 0.8455433455433455, + 0.8325561291955809, + 0.8437332724582007, + 0.832909538499891, + 0.8177290491628549, + 0.882198952879581, + 0.8150509397735729, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.7862727272727271, + 0.8107452697678261, + 0.9825055596738328, + 0.852293824358888, + 0.8709558996012198, + 0.826664274308378, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352229, + 0.805168828270855, + 0.9792614678275988, + 0.8553134080531343, + 0.8343739357475309, + 0.9649169511660014, + 0.9815789473684212, + 0.775995920023485, + 0.8490459410817468, + 0.999122807017544, + 0.8887919536466066, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8672820048414341, + 0.9416562889165628, + 0.7922752675949607, + 0.7916704805491989, + 0.936963017728694, + 0.8515555890726042, + 0.84746622922539, + 0.8469364035600904, + 0.9088064577345945, + 0.9830807073527456, + 0.9729066716260472, + 0.9309198460265768, + 0.993758325008325, + 0.9220836669819068, + 0.9328333806952732, + 0.9120932616135702, + 0.8672722972717296, + 0.9787330446229278, + 0.9956171156600898, + 0.9044025274049858, + 0.9162907640884717, + 0.9886242163794032, + 0.9856590419138828, + 0.9735969760860068, + 0.9237640299437498, + 0.8150558110147776, + 0.9001503179694077, + 0.9403303455027593, + 0.999122807017544, + 0.9090741230371568, + 0.999122807017544, + 0.903135734615762, + 0.8282546041121969, + 0.9792614678275988, + 0.8553134080531343, + 0.8232860332235971, + 0.909065387196842, + 0.978073311070348, + 0.775995920023485, + 0.8490459410817468, + 0.999122807017544, + 0.8870930627862177, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8672820048414341, + 0.9416562889165628, + 0.7922752675949607, + 0.7916704805491989, + 0.936963017728694, + 0.7737464548987709, + 0.84746622922539, + 0.8291492133323973, + 0.9088064577345945, + 0.9761788895853514, + 0.9770862304997938, + 0.9329580322176916, + 0.993758325008325, + 0.9188951371295636, + 0.9328333806952732, + 0.8980181937554507, + 0.8677050513455755, + 0.9752792033119024, + 0.9882730260033812, + 0.905289786165362, + 0.9143112638406732, + 0.9886242163794032, + 0.9544594777956544, + 0.9581772940528424, + 0.9143045157420016, + 0.8252050839377624, + 0.9001503179694077, + 0.9403303455027593, + 0.999122807017544, + 0.9292464661560496, + 0.999122807017544, + 0.8566176867322529, + 0.8374157216227878, + 0.9280303030303032, + 0.986111279729024, + 0.9950777781016508, + 0.7644397158986019, + 0.8788591215600511, + 0.995055254321861, + 0.8218760444455504, + 0.8963051106025932, + 0.9855308977062668, + 0.8161330049261083, + 0.919010674275554, + 0.8602150725639578, + 0.9437855111487105, + 0.982329825041006, + 0.8843548391463373, + 0.8689327225675706, + 0.931003010693105, + 0.9349500075746098, + 0.8343765747325528, + 0.8587642661603542, + 0.8586700336700335, + 0.9617123795404005, + 0.9664559126905398, + 0.9369276682149368, + 0.9421777653794547, + 0.8002254756609835, + 0.91015350877193, + 0.8195948305972756, + 0.8049385749385749, + 0.8079714438079046, + 0.9248788062414784, + 0.9466765601812077, + 0.9943237305426308, + 0.8922259540680743, + 0.7615894748339839, + 0.92882506393551, + 0.8553134080531343, + 0.8492357350911255, + 0.9943501037415146, + 0.9908190857034046, + 0.7714797416324134, + 0.8958436239049176, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.9692982456140352, + 0.9108481442025624, + 0.7872481572481572, + 0.7785693212549879, + 0.7916704805491989, + 0.936963017728694, + 0.8833898132089024, + 0.8276770122994085, + 0.895416975651959, + 0.992671182389769, + 0.9514741813067672, + 0.8630706569122703, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8398017274912394, + 0.9988878509623264, + 0.937103645050706, + 0.9851370084561714, + 0.8052224642752426, + 0.9408748628296816, + 0.950672972897766, + 0.9505705348293196, + 1, + 0.7647361516158825, + 0.907644799841382, + 0.8492357350911255, + 0.9514212739063944, + 0.9991101224022378, + 0.7714797416324134, + 0.8950014677832712, + 0.9943546343400722, + 0.8210917926103164, + 0.8995898027497777, + 0.999122807017544, + 0.8091752787787085, + 0.8045413788925241, + 0.92385752642948, + 0.7939937969249388, + 0.7916704805491989, + 0.936963017728694, + 0.8564021794854101, + 0.8929190984699815, + 0.7960647061252278, + 0.9048525852298742, + 0.992671182389769, + 0.987968431853366, + 0.9531702386026508, + 0.8651058220157922, + 0.957204861709126, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.8819809439955775, + 0.9883020564051679, + 0.937103645050706, + 0.9407755311560884, + 0.9851370084561714, + 0.8030210815765354, + 0.94362258995985, + 0.7901596681791947, + 0.8868080394461477, + 0.9413092648977816, + 0.999122807017544, + 0.9443944345284628, + 0.9992668621947256, + 0.9385224385224383, + 0.7647361516158825, + 0.907644799841382, + 0.8492357350911255, + 0.9514212739063944, + 0.9991101224022378, + 0.7714797416324134, + 0.8950014677832712, + 0.9943546343400722, + 0.8171099429462456, + 0.8995898027497777, + 0.999122807017544, + 0.8091752787787085, + 0.8045413788925241, + 0.92385752642948, + 0.7939937969249388, + 0.7916704805491989, + 0.936963017728694, + 0.8532214540129998, + 0.8929190984699815, + 0.7960647061252278, + 0.9048525852298742, + 0.992671182389769, + 0.987968431853366, + 0.9531702386026508, + 0.8651058220157922, + 0.957204861709126, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.8744221238514268, + 0.9883020564051679, + 0.937103645050706, + 0.9407755311560884, + 0.9851370084561714, + 0.8030210815765354, + 0.94362258995985, + 0.7901596681791947, + 0.8868080394461477, + 0.9413092648977816, + 0.999122807017544, + 0.9443944345284628, + 0.9992668621947256, + 0.9385224385224383, + 0.7647361516158825, + 0.7823572752988579, + 0.9716068390573318, + 0.9615141634622412, + 0.9956019844379308, + 0.9939526010712452, + 0.9868446526492484, + 0.9788481543433862, + 1, + 0.9280169976669376, + 0.975224136149363, + 0.9970690618433798, + 0.9883020564051679, + 0.9301373709233364, + 0.9795737645144298, + 0.9824788936394012, + 0.9883020564051679, + 0.9414868925909092, + 0.9188566733401607, + 0.9978013931164152, + 0.9692438828447324, + 0.9883020564051679, + 0.9934114381393974, + 0.9486152933634998, + 0.9721523399735842, + 0.9934114381393974, + 0.9708841861711646, + 0.9500441996469742, + 0.9174366159265968, + 0.9329682990823176, + 0.9716068390573318, + 0.8840480861242009, + 0.9948736810887512, + 0.9579224065577792, + 0.9679962630672924, + 0.9978013931164152, + 0.8764803941254208, + 0.9414868925909092, + 0.9181539149158895, + 0.9429104219927898, + 0.9919502705663622, + 0.9651126414686952, + 1, + 0.9962804570068788, + 1, + 0.9513949869239996, + 0.917451425335698, + 0.8893524283935244, + 0.8711567490387903, + 0.8402268612783098, + 0.9991101224022378, + 0.875683873894971, + 0.893318343627618, + 0.9998166819431716, + 0.8181684978110831, + 0.8501131405958162, + 0.9791710812316362, + 0.9416562889165628, + 0.7704074975067344, + 0.8205779056365766, + 0.8524355521406097, + 0.8149410602532909, + 0.9678129927260984, + 0.992671182389769, + 0.9904289157282716, + 0.9512909738881008, + 0.9430833061919088, + 0.9498925099667804, + 0.9491784964871592, + 0.9608990650462856, + 0.9498609989321576, + 0.7794361831100473, + 0.9505758519634429, + 0.9773557492735576, + 0.8637008456171156, + 0.9301795973691914, + 0.8828315614940658, + 0.959175062021937, + 0.9531601641545472, + 0.999122807017544, + 0.9998166819431716, + 0.7587536069598175, + 0.7522123063336182, + 0.8258303273081601, + 0.9356248965935622, + 0.9820100634702482, + 0.831081385436793, + 0.8534540516685338, + 0.9818536963567754, + 0.8486878358300123, + 0.9129853629164147, + 0.8998911634924976, + 0.7793718426037994, + 0.932398585032895, + 0.800012400217004, + 0.7984383476710843, + 0.907326978222119, + 0.838169467510867, + 0.7913646289079624, + 0.9278150139590884, + 0.9506223327256856, + 0.9364530503181744, + 0.9417014747671419, + 0.7800217784035494, + 0.9258691777106102, + 0.9376349250962784, + 0.9412635914006205, + 0.8430977292102612, + 0.9461654371370272, + 0.9391302151973808, + 0.968708052390917, + 0.7829559806346367, + 0.8486878358300123, + 0.92049050384555, + 0.9877189123128628, + 0.9672169872900396, + 0.8207867897037397, + 0.8168393183171508, + 0.826467375579422, + 0.94513113161729, + 0.9585637037072424, + 0.8949088289552438, + 0.9053910284366296, + 0.817437533227007, + 0.7978783990223038, + 0.7521903939726886, + 0.754943158980426, + 0.7928605555934748, + 0.8989607068123694, + 0.7975892455476461, + 0.7725199492096488, + 0.7662703504995123, + 0.9767351231527428, + 0.9424631082284728, + 0.866898864682116, + 0.7783625730994154, + 0.9376349250962784, + 0.9303020409693342, + 0.8287563928270861, + 0.8603115680426934, + 0.8114732228923959, + 0.9669758970781992, + 0.8105976841695943, + 0.7959269589012261, + 0.8302139037433156, + 0.986986590623621, + 0.751078143739283, + 0.9104552048233484, + 0.9985339932335306, + 0.9919502705663622, + 0.9890174067689452, + 1, + 0.9985339932335306, + 0.9919502705663622, + 1, + 0.9978013931164152, + 0.9978013931164152, + 1, + 0.996336999414424, + 0.9978013931164152, + 0.9970690618433798, + 0.9985339932335306, + 0.996336999414424, + 0.9883020564051679, + 1, + 0.9904289157282716, + 0.9992668621947256, + 0.9992668621947256, + 0.996336999414424, + 0.9928507310737632, + 1, + 0.8271094654395285, + 0.996336999414424, + 0.9978013931164152, + 0.9956044009241408, + 0.9985339932335306, + 0.9904901783696456, + 0.9978013931164152, + 0.9970690618433798, + 0.996336999414424, + 0.996336999414424, + 0.9970690618433798, + 0.995605205829548, + 1, + 0.9985339932335306, + 0.9853883242696474, + 0.995605205829548, + 0.9992668621947256, + 1, + 0.9992555369697762, + 1, + 0.9882827814745488, + 0.9992668621947256, + 0.9859927106498643, + 0.9550538402276436, + 0.9795737645144298, + 0.9350474891783676, + 0.9946751263076096, + 0.99268071993084, + 0.9529052383428788, + 1, + 0.9832058480308432, + 0.928723519908324, + 0.999122807017544, + 0.9701618021290772, + 0.9181539149158895, + 0.9414868925909092, + 0.916749204599586, + 0.94362258995985, + 0.8771670219049115, + 0.9020646721236415, + 0.9479012434878824, + 0.7967703326479759, + 0.9802996435295532, + 0.9917846709962562, + 0.8938717567128639, + 0.9862646747457392, + 0.9839330712663648, + 0.9600766541682176, + 0.9759484021000084, + 0.9473421475334106, + 0.8472097261066925, + 0.9414868925909092, + 0.9650851977230176, + 0.999122807017544, + 0.9550538402276436, + 0.9441436310000064, + 0.9884575916336614, + 0.94958838214302, + 0.9436364293412104, + 0.9802996435295532, + 0.9817522080920388, + 0.9766729368947332, + 0.975224136149363, + 0.999122807017544, + 0.9763146820695155, + 0.999122807017544, + 0.9716068390573318, + 0.8353033499302194, + 0.9286573911418808, + 0.989388886675146, + 0.811997387314498, + 0.8668958338409165, + 0.9719327874122964, + 0.9416700490012928, + 0.9868446526492484, + 0.8626461571750742, + 0.7693359990306556, + 0.8443573586609718, + 0.8171099429462456, + 0.8861176478495414, + 0.842673863199572, + 0.928723519908324, + 0.758875943584108, + 0.887167247405612, + 0.8928699826089762, + 0.8759576634165684, + 0.9564875857045522, + 0.9061435934718377, + 0.8423092165265303, + 0.8930336617991886, + 0.9400644385653472, + 0.9237835099442904, + 0.9466976131633718, + 0.950603792184588, + 0.8131377716690427, + 0.8598012719162864, + 0.787554569047141, + 0.884737671188568, + 0.9070294784580498, + 0.9069463429223856, + 0.7524570024570024, + 0.9981688711071728, + 0.8971961746848013, + 0.8404738376904276, + 0.8288697152121746, + 0.8829742996323185, + 0.9945048317633112, + 0.885610204525967, + 0.9329682990823176, + 0.9407755311560884, + 0.9274938109996211, + 0.955770578544058, + 0.8609445180643548, + 0.8868080394461477, + 0.8826697225277056, + 0.860081980641546, + 0.8494179248503486, + 0.8806041934635603, + 0.7745935959659945, + 0.804564602812277, + 0.8457610658751216, + 0.9141259733731866, + 0.9083435256044582, + 0.9249744348616508, + 0.878036507710379, + 0.8567036918158099, + 0.9407755311560884, + 0.912541525908588, + 0.8711093063931175, + 0.8951137084436364, + 0.9041552036871964, + 0.953621170127054, + 0.9464739502688859, + 0.9727686004162333, + 0.9824788936394012, + 0.895416975651959, + 0.8388354220573428, + 0.8451861367189766, + 0.9020646721236415, + 0.8838860538503512, + 0.9586402202505121, + 0.99782684342909, + 0.7818532483566868, + 0.8978908677866823, + 0.9346434038598216, + 0.9486152933634998, + 0.975224136149363, + 0.927916573470583, + 0.9974294410273912, + 0.9586402202505121, + 0.9507590560548307, + 0.9978013931164152, + 0.954337370755309, + 0.911841187081034, + 0.975224136149363, + 0.9365130082728363, + 0.8902640300903737, + 0.9500441996469742, + 0.7528067405931878, + 0.9139430100959351, + 0.9486152933634998, + 0.8723662731741496, + 0.8503425879277244, + 0.9643924081792452, + 0.9716068390573318, + 0.9322331995088968, + 0.9730529513619054, + 0.8909560347514579, + 0.9730529513619054, + 0.9225158405279774, + 0.8806041934635603, + 0.9223744981227123, + 0.928723519908324, + 0.8985858297326429, + 0.8868080394461477, + 0.934385376226286, + 0.865978265648834, + 0.9669995060071396, + 0.9215535536561092, + 0.8916483082566217, + 0.8806041934635603, + 0.8614426005287826, + 0.9500441996469742, + 0.9615141634622412, + 0.9836858501848198, + 0.9992668621947256, + 0.8840480861242009, + 0.8659737769303842, + 0.8881896291715989, + 0.9658331436022252, + 0.9117779886590568, + 0.9891164188197914, + 0.9393536148186856, + 0.8999765601568034, + 0.9992668621947256, + 0.8902640300903737, + 0.8937267418365915, + 0.986116354037408, + 0.9745001390427974, + 0.8682618306097468, + 0.917451425335698, + 0.9237835099442904, + 0.9372227566431792, + 0.8605814190983236, + 0.9658331436022252, + 0.99268071993084, + 0.9331273751154144, + 0.9874932258547676, + 0.9817522080920388, + 0.9322601637764528, + 0.9730529513619054, + 0.7966912350949062, + 0.9636724437338746, + 0.9146441554557286, + 0.9665539145798344, + 0.912541525908588, + 0.8923408506058652, + 0.9403639696255566, + 0.9824501714706848, + 0.8958075950132784, + 0.7947875585169598, + 0.8888808273004442, + 0.9817522080920388, + 0.9579224065577792, + 0.9643924081792452, + 0.9978013931164152, + 0.909042520211614, + 0.8839798882716039, + 0.9322601637764528, + 0.977397740533538, + 0.9407327353741834, + 0.9974294410273912, + 0.957204861709126, + 0.9636724437338746, + 1, + 0.9507590560548307, + 0.9244884191211992, + 0.9737764107803116, + 0.9294303109937904, + 0.866213238722621, + 0.889572294273369, + 0.9365130082728363, + 0.9386430599161039, + 0.8614426005287826, + 0.8592127013521056, + 0.9586402202505121, + 0.984660563345966, + 0.942257835125676, + 0.977397740533538, + 0.8944200907180742, + 0.9723297607875788, + 0.9466282499343924, + 0.879916221463671, + 0.917451425335698, + 0.9358035287465732, + 0.9365130082728363, + 0.8785410839961321, + 0.8800026263331926, + 0.9180818572622022, + 0.9300900041631704, + 0.9111411170975592, + 0.8958075950132784, + 0.8751079450986783, + 0.9687178405771408, + 0.9643924081792452, + 0.9741087373430196, + 0.9965539092032524, + 0.8485601299189015, + 0.9039239850807016, + 0.991220090045964, + 0.99268071993084, + 0.9411779284976856, + 1, + 0.9941424251920344, + 0.9839330712663648, + 1, + 0.9948736810887512, + 0.9853883242696474, + 1, + 0.9904901783696456, + 0.9062481548474688, + 0.9948736810887512, + 0.9766729368947332, + 0.99268071993084, + 0.9883020564051679, + 0.996336999414424, + 0.9832058480308432, + 0.9721523399735842, + 0.995605205829548, + 0.995605205829548, + 0.8966477542865559, + 0.989920889126398, + 0.9941424251920344, + 0.9853883242696474, + 0.99268071993084, + 0.989208622446052, + 0.9737764107803116, + 0.9788481543433862, + 0.9508557261229018, + 0.9883020564051679, + 0.9868446526492484, + 0.9948736810887512, + 0.9789725394962472, + 0.9778375229520267, + 0.9630457249445452, + 0.9897605355374068, + 0.9759484021000084, + 0.9745001390427974, + 0.9839330712663648, + 1, + 0.9910847398800986, + 1, + 0.9824788936394012, + 0.8935362109939026, + 0.8492357350911255, + 0.7799775750856683, + 0.9991101224022378, + 0.7714797416324134, + 0.8924773755936107, + 0.9921175854473762, + 0.8244173938759, + 0.8995898027497777, + 0.997783274463504, + 0.8019358454012121, + 0.8034463924540262, + 0.9208092958092956, + 0.7862626472757531, + 0.7901234941467935, + 0.9234208215886514, + 0.8754121720256093, + 0.8661215058187304, + 0.992671182389769, + 0.9798792330613568, + 0.9514741813067672, + 0.9550538402276436, + 0.9429977116704804, + 0.9378841050418828, + 0.9348478408783754, + 0.8677050513455755, + 0.9438416558070334, + 0.9894860390412652, + 0.9369022368540908, + 0.9407755311560884, + 0.937924041385235, + 0.9677933860111212, + 0.9970690618433798, + 0.9443944345284628, + 0.9965539092032524, + 0.7647361516158825, + 0.8833587699039136, + 0.8455377025736512, + 0.9378994747569932, + 1, + 0.8854275250970148, + 0.9372227566431792, + 0.9978013931164152, + 0.8621233137385207, + 0.9034580909885984, + 0.9687178405771408, + 0.9788481543433862, + 0.8364452091564932, + 0.8257495162906913, + 0.9450477324262084, + 0.7908116150724073, + 0.7922257273375911, + 0.8186576980160944, + 0.9593583027873251, + 0.9941424251920344, + 0.9848040830545792, + 0.9795737645144298, + 0.9181539149158895, + 0.9579224065577792, + 0.8038532129267693, + 0.7895079901300617, + 0.9393536148186856, + 0.9329682990823176, + 0.9386430599161039, + 0.9097417836628494, + 0.934365235861341, + 0.8682618306097468, + 0.8062236581276447, + 0.7999671002057498, + 0.9579224065577792, + 0.962952748132584, + 0.9421985228698097, + 0.9758471017566333, + 0.8492357350911255, + 0.9883020564051679, + 0.9965191088563604, + 0.9992663243093578, + 0.9992656508417233, + 0.9941424251920344, + 1, + 0.99268071993084, + 1, + 0.9992668621947256, + 0.9965191088563604, + 0.9540512424216696, + 0.9970690618433798, + 0.9768478574449928, + 0.9833831528957327, + 0.9914003253458398, + 0.9890311615492476, + 0.9782982623788444, + 0.9926335425715881, + 0.8068812492978317, + 0.9985339932335306, + 1, + 0.998339483394834, + 1, + 0.9948736810887512, + 0.9875732201051683, + 0.9941413527735856, + 1, + 0.992130773157018, + 0.9721444518798692, + 0.9978013931164152, + 0.998350675275288, + 0.9906529437430028, + 1, + 0.9948736810887512, + 0.9914003253458398, + 0.9970690618433798, + 0.9976169999054124, + 0.9985113511553524, + 0.9954545454545456, + 0.9585725924710128, + 0.9992668621947256, + 0.8558690511962423, + 0.9477543538038498, + 0.7858966339146662, + 0.8467583491924263, + 0.8327122834222226, + 0.8908526998828004, + 0.8135527713116105, + 0.9336872890005498, + 0.8135527713116105, + 0.7969931938295922, + 0.9404358147459344, + 0.7922931599671659, + 0.9455558136112772, + 0.7617997236100775, + 0.8361266348371678, + 0.8706162391527938, + 0.8909999999999999, + 0.8169671679245643, + 0.911393892174019, + 0.950028839221341, + 0.8316766353632711, + 0.8481140741645349, + 0.9263157894736842, + 0.7693317755435274, + 0.8485714285714286, + 0.9975371888373946, + 0.7657492944145039, + 0.782707509881423, + 0.8344731368348524, + 0.7893527624833871, + 0.934334074623178, + 0.9652014577830238, + 0.9712575474049576, + 0.7951570680628274, + 0.8023077073631943, + 0.8378558855512396, + 0.7750750175798774, + 0.8711152458705146, + 0.9450509667184974, + 0.8728200371057514, + 0.8266151860146821, + 0.9508561924475392, + 0.8678771151093215, + 0.7818744360024455, + 0.953621170127054, + 0.9550538402276436, + 0.9255861016232882, + 1, + 0.9890311615492476, + 0.9839330712663648, + 1, + 0.9875732201051683, + 0.9868446526492484, + 1, + 0.9672749544015236, + 0.8485601299189015, + 0.9948736810887512, + 0.9853883242696474, + 0.991220090045964, + 0.9716068390573318, + 0.9853883242696474, + 0.9817522080920388, + 0.9461330864231152, + 0.9934114381393974, + 0.9985339932335306, + 0.8683978095980386, + 0.9869953764615554, + 0.995605205829548, + 0.9868446526492484, + 0.9883020564051679, + 0.9724980906333768, + 0.9407755311560884, + 0.9372227566431792, + 0.9805263157894736, + 0.996336999414424, + 0.996336999414424, + 0.9992668621947256, + 0.9884575916336614, + 0.9887359375145636, + 0.977084365603192, + 0.9817522080920388, + 0.9890311615492476, + 0.9875732201051683, + 0.9883020564051679, + 0.9992668621947256, + 0.9762465658458932, + 1, + 0.991220090045964, + 0.8205020227371977, + 0.8608078181360623, + 0.8831761147394912, + 0.9956171156600898, + 0.8264159807642062, + 0.9851370084561714, + 0.8032496864185852, + 0.7921163153910715, + 0.8189876505853204, + 0.8866880766446407, + 0.7712492904983538, + 0.766650468421388, + 0.9874185848252344, + 0.9860765405159552, + 0.8021177944862157, + 0.9104948113042188, + 0.9076355564584256, + 0.9302834429286485, + 0.8899966113703928, + 0.7950194069243905, + 0.7994718538953012, + 0.9755497899678774, + 0.8737705484182898, + 0.8391756392041623, + 0.8000318742722583, + 0.863706643974955, + 0.999122807017544, + 0.788531116445173, + 0.7673011362392835, + 0.856290549490185, + 0.8500013228910797, + 0.8217519251079187, + 0.9886242163794032, + 0.8335855838820181, + 0.7737677036875701, + 0.80781838380708, + 0.8821104163000745, + 0.7790490801674135, + 0.821180494612969, + 0.8346691294875438, + 0.8306511043531097, + 0.7751893805092811, + 0.7785693212549879, + 0.8213296424597536, + 0.7990961561862842, + 0.8708980045995849, + 0.8508997225351951, + 0.9550538402276436, + 0.8404738376904276, + 0.8608516172237797, + 0.8898770040500942, + 0.9910308796338216, + 0.9443350267709892, + 0.9379327738576018, + 0.9687178405771408, + 0.954337370755309, + 0.8992810605226834, + 0.8104222403360605, + 0.8617768931040987, + 0.8019358454012121, + 0.8489486269748123, + 0.8334307196417515, + 0.8472653300897576, + 0.8641393141487438, + 0.8327404310943477, + 0.8764803941254208, + 0.912541525908588, + 0.8614426005287826, + 0.8750187225119483, + 0.8930336617991886, + 0.9188566733401607, + 0.909042520211614, + 0.9278339260751618, + 0.8855898697110776, + 0.8914924863272463, + 0.9636724437338746, + 0.8594020739640472, + 0.933676703232262, + 0.9471874624563446, + 0.9767901752344744, + 0.8923668029454429, + 0.887801301315952, + 0.8244173938759, + 0.8598281139548333, + 0.9048525852298742, + 0.9202629967209424, + 0.9586402202505121, + 0.99818613436632, + 0.8116526550439349, + 0.9097417836628494, + 0.8938131796635373, + 0.8689452322602814, + 0.7632159853061836, + 0.931092626752598, + 0.9714033929661204, + 0.916047252707554, + 0.9665539145798344, + 0.9992668621947256, + 0.877193998855128, + 0.8621233137385207, + 0.8404336601367269, + 0.8899568476668683, + 0.7657793910062513, + 0.8125492090556029, + 0.8944200907180742, + 0.9832058480308432, + 0.866243248832523, + 0.9723297607875788, + 0.9358035287465732, + 0.9111411170975592, + 0.8984030086479471, + 0.8744221238514268, + 0.831385641452182, + 0.917611437505964, + 0.8478847935907573, + 0.9679962630672924, + 0.8637608966376091, + 0.9294733352278108, + 0.8427886110852929, + 0.928226607524593, + 0.8025926314878588, + 0.9041552036871964, + 0.9045462110180228, + 0.9607952743931896, + 0.7731216272312162, + 0.9960877143127782, + 0.7917919558851796, + 0.7813854250011384, + 0.8594020739640472, + 0.8448171762300786, + 0.9066838594697112, + 0.993041786971632, + 0.9218534208170824, + 0.9280169976669376, + 0.9579224065577792, + 0.7649434377260497, + 0.9324432641365908, + 0.9890311615492476, + 0.8689452322602814, + 0.8861176478495414, + 0.8937267418365915, + 0.8573639669960287, + 0.853295011850143, + 0.9251935971421876, + 0.8902640300903737, + 0.7921163153910715, + 0.8692840854028374, + 0.9120241323975692, + 0.9322601637764528, + 0.9682695039010508, + 0.8869907346430809, + 0.9308446996969624, + 0.928723519908324, + 0.8601704114565033, + 0.8874986998868335, + 0.8888808273004442, + 0.975224136149363, + 0.8091752787787085, + 0.9507590560548307, + 0.9664158428720082, + 0.9817522080920388, + 0.8284169872492293, + 0.9136988002866576, + 0.8445121446112305, + 0.9139430100959351, + 0.8914848829801818, + 0.9672749544015236, + 0.99782684342909, + 0.772138724992434, + 0.90276124713408, + 0.961144204800487, + 0.8634855466902354, + 0.9379327738576018, + 0.908277884446819, + 0.9946871424565764, + 0.9479012434878824, + 0.933676703232262, + 0.9839330712663648, + 0.957204861709126, + 0.9897605355374068, + 0.8668958338409165, + 0.8916483082566217, + 0.9153455696596016, + 0.8573639669960287, + 0.8634855466902354, + 0.9251935971421876, + 0.909042520211614, + 0.8723662731741496, + 0.8537487234650945, + 0.8792285183078618, + 0.9350943180643897, + 0.8079714438079046, + 0.9551004697947988, + 0.8806041934635603, + 0.9273107442696306, + 0.9223744981227123, + 0.9616766085585506, + 0.8730512878891623, + 0.8965017504270001, + 0.975224136149363, + 0.8277497162434753, + 0.9514741813067672, + 0.9622333213753728, + 0.9746102461941208, + 0.940760842211224, + 0.8337648336821305, + 0.9132421335802218, + 0.838458313625102, + 0.9104413159581644, + 0.9230788696114616, + 0.9615141634622412, + 0.9608062684964296, + 0.9992668621947256, + 0.90276124713408, + 0.9316696874472936, + 0.8231087698825403, + 0.9544682296975874, + 0.7552770595350544, + 0.992615515771526, + 0.8512496250257213, + 0.8744043956043956, + 0.9547348484848484, + 0.7548367420848981, + 0.8010008340283569, + 0.8674088334090595, + 0.7996294165768151, + 0.908313797791604, + 0.9891493795585866, + 0.7540999753755234, + 0.9272544060904362, + 0.8780091446372676, + 0.9182823930924128, + 0.8762510425354463, + 0.9053124690879792, + 0.9546304163126592, + 0.9085090856109872, + 0.8064763169544045, + 0.9027775208335084, + 0.8873519569623151, + 0.902977283394997, + 0.9964912280701756, + 0.996521739130435, + 0.9338039426824476, + 0.9139430100959351, + 0.9622333213753728, + 0.9737764107803116, + 0.9701400724878312, + 0.9974294410273912, + 0.9358035287465732, + 0.9464739502688859, + 0.9970690618433798, + 0.9658331436022252, + 0.955770578544058, + 0.9960351014549488, + 0.9477180531985372, + 0.7802288530146114, + 0.9622333213753728, + 0.8067839857133676, + 0.9301373709233364, + 0.8868080394461477, + 0.9450477324262084, + 0.8134050821718116, + 0.9454153674378072, + 0.984660563345966, + 0.9904901783696456, + 0.9507590560548307, + 0.9779823259487208, + 0.9883020564051679, + 0.855139156857862, + 0.9853883242696474, + 0.9564875857045522, + 0.9083271241193304, + 0.9421985228698097, + 0.8621233137385207, + 0.9479012434878824, + 0.9802996435295532, + 0.9613309146374462, + 0.9890311615492476, + 0.9789725394962472, + 0.9230788696114616, + 0.9875732201051683, + 0.8937267418365915, + 0.9948736810887512, + 0.9716068390573318, + 0.9679854547640152, + 0.9572793819640072, + 0.9992668621947256, + 0.9649045221259104, + 0.9365130082728363, + 0.7854822169733378, + 0.9877224033535164, + 0.8267536096879368, + 0.8281155906857192, + 0.7782426513939189, + 0.7770132902980824, + 0.7813852813852814, + 0.8531626502908053, + 0.986652250762675, + 0.8443985380581599, + 0.8507060144843345, + 0.9095966218704222, + 0.7793195367381812, + 0.8485714285714286, + 0.793478260869565, + 0.9357129295614204, + 0.9013778530474436, + 0.8068636548636549, + 0.8283693657758276, + 0.7842947575142669, + 0.929941088884573, + 0.8318189568317447, + 0.9721324228139152, + 0.8929555666008868, + 0.9899175068744273, + 0.7829559806346367, + 0.8330585670487148, + 0.9004712036731742, + 0.8079059133534838, + 0.907326978222119, + 0.8418462145170219, + 0.8355962235887732, + 0.9840600196897172, + 0.9727233543942168, + 0.9456931798893302, + 0.7835307826762479, + 0.9334823561531638, + 0.943912095206486, + 0.9719476865439598, + 0.8989607068123694, + 0.9899175068744273, + 0.91218688144154, + 0.968708052390917, + 0.9275641323723166, + 0.7750817305162342, + 0.7705110005585539, + 0.8746911090742437, + 0.906777236648719, + 0.9877189123128628, + 0.905810189680844, + 0.9039758195768428, + 0.9545454545454548, + 0.8475303670578501, + 0.9511957748205524, + 0.8592904322283405, + 0.9090909090909088, + 0.864748396641959, + 0.8793851481338977, + 0.9499999999999998, + 0.7977657605606996, + 0.828074328074328, + 0.8757161620920398, + 0.8518139443215275, + 0.8919696969696971, + 0.9006463378910865, + 0.9123913868449176, + 0.7538355364442323, + 0.9728462804245892, + 0.8226075640111686, + 0.7627425872585156, + 0.9397093147093144, + 0.9405901494832792, + 0.9373208866593992, + 0.9185281385281384, + 0.9805093555093556, + 0.9045454545454543, + 0.7521739130434782, + 0.8676160350867449, + 0.9096320346320348, + 0.9705446224256292, + 0.7511156903867726, + 0.9498970784947516, + 0.8553636363636363, + 0.8803749979451918, + 0.8868951612903225, + 0.8716773908739449, + 0.7640091133472566, + 0.9754511278195488, + 0.9090909090909088, + 0.919377312007859, + 0.9895652173913044, + 0.9090909090909088, + 0.9895652173913044, + 0.904833326772871, + 0.8896985935172833, + 0.9613560315981924, + 0.9209973066564064, + 0.7738377192982457, + 0.8766948621553885, + 0.8955979105301095, + 0.7862727272727271, + 0.8120276073976656, + 0.9062605084545612, + 0.9819906110654324, + 0.9482809390239644, + 0.9270810254564676, + 0.8858122880872292, + 0.9272543317870856, + 0.9248843536331894, + 0.9592356458451337, + 0.9740750470337556, + 0.8618048445021776, + 0.9826209215251775, + 0.9119804816878757, + 0.901982337361457, + 0.968471177944862, + 0.9722529273134676, + 0.9674022810471118, + 0.8998470475108667, + 0.8758239471864051, + 0.957737379733654, + 0.9619347444028424, + 0.9817460256655812, + 0.9619598036238828, + 0.9754511278195488, + 0.9045454545454543, + 0.9108776132404182, + 0.9895652173913044, + 0.9090909090909088, + 0.9808695652173912, + 0.903936979364855, + 0.8946016606830777, + 0.9582023810487048, + 0.9363189044244398, + 0.7701982739613846, + 0.877299976398395, + 0.8623579834310708, + 0.7862727272727271, + 0.8480601581866628, + 0.8902466538134809, + 0.9819906110654324, + 0.9507874084663184, + 0.925065002188018, + 0.8906569786528593, + 0.9272543317870856, + 0.9318691420627104, + 0.9592356458451337, + 0.9670573870573872, + 0.8638081223124702, + 0.9815789473684212, + 0.9119804816878757, + 0.9027305623701912, + 0.968471177944862, + 0.9722529273134676, + 0.9664533537113174, + 0.8980586357606626, + 0.8824347249543827, + 0.957737379733654, + 0.9606072393507964, + 0.7604223245592875, + 0.9401709401709404, + 0.9616481164026224, + 0.9809453113164672, + 0.825, + 0.8965328341856458, + 0.9930434993747648, + 0.9919417254554761, + 0.7662935746676578, + 0.916200245724204, + 0.8929657620169505, + 0.9764831764168632, + 0.8651113127255622, + 0.8576748602878727, + 0.8002254756609835, + 0.8303849683667892, + 0.945960433937275, + 0.9927523497097036, + 0.9224700032216755, + 0.924592891635332, + 0.8627825284444037, + 0.9427557668775548, + 0.9416944402363276, + 0.7977840705338264, + 0.891911538610805, + 0.7757575757575756, + 0.9186470619844704, + 0.9755497899678774, + 0.9380936401545896, + 0.9430730858023998, + 0.8821269989132121, + 0.8635778359926967, + 0.9686187299234, + 0.82231768595902, + 0.8454690660447776, + 0.936633843357067, + 0.9928614899602092, + 0.7920033670033668, + 0.9790238683337896, + 0.851784484740942, + 0.7835174551354922, + 0.970437888198758, + 0.973913043478261, + 0.8004960204410251, + 0.8608354753566684, + 0.973913043478261, + 0.8932535416128451, + 0.8985806100405787, + 0.9473716579271056, + 0.8802936186789987, + 0.8429844720496896, + 0.7998641304347827, + 0.7548105590062113, + 0.851091804125718, + 0.7982289247602901, + 0.8918317295952493, + 0.9704182624797956, + 0.9250441174468548, + 0.9234004788164912, + 0.8072112569313484, + 0.9458344577995612, + 0.8199687206756333, + 0.9636939983093828, + 0.973913043478261, + 0.8946764860972011, + 0.8953883830144143, + 0.9685626687981476, + 0.8854475897922277, + 0.890074370350509, + 0.9467502582887196, + 0.973913043478261, + 0.7675727377454222, + 0.9240556247405564, + 0.9038176307865486, + 0.8004417918113229, + 0.8571885156262036, + 0.7888661250305931, + 0.7588020905133782, + 0.8150670283151774, + 0.8394858977004067, + 0.8506509425026048, + 0.86632058337082, + 0.907644799841382, + 0.7869039663743268, + 0.8377993482174306, + 0.9661635604440372, + 0.7796002893491529, + 0.8462255001833667, + 0.8698618053513671, + 0.853295011850143, + 0.9457912457912456, + 0.9954545454545456, + 0.786253632545592, + 0.921913236929922, + 0.9090909090909088, + 0.9764931810396176, + 0.9895652173913044, + 0.8409090909090906, + 0.982608695652174, + 0.904833326772871, + 0.9398297385891607, + 0.8728218919864725, + 0.910662682746664, + 0.7508707607699359, + 0.920196146646124, + 0.8941510995342954, + 0.7896297048496517, + 0.9062605084545612, + 0.9819906110654324, + 0.9395768590554164, + 0.8846891981591173, + 0.8753550543024229, + 0.9272543317870856, + 0.9159873721905482, + 0.9592356458451337, + 0.9719230769230768, + 0.853205915989843, + 0.9789473684210526, + 0.9119804816878757, + 0.9021731519130232, + 0.9408793468279631, + 0.9502457651288154, + 0.9343996875499296, + 0.8998470475108667, + 0.7828140592083379, + 0.956227485420032, + 0.9688644688644692, + 0.9878260869565216, + 0.9619598036238828, + 0.9853883242696474, + 0.9069463429223856, + 0.8484535647736858, + 0.9859234217934404, + 0.8546502548557862, + 0.8668958338409165, + 0.9890311615492476, + 0.9365130082728363, + 0.9280169976669376, + 0.8580430671412884, + 0.7643022445960241, + 0.7736264668325739, + 0.8826697225277056, + 0.8391298861361308, + 0.8806041934635603, + 0.8250833206612556, + 0.928723519908324, + 0.8668958338409165, + 0.7521491867834005, + 0.8881896291715989, + 0.9616904586883988, + 0.9061435934718377, + 0.9211354224331691, + 0.90276124713408, + 0.9434394218523597, + 0.8047278408758268, + 0.9216703954780426, + 0.9230788696114616, + 0.9564875857045522, + 0.9694396869310692, + 0.8131377716690427, + 0.8237517359346237, + 0.8025926314878588, + 0.8965017504270001, + 0.9230777619327238, + 0.9104413159581644, + 0.8553134080531343, + 0.9989920981077092, + 0.917451425335698, + 0.9521895754027829, + 0.9069463429223856, + 0.8444028672449848, + 0.9910308796338216, + 0.8526177936134408, + 0.8634855466902354, + 0.9883020564051679, + 0.9464739502688859, + 0.9216703954780426, + 0.8566851356948486, + 0.7694393172704596, + 0.7752390906012949, + 0.7768521470048189, + 0.8785410839961321, + 0.8290845270990632, + 0.8351044837311526, + 0.8264159807642062, + 0.9237835099442904, + 0.8868080394461477, + 0.8944200907180742, + 0.9486152933634998, + 0.9061435934718377, + 0.8987505869438153, + 0.7765308864041348, + 0.9062481548474688, + 0.9414868925909092, + 0.8971961746848013, + 0.9273107442696306, + 0.9564875857045522, + 0.9694396869310692, + 0.917451425335698, + 0.7980007746070045, + 0.900672328635003, + 0.9230777619327238, + 0.909042520211614, + 0.8722498962224988, + 0.99818613436632, + 0.917451425335698, + 0.9350943180643897, + 0.8450773104028045, + 0.7755025814626396, + 0.8499116091074294, + 0.9954545454545456, + 0.8248656842171965, + 0.8771670219049115, + 0.8017627702025453, + 0.8252966318058891, + 0.7989505012531329, + 0.9084382663648368, + 0.7700826611531227, + 0.8173907278944466, + 0.9586402202505121, + 0.8279882714725023, + 0.8750287541127237, + 0.8058469213257959, + 0.8887595093929513, + 0.8741986118728367, + 0.9013332512757184, + 0.8951137084436364, + 0.8085158042512651, + 0.7847209561813264, + 0.9207931801334324, + 0.8813228755976849, + 0.8806041934635603, + 0.904598717548413, + 0.8357423547232772, + 0.8519408442208185, + 0.7585436044093791, + 0.754716608935201, + 0.7526949335249729, + 0.8630753385715217, + 0.945504664970314, + 0.8607621561631246, + 0.8190996579799222, + 0.8138788692223808, + 0.80834947374926, + 0.8461416361416363, + 0.8321563840156672, + 0.9049823065264198, + 0.7611003116070912, + 0.8564208333192405, + 0.9567242111117616, + 0.8830433688448956, + 0.8498282229301768, + 0.8787054248059898, + 0.7583865519843361, + 0.8560065732377481, + 0.7845811712379542, + 0.911841187081034, + 0.7575987286674309, + 0.9032923617208078, + 0.8054515169551613, + 0.9457116500465104, + 0.7972151720771685, + 0.9550538402276436, + 0.8404738376904276, + 0.8951137084436364, + 0.8898770040500942, + 0.9910308796338216, + 0.9443350267709892, + 0.9379327738576018, + 0.9687178405771408, + 0.954337370755309, + 0.8992810605226834, + 0.8655309124484051, + 0.8902640300903737, + 0.8553282796247272, + 0.8614426005287826, + 0.8958075950132784, + 0.8438384213475643, + 0.8771670219049115, + 0.8280046113614686, + 0.8607621561631246, + 0.912541525908588, + 0.8614426005287826, + 0.8946208326427901, + 0.8930336617991886, + 0.9188566733401607, + 0.909042520211614, + 0.9278339260751618, + 0.8773278519419312, + 0.9111411170975592, + 0.9636724437338746, + 0.8566851356948486, + 0.933676703232262, + 0.9471874624563446, + 0.9832058480308432, + 0.8923668029454429, + 0.887801301315952, + 0.8244173938759, + 0.8424917813524705, + 0.9048525852298742, + 0.9202629967209424, + 0.9586402202505121, + 0.99818613436632, + 0.8116526550439349, + 0.9097417836628494, + 0.9329682990823176, + 0.8438384213475643, + 0.8958075950132784, + 0.8921838780119076, + 0.986652250762675, + 0.9479012434878824, + 0.9393536148186856, + 0.9687178405771408, + 0.7643022445960241, + 0.955770578544058, + 0.8478847935907573, + 0.8634855466902354, + 0.8614426005287826, + 0.8580430671412884, + 0.8587224361306279, + 0.8923408506058652, + 0.8351044837311526, + 0.8052224642752426, + 0.911841187081034, + 0.8295875223215042, + 0.889572294273369, + 0.912541525908588, + 0.8958075950132784, + 0.8960129675540568, + 0.8930336617991886, + 0.9550538402276436, + 0.909042520211614, + 0.887315997105363, + 0.8703128420935895, + 0.9111411170975592, + 0.9550538402276436, + 0.8614426005287826, + 0.9372227566431792, + 0.962952748132584, + 0.9824788936394012, + 0.9017863969504004, + 0.877949549206721, + 0.8614426005287826, + 0.8344345242846016, + 0.9013683659572824, + 0.9223744981227123, + 0.9586402202505121, + 0.99782684342909, + 0.8327803954481456, + 0.9377053197580578, + 0.7520783733062728, + 0.8576638516480299, + 0.7973458704289155, + 0.8055002075550022, + 0.8274342134261912, + 0.7682652462041775, + 0.8985858297326429, + 0.9295420779390244, + 0.9497666282126442, + 0.9045462110180228, + 0.8937267418365915, + 0.9450477324262084, + 0.9335682269765724, + 0.9463791440512886, + 0.8655309124484051, + 0.7591412700557859, + 0.8317573749391951, + 0.9191871761989552, + 0.9144998770732076, + 0.8299318662677443, + 0.7999671002057498, + 0.9590943683409436, + 0.9721268361679862, + 0.7512346093262124, + 0.9031905016766244, + 0.9258990440072554, + 0.8277497162434753, + 0.9045462110180228, + 0.9715042130082729, + 0.8091792146047655, + 0.8478274566824184, + 0.8594020739640472, + 0.7511865272235565, + 0.7739458321143061, + 0.8799003347391113, + 0.8438384213475643, + 0.8735155491890395, + 0.8971961746848013, + 0.955770578544058, + 0.962303313592256, + 0.9187077430559348, + 0.9203925414202916, + 0.9514626397110274, + 0.9041122896824668, + 0.7840680498436611, + 0.8292520377479811, + 0.97941509455445, + 0.8836172394187662, + 0.9375944096516282, + 0.9096320346320348, + 0.8897178357319816, + 0.977084365603192, + 0.8159983921213949, + 0.8647743756870857, + 0.9324532116794522, + 0.9496978544622346, + 0.8933384348345432, + 0.9146441554557286, + 0.893013468013468, + 0.7745935959659945, + 0.9240556247405564, + 0.9248385202583678, + 0.9493296120831972, + 0.784239798606639, + 0.7934206675600327, + 0.847568697165119, + 0.8111354653251885, + 0.7558928791805505, + 0.7550475642500958, + 0.8290845270990632, + 0.9166360018268416, + 0.9214315504311476, + 0.8905928806265223, + 0.8833857030636293, + 0.8371864728096656, + 0.7786506591658736, + 0.8732444148742633, + 0.9824788936394012, + 0.9261641390813252, + 0.7920585237916445, + 0.8270827140818009, + 0.8181481481481481, + 0.9685059666773832, + 0.7724990486505474, + 0.8453837597330368, + 0.9028925619834708, + 0.974712351554919, + 0.7990739031960405, + 0.8124766840771211, + 0.8338302155859407, + 0.8257495162906913, + 0.9242514144040864, + 0.8874986998868335, + 0.8316014689297133, + 0.8491709060650188, + 0.9290397110203914, + 0.9429104219927898, + 0.9020663048206212, + 0.9497666282126442, + 0.8735827515879028, + 0.8190930086640767, + 0.9097417836628494, + 0.8836172394187662, + 0.7561436787677326, + 0.9111759366075987, + 0.9685059666773832, + 0.7694393172704596, + 0.9182355818184244, + 0.9443350267709892, + 0.8991822088005293, + 0.9609732144249478, + 0.8388412496816188, + 0.9434738042076424, + 0.9514940210071012, + 0.7974547159339365, + 0.9158098573783174, + 0.8885435517508157, + 0.7927757091445906, + 0.8089575535557855, + 0.8566665569299595, + 0.8314583644863298, + 0.7943437531819572, + 0.8869909377863762, + 0.7623509827444914, + 0.9602434075673276, + 0.8173534679942144, + 0.9145746409758626, + 0.7598389563652722, + 0.8919299119395553, + 0.9546749386121294, + 0.9061863080667324, + 0.9429340786658, + 0.8532240586756394, + 0.8877384763770779, + 0.958686173433348, + 0.9554765128325876, + 0.927589597885256, + 0.9529605866177816, + 0.9690193870107546, + 0.8907469811519957, + 0.9842229467473992, + 0.9364502164502164, + 0.8550444275316389, + 0.9174603174603174, + 0.9919369945954868, + 0.7974492252661268, + 0.9534048316392292, + 0.7523489859050253, + 0.8139854059928581, + 0.9461387983232418, + 0.8098519486211259, + 0.7647244706969056, + 0.906310774345067, + 0.7678224795898994, + 0.9290762303990062, + 0.8524886899155711, + 0.980320788530466, + 0.9254995395026632, + 0.8657481566722074, + 0.9421659088682972, + 0.8474906647205496, + 0.9013546930437588, + 0.9748919688627304, + 0.8388843744066832, + 0.95990063654712, + 0.9796267593595076, + 0.9345104268491364, + 0.9405500820824608, + 0.8701948495342146, + 0.9783368141256884, + 0.7696261546646032, + 0.7607570099969941, + 0.7567551932941814, + 0.89138879753655, + 0.928489598568463, + 0.9086142870609782, + 0.9545454545454548, + 0.9545454545454548, + 0.8077423038829434, + 0.9174603174603174, + 0.948338703873867, + 0.9649045221259104, + 0.8289700533295026, + 0.9245393784589186, + 0.7559638453436506, + 0.8235522434404595, + 0.9007792207792208, + 0.7664355652861399, + 0.9290762303990062, + 0.8491308962278107, + 0.7573901281365926, + 0.8315151515151515, + 0.7505974060116345, + 0.9502677159519249, + 0.8378061008189606, + 0.8657481566722074, + 0.9421659088682972, + 0.9391737997679988, + 0.943947221044588, + 0.9530072970035708, + 0.946585394605002, + 0.8072282340152606, + 0.8919696969696971, + 0.9783368141256884, + 0.8060213664465975, + 0.7894137547439006, + 0.8886194359553156, + 0.8969404465407047, + 0.8395077004692013, + 0.8087262766581881, + 0.9417675428322848, + 0.838458313625102, + 0.9578918616552848, + 0.9877224033535164, + 0.9600766541682176, + 0.9372227566431792, + 0.9996947496947498, + 0.9464739502688859, + 0.9273107442696306, + 0.8427440270131528, + 0.8930336617991886, + 0.8499116091074294, + 0.8297523357929766, + 0.8628042957923382, + 0.94362258995985, + 0.8861176478495414, + 0.992955297959396, + 0.954141881439958, + 0.9716068390573318, + 0.9372227566431792, + 0.9209665616774528, + 0.8810186818949944, + 0.8078565985679013, + 0.7888565809250084, + 0.8999765601568034, + 0.7784705964389922, + 0.8951137084436364, + 0.9694396869310692, + 0.906901471095239, + 0.9521895754027829, + 0.7517286913985001, + 0.8687571885281811, + 0.7912430201328434, + 0.9975369458128078, + 0.9160401958804216, + 0.974218139790659, + 0.8509546425853288, + 0.900767299923892, + 0.9978013931164152, + 0.7966912350949062, + 0.8415390235407055, + 0.9095917165921852, + 0.7732064980993626, + 0.8864392836204776, + 0.804143123374405, + 0.8771670219049115, + 0.9813338311457538, + 0.9514741813067672, + 0.9586402202505121, + 0.9396223310702196, + 0.9574611462809792, + 0.9733296560462246, + 0.9277579783254948, + 0.9766303162486368, + 0.8371159751352832, + 0.7645789491661855, + 0.8881896291715989, + 0.9463791440512886, + 0.9564875857045522, + 0.7686245437524821, + 0.9510994238916862, + 0.8438384213475643, + 0.9041552036871964, + 0.9970690618433798, + 0.7655848997001549, + 0.8569756194651065, + 0.8565438206194017, + 0.7732064980993626, + 0.8167257771569466, + 0.8510568256152782, + 0.8573767226280884, + 0.9514741813067672, + 0.946103858087934, + 0.9425383776528816, + 0.9032923617208078, + 0.905550235616632, + 0.9177635419435248, + 0.9424705422602816, + 0.7733034132276329, + 0.7944363835998364, + 0.8881896291715989, + 0.922836204777124, + 0.9493296120831972, + 0.7731216272312162, + 0.7701503489229721, + 0.9110701550899905, + 0.8749551130106945, + 0.9779240761641758, + 0.8757411810482202, + 0.9637205387205386, + 0.8307739463601531, + 0.7840680498436611, + 0.9718089459310836, + 0.7533766040551628, + 0.8411108025383495, + 0.8186320718389478, + 0.7507073140597975, + 0.8665855131372373, + 0.8141166099294752, + 0.8465178639695039, + 0.8674324881574892, + 0.894897491091307, + 0.8007950286452882, + 0.9200506754154923, + 0.8002254756609835, + 0.8055002075550022, + 0.8899568476668683, + 0.8050891517303731, + 0.7551272091668285, + 0.9170723522722332, + 0.8862820694208641, + 0.7731935891169762, + 0.8962930952966316, + 0.8545871559633028, + 0.973043266390798, + 0.8475513005495156, + 0.8919753086419753, + 0.9230719517449376, + 0.9818181818181816, + 0.8724508253662056, + 0.7850116015543995, + 0.7799035733456022, + 0.7709127626361537, + 0.8079919101295913, + 0.767668950942458, + 0.8706501932048896, + 0.8797516915893117, + 0.8063085414053331, + 0.9356832150292386, + 0.8438519069076046, + 0.8284948236315168, + 0.9064297442948914, + 0.9731718245680656, + 0.8146948605443374, + 0.8586700336700335, + 0.7917861568922506, + 0.8919445048153332, + 0.9275512725475664, + 0.8749102030655429, + 0.7586973969785762, + 0.8582940089755703, + 0.8288372093023257, + 0.9457912457912456, + 0.9067894216205786, + 0.8854903716972683, + 0.7712402158145529, + 0.8514488517233563, + 0.8119647131227026, + 0.7960368686049766, + 0.8764803941254208, + 0.7593988263019269, + 0.8332839656913731, + 0.8409641575217711, + 0.7830059960631146, + 0.8189152639403684, + 0.7914909068376863, + 0.8521396824062815, + 0.9429498910675382, + 0.787554569047141, + 0.9170262364403312, + 0.8143114753878038, + 0.8129887361537077, + 0.9416562889165628, + 0.8249965343560833, + 0.8184361507912837, + 0.7583136897041756, + 0.8954939454973427, + 0.9669995060071396, + 0.7678622085216633, + 0.7965505290883048, + 0.8025926314878588, + 0.8861176478495414, + 0.9066317021702632, + 0.781819981750254, + 0.8492357350911255, + 0.925730625364325, + 0.7682652462041775, + 0.7697542997542998, + 0.9647167592568326, + 0.7591823779426875, + 0.9809290093211468, + 0.8217563751752737, + 0.7791177041387707, + 0.9954545454545456, + 0.8281880073317623, + 0.8580430671412884, + 0.9032397543084568, + 0.7617771431813454, + 0.7866182087539877, + 0.7593988263019269, + 0.7752390906012949, + 0.8085158042512651, + 0.8909560347514579, + 0.9051334791710912, + 0.9066317021702632, + 0.7803249362542886, + 0.8737365714482546, + 0.9248568831411556, + 0.8383783163850447, + 0.9706054674756964, + 0.7623802782704252, + 0.9687833580671199, + 0.7739714809841708, + 0.8782693798816119, + 0.860081980641546, + 0.8833857030636293, + 0.792475110421586, + 0.8157848104775258, + 0.8701372997711668, + 0.9563298076485244, + 0.8490800833801486, + 0.7888565809250084, + 0.7741636141636141, + 0.8401837065840431, + 0.9484588138867748, + 0.9176863587872164, + 0.8973789818590386, + 0.8252966318058891, + 0.7617771431813454, + 0.8289524716549913, + 0.8621233137385207, + 0.7908116150724073, + 0.9316463142933343, + 0.7524570024570024, + 0.8718713242231872, + 0.7728726352092181, + 0.7603048533875102, + 0.973201661164624, + 0.8391298861361308, + 0.7893505683000169, + 0.8608078181360623, + 0.8171099429462456, + 0.8507008302142539, + 0.7796040841350689, + 0.8137991281050442, + 0.8701372997711668, + 0.7906337827256119, + 0.9493296120831972, + 0.782031346414908, + 0.7993113894954217, + 0.7720161433138532, + 0.864620467059047, + 0.8900050041356494, + 0.84746622922539, + 0.9115157598761456, + 0.9054424800276306, + 0.830044253645252, + 0.9288938029152748, + 0.8783604524820522, + 0.7944363835998364, + 0.7921163153910715, + 0.7869039663743268, + 0.948066117973837, + 0.9230788696114616, + 0.7965825732022186, + 0.7641898999679713, + 0.7858832626449197, + 0.8508778496367884, + 0.7802946460653972, + 0.7884721011749333, + 0.9513173145378848, + 0.8649568301570332, + 0.7764651372019794, + 0.8624508476571697, + 0.7631497975708502, + 0.838327526611037, + 0.8166721221205311, + 0.8852917218205886, + 0.763935088255619, + 0.849984522961002, + 0.8818076679096488, + 0.7698644841737025, + 0.8836658805318403, + 0.9201199939290072, + 0.8893648150618828, + 0.8891377897432868, + 0.8205353126405759, + 0.8024182735874719, + 0.922961632460186, + 0.946516510443614, + 0.8942981283868459, + 0.8132787513211815, + 0.9842229467473992, + 0.983927829355058, + 0.9897436575227496, + 0.7789928908269387, + 0.9491102207390418, + 0.8027373398034093, + 0.8097807158117007, + 0.7742275740436659, + 0.8269035371638741, + 0.8164279646777108, + 0.7959065093927479, + 0.9299044396563476, + 0.9815561030337692, + 0.8847353302545712, + 0.8534614846726633, + 0.8781863560189622, + 0.9215082393282026, + 0.8660956368114106, + 0.9778877366568356, + 0.8883570187308942, + 0.8645713114309883, + 0.9608961698823448, + 0.7504350893637566, + 0.7899138991389913, + 0.9237157509601476, + 0.8085999198472382, + 0.9842229467473992, + 0.7915641555108558, + 0.9869637610219488, + 0.8388856048166393, + 0.9083168071393158, + 0.996947496947497, + 0.836399552488273, + 0.8254759949956995, + 0.8054112554112555, + 0.8315151515151515, + 0.9072515573214316, + 0.8455703241525074, + 0.8837147279244052, + 0.992492576897818, + 0.7771153106793246, + 0.9632800296944952, + 0.8751296156972389, + 0.9439627106557767, + 0.7599245853190747, + 0.948022748326122, + 0.797922077922078, + 0.8079059133534838, + 0.9002093642315044, + 0.9417677188802858, + 0.9120792735085574, + 0.9325279623513651, + 0.9765978165772758, + 0.9783368141256884, + 0.803590017884114, + 0.8886194359553156, + 0.9424689576609075, + 0.8695613682942084, + 0.9090909090909088, + 0.8277566532211718, + 0.7800435531915323, + 0.9027223454052724, + 0.8465029384806168, + 0.8272613669834734, + 0.8224835092471747, + 0.7714797416324134, + 0.8924773755936107, + 0.9954545454545456, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8434706308388399, + 0.8017627702025453, + 0.7916704805491989, + 0.8995057307947333, + 0.84746622922539, + 0.8294442768393521, + 0.90276124713408, + 0.996221188255952, + 0.8143962421732175, + 0.980394402239746, + 0.9514741813067672, + 0.7581308936708563, + 0.9531775071717112, + 0.9001377198115018, + 0.8004102325039334, + 0.8735155491890395, + 0.8677050513455755, + 0.8445527067336185, + 0.9636363636363636, + 0.937103645050706, + 0.9694957490472002, + 0.9822495603003196, + 0.901072927769024, + 0.9510994238916862, + 0.9362530022505056, + 0.8219385637193856, + 0.9996947496947498, + 0.7644937203650517, + 0.758657620282485, + 0.8385429638854296, + 0.8490535457456533, + 0.7757575757575756, + 0.999122807017544, + 0.8217563751752737, + 0.8636588686952739, + 0.8019358454012121, + 0.8455800687861758, + 0.8017627702025453, + 0.7768542199488491, + 0.8884642600370833, + 0.84746622922539, + 0.7867084930870223, + 0.9926207992132684, + 0.9493296120831972, + 0.8445196063887654, + 0.9531775071717112, + 0.8571885156262036, + 0.8838874680306906, + 0.8891221903616687, + 0.9954545454545456, + 0.937103645050706, + 0.7996865517613174, + 0.9851370084561714, + 0.788353581901969, + 0.8469074304690744, + 0.8276687406622917, + 0.8844613609427292, + 0.9313089878738736, + 0.8709970502763632, + 0.8035084471465264, + 1, + 0.932761391647538, + 0.8392430039425867, + 0.945216049382716, + 0.7537357583191043, + 0.9719327874122964, + 0.9954545454545456, + 0.8217563751752737, + 0.8348054919908466, + 0.8788633070234552, + 0.8019358454012121, + 0.8725525105676494, + 0.8033211036934772, + 0.7916704805491989, + 0.8547301773579906, + 0.84746622922539, + 0.7867084930870223, + 0.974712351554919, + 0.9500266403708978, + 0.951008471157725, + 0.7628108176190548, + 0.9531775071717112, + 0.7716841489148686, + 0.9391877740213088, + 0.8677050513455755, + 0.8967939861988315, + 0.937103645050706, + 0.8551520659154248, + 0.9851370084561714, + 0.8893524283935244, + 0.8733160901863194, + 0.8916710007549704, + 0.9391302151973808, + 0.9965169569202568, + 0.9136739322359624, + 0.9206651788481804, + 0.8553134080531343, + 0.8530611929128231, + 0.9099770642201834, + 0.949825316001485, + 0.7714797416324134, + 0.8862820694208641, + 0.9970690618433798, + 0.7726587251245717, + 0.8995898027497777, + 0.999122807017544, + 0.8462714704650187, + 0.7559911987169416, + 0.7902969671765014, + 0.8017627702025453, + 0.7916704805491989, + 0.9312885573197214, + 0.8580430671412884, + 0.84746622922539, + 0.7598160347464082, + 0.870252992498577, + 0.992671182389769, + 0.9862539184209972, + 0.9514741813067672, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.948072129659398, + 0.8677050513455755, + 0.880780406807804, + 0.9991101223581756, + 0.937103645050706, + 0.9851370084561714, + 0.7606385491732779, + 0.9822495603003196, + 0.9376831513747739, + 0.9027223454052724, + 0.9526427685969672, + 0.9236004688155952, + 1, + 0.8401802481694282, + 0.9773557492735576, + 0.8553134080531343, + 0.8399280642635364, + 0.9943501037415146, + 0.9991101224022378, + 0.7643053750286719, + 0.8874398840030436, + 1, + 0.8119189817879228, + 0.8995898027497777, + 0.999122807017544, + 0.9908884770316014, + 0.81573077081821, + 0.9677933860111212, + 0.8398311720625258, + 0.84746622922539, + 0.7867084930870223, + 0.8985858297326429, + 0.992671182389769, + 0.7506209000762774, + 0.9848040830545792, + 0.9514741813067672, + 0.8622230550415498, + 0.9531775071717112, + 0.9429977116704804, + 0.9358184932420454, + 0.8831178664041944, + 0.8571885156262036, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.9851370084561714, + 0.9822495603003196, + 0.9355427814530765, + 0.7598493905068002, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.8534197605902789, + 0.9090909090909088, + 0.8755816117625161, + 0.986521739130435, + 0.7574533557466553, + 0.9090909090909088, + 0.9891304347826086, + 0.8981981278894755, + 0.8661577367496762, + 0.9416316165688026, + 0.8216969791585356, + 0.7977855477855479, + 0.7730257320319432, + 0.8155778185409907, + 0.806941459089035, + 0.8844523908637408, + 0.9819906110654324, + 0.9267146997929604, + 0.930689847575993, + 0.9272543317870856, + 0.9161147326586146, + 0.9592356458451337, + 0.8911833569094192, + 0.8682065217391305, + 0.8974752586594693, + 0.9606049878058373, + 0.9119804816878757, + 0.8291255500470529, + 0.9571129080563042, + 0.9252515037745752, + 0.8839422379842073, + 0.8731842629559791, + 0.956227485420032, + 0.9623460662981315, + 0.9060336327100176, + 0.9466681074558329, + 0.9773557492735576, + 0.8385429638854296, + 0.7548029253094148, + 0.9943501037415146, + 0.9991101224022378, + 0.7643053750286719, + 0.836061944840571, + 1, + 0.8995898027497777, + 0.999122807017544, + 0.8310447482966568, + 0.9416562889165628, + 0.8111421417088542, + 0.9107768322387694, + 0.7741435607326606, + 0.8710025282890884, + 0.7867084930870223, + 0.90276124713408, + 0.992671182389769, + 0.9470902930560504, + 0.9514741813067672, + 0.9531775071717112, + 0.9531702386026508, + 0.79960452652037, + 0.9133288665033964, + 0.842339274227116, + 0.8546919803903434, + 0.999777530589544, + 0.937103645050706, + 0.8941624677316798, + 0.9851370084561714, + 0.7831708752610594, + 0.9822495603003196, + 0.9315717953934872, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9773557492735576, + 0.7647361516158825, + 0.95942299709423, + 0.8553134080531343, + 0.8335272614441825, + 0.9943501037415146, + 0.9991101224022378, + 0.7643053750286719, + 0.8924773755936107, + 1, + 0.8591091351396698, + 0.8995898027497777, + 0.999122807017544, + 0.9416562889165628, + 0.7916704805491989, + 0.950603792184588, + 0.8460152283133167, + 0.84746622922539, + 0.7867084930870223, + 0.8881896291715989, + 0.992671182389769, + 0.7614851364851365, + 0.9848040830545792, + 0.9514741813067672, + 0.8605291005291005, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.8888976303496794, + 0.8637008456171156, + 0.999777530589544, + 0.937103645050706, + 0.941303736239802, + 0.9851370084561714, + 0.9822495603003196, + 0.9400644385653472, + 0.7589913068467564, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.8297199580886333, + 0.9090909090909088, + 0.8388354220573428, + 0.9440241802550384, + 0.8417508417508417, + 0.8349403911738127, + 0.7751196172248803, + 0.9824561403508774, + 0.8289326387041065, + 0.9363636363636364, + 0.8484963605932038, + 0.7878050123409911, + 0.7845412529955496, + 0.8978080587826363, + 0.8211938237064843, + 0.903572413997316, + 0.9759433010492332, + 0.930358431350264, + 0.773824015559919, + 0.9069851553477366, + 0.859207814594905, + 0.9063976387881104, + 0.982273978187496, + 0.8258268246116464, + 0.8378181818181819, + 0.8545698249141326, + 0.7874000986198109, + 0.880561913058948, + 0.9424238274563508, + 0.99359825065929, + 0.94959978379972, + 0.8034795384843756, + 0.8256241274761228, + 0.7845614802232331, + 0.8780499051174888, + 0.9016573566020095, + 0.996521739130435, + 0.8072721768598793, + 0.8757575757575757, + 0.996521739130435, + 0.8052552577805061, + 0.8262184063662379, + 0.9518172850747404, + 0.8509007531737288, + 0.8092916186648054, + 0.8448511242895973, + 0.8221400000560604, + 0.8780499051174888, + 0.8585150396488364, + 0.758257861793882, + 0.9127647109937574, + 0.8185902535630862, + 0.7647917209753416, + 0.8892853956679526, + 0.9240400548084888, + 0.9264066297227525, + 0.8454089009226885, + 0.8738453625296769, + 0.8228190336839921, + 0.9964912280701756, + 0.8440081063581091, + 0.8488300159492314, + 0.8886054092841905, + 0.9651624660242156, + 0.8337216929170275, + 0.8550497957993816, + 0.9818181818181816, + 0.9104377104377104, + 0.9930465133925186, + 0.8868917142282169, + 0.7519552584840934, + 0.9616732614626587, + 0.996521739130435, + 0.7508148487315153, + 0.9090909090909088, + 0.999122807017544, + 0.9090273199933117, + 0.897855261911528, + 0.999122807017544, + 0.8507462616258913, + 0.9136683713678436, + 0.8674088334090595, + 0.8594701086956521, + 0.908313797791604, + 0.9891493795585866, + 0.7642455368060652, + 0.8891663542156248, + 0.924175824175824, + 0.9395716586151368, + 0.9484409722518364, + 0.9641388361295768, + 0.9059750088690924, + 0.999122807017544, + 0.9047503889161738, + 0.9033269863614518, + 0.9033269863614518, + 0.8658678644015689, + 0.9443498545350396, + 0.8906789023521027, + 0.999122807017544, + 0.9551184069702588, + 0.7562762148337596, + 0.9773557492735576, + 0.8409090909090906, + 0.9960831758177524, + 0.9978260869565218, + 0.7508148487315153, + 0.8490484481225223, + 0.999122807017544, + 0.9090273199933117, + 0.897855261911528, + 0.999122807017544, + 0.8507462616258913, + 0.9416562889165628, + 0.786316100259506, + 0.7917643088450543, + 0.8674088334090595, + 0.7940883223309813, + 0.8392760078156812, + 0.908313797791604, + 0.9891493795585866, + 0.766483106515241, + 0.8959840947127665, + 0.8891663542156248, + 0.924175824175824, + 0.9395716586151368, + 0.9484409722518364, + 0.9641388361295768, + 0.974712351554919, + 0.999122807017544, + 0.9047503889161738, + 0.9033269863614518, + 0.9773557492735576, + 0.8895761362866625, + 0.9748201493966672, + 0.9033269863614518, + 0.7646806860332477, + 0.8800026263331926, + 0.9443498545350396, + 0.9956140350877192, + 0.932409671284977, + 0.999122807017544, + 0.9551184069702588, + 0.7562762148337596, + 0.9833457647662114, + 0.8409090909090906, + 0.8227240115332337, + 0.9947765595830976, + 0.9978260869565218, + 0.7508148487315153, + 0.8569860866157161, + 0.999122807017544, + 0.9090273199933117, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8521396824062815, + 0.9416562889165628, + 0.8683896350563016, + 0.783774936061381, + 0.936963017728694, + 0.8674088334090595, + 0.84746622922539, + 0.7880796625738841, + 0.908313797791604, + 0.9891493795585866, + 0.766483106515241, + 0.8356411205726275, + 0.8959840947127665, + 0.8891663542156248, + 0.924175824175824, + 0.9395716586151368, + 0.9484409722518364, + 0.9641388361295768, + 0.8643546462063086, + 0.9753454579899592, + 0.999122807017544, + 0.9047503889161738, + 0.9033269863614518, + 0.9851370084561714, + 0.9748201493966672, + 0.9033269863614518, + 0.7684710351377019, + 0.8800026263331926, + 0.9443498545350396, + 0.999122807017544, + 0.90662100456621, + 0.999122807017544, + 0.9551184069702588, + 0.7562762148337596, + 0.9833457647662114, + 0.8409090909090906, + 0.7928783407950074, + 0.8919753086419753, + 0.9978260869565218, + 0.7508148487315153, + 0.8490459410817468, + 0.999122807017544, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8507462616258913, + 0.9416562889165628, + 0.7684372454295727, + 0.936963017728694, + 0.8674088334090595, + 0.84746622922539, + 0.9891493795585866, + 0.984323635061576, + 0.9353365093463604, + 0.924175824175824, + 0.9395716586151368, + 0.963346594676518, + 0.8643546462063086, + 0.9047503889161738, + 0.9033269863614518, + 0.9851370084561714, + 0.9447497776699816, + 0.9787330446229278, + 0.9033269863614518, + 0.7646806860332477, + 0.8800026263331926, + 0.9443498545350396, + 0.8849247249134843, + 0.90662100456621, + 0.8830204170152121, + 0.7610810810810811, + 0.918761685155179, + 0.849564043730598, + 0.9295382499658214, + 0.8737807294339347, + 0.7524570024570024, + 0.8764855553630885, + 0.8881376171456311, + 0.8144653876435873, + 0.7569047619047621, + 0.9011440242078431, + 0.9721444518798692, + 0.8580395542059102, + 0.7556448396101646, + 0.8943463267997412, + 0.7708422347381368, + 0.8312540974287805, + 0.927155204148788, + 0.9242507691836442, + 0.8039533480013239, + 0.9253381976987183, + 0.9487056115959976, + 0.996333638863428, + 0.9061372721317869, + 0.8039194902068957, + 0.9773557492735576, + 0.8553134080531343, + 0.8316014689297133, + 0.9590943683409436, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049176, + 0.9997983870967744, + 0.8210917926103164, + 0.8995898027497777, + 0.999122807017544, + 0.9416562889165628, + 0.7854916126103976, + 0.8580430671412884, + 0.8452862219584866, + 0.90276124713408, + 0.992671182389769, + 0.9514741813067672, + 0.9531775071717112, + 0.9429977116704804, + 0.856399568810636, + 0.9607331879409255, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.8733160901863194, + 0.8902640300903737, + 0.9822495603003196, + 0.7724990486505474, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9505705348293196, + 0.890082588516155, + 0.9271888077994948, + 0.7647361516158825, + 0.9773557492735576, + 0.8553134080531343, + 0.9590943683409436, + 0.9991101224022378, + 0.8219385637193856, + 0.8478847935907573, + 0.9954545454545456, + 0.8210917926103164, + 0.8995898027497777, + 0.9479012434878824, + 0.8019358454012121, + 0.9416562889165628, + 0.8188858158239665, + 0.8055002075550022, + 0.8580430671412884, + 0.84746622922539, + 0.895416975651959, + 0.992671182389769, + 0.8356411205726275, + 0.8716815273032167, + 0.9429977116704804, + 0.8677050513455755, + 0.9607331879409255, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.9240556247405564, + 0.8819809439955775, + 0.9822495603003196, + 0.7999671002057498, + 0.9413092648977816, + 0.9954545454545456, + 0.9326966113459272, + 0.7838827173142349, + 0.9271888077994948, + 0.8469712140023324, + 0.9773557492735576, + 0.8553134080531343, + 0.8394616500465105, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049176, + 0.9994500458295142, + 0.8184361507912837, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8089287811425218, + 0.8553636363636363, + 0.7916704805491989, + 0.936963017728694, + 0.84746622922539, + 0.8181109552382406, + 0.8966477542865559, + 0.992671182389769, + 0.9775526793347032, + 0.9514741813067672, + 0.9531775071717112, + 0.9429977116704804, + 0.9341361232572516, + 0.7767581669691469, + 0.8677050513455755, + 0.999777530589544, + 0.937103645050706, + 0.9230017232221136, + 0.9851370084561714, + 0.8553134080531343, + 0.884737671188568, + 0.9413092648977816, + 0.9824561403508774, + 0.9505705348293196, + 0.8909999999999999, + 0.8933113072408856, + 0.7647361516158825, + 0.9929947676208064, + 0.8598347107438016, + 0.8490800833801486, + 0.9947856385396152, + 0.9990150209905604, + 0.7707081956166206, + 0.8952232922255726, + 1, + 0.8216057600038706, + 0.9000234404536862, + 1, + 0.8075842215036355, + 0.946198347107438, + 0.8021928166351607, + 0.7928741020793951, + 0.9344444444444444, + 0.8578858011832347, + 0.8483379501385041, + 0.7871436798157215, + 0.9025957850286672, + 0.9928936489808848, + 0.9846235837724948, + 0.9527305856232412, + 0.9434321361058602, + 0.9373115797727772, + 0.9350049149338372, + 0.8705701323251417, + 0.986135349716446, + 1, + 0.9357441792403746, + 0.941314332676578, + 0.9860141582025238, + 0.9826843100189036, + 0.9826843100189036, + 0.8050748795127288, + 0.884575512524494, + 0.9417436672967864, + 0.9937805570643936, + 0.9503788875440718, + 1, + 0.9245562130177516, + 0.7654094979252105, + 1, + 0.9090909090909088, + 0.8238490179500522, + 0.9637205387205386, + 0.9819008264462812, + 0.7757575757575756, + 0.8216057600038706, + 0.9000234404536862, + 1, + 0.8075842215036355, + 0.9217516347489824, + 0.799080529300567, + 0.9344444444444444, + 0.8948549687825181, + 0.9721268082486919, + 0.8409090909090906, + 0.9499201807471164, + 0.9527305856232412, + 0.9434321361058602, + 0.9206147765314164, + 0.9350049149338372, + 0.8640914933837429, + 0.9964943059402892, + 0.816272967863894, + 0.9860141582025238, + 0.928736342351717, + 0.9792393194706994, + 0.8994380853277835, + 0.9292599608634763, + 1, + 0.8362207611956006, + 0.9902353003770102, + 0.895080529300567, + 0.7602465480841565, + 0.9929947676208064, + 0.8598347107438016, + 0.8490800833801486, + 0.9947856385396152, + 0.9990150209905604, + 0.7707081956166206, + 0.8952232922255726, + 1, + 0.8216057600038706, + 0.9000234404536862, + 1, + 0.8011324661116951, + 0.8075842215036355, + 0.946198347107438, + 0.8021928166351607, + 0.7928741020793951, + 0.9344444444444444, + 0.8578858011832347, + 0.8483379501385041, + 0.9025957850286672, + 0.9928936489808848, + 0.9846235837724948, + 0.951299790877642, + 0.9527305856232412, + 0.9434321361058602, + 0.9396223310702196, + 0.9350049149338372, + 0.8705701323251417, + 0.986135349716446, + 1, + 0.9357441792403746, + 0.941314332676578, + 0.9860141582025238, + 0.9826843100189036, + 0.8050748795127288, + 0.884575512524494, + 0.9417436672967864, + 1, + 0.9503788875440718, + 1, + 0.9245562130177516, + 0.7654094979252105, + 0.9819008264462812, + 0.8598347107438016, + 0.8131334593572779, + 0.7690913021991601, + 0.9990150209905604, + 0.7707081956166206, + 1, + 0.8216057600038706, + 0.9000234404536862, + 1, + 0.8475686570924664, + 0.9583379501385041, + 0.8578858011832347, + 0.8245991597474406, + 0.8852652399934414, + 0.9928936489808848, + 0.81331932016418, + 0.8180035444849115, + 0.8711111111111112, + 0.7763165596167769, + 0.9350049149338372, + 1, + 0.9349642299687824, + 0.9860141582025238, + 0.9826843100189036, + 0.884575512524494, + 0.9417436672967864, + 0.996520316855316, + 1, + 0.9245562130177516, + 0.7654094979252105, + 0.8580139372822299, + 0.9830434782608694, + 0.8893524283935244, + 0.9954545454545456, + 0.9159300003279972, + 0.8181818181818182, + 0.7500000000000002, + 0.8938595877462214, + 0.9042008986509023, + 0.957287033071265, + 0.90234375, + 0.9223350132140808, + 0.8347334184691517, + 0.9207931801334324, + 0.8467468534925462, + 0.8855595367052747, + 0.7719095384164608, + 0.89266067021096, + 0.8763416775577225, + 0.9545454545454548, + 0.911370421730973, + 0.8444352108196725, + 0.889643133181266, + 0.7993302204531539, + 0.9838876285414652, + 0.981598371482293, + 0.8584226317602837, + 0.9320791500266458, + 0.9545454545454548, + 0.8557709287004716, + 0.8980542801375592, + 0.8619577717071254, + 0.9666063921681544, + 0.9199136660983444, + 0.954105606965682, + 0.8784735812133071, + 0.8146320346320346, + 0.8985141146494671, + 0.810999117201063, + 0.8039130434782609, + 0.8999203521041261, + 0.9046926758835667, + 0.9502900712294152, + 0.912840025574134, + 0.9565342960288808, + 0.908022550608102, + 0.7889688874990176, + 0.9947765595830976, + 0.9939130434782611, + 0.7541751489851583, + 0.8333567358870508, + 0.9077642484940728, + 0.89655436679566, + 0.8211280822082608, + 0.7590923827347885, + 0.891518378456824, + 0.9280303030303032, + 0.7756218002597997, + 0.8987662245043503, + 0.8668602157771254, + 0.801511385184123, + 0.9878450565293272, + 0.8198448448448448, + 0.8761625640592721, + 0.9331326790672908, + 0.8095673945542065, + 0.9692603418275338, + 0.8574834373128851, + 0.984385006449655, + 0.996521739130435, + 0.7993577556225364, + 0.904913008013858, + 0.908522355957097, + 0.8922324960716342, + 0.9027775208335084, + 0.8863636363636365, + 0.893013468013468, + 0.8159728122344945, + 0.94712477473252, + 0.9501526150902738, + 0.9360797940299664, + 0.7541751489851583, + 0.7667799490229397, + 0.7911852166525064, + 0.8545853753924373, + 0.8991709050477996, + 0.9636363636363636, + 0.8911305509993319, + 0.9280303030303032, + 0.7559479094211299, + 0.9484006454368564, + 0.8396074640434158, + 0.7602400762912697, + 0.8236580766813324, + 0.8818556180808311, + 0.9202063402841564, + 0.8401634217686861, + 0.9479922753053344, + 0.9495079748317234, + 0.9185105083088952, + 0.8116459489241595, + 0.9143375393297604, + 0.9496030156557552, + 0.8340405157441468, + 0.904913008013858, + 0.8855604489099591, + 0.8008650649412102, + 0.917917299639148, + 0.880492540216932, + 0.9964912280701756, + 0.8884778012684991, + 0.9772727272727272, + 0.9305426817265549, + 0.7903598392225994, + 0.913366781280282, + 0.9096320346320348, + 0.9904188832431408, + 0.996521739130435, + 0.7541751489851583, + 0.8171186929707505, + 0.9908763972444158, + 0.9077642484940728, + 0.89655436679566, + 0.772467875442053, + 0.860588835859315, + 0.9234883720930234, + 0.7875052854122622, + 0.933111940667877, + 0.8330354177655357, + 0.98656936388704, + 0.7578096064482999, + 0.8236580766813324, + 0.9347318308522028, + 0.8932895451827312, + 0.9285799156049388, + 0.9331326790672908, + 0.9644254304363626, + 0.9670876387294297, + 0.984385006449655, + 0.9939130434782611, + 0.8081449326727791, + 0.904913008013858, + 0.958843983408048, + 0.9074265343943518, + 0.914550550747443, + 0.9956140350877192, + 0.7875052854122622, + 0.8930995950038103, + 0.9583981105619436, + 0.7913282390616106, + 0.8553636363636363, + 0.9520786868217588, + 0.8227791822609921, + 0.7541751489851583, + 0.7533175355450237, + 0.7932981415505088, + 0.8738851187127049, + 0.8977552028386393, + 0.9636363636363636, + 0.8909590821089839, + 0.9280303030303032, + 0.7559479094211299, + 0.7751825777502708, + 0.9484006454368564, + 0.8164106024837708, + 0.8378181818181819, + 0.7561931059330722, + 0.8198448448448448, + 0.8746812582275244, + 0.917685782192232, + 0.8430950344725274, + 0.9479922753053344, + 0.9401658822908944, + 0.9345885985711606, + 0.7898873359402224, + 0.9291147879324685, + 0.9688056850309468, + 0.8399373186372248, + 0.904913008013858, + 0.8926128930190145, + 0.8013821571709653, + 0.9027775208335084, + 0.9068677230102368, + 0.9964912280701756, + 0.8884778012684991, + 0.9772727272727272, + 0.937931239097852, + 0.7893307769071134, + 0.8507923269391159, + 0.82454262425017, + 0.9956476370717128, + 0.997391304347826, + 0.7521112125156584, + 0.848613775065388, + 0.9982456140350876, + 0.9095579316931844, + 0.8974216292028354, + 0.9982456140350876, + 0.793236950671892, + 0.865081443540125, + 0.7910710359728593, + 0.7802662901330503, + 0.9360867018160518, + 0.8672259606948435, + 0.8465945179292698, + 0.7860877112960002, + 0.90741737640829, + 0.988714605208294, + 0.7650792722152087, + 0.9834028714566064, + 0.9319643313838056, + 0.8892009084674849, + 0.9238927452772132, + 0.938293658314696, + 0.9463111401682168, + 0.9638336347197108, + 0.8614957734733332, + 0.9743634159016108, + 0.9982456140350876, + 0.904567225435328, + 0.902432554260779, + 0.9842598587858048, + 0.9800758121375232, + 0.9031438311232313, + 0.7664643536742591, + 0.8798196380081303, + 0.9452382460255262, + 0.9982456140350876, + 0.9982456140350876, + 0.9542133966338968, + 0.7550919222167469, + 0.8650485436893204, + 0.9590943683409436, + 0.9899999999999998, + 0.7905998956595828, + 0.9964912280701756, + 0.8794606193667226, + 0.9543859649122808, + 0.8482253411306041, + 0.9416562889165628, + 0.8635977474267438, + 0.908313797791604, + 0.9882608695652176, + 0.9329580322176916, + 0.8517155377371683, + 0.9278910038068524, + 0.7982464236271342, + 0.8646739607798208, + 0.9813471226782764, + 0.9960869565217392, + 0.9094579806240582, + 0.9134140956933028, + 0.9851370084561714, + 0.97920631307383, + 0.977065643648764, + 0.8834465198075598, + 0.9747949320291138, + 0.932911746603152, + 0.999122807017544, + 0.959866019149962, + 0.7617844033057979, + 0.7748830995323981, + 0.8909999999999999, + 0.7596175070890622, + 0.8999999999999999, + 0.9123145440909052, + 0.8741654144553147, + 0.8398585426427478, + 0.8724872612693206, + 0.7669652718124924, + 0.8631126133046548, + 0.8409246558039661, + 0.8097354943626018, + 0.95990063654712, + 0.8969342300921225, + 0.9611031655225016, + 0.827297433674167, + 0.8779350849682387, + 0.8367440082204682, + 0.893013468013468, + 0.9964912280701756, + 0.7824996118615121, + 0.8861176478495414, + 0.9315029605665132, + 0.9240556247405564, + 0.7895079901300617, + 0.8675786978032918, + 0.7532931318639005, + 0.90662100456621, + 0.7716841489148686, + 0.7502640132876188, + 0.8438384213475643, + 0.8979659609796596, + 0.8433356634883351, + 0.8893524283935244, + 0.8088096745504153, + 0.916047252707554, + 0.8157092458590421, + 0.7713701554506877, + 0.8990439807701138, + 0.8907570363540729, + 0.9537544911348904, + 0.808038039840766, + 0.9851370084561714, + 0.8932164255129278, + 0.9471843568535036, + 0.9133288665033964, + 0.9132421335802218, + 0.8276330050739579, + 0.8868080394461477, + 0.8668829861852336, + 0.8964265087723556, + 0.9911660095629562, + 0.9182659870037116, + 0.8633272832102701, + 0.8186320718389478, + 0.8881896291715989, + 0.8840480861242009, + 0.8197634340126408, + 0.7611003116070912, + 0.8939095129169344, + 0.901240425894056, + 0.8290845270990632, + 0.8844734722345178, + 0.900672328635003, + 0.8611114838221064, + 0.9020646721236415, + 0.7524570024570024, + 0.9671031943607348, + 0.7643684665873062, + 0.9177602214566852, + 0.9280169976669376, + 0.9651126414686952, + 0.8767768595041323, + 0.933676703232262, + 0.8344383939714739, + 0.849693862814132, + 0.7954107032792184, + 0.933676703232262, + 0.938108321790696, + 0.928906596493303, + 0.7642353146981488, + 0.8546502548557862, + 0.8224212265843107, + 0.7710819445257563, + 0.8864829929760666, + 0.8716815273032167, + 0.8660098479761721, + 0.9025093300004408, + 0.8121071884193809, + 0.9607952743931896, + 0.8722498962224988, + 0.9310204439345414, + 0.9777167277167276, + 0.8010759771629337, + 0.8522718489127074, + 0.9093424633191152, + 0.8425177354450203, + 0.7805733235714439, + 0.8924918014613418, + 0.9893784849790032, + 0.8451386855821716, + 0.8875135039917615, + 0.9706691109074244, + 0.768635972404227, + 0.8133865875461221, + 0.9501902748414376, + 0.8687372572217293, + 0.7972263500644203, + 0.879221174323091, + 0.8580430671412884, + 0.8347523783886707, + 0.9006369722354359, + 0.992671182389769, + 0.9563291529742204, + 0.947447712690609, + 0.7790788334554246, + 0.9533492330474672, + 0.8986916130118449, + 0.9391877740213088, + 0.9348478408783754, + 0.8636563261069188, + 0.9225521327977664, + 0.9272525027808675, + 0.9347188997515521, + 0.7847695804918372, + 0.9443983271522132, + 0.9774342481963584, + 0.97920631307383, + 0.9390325835747532, + 0.7859442359319205, + 0.9452608121807992, + 0.8231219423433573, + 0.9939505041246564, + 0.8711884810416023, + 0.9664525827971132, + 0.8922813036020585, + 0.8517879419237278, + 0.9226251523770824, + 0.9989000916590284, + 0.912544997503788, + 0.8862043421277565, + 0.7932768442135997, + 0.8376774696711561, + 0.7841809006211181, + 0.7925277144429594, + 0.8649220965924544, + 0.8539211685273398, + 0.8363949697251979, + 0.8264854203894482, + 0.9072225728615328, + 0.992671182389769, + 0.8515020101968744, + 0.9309305726600986, + 0.9543209471735604, + 0.9391877740213088, + 0.9348478408783754, + 0.8914844044126526, + 0.9256464785119556, + 0.9954545454545456, + 0.9374817381090278, + 0.7688326686368462, + 0.8925869273677869, + 0.9703270521983972, + 0.9809453113164672, + 0.8066868740036242, + 0.8351972694191357, + 0.8433153659377112, + 0.9392359594194456, + 0.8888965657897014, + 0.8930757789029354, + 0.999083409715857, + 0.9743963538884604, + 0.7953195319531954, + 0.8454219118804093, + 0.9502704567873635, + 0.9458992126856904, + 0.7644077516403233, + 0.8706106552426165, + 0.9965172600923464, + 0.8217563751752737, + 0.9124729676453814, + 0.9818515123739688, + 0.8086304821445487, + 0.9321596244131456, + 0.7740195848021936, + 0.8328682787543888, + 0.8700240408314942, + 0.8580430671412884, + 0.8444444444444444, + 0.8063613046642976, + 0.870252992498577, + 0.992671182389769, + 0.9630275323942066, + 0.9518090954793984, + 0.8248761807094434, + 0.9566474322858416, + 0.9285566337630128, + 0.9391877740213088, + 0.9348478408783754, + 0.8389228250888328, + 0.908538082241886, + 0.9906562847608452, + 0.937727360640436, + 0.8522952375426849, + 0.9459029430545072, + 0.970027764388316, + 0.9817818865916694, + 0.8466376695566143, + 0.7811519654537372, + 0.9366631199668156, + 0.9535299764377344, + 0.9032200335646016, + 0.9998166819431716, + 0.8480421626051209, + 0.9780701754385964, + 0.8055944055944054, + 0.8519962283651035, + 0.9944372261358286, + 0.8909859611558665, + 0.9930339138405136, + 0.8688321482439127, + 0.8739386859650123, + 0.7999172993636504, + 0.8106128029621074, + 0.9095679827050769, + 0.8277677156441022, + 0.779649885583524, + 0.8288552731227062, + 0.8574961012970123, + 0.841109866865746, + 0.792355474053602, + 0.8966775300321758, + 0.992671182389769, + 0.9572785040629562, + 0.9291879754864996, + 0.889317620077831, + 0.9515562365156858, + 0.9348478408783754, + 0.8753775156331067, + 0.9532353404791928, + 0.9954545454545456, + 0.937189056965018, + 0.9715579478946336, + 0.959737826278744, + 0.961743440323128, + 0.9796080671884818, + 0.8052224642752426, + 0.7647985836235606, + 0.8987594276173578, + 0.935391253108552, + 0.9994500458295142, + 0.8855041459997729, + 0.9090909090909088, + 0.778450363196126, + 0.8409090909090906, + 0.9903940886699508, + 0.9132561051004052, + 0.8590718015934052, + 0.9118814562362948, + 0.7681025602181487, + 0.7961600220298013, + 0.8228255528255527, + 0.7862727272727271, + 0.8598109918146062, + 0.9327132807405768, + 0.8460922217047043, + 0.9090909090909088, + 0.7565260131563887, + 0.8064786173763172, + 0.8049646954986759, + 0.8147984533079082, + 0.8706455071105871, + 0.889459843292596, + 0.8753408574458414, + 0.78943545201723, + 0.9225337271553442, + 0.8471976396567684, + 0.9582046990267186, + 0.7739383306543302, + 0.8439728108918513, + 0.9681818181818184, + 0.9147990007027552, + 0.8965678134850725, + 0.9229230100043496, + 0.8814426843808552, + 0.8299673329703665, + 0.953884157786154, + 0.9568896321070232, + 0.927359277258842, + 0.926999815931348, + 0.9084797370520777, + 0.7588691796008868, + 0.8925148498881217, + 0.941101152368758, + 0.7976890157802166, + 0.8191512279190005, + 0.9383783723654014, + 0.9687898089171972, + 0.8227272727272728, + 0.9667829842995462, + 0.8430578512396696, + 0.8462362704327265, + 0.9937731747479652, + 0.8598347107438016, + 0.9018993376896012, + 0.9380859781477626, + 0.7965452139741043, + 0.8408374965151522, + 0.828891493383743, + 0.8037512287334593, + 0.9310557094490612, + 0.7905217546826223, + 0.8803334593572778, + 0.948060941828255, + 0.9808836171606353, + 0.9419954799687824, + 0.9000657462195923, + 0.9762481841119351, + 0.958536231884058, + 0.8689482041587903, + 0.9625071374155625, + 0.9421304353743684, + 0.9000657462195923, + 0.909072064464046, + 0.7770347430724859, + 0.8258664204370577, + 0.931003010693105, + 0.936341359994194, + 0.944622600300256, + 0.7698155009451796, + 0.9886242163794032, + 0.8385429638854296, + 0.8460152283133167, + 0.8244642857142859, + 0.90662100456621, + 0.8965017504270001, + 0.9477543538038498, + 0.934372987530004, + 0.7966912350949062, + 0.8521832338962485, + 0.8284602000869942, + 0.8025417478298693, + 0.9275512725475664, + 0.9004149252037746, + 0.9814823072033312, + 0.9441436310000064, + 0.9038201493163326, + 0.9502409737496426, + 0.8660854435766022, + 0.880780406807804, + 0.932626333246618, + 0.8230247277595698, + 0.9169832716276728, + 0.9163600219843964, + 0.7558559856410743, + 0.8249965343560833, + 0.9341554258408444, + 0.8231479245485526, + 0.9054813423400642, + 0.7909076419763443, + 0.7862727272727271, + 0.8658008658008658, + 0.996330951542531, + 0.9364502164502164, + 0.7650216450216449, + 0.794733291750721, + 0.894436842425348, + 0.9071691672620463, + 0.8475960459042418, + 0.825019069412662, + 0.9011154934052964, + 0.9888403534005904, + 0.9064975857191632, + 0.8040148172573156, + 0.7544972303681978, + 0.8394258450740808, + 0.8722248098121411, + 0.8832034632034632, + 0.9242506379637506, + 0.8626119406890994, + 0.878664636798608, + 0.796428039082196, + 0.7737936507936508, + 0.9772426641825802, + 0.9771984786553624, + 0.7754989006737327, + 0.9842229467473992, + 0.9545454545454548, + 0.8536368018578387, + 0.9904302907657898, + 0.9985875706214687, + 0.7822341892305151, + 0.8895952017025273, + 0.9977822580645164, + 0.822054489456517, + 0.9068929556529068, + 0.9969759694040504, + 0.8227635041015324, + 0.92385752642948, + 0.7644903235840163, + 0.7893527624833871, + 0.9290762303990062, + 0.8549939348739194, + 0.9024751306250636, + 0.9939538727034296, + 0.9838663951689132, + 0.9555403520366936, + 0.8659230906299106, + 0.9555403520366936, + 0.936556104044048, + 0.9365262267264388, + 0.943947221044588, + 0.8711152458705146, + 0.981787734953484, + 0.9977753058954394, + 0.939105864661958, + 0.941241408860912, + 0.9772426641825802, + 0.9783368141256884, + 0.9783368141256884, + 0.8035224554513878, + 0.8878885108220647, + 0.9498970784947516, + 0.9954182612676434, + 0.8911007105869436, + 0.9977822580645164, + 0.9332845830090168, + 0.7698457560674342, + 0.8237875450920827, + 0.7694629219019462, + 0.9545454545454548, + 0.7676911617909391, + 0.8737944824901346, + 0.7706024497958504, + 0.7971142965635086, + 0.797381306659819, + 0.8620542233987611, + 0.8139854059928581, + 0.9887078033035884, + 0.9359939732913412, + 0.816825438145235, + 0.8422527112008905, + 0.8452819441807481, + 0.8400216450216451, + 0.8999203521041261, + 0.929916690661292, + 0.830854814143431, + 0.9513142174432496, + 0.9688527588701455, + 0.9228795379537954, + 0.7730756056428137, + 0.958302500539574, + 0.8026224595457895, + 0.804211768109809, + 0.999122807017544, + 0.9565843431073292, + 0.8024218124622581, + 0.8815110224684692, + 0.8108800084863914, + 0.9608990650462856, + 0.7587225856098497, + 0.8465945179292698, + 0.8955974273031978, + 0.9430511599324012, + 0.7968522430480871, + 0.942185445331794, + 0.8678328134388728, + 0.8589010971043637, + 0.9773557492735576, + 0.8072544965953004, + 0.9954545454545456, + 0.8468840523666226, + 0.7893040004872826, + 0.999122807017544, + 0.8702035016515567, + 0.7949970358330488, + 0.9294585399607892, + 0.8407994285729776, + 0.8788200589970502, + 0.8314481030702937, + 0.831385641452182, + 0.9804378566350936, + 0.9129349807104162, + 0.8141494511694449, + 0.9133990354371988, + 0.9851370084561714, + 0.9095532047456912, + 0.8505448360551613, + 0.963157894736842, + 0.7634237761904064, + 0.9011822106778054, + 0.9956171156600898, + 0.95942299709423, + 0.8553134080531343, + 0.8472097261066925, + 0.9805098186910532, + 0.8553134080531343, + 0.7714797416324134, + 0.9997983870967744, + 0.8217563751752737, + 0.8946470109877639, + 0.999122807017544, + 0.8354069917967499, + 0.9416562889165628, + 0.7916704805491989, + 0.936963017728694, + 0.8580430671412884, + 0.84746622922539, + 0.7867084930870223, + 0.8909560347514579, + 0.992671182389769, + 0.9848040830545792, + 0.8630706569122703, + 0.8702378201869908, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.907644799841382, + 0.999122807017544, + 0.9414868925909092, + 0.9335682269765724, + 0.8893524283935244, + 0.9822495603003196, + 0.8052224642752426, + 0.9379369101877942, + 0.9090909090909088, + 0.756404071529602, + 0.9271888077994948, + 0.9921175854473762, + 0.8553134080531343, + 0.9943501037415146, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049176, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8089287811425218, + 0.8017627702025453, + 0.7916704805491989, + 0.936963017728694, + 0.8580430671412884, + 0.84746622922539, + 0.7867084930870223, + 0.90276124713408, + 0.992671182389769, + 0.8072821072057714, + 0.9848040830545792, + 0.8189889492826025, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.974712351554919, + 0.999777530589544, + 0.937103645050706, + 0.9773557492735576, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9503668087629396, + 1, + 0.9271888077994948, + 0.7647361516158825, + 0.9807297003570874, + 0.9364502164502164, + 0.7901612469857595, + 0.824287208001439, + 0.9807297003570874, + 0.7614649785030472, + 0.8658008658008658, + 0.9939130434782611, + 0.9066651512935219, + 0.8939526037506182, + 0.9842229467473992, + 0.865081443540125, + 0.9167169276268624, + 0.8794346322201474, + 0.765130456168069, + 0.8734544866674276, + 0.909520787797598, + 0.8854931946173012, + 0.7673924006226841, + 0.8798233135618779, + 0.9852364106660584, + 0.7637569649841349, + 0.9348260838243078, + 0.933522474466579, + 0.8377846225826576, + 0.9583806183156228, + 0.9331326790672908, + 0.9383147514181556, + 0.9589825216566162, + 0.8060876415101113, + 0.9783224922971588, + 0.9583806183156228, + 0.899590944489805, + 0.8941653123998358, + 0.9668188169538892, + 0.9783224922971588, + 0.9679972612119138, + 0.8797605429806478, + 0.7963975193082085, + 0.8839816990630294, + 0.9431528211472392, + 0.8367334869051766, + 0.8658008658008658, + 0.9921746738179468, + 0.9020614173817516, + 0.7562166685686029, + 0.8984134398306008, + 0.9687833580671199, + 0.8324262590094272, + 0.7778237575832933, + 0.8480007561436672, + 0.9579079093729875, + 0.845860397670802, + 0.7551254672930834, + 0.8899966113703928, + 0.7908116150724073, + 0.8910183976510794, + 0.9586402202505121, + 0.9614055686011409, + 0.9466976131633718, + 0.8344345242846016, + 0.7881948755231197, + 0.8703128420935895, + 0.7758848540806752, + 0.9184591472656428, + 0.9495128094164198, + 0.8796487671810186, + 0.7514068195240423, + 0.8716815273032167, + 0.9882425857143352, + 0.9633770826635396, + 0.7728726352092181, + 0.7549603797492292, + 0.8460813462362223, + 0.9172118090262832, + 0.992952541754412, + 0.8606043918383145, + 0.7745935959659945, + 0.9636724437338746, + 0.7960368686049766, + 0.8285988264418827, + 0.9708841861711646, + 0.8299341990318011, + 0.8419381421530754, + 0.784953771420362, + 0.7591712665406429, + 0.8689452322602814, + 0.7766626862314431, + 0.7843042441238667, + 0.7800515724165504, + 0.8797549464963943, + 0.9919502705663622, + 0.9893735932410646, + 0.8894092494980258, + 0.8411462167336957, + 0.8604416000492892, + 0.9391164837414664, + 0.9875732201051683, + 0.8668958338409165, + 0.910974119092226, + 0.9335682269765724, + 0.8903543205412945, + 0.7579050997201501, + 0.9129974387310056, + 0.8184361507912837, + 0.8985858297326429, + 0.8811309071018276, + 0.9600766541682176, + 0.9142379797053092, + 0.8553282796247272, + 0.9209665616774528, + 0.7653056658292261, + 0.9428934497795352, + 0.9766567420679494, + 0.9320892949781068, + 0.8764803941254208, + 0.9615141634622412, + 0.8025926314878588, + 0.935632010504501, + 0.9954545454545456, + 0.8383046372479713, + 0.8085158042512651, + 0.8799003347391113, + 0.8519408442208185, + 0.7642901122754603, + 0.9104413159581644, + 0.89138879753655, + 0.8889595044710776, + 0.8674196841123456, + 0.9890311615492476, + 0.9817061821644611, + 0.9645756670815068, + 0.9013683659572824, + 0.9379327738576018, + 0.8277684278026405, + 0.8025926314878588, + 0.8164472422898458, + 0.9476735033728184, + 0.9280169976669376, + 0.9400644385653472, + 0.8571175858480748, + 0.9457607069255074, + 0.7890197773695017, + 0.9341554258408444, + 0.8197634340126408, + 0.9579224065577792, + 0.8701372997711668, + 0.9529052383428788, + 0.9845238804935112, + 0.909042520211614, + 0.7869703117696519, + 0.8276242108365519, + 0.878685196514601, + 0.7563441975980676, + 0.7552008456659621, + 0.9576803072122886, + 0.7766774350616475, + 0.8786356094048401, + 0.8863636363636365, + 0.8824223337513897, + 0.915641381346678, + 0.9097297101659864, + 0.952612204076308, + 0.9667491997801664, + 0.9203132832080203, + 0.8318181818181817, + 0.8553636363636363, + 0.7733211512105985, + 0.8722470169622666, + 0.8975645313091688, + 0.8977159303535192, + 0.9912311643305796, + 0.9024231247013856, + 0.86918360351979, + 0.8278906432659406, + 0.8317573749391951, + 0.9643924081792452, + 0.938598748759861, + 0.984466571720076, + 0.9883020564051679, + 0.977397740533538, + 0.8324262590094272, + 0.957204861709126, + 0.9815689054392762, + 0.9723297607875788, + 0.9166058436529154, + 0.7521706555006759, + 0.9280169976669376, + 0.9358035287465732, + 0.8764803941254208, + 0.9153455696596016, + 0.8469432605765171, + 0.99268071993084, + 0.988226739831974, + 0.996336999414424, + 0.9244884191211992, + 0.8507008302142539, + 0.9593509283699424, + 0.8061755182821719, + 0.9615141634622412, + 0.9839330712663648, + 0.9555873521968756, + 0.9775173594082412, + 0.8128624949482813, + 0.9514741813067672, + 0.9817522080920388, + 0.981025791388756, + 0.9818181818181816, + 0.9710861248452468, + 0.9773557492735576, + 0.890085589718168, + 0.954337370755309, + 0.8919753086419753, + 0.8552031760963528, + 0.9545454545454548, + 0.8563472606128697, + 0.8478228971791203, + 0.8853335760168058, + 0.825019069412662, + 0.8305431015989557, + 0.7900733399481583, + 0.9108949697942603, + 0.917855352912078, + 0.8955772084667657, + 0.82987479094277, + 0.9090909090909088, + 0.9331273751154144, + 0.841981268119079, + 0.9061617983216465, + 0.7650216450216449, + 0.8414755340099983, + 0.9939138029238658, + 0.8766192814819845, + 0.8315151515151515, + 0.8473382904078122, + 0.914059797380776, + 0.7659476739028936, + 0.8559376367887911, + 0.8114111498257839, + 0.7943527200862163, + 0.7697780793564009, + 0.8192024956758094, + 0.9625172175038818, + 0.9466379024540816, + 0.9248249108281914, + 0.7835010344179048, + 0.7696916201990726, + 0.8741784037558686, + 0.8788591215600511, + 0.7847145200343669, + 0.995553782140972, + 0.885547201336675, + 0.932238896428148, + 0.8666467850773247, + 0.9318181818181815, + 0.874330829529188, + 0.8477600534912598, + 0.8513796499579376, + 0.7928688716866057, + 0.8300839482005723, + 0.8104640050546934, + 0.7623555471966228, + 0.8477133966865695, + 0.8069468267581477, + 0.7970641933918771, + 0.7517470662254077, + 0.811386593204775, + 0.8200234516324811, + 0.8169486429889492, + 0.8731362653208361, + 0.8763157894736843, + 0.8185744024917364, + 0.9052173913043478, + 0.8415792985968426, + 0.7820239132603559, + 0.8373297473297473, + 0.7516072325464591, + 0.9659417587369664, + 0.7649602377888222, + 0.7936066126855602, + 0.9090909090909088, + 0.945216049382716, + 0.8771929824561405, + 0.8174876847290639, + 0.8553636363636363, + 0.8455433455433455, + 0.9233441393338415, + 0.8437332724582007, + 0.832909538499891, + 0.840948616293985, + 0.8177290491628549, + 0.9175438596491228, + 0.882198952879581, + 0.8150509397735729, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.7862727272727271, + 0.8107452697678261, + 0.9637205387205386, + 0.852293824358888, + 0.8709558996012198, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352229, + 0.805168828270855, + 0.9090909090909088, + 0.8771929824561405, + 0.8174876847290639, + 0.8813770455902434, + 0.8553636363636363, + 0.8455433455433455, + 0.8049385749385749, + 0.8437332724582007, + 0.832909538499891, + 0.8177290491628549, + 0.9175438596491228, + 0.8767128866853765, + 0.8150509397735729, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.7862727272727271, + 0.8107452697678261, + 0.9637205387205386, + 0.852293824358888, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.805168828270855, + 0.9545454545454548, + 0.9545454545454548, + 0.8298946640273919, + 0.8041381029540074, + 0.9786956521739132, + 0.9055353950321428, + 0.8658008658008658, + 0.8041630667784955, + 0.792782754772987, + 0.8259976777571356, + 0.8220626497774737, + 0.8210461476724114, + 0.8101813436763873, + 0.971001604361102, + 0.9289464621791536, + 0.8732908588456849, + 0.9320839327803117, + 0.7799127011297503, + 0.9521230391509398, + 0.8387538514207465, + 0.8873673399520713, + 0.8919696969696971, + 0.9939130434782611, + 0.9772426641825802, + 0.8315151515151515, + 0.8408502506153573, + 0.9545454545454548, + 0.8658008658008658, + 0.9939130434782611, + 0.9418179668098864, + 0.7650216450216449, + 0.8654908035026879, + 0.9992656508417233, + 0.7803152709359605, + 0.833023231770358, + 0.9983501374885428, + 0.8042480240124439, + 0.7697542997542998, + 0.9203347173341052, + 0.8077175608822436, + 0.863207096556374, + 0.9891326164874552, + 0.8157646741278424, + 0.8722929363621342, + 0.8412806151509398, + 0.9100844696456204, + 0.9172591608126068, + 0.9170938628158845, + 0.8485714285714286, + 0.8571645021645024, + 0.8877796694698104, + 0.8146320346320346, + 0.9983501374885428, + 0.9617032985121432, + 0.9108802545427966, + 0.9508984239139112, + 0.9181661424871335, + 0.9529605866177816, + 0.8319465220643232, + 0.8402426098282156, + 0.9191026771713572, + 0.819087310370122, + 0.8628923192823611, + 0.9602434075673276, + 0.7593235251819751, + 0.9456277248027678, + 0.9435343652049158, + 0.9302009048080272, + 0.7932712550607288, + 0.8786981717234608, + 0.8486842544219593, + 0.9126746767131658, + 0.9486042010676804, + 0.9038724480869904, + 0.958686173433348, + 0.7865058108244474, + 0.8704285747314824, + 0.9240999622367164, + 0.806845704003599, + 0.9624336598289146, + 0.8942981283868459, + 0.8045481228624208, + 0.9823493170094518, + 0.8126984126984126, + 0.998531571416838, + 0.8419809946143553, + 0.9228410057516631, + 0.9946871424565764, + 0.814372836946585, + 0.8452819441807481, + 0.9757439972091474, + 0.7999757977078849, + 0.811708695128781, + 0.9226825090266608, + 0.915537959944108, + 0.8447134792639336, + 0.7824996118615121, + 0.9004189790402766, + 0.992492576897818, + 0.8141116751269034, + 0.9641837718077296, + 0.8643778677462887, + 0.9569910794861844, + 0.8929721958656435, + 0.9134879224116806, + 0.8981798632747807, + 0.81115791740409, + 0.9732801304295486, + 0.9270758346340522, + 0.9377496859510692, + 0.9314133822181484, + 0.97145319916461, + 0.969655719759168, + 0.774258455570617, + 0.7646989654610622, + 0.9179126246763072, + 0.9344663297510818, + 0.9954192028862328, + 0.7896845621854086, + 0.9455885850178358, + 0.9633770826635396, + 0.8393119121793614, + 0.9022475277597836, + 0.8956434074042219, + 0.8868725897920605, + 0.947727507922727, + 0.8100165040010109, + 0.7541551246537396, + 0.7542451891577083, + 0.917562326869806, + 0.8951137084436364, + 0.9046867398146928, + 0.9823446334538573, + 0.7795168102658113, + 0.98334457368405, + 0.949870071311262, + 0.7943210699040147, + 0.8322736882141543, + 0.9149338374291116, + 0.8997612989216043, + 0.957120046591764, + 0.8238720996776804, + 0.9493296120831972, + 0.9088759068464726, + 0.929966729678639, + 0.909593974766178, + 0.9088759068464726, + 0.7862360164041836, + 0.9165811787189776, + 0.9386430599161039, + 0.8032011401974772, + 0.7862727272727271, + 0.9754897598639012, + 0.7600017202867505, + 0.9455885850178358, + 0.9633770826635396, + 0.8436837588803084, + 0.8980736820318737, + 0.8859552362571937, + 0.8868725897920605, + 0.947727507922727, + 0.8057328891947176, + 0.761469327784964, + 0.8875623268698062, + 0.8965017504270001, + 0.9039894860912128, + 0.984298575553884, + 0.7714232447296058, + 0.98334457368405, + 0.949870071311262, + 0.7943210699040147, + 0.8202771072840704, + 0.9149338374291116, + 0.8933801982348771, + 0.957120046591764, + 0.8238720996776804, + 0.9529052383428788, + 0.90120315914534, + 0.929966729678639, + 0.945128934703434, + 0.9095750421335858, + 0.7766558276104735, + 0.9151778010434616, + 0.9471874624563446, + 0.8378181818181819, + 0.9754897598639012, + 0.7691572905827265, + 0.7959133007990622, + 0.8262184063662379, + 0.9894645159690536, + 0.996521739130435, + 0.7819131922573495, + 0.850401606425703, + 0.996521739130435, + 0.9077642484940728, + 0.89655436679566, + 0.9964912280701756, + 0.7938737011467188, + 0.8802936186789987, + 0.9280303030303032, + 0.7987525608923287, + 0.755239120734144, + 0.9308288388816562, + 0.8668602157771254, + 0.8448511242895973, + 0.7961445704225082, + 0.9099056220340456, + 0.9878450565293272, + 0.7642455368060652, + 0.9778493899137112, + 0.8965968223131894, + 0.8932895451827312, + 0.9285799156049388, + 0.9432927941623594, + 0.9496993493645752, + 0.9692603418275338, + 0.8702493159014899, + 0.9739749369603424, + 0.996521739130435, + 0.8907367280606716, + 0.904913008013858, + 0.968471177944862, + 0.825, + 0.9027775208335084, + 0.7617903311136486, + 0.884146408684465, + 0.9446018376578228, + 0.9964912280701756, + 0.908597321143829, + 0.996521739130435, + 0.9619598036238828, + 0.760301236816147, + 0.9921175854473762, + 0.8553134080531343, + 0.9943501037415146, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049176, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8089287811425218, + 0.9416562889165628, + 0.7955445656901864, + 0.7916704805491989, + 0.936963017728694, + 0.8580430671412884, + 0.90276124713408, + 0.992671182389769, + 0.9848040830545792, + 0.9514741813067672, + 0.8630706569122703, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.9857005881574218, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.9851370084561714, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.8931621545809378, + 1, + 0.9271888077994948, + 0.7647361516158825, + 0.9921175854473762, + 0.8553134080531343, + 0.9943501037415146, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049176, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8089287811425218, + 0.8017627702025453, + 0.7916704805491989, + 0.936963017728694, + 0.8580430671412884, + 0.84746622922539, + 0.7867084930870223, + 0.90276124713408, + 0.992671182389769, + 0.8072821072057714, + 0.9848040830545792, + 0.8189889492826025, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.974712351554919, + 0.999777530589544, + 0.937103645050706, + 0.9773557492735576, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9503668087629396, + 1, + 0.9271888077994948, + 0.7647361516158825, + 0.8653436259062406, + 0.9166666666666666, + 0.8513043478260871, + 0.888762154374558, + 0.9072684799014413, + 0.8911473104418144, + 0.8931451612903224, + 0.8046414142652472, + 0.8069790866112391, + 0.8818832214815736, + 0.8945874001774624, + 0.8064644137224782, + 0.8411703547857459, + 0.8850692346282528, + 0.755864605581299, + 0.8544702845816942, + 0.9105444641861692, + 0.9339130434782608, + 0.8908740092733132, + 0.8673913043478261, + 0.8286547121919265, + 0.95706340378198, + 0.9119365546072284, + 0.9110759625390218, + 0.9018301785200464, + 0.9107392505404756, + 0.812383779297877, + 0.8091839475036197, + 0.92656200324369, + 0.9618472252807516, + 0.9614035087719296, + 0.7500000000000002, + 0.8598402189827489, + 0.9545454545454548, + 0.9545454545454548, + 0.8298946640273919, + 0.8041381029540074, + 0.9786956521739132, + 0.9055353950321428, + 0.8658008658008658, + 0.8041630667784955, + 0.792782754772987, + 0.8259976777571356, + 0.8220626497774737, + 0.8210461476724114, + 0.8101813436763873, + 0.971001604361102, + 0.9289464621791536, + 0.8732908588456849, + 0.9320839327803117, + 0.7799127011297503, + 0.9521230391509398, + 0.8387538514207465, + 0.8873673399520713, + 0.8919696969696971, + 0.9939130434782611, + 0.9772426641825802, + 0.8315151515151515, + 0.8408502506153573, + 0.9545454545454548, + 0.8658008658008658, + 0.9939130434782611, + 0.9418179668098864, + 0.912126399896816, + 0.8887138991962918, + 0.8348061215534456, + 0.9654149311197341, + 0.9378050392345934, + 0.7862793427792023, + 0.8443604690958973, + 0.9593698200373342, + 0.8512088827319056, + 0.8685180682717806, + 0.8468774244700616, + 0.7714560308712177, + 0.8438870652966832, + 0.8969414245866957, + 0.7886269744426645, + 0.7869777589350374, + 0.8088224211621804, + 0.8437355447339081, + 0.7910699721201396, + 0.8676659390892717, + 0.9527613124711042, + 0.8204485735368444, + 0.9271303344105843, + 0.8146456352114138, + 0.8976037629362695, + 0.8683719728292518, + 0.8802027440346276, + 0.9196776036942447, + 0.8365367223192828, + 0.9120870195043488, + 0.8288691920804903, + 0.8922059565791751, + 0.8856333436369807, + 0.8958383344884892, + 0.8547177456502489, + 0.8876177172043811, + 0.8044462631285333, + 0.7769360074394543, + 0.870165794962474, + 0.9088771460360435, + 0.8639440219481173, + 0.8216171045177142, + 0.9553836542485572, + 0.8590281921783777, + 0.7787593370202928, + 0.980480932194884, + 0.859475457715449, + 0.8392883910692737, + 0.9697334753456728, + 0.9875342767410386, + 0.7762805813227043, + 0.8819115666628253, + 0.9996664755680739, + 0.8213533116534559, + 0.8993451012599613, + 0.994957229074001, + 0.8044910674094043, + 0.8264324715896463, + 0.9192754972628756, + 0.7970964194386293, + 0.7945612011511877, + 0.9286518512105283, + 0.8566385381298418, + 0.8419664159663934, + 0.8037444492468451, + 0.8979338496600437, + 0.9911725943373176, + 0.8072821072057714, + 0.9582948583751757, + 0.9361559940016043, + 0.848885751747483, + 0.9282065099530084, + 0.9375384371708221, + 0.9244381440159178, + 0.922778749811867, + 0.863030950010363, + 0.9604336230108552, + 0.9997485909897145, + 0.9281372808943766, + 0.9220884721293067, + 0.9635181750863282, + 0.9383494988405086, + 0.9820953369402764, + 0.8113952633989926, + 0.7593325960761085, + 0.8846768686559165, + 0.9402013525622738, + 0.98884684307581, + 0.9345641592934529, + 0.9797300792648269, + 0.9211896852548491, + 0.7727183435914119, + 0.8553134080531343, + 0.7923275652679538, + 0.7819131922573495, + 0.7906170310433895, + 0.8406484670606788, + 0.7894736842105264, + 0.8681498428014106, + 0.8408063572139095, + 0.7738548847622624, + 0.8107066154287429, + 0.909636086500905, + 0.9320839327803117, + 0.894689054121916, + 0.8861995746607623, + 0.8134896030245747, + 0.9636363636363636, + 0.8392276737347159, + 0.901982337361457, + 0.8985728391457872, + 0.792183707284576, + 0.781322126609299, + 0.9062315973735743, + 0.9367756029417319, + 0.9319511232326471, + 0.9114862576701875, + 0.9712199515753038, + 0.8980313754953725, + 0.9114891155371125, + 0.9718991822232025, + 0.8957817018995955, + 0.885216820326823, + 0.9629347112101692, + 0.9112715002623073, + 0.8614427822576298, + 0.9049664936619728, + 0.8820162243309974, + 0.888454039780395, + 0.9041504983342782, + 0.8799225737707326, + 0.8876439844627072, + 0.8799233569935232, + 0.918126588116288, + 0.9555805365011201, + 0.8931008593563526, + 0.9515523658057982, + 0.9349917026220693, + 0.8474827234526232, + 0.9150998524663875, + 0.9019272454814691, + 0.9301521751223218, + 0.9063992024260691, + 0.9084458145791406, + 0.9168300877742804, + 0.9333616542847242, + 0.9154663449613054, + 0.9251461704126609, + 0.917690844476884, + 0.9147435499325136, + 0.9222813943309438, + 0.8949753018246851, + 0.880217317459482, + 0.9102208157579199, + 0.9310777500028851, + 0.9593888728040101, + 0.9143927587731583, + 0.9653623648480182, + 0.895914543937476, + 0.8635374376096991, + 0.9681319140967855, + 0.7944051293641291, + 0.8332891527009144, + 0.9572275212696914, + 0.9858336693217798, + 0.8109702628253749, + 0.8979224069109053, + 0.9560034436331701, + 0.8639809350471249, + 0.9097687059679831, + 0.8322745922557433, + 0.7971859524323482, + 0.8358842439381247, + 0.8283017039354447, + 0.8143104247154894, + 0.7738369426049334, + 0.8995325759943457, + 0.8642235928871177, + 0.8487681619367479, + 0.764572997619905, + 0.8781835807412907, + 0.9926851552084225, + 0.9812777311360182, + 0.8861726828683071, + 0.8774954149924378, + 0.926345302298229, + 0.8766210768243543, + 0.9378841050418827, + 0.939845912034176, + 0.823816185944173, + 0.856345527603842, + 0.8334595938340698, + 0.8998404410917807, + 0.9376711024759753, + 0.911890053248672, + 0.9300633742947678, + 0.8084175084175085, + 0.8334508286707701, + 0.7740091154092624, + 0.7992420095977141, + 0.9006621739097868, + 0.854653633074874, + 0.8760061398599419, + 0.9813930191848028, + 0.8468484447398872, + 0.8096121652455617, + 0.9446374125411141, + 0.8908978309617703, + 0.8171053577998276, + 0.8734377849868722, + 0.9519939718593139, + 0.8280300613338275, + 0.876595396020583, + 0.9655210912171963, + 0.8261344387971954, + 0.8625542828389395, + 0.8903288184273107, + 0.7940378215823586, + 0.821308528676284, + 0.8862838943076522, + 0.801335608067006, + 0.7898913315911535, + 0.8939243895233296, + 0.8298894470003665, + 0.8095100145922008, + 0.8059795113616446, + 0.8742160601633633, + 0.9583180594822122, + 0.7551458714415599, + 0.9136540178884357, + 0.9206422293761181, + 0.8591683975024862, + 0.904109564575604, + 0.8472694098632094, + 0.9130149998360988, + 0.880145246772824, + 0.8361423023057717, + 0.9167552503585765, + 0.9112809824102042, + 0.8970011148753945, + 0.8914866076962089, + 0.923955848833383, + 0.9413970359062177, + 0.9010745526527456, + 0.8041496126372355, + 0.7790726657769016, + 0.8538666204813453, + 0.8917500286633246, + 0.9410172873790268, + 0.828568031294484, + 0.9472721492692258, + 0.8601896132182887, + 0.7893633567566072, + 0.9778255798991798, + 0.8408064685157908, + 0.8526279870536415, + 0.8833001568387581, + 0.9124677847409535, + 0.8503633201346489, + 0.8833774822775062, + 0.9417491009932606, + 0.9147990007027552, + 0.8911473104418144, + 0.9223179978964999, + 0.7993105223748839, + 0.850350519784385, + 0.9028697210251827, + 0.8286759028531826, + 0.8031469436294986, + 0.9091537502090101, + 0.8093089826039098, + 0.8904874214357624, + 0.8411703547857459, + 0.9300497863013258, + 0.9285163775070171, + 0.9184586012318386, + 0.9105444641861692, + 0.9164299777201611, + 0.9326776376702162, + 0.915238611353349, + 0.8549571170132747, + 0.923455550886179, + 0.9049110370735057, + 0.9119365546072284, + 0.9018909142690755, + 0.891364561195284, + 0.9086032637241696, + 0.9120677703982908, + 0.7772353780844471, + 0.812383779297877, + 0.8141980933100278, + 0.8822295931235452, + 0.9449596208074079, + 0.8978862439049966, + 0.9095010430865866, + 0.8584872270322912, + 0.8086861251474953, + 0.9214310387816568, + 0.8513156916323267, + 0.8861426594528754, + 0.9563580635481227, + 0.8379543933348044, + 0.8656705863743085, + 0.98211089011857, + 0.8110596347942214, + 0.9034463518857324, + 0.9635607491657863, + 0.8422382578141601, + 0.804708761453583, + 0.7698095150780381, + 0.7928287729663905, + 0.8372182500994741, + 0.8427896430369138, + 0.855443432650397, + 0.7939358902616885, + 0.7798108510703752, + 0.8567241066808098, + 0.9583038937015214, + 0.8148887053291618, + 0.9152406569855351, + 0.9028534602763532, + 0.8325119458879734, + 0.9302053778183247, + 0.8963386566638, + 0.8746814563549781, + 0.872251181030881, + 0.8686053557864637, + 0.9141058135529145, + 0.8632595037764901, + 0.9040022099272385, + 0.9059581070774078, + 0.9346013746176656, + 0.9298936488832736, + 0.8340239458302267, + 0.8702365021705257, + 0.8123721793207034, + 0.885883024060232, + 0.9117402687572846, + 0.936386353394425, + 0.8186788756172888, + 0.9671464581990991, + 0.848055950280692, + 0.8634065231167884, + 0.943821429875099, + 0.8448605670142738, + 0.8391308618400675, + 0.9254219485466432, + 0.969801679066684, + 0.7878255517886145, + 0.8357804468910168, + 0.9631549837457787, + 0.8766588491633124, + 0.883163649863375, + 0.9511620798446823, + 0.8066657873420849, + 0.8646146885061549, + 0.9029578211833432, + 0.8173068258119696, + 0.8033478921612156, + 0.8925053259258572, + 0.852437315787378, + 0.8476096224149778, + 0.8281685537387745, + 0.8864038761069699, + 0.966688404418, + 0.7614570139762271, + 0.9218212088326015, + 0.9097340269655556, + 0.864077528054265, + 0.8950383362559432, + 0.9073710788569305, + 0.9205839250299366, + 0.925130070799764, + 0.8576299437359549, + 0.9440950401078382, + 0.980790485473866, + 0.8716713610396803, + 0.8830330753654165, + 0.947413628857759, + 0.9115868956816537, + 0.9072478086555293, + 0.8887067486958385, + 0.8045206061109993, + 0.8778102296487642, + 0.9274293484428641, + 0.9658288014409694, + 0.8926838484147005, + 0.9632179959347835, + 0.9170977504366647, + 0.8054854384428153, + 0.9159799347276768, + 0.870259402604351, + 0.8402275254009515, + 0.9026564018866784, + 0.969798543419344, + 0.894474990496069, + 0.924076352335974, + 0.9429126764126102, + 0.8042639289221745, + 0.9218541569170036, + 0.9413543287285013, + 0.84560906239862, + 0.8512530801436985, + 0.8482251915257588, + 0.8418517009699383, + 0.8389250838766459, + 0.8780942953472136, + 0.8631072832356894, + 0.8400551602999186, + 0.8516270815329701, + 0.8873583533901547, + 0.9362723793519837, + 0.8578184506948072, + 0.9200868381562568, + 0.919241753809882, + 0.8090814478617769, + 0.9172442173513957, + 0.9208280320409932, + 0.8851201873403441, + 0.8620858836911702, + 0.8599934079935148, + 0.9464224065318294, + 0.8754179254812067, + 0.9307199381091358, + 0.930707642611767, + 0.9336712798542302, + 0.8756742763151554, + 0.899951826176289, + 0.8561565549568945, + 0.834305428035956, + 0.9043158701608425, + 0.8929659797398322, + 0.9503845826556759, + 0.8991612275139281, + 0.9813148595805599, + 0.8159243483663714, + 0.8774146105790617, + 0.8805473871785698, + 0.8168386335588215, + 0.8698762473047957, + 0.9165009998924976, + 0.9879292185766946, + 0.7704147258241087, + 0.8621323162821838, + 0.9420676506545669, + 0.8430911690338843, + 0.8642044705519123, + 0.8992599156815553, + 0.7848229577759359, + 0.8552257489567264, + 0.9107485390958536, + 0.8109378539976589, + 0.7760442198468392, + 0.8071817939237914, + 0.8488411028364334, + 0.8511599723642802, + 0.7930656733224284, + 0.9026466655874603, + 0.9432330473846552, + 0.8831072264534608, + 0.8943189089693644, + 0.8433884446453952, + 0.8957915181159275, + 0.8920211727858403, + 0.8656532195191253, + 0.8888272271166328, + 0.8185276031664389, + 0.8970283977981403, + 0.9482255936318409, + 0.8981625474527939, + 0.886392267992047, + 0.8763210075301389, + 0.8874771779807347, + 0.8847685034814367, + 0.811961856252122, + 0.7847145200343669, + 0.833222298535868, + 0.9240469682401297, + 0.9470088142769943, + 0.8108332314185674, + 0.9884763288693144, + 0.8537121244334758, + 0.7863842496662736, + 0.9710999057276702, + 0.8545775806305325, + 0.8288670673568047, + 0.9580430413202744, + 0.9851481216084019, + 0.8019990309518411, + 0.8765697319346342, + 0.9984485134812963, + 0.8827784956633106, + 0.897855261911528, + 0.9991228070175441, + 0.7869726824623813, + 0.8574600215751925, + 0.9104950845796125, + 0.7922752675949607, + 0.7825474175827186, + 0.9207382729968335, + 0.8317161986111055, + 0.84746622922539, + 0.8245418106987256, + 0.8914409068710273, + 0.9828315609612513, + 0.766483106515241, + 0.9500231063419912, + 0.9418084238960098, + 0.993758325008325, + 0.9340450649002454, + 0.9369761491626559, + 0.9242059912005234, + 0.9626281577206024, + 0.9004406503802566, + 0.9591920700382297, + 0.9770335633523987, + 0.9120886429915576, + 0.8878004962368867, + 0.9886242163794032, + 0.9651107579751624, + 0.8934452569589426, + 0.906094156405893, + 0.8004902860629857, + 0.8914046330636394, + 0.941658321518602, + 0.9765693239986738, + 0.8760032261652501, + 0.9991228070175441, + 0.9051910717095266, + 0.7935775831141221, + 0.929941088884573, + 0.8318189568317447, + 0.9721324228139152, + 0.8929555666008868, + 0.9899175068744273, + 0.7829559806346367, + 0.8330585670487148, + 0.9004712036731742, + 0.8079059133534838, + 0.907326978222119, + 0.8418462145170219, + 0.8355962235887732, + 0.9840600196897172, + 0.9727233543942168, + 0.9456931798893302, + 0.7835307826762479, + 0.9334823561531638, + 0.943912095206486, + 0.9719476865439598, + 0.8989607068123694, + 0.9899175068744273, + 0.91218688144154, + 0.968708052390917, + 0.9275641323723166, + 0.7750817305162342, + 0.7705110005585539, + 0.8746911090742437, + 0.906777236648719, + 0.9877189123128628, + 0.905810189680844, + 0.9039758195768428, + 0.9417675428322848, + 0.838458313625102, + 0.9578918616552848, + 0.9877224033535164, + 0.9600766541682176, + 0.9372227566431792, + 0.9996947496947498, + 0.9464739502688859, + 0.9273107442696306, + 0.8427440270131528, + 0.8930336617991886, + 0.8499116091074294, + 0.8297523357929766, + 0.8628042957923382, + 0.94362258995985, + 0.8861176478495414, + 0.992955297959396, + 0.954141881439958, + 0.9716068390573318, + 0.9372227566431792, + 0.9209665616774528, + 0.8810186818949944, + 0.8078565985679013, + 0.7888565809250084, + 0.8999765601568034, + 0.7784705964389922, + 0.8951137084436364, + 0.9694396869310692, + 0.906901471095239, + 0.9521895754027829, + 0.7517286913985001, + 0.8687571885281811, + 0.7912430201328434, + 0.9975369458128078, + 0.9160401958804216, + 0.9315711806648126, + 0.8609644958918051, + 0.8386594508420274, + 0.9351549836986592, + 0.9427180341404985, + 0.7681163618132653, + 0.8787858747853352, + 0.9893011313753898, + 0.8546700127495449, + 0.8758173885709947, + 0.9485066687801922, + 0.8003973221301792, + 0.8309934593862532, + 0.9026473100549586, + 0.7957711145179299, + 0.7958134120303104, + 0.8809153393318552, + 0.8550588891603323, + 0.8368966677964681, + 0.8049966847322658, + 0.8894131781606722, + 0.984770563952946, + 0.7945822416508489, + 0.9385796426731732, + 0.9400075247083102, + 0.8370209052650499, + 0.9406181150608247, + 0.9074883728808776, + 0.9137808792941257, + 0.9328829711123616, + 0.8601818483687415, + 0.8898049062435895, + 0.9722307756700375, + 0.9238623216857789, + 0.871665184175204, + 0.9528158707854402, + 0.9020360939999567, + 0.9516904425166645, + 0.8907461235222609, + 0.7809088432800615, + 0.8762088523996857, + 0.9320039039158255, + 0.9272893269521203, + 0.9058370878370338, + 0.9524516791586732, + 0.8829855968328181, + 0.7823245649207289, + 0.8748693498469887, + 0.8742883854021798, + 0.8746611748024347, + 0.9376819623311556, + 0.9947028289732674, + 0.8548763233394239, + 0.9049914056584369, + 0.9941197065722382, + 0.8487320955708422, + 0.9092712562873475, + 0.9763749646497006, + 0.8545982831576736, + 0.850548231352957, + 0.9407255024549774, + 0.8503648922153408, + 0.8359536461222336, + 0.9109614334891537, + 0.8647394698759232, + 0.9043414337084982, + 0.8450197352772266, + 0.9399452292694473, + 0.9846994595492535, + 0.9486152933634998, + 0.9754185212178655, + 0.9588847492141126, + 0.8651058220157922, + 0.9272067154146025, + 0.9405616327785196, + 0.9367871439736926, + 0.9386593272049244, + 0.8902973666791916, + 0.9017097117882626, + 0.9739530318740881, + 0.9085982902991971, + 0.9479750510619678, + 0.9829223011990686, + 0.8379245523453007, + 0.939761065723693, + 0.8491109021102726, + 0.8703455431007857, + 0.9177162151766173, + 0.9445085979284547, + 0.9970392628794374, + 0.9623118653922792, + 0.9932823846253213, + 0.9428523442680733, + 0.8098315966162147, + 0.9090909090909088, + 0.8237875450920827, + 0.945216049382716, + 0.8771929824561405, + 0.7694629219019462, + 0.8174876847290637, + 0.9545454545454548, + 0.8813770455902434, + 0.8553636363636361, + 0.8455433455433456, + 0.7676911617909391, + 0.8737944824901346, + 0.8588924177547349, + 0.7706024497958504, + 0.7971142965635086, + 0.797381306659819, + 0.8483876994316057, + 0.8282595845401285, + 0.8034089244055879, + 0.817729049162855, + 0.9363500515543048, + 0.9359939732913412, + 0.882198952879581, + 0.8576806647865884, + 0.815050939773573, + 0.9091975633632599, + 0.8917391304347826, + 0.8452819441807481, + 0.8400216450216451, + 0.8253968253968254, + 0.8210322890105873, + 0.8348289163941287, + 0.9554938655160816, + 0.852293824358888, + 0.858005568338311, + 0.8161148760137403, + 0.9688527588701455, + 0.8467761176075351, + 0.9017543859649124, + 0.7897773279352229, + 0.805168828270855, + 0.8317573749391951, + 0.9643924081792452, + 0.938598748759861, + 0.984466571720076, + 0.9883020564051679, + 0.977397740533538, + 0.8324262590094272, + 0.957204861709126, + 0.9815689054392762, + 0.9723297607875788, + 0.9166058436529154, + 0.7521706555006759, + 0.9280169976669376, + 0.9358035287465732, + 0.8764803941254208, + 0.9153455696596016, + 0.8469432605765171, + 0.99268071993084, + 0.988226739831974, + 0.996336999414424, + 0.9244884191211992, + 0.8507008302142539, + 0.9593509283699424, + 0.8061755182821719, + 0.9615141634622412, + 0.9839330712663648, + 0.9555873521968756, + 0.9775173594082412, + 0.8128624949482813, + 0.9514741813067672, + 0.9817522080920388, + 0.981025791388756, + 0.9818181818181816, + 0.9710861248452468, + 0.9773557492735576, + 0.890085589718168, + 0.954337370755309, + 0.9807297003570874, + 0.9364502164502164, + 0.7901612469857595, + 0.824287208001439, + 0.9807297003570874, + 0.7614649785030472, + 0.8658008658008658, + 0.9939130434782611, + 0.9066651512935219, + 0.8939526037506182, + 0.9842229467473992, + 0.865081443540125, + 0.9167169276268624, + 0.8794346322201474, + 0.765130456168069, + 0.8734544866674276, + 0.909520787797598, + 0.8854931946173012, + 0.7673924006226841, + 0.8798233135618779, + 0.9852364106660584, + 0.7637569649841349, + 0.9348260838243078, + 0.933522474466579, + 0.8377846225826576, + 0.9583806183156228, + 0.9331326790672908, + 0.9383147514181556, + 0.9589825216566162, + 0.8060876415101113, + 0.9783224922971588, + 0.9583806183156228, + 0.899590944489805, + 0.8941653123998358, + 0.9668188169538892, + 0.9783224922971588, + 0.9679972612119138, + 0.8797605429806478, + 0.7963975193082085, + 0.8839816990630294, + 0.9431528211472392, + 0.8367334869051766, + 0.8658008658008658, + 0.9921746738179468, + 0.9020614173817516, + 0.7562166685686029, + 0.8168393183171508, + 0.826467375579422, + 0.94513113161729, + 0.9585637037072424, + 0.8949088289552438, + 0.9053910284366296, + 0.817437533227007, + 0.7978783990223038, + 0.7521903939726886, + 0.754943158980426, + 0.7928605555934748, + 0.8989607068123694, + 0.7975892455476461, + 0.7725199492096488, + 0.7662703504995123, + 0.9767351231527428, + 0.9424631082284728, + 0.866898864682116, + 0.7783625730994154, + 0.9376349250962784, + 0.9303020409693342, + 0.8287563928270861, + 0.8603115680426934, + 0.8114732228923959, + 0.9669758970781992, + 0.8105976841695943, + 0.7959269589012261, + 0.8302139037433156, + 0.986986590623621, + 0.751078143739283, + 0.9319865517177697, + 0.8782639830593114, + 0.8578369301463997, + 0.9189313114771297, + 0.9633417717529799, + 0.8343138912267726, + 0.8818418640888517, + 0.9736024773604863, + 0.8613042225346038, + 0.888024195606103, + 0.941782855514232, + 0.8404355723269926, + 0.8454461341922117, + 0.8945900568243629, + 0.8289908029078139, + 0.8273210174189225, + 0.8916495568044747, + 0.854433147885652, + 0.8505264662318455, + 0.8308969974341954, + 0.8899385122095016, + 0.9625463006926477, + 0.822879325367078, + 0.9328941076717102, + 0.9254546321964118, + 0.8536794132479856, + 0.9149236519168374, + 0.8988039859606616, + 0.9131258134142545, + 0.905813040144688, + 0.8670687350210408, + 0.9214606820661353, + 0.9408298439101216, + 0.9049472424037028, + 0.9020513700091627, + 0.9349510800595612, + 0.9123902818135722, + 0.914220218308289, + 0.8665729766490252, + 0.8246776811045251, + 0.8835807215942634, + 0.917454975120021, + 0.9496273615183636, + 0.8917539300260674, + 0.9646948055738331, + 0.8878652466688929, + 0.8283471179008514, + 0.9319439135020179, + 0.8611711731084291, + 0.8995765609336107, + 0.9025233427813701, + 0.9630284898620637, + 0.9104667843695463, + 0.871798757072994, + 0.900245383469288 + ] + }, + "name": "", + "parents": [ + "World/Latam/ARG/Internet", + "World/Persian Gulf/AZE/Internet", + "World/Asia/BGD/Internet", + "World/Latam/BRA/Internet", + "World/Pair/CHN/Internet", + "World/South Africa/CMR/Internet", + "World/Latam/COL/Internet", + "World/Latam/CRI/Internet", + "World/North Africa/DZA/Internet", + "World/North Africa/EGY/Internet", + "World/South Africa/GHA/Internet", + "World/Asia/IDN/Internet", + "World/Asia/IND/Internet", + "World/Persian Gulf/IRQ/Internet", + "World/North Africa/MAR/Internet", + "World/South Africa/MOZ/Internet", + "World/South Africa/NGA/Internet", + "World/Latam/PAN/Internet", + "World/Latam/PER/Internet", + "World/Asia/PHL/Internet", + "World/South Africa/SEN/Internet", + "World/Asia/THA/Internet", + "World/North Africa/TUR/Internet", + "World/Asia/VNM/Internet", + "World/Persian Gulf/YEM/Internet", + "World/South Africa/ZAF/Internet", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/EGY/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Persian Gulf/IRQ/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/South Africa/SEN/Environment", + "World/Asia/THA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Europe/NLD/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Europe/AUT/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Latam/PAN/Economy", + "World/Asia/PHL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/Asia/KOR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Europe/SWE/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/CRI/Agriculture", + "World/Europe/DEU/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/North Africa/EGY/Agriculture", + "World/Europe/ESP/Agriculture", + "World/Europe/FRA/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/ISR/Agriculture", + "World/Asia/KOR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Europe/NLD/Agriculture", + "World/Latam/PAN/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Europe/POL/Agriculture", + "World/Europe/SWE/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Latam/VEN/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/Persian Gulf/ARE/Agriculture", + "World/Latam/ARG/Agriculture", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/Latam/CRI/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/Europe/FRA/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Europe/HRV/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/ISR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Persian Gulf/OMN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Persian Gulf/QAT/Agriculture", + "World/Persian Gulf/SAU/Agriculture", + "World/Europe/SWE/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/Persian Gulf/ARE/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CRI/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/ISR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Europe/NLD/Agriculture", + "World/Persian Gulf/OMN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Persian Gulf/QAT/Agriculture", + "World/Pair/USA/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/Latam/ARG/Agriculture", + "World/Europe/AUT/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Latam/COL/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/North Africa/EGY/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Europe/HRV/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/KOR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Europe/POL/Agriculture", + "World/Asia/THA/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Latam/VEN/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/Latam/CRI/Agriculture", + "World/North Africa/EGY/Agriculture", + "World/Europe/FRA/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/Asia/KOR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Europe/POL/Agriculture", + "World/Persian Gulf/SAU/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Latam/VEN/Agriculture", + "World/Asia/VNM/Agriculture", + "World/South Africa/ZAF/Agriculture", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/Latam/CRI/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/Asia/KOR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/Latam/PAN/Agriculture", + "World/Europe/POL/Agriculture", + "World/Europe/SWE/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/Persian Gulf/ARE/Agriculture", + "World/Latam/ARG/Agriculture", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/North Africa/EGY/Agriculture", + "World/Europe/ESP/Agriculture", + "World/Europe/FRA/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Asia/IND/Agriculture", + "World/Asia/KOR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Persian Gulf/OMN/Agriculture", + "World/Latam/PAN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Europe/POL/Agriculture", + "World/Persian Gulf/QAT/Agriculture", + "World/Persian Gulf/SAU/Agriculture", + "World/Europe/SWE/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Latam/VEN/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/South Africa/ZAF/Agriculture", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/Latam/CRI/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/Asia/KOR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/Latam/PAN/Agriculture", + "World/Europe/POL/Agriculture", + "World/Europe/SWE/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/Persian Gulf/ARE/Industry", + "World/Latam/ARG/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Asia/BGD/Industry", + "World/Pair/CHN/Industry", + "World/South Africa/CMR/Industry", + "World/Latam/COL/Industry", + "World/Latam/CRI/Industry", + "World/Europe/DEU/Industry", + "World/North Africa/DZA/Industry", + "World/North Africa/EGY/Industry", + "World/Europe/FRA/Industry", + "World/South Africa/GHA/Industry", + "World/Europe/HRV/Industry", + "World/Asia/IDN/Industry", + "World/Asia/IND/Industry", + "World/North Africa/ISR/Industry", + "World/South Africa/LBR/Industry", + "World/North Africa/MAR/Industry", + "World/Latam/MEX/Industry", + "World/South Africa/MOZ/Industry", + "World/South Africa/NGA/Industry", + "World/Latam/PAN/Industry", + "World/Latam/PER/Industry", + "World/Asia/PHL/Industry", + "World/Europe/POL/Industry", + "World/Persian Gulf/SAU/Industry", + "World/South Africa/SEN/Industry", + "World/Asia/THA/Industry", + "World/North Africa/TUR/Industry", + "World/Pair/USA/Industry", + "World/Latam/VEN/Industry", + "World/Asia/VNM/Industry", + "World/Persian Gulf/YEM/Industry", + "World/South Africa/ZAF/Industry", + "World/Persian Gulf/ARE/Mortality", + "World/Asia/BGD/Mortality", + "World/Pair/CHN/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/South Africa/GHA/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/South Africa/ZAF/Mortality", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/North Africa/DZA/Economy", + "World/Europe/GBR/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/South Africa/SEN/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/Europe/GRC/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/Europe/GRC/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Latam/ARG/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/Europe/GRC/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Europe/POL/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Asia/VNM/Environment", + "World/South Africa/ZAF/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/South Africa/MOZ/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Pair/CHN/Environment", + "World/Latam/COL/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/ESP/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PER/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/MAR/Environment", + "World/South Africa/MOZ/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Asia/THA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Europe/AUT/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/NGA/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/ARE/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Asia/BGD/Industry", + "World/Latam/CHL/Industry", + "World/South Africa/CMR/Industry", + "World/Latam/CRI/Industry", + "World/Europe/GRC/Industry", + "World/Europe/HRV/Industry", + "World/Asia/IDN/Industry", + "World/Asia/IND/Industry", + "World/North Africa/ISR/Industry", + "World/North Africa/MAR/Industry", + "World/South Africa/MOZ/Industry", + "World/South Africa/NGA/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Asia/PHL/Industry", + "World/Persian Gulf/SAU/Industry", + "World/Asia/THA/Industry", + "World/Asia/VNM/Industry", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/Latam/COL/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/ISR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/Latam/PAN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Persian Gulf/QAT/Agriculture", + "World/Persian Gulf/SAU/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/Latam/COL/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/Europe/NLD/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Europe/SWE/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/ARE/Economy", + "World/Asia/BGD/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/South Africa/SEN/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/South Africa/CMR/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/GRC/Exports", + "World/Europe/HRV/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/South Africa/ZAF/Imports", + "World/Latam/ARG/Demoraphy", + "World/Asia/BGD/Demoraphy", + "World/Latam/BRA/Demoraphy", + "World/South Africa/CMR/Demoraphy", + "World/Latam/COL/Demoraphy", + "World/Latam/CRI/Demoraphy", + "World/North Africa/DZA/Demoraphy", + "World/North Africa/EGY/Demoraphy", + "World/South Africa/GHA/Demoraphy", + "World/Asia/IND/Demoraphy", + "World/South Africa/LBR/Demoraphy", + "World/North Africa/MAR/Demoraphy", + "World/Latam/MEX/Demoraphy", + "World/South Africa/MOZ/Demoraphy", + "World/South Africa/NGA/Demoraphy", + "World/Latam/PAN/Demoraphy", + "World/Latam/PER/Demoraphy", + "World/Asia/PHL/Demoraphy", + "World/North Africa/TUR/Demoraphy", + "World/Latam/VEN/Demoraphy", + "World/Asia/VNM/Demoraphy", + "World/Persian Gulf/ARE/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/South Africa/CMR/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/South Africa/LBR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/Latam/CRI/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/North Africa/EGY/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Persian Gulf/OMN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Persian Gulf/QAT/Agriculture", + "World/South Africa/SEN/Agriculture", + "World/Asia/THA/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/Europe/GRC/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Asia/KOR/Health", + "World/South Africa/MOZ/Health", + "World/Europe/NLD/Health", + "World/Latam/PER/Health", + "World/Europe/POL/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Europe/POL/Economy", + "World/Asia/THA/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/Latam/MEX/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PER/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Asia/VNM/Health", + "World/South Africa/ZAF/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Europe/AUT/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/Europe/GRC/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/Persian Gulf/ARE/Employment", + "World/Latam/ARG/Employment", + "World/Europe/AUT/Employment", + "World/Persian Gulf/AZE/Employment", + "World/Asia/BGD/Employment", + "World/Latam/BRA/Employment", + "World/Latam/CHL/Employment", + "World/Pair/CHN/Employment", + "World/South Africa/CMR/Employment", + "World/Latam/COL/Employment", + "World/Latam/CRI/Employment", + "World/Europe/DEU/Employment", + "World/North Africa/DZA/Employment", + "World/North Africa/EGY/Employment", + "World/Europe/ESP/Employment", + "World/Europe/FRA/Employment", + "World/Europe/GBR/Employment", + "World/South Africa/GHA/Employment", + "World/Asia/IDN/Employment", + "World/Asia/IND/Employment", + "World/North Africa/ISR/Employment", + "World/Asia/KOR/Employment", + "World/South Africa/LBR/Employment", + "World/North Africa/MAR/Employment", + "World/Latam/MEX/Employment", + "World/South Africa/MOZ/Employment", + "World/South Africa/NGA/Employment", + "World/Europe/NLD/Employment", + "World/Persian Gulf/OMN/Employment", + "World/Latam/PAN/Employment", + "World/Latam/PER/Employment", + "World/Asia/PHL/Employment", + "World/Europe/POL/Employment", + "World/Persian Gulf/QAT/Employment", + "World/South Africa/SEN/Employment", + "World/Europe/SWE/Employment", + "World/North Africa/TUR/Employment", + "World/Latam/VEN/Employment", + "World/Asia/VNM/Employment", + "World/South Africa/ZAF/Employment", + "World/Latam/ARG/Employment", + "World/Europe/AUT/Employment", + "World/Persian Gulf/AZE/Employment", + "World/Asia/BGD/Employment", + "World/Latam/BRA/Employment", + "World/Pair/CHN/Employment", + "World/South Africa/CMR/Employment", + "World/Latam/CRI/Employment", + "World/Europe/DEU/Employment", + "World/North Africa/DZA/Employment", + "World/North Africa/EGY/Employment", + "World/Europe/ESP/Employment", + "World/Europe/FRA/Employment", + "World/Europe/GBR/Employment", + "World/Europe/GRC/Employment", + "World/Europe/HRV/Employment", + "World/Asia/IDN/Employment", + "World/Asia/IND/Employment", + "World/North Africa/ISR/Employment", + "World/Asia/KOR/Employment", + "World/North Africa/MAR/Employment", + "World/South Africa/MOZ/Employment", + "World/Europe/NLD/Employment", + "World/Persian Gulf/OMN/Employment", + "World/Europe/POL/Employment", + "World/Persian Gulf/SAU/Employment", + "World/South Africa/SEN/Employment", + "World/Europe/SWE/Employment", + "World/Pair/USA/Employment", + "World/Latam/VEN/Employment", + "World/Asia/VNM/Employment", + "World/Persian Gulf/YEM/Employment", + "World/South Africa/ZAF/Employment", + "World/Persian Gulf/ARE/Employment", + "World/Latam/ARG/Employment", + "World/Europe/AUT/Employment", + "World/Asia/BGD/Employment", + "World/Latam/BRA/Employment", + "World/Latam/CHL/Employment", + "World/Pair/CHN/Employment", + "World/South Africa/CMR/Employment", + "World/Latam/COL/Employment", + "World/Latam/CRI/Employment", + "World/Europe/DEU/Employment", + "World/North Africa/DZA/Employment", + "World/North Africa/EGY/Employment", + "World/Europe/ESP/Employment", + "World/Europe/FRA/Employment", + "World/Europe/GBR/Employment", + "World/South Africa/GHA/Employment", + "World/Europe/GRC/Employment", + "World/Europe/HRV/Employment", + "World/Asia/IDN/Employment", + "World/Asia/IND/Employment", + "World/North Africa/ISR/Employment", + "World/Asia/KOR/Employment", + "World/South Africa/LBR/Employment", + "World/North Africa/MAR/Employment", + "World/Latam/MEX/Employment", + "World/South Africa/MOZ/Employment", + "World/South Africa/NGA/Employment", + "World/Europe/NLD/Employment", + "World/Persian Gulf/OMN/Employment", + "World/Latam/PAN/Employment", + "World/Latam/PER/Employment", + "World/Asia/PHL/Employment", + "World/Europe/POL/Employment", + "World/South Africa/SEN/Employment", + "World/Europe/SWE/Employment", + "World/Asia/THA/Employment", + "World/North Africa/TUR/Employment", + "World/Pair/USA/Employment", + "World/Latam/VEN/Employment", + "World/Asia/VNM/Employment", + "World/Persian Gulf/YEM/Employment", + "World/South Africa/ZAF/Employment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Latam/VEN/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/Europe/GBR/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Latam/PAN/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Europe/SWE/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/GRC/Exports", + "World/Europe/HRV/Exports", + "World/Latam/MEX/Exports", + "World/Europe/NLD/Exports", + "World/Latam/PAN/Exports", + "World/Europe/POL/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/Asia/VNM/Exports", + "World/Persian Gulf/YEM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/ESP/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/GRC/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/Persian Gulf/YEM/Exports", + "World/South Africa/ZAF/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/HRV/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/HRV/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/R&D", + "World/Latam/CHL/R&D", + "World/Latam/COL/R&D", + "World/Latam/CRI/R&D", + "World/North Africa/EGY/R&D", + "World/South Africa/GHA/R&D", + "World/Europe/GRC/R&D", + "World/Europe/HRV/R&D", + "World/Asia/IDN/R&D", + "World/Asia/IND/R&D", + "World/South Africa/LBR/R&D", + "World/North Africa/MAR/R&D", + "World/Latam/MEX/R&D", + "World/South Africa/MOZ/R&D", + "World/South Africa/NGA/R&D", + "World/Latam/PAN/R&D", + "World/Latam/PER/R&D", + "World/Asia/PHL/R&D", + "World/Europe/POL/R&D", + "World/South Africa/SEN/R&D", + "World/Asia/THA/R&D", + "World/North Africa/TUR/R&D", + "World/Latam/VEN/R&D", + "World/Asia/VNM/R&D", + "World/Persian Gulf/YEM/R&D", + "World/South Africa/ZAF/R&D", + "World/Latam/ARG/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IDN/Economy", + "World/South Africa/LBR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Internet", + "World/Latam/ARG/Internet", + "World/Europe/AUT/Internet", + "World/Persian Gulf/AZE/Internet", + "World/Asia/BGD/Internet", + "World/Latam/BRA/Internet", + "World/Latam/CHL/Internet", + "World/Pair/CHN/Internet", + "World/South Africa/CMR/Internet", + "World/Latam/COL/Internet", + "World/Latam/CRI/Internet", + "World/Europe/DEU/Internet", + "World/North Africa/DZA/Internet", + "World/North Africa/EGY/Internet", + "World/Europe/ESP/Internet", + "World/Europe/FRA/Internet", + "World/Europe/GBR/Internet", + "World/South Africa/GHA/Internet", + "World/Europe/GRC/Internet", + "World/Europe/HRV/Internet", + "World/Asia/IDN/Internet", + "World/Asia/IND/Internet", + "World/North Africa/ISR/Internet", + "World/Asia/KOR/Internet", + "World/South Africa/LBR/Internet", + "World/North Africa/MAR/Internet", + "World/Latam/MEX/Internet", + "World/South Africa/MOZ/Internet", + "World/Europe/NLD/Internet", + "World/Persian Gulf/OMN/Internet", + "World/Latam/PAN/Internet", + "World/Latam/PER/Internet", + "World/Asia/PHL/Internet", + "World/Europe/POL/Internet", + "World/Persian Gulf/QAT/Internet", + "World/Persian Gulf/SAU/Internet", + "World/South Africa/SEN/Internet", + "World/Europe/SWE/Internet", + "World/Asia/THA/Internet", + "World/North Africa/TUR/Internet", + "World/Pair/USA/Internet", + "World/Latam/VEN/Internet", + "World/Asia/VNM/Internet", + "World/Persian Gulf/YEM/Internet", + "World/South Africa/ZAF/Internet", + "World/Persian Gulf/ARE/Internet", + "World/Latam/ARG/Internet", + "World/Europe/AUT/Internet", + "World/Persian Gulf/AZE/Internet", + "World/Asia/BGD/Internet", + "World/Latam/BRA/Internet", + "World/Latam/CHL/Internet", + "World/Pair/CHN/Internet", + "World/South Africa/CMR/Internet", + "World/Latam/COL/Internet", + "World/Latam/CRI/Internet", + "World/Europe/DEU/Internet", + "World/North Africa/DZA/Internet", + "World/North Africa/EGY/Internet", + "World/Europe/ESP/Internet", + "World/Europe/FRA/Internet", + "World/Europe/GBR/Internet", + "World/South Africa/GHA/Internet", + "World/Europe/GRC/Internet", + "World/Europe/HRV/Internet", + "World/Asia/IDN/Internet", + "World/Asia/IND/Internet", + "World/North Africa/ISR/Internet", + "World/Asia/KOR/Internet", + "World/South Africa/LBR/Internet", + "World/North Africa/MAR/Internet", + "World/Latam/MEX/Internet", + "World/South Africa/MOZ/Internet", + "World/Europe/NLD/Internet", + "World/Persian Gulf/OMN/Internet", + "World/Latam/PAN/Internet", + "World/Latam/PER/Internet", + "World/Asia/PHL/Internet", + "World/Europe/POL/Internet", + "World/Persian Gulf/QAT/Internet", + "World/Persian Gulf/SAU/Internet", + "World/South Africa/SEN/Internet", + "World/Europe/SWE/Internet", + "World/Asia/THA/Internet", + "World/North Africa/TUR/Internet", + "World/Pair/USA/Internet", + "World/Latam/VEN/Internet", + "World/Asia/VNM/Internet", + "World/Persian Gulf/YEM/Internet", + "World/South Africa/ZAF/Internet", + "World/Persian Gulf/ARE/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Asia/BGD/Industry", + "World/Latam/BRA/Industry", + "World/Latam/CHL/Industry", + "World/Pair/CHN/Industry", + "World/South Africa/CMR/Industry", + "World/Latam/COL/Industry", + "World/Latam/CRI/Industry", + "World/North Africa/DZA/Industry", + "World/North Africa/EGY/Industry", + "World/South Africa/GHA/Industry", + "World/Asia/IDN/Industry", + "World/Asia/IND/Industry", + "World/North Africa/ISR/Industry", + "World/South Africa/LBR/Industry", + "World/North Africa/MAR/Industry", + "World/Latam/MEX/Industry", + "World/South Africa/MOZ/Industry", + "World/South Africa/NGA/Industry", + "World/Europe/NLD/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Latam/PAN/Industry", + "World/Latam/PER/Industry", + "World/Asia/PHL/Industry", + "World/Europe/POL/Industry", + "World/Persian Gulf/QAT/Industry", + "World/Persian Gulf/SAU/Industry", + "World/South Africa/SEN/Industry", + "World/Asia/THA/Industry", + "World/North Africa/TUR/Industry", + "World/Pair/USA/Industry", + "World/Asia/VNM/Industry", + "World/Persian Gulf/YEM/Industry", + "World/South Africa/ZAF/Industry", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/Asia/KOR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Europe/POL/Demography", + "World/South Africa/SEN/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Principal", + "World/Europe/AUT/Principal", + "World/Persian Gulf/AZE/Principal", + "World/Asia/BGD/Principal", + "World/Latam/BRA/Principal", + "World/Latam/CHL/Principal", + "World/Pair/CHN/Principal", + "World/South Africa/CMR/Principal", + "World/Latam/COL/Principal", + "World/Latam/CRI/Principal", + "World/Europe/DEU/Principal", + "World/North Africa/DZA/Principal", + "World/North Africa/EGY/Principal", + "World/Europe/ESP/Principal", + "World/Europe/FRA/Principal", + "World/Europe/GBR/Principal", + "World/South Africa/GHA/Principal", + "World/Europe/GRC/Principal", + "World/Europe/HRV/Principal", + "World/Asia/IDN/Principal", + "World/Asia/IND/Principal", + "World/North Africa/ISR/Principal", + "World/Asia/KOR/Principal", + "World/South Africa/LBR/Principal", + "World/North Africa/MAR/Principal", + "World/Latam/MEX/Principal", + "World/South Africa/MOZ/Principal", + "World/South Africa/NGA/Principal", + "World/Europe/NLD/Principal", + "World/Persian Gulf/OMN/Principal", + "World/Latam/PAN/Principal", + "World/Latam/PER/Principal", + "World/Asia/PHL/Principal", + "World/Europe/POL/Principal", + "World/Persian Gulf/QAT/Principal", + "World/Persian Gulf/SAU/Principal", + "World/South Africa/SEN/Principal", + "World/Asia/THA/Principal", + "World/North Africa/TUR/Principal", + "World/Pair/USA/Principal", + "World/Latam/VEN/Principal", + "World/Asia/VNM/Principal", + "World/Persian Gulf/YEM/Principal", + "World/South Africa/ZAF/Principal", + "World/Persian Gulf/ARE/Principal", + "World/Europe/AUT/Principal", + "World/Persian Gulf/AZE/Principal", + "World/Asia/BGD/Principal", + "World/Latam/BRA/Principal", + "World/Latam/CHL/Principal", + "World/Pair/CHN/Principal", + "World/South Africa/CMR/Principal", + "World/Latam/COL/Principal", + "World/Latam/CRI/Principal", + "World/Europe/DEU/Principal", + "World/North Africa/DZA/Principal", + "World/North Africa/EGY/Principal", + "World/Europe/ESP/Principal", + "World/Europe/FRA/Principal", + "World/Europe/GBR/Principal", + "World/South Africa/GHA/Principal", + "World/Europe/GRC/Principal", + "World/Europe/HRV/Principal", + "World/Asia/IDN/Principal", + "World/Asia/IND/Principal", + "World/North Africa/ISR/Principal", + "World/Asia/KOR/Principal", + "World/South Africa/LBR/Principal", + "World/North Africa/MAR/Principal", + "World/Latam/MEX/Principal", + "World/South Africa/MOZ/Principal", + "World/South Africa/NGA/Principal", + "World/Europe/NLD/Principal", + "World/Persian Gulf/OMN/Principal", + "World/Latam/PAN/Principal", + "World/Latam/PER/Principal", + "World/Asia/PHL/Principal", + "World/Europe/POL/Principal", + "World/Persian Gulf/QAT/Principal", + "World/Persian Gulf/SAU/Principal", + "World/South Africa/SEN/Principal", + "World/Asia/THA/Principal", + "World/North Africa/TUR/Principal", + "World/Pair/USA/Principal", + "World/Latam/VEN/Principal", + "World/Asia/VNM/Principal", + "World/Persian Gulf/YEM/Principal", + "World/South Africa/ZAF/Principal", + "World/Persian Gulf/ARE/Principal", + "World/Latam/ARG/Principal", + "World/Europe/AUT/Principal", + "World/Persian Gulf/AZE/Principal", + "World/Asia/BGD/Principal", + "World/Latam/BRA/Principal", + "World/Latam/CHL/Principal", + "World/Pair/CHN/Principal", + "World/South Africa/CMR/Principal", + "World/Latam/COL/Principal", + "World/Latam/CRI/Principal", + "World/Europe/DEU/Principal", + "World/North Africa/DZA/Principal", + "World/North Africa/EGY/Principal", + "World/Europe/ESP/Principal", + "World/Europe/FRA/Principal", + "World/Europe/GBR/Principal", + "World/South Africa/GHA/Principal", + "World/Europe/GRC/Principal", + "World/Europe/HRV/Principal", + "World/Asia/IDN/Principal", + "World/Asia/IND/Principal", + "World/Persian Gulf/IRQ/Principal", + "World/North Africa/ISR/Principal", + "World/Asia/KOR/Principal", + "World/North Africa/MAR/Principal", + "World/Latam/MEX/Principal", + "World/South Africa/MOZ/Principal", + "World/South Africa/NGA/Principal", + "World/Europe/NLD/Principal", + "World/Persian Gulf/OMN/Principal", + "World/Latam/PAN/Principal", + "World/Latam/PER/Principal", + "World/Asia/PHL/Principal", + "World/Europe/POL/Principal", + "World/Persian Gulf/QAT/Principal", + "World/Persian Gulf/SAU/Principal", + "World/South Africa/SEN/Principal", + "World/Europe/SWE/Principal", + "World/Asia/THA/Principal", + "World/North Africa/TUR/Principal", + "World/Pair/USA/Principal", + "World/Latam/VEN/Principal", + "World/Asia/VNM/Principal", + "World/Persian Gulf/YEM/Principal", + "World/South Africa/ZAF/Principal", + "World/Persian Gulf/ARE/Principal", + "World/Latam/ARG/Principal", + "World/Persian Gulf/AZE/Principal", + "World/Asia/BGD/Principal", + "World/Latam/BRA/Principal", + "World/Latam/CHL/Principal", + "World/Pair/CHN/Principal", + "World/South Africa/CMR/Principal", + "World/Latam/COL/Principal", + "World/Latam/CRI/Principal", + "World/North Africa/EGY/Principal", + "World/Europe/FRA/Principal", + "World/Europe/GBR/Principal", + "World/South Africa/GHA/Principal", + "World/Europe/GRC/Principal", + "World/Asia/IDN/Principal", + "World/Asia/IND/Principal", + "World/North Africa/ISR/Principal", + "World/Asia/KOR/Principal", + "World/North Africa/MAR/Principal", + "World/South Africa/MOZ/Principal", + "World/South Africa/NGA/Principal", + "World/Persian Gulf/OMN/Principal", + "World/Latam/PAN/Principal", + "World/Latam/PER/Principal", + "World/Asia/PHL/Principal", + "World/Europe/POL/Principal", + "World/Persian Gulf/QAT/Principal", + "World/Persian Gulf/SAU/Principal", + "World/South Africa/SEN/Principal", + "World/Asia/THA/Principal", + "World/North Africa/TUR/Principal", + "World/Pair/USA/Principal", + "World/Asia/VNM/Principal", + "World/South Africa/ZAF/Principal", + "World/Latam/ARG/Principal", + "World/Europe/AUT/Principal", + "World/Persian Gulf/AZE/Principal", + "World/Asia/BGD/Principal", + "World/Latam/BRA/Principal", + "World/Latam/CHL/Principal", + "World/Pair/CHN/Principal", + "World/South Africa/CMR/Principal", + "World/Latam/COL/Principal", + "World/Latam/CRI/Principal", + "World/Europe/DEU/Principal", + "World/North Africa/EGY/Principal", + "World/Europe/ESP/Principal", + "World/Europe/FRA/Principal", + "World/Europe/GBR/Principal", + "World/South Africa/GHA/Principal", + "World/Europe/HRV/Principal", + "World/Asia/IDN/Principal", + "World/Asia/IND/Principal", + "World/North Africa/ISR/Principal", + "World/Asia/KOR/Principal", + "World/North Africa/MAR/Principal", + "World/Latam/MEX/Principal", + "World/South Africa/MOZ/Principal", + "World/South Africa/NGA/Principal", + "World/Europe/NLD/Principal", + "World/Latam/PAN/Principal", + "World/Asia/PHL/Principal", + "World/Europe/POL/Principal", + "World/Europe/SWE/Principal", + "World/Asia/THA/Principal", + "World/North Africa/TUR/Principal", + "World/Pair/USA/Principal", + "World/Asia/VNM/Principal", + "World/South Africa/ZAF/Principal", + "World/Europe/AUT/principal", + "World/Persian Gulf/AZE/principal", + "World/Asia/BGD/principal", + "World/Pair/CHN/principal", + "World/South Africa/CMR/principal", + "World/Latam/COL/principal", + "World/Latam/CRI/principal", + "World/Europe/DEU/principal", + "World/North Africa/DZA/principal", + "World/Europe/ESP/principal", + "World/Europe/FRA/principal", + "World/Europe/GBR/principal", + "World/South Africa/GHA/principal", + "World/Europe/HRV/principal", + "World/Asia/IDN/principal", + "World/Asia/IND/principal", + "World/North Africa/ISR/principal", + "World/Asia/KOR/principal", + "World/Latam/MEX/principal", + "World/South Africa/MOZ/principal", + "World/South Africa/NGA/principal", + "World/Europe/NLD/principal", + "World/Latam/PAN/principal", + "World/Asia/PHL/principal", + "World/Europe/POL/principal", + "World/Persian Gulf/SAU/principal", + "World/Europe/SWE/principal", + "World/North Africa/TUR/principal", + "World/Pair/USA/principal", + "World/South Africa/ZAF/principal", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/South Africa/LBR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/South Africa/LBR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Europe/AUT/Environment", + "World/Pair/CHN/Environment", + "World/Europe/DEU/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Latam/MEX/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Europe/SWE/Environment", + "World/Pair/USA/Environment", + "World/Latam/VEN/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Persian Gulf/SAU/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Europe/AUT/Exports", + "World/Asia/BGD/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/South Africa/CMR/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/Europe/ESP/Exports", + "World/Europe/GBR/Exports", + "World/Europe/GRC/Exports", + "World/Europe/HRV/Exports", + "World/Asia/IND/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/NGA/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/Pair/USA/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/Europe/NLD/Imports", + "World/Latam/PAN/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/Persian Gulf/ARE/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/Persian Gulf/IRQ/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/GBR/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Latam/VEN/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/South Africa/ZAF/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/Persian Gulf/IRQ/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Latam/VEN/Imports", + "World/Asia/VNM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Latam/BRA/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/CRI/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/South Africa/LBR/Health", + "World/South Africa/MOZ/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PER/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/BRA/Mortality", + "World/Pair/CHN/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/GBR/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/Persian Gulf/IRQ/Mortality", + "World/North Africa/ISR/Mortality", + "World/South Africa/MOZ/Mortality", + "World/Europe/NLD/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Europe/POL/Mortality", + "World/Asia/THA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/South Africa/ZAF/Mortality", + "World/Persian Gulf/ARE/Migration", + "World/Europe/AUT/Migration", + "World/Persian Gulf/AZE/Migration", + "World/Latam/CHL/Migration", + "World/Pair/CHN/Migration", + "World/Europe/DEU/Migration", + "World/North Africa/DZA/Migration", + "World/Europe/ESP/Migration", + "World/Europe/FRA/Migration", + "World/Europe/GBR/Migration", + "World/Europe/GRC/Migration", + "World/Europe/HRV/Migration", + "World/Asia/IND/Migration", + "World/North Africa/ISR/Migration", + "World/Asia/KOR/Migration", + "World/North Africa/MAR/Migration", + "World/Latam/MEX/Migration", + "World/South Africa/MOZ/Migration", + "World/South Africa/NGA/Migration", + "World/Europe/NLD/Migration", + "World/Latam/PAN/Migration", + "World/Latam/PER/Migration", + "World/Europe/POL/Migration", + "World/Persian Gulf/SAU/Migration", + "World/South Africa/SEN/Migration", + "World/Europe/SWE/Migration", + "World/Asia/THA/Migration", + "World/North Africa/TUR/Migration", + "World/Pair/USA/Migration", + "World/Asia/VNM/Migration", + "World/Persian Gulf/YEM/Migration", + "World/Persian Gulf/ARE/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Europe/SWE/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/Persian Gulf/ARE/Industry", + "World/Latam/ARG/Industry", + "World/Europe/AUT/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Asia/BGD/Industry", + "World/Latam/BRA/Industry", + "World/Pair/CHN/Industry", + "World/Latam/COL/Industry", + "World/Latam/CRI/Industry", + "World/North Africa/DZA/Industry", + "World/North Africa/EGY/Industry", + "World/Europe/GBR/Industry", + "World/South Africa/GHA/Industry", + "World/Asia/IDN/Industry", + "World/Asia/IND/Industry", + "World/North Africa/ISR/Industry", + "World/Asia/KOR/Industry", + "World/South Africa/LBR/Industry", + "World/North Africa/MAR/Industry", + "World/Latam/MEX/Industry", + "World/South Africa/MOZ/Industry", + "World/South Africa/NGA/Industry", + "World/Europe/NLD/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Latam/PAN/Industry", + "World/Latam/PER/Industry", + "World/Asia/PHL/Industry", + "World/Europe/POL/Industry", + "World/Persian Gulf/QAT/Industry", + "World/Persian Gulf/SAU/Industry", + "World/South Africa/SEN/Industry", + "World/Asia/THA/Industry", + "World/North Africa/TUR/Industry", + "World/Pair/USA/Industry", + "World/Latam/VEN/Industry", + "World/Asia/VNM/Industry", + "World/Persian Gulf/YEM/Industry", + "World/South Africa/ZAF/Industry", + "World/Persian Gulf/ARE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Persian Gulf/QAT/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Asia/VNM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/Latam/COL/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/Latam/MEX/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Asia/THA/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/EGY/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/North Africa/EGY/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/South Africa/NGA/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Europe/DEU/Exports", + "World/Europe/ESP/Exports", + "World/Europe/GBR/Exports", + "World/Europe/GRC/Exports", + "World/Asia/IDN/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/South Africa/LBR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/South Africa/NGA/Exports", + "World/Europe/NLD/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Europe/DEU/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GRC/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/South Africa/NGA/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/Pair/USA/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/Persian Gulf/IRQ/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/Persian Gulf/IRQ/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/South Africa/ZAF/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Pair/CHN/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/North Africa/DZA/Imports", + "World/Europe/GRC/Imports", + "World/Asia/IDN/Imports", + "World/Asia/KOR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/NGA/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Asia/PHL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Latam/VEN/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Latam/VEN/Imports", + "World/Asia/VNM/Imports", + "World/Latam/ARG/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/GBR/Imports", + "World/North Africa/ISR/Imports", + "World/South Africa/LBR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/SAU/Imports", + "World/Europe/SWE/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Latam/VEN/Imports", + "World/South Africa/ZAF/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PER/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Persian Gulf/YEM/Imports", + "World/Persian Gulf/ARE/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/COL/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Asia/IND/Environment", + "World/Persian Gulf/IRQ/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/South Africa/SEN/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/Persian Gulf/ARE/Military", + "World/Europe/AUT/Military", + "World/Persian Gulf/AZE/Military", + "World/Asia/BGD/Military", + "World/Latam/BRA/Military", + "World/Latam/CHL/Military", + "World/Pair/CHN/Military", + "World/South Africa/CMR/Military", + "World/Latam/COL/Military", + "World/North Africa/DZA/Military", + "World/North Africa/EGY/Military", + "World/Europe/ESP/Military", + "World/Europe/FRA/Military", + "World/South Africa/GHA/Military", + "World/Europe/GRC/Military", + "World/Asia/IDN/Military", + "World/Asia/IND/Military", + "World/North Africa/ISR/Military", + "World/Asia/KOR/Military", + "World/North Africa/MAR/Military", + "World/Latam/MEX/Military", + "World/South Africa/MOZ/Military", + "World/South Africa/NGA/Military", + "World/Europe/NLD/Military", + "World/Persian Gulf/OMN/Military", + "World/Latam/PER/Military", + "World/Asia/PHL/Military", + "World/Europe/POL/Military", + "World/Persian Gulf/SAU/Military", + "World/South Africa/SEN/Military", + "World/Asia/THA/Military", + "World/North Africa/TUR/Military", + "World/Pair/USA/Military", + "World/Asia/VNM/Military", + "World/Persian Gulf/YEM/Military", + "World/Persian Gulf/ARE/Internet", + "World/Latam/BRA/Internet", + "World/Latam/CHL/Internet", + "World/Pair/CHN/Internet", + "World/Europe/DEU/Internet", + "World/North Africa/DZA/Internet", + "World/North Africa/EGY/Internet", + "World/Europe/FRA/Internet", + "World/Europe/GBR/Internet", + "World/Europe/HRV/Internet", + "World/Asia/IDN/Internet", + "World/North Africa/ISR/Internet", + "World/Asia/KOR/Internet", + "World/North Africa/MAR/Internet", + "World/Latam/MEX/Internet", + "World/Europe/NLD/Internet", + "World/Persian Gulf/OMN/Internet", + "World/Latam/PER/Internet", + "World/Persian Gulf/QAT/Internet", + "World/Persian Gulf/SAU/Internet", + "World/Europe/SWE/Internet", + "World/Asia/THA/Internet", + "World/North Africa/TUR/Internet", + "World/Pair/USA/Internet", + "World/South Africa/ZAF/Internet", + "World/Persian Gulf/ARE/Internet", + "World/Latam/BRA/Internet", + "World/Latam/CHL/Internet", + "World/Pair/CHN/Internet", + "World/Europe/DEU/Internet", + "World/North Africa/DZA/Internet", + "World/North Africa/EGY/Internet", + "World/Europe/FRA/Internet", + "World/Europe/HRV/Internet", + "World/Asia/IDN/Internet", + "World/North Africa/ISR/Internet", + "World/Asia/KOR/Internet", + "World/North Africa/MAR/Internet", + "World/Latam/MEX/Internet", + "World/Europe/NLD/Internet", + "World/Persian Gulf/OMN/Internet", + "World/Latam/PER/Internet", + "World/Persian Gulf/QAT/Internet", + "World/Persian Gulf/SAU/Internet", + "World/Europe/SWE/Internet", + "World/Asia/THA/Internet", + "World/North Africa/TUR/Internet", + "World/Pair/USA/Internet", + "World/Latam/VEN/Internet", + "World/South Africa/ZAF/Internet", + "World/Persian Gulf/ARE/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/GBR/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/Europe/SWE/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Economy", + "World/Europe/AUT/Economy", + "World/Latam/BRA/Economy", + "World/Latam/COL/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/Europe/NLD/Economy", + "World/Europe/SWE/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/Latam/MEX/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/NGA/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Asia/BGD/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/NGA/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Europe/AUT/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/NGA/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Asia/IND/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Europe/SWE/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Europe/SWE/Environment", + "World/North Africa/TUR/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Europe/AUT/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Asia/THA/Environment", + "World/Pair/USA/Environment", + "World/Latam/VEN/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/South Africa/ZAF/Environment", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/Persian Gulf/IRQ/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IND/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/South Africa/SEN/Mortality", + "World/North Africa/TUR/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/Persian Gulf/IRQ/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Europe/SWE/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Latam/ARG/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/South Africa/ZAF/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/Persian Gulf/IRQ/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Europe/SWE/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/CRI/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/South Africa/GHA/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/South Africa/MOZ/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/SAU/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/Latam/ARG/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Asia/IND/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Persian Gulf/YEM/Health", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/Latam/CRI/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/Europe/FRA/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/Europe/NLD/Agriculture", + "World/Persian Gulf/OMN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/South Africa/SEN/Agriculture", + "World/Asia/THA/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/South Africa/ZAF/Agriculture", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/FRA/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/Asia/KOR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/Asia/KOR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/CHL/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/Asia/KOR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/Asia/KOR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/DZA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/Asia/KOR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/SAU/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/South Africa/MOZ/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/North Africa/TUR/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Asia/IND/Health", + "World/North Africa/ISR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/HRV/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Latam/ARG/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Latam/ARG/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/GRC/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Asia/KOR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/North Africa/DZA/Health", + "World/South Africa/GHA/Health", + "World/Asia/IDN/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Asia/PHL/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/Persian Gulf/ARE/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/CRI/Economy", + "World/Europe/GBR/Economy", + "World/Asia/IDN/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Pair/CHN/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/Latam/MEX/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/Latam/COL/Economy", + "World/Europe/ESP/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/Latam/MEX/Economy", + "World/Europe/NLD/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Europe/SWE/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/North Africa/MAR/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Europe/SWE/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Europe/SWE/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Latam/ARG/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IND/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/Persian Gulf/AZE/Equality", + "World/Asia/BGD/Equality", + "World/Latam/BRA/Equality", + "World/Latam/CHL/Equality", + "World/Pair/CHN/Equality", + "World/South Africa/CMR/Equality", + "World/North Africa/DZA/Equality", + "World/North Africa/EGY/Equality", + "World/Europe/GBR/Equality", + "World/South Africa/GHA/Equality", + "World/Asia/IND/Equality", + "World/North Africa/ISR/Equality", + "World/Asia/KOR/Equality", + "World/Latam/MEX/Equality", + "World/South Africa/MOZ/Equality", + "World/Latam/PAN/Equality", + "World/Asia/PHL/Equality", + "World/Europe/POL/Equality", + "World/South Africa/SEN/Equality", + "World/Asia/THA/Equality", + "World/North Africa/TUR/Equality", + "World/Pair/USA/Equality", + "World/Asia/VNM/Equality", + "World/Persian Gulf/ARE/Equality", + "World/Latam/ARG/Equality", + "World/Europe/AUT/Equality", + "World/Asia/BGD/Equality", + "World/Latam/BRA/Equality", + "World/Latam/CHL/Equality", + "World/Latam/CRI/Equality", + "World/Europe/DEU/Equality", + "World/North Africa/DZA/Equality", + "World/Europe/ESP/Equality", + "World/Europe/FRA/Equality", + "World/Europe/GBR/Equality", + "World/South Africa/GHA/Equality", + "World/Europe/GRC/Equality", + "World/Asia/IND/Equality", + "World/North Africa/ISR/Equality", + "World/Asia/KOR/Equality", + "World/Latam/MEX/Equality", + "World/South Africa/MOZ/Equality", + "World/South Africa/NGA/Equality", + "World/Europe/NLD/Equality", + "World/Persian Gulf/OMN/Equality", + "World/Latam/PAN/Equality", + "World/Persian Gulf/QAT/Equality", + "World/Persian Gulf/SAU/Equality", + "World/South Africa/SEN/Equality", + "World/North Africa/TUR/Equality", + "World/Pair/USA/Equality", + "World/Asia/VNM/Equality", + "World/Persian Gulf/YEM/Equality", + "World/South Africa/ZAF/Equality", + "World/Persian Gulf/ARE/Equality", + "World/Latam/ARG/Equality", + "World/Europe/AUT/Equality", + "World/Asia/BGD/Equality", + "World/Latam/BRA/Equality", + "World/Latam/CHL/Equality", + "World/Pair/CHN/Equality", + "World/Latam/CRI/Equality", + "World/Europe/DEU/Equality", + "World/North Africa/DZA/Equality", + "World/Europe/ESP/Equality", + "World/Europe/FRA/Equality", + "World/Europe/GBR/Equality", + "World/Europe/GRC/Equality", + "World/North Africa/ISR/Equality", + "World/Asia/KOR/Equality", + "World/Latam/MEX/Equality", + "World/South Africa/MOZ/Equality", + "World/Europe/NLD/Equality", + "World/Persian Gulf/OMN/Equality", + "World/Latam/PAN/Equality", + "World/Europe/POL/Equality", + "World/Persian Gulf/QAT/Equality", + "World/Persian Gulf/SAU/Equality", + "World/South Africa/SEN/Equality", + "World/North Africa/TUR/Equality", + "World/Pair/USA/Equality", + "World/Latam/VEN/Equality", + "World/Asia/VNM/Equality", + "World/South Africa/ZAF/Equality", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/Europe/NLD/Environment", + "World/Latam/PAN/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Europe/SWE/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Latam/VEN/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/South Africa/ZAF/Environment", + "World/Europe/AUT/R&D", + "World/Latam/BRA/R&D", + "World/Pair/CHN/R&D", + "World/Europe/DEU/R&D", + "World/North Africa/DZA/R&D", + "World/Europe/ESP/R&D", + "World/Europe/FRA/R&D", + "World/Europe/GBR/R&D", + "World/South Africa/GHA/R&D", + "World/Europe/GRC/R&D", + "World/Asia/IND/R&D", + "World/Asia/KOR/R&D", + "World/North Africa/MAR/R&D", + "World/South Africa/MOZ/R&D", + "World/Europe/NLD/R&D", + "World/Persian Gulf/OMN/R&D", + "World/Asia/PHL/R&D", + "World/Europe/POL/R&D", + "World/Asia/THA/R&D", + "World/North Africa/TUR/R&D", + "World/Pair/USA/R&D", + "World/Latam/VEN/R&D", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/Latam/CRI/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/South Africa/GHA/Health", + "World/Asia/IND/Health", + "World/Asia/KOR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Europe/POL/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/South Africa/GHA/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/DZA/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/Persian Gulf/IRQ/Demography", + "World/North Africa/ISR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/industry", + "World/Latam/ARG/industry", + "World/Europe/AUT/industry", + "World/Persian Gulf/AZE/industry", + "World/Asia/BGD/industry", + "World/Latam/BRA/industry", + "World/Latam/CHL/industry", + "World/Pair/CHN/industry", + "World/South Africa/CMR/industry", + "World/Latam/COL/industry", + "World/Latam/CRI/industry", + "World/North Africa/DZA/industry", + "World/North Africa/EGY/industry", + "World/Europe/ESP/industry", + "World/Europe/FRA/industry", + "World/Europe/GBR/industry", + "World/South Africa/GHA/industry", + "World/Europe/GRC/industry", + "World/Europe/HRV/industry", + "World/Asia/IDN/industry", + "World/Asia/IND/industry", + "World/Persian Gulf/IRQ/industry", + "World/North Africa/ISR/industry", + "World/Asia/KOR/industry", + "World/South Africa/LBR/industry", + "World/North Africa/MAR/industry", + "World/Latam/MEX/industry", + "World/South Africa/MOZ/industry", + "World/South Africa/NGA/industry", + "World/Europe/NLD/industry", + "World/Persian Gulf/OMN/industry", + "World/Latam/PAN/industry", + "World/Latam/PER/industry", + "World/Asia/PHL/industry", + "World/Europe/POL/industry", + "World/Persian Gulf/QAT/industry", + "World/Persian Gulf/SAU/industry", + "World/South Africa/SEN/industry", + "World/Europe/SWE/industry", + "World/Asia/THA/industry", + "World/North Africa/TUR/industry", + "World/Pair/USA/industry", + "World/Latam/VEN/industry", + "World/Asia/VNM/industry", + "World/Persian Gulf/YEM/industry", + "World/South Africa/ZAF/industry", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/South Africa/CMR/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/GRC/Exports", + "World/Europe/HRV/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Mortality", + "World/Europe/AUT/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/Latam/COL/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/NGA/Mortality", + "World/Latam/PAN/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Latam/ARG/Taxes", + "World/Europe/AUT/Taxes", + "World/Persian Gulf/AZE/Taxes", + "World/Asia/BGD/Taxes", + "World/Latam/BRA/Taxes", + "World/Latam/CHL/Taxes", + "World/South Africa/CMR/Taxes", + "World/Latam/COL/Taxes", + "World/Latam/CRI/Taxes", + "World/Europe/DEU/Taxes", + "World/North Africa/DZA/Taxes", + "World/Europe/ESP/Taxes", + "World/Europe/FRA/Taxes", + "World/Europe/GBR/Taxes", + "World/South Africa/GHA/Taxes", + "World/Europe/GRC/Taxes", + "World/Europe/HRV/Taxes", + "World/Asia/IND/Taxes", + "World/North Africa/ISR/Taxes", + "World/Asia/KOR/Taxes", + "World/North Africa/MAR/Taxes", + "World/Latam/MEX/Taxes", + "World/South Africa/MOZ/Taxes", + "World/South Africa/NGA/Taxes", + "World/Europe/NLD/Taxes", + "World/Latam/PAN/Taxes", + "World/Latam/PER/Taxes", + "World/Europe/POL/Taxes", + "World/Persian Gulf/SAU/Taxes", + "World/South Africa/SEN/Taxes", + "World/Europe/SWE/Taxes", + "World/North Africa/TUR/Taxes", + "World/Pair/USA/Taxes", + "World/Latam/VEN/Taxes", + "World/Asia/VNM/Taxes", + "World/Persian Gulf/YEM/Taxes", + "World/South Africa/ZAF/Taxes", + "World/Persian Gulf/AZE/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Europe/POL/Economy", + "World/Asia/THA/Economy", + "World/Latam/ARG/Industry", + "World/Europe/AUT/Industry", + "World/Asia/BGD/Industry", + "World/Latam/CHL/Industry", + "World/Pair/CHN/Industry", + "World/Latam/COL/Industry", + "World/Latam/CRI/Industry", + "World/Europe/DEU/Industry", + "World/North Africa/DZA/Industry", + "World/Europe/ESP/Industry", + "World/Europe/FRA/Industry", + "World/Europe/GBR/Industry", + "World/Europe/GRC/Industry", + "World/North Africa/ISR/Industry", + "World/Asia/KOR/Industry", + "World/North Africa/MAR/Industry", + "World/Latam/MEX/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Latam/PER/Industry", + "World/Europe/POL/Industry", + "World/Europe/SWE/Industry", + "World/Pair/USA/Industry", + "World/Persian Gulf/ARE/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Latam/CHL/Industry", + "World/Pair/CHN/Industry", + "World/South Africa/CMR/Industry", + "World/Latam/COL/Industry", + "World/Latam/CRI/Industry", + "World/Europe/DEU/Industry", + "World/North Africa/DZA/Industry", + "World/Europe/ESP/Industry", + "World/Europe/FRA/Industry", + "World/Europe/GBR/Industry", + "World/Asia/IND/Industry", + "World/Asia/KOR/Industry", + "World/South Africa/LBR/Industry", + "World/North Africa/MAR/Industry", + "World/South Africa/MOZ/Industry", + "World/Europe/NLD/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Latam/PAN/Industry", + "World/Latam/PER/Industry", + "World/Europe/POL/Industry", + "World/Persian Gulf/SAU/Industry", + "World/South Africa/SEN/Industry", + "World/Asia/THA/Industry", + "World/Latam/VEN/Industry", + "World/Asia/VNM/Industry", + "World/Persian Gulf/YEM/Industry", + "World/South Africa/ZAF/Industry", + "World/Latam/ARG/R&D", + "World/Persian Gulf/AZE/R&D", + "World/Asia/BGD/R&D", + "World/Latam/CHL/R&D", + "World/Latam/COL/R&D", + "World/Latam/CRI/R&D", + "World/North Africa/EGY/R&D", + "World/South Africa/GHA/R&D", + "World/Europe/GRC/R&D", + "World/Europe/HRV/R&D", + "World/Asia/IDN/R&D", + "World/Asia/IND/R&D", + "World/South Africa/LBR/R&D", + "World/Latam/MEX/R&D", + "World/South Africa/MOZ/R&D", + "World/South Africa/NGA/R&D", + "World/Latam/PAN/R&D", + "World/Latam/PER/R&D", + "World/Asia/PHL/R&D", + "World/Europe/POL/R&D", + "World/South Africa/SEN/R&D", + "World/Asia/THA/R&D", + "World/North Africa/TUR/R&D", + "World/Latam/VEN/R&D", + "World/Asia/VNM/R&D", + "World/Persian Gulf/YEM/R&D", + "World/South Africa/ZAF/R&D", + "World/Latam/ARG/R&D", + "World/Asia/BGD/R&D", + "World/Latam/CHL/R&D", + "World/South Africa/CMR/R&D", + "World/Latam/COL/R&D", + "World/Latam/CRI/R&D", + "World/North Africa/EGY/R&D", + "World/South Africa/GHA/R&D", + "World/Europe/GRC/R&D", + "World/Asia/IDN/R&D", + "World/Asia/IND/R&D", + "World/North Africa/MAR/R&D", + "World/Latam/MEX/R&D", + "World/South Africa/MOZ/R&D", + "World/South Africa/NGA/R&D", + "World/Latam/PAN/R&D", + "World/Latam/PER/R&D", + "World/Asia/PHL/R&D", + "World/Europe/POL/R&D", + "World/South Africa/SEN/R&D", + "World/North Africa/TUR/R&D", + "World/Latam/VEN/R&D", + "World/Asia/VNM/R&D", + "World/South Africa/ZAF/R&D", + "World/Persian Gulf/ARE/A&D", + "World/Latam/ARG/A&D", + "World/Europe/AUT/A&D", + "World/Persian Gulf/AZE/A&D", + "World/Asia/BGD/A&D", + "World/Latam/BRA/A&D", + "World/Latam/CHL/A&D", + "World/Pair/CHN/A&D", + "World/Latam/CRI/A&D", + "World/North Africa/EGY/A&D", + "World/Europe/GBR/A&D", + "World/South Africa/GHA/A&D", + "World/Europe/HRV/A&D", + "World/Asia/IND/A&D", + "World/North Africa/ISR/A&D", + "World/Asia/KOR/A&D", + "World/North Africa/MAR/A&D", + "World/Latam/MEX/A&D", + "World/South Africa/MOZ/A&D", + "World/South Africa/NGA/A&D", + "World/Europe/NLD/A&D", + "World/Persian Gulf/OMN/A&D", + "World/Latam/PAN/A&D", + "World/Europe/POL/A&D", + "World/Persian Gulf/QAT/A&D", + "World/Asia/THA/A&D", + "World/Pair/USA/A&D", + "World/Latam/VEN/A&D", + "World/Asia/VNM/A&D", + "World/Persian Gulf/YEM/A&D", + "World/Persian Gulf/ARE/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Asia/BGD/Industry", + "World/Latam/BRA/Industry", + "World/Latam/CHL/Industry", + "World/Pair/CHN/Industry", + "World/South Africa/CMR/Industry", + "World/Latam/CRI/Industry", + "World/North Africa/EGY/Industry", + "World/Europe/HRV/Industry", + "World/Asia/IDN/Industry", + "World/Asia/IND/Industry", + "World/North Africa/ISR/Industry", + "World/North Africa/MAR/Industry", + "World/Latam/MEX/Industry", + "World/South Africa/MOZ/Industry", + "World/South Africa/NGA/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Asia/PHL/Industry", + "World/Europe/POL/Industry", + "World/Persian Gulf/SAU/Industry", + "World/Asia/THA/Industry", + "World/Asia/VNM/Industry", + "World/Persian Gulf/ARE/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IND/Environment", + "World/Persian Gulf/IRQ/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Asia/PHL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Asia/VNM/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/DZA/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/DZA/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/Asia/KOR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/DZA/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/Persian Gulf/IRQ/Demography", + "World/North Africa/ISR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Europe/AUT/Equality", + "World/Persian Gulf/AZE/Equality", + "World/Asia/BGD/Equality", + "World/Latam/CHL/Equality", + "World/Pair/CHN/Equality", + "World/Latam/COL/Equality", + "World/Latam/CRI/Equality", + "World/Europe/DEU/Equality", + "World/North Africa/DZA/Equality", + "World/North Africa/EGY/Equality", + "World/Europe/GBR/Equality", + "World/South Africa/GHA/Equality", + "World/Europe/HRV/Equality", + "World/Asia/IND/Equality", + "World/North Africa/ISR/Equality", + "World/Asia/KOR/Equality", + "World/North Africa/MAR/Equality", + "World/Latam/MEX/Equality", + "World/South Africa/MOZ/Equality", + "World/South Africa/NGA/Equality", + "World/Europe/NLD/Equality", + "World/Latam/PAN/Equality", + "World/Latam/PER/Equality", + "World/Asia/PHL/Equality", + "World/Europe/POL/Equality", + "World/Persian Gulf/SAU/Equality", + "World/Europe/SWE/Equality", + "World/Asia/THA/Equality", + "World/North Africa/TUR/Equality", + "World/Latam/VEN/Equality", + "World/Asia/VNM/Equality", + "World/Persian Gulf/YEM/Equality", + "World/South Africa/ZAF/Equality", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/Latam/CRI", + "World/North Africa/EGY", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/HRV", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Asia/THA", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Latam/ARG", + "World/Asia/BGD", + "World/Latam/BRA", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/South Africa/GHA", + "World/Asia/IND", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/North Africa/TUR", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Latam/CHL", + "World/Pair/CHN", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Latam/PAN", + "World/Latam/PER", + "World/Europe/POL", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/Persian Gulf/ARE", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Asia/IDN", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/South Africa/SEN", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Latam/PAN", + "World/Latam/PER", + "World/Europe/POL", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Latam/PAN", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/SAU", + "World/Europe/SWE", + "World/North Africa/TUR", + "World/Pair/USA", + "World/South Africa/ZAF", + "World/Persian Gulf", + "World/Latam", + "World/Europe", + "World/Persian Gulf", + "World/Asia", + "World/Latam", + "World/Latam", + "World/Pair", + "World/South Africa", + "World/Latam", + "World/Latam", + "World/Europe", + "World/North Africa", + "World/North Africa", + "World/Europe", + "World/Europe", + "World/Europe", + "World/South Africa", + "World/Europe", + "World/Europe", + "World/Asia", + "World/Asia", + "World/Persian Gulf", + "World/North Africa", + "World/Asia", + "World/South Africa", + "World/North Africa", + "World/Latam", + "World/South Africa", + "World/South Africa", + "World/Europe", + "World/Persian Gulf", + "World/Latam", + "World/Latam", + "World/Asia", + "World/Europe", + "World/Persian Gulf", + "World/Persian Gulf", + "World/South Africa", + "World/Europe", + "World/Asia", + "World/North Africa", + "World/Pair", + "World/Latam", + "World/Asia", + "World/Persian Gulf", + "World/South Africa", + "World", + "World", + "World", + "World", + "World", + "World", + "World", + "" + ], + "type": "treemap", + "values": [ + 0.8531021111589834, + 0.9960831758177524, + 0.9956171156600898, + 0.7534091311886247, + 0.999122807017544, + 0.872263164968203, + 0.897855261911528, + 0.999122807017544, + 0.8536839205362883, + 0.8975114391781058, + 0.8640740055556022, + 0.908313797791604, + 0.9891493795585866, + 0.766483106515241, + 0.9231736856070656, + 0.9602036241270692, + 0.9626281577206024, + 0.9457244866279326, + 0.9047503889161737, + 0.8269184820807403, + 0.8789838022165389, + 0.8800026263331926, + 0.957737379733654, + 0.999122807017544, + 0.9509004506686832, + 0.7562762148337596, + 0.8442479234380643, + 0.993779175279743, + 0.7763614794595731, + 0.8710617614475394, + 0.9636752136752136, + 0.8119647131227026, + 0.7805172292400586, + 0.9370415079706566, + 0.8701066680233348, + 0.8242647792818613, + 0.8238243435953362, + 0.9791710812316362, + 0.7554660388288974, + 0.8482458889462429, + 0.914656355102988, + 0.8458383400350413, + 0.92448876432027, + 0.8295449908182004, + 0.9773557492735576, + 0.9281390141743808, + 0.9093117324398052, + 0.7806171146277027, + 0.8726620562837514, + 0.9686137921250751, + 0.8257949554417174, + 0.7988538683378321, + 0.9506066908754583, + 0.992130773157018, + 0.992130773157018, + 0.8297391428809981, + 0.9981637899375688, + 0.9559378978139692, + 0.9725030984517492, + 0.9994500458295142, + 0.9674464520962212, + 0.9537877101584162, + 0.9973311596620504, + 0.9965191088563604, + 0.9588085805762212, + 0.9804758872197188, + 0.9761230584660866, + 0.9804758872197188, + 0.9815561030337692, + 0.9979840393589112, + 0.9327029435145744, + 0.9855664265688792, + 0.9965191088563604, + 0.990099472619818, + 0.995055254321861, + 0.8099484766436214, + 0.9906701465266744, + 0.931003010693105, + 0.983380118113322, + 0.9892105958643824, + 0.9957870470931044, + 0.9654908347220116, + 0.9987789987789988, + 0.987752121170142, + 0.9645628577173472, + 0.9994500458295142, + 0.94949459763166, + 0.9746742674843129, + 0.9965191088563604, + 0.9899402366995218, + 0.987752121170142, + 0.9987169080982063, + 0.9987169080982063, + 0.9985113511553524, + 0.9987169080982063, + 0.9632178831505792, + 0.9892105958643824, + 0.9537877101584162, + 0.9444982054870336, + 0.8409895539377414, + 0.9935457940810306, + 0.9402260743372878, + 0.9725030984517492, + 0.9994500458295142, + 0.9022126610505616, + 0.9552208996034384, + 0.9963384890035256, + 0.987752121170142, + 0.9133941210450608, + 0.9444982054870336, + 0.960245535909425, + 0.9790238683337896, + 0.9094946702782724, + 0.920417502503307, + 0.9384151778567814, + 0.963122674479988, + 0.992130773157018, + 0.7576460378790729, + 0.9455819726942684, + 0.987752121170142, + 0.968168023170972, + 0.9133941210450608, + 0.8731664917240823, + 0.9746742674843129, + 0.9833831528957327, + 0.8527482577723561, + 0.9964422727546304, + 0.9746742674843129, + 0.9797497432807476, + 0.9987169080982063, + 0.948780020349246, + 0.960245535909425, + 0.9036065776616928, + 0.926761544632836, + 0.9660041169227584, + 0.9710569973901052, + 0.9979840393589112, + 0.9947945803202288, + 0.9987169080982063, + 0.9411662012310432, + 0.9395149939510422, + 0.9612865740616352, + 0.9104377104377104, + 0.8466632549513022, + 0.965460306668771, + 0.9991930603515944, + 0.7661643396391405, + 0.8993946860474129, + 0.9987169080982063, + 0.8053363980490009, + 0.8802332979851536, + 0.9951653583795466, + 0.8038391193200113, + 0.8486048045950245, + 0.9280303030303032, + 0.7681025602181487, + 0.8667078642628765, + 0.8561382296156173, + 0.9288810671989122, + 0.9927523497097036, + 0.975268289884998, + 0.9652833528240462, + 0.8533855094586799, + 0.9552208996034384, + 0.9383191940615055, + 0.9334429906542056, + 0.906974409725021, + 0.872086805029541, + 0.9775003787304952, + 0.9866063032322202, + 0.941241325810687, + 0.9394303111483416, + 0.9755497899678774, + 0.9757801848204816, + 0.97062869262233, + 0.798490964605047, + 0.9022126610505616, + 0.9410307160918406, + 0.9994500458295142, + 0.9434119359795824, + 0.9987169080982063, + 0.805678624440212, + 0.7609962981315767, + 0.8417508417508417, + 0.9573727012110692, + 0.9833831528957327, + 0.8473209929380159, + 0.9946751263076096, + 0.9580905063976388, + 0.9638426316026611, + 0.9987169080982063, + 0.9015161062330156, + 0.9703343503473024, + 0.9987789987789988, + 0.9826559329887096, + 0.8594361209082695, + 0.9516399434309798, + 0.920417502503307, + 0.9423609294481023, + 0.968168023170972, + 0.9957870470931044, + 0.94521116881737, + 0.9694172098634408, + 0.9466379024540816, + 0.995055254321861, + 0.9879041307837876, + 0.9833831528957327, + 0.9333963910884244, + 0.9899402366995218, + 0.8869505922195406, + 0.9203611665699089, + 0.9884812240212558, + 0.9588085805762212, + 0.9214805336789016, + 0.9881107335844111, + 0.9236131934032984, + 0.9812023001507028, + 0.8379122722898551, + 0.9523555966814456, + 0.9248788062414784, + 0.8139160327981961, + 0.937383366744383, + 0.94521116881737, + 0.9768478574449928, + 0.9972514396116292, + 0.9933098124967774, + 0.9991101223581756, + 0.9286467697656632, + 0.919010674275554, + 0.9473516727604566, + 0.9459244011397192, + 0.907679698406929, + 0.9012628558280068, + 0.923234386862968, + 0.9345449630236856, + 0.9965224965914254, + 0.9537877101584162, + 0.9105923002381252, + 0.9964912280701756, + 0.9732265524705908, + 0.948780020349246, + 0.9833831528957327, + 0.923234386862968, + 0.9717799134249206, + 0.9001238035739624, + 0.8238720996776803, + 0.9369854844016412, + 0.9338360345735434, + 0.986111412381384, + 0.9689798997219612, + 0.9935924757554138, + 0.7605829143427332, + 0.9660041169227584, + 0.9211213201052028, + 0.917590135458235, + 0.9870232873110416, + 0.8507175025705549, + 0.9481552134363872, + 0.9964912280701756, + 0.9553309445702832, + 0.9403778017040136, + 0.9696119722965126, + 0.9725030984517492, + 0.9480657120588448, + 0.9480657120588448, + 0.8911000630113791, + 0.9008198204074828, + 0.9739502754814452, + 0.992130773157018, + 0.9940520578006032, + 0.9979840393589112, + 0.9871951628595732, + 0.9050015702408756, + 0.7835109416675496, + 0.9993324432576768, + 0.7596801346801346, + 0.9906701465266744, + 0.9480657120588448, + 0.8159024043178598, + 0.7811662552209668, + 0.8197944468080158, + 0.9848383996858172, + 0.9221336649411492, + 0.8994280557324552, + 0.7868192556366049, + 0.8020486431706627, + 0.8608954878607268, + 0.9309395848776872, + 0.8507175025705549, + 0.9280303030303032, + 0.934334074623178, + 0.8656659267144711, + 0.7814049860815457, + 0.819882410141537, + 0.9043039394552778, + 0.7905837844375335, + 0.9809244351623316, + 0.7920033670033668, + 0.9476817042606516, + 0.9732265524705908, + 0.999014778325123, + 0.8814330280498146, + 0.8106107934390159, + 0.9859927106498642, + 0.843965803045393, + 0.7596801346801346, + 0.8513250555967384, + 0.8046783090893074, + 0.8073122788801593, + 0.9239392804329156, + 0.97062869262233, + 0.9464820597794912, + 0.8731889608367804, + 0.819882410141537, + 0.9189961343104286, + 0.8073122788801593, + 0.941972584550496, + 0.9545041703849207, + 0.8766192814819845, + 0.9739502754814452, + 0.9331273751154144, + 0.8493650107294191, + 0.9873818298349624, + 0.9964912280701756, + 0.895536084777682, + 0.9773557492735576, + 0.8385429638854297, + 0.8492357350911255, + 0.992105287563838, + 0.9991101224022378, + 0.7779288650281017, + 0.8958436239049175, + 0.9954545454545456, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8178037731982906, + 0.9416562889165628, + 0.936963017728694, + 0.8442717785843921, + 0.7686035765445222, + 0.7867084930870223, + 0.992671182389769, + 0.9848040830545792, + 0.951008471157725, + 0.8630706569122704, + 0.9026819923371648, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8474662292253902, + 0.8979659609796596, + 0.999777530589544, + 0.940760842211224, + 0.78115400581154, + 0.9240556247405564, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.7593325960761084, + 0.9413092648977816, + 0.999122807017544, + 0.9505705348293196, + 0.9416562889165628, + 0.9271888077994948, + 0.8673029726406383, + 0.9731456263408548, + 0.7813852813852814, + 0.7822341892305151, + 0.9364502164502164, + 0.8679516484927489, + 0.8857699681136173, + 0.7714560308712177, + 0.8584751140436623, + 0.8985904473621558, + 0.8190486045187013, + 0.7893527624833871, + 0.8919696969696971, + 0.8818618218586448, + 0.756628065305478, + 0.7882882882882881, + 0.950300482513086, + 0.8657481566722074, + 0.9365262267264388, + 0.943947221044588, + 0.8874585152838429, + 0.7714763488785487, + 0.9214972959512142, + 0.909072064464046, + 0.7715736896162307, + 0.9290762303990062, + 0.8550758611268748, + 0.7761808341851455, + 0.9819054691235874, + 0.7957985346108523, + 0.9657498873425368, + 0.9364502164502164, + 0.8516827062939479, + 0.9754181770220984, + 0.9731874212360307, + 0.8135371179039302, + 0.8727427378014051, + 0.848344463643581, + 0.8895327800940938, + 0.7627248531396743, + 0.7582569516718275, + 0.7709571931840407, + 0.8921633972095838, + 0.9321707396546104, + 0.8986401163657464, + 0.7580471889891207, + 0.9369652591790606, + 0.8679796630864033, + 0.9098066660834572, + 0.980489676524778, + 0.927246096495326, + 0.9018122770586844, + 0.8810674463937621, + 0.8400216450216451, + 0.7689831576535288, + 0.7729944320019908, + 0.8837147279244052, + 0.8811496483778261, + 0.9563110356768192, + 0.983927829355058, + 0.9839066269313416, + 0.7583206652119362, + 0.7925815424300344, + 0.8317161572052402, + 0.7744952514390555, + 0.9360718475073312, + 0.96130346341869, + 0.7958679833679831, + 0.7906981399616313, + 0.8413581378299119, + 0.9203347173341052, + 0.8430006636564963, + 0.9727275146860328, + 0.8287881529651736, + 0.8315151515151515, + 0.8537205081669691, + 0.8093402654155926, + 0.8962455479058957, + 0.8056050278017189, + 0.8210295170320835, + 0.8039070101933913, + 0.8039838558691283, + 0.7826760060360987, + 0.9269812868749552, + 0.794976794976795, + 0.8900713624983871, + 0.9133288665033964, + 0.810208371742399, + 0.7896057754229845, + 0.923877773549558, + 0.9296009475992656, + 0.8950805293005671, + 0.8085490374609781, + 0.9819008264462812, + 0.8587224361306279, + 0.7739174537660428, + 0.7862254487513007, + 0.8193724468472356, + 0.8893524283935244, + 0.997064221767242, + 0.7952666762372825, + 0.9020216682958616, + 0.9983501374885428, + 0.8831534562926947, + 0.8860521920074892, + 0.7872481572481572, + 0.9226825090266608, + 0.7803152709359606, + 0.9122593875476056, + 0.8775850757693318, + 0.9799040094031604, + 0.8206267324852857, + 0.8177880557075959, + 0.9576966355531912, + 0.9220659824046918, + 0.797922077922078, + 0.7896320346320347, + 0.8632950463543738, + 0.9492492880197456, + 0.8832034632034632, + 0.8047193670665553, + 0.9956521739130436, + 0.7685862920068351, + 0.8475960459042418, + 0.9795419233757146, + 0.8269899956502829, + 0.7884382884382883, + 0.8207547087216158, + 0.9545454545454548, + 0.8429554406857294, + 0.8993321115511173, + 0.7984889287851586, + 0.761374210879955, + 0.8305523603886545, + 0.7718491195125222, + 0.980407916624232, + 0.950300482513086, + 0.8240213521788207, + 0.8952485002194801, + 0.9038846565773924, + 0.7965911235687182, + 0.8955324322950189, + 0.7910020962422152, + 0.9427138643067844, + 0.826115183440325, + 0.8573048573048573, + 0.7936317271895962, + 0.9007792207792208, + 0.854365955487306, + 0.9456364522650812, + 0.997982406795966, + 0.8774985212108586, + 0.9977822580645164, + 0.8221159804806326, + 0.9077567136073358, + 0.8205465606720966, + 0.8626119406890994, + 0.7556531232200494, + 0.7862587810898044, + 0.8404814885133853, + 0.8206267324852857, + 0.992492576897818, + 0.9526883899349432, + 0.8172714912841496, + 0.942686481353632, + 0.9073962406670544, + 0.793330615828421, + 0.9250332915366596, + 0.7896320346320347, + 0.9844717839591371, + 0.7676353790613719, + 0.9020216682958616, + 0.8820943870496513, + 0.9628828555154738, + 0.9505406805522968, + 0.7685960591133003, + 0.952282255405342, + 0.9961515326042576, + 0.8792822185970635, + 0.917989916458992, + 0.7624864249098159, + 0.8475960459042418, + 0.9795419233757146, + 0.8269899956502829, + 0.7884382884382883, + 0.8207547087216158, + 0.9545454545454548, + 0.8429554406857294, + 0.8993321115511173, + 0.7834739702517162, + 0.761374210879955, + 0.8305523603886545, + 0.7811065974284784, + 0.980407916624232, + 0.950300482513086, + 0.8240213521788207, + 0.8952485002194801, + 0.9038846565773924, + 0.798508237019148, + 0.8955324322950189, + 0.7839982383292353, + 0.9427138643067844, + 0.8245984899369047, + 0.8573048573048573, + 0.8243136284936928, + 0.8553134080531342, + 0.8473904773631097, + 0.9982456140350876, + 0.9590236663403416, + 0.9014436252397446, + 0.8327140244007301, + 0.8669485569807114, + 0.7949843218068803, + 0.903497324397646, + 0.9416562889165628, + 0.7707143966920784, + 0.855320123139272, + 0.7774854369415835, + 0.8503120994598766, + 0.926867994896457, + 0.8667552028246747, + 0.8775319334595817, + 0.901968773482508, + 0.935627556261994, + 0.9050659282343974, + 0.861924622573884, + 0.9675940297571454, + 0.9116934339203904, + 0.9072582435684412, + 0.9237413014402296, + 0.9238605624457716, + 0.8365273593813229, + 0.8893524283935244, + 0.9102500533059372, + 0.8349825924909351, + 0.8784817670545184, + 0.9947399253846392, + 0.8930927589221841, + 0.8055002075550022, + 0.8605298779944784, + 0.9775071835696456, + 0.9505926587353696, + 0.7588336685332704, + 0.8428335962794538, + 0.9238783245212608, + 0.8585749771698774, + 0.8765915866073056, + 0.9822182852411184, + 0.9533886386596292, + 0.8440336134453781, + 0.7834747760490336, + 0.924617649948652, + 0.9395524842975836, + 0.9389258424390616, + 0.9550800035134204, + 0.7946561709764254, + 0.9558099289684048, + 0.8428529645259684, + 0.7972573636925488, + 0.9379369101877942, + 0.8553636363636363, + 0.8995050491578672, + 0.9706054674756964, + 0.7736264668325739, + 0.9622333213753728, + 0.8220723881235561, + 0.8256741778557297, + 0.8127858031447691, + 0.7817740006858703, + 0.7968179052727826, + 0.8018268268268267, + 0.9281390141743808, + 0.9400806090461262, + 0.8107701860758095, + 0.8909257783846486, + 0.8991789819376025, + 0.8738739499371329, + 0.9781810760439292, + 0.8591088340319827, + 0.9192322609917452, + 0.8578880235734736, + 0.927227398337575, + 0.8549844211383769, + 0.9954545454545456, + 0.7996032354193273, + 0.7663762728169506, + 0.8072044088993242, + 0.9545454545454548, + 0.9222946747399472, + 0.8012891170808603, + 0.9007792207792208, + 0.761725650275299, + 0.9189132122341253, + 0.7700791802515137, + 0.7905809884612046, + 0.9364502164502164, + 0.9272003238960064, + 0.9520381744611566, + 0.7670786695244899, + 0.8558592375366568, + 0.833174972830306, + 0.9256214544793848, + 0.8228255528255527, + 0.8485714285714286, + 0.9702872224809812, + 0.7517555862267378, + 0.7565364592835856, + 0.7612860365462938, + 0.987527533398501, + 0.955555772482297, + 0.7996032354193273, + 0.7663762728169506, + 0.8072044088993242, + 0.9545454545454548, + 0.9222946747399472, + 0.8012891170808603, + 0.9007792207792208, + 0.761725650275299, + 0.9189132122341253, + 0.7700791802515137, + 0.7905809884612046, + 0.9364502164502164, + 0.933977462236232, + 0.9520381744611566, + 0.7670786695244899, + 0.8558592375366568, + 0.833174972830306, + 0.9256214544793848, + 0.8228255528255527, + 0.8485714285714286, + 0.9702872224809812, + 0.7517555862267378, + 0.7565364592835856, + 0.7612860365462938, + 0.987527533398501, + 0.955555772482297, + 0.9364502164502164, + 0.8358612257146861, + 0.8590707598082956, + 0.8832034632034632, + 0.833174972830306, + 0.8630005695842037, + 0.984461621950468, + 0.892391114486425, + 0.9897824784878032, + 0.8085316277505704, + 0.919319387113138, + 0.7940051262578318, + 0.780089044997152, + 0.9222946747399472, + 0.8363949697251979, + 0.796839893191436, + 0.7794331008589289, + 0.9859234217934404, + 0.9873000604890544, + 0.9486101335940044, + 0.9248539005931276, + 0.9517981773305488, + 0.8708608667318343, + 0.8623785126533147, + 0.9299160466862332, + 0.9545454545454548, + 0.8796487671810186, + 0.9772426641825802, + 0.7524584849903713, + 0.807857176503839, + 0.90727093221948, + 0.9971775822743564, + 0.7739306525397351, + 0.9847748699555192, + 0.7535520524804752, + 1, + 0.8551111044973793, + 0.9256631478531152, + 0.989570259523299, + 0.7687418116400186, + 0.9641837718077296, + 0.7942756598240468, + 0.8294322792944963, + 0.9215082393282026, + 0.9054494643688868, + 0.8530098192637454, + 0.9025093300004408, + 0.992492576897818, + 0.9598649249543808, + 0.8332737181503951, + 0.9529394346692732, + 0.8214507035663541, + 0.9309630572047876, + 0.7830101580101579, + 0.9732801304295486, + 0.9004189790402766, + 0.9446639459426616, + 0.9036078185699322, + 0.97145319916461, + 0.9609332238642584, + 0.7899791515690191, + 0.7611733870967741, + 0.863207096556374, + 0.9415725119950472, + 0.9939556858911696, + 0.783163286086673, + 0.9977977617253442, + 0.8662090859332238, + 0.8955509185594555, + 0.9764731504349176, + 0.7530954708374062, + 0.7828061257738677, + 0.8462219807137138, + 0.8842041598248496, + 0.915537959944108, + 0.7865763787648619, + 0.7856202453035243, + 0.903206652230566, + 0.989570259523299, + 0.7882882882882881, + 0.9483953947649668, + 0.9364334975369458, + 0.9056925711224626, + 0.7591535837096157, + 0.8418627955566074, + 0.7573046594982078, + 0.880681818181818, + 0.8409090909090907, + 0.8067970481260611, + 0.7826760060360987, + 0.7688448083650483, + 0.8584408270788305, + 0.8956871084108602, + 0.913923675716727, + 0.9910308796338216, + 0.9590266687613186, + 0.7872481572481572, + 0.8646083304603533, + 0.9939410487486168, + 0.8340069434398959, + 0.982598363716604, + 0.9106424097900996, + 0.8008517246406788, + 0.8727928390787971, + 0.7681285613827205, + 0.8812869326621476, + 0.928402586493192, + 0.8532026469355432, + 0.8994624945374701, + 0.9440584784614404, + 0.9003302615524813, + 0.8228255528255527, + 0.9795723406491688, + 0.866515864516721, + 0.955439293598234, + 0.8529365775827682, + 0.934359451290398, + 0.8332769785018068, + 0.9365108715713024, + 0.877525810880078, + 0.9692015664722224, + 0.8409090909090907, + 0.940544771679814, + 0.923587693351357, + 0.7954434590943897, + 0.991568586771984, + 0.7612354435027383, + 0.937924041385235, + 0.8376851905173242, + 0.8927174779953234, + 0.7909951819239077, + 0.8443928295282409, + 0.8202350197681522, + 0.9660981642663024, + 0.8152462729809101, + 0.922004885973844, + 0.7639604667778042, + 0.7872481572481572, + 0.9000298090512994, + 0.801471285082847, + 0.8228255528255527, + 0.8498088450201552, + 0.7879169357174486, + 0.8556523719936285, + 0.9755199210863276, + 0.8557823298777246, + 0.8293705854653899, + 0.8537505886046147, + 0.8046317312743457, + 0.8779697795654818, + 0.8749239196591598, + 0.8555086871328603, + 0.9225963809255304, + 0.9678016420122256, + 0.9415762523485668, + 0.8057522792271018, + 0.8959576525733801, + 0.9001590894975677, + 0.767145966241361, + 0.8489857866410284, + 0.9644777226717816, + 0.9098253673621896, + 0.8791269994277514, + 0.8664155045733993, + 0.8498893415734232, + 0.947101370798582, + 0.8538593322386425, + 0.8042480240124439, + 0.8931085516844227, + 0.8808798536293945, + 0.7934170900130808, + 0.9012551319648092, + 0.9348648660475504, + 0.8291496315254414, + 0.8722929363621342, + 0.911251618573038, + 0.9109734587383088, + 0.9170938628158845, + 0.7650216450216449, + 0.8491510263929618, + 0.797922077922078, + 0.9976169999054124, + 0.9935999513470776, + 0.8049044578239981, + 0.836149001293594, + 0.9772426641825802, + 0.7947818492500476, + 0.774258455570617, + 0.8948565585013833, + 0.96130346341869, + 0.7882882882882881, + 0.9031253085247768, + 0.7502958618442489, + 0.9074753238868364, + 0.9391271623435224, + 0.7795953486477679, + 0.8889322557418088, + 0.8774400397180557, + 0.9117791157331387, + 0.9837385506159468, + 0.7764964848815781, + 0.763706420963152, + 0.982244407057744, + 0.982258229908174, + 0.8665750946042498, + 0.7595972992524718, + 0.7801043792183331, + 0.905255061999686, + 0.8220123627076744, + 0.8030465628225143, + 0.9789271593959374, + 0.7848592675970836, + 0.78340962656552, + 0.9151319857390936, + 0.8905339474233814, + 0.8105036440440168, + 0.8827179393030227, + 0.9303783215638728, + 0.9188270726931116, + 0.9157320003100056, + 0.9358530842881808, + 0.7937577290427827, + 0.9414073611117948, + 0.8901453226576379, + 0.8602487024132297, + 0.7556614611768913, + 0.9600221996115068, + 0.7680433097131316, + 0.8925061445921794, + 0.9773557492735576, + 0.8013333235492676, + 0.7689202564616309, + 0.8185297955632883, + 0.7566698570378732, + 0.7828314585807773, + 0.8694189151801023, + 0.8065343721704722, + 0.9807788363703636, + 0.8356411205726274, + 0.8778270939877454, + 0.8142980219813144, + 0.9079854938491076, + 0.8369284370856844, + 0.8951910290953499, + 0.8385429638854297, + 0.9335217836825552, + 0.8814450312694764, + 0.8433770449321196, + 0.9773557492735576, + 0.8751169590643275, + 0.7872836439659993, + 0.8460813462362223, + 0.9068505777317312, + 0.974712351554919, + 0.8582253898196657, + 0.7694393172704596, + 0.9593583027873251, + 0.7791177041387707, + 0.8285988264418827, + 0.9708841861711646, + 0.8292663783394395, + 0.8455377025736512, + 0.7849537714203622, + 0.7591712665406428, + 0.8668958338409165, + 0.8033611495393502, + 0.7791177041387707, + 0.7800515724165504, + 0.8797549464963943, + 0.9913485744394356, + 0.9893735932410646, + 0.8883723399394137, + 0.8371159751352831, + 0.8604416000492892, + 0.9391164837414664, + 0.9875732201051683, + 0.8696289027548957, + 0.9116740607637536, + 0.9335682269765724, + 0.8903543205412945, + 0.8274478901761246, + 0.8184361507912837, + 0.8985858297326429, + 0.8811309071018276, + 0.9600766541682176, + 0.9142379797053092, + 0.8539724989309248, + 0.9209665616774528, + 0.7653056658292261, + 0.9409789458067938, + 0.9813761990559404, + 0.937050978278692, + 0.8764803941254208, + 0.9622333213753728, + 0.8137991281050442, + 0.9349229298096128, + 0.9954545454545456, + 0.8383046372479713, + 0.8091752787787085, + 0.8992810605226834, + 0.8526177936134408, + 0.7653579292773433, + 0.916749204599586, + 0.8841900402810652, + 0.8889595044710776, + 0.8674196841123456, + 0.9890311615492476, + 0.9817061821644611, + 0.9631360021073514, + 0.9146441554557286, + 0.9372227566431792, + 0.8277684278026405, + 0.8085158042512651, + 0.8164472422898458, + 0.9476735033728184, + 0.9195597006085118, + 0.9400644385653472, + 0.8518992260665973, + 0.9457607069255074, + 0.8059692352029971, + 0.8496241912512923, + 0.8197634340126408, + 0.9579224065577792, + 0.860861247637051, + 0.9529052383428788, + 0.9845238804935112, + 0.9083435256044582, + 0.8553134080531342, + 0.7923275652679538, + 0.7819131922573496, + 0.7906170310433895, + 0.8406484670606788, + 0.7894736842105264, + 0.8681498428014106, + 0.8408063572139095, + 0.7738548847622624, + 0.8107066154287429, + 0.909636086500905, + 0.9320839327803117, + 0.894689054121916, + 0.8861995746607623, + 0.8134896030245747, + 0.9636363636363636, + 0.8392276737347159, + 0.901982337361457, + 0.8985728391457872, + 0.7921837072845759, + 0.781322126609299, + 0.9194369973190348, + 0.8490800833801486, + 0.9929855448480356, + 0.9990150209905604, + 0.7707081956166205, + 0.8952232922255726, + 1, + 0.8129887361537077, + 0.9000234404536862, + 0.998221036598569, + 0.8017888630248555, + 0.8075842215036355, + 0.9208092958092956, + 0.7606873345935727, + 0.7928741020793951, + 0.9344444444444444, + 0.8580430671412884, + 0.8053911900065747, + 0.9025957850286672, + 0.992671182389769, + 0.9682695039010508, + 0.951299790877642, + 0.9060155127964962, + 0.9527305856232412, + 0.9434321361058602, + 0.9565966865742668, + 0.943947221044588, + 0.8705701323251417, + 0.9652200677131424, + 0.9884853681548044, + 0.9357441792403746, + 0.9414868925909092, + 0.9505847966970496, + 0.9565269894940224, + 0.9514804555247768, + 0.7993113894954217, + 0.760960813749392, + 0.8859552362571937, + 0.9413092648977816, + 1, + 0.8182545315351611, + 2, + 0.9136739322359624, + 0.7679975248125409, + 0.9492028179458656, + 0.9839615421047646, + 0.9954545454545456, + 0.9954545454545456, + 0.8398210820058982, + 0.8626784395302913, + 0.9781810760439292, + 0.7758485551227942, + 0.7830044520223548, + 0.7890565881306622, + 0.7666456034744639, + 0.8730814336484439, + 0.8997733824632729, + 0.9780525030525028, + 0.9501767000609233, + 0.9341770866436075, + 0.7890266466291772, + 0.931285458781014, + 0.9135836385836384, + 0.8161327222259138, + 0.8595055413469735, + 0.8885272049623901, + 0.8850443888003645, + 0.9111695674516778, + 0.8969355419044592, + 0.9369652591790606, + 0.9474196440005122, + 0.9540293886604132, + 0.7751893805092812, + 0.884220727546821, + 0.9248167539267018, + 0.9416562889165628, + 0.9947833674785644, + 0.8179413224638157, + 0.963749256395003, + 0.9894860390412652, + 0.7661643396391405, + 0.8822836096135876, + 0.9987169080982063, + 0.8212112306855328, + 0.8510831692167852, + 0.9674464520962212, + 0.8140738302718742, + 0.9084937590490596, + 0.8588550489464593, + 0.9132111582886344, + 0.9652833528240462, + 0.8704495461768502, + 0.908214664444781, + 0.8330370179351025, + 0.8542414865764498, + 0.951833769945225, + 0.9369276682149368, + 0.9172096473904444, + 0.7660118606375093, + 0.8049385749385748, + 0.819882410141537, + 0.9479738077588338, + 0.8453139910143218, + 0.9957870470931044, + 0.8350845205706391, + 0.7568829071309779, + 0.8003212087852895, + 0.7757575757575756, + 0.9818181818181816, + 0.8296247866194635, + 0.8397480840731469, + 0.8084175084175084, + 0.8224948407969243, + 0.7604961330297303, + 0.8801077325173712, + 0.769382100421295, + 0.8025699565810901, + 0.792519283483139, + 0.932353379320096, + 0.94491648331435, + 0.8001582377938935, + 0.7832517257911142, + 0.8082508107205724, + 0.7628286200410923, + 0.7621748136686876, + 0.9364192202560784, + 0.76909130219916, + 0.8585000323687447, + 0.9150177303560064, + 0.8405722943067688, + 0.904913008013858, + 0.917314235445159, + 0.9929855448480356, + 0.8268991218112046, + 0.8398859728050183, + 0.996521739130435, + 0.8330381744436689, + 0.8550497957993816, + 0.9913111768722972, + 0.8557422839635942, + 0.8935463671803986, + 0.9006445563787115, + 0.8921379258150505, + 0.9000168618023969, + 0.7589099863492517, + 0.923526237747262, + 0.9028882720019862, + 0.9170617535185012, + 0.9807828100228472, + 0.939548148620228, + 0.9363191484705866, + 0.8321093615368212, + 0.8571281012005368, + 0.8384981048972464, + 0.9086443302842008, + 0.8871943647917209, + 0.8878997468865361, + 0.8999564578859198, + 0.9894860390412652, + 0.9134801839907836, + 0.8586028659246839, + 0.9532628651995616, + 0.8991005792297246, + 0.9248167539267018, + 0.8647701376567242, + 0.9063380676482872, + 0.9006445563787115, + 0.9964912280701756, + 0.9104377104377104, + 0.9861142727065788, + 0.8766608932307983, + 0.9228068405104872, + 0.945216049382716, + 0.8722881394418279, + 0.8287614081607514, + 0.9364502164502164, + 0.9107716613157442, + 0.7558233373684017, + 0.9637205387205386, + 0.911011004178706, + 0.8250190694126619, + 0.7745592680619332, + 0.9563893487499426, + 0.8643469043976432, + 0.8938717567128639, + 0.8935795415901516, + 0.909090909090909, + 0.8890241171514016, + 0.8412491105292438, + 0.8993946860474129, + 0.9779240761641758, + 0.8448498489942446, + 0.9637205387205386, + 0.8307739463601532, + 0.7840680498436611, + 0.9234588281480026, + 0.7533766040551628, + 0.8411108025383495, + 0.8186320718389478, + 0.7507073140597975, + 0.8665855131372373, + 0.8141166099294751, + 0.846517863969504, + 0.8674324881574892, + 0.894897491091307, + 0.926797128906551, + 0.8002254756609835, + 0.8899568476668683, + 0.8050891517303731, + 0.7551272091668285, + 0.9170723522722332, + 0.8862820694208641, + 0.7731935891169761, + 0.8527968471904399, + 0.8545871559633028, + 0.973043266390798, + 0.9110701550899905, + 0.8806793706489482, + 0.9750233018591332, + 0.8832528651475978, + 0.9637205387205386, + 0.8045977011494252, + 0.7840680498436611, + 0.9718089459310836, + 0.7632159853061835, + 0.8411108025383495, + 0.8186320718389478, + 0.8665855131372373, + 0.8141166099294751, + 0.846517863969504, + 0.8674324881574892, + 0.8941741955127749, + 0.8055806456563269, + 0.9200506754154923, + 0.8002254756609835, + 0.8055002075550022, + 0.8899568476668683, + 0.8050891517303731, + 0.7551272091668285, + 0.9170723522722332, + 0.8862820694208641, + 0.7643684665873062, + 0.8962930952966316, + 0.8545871559633028, + 0.973043266390798, + 0.8391999316061071, + 0.9106199738197148, + 0.8336184977583576, + 0.9825055596738328, + 0.8275801175590107, + 0.8536656603794738, + 0.9947833674785644, + 0.8871943647917209, + 0.9947833674785644, + 0.8474509259804291, + 0.8970952216775002, + 0.9064029668710988, + 0.8689528166230794, + 0.8668563557933111, + 0.9192140588692024, + 0.8446191193563313, + 0.9070510179197604, + 0.9569231352909934, + 0.9360907526607608, + 0.9363191484705866, + 0.7585150816808764, + 0.8079450438253487, + 0.889311351984684, + 0.9157961667726408, + 0.8495199813878912, + 0.9008127437155956, + 0.9894860390412652, + 0.9084777593712244, + 0.8247288683081853, + 0.9554572159761404, + 0.8803742636840192, + 0.8617666872995883, + 0.9141959372906489, + 0.9034890695907856, + 0.8086181910936574, + 0.9964912280701756, + 0.9859927106498642, + 0.9106199738197148, + 0.7805873465692333, + 0.8878997468865361, + 0.9016573566020094, + 0.996521739130435, + 0.8072721768598793, + 0.8440081063581091, + 0.996521739130435, + 0.8612922801795058, + 0.8405722943067688, + 0.9620426435996664, + 0.8550497957993816, + 0.8140134601423378, + 0.8065264393377811, + 0.8107867382196149, + 0.8640740055556022, + 0.8801559604997238, + 0.7852248168921702, + 0.8640589559565321, + 0.7885457047794436, + 0.8947102177469851, + 0.9459249756326832, + 0.9206503306171988, + 0.8390959753949685, + 0.8829679585824524, + 0.8550497957993816, + 0.9034890695907856, + 0.996521739130435, + 0.8773484472624222, + 0.8453843932985197, + 0.9372480427854252, + 0.7528181818181817, + 0.9513991845811716, + 0.8133380704513155, + 0.8550497957993816, + 0.8822645386075115, + 0.9964912280701756, + 0.984385006449655, + 0.8868917142282169, + 0.8515915595209063, + 0.780155436063497, + 0.985677698237539, + 0.8248130810601166, + 0.8900224404233377, + 0.9847846012832264, + 0.8665750946042498, + 0.8066554677866482, + 0.9191871761989552, + 0.8436840954545581, + 0.863729744412587, + 0.8256985978203084, + 0.8998085943818406, + 0.8162326248169407, + 0.9119926726575672, + 0.9789271593959374, + 0.9477427513951896, + 0.9452267008277976, + 0.880636467189412, + 0.8867623702302507, + 0.808133830455259, + 0.9714444301275637, + 0.9847846012832264, + 0.9286461770540784, + 0.9203870504644208, + 0.941002197457228, + 0.9704634209196064, + 0.8113283188178101, + 0.7634010982542299, + 0.8902061446452669, + 0.9354771486059212, + 0.9847846012832264, + 0.7809840281171203, + 0.9894860390412652, + 0.8185297955632883, + 0.8802332979851536, + 0.9723196833760274, + 0.9982608695652172, + 0.8258211640188051, + 0.9080000797822108, + 0.9964912280701756, + 0.839409582008935, + 0.8941141728869741, + 0.7725808179227283, + 0.802818872575447, + 0.8251527896182628, + 0.8315151515151515, + 0.817899229361741, + 0.7620751217250175, + 0.8246468823065851, + 0.8720941750410174, + 0.9294859277773438, + 0.9927523497097036, + 0.9828742809481747, + 0.9543209471735604, + 0.8753860783148016, + 0.939845912034176, + 0.9151374298073564, + 0.9378841050418828, + 0.939845912034176, + 0.7510938991373108, + 0.8610822831727207, + 0.8417508417508417, + 0.8698065557551617, + 0.9372803249238462, + 0.9790245861131704, + 0.9300633742947678, + 0.8054841390869845, + 0.7589199371000429, + 0.8966399030449931, + 0.8974694288349275, + 0.9926781739019452, + 0.8458809671812187, + 0.7712684989429177, + 0.7976314145122237, + 0.9416437009068946, + 0.9947856385396152, + 0.7862727272727271, + 0.8586700336700335, + 0.9303687863484544, + 0.8675319709415152, + 0.7920446151287672, + 0.8694866227116197, + 0.8586700336700335, + 0.7834335706711103, + 0.7921764122864366, + 0.934334074623178, + 0.8619283887468031, + 0.7676281237741422, + 0.7631048593350384, + 0.9925507389082384, + 0.978469168274726, + 0.7500718937727315, + 0.8846977863333716, + 0.9378841050418828, + 0.8684059865492091, + 0.8950764254021453, + 0.7740137221269299, + 0.8084175084175084, + 0.8843935880633129, + 0.7975398606698341, + 0.8485069801940157, + 0.7694545454545454, + 0.9679847507357018, + 0.7697689156812738, + 0.7685979300090726, + 0.9457912457912456, + 0.7920033670033668, + 0.81753438081967, + 0.9637205387205386, + 0.8196988466882366, + 0.8876132688068014, + 0.9992667277726852, + 0.813403640566796, + 0.924902134017138, + 0.8505352830088105, + 0.7966210086663266, + 0.8107701860758095, + 0.7920033670033668, + 0.8396249227545072, + 0.7665777912437509, + 0.9309395848776872, + 0.8562069694591002, + 0.8351865579441562, + 0.7614932582627626, + 0.9217240750865684, + 0.9927523497097036, + 0.9824776408025137, + 0.9261759464210148, + 0.8795946591645603, + 0.9517275376077332, + 0.8343766589132309, + 0.9378841050418828, + 0.939845912034176, + 0.8426835486603141, + 0.8084175084175084, + 0.825, + 0.9279912144543816, + 0.9380615545835612, + 0.954821445486407, + 0.8054841390869845, + 0.7644397158986019, + 0.7992420095977141, + 0.9046488352723072, + 0.8607131176664159, + 0.9425530200949088, + 0.9831998467809452, + 0.911913216712972, + 0.8106537530266346, + 0.8669221312020842, + 0.9668646925956867, + 0.9859927106498642, + 0.8221148524429848, + 0.8287744007907092, + 0.82603603526253, + 0.8081220122922833, + 0.9241691376328144, + 0.8905062719442627, + 0.9072244170820468, + 0.9697143291871126, + 0.9165806743803824, + 0.9299779576625526, + 0.8626009468114731, + 0.9129479515242416, + 0.9489917104460288, + 0.857590973901184, + 0.7832356477938764, + 0.8727427378014051, + 0.7882094994286453, + 0.8958486748165111, + 0.9755497899678774, + 0.8250670301619656, + 0.7636588119091295, + 0.8344665413033981, + 0.9956140350877192, + 0.7763975155279504, + 0.9842098239836105, + 0.8099989097144444, + 0.8954915979223954, + 0.9774655289026236, + 0.8046862811072518, + 0.8922196480686242, + 0.8757413004727584, + 0.875097886791886, + 0.9781962076503552, + 0.9571952337305224, + 0.8651037425957864, + 0.9276048900878148, + 0.8334407352378117, + 0.7931151679937852, + 0.8060125046665569, + 0.9001590894975677, + 0.8984134418359582, + 0.9307180976298852, + 0.8949088289552438, + 0.9140478958381776, + 0.9195604324464296, + 0.8595611909902062, + 0.8168393183171508, + 0.826467375579422, + 0.94513113161729, + 0.9542466061552302, + 0.8949088289552438, + 0.9053910284366296, + 0.817437533227007, + 0.7978783990223038, + 0.7521903939726886, + 0.754943158980426, + 0.7928605555934748, + 0.8989607068123694, + 0.7975892455476461, + 0.7725199492096488, + 0.773030766193022, + 0.9767351231527428, + 0.9424631082284728, + 0.866898864682116, + 0.7899138991389913, + 0.9376349250962784, + 0.9303020409693342, + 0.8287563928270861, + 0.8603115680426934, + 0.8114732228923959, + 0.9669758970781992, + 0.8105976841695943, + 0.7959269589012261, + 0.8302139037433156, + 0.986986590623621, + 0.751078143739283, + 0.7653353783714458, + 0.8172644988912497, + 0.7803817180307603, + 0.8605730020712427, + 0.912175623606646, + 0.9956171156600898, + 0.8729948690203866, + 0.8364452091564932, + 0.8308541973619359, + 0.901193983595923, + 0.8421276190184838, + 0.8119707766428466, + 0.778036674438649, + 0.7873355614633314, + 0.7837805015771132, + 0.8219385637193856, + 0.8521396824062815, + 0.7718977095748231, + 0.8817091503055308, + 0.7708107321002571, + 0.7512636527567177, + 0.8438110321297421, + 0.9832058480308432, + 0.8890631162040309, + 0.8977160492573557, + 0.9859234217934404, + 0.8546502548557862, + 0.8668958338409165, + 0.9890311615492476, + 0.9350943180643898, + 0.9280169976669376, + 0.8210527935710153, + 0.7559911987169416, + 0.7736264668325739, + 0.863925779862748, + 0.8247230442973539, + 0.8806041934635603, + 0.8250833206612556, + 0.928723519908324, + 0.8668958338409165, + 0.8881896291715989, + 0.9593583027873251, + 0.9061435934718378, + 0.9211354224331691, + 0.8859445107741636, + 0.9398812902982936, + 0.8047278408758268, + 0.9223744981227122, + 0.9230788696114616, + 0.9536631479971994, + 0.9694396869310692, + 0.8131377716690428, + 0.8237517359346238, + 0.8173907278944466, + 0.8965017504270001, + 0.9219048551109622, + 0.9097417836628494, + 0.8553134080531342, + 0.9989920981077092, + 0.917451425335698, + 0.9683628785480636, + 0.7970900578406114, + 0.8376203239523712, + 0.9801024844208264, + 0.7557162849632164, + 0.8961803319477781, + 0.996336999414424, + 0.9196524296187878, + 0.8854275250970148, + 0.8283188405797101, + 0.8569170829836921, + 0.7593988263019269, + 0.8392807687593222, + 0.9868446526492484, + 0.7732691595705294, + 0.9521895754027828, + 0.9372227566431792, + 0.9200506754154923, + 0.917500751704446, + 0.8740937766410911, + 0.8518450184501843, + 0.7975089687046685, + 0.8722498962224989, + 0.8978908677866823, + 0.9773557492735576, + 0.891273307612777, + 0.8868080394461477, + 0.8826697225277056, + 0.9463791440512886, + 0.9521895754027828, + 0.8485714285714286, + 0.999122807017544, + 0.9265379339453412, + 0.789227895392279, + 0.8469796766499825, + 0.953644173755992, + 0.9926761940480948, + 0.8153042353997382, + 0.8607621561631245, + 0.9832058480308432, + 0.9570294209353524, + 0.9992668621947256, + 0.8641670664322122, + 0.7757761746311366, + 0.8357747120217831, + 0.866213238722621, + 0.8792285183078618, + 0.7957371772064827, + 0.878036507710379, + 0.9658331436022252, + 0.7622935296404183, + 0.9857187253140862, + 0.8942561574169895, + 0.9622333213753728, + 0.9131318215287682, + 0.8411490111317951, + 0.8916483082566217, + 0.9500441996469742, + 0.8499116091074294, + 0.9308446996969624, + 0.971973367585848, + 0.950603792184588, + 0.8131377716690428, + 0.8886194359553157, + 0.8284169872492293, + 0.8757940351900098, + 0.9023840086111148, + 0.9230788696114616, + 0.7524570024570024, + 0.9981688711071728, + 0.9020646721236416, + 0.9272440944881892, + 0.917451425335698, + 0.952871096782223, + 0.9954192028862328, + 0.8614426005287826, + 0.8553282796247272, + 0.991220090045964, + 0.962952748132584, + 0.9970690618433798, + 0.8655309124484051, + 0.7810606403025839, + 0.7757761746311366, + 0.8580430671412884, + 0.866213238722621, + 0.8806041934635603, + 0.7777808036382947, + 0.8317573749391951, + 0.9716068390573318, + 0.819882410141537, + 0.9848040830545792, + 0.8737365714482546, + 0.962952748132584, + 0.9154671960778832, + 0.9112764606124896, + 0.8916483082566217, + 0.9529052383428788, + 0.8696289027548957, + 0.9188566733401607, + 0.9507590560548308, + 0.9507917513638928, + 0.9853649117096728, + 0.8131377716690428, + 0.8951137084436364, + 0.8371159751352831, + 0.8703128420935896, + 0.9022988912306722, + 0.9400644385653472, + 0.7531344790477525, + 0.9992668621947256, + 0.9020646721236416, + 0.8645269531463561, + 0.9839330712663648, + 0.975224136149363, + 0.9372677626851672, + 1, + 0.9904901783696456, + 0.9875732201051683, + 1, + 0.9919502705663622, + 0.9890311615492476, + 1, + 0.988302056405168, + 0.9132421335802218, + 0.996336999414424, + 0.9890311615492476, + 0.988302056405168, + 0.9897605355374068, + 0.991220090045964, + 0.978122813016422, + 0.9511647444887732, + 0.9919502705663622, + 0.9985339932335306, + 0.8938717567128639, + 0.9891891050899508, + 0.9970690618433798, + 0.9897605355374068, + 0.9978013931164152, + 0.985563789057925, + 0.9586402202505122, + 0.9607952743931896, + 0.9805263157894736, + 0.99268071993084, + 0.9941424251920344, + 0.996336999414424, + 0.9884575916336614, + 0.9719327874122964, + 0.9753656599277568, + 0.988302056405168, + 0.9919502705663622, + 0.988302056405168, + 0.9934114381393974, + 0.9992668621947256, + 0.977723489335005, + 0.9995652173913042, + 0.9948736810887512, + 0.909090909090909, + 0.8174876847290639, + 0.8553636363636363, + 0.8455433455433455, + 0.8397417807252716, + 0.8437332724582007, + 0.832909538499891, + 0.7619786952586509, + 0.8177290491628549, + 0.9175438596491228, + 0.882198952879581, + 0.8767128866853765, + 0.8150509397735728, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.8829402079402078, + 0.8107452697678261, + 0.9637205387205386, + 0.852293824358888, + 0.8709558996012198, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352228, + 0.805168828270855, + 0.909090909090909, + 0.945216049382716, + 0.8771929824561405, + 0.8174876847290639, + 0.7599743651365856, + 0.8553636363636363, + 0.8455433455433455, + 0.9416562889165628, + 0.8437332724582007, + 0.832909538499891, + 0.8177290491628549, + 0.9175438596491228, + 0.882198952879581, + 0.8767128866853765, + 0.8150509397735728, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.8829402079402078, + 0.8107452697678261, + 0.8417508417508417, + 0.852293824358888, + 0.8709558996012198, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352228, + 0.805168828270855, + 0.909090909090909, + 0.9789848244395952, + 0.8771929824561405, + 0.8174876847290639, + 0.8813770455902434, + 0.8553636363636363, + 0.8455433455433455, + 0.832556129195581, + 0.8437332724582007, + 0.832909538499891, + 0.8177290491628549, + 0.882198952879581, + 0.8150509397735728, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.7862727272727271, + 0.8107452697678261, + 0.9825055596738328, + 0.852293824358888, + 0.8709558996012198, + 0.826664274308378, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352228, + 0.805168828270855, + 0.9792614678275988, + 0.8553134080531342, + 0.8343739357475309, + 0.9649169511660014, + 0.9815789473684212, + 0.775995920023485, + 0.8490459410817468, + 0.999122807017544, + 0.8887919536466066, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8672820048414341, + 0.9416562889165628, + 0.7922752675949607, + 0.791670480549199, + 0.936963017728694, + 0.8515555890726042, + 0.8474662292253902, + 0.8469364035600903, + 0.9088064577345945, + 0.9830807073527456, + 0.9729066716260472, + 0.9309198460265768, + 0.993758325008325, + 0.9220836669819068, + 0.9328333806952732, + 0.9120932616135702, + 0.8672722972717296, + 0.9787330446229278, + 0.9956171156600898, + 0.9044025274049858, + 0.9162907640884717, + 0.9886242163794032, + 0.9856590419138828, + 0.9735969760860068, + 0.9237640299437498, + 0.8150558110147776, + 0.9001503179694077, + 0.9403303455027592, + 0.999122807017544, + 0.9090741230371568, + 0.999122807017544, + 0.903135734615762, + 0.8282546041121968, + 0.9792614678275988, + 0.8553134080531342, + 0.8232860332235971, + 0.909065387196842, + 0.978073311070348, + 0.775995920023485, + 0.8490459410817468, + 0.999122807017544, + 0.8870930627862177, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8672820048414341, + 0.9416562889165628, + 0.7922752675949607, + 0.791670480549199, + 0.936963017728694, + 0.7737464548987709, + 0.8474662292253902, + 0.8291492133323973, + 0.9088064577345945, + 0.9761788895853514, + 0.9770862304997938, + 0.9329580322176916, + 0.993758325008325, + 0.9188951371295636, + 0.9328333806952732, + 0.8980181937554507, + 0.8677050513455755, + 0.9752792033119024, + 0.9882730260033812, + 0.905289786165362, + 0.9143112638406732, + 0.9886242163794032, + 0.9544594777956544, + 0.9581772940528424, + 0.9143045157420016, + 0.8252050839377624, + 0.9001503179694077, + 0.9403303455027592, + 0.999122807017544, + 0.9292464661560496, + 0.999122807017544, + 0.856617686732253, + 0.8374157216227879, + 0.9280303030303032, + 0.986111279729024, + 0.9950777781016508, + 0.7644397158986019, + 0.8788591215600511, + 0.995055254321861, + 0.8218760444455504, + 0.8963051106025932, + 0.9855308977062668, + 0.8161330049261083, + 0.919010674275554, + 0.8602150725639579, + 0.9437855111487105, + 0.982329825041006, + 0.8843548391463373, + 0.8689327225675706, + 0.931003010693105, + 0.9349500075746098, + 0.8343765747325528, + 0.8587642661603542, + 0.8586700336700335, + 0.9617123795404005, + 0.9664559126905398, + 0.9369276682149368, + 0.9421777653794547, + 0.8002254756609835, + 0.91015350877193, + 0.8195948305972756, + 0.8049385749385748, + 0.8079714438079046, + 0.9248788062414784, + 0.9466765601812076, + 0.9943237305426308, + 0.8922259540680743, + 0.7615894748339839, + 0.92882506393551, + 0.8553134080531342, + 0.8492357350911255, + 0.9943501037415146, + 0.9908190857034046, + 0.7714797416324134, + 0.8958436239049175, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.9692982456140352, + 0.9108481442025624, + 0.7872481572481572, + 0.7785693212549879, + 0.791670480549199, + 0.936963017728694, + 0.8833898132089024, + 0.8276770122994085, + 0.895416975651959, + 0.992671182389769, + 0.9514741813067672, + 0.8630706569122704, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8398017274912394, + 0.9988878509623264, + 0.937103645050706, + 0.9851370084561714, + 0.8052224642752426, + 0.9408748628296816, + 0.950672972897766, + 0.9505705348293196, + 1, + 0.7647361516158825, + 0.907644799841382, + 0.8492357350911255, + 0.9514212739063944, + 0.9991101224022378, + 0.7714797416324134, + 0.8950014677832712, + 0.9943546343400722, + 0.8210917926103164, + 0.8995898027497777, + 0.999122807017544, + 0.8091752787787085, + 0.8045413788925241, + 0.92385752642948, + 0.7939937969249388, + 0.791670480549199, + 0.936963017728694, + 0.8564021794854101, + 0.8929190984699815, + 0.7960647061252277, + 0.9048525852298742, + 0.992671182389769, + 0.987968431853366, + 0.9531702386026508, + 0.8651058220157922, + 0.957204861709126, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.8819809439955775, + 0.988302056405168, + 0.937103645050706, + 0.9407755311560884, + 0.9851370084561714, + 0.8030210815765354, + 0.94362258995985, + 0.7901596681791947, + 0.8868080394461477, + 0.9413092648977816, + 0.999122807017544, + 0.9443944345284628, + 0.9992668621947256, + 0.9385224385224384, + 0.7647361516158825, + 0.907644799841382, + 0.8492357350911255, + 0.9514212739063944, + 0.9991101224022378, + 0.7714797416324134, + 0.8950014677832712, + 0.9943546343400722, + 0.8171099429462455, + 0.8995898027497777, + 0.999122807017544, + 0.8091752787787085, + 0.8045413788925241, + 0.92385752642948, + 0.7939937969249388, + 0.791670480549199, + 0.936963017728694, + 0.8532214540129998, + 0.8929190984699815, + 0.7960647061252277, + 0.9048525852298742, + 0.992671182389769, + 0.987968431853366, + 0.9531702386026508, + 0.8651058220157922, + 0.957204861709126, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.8744221238514268, + 0.988302056405168, + 0.937103645050706, + 0.9407755311560884, + 0.9851370084561714, + 0.8030210815765354, + 0.94362258995985, + 0.7901596681791947, + 0.8868080394461477, + 0.9413092648977816, + 0.999122807017544, + 0.9443944345284628, + 0.9992668621947256, + 0.9385224385224384, + 0.7647361516158825, + 0.782357275298858, + 0.9716068390573318, + 0.9615141634622412, + 0.9956019844379308, + 0.9939526010712452, + 0.9868446526492484, + 0.9788481543433862, + 1, + 0.9280169976669376, + 0.975224136149363, + 0.9970690618433798, + 0.988302056405168, + 0.9301373709233364, + 0.9795737645144298, + 0.9824788936394012, + 0.988302056405168, + 0.9414868925909092, + 0.9188566733401607, + 0.9978013931164152, + 0.9692438828447324, + 0.988302056405168, + 0.9934114381393974, + 0.9486152933634998, + 0.9721523399735842, + 0.9934114381393974, + 0.9708841861711646, + 0.9500441996469742, + 0.9174366159265968, + 0.9329682990823176, + 0.9716068390573318, + 0.8840480861242009, + 0.9948736810887512, + 0.9579224065577792, + 0.9679962630672924, + 0.9978013931164152, + 0.8764803941254208, + 0.9414868925909092, + 0.9181539149158896, + 0.9429104219927898, + 0.9919502705663622, + 0.9651126414686952, + 1, + 0.9962804570068788, + 1, + 0.9513949869239996, + 0.917451425335698, + 0.8893524283935244, + 0.8711567490387903, + 0.8402268612783098, + 0.9991101224022378, + 0.875683873894971, + 0.893318343627618, + 0.9998166819431716, + 0.8181684978110831, + 0.8501131405958161, + 0.9791710812316362, + 0.9416562889165628, + 0.7704074975067343, + 0.8205779056365766, + 0.8524355521406098, + 0.8149410602532909, + 0.9678129927260984, + 0.992671182389769, + 0.9904289157282716, + 0.9512909738881008, + 0.9430833061919088, + 0.9498925099667804, + 0.9491784964871592, + 0.9608990650462856, + 0.9498609989321576, + 0.7794361831100473, + 0.9505758519634429, + 0.9773557492735576, + 0.8637008456171157, + 0.9301795973691914, + 0.8828315614940658, + 0.959175062021937, + 0.9531601641545472, + 0.999122807017544, + 0.9998166819431716, + 0.7587536069598175, + 0.7522123063336182, + 0.82583032730816, + 0.9356248965935622, + 0.9820100634702482, + 0.831081385436793, + 0.8534540516685339, + 0.9818536963567754, + 0.8486878358300123, + 0.9129853629164149, + 0.8998911634924976, + 0.7793718426037994, + 0.932398585032895, + 0.8000124002170039, + 0.7984383476710845, + 0.907326978222119, + 0.838169467510867, + 0.7913646289079624, + 0.9278150139590884, + 0.9506223327256856, + 0.9364530503181744, + 0.941701474767142, + 0.7800217784035494, + 0.9258691777106102, + 0.9376349250962784, + 0.9412635914006204, + 0.8430977292102613, + 0.9461654371370272, + 0.9391302151973808, + 0.968708052390917, + 0.7829559806346367, + 0.8486878358300123, + 0.92049050384555, + 0.9877189123128628, + 0.9672169872900396, + 0.8207867897037397, + 0.8168393183171508, + 0.826467375579422, + 0.94513113161729, + 0.9585637037072424, + 0.8949088289552438, + 0.9053910284366296, + 0.817437533227007, + 0.7978783990223038, + 0.7521903939726886, + 0.754943158980426, + 0.7928605555934748, + 0.8989607068123694, + 0.7975892455476461, + 0.7725199492096488, + 0.7662703504995123, + 0.9767351231527428, + 0.9424631082284728, + 0.866898864682116, + 0.7783625730994153, + 0.9376349250962784, + 0.9303020409693342, + 0.8287563928270861, + 0.8603115680426934, + 0.8114732228923959, + 0.9669758970781992, + 0.8105976841695943, + 0.7959269589012261, + 0.8302139037433156, + 0.986986590623621, + 0.751078143739283, + 0.9104552048233484, + 0.9985339932335306, + 0.9919502705663622, + 0.9890174067689452, + 1, + 0.9985339932335306, + 0.9919502705663622, + 1, + 0.9978013931164152, + 0.9978013931164152, + 1, + 0.996336999414424, + 0.9978013931164152, + 0.9970690618433798, + 0.9985339932335306, + 0.996336999414424, + 0.988302056405168, + 1, + 0.9904289157282716, + 0.9992668621947256, + 0.9992668621947256, + 0.996336999414424, + 0.9928507310737632, + 1, + 0.8271094654395285, + 0.996336999414424, + 0.9978013931164152, + 0.9956044009241408, + 0.9985339932335306, + 0.9904901783696456, + 0.9978013931164152, + 0.9970690618433798, + 0.996336999414424, + 0.996336999414424, + 0.9970690618433798, + 0.995605205829548, + 1, + 0.9985339932335306, + 0.9853883242696474, + 0.995605205829548, + 0.9992668621947256, + 1, + 0.9992555369697762, + 1, + 0.9882827814745488, + 0.9992668621947256, + 0.9859927106498642, + 0.9550538402276436, + 0.9795737645144298, + 0.9350474891783676, + 0.9946751263076096, + 0.99268071993084, + 0.9529052383428788, + 1, + 0.9832058480308432, + 0.928723519908324, + 0.999122807017544, + 0.9701618021290772, + 0.9181539149158896, + 0.9414868925909092, + 0.916749204599586, + 0.94362258995985, + 0.8771670219049115, + 0.9020646721236416, + 0.9479012434878824, + 0.7967703326479759, + 0.9802996435295532, + 0.9917846709962562, + 0.8938717567128639, + 0.9862646747457392, + 0.9839330712663648, + 0.9600766541682176, + 0.9759484021000084, + 0.9473421475334106, + 0.8472097261066925, + 0.9414868925909092, + 0.9650851977230176, + 0.999122807017544, + 0.9550538402276436, + 0.9441436310000064, + 0.9884575916336614, + 0.94958838214302, + 0.9436364293412104, + 0.9802996435295532, + 0.9817522080920388, + 0.9766729368947332, + 0.975224136149363, + 0.999122807017544, + 0.9763146820695155, + 0.999122807017544, + 0.9716068390573318, + 0.8353033499302194, + 0.9286573911418808, + 0.989388886675146, + 0.811997387314498, + 0.8668958338409165, + 0.9719327874122964, + 0.9416700490012928, + 0.9868446526492484, + 0.8626461571750742, + 0.7693359990306556, + 0.8443573586609718, + 0.8171099429462455, + 0.8861176478495413, + 0.842673863199572, + 0.928723519908324, + 0.758875943584108, + 0.887167247405612, + 0.8928699826089762, + 0.8759576634165684, + 0.9564875857045522, + 0.9061435934718378, + 0.8423092165265303, + 0.8930336617991886, + 0.9400644385653472, + 0.9237835099442904, + 0.9466976131633716, + 0.950603792184588, + 0.8131377716690428, + 0.8598012719162864, + 0.787554569047141, + 0.884737671188568, + 0.9070294784580498, + 0.9069463429223856, + 0.7524570024570024, + 0.9981688711071728, + 0.8971961746848013, + 0.8404738376904276, + 0.8288697152121746, + 0.8829742996323185, + 0.9945048317633112, + 0.885610204525967, + 0.9329682990823176, + 0.9407755311560884, + 0.9274938109996212, + 0.955770578544058, + 0.8609445180643548, + 0.8868080394461477, + 0.8826697225277056, + 0.860081980641546, + 0.8494179248503486, + 0.8806041934635603, + 0.7745935959659945, + 0.804564602812277, + 0.8457610658751216, + 0.9141259733731866, + 0.9083435256044582, + 0.9249744348616508, + 0.878036507710379, + 0.8567036918158099, + 0.9407755311560884, + 0.912541525908588, + 0.8711093063931175, + 0.8951137084436364, + 0.9041552036871964, + 0.953621170127054, + 0.946473950268886, + 0.9727686004162333, + 0.9824788936394012, + 0.895416975651959, + 0.8388354220573428, + 0.8451861367189765, + 0.9020646721236416, + 0.8838860538503512, + 0.9586402202505122, + 0.99782684342909, + 0.7818532483566868, + 0.8978908677866823, + 0.9346434038598216, + 0.9486152933634998, + 0.975224136149363, + 0.927916573470583, + 0.9974294410273912, + 0.9586402202505122, + 0.9507590560548308, + 0.9978013931164152, + 0.954337370755309, + 0.911841187081034, + 0.975224136149363, + 0.9365130082728363, + 0.8902640300903737, + 0.9500441996469742, + 0.7528067405931878, + 0.9139430100959351, + 0.9486152933634998, + 0.8723662731741496, + 0.8503425879277244, + 0.9643924081792452, + 0.9716068390573318, + 0.9322331995088968, + 0.9730529513619054, + 0.8909560347514579, + 0.9730529513619054, + 0.9225158405279774, + 0.8806041934635603, + 0.9223744981227122, + 0.928723519908324, + 0.8985858297326429, + 0.8868080394461477, + 0.934385376226286, + 0.8659782656488341, + 0.9669995060071396, + 0.9215535536561092, + 0.8916483082566217, + 0.8806041934635603, + 0.8614426005287826, + 0.9500441996469742, + 0.9615141634622412, + 0.9836858501848198, + 0.9992668621947256, + 0.8840480861242009, + 0.8659737769303842, + 0.8881896291715989, + 0.9658331436022252, + 0.9117779886590568, + 0.9891164188197914, + 0.9393536148186856, + 0.8999765601568034, + 0.9992668621947256, + 0.8902640300903737, + 0.8937267418365915, + 0.986116354037408, + 0.9745001390427974, + 0.8682618306097468, + 0.917451425335698, + 0.9237835099442904, + 0.9372227566431792, + 0.8605814190983238, + 0.9658331436022252, + 0.99268071993084, + 0.9331273751154144, + 0.9874932258547676, + 0.9817522080920388, + 0.9322601637764528, + 0.9730529513619054, + 0.7966912350949062, + 0.9636724437338746, + 0.9146441554557286, + 0.9665539145798344, + 0.912541525908588, + 0.8923408506058652, + 0.9403639696255566, + 0.9824501714706848, + 0.8958075950132784, + 0.7947875585169598, + 0.8888808273004442, + 0.9817522080920388, + 0.9579224065577792, + 0.9643924081792452, + 0.9978013931164152, + 0.909042520211614, + 0.8839798882716039, + 0.9322601637764528, + 0.977397740533538, + 0.9407327353741834, + 0.9974294410273912, + 0.957204861709126, + 0.9636724437338746, + 1, + 0.9507590560548308, + 0.9244884191211992, + 0.9737764107803116, + 0.9294303109937904, + 0.866213238722621, + 0.8895722942733691, + 0.9365130082728363, + 0.938643059916104, + 0.8614426005287826, + 0.8592127013521057, + 0.9586402202505122, + 0.984660563345966, + 0.942257835125676, + 0.977397740533538, + 0.8944200907180742, + 0.9723297607875788, + 0.9466282499343924, + 0.8799162214636711, + 0.917451425335698, + 0.9358035287465732, + 0.9365130082728363, + 0.8785410839961321, + 0.8800026263331926, + 0.9180818572622022, + 0.9300900041631704, + 0.9111411170975592, + 0.8958075950132784, + 0.8751079450986784, + 0.9687178405771408, + 0.9643924081792452, + 0.9741087373430196, + 0.9965539092032524, + 0.8485601299189015, + 0.9039239850807016, + 0.991220090045964, + 0.99268071993084, + 0.9411779284976854, + 1, + 0.9941424251920344, + 0.9839330712663648, + 1, + 0.9948736810887512, + 0.9853883242696474, + 1, + 0.9904901783696456, + 0.9062481548474688, + 0.9948736810887512, + 0.9766729368947332, + 0.99268071993084, + 0.988302056405168, + 0.996336999414424, + 0.9832058480308432, + 0.9721523399735842, + 0.995605205829548, + 0.995605205829548, + 0.8966477542865559, + 0.989920889126398, + 0.9941424251920344, + 0.9853883242696474, + 0.99268071993084, + 0.989208622446052, + 0.9737764107803116, + 0.9788481543433862, + 0.9508557261229018, + 0.988302056405168, + 0.9868446526492484, + 0.9948736810887512, + 0.9789725394962472, + 0.9778375229520267, + 0.9630457249445452, + 0.9897605355374068, + 0.9759484021000084, + 0.9745001390427974, + 0.9839330712663648, + 1, + 0.9910847398800986, + 1, + 0.9824788936394012, + 0.8935362109939026, + 0.8492357350911255, + 0.7799775750856683, + 0.9991101224022378, + 0.7714797416324134, + 0.8924773755936107, + 0.9921175854473762, + 0.8244173938758999, + 0.8995898027497777, + 0.997783274463504, + 0.8019358454012121, + 0.8034463924540262, + 0.9208092958092956, + 0.7862626472757531, + 0.7901234941467935, + 0.9234208215886514, + 0.8754121720256093, + 0.8661215058187303, + 0.992671182389769, + 0.9798792330613568, + 0.9514741813067672, + 0.9550538402276436, + 0.9429977116704804, + 0.9378841050418828, + 0.9348478408783754, + 0.8677050513455755, + 0.9438416558070334, + 0.9894860390412652, + 0.9369022368540908, + 0.9407755311560884, + 0.937924041385235, + 0.9677933860111212, + 0.9970690618433798, + 0.9443944345284628, + 0.9965539092032524, + 0.7647361516158825, + 0.8833587699039136, + 0.8455377025736512, + 0.9378994747569932, + 1, + 0.8854275250970148, + 0.9372227566431792, + 0.9978013931164152, + 0.8621233137385207, + 0.9034580909885984, + 0.9687178405771408, + 0.9788481543433862, + 0.8364452091564932, + 0.8257495162906912, + 0.9450477324262084, + 0.7908116150724073, + 0.792225727337591, + 0.8186576980160944, + 0.9593583027873251, + 0.9941424251920344, + 0.9848040830545792, + 0.9795737645144298, + 0.9181539149158896, + 0.9579224065577792, + 0.8038532129267693, + 0.7895079901300617, + 0.9393536148186856, + 0.9329682990823176, + 0.938643059916104, + 0.9097417836628494, + 0.934365235861341, + 0.8682618306097468, + 0.8062236581276447, + 0.7999671002057498, + 0.9579224065577792, + 0.962952748132584, + 0.9421985228698097, + 0.9758471017566333, + 0.8492357350911255, + 0.988302056405168, + 0.9965191088563604, + 0.9992663243093578, + 0.9992656508417233, + 0.9941424251920344, + 1, + 0.99268071993084, + 1, + 0.9992668621947256, + 0.9965191088563604, + 0.9540512424216696, + 0.9970690618433798, + 0.9768478574449928, + 0.9833831528957327, + 0.9914003253458398, + 0.9890311615492476, + 0.9782982623788444, + 0.9926335425715882, + 0.8068812492978317, + 0.9985339932335306, + 1, + 0.998339483394834, + 1, + 0.9948736810887512, + 0.9875732201051683, + 0.9941413527735856, + 1, + 0.992130773157018, + 0.9721444518798692, + 0.9978013931164152, + 0.998350675275288, + 0.9906529437430028, + 1, + 0.9948736810887512, + 0.9914003253458398, + 0.9970690618433798, + 0.9976169999054124, + 0.9985113511553524, + 0.9954545454545456, + 0.9585725924710128, + 0.9992668621947256, + 0.8558690511962423, + 0.9477543538038498, + 0.7858966339146662, + 0.8467583491924262, + 0.8327122834222226, + 0.8908526998828004, + 0.8135527713116106, + 0.9336872890005496, + 0.8135527713116106, + 0.7969931938295922, + 0.9404358147459344, + 0.7922931599671659, + 0.9455558136112772, + 0.7617997236100775, + 0.8361266348371678, + 0.8706162391527938, + 0.8909999999999999, + 0.8169671679245643, + 0.911393892174019, + 0.950028839221341, + 0.8316766353632711, + 0.8481140741645349, + 0.9263157894736842, + 0.7693317755435274, + 0.8485714285714286, + 0.9975371888373946, + 0.7657492944145039, + 0.7827075098814231, + 0.8344731368348524, + 0.7893527624833871, + 0.934334074623178, + 0.9652014577830238, + 0.9712575474049576, + 0.7951570680628274, + 0.8023077073631945, + 0.8378558855512396, + 0.7750750175798774, + 0.8711152458705146, + 0.9450509667184974, + 0.8728200371057514, + 0.8266151860146821, + 0.9508561924475392, + 0.8678771151093215, + 0.7818744360024457, + 0.953621170127054, + 0.9550538402276436, + 0.9255861016232884, + 1, + 0.9890311615492476, + 0.9839330712663648, + 1, + 0.9875732201051683, + 0.9868446526492484, + 1, + 0.9672749544015236, + 0.8485601299189015, + 0.9948736810887512, + 0.9853883242696474, + 0.991220090045964, + 0.9716068390573318, + 0.9853883242696474, + 0.9817522080920388, + 0.9461330864231152, + 0.9934114381393974, + 0.9985339932335306, + 0.8683978095980386, + 0.9869953764615554, + 0.995605205829548, + 0.9868446526492484, + 0.988302056405168, + 0.9724980906333768, + 0.9407755311560884, + 0.9372227566431792, + 0.9805263157894736, + 0.996336999414424, + 0.996336999414424, + 0.9992668621947256, + 0.9884575916336614, + 0.9887359375145636, + 0.977084365603192, + 0.9817522080920388, + 0.9890311615492476, + 0.9875732201051683, + 0.988302056405168, + 0.9992668621947256, + 0.9762465658458932, + 1, + 0.991220090045964, + 0.8205020227371977, + 0.8608078181360624, + 0.8831761147394912, + 0.9956171156600898, + 0.8264159807642062, + 0.9851370084561714, + 0.8032496864185852, + 0.7921163153910715, + 0.8189876505853204, + 0.8866880766446407, + 0.7712492904983539, + 0.766650468421388, + 0.9874185848252344, + 0.9860765405159552, + 0.8021177944862157, + 0.9104948113042188, + 0.9076355564584256, + 0.9302834429286486, + 0.8899966113703928, + 0.7950194069243905, + 0.7994718538953012, + 0.9755497899678774, + 0.8737705484182898, + 0.8391756392041623, + 0.8000318742722583, + 0.863706643974955, + 0.999122807017544, + 0.788531116445173, + 0.7673011362392834, + 0.856290549490185, + 0.8500013228910795, + 0.8217519251079187, + 0.9886242163794032, + 0.8335855838820181, + 0.7737677036875701, + 0.8078183838070802, + 0.8821104163000745, + 0.7790490801674135, + 0.821180494612969, + 0.8346691294875438, + 0.8306511043531097, + 0.7751893805092812, + 0.7785693212549879, + 0.8213296424597536, + 0.7990961561862842, + 0.8708980045995849, + 0.8508997225351951, + 0.9550538402276436, + 0.8404738376904276, + 0.8608516172237797, + 0.8898770040500942, + 0.9910308796338216, + 0.9443350267709892, + 0.9379327738576018, + 0.9687178405771408, + 0.954337370755309, + 0.8992810605226834, + 0.8104222403360605, + 0.8617768931040987, + 0.8019358454012121, + 0.8489486269748123, + 0.8334307196417516, + 0.8472653300897576, + 0.8641393141487439, + 0.8327404310943478, + 0.8764803941254208, + 0.912541525908588, + 0.8614426005287826, + 0.8750187225119483, + 0.8930336617991886, + 0.9188566733401607, + 0.909042520211614, + 0.9278339260751618, + 0.8855898697110776, + 0.8914924863272463, + 0.9636724437338746, + 0.8594020739640472, + 0.933676703232262, + 0.9471874624563444, + 0.9767901752344744, + 0.8923668029454429, + 0.887801301315952, + 0.8244173938758999, + 0.8598281139548333, + 0.9048525852298742, + 0.9202629967209424, + 0.9586402202505122, + 0.99818613436632, + 0.811652655043935, + 0.9097417836628494, + 0.8938131796635375, + 0.8689452322602814, + 0.7632159853061835, + 0.931092626752598, + 0.9714033929661204, + 0.916047252707554, + 0.9665539145798344, + 0.9992668621947256, + 0.877193998855128, + 0.8621233137385207, + 0.8404336601367269, + 0.8899568476668683, + 0.7657793910062513, + 0.8125492090556029, + 0.8944200907180742, + 0.9832058480308432, + 0.866243248832523, + 0.9723297607875788, + 0.9358035287465732, + 0.9111411170975592, + 0.8984030086479471, + 0.8744221238514268, + 0.831385641452182, + 0.917611437505964, + 0.8478847935907572, + 0.9679962630672924, + 0.8637608966376091, + 0.929473335227811, + 0.8427886110852929, + 0.928226607524593, + 0.8025926314878588, + 0.9041552036871964, + 0.9045462110180228, + 0.9607952743931896, + 0.7731216272312162, + 0.9960877143127782, + 0.7917919558851796, + 0.7813854250011384, + 0.8594020739640472, + 0.8448171762300786, + 0.9066838594697112, + 0.993041786971632, + 0.9218534208170824, + 0.9280169976669376, + 0.9579224065577792, + 0.7649434377260496, + 0.9324432641365908, + 0.9890311615492476, + 0.8689452322602814, + 0.8861176478495413, + 0.8937267418365915, + 0.8573639669960287, + 0.853295011850143, + 0.9251935971421876, + 0.8902640300903737, + 0.7921163153910715, + 0.8692840854028374, + 0.9120241323975692, + 0.9322601637764528, + 0.9682695039010508, + 0.8869907346430809, + 0.9308446996969624, + 0.928723519908324, + 0.8601704114565033, + 0.8874986998868335, + 0.8888808273004442, + 0.975224136149363, + 0.8091752787787085, + 0.9507590560548308, + 0.9664158428720082, + 0.9817522080920388, + 0.8284169872492293, + 0.9136988002866576, + 0.8445121446112305, + 0.9139430100959351, + 0.8914848829801818, + 0.9672749544015236, + 0.99782684342909, + 0.772138724992434, + 0.90276124713408, + 0.961144204800487, + 0.8634855466902354, + 0.9379327738576018, + 0.908277884446819, + 0.9946871424565764, + 0.9479012434878824, + 0.933676703232262, + 0.9839330712663648, + 0.957204861709126, + 0.9897605355374068, + 0.8668958338409165, + 0.8916483082566217, + 0.9153455696596016, + 0.8573639669960287, + 0.8634855466902354, + 0.9251935971421876, + 0.909042520211614, + 0.8723662731741496, + 0.8537487234650945, + 0.8792285183078618, + 0.9350943180643898, + 0.8079714438079046, + 0.9551004697947988, + 0.8806041934635603, + 0.9273107442696306, + 0.9223744981227122, + 0.9616766085585506, + 0.8730512878891623, + 0.8965017504270001, + 0.975224136149363, + 0.8277497162434753, + 0.9514741813067672, + 0.9622333213753728, + 0.9746102461941208, + 0.940760842211224, + 0.8337648336821305, + 0.9132421335802218, + 0.838458313625102, + 0.9104413159581644, + 0.9230788696114616, + 0.9615141634622412, + 0.9608062684964296, + 0.9992668621947256, + 0.90276124713408, + 0.9316696874472936, + 0.8231087698825403, + 0.9544682296975874, + 0.7552770595350544, + 0.992615515771526, + 0.8512496250257213, + 0.8744043956043956, + 0.9547348484848484, + 0.7548367420848981, + 0.8010008340283569, + 0.8674088334090595, + 0.7996294165768151, + 0.908313797791604, + 0.9891493795585866, + 0.7540999753755233, + 0.9272544060904362, + 0.8780091446372676, + 0.9182823930924128, + 0.8762510425354463, + 0.9053124690879792, + 0.9546304163126592, + 0.9085090856109872, + 0.8064763169544045, + 0.9027775208335084, + 0.8873519569623151, + 0.902977283394997, + 0.9964912280701756, + 0.996521739130435, + 0.9338039426824476, + 0.9139430100959351, + 0.9622333213753728, + 0.9737764107803116, + 0.9701400724878312, + 0.9974294410273912, + 0.9358035287465732, + 0.946473950268886, + 0.9970690618433798, + 0.9658331436022252, + 0.955770578544058, + 0.9960351014549488, + 0.9477180531985372, + 0.7802288530146115, + 0.9622333213753728, + 0.8067839857133676, + 0.9301373709233364, + 0.8868080394461477, + 0.9450477324262084, + 0.8134050821718116, + 0.9454153674378072, + 0.984660563345966, + 0.9904901783696456, + 0.9507590560548308, + 0.9779823259487208, + 0.988302056405168, + 0.855139156857862, + 0.9853883242696474, + 0.9564875857045522, + 0.9083271241193304, + 0.9421985228698097, + 0.8621233137385207, + 0.9479012434878824, + 0.9802996435295532, + 0.9613309146374462, + 0.9890311615492476, + 0.9789725394962472, + 0.9230788696114616, + 0.9875732201051683, + 0.8937267418365915, + 0.9948736810887512, + 0.9716068390573318, + 0.9679854547640152, + 0.9572793819640072, + 0.9992668621947256, + 0.9649045221259104, + 0.9365130082728363, + 0.7854822169733378, + 0.9877224033535164, + 0.8267536096879368, + 0.8281155906857193, + 0.778242651393919, + 0.7770132902980824, + 0.7813852813852814, + 0.8531626502908053, + 0.986652250762675, + 0.8443985380581599, + 0.8507060144843345, + 0.9095966218704222, + 0.7793195367381812, + 0.8485714285714286, + 0.793478260869565, + 0.9357129295614204, + 0.9013778530474436, + 0.8068636548636549, + 0.8283693657758276, + 0.7842947575142669, + 0.929941088884573, + 0.8318189568317447, + 0.9721324228139152, + 0.8929555666008868, + 0.9899175068744273, + 0.7829559806346367, + 0.8330585670487148, + 0.9004712036731742, + 0.8079059133534838, + 0.907326978222119, + 0.8418462145170219, + 0.8355962235887732, + 0.9840600196897172, + 0.9727233543942168, + 0.9456931798893302, + 0.7835307826762479, + 0.9334823561531638, + 0.943912095206486, + 0.9719476865439598, + 0.8989607068123694, + 0.9899175068744273, + 0.91218688144154, + 0.968708052390917, + 0.9275641323723166, + 0.7750817305162342, + 0.7705110005585539, + 0.8746911090742437, + 0.906777236648719, + 0.9877189123128628, + 0.905810189680844, + 0.9039758195768428, + 0.9545454545454548, + 0.8475303670578502, + 0.9511957748205524, + 0.8592904322283405, + 0.909090909090909, + 0.864748396641959, + 0.8793851481338977, + 0.9499999999999998, + 0.7977657605606996, + 0.828074328074328, + 0.8757161620920398, + 0.8518139443215275, + 0.8919696969696971, + 0.9006463378910865, + 0.9123913868449176, + 0.7538355364442323, + 0.9728462804245892, + 0.8226075640111686, + 0.7627425872585157, + 0.9397093147093144, + 0.9405901494832792, + 0.9373208866593992, + 0.9185281385281384, + 0.9805093555093556, + 0.9045454545454544, + 0.7521739130434782, + 0.8676160350867449, + 0.9096320346320348, + 0.9705446224256292, + 0.7511156903867726, + 0.9498970784947516, + 0.8553636363636363, + 0.8803749979451918, + 0.8868951612903225, + 0.8716773908739449, + 0.7640091133472566, + 0.9754511278195488, + 0.909090909090909, + 0.919377312007859, + 0.9895652173913044, + 0.909090909090909, + 0.9895652173913044, + 0.904833326772871, + 0.8896985935172833, + 0.9613560315981924, + 0.9209973066564064, + 0.7738377192982457, + 0.8766948621553885, + 0.8955979105301096, + 0.7862727272727271, + 0.8120276073976654, + 0.9062605084545612, + 0.9819906110654324, + 0.9482809390239644, + 0.9270810254564676, + 0.8858122880872293, + 0.9272543317870856, + 0.9248843536331894, + 0.9592356458451337, + 0.9740750470337556, + 0.8618048445021776, + 0.9826209215251775, + 0.9119804816878756, + 0.901982337361457, + 0.968471177944862, + 0.9722529273134676, + 0.9674022810471118, + 0.8998470475108667, + 0.8758239471864051, + 0.957737379733654, + 0.9619347444028424, + 0.9817460256655812, + 0.9619598036238828, + 0.9754511278195488, + 0.9045454545454544, + 0.9108776132404182, + 0.9895652173913044, + 0.909090909090909, + 0.9808695652173912, + 0.903936979364855, + 0.8946016606830778, + 0.9582023810487048, + 0.9363189044244398, + 0.7701982739613846, + 0.877299976398395, + 0.8623579834310708, + 0.7862727272727271, + 0.8480601581866628, + 0.8902466538134809, + 0.9819906110654324, + 0.9507874084663184, + 0.925065002188018, + 0.8906569786528593, + 0.9272543317870856, + 0.9318691420627104, + 0.9592356458451337, + 0.9670573870573872, + 0.8638081223124702, + 0.9815789473684212, + 0.9119804816878756, + 0.9027305623701912, + 0.968471177944862, + 0.9722529273134676, + 0.9664533537113174, + 0.8980586357606626, + 0.8824347249543827, + 0.957737379733654, + 0.9606072393507964, + 0.7604223245592875, + 0.9401709401709404, + 0.9616481164026224, + 0.9809453113164672, + 0.825, + 0.8965328341856458, + 0.9930434993747648, + 0.991941725455476, + 0.7662935746676578, + 0.916200245724204, + 0.8929657620169505, + 0.9764831764168632, + 0.8651113127255622, + 0.8576748602878727, + 0.8002254756609835, + 0.8303849683667891, + 0.945960433937275, + 0.9927523497097036, + 0.9224700032216756, + 0.924592891635332, + 0.8627825284444037, + 0.9427557668775548, + 0.9416944402363276, + 0.7977840705338264, + 0.891911538610805, + 0.7757575757575756, + 0.9186470619844704, + 0.9755497899678774, + 0.9380936401545896, + 0.9430730858023998, + 0.8821269989132121, + 0.8635778359926967, + 0.9686187299234, + 0.82231768595902, + 0.8454690660447776, + 0.936633843357067, + 0.9928614899602092, + 0.7920033670033668, + 0.9790238683337896, + 0.8517844847409421, + 0.7835174551354922, + 0.970437888198758, + 0.973913043478261, + 0.8004960204410251, + 0.8608354753566684, + 0.973913043478261, + 0.893253541612845, + 0.8985806100405787, + 0.9473716579271056, + 0.8802936186789987, + 0.8429844720496895, + 0.7998641304347827, + 0.7548105590062112, + 0.851091804125718, + 0.7982289247602901, + 0.8918317295952493, + 0.9704182624797956, + 0.9250441174468548, + 0.9234004788164912, + 0.8072112569313484, + 0.9458344577995612, + 0.8199687206756334, + 0.9636939983093828, + 0.973913043478261, + 0.8946764860972011, + 0.8953883830144143, + 0.9685626687981476, + 0.8854475897922277, + 0.890074370350509, + 0.9467502582887196, + 0.973913043478261, + 0.7675727377454222, + 0.9240556247405564, + 0.9038176307865486, + 0.800441791811323, + 0.8571885156262036, + 0.7888661250305931, + 0.7588020905133783, + 0.8150670283151774, + 0.8394858977004067, + 0.8506509425026049, + 0.86632058337082, + 0.907644799841382, + 0.7869039663743267, + 0.8377993482174306, + 0.9661635604440372, + 0.7796002893491529, + 0.8462255001833666, + 0.8698618053513671, + 0.853295011850143, + 0.9457912457912456, + 0.9954545454545456, + 0.7862536325455921, + 0.921913236929922, + 0.909090909090909, + 0.9764931810396176, + 0.9895652173913044, + 0.8409090909090907, + 0.982608695652174, + 0.904833326772871, + 0.9398297385891607, + 0.8728218919864726, + 0.910662682746664, + 0.7508707607699359, + 0.920196146646124, + 0.8941510995342954, + 0.7896297048496517, + 0.9062605084545612, + 0.9819906110654324, + 0.9395768590554164, + 0.8846891981591173, + 0.8753550543024229, + 0.9272543317870856, + 0.9159873721905482, + 0.9592356458451337, + 0.9719230769230768, + 0.853205915989843, + 0.9789473684210526, + 0.9119804816878756, + 0.9021731519130232, + 0.9408793468279631, + 0.9502457651288154, + 0.9343996875499296, + 0.8998470475108667, + 0.7828140592083379, + 0.956227485420032, + 0.9688644688644692, + 0.9878260869565216, + 0.9619598036238828, + 0.9853883242696474, + 0.9069463429223856, + 0.8484535647736858, + 0.9859234217934404, + 0.8546502548557862, + 0.8668958338409165, + 0.9890311615492476, + 0.9365130082728363, + 0.9280169976669376, + 0.8580430671412884, + 0.764302244596024, + 0.7736264668325739, + 0.8826697225277056, + 0.8391298861361308, + 0.8806041934635603, + 0.8250833206612556, + 0.928723519908324, + 0.8668958338409165, + 0.7521491867834005, + 0.8881896291715989, + 0.9616904586883988, + 0.9061435934718378, + 0.9211354224331691, + 0.90276124713408, + 0.9434394218523596, + 0.8047278408758268, + 0.9216703954780426, + 0.9230788696114616, + 0.9564875857045522, + 0.9694396869310692, + 0.8131377716690428, + 0.8237517359346238, + 0.8025926314878588, + 0.8965017504270001, + 0.9230777619327238, + 0.9104413159581644, + 0.8553134080531342, + 0.9989920981077092, + 0.917451425335698, + 0.9521895754027828, + 0.9069463429223856, + 0.8444028672449848, + 0.9910308796338216, + 0.8526177936134408, + 0.8634855466902354, + 0.988302056405168, + 0.946473950268886, + 0.9216703954780426, + 0.8566851356948486, + 0.7694393172704596, + 0.7752390906012949, + 0.776852147004819, + 0.8785410839961321, + 0.8290845270990632, + 0.8351044837311526, + 0.8264159807642062, + 0.9237835099442904, + 0.8868080394461477, + 0.8944200907180742, + 0.9486152933634998, + 0.9061435934718378, + 0.8987505869438153, + 0.7765308864041348, + 0.9062481548474688, + 0.9414868925909092, + 0.8971961746848013, + 0.9273107442696306, + 0.9564875857045522, + 0.9694396869310692, + 0.917451425335698, + 0.7980007746070045, + 0.900672328635003, + 0.9230777619327238, + 0.909042520211614, + 0.8722498962224989, + 0.99818613436632, + 0.917451425335698, + 0.9350943180643898, + 0.8450773104028045, + 0.7755025814626396, + 0.8499116091074294, + 0.9954545454545456, + 0.8248656842171965, + 0.8771670219049115, + 0.8017627702025454, + 0.8252966318058891, + 0.7989505012531329, + 0.9084382663648368, + 0.7700826611531227, + 0.8173907278944466, + 0.9586402202505122, + 0.8279882714725023, + 0.8750287541127237, + 0.8058469213257959, + 0.8887595093929513, + 0.8741986118728368, + 0.9013332512757184, + 0.8951137084436364, + 0.8085158042512651, + 0.7847209561813264, + 0.9207931801334324, + 0.8813228755976849, + 0.8806041934635603, + 0.904598717548413, + 0.8357423547232773, + 0.8519408442208184, + 0.7585436044093791, + 0.754716608935201, + 0.752694933524973, + 0.8630753385715217, + 0.945504664970314, + 0.8607621561631245, + 0.8190996579799223, + 0.8138788692223808, + 0.80834947374926, + 0.8461416361416363, + 0.8321563840156672, + 0.9049823065264198, + 0.7611003116070912, + 0.8564208333192405, + 0.9567242111117616, + 0.8830433688448956, + 0.8498282229301769, + 0.8787054248059898, + 0.7583865519843361, + 0.8560065732377481, + 0.7845811712379542, + 0.911841187081034, + 0.757598728667431, + 0.9032923617208078, + 0.8054515169551613, + 0.9457116500465104, + 0.7972151720771685, + 0.9550538402276436, + 0.8404738376904276, + 0.8951137084436364, + 0.8898770040500942, + 0.9910308796338216, + 0.9443350267709892, + 0.9379327738576018, + 0.9687178405771408, + 0.954337370755309, + 0.8992810605226834, + 0.8655309124484051, + 0.8902640300903737, + 0.8553282796247272, + 0.8614426005287826, + 0.8958075950132784, + 0.8438384213475643, + 0.8771670219049115, + 0.8280046113614686, + 0.8607621561631245, + 0.912541525908588, + 0.8614426005287826, + 0.8946208326427901, + 0.8930336617991886, + 0.9188566733401607, + 0.909042520211614, + 0.9278339260751618, + 0.8773278519419312, + 0.9111411170975592, + 0.9636724437338746, + 0.8566851356948486, + 0.933676703232262, + 0.9471874624563444, + 0.9832058480308432, + 0.8923668029454429, + 0.887801301315952, + 0.8244173938758999, + 0.8424917813524705, + 0.9048525852298742, + 0.9202629967209424, + 0.9586402202505122, + 0.99818613436632, + 0.811652655043935, + 0.9097417836628494, + 0.9329682990823176, + 0.8438384213475643, + 0.8958075950132784, + 0.8921838780119077, + 0.986652250762675, + 0.9479012434878824, + 0.9393536148186856, + 0.9687178405771408, + 0.764302244596024, + 0.955770578544058, + 0.8478847935907572, + 0.8634855466902354, + 0.8614426005287826, + 0.8580430671412884, + 0.8587224361306279, + 0.8923408506058652, + 0.8351044837311526, + 0.8052224642752426, + 0.911841187081034, + 0.8295875223215042, + 0.8895722942733691, + 0.912541525908588, + 0.8958075950132784, + 0.8960129675540568, + 0.8930336617991886, + 0.9550538402276436, + 0.909042520211614, + 0.887315997105363, + 0.8703128420935896, + 0.9111411170975592, + 0.9550538402276436, + 0.8614426005287826, + 0.9372227566431792, + 0.962952748132584, + 0.9824788936394012, + 0.9017863969504004, + 0.877949549206721, + 0.8614426005287826, + 0.8344345242846016, + 0.9013683659572824, + 0.9223744981227122, + 0.9586402202505122, + 0.99782684342909, + 0.8327803954481456, + 0.9377053197580578, + 0.7520783733062727, + 0.8576638516480299, + 0.7973458704289155, + 0.8055002075550022, + 0.8274342134261912, + 0.7682652462041775, + 0.8985858297326429, + 0.9295420779390244, + 0.9497666282126442, + 0.9045462110180228, + 0.8937267418365915, + 0.9450477324262084, + 0.9335682269765724, + 0.9463791440512886, + 0.8655309124484051, + 0.7591412700557859, + 0.8317573749391951, + 0.9191871761989552, + 0.9144998770732076, + 0.8299318662677443, + 0.7999671002057498, + 0.9590943683409436, + 0.9721268361679862, + 0.7512346093262124, + 0.9031905016766244, + 0.9258990440072554, + 0.8277497162434753, + 0.9045462110180228, + 0.9715042130082728, + 0.8091792146047655, + 0.8478274566824185, + 0.8594020739640472, + 0.7511865272235565, + 0.7739458321143061, + 0.8799003347391113, + 0.8438384213475643, + 0.8735155491890395, + 0.8971961746848013, + 0.955770578544058, + 0.962303313592256, + 0.9187077430559348, + 0.9203925414202916, + 0.9514626397110274, + 0.9041122896824668, + 0.7840680498436611, + 0.8292520377479811, + 0.97941509455445, + 0.8836172394187662, + 0.9375944096516282, + 0.9096320346320348, + 0.8897178357319816, + 0.977084365603192, + 0.8159983921213949, + 0.8647743756870857, + 0.9324532116794522, + 0.9496978544622346, + 0.8933384348345432, + 0.9146441554557286, + 0.8930134680134679, + 0.7745935959659945, + 0.9240556247405564, + 0.9248385202583678, + 0.9493296120831972, + 0.784239798606639, + 0.7934206675600327, + 0.847568697165119, + 0.8111354653251885, + 0.7558928791805505, + 0.7550475642500959, + 0.8290845270990632, + 0.9166360018268416, + 0.9214315504311476, + 0.8905928806265224, + 0.8833857030636293, + 0.8371864728096656, + 0.7786506591658735, + 0.8732444148742633, + 0.9824788936394012, + 0.9261641390813252, + 0.7920585237916445, + 0.8270827140818009, + 0.8181481481481481, + 0.9685059666773832, + 0.7724990486505474, + 0.8453837597330367, + 0.9028925619834708, + 0.974712351554919, + 0.7990739031960405, + 0.8124766840771213, + 0.8338302155859407, + 0.8257495162906912, + 0.9242514144040864, + 0.8874986998868335, + 0.8316014689297133, + 0.8491709060650188, + 0.9290397110203914, + 0.9429104219927898, + 0.9020663048206212, + 0.9497666282126442, + 0.8735827515879029, + 0.8190930086640767, + 0.9097417836628494, + 0.8836172394187662, + 0.7561436787677325, + 0.9111759366075988, + 0.9685059666773832, + 0.7694393172704596, + 0.9182355818184244, + 0.9443350267709892, + 0.8991822088005295, + 0.9609732144249478, + 0.8388412496816189, + 0.9434738042076424, + 0.9514940210071012, + 0.7974547159339365, + 0.9158098573783174, + 0.8885435517508157, + 0.7927757091445906, + 0.8089575535557855, + 0.8566665569299595, + 0.8314583644863298, + 0.7943437531819572, + 0.8869909377863762, + 0.7623509827444915, + 0.9602434075673276, + 0.8173534679942144, + 0.9145746409758626, + 0.7598389563652722, + 0.8919299119395553, + 0.9546749386121294, + 0.9061863080667324, + 0.9429340786658, + 0.8532240586756394, + 0.8877384763770779, + 0.958686173433348, + 0.9554765128325876, + 0.927589597885256, + 0.9529605866177816, + 0.9690193870107546, + 0.8907469811519958, + 0.9842229467473992, + 0.9364502164502164, + 0.855044427531639, + 0.9174603174603174, + 0.9919369945954868, + 0.7974492252661268, + 0.9534048316392292, + 0.7523489859050253, + 0.8139854059928581, + 0.9461387983232418, + 0.8098519486211259, + 0.7647244706969056, + 0.906310774345067, + 0.7678224795898994, + 0.9290762303990062, + 0.8524886899155711, + 0.980320788530466, + 0.9254995395026632, + 0.8657481566722074, + 0.9421659088682972, + 0.8474906647205497, + 0.9013546930437588, + 0.9748919688627304, + 0.8388843744066832, + 0.95990063654712, + 0.9796267593595076, + 0.9345104268491364, + 0.9405500820824608, + 0.8701948495342146, + 0.9783368141256884, + 0.7696261546646032, + 0.7607570099969941, + 0.7567551932941814, + 0.89138879753655, + 0.928489598568463, + 0.9086142870609782, + 0.9545454545454548, + 0.9545454545454548, + 0.8077423038829434, + 0.9174603174603174, + 0.948338703873867, + 0.9649045221259104, + 0.8289700533295026, + 0.9245393784589186, + 0.7559638453436506, + 0.8235522434404595, + 0.9007792207792208, + 0.7664355652861399, + 0.9290762303990062, + 0.8491308962278107, + 0.7573901281365926, + 0.8315151515151515, + 0.7505974060116344, + 0.9502677159519248, + 0.8378061008189606, + 0.8657481566722074, + 0.9421659088682972, + 0.9391737997679988, + 0.943947221044588, + 0.9530072970035708, + 0.946585394605002, + 0.8072282340152606, + 0.8919696969696971, + 0.9783368141256884, + 0.8060213664465975, + 0.7894137547439006, + 0.8886194359553157, + 0.8969404465407047, + 0.8395077004692013, + 0.8087262766581882, + 0.9417675428322848, + 0.838458313625102, + 0.9578918616552848, + 0.9877224033535164, + 0.9600766541682176, + 0.9372227566431792, + 0.9996947496947498, + 0.946473950268886, + 0.9273107442696306, + 0.8427440270131528, + 0.8930336617991886, + 0.8499116091074294, + 0.8297523357929766, + 0.8628042957923382, + 0.94362258995985, + 0.8861176478495413, + 0.992955297959396, + 0.954141881439958, + 0.9716068390573318, + 0.9372227566431792, + 0.9209665616774528, + 0.8810186818949944, + 0.8078565985679013, + 0.7888565809250084, + 0.8999765601568034, + 0.7784705964389922, + 0.8951137084436364, + 0.9694396869310692, + 0.906901471095239, + 0.9521895754027828, + 0.7517286913985, + 0.8687571885281811, + 0.7912430201328434, + 0.9975369458128078, + 0.9160401958804216, + 0.974218139790659, + 0.8509546425853288, + 0.900767299923892, + 0.9978013931164152, + 0.7966912350949062, + 0.8415390235407055, + 0.9095917165921852, + 0.7732064980993625, + 0.8864392836204776, + 0.804143123374405, + 0.8771670219049115, + 0.9813338311457538, + 0.9514741813067672, + 0.9586402202505122, + 0.9396223310702196, + 0.9574611462809792, + 0.9733296560462246, + 0.9277579783254948, + 0.9766303162486368, + 0.8371159751352831, + 0.7645789491661854, + 0.8881896291715989, + 0.9463791440512886, + 0.9564875857045522, + 0.7686245437524821, + 0.9510994238916862, + 0.8438384213475643, + 0.9041552036871964, + 0.9970690618433798, + 0.7655848997001549, + 0.8569756194651065, + 0.8565438206194017, + 0.7732064980993625, + 0.8167257771569466, + 0.8510568256152781, + 0.8573767226280884, + 0.9514741813067672, + 0.946103858087934, + 0.9425383776528816, + 0.9032923617208078, + 0.9055502356166318, + 0.9177635419435248, + 0.9424705422602816, + 0.7733034132276329, + 0.7944363835998364, + 0.8881896291715989, + 0.922836204777124, + 0.9493296120831972, + 0.7731216272312162, + 0.7701503489229721, + 0.9110701550899905, + 0.8749551130106945, + 0.9779240761641758, + 0.8757411810482202, + 0.9637205387205386, + 0.8307739463601532, + 0.7840680498436611, + 0.9718089459310836, + 0.7533766040551628, + 0.8411108025383495, + 0.8186320718389478, + 0.7507073140597975, + 0.8665855131372373, + 0.8141166099294751, + 0.846517863969504, + 0.8674324881574892, + 0.894897491091307, + 0.8007950286452882, + 0.9200506754154923, + 0.8002254756609835, + 0.8055002075550022, + 0.8899568476668683, + 0.8050891517303731, + 0.7551272091668285, + 0.9170723522722332, + 0.8862820694208641, + 0.7731935891169761, + 0.8962930952966316, + 0.8545871559633028, + 0.973043266390798, + 0.8475513005495156, + 0.8919753086419753, + 0.9230719517449376, + 0.9818181818181816, + 0.8724508253662054, + 0.7850116015543995, + 0.7799035733456022, + 0.7709127626361538, + 0.8079919101295913, + 0.7676689509424581, + 0.8706501932048896, + 0.8797516915893117, + 0.8063085414053331, + 0.9356832150292386, + 0.8438519069076046, + 0.8284948236315168, + 0.9064297442948914, + 0.9731718245680656, + 0.8146948605443375, + 0.8586700336700335, + 0.7917861568922506, + 0.8919445048153332, + 0.9275512725475664, + 0.8749102030655429, + 0.7586973969785763, + 0.8582940089755703, + 0.8288372093023257, + 0.9457912457912456, + 0.9067894216205786, + 0.8854903716972683, + 0.7712402158145529, + 0.8514488517233563, + 0.8119647131227026, + 0.7960368686049766, + 0.8764803941254208, + 0.7593988263019269, + 0.8332839656913731, + 0.8409641575217712, + 0.7830059960631145, + 0.8189152639403684, + 0.7914909068376863, + 0.8521396824062815, + 0.9429498910675382, + 0.787554569047141, + 0.9170262364403312, + 0.8143114753878038, + 0.8129887361537077, + 0.9416562889165628, + 0.8249965343560833, + 0.8184361507912837, + 0.7583136897041756, + 0.8954939454973427, + 0.9669995060071396, + 0.7678622085216633, + 0.7965505290883047, + 0.8025926314878588, + 0.8861176478495413, + 0.9066317021702632, + 0.781819981750254, + 0.8492357350911255, + 0.925730625364325, + 0.7682652462041775, + 0.7697542997542998, + 0.9647167592568326, + 0.7591823779426875, + 0.9809290093211468, + 0.8217563751752737, + 0.7791177041387707, + 0.9954545454545456, + 0.8281880073317623, + 0.8580430671412884, + 0.9032397543084568, + 0.7617771431813454, + 0.7866182087539877, + 0.7593988263019269, + 0.7752390906012949, + 0.8085158042512651, + 0.8909560347514579, + 0.9051334791710912, + 0.9066317021702632, + 0.7803249362542886, + 0.8737365714482546, + 0.9248568831411556, + 0.8383783163850448, + 0.9706054674756964, + 0.7623802782704252, + 0.9687833580671198, + 0.7739714809841708, + 0.8782693798816119, + 0.860081980641546, + 0.8833857030636293, + 0.792475110421586, + 0.8157848104775258, + 0.8701372997711668, + 0.9563298076485244, + 0.8490800833801486, + 0.7888565809250084, + 0.7741636141636141, + 0.8401837065840431, + 0.9484588138867748, + 0.9176863587872164, + 0.8973789818590386, + 0.8252966318058891, + 0.7617771431813454, + 0.8289524716549914, + 0.8621233137385207, + 0.7908116150724073, + 0.9316463142933344, + 0.7524570024570024, + 0.8718713242231872, + 0.772872635209218, + 0.7603048533875102, + 0.973201661164624, + 0.8391298861361308, + 0.7893505683000169, + 0.8608078181360624, + 0.8171099429462455, + 0.8507008302142539, + 0.7796040841350689, + 0.8137991281050442, + 0.8701372997711668, + 0.7906337827256118, + 0.9493296120831972, + 0.782031346414908, + 0.7993113894954217, + 0.7720161433138533, + 0.864620467059047, + 0.8900050041356494, + 0.8474662292253902, + 0.9115157598761456, + 0.9054424800276306, + 0.830044253645252, + 0.9288938029152748, + 0.8783604524820522, + 0.7944363835998364, + 0.7921163153910715, + 0.7869039663743267, + 0.948066117973837, + 0.9230788696114616, + 0.7965825732022186, + 0.7641898999679714, + 0.7858832626449197, + 0.8508778496367884, + 0.7802946460653972, + 0.7884721011749334, + 0.9513173145378848, + 0.8649568301570332, + 0.7764651372019794, + 0.8624508476571697, + 0.7631497975708502, + 0.8383275266110369, + 0.8166721221205311, + 0.8852917218205886, + 0.763935088255619, + 0.849984522961002, + 0.8818076679096488, + 0.7698644841737025, + 0.8836658805318403, + 0.9201199939290072, + 0.8893648150618828, + 0.8891377897432867, + 0.8205353126405759, + 0.8024182735874719, + 0.922961632460186, + 0.946516510443614, + 0.8942981283868459, + 0.8132787513211815, + 0.9842229467473992, + 0.983927829355058, + 0.9897436575227496, + 0.7789928908269387, + 0.9491102207390418, + 0.8027373398034093, + 0.8097807158117009, + 0.7742275740436659, + 0.8269035371638741, + 0.8164279646777108, + 0.7959065093927479, + 0.9299044396563476, + 0.9815561030337692, + 0.8847353302545712, + 0.8534614846726634, + 0.8781863560189622, + 0.9215082393282026, + 0.8660956368114106, + 0.9778877366568356, + 0.8883570187308942, + 0.8645713114309883, + 0.9608961698823448, + 0.7504350893637566, + 0.7899138991389913, + 0.9237157509601476, + 0.8085999198472382, + 0.9842229467473992, + 0.7915641555108558, + 0.9869637610219488, + 0.8388856048166393, + 0.9083168071393158, + 0.996947496947497, + 0.836399552488273, + 0.8254759949956995, + 0.8054112554112555, + 0.8315151515151515, + 0.9072515573214316, + 0.8455703241525074, + 0.8837147279244052, + 0.992492576897818, + 0.7771153106793246, + 0.9632800296944952, + 0.8751296156972389, + 0.9439627106557767, + 0.7599245853190747, + 0.948022748326122, + 0.797922077922078, + 0.8079059133534838, + 0.9002093642315044, + 0.9417677188802858, + 0.9120792735085574, + 0.9325279623513651, + 0.9765978165772758, + 0.9783368141256884, + 0.8035900178841139, + 0.8886194359553157, + 0.9424689576609075, + 0.8695613682942084, + 0.909090909090909, + 0.8277566532211718, + 0.7800435531915323, + 0.9027223454052724, + 0.8465029384806168, + 0.8272613669834734, + 0.8224835092471747, + 0.7714797416324134, + 0.8924773755936107, + 0.9954545454545456, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8434706308388398, + 0.8017627702025454, + 0.791670480549199, + 0.8995057307947333, + 0.8474662292253902, + 0.8294442768393521, + 0.90276124713408, + 0.996221188255952, + 0.8143962421732175, + 0.980394402239746, + 0.9514741813067672, + 0.7581308936708563, + 0.9531775071717112, + 0.9001377198115018, + 0.8004102325039334, + 0.8735155491890395, + 0.8677050513455755, + 0.8445527067336185, + 0.9636363636363636, + 0.937103645050706, + 0.9694957490472002, + 0.9822495603003196, + 0.901072927769024, + 0.9510994238916862, + 0.9362530022505056, + 0.8219385637193856, + 0.9996947496947498, + 0.7644937203650517, + 0.758657620282485, + 0.8385429638854297, + 0.8490535457456533, + 0.7757575757575756, + 0.999122807017544, + 0.8217563751752737, + 0.8636588686952739, + 0.8019358454012121, + 0.8455800687861758, + 0.8017627702025454, + 0.7768542199488491, + 0.8884642600370833, + 0.8474662292253902, + 0.7867084930870223, + 0.9926207992132684, + 0.9493296120831972, + 0.8445196063887654, + 0.9531775071717112, + 0.8571885156262036, + 0.8838874680306906, + 0.8891221903616687, + 0.9954545454545456, + 0.937103645050706, + 0.7996865517613174, + 0.9851370084561714, + 0.788353581901969, + 0.8469074304690744, + 0.8276687406622917, + 0.8844613609427293, + 0.9313089878738736, + 0.8709970502763632, + 0.8035084471465264, + 1, + 0.932761391647538, + 0.8392430039425867, + 0.945216049382716, + 0.7537357583191043, + 0.9719327874122964, + 0.9954545454545456, + 0.8217563751752737, + 0.8348054919908466, + 0.878863307023455, + 0.8019358454012121, + 0.8725525105676493, + 0.8033211036934772, + 0.791670480549199, + 0.8547301773579906, + 0.8474662292253902, + 0.7867084930870223, + 0.974712351554919, + 0.9500266403708978, + 0.951008471157725, + 0.7628108176190548, + 0.9531775071717112, + 0.7716841489148686, + 0.9391877740213088, + 0.8677050513455755, + 0.8967939861988315, + 0.937103645050706, + 0.8551520659154248, + 0.9851370084561714, + 0.8893524283935244, + 0.8733160901863193, + 0.8916710007549704, + 0.9391302151973808, + 0.9965169569202568, + 0.9136739322359624, + 0.9206651788481804, + 0.8553134080531342, + 0.8530611929128231, + 0.9099770642201834, + 0.949825316001485, + 0.7714797416324134, + 0.8862820694208641, + 0.9970690618433798, + 0.7726587251245716, + 0.8995898027497777, + 0.999122807017544, + 0.8462714704650187, + 0.7559911987169416, + 0.7902969671765014, + 0.8017627702025454, + 0.791670480549199, + 0.9312885573197214, + 0.8580430671412884, + 0.8474662292253902, + 0.7598160347464082, + 0.870252992498577, + 0.992671182389769, + 0.9862539184209972, + 0.9514741813067672, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.948072129659398, + 0.8677050513455755, + 0.880780406807804, + 0.9991101223581756, + 0.937103645050706, + 0.9851370084561714, + 0.7606385491732779, + 0.9822495603003196, + 0.937683151374774, + 0.9027223454052724, + 0.9526427685969672, + 0.9236004688155952, + 1, + 0.8401802481694282, + 0.9773557492735576, + 0.8553134080531342, + 0.8399280642635364, + 0.9943501037415146, + 0.9991101224022378, + 0.7643053750286719, + 0.8874398840030436, + 1, + 0.8119189817879228, + 0.8995898027497777, + 0.999122807017544, + 0.9908884770316014, + 0.81573077081821, + 0.9677933860111212, + 0.8398311720625257, + 0.8474662292253902, + 0.7867084930870223, + 0.8985858297326429, + 0.992671182389769, + 0.7506209000762775, + 0.9848040830545792, + 0.9514741813067672, + 0.8622230550415498, + 0.9531775071717112, + 0.9429977116704804, + 0.9358184932420454, + 0.8831178664041945, + 0.8571885156262036, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.9851370084561714, + 0.9822495603003196, + 0.9355427814530765, + 0.7598493905068002, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.8534197605902789, + 0.909090909090909, + 0.8755816117625161, + 0.986521739130435, + 0.7574533557466554, + 0.909090909090909, + 0.9891304347826086, + 0.8981981278894755, + 0.8661577367496762, + 0.9416316165688026, + 0.8216969791585356, + 0.7977855477855479, + 0.7730257320319432, + 0.8155778185409907, + 0.806941459089035, + 0.8844523908637408, + 0.9819906110654324, + 0.9267146997929604, + 0.930689847575993, + 0.9272543317870856, + 0.9161147326586146, + 0.9592356458451337, + 0.8911833569094192, + 0.8682065217391305, + 0.8974752586594693, + 0.9606049878058373, + 0.9119804816878756, + 0.8291255500470529, + 0.9571129080563042, + 0.9252515037745752, + 0.8839422379842073, + 0.8731842629559791, + 0.956227485420032, + 0.9623460662981314, + 0.9060336327100176, + 0.9466681074558329, + 0.9773557492735576, + 0.8385429638854297, + 0.7548029253094148, + 0.9943501037415146, + 0.9991101224022378, + 0.7643053750286719, + 0.836061944840571, + 1, + 0.8995898027497777, + 0.999122807017544, + 0.8310447482966568, + 0.9416562889165628, + 0.8111421417088542, + 0.9107768322387694, + 0.7741435607326606, + 0.8710025282890884, + 0.7867084930870223, + 0.90276124713408, + 0.992671182389769, + 0.9470902930560504, + 0.9514741813067672, + 0.9531775071717112, + 0.9531702386026508, + 0.7996045265203698, + 0.9133288665033964, + 0.8423392742271161, + 0.8546919803903434, + 0.999777530589544, + 0.937103645050706, + 0.8941624677316798, + 0.9851370084561714, + 0.7831708752610594, + 0.9822495603003196, + 0.9315717953934872, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9773557492735576, + 0.7647361516158825, + 0.95942299709423, + 0.8553134080531342, + 0.8335272614441827, + 0.9943501037415146, + 0.9991101224022378, + 0.7643053750286719, + 0.8924773755936107, + 1, + 0.8591091351396697, + 0.8995898027497777, + 0.999122807017544, + 0.9416562889165628, + 0.791670480549199, + 0.950603792184588, + 0.8460152283133167, + 0.8474662292253902, + 0.7867084930870223, + 0.8881896291715989, + 0.992671182389769, + 0.7614851364851365, + 0.9848040830545792, + 0.9514741813067672, + 0.8605291005291005, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.8888976303496793, + 0.8637008456171157, + 0.999777530589544, + 0.937103645050706, + 0.941303736239802, + 0.9851370084561714, + 0.9822495603003196, + 0.9400644385653472, + 0.7589913068467564, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.8297199580886332, + 0.909090909090909, + 0.8388354220573428, + 0.9440241802550384, + 0.8417508417508417, + 0.8349403911738128, + 0.7751196172248803, + 0.9824561403508774, + 0.8289326387041065, + 0.9363636363636364, + 0.8484963605932038, + 0.7878050123409911, + 0.7845412529955496, + 0.8978080587826363, + 0.8211938237064843, + 0.903572413997316, + 0.9759433010492332, + 0.930358431350264, + 0.773824015559919, + 0.9069851553477366, + 0.859207814594905, + 0.9063976387881104, + 0.982273978187496, + 0.8258268246116464, + 0.8378181818181818, + 0.8545698249141326, + 0.7874000986198109, + 0.880561913058948, + 0.9424238274563508, + 0.99359825065929, + 0.94959978379972, + 0.8034795384843757, + 0.8256241274761228, + 0.7845614802232331, + 0.8780499051174888, + 0.9016573566020094, + 0.996521739130435, + 0.8072721768598793, + 0.8757575757575757, + 0.996521739130435, + 0.805255257780506, + 0.8262184063662379, + 0.9518172850747404, + 0.8509007531737288, + 0.8092916186648053, + 0.8448511242895973, + 0.8221400000560604, + 0.8780499051174888, + 0.8585150396488364, + 0.7582578617938821, + 0.9127647109937574, + 0.8185902535630862, + 0.7647917209753416, + 0.8892853956679526, + 0.9240400548084888, + 0.9264066297227525, + 0.8454089009226886, + 0.8738453625296769, + 0.8228190336839921, + 0.9964912280701756, + 0.8440081063581091, + 0.8488300159492314, + 0.8886054092841905, + 0.9651624660242156, + 0.8337216929170275, + 0.8550497957993816, + 0.9818181818181816, + 0.9104377104377104, + 0.9930465133925186, + 0.8868917142282169, + 0.7519552584840934, + 0.9616732614626587, + 0.996521739130435, + 0.7508148487315153, + 0.909090909090909, + 0.999122807017544, + 0.9090273199933117, + 0.897855261911528, + 0.999122807017544, + 0.8507462616258913, + 0.9136683713678436, + 0.8674088334090595, + 0.8594701086956521, + 0.908313797791604, + 0.9891493795585866, + 0.7642455368060652, + 0.8891663542156248, + 0.924175824175824, + 0.9395716586151368, + 0.9484409722518364, + 0.9641388361295768, + 0.9059750088690924, + 0.999122807017544, + 0.9047503889161737, + 0.9033269863614518, + 0.9033269863614518, + 0.8658678644015689, + 0.9443498545350396, + 0.8906789023521027, + 0.999122807017544, + 0.9551184069702588, + 0.7562762148337596, + 0.9773557492735576, + 0.8409090909090907, + 0.9960831758177524, + 0.9978260869565218, + 0.7508148487315153, + 0.8490484481225223, + 0.999122807017544, + 0.9090273199933117, + 0.897855261911528, + 0.999122807017544, + 0.8507462616258913, + 0.9416562889165628, + 0.7863161002595062, + 0.7917643088450543, + 0.8674088334090595, + 0.7940883223309813, + 0.8392760078156812, + 0.908313797791604, + 0.9891493795585866, + 0.766483106515241, + 0.8959840947127665, + 0.8891663542156248, + 0.924175824175824, + 0.9395716586151368, + 0.9484409722518364, + 0.9641388361295768, + 0.974712351554919, + 0.999122807017544, + 0.9047503889161737, + 0.9033269863614518, + 0.9773557492735576, + 0.8895761362866625, + 0.9748201493966672, + 0.9033269863614518, + 0.7646806860332477, + 0.8800026263331926, + 0.9443498545350396, + 0.9956140350877192, + 0.932409671284977, + 0.999122807017544, + 0.9551184069702588, + 0.7562762148337596, + 0.9833457647662114, + 0.8409090909090907, + 0.8227240115332337, + 0.9947765595830976, + 0.9978260869565218, + 0.7508148487315153, + 0.8569860866157162, + 0.999122807017544, + 0.9090273199933117, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8521396824062815, + 0.9416562889165628, + 0.8683896350563016, + 0.783774936061381, + 0.936963017728694, + 0.8674088334090595, + 0.8474662292253902, + 0.7880796625738841, + 0.908313797791604, + 0.9891493795585866, + 0.766483106515241, + 0.8356411205726274, + 0.8959840947127665, + 0.8891663542156248, + 0.924175824175824, + 0.9395716586151368, + 0.9484409722518364, + 0.9641388361295768, + 0.8643546462063086, + 0.9753454579899592, + 0.999122807017544, + 0.9047503889161737, + 0.9033269863614518, + 0.9851370084561714, + 0.9748201493966672, + 0.9033269863614518, + 0.7684710351377019, + 0.8800026263331926, + 0.9443498545350396, + 0.999122807017544, + 0.90662100456621, + 0.999122807017544, + 0.9551184069702588, + 0.7562762148337596, + 0.9833457647662114, + 0.8409090909090907, + 0.7928783407950074, + 0.8919753086419753, + 0.9978260869565218, + 0.7508148487315153, + 0.8490459410817468, + 0.999122807017544, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8507462616258913, + 0.9416562889165628, + 0.7684372454295727, + 0.936963017728694, + 0.8674088334090595, + 0.8474662292253902, + 0.9891493795585866, + 0.984323635061576, + 0.9353365093463604, + 0.924175824175824, + 0.9395716586151368, + 0.963346594676518, + 0.8643546462063086, + 0.9047503889161737, + 0.9033269863614518, + 0.9851370084561714, + 0.9447497776699816, + 0.9787330446229278, + 0.9033269863614518, + 0.7646806860332477, + 0.8800026263331926, + 0.9443498545350396, + 0.8849247249134843, + 0.90662100456621, + 0.8830204170152121, + 0.7610810810810811, + 0.918761685155179, + 0.849564043730598, + 0.9295382499658214, + 0.8737807294339347, + 0.7524570024570024, + 0.8764855553630885, + 0.8881376171456311, + 0.8144653876435873, + 0.7569047619047621, + 0.9011440242078432, + 0.9721444518798692, + 0.8580395542059102, + 0.7556448396101646, + 0.8943463267997412, + 0.7708422347381368, + 0.8312540974287804, + 0.927155204148788, + 0.9242507691836442, + 0.8039533480013239, + 0.9253381976987182, + 0.9487056115959976, + 0.996333638863428, + 0.9061372721317869, + 0.8039194902068956, + 0.9773557492735576, + 0.8553134080531342, + 0.8316014689297133, + 0.9590943683409436, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049175, + 0.9997983870967744, + 0.8210917926103164, + 0.8995898027497777, + 0.999122807017544, + 0.9416562889165628, + 0.7854916126103976, + 0.8580430671412884, + 0.8452862219584866, + 0.90276124713408, + 0.992671182389769, + 0.9514741813067672, + 0.9531775071717112, + 0.9429977116704804, + 0.856399568810636, + 0.9607331879409255, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.8733160901863193, + 0.8902640300903737, + 0.9822495603003196, + 0.7724990486505474, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9505705348293196, + 0.8900825885161551, + 0.9271888077994948, + 0.7647361516158825, + 0.9773557492735576, + 0.8553134080531342, + 0.9590943683409436, + 0.9991101224022378, + 0.8219385637193856, + 0.8478847935907572, + 0.9954545454545456, + 0.8210917926103164, + 0.8995898027497777, + 0.9479012434878824, + 0.8019358454012121, + 0.9416562889165628, + 0.8188858158239666, + 0.8055002075550022, + 0.8580430671412884, + 0.8474662292253902, + 0.895416975651959, + 0.992671182389769, + 0.8356411205726274, + 0.8716815273032167, + 0.9429977116704804, + 0.8677050513455755, + 0.9607331879409255, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.9240556247405564, + 0.8819809439955775, + 0.9822495603003196, + 0.7999671002057498, + 0.9413092648977816, + 0.9954545454545456, + 0.9326966113459272, + 0.7838827173142349, + 0.9271888077994948, + 0.8469712140023324, + 0.9773557492735576, + 0.8553134080531342, + 0.8394616500465105, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049175, + 0.9994500458295142, + 0.8184361507912837, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8089287811425216, + 0.8553636363636363, + 0.791670480549199, + 0.936963017728694, + 0.8474662292253902, + 0.8181109552382407, + 0.8966477542865559, + 0.992671182389769, + 0.9775526793347032, + 0.9514741813067672, + 0.9531775071717112, + 0.9429977116704804, + 0.9341361232572516, + 0.776758166969147, + 0.8677050513455755, + 0.999777530589544, + 0.937103645050706, + 0.9230017232221136, + 0.9851370084561714, + 0.8553134080531342, + 0.884737671188568, + 0.9413092648977816, + 0.9824561403508774, + 0.9505705348293196, + 0.8909999999999999, + 0.8933113072408856, + 0.7647361516158825, + 0.9929947676208064, + 0.8598347107438016, + 0.8490800833801486, + 0.9947856385396152, + 0.9990150209905604, + 0.7707081956166205, + 0.8952232922255726, + 7, + 0.8216057600038708, + 0.9000234404536862, + 2, + 0.8075842215036355, + 0.946198347107438, + 0.8021928166351607, + 0.7928741020793951, + 0.9344444444444444, + 0.8578858011832347, + 0.8483379501385041, + 0.7871436798157214, + 0.9025957850286672, + 0.9928936489808848, + 0.9846235837724948, + 0.9527305856232412, + 0.9434321361058602, + 0.9373115797727772, + 0.9350049149338372, + 0.8705701323251417, + 0.986135349716446, + 6, + 0.9357441792403746, + 0.941314332676578, + 0.9860141582025238, + 0.9826843100189036, + 0.9826843100189036, + 0.8050748795127288, + 0.884575512524494, + 0.9417436672967864, + 0.9937805570643936, + 0.9503788875440718, + 7, + 0.9245562130177516, + 0.7654094979252105, + 1, + 0.909090909090909, + 0.8238490179500522, + 0.9637205387205386, + 0.9819008264462812, + 0.7757575757575756, + 0.8216057600038708, + 0.9000234404536862, + 2, + 0.8075842215036355, + 0.9217516347489824, + 0.799080529300567, + 0.9344444444444444, + 0.8948549687825181, + 0.9721268082486918, + 0.8409090909090907, + 0.9499201807471164, + 0.9527305856232412, + 0.9434321361058602, + 0.9206147765314164, + 0.9350049149338372, + 0.8640914933837429, + 0.9964943059402892, + 0.816272967863894, + 0.9860141582025238, + 0.928736342351717, + 0.9792393194706994, + 0.8994380853277835, + 0.9292599608634764, + 2, + 0.8362207611956006, + 0.9902353003770102, + 0.8950805293005671, + 0.7602465480841565, + 0.9929947676208064, + 0.8598347107438016, + 0.8490800833801486, + 0.9947856385396152, + 0.9990150209905604, + 0.7707081956166205, + 0.8952232922255726, + 7, + 0.8216057600038708, + 0.9000234404536862, + 2, + 0.8011324661116951, + 0.8075842215036355, + 0.946198347107438, + 0.8021928166351607, + 0.7928741020793951, + 0.9344444444444444, + 0.8578858011832347, + 0.8483379501385041, + 0.9025957850286672, + 0.9928936489808848, + 0.9846235837724948, + 0.951299790877642, + 0.9527305856232412, + 0.9434321361058602, + 0.9396223310702196, + 0.9350049149338372, + 0.8705701323251417, + 0.986135349716446, + 6, + 0.9357441792403746, + 0.941314332676578, + 0.9860141582025238, + 0.9826843100189036, + 0.8050748795127288, + 0.884575512524494, + 0.9417436672967864, + 2, + 0.9503788875440718, + 7, + 0.9245562130177516, + 0.7654094979252105, + 0.9819008264462812, + 0.8598347107438016, + 0.8131334593572779, + 0.76909130219916, + 0.9990150209905604, + 0.7707081956166205, + 7, + 0.8216057600038708, + 0.9000234404536862, + 2, + 0.8475686570924665, + 0.9583379501385042, + 0.8578858011832347, + 0.8245991597474406, + 0.8852652399934414, + 0.9928936489808848, + 0.81331932016418, + 0.8180035444849115, + 0.8711111111111112, + 0.7763165596167769, + 0.9350049149338372, + 6, + 0.9349642299687824, + 0.9860141582025238, + 0.9826843100189036, + 0.884575512524494, + 0.9417436672967864, + 0.996520316855316, + 7, + 0.9245562130177516, + 0.7654094979252105, + 0.8580139372822299, + 0.9830434782608694, + 0.8893524283935244, + 0.9954545454545456, + 0.9159300003279972, + 0.8181818181818182, + 0.7500000000000001, + 0.8938595877462214, + 0.9042008986509024, + 0.957287033071265, + 0.90234375, + 0.9223350132140808, + 0.8347334184691517, + 0.9207931801334324, + 0.8467468534925462, + 0.8855595367052747, + 0.7719095384164608, + 0.89266067021096, + 0.8763416775577225, + 0.9545454545454548, + 0.911370421730973, + 0.8444352108196725, + 0.889643133181266, + 0.7993302204531538, + 0.9838876285414652, + 0.981598371482293, + 0.8584226317602835, + 0.9320791500266458, + 0.9545454545454548, + 0.8557709287004716, + 0.8980542801375592, + 0.8619577717071254, + 0.9666063921681544, + 0.9199136660983444, + 0.954105606965682, + 0.8784735812133071, + 0.8146320346320346, + 0.8985141146494671, + 0.8109991172010629, + 0.8039130434782609, + 0.8999203521041262, + 0.9046926758835668, + 0.9502900712294152, + 0.912840025574134, + 0.9565342960288808, + 0.908022550608102, + 0.7889688874990176, + 0.9947765595830976, + 0.9939130434782611, + 0.7541751489851583, + 0.8333567358870508, + 0.9077642484940728, + 0.89655436679566, + 0.8211280822082607, + 0.7590923827347884, + 0.891518378456824, + 0.9280303030303032, + 0.7756218002597997, + 0.8987662245043503, + 0.8668602157771255, + 0.801511385184123, + 0.9878450565293272, + 0.8198448448448448, + 0.8761625640592721, + 0.9331326790672908, + 0.8095673945542065, + 0.9692603418275338, + 0.8574834373128851, + 0.984385006449655, + 0.996521739130435, + 0.7993577556225365, + 0.904913008013858, + 0.908522355957097, + 0.8922324960716342, + 0.9027775208335084, + 0.8863636363636364, + 0.8930134680134679, + 0.8159728122344945, + 0.94712477473252, + 0.9501526150902738, + 0.9360797940299664, + 0.7541751489851583, + 0.7667799490229397, + 0.7911852166525064, + 0.8545853753924373, + 0.8991709050477996, + 0.9636363636363636, + 0.8911305509993319, + 0.9280303030303032, + 0.7559479094211299, + 0.9484006454368564, + 0.8396074640434158, + 0.7602400762912696, + 0.8236580766813324, + 0.8818556180808311, + 0.9202063402841564, + 0.840163421768686, + 0.9479922753053344, + 0.9495079748317236, + 0.9185105083088952, + 0.8116459489241595, + 0.9143375393297604, + 0.9496030156557552, + 0.8340405157441468, + 0.904913008013858, + 0.8855604489099591, + 0.8008650649412102, + 0.917917299639148, + 0.880492540216932, + 0.9964912280701756, + 0.8884778012684991, + 0.9772727272727272, + 0.9305426817265549, + 0.7903598392225996, + 0.913366781280282, + 0.9096320346320348, + 0.9904188832431408, + 0.996521739130435, + 0.7541751489851583, + 0.8171186929707506, + 0.9908763972444158, + 0.9077642484940728, + 0.89655436679566, + 0.772467875442053, + 0.860588835859315, + 0.9234883720930234, + 0.7875052854122622, + 0.933111940667877, + 0.8330354177655357, + 0.98656936388704, + 0.7578096064482999, + 0.8236580766813324, + 0.9347318308522028, + 0.8932895451827312, + 0.9285799156049388, + 0.9331326790672908, + 0.9644254304363626, + 0.9670876387294296, + 0.984385006449655, + 0.9939130434782611, + 0.8081449326727791, + 0.904913008013858, + 0.958843983408048, + 0.9074265343943518, + 0.914550550747443, + 0.9956140350877192, + 0.7875052854122622, + 0.8930995950038104, + 0.9583981105619436, + 0.7913282390616106, + 0.8553636363636363, + 0.9520786868217588, + 0.822779182260992, + 0.7541751489851583, + 0.7533175355450237, + 0.7932981415505088, + 0.8738851187127049, + 0.8977552028386393, + 0.9636363636363636, + 0.8909590821089839, + 0.9280303030303032, + 0.7559479094211299, + 0.7751825777502708, + 0.9484006454368564, + 0.8164106024837708, + 0.8378181818181818, + 0.7561931059330721, + 0.8198448448448448, + 0.8746812582275244, + 0.917685782192232, + 0.8430950344725274, + 0.9479922753053344, + 0.9401658822908944, + 0.9345885985711606, + 0.7898873359402224, + 0.9291147879324684, + 0.9688056850309468, + 0.8399373186372248, + 0.904913008013858, + 0.8926128930190145, + 0.8013821571709653, + 0.9027775208335084, + 0.9068677230102368, + 0.9964912280701756, + 0.8884778012684991, + 0.9772727272727272, + 0.937931239097852, + 0.7893307769071134, + 0.8507923269391159, + 0.82454262425017, + 0.9956476370717128, + 0.997391304347826, + 0.7521112125156584, + 0.8486137750653879, + 0.9982456140350876, + 0.9095579316931844, + 0.8974216292028354, + 0.9982456140350876, + 0.7932369506718919, + 0.865081443540125, + 0.7910710359728593, + 0.7802662901330503, + 0.9360867018160518, + 0.8672259606948435, + 0.8465945179292698, + 0.7860877112960002, + 0.90741737640829, + 0.988714605208294, + 0.7650792722152088, + 0.9834028714566064, + 0.9319643313838056, + 0.8892009084674849, + 0.9238927452772132, + 0.938293658314696, + 0.9463111401682168, + 0.9638336347197108, + 0.8614957734733332, + 0.9743634159016108, + 0.9982456140350876, + 0.904567225435328, + 0.902432554260779, + 0.9842598587858048, + 0.9800758121375232, + 0.9031438311232312, + 0.7664643536742591, + 0.8798196380081305, + 0.9452382460255262, + 0.9982456140350876, + 0.9982456140350876, + 0.9542133966338968, + 0.7550919222167469, + 0.8650485436893204, + 0.9590943683409436, + 0.9899999999999998, + 0.7905998956595828, + 0.9964912280701756, + 0.8794606193667226, + 0.9543859649122808, + 0.8482253411306041, + 0.9416562889165628, + 0.8635977474267437, + 0.908313797791604, + 0.9882608695652176, + 0.9329580322176916, + 0.8517155377371683, + 0.9278910038068524, + 0.7982464236271342, + 0.8646739607798208, + 0.9813471226782764, + 0.9960869565217392, + 0.9094579806240582, + 0.9134140956933028, + 0.9851370084561714, + 0.97920631307383, + 0.977065643648764, + 0.8834465198075598, + 0.9747949320291138, + 0.932911746603152, + 0.999122807017544, + 0.959866019149962, + 0.7617844033057979, + 0.7748830995323981, + 0.8909999999999999, + 0.7596175070890622, + 0.8999999999999999, + 0.9123145440909052, + 0.8741654144553147, + 0.8398585426427478, + 0.8724872612693206, + 0.7669652718124924, + 0.8631126133046548, + 0.8409246558039661, + 0.8097354943626018, + 0.95990063654712, + 0.8969342300921225, + 0.9611031655225016, + 0.827297433674167, + 0.8779350849682387, + 0.8367440082204682, + 0.8930134680134679, + 0.9964912280701756, + 0.7824996118615121, + 0.8861176478495413, + 0.9315029605665132, + 0.9240556247405564, + 0.7895079901300617, + 0.8675786978032918, + 0.7532931318639005, + 0.90662100456621, + 0.7716841489148686, + 0.7502640132876187, + 0.8438384213475643, + 0.8979659609796596, + 0.8433356634883352, + 0.8893524283935244, + 0.8088096745504153, + 0.916047252707554, + 0.8157092458590421, + 0.7713701554506877, + 0.8990439807701139, + 0.890757036354073, + 0.9537544911348904, + 0.808038039840766, + 0.9851370084561714, + 0.8932164255129278, + 0.9471843568535036, + 0.9133288665033964, + 0.9132421335802218, + 0.8276330050739579, + 0.8868080394461477, + 0.8668829861852336, + 0.8964265087723556, + 0.9911660095629562, + 0.9182659870037118, + 0.8633272832102701, + 0.8186320718389478, + 0.8881896291715989, + 0.8840480861242009, + 0.8197634340126408, + 0.7611003116070912, + 0.8939095129169344, + 0.901240425894056, + 0.8290845270990632, + 0.8844734722345178, + 0.900672328635003, + 0.8611114838221066, + 0.9020646721236416, + 0.7524570024570024, + 0.9671031943607348, + 0.7643684665873062, + 0.9177602214566852, + 0.9280169976669376, + 0.9651126414686952, + 0.8767768595041323, + 0.933676703232262, + 0.8344383939714739, + 0.849693862814132, + 0.7954107032792183, + 0.933676703232262, + 0.938108321790696, + 0.928906596493303, + 0.7642353146981488, + 0.8546502548557862, + 0.8224212265843107, + 0.7710819445257563, + 0.8864829929760666, + 0.8716815273032167, + 0.8660098479761721, + 0.9025093300004408, + 0.812107188419381, + 0.9607952743931896, + 0.8722498962224989, + 0.9310204439345414, + 0.9777167277167276, + 0.8010759771629337, + 0.8522718489127074, + 0.9093424633191152, + 0.8425177354450203, + 0.7805733235714439, + 0.8924918014613418, + 0.9893784849790032, + 0.8451386855821716, + 0.8875135039917614, + 0.9706691109074244, + 0.7686359724042269, + 0.8133865875461221, + 0.9501902748414376, + 0.8687372572217293, + 0.7972263500644203, + 0.879221174323091, + 0.8580430671412884, + 0.8347523783886707, + 0.9006369722354359, + 0.992671182389769, + 0.9563291529742204, + 0.947447712690609, + 0.7790788334554246, + 0.9533492330474672, + 0.8986916130118449, + 0.9391877740213088, + 0.9348478408783754, + 0.8636563261069189, + 0.9225521327977664, + 0.9272525027808676, + 0.934718899751552, + 0.7847695804918373, + 0.9443983271522132, + 0.9774342481963584, + 0.97920631307383, + 0.9390325835747532, + 0.7859442359319205, + 0.9452608121807992, + 0.8231219423433573, + 0.9939505041246564, + 0.8711884810416023, + 0.9664525827971132, + 0.8922813036020585, + 0.8517879419237278, + 0.9226251523770824, + 0.9989000916590284, + 0.912544997503788, + 0.8862043421277565, + 0.7932768442135996, + 0.8376774696711561, + 0.7841809006211181, + 0.7925277144429594, + 0.8649220965924544, + 0.8539211685273398, + 0.8363949697251979, + 0.8264854203894482, + 0.9072225728615328, + 0.992671182389769, + 0.8515020101968745, + 0.9309305726600986, + 0.9543209471735604, + 0.9391877740213088, + 0.9348478408783754, + 0.8914844044126528, + 0.9256464785119556, + 0.9954545454545456, + 0.9374817381090278, + 0.7688326686368462, + 0.8925869273677869, + 0.9703270521983972, + 0.9809453113164672, + 0.8066868740036242, + 0.8351972694191357, + 0.8433153659377112, + 0.9392359594194456, + 0.8888965657897014, + 0.8930757789029354, + 0.999083409715857, + 0.9743963538884604, + 0.7953195319531953, + 0.8454219118804093, + 0.9502704567873635, + 0.9458992126856904, + 0.7644077516403233, + 0.8706106552426165, + 0.9965172600923464, + 0.8217563751752737, + 0.9124729676453814, + 0.9818515123739688, + 0.8086304821445487, + 0.9321596244131456, + 0.7740195848021936, + 0.8328682787543888, + 0.8700240408314942, + 0.8580430671412884, + 0.8444444444444444, + 0.8063613046642976, + 0.870252992498577, + 0.992671182389769, + 0.9630275323942066, + 0.9518090954793984, + 0.8248761807094432, + 0.9566474322858416, + 0.9285566337630128, + 0.9391877740213088, + 0.9348478408783754, + 0.8389228250888329, + 0.908538082241886, + 0.9906562847608452, + 0.937727360640436, + 0.8522952375426849, + 0.9459029430545072, + 0.970027764388316, + 0.9817818865916694, + 0.8466376695566145, + 0.7811519654537372, + 0.9366631199668156, + 0.9535299764377344, + 0.9032200335646016, + 0.9998166819431716, + 0.848042162605121, + 0.9780701754385964, + 0.8055944055944054, + 0.8519962283651035, + 0.9944372261358286, + 0.8909859611558665, + 0.9930339138405136, + 0.8688321482439129, + 0.8739386859650123, + 0.7999172993636504, + 0.8106128029621074, + 0.9095679827050768, + 0.8277677156441022, + 0.779649885583524, + 0.8288552731227062, + 0.8574961012970123, + 0.841109866865746, + 0.792355474053602, + 0.8966775300321758, + 0.992671182389769, + 0.9572785040629562, + 0.9291879754864996, + 0.889317620077831, + 0.9515562365156858, + 0.9348478408783754, + 0.8753775156331067, + 0.9532353404791928, + 0.9954545454545456, + 0.937189056965018, + 0.9715579478946336, + 0.959737826278744, + 0.961743440323128, + 0.9796080671884818, + 0.8052224642752426, + 0.7647985836235606, + 0.8987594276173578, + 0.935391253108552, + 0.9994500458295142, + 0.8855041459997729, + 0.909090909090909, + 0.778450363196126, + 0.8409090909090907, + 0.9903940886699508, + 0.9132561051004052, + 0.8590718015934052, + 0.9118814562362948, + 0.7681025602181487, + 0.7961600220298013, + 0.8228255528255527, + 0.7862727272727271, + 0.8598109918146062, + 0.9327132807405768, + 0.8460922217047043, + 0.909090909090909, + 0.7565260131563886, + 0.8064786173763172, + 0.804964695498676, + 0.8147984533079082, + 0.8706455071105871, + 0.8894598432925959, + 0.8753408574458414, + 0.78943545201723, + 0.9225337271553442, + 0.8471976396567684, + 0.9582046990267186, + 0.7739383306543302, + 0.8439728108918513, + 0.9681818181818184, + 0.9147990007027552, + 0.8965678134850725, + 0.9229230100043496, + 0.8814426843808552, + 0.8299673329703665, + 0.953884157786154, + 0.9568896321070232, + 0.927359277258842, + 0.926999815931348, + 0.9084797370520776, + 0.7588691796008868, + 0.8925148498881217, + 0.941101152368758, + 0.7976890157802166, + 0.8191512279190005, + 0.9383783723654014, + 0.9687898089171972, + 0.8227272727272728, + 0.9667829842995462, + 0.8430578512396695, + 0.8462362704327265, + 0.9937731747479652, + 0.8598347107438016, + 0.9018993376896012, + 0.9380859781477626, + 0.7965452139741044, + 0.8408374965151522, + 0.828891493383743, + 0.8037512287334593, + 0.9310557094490612, + 0.7905217546826223, + 0.8803334593572778, + 0.948060941828255, + 0.9808836171606352, + 0.9419954799687824, + 0.9000657462195923, + 0.9762481841119351, + 0.958536231884058, + 0.8689482041587903, + 0.9625071374155624, + 0.9421304353743684, + 0.9000657462195923, + 0.909072064464046, + 0.7770347430724859, + 0.8258664204370576, + 0.931003010693105, + 0.936341359994194, + 0.944622600300256, + 0.7698155009451796, + 0.9886242163794032, + 0.8385429638854297, + 0.8460152283133167, + 0.8244642857142858, + 0.90662100456621, + 0.8965017504270001, + 0.9477543538038498, + 0.934372987530004, + 0.7966912350949062, + 0.8521832338962485, + 0.8284602000869942, + 0.8025417478298693, + 0.9275512725475664, + 0.9004149252037746, + 0.9814823072033312, + 0.9441436310000064, + 0.9038201493163326, + 0.9502409737496426, + 0.8660854435766022, + 0.880780406807804, + 0.932626333246618, + 0.8230247277595697, + 0.9169832716276728, + 0.9163600219843964, + 0.7558559856410743, + 0.8249965343560833, + 0.9341554258408444, + 0.8231479245485526, + 0.9054813423400642, + 0.7909076419763443, + 0.7862727272727271, + 0.8658008658008658, + 0.996330951542531, + 0.9364502164502164, + 0.7650216450216449, + 0.794733291750721, + 0.894436842425348, + 0.9071691672620464, + 0.8475960459042418, + 0.8250190694126619, + 0.9011154934052964, + 0.9888403534005904, + 0.9064975857191632, + 0.8040148172573157, + 0.7544972303681979, + 0.8394258450740809, + 0.872224809812141, + 0.8832034632034632, + 0.9242506379637506, + 0.8626119406890994, + 0.878664636798608, + 0.796428039082196, + 0.7737936507936508, + 0.9772426641825802, + 0.9771984786553624, + 0.7754989006737327, + 0.9842229467473992, + 0.9545454545454548, + 0.8536368018578387, + 0.9904302907657898, + 0.9985875706214687, + 0.7822341892305151, + 0.8895952017025271, + 0.9977822580645164, + 0.822054489456517, + 0.9068929556529068, + 0.9969759694040504, + 0.8227635041015324, + 0.92385752642948, + 0.7644903235840163, + 0.7893527624833871, + 0.9290762303990062, + 0.8549939348739194, + 0.9024751306250636, + 0.9939538727034296, + 0.9838663951689132, + 0.9555403520366936, + 0.8659230906299106, + 0.9555403520366936, + 0.936556104044048, + 0.9365262267264388, + 0.943947221044588, + 0.8711152458705146, + 0.981787734953484, + 0.9977753058954394, + 0.939105864661958, + 0.941241408860912, + 0.9772426641825802, + 0.9783368141256884, + 0.9783368141256884, + 0.8035224554513879, + 0.8878885108220647, + 0.9498970784947516, + 0.9954182612676434, + 0.8911007105869436, + 0.9977822580645164, + 0.9332845830090168, + 0.7698457560674341, + 0.8237875450920827, + 0.7694629219019462, + 0.9545454545454548, + 0.7676911617909391, + 0.8737944824901345, + 0.7706024497958504, + 0.7971142965635086, + 0.797381306659819, + 0.8620542233987611, + 0.8139854059928581, + 0.9887078033035884, + 0.9359939732913412, + 0.816825438145235, + 0.8422527112008905, + 0.8452819441807482, + 0.8400216450216451, + 0.8999203521041262, + 0.929916690661292, + 0.830854814143431, + 0.9513142174432496, + 0.9688527588701455, + 0.9228795379537954, + 0.7730756056428139, + 0.958302500539574, + 0.8026224595457895, + 0.804211768109809, + 0.999122807017544, + 0.9565843431073292, + 0.8024218124622581, + 0.8815110224684692, + 0.8108800084863914, + 0.9608990650462856, + 0.7587225856098497, + 0.8465945179292698, + 0.8955974273031978, + 0.9430511599324012, + 0.7968522430480871, + 0.942185445331794, + 0.8678328134388728, + 0.8589010971043637, + 0.9773557492735576, + 0.8072544965953004, + 0.9954545454545456, + 0.8468840523666226, + 0.7893040004872826, + 0.999122807017544, + 0.8702035016515567, + 0.7949970358330488, + 0.9294585399607892, + 0.8407994285729776, + 0.8788200589970502, + 0.8314481030702938, + 0.831385641452182, + 0.9804378566350936, + 0.9129349807104162, + 0.8141494511694449, + 0.9133990354371988, + 0.9851370084561714, + 0.9095532047456912, + 0.8505448360551612, + 0.963157894736842, + 0.7634237761904064, + 0.9011822106778054, + 0.9956171156600898, + 0.95942299709423, + 0.8553134080531342, + 0.8472097261066925, + 0.9805098186910532, + 0.8553134080531342, + 0.7714797416324134, + 0.9997983870967744, + 0.8217563751752737, + 0.8946470109877639, + 0.999122807017544, + 0.8354069917967499, + 0.9416562889165628, + 0.791670480549199, + 0.936963017728694, + 0.8580430671412884, + 0.8474662292253902, + 0.7867084930870223, + 0.8909560347514579, + 0.992671182389769, + 0.9848040830545792, + 0.8630706569122704, + 0.8702378201869909, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.907644799841382, + 0.999122807017544, + 0.9414868925909092, + 0.9335682269765724, + 0.8893524283935244, + 0.9822495603003196, + 0.8052224642752426, + 0.9379369101877942, + 0.909090909090909, + 0.756404071529602, + 0.9271888077994948, + 0.9921175854473762, + 0.8553134080531342, + 0.9943501037415146, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049175, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8089287811425216, + 0.8017627702025454, + 0.791670480549199, + 0.936963017728694, + 0.8580430671412884, + 0.8474662292253902, + 0.7867084930870223, + 0.90276124713408, + 0.992671182389769, + 0.8072821072057714, + 0.9848040830545792, + 0.8189889492826025, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.974712351554919, + 0.999777530589544, + 0.937103645050706, + 0.9773557492735576, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9503668087629396, + 1, + 0.9271888077994948, + 0.7647361516158825, + 0.9807297003570874, + 0.9364502164502164, + 0.7901612469857595, + 0.824287208001439, + 0.9807297003570874, + 0.7614649785030472, + 0.8658008658008658, + 0.9939130434782611, + 0.906665151293522, + 0.8939526037506182, + 0.9842229467473992, + 0.865081443540125, + 0.9167169276268624, + 0.8794346322201474, + 0.765130456168069, + 0.8734544866674276, + 0.909520787797598, + 0.8854931946173012, + 0.7673924006226841, + 0.8798233135618779, + 0.9852364106660584, + 0.7637569649841349, + 0.9348260838243078, + 0.933522474466579, + 0.8377846225826576, + 0.9583806183156228, + 0.9331326790672908, + 0.9383147514181556, + 0.9589825216566162, + 0.8060876415101113, + 0.9783224922971588, + 0.9583806183156228, + 0.8995909444898049, + 0.8941653123998358, + 0.9668188169538892, + 0.9783224922971588, + 0.9679972612119138, + 0.8797605429806478, + 0.7963975193082085, + 0.8839816990630294, + 0.9431528211472392, + 0.8367334869051766, + 0.8658008658008658, + 0.9921746738179468, + 0.9020614173817516, + 0.756216668568603, + 0.898413439830601, + 0.9687833580671198, + 0.8324262590094272, + 0.7778237575832933, + 0.8480007561436672, + 0.9579079093729876, + 0.845860397670802, + 0.7551254672930834, + 0.8899966113703928, + 0.7908116150724073, + 0.8910183976510794, + 0.9586402202505122, + 0.9614055686011408, + 0.9466976131633716, + 0.8344345242846016, + 0.7881948755231198, + 0.8703128420935896, + 0.7758848540806751, + 0.9184591472656428, + 0.9495128094164198, + 0.8796487671810186, + 0.7514068195240422, + 0.8716815273032167, + 0.9882425857143352, + 0.9633770826635396, + 0.772872635209218, + 0.7549603797492292, + 0.8460813462362223, + 0.9172118090262832, + 0.992952541754412, + 0.8606043918383145, + 0.7745935959659945, + 0.9636724437338746, + 0.7960368686049766, + 0.8285988264418827, + 0.9708841861711646, + 0.8299341990318011, + 0.8419381421530754, + 0.7849537714203622, + 0.7591712665406428, + 0.8689452322602814, + 0.776662686231443, + 0.7843042441238667, + 0.7800515724165504, + 0.8797549464963943, + 0.9919502705663622, + 0.9893735932410646, + 0.8894092494980258, + 0.8411462167336957, + 0.8604416000492892, + 0.9391164837414664, + 0.9875732201051683, + 0.8668958338409165, + 0.910974119092226, + 0.9335682269765724, + 0.8903543205412945, + 0.7579050997201501, + 0.9129974387310056, + 0.8184361507912837, + 0.8985858297326429, + 0.8811309071018276, + 0.9600766541682176, + 0.9142379797053092, + 0.8553282796247272, + 0.9209665616774528, + 0.7653056658292261, + 0.9428934497795352, + 0.9766567420679494, + 0.9320892949781068, + 0.8764803941254208, + 0.9615141634622412, + 0.8025926314878588, + 0.935632010504501, + 0.9954545454545456, + 0.8383046372479713, + 0.8085158042512651, + 0.8799003347391113, + 0.8519408442208184, + 0.7642901122754603, + 0.9104413159581644, + 0.89138879753655, + 0.8889595044710776, + 0.8674196841123456, + 0.9890311615492476, + 0.9817061821644611, + 0.9645756670815068, + 0.9013683659572824, + 0.9379327738576018, + 0.8277684278026405, + 0.8025926314878588, + 0.8164472422898458, + 0.9476735033728184, + 0.9280169976669376, + 0.9400644385653472, + 0.8571175858480748, + 0.9457607069255074, + 0.7890197773695018, + 0.9341554258408444, + 0.8197634340126408, + 0.9579224065577792, + 0.8701372997711668, + 0.9529052383428788, + 0.9845238804935112, + 0.909042520211614, + 0.7869703117696519, + 0.8276242108365519, + 0.878685196514601, + 0.7563441975980676, + 0.7552008456659621, + 0.9576803072122886, + 0.7766774350616475, + 0.8786356094048401, + 0.8863636363636364, + 0.8824223337513897, + 0.915641381346678, + 0.9097297101659864, + 0.952612204076308, + 0.9667491997801664, + 0.9203132832080202, + 0.8318181818181817, + 0.8553636363636363, + 0.7733211512105985, + 0.8722470169622666, + 0.8975645313091688, + 0.8977159303535192, + 0.9912311643305796, + 0.9024231247013856, + 0.8691836035197901, + 0.8278906432659405, + 0.8317573749391951, + 0.9643924081792452, + 0.938598748759861, + 0.984466571720076, + 0.988302056405168, + 0.977397740533538, + 0.8324262590094272, + 0.957204861709126, + 0.9815689054392762, + 0.9723297607875788, + 0.9166058436529154, + 0.7521706555006759, + 0.9280169976669376, + 0.9358035287465732, + 0.8764803941254208, + 0.9153455696596016, + 0.8469432605765171, + 0.99268071993084, + 0.988226739831974, + 0.996336999414424, + 0.9244884191211992, + 0.8507008302142539, + 0.9593509283699424, + 0.8061755182821719, + 0.9615141634622412, + 0.9839330712663648, + 0.9555873521968756, + 0.9775173594082412, + 0.8128624949482813, + 0.9514741813067672, + 0.9817522080920388, + 0.981025791388756, + 0.9818181818181816, + 0.9710861248452468, + 0.9773557492735576, + 0.890085589718168, + 0.954337370755309, + 0.8919753086419753, + 0.8552031760963528, + 0.9545454545454548, + 0.8563472606128697, + 0.8478228971791203, + 0.8853335760168058, + 0.8250190694126619, + 0.8305431015989557, + 0.7900733399481583, + 0.9108949697942604, + 0.917855352912078, + 0.8955772084667657, + 0.82987479094277, + 0.909090909090909, + 0.9331273751154144, + 0.841981268119079, + 0.9061617983216465, + 0.7650216450216449, + 0.8414755340099983, + 0.9939138029238658, + 0.8766192814819845, + 0.8315151515151515, + 0.8473382904078122, + 0.914059797380776, + 0.7659476739028936, + 0.8559376367887911, + 0.811411149825784, + 0.7943527200862163, + 0.7697780793564009, + 0.8192024956758094, + 0.9625172175038818, + 0.9466379024540816, + 0.9248249108281914, + 0.7835010344179048, + 0.7696916201990726, + 0.8741784037558686, + 0.8788591215600511, + 0.7847145200343669, + 0.995553782140972, + 0.885547201336675, + 0.932238896428148, + 0.8666467850773247, + 0.9318181818181815, + 0.874330829529188, + 0.8477600534912598, + 0.8513796499579376, + 0.7928688716866057, + 0.8300839482005723, + 0.8104640050546934, + 0.7623555471966228, + 0.8477133966865695, + 0.8069468267581477, + 0.7970641933918771, + 0.7517470662254077, + 0.811386593204775, + 0.8200234516324812, + 0.8169486429889491, + 0.8731362653208361, + 0.8763157894736843, + 0.8185744024917364, + 0.9052173913043478, + 0.8415792985968426, + 0.7820239132603559, + 0.8373297473297473, + 0.7516072325464591, + 0.9659417587369664, + 0.7649602377888222, + 0.7936066126855602, + 0.909090909090909, + 0.945216049382716, + 0.8771929824561405, + 0.8174876847290639, + 0.8553636363636363, + 0.8455433455433455, + 0.9233441393338416, + 0.8437332724582007, + 0.832909538499891, + 0.840948616293985, + 0.8177290491628549, + 0.9175438596491228, + 0.882198952879581, + 0.8150509397735728, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.7862727272727271, + 0.8107452697678261, + 0.9637205387205386, + 0.852293824358888, + 0.8709558996012198, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352228, + 0.805168828270855, + 0.909090909090909, + 0.8771929824561405, + 0.8174876847290639, + 0.8813770455902434, + 0.8553636363636363, + 0.8455433455433455, + 0.8049385749385748, + 0.8437332724582007, + 0.832909538499891, + 0.8177290491628549, + 0.9175438596491228, + 0.8767128866853765, + 0.8150509397735728, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.7862727272727271, + 0.8107452697678261, + 0.9637205387205386, + 0.852293824358888, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.805168828270855, + 0.9545454545454548, + 0.9545454545454548, + 0.8298946640273919, + 0.8041381029540074, + 0.9786956521739132, + 0.9055353950321428, + 0.8658008658008658, + 0.8041630667784956, + 0.792782754772987, + 0.8259976777571356, + 0.8220626497774737, + 0.8210461476724114, + 0.8101813436763873, + 0.971001604361102, + 0.9289464621791536, + 0.8732908588456849, + 0.9320839327803117, + 0.7799127011297503, + 0.9521230391509398, + 0.8387538514207465, + 0.8873673399520713, + 0.8919696969696971, + 0.9939130434782611, + 0.9772426641825802, + 0.8315151515151515, + 0.8408502506153573, + 0.9545454545454548, + 0.8658008658008658, + 0.9939130434782611, + 0.9418179668098864, + 0.7650216450216449, + 0.8654908035026879, + 0.9992656508417233, + 0.7803152709359606, + 0.8330232317703581, + 0.9983501374885428, + 0.8042480240124439, + 0.7697542997542998, + 0.9203347173341052, + 0.8077175608822436, + 0.863207096556374, + 0.9891326164874552, + 0.8157646741278425, + 0.8722929363621342, + 0.8412806151509398, + 0.9100844696456204, + 0.9172591608126068, + 0.9170938628158845, + 0.8485714285714286, + 0.8571645021645024, + 0.8877796694698104, + 0.8146320346320346, + 0.9983501374885428, + 0.9617032985121432, + 0.9108802545427966, + 0.9508984239139112, + 0.9181661424871336, + 0.9529605866177816, + 0.8319465220643232, + 0.8402426098282156, + 0.9191026771713572, + 0.8190873103701221, + 0.8628923192823611, + 0.9602434075673276, + 0.7593235251819751, + 0.9456277248027678, + 0.9435343652049158, + 0.9302009048080272, + 0.7932712550607288, + 0.8786981717234608, + 0.8486842544219594, + 0.9126746767131658, + 0.9486042010676804, + 0.9038724480869904, + 0.958686173433348, + 0.7865058108244474, + 0.8704285747314824, + 0.9240999622367164, + 0.8068457040035989, + 0.9624336598289146, + 0.8942981283868459, + 0.8045481228624207, + 0.9823493170094518, + 0.8126984126984126, + 0.998531571416838, + 0.8419809946143553, + 0.922841005751663, + 0.9946871424565764, + 0.8143728369465849, + 0.8452819441807482, + 0.9757439972091474, + 0.7999757977078847, + 0.811708695128781, + 0.9226825090266608, + 0.915537959944108, + 0.8447134792639336, + 0.7824996118615121, + 0.9004189790402766, + 0.992492576897818, + 0.8141116751269034, + 0.9641837718077296, + 0.8643778677462887, + 0.9569910794861844, + 0.8929721958656436, + 0.9134879224116806, + 0.8981798632747807, + 0.81115791740409, + 0.9732801304295486, + 0.9270758346340522, + 0.9377496859510692, + 0.9314133822181484, + 0.97145319916461, + 0.969655719759168, + 0.774258455570617, + 0.7646989654610621, + 0.9179126246763072, + 0.9344663297510818, + 0.9954192028862328, + 0.7896845621854086, + 0.9455885850178358, + 0.9633770826635396, + 0.8393119121793614, + 0.9022475277597836, + 0.8956434074042219, + 0.8868725897920605, + 0.947727507922727, + 0.8100165040010108, + 0.7541551246537397, + 0.7542451891577083, + 0.917562326869806, + 0.8951137084436364, + 0.9046867398146928, + 0.9823446334538573, + 0.7795168102658113, + 0.98334457368405, + 0.949870071311262, + 0.7943210699040146, + 0.8322736882141543, + 0.9149338374291116, + 0.8997612989216043, + 0.957120046591764, + 0.8238720996776803, + 0.9493296120831972, + 0.9088759068464726, + 0.929966729678639, + 0.909593974766178, + 0.9088759068464726, + 0.7862360164041836, + 0.9165811787189776, + 0.938643059916104, + 0.8032011401974772, + 0.7862727272727271, + 0.9754897598639012, + 0.7600017202867504, + 0.9455885850178358, + 0.9633770826635396, + 0.8436837588803084, + 0.8980736820318737, + 0.8859552362571937, + 0.8868725897920605, + 0.947727507922727, + 0.8057328891947176, + 0.7614693277849641, + 0.8875623268698062, + 0.8965017504270001, + 0.9039894860912128, + 0.984298575553884, + 0.7714232447296058, + 0.98334457368405, + 0.949870071311262, + 0.7943210699040146, + 0.8202771072840704, + 0.9149338374291116, + 0.8933801982348771, + 0.957120046591764, + 0.8238720996776803, + 0.9529052383428788, + 0.90120315914534, + 0.929966729678639, + 0.945128934703434, + 0.9095750421335858, + 0.7766558276104735, + 0.9151778010434616, + 0.9471874624563444, + 0.8378181818181818, + 0.9754897598639012, + 0.7691572905827264, + 0.7959133007990621, + 0.8262184063662379, + 0.9894645159690536, + 0.996521739130435, + 0.7819131922573496, + 0.850401606425703, + 0.996521739130435, + 0.9077642484940728, + 0.89655436679566, + 0.9964912280701756, + 0.7938737011467188, + 0.8802936186789987, + 0.9280303030303032, + 0.7987525608923287, + 0.7552391207341441, + 0.9308288388816562, + 0.8668602157771255, + 0.8448511242895973, + 0.7961445704225081, + 0.9099056220340456, + 0.9878450565293272, + 0.7642455368060652, + 0.9778493899137112, + 0.8965968223131894, + 0.8932895451827312, + 0.9285799156049388, + 0.9432927941623594, + 0.9496993493645752, + 0.9692603418275338, + 0.8702493159014899, + 0.9739749369603424, + 0.996521739130435, + 0.8907367280606716, + 0.904913008013858, + 0.968471177944862, + 0.825, + 0.9027775208335084, + 0.7617903311136486, + 0.884146408684465, + 0.9446018376578228, + 0.9964912280701756, + 0.908597321143829, + 0.996521739130435, + 0.9619598036238828, + 0.760301236816147, + 0.9921175854473762, + 0.8553134080531342, + 0.9943501037415146, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049175, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8089287811425216, + 0.9416562889165628, + 0.7955445656901864, + 0.791670480549199, + 0.936963017728694, + 0.8580430671412884, + 0.90276124713408, + 0.992671182389769, + 0.9848040830545792, + 0.9514741813067672, + 0.8630706569122704, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.9857005881574218, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.9851370084561714, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.8931621545809378, + 1, + 0.9271888077994948, + 0.7647361516158825, + 0.9921175854473762, + 0.8553134080531342, + 0.9943501037415146, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049175, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8089287811425216, + 0.8017627702025454, + 0.791670480549199, + 0.936963017728694, + 0.8580430671412884, + 0.8474662292253902, + 0.7867084930870223, + 0.90276124713408, + 0.992671182389769, + 0.8072821072057714, + 0.9848040830545792, + 0.8189889492826025, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.974712351554919, + 0.999777530589544, + 0.937103645050706, + 0.9773557492735576, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9503668087629396, + 1, + 0.9271888077994948, + 0.7647361516158825, + 0.8653436259062406, + 0.9166666666666666, + 0.8513043478260871, + 0.888762154374558, + 0.9072684799014412, + 0.8911473104418144, + 0.8931451612903224, + 0.804641414265247, + 0.8069790866112391, + 0.8818832214815737, + 0.8945874001774624, + 0.8064644137224782, + 0.8411703547857459, + 0.8850692346282528, + 0.755864605581299, + 0.854470284581694, + 0.9105444641861692, + 0.9339130434782608, + 0.8908740092733132, + 0.8673913043478261, + 0.8286547121919267, + 0.95706340378198, + 0.9119365546072284, + 0.9110759625390218, + 0.9018301785200464, + 0.9107392505404756, + 0.812383779297877, + 0.8091839475036197, + 0.92656200324369, + 0.9618472252807516, + 0.9614035087719296, + 0.7500000000000001, + 0.8598402189827489, + 0.9545454545454548, + 0.9545454545454548, + 0.8298946640273919, + 0.8041381029540074, + 0.9786956521739132, + 0.9055353950321428, + 0.8658008658008658, + 0.8041630667784956, + 0.792782754772987, + 0.8259976777571356, + 0.8220626497774737, + 0.8210461476724114, + 0.8101813436763873, + 0.971001604361102, + 0.9289464621791536, + 0.8732908588456849, + 0.9320839327803117, + 0.7799127011297503, + 0.9521230391509398, + 0.8387538514207465, + 0.8873673399520713, + 0.8919696969696971, + 0.9939130434782611, + 0.9772426641825802, + 0.8315151515151515, + 0.8408502506153573, + 0.9545454545454548, + 0.8658008658008658, + 0.9939130434782611, + 0.9418179668098864, + 2.7156926502089522, + 2.6582589542615205, + 5.8335318175048485, + 7.719722873284703, + 8.37059193980477, + 6.287750760888578, + 7.5852393855277604, + 8.619914081142198, + 5.954123926757003, + 6.91777643651585, + 6.739839037931574, + 0.7714560308712177, + 5.897458854409393, + 4.482450018625363, + 1.5747017277387507, + 3.933117055292414, + 6.441355005448861, + 5.04393477864045, + 1.5811655649264398, + 8.639455375706738, + 9.482045956050825, + 3.2710846763103056, + 5.548094343509045, + 4.87980768126475, + 7.169596926783591, + 6.055229301341344, + 5.265009500444489, + 5.511060018128451, + 2.501301413678476, + 4.525937093216851, + 4.101343355269801, + 6.217293807177125, + 7.943905087121579, + 5.353764177182051, + 4.243278019361482, + 3.5427896276701247, + 1.6088919229398986, + 3.88415324095451, + 2.603943043970883, + 9.037066847278583, + 7.737803351226179, + 3.279554866696, + 7.622729583832935, + 6.856374634561529, + 2.3349922071235465, + 12.741914176153992, + 11.169645269632817, + 7.551886959332794, + 11.590587375901766, + 12.818849239990167, + 9.312350207024242, + 9.6849943211339, + 29.989955910932153, + 10.677581027079041, + 11.69145919480073, + 16.911059138224726, + 4.826679620914834, + 8.252291582172772, + 9.165041567158466, + 4.782025060620587, + 8.739229045188916, + 11.125912615127698, + 8.566187584981826, + 8.410599595904824, + 6.425051841659946, + 10.774794507711546, + 12.884848396699267, + 1.6145642144115429, + 9.547370473634308, + 7.4714444881737325, + 5.090260526214286, + 12.039861684212275, + 11.245389212792535, + 10.143128014376295, + 10.125864871974748, + 10.355129591634745, + 8.634473127403044, + 27.992947678046967, + 11.123211913879592, + 7.352731964750447, + 12.509174723369728, + 9.357329704104508, + 10.803039171629647, + 8.913388778860995, + 0.7593325960761084, + 7.077414893516322, + 12.222467590055782, + 14.823589476801526, + 10.265853059053766, + 30.253260966653563, + 11.052382130191171, + 8.491863165557415, + 0.8553134080531342, + 0.7923275652679538, + 0.7819131922573496, + 0.7906170310433895, + 0.8406484670606788, + 0.7894736842105264, + 0.8681498428014106, + 0.8408063572139095, + 0.7738548847622624, + 0.8107066154287429, + 0.909636086500905, + 0.9320839327803117, + 0.894689054121916, + 0.8861995746607623, + 0.8134896030245747, + 0.9636363636363636, + 0.8392276737347159, + 0.901982337361457, + 0.8985728391457872, + 0.7921837072845759, + 0.781322126609299, + 22.554386120173277, + 19.613599810480828, + 20.40031858996651, + 29.956580694197918, + 37.81896775337313, + 24.030764704798013, + 31.75180467319671, + 33.91801742353348, + 28.462037139542883, + 34.295589536268785, + 36.50591258466256, + 23.467860361429143, + 24.85592909604806, + 32.4035090762865, + 22.71970343234958, + 25.48730319359836, + 25.165096088618046, + 29.69637427409326, + 17.664183829999775, + 21.845720961128904, + 27.377228557396815, + 39.03071723249128, + 9.741598600769482, + 28.447258113530083, + 34.41837306291569, + 16.886927343841723, + 30.022111810263496, + 34.03588277445593, + 24.12543947649044, + 25.237935542547767, + 23.501603133367023, + 27.37331169073333, + 34.357461581381585, + 33.700679285094154, + 29.505192327810473, + 34.68305676523826, + 23.609703244299986, + 30.310558375313995, + 29.354422008390117, + 23.538996128691956, + 30.81569469437525, + 30.60135518038744, + 29.626551856617063, + 27.188295797438027, + 40.38862974807831, + 18.694734300906806, + 27.322990496426154, + 1.9352772848325108, + 2.3818016615095727, + 2.4953990933170473, + 1.913963384282922, + 2.9567670468253713, + 2.4317927379797686, + 1.7956133485890122, + 2.854427989512894, + 2.5831820089241857, + 1.819016306904112, + 2.490648071873054, + 2.391484496370541, + 2.505409598405692, + 2.4821885521885516, + 2.4409577227873585, + 2.320829325255205, + 2.6899205418074503, + 1.7283011445001177, + 1.6971149466909594, + 1.5291213820369047, + 2.6143148621989507, + 2.9780554383276456, + 2.9438210900254145, + 2.6305687873673067, + 1.7549807374793618, + 2.7762712359752806, + 1.7495140887205873, + 2.8136523151256485, + 1.879691824068352, + 2.462183434346834, + 2.5645762169923745, + 1.6667508417508416, + 1.7977977702095433, + 1.8753418795074075, + 2.7078597537265074, + 0.9300633742947678, + 0.8084175084175084, + 2.495361866237282, + 2.320899513668479, + 0.7992420095977141, + 1.8012887383173002, + 1.7092200978604315, + 2.609476994384382, + 2.9438627714185923, + 1.6816821323942457, + 2.425132650216926, + 12.223228758257974, + 6.188592417520841, + 11.426510773587015, + 13.884984563212395, + 22.734673682113414, + 11.567437906315217, + 12.239049648639428, + 24.118238502482495, + 9.066453537886682, + 11.17511422217741, + 15.891731420320445, + 11.11090060753015, + 14.760168339388951, + 15.918334117423873, + 5.598111410494788, + 9.46948259278418, + 19.6282420929314, + 13.255559093054098, + 8.072782011678106, + 4.8296467634227955, + 13.93982590357738, + 23.894763167404346, + 2.265386970022507, + 13.639123484499246, + 17.43059544986341, + 6.871907979187155, + 17.11088698361234, + 15.99964775294984, + 14.595322770056871, + 15.766753234442659, + 15.856298184944649, + 18.22450343743421, + 19.05621149376186, + 16.097870507087965, + 16.01198436442393, + 13.809075954158503, + 11.255240850896975, + 16.076160308182967, + 8.02257526376253, + 12.455895508409569, + 13.615910947660943, + 14.193169986393926, + 16.8877713803648, + 3.29885931801918, + 19.84232834026574, + 8.573103941281119, + 8.676052231842402, + 1.9554072006789496, + 1.6816008151250992, + 2.5575951246522837, + 1.763864306323435, + 3.6277465073150568, + 2.5403940459643417, + 3.5311360533830105, + 2.8232046518871092, + 0.9147990007027552, + 0.8911473104418144, + 2.765604126968089, + 2.3978778633342577, + 3.3965676305077124, + 1.8048062314859235, + 1.657351693470737, + 1.6062929765633287, + 3.6346370665549452, + 2.426953501375467, + 1.7807483845610523, + 0.8411703547857459, + 2.7870143342426617, + 3.6751201620522886, + 3.667968672809325, + 0.9105444641861692, + 3.664798754945534, + 3.7258429041869685, + 1.825927536231884, + 2.563688359927319, + 1.8432875442233665, + 3.590689352003853, + 0.9119365546072284, + 1.8035908124271436, + 2.665956058648374, + 1.8170490178472651, + 2.736171336988918, + 2.3305797444937766, + 0.812383779297877, + 1.6283351754226203, + 3.5158033304022323, + 2.833948245451147, + 1.7849951498293042, + 3.6259534838334604, + 1.694622600300256, + 2.420563361904273, + 8.224566839530606, + 10.184426134841406, + 9.712886882100072, + 12.368974328335042, + 9.190079150320848, + 11.212094337058057, + 12.764121722467886, + 3.2413916355138515, + 10.804889857088506, + 11.547016065098806, + 10.935685500280684, + 5.6225285255642765, + 1.539541335197319, + 11.091707751777868, + 9.180254302767759, + 9.256945255950226, + 9.39441320170065, + 5.551132979100534, + 4.678308268537915, + 10.268209062531751, + 11.487990944388022, + 6.492834563254258, + 9.971920390400902, + 11.713292537867812, + 2.4929725815182477, + 10.208602928649123, + 10.73985094637251, + 8.725064738267301, + 3.4742792635317246, + 12.132128985959467, + 10.937452652354409, + 10.294020831457708, + 10.84162504706163, + 10.826487642762421, + 12.112505546100621, + 10.210941655471288, + 8.309058542331249, + 6.948934642427314, + 9.736385806957578, + 11.514602475245029, + 9.113230469457893, + 12.16274761820007, + 6.525238979585231, + 10.584967800997793, + 1.677801586702059, + 12.051647956223828, + 10.364795320787383, + 13.473311216883985, + 10.885527934871362, + 21.155234773842274, + 21.27912226240755, + 16.506540369612775, + 17.500086908425452, + 23.96687376464905, + 17.50000361025692, + 18.525672076748783, + 22.72750501377361, + 8.052799028627927, + 16.415934485540465, + 17.099699487658935, + 13.844184713289689, + 10.414083505890655, + 14.218496731614366, + 17.016513814591264, + 11.833228667405512, + 9.92130204041871, + 15.926248229924912, + 19.28818590886522, + 8.37568013116271, + 14.67629455221471, + 17.23878984673672, + 14.631195062838609, + 17.864336064349978, + 18.08959241171481, + 19.28474886690515, + 16.57278071374357, + 14.557840142385297, + 16.967547067670168, + 19.604162788738964, + 19.98269186584841, + 17.637012130402308, + 15.115611896830812, + 15.420223092820533, + 14.445567750240382, + 15.967695680992804, + 8.803015301778098, + 17.53540354903747, + 12.952548777529735, + 19.26586401720724, + 14.24200231680872, + 21.10395900812738, + 18.281595454193365, + 12.827126529560525, + 5.465334500240913, + 8.692039378701784, + 10.04056026672292, + 10.812082791380043, + 12.580474153023195, + 10.655030270423625, + 10.156641991763262, + 11.267860822049826, + 4.818770917891489, + 11.958959359758033, + 13.123712195495242, + 9.296032016759707, + 11.044280821883698, + 10.991077141747944, + 10.088886039883782, + 9.199231454909498, + 10.51222656699815, + 6.886038569595238, + 8.374626059002532, + 7.658225943075498, + 9.757234932000742, + 10.27953224090948, + 3.4266642398787486, + 10.99088844822094, + 11.015934094178773, + 1.6117512560659057, + 10.995057585530207, + 12.879364779623508, + 10.598226185540565, + 9.463039080418465, + 10.291127054890218, + 10.402895139872214, + 9.589332263316654, + 11.15923585040023, + 10.214165288339005, + 12.072802072832255, + 9.598616624212738, + 9.868533505088067, + 8.53186531005526, + 9.169984938459349, + 10.838727562068213, + 11.579969534860759, + 12.33822489975658, + 4.47261764584247, + 10.783399169043372, + 5.698203314390444, + 8.746507319437542, + 5.2502735937721825, + 2.4453350530747793, + 1.738008368195644, + 5.474164297971157, + 5.925545942156385, + 2.3110485615022203, + 4.309007752128361, + 5.631962637208282, + 4.206146547239371, + 4.317083240919346, + 6.257264929881277, + 2.3538008673963797, + 4.27076322703868, + 3.6386765408140946, + 1.6218751548804775, + 2.3274226639749176, + 2.417716951703954, + 2.545920164070019, + 1.700082349305204, + 2.3786200878369077, + 4.504520273067046, + 5.63289447894032, + 5.281011568349853, + 2.668294987481291, + 3.3609942506969634, + 6.2565249278104025, + 4.437053653641776, + 5.178586113351916, + 4.440833046895959, + 2.451376252416558, + 5.357375052676549, + 3.7859155218892466, + 4.479467548537522, + 4.406102168343369, + 5.247334791043326, + 1.7737313447646268, + 5.290584117426062, + 3.2458075335392738, + 0.7847145200343669, + 4.992676798130066, + 2.771762702904483, + 3.7700744247733238, + 2.4220923666043443, + 5.929996420391982, + 3.4020634355200228, + 3.1442137502100387, + 3.883840499337543, + 2.5637289272652515, + 1.657659968971128, + 2.8700655141805957, + 2.955269374098859, + 4.000194035168488, + 3.503014385774582, + 4.992238876012427, + 2.6481481814010275, + 2.693565785734584, + 2.9973684210526317, + 3.147114068150981, + 4.286762573224968, + 4.546959554222818, + 1.5845505351899214, + 3.129753957297123, + 2.7603653190778656, + 2.489376049526977, + 1.6949324584507803, + 3.2969545174238393, + 4.454150560780983, + 2.9484089764966837, + 0.766483106515241, + 3.7887034558996833, + 3.766826240857803, + 1.98751665001665, + 4.668896568056982, + 3.7478274701136476, + 2.77031507949609, + 0.9626281577206024, + 3.595730856619092, + 3.8328921395976865, + 2.9296146282914037, + 4.559964222755541, + 2.657520510009885, + 1.9772484327588065, + 3.8592193782184556, + 3.5421936585017653, + 2.7170523479022903, + 3.1992762277185616, + 4.456682520615206, + 4.707613419567585, + 3.904062811822837, + 2.6114422164244226, + 2.9973684210526317, + 2.710653872016698, + 3.9607214332441982, + 0.929941088884573, + 0.8318189568317447, + 0.9721324228139152, + 0.8929555666008868, + 0.9899175068744273, + 0.7829559806346367, + 0.8330585670487148, + 0.9004712036731742, + 0.8079059133534838, + 0.907326978222119, + 0.8418462145170219, + 0.8355962235887732, + 0.9840600196897172, + 0.9727233543942168, + 0.9456931798893302, + 0.7835307826762479, + 0.9334823561531638, + 0.943912095206486, + 0.9719476865439598, + 0.8989607068123694, + 0.9899175068744273, + 0.91218688144154, + 0.968708052390917, + 0.9275641323723166, + 0.7750817305162342, + 0.7705110005585539, + 0.8746911090742437, + 0.906777236648719, + 0.9877189123128628, + 0.905810189680844, + 0.9039758195768428, + 0.9417675428322848, + 0.838458313625102, + 0.9578918616552848, + 0.9877224033535164, + 0.9600766541682176, + 0.9372227566431792, + 0.9996947496947498, + 0.946473950268886, + 0.9273107442696306, + 0.8427440270131528, + 0.8930336617991886, + 0.8499116091074294, + 0.8297523357929766, + 0.8628042957923382, + 0.94362258995985, + 0.8861176478495413, + 0.992955297959396, + 0.954141881439958, + 0.9716068390573318, + 0.9372227566431792, + 0.9209665616774528, + 0.8810186818949944, + 0.8078565985679013, + 0.7888565809250084, + 0.8999765601568034, + 0.7784705964389922, + 0.8951137084436364, + 0.9694396869310692, + 0.906901471095239, + 0.9521895754027828, + 0.7517286913985, + 0.8687571885281811, + 0.7912430201328434, + 0.9975369458128078, + 0.9160401958804216, + 12.034957689126509, + 11.167292442920854, + 10.892772374566828, + 11.188545125369362, + 14.051145630783244, + 7.680136453880671, + 13.13343433761535, + 17.80404860928635, + 11.937543780884553, + 13.115830249181464, + 12.256764611367714, + 6.398920724204531, + 11.614838149705102, + 11.674346053468323, + 9.535949405592675, + 9.545707015549945, + 14.048031339671128, + 9.393860419591002, + 10.031690862892003, + 12.062006319058131, + 14.226242683310376, + 16.73540754868906, + 3.1709008167927912, + 14.033097673587116, + 14.09522763231218, + 8.342653449881677, + 15.97684965031901, + 12.663360588750875, + 13.64816797614395, + 12.108598929706023, + 13.748030143803588, + 11.552947958095888, + 14.557409491200037, + 14.76087992670282, + 13.005685011134684, + 16.172428327206998, + 10.724419056036478, + 15.192833344979608, + 13.325700381129664, + 4.679831565136927, + 12.228767344707215, + 15.824415223567982, + 12.908175660434084, + 5.4193200648480255, + 17.063260170485226, + 12.311035142033079, + 2.346288272822698, + 3.4869993033751463, + 2.5949758944297403, + 3.4858159609526522, + 4.674296290122592, + 4.973293031748207, + 4.236569395245839, + 4.51562348520608, + 4.970379646980091, + 4.233075066864595, + 4.537502245161149, + 4.874376920602602, + 3.3860244565663846, + 2.5392201287083846, + 4.7013436913228475, + 3.3704788877062826, + 4.1404888626813845, + 4.543317811906993, + 4.319085326490048, + 3.5985806503096693, + 3.3527379240031503, + 4.693635233550103, + 4.92204731803439, + 0.9486152933634998, + 4.874971169726762, + 4.792744363999942, + 1.7302116440315845, + 4.608398994184875, + 3.7619088006985453, + 4.683339599032273, + 4.693106068726848, + 3.5501146709587443, + 3.601350219017491, + 4.867504229968272, + 3.6115658797692385, + 4.739253392540292, + 4.914139211693232, + 3.3462234028956073, + 3.758911669879801, + 3.3813048127683447, + 1.7258664026274264, + 4.573429247310607, + 4.721381839264356, + 4.985087333365494, + 2.8850693260638045, + 4.9655673936226625, + 2.8284398639688764, + 4.02646412523102, + 2.7272727272727266, + 0.8237875450920827, + 0.945216049382716, + 1.754385964912281, + 0.7694629219019462, + 2.4524630541871915, + 0.9545454545454548, + 0.8813770455902434, + 2.566090909090909, + 2.5366300366300365, + 0.7676911617909391, + 0.8737944824901345, + 2.568024494997688, + 0.7706024497958504, + 0.7971142965635086, + 0.797381306659819, + 3.393254040773363, + 3.312714021492531, + 1.602927311552636, + 2.4531871474885647, + 3.7413393822509566, + 0.9359939732913412, + 1.764397905759162, + 2.570251211515988, + 2.445152819320718, + 3.63051173405166, + 2.675217391304348, + 0.8452819441807482, + 0.8400216450216451, + 2.4761904761904763, + 2.4554856624856622, + 3.3321561614076045, + 3.821078306822908, + 2.556881473076664, + 2.5727666133458706, + 3.2303546214836536, + 0.9688527588701455, + 3.3773638428865307, + 2.7052631578947373, + 1.5795546558704456, + 2.415506484812565, + 0.8317573749391951, + 0.9643924081792452, + 0.938598748759861, + 0.984466571720076, + 0.988302056405168, + 0.977397740533538, + 0.8324262590094272, + 0.957204861709126, + 0.9815689054392762, + 0.9723297607875788, + 0.9166058436529154, + 0.7521706555006759, + 0.9280169976669376, + 0.9358035287465732, + 0.8764803941254208, + 0.9153455696596016, + 0.8469432605765171, + 0.99268071993084, + 0.988226739831974, + 0.996336999414424, + 0.9244884191211992, + 0.8507008302142539, + 0.9593509283699424, + 0.8061755182821719, + 0.9615141634622412, + 0.9839330712663648, + 0.9555873521968756, + 0.9775173594082412, + 0.8128624949482813, + 0.9514741813067672, + 0.9817522080920388, + 0.981025791388756, + 0.9818181818181816, + 0.9710861248452468, + 0.9773557492735576, + 0.890085589718168, + 0.954337370755309, + 0.9807297003570874, + 0.9364502164502164, + 0.7901612469857595, + 0.824287208001439, + 0.9807297003570874, + 0.7614649785030472, + 0.8658008658008658, + 0.9939130434782611, + 0.906665151293522, + 0.8939526037506182, + 0.9842229467473992, + 0.865081443540125, + 0.9167169276268624, + 0.8794346322201474, + 0.765130456168069, + 0.8734544866674276, + 0.909520787797598, + 0.8854931946173012, + 0.7673924006226841, + 0.8798233135618779, + 0.9852364106660584, + 0.7637569649841349, + 0.9348260838243078, + 0.933522474466579, + 0.8377846225826576, + 0.9583806183156228, + 0.9331326790672908, + 0.9383147514181556, + 0.9589825216566162, + 0.8060876415101113, + 0.9783224922971588, + 0.9583806183156228, + 0.8995909444898049, + 0.8941653123998358, + 0.9668188169538892, + 0.9783224922971588, + 0.9679972612119138, + 0.8797605429806478, + 0.7963975193082085, + 0.8839816990630294, + 0.9431528211472392, + 0.8367334869051766, + 0.8658008658008658, + 0.9921746738179468, + 0.9020614173817516, + 0.756216668568603, + 0.8168393183171508, + 0.826467375579422, + 0.94513113161729, + 0.9585637037072424, + 0.8949088289552438, + 0.9053910284366296, + 0.817437533227007, + 0.7978783990223038, + 0.7521903939726886, + 0.754943158980426, + 0.7928605555934748, + 0.8989607068123694, + 0.7975892455476461, + 0.7725199492096488, + 0.7662703504995123, + 0.9767351231527428, + 0.9424631082284728, + 0.866898864682116, + 0.7783625730994153, + 0.9376349250962784, + 0.9303020409693342, + 0.8287563928270861, + 0.8603115680426934, + 0.8114732228923959, + 0.9669758970781992, + 0.8105976841695943, + 0.7959269589012261, + 0.8302139037433156, + 0.986986590623621, + 0.751078143739283, + 106.64365772309534, + 90.9355210230678, + 105.04536582054092, + 138.98571064131588, + 169.88487988137652, + 115.9168437973925, + 137.9093814780075, + 189.42204216322287, + 111.49572464710506, + 139.83420443601815, + 161.99091839827958, + 91.8574909446722, + 121.41377761311729, + 126.49255248699575, + 94.81801724506019, + 104.41397650689214, + 125.235898038848, + 122.59448794548986, + 92.35265916418771, + 86.03559245754154, + 132.16125864115685, + 172.80662711497877, + 37.566484901154915, + 130.8619928883497, + 142.98149769771985, + 73.15299777787965, + 148.64598147776658, + 147.6058201109054, + 135.68590926926717, + 120.8652234999067, + 123.58337699460165, + 129.4288397337329, + 164.6196467048814, + 146.0847692899186, + 134.81386332207788, + 148.98873849455728, + 107.95587640903702, + 129.11074196044743, + 112.95896779678264, + 85.21532321667084, + 128.60484862515455, + 141.7009280420737, + 149.46101957908905, + 93.87705350821577, + 186.45865916437108, + 101.59622805369719, + 103.65170216767632, + 1067.7116344468354, + 1057.5464388835724, + 1198.7741587466867, + 669.115232508303, + 338.88306174231195, + 751.2875394224807, + 780.4050131041074, + 5863.7230788542975 + ] + } + ], + "layout": { + "coloraxis": { + "colorbar": { + "title": { + "text": "R^2 Spearman" + } + }, + "colorscale": [ + [ + 0, + "rgb(5,48,97)" + ], + [ + 0.1, + "rgb(33,102,172)" + ], + [ + 0.2, + "rgb(67,147,195)" + ], + [ + 0.3, + "rgb(146,197,222)" + ], + [ + 0.4, + "rgb(209,229,240)" + ], + [ + 0.5, + "rgb(247,247,247)" + ], + [ + 0.6, + "rgb(253,219,199)" + ], + [ + 0.7, + "rgb(244,165,130)" + ], + [ + 0.8, + "rgb(214,96,77)" + ], + [ + 0.9, + "rgb(178,24,43)" + ], + [ + 1, + "rgb(103,0,31)" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "b": 25, + "l": 25, + "r": 25, + "t": 50 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "branchvalues": "total", + "customdata": [ + [ + 0.8531021111589834 + ], + [ + 0.9960831758177524 + ], + [ + 0.9956171156600898 + ], + [ + 0.7534091311886248 + ], + [ + 0.999122807017544 + ], + [ + 0.872263164968203 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.8536839205362883 + ], + [ + 0.8975114391781058 + ], + [ + 0.8640740055556022 + ], + [ + 0.908313797791604 + ], + [ + 0.9891493795585866 + ], + [ + 0.766483106515241 + ], + [ + 0.9231736856070656 + ], + [ + 0.9602036241270692 + ], + [ + 0.9626281577206024 + ], + [ + 0.9457244866279326 + ], + [ + 0.9047503889161738 + ], + [ + 0.8269184820807403 + ], + [ + 0.8789838022165389 + ], + [ + 0.8800026263331926 + ], + [ + 0.957737379733654 + ], + [ + 0.999122807017544 + ], + [ + 0.9509004506686832 + ], + [ + 0.7562762148337596 + ], + [ + 0.8442479234380643 + ], + [ + 0.993779175279743 + ], + [ + 0.7763614794595731 + ], + [ + 0.8710617614475394 + ], + [ + 0.9636752136752136 + ], + [ + 0.8119647131227026 + ], + [ + 0.7805172292400585 + ], + [ + 0.9370415079706567 + ], + [ + 0.8701066680233348 + ], + [ + 0.8242647792818613 + ], + [ + 0.8238243435953363 + ], + [ + 0.9791710812316362 + ], + [ + 0.7554660388288974 + ], + [ + 0.8482458889462429 + ], + [ + 0.914656355102988 + ], + [ + 0.8458383400350413 + ], + [ + 0.92448876432027 + ], + [ + 0.8295449908182004 + ], + [ + 0.9773557492735576 + ], + [ + 0.9281390141743808 + ], + [ + 0.9093117324398052 + ], + [ + 0.7806171146277026 + ], + [ + 0.8726620562837514 + ], + [ + 0.9686137921250751 + ], + [ + 0.8257949554417174 + ], + [ + 0.798853868337832 + ], + [ + 0.9506066908754583 + ], + [ + 0.992130773157018 + ], + [ + 0.992130773157018 + ], + [ + 0.8297391428809981 + ], + [ + 0.9981637899375688 + ], + [ + 0.9559378978139692 + ], + [ + 0.9725030984517492 + ], + [ + 0.9994500458295142 + ], + [ + 0.9674464520962212 + ], + [ + 0.9537877101584162 + ], + [ + 0.9973311596620504 + ], + [ + 0.9965191088563604 + ], + [ + 0.9588085805762212 + ], + [ + 0.9804758872197188 + ], + [ + 0.9761230584660866 + ], + [ + 0.9804758872197188 + ], + [ + 0.9815561030337692 + ], + [ + 0.9979840393589112 + ], + [ + 0.9327029435145744 + ], + [ + 0.9855664265688792 + ], + [ + 0.9965191088563604 + ], + [ + 0.990099472619818 + ], + [ + 0.995055254321861 + ], + [ + 0.8099484766436214 + ], + [ + 0.9906701465266744 + ], + [ + 0.931003010693105 + ], + [ + 0.983380118113322 + ], + [ + 0.9892105958643824 + ], + [ + 0.9957870470931044 + ], + [ + 0.9654908347220116 + ], + [ + 0.9987789987789988 + ], + [ + 0.987752121170142 + ], + [ + 0.9645628577173472 + ], + [ + 0.9994500458295142 + ], + [ + 0.94949459763166 + ], + [ + 0.9746742674843129 + ], + [ + 0.9965191088563604 + ], + [ + 0.9899402366995218 + ], + [ + 0.987752121170142 + ], + [ + 0.9987169080982063 + ], + [ + 0.9987169080982063 + ], + [ + 0.9985113511553524 + ], + [ + 0.9987169080982063 + ], + [ + 0.9632178831505792 + ], + [ + 0.9892105958643824 + ], + [ + 0.9537877101584162 + ], + [ + 0.9444982054870336 + ], + [ + 0.8409895539377414 + ], + [ + 0.9935457940810306 + ], + [ + 0.9402260743372878 + ], + [ + 0.9725030984517492 + ], + [ + 0.9994500458295142 + ], + [ + 0.9022126610505616 + ], + [ + 0.9552208996034384 + ], + [ + 0.9963384890035256 + ], + [ + 0.987752121170142 + ], + [ + 0.9133941210450609 + ], + [ + 0.9444982054870336 + ], + [ + 0.960245535909425 + ], + [ + 0.9790238683337896 + ], + [ + 0.9094946702782724 + ], + [ + 0.920417502503307 + ], + [ + 0.9384151778567814 + ], + [ + 0.963122674479988 + ], + [ + 0.992130773157018 + ], + [ + 0.7576460378790729 + ], + [ + 0.9455819726942684 + ], + [ + 0.987752121170142 + ], + [ + 0.968168023170972 + ], + [ + 0.9133941210450609 + ], + [ + 0.8731664917240823 + ], + [ + 0.9746742674843129 + ], + [ + 0.9833831528957327 + ], + [ + 0.8527482577723561 + ], + [ + 0.9964422727546304 + ], + [ + 0.9746742674843129 + ], + [ + 0.9797497432807476 + ], + [ + 0.9987169080982063 + ], + [ + 0.948780020349246 + ], + [ + 0.960245535909425 + ], + [ + 0.9036065776616928 + ], + [ + 0.926761544632836 + ], + [ + 0.9660041169227584 + ], + [ + 0.9710569973901052 + ], + [ + 0.9979840393589112 + ], + [ + 0.9947945803202288 + ], + [ + 0.9987169080982063 + ], + [ + 0.9411662012310432 + ], + [ + 0.9395149939510422 + ], + [ + 0.9612865740616352 + ], + [ + 0.9104377104377104 + ], + [ + 0.8466632549513022 + ], + [ + 0.965460306668771 + ], + [ + 0.9991930603515944 + ], + [ + 0.7661643396391405 + ], + [ + 0.8993946860474129 + ], + [ + 0.9987169080982063 + ], + [ + 0.8053363980490009 + ], + [ + 0.8802332979851536 + ], + [ + 0.9951653583795466 + ], + [ + 0.8038391193200114 + ], + [ + 0.8486048045950245 + ], + [ + 0.9280303030303032 + ], + [ + 0.7681025602181487 + ], + [ + 0.8667078642628765 + ], + [ + 0.8561382296156173 + ], + [ + 0.9288810671989122 + ], + [ + 0.9927523497097036 + ], + [ + 0.975268289884998 + ], + [ + 0.9652833528240462 + ], + [ + 0.8533855094586799 + ], + [ + 0.9552208996034384 + ], + [ + 0.9383191940615055 + ], + [ + 0.9334429906542056 + ], + [ + 0.906974409725021 + ], + [ + 0.872086805029541 + ], + [ + 0.9775003787304952 + ], + [ + 0.9866063032322202 + ], + [ + 0.941241325810687 + ], + [ + 0.9394303111483416 + ], + [ + 0.9755497899678774 + ], + [ + 0.9757801848204816 + ], + [ + 0.97062869262233 + ], + [ + 0.798490964605047 + ], + [ + 0.9022126610505616 + ], + [ + 0.9410307160918406 + ], + [ + 0.9994500458295142 + ], + [ + 0.9434119359795824 + ], + [ + 0.9987169080982063 + ], + [ + 0.8056786244402121 + ], + [ + 0.7609962981315767 + ], + [ + 0.8417508417508417 + ], + [ + 0.9573727012110692 + ], + [ + 0.9833831528957327 + ], + [ + 0.8473209929380159 + ], + [ + 0.9946751263076096 + ], + [ + 0.9580905063976388 + ], + [ + 0.9638426316026611 + ], + [ + 0.9987169080982063 + ], + [ + 0.9015161062330156 + ], + [ + 0.9703343503473024 + ], + [ + 0.9987789987789988 + ], + [ + 0.9826559329887096 + ], + [ + 0.8594361209082695 + ], + [ + 0.9516399434309798 + ], + [ + 0.920417502503307 + ], + [ + 0.9423609294481023 + ], + [ + 0.968168023170972 + ], + [ + 0.9957870470931044 + ], + [ + 0.94521116881737 + ], + [ + 0.9694172098634408 + ], + [ + 0.9466379024540816 + ], + [ + 0.995055254321861 + ], + [ + 0.9879041307837876 + ], + [ + 0.9833831528957327 + ], + [ + 0.9333963910884244 + ], + [ + 0.9899402366995218 + ], + [ + 0.8869505922195406 + ], + [ + 0.9203611665699089 + ], + [ + 0.9884812240212558 + ], + [ + 0.9588085805762212 + ], + [ + 0.9214805336789016 + ], + [ + 0.9881107335844111 + ], + [ + 0.9236131934032984 + ], + [ + 0.9812023001507028 + ], + [ + 0.8379122722898551 + ], + [ + 0.9523555966814456 + ], + [ + 0.9248788062414784 + ], + [ + 0.8139160327981961 + ], + [ + 0.937383366744383 + ], + [ + 0.94521116881737 + ], + [ + 0.9768478574449928 + ], + [ + 0.9972514396116292 + ], + [ + 0.9933098124967774 + ], + [ + 0.9991101223581756 + ], + [ + 0.9286467697656632 + ], + [ + 0.919010674275554 + ], + [ + 0.9473516727604566 + ], + [ + 0.9459244011397192 + ], + [ + 0.907679698406929 + ], + [ + 0.9012628558280068 + ], + [ + 0.923234386862968 + ], + [ + 0.9345449630236856 + ], + [ + 0.9965224965914254 + ], + [ + 0.9537877101584162 + ], + [ + 0.9105923002381252 + ], + [ + 0.9964912280701756 + ], + [ + 0.9732265524705908 + ], + [ + 0.948780020349246 + ], + [ + 0.9833831528957327 + ], + [ + 0.923234386862968 + ], + [ + 0.9717799134249206 + ], + [ + 0.9001238035739624 + ], + [ + 0.8238720996776804 + ], + [ + 0.9369854844016412 + ], + [ + 0.9338360345735434 + ], + [ + 0.986111412381384 + ], + [ + 0.9689798997219612 + ], + [ + 0.9935924757554138 + ], + [ + 0.7605829143427332 + ], + [ + 0.9660041169227584 + ], + [ + 0.9211213201052028 + ], + [ + 0.917590135458235 + ], + [ + 0.9870232873110416 + ], + [ + 0.8507175025705549 + ], + [ + 0.9481552134363872 + ], + [ + 0.9964912280701756 + ], + [ + 0.9553309445702832 + ], + [ + 0.9403778017040136 + ], + [ + 0.9696119722965126 + ], + [ + 0.9725030984517492 + ], + [ + 0.9480657120588448 + ], + [ + 0.9480657120588448 + ], + [ + 0.8911000630113791 + ], + [ + 0.9008198204074828 + ], + [ + 0.9739502754814452 + ], + [ + 0.992130773157018 + ], + [ + 0.9940520578006032 + ], + [ + 0.9979840393589112 + ], + [ + 0.9871951628595732 + ], + [ + 0.9050015702408756 + ], + [ + 0.7835109416675496 + ], + [ + 0.9993324432576768 + ], + [ + 0.7596801346801346 + ], + [ + 0.9906701465266744 + ], + [ + 0.9480657120588448 + ], + [ + 0.8159024043178598 + ], + [ + 0.7811662552209668 + ], + [ + 0.8197944468080158 + ], + [ + 0.9848383996858172 + ], + [ + 0.9221336649411492 + ], + [ + 0.8994280557324552 + ], + [ + 0.786819255636605 + ], + [ + 0.8020486431706626 + ], + [ + 0.8608954878607267 + ], + [ + 0.9309395848776872 + ], + [ + 0.8507175025705549 + ], + [ + 0.9280303030303032 + ], + [ + 0.934334074623178 + ], + [ + 0.8656659267144711 + ], + [ + 0.7814049860815456 + ], + [ + 0.819882410141537 + ], + [ + 0.9043039394552778 + ], + [ + 0.7905837844375335 + ], + [ + 0.9809244351623316 + ], + [ + 0.7920033670033668 + ], + [ + 0.9476817042606516 + ], + [ + 0.9732265524705908 + ], + [ + 0.999014778325123 + ], + [ + 0.8814330280498146 + ], + [ + 0.8106107934390158 + ], + [ + 0.9859927106498643 + ], + [ + 0.843965803045393 + ], + [ + 0.7596801346801346 + ], + [ + 0.8513250555967384 + ], + [ + 0.8046783090893074 + ], + [ + 0.8073122788801593 + ], + [ + 0.9239392804329155 + ], + [ + 0.97062869262233 + ], + [ + 0.9464820597794912 + ], + [ + 0.8731889608367804 + ], + [ + 0.819882410141537 + ], + [ + 0.9189961343104286 + ], + [ + 0.8073122788801593 + ], + [ + 0.941972584550496 + ], + [ + 0.9545041703849207 + ], + [ + 0.8766192814819845 + ], + [ + 0.9739502754814452 + ], + [ + 0.9331273751154144 + ], + [ + 0.8493650107294191 + ], + [ + 0.9873818298349624 + ], + [ + 0.9964912280701756 + ], + [ + 0.895536084777682 + ], + [ + 0.9773557492735576 + ], + [ + 0.8385429638854296 + ], + [ + 0.8492357350911255 + ], + [ + 0.992105287563838 + ], + [ + 0.9991101224022378 + ], + [ + 0.7779288650281017 + ], + [ + 0.8958436239049176 + ], + [ + 0.9954545454545456 + ], + [ + 0.8217563751752737 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8178037731982906 + ], + [ + 0.9416562889165628 + ], + [ + 0.936963017728694 + ], + [ + 0.8442717785843921 + ], + [ + 0.7686035765445222 + ], + [ + 0.7867084930870223 + ], + [ + 0.992671182389769 + ], + [ + 0.9848040830545792 + ], + [ + 0.951008471157725 + ], + [ + 0.8630706569122703 + ], + [ + 0.9026819923371648 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.84746622922539 + ], + [ + 0.8979659609796596 + ], + [ + 0.999777530589544 + ], + [ + 0.940760842211224 + ], + [ + 0.78115400581154 + ], + [ + 0.9240556247405564 + ], + [ + 0.9822495603003196 + ], + [ + 0.9822495603003196 + ], + [ + 0.8052224642752426 + ], + [ + 0.7593325960761085 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9505705348293196 + ], + [ + 0.9416562889165628 + ], + [ + 0.9271888077994948 + ], + [ + 0.8673029726406383 + ], + [ + 0.9731456263408548 + ], + [ + 0.7813852813852814 + ], + [ + 0.7822341892305151 + ], + [ + 0.9364502164502164 + ], + [ + 0.8679516484927489 + ], + [ + 0.8857699681136173 + ], + [ + 0.7714560308712177 + ], + [ + 0.8584751140436623 + ], + [ + 0.8985904473621558 + ], + [ + 0.8190486045187014 + ], + [ + 0.7893527624833871 + ], + [ + 0.8919696969696971 + ], + [ + 0.8818618218586448 + ], + [ + 0.756628065305478 + ], + [ + 0.7882882882882881 + ], + [ + 0.950300482513086 + ], + [ + 0.8657481566722074 + ], + [ + 0.9365262267264388 + ], + [ + 0.943947221044588 + ], + [ + 0.887458515283843 + ], + [ + 0.7714763488785488 + ], + [ + 0.9214972959512142 + ], + [ + 0.909072064464046 + ], + [ + 0.7715736896162309 + ], + [ + 0.9290762303990062 + ], + [ + 0.8550758611268748 + ], + [ + 0.7761808341851454 + ], + [ + 0.9819054691235874 + ], + [ + 0.7957985346108523 + ], + [ + 0.9657498873425368 + ], + [ + 0.9364502164502164 + ], + [ + 0.8516827062939479 + ], + [ + 0.9754181770220984 + ], + [ + 0.9731874212360307 + ], + [ + 0.8135371179039302 + ], + [ + 0.8727427378014051 + ], + [ + 0.848344463643581 + ], + [ + 0.8895327800940938 + ], + [ + 0.7627248531396743 + ], + [ + 0.7582569516718274 + ], + [ + 0.7709571931840405 + ], + [ + 0.8921633972095838 + ], + [ + 0.9321707396546104 + ], + [ + 0.8986401163657464 + ], + [ + 0.7580471889891207 + ], + [ + 0.9369652591790605 + ], + [ + 0.8679796630864033 + ], + [ + 0.9098066660834573 + ], + [ + 0.980489676524778 + ], + [ + 0.927246096495326 + ], + [ + 0.9018122770586843 + ], + [ + 0.8810674463937621 + ], + [ + 0.8400216450216451 + ], + [ + 0.7689831576535288 + ], + [ + 0.7729944320019908 + ], + [ + 0.8837147279244052 + ], + [ + 0.881149648377826 + ], + [ + 0.9563110356768192 + ], + [ + 0.983927829355058 + ], + [ + 0.9839066269313416 + ], + [ + 0.7583206652119362 + ], + [ + 0.7925815424300344 + ], + [ + 0.8317161572052402 + ], + [ + 0.7744952514390555 + ], + [ + 0.9360718475073312 + ], + [ + 0.96130346341869 + ], + [ + 0.7958679833679831 + ], + [ + 0.7906981399616313 + ], + [ + 0.8413581378299119 + ], + [ + 0.9203347173341052 + ], + [ + 0.8430006636564963 + ], + [ + 0.9727275146860328 + ], + [ + 0.8287881529651736 + ], + [ + 0.8315151515151515 + ], + [ + 0.853720508166969 + ], + [ + 0.8093402654155926 + ], + [ + 0.8962455479058957 + ], + [ + 0.805605027801719 + ], + [ + 0.8210295170320834 + ], + [ + 0.8039070101933912 + ], + [ + 0.8039838558691283 + ], + [ + 0.7826760060360987 + ], + [ + 0.9269812868749552 + ], + [ + 0.794976794976795 + ], + [ + 0.8900713624983871 + ], + [ + 0.9133288665033964 + ], + [ + 0.810208371742399 + ], + [ + 0.7896057754229846 + ], + [ + 0.923877773549558 + ], + [ + 0.9296009475992656 + ], + [ + 0.895080529300567 + ], + [ + 0.8085490374609781 + ], + [ + 0.9819008264462812 + ], + [ + 0.8587224361306279 + ], + [ + 0.7739174537660428 + ], + [ + 0.7862254487513007 + ], + [ + 0.8193724468472356 + ], + [ + 0.8893524283935244 + ], + [ + 0.997064221767242 + ], + [ + 0.7952666762372825 + ], + [ + 0.9020216682958616 + ], + [ + 0.9983501374885428 + ], + [ + 0.8831534562926947 + ], + [ + 0.8860521920074892 + ], + [ + 0.7872481572481572 + ], + [ + 0.9226825090266608 + ], + [ + 0.7803152709359605 + ], + [ + 0.9122593875476056 + ], + [ + 0.8775850757693318 + ], + [ + 0.9799040094031604 + ], + [ + 0.8206267324852857 + ], + [ + 0.8177880557075959 + ], + [ + 0.9576966355531912 + ], + [ + 0.9220659824046918 + ], + [ + 0.797922077922078 + ], + [ + 0.7896320346320348 + ], + [ + 0.8632950463543738 + ], + [ + 0.9492492880197456 + ], + [ + 0.8832034632034632 + ], + [ + 0.8047193670665553 + ], + [ + 0.9956521739130436 + ], + [ + 0.7685862920068351 + ], + [ + 0.8475960459042418 + ], + [ + 0.9795419233757146 + ], + [ + 0.8269899956502829 + ], + [ + 0.7884382884382883 + ], + [ + 0.8207547087216158 + ], + [ + 0.9545454545454548 + ], + [ + 0.8429554406857294 + ], + [ + 0.8993321115511173 + ], + [ + 0.7984889287851585 + ], + [ + 0.761374210879955 + ], + [ + 0.8305523603886544 + ], + [ + 0.7718491195125222 + ], + [ + 0.980407916624232 + ], + [ + 0.950300482513086 + ], + [ + 0.8240213521788208 + ], + [ + 0.8952485002194801 + ], + [ + 0.9038846565773924 + ], + [ + 0.7965911235687182 + ], + [ + 0.8955324322950189 + ], + [ + 0.7910020962422152 + ], + [ + 0.9427138643067844 + ], + [ + 0.826115183440325 + ], + [ + 0.8573048573048573 + ], + [ + 0.7936317271895962 + ], + [ + 0.9007792207792208 + ], + [ + 0.854365955487306 + ], + [ + 0.9456364522650812 + ], + [ + 0.997982406795966 + ], + [ + 0.8774985212108586 + ], + [ + 0.9977822580645164 + ], + [ + 0.8221159804806326 + ], + [ + 0.9077567136073359 + ], + [ + 0.8205465606720966 + ], + [ + 0.8626119406890994 + ], + [ + 0.7556531232200494 + ], + [ + 0.7862587810898044 + ], + [ + 0.8404814885133853 + ], + [ + 0.8206267324852857 + ], + [ + 0.992492576897818 + ], + [ + 0.9526883899349432 + ], + [ + 0.8172714912841496 + ], + [ + 0.942686481353632 + ], + [ + 0.9073962406670544 + ], + [ + 0.793330615828421 + ], + [ + 0.9250332915366597 + ], + [ + 0.7896320346320348 + ], + [ + 0.9844717839591371 + ], + [ + 0.7676353790613718 + ], + [ + 0.9020216682958616 + ], + [ + 0.8820943870496513 + ], + [ + 0.9628828555154738 + ], + [ + 0.9505406805522968 + ], + [ + 0.7685960591133002 + ], + [ + 0.952282255405342 + ], + [ + 0.9961515326042576 + ], + [ + 0.8792822185970635 + ], + [ + 0.917989916458992 + ], + [ + 0.7624864249098158 + ], + [ + 0.8475960459042418 + ], + [ + 0.9795419233757146 + ], + [ + 0.8269899956502829 + ], + [ + 0.7884382884382883 + ], + [ + 0.8207547087216158 + ], + [ + 0.9545454545454548 + ], + [ + 0.8429554406857294 + ], + [ + 0.8993321115511173 + ], + [ + 0.7834739702517162 + ], + [ + 0.761374210879955 + ], + [ + 0.8305523603886544 + ], + [ + 0.7811065974284784 + ], + [ + 0.980407916624232 + ], + [ + 0.950300482513086 + ], + [ + 0.8240213521788208 + ], + [ + 0.8952485002194801 + ], + [ + 0.9038846565773924 + ], + [ + 0.798508237019148 + ], + [ + 0.8955324322950189 + ], + [ + 0.7839982383292353 + ], + [ + 0.9427138643067844 + ], + [ + 0.8245984899369047 + ], + [ + 0.8573048573048573 + ], + [ + 0.8243136284936928 + ], + [ + 0.8553134080531343 + ], + [ + 0.8473904773631097 + ], + [ + 0.9982456140350876 + ], + [ + 0.9590236663403416 + ], + [ + 0.9014436252397446 + ], + [ + 0.8327140244007301 + ], + [ + 0.8669485569807114 + ], + [ + 0.7949843218068803 + ], + [ + 0.903497324397646 + ], + [ + 0.9416562889165628 + ], + [ + 0.7707143966920784 + ], + [ + 0.855320123139272 + ], + [ + 0.7774854369415835 + ], + [ + 0.8503120994598766 + ], + [ + 0.926867994896457 + ], + [ + 0.8667552028246747 + ], + [ + 0.8775319334595817 + ], + [ + 0.901968773482508 + ], + [ + 0.935627556261994 + ], + [ + 0.9050659282343974 + ], + [ + 0.861924622573884 + ], + [ + 0.9675940297571454 + ], + [ + 0.9116934339203904 + ], + [ + 0.9072582435684412 + ], + [ + 0.9237413014402296 + ], + [ + 0.9238605624457716 + ], + [ + 0.8365273593813229 + ], + [ + 0.8893524283935244 + ], + [ + 0.9102500533059372 + ], + [ + 0.8349825924909352 + ], + [ + 0.8784817670545184 + ], + [ + 0.9947399253846392 + ], + [ + 0.8930927589221841 + ], + [ + 0.8055002075550022 + ], + [ + 0.8605298779944784 + ], + [ + 0.9775071835696456 + ], + [ + 0.9505926587353696 + ], + [ + 0.7588336685332704 + ], + [ + 0.8428335962794538 + ], + [ + 0.9238783245212608 + ], + [ + 0.8585749771698774 + ], + [ + 0.8765915866073055 + ], + [ + 0.9822182852411184 + ], + [ + 0.9533886386596292 + ], + [ + 0.8440336134453781 + ], + [ + 0.7834747760490336 + ], + [ + 0.924617649948652 + ], + [ + 0.9395524842975836 + ], + [ + 0.9389258424390616 + ], + [ + 0.9550800035134204 + ], + [ + 0.7946561709764253 + ], + [ + 0.9558099289684048 + ], + [ + 0.8428529645259684 + ], + [ + 0.7972573636925488 + ], + [ + 0.9379369101877942 + ], + [ + 0.8553636363636363 + ], + [ + 0.8995050491578671 + ], + [ + 0.9706054674756964 + ], + [ + 0.7736264668325739 + ], + [ + 0.9622333213753728 + ], + [ + 0.8220723881235561 + ], + [ + 0.8256741778557297 + ], + [ + 0.8127858031447691 + ], + [ + 0.7817740006858703 + ], + [ + 0.7968179052727826 + ], + [ + 0.8018268268268267 + ], + [ + 0.9281390141743808 + ], + [ + 0.9400806090461262 + ], + [ + 0.8107701860758095 + ], + [ + 0.8909257783846486 + ], + [ + 0.8991789819376026 + ], + [ + 0.8738739499371329 + ], + [ + 0.9781810760439292 + ], + [ + 0.8591088340319827 + ], + [ + 0.9192322609917452 + ], + [ + 0.8578880235734736 + ], + [ + 0.927227398337575 + ], + [ + 0.8549844211383769 + ], + [ + 0.9954545454545456 + ], + [ + 0.7996032354193273 + ], + [ + 0.7663762728169506 + ], + [ + 0.8072044088993242 + ], + [ + 0.9545454545454548 + ], + [ + 0.9222946747399472 + ], + [ + 0.8012891170808603 + ], + [ + 0.9007792207792208 + ], + [ + 0.761725650275299 + ], + [ + 0.9189132122341251 + ], + [ + 0.7700791802515137 + ], + [ + 0.7905809884612046 + ], + [ + 0.9364502164502164 + ], + [ + 0.9272003238960064 + ], + [ + 0.9520381744611566 + ], + [ + 0.7670786695244899 + ], + [ + 0.8558592375366569 + ], + [ + 0.833174972830306 + ], + [ + 0.9256214544793848 + ], + [ + 0.8228255528255527 + ], + [ + 0.8485714285714286 + ], + [ + 0.9702872224809812 + ], + [ + 0.7517555862267378 + ], + [ + 0.7565364592835857 + ], + [ + 0.7612860365462939 + ], + [ + 0.987527533398501 + ], + [ + 0.955555772482297 + ], + [ + 0.7996032354193273 + ], + [ + 0.7663762728169506 + ], + [ + 0.8072044088993242 + ], + [ + 0.9545454545454548 + ], + [ + 0.9222946747399472 + ], + [ + 0.8012891170808603 + ], + [ + 0.9007792207792208 + ], + [ + 0.761725650275299 + ], + [ + 0.9189132122341251 + ], + [ + 0.7700791802515137 + ], + [ + 0.7905809884612046 + ], + [ + 0.9364502164502164 + ], + [ + 0.933977462236232 + ], + [ + 0.9520381744611566 + ], + [ + 0.7670786695244899 + ], + [ + 0.8558592375366569 + ], + [ + 0.833174972830306 + ], + [ + 0.9256214544793848 + ], + [ + 0.8228255528255527 + ], + [ + 0.8485714285714286 + ], + [ + 0.9702872224809812 + ], + [ + 0.7517555862267378 + ], + [ + 0.7565364592835857 + ], + [ + 0.7612860365462939 + ], + [ + 0.987527533398501 + ], + [ + 0.955555772482297 + ], + [ + 0.9364502164502164 + ], + [ + 0.8358612257146861 + ], + [ + 0.8590707598082956 + ], + [ + 0.8832034632034632 + ], + [ + 0.833174972830306 + ], + [ + 0.8630005695842037 + ], + [ + 0.984461621950468 + ], + [ + 0.892391114486425 + ], + [ + 0.9897824784878032 + ], + [ + 0.8085316277505704 + ], + [ + 0.919319387113138 + ], + [ + 0.7940051262578318 + ], + [ + 0.780089044997152 + ], + [ + 0.9222946747399472 + ], + [ + 0.8363949697251979 + ], + [ + 0.796839893191436 + ], + [ + 0.7794331008589288 + ], + [ + 0.9859234217934404 + ], + [ + 0.9873000604890544 + ], + [ + 0.9486101335940044 + ], + [ + 0.9248539005931276 + ], + [ + 0.9517981773305488 + ], + [ + 0.8708608667318343 + ], + [ + 0.8623785126533147 + ], + [ + 0.9299160466862331 + ], + [ + 0.9545454545454548 + ], + [ + 0.8796487671810186 + ], + [ + 0.9772426641825802 + ], + [ + 0.7524584849903713 + ], + [ + 0.807857176503839 + ], + [ + 0.90727093221948 + ], + [ + 0.9971775822743564 + ], + [ + 0.7739306525397351 + ], + [ + 0.9847748699555192 + ], + [ + 0.7535520524804752 + ], + [ + 1 + ], + [ + 0.8551111044973793 + ], + [ + 0.9256631478531152 + ], + [ + 0.989570259523299 + ], + [ + 0.7687418116400186 + ], + [ + 0.9641837718077296 + ], + [ + 0.7942756598240468 + ], + [ + 0.8294322792944961 + ], + [ + 0.9215082393282026 + ], + [ + 0.9054494643688868 + ], + [ + 0.8530098192637454 + ], + [ + 0.9025093300004408 + ], + [ + 0.992492576897818 + ], + [ + 0.9598649249543808 + ], + [ + 0.8332737181503951 + ], + [ + 0.9529394346692732 + ], + [ + 0.8214507035663541 + ], + [ + 0.9309630572047876 + ], + [ + 0.7830101580101578 + ], + [ + 0.9732801304295486 + ], + [ + 0.9004189790402766 + ], + [ + 0.9446639459426616 + ], + [ + 0.9036078185699322 + ], + [ + 0.97145319916461 + ], + [ + 0.9609332238642584 + ], + [ + 0.7899791515690191 + ], + [ + 0.7611733870967741 + ], + [ + 0.863207096556374 + ], + [ + 0.9415725119950472 + ], + [ + 0.9939556858911696 + ], + [ + 0.783163286086673 + ], + [ + 0.9977977617253442 + ], + [ + 0.8662090859332238 + ], + [ + 0.8955509185594555 + ], + [ + 0.9764731504349176 + ], + [ + 0.7530954708374062 + ], + [ + 0.7828061257738677 + ], + [ + 0.8462219807137138 + ], + [ + 0.8842041598248496 + ], + [ + 0.915537959944108 + ], + [ + 0.7865763787648619 + ], + [ + 0.7856202453035243 + ], + [ + 0.903206652230566 + ], + [ + 0.989570259523299 + ], + [ + 0.7882882882882881 + ], + [ + 0.9483953947649668 + ], + [ + 0.9364334975369458 + ], + [ + 0.9056925711224626 + ], + [ + 0.7591535837096157 + ], + [ + 0.8418627955566073 + ], + [ + 0.7573046594982078 + ], + [ + 0.880681818181818 + ], + [ + 0.8409090909090906 + ], + [ + 0.806797048126061 + ], + [ + 0.7826760060360987 + ], + [ + 0.7688448083650483 + ], + [ + 0.8584408270788305 + ], + [ + 0.8956871084108602 + ], + [ + 0.913923675716727 + ], + [ + 0.9910308796338216 + ], + [ + 0.9590266687613186 + ], + [ + 0.7872481572481572 + ], + [ + 0.8646083304603533 + ], + [ + 0.9939410487486168 + ], + [ + 0.8340069434398959 + ], + [ + 0.982598363716604 + ], + [ + 0.9106424097900995 + ], + [ + 0.8008517246406788 + ], + [ + 0.8727928390787971 + ], + [ + 0.7681285613827205 + ], + [ + 0.8812869326621475 + ], + [ + 0.928402586493192 + ], + [ + 0.8532026469355432 + ], + [ + 0.8994624945374701 + ], + [ + 0.9440584784614404 + ], + [ + 0.9003302615524813 + ], + [ + 0.8228255528255527 + ], + [ + 0.9795723406491688 + ], + [ + 0.866515864516721 + ], + [ + 0.955439293598234 + ], + [ + 0.8529365775827682 + ], + [ + 0.934359451290398 + ], + [ + 0.8332769785018068 + ], + [ + 0.9365108715713024 + ], + [ + 0.877525810880078 + ], + [ + 0.9692015664722224 + ], + [ + 0.8409090909090906 + ], + [ + 0.940544771679814 + ], + [ + 0.923587693351357 + ], + [ + 0.7954434590943897 + ], + [ + 0.991568586771984 + ], + [ + 0.7612354435027383 + ], + [ + 0.937924041385235 + ], + [ + 0.8376851905173242 + ], + [ + 0.8927174779953235 + ], + [ + 0.7909951819239077 + ], + [ + 0.8443928295282409 + ], + [ + 0.8202350197681522 + ], + [ + 0.9660981642663024 + ], + [ + 0.8152462729809101 + ], + [ + 0.922004885973844 + ], + [ + 0.7639604667778042 + ], + [ + 0.7872481572481572 + ], + [ + 0.9000298090512994 + ], + [ + 0.8014712850828469 + ], + [ + 0.8228255528255527 + ], + [ + 0.8498088450201552 + ], + [ + 0.7879169357174485 + ], + [ + 0.8556523719936285 + ], + [ + 0.9755199210863276 + ], + [ + 0.8557823298777246 + ], + [ + 0.8293705854653898 + ], + [ + 0.8537505886046147 + ], + [ + 0.8046317312743457 + ], + [ + 0.8779697795654818 + ], + [ + 0.8749239196591598 + ], + [ + 0.8555086871328603 + ], + [ + 0.9225963809255304 + ], + [ + 0.9678016420122257 + ], + [ + 0.9415762523485668 + ], + [ + 0.8057522792271018 + ], + [ + 0.8959576525733801 + ], + [ + 0.9001590894975678 + ], + [ + 0.767145966241361 + ], + [ + 0.8489857866410283 + ], + [ + 0.9644777226717816 + ], + [ + 0.9098253673621896 + ], + [ + 0.8791269994277514 + ], + [ + 0.8664155045733993 + ], + [ + 0.8498893415734232 + ], + [ + 0.947101370798582 + ], + [ + 0.8538593322386425 + ], + [ + 0.8042480240124439 + ], + [ + 0.8931085516844227 + ], + [ + 0.8808798536293945 + ], + [ + 0.7934170900130808 + ], + [ + 0.9012551319648092 + ], + [ + 0.9348648660475504 + ], + [ + 0.8291496315254414 + ], + [ + 0.8722929363621342 + ], + [ + 0.911251618573038 + ], + [ + 0.9109734587383088 + ], + [ + 0.9170938628158845 + ], + [ + 0.7650216450216449 + ], + [ + 0.8491510263929617 + ], + [ + 0.797922077922078 + ], + [ + 0.9976169999054124 + ], + [ + 0.9935999513470776 + ], + [ + 0.8049044578239981 + ], + [ + 0.836149001293594 + ], + [ + 0.9772426641825802 + ], + [ + 0.7947818492500476 + ], + [ + 0.774258455570617 + ], + [ + 0.8948565585013833 + ], + [ + 0.96130346341869 + ], + [ + 0.7882882882882881 + ], + [ + 0.9031253085247768 + ], + [ + 0.7502958618442489 + ], + [ + 0.9074753238868364 + ], + [ + 0.9391271623435224 + ], + [ + 0.7795953486477678 + ], + [ + 0.8889322557418088 + ], + [ + 0.8774400397180557 + ], + [ + 0.9117791157331387 + ], + [ + 0.9837385506159468 + ], + [ + 0.7764964848815781 + ], + [ + 0.763706420963152 + ], + [ + 0.982244407057744 + ], + [ + 0.982258229908174 + ], + [ + 0.8665750946042498 + ], + [ + 0.7595972992524718 + ], + [ + 0.7801043792183331 + ], + [ + 0.905255061999686 + ], + [ + 0.8220123627076744 + ], + [ + 0.8030465628225144 + ], + [ + 0.9789271593959374 + ], + [ + 0.7848592675970836 + ], + [ + 0.78340962656552 + ], + [ + 0.9151319857390936 + ], + [ + 0.8905339474233814 + ], + [ + 0.8105036440440168 + ], + [ + 0.8827179393030227 + ], + [ + 0.9303783215638728 + ], + [ + 0.9188270726931117 + ], + [ + 0.9157320003100056 + ], + [ + 0.9358530842881808 + ], + [ + 0.7937577290427829 + ], + [ + 0.9414073611117948 + ], + [ + 0.8901453226576379 + ], + [ + 0.8602487024132297 + ], + [ + 0.7556614611768913 + ], + [ + 0.9600221996115068 + ], + [ + 0.7680433097131317 + ], + [ + 0.8925061445921794 + ], + [ + 0.9773557492735576 + ], + [ + 0.8013333235492676 + ], + [ + 0.7689202564616309 + ], + [ + 0.8185297955632884 + ], + [ + 0.7566698570378733 + ], + [ + 0.7828314585807773 + ], + [ + 0.8694189151801024 + ], + [ + 0.8065343721704722 + ], + [ + 0.9807788363703636 + ], + [ + 0.8356411205726275 + ], + [ + 0.8778270939877454 + ], + [ + 0.8142980219813145 + ], + [ + 0.9079854938491076 + ], + [ + 0.8369284370856844 + ], + [ + 0.8951910290953499 + ], + [ + 0.8385429638854296 + ], + [ + 0.9335217836825552 + ], + [ + 0.8814450312694764 + ], + [ + 0.8433770449321196 + ], + [ + 0.9773557492735576 + ], + [ + 0.8751169590643275 + ], + [ + 0.7872836439659993 + ], + [ + 0.8460813462362223 + ], + [ + 0.9068505777317312 + ], + [ + 0.974712351554919 + ], + [ + 0.8582253898196657 + ], + [ + 0.7694393172704596 + ], + [ + 0.9593583027873251 + ], + [ + 0.7791177041387707 + ], + [ + 0.8285988264418827 + ], + [ + 0.9708841861711646 + ], + [ + 0.8292663783394395 + ], + [ + 0.8455377025736512 + ], + [ + 0.784953771420362 + ], + [ + 0.7591712665406429 + ], + [ + 0.8668958338409165 + ], + [ + 0.8033611495393503 + ], + [ + 0.7791177041387707 + ], + [ + 0.7800515724165504 + ], + [ + 0.8797549464963943 + ], + [ + 0.9913485744394356 + ], + [ + 0.9893735932410646 + ], + [ + 0.8883723399394137 + ], + [ + 0.8371159751352832 + ], + [ + 0.8604416000492892 + ], + [ + 0.9391164837414664 + ], + [ + 0.9875732201051683 + ], + [ + 0.8696289027548957 + ], + [ + 0.9116740607637536 + ], + [ + 0.9335682269765724 + ], + [ + 0.8903543205412945 + ], + [ + 0.8274478901761246 + ], + [ + 0.8184361507912837 + ], + [ + 0.8985858297326429 + ], + [ + 0.8811309071018276 + ], + [ + 0.9600766541682176 + ], + [ + 0.9142379797053092 + ], + [ + 0.8539724989309248 + ], + [ + 0.9209665616774528 + ], + [ + 0.7653056658292261 + ], + [ + 0.9409789458067938 + ], + [ + 0.9813761990559404 + ], + [ + 0.937050978278692 + ], + [ + 0.8764803941254208 + ], + [ + 0.9622333213753728 + ], + [ + 0.8137991281050442 + ], + [ + 0.9349229298096128 + ], + [ + 0.9954545454545456 + ], + [ + 0.8383046372479713 + ], + [ + 0.8091752787787085 + ], + [ + 0.8992810605226834 + ], + [ + 0.8526177936134408 + ], + [ + 0.7653579292773433 + ], + [ + 0.916749204599586 + ], + [ + 0.8841900402810652 + ], + [ + 0.8889595044710776 + ], + [ + 0.8674196841123456 + ], + [ + 0.9890311615492476 + ], + [ + 0.9817061821644611 + ], + [ + 0.9631360021073514 + ], + [ + 0.9146441554557286 + ], + [ + 0.9372227566431792 + ], + [ + 0.8277684278026405 + ], + [ + 0.8085158042512651 + ], + [ + 0.8164472422898458 + ], + [ + 0.9476735033728184 + ], + [ + 0.9195597006085118 + ], + [ + 0.9400644385653472 + ], + [ + 0.8518992260665973 + ], + [ + 0.9457607069255074 + ], + [ + 0.805969235202997 + ], + [ + 0.8496241912512923 + ], + [ + 0.8197634340126408 + ], + [ + 0.9579224065577792 + ], + [ + 0.8608612476370511 + ], + [ + 0.9529052383428788 + ], + [ + 0.9845238804935112 + ], + [ + 0.9083435256044582 + ], + [ + 0.8553134080531343 + ], + [ + 0.7923275652679538 + ], + [ + 0.7819131922573495 + ], + [ + 0.7906170310433895 + ], + [ + 0.8406484670606788 + ], + [ + 0.7894736842105264 + ], + [ + 0.8681498428014106 + ], + [ + 0.8408063572139095 + ], + [ + 0.7738548847622624 + ], + [ + 0.8107066154287429 + ], + [ + 0.909636086500905 + ], + [ + 0.9320839327803117 + ], + [ + 0.894689054121916 + ], + [ + 0.8861995746607623 + ], + [ + 0.8134896030245747 + ], + [ + 0.9636363636363636 + ], + [ + 0.8392276737347159 + ], + [ + 0.901982337361457 + ], + [ + 0.8985728391457872 + ], + [ + 0.792183707284576 + ], + [ + 0.781322126609299 + ], + [ + 0.9194369973190348 + ], + [ + 0.8490800833801486 + ], + [ + 0.9929855448480356 + ], + [ + 0.9990150209905604 + ], + [ + 0.7707081956166206 + ], + [ + 0.8952232922255726 + ], + [ + 1 + ], + [ + 0.8129887361537077 + ], + [ + 0.9000234404536862 + ], + [ + 0.998221036598569 + ], + [ + 0.8017888630248555 + ], + [ + 0.8075842215036355 + ], + [ + 0.9208092958092956 + ], + [ + 0.7606873345935727 + ], + [ + 0.7928741020793951 + ], + [ + 0.9344444444444444 + ], + [ + 0.8580430671412884 + ], + [ + 0.8053911900065747 + ], + [ + 0.9025957850286672 + ], + [ + 0.992671182389769 + ], + [ + 0.9682695039010508 + ], + [ + 0.951299790877642 + ], + [ + 0.9060155127964962 + ], + [ + 0.9527305856232412 + ], + [ + 0.9434321361058602 + ], + [ + 0.9565966865742668 + ], + [ + 0.943947221044588 + ], + [ + 0.8705701323251417 + ], + [ + 0.9652200677131424 + ], + [ + 0.9884853681548044 + ], + [ + 0.9357441792403746 + ], + [ + 0.9414868925909092 + ], + [ + 0.9505847966970496 + ], + [ + 0.9565269894940224 + ], + [ + 0.9514804555247768 + ], + [ + 0.7993113894954217 + ], + [ + 0.760960813749392 + ], + [ + 0.8859552362571937 + ], + [ + 0.9413092648977816 + ], + [ + 1 + ], + [ + 0.8182545315351611 + ], + [ + 1 + ], + [ + 0.9136739322359624 + ], + [ + 0.7679975248125409 + ], + [ + 0.9492028179458656 + ], + [ + 0.9839615421047646 + ], + [ + 0.9954545454545456 + ], + [ + 0.9954545454545456 + ], + [ + 0.8398210820058983 + ], + [ + 0.8626784395302913 + ], + [ + 0.9781810760439292 + ], + [ + 0.775848555122794 + ], + [ + 0.7830044520223547 + ], + [ + 0.7890565881306622 + ], + [ + 0.7666456034744639 + ], + [ + 0.8730814336484439 + ], + [ + 0.8997733824632729 + ], + [ + 0.9780525030525028 + ], + [ + 0.9501767000609233 + ], + [ + 0.9341770866436075 + ], + [ + 0.7890266466291772 + ], + [ + 0.931285458781014 + ], + [ + 0.9135836385836384 + ], + [ + 0.8161327222259138 + ], + [ + 0.8595055413469735 + ], + [ + 0.8885272049623901 + ], + [ + 0.8850443888003645 + ], + [ + 0.9111695674516778 + ], + [ + 0.8969355419044592 + ], + [ + 0.9369652591790605 + ], + [ + 0.9474196440005122 + ], + [ + 0.9540293886604132 + ], + [ + 0.7751893805092811 + ], + [ + 0.884220727546821 + ], + [ + 0.9248167539267018 + ], + [ + 0.9416562889165628 + ], + [ + 0.9947833674785644 + ], + [ + 0.8179413224638157 + ], + [ + 0.963749256395003 + ], + [ + 0.9894860390412652 + ], + [ + 0.7661643396391405 + ], + [ + 0.8822836096135876 + ], + [ + 0.9987169080982063 + ], + [ + 0.8212112306855328 + ], + [ + 0.8510831692167852 + ], + [ + 0.9674464520962212 + ], + [ + 0.8140738302718742 + ], + [ + 0.9084937590490597 + ], + [ + 0.8588550489464593 + ], + [ + 0.9132111582886344 + ], + [ + 0.9652833528240462 + ], + [ + 0.8704495461768502 + ], + [ + 0.908214664444781 + ], + [ + 0.8330370179351025 + ], + [ + 0.8542414865764498 + ], + [ + 0.951833769945225 + ], + [ + 0.9369276682149368 + ], + [ + 0.9172096473904445 + ], + [ + 0.7660118606375093 + ], + [ + 0.8049385749385749 + ], + [ + 0.819882410141537 + ], + [ + 0.9479738077588338 + ], + [ + 0.8453139910143218 + ], + [ + 0.9957870470931044 + ], + [ + 0.835084520570639 + ], + [ + 0.7568829071309779 + ], + [ + 0.8003212087852895 + ], + [ + 0.7757575757575756 + ], + [ + 0.9818181818181816 + ], + [ + 0.8296247866194634 + ], + [ + 0.8397480840731469 + ], + [ + 0.8084175084175085 + ], + [ + 0.8224948407969244 + ], + [ + 0.7604961330297303 + ], + [ + 0.8801077325173712 + ], + [ + 0.769382100421295 + ], + [ + 0.8025699565810901 + ], + [ + 0.7925192834831389 + ], + [ + 0.932353379320096 + ], + [ + 0.94491648331435 + ], + [ + 0.8001582377938935 + ], + [ + 0.7832517257911142 + ], + [ + 0.8082508107205724 + ], + [ + 0.7628286200410923 + ], + [ + 0.7621748136686876 + ], + [ + 0.9364192202560784 + ], + [ + 0.7690913021991601 + ], + [ + 0.8585000323687447 + ], + [ + 0.9150177303560064 + ], + [ + 0.8405722943067688 + ], + [ + 0.904913008013858 + ], + [ + 0.917314235445159 + ], + [ + 0.9929855448480356 + ], + [ + 0.8268991218112046 + ], + [ + 0.8398859728050183 + ], + [ + 0.996521739130435 + ], + [ + 0.8330381744436689 + ], + [ + 0.8550497957993816 + ], + [ + 0.9913111768722972 + ], + [ + 0.8557422839635942 + ], + [ + 0.8935463671803986 + ], + [ + 0.9006445563787115 + ], + [ + 0.8921379258150505 + ], + [ + 0.9000168618023969 + ], + [ + 0.7589099863492517 + ], + [ + 0.923526237747262 + ], + [ + 0.9028882720019862 + ], + [ + 0.9170617535185012 + ], + [ + 0.9807828100228472 + ], + [ + 0.939548148620228 + ], + [ + 0.9363191484705866 + ], + [ + 0.8321093615368212 + ], + [ + 0.8571281012005368 + ], + [ + 0.8384981048972464 + ], + [ + 0.9086443302842008 + ], + [ + 0.8871943647917209 + ], + [ + 0.8878997468865361 + ], + [ + 0.8999564578859198 + ], + [ + 0.9894860390412652 + ], + [ + 0.9134801839907836 + ], + [ + 0.8586028659246839 + ], + [ + 0.9532628651995616 + ], + [ + 0.8991005792297246 + ], + [ + 0.9248167539267018 + ], + [ + 0.8647701376567242 + ], + [ + 0.9063380676482872 + ], + [ + 0.9006445563787115 + ], + [ + 0.9964912280701756 + ], + [ + 0.9104377104377104 + ], + [ + 0.9861142727065788 + ], + [ + 0.8766608932307983 + ], + [ + 0.9228068405104872 + ], + [ + 0.945216049382716 + ], + [ + 0.872288139441828 + ], + [ + 0.8287614081607514 + ], + [ + 0.9364502164502164 + ], + [ + 0.9107716613157442 + ], + [ + 0.7558233373684017 + ], + [ + 0.9637205387205386 + ], + [ + 0.911011004178706 + ], + [ + 0.825019069412662 + ], + [ + 0.7745592680619333 + ], + [ + 0.9563893487499426 + ], + [ + 0.8643469043976432 + ], + [ + 0.8938717567128639 + ], + [ + 0.8935795415901516 + ], + [ + 0.9090909090909088 + ], + [ + 0.8890241171514016 + ], + [ + 0.8412491105292438 + ], + [ + 0.8993946860474129 + ], + [ + 0.9779240761641758 + ], + [ + 0.8448498489942445 + ], + [ + 0.9637205387205386 + ], + [ + 0.8307739463601531 + ], + [ + 0.7840680498436611 + ], + [ + 0.9234588281480026 + ], + [ + 0.7533766040551628 + ], + [ + 0.8411108025383495 + ], + [ + 0.8186320718389478 + ], + [ + 0.7507073140597975 + ], + [ + 0.8665855131372373 + ], + [ + 0.8141166099294752 + ], + [ + 0.8465178639695039 + ], + [ + 0.8674324881574892 + ], + [ + 0.894897491091307 + ], + [ + 0.926797128906551 + ], + [ + 0.8002254756609835 + ], + [ + 0.8899568476668683 + ], + [ + 0.8050891517303731 + ], + [ + 0.7551272091668285 + ], + [ + 0.9170723522722332 + ], + [ + 0.8862820694208641 + ], + [ + 0.7731935891169762 + ], + [ + 0.85279684719044 + ], + [ + 0.8545871559633028 + ], + [ + 0.973043266390798 + ], + [ + 0.9110701550899905 + ], + [ + 0.8806793706489482 + ], + [ + 0.9750233018591332 + ], + [ + 0.8832528651475978 + ], + [ + 0.9637205387205386 + ], + [ + 0.8045977011494252 + ], + [ + 0.7840680498436611 + ], + [ + 0.9718089459310836 + ], + [ + 0.7632159853061836 + ], + [ + 0.8411108025383495 + ], + [ + 0.8186320718389478 + ], + [ + 0.8665855131372373 + ], + [ + 0.8141166099294752 + ], + [ + 0.8465178639695039 + ], + [ + 0.8674324881574892 + ], + [ + 0.8941741955127749 + ], + [ + 0.8055806456563269 + ], + [ + 0.9200506754154923 + ], + [ + 0.8002254756609835 + ], + [ + 0.8055002075550022 + ], + [ + 0.8899568476668683 + ], + [ + 0.8050891517303731 + ], + [ + 0.7551272091668285 + ], + [ + 0.9170723522722332 + ], + [ + 0.8862820694208641 + ], + [ + 0.7643684665873062 + ], + [ + 0.8962930952966316 + ], + [ + 0.8545871559633028 + ], + [ + 0.973043266390798 + ], + [ + 0.8391999316061071 + ], + [ + 0.9106199738197148 + ], + [ + 0.8336184977583577 + ], + [ + 0.9825055596738328 + ], + [ + 0.8275801175590107 + ], + [ + 0.8536656603794738 + ], + [ + 0.9947833674785644 + ], + [ + 0.8871943647917209 + ], + [ + 0.9947833674785644 + ], + [ + 0.8474509259804291 + ], + [ + 0.8970952216775002 + ], + [ + 0.9064029668710988 + ], + [ + 0.8689528166230794 + ], + [ + 0.8668563557933111 + ], + [ + 0.9192140588692024 + ], + [ + 0.8446191193563313 + ], + [ + 0.9070510179197603 + ], + [ + 0.9569231352909934 + ], + [ + 0.9360907526607608 + ], + [ + 0.9363191484705866 + ], + [ + 0.7585150816808764 + ], + [ + 0.8079450438253487 + ], + [ + 0.889311351984684 + ], + [ + 0.9157961667726409 + ], + [ + 0.8495199813878911 + ], + [ + 0.9008127437155956 + ], + [ + 0.9894860390412652 + ], + [ + 0.9084777593712244 + ], + [ + 0.8247288683081853 + ], + [ + 0.9554572159761404 + ], + [ + 0.8803742636840193 + ], + [ + 0.8617666872995883 + ], + [ + 0.9141959372906489 + ], + [ + 0.9034890695907855 + ], + [ + 0.8086181910936574 + ], + [ + 0.9964912280701756 + ], + [ + 0.9859927106498643 + ], + [ + 0.9106199738197148 + ], + [ + 0.7805873465692333 + ], + [ + 0.8878997468865361 + ], + [ + 0.9016573566020095 + ], + [ + 0.996521739130435 + ], + [ + 0.8072721768598793 + ], + [ + 0.8440081063581091 + ], + [ + 0.996521739130435 + ], + [ + 0.8612922801795058 + ], + [ + 0.8405722943067688 + ], + [ + 0.9620426435996664 + ], + [ + 0.8550497957993816 + ], + [ + 0.8140134601423378 + ], + [ + 0.8065264393377811 + ], + [ + 0.8107867382196149 + ], + [ + 0.8640740055556022 + ], + [ + 0.8801559604997237 + ], + [ + 0.7852248168921702 + ], + [ + 0.8640589559565321 + ], + [ + 0.7885457047794436 + ], + [ + 0.8947102177469851 + ], + [ + 0.9459249756326831 + ], + [ + 0.9206503306171988 + ], + [ + 0.8390959753949685 + ], + [ + 0.8829679585824524 + ], + [ + 0.8550497957993816 + ], + [ + 0.9034890695907855 + ], + [ + 0.996521739130435 + ], + [ + 0.8773484472624222 + ], + [ + 0.8453843932985197 + ], + [ + 0.9372480427854252 + ], + [ + 0.7528181818181818 + ], + [ + 0.9513991845811716 + ], + [ + 0.8133380704513155 + ], + [ + 0.8550497957993816 + ], + [ + 0.8822645386075115 + ], + [ + 0.9964912280701756 + ], + [ + 0.984385006449655 + ], + [ + 0.8868917142282169 + ], + [ + 0.8515915595209063 + ], + [ + 0.7801554360634969 + ], + [ + 0.985677698237539 + ], + [ + 0.8248130810601166 + ], + [ + 0.8900224404233377 + ], + [ + 0.9847846012832264 + ], + [ + 0.8665750946042498 + ], + [ + 0.8066554677866482 + ], + [ + 0.9191871761989552 + ], + [ + 0.8436840954545581 + ], + [ + 0.863729744412587 + ], + [ + 0.8256985978203084 + ], + [ + 0.8998085943818406 + ], + [ + 0.8162326248169407 + ], + [ + 0.9119926726575672 + ], + [ + 0.9789271593959374 + ], + [ + 0.9477427513951896 + ], + [ + 0.9452267008277976 + ], + [ + 0.880636467189412 + ], + [ + 0.8867623702302508 + ], + [ + 0.808133830455259 + ], + [ + 0.9714444301275637 + ], + [ + 0.9847846012832264 + ], + [ + 0.9286461770540784 + ], + [ + 0.9203870504644208 + ], + [ + 0.941002197457228 + ], + [ + 0.9704634209196064 + ], + [ + 0.8113283188178101 + ], + [ + 0.7634010982542299 + ], + [ + 0.8902061446452669 + ], + [ + 0.9354771486059212 + ], + [ + 0.9847846012832264 + ], + [ + 0.7809840281171203 + ], + [ + 0.9894860390412652 + ], + [ + 0.8185297955632884 + ], + [ + 0.8802332979851536 + ], + [ + 0.9723196833760273 + ], + [ + 0.9982608695652172 + ], + [ + 0.8258211640188051 + ], + [ + 0.9080000797822109 + ], + [ + 0.9964912280701756 + ], + [ + 0.839409582008935 + ], + [ + 0.8941141728869741 + ], + [ + 0.7725808179227283 + ], + [ + 0.8028188725754469 + ], + [ + 0.8251527896182628 + ], + [ + 0.8315151515151515 + ], + [ + 0.817899229361741 + ], + [ + 0.7620751217250173 + ], + [ + 0.8246468823065852 + ], + [ + 0.8720941750410174 + ], + [ + 0.9294859277773437 + ], + [ + 0.9927523497097036 + ], + [ + 0.9828742809481747 + ], + [ + 0.9543209471735604 + ], + [ + 0.8753860783148016 + ], + [ + 0.939845912034176 + ], + [ + 0.9151374298073564 + ], + [ + 0.9378841050418828 + ], + [ + 0.939845912034176 + ], + [ + 0.7510938991373108 + ], + [ + 0.8610822831727207 + ], + [ + 0.8417508417508417 + ], + [ + 0.8698065557551617 + ], + [ + 0.9372803249238462 + ], + [ + 0.9790245861131704 + ], + [ + 0.9300633742947678 + ], + [ + 0.8054841390869845 + ], + [ + 0.7589199371000429 + ], + [ + 0.896639903044993 + ], + [ + 0.8974694288349275 + ], + [ + 0.9926781739019452 + ], + [ + 0.8458809671812189 + ], + [ + 0.7712684989429177 + ], + [ + 0.7976314145122237 + ], + [ + 0.9416437009068946 + ], + [ + 0.9947856385396152 + ], + [ + 0.7862727272727271 + ], + [ + 0.8586700336700335 + ], + [ + 0.9303687863484544 + ], + [ + 0.8675319709415152 + ], + [ + 0.7920446151287672 + ], + [ + 0.8694866227116197 + ], + [ + 0.8586700336700335 + ], + [ + 0.7834335706711103 + ], + [ + 0.7921764122864366 + ], + [ + 0.934334074623178 + ], + [ + 0.8619283887468031 + ], + [ + 0.7676281237741422 + ], + [ + 0.7631048593350384 + ], + [ + 0.9925507389082384 + ], + [ + 0.978469168274726 + ], + [ + 0.7500718937727315 + ], + [ + 0.8846977863333716 + ], + [ + 0.9378841050418828 + ], + [ + 0.8684059865492091 + ], + [ + 0.8950764254021453 + ], + [ + 0.7740137221269299 + ], + [ + 0.8084175084175085 + ], + [ + 0.8843935880633129 + ], + [ + 0.7975398606698341 + ], + [ + 0.8485069801940157 + ], + [ + 0.7694545454545454 + ], + [ + 0.9679847507357018 + ], + [ + 0.7697689156812739 + ], + [ + 0.7685979300090726 + ], + [ + 0.9457912457912456 + ], + [ + 0.7920033670033668 + ], + [ + 0.81753438081967 + ], + [ + 0.9637205387205386 + ], + [ + 0.8196988466882366 + ], + [ + 0.8876132688068014 + ], + [ + 0.9992667277726852 + ], + [ + 0.813403640566796 + ], + [ + 0.924902134017138 + ], + [ + 0.8505352830088105 + ], + [ + 0.7966210086663266 + ], + [ + 0.8107701860758095 + ], + [ + 0.7920033670033668 + ], + [ + 0.8396249227545072 + ], + [ + 0.7665777912437509 + ], + [ + 0.9309395848776872 + ], + [ + 0.8562069694591002 + ], + [ + 0.8351865579441562 + ], + [ + 0.7614932582627626 + ], + [ + 0.9217240750865684 + ], + [ + 0.9927523497097036 + ], + [ + 0.9824776408025137 + ], + [ + 0.9261759464210148 + ], + [ + 0.8795946591645603 + ], + [ + 0.9517275376077332 + ], + [ + 0.8343766589132309 + ], + [ + 0.9378841050418828 + ], + [ + 0.939845912034176 + ], + [ + 0.8426835486603141 + ], + [ + 0.8084175084175085 + ], + [ + 0.825 + ], + [ + 0.9279912144543816 + ], + [ + 0.9380615545835612 + ], + [ + 0.954821445486407 + ], + [ + 0.8054841390869845 + ], + [ + 0.7644397158986019 + ], + [ + 0.7992420095977141 + ], + [ + 0.9046488352723072 + ], + [ + 0.8607131176664159 + ], + [ + 0.9425530200949087 + ], + [ + 0.9831998467809452 + ], + [ + 0.911913216712972 + ], + [ + 0.8106537530266346 + ], + [ + 0.8669221312020842 + ], + [ + 0.9668646925956867 + ], + [ + 0.9859927106498643 + ], + [ + 0.8221148524429848 + ], + [ + 0.8287744007907092 + ], + [ + 0.82603603526253 + ], + [ + 0.8081220122922833 + ], + [ + 0.9241691376328144 + ], + [ + 0.8905062719442627 + ], + [ + 0.9072244170820468 + ], + [ + 0.9697143291871126 + ], + [ + 0.9165806743803824 + ], + [ + 0.9299779576625525 + ], + [ + 0.8626009468114731 + ], + [ + 0.9129479515242416 + ], + [ + 0.9489917104460288 + ], + [ + 0.857590973901184 + ], + [ + 0.7832356477938764 + ], + [ + 0.8727427378014051 + ], + [ + 0.7882094994286454 + ], + [ + 0.895848674816511 + ], + [ + 0.9755497899678774 + ], + [ + 0.8250670301619656 + ], + [ + 0.7636588119091294 + ], + [ + 0.8344665413033981 + ], + [ + 0.9956140350877192 + ], + [ + 0.7763975155279506 + ], + [ + 0.9842098239836105 + ], + [ + 0.8099989097144443 + ], + [ + 0.8954915979223954 + ], + [ + 0.9774655289026236 + ], + [ + 0.8046862811072518 + ], + [ + 0.8922196480686242 + ], + [ + 0.8757413004727584 + ], + [ + 0.875097886791886 + ], + [ + 0.9781962076503552 + ], + [ + 0.9571952337305224 + ], + [ + 0.8651037425957864 + ], + [ + 0.9276048900878147 + ], + [ + 0.8334407352378117 + ], + [ + 0.7931151679937852 + ], + [ + 0.8060125046665569 + ], + [ + 0.9001590894975678 + ], + [ + 0.8984134418359582 + ], + [ + 0.9307180976298852 + ], + [ + 0.8949088289552438 + ], + [ + 0.9140478958381776 + ], + [ + 0.9195604324464297 + ], + [ + 0.8595611909902062 + ], + [ + 0.8168393183171508 + ], + [ + 0.826467375579422 + ], + [ + 0.94513113161729 + ], + [ + 0.9542466061552302 + ], + [ + 0.8949088289552438 + ], + [ + 0.9053910284366296 + ], + [ + 0.817437533227007 + ], + [ + 0.7978783990223038 + ], + [ + 0.7521903939726886 + ], + [ + 0.754943158980426 + ], + [ + 0.7928605555934748 + ], + [ + 0.8989607068123694 + ], + [ + 0.7975892455476461 + ], + [ + 0.7725199492096488 + ], + [ + 0.773030766193022 + ], + [ + 0.9767351231527428 + ], + [ + 0.9424631082284728 + ], + [ + 0.866898864682116 + ], + [ + 0.7899138991389913 + ], + [ + 0.9376349250962784 + ], + [ + 0.9303020409693342 + ], + [ + 0.8287563928270861 + ], + [ + 0.8603115680426934 + ], + [ + 0.8114732228923959 + ], + [ + 0.9669758970781992 + ], + [ + 0.8105976841695943 + ], + [ + 0.7959269589012261 + ], + [ + 0.8302139037433156 + ], + [ + 0.986986590623621 + ], + [ + 0.751078143739283 + ], + [ + 0.7653353783714458 + ], + [ + 0.8172644988912497 + ], + [ + 0.7803817180307603 + ], + [ + 0.8605730020712427 + ], + [ + 0.912175623606646 + ], + [ + 0.9956171156600898 + ], + [ + 0.8729948690203866 + ], + [ + 0.8364452091564932 + ], + [ + 0.8308541973619359 + ], + [ + 0.901193983595923 + ], + [ + 0.8421276190184838 + ], + [ + 0.8119707766428466 + ], + [ + 0.778036674438649 + ], + [ + 0.7873355614633314 + ], + [ + 0.7837805015771132 + ], + [ + 0.8219385637193856 + ], + [ + 0.8521396824062815 + ], + [ + 0.7718977095748232 + ], + [ + 0.8817091503055309 + ], + [ + 0.7708107321002571 + ], + [ + 0.7512636527567177 + ], + [ + 0.8438110321297421 + ], + [ + 0.9832058480308432 + ], + [ + 0.8890631162040309 + ], + [ + 0.8977160492573557 + ], + [ + 0.9859234217934404 + ], + [ + 0.8546502548557862 + ], + [ + 0.8668958338409165 + ], + [ + 0.9890311615492476 + ], + [ + 0.9350943180643897 + ], + [ + 0.9280169976669376 + ], + [ + 0.8210527935710153 + ], + [ + 0.7559911987169416 + ], + [ + 0.7736264668325739 + ], + [ + 0.863925779862748 + ], + [ + 0.824723044297354 + ], + [ + 0.8806041934635603 + ], + [ + 0.8250833206612556 + ], + [ + 0.928723519908324 + ], + [ + 0.8668958338409165 + ], + [ + 0.8881896291715989 + ], + [ + 0.9593583027873251 + ], + [ + 0.9061435934718377 + ], + [ + 0.9211354224331691 + ], + [ + 0.8859445107741636 + ], + [ + 0.9398812902982936 + ], + [ + 0.8047278408758268 + ], + [ + 0.9223744981227123 + ], + [ + 0.9230788696114616 + ], + [ + 0.9536631479971994 + ], + [ + 0.9694396869310692 + ], + [ + 0.8131377716690427 + ], + [ + 0.8237517359346237 + ], + [ + 0.8173907278944466 + ], + [ + 0.8965017504270001 + ], + [ + 0.9219048551109622 + ], + [ + 0.9097417836628494 + ], + [ + 0.8553134080531343 + ], + [ + 0.9989920981077092 + ], + [ + 0.917451425335698 + ], + [ + 0.9683628785480636 + ], + [ + 0.7970900578406114 + ], + [ + 0.8376203239523712 + ], + [ + 0.9801024844208264 + ], + [ + 0.7557162849632163 + ], + [ + 0.8961803319477781 + ], + [ + 0.996336999414424 + ], + [ + 0.9196524296187878 + ], + [ + 0.8854275250970148 + ], + [ + 0.8283188405797101 + ], + [ + 0.8569170829836921 + ], + [ + 0.7593988263019269 + ], + [ + 0.8392807687593222 + ], + [ + 0.9868446526492484 + ], + [ + 0.7732691595705294 + ], + [ + 0.9521895754027829 + ], + [ + 0.9372227566431792 + ], + [ + 0.9200506754154923 + ], + [ + 0.917500751704446 + ], + [ + 0.8740937766410911 + ], + [ + 0.8518450184501843 + ], + [ + 0.7975089687046684 + ], + [ + 0.8722498962224988 + ], + [ + 0.8978908677866823 + ], + [ + 0.9773557492735576 + ], + [ + 0.8912733076127769 + ], + [ + 0.8868080394461477 + ], + [ + 0.8826697225277056 + ], + [ + 0.9463791440512886 + ], + [ + 0.9521895754027829 + ], + [ + 0.8485714285714286 + ], + [ + 0.999122807017544 + ], + [ + 0.9265379339453412 + ], + [ + 0.789227895392279 + ], + [ + 0.8469796766499825 + ], + [ + 0.953644173755992 + ], + [ + 0.9926761940480948 + ], + [ + 0.8153042353997382 + ], + [ + 0.8607621561631246 + ], + [ + 0.9832058480308432 + ], + [ + 0.9570294209353524 + ], + [ + 0.9992668621947256 + ], + [ + 0.8641670664322122 + ], + [ + 0.7757761746311366 + ], + [ + 0.8357747120217831 + ], + [ + 0.866213238722621 + ], + [ + 0.8792285183078618 + ], + [ + 0.7957371772064827 + ], + [ + 0.878036507710379 + ], + [ + 0.9658331436022252 + ], + [ + 0.7622935296404183 + ], + [ + 0.9857187253140862 + ], + [ + 0.8942561574169895 + ], + [ + 0.9622333213753728 + ], + [ + 0.9131318215287682 + ], + [ + 0.8411490111317951 + ], + [ + 0.8916483082566217 + ], + [ + 0.9500441996469742 + ], + [ + 0.8499116091074294 + ], + [ + 0.9308446996969624 + ], + [ + 0.971973367585848 + ], + [ + 0.950603792184588 + ], + [ + 0.8131377716690427 + ], + [ + 0.8886194359553156 + ], + [ + 0.8284169872492293 + ], + [ + 0.8757940351900098 + ], + [ + 0.9023840086111148 + ], + [ + 0.9230788696114616 + ], + [ + 0.7524570024570024 + ], + [ + 0.9981688711071728 + ], + [ + 0.9020646721236415 + ], + [ + 0.9272440944881892 + ], + [ + 0.917451425335698 + ], + [ + 0.952871096782223 + ], + [ + 0.9954192028862328 + ], + [ + 0.8614426005287826 + ], + [ + 0.8553282796247272 + ], + [ + 0.991220090045964 + ], + [ + 0.962952748132584 + ], + [ + 0.9970690618433798 + ], + [ + 0.8655309124484051 + ], + [ + 0.7810606403025839 + ], + [ + 0.7757761746311366 + ], + [ + 0.8580430671412884 + ], + [ + 0.866213238722621 + ], + [ + 0.8806041934635603 + ], + [ + 0.7777808036382947 + ], + [ + 0.8317573749391951 + ], + [ + 0.9716068390573318 + ], + [ + 0.819882410141537 + ], + [ + 0.9848040830545792 + ], + [ + 0.8737365714482546 + ], + [ + 0.962952748132584 + ], + [ + 0.9154671960778832 + ], + [ + 0.9112764606124896 + ], + [ + 0.8916483082566217 + ], + [ + 0.9529052383428788 + ], + [ + 0.8696289027548957 + ], + [ + 0.9188566733401607 + ], + [ + 0.9507590560548307 + ], + [ + 0.9507917513638928 + ], + [ + 0.9853649117096728 + ], + [ + 0.8131377716690427 + ], + [ + 0.8951137084436364 + ], + [ + 0.8371159751352832 + ], + [ + 0.8703128420935895 + ], + [ + 0.9022988912306722 + ], + [ + 0.9400644385653472 + ], + [ + 0.7531344790477525 + ], + [ + 0.9992668621947256 + ], + [ + 0.9020646721236415 + ], + [ + 0.8645269531463561 + ], + [ + 0.9839330712663648 + ], + [ + 0.975224136149363 + ], + [ + 0.9372677626851672 + ], + [ + 1 + ], + [ + 0.9904901783696456 + ], + [ + 0.9875732201051683 + ], + [ + 1 + ], + [ + 0.9919502705663622 + ], + [ + 0.9890311615492476 + ], + [ + 1 + ], + [ + 0.9883020564051679 + ], + [ + 0.9132421335802218 + ], + [ + 0.996336999414424 + ], + [ + 0.9890311615492476 + ], + [ + 0.9883020564051679 + ], + [ + 0.9897605355374068 + ], + [ + 0.991220090045964 + ], + [ + 0.978122813016422 + ], + [ + 0.9511647444887732 + ], + [ + 0.9919502705663622 + ], + [ + 0.9985339932335306 + ], + [ + 0.8938717567128639 + ], + [ + 0.9891891050899508 + ], + [ + 0.9970690618433798 + ], + [ + 0.9897605355374068 + ], + [ + 0.9978013931164152 + ], + [ + 0.9855637890579251 + ], + [ + 0.9586402202505121 + ], + [ + 0.9607952743931896 + ], + [ + 0.9805263157894736 + ], + [ + 0.99268071993084 + ], + [ + 0.9941424251920344 + ], + [ + 0.996336999414424 + ], + [ + 0.9884575916336614 + ], + [ + 0.9719327874122964 + ], + [ + 0.9753656599277568 + ], + [ + 0.9883020564051679 + ], + [ + 0.9919502705663622 + ], + [ + 0.9883020564051679 + ], + [ + 0.9934114381393974 + ], + [ + 0.9992668621947256 + ], + [ + 0.977723489335005 + ], + [ + 0.9995652173913042 + ], + [ + 0.9948736810887512 + ], + [ + 0.9090909090909088 + ], + [ + 0.8174876847290639 + ], + [ + 0.8553636363636363 + ], + [ + 0.8455433455433455 + ], + [ + 0.8397417807252716 + ], + [ + 0.8437332724582007 + ], + [ + 0.832909538499891 + ], + [ + 0.7619786952586509 + ], + [ + 0.8177290491628549 + ], + [ + 0.9175438596491228 + ], + [ + 0.882198952879581 + ], + [ + 0.8767128866853765 + ], + [ + 0.8150509397735729 + ], + [ + 0.9294196742835898 + ], + [ + 0.8917391304347826 + ], + [ + 0.8253968253968254 + ], + [ + 0.8829402079402078 + ], + [ + 0.8107452697678261 + ], + [ + 0.9637205387205386 + ], + [ + 0.852293824358888 + ], + [ + 0.8709558996012198 + ], + [ + 0.7596801346801346 + ], + [ + 0.8181614349775784 + ], + [ + 0.9017543859649124 + ], + [ + 0.7897773279352229 + ], + [ + 0.805168828270855 + ], + [ + 0.9090909090909088 + ], + [ + 0.945216049382716 + ], + [ + 0.8771929824561405 + ], + [ + 0.8174876847290639 + ], + [ + 0.7599743651365856 + ], + [ + 0.8553636363636363 + ], + [ + 0.8455433455433455 + ], + [ + 0.9416562889165628 + ], + [ + 0.8437332724582007 + ], + [ + 0.832909538499891 + ], + [ + 0.8177290491628549 + ], + [ + 0.9175438596491228 + ], + [ + 0.882198952879581 + ], + [ + 0.8767128866853765 + ], + [ + 0.8150509397735729 + ], + [ + 0.9294196742835898 + ], + [ + 0.8917391304347826 + ], + [ + 0.8253968253968254 + ], + [ + 0.8829402079402078 + ], + [ + 0.8107452697678261 + ], + [ + 0.8417508417508417 + ], + [ + 0.852293824358888 + ], + [ + 0.8709558996012198 + ], + [ + 0.7596801346801346 + ], + [ + 0.8181614349775784 + ], + [ + 0.9017543859649124 + ], + [ + 0.7897773279352229 + ], + [ + 0.805168828270855 + ], + [ + 0.9090909090909088 + ], + [ + 0.9789848244395952 + ], + [ + 0.8771929824561405 + ], + [ + 0.8174876847290639 + ], + [ + 0.8813770455902434 + ], + [ + 0.8553636363636363 + ], + [ + 0.8455433455433455 + ], + [ + 0.8325561291955809 + ], + [ + 0.8437332724582007 + ], + [ + 0.832909538499891 + ], + [ + 0.8177290491628549 + ], + [ + 0.882198952879581 + ], + [ + 0.8150509397735729 + ], + [ + 0.9294196742835898 + ], + [ + 0.8917391304347826 + ], + [ + 0.8253968253968254 + ], + [ + 0.7862727272727271 + ], + [ + 0.8107452697678261 + ], + [ + 0.9825055596738328 + ], + [ + 0.852293824358888 + ], + [ + 0.8709558996012198 + ], + [ + 0.826664274308378 + ], + [ + 0.8181614349775784 + ], + [ + 0.9017543859649124 + ], + [ + 0.7897773279352229 + ], + [ + 0.805168828270855 + ], + [ + 0.9792614678275988 + ], + [ + 0.8553134080531343 + ], + [ + 0.8343739357475309 + ], + [ + 0.9649169511660014 + ], + [ + 0.9815789473684212 + ], + [ + 0.775995920023485 + ], + [ + 0.8490459410817468 + ], + [ + 0.999122807017544 + ], + [ + 0.8887919536466066 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.79241896667796 + ], + [ + 0.8672820048414341 + ], + [ + 0.9416562889165628 + ], + [ + 0.7922752675949607 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8515555890726042 + ], + [ + 0.84746622922539 + ], + [ + 0.8469364035600904 + ], + [ + 0.9088064577345945 + ], + [ + 0.9830807073527456 + ], + [ + 0.9729066716260472 + ], + [ + 0.9309198460265768 + ], + [ + 0.993758325008325 + ], + [ + 0.9220836669819068 + ], + [ + 0.9328333806952732 + ], + [ + 0.9120932616135702 + ], + [ + 0.8672722972717296 + ], + [ + 0.9787330446229278 + ], + [ + 0.9956171156600898 + ], + [ + 0.9044025274049858 + ], + [ + 0.9162907640884717 + ], + [ + 0.9886242163794032 + ], + [ + 0.9856590419138828 + ], + [ + 0.9735969760860068 + ], + [ + 0.9237640299437498 + ], + [ + 0.8150558110147776 + ], + [ + 0.9001503179694077 + ], + [ + 0.9403303455027593 + ], + [ + 0.999122807017544 + ], + [ + 0.9090741230371568 + ], + [ + 0.999122807017544 + ], + [ + 0.903135734615762 + ], + [ + 0.8282546041121969 + ], + [ + 0.9792614678275988 + ], + [ + 0.8553134080531343 + ], + [ + 0.8232860332235971 + ], + [ + 0.909065387196842 + ], + [ + 0.978073311070348 + ], + [ + 0.775995920023485 + ], + [ + 0.8490459410817468 + ], + [ + 0.999122807017544 + ], + [ + 0.8870930627862177 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.79241896667796 + ], + [ + 0.8672820048414341 + ], + [ + 0.9416562889165628 + ], + [ + 0.7922752675949607 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.7737464548987709 + ], + [ + 0.84746622922539 + ], + [ + 0.8291492133323973 + ], + [ + 0.9088064577345945 + ], + [ + 0.9761788895853514 + ], + [ + 0.9770862304997938 + ], + [ + 0.9329580322176916 + ], + [ + 0.993758325008325 + ], + [ + 0.9188951371295636 + ], + [ + 0.9328333806952732 + ], + [ + 0.8980181937554507 + ], + [ + 0.8677050513455755 + ], + [ + 0.9752792033119024 + ], + [ + 0.9882730260033812 + ], + [ + 0.905289786165362 + ], + [ + 0.9143112638406732 + ], + [ + 0.9886242163794032 + ], + [ + 0.9544594777956544 + ], + [ + 0.9581772940528424 + ], + [ + 0.9143045157420016 + ], + [ + 0.8252050839377624 + ], + [ + 0.9001503179694077 + ], + [ + 0.9403303455027593 + ], + [ + 0.999122807017544 + ], + [ + 0.9292464661560496 + ], + [ + 0.999122807017544 + ], + [ + 0.8566176867322529 + ], + [ + 0.8374157216227878 + ], + [ + 0.9280303030303032 + ], + [ + 0.986111279729024 + ], + [ + 0.9950777781016508 + ], + [ + 0.7644397158986019 + ], + [ + 0.8788591215600511 + ], + [ + 0.995055254321861 + ], + [ + 0.8218760444455504 + ], + [ + 0.8963051106025932 + ], + [ + 0.9855308977062668 + ], + [ + 0.8161330049261083 + ], + [ + 0.919010674275554 + ], + [ + 0.8602150725639578 + ], + [ + 0.9437855111487105 + ], + [ + 0.982329825041006 + ], + [ + 0.8843548391463373 + ], + [ + 0.8689327225675706 + ], + [ + 0.931003010693105 + ], + [ + 0.9349500075746098 + ], + [ + 0.8343765747325528 + ], + [ + 0.8587642661603542 + ], + [ + 0.8586700336700335 + ], + [ + 0.9617123795404005 + ], + [ + 0.9664559126905398 + ], + [ + 0.9369276682149368 + ], + [ + 0.9421777653794547 + ], + [ + 0.8002254756609835 + ], + [ + 0.91015350877193 + ], + [ + 0.8195948305972756 + ], + [ + 0.8049385749385749 + ], + [ + 0.8079714438079046 + ], + [ + 0.9248788062414784 + ], + [ + 0.9466765601812077 + ], + [ + 0.9943237305426308 + ], + [ + 0.8922259540680743 + ], + [ + 0.7615894748339839 + ], + [ + 0.92882506393551 + ], + [ + 0.8553134080531343 + ], + [ + 0.8492357350911255 + ], + [ + 0.9943501037415146 + ], + [ + 0.9908190857034046 + ], + [ + 0.7714797416324134 + ], + [ + 0.8958436239049176 + ], + [ + 1 + ], + [ + 0.8217563751752737 + ], + [ + 0.8995898027497777 + ], + [ + 0.9692982456140352 + ], + [ + 0.9108481442025624 + ], + [ + 0.7872481572481572 + ], + [ + 0.7785693212549879 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8833898132089024 + ], + [ + 0.8276770122994085 + ], + [ + 0.895416975651959 + ], + [ + 0.992671182389769 + ], + [ + 0.9514741813067672 + ], + [ + 0.8630706569122703 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8398017274912394 + ], + [ + 0.9988878509623264 + ], + [ + 0.937103645050706 + ], + [ + 0.9851370084561714 + ], + [ + 0.8052224642752426 + ], + [ + 0.9408748628296816 + ], + [ + 0.950672972897766 + ], + [ + 0.9505705348293196 + ], + [ + 1 + ], + [ + 0.7647361516158825 + ], + [ + 0.907644799841382 + ], + [ + 0.8492357350911255 + ], + [ + 0.9514212739063944 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8950014677832712 + ], + [ + 0.9943546343400722 + ], + [ + 0.8210917926103164 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8091752787787085 + ], + [ + 0.8045413788925241 + ], + [ + 0.92385752642948 + ], + [ + 0.7939937969249388 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8564021794854101 + ], + [ + 0.8929190984699815 + ], + [ + 0.7960647061252278 + ], + [ + 0.9048525852298742 + ], + [ + 0.992671182389769 + ], + [ + 0.987968431853366 + ], + [ + 0.9531702386026508 + ], + [ + 0.8651058220157922 + ], + [ + 0.957204861709126 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.8819809439955775 + ], + [ + 0.9883020564051679 + ], + [ + 0.937103645050706 + ], + [ + 0.9407755311560884 + ], + [ + 0.9851370084561714 + ], + [ + 0.8030210815765354 + ], + [ + 0.94362258995985 + ], + [ + 0.7901596681791947 + ], + [ + 0.8868080394461477 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9443944345284628 + ], + [ + 0.9992668621947256 + ], + [ + 0.9385224385224383 + ], + [ + 0.7647361516158825 + ], + [ + 0.907644799841382 + ], + [ + 0.8492357350911255 + ], + [ + 0.9514212739063944 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8950014677832712 + ], + [ + 0.9943546343400722 + ], + [ + 0.8171099429462456 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8091752787787085 + ], + [ + 0.8045413788925241 + ], + [ + 0.92385752642948 + ], + [ + 0.7939937969249388 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8532214540129998 + ], + [ + 0.8929190984699815 + ], + [ + 0.7960647061252278 + ], + [ + 0.9048525852298742 + ], + [ + 0.992671182389769 + ], + [ + 0.987968431853366 + ], + [ + 0.9531702386026508 + ], + [ + 0.8651058220157922 + ], + [ + 0.957204861709126 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.8744221238514268 + ], + [ + 0.9883020564051679 + ], + [ + 0.937103645050706 + ], + [ + 0.9407755311560884 + ], + [ + 0.9851370084561714 + ], + [ + 0.8030210815765354 + ], + [ + 0.94362258995985 + ], + [ + 0.7901596681791947 + ], + [ + 0.8868080394461477 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9443944345284628 + ], + [ + 0.9992668621947256 + ], + [ + 0.9385224385224383 + ], + [ + 0.7647361516158825 + ], + [ + 0.7823572752988579 + ], + [ + 0.9716068390573318 + ], + [ + 0.9615141634622412 + ], + [ + 0.9956019844379308 + ], + [ + 0.9939526010712452 + ], + [ + 0.9868446526492484 + ], + [ + 0.9788481543433862 + ], + [ + 1 + ], + [ + 0.9280169976669376 + ], + [ + 0.975224136149363 + ], + [ + 0.9970690618433798 + ], + [ + 0.9883020564051679 + ], + [ + 0.9301373709233364 + ], + [ + 0.9795737645144298 + ], + [ + 0.9824788936394012 + ], + [ + 0.9883020564051679 + ], + [ + 0.9414868925909092 + ], + [ + 0.9188566733401607 + ], + [ + 0.9978013931164152 + ], + [ + 0.9692438828447324 + ], + [ + 0.9883020564051679 + ], + [ + 0.9934114381393974 + ], + [ + 0.9486152933634998 + ], + [ + 0.9721523399735842 + ], + [ + 0.9934114381393974 + ], + [ + 0.9708841861711646 + ], + [ + 0.9500441996469742 + ], + [ + 0.9174366159265968 + ], + [ + 0.9329682990823176 + ], + [ + 0.9716068390573318 + ], + [ + 0.8840480861242009 + ], + [ + 0.9948736810887512 + ], + [ + 0.9579224065577792 + ], + [ + 0.9679962630672924 + ], + [ + 0.9978013931164152 + ], + [ + 0.8764803941254208 + ], + [ + 0.9414868925909092 + ], + [ + 0.9181539149158895 + ], + [ + 0.9429104219927898 + ], + [ + 0.9919502705663622 + ], + [ + 0.9651126414686952 + ], + [ + 1 + ], + [ + 0.9962804570068788 + ], + [ + 1 + ], + [ + 0.9513949869239996 + ], + [ + 0.917451425335698 + ], + [ + 0.8893524283935244 + ], + [ + 0.8711567490387903 + ], + [ + 0.8402268612783098 + ], + [ + 0.9991101224022378 + ], + [ + 0.875683873894971 + ], + [ + 0.893318343627618 + ], + [ + 0.9998166819431716 + ], + [ + 0.8181684978110831 + ], + [ + 0.8501131405958162 + ], + [ + 0.9791710812316362 + ], + [ + 0.9416562889165628 + ], + [ + 0.7704074975067344 + ], + [ + 0.8205779056365766 + ], + [ + 0.8524355521406097 + ], + [ + 0.8149410602532909 + ], + [ + 0.9678129927260984 + ], + [ + 0.992671182389769 + ], + [ + 0.9904289157282716 + ], + [ + 0.9512909738881008 + ], + [ + 0.9430833061919088 + ], + [ + 0.9498925099667804 + ], + [ + 0.9491784964871592 + ], + [ + 0.9608990650462856 + ], + [ + 0.9498609989321576 + ], + [ + 0.7794361831100473 + ], + [ + 0.9505758519634429 + ], + [ + 0.9773557492735576 + ], + [ + 0.8637008456171156 + ], + [ + 0.9301795973691914 + ], + [ + 0.8828315614940658 + ], + [ + 0.959175062021937 + ], + [ + 0.9531601641545472 + ], + [ + 0.999122807017544 + ], + [ + 0.9998166819431716 + ], + [ + 0.7587536069598175 + ], + [ + 0.7522123063336182 + ], + [ + 0.8258303273081601 + ], + [ + 0.9356248965935622 + ], + [ + 0.9820100634702482 + ], + [ + 0.831081385436793 + ], + [ + 0.8534540516685338 + ], + [ + 0.9818536963567754 + ], + [ + 0.8486878358300123 + ], + [ + 0.9129853629164147 + ], + [ + 0.8998911634924976 + ], + [ + 0.7793718426037994 + ], + [ + 0.932398585032895 + ], + [ + 0.800012400217004 + ], + [ + 0.7984383476710843 + ], + [ + 0.907326978222119 + ], + [ + 0.838169467510867 + ], + [ + 0.7913646289079624 + ], + [ + 0.9278150139590884 + ], + [ + 0.9506223327256856 + ], + [ + 0.9364530503181744 + ], + [ + 0.9417014747671419 + ], + [ + 0.7800217784035494 + ], + [ + 0.9258691777106102 + ], + [ + 0.9376349250962784 + ], + [ + 0.9412635914006205 + ], + [ + 0.8430977292102612 + ], + [ + 0.9461654371370272 + ], + [ + 0.9391302151973808 + ], + [ + 0.968708052390917 + ], + [ + 0.7829559806346367 + ], + [ + 0.8486878358300123 + ], + [ + 0.92049050384555 + ], + [ + 0.9877189123128628 + ], + [ + 0.9672169872900396 + ], + [ + 0.8207867897037397 + ], + [ + 0.8168393183171508 + ], + [ + 0.826467375579422 + ], + [ + 0.94513113161729 + ], + [ + 0.9585637037072424 + ], + [ + 0.8949088289552438 + ], + [ + 0.9053910284366296 + ], + [ + 0.817437533227007 + ], + [ + 0.7978783990223038 + ], + [ + 0.7521903939726886 + ], + [ + 0.754943158980426 + ], + [ + 0.7928605555934748 + ], + [ + 0.8989607068123694 + ], + [ + 0.7975892455476461 + ], + [ + 0.7725199492096488 + ], + [ + 0.7662703504995123 + ], + [ + 0.9767351231527428 + ], + [ + 0.9424631082284728 + ], + [ + 0.866898864682116 + ], + [ + 0.7783625730994154 + ], + [ + 0.9376349250962784 + ], + [ + 0.9303020409693342 + ], + [ + 0.8287563928270861 + ], + [ + 0.8603115680426934 + ], + [ + 0.8114732228923959 + ], + [ + 0.9669758970781992 + ], + [ + 0.8105976841695943 + ], + [ + 0.7959269589012261 + ], + [ + 0.8302139037433156 + ], + [ + 0.986986590623621 + ], + [ + 0.751078143739283 + ], + [ + 0.9104552048233484 + ], + [ + 0.9985339932335306 + ], + [ + 0.9919502705663622 + ], + [ + 0.9890174067689452 + ], + [ + 1 + ], + [ + 0.9985339932335306 + ], + [ + 0.9919502705663622 + ], + [ + 1 + ], + [ + 0.9978013931164152 + ], + [ + 0.9978013931164152 + ], + [ + 1 + ], + [ + 0.996336999414424 + ], + [ + 0.9978013931164152 + ], + [ + 0.9970690618433798 + ], + [ + 0.9985339932335306 + ], + [ + 0.996336999414424 + ], + [ + 0.9883020564051679 + ], + [ + 1 + ], + [ + 0.9904289157282716 + ], + [ + 0.9992668621947256 + ], + [ + 0.9992668621947256 + ], + [ + 0.996336999414424 + ], + [ + 0.9928507310737632 + ], + [ + 1 + ], + [ + 0.8271094654395285 + ], + [ + 0.996336999414424 + ], + [ + 0.9978013931164152 + ], + [ + 0.9956044009241408 + ], + [ + 0.9985339932335306 + ], + [ + 0.9904901783696456 + ], + [ + 0.9978013931164152 + ], + [ + 0.9970690618433798 + ], + [ + 0.996336999414424 + ], + [ + 0.996336999414424 + ], + [ + 0.9970690618433798 + ], + [ + 0.995605205829548 + ], + [ + 1 + ], + [ + 0.9985339932335306 + ], + [ + 0.9853883242696474 + ], + [ + 0.995605205829548 + ], + [ + 0.9992668621947256 + ], + [ + 1 + ], + [ + 0.9992555369697762 + ], + [ + 1 + ], + [ + 0.9882827814745488 + ], + [ + 0.9992668621947256 + ], + [ + 0.9859927106498643 + ], + [ + 0.9550538402276436 + ], + [ + 0.9795737645144298 + ], + [ + 0.9350474891783676 + ], + [ + 0.9946751263076096 + ], + [ + 0.99268071993084 + ], + [ + 0.9529052383428788 + ], + [ + 1 + ], + [ + 0.9832058480308432 + ], + [ + 0.928723519908324 + ], + [ + 0.999122807017544 + ], + [ + 0.9701618021290772 + ], + [ + 0.9181539149158895 + ], + [ + 0.9414868925909092 + ], + [ + 0.916749204599586 + ], + [ + 0.94362258995985 + ], + [ + 0.8771670219049115 + ], + [ + 0.9020646721236415 + ], + [ + 0.9479012434878824 + ], + [ + 0.7967703326479759 + ], + [ + 0.9802996435295532 + ], + [ + 0.9917846709962562 + ], + [ + 0.8938717567128639 + ], + [ + 0.9862646747457392 + ], + [ + 0.9839330712663648 + ], + [ + 0.9600766541682176 + ], + [ + 0.9759484021000084 + ], + [ + 0.9473421475334106 + ], + [ + 0.8472097261066925 + ], + [ + 0.9414868925909092 + ], + [ + 0.9650851977230176 + ], + [ + 0.999122807017544 + ], + [ + 0.9550538402276436 + ], + [ + 0.9441436310000064 + ], + [ + 0.9884575916336614 + ], + [ + 0.94958838214302 + ], + [ + 0.9436364293412104 + ], + [ + 0.9802996435295532 + ], + [ + 0.9817522080920388 + ], + [ + 0.9766729368947332 + ], + [ + 0.975224136149363 + ], + [ + 0.999122807017544 + ], + [ + 0.9763146820695155 + ], + [ + 0.999122807017544 + ], + [ + 0.9716068390573318 + ], + [ + 0.8353033499302194 + ], + [ + 0.9286573911418808 + ], + [ + 0.989388886675146 + ], + [ + 0.811997387314498 + ], + [ + 0.8668958338409165 + ], + [ + 0.9719327874122964 + ], + [ + 0.9416700490012928 + ], + [ + 0.9868446526492484 + ], + [ + 0.8626461571750742 + ], + [ + 0.7693359990306556 + ], + [ + 0.8443573586609718 + ], + [ + 0.8171099429462456 + ], + [ + 0.8861176478495414 + ], + [ + 0.842673863199572 + ], + [ + 0.928723519908324 + ], + [ + 0.758875943584108 + ], + [ + 0.887167247405612 + ], + [ + 0.8928699826089762 + ], + [ + 0.8759576634165684 + ], + [ + 0.9564875857045522 + ], + [ + 0.9061435934718377 + ], + [ + 0.8423092165265303 + ], + [ + 0.8930336617991886 + ], + [ + 0.9400644385653472 + ], + [ + 0.9237835099442904 + ], + [ + 0.9466976131633718 + ], + [ + 0.950603792184588 + ], + [ + 0.8131377716690427 + ], + [ + 0.8598012719162864 + ], + [ + 0.787554569047141 + ], + [ + 0.884737671188568 + ], + [ + 0.9070294784580498 + ], + [ + 0.9069463429223856 + ], + [ + 0.7524570024570024 + ], + [ + 0.9981688711071728 + ], + [ + 0.8971961746848013 + ], + [ + 0.8404738376904276 + ], + [ + 0.8288697152121746 + ], + [ + 0.8829742996323185 + ], + [ + 0.9945048317633112 + ], + [ + 0.885610204525967 + ], + [ + 0.9329682990823176 + ], + [ + 0.9407755311560884 + ], + [ + 0.9274938109996211 + ], + [ + 0.955770578544058 + ], + [ + 0.8609445180643548 + ], + [ + 0.8868080394461477 + ], + [ + 0.8826697225277056 + ], + [ + 0.860081980641546 + ], + [ + 0.8494179248503486 + ], + [ + 0.8806041934635603 + ], + [ + 0.7745935959659945 + ], + [ + 0.804564602812277 + ], + [ + 0.8457610658751216 + ], + [ + 0.9141259733731866 + ], + [ + 0.9083435256044582 + ], + [ + 0.9249744348616508 + ], + [ + 0.878036507710379 + ], + [ + 0.8567036918158099 + ], + [ + 0.9407755311560884 + ], + [ + 0.912541525908588 + ], + [ + 0.8711093063931175 + ], + [ + 0.8951137084436364 + ], + [ + 0.9041552036871964 + ], + [ + 0.953621170127054 + ], + [ + 0.9464739502688859 + ], + [ + 0.9727686004162333 + ], + [ + 0.9824788936394012 + ], + [ + 0.895416975651959 + ], + [ + 0.8388354220573428 + ], + [ + 0.8451861367189766 + ], + [ + 0.9020646721236415 + ], + [ + 0.8838860538503512 + ], + [ + 0.9586402202505121 + ], + [ + 0.99782684342909 + ], + [ + 0.7818532483566868 + ], + [ + 0.8978908677866823 + ], + [ + 0.9346434038598216 + ], + [ + 0.9486152933634998 + ], + [ + 0.975224136149363 + ], + [ + 0.927916573470583 + ], + [ + 0.9974294410273912 + ], + [ + 0.9586402202505121 + ], + [ + 0.9507590560548307 + ], + [ + 0.9978013931164152 + ], + [ + 0.954337370755309 + ], + [ + 0.911841187081034 + ], + [ + 0.975224136149363 + ], + [ + 0.9365130082728363 + ], + [ + 0.8902640300903737 + ], + [ + 0.9500441996469742 + ], + [ + 0.7528067405931878 + ], + [ + 0.9139430100959351 + ], + [ + 0.9486152933634998 + ], + [ + 0.8723662731741496 + ], + [ + 0.8503425879277244 + ], + [ + 0.9643924081792452 + ], + [ + 0.9716068390573318 + ], + [ + 0.9322331995088968 + ], + [ + 0.9730529513619054 + ], + [ + 0.8909560347514579 + ], + [ + 0.9730529513619054 + ], + [ + 0.9225158405279774 + ], + [ + 0.8806041934635603 + ], + [ + 0.9223744981227123 + ], + [ + 0.928723519908324 + ], + [ + 0.8985858297326429 + ], + [ + 0.8868080394461477 + ], + [ + 0.934385376226286 + ], + [ + 0.865978265648834 + ], + [ + 0.9669995060071396 + ], + [ + 0.9215535536561092 + ], + [ + 0.8916483082566217 + ], + [ + 0.8806041934635603 + ], + [ + 0.8614426005287826 + ], + [ + 0.9500441996469742 + ], + [ + 0.9615141634622412 + ], + [ + 0.9836858501848198 + ], + [ + 0.9992668621947256 + ], + [ + 0.8840480861242009 + ], + [ + 0.8659737769303842 + ], + [ + 0.8881896291715989 + ], + [ + 0.9658331436022252 + ], + [ + 0.9117779886590568 + ], + [ + 0.9891164188197914 + ], + [ + 0.9393536148186856 + ], + [ + 0.8999765601568034 + ], + [ + 0.9992668621947256 + ], + [ + 0.8902640300903737 + ], + [ + 0.8937267418365915 + ], + [ + 0.986116354037408 + ], + [ + 0.9745001390427974 + ], + [ + 0.8682618306097468 + ], + [ + 0.917451425335698 + ], + [ + 0.9237835099442904 + ], + [ + 0.9372227566431792 + ], + [ + 0.8605814190983236 + ], + [ + 0.9658331436022252 + ], + [ + 0.99268071993084 + ], + [ + 0.9331273751154144 + ], + [ + 0.9874932258547676 + ], + [ + 0.9817522080920388 + ], + [ + 0.9322601637764528 + ], + [ + 0.9730529513619054 + ], + [ + 0.7966912350949062 + ], + [ + 0.9636724437338746 + ], + [ + 0.9146441554557286 + ], + [ + 0.9665539145798344 + ], + [ + 0.912541525908588 + ], + [ + 0.8923408506058652 + ], + [ + 0.9403639696255566 + ], + [ + 0.9824501714706848 + ], + [ + 0.8958075950132784 + ], + [ + 0.7947875585169598 + ], + [ + 0.8888808273004442 + ], + [ + 0.9817522080920388 + ], + [ + 0.9579224065577792 + ], + [ + 0.9643924081792452 + ], + [ + 0.9978013931164152 + ], + [ + 0.909042520211614 + ], + [ + 0.8839798882716039 + ], + [ + 0.9322601637764528 + ], + [ + 0.977397740533538 + ], + [ + 0.9407327353741834 + ], + [ + 0.9974294410273912 + ], + [ + 0.957204861709126 + ], + [ + 0.9636724437338746 + ], + [ + 1 + ], + [ + 0.9507590560548307 + ], + [ + 0.9244884191211992 + ], + [ + 0.9737764107803116 + ], + [ + 0.9294303109937904 + ], + [ + 0.866213238722621 + ], + [ + 0.889572294273369 + ], + [ + 0.9365130082728363 + ], + [ + 0.9386430599161039 + ], + [ + 0.8614426005287826 + ], + [ + 0.8592127013521056 + ], + [ + 0.9586402202505121 + ], + [ + 0.984660563345966 + ], + [ + 0.942257835125676 + ], + [ + 0.977397740533538 + ], + [ + 0.8944200907180742 + ], + [ + 0.9723297607875788 + ], + [ + 0.9466282499343924 + ], + [ + 0.879916221463671 + ], + [ + 0.917451425335698 + ], + [ + 0.9358035287465732 + ], + [ + 0.9365130082728363 + ], + [ + 0.8785410839961321 + ], + [ + 0.8800026263331926 + ], + [ + 0.9180818572622022 + ], + [ + 0.9300900041631704 + ], + [ + 0.9111411170975592 + ], + [ + 0.8958075950132784 + ], + [ + 0.8751079450986783 + ], + [ + 0.9687178405771408 + ], + [ + 0.9643924081792452 + ], + [ + 0.9741087373430196 + ], + [ + 0.9965539092032524 + ], + [ + 0.8485601299189015 + ], + [ + 0.9039239850807016 + ], + [ + 0.991220090045964 + ], + [ + 0.99268071993084 + ], + [ + 0.9411779284976856 + ], + [ + 1 + ], + [ + 0.9941424251920344 + ], + [ + 0.9839330712663648 + ], + [ + 1 + ], + [ + 0.9948736810887512 + ], + [ + 0.9853883242696474 + ], + [ + 1 + ], + [ + 0.9904901783696456 + ], + [ + 0.9062481548474688 + ], + [ + 0.9948736810887512 + ], + [ + 0.9766729368947332 + ], + [ + 0.99268071993084 + ], + [ + 0.9883020564051679 + ], + [ + 0.996336999414424 + ], + [ + 0.9832058480308432 + ], + [ + 0.9721523399735842 + ], + [ + 0.995605205829548 + ], + [ + 0.995605205829548 + ], + [ + 0.8966477542865559 + ], + [ + 0.989920889126398 + ], + [ + 0.9941424251920344 + ], + [ + 0.9853883242696474 + ], + [ + 0.99268071993084 + ], + [ + 0.989208622446052 + ], + [ + 0.9737764107803116 + ], + [ + 0.9788481543433862 + ], + [ + 0.9508557261229018 + ], + [ + 0.9883020564051679 + ], + [ + 0.9868446526492484 + ], + [ + 0.9948736810887512 + ], + [ + 0.9789725394962472 + ], + [ + 0.9778375229520267 + ], + [ + 0.9630457249445452 + ], + [ + 0.9897605355374068 + ], + [ + 0.9759484021000084 + ], + [ + 0.9745001390427974 + ], + [ + 0.9839330712663648 + ], + [ + 1 + ], + [ + 0.9910847398800986 + ], + [ + 1 + ], + [ + 0.9824788936394012 + ], + [ + 0.8935362109939026 + ], + [ + 0.8492357350911255 + ], + [ + 0.7799775750856683 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8924773755936107 + ], + [ + 0.9921175854473762 + ], + [ + 0.8244173938759 + ], + [ + 0.8995898027497777 + ], + [ + 0.997783274463504 + ], + [ + 0.8019358454012121 + ], + [ + 0.8034463924540262 + ], + [ + 0.9208092958092956 + ], + [ + 0.7862626472757531 + ], + [ + 0.7901234941467935 + ], + [ + 0.9234208215886514 + ], + [ + 0.8754121720256093 + ], + [ + 0.8661215058187304 + ], + [ + 0.992671182389769 + ], + [ + 0.9798792330613568 + ], + [ + 0.9514741813067672 + ], + [ + 0.9550538402276436 + ], + [ + 0.9429977116704804 + ], + [ + 0.9378841050418828 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.9438416558070334 + ], + [ + 0.9894860390412652 + ], + [ + 0.9369022368540908 + ], + [ + 0.9407755311560884 + ], + [ + 0.937924041385235 + ], + [ + 0.9677933860111212 + ], + [ + 0.9970690618433798 + ], + [ + 0.9443944345284628 + ], + [ + 0.9965539092032524 + ], + [ + 0.7647361516158825 + ], + [ + 0.8833587699039136 + ], + [ + 0.8455377025736512 + ], + [ + 0.9378994747569932 + ], + [ + 1 + ], + [ + 0.8854275250970148 + ], + [ + 0.9372227566431792 + ], + [ + 0.9978013931164152 + ], + [ + 0.8621233137385207 + ], + [ + 0.9034580909885984 + ], + [ + 0.9687178405771408 + ], + [ + 0.9788481543433862 + ], + [ + 0.8364452091564932 + ], + [ + 0.8257495162906913 + ], + [ + 0.9450477324262084 + ], + [ + 0.7908116150724073 + ], + [ + 0.7922257273375911 + ], + [ + 0.8186576980160944 + ], + [ + 0.9593583027873251 + ], + [ + 0.9941424251920344 + ], + [ + 0.9848040830545792 + ], + [ + 0.9795737645144298 + ], + [ + 0.9181539149158895 + ], + [ + 0.9579224065577792 + ], + [ + 0.8038532129267693 + ], + [ + 0.7895079901300617 + ], + [ + 0.9393536148186856 + ], + [ + 0.9329682990823176 + ], + [ + 0.9386430599161039 + ], + [ + 0.9097417836628494 + ], + [ + 0.934365235861341 + ], + [ + 0.8682618306097468 + ], + [ + 0.8062236581276447 + ], + [ + 0.7999671002057498 + ], + [ + 0.9579224065577792 + ], + [ + 0.962952748132584 + ], + [ + 0.9421985228698097 + ], + [ + 0.9758471017566333 + ], + [ + 0.8492357350911255 + ], + [ + 0.9883020564051679 + ], + [ + 0.9965191088563604 + ], + [ + 0.9992663243093578 + ], + [ + 0.9992656508417233 + ], + [ + 0.9941424251920344 + ], + [ + 1 + ], + [ + 0.99268071993084 + ], + [ + 1 + ], + [ + 0.9992668621947256 + ], + [ + 0.9965191088563604 + ], + [ + 0.9540512424216696 + ], + [ + 0.9970690618433798 + ], + [ + 0.9768478574449928 + ], + [ + 0.9833831528957327 + ], + [ + 0.9914003253458398 + ], + [ + 0.9890311615492476 + ], + [ + 0.9782982623788444 + ], + [ + 0.9926335425715881 + ], + [ + 0.8068812492978317 + ], + [ + 0.9985339932335306 + ], + [ + 1 + ], + [ + 0.998339483394834 + ], + [ + 1 + ], + [ + 0.9948736810887512 + ], + [ + 0.9875732201051683 + ], + [ + 0.9941413527735856 + ], + [ + 1 + ], + [ + 0.992130773157018 + ], + [ + 0.9721444518798692 + ], + [ + 0.9978013931164152 + ], + [ + 0.998350675275288 + ], + [ + 0.9906529437430028 + ], + [ + 1 + ], + [ + 0.9948736810887512 + ], + [ + 0.9914003253458398 + ], + [ + 0.9970690618433798 + ], + [ + 0.9976169999054124 + ], + [ + 0.9985113511553524 + ], + [ + 0.9954545454545456 + ], + [ + 0.9585725924710128 + ], + [ + 0.9992668621947256 + ], + [ + 0.8558690511962423 + ], + [ + 0.9477543538038498 + ], + [ + 0.7858966339146662 + ], + [ + 0.8467583491924263 + ], + [ + 0.8327122834222226 + ], + [ + 0.8908526998828004 + ], + [ + 0.8135527713116105 + ], + [ + 0.9336872890005498 + ], + [ + 0.8135527713116105 + ], + [ + 0.7969931938295922 + ], + [ + 0.9404358147459344 + ], + [ + 0.7922931599671659 + ], + [ + 0.9455558136112772 + ], + [ + 0.7617997236100775 + ], + [ + 0.8361266348371678 + ], + [ + 0.8706162391527938 + ], + [ + 0.8909999999999999 + ], + [ + 0.8169671679245643 + ], + [ + 0.911393892174019 + ], + [ + 0.950028839221341 + ], + [ + 0.8316766353632711 + ], + [ + 0.8481140741645349 + ], + [ + 0.9263157894736842 + ], + [ + 0.7693317755435274 + ], + [ + 0.8485714285714286 + ], + [ + 0.9975371888373946 + ], + [ + 0.7657492944145039 + ], + [ + 0.782707509881423 + ], + [ + 0.8344731368348524 + ], + [ + 0.7893527624833871 + ], + [ + 0.934334074623178 + ], + [ + 0.9652014577830238 + ], + [ + 0.9712575474049576 + ], + [ + 0.7951570680628274 + ], + [ + 0.8023077073631943 + ], + [ + 0.8378558855512396 + ], + [ + 0.7750750175798774 + ], + [ + 0.8711152458705146 + ], + [ + 0.9450509667184974 + ], + [ + 0.8728200371057514 + ], + [ + 0.8266151860146821 + ], + [ + 0.9508561924475392 + ], + [ + 0.8678771151093215 + ], + [ + 0.7818744360024455 + ], + [ + 0.953621170127054 + ], + [ + 0.9550538402276436 + ], + [ + 0.9255861016232882 + ], + [ + 1 + ], + [ + 0.9890311615492476 + ], + [ + 0.9839330712663648 + ], + [ + 1 + ], + [ + 0.9875732201051683 + ], + [ + 0.9868446526492484 + ], + [ + 1 + ], + [ + 0.9672749544015236 + ], + [ + 0.8485601299189015 + ], + [ + 0.9948736810887512 + ], + [ + 0.9853883242696474 + ], + [ + 0.991220090045964 + ], + [ + 0.9716068390573318 + ], + [ + 0.9853883242696474 + ], + [ + 0.9817522080920388 + ], + [ + 0.9461330864231152 + ], + [ + 0.9934114381393974 + ], + [ + 0.9985339932335306 + ], + [ + 0.8683978095980386 + ], + [ + 0.9869953764615554 + ], + [ + 0.995605205829548 + ], + [ + 0.9868446526492484 + ], + [ + 0.9883020564051679 + ], + [ + 0.9724980906333768 + ], + [ + 0.9407755311560884 + ], + [ + 0.9372227566431792 + ], + [ + 0.9805263157894736 + ], + [ + 0.996336999414424 + ], + [ + 0.996336999414424 + ], + [ + 0.9992668621947256 + ], + [ + 0.9884575916336614 + ], + [ + 0.9887359375145636 + ], + [ + 0.977084365603192 + ], + [ + 0.9817522080920388 + ], + [ + 0.9890311615492476 + ], + [ + 0.9875732201051683 + ], + [ + 0.9883020564051679 + ], + [ + 0.9992668621947256 + ], + [ + 0.9762465658458932 + ], + [ + 1 + ], + [ + 0.991220090045964 + ], + [ + 0.8205020227371977 + ], + [ + 0.8608078181360623 + ], + [ + 0.8831761147394912 + ], + [ + 0.9956171156600898 + ], + [ + 0.8264159807642062 + ], + [ + 0.9851370084561714 + ], + [ + 0.8032496864185852 + ], + [ + 0.7921163153910715 + ], + [ + 0.8189876505853204 + ], + [ + 0.8866880766446407 + ], + [ + 0.7712492904983538 + ], + [ + 0.766650468421388 + ], + [ + 0.9874185848252344 + ], + [ + 0.9860765405159552 + ], + [ + 0.8021177944862157 + ], + [ + 0.9104948113042188 + ], + [ + 0.9076355564584256 + ], + [ + 0.9302834429286485 + ], + [ + 0.8899966113703928 + ], + [ + 0.7950194069243905 + ], + [ + 0.7994718538953012 + ], + [ + 0.9755497899678774 + ], + [ + 0.8737705484182898 + ], + [ + 0.8391756392041623 + ], + [ + 0.8000318742722583 + ], + [ + 0.863706643974955 + ], + [ + 0.999122807017544 + ], + [ + 0.788531116445173 + ], + [ + 0.7673011362392835 + ], + [ + 0.856290549490185 + ], + [ + 0.8500013228910797 + ], + [ + 0.8217519251079187 + ], + [ + 0.9886242163794032 + ], + [ + 0.8335855838820181 + ], + [ + 0.7737677036875701 + ], + [ + 0.80781838380708 + ], + [ + 0.8821104163000745 + ], + [ + 0.7790490801674135 + ], + [ + 0.821180494612969 + ], + [ + 0.8346691294875438 + ], + [ + 0.8306511043531097 + ], + [ + 0.7751893805092811 + ], + [ + 0.7785693212549879 + ], + [ + 0.8213296424597536 + ], + [ + 0.7990961561862842 + ], + [ + 0.8708980045995849 + ], + [ + 0.8508997225351951 + ], + [ + 0.9550538402276436 + ], + [ + 0.8404738376904276 + ], + [ + 0.8608516172237797 + ], + [ + 0.8898770040500942 + ], + [ + 0.9910308796338216 + ], + [ + 0.9443350267709892 + ], + [ + 0.9379327738576018 + ], + [ + 0.9687178405771408 + ], + [ + 0.954337370755309 + ], + [ + 0.8992810605226834 + ], + [ + 0.8104222403360605 + ], + [ + 0.8617768931040987 + ], + [ + 0.8019358454012121 + ], + [ + 0.8489486269748123 + ], + [ + 0.8334307196417515 + ], + [ + 0.8472653300897576 + ], + [ + 0.8641393141487438 + ], + [ + 0.8327404310943477 + ], + [ + 0.8764803941254208 + ], + [ + 0.912541525908588 + ], + [ + 0.8614426005287826 + ], + [ + 0.8750187225119483 + ], + [ + 0.8930336617991886 + ], + [ + 0.9188566733401607 + ], + [ + 0.909042520211614 + ], + [ + 0.9278339260751618 + ], + [ + 0.8855898697110776 + ], + [ + 0.8914924863272463 + ], + [ + 0.9636724437338746 + ], + [ + 0.8594020739640472 + ], + [ + 0.933676703232262 + ], + [ + 0.9471874624563446 + ], + [ + 0.9767901752344744 + ], + [ + 0.8923668029454429 + ], + [ + 0.887801301315952 + ], + [ + 0.8244173938759 + ], + [ + 0.8598281139548333 + ], + [ + 0.9048525852298742 + ], + [ + 0.9202629967209424 + ], + [ + 0.9586402202505121 + ], + [ + 0.99818613436632 + ], + [ + 0.8116526550439349 + ], + [ + 0.9097417836628494 + ], + [ + 0.8938131796635373 + ], + [ + 0.8689452322602814 + ], + [ + 0.7632159853061836 + ], + [ + 0.931092626752598 + ], + [ + 0.9714033929661204 + ], + [ + 0.916047252707554 + ], + [ + 0.9665539145798344 + ], + [ + 0.9992668621947256 + ], + [ + 0.877193998855128 + ], + [ + 0.8621233137385207 + ], + [ + 0.8404336601367269 + ], + [ + 0.8899568476668683 + ], + [ + 0.7657793910062513 + ], + [ + 0.8125492090556029 + ], + [ + 0.8944200907180742 + ], + [ + 0.9832058480308432 + ], + [ + 0.866243248832523 + ], + [ + 0.9723297607875788 + ], + [ + 0.9358035287465732 + ], + [ + 0.9111411170975592 + ], + [ + 0.8984030086479471 + ], + [ + 0.8744221238514268 + ], + [ + 0.831385641452182 + ], + [ + 0.917611437505964 + ], + [ + 0.8478847935907573 + ], + [ + 0.9679962630672924 + ], + [ + 0.8637608966376091 + ], + [ + 0.9294733352278108 + ], + [ + 0.8427886110852929 + ], + [ + 0.928226607524593 + ], + [ + 0.8025926314878588 + ], + [ + 0.9041552036871964 + ], + [ + 0.9045462110180228 + ], + [ + 0.9607952743931896 + ], + [ + 0.7731216272312162 + ], + [ + 0.9960877143127782 + ], + [ + 0.7917919558851796 + ], + [ + 0.7813854250011384 + ], + [ + 0.8594020739640472 + ], + [ + 0.8448171762300786 + ], + [ + 0.9066838594697112 + ], + [ + 0.993041786971632 + ], + [ + 0.9218534208170824 + ], + [ + 0.9280169976669376 + ], + [ + 0.9579224065577792 + ], + [ + 0.7649434377260497 + ], + [ + 0.9324432641365908 + ], + [ + 0.9890311615492476 + ], + [ + 0.8689452322602814 + ], + [ + 0.8861176478495414 + ], + [ + 0.8937267418365915 + ], + [ + 0.8573639669960287 + ], + [ + 0.853295011850143 + ], + [ + 0.9251935971421876 + ], + [ + 0.8902640300903737 + ], + [ + 0.7921163153910715 + ], + [ + 0.8692840854028374 + ], + [ + 0.9120241323975692 + ], + [ + 0.9322601637764528 + ], + [ + 0.9682695039010508 + ], + [ + 0.8869907346430809 + ], + [ + 0.9308446996969624 + ], + [ + 0.928723519908324 + ], + [ + 0.8601704114565033 + ], + [ + 0.8874986998868335 + ], + [ + 0.8888808273004442 + ], + [ + 0.975224136149363 + ], + [ + 0.8091752787787085 + ], + [ + 0.9507590560548307 + ], + [ + 0.9664158428720082 + ], + [ + 0.9817522080920388 + ], + [ + 0.8284169872492293 + ], + [ + 0.9136988002866576 + ], + [ + 0.8445121446112305 + ], + [ + 0.9139430100959351 + ], + [ + 0.8914848829801818 + ], + [ + 0.9672749544015236 + ], + [ + 0.99782684342909 + ], + [ + 0.772138724992434 + ], + [ + 0.90276124713408 + ], + [ + 0.961144204800487 + ], + [ + 0.8634855466902354 + ], + [ + 0.9379327738576018 + ], + [ + 0.908277884446819 + ], + [ + 0.9946871424565764 + ], + [ + 0.9479012434878824 + ], + [ + 0.933676703232262 + ], + [ + 0.9839330712663648 + ], + [ + 0.957204861709126 + ], + [ + 0.9897605355374068 + ], + [ + 0.8668958338409165 + ], + [ + 0.8916483082566217 + ], + [ + 0.9153455696596016 + ], + [ + 0.8573639669960287 + ], + [ + 0.8634855466902354 + ], + [ + 0.9251935971421876 + ], + [ + 0.909042520211614 + ], + [ + 0.8723662731741496 + ], + [ + 0.8537487234650945 + ], + [ + 0.8792285183078618 + ], + [ + 0.9350943180643897 + ], + [ + 0.8079714438079046 + ], + [ + 0.9551004697947988 + ], + [ + 0.8806041934635603 + ], + [ + 0.9273107442696306 + ], + [ + 0.9223744981227123 + ], + [ + 0.9616766085585506 + ], + [ + 0.8730512878891623 + ], + [ + 0.8965017504270001 + ], + [ + 0.975224136149363 + ], + [ + 0.8277497162434753 + ], + [ + 0.9514741813067672 + ], + [ + 0.9622333213753728 + ], + [ + 0.9746102461941208 + ], + [ + 0.940760842211224 + ], + [ + 0.8337648336821305 + ], + [ + 0.9132421335802218 + ], + [ + 0.838458313625102 + ], + [ + 0.9104413159581644 + ], + [ + 0.9230788696114616 + ], + [ + 0.9615141634622412 + ], + [ + 0.9608062684964296 + ], + [ + 0.9992668621947256 + ], + [ + 0.90276124713408 + ], + [ + 0.9316696874472936 + ], + [ + 0.8231087698825403 + ], + [ + 0.9544682296975874 + ], + [ + 0.7552770595350544 + ], + [ + 0.992615515771526 + ], + [ + 0.8512496250257213 + ], + [ + 0.8744043956043956 + ], + [ + 0.9547348484848484 + ], + [ + 0.7548367420848981 + ], + [ + 0.8010008340283569 + ], + [ + 0.8674088334090595 + ], + [ + 0.7996294165768151 + ], + [ + 0.908313797791604 + ], + [ + 0.9891493795585866 + ], + [ + 0.7540999753755234 + ], + [ + 0.9272544060904362 + ], + [ + 0.8780091446372676 + ], + [ + 0.9182823930924128 + ], + [ + 0.8762510425354463 + ], + [ + 0.9053124690879792 + ], + [ + 0.9546304163126592 + ], + [ + 0.9085090856109872 + ], + [ + 0.8064763169544045 + ], + [ + 0.9027775208335084 + ], + [ + 0.8873519569623151 + ], + [ + 0.902977283394997 + ], + [ + 0.9964912280701756 + ], + [ + 0.996521739130435 + ], + [ + 0.9338039426824476 + ], + [ + 0.9139430100959351 + ], + [ + 0.9622333213753728 + ], + [ + 0.9737764107803116 + ], + [ + 0.9701400724878312 + ], + [ + 0.9974294410273912 + ], + [ + 0.9358035287465732 + ], + [ + 0.9464739502688859 + ], + [ + 0.9970690618433798 + ], + [ + 0.9658331436022252 + ], + [ + 0.955770578544058 + ], + [ + 0.9960351014549488 + ], + [ + 0.9477180531985372 + ], + [ + 0.7802288530146114 + ], + [ + 0.9622333213753728 + ], + [ + 0.8067839857133676 + ], + [ + 0.9301373709233364 + ], + [ + 0.8868080394461477 + ], + [ + 0.9450477324262084 + ], + [ + 0.8134050821718116 + ], + [ + 0.9454153674378072 + ], + [ + 0.984660563345966 + ], + [ + 0.9904901783696456 + ], + [ + 0.9507590560548307 + ], + [ + 0.9779823259487208 + ], + [ + 0.9883020564051679 + ], + [ + 0.855139156857862 + ], + [ + 0.9853883242696474 + ], + [ + 0.9564875857045522 + ], + [ + 0.9083271241193304 + ], + [ + 0.9421985228698097 + ], + [ + 0.8621233137385207 + ], + [ + 0.9479012434878824 + ], + [ + 0.9802996435295532 + ], + [ + 0.9613309146374462 + ], + [ + 0.9890311615492476 + ], + [ + 0.9789725394962472 + ], + [ + 0.9230788696114616 + ], + [ + 0.9875732201051683 + ], + [ + 0.8937267418365915 + ], + [ + 0.9948736810887512 + ], + [ + 0.9716068390573318 + ], + [ + 0.9679854547640152 + ], + [ + 0.9572793819640072 + ], + [ + 0.9992668621947256 + ], + [ + 0.9649045221259104 + ], + [ + 0.9365130082728363 + ], + [ + 0.7854822169733378 + ], + [ + 0.9877224033535164 + ], + [ + 0.8267536096879368 + ], + [ + 0.8281155906857192 + ], + [ + 0.7782426513939189 + ], + [ + 0.7770132902980824 + ], + [ + 0.7813852813852814 + ], + [ + 0.8531626502908053 + ], + [ + 0.986652250762675 + ], + [ + 0.8443985380581599 + ], + [ + 0.8507060144843345 + ], + [ + 0.9095966218704222 + ], + [ + 0.7793195367381812 + ], + [ + 0.8485714285714286 + ], + [ + 0.793478260869565 + ], + [ + 0.9357129295614204 + ], + [ + 0.9013778530474436 + ], + [ + 0.8068636548636549 + ], + [ + 0.8283693657758276 + ], + [ + 0.7842947575142669 + ], + [ + 0.929941088884573 + ], + [ + 0.8318189568317447 + ], + [ + 0.9721324228139152 + ], + [ + 0.8929555666008868 + ], + [ + 0.9899175068744273 + ], + [ + 0.7829559806346367 + ], + [ + 0.8330585670487148 + ], + [ + 0.9004712036731742 + ], + [ + 0.8079059133534838 + ], + [ + 0.907326978222119 + ], + [ + 0.8418462145170219 + ], + [ + 0.8355962235887732 + ], + [ + 0.9840600196897172 + ], + [ + 0.9727233543942168 + ], + [ + 0.9456931798893302 + ], + [ + 0.7835307826762479 + ], + [ + 0.9334823561531638 + ], + [ + 0.943912095206486 + ], + [ + 0.9719476865439598 + ], + [ + 0.8989607068123694 + ], + [ + 0.9899175068744273 + ], + [ + 0.91218688144154 + ], + [ + 0.968708052390917 + ], + [ + 0.9275641323723166 + ], + [ + 0.7750817305162342 + ], + [ + 0.7705110005585539 + ], + [ + 0.8746911090742437 + ], + [ + 0.906777236648719 + ], + [ + 0.9877189123128628 + ], + [ + 0.905810189680844 + ], + [ + 0.9039758195768428 + ], + [ + 0.9545454545454548 + ], + [ + 0.8475303670578501 + ], + [ + 0.9511957748205524 + ], + [ + 0.8592904322283405 + ], + [ + 0.9090909090909088 + ], + [ + 0.864748396641959 + ], + [ + 0.8793851481338977 + ], + [ + 0.9499999999999998 + ], + [ + 0.7977657605606996 + ], + [ + 0.828074328074328 + ], + [ + 0.8757161620920398 + ], + [ + 0.8518139443215275 + ], + [ + 0.8919696969696971 + ], + [ + 0.9006463378910865 + ], + [ + 0.9123913868449176 + ], + [ + 0.7538355364442323 + ], + [ + 0.9728462804245892 + ], + [ + 0.8226075640111686 + ], + [ + 0.7627425872585156 + ], + [ + 0.9397093147093144 + ], + [ + 0.9405901494832792 + ], + [ + 0.9373208866593992 + ], + [ + 0.9185281385281384 + ], + [ + 0.9805093555093556 + ], + [ + 0.9045454545454543 + ], + [ + 0.7521739130434782 + ], + [ + 0.8676160350867449 + ], + [ + 0.9096320346320348 + ], + [ + 0.9705446224256292 + ], + [ + 0.7511156903867726 + ], + [ + 0.9498970784947516 + ], + [ + 0.8553636363636363 + ], + [ + 0.8803749979451918 + ], + [ + 0.8868951612903225 + ], + [ + 0.8716773908739449 + ], + [ + 0.7640091133472566 + ], + [ + 0.9754511278195488 + ], + [ + 0.9090909090909088 + ], + [ + 0.919377312007859 + ], + [ + 0.9895652173913044 + ], + [ + 0.9090909090909088 + ], + [ + 0.9895652173913044 + ], + [ + 0.904833326772871 + ], + [ + 0.8896985935172833 + ], + [ + 0.9613560315981924 + ], + [ + 0.9209973066564064 + ], + [ + 0.7738377192982457 + ], + [ + 0.8766948621553885 + ], + [ + 0.8955979105301095 + ], + [ + 0.7862727272727271 + ], + [ + 0.8120276073976656 + ], + [ + 0.9062605084545612 + ], + [ + 0.9819906110654324 + ], + [ + 0.9482809390239644 + ], + [ + 0.9270810254564676 + ], + [ + 0.8858122880872292 + ], + [ + 0.9272543317870856 + ], + [ + 0.9248843536331894 + ], + [ + 0.9592356458451337 + ], + [ + 0.9740750470337556 + ], + [ + 0.8618048445021776 + ], + [ + 0.9826209215251775 + ], + [ + 0.9119804816878757 + ], + [ + 0.901982337361457 + ], + [ + 0.968471177944862 + ], + [ + 0.9722529273134676 + ], + [ + 0.9674022810471118 + ], + [ + 0.8998470475108667 + ], + [ + 0.8758239471864051 + ], + [ + 0.957737379733654 + ], + [ + 0.9619347444028424 + ], + [ + 0.9817460256655812 + ], + [ + 0.9619598036238828 + ], + [ + 0.9754511278195488 + ], + [ + 0.9045454545454543 + ], + [ + 0.9108776132404182 + ], + [ + 0.9895652173913044 + ], + [ + 0.9090909090909088 + ], + [ + 0.9808695652173912 + ], + [ + 0.903936979364855 + ], + [ + 0.8946016606830777 + ], + [ + 0.9582023810487048 + ], + [ + 0.9363189044244398 + ], + [ + 0.7701982739613846 + ], + [ + 0.877299976398395 + ], + [ + 0.8623579834310708 + ], + [ + 0.7862727272727271 + ], + [ + 0.8480601581866628 + ], + [ + 0.8902466538134809 + ], + [ + 0.9819906110654324 + ], + [ + 0.9507874084663184 + ], + [ + 0.925065002188018 + ], + [ + 0.8906569786528593 + ], + [ + 0.9272543317870856 + ], + [ + 0.9318691420627104 + ], + [ + 0.9592356458451337 + ], + [ + 0.9670573870573872 + ], + [ + 0.8638081223124702 + ], + [ + 0.9815789473684212 + ], + [ + 0.9119804816878757 + ], + [ + 0.9027305623701912 + ], + [ + 0.968471177944862 + ], + [ + 0.9722529273134676 + ], + [ + 0.9664533537113174 + ], + [ + 0.8980586357606626 + ], + [ + 0.8824347249543827 + ], + [ + 0.957737379733654 + ], + [ + 0.9606072393507964 + ], + [ + 0.7604223245592875 + ], + [ + 0.9401709401709404 + ], + [ + 0.9616481164026224 + ], + [ + 0.9809453113164672 + ], + [ + 0.825 + ], + [ + 0.8965328341856458 + ], + [ + 0.9930434993747648 + ], + [ + 0.9919417254554761 + ], + [ + 0.7662935746676578 + ], + [ + 0.916200245724204 + ], + [ + 0.8929657620169505 + ], + [ + 0.9764831764168632 + ], + [ + 0.8651113127255622 + ], + [ + 0.8576748602878727 + ], + [ + 0.8002254756609835 + ], + [ + 0.8303849683667892 + ], + [ + 0.945960433937275 + ], + [ + 0.9927523497097036 + ], + [ + 0.9224700032216755 + ], + [ + 0.924592891635332 + ], + [ + 0.8627825284444037 + ], + [ + 0.9427557668775548 + ], + [ + 0.9416944402363276 + ], + [ + 0.7977840705338264 + ], + [ + 0.891911538610805 + ], + [ + 0.7757575757575756 + ], + [ + 0.9186470619844704 + ], + [ + 0.9755497899678774 + ], + [ + 0.9380936401545896 + ], + [ + 0.9430730858023998 + ], + [ + 0.8821269989132121 + ], + [ + 0.8635778359926967 + ], + [ + 0.9686187299234 + ], + [ + 0.82231768595902 + ], + [ + 0.8454690660447776 + ], + [ + 0.936633843357067 + ], + [ + 0.9928614899602092 + ], + [ + 0.7920033670033668 + ], + [ + 0.9790238683337896 + ], + [ + 0.851784484740942 + ], + [ + 0.7835174551354922 + ], + [ + 0.970437888198758 + ], + [ + 0.973913043478261 + ], + [ + 0.8004960204410251 + ], + [ + 0.8608354753566684 + ], + [ + 0.973913043478261 + ], + [ + 0.8932535416128451 + ], + [ + 0.8985806100405787 + ], + [ + 0.9473716579271056 + ], + [ + 0.8802936186789987 + ], + [ + 0.8429844720496896 + ], + [ + 0.7998641304347827 + ], + [ + 0.7548105590062113 + ], + [ + 0.851091804125718 + ], + [ + 0.7982289247602901 + ], + [ + 0.8918317295952493 + ], + [ + 0.9704182624797956 + ], + [ + 0.9250441174468548 + ], + [ + 0.9234004788164912 + ], + [ + 0.8072112569313484 + ], + [ + 0.9458344577995612 + ], + [ + 0.8199687206756333 + ], + [ + 0.9636939983093828 + ], + [ + 0.973913043478261 + ], + [ + 0.8946764860972011 + ], + [ + 0.8953883830144143 + ], + [ + 0.9685626687981476 + ], + [ + 0.8854475897922277 + ], + [ + 0.890074370350509 + ], + [ + 0.9467502582887196 + ], + [ + 0.973913043478261 + ], + [ + 0.7675727377454222 + ], + [ + 0.9240556247405564 + ], + [ + 0.9038176307865486 + ], + [ + 0.8004417918113229 + ], + [ + 0.8571885156262036 + ], + [ + 0.7888661250305931 + ], + [ + 0.7588020905133782 + ], + [ + 0.8150670283151774 + ], + [ + 0.8394858977004067 + ], + [ + 0.8506509425026048 + ], + [ + 0.86632058337082 + ], + [ + 0.907644799841382 + ], + [ + 0.7869039663743268 + ], + [ + 0.8377993482174306 + ], + [ + 0.9661635604440372 + ], + [ + 0.7796002893491529 + ], + [ + 0.8462255001833667 + ], + [ + 0.8698618053513671 + ], + [ + 0.853295011850143 + ], + [ + 0.9457912457912456 + ], + [ + 0.9954545454545456 + ], + [ + 0.786253632545592 + ], + [ + 0.921913236929922 + ], + [ + 0.9090909090909088 + ], + [ + 0.9764931810396176 + ], + [ + 0.9895652173913044 + ], + [ + 0.8409090909090906 + ], + [ + 0.982608695652174 + ], + [ + 0.904833326772871 + ], + [ + 0.9398297385891607 + ], + [ + 0.8728218919864725 + ], + [ + 0.910662682746664 + ], + [ + 0.7508707607699359 + ], + [ + 0.920196146646124 + ], + [ + 0.8941510995342954 + ], + [ + 0.7896297048496517 + ], + [ + 0.9062605084545612 + ], + [ + 0.9819906110654324 + ], + [ + 0.9395768590554164 + ], + [ + 0.8846891981591173 + ], + [ + 0.8753550543024229 + ], + [ + 0.9272543317870856 + ], + [ + 0.9159873721905482 + ], + [ + 0.9592356458451337 + ], + [ + 0.9719230769230768 + ], + [ + 0.853205915989843 + ], + [ + 0.9789473684210526 + ], + [ + 0.9119804816878757 + ], + [ + 0.9021731519130232 + ], + [ + 0.9408793468279631 + ], + [ + 0.9502457651288154 + ], + [ + 0.9343996875499296 + ], + [ + 0.8998470475108667 + ], + [ + 0.7828140592083379 + ], + [ + 0.956227485420032 + ], + [ + 0.9688644688644692 + ], + [ + 0.9878260869565216 + ], + [ + 0.9619598036238828 + ], + [ + 0.9853883242696474 + ], + [ + 0.9069463429223856 + ], + [ + 0.8484535647736858 + ], + [ + 0.9859234217934404 + ], + [ + 0.8546502548557862 + ], + [ + 0.8668958338409165 + ], + [ + 0.9890311615492476 + ], + [ + 0.9365130082728363 + ], + [ + 0.9280169976669376 + ], + [ + 0.8580430671412884 + ], + [ + 0.7643022445960241 + ], + [ + 0.7736264668325739 + ], + [ + 0.8826697225277056 + ], + [ + 0.8391298861361308 + ], + [ + 0.8806041934635603 + ], + [ + 0.8250833206612556 + ], + [ + 0.928723519908324 + ], + [ + 0.8668958338409165 + ], + [ + 0.7521491867834005 + ], + [ + 0.8881896291715989 + ], + [ + 0.9616904586883988 + ], + [ + 0.9061435934718377 + ], + [ + 0.9211354224331691 + ], + [ + 0.90276124713408 + ], + [ + 0.9434394218523597 + ], + [ + 0.8047278408758268 + ], + [ + 0.9216703954780426 + ], + [ + 0.9230788696114616 + ], + [ + 0.9564875857045522 + ], + [ + 0.9694396869310692 + ], + [ + 0.8131377716690427 + ], + [ + 0.8237517359346237 + ], + [ + 0.8025926314878588 + ], + [ + 0.8965017504270001 + ], + [ + 0.9230777619327238 + ], + [ + 0.9104413159581644 + ], + [ + 0.8553134080531343 + ], + [ + 0.9989920981077092 + ], + [ + 0.917451425335698 + ], + [ + 0.9521895754027829 + ], + [ + 0.9069463429223856 + ], + [ + 0.8444028672449848 + ], + [ + 0.9910308796338216 + ], + [ + 0.8526177936134408 + ], + [ + 0.8634855466902354 + ], + [ + 0.9883020564051679 + ], + [ + 0.9464739502688859 + ], + [ + 0.9216703954780426 + ], + [ + 0.8566851356948486 + ], + [ + 0.7694393172704596 + ], + [ + 0.7752390906012949 + ], + [ + 0.7768521470048189 + ], + [ + 0.8785410839961321 + ], + [ + 0.8290845270990632 + ], + [ + 0.8351044837311526 + ], + [ + 0.8264159807642062 + ], + [ + 0.9237835099442904 + ], + [ + 0.8868080394461477 + ], + [ + 0.8944200907180742 + ], + [ + 0.9486152933634998 + ], + [ + 0.9061435934718377 + ], + [ + 0.8987505869438153 + ], + [ + 0.7765308864041348 + ], + [ + 0.9062481548474688 + ], + [ + 0.9414868925909092 + ], + [ + 0.8971961746848013 + ], + [ + 0.9273107442696306 + ], + [ + 0.9564875857045522 + ], + [ + 0.9694396869310692 + ], + [ + 0.917451425335698 + ], + [ + 0.7980007746070045 + ], + [ + 0.900672328635003 + ], + [ + 0.9230777619327238 + ], + [ + 0.909042520211614 + ], + [ + 0.8722498962224988 + ], + [ + 0.99818613436632 + ], + [ + 0.917451425335698 + ], + [ + 0.9350943180643897 + ], + [ + 0.8450773104028045 + ], + [ + 0.7755025814626396 + ], + [ + 0.8499116091074294 + ], + [ + 0.9954545454545456 + ], + [ + 0.8248656842171965 + ], + [ + 0.8771670219049115 + ], + [ + 0.8017627702025453 + ], + [ + 0.8252966318058891 + ], + [ + 0.7989505012531329 + ], + [ + 0.9084382663648368 + ], + [ + 0.7700826611531227 + ], + [ + 0.8173907278944466 + ], + [ + 0.9586402202505121 + ], + [ + 0.8279882714725023 + ], + [ + 0.8750287541127237 + ], + [ + 0.8058469213257959 + ], + [ + 0.8887595093929513 + ], + [ + 0.8741986118728367 + ], + [ + 0.9013332512757184 + ], + [ + 0.8951137084436364 + ], + [ + 0.8085158042512651 + ], + [ + 0.7847209561813264 + ], + [ + 0.9207931801334324 + ], + [ + 0.8813228755976849 + ], + [ + 0.8806041934635603 + ], + [ + 0.904598717548413 + ], + [ + 0.8357423547232772 + ], + [ + 0.8519408442208185 + ], + [ + 0.7585436044093791 + ], + [ + 0.754716608935201 + ], + [ + 0.7526949335249729 + ], + [ + 0.8630753385715217 + ], + [ + 0.945504664970314 + ], + [ + 0.8607621561631246 + ], + [ + 0.8190996579799222 + ], + [ + 0.8138788692223808 + ], + [ + 0.80834947374926 + ], + [ + 0.8461416361416363 + ], + [ + 0.8321563840156672 + ], + [ + 0.9049823065264198 + ], + [ + 0.7611003116070912 + ], + [ + 0.8564208333192405 + ], + [ + 0.9567242111117616 + ], + [ + 0.8830433688448956 + ], + [ + 0.8498282229301768 + ], + [ + 0.8787054248059898 + ], + [ + 0.7583865519843361 + ], + [ + 0.8560065732377481 + ], + [ + 0.7845811712379542 + ], + [ + 0.911841187081034 + ], + [ + 0.7575987286674309 + ], + [ + 0.9032923617208078 + ], + [ + 0.8054515169551613 + ], + [ + 0.9457116500465104 + ], + [ + 0.7972151720771685 + ], + [ + 0.9550538402276436 + ], + [ + 0.8404738376904276 + ], + [ + 0.8951137084436364 + ], + [ + 0.8898770040500942 + ], + [ + 0.9910308796338216 + ], + [ + 0.9443350267709892 + ], + [ + 0.9379327738576018 + ], + [ + 0.9687178405771408 + ], + [ + 0.954337370755309 + ], + [ + 0.8992810605226834 + ], + [ + 0.8655309124484051 + ], + [ + 0.8902640300903737 + ], + [ + 0.8553282796247272 + ], + [ + 0.8614426005287826 + ], + [ + 0.8958075950132784 + ], + [ + 0.8438384213475643 + ], + [ + 0.8771670219049115 + ], + [ + 0.8280046113614686 + ], + [ + 0.8607621561631246 + ], + [ + 0.912541525908588 + ], + [ + 0.8614426005287826 + ], + [ + 0.8946208326427901 + ], + [ + 0.8930336617991886 + ], + [ + 0.9188566733401607 + ], + [ + 0.909042520211614 + ], + [ + 0.9278339260751618 + ], + [ + 0.8773278519419312 + ], + [ + 0.9111411170975592 + ], + [ + 0.9636724437338746 + ], + [ + 0.8566851356948486 + ], + [ + 0.933676703232262 + ], + [ + 0.9471874624563446 + ], + [ + 0.9832058480308432 + ], + [ + 0.8923668029454429 + ], + [ + 0.887801301315952 + ], + [ + 0.8244173938759 + ], + [ + 0.8424917813524705 + ], + [ + 0.9048525852298742 + ], + [ + 0.9202629967209424 + ], + [ + 0.9586402202505121 + ], + [ + 0.99818613436632 + ], + [ + 0.8116526550439349 + ], + [ + 0.9097417836628494 + ], + [ + 0.9329682990823176 + ], + [ + 0.8438384213475643 + ], + [ + 0.8958075950132784 + ], + [ + 0.8921838780119076 + ], + [ + 0.986652250762675 + ], + [ + 0.9479012434878824 + ], + [ + 0.9393536148186856 + ], + [ + 0.9687178405771408 + ], + [ + 0.7643022445960241 + ], + [ + 0.955770578544058 + ], + [ + 0.8478847935907573 + ], + [ + 0.8634855466902354 + ], + [ + 0.8614426005287826 + ], + [ + 0.8580430671412884 + ], + [ + 0.8587224361306279 + ], + [ + 0.8923408506058652 + ], + [ + 0.8351044837311526 + ], + [ + 0.8052224642752426 + ], + [ + 0.911841187081034 + ], + [ + 0.8295875223215042 + ], + [ + 0.889572294273369 + ], + [ + 0.912541525908588 + ], + [ + 0.8958075950132784 + ], + [ + 0.8960129675540568 + ], + [ + 0.8930336617991886 + ], + [ + 0.9550538402276436 + ], + [ + 0.909042520211614 + ], + [ + 0.887315997105363 + ], + [ + 0.8703128420935895 + ], + [ + 0.9111411170975592 + ], + [ + 0.9550538402276436 + ], + [ + 0.8614426005287826 + ], + [ + 0.9372227566431792 + ], + [ + 0.962952748132584 + ], + [ + 0.9824788936394012 + ], + [ + 0.9017863969504004 + ], + [ + 0.877949549206721 + ], + [ + 0.8614426005287826 + ], + [ + 0.8344345242846016 + ], + [ + 0.9013683659572824 + ], + [ + 0.9223744981227123 + ], + [ + 0.9586402202505121 + ], + [ + 0.99782684342909 + ], + [ + 0.8327803954481456 + ], + [ + 0.9377053197580578 + ], + [ + 0.7520783733062728 + ], + [ + 0.8576638516480299 + ], + [ + 0.7973458704289155 + ], + [ + 0.8055002075550022 + ], + [ + 0.8274342134261912 + ], + [ + 0.7682652462041775 + ], + [ + 0.8985858297326429 + ], + [ + 0.9295420779390244 + ], + [ + 0.9497666282126442 + ], + [ + 0.9045462110180228 + ], + [ + 0.8937267418365915 + ], + [ + 0.9450477324262084 + ], + [ + 0.9335682269765724 + ], + [ + 0.9463791440512886 + ], + [ + 0.8655309124484051 + ], + [ + 0.7591412700557859 + ], + [ + 0.8317573749391951 + ], + [ + 0.9191871761989552 + ], + [ + 0.9144998770732076 + ], + [ + 0.8299318662677443 + ], + [ + 0.7999671002057498 + ], + [ + 0.9590943683409436 + ], + [ + 0.9721268361679862 + ], + [ + 0.7512346093262124 + ], + [ + 0.9031905016766244 + ], + [ + 0.9258990440072554 + ], + [ + 0.8277497162434753 + ], + [ + 0.9045462110180228 + ], + [ + 0.9715042130082729 + ], + [ + 0.8091792146047655 + ], + [ + 0.8478274566824184 + ], + [ + 0.8594020739640472 + ], + [ + 0.7511865272235565 + ], + [ + 0.7739458321143061 + ], + [ + 0.8799003347391113 + ], + [ + 0.8438384213475643 + ], + [ + 0.8735155491890395 + ], + [ + 0.8971961746848013 + ], + [ + 0.955770578544058 + ], + [ + 0.962303313592256 + ], + [ + 0.9187077430559348 + ], + [ + 0.9203925414202916 + ], + [ + 0.9514626397110274 + ], + [ + 0.9041122896824668 + ], + [ + 0.7840680498436611 + ], + [ + 0.8292520377479811 + ], + [ + 0.97941509455445 + ], + [ + 0.8836172394187662 + ], + [ + 0.9375944096516282 + ], + [ + 0.9096320346320348 + ], + [ + 0.8897178357319816 + ], + [ + 0.977084365603192 + ], + [ + 0.8159983921213949 + ], + [ + 0.8647743756870857 + ], + [ + 0.9324532116794522 + ], + [ + 0.9496978544622346 + ], + [ + 0.8933384348345432 + ], + [ + 0.9146441554557286 + ], + [ + 0.893013468013468 + ], + [ + 0.7745935959659945 + ], + [ + 0.9240556247405564 + ], + [ + 0.9248385202583678 + ], + [ + 0.9493296120831972 + ], + [ + 0.784239798606639 + ], + [ + 0.7934206675600327 + ], + [ + 0.847568697165119 + ], + [ + 0.8111354653251885 + ], + [ + 0.7558928791805505 + ], + [ + 0.7550475642500958 + ], + [ + 0.8290845270990632 + ], + [ + 0.9166360018268416 + ], + [ + 0.9214315504311476 + ], + [ + 0.8905928806265223 + ], + [ + 0.8833857030636293 + ], + [ + 0.8371864728096656 + ], + [ + 0.7786506591658736 + ], + [ + 0.8732444148742633 + ], + [ + 0.9824788936394012 + ], + [ + 0.9261641390813252 + ], + [ + 0.7920585237916445 + ], + [ + 0.8270827140818009 + ], + [ + 0.8181481481481481 + ], + [ + 0.9685059666773832 + ], + [ + 0.7724990486505474 + ], + [ + 0.8453837597330368 + ], + [ + 0.9028925619834708 + ], + [ + 0.974712351554919 + ], + [ + 0.7990739031960405 + ], + [ + 0.8124766840771211 + ], + [ + 0.8338302155859407 + ], + [ + 0.8257495162906913 + ], + [ + 0.9242514144040864 + ], + [ + 0.8874986998868335 + ], + [ + 0.8316014689297133 + ], + [ + 0.8491709060650188 + ], + [ + 0.9290397110203914 + ], + [ + 0.9429104219927898 + ], + [ + 0.9020663048206212 + ], + [ + 0.9497666282126442 + ], + [ + 0.8735827515879028 + ], + [ + 0.8190930086640767 + ], + [ + 0.9097417836628494 + ], + [ + 0.8836172394187662 + ], + [ + 0.7561436787677326 + ], + [ + 0.9111759366075987 + ], + [ + 0.9685059666773832 + ], + [ + 0.7694393172704596 + ], + [ + 0.9182355818184244 + ], + [ + 0.9443350267709892 + ], + [ + 0.8991822088005293 + ], + [ + 0.9609732144249478 + ], + [ + 0.8388412496816188 + ], + [ + 0.9434738042076424 + ], + [ + 0.9514940210071012 + ], + [ + 0.7974547159339365 + ], + [ + 0.9158098573783174 + ], + [ + 0.8885435517508157 + ], + [ + 0.7927757091445906 + ], + [ + 0.8089575535557855 + ], + [ + 0.8566665569299595 + ], + [ + 0.8314583644863298 + ], + [ + 0.7943437531819572 + ], + [ + 0.8869909377863762 + ], + [ + 0.7623509827444914 + ], + [ + 0.9602434075673276 + ], + [ + 0.8173534679942144 + ], + [ + 0.9145746409758626 + ], + [ + 0.7598389563652722 + ], + [ + 0.8919299119395553 + ], + [ + 0.9546749386121294 + ], + [ + 0.9061863080667324 + ], + [ + 0.9429340786658 + ], + [ + 0.8532240586756394 + ], + [ + 0.8877384763770779 + ], + [ + 0.958686173433348 + ], + [ + 0.9554765128325876 + ], + [ + 0.927589597885256 + ], + [ + 0.9529605866177816 + ], + [ + 0.9690193870107546 + ], + [ + 0.8907469811519957 + ], + [ + 0.9842229467473992 + ], + [ + 0.9364502164502164 + ], + [ + 0.8550444275316389 + ], + [ + 0.9174603174603174 + ], + [ + 0.9919369945954868 + ], + [ + 0.7974492252661268 + ], + [ + 0.9534048316392292 + ], + [ + 0.7523489859050253 + ], + [ + 0.8139854059928581 + ], + [ + 0.9461387983232418 + ], + [ + 0.8098519486211259 + ], + [ + 0.7647244706969056 + ], + [ + 0.906310774345067 + ], + [ + 0.7678224795898994 + ], + [ + 0.9290762303990062 + ], + [ + 0.8524886899155711 + ], + [ + 0.980320788530466 + ], + [ + 0.9254995395026632 + ], + [ + 0.8657481566722074 + ], + [ + 0.9421659088682972 + ], + [ + 0.8474906647205496 + ], + [ + 0.9013546930437588 + ], + [ + 0.9748919688627304 + ], + [ + 0.8388843744066832 + ], + [ + 0.95990063654712 + ], + [ + 0.9796267593595076 + ], + [ + 0.9345104268491364 + ], + [ + 0.9405500820824608 + ], + [ + 0.8701948495342146 + ], + [ + 0.9783368141256884 + ], + [ + 0.7696261546646032 + ], + [ + 0.7607570099969941 + ], + [ + 0.7567551932941814 + ], + [ + 0.89138879753655 + ], + [ + 0.928489598568463 + ], + [ + 0.9086142870609782 + ], + [ + 0.9545454545454548 + ], + [ + 0.9545454545454548 + ], + [ + 0.8077423038829434 + ], + [ + 0.9174603174603174 + ], + [ + 0.948338703873867 + ], + [ + 0.9649045221259104 + ], + [ + 0.8289700533295026 + ], + [ + 0.9245393784589186 + ], + [ + 0.7559638453436506 + ], + [ + 0.8235522434404595 + ], + [ + 0.9007792207792208 + ], + [ + 0.7664355652861399 + ], + [ + 0.9290762303990062 + ], + [ + 0.8491308962278107 + ], + [ + 0.7573901281365926 + ], + [ + 0.8315151515151515 + ], + [ + 0.7505974060116345 + ], + [ + 0.9502677159519249 + ], + [ + 0.8378061008189606 + ], + [ + 0.8657481566722074 + ], + [ + 0.9421659088682972 + ], + [ + 0.9391737997679988 + ], + [ + 0.943947221044588 + ], + [ + 0.9530072970035708 + ], + [ + 0.946585394605002 + ], + [ + 0.8072282340152606 + ], + [ + 0.8919696969696971 + ], + [ + 0.9783368141256884 + ], + [ + 0.8060213664465975 + ], + [ + 0.7894137547439006 + ], + [ + 0.8886194359553156 + ], + [ + 0.8969404465407047 + ], + [ + 0.8395077004692013 + ], + [ + 0.8087262766581881 + ], + [ + 0.9417675428322848 + ], + [ + 0.838458313625102 + ], + [ + 0.9578918616552848 + ], + [ + 0.9877224033535164 + ], + [ + 0.9600766541682176 + ], + [ + 0.9372227566431792 + ], + [ + 0.9996947496947498 + ], + [ + 0.9464739502688859 + ], + [ + 0.9273107442696306 + ], + [ + 0.8427440270131528 + ], + [ + 0.8930336617991886 + ], + [ + 0.8499116091074294 + ], + [ + 0.8297523357929766 + ], + [ + 0.8628042957923382 + ], + [ + 0.94362258995985 + ], + [ + 0.8861176478495414 + ], + [ + 0.992955297959396 + ], + [ + 0.954141881439958 + ], + [ + 0.9716068390573318 + ], + [ + 0.9372227566431792 + ], + [ + 0.9209665616774528 + ], + [ + 0.8810186818949944 + ], + [ + 0.8078565985679013 + ], + [ + 0.7888565809250084 + ], + [ + 0.8999765601568034 + ], + [ + 0.7784705964389922 + ], + [ + 0.8951137084436364 + ], + [ + 0.9694396869310692 + ], + [ + 0.906901471095239 + ], + [ + 0.9521895754027829 + ], + [ + 0.7517286913985001 + ], + [ + 0.8687571885281811 + ], + [ + 0.7912430201328434 + ], + [ + 0.9975369458128078 + ], + [ + 0.9160401958804216 + ], + [ + 0.974218139790659 + ], + [ + 0.8509546425853288 + ], + [ + 0.900767299923892 + ], + [ + 0.9978013931164152 + ], + [ + 0.7966912350949062 + ], + [ + 0.8415390235407055 + ], + [ + 0.9095917165921852 + ], + [ + 0.7732064980993626 + ], + [ + 0.8864392836204776 + ], + [ + 0.804143123374405 + ], + [ + 0.8771670219049115 + ], + [ + 0.9813338311457538 + ], + [ + 0.9514741813067672 + ], + [ + 0.9586402202505121 + ], + [ + 0.9396223310702196 + ], + [ + 0.9574611462809792 + ], + [ + 0.9733296560462246 + ], + [ + 0.9277579783254948 + ], + [ + 0.9766303162486368 + ], + [ + 0.8371159751352832 + ], + [ + 0.7645789491661855 + ], + [ + 0.8881896291715989 + ], + [ + 0.9463791440512886 + ], + [ + 0.9564875857045522 + ], + [ + 0.7686245437524821 + ], + [ + 0.9510994238916862 + ], + [ + 0.8438384213475643 + ], + [ + 0.9041552036871964 + ], + [ + 0.9970690618433798 + ], + [ + 0.7655848997001549 + ], + [ + 0.8569756194651065 + ], + [ + 0.8565438206194017 + ], + [ + 0.7732064980993626 + ], + [ + 0.8167257771569466 + ], + [ + 0.8510568256152782 + ], + [ + 0.8573767226280884 + ], + [ + 0.9514741813067672 + ], + [ + 0.946103858087934 + ], + [ + 0.9425383776528816 + ], + [ + 0.9032923617208078 + ], + [ + 0.905550235616632 + ], + [ + 0.9177635419435248 + ], + [ + 0.9424705422602816 + ], + [ + 0.7733034132276329 + ], + [ + 0.7944363835998364 + ], + [ + 0.8881896291715989 + ], + [ + 0.922836204777124 + ], + [ + 0.9493296120831972 + ], + [ + 0.7731216272312162 + ], + [ + 0.7701503489229721 + ], + [ + 0.9110701550899905 + ], + [ + 0.8749551130106945 + ], + [ + 0.9779240761641758 + ], + [ + 0.8757411810482202 + ], + [ + 0.9637205387205386 + ], + [ + 0.8307739463601531 + ], + [ + 0.7840680498436611 + ], + [ + 0.9718089459310836 + ], + [ + 0.7533766040551628 + ], + [ + 0.8411108025383495 + ], + [ + 0.8186320718389478 + ], + [ + 0.7507073140597975 + ], + [ + 0.8665855131372373 + ], + [ + 0.8141166099294752 + ], + [ + 0.8465178639695039 + ], + [ + 0.8674324881574892 + ], + [ + 0.894897491091307 + ], + [ + 0.8007950286452882 + ], + [ + 0.9200506754154923 + ], + [ + 0.8002254756609835 + ], + [ + 0.8055002075550022 + ], + [ + 0.8899568476668683 + ], + [ + 0.8050891517303731 + ], + [ + 0.7551272091668285 + ], + [ + 0.9170723522722332 + ], + [ + 0.8862820694208641 + ], + [ + 0.7731935891169762 + ], + [ + 0.8962930952966316 + ], + [ + 0.8545871559633028 + ], + [ + 0.973043266390798 + ], + [ + 0.8475513005495156 + ], + [ + 0.8919753086419753 + ], + [ + 0.9230719517449376 + ], + [ + 0.9818181818181816 + ], + [ + 0.8724508253662056 + ], + [ + 0.7850116015543995 + ], + [ + 0.7799035733456022 + ], + [ + 0.7709127626361537 + ], + [ + 0.8079919101295913 + ], + [ + 0.767668950942458 + ], + [ + 0.8706501932048896 + ], + [ + 0.8797516915893117 + ], + [ + 0.8063085414053331 + ], + [ + 0.9356832150292386 + ], + [ + 0.8438519069076046 + ], + [ + 0.8284948236315168 + ], + [ + 0.9064297442948914 + ], + [ + 0.9731718245680656 + ], + [ + 0.8146948605443374 + ], + [ + 0.8586700336700335 + ], + [ + 0.7917861568922506 + ], + [ + 0.8919445048153332 + ], + [ + 0.9275512725475664 + ], + [ + 0.8749102030655429 + ], + [ + 0.7586973969785762 + ], + [ + 0.8582940089755703 + ], + [ + 0.8288372093023257 + ], + [ + 0.9457912457912456 + ], + [ + 0.9067894216205786 + ], + [ + 0.8854903716972683 + ], + [ + 0.7712402158145529 + ], + [ + 0.8514488517233563 + ], + [ + 0.8119647131227026 + ], + [ + 0.7960368686049766 + ], + [ + 0.8764803941254208 + ], + [ + 0.7593988263019269 + ], + [ + 0.8332839656913731 + ], + [ + 0.8409641575217711 + ], + [ + 0.7830059960631146 + ], + [ + 0.8189152639403684 + ], + [ + 0.7914909068376863 + ], + [ + 0.8521396824062815 + ], + [ + 0.9429498910675382 + ], + [ + 0.787554569047141 + ], + [ + 0.9170262364403312 + ], + [ + 0.8143114753878038 + ], + [ + 0.8129887361537077 + ], + [ + 0.9416562889165628 + ], + [ + 0.8249965343560833 + ], + [ + 0.8184361507912837 + ], + [ + 0.7583136897041756 + ], + [ + 0.8954939454973427 + ], + [ + 0.9669995060071396 + ], + [ + 0.7678622085216633 + ], + [ + 0.7965505290883048 + ], + [ + 0.8025926314878588 + ], + [ + 0.8861176478495414 + ], + [ + 0.9066317021702632 + ], + [ + 0.781819981750254 + ], + [ + 0.8492357350911255 + ], + [ + 0.925730625364325 + ], + [ + 0.7682652462041775 + ], + [ + 0.7697542997542998 + ], + [ + 0.9647167592568326 + ], + [ + 0.7591823779426875 + ], + [ + 0.9809290093211468 + ], + [ + 0.8217563751752737 + ], + [ + 0.7791177041387707 + ], + [ + 0.9954545454545456 + ], + [ + 0.8281880073317623 + ], + [ + 0.8580430671412884 + ], + [ + 0.9032397543084568 + ], + [ + 0.7617771431813454 + ], + [ + 0.7866182087539877 + ], + [ + 0.7593988263019269 + ], + [ + 0.7752390906012949 + ], + [ + 0.8085158042512651 + ], + [ + 0.8909560347514579 + ], + [ + 0.9051334791710912 + ], + [ + 0.9066317021702632 + ], + [ + 0.7803249362542886 + ], + [ + 0.8737365714482546 + ], + [ + 0.9248568831411556 + ], + [ + 0.8383783163850447 + ], + [ + 0.9706054674756964 + ], + [ + 0.7623802782704252 + ], + [ + 0.9687833580671199 + ], + [ + 0.7739714809841708 + ], + [ + 0.8782693798816119 + ], + [ + 0.860081980641546 + ], + [ + 0.8833857030636293 + ], + [ + 0.792475110421586 + ], + [ + 0.8157848104775258 + ], + [ + 0.8701372997711668 + ], + [ + 0.9563298076485244 + ], + [ + 0.8490800833801486 + ], + [ + 0.7888565809250084 + ], + [ + 0.7741636141636141 + ], + [ + 0.8401837065840431 + ], + [ + 0.9484588138867748 + ], + [ + 0.9176863587872164 + ], + [ + 0.8973789818590386 + ], + [ + 0.8252966318058891 + ], + [ + 0.7617771431813454 + ], + [ + 0.8289524716549913 + ], + [ + 0.8621233137385207 + ], + [ + 0.7908116150724073 + ], + [ + 0.9316463142933343 + ], + [ + 0.7524570024570024 + ], + [ + 0.8718713242231872 + ], + [ + 0.7728726352092181 + ], + [ + 0.7603048533875102 + ], + [ + 0.973201661164624 + ], + [ + 0.8391298861361308 + ], + [ + 0.7893505683000169 + ], + [ + 0.8608078181360623 + ], + [ + 0.8171099429462456 + ], + [ + 0.8507008302142539 + ], + [ + 0.7796040841350689 + ], + [ + 0.8137991281050442 + ], + [ + 0.8701372997711668 + ], + [ + 0.7906337827256119 + ], + [ + 0.9493296120831972 + ], + [ + 0.782031346414908 + ], + [ + 0.7993113894954217 + ], + [ + 0.7720161433138532 + ], + [ + 0.864620467059047 + ], + [ + 0.8900050041356494 + ], + [ + 0.84746622922539 + ], + [ + 0.9115157598761456 + ], + [ + 0.9054424800276306 + ], + [ + 0.830044253645252 + ], + [ + 0.9288938029152748 + ], + [ + 0.8783604524820522 + ], + [ + 0.7944363835998364 + ], + [ + 0.7921163153910715 + ], + [ + 0.7869039663743268 + ], + [ + 0.948066117973837 + ], + [ + 0.9230788696114616 + ], + [ + 0.7965825732022186 + ], + [ + 0.7641898999679713 + ], + [ + 0.7858832626449197 + ], + [ + 0.8508778496367884 + ], + [ + 0.7802946460653972 + ], + [ + 0.7884721011749333 + ], + [ + 0.9513173145378848 + ], + [ + 0.8649568301570332 + ], + [ + 0.7764651372019794 + ], + [ + 0.8624508476571697 + ], + [ + 0.7631497975708502 + ], + [ + 0.838327526611037 + ], + [ + 0.8166721221205311 + ], + [ + 0.8852917218205886 + ], + [ + 0.763935088255619 + ], + [ + 0.849984522961002 + ], + [ + 0.8818076679096488 + ], + [ + 0.7698644841737025 + ], + [ + 0.8836658805318403 + ], + [ + 0.9201199939290072 + ], + [ + 0.8893648150618828 + ], + [ + 0.8891377897432868 + ], + [ + 0.8205353126405759 + ], + [ + 0.8024182735874719 + ], + [ + 0.922961632460186 + ], + [ + 0.946516510443614 + ], + [ + 0.8942981283868459 + ], + [ + 0.8132787513211815 + ], + [ + 0.9842229467473992 + ], + [ + 0.983927829355058 + ], + [ + 0.9897436575227496 + ], + [ + 0.7789928908269387 + ], + [ + 0.9491102207390418 + ], + [ + 0.8027373398034093 + ], + [ + 0.8097807158117007 + ], + [ + 0.7742275740436659 + ], + [ + 0.8269035371638741 + ], + [ + 0.8164279646777108 + ], + [ + 0.7959065093927479 + ], + [ + 0.9299044396563476 + ], + [ + 0.9815561030337692 + ], + [ + 0.8847353302545712 + ], + [ + 0.8534614846726633 + ], + [ + 0.8781863560189622 + ], + [ + 0.9215082393282026 + ], + [ + 0.8660956368114106 + ], + [ + 0.9778877366568356 + ], + [ + 0.8883570187308942 + ], + [ + 0.8645713114309883 + ], + [ + 0.9608961698823448 + ], + [ + 0.7504350893637566 + ], + [ + 0.7899138991389913 + ], + [ + 0.9237157509601476 + ], + [ + 0.8085999198472382 + ], + [ + 0.9842229467473992 + ], + [ + 0.7915641555108558 + ], + [ + 0.9869637610219488 + ], + [ + 0.8388856048166393 + ], + [ + 0.9083168071393158 + ], + [ + 0.996947496947497 + ], + [ + 0.836399552488273 + ], + [ + 0.8254759949956995 + ], + [ + 0.8054112554112555 + ], + [ + 0.8315151515151515 + ], + [ + 0.9072515573214316 + ], + [ + 0.8455703241525074 + ], + [ + 0.8837147279244052 + ], + [ + 0.992492576897818 + ], + [ + 0.7771153106793246 + ], + [ + 0.9632800296944952 + ], + [ + 0.8751296156972389 + ], + [ + 0.9439627106557767 + ], + [ + 0.7599245853190747 + ], + [ + 0.948022748326122 + ], + [ + 0.797922077922078 + ], + [ + 0.8079059133534838 + ], + [ + 0.9002093642315044 + ], + [ + 0.9417677188802858 + ], + [ + 0.9120792735085574 + ], + [ + 0.9325279623513651 + ], + [ + 0.9765978165772758 + ], + [ + 0.9783368141256884 + ], + [ + 0.803590017884114 + ], + [ + 0.8886194359553156 + ], + [ + 0.9424689576609075 + ], + [ + 0.8695613682942084 + ], + [ + 0.9090909090909088 + ], + [ + 0.8277566532211718 + ], + [ + 0.7800435531915323 + ], + [ + 0.9027223454052724 + ], + [ + 0.8465029384806168 + ], + [ + 0.8272613669834734 + ], + [ + 0.8224835092471747 + ], + [ + 0.7714797416324134 + ], + [ + 0.8924773755936107 + ], + [ + 0.9954545454545456 + ], + [ + 0.8217563751752737 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8019358454012121 + ], + [ + 0.8434706308388399 + ], + [ + 0.8017627702025453 + ], + [ + 0.7916704805491989 + ], + [ + 0.8995057307947333 + ], + [ + 0.84746622922539 + ], + [ + 0.8294442768393521 + ], + [ + 0.90276124713408 + ], + [ + 0.996221188255952 + ], + [ + 0.8143962421732175 + ], + [ + 0.980394402239746 + ], + [ + 0.9514741813067672 + ], + [ + 0.7581308936708563 + ], + [ + 0.9531775071717112 + ], + [ + 0.9001377198115018 + ], + [ + 0.8004102325039334 + ], + [ + 0.8735155491890395 + ], + [ + 0.8677050513455755 + ], + [ + 0.8445527067336185 + ], + [ + 0.9636363636363636 + ], + [ + 0.937103645050706 + ], + [ + 0.9694957490472002 + ], + [ + 0.9822495603003196 + ], + [ + 0.901072927769024 + ], + [ + 0.9510994238916862 + ], + [ + 0.9362530022505056 + ], + [ + 0.8219385637193856 + ], + [ + 0.9996947496947498 + ], + [ + 0.7644937203650517 + ], + [ + 0.758657620282485 + ], + [ + 0.8385429638854296 + ], + [ + 0.8490535457456533 + ], + [ + 0.7757575757575756 + ], + [ + 0.999122807017544 + ], + [ + 0.8217563751752737 + ], + [ + 0.8636588686952739 + ], + [ + 0.8019358454012121 + ], + [ + 0.8455800687861758 + ], + [ + 0.8017627702025453 + ], + [ + 0.7768542199488491 + ], + [ + 0.8884642600370833 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.9926207992132684 + ], + [ + 0.9493296120831972 + ], + [ + 0.8445196063887654 + ], + [ + 0.9531775071717112 + ], + [ + 0.8571885156262036 + ], + [ + 0.8838874680306906 + ], + [ + 0.8891221903616687 + ], + [ + 0.9954545454545456 + ], + [ + 0.937103645050706 + ], + [ + 0.7996865517613174 + ], + [ + 0.9851370084561714 + ], + [ + 0.788353581901969 + ], + [ + 0.8469074304690744 + ], + [ + 0.8276687406622917 + ], + [ + 0.8844613609427292 + ], + [ + 0.9313089878738736 + ], + [ + 0.8709970502763632 + ], + [ + 0.8035084471465264 + ], + [ + 1 + ], + [ + 0.932761391647538 + ], + [ + 0.8392430039425867 + ], + [ + 0.945216049382716 + ], + [ + 0.7537357583191043 + ], + [ + 0.9719327874122964 + ], + [ + 0.9954545454545456 + ], + [ + 0.8217563751752737 + ], + [ + 0.8348054919908466 + ], + [ + 0.8788633070234552 + ], + [ + 0.8019358454012121 + ], + [ + 0.8725525105676494 + ], + [ + 0.8033211036934772 + ], + [ + 0.7916704805491989 + ], + [ + 0.8547301773579906 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.974712351554919 + ], + [ + 0.9500266403708978 + ], + [ + 0.951008471157725 + ], + [ + 0.7628108176190548 + ], + [ + 0.9531775071717112 + ], + [ + 0.7716841489148686 + ], + [ + 0.9391877740213088 + ], + [ + 0.8677050513455755 + ], + [ + 0.8967939861988315 + ], + [ + 0.937103645050706 + ], + [ + 0.8551520659154248 + ], + [ + 0.9851370084561714 + ], + [ + 0.8893524283935244 + ], + [ + 0.8733160901863194 + ], + [ + 0.8916710007549704 + ], + [ + 0.9391302151973808 + ], + [ + 0.9965169569202568 + ], + [ + 0.9136739322359624 + ], + [ + 0.9206651788481804 + ], + [ + 0.8553134080531343 + ], + [ + 0.8530611929128231 + ], + [ + 0.9099770642201834 + ], + [ + 0.949825316001485 + ], + [ + 0.7714797416324134 + ], + [ + 0.8862820694208641 + ], + [ + 0.9970690618433798 + ], + [ + 0.7726587251245717 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8462714704650187 + ], + [ + 0.7559911987169416 + ], + [ + 0.7902969671765014 + ], + [ + 0.8017627702025453 + ], + [ + 0.7916704805491989 + ], + [ + 0.9312885573197214 + ], + [ + 0.8580430671412884 + ], + [ + 0.84746622922539 + ], + [ + 0.7598160347464082 + ], + [ + 0.870252992498577 + ], + [ + 0.992671182389769 + ], + [ + 0.9862539184209972 + ], + [ + 0.9514741813067672 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.948072129659398 + ], + [ + 0.8677050513455755 + ], + [ + 0.880780406807804 + ], + [ + 0.9991101223581756 + ], + [ + 0.937103645050706 + ], + [ + 0.9851370084561714 + ], + [ + 0.7606385491732779 + ], + [ + 0.9822495603003196 + ], + [ + 0.9376831513747739 + ], + [ + 0.9027223454052724 + ], + [ + 0.9526427685969672 + ], + [ + 0.9236004688155952 + ], + [ + 1 + ], + [ + 0.8401802481694282 + ], + [ + 0.9773557492735576 + ], + [ + 0.8553134080531343 + ], + [ + 0.8399280642635364 + ], + [ + 0.9943501037415146 + ], + [ + 0.9991101224022378 + ], + [ + 0.7643053750286719 + ], + [ + 0.8874398840030436 + ], + [ + 1 + ], + [ + 0.8119189817879228 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.9908884770316014 + ], + [ + 0.81573077081821 + ], + [ + 0.9677933860111212 + ], + [ + 0.8398311720625258 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.8985858297326429 + ], + [ + 0.992671182389769 + ], + [ + 0.7506209000762774 + ], + [ + 0.9848040830545792 + ], + [ + 0.9514741813067672 + ], + [ + 0.8622230550415498 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9358184932420454 + ], + [ + 0.8831178664041944 + ], + [ + 0.8571885156262036 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9414868925909092 + ], + [ + 0.9851370084561714 + ], + [ + 0.9822495603003196 + ], + [ + 0.9355427814530765 + ], + [ + 0.7598493905068002 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.8534197605902789 + ], + [ + 0.9090909090909088 + ], + [ + 0.8755816117625161 + ], + [ + 0.986521739130435 + ], + [ + 0.7574533557466553 + ], + [ + 0.9090909090909088 + ], + [ + 0.9891304347826086 + ], + [ + 0.8981981278894755 + ], + [ + 0.8661577367496762 + ], + [ + 0.9416316165688026 + ], + [ + 0.8216969791585356 + ], + [ + 0.7977855477855479 + ], + [ + 0.7730257320319432 + ], + [ + 0.8155778185409907 + ], + [ + 0.806941459089035 + ], + [ + 0.8844523908637408 + ], + [ + 0.9819906110654324 + ], + [ + 0.9267146997929604 + ], + [ + 0.930689847575993 + ], + [ + 0.9272543317870856 + ], + [ + 0.9161147326586146 + ], + [ + 0.9592356458451337 + ], + [ + 0.8911833569094192 + ], + [ + 0.8682065217391305 + ], + [ + 0.8974752586594693 + ], + [ + 0.9606049878058373 + ], + [ + 0.9119804816878757 + ], + [ + 0.8291255500470529 + ], + [ + 0.9571129080563042 + ], + [ + 0.9252515037745752 + ], + [ + 0.8839422379842073 + ], + [ + 0.8731842629559791 + ], + [ + 0.956227485420032 + ], + [ + 0.9623460662981315 + ], + [ + 0.9060336327100176 + ], + [ + 0.9466681074558329 + ], + [ + 0.9773557492735576 + ], + [ + 0.8385429638854296 + ], + [ + 0.7548029253094148 + ], + [ + 0.9943501037415146 + ], + [ + 0.9991101224022378 + ], + [ + 0.7643053750286719 + ], + [ + 0.836061944840571 + ], + [ + 1 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8310447482966568 + ], + [ + 0.9416562889165628 + ], + [ + 0.8111421417088542 + ], + [ + 0.9107768322387694 + ], + [ + 0.7741435607326606 + ], + [ + 0.8710025282890884 + ], + [ + 0.7867084930870223 + ], + [ + 0.90276124713408 + ], + [ + 0.992671182389769 + ], + [ + 0.9470902930560504 + ], + [ + 0.9514741813067672 + ], + [ + 0.9531775071717112 + ], + [ + 0.9531702386026508 + ], + [ + 0.79960452652037 + ], + [ + 0.9133288665033964 + ], + [ + 0.842339274227116 + ], + [ + 0.8546919803903434 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.8941624677316798 + ], + [ + 0.9851370084561714 + ], + [ + 0.7831708752610594 + ], + [ + 0.9822495603003196 + ], + [ + 0.9315717953934872 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9773557492735576 + ], + [ + 0.7647361516158825 + ], + [ + 0.95942299709423 + ], + [ + 0.8553134080531343 + ], + [ + 0.8335272614441825 + ], + [ + 0.9943501037415146 + ], + [ + 0.9991101224022378 + ], + [ + 0.7643053750286719 + ], + [ + 0.8924773755936107 + ], + [ + 1 + ], + [ + 0.8591091351396698 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.9416562889165628 + ], + [ + 0.7916704805491989 + ], + [ + 0.950603792184588 + ], + [ + 0.8460152283133167 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.8881896291715989 + ], + [ + 0.992671182389769 + ], + [ + 0.7614851364851365 + ], + [ + 0.9848040830545792 + ], + [ + 0.9514741813067672 + ], + [ + 0.8605291005291005 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.8888976303496794 + ], + [ + 0.8637008456171156 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.941303736239802 + ], + [ + 0.9851370084561714 + ], + [ + 0.9822495603003196 + ], + [ + 0.9400644385653472 + ], + [ + 0.7589913068467564 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.8297199580886333 + ], + [ + 0.9090909090909088 + ], + [ + 0.8388354220573428 + ], + [ + 0.9440241802550384 + ], + [ + 0.8417508417508417 + ], + [ + 0.8349403911738127 + ], + [ + 0.7751196172248803 + ], + [ + 0.9824561403508774 + ], + [ + 0.8289326387041065 + ], + [ + 0.9363636363636364 + ], + [ + 0.8484963605932038 + ], + [ + 0.7878050123409911 + ], + [ + 0.7845412529955496 + ], + [ + 0.8978080587826363 + ], + [ + 0.8211938237064843 + ], + [ + 0.903572413997316 + ], + [ + 0.9759433010492332 + ], + [ + 0.930358431350264 + ], + [ + 0.773824015559919 + ], + [ + 0.9069851553477366 + ], + [ + 0.859207814594905 + ], + [ + 0.9063976387881104 + ], + [ + 0.982273978187496 + ], + [ + 0.8258268246116464 + ], + [ + 0.8378181818181819 + ], + [ + 0.8545698249141326 + ], + [ + 0.7874000986198109 + ], + [ + 0.880561913058948 + ], + [ + 0.9424238274563508 + ], + [ + 0.99359825065929 + ], + [ + 0.94959978379972 + ], + [ + 0.8034795384843756 + ], + [ + 0.8256241274761228 + ], + [ + 0.7845614802232331 + ], + [ + 0.8780499051174888 + ], + [ + 0.9016573566020095 + ], + [ + 0.996521739130435 + ], + [ + 0.8072721768598793 + ], + [ + 0.8757575757575757 + ], + [ + 0.996521739130435 + ], + [ + 0.8052552577805061 + ], + [ + 0.8262184063662379 + ], + [ + 0.9518172850747404 + ], + [ + 0.8509007531737288 + ], + [ + 0.8092916186648054 + ], + [ + 0.8448511242895973 + ], + [ + 0.8221400000560604 + ], + [ + 0.8780499051174888 + ], + [ + 0.8585150396488364 + ], + [ + 0.758257861793882 + ], + [ + 0.9127647109937574 + ], + [ + 0.8185902535630862 + ], + [ + 0.7647917209753416 + ], + [ + 0.8892853956679526 + ], + [ + 0.9240400548084888 + ], + [ + 0.9264066297227525 + ], + [ + 0.8454089009226885 + ], + [ + 0.8738453625296769 + ], + [ + 0.8228190336839921 + ], + [ + 0.9964912280701756 + ], + [ + 0.8440081063581091 + ], + [ + 0.8488300159492314 + ], + [ + 0.8886054092841905 + ], + [ + 0.9651624660242156 + ], + [ + 0.8337216929170275 + ], + [ + 0.8550497957993816 + ], + [ + 0.9818181818181816 + ], + [ + 0.9104377104377104 + ], + [ + 0.9930465133925186 + ], + [ + 0.8868917142282169 + ], + [ + 0.7519552584840934 + ], + [ + 0.9616732614626587 + ], + [ + 0.996521739130435 + ], + [ + 0.7508148487315153 + ], + [ + 0.9090909090909088 + ], + [ + 0.999122807017544 + ], + [ + 0.9090273199933117 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.8507462616258913 + ], + [ + 0.9136683713678436 + ], + [ + 0.8674088334090595 + ], + [ + 0.8594701086956521 + ], + [ + 0.908313797791604 + ], + [ + 0.9891493795585866 + ], + [ + 0.7642455368060652 + ], + [ + 0.8891663542156248 + ], + [ + 0.924175824175824 + ], + [ + 0.9395716586151368 + ], + [ + 0.9484409722518364 + ], + [ + 0.9641388361295768 + ], + [ + 0.9059750088690924 + ], + [ + 0.999122807017544 + ], + [ + 0.9047503889161738 + ], + [ + 0.9033269863614518 + ], + [ + 0.9033269863614518 + ], + [ + 0.8658678644015689 + ], + [ + 0.9443498545350396 + ], + [ + 0.8906789023521027 + ], + [ + 0.999122807017544 + ], + [ + 0.9551184069702588 + ], + [ + 0.7562762148337596 + ], + [ + 0.9773557492735576 + ], + [ + 0.8409090909090906 + ], + [ + 0.9960831758177524 + ], + [ + 0.9978260869565218 + ], + [ + 0.7508148487315153 + ], + [ + 0.8490484481225223 + ], + [ + 0.999122807017544 + ], + [ + 0.9090273199933117 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.8507462616258913 + ], + [ + 0.9416562889165628 + ], + [ + 0.786316100259506 + ], + [ + 0.7917643088450543 + ], + [ + 0.8674088334090595 + ], + [ + 0.7940883223309813 + ], + [ + 0.8392760078156812 + ], + [ + 0.908313797791604 + ], + [ + 0.9891493795585866 + ], + [ + 0.766483106515241 + ], + [ + 0.8959840947127665 + ], + [ + 0.8891663542156248 + ], + [ + 0.924175824175824 + ], + [ + 0.9395716586151368 + ], + [ + 0.9484409722518364 + ], + [ + 0.9641388361295768 + ], + [ + 0.974712351554919 + ], + [ + 0.999122807017544 + ], + [ + 0.9047503889161738 + ], + [ + 0.9033269863614518 + ], + [ + 0.9773557492735576 + ], + [ + 0.8895761362866625 + ], + [ + 0.9748201493966672 + ], + [ + 0.9033269863614518 + ], + [ + 0.7646806860332477 + ], + [ + 0.8800026263331926 + ], + [ + 0.9443498545350396 + ], + [ + 0.9956140350877192 + ], + [ + 0.932409671284977 + ], + [ + 0.999122807017544 + ], + [ + 0.9551184069702588 + ], + [ + 0.7562762148337596 + ], + [ + 0.9833457647662114 + ], + [ + 0.8409090909090906 + ], + [ + 0.8227240115332337 + ], + [ + 0.9947765595830976 + ], + [ + 0.9978260869565218 + ], + [ + 0.7508148487315153 + ], + [ + 0.8569860866157161 + ], + [ + 0.999122807017544 + ], + [ + 0.9090273199933117 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.79241896667796 + ], + [ + 0.8521396824062815 + ], + [ + 0.9416562889165628 + ], + [ + 0.8683896350563016 + ], + [ + 0.783774936061381 + ], + [ + 0.936963017728694 + ], + [ + 0.8674088334090595 + ], + [ + 0.84746622922539 + ], + [ + 0.7880796625738841 + ], + [ + 0.908313797791604 + ], + [ + 0.9891493795585866 + ], + [ + 0.766483106515241 + ], + [ + 0.8356411205726275 + ], + [ + 0.8959840947127665 + ], + [ + 0.8891663542156248 + ], + [ + 0.924175824175824 + ], + [ + 0.9395716586151368 + ], + [ + 0.9484409722518364 + ], + [ + 0.9641388361295768 + ], + [ + 0.8643546462063086 + ], + [ + 0.9753454579899592 + ], + [ + 0.999122807017544 + ], + [ + 0.9047503889161738 + ], + [ + 0.9033269863614518 + ], + [ + 0.9851370084561714 + ], + [ + 0.9748201493966672 + ], + [ + 0.9033269863614518 + ], + [ + 0.7684710351377019 + ], + [ + 0.8800026263331926 + ], + [ + 0.9443498545350396 + ], + [ + 0.999122807017544 + ], + [ + 0.90662100456621 + ], + [ + 0.999122807017544 + ], + [ + 0.9551184069702588 + ], + [ + 0.7562762148337596 + ], + [ + 0.9833457647662114 + ], + [ + 0.8409090909090906 + ], + [ + 0.7928783407950074 + ], + [ + 0.8919753086419753 + ], + [ + 0.9978260869565218 + ], + [ + 0.7508148487315153 + ], + [ + 0.8490459410817468 + ], + [ + 0.999122807017544 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.79241896667796 + ], + [ + 0.8507462616258913 + ], + [ + 0.9416562889165628 + ], + [ + 0.7684372454295727 + ], + [ + 0.936963017728694 + ], + [ + 0.8674088334090595 + ], + [ + 0.84746622922539 + ], + [ + 0.9891493795585866 + ], + [ + 0.984323635061576 + ], + [ + 0.9353365093463604 + ], + [ + 0.924175824175824 + ], + [ + 0.9395716586151368 + ], + [ + 0.963346594676518 + ], + [ + 0.8643546462063086 + ], + [ + 0.9047503889161738 + ], + [ + 0.9033269863614518 + ], + [ + 0.9851370084561714 + ], + [ + 0.9447497776699816 + ], + [ + 0.9787330446229278 + ], + [ + 0.9033269863614518 + ], + [ + 0.7646806860332477 + ], + [ + 0.8800026263331926 + ], + [ + 0.9443498545350396 + ], + [ + 0.8849247249134843 + ], + [ + 0.90662100456621 + ], + [ + 0.8830204170152121 + ], + [ + 0.7610810810810811 + ], + [ + 0.918761685155179 + ], + [ + 0.849564043730598 + ], + [ + 0.9295382499658214 + ], + [ + 0.8737807294339347 + ], + [ + 0.7524570024570024 + ], + [ + 0.8764855553630885 + ], + [ + 0.8881376171456311 + ], + [ + 0.8144653876435873 + ], + [ + 0.7569047619047621 + ], + [ + 0.9011440242078431 + ], + [ + 0.9721444518798692 + ], + [ + 0.8580395542059102 + ], + [ + 0.7556448396101646 + ], + [ + 0.8943463267997412 + ], + [ + 0.7708422347381368 + ], + [ + 0.8312540974287805 + ], + [ + 0.927155204148788 + ], + [ + 0.9242507691836442 + ], + [ + 0.8039533480013239 + ], + [ + 0.9253381976987183 + ], + [ + 0.9487056115959976 + ], + [ + 0.996333638863428 + ], + [ + 0.9061372721317869 + ], + [ + 0.8039194902068957 + ], + [ + 0.9773557492735576 + ], + [ + 0.8553134080531343 + ], + [ + 0.8316014689297133 + ], + [ + 0.9590943683409436 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8958436239049176 + ], + [ + 0.9997983870967744 + ], + [ + 0.8210917926103164 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.9416562889165628 + ], + [ + 0.7854916126103976 + ], + [ + 0.8580430671412884 + ], + [ + 0.8452862219584866 + ], + [ + 0.90276124713408 + ], + [ + 0.992671182389769 + ], + [ + 0.9514741813067672 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.856399568810636 + ], + [ + 0.9607331879409255 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9414868925909092 + ], + [ + 0.8733160901863194 + ], + [ + 0.8902640300903737 + ], + [ + 0.9822495603003196 + ], + [ + 0.7724990486505474 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9505705348293196 + ], + [ + 0.890082588516155 + ], + [ + 0.9271888077994948 + ], + [ + 0.7647361516158825 + ], + [ + 0.9773557492735576 + ], + [ + 0.8553134080531343 + ], + [ + 0.9590943683409436 + ], + [ + 0.9991101224022378 + ], + [ + 0.8219385637193856 + ], + [ + 0.8478847935907573 + ], + [ + 0.9954545454545456 + ], + [ + 0.8210917926103164 + ], + [ + 0.8995898027497777 + ], + [ + 0.9479012434878824 + ], + [ + 0.8019358454012121 + ], + [ + 0.9416562889165628 + ], + [ + 0.8188858158239665 + ], + [ + 0.8055002075550022 + ], + [ + 0.8580430671412884 + ], + [ + 0.84746622922539 + ], + [ + 0.895416975651959 + ], + [ + 0.992671182389769 + ], + [ + 0.8356411205726275 + ], + [ + 0.8716815273032167 + ], + [ + 0.9429977116704804 + ], + [ + 0.8677050513455755 + ], + [ + 0.9607331879409255 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9414868925909092 + ], + [ + 0.9240556247405564 + ], + [ + 0.8819809439955775 + ], + [ + 0.9822495603003196 + ], + [ + 0.7999671002057498 + ], + [ + 0.9413092648977816 + ], + [ + 0.9954545454545456 + ], + [ + 0.9326966113459272 + ], + [ + 0.7838827173142349 + ], + [ + 0.9271888077994948 + ], + [ + 0.8469712140023324 + ], + [ + 0.9773557492735576 + ], + [ + 0.8553134080531343 + ], + [ + 0.8394616500465105 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8958436239049176 + ], + [ + 0.9994500458295142 + ], + [ + 0.8184361507912837 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8019358454012121 + ], + [ + 0.8089287811425218 + ], + [ + 0.8553636363636363 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.84746622922539 + ], + [ + 0.8181109552382406 + ], + [ + 0.8966477542865559 + ], + [ + 0.992671182389769 + ], + [ + 0.9775526793347032 + ], + [ + 0.9514741813067672 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9341361232572516 + ], + [ + 0.7767581669691469 + ], + [ + 0.8677050513455755 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9230017232221136 + ], + [ + 0.9851370084561714 + ], + [ + 0.8553134080531343 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.9824561403508774 + ], + [ + 0.9505705348293196 + ], + [ + 0.8909999999999999 + ], + [ + 0.8933113072408856 + ], + [ + 0.7647361516158825 + ], + [ + 0.9929947676208064 + ], + [ + 0.8598347107438016 + ], + [ + 0.8490800833801486 + ], + [ + 0.9947856385396152 + ], + [ + 0.9990150209905604 + ], + [ + 0.7707081956166206 + ], + [ + 0.8952232922255726 + ], + [ + 1 + ], + [ + 0.8216057600038706 + ], + [ + 0.9000234404536862 + ], + [ + 1 + ], + [ + 0.8075842215036355 + ], + [ + 0.946198347107438 + ], + [ + 0.8021928166351607 + ], + [ + 0.7928741020793951 + ], + [ + 0.9344444444444444 + ], + [ + 0.8578858011832347 + ], + [ + 0.8483379501385041 + ], + [ + 0.7871436798157215 + ], + [ + 0.9025957850286672 + ], + [ + 0.9928936489808848 + ], + [ + 0.9846235837724948 + ], + [ + 0.9527305856232412 + ], + [ + 0.9434321361058602 + ], + [ + 0.9373115797727772 + ], + [ + 0.9350049149338372 + ], + [ + 0.8705701323251417 + ], + [ + 0.986135349716446 + ], + [ + 1 + ], + [ + 0.9357441792403746 + ], + [ + 0.941314332676578 + ], + [ + 0.9860141582025238 + ], + [ + 0.9826843100189036 + ], + [ + 0.9826843100189036 + ], + [ + 0.8050748795127288 + ], + [ + 0.884575512524494 + ], + [ + 0.9417436672967864 + ], + [ + 0.9937805570643936 + ], + [ + 0.9503788875440718 + ], + [ + 1 + ], + [ + 0.9245562130177516 + ], + [ + 0.7654094979252105 + ], + [ + 1 + ], + [ + 0.9090909090909088 + ], + [ + 0.8238490179500522 + ], + [ + 0.9637205387205386 + ], + [ + 0.9819008264462812 + ], + [ + 0.7757575757575756 + ], + [ + 0.8216057600038706 + ], + [ + 0.9000234404536862 + ], + [ + 1 + ], + [ + 0.8075842215036355 + ], + [ + 0.9217516347489824 + ], + [ + 0.799080529300567 + ], + [ + 0.9344444444444444 + ], + [ + 0.8948549687825181 + ], + [ + 0.9721268082486919 + ], + [ + 0.8409090909090906 + ], + [ + 0.9499201807471164 + ], + [ + 0.9527305856232412 + ], + [ + 0.9434321361058602 + ], + [ + 0.9206147765314164 + ], + [ + 0.9350049149338372 + ], + [ + 0.8640914933837429 + ], + [ + 0.9964943059402892 + ], + [ + 0.816272967863894 + ], + [ + 0.9860141582025238 + ], + [ + 0.928736342351717 + ], + [ + 0.9792393194706994 + ], + [ + 0.8994380853277835 + ], + [ + 0.9292599608634763 + ], + [ + 1 + ], + [ + 0.8362207611956006 + ], + [ + 0.9902353003770102 + ], + [ + 0.895080529300567 + ], + [ + 0.7602465480841565 + ], + [ + 0.9929947676208064 + ], + [ + 0.8598347107438016 + ], + [ + 0.8490800833801486 + ], + [ + 0.9947856385396152 + ], + [ + 0.9990150209905604 + ], + [ + 0.7707081956166206 + ], + [ + 0.8952232922255726 + ], + [ + 1 + ], + [ + 0.8216057600038706 + ], + [ + 0.9000234404536862 + ], + [ + 1 + ], + [ + 0.8011324661116951 + ], + [ + 0.8075842215036355 + ], + [ + 0.946198347107438 + ], + [ + 0.8021928166351607 + ], + [ + 0.7928741020793951 + ], + [ + 0.9344444444444444 + ], + [ + 0.8578858011832347 + ], + [ + 0.8483379501385041 + ], + [ + 0.9025957850286672 + ], + [ + 0.9928936489808848 + ], + [ + 0.9846235837724948 + ], + [ + 0.951299790877642 + ], + [ + 0.9527305856232412 + ], + [ + 0.9434321361058602 + ], + [ + 0.9396223310702196 + ], + [ + 0.9350049149338372 + ], + [ + 0.8705701323251417 + ], + [ + 0.986135349716446 + ], + [ + 1 + ], + [ + 0.9357441792403746 + ], + [ + 0.941314332676578 + ], + [ + 0.9860141582025238 + ], + [ + 0.9826843100189036 + ], + [ + 0.8050748795127288 + ], + [ + 0.884575512524494 + ], + [ + 0.9417436672967864 + ], + [ + 1 + ], + [ + 0.9503788875440718 + ], + [ + 1 + ], + [ + 0.9245562130177516 + ], + [ + 0.7654094979252105 + ], + [ + 0.9819008264462812 + ], + [ + 0.8598347107438016 + ], + [ + 0.8131334593572779 + ], + [ + 0.7690913021991601 + ], + [ + 0.9990150209905604 + ], + [ + 0.7707081956166206 + ], + [ + 1 + ], + [ + 0.8216057600038706 + ], + [ + 0.9000234404536862 + ], + [ + 1 + ], + [ + 0.8475686570924664 + ], + [ + 0.9583379501385041 + ], + [ + 0.8578858011832347 + ], + [ + 0.8245991597474406 + ], + [ + 0.8852652399934414 + ], + [ + 0.9928936489808848 + ], + [ + 0.81331932016418 + ], + [ + 0.8180035444849115 + ], + [ + 0.8711111111111112 + ], + [ + 0.7763165596167769 + ], + [ + 0.9350049149338372 + ], + [ + 1 + ], + [ + 0.9349642299687824 + ], + [ + 0.9860141582025238 + ], + [ + 0.9826843100189036 + ], + [ + 0.884575512524494 + ], + [ + 0.9417436672967864 + ], + [ + 0.996520316855316 + ], + [ + 1 + ], + [ + 0.9245562130177516 + ], + [ + 0.7654094979252105 + ], + [ + 0.8580139372822299 + ], + [ + 0.9830434782608694 + ], + [ + 0.8893524283935244 + ], + [ + 0.9954545454545456 + ], + [ + 0.9159300003279972 + ], + [ + 0.8181818181818182 + ], + [ + 0.7500000000000002 + ], + [ + 0.8938595877462214 + ], + [ + 0.9042008986509023 + ], + [ + 0.957287033071265 + ], + [ + 0.90234375 + ], + [ + 0.9223350132140808 + ], + [ + 0.8347334184691517 + ], + [ + 0.9207931801334324 + ], + [ + 0.8467468534925462 + ], + [ + 0.8855595367052747 + ], + [ + 0.7719095384164608 + ], + [ + 0.89266067021096 + ], + [ + 0.8763416775577225 + ], + [ + 0.9545454545454548 + ], + [ + 0.911370421730973 + ], + [ + 0.8444352108196725 + ], + [ + 0.889643133181266 + ], + [ + 0.7993302204531539 + ], + [ + 0.9838876285414652 + ], + [ + 0.981598371482293 + ], + [ + 0.8584226317602837 + ], + [ + 0.9320791500266458 + ], + [ + 0.9545454545454548 + ], + [ + 0.8557709287004716 + ], + [ + 0.8980542801375592 + ], + [ + 0.8619577717071254 + ], + [ + 0.9666063921681544 + ], + [ + 0.9199136660983444 + ], + [ + 0.954105606965682 + ], + [ + 0.8784735812133071 + ], + [ + 0.8146320346320346 + ], + [ + 0.8985141146494671 + ], + [ + 0.810999117201063 + ], + [ + 0.8039130434782609 + ], + [ + 0.8999203521041261 + ], + [ + 0.9046926758835667 + ], + [ + 0.9502900712294152 + ], + [ + 0.912840025574134 + ], + [ + 0.9565342960288808 + ], + [ + 0.908022550608102 + ], + [ + 0.7889688874990176 + ], + [ + 0.9947765595830976 + ], + [ + 0.9939130434782611 + ], + [ + 0.7541751489851583 + ], + [ + 0.8333567358870508 + ], + [ + 0.9077642484940728 + ], + [ + 0.89655436679566 + ], + [ + 0.8211280822082608 + ], + [ + 0.7590923827347885 + ], + [ + 0.891518378456824 + ], + [ + 0.9280303030303032 + ], + [ + 0.7756218002597997 + ], + [ + 0.8987662245043503 + ], + [ + 0.8668602157771254 + ], + [ + 0.801511385184123 + ], + [ + 0.9878450565293272 + ], + [ + 0.8198448448448448 + ], + [ + 0.8761625640592721 + ], + [ + 0.9331326790672908 + ], + [ + 0.8095673945542065 + ], + [ + 0.9692603418275338 + ], + [ + 0.8574834373128851 + ], + [ + 0.984385006449655 + ], + [ + 0.996521739130435 + ], + [ + 0.7993577556225364 + ], + [ + 0.904913008013858 + ], + [ + 0.908522355957097 + ], + [ + 0.8922324960716342 + ], + [ + 0.9027775208335084 + ], + [ + 0.8863636363636365 + ], + [ + 0.893013468013468 + ], + [ + 0.8159728122344945 + ], + [ + 0.94712477473252 + ], + [ + 0.9501526150902738 + ], + [ + 0.9360797940299664 + ], + [ + 0.7541751489851583 + ], + [ + 0.7667799490229397 + ], + [ + 0.7911852166525064 + ], + [ + 0.8545853753924373 + ], + [ + 0.8991709050477996 + ], + [ + 0.9636363636363636 + ], + [ + 0.8911305509993319 + ], + [ + 0.9280303030303032 + ], + [ + 0.7559479094211299 + ], + [ + 0.9484006454368564 + ], + [ + 0.8396074640434158 + ], + [ + 0.7602400762912697 + ], + [ + 0.8236580766813324 + ], + [ + 0.8818556180808311 + ], + [ + 0.9202063402841564 + ], + [ + 0.8401634217686861 + ], + [ + 0.9479922753053344 + ], + [ + 0.9495079748317234 + ], + [ + 0.9185105083088952 + ], + [ + 0.8116459489241595 + ], + [ + 0.9143375393297604 + ], + [ + 0.9496030156557552 + ], + [ + 0.8340405157441468 + ], + [ + 0.904913008013858 + ], + [ + 0.8855604489099591 + ], + [ + 0.8008650649412102 + ], + [ + 0.917917299639148 + ], + [ + 0.880492540216932 + ], + [ + 0.9964912280701756 + ], + [ + 0.8884778012684991 + ], + [ + 0.9772727272727272 + ], + [ + 0.9305426817265549 + ], + [ + 0.7903598392225994 + ], + [ + 0.913366781280282 + ], + [ + 0.9096320346320348 + ], + [ + 0.9904188832431408 + ], + [ + 0.996521739130435 + ], + [ + 0.7541751489851583 + ], + [ + 0.8171186929707505 + ], + [ + 0.9908763972444158 + ], + [ + 0.9077642484940728 + ], + [ + 0.89655436679566 + ], + [ + 0.772467875442053 + ], + [ + 0.860588835859315 + ], + [ + 0.9234883720930234 + ], + [ + 0.7875052854122622 + ], + [ + 0.933111940667877 + ], + [ + 0.8330354177655357 + ], + [ + 0.98656936388704 + ], + [ + 0.7578096064482999 + ], + [ + 0.8236580766813324 + ], + [ + 0.9347318308522028 + ], + [ + 0.8932895451827312 + ], + [ + 0.9285799156049388 + ], + [ + 0.9331326790672908 + ], + [ + 0.9644254304363626 + ], + [ + 0.9670876387294297 + ], + [ + 0.984385006449655 + ], + [ + 0.9939130434782611 + ], + [ + 0.8081449326727791 + ], + [ + 0.904913008013858 + ], + [ + 0.958843983408048 + ], + [ + 0.9074265343943518 + ], + [ + 0.914550550747443 + ], + [ + 0.9956140350877192 + ], + [ + 0.7875052854122622 + ], + [ + 0.8930995950038103 + ], + [ + 0.9583981105619436 + ], + [ + 0.7913282390616106 + ], + [ + 0.8553636363636363 + ], + [ + 0.9520786868217588 + ], + [ + 0.8227791822609921 + ], + [ + 0.7541751489851583 + ], + [ + 0.7533175355450237 + ], + [ + 0.7932981415505088 + ], + [ + 0.8738851187127049 + ], + [ + 0.8977552028386393 + ], + [ + 0.9636363636363636 + ], + [ + 0.8909590821089839 + ], + [ + 0.9280303030303032 + ], + [ + 0.7559479094211299 + ], + [ + 0.7751825777502708 + ], + [ + 0.9484006454368564 + ], + [ + 0.8164106024837708 + ], + [ + 0.8378181818181819 + ], + [ + 0.7561931059330722 + ], + [ + 0.8198448448448448 + ], + [ + 0.8746812582275244 + ], + [ + 0.917685782192232 + ], + [ + 0.8430950344725274 + ], + [ + 0.9479922753053344 + ], + [ + 0.9401658822908944 + ], + [ + 0.9345885985711606 + ], + [ + 0.7898873359402224 + ], + [ + 0.9291147879324685 + ], + [ + 0.9688056850309468 + ], + [ + 0.8399373186372248 + ], + [ + 0.904913008013858 + ], + [ + 0.8926128930190145 + ], + [ + 0.8013821571709653 + ], + [ + 0.9027775208335084 + ], + [ + 0.9068677230102368 + ], + [ + 0.9964912280701756 + ], + [ + 0.8884778012684991 + ], + [ + 0.9772727272727272 + ], + [ + 0.937931239097852 + ], + [ + 0.7893307769071134 + ], + [ + 0.8507923269391159 + ], + [ + 0.82454262425017 + ], + [ + 0.9956476370717128 + ], + [ + 0.997391304347826 + ], + [ + 0.7521112125156584 + ], + [ + 0.848613775065388 + ], + [ + 0.9982456140350876 + ], + [ + 0.9095579316931844 + ], + [ + 0.8974216292028354 + ], + [ + 0.9982456140350876 + ], + [ + 0.793236950671892 + ], + [ + 0.865081443540125 + ], + [ + 0.7910710359728593 + ], + [ + 0.7802662901330503 + ], + [ + 0.9360867018160518 + ], + [ + 0.8672259606948435 + ], + [ + 0.8465945179292698 + ], + [ + 0.7860877112960002 + ], + [ + 0.90741737640829 + ], + [ + 0.988714605208294 + ], + [ + 0.7650792722152087 + ], + [ + 0.9834028714566064 + ], + [ + 0.9319643313838056 + ], + [ + 0.8892009084674849 + ], + [ + 0.9238927452772132 + ], + [ + 0.938293658314696 + ], + [ + 0.9463111401682168 + ], + [ + 0.9638336347197108 + ], + [ + 0.8614957734733332 + ], + [ + 0.9743634159016108 + ], + [ + 0.9982456140350876 + ], + [ + 0.904567225435328 + ], + [ + 0.902432554260779 + ], + [ + 0.9842598587858048 + ], + [ + 0.9800758121375232 + ], + [ + 0.9031438311232313 + ], + [ + 0.7664643536742591 + ], + [ + 0.8798196380081303 + ], + [ + 0.9452382460255262 + ], + [ + 0.9982456140350876 + ], + [ + 0.9982456140350876 + ], + [ + 0.9542133966338968 + ], + [ + 0.7550919222167469 + ], + [ + 0.8650485436893204 + ], + [ + 0.9590943683409436 + ], + [ + 0.9899999999999998 + ], + [ + 0.7905998956595828 + ], + [ + 0.9964912280701756 + ], + [ + 0.8794606193667226 + ], + [ + 0.9543859649122808 + ], + [ + 0.8482253411306041 + ], + [ + 0.9416562889165628 + ], + [ + 0.8635977474267438 + ], + [ + 0.908313797791604 + ], + [ + 0.9882608695652176 + ], + [ + 0.9329580322176916 + ], + [ + 0.8517155377371683 + ], + [ + 0.9278910038068524 + ], + [ + 0.7982464236271342 + ], + [ + 0.8646739607798208 + ], + [ + 0.9813471226782764 + ], + [ + 0.9960869565217392 + ], + [ + 0.9094579806240582 + ], + [ + 0.9134140956933028 + ], + [ + 0.9851370084561714 + ], + [ + 0.97920631307383 + ], + [ + 0.977065643648764 + ], + [ + 0.8834465198075598 + ], + [ + 0.9747949320291138 + ], + [ + 0.932911746603152 + ], + [ + 0.999122807017544 + ], + [ + 0.959866019149962 + ], + [ + 0.7617844033057979 + ], + [ + 0.7748830995323981 + ], + [ + 0.8909999999999999 + ], + [ + 0.7596175070890622 + ], + [ + 0.8999999999999999 + ], + [ + 0.9123145440909052 + ], + [ + 0.8741654144553147 + ], + [ + 0.8398585426427478 + ], + [ + 0.8724872612693206 + ], + [ + 0.7669652718124924 + ], + [ + 0.8631126133046548 + ], + [ + 0.8409246558039661 + ], + [ + 0.8097354943626018 + ], + [ + 0.95990063654712 + ], + [ + 0.8969342300921225 + ], + [ + 0.9611031655225016 + ], + [ + 0.827297433674167 + ], + [ + 0.8779350849682387 + ], + [ + 0.8367440082204682 + ], + [ + 0.893013468013468 + ], + [ + 0.9964912280701756 + ], + [ + 0.7824996118615121 + ], + [ + 0.8861176478495414 + ], + [ + 0.9315029605665132 + ], + [ + 0.9240556247405564 + ], + [ + 0.7895079901300617 + ], + [ + 0.8675786978032918 + ], + [ + 0.7532931318639005 + ], + [ + 0.90662100456621 + ], + [ + 0.7716841489148686 + ], + [ + 0.7502640132876188 + ], + [ + 0.8438384213475643 + ], + [ + 0.8979659609796596 + ], + [ + 0.8433356634883351 + ], + [ + 0.8893524283935244 + ], + [ + 0.8088096745504153 + ], + [ + 0.916047252707554 + ], + [ + 0.8157092458590421 + ], + [ + 0.7713701554506877 + ], + [ + 0.8990439807701138 + ], + [ + 0.8907570363540729 + ], + [ + 0.9537544911348904 + ], + [ + 0.808038039840766 + ], + [ + 0.9851370084561714 + ], + [ + 0.8932164255129278 + ], + [ + 0.9471843568535036 + ], + [ + 0.9133288665033964 + ], + [ + 0.9132421335802218 + ], + [ + 0.8276330050739579 + ], + [ + 0.8868080394461477 + ], + [ + 0.8668829861852336 + ], + [ + 0.8964265087723556 + ], + [ + 0.9911660095629562 + ], + [ + 0.9182659870037116 + ], + [ + 0.8633272832102701 + ], + [ + 0.8186320718389478 + ], + [ + 0.8881896291715989 + ], + [ + 0.8840480861242009 + ], + [ + 0.8197634340126408 + ], + [ + 0.7611003116070912 + ], + [ + 0.8939095129169344 + ], + [ + 0.901240425894056 + ], + [ + 0.8290845270990632 + ], + [ + 0.8844734722345178 + ], + [ + 0.900672328635003 + ], + [ + 0.8611114838221064 + ], + [ + 0.9020646721236415 + ], + [ + 0.7524570024570024 + ], + [ + 0.9671031943607348 + ], + [ + 0.7643684665873062 + ], + [ + 0.9177602214566852 + ], + [ + 0.9280169976669376 + ], + [ + 0.9651126414686952 + ], + [ + 0.8767768595041323 + ], + [ + 0.933676703232262 + ], + [ + 0.8344383939714739 + ], + [ + 0.849693862814132 + ], + [ + 0.7954107032792184 + ], + [ + 0.933676703232262 + ], + [ + 0.938108321790696 + ], + [ + 0.928906596493303 + ], + [ + 0.7642353146981488 + ], + [ + 0.8546502548557862 + ], + [ + 0.8224212265843107 + ], + [ + 0.7710819445257563 + ], + [ + 0.8864829929760666 + ], + [ + 0.8716815273032167 + ], + [ + 0.8660098479761721 + ], + [ + 0.9025093300004408 + ], + [ + 0.8121071884193809 + ], + [ + 0.9607952743931896 + ], + [ + 0.8722498962224988 + ], + [ + 0.9310204439345414 + ], + [ + 0.9777167277167276 + ], + [ + 0.8010759771629337 + ], + [ + 0.8522718489127074 + ], + [ + 0.9093424633191152 + ], + [ + 0.8425177354450203 + ], + [ + 0.7805733235714439 + ], + [ + 0.8924918014613418 + ], + [ + 0.9893784849790032 + ], + [ + 0.8451386855821716 + ], + [ + 0.8875135039917615 + ], + [ + 0.9706691109074244 + ], + [ + 0.768635972404227 + ], + [ + 0.8133865875461221 + ], + [ + 0.9501902748414376 + ], + [ + 0.8687372572217293 + ], + [ + 0.7972263500644203 + ], + [ + 0.879221174323091 + ], + [ + 0.8580430671412884 + ], + [ + 0.8347523783886707 + ], + [ + 0.9006369722354359 + ], + [ + 0.992671182389769 + ], + [ + 0.9563291529742204 + ], + [ + 0.947447712690609 + ], + [ + 0.7790788334554246 + ], + [ + 0.9533492330474672 + ], + [ + 0.8986916130118449 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8636563261069188 + ], + [ + 0.9225521327977664 + ], + [ + 0.9272525027808675 + ], + [ + 0.9347188997515521 + ], + [ + 0.7847695804918372 + ], + [ + 0.9443983271522132 + ], + [ + 0.9774342481963584 + ], + [ + 0.97920631307383 + ], + [ + 0.9390325835747532 + ], + [ + 0.7859442359319205 + ], + [ + 0.9452608121807992 + ], + [ + 0.8231219423433573 + ], + [ + 0.9939505041246564 + ], + [ + 0.8711884810416023 + ], + [ + 0.9664525827971132 + ], + [ + 0.8922813036020585 + ], + [ + 0.8517879419237278 + ], + [ + 0.9226251523770824 + ], + [ + 0.9989000916590284 + ], + [ + 0.912544997503788 + ], + [ + 0.8862043421277565 + ], + [ + 0.7932768442135997 + ], + [ + 0.8376774696711561 + ], + [ + 0.7841809006211181 + ], + [ + 0.7925277144429594 + ], + [ + 0.8649220965924544 + ], + [ + 0.8539211685273398 + ], + [ + 0.8363949697251979 + ], + [ + 0.8264854203894482 + ], + [ + 0.9072225728615328 + ], + [ + 0.992671182389769 + ], + [ + 0.8515020101968744 + ], + [ + 0.9309305726600986 + ], + [ + 0.9543209471735604 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8914844044126526 + ], + [ + 0.9256464785119556 + ], + [ + 0.9954545454545456 + ], + [ + 0.9374817381090278 + ], + [ + 0.7688326686368462 + ], + [ + 0.8925869273677869 + ], + [ + 0.9703270521983972 + ], + [ + 0.9809453113164672 + ], + [ + 0.8066868740036242 + ], + [ + 0.8351972694191357 + ], + [ + 0.8433153659377112 + ], + [ + 0.9392359594194456 + ], + [ + 0.8888965657897014 + ], + [ + 0.8930757789029354 + ], + [ + 0.999083409715857 + ], + [ + 0.9743963538884604 + ], + [ + 0.7953195319531954 + ], + [ + 0.8454219118804093 + ], + [ + 0.9502704567873635 + ], + [ + 0.9458992126856904 + ], + [ + 0.7644077516403233 + ], + [ + 0.8706106552426165 + ], + [ + 0.9965172600923464 + ], + [ + 0.8217563751752737 + ], + [ + 0.9124729676453814 + ], + [ + 0.9818515123739688 + ], + [ + 0.8086304821445487 + ], + [ + 0.9321596244131456 + ], + [ + 0.7740195848021936 + ], + [ + 0.8328682787543888 + ], + [ + 0.8700240408314942 + ], + [ + 0.8580430671412884 + ], + [ + 0.8444444444444444 + ], + [ + 0.8063613046642976 + ], + [ + 0.870252992498577 + ], + [ + 0.992671182389769 + ], + [ + 0.9630275323942066 + ], + [ + 0.9518090954793984 + ], + [ + 0.8248761807094434 + ], + [ + 0.9566474322858416 + ], + [ + 0.9285566337630128 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8389228250888328 + ], + [ + 0.908538082241886 + ], + [ + 0.9906562847608452 + ], + [ + 0.937727360640436 + ], + [ + 0.8522952375426849 + ], + [ + 0.9459029430545072 + ], + [ + 0.970027764388316 + ], + [ + 0.9817818865916694 + ], + [ + 0.8466376695566143 + ], + [ + 0.7811519654537372 + ], + [ + 0.9366631199668156 + ], + [ + 0.9535299764377344 + ], + [ + 0.9032200335646016 + ], + [ + 0.9998166819431716 + ], + [ + 0.8480421626051209 + ], + [ + 0.9780701754385964 + ], + [ + 0.8055944055944054 + ], + [ + 0.8519962283651035 + ], + [ + 0.9944372261358286 + ], + [ + 0.8909859611558665 + ], + [ + 0.9930339138405136 + ], + [ + 0.8688321482439127 + ], + [ + 0.8739386859650123 + ], + [ + 0.7999172993636504 + ], + [ + 0.8106128029621074 + ], + [ + 0.9095679827050769 + ], + [ + 0.8277677156441022 + ], + [ + 0.779649885583524 + ], + [ + 0.8288552731227062 + ], + [ + 0.8574961012970123 + ], + [ + 0.841109866865746 + ], + [ + 0.792355474053602 + ], + [ + 0.8966775300321758 + ], + [ + 0.992671182389769 + ], + [ + 0.9572785040629562 + ], + [ + 0.9291879754864996 + ], + [ + 0.889317620077831 + ], + [ + 0.9515562365156858 + ], + [ + 0.9348478408783754 + ], + [ + 0.8753775156331067 + ], + [ + 0.9532353404791928 + ], + [ + 0.9954545454545456 + ], + [ + 0.937189056965018 + ], + [ + 0.9715579478946336 + ], + [ + 0.959737826278744 + ], + [ + 0.961743440323128 + ], + [ + 0.9796080671884818 + ], + [ + 0.8052224642752426 + ], + [ + 0.7647985836235606 + ], + [ + 0.8987594276173578 + ], + [ + 0.935391253108552 + ], + [ + 0.9994500458295142 + ], + [ + 0.8855041459997729 + ], + [ + 0.9090909090909088 + ], + [ + 0.778450363196126 + ], + [ + 0.8409090909090906 + ], + [ + 0.9903940886699508 + ], + [ + 0.9132561051004052 + ], + [ + 0.8590718015934052 + ], + [ + 0.9118814562362948 + ], + [ + 0.7681025602181487 + ], + [ + 0.7961600220298013 + ], + [ + 0.8228255528255527 + ], + [ + 0.7862727272727271 + ], + [ + 0.8598109918146062 + ], + [ + 0.9327132807405768 + ], + [ + 0.8460922217047043 + ], + [ + 0.9090909090909088 + ], + [ + 0.7565260131563887 + ], + [ + 0.8064786173763172 + ], + [ + 0.8049646954986759 + ], + [ + 0.8147984533079082 + ], + [ + 0.8706455071105871 + ], + [ + 0.889459843292596 + ], + [ + 0.8753408574458414 + ], + [ + 0.78943545201723 + ], + [ + 0.9225337271553442 + ], + [ + 0.8471976396567684 + ], + [ + 0.9582046990267186 + ], + [ + 0.7739383306543302 + ], + [ + 0.8439728108918513 + ], + [ + 0.9681818181818184 + ], + [ + 0.9147990007027552 + ], + [ + 0.8965678134850725 + ], + [ + 0.9229230100043496 + ], + [ + 0.8814426843808552 + ], + [ + 0.8299673329703665 + ], + [ + 0.953884157786154 + ], + [ + 0.9568896321070232 + ], + [ + 0.927359277258842 + ], + [ + 0.926999815931348 + ], + [ + 0.9084797370520777 + ], + [ + 0.7588691796008868 + ], + [ + 0.8925148498881217 + ], + [ + 0.941101152368758 + ], + [ + 0.7976890157802166 + ], + [ + 0.8191512279190005 + ], + [ + 0.9383783723654014 + ], + [ + 0.9687898089171972 + ], + [ + 0.8227272727272728 + ], + [ + 0.9667829842995462 + ], + [ + 0.8430578512396696 + ], + [ + 0.8462362704327265 + ], + [ + 0.9937731747479652 + ], + [ + 0.8598347107438016 + ], + [ + 0.9018993376896012 + ], + [ + 0.9380859781477626 + ], + [ + 0.7965452139741043 + ], + [ + 0.8408374965151522 + ], + [ + 0.828891493383743 + ], + [ + 0.8037512287334593 + ], + [ + 0.9310557094490612 + ], + [ + 0.7905217546826223 + ], + [ + 0.8803334593572778 + ], + [ + 0.948060941828255 + ], + [ + 0.9808836171606353 + ], + [ + 0.9419954799687824 + ], + [ + 0.9000657462195923 + ], + [ + 0.9762481841119351 + ], + [ + 0.958536231884058 + ], + [ + 0.8689482041587903 + ], + [ + 0.9625071374155625 + ], + [ + 0.9421304353743684 + ], + [ + 0.9000657462195923 + ], + [ + 0.909072064464046 + ], + [ + 0.7770347430724859 + ], + [ + 0.8258664204370577 + ], + [ + 0.931003010693105 + ], + [ + 0.936341359994194 + ], + [ + 0.944622600300256 + ], + [ + 0.7698155009451796 + ], + [ + 0.9886242163794032 + ], + [ + 0.8385429638854296 + ], + [ + 0.8460152283133167 + ], + [ + 0.8244642857142859 + ], + [ + 0.90662100456621 + ], + [ + 0.8965017504270001 + ], + [ + 0.9477543538038498 + ], + [ + 0.934372987530004 + ], + [ + 0.7966912350949062 + ], + [ + 0.8521832338962485 + ], + [ + 0.8284602000869942 + ], + [ + 0.8025417478298693 + ], + [ + 0.9275512725475664 + ], + [ + 0.9004149252037746 + ], + [ + 0.9814823072033312 + ], + [ + 0.9441436310000064 + ], + [ + 0.9038201493163326 + ], + [ + 0.9502409737496426 + ], + [ + 0.8660854435766022 + ], + [ + 0.880780406807804 + ], + [ + 0.932626333246618 + ], + [ + 0.8230247277595698 + ], + [ + 0.9169832716276728 + ], + [ + 0.9163600219843964 + ], + [ + 0.7558559856410743 + ], + [ + 0.8249965343560833 + ], + [ + 0.9341554258408444 + ], + [ + 0.8231479245485526 + ], + [ + 0.9054813423400642 + ], + [ + 0.7909076419763443 + ], + [ + 0.7862727272727271 + ], + [ + 0.8658008658008658 + ], + [ + 0.996330951542531 + ], + [ + 0.9364502164502164 + ], + [ + 0.7650216450216449 + ], + [ + 0.794733291750721 + ], + [ + 0.894436842425348 + ], + [ + 0.9071691672620463 + ], + [ + 0.8475960459042418 + ], + [ + 0.825019069412662 + ], + [ + 0.9011154934052964 + ], + [ + 0.9888403534005904 + ], + [ + 0.9064975857191632 + ], + [ + 0.8040148172573156 + ], + [ + 0.7544972303681978 + ], + [ + 0.8394258450740808 + ], + [ + 0.8722248098121411 + ], + [ + 0.8832034632034632 + ], + [ + 0.9242506379637506 + ], + [ + 0.8626119406890994 + ], + [ + 0.878664636798608 + ], + [ + 0.796428039082196 + ], + [ + 0.7737936507936508 + ], + [ + 0.9772426641825802 + ], + [ + 0.9771984786553624 + ], + [ + 0.7754989006737327 + ], + [ + 0.9842229467473992 + ], + [ + 0.9545454545454548 + ], + [ + 0.8536368018578387 + ], + [ + 0.9904302907657898 + ], + [ + 0.9985875706214687 + ], + [ + 0.7822341892305151 + ], + [ + 0.8895952017025273 + ], + [ + 0.9977822580645164 + ], + [ + 0.822054489456517 + ], + [ + 0.9068929556529068 + ], + [ + 0.9969759694040504 + ], + [ + 0.8227635041015324 + ], + [ + 0.92385752642948 + ], + [ + 0.7644903235840163 + ], + [ + 0.7893527624833871 + ], + [ + 0.9290762303990062 + ], + [ + 0.8549939348739194 + ], + [ + 0.9024751306250636 + ], + [ + 0.9939538727034296 + ], + [ + 0.9838663951689132 + ], + [ + 0.9555403520366936 + ], + [ + 0.8659230906299106 + ], + [ + 0.9555403520366936 + ], + [ + 0.936556104044048 + ], + [ + 0.9365262267264388 + ], + [ + 0.943947221044588 + ], + [ + 0.8711152458705146 + ], + [ + 0.981787734953484 + ], + [ + 0.9977753058954394 + ], + [ + 0.939105864661958 + ], + [ + 0.941241408860912 + ], + [ + 0.9772426641825802 + ], + [ + 0.9783368141256884 + ], + [ + 0.9783368141256884 + ], + [ + 0.8035224554513878 + ], + [ + 0.8878885108220647 + ], + [ + 0.9498970784947516 + ], + [ + 0.9954182612676434 + ], + [ + 0.8911007105869436 + ], + [ + 0.9977822580645164 + ], + [ + 0.9332845830090168 + ], + [ + 0.7698457560674342 + ], + [ + 0.8237875450920827 + ], + [ + 0.7694629219019462 + ], + [ + 0.9545454545454548 + ], + [ + 0.7676911617909391 + ], + [ + 0.8737944824901346 + ], + [ + 0.7706024497958504 + ], + [ + 0.7971142965635086 + ], + [ + 0.797381306659819 + ], + [ + 0.8620542233987611 + ], + [ + 0.8139854059928581 + ], + [ + 0.9887078033035884 + ], + [ + 0.9359939732913412 + ], + [ + 0.816825438145235 + ], + [ + 0.8422527112008905 + ], + [ + 0.8452819441807481 + ], + [ + 0.8400216450216451 + ], + [ + 0.8999203521041261 + ], + [ + 0.929916690661292 + ], + [ + 0.830854814143431 + ], + [ + 0.9513142174432496 + ], + [ + 0.9688527588701455 + ], + [ + 0.9228795379537954 + ], + [ + 0.7730756056428137 + ], + [ + 0.958302500539574 + ], + [ + 0.8026224595457895 + ], + [ + 0.804211768109809 + ], + [ + 0.999122807017544 + ], + [ + 0.9565843431073292 + ], + [ + 0.8024218124622581 + ], + [ + 0.8815110224684692 + ], + [ + 0.8108800084863914 + ], + [ + 0.9608990650462856 + ], + [ + 0.7587225856098497 + ], + [ + 0.8465945179292698 + ], + [ + 0.8955974273031978 + ], + [ + 0.9430511599324012 + ], + [ + 0.7968522430480871 + ], + [ + 0.942185445331794 + ], + [ + 0.8678328134388728 + ], + [ + 0.8589010971043637 + ], + [ + 0.9773557492735576 + ], + [ + 0.8072544965953004 + ], + [ + 0.9954545454545456 + ], + [ + 0.8468840523666226 + ], + [ + 0.7893040004872826 + ], + [ + 0.999122807017544 + ], + [ + 0.8702035016515567 + ], + [ + 0.7949970358330488 + ], + [ + 0.9294585399607892 + ], + [ + 0.8407994285729776 + ], + [ + 0.8788200589970502 + ], + [ + 0.8314481030702937 + ], + [ + 0.831385641452182 + ], + [ + 0.9804378566350936 + ], + [ + 0.9129349807104162 + ], + [ + 0.8141494511694449 + ], + [ + 0.9133990354371988 + ], + [ + 0.9851370084561714 + ], + [ + 0.9095532047456912 + ], + [ + 0.8505448360551613 + ], + [ + 0.963157894736842 + ], + [ + 0.7634237761904064 + ], + [ + 0.9011822106778054 + ], + [ + 0.9956171156600898 + ], + [ + 0.95942299709423 + ], + [ + 0.8553134080531343 + ], + [ + 0.8472097261066925 + ], + [ + 0.9805098186910532 + ], + [ + 0.8553134080531343 + ], + [ + 0.7714797416324134 + ], + [ + 0.9997983870967744 + ], + [ + 0.8217563751752737 + ], + [ + 0.8946470109877639 + ], + [ + 0.999122807017544 + ], + [ + 0.8354069917967499 + ], + [ + 0.9416562889165628 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8580430671412884 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.8909560347514579 + ], + [ + 0.992671182389769 + ], + [ + 0.9848040830545792 + ], + [ + 0.8630706569122703 + ], + [ + 0.8702378201869908 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.907644799841382 + ], + [ + 0.999122807017544 + ], + [ + 0.9414868925909092 + ], + [ + 0.9335682269765724 + ], + [ + 0.8893524283935244 + ], + [ + 0.9822495603003196 + ], + [ + 0.8052224642752426 + ], + [ + 0.9379369101877942 + ], + [ + 0.9090909090909088 + ], + [ + 0.756404071529602 + ], + [ + 0.9271888077994948 + ], + [ + 0.9921175854473762 + ], + [ + 0.8553134080531343 + ], + [ + 0.9943501037415146 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8958436239049176 + ], + [ + 1 + ], + [ + 0.8217563751752737 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8019358454012121 + ], + [ + 0.8089287811425218 + ], + [ + 0.8017627702025453 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8580430671412884 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.90276124713408 + ], + [ + 0.992671182389769 + ], + [ + 0.8072821072057714 + ], + [ + 0.9848040830545792 + ], + [ + 0.8189889492826025 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.974712351554919 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9773557492735576 + ], + [ + 0.9822495603003196 + ], + [ + 0.9822495603003196 + ], + [ + 0.8052224642752426 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9503668087629396 + ], + [ + 1 + ], + [ + 0.9271888077994948 + ], + [ + 0.7647361516158825 + ], + [ + 0.9807297003570874 + ], + [ + 0.9364502164502164 + ], + [ + 0.7901612469857595 + ], + [ + 0.824287208001439 + ], + [ + 0.9807297003570874 + ], + [ + 0.7614649785030472 + ], + [ + 0.8658008658008658 + ], + [ + 0.9939130434782611 + ], + [ + 0.9066651512935219 + ], + [ + 0.8939526037506182 + ], + [ + 0.9842229467473992 + ], + [ + 0.865081443540125 + ], + [ + 0.9167169276268624 + ], + [ + 0.8794346322201474 + ], + [ + 0.765130456168069 + ], + [ + 0.8734544866674276 + ], + [ + 0.909520787797598 + ], + [ + 0.8854931946173012 + ], + [ + 0.7673924006226841 + ], + [ + 0.8798233135618779 + ], + [ + 0.9852364106660584 + ], + [ + 0.7637569649841349 + ], + [ + 0.9348260838243078 + ], + [ + 0.933522474466579 + ], + [ + 0.8377846225826576 + ], + [ + 0.9583806183156228 + ], + [ + 0.9331326790672908 + ], + [ + 0.9383147514181556 + ], + [ + 0.9589825216566162 + ], + [ + 0.8060876415101113 + ], + [ + 0.9783224922971588 + ], + [ + 0.9583806183156228 + ], + [ + 0.899590944489805 + ], + [ + 0.8941653123998358 + ], + [ + 0.9668188169538892 + ], + [ + 0.9783224922971588 + ], + [ + 0.9679972612119138 + ], + [ + 0.8797605429806478 + ], + [ + 0.7963975193082085 + ], + [ + 0.8839816990630294 + ], + [ + 0.9431528211472392 + ], + [ + 0.8367334869051766 + ], + [ + 0.8658008658008658 + ], + [ + 0.9921746738179468 + ], + [ + 0.9020614173817516 + ], + [ + 0.7562166685686029 + ], + [ + 0.8984134398306008 + ], + [ + 0.9687833580671199 + ], + [ + 0.8324262590094272 + ], + [ + 0.7778237575832933 + ], + [ + 0.8480007561436672 + ], + [ + 0.9579079093729875 + ], + [ + 0.845860397670802 + ], + [ + 0.7551254672930834 + ], + [ + 0.8899966113703928 + ], + [ + 0.7908116150724073 + ], + [ + 0.8910183976510794 + ], + [ + 0.9586402202505121 + ], + [ + 0.9614055686011409 + ], + [ + 0.9466976131633718 + ], + [ + 0.8344345242846016 + ], + [ + 0.7881948755231197 + ], + [ + 0.8703128420935895 + ], + [ + 0.7758848540806752 + ], + [ + 0.9184591472656428 + ], + [ + 0.9495128094164198 + ], + [ + 0.8796487671810186 + ], + [ + 0.7514068195240423 + ], + [ + 0.8716815273032167 + ], + [ + 0.9882425857143352 + ], + [ + 0.9633770826635396 + ], + [ + 0.7728726352092181 + ], + [ + 0.7549603797492292 + ], + [ + 0.8460813462362223 + ], + [ + 0.9172118090262832 + ], + [ + 0.992952541754412 + ], + [ + 0.8606043918383145 + ], + [ + 0.7745935959659945 + ], + [ + 0.9636724437338746 + ], + [ + 0.7960368686049766 + ], + [ + 0.8285988264418827 + ], + [ + 0.9708841861711646 + ], + [ + 0.8299341990318011 + ], + [ + 0.8419381421530754 + ], + [ + 0.784953771420362 + ], + [ + 0.7591712665406429 + ], + [ + 0.8689452322602814 + ], + [ + 0.7766626862314431 + ], + [ + 0.7843042441238667 + ], + [ + 0.7800515724165504 + ], + [ + 0.8797549464963943 + ], + [ + 0.9919502705663622 + ], + [ + 0.9893735932410646 + ], + [ + 0.8894092494980258 + ], + [ + 0.8411462167336957 + ], + [ + 0.8604416000492892 + ], + [ + 0.9391164837414664 + ], + [ + 0.9875732201051683 + ], + [ + 0.8668958338409165 + ], + [ + 0.910974119092226 + ], + [ + 0.9335682269765724 + ], + [ + 0.8903543205412945 + ], + [ + 0.7579050997201501 + ], + [ + 0.9129974387310056 + ], + [ + 0.8184361507912837 + ], + [ + 0.8985858297326429 + ], + [ + 0.8811309071018276 + ], + [ + 0.9600766541682176 + ], + [ + 0.9142379797053092 + ], + [ + 0.8553282796247272 + ], + [ + 0.9209665616774528 + ], + [ + 0.7653056658292261 + ], + [ + 0.9428934497795352 + ], + [ + 0.9766567420679494 + ], + [ + 0.9320892949781068 + ], + [ + 0.8764803941254208 + ], + [ + 0.9615141634622412 + ], + [ + 0.8025926314878588 + ], + [ + 0.935632010504501 + ], + [ + 0.9954545454545456 + ], + [ + 0.8383046372479713 + ], + [ + 0.8085158042512651 + ], + [ + 0.8799003347391113 + ], + [ + 0.8519408442208185 + ], + [ + 0.7642901122754603 + ], + [ + 0.9104413159581644 + ], + [ + 0.89138879753655 + ], + [ + 0.8889595044710776 + ], + [ + 0.8674196841123456 + ], + [ + 0.9890311615492476 + ], + [ + 0.9817061821644611 + ], + [ + 0.9645756670815068 + ], + [ + 0.9013683659572824 + ], + [ + 0.9379327738576018 + ], + [ + 0.8277684278026405 + ], + [ + 0.8025926314878588 + ], + [ + 0.8164472422898458 + ], + [ + 0.9476735033728184 + ], + [ + 0.9280169976669376 + ], + [ + 0.9400644385653472 + ], + [ + 0.8571175858480748 + ], + [ + 0.9457607069255074 + ], + [ + 0.7890197773695017 + ], + [ + 0.9341554258408444 + ], + [ + 0.8197634340126408 + ], + [ + 0.9579224065577792 + ], + [ + 0.8701372997711668 + ], + [ + 0.9529052383428788 + ], + [ + 0.9845238804935112 + ], + [ + 0.909042520211614 + ], + [ + 0.7869703117696519 + ], + [ + 0.8276242108365519 + ], + [ + 0.878685196514601 + ], + [ + 0.7563441975980676 + ], + [ + 0.7552008456659621 + ], + [ + 0.9576803072122886 + ], + [ + 0.7766774350616475 + ], + [ + 0.8786356094048401 + ], + [ + 0.8863636363636365 + ], + [ + 0.8824223337513897 + ], + [ + 0.915641381346678 + ], + [ + 0.9097297101659864 + ], + [ + 0.952612204076308 + ], + [ + 0.9667491997801664 + ], + [ + 0.9203132832080203 + ], + [ + 0.8318181818181817 + ], + [ + 0.8553636363636363 + ], + [ + 0.7733211512105985 + ], + [ + 0.8722470169622666 + ], + [ + 0.8975645313091688 + ], + [ + 0.8977159303535192 + ], + [ + 0.9912311643305796 + ], + [ + 0.9024231247013856 + ], + [ + 0.86918360351979 + ], + [ + 0.8278906432659406 + ], + [ + 0.8317573749391951 + ], + [ + 0.9643924081792452 + ], + [ + 0.938598748759861 + ], + [ + 0.984466571720076 + ], + [ + 0.9883020564051679 + ], + [ + 0.977397740533538 + ], + [ + 0.8324262590094272 + ], + [ + 0.957204861709126 + ], + [ + 0.9815689054392762 + ], + [ + 0.9723297607875788 + ], + [ + 0.9166058436529154 + ], + [ + 0.7521706555006759 + ], + [ + 0.9280169976669376 + ], + [ + 0.9358035287465732 + ], + [ + 0.8764803941254208 + ], + [ + 0.9153455696596016 + ], + [ + 0.8469432605765171 + ], + [ + 0.99268071993084 + ], + [ + 0.988226739831974 + ], + [ + 0.996336999414424 + ], + [ + 0.9244884191211992 + ], + [ + 0.8507008302142539 + ], + [ + 0.9593509283699424 + ], + [ + 0.8061755182821719 + ], + [ + 0.9615141634622412 + ], + [ + 0.9839330712663648 + ], + [ + 0.9555873521968756 + ], + [ + 0.9775173594082412 + ], + [ + 0.8128624949482813 + ], + [ + 0.9514741813067672 + ], + [ + 0.9817522080920388 + ], + [ + 0.981025791388756 + ], + [ + 0.9818181818181816 + ], + [ + 0.9710861248452468 + ], + [ + 0.9773557492735576 + ], + [ + 0.890085589718168 + ], + [ + 0.954337370755309 + ], + [ + 0.8919753086419753 + ], + [ + 0.8552031760963528 + ], + [ + 0.9545454545454548 + ], + [ + 0.8563472606128697 + ], + [ + 0.8478228971791203 + ], + [ + 0.8853335760168058 + ], + [ + 0.825019069412662 + ], + [ + 0.8305431015989557 + ], + [ + 0.7900733399481583 + ], + [ + 0.9108949697942603 + ], + [ + 0.917855352912078 + ], + [ + 0.8955772084667657 + ], + [ + 0.82987479094277 + ], + [ + 0.9090909090909088 + ], + [ + 0.9331273751154144 + ], + [ + 0.841981268119079 + ], + [ + 0.9061617983216465 + ], + [ + 0.7650216450216449 + ], + [ + 0.8414755340099983 + ], + [ + 0.9939138029238658 + ], + [ + 0.8766192814819845 + ], + [ + 0.8315151515151515 + ], + [ + 0.8473382904078122 + ], + [ + 0.914059797380776 + ], + [ + 0.7659476739028936 + ], + [ + 0.8559376367887911 + ], + [ + 0.8114111498257839 + ], + [ + 0.7943527200862163 + ], + [ + 0.7697780793564009 + ], + [ + 0.8192024956758094 + ], + [ + 0.9625172175038818 + ], + [ + 0.9466379024540816 + ], + [ + 0.9248249108281914 + ], + [ + 0.7835010344179048 + ], + [ + 0.7696916201990726 + ], + [ + 0.8741784037558686 + ], + [ + 0.8788591215600511 + ], + [ + 0.7847145200343669 + ], + [ + 0.995553782140972 + ], + [ + 0.885547201336675 + ], + [ + 0.932238896428148 + ], + [ + 0.8666467850773247 + ], + [ + 0.9318181818181815 + ], + [ + 0.874330829529188 + ], + [ + 0.8477600534912598 + ], + [ + 0.8513796499579376 + ], + [ + 0.7928688716866057 + ], + [ + 0.8300839482005723 + ], + [ + 0.8104640050546934 + ], + [ + 0.7623555471966228 + ], + [ + 0.8477133966865695 + ], + [ + 0.8069468267581477 + ], + [ + 0.7970641933918771 + ], + [ + 0.7517470662254077 + ], + [ + 0.811386593204775 + ], + [ + 0.8200234516324811 + ], + [ + 0.8169486429889492 + ], + [ + 0.8731362653208361 + ], + [ + 0.8763157894736843 + ], + [ + 0.8185744024917364 + ], + [ + 0.9052173913043478 + ], + [ + 0.8415792985968426 + ], + [ + 0.7820239132603559 + ], + [ + 0.8373297473297473 + ], + [ + 0.7516072325464591 + ], + [ + 0.9659417587369664 + ], + [ + 0.7649602377888222 + ], + [ + 0.7936066126855602 + ], + [ + 0.9090909090909088 + ], + [ + 0.945216049382716 + ], + [ + 0.8771929824561405 + ], + [ + 0.8174876847290639 + ], + [ + 0.8553636363636363 + ], + [ + 0.8455433455433455 + ], + [ + 0.9233441393338415 + ], + [ + 0.8437332724582007 + ], + [ + 0.832909538499891 + ], + [ + 0.840948616293985 + ], + [ + 0.8177290491628549 + ], + [ + 0.9175438596491228 + ], + [ + 0.882198952879581 + ], + [ + 0.8150509397735729 + ], + [ + 0.9294196742835898 + ], + [ + 0.8917391304347826 + ], + [ + 0.8253968253968254 + ], + [ + 0.7862727272727271 + ], + [ + 0.8107452697678261 + ], + [ + 0.9637205387205386 + ], + [ + 0.852293824358888 + ], + [ + 0.8709558996012198 + ], + [ + 0.7596801346801346 + ], + [ + 0.8181614349775784 + ], + [ + 0.9017543859649124 + ], + [ + 0.7897773279352229 + ], + [ + 0.805168828270855 + ], + [ + 0.9090909090909088 + ], + [ + 0.8771929824561405 + ], + [ + 0.8174876847290639 + ], + [ + 0.8813770455902434 + ], + [ + 0.8553636363636363 + ], + [ + 0.8455433455433455 + ], + [ + 0.8049385749385749 + ], + [ + 0.8437332724582007 + ], + [ + 0.832909538499891 + ], + [ + 0.8177290491628549 + ], + [ + 0.9175438596491228 + ], + [ + 0.8767128866853765 + ], + [ + 0.8150509397735729 + ], + [ + 0.9294196742835898 + ], + [ + 0.8917391304347826 + ], + [ + 0.8253968253968254 + ], + [ + 0.7862727272727271 + ], + [ + 0.8107452697678261 + ], + [ + 0.9637205387205386 + ], + [ + 0.852293824358888 + ], + [ + 0.7596801346801346 + ], + [ + 0.8181614349775784 + ], + [ + 0.9017543859649124 + ], + [ + 0.805168828270855 + ], + [ + 0.9545454545454548 + ], + [ + 0.9545454545454548 + ], + [ + 0.8298946640273919 + ], + [ + 0.8041381029540074 + ], + [ + 0.9786956521739132 + ], + [ + 0.9055353950321428 + ], + [ + 0.8658008658008658 + ], + [ + 0.8041630667784955 + ], + [ + 0.792782754772987 + ], + [ + 0.8259976777571356 + ], + [ + 0.8220626497774737 + ], + [ + 0.8210461476724114 + ], + [ + 0.8101813436763873 + ], + [ + 0.971001604361102 + ], + [ + 0.9289464621791536 + ], + [ + 0.8732908588456849 + ], + [ + 0.9320839327803117 + ], + [ + 0.7799127011297503 + ], + [ + 0.9521230391509398 + ], + [ + 0.8387538514207465 + ], + [ + 0.8873673399520713 + ], + [ + 0.8919696969696971 + ], + [ + 0.9939130434782611 + ], + [ + 0.9772426641825802 + ], + [ + 0.8315151515151515 + ], + [ + 0.8408502506153573 + ], + [ + 0.9545454545454548 + ], + [ + 0.8658008658008658 + ], + [ + 0.9939130434782611 + ], + [ + 0.9418179668098864 + ], + [ + 0.7650216450216449 + ], + [ + 0.8654908035026879 + ], + [ + 0.9992656508417233 + ], + [ + 0.7803152709359605 + ], + [ + 0.833023231770358 + ], + [ + 0.9983501374885428 + ], + [ + 0.8042480240124439 + ], + [ + 0.7697542997542998 + ], + [ + 0.9203347173341052 + ], + [ + 0.8077175608822436 + ], + [ + 0.863207096556374 + ], + [ + 0.9891326164874552 + ], + [ + 0.8157646741278424 + ], + [ + 0.8722929363621342 + ], + [ + 0.8412806151509398 + ], + [ + 0.9100844696456204 + ], + [ + 0.9172591608126068 + ], + [ + 0.9170938628158845 + ], + [ + 0.8485714285714286 + ], + [ + 0.8571645021645024 + ], + [ + 0.8877796694698104 + ], + [ + 0.8146320346320346 + ], + [ + 0.9983501374885428 + ], + [ + 0.9617032985121432 + ], + [ + 0.9108802545427966 + ], + [ + 0.9508984239139112 + ], + [ + 0.9181661424871335 + ], + [ + 0.9529605866177816 + ], + [ + 0.8319465220643232 + ], + [ + 0.8402426098282156 + ], + [ + 0.9191026771713572 + ], + [ + 0.819087310370122 + ], + [ + 0.8628923192823611 + ], + [ + 0.9602434075673276 + ], + [ + 0.7593235251819751 + ], + [ + 0.9456277248027678 + ], + [ + 0.9435343652049158 + ], + [ + 0.9302009048080272 + ], + [ + 0.7932712550607288 + ], + [ + 0.8786981717234608 + ], + [ + 0.8486842544219593 + ], + [ + 0.9126746767131658 + ], + [ + 0.9486042010676804 + ], + [ + 0.9038724480869904 + ], + [ + 0.958686173433348 + ], + [ + 0.7865058108244474 + ], + [ + 0.8704285747314824 + ], + [ + 0.9240999622367164 + ], + [ + 0.806845704003599 + ], + [ + 0.9624336598289146 + ], + [ + 0.8942981283868459 + ], + [ + 0.8045481228624208 + ], + [ + 0.9823493170094518 + ], + [ + 0.8126984126984126 + ], + [ + 0.998531571416838 + ], + [ + 0.8419809946143553 + ], + [ + 0.9228410057516631 + ], + [ + 0.9946871424565764 + ], + [ + 0.814372836946585 + ], + [ + 0.8452819441807481 + ], + [ + 0.9757439972091474 + ], + [ + 0.7999757977078849 + ], + [ + 0.811708695128781 + ], + [ + 0.9226825090266608 + ], + [ + 0.915537959944108 + ], + [ + 0.8447134792639336 + ], + [ + 0.7824996118615121 + ], + [ + 0.9004189790402766 + ], + [ + 0.992492576897818 + ], + [ + 0.8141116751269034 + ], + [ + 0.9641837718077296 + ], + [ + 0.8643778677462887 + ], + [ + 0.9569910794861844 + ], + [ + 0.8929721958656435 + ], + [ + 0.9134879224116806 + ], + [ + 0.8981798632747807 + ], + [ + 0.81115791740409 + ], + [ + 0.9732801304295486 + ], + [ + 0.9270758346340522 + ], + [ + 0.9377496859510692 + ], + [ + 0.9314133822181484 + ], + [ + 0.97145319916461 + ], + [ + 0.969655719759168 + ], + [ + 0.774258455570617 + ], + [ + 0.7646989654610622 + ], + [ + 0.9179126246763072 + ], + [ + 0.9344663297510818 + ], + [ + 0.9954192028862328 + ], + [ + 0.7896845621854086 + ], + [ + 0.9455885850178358 + ], + [ + 0.9633770826635396 + ], + [ + 0.8393119121793614 + ], + [ + 0.9022475277597836 + ], + [ + 0.8956434074042219 + ], + [ + 0.8868725897920605 + ], + [ + 0.947727507922727 + ], + [ + 0.8100165040010109 + ], + [ + 0.7541551246537396 + ], + [ + 0.7542451891577083 + ], + [ + 0.917562326869806 + ], + [ + 0.8951137084436364 + ], + [ + 0.9046867398146928 + ], + [ + 0.9823446334538573 + ], + [ + 0.7795168102658113 + ], + [ + 0.98334457368405 + ], + [ + 0.949870071311262 + ], + [ + 0.7943210699040147 + ], + [ + 0.8322736882141543 + ], + [ + 0.9149338374291116 + ], + [ + 0.8997612989216043 + ], + [ + 0.957120046591764 + ], + [ + 0.8238720996776804 + ], + [ + 0.9493296120831972 + ], + [ + 0.9088759068464726 + ], + [ + 0.929966729678639 + ], + [ + 0.909593974766178 + ], + [ + 0.9088759068464726 + ], + [ + 0.7862360164041836 + ], + [ + 0.9165811787189776 + ], + [ + 0.9386430599161039 + ], + [ + 0.8032011401974772 + ], + [ + 0.7862727272727271 + ], + [ + 0.9754897598639012 + ], + [ + 0.7600017202867505 + ], + [ + 0.9455885850178358 + ], + [ + 0.9633770826635396 + ], + [ + 0.8436837588803084 + ], + [ + 0.8980736820318737 + ], + [ + 0.8859552362571937 + ], + [ + 0.8868725897920605 + ], + [ + 0.947727507922727 + ], + [ + 0.8057328891947176 + ], + [ + 0.761469327784964 + ], + [ + 0.8875623268698062 + ], + [ + 0.8965017504270001 + ], + [ + 0.9039894860912128 + ], + [ + 0.984298575553884 + ], + [ + 0.7714232447296058 + ], + [ + 0.98334457368405 + ], + [ + 0.949870071311262 + ], + [ + 0.7943210699040147 + ], + [ + 0.8202771072840704 + ], + [ + 0.9149338374291116 + ], + [ + 0.8933801982348771 + ], + [ + 0.957120046591764 + ], + [ + 0.8238720996776804 + ], + [ + 0.9529052383428788 + ], + [ + 0.90120315914534 + ], + [ + 0.929966729678639 + ], + [ + 0.945128934703434 + ], + [ + 0.9095750421335858 + ], + [ + 0.7766558276104735 + ], + [ + 0.9151778010434616 + ], + [ + 0.9471874624563446 + ], + [ + 0.8378181818181819 + ], + [ + 0.9754897598639012 + ], + [ + 0.7691572905827265 + ], + [ + 0.7959133007990622 + ], + [ + 0.8262184063662379 + ], + [ + 0.9894645159690536 + ], + [ + 0.996521739130435 + ], + [ + 0.7819131922573495 + ], + [ + 0.850401606425703 + ], + [ + 0.996521739130435 + ], + [ + 0.9077642484940728 + ], + [ + 0.89655436679566 + ], + [ + 0.9964912280701756 + ], + [ + 0.7938737011467188 + ], + [ + 0.8802936186789987 + ], + [ + 0.9280303030303032 + ], + [ + 0.7987525608923287 + ], + [ + 0.755239120734144 + ], + [ + 0.9308288388816562 + ], + [ + 0.8668602157771254 + ], + [ + 0.8448511242895973 + ], + [ + 0.7961445704225082 + ], + [ + 0.9099056220340456 + ], + [ + 0.9878450565293272 + ], + [ + 0.7642455368060652 + ], + [ + 0.9778493899137112 + ], + [ + 0.8965968223131894 + ], + [ + 0.8932895451827312 + ], + [ + 0.9285799156049388 + ], + [ + 0.9432927941623594 + ], + [ + 0.9496993493645752 + ], + [ + 0.9692603418275338 + ], + [ + 0.8702493159014899 + ], + [ + 0.9739749369603424 + ], + [ + 0.996521739130435 + ], + [ + 0.8907367280606716 + ], + [ + 0.904913008013858 + ], + [ + 0.968471177944862 + ], + [ + 0.825 + ], + [ + 0.9027775208335084 + ], + [ + 0.7617903311136486 + ], + [ + 0.884146408684465 + ], + [ + 0.9446018376578228 + ], + [ + 0.9964912280701756 + ], + [ + 0.908597321143829 + ], + [ + 0.996521739130435 + ], + [ + 0.9619598036238828 + ], + [ + 0.760301236816147 + ], + [ + 0.9921175854473762 + ], + [ + 0.8553134080531343 + ], + [ + 0.9943501037415146 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8958436239049176 + ], + [ + 1 + ], + [ + 0.8217563751752737 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8089287811425218 + ], + [ + 0.9416562889165628 + ], + [ + 0.7955445656901864 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8580430671412884 + ], + [ + 0.90276124713408 + ], + [ + 0.992671182389769 + ], + [ + 0.9848040830545792 + ], + [ + 0.9514741813067672 + ], + [ + 0.8630706569122703 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.9857005881574218 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9414868925909092 + ], + [ + 0.9851370084561714 + ], + [ + 0.9822495603003196 + ], + [ + 0.9822495603003196 + ], + [ + 0.8052224642752426 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.8931621545809378 + ], + [ + 1 + ], + [ + 0.9271888077994948 + ], + [ + 0.7647361516158825 + ], + [ + 0.9921175854473762 + ], + [ + 0.8553134080531343 + ], + [ + 0.9943501037415146 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8958436239049176 + ], + [ + 1 + ], + [ + 0.8217563751752737 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8019358454012121 + ], + [ + 0.8089287811425218 + ], + [ + 0.8017627702025453 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8580430671412884 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.90276124713408 + ], + [ + 0.992671182389769 + ], + [ + 0.8072821072057714 + ], + [ + 0.9848040830545792 + ], + [ + 0.8189889492826025 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.974712351554919 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9773557492735576 + ], + [ + 0.9822495603003196 + ], + [ + 0.9822495603003196 + ], + [ + 0.8052224642752426 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9503668087629396 + ], + [ + 1 + ], + [ + 0.9271888077994948 + ], + [ + 0.7647361516158825 + ], + [ + 0.8653436259062406 + ], + [ + 0.9166666666666666 + ], + [ + 0.8513043478260871 + ], + [ + 0.888762154374558 + ], + [ + 0.9072684799014413 + ], + [ + 0.8911473104418144 + ], + [ + 0.8931451612903224 + ], + [ + 0.8046414142652472 + ], + [ + 0.8069790866112391 + ], + [ + 0.8818832214815736 + ], + [ + 0.8945874001774624 + ], + [ + 0.8064644137224782 + ], + [ + 0.8411703547857459 + ], + [ + 0.8850692346282528 + ], + [ + 0.755864605581299 + ], + [ + 0.8544702845816942 + ], + [ + 0.9105444641861692 + ], + [ + 0.9339130434782608 + ], + [ + 0.8908740092733132 + ], + [ + 0.8673913043478261 + ], + [ + 0.8286547121919265 + ], + [ + 0.95706340378198 + ], + [ + 0.9119365546072284 + ], + [ + 0.9110759625390218 + ], + [ + 0.9018301785200464 + ], + [ + 0.9107392505404756 + ], + [ + 0.812383779297877 + ], + [ + 0.8091839475036197 + ], + [ + 0.92656200324369 + ], + [ + 0.9618472252807516 + ], + [ + 0.9614035087719296 + ], + [ + 0.7500000000000002 + ], + [ + 0.8598402189827489 + ], + [ + 0.9545454545454548 + ], + [ + 0.9545454545454548 + ], + [ + 0.8298946640273919 + ], + [ + 0.8041381029540074 + ], + [ + 0.9786956521739132 + ], + [ + 0.9055353950321428 + ], + [ + 0.8658008658008658 + ], + [ + 0.8041630667784955 + ], + [ + 0.792782754772987 + ], + [ + 0.8259976777571356 + ], + [ + 0.8220626497774737 + ], + [ + 0.8210461476724114 + ], + [ + 0.8101813436763873 + ], + [ + 0.971001604361102 + ], + [ + 0.9289464621791536 + ], + [ + 0.8732908588456849 + ], + [ + 0.9320839327803117 + ], + [ + 0.7799127011297503 + ], + [ + 0.9521230391509398 + ], + [ + 0.8387538514207465 + ], + [ + 0.8873673399520713 + ], + [ + 0.8919696969696971 + ], + [ + 0.9939130434782611 + ], + [ + 0.9772426641825802 + ], + [ + 0.8315151515151515 + ], + [ + 0.8408502506153573 + ], + [ + 0.9545454545454548 + ], + [ + 0.8658008658008658 + ], + [ + 0.9939130434782611 + ], + [ + 0.9418179668098864 + ], + [ + 0.912126399896816 + ], + [ + 0.8887138991962918 + ], + [ + 0.8348061215534456 + ], + [ + 0.9654149311197341 + ], + [ + 0.9378050392345934 + ], + [ + 0.7862793427792023 + ], + [ + 0.8443604690958973 + ], + [ + 0.9593698200373342 + ], + [ + 0.8512088827319056 + ], + [ + 0.8685180682717806 + ], + [ + 0.8468774244700616 + ], + [ + 0.7714560308712177 + ], + [ + 0.8438870652966832 + ], + [ + 0.8969414245866957 + ], + [ + 0.7886269744426645 + ], + [ + 0.7869777589350374 + ], + [ + 0.8088224211621804 + ], + [ + 0.8437355447339081 + ], + [ + 0.7910699721201396 + ], + [ + 0.8676659390892717 + ], + [ + 0.9527613124711042 + ], + [ + 0.8204485735368444 + ], + [ + 0.9271303344105843 + ], + [ + 0.8146456352114138 + ], + [ + 0.8976037629362695 + ], + [ + 0.8683719728292518 + ], + [ + 0.8802027440346276 + ], + [ + 0.9196776036942447 + ], + [ + 0.8365367223192828 + ], + [ + 0.9120870195043488 + ], + [ + 0.8288691920804903 + ], + [ + 0.8922059565791751 + ], + [ + 0.8856333436369807 + ], + [ + 0.8958383344884892 + ], + [ + 0.8547177456502489 + ], + [ + 0.8876177172043811 + ], + [ + 0.8044462631285333 + ], + [ + 0.7769360074394543 + ], + [ + 0.870165794962474 + ], + [ + 0.9088771460360435 + ], + [ + 0.8639440219481173 + ], + [ + 0.8216171045177142 + ], + [ + 0.9553836542485572 + ], + [ + 0.8590281921783777 + ], + [ + 0.7787593370202928 + ], + [ + 0.980480932194884 + ], + [ + 0.859475457715449 + ], + [ + 0.8392883910692737 + ], + [ + 0.9697334753456728 + ], + [ + 0.9875342767410386 + ], + [ + 0.7762805813227043 + ], + [ + 0.8819115666628253 + ], + [ + 0.9996664755680739 + ], + [ + 0.8213533116534559 + ], + [ + 0.8993451012599613 + ], + [ + 0.994957229074001 + ], + [ + 0.8044910674094043 + ], + [ + 0.8264324715896463 + ], + [ + 0.9192754972628756 + ], + [ + 0.7970964194386293 + ], + [ + 0.7945612011511877 + ], + [ + 0.9286518512105283 + ], + [ + 0.8566385381298418 + ], + [ + 0.8419664159663934 + ], + [ + 0.8037444492468451 + ], + [ + 0.8979338496600437 + ], + [ + 0.9911725943373176 + ], + [ + 0.8072821072057714 + ], + [ + 0.9582948583751757 + ], + [ + 0.9361559940016043 + ], + [ + 0.848885751747483 + ], + [ + 0.9282065099530084 + ], + [ + 0.9375384371708221 + ], + [ + 0.9244381440159178 + ], + [ + 0.922778749811867 + ], + [ + 0.863030950010363 + ], + [ + 0.9604336230108552 + ], + [ + 0.9997485909897145 + ], + [ + 0.9281372808943766 + ], + [ + 0.9220884721293067 + ], + [ + 0.9635181750863282 + ], + [ + 0.9383494988405086 + ], + [ + 0.9820953369402764 + ], + [ + 0.8113952633989926 + ], + [ + 0.7593325960761085 + ], + [ + 0.8846768686559165 + ], + [ + 0.9402013525622738 + ], + [ + 0.98884684307581 + ], + [ + 0.9345641592934529 + ], + [ + 0.9797300792648269 + ], + [ + 0.9211896852548491 + ], + [ + 0.7727183435914119 + ], + [ + 0.8553134080531343 + ], + [ + 0.7923275652679538 + ], + [ + 0.7819131922573495 + ], + [ + 0.7906170310433895 + ], + [ + 0.8406484670606788 + ], + [ + 0.7894736842105264 + ], + [ + 0.8681498428014106 + ], + [ + 0.8408063572139095 + ], + [ + 0.7738548847622624 + ], + [ + 0.8107066154287429 + ], + [ + 0.909636086500905 + ], + [ + 0.9320839327803117 + ], + [ + 0.894689054121916 + ], + [ + 0.8861995746607623 + ], + [ + 0.8134896030245747 + ], + [ + 0.9636363636363636 + ], + [ + 0.8392276737347159 + ], + [ + 0.901982337361457 + ], + [ + 0.8985728391457872 + ], + [ + 0.792183707284576 + ], + [ + 0.781322126609299 + ], + [ + 0.9062315973735743 + ], + [ + 0.9367756029417319 + ], + [ + 0.9319511232326471 + ], + [ + 0.9114862576701875 + ], + [ + 0.9712199515753038 + ], + [ + 0.8980313754953725 + ], + [ + 0.9114891155371125 + ], + [ + 0.9718991822232025 + ], + [ + 0.8957817018995955 + ], + [ + 0.885216820326823 + ], + [ + 0.9629347112101692 + ], + [ + 0.9112715002623073 + ], + [ + 0.8614427822576298 + ], + [ + 0.9049664936619728 + ], + [ + 0.8820162243309974 + ], + [ + 0.888454039780395 + ], + [ + 0.9041504983342782 + ], + [ + 0.8799225737707326 + ], + [ + 0.8876439844627072 + ], + [ + 0.8799233569935232 + ], + [ + 0.918126588116288 + ], + [ + 0.9555805365011201 + ], + [ + 0.8931008593563526 + ], + [ + 0.9515523658057982 + ], + [ + 0.9349917026220693 + ], + [ + 0.8474827234526232 + ], + [ + 0.9150998524663875 + ], + [ + 0.9019272454814691 + ], + [ + 0.9301521751223218 + ], + [ + 0.9063992024260691 + ], + [ + 0.9084458145791406 + ], + [ + 0.9168300877742804 + ], + [ + 0.9333616542847242 + ], + [ + 0.9154663449613054 + ], + [ + 0.9251461704126609 + ], + [ + 0.917690844476884 + ], + [ + 0.9147435499325136 + ], + [ + 0.9222813943309438 + ], + [ + 0.8949753018246851 + ], + [ + 0.880217317459482 + ], + [ + 0.9102208157579199 + ], + [ + 0.9310777500028851 + ], + [ + 0.9593888728040101 + ], + [ + 0.9143927587731583 + ], + [ + 0.9653623648480182 + ], + [ + 0.895914543937476 + ], + [ + 0.8635374376096991 + ], + [ + 0.9681319140967855 + ], + [ + 0.7944051293641291 + ], + [ + 0.8332891527009144 + ], + [ + 0.9572275212696914 + ], + [ + 0.9858336693217798 + ], + [ + 0.8109702628253749 + ], + [ + 0.8979224069109053 + ], + [ + 0.9560034436331701 + ], + [ + 0.8639809350471249 + ], + [ + 0.9097687059679831 + ], + [ + 0.8322745922557433 + ], + [ + 0.7971859524323482 + ], + [ + 0.8358842439381247 + ], + [ + 0.8283017039354447 + ], + [ + 0.8143104247154894 + ], + [ + 0.7738369426049334 + ], + [ + 0.8995325759943457 + ], + [ + 0.8642235928871177 + ], + [ + 0.8487681619367479 + ], + [ + 0.764572997619905 + ], + [ + 0.8781835807412907 + ], + [ + 0.9926851552084225 + ], + [ + 0.9812777311360182 + ], + [ + 0.8861726828683071 + ], + [ + 0.8774954149924378 + ], + [ + 0.926345302298229 + ], + [ + 0.8766210768243543 + ], + [ + 0.9378841050418827 + ], + [ + 0.939845912034176 + ], + [ + 0.823816185944173 + ], + [ + 0.856345527603842 + ], + [ + 0.8334595938340698 + ], + [ + 0.8998404410917807 + ], + [ + 0.9376711024759753 + ], + [ + 0.911890053248672 + ], + [ + 0.9300633742947678 + ], + [ + 0.8084175084175085 + ], + [ + 0.8334508286707701 + ], + [ + 0.7740091154092624 + ], + [ + 0.7992420095977141 + ], + [ + 0.9006621739097868 + ], + [ + 0.854653633074874 + ], + [ + 0.8760061398599419 + ], + [ + 0.9813930191848028 + ], + [ + 0.8468484447398872 + ], + [ + 0.8096121652455617 + ], + [ + 0.9446374125411141 + ], + [ + 0.8908978309617703 + ], + [ + 0.8171053577998276 + ], + [ + 0.8734377849868722 + ], + [ + 0.9519939718593139 + ], + [ + 0.8280300613338275 + ], + [ + 0.876595396020583 + ], + [ + 0.9655210912171963 + ], + [ + 0.8261344387971954 + ], + [ + 0.8625542828389395 + ], + [ + 0.8903288184273107 + ], + [ + 0.7940378215823586 + ], + [ + 0.821308528676284 + ], + [ + 0.8862838943076522 + ], + [ + 0.801335608067006 + ], + [ + 0.7898913315911535 + ], + [ + 0.8939243895233296 + ], + [ + 0.8298894470003665 + ], + [ + 0.8095100145922008 + ], + [ + 0.8059795113616446 + ], + [ + 0.8742160601633633 + ], + [ + 0.9583180594822122 + ], + [ + 0.7551458714415599 + ], + [ + 0.9136540178884357 + ], + [ + 0.9206422293761181 + ], + [ + 0.8591683975024862 + ], + [ + 0.904109564575604 + ], + [ + 0.8472694098632094 + ], + [ + 0.9130149998360988 + ], + [ + 0.880145246772824 + ], + [ + 0.8361423023057717 + ], + [ + 0.9167552503585765 + ], + [ + 0.9112809824102042 + ], + [ + 0.8970011148753945 + ], + [ + 0.8914866076962089 + ], + [ + 0.923955848833383 + ], + [ + 0.9413970359062177 + ], + [ + 0.9010745526527456 + ], + [ + 0.8041496126372355 + ], + [ + 0.7790726657769016 + ], + [ + 0.8538666204813453 + ], + [ + 0.8917500286633246 + ], + [ + 0.9410172873790268 + ], + [ + 0.828568031294484 + ], + [ + 0.9472721492692258 + ], + [ + 0.8601896132182887 + ], + [ + 0.7893633567566072 + ], + [ + 0.9778255798991798 + ], + [ + 0.8408064685157908 + ], + [ + 0.8526279870536415 + ], + [ + 0.8833001568387581 + ], + [ + 0.9124677847409535 + ], + [ + 0.8503633201346489 + ], + [ + 0.8833774822775062 + ], + [ + 0.9417491009932606 + ], + [ + 0.9147990007027552 + ], + [ + 0.8911473104418144 + ], + [ + 0.9223179978964999 + ], + [ + 0.7993105223748839 + ], + [ + 0.850350519784385 + ], + [ + 0.9028697210251827 + ], + [ + 0.8286759028531826 + ], + [ + 0.8031469436294986 + ], + [ + 0.9091537502090101 + ], + [ + 0.8093089826039098 + ], + [ + 0.8904874214357624 + ], + [ + 0.8411703547857459 + ], + [ + 0.9300497863013258 + ], + [ + 0.9285163775070171 + ], + [ + 0.9184586012318386 + ], + [ + 0.9105444641861692 + ], + [ + 0.9164299777201611 + ], + [ + 0.9326776376702162 + ], + [ + 0.915238611353349 + ], + [ + 0.8549571170132747 + ], + [ + 0.923455550886179 + ], + [ + 0.9049110370735057 + ], + [ + 0.9119365546072284 + ], + [ + 0.9018909142690755 + ], + [ + 0.891364561195284 + ], + [ + 0.9086032637241696 + ], + [ + 0.9120677703982908 + ], + [ + 0.7772353780844471 + ], + [ + 0.812383779297877 + ], + [ + 0.8141980933100278 + ], + [ + 0.8822295931235452 + ], + [ + 0.9449596208074079 + ], + [ + 0.8978862439049966 + ], + [ + 0.9095010430865866 + ], + [ + 0.8584872270322912 + ], + [ + 0.8086861251474953 + ], + [ + 0.9214310387816568 + ], + [ + 0.8513156916323267 + ], + [ + 0.8861426594528754 + ], + [ + 0.9563580635481227 + ], + [ + 0.8379543933348044 + ], + [ + 0.8656705863743085 + ], + [ + 0.98211089011857 + ], + [ + 0.8110596347942214 + ], + [ + 0.9034463518857324 + ], + [ + 0.9635607491657863 + ], + [ + 0.8422382578141601 + ], + [ + 0.804708761453583 + ], + [ + 0.7698095150780381 + ], + [ + 0.7928287729663905 + ], + [ + 0.8372182500994741 + ], + [ + 0.8427896430369138 + ], + [ + 0.855443432650397 + ], + [ + 0.7939358902616885 + ], + [ + 0.7798108510703752 + ], + [ + 0.8567241066808098 + ], + [ + 0.9583038937015214 + ], + [ + 0.8148887053291618 + ], + [ + 0.9152406569855351 + ], + [ + 0.9028534602763532 + ], + [ + 0.8325119458879734 + ], + [ + 0.9302053778183247 + ], + [ + 0.8963386566638 + ], + [ + 0.8746814563549781 + ], + [ + 0.872251181030881 + ], + [ + 0.8686053557864637 + ], + [ + 0.9141058135529145 + ], + [ + 0.8632595037764901 + ], + [ + 0.9040022099272385 + ], + [ + 0.9059581070774078 + ], + [ + 0.9346013746176656 + ], + [ + 0.9298936488832736 + ], + [ + 0.8340239458302267 + ], + [ + 0.8702365021705257 + ], + [ + 0.8123721793207034 + ], + [ + 0.885883024060232 + ], + [ + 0.9117402687572846 + ], + [ + 0.936386353394425 + ], + [ + 0.8186788756172888 + ], + [ + 0.9671464581990991 + ], + [ + 0.848055950280692 + ], + [ + 0.8634065231167884 + ], + [ + 0.943821429875099 + ], + [ + 0.8448605670142738 + ], + [ + 0.8391308618400675 + ], + [ + 0.9254219485466432 + ], + [ + 0.969801679066684 + ], + [ + 0.7878255517886145 + ], + [ + 0.8357804468910168 + ], + [ + 0.9631549837457787 + ], + [ + 0.8766588491633124 + ], + [ + 0.883163649863375 + ], + [ + 0.9511620798446823 + ], + [ + 0.8066657873420849 + ], + [ + 0.8646146885061549 + ], + [ + 0.9029578211833432 + ], + [ + 0.8173068258119696 + ], + [ + 0.8033478921612156 + ], + [ + 0.8925053259258572 + ], + [ + 0.852437315787378 + ], + [ + 0.8476096224149778 + ], + [ + 0.8281685537387745 + ], + [ + 0.8864038761069699 + ], + [ + 0.966688404418 + ], + [ + 0.7614570139762271 + ], + [ + 0.9218212088326015 + ], + [ + 0.9097340269655556 + ], + [ + 0.864077528054265 + ], + [ + 0.8950383362559432 + ], + [ + 0.9073710788569305 + ], + [ + 0.9205839250299366 + ], + [ + 0.925130070799764 + ], + [ + 0.8576299437359549 + ], + [ + 0.9440950401078382 + ], + [ + 0.980790485473866 + ], + [ + 0.8716713610396803 + ], + [ + 0.8830330753654165 + ], + [ + 0.947413628857759 + ], + [ + 0.9115868956816537 + ], + [ + 0.9072478086555293 + ], + [ + 0.8887067486958385 + ], + [ + 0.8045206061109993 + ], + [ + 0.8778102296487642 + ], + [ + 0.9274293484428641 + ], + [ + 0.9658288014409694 + ], + [ + 0.8926838484147005 + ], + [ + 0.9632179959347835 + ], + [ + 0.9170977504366647 + ], + [ + 0.8054854384428153 + ], + [ + 0.9159799347276768 + ], + [ + 0.870259402604351 + ], + [ + 0.8402275254009515 + ], + [ + 0.9026564018866784 + ], + [ + 0.969798543419344 + ], + [ + 0.894474990496069 + ], + [ + 0.924076352335974 + ], + [ + 0.9429126764126102 + ], + [ + 0.8042639289221745 + ], + [ + 0.9218541569170036 + ], + [ + 0.9413543287285013 + ], + [ + 0.84560906239862 + ], + [ + 0.8512530801436985 + ], + [ + 0.8482251915257588 + ], + [ + 0.8418517009699383 + ], + [ + 0.8389250838766459 + ], + [ + 0.8780942953472136 + ], + [ + 0.8631072832356894 + ], + [ + 0.8400551602999186 + ], + [ + 0.8516270815329701 + ], + [ + 0.8873583533901547 + ], + [ + 0.9362723793519837 + ], + [ + 0.8578184506948072 + ], + [ + 0.9200868381562568 + ], + [ + 0.919241753809882 + ], + [ + 0.8090814478617769 + ], + [ + 0.9172442173513957 + ], + [ + 0.9208280320409932 + ], + [ + 0.8851201873403441 + ], + [ + 0.8620858836911702 + ], + [ + 0.8599934079935148 + ], + [ + 0.9464224065318294 + ], + [ + 0.8754179254812067 + ], + [ + 0.9307199381091358 + ], + [ + 0.930707642611767 + ], + [ + 0.9336712798542302 + ], + [ + 0.8756742763151554 + ], + [ + 0.899951826176289 + ], + [ + 0.8561565549568945 + ], + [ + 0.834305428035956 + ], + [ + 0.9043158701608425 + ], + [ + 0.8929659797398322 + ], + [ + 0.9503845826556759 + ], + [ + 0.8991612275139281 + ], + [ + 0.9813148595805599 + ], + [ + 0.8159243483663714 + ], + [ + 0.8774146105790617 + ], + [ + 0.8805473871785698 + ], + [ + 0.8168386335588215 + ], + [ + 0.8698762473047957 + ], + [ + 0.9165009998924976 + ], + [ + 0.9879292185766946 + ], + [ + 0.7704147258241087 + ], + [ + 0.8621323162821838 + ], + [ + 0.9420676506545669 + ], + [ + 0.8430911690338843 + ], + [ + 0.8642044705519123 + ], + [ + 0.8992599156815553 + ], + [ + 0.7848229577759359 + ], + [ + 0.8552257489567264 + ], + [ + 0.9107485390958536 + ], + [ + 0.8109378539976589 + ], + [ + 0.7760442198468392 + ], + [ + 0.8071817939237914 + ], + [ + 0.8488411028364334 + ], + [ + 0.8511599723642802 + ], + [ + 0.7930656733224284 + ], + [ + 0.9026466655874603 + ], + [ + 0.9432330473846552 + ], + [ + 0.8831072264534608 + ], + [ + 0.8943189089693644 + ], + [ + 0.8433884446453952 + ], + [ + 0.8957915181159275 + ], + [ + 0.8920211727858403 + ], + [ + 0.8656532195191253 + ], + [ + 0.8888272271166328 + ], + [ + 0.8185276031664389 + ], + [ + 0.8970283977981403 + ], + [ + 0.9482255936318409 + ], + [ + 0.8981625474527939 + ], + [ + 0.886392267992047 + ], + [ + 0.8763210075301389 + ], + [ + 0.8874771779807347 + ], + [ + 0.8847685034814367 + ], + [ + 0.811961856252122 + ], + [ + 0.7847145200343669 + ], + [ + 0.833222298535868 + ], + [ + 0.9240469682401297 + ], + [ + 0.9470088142769943 + ], + [ + 0.8108332314185674 + ], + [ + 0.9884763288693144 + ], + [ + 0.8537121244334758 + ], + [ + 0.7863842496662736 + ], + [ + 0.9710999057276702 + ], + [ + 0.8545775806305325 + ], + [ + 0.8288670673568047 + ], + [ + 0.9580430413202744 + ], + [ + 0.9851481216084019 + ], + [ + 0.8019990309518411 + ], + [ + 0.8765697319346342 + ], + [ + 0.9984485134812963 + ], + [ + 0.8827784956633106 + ], + [ + 0.897855261911528 + ], + [ + 0.9991228070175441 + ], + [ + 0.7869726824623813 + ], + [ + 0.8574600215751925 + ], + [ + 0.9104950845796125 + ], + [ + 0.7922752675949607 + ], + [ + 0.7825474175827186 + ], + [ + 0.9207382729968335 + ], + [ + 0.8317161986111055 + ], + [ + 0.84746622922539 + ], + [ + 0.8245418106987256 + ], + [ + 0.8914409068710273 + ], + [ + 0.9828315609612513 + ], + [ + 0.766483106515241 + ], + [ + 0.9500231063419912 + ], + [ + 0.9418084238960098 + ], + [ + 0.993758325008325 + ], + [ + 0.9340450649002454 + ], + [ + 0.9369761491626559 + ], + [ + 0.9242059912005234 + ], + [ + 0.9626281577206024 + ], + [ + 0.9004406503802566 + ], + [ + 0.9591920700382297 + ], + [ + 0.9770335633523987 + ], + [ + 0.9120886429915576 + ], + [ + 0.8878004962368867 + ], + [ + 0.9886242163794032 + ], + [ + 0.9651107579751624 + ], + [ + 0.8934452569589426 + ], + [ + 0.906094156405893 + ], + [ + 0.8004902860629857 + ], + [ + 0.8914046330636394 + ], + [ + 0.941658321518602 + ], + [ + 0.9765693239986738 + ], + [ + 0.8760032261652501 + ], + [ + 0.9991228070175441 + ], + [ + 0.9051910717095266 + ], + [ + 0.7935775831141221 + ], + [ + 0.929941088884573 + ], + [ + 0.8318189568317447 + ], + [ + 0.9721324228139152 + ], + [ + 0.8929555666008868 + ], + [ + 0.9899175068744273 + ], + [ + 0.7829559806346367 + ], + [ + 0.8330585670487148 + ], + [ + 0.9004712036731742 + ], + [ + 0.8079059133534838 + ], + [ + 0.907326978222119 + ], + [ + 0.8418462145170219 + ], + [ + 0.8355962235887732 + ], + [ + 0.9840600196897172 + ], + [ + 0.9727233543942168 + ], + [ + 0.9456931798893302 + ], + [ + 0.7835307826762479 + ], + [ + 0.9334823561531638 + ], + [ + 0.943912095206486 + ], + [ + 0.9719476865439598 + ], + [ + 0.8989607068123694 + ], + [ + 0.9899175068744273 + ], + [ + 0.91218688144154 + ], + [ + 0.968708052390917 + ], + [ + 0.9275641323723166 + ], + [ + 0.7750817305162342 + ], + [ + 0.7705110005585539 + ], + [ + 0.8746911090742437 + ], + [ + 0.906777236648719 + ], + [ + 0.9877189123128628 + ], + [ + 0.905810189680844 + ], + [ + 0.9039758195768428 + ], + [ + 0.9417675428322848 + ], + [ + 0.838458313625102 + ], + [ + 0.9578918616552848 + ], + [ + 0.9877224033535164 + ], + [ + 0.9600766541682176 + ], + [ + 0.9372227566431792 + ], + [ + 0.9996947496947498 + ], + [ + 0.9464739502688859 + ], + [ + 0.9273107442696306 + ], + [ + 0.8427440270131528 + ], + [ + 0.8930336617991886 + ], + [ + 0.8499116091074294 + ], + [ + 0.8297523357929766 + ], + [ + 0.8628042957923382 + ], + [ + 0.94362258995985 + ], + [ + 0.8861176478495414 + ], + [ + 0.992955297959396 + ], + [ + 0.954141881439958 + ], + [ + 0.9716068390573318 + ], + [ + 0.9372227566431792 + ], + [ + 0.9209665616774528 + ], + [ + 0.8810186818949944 + ], + [ + 0.8078565985679013 + ], + [ + 0.7888565809250084 + ], + [ + 0.8999765601568034 + ], + [ + 0.7784705964389922 + ], + [ + 0.8951137084436364 + ], + [ + 0.9694396869310692 + ], + [ + 0.906901471095239 + ], + [ + 0.9521895754027829 + ], + [ + 0.7517286913985001 + ], + [ + 0.8687571885281811 + ], + [ + 0.7912430201328434 + ], + [ + 0.9975369458128078 + ], + [ + 0.9160401958804216 + ], + [ + 0.9315711806648126 + ], + [ + 0.8609644958918051 + ], + [ + 0.8386594508420274 + ], + [ + 0.9351549836986592 + ], + [ + 0.9427180341404985 + ], + [ + 0.7681163618132653 + ], + [ + 0.8787858747853352 + ], + [ + 0.9893011313753898 + ], + [ + 0.8546700127495449 + ], + [ + 0.8758173885709947 + ], + [ + 0.9485066687801922 + ], + [ + 0.8003973221301792 + ], + [ + 0.8309934593862532 + ], + [ + 0.9026473100549586 + ], + [ + 0.7957711145179299 + ], + [ + 0.7958134120303104 + ], + [ + 0.8809153393318552 + ], + [ + 0.8550588891603323 + ], + [ + 0.8368966677964681 + ], + [ + 0.8049966847322658 + ], + [ + 0.8894131781606722 + ], + [ + 0.984770563952946 + ], + [ + 0.7945822416508489 + ], + [ + 0.9385796426731732 + ], + [ + 0.9400075247083102 + ], + [ + 0.8370209052650499 + ], + [ + 0.9406181150608247 + ], + [ + 0.9074883728808776 + ], + [ + 0.9137808792941257 + ], + [ + 0.9328829711123616 + ], + [ + 0.8601818483687415 + ], + [ + 0.8898049062435895 + ], + [ + 0.9722307756700375 + ], + [ + 0.9238623216857789 + ], + [ + 0.871665184175204 + ], + [ + 0.9528158707854402 + ], + [ + 0.9020360939999567 + ], + [ + 0.9516904425166645 + ], + [ + 0.8907461235222609 + ], + [ + 0.7809088432800615 + ], + [ + 0.8762088523996857 + ], + [ + 0.9320039039158255 + ], + [ + 0.9272893269521203 + ], + [ + 0.9058370878370338 + ], + [ + 0.9524516791586732 + ], + [ + 0.8829855968328181 + ], + [ + 0.7823245649207289 + ], + [ + 0.8748693498469887 + ], + [ + 0.8742883854021798 + ], + [ + 0.8746611748024347 + ], + [ + 0.9376819623311556 + ], + [ + 0.9947028289732674 + ], + [ + 0.8548763233394239 + ], + [ + 0.9049914056584369 + ], + [ + 0.9941197065722382 + ], + [ + 0.8487320955708422 + ], + [ + 0.9092712562873475 + ], + [ + 0.9763749646497006 + ], + [ + 0.8545982831576736 + ], + [ + 0.850548231352957 + ], + [ + 0.9407255024549774 + ], + [ + 0.8503648922153408 + ], + [ + 0.8359536461222336 + ], + [ + 0.9109614334891537 + ], + [ + 0.8647394698759232 + ], + [ + 0.9043414337084982 + ], + [ + 0.8450197352772266 + ], + [ + 0.9399452292694473 + ], + [ + 0.9846994595492535 + ], + [ + 0.9486152933634998 + ], + [ + 0.9754185212178655 + ], + [ + 0.9588847492141126 + ], + [ + 0.8651058220157922 + ], + [ + 0.9272067154146025 + ], + [ + 0.9405616327785196 + ], + [ + 0.9367871439736926 + ], + [ + 0.9386593272049244 + ], + [ + 0.8902973666791916 + ], + [ + 0.9017097117882626 + ], + [ + 0.9739530318740881 + ], + [ + 0.9085982902991971 + ], + [ + 0.9479750510619678 + ], + [ + 0.9829223011990686 + ], + [ + 0.8379245523453007 + ], + [ + 0.939761065723693 + ], + [ + 0.8491109021102726 + ], + [ + 0.8703455431007857 + ], + [ + 0.9177162151766173 + ], + [ + 0.9445085979284547 + ], + [ + 0.9970392628794374 + ], + [ + 0.9623118653922792 + ], + [ + 0.9932823846253213 + ], + [ + 0.9428523442680733 + ], + [ + 0.8098315966162147 + ], + [ + 0.9090909090909088 + ], + [ + 0.8237875450920827 + ], + [ + 0.945216049382716 + ], + [ + 0.8771929824561405 + ], + [ + 0.7694629219019462 + ], + [ + 0.8174876847290637 + ], + [ + 0.9545454545454548 + ], + [ + 0.8813770455902434 + ], + [ + 0.8553636363636361 + ], + [ + 0.8455433455433456 + ], + [ + 0.7676911617909391 + ], + [ + 0.8737944824901346 + ], + [ + 0.8588924177547349 + ], + [ + 0.7706024497958504 + ], + [ + 0.7971142965635086 + ], + [ + 0.797381306659819 + ], + [ + 0.8483876994316057 + ], + [ + 0.8282595845401285 + ], + [ + 0.8034089244055879 + ], + [ + 0.817729049162855 + ], + [ + 0.9363500515543048 + ], + [ + 0.9359939732913412 + ], + [ + 0.882198952879581 + ], + [ + 0.8576806647865884 + ], + [ + 0.815050939773573 + ], + [ + 0.9091975633632599 + ], + [ + 0.8917391304347826 + ], + [ + 0.8452819441807481 + ], + [ + 0.8400216450216451 + ], + [ + 0.8253968253968254 + ], + [ + 0.8210322890105873 + ], + [ + 0.8348289163941287 + ], + [ + 0.9554938655160816 + ], + [ + 0.852293824358888 + ], + [ + 0.858005568338311 + ], + [ + 0.8161148760137403 + ], + [ + 0.9688527588701455 + ], + [ + 0.8467761176075351 + ], + [ + 0.9017543859649124 + ], + [ + 0.7897773279352229 + ], + [ + 0.805168828270855 + ], + [ + 0.8317573749391951 + ], + [ + 0.9643924081792452 + ], + [ + 0.938598748759861 + ], + [ + 0.984466571720076 + ], + [ + 0.9883020564051679 + ], + [ + 0.977397740533538 + ], + [ + 0.8324262590094272 + ], + [ + 0.957204861709126 + ], + [ + 0.9815689054392762 + ], + [ + 0.9723297607875788 + ], + [ + 0.9166058436529154 + ], + [ + 0.7521706555006759 + ], + [ + 0.9280169976669376 + ], + [ + 0.9358035287465732 + ], + [ + 0.8764803941254208 + ], + [ + 0.9153455696596016 + ], + [ + 0.8469432605765171 + ], + [ + 0.99268071993084 + ], + [ + 0.988226739831974 + ], + [ + 0.996336999414424 + ], + [ + 0.9244884191211992 + ], + [ + 0.8507008302142539 + ], + [ + 0.9593509283699424 + ], + [ + 0.8061755182821719 + ], + [ + 0.9615141634622412 + ], + [ + 0.9839330712663648 + ], + [ + 0.9555873521968756 + ], + [ + 0.9775173594082412 + ], + [ + 0.8128624949482813 + ], + [ + 0.9514741813067672 + ], + [ + 0.9817522080920388 + ], + [ + 0.981025791388756 + ], + [ + 0.9818181818181816 + ], + [ + 0.9710861248452468 + ], + [ + 0.9773557492735576 + ], + [ + 0.890085589718168 + ], + [ + 0.954337370755309 + ], + [ + 0.9807297003570874 + ], + [ + 0.9364502164502164 + ], + [ + 0.7901612469857595 + ], + [ + 0.824287208001439 + ], + [ + 0.9807297003570874 + ], + [ + 0.7614649785030472 + ], + [ + 0.8658008658008658 + ], + [ + 0.9939130434782611 + ], + [ + 0.9066651512935219 + ], + [ + 0.8939526037506182 + ], + [ + 0.9842229467473992 + ], + [ + 0.865081443540125 + ], + [ + 0.9167169276268624 + ], + [ + 0.8794346322201474 + ], + [ + 0.765130456168069 + ], + [ + 0.8734544866674276 + ], + [ + 0.909520787797598 + ], + [ + 0.8854931946173012 + ], + [ + 0.7673924006226841 + ], + [ + 0.8798233135618779 + ], + [ + 0.9852364106660584 + ], + [ + 0.7637569649841349 + ], + [ + 0.9348260838243078 + ], + [ + 0.933522474466579 + ], + [ + 0.8377846225826576 + ], + [ + 0.9583806183156228 + ], + [ + 0.9331326790672908 + ], + [ + 0.9383147514181556 + ], + [ + 0.9589825216566162 + ], + [ + 0.8060876415101113 + ], + [ + 0.9783224922971588 + ], + [ + 0.9583806183156228 + ], + [ + 0.899590944489805 + ], + [ + 0.8941653123998358 + ], + [ + 0.9668188169538892 + ], + [ + 0.9783224922971588 + ], + [ + 0.9679972612119138 + ], + [ + 0.8797605429806478 + ], + [ + 0.7963975193082085 + ], + [ + 0.8839816990630294 + ], + [ + 0.9431528211472392 + ], + [ + 0.8367334869051766 + ], + [ + 0.8658008658008658 + ], + [ + 0.9921746738179468 + ], + [ + 0.9020614173817516 + ], + [ + 0.7562166685686029 + ], + [ + 0.8168393183171508 + ], + [ + 0.826467375579422 + ], + [ + 0.94513113161729 + ], + [ + 0.9585637037072424 + ], + [ + 0.8949088289552438 + ], + [ + 0.9053910284366296 + ], + [ + 0.817437533227007 + ], + [ + 0.7978783990223038 + ], + [ + 0.7521903939726886 + ], + [ + 0.754943158980426 + ], + [ + 0.7928605555934748 + ], + [ + 0.8989607068123694 + ], + [ + 0.7975892455476461 + ], + [ + 0.7725199492096488 + ], + [ + 0.7662703504995123 + ], + [ + 0.9767351231527428 + ], + [ + 0.9424631082284728 + ], + [ + 0.866898864682116 + ], + [ + 0.7783625730994154 + ], + [ + 0.9376349250962784 + ], + [ + 0.9303020409693342 + ], + [ + 0.8287563928270861 + ], + [ + 0.8603115680426934 + ], + [ + 0.8114732228923959 + ], + [ + 0.9669758970781992 + ], + [ + 0.8105976841695943 + ], + [ + 0.7959269589012261 + ], + [ + 0.8302139037433156 + ], + [ + 0.986986590623621 + ], + [ + 0.751078143739283 + ], + [ + 0.9319865517177697 + ], + [ + 0.8782639830593114 + ], + [ + 0.8578369301463997 + ], + [ + 0.9189313114771297 + ], + [ + 0.9633417717529799 + ], + [ + 0.8343138912267726 + ], + [ + 0.8818418640888517 + ], + [ + 0.9736024773604863 + ], + [ + 0.8613042225346038 + ], + [ + 0.888024195606103 + ], + [ + 0.941782855514232 + ], + [ + 0.8404355723269926 + ], + [ + 0.8454461341922117 + ], + [ + 0.8945900568243629 + ], + [ + 0.8289908029078139 + ], + [ + 0.8273210174189225 + ], + [ + 0.8916495568044747 + ], + [ + 0.854433147885652 + ], + [ + 0.8505264662318455 + ], + [ + 0.8308969974341954 + ], + [ + 0.8899385122095016 + ], + [ + 0.9625463006926477 + ], + [ + 0.822879325367078 + ], + [ + 0.9328941076717102 + ], + [ + 0.9254546321964118 + ], + [ + 0.8536794132479856 + ], + [ + 0.9149236519168374 + ], + [ + 0.8988039859606616 + ], + [ + 0.9131258134142545 + ], + [ + 0.905813040144688 + ], + [ + 0.8670687350210408 + ], + [ + 0.9214606820661353 + ], + [ + 0.9408298439101216 + ], + [ + 0.9049472424037028 + ], + [ + 0.9020513700091627 + ], + [ + 0.9349510800595612 + ], + [ + 0.9123902818135722 + ], + [ + 0.914220218308289 + ], + [ + 0.8665729766490252 + ], + [ + 0.8246776811045251 + ], + [ + 0.8835807215942634 + ], + [ + 0.917454975120021 + ], + [ + 0.9496273615183636 + ], + [ + 0.8917539300260674 + ], + [ + 0.9646948055738331 + ], + [ + 0.8878652466688929 + ], + [ + 0.8283471179008514 + ], + [ + 0.9319439135020179 + ], + [ + 0.8611711731084291 + ], + [ + 0.8995765609336107 + ], + [ + 0.9025233427813701 + ], + [ + 0.9630284898620637 + ], + [ + 0.9104667843695463 + ], + [ + 0.871798757072994 + ], + [ + 0.900245383469288 + ] + ], + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "labels=%{label}
R^2 Spearman_sum=%{value}
parent=%{parent}
id=%{id}
R^2 Spearman=%{color}", + "ids": [ + "World/Latam/ARG/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Persian Gulf/AZE/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Asia/BGD/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Latam/BRA/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Pair/CHN/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/South Africa/CMR/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Latam/COL/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Latam/CRI/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/North Africa/DZA/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/North Africa/EGY/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/South Africa/GHA/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Asia/IDN/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Asia/IND/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Persian Gulf/IRQ/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/North Africa/MAR/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/South Africa/MOZ/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/South Africa/NGA/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Latam/PAN/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Latam/PER/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Asia/PHL/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/South Africa/SEN/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Asia/THA/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/North Africa/TUR/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Asia/VNM/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Persian Gulf/YEM/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/South Africa/ZAF/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Persian Gulf/AZE/Environment/Access to electricity (% of population)", + "World/Asia/BGD/Environment/Access to electricity (% of population)", + "World/Latam/BRA/Environment/Access to electricity (% of population)", + "World/Latam/CHL/Environment/Access to electricity (% of population)", + "World/Pair/CHN/Environment/Access to electricity (% of population)", + "World/South Africa/CMR/Environment/Access to electricity (% of population)", + "World/Latam/COL/Environment/Access to electricity (% of population)", + "World/Latam/CRI/Environment/Access to electricity (% of population)", + "World/North Africa/EGY/Environment/Access to electricity (% of population)", + "World/South Africa/GHA/Environment/Access to electricity (% of population)", + "World/Asia/IDN/Environment/Access to electricity (% of population)", + "World/Asia/IND/Environment/Access to electricity (% of population)", + "World/Persian Gulf/IRQ/Environment/Access to electricity (% of population)", + "World/South Africa/LBR/Environment/Access to electricity (% of population)", + "World/North Africa/MAR/Environment/Access to electricity (% of population)", + "World/Latam/MEX/Environment/Access to electricity (% of population)", + "World/South Africa/MOZ/Environment/Access to electricity (% of population)", + "World/South Africa/NGA/Environment/Access to electricity (% of population)", + "World/Latam/PAN/Environment/Access to electricity (% of population)", + "World/Latam/PER/Environment/Access to electricity (% of population)", + "World/Asia/PHL/Environment/Access to electricity (% of population)", + "World/South Africa/SEN/Environment/Access to electricity (% of population)", + "World/Asia/THA/Environment/Access to electricity (% of population)", + "World/Asia/VNM/Environment/Access to electricity (% of population)", + "World/Persian Gulf/YEM/Environment/Access to electricity (% of population)", + "World/South Africa/ZAF/Environment/Access to electricity (% of population)", + "World/Persian Gulf/ARE/Economy/Adjusted net national income (current US$)", + "World/Latam/ARG/Economy/Adjusted net national income (current US$)", + "World/Europe/AUT/Economy/Adjusted net national income (current US$)", + "World/Persian Gulf/AZE/Economy/Adjusted net national income (current US$)", + "World/Asia/BGD/Economy/Adjusted net national income (current US$)", + "World/Latam/BRA/Economy/Adjusted net national income (current US$)", + "World/Latam/CHL/Economy/Adjusted net national income (current US$)", + "World/Pair/CHN/Economy/Adjusted net national income (current US$)", + "World/South Africa/CMR/Economy/Adjusted net national income (current US$)", + "World/Latam/COL/Economy/Adjusted net national income (current US$)", + "World/Latam/CRI/Economy/Adjusted net national income (current US$)", + "World/Europe/DEU/Economy/Adjusted net national income (current US$)", + "World/North Africa/DZA/Economy/Adjusted net national income (current US$)", + "World/North Africa/EGY/Economy/Adjusted net national income (current US$)", + "World/Europe/ESP/Economy/Adjusted net national income (current US$)", + "World/Europe/FRA/Economy/Adjusted net national income (current US$)", + "World/Europe/GBR/Economy/Adjusted net national income (current US$)", + "World/South Africa/GHA/Economy/Adjusted net national income (current US$)", + "World/Europe/HRV/Economy/Adjusted net national income (current US$)", + "World/Asia/IDN/Economy/Adjusted net national income (current US$)", + "World/Asia/IND/Economy/Adjusted net national income (current US$)", + "World/North Africa/ISR/Economy/Adjusted net national income (current US$)", + "World/Asia/KOR/Economy/Adjusted net national income (current US$)", + "World/South Africa/LBR/Economy/Adjusted net national income (current US$)", + "World/North Africa/MAR/Economy/Adjusted net national income (current US$)", + "World/Latam/MEX/Economy/Adjusted net national income (current US$)", + "World/South Africa/MOZ/Economy/Adjusted net national income (current US$)", + "World/South Africa/NGA/Economy/Adjusted net national income (current US$)", + "World/Europe/NLD/Economy/Adjusted net national income (current US$)", + "World/Persian Gulf/OMN/Economy/Adjusted net national income (current US$)", + "World/Latam/PAN/Economy/Adjusted net national income (current US$)", + "World/Latam/PER/Economy/Adjusted net national income (current US$)", + "World/Asia/PHL/Economy/Adjusted net national income (current US$)", + "World/Europe/POL/Economy/Adjusted net national income (current US$)", + "World/Persian Gulf/QAT/Economy/Adjusted net national income (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted net national income (current US$)", + "World/South Africa/SEN/Economy/Adjusted net national income (current US$)", + "World/Europe/SWE/Economy/Adjusted net national income (current US$)", + "World/Asia/THA/Economy/Adjusted net national income (current US$)", + "World/North Africa/TUR/Economy/Adjusted net national income (current US$)", + "World/Pair/USA/Economy/Adjusted net national income (current US$)", + "World/Latam/VEN/Economy/Adjusted net national income (current US$)", + "World/Asia/VNM/Economy/Adjusted net national income (current US$)", + "World/Persian Gulf/YEM/Economy/Adjusted net national income (current US$)", + "World/South Africa/ZAF/Economy/Adjusted net national income (current US$)", + "World/Latam/ARG/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/AUT/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/AZE/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/BGD/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/BRA/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/CHL/Economy/Adjusted net national income per capita (current US$)", + "World/Pair/CHN/Economy/Adjusted net national income per capita (current US$)", + "World/South Africa/CMR/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/COL/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/CRI/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/DEU/Economy/Adjusted net national income per capita (current US$)", + "World/North Africa/DZA/Economy/Adjusted net national income per capita (current US$)", + "World/North Africa/EGY/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/ESP/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/FRA/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/GBR/Economy/Adjusted net national income per capita (current US$)", + "World/South Africa/GHA/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/HRV/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/IDN/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/IND/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/IRQ/Economy/Adjusted net national income per capita (current US$)", + "World/North Africa/ISR/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/KOR/Economy/Adjusted net national income per capita (current US$)", + "World/North Africa/MAR/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/MEX/Economy/Adjusted net national income per capita (current US$)", + "World/South Africa/MOZ/Economy/Adjusted net national income per capita (current US$)", + "World/South Africa/NGA/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/NLD/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/OMN/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/PAN/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/PER/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/PHL/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/POL/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/QAT/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted net national income per capita (current US$)", + "World/South Africa/SEN/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/SWE/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/THA/Economy/Adjusted net national income per capita (current US$)", + "World/North Africa/TUR/Economy/Adjusted net national income per capita (current US$)", + "World/Pair/USA/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/VEN/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/VNM/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/YEM/Economy/Adjusted net national income per capita (current US$)", + "World/South Africa/ZAF/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/ARE/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/ARG/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Europe/AUT/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Persian Gulf/AZE/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/BGD/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/BRA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/CHL/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Pair/CHN/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/CMR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/COL/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/CRI/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Europe/DEU/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/North Africa/DZA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/North Africa/EGY/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Europe/FRA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Europe/GBR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/GHA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/IDN/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/IND/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/North Africa/ISR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/KOR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/LBR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/North Africa/MAR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/MEX/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/MOZ/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/NGA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Europe/NLD/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Persian Gulf/OMN/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/PAN/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/PER/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/PHL/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Europe/POL/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Persian Gulf/QAT/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/SEN/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/THA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/North Africa/TUR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Pair/USA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/VEN/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/VNM/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Persian Gulf/YEM/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/ZAF/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Persian Gulf/ARE/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/ARG/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/AUT/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Persian Gulf/AZE/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/BGD/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/BRA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/CHL/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Pair/CHN/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/CMR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/COL/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/CRI/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/DEU/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/North Africa/DZA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/North Africa/EGY/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/ESP/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/FRA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/GBR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/GHA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/GRC/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/HRV/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/IDN/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/IND/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/North Africa/ISR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/KOR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/LBR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/North Africa/MAR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/MEX/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/MOZ/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/NGA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/NLD/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Persian Gulf/OMN/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/PAN/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/PER/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/PHL/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/POL/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Persian Gulf/QAT/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/SEN/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/SWE/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/THA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/North Africa/TUR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Pair/USA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/VEN/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/VNM/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Persian Gulf/YEM/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/ZAF/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/ARG/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/AUT/Economy/Adjusted savings: education expenditure (current US$)", + "World/Persian Gulf/AZE/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/BGD/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/BRA/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/CHL/Economy/Adjusted savings: education expenditure (current US$)", + "World/Pair/CHN/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/CMR/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/COL/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/CRI/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/DEU/Economy/Adjusted savings: education expenditure (current US$)", + "World/North Africa/DZA/Economy/Adjusted savings: education expenditure (current US$)", + "World/North Africa/EGY/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/ESP/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/FRA/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/GBR/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/GHA/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/HRV/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/IDN/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/IND/Economy/Adjusted savings: education expenditure (current US$)", + "World/North Africa/ISR/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/KOR/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/LBR/Economy/Adjusted savings: education expenditure (current US$)", + "World/North Africa/MAR/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/MEX/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/MOZ/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/NGA/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/NLD/Economy/Adjusted savings: education expenditure (current US$)", + "World/Persian Gulf/OMN/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/PAN/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/PER/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/PHL/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/POL/Economy/Adjusted savings: education expenditure (current US$)", + "World/Persian Gulf/QAT/Economy/Adjusted savings: education expenditure (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/SEN/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/SWE/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/THA/Economy/Adjusted savings: education expenditure (current US$)", + "World/North Africa/TUR/Economy/Adjusted savings: education expenditure (current US$)", + "World/Pair/USA/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/VEN/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/VNM/Economy/Adjusted savings: education expenditure (current US$)", + "World/Persian Gulf/YEM/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/ZAF/Economy/Adjusted savings: education expenditure (current US$)", + "World/Persian Gulf/AZE/Economy/Adjusted savings: net national savings (current US$)", + "World/Asia/BGD/Economy/Adjusted savings: net national savings (current US$)", + "World/Latam/CHL/Economy/Adjusted savings: net national savings (current US$)", + "World/Pair/CHN/Economy/Adjusted savings: net national savings (current US$)", + "World/Latam/CRI/Economy/Adjusted savings: net national savings (current US$)", + "World/Europe/DEU/Economy/Adjusted savings: net national savings (current US$)", + "World/North Africa/DZA/Economy/Adjusted savings: net national savings (current US$)", + "World/Europe/GRC/Economy/Adjusted savings: net national savings (current US$)", + "World/Asia/IND/Economy/Adjusted savings: net national savings (current US$)", + "World/North Africa/ISR/Economy/Adjusted savings: net national savings (current US$)", + "World/Asia/KOR/Economy/Adjusted savings: net national savings (current US$)", + "World/South Africa/LBR/Economy/Adjusted savings: net national savings (current US$)", + "World/North Africa/MAR/Economy/Adjusted savings: net national savings (current US$)", + "World/Europe/NLD/Economy/Adjusted savings: net national savings (current US$)", + "World/Latam/PAN/Economy/Adjusted savings: net national savings (current US$)", + "World/Latam/PER/Economy/Adjusted savings: net national savings (current US$)", + "World/Asia/PHL/Economy/Adjusted savings: net national savings (current US$)", + "World/Europe/POL/Economy/Adjusted savings: net national savings (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted savings: net national savings (current US$)", + "World/South Africa/SEN/Economy/Adjusted savings: net national savings (current US$)", + "World/Asia/THA/Economy/Adjusted savings: net national savings (current US$)", + "World/North Africa/TUR/Economy/Adjusted savings: net national savings (current US$)", + "World/Asia/VNM/Economy/Adjusted savings: net national savings (current US$)", + "World/Persian Gulf/ARE/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Europe/AUT/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/BGD/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Latam/CHL/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Pair/CHN/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/South Africa/CMR/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Latam/COL/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Latam/CRI/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/North Africa/EGY/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Europe/FRA/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Europe/GBR/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/South Africa/GHA/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Europe/GRC/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/IDN/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/IND/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/North Africa/ISR/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/KOR/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/North Africa/MAR/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/South Africa/MOZ/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/South Africa/NGA/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Latam/PAN/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/PHL/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Persian Gulf/QAT/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/THA/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/North Africa/TUR/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Latam/VEN/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/VNM/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Persian Gulf/YEM/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Persian Gulf/ARE/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/ARG/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/AUT/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Persian Gulf/AZE/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Asia/BGD/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/BRA/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/CHL/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Pair/CHN/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/South Africa/CMR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/COL/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/CRI/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/DEU/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/North Africa/EGY/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/GBR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/South Africa/GHA/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/GRC/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/HRV/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Asia/IND/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/North Africa/ISR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Asia/KOR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/South Africa/LBR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/North Africa/MAR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/MEX/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/South Africa/MOZ/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/South Africa/NGA/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/NLD/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Persian Gulf/OMN/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/PAN/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/PER/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Asia/PHL/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/POL/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Persian Gulf/QAT/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Persian Gulf/SAU/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/South Africa/SEN/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/SWE/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/North Africa/TUR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Pair/USA/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/VEN/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Asia/VNM/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Persian Gulf/YEM/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/AUT/Agriculture/Agricultural land (% of land area)", + "World/Persian Gulf/AZE/Agriculture/Agricultural land (% of land area)", + "World/Asia/BGD/Agriculture/Agricultural land (% of land area)", + "World/Latam/BRA/Agriculture/Agricultural land (% of land area)", + "World/Pair/CHN/Agriculture/Agricultural land (% of land area)", + "World/South Africa/CMR/Agriculture/Agricultural land (% of land area)", + "World/Latam/CRI/Agriculture/Agricultural land (% of land area)", + "World/Europe/DEU/Agriculture/Agricultural land (% of land area)", + "World/North Africa/DZA/Agriculture/Agricultural land (% of land area)", + "World/North Africa/EGY/Agriculture/Agricultural land (% of land area)", + "World/Europe/ESP/Agriculture/Agricultural land (% of land area)", + "World/Europe/FRA/Agriculture/Agricultural land (% of land area)", + "World/Europe/GRC/Agriculture/Agricultural land (% of land area)", + "World/Asia/IDN/Agriculture/Agricultural land (% of land area)", + "World/Asia/IND/Agriculture/Agricultural land (% of land area)", + "World/North Africa/ISR/Agriculture/Agricultural land (% of land area)", + "World/Asia/KOR/Agriculture/Agricultural land (% of land area)", + "World/South Africa/LBR/Agriculture/Agricultural land (% of land area)", + "World/South Africa/MOZ/Agriculture/Agricultural land (% of land area)", + "World/South Africa/NGA/Agriculture/Agricultural land (% of land area)", + "World/Europe/NLD/Agriculture/Agricultural land (% of land area)", + "World/Latam/PAN/Agriculture/Agricultural land (% of land area)", + "World/Asia/PHL/Agriculture/Agricultural land (% of land area)", + "World/Europe/POL/Agriculture/Agricultural land (% of land area)", + "World/Europe/SWE/Agriculture/Agricultural land (% of land area)", + "World/North Africa/TUR/Agriculture/Agricultural land (% of land area)", + "World/Pair/USA/Agriculture/Agricultural land (% of land area)", + "World/Latam/VEN/Agriculture/Agricultural land (% of land area)", + "World/Asia/VNM/Agriculture/Agricultural land (% of land area)", + "World/Persian Gulf/YEM/Agriculture/Agricultural land (% of land area)", + "World/Persian Gulf/ARE/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/ARG/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/AUT/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/AZE/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/BGD/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/CHL/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Pair/CHN/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/CRI/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/DZA/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/FRA/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/GHA/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/HRV/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IDN/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IND/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/ISR/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/LBR/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/MAR/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/MEX/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/NGA/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/OMN/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/PER/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/PHL/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/QAT/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/SAU/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/SWE/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/TUR/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/VNM/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/YEM/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/ARE/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/AZE/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/BGD/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/BRA/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/CRI/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/DZA/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/GHA/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IDN/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IND/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/ISR/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/LBR/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/MAR/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/NGA/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/NLD/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/OMN/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/PER/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/PHL/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/QAT/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Pair/USA/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/VNM/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/YEM/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/ARG/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Europe/AUT/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Latam/BRA/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Latam/CHL/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Latam/COL/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/North Africa/DZA/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/North Africa/EGY/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Europe/GRC/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Europe/HRV/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Asia/IDN/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Asia/KOR/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/North Africa/MAR/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Latam/MEX/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Asia/PHL/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Europe/POL/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Asia/THA/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/North Africa/TUR/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Pair/USA/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Latam/VEN/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Asia/VNM/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Asia/BGD/Agriculture/Aquaculture production (metric tons)", + "World/Latam/BRA/Agriculture/Aquaculture production (metric tons)", + "World/Latam/CHL/Agriculture/Aquaculture production (metric tons)", + "World/Pair/CHN/Agriculture/Aquaculture production (metric tons)", + "World/South Africa/CMR/Agriculture/Aquaculture production (metric tons)", + "World/Latam/COL/Agriculture/Aquaculture production (metric tons)", + "World/Latam/CRI/Agriculture/Aquaculture production (metric tons)", + "World/North Africa/EGY/Agriculture/Aquaculture production (metric tons)", + "World/Europe/FRA/Agriculture/Aquaculture production (metric tons)", + "World/South Africa/GHA/Agriculture/Aquaculture production (metric tons)", + "World/Asia/IDN/Agriculture/Aquaculture production (metric tons)", + "World/Asia/IND/Agriculture/Aquaculture production (metric tons)", + "World/Asia/KOR/Agriculture/Aquaculture production (metric tons)", + "World/Latam/MEX/Agriculture/Aquaculture production (metric tons)", + "World/South Africa/NGA/Agriculture/Aquaculture production (metric tons)", + "World/Latam/PER/Agriculture/Aquaculture production (metric tons)", + "World/Asia/PHL/Agriculture/Aquaculture production (metric tons)", + "World/Europe/POL/Agriculture/Aquaculture production (metric tons)", + "World/Persian Gulf/SAU/Agriculture/Aquaculture production (metric tons)", + "World/North Africa/TUR/Agriculture/Aquaculture production (metric tons)", + "World/Pair/USA/Agriculture/Aquaculture production (metric tons)", + "World/Latam/VEN/Agriculture/Aquaculture production (metric tons)", + "World/Asia/VNM/Agriculture/Aquaculture production (metric tons)", + "World/South Africa/ZAF/Agriculture/Aquaculture production (metric tons)", + "World/Europe/AUT/Agriculture/Arable land (% of land area)", + "World/Persian Gulf/AZE/Agriculture/Arable land (% of land area)", + "World/Asia/BGD/Agriculture/Arable land (% of land area)", + "World/Latam/BRA/Agriculture/Arable land (% of land area)", + "World/Latam/CHL/Agriculture/Arable land (% of land area)", + "World/Pair/CHN/Agriculture/Arable land (% of land area)", + "World/South Africa/CMR/Agriculture/Arable land (% of land area)", + "World/Latam/COL/Agriculture/Arable land (% of land area)", + "World/Latam/CRI/Agriculture/Arable land (% of land area)", + "World/South Africa/GHA/Agriculture/Arable land (% of land area)", + "World/Europe/GRC/Agriculture/Arable land (% of land area)", + "World/Asia/IDN/Agriculture/Arable land (% of land area)", + "World/Asia/IND/Agriculture/Arable land (% of land area)", + "World/Asia/KOR/Agriculture/Arable land (% of land area)", + "World/South Africa/LBR/Agriculture/Arable land (% of land area)", + "World/North Africa/MAR/Agriculture/Arable land (% of land area)", + "World/South Africa/MOZ/Agriculture/Arable land (% of land area)", + "World/Latam/PAN/Agriculture/Arable land (% of land area)", + "World/Europe/POL/Agriculture/Arable land (% of land area)", + "World/Europe/SWE/Agriculture/Arable land (% of land area)", + "World/North Africa/TUR/Agriculture/Arable land (% of land area)", + "World/Pair/USA/Agriculture/Arable land (% of land area)", + "World/Persian Gulf/YEM/Agriculture/Arable land (% of land area)", + "World/Persian Gulf/ARE/Agriculture/Arable land (hectares per person)", + "World/Latam/ARG/Agriculture/Arable land (hectares per person)", + "World/Europe/AUT/Agriculture/Arable land (hectares per person)", + "World/Persian Gulf/AZE/Agriculture/Arable land (hectares per person)", + "World/Asia/BGD/Agriculture/Arable land (hectares per person)", + "World/Latam/CHL/Agriculture/Arable land (hectares per person)", + "World/Pair/CHN/Agriculture/Arable land (hectares per person)", + "World/South Africa/CMR/Agriculture/Arable land (hectares per person)", + "World/Latam/COL/Agriculture/Arable land (hectares per person)", + "World/North Africa/DZA/Agriculture/Arable land (hectares per person)", + "World/North Africa/EGY/Agriculture/Arable land (hectares per person)", + "World/Europe/ESP/Agriculture/Arable land (hectares per person)", + "World/Europe/FRA/Agriculture/Arable land (hectares per person)", + "World/South Africa/GHA/Agriculture/Arable land (hectares per person)", + "World/Europe/GRC/Agriculture/Arable land (hectares per person)", + "World/Asia/IND/Agriculture/Arable land (hectares per person)", + "World/Asia/KOR/Agriculture/Arable land (hectares per person)", + "World/South Africa/LBR/Agriculture/Arable land (hectares per person)", + "World/North Africa/MAR/Agriculture/Arable land (hectares per person)", + "World/Latam/MEX/Agriculture/Arable land (hectares per person)", + "World/South Africa/MOZ/Agriculture/Arable land (hectares per person)", + "World/South Africa/NGA/Agriculture/Arable land (hectares per person)", + "World/Persian Gulf/OMN/Agriculture/Arable land (hectares per person)", + "World/Latam/PAN/Agriculture/Arable land (hectares per person)", + "World/Latam/PER/Agriculture/Arable land (hectares per person)", + "World/Asia/PHL/Agriculture/Arable land (hectares per person)", + "World/Europe/POL/Agriculture/Arable land (hectares per person)", + "World/Persian Gulf/QAT/Agriculture/Arable land (hectares per person)", + "World/Persian Gulf/SAU/Agriculture/Arable land (hectares per person)", + "World/Europe/SWE/Agriculture/Arable land (hectares per person)", + "World/North Africa/TUR/Agriculture/Arable land (hectares per person)", + "World/Pair/USA/Agriculture/Arable land (hectares per person)", + "World/Latam/VEN/Agriculture/Arable land (hectares per person)", + "World/Persian Gulf/YEM/Agriculture/Arable land (hectares per person)", + "World/South Africa/ZAF/Agriculture/Arable land (hectares per person)", + "World/Europe/AUT/Agriculture/Arable land (hectares)", + "World/Persian Gulf/AZE/Agriculture/Arable land (hectares)", + "World/Asia/BGD/Agriculture/Arable land (hectares)", + "World/Latam/BRA/Agriculture/Arable land (hectares)", + "World/Latam/CHL/Agriculture/Arable land (hectares)", + "World/Pair/CHN/Agriculture/Arable land (hectares)", + "World/South Africa/CMR/Agriculture/Arable land (hectares)", + "World/Latam/COL/Agriculture/Arable land (hectares)", + "World/Latam/CRI/Agriculture/Arable land (hectares)", + "World/South Africa/GHA/Agriculture/Arable land (hectares)", + "World/Europe/GRC/Agriculture/Arable land (hectares)", + "World/Asia/IDN/Agriculture/Arable land (hectares)", + "World/Asia/IND/Agriculture/Arable land (hectares)", + "World/Asia/KOR/Agriculture/Arable land (hectares)", + "World/South Africa/LBR/Agriculture/Arable land (hectares)", + "World/North Africa/MAR/Agriculture/Arable land (hectares)", + "World/South Africa/MOZ/Agriculture/Arable land (hectares)", + "World/Latam/PAN/Agriculture/Arable land (hectares)", + "World/Europe/POL/Agriculture/Arable land (hectares)", + "World/Europe/SWE/Agriculture/Arable land (hectares)", + "World/North Africa/TUR/Agriculture/Arable land (hectares)", + "World/Pair/USA/Agriculture/Arable land (hectares)", + "World/Persian Gulf/YEM/Agriculture/Arable land (hectares)", + "World/Persian Gulf/ARE/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/ARG/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Persian Gulf/AZE/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Asia/BGD/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Pair/CHN/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/CMR/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/COL/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/CRI/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Europe/DEU/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/North Africa/DZA/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/North Africa/EGY/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Europe/FRA/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/GHA/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Europe/HRV/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Asia/IDN/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Asia/IND/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/North Africa/ISR/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/LBR/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/North Africa/MAR/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/MEX/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/MOZ/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/NGA/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/PAN/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/PER/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Asia/PHL/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Europe/POL/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Persian Gulf/SAU/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/SEN/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Asia/THA/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/North Africa/TUR/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Pair/USA/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/VEN/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Asia/VNM/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Persian Gulf/YEM/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/ZAF/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Persian Gulf/ARE/Mortality/Births attended by skilled health staff (% of total)", + "World/Asia/BGD/Mortality/Births attended by skilled health staff (% of total)", + "World/Pair/CHN/Mortality/Births attended by skilled health staff (% of total)", + "World/Latam/CRI/Mortality/Births attended by skilled health staff (% of total)", + "World/North Africa/DZA/Mortality/Births attended by skilled health staff (% of total)", + "World/North Africa/EGY/Mortality/Births attended by skilled health staff (% of total)", + "World/South Africa/GHA/Mortality/Births attended by skilled health staff (% of total)", + "World/Asia/IDN/Mortality/Births attended by skilled health staff (% of total)", + "World/Asia/IND/Mortality/Births attended by skilled health staff (% of total)", + "World/North Africa/MAR/Mortality/Births attended by skilled health staff (% of total)", + "World/Latam/MEX/Mortality/Births attended by skilled health staff (% of total)", + "World/South Africa/MOZ/Mortality/Births attended by skilled health staff (% of total)", + "World/Latam/PER/Mortality/Births attended by skilled health staff (% of total)", + "World/Asia/PHL/Mortality/Births attended by skilled health staff (% of total)", + "World/Persian Gulf/SAU/Mortality/Births attended by skilled health staff (% of total)", + "World/North Africa/TUR/Mortality/Births attended by skilled health staff (% of total)", + "World/Pair/USA/Mortality/Births attended by skilled health staff (% of total)", + "World/Asia/VNM/Mortality/Births attended by skilled health staff (% of total)", + "World/Persian Gulf/YEM/Mortality/Births attended by skilled health staff (% of total)", + "World/South Africa/ZAF/Mortality/Births attended by skilled health staff (% of total)", + "World/Persian Gulf/ARE/Economy/Broad money (% of GDP)", + "World/Latam/ARG/Economy/Broad money (% of GDP)", + "World/Persian Gulf/AZE/Economy/Broad money (% of GDP)", + "World/Asia/BGD/Economy/Broad money (% of GDP)", + "World/Latam/BRA/Economy/Broad money (% of GDP)", + "World/Pair/CHN/Economy/Broad money (% of GDP)", + "World/South Africa/CMR/Economy/Broad money (% of GDP)", + "World/North Africa/DZA/Economy/Broad money (% of GDP)", + "World/Europe/GBR/Economy/Broad money (% of GDP)", + "World/Europe/HRV/Economy/Broad money (% of GDP)", + "World/Asia/IND/Economy/Broad money (% of GDP)", + "World/North Africa/ISR/Economy/Broad money (% of GDP)", + "World/Asia/KOR/Economy/Broad money (% of GDP)", + "World/North Africa/MAR/Economy/Broad money (% of GDP)", + "World/Latam/MEX/Economy/Broad money (% of GDP)", + "World/South Africa/MOZ/Economy/Broad money (% of GDP)", + "World/Latam/PER/Economy/Broad money (% of GDP)", + "World/Asia/PHL/Economy/Broad money (% of GDP)", + "World/Europe/POL/Economy/Broad money (% of GDP)", + "World/Persian Gulf/QAT/Economy/Broad money (% of GDP)", + "World/South Africa/SEN/Economy/Broad money (% of GDP)", + "World/North Africa/TUR/Economy/Broad money (% of GDP)", + "World/Pair/USA/Economy/Broad money (% of GDP)", + "World/Latam/VEN/Economy/Broad money (% of GDP)", + "World/Asia/VNM/Economy/Broad money (% of GDP)", + "World/Europe/AUT/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Persian Gulf/AZE/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Asia/BGD/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Pair/CHN/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Latam/CRI/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/DEU/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/North Africa/EGY/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/FRA/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/GBR/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/GRC/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/HRV/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Asia/IND/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/North Africa/ISR/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Asia/KOR/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Latam/MEX/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/South Africa/NGA/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/NLD/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Persian Gulf/OMN/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Latam/PAN/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Asia/PHL/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/POL/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Persian Gulf/SAU/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/SWE/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Asia/THA/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Pair/USA/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Asia/VNM/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/AUT/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Persian Gulf/AZE/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Asia/BGD/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Pair/CHN/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Latam/CRI/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/DEU/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/North Africa/EGY/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/FRA/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/GBR/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/GRC/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/HRV/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Asia/IND/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/North Africa/ISR/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Asia/KOR/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Latam/MEX/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/South Africa/NGA/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/NLD/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Persian Gulf/OMN/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Latam/PAN/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Asia/PHL/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/POL/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Persian Gulf/SAU/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/SWE/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Asia/THA/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Pair/USA/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Asia/VNM/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Latam/ARG/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/AUT/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Persian Gulf/AZE/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Asia/BGD/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/BRA/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/CHL/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Pair/CHN/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/COL/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/CRI/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/DEU/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/North Africa/EGY/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/ESP/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/FRA/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/GBR/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/GRC/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/HRV/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Asia/IDN/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Asia/IND/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/North Africa/ISR/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Asia/KOR/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/North Africa/MAR/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/MEX/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/South Africa/NGA/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/NLD/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Persian Gulf/OMN/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/PAN/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/PER/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/POL/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/SWE/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Asia/THA/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/North Africa/TUR/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Pair/USA/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/South Africa/ZAF/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Persian Gulf/ARE/Environment/CO2 emissions (kt)", + "World/Latam/ARG/Environment/CO2 emissions (kt)", + "World/Asia/BGD/Environment/CO2 emissions (kt)", + "World/Latam/BRA/Environment/CO2 emissions (kt)", + "World/Latam/CHL/Environment/CO2 emissions (kt)", + "World/Pair/CHN/Environment/CO2 emissions (kt)", + "World/Latam/COL/Environment/CO2 emissions (kt)", + "World/Latam/CRI/Environment/CO2 emissions (kt)", + "World/Europe/DEU/Environment/CO2 emissions (kt)", + "World/North Africa/DZA/Environment/CO2 emissions (kt)", + "World/North Africa/EGY/Environment/CO2 emissions (kt)", + "World/Europe/GBR/Environment/CO2 emissions (kt)", + "World/South Africa/GHA/Environment/CO2 emissions (kt)", + "World/Asia/IDN/Environment/CO2 emissions (kt)", + "World/Asia/IND/Environment/CO2 emissions (kt)", + "World/Asia/KOR/Environment/CO2 emissions (kt)", + "World/South Africa/LBR/Environment/CO2 emissions (kt)", + "World/North Africa/MAR/Environment/CO2 emissions (kt)", + "World/Latam/MEX/Environment/CO2 emissions (kt)", + "World/South Africa/MOZ/Environment/CO2 emissions (kt)", + "World/South Africa/NGA/Environment/CO2 emissions (kt)", + "World/Persian Gulf/OMN/Environment/CO2 emissions (kt)", + "World/Latam/PAN/Environment/CO2 emissions (kt)", + "World/Latam/PER/Environment/CO2 emissions (kt)", + "World/Asia/PHL/Environment/CO2 emissions (kt)", + "World/Persian Gulf/QAT/Environment/CO2 emissions (kt)", + "World/Persian Gulf/SAU/Environment/CO2 emissions (kt)", + "World/South Africa/SEN/Environment/CO2 emissions (kt)", + "World/Europe/SWE/Environment/CO2 emissions (kt)", + "World/Asia/THA/Environment/CO2 emissions (kt)", + "World/North Africa/TUR/Environment/CO2 emissions (kt)", + "World/Asia/VNM/Environment/CO2 emissions (kt)", + "World/South Africa/ZAF/Environment/CO2 emissions (kt)", + "World/Asia/BGD/Environment/CO2 emissions (metric tons per capita)", + "World/Latam/BRA/Environment/CO2 emissions (metric tons per capita)", + "World/Latam/CHL/Environment/CO2 emissions (metric tons per capita)", + "World/Pair/CHN/Environment/CO2 emissions (metric tons per capita)", + "World/Latam/CRI/Environment/CO2 emissions (metric tons per capita)", + "World/Europe/DEU/Environment/CO2 emissions (metric tons per capita)", + "World/North Africa/DZA/Environment/CO2 emissions (metric tons per capita)", + "World/North Africa/EGY/Environment/CO2 emissions (metric tons per capita)", + "World/Europe/GBR/Environment/CO2 emissions (metric tons per capita)", + "World/South Africa/GHA/Environment/CO2 emissions (metric tons per capita)", + "World/Europe/GRC/Environment/CO2 emissions (metric tons per capita)", + "World/Asia/IDN/Environment/CO2 emissions (metric tons per capita)", + "World/Asia/IND/Environment/CO2 emissions (metric tons per capita)", + "World/North Africa/ISR/Environment/CO2 emissions (metric tons per capita)", + "World/Asia/KOR/Environment/CO2 emissions (metric tons per capita)", + "World/North Africa/MAR/Environment/CO2 emissions (metric tons per capita)", + "World/South Africa/MOZ/Environment/CO2 emissions (metric tons per capita)", + "World/Europe/NLD/Environment/CO2 emissions (metric tons per capita)", + "World/Persian Gulf/OMN/Environment/CO2 emissions (metric tons per capita)", + "World/Latam/PAN/Environment/CO2 emissions (metric tons per capita)", + "World/Latam/PER/Environment/CO2 emissions (metric tons per capita)", + "World/Asia/PHL/Environment/CO2 emissions (metric tons per capita)", + "World/Persian Gulf/SAU/Environment/CO2 emissions (metric tons per capita)", + "World/South Africa/SEN/Environment/CO2 emissions (metric tons per capita)", + "World/Europe/SWE/Environment/CO2 emissions (metric tons per capita)", + "World/Asia/THA/Environment/CO2 emissions (metric tons per capita)", + "World/North Africa/TUR/Environment/CO2 emissions (metric tons per capita)", + "World/Pair/USA/Environment/CO2 emissions (metric tons per capita)", + "World/Asia/VNM/Environment/CO2 emissions (metric tons per capita)", + "World/Persian Gulf/ARE/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Latam/ARG/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Persian Gulf/AZE/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Asia/BGD/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Latam/BRA/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Pair/CHN/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Latam/COL/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/North Africa/DZA/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/North Africa/EGY/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Europe/ESP/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Asia/IND/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/North Africa/ISR/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Asia/KOR/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/North Africa/MAR/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Latam/MEX/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/South Africa/NGA/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Europe/NLD/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Persian Gulf/OMN/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Latam/PER/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Europe/POL/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Persian Gulf/QAT/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Persian Gulf/SAU/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Asia/THA/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/North Africa/TUR/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Pair/USA/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Asia/VNM/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Persian Gulf/ARE/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Asia/BGD/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Latam/BRA/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Latam/CHL/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Pair/CHN/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/South Africa/CMR/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Latam/CRI/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/North Africa/DZA/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/North Africa/EGY/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Europe/GBR/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/South Africa/GHA/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Asia/IDN/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Asia/IND/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/North Africa/MAR/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/South Africa/MOZ/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Europe/NLD/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Persian Gulf/OMN/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Latam/PAN/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Latam/PER/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Asia/PHL/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Europe/POL/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Persian Gulf/SAU/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Asia/THA/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Asia/VNM/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Persian Gulf/ARE/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Europe/AUT/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Asia/BGD/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Latam/BRA/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Latam/CHL/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Pair/CHN/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/South Africa/CMR/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Asia/IDN/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Asia/IND/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Asia/KOR/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/North Africa/MAR/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Latam/MEX/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/South Africa/NGA/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Persian Gulf/OMN/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Persian Gulf/QAT/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Persian Gulf/SAU/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/South Africa/SEN/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Asia/VNM/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Persian Gulf/ARE/Industry/Capture fisheries production (metric tons)", + "World/Persian Gulf/AZE/Industry/Capture fisheries production (metric tons)", + "World/Asia/BGD/Industry/Capture fisheries production (metric tons)", + "World/Latam/CHL/Industry/Capture fisheries production (metric tons)", + "World/South Africa/CMR/Industry/Capture fisheries production (metric tons)", + "World/Latam/CRI/Industry/Capture fisheries production (metric tons)", + "World/Europe/GRC/Industry/Capture fisheries production (metric tons)", + "World/Europe/HRV/Industry/Capture fisheries production (metric tons)", + "World/Asia/IDN/Industry/Capture fisheries production (metric tons)", + "World/Asia/IND/Industry/Capture fisheries production (metric tons)", + "World/North Africa/ISR/Industry/Capture fisheries production (metric tons)", + "World/North Africa/MAR/Industry/Capture fisheries production (metric tons)", + "World/South Africa/MOZ/Industry/Capture fisheries production (metric tons)", + "World/South Africa/NGA/Industry/Capture fisheries production (metric tons)", + "World/Persian Gulf/OMN/Industry/Capture fisheries production (metric tons)", + "World/Asia/PHL/Industry/Capture fisheries production (metric tons)", + "World/Persian Gulf/SAU/Industry/Capture fisheries production (metric tons)", + "World/Asia/THA/Industry/Capture fisheries production (metric tons)", + "World/Asia/VNM/Industry/Capture fisheries production (metric tons)", + "World/Asia/BGD/Agriculture/Cereal yield (kg per hectare)", + "World/Latam/BRA/Agriculture/Cereal yield (kg per hectare)", + "World/Latam/CHL/Agriculture/Cereal yield (kg per hectare)", + "World/Pair/CHN/Agriculture/Cereal yield (kg per hectare)", + "World/Latam/COL/Agriculture/Cereal yield (kg per hectare)", + "World/South Africa/GHA/Agriculture/Cereal yield (kg per hectare)", + "World/Asia/IDN/Agriculture/Cereal yield (kg per hectare)", + "World/Asia/IND/Agriculture/Cereal yield (kg per hectare)", + "World/North Africa/ISR/Agriculture/Cereal yield (kg per hectare)", + "World/Latam/MEX/Agriculture/Cereal yield (kg per hectare)", + "World/Latam/PAN/Agriculture/Cereal yield (kg per hectare)", + "World/Latam/PER/Agriculture/Cereal yield (kg per hectare)", + "World/Asia/PHL/Agriculture/Cereal yield (kg per hectare)", + "World/Persian Gulf/QAT/Agriculture/Cereal yield (kg per hectare)", + "World/Persian Gulf/SAU/Agriculture/Cereal yield (kg per hectare)", + "World/North Africa/TUR/Agriculture/Cereal yield (kg per hectare)", + "World/Pair/USA/Agriculture/Cereal yield (kg per hectare)", + "World/Asia/VNM/Agriculture/Cereal yield (kg per hectare)", + "World/Europe/AUT/Environment/Combustible renewables and waste (% of total energy)", + "World/Persian Gulf/AZE/Environment/Combustible renewables and waste (% of total energy)", + "World/Asia/BGD/Environment/Combustible renewables and waste (% of total energy)", + "World/Pair/CHN/Environment/Combustible renewables and waste (% of total energy)", + "World/Latam/COL/Environment/Combustible renewables and waste (% of total energy)", + "World/Europe/DEU/Environment/Combustible renewables and waste (% of total energy)", + "World/North Africa/DZA/Environment/Combustible renewables and waste (% of total energy)", + "World/Europe/GBR/Environment/Combustible renewables and waste (% of total energy)", + "World/South Africa/GHA/Environment/Combustible renewables and waste (% of total energy)", + "World/Asia/IDN/Environment/Combustible renewables and waste (% of total energy)", + "World/Asia/IND/Environment/Combustible renewables and waste (% of total energy)", + "World/Asia/KOR/Environment/Combustible renewables and waste (% of total energy)", + "World/North Africa/MAR/Environment/Combustible renewables and waste (% of total energy)", + "World/Latam/MEX/Environment/Combustible renewables and waste (% of total energy)", + "World/South Africa/MOZ/Environment/Combustible renewables and waste (% of total energy)", + "World/Europe/NLD/Environment/Combustible renewables and waste (% of total energy)", + "World/Latam/PAN/Environment/Combustible renewables and waste (% of total energy)", + "World/Latam/PER/Environment/Combustible renewables and waste (% of total energy)", + "World/Asia/PHL/Environment/Combustible renewables and waste (% of total energy)", + "World/Europe/POL/Environment/Combustible renewables and waste (% of total energy)", + "World/Persian Gulf/SAU/Environment/Combustible renewables and waste (% of total energy)", + "World/Europe/SWE/Environment/Combustible renewables and waste (% of total energy)", + "World/North Africa/TUR/Environment/Combustible renewables and waste (% of total energy)", + "World/Pair/USA/Environment/Combustible renewables and waste (% of total energy)", + "World/Asia/VNM/Environment/Combustible renewables and waste (% of total energy)", + "World/Persian Gulf/ARE/Economy/Commercial bank branches (per 100,000 adults)", + "World/Asia/BGD/Economy/Commercial bank branches (per 100,000 adults)", + "World/Pair/CHN/Economy/Commercial bank branches (per 100,000 adults)", + "World/South Africa/CMR/Economy/Commercial bank branches (per 100,000 adults)", + "World/Latam/CRI/Economy/Commercial bank branches (per 100,000 adults)", + "World/Europe/DEU/Economy/Commercial bank branches (per 100,000 adults)", + "World/North Africa/DZA/Economy/Commercial bank branches (per 100,000 adults)", + "World/North Africa/EGY/Economy/Commercial bank branches (per 100,000 adults)", + "World/Europe/FRA/Economy/Commercial bank branches (per 100,000 adults)", + "World/Europe/GBR/Economy/Commercial bank branches (per 100,000 adults)", + "World/South Africa/GHA/Economy/Commercial bank branches (per 100,000 adults)", + "World/Asia/IDN/Economy/Commercial bank branches (per 100,000 adults)", + "World/Asia/IND/Economy/Commercial bank branches (per 100,000 adults)", + "World/North Africa/ISR/Economy/Commercial bank branches (per 100,000 adults)", + "World/North Africa/MAR/Economy/Commercial bank branches (per 100,000 adults)", + "World/Latam/MEX/Economy/Commercial bank branches (per 100,000 adults)", + "World/South Africa/MOZ/Economy/Commercial bank branches (per 100,000 adults)", + "World/Europe/NLD/Economy/Commercial bank branches (per 100,000 adults)", + "World/Persian Gulf/OMN/Economy/Commercial bank branches (per 100,000 adults)", + "World/Europe/POL/Economy/Commercial bank branches (per 100,000 adults)", + "World/Persian Gulf/QAT/Economy/Commercial bank branches (per 100,000 adults)", + "World/South Africa/SEN/Economy/Commercial bank branches (per 100,000 adults)", + "World/North Africa/TUR/Economy/Commercial bank branches (per 100,000 adults)", + "World/Pair/USA/Economy/Commercial bank branches (per 100,000 adults)", + "World/Persian Gulf/YEM/Economy/Commercial bank branches (per 100,000 adults)", + "World/South Africa/ZAF/Economy/Commercial bank branches (per 100,000 adults)", + "World/Europe/AUT/Exports/Commercial service exports (current US$)", + "World/Persian Gulf/AZE/Exports/Commercial service exports (current US$)", + "World/Asia/BGD/Exports/Commercial service exports (current US$)", + "World/Latam/BRA/Exports/Commercial service exports (current US$)", + "World/Latam/CHL/Exports/Commercial service exports (current US$)", + "World/Pair/CHN/Exports/Commercial service exports (current US$)", + "World/South Africa/CMR/Exports/Commercial service exports (current US$)", + "World/Latam/COL/Exports/Commercial service exports (current US$)", + "World/Latam/CRI/Exports/Commercial service exports (current US$)", + "World/Europe/DEU/Exports/Commercial service exports (current US$)", + "World/North Africa/DZA/Exports/Commercial service exports (current US$)", + "World/Europe/ESP/Exports/Commercial service exports (current US$)", + "World/Europe/FRA/Exports/Commercial service exports (current US$)", + "World/Europe/GBR/Exports/Commercial service exports (current US$)", + "World/South Africa/GHA/Exports/Commercial service exports (current US$)", + "World/Europe/GRC/Exports/Commercial service exports (current US$)", + "World/Europe/HRV/Exports/Commercial service exports (current US$)", + "World/Asia/IDN/Exports/Commercial service exports (current US$)", + "World/Asia/IND/Exports/Commercial service exports (current US$)", + "World/North Africa/ISR/Exports/Commercial service exports (current US$)", + "World/Asia/KOR/Exports/Commercial service exports (current US$)", + "World/North Africa/MAR/Exports/Commercial service exports (current US$)", + "World/Europe/NLD/Exports/Commercial service exports (current US$)", + "World/Persian Gulf/OMN/Exports/Commercial service exports (current US$)", + "World/Latam/PAN/Exports/Commercial service exports (current US$)", + "World/Latam/PER/Exports/Commercial service exports (current US$)", + "World/Asia/PHL/Exports/Commercial service exports (current US$)", + "World/Europe/POL/Exports/Commercial service exports (current US$)", + "World/Persian Gulf/QAT/Exports/Commercial service exports (current US$)", + "World/South Africa/SEN/Exports/Commercial service exports (current US$)", + "World/Europe/SWE/Exports/Commercial service exports (current US$)", + "World/Asia/THA/Exports/Commercial service exports (current US$)", + "World/North Africa/TUR/Exports/Commercial service exports (current US$)", + "World/Pair/USA/Exports/Commercial service exports (current US$)", + "World/Asia/VNM/Exports/Commercial service exports (current US$)", + "World/South Africa/ZAF/Exports/Commercial service exports (current US$)", + "World/Latam/ARG/Imports/Commercial service imports (current US$)", + "World/Europe/AUT/Imports/Commercial service imports (current US$)", + "World/Persian Gulf/AZE/Imports/Commercial service imports (current US$)", + "World/Asia/BGD/Imports/Commercial service imports (current US$)", + "World/Latam/BRA/Imports/Commercial service imports (current US$)", + "World/Latam/CHL/Imports/Commercial service imports (current US$)", + "World/Pair/CHN/Imports/Commercial service imports (current US$)", + "World/South Africa/CMR/Imports/Commercial service imports (current US$)", + "World/Latam/COL/Imports/Commercial service imports (current US$)", + "World/Latam/CRI/Imports/Commercial service imports (current US$)", + "World/Europe/DEU/Imports/Commercial service imports (current US$)", + "World/North Africa/DZA/Imports/Commercial service imports (current US$)", + "World/North Africa/EGY/Imports/Commercial service imports (current US$)", + "World/Europe/ESP/Imports/Commercial service imports (current US$)", + "World/Europe/FRA/Imports/Commercial service imports (current US$)", + "World/Europe/GBR/Imports/Commercial service imports (current US$)", + "World/South Africa/GHA/Imports/Commercial service imports (current US$)", + "World/Europe/HRV/Imports/Commercial service imports (current US$)", + "World/Asia/IDN/Imports/Commercial service imports (current US$)", + "World/Asia/IND/Imports/Commercial service imports (current US$)", + "World/North Africa/ISR/Imports/Commercial service imports (current US$)", + "World/Asia/KOR/Imports/Commercial service imports (current US$)", + "World/North Africa/MAR/Imports/Commercial service imports (current US$)", + "World/Latam/MEX/Imports/Commercial service imports (current US$)", + "World/South Africa/MOZ/Imports/Commercial service imports (current US$)", + "World/South Africa/NGA/Imports/Commercial service imports (current US$)", + "World/Europe/NLD/Imports/Commercial service imports (current US$)", + "World/Persian Gulf/OMN/Imports/Commercial service imports (current US$)", + "World/Latam/PAN/Imports/Commercial service imports (current US$)", + "World/Latam/PER/Imports/Commercial service imports (current US$)", + "World/Asia/PHL/Imports/Commercial service imports (current US$)", + "World/Europe/POL/Imports/Commercial service imports (current US$)", + "World/Persian Gulf/QAT/Imports/Commercial service imports (current US$)", + "World/South Africa/SEN/Imports/Commercial service imports (current US$)", + "World/Europe/SWE/Imports/Commercial service imports (current US$)", + "World/Asia/THA/Imports/Commercial service imports (current US$)", + "World/North Africa/TUR/Imports/Commercial service imports (current US$)", + "World/Pair/USA/Imports/Commercial service imports (current US$)", + "World/Asia/VNM/Imports/Commercial service imports (current US$)", + "World/South Africa/ZAF/Imports/Commercial service imports (current US$)", + "World/Latam/ARG/Demoraphy/Completeness of birth registration (%)", + "World/Asia/BGD/Demoraphy/Completeness of birth registration (%)", + "World/Latam/BRA/Demoraphy/Completeness of birth registration (%)", + "World/South Africa/CMR/Demoraphy/Completeness of birth registration (%)", + "World/Latam/COL/Demoraphy/Completeness of birth registration (%)", + "World/Latam/CRI/Demoraphy/Completeness of birth registration (%)", + "World/North Africa/DZA/Demoraphy/Completeness of birth registration (%)", + "World/North Africa/EGY/Demoraphy/Completeness of birth registration (%)", + "World/South Africa/GHA/Demoraphy/Completeness of birth registration (%)", + "World/Asia/IND/Demoraphy/Completeness of birth registration (%)", + "World/South Africa/LBR/Demoraphy/Completeness of birth registration (%)", + "World/North Africa/MAR/Demoraphy/Completeness of birth registration (%)", + "World/Latam/MEX/Demoraphy/Completeness of birth registration (%)", + "World/South Africa/MOZ/Demoraphy/Completeness of birth registration (%)", + "World/South Africa/NGA/Demoraphy/Completeness of birth registration (%)", + "World/Latam/PAN/Demoraphy/Completeness of birth registration (%)", + "World/Latam/PER/Demoraphy/Completeness of birth registration (%)", + "World/Asia/PHL/Demoraphy/Completeness of birth registration (%)", + "World/North Africa/TUR/Demoraphy/Completeness of birth registration (%)", + "World/Latam/VEN/Demoraphy/Completeness of birth registration (%)", + "World/Asia/VNM/Demoraphy/Completeness of birth registration (%)", + "World/Persian Gulf/ARE/Economy/Consumer price index (2010 = 100)", + "World/Europe/AUT/Economy/Consumer price index (2010 = 100)", + "World/Persian Gulf/AZE/Economy/Consumer price index (2010 = 100)", + "World/Asia/BGD/Economy/Consumer price index (2010 = 100)", + "World/Latam/BRA/Economy/Consumer price index (2010 = 100)", + "World/Latam/CHL/Economy/Consumer price index (2010 = 100)", + "World/Pair/CHN/Economy/Consumer price index (2010 = 100)", + "World/South Africa/CMR/Economy/Consumer price index (2010 = 100)", + "World/Latam/COL/Economy/Consumer price index (2010 = 100)", + "World/Latam/CRI/Economy/Consumer price index (2010 = 100)", + "World/Europe/DEU/Economy/Consumer price index (2010 = 100)", + "World/North Africa/DZA/Economy/Consumer price index (2010 = 100)", + "World/North Africa/EGY/Economy/Consumer price index (2010 = 100)", + "World/Europe/ESP/Economy/Consumer price index (2010 = 100)", + "World/Europe/FRA/Economy/Consumer price index (2010 = 100)", + "World/Europe/GBR/Economy/Consumer price index (2010 = 100)", + "World/South Africa/GHA/Economy/Consumer price index (2010 = 100)", + "World/Europe/GRC/Economy/Consumer price index (2010 = 100)", + "World/Asia/IDN/Economy/Consumer price index (2010 = 100)", + "World/Asia/IND/Economy/Consumer price index (2010 = 100)", + "World/North Africa/ISR/Economy/Consumer price index (2010 = 100)", + "World/Asia/KOR/Economy/Consumer price index (2010 = 100)", + "World/South Africa/LBR/Economy/Consumer price index (2010 = 100)", + "World/North Africa/MAR/Economy/Consumer price index (2010 = 100)", + "World/Latam/MEX/Economy/Consumer price index (2010 = 100)", + "World/South Africa/MOZ/Economy/Consumer price index (2010 = 100)", + "World/South Africa/NGA/Economy/Consumer price index (2010 = 100)", + "World/Europe/NLD/Economy/Consumer price index (2010 = 100)", + "World/Persian Gulf/OMN/Economy/Consumer price index (2010 = 100)", + "World/Latam/PAN/Economy/Consumer price index (2010 = 100)", + "World/Latam/PER/Economy/Consumer price index (2010 = 100)", + "World/Asia/PHL/Economy/Consumer price index (2010 = 100)", + "World/Europe/POL/Economy/Consumer price index (2010 = 100)", + "World/Persian Gulf/QAT/Economy/Consumer price index (2010 = 100)", + "World/Persian Gulf/SAU/Economy/Consumer price index (2010 = 100)", + "World/South Africa/SEN/Economy/Consumer price index (2010 = 100)", + "World/Europe/SWE/Economy/Consumer price index (2010 = 100)", + "World/Asia/THA/Economy/Consumer price index (2010 = 100)", + "World/North Africa/TUR/Economy/Consumer price index (2010 = 100)", + "World/Pair/USA/Economy/Consumer price index (2010 = 100)", + "World/Latam/VEN/Economy/Consumer price index (2010 = 100)", + "World/Asia/VNM/Economy/Consumer price index (2010 = 100)", + "World/Persian Gulf/YEM/Economy/Consumer price index (2010 = 100)", + "World/South Africa/ZAF/Economy/Consumer price index (2010 = 100)", + "World/Persian Gulf/ARE/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/BGD/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Latam/CHL/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Pair/CHN/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/South Africa/CMR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Latam/COL/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Latam/CRI/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/DEU/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/ESP/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/FRA/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/GBR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/South Africa/GHA/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/IDN/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/IND/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/North Africa/ISR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/KOR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/South Africa/LBR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/North Africa/MAR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Latam/MEX/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/South Africa/MOZ/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/NLD/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Persian Gulf/OMN/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Latam/PAN/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Latam/PER/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/PHL/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/POL/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Persian Gulf/QAT/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Persian Gulf/SAU/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/SWE/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/THA/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/North Africa/TUR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Pair/USA/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/VNM/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/South Africa/ZAF/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Persian Gulf/AZE/Agriculture/Crop production index (2014-2016 = 100)", + "World/Asia/BGD/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/BRA/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/CHL/Agriculture/Crop production index (2014-2016 = 100)", + "World/Pair/CHN/Agriculture/Crop production index (2014-2016 = 100)", + "World/South Africa/CMR/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/COL/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/CRI/Agriculture/Crop production index (2014-2016 = 100)", + "World/North Africa/DZA/Agriculture/Crop production index (2014-2016 = 100)", + "World/North Africa/EGY/Agriculture/Crop production index (2014-2016 = 100)", + "World/South Africa/GHA/Agriculture/Crop production index (2014-2016 = 100)", + "World/Asia/IDN/Agriculture/Crop production index (2014-2016 = 100)", + "World/Asia/IND/Agriculture/Crop production index (2014-2016 = 100)", + "World/North Africa/MAR/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/MEX/Agriculture/Crop production index (2014-2016 = 100)", + "World/South Africa/MOZ/Agriculture/Crop production index (2014-2016 = 100)", + "World/South Africa/NGA/Agriculture/Crop production index (2014-2016 = 100)", + "World/Persian Gulf/OMN/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/PER/Agriculture/Crop production index (2014-2016 = 100)", + "World/Asia/PHL/Agriculture/Crop production index (2014-2016 = 100)", + "World/Persian Gulf/QAT/Agriculture/Crop production index (2014-2016 = 100)", + "World/South Africa/SEN/Agriculture/Crop production index (2014-2016 = 100)", + "World/Asia/THA/Agriculture/Crop production index (2014-2016 = 100)", + "World/North Africa/TUR/Agriculture/Crop production index (2014-2016 = 100)", + "World/Pair/USA/Agriculture/Crop production index (2014-2016 = 100)", + "World/Asia/VNM/Agriculture/Crop production index (2014-2016 = 100)", + "World/Persian Gulf/YEM/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/ARG/Health/Current health expenditure (% of GDP)", + "World/Europe/AUT/Health/Current health expenditure (% of GDP)", + "World/Latam/CHL/Health/Current health expenditure (% of GDP)", + "World/Pair/CHN/Health/Current health expenditure (% of GDP)", + "World/South Africa/CMR/Health/Current health expenditure (% of GDP)", + "World/Latam/COL/Health/Current health expenditure (% of GDP)", + "World/Latam/CRI/Health/Current health expenditure (% of GDP)", + "World/Europe/ESP/Health/Current health expenditure (% of GDP)", + "World/Europe/FRA/Health/Current health expenditure (% of GDP)", + "World/Europe/GBR/Health/Current health expenditure (% of GDP)", + "World/Europe/GRC/Health/Current health expenditure (% of GDP)", + "World/Asia/IDN/Health/Current health expenditure (% of GDP)", + "World/Asia/IND/Health/Current health expenditure (% of GDP)", + "World/Asia/KOR/Health/Current health expenditure (% of GDP)", + "World/South Africa/MOZ/Health/Current health expenditure (% of GDP)", + "World/Europe/NLD/Health/Current health expenditure (% of GDP)", + "World/Latam/PER/Health/Current health expenditure (% of GDP)", + "World/Europe/POL/Health/Current health expenditure (% of GDP)", + "World/Europe/SWE/Health/Current health expenditure (% of GDP)", + "World/Asia/THA/Health/Current health expenditure (% of GDP)", + "World/Pair/USA/Health/Current health expenditure (% of GDP)", + "World/Asia/VNM/Health/Current health expenditure (% of GDP)", + "World/Persian Gulf/YEM/Health/Current health expenditure (% of GDP)", + "World/Persian Gulf/ARE/Health/Current health expenditure per capita (current US$)", + "World/Latam/ARG/Health/Current health expenditure per capita (current US$)", + "World/Europe/AUT/Health/Current health expenditure per capita (current US$)", + "World/Persian Gulf/AZE/Health/Current health expenditure per capita (current US$)", + "World/Asia/BGD/Health/Current health expenditure per capita (current US$)", + "World/Latam/BRA/Health/Current health expenditure per capita (current US$)", + "World/Latam/CHL/Health/Current health expenditure per capita (current US$)", + "World/Pair/CHN/Health/Current health expenditure per capita (current US$)", + "World/South Africa/CMR/Health/Current health expenditure per capita (current US$)", + "World/Latam/COL/Health/Current health expenditure per capita (current US$)", + "World/Latam/CRI/Health/Current health expenditure per capita (current US$)", + "World/Europe/DEU/Health/Current health expenditure per capita (current US$)", + "World/North Africa/DZA/Health/Current health expenditure per capita (current US$)", + "World/Europe/ESP/Health/Current health expenditure per capita (current US$)", + "World/Europe/FRA/Health/Current health expenditure per capita (current US$)", + "World/Europe/GBR/Health/Current health expenditure per capita (current US$)", + "World/South Africa/GHA/Health/Current health expenditure per capita (current US$)", + "World/Europe/GRC/Health/Current health expenditure per capita (current US$)", + "World/Europe/HRV/Health/Current health expenditure per capita (current US$)", + "World/Asia/IDN/Health/Current health expenditure per capita (current US$)", + "World/Asia/IND/Health/Current health expenditure per capita (current US$)", + "World/North Africa/ISR/Health/Current health expenditure per capita (current US$)", + "World/Asia/KOR/Health/Current health expenditure per capita (current US$)", + "World/South Africa/LBR/Health/Current health expenditure per capita (current US$)", + "World/North Africa/MAR/Health/Current health expenditure per capita (current US$)", + "World/Latam/MEX/Health/Current health expenditure per capita (current US$)", + "World/South Africa/MOZ/Health/Current health expenditure per capita (current US$)", + "World/South Africa/NGA/Health/Current health expenditure per capita (current US$)", + "World/Europe/NLD/Health/Current health expenditure per capita (current US$)", + "World/Persian Gulf/OMN/Health/Current health expenditure per capita (current US$)", + "World/Latam/PAN/Health/Current health expenditure per capita (current US$)", + "World/Latam/PER/Health/Current health expenditure per capita (current US$)", + "World/Asia/PHL/Health/Current health expenditure per capita (current US$)", + "World/Europe/POL/Health/Current health expenditure per capita (current US$)", + "World/Persian Gulf/QAT/Health/Current health expenditure per capita (current US$)", + "World/Persian Gulf/SAU/Health/Current health expenditure per capita (current US$)", + "World/South Africa/SEN/Health/Current health expenditure per capita (current US$)", + "World/Europe/SWE/Health/Current health expenditure per capita (current US$)", + "World/Asia/THA/Health/Current health expenditure per capita (current US$)", + "World/Pair/USA/Health/Current health expenditure per capita (current US$)", + "World/Latam/VEN/Health/Current health expenditure per capita (current US$)", + "World/Asia/VNM/Health/Current health expenditure per capita (current US$)", + "World/Persian Gulf/YEM/Health/Current health expenditure per capita (current US$)", + "World/South Africa/ZAF/Health/Current health expenditure per capita (current US$)", + "World/Persian Gulf/AZE/Economy/Customs and other import duties (% of tax revenue)", + "World/Asia/BGD/Economy/Customs and other import duties (% of tax revenue)", + "World/Latam/CHL/Economy/Customs and other import duties (% of tax revenue)", + "World/Pair/CHN/Economy/Customs and other import duties (% of tax revenue)", + "World/South Africa/CMR/Economy/Customs and other import duties (% of tax revenue)", + "World/Latam/COL/Economy/Customs and other import duties (% of tax revenue)", + "World/Latam/CRI/Economy/Customs and other import duties (% of tax revenue)", + "World/North Africa/EGY/Economy/Customs and other import duties (% of tax revenue)", + "World/Europe/ESP/Economy/Customs and other import duties (% of tax revenue)", + "World/Europe/HRV/Economy/Customs and other import duties (% of tax revenue)", + "World/Asia/IND/Economy/Customs and other import duties (% of tax revenue)", + "World/Asia/KOR/Economy/Customs and other import duties (% of tax revenue)", + "World/North Africa/MAR/Economy/Customs and other import duties (% of tax revenue)", + "World/Latam/MEX/Economy/Customs and other import duties (% of tax revenue)", + "World/Latam/PAN/Economy/Customs and other import duties (% of tax revenue)", + "World/Latam/PER/Economy/Customs and other import duties (% of tax revenue)", + "World/Europe/POL/Economy/Customs and other import duties (% of tax revenue)", + "World/Asia/THA/Economy/Customs and other import duties (% of tax revenue)", + "World/Asia/BGD/Economy/Domestic credit to private sector (% of GDP)", + "World/Latam/CHL/Economy/Domestic credit to private sector (% of GDP)", + "World/Pair/CHN/Economy/Domestic credit to private sector (% of GDP)", + "World/South Africa/CMR/Economy/Domestic credit to private sector (% of GDP)", + "World/Latam/COL/Economy/Domestic credit to private sector (% of GDP)", + "World/Latam/CRI/Economy/Domestic credit to private sector (% of GDP)", + "World/Europe/DEU/Economy/Domestic credit to private sector (% of GDP)", + "World/North Africa/DZA/Economy/Domestic credit to private sector (% of GDP)", + "World/North Africa/EGY/Economy/Domestic credit to private sector (% of GDP)", + "World/Europe/FRA/Economy/Domestic credit to private sector (% of GDP)", + "World/Europe/GRC/Economy/Domestic credit to private sector (% of GDP)", + "World/Europe/HRV/Economy/Domestic credit to private sector (% of GDP)", + "World/Asia/IND/Economy/Domestic credit to private sector (% of GDP)", + "World/Asia/KOR/Economy/Domestic credit to private sector (% of GDP)", + "World/South Africa/LBR/Economy/Domestic credit to private sector (% of GDP)", + "World/Latam/MEX/Economy/Domestic credit to private sector (% of GDP)", + "World/Persian Gulf/OMN/Economy/Domestic credit to private sector (% of GDP)", + "World/Latam/PER/Economy/Domestic credit to private sector (% of GDP)", + "World/Europe/POL/Economy/Domestic credit to private sector (% of GDP)", + "World/Persian Gulf/QAT/Economy/Domestic credit to private sector (% of GDP)", + "World/Persian Gulf/SAU/Economy/Domestic credit to private sector (% of GDP)", + "World/South Africa/SEN/Economy/Domestic credit to private sector (% of GDP)", + "World/Europe/SWE/Economy/Domestic credit to private sector (% of GDP)", + "World/North Africa/TUR/Economy/Domestic credit to private sector (% of GDP)", + "World/Latam/VEN/Economy/Domestic credit to private sector (% of GDP)", + "World/Asia/VNM/Economy/Domestic credit to private sector (% of GDP)", + "World/Persian Gulf/ARE/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Persian Gulf/AZE/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Asia/BGD/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/CHL/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Pair/CHN/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/South Africa/CMR/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/COL/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/CRI/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Europe/DEU/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/North Africa/DZA/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/North Africa/EGY/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Europe/GRC/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Europe/HRV/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Asia/IND/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Asia/KOR/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/South Africa/LBR/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/North Africa/MAR/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/MEX/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Persian Gulf/OMN/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/PAN/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/PER/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Europe/POL/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Persian Gulf/QAT/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Persian Gulf/SAU/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/South Africa/SEN/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Europe/SWE/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/North Africa/TUR/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/VEN/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Asia/VNM/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/ARG/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/AUT/Health/Domestic general government health expenditure per capita (current US$)", + "World/Persian Gulf/AZE/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/BGD/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/BRA/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/CHL/Health/Domestic general government health expenditure per capita (current US$)", + "World/Pair/CHN/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/COL/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/CRI/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/DEU/Health/Domestic general government health expenditure per capita (current US$)", + "World/North Africa/DZA/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/ESP/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/FRA/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/GBR/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/GRC/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/HRV/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/IDN/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/IND/Health/Domestic general government health expenditure per capita (current US$)", + "World/North Africa/ISR/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/KOR/Health/Domestic general government health expenditure per capita (current US$)", + "World/South Africa/LBR/Health/Domestic general government health expenditure per capita (current US$)", + "World/North Africa/MAR/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/MEX/Health/Domestic general government health expenditure per capita (current US$)", + "World/South Africa/MOZ/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/NLD/Health/Domestic general government health expenditure per capita (current US$)", + "World/Persian Gulf/OMN/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/PAN/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/PER/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/PHL/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/POL/Health/Domestic general government health expenditure per capita (current US$)", + "World/Persian Gulf/QAT/Health/Domestic general government health expenditure per capita (current US$)", + "World/Persian Gulf/SAU/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/SWE/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/THA/Health/Domestic general government health expenditure per capita (current US$)", + "World/North Africa/TUR/Health/Domestic general government health expenditure per capita (current US$)", + "World/Pair/USA/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/VNM/Health/Domestic general government health expenditure per capita (current US$)", + "World/South Africa/ZAF/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/ARG/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/AUT/Health/Domestic private health expenditure per capita (current US$)", + "World/Persian Gulf/AZE/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/BGD/Health/Domestic private health expenditure per capita (current US$)", + "World/Latam/BRA/Health/Domestic private health expenditure per capita (current US$)", + "World/Latam/CHL/Health/Domestic private health expenditure per capita (current US$)", + "World/Pair/CHN/Health/Domestic private health expenditure per capita (current US$)", + "World/South Africa/CMR/Health/Domestic private health expenditure per capita (current US$)", + "World/Latam/COL/Health/Domestic private health expenditure per capita (current US$)", + "World/Latam/CRI/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/DEU/Health/Domestic private health expenditure per capita (current US$)", + "World/North Africa/DZA/Health/Domestic private health expenditure per capita (current US$)", + "World/North Africa/EGY/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/ESP/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/FRA/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/GBR/Health/Domestic private health expenditure per capita (current US$)", + "World/South Africa/GHA/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/HRV/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/IDN/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/IND/Health/Domestic private health expenditure per capita (current US$)", + "World/North Africa/ISR/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/KOR/Health/Domestic private health expenditure per capita (current US$)", + "World/South Africa/LBR/Health/Domestic private health expenditure per capita (current US$)", + "World/North Africa/MAR/Health/Domestic private health expenditure per capita (current US$)", + "World/South Africa/NGA/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/NLD/Health/Domestic private health expenditure per capita (current US$)", + "World/Latam/PAN/Health/Domestic private health expenditure per capita (current US$)", + "World/Latam/PER/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/PHL/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/POL/Health/Domestic private health expenditure per capita (current US$)", + "World/Persian Gulf/QAT/Health/Domestic private health expenditure per capita (current US$)", + "World/Persian Gulf/SAU/Health/Domestic private health expenditure per capita (current US$)", + "World/South Africa/SEN/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/SWE/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/THA/Health/Domestic private health expenditure per capita (current US$)", + "World/Pair/USA/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/VNM/Health/Domestic private health expenditure per capita (current US$)", + "World/Persian Gulf/YEM/Health/Domestic private health expenditure per capita (current US$)", + "World/South Africa/ZAF/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/AUT/Environment/Electric power consumption (kWh per capita)", + "World/Asia/BGD/Environment/Electric power consumption (kWh per capita)", + "World/Latam/BRA/Environment/Electric power consumption (kWh per capita)", + "World/Latam/CHL/Environment/Electric power consumption (kWh per capita)", + "World/Pair/CHN/Environment/Electric power consumption (kWh per capita)", + "World/South Africa/CMR/Environment/Electric power consumption (kWh per capita)", + "World/Latam/COL/Environment/Electric power consumption (kWh per capita)", + "World/Latam/CRI/Environment/Electric power consumption (kWh per capita)", + "World/North Africa/DZA/Environment/Electric power consumption (kWh per capita)", + "World/North Africa/EGY/Environment/Electric power consumption (kWh per capita)", + "World/Europe/GBR/Environment/Electric power consumption (kWh per capita)", + "World/Europe/GRC/Environment/Electric power consumption (kWh per capita)", + "World/Europe/HRV/Environment/Electric power consumption (kWh per capita)", + "World/Asia/IDN/Environment/Electric power consumption (kWh per capita)", + "World/Asia/IND/Environment/Electric power consumption (kWh per capita)", + "World/Asia/KOR/Environment/Electric power consumption (kWh per capita)", + "World/North Africa/MAR/Environment/Electric power consumption (kWh per capita)", + "World/Latam/MEX/Environment/Electric power consumption (kWh per capita)", + "World/South Africa/MOZ/Environment/Electric power consumption (kWh per capita)", + "World/South Africa/NGA/Environment/Electric power consumption (kWh per capita)", + "World/Persian Gulf/OMN/Environment/Electric power consumption (kWh per capita)", + "World/Latam/PAN/Environment/Electric power consumption (kWh per capita)", + "World/Latam/PER/Environment/Electric power consumption (kWh per capita)", + "World/Asia/PHL/Environment/Electric power consumption (kWh per capita)", + "World/Europe/POL/Environment/Electric power consumption (kWh per capita)", + "World/Persian Gulf/SAU/Environment/Electric power consumption (kWh per capita)", + "World/South Africa/SEN/Environment/Electric power consumption (kWh per capita)", + "World/Europe/SWE/Environment/Electric power consumption (kWh per capita)", + "World/Asia/THA/Environment/Electric power consumption (kWh per capita)", + "World/North Africa/TUR/Environment/Electric power consumption (kWh per capita)", + "World/Asia/VNM/Environment/Electric power consumption (kWh per capita)", + "World/Persian Gulf/YEM/Environment/Electric power consumption (kWh per capita)", + "World/Persian Gulf/ARE/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/ARG/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/AUT/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/AZE/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Asia/BGD/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/BRA/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/CHL/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Pair/CHN/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/CMR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/COL/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/CRI/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/DEU/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/North Africa/DZA/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/North Africa/EGY/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/ESP/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/FRA/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/GBR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/GHA/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Asia/IDN/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Asia/IND/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/North Africa/ISR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Asia/KOR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/LBR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/North Africa/MAR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/MEX/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/MOZ/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/NGA/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/NLD/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/OMN/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/PAN/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/PER/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Asia/PHL/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/POL/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/QAT/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/SEN/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/SWE/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/North Africa/TUR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/VEN/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Asia/VNM/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/ZAF/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/ARG/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/AUT/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/AZE/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Asia/BGD/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Latam/BRA/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Pair/CHN/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/South Africa/CMR/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Latam/CRI/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/DEU/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/North Africa/DZA/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/North Africa/EGY/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/ESP/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/FRA/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/GBR/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/GRC/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/HRV/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Asia/IDN/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Asia/IND/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/North Africa/ISR/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Asia/KOR/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/North Africa/MAR/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/South Africa/MOZ/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/NLD/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/OMN/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/POL/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/SAU/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/South Africa/SEN/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/SWE/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Pair/USA/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Latam/VEN/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Asia/VNM/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/YEM/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/South Africa/ZAF/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/ARE/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/ARG/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/AUT/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/BGD/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/BRA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/CHL/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Pair/CHN/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/CMR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/COL/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/CRI/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/DEU/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/North Africa/DZA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/North Africa/EGY/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/ESP/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/FRA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/GBR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/GHA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/GRC/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/HRV/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/IDN/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/IND/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/North Africa/ISR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/KOR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/LBR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/North Africa/MAR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/MEX/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/MOZ/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/NGA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/NLD/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/OMN/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/PAN/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/PER/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/PHL/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/POL/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/SEN/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/SWE/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/THA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/North Africa/TUR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Pair/USA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/VEN/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/VNM/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/YEM/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/ZAF/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/AZE/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/BGD/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Pair/CHN/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/South Africa/CMR/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Latam/CRI/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Europe/DEU/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/North Africa/DZA/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Europe/GBR/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/South Africa/GHA/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/IDN/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/IND/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/North Africa/ISR/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/KOR/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Latam/MEX/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/South Africa/MOZ/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/South Africa/NGA/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Europe/NLD/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Persian Gulf/OMN/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Latam/PAN/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Latam/PER/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/PHL/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Europe/POL/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Europe/SWE/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/THA/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/North Africa/TUR/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Pair/USA/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Latam/VEN/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/BGD/Environment/Energy use (kg of oil equivalent per capita)", + "World/Latam/BRA/Environment/Energy use (kg of oil equivalent per capita)", + "World/Latam/CHL/Environment/Energy use (kg of oil equivalent per capita)", + "World/Pair/CHN/Environment/Energy use (kg of oil equivalent per capita)", + "World/Latam/CRI/Environment/Energy use (kg of oil equivalent per capita)", + "World/North Africa/DZA/Environment/Energy use (kg of oil equivalent per capita)", + "World/Europe/GBR/Environment/Energy use (kg of oil equivalent per capita)", + "World/Asia/IDN/Environment/Energy use (kg of oil equivalent per capita)", + "World/Asia/IND/Environment/Energy use (kg of oil equivalent per capita)", + "World/Asia/KOR/Environment/Energy use (kg of oil equivalent per capita)", + "World/North Africa/MAR/Environment/Energy use (kg of oil equivalent per capita)", + "World/South Africa/MOZ/Environment/Energy use (kg of oil equivalent per capita)", + "World/South Africa/NGA/Environment/Energy use (kg of oil equivalent per capita)", + "World/Europe/NLD/Environment/Energy use (kg of oil equivalent per capita)", + "World/Persian Gulf/OMN/Environment/Energy use (kg of oil equivalent per capita)", + "World/Latam/PAN/Environment/Energy use (kg of oil equivalent per capita)", + "World/Latam/PER/Environment/Energy use (kg of oil equivalent per capita)", + "World/Persian Gulf/SAU/Environment/Energy use (kg of oil equivalent per capita)", + "World/Asia/THA/Environment/Energy use (kg of oil equivalent per capita)", + "World/North Africa/TUR/Environment/Energy use (kg of oil equivalent per capita)", + "World/Pair/USA/Environment/Energy use (kg of oil equivalent per capita)", + "World/Asia/VNM/Environment/Energy use (kg of oil equivalent per capita)", + "World/Europe/AUT/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Persian Gulf/AZE/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Asia/BGD/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Pair/CHN/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/South Africa/CMR/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Latam/COL/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Latam/CRI/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/DEU/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/North Africa/DZA/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/ESP/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/FRA/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/GBR/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/South Africa/GHA/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/HRV/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Asia/IDN/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Asia/IND/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/North Africa/ISR/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Asia/KOR/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Latam/MEX/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/South Africa/MOZ/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/South Africa/NGA/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/NLD/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Latam/PAN/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Asia/PHL/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/POL/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Persian Gulf/SAU/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/SWE/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/North Africa/TUR/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Pair/USA/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/South Africa/ZAF/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Persian Gulf/ARE/Exports/Export unit value index (2000 = 100)", + "World/Europe/AUT/Exports/Export unit value index (2000 = 100)", + "World/Persian Gulf/AZE/Exports/Export unit value index (2000 = 100)", + "World/Asia/BGD/Exports/Export unit value index (2000 = 100)", + "World/Latam/BRA/Exports/Export unit value index (2000 = 100)", + "World/Latam/CRI/Exports/Export unit value index (2000 = 100)", + "World/Europe/DEU/Exports/Export unit value index (2000 = 100)", + "World/North Africa/DZA/Exports/Export unit value index (2000 = 100)", + "World/Europe/ESP/Exports/Export unit value index (2000 = 100)", + "World/Europe/FRA/Exports/Export unit value index (2000 = 100)", + "World/South Africa/GHA/Exports/Export unit value index (2000 = 100)", + "World/Europe/GRC/Exports/Export unit value index (2000 = 100)", + "World/Europe/HRV/Exports/Export unit value index (2000 = 100)", + "World/Latam/MEX/Exports/Export unit value index (2000 = 100)", + "World/Europe/NLD/Exports/Export unit value index (2000 = 100)", + "World/Latam/PAN/Exports/Export unit value index (2000 = 100)", + "World/Europe/POL/Exports/Export unit value index (2000 = 100)", + "World/Europe/SWE/Exports/Export unit value index (2000 = 100)", + "World/Asia/THA/Exports/Export unit value index (2000 = 100)", + "World/Asia/VNM/Exports/Export unit value index (2000 = 100)", + "World/Persian Gulf/YEM/Exports/Export unit value index (2000 = 100)", + "World/South Africa/ZAF/Exports/Export unit value index (2000 = 100)", + "World/Persian Gulf/ARE/Exports/Export value index (2000 = 100)", + "World/Europe/AUT/Exports/Export value index (2000 = 100)", + "World/Persian Gulf/AZE/Exports/Export value index (2000 = 100)", + "World/Asia/BGD/Exports/Export value index (2000 = 100)", + "World/Latam/BRA/Exports/Export value index (2000 = 100)", + "World/Latam/CHL/Exports/Export value index (2000 = 100)", + "World/Pair/CHN/Exports/Export value index (2000 = 100)", + "World/Latam/COL/Exports/Export value index (2000 = 100)", + "World/Latam/CRI/Exports/Export value index (2000 = 100)", + "World/Europe/DEU/Exports/Export value index (2000 = 100)", + "World/North Africa/DZA/Exports/Export value index (2000 = 100)", + "World/Europe/ESP/Exports/Export value index (2000 = 100)", + "World/Europe/FRA/Exports/Export value index (2000 = 100)", + "World/Europe/GBR/Exports/Export value index (2000 = 100)", + "World/South Africa/GHA/Exports/Export value index (2000 = 100)", + "World/Asia/IDN/Exports/Export value index (2000 = 100)", + "World/Asia/IND/Exports/Export value index (2000 = 100)", + "World/Persian Gulf/IRQ/Exports/Export value index (2000 = 100)", + "World/Asia/KOR/Exports/Export value index (2000 = 100)", + "World/North Africa/MAR/Exports/Export value index (2000 = 100)", + "World/Latam/MEX/Exports/Export value index (2000 = 100)", + "World/South Africa/MOZ/Exports/Export value index (2000 = 100)", + "World/Europe/NLD/Exports/Export value index (2000 = 100)", + "World/Persian Gulf/OMN/Exports/Export value index (2000 = 100)", + "World/Latam/PAN/Exports/Export value index (2000 = 100)", + "World/Latam/PER/Exports/Export value index (2000 = 100)", + "World/Asia/PHL/Exports/Export value index (2000 = 100)", + "World/Europe/POL/Exports/Export value index (2000 = 100)", + "World/Persian Gulf/QAT/Exports/Export value index (2000 = 100)", + "World/Persian Gulf/SAU/Exports/Export value index (2000 = 100)", + "World/South Africa/SEN/Exports/Export value index (2000 = 100)", + "World/Europe/SWE/Exports/Export value index (2000 = 100)", + "World/Asia/THA/Exports/Export value index (2000 = 100)", + "World/North Africa/TUR/Exports/Export value index (2000 = 100)", + "World/Pair/USA/Exports/Export value index (2000 = 100)", + "World/Latam/VEN/Exports/Export value index (2000 = 100)", + "World/Asia/VNM/Exports/Export value index (2000 = 100)", + "World/South Africa/ZAF/Exports/Export value index (2000 = 100)", + "World/Persian Gulf/ARE/Exports/Export volume index (2000 = 100)", + "World/Europe/AUT/Exports/Export volume index (2000 = 100)", + "World/Persian Gulf/AZE/Exports/Export volume index (2000 = 100)", + "World/Asia/BGD/Exports/Export volume index (2000 = 100)", + "World/Latam/BRA/Exports/Export volume index (2000 = 100)", + "World/Latam/CHL/Exports/Export volume index (2000 = 100)", + "World/Pair/CHN/Exports/Export volume index (2000 = 100)", + "World/Latam/COL/Exports/Export volume index (2000 = 100)", + "World/Latam/CRI/Exports/Export volume index (2000 = 100)", + "World/Europe/ESP/Exports/Export volume index (2000 = 100)", + "World/South Africa/GHA/Exports/Export volume index (2000 = 100)", + "World/Europe/GRC/Exports/Export volume index (2000 = 100)", + "World/Asia/IDN/Exports/Export volume index (2000 = 100)", + "World/Asia/IND/Exports/Export volume index (2000 = 100)", + "World/North Africa/ISR/Exports/Export volume index (2000 = 100)", + "World/Asia/KOR/Exports/Export volume index (2000 = 100)", + "World/North Africa/MAR/Exports/Export volume index (2000 = 100)", + "World/Latam/MEX/Exports/Export volume index (2000 = 100)", + "World/South Africa/MOZ/Exports/Export volume index (2000 = 100)", + "World/Europe/NLD/Exports/Export volume index (2000 = 100)", + "World/Persian Gulf/OMN/Exports/Export volume index (2000 = 100)", + "World/Latam/PAN/Exports/Export volume index (2000 = 100)", + "World/Latam/PER/Exports/Export volume index (2000 = 100)", + "World/Asia/PHL/Exports/Export volume index (2000 = 100)", + "World/Europe/POL/Exports/Export volume index (2000 = 100)", + "World/Persian Gulf/QAT/Exports/Export volume index (2000 = 100)", + "World/Persian Gulf/SAU/Exports/Export volume index (2000 = 100)", + "World/Asia/THA/Exports/Export volume index (2000 = 100)", + "World/North Africa/TUR/Exports/Export volume index (2000 = 100)", + "World/Pair/USA/Exports/Export volume index (2000 = 100)", + "World/Latam/VEN/Exports/Export volume index (2000 = 100)", + "World/Asia/VNM/Exports/Export volume index (2000 = 100)", + "World/Persian Gulf/YEM/Exports/Export volume index (2000 = 100)", + "World/South Africa/ZAF/Exports/Export volume index (2000 = 100)", + "World/Europe/AUT/Exports/Exports of goods and services (BoP, current US$)", + "World/Persian Gulf/AZE/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/BGD/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/BRA/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/CHL/Exports/Exports of goods and services (BoP, current US$)", + "World/Pair/CHN/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/COL/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/CRI/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/DEU/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/ESP/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/FRA/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/GBR/Exports/Exports of goods and services (BoP, current US$)", + "World/South Africa/GHA/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/HRV/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/IDN/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/IND/Exports/Exports of goods and services (BoP, current US$)", + "World/Persian Gulf/IRQ/Exports/Exports of goods and services (BoP, current US$)", + "World/North Africa/ISR/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/KOR/Exports/Exports of goods and services (BoP, current US$)", + "World/North Africa/MAR/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/MEX/Exports/Exports of goods and services (BoP, current US$)", + "World/South Africa/MOZ/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/NLD/Exports/Exports of goods and services (BoP, current US$)", + "World/Persian Gulf/OMN/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/PAN/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/PER/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/PHL/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/POL/Exports/Exports of goods and services (BoP, current US$)", + "World/Persian Gulf/SAU/Exports/Exports of goods and services (BoP, current US$)", + "World/South Africa/SEN/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/SWE/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/THA/Exports/Exports of goods and services (BoP, current US$)", + "World/North Africa/TUR/Exports/Exports of goods and services (BoP, current US$)", + "World/Pair/USA/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/VEN/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/VNM/Exports/Exports of goods and services (BoP, current US$)", + "World/South Africa/ZAF/Exports/Exports of goods and services (BoP, current US$)", + "World/Persian Gulf/ARE/Exports/Exports of goods and services (current US$)", + "World/Europe/AUT/Exports/Exports of goods and services (current US$)", + "World/Persian Gulf/AZE/Exports/Exports of goods and services (current US$)", + "World/Asia/BGD/Exports/Exports of goods and services (current US$)", + "World/Latam/BRA/Exports/Exports of goods and services (current US$)", + "World/Latam/CHL/Exports/Exports of goods and services (current US$)", + "World/Pair/CHN/Exports/Exports of goods and services (current US$)", + "World/Latam/COL/Exports/Exports of goods and services (current US$)", + "World/Latam/CRI/Exports/Exports of goods and services (current US$)", + "World/Europe/DEU/Exports/Exports of goods and services (current US$)", + "World/North Africa/DZA/Exports/Exports of goods and services (current US$)", + "World/Europe/ESP/Exports/Exports of goods and services (current US$)", + "World/Europe/FRA/Exports/Exports of goods and services (current US$)", + "World/Europe/GBR/Exports/Exports of goods and services (current US$)", + "World/South Africa/GHA/Exports/Exports of goods and services (current US$)", + "World/Europe/HRV/Exports/Exports of goods and services (current US$)", + "World/Asia/IDN/Exports/Exports of goods and services (current US$)", + "World/Asia/IND/Exports/Exports of goods and services (current US$)", + "World/Persian Gulf/IRQ/Exports/Exports of goods and services (current US$)", + "World/North Africa/ISR/Exports/Exports of goods and services (current US$)", + "World/Asia/KOR/Exports/Exports of goods and services (current US$)", + "World/North Africa/MAR/Exports/Exports of goods and services (current US$)", + "World/Latam/MEX/Exports/Exports of goods and services (current US$)", + "World/South Africa/MOZ/Exports/Exports of goods and services (current US$)", + "World/Europe/NLD/Exports/Exports of goods and services (current US$)", + "World/Persian Gulf/OMN/Exports/Exports of goods and services (current US$)", + "World/Latam/PAN/Exports/Exports of goods and services (current US$)", + "World/Latam/PER/Exports/Exports of goods and services (current US$)", + "World/Asia/PHL/Exports/Exports of goods and services (current US$)", + "World/Europe/POL/Exports/Exports of goods and services (current US$)", + "World/Persian Gulf/QAT/Exports/Exports of goods and services (current US$)", + "World/Persian Gulf/SAU/Exports/Exports of goods and services (current US$)", + "World/South Africa/SEN/Exports/Exports of goods and services (current US$)", + "World/Europe/SWE/Exports/Exports of goods and services (current US$)", + "World/Asia/THA/Exports/Exports of goods and services (current US$)", + "World/North Africa/TUR/Exports/Exports of goods and services (current US$)", + "World/Pair/USA/Exports/Exports of goods and services (current US$)", + "World/Latam/VEN/Exports/Exports of goods and services (current US$)", + "World/Asia/VNM/Exports/Exports of goods and services (current US$)", + "World/South Africa/ZAF/Exports/Exports of goods and services (current US$)", + "World/Persian Gulf/ARE/Economy/Final consumption expenditure (current US$)", + "World/Latam/ARG/Economy/Final consumption expenditure (current US$)", + "World/Europe/AUT/Economy/Final consumption expenditure (current US$)", + "World/Persian Gulf/AZE/Economy/Final consumption expenditure (current US$)", + "World/Asia/BGD/Economy/Final consumption expenditure (current US$)", + "World/Latam/BRA/Economy/Final consumption expenditure (current US$)", + "World/Latam/CHL/Economy/Final consumption expenditure (current US$)", + "World/Pair/CHN/Economy/Final consumption expenditure (current US$)", + "World/South Africa/CMR/Economy/Final consumption expenditure (current US$)", + "World/Latam/COL/Economy/Final consumption expenditure (current US$)", + "World/Latam/CRI/Economy/Final consumption expenditure (current US$)", + "World/Europe/DEU/Economy/Final consumption expenditure (current US$)", + "World/North Africa/DZA/Economy/Final consumption expenditure (current US$)", + "World/North Africa/EGY/Economy/Final consumption expenditure (current US$)", + "World/Europe/ESP/Economy/Final consumption expenditure (current US$)", + "World/Europe/FRA/Economy/Final consumption expenditure (current US$)", + "World/Europe/GBR/Economy/Final consumption expenditure (current US$)", + "World/South Africa/GHA/Economy/Final consumption expenditure (current US$)", + "World/Europe/GRC/Economy/Final consumption expenditure (current US$)", + "World/Europe/HRV/Economy/Final consumption expenditure (current US$)", + "World/Asia/IDN/Economy/Final consumption expenditure (current US$)", + "World/Asia/IND/Economy/Final consumption expenditure (current US$)", + "World/Persian Gulf/IRQ/Economy/Final consumption expenditure (current US$)", + "World/North Africa/ISR/Economy/Final consumption expenditure (current US$)", + "World/Asia/KOR/Economy/Final consumption expenditure (current US$)", + "World/North Africa/MAR/Economy/Final consumption expenditure (current US$)", + "World/Latam/MEX/Economy/Final consumption expenditure (current US$)", + "World/South Africa/MOZ/Economy/Final consumption expenditure (current US$)", + "World/South Africa/NGA/Economy/Final consumption expenditure (current US$)", + "World/Europe/NLD/Economy/Final consumption expenditure (current US$)", + "World/Persian Gulf/OMN/Economy/Final consumption expenditure (current US$)", + "World/Latam/PAN/Economy/Final consumption expenditure (current US$)", + "World/Latam/PER/Economy/Final consumption expenditure (current US$)", + "World/Asia/PHL/Economy/Final consumption expenditure (current US$)", + "World/Europe/POL/Economy/Final consumption expenditure (current US$)", + "World/Persian Gulf/QAT/Economy/Final consumption expenditure (current US$)", + "World/Persian Gulf/SAU/Economy/Final consumption expenditure (current US$)", + "World/South Africa/SEN/Economy/Final consumption expenditure (current US$)", + "World/Europe/SWE/Economy/Final consumption expenditure (current US$)", + "World/Asia/THA/Economy/Final consumption expenditure (current US$)", + "World/North Africa/TUR/Economy/Final consumption expenditure (current US$)", + "World/Pair/USA/Economy/Final consumption expenditure (current US$)", + "World/Latam/VEN/Economy/Final consumption expenditure (current US$)", + "World/Asia/VNM/Economy/Final consumption expenditure (current US$)", + "World/South Africa/ZAF/Economy/Final consumption expenditure (current US$)", + "World/Latam/ARG/R&D/Firms offering formal training (% of firms)", + "World/Latam/CHL/R&D/Firms offering formal training (% of firms)", + "World/Latam/COL/R&D/Firms offering formal training (% of firms)", + "World/Latam/CRI/R&D/Firms offering formal training (% of firms)", + "World/North Africa/EGY/R&D/Firms offering formal training (% of firms)", + "World/South Africa/GHA/R&D/Firms offering formal training (% of firms)", + "World/Europe/GRC/R&D/Firms offering formal training (% of firms)", + "World/Europe/HRV/R&D/Firms offering formal training (% of firms)", + "World/Asia/IDN/R&D/Firms offering formal training (% of firms)", + "World/Asia/IND/R&D/Firms offering formal training (% of firms)", + "World/South Africa/LBR/R&D/Firms offering formal training (% of firms)", + "World/North Africa/MAR/R&D/Firms offering formal training (% of firms)", + "World/Latam/MEX/R&D/Firms offering formal training (% of firms)", + "World/South Africa/MOZ/R&D/Firms offering formal training (% of firms)", + "World/South Africa/NGA/R&D/Firms offering formal training (% of firms)", + "World/Latam/PAN/R&D/Firms offering formal training (% of firms)", + "World/Latam/PER/R&D/Firms offering formal training (% of firms)", + "World/Asia/PHL/R&D/Firms offering formal training (% of firms)", + "World/Europe/POL/R&D/Firms offering formal training (% of firms)", + "World/South Africa/SEN/R&D/Firms offering formal training (% of firms)", + "World/Asia/THA/R&D/Firms offering formal training (% of firms)", + "World/North Africa/TUR/R&D/Firms offering formal training (% of firms)", + "World/Latam/VEN/R&D/Firms offering formal training (% of firms)", + "World/Asia/VNM/R&D/Firms offering formal training (% of firms)", + "World/Persian Gulf/YEM/R&D/Firms offering formal training (% of firms)", + "World/South Africa/ZAF/R&D/Firms offering formal training (% of firms)", + "World/Latam/ARG/Economy/Firms using banks to finance investment (% of firms)", + "World/Persian Gulf/AZE/Economy/Firms using banks to finance investment (% of firms)", + "World/Asia/BGD/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/CHL/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/CMR/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/COL/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/CRI/Economy/Firms using banks to finance investment (% of firms)", + "World/North Africa/EGY/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/GHA/Economy/Firms using banks to finance investment (% of firms)", + "World/Europe/GRC/Economy/Firms using banks to finance investment (% of firms)", + "World/Asia/IDN/Economy/Firms using banks to finance investment (% of firms)", + "World/Asia/IND/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/LBR/Economy/Firms using banks to finance investment (% of firms)", + "World/North Africa/MAR/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/MEX/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/MOZ/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/NGA/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/PAN/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/PER/Economy/Firms using banks to finance investment (% of firms)", + "World/Asia/PHL/Economy/Firms using banks to finance investment (% of firms)", + "World/Europe/POL/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/SEN/Economy/Firms using banks to finance investment (% of firms)", + "World/Asia/THA/Economy/Firms using banks to finance investment (% of firms)", + "World/North Africa/TUR/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/VEN/Economy/Firms using banks to finance investment (% of firms)", + "World/Asia/VNM/Economy/Firms using banks to finance investment (% of firms)", + "World/Persian Gulf/YEM/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/ZAF/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/ARG/Economy/Firms using banks to finance working capital (% of firms)", + "World/Persian Gulf/AZE/Economy/Firms using banks to finance working capital (% of firms)", + "World/Asia/BGD/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/CHL/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/CMR/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/COL/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/CRI/Economy/Firms using banks to finance working capital (% of firms)", + "World/North Africa/EGY/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/GHA/Economy/Firms using banks to finance working capital (% of firms)", + "World/Europe/GRC/Economy/Firms using banks to finance working capital (% of firms)", + "World/Asia/IDN/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/LBR/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/MEX/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/MOZ/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/NGA/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/PAN/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/PER/Economy/Firms using banks to finance working capital (% of firms)", + "World/Asia/PHL/Economy/Firms using banks to finance working capital (% of firms)", + "World/Europe/POL/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/SEN/Economy/Firms using banks to finance working capital (% of firms)", + "World/Asia/THA/Economy/Firms using banks to finance working capital (% of firms)", + "World/North Africa/TUR/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/VEN/Economy/Firms using banks to finance working capital (% of firms)", + "World/Asia/VNM/Economy/Firms using banks to finance working capital (% of firms)", + "World/Persian Gulf/YEM/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/ZAF/Economy/Firms using banks to finance working capital (% of firms)", + "World/Persian Gulf/ARE/Internet/Fixed broadband subscriptions", + "World/Latam/ARG/Internet/Fixed broadband subscriptions", + "World/Europe/AUT/Internet/Fixed broadband subscriptions", + "World/Persian Gulf/AZE/Internet/Fixed broadband subscriptions", + "World/Asia/BGD/Internet/Fixed broadband subscriptions", + "World/Latam/BRA/Internet/Fixed broadband subscriptions", + "World/Latam/CHL/Internet/Fixed broadband subscriptions", + "World/Pair/CHN/Internet/Fixed broadband subscriptions", + "World/South Africa/CMR/Internet/Fixed broadband subscriptions", + "World/Latam/COL/Internet/Fixed broadband subscriptions", + "World/Latam/CRI/Internet/Fixed broadband subscriptions", + "World/Europe/DEU/Internet/Fixed broadband subscriptions", + "World/North Africa/DZA/Internet/Fixed broadband subscriptions", + "World/North Africa/EGY/Internet/Fixed broadband subscriptions", + "World/Europe/ESP/Internet/Fixed broadband subscriptions", + "World/Europe/FRA/Internet/Fixed broadband subscriptions", + "World/Europe/GBR/Internet/Fixed broadband subscriptions", + "World/South Africa/GHA/Internet/Fixed broadband subscriptions", + "World/Europe/GRC/Internet/Fixed broadband subscriptions", + "World/Europe/HRV/Internet/Fixed broadband subscriptions", + "World/Asia/IDN/Internet/Fixed broadband subscriptions", + "World/Asia/IND/Internet/Fixed broadband subscriptions", + "World/North Africa/ISR/Internet/Fixed broadband subscriptions", + "World/Asia/KOR/Internet/Fixed broadband subscriptions", + "World/South Africa/LBR/Internet/Fixed broadband subscriptions", + "World/North Africa/MAR/Internet/Fixed broadband subscriptions", + "World/Latam/MEX/Internet/Fixed broadband subscriptions", + "World/South Africa/MOZ/Internet/Fixed broadband subscriptions", + "World/Europe/NLD/Internet/Fixed broadband subscriptions", + "World/Persian Gulf/OMN/Internet/Fixed broadband subscriptions", + "World/Latam/PAN/Internet/Fixed broadband subscriptions", + "World/Latam/PER/Internet/Fixed broadband subscriptions", + "World/Asia/PHL/Internet/Fixed broadband subscriptions", + "World/Europe/POL/Internet/Fixed broadband subscriptions", + "World/Persian Gulf/QAT/Internet/Fixed broadband subscriptions", + "World/Persian Gulf/SAU/Internet/Fixed broadband subscriptions", + "World/South Africa/SEN/Internet/Fixed broadband subscriptions", + "World/Europe/SWE/Internet/Fixed broadband subscriptions", + "World/Asia/THA/Internet/Fixed broadband subscriptions", + "World/North Africa/TUR/Internet/Fixed broadband subscriptions", + "World/Pair/USA/Internet/Fixed broadband subscriptions", + "World/Latam/VEN/Internet/Fixed broadband subscriptions", + "World/Asia/VNM/Internet/Fixed broadband subscriptions", + "World/Persian Gulf/YEM/Internet/Fixed broadband subscriptions", + "World/South Africa/ZAF/Internet/Fixed broadband subscriptions", + "World/Persian Gulf/ARE/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/ARG/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/AUT/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Persian Gulf/AZE/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/BGD/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/BRA/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/CHL/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Pair/CHN/Internet/Fixed broadband subscriptions (per 100 people)", + "World/South Africa/CMR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/COL/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/CRI/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/DEU/Internet/Fixed broadband subscriptions (per 100 people)", + "World/North Africa/DZA/Internet/Fixed broadband subscriptions (per 100 people)", + "World/North Africa/EGY/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/ESP/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/FRA/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/GBR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/South Africa/GHA/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/GRC/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/HRV/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/IDN/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/IND/Internet/Fixed broadband subscriptions (per 100 people)", + "World/North Africa/ISR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/KOR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/South Africa/LBR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/North Africa/MAR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/MEX/Internet/Fixed broadband subscriptions (per 100 people)", + "World/South Africa/MOZ/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/NLD/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Persian Gulf/OMN/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/PAN/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/PER/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/PHL/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/POL/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Persian Gulf/QAT/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Persian Gulf/SAU/Internet/Fixed broadband subscriptions (per 100 people)", + "World/South Africa/SEN/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/SWE/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/THA/Internet/Fixed broadband subscriptions (per 100 people)", + "World/North Africa/TUR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Pair/USA/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/VEN/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/VNM/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Persian Gulf/YEM/Internet/Fixed broadband subscriptions (per 100 people)", + "World/South Africa/ZAF/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Persian Gulf/ARE/Industry/Food production index (2014-2016 = 100)", + "World/Persian Gulf/AZE/Industry/Food production index (2014-2016 = 100)", + "World/Asia/BGD/Industry/Food production index (2014-2016 = 100)", + "World/Latam/BRA/Industry/Food production index (2014-2016 = 100)", + "World/Latam/CHL/Industry/Food production index (2014-2016 = 100)", + "World/Pair/CHN/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/CMR/Industry/Food production index (2014-2016 = 100)", + "World/Latam/COL/Industry/Food production index (2014-2016 = 100)", + "World/Latam/CRI/Industry/Food production index (2014-2016 = 100)", + "World/North Africa/DZA/Industry/Food production index (2014-2016 = 100)", + "World/North Africa/EGY/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/GHA/Industry/Food production index (2014-2016 = 100)", + "World/Asia/IDN/Industry/Food production index (2014-2016 = 100)", + "World/Asia/IND/Industry/Food production index (2014-2016 = 100)", + "World/North Africa/ISR/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/LBR/Industry/Food production index (2014-2016 = 100)", + "World/North Africa/MAR/Industry/Food production index (2014-2016 = 100)", + "World/Latam/MEX/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/MOZ/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/NGA/Industry/Food production index (2014-2016 = 100)", + "World/Europe/NLD/Industry/Food production index (2014-2016 = 100)", + "World/Persian Gulf/OMN/Industry/Food production index (2014-2016 = 100)", + "World/Latam/PAN/Industry/Food production index (2014-2016 = 100)", + "World/Latam/PER/Industry/Food production index (2014-2016 = 100)", + "World/Asia/PHL/Industry/Food production index (2014-2016 = 100)", + "World/Europe/POL/Industry/Food production index (2014-2016 = 100)", + "World/Persian Gulf/QAT/Industry/Food production index (2014-2016 = 100)", + "World/Persian Gulf/SAU/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/SEN/Industry/Food production index (2014-2016 = 100)", + "World/Asia/THA/Industry/Food production index (2014-2016 = 100)", + "World/North Africa/TUR/Industry/Food production index (2014-2016 = 100)", + "World/Pair/USA/Industry/Food production index (2014-2016 = 100)", + "World/Asia/VNM/Industry/Food production index (2014-2016 = 100)", + "World/Persian Gulf/YEM/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/ZAF/Industry/Food production index (2014-2016 = 100)", + "World/Persian Gulf/ARE/Demography/Forest area (% of land area)", + "World/Latam/ARG/Demography/Forest area (% of land area)", + "World/Europe/AUT/Demography/Forest area (% of land area)", + "World/Persian Gulf/AZE/Demography/Forest area (% of land area)", + "World/Asia/BGD/Demography/Forest area (% of land area)", + "World/Latam/BRA/Demography/Forest area (% of land area)", + "World/Latam/CHL/Demography/Forest area (% of land area)", + "World/Pair/CHN/Demography/Forest area (% of land area)", + "World/South Africa/CMR/Demography/Forest area (% of land area)", + "World/Latam/COL/Demography/Forest area (% of land area)", + "World/Latam/CRI/Demography/Forest area (% of land area)", + "World/North Africa/DZA/Demography/Forest area (% of land area)", + "World/North Africa/EGY/Demography/Forest area (% of land area)", + "World/Europe/ESP/Demography/Forest area (% of land area)", + "World/Europe/FRA/Demography/Forest area (% of land area)", + "World/Europe/GBR/Demography/Forest area (% of land area)", + "World/Europe/GRC/Demography/Forest area (% of land area)", + "World/Europe/HRV/Demography/Forest area (% of land area)", + "World/Asia/IDN/Demography/Forest area (% of land area)", + "World/Asia/IND/Demography/Forest area (% of land area)", + "World/Asia/KOR/Demography/Forest area (% of land area)", + "World/South Africa/LBR/Demography/Forest area (% of land area)", + "World/North Africa/MAR/Demography/Forest area (% of land area)", + "World/Latam/MEX/Demography/Forest area (% of land area)", + "World/South Africa/MOZ/Demography/Forest area (% of land area)", + "World/South Africa/NGA/Demography/Forest area (% of land area)", + "World/Europe/NLD/Demography/Forest area (% of land area)", + "World/Latam/PAN/Demography/Forest area (% of land area)", + "World/Latam/PER/Demography/Forest area (% of land area)", + "World/Europe/POL/Demography/Forest area (% of land area)", + "World/South Africa/SEN/Demography/Forest area (% of land area)", + "World/North Africa/TUR/Demography/Forest area (% of land area)", + "World/Pair/USA/Demography/Forest area (% of land area)", + "World/Latam/VEN/Demography/Forest area (% of land area)", + "World/Asia/VNM/Demography/Forest area (% of land area)", + "World/South Africa/ZAF/Demography/Forest area (% of land area)", + "World/Persian Gulf/ARE/Principal/GDP deflator (base year varies by country)", + "World/Europe/AUT/Principal/GDP deflator (base year varies by country)", + "World/Persian Gulf/AZE/Principal/GDP deflator (base year varies by country)", + "World/Asia/BGD/Principal/GDP deflator (base year varies by country)", + "World/Latam/BRA/Principal/GDP deflator (base year varies by country)", + "World/Latam/CHL/Principal/GDP deflator (base year varies by country)", + "World/Pair/CHN/Principal/GDP deflator (base year varies by country)", + "World/South Africa/CMR/Principal/GDP deflator (base year varies by country)", + "World/Latam/COL/Principal/GDP deflator (base year varies by country)", + "World/Latam/CRI/Principal/GDP deflator (base year varies by country)", + "World/Europe/DEU/Principal/GDP deflator (base year varies by country)", + "World/North Africa/DZA/Principal/GDP deflator (base year varies by country)", + "World/North Africa/EGY/Principal/GDP deflator (base year varies by country)", + "World/Europe/ESP/Principal/GDP deflator (base year varies by country)", + "World/Europe/FRA/Principal/GDP deflator (base year varies by country)", + "World/Europe/GBR/Principal/GDP deflator (base year varies by country)", + "World/South Africa/GHA/Principal/GDP deflator (base year varies by country)", + "World/Europe/GRC/Principal/GDP deflator (base year varies by country)", + "World/Europe/HRV/Principal/GDP deflator (base year varies by country)", + "World/Asia/IDN/Principal/GDP deflator (base year varies by country)", + "World/Asia/IND/Principal/GDP deflator (base year varies by country)", + "World/North Africa/ISR/Principal/GDP deflator (base year varies by country)", + "World/Asia/KOR/Principal/GDP deflator (base year varies by country)", + "World/South Africa/LBR/Principal/GDP deflator (base year varies by country)", + "World/North Africa/MAR/Principal/GDP deflator (base year varies by country)", + "World/Latam/MEX/Principal/GDP deflator (base year varies by country)", + "World/South Africa/MOZ/Principal/GDP deflator (base year varies by country)", + "World/South Africa/NGA/Principal/GDP deflator (base year varies by country)", + "World/Europe/NLD/Principal/GDP deflator (base year varies by country)", + "World/Persian Gulf/OMN/Principal/GDP deflator (base year varies by country)", + "World/Latam/PAN/Principal/GDP deflator (base year varies by country)", + "World/Latam/PER/Principal/GDP deflator (base year varies by country)", + "World/Asia/PHL/Principal/GDP deflator (base year varies by country)", + "World/Europe/POL/Principal/GDP deflator (base year varies by country)", + "World/Persian Gulf/QAT/Principal/GDP deflator (base year varies by country)", + "World/Persian Gulf/SAU/Principal/GDP deflator (base year varies by country)", + "World/South Africa/SEN/Principal/GDP deflator (base year varies by country)", + "World/Asia/THA/Principal/GDP deflator (base year varies by country)", + "World/North Africa/TUR/Principal/GDP deflator (base year varies by country)", + "World/Pair/USA/Principal/GDP deflator (base year varies by country)", + "World/Latam/VEN/Principal/GDP deflator (base year varies by country)", + "World/Asia/VNM/Principal/GDP deflator (base year varies by country)", + "World/Persian Gulf/YEM/Principal/GDP deflator (base year varies by country)", + "World/South Africa/ZAF/Principal/GDP deflator (base year varies by country)", + "World/Persian Gulf/ARE/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/AUT/Principal/GDP deflator: linked series (base year varies by country)", + "World/Persian Gulf/AZE/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/BGD/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/BRA/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/CHL/Principal/GDP deflator: linked series (base year varies by country)", + "World/Pair/CHN/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/CMR/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/COL/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/CRI/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/DEU/Principal/GDP deflator: linked series (base year varies by country)", + "World/North Africa/DZA/Principal/GDP deflator: linked series (base year varies by country)", + "World/North Africa/EGY/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/ESP/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/FRA/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/GBR/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/GHA/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/GRC/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/HRV/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/IDN/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/IND/Principal/GDP deflator: linked series (base year varies by country)", + "World/North Africa/ISR/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/KOR/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/LBR/Principal/GDP deflator: linked series (base year varies by country)", + "World/North Africa/MAR/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/MEX/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/MOZ/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/NGA/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/NLD/Principal/GDP deflator: linked series (base year varies by country)", + "World/Persian Gulf/OMN/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/PAN/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/PER/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/PHL/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/POL/Principal/GDP deflator: linked series (base year varies by country)", + "World/Persian Gulf/QAT/Principal/GDP deflator: linked series (base year varies by country)", + "World/Persian Gulf/SAU/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/SEN/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/THA/Principal/GDP deflator: linked series (base year varies by country)", + "World/North Africa/TUR/Principal/GDP deflator: linked series (base year varies by country)", + "World/Pair/USA/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/VEN/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/VNM/Principal/GDP deflator: linked series (base year varies by country)", + "World/Persian Gulf/YEM/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/ZAF/Principal/GDP deflator: linked series (base year varies by country)", + "World/Persian Gulf/ARE/Principal/GDP per capita (current US$)", + "World/Latam/ARG/Principal/GDP per capita (current US$)", + "World/Europe/AUT/Principal/GDP per capita (current US$)", + "World/Persian Gulf/AZE/Principal/GDP per capita (current US$)", + "World/Asia/BGD/Principal/GDP per capita (current US$)", + "World/Latam/BRA/Principal/GDP per capita (current US$)", + "World/Latam/CHL/Principal/GDP per capita (current US$)", + "World/Pair/CHN/Principal/GDP per capita (current US$)", + "World/South Africa/CMR/Principal/GDP per capita (current US$)", + "World/Latam/COL/Principal/GDP per capita (current US$)", + "World/Latam/CRI/Principal/GDP per capita (current US$)", + "World/Europe/DEU/Principal/GDP per capita (current US$)", + "World/North Africa/DZA/Principal/GDP per capita (current US$)", + "World/North Africa/EGY/Principal/GDP per capita (current US$)", + "World/Europe/ESP/Principal/GDP per capita (current US$)", + "World/Europe/FRA/Principal/GDP per capita (current US$)", + "World/Europe/GBR/Principal/GDP per capita (current US$)", + "World/South Africa/GHA/Principal/GDP per capita (current US$)", + "World/Europe/GRC/Principal/GDP per capita (current US$)", + "World/Europe/HRV/Principal/GDP per capita (current US$)", + "World/Asia/IDN/Principal/GDP per capita (current US$)", + "World/Asia/IND/Principal/GDP per capita (current US$)", + "World/Persian Gulf/IRQ/Principal/GDP per capita (current US$)", + "World/North Africa/ISR/Principal/GDP per capita (current US$)", + "World/Asia/KOR/Principal/GDP per capita (current US$)", + "World/North Africa/MAR/Principal/GDP per capita (current US$)", + "World/Latam/MEX/Principal/GDP per capita (current US$)", + "World/South Africa/MOZ/Principal/GDP per capita (current US$)", + "World/South Africa/NGA/Principal/GDP per capita (current US$)", + "World/Europe/NLD/Principal/GDP per capita (current US$)", + "World/Persian Gulf/OMN/Principal/GDP per capita (current US$)", + "World/Latam/PAN/Principal/GDP per capita (current US$)", + "World/Latam/PER/Principal/GDP per capita (current US$)", + "World/Asia/PHL/Principal/GDP per capita (current US$)", + "World/Europe/POL/Principal/GDP per capita (current US$)", + "World/Persian Gulf/QAT/Principal/GDP per capita (current US$)", + "World/Persian Gulf/SAU/Principal/GDP per capita (current US$)", + "World/South Africa/SEN/Principal/GDP per capita (current US$)", + "World/Europe/SWE/Principal/GDP per capita (current US$)", + "World/Asia/THA/Principal/GDP per capita (current US$)", + "World/North Africa/TUR/Principal/GDP per capita (current US$)", + "World/Pair/USA/Principal/GDP per capita (current US$)", + "World/Latam/VEN/Principal/GDP per capita (current US$)", + "World/Asia/VNM/Principal/GDP per capita (current US$)", + "World/Persian Gulf/YEM/Principal/GDP per capita (current US$)", + "World/South Africa/ZAF/Principal/GDP per capita (current US$)", + "World/Persian Gulf/ARE/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/ARG/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Persian Gulf/AZE/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/BGD/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/BRA/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/CHL/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Pair/CHN/Principal/GDP per person employed (constant 2017 PPP $)", + "World/South Africa/CMR/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/COL/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/CRI/Principal/GDP per person employed (constant 2017 PPP $)", + "World/North Africa/EGY/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Europe/FRA/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Europe/GBR/Principal/GDP per person employed (constant 2017 PPP $)", + "World/South Africa/GHA/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Europe/GRC/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/IDN/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/IND/Principal/GDP per person employed (constant 2017 PPP $)", + "World/North Africa/ISR/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/KOR/Principal/GDP per person employed (constant 2017 PPP $)", + "World/North Africa/MAR/Principal/GDP per person employed (constant 2017 PPP $)", + "World/South Africa/MOZ/Principal/GDP per person employed (constant 2017 PPP $)", + "World/South Africa/NGA/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Persian Gulf/OMN/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/PAN/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/PER/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/PHL/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Europe/POL/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Persian Gulf/QAT/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Persian Gulf/SAU/Principal/GDP per person employed (constant 2017 PPP $)", + "World/South Africa/SEN/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/THA/Principal/GDP per person employed (constant 2017 PPP $)", + "World/North Africa/TUR/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Pair/USA/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/VNM/Principal/GDP per person employed (constant 2017 PPP $)", + "World/South Africa/ZAF/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/ARG/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/AUT/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Persian Gulf/AZE/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/BGD/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Latam/BRA/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Latam/CHL/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Pair/CHN/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/South Africa/CMR/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Latam/COL/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Latam/CRI/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/DEU/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/North Africa/EGY/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/ESP/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/FRA/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/GBR/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/South Africa/GHA/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/HRV/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/IDN/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/IND/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/North Africa/ISR/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/KOR/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/North Africa/MAR/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Latam/MEX/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/South Africa/MOZ/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/South Africa/NGA/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/NLD/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Latam/PAN/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/PHL/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/POL/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/SWE/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/THA/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/North Africa/TUR/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Pair/USA/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/VNM/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/South Africa/ZAF/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/AUT/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Persian Gulf/AZE/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Asia/BGD/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Pair/CHN/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/South Africa/CMR/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Latam/COL/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Latam/CRI/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/DEU/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/North Africa/DZA/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/ESP/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/FRA/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/GBR/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/South Africa/GHA/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/HRV/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Asia/IDN/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Asia/IND/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/North Africa/ISR/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Asia/KOR/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Latam/MEX/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/South Africa/MOZ/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/South Africa/NGA/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/NLD/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Latam/PAN/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Asia/PHL/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/POL/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Persian Gulf/SAU/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/SWE/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/North Africa/TUR/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Pair/USA/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/South Africa/ZAF/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Persian Gulf/ARE/Economy/GNI (current US$)", + "World/Latam/ARG/Economy/GNI (current US$)", + "World/Europe/AUT/Economy/GNI (current US$)", + "World/Persian Gulf/AZE/Economy/GNI (current US$)", + "World/Asia/BGD/Economy/GNI (current US$)", + "World/Latam/BRA/Economy/GNI (current US$)", + "World/Latam/CHL/Economy/GNI (current US$)", + "World/Pair/CHN/Economy/GNI (current US$)", + "World/South Africa/CMR/Economy/GNI (current US$)", + "World/Latam/COL/Economy/GNI (current US$)", + "World/Latam/CRI/Economy/GNI (current US$)", + "World/Europe/DEU/Economy/GNI (current US$)", + "World/North Africa/DZA/Economy/GNI (current US$)", + "World/North Africa/EGY/Economy/GNI (current US$)", + "World/Europe/ESP/Economy/GNI (current US$)", + "World/Europe/FRA/Economy/GNI (current US$)", + "World/Europe/GBR/Economy/GNI (current US$)", + "World/South Africa/GHA/Economy/GNI (current US$)", + "World/Europe/HRV/Economy/GNI (current US$)", + "World/Asia/IDN/Economy/GNI (current US$)", + "World/Asia/IND/Economy/GNI (current US$)", + "World/Persian Gulf/IRQ/Economy/GNI (current US$)", + "World/North Africa/ISR/Economy/GNI (current US$)", + "World/Asia/KOR/Economy/GNI (current US$)", + "World/South Africa/LBR/Economy/GNI (current US$)", + "World/North Africa/MAR/Economy/GNI (current US$)", + "World/Latam/MEX/Economy/GNI (current US$)", + "World/South Africa/MOZ/Economy/GNI (current US$)", + "World/South Africa/NGA/Economy/GNI (current US$)", + "World/Europe/NLD/Economy/GNI (current US$)", + "World/Persian Gulf/OMN/Economy/GNI (current US$)", + "World/Latam/PAN/Economy/GNI (current US$)", + "World/Latam/PER/Economy/GNI (current US$)", + "World/Asia/PHL/Economy/GNI (current US$)", + "World/Europe/POL/Economy/GNI (current US$)", + "World/Persian Gulf/QAT/Economy/GNI (current US$)", + "World/Persian Gulf/SAU/Economy/GNI (current US$)", + "World/South Africa/SEN/Economy/GNI (current US$)", + "World/Europe/SWE/Economy/GNI (current US$)", + "World/Asia/THA/Economy/GNI (current US$)", + "World/North Africa/TUR/Economy/GNI (current US$)", + "World/Pair/USA/Economy/GNI (current US$)", + "World/Latam/VEN/Economy/GNI (current US$)", + "World/Asia/VNM/Economy/GNI (current US$)", + "World/Persian Gulf/YEM/Economy/GNI (current US$)", + "World/South Africa/ZAF/Economy/GNI (current US$)", + "World/Persian Gulf/ARE/Economy/General government final consumption expenditure (current US$)", + "World/Latam/ARG/Economy/General government final consumption expenditure (current US$)", + "World/Europe/AUT/Economy/General government final consumption expenditure (current US$)", + "World/Persian Gulf/AZE/Economy/General government final consumption expenditure (current US$)", + "World/Asia/BGD/Economy/General government final consumption expenditure (current US$)", + "World/Latam/BRA/Economy/General government final consumption expenditure (current US$)", + "World/Latam/CHL/Economy/General government final consumption expenditure (current US$)", + "World/Pair/CHN/Economy/General government final consumption expenditure (current US$)", + "World/South Africa/CMR/Economy/General government final consumption expenditure (current US$)", + "World/Latam/COL/Economy/General government final consumption expenditure (current US$)", + "World/Latam/CRI/Economy/General government final consumption expenditure (current US$)", + "World/Europe/DEU/Economy/General government final consumption expenditure (current US$)", + "World/North Africa/DZA/Economy/General government final consumption expenditure (current US$)", + "World/North Africa/EGY/Economy/General government final consumption expenditure (current US$)", + "World/Europe/ESP/Economy/General government final consumption expenditure (current US$)", + "World/Europe/FRA/Economy/General government final consumption expenditure (current US$)", + "World/Europe/GBR/Economy/General government final consumption expenditure (current US$)", + "World/South Africa/GHA/Economy/General government final consumption expenditure (current US$)", + "World/Europe/GRC/Economy/General government final consumption expenditure (current US$)", + "World/Europe/HRV/Economy/General government final consumption expenditure (current US$)", + "World/Asia/IDN/Economy/General government final consumption expenditure (current US$)", + "World/Asia/IND/Economy/General government final consumption expenditure (current US$)", + "World/Persian Gulf/IRQ/Economy/General government final consumption expenditure (current US$)", + "World/North Africa/ISR/Economy/General government final consumption expenditure (current US$)", + "World/Asia/KOR/Economy/General government final consumption expenditure (current US$)", + "World/North Africa/MAR/Economy/General government final consumption expenditure (current US$)", + "World/Latam/MEX/Economy/General government final consumption expenditure (current US$)", + "World/South Africa/MOZ/Economy/General government final consumption expenditure (current US$)", + "World/South Africa/NGA/Economy/General government final consumption expenditure (current US$)", + "World/Europe/NLD/Economy/General government final consumption expenditure (current US$)", + "World/Persian Gulf/OMN/Economy/General government final consumption expenditure (current US$)", + "World/Latam/PAN/Economy/General government final consumption expenditure (current US$)", + "World/Latam/PER/Economy/General government final consumption expenditure (current US$)", + "World/Asia/PHL/Economy/General government final consumption expenditure (current US$)", + "World/Europe/POL/Economy/General government final consumption expenditure (current US$)", + "World/Persian Gulf/QAT/Economy/General government final consumption expenditure (current US$)", + "World/Persian Gulf/SAU/Economy/General government final consumption expenditure (current US$)", + "World/South Africa/SEN/Economy/General government final consumption expenditure (current US$)", + "World/Europe/SWE/Economy/General government final consumption expenditure (current US$)", + "World/Asia/THA/Economy/General government final consumption expenditure (current US$)", + "World/North Africa/TUR/Economy/General government final consumption expenditure (current US$)", + "World/Pair/USA/Economy/General government final consumption expenditure (current US$)", + "World/Latam/VEN/Economy/General government final consumption expenditure (current US$)", + "World/Asia/VNM/Economy/General government final consumption expenditure (current US$)", + "World/South Africa/ZAF/Economy/General government final consumption expenditure (current US$)", + "World/Europe/AUT/Exports/Goods exports (BoP, current US$)", + "World/Persian Gulf/AZE/Exports/Goods exports (BoP, current US$)", + "World/Asia/BGD/Exports/Goods exports (BoP, current US$)", + "World/Latam/BRA/Exports/Goods exports (BoP, current US$)", + "World/Latam/CHL/Exports/Goods exports (BoP, current US$)", + "World/Pair/CHN/Exports/Goods exports (BoP, current US$)", + "World/Latam/COL/Exports/Goods exports (BoP, current US$)", + "World/Latam/CRI/Exports/Goods exports (BoP, current US$)", + "World/Europe/DEU/Exports/Goods exports (BoP, current US$)", + "World/Europe/ESP/Exports/Goods exports (BoP, current US$)", + "World/Europe/FRA/Exports/Goods exports (BoP, current US$)", + "World/Europe/GBR/Exports/Goods exports (BoP, current US$)", + "World/South Africa/GHA/Exports/Goods exports (BoP, current US$)", + "World/Asia/IDN/Exports/Goods exports (BoP, current US$)", + "World/Asia/IND/Exports/Goods exports (BoP, current US$)", + "World/Persian Gulf/IRQ/Exports/Goods exports (BoP, current US$)", + "World/North Africa/ISR/Exports/Goods exports (BoP, current US$)", + "World/Asia/KOR/Exports/Goods exports (BoP, current US$)", + "World/South Africa/LBR/Exports/Goods exports (BoP, current US$)", + "World/North Africa/MAR/Exports/Goods exports (BoP, current US$)", + "World/Latam/MEX/Exports/Goods exports (BoP, current US$)", + "World/South Africa/MOZ/Exports/Goods exports (BoP, current US$)", + "World/Europe/NLD/Exports/Goods exports (BoP, current US$)", + "World/Persian Gulf/OMN/Exports/Goods exports (BoP, current US$)", + "World/Latam/PER/Exports/Goods exports (BoP, current US$)", + "World/Asia/PHL/Exports/Goods exports (BoP, current US$)", + "World/Europe/POL/Exports/Goods exports (BoP, current US$)", + "World/Persian Gulf/SAU/Exports/Goods exports (BoP, current US$)", + "World/South Africa/SEN/Exports/Goods exports (BoP, current US$)", + "World/Europe/SWE/Exports/Goods exports (BoP, current US$)", + "World/Asia/THA/Exports/Goods exports (BoP, current US$)", + "World/North Africa/TUR/Exports/Goods exports (BoP, current US$)", + "World/Pair/USA/Exports/Goods exports (BoP, current US$)", + "World/Latam/VEN/Exports/Goods exports (BoP, current US$)", + "World/Asia/VNM/Exports/Goods exports (BoP, current US$)", + "World/South Africa/ZAF/Exports/Goods exports (BoP, current US$)", + "World/Latam/ARG/Imports/Goods imports (BoP, current US$)", + "World/Europe/AUT/Imports/Goods imports (BoP, current US$)", + "World/Persian Gulf/AZE/Imports/Goods imports (BoP, current US$)", + "World/Asia/BGD/Imports/Goods imports (BoP, current US$)", + "World/Latam/BRA/Imports/Goods imports (BoP, current US$)", + "World/Latam/CHL/Imports/Goods imports (BoP, current US$)", + "World/Pair/CHN/Imports/Goods imports (BoP, current US$)", + "World/Latam/COL/Imports/Goods imports (BoP, current US$)", + "World/Latam/CRI/Imports/Goods imports (BoP, current US$)", + "World/Europe/DEU/Imports/Goods imports (BoP, current US$)", + "World/North Africa/DZA/Imports/Goods imports (BoP, current US$)", + "World/North Africa/EGY/Imports/Goods imports (BoP, current US$)", + "World/Europe/ESP/Imports/Goods imports (BoP, current US$)", + "World/Europe/FRA/Imports/Goods imports (BoP, current US$)", + "World/Europe/GBR/Imports/Goods imports (BoP, current US$)", + "World/South Africa/GHA/Imports/Goods imports (BoP, current US$)", + "World/Europe/GRC/Imports/Goods imports (BoP, current US$)", + "World/Europe/HRV/Imports/Goods imports (BoP, current US$)", + "World/Asia/IDN/Imports/Goods imports (BoP, current US$)", + "World/Asia/IND/Imports/Goods imports (BoP, current US$)", + "World/North Africa/ISR/Imports/Goods imports (BoP, current US$)", + "World/Asia/KOR/Imports/Goods imports (BoP, current US$)", + "World/South Africa/LBR/Imports/Goods imports (BoP, current US$)", + "World/North Africa/MAR/Imports/Goods imports (BoP, current US$)", + "World/Latam/MEX/Imports/Goods imports (BoP, current US$)", + "World/South Africa/MOZ/Imports/Goods imports (BoP, current US$)", + "World/South Africa/NGA/Imports/Goods imports (BoP, current US$)", + "World/Europe/NLD/Imports/Goods imports (BoP, current US$)", + "World/Persian Gulf/OMN/Imports/Goods imports (BoP, current US$)", + "World/Latam/PER/Imports/Goods imports (BoP, current US$)", + "World/Asia/PHL/Imports/Goods imports (BoP, current US$)", + "World/Europe/POL/Imports/Goods imports (BoP, current US$)", + "World/Persian Gulf/SAU/Imports/Goods imports (BoP, current US$)", + "World/South Africa/SEN/Imports/Goods imports (BoP, current US$)", + "World/Europe/SWE/Imports/Goods imports (BoP, current US$)", + "World/Asia/THA/Imports/Goods imports (BoP, current US$)", + "World/North Africa/TUR/Imports/Goods imports (BoP, current US$)", + "World/Pair/USA/Imports/Goods imports (BoP, current US$)", + "World/Asia/VNM/Imports/Goods imports (BoP, current US$)", + "World/Persian Gulf/YEM/Imports/Goods imports (BoP, current US$)", + "World/South Africa/ZAF/Imports/Goods imports (BoP, current US$)", + "World/Persian Gulf/ARE/Economy/Gross capital formation (current US$)", + "World/Latam/ARG/Economy/Gross capital formation (current US$)", + "World/Europe/AUT/Economy/Gross capital formation (current US$)", + "World/Persian Gulf/AZE/Economy/Gross capital formation (current US$)", + "World/Asia/BGD/Economy/Gross capital formation (current US$)", + "World/Latam/BRA/Economy/Gross capital formation (current US$)", + "World/Latam/CHL/Economy/Gross capital formation (current US$)", + "World/Pair/CHN/Economy/Gross capital formation (current US$)", + "World/South Africa/CMR/Economy/Gross capital formation (current US$)", + "World/Latam/COL/Economy/Gross capital formation (current US$)", + "World/Latam/CRI/Economy/Gross capital formation (current US$)", + "World/Europe/DEU/Economy/Gross capital formation (current US$)", + "World/North Africa/DZA/Economy/Gross capital formation (current US$)", + "World/North Africa/EGY/Economy/Gross capital formation (current US$)", + "World/Europe/ESP/Economy/Gross capital formation (current US$)", + "World/Europe/FRA/Economy/Gross capital formation (current US$)", + "World/Europe/GBR/Economy/Gross capital formation (current US$)", + "World/South Africa/GHA/Economy/Gross capital formation (current US$)", + "World/Europe/HRV/Economy/Gross capital formation (current US$)", + "World/Asia/IDN/Economy/Gross capital formation (current US$)", + "World/Asia/IND/Economy/Gross capital formation (current US$)", + "World/North Africa/ISR/Economy/Gross capital formation (current US$)", + "World/Asia/KOR/Economy/Gross capital formation (current US$)", + "World/North Africa/MAR/Economy/Gross capital formation (current US$)", + "World/Latam/MEX/Economy/Gross capital formation (current US$)", + "World/South Africa/MOZ/Economy/Gross capital formation (current US$)", + "World/South Africa/NGA/Economy/Gross capital formation (current US$)", + "World/Europe/NLD/Economy/Gross capital formation (current US$)", + "World/Persian Gulf/OMN/Economy/Gross capital formation (current US$)", + "World/Latam/PAN/Economy/Gross capital formation (current US$)", + "World/Latam/PER/Economy/Gross capital formation (current US$)", + "World/Asia/PHL/Economy/Gross capital formation (current US$)", + "World/Europe/POL/Economy/Gross capital formation (current US$)", + "World/Persian Gulf/QAT/Economy/Gross capital formation (current US$)", + "World/Persian Gulf/SAU/Economy/Gross capital formation (current US$)", + "World/South Africa/SEN/Economy/Gross capital formation (current US$)", + "World/Europe/SWE/Economy/Gross capital formation (current US$)", + "World/Asia/THA/Economy/Gross capital formation (current US$)", + "World/North Africa/TUR/Economy/Gross capital formation (current US$)", + "World/Pair/USA/Economy/Gross capital formation (current US$)", + "World/Latam/VEN/Economy/Gross capital formation (current US$)", + "World/Asia/VNM/Economy/Gross capital formation (current US$)", + "World/South Africa/ZAF/Economy/Gross capital formation (current US$)", + "World/Persian Gulf/ARE/Economy/Gross domestic savings (current US$)", + "World/Latam/ARG/Economy/Gross domestic savings (current US$)", + "World/Europe/AUT/Economy/Gross domestic savings (current US$)", + "World/Persian Gulf/AZE/Economy/Gross domestic savings (current US$)", + "World/Asia/BGD/Economy/Gross domestic savings (current US$)", + "World/Latam/BRA/Economy/Gross domestic savings (current US$)", + "World/Latam/CHL/Economy/Gross domestic savings (current US$)", + "World/Pair/CHN/Economy/Gross domestic savings (current US$)", + "World/South Africa/CMR/Economy/Gross domestic savings (current US$)", + "World/Latam/COL/Economy/Gross domestic savings (current US$)", + "World/Latam/CRI/Economy/Gross domestic savings (current US$)", + "World/Europe/DEU/Economy/Gross domestic savings (current US$)", + "World/North Africa/DZA/Economy/Gross domestic savings (current US$)", + "World/Europe/ESP/Economy/Gross domestic savings (current US$)", + "World/Europe/FRA/Economy/Gross domestic savings (current US$)", + "World/Europe/GBR/Economy/Gross domestic savings (current US$)", + "World/Europe/HRV/Economy/Gross domestic savings (current US$)", + "World/Asia/IDN/Economy/Gross domestic savings (current US$)", + "World/Asia/IND/Economy/Gross domestic savings (current US$)", + "World/Persian Gulf/IRQ/Economy/Gross domestic savings (current US$)", + "World/North Africa/ISR/Economy/Gross domestic savings (current US$)", + "World/Asia/KOR/Economy/Gross domestic savings (current US$)", + "World/North Africa/MAR/Economy/Gross domestic savings (current US$)", + "World/Latam/MEX/Economy/Gross domestic savings (current US$)", + "World/South Africa/NGA/Economy/Gross domestic savings (current US$)", + "World/Europe/NLD/Economy/Gross domestic savings (current US$)", + "World/Persian Gulf/OMN/Economy/Gross domestic savings (current US$)", + "World/Latam/PAN/Economy/Gross domestic savings (current US$)", + "World/Latam/PER/Economy/Gross domestic savings (current US$)", + "World/Asia/PHL/Economy/Gross domestic savings (current US$)", + "World/Europe/POL/Economy/Gross domestic savings (current US$)", + "World/Persian Gulf/QAT/Economy/Gross domestic savings (current US$)", + "World/Persian Gulf/SAU/Economy/Gross domestic savings (current US$)", + "World/South Africa/SEN/Economy/Gross domestic savings (current US$)", + "World/Europe/SWE/Economy/Gross domestic savings (current US$)", + "World/Asia/THA/Economy/Gross domestic savings (current US$)", + "World/North Africa/TUR/Economy/Gross domestic savings (current US$)", + "World/Pair/USA/Economy/Gross domestic savings (current US$)", + "World/Asia/VNM/Economy/Gross domestic savings (current US$)", + "World/South Africa/ZAF/Economy/Gross domestic savings (current US$)", + "World/Persian Gulf/ARE/Economy/Gross fixed capital formation (current US$)", + "World/Latam/ARG/Economy/Gross fixed capital formation (current US$)", + "World/Europe/AUT/Economy/Gross fixed capital formation (current US$)", + "World/Persian Gulf/AZE/Economy/Gross fixed capital formation (current US$)", + "World/Asia/BGD/Economy/Gross fixed capital formation (current US$)", + "World/Latam/BRA/Economy/Gross fixed capital formation (current US$)", + "World/Latam/CHL/Economy/Gross fixed capital formation (current US$)", + "World/Pair/CHN/Economy/Gross fixed capital formation (current US$)", + "World/South Africa/CMR/Economy/Gross fixed capital formation (current US$)", + "World/Latam/COL/Economy/Gross fixed capital formation (current US$)", + "World/Latam/CRI/Economy/Gross fixed capital formation (current US$)", + "World/Europe/DEU/Economy/Gross fixed capital formation (current US$)", + "World/North Africa/DZA/Economy/Gross fixed capital formation (current US$)", + "World/North Africa/EGY/Economy/Gross fixed capital formation (current US$)", + "World/Europe/FRA/Economy/Gross fixed capital formation (current US$)", + "World/Europe/GBR/Economy/Gross fixed capital formation (current US$)", + "World/South Africa/GHA/Economy/Gross fixed capital formation (current US$)", + "World/Europe/HRV/Economy/Gross fixed capital formation (current US$)", + "World/Asia/IDN/Economy/Gross fixed capital formation (current US$)", + "World/Asia/IND/Economy/Gross fixed capital formation (current US$)", + "World/North Africa/ISR/Economy/Gross fixed capital formation (current US$)", + "World/Asia/KOR/Economy/Gross fixed capital formation (current US$)", + "World/North Africa/MAR/Economy/Gross fixed capital formation (current US$)", + "World/Latam/MEX/Economy/Gross fixed capital formation (current US$)", + "World/South Africa/MOZ/Economy/Gross fixed capital formation (current US$)", + "World/South Africa/NGA/Economy/Gross fixed capital formation (current US$)", + "World/Europe/NLD/Economy/Gross fixed capital formation (current US$)", + "World/Persian Gulf/OMN/Economy/Gross fixed capital formation (current US$)", + "World/Latam/PAN/Economy/Gross fixed capital formation (current US$)", + "World/Latam/PER/Economy/Gross fixed capital formation (current US$)", + "World/Asia/PHL/Economy/Gross fixed capital formation (current US$)", + "World/Europe/POL/Economy/Gross fixed capital formation (current US$)", + "World/Persian Gulf/SAU/Economy/Gross fixed capital formation (current US$)", + "World/South Africa/SEN/Economy/Gross fixed capital formation (current US$)", + "World/Europe/SWE/Economy/Gross fixed capital formation (current US$)", + "World/Asia/THA/Economy/Gross fixed capital formation (current US$)", + "World/North Africa/TUR/Economy/Gross fixed capital formation (current US$)", + "World/Pair/USA/Economy/Gross fixed capital formation (current US$)", + "World/Latam/VEN/Economy/Gross fixed capital formation (current US$)", + "World/Asia/VNM/Economy/Gross fixed capital formation (current US$)", + "World/South Africa/ZAF/Economy/Gross fixed capital formation (current US$)", + "World/Persian Gulf/ARE/Economy/Gross national expenditure (current US$)", + "World/Latam/ARG/Economy/Gross national expenditure (current US$)", + "World/Europe/AUT/Economy/Gross national expenditure (current US$)", + "World/Persian Gulf/AZE/Economy/Gross national expenditure (current US$)", + "World/Asia/BGD/Economy/Gross national expenditure (current US$)", + "World/Latam/BRA/Economy/Gross national expenditure (current US$)", + "World/Latam/CHL/Economy/Gross national expenditure (current US$)", + "World/Pair/CHN/Economy/Gross national expenditure (current US$)", + "World/South Africa/CMR/Economy/Gross national expenditure (current US$)", + "World/Latam/COL/Economy/Gross national expenditure (current US$)", + "World/Latam/CRI/Economy/Gross national expenditure (current US$)", + "World/Europe/DEU/Economy/Gross national expenditure (current US$)", + "World/North Africa/DZA/Economy/Gross national expenditure (current US$)", + "World/North Africa/EGY/Economy/Gross national expenditure (current US$)", + "World/Europe/ESP/Economy/Gross national expenditure (current US$)", + "World/Europe/FRA/Economy/Gross national expenditure (current US$)", + "World/Europe/GBR/Economy/Gross national expenditure (current US$)", + "World/South Africa/GHA/Economy/Gross national expenditure (current US$)", + "World/Europe/GRC/Economy/Gross national expenditure (current US$)", + "World/Europe/HRV/Economy/Gross national expenditure (current US$)", + "World/Asia/IDN/Economy/Gross national expenditure (current US$)", + "World/Asia/IND/Economy/Gross national expenditure (current US$)", + "World/Persian Gulf/IRQ/Economy/Gross national expenditure (current US$)", + "World/North Africa/ISR/Economy/Gross national expenditure (current US$)", + "World/Asia/KOR/Economy/Gross national expenditure (current US$)", + "World/North Africa/MAR/Economy/Gross national expenditure (current US$)", + "World/Latam/MEX/Economy/Gross national expenditure (current US$)", + "World/South Africa/MOZ/Economy/Gross national expenditure (current US$)", + "World/South Africa/NGA/Economy/Gross national expenditure (current US$)", + "World/Europe/NLD/Economy/Gross national expenditure (current US$)", + "World/Persian Gulf/OMN/Economy/Gross national expenditure (current US$)", + "World/Latam/PAN/Economy/Gross national expenditure (current US$)", + "World/Latam/PER/Economy/Gross national expenditure (current US$)", + "World/Asia/PHL/Economy/Gross national expenditure (current US$)", + "World/Europe/POL/Economy/Gross national expenditure (current US$)", + "World/Persian Gulf/QAT/Economy/Gross national expenditure (current US$)", + "World/Persian Gulf/SAU/Economy/Gross national expenditure (current US$)", + "World/South Africa/SEN/Economy/Gross national expenditure (current US$)", + "World/Europe/SWE/Economy/Gross national expenditure (current US$)", + "World/Asia/THA/Economy/Gross national expenditure (current US$)", + "World/North Africa/TUR/Economy/Gross national expenditure (current US$)", + "World/Pair/USA/Economy/Gross national expenditure (current US$)", + "World/Latam/VEN/Economy/Gross national expenditure (current US$)", + "World/Asia/VNM/Economy/Gross national expenditure (current US$)", + "World/South Africa/ZAF/Economy/Gross national expenditure (current US$)", + "World/Persian Gulf/ARE/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/AUT/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Persian Gulf/AZE/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Asia/BGD/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/BRA/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/CHL/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Pair/CHN/Economy/Gross national expenditure deflator (base year varies by country)", + "World/South Africa/CMR/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/COL/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/CRI/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/DEU/Economy/Gross national expenditure deflator (base year varies by country)", + "World/North Africa/DZA/Economy/Gross national expenditure deflator (base year varies by country)", + "World/North Africa/EGY/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/ESP/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/FRA/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/GBR/Economy/Gross national expenditure deflator (base year varies by country)", + "World/South Africa/GHA/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/GRC/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Asia/IND/Economy/Gross national expenditure deflator (base year varies by country)", + "World/North Africa/ISR/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Asia/KOR/Economy/Gross national expenditure deflator (base year varies by country)", + "World/North Africa/MAR/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/MEX/Economy/Gross national expenditure deflator (base year varies by country)", + "World/South Africa/MOZ/Economy/Gross national expenditure deflator (base year varies by country)", + "World/South Africa/NGA/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/NLD/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Persian Gulf/OMN/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/PAN/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/PER/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Asia/PHL/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/POL/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Persian Gulf/SAU/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Pair/USA/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/VEN/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Asia/VNM/Economy/Gross national expenditure deflator (base year varies by country)", + "World/South Africa/ZAF/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/ARG/Economy/Gross savings (current US$)", + "World/Europe/AUT/Economy/Gross savings (current US$)", + "World/Persian Gulf/AZE/Economy/Gross savings (current US$)", + "World/Asia/BGD/Economy/Gross savings (current US$)", + "World/Latam/BRA/Economy/Gross savings (current US$)", + "World/Latam/CHL/Economy/Gross savings (current US$)", + "World/Pair/CHN/Economy/Gross savings (current US$)", + "World/South Africa/CMR/Economy/Gross savings (current US$)", + "World/Latam/COL/Economy/Gross savings (current US$)", + "World/Latam/CRI/Economy/Gross savings (current US$)", + "World/Europe/DEU/Economy/Gross savings (current US$)", + "World/North Africa/EGY/Economy/Gross savings (current US$)", + "World/Europe/ESP/Economy/Gross savings (current US$)", + "World/Europe/FRA/Economy/Gross savings (current US$)", + "World/Europe/GBR/Economy/Gross savings (current US$)", + "World/South Africa/GHA/Economy/Gross savings (current US$)", + "World/Europe/HRV/Economy/Gross savings (current US$)", + "World/Asia/IDN/Economy/Gross savings (current US$)", + "World/Asia/IND/Economy/Gross savings (current US$)", + "World/North Africa/ISR/Economy/Gross savings (current US$)", + "World/Asia/KOR/Economy/Gross savings (current US$)", + "World/North Africa/MAR/Economy/Gross savings (current US$)", + "World/Latam/MEX/Economy/Gross savings (current US$)", + "World/South Africa/MOZ/Economy/Gross savings (current US$)", + "World/South Africa/NGA/Economy/Gross savings (current US$)", + "World/Europe/NLD/Economy/Gross savings (current US$)", + "World/Latam/PAN/Economy/Gross savings (current US$)", + "World/Latam/PER/Economy/Gross savings (current US$)", + "World/Asia/PHL/Economy/Gross savings (current US$)", + "World/Europe/POL/Economy/Gross savings (current US$)", + "World/Persian Gulf/SAU/Economy/Gross savings (current US$)", + "World/South Africa/SEN/Economy/Gross savings (current US$)", + "World/Europe/SWE/Economy/Gross savings (current US$)", + "World/Asia/THA/Economy/Gross savings (current US$)", + "World/North Africa/TUR/Economy/Gross savings (current US$)", + "World/Pair/USA/Economy/Gross savings (current US$)", + "World/Asia/VNM/Economy/Gross savings (current US$)", + "World/South Africa/ZAF/Economy/Gross savings (current US$)", + "World/Latam/ARG/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/AUT/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Persian Gulf/AZE/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Asia/BGD/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/BRA/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/CHL/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/South Africa/CMR/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/COL/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/CRI/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/DEU/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/North Africa/DZA/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/North Africa/EGY/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/ESP/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/FRA/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/GBR/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/South Africa/GHA/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/GRC/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/HRV/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Asia/IDN/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Asia/IND/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Persian Gulf/IRQ/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/North Africa/ISR/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Asia/KOR/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/North Africa/MAR/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/MEX/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/South Africa/MOZ/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/South Africa/NGA/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/NLD/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Persian Gulf/OMN/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/PAN/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/PER/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/POL/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Persian Gulf/SAU/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/South Africa/SEN/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/SWE/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/North Africa/TUR/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Pair/USA/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/VEN/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Asia/VNM/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Persian Gulf/YEM/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/South Africa/ZAF/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/AUT/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Pair/CHN/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/DEU/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/ESP/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/FRA/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/GBR/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IND/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/ISR/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/MEX/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/POL/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/SAU/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/SWE/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Pair/USA/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/VEN/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/ZAF/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/ARE/Health/Hospital beds (per 1,000 people)", + "World/Latam/ARG/Health/Hospital beds (per 1,000 people)", + "World/Europe/AUT/Health/Hospital beds (per 1,000 people)", + "World/Persian Gulf/AZE/Health/Hospital beds (per 1,000 people)", + "World/Asia/BGD/Health/Hospital beds (per 1,000 people)", + "World/Latam/BRA/Health/Hospital beds (per 1,000 people)", + "World/Latam/CHL/Health/Hospital beds (per 1,000 people)", + "World/Pair/CHN/Health/Hospital beds (per 1,000 people)", + "World/South Africa/CMR/Health/Hospital beds (per 1,000 people)", + "World/Latam/COL/Health/Hospital beds (per 1,000 people)", + "World/Latam/CRI/Health/Hospital beds (per 1,000 people)", + "World/Europe/DEU/Health/Hospital beds (per 1,000 people)", + "World/North Africa/EGY/Health/Hospital beds (per 1,000 people)", + "World/Europe/ESP/Health/Hospital beds (per 1,000 people)", + "World/Europe/FRA/Health/Hospital beds (per 1,000 people)", + "World/Europe/GBR/Health/Hospital beds (per 1,000 people)", + "World/North Africa/ISR/Health/Hospital beds (per 1,000 people)", + "World/Asia/KOR/Health/Hospital beds (per 1,000 people)", + "World/South Africa/LBR/Health/Hospital beds (per 1,000 people)", + "World/Latam/MEX/Health/Hospital beds (per 1,000 people)", + "World/South Africa/MOZ/Health/Hospital beds (per 1,000 people)", + "World/South Africa/NGA/Health/Hospital beds (per 1,000 people)", + "World/Europe/NLD/Health/Hospital beds (per 1,000 people)", + "World/Persian Gulf/OMN/Health/Hospital beds (per 1,000 people)", + "World/Persian Gulf/SAU/Health/Hospital beds (per 1,000 people)", + "World/North Africa/TUR/Health/Hospital beds (per 1,000 people)", + "World/Pair/USA/Health/Hospital beds (per 1,000 people)", + "World/South Africa/ZAF/Health/Hospital beds (per 1,000 people)", + "World/Persian Gulf/ARE/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/ARG/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/AUT/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Persian Gulf/AZE/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/BGD/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/BRA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/CHL/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Pair/CHN/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/South Africa/CMR/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/COL/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/CRI/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/DEU/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/North Africa/DZA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/North Africa/EGY/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/ESP/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/FRA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/GBR/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/South Africa/GHA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/GRC/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/HRV/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/IDN/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/IND/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Persian Gulf/IRQ/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/North Africa/ISR/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/KOR/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/North Africa/MAR/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/MEX/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/South Africa/MOZ/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/South Africa/NGA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/NLD/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Persian Gulf/OMN/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/PAN/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/PER/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/PHL/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/POL/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Persian Gulf/QAT/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Persian Gulf/SAU/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/South Africa/SEN/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/SWE/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/THA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/North Africa/TUR/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Pair/USA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/VEN/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/VNM/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/South Africa/ZAF/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/AUT/Exports/ICT service exports (BoP, current US$)", + "World/Asia/BGD/Exports/ICT service exports (BoP, current US$)", + "World/Latam/CHL/Exports/ICT service exports (BoP, current US$)", + "World/Pair/CHN/Exports/ICT service exports (BoP, current US$)", + "World/South Africa/CMR/Exports/ICT service exports (BoP, current US$)", + "World/Latam/CRI/Exports/ICT service exports (BoP, current US$)", + "World/Europe/DEU/Exports/ICT service exports (BoP, current US$)", + "World/North Africa/DZA/Exports/ICT service exports (BoP, current US$)", + "World/Europe/ESP/Exports/ICT service exports (BoP, current US$)", + "World/Europe/GBR/Exports/ICT service exports (BoP, current US$)", + "World/Europe/GRC/Exports/ICT service exports (BoP, current US$)", + "World/Europe/HRV/Exports/ICT service exports (BoP, current US$)", + "World/Asia/IND/Exports/ICT service exports (BoP, current US$)", + "World/North Africa/ISR/Exports/ICT service exports (BoP, current US$)", + "World/Asia/KOR/Exports/ICT service exports (BoP, current US$)", + "World/North Africa/MAR/Exports/ICT service exports (BoP, current US$)", + "World/Latam/MEX/Exports/ICT service exports (BoP, current US$)", + "World/South Africa/NGA/Exports/ICT service exports (BoP, current US$)", + "World/Europe/NLD/Exports/ICT service exports (BoP, current US$)", + "World/Persian Gulf/OMN/Exports/ICT service exports (BoP, current US$)", + "World/Latam/PAN/Exports/ICT service exports (BoP, current US$)", + "World/Europe/POL/Exports/ICT service exports (BoP, current US$)", + "World/Persian Gulf/QAT/Exports/ICT service exports (BoP, current US$)", + "World/Persian Gulf/SAU/Exports/ICT service exports (BoP, current US$)", + "World/Europe/SWE/Exports/ICT service exports (BoP, current US$)", + "World/Asia/THA/Exports/ICT service exports (BoP, current US$)", + "World/Pair/USA/Exports/ICT service exports (BoP, current US$)", + "World/South Africa/ZAF/Exports/ICT service exports (BoP, current US$)", + "World/Persian Gulf/ARE/Imports/Import unit value index (2000 = 100)", + "World/Europe/AUT/Imports/Import unit value index (2000 = 100)", + "World/Persian Gulf/AZE/Imports/Import unit value index (2000 = 100)", + "World/Asia/BGD/Imports/Import unit value index (2000 = 100)", + "World/Latam/CRI/Imports/Import unit value index (2000 = 100)", + "World/Europe/DEU/Imports/Import unit value index (2000 = 100)", + "World/North Africa/EGY/Imports/Import unit value index (2000 = 100)", + "World/Europe/ESP/Imports/Import unit value index (2000 = 100)", + "World/Europe/FRA/Imports/Import unit value index (2000 = 100)", + "World/Europe/GRC/Imports/Import unit value index (2000 = 100)", + "World/Europe/HRV/Imports/Import unit value index (2000 = 100)", + "World/Latam/MEX/Imports/Import unit value index (2000 = 100)", + "World/South Africa/MOZ/Imports/Import unit value index (2000 = 100)", + "World/Europe/NLD/Imports/Import unit value index (2000 = 100)", + "World/Latam/PAN/Imports/Import unit value index (2000 = 100)", + "World/Europe/POL/Imports/Import unit value index (2000 = 100)", + "World/Persian Gulf/QAT/Imports/Import unit value index (2000 = 100)", + "World/Europe/SWE/Imports/Import unit value index (2000 = 100)", + "World/Asia/THA/Imports/Import unit value index (2000 = 100)", + "World/Persian Gulf/ARE/Imports/Import value index (2000 = 100)", + "World/Latam/ARG/Imports/Import value index (2000 = 100)", + "World/Europe/AUT/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/AZE/Imports/Import value index (2000 = 100)", + "World/Asia/BGD/Imports/Import value index (2000 = 100)", + "World/Latam/BRA/Imports/Import value index (2000 = 100)", + "World/Latam/CHL/Imports/Import value index (2000 = 100)", + "World/Pair/CHN/Imports/Import value index (2000 = 100)", + "World/Latam/COL/Imports/Import value index (2000 = 100)", + "World/Latam/CRI/Imports/Import value index (2000 = 100)", + "World/Europe/DEU/Imports/Import value index (2000 = 100)", + "World/North Africa/DZA/Imports/Import value index (2000 = 100)", + "World/North Africa/EGY/Imports/Import value index (2000 = 100)", + "World/Europe/ESP/Imports/Import value index (2000 = 100)", + "World/Europe/FRA/Imports/Import value index (2000 = 100)", + "World/Europe/GBR/Imports/Import value index (2000 = 100)", + "World/Europe/GRC/Imports/Import value index (2000 = 100)", + "World/Europe/HRV/Imports/Import value index (2000 = 100)", + "World/Asia/IDN/Imports/Import value index (2000 = 100)", + "World/Asia/IND/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/IRQ/Imports/Import value index (2000 = 100)", + "World/North Africa/ISR/Imports/Import value index (2000 = 100)", + "World/Asia/KOR/Imports/Import value index (2000 = 100)", + "World/North Africa/MAR/Imports/Import value index (2000 = 100)", + "World/Latam/MEX/Imports/Import value index (2000 = 100)", + "World/South Africa/MOZ/Imports/Import value index (2000 = 100)", + "World/South Africa/NGA/Imports/Import value index (2000 = 100)", + "World/Europe/NLD/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/OMN/Imports/Import value index (2000 = 100)", + "World/Latam/PAN/Imports/Import value index (2000 = 100)", + "World/Latam/PER/Imports/Import value index (2000 = 100)", + "World/Asia/PHL/Imports/Import value index (2000 = 100)", + "World/Europe/POL/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/QAT/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/SAU/Imports/Import value index (2000 = 100)", + "World/South Africa/SEN/Imports/Import value index (2000 = 100)", + "World/Europe/SWE/Imports/Import value index (2000 = 100)", + "World/Asia/THA/Imports/Import value index (2000 = 100)", + "World/North Africa/TUR/Imports/Import value index (2000 = 100)", + "World/Pair/USA/Imports/Import value index (2000 = 100)", + "World/Asia/VNM/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/YEM/Imports/Import value index (2000 = 100)", + "World/South Africa/ZAF/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/ARE/Imports/Import volume index (2000 = 100)", + "World/Latam/ARG/Imports/Import volume index (2000 = 100)", + "World/Europe/AUT/Imports/Import volume index (2000 = 100)", + "World/Persian Gulf/AZE/Imports/Import volume index (2000 = 100)", + "World/Asia/BGD/Imports/Import volume index (2000 = 100)", + "World/Latam/BRA/Imports/Import volume index (2000 = 100)", + "World/Latam/CHL/Imports/Import volume index (2000 = 100)", + "World/Pair/CHN/Imports/Import volume index (2000 = 100)", + "World/Latam/COL/Imports/Import volume index (2000 = 100)", + "World/Latam/CRI/Imports/Import volume index (2000 = 100)", + "World/Europe/DEU/Imports/Import volume index (2000 = 100)", + "World/North Africa/DZA/Imports/Import volume index (2000 = 100)", + "World/North Africa/EGY/Imports/Import volume index (2000 = 100)", + "World/Europe/GBR/Imports/Import volume index (2000 = 100)", + "World/Asia/IDN/Imports/Import volume index (2000 = 100)", + "World/Asia/IND/Imports/Import volume index (2000 = 100)", + "World/North Africa/ISR/Imports/Import volume index (2000 = 100)", + "World/Asia/KOR/Imports/Import volume index (2000 = 100)", + "World/North Africa/MAR/Imports/Import volume index (2000 = 100)", + "World/Latam/MEX/Imports/Import volume index (2000 = 100)", + "World/South Africa/MOZ/Imports/Import volume index (2000 = 100)", + "World/South Africa/NGA/Imports/Import volume index (2000 = 100)", + "World/Europe/NLD/Imports/Import volume index (2000 = 100)", + "World/Persian Gulf/OMN/Imports/Import volume index (2000 = 100)", + "World/Latam/PAN/Imports/Import volume index (2000 = 100)", + "World/Latam/PER/Imports/Import volume index (2000 = 100)", + "World/Asia/PHL/Imports/Import volume index (2000 = 100)", + "World/Europe/POL/Imports/Import volume index (2000 = 100)", + "World/Persian Gulf/QAT/Imports/Import volume index (2000 = 100)", + "World/Persian Gulf/SAU/Imports/Import volume index (2000 = 100)", + "World/South Africa/SEN/Imports/Import volume index (2000 = 100)", + "World/Asia/THA/Imports/Import volume index (2000 = 100)", + "World/North Africa/TUR/Imports/Import volume index (2000 = 100)", + "World/Pair/USA/Imports/Import volume index (2000 = 100)", + "World/Latam/VEN/Imports/Import volume index (2000 = 100)", + "World/Asia/VNM/Imports/Import volume index (2000 = 100)", + "World/Persian Gulf/YEM/Imports/Import volume index (2000 = 100)", + "World/South Africa/ZAF/Imports/Import volume index (2000 = 100)", + "World/Latam/ARG/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/AUT/Imports/Imports of goods and services (BoP, current US$)", + "World/Persian Gulf/AZE/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/BGD/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/BRA/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/CHL/Imports/Imports of goods and services (BoP, current US$)", + "World/Pair/CHN/Imports/Imports of goods and services (BoP, current US$)", + "World/South Africa/CMR/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/COL/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/CRI/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/DEU/Imports/Imports of goods and services (BoP, current US$)", + "World/North Africa/DZA/Imports/Imports of goods and services (BoP, current US$)", + "World/North Africa/EGY/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/ESP/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/FRA/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/GBR/Imports/Imports of goods and services (BoP, current US$)", + "World/South Africa/GHA/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/GRC/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/HRV/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/IDN/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/IND/Imports/Imports of goods and services (BoP, current US$)", + "World/North Africa/ISR/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/KOR/Imports/Imports of goods and services (BoP, current US$)", + "World/North Africa/MAR/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/MEX/Imports/Imports of goods and services (BoP, current US$)", + "World/South Africa/MOZ/Imports/Imports of goods and services (BoP, current US$)", + "World/South Africa/NGA/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/NLD/Imports/Imports of goods and services (BoP, current US$)", + "World/Persian Gulf/OMN/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/PAN/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/PER/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/PHL/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/POL/Imports/Imports of goods and services (BoP, current US$)", + "World/Persian Gulf/SAU/Imports/Imports of goods and services (BoP, current US$)", + "World/South Africa/SEN/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/SWE/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/THA/Imports/Imports of goods and services (BoP, current US$)", + "World/North Africa/TUR/Imports/Imports of goods and services (BoP, current US$)", + "World/Pair/USA/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/VNM/Imports/Imports of goods and services (BoP, current US$)", + "World/Persian Gulf/YEM/Imports/Imports of goods and services (BoP, current US$)", + "World/South Africa/ZAF/Imports/Imports of goods and services (BoP, current US$)", + "World/Persian Gulf/ARE/Imports/Imports of goods and services (current US$)", + "World/Latam/ARG/Imports/Imports of goods and services (current US$)", + "World/Europe/AUT/Imports/Imports of goods and services (current US$)", + "World/Persian Gulf/AZE/Imports/Imports of goods and services (current US$)", + "World/Asia/BGD/Imports/Imports of goods and services (current US$)", + "World/Latam/BRA/Imports/Imports of goods and services (current US$)", + "World/Latam/CHL/Imports/Imports of goods and services (current US$)", + "World/Pair/CHN/Imports/Imports of goods and services (current US$)", + "World/Latam/COL/Imports/Imports of goods and services (current US$)", + "World/Latam/CRI/Imports/Imports of goods and services (current US$)", + "World/Europe/DEU/Imports/Imports of goods and services (current US$)", + "World/North Africa/DZA/Imports/Imports of goods and services (current US$)", + "World/North Africa/EGY/Imports/Imports of goods and services (current US$)", + "World/Europe/ESP/Imports/Imports of goods and services (current US$)", + "World/Europe/FRA/Imports/Imports of goods and services (current US$)", + "World/Europe/GBR/Imports/Imports of goods and services (current US$)", + "World/South Africa/GHA/Imports/Imports of goods and services (current US$)", + "World/Europe/GRC/Imports/Imports of goods and services (current US$)", + "World/Europe/HRV/Imports/Imports of goods and services (current US$)", + "World/Asia/IDN/Imports/Imports of goods and services (current US$)", + "World/Asia/IND/Imports/Imports of goods and services (current US$)", + "World/Persian Gulf/IRQ/Imports/Imports of goods and services (current US$)", + "World/North Africa/ISR/Imports/Imports of goods and services (current US$)", + "World/Asia/KOR/Imports/Imports of goods and services (current US$)", + "World/North Africa/MAR/Imports/Imports of goods and services (current US$)", + "World/Latam/MEX/Imports/Imports of goods and services (current US$)", + "World/South Africa/MOZ/Imports/Imports of goods and services (current US$)", + "World/South Africa/NGA/Imports/Imports of goods and services (current US$)", + "World/Europe/NLD/Imports/Imports of goods and services (current US$)", + "World/Persian Gulf/OMN/Imports/Imports of goods and services (current US$)", + "World/Latam/PAN/Imports/Imports of goods and services (current US$)", + "World/Latam/PER/Imports/Imports of goods and services (current US$)", + "World/Asia/PHL/Imports/Imports of goods and services (current US$)", + "World/Europe/POL/Imports/Imports of goods and services (current US$)", + "World/Persian Gulf/QAT/Imports/Imports of goods and services (current US$)", + "World/Persian Gulf/SAU/Imports/Imports of goods and services (current US$)", + "World/South Africa/SEN/Imports/Imports of goods and services (current US$)", + "World/Europe/SWE/Imports/Imports of goods and services (current US$)", + "World/Asia/THA/Imports/Imports of goods and services (current US$)", + "World/North Africa/TUR/Imports/Imports of goods and services (current US$)", + "World/Pair/USA/Imports/Imports of goods and services (current US$)", + "World/Latam/VEN/Imports/Imports of goods and services (current US$)", + "World/Asia/VNM/Imports/Imports of goods and services (current US$)", + "World/South Africa/ZAF/Imports/Imports of goods and services (current US$)", + "World/Persian Gulf/ARE/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Europe/AUT/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/AZE/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Latam/BRA/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Pair/CHN/Health/Incidence of tuberculosis (per 100,000 people)", + "World/South Africa/CMR/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Latam/CRI/Health/Incidence of tuberculosis (per 100,000 people)", + "World/North Africa/EGY/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Europe/ESP/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Europe/GBR/Health/Incidence of tuberculosis (per 100,000 people)", + "World/South Africa/GHA/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Europe/HRV/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Asia/IDN/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Asia/IND/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/IRQ/Health/Incidence of tuberculosis (per 100,000 people)", + "World/North Africa/ISR/Health/Incidence of tuberculosis (per 100,000 people)", + "World/South Africa/LBR/Health/Incidence of tuberculosis (per 100,000 people)", + "World/South Africa/MOZ/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/OMN/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Latam/PER/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Europe/POL/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/QAT/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/SAU/Health/Incidence of tuberculosis (per 100,000 people)", + "World/South Africa/SEN/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Asia/THA/Health/Incidence of tuberculosis (per 100,000 people)", + "World/North Africa/TUR/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Pair/USA/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Asia/VNM/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/YEM/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/ARE/Economy/Industry (including construction), value added (current US$)", + "World/Latam/ARG/Economy/Industry (including construction), value added (current US$)", + "World/Europe/AUT/Economy/Industry (including construction), value added (current US$)", + "World/Persian Gulf/AZE/Economy/Industry (including construction), value added (current US$)", + "World/Asia/BGD/Economy/Industry (including construction), value added (current US$)", + "World/Latam/BRA/Economy/Industry (including construction), value added (current US$)", + "World/Latam/CHL/Economy/Industry (including construction), value added (current US$)", + "World/Pair/CHN/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/CMR/Economy/Industry (including construction), value added (current US$)", + "World/Latam/COL/Economy/Industry (including construction), value added (current US$)", + "World/Latam/CRI/Economy/Industry (including construction), value added (current US$)", + "World/Europe/DEU/Economy/Industry (including construction), value added (current US$)", + "World/North Africa/DZA/Economy/Industry (including construction), value added (current US$)", + "World/North Africa/EGY/Economy/Industry (including construction), value added (current US$)", + "World/Europe/ESP/Economy/Industry (including construction), value added (current US$)", + "World/Europe/FRA/Economy/Industry (including construction), value added (current US$)", + "World/Europe/GBR/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/GHA/Economy/Industry (including construction), value added (current US$)", + "World/Europe/GRC/Economy/Industry (including construction), value added (current US$)", + "World/Europe/HRV/Economy/Industry (including construction), value added (current US$)", + "World/Asia/IDN/Economy/Industry (including construction), value added (current US$)", + "World/Asia/IND/Economy/Industry (including construction), value added (current US$)", + "World/Persian Gulf/IRQ/Economy/Industry (including construction), value added (current US$)", + "World/North Africa/ISR/Economy/Industry (including construction), value added (current US$)", + "World/Asia/KOR/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/LBR/Economy/Industry (including construction), value added (current US$)", + "World/North Africa/MAR/Economy/Industry (including construction), value added (current US$)", + "World/Latam/MEX/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/MOZ/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/NGA/Economy/Industry (including construction), value added (current US$)", + "World/Europe/NLD/Economy/Industry (including construction), value added (current US$)", + "World/Persian Gulf/OMN/Economy/Industry (including construction), value added (current US$)", + "World/Latam/PAN/Economy/Industry (including construction), value added (current US$)", + "World/Latam/PER/Economy/Industry (including construction), value added (current US$)", + "World/Asia/PHL/Economy/Industry (including construction), value added (current US$)", + "World/Europe/POL/Economy/Industry (including construction), value added (current US$)", + "World/Persian Gulf/SAU/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/SEN/Economy/Industry (including construction), value added (current US$)", + "World/Europe/SWE/Economy/Industry (including construction), value added (current US$)", + "World/Asia/THA/Economy/Industry (including construction), value added (current US$)", + "World/North Africa/TUR/Economy/Industry (including construction), value added (current US$)", + "World/Pair/USA/Economy/Industry (including construction), value added (current US$)", + "World/Latam/VEN/Economy/Industry (including construction), value added (current US$)", + "World/Asia/VNM/Economy/Industry (including construction), value added (current US$)", + "World/Persian Gulf/YEM/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/ZAF/Economy/Industry (including construction), value added (current US$)", + "World/Latam/BRA/Mortality/Intentional homicides (per 100,000 people)", + "World/Pair/CHN/Mortality/Intentional homicides (per 100,000 people)", + "World/Latam/COL/Mortality/Intentional homicides (per 100,000 people)", + "World/Latam/CRI/Mortality/Intentional homicides (per 100,000 people)", + "World/North Africa/EGY/Mortality/Intentional homicides (per 100,000 people)", + "World/Europe/ESP/Mortality/Intentional homicides (per 100,000 people)", + "World/Europe/GBR/Mortality/Intentional homicides (per 100,000 people)", + "World/Asia/IDN/Mortality/Intentional homicides (per 100,000 people)", + "World/Asia/IND/Mortality/Intentional homicides (per 100,000 people)", + "World/Persian Gulf/IRQ/Mortality/Intentional homicides (per 100,000 people)", + "World/North Africa/ISR/Mortality/Intentional homicides (per 100,000 people)", + "World/South Africa/MOZ/Mortality/Intentional homicides (per 100,000 people)", + "World/Europe/NLD/Mortality/Intentional homicides (per 100,000 people)", + "World/Latam/PAN/Mortality/Intentional homicides (per 100,000 people)", + "World/Latam/PER/Mortality/Intentional homicides (per 100,000 people)", + "World/Europe/POL/Mortality/Intentional homicides (per 100,000 people)", + "World/Asia/THA/Mortality/Intentional homicides (per 100,000 people)", + "World/Asia/VNM/Mortality/Intentional homicides (per 100,000 people)", + "World/Persian Gulf/YEM/Mortality/Intentional homicides (per 100,000 people)", + "World/South Africa/ZAF/Mortality/Intentional homicides (per 100,000 people)", + "World/Persian Gulf/ARE/Migration/International migrant stock (% of population)", + "World/Europe/AUT/Migration/International migrant stock (% of population)", + "World/Persian Gulf/AZE/Migration/International migrant stock (% of population)", + "World/Latam/CHL/Migration/International migrant stock (% of population)", + "World/Pair/CHN/Migration/International migrant stock (% of population)", + "World/Europe/DEU/Migration/International migrant stock (% of population)", + "World/North Africa/DZA/Migration/International migrant stock (% of population)", + "World/Europe/ESP/Migration/International migrant stock (% of population)", + "World/Europe/FRA/Migration/International migrant stock (% of population)", + "World/Europe/GBR/Migration/International migrant stock (% of population)", + "World/Europe/GRC/Migration/International migrant stock (% of population)", + "World/Europe/HRV/Migration/International migrant stock (% of population)", + "World/Asia/IND/Migration/International migrant stock (% of population)", + "World/North Africa/ISR/Migration/International migrant stock (% of population)", + "World/Asia/KOR/Migration/International migrant stock (% of population)", + "World/North Africa/MAR/Migration/International migrant stock (% of population)", + "World/Latam/MEX/Migration/International migrant stock (% of population)", + "World/South Africa/MOZ/Migration/International migrant stock (% of population)", + "World/South Africa/NGA/Migration/International migrant stock (% of population)", + "World/Europe/NLD/Migration/International migrant stock (% of population)", + "World/Latam/PAN/Migration/International migrant stock (% of population)", + "World/Latam/PER/Migration/International migrant stock (% of population)", + "World/Europe/POL/Migration/International migrant stock (% of population)", + "World/Persian Gulf/SAU/Migration/International migrant stock (% of population)", + "World/South Africa/SEN/Migration/International migrant stock (% of population)", + "World/Europe/SWE/Migration/International migrant stock (% of population)", + "World/Asia/THA/Migration/International migrant stock (% of population)", + "World/North Africa/TUR/Migration/International migrant stock (% of population)", + "World/Pair/USA/Migration/International migrant stock (% of population)", + "World/Asia/VNM/Migration/International migrant stock (% of population)", + "World/Persian Gulf/YEM/Migration/International migrant stock (% of population)", + "World/Persian Gulf/ARE/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Europe/AUT/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Persian Gulf/AZE/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/BRA/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/CHL/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Pair/CHN/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/COL/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/CRI/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Europe/DEU/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/North Africa/DZA/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/North Africa/EGY/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/South Africa/GHA/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Europe/GRC/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Asia/IDN/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Asia/IND/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Persian Gulf/IRQ/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/North Africa/ISR/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Asia/KOR/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/South Africa/LBR/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/MEX/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/South Africa/MOZ/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/South Africa/NGA/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Europe/NLD/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Persian Gulf/OMN/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/PAN/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/PER/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Asia/PHL/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Europe/POL/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Persian Gulf/QAT/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Europe/SWE/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/North Africa/TUR/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Pair/USA/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/VEN/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Asia/VNM/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Persian Gulf/YEM/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/South Africa/ZAF/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Persian Gulf/ARE/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/ARG/Mortality/Lifetime risk of maternal death (%)", + "World/Persian Gulf/AZE/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/BGD/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/CHL/Mortality/Lifetime risk of maternal death (%)", + "World/Pair/CHN/Mortality/Lifetime risk of maternal death (%)", + "World/South Africa/CMR/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/COL/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/CRI/Mortality/Lifetime risk of maternal death (%)", + "World/North Africa/EGY/Mortality/Lifetime risk of maternal death (%)", + "World/Europe/ESP/Mortality/Lifetime risk of maternal death (%)", + "World/Europe/GBR/Mortality/Lifetime risk of maternal death (%)", + "World/South Africa/GHA/Mortality/Lifetime risk of maternal death (%)", + "World/Europe/GRC/Mortality/Lifetime risk of maternal death (%)", + "World/Europe/HRV/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/IDN/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/IND/Mortality/Lifetime risk of maternal death (%)", + "World/North Africa/ISR/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/KOR/Mortality/Lifetime risk of maternal death (%)", + "World/South Africa/LBR/Mortality/Lifetime risk of maternal death (%)", + "World/North Africa/MAR/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/MEX/Mortality/Lifetime risk of maternal death (%)", + "World/South Africa/MOZ/Mortality/Lifetime risk of maternal death (%)", + "World/South Africa/NGA/Mortality/Lifetime risk of maternal death (%)", + "World/Europe/NLD/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/PAN/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/PER/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/PHL/Mortality/Lifetime risk of maternal death (%)", + "World/Europe/POL/Mortality/Lifetime risk of maternal death (%)", + "World/Persian Gulf/QAT/Mortality/Lifetime risk of maternal death (%)", + "World/Persian Gulf/SAU/Mortality/Lifetime risk of maternal death (%)", + "World/South Africa/SEN/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/THA/Mortality/Lifetime risk of maternal death (%)", + "World/North Africa/TUR/Mortality/Lifetime risk of maternal death (%)", + "World/Pair/USA/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/VNM/Mortality/Lifetime risk of maternal death (%)", + "World/Persian Gulf/YEM/Mortality/Lifetime risk of maternal death (%)", + "World/Persian Gulf/ARE/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/ARG/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Persian Gulf/AZE/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/BGD/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/CHL/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Pair/CHN/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/South Africa/CMR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/COL/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/CRI/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/North Africa/EGY/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Europe/ESP/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Europe/GBR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/South Africa/GHA/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Europe/GRC/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Europe/HRV/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/IDN/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/IND/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/North Africa/ISR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/KOR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/South Africa/LBR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/North Africa/MAR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/MEX/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/South Africa/MOZ/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/South Africa/NGA/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Europe/NLD/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/PAN/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/PER/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/PHL/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Europe/POL/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Persian Gulf/QAT/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Persian Gulf/SAU/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/South Africa/SEN/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/THA/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/North Africa/TUR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Pair/USA/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/VEN/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/VNM/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Persian Gulf/YEM/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Persian Gulf/ARE/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/ARG/Industry/Livestock production index (2014-2016 = 100)", + "World/Europe/AUT/Industry/Livestock production index (2014-2016 = 100)", + "World/Persian Gulf/AZE/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/BGD/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/BRA/Industry/Livestock production index (2014-2016 = 100)", + "World/Pair/CHN/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/COL/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/CRI/Industry/Livestock production index (2014-2016 = 100)", + "World/North Africa/DZA/Industry/Livestock production index (2014-2016 = 100)", + "World/North Africa/EGY/Industry/Livestock production index (2014-2016 = 100)", + "World/Europe/GBR/Industry/Livestock production index (2014-2016 = 100)", + "World/South Africa/GHA/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/IDN/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/IND/Industry/Livestock production index (2014-2016 = 100)", + "World/North Africa/ISR/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/KOR/Industry/Livestock production index (2014-2016 = 100)", + "World/South Africa/LBR/Industry/Livestock production index (2014-2016 = 100)", + "World/North Africa/MAR/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/MEX/Industry/Livestock production index (2014-2016 = 100)", + "World/South Africa/MOZ/Industry/Livestock production index (2014-2016 = 100)", + "World/South Africa/NGA/Industry/Livestock production index (2014-2016 = 100)", + "World/Europe/NLD/Industry/Livestock production index (2014-2016 = 100)", + "World/Persian Gulf/OMN/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/PAN/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/PER/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/PHL/Industry/Livestock production index (2014-2016 = 100)", + "World/Europe/POL/Industry/Livestock production index (2014-2016 = 100)", + "World/Persian Gulf/QAT/Industry/Livestock production index (2014-2016 = 100)", + "World/Persian Gulf/SAU/Industry/Livestock production index (2014-2016 = 100)", + "World/South Africa/SEN/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/THA/Industry/Livestock production index (2014-2016 = 100)", + "World/North Africa/TUR/Industry/Livestock production index (2014-2016 = 100)", + "World/Pair/USA/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/VEN/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/VNM/Industry/Livestock production index (2014-2016 = 100)", + "World/Persian Gulf/YEM/Industry/Livestock production index (2014-2016 = 100)", + "World/South Africa/ZAF/Industry/Livestock production index (2014-2016 = 100)", + "World/Persian Gulf/ARE/Health/Low-birthweight babies (% of births)", + "World/Asia/BGD/Health/Low-birthweight babies (% of births)", + "World/Latam/BRA/Health/Low-birthweight babies (% of births)", + "World/Latam/CHL/Health/Low-birthweight babies (% of births)", + "World/Pair/CHN/Health/Low-birthweight babies (% of births)", + "World/South Africa/CMR/Health/Low-birthweight babies (% of births)", + "World/Latam/COL/Health/Low-birthweight babies (% of births)", + "World/Latam/CRI/Health/Low-birthweight babies (% of births)", + "World/North Africa/DZA/Health/Low-birthweight babies (% of births)", + "World/Europe/ESP/Health/Low-birthweight babies (% of births)", + "World/Europe/FRA/Health/Low-birthweight babies (% of births)", + "World/Europe/GBR/Health/Low-birthweight babies (% of births)", + "World/South Africa/GHA/Health/Low-birthweight babies (% of births)", + "World/Europe/HRV/Health/Low-birthweight babies (% of births)", + "World/Asia/IDN/Health/Low-birthweight babies (% of births)", + "World/North Africa/ISR/Health/Low-birthweight babies (% of births)", + "World/Asia/KOR/Health/Low-birthweight babies (% of births)", + "World/North Africa/MAR/Health/Low-birthweight babies (% of births)", + "World/Latam/MEX/Health/Low-birthweight babies (% of births)", + "World/South Africa/MOZ/Health/Low-birthweight babies (% of births)", + "World/Europe/NLD/Health/Low-birthweight babies (% of births)", + "World/Persian Gulf/OMN/Health/Low-birthweight babies (% of births)", + "World/Latam/PAN/Health/Low-birthweight babies (% of births)", + "World/Latam/PER/Health/Low-birthweight babies (% of births)", + "World/Asia/PHL/Health/Low-birthweight babies (% of births)", + "World/Persian Gulf/QAT/Health/Low-birthweight babies (% of births)", + "World/South Africa/SEN/Health/Low-birthweight babies (% of births)", + "World/Asia/THA/Health/Low-birthweight babies (% of births)", + "World/North Africa/TUR/Health/Low-birthweight babies (% of births)", + "World/Asia/VNM/Health/Low-birthweight babies (% of births)", + "World/South Africa/ZAF/Health/Low-birthweight babies (% of births)", + "World/Persian Gulf/ARE/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Asia/BGD/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Latam/CHL/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Pair/CHN/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Latam/COL/Economy/Market capitalization of listed domestic companies (current US$)", + "World/South Africa/GHA/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Europe/HRV/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Asia/IDN/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Asia/IND/Economy/Market capitalization of listed domestic companies (current US$)", + "World/North Africa/ISR/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Asia/KOR/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Latam/MEX/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Persian Gulf/OMN/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Latam/PAN/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Europe/POL/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Persian Gulf/QAT/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Persian Gulf/SAU/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Asia/THA/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Pair/USA/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Asia/VNM/Economy/Market capitalization of listed domestic companies (current US$)", + "World/South Africa/ZAF/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Persian Gulf/ARE/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Latam/ARG/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Persian Gulf/AZE/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/BGD/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Latam/CHL/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Pair/CHN/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/South Africa/CMR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Latam/CRI/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/North Africa/DZA/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/North Africa/EGY/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Europe/ESP/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Europe/GBR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/South Africa/GHA/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Europe/HRV/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/IDN/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/IND/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/North Africa/ISR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/KOR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/South Africa/LBR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/North Africa/MAR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Latam/MEX/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/South Africa/MOZ/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/South Africa/NGA/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Europe/NLD/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Latam/PAN/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Latam/PER/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/PHL/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Europe/POL/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Persian Gulf/QAT/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Persian Gulf/SAU/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/South Africa/SEN/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/THA/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/North Africa/TUR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Pair/USA/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/VNM/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Persian Gulf/YEM/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Persian Gulf/ARE/Exports/Merchandise exports (current US$)", + "World/Europe/AUT/Exports/Merchandise exports (current US$)", + "World/Persian Gulf/AZE/Exports/Merchandise exports (current US$)", + "World/Asia/BGD/Exports/Merchandise exports (current US$)", + "World/Latam/BRA/Exports/Merchandise exports (current US$)", + "World/Latam/CHL/Exports/Merchandise exports (current US$)", + "World/Pair/CHN/Exports/Merchandise exports (current US$)", + "World/Latam/COL/Exports/Merchandise exports (current US$)", + "World/Latam/CRI/Exports/Merchandise exports (current US$)", + "World/Europe/DEU/Exports/Merchandise exports (current US$)", + "World/North Africa/EGY/Exports/Merchandise exports (current US$)", + "World/Europe/ESP/Exports/Merchandise exports (current US$)", + "World/Europe/FRA/Exports/Merchandise exports (current US$)", + "World/Europe/GBR/Exports/Merchandise exports (current US$)", + "World/South Africa/GHA/Exports/Merchandise exports (current US$)", + "World/Asia/IDN/Exports/Merchandise exports (current US$)", + "World/Asia/IND/Exports/Merchandise exports (current US$)", + "World/Persian Gulf/IRQ/Exports/Merchandise exports (current US$)", + "World/North Africa/ISR/Exports/Merchandise exports (current US$)", + "World/Asia/KOR/Exports/Merchandise exports (current US$)", + "World/North Africa/MAR/Exports/Merchandise exports (current US$)", + "World/Latam/MEX/Exports/Merchandise exports (current US$)", + "World/South Africa/MOZ/Exports/Merchandise exports (current US$)", + "World/Europe/NLD/Exports/Merchandise exports (current US$)", + "World/Persian Gulf/OMN/Exports/Merchandise exports (current US$)", + "World/Latam/PAN/Exports/Merchandise exports (current US$)", + "World/Latam/PER/Exports/Merchandise exports (current US$)", + "World/Asia/PHL/Exports/Merchandise exports (current US$)", + "World/Europe/POL/Exports/Merchandise exports (current US$)", + "World/Persian Gulf/QAT/Exports/Merchandise exports (current US$)", + "World/Persian Gulf/SAU/Exports/Merchandise exports (current US$)", + "World/South Africa/SEN/Exports/Merchandise exports (current US$)", + "World/Europe/SWE/Exports/Merchandise exports (current US$)", + "World/Asia/THA/Exports/Merchandise exports (current US$)", + "World/North Africa/TUR/Exports/Merchandise exports (current US$)", + "World/Pair/USA/Exports/Merchandise exports (current US$)", + "World/Latam/VEN/Exports/Merchandise exports (current US$)", + "World/Asia/VNM/Exports/Merchandise exports (current US$)", + "World/South Africa/ZAF/Exports/Merchandise exports (current US$)", + "World/Persian Gulf/ARE/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/AUT/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Persian Gulf/AZE/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/BGD/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/BRA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/CHL/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Pair/CHN/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/COL/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/CRI/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/DEU/Exports/Merchandise exports by the reporting economy (current US$)", + "World/North Africa/DZA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/North Africa/EGY/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/ESP/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/FRA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/GBR/Exports/Merchandise exports by the reporting economy (current US$)", + "World/South Africa/GHA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/IDN/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/IND/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Persian Gulf/IRQ/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/KOR/Exports/Merchandise exports by the reporting economy (current US$)", + "World/North Africa/MAR/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/MEX/Exports/Merchandise exports by the reporting economy (current US$)", + "World/South Africa/MOZ/Exports/Merchandise exports by the reporting economy (current US$)", + "World/South Africa/NGA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/NLD/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Persian Gulf/OMN/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/PER/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/PHL/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/POL/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Persian Gulf/QAT/Exports/Merchandise exports by the reporting economy (current US$)", + "World/South Africa/SEN/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/SWE/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/THA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/North Africa/TUR/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Pair/USA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/VEN/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/VNM/Exports/Merchandise exports by the reporting economy (current US$)", + "World/South Africa/ZAF/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Persian Gulf/ARE/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Persian Gulf/AZE/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Asia/BGD/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Latam/CHL/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Pair/CHN/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Latam/COL/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/DEU/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/ESP/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/GBR/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/GRC/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Asia/IDN/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Persian Gulf/IRQ/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/North Africa/ISR/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Asia/KOR/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/South Africa/LBR/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Latam/MEX/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/South Africa/MOZ/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/South Africa/NGA/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/NLD/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Latam/PAN/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Latam/PER/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Asia/PHL/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/POL/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Persian Gulf/QAT/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/SWE/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Asia/THA/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Pair/USA/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Latam/VEN/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/South Africa/ZAF/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Persian Gulf/ARE/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Europe/AUT/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Latam/BRA/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Latam/CHL/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Pair/CHN/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Latam/COL/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Europe/DEU/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Europe/ESP/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Europe/FRA/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Europe/GRC/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Asia/IDN/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Asia/IND/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Persian Gulf/IRQ/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/North Africa/ISR/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Asia/KOR/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Latam/MEX/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/South Africa/MOZ/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/South Africa/NGA/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Europe/NLD/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Persian Gulf/OMN/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Latam/PAN/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Latam/PER/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Asia/PHL/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Persian Gulf/QAT/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Persian Gulf/SAU/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Pair/USA/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/South Africa/ZAF/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Persian Gulf/ARE/Imports/Merchandise imports (current US$)", + "World/Latam/ARG/Imports/Merchandise imports (current US$)", + "World/Europe/AUT/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/AZE/Imports/Merchandise imports (current US$)", + "World/Asia/BGD/Imports/Merchandise imports (current US$)", + "World/Latam/BRA/Imports/Merchandise imports (current US$)", + "World/Latam/CHL/Imports/Merchandise imports (current US$)", + "World/Pair/CHN/Imports/Merchandise imports (current US$)", + "World/Latam/COL/Imports/Merchandise imports (current US$)", + "World/Latam/CRI/Imports/Merchandise imports (current US$)", + "World/Europe/DEU/Imports/Merchandise imports (current US$)", + "World/North Africa/DZA/Imports/Merchandise imports (current US$)", + "World/North Africa/EGY/Imports/Merchandise imports (current US$)", + "World/Europe/ESP/Imports/Merchandise imports (current US$)", + "World/Europe/FRA/Imports/Merchandise imports (current US$)", + "World/Europe/GBR/Imports/Merchandise imports (current US$)", + "World/Europe/GRC/Imports/Merchandise imports (current US$)", + "World/Europe/HRV/Imports/Merchandise imports (current US$)", + "World/Asia/IDN/Imports/Merchandise imports (current US$)", + "World/Asia/IND/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/IRQ/Imports/Merchandise imports (current US$)", + "World/North Africa/ISR/Imports/Merchandise imports (current US$)", + "World/Asia/KOR/Imports/Merchandise imports (current US$)", + "World/North Africa/MAR/Imports/Merchandise imports (current US$)", + "World/Latam/MEX/Imports/Merchandise imports (current US$)", + "World/South Africa/MOZ/Imports/Merchandise imports (current US$)", + "World/South Africa/NGA/Imports/Merchandise imports (current US$)", + "World/Europe/NLD/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/OMN/Imports/Merchandise imports (current US$)", + "World/Latam/PAN/Imports/Merchandise imports (current US$)", + "World/Latam/PER/Imports/Merchandise imports (current US$)", + "World/Asia/PHL/Imports/Merchandise imports (current US$)", + "World/Europe/POL/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/QAT/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/SAU/Imports/Merchandise imports (current US$)", + "World/South Africa/SEN/Imports/Merchandise imports (current US$)", + "World/Europe/SWE/Imports/Merchandise imports (current US$)", + "World/Asia/THA/Imports/Merchandise imports (current US$)", + "World/North Africa/TUR/Imports/Merchandise imports (current US$)", + "World/Pair/USA/Imports/Merchandise imports (current US$)", + "World/Asia/VNM/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/YEM/Imports/Merchandise imports (current US$)", + "World/South Africa/ZAF/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/ARE/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/ARG/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/AUT/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Persian Gulf/AZE/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/BGD/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/BRA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/CHL/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Pair/CHN/Imports/Merchandise imports by the reporting economy (current US$)", + "World/South Africa/CMR/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/COL/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/CRI/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/DEU/Imports/Merchandise imports by the reporting economy (current US$)", + "World/North Africa/DZA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/North Africa/EGY/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/ESP/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/FRA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/GBR/Imports/Merchandise imports by the reporting economy (current US$)", + "World/South Africa/GHA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/GRC/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/HRV/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/IDN/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/IND/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Persian Gulf/IRQ/Imports/Merchandise imports by the reporting economy (current US$)", + "World/North Africa/ISR/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/KOR/Imports/Merchandise imports by the reporting economy (current US$)", + "World/North Africa/MAR/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/MEX/Imports/Merchandise imports by the reporting economy (current US$)", + "World/South Africa/MOZ/Imports/Merchandise imports by the reporting economy (current US$)", + "World/South Africa/NGA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/NLD/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Persian Gulf/OMN/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/PAN/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/PER/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/PHL/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/POL/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Persian Gulf/QAT/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Persian Gulf/SAU/Imports/Merchandise imports by the reporting economy (current US$)", + "World/South Africa/SEN/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/SWE/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/THA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/North Africa/TUR/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Pair/USA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/VNM/Imports/Merchandise imports by the reporting economy (current US$)", + "World/South Africa/ZAF/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/BGD/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Latam/BRA/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Pair/CHN/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Latam/COL/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Latam/CRI/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/North Africa/DZA/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Europe/GRC/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Asia/IDN/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Asia/KOR/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Latam/MEX/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/South Africa/NGA/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Persian Gulf/OMN/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Asia/PHL/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Persian Gulf/QAT/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Persian Gulf/SAU/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Asia/THA/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/North Africa/TUR/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Pair/USA/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Latam/VEN/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Asia/VNM/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Persian Gulf/YEM/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Europe/AUT/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Persian Gulf/AZE/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/BGD/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/BRA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/CHL/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Pair/CHN/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/South Africa/CMR/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/COL/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/CRI/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/DEU/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/North Africa/DZA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/North Africa/EGY/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/ESP/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/FRA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/GBR/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/South Africa/GHA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/GRC/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/IDN/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/IND/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/North Africa/ISR/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/KOR/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/North Africa/MAR/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/MEX/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/South Africa/MOZ/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/South Africa/NGA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/NLD/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/PAN/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/PER/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/PHL/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/POL/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Persian Gulf/QAT/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Persian Gulf/SAU/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/SWE/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/THA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/North Africa/TUR/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Pair/USA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/VEN/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/VNM/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/ARG/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/BRA/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/CHL/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/COL/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/CRI/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/North Africa/DZA/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/North Africa/EGY/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Europe/ESP/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Europe/GBR/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/North Africa/ISR/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/South Africa/LBR/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/North Africa/MAR/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/MEX/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/PAN/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/PER/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Europe/POL/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Persian Gulf/SAU/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Europe/SWE/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/North Africa/TUR/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Pair/USA/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/VEN/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/South Africa/ZAF/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Europe/AUT/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Persian Gulf/AZE/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Asia/BGD/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Pair/CHN/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/South Africa/CMR/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Latam/COL/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Latam/CRI/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/North Africa/DZA/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/North Africa/EGY/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Europe/ESP/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Europe/FRA/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Europe/GBR/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/South Africa/GHA/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Europe/GRC/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Asia/IND/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/North Africa/ISR/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Asia/KOR/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/North Africa/MAR/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Latam/MEX/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/South Africa/MOZ/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Europe/NLD/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Persian Gulf/OMN/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Latam/PER/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Europe/POL/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Persian Gulf/QAT/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Persian Gulf/SAU/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/South Africa/SEN/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/North Africa/TUR/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Pair/USA/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Persian Gulf/YEM/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Persian Gulf/ARE/Environment/Methane emissions (% change from 1990)", + "World/Europe/AUT/Environment/Methane emissions (% change from 1990)", + "World/Persian Gulf/AZE/Environment/Methane emissions (% change from 1990)", + "World/Asia/BGD/Environment/Methane emissions (% change from 1990)", + "World/Latam/CHL/Environment/Methane emissions (% change from 1990)", + "World/Pair/CHN/Environment/Methane emissions (% change from 1990)", + "World/Latam/COL/Environment/Methane emissions (% change from 1990)", + "World/Europe/DEU/Environment/Methane emissions (% change from 1990)", + "World/North Africa/DZA/Environment/Methane emissions (% change from 1990)", + "World/North Africa/EGY/Environment/Methane emissions (% change from 1990)", + "World/Europe/ESP/Environment/Methane emissions (% change from 1990)", + "World/Europe/FRA/Environment/Methane emissions (% change from 1990)", + "World/Europe/GBR/Environment/Methane emissions (% change from 1990)", + "World/South Africa/GHA/Environment/Methane emissions (% change from 1990)", + "World/Asia/IND/Environment/Methane emissions (% change from 1990)", + "World/Asia/KOR/Environment/Methane emissions (% change from 1990)", + "World/North Africa/MAR/Environment/Methane emissions (% change from 1990)", + "World/Latam/MEX/Environment/Methane emissions (% change from 1990)", + "World/Europe/NLD/Environment/Methane emissions (% change from 1990)", + "World/Persian Gulf/OMN/Environment/Methane emissions (% change from 1990)", + "World/Latam/PAN/Environment/Methane emissions (% change from 1990)", + "World/Latam/PER/Environment/Methane emissions (% change from 1990)", + "World/Asia/PHL/Environment/Methane emissions (% change from 1990)", + "World/Europe/POL/Environment/Methane emissions (% change from 1990)", + "World/Persian Gulf/QAT/Environment/Methane emissions (% change from 1990)", + "World/Persian Gulf/SAU/Environment/Methane emissions (% change from 1990)", + "World/North Africa/TUR/Environment/Methane emissions (% change from 1990)", + "World/Pair/USA/Environment/Methane emissions (% change from 1990)", + "World/Asia/VNM/Environment/Methane emissions (% change from 1990)", + "World/Persian Gulf/YEM/Environment/Methane emissions (% change from 1990)", + "World/Persian Gulf/ARE/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/ARG/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Europe/AUT/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Persian Gulf/AZE/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Asia/BGD/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/BRA/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Pair/CHN/Environment/Methane emissions (kt of CO2 equivalent)", + "World/South Africa/CMR/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/COL/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/CRI/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Europe/DEU/Environment/Methane emissions (kt of CO2 equivalent)", + "World/North Africa/DZA/Environment/Methane emissions (kt of CO2 equivalent)", + "World/North Africa/EGY/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Europe/FRA/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Europe/GBR/Environment/Methane emissions (kt of CO2 equivalent)", + "World/South Africa/GHA/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Asia/IND/Environment/Methane emissions (kt of CO2 equivalent)", + "World/North Africa/ISR/Environment/Methane emissions (kt of CO2 equivalent)", + "World/South Africa/LBR/Environment/Methane emissions (kt of CO2 equivalent)", + "World/North Africa/MAR/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/MEX/Environment/Methane emissions (kt of CO2 equivalent)", + "World/South Africa/MOZ/Environment/Methane emissions (kt of CO2 equivalent)", + "World/South Africa/NGA/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Europe/NLD/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Persian Gulf/OMN/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/PAN/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/PER/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Asia/PHL/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Europe/POL/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Persian Gulf/QAT/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Persian Gulf/SAU/Environment/Methane emissions (kt of CO2 equivalent)", + "World/South Africa/SEN/Environment/Methane emissions (kt of CO2 equivalent)", + "World/North Africa/TUR/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Pair/USA/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Asia/VNM/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Persian Gulf/YEM/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Persian Gulf/ARE/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/ARG/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/AUT/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/AZE/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/BGD/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Pair/CHN/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/CMR/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/COL/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/DEU/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/DZA/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/EGY/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/FRA/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/GBR/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/GHA/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/GRC/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/IND/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/IRQ/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/ISR/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/KOR/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/LBR/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/MAR/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/MOZ/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/NGA/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/OMN/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/PAN/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/PER/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/POL/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/QAT/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/SEN/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/SWE/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/THA/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Pair/USA/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/VNM/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/YEM/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/ARE/Military/Military expenditure (current USD)", + "World/Europe/AUT/Military/Military expenditure (current USD)", + "World/Persian Gulf/AZE/Military/Military expenditure (current USD)", + "World/Asia/BGD/Military/Military expenditure (current USD)", + "World/Latam/BRA/Military/Military expenditure (current USD)", + "World/Latam/CHL/Military/Military expenditure (current USD)", + "World/Pair/CHN/Military/Military expenditure (current USD)", + "World/South Africa/CMR/Military/Military expenditure (current USD)", + "World/Latam/COL/Military/Military expenditure (current USD)", + "World/North Africa/DZA/Military/Military expenditure (current USD)", + "World/North Africa/EGY/Military/Military expenditure (current USD)", + "World/Europe/ESP/Military/Military expenditure (current USD)", + "World/Europe/FRA/Military/Military expenditure (current USD)", + "World/South Africa/GHA/Military/Military expenditure (current USD)", + "World/Europe/GRC/Military/Military expenditure (current USD)", + "World/Asia/IDN/Military/Military expenditure (current USD)", + "World/Asia/IND/Military/Military expenditure (current USD)", + "World/North Africa/ISR/Military/Military expenditure (current USD)", + "World/Asia/KOR/Military/Military expenditure (current USD)", + "World/North Africa/MAR/Military/Military expenditure (current USD)", + "World/Latam/MEX/Military/Military expenditure (current USD)", + "World/South Africa/MOZ/Military/Military expenditure (current USD)", + "World/South Africa/NGA/Military/Military expenditure (current USD)", + "World/Europe/NLD/Military/Military expenditure (current USD)", + "World/Persian Gulf/OMN/Military/Military expenditure (current USD)", + "World/Latam/PER/Military/Military expenditure (current USD)", + "World/Asia/PHL/Military/Military expenditure (current USD)", + "World/Europe/POL/Military/Military expenditure (current USD)", + "World/Persian Gulf/SAU/Military/Military expenditure (current USD)", + "World/South Africa/SEN/Military/Military expenditure (current USD)", + "World/Asia/THA/Military/Military expenditure (current USD)", + "World/North Africa/TUR/Military/Military expenditure (current USD)", + "World/Pair/USA/Military/Military expenditure (current USD)", + "World/Asia/VNM/Military/Military expenditure (current USD)", + "World/Persian Gulf/YEM/Military/Military expenditure (current USD)", + "World/Persian Gulf/ARE/Internet/Mobile cellular subscriptions", + "World/Latam/BRA/Internet/Mobile cellular subscriptions", + "World/Latam/CHL/Internet/Mobile cellular subscriptions", + "World/Pair/CHN/Internet/Mobile cellular subscriptions", + "World/Europe/DEU/Internet/Mobile cellular subscriptions", + "World/North Africa/DZA/Internet/Mobile cellular subscriptions", + "World/North Africa/EGY/Internet/Mobile cellular subscriptions", + "World/Europe/FRA/Internet/Mobile cellular subscriptions", + "World/Europe/GBR/Internet/Mobile cellular subscriptions", + "World/Europe/HRV/Internet/Mobile cellular subscriptions", + "World/Asia/IDN/Internet/Mobile cellular subscriptions", + "World/North Africa/ISR/Internet/Mobile cellular subscriptions", + "World/Asia/KOR/Internet/Mobile cellular subscriptions", + "World/North Africa/MAR/Internet/Mobile cellular subscriptions", + "World/Latam/MEX/Internet/Mobile cellular subscriptions", + "World/Europe/NLD/Internet/Mobile cellular subscriptions", + "World/Persian Gulf/OMN/Internet/Mobile cellular subscriptions", + "World/Latam/PER/Internet/Mobile cellular subscriptions", + "World/Persian Gulf/QAT/Internet/Mobile cellular subscriptions", + "World/Persian Gulf/SAU/Internet/Mobile cellular subscriptions", + "World/Europe/SWE/Internet/Mobile cellular subscriptions", + "World/Asia/THA/Internet/Mobile cellular subscriptions", + "World/North Africa/TUR/Internet/Mobile cellular subscriptions", + "World/Pair/USA/Internet/Mobile cellular subscriptions", + "World/South Africa/ZAF/Internet/Mobile cellular subscriptions", + "World/Persian Gulf/ARE/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Latam/BRA/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Latam/CHL/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Pair/CHN/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Europe/DEU/Internet/Mobile cellular subscriptions (per 100 people)", + "World/North Africa/DZA/Internet/Mobile cellular subscriptions (per 100 people)", + "World/North Africa/EGY/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Europe/FRA/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Europe/HRV/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Asia/IDN/Internet/Mobile cellular subscriptions (per 100 people)", + "World/North Africa/ISR/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Asia/KOR/Internet/Mobile cellular subscriptions (per 100 people)", + "World/North Africa/MAR/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Latam/MEX/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Europe/NLD/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Persian Gulf/OMN/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Latam/PER/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Persian Gulf/QAT/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Persian Gulf/SAU/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Europe/SWE/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Asia/THA/Internet/Mobile cellular subscriptions (per 100 people)", + "World/North Africa/TUR/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Pair/USA/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Latam/VEN/Internet/Mobile cellular subscriptions (per 100 people)", + "World/South Africa/ZAF/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Persian Gulf/ARE/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Persian Gulf/AZE/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Asia/BGD/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/CHL/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Pair/CHN/Economy/Monetary Sector credit to private sector (% GDP)", + "World/South Africa/CMR/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/COL/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/CRI/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/DEU/Economy/Monetary Sector credit to private sector (% GDP)", + "World/North Africa/DZA/Economy/Monetary Sector credit to private sector (% GDP)", + "World/North Africa/EGY/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/FRA/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/GRC/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/HRV/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Asia/IND/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Asia/KOR/Economy/Monetary Sector credit to private sector (% GDP)", + "World/South Africa/LBR/Economy/Monetary Sector credit to private sector (% GDP)", + "World/North Africa/MAR/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/MEX/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Persian Gulf/OMN/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/PAN/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/PER/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/POL/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Persian Gulf/QAT/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Persian Gulf/SAU/Economy/Monetary Sector credit to private sector (% GDP)", + "World/South Africa/SEN/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/SWE/Economy/Monetary Sector credit to private sector (% GDP)", + "World/North Africa/TUR/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/VEN/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Asia/VNM/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/AUT/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Persian Gulf/AZE/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Asia/BGD/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Pair/CHN/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/South Africa/CMR/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/DEU/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/North Africa/DZA/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/ESP/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/GBR/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/GRC/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/HRV/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Asia/IDN/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/North Africa/ISR/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Asia/KOR/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/North Africa/MAR/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Latam/MEX/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/South Africa/MOZ/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/South Africa/NGA/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/NLD/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Persian Gulf/OMN/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Asia/PHL/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/POL/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Persian Gulf/QAT/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Persian Gulf/SAU/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/SWE/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Asia/THA/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/North Africa/TUR/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Latam/VEN/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Asia/VNM/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Persian Gulf/YEM/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Persian Gulf/ARE/Economy/Net barter terms of trade index (2000 = 100)", + "World/Europe/AUT/Economy/Net barter terms of trade index (2000 = 100)", + "World/Latam/BRA/Economy/Net barter terms of trade index (2000 = 100)", + "World/Latam/COL/Economy/Net barter terms of trade index (2000 = 100)", + "World/North Africa/DZA/Economy/Net barter terms of trade index (2000 = 100)", + "World/North Africa/EGY/Economy/Net barter terms of trade index (2000 = 100)", + "World/Europe/ESP/Economy/Net barter terms of trade index (2000 = 100)", + "World/South Africa/GHA/Economy/Net barter terms of trade index (2000 = 100)", + "World/Asia/KOR/Economy/Net barter terms of trade index (2000 = 100)", + "World/South Africa/LBR/Economy/Net barter terms of trade index (2000 = 100)", + "World/Europe/NLD/Economy/Net barter terms of trade index (2000 = 100)", + "World/Europe/SWE/Economy/Net barter terms of trade index (2000 = 100)", + "World/Asia/VNM/Economy/Net barter terms of trade index (2000 = 100)", + "World/South Africa/ZAF/Economy/Net barter terms of trade index (2000 = 100)", + "World/Asia/BGD/Economy/Net primary income (BoP, current US$)", + "World/Latam/BRA/Economy/Net primary income (BoP, current US$)", + "World/Latam/COL/Economy/Net primary income (BoP, current US$)", + "World/Latam/CRI/Economy/Net primary income (BoP, current US$)", + "World/North Africa/EGY/Economy/Net primary income (BoP, current US$)", + "World/Europe/FRA/Economy/Net primary income (BoP, current US$)", + "World/South Africa/GHA/Economy/Net primary income (BoP, current US$)", + "World/Asia/IDN/Economy/Net primary income (BoP, current US$)", + "World/Asia/IND/Economy/Net primary income (BoP, current US$)", + "World/Asia/KOR/Economy/Net primary income (BoP, current US$)", + "World/Latam/MEX/Economy/Net primary income (BoP, current US$)", + "World/Persian Gulf/OMN/Economy/Net primary income (BoP, current US$)", + "World/Latam/PAN/Economy/Net primary income (BoP, current US$)", + "World/Europe/POL/Economy/Net primary income (BoP, current US$)", + "World/Persian Gulf/QAT/Economy/Net primary income (BoP, current US$)", + "World/Asia/THA/Economy/Net primary income (BoP, current US$)", + "World/North Africa/TUR/Economy/Net primary income (BoP, current US$)", + "World/Pair/USA/Economy/Net primary income (BoP, current US$)", + "World/Latam/VEN/Economy/Net primary income (BoP, current US$)", + "World/Asia/VNM/Economy/Net primary income (BoP, current US$)", + "World/South Africa/ZAF/Economy/Net primary income (BoP, current US$)", + "World/Asia/BGD/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Latam/BRA/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Latam/COL/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Latam/CRI/Economy/Net primary income (Net income from abroad) (current US$)", + "World/North Africa/EGY/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Europe/FRA/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Asia/IND/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Asia/KOR/Economy/Net primary income (Net income from abroad) (current US$)", + "World/South Africa/LBR/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Latam/MEX/Economy/Net primary income (Net income from abroad) (current US$)", + "World/South Africa/NGA/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Persian Gulf/OMN/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Latam/PAN/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Asia/PHL/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Europe/POL/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Persian Gulf/SAU/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Asia/THA/Economy/Net primary income (Net income from abroad) (current US$)", + "World/North Africa/TUR/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Pair/USA/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Asia/VNM/Economy/Net primary income (Net income from abroad) (current US$)", + "World/South Africa/ZAF/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Asia/BGD/Economy/Net secondary income (BoP, current US$)", + "World/Latam/COL/Economy/Net secondary income (BoP, current US$)", + "World/Latam/CRI/Economy/Net secondary income (BoP, current US$)", + "World/Europe/DEU/Economy/Net secondary income (BoP, current US$)", + "World/North Africa/EGY/Economy/Net secondary income (BoP, current US$)", + "World/Europe/ESP/Economy/Net secondary income (BoP, current US$)", + "World/Europe/FRA/Economy/Net secondary income (BoP, current US$)", + "World/Europe/GBR/Economy/Net secondary income (BoP, current US$)", + "World/Asia/IND/Economy/Net secondary income (BoP, current US$)", + "World/Asia/KOR/Economy/Net secondary income (BoP, current US$)", + "World/North Africa/MAR/Economy/Net secondary income (BoP, current US$)", + "World/Latam/MEX/Economy/Net secondary income (BoP, current US$)", + "World/South Africa/NGA/Economy/Net secondary income (BoP, current US$)", + "World/Persian Gulf/OMN/Economy/Net secondary income (BoP, current US$)", + "World/Latam/PER/Economy/Net secondary income (BoP, current US$)", + "World/Asia/PHL/Economy/Net secondary income (BoP, current US$)", + "World/Europe/POL/Economy/Net secondary income (BoP, current US$)", + "World/Persian Gulf/SAU/Economy/Net secondary income (BoP, current US$)", + "World/South Africa/SEN/Economy/Net secondary income (BoP, current US$)", + "World/Europe/SWE/Economy/Net secondary income (BoP, current US$)", + "World/Asia/THA/Economy/Net secondary income (BoP, current US$)", + "World/Pair/USA/Economy/Net secondary income (BoP, current US$)", + "World/Latam/VEN/Economy/Net secondary income (BoP, current US$)", + "World/Asia/VNM/Economy/Net secondary income (BoP, current US$)", + "World/Persian Gulf/YEM/Economy/Net secondary income (BoP, current US$)", + "World/South Africa/ZAF/Economy/Net secondary income (BoP, current US$)", + "World/Persian Gulf/ARE/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/AUT/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Latam/COL/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Latam/CRI/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/North Africa/DZA/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/North Africa/EGY/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/ESP/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/FRA/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/GBR/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/South Africa/GHA/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Asia/IND/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/North Africa/ISR/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/North Africa/MAR/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Latam/MEX/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/South Africa/NGA/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Persian Gulf/OMN/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Latam/PAN/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Latam/PER/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Asia/PHL/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/POL/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Persian Gulf/QAT/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Persian Gulf/SAU/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/South Africa/SEN/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/SWE/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Asia/THA/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Pair/USA/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Asia/VNM/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Persian Gulf/YEM/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/South Africa/ZAF/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/AUT/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Persian Gulf/AZE/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Asia/BGD/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Latam/CHL/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Pair/CHN/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Latam/COL/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Latam/CRI/Environment/Nitrous oxide emissions (% change from 1990)", + "World/North Africa/DZA/Environment/Nitrous oxide emissions (% change from 1990)", + "World/North Africa/EGY/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Europe/ESP/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Europe/FRA/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Europe/GBR/Environment/Nitrous oxide emissions (% change from 1990)", + "World/South Africa/GHA/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Europe/GRC/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Asia/IND/Environment/Nitrous oxide emissions (% change from 1990)", + "World/South Africa/NGA/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Europe/NLD/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Persian Gulf/OMN/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Latam/PAN/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Latam/PER/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Persian Gulf/QAT/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Europe/SWE/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Pair/USA/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Asia/VNM/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Persian Gulf/YEM/Environment/Nitrous oxide emissions (% change from 1990)", + "World/South Africa/ZAF/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Persian Gulf/ARE/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/AZE/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/BGD/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/BRA/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Pair/CHN/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/CRI/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/DZA/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/FRA/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/GBR/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/GHA/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/GRC/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IDN/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IND/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/ISR/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/LBR/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/MAR/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/NGA/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/NLD/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/OMN/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/PER/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/PHL/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/QAT/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/SWE/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/TUR/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/VNM/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/YEM/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/ARE/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/AUT/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/BGD/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/BRA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/CHL/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Pair/CHN/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/CMR/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/DZA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/EGY/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/FRA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/GBR/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/GHA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/IDN/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/IND/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/ISR/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/KOR/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/LBR/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/MAR/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/MEX/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/MOZ/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/NGA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/NLD/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/OMN/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/PAN/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/PER/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/PHL/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/QAT/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/SAU/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/SEN/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/THA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Pair/USA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/VEN/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/VNM/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/YEM/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/ZAF/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/ARG/Mortality/Number of deaths ages 10-14 years", + "World/Europe/AUT/Mortality/Number of deaths ages 10-14 years", + "World/Persian Gulf/AZE/Mortality/Number of deaths ages 10-14 years", + "World/Asia/BGD/Mortality/Number of deaths ages 10-14 years", + "World/Latam/BRA/Mortality/Number of deaths ages 10-14 years", + "World/Latam/CHL/Mortality/Number of deaths ages 10-14 years", + "World/Pair/CHN/Mortality/Number of deaths ages 10-14 years", + "World/South Africa/CMR/Mortality/Number of deaths ages 10-14 years", + "World/Latam/COL/Mortality/Number of deaths ages 10-14 years", + "World/Latam/CRI/Mortality/Number of deaths ages 10-14 years", + "World/Europe/DEU/Mortality/Number of deaths ages 10-14 years", + "World/North Africa/DZA/Mortality/Number of deaths ages 10-14 years", + "World/Europe/ESP/Mortality/Number of deaths ages 10-14 years", + "World/Europe/FRA/Mortality/Number of deaths ages 10-14 years", + "World/Europe/GBR/Mortality/Number of deaths ages 10-14 years", + "World/Europe/GRC/Mortality/Number of deaths ages 10-14 years", + "World/Europe/HRV/Mortality/Number of deaths ages 10-14 years", + "World/Asia/IDN/Mortality/Number of deaths ages 10-14 years", + "World/Asia/IND/Mortality/Number of deaths ages 10-14 years", + "World/Persian Gulf/IRQ/Mortality/Number of deaths ages 10-14 years", + "World/North Africa/ISR/Mortality/Number of deaths ages 10-14 years", + "World/Asia/KOR/Mortality/Number of deaths ages 10-14 years", + "World/South Africa/LBR/Mortality/Number of deaths ages 10-14 years", + "World/North Africa/MAR/Mortality/Number of deaths ages 10-14 years", + "World/Latam/MEX/Mortality/Number of deaths ages 10-14 years", + "World/South Africa/MOZ/Mortality/Number of deaths ages 10-14 years", + "World/South Africa/NGA/Mortality/Number of deaths ages 10-14 years", + "World/Europe/NLD/Mortality/Number of deaths ages 10-14 years", + "World/Persian Gulf/OMN/Mortality/Number of deaths ages 10-14 years", + "World/Latam/PAN/Mortality/Number of deaths ages 10-14 years", + "World/Latam/PER/Mortality/Number of deaths ages 10-14 years", + "World/Europe/POL/Mortality/Number of deaths ages 10-14 years", + "World/Persian Gulf/SAU/Mortality/Number of deaths ages 10-14 years", + "World/South Africa/SEN/Mortality/Number of deaths ages 10-14 years", + "World/Asia/THA/Mortality/Number of deaths ages 10-14 years", + "World/North Africa/TUR/Mortality/Number of deaths ages 10-14 years", + "World/Pair/USA/Mortality/Number of deaths ages 10-14 years", + "World/Asia/VNM/Mortality/Number of deaths ages 10-14 years", + "World/Persian Gulf/YEM/Mortality/Number of deaths ages 10-14 years", + "World/Persian Gulf/ARE/Mortality/Number of deaths ages 15-19 years", + "World/Latam/ARG/Mortality/Number of deaths ages 15-19 years", + "World/Europe/AUT/Mortality/Number of deaths ages 15-19 years", + "World/Latam/CHL/Mortality/Number of deaths ages 15-19 years", + "World/Pair/CHN/Mortality/Number of deaths ages 15-19 years", + "World/South Africa/CMR/Mortality/Number of deaths ages 15-19 years", + "World/Latam/COL/Mortality/Number of deaths ages 15-19 years", + "World/Europe/DEU/Mortality/Number of deaths ages 15-19 years", + "World/North Africa/DZA/Mortality/Number of deaths ages 15-19 years", + "World/Europe/ESP/Mortality/Number of deaths ages 15-19 years", + "World/Europe/FRA/Mortality/Number of deaths ages 15-19 years", + "World/Europe/GBR/Mortality/Number of deaths ages 15-19 years", + "World/Europe/GRC/Mortality/Number of deaths ages 15-19 years", + "World/Europe/HRV/Mortality/Number of deaths ages 15-19 years", + "World/Asia/IND/Mortality/Number of deaths ages 15-19 years", + "World/Asia/KOR/Mortality/Number of deaths ages 15-19 years", + "World/South Africa/LBR/Mortality/Number of deaths ages 15-19 years", + "World/North Africa/MAR/Mortality/Number of deaths ages 15-19 years", + "World/South Africa/NGA/Mortality/Number of deaths ages 15-19 years", + "World/Europe/NLD/Mortality/Number of deaths ages 15-19 years", + "World/Persian Gulf/OMN/Mortality/Number of deaths ages 15-19 years", + "World/Latam/PAN/Mortality/Number of deaths ages 15-19 years", + "World/Latam/PER/Mortality/Number of deaths ages 15-19 years", + "World/Asia/PHL/Mortality/Number of deaths ages 15-19 years", + "World/Europe/POL/Mortality/Number of deaths ages 15-19 years", + "World/Persian Gulf/QAT/Mortality/Number of deaths ages 15-19 years", + "World/Persian Gulf/SAU/Mortality/Number of deaths ages 15-19 years", + "World/South Africa/SEN/Mortality/Number of deaths ages 15-19 years", + "World/Asia/THA/Mortality/Number of deaths ages 15-19 years", + "World/North Africa/TUR/Mortality/Number of deaths ages 15-19 years", + "World/Pair/USA/Mortality/Number of deaths ages 15-19 years", + "World/Latam/VEN/Mortality/Number of deaths ages 15-19 years", + "World/Asia/VNM/Mortality/Number of deaths ages 15-19 years", + "World/Persian Gulf/YEM/Mortality/Number of deaths ages 15-19 years", + "World/Europe/AUT/Mortality/Number of deaths ages 20-24 years", + "World/Persian Gulf/AZE/Mortality/Number of deaths ages 20-24 years", + "World/Asia/BGD/Mortality/Number of deaths ages 20-24 years", + "World/Latam/CHL/Mortality/Number of deaths ages 20-24 years", + "World/Pair/CHN/Mortality/Number of deaths ages 20-24 years", + "World/South Africa/CMR/Mortality/Number of deaths ages 20-24 years", + "World/Latam/COL/Mortality/Number of deaths ages 20-24 years", + "World/Latam/CRI/Mortality/Number of deaths ages 20-24 years", + "World/Europe/DEU/Mortality/Number of deaths ages 20-24 years", + "World/North Africa/DZA/Mortality/Number of deaths ages 20-24 years", + "World/Europe/ESP/Mortality/Number of deaths ages 20-24 years", + "World/Europe/FRA/Mortality/Number of deaths ages 20-24 years", + "World/Europe/GBR/Mortality/Number of deaths ages 20-24 years", + "World/Europe/GRC/Mortality/Number of deaths ages 20-24 years", + "World/Europe/HRV/Mortality/Number of deaths ages 20-24 years", + "World/Asia/IND/Mortality/Number of deaths ages 20-24 years", + "World/North Africa/ISR/Mortality/Number of deaths ages 20-24 years", + "World/Asia/KOR/Mortality/Number of deaths ages 20-24 years", + "World/South Africa/LBR/Mortality/Number of deaths ages 20-24 years", + "World/North Africa/MAR/Mortality/Number of deaths ages 20-24 years", + "World/Latam/MEX/Mortality/Number of deaths ages 20-24 years", + "World/South Africa/MOZ/Mortality/Number of deaths ages 20-24 years", + "World/Europe/NLD/Mortality/Number of deaths ages 20-24 years", + "World/Persian Gulf/OMN/Mortality/Number of deaths ages 20-24 years", + "World/Latam/PER/Mortality/Number of deaths ages 20-24 years", + "World/Asia/PHL/Mortality/Number of deaths ages 20-24 years", + "World/Europe/POL/Mortality/Number of deaths ages 20-24 years", + "World/Persian Gulf/QAT/Mortality/Number of deaths ages 20-24 years", + "World/South Africa/SEN/Mortality/Number of deaths ages 20-24 years", + "World/North Africa/TUR/Mortality/Number of deaths ages 20-24 years", + "World/Latam/VEN/Mortality/Number of deaths ages 20-24 years", + "World/Asia/VNM/Mortality/Number of deaths ages 20-24 years", + "World/Persian Gulf/YEM/Mortality/Number of deaths ages 20-24 years", + "World/Persian Gulf/ARE/Mortality/Number of deaths ages 5-9 years", + "World/Latam/ARG/Mortality/Number of deaths ages 5-9 years", + "World/Europe/AUT/Mortality/Number of deaths ages 5-9 years", + "World/Persian Gulf/AZE/Mortality/Number of deaths ages 5-9 years", + "World/Asia/BGD/Mortality/Number of deaths ages 5-9 years", + "World/Latam/BRA/Mortality/Number of deaths ages 5-9 years", + "World/Latam/CHL/Mortality/Number of deaths ages 5-9 years", + "World/Pair/CHN/Mortality/Number of deaths ages 5-9 years", + "World/South Africa/CMR/Mortality/Number of deaths ages 5-9 years", + "World/Latam/COL/Mortality/Number of deaths ages 5-9 years", + "World/Latam/CRI/Mortality/Number of deaths ages 5-9 years", + "World/Europe/DEU/Mortality/Number of deaths ages 5-9 years", + "World/North Africa/DZA/Mortality/Number of deaths ages 5-9 years", + "World/North Africa/EGY/Mortality/Number of deaths ages 5-9 years", + "World/Europe/ESP/Mortality/Number of deaths ages 5-9 years", + "World/Europe/FRA/Mortality/Number of deaths ages 5-9 years", + "World/Europe/GBR/Mortality/Number of deaths ages 5-9 years", + "World/South Africa/GHA/Mortality/Number of deaths ages 5-9 years", + "World/Europe/GRC/Mortality/Number of deaths ages 5-9 years", + "World/Europe/HRV/Mortality/Number of deaths ages 5-9 years", + "World/Asia/IDN/Mortality/Number of deaths ages 5-9 years", + "World/Asia/IND/Mortality/Number of deaths ages 5-9 years", + "World/North Africa/ISR/Mortality/Number of deaths ages 5-9 years", + "World/Asia/KOR/Mortality/Number of deaths ages 5-9 years", + "World/North Africa/MAR/Mortality/Number of deaths ages 5-9 years", + "World/Latam/MEX/Mortality/Number of deaths ages 5-9 years", + "World/South Africa/MOZ/Mortality/Number of deaths ages 5-9 years", + "World/South Africa/NGA/Mortality/Number of deaths ages 5-9 years", + "World/Europe/NLD/Mortality/Number of deaths ages 5-9 years", + "World/Persian Gulf/OMN/Mortality/Number of deaths ages 5-9 years", + "World/Latam/PAN/Mortality/Number of deaths ages 5-9 years", + "World/Latam/PER/Mortality/Number of deaths ages 5-9 years", + "World/Europe/POL/Mortality/Number of deaths ages 5-9 years", + "World/Persian Gulf/QAT/Mortality/Number of deaths ages 5-9 years", + "World/Persian Gulf/SAU/Mortality/Number of deaths ages 5-9 years", + "World/South Africa/SEN/Mortality/Number of deaths ages 5-9 years", + "World/Asia/THA/Mortality/Number of deaths ages 5-9 years", + "World/North Africa/TUR/Mortality/Number of deaths ages 5-9 years", + "World/Pair/USA/Mortality/Number of deaths ages 5-9 years", + "World/Asia/VNM/Mortality/Number of deaths ages 5-9 years", + "World/Persian Gulf/YEM/Mortality/Number of deaths ages 5-9 years", + "World/Persian Gulf/ARE/Mortality/Number of infant deaths", + "World/Latam/ARG/Mortality/Number of infant deaths", + "World/Europe/AUT/Mortality/Number of infant deaths", + "World/Persian Gulf/AZE/Mortality/Number of infant deaths", + "World/Asia/BGD/Mortality/Number of infant deaths", + "World/Latam/BRA/Mortality/Number of infant deaths", + "World/Latam/CHL/Mortality/Number of infant deaths", + "World/Pair/CHN/Mortality/Number of infant deaths", + "World/South Africa/CMR/Mortality/Number of infant deaths", + "World/Latam/COL/Mortality/Number of infant deaths", + "World/Latam/CRI/Mortality/Number of infant deaths", + "World/North Africa/EGY/Mortality/Number of infant deaths", + "World/Europe/FRA/Mortality/Number of infant deaths", + "World/Europe/GBR/Mortality/Number of infant deaths", + "World/South Africa/GHA/Mortality/Number of infant deaths", + "World/Europe/GRC/Mortality/Number of infant deaths", + "World/Europe/HRV/Mortality/Number of infant deaths", + "World/Asia/IDN/Mortality/Number of infant deaths", + "World/Asia/IND/Mortality/Number of infant deaths", + "World/Persian Gulf/IRQ/Mortality/Number of infant deaths", + "World/North Africa/ISR/Mortality/Number of infant deaths", + "World/Asia/KOR/Mortality/Number of infant deaths", + "World/South Africa/LBR/Mortality/Number of infant deaths", + "World/North Africa/MAR/Mortality/Number of infant deaths", + "World/Latam/MEX/Mortality/Number of infant deaths", + "World/South Africa/MOZ/Mortality/Number of infant deaths", + "World/Europe/NLD/Mortality/Number of infant deaths", + "World/Persian Gulf/OMN/Mortality/Number of infant deaths", + "World/Latam/PAN/Mortality/Number of infant deaths", + "World/Latam/PER/Mortality/Number of infant deaths", + "World/Asia/PHL/Mortality/Number of infant deaths", + "World/Europe/POL/Mortality/Number of infant deaths", + "World/Persian Gulf/SAU/Mortality/Number of infant deaths", + "World/South Africa/SEN/Mortality/Number of infant deaths", + "World/Europe/SWE/Mortality/Number of infant deaths", + "World/Asia/THA/Mortality/Number of infant deaths", + "World/North Africa/TUR/Mortality/Number of infant deaths", + "World/Pair/USA/Mortality/Number of infant deaths", + "World/Asia/VNM/Mortality/Number of infant deaths", + "World/Latam/ARG/Mortality/Number of maternal deaths", + "World/Persian Gulf/AZE/Mortality/Number of maternal deaths", + "World/Asia/BGD/Mortality/Number of maternal deaths", + "World/Latam/BRA/Mortality/Number of maternal deaths", + "World/Latam/CHL/Mortality/Number of maternal deaths", + "World/Pair/CHN/Mortality/Number of maternal deaths", + "World/South Africa/CMR/Mortality/Number of maternal deaths", + "World/Latam/COL/Mortality/Number of maternal deaths", + "World/Latam/CRI/Mortality/Number of maternal deaths", + "World/North Africa/DZA/Mortality/Number of maternal deaths", + "World/North Africa/EGY/Mortality/Number of maternal deaths", + "World/Europe/FRA/Mortality/Number of maternal deaths", + "World/Europe/GBR/Mortality/Number of maternal deaths", + "World/Europe/HRV/Mortality/Number of maternal deaths", + "World/Asia/IDN/Mortality/Number of maternal deaths", + "World/Asia/IND/Mortality/Number of maternal deaths", + "World/North Africa/ISR/Mortality/Number of maternal deaths", + "World/Asia/KOR/Mortality/Number of maternal deaths", + "World/North Africa/MAR/Mortality/Number of maternal deaths", + "World/Latam/MEX/Mortality/Number of maternal deaths", + "World/South Africa/MOZ/Mortality/Number of maternal deaths", + "World/South Africa/NGA/Mortality/Number of maternal deaths", + "World/Europe/NLD/Mortality/Number of maternal deaths", + "World/Persian Gulf/OMN/Mortality/Number of maternal deaths", + "World/Latam/PAN/Mortality/Number of maternal deaths", + "World/Latam/PER/Mortality/Number of maternal deaths", + "World/Asia/PHL/Mortality/Number of maternal deaths", + "World/Europe/POL/Mortality/Number of maternal deaths", + "World/Persian Gulf/SAU/Mortality/Number of maternal deaths", + "World/South Africa/SEN/Mortality/Number of maternal deaths", + "World/Asia/THA/Mortality/Number of maternal deaths", + "World/North Africa/TUR/Mortality/Number of maternal deaths", + "World/Pair/USA/Mortality/Number of maternal deaths", + "World/Asia/VNM/Mortality/Number of maternal deaths", + "World/Persian Gulf/YEM/Mortality/Number of maternal deaths", + "World/Persian Gulf/ARE/Mortality/Number of neonatal deaths", + "World/Latam/ARG/Mortality/Number of neonatal deaths", + "World/Europe/AUT/Mortality/Number of neonatal deaths", + "World/Persian Gulf/AZE/Mortality/Number of neonatal deaths", + "World/Asia/BGD/Mortality/Number of neonatal deaths", + "World/Latam/BRA/Mortality/Number of neonatal deaths", + "World/Latam/CHL/Mortality/Number of neonatal deaths", + "World/Pair/CHN/Mortality/Number of neonatal deaths", + "World/Latam/COL/Mortality/Number of neonatal deaths", + "World/Latam/CRI/Mortality/Number of neonatal deaths", + "World/North Africa/DZA/Mortality/Number of neonatal deaths", + "World/North Africa/EGY/Mortality/Number of neonatal deaths", + "World/Europe/FRA/Mortality/Number of neonatal deaths", + "World/Europe/GBR/Mortality/Number of neonatal deaths", + "World/South Africa/GHA/Mortality/Number of neonatal deaths", + "World/Europe/GRC/Mortality/Number of neonatal deaths", + "World/Europe/HRV/Mortality/Number of neonatal deaths", + "World/Asia/IDN/Mortality/Number of neonatal deaths", + "World/Asia/IND/Mortality/Number of neonatal deaths", + "World/North Africa/ISR/Mortality/Number of neonatal deaths", + "World/Asia/KOR/Mortality/Number of neonatal deaths", + "World/North Africa/MAR/Mortality/Number of neonatal deaths", + "World/Latam/MEX/Mortality/Number of neonatal deaths", + "World/South Africa/MOZ/Mortality/Number of neonatal deaths", + "World/South Africa/NGA/Mortality/Number of neonatal deaths", + "World/Europe/NLD/Mortality/Number of neonatal deaths", + "World/Persian Gulf/OMN/Mortality/Number of neonatal deaths", + "World/Latam/PAN/Mortality/Number of neonatal deaths", + "World/Latam/PER/Mortality/Number of neonatal deaths", + "World/Asia/PHL/Mortality/Number of neonatal deaths", + "World/Europe/POL/Mortality/Number of neonatal deaths", + "World/Persian Gulf/QAT/Mortality/Number of neonatal deaths", + "World/Persian Gulf/SAU/Mortality/Number of neonatal deaths", + "World/South Africa/SEN/Mortality/Number of neonatal deaths", + "World/Asia/THA/Mortality/Number of neonatal deaths", + "World/North Africa/TUR/Mortality/Number of neonatal deaths", + "World/Pair/USA/Mortality/Number of neonatal deaths", + "World/Asia/VNM/Mortality/Number of neonatal deaths", + "World/South Africa/ZAF/Mortality/Number of neonatal deaths", + "World/Persian Gulf/ARE/Mortality/Number of under-five deaths", + "World/Latam/ARG/Mortality/Number of under-five deaths", + "World/Europe/AUT/Mortality/Number of under-five deaths", + "World/Persian Gulf/AZE/Mortality/Number of under-five deaths", + "World/Asia/BGD/Mortality/Number of under-five deaths", + "World/Latam/BRA/Mortality/Number of under-five deaths", + "World/Latam/CHL/Mortality/Number of under-five deaths", + "World/Pair/CHN/Mortality/Number of under-five deaths", + "World/South Africa/CMR/Mortality/Number of under-five deaths", + "World/Latam/COL/Mortality/Number of under-five deaths", + "World/Latam/CRI/Mortality/Number of under-five deaths", + "World/North Africa/EGY/Mortality/Number of under-five deaths", + "World/Europe/FRA/Mortality/Number of under-five deaths", + "World/Europe/GBR/Mortality/Number of under-five deaths", + "World/South Africa/GHA/Mortality/Number of under-five deaths", + "World/Europe/GRC/Mortality/Number of under-five deaths", + "World/Europe/HRV/Mortality/Number of under-five deaths", + "World/Asia/IDN/Mortality/Number of under-five deaths", + "World/Asia/IND/Mortality/Number of under-five deaths", + "World/Persian Gulf/IRQ/Mortality/Number of under-five deaths", + "World/North Africa/ISR/Mortality/Number of under-five deaths", + "World/Asia/KOR/Mortality/Number of under-five deaths", + "World/South Africa/LBR/Mortality/Number of under-five deaths", + "World/North Africa/MAR/Mortality/Number of under-five deaths", + "World/Latam/MEX/Mortality/Number of under-five deaths", + "World/South Africa/MOZ/Mortality/Number of under-five deaths", + "World/Europe/NLD/Mortality/Number of under-five deaths", + "World/Persian Gulf/OMN/Mortality/Number of under-five deaths", + "World/Latam/PAN/Mortality/Number of under-five deaths", + "World/Latam/PER/Mortality/Number of under-five deaths", + "World/Asia/PHL/Mortality/Number of under-five deaths", + "World/Europe/POL/Mortality/Number of under-five deaths", + "World/Persian Gulf/SAU/Mortality/Number of under-five deaths", + "World/South Africa/SEN/Mortality/Number of under-five deaths", + "World/Europe/SWE/Mortality/Number of under-five deaths", + "World/Asia/THA/Mortality/Number of under-five deaths", + "World/North Africa/TUR/Mortality/Number of under-five deaths", + "World/Pair/USA/Mortality/Number of under-five deaths", + "World/Asia/VNM/Mortality/Number of under-five deaths", + "World/Latam/ARG/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/AUT/Health/Nurses and midwives (per 1,000 people)", + "World/Persian Gulf/AZE/Health/Nurses and midwives (per 1,000 people)", + "World/Asia/BGD/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/BRA/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/CHL/Health/Nurses and midwives (per 1,000 people)", + "World/Pair/CHN/Health/Nurses and midwives (per 1,000 people)", + "World/South Africa/CMR/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/CRI/Health/Nurses and midwives (per 1,000 people)", + "World/North Africa/EGY/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/ESP/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/FRA/Health/Nurses and midwives (per 1,000 people)", + "World/South Africa/GHA/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/HRV/Health/Nurses and midwives (per 1,000 people)", + "World/Asia/IDN/Health/Nurses and midwives (per 1,000 people)", + "World/Asia/IND/Health/Nurses and midwives (per 1,000 people)", + "World/Asia/KOR/Health/Nurses and midwives (per 1,000 people)", + "World/South Africa/LBR/Health/Nurses and midwives (per 1,000 people)", + "World/South Africa/MOZ/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/NLD/Health/Nurses and midwives (per 1,000 people)", + "World/Persian Gulf/OMN/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/PAN/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/PER/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/POL/Health/Nurses and midwives (per 1,000 people)", + "World/Persian Gulf/SAU/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/SWE/Health/Nurses and midwives (per 1,000 people)", + "World/Asia/THA/Health/Nurses and midwives (per 1,000 people)", + "World/North Africa/TUR/Health/Nurses and midwives (per 1,000 people)", + "World/Pair/USA/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/VEN/Health/Nurses and midwives (per 1,000 people)", + "World/Persian Gulf/YEM/Health/Nurses and midwives (per 1,000 people)", + "World/South Africa/ZAF/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/ARG/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/AUT/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Persian Gulf/AZE/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Asia/BGD/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/BRA/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/CHL/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Pair/CHN/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/South Africa/CMR/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/COL/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/CRI/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/DEU/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/North Africa/DZA/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/North Africa/EGY/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/ESP/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/FRA/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/GBR/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/South Africa/GHA/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/GRC/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/HRV/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Asia/IDN/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Asia/IND/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/North Africa/ISR/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Asia/KOR/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/South Africa/LBR/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/South Africa/NGA/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/NLD/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/PAN/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/PER/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Asia/PHL/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/POL/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Persian Gulf/SAU/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/South Africa/SEN/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/SWE/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Pair/USA/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/VEN/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Asia/VNM/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Persian Gulf/YEM/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/ARG/Health/People practicing open defecation (% of population)", + "World/Persian Gulf/AZE/Health/People practicing open defecation (% of population)", + "World/Asia/BGD/Health/People practicing open defecation (% of population)", + "World/Latam/BRA/Health/People practicing open defecation (% of population)", + "World/Latam/CHL/Health/People practicing open defecation (% of population)", + "World/Pair/CHN/Health/People practicing open defecation (% of population)", + "World/South Africa/CMR/Health/People practicing open defecation (% of population)", + "World/Latam/COL/Health/People practicing open defecation (% of population)", + "World/Latam/CRI/Health/People practicing open defecation (% of population)", + "World/North Africa/DZA/Health/People practicing open defecation (% of population)", + "World/North Africa/EGY/Health/People practicing open defecation (% of population)", + "World/South Africa/GHA/Health/People practicing open defecation (% of population)", + "World/Europe/GRC/Health/People practicing open defecation (% of population)", + "World/Asia/IDN/Health/People practicing open defecation (% of population)", + "World/Asia/IND/Health/People practicing open defecation (% of population)", + "World/Persian Gulf/IRQ/Health/People practicing open defecation (% of population)", + "World/South Africa/LBR/Health/People practicing open defecation (% of population)", + "World/North Africa/MAR/Health/People practicing open defecation (% of population)", + "World/Latam/MEX/Health/People practicing open defecation (% of population)", + "World/South Africa/MOZ/Health/People practicing open defecation (% of population)", + "World/South Africa/NGA/Health/People practicing open defecation (% of population)", + "World/Persian Gulf/OMN/Health/People practicing open defecation (% of population)", + "World/Latam/PAN/Health/People practicing open defecation (% of population)", + "World/Latam/PER/Health/People practicing open defecation (% of population)", + "World/Asia/PHL/Health/People practicing open defecation (% of population)", + "World/South Africa/SEN/Health/People practicing open defecation (% of population)", + "World/Asia/THA/Health/People practicing open defecation (% of population)", + "World/North Africa/TUR/Health/People practicing open defecation (% of population)", + "World/Latam/VEN/Health/People practicing open defecation (% of population)", + "World/Asia/VNM/Health/People practicing open defecation (% of population)", + "World/Persian Gulf/YEM/Health/People practicing open defecation (% of population)", + "World/South Africa/ZAF/Health/People practicing open defecation (% of population)", + "World/Persian Gulf/ARE/Health/People using at least basic drinking water services (% of population)", + "World/Latam/ARG/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/AZE/Health/People using at least basic drinking water services (% of population)", + "World/Asia/BGD/Health/People using at least basic drinking water services (% of population)", + "World/Latam/BRA/Health/People using at least basic drinking water services (% of population)", + "World/Latam/CHL/Health/People using at least basic drinking water services (% of population)", + "World/Pair/CHN/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/CMR/Health/People using at least basic drinking water services (% of population)", + "World/Latam/COL/Health/People using at least basic drinking water services (% of population)", + "World/Latam/CRI/Health/People using at least basic drinking water services (% of population)", + "World/North Africa/DZA/Health/People using at least basic drinking water services (% of population)", + "World/North Africa/EGY/Health/People using at least basic drinking water services (% of population)", + "World/Europe/ESP/Health/People using at least basic drinking water services (% of population)", + "World/Europe/FRA/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/GHA/Health/People using at least basic drinking water services (% of population)", + "World/Europe/GRC/Health/People using at least basic drinking water services (% of population)", + "World/Europe/HRV/Health/People using at least basic drinking water services (% of population)", + "World/Asia/IDN/Health/People using at least basic drinking water services (% of population)", + "World/Asia/IND/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/IRQ/Health/People using at least basic drinking water services (% of population)", + "World/Asia/KOR/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/LBR/Health/People using at least basic drinking water services (% of population)", + "World/North Africa/MAR/Health/People using at least basic drinking water services (% of population)", + "World/Latam/MEX/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/MOZ/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/NGA/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/OMN/Health/People using at least basic drinking water services (% of population)", + "World/Latam/PAN/Health/People using at least basic drinking water services (% of population)", + "World/Latam/PER/Health/People using at least basic drinking water services (% of population)", + "World/Asia/PHL/Health/People using at least basic drinking water services (% of population)", + "World/Europe/POL/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/QAT/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/SAU/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/SEN/Health/People using at least basic drinking water services (% of population)", + "World/Europe/SWE/Health/People using at least basic drinking water services (% of population)", + "World/Asia/THA/Health/People using at least basic drinking water services (% of population)", + "World/North Africa/TUR/Health/People using at least basic drinking water services (% of population)", + "World/Pair/USA/Health/People using at least basic drinking water services (% of population)", + "World/Latam/VEN/Health/People using at least basic drinking water services (% of population)", + "World/Asia/VNM/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/YEM/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/ZAF/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/ARE/Health/People using at least basic sanitation services (% of population)", + "World/Latam/ARG/Health/People using at least basic sanitation services (% of population)", + "World/Europe/AUT/Health/People using at least basic sanitation services (% of population)", + "World/Persian Gulf/AZE/Health/People using at least basic sanitation services (% of population)", + "World/Asia/BGD/Health/People using at least basic sanitation services (% of population)", + "World/Latam/BRA/Health/People using at least basic sanitation services (% of population)", + "World/Latam/CHL/Health/People using at least basic sanitation services (% of population)", + "World/Pair/CHN/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/CMR/Health/People using at least basic sanitation services (% of population)", + "World/Latam/COL/Health/People using at least basic sanitation services (% of population)", + "World/Latam/CRI/Health/People using at least basic sanitation services (% of population)", + "World/Europe/DEU/Health/People using at least basic sanitation services (% of population)", + "World/North Africa/DZA/Health/People using at least basic sanitation services (% of population)", + "World/North Africa/EGY/Health/People using at least basic sanitation services (% of population)", + "World/Europe/ESP/Health/People using at least basic sanitation services (% of population)", + "World/Europe/FRA/Health/People using at least basic sanitation services (% of population)", + "World/Europe/GBR/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/GHA/Health/People using at least basic sanitation services (% of population)", + "World/Europe/GRC/Health/People using at least basic sanitation services (% of population)", + "World/Europe/HRV/Health/People using at least basic sanitation services (% of population)", + "World/Asia/IDN/Health/People using at least basic sanitation services (% of population)", + "World/Asia/IND/Health/People using at least basic sanitation services (% of population)", + "World/Persian Gulf/IRQ/Health/People using at least basic sanitation services (% of population)", + "World/North Africa/ISR/Health/People using at least basic sanitation services (% of population)", + "World/Asia/KOR/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/LBR/Health/People using at least basic sanitation services (% of population)", + "World/North Africa/MAR/Health/People using at least basic sanitation services (% of population)", + "World/Latam/MEX/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/MOZ/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/NGA/Health/People using at least basic sanitation services (% of population)", + "World/Europe/NLD/Health/People using at least basic sanitation services (% of population)", + "World/Persian Gulf/OMN/Health/People using at least basic sanitation services (% of population)", + "World/Latam/PAN/Health/People using at least basic sanitation services (% of population)", + "World/Latam/PER/Health/People using at least basic sanitation services (% of population)", + "World/Asia/PHL/Health/People using at least basic sanitation services (% of population)", + "World/Europe/POL/Health/People using at least basic sanitation services (% of population)", + "World/Persian Gulf/SAU/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/SEN/Health/People using at least basic sanitation services (% of population)", + "World/Europe/SWE/Health/People using at least basic sanitation services (% of population)", + "World/Asia/THA/Health/People using at least basic sanitation services (% of population)", + "World/North Africa/TUR/Health/People using at least basic sanitation services (% of population)", + "World/Pair/USA/Health/People using at least basic sanitation services (% of population)", + "World/Latam/VEN/Health/People using at least basic sanitation services (% of population)", + "World/Asia/VNM/Health/People using at least basic sanitation services (% of population)", + "World/Persian Gulf/YEM/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/ZAF/Health/People using at least basic sanitation services (% of population)", + "World/Persian Gulf/ARE/Health/People using safely managed sanitation services (% of population)", + "World/Latam/ARG/Health/People using safely managed sanitation services (% of population)", + "World/Europe/AUT/Health/People using safely managed sanitation services (% of population)", + "World/Persian Gulf/AZE/Health/People using safely managed sanitation services (% of population)", + "World/Asia/BGD/Health/People using safely managed sanitation services (% of population)", + "World/Latam/BRA/Health/People using safely managed sanitation services (% of population)", + "World/Latam/CHL/Health/People using safely managed sanitation services (% of population)", + "World/Pair/CHN/Health/People using safely managed sanitation services (% of population)", + "World/Latam/COL/Health/People using safely managed sanitation services (% of population)", + "World/Latam/CRI/Health/People using safely managed sanitation services (% of population)", + "World/Europe/DEU/Health/People using safely managed sanitation services (% of population)", + "World/North Africa/DZA/Health/People using safely managed sanitation services (% of population)", + "World/North Africa/EGY/Health/People using safely managed sanitation services (% of population)", + "World/Europe/FRA/Health/People using safely managed sanitation services (% of population)", + "World/Europe/GBR/Health/People using safely managed sanitation services (% of population)", + "World/South Africa/GHA/Health/People using safely managed sanitation services (% of population)", + "World/Europe/GRC/Health/People using safely managed sanitation services (% of population)", + "World/Asia/IND/Health/People using safely managed sanitation services (% of population)", + "World/North Africa/ISR/Health/People using safely managed sanitation services (% of population)", + "World/Asia/KOR/Health/People using safely managed sanitation services (% of population)", + "World/North Africa/MAR/Health/People using safely managed sanitation services (% of population)", + "World/Latam/MEX/Health/People using safely managed sanitation services (% of population)", + "World/South Africa/NGA/Health/People using safely managed sanitation services (% of population)", + "World/Europe/NLD/Health/People using safely managed sanitation services (% of population)", + "World/Latam/PER/Health/People using safely managed sanitation services (% of population)", + "World/Asia/PHL/Health/People using safely managed sanitation services (% of population)", + "World/Europe/POL/Health/People using safely managed sanitation services (% of population)", + "World/Persian Gulf/QAT/Health/People using safely managed sanitation services (% of population)", + "World/Persian Gulf/SAU/Health/People using safely managed sanitation services (% of population)", + "World/South Africa/SEN/Health/People using safely managed sanitation services (% of population)", + "World/Europe/SWE/Health/People using safely managed sanitation services (% of population)", + "World/Asia/THA/Health/People using safely managed sanitation services (% of population)", + "World/North Africa/TUR/Health/People using safely managed sanitation services (% of population)", + "World/Pair/USA/Health/People using safely managed sanitation services (% of population)", + "World/Latam/VEN/Health/People using safely managed sanitation services (% of population)", + "World/Persian Gulf/YEM/Health/People using safely managed sanitation services (% of population)", + "World/Europe/AUT/Agriculture/Permanent cropland (% of land area)", + "World/Persian Gulf/AZE/Agriculture/Permanent cropland (% of land area)", + "World/Latam/CHL/Agriculture/Permanent cropland (% of land area)", + "World/Pair/CHN/Agriculture/Permanent cropland (% of land area)", + "World/South Africa/CMR/Agriculture/Permanent cropland (% of land area)", + "World/Latam/COL/Agriculture/Permanent cropland (% of land area)", + "World/Latam/CRI/Agriculture/Permanent cropland (% of land area)", + "World/North Africa/DZA/Agriculture/Permanent cropland (% of land area)", + "World/Europe/FRA/Agriculture/Permanent cropland (% of land area)", + "World/Europe/GRC/Agriculture/Permanent cropland (% of land area)", + "World/Asia/IDN/Agriculture/Permanent cropland (% of land area)", + "World/Asia/IND/Agriculture/Permanent cropland (% of land area)", + "World/North Africa/MAR/Agriculture/Permanent cropland (% of land area)", + "World/Latam/MEX/Agriculture/Permanent cropland (% of land area)", + "World/South Africa/MOZ/Agriculture/Permanent cropland (% of land area)", + "World/Europe/NLD/Agriculture/Permanent cropland (% of land area)", + "World/Persian Gulf/OMN/Agriculture/Permanent cropland (% of land area)", + "World/Latam/PER/Agriculture/Permanent cropland (% of land area)", + "World/Asia/PHL/Agriculture/Permanent cropland (% of land area)", + "World/South Africa/SEN/Agriculture/Permanent cropland (% of land area)", + "World/Asia/THA/Agriculture/Permanent cropland (% of land area)", + "World/North Africa/TUR/Agriculture/Permanent cropland (% of land area)", + "World/Asia/VNM/Agriculture/Permanent cropland (% of land area)", + "World/Persian Gulf/YEM/Agriculture/Permanent cropland (% of land area)", + "World/South Africa/ZAF/Agriculture/Permanent cropland (% of land area)", + "World/Persian Gulf/ARE/Demography/Population ages 0-14 (% of total population)", + "World/Latam/ARG/Demography/Population ages 0-14 (% of total population)", + "World/Europe/AUT/Demography/Population ages 0-14 (% of total population)", + "World/Persian Gulf/AZE/Demography/Population ages 0-14 (% of total population)", + "World/Asia/BGD/Demography/Population ages 0-14 (% of total population)", + "World/Latam/BRA/Demography/Population ages 0-14 (% of total population)", + "World/Latam/CHL/Demography/Population ages 0-14 (% of total population)", + "World/Pair/CHN/Demography/Population ages 0-14 (% of total population)", + "World/South Africa/CMR/Demography/Population ages 0-14 (% of total population)", + "World/Latam/COL/Demography/Population ages 0-14 (% of total population)", + "World/Latam/CRI/Demography/Population ages 0-14 (% of total population)", + "World/North Africa/EGY/Demography/Population ages 0-14 (% of total population)", + "World/Europe/FRA/Demography/Population ages 0-14 (% of total population)", + "World/South Africa/GHA/Demography/Population ages 0-14 (% of total population)", + "World/Europe/HRV/Demography/Population ages 0-14 (% of total population)", + "World/Asia/IDN/Demography/Population ages 0-14 (% of total population)", + "World/Asia/IND/Demography/Population ages 0-14 (% of total population)", + "World/Asia/KOR/Demography/Population ages 0-14 (% of total population)", + "World/North Africa/MAR/Demography/Population ages 0-14 (% of total population)", + "World/Latam/MEX/Demography/Population ages 0-14 (% of total population)", + "World/Europe/NLD/Demography/Population ages 0-14 (% of total population)", + "World/Persian Gulf/OMN/Demography/Population ages 0-14 (% of total population)", + "World/Latam/PAN/Demography/Population ages 0-14 (% of total population)", + "World/Latam/PER/Demography/Population ages 0-14 (% of total population)", + "World/Asia/PHL/Demography/Population ages 0-14 (% of total population)", + "World/Europe/POL/Demography/Population ages 0-14 (% of total population)", + "World/Persian Gulf/QAT/Demography/Population ages 0-14 (% of total population)", + "World/Persian Gulf/SAU/Demography/Population ages 0-14 (% of total population)", + "World/South Africa/SEN/Demography/Population ages 0-14 (% of total population)", + "World/Asia/THA/Demography/Population ages 0-14 (% of total population)", + "World/North Africa/TUR/Demography/Population ages 0-14 (% of total population)", + "World/Pair/USA/Demography/Population ages 0-14 (% of total population)", + "World/Latam/VEN/Demography/Population ages 0-14 (% of total population)", + "World/Asia/VNM/Demography/Population ages 0-14 (% of total population)", + "World/Persian Gulf/YEM/Demography/Population ages 0-14 (% of total population)", + "World/South Africa/ZAF/Demography/Population ages 0-14 (% of total population)", + "World/Persian Gulf/ARE/Demography/Population ages 15-64 (% of total population)", + "World/Latam/ARG/Demography/Population ages 15-64 (% of total population)", + "World/Persian Gulf/AZE/Demography/Population ages 15-64 (% of total population)", + "World/Asia/BGD/Demography/Population ages 15-64 (% of total population)", + "World/Latam/BRA/Demography/Population ages 15-64 (% of total population)", + "World/Latam/CHL/Demography/Population ages 15-64 (% of total population)", + "World/Pair/CHN/Demography/Population ages 15-64 (% of total population)", + "World/South Africa/CMR/Demography/Population ages 15-64 (% of total population)", + "World/Latam/COL/Demography/Population ages 15-64 (% of total population)", + "World/Latam/CRI/Demography/Population ages 15-64 (% of total population)", + "World/Europe/DEU/Demography/Population ages 15-64 (% of total population)", + "World/North Africa/EGY/Demography/Population ages 15-64 (% of total population)", + "World/Europe/FRA/Demography/Population ages 15-64 (% of total population)", + "World/Europe/GBR/Demography/Population ages 15-64 (% of total population)", + "World/South Africa/GHA/Demography/Population ages 15-64 (% of total population)", + "World/Europe/GRC/Demography/Population ages 15-64 (% of total population)", + "World/Asia/IDN/Demography/Population ages 15-64 (% of total population)", + "World/Asia/IND/Demography/Population ages 15-64 (% of total population)", + "World/North Africa/ISR/Demography/Population ages 15-64 (% of total population)", + "World/North Africa/MAR/Demography/Population ages 15-64 (% of total population)", + "World/Latam/MEX/Demography/Population ages 15-64 (% of total population)", + "World/Europe/NLD/Demography/Population ages 15-64 (% of total population)", + "World/Persian Gulf/OMN/Demography/Population ages 15-64 (% of total population)", + "World/Latam/PAN/Demography/Population ages 15-64 (% of total population)", + "World/Latam/PER/Demography/Population ages 15-64 (% of total population)", + "World/Asia/PHL/Demography/Population ages 15-64 (% of total population)", + "World/Europe/POL/Demography/Population ages 15-64 (% of total population)", + "World/Persian Gulf/QAT/Demography/Population ages 15-64 (% of total population)", + "World/Persian Gulf/SAU/Demography/Population ages 15-64 (% of total population)", + "World/South Africa/SEN/Demography/Population ages 15-64 (% of total population)", + "World/North Africa/TUR/Demography/Population ages 15-64 (% of total population)", + "World/Pair/USA/Demography/Population ages 15-64 (% of total population)", + "World/Latam/VEN/Demography/Population ages 15-64 (% of total population)", + "World/Asia/VNM/Demography/Population ages 15-64 (% of total population)", + "World/Persian Gulf/YEM/Demography/Population ages 15-64 (% of total population)", + "World/South Africa/ZAF/Demography/Population ages 15-64 (% of total population)", + "World/Persian Gulf/ARE/Demography/Population ages 65 and above (% of total population)", + "World/Latam/ARG/Demography/Population ages 65 and above (% of total population)", + "World/Europe/AUT/Demography/Population ages 65 and above (% of total population)", + "World/Asia/BGD/Demography/Population ages 65 and above (% of total population)", + "World/Latam/BRA/Demography/Population ages 65 and above (% of total population)", + "World/Latam/CHL/Demography/Population ages 65 and above (% of total population)", + "World/Pair/CHN/Demography/Population ages 65 and above (% of total population)", + "World/South Africa/CMR/Demography/Population ages 65 and above (% of total population)", + "World/Latam/COL/Demography/Population ages 65 and above (% of total population)", + "World/Latam/CRI/Demography/Population ages 65 and above (% of total population)", + "World/Europe/DEU/Demography/Population ages 65 and above (% of total population)", + "World/North Africa/DZA/Demography/Population ages 65 and above (% of total population)", + "World/North Africa/EGY/Demography/Population ages 65 and above (% of total population)", + "World/Europe/FRA/Demography/Population ages 65 and above (% of total population)", + "World/Europe/GBR/Demography/Population ages 65 and above (% of total population)", + "World/Europe/GRC/Demography/Population ages 65 and above (% of total population)", + "World/Europe/HRV/Demography/Population ages 65 and above (% of total population)", + "World/Asia/IDN/Demography/Population ages 65 and above (% of total population)", + "World/Asia/IND/Demography/Population ages 65 and above (% of total population)", + "World/North Africa/ISR/Demography/Population ages 65 and above (% of total population)", + "World/Asia/KOR/Demography/Population ages 65 and above (% of total population)", + "World/North Africa/MAR/Demography/Population ages 65 and above (% of total population)", + "World/Latam/MEX/Demography/Population ages 65 and above (% of total population)", + "World/South Africa/MOZ/Demography/Population ages 65 and above (% of total population)", + "World/South Africa/NGA/Demography/Population ages 65 and above (% of total population)", + "World/Europe/NLD/Demography/Population ages 65 and above (% of total population)", + "World/Latam/PAN/Demography/Population ages 65 and above (% of total population)", + "World/Latam/PER/Demography/Population ages 65 and above (% of total population)", + "World/Asia/PHL/Demography/Population ages 65 and above (% of total population)", + "World/Europe/POL/Demography/Population ages 65 and above (% of total population)", + "World/Persian Gulf/QAT/Demography/Population ages 65 and above (% of total population)", + "World/Asia/THA/Demography/Population ages 65 and above (% of total population)", + "World/North Africa/TUR/Demography/Population ages 65 and above (% of total population)", + "World/Pair/USA/Demography/Population ages 65 and above (% of total population)", + "World/Latam/VEN/Demography/Population ages 65 and above (% of total population)", + "World/Asia/VNM/Demography/Population ages 65 and above (% of total population)", + "World/Persian Gulf/YEM/Demography/Population ages 65 and above (% of total population)", + "World/South Africa/ZAF/Demography/Population ages 65 and above (% of total population)", + "World/Persian Gulf/ARE/Demography/Population in largest city", + "World/Latam/ARG/Demography/Population in largest city", + "World/Europe/AUT/Demography/Population in largest city", + "World/Persian Gulf/AZE/Demography/Population in largest city", + "World/Asia/BGD/Demography/Population in largest city", + "World/Latam/BRA/Demography/Population in largest city", + "World/Latam/CHL/Demography/Population in largest city", + "World/Pair/CHN/Demography/Population in largest city", + "World/South Africa/CMR/Demography/Population in largest city", + "World/Latam/COL/Demography/Population in largest city", + "World/Latam/CRI/Demography/Population in largest city", + "World/North Africa/DZA/Demography/Population in largest city", + "World/North Africa/EGY/Demography/Population in largest city", + "World/Europe/ESP/Demography/Population in largest city", + "World/Europe/FRA/Demography/Population in largest city", + "World/Europe/GBR/Demography/Population in largest city", + "World/South Africa/GHA/Demography/Population in largest city", + "World/Europe/GRC/Demography/Population in largest city", + "World/Europe/HRV/Demography/Population in largest city", + "World/Asia/IDN/Demography/Population in largest city", + "World/Asia/IND/Demography/Population in largest city", + "World/North Africa/ISR/Demography/Population in largest city", + "World/North Africa/MAR/Demography/Population in largest city", + "World/Latam/MEX/Demography/Population in largest city", + "World/South Africa/MOZ/Demography/Population in largest city", + "World/South Africa/NGA/Demography/Population in largest city", + "World/Europe/NLD/Demography/Population in largest city", + "World/Persian Gulf/OMN/Demography/Population in largest city", + "World/Latam/PAN/Demography/Population in largest city", + "World/Latam/PER/Demography/Population in largest city", + "World/Asia/PHL/Demography/Population in largest city", + "World/Europe/POL/Demography/Population in largest city", + "World/Persian Gulf/QAT/Demography/Population in largest city", + "World/Persian Gulf/SAU/Demography/Population in largest city", + "World/South Africa/SEN/Demography/Population in largest city", + "World/Asia/THA/Demography/Population in largest city", + "World/North Africa/TUR/Demography/Population in largest city", + "World/Pair/USA/Demography/Population in largest city", + "World/Latam/VEN/Demography/Population in largest city", + "World/Asia/VNM/Demography/Population in largest city", + "World/Persian Gulf/YEM/Demography/Population in largest city", + "World/South Africa/ZAF/Demography/Population in largest city", + "World/Persian Gulf/ARE/Demography/Population in the largest city (% of urban population)", + "World/Latam/ARG/Demography/Population in the largest city (% of urban population)", + "World/Europe/AUT/Demography/Population in the largest city (% of urban population)", + "World/Persian Gulf/AZE/Demography/Population in the largest city (% of urban population)", + "World/Asia/BGD/Demography/Population in the largest city (% of urban population)", + "World/Latam/CHL/Demography/Population in the largest city (% of urban population)", + "World/South Africa/CMR/Demography/Population in the largest city (% of urban population)", + "World/Latam/COL/Demography/Population in the largest city (% of urban population)", + "World/Latam/CRI/Demography/Population in the largest city (% of urban population)", + "World/North Africa/DZA/Demography/Population in the largest city (% of urban population)", + "World/North Africa/EGY/Demography/Population in the largest city (% of urban population)", + "World/Europe/FRA/Demography/Population in the largest city (% of urban population)", + "World/Europe/GBR/Demography/Population in the largest city (% of urban population)", + "World/Asia/IDN/Demography/Population in the largest city (% of urban population)", + "World/Asia/IND/Demography/Population in the largest city (% of urban population)", + "World/North Africa/ISR/Demography/Population in the largest city (% of urban population)", + "World/Asia/KOR/Demography/Population in the largest city (% of urban population)", + "World/North Africa/MAR/Demography/Population in the largest city (% of urban population)", + "World/Latam/MEX/Demography/Population in the largest city (% of urban population)", + "World/South Africa/MOZ/Demography/Population in the largest city (% of urban population)", + "World/South Africa/NGA/Demography/Population in the largest city (% of urban population)", + "World/Europe/NLD/Demography/Population in the largest city (% of urban population)", + "World/Latam/PAN/Demography/Population in the largest city (% of urban population)", + "World/Latam/PER/Demography/Population in the largest city (% of urban population)", + "World/Europe/POL/Demography/Population in the largest city (% of urban population)", + "World/Persian Gulf/QAT/Demography/Population in the largest city (% of urban population)", + "World/Persian Gulf/SAU/Demography/Population in the largest city (% of urban population)", + "World/South Africa/SEN/Demography/Population in the largest city (% of urban population)", + "World/North Africa/TUR/Demography/Population in the largest city (% of urban population)", + "World/Pair/USA/Demography/Population in the largest city (% of urban population)", + "World/Latam/VEN/Demography/Population in the largest city (% of urban population)", + "World/Asia/VNM/Demography/Population in the largest city (% of urban population)", + "World/Persian Gulf/YEM/Demography/Population in the largest city (% of urban population)", + "World/South Africa/ZAF/Demography/Population in the largest city (% of urban population)", + "World/Persian Gulf/ARE/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/ARG/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/AUT/Demography/Population in urban agglomerations of more than 1 million", + "World/Persian Gulf/AZE/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/BGD/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/BRA/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/CHL/Demography/Population in urban agglomerations of more than 1 million", + "World/Pair/CHN/Demography/Population in urban agglomerations of more than 1 million", + "World/South Africa/CMR/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/COL/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/CRI/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/DEU/Demography/Population in urban agglomerations of more than 1 million", + "World/North Africa/DZA/Demography/Population in urban agglomerations of more than 1 million", + "World/North Africa/EGY/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/ESP/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/FRA/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/GBR/Demography/Population in urban agglomerations of more than 1 million", + "World/South Africa/GHA/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/GRC/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/IDN/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/IND/Demography/Population in urban agglomerations of more than 1 million", + "World/North Africa/ISR/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/KOR/Demography/Population in urban agglomerations of more than 1 million", + "World/North Africa/MAR/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/MEX/Demography/Population in urban agglomerations of more than 1 million", + "World/South Africa/MOZ/Demography/Population in urban agglomerations of more than 1 million", + "World/South Africa/NGA/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/NLD/Demography/Population in urban agglomerations of more than 1 million", + "World/Persian Gulf/OMN/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/PAN/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/PER/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/PHL/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/POL/Demography/Population in urban agglomerations of more than 1 million", + "World/Persian Gulf/SAU/Demography/Population in urban agglomerations of more than 1 million", + "World/South Africa/SEN/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/THA/Demography/Population in urban agglomerations of more than 1 million", + "World/North Africa/TUR/Demography/Population in urban agglomerations of more than 1 million", + "World/Pair/USA/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/VEN/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/VNM/Demography/Population in urban agglomerations of more than 1 million", + "World/Persian Gulf/YEM/Demography/Population in urban agglomerations of more than 1 million", + "World/South Africa/ZAF/Demography/Population in urban agglomerations of more than 1 million", + "World/Persian Gulf/ARE/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/ARG/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Europe/AUT/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Persian Gulf/AZE/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Asia/BGD/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/BRA/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Pair/CHN/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/South Africa/CMR/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/COL/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/CRI/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/North Africa/DZA/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Europe/GBR/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/South Africa/GHA/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Europe/GRC/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Asia/IDN/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Asia/IND/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Asia/KOR/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/North Africa/MAR/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/MEX/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/South Africa/MOZ/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/South Africa/NGA/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/PAN/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/PER/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Europe/POL/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Persian Gulf/SAU/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Asia/THA/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/North Africa/TUR/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Pair/USA/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Asia/VNM/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Persian Gulf/YEM/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/South Africa/ZAF/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Persian Gulf/AZE/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Asia/BGD/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Latam/CHL/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Pair/CHN/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/South Africa/CMR/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/North Africa/EGY/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Europe/GBR/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/South Africa/GHA/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Asia/IDN/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Asia/IND/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/South Africa/LBR/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/North Africa/MAR/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/South Africa/MOZ/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Latam/PAN/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Latam/PER/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/South Africa/SEN/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Europe/SWE/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Asia/THA/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/North Africa/TUR/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Asia/VNM/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Persian Gulf/YEM/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/South Africa/ZAF/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Persian Gulf/ARE/Health/Pregnant women receiving prenatal care (%)", + "World/Persian Gulf/AZE/Health/Pregnant women receiving prenatal care (%)", + "World/Asia/BGD/Health/Pregnant women receiving prenatal care (%)", + "World/Pair/CHN/Health/Pregnant women receiving prenatal care (%)", + "World/South Africa/CMR/Health/Pregnant women receiving prenatal care (%)", + "World/Latam/COL/Health/Pregnant women receiving prenatal care (%)", + "World/Latam/CRI/Health/Pregnant women receiving prenatal care (%)", + "World/North Africa/DZA/Health/Pregnant women receiving prenatal care (%)", + "World/North Africa/EGY/Health/Pregnant women receiving prenatal care (%)", + "World/Asia/IDN/Health/Pregnant women receiving prenatal care (%)", + "World/Asia/IND/Health/Pregnant women receiving prenatal care (%)", + "World/South Africa/LBR/Health/Pregnant women receiving prenatal care (%)", + "World/North Africa/MAR/Health/Pregnant women receiving prenatal care (%)", + "World/South Africa/MOZ/Health/Pregnant women receiving prenatal care (%)", + "World/South Africa/NGA/Health/Pregnant women receiving prenatal care (%)", + "World/Latam/PER/Health/Pregnant women receiving prenatal care (%)", + "World/Asia/PHL/Health/Pregnant women receiving prenatal care (%)", + "World/Persian Gulf/QAT/Health/Pregnant women receiving prenatal care (%)", + "World/Persian Gulf/SAU/Health/Pregnant women receiving prenatal care (%)", + "World/South Africa/SEN/Health/Pregnant women receiving prenatal care (%)", + "World/North Africa/TUR/Health/Pregnant women receiving prenatal care (%)", + "World/Latam/VEN/Health/Pregnant women receiving prenatal care (%)", + "World/Asia/VNM/Health/Pregnant women receiving prenatal care (%)", + "World/Persian Gulf/YEM/Health/Pregnant women receiving prenatal care (%)", + "World/Europe/AUT/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Persian Gulf/AZE/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Asia/BGD/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/BRA/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Pair/CHN/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/South Africa/CMR/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/COL/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/CRI/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Europe/DEU/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/North Africa/DZA/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/North Africa/EGY/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Europe/ESP/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Europe/GBR/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/South Africa/GHA/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Europe/GRC/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Asia/IND/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/North Africa/ISR/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/North Africa/MAR/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/MEX/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/South Africa/MOZ/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/South Africa/NGA/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Europe/NLD/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Persian Gulf/OMN/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/PAN/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/PER/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Asia/PHL/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Persian Gulf/QAT/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Persian Gulf/SAU/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/South Africa/SEN/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Pair/USA/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/VEN/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Asia/VNM/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Persian Gulf/YEM/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Persian Gulf/AZE/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Asia/BGD/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/BRA/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/CHL/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Pair/CHN/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/CMR/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/COL/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/CRI/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/North Africa/DZA/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/North Africa/EGY/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Europe/ESP/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Europe/GBR/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/GHA/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Persian Gulf/IRQ/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/North Africa/ISR/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Asia/KOR/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/LBR/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/North Africa/MAR/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/MEX/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/MOZ/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/NGA/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Europe/NLD/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Persian Gulf/OMN/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/PAN/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/PER/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Asia/PHL/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Persian Gulf/QAT/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Persian Gulf/SAU/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/SEN/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Asia/THA/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Pair/USA/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/VEN/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Asia/VNM/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Persian Gulf/YEM/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/ZAF/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Persian Gulf/ARE/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/ARG/Health/Prevalence of anemia among pregnant women (%)", + "World/Persian Gulf/AZE/Health/Prevalence of anemia among pregnant women (%)", + "World/Asia/BGD/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/BRA/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/CHL/Health/Prevalence of anemia among pregnant women (%)", + "World/Pair/CHN/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/CMR/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/COL/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/CRI/Health/Prevalence of anemia among pregnant women (%)", + "World/North Africa/DZA/Health/Prevalence of anemia among pregnant women (%)", + "World/North Africa/EGY/Health/Prevalence of anemia among pregnant women (%)", + "World/Europe/GBR/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/GHA/Health/Prevalence of anemia among pregnant women (%)", + "World/Europe/HRV/Health/Prevalence of anemia among pregnant women (%)", + "World/Asia/IND/Health/Prevalence of anemia among pregnant women (%)", + "World/Persian Gulf/IRQ/Health/Prevalence of anemia among pregnant women (%)", + "World/North Africa/ISR/Health/Prevalence of anemia among pregnant women (%)", + "World/Asia/KOR/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/LBR/Health/Prevalence of anemia among pregnant women (%)", + "World/North Africa/MAR/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/MEX/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/MOZ/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/NGA/Health/Prevalence of anemia among pregnant women (%)", + "World/Persian Gulf/OMN/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/PAN/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/PER/Health/Prevalence of anemia among pregnant women (%)", + "World/Asia/PHL/Health/Prevalence of anemia among pregnant women (%)", + "World/Persian Gulf/QAT/Health/Prevalence of anemia among pregnant women (%)", + "World/Persian Gulf/SAU/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/SEN/Health/Prevalence of anemia among pregnant women (%)", + "World/Pair/USA/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/VEN/Health/Prevalence of anemia among pregnant women (%)", + "World/Asia/VNM/Health/Prevalence of anemia among pregnant women (%)", + "World/Persian Gulf/YEM/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/ZAF/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/ARG/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Persian Gulf/AZE/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Asia/BGD/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/BRA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/CHL/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Pair/CHN/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/CMR/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/COL/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/CRI/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/North Africa/DZA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/North Africa/EGY/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Europe/ESP/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Europe/FRA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Europe/GBR/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/GHA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Europe/GRC/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Persian Gulf/IRQ/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/North Africa/ISR/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Asia/KOR/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/LBR/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/North Africa/MAR/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/MEX/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/MOZ/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/NGA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Europe/NLD/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Persian Gulf/OMN/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/PAN/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/PER/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Asia/PHL/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Persian Gulf/QAT/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Persian Gulf/SAU/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/SEN/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Asia/THA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Pair/USA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/VEN/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Asia/VNM/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Persian Gulf/YEM/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/ZAF/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/ARG/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/AUT/Health/Prevalence of current tobacco use (% of adults)", + "World/Persian Gulf/AZE/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/BGD/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/BRA/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/CHL/Health/Prevalence of current tobacco use (% of adults)", + "World/Pair/CHN/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/CMR/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/COL/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/CRI/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/DEU/Health/Prevalence of current tobacco use (% of adults)", + "World/North Africa/DZA/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/ESP/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/FRA/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/GBR/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/GHA/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/GRC/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/HRV/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/IDN/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/IND/Health/Prevalence of current tobacco use (% of adults)", + "World/Persian Gulf/IRQ/Health/Prevalence of current tobacco use (% of adults)", + "World/North Africa/ISR/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/KOR/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/LBR/Health/Prevalence of current tobacco use (% of adults)", + "World/North Africa/MAR/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/MEX/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/MOZ/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/NGA/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/NLD/Health/Prevalence of current tobacco use (% of adults)", + "World/Persian Gulf/OMN/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/PAN/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/PER/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/PHL/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/POL/Health/Prevalence of current tobacco use (% of adults)", + "World/Persian Gulf/QAT/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/SEN/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/SWE/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/THA/Health/Prevalence of current tobacco use (% of adults)", + "World/North Africa/TUR/Health/Prevalence of current tobacco use (% of adults)", + "World/Pair/USA/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/VNM/Health/Prevalence of current tobacco use (% of adults)", + "World/Persian Gulf/YEM/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/ZAF/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/ARG/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Persian Gulf/AZE/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/BGD/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/CHL/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Pair/CHN/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/COL/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/CRI/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/North Africa/DZA/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/North Africa/EGY/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Europe/GRC/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/IDN/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/IND/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/KOR/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/North Africa/MAR/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/MEX/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/South Africa/NGA/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Europe/NLD/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Persian Gulf/OMN/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/PAN/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/PER/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/PHL/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Europe/POL/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Persian Gulf/QAT/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Persian Gulf/SAU/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/THA/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Pair/USA/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/VEN/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/VNM/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Persian Gulf/YEM/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/South Africa/ZAF/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Persian Gulf/AZE/Health/Prevalence of undernourishment (% of population)", + "World/Asia/BGD/Health/Prevalence of undernourishment (% of population)", + "World/Latam/BRA/Health/Prevalence of undernourishment (% of population)", + "World/Pair/CHN/Health/Prevalence of undernourishment (% of population)", + "World/South Africa/CMR/Health/Prevalence of undernourishment (% of population)", + "World/North Africa/DZA/Health/Prevalence of undernourishment (% of population)", + "World/South Africa/GHA/Health/Prevalence of undernourishment (% of population)", + "World/Asia/IDN/Health/Prevalence of undernourishment (% of population)", + "World/Persian Gulf/IRQ/Health/Prevalence of undernourishment (% of population)", + "World/North Africa/MAR/Health/Prevalence of undernourishment (% of population)", + "World/Latam/MEX/Health/Prevalence of undernourishment (% of population)", + "World/South Africa/MOZ/Health/Prevalence of undernourishment (% of population)", + "World/South Africa/NGA/Health/Prevalence of undernourishment (% of population)", + "World/Persian Gulf/OMN/Health/Prevalence of undernourishment (% of population)", + "World/Latam/PAN/Health/Prevalence of undernourishment (% of population)", + "World/Asia/PHL/Health/Prevalence of undernourishment (% of population)", + "World/South Africa/SEN/Health/Prevalence of undernourishment (% of population)", + "World/Asia/THA/Health/Prevalence of undernourishment (% of population)", + "World/Latam/VEN/Health/Prevalence of undernourishment (% of population)", + "World/Asia/VNM/Health/Prevalence of undernourishment (% of population)", + "World/Persian Gulf/YEM/Health/Prevalence of undernourishment (% of population)", + "World/Persian Gulf/ARE/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Persian Gulf/AZE/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Asia/BGD/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Latam/BRA/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Pair/CHN/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/South Africa/CMR/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Latam/CRI/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Europe/GBR/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Asia/IDN/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/South Africa/NGA/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Europe/NLD/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Persian Gulf/OMN/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Latam/PAN/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Persian Gulf/QAT/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Persian Gulf/SAU/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Latam/VEN/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Asia/VNM/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Persian Gulf/YEM/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Persian Gulf/AZE/Economy/Primary income payments (BoP, current US$)", + "World/Asia/BGD/Economy/Primary income payments (BoP, current US$)", + "World/Latam/BRA/Economy/Primary income payments (BoP, current US$)", + "World/Pair/CHN/Economy/Primary income payments (BoP, current US$)", + "World/Latam/COL/Economy/Primary income payments (BoP, current US$)", + "World/Latam/CRI/Economy/Primary income payments (BoP, current US$)", + "World/North Africa/EGY/Economy/Primary income payments (BoP, current US$)", + "World/Europe/ESP/Economy/Primary income payments (BoP, current US$)", + "World/South Africa/GHA/Economy/Primary income payments (BoP, current US$)", + "World/Europe/GRC/Economy/Primary income payments (BoP, current US$)", + "World/Europe/HRV/Economy/Primary income payments (BoP, current US$)", + "World/Asia/IDN/Economy/Primary income payments (BoP, current US$)", + "World/Asia/IND/Economy/Primary income payments (BoP, current US$)", + "World/North Africa/ISR/Economy/Primary income payments (BoP, current US$)", + "World/Asia/KOR/Economy/Primary income payments (BoP, current US$)", + "World/Latam/MEX/Economy/Primary income payments (BoP, current US$)", + "World/Europe/NLD/Economy/Primary income payments (BoP, current US$)", + "World/Persian Gulf/OMN/Economy/Primary income payments (BoP, current US$)", + "World/Latam/PAN/Economy/Primary income payments (BoP, current US$)", + "World/Latam/PER/Economy/Primary income payments (BoP, current US$)", + "World/Asia/PHL/Economy/Primary income payments (BoP, current US$)", + "World/Europe/POL/Economy/Primary income payments (BoP, current US$)", + "World/Persian Gulf/SAU/Economy/Primary income payments (BoP, current US$)", + "World/South Africa/SEN/Economy/Primary income payments (BoP, current US$)", + "World/Asia/THA/Economy/Primary income payments (BoP, current US$)", + "World/North Africa/TUR/Economy/Primary income payments (BoP, current US$)", + "World/Pair/USA/Economy/Primary income payments (BoP, current US$)", + "World/Latam/VEN/Economy/Primary income payments (BoP, current US$)", + "World/Asia/VNM/Economy/Primary income payments (BoP, current US$)", + "World/South Africa/ZAF/Economy/Primary income payments (BoP, current US$)", + "World/Persian Gulf/AZE/Economy/Primary income receipts (BoP, current US$)", + "World/Latam/CHL/Economy/Primary income receipts (BoP, current US$)", + "World/Pair/CHN/Economy/Primary income receipts (BoP, current US$)", + "World/Latam/COL/Economy/Primary income receipts (BoP, current US$)", + "World/Europe/ESP/Economy/Primary income receipts (BoP, current US$)", + "World/South Africa/GHA/Economy/Primary income receipts (BoP, current US$)", + "World/Europe/GRC/Economy/Primary income receipts (BoP, current US$)", + "World/Europe/HRV/Economy/Primary income receipts (BoP, current US$)", + "World/Asia/IND/Economy/Primary income receipts (BoP, current US$)", + "World/North Africa/ISR/Economy/Primary income receipts (BoP, current US$)", + "World/Asia/KOR/Economy/Primary income receipts (BoP, current US$)", + "World/South Africa/LBR/Economy/Primary income receipts (BoP, current US$)", + "World/Latam/MEX/Economy/Primary income receipts (BoP, current US$)", + "World/Europe/NLD/Economy/Primary income receipts (BoP, current US$)", + "World/Latam/PER/Economy/Primary income receipts (BoP, current US$)", + "World/Asia/PHL/Economy/Primary income receipts (BoP, current US$)", + "World/Europe/POL/Economy/Primary income receipts (BoP, current US$)", + "World/Persian Gulf/QAT/Economy/Primary income receipts (BoP, current US$)", + "World/South Africa/SEN/Economy/Primary income receipts (BoP, current US$)", + "World/Asia/THA/Economy/Primary income receipts (BoP, current US$)", + "World/Pair/USA/Economy/Primary income receipts (BoP, current US$)", + "World/Asia/VNM/Economy/Primary income receipts (BoP, current US$)", + "World/Persian Gulf/YEM/Economy/Primary income receipts (BoP, current US$)", + "World/Persian Gulf/ARE/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/ARG/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/AUT/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Persian Gulf/AZE/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Asia/BGD/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/BRA/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/CHL/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Pair/CHN/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/South Africa/CMR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/COL/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/CRI/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/DEU/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/North Africa/DZA/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/North Africa/EGY/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/ESP/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/FRA/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/GBR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/South Africa/GHA/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/HRV/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Asia/IDN/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Asia/IND/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/North Africa/ISR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Asia/KOR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/South Africa/LBR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/North Africa/MAR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/MEX/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/South Africa/MOZ/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/South Africa/NGA/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/NLD/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Persian Gulf/OMN/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/PAN/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/PER/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Asia/PHL/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/POL/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Persian Gulf/QAT/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Persian Gulf/SAU/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/South Africa/SEN/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/SWE/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/North Africa/TUR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Pair/USA/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Asia/VNM/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Persian Gulf/YEM/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Persian Gulf/ARE/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Latam/ARG/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/AUT/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Latam/CHL/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Pair/CHN/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/South Africa/CMR/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Latam/COL/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/DEU/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/North Africa/DZA/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/ESP/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/FRA/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/GBR/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/South Africa/GHA/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/GRC/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/HRV/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Asia/IDN/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Asia/IND/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/North Africa/ISR/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Asia/KOR/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/North Africa/MAR/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/South Africa/MOZ/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/South Africa/NGA/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/NLD/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Persian Gulf/OMN/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Latam/PAN/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Latam/PER/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Asia/PHL/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/POL/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Persian Gulf/QAT/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Persian Gulf/SAU/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/South Africa/SEN/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/SWE/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Asia/THA/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/North Africa/TUR/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Pair/USA/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Latam/VEN/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Asia/VNM/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Persian Gulf/ARE/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/ARG/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/AUT/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Persian Gulf/AZE/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/BGD/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/BRA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/CHL/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Pair/CHN/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/South Africa/CMR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/COL/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/CRI/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/North Africa/DZA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/North Africa/EGY/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/ESP/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/FRA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/GBR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/South Africa/GHA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/GRC/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/HRV/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/IDN/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/IND/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/North Africa/ISR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/KOR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/South Africa/LBR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/North Africa/MAR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/MEX/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/South Africa/MOZ/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/South Africa/NGA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/NLD/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Persian Gulf/OMN/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/PAN/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/PER/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/PHL/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/POL/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Persian Gulf/QAT/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Persian Gulf/SAU/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/South Africa/SEN/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/SWE/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/THA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/North Africa/TUR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Pair/USA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/VNM/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Persian Gulf/YEM/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Persian Gulf/ARE/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/ARG/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/AUT/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/BGD/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/CHL/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Pair/CHN/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/South Africa/CMR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/COL/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/DEU/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/North Africa/DZA/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/North Africa/EGY/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/ESP/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/FRA/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/GBR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/South Africa/GHA/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/GRC/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/HRV/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/IDN/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/IND/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/North Africa/ISR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/KOR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/South Africa/LBR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/North Africa/MAR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/South Africa/NGA/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/NLD/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Persian Gulf/OMN/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/PAN/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/PER/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/PHL/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/POL/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Persian Gulf/QAT/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Persian Gulf/SAU/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/South Africa/SEN/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/THA/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/North Africa/TUR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/VEN/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/VNM/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Persian Gulf/YEM/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/ARG/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Persian Gulf/AZE/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Latam/CHL/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Pair/CHN/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Latam/COL/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Latam/CRI/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/North Africa/EGY/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Europe/ESP/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/South Africa/GHA/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Europe/GRC/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Asia/IND/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Latam/MEX/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/South Africa/MOZ/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/South Africa/NGA/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Latam/PAN/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Latam/PER/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Asia/PHL/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Persian Gulf/SAU/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/South Africa/SEN/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Asia/THA/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/North Africa/TUR/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Pair/USA/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Asia/VNM/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Persian Gulf/YEM/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Persian Gulf/AZE/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Asia/BGD/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Latam/BRA/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Latam/CHL/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Pair/CHN/Equality/Proportion of seats held by women in national parliaments (%)", + "World/South Africa/CMR/Equality/Proportion of seats held by women in national parliaments (%)", + "World/North Africa/DZA/Equality/Proportion of seats held by women in national parliaments (%)", + "World/North Africa/EGY/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Europe/GBR/Equality/Proportion of seats held by women in national parliaments (%)", + "World/South Africa/GHA/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Asia/IND/Equality/Proportion of seats held by women in national parliaments (%)", + "World/North Africa/ISR/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Asia/KOR/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Latam/MEX/Equality/Proportion of seats held by women in national parliaments (%)", + "World/South Africa/MOZ/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Latam/PAN/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Asia/PHL/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Europe/POL/Equality/Proportion of seats held by women in national parliaments (%)", + "World/South Africa/SEN/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Asia/THA/Equality/Proportion of seats held by women in national parliaments (%)", + "World/North Africa/TUR/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Pair/USA/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Asia/VNM/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Persian Gulf/ARE/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Latam/ARG/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/AUT/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Asia/BGD/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Latam/BRA/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Latam/CHL/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Latam/CRI/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/DEU/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/North Africa/DZA/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/ESP/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/FRA/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/GBR/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/South Africa/GHA/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/GRC/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Asia/IND/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/North Africa/ISR/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Asia/KOR/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Latam/MEX/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/South Africa/MOZ/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/South Africa/NGA/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/NLD/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Persian Gulf/OMN/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Latam/PAN/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Persian Gulf/QAT/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Persian Gulf/SAU/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/South Africa/SEN/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/North Africa/TUR/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Pair/USA/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Asia/VNM/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Persian Gulf/YEM/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/South Africa/ZAF/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Persian Gulf/ARE/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/ARG/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/AUT/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Asia/BGD/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/BRA/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/CHL/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Pair/CHN/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/CRI/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/DEU/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/North Africa/DZA/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/ESP/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/FRA/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/GBR/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/GRC/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/North Africa/ISR/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Asia/KOR/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/MEX/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/South Africa/MOZ/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/NLD/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Persian Gulf/OMN/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/PAN/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/POL/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Persian Gulf/QAT/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Persian Gulf/SAU/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/South Africa/SEN/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/North Africa/TUR/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Pair/USA/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/VEN/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Asia/VNM/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/South Africa/ZAF/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Persian Gulf/ARE/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Latam/ARG/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Asia/BGD/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Pair/CHN/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Latam/CRI/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Europe/DEU/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/North Africa/EGY/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Europe/GBR/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/South Africa/GHA/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Europe/GRC/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Asia/IDN/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Asia/IND/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Asia/KOR/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/North Africa/MAR/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Latam/MEX/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/South Africa/MOZ/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Europe/NLD/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Latam/PAN/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Asia/PHL/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Europe/POL/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Persian Gulf/SAU/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Europe/SWE/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/North Africa/TUR/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Pair/USA/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Asia/VNM/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/South Africa/ZAF/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Persian Gulf/ARE/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/ARG/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/AUT/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Persian Gulf/AZE/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/BGD/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/BRA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/CHL/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Pair/CHN/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/CMR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/COL/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/CRI/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/North Africa/DZA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/North Africa/EGY/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/ESP/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/FRA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/GBR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/GHA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/IDN/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/IND/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/North Africa/ISR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/KOR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/LBR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/North Africa/MAR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/MEX/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/MOZ/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/NGA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/NLD/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Persian Gulf/OMN/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/PAN/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/PER/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/PHL/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/POL/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Persian Gulf/QAT/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Persian Gulf/SAU/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/SEN/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/THA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/North Africa/TUR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Pair/USA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/VEN/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/VNM/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Persian Gulf/YEM/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/ZAF/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/AUT/R&D/Researchers in R&D (per million people)", + "World/Latam/BRA/R&D/Researchers in R&D (per million people)", + "World/Pair/CHN/R&D/Researchers in R&D (per million people)", + "World/Europe/DEU/R&D/Researchers in R&D (per million people)", + "World/North Africa/DZA/R&D/Researchers in R&D (per million people)", + "World/Europe/ESP/R&D/Researchers in R&D (per million people)", + "World/Europe/FRA/R&D/Researchers in R&D (per million people)", + "World/Europe/GBR/R&D/Researchers in R&D (per million people)", + "World/South Africa/GHA/R&D/Researchers in R&D (per million people)", + "World/Europe/GRC/R&D/Researchers in R&D (per million people)", + "World/Asia/IND/R&D/Researchers in R&D (per million people)", + "World/Asia/KOR/R&D/Researchers in R&D (per million people)", + "World/North Africa/MAR/R&D/Researchers in R&D (per million people)", + "World/South Africa/MOZ/R&D/Researchers in R&D (per million people)", + "World/Europe/NLD/R&D/Researchers in R&D (per million people)", + "World/Persian Gulf/OMN/R&D/Researchers in R&D (per million people)", + "World/Asia/PHL/R&D/Researchers in R&D (per million people)", + "World/Europe/POL/R&D/Researchers in R&D (per million people)", + "World/Asia/THA/R&D/Researchers in R&D (per million people)", + "World/North Africa/TUR/R&D/Researchers in R&D (per million people)", + "World/Pair/USA/R&D/Researchers in R&D (per million people)", + "World/Latam/VEN/R&D/Researchers in R&D (per million people)", + "World/Persian Gulf/AZE/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Asia/BGD/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Latam/BRA/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Latam/CHL/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Pair/CHN/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Latam/CRI/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/North Africa/EGY/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Europe/ESP/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/South Africa/GHA/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Asia/IND/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Asia/KOR/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/North Africa/MAR/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Latam/MEX/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Latam/PAN/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Latam/PER/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Europe/POL/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Asia/THA/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Pair/USA/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Asia/VNM/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Persian Gulf/AZE/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Asia/BGD/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/BRA/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/CHL/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Pair/CHN/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/South Africa/CMR/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/COL/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/CRI/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/North Africa/DZA/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/North Africa/EGY/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/South Africa/GHA/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Asia/IDN/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Asia/IND/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/North Africa/MAR/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/MEX/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/South Africa/MOZ/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/PAN/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/PER/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Asia/PHL/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Europe/POL/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/South Africa/SEN/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Asia/THA/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Asia/VNM/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Persian Gulf/ARE/Demography/Rural population", + "World/Latam/ARG/Demography/Rural population", + "World/Europe/AUT/Demography/Rural population", + "World/Persian Gulf/AZE/Demography/Rural population", + "World/Asia/BGD/Demography/Rural population", + "World/Latam/BRA/Demography/Rural population", + "World/Pair/CHN/Demography/Rural population", + "World/South Africa/CMR/Demography/Rural population", + "World/Latam/COL/Demography/Rural population", + "World/Latam/CRI/Demography/Rural population", + "World/North Africa/DZA/Demography/Rural population", + "World/North Africa/EGY/Demography/Rural population", + "World/Europe/FRA/Demography/Rural population", + "World/Europe/GBR/Demography/Rural population", + "World/South Africa/GHA/Demography/Rural population", + "World/Europe/GRC/Demography/Rural population", + "World/Europe/HRV/Demography/Rural population", + "World/Asia/IDN/Demography/Rural population", + "World/Asia/IND/Demography/Rural population", + "World/North Africa/ISR/Demography/Rural population", + "World/South Africa/LBR/Demography/Rural population", + "World/North Africa/MAR/Demography/Rural population", + "World/South Africa/MOZ/Demography/Rural population", + "World/South Africa/NGA/Demography/Rural population", + "World/Europe/NLD/Demography/Rural population", + "World/Persian Gulf/OMN/Demography/Rural population", + "World/Latam/PAN/Demography/Rural population", + "World/Asia/PHL/Demography/Rural population", + "World/Europe/POL/Demography/Rural population", + "World/Persian Gulf/QAT/Demography/Rural population", + "World/Persian Gulf/SAU/Demography/Rural population", + "World/South Africa/SEN/Demography/Rural population", + "World/North Africa/TUR/Demography/Rural population", + "World/Pair/USA/Demography/Rural population", + "World/Asia/VNM/Demography/Rural population", + "World/Persian Gulf/YEM/Demography/Rural population", + "World/Persian Gulf/ARE/Demography/Rural population (% of total population)", + "World/Latam/ARG/Demography/Rural population (% of total population)", + "World/Persian Gulf/AZE/Demography/Rural population (% of total population)", + "World/Asia/BGD/Demography/Rural population (% of total population)", + "World/Latam/BRA/Demography/Rural population (% of total population)", + "World/Latam/CHL/Demography/Rural population (% of total population)", + "World/Pair/CHN/Demography/Rural population (% of total population)", + "World/South Africa/CMR/Demography/Rural population (% of total population)", + "World/Latam/COL/Demography/Rural population (% of total population)", + "World/Latam/CRI/Demography/Rural population (% of total population)", + "World/Europe/DEU/Demography/Rural population (% of total population)", + "World/North Africa/DZA/Demography/Rural population (% of total population)", + "World/Europe/ESP/Demography/Rural population (% of total population)", + "World/Europe/FRA/Demography/Rural population (% of total population)", + "World/Europe/GBR/Demography/Rural population (% of total population)", + "World/South Africa/GHA/Demography/Rural population (% of total population)", + "World/Europe/GRC/Demography/Rural population (% of total population)", + "World/Europe/HRV/Demography/Rural population (% of total population)", + "World/Asia/IDN/Demography/Rural population (% of total population)", + "World/Asia/IND/Demography/Rural population (% of total population)", + "World/Persian Gulf/IRQ/Demography/Rural population (% of total population)", + "World/North Africa/ISR/Demography/Rural population (% of total population)", + "World/South Africa/LBR/Demography/Rural population (% of total population)", + "World/North Africa/MAR/Demography/Rural population (% of total population)", + "World/Latam/MEX/Demography/Rural population (% of total population)", + "World/South Africa/MOZ/Demography/Rural population (% of total population)", + "World/South Africa/NGA/Demography/Rural population (% of total population)", + "World/Europe/NLD/Demography/Rural population (% of total population)", + "World/Persian Gulf/OMN/Demography/Rural population (% of total population)", + "World/Latam/PAN/Demography/Rural population (% of total population)", + "World/Latam/PER/Demography/Rural population (% of total population)", + "World/Europe/POL/Demography/Rural population (% of total population)", + "World/Persian Gulf/QAT/Demography/Rural population (% of total population)", + "World/Persian Gulf/SAU/Demography/Rural population (% of total population)", + "World/South Africa/SEN/Demography/Rural population (% of total population)", + "World/Asia/THA/Demography/Rural population (% of total population)", + "World/North Africa/TUR/Demography/Rural population (% of total population)", + "World/Pair/USA/Demography/Rural population (% of total population)", + "World/Latam/VEN/Demography/Rural population (% of total population)", + "World/Asia/VNM/Demography/Rural population (% of total population)", + "World/Persian Gulf/YEM/Demography/Rural population (% of total population)", + "World/South Africa/ZAF/Demography/Rural population (% of total population)", + "World/Persian Gulf/ARE/industry/Scientific and technical journal articles", + "World/Latam/ARG/industry/Scientific and technical journal articles", + "World/Europe/AUT/industry/Scientific and technical journal articles", + "World/Persian Gulf/AZE/industry/Scientific and technical journal articles", + "World/Asia/BGD/industry/Scientific and technical journal articles", + "World/Latam/BRA/industry/Scientific and technical journal articles", + "World/Latam/CHL/industry/Scientific and technical journal articles", + "World/Pair/CHN/industry/Scientific and technical journal articles", + "World/South Africa/CMR/industry/Scientific and technical journal articles", + "World/Latam/COL/industry/Scientific and technical journal articles", + "World/Latam/CRI/industry/Scientific and technical journal articles", + "World/North Africa/DZA/industry/Scientific and technical journal articles", + "World/North Africa/EGY/industry/Scientific and technical journal articles", + "World/Europe/ESP/industry/Scientific and technical journal articles", + "World/Europe/FRA/industry/Scientific and technical journal articles", + "World/Europe/GBR/industry/Scientific and technical journal articles", + "World/South Africa/GHA/industry/Scientific and technical journal articles", + "World/Europe/GRC/industry/Scientific and technical journal articles", + "World/Europe/HRV/industry/Scientific and technical journal articles", + "World/Asia/IDN/industry/Scientific and technical journal articles", + "World/Asia/IND/industry/Scientific and technical journal articles", + "World/Persian Gulf/IRQ/industry/Scientific and technical journal articles", + "World/North Africa/ISR/industry/Scientific and technical journal articles", + "World/Asia/KOR/industry/Scientific and technical journal articles", + "World/South Africa/LBR/industry/Scientific and technical journal articles", + "World/North Africa/MAR/industry/Scientific and technical journal articles", + "World/Latam/MEX/industry/Scientific and technical journal articles", + "World/South Africa/MOZ/industry/Scientific and technical journal articles", + "World/South Africa/NGA/industry/Scientific and technical journal articles", + "World/Europe/NLD/industry/Scientific and technical journal articles", + "World/Persian Gulf/OMN/industry/Scientific and technical journal articles", + "World/Latam/PAN/industry/Scientific and technical journal articles", + "World/Latam/PER/industry/Scientific and technical journal articles", + "World/Asia/PHL/industry/Scientific and technical journal articles", + "World/Europe/POL/industry/Scientific and technical journal articles", + "World/Persian Gulf/QAT/industry/Scientific and technical journal articles", + "World/Persian Gulf/SAU/industry/Scientific and technical journal articles", + "World/South Africa/SEN/industry/Scientific and technical journal articles", + "World/Europe/SWE/industry/Scientific and technical journal articles", + "World/Asia/THA/industry/Scientific and technical journal articles", + "World/North Africa/TUR/industry/Scientific and technical journal articles", + "World/Pair/USA/industry/Scientific and technical journal articles", + "World/Latam/VEN/industry/Scientific and technical journal articles", + "World/Asia/VNM/industry/Scientific and technical journal articles", + "World/Persian Gulf/YEM/industry/Scientific and technical journal articles", + "World/South Africa/ZAF/industry/Scientific and technical journal articles", + "World/Persian Gulf/AZE/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/BGD/Economy/Secondary income receipts (BoP, current US$)", + "World/Latam/CHL/Economy/Secondary income receipts (BoP, current US$)", + "World/South Africa/CMR/Economy/Secondary income receipts (BoP, current US$)", + "World/Latam/COL/Economy/Secondary income receipts (BoP, current US$)", + "World/Latam/CRI/Economy/Secondary income receipts (BoP, current US$)", + "World/Europe/DEU/Economy/Secondary income receipts (BoP, current US$)", + "World/North Africa/DZA/Economy/Secondary income receipts (BoP, current US$)", + "World/North Africa/EGY/Economy/Secondary income receipts (BoP, current US$)", + "World/South Africa/GHA/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/IDN/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/IND/Economy/Secondary income receipts (BoP, current US$)", + "World/North Africa/ISR/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/KOR/Economy/Secondary income receipts (BoP, current US$)", + "World/North Africa/MAR/Economy/Secondary income receipts (BoP, current US$)", + "World/Latam/MEX/Economy/Secondary income receipts (BoP, current US$)", + "World/South Africa/NGA/Economy/Secondary income receipts (BoP, current US$)", + "World/Europe/NLD/Economy/Secondary income receipts (BoP, current US$)", + "World/Latam/PER/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/PHL/Economy/Secondary income receipts (BoP, current US$)", + "World/South Africa/SEN/Economy/Secondary income receipts (BoP, current US$)", + "World/Europe/SWE/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/THA/Economy/Secondary income receipts (BoP, current US$)", + "World/Pair/USA/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/VNM/Economy/Secondary income receipts (BoP, current US$)", + "World/Persian Gulf/YEM/Economy/Secondary income receipts (BoP, current US$)", + "World/South Africa/ZAF/Economy/Secondary income receipts (BoP, current US$)", + "World/Europe/AUT/Exports/Service exports (BoP, current US$)", + "World/Persian Gulf/AZE/Exports/Service exports (BoP, current US$)", + "World/Asia/BGD/Exports/Service exports (BoP, current US$)", + "World/Latam/BRA/Exports/Service exports (BoP, current US$)", + "World/Latam/CHL/Exports/Service exports (BoP, current US$)", + "World/Pair/CHN/Exports/Service exports (BoP, current US$)", + "World/South Africa/CMR/Exports/Service exports (BoP, current US$)", + "World/Latam/COL/Exports/Service exports (BoP, current US$)", + "World/Latam/CRI/Exports/Service exports (BoP, current US$)", + "World/Europe/DEU/Exports/Service exports (BoP, current US$)", + "World/North Africa/DZA/Exports/Service exports (BoP, current US$)", + "World/Europe/ESP/Exports/Service exports (BoP, current US$)", + "World/Europe/FRA/Exports/Service exports (BoP, current US$)", + "World/Europe/GBR/Exports/Service exports (BoP, current US$)", + "World/South Africa/GHA/Exports/Service exports (BoP, current US$)", + "World/Europe/GRC/Exports/Service exports (BoP, current US$)", + "World/Europe/HRV/Exports/Service exports (BoP, current US$)", + "World/Asia/IDN/Exports/Service exports (BoP, current US$)", + "World/Asia/IND/Exports/Service exports (BoP, current US$)", + "World/North Africa/ISR/Exports/Service exports (BoP, current US$)", + "World/Asia/KOR/Exports/Service exports (BoP, current US$)", + "World/North Africa/MAR/Exports/Service exports (BoP, current US$)", + "World/Europe/NLD/Exports/Service exports (BoP, current US$)", + "World/Persian Gulf/OMN/Exports/Service exports (BoP, current US$)", + "World/Latam/PAN/Exports/Service exports (BoP, current US$)", + "World/Latam/PER/Exports/Service exports (BoP, current US$)", + "World/Asia/PHL/Exports/Service exports (BoP, current US$)", + "World/Europe/POL/Exports/Service exports (BoP, current US$)", + "World/Persian Gulf/QAT/Exports/Service exports (BoP, current US$)", + "World/Persian Gulf/SAU/Exports/Service exports (BoP, current US$)", + "World/South Africa/SEN/Exports/Service exports (BoP, current US$)", + "World/Europe/SWE/Exports/Service exports (BoP, current US$)", + "World/Asia/THA/Exports/Service exports (BoP, current US$)", + "World/North Africa/TUR/Exports/Service exports (BoP, current US$)", + "World/Pair/USA/Exports/Service exports (BoP, current US$)", + "World/Asia/VNM/Exports/Service exports (BoP, current US$)", + "World/South Africa/ZAF/Exports/Service exports (BoP, current US$)", + "World/Latam/ARG/Imports/Service imports (BoP, current US$)", + "World/Europe/AUT/Imports/Service imports (BoP, current US$)", + "World/Persian Gulf/AZE/Imports/Service imports (BoP, current US$)", + "World/Asia/BGD/Imports/Service imports (BoP, current US$)", + "World/Latam/BRA/Imports/Service imports (BoP, current US$)", + "World/Latam/CHL/Imports/Service imports (BoP, current US$)", + "World/Pair/CHN/Imports/Service imports (BoP, current US$)", + "World/South Africa/CMR/Imports/Service imports (BoP, current US$)", + "World/Latam/COL/Imports/Service imports (BoP, current US$)", + "World/Latam/CRI/Imports/Service imports (BoP, current US$)", + "World/Europe/DEU/Imports/Service imports (BoP, current US$)", + "World/North Africa/DZA/Imports/Service imports (BoP, current US$)", + "World/North Africa/EGY/Imports/Service imports (BoP, current US$)", + "World/Europe/ESP/Imports/Service imports (BoP, current US$)", + "World/Europe/FRA/Imports/Service imports (BoP, current US$)", + "World/Europe/GBR/Imports/Service imports (BoP, current US$)", + "World/South Africa/GHA/Imports/Service imports (BoP, current US$)", + "World/Europe/HRV/Imports/Service imports (BoP, current US$)", + "World/Asia/IDN/Imports/Service imports (BoP, current US$)", + "World/Asia/IND/Imports/Service imports (BoP, current US$)", + "World/North Africa/ISR/Imports/Service imports (BoP, current US$)", + "World/Asia/KOR/Imports/Service imports (BoP, current US$)", + "World/North Africa/MAR/Imports/Service imports (BoP, current US$)", + "World/Latam/MEX/Imports/Service imports (BoP, current US$)", + "World/South Africa/MOZ/Imports/Service imports (BoP, current US$)", + "World/South Africa/NGA/Imports/Service imports (BoP, current US$)", + "World/Europe/NLD/Imports/Service imports (BoP, current US$)", + "World/Persian Gulf/OMN/Imports/Service imports (BoP, current US$)", + "World/Latam/PAN/Imports/Service imports (BoP, current US$)", + "World/Latam/PER/Imports/Service imports (BoP, current US$)", + "World/Asia/PHL/Imports/Service imports (BoP, current US$)", + "World/Europe/POL/Imports/Service imports (BoP, current US$)", + "World/Persian Gulf/QAT/Imports/Service imports (BoP, current US$)", + "World/South Africa/SEN/Imports/Service imports (BoP, current US$)", + "World/Europe/SWE/Imports/Service imports (BoP, current US$)", + "World/Asia/THA/Imports/Service imports (BoP, current US$)", + "World/North Africa/TUR/Imports/Service imports (BoP, current US$)", + "World/Pair/USA/Imports/Service imports (BoP, current US$)", + "World/Asia/VNM/Imports/Service imports (BoP, current US$)", + "World/South Africa/ZAF/Imports/Service imports (BoP, current US$)", + "World/Persian Gulf/ARE/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Europe/AUT/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Asia/BGD/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/BRA/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/CHL/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Pair/CHN/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/COL/Mortality/Suicide mortality rate (per 100,000 population)", + "World/North Africa/DZA/Mortality/Suicide mortality rate (per 100,000 population)", + "World/North Africa/EGY/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Asia/IDN/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Asia/IND/Mortality/Suicide mortality rate (per 100,000 population)", + "World/North Africa/MAR/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/MEX/Mortality/Suicide mortality rate (per 100,000 population)", + "World/South Africa/NGA/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/PAN/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Asia/PHL/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Europe/POL/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Persian Gulf/QAT/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Persian Gulf/SAU/Mortality/Suicide mortality rate (per 100,000 population)", + "World/South Africa/SEN/Mortality/Suicide mortality rate (per 100,000 population)", + "World/North Africa/TUR/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Pair/USA/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/VEN/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Asia/VNM/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Persian Gulf/YEM/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/ARG/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/AUT/Taxes/Taxes less subsidies on products (current US$)", + "World/Persian Gulf/AZE/Taxes/Taxes less subsidies on products (current US$)", + "World/Asia/BGD/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/BRA/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/CHL/Taxes/Taxes less subsidies on products (current US$)", + "World/South Africa/CMR/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/COL/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/CRI/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/DEU/Taxes/Taxes less subsidies on products (current US$)", + "World/North Africa/DZA/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/ESP/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/FRA/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/GBR/Taxes/Taxes less subsidies on products (current US$)", + "World/South Africa/GHA/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/GRC/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/HRV/Taxes/Taxes less subsidies on products (current US$)", + "World/Asia/IND/Taxes/Taxes less subsidies on products (current US$)", + "World/North Africa/ISR/Taxes/Taxes less subsidies on products (current US$)", + "World/Asia/KOR/Taxes/Taxes less subsidies on products (current US$)", + "World/North Africa/MAR/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/MEX/Taxes/Taxes less subsidies on products (current US$)", + "World/South Africa/MOZ/Taxes/Taxes less subsidies on products (current US$)", + "World/South Africa/NGA/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/NLD/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/PAN/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/PER/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/POL/Taxes/Taxes less subsidies on products (current US$)", + "World/Persian Gulf/SAU/Taxes/Taxes less subsidies on products (current US$)", + "World/South Africa/SEN/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/SWE/Taxes/Taxes less subsidies on products (current US$)", + "World/North Africa/TUR/Taxes/Taxes less subsidies on products (current US$)", + "World/Pair/USA/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/VEN/Taxes/Taxes less subsidies on products (current US$)", + "World/Asia/VNM/Taxes/Taxes less subsidies on products (current US$)", + "World/Persian Gulf/YEM/Taxes/Taxes less subsidies on products (current US$)", + "World/South Africa/ZAF/Taxes/Taxes less subsidies on products (current US$)", + "World/Persian Gulf/AZE/Economy/Taxes on international trade (% of revenue)", + "World/Latam/CHL/Economy/Taxes on international trade (% of revenue)", + "World/Pair/CHN/Economy/Taxes on international trade (% of revenue)", + "World/South Africa/CMR/Economy/Taxes on international trade (% of revenue)", + "World/Latam/COL/Economy/Taxes on international trade (% of revenue)", + "World/North Africa/EGY/Economy/Taxes on international trade (% of revenue)", + "World/Europe/ESP/Economy/Taxes on international trade (% of revenue)", + "World/South Africa/GHA/Economy/Taxes on international trade (% of revenue)", + "World/Europe/HRV/Economy/Taxes on international trade (% of revenue)", + "World/Asia/IND/Economy/Taxes on international trade (% of revenue)", + "World/Asia/KOR/Economy/Taxes on international trade (% of revenue)", + "World/North Africa/MAR/Economy/Taxes on international trade (% of revenue)", + "World/Latam/MEX/Economy/Taxes on international trade (% of revenue)", + "World/Latam/PAN/Economy/Taxes on international trade (% of revenue)", + "World/Latam/PER/Economy/Taxes on international trade (% of revenue)", + "World/Europe/POL/Economy/Taxes on international trade (% of revenue)", + "World/Asia/THA/Economy/Taxes on international trade (% of revenue)", + "World/Latam/ARG/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/AUT/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Asia/BGD/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Latam/CHL/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Pair/CHN/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Latam/COL/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Latam/CRI/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/DEU/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/North Africa/DZA/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/ESP/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/FRA/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/GBR/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/GRC/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/North Africa/ISR/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Asia/KOR/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/North Africa/MAR/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Latam/MEX/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Persian Gulf/OMN/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Latam/PER/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/POL/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/SWE/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Pair/USA/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Persian Gulf/ARE/Industry/Time required to start a business (days)", + "World/Persian Gulf/AZE/Industry/Time required to start a business (days)", + "World/Latam/CHL/Industry/Time required to start a business (days)", + "World/Pair/CHN/Industry/Time required to start a business (days)", + "World/South Africa/CMR/Industry/Time required to start a business (days)", + "World/Latam/COL/Industry/Time required to start a business (days)", + "World/Latam/CRI/Industry/Time required to start a business (days)", + "World/Europe/DEU/Industry/Time required to start a business (days)", + "World/North Africa/DZA/Industry/Time required to start a business (days)", + "World/Europe/ESP/Industry/Time required to start a business (days)", + "World/Europe/FRA/Industry/Time required to start a business (days)", + "World/Europe/GBR/Industry/Time required to start a business (days)", + "World/Asia/IND/Industry/Time required to start a business (days)", + "World/Asia/KOR/Industry/Time required to start a business (days)", + "World/South Africa/LBR/Industry/Time required to start a business (days)", + "World/North Africa/MAR/Industry/Time required to start a business (days)", + "World/South Africa/MOZ/Industry/Time required to start a business (days)", + "World/Europe/NLD/Industry/Time required to start a business (days)", + "World/Persian Gulf/OMN/Industry/Time required to start a business (days)", + "World/Latam/PAN/Industry/Time required to start a business (days)", + "World/Latam/PER/Industry/Time required to start a business (days)", + "World/Europe/POL/Industry/Time required to start a business (days)", + "World/Persian Gulf/SAU/Industry/Time required to start a business (days)", + "World/South Africa/SEN/Industry/Time required to start a business (days)", + "World/Asia/THA/Industry/Time required to start a business (days)", + "World/Latam/VEN/Industry/Time required to start a business (days)", + "World/Asia/VNM/Industry/Time required to start a business (days)", + "World/Persian Gulf/YEM/Industry/Time required to start a business (days)", + "World/South Africa/ZAF/Industry/Time required to start a business (days)", + "World/Latam/ARG/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Persian Gulf/AZE/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Asia/BGD/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/CHL/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/COL/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/CRI/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/North Africa/EGY/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/South Africa/GHA/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Europe/GRC/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Europe/HRV/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Asia/IDN/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Asia/IND/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/South Africa/LBR/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/MEX/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/South Africa/MOZ/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/South Africa/NGA/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/PAN/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/PER/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Asia/PHL/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Europe/POL/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/South Africa/SEN/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Asia/THA/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/North Africa/TUR/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/VEN/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Asia/VNM/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Persian Gulf/YEM/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/South Africa/ZAF/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/ARG/R&D/Time to obtain an electrical connection (days)", + "World/Asia/BGD/R&D/Time to obtain an electrical connection (days)", + "World/Latam/CHL/R&D/Time to obtain an electrical connection (days)", + "World/South Africa/CMR/R&D/Time to obtain an electrical connection (days)", + "World/Latam/COL/R&D/Time to obtain an electrical connection (days)", + "World/Latam/CRI/R&D/Time to obtain an electrical connection (days)", + "World/North Africa/EGY/R&D/Time to obtain an electrical connection (days)", + "World/South Africa/GHA/R&D/Time to obtain an electrical connection (days)", + "World/Europe/GRC/R&D/Time to obtain an electrical connection (days)", + "World/Asia/IDN/R&D/Time to obtain an electrical connection (days)", + "World/Asia/IND/R&D/Time to obtain an electrical connection (days)", + "World/North Africa/MAR/R&D/Time to obtain an electrical connection (days)", + "World/Latam/MEX/R&D/Time to obtain an electrical connection (days)", + "World/South Africa/MOZ/R&D/Time to obtain an electrical connection (days)", + "World/South Africa/NGA/R&D/Time to obtain an electrical connection (days)", + "World/Latam/PAN/R&D/Time to obtain an electrical connection (days)", + "World/Latam/PER/R&D/Time to obtain an electrical connection (days)", + "World/Asia/PHL/R&D/Time to obtain an electrical connection (days)", + "World/Europe/POL/R&D/Time to obtain an electrical connection (days)", + "World/South Africa/SEN/R&D/Time to obtain an electrical connection (days)", + "World/North Africa/TUR/R&D/Time to obtain an electrical connection (days)", + "World/Latam/VEN/R&D/Time to obtain an electrical connection (days)", + "World/Asia/VNM/R&D/Time to obtain an electrical connection (days)", + "World/South Africa/ZAF/R&D/Time to obtain an electrical connection (days)", + "World/Persian Gulf/ARE/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/ARG/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Europe/AUT/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Persian Gulf/AZE/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Asia/BGD/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/BRA/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/CHL/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Pair/CHN/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/CRI/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/North Africa/EGY/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Europe/GBR/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/South Africa/GHA/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Europe/HRV/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Asia/IND/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/North Africa/ISR/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Asia/KOR/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/North Africa/MAR/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/MEX/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/South Africa/MOZ/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/South Africa/NGA/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Europe/NLD/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Persian Gulf/OMN/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/PAN/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Europe/POL/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Persian Gulf/QAT/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Asia/THA/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Pair/USA/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/VEN/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Asia/VNM/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Persian Gulf/YEM/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Persian Gulf/ARE/Industry/Total fisheries production (metric tons)", + "World/Persian Gulf/AZE/Industry/Total fisheries production (metric tons)", + "World/Asia/BGD/Industry/Total fisheries production (metric tons)", + "World/Latam/BRA/Industry/Total fisheries production (metric tons)", + "World/Latam/CHL/Industry/Total fisheries production (metric tons)", + "World/Pair/CHN/Industry/Total fisheries production (metric tons)", + "World/South Africa/CMR/Industry/Total fisheries production (metric tons)", + "World/Latam/CRI/Industry/Total fisheries production (metric tons)", + "World/North Africa/EGY/Industry/Total fisheries production (metric tons)", + "World/Europe/HRV/Industry/Total fisheries production (metric tons)", + "World/Asia/IDN/Industry/Total fisheries production (metric tons)", + "World/Asia/IND/Industry/Total fisheries production (metric tons)", + "World/North Africa/ISR/Industry/Total fisheries production (metric tons)", + "World/North Africa/MAR/Industry/Total fisheries production (metric tons)", + "World/Latam/MEX/Industry/Total fisheries production (metric tons)", + "World/South Africa/MOZ/Industry/Total fisheries production (metric tons)", + "World/South Africa/NGA/Industry/Total fisheries production (metric tons)", + "World/Persian Gulf/OMN/Industry/Total fisheries production (metric tons)", + "World/Asia/PHL/Industry/Total fisheries production (metric tons)", + "World/Europe/POL/Industry/Total fisheries production (metric tons)", + "World/Persian Gulf/SAU/Industry/Total fisheries production (metric tons)", + "World/Asia/THA/Industry/Total fisheries production (metric tons)", + "World/Asia/VNM/Industry/Total fisheries production (metric tons)", + "World/Persian Gulf/ARE/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Persian Gulf/AZE/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Asia/BGD/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Latam/CHL/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Pair/CHN/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Latam/CRI/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/North Africa/DZA/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/North Africa/EGY/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Europe/GBR/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Europe/HRV/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Asia/IND/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Persian Gulf/IRQ/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/North Africa/ISR/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Asia/KOR/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/North Africa/MAR/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Latam/MEX/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/South Africa/MOZ/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Europe/NLD/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Persian Gulf/OMN/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Latam/PAN/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Asia/PHL/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Persian Gulf/QAT/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Europe/SWE/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Asia/THA/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/North Africa/TUR/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Pair/USA/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Asia/VNM/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Persian Gulf/YEM/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/South Africa/ZAF/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Persian Gulf/ARE/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Persian Gulf/AZE/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/BGD/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/BRA/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/CHL/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Pair/CHN/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/CMR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/COL/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/CRI/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Europe/DEU/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/North Africa/DZA/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/North Africa/EGY/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Europe/GBR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/GHA/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Europe/GRC/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/IDN/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/IND/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/North Africa/ISR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/KOR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/LBR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/North Africa/MAR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/MEX/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/MOZ/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/NGA/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Europe/NLD/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Persian Gulf/OMN/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/PAN/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/PER/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/PHL/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Persian Gulf/QAT/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Persian Gulf/SAU/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/SEN/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Europe/SWE/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/THA/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/North Africa/TUR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/VNM/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/ZAF/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Persian Gulf/ARE/Economy/Total reserves (includes gold, current US$)", + "World/Asia/BGD/Economy/Total reserves (includes gold, current US$)", + "World/Latam/BRA/Economy/Total reserves (includes gold, current US$)", + "World/Latam/CHL/Economy/Total reserves (includes gold, current US$)", + "World/Pair/CHN/Economy/Total reserves (includes gold, current US$)", + "World/Latam/COL/Economy/Total reserves (includes gold, current US$)", + "World/Latam/CRI/Economy/Total reserves (includes gold, current US$)", + "World/North Africa/DZA/Economy/Total reserves (includes gold, current US$)", + "World/Europe/ESP/Economy/Total reserves (includes gold, current US$)", + "World/Europe/FRA/Economy/Total reserves (includes gold, current US$)", + "World/Europe/GBR/Economy/Total reserves (includes gold, current US$)", + "World/South Africa/GHA/Economy/Total reserves (includes gold, current US$)", + "World/Asia/IDN/Economy/Total reserves (includes gold, current US$)", + "World/Asia/IND/Economy/Total reserves (includes gold, current US$)", + "World/Persian Gulf/IRQ/Economy/Total reserves (includes gold, current US$)", + "World/North Africa/ISR/Economy/Total reserves (includes gold, current US$)", + "World/Asia/KOR/Economy/Total reserves (includes gold, current US$)", + "World/South Africa/LBR/Economy/Total reserves (includes gold, current US$)", + "World/North Africa/MAR/Economy/Total reserves (includes gold, current US$)", + "World/Latam/MEX/Economy/Total reserves (includes gold, current US$)", + "World/South Africa/MOZ/Economy/Total reserves (includes gold, current US$)", + "World/Persian Gulf/OMN/Economy/Total reserves (includes gold, current US$)", + "World/Latam/PAN/Economy/Total reserves (includes gold, current US$)", + "World/Latam/PER/Economy/Total reserves (includes gold, current US$)", + "World/Asia/PHL/Economy/Total reserves (includes gold, current US$)", + "World/Europe/POL/Economy/Total reserves (includes gold, current US$)", + "World/Persian Gulf/QAT/Economy/Total reserves (includes gold, current US$)", + "World/Persian Gulf/SAU/Economy/Total reserves (includes gold, current US$)", + "World/Europe/SWE/Economy/Total reserves (includes gold, current US$)", + "World/Asia/THA/Economy/Total reserves (includes gold, current US$)", + "World/North Africa/TUR/Economy/Total reserves (includes gold, current US$)", + "World/Pair/USA/Economy/Total reserves (includes gold, current US$)", + "World/Latam/VEN/Economy/Total reserves (includes gold, current US$)", + "World/Asia/VNM/Economy/Total reserves (includes gold, current US$)", + "World/South Africa/ZAF/Economy/Total reserves (includes gold, current US$)", + "World/Persian Gulf/ARE/Economy/Total reserves minus gold (current US$)", + "World/Asia/BGD/Economy/Total reserves minus gold (current US$)", + "World/Latam/BRA/Economy/Total reserves minus gold (current US$)", + "World/Latam/CHL/Economy/Total reserves minus gold (current US$)", + "World/Pair/CHN/Economy/Total reserves minus gold (current US$)", + "World/Latam/COL/Economy/Total reserves minus gold (current US$)", + "World/Latam/CRI/Economy/Total reserves minus gold (current US$)", + "World/North Africa/DZA/Economy/Total reserves minus gold (current US$)", + "World/Europe/FRA/Economy/Total reserves minus gold (current US$)", + "World/Europe/GBR/Economy/Total reserves minus gold (current US$)", + "World/South Africa/GHA/Economy/Total reserves minus gold (current US$)", + "World/Asia/IDN/Economy/Total reserves minus gold (current US$)", + "World/Asia/IND/Economy/Total reserves minus gold (current US$)", + "World/Persian Gulf/IRQ/Economy/Total reserves minus gold (current US$)", + "World/North Africa/ISR/Economy/Total reserves minus gold (current US$)", + "World/Asia/KOR/Economy/Total reserves minus gold (current US$)", + "World/South Africa/LBR/Economy/Total reserves minus gold (current US$)", + "World/North Africa/MAR/Economy/Total reserves minus gold (current US$)", + "World/Latam/MEX/Economy/Total reserves minus gold (current US$)", + "World/South Africa/MOZ/Economy/Total reserves minus gold (current US$)", + "World/Persian Gulf/OMN/Economy/Total reserves minus gold (current US$)", + "World/Latam/PAN/Economy/Total reserves minus gold (current US$)", + "World/Latam/PER/Economy/Total reserves minus gold (current US$)", + "World/Asia/PHL/Economy/Total reserves minus gold (current US$)", + "World/Europe/POL/Economy/Total reserves minus gold (current US$)", + "World/Persian Gulf/QAT/Economy/Total reserves minus gold (current US$)", + "World/Persian Gulf/SAU/Economy/Total reserves minus gold (current US$)", + "World/Europe/SWE/Economy/Total reserves minus gold (current US$)", + "World/Asia/THA/Economy/Total reserves minus gold (current US$)", + "World/North Africa/TUR/Economy/Total reserves minus gold (current US$)", + "World/Latam/VEN/Economy/Total reserves minus gold (current US$)", + "World/Asia/VNM/Economy/Total reserves minus gold (current US$)", + "World/South Africa/ZAF/Economy/Total reserves minus gold (current US$)", + "World/Latam/ARG/Health/UHC service coverage index", + "World/Europe/AUT/Health/UHC service coverage index", + "World/Persian Gulf/AZE/Health/UHC service coverage index", + "World/Asia/BGD/Health/UHC service coverage index", + "World/Latam/BRA/Health/UHC service coverage index", + "World/Latam/CHL/Health/UHC service coverage index", + "World/Pair/CHN/Health/UHC service coverage index", + "World/South Africa/CMR/Health/UHC service coverage index", + "World/Latam/COL/Health/UHC service coverage index", + "World/Latam/CRI/Health/UHC service coverage index", + "World/Europe/DEU/Health/UHC service coverage index", + "World/North Africa/DZA/Health/UHC service coverage index", + "World/North Africa/EGY/Health/UHC service coverage index", + "World/Europe/ESP/Health/UHC service coverage index", + "World/Europe/FRA/Health/UHC service coverage index", + "World/Europe/GBR/Health/UHC service coverage index", + "World/South Africa/GHA/Health/UHC service coverage index", + "World/Europe/GRC/Health/UHC service coverage index", + "World/Europe/HRV/Health/UHC service coverage index", + "World/Asia/IDN/Health/UHC service coverage index", + "World/Asia/IND/Health/UHC service coverage index", + "World/Persian Gulf/IRQ/Health/UHC service coverage index", + "World/North Africa/ISR/Health/UHC service coverage index", + "World/Asia/KOR/Health/UHC service coverage index", + "World/South Africa/LBR/Health/UHC service coverage index", + "World/North Africa/MAR/Health/UHC service coverage index", + "World/Latam/MEX/Health/UHC service coverage index", + "World/South Africa/MOZ/Health/UHC service coverage index", + "World/South Africa/NGA/Health/UHC service coverage index", + "World/Europe/NLD/Health/UHC service coverage index", + "World/Persian Gulf/OMN/Health/UHC service coverage index", + "World/Latam/PAN/Health/UHC service coverage index", + "World/Latam/PER/Health/UHC service coverage index", + "World/Asia/PHL/Health/UHC service coverage index", + "World/Europe/POL/Health/UHC service coverage index", + "World/Persian Gulf/QAT/Health/UHC service coverage index", + "World/South Africa/SEN/Health/UHC service coverage index", + "World/Europe/SWE/Health/UHC service coverage index", + "World/Asia/THA/Health/UHC service coverage index", + "World/North Africa/TUR/Health/UHC service coverage index", + "World/Pair/USA/Health/UHC service coverage index", + "World/Latam/VEN/Health/UHC service coverage index", + "World/Asia/VNM/Health/UHC service coverage index", + "World/Persian Gulf/YEM/Health/UHC service coverage index", + "World/South Africa/ZAF/Health/UHC service coverage index", + "World/Persian Gulf/ARE/Demography/Urban population", + "World/Latam/ARG/Demography/Urban population", + "World/Persian Gulf/AZE/Demography/Urban population", + "World/Asia/BGD/Demography/Urban population", + "World/Latam/BRA/Demography/Urban population", + "World/Latam/CHL/Demography/Urban population", + "World/Pair/CHN/Demography/Urban population", + "World/South Africa/CMR/Demography/Urban population", + "World/Latam/COL/Demography/Urban population", + "World/Latam/CRI/Demography/Urban population", + "World/North Africa/DZA/Demography/Urban population", + "World/North Africa/EGY/Demography/Urban population", + "World/Europe/ESP/Demography/Urban population", + "World/Europe/FRA/Demography/Urban population", + "World/Europe/GBR/Demography/Urban population", + "World/South Africa/GHA/Demography/Urban population", + "World/Asia/IDN/Demography/Urban population", + "World/Asia/IND/Demography/Urban population", + "World/North Africa/ISR/Demography/Urban population", + "World/Asia/KOR/Demography/Urban population", + "World/South Africa/LBR/Demography/Urban population", + "World/North Africa/MAR/Demography/Urban population", + "World/Latam/MEX/Demography/Urban population", + "World/South Africa/MOZ/Demography/Urban population", + "World/South Africa/NGA/Demography/Urban population", + "World/Europe/NLD/Demography/Urban population", + "World/Persian Gulf/OMN/Demography/Urban population", + "World/Latam/PAN/Demography/Urban population", + "World/Latam/PER/Demography/Urban population", + "World/Asia/PHL/Demography/Urban population", + "World/Europe/POL/Demography/Urban population", + "World/Persian Gulf/QAT/Demography/Urban population", + "World/Persian Gulf/SAU/Demography/Urban population", + "World/South Africa/SEN/Demography/Urban population", + "World/Asia/THA/Demography/Urban population", + "World/North Africa/TUR/Demography/Urban population", + "World/Pair/USA/Demography/Urban population", + "World/Latam/VEN/Demography/Urban population", + "World/Asia/VNM/Demography/Urban population", + "World/Persian Gulf/YEM/Demography/Urban population", + "World/South Africa/ZAF/Demography/Urban population", + "World/Persian Gulf/ARE/Demography/Urban population (% of total population)", + "World/Latam/ARG/Demography/Urban population (% of total population)", + "World/Persian Gulf/AZE/Demography/Urban population (% of total population)", + "World/Asia/BGD/Demography/Urban population (% of total population)", + "World/Latam/BRA/Demography/Urban population (% of total population)", + "World/Latam/CHL/Demography/Urban population (% of total population)", + "World/Pair/CHN/Demography/Urban population (% of total population)", + "World/South Africa/CMR/Demography/Urban population (% of total population)", + "World/Latam/COL/Demography/Urban population (% of total population)", + "World/Latam/CRI/Demography/Urban population (% of total population)", + "World/Europe/DEU/Demography/Urban population (% of total population)", + "World/North Africa/DZA/Demography/Urban population (% of total population)", + "World/Europe/ESP/Demography/Urban population (% of total population)", + "World/Europe/FRA/Demography/Urban population (% of total population)", + "World/Europe/GBR/Demography/Urban population (% of total population)", + "World/South Africa/GHA/Demography/Urban population (% of total population)", + "World/Europe/GRC/Demography/Urban population (% of total population)", + "World/Europe/HRV/Demography/Urban population (% of total population)", + "World/Asia/IDN/Demography/Urban population (% of total population)", + "World/Asia/IND/Demography/Urban population (% of total population)", + "World/Persian Gulf/IRQ/Demography/Urban population (% of total population)", + "World/North Africa/ISR/Demography/Urban population (% of total population)", + "World/South Africa/LBR/Demography/Urban population (% of total population)", + "World/North Africa/MAR/Demography/Urban population (% of total population)", + "World/Latam/MEX/Demography/Urban population (% of total population)", + "World/South Africa/MOZ/Demography/Urban population (% of total population)", + "World/South Africa/NGA/Demography/Urban population (% of total population)", + "World/Europe/NLD/Demography/Urban population (% of total population)", + "World/Persian Gulf/OMN/Demography/Urban population (% of total population)", + "World/Latam/PAN/Demography/Urban population (% of total population)", + "World/Latam/PER/Demography/Urban population (% of total population)", + "World/Europe/POL/Demography/Urban population (% of total population)", + "World/Persian Gulf/QAT/Demography/Urban population (% of total population)", + "World/Persian Gulf/SAU/Demography/Urban population (% of total population)", + "World/South Africa/SEN/Demography/Urban population (% of total population)", + "World/Asia/THA/Demography/Urban population (% of total population)", + "World/North Africa/TUR/Demography/Urban population (% of total population)", + "World/Pair/USA/Demography/Urban population (% of total population)", + "World/Latam/VEN/Demography/Urban population (% of total population)", + "World/Asia/VNM/Demography/Urban population (% of total population)", + "World/Persian Gulf/YEM/Demography/Urban population (% of total population)", + "World/South Africa/ZAF/Demography/Urban population (% of total population)", + "World/Europe/AUT/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Persian Gulf/AZE/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Asia/BGD/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/CHL/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Pair/CHN/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/COL/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/CRI/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Europe/DEU/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/North Africa/DZA/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/North Africa/EGY/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Europe/GBR/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/South Africa/GHA/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Europe/HRV/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Asia/IND/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/North Africa/ISR/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Asia/KOR/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/North Africa/MAR/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/MEX/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/South Africa/MOZ/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/South Africa/NGA/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Europe/NLD/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/PAN/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/PER/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Asia/PHL/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Europe/POL/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Persian Gulf/SAU/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Europe/SWE/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Asia/THA/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/North Africa/TUR/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/VEN/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Asia/VNM/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Persian Gulf/YEM/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/South Africa/ZAF/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Persian Gulf/ARE/A&D", + "World/Latam/ARG/A&D", + "World/Europe/AUT/A&D", + "World/Persian Gulf/AZE/A&D", + "World/Asia/BGD/A&D", + "World/Latam/BRA/A&D", + "World/Latam/CHL/A&D", + "World/Pair/CHN/A&D", + "World/Latam/CRI/A&D", + "World/North Africa/EGY/A&D", + "World/Europe/GBR/A&D", + "World/South Africa/GHA/A&D", + "World/Europe/HRV/A&D", + "World/Asia/IND/A&D", + "World/North Africa/ISR/A&D", + "World/Asia/KOR/A&D", + "World/North Africa/MAR/A&D", + "World/Latam/MEX/A&D", + "World/South Africa/MOZ/A&D", + "World/South Africa/NGA/A&D", + "World/Europe/NLD/A&D", + "World/Persian Gulf/OMN/A&D", + "World/Latam/PAN/A&D", + "World/Europe/POL/A&D", + "World/Persian Gulf/QAT/A&D", + "World/Asia/THA/A&D", + "World/Pair/USA/A&D", + "World/Latam/VEN/A&D", + "World/Asia/VNM/A&D", + "World/Persian Gulf/YEM/A&D", + "World/Persian Gulf/ARE/Agriculture", + "World/Latam/ARG/Agriculture", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/Latam/CRI/Agriculture", + "World/Europe/DEU/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/North Africa/EGY/Agriculture", + "World/Europe/ESP/Agriculture", + "World/Europe/FRA/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Europe/HRV/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/ISR/Agriculture", + "World/Asia/KOR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Europe/NLD/Agriculture", + "World/Persian Gulf/OMN/Agriculture", + "World/Latam/PAN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Europe/POL/Agriculture", + "World/Persian Gulf/QAT/Agriculture", + "World/Persian Gulf/SAU/Agriculture", + "World/South Africa/SEN/Agriculture", + "World/Europe/SWE/Agriculture", + "World/Asia/THA/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Latam/VEN/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/South Africa/ZAF/Agriculture", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/Persian Gulf/IRQ/Demography", + "World/North Africa/ISR/Demography", + "World/Asia/KOR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Europe/SWE/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Latam/ARG/Demoraphy", + "World/Asia/BGD/Demoraphy", + "World/Latam/BRA/Demoraphy", + "World/South Africa/CMR/Demoraphy", + "World/Latam/COL/Demoraphy", + "World/Latam/CRI/Demoraphy", + "World/North Africa/DZA/Demoraphy", + "World/North Africa/EGY/Demoraphy", + "World/South Africa/GHA/Demoraphy", + "World/Asia/IND/Demoraphy", + "World/South Africa/LBR/Demoraphy", + "World/North Africa/MAR/Demoraphy", + "World/Latam/MEX/Demoraphy", + "World/South Africa/MOZ/Demoraphy", + "World/South Africa/NGA/Demoraphy", + "World/Latam/PAN/Demoraphy", + "World/Latam/PER/Demoraphy", + "World/Asia/PHL/Demoraphy", + "World/North Africa/TUR/Demoraphy", + "World/Latam/VEN/Demoraphy", + "World/Asia/VNM/Demoraphy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Employment", + "World/Latam/ARG/Employment", + "World/Europe/AUT/Employment", + "World/Persian Gulf/AZE/Employment", + "World/Asia/BGD/Employment", + "World/Latam/BRA/Employment", + "World/Latam/CHL/Employment", + "World/Pair/CHN/Employment", + "World/South Africa/CMR/Employment", + "World/Latam/COL/Employment", + "World/Latam/CRI/Employment", + "World/Europe/DEU/Employment", + "World/North Africa/DZA/Employment", + "World/North Africa/EGY/Employment", + "World/Europe/ESP/Employment", + "World/Europe/FRA/Employment", + "World/Europe/GBR/Employment", + "World/South Africa/GHA/Employment", + "World/Europe/GRC/Employment", + "World/Europe/HRV/Employment", + "World/Asia/IDN/Employment", + "World/Asia/IND/Employment", + "World/North Africa/ISR/Employment", + "World/Asia/KOR/Employment", + "World/South Africa/LBR/Employment", + "World/North Africa/MAR/Employment", + "World/Latam/MEX/Employment", + "World/South Africa/MOZ/Employment", + "World/South Africa/NGA/Employment", + "World/Europe/NLD/Employment", + "World/Persian Gulf/OMN/Employment", + "World/Latam/PAN/Employment", + "World/Latam/PER/Employment", + "World/Asia/PHL/Employment", + "World/Europe/POL/Employment", + "World/Persian Gulf/QAT/Employment", + "World/Persian Gulf/SAU/Employment", + "World/South Africa/SEN/Employment", + "World/Europe/SWE/Employment", + "World/Asia/THA/Employment", + "World/North Africa/TUR/Employment", + "World/Pair/USA/Employment", + "World/Latam/VEN/Employment", + "World/Asia/VNM/Employment", + "World/Persian Gulf/YEM/Employment", + "World/South Africa/ZAF/Employment", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Persian Gulf/IRQ/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Latam/VEN/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Equality", + "World/Latam/ARG/Equality", + "World/Europe/AUT/Equality", + "World/Persian Gulf/AZE/Equality", + "World/Asia/BGD/Equality", + "World/Latam/BRA/Equality", + "World/Latam/CHL/Equality", + "World/Pair/CHN/Equality", + "World/South Africa/CMR/Equality", + "World/Latam/COL/Equality", + "World/Latam/CRI/Equality", + "World/Europe/DEU/Equality", + "World/North Africa/DZA/Equality", + "World/North Africa/EGY/Equality", + "World/Europe/ESP/Equality", + "World/Europe/FRA/Equality", + "World/Europe/GBR/Equality", + "World/South Africa/GHA/Equality", + "World/Europe/GRC/Equality", + "World/Europe/HRV/Equality", + "World/Asia/IND/Equality", + "World/North Africa/ISR/Equality", + "World/Asia/KOR/Equality", + "World/North Africa/MAR/Equality", + "World/Latam/MEX/Equality", + "World/South Africa/MOZ/Equality", + "World/South Africa/NGA/Equality", + "World/Europe/NLD/Equality", + "World/Persian Gulf/OMN/Equality", + "World/Latam/PAN/Equality", + "World/Latam/PER/Equality", + "World/Asia/PHL/Equality", + "World/Europe/POL/Equality", + "World/Persian Gulf/QAT/Equality", + "World/Persian Gulf/SAU/Equality", + "World/South Africa/SEN/Equality", + "World/Europe/SWE/Equality", + "World/Asia/THA/Equality", + "World/North Africa/TUR/Equality", + "World/Pair/USA/Equality", + "World/Latam/VEN/Equality", + "World/Asia/VNM/Equality", + "World/Persian Gulf/YEM/Equality", + "World/South Africa/ZAF/Equality", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/South Africa/CMR/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/North Africa/EGY/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/GRC/Exports", + "World/Europe/HRV/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/South Africa/LBR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/South Africa/NGA/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/Persian Gulf/YEM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/Persian Gulf/IRQ/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/South Africa/LBR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Latam/VEN/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Industry", + "World/Latam/ARG/Industry", + "World/Europe/AUT/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Asia/BGD/Industry", + "World/Latam/BRA/Industry", + "World/Latam/CHL/Industry", + "World/Pair/CHN/Industry", + "World/South Africa/CMR/Industry", + "World/Latam/COL/Industry", + "World/Latam/CRI/Industry", + "World/Europe/DEU/Industry", + "World/North Africa/DZA/Industry", + "World/North Africa/EGY/Industry", + "World/Europe/ESP/Industry", + "World/Europe/FRA/Industry", + "World/Europe/GBR/Industry", + "World/South Africa/GHA/Industry", + "World/Europe/GRC/Industry", + "World/Europe/HRV/Industry", + "World/Asia/IDN/Industry", + "World/Asia/IND/Industry", + "World/North Africa/ISR/Industry", + "World/Asia/KOR/Industry", + "World/South Africa/LBR/Industry", + "World/North Africa/MAR/Industry", + "World/Latam/MEX/Industry", + "World/South Africa/MOZ/Industry", + "World/South Africa/NGA/Industry", + "World/Europe/NLD/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Latam/PAN/Industry", + "World/Latam/PER/Industry", + "World/Asia/PHL/Industry", + "World/Europe/POL/Industry", + "World/Persian Gulf/QAT/Industry", + "World/Persian Gulf/SAU/Industry", + "World/South Africa/SEN/Industry", + "World/Europe/SWE/Industry", + "World/Asia/THA/Industry", + "World/North Africa/TUR/Industry", + "World/Pair/USA/Industry", + "World/Latam/VEN/Industry", + "World/Asia/VNM/Industry", + "World/Persian Gulf/YEM/Industry", + "World/South Africa/ZAF/Industry", + "World/Persian Gulf/ARE/Internet", + "World/Latam/ARG/Internet", + "World/Europe/AUT/Internet", + "World/Persian Gulf/AZE/Internet", + "World/Asia/BGD/Internet", + "World/Latam/BRA/Internet", + "World/Latam/CHL/Internet", + "World/Pair/CHN/Internet", + "World/South Africa/CMR/Internet", + "World/Latam/COL/Internet", + "World/Latam/CRI/Internet", + "World/Europe/DEU/Internet", + "World/North Africa/DZA/Internet", + "World/North Africa/EGY/Internet", + "World/Europe/ESP/Internet", + "World/Europe/FRA/Internet", + "World/Europe/GBR/Internet", + "World/South Africa/GHA/Internet", + "World/Europe/GRC/Internet", + "World/Europe/HRV/Internet", + "World/Asia/IDN/Internet", + "World/Asia/IND/Internet", + "World/Persian Gulf/IRQ/Internet", + "World/North Africa/ISR/Internet", + "World/Asia/KOR/Internet", + "World/South Africa/LBR/Internet", + "World/North Africa/MAR/Internet", + "World/Latam/MEX/Internet", + "World/South Africa/MOZ/Internet", + "World/South Africa/NGA/Internet", + "World/Europe/NLD/Internet", + "World/Persian Gulf/OMN/Internet", + "World/Latam/PAN/Internet", + "World/Latam/PER/Internet", + "World/Asia/PHL/Internet", + "World/Europe/POL/Internet", + "World/Persian Gulf/QAT/Internet", + "World/Persian Gulf/SAU/Internet", + "World/South Africa/SEN/Internet", + "World/Europe/SWE/Internet", + "World/Asia/THA/Internet", + "World/North Africa/TUR/Internet", + "World/Pair/USA/Internet", + "World/Latam/VEN/Internet", + "World/Asia/VNM/Internet", + "World/Persian Gulf/YEM/Internet", + "World/South Africa/ZAF/Internet", + "World/Persian Gulf/ARE/Migration", + "World/Europe/AUT/Migration", + "World/Persian Gulf/AZE/Migration", + "World/Latam/CHL/Migration", + "World/Pair/CHN/Migration", + "World/Europe/DEU/Migration", + "World/North Africa/DZA/Migration", + "World/Europe/ESP/Migration", + "World/Europe/FRA/Migration", + "World/Europe/GBR/Migration", + "World/Europe/GRC/Migration", + "World/Europe/HRV/Migration", + "World/Asia/IND/Migration", + "World/North Africa/ISR/Migration", + "World/Asia/KOR/Migration", + "World/North Africa/MAR/Migration", + "World/Latam/MEX/Migration", + "World/South Africa/MOZ/Migration", + "World/South Africa/NGA/Migration", + "World/Europe/NLD/Migration", + "World/Latam/PAN/Migration", + "World/Latam/PER/Migration", + "World/Europe/POL/Migration", + "World/Persian Gulf/SAU/Migration", + "World/South Africa/SEN/Migration", + "World/Europe/SWE/Migration", + "World/Asia/THA/Migration", + "World/North Africa/TUR/Migration", + "World/Pair/USA/Migration", + "World/Asia/VNM/Migration", + "World/Persian Gulf/YEM/Migration", + "World/Persian Gulf/ARE/Military", + "World/Europe/AUT/Military", + "World/Persian Gulf/AZE/Military", + "World/Asia/BGD/Military", + "World/Latam/BRA/Military", + "World/Latam/CHL/Military", + "World/Pair/CHN/Military", + "World/South Africa/CMR/Military", + "World/Latam/COL/Military", + "World/North Africa/DZA/Military", + "World/North Africa/EGY/Military", + "World/Europe/ESP/Military", + "World/Europe/FRA/Military", + "World/South Africa/GHA/Military", + "World/Europe/GRC/Military", + "World/Asia/IDN/Military", + "World/Asia/IND/Military", + "World/North Africa/ISR/Military", + "World/Asia/KOR/Military", + "World/North Africa/MAR/Military", + "World/Latam/MEX/Military", + "World/South Africa/MOZ/Military", + "World/South Africa/NGA/Military", + "World/Europe/NLD/Military", + "World/Persian Gulf/OMN/Military", + "World/Latam/PER/Military", + "World/Asia/PHL/Military", + "World/Europe/POL/Military", + "World/Persian Gulf/SAU/Military", + "World/South Africa/SEN/Military", + "World/Asia/THA/Military", + "World/North Africa/TUR/Military", + "World/Pair/USA/Military", + "World/Asia/VNM/Military", + "World/Persian Gulf/YEM/Military", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/Persian Gulf/IRQ/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Europe/SWE/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/South Africa/ZAF/Mortality", + "World/Persian Gulf/ARE/Principal", + "World/Latam/ARG/Principal", + "World/Europe/AUT/Principal", + "World/Persian Gulf/AZE/Principal", + "World/Asia/BGD/Principal", + "World/Latam/BRA/Principal", + "World/Latam/CHL/Principal", + "World/Pair/CHN/Principal", + "World/South Africa/CMR/Principal", + "World/Latam/COL/Principal", + "World/Latam/CRI/Principal", + "World/Europe/DEU/Principal", + "World/North Africa/DZA/Principal", + "World/North Africa/EGY/Principal", + "World/Europe/ESP/Principal", + "World/Europe/FRA/Principal", + "World/Europe/GBR/Principal", + "World/South Africa/GHA/Principal", + "World/Europe/GRC/Principal", + "World/Europe/HRV/Principal", + "World/Asia/IDN/Principal", + "World/Asia/IND/Principal", + "World/Persian Gulf/IRQ/Principal", + "World/North Africa/ISR/Principal", + "World/Asia/KOR/Principal", + "World/South Africa/LBR/Principal", + "World/North Africa/MAR/Principal", + "World/Latam/MEX/Principal", + "World/South Africa/MOZ/Principal", + "World/South Africa/NGA/Principal", + "World/Europe/NLD/Principal", + "World/Persian Gulf/OMN/Principal", + "World/Latam/PAN/Principal", + "World/Latam/PER/Principal", + "World/Asia/PHL/Principal", + "World/Europe/POL/Principal", + "World/Persian Gulf/QAT/Principal", + "World/Persian Gulf/SAU/Principal", + "World/South Africa/SEN/Principal", + "World/Europe/SWE/Principal", + "World/Asia/THA/Principal", + "World/North Africa/TUR/Principal", + "World/Pair/USA/Principal", + "World/Latam/VEN/Principal", + "World/Asia/VNM/Principal", + "World/Persian Gulf/YEM/Principal", + "World/South Africa/ZAF/Principal", + "World/Latam/ARG/R&D", + "World/Europe/AUT/R&D", + "World/Persian Gulf/AZE/R&D", + "World/Asia/BGD/R&D", + "World/Latam/BRA/R&D", + "World/Latam/CHL/R&D", + "World/Pair/CHN/R&D", + "World/South Africa/CMR/R&D", + "World/Latam/COL/R&D", + "World/Latam/CRI/R&D", + "World/Europe/DEU/R&D", + "World/North Africa/DZA/R&D", + "World/North Africa/EGY/R&D", + "World/Europe/ESP/R&D", + "World/Europe/FRA/R&D", + "World/Europe/GBR/R&D", + "World/South Africa/GHA/R&D", + "World/Europe/GRC/R&D", + "World/Europe/HRV/R&D", + "World/Asia/IDN/R&D", + "World/Asia/IND/R&D", + "World/Asia/KOR/R&D", + "World/South Africa/LBR/R&D", + "World/North Africa/MAR/R&D", + "World/Latam/MEX/R&D", + "World/South Africa/MOZ/R&D", + "World/South Africa/NGA/R&D", + "World/Europe/NLD/R&D", + "World/Persian Gulf/OMN/R&D", + "World/Latam/PAN/R&D", + "World/Latam/PER/R&D", + "World/Asia/PHL/R&D", + "World/Europe/POL/R&D", + "World/South Africa/SEN/R&D", + "World/Asia/THA/R&D", + "World/North Africa/TUR/R&D", + "World/Pair/USA/R&D", + "World/Latam/VEN/R&D", + "World/Asia/VNM/R&D", + "World/Persian Gulf/YEM/R&D", + "World/South Africa/ZAF/R&D", + "World/Latam/ARG/Taxes", + "World/Europe/AUT/Taxes", + "World/Persian Gulf/AZE/Taxes", + "World/Asia/BGD/Taxes", + "World/Latam/BRA/Taxes", + "World/Latam/CHL/Taxes", + "World/South Africa/CMR/Taxes", + "World/Latam/COL/Taxes", + "World/Latam/CRI/Taxes", + "World/Europe/DEU/Taxes", + "World/North Africa/DZA/Taxes", + "World/Europe/ESP/Taxes", + "World/Europe/FRA/Taxes", + "World/Europe/GBR/Taxes", + "World/South Africa/GHA/Taxes", + "World/Europe/GRC/Taxes", + "World/Europe/HRV/Taxes", + "World/Asia/IND/Taxes", + "World/North Africa/ISR/Taxes", + "World/Asia/KOR/Taxes", + "World/North Africa/MAR/Taxes", + "World/Latam/MEX/Taxes", + "World/South Africa/MOZ/Taxes", + "World/South Africa/NGA/Taxes", + "World/Europe/NLD/Taxes", + "World/Latam/PAN/Taxes", + "World/Latam/PER/Taxes", + "World/Europe/POL/Taxes", + "World/Persian Gulf/SAU/Taxes", + "World/South Africa/SEN/Taxes", + "World/Europe/SWE/Taxes", + "World/North Africa/TUR/Taxes", + "World/Pair/USA/Taxes", + "World/Latam/VEN/Taxes", + "World/Asia/VNM/Taxes", + "World/Persian Gulf/YEM/Taxes", + "World/South Africa/ZAF/Taxes", + "World/Persian Gulf/ARE/industry", + "World/Latam/ARG/industry", + "World/Europe/AUT/industry", + "World/Persian Gulf/AZE/industry", + "World/Asia/BGD/industry", + "World/Latam/BRA/industry", + "World/Latam/CHL/industry", + "World/Pair/CHN/industry", + "World/South Africa/CMR/industry", + "World/Latam/COL/industry", + "World/Latam/CRI/industry", + "World/North Africa/DZA/industry", + "World/North Africa/EGY/industry", + "World/Europe/ESP/industry", + "World/Europe/FRA/industry", + "World/Europe/GBR/industry", + "World/South Africa/GHA/industry", + "World/Europe/GRC/industry", + "World/Europe/HRV/industry", + "World/Asia/IDN/industry", + "World/Asia/IND/industry", + "World/Persian Gulf/IRQ/industry", + "World/North Africa/ISR/industry", + "World/Asia/KOR/industry", + "World/South Africa/LBR/industry", + "World/North Africa/MAR/industry", + "World/Latam/MEX/industry", + "World/South Africa/MOZ/industry", + "World/South Africa/NGA/industry", + "World/Europe/NLD/industry", + "World/Persian Gulf/OMN/industry", + "World/Latam/PAN/industry", + "World/Latam/PER/industry", + "World/Asia/PHL/industry", + "World/Europe/POL/industry", + "World/Persian Gulf/QAT/industry", + "World/Persian Gulf/SAU/industry", + "World/South Africa/SEN/industry", + "World/Europe/SWE/industry", + "World/Asia/THA/industry", + "World/North Africa/TUR/industry", + "World/Pair/USA/industry", + "World/Latam/VEN/industry", + "World/Asia/VNM/industry", + "World/Persian Gulf/YEM/industry", + "World/South Africa/ZAF/industry", + "World/Europe/AUT/principal", + "World/Persian Gulf/AZE/principal", + "World/Asia/BGD/principal", + "World/Pair/CHN/principal", + "World/South Africa/CMR/principal", + "World/Latam/COL/principal", + "World/Latam/CRI/principal", + "World/Europe/DEU/principal", + "World/North Africa/DZA/principal", + "World/Europe/ESP/principal", + "World/Europe/FRA/principal", + "World/Europe/GBR/principal", + "World/South Africa/GHA/principal", + "World/Europe/HRV/principal", + "World/Asia/IDN/principal", + "World/Asia/IND/principal", + "World/North Africa/ISR/principal", + "World/Asia/KOR/principal", + "World/Latam/MEX/principal", + "World/South Africa/MOZ/principal", + "World/South Africa/NGA/principal", + "World/Europe/NLD/principal", + "World/Latam/PAN/principal", + "World/Asia/PHL/principal", + "World/Europe/POL/principal", + "World/Persian Gulf/SAU/principal", + "World/Europe/SWE/principal", + "World/North Africa/TUR/principal", + "World/Pair/USA/principal", + "World/South Africa/ZAF/principal", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Asia", + "World/Europe", + "World/Latam", + "World/North Africa", + "World/Pair", + "World/Persian Gulf", + "World/South Africa", + "World" + ], + "labels": [ + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "ARE", + "ARG", + "AUT", + "AZE", + "BGD", + "BRA", + "CHL", + "CHN", + "CMR", + "COL", + "CRI", + "DEU", + "DZA", + "EGY", + "ESP", + "FRA", + "GBR", + "GHA", + "GRC", + "HRV", + "IDN", + "IND", + "IRQ", + "ISR", + "KOR", + "LBR", + "MAR", + "MEX", + "MOZ", + "NGA", + "NLD", + "OMN", + "PAN", + "PER", + "PHL", + "POL", + "QAT", + "SAU", + "SEN", + "SWE", + "THA", + "TUR", + "USA", + "VEN", + "VNM", + "YEM", + "ZAF", + "Asia", + "Europe", + "Latam", + "North Africa", + "Pair", + "Persian Gulf", + "South Africa", + "World" + ], + "marker": { + "coloraxis": "coloraxis", + "colors": [ + 0.8531021111589834, + 0.9960831758177524, + 0.9956171156600898, + 0.7534091311886248, + 0.999122807017544, + 0.872263164968203, + 0.897855261911528, + 0.999122807017544, + 0.8536839205362883, + 0.8975114391781058, + 0.8640740055556022, + 0.908313797791604, + 0.9891493795585866, + 0.766483106515241, + 0.9231736856070656, + 0.9602036241270692, + 0.9626281577206024, + 0.9457244866279326, + 0.9047503889161738, + 0.8269184820807403, + 0.8789838022165389, + 0.8800026263331926, + 0.957737379733654, + 0.999122807017544, + 0.9509004506686832, + 0.7562762148337596, + 0.8442479234380643, + 0.993779175279743, + 0.7763614794595731, + 0.8710617614475394, + 0.9636752136752136, + 0.8119647131227026, + 0.7805172292400585, + 0.9370415079706567, + 0.8701066680233348, + 0.8242647792818613, + 0.8238243435953363, + 0.9791710812316362, + 0.7554660388288974, + 0.8482458889462429, + 0.914656355102988, + 0.8458383400350413, + 0.92448876432027, + 0.8295449908182004, + 0.9773557492735576, + 0.9281390141743808, + 0.9093117324398052, + 0.7806171146277026, + 0.8726620562837514, + 0.9686137921250751, + 0.8257949554417174, + 0.798853868337832, + 0.9506066908754583, + 0.992130773157018, + 0.992130773157018, + 0.8297391428809981, + 0.9981637899375688, + 0.9559378978139692, + 0.9725030984517492, + 0.9994500458295142, + 0.9674464520962212, + 0.9537877101584162, + 0.9973311596620504, + 0.9965191088563604, + 0.9588085805762212, + 0.9804758872197188, + 0.9761230584660866, + 0.9804758872197188, + 0.9815561030337692, + 0.9979840393589112, + 0.9327029435145744, + 0.9855664265688792, + 0.9965191088563604, + 0.990099472619818, + 0.995055254321861, + 0.8099484766436214, + 0.9906701465266744, + 0.931003010693105, + 0.983380118113322, + 0.9892105958643824, + 0.9957870470931044, + 0.9654908347220116, + 0.9987789987789988, + 0.987752121170142, + 0.9645628577173472, + 0.9994500458295142, + 0.94949459763166, + 0.9746742674843129, + 0.9965191088563604, + 0.9899402366995218, + 0.987752121170142, + 0.9987169080982063, + 0.9987169080982063, + 0.9985113511553524, + 0.9987169080982063, + 0.9632178831505792, + 0.9892105958643824, + 0.9537877101584162, + 0.9444982054870336, + 0.8409895539377414, + 0.9935457940810306, + 0.9402260743372878, + 0.9725030984517492, + 0.9994500458295142, + 0.9022126610505616, + 0.9552208996034384, + 0.9963384890035256, + 0.987752121170142, + 0.9133941210450609, + 0.9444982054870336, + 0.960245535909425, + 0.9790238683337896, + 0.9094946702782724, + 0.920417502503307, + 0.9384151778567814, + 0.963122674479988, + 0.992130773157018, + 0.7576460378790729, + 0.9455819726942684, + 0.987752121170142, + 0.968168023170972, + 0.9133941210450609, + 0.8731664917240823, + 0.9746742674843129, + 0.9833831528957327, + 0.8527482577723561, + 0.9964422727546304, + 0.9746742674843129, + 0.9797497432807476, + 0.9987169080982063, + 0.948780020349246, + 0.960245535909425, + 0.9036065776616928, + 0.926761544632836, + 0.9660041169227584, + 0.9710569973901052, + 0.9979840393589112, + 0.9947945803202288, + 0.9987169080982063, + 0.9411662012310432, + 0.9395149939510422, + 0.9612865740616352, + 0.9104377104377104, + 0.8466632549513022, + 0.965460306668771, + 0.9991930603515944, + 0.7661643396391405, + 0.8993946860474129, + 0.9987169080982063, + 0.8053363980490009, + 0.8802332979851536, + 0.9951653583795466, + 0.8038391193200114, + 0.8486048045950245, + 0.9280303030303032, + 0.7681025602181487, + 0.8667078642628765, + 0.8561382296156173, + 0.9288810671989122, + 0.9927523497097036, + 0.975268289884998, + 0.9652833528240462, + 0.8533855094586799, + 0.9552208996034384, + 0.9383191940615055, + 0.9334429906542056, + 0.906974409725021, + 0.872086805029541, + 0.9775003787304952, + 0.9866063032322202, + 0.941241325810687, + 0.9394303111483416, + 0.9755497899678774, + 0.9757801848204816, + 0.97062869262233, + 0.798490964605047, + 0.9022126610505616, + 0.9410307160918406, + 0.9994500458295142, + 0.9434119359795824, + 0.9987169080982063, + 0.8056786244402121, + 0.7609962981315767, + 0.8417508417508417, + 0.9573727012110692, + 0.9833831528957327, + 0.8473209929380159, + 0.9946751263076096, + 0.9580905063976388, + 0.9638426316026611, + 0.9987169080982063, + 0.9015161062330156, + 0.9703343503473024, + 0.9987789987789988, + 0.9826559329887096, + 0.8594361209082695, + 0.9516399434309798, + 0.920417502503307, + 0.9423609294481023, + 0.968168023170972, + 0.9957870470931044, + 0.94521116881737, + 0.9694172098634408, + 0.9466379024540816, + 0.995055254321861, + 0.9879041307837876, + 0.9833831528957327, + 0.9333963910884244, + 0.9899402366995218, + 0.8869505922195406, + 0.9203611665699089, + 0.9884812240212558, + 0.9588085805762212, + 0.9214805336789016, + 0.9881107335844111, + 0.9236131934032984, + 0.9812023001507028, + 0.8379122722898551, + 0.9523555966814456, + 0.9248788062414784, + 0.8139160327981961, + 0.937383366744383, + 0.94521116881737, + 0.9768478574449928, + 0.9972514396116292, + 0.9933098124967774, + 0.9991101223581756, + 0.9286467697656632, + 0.919010674275554, + 0.9473516727604566, + 0.9459244011397192, + 0.907679698406929, + 0.9012628558280068, + 0.923234386862968, + 0.9345449630236856, + 0.9965224965914254, + 0.9537877101584162, + 0.9105923002381252, + 0.9964912280701756, + 0.9732265524705908, + 0.948780020349246, + 0.9833831528957327, + 0.923234386862968, + 0.9717799134249206, + 0.9001238035739624, + 0.8238720996776804, + 0.9369854844016412, + 0.9338360345735434, + 0.986111412381384, + 0.9689798997219612, + 0.9935924757554138, + 0.7605829143427332, + 0.9660041169227584, + 0.9211213201052028, + 0.917590135458235, + 0.9870232873110416, + 0.8507175025705549, + 0.9481552134363872, + 0.9964912280701756, + 0.9553309445702832, + 0.9403778017040136, + 0.9696119722965126, + 0.9725030984517492, + 0.9480657120588448, + 0.9480657120588448, + 0.8911000630113791, + 0.9008198204074828, + 0.9739502754814452, + 0.992130773157018, + 0.9940520578006032, + 0.9979840393589112, + 0.9871951628595732, + 0.9050015702408756, + 0.7835109416675496, + 0.9993324432576768, + 0.7596801346801346, + 0.9906701465266744, + 0.9480657120588448, + 0.8159024043178598, + 0.7811662552209668, + 0.8197944468080158, + 0.9848383996858172, + 0.9221336649411492, + 0.8994280557324552, + 0.786819255636605, + 0.8020486431706626, + 0.8608954878607267, + 0.9309395848776872, + 0.8507175025705549, + 0.9280303030303032, + 0.934334074623178, + 0.8656659267144711, + 0.7814049860815456, + 0.819882410141537, + 0.9043039394552778, + 0.7905837844375335, + 0.9809244351623316, + 0.7920033670033668, + 0.9476817042606516, + 0.9732265524705908, + 0.999014778325123, + 0.8814330280498146, + 0.8106107934390158, + 0.9859927106498643, + 0.843965803045393, + 0.7596801346801346, + 0.8513250555967384, + 0.8046783090893074, + 0.8073122788801593, + 0.9239392804329155, + 0.97062869262233, + 0.9464820597794912, + 0.8731889608367804, + 0.819882410141537, + 0.9189961343104286, + 0.8073122788801593, + 0.941972584550496, + 0.9545041703849207, + 0.8766192814819845, + 0.9739502754814452, + 0.9331273751154144, + 0.8493650107294191, + 0.9873818298349624, + 0.9964912280701756, + 0.895536084777682, + 0.9773557492735576, + 0.8385429638854296, + 0.8492357350911255, + 0.992105287563838, + 0.9991101224022378, + 0.7779288650281017, + 0.8958436239049176, + 0.9954545454545456, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8178037731982906, + 0.9416562889165628, + 0.936963017728694, + 0.8442717785843921, + 0.7686035765445222, + 0.7867084930870223, + 0.992671182389769, + 0.9848040830545792, + 0.951008471157725, + 0.8630706569122703, + 0.9026819923371648, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.84746622922539, + 0.8979659609796596, + 0.999777530589544, + 0.940760842211224, + 0.78115400581154, + 0.9240556247405564, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.7593325960761085, + 0.9413092648977816, + 0.999122807017544, + 0.9505705348293196, + 0.9416562889165628, + 0.9271888077994948, + 0.8673029726406383, + 0.9731456263408548, + 0.7813852813852814, + 0.7822341892305151, + 0.9364502164502164, + 0.8679516484927489, + 0.8857699681136173, + 0.7714560308712177, + 0.8584751140436623, + 0.8985904473621558, + 0.8190486045187014, + 0.7893527624833871, + 0.8919696969696971, + 0.8818618218586448, + 0.756628065305478, + 0.7882882882882881, + 0.950300482513086, + 0.8657481566722074, + 0.9365262267264388, + 0.943947221044588, + 0.887458515283843, + 0.7714763488785488, + 0.9214972959512142, + 0.909072064464046, + 0.7715736896162309, + 0.9290762303990062, + 0.8550758611268748, + 0.7761808341851454, + 0.9819054691235874, + 0.7957985346108523, + 0.9657498873425368, + 0.9364502164502164, + 0.8516827062939479, + 0.9754181770220984, + 0.9731874212360307, + 0.8135371179039302, + 0.8727427378014051, + 0.848344463643581, + 0.8895327800940938, + 0.7627248531396743, + 0.7582569516718274, + 0.7709571931840405, + 0.8921633972095838, + 0.9321707396546104, + 0.8986401163657464, + 0.7580471889891207, + 0.9369652591790605, + 0.8679796630864033, + 0.9098066660834573, + 0.980489676524778, + 0.927246096495326, + 0.9018122770586843, + 0.8810674463937621, + 0.8400216450216451, + 0.7689831576535288, + 0.7729944320019908, + 0.8837147279244052, + 0.881149648377826, + 0.9563110356768192, + 0.983927829355058, + 0.9839066269313416, + 0.7583206652119362, + 0.7925815424300344, + 0.8317161572052402, + 0.7744952514390555, + 0.9360718475073312, + 0.96130346341869, + 0.7958679833679831, + 0.7906981399616313, + 0.8413581378299119, + 0.9203347173341052, + 0.8430006636564963, + 0.9727275146860328, + 0.8287881529651736, + 0.8315151515151515, + 0.853720508166969, + 0.8093402654155926, + 0.8962455479058957, + 0.805605027801719, + 0.8210295170320834, + 0.8039070101933912, + 0.8039838558691283, + 0.7826760060360987, + 0.9269812868749552, + 0.794976794976795, + 0.8900713624983871, + 0.9133288665033964, + 0.810208371742399, + 0.7896057754229846, + 0.923877773549558, + 0.9296009475992656, + 0.895080529300567, + 0.8085490374609781, + 0.9819008264462812, + 0.8587224361306279, + 0.7739174537660428, + 0.7862254487513007, + 0.8193724468472356, + 0.8893524283935244, + 0.997064221767242, + 0.7952666762372825, + 0.9020216682958616, + 0.9983501374885428, + 0.8831534562926947, + 0.8860521920074892, + 0.7872481572481572, + 0.9226825090266608, + 0.7803152709359605, + 0.9122593875476056, + 0.8775850757693318, + 0.9799040094031604, + 0.8206267324852857, + 0.8177880557075959, + 0.9576966355531912, + 0.9220659824046918, + 0.797922077922078, + 0.7896320346320348, + 0.8632950463543738, + 0.9492492880197456, + 0.8832034632034632, + 0.8047193670665553, + 0.9956521739130436, + 0.7685862920068351, + 0.8475960459042418, + 0.9795419233757146, + 0.8269899956502829, + 0.7884382884382883, + 0.8207547087216158, + 0.9545454545454548, + 0.8429554406857294, + 0.8993321115511173, + 0.7984889287851585, + 0.761374210879955, + 0.8305523603886544, + 0.7718491195125222, + 0.980407916624232, + 0.950300482513086, + 0.8240213521788208, + 0.8952485002194801, + 0.9038846565773924, + 0.7965911235687182, + 0.8955324322950189, + 0.7910020962422152, + 0.9427138643067844, + 0.826115183440325, + 0.8573048573048573, + 0.7936317271895962, + 0.9007792207792208, + 0.854365955487306, + 0.9456364522650812, + 0.997982406795966, + 0.8774985212108586, + 0.9977822580645164, + 0.8221159804806326, + 0.9077567136073359, + 0.8205465606720966, + 0.8626119406890994, + 0.7556531232200494, + 0.7862587810898044, + 0.8404814885133853, + 0.8206267324852857, + 0.992492576897818, + 0.9526883899349432, + 0.8172714912841496, + 0.942686481353632, + 0.9073962406670544, + 0.793330615828421, + 0.9250332915366597, + 0.7896320346320348, + 0.9844717839591371, + 0.7676353790613718, + 0.9020216682958616, + 0.8820943870496513, + 0.9628828555154738, + 0.9505406805522968, + 0.7685960591133002, + 0.952282255405342, + 0.9961515326042576, + 0.8792822185970635, + 0.917989916458992, + 0.7624864249098158, + 0.8475960459042418, + 0.9795419233757146, + 0.8269899956502829, + 0.7884382884382883, + 0.8207547087216158, + 0.9545454545454548, + 0.8429554406857294, + 0.8993321115511173, + 0.7834739702517162, + 0.761374210879955, + 0.8305523603886544, + 0.7811065974284784, + 0.980407916624232, + 0.950300482513086, + 0.8240213521788208, + 0.8952485002194801, + 0.9038846565773924, + 0.798508237019148, + 0.8955324322950189, + 0.7839982383292353, + 0.9427138643067844, + 0.8245984899369047, + 0.8573048573048573, + 0.8243136284936928, + 0.8553134080531343, + 0.8473904773631097, + 0.9982456140350876, + 0.9590236663403416, + 0.9014436252397446, + 0.8327140244007301, + 0.8669485569807114, + 0.7949843218068803, + 0.903497324397646, + 0.9416562889165628, + 0.7707143966920784, + 0.855320123139272, + 0.7774854369415835, + 0.8503120994598766, + 0.926867994896457, + 0.8667552028246747, + 0.8775319334595817, + 0.901968773482508, + 0.935627556261994, + 0.9050659282343974, + 0.861924622573884, + 0.9675940297571454, + 0.9116934339203904, + 0.9072582435684412, + 0.9237413014402296, + 0.9238605624457716, + 0.8365273593813229, + 0.8893524283935244, + 0.9102500533059372, + 0.8349825924909352, + 0.8784817670545184, + 0.9947399253846392, + 0.8930927589221841, + 0.8055002075550022, + 0.8605298779944784, + 0.9775071835696456, + 0.9505926587353696, + 0.7588336685332704, + 0.8428335962794538, + 0.9238783245212608, + 0.8585749771698774, + 0.8765915866073055, + 0.9822182852411184, + 0.9533886386596292, + 0.8440336134453781, + 0.7834747760490336, + 0.924617649948652, + 0.9395524842975836, + 0.9389258424390616, + 0.9550800035134204, + 0.7946561709764253, + 0.9558099289684048, + 0.8428529645259684, + 0.7972573636925488, + 0.9379369101877942, + 0.8553636363636363, + 0.8995050491578671, + 0.9706054674756964, + 0.7736264668325739, + 0.9622333213753728, + 0.8220723881235561, + 0.8256741778557297, + 0.8127858031447691, + 0.7817740006858703, + 0.7968179052727826, + 0.8018268268268267, + 0.9281390141743808, + 0.9400806090461262, + 0.8107701860758095, + 0.8909257783846486, + 0.8991789819376026, + 0.8738739499371329, + 0.9781810760439292, + 0.8591088340319827, + 0.9192322609917452, + 0.8578880235734736, + 0.927227398337575, + 0.8549844211383769, + 0.9954545454545456, + 0.7996032354193273, + 0.7663762728169506, + 0.8072044088993242, + 0.9545454545454548, + 0.9222946747399472, + 0.8012891170808603, + 0.9007792207792208, + 0.761725650275299, + 0.9189132122341251, + 0.7700791802515137, + 0.7905809884612046, + 0.9364502164502164, + 0.9272003238960064, + 0.9520381744611566, + 0.7670786695244899, + 0.8558592375366569, + 0.833174972830306, + 0.9256214544793848, + 0.8228255528255527, + 0.8485714285714286, + 0.9702872224809812, + 0.7517555862267378, + 0.7565364592835857, + 0.7612860365462939, + 0.987527533398501, + 0.955555772482297, + 0.7996032354193273, + 0.7663762728169506, + 0.8072044088993242, + 0.9545454545454548, + 0.9222946747399472, + 0.8012891170808603, + 0.9007792207792208, + 0.761725650275299, + 0.9189132122341251, + 0.7700791802515137, + 0.7905809884612046, + 0.9364502164502164, + 0.933977462236232, + 0.9520381744611566, + 0.7670786695244899, + 0.8558592375366569, + 0.833174972830306, + 0.9256214544793848, + 0.8228255528255527, + 0.8485714285714286, + 0.9702872224809812, + 0.7517555862267378, + 0.7565364592835857, + 0.7612860365462939, + 0.987527533398501, + 0.955555772482297, + 0.9364502164502164, + 0.8358612257146861, + 0.8590707598082956, + 0.8832034632034632, + 0.833174972830306, + 0.8630005695842037, + 0.984461621950468, + 0.892391114486425, + 0.9897824784878032, + 0.8085316277505704, + 0.919319387113138, + 0.7940051262578318, + 0.780089044997152, + 0.9222946747399472, + 0.8363949697251979, + 0.796839893191436, + 0.7794331008589288, + 0.9859234217934404, + 0.9873000604890544, + 0.9486101335940044, + 0.9248539005931276, + 0.9517981773305488, + 0.8708608667318343, + 0.8623785126533147, + 0.9299160466862331, + 0.9545454545454548, + 0.8796487671810186, + 0.9772426641825802, + 0.7524584849903713, + 0.807857176503839, + 0.90727093221948, + 0.9971775822743564, + 0.7739306525397351, + 0.9847748699555192, + 0.7535520524804752, + 1, + 0.8551111044973793, + 0.9256631478531152, + 0.989570259523299, + 0.7687418116400186, + 0.9641837718077296, + 0.7942756598240468, + 0.8294322792944961, + 0.9215082393282026, + 0.9054494643688868, + 0.8530098192637454, + 0.9025093300004408, + 0.992492576897818, + 0.9598649249543808, + 0.8332737181503951, + 0.9529394346692732, + 0.8214507035663541, + 0.9309630572047876, + 0.7830101580101578, + 0.9732801304295486, + 0.9004189790402766, + 0.9446639459426616, + 0.9036078185699322, + 0.97145319916461, + 0.9609332238642584, + 0.7899791515690191, + 0.7611733870967741, + 0.863207096556374, + 0.9415725119950472, + 0.9939556858911696, + 0.783163286086673, + 0.9977977617253442, + 0.8662090859332238, + 0.8955509185594555, + 0.9764731504349176, + 0.7530954708374062, + 0.7828061257738677, + 0.8462219807137138, + 0.8842041598248496, + 0.915537959944108, + 0.7865763787648619, + 0.7856202453035243, + 0.903206652230566, + 0.989570259523299, + 0.7882882882882881, + 0.9483953947649668, + 0.9364334975369458, + 0.9056925711224626, + 0.7591535837096157, + 0.8418627955566073, + 0.7573046594982078, + 0.880681818181818, + 0.8409090909090906, + 0.806797048126061, + 0.7826760060360987, + 0.7688448083650483, + 0.8584408270788305, + 0.8956871084108602, + 0.913923675716727, + 0.9910308796338216, + 0.9590266687613186, + 0.7872481572481572, + 0.8646083304603533, + 0.9939410487486168, + 0.8340069434398959, + 0.982598363716604, + 0.9106424097900995, + 0.8008517246406788, + 0.8727928390787971, + 0.7681285613827205, + 0.8812869326621475, + 0.928402586493192, + 0.8532026469355432, + 0.8994624945374701, + 0.9440584784614404, + 0.9003302615524813, + 0.8228255528255527, + 0.9795723406491688, + 0.866515864516721, + 0.955439293598234, + 0.8529365775827682, + 0.934359451290398, + 0.8332769785018068, + 0.9365108715713024, + 0.877525810880078, + 0.9692015664722224, + 0.8409090909090906, + 0.940544771679814, + 0.923587693351357, + 0.7954434590943897, + 0.991568586771984, + 0.7612354435027383, + 0.937924041385235, + 0.8376851905173242, + 0.8927174779953235, + 0.7909951819239077, + 0.8443928295282409, + 0.8202350197681522, + 0.9660981642663024, + 0.8152462729809101, + 0.922004885973844, + 0.7639604667778042, + 0.7872481572481572, + 0.9000298090512994, + 0.8014712850828469, + 0.8228255528255527, + 0.8498088450201552, + 0.7879169357174485, + 0.8556523719936285, + 0.9755199210863276, + 0.8557823298777246, + 0.8293705854653898, + 0.8537505886046147, + 0.8046317312743457, + 0.8779697795654818, + 0.8749239196591598, + 0.8555086871328603, + 0.9225963809255304, + 0.9678016420122257, + 0.9415762523485668, + 0.8057522792271018, + 0.8959576525733801, + 0.9001590894975678, + 0.767145966241361, + 0.8489857866410283, + 0.9644777226717816, + 0.9098253673621896, + 0.8791269994277514, + 0.8664155045733993, + 0.8498893415734232, + 0.947101370798582, + 0.8538593322386425, + 0.8042480240124439, + 0.8931085516844227, + 0.8808798536293945, + 0.7934170900130808, + 0.9012551319648092, + 0.9348648660475504, + 0.8291496315254414, + 0.8722929363621342, + 0.911251618573038, + 0.9109734587383088, + 0.9170938628158845, + 0.7650216450216449, + 0.8491510263929617, + 0.797922077922078, + 0.9976169999054124, + 0.9935999513470776, + 0.8049044578239981, + 0.836149001293594, + 0.9772426641825802, + 0.7947818492500476, + 0.774258455570617, + 0.8948565585013833, + 0.96130346341869, + 0.7882882882882881, + 0.9031253085247768, + 0.7502958618442489, + 0.9074753238868364, + 0.9391271623435224, + 0.7795953486477678, + 0.8889322557418088, + 0.8774400397180557, + 0.9117791157331387, + 0.9837385506159468, + 0.7764964848815781, + 0.763706420963152, + 0.982244407057744, + 0.982258229908174, + 0.8665750946042498, + 0.7595972992524718, + 0.7801043792183331, + 0.905255061999686, + 0.8220123627076744, + 0.8030465628225144, + 0.9789271593959374, + 0.7848592675970836, + 0.78340962656552, + 0.9151319857390936, + 0.8905339474233814, + 0.8105036440440168, + 0.8827179393030227, + 0.9303783215638728, + 0.9188270726931117, + 0.9157320003100056, + 0.9358530842881808, + 0.7937577290427829, + 0.9414073611117948, + 0.8901453226576379, + 0.8602487024132297, + 0.7556614611768913, + 0.9600221996115068, + 0.7680433097131317, + 0.8925061445921794, + 0.9773557492735576, + 0.8013333235492676, + 0.7689202564616309, + 0.8185297955632884, + 0.7566698570378733, + 0.7828314585807773, + 0.8694189151801024, + 0.8065343721704722, + 0.9807788363703636, + 0.8356411205726275, + 0.8778270939877454, + 0.8142980219813145, + 0.9079854938491076, + 0.8369284370856844, + 0.8951910290953499, + 0.8385429638854296, + 0.9335217836825552, + 0.8814450312694764, + 0.8433770449321196, + 0.9773557492735576, + 0.8751169590643275, + 0.7872836439659993, + 0.8460813462362223, + 0.9068505777317312, + 0.974712351554919, + 0.8582253898196657, + 0.7694393172704596, + 0.9593583027873251, + 0.7791177041387707, + 0.8285988264418827, + 0.9708841861711646, + 0.8292663783394395, + 0.8455377025736512, + 0.784953771420362, + 0.7591712665406429, + 0.8668958338409165, + 0.8033611495393503, + 0.7791177041387707, + 0.7800515724165504, + 0.8797549464963943, + 0.9913485744394356, + 0.9893735932410646, + 0.8883723399394137, + 0.8371159751352832, + 0.8604416000492892, + 0.9391164837414664, + 0.9875732201051683, + 0.8696289027548957, + 0.9116740607637536, + 0.9335682269765724, + 0.8903543205412945, + 0.8274478901761246, + 0.8184361507912837, + 0.8985858297326429, + 0.8811309071018276, + 0.9600766541682176, + 0.9142379797053092, + 0.8539724989309248, + 0.9209665616774528, + 0.7653056658292261, + 0.9409789458067938, + 0.9813761990559404, + 0.937050978278692, + 0.8764803941254208, + 0.9622333213753728, + 0.8137991281050442, + 0.9349229298096128, + 0.9954545454545456, + 0.8383046372479713, + 0.8091752787787085, + 0.8992810605226834, + 0.8526177936134408, + 0.7653579292773433, + 0.916749204599586, + 0.8841900402810652, + 0.8889595044710776, + 0.8674196841123456, + 0.9890311615492476, + 0.9817061821644611, + 0.9631360021073514, + 0.9146441554557286, + 0.9372227566431792, + 0.8277684278026405, + 0.8085158042512651, + 0.8164472422898458, + 0.9476735033728184, + 0.9195597006085118, + 0.9400644385653472, + 0.8518992260665973, + 0.9457607069255074, + 0.805969235202997, + 0.8496241912512923, + 0.8197634340126408, + 0.9579224065577792, + 0.8608612476370511, + 0.9529052383428788, + 0.9845238804935112, + 0.9083435256044582, + 0.8553134080531343, + 0.7923275652679538, + 0.7819131922573495, + 0.7906170310433895, + 0.8406484670606788, + 0.7894736842105264, + 0.8681498428014106, + 0.8408063572139095, + 0.7738548847622624, + 0.8107066154287429, + 0.909636086500905, + 0.9320839327803117, + 0.894689054121916, + 0.8861995746607623, + 0.8134896030245747, + 0.9636363636363636, + 0.8392276737347159, + 0.901982337361457, + 0.8985728391457872, + 0.792183707284576, + 0.781322126609299, + 0.9194369973190348, + 0.8490800833801486, + 0.9929855448480356, + 0.9990150209905604, + 0.7707081956166206, + 0.8952232922255726, + 1, + 0.8129887361537077, + 0.9000234404536862, + 0.998221036598569, + 0.8017888630248555, + 0.8075842215036355, + 0.9208092958092956, + 0.7606873345935727, + 0.7928741020793951, + 0.9344444444444444, + 0.8580430671412884, + 0.8053911900065747, + 0.9025957850286672, + 0.992671182389769, + 0.9682695039010508, + 0.951299790877642, + 0.9060155127964962, + 0.9527305856232412, + 0.9434321361058602, + 0.9565966865742668, + 0.943947221044588, + 0.8705701323251417, + 0.9652200677131424, + 0.9884853681548044, + 0.9357441792403746, + 0.9414868925909092, + 0.9505847966970496, + 0.9565269894940224, + 0.9514804555247768, + 0.7993113894954217, + 0.760960813749392, + 0.8859552362571937, + 0.9413092648977816, + 1, + 0.8182545315351611, + 1, + 0.9136739322359624, + 0.7679975248125409, + 0.9492028179458656, + 0.9839615421047646, + 0.9954545454545456, + 0.9954545454545456, + 0.8398210820058983, + 0.8626784395302913, + 0.9781810760439292, + 0.775848555122794, + 0.7830044520223547, + 0.7890565881306622, + 0.7666456034744639, + 0.8730814336484439, + 0.8997733824632729, + 0.9780525030525028, + 0.9501767000609233, + 0.9341770866436075, + 0.7890266466291772, + 0.931285458781014, + 0.9135836385836384, + 0.8161327222259138, + 0.8595055413469735, + 0.8885272049623901, + 0.8850443888003645, + 0.9111695674516778, + 0.8969355419044592, + 0.9369652591790605, + 0.9474196440005122, + 0.9540293886604132, + 0.7751893805092811, + 0.884220727546821, + 0.9248167539267018, + 0.9416562889165628, + 0.9947833674785644, + 0.8179413224638157, + 0.963749256395003, + 0.9894860390412652, + 0.7661643396391405, + 0.8822836096135876, + 0.9987169080982063, + 0.8212112306855328, + 0.8510831692167852, + 0.9674464520962212, + 0.8140738302718742, + 0.9084937590490597, + 0.8588550489464593, + 0.9132111582886344, + 0.9652833528240462, + 0.8704495461768502, + 0.908214664444781, + 0.8330370179351025, + 0.8542414865764498, + 0.951833769945225, + 0.9369276682149368, + 0.9172096473904445, + 0.7660118606375093, + 0.8049385749385749, + 0.819882410141537, + 0.9479738077588338, + 0.8453139910143218, + 0.9957870470931044, + 0.835084520570639, + 0.7568829071309779, + 0.8003212087852895, + 0.7757575757575756, + 0.9818181818181816, + 0.8296247866194634, + 0.8397480840731469, + 0.8084175084175085, + 0.8224948407969244, + 0.7604961330297303, + 0.8801077325173712, + 0.769382100421295, + 0.8025699565810901, + 0.7925192834831389, + 0.932353379320096, + 0.94491648331435, + 0.8001582377938935, + 0.7832517257911142, + 0.8082508107205724, + 0.7628286200410923, + 0.7621748136686876, + 0.9364192202560784, + 0.7690913021991601, + 0.8585000323687447, + 0.9150177303560064, + 0.8405722943067688, + 0.904913008013858, + 0.917314235445159, + 0.9929855448480356, + 0.8268991218112046, + 0.8398859728050183, + 0.996521739130435, + 0.8330381744436689, + 0.8550497957993816, + 0.9913111768722972, + 0.8557422839635942, + 0.8935463671803986, + 0.9006445563787115, + 0.8921379258150505, + 0.9000168618023969, + 0.7589099863492517, + 0.923526237747262, + 0.9028882720019862, + 0.9170617535185012, + 0.9807828100228472, + 0.939548148620228, + 0.9363191484705866, + 0.8321093615368212, + 0.8571281012005368, + 0.8384981048972464, + 0.9086443302842008, + 0.8871943647917209, + 0.8878997468865361, + 0.8999564578859198, + 0.9894860390412652, + 0.9134801839907836, + 0.8586028659246839, + 0.9532628651995616, + 0.8991005792297246, + 0.9248167539267018, + 0.8647701376567242, + 0.9063380676482872, + 0.9006445563787115, + 0.9964912280701756, + 0.9104377104377104, + 0.9861142727065788, + 0.8766608932307983, + 0.9228068405104872, + 0.945216049382716, + 0.872288139441828, + 0.8287614081607514, + 0.9364502164502164, + 0.9107716613157442, + 0.7558233373684017, + 0.9637205387205386, + 0.911011004178706, + 0.825019069412662, + 0.7745592680619333, + 0.9563893487499426, + 0.8643469043976432, + 0.8938717567128639, + 0.8935795415901516, + 0.9090909090909088, + 0.8890241171514016, + 0.8412491105292438, + 0.8993946860474129, + 0.9779240761641758, + 0.8448498489942445, + 0.9637205387205386, + 0.8307739463601531, + 0.7840680498436611, + 0.9234588281480026, + 0.7533766040551628, + 0.8411108025383495, + 0.8186320718389478, + 0.7507073140597975, + 0.8665855131372373, + 0.8141166099294752, + 0.8465178639695039, + 0.8674324881574892, + 0.894897491091307, + 0.926797128906551, + 0.8002254756609835, + 0.8899568476668683, + 0.8050891517303731, + 0.7551272091668285, + 0.9170723522722332, + 0.8862820694208641, + 0.7731935891169762, + 0.85279684719044, + 0.8545871559633028, + 0.973043266390798, + 0.9110701550899905, + 0.8806793706489482, + 0.9750233018591332, + 0.8832528651475978, + 0.9637205387205386, + 0.8045977011494252, + 0.7840680498436611, + 0.9718089459310836, + 0.7632159853061836, + 0.8411108025383495, + 0.8186320718389478, + 0.8665855131372373, + 0.8141166099294752, + 0.8465178639695039, + 0.8674324881574892, + 0.8941741955127749, + 0.8055806456563269, + 0.9200506754154923, + 0.8002254756609835, + 0.8055002075550022, + 0.8899568476668683, + 0.8050891517303731, + 0.7551272091668285, + 0.9170723522722332, + 0.8862820694208641, + 0.7643684665873062, + 0.8962930952966316, + 0.8545871559633028, + 0.973043266390798, + 0.8391999316061071, + 0.9106199738197148, + 0.8336184977583577, + 0.9825055596738328, + 0.8275801175590107, + 0.8536656603794738, + 0.9947833674785644, + 0.8871943647917209, + 0.9947833674785644, + 0.8474509259804291, + 0.8970952216775002, + 0.9064029668710988, + 0.8689528166230794, + 0.8668563557933111, + 0.9192140588692024, + 0.8446191193563313, + 0.9070510179197603, + 0.9569231352909934, + 0.9360907526607608, + 0.9363191484705866, + 0.7585150816808764, + 0.8079450438253487, + 0.889311351984684, + 0.9157961667726409, + 0.8495199813878911, + 0.9008127437155956, + 0.9894860390412652, + 0.9084777593712244, + 0.8247288683081853, + 0.9554572159761404, + 0.8803742636840193, + 0.8617666872995883, + 0.9141959372906489, + 0.9034890695907855, + 0.8086181910936574, + 0.9964912280701756, + 0.9859927106498643, + 0.9106199738197148, + 0.7805873465692333, + 0.8878997468865361, + 0.9016573566020095, + 0.996521739130435, + 0.8072721768598793, + 0.8440081063581091, + 0.996521739130435, + 0.8612922801795058, + 0.8405722943067688, + 0.9620426435996664, + 0.8550497957993816, + 0.8140134601423378, + 0.8065264393377811, + 0.8107867382196149, + 0.8640740055556022, + 0.8801559604997237, + 0.7852248168921702, + 0.8640589559565321, + 0.7885457047794436, + 0.8947102177469851, + 0.9459249756326831, + 0.9206503306171988, + 0.8390959753949685, + 0.8829679585824524, + 0.8550497957993816, + 0.9034890695907855, + 0.996521739130435, + 0.8773484472624222, + 0.8453843932985197, + 0.9372480427854252, + 0.7528181818181818, + 0.9513991845811716, + 0.8133380704513155, + 0.8550497957993816, + 0.8822645386075115, + 0.9964912280701756, + 0.984385006449655, + 0.8868917142282169, + 0.8515915595209063, + 0.7801554360634969, + 0.985677698237539, + 0.8248130810601166, + 0.8900224404233377, + 0.9847846012832264, + 0.8665750946042498, + 0.8066554677866482, + 0.9191871761989552, + 0.8436840954545581, + 0.863729744412587, + 0.8256985978203084, + 0.8998085943818406, + 0.8162326248169407, + 0.9119926726575672, + 0.9789271593959374, + 0.9477427513951896, + 0.9452267008277976, + 0.880636467189412, + 0.8867623702302508, + 0.808133830455259, + 0.9714444301275637, + 0.9847846012832264, + 0.9286461770540784, + 0.9203870504644208, + 0.941002197457228, + 0.9704634209196064, + 0.8113283188178101, + 0.7634010982542299, + 0.8902061446452669, + 0.9354771486059212, + 0.9847846012832264, + 0.7809840281171203, + 0.9894860390412652, + 0.8185297955632884, + 0.8802332979851536, + 0.9723196833760273, + 0.9982608695652172, + 0.8258211640188051, + 0.9080000797822109, + 0.9964912280701756, + 0.839409582008935, + 0.8941141728869741, + 0.7725808179227283, + 0.8028188725754469, + 0.8251527896182628, + 0.8315151515151515, + 0.817899229361741, + 0.7620751217250173, + 0.8246468823065852, + 0.8720941750410174, + 0.9294859277773437, + 0.9927523497097036, + 0.9828742809481747, + 0.9543209471735604, + 0.8753860783148016, + 0.939845912034176, + 0.9151374298073564, + 0.9378841050418828, + 0.939845912034176, + 0.7510938991373108, + 0.8610822831727207, + 0.8417508417508417, + 0.8698065557551617, + 0.9372803249238462, + 0.9790245861131704, + 0.9300633742947678, + 0.8054841390869845, + 0.7589199371000429, + 0.896639903044993, + 0.8974694288349275, + 0.9926781739019452, + 0.8458809671812189, + 0.7712684989429177, + 0.7976314145122237, + 0.9416437009068946, + 0.9947856385396152, + 0.7862727272727271, + 0.8586700336700335, + 0.9303687863484544, + 0.8675319709415152, + 0.7920446151287672, + 0.8694866227116197, + 0.8586700336700335, + 0.7834335706711103, + 0.7921764122864366, + 0.934334074623178, + 0.8619283887468031, + 0.7676281237741422, + 0.7631048593350384, + 0.9925507389082384, + 0.978469168274726, + 0.7500718937727315, + 0.8846977863333716, + 0.9378841050418828, + 0.8684059865492091, + 0.8950764254021453, + 0.7740137221269299, + 0.8084175084175085, + 0.8843935880633129, + 0.7975398606698341, + 0.8485069801940157, + 0.7694545454545454, + 0.9679847507357018, + 0.7697689156812739, + 0.7685979300090726, + 0.9457912457912456, + 0.7920033670033668, + 0.81753438081967, + 0.9637205387205386, + 0.8196988466882366, + 0.8876132688068014, + 0.9992667277726852, + 0.813403640566796, + 0.924902134017138, + 0.8505352830088105, + 0.7966210086663266, + 0.8107701860758095, + 0.7920033670033668, + 0.8396249227545072, + 0.7665777912437509, + 0.9309395848776872, + 0.8562069694591002, + 0.8351865579441562, + 0.7614932582627626, + 0.9217240750865684, + 0.9927523497097036, + 0.9824776408025137, + 0.9261759464210148, + 0.8795946591645603, + 0.9517275376077332, + 0.8343766589132309, + 0.9378841050418828, + 0.939845912034176, + 0.8426835486603141, + 0.8084175084175085, + 0.825, + 0.9279912144543816, + 0.9380615545835612, + 0.954821445486407, + 0.8054841390869845, + 0.7644397158986019, + 0.7992420095977141, + 0.9046488352723072, + 0.8607131176664159, + 0.9425530200949087, + 0.9831998467809452, + 0.911913216712972, + 0.8106537530266346, + 0.8669221312020842, + 0.9668646925956867, + 0.9859927106498643, + 0.8221148524429848, + 0.8287744007907092, + 0.82603603526253, + 0.8081220122922833, + 0.9241691376328144, + 0.8905062719442627, + 0.9072244170820468, + 0.9697143291871126, + 0.9165806743803824, + 0.9299779576625525, + 0.8626009468114731, + 0.9129479515242416, + 0.9489917104460288, + 0.857590973901184, + 0.7832356477938764, + 0.8727427378014051, + 0.7882094994286454, + 0.895848674816511, + 0.9755497899678774, + 0.8250670301619656, + 0.7636588119091294, + 0.8344665413033981, + 0.9956140350877192, + 0.7763975155279506, + 0.9842098239836105, + 0.8099989097144443, + 0.8954915979223954, + 0.9774655289026236, + 0.8046862811072518, + 0.8922196480686242, + 0.8757413004727584, + 0.875097886791886, + 0.9781962076503552, + 0.9571952337305224, + 0.8651037425957864, + 0.9276048900878147, + 0.8334407352378117, + 0.7931151679937852, + 0.8060125046665569, + 0.9001590894975678, + 0.8984134418359582, + 0.9307180976298852, + 0.8949088289552438, + 0.9140478958381776, + 0.9195604324464297, + 0.8595611909902062, + 0.8168393183171508, + 0.826467375579422, + 0.94513113161729, + 0.9542466061552302, + 0.8949088289552438, + 0.9053910284366296, + 0.817437533227007, + 0.7978783990223038, + 0.7521903939726886, + 0.754943158980426, + 0.7928605555934748, + 0.8989607068123694, + 0.7975892455476461, + 0.7725199492096488, + 0.773030766193022, + 0.9767351231527428, + 0.9424631082284728, + 0.866898864682116, + 0.7899138991389913, + 0.9376349250962784, + 0.9303020409693342, + 0.8287563928270861, + 0.8603115680426934, + 0.8114732228923959, + 0.9669758970781992, + 0.8105976841695943, + 0.7959269589012261, + 0.8302139037433156, + 0.986986590623621, + 0.751078143739283, + 0.7653353783714458, + 0.8172644988912497, + 0.7803817180307603, + 0.8605730020712427, + 0.912175623606646, + 0.9956171156600898, + 0.8729948690203866, + 0.8364452091564932, + 0.8308541973619359, + 0.901193983595923, + 0.8421276190184838, + 0.8119707766428466, + 0.778036674438649, + 0.7873355614633314, + 0.7837805015771132, + 0.8219385637193856, + 0.8521396824062815, + 0.7718977095748232, + 0.8817091503055309, + 0.7708107321002571, + 0.7512636527567177, + 0.8438110321297421, + 0.9832058480308432, + 0.8890631162040309, + 0.8977160492573557, + 0.9859234217934404, + 0.8546502548557862, + 0.8668958338409165, + 0.9890311615492476, + 0.9350943180643897, + 0.9280169976669376, + 0.8210527935710153, + 0.7559911987169416, + 0.7736264668325739, + 0.863925779862748, + 0.824723044297354, + 0.8806041934635603, + 0.8250833206612556, + 0.928723519908324, + 0.8668958338409165, + 0.8881896291715989, + 0.9593583027873251, + 0.9061435934718377, + 0.9211354224331691, + 0.8859445107741636, + 0.9398812902982936, + 0.8047278408758268, + 0.9223744981227123, + 0.9230788696114616, + 0.9536631479971994, + 0.9694396869310692, + 0.8131377716690427, + 0.8237517359346237, + 0.8173907278944466, + 0.8965017504270001, + 0.9219048551109622, + 0.9097417836628494, + 0.8553134080531343, + 0.9989920981077092, + 0.917451425335698, + 0.9683628785480636, + 0.7970900578406114, + 0.8376203239523712, + 0.9801024844208264, + 0.7557162849632163, + 0.8961803319477781, + 0.996336999414424, + 0.9196524296187878, + 0.8854275250970148, + 0.8283188405797101, + 0.8569170829836921, + 0.7593988263019269, + 0.8392807687593222, + 0.9868446526492484, + 0.7732691595705294, + 0.9521895754027829, + 0.9372227566431792, + 0.9200506754154923, + 0.917500751704446, + 0.8740937766410911, + 0.8518450184501843, + 0.7975089687046684, + 0.8722498962224988, + 0.8978908677866823, + 0.9773557492735576, + 0.8912733076127769, + 0.8868080394461477, + 0.8826697225277056, + 0.9463791440512886, + 0.9521895754027829, + 0.8485714285714286, + 0.999122807017544, + 0.9265379339453412, + 0.789227895392279, + 0.8469796766499825, + 0.953644173755992, + 0.9926761940480948, + 0.8153042353997382, + 0.8607621561631246, + 0.9832058480308432, + 0.9570294209353524, + 0.9992668621947256, + 0.8641670664322122, + 0.7757761746311366, + 0.8357747120217831, + 0.866213238722621, + 0.8792285183078618, + 0.7957371772064827, + 0.878036507710379, + 0.9658331436022252, + 0.7622935296404183, + 0.9857187253140862, + 0.8942561574169895, + 0.9622333213753728, + 0.9131318215287682, + 0.8411490111317951, + 0.8916483082566217, + 0.9500441996469742, + 0.8499116091074294, + 0.9308446996969624, + 0.971973367585848, + 0.950603792184588, + 0.8131377716690427, + 0.8886194359553156, + 0.8284169872492293, + 0.8757940351900098, + 0.9023840086111148, + 0.9230788696114616, + 0.7524570024570024, + 0.9981688711071728, + 0.9020646721236415, + 0.9272440944881892, + 0.917451425335698, + 0.952871096782223, + 0.9954192028862328, + 0.8614426005287826, + 0.8553282796247272, + 0.991220090045964, + 0.962952748132584, + 0.9970690618433798, + 0.8655309124484051, + 0.7810606403025839, + 0.7757761746311366, + 0.8580430671412884, + 0.866213238722621, + 0.8806041934635603, + 0.7777808036382947, + 0.8317573749391951, + 0.9716068390573318, + 0.819882410141537, + 0.9848040830545792, + 0.8737365714482546, + 0.962952748132584, + 0.9154671960778832, + 0.9112764606124896, + 0.8916483082566217, + 0.9529052383428788, + 0.8696289027548957, + 0.9188566733401607, + 0.9507590560548307, + 0.9507917513638928, + 0.9853649117096728, + 0.8131377716690427, + 0.8951137084436364, + 0.8371159751352832, + 0.8703128420935895, + 0.9022988912306722, + 0.9400644385653472, + 0.7531344790477525, + 0.9992668621947256, + 0.9020646721236415, + 0.8645269531463561, + 0.9839330712663648, + 0.975224136149363, + 0.9372677626851672, + 1, + 0.9904901783696456, + 0.9875732201051683, + 1, + 0.9919502705663622, + 0.9890311615492476, + 1, + 0.9883020564051679, + 0.9132421335802218, + 0.996336999414424, + 0.9890311615492476, + 0.9883020564051679, + 0.9897605355374068, + 0.991220090045964, + 0.978122813016422, + 0.9511647444887732, + 0.9919502705663622, + 0.9985339932335306, + 0.8938717567128639, + 0.9891891050899508, + 0.9970690618433798, + 0.9897605355374068, + 0.9978013931164152, + 0.9855637890579251, + 0.9586402202505121, + 0.9607952743931896, + 0.9805263157894736, + 0.99268071993084, + 0.9941424251920344, + 0.996336999414424, + 0.9884575916336614, + 0.9719327874122964, + 0.9753656599277568, + 0.9883020564051679, + 0.9919502705663622, + 0.9883020564051679, + 0.9934114381393974, + 0.9992668621947256, + 0.977723489335005, + 0.9995652173913042, + 0.9948736810887512, + 0.9090909090909088, + 0.8174876847290639, + 0.8553636363636363, + 0.8455433455433455, + 0.8397417807252716, + 0.8437332724582007, + 0.832909538499891, + 0.7619786952586509, + 0.8177290491628549, + 0.9175438596491228, + 0.882198952879581, + 0.8767128866853765, + 0.8150509397735729, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.8829402079402078, + 0.8107452697678261, + 0.9637205387205386, + 0.852293824358888, + 0.8709558996012198, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352229, + 0.805168828270855, + 0.9090909090909088, + 0.945216049382716, + 0.8771929824561405, + 0.8174876847290639, + 0.7599743651365856, + 0.8553636363636363, + 0.8455433455433455, + 0.9416562889165628, + 0.8437332724582007, + 0.832909538499891, + 0.8177290491628549, + 0.9175438596491228, + 0.882198952879581, + 0.8767128866853765, + 0.8150509397735729, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.8829402079402078, + 0.8107452697678261, + 0.8417508417508417, + 0.852293824358888, + 0.8709558996012198, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352229, + 0.805168828270855, + 0.9090909090909088, + 0.9789848244395952, + 0.8771929824561405, + 0.8174876847290639, + 0.8813770455902434, + 0.8553636363636363, + 0.8455433455433455, + 0.8325561291955809, + 0.8437332724582007, + 0.832909538499891, + 0.8177290491628549, + 0.882198952879581, + 0.8150509397735729, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.7862727272727271, + 0.8107452697678261, + 0.9825055596738328, + 0.852293824358888, + 0.8709558996012198, + 0.826664274308378, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352229, + 0.805168828270855, + 0.9792614678275988, + 0.8553134080531343, + 0.8343739357475309, + 0.9649169511660014, + 0.9815789473684212, + 0.775995920023485, + 0.8490459410817468, + 0.999122807017544, + 0.8887919536466066, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8672820048414341, + 0.9416562889165628, + 0.7922752675949607, + 0.7916704805491989, + 0.936963017728694, + 0.8515555890726042, + 0.84746622922539, + 0.8469364035600904, + 0.9088064577345945, + 0.9830807073527456, + 0.9729066716260472, + 0.9309198460265768, + 0.993758325008325, + 0.9220836669819068, + 0.9328333806952732, + 0.9120932616135702, + 0.8672722972717296, + 0.9787330446229278, + 0.9956171156600898, + 0.9044025274049858, + 0.9162907640884717, + 0.9886242163794032, + 0.9856590419138828, + 0.9735969760860068, + 0.9237640299437498, + 0.8150558110147776, + 0.9001503179694077, + 0.9403303455027593, + 0.999122807017544, + 0.9090741230371568, + 0.999122807017544, + 0.903135734615762, + 0.8282546041121969, + 0.9792614678275988, + 0.8553134080531343, + 0.8232860332235971, + 0.909065387196842, + 0.978073311070348, + 0.775995920023485, + 0.8490459410817468, + 0.999122807017544, + 0.8870930627862177, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8672820048414341, + 0.9416562889165628, + 0.7922752675949607, + 0.7916704805491989, + 0.936963017728694, + 0.7737464548987709, + 0.84746622922539, + 0.8291492133323973, + 0.9088064577345945, + 0.9761788895853514, + 0.9770862304997938, + 0.9329580322176916, + 0.993758325008325, + 0.9188951371295636, + 0.9328333806952732, + 0.8980181937554507, + 0.8677050513455755, + 0.9752792033119024, + 0.9882730260033812, + 0.905289786165362, + 0.9143112638406732, + 0.9886242163794032, + 0.9544594777956544, + 0.9581772940528424, + 0.9143045157420016, + 0.8252050839377624, + 0.9001503179694077, + 0.9403303455027593, + 0.999122807017544, + 0.9292464661560496, + 0.999122807017544, + 0.8566176867322529, + 0.8374157216227878, + 0.9280303030303032, + 0.986111279729024, + 0.9950777781016508, + 0.7644397158986019, + 0.8788591215600511, + 0.995055254321861, + 0.8218760444455504, + 0.8963051106025932, + 0.9855308977062668, + 0.8161330049261083, + 0.919010674275554, + 0.8602150725639578, + 0.9437855111487105, + 0.982329825041006, + 0.8843548391463373, + 0.8689327225675706, + 0.931003010693105, + 0.9349500075746098, + 0.8343765747325528, + 0.8587642661603542, + 0.8586700336700335, + 0.9617123795404005, + 0.9664559126905398, + 0.9369276682149368, + 0.9421777653794547, + 0.8002254756609835, + 0.91015350877193, + 0.8195948305972756, + 0.8049385749385749, + 0.8079714438079046, + 0.9248788062414784, + 0.9466765601812077, + 0.9943237305426308, + 0.8922259540680743, + 0.7615894748339839, + 0.92882506393551, + 0.8553134080531343, + 0.8492357350911255, + 0.9943501037415146, + 0.9908190857034046, + 0.7714797416324134, + 0.8958436239049176, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.9692982456140352, + 0.9108481442025624, + 0.7872481572481572, + 0.7785693212549879, + 0.7916704805491989, + 0.936963017728694, + 0.8833898132089024, + 0.8276770122994085, + 0.895416975651959, + 0.992671182389769, + 0.9514741813067672, + 0.8630706569122703, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8398017274912394, + 0.9988878509623264, + 0.937103645050706, + 0.9851370084561714, + 0.8052224642752426, + 0.9408748628296816, + 0.950672972897766, + 0.9505705348293196, + 1, + 0.7647361516158825, + 0.907644799841382, + 0.8492357350911255, + 0.9514212739063944, + 0.9991101224022378, + 0.7714797416324134, + 0.8950014677832712, + 0.9943546343400722, + 0.8210917926103164, + 0.8995898027497777, + 0.999122807017544, + 0.8091752787787085, + 0.8045413788925241, + 0.92385752642948, + 0.7939937969249388, + 0.7916704805491989, + 0.936963017728694, + 0.8564021794854101, + 0.8929190984699815, + 0.7960647061252278, + 0.9048525852298742, + 0.992671182389769, + 0.987968431853366, + 0.9531702386026508, + 0.8651058220157922, + 0.957204861709126, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.8819809439955775, + 0.9883020564051679, + 0.937103645050706, + 0.9407755311560884, + 0.9851370084561714, + 0.8030210815765354, + 0.94362258995985, + 0.7901596681791947, + 0.8868080394461477, + 0.9413092648977816, + 0.999122807017544, + 0.9443944345284628, + 0.9992668621947256, + 0.9385224385224383, + 0.7647361516158825, + 0.907644799841382, + 0.8492357350911255, + 0.9514212739063944, + 0.9991101224022378, + 0.7714797416324134, + 0.8950014677832712, + 0.9943546343400722, + 0.8171099429462456, + 0.8995898027497777, + 0.999122807017544, + 0.8091752787787085, + 0.8045413788925241, + 0.92385752642948, + 0.7939937969249388, + 0.7916704805491989, + 0.936963017728694, + 0.8532214540129998, + 0.8929190984699815, + 0.7960647061252278, + 0.9048525852298742, + 0.992671182389769, + 0.987968431853366, + 0.9531702386026508, + 0.8651058220157922, + 0.957204861709126, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.8744221238514268, + 0.9883020564051679, + 0.937103645050706, + 0.9407755311560884, + 0.9851370084561714, + 0.8030210815765354, + 0.94362258995985, + 0.7901596681791947, + 0.8868080394461477, + 0.9413092648977816, + 0.999122807017544, + 0.9443944345284628, + 0.9992668621947256, + 0.9385224385224383, + 0.7647361516158825, + 0.7823572752988579, + 0.9716068390573318, + 0.9615141634622412, + 0.9956019844379308, + 0.9939526010712452, + 0.9868446526492484, + 0.9788481543433862, + 1, + 0.9280169976669376, + 0.975224136149363, + 0.9970690618433798, + 0.9883020564051679, + 0.9301373709233364, + 0.9795737645144298, + 0.9824788936394012, + 0.9883020564051679, + 0.9414868925909092, + 0.9188566733401607, + 0.9978013931164152, + 0.9692438828447324, + 0.9883020564051679, + 0.9934114381393974, + 0.9486152933634998, + 0.9721523399735842, + 0.9934114381393974, + 0.9708841861711646, + 0.9500441996469742, + 0.9174366159265968, + 0.9329682990823176, + 0.9716068390573318, + 0.8840480861242009, + 0.9948736810887512, + 0.9579224065577792, + 0.9679962630672924, + 0.9978013931164152, + 0.8764803941254208, + 0.9414868925909092, + 0.9181539149158895, + 0.9429104219927898, + 0.9919502705663622, + 0.9651126414686952, + 1, + 0.9962804570068788, + 1, + 0.9513949869239996, + 0.917451425335698, + 0.8893524283935244, + 0.8711567490387903, + 0.8402268612783098, + 0.9991101224022378, + 0.875683873894971, + 0.893318343627618, + 0.9998166819431716, + 0.8181684978110831, + 0.8501131405958162, + 0.9791710812316362, + 0.9416562889165628, + 0.7704074975067344, + 0.8205779056365766, + 0.8524355521406097, + 0.8149410602532909, + 0.9678129927260984, + 0.992671182389769, + 0.9904289157282716, + 0.9512909738881008, + 0.9430833061919088, + 0.9498925099667804, + 0.9491784964871592, + 0.9608990650462856, + 0.9498609989321576, + 0.7794361831100473, + 0.9505758519634429, + 0.9773557492735576, + 0.8637008456171156, + 0.9301795973691914, + 0.8828315614940658, + 0.959175062021937, + 0.9531601641545472, + 0.999122807017544, + 0.9998166819431716, + 0.7587536069598175, + 0.7522123063336182, + 0.8258303273081601, + 0.9356248965935622, + 0.9820100634702482, + 0.831081385436793, + 0.8534540516685338, + 0.9818536963567754, + 0.8486878358300123, + 0.9129853629164147, + 0.8998911634924976, + 0.7793718426037994, + 0.932398585032895, + 0.800012400217004, + 0.7984383476710843, + 0.907326978222119, + 0.838169467510867, + 0.7913646289079624, + 0.9278150139590884, + 0.9506223327256856, + 0.9364530503181744, + 0.9417014747671419, + 0.7800217784035494, + 0.9258691777106102, + 0.9376349250962784, + 0.9412635914006205, + 0.8430977292102612, + 0.9461654371370272, + 0.9391302151973808, + 0.968708052390917, + 0.7829559806346367, + 0.8486878358300123, + 0.92049050384555, + 0.9877189123128628, + 0.9672169872900396, + 0.8207867897037397, + 0.8168393183171508, + 0.826467375579422, + 0.94513113161729, + 0.9585637037072424, + 0.8949088289552438, + 0.9053910284366296, + 0.817437533227007, + 0.7978783990223038, + 0.7521903939726886, + 0.754943158980426, + 0.7928605555934748, + 0.8989607068123694, + 0.7975892455476461, + 0.7725199492096488, + 0.7662703504995123, + 0.9767351231527428, + 0.9424631082284728, + 0.866898864682116, + 0.7783625730994154, + 0.9376349250962784, + 0.9303020409693342, + 0.8287563928270861, + 0.8603115680426934, + 0.8114732228923959, + 0.9669758970781992, + 0.8105976841695943, + 0.7959269589012261, + 0.8302139037433156, + 0.986986590623621, + 0.751078143739283, + 0.9104552048233484, + 0.9985339932335306, + 0.9919502705663622, + 0.9890174067689452, + 1, + 0.9985339932335306, + 0.9919502705663622, + 1, + 0.9978013931164152, + 0.9978013931164152, + 1, + 0.996336999414424, + 0.9978013931164152, + 0.9970690618433798, + 0.9985339932335306, + 0.996336999414424, + 0.9883020564051679, + 1, + 0.9904289157282716, + 0.9992668621947256, + 0.9992668621947256, + 0.996336999414424, + 0.9928507310737632, + 1, + 0.8271094654395285, + 0.996336999414424, + 0.9978013931164152, + 0.9956044009241408, + 0.9985339932335306, + 0.9904901783696456, + 0.9978013931164152, + 0.9970690618433798, + 0.996336999414424, + 0.996336999414424, + 0.9970690618433798, + 0.995605205829548, + 1, + 0.9985339932335306, + 0.9853883242696474, + 0.995605205829548, + 0.9992668621947256, + 1, + 0.9992555369697762, + 1, + 0.9882827814745488, + 0.9992668621947256, + 0.9859927106498643, + 0.9550538402276436, + 0.9795737645144298, + 0.9350474891783676, + 0.9946751263076096, + 0.99268071993084, + 0.9529052383428788, + 1, + 0.9832058480308432, + 0.928723519908324, + 0.999122807017544, + 0.9701618021290772, + 0.9181539149158895, + 0.9414868925909092, + 0.916749204599586, + 0.94362258995985, + 0.8771670219049115, + 0.9020646721236415, + 0.9479012434878824, + 0.7967703326479759, + 0.9802996435295532, + 0.9917846709962562, + 0.8938717567128639, + 0.9862646747457392, + 0.9839330712663648, + 0.9600766541682176, + 0.9759484021000084, + 0.9473421475334106, + 0.8472097261066925, + 0.9414868925909092, + 0.9650851977230176, + 0.999122807017544, + 0.9550538402276436, + 0.9441436310000064, + 0.9884575916336614, + 0.94958838214302, + 0.9436364293412104, + 0.9802996435295532, + 0.9817522080920388, + 0.9766729368947332, + 0.975224136149363, + 0.999122807017544, + 0.9763146820695155, + 0.999122807017544, + 0.9716068390573318, + 0.8353033499302194, + 0.9286573911418808, + 0.989388886675146, + 0.811997387314498, + 0.8668958338409165, + 0.9719327874122964, + 0.9416700490012928, + 0.9868446526492484, + 0.8626461571750742, + 0.7693359990306556, + 0.8443573586609718, + 0.8171099429462456, + 0.8861176478495414, + 0.842673863199572, + 0.928723519908324, + 0.758875943584108, + 0.887167247405612, + 0.8928699826089762, + 0.8759576634165684, + 0.9564875857045522, + 0.9061435934718377, + 0.8423092165265303, + 0.8930336617991886, + 0.9400644385653472, + 0.9237835099442904, + 0.9466976131633718, + 0.950603792184588, + 0.8131377716690427, + 0.8598012719162864, + 0.787554569047141, + 0.884737671188568, + 0.9070294784580498, + 0.9069463429223856, + 0.7524570024570024, + 0.9981688711071728, + 0.8971961746848013, + 0.8404738376904276, + 0.8288697152121746, + 0.8829742996323185, + 0.9945048317633112, + 0.885610204525967, + 0.9329682990823176, + 0.9407755311560884, + 0.9274938109996211, + 0.955770578544058, + 0.8609445180643548, + 0.8868080394461477, + 0.8826697225277056, + 0.860081980641546, + 0.8494179248503486, + 0.8806041934635603, + 0.7745935959659945, + 0.804564602812277, + 0.8457610658751216, + 0.9141259733731866, + 0.9083435256044582, + 0.9249744348616508, + 0.878036507710379, + 0.8567036918158099, + 0.9407755311560884, + 0.912541525908588, + 0.8711093063931175, + 0.8951137084436364, + 0.9041552036871964, + 0.953621170127054, + 0.9464739502688859, + 0.9727686004162333, + 0.9824788936394012, + 0.895416975651959, + 0.8388354220573428, + 0.8451861367189766, + 0.9020646721236415, + 0.8838860538503512, + 0.9586402202505121, + 0.99782684342909, + 0.7818532483566868, + 0.8978908677866823, + 0.9346434038598216, + 0.9486152933634998, + 0.975224136149363, + 0.927916573470583, + 0.9974294410273912, + 0.9586402202505121, + 0.9507590560548307, + 0.9978013931164152, + 0.954337370755309, + 0.911841187081034, + 0.975224136149363, + 0.9365130082728363, + 0.8902640300903737, + 0.9500441996469742, + 0.7528067405931878, + 0.9139430100959351, + 0.9486152933634998, + 0.8723662731741496, + 0.8503425879277244, + 0.9643924081792452, + 0.9716068390573318, + 0.9322331995088968, + 0.9730529513619054, + 0.8909560347514579, + 0.9730529513619054, + 0.9225158405279774, + 0.8806041934635603, + 0.9223744981227123, + 0.928723519908324, + 0.8985858297326429, + 0.8868080394461477, + 0.934385376226286, + 0.865978265648834, + 0.9669995060071396, + 0.9215535536561092, + 0.8916483082566217, + 0.8806041934635603, + 0.8614426005287826, + 0.9500441996469742, + 0.9615141634622412, + 0.9836858501848198, + 0.9992668621947256, + 0.8840480861242009, + 0.8659737769303842, + 0.8881896291715989, + 0.9658331436022252, + 0.9117779886590568, + 0.9891164188197914, + 0.9393536148186856, + 0.8999765601568034, + 0.9992668621947256, + 0.8902640300903737, + 0.8937267418365915, + 0.986116354037408, + 0.9745001390427974, + 0.8682618306097468, + 0.917451425335698, + 0.9237835099442904, + 0.9372227566431792, + 0.8605814190983236, + 0.9658331436022252, + 0.99268071993084, + 0.9331273751154144, + 0.9874932258547676, + 0.9817522080920388, + 0.9322601637764528, + 0.9730529513619054, + 0.7966912350949062, + 0.9636724437338746, + 0.9146441554557286, + 0.9665539145798344, + 0.912541525908588, + 0.8923408506058652, + 0.9403639696255566, + 0.9824501714706848, + 0.8958075950132784, + 0.7947875585169598, + 0.8888808273004442, + 0.9817522080920388, + 0.9579224065577792, + 0.9643924081792452, + 0.9978013931164152, + 0.909042520211614, + 0.8839798882716039, + 0.9322601637764528, + 0.977397740533538, + 0.9407327353741834, + 0.9974294410273912, + 0.957204861709126, + 0.9636724437338746, + 1, + 0.9507590560548307, + 0.9244884191211992, + 0.9737764107803116, + 0.9294303109937904, + 0.866213238722621, + 0.889572294273369, + 0.9365130082728363, + 0.9386430599161039, + 0.8614426005287826, + 0.8592127013521056, + 0.9586402202505121, + 0.984660563345966, + 0.942257835125676, + 0.977397740533538, + 0.8944200907180742, + 0.9723297607875788, + 0.9466282499343924, + 0.879916221463671, + 0.917451425335698, + 0.9358035287465732, + 0.9365130082728363, + 0.8785410839961321, + 0.8800026263331926, + 0.9180818572622022, + 0.9300900041631704, + 0.9111411170975592, + 0.8958075950132784, + 0.8751079450986783, + 0.9687178405771408, + 0.9643924081792452, + 0.9741087373430196, + 0.9965539092032524, + 0.8485601299189015, + 0.9039239850807016, + 0.991220090045964, + 0.99268071993084, + 0.9411779284976856, + 1, + 0.9941424251920344, + 0.9839330712663648, + 1, + 0.9948736810887512, + 0.9853883242696474, + 1, + 0.9904901783696456, + 0.9062481548474688, + 0.9948736810887512, + 0.9766729368947332, + 0.99268071993084, + 0.9883020564051679, + 0.996336999414424, + 0.9832058480308432, + 0.9721523399735842, + 0.995605205829548, + 0.995605205829548, + 0.8966477542865559, + 0.989920889126398, + 0.9941424251920344, + 0.9853883242696474, + 0.99268071993084, + 0.989208622446052, + 0.9737764107803116, + 0.9788481543433862, + 0.9508557261229018, + 0.9883020564051679, + 0.9868446526492484, + 0.9948736810887512, + 0.9789725394962472, + 0.9778375229520267, + 0.9630457249445452, + 0.9897605355374068, + 0.9759484021000084, + 0.9745001390427974, + 0.9839330712663648, + 1, + 0.9910847398800986, + 1, + 0.9824788936394012, + 0.8935362109939026, + 0.8492357350911255, + 0.7799775750856683, + 0.9991101224022378, + 0.7714797416324134, + 0.8924773755936107, + 0.9921175854473762, + 0.8244173938759, + 0.8995898027497777, + 0.997783274463504, + 0.8019358454012121, + 0.8034463924540262, + 0.9208092958092956, + 0.7862626472757531, + 0.7901234941467935, + 0.9234208215886514, + 0.8754121720256093, + 0.8661215058187304, + 0.992671182389769, + 0.9798792330613568, + 0.9514741813067672, + 0.9550538402276436, + 0.9429977116704804, + 0.9378841050418828, + 0.9348478408783754, + 0.8677050513455755, + 0.9438416558070334, + 0.9894860390412652, + 0.9369022368540908, + 0.9407755311560884, + 0.937924041385235, + 0.9677933860111212, + 0.9970690618433798, + 0.9443944345284628, + 0.9965539092032524, + 0.7647361516158825, + 0.8833587699039136, + 0.8455377025736512, + 0.9378994747569932, + 1, + 0.8854275250970148, + 0.9372227566431792, + 0.9978013931164152, + 0.8621233137385207, + 0.9034580909885984, + 0.9687178405771408, + 0.9788481543433862, + 0.8364452091564932, + 0.8257495162906913, + 0.9450477324262084, + 0.7908116150724073, + 0.7922257273375911, + 0.8186576980160944, + 0.9593583027873251, + 0.9941424251920344, + 0.9848040830545792, + 0.9795737645144298, + 0.9181539149158895, + 0.9579224065577792, + 0.8038532129267693, + 0.7895079901300617, + 0.9393536148186856, + 0.9329682990823176, + 0.9386430599161039, + 0.9097417836628494, + 0.934365235861341, + 0.8682618306097468, + 0.8062236581276447, + 0.7999671002057498, + 0.9579224065577792, + 0.962952748132584, + 0.9421985228698097, + 0.9758471017566333, + 0.8492357350911255, + 0.9883020564051679, + 0.9965191088563604, + 0.9992663243093578, + 0.9992656508417233, + 0.9941424251920344, + 1, + 0.99268071993084, + 1, + 0.9992668621947256, + 0.9965191088563604, + 0.9540512424216696, + 0.9970690618433798, + 0.9768478574449928, + 0.9833831528957327, + 0.9914003253458398, + 0.9890311615492476, + 0.9782982623788444, + 0.9926335425715881, + 0.8068812492978317, + 0.9985339932335306, + 1, + 0.998339483394834, + 1, + 0.9948736810887512, + 0.9875732201051683, + 0.9941413527735856, + 1, + 0.992130773157018, + 0.9721444518798692, + 0.9978013931164152, + 0.998350675275288, + 0.9906529437430028, + 1, + 0.9948736810887512, + 0.9914003253458398, + 0.9970690618433798, + 0.9976169999054124, + 0.9985113511553524, + 0.9954545454545456, + 0.9585725924710128, + 0.9992668621947256, + 0.8558690511962423, + 0.9477543538038498, + 0.7858966339146662, + 0.8467583491924263, + 0.8327122834222226, + 0.8908526998828004, + 0.8135527713116105, + 0.9336872890005498, + 0.8135527713116105, + 0.7969931938295922, + 0.9404358147459344, + 0.7922931599671659, + 0.9455558136112772, + 0.7617997236100775, + 0.8361266348371678, + 0.8706162391527938, + 0.8909999999999999, + 0.8169671679245643, + 0.911393892174019, + 0.950028839221341, + 0.8316766353632711, + 0.8481140741645349, + 0.9263157894736842, + 0.7693317755435274, + 0.8485714285714286, + 0.9975371888373946, + 0.7657492944145039, + 0.782707509881423, + 0.8344731368348524, + 0.7893527624833871, + 0.934334074623178, + 0.9652014577830238, + 0.9712575474049576, + 0.7951570680628274, + 0.8023077073631943, + 0.8378558855512396, + 0.7750750175798774, + 0.8711152458705146, + 0.9450509667184974, + 0.8728200371057514, + 0.8266151860146821, + 0.9508561924475392, + 0.8678771151093215, + 0.7818744360024455, + 0.953621170127054, + 0.9550538402276436, + 0.9255861016232882, + 1, + 0.9890311615492476, + 0.9839330712663648, + 1, + 0.9875732201051683, + 0.9868446526492484, + 1, + 0.9672749544015236, + 0.8485601299189015, + 0.9948736810887512, + 0.9853883242696474, + 0.991220090045964, + 0.9716068390573318, + 0.9853883242696474, + 0.9817522080920388, + 0.9461330864231152, + 0.9934114381393974, + 0.9985339932335306, + 0.8683978095980386, + 0.9869953764615554, + 0.995605205829548, + 0.9868446526492484, + 0.9883020564051679, + 0.9724980906333768, + 0.9407755311560884, + 0.9372227566431792, + 0.9805263157894736, + 0.996336999414424, + 0.996336999414424, + 0.9992668621947256, + 0.9884575916336614, + 0.9887359375145636, + 0.977084365603192, + 0.9817522080920388, + 0.9890311615492476, + 0.9875732201051683, + 0.9883020564051679, + 0.9992668621947256, + 0.9762465658458932, + 1, + 0.991220090045964, + 0.8205020227371977, + 0.8608078181360623, + 0.8831761147394912, + 0.9956171156600898, + 0.8264159807642062, + 0.9851370084561714, + 0.8032496864185852, + 0.7921163153910715, + 0.8189876505853204, + 0.8866880766446407, + 0.7712492904983538, + 0.766650468421388, + 0.9874185848252344, + 0.9860765405159552, + 0.8021177944862157, + 0.9104948113042188, + 0.9076355564584256, + 0.9302834429286485, + 0.8899966113703928, + 0.7950194069243905, + 0.7994718538953012, + 0.9755497899678774, + 0.8737705484182898, + 0.8391756392041623, + 0.8000318742722583, + 0.863706643974955, + 0.999122807017544, + 0.788531116445173, + 0.7673011362392835, + 0.856290549490185, + 0.8500013228910797, + 0.8217519251079187, + 0.9886242163794032, + 0.8335855838820181, + 0.7737677036875701, + 0.80781838380708, + 0.8821104163000745, + 0.7790490801674135, + 0.821180494612969, + 0.8346691294875438, + 0.8306511043531097, + 0.7751893805092811, + 0.7785693212549879, + 0.8213296424597536, + 0.7990961561862842, + 0.8708980045995849, + 0.8508997225351951, + 0.9550538402276436, + 0.8404738376904276, + 0.8608516172237797, + 0.8898770040500942, + 0.9910308796338216, + 0.9443350267709892, + 0.9379327738576018, + 0.9687178405771408, + 0.954337370755309, + 0.8992810605226834, + 0.8104222403360605, + 0.8617768931040987, + 0.8019358454012121, + 0.8489486269748123, + 0.8334307196417515, + 0.8472653300897576, + 0.8641393141487438, + 0.8327404310943477, + 0.8764803941254208, + 0.912541525908588, + 0.8614426005287826, + 0.8750187225119483, + 0.8930336617991886, + 0.9188566733401607, + 0.909042520211614, + 0.9278339260751618, + 0.8855898697110776, + 0.8914924863272463, + 0.9636724437338746, + 0.8594020739640472, + 0.933676703232262, + 0.9471874624563446, + 0.9767901752344744, + 0.8923668029454429, + 0.887801301315952, + 0.8244173938759, + 0.8598281139548333, + 0.9048525852298742, + 0.9202629967209424, + 0.9586402202505121, + 0.99818613436632, + 0.8116526550439349, + 0.9097417836628494, + 0.8938131796635373, + 0.8689452322602814, + 0.7632159853061836, + 0.931092626752598, + 0.9714033929661204, + 0.916047252707554, + 0.9665539145798344, + 0.9992668621947256, + 0.877193998855128, + 0.8621233137385207, + 0.8404336601367269, + 0.8899568476668683, + 0.7657793910062513, + 0.8125492090556029, + 0.8944200907180742, + 0.9832058480308432, + 0.866243248832523, + 0.9723297607875788, + 0.9358035287465732, + 0.9111411170975592, + 0.8984030086479471, + 0.8744221238514268, + 0.831385641452182, + 0.917611437505964, + 0.8478847935907573, + 0.9679962630672924, + 0.8637608966376091, + 0.9294733352278108, + 0.8427886110852929, + 0.928226607524593, + 0.8025926314878588, + 0.9041552036871964, + 0.9045462110180228, + 0.9607952743931896, + 0.7731216272312162, + 0.9960877143127782, + 0.7917919558851796, + 0.7813854250011384, + 0.8594020739640472, + 0.8448171762300786, + 0.9066838594697112, + 0.993041786971632, + 0.9218534208170824, + 0.9280169976669376, + 0.9579224065577792, + 0.7649434377260497, + 0.9324432641365908, + 0.9890311615492476, + 0.8689452322602814, + 0.8861176478495414, + 0.8937267418365915, + 0.8573639669960287, + 0.853295011850143, + 0.9251935971421876, + 0.8902640300903737, + 0.7921163153910715, + 0.8692840854028374, + 0.9120241323975692, + 0.9322601637764528, + 0.9682695039010508, + 0.8869907346430809, + 0.9308446996969624, + 0.928723519908324, + 0.8601704114565033, + 0.8874986998868335, + 0.8888808273004442, + 0.975224136149363, + 0.8091752787787085, + 0.9507590560548307, + 0.9664158428720082, + 0.9817522080920388, + 0.8284169872492293, + 0.9136988002866576, + 0.8445121446112305, + 0.9139430100959351, + 0.8914848829801818, + 0.9672749544015236, + 0.99782684342909, + 0.772138724992434, + 0.90276124713408, + 0.961144204800487, + 0.8634855466902354, + 0.9379327738576018, + 0.908277884446819, + 0.9946871424565764, + 0.9479012434878824, + 0.933676703232262, + 0.9839330712663648, + 0.957204861709126, + 0.9897605355374068, + 0.8668958338409165, + 0.8916483082566217, + 0.9153455696596016, + 0.8573639669960287, + 0.8634855466902354, + 0.9251935971421876, + 0.909042520211614, + 0.8723662731741496, + 0.8537487234650945, + 0.8792285183078618, + 0.9350943180643897, + 0.8079714438079046, + 0.9551004697947988, + 0.8806041934635603, + 0.9273107442696306, + 0.9223744981227123, + 0.9616766085585506, + 0.8730512878891623, + 0.8965017504270001, + 0.975224136149363, + 0.8277497162434753, + 0.9514741813067672, + 0.9622333213753728, + 0.9746102461941208, + 0.940760842211224, + 0.8337648336821305, + 0.9132421335802218, + 0.838458313625102, + 0.9104413159581644, + 0.9230788696114616, + 0.9615141634622412, + 0.9608062684964296, + 0.9992668621947256, + 0.90276124713408, + 0.9316696874472936, + 0.8231087698825403, + 0.9544682296975874, + 0.7552770595350544, + 0.992615515771526, + 0.8512496250257213, + 0.8744043956043956, + 0.9547348484848484, + 0.7548367420848981, + 0.8010008340283569, + 0.8674088334090595, + 0.7996294165768151, + 0.908313797791604, + 0.9891493795585866, + 0.7540999753755234, + 0.9272544060904362, + 0.8780091446372676, + 0.9182823930924128, + 0.8762510425354463, + 0.9053124690879792, + 0.9546304163126592, + 0.9085090856109872, + 0.8064763169544045, + 0.9027775208335084, + 0.8873519569623151, + 0.902977283394997, + 0.9964912280701756, + 0.996521739130435, + 0.9338039426824476, + 0.9139430100959351, + 0.9622333213753728, + 0.9737764107803116, + 0.9701400724878312, + 0.9974294410273912, + 0.9358035287465732, + 0.9464739502688859, + 0.9970690618433798, + 0.9658331436022252, + 0.955770578544058, + 0.9960351014549488, + 0.9477180531985372, + 0.7802288530146114, + 0.9622333213753728, + 0.8067839857133676, + 0.9301373709233364, + 0.8868080394461477, + 0.9450477324262084, + 0.8134050821718116, + 0.9454153674378072, + 0.984660563345966, + 0.9904901783696456, + 0.9507590560548307, + 0.9779823259487208, + 0.9883020564051679, + 0.855139156857862, + 0.9853883242696474, + 0.9564875857045522, + 0.9083271241193304, + 0.9421985228698097, + 0.8621233137385207, + 0.9479012434878824, + 0.9802996435295532, + 0.9613309146374462, + 0.9890311615492476, + 0.9789725394962472, + 0.9230788696114616, + 0.9875732201051683, + 0.8937267418365915, + 0.9948736810887512, + 0.9716068390573318, + 0.9679854547640152, + 0.9572793819640072, + 0.9992668621947256, + 0.9649045221259104, + 0.9365130082728363, + 0.7854822169733378, + 0.9877224033535164, + 0.8267536096879368, + 0.8281155906857192, + 0.7782426513939189, + 0.7770132902980824, + 0.7813852813852814, + 0.8531626502908053, + 0.986652250762675, + 0.8443985380581599, + 0.8507060144843345, + 0.9095966218704222, + 0.7793195367381812, + 0.8485714285714286, + 0.793478260869565, + 0.9357129295614204, + 0.9013778530474436, + 0.8068636548636549, + 0.8283693657758276, + 0.7842947575142669, + 0.929941088884573, + 0.8318189568317447, + 0.9721324228139152, + 0.8929555666008868, + 0.9899175068744273, + 0.7829559806346367, + 0.8330585670487148, + 0.9004712036731742, + 0.8079059133534838, + 0.907326978222119, + 0.8418462145170219, + 0.8355962235887732, + 0.9840600196897172, + 0.9727233543942168, + 0.9456931798893302, + 0.7835307826762479, + 0.9334823561531638, + 0.943912095206486, + 0.9719476865439598, + 0.8989607068123694, + 0.9899175068744273, + 0.91218688144154, + 0.968708052390917, + 0.9275641323723166, + 0.7750817305162342, + 0.7705110005585539, + 0.8746911090742437, + 0.906777236648719, + 0.9877189123128628, + 0.905810189680844, + 0.9039758195768428, + 0.9545454545454548, + 0.8475303670578501, + 0.9511957748205524, + 0.8592904322283405, + 0.9090909090909088, + 0.864748396641959, + 0.8793851481338977, + 0.9499999999999998, + 0.7977657605606996, + 0.828074328074328, + 0.8757161620920398, + 0.8518139443215275, + 0.8919696969696971, + 0.9006463378910865, + 0.9123913868449176, + 0.7538355364442323, + 0.9728462804245892, + 0.8226075640111686, + 0.7627425872585156, + 0.9397093147093144, + 0.9405901494832792, + 0.9373208866593992, + 0.9185281385281384, + 0.9805093555093556, + 0.9045454545454543, + 0.7521739130434782, + 0.8676160350867449, + 0.9096320346320348, + 0.9705446224256292, + 0.7511156903867726, + 0.9498970784947516, + 0.8553636363636363, + 0.8803749979451918, + 0.8868951612903225, + 0.8716773908739449, + 0.7640091133472566, + 0.9754511278195488, + 0.9090909090909088, + 0.919377312007859, + 0.9895652173913044, + 0.9090909090909088, + 0.9895652173913044, + 0.904833326772871, + 0.8896985935172833, + 0.9613560315981924, + 0.9209973066564064, + 0.7738377192982457, + 0.8766948621553885, + 0.8955979105301095, + 0.7862727272727271, + 0.8120276073976656, + 0.9062605084545612, + 0.9819906110654324, + 0.9482809390239644, + 0.9270810254564676, + 0.8858122880872292, + 0.9272543317870856, + 0.9248843536331894, + 0.9592356458451337, + 0.9740750470337556, + 0.8618048445021776, + 0.9826209215251775, + 0.9119804816878757, + 0.901982337361457, + 0.968471177944862, + 0.9722529273134676, + 0.9674022810471118, + 0.8998470475108667, + 0.8758239471864051, + 0.957737379733654, + 0.9619347444028424, + 0.9817460256655812, + 0.9619598036238828, + 0.9754511278195488, + 0.9045454545454543, + 0.9108776132404182, + 0.9895652173913044, + 0.9090909090909088, + 0.9808695652173912, + 0.903936979364855, + 0.8946016606830777, + 0.9582023810487048, + 0.9363189044244398, + 0.7701982739613846, + 0.877299976398395, + 0.8623579834310708, + 0.7862727272727271, + 0.8480601581866628, + 0.8902466538134809, + 0.9819906110654324, + 0.9507874084663184, + 0.925065002188018, + 0.8906569786528593, + 0.9272543317870856, + 0.9318691420627104, + 0.9592356458451337, + 0.9670573870573872, + 0.8638081223124702, + 0.9815789473684212, + 0.9119804816878757, + 0.9027305623701912, + 0.968471177944862, + 0.9722529273134676, + 0.9664533537113174, + 0.8980586357606626, + 0.8824347249543827, + 0.957737379733654, + 0.9606072393507964, + 0.7604223245592875, + 0.9401709401709404, + 0.9616481164026224, + 0.9809453113164672, + 0.825, + 0.8965328341856458, + 0.9930434993747648, + 0.9919417254554761, + 0.7662935746676578, + 0.916200245724204, + 0.8929657620169505, + 0.9764831764168632, + 0.8651113127255622, + 0.8576748602878727, + 0.8002254756609835, + 0.8303849683667892, + 0.945960433937275, + 0.9927523497097036, + 0.9224700032216755, + 0.924592891635332, + 0.8627825284444037, + 0.9427557668775548, + 0.9416944402363276, + 0.7977840705338264, + 0.891911538610805, + 0.7757575757575756, + 0.9186470619844704, + 0.9755497899678774, + 0.9380936401545896, + 0.9430730858023998, + 0.8821269989132121, + 0.8635778359926967, + 0.9686187299234, + 0.82231768595902, + 0.8454690660447776, + 0.936633843357067, + 0.9928614899602092, + 0.7920033670033668, + 0.9790238683337896, + 0.851784484740942, + 0.7835174551354922, + 0.970437888198758, + 0.973913043478261, + 0.8004960204410251, + 0.8608354753566684, + 0.973913043478261, + 0.8932535416128451, + 0.8985806100405787, + 0.9473716579271056, + 0.8802936186789987, + 0.8429844720496896, + 0.7998641304347827, + 0.7548105590062113, + 0.851091804125718, + 0.7982289247602901, + 0.8918317295952493, + 0.9704182624797956, + 0.9250441174468548, + 0.9234004788164912, + 0.8072112569313484, + 0.9458344577995612, + 0.8199687206756333, + 0.9636939983093828, + 0.973913043478261, + 0.8946764860972011, + 0.8953883830144143, + 0.9685626687981476, + 0.8854475897922277, + 0.890074370350509, + 0.9467502582887196, + 0.973913043478261, + 0.7675727377454222, + 0.9240556247405564, + 0.9038176307865486, + 0.8004417918113229, + 0.8571885156262036, + 0.7888661250305931, + 0.7588020905133782, + 0.8150670283151774, + 0.8394858977004067, + 0.8506509425026048, + 0.86632058337082, + 0.907644799841382, + 0.7869039663743268, + 0.8377993482174306, + 0.9661635604440372, + 0.7796002893491529, + 0.8462255001833667, + 0.8698618053513671, + 0.853295011850143, + 0.9457912457912456, + 0.9954545454545456, + 0.786253632545592, + 0.921913236929922, + 0.9090909090909088, + 0.9764931810396176, + 0.9895652173913044, + 0.8409090909090906, + 0.982608695652174, + 0.904833326772871, + 0.9398297385891607, + 0.8728218919864725, + 0.910662682746664, + 0.7508707607699359, + 0.920196146646124, + 0.8941510995342954, + 0.7896297048496517, + 0.9062605084545612, + 0.9819906110654324, + 0.9395768590554164, + 0.8846891981591173, + 0.8753550543024229, + 0.9272543317870856, + 0.9159873721905482, + 0.9592356458451337, + 0.9719230769230768, + 0.853205915989843, + 0.9789473684210526, + 0.9119804816878757, + 0.9021731519130232, + 0.9408793468279631, + 0.9502457651288154, + 0.9343996875499296, + 0.8998470475108667, + 0.7828140592083379, + 0.956227485420032, + 0.9688644688644692, + 0.9878260869565216, + 0.9619598036238828, + 0.9853883242696474, + 0.9069463429223856, + 0.8484535647736858, + 0.9859234217934404, + 0.8546502548557862, + 0.8668958338409165, + 0.9890311615492476, + 0.9365130082728363, + 0.9280169976669376, + 0.8580430671412884, + 0.7643022445960241, + 0.7736264668325739, + 0.8826697225277056, + 0.8391298861361308, + 0.8806041934635603, + 0.8250833206612556, + 0.928723519908324, + 0.8668958338409165, + 0.7521491867834005, + 0.8881896291715989, + 0.9616904586883988, + 0.9061435934718377, + 0.9211354224331691, + 0.90276124713408, + 0.9434394218523597, + 0.8047278408758268, + 0.9216703954780426, + 0.9230788696114616, + 0.9564875857045522, + 0.9694396869310692, + 0.8131377716690427, + 0.8237517359346237, + 0.8025926314878588, + 0.8965017504270001, + 0.9230777619327238, + 0.9104413159581644, + 0.8553134080531343, + 0.9989920981077092, + 0.917451425335698, + 0.9521895754027829, + 0.9069463429223856, + 0.8444028672449848, + 0.9910308796338216, + 0.8526177936134408, + 0.8634855466902354, + 0.9883020564051679, + 0.9464739502688859, + 0.9216703954780426, + 0.8566851356948486, + 0.7694393172704596, + 0.7752390906012949, + 0.7768521470048189, + 0.8785410839961321, + 0.8290845270990632, + 0.8351044837311526, + 0.8264159807642062, + 0.9237835099442904, + 0.8868080394461477, + 0.8944200907180742, + 0.9486152933634998, + 0.9061435934718377, + 0.8987505869438153, + 0.7765308864041348, + 0.9062481548474688, + 0.9414868925909092, + 0.8971961746848013, + 0.9273107442696306, + 0.9564875857045522, + 0.9694396869310692, + 0.917451425335698, + 0.7980007746070045, + 0.900672328635003, + 0.9230777619327238, + 0.909042520211614, + 0.8722498962224988, + 0.99818613436632, + 0.917451425335698, + 0.9350943180643897, + 0.8450773104028045, + 0.7755025814626396, + 0.8499116091074294, + 0.9954545454545456, + 0.8248656842171965, + 0.8771670219049115, + 0.8017627702025453, + 0.8252966318058891, + 0.7989505012531329, + 0.9084382663648368, + 0.7700826611531227, + 0.8173907278944466, + 0.9586402202505121, + 0.8279882714725023, + 0.8750287541127237, + 0.8058469213257959, + 0.8887595093929513, + 0.8741986118728367, + 0.9013332512757184, + 0.8951137084436364, + 0.8085158042512651, + 0.7847209561813264, + 0.9207931801334324, + 0.8813228755976849, + 0.8806041934635603, + 0.904598717548413, + 0.8357423547232772, + 0.8519408442208185, + 0.7585436044093791, + 0.754716608935201, + 0.7526949335249729, + 0.8630753385715217, + 0.945504664970314, + 0.8607621561631246, + 0.8190996579799222, + 0.8138788692223808, + 0.80834947374926, + 0.8461416361416363, + 0.8321563840156672, + 0.9049823065264198, + 0.7611003116070912, + 0.8564208333192405, + 0.9567242111117616, + 0.8830433688448956, + 0.8498282229301768, + 0.8787054248059898, + 0.7583865519843361, + 0.8560065732377481, + 0.7845811712379542, + 0.911841187081034, + 0.7575987286674309, + 0.9032923617208078, + 0.8054515169551613, + 0.9457116500465104, + 0.7972151720771685, + 0.9550538402276436, + 0.8404738376904276, + 0.8951137084436364, + 0.8898770040500942, + 0.9910308796338216, + 0.9443350267709892, + 0.9379327738576018, + 0.9687178405771408, + 0.954337370755309, + 0.8992810605226834, + 0.8655309124484051, + 0.8902640300903737, + 0.8553282796247272, + 0.8614426005287826, + 0.8958075950132784, + 0.8438384213475643, + 0.8771670219049115, + 0.8280046113614686, + 0.8607621561631246, + 0.912541525908588, + 0.8614426005287826, + 0.8946208326427901, + 0.8930336617991886, + 0.9188566733401607, + 0.909042520211614, + 0.9278339260751618, + 0.8773278519419312, + 0.9111411170975592, + 0.9636724437338746, + 0.8566851356948486, + 0.933676703232262, + 0.9471874624563446, + 0.9832058480308432, + 0.8923668029454429, + 0.887801301315952, + 0.8244173938759, + 0.8424917813524705, + 0.9048525852298742, + 0.9202629967209424, + 0.9586402202505121, + 0.99818613436632, + 0.8116526550439349, + 0.9097417836628494, + 0.9329682990823176, + 0.8438384213475643, + 0.8958075950132784, + 0.8921838780119076, + 0.986652250762675, + 0.9479012434878824, + 0.9393536148186856, + 0.9687178405771408, + 0.7643022445960241, + 0.955770578544058, + 0.8478847935907573, + 0.8634855466902354, + 0.8614426005287826, + 0.8580430671412884, + 0.8587224361306279, + 0.8923408506058652, + 0.8351044837311526, + 0.8052224642752426, + 0.911841187081034, + 0.8295875223215042, + 0.889572294273369, + 0.912541525908588, + 0.8958075950132784, + 0.8960129675540568, + 0.8930336617991886, + 0.9550538402276436, + 0.909042520211614, + 0.887315997105363, + 0.8703128420935895, + 0.9111411170975592, + 0.9550538402276436, + 0.8614426005287826, + 0.9372227566431792, + 0.962952748132584, + 0.9824788936394012, + 0.9017863969504004, + 0.877949549206721, + 0.8614426005287826, + 0.8344345242846016, + 0.9013683659572824, + 0.9223744981227123, + 0.9586402202505121, + 0.99782684342909, + 0.8327803954481456, + 0.9377053197580578, + 0.7520783733062728, + 0.8576638516480299, + 0.7973458704289155, + 0.8055002075550022, + 0.8274342134261912, + 0.7682652462041775, + 0.8985858297326429, + 0.9295420779390244, + 0.9497666282126442, + 0.9045462110180228, + 0.8937267418365915, + 0.9450477324262084, + 0.9335682269765724, + 0.9463791440512886, + 0.8655309124484051, + 0.7591412700557859, + 0.8317573749391951, + 0.9191871761989552, + 0.9144998770732076, + 0.8299318662677443, + 0.7999671002057498, + 0.9590943683409436, + 0.9721268361679862, + 0.7512346093262124, + 0.9031905016766244, + 0.9258990440072554, + 0.8277497162434753, + 0.9045462110180228, + 0.9715042130082729, + 0.8091792146047655, + 0.8478274566824184, + 0.8594020739640472, + 0.7511865272235565, + 0.7739458321143061, + 0.8799003347391113, + 0.8438384213475643, + 0.8735155491890395, + 0.8971961746848013, + 0.955770578544058, + 0.962303313592256, + 0.9187077430559348, + 0.9203925414202916, + 0.9514626397110274, + 0.9041122896824668, + 0.7840680498436611, + 0.8292520377479811, + 0.97941509455445, + 0.8836172394187662, + 0.9375944096516282, + 0.9096320346320348, + 0.8897178357319816, + 0.977084365603192, + 0.8159983921213949, + 0.8647743756870857, + 0.9324532116794522, + 0.9496978544622346, + 0.8933384348345432, + 0.9146441554557286, + 0.893013468013468, + 0.7745935959659945, + 0.9240556247405564, + 0.9248385202583678, + 0.9493296120831972, + 0.784239798606639, + 0.7934206675600327, + 0.847568697165119, + 0.8111354653251885, + 0.7558928791805505, + 0.7550475642500958, + 0.8290845270990632, + 0.9166360018268416, + 0.9214315504311476, + 0.8905928806265223, + 0.8833857030636293, + 0.8371864728096656, + 0.7786506591658736, + 0.8732444148742633, + 0.9824788936394012, + 0.9261641390813252, + 0.7920585237916445, + 0.8270827140818009, + 0.8181481481481481, + 0.9685059666773832, + 0.7724990486505474, + 0.8453837597330368, + 0.9028925619834708, + 0.974712351554919, + 0.7990739031960405, + 0.8124766840771211, + 0.8338302155859407, + 0.8257495162906913, + 0.9242514144040864, + 0.8874986998868335, + 0.8316014689297133, + 0.8491709060650188, + 0.9290397110203914, + 0.9429104219927898, + 0.9020663048206212, + 0.9497666282126442, + 0.8735827515879028, + 0.8190930086640767, + 0.9097417836628494, + 0.8836172394187662, + 0.7561436787677326, + 0.9111759366075987, + 0.9685059666773832, + 0.7694393172704596, + 0.9182355818184244, + 0.9443350267709892, + 0.8991822088005293, + 0.9609732144249478, + 0.8388412496816188, + 0.9434738042076424, + 0.9514940210071012, + 0.7974547159339365, + 0.9158098573783174, + 0.8885435517508157, + 0.7927757091445906, + 0.8089575535557855, + 0.8566665569299595, + 0.8314583644863298, + 0.7943437531819572, + 0.8869909377863762, + 0.7623509827444914, + 0.9602434075673276, + 0.8173534679942144, + 0.9145746409758626, + 0.7598389563652722, + 0.8919299119395553, + 0.9546749386121294, + 0.9061863080667324, + 0.9429340786658, + 0.8532240586756394, + 0.8877384763770779, + 0.958686173433348, + 0.9554765128325876, + 0.927589597885256, + 0.9529605866177816, + 0.9690193870107546, + 0.8907469811519957, + 0.9842229467473992, + 0.9364502164502164, + 0.8550444275316389, + 0.9174603174603174, + 0.9919369945954868, + 0.7974492252661268, + 0.9534048316392292, + 0.7523489859050253, + 0.8139854059928581, + 0.9461387983232418, + 0.8098519486211259, + 0.7647244706969056, + 0.906310774345067, + 0.7678224795898994, + 0.9290762303990062, + 0.8524886899155711, + 0.980320788530466, + 0.9254995395026632, + 0.8657481566722074, + 0.9421659088682972, + 0.8474906647205496, + 0.9013546930437588, + 0.9748919688627304, + 0.8388843744066832, + 0.95990063654712, + 0.9796267593595076, + 0.9345104268491364, + 0.9405500820824608, + 0.8701948495342146, + 0.9783368141256884, + 0.7696261546646032, + 0.7607570099969941, + 0.7567551932941814, + 0.89138879753655, + 0.928489598568463, + 0.9086142870609782, + 0.9545454545454548, + 0.9545454545454548, + 0.8077423038829434, + 0.9174603174603174, + 0.948338703873867, + 0.9649045221259104, + 0.8289700533295026, + 0.9245393784589186, + 0.7559638453436506, + 0.8235522434404595, + 0.9007792207792208, + 0.7664355652861399, + 0.9290762303990062, + 0.8491308962278107, + 0.7573901281365926, + 0.8315151515151515, + 0.7505974060116345, + 0.9502677159519249, + 0.8378061008189606, + 0.8657481566722074, + 0.9421659088682972, + 0.9391737997679988, + 0.943947221044588, + 0.9530072970035708, + 0.946585394605002, + 0.8072282340152606, + 0.8919696969696971, + 0.9783368141256884, + 0.8060213664465975, + 0.7894137547439006, + 0.8886194359553156, + 0.8969404465407047, + 0.8395077004692013, + 0.8087262766581881, + 0.9417675428322848, + 0.838458313625102, + 0.9578918616552848, + 0.9877224033535164, + 0.9600766541682176, + 0.9372227566431792, + 0.9996947496947498, + 0.9464739502688859, + 0.9273107442696306, + 0.8427440270131528, + 0.8930336617991886, + 0.8499116091074294, + 0.8297523357929766, + 0.8628042957923382, + 0.94362258995985, + 0.8861176478495414, + 0.992955297959396, + 0.954141881439958, + 0.9716068390573318, + 0.9372227566431792, + 0.9209665616774528, + 0.8810186818949944, + 0.8078565985679013, + 0.7888565809250084, + 0.8999765601568034, + 0.7784705964389922, + 0.8951137084436364, + 0.9694396869310692, + 0.906901471095239, + 0.9521895754027829, + 0.7517286913985001, + 0.8687571885281811, + 0.7912430201328434, + 0.9975369458128078, + 0.9160401958804216, + 0.974218139790659, + 0.8509546425853288, + 0.900767299923892, + 0.9978013931164152, + 0.7966912350949062, + 0.8415390235407055, + 0.9095917165921852, + 0.7732064980993626, + 0.8864392836204776, + 0.804143123374405, + 0.8771670219049115, + 0.9813338311457538, + 0.9514741813067672, + 0.9586402202505121, + 0.9396223310702196, + 0.9574611462809792, + 0.9733296560462246, + 0.9277579783254948, + 0.9766303162486368, + 0.8371159751352832, + 0.7645789491661855, + 0.8881896291715989, + 0.9463791440512886, + 0.9564875857045522, + 0.7686245437524821, + 0.9510994238916862, + 0.8438384213475643, + 0.9041552036871964, + 0.9970690618433798, + 0.7655848997001549, + 0.8569756194651065, + 0.8565438206194017, + 0.7732064980993626, + 0.8167257771569466, + 0.8510568256152782, + 0.8573767226280884, + 0.9514741813067672, + 0.946103858087934, + 0.9425383776528816, + 0.9032923617208078, + 0.905550235616632, + 0.9177635419435248, + 0.9424705422602816, + 0.7733034132276329, + 0.7944363835998364, + 0.8881896291715989, + 0.922836204777124, + 0.9493296120831972, + 0.7731216272312162, + 0.7701503489229721, + 0.9110701550899905, + 0.8749551130106945, + 0.9779240761641758, + 0.8757411810482202, + 0.9637205387205386, + 0.8307739463601531, + 0.7840680498436611, + 0.9718089459310836, + 0.7533766040551628, + 0.8411108025383495, + 0.8186320718389478, + 0.7507073140597975, + 0.8665855131372373, + 0.8141166099294752, + 0.8465178639695039, + 0.8674324881574892, + 0.894897491091307, + 0.8007950286452882, + 0.9200506754154923, + 0.8002254756609835, + 0.8055002075550022, + 0.8899568476668683, + 0.8050891517303731, + 0.7551272091668285, + 0.9170723522722332, + 0.8862820694208641, + 0.7731935891169762, + 0.8962930952966316, + 0.8545871559633028, + 0.973043266390798, + 0.8475513005495156, + 0.8919753086419753, + 0.9230719517449376, + 0.9818181818181816, + 0.8724508253662056, + 0.7850116015543995, + 0.7799035733456022, + 0.7709127626361537, + 0.8079919101295913, + 0.767668950942458, + 0.8706501932048896, + 0.8797516915893117, + 0.8063085414053331, + 0.9356832150292386, + 0.8438519069076046, + 0.8284948236315168, + 0.9064297442948914, + 0.9731718245680656, + 0.8146948605443374, + 0.8586700336700335, + 0.7917861568922506, + 0.8919445048153332, + 0.9275512725475664, + 0.8749102030655429, + 0.7586973969785762, + 0.8582940089755703, + 0.8288372093023257, + 0.9457912457912456, + 0.9067894216205786, + 0.8854903716972683, + 0.7712402158145529, + 0.8514488517233563, + 0.8119647131227026, + 0.7960368686049766, + 0.8764803941254208, + 0.7593988263019269, + 0.8332839656913731, + 0.8409641575217711, + 0.7830059960631146, + 0.8189152639403684, + 0.7914909068376863, + 0.8521396824062815, + 0.9429498910675382, + 0.787554569047141, + 0.9170262364403312, + 0.8143114753878038, + 0.8129887361537077, + 0.9416562889165628, + 0.8249965343560833, + 0.8184361507912837, + 0.7583136897041756, + 0.8954939454973427, + 0.9669995060071396, + 0.7678622085216633, + 0.7965505290883048, + 0.8025926314878588, + 0.8861176478495414, + 0.9066317021702632, + 0.781819981750254, + 0.8492357350911255, + 0.925730625364325, + 0.7682652462041775, + 0.7697542997542998, + 0.9647167592568326, + 0.7591823779426875, + 0.9809290093211468, + 0.8217563751752737, + 0.7791177041387707, + 0.9954545454545456, + 0.8281880073317623, + 0.8580430671412884, + 0.9032397543084568, + 0.7617771431813454, + 0.7866182087539877, + 0.7593988263019269, + 0.7752390906012949, + 0.8085158042512651, + 0.8909560347514579, + 0.9051334791710912, + 0.9066317021702632, + 0.7803249362542886, + 0.8737365714482546, + 0.9248568831411556, + 0.8383783163850447, + 0.9706054674756964, + 0.7623802782704252, + 0.9687833580671199, + 0.7739714809841708, + 0.8782693798816119, + 0.860081980641546, + 0.8833857030636293, + 0.792475110421586, + 0.8157848104775258, + 0.8701372997711668, + 0.9563298076485244, + 0.8490800833801486, + 0.7888565809250084, + 0.7741636141636141, + 0.8401837065840431, + 0.9484588138867748, + 0.9176863587872164, + 0.8973789818590386, + 0.8252966318058891, + 0.7617771431813454, + 0.8289524716549913, + 0.8621233137385207, + 0.7908116150724073, + 0.9316463142933343, + 0.7524570024570024, + 0.8718713242231872, + 0.7728726352092181, + 0.7603048533875102, + 0.973201661164624, + 0.8391298861361308, + 0.7893505683000169, + 0.8608078181360623, + 0.8171099429462456, + 0.8507008302142539, + 0.7796040841350689, + 0.8137991281050442, + 0.8701372997711668, + 0.7906337827256119, + 0.9493296120831972, + 0.782031346414908, + 0.7993113894954217, + 0.7720161433138532, + 0.864620467059047, + 0.8900050041356494, + 0.84746622922539, + 0.9115157598761456, + 0.9054424800276306, + 0.830044253645252, + 0.9288938029152748, + 0.8783604524820522, + 0.7944363835998364, + 0.7921163153910715, + 0.7869039663743268, + 0.948066117973837, + 0.9230788696114616, + 0.7965825732022186, + 0.7641898999679713, + 0.7858832626449197, + 0.8508778496367884, + 0.7802946460653972, + 0.7884721011749333, + 0.9513173145378848, + 0.8649568301570332, + 0.7764651372019794, + 0.8624508476571697, + 0.7631497975708502, + 0.838327526611037, + 0.8166721221205311, + 0.8852917218205886, + 0.763935088255619, + 0.849984522961002, + 0.8818076679096488, + 0.7698644841737025, + 0.8836658805318403, + 0.9201199939290072, + 0.8893648150618828, + 0.8891377897432868, + 0.8205353126405759, + 0.8024182735874719, + 0.922961632460186, + 0.946516510443614, + 0.8942981283868459, + 0.8132787513211815, + 0.9842229467473992, + 0.983927829355058, + 0.9897436575227496, + 0.7789928908269387, + 0.9491102207390418, + 0.8027373398034093, + 0.8097807158117007, + 0.7742275740436659, + 0.8269035371638741, + 0.8164279646777108, + 0.7959065093927479, + 0.9299044396563476, + 0.9815561030337692, + 0.8847353302545712, + 0.8534614846726633, + 0.8781863560189622, + 0.9215082393282026, + 0.8660956368114106, + 0.9778877366568356, + 0.8883570187308942, + 0.8645713114309883, + 0.9608961698823448, + 0.7504350893637566, + 0.7899138991389913, + 0.9237157509601476, + 0.8085999198472382, + 0.9842229467473992, + 0.7915641555108558, + 0.9869637610219488, + 0.8388856048166393, + 0.9083168071393158, + 0.996947496947497, + 0.836399552488273, + 0.8254759949956995, + 0.8054112554112555, + 0.8315151515151515, + 0.9072515573214316, + 0.8455703241525074, + 0.8837147279244052, + 0.992492576897818, + 0.7771153106793246, + 0.9632800296944952, + 0.8751296156972389, + 0.9439627106557767, + 0.7599245853190747, + 0.948022748326122, + 0.797922077922078, + 0.8079059133534838, + 0.9002093642315044, + 0.9417677188802858, + 0.9120792735085574, + 0.9325279623513651, + 0.9765978165772758, + 0.9783368141256884, + 0.803590017884114, + 0.8886194359553156, + 0.9424689576609075, + 0.8695613682942084, + 0.9090909090909088, + 0.8277566532211718, + 0.7800435531915323, + 0.9027223454052724, + 0.8465029384806168, + 0.8272613669834734, + 0.8224835092471747, + 0.7714797416324134, + 0.8924773755936107, + 0.9954545454545456, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8434706308388399, + 0.8017627702025453, + 0.7916704805491989, + 0.8995057307947333, + 0.84746622922539, + 0.8294442768393521, + 0.90276124713408, + 0.996221188255952, + 0.8143962421732175, + 0.980394402239746, + 0.9514741813067672, + 0.7581308936708563, + 0.9531775071717112, + 0.9001377198115018, + 0.8004102325039334, + 0.8735155491890395, + 0.8677050513455755, + 0.8445527067336185, + 0.9636363636363636, + 0.937103645050706, + 0.9694957490472002, + 0.9822495603003196, + 0.901072927769024, + 0.9510994238916862, + 0.9362530022505056, + 0.8219385637193856, + 0.9996947496947498, + 0.7644937203650517, + 0.758657620282485, + 0.8385429638854296, + 0.8490535457456533, + 0.7757575757575756, + 0.999122807017544, + 0.8217563751752737, + 0.8636588686952739, + 0.8019358454012121, + 0.8455800687861758, + 0.8017627702025453, + 0.7768542199488491, + 0.8884642600370833, + 0.84746622922539, + 0.7867084930870223, + 0.9926207992132684, + 0.9493296120831972, + 0.8445196063887654, + 0.9531775071717112, + 0.8571885156262036, + 0.8838874680306906, + 0.8891221903616687, + 0.9954545454545456, + 0.937103645050706, + 0.7996865517613174, + 0.9851370084561714, + 0.788353581901969, + 0.8469074304690744, + 0.8276687406622917, + 0.8844613609427292, + 0.9313089878738736, + 0.8709970502763632, + 0.8035084471465264, + 1, + 0.932761391647538, + 0.8392430039425867, + 0.945216049382716, + 0.7537357583191043, + 0.9719327874122964, + 0.9954545454545456, + 0.8217563751752737, + 0.8348054919908466, + 0.8788633070234552, + 0.8019358454012121, + 0.8725525105676494, + 0.8033211036934772, + 0.7916704805491989, + 0.8547301773579906, + 0.84746622922539, + 0.7867084930870223, + 0.974712351554919, + 0.9500266403708978, + 0.951008471157725, + 0.7628108176190548, + 0.9531775071717112, + 0.7716841489148686, + 0.9391877740213088, + 0.8677050513455755, + 0.8967939861988315, + 0.937103645050706, + 0.8551520659154248, + 0.9851370084561714, + 0.8893524283935244, + 0.8733160901863194, + 0.8916710007549704, + 0.9391302151973808, + 0.9965169569202568, + 0.9136739322359624, + 0.9206651788481804, + 0.8553134080531343, + 0.8530611929128231, + 0.9099770642201834, + 0.949825316001485, + 0.7714797416324134, + 0.8862820694208641, + 0.9970690618433798, + 0.7726587251245717, + 0.8995898027497777, + 0.999122807017544, + 0.8462714704650187, + 0.7559911987169416, + 0.7902969671765014, + 0.8017627702025453, + 0.7916704805491989, + 0.9312885573197214, + 0.8580430671412884, + 0.84746622922539, + 0.7598160347464082, + 0.870252992498577, + 0.992671182389769, + 0.9862539184209972, + 0.9514741813067672, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.948072129659398, + 0.8677050513455755, + 0.880780406807804, + 0.9991101223581756, + 0.937103645050706, + 0.9851370084561714, + 0.7606385491732779, + 0.9822495603003196, + 0.9376831513747739, + 0.9027223454052724, + 0.9526427685969672, + 0.9236004688155952, + 1, + 0.8401802481694282, + 0.9773557492735576, + 0.8553134080531343, + 0.8399280642635364, + 0.9943501037415146, + 0.9991101224022378, + 0.7643053750286719, + 0.8874398840030436, + 1, + 0.8119189817879228, + 0.8995898027497777, + 0.999122807017544, + 0.9908884770316014, + 0.81573077081821, + 0.9677933860111212, + 0.8398311720625258, + 0.84746622922539, + 0.7867084930870223, + 0.8985858297326429, + 0.992671182389769, + 0.7506209000762774, + 0.9848040830545792, + 0.9514741813067672, + 0.8622230550415498, + 0.9531775071717112, + 0.9429977116704804, + 0.9358184932420454, + 0.8831178664041944, + 0.8571885156262036, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.9851370084561714, + 0.9822495603003196, + 0.9355427814530765, + 0.7598493905068002, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.8534197605902789, + 0.9090909090909088, + 0.8755816117625161, + 0.986521739130435, + 0.7574533557466553, + 0.9090909090909088, + 0.9891304347826086, + 0.8981981278894755, + 0.8661577367496762, + 0.9416316165688026, + 0.8216969791585356, + 0.7977855477855479, + 0.7730257320319432, + 0.8155778185409907, + 0.806941459089035, + 0.8844523908637408, + 0.9819906110654324, + 0.9267146997929604, + 0.930689847575993, + 0.9272543317870856, + 0.9161147326586146, + 0.9592356458451337, + 0.8911833569094192, + 0.8682065217391305, + 0.8974752586594693, + 0.9606049878058373, + 0.9119804816878757, + 0.8291255500470529, + 0.9571129080563042, + 0.9252515037745752, + 0.8839422379842073, + 0.8731842629559791, + 0.956227485420032, + 0.9623460662981315, + 0.9060336327100176, + 0.9466681074558329, + 0.9773557492735576, + 0.8385429638854296, + 0.7548029253094148, + 0.9943501037415146, + 0.9991101224022378, + 0.7643053750286719, + 0.836061944840571, + 1, + 0.8995898027497777, + 0.999122807017544, + 0.8310447482966568, + 0.9416562889165628, + 0.8111421417088542, + 0.9107768322387694, + 0.7741435607326606, + 0.8710025282890884, + 0.7867084930870223, + 0.90276124713408, + 0.992671182389769, + 0.9470902930560504, + 0.9514741813067672, + 0.9531775071717112, + 0.9531702386026508, + 0.79960452652037, + 0.9133288665033964, + 0.842339274227116, + 0.8546919803903434, + 0.999777530589544, + 0.937103645050706, + 0.8941624677316798, + 0.9851370084561714, + 0.7831708752610594, + 0.9822495603003196, + 0.9315717953934872, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9773557492735576, + 0.7647361516158825, + 0.95942299709423, + 0.8553134080531343, + 0.8335272614441825, + 0.9943501037415146, + 0.9991101224022378, + 0.7643053750286719, + 0.8924773755936107, + 1, + 0.8591091351396698, + 0.8995898027497777, + 0.999122807017544, + 0.9416562889165628, + 0.7916704805491989, + 0.950603792184588, + 0.8460152283133167, + 0.84746622922539, + 0.7867084930870223, + 0.8881896291715989, + 0.992671182389769, + 0.7614851364851365, + 0.9848040830545792, + 0.9514741813067672, + 0.8605291005291005, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.8888976303496794, + 0.8637008456171156, + 0.999777530589544, + 0.937103645050706, + 0.941303736239802, + 0.9851370084561714, + 0.9822495603003196, + 0.9400644385653472, + 0.7589913068467564, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.8297199580886333, + 0.9090909090909088, + 0.8388354220573428, + 0.9440241802550384, + 0.8417508417508417, + 0.8349403911738127, + 0.7751196172248803, + 0.9824561403508774, + 0.8289326387041065, + 0.9363636363636364, + 0.8484963605932038, + 0.7878050123409911, + 0.7845412529955496, + 0.8978080587826363, + 0.8211938237064843, + 0.903572413997316, + 0.9759433010492332, + 0.930358431350264, + 0.773824015559919, + 0.9069851553477366, + 0.859207814594905, + 0.9063976387881104, + 0.982273978187496, + 0.8258268246116464, + 0.8378181818181819, + 0.8545698249141326, + 0.7874000986198109, + 0.880561913058948, + 0.9424238274563508, + 0.99359825065929, + 0.94959978379972, + 0.8034795384843756, + 0.8256241274761228, + 0.7845614802232331, + 0.8780499051174888, + 0.9016573566020095, + 0.996521739130435, + 0.8072721768598793, + 0.8757575757575757, + 0.996521739130435, + 0.8052552577805061, + 0.8262184063662379, + 0.9518172850747404, + 0.8509007531737288, + 0.8092916186648054, + 0.8448511242895973, + 0.8221400000560604, + 0.8780499051174888, + 0.8585150396488364, + 0.758257861793882, + 0.9127647109937574, + 0.8185902535630862, + 0.7647917209753416, + 0.8892853956679526, + 0.9240400548084888, + 0.9264066297227525, + 0.8454089009226885, + 0.8738453625296769, + 0.8228190336839921, + 0.9964912280701756, + 0.8440081063581091, + 0.8488300159492314, + 0.8886054092841905, + 0.9651624660242156, + 0.8337216929170275, + 0.8550497957993816, + 0.9818181818181816, + 0.9104377104377104, + 0.9930465133925186, + 0.8868917142282169, + 0.7519552584840934, + 0.9616732614626587, + 0.996521739130435, + 0.7508148487315153, + 0.9090909090909088, + 0.999122807017544, + 0.9090273199933117, + 0.897855261911528, + 0.999122807017544, + 0.8507462616258913, + 0.9136683713678436, + 0.8674088334090595, + 0.8594701086956521, + 0.908313797791604, + 0.9891493795585866, + 0.7642455368060652, + 0.8891663542156248, + 0.924175824175824, + 0.9395716586151368, + 0.9484409722518364, + 0.9641388361295768, + 0.9059750088690924, + 0.999122807017544, + 0.9047503889161738, + 0.9033269863614518, + 0.9033269863614518, + 0.8658678644015689, + 0.9443498545350396, + 0.8906789023521027, + 0.999122807017544, + 0.9551184069702588, + 0.7562762148337596, + 0.9773557492735576, + 0.8409090909090906, + 0.9960831758177524, + 0.9978260869565218, + 0.7508148487315153, + 0.8490484481225223, + 0.999122807017544, + 0.9090273199933117, + 0.897855261911528, + 0.999122807017544, + 0.8507462616258913, + 0.9416562889165628, + 0.786316100259506, + 0.7917643088450543, + 0.8674088334090595, + 0.7940883223309813, + 0.8392760078156812, + 0.908313797791604, + 0.9891493795585866, + 0.766483106515241, + 0.8959840947127665, + 0.8891663542156248, + 0.924175824175824, + 0.9395716586151368, + 0.9484409722518364, + 0.9641388361295768, + 0.974712351554919, + 0.999122807017544, + 0.9047503889161738, + 0.9033269863614518, + 0.9773557492735576, + 0.8895761362866625, + 0.9748201493966672, + 0.9033269863614518, + 0.7646806860332477, + 0.8800026263331926, + 0.9443498545350396, + 0.9956140350877192, + 0.932409671284977, + 0.999122807017544, + 0.9551184069702588, + 0.7562762148337596, + 0.9833457647662114, + 0.8409090909090906, + 0.8227240115332337, + 0.9947765595830976, + 0.9978260869565218, + 0.7508148487315153, + 0.8569860866157161, + 0.999122807017544, + 0.9090273199933117, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8521396824062815, + 0.9416562889165628, + 0.8683896350563016, + 0.783774936061381, + 0.936963017728694, + 0.8674088334090595, + 0.84746622922539, + 0.7880796625738841, + 0.908313797791604, + 0.9891493795585866, + 0.766483106515241, + 0.8356411205726275, + 0.8959840947127665, + 0.8891663542156248, + 0.924175824175824, + 0.9395716586151368, + 0.9484409722518364, + 0.9641388361295768, + 0.8643546462063086, + 0.9753454579899592, + 0.999122807017544, + 0.9047503889161738, + 0.9033269863614518, + 0.9851370084561714, + 0.9748201493966672, + 0.9033269863614518, + 0.7684710351377019, + 0.8800026263331926, + 0.9443498545350396, + 0.999122807017544, + 0.90662100456621, + 0.999122807017544, + 0.9551184069702588, + 0.7562762148337596, + 0.9833457647662114, + 0.8409090909090906, + 0.7928783407950074, + 0.8919753086419753, + 0.9978260869565218, + 0.7508148487315153, + 0.8490459410817468, + 0.999122807017544, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8507462616258913, + 0.9416562889165628, + 0.7684372454295727, + 0.936963017728694, + 0.8674088334090595, + 0.84746622922539, + 0.9891493795585866, + 0.984323635061576, + 0.9353365093463604, + 0.924175824175824, + 0.9395716586151368, + 0.963346594676518, + 0.8643546462063086, + 0.9047503889161738, + 0.9033269863614518, + 0.9851370084561714, + 0.9447497776699816, + 0.9787330446229278, + 0.9033269863614518, + 0.7646806860332477, + 0.8800026263331926, + 0.9443498545350396, + 0.8849247249134843, + 0.90662100456621, + 0.8830204170152121, + 0.7610810810810811, + 0.918761685155179, + 0.849564043730598, + 0.9295382499658214, + 0.8737807294339347, + 0.7524570024570024, + 0.8764855553630885, + 0.8881376171456311, + 0.8144653876435873, + 0.7569047619047621, + 0.9011440242078431, + 0.9721444518798692, + 0.8580395542059102, + 0.7556448396101646, + 0.8943463267997412, + 0.7708422347381368, + 0.8312540974287805, + 0.927155204148788, + 0.9242507691836442, + 0.8039533480013239, + 0.9253381976987183, + 0.9487056115959976, + 0.996333638863428, + 0.9061372721317869, + 0.8039194902068957, + 0.9773557492735576, + 0.8553134080531343, + 0.8316014689297133, + 0.9590943683409436, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049176, + 0.9997983870967744, + 0.8210917926103164, + 0.8995898027497777, + 0.999122807017544, + 0.9416562889165628, + 0.7854916126103976, + 0.8580430671412884, + 0.8452862219584866, + 0.90276124713408, + 0.992671182389769, + 0.9514741813067672, + 0.9531775071717112, + 0.9429977116704804, + 0.856399568810636, + 0.9607331879409255, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.8733160901863194, + 0.8902640300903737, + 0.9822495603003196, + 0.7724990486505474, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9505705348293196, + 0.890082588516155, + 0.9271888077994948, + 0.7647361516158825, + 0.9773557492735576, + 0.8553134080531343, + 0.9590943683409436, + 0.9991101224022378, + 0.8219385637193856, + 0.8478847935907573, + 0.9954545454545456, + 0.8210917926103164, + 0.8995898027497777, + 0.9479012434878824, + 0.8019358454012121, + 0.9416562889165628, + 0.8188858158239665, + 0.8055002075550022, + 0.8580430671412884, + 0.84746622922539, + 0.895416975651959, + 0.992671182389769, + 0.8356411205726275, + 0.8716815273032167, + 0.9429977116704804, + 0.8677050513455755, + 0.9607331879409255, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.9240556247405564, + 0.8819809439955775, + 0.9822495603003196, + 0.7999671002057498, + 0.9413092648977816, + 0.9954545454545456, + 0.9326966113459272, + 0.7838827173142349, + 0.9271888077994948, + 0.8469712140023324, + 0.9773557492735576, + 0.8553134080531343, + 0.8394616500465105, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049176, + 0.9994500458295142, + 0.8184361507912837, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8089287811425218, + 0.8553636363636363, + 0.7916704805491989, + 0.936963017728694, + 0.84746622922539, + 0.8181109552382406, + 0.8966477542865559, + 0.992671182389769, + 0.9775526793347032, + 0.9514741813067672, + 0.9531775071717112, + 0.9429977116704804, + 0.9341361232572516, + 0.7767581669691469, + 0.8677050513455755, + 0.999777530589544, + 0.937103645050706, + 0.9230017232221136, + 0.9851370084561714, + 0.8553134080531343, + 0.884737671188568, + 0.9413092648977816, + 0.9824561403508774, + 0.9505705348293196, + 0.8909999999999999, + 0.8933113072408856, + 0.7647361516158825, + 0.9929947676208064, + 0.8598347107438016, + 0.8490800833801486, + 0.9947856385396152, + 0.9990150209905604, + 0.7707081956166206, + 0.8952232922255726, + 1, + 0.8216057600038706, + 0.9000234404536862, + 1, + 0.8075842215036355, + 0.946198347107438, + 0.8021928166351607, + 0.7928741020793951, + 0.9344444444444444, + 0.8578858011832347, + 0.8483379501385041, + 0.7871436798157215, + 0.9025957850286672, + 0.9928936489808848, + 0.9846235837724948, + 0.9527305856232412, + 0.9434321361058602, + 0.9373115797727772, + 0.9350049149338372, + 0.8705701323251417, + 0.986135349716446, + 1, + 0.9357441792403746, + 0.941314332676578, + 0.9860141582025238, + 0.9826843100189036, + 0.9826843100189036, + 0.8050748795127288, + 0.884575512524494, + 0.9417436672967864, + 0.9937805570643936, + 0.9503788875440718, + 1, + 0.9245562130177516, + 0.7654094979252105, + 1, + 0.9090909090909088, + 0.8238490179500522, + 0.9637205387205386, + 0.9819008264462812, + 0.7757575757575756, + 0.8216057600038706, + 0.9000234404536862, + 1, + 0.8075842215036355, + 0.9217516347489824, + 0.799080529300567, + 0.9344444444444444, + 0.8948549687825181, + 0.9721268082486919, + 0.8409090909090906, + 0.9499201807471164, + 0.9527305856232412, + 0.9434321361058602, + 0.9206147765314164, + 0.9350049149338372, + 0.8640914933837429, + 0.9964943059402892, + 0.816272967863894, + 0.9860141582025238, + 0.928736342351717, + 0.9792393194706994, + 0.8994380853277835, + 0.9292599608634763, + 1, + 0.8362207611956006, + 0.9902353003770102, + 0.895080529300567, + 0.7602465480841565, + 0.9929947676208064, + 0.8598347107438016, + 0.8490800833801486, + 0.9947856385396152, + 0.9990150209905604, + 0.7707081956166206, + 0.8952232922255726, + 1, + 0.8216057600038706, + 0.9000234404536862, + 1, + 0.8011324661116951, + 0.8075842215036355, + 0.946198347107438, + 0.8021928166351607, + 0.7928741020793951, + 0.9344444444444444, + 0.8578858011832347, + 0.8483379501385041, + 0.9025957850286672, + 0.9928936489808848, + 0.9846235837724948, + 0.951299790877642, + 0.9527305856232412, + 0.9434321361058602, + 0.9396223310702196, + 0.9350049149338372, + 0.8705701323251417, + 0.986135349716446, + 1, + 0.9357441792403746, + 0.941314332676578, + 0.9860141582025238, + 0.9826843100189036, + 0.8050748795127288, + 0.884575512524494, + 0.9417436672967864, + 1, + 0.9503788875440718, + 1, + 0.9245562130177516, + 0.7654094979252105, + 0.9819008264462812, + 0.8598347107438016, + 0.8131334593572779, + 0.7690913021991601, + 0.9990150209905604, + 0.7707081956166206, + 1, + 0.8216057600038706, + 0.9000234404536862, + 1, + 0.8475686570924664, + 0.9583379501385041, + 0.8578858011832347, + 0.8245991597474406, + 0.8852652399934414, + 0.9928936489808848, + 0.81331932016418, + 0.8180035444849115, + 0.8711111111111112, + 0.7763165596167769, + 0.9350049149338372, + 1, + 0.9349642299687824, + 0.9860141582025238, + 0.9826843100189036, + 0.884575512524494, + 0.9417436672967864, + 0.996520316855316, + 1, + 0.9245562130177516, + 0.7654094979252105, + 0.8580139372822299, + 0.9830434782608694, + 0.8893524283935244, + 0.9954545454545456, + 0.9159300003279972, + 0.8181818181818182, + 0.7500000000000002, + 0.8938595877462214, + 0.9042008986509023, + 0.957287033071265, + 0.90234375, + 0.9223350132140808, + 0.8347334184691517, + 0.9207931801334324, + 0.8467468534925462, + 0.8855595367052747, + 0.7719095384164608, + 0.89266067021096, + 0.8763416775577225, + 0.9545454545454548, + 0.911370421730973, + 0.8444352108196725, + 0.889643133181266, + 0.7993302204531539, + 0.9838876285414652, + 0.981598371482293, + 0.8584226317602837, + 0.9320791500266458, + 0.9545454545454548, + 0.8557709287004716, + 0.8980542801375592, + 0.8619577717071254, + 0.9666063921681544, + 0.9199136660983444, + 0.954105606965682, + 0.8784735812133071, + 0.8146320346320346, + 0.8985141146494671, + 0.810999117201063, + 0.8039130434782609, + 0.8999203521041261, + 0.9046926758835667, + 0.9502900712294152, + 0.912840025574134, + 0.9565342960288808, + 0.908022550608102, + 0.7889688874990176, + 0.9947765595830976, + 0.9939130434782611, + 0.7541751489851583, + 0.8333567358870508, + 0.9077642484940728, + 0.89655436679566, + 0.8211280822082608, + 0.7590923827347885, + 0.891518378456824, + 0.9280303030303032, + 0.7756218002597997, + 0.8987662245043503, + 0.8668602157771254, + 0.801511385184123, + 0.9878450565293272, + 0.8198448448448448, + 0.8761625640592721, + 0.9331326790672908, + 0.8095673945542065, + 0.9692603418275338, + 0.8574834373128851, + 0.984385006449655, + 0.996521739130435, + 0.7993577556225364, + 0.904913008013858, + 0.908522355957097, + 0.8922324960716342, + 0.9027775208335084, + 0.8863636363636365, + 0.893013468013468, + 0.8159728122344945, + 0.94712477473252, + 0.9501526150902738, + 0.9360797940299664, + 0.7541751489851583, + 0.7667799490229397, + 0.7911852166525064, + 0.8545853753924373, + 0.8991709050477996, + 0.9636363636363636, + 0.8911305509993319, + 0.9280303030303032, + 0.7559479094211299, + 0.9484006454368564, + 0.8396074640434158, + 0.7602400762912697, + 0.8236580766813324, + 0.8818556180808311, + 0.9202063402841564, + 0.8401634217686861, + 0.9479922753053344, + 0.9495079748317234, + 0.9185105083088952, + 0.8116459489241595, + 0.9143375393297604, + 0.9496030156557552, + 0.8340405157441468, + 0.904913008013858, + 0.8855604489099591, + 0.8008650649412102, + 0.917917299639148, + 0.880492540216932, + 0.9964912280701756, + 0.8884778012684991, + 0.9772727272727272, + 0.9305426817265549, + 0.7903598392225994, + 0.913366781280282, + 0.9096320346320348, + 0.9904188832431408, + 0.996521739130435, + 0.7541751489851583, + 0.8171186929707505, + 0.9908763972444158, + 0.9077642484940728, + 0.89655436679566, + 0.772467875442053, + 0.860588835859315, + 0.9234883720930234, + 0.7875052854122622, + 0.933111940667877, + 0.8330354177655357, + 0.98656936388704, + 0.7578096064482999, + 0.8236580766813324, + 0.9347318308522028, + 0.8932895451827312, + 0.9285799156049388, + 0.9331326790672908, + 0.9644254304363626, + 0.9670876387294297, + 0.984385006449655, + 0.9939130434782611, + 0.8081449326727791, + 0.904913008013858, + 0.958843983408048, + 0.9074265343943518, + 0.914550550747443, + 0.9956140350877192, + 0.7875052854122622, + 0.8930995950038103, + 0.9583981105619436, + 0.7913282390616106, + 0.8553636363636363, + 0.9520786868217588, + 0.8227791822609921, + 0.7541751489851583, + 0.7533175355450237, + 0.7932981415505088, + 0.8738851187127049, + 0.8977552028386393, + 0.9636363636363636, + 0.8909590821089839, + 0.9280303030303032, + 0.7559479094211299, + 0.7751825777502708, + 0.9484006454368564, + 0.8164106024837708, + 0.8378181818181819, + 0.7561931059330722, + 0.8198448448448448, + 0.8746812582275244, + 0.917685782192232, + 0.8430950344725274, + 0.9479922753053344, + 0.9401658822908944, + 0.9345885985711606, + 0.7898873359402224, + 0.9291147879324685, + 0.9688056850309468, + 0.8399373186372248, + 0.904913008013858, + 0.8926128930190145, + 0.8013821571709653, + 0.9027775208335084, + 0.9068677230102368, + 0.9964912280701756, + 0.8884778012684991, + 0.9772727272727272, + 0.937931239097852, + 0.7893307769071134, + 0.8507923269391159, + 0.82454262425017, + 0.9956476370717128, + 0.997391304347826, + 0.7521112125156584, + 0.848613775065388, + 0.9982456140350876, + 0.9095579316931844, + 0.8974216292028354, + 0.9982456140350876, + 0.793236950671892, + 0.865081443540125, + 0.7910710359728593, + 0.7802662901330503, + 0.9360867018160518, + 0.8672259606948435, + 0.8465945179292698, + 0.7860877112960002, + 0.90741737640829, + 0.988714605208294, + 0.7650792722152087, + 0.9834028714566064, + 0.9319643313838056, + 0.8892009084674849, + 0.9238927452772132, + 0.938293658314696, + 0.9463111401682168, + 0.9638336347197108, + 0.8614957734733332, + 0.9743634159016108, + 0.9982456140350876, + 0.904567225435328, + 0.902432554260779, + 0.9842598587858048, + 0.9800758121375232, + 0.9031438311232313, + 0.7664643536742591, + 0.8798196380081303, + 0.9452382460255262, + 0.9982456140350876, + 0.9982456140350876, + 0.9542133966338968, + 0.7550919222167469, + 0.8650485436893204, + 0.9590943683409436, + 0.9899999999999998, + 0.7905998956595828, + 0.9964912280701756, + 0.8794606193667226, + 0.9543859649122808, + 0.8482253411306041, + 0.9416562889165628, + 0.8635977474267438, + 0.908313797791604, + 0.9882608695652176, + 0.9329580322176916, + 0.8517155377371683, + 0.9278910038068524, + 0.7982464236271342, + 0.8646739607798208, + 0.9813471226782764, + 0.9960869565217392, + 0.9094579806240582, + 0.9134140956933028, + 0.9851370084561714, + 0.97920631307383, + 0.977065643648764, + 0.8834465198075598, + 0.9747949320291138, + 0.932911746603152, + 0.999122807017544, + 0.959866019149962, + 0.7617844033057979, + 0.7748830995323981, + 0.8909999999999999, + 0.7596175070890622, + 0.8999999999999999, + 0.9123145440909052, + 0.8741654144553147, + 0.8398585426427478, + 0.8724872612693206, + 0.7669652718124924, + 0.8631126133046548, + 0.8409246558039661, + 0.8097354943626018, + 0.95990063654712, + 0.8969342300921225, + 0.9611031655225016, + 0.827297433674167, + 0.8779350849682387, + 0.8367440082204682, + 0.893013468013468, + 0.9964912280701756, + 0.7824996118615121, + 0.8861176478495414, + 0.9315029605665132, + 0.9240556247405564, + 0.7895079901300617, + 0.8675786978032918, + 0.7532931318639005, + 0.90662100456621, + 0.7716841489148686, + 0.7502640132876188, + 0.8438384213475643, + 0.8979659609796596, + 0.8433356634883351, + 0.8893524283935244, + 0.8088096745504153, + 0.916047252707554, + 0.8157092458590421, + 0.7713701554506877, + 0.8990439807701138, + 0.8907570363540729, + 0.9537544911348904, + 0.808038039840766, + 0.9851370084561714, + 0.8932164255129278, + 0.9471843568535036, + 0.9133288665033964, + 0.9132421335802218, + 0.8276330050739579, + 0.8868080394461477, + 0.8668829861852336, + 0.8964265087723556, + 0.9911660095629562, + 0.9182659870037116, + 0.8633272832102701, + 0.8186320718389478, + 0.8881896291715989, + 0.8840480861242009, + 0.8197634340126408, + 0.7611003116070912, + 0.8939095129169344, + 0.901240425894056, + 0.8290845270990632, + 0.8844734722345178, + 0.900672328635003, + 0.8611114838221064, + 0.9020646721236415, + 0.7524570024570024, + 0.9671031943607348, + 0.7643684665873062, + 0.9177602214566852, + 0.9280169976669376, + 0.9651126414686952, + 0.8767768595041323, + 0.933676703232262, + 0.8344383939714739, + 0.849693862814132, + 0.7954107032792184, + 0.933676703232262, + 0.938108321790696, + 0.928906596493303, + 0.7642353146981488, + 0.8546502548557862, + 0.8224212265843107, + 0.7710819445257563, + 0.8864829929760666, + 0.8716815273032167, + 0.8660098479761721, + 0.9025093300004408, + 0.8121071884193809, + 0.9607952743931896, + 0.8722498962224988, + 0.9310204439345414, + 0.9777167277167276, + 0.8010759771629337, + 0.8522718489127074, + 0.9093424633191152, + 0.8425177354450203, + 0.7805733235714439, + 0.8924918014613418, + 0.9893784849790032, + 0.8451386855821716, + 0.8875135039917615, + 0.9706691109074244, + 0.768635972404227, + 0.8133865875461221, + 0.9501902748414376, + 0.8687372572217293, + 0.7972263500644203, + 0.879221174323091, + 0.8580430671412884, + 0.8347523783886707, + 0.9006369722354359, + 0.992671182389769, + 0.9563291529742204, + 0.947447712690609, + 0.7790788334554246, + 0.9533492330474672, + 0.8986916130118449, + 0.9391877740213088, + 0.9348478408783754, + 0.8636563261069188, + 0.9225521327977664, + 0.9272525027808675, + 0.9347188997515521, + 0.7847695804918372, + 0.9443983271522132, + 0.9774342481963584, + 0.97920631307383, + 0.9390325835747532, + 0.7859442359319205, + 0.9452608121807992, + 0.8231219423433573, + 0.9939505041246564, + 0.8711884810416023, + 0.9664525827971132, + 0.8922813036020585, + 0.8517879419237278, + 0.9226251523770824, + 0.9989000916590284, + 0.912544997503788, + 0.8862043421277565, + 0.7932768442135997, + 0.8376774696711561, + 0.7841809006211181, + 0.7925277144429594, + 0.8649220965924544, + 0.8539211685273398, + 0.8363949697251979, + 0.8264854203894482, + 0.9072225728615328, + 0.992671182389769, + 0.8515020101968744, + 0.9309305726600986, + 0.9543209471735604, + 0.9391877740213088, + 0.9348478408783754, + 0.8914844044126526, + 0.9256464785119556, + 0.9954545454545456, + 0.9374817381090278, + 0.7688326686368462, + 0.8925869273677869, + 0.9703270521983972, + 0.9809453113164672, + 0.8066868740036242, + 0.8351972694191357, + 0.8433153659377112, + 0.9392359594194456, + 0.8888965657897014, + 0.8930757789029354, + 0.999083409715857, + 0.9743963538884604, + 0.7953195319531954, + 0.8454219118804093, + 0.9502704567873635, + 0.9458992126856904, + 0.7644077516403233, + 0.8706106552426165, + 0.9965172600923464, + 0.8217563751752737, + 0.9124729676453814, + 0.9818515123739688, + 0.8086304821445487, + 0.9321596244131456, + 0.7740195848021936, + 0.8328682787543888, + 0.8700240408314942, + 0.8580430671412884, + 0.8444444444444444, + 0.8063613046642976, + 0.870252992498577, + 0.992671182389769, + 0.9630275323942066, + 0.9518090954793984, + 0.8248761807094434, + 0.9566474322858416, + 0.9285566337630128, + 0.9391877740213088, + 0.9348478408783754, + 0.8389228250888328, + 0.908538082241886, + 0.9906562847608452, + 0.937727360640436, + 0.8522952375426849, + 0.9459029430545072, + 0.970027764388316, + 0.9817818865916694, + 0.8466376695566143, + 0.7811519654537372, + 0.9366631199668156, + 0.9535299764377344, + 0.9032200335646016, + 0.9998166819431716, + 0.8480421626051209, + 0.9780701754385964, + 0.8055944055944054, + 0.8519962283651035, + 0.9944372261358286, + 0.8909859611558665, + 0.9930339138405136, + 0.8688321482439127, + 0.8739386859650123, + 0.7999172993636504, + 0.8106128029621074, + 0.9095679827050769, + 0.8277677156441022, + 0.779649885583524, + 0.8288552731227062, + 0.8574961012970123, + 0.841109866865746, + 0.792355474053602, + 0.8966775300321758, + 0.992671182389769, + 0.9572785040629562, + 0.9291879754864996, + 0.889317620077831, + 0.9515562365156858, + 0.9348478408783754, + 0.8753775156331067, + 0.9532353404791928, + 0.9954545454545456, + 0.937189056965018, + 0.9715579478946336, + 0.959737826278744, + 0.961743440323128, + 0.9796080671884818, + 0.8052224642752426, + 0.7647985836235606, + 0.8987594276173578, + 0.935391253108552, + 0.9994500458295142, + 0.8855041459997729, + 0.9090909090909088, + 0.778450363196126, + 0.8409090909090906, + 0.9903940886699508, + 0.9132561051004052, + 0.8590718015934052, + 0.9118814562362948, + 0.7681025602181487, + 0.7961600220298013, + 0.8228255528255527, + 0.7862727272727271, + 0.8598109918146062, + 0.9327132807405768, + 0.8460922217047043, + 0.9090909090909088, + 0.7565260131563887, + 0.8064786173763172, + 0.8049646954986759, + 0.8147984533079082, + 0.8706455071105871, + 0.889459843292596, + 0.8753408574458414, + 0.78943545201723, + 0.9225337271553442, + 0.8471976396567684, + 0.9582046990267186, + 0.7739383306543302, + 0.8439728108918513, + 0.9681818181818184, + 0.9147990007027552, + 0.8965678134850725, + 0.9229230100043496, + 0.8814426843808552, + 0.8299673329703665, + 0.953884157786154, + 0.9568896321070232, + 0.927359277258842, + 0.926999815931348, + 0.9084797370520777, + 0.7588691796008868, + 0.8925148498881217, + 0.941101152368758, + 0.7976890157802166, + 0.8191512279190005, + 0.9383783723654014, + 0.9687898089171972, + 0.8227272727272728, + 0.9667829842995462, + 0.8430578512396696, + 0.8462362704327265, + 0.9937731747479652, + 0.8598347107438016, + 0.9018993376896012, + 0.9380859781477626, + 0.7965452139741043, + 0.8408374965151522, + 0.828891493383743, + 0.8037512287334593, + 0.9310557094490612, + 0.7905217546826223, + 0.8803334593572778, + 0.948060941828255, + 0.9808836171606353, + 0.9419954799687824, + 0.9000657462195923, + 0.9762481841119351, + 0.958536231884058, + 0.8689482041587903, + 0.9625071374155625, + 0.9421304353743684, + 0.9000657462195923, + 0.909072064464046, + 0.7770347430724859, + 0.8258664204370577, + 0.931003010693105, + 0.936341359994194, + 0.944622600300256, + 0.7698155009451796, + 0.9886242163794032, + 0.8385429638854296, + 0.8460152283133167, + 0.8244642857142859, + 0.90662100456621, + 0.8965017504270001, + 0.9477543538038498, + 0.934372987530004, + 0.7966912350949062, + 0.8521832338962485, + 0.8284602000869942, + 0.8025417478298693, + 0.9275512725475664, + 0.9004149252037746, + 0.9814823072033312, + 0.9441436310000064, + 0.9038201493163326, + 0.9502409737496426, + 0.8660854435766022, + 0.880780406807804, + 0.932626333246618, + 0.8230247277595698, + 0.9169832716276728, + 0.9163600219843964, + 0.7558559856410743, + 0.8249965343560833, + 0.9341554258408444, + 0.8231479245485526, + 0.9054813423400642, + 0.7909076419763443, + 0.7862727272727271, + 0.8658008658008658, + 0.996330951542531, + 0.9364502164502164, + 0.7650216450216449, + 0.794733291750721, + 0.894436842425348, + 0.9071691672620463, + 0.8475960459042418, + 0.825019069412662, + 0.9011154934052964, + 0.9888403534005904, + 0.9064975857191632, + 0.8040148172573156, + 0.7544972303681978, + 0.8394258450740808, + 0.8722248098121411, + 0.8832034632034632, + 0.9242506379637506, + 0.8626119406890994, + 0.878664636798608, + 0.796428039082196, + 0.7737936507936508, + 0.9772426641825802, + 0.9771984786553624, + 0.7754989006737327, + 0.9842229467473992, + 0.9545454545454548, + 0.8536368018578387, + 0.9904302907657898, + 0.9985875706214687, + 0.7822341892305151, + 0.8895952017025273, + 0.9977822580645164, + 0.822054489456517, + 0.9068929556529068, + 0.9969759694040504, + 0.8227635041015324, + 0.92385752642948, + 0.7644903235840163, + 0.7893527624833871, + 0.9290762303990062, + 0.8549939348739194, + 0.9024751306250636, + 0.9939538727034296, + 0.9838663951689132, + 0.9555403520366936, + 0.8659230906299106, + 0.9555403520366936, + 0.936556104044048, + 0.9365262267264388, + 0.943947221044588, + 0.8711152458705146, + 0.981787734953484, + 0.9977753058954394, + 0.939105864661958, + 0.941241408860912, + 0.9772426641825802, + 0.9783368141256884, + 0.9783368141256884, + 0.8035224554513878, + 0.8878885108220647, + 0.9498970784947516, + 0.9954182612676434, + 0.8911007105869436, + 0.9977822580645164, + 0.9332845830090168, + 0.7698457560674342, + 0.8237875450920827, + 0.7694629219019462, + 0.9545454545454548, + 0.7676911617909391, + 0.8737944824901346, + 0.7706024497958504, + 0.7971142965635086, + 0.797381306659819, + 0.8620542233987611, + 0.8139854059928581, + 0.9887078033035884, + 0.9359939732913412, + 0.816825438145235, + 0.8422527112008905, + 0.8452819441807481, + 0.8400216450216451, + 0.8999203521041261, + 0.929916690661292, + 0.830854814143431, + 0.9513142174432496, + 0.9688527588701455, + 0.9228795379537954, + 0.7730756056428137, + 0.958302500539574, + 0.8026224595457895, + 0.804211768109809, + 0.999122807017544, + 0.9565843431073292, + 0.8024218124622581, + 0.8815110224684692, + 0.8108800084863914, + 0.9608990650462856, + 0.7587225856098497, + 0.8465945179292698, + 0.8955974273031978, + 0.9430511599324012, + 0.7968522430480871, + 0.942185445331794, + 0.8678328134388728, + 0.8589010971043637, + 0.9773557492735576, + 0.8072544965953004, + 0.9954545454545456, + 0.8468840523666226, + 0.7893040004872826, + 0.999122807017544, + 0.8702035016515567, + 0.7949970358330488, + 0.9294585399607892, + 0.8407994285729776, + 0.8788200589970502, + 0.8314481030702937, + 0.831385641452182, + 0.9804378566350936, + 0.9129349807104162, + 0.8141494511694449, + 0.9133990354371988, + 0.9851370084561714, + 0.9095532047456912, + 0.8505448360551613, + 0.963157894736842, + 0.7634237761904064, + 0.9011822106778054, + 0.9956171156600898, + 0.95942299709423, + 0.8553134080531343, + 0.8472097261066925, + 0.9805098186910532, + 0.8553134080531343, + 0.7714797416324134, + 0.9997983870967744, + 0.8217563751752737, + 0.8946470109877639, + 0.999122807017544, + 0.8354069917967499, + 0.9416562889165628, + 0.7916704805491989, + 0.936963017728694, + 0.8580430671412884, + 0.84746622922539, + 0.7867084930870223, + 0.8909560347514579, + 0.992671182389769, + 0.9848040830545792, + 0.8630706569122703, + 0.8702378201869908, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.907644799841382, + 0.999122807017544, + 0.9414868925909092, + 0.9335682269765724, + 0.8893524283935244, + 0.9822495603003196, + 0.8052224642752426, + 0.9379369101877942, + 0.9090909090909088, + 0.756404071529602, + 0.9271888077994948, + 0.9921175854473762, + 0.8553134080531343, + 0.9943501037415146, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049176, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8089287811425218, + 0.8017627702025453, + 0.7916704805491989, + 0.936963017728694, + 0.8580430671412884, + 0.84746622922539, + 0.7867084930870223, + 0.90276124713408, + 0.992671182389769, + 0.8072821072057714, + 0.9848040830545792, + 0.8189889492826025, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.974712351554919, + 0.999777530589544, + 0.937103645050706, + 0.9773557492735576, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9503668087629396, + 1, + 0.9271888077994948, + 0.7647361516158825, + 0.9807297003570874, + 0.9364502164502164, + 0.7901612469857595, + 0.824287208001439, + 0.9807297003570874, + 0.7614649785030472, + 0.8658008658008658, + 0.9939130434782611, + 0.9066651512935219, + 0.8939526037506182, + 0.9842229467473992, + 0.865081443540125, + 0.9167169276268624, + 0.8794346322201474, + 0.765130456168069, + 0.8734544866674276, + 0.909520787797598, + 0.8854931946173012, + 0.7673924006226841, + 0.8798233135618779, + 0.9852364106660584, + 0.7637569649841349, + 0.9348260838243078, + 0.933522474466579, + 0.8377846225826576, + 0.9583806183156228, + 0.9331326790672908, + 0.9383147514181556, + 0.9589825216566162, + 0.8060876415101113, + 0.9783224922971588, + 0.9583806183156228, + 0.899590944489805, + 0.8941653123998358, + 0.9668188169538892, + 0.9783224922971588, + 0.9679972612119138, + 0.8797605429806478, + 0.7963975193082085, + 0.8839816990630294, + 0.9431528211472392, + 0.8367334869051766, + 0.8658008658008658, + 0.9921746738179468, + 0.9020614173817516, + 0.7562166685686029, + 0.8984134398306008, + 0.9687833580671199, + 0.8324262590094272, + 0.7778237575832933, + 0.8480007561436672, + 0.9579079093729875, + 0.845860397670802, + 0.7551254672930834, + 0.8899966113703928, + 0.7908116150724073, + 0.8910183976510794, + 0.9586402202505121, + 0.9614055686011409, + 0.9466976131633718, + 0.8344345242846016, + 0.7881948755231197, + 0.8703128420935895, + 0.7758848540806752, + 0.9184591472656428, + 0.9495128094164198, + 0.8796487671810186, + 0.7514068195240423, + 0.8716815273032167, + 0.9882425857143352, + 0.9633770826635396, + 0.7728726352092181, + 0.7549603797492292, + 0.8460813462362223, + 0.9172118090262832, + 0.992952541754412, + 0.8606043918383145, + 0.7745935959659945, + 0.9636724437338746, + 0.7960368686049766, + 0.8285988264418827, + 0.9708841861711646, + 0.8299341990318011, + 0.8419381421530754, + 0.784953771420362, + 0.7591712665406429, + 0.8689452322602814, + 0.7766626862314431, + 0.7843042441238667, + 0.7800515724165504, + 0.8797549464963943, + 0.9919502705663622, + 0.9893735932410646, + 0.8894092494980258, + 0.8411462167336957, + 0.8604416000492892, + 0.9391164837414664, + 0.9875732201051683, + 0.8668958338409165, + 0.910974119092226, + 0.9335682269765724, + 0.8903543205412945, + 0.7579050997201501, + 0.9129974387310056, + 0.8184361507912837, + 0.8985858297326429, + 0.8811309071018276, + 0.9600766541682176, + 0.9142379797053092, + 0.8553282796247272, + 0.9209665616774528, + 0.7653056658292261, + 0.9428934497795352, + 0.9766567420679494, + 0.9320892949781068, + 0.8764803941254208, + 0.9615141634622412, + 0.8025926314878588, + 0.935632010504501, + 0.9954545454545456, + 0.8383046372479713, + 0.8085158042512651, + 0.8799003347391113, + 0.8519408442208185, + 0.7642901122754603, + 0.9104413159581644, + 0.89138879753655, + 0.8889595044710776, + 0.8674196841123456, + 0.9890311615492476, + 0.9817061821644611, + 0.9645756670815068, + 0.9013683659572824, + 0.9379327738576018, + 0.8277684278026405, + 0.8025926314878588, + 0.8164472422898458, + 0.9476735033728184, + 0.9280169976669376, + 0.9400644385653472, + 0.8571175858480748, + 0.9457607069255074, + 0.7890197773695017, + 0.9341554258408444, + 0.8197634340126408, + 0.9579224065577792, + 0.8701372997711668, + 0.9529052383428788, + 0.9845238804935112, + 0.909042520211614, + 0.7869703117696519, + 0.8276242108365519, + 0.878685196514601, + 0.7563441975980676, + 0.7552008456659621, + 0.9576803072122886, + 0.7766774350616475, + 0.8786356094048401, + 0.8863636363636365, + 0.8824223337513897, + 0.915641381346678, + 0.9097297101659864, + 0.952612204076308, + 0.9667491997801664, + 0.9203132832080203, + 0.8318181818181817, + 0.8553636363636363, + 0.7733211512105985, + 0.8722470169622666, + 0.8975645313091688, + 0.8977159303535192, + 0.9912311643305796, + 0.9024231247013856, + 0.86918360351979, + 0.8278906432659406, + 0.8317573749391951, + 0.9643924081792452, + 0.938598748759861, + 0.984466571720076, + 0.9883020564051679, + 0.977397740533538, + 0.8324262590094272, + 0.957204861709126, + 0.9815689054392762, + 0.9723297607875788, + 0.9166058436529154, + 0.7521706555006759, + 0.9280169976669376, + 0.9358035287465732, + 0.8764803941254208, + 0.9153455696596016, + 0.8469432605765171, + 0.99268071993084, + 0.988226739831974, + 0.996336999414424, + 0.9244884191211992, + 0.8507008302142539, + 0.9593509283699424, + 0.8061755182821719, + 0.9615141634622412, + 0.9839330712663648, + 0.9555873521968756, + 0.9775173594082412, + 0.8128624949482813, + 0.9514741813067672, + 0.9817522080920388, + 0.981025791388756, + 0.9818181818181816, + 0.9710861248452468, + 0.9773557492735576, + 0.890085589718168, + 0.954337370755309, + 0.8919753086419753, + 0.8552031760963528, + 0.9545454545454548, + 0.8563472606128697, + 0.8478228971791203, + 0.8853335760168058, + 0.825019069412662, + 0.8305431015989557, + 0.7900733399481583, + 0.9108949697942603, + 0.917855352912078, + 0.8955772084667657, + 0.82987479094277, + 0.9090909090909088, + 0.9331273751154144, + 0.841981268119079, + 0.9061617983216465, + 0.7650216450216449, + 0.8414755340099983, + 0.9939138029238658, + 0.8766192814819845, + 0.8315151515151515, + 0.8473382904078122, + 0.914059797380776, + 0.7659476739028936, + 0.8559376367887911, + 0.8114111498257839, + 0.7943527200862163, + 0.7697780793564009, + 0.8192024956758094, + 0.9625172175038818, + 0.9466379024540816, + 0.9248249108281914, + 0.7835010344179048, + 0.7696916201990726, + 0.8741784037558686, + 0.8788591215600511, + 0.7847145200343669, + 0.995553782140972, + 0.885547201336675, + 0.932238896428148, + 0.8666467850773247, + 0.9318181818181815, + 0.874330829529188, + 0.8477600534912598, + 0.8513796499579376, + 0.7928688716866057, + 0.8300839482005723, + 0.8104640050546934, + 0.7623555471966228, + 0.8477133966865695, + 0.8069468267581477, + 0.7970641933918771, + 0.7517470662254077, + 0.811386593204775, + 0.8200234516324811, + 0.8169486429889492, + 0.8731362653208361, + 0.8763157894736843, + 0.8185744024917364, + 0.9052173913043478, + 0.8415792985968426, + 0.7820239132603559, + 0.8373297473297473, + 0.7516072325464591, + 0.9659417587369664, + 0.7649602377888222, + 0.7936066126855602, + 0.9090909090909088, + 0.945216049382716, + 0.8771929824561405, + 0.8174876847290639, + 0.8553636363636363, + 0.8455433455433455, + 0.9233441393338415, + 0.8437332724582007, + 0.832909538499891, + 0.840948616293985, + 0.8177290491628549, + 0.9175438596491228, + 0.882198952879581, + 0.8150509397735729, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.7862727272727271, + 0.8107452697678261, + 0.9637205387205386, + 0.852293824358888, + 0.8709558996012198, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352229, + 0.805168828270855, + 0.9090909090909088, + 0.8771929824561405, + 0.8174876847290639, + 0.8813770455902434, + 0.8553636363636363, + 0.8455433455433455, + 0.8049385749385749, + 0.8437332724582007, + 0.832909538499891, + 0.8177290491628549, + 0.9175438596491228, + 0.8767128866853765, + 0.8150509397735729, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.7862727272727271, + 0.8107452697678261, + 0.9637205387205386, + 0.852293824358888, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.805168828270855, + 0.9545454545454548, + 0.9545454545454548, + 0.8298946640273919, + 0.8041381029540074, + 0.9786956521739132, + 0.9055353950321428, + 0.8658008658008658, + 0.8041630667784955, + 0.792782754772987, + 0.8259976777571356, + 0.8220626497774737, + 0.8210461476724114, + 0.8101813436763873, + 0.971001604361102, + 0.9289464621791536, + 0.8732908588456849, + 0.9320839327803117, + 0.7799127011297503, + 0.9521230391509398, + 0.8387538514207465, + 0.8873673399520713, + 0.8919696969696971, + 0.9939130434782611, + 0.9772426641825802, + 0.8315151515151515, + 0.8408502506153573, + 0.9545454545454548, + 0.8658008658008658, + 0.9939130434782611, + 0.9418179668098864, + 0.7650216450216449, + 0.8654908035026879, + 0.9992656508417233, + 0.7803152709359605, + 0.833023231770358, + 0.9983501374885428, + 0.8042480240124439, + 0.7697542997542998, + 0.9203347173341052, + 0.8077175608822436, + 0.863207096556374, + 0.9891326164874552, + 0.8157646741278424, + 0.8722929363621342, + 0.8412806151509398, + 0.9100844696456204, + 0.9172591608126068, + 0.9170938628158845, + 0.8485714285714286, + 0.8571645021645024, + 0.8877796694698104, + 0.8146320346320346, + 0.9983501374885428, + 0.9617032985121432, + 0.9108802545427966, + 0.9508984239139112, + 0.9181661424871335, + 0.9529605866177816, + 0.8319465220643232, + 0.8402426098282156, + 0.9191026771713572, + 0.819087310370122, + 0.8628923192823611, + 0.9602434075673276, + 0.7593235251819751, + 0.9456277248027678, + 0.9435343652049158, + 0.9302009048080272, + 0.7932712550607288, + 0.8786981717234608, + 0.8486842544219593, + 0.9126746767131658, + 0.9486042010676804, + 0.9038724480869904, + 0.958686173433348, + 0.7865058108244474, + 0.8704285747314824, + 0.9240999622367164, + 0.806845704003599, + 0.9624336598289146, + 0.8942981283868459, + 0.8045481228624208, + 0.9823493170094518, + 0.8126984126984126, + 0.998531571416838, + 0.8419809946143553, + 0.9228410057516631, + 0.9946871424565764, + 0.814372836946585, + 0.8452819441807481, + 0.9757439972091474, + 0.7999757977078849, + 0.811708695128781, + 0.9226825090266608, + 0.915537959944108, + 0.8447134792639336, + 0.7824996118615121, + 0.9004189790402766, + 0.992492576897818, + 0.8141116751269034, + 0.9641837718077296, + 0.8643778677462887, + 0.9569910794861844, + 0.8929721958656435, + 0.9134879224116806, + 0.8981798632747807, + 0.81115791740409, + 0.9732801304295486, + 0.9270758346340522, + 0.9377496859510692, + 0.9314133822181484, + 0.97145319916461, + 0.969655719759168, + 0.774258455570617, + 0.7646989654610622, + 0.9179126246763072, + 0.9344663297510818, + 0.9954192028862328, + 0.7896845621854086, + 0.9455885850178358, + 0.9633770826635396, + 0.8393119121793614, + 0.9022475277597836, + 0.8956434074042219, + 0.8868725897920605, + 0.947727507922727, + 0.8100165040010109, + 0.7541551246537396, + 0.7542451891577083, + 0.917562326869806, + 0.8951137084436364, + 0.9046867398146928, + 0.9823446334538573, + 0.7795168102658113, + 0.98334457368405, + 0.949870071311262, + 0.7943210699040147, + 0.8322736882141543, + 0.9149338374291116, + 0.8997612989216043, + 0.957120046591764, + 0.8238720996776804, + 0.9493296120831972, + 0.9088759068464726, + 0.929966729678639, + 0.909593974766178, + 0.9088759068464726, + 0.7862360164041836, + 0.9165811787189776, + 0.9386430599161039, + 0.8032011401974772, + 0.7862727272727271, + 0.9754897598639012, + 0.7600017202867505, + 0.9455885850178358, + 0.9633770826635396, + 0.8436837588803084, + 0.8980736820318737, + 0.8859552362571937, + 0.8868725897920605, + 0.947727507922727, + 0.8057328891947176, + 0.761469327784964, + 0.8875623268698062, + 0.8965017504270001, + 0.9039894860912128, + 0.984298575553884, + 0.7714232447296058, + 0.98334457368405, + 0.949870071311262, + 0.7943210699040147, + 0.8202771072840704, + 0.9149338374291116, + 0.8933801982348771, + 0.957120046591764, + 0.8238720996776804, + 0.9529052383428788, + 0.90120315914534, + 0.929966729678639, + 0.945128934703434, + 0.9095750421335858, + 0.7766558276104735, + 0.9151778010434616, + 0.9471874624563446, + 0.8378181818181819, + 0.9754897598639012, + 0.7691572905827265, + 0.7959133007990622, + 0.8262184063662379, + 0.9894645159690536, + 0.996521739130435, + 0.7819131922573495, + 0.850401606425703, + 0.996521739130435, + 0.9077642484940728, + 0.89655436679566, + 0.9964912280701756, + 0.7938737011467188, + 0.8802936186789987, + 0.9280303030303032, + 0.7987525608923287, + 0.755239120734144, + 0.9308288388816562, + 0.8668602157771254, + 0.8448511242895973, + 0.7961445704225082, + 0.9099056220340456, + 0.9878450565293272, + 0.7642455368060652, + 0.9778493899137112, + 0.8965968223131894, + 0.8932895451827312, + 0.9285799156049388, + 0.9432927941623594, + 0.9496993493645752, + 0.9692603418275338, + 0.8702493159014899, + 0.9739749369603424, + 0.996521739130435, + 0.8907367280606716, + 0.904913008013858, + 0.968471177944862, + 0.825, + 0.9027775208335084, + 0.7617903311136486, + 0.884146408684465, + 0.9446018376578228, + 0.9964912280701756, + 0.908597321143829, + 0.996521739130435, + 0.9619598036238828, + 0.760301236816147, + 0.9921175854473762, + 0.8553134080531343, + 0.9943501037415146, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049176, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8089287811425218, + 0.9416562889165628, + 0.7955445656901864, + 0.7916704805491989, + 0.936963017728694, + 0.8580430671412884, + 0.90276124713408, + 0.992671182389769, + 0.9848040830545792, + 0.9514741813067672, + 0.8630706569122703, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.9857005881574218, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.9851370084561714, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.8931621545809378, + 1, + 0.9271888077994948, + 0.7647361516158825, + 0.9921175854473762, + 0.8553134080531343, + 0.9943501037415146, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049176, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8089287811425218, + 0.8017627702025453, + 0.7916704805491989, + 0.936963017728694, + 0.8580430671412884, + 0.84746622922539, + 0.7867084930870223, + 0.90276124713408, + 0.992671182389769, + 0.8072821072057714, + 0.9848040830545792, + 0.8189889492826025, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.974712351554919, + 0.999777530589544, + 0.937103645050706, + 0.9773557492735576, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9503668087629396, + 1, + 0.9271888077994948, + 0.7647361516158825, + 0.8653436259062406, + 0.9166666666666666, + 0.8513043478260871, + 0.888762154374558, + 0.9072684799014413, + 0.8911473104418144, + 0.8931451612903224, + 0.8046414142652472, + 0.8069790866112391, + 0.8818832214815736, + 0.8945874001774624, + 0.8064644137224782, + 0.8411703547857459, + 0.8850692346282528, + 0.755864605581299, + 0.8544702845816942, + 0.9105444641861692, + 0.9339130434782608, + 0.8908740092733132, + 0.8673913043478261, + 0.8286547121919265, + 0.95706340378198, + 0.9119365546072284, + 0.9110759625390218, + 0.9018301785200464, + 0.9107392505404756, + 0.812383779297877, + 0.8091839475036197, + 0.92656200324369, + 0.9618472252807516, + 0.9614035087719296, + 0.7500000000000002, + 0.8598402189827489, + 0.9545454545454548, + 0.9545454545454548, + 0.8298946640273919, + 0.8041381029540074, + 0.9786956521739132, + 0.9055353950321428, + 0.8658008658008658, + 0.8041630667784955, + 0.792782754772987, + 0.8259976777571356, + 0.8220626497774737, + 0.8210461476724114, + 0.8101813436763873, + 0.971001604361102, + 0.9289464621791536, + 0.8732908588456849, + 0.9320839327803117, + 0.7799127011297503, + 0.9521230391509398, + 0.8387538514207465, + 0.8873673399520713, + 0.8919696969696971, + 0.9939130434782611, + 0.9772426641825802, + 0.8315151515151515, + 0.8408502506153573, + 0.9545454545454548, + 0.8658008658008658, + 0.9939130434782611, + 0.9418179668098864, + 0.912126399896816, + 0.8887138991962918, + 0.8348061215534456, + 0.9654149311197341, + 0.9378050392345934, + 0.7862793427792023, + 0.8443604690958973, + 0.9593698200373342, + 0.8512088827319056, + 0.8685180682717806, + 0.8468774244700616, + 0.7714560308712177, + 0.8438870652966832, + 0.8969414245866957, + 0.7886269744426645, + 0.7869777589350374, + 0.8088224211621804, + 0.8437355447339081, + 0.7910699721201396, + 0.8676659390892717, + 0.9527613124711042, + 0.8204485735368444, + 0.9271303344105843, + 0.8146456352114138, + 0.8976037629362695, + 0.8683719728292518, + 0.8802027440346276, + 0.9196776036942447, + 0.8365367223192828, + 0.9120870195043488, + 0.8288691920804903, + 0.8922059565791751, + 0.8856333436369807, + 0.8958383344884892, + 0.8547177456502489, + 0.8876177172043811, + 0.8044462631285333, + 0.7769360074394543, + 0.870165794962474, + 0.9088771460360435, + 0.8639440219481173, + 0.8216171045177142, + 0.9553836542485572, + 0.8590281921783777, + 0.7787593370202928, + 0.980480932194884, + 0.859475457715449, + 0.8392883910692737, + 0.9697334753456728, + 0.9875342767410386, + 0.7762805813227043, + 0.8819115666628253, + 0.9996664755680739, + 0.8213533116534559, + 0.8993451012599613, + 0.994957229074001, + 0.8044910674094043, + 0.8264324715896463, + 0.9192754972628756, + 0.7970964194386293, + 0.7945612011511877, + 0.9286518512105283, + 0.8566385381298418, + 0.8419664159663934, + 0.8037444492468451, + 0.8979338496600437, + 0.9911725943373176, + 0.8072821072057714, + 0.9582948583751757, + 0.9361559940016043, + 0.848885751747483, + 0.9282065099530084, + 0.9375384371708221, + 0.9244381440159178, + 0.922778749811867, + 0.863030950010363, + 0.9604336230108552, + 0.9997485909897145, + 0.9281372808943766, + 0.9220884721293067, + 0.9635181750863282, + 0.9383494988405086, + 0.9820953369402764, + 0.8113952633989926, + 0.7593325960761085, + 0.8846768686559165, + 0.9402013525622738, + 0.98884684307581, + 0.9345641592934529, + 0.9797300792648269, + 0.9211896852548491, + 0.7727183435914119, + 0.8553134080531343, + 0.7923275652679538, + 0.7819131922573495, + 0.7906170310433895, + 0.8406484670606788, + 0.7894736842105264, + 0.8681498428014106, + 0.8408063572139095, + 0.7738548847622624, + 0.8107066154287429, + 0.909636086500905, + 0.9320839327803117, + 0.894689054121916, + 0.8861995746607623, + 0.8134896030245747, + 0.9636363636363636, + 0.8392276737347159, + 0.901982337361457, + 0.8985728391457872, + 0.792183707284576, + 0.781322126609299, + 0.9062315973735743, + 0.9367756029417319, + 0.9319511232326471, + 0.9114862576701875, + 0.9712199515753038, + 0.8980313754953725, + 0.9114891155371125, + 0.9718991822232025, + 0.8957817018995955, + 0.885216820326823, + 0.9629347112101692, + 0.9112715002623073, + 0.8614427822576298, + 0.9049664936619728, + 0.8820162243309974, + 0.888454039780395, + 0.9041504983342782, + 0.8799225737707326, + 0.8876439844627072, + 0.8799233569935232, + 0.918126588116288, + 0.9555805365011201, + 0.8931008593563526, + 0.9515523658057982, + 0.9349917026220693, + 0.8474827234526232, + 0.9150998524663875, + 0.9019272454814691, + 0.9301521751223218, + 0.9063992024260691, + 0.9084458145791406, + 0.9168300877742804, + 0.9333616542847242, + 0.9154663449613054, + 0.9251461704126609, + 0.917690844476884, + 0.9147435499325136, + 0.9222813943309438, + 0.8949753018246851, + 0.880217317459482, + 0.9102208157579199, + 0.9310777500028851, + 0.9593888728040101, + 0.9143927587731583, + 0.9653623648480182, + 0.895914543937476, + 0.8635374376096991, + 0.9681319140967855, + 0.7944051293641291, + 0.8332891527009144, + 0.9572275212696914, + 0.9858336693217798, + 0.8109702628253749, + 0.8979224069109053, + 0.9560034436331701, + 0.8639809350471249, + 0.9097687059679831, + 0.8322745922557433, + 0.7971859524323482, + 0.8358842439381247, + 0.8283017039354447, + 0.8143104247154894, + 0.7738369426049334, + 0.8995325759943457, + 0.8642235928871177, + 0.8487681619367479, + 0.764572997619905, + 0.8781835807412907, + 0.9926851552084225, + 0.9812777311360182, + 0.8861726828683071, + 0.8774954149924378, + 0.926345302298229, + 0.8766210768243543, + 0.9378841050418827, + 0.939845912034176, + 0.823816185944173, + 0.856345527603842, + 0.8334595938340698, + 0.8998404410917807, + 0.9376711024759753, + 0.911890053248672, + 0.9300633742947678, + 0.8084175084175085, + 0.8334508286707701, + 0.7740091154092624, + 0.7992420095977141, + 0.9006621739097868, + 0.854653633074874, + 0.8760061398599419, + 0.9813930191848028, + 0.8468484447398872, + 0.8096121652455617, + 0.9446374125411141, + 0.8908978309617703, + 0.8171053577998276, + 0.8734377849868722, + 0.9519939718593139, + 0.8280300613338275, + 0.876595396020583, + 0.9655210912171963, + 0.8261344387971954, + 0.8625542828389395, + 0.8903288184273107, + 0.7940378215823586, + 0.821308528676284, + 0.8862838943076522, + 0.801335608067006, + 0.7898913315911535, + 0.8939243895233296, + 0.8298894470003665, + 0.8095100145922008, + 0.8059795113616446, + 0.8742160601633633, + 0.9583180594822122, + 0.7551458714415599, + 0.9136540178884357, + 0.9206422293761181, + 0.8591683975024862, + 0.904109564575604, + 0.8472694098632094, + 0.9130149998360988, + 0.880145246772824, + 0.8361423023057717, + 0.9167552503585765, + 0.9112809824102042, + 0.8970011148753945, + 0.8914866076962089, + 0.923955848833383, + 0.9413970359062177, + 0.9010745526527456, + 0.8041496126372355, + 0.7790726657769016, + 0.8538666204813453, + 0.8917500286633246, + 0.9410172873790268, + 0.828568031294484, + 0.9472721492692258, + 0.8601896132182887, + 0.7893633567566072, + 0.9778255798991798, + 0.8408064685157908, + 0.8526279870536415, + 0.8833001568387581, + 0.9124677847409535, + 0.8503633201346489, + 0.8833774822775062, + 0.9417491009932606, + 0.9147990007027552, + 0.8911473104418144, + 0.9223179978964999, + 0.7993105223748839, + 0.850350519784385, + 0.9028697210251827, + 0.8286759028531826, + 0.8031469436294986, + 0.9091537502090101, + 0.8093089826039098, + 0.8904874214357624, + 0.8411703547857459, + 0.9300497863013258, + 0.9285163775070171, + 0.9184586012318386, + 0.9105444641861692, + 0.9164299777201611, + 0.9326776376702162, + 0.915238611353349, + 0.8549571170132747, + 0.923455550886179, + 0.9049110370735057, + 0.9119365546072284, + 0.9018909142690755, + 0.891364561195284, + 0.9086032637241696, + 0.9120677703982908, + 0.7772353780844471, + 0.812383779297877, + 0.8141980933100278, + 0.8822295931235452, + 0.9449596208074079, + 0.8978862439049966, + 0.9095010430865866, + 0.8584872270322912, + 0.8086861251474953, + 0.9214310387816568, + 0.8513156916323267, + 0.8861426594528754, + 0.9563580635481227, + 0.8379543933348044, + 0.8656705863743085, + 0.98211089011857, + 0.8110596347942214, + 0.9034463518857324, + 0.9635607491657863, + 0.8422382578141601, + 0.804708761453583, + 0.7698095150780381, + 0.7928287729663905, + 0.8372182500994741, + 0.8427896430369138, + 0.855443432650397, + 0.7939358902616885, + 0.7798108510703752, + 0.8567241066808098, + 0.9583038937015214, + 0.8148887053291618, + 0.9152406569855351, + 0.9028534602763532, + 0.8325119458879734, + 0.9302053778183247, + 0.8963386566638, + 0.8746814563549781, + 0.872251181030881, + 0.8686053557864637, + 0.9141058135529145, + 0.8632595037764901, + 0.9040022099272385, + 0.9059581070774078, + 0.9346013746176656, + 0.9298936488832736, + 0.8340239458302267, + 0.8702365021705257, + 0.8123721793207034, + 0.885883024060232, + 0.9117402687572846, + 0.936386353394425, + 0.8186788756172888, + 0.9671464581990991, + 0.848055950280692, + 0.8634065231167884, + 0.943821429875099, + 0.8448605670142738, + 0.8391308618400675, + 0.9254219485466432, + 0.969801679066684, + 0.7878255517886145, + 0.8357804468910168, + 0.9631549837457787, + 0.8766588491633124, + 0.883163649863375, + 0.9511620798446823, + 0.8066657873420849, + 0.8646146885061549, + 0.9029578211833432, + 0.8173068258119696, + 0.8033478921612156, + 0.8925053259258572, + 0.852437315787378, + 0.8476096224149778, + 0.8281685537387745, + 0.8864038761069699, + 0.966688404418, + 0.7614570139762271, + 0.9218212088326015, + 0.9097340269655556, + 0.864077528054265, + 0.8950383362559432, + 0.9073710788569305, + 0.9205839250299366, + 0.925130070799764, + 0.8576299437359549, + 0.9440950401078382, + 0.980790485473866, + 0.8716713610396803, + 0.8830330753654165, + 0.947413628857759, + 0.9115868956816537, + 0.9072478086555293, + 0.8887067486958385, + 0.8045206061109993, + 0.8778102296487642, + 0.9274293484428641, + 0.9658288014409694, + 0.8926838484147005, + 0.9632179959347835, + 0.9170977504366647, + 0.8054854384428153, + 0.9159799347276768, + 0.870259402604351, + 0.8402275254009515, + 0.9026564018866784, + 0.969798543419344, + 0.894474990496069, + 0.924076352335974, + 0.9429126764126102, + 0.8042639289221745, + 0.9218541569170036, + 0.9413543287285013, + 0.84560906239862, + 0.8512530801436985, + 0.8482251915257588, + 0.8418517009699383, + 0.8389250838766459, + 0.8780942953472136, + 0.8631072832356894, + 0.8400551602999186, + 0.8516270815329701, + 0.8873583533901547, + 0.9362723793519837, + 0.8578184506948072, + 0.9200868381562568, + 0.919241753809882, + 0.8090814478617769, + 0.9172442173513957, + 0.9208280320409932, + 0.8851201873403441, + 0.8620858836911702, + 0.8599934079935148, + 0.9464224065318294, + 0.8754179254812067, + 0.9307199381091358, + 0.930707642611767, + 0.9336712798542302, + 0.8756742763151554, + 0.899951826176289, + 0.8561565549568945, + 0.834305428035956, + 0.9043158701608425, + 0.8929659797398322, + 0.9503845826556759, + 0.8991612275139281, + 0.9813148595805599, + 0.8159243483663714, + 0.8774146105790617, + 0.8805473871785698, + 0.8168386335588215, + 0.8698762473047957, + 0.9165009998924976, + 0.9879292185766946, + 0.7704147258241087, + 0.8621323162821838, + 0.9420676506545669, + 0.8430911690338843, + 0.8642044705519123, + 0.8992599156815553, + 0.7848229577759359, + 0.8552257489567264, + 0.9107485390958536, + 0.8109378539976589, + 0.7760442198468392, + 0.8071817939237914, + 0.8488411028364334, + 0.8511599723642802, + 0.7930656733224284, + 0.9026466655874603, + 0.9432330473846552, + 0.8831072264534608, + 0.8943189089693644, + 0.8433884446453952, + 0.8957915181159275, + 0.8920211727858403, + 0.8656532195191253, + 0.8888272271166328, + 0.8185276031664389, + 0.8970283977981403, + 0.9482255936318409, + 0.8981625474527939, + 0.886392267992047, + 0.8763210075301389, + 0.8874771779807347, + 0.8847685034814367, + 0.811961856252122, + 0.7847145200343669, + 0.833222298535868, + 0.9240469682401297, + 0.9470088142769943, + 0.8108332314185674, + 0.9884763288693144, + 0.8537121244334758, + 0.7863842496662736, + 0.9710999057276702, + 0.8545775806305325, + 0.8288670673568047, + 0.9580430413202744, + 0.9851481216084019, + 0.8019990309518411, + 0.8765697319346342, + 0.9984485134812963, + 0.8827784956633106, + 0.897855261911528, + 0.9991228070175441, + 0.7869726824623813, + 0.8574600215751925, + 0.9104950845796125, + 0.7922752675949607, + 0.7825474175827186, + 0.9207382729968335, + 0.8317161986111055, + 0.84746622922539, + 0.8245418106987256, + 0.8914409068710273, + 0.9828315609612513, + 0.766483106515241, + 0.9500231063419912, + 0.9418084238960098, + 0.993758325008325, + 0.9340450649002454, + 0.9369761491626559, + 0.9242059912005234, + 0.9626281577206024, + 0.9004406503802566, + 0.9591920700382297, + 0.9770335633523987, + 0.9120886429915576, + 0.8878004962368867, + 0.9886242163794032, + 0.9651107579751624, + 0.8934452569589426, + 0.906094156405893, + 0.8004902860629857, + 0.8914046330636394, + 0.941658321518602, + 0.9765693239986738, + 0.8760032261652501, + 0.9991228070175441, + 0.9051910717095266, + 0.7935775831141221, + 0.929941088884573, + 0.8318189568317447, + 0.9721324228139152, + 0.8929555666008868, + 0.9899175068744273, + 0.7829559806346367, + 0.8330585670487148, + 0.9004712036731742, + 0.8079059133534838, + 0.907326978222119, + 0.8418462145170219, + 0.8355962235887732, + 0.9840600196897172, + 0.9727233543942168, + 0.9456931798893302, + 0.7835307826762479, + 0.9334823561531638, + 0.943912095206486, + 0.9719476865439598, + 0.8989607068123694, + 0.9899175068744273, + 0.91218688144154, + 0.968708052390917, + 0.9275641323723166, + 0.7750817305162342, + 0.7705110005585539, + 0.8746911090742437, + 0.906777236648719, + 0.9877189123128628, + 0.905810189680844, + 0.9039758195768428, + 0.9417675428322848, + 0.838458313625102, + 0.9578918616552848, + 0.9877224033535164, + 0.9600766541682176, + 0.9372227566431792, + 0.9996947496947498, + 0.9464739502688859, + 0.9273107442696306, + 0.8427440270131528, + 0.8930336617991886, + 0.8499116091074294, + 0.8297523357929766, + 0.8628042957923382, + 0.94362258995985, + 0.8861176478495414, + 0.992955297959396, + 0.954141881439958, + 0.9716068390573318, + 0.9372227566431792, + 0.9209665616774528, + 0.8810186818949944, + 0.8078565985679013, + 0.7888565809250084, + 0.8999765601568034, + 0.7784705964389922, + 0.8951137084436364, + 0.9694396869310692, + 0.906901471095239, + 0.9521895754027829, + 0.7517286913985001, + 0.8687571885281811, + 0.7912430201328434, + 0.9975369458128078, + 0.9160401958804216, + 0.9315711806648126, + 0.8609644958918051, + 0.8386594508420274, + 0.9351549836986592, + 0.9427180341404985, + 0.7681163618132653, + 0.8787858747853352, + 0.9893011313753898, + 0.8546700127495449, + 0.8758173885709947, + 0.9485066687801922, + 0.8003973221301792, + 0.8309934593862532, + 0.9026473100549586, + 0.7957711145179299, + 0.7958134120303104, + 0.8809153393318552, + 0.8550588891603323, + 0.8368966677964681, + 0.8049966847322658, + 0.8894131781606722, + 0.984770563952946, + 0.7945822416508489, + 0.9385796426731732, + 0.9400075247083102, + 0.8370209052650499, + 0.9406181150608247, + 0.9074883728808776, + 0.9137808792941257, + 0.9328829711123616, + 0.8601818483687415, + 0.8898049062435895, + 0.9722307756700375, + 0.9238623216857789, + 0.871665184175204, + 0.9528158707854402, + 0.9020360939999567, + 0.9516904425166645, + 0.8907461235222609, + 0.7809088432800615, + 0.8762088523996857, + 0.9320039039158255, + 0.9272893269521203, + 0.9058370878370338, + 0.9524516791586732, + 0.8829855968328181, + 0.7823245649207289, + 0.8748693498469887, + 0.8742883854021798, + 0.8746611748024347, + 0.9376819623311556, + 0.9947028289732674, + 0.8548763233394239, + 0.9049914056584369, + 0.9941197065722382, + 0.8487320955708422, + 0.9092712562873475, + 0.9763749646497006, + 0.8545982831576736, + 0.850548231352957, + 0.9407255024549774, + 0.8503648922153408, + 0.8359536461222336, + 0.9109614334891537, + 0.8647394698759232, + 0.9043414337084982, + 0.8450197352772266, + 0.9399452292694473, + 0.9846994595492535, + 0.9486152933634998, + 0.9754185212178655, + 0.9588847492141126, + 0.8651058220157922, + 0.9272067154146025, + 0.9405616327785196, + 0.9367871439736926, + 0.9386593272049244, + 0.8902973666791916, + 0.9017097117882626, + 0.9739530318740881, + 0.9085982902991971, + 0.9479750510619678, + 0.9829223011990686, + 0.8379245523453007, + 0.939761065723693, + 0.8491109021102726, + 0.8703455431007857, + 0.9177162151766173, + 0.9445085979284547, + 0.9970392628794374, + 0.9623118653922792, + 0.9932823846253213, + 0.9428523442680733, + 0.8098315966162147, + 0.9090909090909088, + 0.8237875450920827, + 0.945216049382716, + 0.8771929824561405, + 0.7694629219019462, + 0.8174876847290637, + 0.9545454545454548, + 0.8813770455902434, + 0.8553636363636361, + 0.8455433455433456, + 0.7676911617909391, + 0.8737944824901346, + 0.8588924177547349, + 0.7706024497958504, + 0.7971142965635086, + 0.797381306659819, + 0.8483876994316057, + 0.8282595845401285, + 0.8034089244055879, + 0.817729049162855, + 0.9363500515543048, + 0.9359939732913412, + 0.882198952879581, + 0.8576806647865884, + 0.815050939773573, + 0.9091975633632599, + 0.8917391304347826, + 0.8452819441807481, + 0.8400216450216451, + 0.8253968253968254, + 0.8210322890105873, + 0.8348289163941287, + 0.9554938655160816, + 0.852293824358888, + 0.858005568338311, + 0.8161148760137403, + 0.9688527588701455, + 0.8467761176075351, + 0.9017543859649124, + 0.7897773279352229, + 0.805168828270855, + 0.8317573749391951, + 0.9643924081792452, + 0.938598748759861, + 0.984466571720076, + 0.9883020564051679, + 0.977397740533538, + 0.8324262590094272, + 0.957204861709126, + 0.9815689054392762, + 0.9723297607875788, + 0.9166058436529154, + 0.7521706555006759, + 0.9280169976669376, + 0.9358035287465732, + 0.8764803941254208, + 0.9153455696596016, + 0.8469432605765171, + 0.99268071993084, + 0.988226739831974, + 0.996336999414424, + 0.9244884191211992, + 0.8507008302142539, + 0.9593509283699424, + 0.8061755182821719, + 0.9615141634622412, + 0.9839330712663648, + 0.9555873521968756, + 0.9775173594082412, + 0.8128624949482813, + 0.9514741813067672, + 0.9817522080920388, + 0.981025791388756, + 0.9818181818181816, + 0.9710861248452468, + 0.9773557492735576, + 0.890085589718168, + 0.954337370755309, + 0.9807297003570874, + 0.9364502164502164, + 0.7901612469857595, + 0.824287208001439, + 0.9807297003570874, + 0.7614649785030472, + 0.8658008658008658, + 0.9939130434782611, + 0.9066651512935219, + 0.8939526037506182, + 0.9842229467473992, + 0.865081443540125, + 0.9167169276268624, + 0.8794346322201474, + 0.765130456168069, + 0.8734544866674276, + 0.909520787797598, + 0.8854931946173012, + 0.7673924006226841, + 0.8798233135618779, + 0.9852364106660584, + 0.7637569649841349, + 0.9348260838243078, + 0.933522474466579, + 0.8377846225826576, + 0.9583806183156228, + 0.9331326790672908, + 0.9383147514181556, + 0.9589825216566162, + 0.8060876415101113, + 0.9783224922971588, + 0.9583806183156228, + 0.899590944489805, + 0.8941653123998358, + 0.9668188169538892, + 0.9783224922971588, + 0.9679972612119138, + 0.8797605429806478, + 0.7963975193082085, + 0.8839816990630294, + 0.9431528211472392, + 0.8367334869051766, + 0.8658008658008658, + 0.9921746738179468, + 0.9020614173817516, + 0.7562166685686029, + 0.8168393183171508, + 0.826467375579422, + 0.94513113161729, + 0.9585637037072424, + 0.8949088289552438, + 0.9053910284366296, + 0.817437533227007, + 0.7978783990223038, + 0.7521903939726886, + 0.754943158980426, + 0.7928605555934748, + 0.8989607068123694, + 0.7975892455476461, + 0.7725199492096488, + 0.7662703504995123, + 0.9767351231527428, + 0.9424631082284728, + 0.866898864682116, + 0.7783625730994154, + 0.9376349250962784, + 0.9303020409693342, + 0.8287563928270861, + 0.8603115680426934, + 0.8114732228923959, + 0.9669758970781992, + 0.8105976841695943, + 0.7959269589012261, + 0.8302139037433156, + 0.986986590623621, + 0.751078143739283, + 0.9319865517177697, + 0.8782639830593114, + 0.8578369301463997, + 0.9189313114771297, + 0.9633417717529799, + 0.8343138912267726, + 0.8818418640888517, + 0.9736024773604863, + 0.8613042225346038, + 0.888024195606103, + 0.941782855514232, + 0.8404355723269926, + 0.8454461341922117, + 0.8945900568243629, + 0.8289908029078139, + 0.8273210174189225, + 0.8916495568044747, + 0.854433147885652, + 0.8505264662318455, + 0.8308969974341954, + 0.8899385122095016, + 0.9625463006926477, + 0.822879325367078, + 0.9328941076717102, + 0.9254546321964118, + 0.8536794132479856, + 0.9149236519168374, + 0.8988039859606616, + 0.9131258134142545, + 0.905813040144688, + 0.8670687350210408, + 0.9214606820661353, + 0.9408298439101216, + 0.9049472424037028, + 0.9020513700091627, + 0.9349510800595612, + 0.9123902818135722, + 0.914220218308289, + 0.8665729766490252, + 0.8246776811045251, + 0.8835807215942634, + 0.917454975120021, + 0.9496273615183636, + 0.8917539300260674, + 0.9646948055738331, + 0.8878652466688929, + 0.8283471179008514, + 0.9319439135020179, + 0.8611711731084291, + 0.8995765609336107, + 0.9025233427813701, + 0.9630284898620637, + 0.9104667843695463, + 0.871798757072994, + 0.900245383469288 + ] + }, + "name": "", + "parents": [ + "World/Latam/ARG/Internet", + "World/Persian Gulf/AZE/Internet", + "World/Asia/BGD/Internet", + "World/Latam/BRA/Internet", + "World/Pair/CHN/Internet", + "World/South Africa/CMR/Internet", + "World/Latam/COL/Internet", + "World/Latam/CRI/Internet", + "World/North Africa/DZA/Internet", + "World/North Africa/EGY/Internet", + "World/South Africa/GHA/Internet", + "World/Asia/IDN/Internet", + "World/Asia/IND/Internet", + "World/Persian Gulf/IRQ/Internet", + "World/North Africa/MAR/Internet", + "World/South Africa/MOZ/Internet", + "World/South Africa/NGA/Internet", + "World/Latam/PAN/Internet", + "World/Latam/PER/Internet", + "World/Asia/PHL/Internet", + "World/South Africa/SEN/Internet", + "World/Asia/THA/Internet", + "World/North Africa/TUR/Internet", + "World/Asia/VNM/Internet", + "World/Persian Gulf/YEM/Internet", + "World/South Africa/ZAF/Internet", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/EGY/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Persian Gulf/IRQ/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/South Africa/SEN/Environment", + "World/Asia/THA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Europe/NLD/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Europe/AUT/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Latam/PAN/Economy", + "World/Asia/PHL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/Asia/KOR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Europe/SWE/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/CRI/Agriculture", + "World/Europe/DEU/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/North Africa/EGY/Agriculture", + "World/Europe/ESP/Agriculture", + "World/Europe/FRA/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/ISR/Agriculture", + "World/Asia/KOR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Europe/NLD/Agriculture", + "World/Latam/PAN/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Europe/POL/Agriculture", + "World/Europe/SWE/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Latam/VEN/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/Persian Gulf/ARE/Agriculture", + "World/Latam/ARG/Agriculture", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/Latam/CRI/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/Europe/FRA/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Europe/HRV/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/ISR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Persian Gulf/OMN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Persian Gulf/QAT/Agriculture", + "World/Persian Gulf/SAU/Agriculture", + "World/Europe/SWE/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/Persian Gulf/ARE/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CRI/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/ISR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Europe/NLD/Agriculture", + "World/Persian Gulf/OMN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Persian Gulf/QAT/Agriculture", + "World/Pair/USA/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/Latam/ARG/Agriculture", + "World/Europe/AUT/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Latam/COL/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/North Africa/EGY/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Europe/HRV/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/KOR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Europe/POL/Agriculture", + "World/Asia/THA/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Latam/VEN/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/Latam/CRI/Agriculture", + "World/North Africa/EGY/Agriculture", + "World/Europe/FRA/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/Asia/KOR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Europe/POL/Agriculture", + "World/Persian Gulf/SAU/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Latam/VEN/Agriculture", + "World/Asia/VNM/Agriculture", + "World/South Africa/ZAF/Agriculture", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/Latam/CRI/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/Asia/KOR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/Latam/PAN/Agriculture", + "World/Europe/POL/Agriculture", + "World/Europe/SWE/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/Persian Gulf/ARE/Agriculture", + "World/Latam/ARG/Agriculture", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/North Africa/EGY/Agriculture", + "World/Europe/ESP/Agriculture", + "World/Europe/FRA/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Asia/IND/Agriculture", + "World/Asia/KOR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Persian Gulf/OMN/Agriculture", + "World/Latam/PAN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Europe/POL/Agriculture", + "World/Persian Gulf/QAT/Agriculture", + "World/Persian Gulf/SAU/Agriculture", + "World/Europe/SWE/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Latam/VEN/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/South Africa/ZAF/Agriculture", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/Latam/CRI/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/Asia/KOR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/Latam/PAN/Agriculture", + "World/Europe/POL/Agriculture", + "World/Europe/SWE/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/Persian Gulf/ARE/Industry", + "World/Latam/ARG/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Asia/BGD/Industry", + "World/Pair/CHN/Industry", + "World/South Africa/CMR/Industry", + "World/Latam/COL/Industry", + "World/Latam/CRI/Industry", + "World/Europe/DEU/Industry", + "World/North Africa/DZA/Industry", + "World/North Africa/EGY/Industry", + "World/Europe/FRA/Industry", + "World/South Africa/GHA/Industry", + "World/Europe/HRV/Industry", + "World/Asia/IDN/Industry", + "World/Asia/IND/Industry", + "World/North Africa/ISR/Industry", + "World/South Africa/LBR/Industry", + "World/North Africa/MAR/Industry", + "World/Latam/MEX/Industry", + "World/South Africa/MOZ/Industry", + "World/South Africa/NGA/Industry", + "World/Latam/PAN/Industry", + "World/Latam/PER/Industry", + "World/Asia/PHL/Industry", + "World/Europe/POL/Industry", + "World/Persian Gulf/SAU/Industry", + "World/South Africa/SEN/Industry", + "World/Asia/THA/Industry", + "World/North Africa/TUR/Industry", + "World/Pair/USA/Industry", + "World/Latam/VEN/Industry", + "World/Asia/VNM/Industry", + "World/Persian Gulf/YEM/Industry", + "World/South Africa/ZAF/Industry", + "World/Persian Gulf/ARE/Mortality", + "World/Asia/BGD/Mortality", + "World/Pair/CHN/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/South Africa/GHA/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/South Africa/ZAF/Mortality", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/North Africa/DZA/Economy", + "World/Europe/GBR/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/South Africa/SEN/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/Europe/GRC/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/Europe/GRC/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Latam/ARG/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/Europe/GRC/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Europe/POL/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Asia/VNM/Environment", + "World/South Africa/ZAF/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/South Africa/MOZ/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Pair/CHN/Environment", + "World/Latam/COL/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/ESP/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PER/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/MAR/Environment", + "World/South Africa/MOZ/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Asia/THA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Europe/AUT/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/NGA/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/ARE/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Asia/BGD/Industry", + "World/Latam/CHL/Industry", + "World/South Africa/CMR/Industry", + "World/Latam/CRI/Industry", + "World/Europe/GRC/Industry", + "World/Europe/HRV/Industry", + "World/Asia/IDN/Industry", + "World/Asia/IND/Industry", + "World/North Africa/ISR/Industry", + "World/North Africa/MAR/Industry", + "World/South Africa/MOZ/Industry", + "World/South Africa/NGA/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Asia/PHL/Industry", + "World/Persian Gulf/SAU/Industry", + "World/Asia/THA/Industry", + "World/Asia/VNM/Industry", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/Latam/COL/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/ISR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/Latam/PAN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Persian Gulf/QAT/Agriculture", + "World/Persian Gulf/SAU/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/Latam/COL/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/Europe/NLD/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Europe/SWE/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/ARE/Economy", + "World/Asia/BGD/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/South Africa/SEN/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/South Africa/CMR/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/GRC/Exports", + "World/Europe/HRV/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/South Africa/ZAF/Imports", + "World/Latam/ARG/Demoraphy", + "World/Asia/BGD/Demoraphy", + "World/Latam/BRA/Demoraphy", + "World/South Africa/CMR/Demoraphy", + "World/Latam/COL/Demoraphy", + "World/Latam/CRI/Demoraphy", + "World/North Africa/DZA/Demoraphy", + "World/North Africa/EGY/Demoraphy", + "World/South Africa/GHA/Demoraphy", + "World/Asia/IND/Demoraphy", + "World/South Africa/LBR/Demoraphy", + "World/North Africa/MAR/Demoraphy", + "World/Latam/MEX/Demoraphy", + "World/South Africa/MOZ/Demoraphy", + "World/South Africa/NGA/Demoraphy", + "World/Latam/PAN/Demoraphy", + "World/Latam/PER/Demoraphy", + "World/Asia/PHL/Demoraphy", + "World/North Africa/TUR/Demoraphy", + "World/Latam/VEN/Demoraphy", + "World/Asia/VNM/Demoraphy", + "World/Persian Gulf/ARE/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/South Africa/CMR/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/South Africa/LBR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/Latam/CRI/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/North Africa/EGY/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Persian Gulf/OMN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Persian Gulf/QAT/Agriculture", + "World/South Africa/SEN/Agriculture", + "World/Asia/THA/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/Europe/GRC/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Asia/KOR/Health", + "World/South Africa/MOZ/Health", + "World/Europe/NLD/Health", + "World/Latam/PER/Health", + "World/Europe/POL/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Europe/POL/Economy", + "World/Asia/THA/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/Latam/MEX/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PER/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Asia/VNM/Health", + "World/South Africa/ZAF/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Europe/AUT/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/Europe/GRC/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/Persian Gulf/ARE/Employment", + "World/Latam/ARG/Employment", + "World/Europe/AUT/Employment", + "World/Persian Gulf/AZE/Employment", + "World/Asia/BGD/Employment", + "World/Latam/BRA/Employment", + "World/Latam/CHL/Employment", + "World/Pair/CHN/Employment", + "World/South Africa/CMR/Employment", + "World/Latam/COL/Employment", + "World/Latam/CRI/Employment", + "World/Europe/DEU/Employment", + "World/North Africa/DZA/Employment", + "World/North Africa/EGY/Employment", + "World/Europe/ESP/Employment", + "World/Europe/FRA/Employment", + "World/Europe/GBR/Employment", + "World/South Africa/GHA/Employment", + "World/Asia/IDN/Employment", + "World/Asia/IND/Employment", + "World/North Africa/ISR/Employment", + "World/Asia/KOR/Employment", + "World/South Africa/LBR/Employment", + "World/North Africa/MAR/Employment", + "World/Latam/MEX/Employment", + "World/South Africa/MOZ/Employment", + "World/South Africa/NGA/Employment", + "World/Europe/NLD/Employment", + "World/Persian Gulf/OMN/Employment", + "World/Latam/PAN/Employment", + "World/Latam/PER/Employment", + "World/Asia/PHL/Employment", + "World/Europe/POL/Employment", + "World/Persian Gulf/QAT/Employment", + "World/South Africa/SEN/Employment", + "World/Europe/SWE/Employment", + "World/North Africa/TUR/Employment", + "World/Latam/VEN/Employment", + "World/Asia/VNM/Employment", + "World/South Africa/ZAF/Employment", + "World/Latam/ARG/Employment", + "World/Europe/AUT/Employment", + "World/Persian Gulf/AZE/Employment", + "World/Asia/BGD/Employment", + "World/Latam/BRA/Employment", + "World/Pair/CHN/Employment", + "World/South Africa/CMR/Employment", + "World/Latam/CRI/Employment", + "World/Europe/DEU/Employment", + "World/North Africa/DZA/Employment", + "World/North Africa/EGY/Employment", + "World/Europe/ESP/Employment", + "World/Europe/FRA/Employment", + "World/Europe/GBR/Employment", + "World/Europe/GRC/Employment", + "World/Europe/HRV/Employment", + "World/Asia/IDN/Employment", + "World/Asia/IND/Employment", + "World/North Africa/ISR/Employment", + "World/Asia/KOR/Employment", + "World/North Africa/MAR/Employment", + "World/South Africa/MOZ/Employment", + "World/Europe/NLD/Employment", + "World/Persian Gulf/OMN/Employment", + "World/Europe/POL/Employment", + "World/Persian Gulf/SAU/Employment", + "World/South Africa/SEN/Employment", + "World/Europe/SWE/Employment", + "World/Pair/USA/Employment", + "World/Latam/VEN/Employment", + "World/Asia/VNM/Employment", + "World/Persian Gulf/YEM/Employment", + "World/South Africa/ZAF/Employment", + "World/Persian Gulf/ARE/Employment", + "World/Latam/ARG/Employment", + "World/Europe/AUT/Employment", + "World/Asia/BGD/Employment", + "World/Latam/BRA/Employment", + "World/Latam/CHL/Employment", + "World/Pair/CHN/Employment", + "World/South Africa/CMR/Employment", + "World/Latam/COL/Employment", + "World/Latam/CRI/Employment", + "World/Europe/DEU/Employment", + "World/North Africa/DZA/Employment", + "World/North Africa/EGY/Employment", + "World/Europe/ESP/Employment", + "World/Europe/FRA/Employment", + "World/Europe/GBR/Employment", + "World/South Africa/GHA/Employment", + "World/Europe/GRC/Employment", + "World/Europe/HRV/Employment", + "World/Asia/IDN/Employment", + "World/Asia/IND/Employment", + "World/North Africa/ISR/Employment", + "World/Asia/KOR/Employment", + "World/South Africa/LBR/Employment", + "World/North Africa/MAR/Employment", + "World/Latam/MEX/Employment", + "World/South Africa/MOZ/Employment", + "World/South Africa/NGA/Employment", + "World/Europe/NLD/Employment", + "World/Persian Gulf/OMN/Employment", + "World/Latam/PAN/Employment", + "World/Latam/PER/Employment", + "World/Asia/PHL/Employment", + "World/Europe/POL/Employment", + "World/South Africa/SEN/Employment", + "World/Europe/SWE/Employment", + "World/Asia/THA/Employment", + "World/North Africa/TUR/Employment", + "World/Pair/USA/Employment", + "World/Latam/VEN/Employment", + "World/Asia/VNM/Employment", + "World/Persian Gulf/YEM/Employment", + "World/South Africa/ZAF/Employment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Latam/VEN/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/Europe/GBR/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Latam/PAN/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Europe/SWE/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/GRC/Exports", + "World/Europe/HRV/Exports", + "World/Latam/MEX/Exports", + "World/Europe/NLD/Exports", + "World/Latam/PAN/Exports", + "World/Europe/POL/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/Asia/VNM/Exports", + "World/Persian Gulf/YEM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/ESP/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/GRC/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/Persian Gulf/YEM/Exports", + "World/South Africa/ZAF/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/HRV/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/HRV/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/R&D", + "World/Latam/CHL/R&D", + "World/Latam/COL/R&D", + "World/Latam/CRI/R&D", + "World/North Africa/EGY/R&D", + "World/South Africa/GHA/R&D", + "World/Europe/GRC/R&D", + "World/Europe/HRV/R&D", + "World/Asia/IDN/R&D", + "World/Asia/IND/R&D", + "World/South Africa/LBR/R&D", + "World/North Africa/MAR/R&D", + "World/Latam/MEX/R&D", + "World/South Africa/MOZ/R&D", + "World/South Africa/NGA/R&D", + "World/Latam/PAN/R&D", + "World/Latam/PER/R&D", + "World/Asia/PHL/R&D", + "World/Europe/POL/R&D", + "World/South Africa/SEN/R&D", + "World/Asia/THA/R&D", + "World/North Africa/TUR/R&D", + "World/Latam/VEN/R&D", + "World/Asia/VNM/R&D", + "World/Persian Gulf/YEM/R&D", + "World/South Africa/ZAF/R&D", + "World/Latam/ARG/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IDN/Economy", + "World/South Africa/LBR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Internet", + "World/Latam/ARG/Internet", + "World/Europe/AUT/Internet", + "World/Persian Gulf/AZE/Internet", + "World/Asia/BGD/Internet", + "World/Latam/BRA/Internet", + "World/Latam/CHL/Internet", + "World/Pair/CHN/Internet", + "World/South Africa/CMR/Internet", + "World/Latam/COL/Internet", + "World/Latam/CRI/Internet", + "World/Europe/DEU/Internet", + "World/North Africa/DZA/Internet", + "World/North Africa/EGY/Internet", + "World/Europe/ESP/Internet", + "World/Europe/FRA/Internet", + "World/Europe/GBR/Internet", + "World/South Africa/GHA/Internet", + "World/Europe/GRC/Internet", + "World/Europe/HRV/Internet", + "World/Asia/IDN/Internet", + "World/Asia/IND/Internet", + "World/North Africa/ISR/Internet", + "World/Asia/KOR/Internet", + "World/South Africa/LBR/Internet", + "World/North Africa/MAR/Internet", + "World/Latam/MEX/Internet", + "World/South Africa/MOZ/Internet", + "World/Europe/NLD/Internet", + "World/Persian Gulf/OMN/Internet", + "World/Latam/PAN/Internet", + "World/Latam/PER/Internet", + "World/Asia/PHL/Internet", + "World/Europe/POL/Internet", + "World/Persian Gulf/QAT/Internet", + "World/Persian Gulf/SAU/Internet", + "World/South Africa/SEN/Internet", + "World/Europe/SWE/Internet", + "World/Asia/THA/Internet", + "World/North Africa/TUR/Internet", + "World/Pair/USA/Internet", + "World/Latam/VEN/Internet", + "World/Asia/VNM/Internet", + "World/Persian Gulf/YEM/Internet", + "World/South Africa/ZAF/Internet", + "World/Persian Gulf/ARE/Internet", + "World/Latam/ARG/Internet", + "World/Europe/AUT/Internet", + "World/Persian Gulf/AZE/Internet", + "World/Asia/BGD/Internet", + "World/Latam/BRA/Internet", + "World/Latam/CHL/Internet", + "World/Pair/CHN/Internet", + "World/South Africa/CMR/Internet", + "World/Latam/COL/Internet", + "World/Latam/CRI/Internet", + "World/Europe/DEU/Internet", + "World/North Africa/DZA/Internet", + "World/North Africa/EGY/Internet", + "World/Europe/ESP/Internet", + "World/Europe/FRA/Internet", + "World/Europe/GBR/Internet", + "World/South Africa/GHA/Internet", + "World/Europe/GRC/Internet", + "World/Europe/HRV/Internet", + "World/Asia/IDN/Internet", + "World/Asia/IND/Internet", + "World/North Africa/ISR/Internet", + "World/Asia/KOR/Internet", + "World/South Africa/LBR/Internet", + "World/North Africa/MAR/Internet", + "World/Latam/MEX/Internet", + "World/South Africa/MOZ/Internet", + "World/Europe/NLD/Internet", + "World/Persian Gulf/OMN/Internet", + "World/Latam/PAN/Internet", + "World/Latam/PER/Internet", + "World/Asia/PHL/Internet", + "World/Europe/POL/Internet", + "World/Persian Gulf/QAT/Internet", + "World/Persian Gulf/SAU/Internet", + "World/South Africa/SEN/Internet", + "World/Europe/SWE/Internet", + "World/Asia/THA/Internet", + "World/North Africa/TUR/Internet", + "World/Pair/USA/Internet", + "World/Latam/VEN/Internet", + "World/Asia/VNM/Internet", + "World/Persian Gulf/YEM/Internet", + "World/South Africa/ZAF/Internet", + "World/Persian Gulf/ARE/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Asia/BGD/Industry", + "World/Latam/BRA/Industry", + "World/Latam/CHL/Industry", + "World/Pair/CHN/Industry", + "World/South Africa/CMR/Industry", + "World/Latam/COL/Industry", + "World/Latam/CRI/Industry", + "World/North Africa/DZA/Industry", + "World/North Africa/EGY/Industry", + "World/South Africa/GHA/Industry", + "World/Asia/IDN/Industry", + "World/Asia/IND/Industry", + "World/North Africa/ISR/Industry", + "World/South Africa/LBR/Industry", + "World/North Africa/MAR/Industry", + "World/Latam/MEX/Industry", + "World/South Africa/MOZ/Industry", + "World/South Africa/NGA/Industry", + "World/Europe/NLD/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Latam/PAN/Industry", + "World/Latam/PER/Industry", + "World/Asia/PHL/Industry", + "World/Europe/POL/Industry", + "World/Persian Gulf/QAT/Industry", + "World/Persian Gulf/SAU/Industry", + "World/South Africa/SEN/Industry", + "World/Asia/THA/Industry", + "World/North Africa/TUR/Industry", + "World/Pair/USA/Industry", + "World/Asia/VNM/Industry", + "World/Persian Gulf/YEM/Industry", + "World/South Africa/ZAF/Industry", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/Asia/KOR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Europe/POL/Demography", + "World/South Africa/SEN/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Principal", + "World/Europe/AUT/Principal", + "World/Persian Gulf/AZE/Principal", + "World/Asia/BGD/Principal", + "World/Latam/BRA/Principal", + "World/Latam/CHL/Principal", + "World/Pair/CHN/Principal", + "World/South Africa/CMR/Principal", + "World/Latam/COL/Principal", + "World/Latam/CRI/Principal", + "World/Europe/DEU/Principal", + "World/North Africa/DZA/Principal", + "World/North Africa/EGY/Principal", + "World/Europe/ESP/Principal", + "World/Europe/FRA/Principal", + "World/Europe/GBR/Principal", + "World/South Africa/GHA/Principal", + "World/Europe/GRC/Principal", + "World/Europe/HRV/Principal", + "World/Asia/IDN/Principal", + "World/Asia/IND/Principal", + "World/North Africa/ISR/Principal", + "World/Asia/KOR/Principal", + "World/South Africa/LBR/Principal", + "World/North Africa/MAR/Principal", + "World/Latam/MEX/Principal", + "World/South Africa/MOZ/Principal", + "World/South Africa/NGA/Principal", + "World/Europe/NLD/Principal", + "World/Persian Gulf/OMN/Principal", + "World/Latam/PAN/Principal", + "World/Latam/PER/Principal", + "World/Asia/PHL/Principal", + "World/Europe/POL/Principal", + "World/Persian Gulf/QAT/Principal", + "World/Persian Gulf/SAU/Principal", + "World/South Africa/SEN/Principal", + "World/Asia/THA/Principal", + "World/North Africa/TUR/Principal", + "World/Pair/USA/Principal", + "World/Latam/VEN/Principal", + "World/Asia/VNM/Principal", + "World/Persian Gulf/YEM/Principal", + "World/South Africa/ZAF/Principal", + "World/Persian Gulf/ARE/Principal", + "World/Europe/AUT/Principal", + "World/Persian Gulf/AZE/Principal", + "World/Asia/BGD/Principal", + "World/Latam/BRA/Principal", + "World/Latam/CHL/Principal", + "World/Pair/CHN/Principal", + "World/South Africa/CMR/Principal", + "World/Latam/COL/Principal", + "World/Latam/CRI/Principal", + "World/Europe/DEU/Principal", + "World/North Africa/DZA/Principal", + "World/North Africa/EGY/Principal", + "World/Europe/ESP/Principal", + "World/Europe/FRA/Principal", + "World/Europe/GBR/Principal", + "World/South Africa/GHA/Principal", + "World/Europe/GRC/Principal", + "World/Europe/HRV/Principal", + "World/Asia/IDN/Principal", + "World/Asia/IND/Principal", + "World/North Africa/ISR/Principal", + "World/Asia/KOR/Principal", + "World/South Africa/LBR/Principal", + "World/North Africa/MAR/Principal", + "World/Latam/MEX/Principal", + "World/South Africa/MOZ/Principal", + "World/South Africa/NGA/Principal", + "World/Europe/NLD/Principal", + "World/Persian Gulf/OMN/Principal", + "World/Latam/PAN/Principal", + "World/Latam/PER/Principal", + "World/Asia/PHL/Principal", + "World/Europe/POL/Principal", + "World/Persian Gulf/QAT/Principal", + "World/Persian Gulf/SAU/Principal", + "World/South Africa/SEN/Principal", + "World/Asia/THA/Principal", + "World/North Africa/TUR/Principal", + "World/Pair/USA/Principal", + "World/Latam/VEN/Principal", + "World/Asia/VNM/Principal", + "World/Persian Gulf/YEM/Principal", + "World/South Africa/ZAF/Principal", + "World/Persian Gulf/ARE/Principal", + "World/Latam/ARG/Principal", + "World/Europe/AUT/Principal", + "World/Persian Gulf/AZE/Principal", + "World/Asia/BGD/Principal", + "World/Latam/BRA/Principal", + "World/Latam/CHL/Principal", + "World/Pair/CHN/Principal", + "World/South Africa/CMR/Principal", + "World/Latam/COL/Principal", + "World/Latam/CRI/Principal", + "World/Europe/DEU/Principal", + "World/North Africa/DZA/Principal", + "World/North Africa/EGY/Principal", + "World/Europe/ESP/Principal", + "World/Europe/FRA/Principal", + "World/Europe/GBR/Principal", + "World/South Africa/GHA/Principal", + "World/Europe/GRC/Principal", + "World/Europe/HRV/Principal", + "World/Asia/IDN/Principal", + "World/Asia/IND/Principal", + "World/Persian Gulf/IRQ/Principal", + "World/North Africa/ISR/Principal", + "World/Asia/KOR/Principal", + "World/North Africa/MAR/Principal", + "World/Latam/MEX/Principal", + "World/South Africa/MOZ/Principal", + "World/South Africa/NGA/Principal", + "World/Europe/NLD/Principal", + "World/Persian Gulf/OMN/Principal", + "World/Latam/PAN/Principal", + "World/Latam/PER/Principal", + "World/Asia/PHL/Principal", + "World/Europe/POL/Principal", + "World/Persian Gulf/QAT/Principal", + "World/Persian Gulf/SAU/Principal", + "World/South Africa/SEN/Principal", + "World/Europe/SWE/Principal", + "World/Asia/THA/Principal", + "World/North Africa/TUR/Principal", + "World/Pair/USA/Principal", + "World/Latam/VEN/Principal", + "World/Asia/VNM/Principal", + "World/Persian Gulf/YEM/Principal", + "World/South Africa/ZAF/Principal", + "World/Persian Gulf/ARE/Principal", + "World/Latam/ARG/Principal", + "World/Persian Gulf/AZE/Principal", + "World/Asia/BGD/Principal", + "World/Latam/BRA/Principal", + "World/Latam/CHL/Principal", + "World/Pair/CHN/Principal", + "World/South Africa/CMR/Principal", + "World/Latam/COL/Principal", + "World/Latam/CRI/Principal", + "World/North Africa/EGY/Principal", + "World/Europe/FRA/Principal", + "World/Europe/GBR/Principal", + "World/South Africa/GHA/Principal", + "World/Europe/GRC/Principal", + "World/Asia/IDN/Principal", + "World/Asia/IND/Principal", + "World/North Africa/ISR/Principal", + "World/Asia/KOR/Principal", + "World/North Africa/MAR/Principal", + "World/South Africa/MOZ/Principal", + "World/South Africa/NGA/Principal", + "World/Persian Gulf/OMN/Principal", + "World/Latam/PAN/Principal", + "World/Latam/PER/Principal", + "World/Asia/PHL/Principal", + "World/Europe/POL/Principal", + "World/Persian Gulf/QAT/Principal", + "World/Persian Gulf/SAU/Principal", + "World/South Africa/SEN/Principal", + "World/Asia/THA/Principal", + "World/North Africa/TUR/Principal", + "World/Pair/USA/Principal", + "World/Asia/VNM/Principal", + "World/South Africa/ZAF/Principal", + "World/Latam/ARG/Principal", + "World/Europe/AUT/Principal", + "World/Persian Gulf/AZE/Principal", + "World/Asia/BGD/Principal", + "World/Latam/BRA/Principal", + "World/Latam/CHL/Principal", + "World/Pair/CHN/Principal", + "World/South Africa/CMR/Principal", + "World/Latam/COL/Principal", + "World/Latam/CRI/Principal", + "World/Europe/DEU/Principal", + "World/North Africa/EGY/Principal", + "World/Europe/ESP/Principal", + "World/Europe/FRA/Principal", + "World/Europe/GBR/Principal", + "World/South Africa/GHA/Principal", + "World/Europe/HRV/Principal", + "World/Asia/IDN/Principal", + "World/Asia/IND/Principal", + "World/North Africa/ISR/Principal", + "World/Asia/KOR/Principal", + "World/North Africa/MAR/Principal", + "World/Latam/MEX/Principal", + "World/South Africa/MOZ/Principal", + "World/South Africa/NGA/Principal", + "World/Europe/NLD/Principal", + "World/Latam/PAN/Principal", + "World/Asia/PHL/Principal", + "World/Europe/POL/Principal", + "World/Europe/SWE/Principal", + "World/Asia/THA/Principal", + "World/North Africa/TUR/Principal", + "World/Pair/USA/Principal", + "World/Asia/VNM/Principal", + "World/South Africa/ZAF/Principal", + "World/Europe/AUT/principal", + "World/Persian Gulf/AZE/principal", + "World/Asia/BGD/principal", + "World/Pair/CHN/principal", + "World/South Africa/CMR/principal", + "World/Latam/COL/principal", + "World/Latam/CRI/principal", + "World/Europe/DEU/principal", + "World/North Africa/DZA/principal", + "World/Europe/ESP/principal", + "World/Europe/FRA/principal", + "World/Europe/GBR/principal", + "World/South Africa/GHA/principal", + "World/Europe/HRV/principal", + "World/Asia/IDN/principal", + "World/Asia/IND/principal", + "World/North Africa/ISR/principal", + "World/Asia/KOR/principal", + "World/Latam/MEX/principal", + "World/South Africa/MOZ/principal", + "World/South Africa/NGA/principal", + "World/Europe/NLD/principal", + "World/Latam/PAN/principal", + "World/Asia/PHL/principal", + "World/Europe/POL/principal", + "World/Persian Gulf/SAU/principal", + "World/Europe/SWE/principal", + "World/North Africa/TUR/principal", + "World/Pair/USA/principal", + "World/South Africa/ZAF/principal", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/South Africa/LBR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/South Africa/LBR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Europe/AUT/Environment", + "World/Pair/CHN/Environment", + "World/Europe/DEU/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Latam/MEX/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Europe/SWE/Environment", + "World/Pair/USA/Environment", + "World/Latam/VEN/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Persian Gulf/SAU/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Europe/AUT/Exports", + "World/Asia/BGD/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/South Africa/CMR/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/Europe/ESP/Exports", + "World/Europe/GBR/Exports", + "World/Europe/GRC/Exports", + "World/Europe/HRV/Exports", + "World/Asia/IND/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/NGA/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/Pair/USA/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/Europe/NLD/Imports", + "World/Latam/PAN/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/Persian Gulf/ARE/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/Persian Gulf/IRQ/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/GBR/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Latam/VEN/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/South Africa/ZAF/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/Persian Gulf/IRQ/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Latam/VEN/Imports", + "World/Asia/VNM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Latam/BRA/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/CRI/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/South Africa/LBR/Health", + "World/South Africa/MOZ/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PER/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/BRA/Mortality", + "World/Pair/CHN/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/GBR/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/Persian Gulf/IRQ/Mortality", + "World/North Africa/ISR/Mortality", + "World/South Africa/MOZ/Mortality", + "World/Europe/NLD/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Europe/POL/Mortality", + "World/Asia/THA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/South Africa/ZAF/Mortality", + "World/Persian Gulf/ARE/Migration", + "World/Europe/AUT/Migration", + "World/Persian Gulf/AZE/Migration", + "World/Latam/CHL/Migration", + "World/Pair/CHN/Migration", + "World/Europe/DEU/Migration", + "World/North Africa/DZA/Migration", + "World/Europe/ESP/Migration", + "World/Europe/FRA/Migration", + "World/Europe/GBR/Migration", + "World/Europe/GRC/Migration", + "World/Europe/HRV/Migration", + "World/Asia/IND/Migration", + "World/North Africa/ISR/Migration", + "World/Asia/KOR/Migration", + "World/North Africa/MAR/Migration", + "World/Latam/MEX/Migration", + "World/South Africa/MOZ/Migration", + "World/South Africa/NGA/Migration", + "World/Europe/NLD/Migration", + "World/Latam/PAN/Migration", + "World/Latam/PER/Migration", + "World/Europe/POL/Migration", + "World/Persian Gulf/SAU/Migration", + "World/South Africa/SEN/Migration", + "World/Europe/SWE/Migration", + "World/Asia/THA/Migration", + "World/North Africa/TUR/Migration", + "World/Pair/USA/Migration", + "World/Asia/VNM/Migration", + "World/Persian Gulf/YEM/Migration", + "World/Persian Gulf/ARE/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Europe/SWE/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/Persian Gulf/ARE/Industry", + "World/Latam/ARG/Industry", + "World/Europe/AUT/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Asia/BGD/Industry", + "World/Latam/BRA/Industry", + "World/Pair/CHN/Industry", + "World/Latam/COL/Industry", + "World/Latam/CRI/Industry", + "World/North Africa/DZA/Industry", + "World/North Africa/EGY/Industry", + "World/Europe/GBR/Industry", + "World/South Africa/GHA/Industry", + "World/Asia/IDN/Industry", + "World/Asia/IND/Industry", + "World/North Africa/ISR/Industry", + "World/Asia/KOR/Industry", + "World/South Africa/LBR/Industry", + "World/North Africa/MAR/Industry", + "World/Latam/MEX/Industry", + "World/South Africa/MOZ/Industry", + "World/South Africa/NGA/Industry", + "World/Europe/NLD/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Latam/PAN/Industry", + "World/Latam/PER/Industry", + "World/Asia/PHL/Industry", + "World/Europe/POL/Industry", + "World/Persian Gulf/QAT/Industry", + "World/Persian Gulf/SAU/Industry", + "World/South Africa/SEN/Industry", + "World/Asia/THA/Industry", + "World/North Africa/TUR/Industry", + "World/Pair/USA/Industry", + "World/Latam/VEN/Industry", + "World/Asia/VNM/Industry", + "World/Persian Gulf/YEM/Industry", + "World/South Africa/ZAF/Industry", + "World/Persian Gulf/ARE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Persian Gulf/QAT/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Asia/VNM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/Latam/COL/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/Latam/MEX/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Asia/THA/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/EGY/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/North Africa/EGY/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/South Africa/NGA/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Europe/DEU/Exports", + "World/Europe/ESP/Exports", + "World/Europe/GBR/Exports", + "World/Europe/GRC/Exports", + "World/Asia/IDN/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/South Africa/LBR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/South Africa/NGA/Exports", + "World/Europe/NLD/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Europe/DEU/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GRC/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/South Africa/NGA/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/Pair/USA/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/Persian Gulf/IRQ/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/Persian Gulf/IRQ/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/South Africa/ZAF/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Pair/CHN/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/North Africa/DZA/Imports", + "World/Europe/GRC/Imports", + "World/Asia/IDN/Imports", + "World/Asia/KOR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/NGA/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Asia/PHL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Latam/VEN/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Latam/VEN/Imports", + "World/Asia/VNM/Imports", + "World/Latam/ARG/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/GBR/Imports", + "World/North Africa/ISR/Imports", + "World/South Africa/LBR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/SAU/Imports", + "World/Europe/SWE/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Latam/VEN/Imports", + "World/South Africa/ZAF/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PER/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Persian Gulf/YEM/Imports", + "World/Persian Gulf/ARE/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/COL/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Asia/IND/Environment", + "World/Persian Gulf/IRQ/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/South Africa/SEN/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/Persian Gulf/ARE/Military", + "World/Europe/AUT/Military", + "World/Persian Gulf/AZE/Military", + "World/Asia/BGD/Military", + "World/Latam/BRA/Military", + "World/Latam/CHL/Military", + "World/Pair/CHN/Military", + "World/South Africa/CMR/Military", + "World/Latam/COL/Military", + "World/North Africa/DZA/Military", + "World/North Africa/EGY/Military", + "World/Europe/ESP/Military", + "World/Europe/FRA/Military", + "World/South Africa/GHA/Military", + "World/Europe/GRC/Military", + "World/Asia/IDN/Military", + "World/Asia/IND/Military", + "World/North Africa/ISR/Military", + "World/Asia/KOR/Military", + "World/North Africa/MAR/Military", + "World/Latam/MEX/Military", + "World/South Africa/MOZ/Military", + "World/South Africa/NGA/Military", + "World/Europe/NLD/Military", + "World/Persian Gulf/OMN/Military", + "World/Latam/PER/Military", + "World/Asia/PHL/Military", + "World/Europe/POL/Military", + "World/Persian Gulf/SAU/Military", + "World/South Africa/SEN/Military", + "World/Asia/THA/Military", + "World/North Africa/TUR/Military", + "World/Pair/USA/Military", + "World/Asia/VNM/Military", + "World/Persian Gulf/YEM/Military", + "World/Persian Gulf/ARE/Internet", + "World/Latam/BRA/Internet", + "World/Latam/CHL/Internet", + "World/Pair/CHN/Internet", + "World/Europe/DEU/Internet", + "World/North Africa/DZA/Internet", + "World/North Africa/EGY/Internet", + "World/Europe/FRA/Internet", + "World/Europe/GBR/Internet", + "World/Europe/HRV/Internet", + "World/Asia/IDN/Internet", + "World/North Africa/ISR/Internet", + "World/Asia/KOR/Internet", + "World/North Africa/MAR/Internet", + "World/Latam/MEX/Internet", + "World/Europe/NLD/Internet", + "World/Persian Gulf/OMN/Internet", + "World/Latam/PER/Internet", + "World/Persian Gulf/QAT/Internet", + "World/Persian Gulf/SAU/Internet", + "World/Europe/SWE/Internet", + "World/Asia/THA/Internet", + "World/North Africa/TUR/Internet", + "World/Pair/USA/Internet", + "World/South Africa/ZAF/Internet", + "World/Persian Gulf/ARE/Internet", + "World/Latam/BRA/Internet", + "World/Latam/CHL/Internet", + "World/Pair/CHN/Internet", + "World/Europe/DEU/Internet", + "World/North Africa/DZA/Internet", + "World/North Africa/EGY/Internet", + "World/Europe/FRA/Internet", + "World/Europe/HRV/Internet", + "World/Asia/IDN/Internet", + "World/North Africa/ISR/Internet", + "World/Asia/KOR/Internet", + "World/North Africa/MAR/Internet", + "World/Latam/MEX/Internet", + "World/Europe/NLD/Internet", + "World/Persian Gulf/OMN/Internet", + "World/Latam/PER/Internet", + "World/Persian Gulf/QAT/Internet", + "World/Persian Gulf/SAU/Internet", + "World/Europe/SWE/Internet", + "World/Asia/THA/Internet", + "World/North Africa/TUR/Internet", + "World/Pair/USA/Internet", + "World/Latam/VEN/Internet", + "World/South Africa/ZAF/Internet", + "World/Persian Gulf/ARE/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/GBR/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/Europe/SWE/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Economy", + "World/Europe/AUT/Economy", + "World/Latam/BRA/Economy", + "World/Latam/COL/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/Europe/NLD/Economy", + "World/Europe/SWE/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/Latam/MEX/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/NGA/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Asia/BGD/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/NGA/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Europe/AUT/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/NGA/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Asia/IND/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Europe/SWE/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Europe/SWE/Environment", + "World/North Africa/TUR/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Europe/AUT/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Asia/THA/Environment", + "World/Pair/USA/Environment", + "World/Latam/VEN/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/South Africa/ZAF/Environment", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/Persian Gulf/IRQ/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IND/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/South Africa/SEN/Mortality", + "World/North Africa/TUR/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/Persian Gulf/IRQ/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Europe/SWE/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Latam/ARG/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/South Africa/ZAF/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/Persian Gulf/IRQ/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Europe/SWE/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/CRI/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/South Africa/GHA/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/South Africa/MOZ/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/SAU/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/Latam/ARG/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Asia/IND/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Persian Gulf/YEM/Health", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/Latam/CRI/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/Europe/FRA/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/Europe/NLD/Agriculture", + "World/Persian Gulf/OMN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/South Africa/SEN/Agriculture", + "World/Asia/THA/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/South Africa/ZAF/Agriculture", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/FRA/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/Asia/KOR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/Asia/KOR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/CHL/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/Asia/KOR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/Asia/KOR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/DZA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/Asia/KOR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/SAU/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/South Africa/MOZ/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/North Africa/TUR/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Asia/IND/Health", + "World/North Africa/ISR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/HRV/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Latam/ARG/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Latam/ARG/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/GRC/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Asia/KOR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/North Africa/DZA/Health", + "World/South Africa/GHA/Health", + "World/Asia/IDN/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Asia/PHL/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/Persian Gulf/ARE/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/CRI/Economy", + "World/Europe/GBR/Economy", + "World/Asia/IDN/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Pair/CHN/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/Latam/MEX/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/Latam/COL/Economy", + "World/Europe/ESP/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/Latam/MEX/Economy", + "World/Europe/NLD/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Europe/SWE/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/North Africa/MAR/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Europe/SWE/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Europe/SWE/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Latam/ARG/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IND/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/Persian Gulf/AZE/Equality", + "World/Asia/BGD/Equality", + "World/Latam/BRA/Equality", + "World/Latam/CHL/Equality", + "World/Pair/CHN/Equality", + "World/South Africa/CMR/Equality", + "World/North Africa/DZA/Equality", + "World/North Africa/EGY/Equality", + "World/Europe/GBR/Equality", + "World/South Africa/GHA/Equality", + "World/Asia/IND/Equality", + "World/North Africa/ISR/Equality", + "World/Asia/KOR/Equality", + "World/Latam/MEX/Equality", + "World/South Africa/MOZ/Equality", + "World/Latam/PAN/Equality", + "World/Asia/PHL/Equality", + "World/Europe/POL/Equality", + "World/South Africa/SEN/Equality", + "World/Asia/THA/Equality", + "World/North Africa/TUR/Equality", + "World/Pair/USA/Equality", + "World/Asia/VNM/Equality", + "World/Persian Gulf/ARE/Equality", + "World/Latam/ARG/Equality", + "World/Europe/AUT/Equality", + "World/Asia/BGD/Equality", + "World/Latam/BRA/Equality", + "World/Latam/CHL/Equality", + "World/Latam/CRI/Equality", + "World/Europe/DEU/Equality", + "World/North Africa/DZA/Equality", + "World/Europe/ESP/Equality", + "World/Europe/FRA/Equality", + "World/Europe/GBR/Equality", + "World/South Africa/GHA/Equality", + "World/Europe/GRC/Equality", + "World/Asia/IND/Equality", + "World/North Africa/ISR/Equality", + "World/Asia/KOR/Equality", + "World/Latam/MEX/Equality", + "World/South Africa/MOZ/Equality", + "World/South Africa/NGA/Equality", + "World/Europe/NLD/Equality", + "World/Persian Gulf/OMN/Equality", + "World/Latam/PAN/Equality", + "World/Persian Gulf/QAT/Equality", + "World/Persian Gulf/SAU/Equality", + "World/South Africa/SEN/Equality", + "World/North Africa/TUR/Equality", + "World/Pair/USA/Equality", + "World/Asia/VNM/Equality", + "World/Persian Gulf/YEM/Equality", + "World/South Africa/ZAF/Equality", + "World/Persian Gulf/ARE/Equality", + "World/Latam/ARG/Equality", + "World/Europe/AUT/Equality", + "World/Asia/BGD/Equality", + "World/Latam/BRA/Equality", + "World/Latam/CHL/Equality", + "World/Pair/CHN/Equality", + "World/Latam/CRI/Equality", + "World/Europe/DEU/Equality", + "World/North Africa/DZA/Equality", + "World/Europe/ESP/Equality", + "World/Europe/FRA/Equality", + "World/Europe/GBR/Equality", + "World/Europe/GRC/Equality", + "World/North Africa/ISR/Equality", + "World/Asia/KOR/Equality", + "World/Latam/MEX/Equality", + "World/South Africa/MOZ/Equality", + "World/Europe/NLD/Equality", + "World/Persian Gulf/OMN/Equality", + "World/Latam/PAN/Equality", + "World/Europe/POL/Equality", + "World/Persian Gulf/QAT/Equality", + "World/Persian Gulf/SAU/Equality", + "World/South Africa/SEN/Equality", + "World/North Africa/TUR/Equality", + "World/Pair/USA/Equality", + "World/Latam/VEN/Equality", + "World/Asia/VNM/Equality", + "World/South Africa/ZAF/Equality", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/Europe/NLD/Environment", + "World/Latam/PAN/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Europe/SWE/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Latam/VEN/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/South Africa/ZAF/Environment", + "World/Europe/AUT/R&D", + "World/Latam/BRA/R&D", + "World/Pair/CHN/R&D", + "World/Europe/DEU/R&D", + "World/North Africa/DZA/R&D", + "World/Europe/ESP/R&D", + "World/Europe/FRA/R&D", + "World/Europe/GBR/R&D", + "World/South Africa/GHA/R&D", + "World/Europe/GRC/R&D", + "World/Asia/IND/R&D", + "World/Asia/KOR/R&D", + "World/North Africa/MAR/R&D", + "World/South Africa/MOZ/R&D", + "World/Europe/NLD/R&D", + "World/Persian Gulf/OMN/R&D", + "World/Asia/PHL/R&D", + "World/Europe/POL/R&D", + "World/Asia/THA/R&D", + "World/North Africa/TUR/R&D", + "World/Pair/USA/R&D", + "World/Latam/VEN/R&D", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/Latam/CRI/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/South Africa/GHA/Health", + "World/Asia/IND/Health", + "World/Asia/KOR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Europe/POL/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/South Africa/GHA/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/DZA/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/Persian Gulf/IRQ/Demography", + "World/North Africa/ISR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/industry", + "World/Latam/ARG/industry", + "World/Europe/AUT/industry", + "World/Persian Gulf/AZE/industry", + "World/Asia/BGD/industry", + "World/Latam/BRA/industry", + "World/Latam/CHL/industry", + "World/Pair/CHN/industry", + "World/South Africa/CMR/industry", + "World/Latam/COL/industry", + "World/Latam/CRI/industry", + "World/North Africa/DZA/industry", + "World/North Africa/EGY/industry", + "World/Europe/ESP/industry", + "World/Europe/FRA/industry", + "World/Europe/GBR/industry", + "World/South Africa/GHA/industry", + "World/Europe/GRC/industry", + "World/Europe/HRV/industry", + "World/Asia/IDN/industry", + "World/Asia/IND/industry", + "World/Persian Gulf/IRQ/industry", + "World/North Africa/ISR/industry", + "World/Asia/KOR/industry", + "World/South Africa/LBR/industry", + "World/North Africa/MAR/industry", + "World/Latam/MEX/industry", + "World/South Africa/MOZ/industry", + "World/South Africa/NGA/industry", + "World/Europe/NLD/industry", + "World/Persian Gulf/OMN/industry", + "World/Latam/PAN/industry", + "World/Latam/PER/industry", + "World/Asia/PHL/industry", + "World/Europe/POL/industry", + "World/Persian Gulf/QAT/industry", + "World/Persian Gulf/SAU/industry", + "World/South Africa/SEN/industry", + "World/Europe/SWE/industry", + "World/Asia/THA/industry", + "World/North Africa/TUR/industry", + "World/Pair/USA/industry", + "World/Latam/VEN/industry", + "World/Asia/VNM/industry", + "World/Persian Gulf/YEM/industry", + "World/South Africa/ZAF/industry", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/South Africa/CMR/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/GRC/Exports", + "World/Europe/HRV/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Mortality", + "World/Europe/AUT/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/Latam/COL/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/NGA/Mortality", + "World/Latam/PAN/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Latam/ARG/Taxes", + "World/Europe/AUT/Taxes", + "World/Persian Gulf/AZE/Taxes", + "World/Asia/BGD/Taxes", + "World/Latam/BRA/Taxes", + "World/Latam/CHL/Taxes", + "World/South Africa/CMR/Taxes", + "World/Latam/COL/Taxes", + "World/Latam/CRI/Taxes", + "World/Europe/DEU/Taxes", + "World/North Africa/DZA/Taxes", + "World/Europe/ESP/Taxes", + "World/Europe/FRA/Taxes", + "World/Europe/GBR/Taxes", + "World/South Africa/GHA/Taxes", + "World/Europe/GRC/Taxes", + "World/Europe/HRV/Taxes", + "World/Asia/IND/Taxes", + "World/North Africa/ISR/Taxes", + "World/Asia/KOR/Taxes", + "World/North Africa/MAR/Taxes", + "World/Latam/MEX/Taxes", + "World/South Africa/MOZ/Taxes", + "World/South Africa/NGA/Taxes", + "World/Europe/NLD/Taxes", + "World/Latam/PAN/Taxes", + "World/Latam/PER/Taxes", + "World/Europe/POL/Taxes", + "World/Persian Gulf/SAU/Taxes", + "World/South Africa/SEN/Taxes", + "World/Europe/SWE/Taxes", + "World/North Africa/TUR/Taxes", + "World/Pair/USA/Taxes", + "World/Latam/VEN/Taxes", + "World/Asia/VNM/Taxes", + "World/Persian Gulf/YEM/Taxes", + "World/South Africa/ZAF/Taxes", + "World/Persian Gulf/AZE/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Europe/POL/Economy", + "World/Asia/THA/Economy", + "World/Latam/ARG/Industry", + "World/Europe/AUT/Industry", + "World/Asia/BGD/Industry", + "World/Latam/CHL/Industry", + "World/Pair/CHN/Industry", + "World/Latam/COL/Industry", + "World/Latam/CRI/Industry", + "World/Europe/DEU/Industry", + "World/North Africa/DZA/Industry", + "World/Europe/ESP/Industry", + "World/Europe/FRA/Industry", + "World/Europe/GBR/Industry", + "World/Europe/GRC/Industry", + "World/North Africa/ISR/Industry", + "World/Asia/KOR/Industry", + "World/North Africa/MAR/Industry", + "World/Latam/MEX/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Latam/PER/Industry", + "World/Europe/POL/Industry", + "World/Europe/SWE/Industry", + "World/Pair/USA/Industry", + "World/Persian Gulf/ARE/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Latam/CHL/Industry", + "World/Pair/CHN/Industry", + "World/South Africa/CMR/Industry", + "World/Latam/COL/Industry", + "World/Latam/CRI/Industry", + "World/Europe/DEU/Industry", + "World/North Africa/DZA/Industry", + "World/Europe/ESP/Industry", + "World/Europe/FRA/Industry", + "World/Europe/GBR/Industry", + "World/Asia/IND/Industry", + "World/Asia/KOR/Industry", + "World/South Africa/LBR/Industry", + "World/North Africa/MAR/Industry", + "World/South Africa/MOZ/Industry", + "World/Europe/NLD/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Latam/PAN/Industry", + "World/Latam/PER/Industry", + "World/Europe/POL/Industry", + "World/Persian Gulf/SAU/Industry", + "World/South Africa/SEN/Industry", + "World/Asia/THA/Industry", + "World/Latam/VEN/Industry", + "World/Asia/VNM/Industry", + "World/Persian Gulf/YEM/Industry", + "World/South Africa/ZAF/Industry", + "World/Latam/ARG/R&D", + "World/Persian Gulf/AZE/R&D", + "World/Asia/BGD/R&D", + "World/Latam/CHL/R&D", + "World/Latam/COL/R&D", + "World/Latam/CRI/R&D", + "World/North Africa/EGY/R&D", + "World/South Africa/GHA/R&D", + "World/Europe/GRC/R&D", + "World/Europe/HRV/R&D", + "World/Asia/IDN/R&D", + "World/Asia/IND/R&D", + "World/South Africa/LBR/R&D", + "World/Latam/MEX/R&D", + "World/South Africa/MOZ/R&D", + "World/South Africa/NGA/R&D", + "World/Latam/PAN/R&D", + "World/Latam/PER/R&D", + "World/Asia/PHL/R&D", + "World/Europe/POL/R&D", + "World/South Africa/SEN/R&D", + "World/Asia/THA/R&D", + "World/North Africa/TUR/R&D", + "World/Latam/VEN/R&D", + "World/Asia/VNM/R&D", + "World/Persian Gulf/YEM/R&D", + "World/South Africa/ZAF/R&D", + "World/Latam/ARG/R&D", + "World/Asia/BGD/R&D", + "World/Latam/CHL/R&D", + "World/South Africa/CMR/R&D", + "World/Latam/COL/R&D", + "World/Latam/CRI/R&D", + "World/North Africa/EGY/R&D", + "World/South Africa/GHA/R&D", + "World/Europe/GRC/R&D", + "World/Asia/IDN/R&D", + "World/Asia/IND/R&D", + "World/North Africa/MAR/R&D", + "World/Latam/MEX/R&D", + "World/South Africa/MOZ/R&D", + "World/South Africa/NGA/R&D", + "World/Latam/PAN/R&D", + "World/Latam/PER/R&D", + "World/Asia/PHL/R&D", + "World/Europe/POL/R&D", + "World/South Africa/SEN/R&D", + "World/North Africa/TUR/R&D", + "World/Latam/VEN/R&D", + "World/Asia/VNM/R&D", + "World/South Africa/ZAF/R&D", + "World/Persian Gulf/ARE/A&D", + "World/Latam/ARG/A&D", + "World/Europe/AUT/A&D", + "World/Persian Gulf/AZE/A&D", + "World/Asia/BGD/A&D", + "World/Latam/BRA/A&D", + "World/Latam/CHL/A&D", + "World/Pair/CHN/A&D", + "World/Latam/CRI/A&D", + "World/North Africa/EGY/A&D", + "World/Europe/GBR/A&D", + "World/South Africa/GHA/A&D", + "World/Europe/HRV/A&D", + "World/Asia/IND/A&D", + "World/North Africa/ISR/A&D", + "World/Asia/KOR/A&D", + "World/North Africa/MAR/A&D", + "World/Latam/MEX/A&D", + "World/South Africa/MOZ/A&D", + "World/South Africa/NGA/A&D", + "World/Europe/NLD/A&D", + "World/Persian Gulf/OMN/A&D", + "World/Latam/PAN/A&D", + "World/Europe/POL/A&D", + "World/Persian Gulf/QAT/A&D", + "World/Asia/THA/A&D", + "World/Pair/USA/A&D", + "World/Latam/VEN/A&D", + "World/Asia/VNM/A&D", + "World/Persian Gulf/YEM/A&D", + "World/Persian Gulf/ARE/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Asia/BGD/Industry", + "World/Latam/BRA/Industry", + "World/Latam/CHL/Industry", + "World/Pair/CHN/Industry", + "World/South Africa/CMR/Industry", + "World/Latam/CRI/Industry", + "World/North Africa/EGY/Industry", + "World/Europe/HRV/Industry", + "World/Asia/IDN/Industry", + "World/Asia/IND/Industry", + "World/North Africa/ISR/Industry", + "World/North Africa/MAR/Industry", + "World/Latam/MEX/Industry", + "World/South Africa/MOZ/Industry", + "World/South Africa/NGA/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Asia/PHL/Industry", + "World/Europe/POL/Industry", + "World/Persian Gulf/SAU/Industry", + "World/Asia/THA/Industry", + "World/Asia/VNM/Industry", + "World/Persian Gulf/ARE/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IND/Environment", + "World/Persian Gulf/IRQ/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Asia/PHL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Asia/VNM/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/DZA/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/DZA/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/Asia/KOR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/DZA/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/Persian Gulf/IRQ/Demography", + "World/North Africa/ISR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Europe/AUT/Equality", + "World/Persian Gulf/AZE/Equality", + "World/Asia/BGD/Equality", + "World/Latam/CHL/Equality", + "World/Pair/CHN/Equality", + "World/Latam/COL/Equality", + "World/Latam/CRI/Equality", + "World/Europe/DEU/Equality", + "World/North Africa/DZA/Equality", + "World/North Africa/EGY/Equality", + "World/Europe/GBR/Equality", + "World/South Africa/GHA/Equality", + "World/Europe/HRV/Equality", + "World/Asia/IND/Equality", + "World/North Africa/ISR/Equality", + "World/Asia/KOR/Equality", + "World/North Africa/MAR/Equality", + "World/Latam/MEX/Equality", + "World/South Africa/MOZ/Equality", + "World/South Africa/NGA/Equality", + "World/Europe/NLD/Equality", + "World/Latam/PAN/Equality", + "World/Latam/PER/Equality", + "World/Asia/PHL/Equality", + "World/Europe/POL/Equality", + "World/Persian Gulf/SAU/Equality", + "World/Europe/SWE/Equality", + "World/Asia/THA/Equality", + "World/North Africa/TUR/Equality", + "World/Latam/VEN/Equality", + "World/Asia/VNM/Equality", + "World/Persian Gulf/YEM/Equality", + "World/South Africa/ZAF/Equality", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/Latam/CRI", + "World/North Africa/EGY", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/HRV", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Asia/THA", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Latam/ARG", + "World/Asia/BGD", + "World/Latam/BRA", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/South Africa/GHA", + "World/Asia/IND", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/North Africa/TUR", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Latam/CHL", + "World/Pair/CHN", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Latam/PAN", + "World/Latam/PER", + "World/Europe/POL", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/Persian Gulf/ARE", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Asia/IDN", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/South Africa/SEN", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Latam/PAN", + "World/Latam/PER", + "World/Europe/POL", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Latam/PAN", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/SAU", + "World/Europe/SWE", + "World/North Africa/TUR", + "World/Pair/USA", + "World/South Africa/ZAF", + "World/Persian Gulf", + "World/Latam", + "World/Europe", + "World/Persian Gulf", + "World/Asia", + "World/Latam", + "World/Latam", + "World/Pair", + "World/South Africa", + "World/Latam", + "World/Latam", + "World/Europe", + "World/North Africa", + "World/North Africa", + "World/Europe", + "World/Europe", + "World/Europe", + "World/South Africa", + "World/Europe", + "World/Europe", + "World/Asia", + "World/Asia", + "World/Persian Gulf", + "World/North Africa", + "World/Asia", + "World/South Africa", + "World/North Africa", + "World/Latam", + "World/South Africa", + "World/South Africa", + "World/Europe", + "World/Persian Gulf", + "World/Latam", + "World/Latam", + "World/Asia", + "World/Europe", + "World/Persian Gulf", + "World/Persian Gulf", + "World/South Africa", + "World/Europe", + "World/Asia", + "World/North Africa", + "World/Pair", + "World/Latam", + "World/Asia", + "World/Persian Gulf", + "World/South Africa", + "World", + "World", + "World", + "World", + "World", + "World", + "World", + "" + ], + "type": "treemap", + "values": [ + 0.8531021111589834, + 0.9960831758177524, + 0.9956171156600898, + 0.7534091311886247, + 0.999122807017544, + 0.872263164968203, + 0.897855261911528, + 0.999122807017544, + 0.8536839205362883, + 0.8975114391781058, + 0.8640740055556022, + 0.908313797791604, + 0.9891493795585866, + 0.766483106515241, + 0.9231736856070656, + 0.9602036241270692, + 0.9626281577206024, + 0.9457244866279326, + 0.9047503889161737, + 0.8269184820807403, + 0.8789838022165389, + 0.8800026263331926, + 0.957737379733654, + 0.999122807017544, + 0.9509004506686832, + 0.7562762148337596, + 0.8442479234380643, + 0.993779175279743, + 0.7763614794595731, + 0.8710617614475394, + 0.9636752136752136, + 0.8119647131227026, + 0.7805172292400586, + 0.9370415079706566, + 0.8701066680233348, + 0.8242647792818613, + 0.8238243435953362, + 0.9791710812316362, + 0.7554660388288974, + 0.8482458889462429, + 0.914656355102988, + 0.8458383400350413, + 0.92448876432027, + 0.8295449908182004, + 0.9773557492735576, + 0.9281390141743808, + 0.9093117324398052, + 0.7806171146277027, + 0.8726620562837514, + 0.9686137921250751, + 0.8257949554417174, + 0.7988538683378321, + 0.9506066908754583, + 0.992130773157018, + 0.992130773157018, + 0.8297391428809981, + 0.9981637899375688, + 0.9559378978139692, + 0.9725030984517492, + 0.9994500458295142, + 0.9674464520962212, + 0.9537877101584162, + 0.9973311596620504, + 0.9965191088563604, + 0.9588085805762212, + 0.9804758872197188, + 0.9761230584660866, + 0.9804758872197188, + 0.9815561030337692, + 0.9979840393589112, + 0.9327029435145744, + 0.9855664265688792, + 0.9965191088563604, + 0.990099472619818, + 0.995055254321861, + 0.8099484766436214, + 0.9906701465266744, + 0.931003010693105, + 0.983380118113322, + 0.9892105958643824, + 0.9957870470931044, + 0.9654908347220116, + 0.9987789987789988, + 0.987752121170142, + 0.9645628577173472, + 0.9994500458295142, + 0.94949459763166, + 0.9746742674843129, + 0.9965191088563604, + 0.9899402366995218, + 0.987752121170142, + 0.9987169080982063, + 0.9987169080982063, + 0.9985113511553524, + 0.9987169080982063, + 0.9632178831505792, + 0.9892105958643824, + 0.9537877101584162, + 0.9444982054870336, + 0.8409895539377414, + 0.9935457940810306, + 0.9402260743372878, + 0.9725030984517492, + 0.9994500458295142, + 0.9022126610505616, + 0.9552208996034384, + 0.9963384890035256, + 0.987752121170142, + 0.9133941210450608, + 0.9444982054870336, + 0.960245535909425, + 0.9790238683337896, + 0.9094946702782724, + 0.920417502503307, + 0.9384151778567814, + 0.963122674479988, + 0.992130773157018, + 0.7576460378790729, + 0.9455819726942684, + 0.987752121170142, + 0.968168023170972, + 0.9133941210450608, + 0.8731664917240823, + 0.9746742674843129, + 0.9833831528957327, + 0.8527482577723561, + 0.9964422727546304, + 0.9746742674843129, + 0.9797497432807476, + 0.9987169080982063, + 0.948780020349246, + 0.960245535909425, + 0.9036065776616928, + 0.926761544632836, + 0.9660041169227584, + 0.9710569973901052, + 0.9979840393589112, + 0.9947945803202288, + 0.9987169080982063, + 0.9411662012310432, + 0.9395149939510422, + 0.9612865740616352, + 0.9104377104377104, + 0.8466632549513022, + 0.965460306668771, + 0.9991930603515944, + 0.7661643396391405, + 0.8993946860474129, + 0.9987169080982063, + 0.8053363980490009, + 0.8802332979851536, + 0.9951653583795466, + 0.8038391193200113, + 0.8486048045950245, + 0.9280303030303032, + 0.7681025602181487, + 0.8667078642628765, + 0.8561382296156173, + 0.9288810671989122, + 0.9927523497097036, + 0.975268289884998, + 0.9652833528240462, + 0.8533855094586799, + 0.9552208996034384, + 0.9383191940615055, + 0.9334429906542056, + 0.906974409725021, + 0.872086805029541, + 0.9775003787304952, + 0.9866063032322202, + 0.941241325810687, + 0.9394303111483416, + 0.9755497899678774, + 0.9757801848204816, + 0.97062869262233, + 0.798490964605047, + 0.9022126610505616, + 0.9410307160918406, + 0.9994500458295142, + 0.9434119359795824, + 0.9987169080982063, + 0.805678624440212, + 0.7609962981315767, + 0.8417508417508417, + 0.9573727012110692, + 0.9833831528957327, + 0.8473209929380159, + 0.9946751263076096, + 0.9580905063976388, + 0.9638426316026611, + 0.9987169080982063, + 0.9015161062330156, + 0.9703343503473024, + 0.9987789987789988, + 0.9826559329887096, + 0.8594361209082695, + 0.9516399434309798, + 0.920417502503307, + 0.9423609294481023, + 0.968168023170972, + 0.9957870470931044, + 0.94521116881737, + 0.9694172098634408, + 0.9466379024540816, + 0.995055254321861, + 0.9879041307837876, + 0.9833831528957327, + 0.9333963910884244, + 0.9899402366995218, + 0.8869505922195406, + 0.9203611665699089, + 0.9884812240212558, + 0.9588085805762212, + 0.9214805336789016, + 0.9881107335844111, + 0.9236131934032984, + 0.9812023001507028, + 0.8379122722898551, + 0.9523555966814456, + 0.9248788062414784, + 0.8139160327981961, + 0.937383366744383, + 0.94521116881737, + 0.9768478574449928, + 0.9972514396116292, + 0.9933098124967774, + 0.9991101223581756, + 0.9286467697656632, + 0.919010674275554, + 0.9473516727604566, + 0.9459244011397192, + 0.907679698406929, + 0.9012628558280068, + 0.923234386862968, + 0.9345449630236856, + 0.9965224965914254, + 0.9537877101584162, + 0.9105923002381252, + 0.9964912280701756, + 0.9732265524705908, + 0.948780020349246, + 0.9833831528957327, + 0.923234386862968, + 0.9717799134249206, + 0.9001238035739624, + 0.8238720996776803, + 0.9369854844016412, + 0.9338360345735434, + 0.986111412381384, + 0.9689798997219612, + 0.9935924757554138, + 0.7605829143427332, + 0.9660041169227584, + 0.9211213201052028, + 0.917590135458235, + 0.9870232873110416, + 0.8507175025705549, + 0.9481552134363872, + 0.9964912280701756, + 0.9553309445702832, + 0.9403778017040136, + 0.9696119722965126, + 0.9725030984517492, + 0.9480657120588448, + 0.9480657120588448, + 0.8911000630113791, + 0.9008198204074828, + 0.9739502754814452, + 0.992130773157018, + 0.9940520578006032, + 0.9979840393589112, + 0.9871951628595732, + 0.9050015702408756, + 0.7835109416675496, + 0.9993324432576768, + 0.7596801346801346, + 0.9906701465266744, + 0.9480657120588448, + 0.8159024043178598, + 0.7811662552209668, + 0.8197944468080158, + 0.9848383996858172, + 0.9221336649411492, + 0.8994280557324552, + 0.7868192556366049, + 0.8020486431706627, + 0.8608954878607268, + 0.9309395848776872, + 0.8507175025705549, + 0.9280303030303032, + 0.934334074623178, + 0.8656659267144711, + 0.7814049860815457, + 0.819882410141537, + 0.9043039394552778, + 0.7905837844375335, + 0.9809244351623316, + 0.7920033670033668, + 0.9476817042606516, + 0.9732265524705908, + 0.999014778325123, + 0.8814330280498146, + 0.8106107934390159, + 0.9859927106498642, + 0.843965803045393, + 0.7596801346801346, + 0.8513250555967384, + 0.8046783090893074, + 0.8073122788801593, + 0.9239392804329156, + 0.97062869262233, + 0.9464820597794912, + 0.8731889608367804, + 0.819882410141537, + 0.9189961343104286, + 0.8073122788801593, + 0.941972584550496, + 0.9545041703849207, + 0.8766192814819845, + 0.9739502754814452, + 0.9331273751154144, + 0.8493650107294191, + 0.9873818298349624, + 0.9964912280701756, + 0.895536084777682, + 0.9773557492735576, + 0.8385429638854297, + 0.8492357350911255, + 0.992105287563838, + 0.9991101224022378, + 0.7779288650281017, + 0.8958436239049175, + 0.9954545454545456, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8178037731982906, + 0.9416562889165628, + 0.936963017728694, + 0.8442717785843921, + 0.7686035765445222, + 0.7867084930870223, + 0.992671182389769, + 0.9848040830545792, + 0.951008471157725, + 0.8630706569122704, + 0.9026819923371648, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8474662292253902, + 0.8979659609796596, + 0.999777530589544, + 0.940760842211224, + 0.78115400581154, + 0.9240556247405564, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.7593325960761084, + 0.9413092648977816, + 0.999122807017544, + 0.9505705348293196, + 0.9416562889165628, + 0.9271888077994948, + 0.8673029726406383, + 0.9731456263408548, + 0.7813852813852814, + 0.7822341892305151, + 0.9364502164502164, + 0.8679516484927489, + 0.8857699681136173, + 0.7714560308712177, + 0.8584751140436623, + 0.8985904473621558, + 0.8190486045187013, + 0.7893527624833871, + 0.8919696969696971, + 0.8818618218586448, + 0.756628065305478, + 0.7882882882882881, + 0.950300482513086, + 0.8657481566722074, + 0.9365262267264388, + 0.943947221044588, + 0.8874585152838429, + 0.7714763488785487, + 0.9214972959512142, + 0.909072064464046, + 0.7715736896162307, + 0.9290762303990062, + 0.8550758611268748, + 0.7761808341851455, + 0.9819054691235874, + 0.7957985346108523, + 0.9657498873425368, + 0.9364502164502164, + 0.8516827062939479, + 0.9754181770220984, + 0.9731874212360307, + 0.8135371179039302, + 0.8727427378014051, + 0.848344463643581, + 0.8895327800940938, + 0.7627248531396743, + 0.7582569516718275, + 0.7709571931840407, + 0.8921633972095838, + 0.9321707396546104, + 0.8986401163657464, + 0.7580471889891207, + 0.9369652591790606, + 0.8679796630864033, + 0.9098066660834572, + 0.980489676524778, + 0.927246096495326, + 0.9018122770586844, + 0.8810674463937621, + 0.8400216450216451, + 0.7689831576535288, + 0.7729944320019908, + 0.8837147279244052, + 0.8811496483778261, + 0.9563110356768192, + 0.983927829355058, + 0.9839066269313416, + 0.7583206652119362, + 0.7925815424300344, + 0.8317161572052402, + 0.7744952514390555, + 0.9360718475073312, + 0.96130346341869, + 0.7958679833679831, + 0.7906981399616313, + 0.8413581378299119, + 0.9203347173341052, + 0.8430006636564963, + 0.9727275146860328, + 0.8287881529651736, + 0.8315151515151515, + 0.8537205081669691, + 0.8093402654155926, + 0.8962455479058957, + 0.8056050278017189, + 0.8210295170320835, + 0.8039070101933913, + 0.8039838558691283, + 0.7826760060360987, + 0.9269812868749552, + 0.794976794976795, + 0.8900713624983871, + 0.9133288665033964, + 0.810208371742399, + 0.7896057754229845, + 0.923877773549558, + 0.9296009475992656, + 0.8950805293005671, + 0.8085490374609781, + 0.9819008264462812, + 0.8587224361306279, + 0.7739174537660428, + 0.7862254487513007, + 0.8193724468472356, + 0.8893524283935244, + 0.997064221767242, + 0.7952666762372825, + 0.9020216682958616, + 0.9983501374885428, + 0.8831534562926947, + 0.8860521920074892, + 0.7872481572481572, + 0.9226825090266608, + 0.7803152709359606, + 0.9122593875476056, + 0.8775850757693318, + 0.9799040094031604, + 0.8206267324852857, + 0.8177880557075959, + 0.9576966355531912, + 0.9220659824046918, + 0.797922077922078, + 0.7896320346320347, + 0.8632950463543738, + 0.9492492880197456, + 0.8832034632034632, + 0.8047193670665553, + 0.9956521739130436, + 0.7685862920068351, + 0.8475960459042418, + 0.9795419233757146, + 0.8269899956502829, + 0.7884382884382883, + 0.8207547087216158, + 0.9545454545454548, + 0.8429554406857294, + 0.8993321115511173, + 0.7984889287851586, + 0.761374210879955, + 0.8305523603886545, + 0.7718491195125222, + 0.980407916624232, + 0.950300482513086, + 0.8240213521788207, + 0.8952485002194801, + 0.9038846565773924, + 0.7965911235687182, + 0.8955324322950189, + 0.7910020962422152, + 0.9427138643067844, + 0.826115183440325, + 0.8573048573048573, + 0.7936317271895962, + 0.9007792207792208, + 0.854365955487306, + 0.9456364522650812, + 0.997982406795966, + 0.8774985212108586, + 0.9977822580645164, + 0.8221159804806326, + 0.9077567136073358, + 0.8205465606720966, + 0.8626119406890994, + 0.7556531232200494, + 0.7862587810898044, + 0.8404814885133853, + 0.8206267324852857, + 0.992492576897818, + 0.9526883899349432, + 0.8172714912841496, + 0.942686481353632, + 0.9073962406670544, + 0.793330615828421, + 0.9250332915366596, + 0.7896320346320347, + 0.9844717839591371, + 0.7676353790613719, + 0.9020216682958616, + 0.8820943870496513, + 0.9628828555154738, + 0.9505406805522968, + 0.7685960591133003, + 0.952282255405342, + 0.9961515326042576, + 0.8792822185970635, + 0.917989916458992, + 0.7624864249098159, + 0.8475960459042418, + 0.9795419233757146, + 0.8269899956502829, + 0.7884382884382883, + 0.8207547087216158, + 0.9545454545454548, + 0.8429554406857294, + 0.8993321115511173, + 0.7834739702517162, + 0.761374210879955, + 0.8305523603886545, + 0.7811065974284784, + 0.980407916624232, + 0.950300482513086, + 0.8240213521788207, + 0.8952485002194801, + 0.9038846565773924, + 0.798508237019148, + 0.8955324322950189, + 0.7839982383292353, + 0.9427138643067844, + 0.8245984899369047, + 0.8573048573048573, + 0.8243136284936928, + 0.8553134080531342, + 0.8473904773631097, + 0.9982456140350876, + 0.9590236663403416, + 0.9014436252397446, + 0.8327140244007301, + 0.8669485569807114, + 0.7949843218068803, + 0.903497324397646, + 0.9416562889165628, + 0.7707143966920784, + 0.855320123139272, + 0.7774854369415835, + 0.8503120994598766, + 0.926867994896457, + 0.8667552028246747, + 0.8775319334595817, + 0.901968773482508, + 0.935627556261994, + 0.9050659282343974, + 0.861924622573884, + 0.9675940297571454, + 0.9116934339203904, + 0.9072582435684412, + 0.9237413014402296, + 0.9238605624457716, + 0.8365273593813229, + 0.8893524283935244, + 0.9102500533059372, + 0.8349825924909351, + 0.8784817670545184, + 0.9947399253846392, + 0.8930927589221841, + 0.8055002075550022, + 0.8605298779944784, + 0.9775071835696456, + 0.9505926587353696, + 0.7588336685332704, + 0.8428335962794538, + 0.9238783245212608, + 0.8585749771698774, + 0.8765915866073056, + 0.9822182852411184, + 0.9533886386596292, + 0.8440336134453781, + 0.7834747760490336, + 0.924617649948652, + 0.9395524842975836, + 0.9389258424390616, + 0.9550800035134204, + 0.7946561709764254, + 0.9558099289684048, + 0.8428529645259684, + 0.7972573636925488, + 0.9379369101877942, + 0.8553636363636363, + 0.8995050491578672, + 0.9706054674756964, + 0.7736264668325739, + 0.9622333213753728, + 0.8220723881235561, + 0.8256741778557297, + 0.8127858031447691, + 0.7817740006858703, + 0.7968179052727826, + 0.8018268268268267, + 0.9281390141743808, + 0.9400806090461262, + 0.8107701860758095, + 0.8909257783846486, + 0.8991789819376025, + 0.8738739499371329, + 0.9781810760439292, + 0.8591088340319827, + 0.9192322609917452, + 0.8578880235734736, + 0.927227398337575, + 0.8549844211383769, + 0.9954545454545456, + 0.7996032354193273, + 0.7663762728169506, + 0.8072044088993242, + 0.9545454545454548, + 0.9222946747399472, + 0.8012891170808603, + 0.9007792207792208, + 0.761725650275299, + 0.9189132122341253, + 0.7700791802515137, + 0.7905809884612046, + 0.9364502164502164, + 0.9272003238960064, + 0.9520381744611566, + 0.7670786695244899, + 0.8558592375366568, + 0.833174972830306, + 0.9256214544793848, + 0.8228255528255527, + 0.8485714285714286, + 0.9702872224809812, + 0.7517555862267378, + 0.7565364592835856, + 0.7612860365462938, + 0.987527533398501, + 0.955555772482297, + 0.7996032354193273, + 0.7663762728169506, + 0.8072044088993242, + 0.9545454545454548, + 0.9222946747399472, + 0.8012891170808603, + 0.9007792207792208, + 0.761725650275299, + 0.9189132122341253, + 0.7700791802515137, + 0.7905809884612046, + 0.9364502164502164, + 0.933977462236232, + 0.9520381744611566, + 0.7670786695244899, + 0.8558592375366568, + 0.833174972830306, + 0.9256214544793848, + 0.8228255528255527, + 0.8485714285714286, + 0.9702872224809812, + 0.7517555862267378, + 0.7565364592835856, + 0.7612860365462938, + 0.987527533398501, + 0.955555772482297, + 0.9364502164502164, + 0.8358612257146861, + 0.8590707598082956, + 0.8832034632034632, + 0.833174972830306, + 0.8630005695842037, + 0.984461621950468, + 0.892391114486425, + 0.9897824784878032, + 0.8085316277505704, + 0.919319387113138, + 0.7940051262578318, + 0.780089044997152, + 0.9222946747399472, + 0.8363949697251979, + 0.796839893191436, + 0.7794331008589289, + 0.9859234217934404, + 0.9873000604890544, + 0.9486101335940044, + 0.9248539005931276, + 0.9517981773305488, + 0.8708608667318343, + 0.8623785126533147, + 0.9299160466862332, + 0.9545454545454548, + 0.8796487671810186, + 0.9772426641825802, + 0.7524584849903713, + 0.807857176503839, + 0.90727093221948, + 0.9971775822743564, + 0.7739306525397351, + 0.9847748699555192, + 0.7535520524804752, + 1, + 0.8551111044973793, + 0.9256631478531152, + 0.989570259523299, + 0.7687418116400186, + 0.9641837718077296, + 0.7942756598240468, + 0.8294322792944963, + 0.9215082393282026, + 0.9054494643688868, + 0.8530098192637454, + 0.9025093300004408, + 0.992492576897818, + 0.9598649249543808, + 0.8332737181503951, + 0.9529394346692732, + 0.8214507035663541, + 0.9309630572047876, + 0.7830101580101579, + 0.9732801304295486, + 0.9004189790402766, + 0.9446639459426616, + 0.9036078185699322, + 0.97145319916461, + 0.9609332238642584, + 0.7899791515690191, + 0.7611733870967741, + 0.863207096556374, + 0.9415725119950472, + 0.9939556858911696, + 0.783163286086673, + 0.9977977617253442, + 0.8662090859332238, + 0.8955509185594555, + 0.9764731504349176, + 0.7530954708374062, + 0.7828061257738677, + 0.8462219807137138, + 0.8842041598248496, + 0.915537959944108, + 0.7865763787648619, + 0.7856202453035243, + 0.903206652230566, + 0.989570259523299, + 0.7882882882882881, + 0.9483953947649668, + 0.9364334975369458, + 0.9056925711224626, + 0.7591535837096157, + 0.8418627955566074, + 0.7573046594982078, + 0.880681818181818, + 0.8409090909090907, + 0.8067970481260611, + 0.7826760060360987, + 0.7688448083650483, + 0.8584408270788305, + 0.8956871084108602, + 0.913923675716727, + 0.9910308796338216, + 0.9590266687613186, + 0.7872481572481572, + 0.8646083304603533, + 0.9939410487486168, + 0.8340069434398959, + 0.982598363716604, + 0.9106424097900996, + 0.8008517246406788, + 0.8727928390787971, + 0.7681285613827205, + 0.8812869326621476, + 0.928402586493192, + 0.8532026469355432, + 0.8994624945374701, + 0.9440584784614404, + 0.9003302615524813, + 0.8228255528255527, + 0.9795723406491688, + 0.866515864516721, + 0.955439293598234, + 0.8529365775827682, + 0.934359451290398, + 0.8332769785018068, + 0.9365108715713024, + 0.877525810880078, + 0.9692015664722224, + 0.8409090909090907, + 0.940544771679814, + 0.923587693351357, + 0.7954434590943897, + 0.991568586771984, + 0.7612354435027383, + 0.937924041385235, + 0.8376851905173242, + 0.8927174779953234, + 0.7909951819239077, + 0.8443928295282409, + 0.8202350197681522, + 0.9660981642663024, + 0.8152462729809101, + 0.922004885973844, + 0.7639604667778042, + 0.7872481572481572, + 0.9000298090512994, + 0.801471285082847, + 0.8228255528255527, + 0.8498088450201552, + 0.7879169357174486, + 0.8556523719936285, + 0.9755199210863276, + 0.8557823298777246, + 0.8293705854653899, + 0.8537505886046147, + 0.8046317312743457, + 0.8779697795654818, + 0.8749239196591598, + 0.8555086871328603, + 0.9225963809255304, + 0.9678016420122256, + 0.9415762523485668, + 0.8057522792271018, + 0.8959576525733801, + 0.9001590894975677, + 0.767145966241361, + 0.8489857866410284, + 0.9644777226717816, + 0.9098253673621896, + 0.8791269994277514, + 0.8664155045733993, + 0.8498893415734232, + 0.947101370798582, + 0.8538593322386425, + 0.8042480240124439, + 0.8931085516844227, + 0.8808798536293945, + 0.7934170900130808, + 0.9012551319648092, + 0.9348648660475504, + 0.8291496315254414, + 0.8722929363621342, + 0.911251618573038, + 0.9109734587383088, + 0.9170938628158845, + 0.7650216450216449, + 0.8491510263929618, + 0.797922077922078, + 0.9976169999054124, + 0.9935999513470776, + 0.8049044578239981, + 0.836149001293594, + 0.9772426641825802, + 0.7947818492500476, + 0.774258455570617, + 0.8948565585013833, + 0.96130346341869, + 0.7882882882882881, + 0.9031253085247768, + 0.7502958618442489, + 0.9074753238868364, + 0.9391271623435224, + 0.7795953486477679, + 0.8889322557418088, + 0.8774400397180557, + 0.9117791157331387, + 0.9837385506159468, + 0.7764964848815781, + 0.763706420963152, + 0.982244407057744, + 0.982258229908174, + 0.8665750946042498, + 0.7595972992524718, + 0.7801043792183331, + 0.905255061999686, + 0.8220123627076744, + 0.8030465628225143, + 0.9789271593959374, + 0.7848592675970836, + 0.78340962656552, + 0.9151319857390936, + 0.8905339474233814, + 0.8105036440440168, + 0.8827179393030227, + 0.9303783215638728, + 0.9188270726931116, + 0.9157320003100056, + 0.9358530842881808, + 0.7937577290427827, + 0.9414073611117948, + 0.8901453226576379, + 0.8602487024132297, + 0.7556614611768913, + 0.9600221996115068, + 0.7680433097131316, + 0.8925061445921794, + 0.9773557492735576, + 0.8013333235492676, + 0.7689202564616309, + 0.8185297955632883, + 0.7566698570378732, + 0.7828314585807773, + 0.8694189151801023, + 0.8065343721704722, + 0.9807788363703636, + 0.8356411205726274, + 0.8778270939877454, + 0.8142980219813144, + 0.9079854938491076, + 0.8369284370856844, + 0.8951910290953499, + 0.8385429638854297, + 0.9335217836825552, + 0.8814450312694764, + 0.8433770449321196, + 0.9773557492735576, + 0.8751169590643275, + 0.7872836439659993, + 0.8460813462362223, + 0.9068505777317312, + 0.974712351554919, + 0.8582253898196657, + 0.7694393172704596, + 0.9593583027873251, + 0.7791177041387707, + 0.8285988264418827, + 0.9708841861711646, + 0.8292663783394395, + 0.8455377025736512, + 0.7849537714203622, + 0.7591712665406428, + 0.8668958338409165, + 0.8033611495393502, + 0.7791177041387707, + 0.7800515724165504, + 0.8797549464963943, + 0.9913485744394356, + 0.9893735932410646, + 0.8883723399394137, + 0.8371159751352831, + 0.8604416000492892, + 0.9391164837414664, + 0.9875732201051683, + 0.8696289027548957, + 0.9116740607637536, + 0.9335682269765724, + 0.8903543205412945, + 0.8274478901761246, + 0.8184361507912837, + 0.8985858297326429, + 0.8811309071018276, + 0.9600766541682176, + 0.9142379797053092, + 0.8539724989309248, + 0.9209665616774528, + 0.7653056658292261, + 0.9409789458067938, + 0.9813761990559404, + 0.937050978278692, + 0.8764803941254208, + 0.9622333213753728, + 0.8137991281050442, + 0.9349229298096128, + 0.9954545454545456, + 0.8383046372479713, + 0.8091752787787085, + 0.8992810605226834, + 0.8526177936134408, + 0.7653579292773433, + 0.916749204599586, + 0.8841900402810652, + 0.8889595044710776, + 0.8674196841123456, + 0.9890311615492476, + 0.9817061821644611, + 0.9631360021073514, + 0.9146441554557286, + 0.9372227566431792, + 0.8277684278026405, + 0.8085158042512651, + 0.8164472422898458, + 0.9476735033728184, + 0.9195597006085118, + 0.9400644385653472, + 0.8518992260665973, + 0.9457607069255074, + 0.8059692352029971, + 0.8496241912512923, + 0.8197634340126408, + 0.9579224065577792, + 0.860861247637051, + 0.9529052383428788, + 0.9845238804935112, + 0.9083435256044582, + 0.8553134080531342, + 0.7923275652679538, + 0.7819131922573496, + 0.7906170310433895, + 0.8406484670606788, + 0.7894736842105264, + 0.8681498428014106, + 0.8408063572139095, + 0.7738548847622624, + 0.8107066154287429, + 0.909636086500905, + 0.9320839327803117, + 0.894689054121916, + 0.8861995746607623, + 0.8134896030245747, + 0.9636363636363636, + 0.8392276737347159, + 0.901982337361457, + 0.8985728391457872, + 0.7921837072845759, + 0.781322126609299, + 0.9194369973190348, + 0.8490800833801486, + 0.9929855448480356, + 0.9990150209905604, + 0.7707081956166205, + 0.8952232922255726, + 1, + 0.8129887361537077, + 0.9000234404536862, + 0.998221036598569, + 0.8017888630248555, + 0.8075842215036355, + 0.9208092958092956, + 0.7606873345935727, + 0.7928741020793951, + 0.9344444444444444, + 0.8580430671412884, + 0.8053911900065747, + 0.9025957850286672, + 0.992671182389769, + 0.9682695039010508, + 0.951299790877642, + 0.9060155127964962, + 0.9527305856232412, + 0.9434321361058602, + 0.9565966865742668, + 0.943947221044588, + 0.8705701323251417, + 0.9652200677131424, + 0.9884853681548044, + 0.9357441792403746, + 0.9414868925909092, + 0.9505847966970496, + 0.9565269894940224, + 0.9514804555247768, + 0.7993113894954217, + 0.760960813749392, + 0.8859552362571937, + 0.9413092648977816, + 1, + 0.8182545315351611, + 2, + 0.9136739322359624, + 0.7679975248125409, + 0.9492028179458656, + 0.9839615421047646, + 0.9954545454545456, + 0.9954545454545456, + 0.8398210820058982, + 0.8626784395302913, + 0.9781810760439292, + 0.7758485551227942, + 0.7830044520223548, + 0.7890565881306622, + 0.7666456034744639, + 0.8730814336484439, + 0.8997733824632729, + 0.9780525030525028, + 0.9501767000609233, + 0.9341770866436075, + 0.7890266466291772, + 0.931285458781014, + 0.9135836385836384, + 0.8161327222259138, + 0.8595055413469735, + 0.8885272049623901, + 0.8850443888003645, + 0.9111695674516778, + 0.8969355419044592, + 0.9369652591790606, + 0.9474196440005122, + 0.9540293886604132, + 0.7751893805092812, + 0.884220727546821, + 0.9248167539267018, + 0.9416562889165628, + 0.9947833674785644, + 0.8179413224638157, + 0.963749256395003, + 0.9894860390412652, + 0.7661643396391405, + 0.8822836096135876, + 0.9987169080982063, + 0.8212112306855328, + 0.8510831692167852, + 0.9674464520962212, + 0.8140738302718742, + 0.9084937590490596, + 0.8588550489464593, + 0.9132111582886344, + 0.9652833528240462, + 0.8704495461768502, + 0.908214664444781, + 0.8330370179351025, + 0.8542414865764498, + 0.951833769945225, + 0.9369276682149368, + 0.9172096473904444, + 0.7660118606375093, + 0.8049385749385748, + 0.819882410141537, + 0.9479738077588338, + 0.8453139910143218, + 0.9957870470931044, + 0.8350845205706391, + 0.7568829071309779, + 0.8003212087852895, + 0.7757575757575756, + 0.9818181818181816, + 0.8296247866194635, + 0.8397480840731469, + 0.8084175084175084, + 0.8224948407969243, + 0.7604961330297303, + 0.8801077325173712, + 0.769382100421295, + 0.8025699565810901, + 0.792519283483139, + 0.932353379320096, + 0.94491648331435, + 0.8001582377938935, + 0.7832517257911142, + 0.8082508107205724, + 0.7628286200410923, + 0.7621748136686876, + 0.9364192202560784, + 0.76909130219916, + 0.8585000323687447, + 0.9150177303560064, + 0.8405722943067688, + 0.904913008013858, + 0.917314235445159, + 0.9929855448480356, + 0.8268991218112046, + 0.8398859728050183, + 0.996521739130435, + 0.8330381744436689, + 0.8550497957993816, + 0.9913111768722972, + 0.8557422839635942, + 0.8935463671803986, + 0.9006445563787115, + 0.8921379258150505, + 0.9000168618023969, + 0.7589099863492517, + 0.923526237747262, + 0.9028882720019862, + 0.9170617535185012, + 0.9807828100228472, + 0.939548148620228, + 0.9363191484705866, + 0.8321093615368212, + 0.8571281012005368, + 0.8384981048972464, + 0.9086443302842008, + 0.8871943647917209, + 0.8878997468865361, + 0.8999564578859198, + 0.9894860390412652, + 0.9134801839907836, + 0.8586028659246839, + 0.9532628651995616, + 0.8991005792297246, + 0.9248167539267018, + 0.8647701376567242, + 0.9063380676482872, + 0.9006445563787115, + 0.9964912280701756, + 0.9104377104377104, + 0.9861142727065788, + 0.8766608932307983, + 0.9228068405104872, + 0.945216049382716, + 0.8722881394418279, + 0.8287614081607514, + 0.9364502164502164, + 0.9107716613157442, + 0.7558233373684017, + 0.9637205387205386, + 0.911011004178706, + 0.8250190694126619, + 0.7745592680619332, + 0.9563893487499426, + 0.8643469043976432, + 0.8938717567128639, + 0.8935795415901516, + 0.909090909090909, + 0.8890241171514016, + 0.8412491105292438, + 0.8993946860474129, + 0.9779240761641758, + 0.8448498489942446, + 0.9637205387205386, + 0.8307739463601532, + 0.7840680498436611, + 0.9234588281480026, + 0.7533766040551628, + 0.8411108025383495, + 0.8186320718389478, + 0.7507073140597975, + 0.8665855131372373, + 0.8141166099294751, + 0.846517863969504, + 0.8674324881574892, + 0.894897491091307, + 0.926797128906551, + 0.8002254756609835, + 0.8899568476668683, + 0.8050891517303731, + 0.7551272091668285, + 0.9170723522722332, + 0.8862820694208641, + 0.7731935891169761, + 0.8527968471904399, + 0.8545871559633028, + 0.973043266390798, + 0.9110701550899905, + 0.8806793706489482, + 0.9750233018591332, + 0.8832528651475978, + 0.9637205387205386, + 0.8045977011494252, + 0.7840680498436611, + 0.9718089459310836, + 0.7632159853061835, + 0.8411108025383495, + 0.8186320718389478, + 0.8665855131372373, + 0.8141166099294751, + 0.846517863969504, + 0.8674324881574892, + 0.8941741955127749, + 0.8055806456563269, + 0.9200506754154923, + 0.8002254756609835, + 0.8055002075550022, + 0.8899568476668683, + 0.8050891517303731, + 0.7551272091668285, + 0.9170723522722332, + 0.8862820694208641, + 0.7643684665873062, + 0.8962930952966316, + 0.8545871559633028, + 0.973043266390798, + 0.8391999316061071, + 0.9106199738197148, + 0.8336184977583576, + 0.9825055596738328, + 0.8275801175590107, + 0.8536656603794738, + 0.9947833674785644, + 0.8871943647917209, + 0.9947833674785644, + 0.8474509259804291, + 0.8970952216775002, + 0.9064029668710988, + 0.8689528166230794, + 0.8668563557933111, + 0.9192140588692024, + 0.8446191193563313, + 0.9070510179197604, + 0.9569231352909934, + 0.9360907526607608, + 0.9363191484705866, + 0.7585150816808764, + 0.8079450438253487, + 0.889311351984684, + 0.9157961667726408, + 0.8495199813878912, + 0.9008127437155956, + 0.9894860390412652, + 0.9084777593712244, + 0.8247288683081853, + 0.9554572159761404, + 0.8803742636840192, + 0.8617666872995883, + 0.9141959372906489, + 0.9034890695907856, + 0.8086181910936574, + 0.9964912280701756, + 0.9859927106498642, + 0.9106199738197148, + 0.7805873465692333, + 0.8878997468865361, + 0.9016573566020094, + 0.996521739130435, + 0.8072721768598793, + 0.8440081063581091, + 0.996521739130435, + 0.8612922801795058, + 0.8405722943067688, + 0.9620426435996664, + 0.8550497957993816, + 0.8140134601423378, + 0.8065264393377811, + 0.8107867382196149, + 0.8640740055556022, + 0.8801559604997238, + 0.7852248168921702, + 0.8640589559565321, + 0.7885457047794436, + 0.8947102177469851, + 0.9459249756326832, + 0.9206503306171988, + 0.8390959753949685, + 0.8829679585824524, + 0.8550497957993816, + 0.9034890695907856, + 0.996521739130435, + 0.8773484472624222, + 0.8453843932985197, + 0.9372480427854252, + 0.7528181818181817, + 0.9513991845811716, + 0.8133380704513155, + 0.8550497957993816, + 0.8822645386075115, + 0.9964912280701756, + 0.984385006449655, + 0.8868917142282169, + 0.8515915595209063, + 0.780155436063497, + 0.985677698237539, + 0.8248130810601166, + 0.8900224404233377, + 0.9847846012832264, + 0.8665750946042498, + 0.8066554677866482, + 0.9191871761989552, + 0.8436840954545581, + 0.863729744412587, + 0.8256985978203084, + 0.8998085943818406, + 0.8162326248169407, + 0.9119926726575672, + 0.9789271593959374, + 0.9477427513951896, + 0.9452267008277976, + 0.880636467189412, + 0.8867623702302507, + 0.808133830455259, + 0.9714444301275637, + 0.9847846012832264, + 0.9286461770540784, + 0.9203870504644208, + 0.941002197457228, + 0.9704634209196064, + 0.8113283188178101, + 0.7634010982542299, + 0.8902061446452669, + 0.9354771486059212, + 0.9847846012832264, + 0.7809840281171203, + 0.9894860390412652, + 0.8185297955632883, + 0.8802332979851536, + 0.9723196833760274, + 0.9982608695652172, + 0.8258211640188051, + 0.9080000797822108, + 0.9964912280701756, + 0.839409582008935, + 0.8941141728869741, + 0.7725808179227283, + 0.802818872575447, + 0.8251527896182628, + 0.8315151515151515, + 0.817899229361741, + 0.7620751217250175, + 0.8246468823065851, + 0.8720941750410174, + 0.9294859277773438, + 0.9927523497097036, + 0.9828742809481747, + 0.9543209471735604, + 0.8753860783148016, + 0.939845912034176, + 0.9151374298073564, + 0.9378841050418828, + 0.939845912034176, + 0.7510938991373108, + 0.8610822831727207, + 0.8417508417508417, + 0.8698065557551617, + 0.9372803249238462, + 0.9790245861131704, + 0.9300633742947678, + 0.8054841390869845, + 0.7589199371000429, + 0.8966399030449931, + 0.8974694288349275, + 0.9926781739019452, + 0.8458809671812187, + 0.7712684989429177, + 0.7976314145122237, + 0.9416437009068946, + 0.9947856385396152, + 0.7862727272727271, + 0.8586700336700335, + 0.9303687863484544, + 0.8675319709415152, + 0.7920446151287672, + 0.8694866227116197, + 0.8586700336700335, + 0.7834335706711103, + 0.7921764122864366, + 0.934334074623178, + 0.8619283887468031, + 0.7676281237741422, + 0.7631048593350384, + 0.9925507389082384, + 0.978469168274726, + 0.7500718937727315, + 0.8846977863333716, + 0.9378841050418828, + 0.8684059865492091, + 0.8950764254021453, + 0.7740137221269299, + 0.8084175084175084, + 0.8843935880633129, + 0.7975398606698341, + 0.8485069801940157, + 0.7694545454545454, + 0.9679847507357018, + 0.7697689156812738, + 0.7685979300090726, + 0.9457912457912456, + 0.7920033670033668, + 0.81753438081967, + 0.9637205387205386, + 0.8196988466882366, + 0.8876132688068014, + 0.9992667277726852, + 0.813403640566796, + 0.924902134017138, + 0.8505352830088105, + 0.7966210086663266, + 0.8107701860758095, + 0.7920033670033668, + 0.8396249227545072, + 0.7665777912437509, + 0.9309395848776872, + 0.8562069694591002, + 0.8351865579441562, + 0.7614932582627626, + 0.9217240750865684, + 0.9927523497097036, + 0.9824776408025137, + 0.9261759464210148, + 0.8795946591645603, + 0.9517275376077332, + 0.8343766589132309, + 0.9378841050418828, + 0.939845912034176, + 0.8426835486603141, + 0.8084175084175084, + 0.825, + 0.9279912144543816, + 0.9380615545835612, + 0.954821445486407, + 0.8054841390869845, + 0.7644397158986019, + 0.7992420095977141, + 0.9046488352723072, + 0.8607131176664159, + 0.9425530200949088, + 0.9831998467809452, + 0.911913216712972, + 0.8106537530266346, + 0.8669221312020842, + 0.9668646925956867, + 0.9859927106498642, + 0.8221148524429848, + 0.8287744007907092, + 0.82603603526253, + 0.8081220122922833, + 0.9241691376328144, + 0.8905062719442627, + 0.9072244170820468, + 0.9697143291871126, + 0.9165806743803824, + 0.9299779576625526, + 0.8626009468114731, + 0.9129479515242416, + 0.9489917104460288, + 0.857590973901184, + 0.7832356477938764, + 0.8727427378014051, + 0.7882094994286453, + 0.8958486748165111, + 0.9755497899678774, + 0.8250670301619656, + 0.7636588119091295, + 0.8344665413033981, + 0.9956140350877192, + 0.7763975155279504, + 0.9842098239836105, + 0.8099989097144444, + 0.8954915979223954, + 0.9774655289026236, + 0.8046862811072518, + 0.8922196480686242, + 0.8757413004727584, + 0.875097886791886, + 0.9781962076503552, + 0.9571952337305224, + 0.8651037425957864, + 0.9276048900878148, + 0.8334407352378117, + 0.7931151679937852, + 0.8060125046665569, + 0.9001590894975677, + 0.8984134418359582, + 0.9307180976298852, + 0.8949088289552438, + 0.9140478958381776, + 0.9195604324464296, + 0.8595611909902062, + 0.8168393183171508, + 0.826467375579422, + 0.94513113161729, + 0.9542466061552302, + 0.8949088289552438, + 0.9053910284366296, + 0.817437533227007, + 0.7978783990223038, + 0.7521903939726886, + 0.754943158980426, + 0.7928605555934748, + 0.8989607068123694, + 0.7975892455476461, + 0.7725199492096488, + 0.773030766193022, + 0.9767351231527428, + 0.9424631082284728, + 0.866898864682116, + 0.7899138991389913, + 0.9376349250962784, + 0.9303020409693342, + 0.8287563928270861, + 0.8603115680426934, + 0.8114732228923959, + 0.9669758970781992, + 0.8105976841695943, + 0.7959269589012261, + 0.8302139037433156, + 0.986986590623621, + 0.751078143739283, + 0.7653353783714458, + 0.8172644988912497, + 0.7803817180307603, + 0.8605730020712427, + 0.912175623606646, + 0.9956171156600898, + 0.8729948690203866, + 0.8364452091564932, + 0.8308541973619359, + 0.901193983595923, + 0.8421276190184838, + 0.8119707766428466, + 0.778036674438649, + 0.7873355614633314, + 0.7837805015771132, + 0.8219385637193856, + 0.8521396824062815, + 0.7718977095748231, + 0.8817091503055308, + 0.7708107321002571, + 0.7512636527567177, + 0.8438110321297421, + 0.9832058480308432, + 0.8890631162040309, + 0.8977160492573557, + 0.9859234217934404, + 0.8546502548557862, + 0.8668958338409165, + 0.9890311615492476, + 0.9350943180643898, + 0.9280169976669376, + 0.8210527935710153, + 0.7559911987169416, + 0.7736264668325739, + 0.863925779862748, + 0.8247230442973539, + 0.8806041934635603, + 0.8250833206612556, + 0.928723519908324, + 0.8668958338409165, + 0.8881896291715989, + 0.9593583027873251, + 0.9061435934718378, + 0.9211354224331691, + 0.8859445107741636, + 0.9398812902982936, + 0.8047278408758268, + 0.9223744981227122, + 0.9230788696114616, + 0.9536631479971994, + 0.9694396869310692, + 0.8131377716690428, + 0.8237517359346238, + 0.8173907278944466, + 0.8965017504270001, + 0.9219048551109622, + 0.9097417836628494, + 0.8553134080531342, + 0.9989920981077092, + 0.917451425335698, + 0.9683628785480636, + 0.7970900578406114, + 0.8376203239523712, + 0.9801024844208264, + 0.7557162849632164, + 0.8961803319477781, + 0.996336999414424, + 0.9196524296187878, + 0.8854275250970148, + 0.8283188405797101, + 0.8569170829836921, + 0.7593988263019269, + 0.8392807687593222, + 0.9868446526492484, + 0.7732691595705294, + 0.9521895754027828, + 0.9372227566431792, + 0.9200506754154923, + 0.917500751704446, + 0.8740937766410911, + 0.8518450184501843, + 0.7975089687046685, + 0.8722498962224989, + 0.8978908677866823, + 0.9773557492735576, + 0.891273307612777, + 0.8868080394461477, + 0.8826697225277056, + 0.9463791440512886, + 0.9521895754027828, + 0.8485714285714286, + 0.999122807017544, + 0.9265379339453412, + 0.789227895392279, + 0.8469796766499825, + 0.953644173755992, + 0.9926761940480948, + 0.8153042353997382, + 0.8607621561631245, + 0.9832058480308432, + 0.9570294209353524, + 0.9992668621947256, + 0.8641670664322122, + 0.7757761746311366, + 0.8357747120217831, + 0.866213238722621, + 0.8792285183078618, + 0.7957371772064827, + 0.878036507710379, + 0.9658331436022252, + 0.7622935296404183, + 0.9857187253140862, + 0.8942561574169895, + 0.9622333213753728, + 0.9131318215287682, + 0.8411490111317951, + 0.8916483082566217, + 0.9500441996469742, + 0.8499116091074294, + 0.9308446996969624, + 0.971973367585848, + 0.950603792184588, + 0.8131377716690428, + 0.8886194359553157, + 0.8284169872492293, + 0.8757940351900098, + 0.9023840086111148, + 0.9230788696114616, + 0.7524570024570024, + 0.9981688711071728, + 0.9020646721236416, + 0.9272440944881892, + 0.917451425335698, + 0.952871096782223, + 0.9954192028862328, + 0.8614426005287826, + 0.8553282796247272, + 0.991220090045964, + 0.962952748132584, + 0.9970690618433798, + 0.8655309124484051, + 0.7810606403025839, + 0.7757761746311366, + 0.8580430671412884, + 0.866213238722621, + 0.8806041934635603, + 0.7777808036382947, + 0.8317573749391951, + 0.9716068390573318, + 0.819882410141537, + 0.9848040830545792, + 0.8737365714482546, + 0.962952748132584, + 0.9154671960778832, + 0.9112764606124896, + 0.8916483082566217, + 0.9529052383428788, + 0.8696289027548957, + 0.9188566733401607, + 0.9507590560548308, + 0.9507917513638928, + 0.9853649117096728, + 0.8131377716690428, + 0.8951137084436364, + 0.8371159751352831, + 0.8703128420935896, + 0.9022988912306722, + 0.9400644385653472, + 0.7531344790477525, + 0.9992668621947256, + 0.9020646721236416, + 0.8645269531463561, + 0.9839330712663648, + 0.975224136149363, + 0.9372677626851672, + 1, + 0.9904901783696456, + 0.9875732201051683, + 1, + 0.9919502705663622, + 0.9890311615492476, + 1, + 0.988302056405168, + 0.9132421335802218, + 0.996336999414424, + 0.9890311615492476, + 0.988302056405168, + 0.9897605355374068, + 0.991220090045964, + 0.978122813016422, + 0.9511647444887732, + 0.9919502705663622, + 0.9985339932335306, + 0.8938717567128639, + 0.9891891050899508, + 0.9970690618433798, + 0.9897605355374068, + 0.9978013931164152, + 0.985563789057925, + 0.9586402202505122, + 0.9607952743931896, + 0.9805263157894736, + 0.99268071993084, + 0.9941424251920344, + 0.996336999414424, + 0.9884575916336614, + 0.9719327874122964, + 0.9753656599277568, + 0.988302056405168, + 0.9919502705663622, + 0.988302056405168, + 0.9934114381393974, + 0.9992668621947256, + 0.977723489335005, + 0.9995652173913042, + 0.9948736810887512, + 0.909090909090909, + 0.8174876847290639, + 0.8553636363636363, + 0.8455433455433455, + 0.8397417807252716, + 0.8437332724582007, + 0.832909538499891, + 0.7619786952586509, + 0.8177290491628549, + 0.9175438596491228, + 0.882198952879581, + 0.8767128866853765, + 0.8150509397735728, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.8829402079402078, + 0.8107452697678261, + 0.9637205387205386, + 0.852293824358888, + 0.8709558996012198, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352228, + 0.805168828270855, + 0.909090909090909, + 0.945216049382716, + 0.8771929824561405, + 0.8174876847290639, + 0.7599743651365856, + 0.8553636363636363, + 0.8455433455433455, + 0.9416562889165628, + 0.8437332724582007, + 0.832909538499891, + 0.8177290491628549, + 0.9175438596491228, + 0.882198952879581, + 0.8767128866853765, + 0.8150509397735728, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.8829402079402078, + 0.8107452697678261, + 0.8417508417508417, + 0.852293824358888, + 0.8709558996012198, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352228, + 0.805168828270855, + 0.909090909090909, + 0.9789848244395952, + 0.8771929824561405, + 0.8174876847290639, + 0.8813770455902434, + 0.8553636363636363, + 0.8455433455433455, + 0.832556129195581, + 0.8437332724582007, + 0.832909538499891, + 0.8177290491628549, + 0.882198952879581, + 0.8150509397735728, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.7862727272727271, + 0.8107452697678261, + 0.9825055596738328, + 0.852293824358888, + 0.8709558996012198, + 0.826664274308378, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352228, + 0.805168828270855, + 0.9792614678275988, + 0.8553134080531342, + 0.8343739357475309, + 0.9649169511660014, + 0.9815789473684212, + 0.775995920023485, + 0.8490459410817468, + 0.999122807017544, + 0.8887919536466066, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8672820048414341, + 0.9416562889165628, + 0.7922752675949607, + 0.791670480549199, + 0.936963017728694, + 0.8515555890726042, + 0.8474662292253902, + 0.8469364035600903, + 0.9088064577345945, + 0.9830807073527456, + 0.9729066716260472, + 0.9309198460265768, + 0.993758325008325, + 0.9220836669819068, + 0.9328333806952732, + 0.9120932616135702, + 0.8672722972717296, + 0.9787330446229278, + 0.9956171156600898, + 0.9044025274049858, + 0.9162907640884717, + 0.9886242163794032, + 0.9856590419138828, + 0.9735969760860068, + 0.9237640299437498, + 0.8150558110147776, + 0.9001503179694077, + 0.9403303455027592, + 0.999122807017544, + 0.9090741230371568, + 0.999122807017544, + 0.903135734615762, + 0.8282546041121968, + 0.9792614678275988, + 0.8553134080531342, + 0.8232860332235971, + 0.909065387196842, + 0.978073311070348, + 0.775995920023485, + 0.8490459410817468, + 0.999122807017544, + 0.8870930627862177, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8672820048414341, + 0.9416562889165628, + 0.7922752675949607, + 0.791670480549199, + 0.936963017728694, + 0.7737464548987709, + 0.8474662292253902, + 0.8291492133323973, + 0.9088064577345945, + 0.9761788895853514, + 0.9770862304997938, + 0.9329580322176916, + 0.993758325008325, + 0.9188951371295636, + 0.9328333806952732, + 0.8980181937554507, + 0.8677050513455755, + 0.9752792033119024, + 0.9882730260033812, + 0.905289786165362, + 0.9143112638406732, + 0.9886242163794032, + 0.9544594777956544, + 0.9581772940528424, + 0.9143045157420016, + 0.8252050839377624, + 0.9001503179694077, + 0.9403303455027592, + 0.999122807017544, + 0.9292464661560496, + 0.999122807017544, + 0.856617686732253, + 0.8374157216227879, + 0.9280303030303032, + 0.986111279729024, + 0.9950777781016508, + 0.7644397158986019, + 0.8788591215600511, + 0.995055254321861, + 0.8218760444455504, + 0.8963051106025932, + 0.9855308977062668, + 0.8161330049261083, + 0.919010674275554, + 0.8602150725639579, + 0.9437855111487105, + 0.982329825041006, + 0.8843548391463373, + 0.8689327225675706, + 0.931003010693105, + 0.9349500075746098, + 0.8343765747325528, + 0.8587642661603542, + 0.8586700336700335, + 0.9617123795404005, + 0.9664559126905398, + 0.9369276682149368, + 0.9421777653794547, + 0.8002254756609835, + 0.91015350877193, + 0.8195948305972756, + 0.8049385749385748, + 0.8079714438079046, + 0.9248788062414784, + 0.9466765601812076, + 0.9943237305426308, + 0.8922259540680743, + 0.7615894748339839, + 0.92882506393551, + 0.8553134080531342, + 0.8492357350911255, + 0.9943501037415146, + 0.9908190857034046, + 0.7714797416324134, + 0.8958436239049175, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.9692982456140352, + 0.9108481442025624, + 0.7872481572481572, + 0.7785693212549879, + 0.791670480549199, + 0.936963017728694, + 0.8833898132089024, + 0.8276770122994085, + 0.895416975651959, + 0.992671182389769, + 0.9514741813067672, + 0.8630706569122704, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8398017274912394, + 0.9988878509623264, + 0.937103645050706, + 0.9851370084561714, + 0.8052224642752426, + 0.9408748628296816, + 0.950672972897766, + 0.9505705348293196, + 1, + 0.7647361516158825, + 0.907644799841382, + 0.8492357350911255, + 0.9514212739063944, + 0.9991101224022378, + 0.7714797416324134, + 0.8950014677832712, + 0.9943546343400722, + 0.8210917926103164, + 0.8995898027497777, + 0.999122807017544, + 0.8091752787787085, + 0.8045413788925241, + 0.92385752642948, + 0.7939937969249388, + 0.791670480549199, + 0.936963017728694, + 0.8564021794854101, + 0.8929190984699815, + 0.7960647061252277, + 0.9048525852298742, + 0.992671182389769, + 0.987968431853366, + 0.9531702386026508, + 0.8651058220157922, + 0.957204861709126, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.8819809439955775, + 0.988302056405168, + 0.937103645050706, + 0.9407755311560884, + 0.9851370084561714, + 0.8030210815765354, + 0.94362258995985, + 0.7901596681791947, + 0.8868080394461477, + 0.9413092648977816, + 0.999122807017544, + 0.9443944345284628, + 0.9992668621947256, + 0.9385224385224384, + 0.7647361516158825, + 0.907644799841382, + 0.8492357350911255, + 0.9514212739063944, + 0.9991101224022378, + 0.7714797416324134, + 0.8950014677832712, + 0.9943546343400722, + 0.8171099429462455, + 0.8995898027497777, + 0.999122807017544, + 0.8091752787787085, + 0.8045413788925241, + 0.92385752642948, + 0.7939937969249388, + 0.791670480549199, + 0.936963017728694, + 0.8532214540129998, + 0.8929190984699815, + 0.7960647061252277, + 0.9048525852298742, + 0.992671182389769, + 0.987968431853366, + 0.9531702386026508, + 0.8651058220157922, + 0.957204861709126, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.8744221238514268, + 0.988302056405168, + 0.937103645050706, + 0.9407755311560884, + 0.9851370084561714, + 0.8030210815765354, + 0.94362258995985, + 0.7901596681791947, + 0.8868080394461477, + 0.9413092648977816, + 0.999122807017544, + 0.9443944345284628, + 0.9992668621947256, + 0.9385224385224384, + 0.7647361516158825, + 0.782357275298858, + 0.9716068390573318, + 0.9615141634622412, + 0.9956019844379308, + 0.9939526010712452, + 0.9868446526492484, + 0.9788481543433862, + 1, + 0.9280169976669376, + 0.975224136149363, + 0.9970690618433798, + 0.988302056405168, + 0.9301373709233364, + 0.9795737645144298, + 0.9824788936394012, + 0.988302056405168, + 0.9414868925909092, + 0.9188566733401607, + 0.9978013931164152, + 0.9692438828447324, + 0.988302056405168, + 0.9934114381393974, + 0.9486152933634998, + 0.9721523399735842, + 0.9934114381393974, + 0.9708841861711646, + 0.9500441996469742, + 0.9174366159265968, + 0.9329682990823176, + 0.9716068390573318, + 0.8840480861242009, + 0.9948736810887512, + 0.9579224065577792, + 0.9679962630672924, + 0.9978013931164152, + 0.8764803941254208, + 0.9414868925909092, + 0.9181539149158896, + 0.9429104219927898, + 0.9919502705663622, + 0.9651126414686952, + 1, + 0.9962804570068788, + 1, + 0.9513949869239996, + 0.917451425335698, + 0.8893524283935244, + 0.8711567490387903, + 0.8402268612783098, + 0.9991101224022378, + 0.875683873894971, + 0.893318343627618, + 0.9998166819431716, + 0.8181684978110831, + 0.8501131405958161, + 0.9791710812316362, + 0.9416562889165628, + 0.7704074975067343, + 0.8205779056365766, + 0.8524355521406098, + 0.8149410602532909, + 0.9678129927260984, + 0.992671182389769, + 0.9904289157282716, + 0.9512909738881008, + 0.9430833061919088, + 0.9498925099667804, + 0.9491784964871592, + 0.9608990650462856, + 0.9498609989321576, + 0.7794361831100473, + 0.9505758519634429, + 0.9773557492735576, + 0.8637008456171157, + 0.9301795973691914, + 0.8828315614940658, + 0.959175062021937, + 0.9531601641545472, + 0.999122807017544, + 0.9998166819431716, + 0.7587536069598175, + 0.7522123063336182, + 0.82583032730816, + 0.9356248965935622, + 0.9820100634702482, + 0.831081385436793, + 0.8534540516685339, + 0.9818536963567754, + 0.8486878358300123, + 0.9129853629164149, + 0.8998911634924976, + 0.7793718426037994, + 0.932398585032895, + 0.8000124002170039, + 0.7984383476710845, + 0.907326978222119, + 0.838169467510867, + 0.7913646289079624, + 0.9278150139590884, + 0.9506223327256856, + 0.9364530503181744, + 0.941701474767142, + 0.7800217784035494, + 0.9258691777106102, + 0.9376349250962784, + 0.9412635914006204, + 0.8430977292102613, + 0.9461654371370272, + 0.9391302151973808, + 0.968708052390917, + 0.7829559806346367, + 0.8486878358300123, + 0.92049050384555, + 0.9877189123128628, + 0.9672169872900396, + 0.8207867897037397, + 0.8168393183171508, + 0.826467375579422, + 0.94513113161729, + 0.9585637037072424, + 0.8949088289552438, + 0.9053910284366296, + 0.817437533227007, + 0.7978783990223038, + 0.7521903939726886, + 0.754943158980426, + 0.7928605555934748, + 0.8989607068123694, + 0.7975892455476461, + 0.7725199492096488, + 0.7662703504995123, + 0.9767351231527428, + 0.9424631082284728, + 0.866898864682116, + 0.7783625730994153, + 0.9376349250962784, + 0.9303020409693342, + 0.8287563928270861, + 0.8603115680426934, + 0.8114732228923959, + 0.9669758970781992, + 0.8105976841695943, + 0.7959269589012261, + 0.8302139037433156, + 0.986986590623621, + 0.751078143739283, + 0.9104552048233484, + 0.9985339932335306, + 0.9919502705663622, + 0.9890174067689452, + 1, + 0.9985339932335306, + 0.9919502705663622, + 1, + 0.9978013931164152, + 0.9978013931164152, + 1, + 0.996336999414424, + 0.9978013931164152, + 0.9970690618433798, + 0.9985339932335306, + 0.996336999414424, + 0.988302056405168, + 1, + 0.9904289157282716, + 0.9992668621947256, + 0.9992668621947256, + 0.996336999414424, + 0.9928507310737632, + 1, + 0.8271094654395285, + 0.996336999414424, + 0.9978013931164152, + 0.9956044009241408, + 0.9985339932335306, + 0.9904901783696456, + 0.9978013931164152, + 0.9970690618433798, + 0.996336999414424, + 0.996336999414424, + 0.9970690618433798, + 0.995605205829548, + 1, + 0.9985339932335306, + 0.9853883242696474, + 0.995605205829548, + 0.9992668621947256, + 1, + 0.9992555369697762, + 1, + 0.9882827814745488, + 0.9992668621947256, + 0.9859927106498642, + 0.9550538402276436, + 0.9795737645144298, + 0.9350474891783676, + 0.9946751263076096, + 0.99268071993084, + 0.9529052383428788, + 1, + 0.9832058480308432, + 0.928723519908324, + 0.999122807017544, + 0.9701618021290772, + 0.9181539149158896, + 0.9414868925909092, + 0.916749204599586, + 0.94362258995985, + 0.8771670219049115, + 0.9020646721236416, + 0.9479012434878824, + 0.7967703326479759, + 0.9802996435295532, + 0.9917846709962562, + 0.8938717567128639, + 0.9862646747457392, + 0.9839330712663648, + 0.9600766541682176, + 0.9759484021000084, + 0.9473421475334106, + 0.8472097261066925, + 0.9414868925909092, + 0.9650851977230176, + 0.999122807017544, + 0.9550538402276436, + 0.9441436310000064, + 0.9884575916336614, + 0.94958838214302, + 0.9436364293412104, + 0.9802996435295532, + 0.9817522080920388, + 0.9766729368947332, + 0.975224136149363, + 0.999122807017544, + 0.9763146820695155, + 0.999122807017544, + 0.9716068390573318, + 0.8353033499302194, + 0.9286573911418808, + 0.989388886675146, + 0.811997387314498, + 0.8668958338409165, + 0.9719327874122964, + 0.9416700490012928, + 0.9868446526492484, + 0.8626461571750742, + 0.7693359990306556, + 0.8443573586609718, + 0.8171099429462455, + 0.8861176478495413, + 0.842673863199572, + 0.928723519908324, + 0.758875943584108, + 0.887167247405612, + 0.8928699826089762, + 0.8759576634165684, + 0.9564875857045522, + 0.9061435934718378, + 0.8423092165265303, + 0.8930336617991886, + 0.9400644385653472, + 0.9237835099442904, + 0.9466976131633716, + 0.950603792184588, + 0.8131377716690428, + 0.8598012719162864, + 0.787554569047141, + 0.884737671188568, + 0.9070294784580498, + 0.9069463429223856, + 0.7524570024570024, + 0.9981688711071728, + 0.8971961746848013, + 0.8404738376904276, + 0.8288697152121746, + 0.8829742996323185, + 0.9945048317633112, + 0.885610204525967, + 0.9329682990823176, + 0.9407755311560884, + 0.9274938109996212, + 0.955770578544058, + 0.8609445180643548, + 0.8868080394461477, + 0.8826697225277056, + 0.860081980641546, + 0.8494179248503486, + 0.8806041934635603, + 0.7745935959659945, + 0.804564602812277, + 0.8457610658751216, + 0.9141259733731866, + 0.9083435256044582, + 0.9249744348616508, + 0.878036507710379, + 0.8567036918158099, + 0.9407755311560884, + 0.912541525908588, + 0.8711093063931175, + 0.8951137084436364, + 0.9041552036871964, + 0.953621170127054, + 0.946473950268886, + 0.9727686004162333, + 0.9824788936394012, + 0.895416975651959, + 0.8388354220573428, + 0.8451861367189765, + 0.9020646721236416, + 0.8838860538503512, + 0.9586402202505122, + 0.99782684342909, + 0.7818532483566868, + 0.8978908677866823, + 0.9346434038598216, + 0.9486152933634998, + 0.975224136149363, + 0.927916573470583, + 0.9974294410273912, + 0.9586402202505122, + 0.9507590560548308, + 0.9978013931164152, + 0.954337370755309, + 0.911841187081034, + 0.975224136149363, + 0.9365130082728363, + 0.8902640300903737, + 0.9500441996469742, + 0.7528067405931878, + 0.9139430100959351, + 0.9486152933634998, + 0.8723662731741496, + 0.8503425879277244, + 0.9643924081792452, + 0.9716068390573318, + 0.9322331995088968, + 0.9730529513619054, + 0.8909560347514579, + 0.9730529513619054, + 0.9225158405279774, + 0.8806041934635603, + 0.9223744981227122, + 0.928723519908324, + 0.8985858297326429, + 0.8868080394461477, + 0.934385376226286, + 0.8659782656488341, + 0.9669995060071396, + 0.9215535536561092, + 0.8916483082566217, + 0.8806041934635603, + 0.8614426005287826, + 0.9500441996469742, + 0.9615141634622412, + 0.9836858501848198, + 0.9992668621947256, + 0.8840480861242009, + 0.8659737769303842, + 0.8881896291715989, + 0.9658331436022252, + 0.9117779886590568, + 0.9891164188197914, + 0.9393536148186856, + 0.8999765601568034, + 0.9992668621947256, + 0.8902640300903737, + 0.8937267418365915, + 0.986116354037408, + 0.9745001390427974, + 0.8682618306097468, + 0.917451425335698, + 0.9237835099442904, + 0.9372227566431792, + 0.8605814190983238, + 0.9658331436022252, + 0.99268071993084, + 0.9331273751154144, + 0.9874932258547676, + 0.9817522080920388, + 0.9322601637764528, + 0.9730529513619054, + 0.7966912350949062, + 0.9636724437338746, + 0.9146441554557286, + 0.9665539145798344, + 0.912541525908588, + 0.8923408506058652, + 0.9403639696255566, + 0.9824501714706848, + 0.8958075950132784, + 0.7947875585169598, + 0.8888808273004442, + 0.9817522080920388, + 0.9579224065577792, + 0.9643924081792452, + 0.9978013931164152, + 0.909042520211614, + 0.8839798882716039, + 0.9322601637764528, + 0.977397740533538, + 0.9407327353741834, + 0.9974294410273912, + 0.957204861709126, + 0.9636724437338746, + 1, + 0.9507590560548308, + 0.9244884191211992, + 0.9737764107803116, + 0.9294303109937904, + 0.866213238722621, + 0.8895722942733691, + 0.9365130082728363, + 0.938643059916104, + 0.8614426005287826, + 0.8592127013521057, + 0.9586402202505122, + 0.984660563345966, + 0.942257835125676, + 0.977397740533538, + 0.8944200907180742, + 0.9723297607875788, + 0.9466282499343924, + 0.8799162214636711, + 0.917451425335698, + 0.9358035287465732, + 0.9365130082728363, + 0.8785410839961321, + 0.8800026263331926, + 0.9180818572622022, + 0.9300900041631704, + 0.9111411170975592, + 0.8958075950132784, + 0.8751079450986784, + 0.9687178405771408, + 0.9643924081792452, + 0.9741087373430196, + 0.9965539092032524, + 0.8485601299189015, + 0.9039239850807016, + 0.991220090045964, + 0.99268071993084, + 0.9411779284976854, + 1, + 0.9941424251920344, + 0.9839330712663648, + 1, + 0.9948736810887512, + 0.9853883242696474, + 1, + 0.9904901783696456, + 0.9062481548474688, + 0.9948736810887512, + 0.9766729368947332, + 0.99268071993084, + 0.988302056405168, + 0.996336999414424, + 0.9832058480308432, + 0.9721523399735842, + 0.995605205829548, + 0.995605205829548, + 0.8966477542865559, + 0.989920889126398, + 0.9941424251920344, + 0.9853883242696474, + 0.99268071993084, + 0.989208622446052, + 0.9737764107803116, + 0.9788481543433862, + 0.9508557261229018, + 0.988302056405168, + 0.9868446526492484, + 0.9948736810887512, + 0.9789725394962472, + 0.9778375229520267, + 0.9630457249445452, + 0.9897605355374068, + 0.9759484021000084, + 0.9745001390427974, + 0.9839330712663648, + 1, + 0.9910847398800986, + 1, + 0.9824788936394012, + 0.8935362109939026, + 0.8492357350911255, + 0.7799775750856683, + 0.9991101224022378, + 0.7714797416324134, + 0.8924773755936107, + 0.9921175854473762, + 0.8244173938758999, + 0.8995898027497777, + 0.997783274463504, + 0.8019358454012121, + 0.8034463924540262, + 0.9208092958092956, + 0.7862626472757531, + 0.7901234941467935, + 0.9234208215886514, + 0.8754121720256093, + 0.8661215058187303, + 0.992671182389769, + 0.9798792330613568, + 0.9514741813067672, + 0.9550538402276436, + 0.9429977116704804, + 0.9378841050418828, + 0.9348478408783754, + 0.8677050513455755, + 0.9438416558070334, + 0.9894860390412652, + 0.9369022368540908, + 0.9407755311560884, + 0.937924041385235, + 0.9677933860111212, + 0.9970690618433798, + 0.9443944345284628, + 0.9965539092032524, + 0.7647361516158825, + 0.8833587699039136, + 0.8455377025736512, + 0.9378994747569932, + 1, + 0.8854275250970148, + 0.9372227566431792, + 0.9978013931164152, + 0.8621233137385207, + 0.9034580909885984, + 0.9687178405771408, + 0.9788481543433862, + 0.8364452091564932, + 0.8257495162906912, + 0.9450477324262084, + 0.7908116150724073, + 0.792225727337591, + 0.8186576980160944, + 0.9593583027873251, + 0.9941424251920344, + 0.9848040830545792, + 0.9795737645144298, + 0.9181539149158896, + 0.9579224065577792, + 0.8038532129267693, + 0.7895079901300617, + 0.9393536148186856, + 0.9329682990823176, + 0.938643059916104, + 0.9097417836628494, + 0.934365235861341, + 0.8682618306097468, + 0.8062236581276447, + 0.7999671002057498, + 0.9579224065577792, + 0.962952748132584, + 0.9421985228698097, + 0.9758471017566333, + 0.8492357350911255, + 0.988302056405168, + 0.9965191088563604, + 0.9992663243093578, + 0.9992656508417233, + 0.9941424251920344, + 1, + 0.99268071993084, + 1, + 0.9992668621947256, + 0.9965191088563604, + 0.9540512424216696, + 0.9970690618433798, + 0.9768478574449928, + 0.9833831528957327, + 0.9914003253458398, + 0.9890311615492476, + 0.9782982623788444, + 0.9926335425715882, + 0.8068812492978317, + 0.9985339932335306, + 1, + 0.998339483394834, + 1, + 0.9948736810887512, + 0.9875732201051683, + 0.9941413527735856, + 1, + 0.992130773157018, + 0.9721444518798692, + 0.9978013931164152, + 0.998350675275288, + 0.9906529437430028, + 1, + 0.9948736810887512, + 0.9914003253458398, + 0.9970690618433798, + 0.9976169999054124, + 0.9985113511553524, + 0.9954545454545456, + 0.9585725924710128, + 0.9992668621947256, + 0.8558690511962423, + 0.9477543538038498, + 0.7858966339146662, + 0.8467583491924262, + 0.8327122834222226, + 0.8908526998828004, + 0.8135527713116106, + 0.9336872890005496, + 0.8135527713116106, + 0.7969931938295922, + 0.9404358147459344, + 0.7922931599671659, + 0.9455558136112772, + 0.7617997236100775, + 0.8361266348371678, + 0.8706162391527938, + 0.8909999999999999, + 0.8169671679245643, + 0.911393892174019, + 0.950028839221341, + 0.8316766353632711, + 0.8481140741645349, + 0.9263157894736842, + 0.7693317755435274, + 0.8485714285714286, + 0.9975371888373946, + 0.7657492944145039, + 0.7827075098814231, + 0.8344731368348524, + 0.7893527624833871, + 0.934334074623178, + 0.9652014577830238, + 0.9712575474049576, + 0.7951570680628274, + 0.8023077073631945, + 0.8378558855512396, + 0.7750750175798774, + 0.8711152458705146, + 0.9450509667184974, + 0.8728200371057514, + 0.8266151860146821, + 0.9508561924475392, + 0.8678771151093215, + 0.7818744360024457, + 0.953621170127054, + 0.9550538402276436, + 0.9255861016232884, + 1, + 0.9890311615492476, + 0.9839330712663648, + 1, + 0.9875732201051683, + 0.9868446526492484, + 1, + 0.9672749544015236, + 0.8485601299189015, + 0.9948736810887512, + 0.9853883242696474, + 0.991220090045964, + 0.9716068390573318, + 0.9853883242696474, + 0.9817522080920388, + 0.9461330864231152, + 0.9934114381393974, + 0.9985339932335306, + 0.8683978095980386, + 0.9869953764615554, + 0.995605205829548, + 0.9868446526492484, + 0.988302056405168, + 0.9724980906333768, + 0.9407755311560884, + 0.9372227566431792, + 0.9805263157894736, + 0.996336999414424, + 0.996336999414424, + 0.9992668621947256, + 0.9884575916336614, + 0.9887359375145636, + 0.977084365603192, + 0.9817522080920388, + 0.9890311615492476, + 0.9875732201051683, + 0.988302056405168, + 0.9992668621947256, + 0.9762465658458932, + 1, + 0.991220090045964, + 0.8205020227371977, + 0.8608078181360624, + 0.8831761147394912, + 0.9956171156600898, + 0.8264159807642062, + 0.9851370084561714, + 0.8032496864185852, + 0.7921163153910715, + 0.8189876505853204, + 0.8866880766446407, + 0.7712492904983539, + 0.766650468421388, + 0.9874185848252344, + 0.9860765405159552, + 0.8021177944862157, + 0.9104948113042188, + 0.9076355564584256, + 0.9302834429286486, + 0.8899966113703928, + 0.7950194069243905, + 0.7994718538953012, + 0.9755497899678774, + 0.8737705484182898, + 0.8391756392041623, + 0.8000318742722583, + 0.863706643974955, + 0.999122807017544, + 0.788531116445173, + 0.7673011362392834, + 0.856290549490185, + 0.8500013228910795, + 0.8217519251079187, + 0.9886242163794032, + 0.8335855838820181, + 0.7737677036875701, + 0.8078183838070802, + 0.8821104163000745, + 0.7790490801674135, + 0.821180494612969, + 0.8346691294875438, + 0.8306511043531097, + 0.7751893805092812, + 0.7785693212549879, + 0.8213296424597536, + 0.7990961561862842, + 0.8708980045995849, + 0.8508997225351951, + 0.9550538402276436, + 0.8404738376904276, + 0.8608516172237797, + 0.8898770040500942, + 0.9910308796338216, + 0.9443350267709892, + 0.9379327738576018, + 0.9687178405771408, + 0.954337370755309, + 0.8992810605226834, + 0.8104222403360605, + 0.8617768931040987, + 0.8019358454012121, + 0.8489486269748123, + 0.8334307196417516, + 0.8472653300897576, + 0.8641393141487439, + 0.8327404310943478, + 0.8764803941254208, + 0.912541525908588, + 0.8614426005287826, + 0.8750187225119483, + 0.8930336617991886, + 0.9188566733401607, + 0.909042520211614, + 0.9278339260751618, + 0.8855898697110776, + 0.8914924863272463, + 0.9636724437338746, + 0.8594020739640472, + 0.933676703232262, + 0.9471874624563444, + 0.9767901752344744, + 0.8923668029454429, + 0.887801301315952, + 0.8244173938758999, + 0.8598281139548333, + 0.9048525852298742, + 0.9202629967209424, + 0.9586402202505122, + 0.99818613436632, + 0.811652655043935, + 0.9097417836628494, + 0.8938131796635375, + 0.8689452322602814, + 0.7632159853061835, + 0.931092626752598, + 0.9714033929661204, + 0.916047252707554, + 0.9665539145798344, + 0.9992668621947256, + 0.877193998855128, + 0.8621233137385207, + 0.8404336601367269, + 0.8899568476668683, + 0.7657793910062513, + 0.8125492090556029, + 0.8944200907180742, + 0.9832058480308432, + 0.866243248832523, + 0.9723297607875788, + 0.9358035287465732, + 0.9111411170975592, + 0.8984030086479471, + 0.8744221238514268, + 0.831385641452182, + 0.917611437505964, + 0.8478847935907572, + 0.9679962630672924, + 0.8637608966376091, + 0.929473335227811, + 0.8427886110852929, + 0.928226607524593, + 0.8025926314878588, + 0.9041552036871964, + 0.9045462110180228, + 0.9607952743931896, + 0.7731216272312162, + 0.9960877143127782, + 0.7917919558851796, + 0.7813854250011384, + 0.8594020739640472, + 0.8448171762300786, + 0.9066838594697112, + 0.993041786971632, + 0.9218534208170824, + 0.9280169976669376, + 0.9579224065577792, + 0.7649434377260496, + 0.9324432641365908, + 0.9890311615492476, + 0.8689452322602814, + 0.8861176478495413, + 0.8937267418365915, + 0.8573639669960287, + 0.853295011850143, + 0.9251935971421876, + 0.8902640300903737, + 0.7921163153910715, + 0.8692840854028374, + 0.9120241323975692, + 0.9322601637764528, + 0.9682695039010508, + 0.8869907346430809, + 0.9308446996969624, + 0.928723519908324, + 0.8601704114565033, + 0.8874986998868335, + 0.8888808273004442, + 0.975224136149363, + 0.8091752787787085, + 0.9507590560548308, + 0.9664158428720082, + 0.9817522080920388, + 0.8284169872492293, + 0.9136988002866576, + 0.8445121446112305, + 0.9139430100959351, + 0.8914848829801818, + 0.9672749544015236, + 0.99782684342909, + 0.772138724992434, + 0.90276124713408, + 0.961144204800487, + 0.8634855466902354, + 0.9379327738576018, + 0.908277884446819, + 0.9946871424565764, + 0.9479012434878824, + 0.933676703232262, + 0.9839330712663648, + 0.957204861709126, + 0.9897605355374068, + 0.8668958338409165, + 0.8916483082566217, + 0.9153455696596016, + 0.8573639669960287, + 0.8634855466902354, + 0.9251935971421876, + 0.909042520211614, + 0.8723662731741496, + 0.8537487234650945, + 0.8792285183078618, + 0.9350943180643898, + 0.8079714438079046, + 0.9551004697947988, + 0.8806041934635603, + 0.9273107442696306, + 0.9223744981227122, + 0.9616766085585506, + 0.8730512878891623, + 0.8965017504270001, + 0.975224136149363, + 0.8277497162434753, + 0.9514741813067672, + 0.9622333213753728, + 0.9746102461941208, + 0.940760842211224, + 0.8337648336821305, + 0.9132421335802218, + 0.838458313625102, + 0.9104413159581644, + 0.9230788696114616, + 0.9615141634622412, + 0.9608062684964296, + 0.9992668621947256, + 0.90276124713408, + 0.9316696874472936, + 0.8231087698825403, + 0.9544682296975874, + 0.7552770595350544, + 0.992615515771526, + 0.8512496250257213, + 0.8744043956043956, + 0.9547348484848484, + 0.7548367420848981, + 0.8010008340283569, + 0.8674088334090595, + 0.7996294165768151, + 0.908313797791604, + 0.9891493795585866, + 0.7540999753755233, + 0.9272544060904362, + 0.8780091446372676, + 0.9182823930924128, + 0.8762510425354463, + 0.9053124690879792, + 0.9546304163126592, + 0.9085090856109872, + 0.8064763169544045, + 0.9027775208335084, + 0.8873519569623151, + 0.902977283394997, + 0.9964912280701756, + 0.996521739130435, + 0.9338039426824476, + 0.9139430100959351, + 0.9622333213753728, + 0.9737764107803116, + 0.9701400724878312, + 0.9974294410273912, + 0.9358035287465732, + 0.946473950268886, + 0.9970690618433798, + 0.9658331436022252, + 0.955770578544058, + 0.9960351014549488, + 0.9477180531985372, + 0.7802288530146115, + 0.9622333213753728, + 0.8067839857133676, + 0.9301373709233364, + 0.8868080394461477, + 0.9450477324262084, + 0.8134050821718116, + 0.9454153674378072, + 0.984660563345966, + 0.9904901783696456, + 0.9507590560548308, + 0.9779823259487208, + 0.988302056405168, + 0.855139156857862, + 0.9853883242696474, + 0.9564875857045522, + 0.9083271241193304, + 0.9421985228698097, + 0.8621233137385207, + 0.9479012434878824, + 0.9802996435295532, + 0.9613309146374462, + 0.9890311615492476, + 0.9789725394962472, + 0.9230788696114616, + 0.9875732201051683, + 0.8937267418365915, + 0.9948736810887512, + 0.9716068390573318, + 0.9679854547640152, + 0.9572793819640072, + 0.9992668621947256, + 0.9649045221259104, + 0.9365130082728363, + 0.7854822169733378, + 0.9877224033535164, + 0.8267536096879368, + 0.8281155906857193, + 0.778242651393919, + 0.7770132902980824, + 0.7813852813852814, + 0.8531626502908053, + 0.986652250762675, + 0.8443985380581599, + 0.8507060144843345, + 0.9095966218704222, + 0.7793195367381812, + 0.8485714285714286, + 0.793478260869565, + 0.9357129295614204, + 0.9013778530474436, + 0.8068636548636549, + 0.8283693657758276, + 0.7842947575142669, + 0.929941088884573, + 0.8318189568317447, + 0.9721324228139152, + 0.8929555666008868, + 0.9899175068744273, + 0.7829559806346367, + 0.8330585670487148, + 0.9004712036731742, + 0.8079059133534838, + 0.907326978222119, + 0.8418462145170219, + 0.8355962235887732, + 0.9840600196897172, + 0.9727233543942168, + 0.9456931798893302, + 0.7835307826762479, + 0.9334823561531638, + 0.943912095206486, + 0.9719476865439598, + 0.8989607068123694, + 0.9899175068744273, + 0.91218688144154, + 0.968708052390917, + 0.9275641323723166, + 0.7750817305162342, + 0.7705110005585539, + 0.8746911090742437, + 0.906777236648719, + 0.9877189123128628, + 0.905810189680844, + 0.9039758195768428, + 0.9545454545454548, + 0.8475303670578502, + 0.9511957748205524, + 0.8592904322283405, + 0.909090909090909, + 0.864748396641959, + 0.8793851481338977, + 0.9499999999999998, + 0.7977657605606996, + 0.828074328074328, + 0.8757161620920398, + 0.8518139443215275, + 0.8919696969696971, + 0.9006463378910865, + 0.9123913868449176, + 0.7538355364442323, + 0.9728462804245892, + 0.8226075640111686, + 0.7627425872585157, + 0.9397093147093144, + 0.9405901494832792, + 0.9373208866593992, + 0.9185281385281384, + 0.9805093555093556, + 0.9045454545454544, + 0.7521739130434782, + 0.8676160350867449, + 0.9096320346320348, + 0.9705446224256292, + 0.7511156903867726, + 0.9498970784947516, + 0.8553636363636363, + 0.8803749979451918, + 0.8868951612903225, + 0.8716773908739449, + 0.7640091133472566, + 0.9754511278195488, + 0.909090909090909, + 0.919377312007859, + 0.9895652173913044, + 0.909090909090909, + 0.9895652173913044, + 0.904833326772871, + 0.8896985935172833, + 0.9613560315981924, + 0.9209973066564064, + 0.7738377192982457, + 0.8766948621553885, + 0.8955979105301096, + 0.7862727272727271, + 0.8120276073976654, + 0.9062605084545612, + 0.9819906110654324, + 0.9482809390239644, + 0.9270810254564676, + 0.8858122880872293, + 0.9272543317870856, + 0.9248843536331894, + 0.9592356458451337, + 0.9740750470337556, + 0.8618048445021776, + 0.9826209215251775, + 0.9119804816878756, + 0.901982337361457, + 0.968471177944862, + 0.9722529273134676, + 0.9674022810471118, + 0.8998470475108667, + 0.8758239471864051, + 0.957737379733654, + 0.9619347444028424, + 0.9817460256655812, + 0.9619598036238828, + 0.9754511278195488, + 0.9045454545454544, + 0.9108776132404182, + 0.9895652173913044, + 0.909090909090909, + 0.9808695652173912, + 0.903936979364855, + 0.8946016606830778, + 0.9582023810487048, + 0.9363189044244398, + 0.7701982739613846, + 0.877299976398395, + 0.8623579834310708, + 0.7862727272727271, + 0.8480601581866628, + 0.8902466538134809, + 0.9819906110654324, + 0.9507874084663184, + 0.925065002188018, + 0.8906569786528593, + 0.9272543317870856, + 0.9318691420627104, + 0.9592356458451337, + 0.9670573870573872, + 0.8638081223124702, + 0.9815789473684212, + 0.9119804816878756, + 0.9027305623701912, + 0.968471177944862, + 0.9722529273134676, + 0.9664533537113174, + 0.8980586357606626, + 0.8824347249543827, + 0.957737379733654, + 0.9606072393507964, + 0.7604223245592875, + 0.9401709401709404, + 0.9616481164026224, + 0.9809453113164672, + 0.825, + 0.8965328341856458, + 0.9930434993747648, + 0.991941725455476, + 0.7662935746676578, + 0.916200245724204, + 0.8929657620169505, + 0.9764831764168632, + 0.8651113127255622, + 0.8576748602878727, + 0.8002254756609835, + 0.8303849683667891, + 0.945960433937275, + 0.9927523497097036, + 0.9224700032216756, + 0.924592891635332, + 0.8627825284444037, + 0.9427557668775548, + 0.9416944402363276, + 0.7977840705338264, + 0.891911538610805, + 0.7757575757575756, + 0.9186470619844704, + 0.9755497899678774, + 0.9380936401545896, + 0.9430730858023998, + 0.8821269989132121, + 0.8635778359926967, + 0.9686187299234, + 0.82231768595902, + 0.8454690660447776, + 0.936633843357067, + 0.9928614899602092, + 0.7920033670033668, + 0.9790238683337896, + 0.8517844847409421, + 0.7835174551354922, + 0.970437888198758, + 0.973913043478261, + 0.8004960204410251, + 0.8608354753566684, + 0.973913043478261, + 0.893253541612845, + 0.8985806100405787, + 0.9473716579271056, + 0.8802936186789987, + 0.8429844720496895, + 0.7998641304347827, + 0.7548105590062112, + 0.851091804125718, + 0.7982289247602901, + 0.8918317295952493, + 0.9704182624797956, + 0.9250441174468548, + 0.9234004788164912, + 0.8072112569313484, + 0.9458344577995612, + 0.8199687206756334, + 0.9636939983093828, + 0.973913043478261, + 0.8946764860972011, + 0.8953883830144143, + 0.9685626687981476, + 0.8854475897922277, + 0.890074370350509, + 0.9467502582887196, + 0.973913043478261, + 0.7675727377454222, + 0.9240556247405564, + 0.9038176307865486, + 0.800441791811323, + 0.8571885156262036, + 0.7888661250305931, + 0.7588020905133783, + 0.8150670283151774, + 0.8394858977004067, + 0.8506509425026049, + 0.86632058337082, + 0.907644799841382, + 0.7869039663743267, + 0.8377993482174306, + 0.9661635604440372, + 0.7796002893491529, + 0.8462255001833666, + 0.8698618053513671, + 0.853295011850143, + 0.9457912457912456, + 0.9954545454545456, + 0.7862536325455921, + 0.921913236929922, + 0.909090909090909, + 0.9764931810396176, + 0.9895652173913044, + 0.8409090909090907, + 0.982608695652174, + 0.904833326772871, + 0.9398297385891607, + 0.8728218919864726, + 0.910662682746664, + 0.7508707607699359, + 0.920196146646124, + 0.8941510995342954, + 0.7896297048496517, + 0.9062605084545612, + 0.9819906110654324, + 0.9395768590554164, + 0.8846891981591173, + 0.8753550543024229, + 0.9272543317870856, + 0.9159873721905482, + 0.9592356458451337, + 0.9719230769230768, + 0.853205915989843, + 0.9789473684210526, + 0.9119804816878756, + 0.9021731519130232, + 0.9408793468279631, + 0.9502457651288154, + 0.9343996875499296, + 0.8998470475108667, + 0.7828140592083379, + 0.956227485420032, + 0.9688644688644692, + 0.9878260869565216, + 0.9619598036238828, + 0.9853883242696474, + 0.9069463429223856, + 0.8484535647736858, + 0.9859234217934404, + 0.8546502548557862, + 0.8668958338409165, + 0.9890311615492476, + 0.9365130082728363, + 0.9280169976669376, + 0.8580430671412884, + 0.764302244596024, + 0.7736264668325739, + 0.8826697225277056, + 0.8391298861361308, + 0.8806041934635603, + 0.8250833206612556, + 0.928723519908324, + 0.8668958338409165, + 0.7521491867834005, + 0.8881896291715989, + 0.9616904586883988, + 0.9061435934718378, + 0.9211354224331691, + 0.90276124713408, + 0.9434394218523596, + 0.8047278408758268, + 0.9216703954780426, + 0.9230788696114616, + 0.9564875857045522, + 0.9694396869310692, + 0.8131377716690428, + 0.8237517359346238, + 0.8025926314878588, + 0.8965017504270001, + 0.9230777619327238, + 0.9104413159581644, + 0.8553134080531342, + 0.9989920981077092, + 0.917451425335698, + 0.9521895754027828, + 0.9069463429223856, + 0.8444028672449848, + 0.9910308796338216, + 0.8526177936134408, + 0.8634855466902354, + 0.988302056405168, + 0.946473950268886, + 0.9216703954780426, + 0.8566851356948486, + 0.7694393172704596, + 0.7752390906012949, + 0.776852147004819, + 0.8785410839961321, + 0.8290845270990632, + 0.8351044837311526, + 0.8264159807642062, + 0.9237835099442904, + 0.8868080394461477, + 0.8944200907180742, + 0.9486152933634998, + 0.9061435934718378, + 0.8987505869438153, + 0.7765308864041348, + 0.9062481548474688, + 0.9414868925909092, + 0.8971961746848013, + 0.9273107442696306, + 0.9564875857045522, + 0.9694396869310692, + 0.917451425335698, + 0.7980007746070045, + 0.900672328635003, + 0.9230777619327238, + 0.909042520211614, + 0.8722498962224989, + 0.99818613436632, + 0.917451425335698, + 0.9350943180643898, + 0.8450773104028045, + 0.7755025814626396, + 0.8499116091074294, + 0.9954545454545456, + 0.8248656842171965, + 0.8771670219049115, + 0.8017627702025454, + 0.8252966318058891, + 0.7989505012531329, + 0.9084382663648368, + 0.7700826611531227, + 0.8173907278944466, + 0.9586402202505122, + 0.8279882714725023, + 0.8750287541127237, + 0.8058469213257959, + 0.8887595093929513, + 0.8741986118728368, + 0.9013332512757184, + 0.8951137084436364, + 0.8085158042512651, + 0.7847209561813264, + 0.9207931801334324, + 0.8813228755976849, + 0.8806041934635603, + 0.904598717548413, + 0.8357423547232773, + 0.8519408442208184, + 0.7585436044093791, + 0.754716608935201, + 0.752694933524973, + 0.8630753385715217, + 0.945504664970314, + 0.8607621561631245, + 0.8190996579799223, + 0.8138788692223808, + 0.80834947374926, + 0.8461416361416363, + 0.8321563840156672, + 0.9049823065264198, + 0.7611003116070912, + 0.8564208333192405, + 0.9567242111117616, + 0.8830433688448956, + 0.8498282229301769, + 0.8787054248059898, + 0.7583865519843361, + 0.8560065732377481, + 0.7845811712379542, + 0.911841187081034, + 0.757598728667431, + 0.9032923617208078, + 0.8054515169551613, + 0.9457116500465104, + 0.7972151720771685, + 0.9550538402276436, + 0.8404738376904276, + 0.8951137084436364, + 0.8898770040500942, + 0.9910308796338216, + 0.9443350267709892, + 0.9379327738576018, + 0.9687178405771408, + 0.954337370755309, + 0.8992810605226834, + 0.8655309124484051, + 0.8902640300903737, + 0.8553282796247272, + 0.8614426005287826, + 0.8958075950132784, + 0.8438384213475643, + 0.8771670219049115, + 0.8280046113614686, + 0.8607621561631245, + 0.912541525908588, + 0.8614426005287826, + 0.8946208326427901, + 0.8930336617991886, + 0.9188566733401607, + 0.909042520211614, + 0.9278339260751618, + 0.8773278519419312, + 0.9111411170975592, + 0.9636724437338746, + 0.8566851356948486, + 0.933676703232262, + 0.9471874624563444, + 0.9832058480308432, + 0.8923668029454429, + 0.887801301315952, + 0.8244173938758999, + 0.8424917813524705, + 0.9048525852298742, + 0.9202629967209424, + 0.9586402202505122, + 0.99818613436632, + 0.811652655043935, + 0.9097417836628494, + 0.9329682990823176, + 0.8438384213475643, + 0.8958075950132784, + 0.8921838780119077, + 0.986652250762675, + 0.9479012434878824, + 0.9393536148186856, + 0.9687178405771408, + 0.764302244596024, + 0.955770578544058, + 0.8478847935907572, + 0.8634855466902354, + 0.8614426005287826, + 0.8580430671412884, + 0.8587224361306279, + 0.8923408506058652, + 0.8351044837311526, + 0.8052224642752426, + 0.911841187081034, + 0.8295875223215042, + 0.8895722942733691, + 0.912541525908588, + 0.8958075950132784, + 0.8960129675540568, + 0.8930336617991886, + 0.9550538402276436, + 0.909042520211614, + 0.887315997105363, + 0.8703128420935896, + 0.9111411170975592, + 0.9550538402276436, + 0.8614426005287826, + 0.9372227566431792, + 0.962952748132584, + 0.9824788936394012, + 0.9017863969504004, + 0.877949549206721, + 0.8614426005287826, + 0.8344345242846016, + 0.9013683659572824, + 0.9223744981227122, + 0.9586402202505122, + 0.99782684342909, + 0.8327803954481456, + 0.9377053197580578, + 0.7520783733062727, + 0.8576638516480299, + 0.7973458704289155, + 0.8055002075550022, + 0.8274342134261912, + 0.7682652462041775, + 0.8985858297326429, + 0.9295420779390244, + 0.9497666282126442, + 0.9045462110180228, + 0.8937267418365915, + 0.9450477324262084, + 0.9335682269765724, + 0.9463791440512886, + 0.8655309124484051, + 0.7591412700557859, + 0.8317573749391951, + 0.9191871761989552, + 0.9144998770732076, + 0.8299318662677443, + 0.7999671002057498, + 0.9590943683409436, + 0.9721268361679862, + 0.7512346093262124, + 0.9031905016766244, + 0.9258990440072554, + 0.8277497162434753, + 0.9045462110180228, + 0.9715042130082728, + 0.8091792146047655, + 0.8478274566824185, + 0.8594020739640472, + 0.7511865272235565, + 0.7739458321143061, + 0.8799003347391113, + 0.8438384213475643, + 0.8735155491890395, + 0.8971961746848013, + 0.955770578544058, + 0.962303313592256, + 0.9187077430559348, + 0.9203925414202916, + 0.9514626397110274, + 0.9041122896824668, + 0.7840680498436611, + 0.8292520377479811, + 0.97941509455445, + 0.8836172394187662, + 0.9375944096516282, + 0.9096320346320348, + 0.8897178357319816, + 0.977084365603192, + 0.8159983921213949, + 0.8647743756870857, + 0.9324532116794522, + 0.9496978544622346, + 0.8933384348345432, + 0.9146441554557286, + 0.8930134680134679, + 0.7745935959659945, + 0.9240556247405564, + 0.9248385202583678, + 0.9493296120831972, + 0.784239798606639, + 0.7934206675600327, + 0.847568697165119, + 0.8111354653251885, + 0.7558928791805505, + 0.7550475642500959, + 0.8290845270990632, + 0.9166360018268416, + 0.9214315504311476, + 0.8905928806265224, + 0.8833857030636293, + 0.8371864728096656, + 0.7786506591658735, + 0.8732444148742633, + 0.9824788936394012, + 0.9261641390813252, + 0.7920585237916445, + 0.8270827140818009, + 0.8181481481481481, + 0.9685059666773832, + 0.7724990486505474, + 0.8453837597330367, + 0.9028925619834708, + 0.974712351554919, + 0.7990739031960405, + 0.8124766840771213, + 0.8338302155859407, + 0.8257495162906912, + 0.9242514144040864, + 0.8874986998868335, + 0.8316014689297133, + 0.8491709060650188, + 0.9290397110203914, + 0.9429104219927898, + 0.9020663048206212, + 0.9497666282126442, + 0.8735827515879029, + 0.8190930086640767, + 0.9097417836628494, + 0.8836172394187662, + 0.7561436787677325, + 0.9111759366075988, + 0.9685059666773832, + 0.7694393172704596, + 0.9182355818184244, + 0.9443350267709892, + 0.8991822088005295, + 0.9609732144249478, + 0.8388412496816189, + 0.9434738042076424, + 0.9514940210071012, + 0.7974547159339365, + 0.9158098573783174, + 0.8885435517508157, + 0.7927757091445906, + 0.8089575535557855, + 0.8566665569299595, + 0.8314583644863298, + 0.7943437531819572, + 0.8869909377863762, + 0.7623509827444915, + 0.9602434075673276, + 0.8173534679942144, + 0.9145746409758626, + 0.7598389563652722, + 0.8919299119395553, + 0.9546749386121294, + 0.9061863080667324, + 0.9429340786658, + 0.8532240586756394, + 0.8877384763770779, + 0.958686173433348, + 0.9554765128325876, + 0.927589597885256, + 0.9529605866177816, + 0.9690193870107546, + 0.8907469811519958, + 0.9842229467473992, + 0.9364502164502164, + 0.855044427531639, + 0.9174603174603174, + 0.9919369945954868, + 0.7974492252661268, + 0.9534048316392292, + 0.7523489859050253, + 0.8139854059928581, + 0.9461387983232418, + 0.8098519486211259, + 0.7647244706969056, + 0.906310774345067, + 0.7678224795898994, + 0.9290762303990062, + 0.8524886899155711, + 0.980320788530466, + 0.9254995395026632, + 0.8657481566722074, + 0.9421659088682972, + 0.8474906647205497, + 0.9013546930437588, + 0.9748919688627304, + 0.8388843744066832, + 0.95990063654712, + 0.9796267593595076, + 0.9345104268491364, + 0.9405500820824608, + 0.8701948495342146, + 0.9783368141256884, + 0.7696261546646032, + 0.7607570099969941, + 0.7567551932941814, + 0.89138879753655, + 0.928489598568463, + 0.9086142870609782, + 0.9545454545454548, + 0.9545454545454548, + 0.8077423038829434, + 0.9174603174603174, + 0.948338703873867, + 0.9649045221259104, + 0.8289700533295026, + 0.9245393784589186, + 0.7559638453436506, + 0.8235522434404595, + 0.9007792207792208, + 0.7664355652861399, + 0.9290762303990062, + 0.8491308962278107, + 0.7573901281365926, + 0.8315151515151515, + 0.7505974060116344, + 0.9502677159519248, + 0.8378061008189606, + 0.8657481566722074, + 0.9421659088682972, + 0.9391737997679988, + 0.943947221044588, + 0.9530072970035708, + 0.946585394605002, + 0.8072282340152606, + 0.8919696969696971, + 0.9783368141256884, + 0.8060213664465975, + 0.7894137547439006, + 0.8886194359553157, + 0.8969404465407047, + 0.8395077004692013, + 0.8087262766581882, + 0.9417675428322848, + 0.838458313625102, + 0.9578918616552848, + 0.9877224033535164, + 0.9600766541682176, + 0.9372227566431792, + 0.9996947496947498, + 0.946473950268886, + 0.9273107442696306, + 0.8427440270131528, + 0.8930336617991886, + 0.8499116091074294, + 0.8297523357929766, + 0.8628042957923382, + 0.94362258995985, + 0.8861176478495413, + 0.992955297959396, + 0.954141881439958, + 0.9716068390573318, + 0.9372227566431792, + 0.9209665616774528, + 0.8810186818949944, + 0.8078565985679013, + 0.7888565809250084, + 0.8999765601568034, + 0.7784705964389922, + 0.8951137084436364, + 0.9694396869310692, + 0.906901471095239, + 0.9521895754027828, + 0.7517286913985, + 0.8687571885281811, + 0.7912430201328434, + 0.9975369458128078, + 0.9160401958804216, + 0.974218139790659, + 0.8509546425853288, + 0.900767299923892, + 0.9978013931164152, + 0.7966912350949062, + 0.8415390235407055, + 0.9095917165921852, + 0.7732064980993625, + 0.8864392836204776, + 0.804143123374405, + 0.8771670219049115, + 0.9813338311457538, + 0.9514741813067672, + 0.9586402202505122, + 0.9396223310702196, + 0.9574611462809792, + 0.9733296560462246, + 0.9277579783254948, + 0.9766303162486368, + 0.8371159751352831, + 0.7645789491661854, + 0.8881896291715989, + 0.9463791440512886, + 0.9564875857045522, + 0.7686245437524821, + 0.9510994238916862, + 0.8438384213475643, + 0.9041552036871964, + 0.9970690618433798, + 0.7655848997001549, + 0.8569756194651065, + 0.8565438206194017, + 0.7732064980993625, + 0.8167257771569466, + 0.8510568256152781, + 0.8573767226280884, + 0.9514741813067672, + 0.946103858087934, + 0.9425383776528816, + 0.9032923617208078, + 0.9055502356166318, + 0.9177635419435248, + 0.9424705422602816, + 0.7733034132276329, + 0.7944363835998364, + 0.8881896291715989, + 0.922836204777124, + 0.9493296120831972, + 0.7731216272312162, + 0.7701503489229721, + 0.9110701550899905, + 0.8749551130106945, + 0.9779240761641758, + 0.8757411810482202, + 0.9637205387205386, + 0.8307739463601532, + 0.7840680498436611, + 0.9718089459310836, + 0.7533766040551628, + 0.8411108025383495, + 0.8186320718389478, + 0.7507073140597975, + 0.8665855131372373, + 0.8141166099294751, + 0.846517863969504, + 0.8674324881574892, + 0.894897491091307, + 0.8007950286452882, + 0.9200506754154923, + 0.8002254756609835, + 0.8055002075550022, + 0.8899568476668683, + 0.8050891517303731, + 0.7551272091668285, + 0.9170723522722332, + 0.8862820694208641, + 0.7731935891169761, + 0.8962930952966316, + 0.8545871559633028, + 0.973043266390798, + 0.8475513005495156, + 0.8919753086419753, + 0.9230719517449376, + 0.9818181818181816, + 0.8724508253662054, + 0.7850116015543995, + 0.7799035733456022, + 0.7709127626361538, + 0.8079919101295913, + 0.7676689509424581, + 0.8706501932048896, + 0.8797516915893117, + 0.8063085414053331, + 0.9356832150292386, + 0.8438519069076046, + 0.8284948236315168, + 0.9064297442948914, + 0.9731718245680656, + 0.8146948605443375, + 0.8586700336700335, + 0.7917861568922506, + 0.8919445048153332, + 0.9275512725475664, + 0.8749102030655429, + 0.7586973969785763, + 0.8582940089755703, + 0.8288372093023257, + 0.9457912457912456, + 0.9067894216205786, + 0.8854903716972683, + 0.7712402158145529, + 0.8514488517233563, + 0.8119647131227026, + 0.7960368686049766, + 0.8764803941254208, + 0.7593988263019269, + 0.8332839656913731, + 0.8409641575217712, + 0.7830059960631145, + 0.8189152639403684, + 0.7914909068376863, + 0.8521396824062815, + 0.9429498910675382, + 0.787554569047141, + 0.9170262364403312, + 0.8143114753878038, + 0.8129887361537077, + 0.9416562889165628, + 0.8249965343560833, + 0.8184361507912837, + 0.7583136897041756, + 0.8954939454973427, + 0.9669995060071396, + 0.7678622085216633, + 0.7965505290883047, + 0.8025926314878588, + 0.8861176478495413, + 0.9066317021702632, + 0.781819981750254, + 0.8492357350911255, + 0.925730625364325, + 0.7682652462041775, + 0.7697542997542998, + 0.9647167592568326, + 0.7591823779426875, + 0.9809290093211468, + 0.8217563751752737, + 0.7791177041387707, + 0.9954545454545456, + 0.8281880073317623, + 0.8580430671412884, + 0.9032397543084568, + 0.7617771431813454, + 0.7866182087539877, + 0.7593988263019269, + 0.7752390906012949, + 0.8085158042512651, + 0.8909560347514579, + 0.9051334791710912, + 0.9066317021702632, + 0.7803249362542886, + 0.8737365714482546, + 0.9248568831411556, + 0.8383783163850448, + 0.9706054674756964, + 0.7623802782704252, + 0.9687833580671198, + 0.7739714809841708, + 0.8782693798816119, + 0.860081980641546, + 0.8833857030636293, + 0.792475110421586, + 0.8157848104775258, + 0.8701372997711668, + 0.9563298076485244, + 0.8490800833801486, + 0.7888565809250084, + 0.7741636141636141, + 0.8401837065840431, + 0.9484588138867748, + 0.9176863587872164, + 0.8973789818590386, + 0.8252966318058891, + 0.7617771431813454, + 0.8289524716549914, + 0.8621233137385207, + 0.7908116150724073, + 0.9316463142933344, + 0.7524570024570024, + 0.8718713242231872, + 0.772872635209218, + 0.7603048533875102, + 0.973201661164624, + 0.8391298861361308, + 0.7893505683000169, + 0.8608078181360624, + 0.8171099429462455, + 0.8507008302142539, + 0.7796040841350689, + 0.8137991281050442, + 0.8701372997711668, + 0.7906337827256118, + 0.9493296120831972, + 0.782031346414908, + 0.7993113894954217, + 0.7720161433138533, + 0.864620467059047, + 0.8900050041356494, + 0.8474662292253902, + 0.9115157598761456, + 0.9054424800276306, + 0.830044253645252, + 0.9288938029152748, + 0.8783604524820522, + 0.7944363835998364, + 0.7921163153910715, + 0.7869039663743267, + 0.948066117973837, + 0.9230788696114616, + 0.7965825732022186, + 0.7641898999679714, + 0.7858832626449197, + 0.8508778496367884, + 0.7802946460653972, + 0.7884721011749334, + 0.9513173145378848, + 0.8649568301570332, + 0.7764651372019794, + 0.8624508476571697, + 0.7631497975708502, + 0.8383275266110369, + 0.8166721221205311, + 0.8852917218205886, + 0.763935088255619, + 0.849984522961002, + 0.8818076679096488, + 0.7698644841737025, + 0.8836658805318403, + 0.9201199939290072, + 0.8893648150618828, + 0.8891377897432867, + 0.8205353126405759, + 0.8024182735874719, + 0.922961632460186, + 0.946516510443614, + 0.8942981283868459, + 0.8132787513211815, + 0.9842229467473992, + 0.983927829355058, + 0.9897436575227496, + 0.7789928908269387, + 0.9491102207390418, + 0.8027373398034093, + 0.8097807158117009, + 0.7742275740436659, + 0.8269035371638741, + 0.8164279646777108, + 0.7959065093927479, + 0.9299044396563476, + 0.9815561030337692, + 0.8847353302545712, + 0.8534614846726634, + 0.8781863560189622, + 0.9215082393282026, + 0.8660956368114106, + 0.9778877366568356, + 0.8883570187308942, + 0.8645713114309883, + 0.9608961698823448, + 0.7504350893637566, + 0.7899138991389913, + 0.9237157509601476, + 0.8085999198472382, + 0.9842229467473992, + 0.7915641555108558, + 0.9869637610219488, + 0.8388856048166393, + 0.9083168071393158, + 0.996947496947497, + 0.836399552488273, + 0.8254759949956995, + 0.8054112554112555, + 0.8315151515151515, + 0.9072515573214316, + 0.8455703241525074, + 0.8837147279244052, + 0.992492576897818, + 0.7771153106793246, + 0.9632800296944952, + 0.8751296156972389, + 0.9439627106557767, + 0.7599245853190747, + 0.948022748326122, + 0.797922077922078, + 0.8079059133534838, + 0.9002093642315044, + 0.9417677188802858, + 0.9120792735085574, + 0.9325279623513651, + 0.9765978165772758, + 0.9783368141256884, + 0.8035900178841139, + 0.8886194359553157, + 0.9424689576609075, + 0.8695613682942084, + 0.909090909090909, + 0.8277566532211718, + 0.7800435531915323, + 0.9027223454052724, + 0.8465029384806168, + 0.8272613669834734, + 0.8224835092471747, + 0.7714797416324134, + 0.8924773755936107, + 0.9954545454545456, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8434706308388398, + 0.8017627702025454, + 0.791670480549199, + 0.8995057307947333, + 0.8474662292253902, + 0.8294442768393521, + 0.90276124713408, + 0.996221188255952, + 0.8143962421732175, + 0.980394402239746, + 0.9514741813067672, + 0.7581308936708563, + 0.9531775071717112, + 0.9001377198115018, + 0.8004102325039334, + 0.8735155491890395, + 0.8677050513455755, + 0.8445527067336185, + 0.9636363636363636, + 0.937103645050706, + 0.9694957490472002, + 0.9822495603003196, + 0.901072927769024, + 0.9510994238916862, + 0.9362530022505056, + 0.8219385637193856, + 0.9996947496947498, + 0.7644937203650517, + 0.758657620282485, + 0.8385429638854297, + 0.8490535457456533, + 0.7757575757575756, + 0.999122807017544, + 0.8217563751752737, + 0.8636588686952739, + 0.8019358454012121, + 0.8455800687861758, + 0.8017627702025454, + 0.7768542199488491, + 0.8884642600370833, + 0.8474662292253902, + 0.7867084930870223, + 0.9926207992132684, + 0.9493296120831972, + 0.8445196063887654, + 0.9531775071717112, + 0.8571885156262036, + 0.8838874680306906, + 0.8891221903616687, + 0.9954545454545456, + 0.937103645050706, + 0.7996865517613174, + 0.9851370084561714, + 0.788353581901969, + 0.8469074304690744, + 0.8276687406622917, + 0.8844613609427293, + 0.9313089878738736, + 0.8709970502763632, + 0.8035084471465264, + 1, + 0.932761391647538, + 0.8392430039425867, + 0.945216049382716, + 0.7537357583191043, + 0.9719327874122964, + 0.9954545454545456, + 0.8217563751752737, + 0.8348054919908466, + 0.878863307023455, + 0.8019358454012121, + 0.8725525105676493, + 0.8033211036934772, + 0.791670480549199, + 0.8547301773579906, + 0.8474662292253902, + 0.7867084930870223, + 0.974712351554919, + 0.9500266403708978, + 0.951008471157725, + 0.7628108176190548, + 0.9531775071717112, + 0.7716841489148686, + 0.9391877740213088, + 0.8677050513455755, + 0.8967939861988315, + 0.937103645050706, + 0.8551520659154248, + 0.9851370084561714, + 0.8893524283935244, + 0.8733160901863193, + 0.8916710007549704, + 0.9391302151973808, + 0.9965169569202568, + 0.9136739322359624, + 0.9206651788481804, + 0.8553134080531342, + 0.8530611929128231, + 0.9099770642201834, + 0.949825316001485, + 0.7714797416324134, + 0.8862820694208641, + 0.9970690618433798, + 0.7726587251245716, + 0.8995898027497777, + 0.999122807017544, + 0.8462714704650187, + 0.7559911987169416, + 0.7902969671765014, + 0.8017627702025454, + 0.791670480549199, + 0.9312885573197214, + 0.8580430671412884, + 0.8474662292253902, + 0.7598160347464082, + 0.870252992498577, + 0.992671182389769, + 0.9862539184209972, + 0.9514741813067672, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.948072129659398, + 0.8677050513455755, + 0.880780406807804, + 0.9991101223581756, + 0.937103645050706, + 0.9851370084561714, + 0.7606385491732779, + 0.9822495603003196, + 0.937683151374774, + 0.9027223454052724, + 0.9526427685969672, + 0.9236004688155952, + 1, + 0.8401802481694282, + 0.9773557492735576, + 0.8553134080531342, + 0.8399280642635364, + 0.9943501037415146, + 0.9991101224022378, + 0.7643053750286719, + 0.8874398840030436, + 1, + 0.8119189817879228, + 0.8995898027497777, + 0.999122807017544, + 0.9908884770316014, + 0.81573077081821, + 0.9677933860111212, + 0.8398311720625257, + 0.8474662292253902, + 0.7867084930870223, + 0.8985858297326429, + 0.992671182389769, + 0.7506209000762775, + 0.9848040830545792, + 0.9514741813067672, + 0.8622230550415498, + 0.9531775071717112, + 0.9429977116704804, + 0.9358184932420454, + 0.8831178664041945, + 0.8571885156262036, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.9851370084561714, + 0.9822495603003196, + 0.9355427814530765, + 0.7598493905068002, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.8534197605902789, + 0.909090909090909, + 0.8755816117625161, + 0.986521739130435, + 0.7574533557466554, + 0.909090909090909, + 0.9891304347826086, + 0.8981981278894755, + 0.8661577367496762, + 0.9416316165688026, + 0.8216969791585356, + 0.7977855477855479, + 0.7730257320319432, + 0.8155778185409907, + 0.806941459089035, + 0.8844523908637408, + 0.9819906110654324, + 0.9267146997929604, + 0.930689847575993, + 0.9272543317870856, + 0.9161147326586146, + 0.9592356458451337, + 0.8911833569094192, + 0.8682065217391305, + 0.8974752586594693, + 0.9606049878058373, + 0.9119804816878756, + 0.8291255500470529, + 0.9571129080563042, + 0.9252515037745752, + 0.8839422379842073, + 0.8731842629559791, + 0.956227485420032, + 0.9623460662981314, + 0.9060336327100176, + 0.9466681074558329, + 0.9773557492735576, + 0.8385429638854297, + 0.7548029253094148, + 0.9943501037415146, + 0.9991101224022378, + 0.7643053750286719, + 0.836061944840571, + 1, + 0.8995898027497777, + 0.999122807017544, + 0.8310447482966568, + 0.9416562889165628, + 0.8111421417088542, + 0.9107768322387694, + 0.7741435607326606, + 0.8710025282890884, + 0.7867084930870223, + 0.90276124713408, + 0.992671182389769, + 0.9470902930560504, + 0.9514741813067672, + 0.9531775071717112, + 0.9531702386026508, + 0.7996045265203698, + 0.9133288665033964, + 0.8423392742271161, + 0.8546919803903434, + 0.999777530589544, + 0.937103645050706, + 0.8941624677316798, + 0.9851370084561714, + 0.7831708752610594, + 0.9822495603003196, + 0.9315717953934872, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9773557492735576, + 0.7647361516158825, + 0.95942299709423, + 0.8553134080531342, + 0.8335272614441827, + 0.9943501037415146, + 0.9991101224022378, + 0.7643053750286719, + 0.8924773755936107, + 1, + 0.8591091351396697, + 0.8995898027497777, + 0.999122807017544, + 0.9416562889165628, + 0.791670480549199, + 0.950603792184588, + 0.8460152283133167, + 0.8474662292253902, + 0.7867084930870223, + 0.8881896291715989, + 0.992671182389769, + 0.7614851364851365, + 0.9848040830545792, + 0.9514741813067672, + 0.8605291005291005, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.8888976303496793, + 0.8637008456171157, + 0.999777530589544, + 0.937103645050706, + 0.941303736239802, + 0.9851370084561714, + 0.9822495603003196, + 0.9400644385653472, + 0.7589913068467564, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.8297199580886332, + 0.909090909090909, + 0.8388354220573428, + 0.9440241802550384, + 0.8417508417508417, + 0.8349403911738128, + 0.7751196172248803, + 0.9824561403508774, + 0.8289326387041065, + 0.9363636363636364, + 0.8484963605932038, + 0.7878050123409911, + 0.7845412529955496, + 0.8978080587826363, + 0.8211938237064843, + 0.903572413997316, + 0.9759433010492332, + 0.930358431350264, + 0.773824015559919, + 0.9069851553477366, + 0.859207814594905, + 0.9063976387881104, + 0.982273978187496, + 0.8258268246116464, + 0.8378181818181818, + 0.8545698249141326, + 0.7874000986198109, + 0.880561913058948, + 0.9424238274563508, + 0.99359825065929, + 0.94959978379972, + 0.8034795384843757, + 0.8256241274761228, + 0.7845614802232331, + 0.8780499051174888, + 0.9016573566020094, + 0.996521739130435, + 0.8072721768598793, + 0.8757575757575757, + 0.996521739130435, + 0.805255257780506, + 0.8262184063662379, + 0.9518172850747404, + 0.8509007531737288, + 0.8092916186648053, + 0.8448511242895973, + 0.8221400000560604, + 0.8780499051174888, + 0.8585150396488364, + 0.7582578617938821, + 0.9127647109937574, + 0.8185902535630862, + 0.7647917209753416, + 0.8892853956679526, + 0.9240400548084888, + 0.9264066297227525, + 0.8454089009226886, + 0.8738453625296769, + 0.8228190336839921, + 0.9964912280701756, + 0.8440081063581091, + 0.8488300159492314, + 0.8886054092841905, + 0.9651624660242156, + 0.8337216929170275, + 0.8550497957993816, + 0.9818181818181816, + 0.9104377104377104, + 0.9930465133925186, + 0.8868917142282169, + 0.7519552584840934, + 0.9616732614626587, + 0.996521739130435, + 0.7508148487315153, + 0.909090909090909, + 0.999122807017544, + 0.9090273199933117, + 0.897855261911528, + 0.999122807017544, + 0.8507462616258913, + 0.9136683713678436, + 0.8674088334090595, + 0.8594701086956521, + 0.908313797791604, + 0.9891493795585866, + 0.7642455368060652, + 0.8891663542156248, + 0.924175824175824, + 0.9395716586151368, + 0.9484409722518364, + 0.9641388361295768, + 0.9059750088690924, + 0.999122807017544, + 0.9047503889161737, + 0.9033269863614518, + 0.9033269863614518, + 0.8658678644015689, + 0.9443498545350396, + 0.8906789023521027, + 0.999122807017544, + 0.9551184069702588, + 0.7562762148337596, + 0.9773557492735576, + 0.8409090909090907, + 0.9960831758177524, + 0.9978260869565218, + 0.7508148487315153, + 0.8490484481225223, + 0.999122807017544, + 0.9090273199933117, + 0.897855261911528, + 0.999122807017544, + 0.8507462616258913, + 0.9416562889165628, + 0.7863161002595062, + 0.7917643088450543, + 0.8674088334090595, + 0.7940883223309813, + 0.8392760078156812, + 0.908313797791604, + 0.9891493795585866, + 0.766483106515241, + 0.8959840947127665, + 0.8891663542156248, + 0.924175824175824, + 0.9395716586151368, + 0.9484409722518364, + 0.9641388361295768, + 0.974712351554919, + 0.999122807017544, + 0.9047503889161737, + 0.9033269863614518, + 0.9773557492735576, + 0.8895761362866625, + 0.9748201493966672, + 0.9033269863614518, + 0.7646806860332477, + 0.8800026263331926, + 0.9443498545350396, + 0.9956140350877192, + 0.932409671284977, + 0.999122807017544, + 0.9551184069702588, + 0.7562762148337596, + 0.9833457647662114, + 0.8409090909090907, + 0.8227240115332337, + 0.9947765595830976, + 0.9978260869565218, + 0.7508148487315153, + 0.8569860866157162, + 0.999122807017544, + 0.9090273199933117, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8521396824062815, + 0.9416562889165628, + 0.8683896350563016, + 0.783774936061381, + 0.936963017728694, + 0.8674088334090595, + 0.8474662292253902, + 0.7880796625738841, + 0.908313797791604, + 0.9891493795585866, + 0.766483106515241, + 0.8356411205726274, + 0.8959840947127665, + 0.8891663542156248, + 0.924175824175824, + 0.9395716586151368, + 0.9484409722518364, + 0.9641388361295768, + 0.8643546462063086, + 0.9753454579899592, + 0.999122807017544, + 0.9047503889161737, + 0.9033269863614518, + 0.9851370084561714, + 0.9748201493966672, + 0.9033269863614518, + 0.7684710351377019, + 0.8800026263331926, + 0.9443498545350396, + 0.999122807017544, + 0.90662100456621, + 0.999122807017544, + 0.9551184069702588, + 0.7562762148337596, + 0.9833457647662114, + 0.8409090909090907, + 0.7928783407950074, + 0.8919753086419753, + 0.9978260869565218, + 0.7508148487315153, + 0.8490459410817468, + 0.999122807017544, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8507462616258913, + 0.9416562889165628, + 0.7684372454295727, + 0.936963017728694, + 0.8674088334090595, + 0.8474662292253902, + 0.9891493795585866, + 0.984323635061576, + 0.9353365093463604, + 0.924175824175824, + 0.9395716586151368, + 0.963346594676518, + 0.8643546462063086, + 0.9047503889161737, + 0.9033269863614518, + 0.9851370084561714, + 0.9447497776699816, + 0.9787330446229278, + 0.9033269863614518, + 0.7646806860332477, + 0.8800026263331926, + 0.9443498545350396, + 0.8849247249134843, + 0.90662100456621, + 0.8830204170152121, + 0.7610810810810811, + 0.918761685155179, + 0.849564043730598, + 0.9295382499658214, + 0.8737807294339347, + 0.7524570024570024, + 0.8764855553630885, + 0.8881376171456311, + 0.8144653876435873, + 0.7569047619047621, + 0.9011440242078432, + 0.9721444518798692, + 0.8580395542059102, + 0.7556448396101646, + 0.8943463267997412, + 0.7708422347381368, + 0.8312540974287804, + 0.927155204148788, + 0.9242507691836442, + 0.8039533480013239, + 0.9253381976987182, + 0.9487056115959976, + 0.996333638863428, + 0.9061372721317869, + 0.8039194902068956, + 0.9773557492735576, + 0.8553134080531342, + 0.8316014689297133, + 0.9590943683409436, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049175, + 0.9997983870967744, + 0.8210917926103164, + 0.8995898027497777, + 0.999122807017544, + 0.9416562889165628, + 0.7854916126103976, + 0.8580430671412884, + 0.8452862219584866, + 0.90276124713408, + 0.992671182389769, + 0.9514741813067672, + 0.9531775071717112, + 0.9429977116704804, + 0.856399568810636, + 0.9607331879409255, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.8733160901863193, + 0.8902640300903737, + 0.9822495603003196, + 0.7724990486505474, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9505705348293196, + 0.8900825885161551, + 0.9271888077994948, + 0.7647361516158825, + 0.9773557492735576, + 0.8553134080531342, + 0.9590943683409436, + 0.9991101224022378, + 0.8219385637193856, + 0.8478847935907572, + 0.9954545454545456, + 0.8210917926103164, + 0.8995898027497777, + 0.9479012434878824, + 0.8019358454012121, + 0.9416562889165628, + 0.8188858158239666, + 0.8055002075550022, + 0.8580430671412884, + 0.8474662292253902, + 0.895416975651959, + 0.992671182389769, + 0.8356411205726274, + 0.8716815273032167, + 0.9429977116704804, + 0.8677050513455755, + 0.9607331879409255, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.9240556247405564, + 0.8819809439955775, + 0.9822495603003196, + 0.7999671002057498, + 0.9413092648977816, + 0.9954545454545456, + 0.9326966113459272, + 0.7838827173142349, + 0.9271888077994948, + 0.8469712140023324, + 0.9773557492735576, + 0.8553134080531342, + 0.8394616500465105, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049175, + 0.9994500458295142, + 0.8184361507912837, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8089287811425216, + 0.8553636363636363, + 0.791670480549199, + 0.936963017728694, + 0.8474662292253902, + 0.8181109552382407, + 0.8966477542865559, + 0.992671182389769, + 0.9775526793347032, + 0.9514741813067672, + 0.9531775071717112, + 0.9429977116704804, + 0.9341361232572516, + 0.776758166969147, + 0.8677050513455755, + 0.999777530589544, + 0.937103645050706, + 0.9230017232221136, + 0.9851370084561714, + 0.8553134080531342, + 0.884737671188568, + 0.9413092648977816, + 0.9824561403508774, + 0.9505705348293196, + 0.8909999999999999, + 0.8933113072408856, + 0.7647361516158825, + 0.9929947676208064, + 0.8598347107438016, + 0.8490800833801486, + 0.9947856385396152, + 0.9990150209905604, + 0.7707081956166205, + 0.8952232922255726, + 7, + 0.8216057600038708, + 0.9000234404536862, + 2, + 0.8075842215036355, + 0.946198347107438, + 0.8021928166351607, + 0.7928741020793951, + 0.9344444444444444, + 0.8578858011832347, + 0.8483379501385041, + 0.7871436798157214, + 0.9025957850286672, + 0.9928936489808848, + 0.9846235837724948, + 0.9527305856232412, + 0.9434321361058602, + 0.9373115797727772, + 0.9350049149338372, + 0.8705701323251417, + 0.986135349716446, + 6, + 0.9357441792403746, + 0.941314332676578, + 0.9860141582025238, + 0.9826843100189036, + 0.9826843100189036, + 0.8050748795127288, + 0.884575512524494, + 0.9417436672967864, + 0.9937805570643936, + 0.9503788875440718, + 7, + 0.9245562130177516, + 0.7654094979252105, + 1, + 0.909090909090909, + 0.8238490179500522, + 0.9637205387205386, + 0.9819008264462812, + 0.7757575757575756, + 0.8216057600038708, + 0.9000234404536862, + 2, + 0.8075842215036355, + 0.9217516347489824, + 0.799080529300567, + 0.9344444444444444, + 0.8948549687825181, + 0.9721268082486918, + 0.8409090909090907, + 0.9499201807471164, + 0.9527305856232412, + 0.9434321361058602, + 0.9206147765314164, + 0.9350049149338372, + 0.8640914933837429, + 0.9964943059402892, + 0.816272967863894, + 0.9860141582025238, + 0.928736342351717, + 0.9792393194706994, + 0.8994380853277835, + 0.9292599608634764, + 2, + 0.8362207611956006, + 0.9902353003770102, + 0.8950805293005671, + 0.7602465480841565, + 0.9929947676208064, + 0.8598347107438016, + 0.8490800833801486, + 0.9947856385396152, + 0.9990150209905604, + 0.7707081956166205, + 0.8952232922255726, + 7, + 0.8216057600038708, + 0.9000234404536862, + 2, + 0.8011324661116951, + 0.8075842215036355, + 0.946198347107438, + 0.8021928166351607, + 0.7928741020793951, + 0.9344444444444444, + 0.8578858011832347, + 0.8483379501385041, + 0.9025957850286672, + 0.9928936489808848, + 0.9846235837724948, + 0.951299790877642, + 0.9527305856232412, + 0.9434321361058602, + 0.9396223310702196, + 0.9350049149338372, + 0.8705701323251417, + 0.986135349716446, + 6, + 0.9357441792403746, + 0.941314332676578, + 0.9860141582025238, + 0.9826843100189036, + 0.8050748795127288, + 0.884575512524494, + 0.9417436672967864, + 2, + 0.9503788875440718, + 7, + 0.9245562130177516, + 0.7654094979252105, + 0.9819008264462812, + 0.8598347107438016, + 0.8131334593572779, + 0.76909130219916, + 0.9990150209905604, + 0.7707081956166205, + 7, + 0.8216057600038708, + 0.9000234404536862, + 2, + 0.8475686570924665, + 0.9583379501385042, + 0.8578858011832347, + 0.8245991597474406, + 0.8852652399934414, + 0.9928936489808848, + 0.81331932016418, + 0.8180035444849115, + 0.8711111111111112, + 0.7763165596167769, + 0.9350049149338372, + 6, + 0.9349642299687824, + 0.9860141582025238, + 0.9826843100189036, + 0.884575512524494, + 0.9417436672967864, + 0.996520316855316, + 7, + 0.9245562130177516, + 0.7654094979252105, + 0.8580139372822299, + 0.9830434782608694, + 0.8893524283935244, + 0.9954545454545456, + 0.9159300003279972, + 0.8181818181818182, + 0.7500000000000001, + 0.8938595877462214, + 0.9042008986509024, + 0.957287033071265, + 0.90234375, + 0.9223350132140808, + 0.8347334184691517, + 0.9207931801334324, + 0.8467468534925462, + 0.8855595367052747, + 0.7719095384164608, + 0.89266067021096, + 0.8763416775577225, + 0.9545454545454548, + 0.911370421730973, + 0.8444352108196725, + 0.889643133181266, + 0.7993302204531538, + 0.9838876285414652, + 0.981598371482293, + 0.8584226317602835, + 0.9320791500266458, + 0.9545454545454548, + 0.8557709287004716, + 0.8980542801375592, + 0.8619577717071254, + 0.9666063921681544, + 0.9199136660983444, + 0.954105606965682, + 0.8784735812133071, + 0.8146320346320346, + 0.8985141146494671, + 0.8109991172010629, + 0.8039130434782609, + 0.8999203521041262, + 0.9046926758835668, + 0.9502900712294152, + 0.912840025574134, + 0.9565342960288808, + 0.908022550608102, + 0.7889688874990176, + 0.9947765595830976, + 0.9939130434782611, + 0.7541751489851583, + 0.8333567358870508, + 0.9077642484940728, + 0.89655436679566, + 0.8211280822082607, + 0.7590923827347884, + 0.891518378456824, + 0.9280303030303032, + 0.7756218002597997, + 0.8987662245043503, + 0.8668602157771255, + 0.801511385184123, + 0.9878450565293272, + 0.8198448448448448, + 0.8761625640592721, + 0.9331326790672908, + 0.8095673945542065, + 0.9692603418275338, + 0.8574834373128851, + 0.984385006449655, + 0.996521739130435, + 0.7993577556225365, + 0.904913008013858, + 0.908522355957097, + 0.8922324960716342, + 0.9027775208335084, + 0.8863636363636364, + 0.8930134680134679, + 0.8159728122344945, + 0.94712477473252, + 0.9501526150902738, + 0.9360797940299664, + 0.7541751489851583, + 0.7667799490229397, + 0.7911852166525064, + 0.8545853753924373, + 0.8991709050477996, + 0.9636363636363636, + 0.8911305509993319, + 0.9280303030303032, + 0.7559479094211299, + 0.9484006454368564, + 0.8396074640434158, + 0.7602400762912696, + 0.8236580766813324, + 0.8818556180808311, + 0.9202063402841564, + 0.840163421768686, + 0.9479922753053344, + 0.9495079748317236, + 0.9185105083088952, + 0.8116459489241595, + 0.9143375393297604, + 0.9496030156557552, + 0.8340405157441468, + 0.904913008013858, + 0.8855604489099591, + 0.8008650649412102, + 0.917917299639148, + 0.880492540216932, + 0.9964912280701756, + 0.8884778012684991, + 0.9772727272727272, + 0.9305426817265549, + 0.7903598392225996, + 0.913366781280282, + 0.9096320346320348, + 0.9904188832431408, + 0.996521739130435, + 0.7541751489851583, + 0.8171186929707506, + 0.9908763972444158, + 0.9077642484940728, + 0.89655436679566, + 0.772467875442053, + 0.860588835859315, + 0.9234883720930234, + 0.7875052854122622, + 0.933111940667877, + 0.8330354177655357, + 0.98656936388704, + 0.7578096064482999, + 0.8236580766813324, + 0.9347318308522028, + 0.8932895451827312, + 0.9285799156049388, + 0.9331326790672908, + 0.9644254304363626, + 0.9670876387294296, + 0.984385006449655, + 0.9939130434782611, + 0.8081449326727791, + 0.904913008013858, + 0.958843983408048, + 0.9074265343943518, + 0.914550550747443, + 0.9956140350877192, + 0.7875052854122622, + 0.8930995950038104, + 0.9583981105619436, + 0.7913282390616106, + 0.8553636363636363, + 0.9520786868217588, + 0.822779182260992, + 0.7541751489851583, + 0.7533175355450237, + 0.7932981415505088, + 0.8738851187127049, + 0.8977552028386393, + 0.9636363636363636, + 0.8909590821089839, + 0.9280303030303032, + 0.7559479094211299, + 0.7751825777502708, + 0.9484006454368564, + 0.8164106024837708, + 0.8378181818181818, + 0.7561931059330721, + 0.8198448448448448, + 0.8746812582275244, + 0.917685782192232, + 0.8430950344725274, + 0.9479922753053344, + 0.9401658822908944, + 0.9345885985711606, + 0.7898873359402224, + 0.9291147879324684, + 0.9688056850309468, + 0.8399373186372248, + 0.904913008013858, + 0.8926128930190145, + 0.8013821571709653, + 0.9027775208335084, + 0.9068677230102368, + 0.9964912280701756, + 0.8884778012684991, + 0.9772727272727272, + 0.937931239097852, + 0.7893307769071134, + 0.8507923269391159, + 0.82454262425017, + 0.9956476370717128, + 0.997391304347826, + 0.7521112125156584, + 0.8486137750653879, + 0.9982456140350876, + 0.9095579316931844, + 0.8974216292028354, + 0.9982456140350876, + 0.7932369506718919, + 0.865081443540125, + 0.7910710359728593, + 0.7802662901330503, + 0.9360867018160518, + 0.8672259606948435, + 0.8465945179292698, + 0.7860877112960002, + 0.90741737640829, + 0.988714605208294, + 0.7650792722152088, + 0.9834028714566064, + 0.9319643313838056, + 0.8892009084674849, + 0.9238927452772132, + 0.938293658314696, + 0.9463111401682168, + 0.9638336347197108, + 0.8614957734733332, + 0.9743634159016108, + 0.9982456140350876, + 0.904567225435328, + 0.902432554260779, + 0.9842598587858048, + 0.9800758121375232, + 0.9031438311232312, + 0.7664643536742591, + 0.8798196380081305, + 0.9452382460255262, + 0.9982456140350876, + 0.9982456140350876, + 0.9542133966338968, + 0.7550919222167469, + 0.8650485436893204, + 0.9590943683409436, + 0.9899999999999998, + 0.7905998956595828, + 0.9964912280701756, + 0.8794606193667226, + 0.9543859649122808, + 0.8482253411306041, + 0.9416562889165628, + 0.8635977474267437, + 0.908313797791604, + 0.9882608695652176, + 0.9329580322176916, + 0.8517155377371683, + 0.9278910038068524, + 0.7982464236271342, + 0.8646739607798208, + 0.9813471226782764, + 0.9960869565217392, + 0.9094579806240582, + 0.9134140956933028, + 0.9851370084561714, + 0.97920631307383, + 0.977065643648764, + 0.8834465198075598, + 0.9747949320291138, + 0.932911746603152, + 0.999122807017544, + 0.959866019149962, + 0.7617844033057979, + 0.7748830995323981, + 0.8909999999999999, + 0.7596175070890622, + 0.8999999999999999, + 0.9123145440909052, + 0.8741654144553147, + 0.8398585426427478, + 0.8724872612693206, + 0.7669652718124924, + 0.8631126133046548, + 0.8409246558039661, + 0.8097354943626018, + 0.95990063654712, + 0.8969342300921225, + 0.9611031655225016, + 0.827297433674167, + 0.8779350849682387, + 0.8367440082204682, + 0.8930134680134679, + 0.9964912280701756, + 0.7824996118615121, + 0.8861176478495413, + 0.9315029605665132, + 0.9240556247405564, + 0.7895079901300617, + 0.8675786978032918, + 0.7532931318639005, + 0.90662100456621, + 0.7716841489148686, + 0.7502640132876187, + 0.8438384213475643, + 0.8979659609796596, + 0.8433356634883352, + 0.8893524283935244, + 0.8088096745504153, + 0.916047252707554, + 0.8157092458590421, + 0.7713701554506877, + 0.8990439807701139, + 0.890757036354073, + 0.9537544911348904, + 0.808038039840766, + 0.9851370084561714, + 0.8932164255129278, + 0.9471843568535036, + 0.9133288665033964, + 0.9132421335802218, + 0.8276330050739579, + 0.8868080394461477, + 0.8668829861852336, + 0.8964265087723556, + 0.9911660095629562, + 0.9182659870037118, + 0.8633272832102701, + 0.8186320718389478, + 0.8881896291715989, + 0.8840480861242009, + 0.8197634340126408, + 0.7611003116070912, + 0.8939095129169344, + 0.901240425894056, + 0.8290845270990632, + 0.8844734722345178, + 0.900672328635003, + 0.8611114838221066, + 0.9020646721236416, + 0.7524570024570024, + 0.9671031943607348, + 0.7643684665873062, + 0.9177602214566852, + 0.9280169976669376, + 0.9651126414686952, + 0.8767768595041323, + 0.933676703232262, + 0.8344383939714739, + 0.849693862814132, + 0.7954107032792183, + 0.933676703232262, + 0.938108321790696, + 0.928906596493303, + 0.7642353146981488, + 0.8546502548557862, + 0.8224212265843107, + 0.7710819445257563, + 0.8864829929760666, + 0.8716815273032167, + 0.8660098479761721, + 0.9025093300004408, + 0.812107188419381, + 0.9607952743931896, + 0.8722498962224989, + 0.9310204439345414, + 0.9777167277167276, + 0.8010759771629337, + 0.8522718489127074, + 0.9093424633191152, + 0.8425177354450203, + 0.7805733235714439, + 0.8924918014613418, + 0.9893784849790032, + 0.8451386855821716, + 0.8875135039917614, + 0.9706691109074244, + 0.7686359724042269, + 0.8133865875461221, + 0.9501902748414376, + 0.8687372572217293, + 0.7972263500644203, + 0.879221174323091, + 0.8580430671412884, + 0.8347523783886707, + 0.9006369722354359, + 0.992671182389769, + 0.9563291529742204, + 0.947447712690609, + 0.7790788334554246, + 0.9533492330474672, + 0.8986916130118449, + 0.9391877740213088, + 0.9348478408783754, + 0.8636563261069189, + 0.9225521327977664, + 0.9272525027808676, + 0.934718899751552, + 0.7847695804918373, + 0.9443983271522132, + 0.9774342481963584, + 0.97920631307383, + 0.9390325835747532, + 0.7859442359319205, + 0.9452608121807992, + 0.8231219423433573, + 0.9939505041246564, + 0.8711884810416023, + 0.9664525827971132, + 0.8922813036020585, + 0.8517879419237278, + 0.9226251523770824, + 0.9989000916590284, + 0.912544997503788, + 0.8862043421277565, + 0.7932768442135996, + 0.8376774696711561, + 0.7841809006211181, + 0.7925277144429594, + 0.8649220965924544, + 0.8539211685273398, + 0.8363949697251979, + 0.8264854203894482, + 0.9072225728615328, + 0.992671182389769, + 0.8515020101968745, + 0.9309305726600986, + 0.9543209471735604, + 0.9391877740213088, + 0.9348478408783754, + 0.8914844044126528, + 0.9256464785119556, + 0.9954545454545456, + 0.9374817381090278, + 0.7688326686368462, + 0.8925869273677869, + 0.9703270521983972, + 0.9809453113164672, + 0.8066868740036242, + 0.8351972694191357, + 0.8433153659377112, + 0.9392359594194456, + 0.8888965657897014, + 0.8930757789029354, + 0.999083409715857, + 0.9743963538884604, + 0.7953195319531953, + 0.8454219118804093, + 0.9502704567873635, + 0.9458992126856904, + 0.7644077516403233, + 0.8706106552426165, + 0.9965172600923464, + 0.8217563751752737, + 0.9124729676453814, + 0.9818515123739688, + 0.8086304821445487, + 0.9321596244131456, + 0.7740195848021936, + 0.8328682787543888, + 0.8700240408314942, + 0.8580430671412884, + 0.8444444444444444, + 0.8063613046642976, + 0.870252992498577, + 0.992671182389769, + 0.9630275323942066, + 0.9518090954793984, + 0.8248761807094432, + 0.9566474322858416, + 0.9285566337630128, + 0.9391877740213088, + 0.9348478408783754, + 0.8389228250888329, + 0.908538082241886, + 0.9906562847608452, + 0.937727360640436, + 0.8522952375426849, + 0.9459029430545072, + 0.970027764388316, + 0.9817818865916694, + 0.8466376695566145, + 0.7811519654537372, + 0.9366631199668156, + 0.9535299764377344, + 0.9032200335646016, + 0.9998166819431716, + 0.848042162605121, + 0.9780701754385964, + 0.8055944055944054, + 0.8519962283651035, + 0.9944372261358286, + 0.8909859611558665, + 0.9930339138405136, + 0.8688321482439129, + 0.8739386859650123, + 0.7999172993636504, + 0.8106128029621074, + 0.9095679827050768, + 0.8277677156441022, + 0.779649885583524, + 0.8288552731227062, + 0.8574961012970123, + 0.841109866865746, + 0.792355474053602, + 0.8966775300321758, + 0.992671182389769, + 0.9572785040629562, + 0.9291879754864996, + 0.889317620077831, + 0.9515562365156858, + 0.9348478408783754, + 0.8753775156331067, + 0.9532353404791928, + 0.9954545454545456, + 0.937189056965018, + 0.9715579478946336, + 0.959737826278744, + 0.961743440323128, + 0.9796080671884818, + 0.8052224642752426, + 0.7647985836235606, + 0.8987594276173578, + 0.935391253108552, + 0.9994500458295142, + 0.8855041459997729, + 0.909090909090909, + 0.778450363196126, + 0.8409090909090907, + 0.9903940886699508, + 0.9132561051004052, + 0.8590718015934052, + 0.9118814562362948, + 0.7681025602181487, + 0.7961600220298013, + 0.8228255528255527, + 0.7862727272727271, + 0.8598109918146062, + 0.9327132807405768, + 0.8460922217047043, + 0.909090909090909, + 0.7565260131563886, + 0.8064786173763172, + 0.804964695498676, + 0.8147984533079082, + 0.8706455071105871, + 0.8894598432925959, + 0.8753408574458414, + 0.78943545201723, + 0.9225337271553442, + 0.8471976396567684, + 0.9582046990267186, + 0.7739383306543302, + 0.8439728108918513, + 0.9681818181818184, + 0.9147990007027552, + 0.8965678134850725, + 0.9229230100043496, + 0.8814426843808552, + 0.8299673329703665, + 0.953884157786154, + 0.9568896321070232, + 0.927359277258842, + 0.926999815931348, + 0.9084797370520776, + 0.7588691796008868, + 0.8925148498881217, + 0.941101152368758, + 0.7976890157802166, + 0.8191512279190005, + 0.9383783723654014, + 0.9687898089171972, + 0.8227272727272728, + 0.9667829842995462, + 0.8430578512396695, + 0.8462362704327265, + 0.9937731747479652, + 0.8598347107438016, + 0.9018993376896012, + 0.9380859781477626, + 0.7965452139741044, + 0.8408374965151522, + 0.828891493383743, + 0.8037512287334593, + 0.9310557094490612, + 0.7905217546826223, + 0.8803334593572778, + 0.948060941828255, + 0.9808836171606352, + 0.9419954799687824, + 0.9000657462195923, + 0.9762481841119351, + 0.958536231884058, + 0.8689482041587903, + 0.9625071374155624, + 0.9421304353743684, + 0.9000657462195923, + 0.909072064464046, + 0.7770347430724859, + 0.8258664204370576, + 0.931003010693105, + 0.936341359994194, + 0.944622600300256, + 0.7698155009451796, + 0.9886242163794032, + 0.8385429638854297, + 0.8460152283133167, + 0.8244642857142858, + 0.90662100456621, + 0.8965017504270001, + 0.9477543538038498, + 0.934372987530004, + 0.7966912350949062, + 0.8521832338962485, + 0.8284602000869942, + 0.8025417478298693, + 0.9275512725475664, + 0.9004149252037746, + 0.9814823072033312, + 0.9441436310000064, + 0.9038201493163326, + 0.9502409737496426, + 0.8660854435766022, + 0.880780406807804, + 0.932626333246618, + 0.8230247277595697, + 0.9169832716276728, + 0.9163600219843964, + 0.7558559856410743, + 0.8249965343560833, + 0.9341554258408444, + 0.8231479245485526, + 0.9054813423400642, + 0.7909076419763443, + 0.7862727272727271, + 0.8658008658008658, + 0.996330951542531, + 0.9364502164502164, + 0.7650216450216449, + 0.794733291750721, + 0.894436842425348, + 0.9071691672620464, + 0.8475960459042418, + 0.8250190694126619, + 0.9011154934052964, + 0.9888403534005904, + 0.9064975857191632, + 0.8040148172573157, + 0.7544972303681979, + 0.8394258450740809, + 0.872224809812141, + 0.8832034632034632, + 0.9242506379637506, + 0.8626119406890994, + 0.878664636798608, + 0.796428039082196, + 0.7737936507936508, + 0.9772426641825802, + 0.9771984786553624, + 0.7754989006737327, + 0.9842229467473992, + 0.9545454545454548, + 0.8536368018578387, + 0.9904302907657898, + 0.9985875706214687, + 0.7822341892305151, + 0.8895952017025271, + 0.9977822580645164, + 0.822054489456517, + 0.9068929556529068, + 0.9969759694040504, + 0.8227635041015324, + 0.92385752642948, + 0.7644903235840163, + 0.7893527624833871, + 0.9290762303990062, + 0.8549939348739194, + 0.9024751306250636, + 0.9939538727034296, + 0.9838663951689132, + 0.9555403520366936, + 0.8659230906299106, + 0.9555403520366936, + 0.936556104044048, + 0.9365262267264388, + 0.943947221044588, + 0.8711152458705146, + 0.981787734953484, + 0.9977753058954394, + 0.939105864661958, + 0.941241408860912, + 0.9772426641825802, + 0.9783368141256884, + 0.9783368141256884, + 0.8035224554513879, + 0.8878885108220647, + 0.9498970784947516, + 0.9954182612676434, + 0.8911007105869436, + 0.9977822580645164, + 0.9332845830090168, + 0.7698457560674341, + 0.8237875450920827, + 0.7694629219019462, + 0.9545454545454548, + 0.7676911617909391, + 0.8737944824901345, + 0.7706024497958504, + 0.7971142965635086, + 0.797381306659819, + 0.8620542233987611, + 0.8139854059928581, + 0.9887078033035884, + 0.9359939732913412, + 0.816825438145235, + 0.8422527112008905, + 0.8452819441807482, + 0.8400216450216451, + 0.8999203521041262, + 0.929916690661292, + 0.830854814143431, + 0.9513142174432496, + 0.9688527588701455, + 0.9228795379537954, + 0.7730756056428139, + 0.958302500539574, + 0.8026224595457895, + 0.804211768109809, + 0.999122807017544, + 0.9565843431073292, + 0.8024218124622581, + 0.8815110224684692, + 0.8108800084863914, + 0.9608990650462856, + 0.7587225856098497, + 0.8465945179292698, + 0.8955974273031978, + 0.9430511599324012, + 0.7968522430480871, + 0.942185445331794, + 0.8678328134388728, + 0.8589010971043637, + 0.9773557492735576, + 0.8072544965953004, + 0.9954545454545456, + 0.8468840523666226, + 0.7893040004872826, + 0.999122807017544, + 0.8702035016515567, + 0.7949970358330488, + 0.9294585399607892, + 0.8407994285729776, + 0.8788200589970502, + 0.8314481030702938, + 0.831385641452182, + 0.9804378566350936, + 0.9129349807104162, + 0.8141494511694449, + 0.9133990354371988, + 0.9851370084561714, + 0.9095532047456912, + 0.8505448360551612, + 0.963157894736842, + 0.7634237761904064, + 0.9011822106778054, + 0.9956171156600898, + 0.95942299709423, + 0.8553134080531342, + 0.8472097261066925, + 0.9805098186910532, + 0.8553134080531342, + 0.7714797416324134, + 0.9997983870967744, + 0.8217563751752737, + 0.8946470109877639, + 0.999122807017544, + 0.8354069917967499, + 0.9416562889165628, + 0.791670480549199, + 0.936963017728694, + 0.8580430671412884, + 0.8474662292253902, + 0.7867084930870223, + 0.8909560347514579, + 0.992671182389769, + 0.9848040830545792, + 0.8630706569122704, + 0.8702378201869909, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.907644799841382, + 0.999122807017544, + 0.9414868925909092, + 0.9335682269765724, + 0.8893524283935244, + 0.9822495603003196, + 0.8052224642752426, + 0.9379369101877942, + 0.909090909090909, + 0.756404071529602, + 0.9271888077994948, + 0.9921175854473762, + 0.8553134080531342, + 0.9943501037415146, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049175, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8089287811425216, + 0.8017627702025454, + 0.791670480549199, + 0.936963017728694, + 0.8580430671412884, + 0.8474662292253902, + 0.7867084930870223, + 0.90276124713408, + 0.992671182389769, + 0.8072821072057714, + 0.9848040830545792, + 0.8189889492826025, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.974712351554919, + 0.999777530589544, + 0.937103645050706, + 0.9773557492735576, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9503668087629396, + 1, + 0.9271888077994948, + 0.7647361516158825, + 0.9807297003570874, + 0.9364502164502164, + 0.7901612469857595, + 0.824287208001439, + 0.9807297003570874, + 0.7614649785030472, + 0.8658008658008658, + 0.9939130434782611, + 0.906665151293522, + 0.8939526037506182, + 0.9842229467473992, + 0.865081443540125, + 0.9167169276268624, + 0.8794346322201474, + 0.765130456168069, + 0.8734544866674276, + 0.909520787797598, + 0.8854931946173012, + 0.7673924006226841, + 0.8798233135618779, + 0.9852364106660584, + 0.7637569649841349, + 0.9348260838243078, + 0.933522474466579, + 0.8377846225826576, + 0.9583806183156228, + 0.9331326790672908, + 0.9383147514181556, + 0.9589825216566162, + 0.8060876415101113, + 0.9783224922971588, + 0.9583806183156228, + 0.8995909444898049, + 0.8941653123998358, + 0.9668188169538892, + 0.9783224922971588, + 0.9679972612119138, + 0.8797605429806478, + 0.7963975193082085, + 0.8839816990630294, + 0.9431528211472392, + 0.8367334869051766, + 0.8658008658008658, + 0.9921746738179468, + 0.9020614173817516, + 0.756216668568603, + 0.898413439830601, + 0.9687833580671198, + 0.8324262590094272, + 0.7778237575832933, + 0.8480007561436672, + 0.9579079093729876, + 0.845860397670802, + 0.7551254672930834, + 0.8899966113703928, + 0.7908116150724073, + 0.8910183976510794, + 0.9586402202505122, + 0.9614055686011408, + 0.9466976131633716, + 0.8344345242846016, + 0.7881948755231198, + 0.8703128420935896, + 0.7758848540806751, + 0.9184591472656428, + 0.9495128094164198, + 0.8796487671810186, + 0.7514068195240422, + 0.8716815273032167, + 0.9882425857143352, + 0.9633770826635396, + 0.772872635209218, + 0.7549603797492292, + 0.8460813462362223, + 0.9172118090262832, + 0.992952541754412, + 0.8606043918383145, + 0.7745935959659945, + 0.9636724437338746, + 0.7960368686049766, + 0.8285988264418827, + 0.9708841861711646, + 0.8299341990318011, + 0.8419381421530754, + 0.7849537714203622, + 0.7591712665406428, + 0.8689452322602814, + 0.776662686231443, + 0.7843042441238667, + 0.7800515724165504, + 0.8797549464963943, + 0.9919502705663622, + 0.9893735932410646, + 0.8894092494980258, + 0.8411462167336957, + 0.8604416000492892, + 0.9391164837414664, + 0.9875732201051683, + 0.8668958338409165, + 0.910974119092226, + 0.9335682269765724, + 0.8903543205412945, + 0.7579050997201501, + 0.9129974387310056, + 0.8184361507912837, + 0.8985858297326429, + 0.8811309071018276, + 0.9600766541682176, + 0.9142379797053092, + 0.8553282796247272, + 0.9209665616774528, + 0.7653056658292261, + 0.9428934497795352, + 0.9766567420679494, + 0.9320892949781068, + 0.8764803941254208, + 0.9615141634622412, + 0.8025926314878588, + 0.935632010504501, + 0.9954545454545456, + 0.8383046372479713, + 0.8085158042512651, + 0.8799003347391113, + 0.8519408442208184, + 0.7642901122754603, + 0.9104413159581644, + 0.89138879753655, + 0.8889595044710776, + 0.8674196841123456, + 0.9890311615492476, + 0.9817061821644611, + 0.9645756670815068, + 0.9013683659572824, + 0.9379327738576018, + 0.8277684278026405, + 0.8025926314878588, + 0.8164472422898458, + 0.9476735033728184, + 0.9280169976669376, + 0.9400644385653472, + 0.8571175858480748, + 0.9457607069255074, + 0.7890197773695018, + 0.9341554258408444, + 0.8197634340126408, + 0.9579224065577792, + 0.8701372997711668, + 0.9529052383428788, + 0.9845238804935112, + 0.909042520211614, + 0.7869703117696519, + 0.8276242108365519, + 0.878685196514601, + 0.7563441975980676, + 0.7552008456659621, + 0.9576803072122886, + 0.7766774350616475, + 0.8786356094048401, + 0.8863636363636364, + 0.8824223337513897, + 0.915641381346678, + 0.9097297101659864, + 0.952612204076308, + 0.9667491997801664, + 0.9203132832080202, + 0.8318181818181817, + 0.8553636363636363, + 0.7733211512105985, + 0.8722470169622666, + 0.8975645313091688, + 0.8977159303535192, + 0.9912311643305796, + 0.9024231247013856, + 0.8691836035197901, + 0.8278906432659405, + 0.8317573749391951, + 0.9643924081792452, + 0.938598748759861, + 0.984466571720076, + 0.988302056405168, + 0.977397740533538, + 0.8324262590094272, + 0.957204861709126, + 0.9815689054392762, + 0.9723297607875788, + 0.9166058436529154, + 0.7521706555006759, + 0.9280169976669376, + 0.9358035287465732, + 0.8764803941254208, + 0.9153455696596016, + 0.8469432605765171, + 0.99268071993084, + 0.988226739831974, + 0.996336999414424, + 0.9244884191211992, + 0.8507008302142539, + 0.9593509283699424, + 0.8061755182821719, + 0.9615141634622412, + 0.9839330712663648, + 0.9555873521968756, + 0.9775173594082412, + 0.8128624949482813, + 0.9514741813067672, + 0.9817522080920388, + 0.981025791388756, + 0.9818181818181816, + 0.9710861248452468, + 0.9773557492735576, + 0.890085589718168, + 0.954337370755309, + 0.8919753086419753, + 0.8552031760963528, + 0.9545454545454548, + 0.8563472606128697, + 0.8478228971791203, + 0.8853335760168058, + 0.8250190694126619, + 0.8305431015989557, + 0.7900733399481583, + 0.9108949697942604, + 0.917855352912078, + 0.8955772084667657, + 0.82987479094277, + 0.909090909090909, + 0.9331273751154144, + 0.841981268119079, + 0.9061617983216465, + 0.7650216450216449, + 0.8414755340099983, + 0.9939138029238658, + 0.8766192814819845, + 0.8315151515151515, + 0.8473382904078122, + 0.914059797380776, + 0.7659476739028936, + 0.8559376367887911, + 0.811411149825784, + 0.7943527200862163, + 0.7697780793564009, + 0.8192024956758094, + 0.9625172175038818, + 0.9466379024540816, + 0.9248249108281914, + 0.7835010344179048, + 0.7696916201990726, + 0.8741784037558686, + 0.8788591215600511, + 0.7847145200343669, + 0.995553782140972, + 0.885547201336675, + 0.932238896428148, + 0.8666467850773247, + 0.9318181818181815, + 0.874330829529188, + 0.8477600534912598, + 0.8513796499579376, + 0.7928688716866057, + 0.8300839482005723, + 0.8104640050546934, + 0.7623555471966228, + 0.8477133966865695, + 0.8069468267581477, + 0.7970641933918771, + 0.7517470662254077, + 0.811386593204775, + 0.8200234516324812, + 0.8169486429889491, + 0.8731362653208361, + 0.8763157894736843, + 0.8185744024917364, + 0.9052173913043478, + 0.8415792985968426, + 0.7820239132603559, + 0.8373297473297473, + 0.7516072325464591, + 0.9659417587369664, + 0.7649602377888222, + 0.7936066126855602, + 0.909090909090909, + 0.945216049382716, + 0.8771929824561405, + 0.8174876847290639, + 0.8553636363636363, + 0.8455433455433455, + 0.9233441393338416, + 0.8437332724582007, + 0.832909538499891, + 0.840948616293985, + 0.8177290491628549, + 0.9175438596491228, + 0.882198952879581, + 0.8150509397735728, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.7862727272727271, + 0.8107452697678261, + 0.9637205387205386, + 0.852293824358888, + 0.8709558996012198, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352228, + 0.805168828270855, + 0.909090909090909, + 0.8771929824561405, + 0.8174876847290639, + 0.8813770455902434, + 0.8553636363636363, + 0.8455433455433455, + 0.8049385749385748, + 0.8437332724582007, + 0.832909538499891, + 0.8177290491628549, + 0.9175438596491228, + 0.8767128866853765, + 0.8150509397735728, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.7862727272727271, + 0.8107452697678261, + 0.9637205387205386, + 0.852293824358888, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.805168828270855, + 0.9545454545454548, + 0.9545454545454548, + 0.8298946640273919, + 0.8041381029540074, + 0.9786956521739132, + 0.9055353950321428, + 0.8658008658008658, + 0.8041630667784956, + 0.792782754772987, + 0.8259976777571356, + 0.8220626497774737, + 0.8210461476724114, + 0.8101813436763873, + 0.971001604361102, + 0.9289464621791536, + 0.8732908588456849, + 0.9320839327803117, + 0.7799127011297503, + 0.9521230391509398, + 0.8387538514207465, + 0.8873673399520713, + 0.8919696969696971, + 0.9939130434782611, + 0.9772426641825802, + 0.8315151515151515, + 0.8408502506153573, + 0.9545454545454548, + 0.8658008658008658, + 0.9939130434782611, + 0.9418179668098864, + 0.7650216450216449, + 0.8654908035026879, + 0.9992656508417233, + 0.7803152709359606, + 0.8330232317703581, + 0.9983501374885428, + 0.8042480240124439, + 0.7697542997542998, + 0.9203347173341052, + 0.8077175608822436, + 0.863207096556374, + 0.9891326164874552, + 0.8157646741278425, + 0.8722929363621342, + 0.8412806151509398, + 0.9100844696456204, + 0.9172591608126068, + 0.9170938628158845, + 0.8485714285714286, + 0.8571645021645024, + 0.8877796694698104, + 0.8146320346320346, + 0.9983501374885428, + 0.9617032985121432, + 0.9108802545427966, + 0.9508984239139112, + 0.9181661424871336, + 0.9529605866177816, + 0.8319465220643232, + 0.8402426098282156, + 0.9191026771713572, + 0.8190873103701221, + 0.8628923192823611, + 0.9602434075673276, + 0.7593235251819751, + 0.9456277248027678, + 0.9435343652049158, + 0.9302009048080272, + 0.7932712550607288, + 0.8786981717234608, + 0.8486842544219594, + 0.9126746767131658, + 0.9486042010676804, + 0.9038724480869904, + 0.958686173433348, + 0.7865058108244474, + 0.8704285747314824, + 0.9240999622367164, + 0.8068457040035989, + 0.9624336598289146, + 0.8942981283868459, + 0.8045481228624207, + 0.9823493170094518, + 0.8126984126984126, + 0.998531571416838, + 0.8419809946143553, + 0.922841005751663, + 0.9946871424565764, + 0.8143728369465849, + 0.8452819441807482, + 0.9757439972091474, + 0.7999757977078847, + 0.811708695128781, + 0.9226825090266608, + 0.915537959944108, + 0.8447134792639336, + 0.7824996118615121, + 0.9004189790402766, + 0.992492576897818, + 0.8141116751269034, + 0.9641837718077296, + 0.8643778677462887, + 0.9569910794861844, + 0.8929721958656436, + 0.9134879224116806, + 0.8981798632747807, + 0.81115791740409, + 0.9732801304295486, + 0.9270758346340522, + 0.9377496859510692, + 0.9314133822181484, + 0.97145319916461, + 0.969655719759168, + 0.774258455570617, + 0.7646989654610621, + 0.9179126246763072, + 0.9344663297510818, + 0.9954192028862328, + 0.7896845621854086, + 0.9455885850178358, + 0.9633770826635396, + 0.8393119121793614, + 0.9022475277597836, + 0.8956434074042219, + 0.8868725897920605, + 0.947727507922727, + 0.8100165040010108, + 0.7541551246537397, + 0.7542451891577083, + 0.917562326869806, + 0.8951137084436364, + 0.9046867398146928, + 0.9823446334538573, + 0.7795168102658113, + 0.98334457368405, + 0.949870071311262, + 0.7943210699040146, + 0.8322736882141543, + 0.9149338374291116, + 0.8997612989216043, + 0.957120046591764, + 0.8238720996776803, + 0.9493296120831972, + 0.9088759068464726, + 0.929966729678639, + 0.909593974766178, + 0.9088759068464726, + 0.7862360164041836, + 0.9165811787189776, + 0.938643059916104, + 0.8032011401974772, + 0.7862727272727271, + 0.9754897598639012, + 0.7600017202867504, + 0.9455885850178358, + 0.9633770826635396, + 0.8436837588803084, + 0.8980736820318737, + 0.8859552362571937, + 0.8868725897920605, + 0.947727507922727, + 0.8057328891947176, + 0.7614693277849641, + 0.8875623268698062, + 0.8965017504270001, + 0.9039894860912128, + 0.984298575553884, + 0.7714232447296058, + 0.98334457368405, + 0.949870071311262, + 0.7943210699040146, + 0.8202771072840704, + 0.9149338374291116, + 0.8933801982348771, + 0.957120046591764, + 0.8238720996776803, + 0.9529052383428788, + 0.90120315914534, + 0.929966729678639, + 0.945128934703434, + 0.9095750421335858, + 0.7766558276104735, + 0.9151778010434616, + 0.9471874624563444, + 0.8378181818181818, + 0.9754897598639012, + 0.7691572905827264, + 0.7959133007990621, + 0.8262184063662379, + 0.9894645159690536, + 0.996521739130435, + 0.7819131922573496, + 0.850401606425703, + 0.996521739130435, + 0.9077642484940728, + 0.89655436679566, + 0.9964912280701756, + 0.7938737011467188, + 0.8802936186789987, + 0.9280303030303032, + 0.7987525608923287, + 0.7552391207341441, + 0.9308288388816562, + 0.8668602157771255, + 0.8448511242895973, + 0.7961445704225081, + 0.9099056220340456, + 0.9878450565293272, + 0.7642455368060652, + 0.9778493899137112, + 0.8965968223131894, + 0.8932895451827312, + 0.9285799156049388, + 0.9432927941623594, + 0.9496993493645752, + 0.9692603418275338, + 0.8702493159014899, + 0.9739749369603424, + 0.996521739130435, + 0.8907367280606716, + 0.904913008013858, + 0.968471177944862, + 0.825, + 0.9027775208335084, + 0.7617903311136486, + 0.884146408684465, + 0.9446018376578228, + 0.9964912280701756, + 0.908597321143829, + 0.996521739130435, + 0.9619598036238828, + 0.760301236816147, + 0.9921175854473762, + 0.8553134080531342, + 0.9943501037415146, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049175, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8089287811425216, + 0.9416562889165628, + 0.7955445656901864, + 0.791670480549199, + 0.936963017728694, + 0.8580430671412884, + 0.90276124713408, + 0.992671182389769, + 0.9848040830545792, + 0.9514741813067672, + 0.8630706569122704, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.9857005881574218, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.9851370084561714, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.8931621545809378, + 1, + 0.9271888077994948, + 0.7647361516158825, + 0.9921175854473762, + 0.8553134080531342, + 0.9943501037415146, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049175, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8089287811425216, + 0.8017627702025454, + 0.791670480549199, + 0.936963017728694, + 0.8580430671412884, + 0.8474662292253902, + 0.7867084930870223, + 0.90276124713408, + 0.992671182389769, + 0.8072821072057714, + 0.9848040830545792, + 0.8189889492826025, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.974712351554919, + 0.999777530589544, + 0.937103645050706, + 0.9773557492735576, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9503668087629396, + 1, + 0.9271888077994948, + 0.7647361516158825, + 0.8653436259062406, + 0.9166666666666666, + 0.8513043478260871, + 0.888762154374558, + 0.9072684799014412, + 0.8911473104418144, + 0.8931451612903224, + 0.804641414265247, + 0.8069790866112391, + 0.8818832214815737, + 0.8945874001774624, + 0.8064644137224782, + 0.8411703547857459, + 0.8850692346282528, + 0.755864605581299, + 0.854470284581694, + 0.9105444641861692, + 0.9339130434782608, + 0.8908740092733132, + 0.8673913043478261, + 0.8286547121919267, + 0.95706340378198, + 0.9119365546072284, + 0.9110759625390218, + 0.9018301785200464, + 0.9107392505404756, + 0.812383779297877, + 0.8091839475036197, + 0.92656200324369, + 0.9618472252807516, + 0.9614035087719296, + 0.7500000000000001, + 0.8598402189827489, + 0.9545454545454548, + 0.9545454545454548, + 0.8298946640273919, + 0.8041381029540074, + 0.9786956521739132, + 0.9055353950321428, + 0.8658008658008658, + 0.8041630667784956, + 0.792782754772987, + 0.8259976777571356, + 0.8220626497774737, + 0.8210461476724114, + 0.8101813436763873, + 0.971001604361102, + 0.9289464621791536, + 0.8732908588456849, + 0.9320839327803117, + 0.7799127011297503, + 0.9521230391509398, + 0.8387538514207465, + 0.8873673399520713, + 0.8919696969696971, + 0.9939130434782611, + 0.9772426641825802, + 0.8315151515151515, + 0.8408502506153573, + 0.9545454545454548, + 0.8658008658008658, + 0.9939130434782611, + 0.9418179668098864, + 2.7156926502089522, + 2.6582589542615205, + 5.8335318175048485, + 7.719722873284703, + 8.37059193980477, + 6.287750760888578, + 7.5852393855277604, + 8.619914081142198, + 5.954123926757003, + 6.91777643651585, + 6.739839037931574, + 0.7714560308712177, + 5.897458854409393, + 4.482450018625363, + 1.5747017277387507, + 3.933117055292414, + 6.441355005448861, + 5.04393477864045, + 1.5811655649264398, + 8.639455375706738, + 9.482045956050825, + 3.2710846763103056, + 5.548094343509045, + 4.87980768126475, + 7.169596926783591, + 6.055229301341344, + 5.265009500444489, + 5.511060018128451, + 2.501301413678476, + 4.525937093216851, + 4.101343355269801, + 6.217293807177125, + 7.943905087121579, + 5.353764177182051, + 4.243278019361482, + 3.5427896276701247, + 1.6088919229398986, + 3.88415324095451, + 2.603943043970883, + 9.037066847278583, + 7.737803351226179, + 3.279554866696, + 7.622729583832935, + 6.856374634561529, + 2.3349922071235465, + 12.741914176153992, + 11.169645269632817, + 7.551886959332794, + 11.590587375901766, + 12.818849239990167, + 9.312350207024242, + 9.6849943211339, + 29.989955910932153, + 10.677581027079041, + 11.69145919480073, + 16.911059138224726, + 4.826679620914834, + 8.252291582172772, + 9.165041567158466, + 4.782025060620587, + 8.739229045188916, + 11.125912615127698, + 8.566187584981826, + 8.410599595904824, + 6.425051841659946, + 10.774794507711546, + 12.884848396699267, + 1.6145642144115429, + 9.547370473634308, + 7.4714444881737325, + 5.090260526214286, + 12.039861684212275, + 11.245389212792535, + 10.143128014376295, + 10.125864871974748, + 10.355129591634745, + 8.634473127403044, + 27.992947678046967, + 11.123211913879592, + 7.352731964750447, + 12.509174723369728, + 9.357329704104508, + 10.803039171629647, + 8.913388778860995, + 0.7593325960761084, + 7.077414893516322, + 12.222467590055782, + 14.823589476801526, + 10.265853059053766, + 30.253260966653563, + 11.052382130191171, + 8.491863165557415, + 0.8553134080531342, + 0.7923275652679538, + 0.7819131922573496, + 0.7906170310433895, + 0.8406484670606788, + 0.7894736842105264, + 0.8681498428014106, + 0.8408063572139095, + 0.7738548847622624, + 0.8107066154287429, + 0.909636086500905, + 0.9320839327803117, + 0.894689054121916, + 0.8861995746607623, + 0.8134896030245747, + 0.9636363636363636, + 0.8392276737347159, + 0.901982337361457, + 0.8985728391457872, + 0.7921837072845759, + 0.781322126609299, + 22.554386120173277, + 19.613599810480828, + 20.40031858996651, + 29.956580694197918, + 37.81896775337313, + 24.030764704798013, + 31.75180467319671, + 33.91801742353348, + 28.462037139542883, + 34.295589536268785, + 36.50591258466256, + 23.467860361429143, + 24.85592909604806, + 32.4035090762865, + 22.71970343234958, + 25.48730319359836, + 25.165096088618046, + 29.69637427409326, + 17.664183829999775, + 21.845720961128904, + 27.377228557396815, + 39.03071723249128, + 9.741598600769482, + 28.447258113530083, + 34.41837306291569, + 16.886927343841723, + 30.022111810263496, + 34.03588277445593, + 24.12543947649044, + 25.237935542547767, + 23.501603133367023, + 27.37331169073333, + 34.357461581381585, + 33.700679285094154, + 29.505192327810473, + 34.68305676523826, + 23.609703244299986, + 30.310558375313995, + 29.354422008390117, + 23.538996128691956, + 30.81569469437525, + 30.60135518038744, + 29.626551856617063, + 27.188295797438027, + 40.38862974807831, + 18.694734300906806, + 27.322990496426154, + 1.9352772848325108, + 2.3818016615095727, + 2.4953990933170473, + 1.913963384282922, + 2.9567670468253713, + 2.4317927379797686, + 1.7956133485890122, + 2.854427989512894, + 2.5831820089241857, + 1.819016306904112, + 2.490648071873054, + 2.391484496370541, + 2.505409598405692, + 2.4821885521885516, + 2.4409577227873585, + 2.320829325255205, + 2.6899205418074503, + 1.7283011445001177, + 1.6971149466909594, + 1.5291213820369047, + 2.6143148621989507, + 2.9780554383276456, + 2.9438210900254145, + 2.6305687873673067, + 1.7549807374793618, + 2.7762712359752806, + 1.7495140887205873, + 2.8136523151256485, + 1.879691824068352, + 2.462183434346834, + 2.5645762169923745, + 1.6667508417508416, + 1.7977977702095433, + 1.8753418795074075, + 2.7078597537265074, + 0.9300633742947678, + 0.8084175084175084, + 2.495361866237282, + 2.320899513668479, + 0.7992420095977141, + 1.8012887383173002, + 1.7092200978604315, + 2.609476994384382, + 2.9438627714185923, + 1.6816821323942457, + 2.425132650216926, + 12.223228758257974, + 6.188592417520841, + 11.426510773587015, + 13.884984563212395, + 22.734673682113414, + 11.567437906315217, + 12.239049648639428, + 24.118238502482495, + 9.066453537886682, + 11.17511422217741, + 15.891731420320445, + 11.11090060753015, + 14.760168339388951, + 15.918334117423873, + 5.598111410494788, + 9.46948259278418, + 19.6282420929314, + 13.255559093054098, + 8.072782011678106, + 4.8296467634227955, + 13.93982590357738, + 23.894763167404346, + 2.265386970022507, + 13.639123484499246, + 17.43059544986341, + 6.871907979187155, + 17.11088698361234, + 15.99964775294984, + 14.595322770056871, + 15.766753234442659, + 15.856298184944649, + 18.22450343743421, + 19.05621149376186, + 16.097870507087965, + 16.01198436442393, + 13.809075954158503, + 11.255240850896975, + 16.076160308182967, + 8.02257526376253, + 12.455895508409569, + 13.615910947660943, + 14.193169986393926, + 16.8877713803648, + 3.29885931801918, + 19.84232834026574, + 8.573103941281119, + 8.676052231842402, + 1.9554072006789496, + 1.6816008151250992, + 2.5575951246522837, + 1.763864306323435, + 3.6277465073150568, + 2.5403940459643417, + 3.5311360533830105, + 2.8232046518871092, + 0.9147990007027552, + 0.8911473104418144, + 2.765604126968089, + 2.3978778633342577, + 3.3965676305077124, + 1.8048062314859235, + 1.657351693470737, + 1.6062929765633287, + 3.6346370665549452, + 2.426953501375467, + 1.7807483845610523, + 0.8411703547857459, + 2.7870143342426617, + 3.6751201620522886, + 3.667968672809325, + 0.9105444641861692, + 3.664798754945534, + 3.7258429041869685, + 1.825927536231884, + 2.563688359927319, + 1.8432875442233665, + 3.590689352003853, + 0.9119365546072284, + 1.8035908124271436, + 2.665956058648374, + 1.8170490178472651, + 2.736171336988918, + 2.3305797444937766, + 0.812383779297877, + 1.6283351754226203, + 3.5158033304022323, + 2.833948245451147, + 1.7849951498293042, + 3.6259534838334604, + 1.694622600300256, + 2.420563361904273, + 8.224566839530606, + 10.184426134841406, + 9.712886882100072, + 12.368974328335042, + 9.190079150320848, + 11.212094337058057, + 12.764121722467886, + 3.2413916355138515, + 10.804889857088506, + 11.547016065098806, + 10.935685500280684, + 5.6225285255642765, + 1.539541335197319, + 11.091707751777868, + 9.180254302767759, + 9.256945255950226, + 9.39441320170065, + 5.551132979100534, + 4.678308268537915, + 10.268209062531751, + 11.487990944388022, + 6.492834563254258, + 9.971920390400902, + 11.713292537867812, + 2.4929725815182477, + 10.208602928649123, + 10.73985094637251, + 8.725064738267301, + 3.4742792635317246, + 12.132128985959467, + 10.937452652354409, + 10.294020831457708, + 10.84162504706163, + 10.826487642762421, + 12.112505546100621, + 10.210941655471288, + 8.309058542331249, + 6.948934642427314, + 9.736385806957578, + 11.514602475245029, + 9.113230469457893, + 12.16274761820007, + 6.525238979585231, + 10.584967800997793, + 1.677801586702059, + 12.051647956223828, + 10.364795320787383, + 13.473311216883985, + 10.885527934871362, + 21.155234773842274, + 21.27912226240755, + 16.506540369612775, + 17.500086908425452, + 23.96687376464905, + 17.50000361025692, + 18.525672076748783, + 22.72750501377361, + 8.052799028627927, + 16.415934485540465, + 17.099699487658935, + 13.844184713289689, + 10.414083505890655, + 14.218496731614366, + 17.016513814591264, + 11.833228667405512, + 9.92130204041871, + 15.926248229924912, + 19.28818590886522, + 8.37568013116271, + 14.67629455221471, + 17.23878984673672, + 14.631195062838609, + 17.864336064349978, + 18.08959241171481, + 19.28474886690515, + 16.57278071374357, + 14.557840142385297, + 16.967547067670168, + 19.604162788738964, + 19.98269186584841, + 17.637012130402308, + 15.115611896830812, + 15.420223092820533, + 14.445567750240382, + 15.967695680992804, + 8.803015301778098, + 17.53540354903747, + 12.952548777529735, + 19.26586401720724, + 14.24200231680872, + 21.10395900812738, + 18.281595454193365, + 12.827126529560525, + 5.465334500240913, + 8.692039378701784, + 10.04056026672292, + 10.812082791380043, + 12.580474153023195, + 10.655030270423625, + 10.156641991763262, + 11.267860822049826, + 4.818770917891489, + 11.958959359758033, + 13.123712195495242, + 9.296032016759707, + 11.044280821883698, + 10.991077141747944, + 10.088886039883782, + 9.199231454909498, + 10.51222656699815, + 6.886038569595238, + 8.374626059002532, + 7.658225943075498, + 9.757234932000742, + 10.27953224090948, + 3.4266642398787486, + 10.99088844822094, + 11.015934094178773, + 1.6117512560659057, + 10.995057585530207, + 12.879364779623508, + 10.598226185540565, + 9.463039080418465, + 10.291127054890218, + 10.402895139872214, + 9.589332263316654, + 11.15923585040023, + 10.214165288339005, + 12.072802072832255, + 9.598616624212738, + 9.868533505088067, + 8.53186531005526, + 9.169984938459349, + 10.838727562068213, + 11.579969534860759, + 12.33822489975658, + 4.47261764584247, + 10.783399169043372, + 5.698203314390444, + 8.746507319437542, + 5.2502735937721825, + 2.4453350530747793, + 1.738008368195644, + 5.474164297971157, + 5.925545942156385, + 2.3110485615022203, + 4.309007752128361, + 5.631962637208282, + 4.206146547239371, + 4.317083240919346, + 6.257264929881277, + 2.3538008673963797, + 4.27076322703868, + 3.6386765408140946, + 1.6218751548804775, + 2.3274226639749176, + 2.417716951703954, + 2.545920164070019, + 1.700082349305204, + 2.3786200878369077, + 4.504520273067046, + 5.63289447894032, + 5.281011568349853, + 2.668294987481291, + 3.3609942506969634, + 6.2565249278104025, + 4.437053653641776, + 5.178586113351916, + 4.440833046895959, + 2.451376252416558, + 5.357375052676549, + 3.7859155218892466, + 4.479467548537522, + 4.406102168343369, + 5.247334791043326, + 1.7737313447646268, + 5.290584117426062, + 3.2458075335392738, + 0.7847145200343669, + 4.992676798130066, + 2.771762702904483, + 3.7700744247733238, + 2.4220923666043443, + 5.929996420391982, + 3.4020634355200228, + 3.1442137502100387, + 3.883840499337543, + 2.5637289272652515, + 1.657659968971128, + 2.8700655141805957, + 2.955269374098859, + 4.000194035168488, + 3.503014385774582, + 4.992238876012427, + 2.6481481814010275, + 2.693565785734584, + 2.9973684210526317, + 3.147114068150981, + 4.286762573224968, + 4.546959554222818, + 1.5845505351899214, + 3.129753957297123, + 2.7603653190778656, + 2.489376049526977, + 1.6949324584507803, + 3.2969545174238393, + 4.454150560780983, + 2.9484089764966837, + 0.766483106515241, + 3.7887034558996833, + 3.766826240857803, + 1.98751665001665, + 4.668896568056982, + 3.7478274701136476, + 2.77031507949609, + 0.9626281577206024, + 3.595730856619092, + 3.8328921395976865, + 2.9296146282914037, + 4.559964222755541, + 2.657520510009885, + 1.9772484327588065, + 3.8592193782184556, + 3.5421936585017653, + 2.7170523479022903, + 3.1992762277185616, + 4.456682520615206, + 4.707613419567585, + 3.904062811822837, + 2.6114422164244226, + 2.9973684210526317, + 2.710653872016698, + 3.9607214332441982, + 0.929941088884573, + 0.8318189568317447, + 0.9721324228139152, + 0.8929555666008868, + 0.9899175068744273, + 0.7829559806346367, + 0.8330585670487148, + 0.9004712036731742, + 0.8079059133534838, + 0.907326978222119, + 0.8418462145170219, + 0.8355962235887732, + 0.9840600196897172, + 0.9727233543942168, + 0.9456931798893302, + 0.7835307826762479, + 0.9334823561531638, + 0.943912095206486, + 0.9719476865439598, + 0.8989607068123694, + 0.9899175068744273, + 0.91218688144154, + 0.968708052390917, + 0.9275641323723166, + 0.7750817305162342, + 0.7705110005585539, + 0.8746911090742437, + 0.906777236648719, + 0.9877189123128628, + 0.905810189680844, + 0.9039758195768428, + 0.9417675428322848, + 0.838458313625102, + 0.9578918616552848, + 0.9877224033535164, + 0.9600766541682176, + 0.9372227566431792, + 0.9996947496947498, + 0.946473950268886, + 0.9273107442696306, + 0.8427440270131528, + 0.8930336617991886, + 0.8499116091074294, + 0.8297523357929766, + 0.8628042957923382, + 0.94362258995985, + 0.8861176478495413, + 0.992955297959396, + 0.954141881439958, + 0.9716068390573318, + 0.9372227566431792, + 0.9209665616774528, + 0.8810186818949944, + 0.8078565985679013, + 0.7888565809250084, + 0.8999765601568034, + 0.7784705964389922, + 0.8951137084436364, + 0.9694396869310692, + 0.906901471095239, + 0.9521895754027828, + 0.7517286913985, + 0.8687571885281811, + 0.7912430201328434, + 0.9975369458128078, + 0.9160401958804216, + 12.034957689126509, + 11.167292442920854, + 10.892772374566828, + 11.188545125369362, + 14.051145630783244, + 7.680136453880671, + 13.13343433761535, + 17.80404860928635, + 11.937543780884553, + 13.115830249181464, + 12.256764611367714, + 6.398920724204531, + 11.614838149705102, + 11.674346053468323, + 9.535949405592675, + 9.545707015549945, + 14.048031339671128, + 9.393860419591002, + 10.031690862892003, + 12.062006319058131, + 14.226242683310376, + 16.73540754868906, + 3.1709008167927912, + 14.033097673587116, + 14.09522763231218, + 8.342653449881677, + 15.97684965031901, + 12.663360588750875, + 13.64816797614395, + 12.108598929706023, + 13.748030143803588, + 11.552947958095888, + 14.557409491200037, + 14.76087992670282, + 13.005685011134684, + 16.172428327206998, + 10.724419056036478, + 15.192833344979608, + 13.325700381129664, + 4.679831565136927, + 12.228767344707215, + 15.824415223567982, + 12.908175660434084, + 5.4193200648480255, + 17.063260170485226, + 12.311035142033079, + 2.346288272822698, + 3.4869993033751463, + 2.5949758944297403, + 3.4858159609526522, + 4.674296290122592, + 4.973293031748207, + 4.236569395245839, + 4.51562348520608, + 4.970379646980091, + 4.233075066864595, + 4.537502245161149, + 4.874376920602602, + 3.3860244565663846, + 2.5392201287083846, + 4.7013436913228475, + 3.3704788877062826, + 4.1404888626813845, + 4.543317811906993, + 4.319085326490048, + 3.5985806503096693, + 3.3527379240031503, + 4.693635233550103, + 4.92204731803439, + 0.9486152933634998, + 4.874971169726762, + 4.792744363999942, + 1.7302116440315845, + 4.608398994184875, + 3.7619088006985453, + 4.683339599032273, + 4.693106068726848, + 3.5501146709587443, + 3.601350219017491, + 4.867504229968272, + 3.6115658797692385, + 4.739253392540292, + 4.914139211693232, + 3.3462234028956073, + 3.758911669879801, + 3.3813048127683447, + 1.7258664026274264, + 4.573429247310607, + 4.721381839264356, + 4.985087333365494, + 2.8850693260638045, + 4.9655673936226625, + 2.8284398639688764, + 4.02646412523102, + 2.7272727272727266, + 0.8237875450920827, + 0.945216049382716, + 1.754385964912281, + 0.7694629219019462, + 2.4524630541871915, + 0.9545454545454548, + 0.8813770455902434, + 2.566090909090909, + 2.5366300366300365, + 0.7676911617909391, + 0.8737944824901345, + 2.568024494997688, + 0.7706024497958504, + 0.7971142965635086, + 0.797381306659819, + 3.393254040773363, + 3.312714021492531, + 1.602927311552636, + 2.4531871474885647, + 3.7413393822509566, + 0.9359939732913412, + 1.764397905759162, + 2.570251211515988, + 2.445152819320718, + 3.63051173405166, + 2.675217391304348, + 0.8452819441807482, + 0.8400216450216451, + 2.4761904761904763, + 2.4554856624856622, + 3.3321561614076045, + 3.821078306822908, + 2.556881473076664, + 2.5727666133458706, + 3.2303546214836536, + 0.9688527588701455, + 3.3773638428865307, + 2.7052631578947373, + 1.5795546558704456, + 2.415506484812565, + 0.8317573749391951, + 0.9643924081792452, + 0.938598748759861, + 0.984466571720076, + 0.988302056405168, + 0.977397740533538, + 0.8324262590094272, + 0.957204861709126, + 0.9815689054392762, + 0.9723297607875788, + 0.9166058436529154, + 0.7521706555006759, + 0.9280169976669376, + 0.9358035287465732, + 0.8764803941254208, + 0.9153455696596016, + 0.8469432605765171, + 0.99268071993084, + 0.988226739831974, + 0.996336999414424, + 0.9244884191211992, + 0.8507008302142539, + 0.9593509283699424, + 0.8061755182821719, + 0.9615141634622412, + 0.9839330712663648, + 0.9555873521968756, + 0.9775173594082412, + 0.8128624949482813, + 0.9514741813067672, + 0.9817522080920388, + 0.981025791388756, + 0.9818181818181816, + 0.9710861248452468, + 0.9773557492735576, + 0.890085589718168, + 0.954337370755309, + 0.9807297003570874, + 0.9364502164502164, + 0.7901612469857595, + 0.824287208001439, + 0.9807297003570874, + 0.7614649785030472, + 0.8658008658008658, + 0.9939130434782611, + 0.906665151293522, + 0.8939526037506182, + 0.9842229467473992, + 0.865081443540125, + 0.9167169276268624, + 0.8794346322201474, + 0.765130456168069, + 0.8734544866674276, + 0.909520787797598, + 0.8854931946173012, + 0.7673924006226841, + 0.8798233135618779, + 0.9852364106660584, + 0.7637569649841349, + 0.9348260838243078, + 0.933522474466579, + 0.8377846225826576, + 0.9583806183156228, + 0.9331326790672908, + 0.9383147514181556, + 0.9589825216566162, + 0.8060876415101113, + 0.9783224922971588, + 0.9583806183156228, + 0.8995909444898049, + 0.8941653123998358, + 0.9668188169538892, + 0.9783224922971588, + 0.9679972612119138, + 0.8797605429806478, + 0.7963975193082085, + 0.8839816990630294, + 0.9431528211472392, + 0.8367334869051766, + 0.8658008658008658, + 0.9921746738179468, + 0.9020614173817516, + 0.756216668568603, + 0.8168393183171508, + 0.826467375579422, + 0.94513113161729, + 0.9585637037072424, + 0.8949088289552438, + 0.9053910284366296, + 0.817437533227007, + 0.7978783990223038, + 0.7521903939726886, + 0.754943158980426, + 0.7928605555934748, + 0.8989607068123694, + 0.7975892455476461, + 0.7725199492096488, + 0.7662703504995123, + 0.9767351231527428, + 0.9424631082284728, + 0.866898864682116, + 0.7783625730994153, + 0.9376349250962784, + 0.9303020409693342, + 0.8287563928270861, + 0.8603115680426934, + 0.8114732228923959, + 0.9669758970781992, + 0.8105976841695943, + 0.7959269589012261, + 0.8302139037433156, + 0.986986590623621, + 0.751078143739283, + 106.64365772309534, + 90.9355210230678, + 105.04536582054092, + 138.98571064131588, + 169.88487988137652, + 115.9168437973925, + 137.9093814780075, + 189.42204216322287, + 111.49572464710506, + 139.83420443601815, + 161.99091839827958, + 91.8574909446722, + 121.41377761311729, + 126.49255248699575, + 94.81801724506019, + 104.41397650689214, + 125.235898038848, + 122.59448794548986, + 92.35265916418771, + 86.03559245754154, + 132.16125864115685, + 172.80662711497877, + 37.566484901154915, + 130.8619928883497, + 142.98149769771985, + 73.15299777787965, + 148.64598147776658, + 147.6058201109054, + 135.68590926926717, + 120.8652234999067, + 123.58337699460165, + 129.4288397337329, + 164.6196467048814, + 146.0847692899186, + 134.81386332207788, + 148.98873849455728, + 107.95587640903702, + 129.11074196044743, + 112.95896779678264, + 85.21532321667084, + 128.60484862515455, + 141.7009280420737, + 149.46101957908905, + 93.87705350821577, + 186.45865916437108, + 101.59622805369719, + 103.65170216767632, + 1067.7116344468354, + 1057.5464388835724, + 1198.7741587466867, + 669.115232508303, + 338.88306174231195, + 751.2875394224807, + 780.4050131041074, + 5863.7230788542975 + ] + } + ], + "layout": { + "coloraxis": { + "colorbar": { + "title": { + "text": "R^2 Spearman" + } + }, + "colorscale": [ + [ + 0, + "rgb(5,48,97)" + ], + [ + 0.1, + "rgb(33,102,172)" + ], + [ + 0.2, + "rgb(67,147,195)" + ], + [ + 0.3, + "rgb(146,197,222)" + ], + [ + 0.4, + "rgb(209,229,240)" + ], + [ + 0.5, + "rgb(247,247,247)" + ], + [ + 0.6, + "rgb(253,219,199)" + ], + [ + 0.7, + "rgb(244,165,130)" + ], + [ + 0.8, + "rgb(214,96,77)" + ], + [ + 0.9, + "rgb(178,24,43)" + ], + [ + 1, + "rgb(103,0,31)" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "b": 25, + "l": 25, + "r": 25, + "t": 50 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "branchvalues": "total", + "customdata": [ + [ + 0.8531021111589834 + ], + [ + 0.9960831758177524 + ], + [ + 0.9956171156600898 + ], + [ + 0.7534091311886248 + ], + [ + 0.999122807017544 + ], + [ + 0.872263164968203 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.8536839205362883 + ], + [ + 0.8975114391781058 + ], + [ + 0.8640740055556022 + ], + [ + 0.908313797791604 + ], + [ + 0.9891493795585866 + ], + [ + 0.766483106515241 + ], + [ + 0.9231736856070656 + ], + [ + 0.9602036241270692 + ], + [ + 0.9626281577206024 + ], + [ + 0.9457244866279326 + ], + [ + 0.9047503889161738 + ], + [ + 0.8269184820807403 + ], + [ + 0.8789838022165389 + ], + [ + 0.8800026263331926 + ], + [ + 0.957737379733654 + ], + [ + 0.999122807017544 + ], + [ + 0.9509004506686832 + ], + [ + 0.7562762148337596 + ], + [ + 0.8442479234380643 + ], + [ + 0.993779175279743 + ], + [ + 0.7763614794595731 + ], + [ + 0.8710617614475394 + ], + [ + 0.9636752136752136 + ], + [ + 0.8119647131227026 + ], + [ + 0.7805172292400585 + ], + [ + 0.9370415079706567 + ], + [ + 0.8701066680233348 + ], + [ + 0.8242647792818613 + ], + [ + 0.8238243435953363 + ], + [ + 0.9791710812316362 + ], + [ + 0.7554660388288974 + ], + [ + 0.8482458889462429 + ], + [ + 0.914656355102988 + ], + [ + 0.8458383400350413 + ], + [ + 0.92448876432027 + ], + [ + 0.8295449908182004 + ], + [ + 0.9773557492735576 + ], + [ + 0.9281390141743808 + ], + [ + 0.9093117324398052 + ], + [ + 0.7806171146277026 + ], + [ + 0.8726620562837514 + ], + [ + 0.9686137921250751 + ], + [ + 0.8257949554417174 + ], + [ + 0.798853868337832 + ], + [ + 0.9506066908754583 + ], + [ + 0.992130773157018 + ], + [ + 0.992130773157018 + ], + [ + 0.8297391428809981 + ], + [ + 0.9981637899375688 + ], + [ + 0.9559378978139692 + ], + [ + 0.9725030984517492 + ], + [ + 0.9994500458295142 + ], + [ + 0.9674464520962212 + ], + [ + 0.9537877101584162 + ], + [ + 0.9973311596620504 + ], + [ + 0.9965191088563604 + ], + [ + 0.9588085805762212 + ], + [ + 0.9804758872197188 + ], + [ + 0.9761230584660866 + ], + [ + 0.9804758872197188 + ], + [ + 0.9815561030337692 + ], + [ + 0.9979840393589112 + ], + [ + 0.9327029435145744 + ], + [ + 0.9855664265688792 + ], + [ + 0.9965191088563604 + ], + [ + 0.990099472619818 + ], + [ + 0.995055254321861 + ], + [ + 0.8099484766436214 + ], + [ + 0.9906701465266744 + ], + [ + 0.931003010693105 + ], + [ + 0.983380118113322 + ], + [ + 0.9892105958643824 + ], + [ + 0.9957870470931044 + ], + [ + 0.9654908347220116 + ], + [ + 0.9987789987789988 + ], + [ + 0.987752121170142 + ], + [ + 0.9645628577173472 + ], + [ + 0.9994500458295142 + ], + [ + 0.94949459763166 + ], + [ + 0.9746742674843129 + ], + [ + 0.9965191088563604 + ], + [ + 0.9899402366995218 + ], + [ + 0.987752121170142 + ], + [ + 0.9987169080982063 + ], + [ + 0.9987169080982063 + ], + [ + 0.9985113511553524 + ], + [ + 0.9987169080982063 + ], + [ + 0.9632178831505792 + ], + [ + 0.9892105958643824 + ], + [ + 0.9537877101584162 + ], + [ + 0.9444982054870336 + ], + [ + 0.8409895539377414 + ], + [ + 0.9935457940810306 + ], + [ + 0.9402260743372878 + ], + [ + 0.9725030984517492 + ], + [ + 0.9994500458295142 + ], + [ + 0.9022126610505616 + ], + [ + 0.9552208996034384 + ], + [ + 0.9963384890035256 + ], + [ + 0.987752121170142 + ], + [ + 0.9133941210450609 + ], + [ + 0.9444982054870336 + ], + [ + 0.960245535909425 + ], + [ + 0.9790238683337896 + ], + [ + 0.9094946702782724 + ], + [ + 0.920417502503307 + ], + [ + 0.9384151778567814 + ], + [ + 0.963122674479988 + ], + [ + 0.992130773157018 + ], + [ + 0.7576460378790729 + ], + [ + 0.9455819726942684 + ], + [ + 0.987752121170142 + ], + [ + 0.968168023170972 + ], + [ + 0.9133941210450609 + ], + [ + 0.8731664917240823 + ], + [ + 0.9746742674843129 + ], + [ + 0.9833831528957327 + ], + [ + 0.8527482577723561 + ], + [ + 0.9964422727546304 + ], + [ + 0.9746742674843129 + ], + [ + 0.9797497432807476 + ], + [ + 0.9987169080982063 + ], + [ + 0.948780020349246 + ], + [ + 0.960245535909425 + ], + [ + 0.9036065776616928 + ], + [ + 0.926761544632836 + ], + [ + 0.9660041169227584 + ], + [ + 0.9710569973901052 + ], + [ + 0.9979840393589112 + ], + [ + 0.9947945803202288 + ], + [ + 0.9987169080982063 + ], + [ + 0.9411662012310432 + ], + [ + 0.9395149939510422 + ], + [ + 0.9612865740616352 + ], + [ + 0.9104377104377104 + ], + [ + 0.8466632549513022 + ], + [ + 0.965460306668771 + ], + [ + 0.9991930603515944 + ], + [ + 0.7661643396391405 + ], + [ + 0.8993946860474129 + ], + [ + 0.9987169080982063 + ], + [ + 0.8053363980490009 + ], + [ + 0.8802332979851536 + ], + [ + 0.9951653583795466 + ], + [ + 0.8038391193200114 + ], + [ + 0.8486048045950245 + ], + [ + 0.9280303030303032 + ], + [ + 0.7681025602181487 + ], + [ + 0.8667078642628765 + ], + [ + 0.8561382296156173 + ], + [ + 0.9288810671989122 + ], + [ + 0.9927523497097036 + ], + [ + 0.975268289884998 + ], + [ + 0.9652833528240462 + ], + [ + 0.8533855094586799 + ], + [ + 0.9552208996034384 + ], + [ + 0.9383191940615055 + ], + [ + 0.9334429906542056 + ], + [ + 0.906974409725021 + ], + [ + 0.872086805029541 + ], + [ + 0.9775003787304952 + ], + [ + 0.9866063032322202 + ], + [ + 0.941241325810687 + ], + [ + 0.9394303111483416 + ], + [ + 0.9755497899678774 + ], + [ + 0.9757801848204816 + ], + [ + 0.97062869262233 + ], + [ + 0.798490964605047 + ], + [ + 0.9022126610505616 + ], + [ + 0.9410307160918406 + ], + [ + 0.9994500458295142 + ], + [ + 0.9434119359795824 + ], + [ + 0.9987169080982063 + ], + [ + 0.8056786244402121 + ], + [ + 0.7609962981315767 + ], + [ + 0.8417508417508417 + ], + [ + 0.9573727012110692 + ], + [ + 0.9833831528957327 + ], + [ + 0.8473209929380159 + ], + [ + 0.9946751263076096 + ], + [ + 0.9580905063976388 + ], + [ + 0.9638426316026611 + ], + [ + 0.9987169080982063 + ], + [ + 0.9015161062330156 + ], + [ + 0.9703343503473024 + ], + [ + 0.9987789987789988 + ], + [ + 0.9826559329887096 + ], + [ + 0.8594361209082695 + ], + [ + 0.9516399434309798 + ], + [ + 0.920417502503307 + ], + [ + 0.9423609294481023 + ], + [ + 0.968168023170972 + ], + [ + 0.9957870470931044 + ], + [ + 0.94521116881737 + ], + [ + 0.9694172098634408 + ], + [ + 0.9466379024540816 + ], + [ + 0.995055254321861 + ], + [ + 0.9879041307837876 + ], + [ + 0.9833831528957327 + ], + [ + 0.9333963910884244 + ], + [ + 0.9899402366995218 + ], + [ + 0.8869505922195406 + ], + [ + 0.9203611665699089 + ], + [ + 0.9884812240212558 + ], + [ + 0.9588085805762212 + ], + [ + 0.9214805336789016 + ], + [ + 0.9881107335844111 + ], + [ + 0.9236131934032984 + ], + [ + 0.9812023001507028 + ], + [ + 0.8379122722898551 + ], + [ + 0.9523555966814456 + ], + [ + 0.9248788062414784 + ], + [ + 0.8139160327981961 + ], + [ + 0.937383366744383 + ], + [ + 0.94521116881737 + ], + [ + 0.9768478574449928 + ], + [ + 0.9972514396116292 + ], + [ + 0.9933098124967774 + ], + [ + 0.9991101223581756 + ], + [ + 0.9286467697656632 + ], + [ + 0.919010674275554 + ], + [ + 0.9473516727604566 + ], + [ + 0.9459244011397192 + ], + [ + 0.907679698406929 + ], + [ + 0.9012628558280068 + ], + [ + 0.923234386862968 + ], + [ + 0.9345449630236856 + ], + [ + 0.9965224965914254 + ], + [ + 0.9537877101584162 + ], + [ + 0.9105923002381252 + ], + [ + 0.9964912280701756 + ], + [ + 0.9732265524705908 + ], + [ + 0.948780020349246 + ], + [ + 0.9833831528957327 + ], + [ + 0.923234386862968 + ], + [ + 0.9717799134249206 + ], + [ + 0.9001238035739624 + ], + [ + 0.8238720996776804 + ], + [ + 0.9369854844016412 + ], + [ + 0.9338360345735434 + ], + [ + 0.986111412381384 + ], + [ + 0.9689798997219612 + ], + [ + 0.9935924757554138 + ], + [ + 0.7605829143427332 + ], + [ + 0.9660041169227584 + ], + [ + 0.9211213201052028 + ], + [ + 0.917590135458235 + ], + [ + 0.9870232873110416 + ], + [ + 0.8507175025705549 + ], + [ + 0.9481552134363872 + ], + [ + 0.9964912280701756 + ], + [ + 0.9553309445702832 + ], + [ + 0.9403778017040136 + ], + [ + 0.9696119722965126 + ], + [ + 0.9725030984517492 + ], + [ + 0.9480657120588448 + ], + [ + 0.9480657120588448 + ], + [ + 0.8911000630113791 + ], + [ + 0.9008198204074828 + ], + [ + 0.9739502754814452 + ], + [ + 0.992130773157018 + ], + [ + 0.9940520578006032 + ], + [ + 0.9979840393589112 + ], + [ + 0.9871951628595732 + ], + [ + 0.9050015702408756 + ], + [ + 0.7835109416675496 + ], + [ + 0.9993324432576768 + ], + [ + 0.7596801346801346 + ], + [ + 0.9906701465266744 + ], + [ + 0.9480657120588448 + ], + [ + 0.8159024043178598 + ], + [ + 0.7811662552209668 + ], + [ + 0.8197944468080158 + ], + [ + 0.9848383996858172 + ], + [ + 0.9221336649411492 + ], + [ + 0.8994280557324552 + ], + [ + 0.786819255636605 + ], + [ + 0.8020486431706626 + ], + [ + 0.8608954878607267 + ], + [ + 0.9309395848776872 + ], + [ + 0.8507175025705549 + ], + [ + 0.9280303030303032 + ], + [ + 0.934334074623178 + ], + [ + 0.8656659267144711 + ], + [ + 0.7814049860815456 + ], + [ + 0.819882410141537 + ], + [ + 0.9043039394552778 + ], + [ + 0.7905837844375335 + ], + [ + 0.9809244351623316 + ], + [ + 0.7920033670033668 + ], + [ + 0.9476817042606516 + ], + [ + 0.9732265524705908 + ], + [ + 0.999014778325123 + ], + [ + 0.8814330280498146 + ], + [ + 0.8106107934390158 + ], + [ + 0.9859927106498643 + ], + [ + 0.843965803045393 + ], + [ + 0.7596801346801346 + ], + [ + 0.8513250555967384 + ], + [ + 0.8046783090893074 + ], + [ + 0.8073122788801593 + ], + [ + 0.9239392804329155 + ], + [ + 0.97062869262233 + ], + [ + 0.9464820597794912 + ], + [ + 0.8731889608367804 + ], + [ + 0.819882410141537 + ], + [ + 0.9189961343104286 + ], + [ + 0.8073122788801593 + ], + [ + 0.941972584550496 + ], + [ + 0.9545041703849207 + ], + [ + 0.8766192814819845 + ], + [ + 0.9739502754814452 + ], + [ + 0.9331273751154144 + ], + [ + 0.8493650107294191 + ], + [ + 0.9873818298349624 + ], + [ + 0.9964912280701756 + ], + [ + 0.895536084777682 + ], + [ + 0.9773557492735576 + ], + [ + 0.8385429638854296 + ], + [ + 0.8492357350911255 + ], + [ + 0.992105287563838 + ], + [ + 0.9991101224022378 + ], + [ + 0.7779288650281017 + ], + [ + 0.8958436239049176 + ], + [ + 0.9954545454545456 + ], + [ + 0.8217563751752737 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8178037731982906 + ], + [ + 0.9416562889165628 + ], + [ + 0.936963017728694 + ], + [ + 0.8442717785843921 + ], + [ + 0.7686035765445222 + ], + [ + 0.7867084930870223 + ], + [ + 0.992671182389769 + ], + [ + 0.9848040830545792 + ], + [ + 0.951008471157725 + ], + [ + 0.8630706569122703 + ], + [ + 0.9026819923371648 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.84746622922539 + ], + [ + 0.8979659609796596 + ], + [ + 0.999777530589544 + ], + [ + 0.940760842211224 + ], + [ + 0.78115400581154 + ], + [ + 0.9240556247405564 + ], + [ + 0.9822495603003196 + ], + [ + 0.9822495603003196 + ], + [ + 0.8052224642752426 + ], + [ + 0.7593325960761085 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9505705348293196 + ], + [ + 0.9416562889165628 + ], + [ + 0.9271888077994948 + ], + [ + 0.8673029726406383 + ], + [ + 0.9731456263408548 + ], + [ + 0.7813852813852814 + ], + [ + 0.7822341892305151 + ], + [ + 0.9364502164502164 + ], + [ + 0.8679516484927489 + ], + [ + 0.8857699681136173 + ], + [ + 0.7714560308712177 + ], + [ + 0.8584751140436623 + ], + [ + 0.8985904473621558 + ], + [ + 0.8190486045187014 + ], + [ + 0.7893527624833871 + ], + [ + 0.8919696969696971 + ], + [ + 0.8818618218586448 + ], + [ + 0.756628065305478 + ], + [ + 0.7882882882882881 + ], + [ + 0.950300482513086 + ], + [ + 0.8657481566722074 + ], + [ + 0.9365262267264388 + ], + [ + 0.943947221044588 + ], + [ + 0.887458515283843 + ], + [ + 0.7714763488785488 + ], + [ + 0.9214972959512142 + ], + [ + 0.909072064464046 + ], + [ + 0.7715736896162309 + ], + [ + 0.9290762303990062 + ], + [ + 0.8550758611268748 + ], + [ + 0.7761808341851454 + ], + [ + 0.9819054691235874 + ], + [ + 0.7957985346108523 + ], + [ + 0.9657498873425368 + ], + [ + 0.9364502164502164 + ], + [ + 0.8516827062939479 + ], + [ + 0.9754181770220984 + ], + [ + 0.9731874212360307 + ], + [ + 0.8135371179039302 + ], + [ + 0.8727427378014051 + ], + [ + 0.848344463643581 + ], + [ + 0.8895327800940938 + ], + [ + 0.7627248531396743 + ], + [ + 0.7582569516718274 + ], + [ + 0.7709571931840405 + ], + [ + 0.8921633972095838 + ], + [ + 0.9321707396546104 + ], + [ + 0.8986401163657464 + ], + [ + 0.7580471889891207 + ], + [ + 0.9369652591790605 + ], + [ + 0.8679796630864033 + ], + [ + 0.9098066660834573 + ], + [ + 0.980489676524778 + ], + [ + 0.927246096495326 + ], + [ + 0.9018122770586843 + ], + [ + 0.8810674463937621 + ], + [ + 0.8400216450216451 + ], + [ + 0.7689831576535288 + ], + [ + 0.7729944320019908 + ], + [ + 0.8837147279244052 + ], + [ + 0.881149648377826 + ], + [ + 0.9563110356768192 + ], + [ + 0.983927829355058 + ], + [ + 0.9839066269313416 + ], + [ + 0.7583206652119362 + ], + [ + 0.7925815424300344 + ], + [ + 0.8317161572052402 + ], + [ + 0.7744952514390555 + ], + [ + 0.9360718475073312 + ], + [ + 0.96130346341869 + ], + [ + 0.7958679833679831 + ], + [ + 0.7906981399616313 + ], + [ + 0.8413581378299119 + ], + [ + 0.9203347173341052 + ], + [ + 0.8430006636564963 + ], + [ + 0.9727275146860328 + ], + [ + 0.8287881529651736 + ], + [ + 0.8315151515151515 + ], + [ + 0.853720508166969 + ], + [ + 0.8093402654155926 + ], + [ + 0.8962455479058957 + ], + [ + 0.805605027801719 + ], + [ + 0.8210295170320834 + ], + [ + 0.8039070101933912 + ], + [ + 0.8039838558691283 + ], + [ + 0.7826760060360987 + ], + [ + 0.9269812868749552 + ], + [ + 0.794976794976795 + ], + [ + 0.8900713624983871 + ], + [ + 0.9133288665033964 + ], + [ + 0.810208371742399 + ], + [ + 0.7896057754229846 + ], + [ + 0.923877773549558 + ], + [ + 0.9296009475992656 + ], + [ + 0.895080529300567 + ], + [ + 0.8085490374609781 + ], + [ + 0.9819008264462812 + ], + [ + 0.8587224361306279 + ], + [ + 0.7739174537660428 + ], + [ + 0.7862254487513007 + ], + [ + 0.8193724468472356 + ], + [ + 0.8893524283935244 + ], + [ + 0.997064221767242 + ], + [ + 0.7952666762372825 + ], + [ + 0.9020216682958616 + ], + [ + 0.9983501374885428 + ], + [ + 0.8831534562926947 + ], + [ + 0.8860521920074892 + ], + [ + 0.7872481572481572 + ], + [ + 0.9226825090266608 + ], + [ + 0.7803152709359605 + ], + [ + 0.9122593875476056 + ], + [ + 0.8775850757693318 + ], + [ + 0.9799040094031604 + ], + [ + 0.8206267324852857 + ], + [ + 0.8177880557075959 + ], + [ + 0.9576966355531912 + ], + [ + 0.9220659824046918 + ], + [ + 0.797922077922078 + ], + [ + 0.7896320346320348 + ], + [ + 0.8632950463543738 + ], + [ + 0.9492492880197456 + ], + [ + 0.8832034632034632 + ], + [ + 0.8047193670665553 + ], + [ + 0.9956521739130436 + ], + [ + 0.7685862920068351 + ], + [ + 0.8475960459042418 + ], + [ + 0.9795419233757146 + ], + [ + 0.8269899956502829 + ], + [ + 0.7884382884382883 + ], + [ + 0.8207547087216158 + ], + [ + 0.9545454545454548 + ], + [ + 0.8429554406857294 + ], + [ + 0.8993321115511173 + ], + [ + 0.7984889287851585 + ], + [ + 0.761374210879955 + ], + [ + 0.8305523603886544 + ], + [ + 0.7718491195125222 + ], + [ + 0.980407916624232 + ], + [ + 0.950300482513086 + ], + [ + 0.8240213521788208 + ], + [ + 0.8952485002194801 + ], + [ + 0.9038846565773924 + ], + [ + 0.7965911235687182 + ], + [ + 0.8955324322950189 + ], + [ + 0.7910020962422152 + ], + [ + 0.9427138643067844 + ], + [ + 0.826115183440325 + ], + [ + 0.8573048573048573 + ], + [ + 0.7936317271895962 + ], + [ + 0.9007792207792208 + ], + [ + 0.854365955487306 + ], + [ + 0.9456364522650812 + ], + [ + 0.997982406795966 + ], + [ + 0.8774985212108586 + ], + [ + 0.9977822580645164 + ], + [ + 0.8221159804806326 + ], + [ + 0.9077567136073359 + ], + [ + 0.8205465606720966 + ], + [ + 0.8626119406890994 + ], + [ + 0.7556531232200494 + ], + [ + 0.7862587810898044 + ], + [ + 0.8404814885133853 + ], + [ + 0.8206267324852857 + ], + [ + 0.992492576897818 + ], + [ + 0.9526883899349432 + ], + [ + 0.8172714912841496 + ], + [ + 0.942686481353632 + ], + [ + 0.9073962406670544 + ], + [ + 0.793330615828421 + ], + [ + 0.9250332915366597 + ], + [ + 0.7896320346320348 + ], + [ + 0.9844717839591371 + ], + [ + 0.7676353790613718 + ], + [ + 0.9020216682958616 + ], + [ + 0.8820943870496513 + ], + [ + 0.9628828555154738 + ], + [ + 0.9505406805522968 + ], + [ + 0.7685960591133002 + ], + [ + 0.952282255405342 + ], + [ + 0.9961515326042576 + ], + [ + 0.8792822185970635 + ], + [ + 0.917989916458992 + ], + [ + 0.7624864249098158 + ], + [ + 0.8475960459042418 + ], + [ + 0.9795419233757146 + ], + [ + 0.8269899956502829 + ], + [ + 0.7884382884382883 + ], + [ + 0.8207547087216158 + ], + [ + 0.9545454545454548 + ], + [ + 0.8429554406857294 + ], + [ + 0.8993321115511173 + ], + [ + 0.7834739702517162 + ], + [ + 0.761374210879955 + ], + [ + 0.8305523603886544 + ], + [ + 0.7811065974284784 + ], + [ + 0.980407916624232 + ], + [ + 0.950300482513086 + ], + [ + 0.8240213521788208 + ], + [ + 0.8952485002194801 + ], + [ + 0.9038846565773924 + ], + [ + 0.798508237019148 + ], + [ + 0.8955324322950189 + ], + [ + 0.7839982383292353 + ], + [ + 0.9427138643067844 + ], + [ + 0.8245984899369047 + ], + [ + 0.8573048573048573 + ], + [ + 0.8243136284936928 + ], + [ + 0.8553134080531343 + ], + [ + 0.8473904773631097 + ], + [ + 0.9982456140350876 + ], + [ + 0.9590236663403416 + ], + [ + 0.9014436252397446 + ], + [ + 0.8327140244007301 + ], + [ + 0.8669485569807114 + ], + [ + 0.7949843218068803 + ], + [ + 0.903497324397646 + ], + [ + 0.9416562889165628 + ], + [ + 0.7707143966920784 + ], + [ + 0.855320123139272 + ], + [ + 0.7774854369415835 + ], + [ + 0.8503120994598766 + ], + [ + 0.926867994896457 + ], + [ + 0.8667552028246747 + ], + [ + 0.8775319334595817 + ], + [ + 0.901968773482508 + ], + [ + 0.935627556261994 + ], + [ + 0.9050659282343974 + ], + [ + 0.861924622573884 + ], + [ + 0.9675940297571454 + ], + [ + 0.9116934339203904 + ], + [ + 0.9072582435684412 + ], + [ + 0.9237413014402296 + ], + [ + 0.9238605624457716 + ], + [ + 0.8365273593813229 + ], + [ + 0.8893524283935244 + ], + [ + 0.9102500533059372 + ], + [ + 0.8349825924909352 + ], + [ + 0.8784817670545184 + ], + [ + 0.9947399253846392 + ], + [ + 0.8930927589221841 + ], + [ + 0.8055002075550022 + ], + [ + 0.8605298779944784 + ], + [ + 0.9775071835696456 + ], + [ + 0.9505926587353696 + ], + [ + 0.7588336685332704 + ], + [ + 0.8428335962794538 + ], + [ + 0.9238783245212608 + ], + [ + 0.8585749771698774 + ], + [ + 0.8765915866073055 + ], + [ + 0.9822182852411184 + ], + [ + 0.9533886386596292 + ], + [ + 0.8440336134453781 + ], + [ + 0.7834747760490336 + ], + [ + 0.924617649948652 + ], + [ + 0.9395524842975836 + ], + [ + 0.9389258424390616 + ], + [ + 0.9550800035134204 + ], + [ + 0.7946561709764253 + ], + [ + 0.9558099289684048 + ], + [ + 0.8428529645259684 + ], + [ + 0.7972573636925488 + ], + [ + 0.9379369101877942 + ], + [ + 0.8553636363636363 + ], + [ + 0.8995050491578671 + ], + [ + 0.9706054674756964 + ], + [ + 0.7736264668325739 + ], + [ + 0.9622333213753728 + ], + [ + 0.8220723881235561 + ], + [ + 0.8256741778557297 + ], + [ + 0.8127858031447691 + ], + [ + 0.7817740006858703 + ], + [ + 0.7968179052727826 + ], + [ + 0.8018268268268267 + ], + [ + 0.9281390141743808 + ], + [ + 0.9400806090461262 + ], + [ + 0.8107701860758095 + ], + [ + 0.8909257783846486 + ], + [ + 0.8991789819376026 + ], + [ + 0.8738739499371329 + ], + [ + 0.9781810760439292 + ], + [ + 0.8591088340319827 + ], + [ + 0.9192322609917452 + ], + [ + 0.8578880235734736 + ], + [ + 0.927227398337575 + ], + [ + 0.8549844211383769 + ], + [ + 0.9954545454545456 + ], + [ + 0.7996032354193273 + ], + [ + 0.7663762728169506 + ], + [ + 0.8072044088993242 + ], + [ + 0.9545454545454548 + ], + [ + 0.9222946747399472 + ], + [ + 0.8012891170808603 + ], + [ + 0.9007792207792208 + ], + [ + 0.761725650275299 + ], + [ + 0.9189132122341251 + ], + [ + 0.7700791802515137 + ], + [ + 0.7905809884612046 + ], + [ + 0.9364502164502164 + ], + [ + 0.9272003238960064 + ], + [ + 0.9520381744611566 + ], + [ + 0.7670786695244899 + ], + [ + 0.8558592375366569 + ], + [ + 0.833174972830306 + ], + [ + 0.9256214544793848 + ], + [ + 0.8228255528255527 + ], + [ + 0.8485714285714286 + ], + [ + 0.9702872224809812 + ], + [ + 0.7517555862267378 + ], + [ + 0.7565364592835857 + ], + [ + 0.7612860365462939 + ], + [ + 0.987527533398501 + ], + [ + 0.955555772482297 + ], + [ + 0.7996032354193273 + ], + [ + 0.7663762728169506 + ], + [ + 0.8072044088993242 + ], + [ + 0.9545454545454548 + ], + [ + 0.9222946747399472 + ], + [ + 0.8012891170808603 + ], + [ + 0.9007792207792208 + ], + [ + 0.761725650275299 + ], + [ + 0.9189132122341251 + ], + [ + 0.7700791802515137 + ], + [ + 0.7905809884612046 + ], + [ + 0.9364502164502164 + ], + [ + 0.933977462236232 + ], + [ + 0.9520381744611566 + ], + [ + 0.7670786695244899 + ], + [ + 0.8558592375366569 + ], + [ + 0.833174972830306 + ], + [ + 0.9256214544793848 + ], + [ + 0.8228255528255527 + ], + [ + 0.8485714285714286 + ], + [ + 0.9702872224809812 + ], + [ + 0.7517555862267378 + ], + [ + 0.7565364592835857 + ], + [ + 0.7612860365462939 + ], + [ + 0.987527533398501 + ], + [ + 0.955555772482297 + ], + [ + 0.9364502164502164 + ], + [ + 0.8358612257146861 + ], + [ + 0.8590707598082956 + ], + [ + 0.8832034632034632 + ], + [ + 0.833174972830306 + ], + [ + 0.8630005695842037 + ], + [ + 0.984461621950468 + ], + [ + 0.892391114486425 + ], + [ + 0.9897824784878032 + ], + [ + 0.8085316277505704 + ], + [ + 0.919319387113138 + ], + [ + 0.7940051262578318 + ], + [ + 0.780089044997152 + ], + [ + 0.9222946747399472 + ], + [ + 0.8363949697251979 + ], + [ + 0.796839893191436 + ], + [ + 0.7794331008589288 + ], + [ + 0.9859234217934404 + ], + [ + 0.9873000604890544 + ], + [ + 0.9486101335940044 + ], + [ + 0.9248539005931276 + ], + [ + 0.9517981773305488 + ], + [ + 0.8708608667318343 + ], + [ + 0.8623785126533147 + ], + [ + 0.9299160466862331 + ], + [ + 0.9545454545454548 + ], + [ + 0.8796487671810186 + ], + [ + 0.9772426641825802 + ], + [ + 0.7524584849903713 + ], + [ + 0.807857176503839 + ], + [ + 0.90727093221948 + ], + [ + 0.9971775822743564 + ], + [ + 0.7739306525397351 + ], + [ + 0.9847748699555192 + ], + [ + 0.7535520524804752 + ], + [ + 1 + ], + [ + 0.8551111044973793 + ], + [ + 0.9256631478531152 + ], + [ + 0.989570259523299 + ], + [ + 0.7687418116400186 + ], + [ + 0.9641837718077296 + ], + [ + 0.7942756598240468 + ], + [ + 0.8294322792944961 + ], + [ + 0.9215082393282026 + ], + [ + 0.9054494643688868 + ], + [ + 0.8530098192637454 + ], + [ + 0.9025093300004408 + ], + [ + 0.992492576897818 + ], + [ + 0.9598649249543808 + ], + [ + 0.8332737181503951 + ], + [ + 0.9529394346692732 + ], + [ + 0.8214507035663541 + ], + [ + 0.9309630572047876 + ], + [ + 0.7830101580101578 + ], + [ + 0.9732801304295486 + ], + [ + 0.9004189790402766 + ], + [ + 0.9446639459426616 + ], + [ + 0.9036078185699322 + ], + [ + 0.97145319916461 + ], + [ + 0.9609332238642584 + ], + [ + 0.7899791515690191 + ], + [ + 0.7611733870967741 + ], + [ + 0.863207096556374 + ], + [ + 0.9415725119950472 + ], + [ + 0.9939556858911696 + ], + [ + 0.783163286086673 + ], + [ + 0.9977977617253442 + ], + [ + 0.8662090859332238 + ], + [ + 0.8955509185594555 + ], + [ + 0.9764731504349176 + ], + [ + 0.7530954708374062 + ], + [ + 0.7828061257738677 + ], + [ + 0.8462219807137138 + ], + [ + 0.8842041598248496 + ], + [ + 0.915537959944108 + ], + [ + 0.7865763787648619 + ], + [ + 0.7856202453035243 + ], + [ + 0.903206652230566 + ], + [ + 0.989570259523299 + ], + [ + 0.7882882882882881 + ], + [ + 0.9483953947649668 + ], + [ + 0.9364334975369458 + ], + [ + 0.9056925711224626 + ], + [ + 0.7591535837096157 + ], + [ + 0.8418627955566073 + ], + [ + 0.7573046594982078 + ], + [ + 0.880681818181818 + ], + [ + 0.8409090909090906 + ], + [ + 0.806797048126061 + ], + [ + 0.7826760060360987 + ], + [ + 0.7688448083650483 + ], + [ + 0.8584408270788305 + ], + [ + 0.8956871084108602 + ], + [ + 0.913923675716727 + ], + [ + 0.9910308796338216 + ], + [ + 0.9590266687613186 + ], + [ + 0.7872481572481572 + ], + [ + 0.8646083304603533 + ], + [ + 0.9939410487486168 + ], + [ + 0.8340069434398959 + ], + [ + 0.982598363716604 + ], + [ + 0.9106424097900995 + ], + [ + 0.8008517246406788 + ], + [ + 0.8727928390787971 + ], + [ + 0.7681285613827205 + ], + [ + 0.8812869326621475 + ], + [ + 0.928402586493192 + ], + [ + 0.8532026469355432 + ], + [ + 0.8994624945374701 + ], + [ + 0.9440584784614404 + ], + [ + 0.9003302615524813 + ], + [ + 0.8228255528255527 + ], + [ + 0.9795723406491688 + ], + [ + 0.866515864516721 + ], + [ + 0.955439293598234 + ], + [ + 0.8529365775827682 + ], + [ + 0.934359451290398 + ], + [ + 0.8332769785018068 + ], + [ + 0.9365108715713024 + ], + [ + 0.877525810880078 + ], + [ + 0.9692015664722224 + ], + [ + 0.8409090909090906 + ], + [ + 0.940544771679814 + ], + [ + 0.923587693351357 + ], + [ + 0.7954434590943897 + ], + [ + 0.991568586771984 + ], + [ + 0.7612354435027383 + ], + [ + 0.937924041385235 + ], + [ + 0.8376851905173242 + ], + [ + 0.8927174779953235 + ], + [ + 0.7909951819239077 + ], + [ + 0.8443928295282409 + ], + [ + 0.8202350197681522 + ], + [ + 0.9660981642663024 + ], + [ + 0.8152462729809101 + ], + [ + 0.922004885973844 + ], + [ + 0.7639604667778042 + ], + [ + 0.7872481572481572 + ], + [ + 0.9000298090512994 + ], + [ + 0.8014712850828469 + ], + [ + 0.8228255528255527 + ], + [ + 0.8498088450201552 + ], + [ + 0.7879169357174485 + ], + [ + 0.8556523719936285 + ], + [ + 0.9755199210863276 + ], + [ + 0.8557823298777246 + ], + [ + 0.8293705854653898 + ], + [ + 0.8537505886046147 + ], + [ + 0.8046317312743457 + ], + [ + 0.8779697795654818 + ], + [ + 0.8749239196591598 + ], + [ + 0.8555086871328603 + ], + [ + 0.9225963809255304 + ], + [ + 0.9678016420122257 + ], + [ + 0.9415762523485668 + ], + [ + 0.8057522792271018 + ], + [ + 0.8959576525733801 + ], + [ + 0.9001590894975678 + ], + [ + 0.767145966241361 + ], + [ + 0.8489857866410283 + ], + [ + 0.9644777226717816 + ], + [ + 0.9098253673621896 + ], + [ + 0.8791269994277514 + ], + [ + 0.8664155045733993 + ], + [ + 0.8498893415734232 + ], + [ + 0.947101370798582 + ], + [ + 0.8538593322386425 + ], + [ + 0.8042480240124439 + ], + [ + 0.8931085516844227 + ], + [ + 0.8808798536293945 + ], + [ + 0.7934170900130808 + ], + [ + 0.9012551319648092 + ], + [ + 0.9348648660475504 + ], + [ + 0.8291496315254414 + ], + [ + 0.8722929363621342 + ], + [ + 0.911251618573038 + ], + [ + 0.9109734587383088 + ], + [ + 0.9170938628158845 + ], + [ + 0.7650216450216449 + ], + [ + 0.8491510263929617 + ], + [ + 0.797922077922078 + ], + [ + 0.9976169999054124 + ], + [ + 0.9935999513470776 + ], + [ + 0.8049044578239981 + ], + [ + 0.836149001293594 + ], + [ + 0.9772426641825802 + ], + [ + 0.7947818492500476 + ], + [ + 0.774258455570617 + ], + [ + 0.8948565585013833 + ], + [ + 0.96130346341869 + ], + [ + 0.7882882882882881 + ], + [ + 0.9031253085247768 + ], + [ + 0.7502958618442489 + ], + [ + 0.9074753238868364 + ], + [ + 0.9391271623435224 + ], + [ + 0.7795953486477678 + ], + [ + 0.8889322557418088 + ], + [ + 0.8774400397180557 + ], + [ + 0.9117791157331387 + ], + [ + 0.9837385506159468 + ], + [ + 0.7764964848815781 + ], + [ + 0.763706420963152 + ], + [ + 0.982244407057744 + ], + [ + 0.982258229908174 + ], + [ + 0.8665750946042498 + ], + [ + 0.7595972992524718 + ], + [ + 0.7801043792183331 + ], + [ + 0.905255061999686 + ], + [ + 0.8220123627076744 + ], + [ + 0.8030465628225144 + ], + [ + 0.9789271593959374 + ], + [ + 0.7848592675970836 + ], + [ + 0.78340962656552 + ], + [ + 0.9151319857390936 + ], + [ + 0.8905339474233814 + ], + [ + 0.8105036440440168 + ], + [ + 0.8827179393030227 + ], + [ + 0.9303783215638728 + ], + [ + 0.9188270726931117 + ], + [ + 0.9157320003100056 + ], + [ + 0.9358530842881808 + ], + [ + 0.7937577290427829 + ], + [ + 0.9414073611117948 + ], + [ + 0.8901453226576379 + ], + [ + 0.8602487024132297 + ], + [ + 0.7556614611768913 + ], + [ + 0.9600221996115068 + ], + [ + 0.7680433097131317 + ], + [ + 0.8925061445921794 + ], + [ + 0.9773557492735576 + ], + [ + 0.8013333235492676 + ], + [ + 0.7689202564616309 + ], + [ + 0.8185297955632884 + ], + [ + 0.7566698570378733 + ], + [ + 0.7828314585807773 + ], + [ + 0.8694189151801024 + ], + [ + 0.8065343721704722 + ], + [ + 0.9807788363703636 + ], + [ + 0.8356411205726275 + ], + [ + 0.8778270939877454 + ], + [ + 0.8142980219813145 + ], + [ + 0.9079854938491076 + ], + [ + 0.8369284370856844 + ], + [ + 0.8951910290953499 + ], + [ + 0.8385429638854296 + ], + [ + 0.9335217836825552 + ], + [ + 0.8814450312694764 + ], + [ + 0.8433770449321196 + ], + [ + 0.9773557492735576 + ], + [ + 0.8751169590643275 + ], + [ + 0.7872836439659993 + ], + [ + 0.8460813462362223 + ], + [ + 0.9068505777317312 + ], + [ + 0.974712351554919 + ], + [ + 0.8582253898196657 + ], + [ + 0.7694393172704596 + ], + [ + 0.9593583027873251 + ], + [ + 0.7791177041387707 + ], + [ + 0.8285988264418827 + ], + [ + 0.9708841861711646 + ], + [ + 0.8292663783394395 + ], + [ + 0.8455377025736512 + ], + [ + 0.784953771420362 + ], + [ + 0.7591712665406429 + ], + [ + 0.8668958338409165 + ], + [ + 0.8033611495393503 + ], + [ + 0.7791177041387707 + ], + [ + 0.7800515724165504 + ], + [ + 0.8797549464963943 + ], + [ + 0.9913485744394356 + ], + [ + 0.9893735932410646 + ], + [ + 0.8883723399394137 + ], + [ + 0.8371159751352832 + ], + [ + 0.8604416000492892 + ], + [ + 0.9391164837414664 + ], + [ + 0.9875732201051683 + ], + [ + 0.8696289027548957 + ], + [ + 0.9116740607637536 + ], + [ + 0.9335682269765724 + ], + [ + 0.8903543205412945 + ], + [ + 0.8274478901761246 + ], + [ + 0.8184361507912837 + ], + [ + 0.8985858297326429 + ], + [ + 0.8811309071018276 + ], + [ + 0.9600766541682176 + ], + [ + 0.9142379797053092 + ], + [ + 0.8539724989309248 + ], + [ + 0.9209665616774528 + ], + [ + 0.7653056658292261 + ], + [ + 0.9409789458067938 + ], + [ + 0.9813761990559404 + ], + [ + 0.937050978278692 + ], + [ + 0.8764803941254208 + ], + [ + 0.9622333213753728 + ], + [ + 0.8137991281050442 + ], + [ + 0.9349229298096128 + ], + [ + 0.9954545454545456 + ], + [ + 0.8383046372479713 + ], + [ + 0.8091752787787085 + ], + [ + 0.8992810605226834 + ], + [ + 0.8526177936134408 + ], + [ + 0.7653579292773433 + ], + [ + 0.916749204599586 + ], + [ + 0.8841900402810652 + ], + [ + 0.8889595044710776 + ], + [ + 0.8674196841123456 + ], + [ + 0.9890311615492476 + ], + [ + 0.9817061821644611 + ], + [ + 0.9631360021073514 + ], + [ + 0.9146441554557286 + ], + [ + 0.9372227566431792 + ], + [ + 0.8277684278026405 + ], + [ + 0.8085158042512651 + ], + [ + 0.8164472422898458 + ], + [ + 0.9476735033728184 + ], + [ + 0.9195597006085118 + ], + [ + 0.9400644385653472 + ], + [ + 0.8518992260665973 + ], + [ + 0.9457607069255074 + ], + [ + 0.805969235202997 + ], + [ + 0.8496241912512923 + ], + [ + 0.8197634340126408 + ], + [ + 0.9579224065577792 + ], + [ + 0.8608612476370511 + ], + [ + 0.9529052383428788 + ], + [ + 0.9845238804935112 + ], + [ + 0.9083435256044582 + ], + [ + 0.8553134080531343 + ], + [ + 0.7923275652679538 + ], + [ + 0.7819131922573495 + ], + [ + 0.7906170310433895 + ], + [ + 0.8406484670606788 + ], + [ + 0.7894736842105264 + ], + [ + 0.8681498428014106 + ], + [ + 0.8408063572139095 + ], + [ + 0.7738548847622624 + ], + [ + 0.8107066154287429 + ], + [ + 0.909636086500905 + ], + [ + 0.9320839327803117 + ], + [ + 0.894689054121916 + ], + [ + 0.8861995746607623 + ], + [ + 0.8134896030245747 + ], + [ + 0.9636363636363636 + ], + [ + 0.8392276737347159 + ], + [ + 0.901982337361457 + ], + [ + 0.8985728391457872 + ], + [ + 0.792183707284576 + ], + [ + 0.781322126609299 + ], + [ + 0.9194369973190348 + ], + [ + 0.8490800833801486 + ], + [ + 0.9929855448480356 + ], + [ + 0.9990150209905604 + ], + [ + 0.7707081956166206 + ], + [ + 0.8952232922255726 + ], + [ + 1 + ], + [ + 0.8129887361537077 + ], + [ + 0.9000234404536862 + ], + [ + 0.998221036598569 + ], + [ + 0.8017888630248555 + ], + [ + 0.8075842215036355 + ], + [ + 0.9208092958092956 + ], + [ + 0.7606873345935727 + ], + [ + 0.7928741020793951 + ], + [ + 0.9344444444444444 + ], + [ + 0.8580430671412884 + ], + [ + 0.8053911900065747 + ], + [ + 0.9025957850286672 + ], + [ + 0.992671182389769 + ], + [ + 0.9682695039010508 + ], + [ + 0.951299790877642 + ], + [ + 0.9060155127964962 + ], + [ + 0.9527305856232412 + ], + [ + 0.9434321361058602 + ], + [ + 0.9565966865742668 + ], + [ + 0.943947221044588 + ], + [ + 0.8705701323251417 + ], + [ + 0.9652200677131424 + ], + [ + 0.9884853681548044 + ], + [ + 0.9357441792403746 + ], + [ + 0.9414868925909092 + ], + [ + 0.9505847966970496 + ], + [ + 0.9565269894940224 + ], + [ + 0.9514804555247768 + ], + [ + 0.7993113894954217 + ], + [ + 0.760960813749392 + ], + [ + 0.8859552362571937 + ], + [ + 0.9413092648977816 + ], + [ + 1 + ], + [ + 0.8182545315351611 + ], + [ + 1 + ], + [ + 0.9136739322359624 + ], + [ + 0.7679975248125409 + ], + [ + 0.9492028179458656 + ], + [ + 0.9839615421047646 + ], + [ + 0.9954545454545456 + ], + [ + 0.9954545454545456 + ], + [ + 0.8398210820058983 + ], + [ + 0.8626784395302913 + ], + [ + 0.9781810760439292 + ], + [ + 0.775848555122794 + ], + [ + 0.7830044520223547 + ], + [ + 0.7890565881306622 + ], + [ + 0.7666456034744639 + ], + [ + 0.8730814336484439 + ], + [ + 0.8997733824632729 + ], + [ + 0.9780525030525028 + ], + [ + 0.9501767000609233 + ], + [ + 0.9341770866436075 + ], + [ + 0.7890266466291772 + ], + [ + 0.931285458781014 + ], + [ + 0.9135836385836384 + ], + [ + 0.8161327222259138 + ], + [ + 0.8595055413469735 + ], + [ + 0.8885272049623901 + ], + [ + 0.8850443888003645 + ], + [ + 0.9111695674516778 + ], + [ + 0.8969355419044592 + ], + [ + 0.9369652591790605 + ], + [ + 0.9474196440005122 + ], + [ + 0.9540293886604132 + ], + [ + 0.7751893805092811 + ], + [ + 0.884220727546821 + ], + [ + 0.9248167539267018 + ], + [ + 0.9416562889165628 + ], + [ + 0.9947833674785644 + ], + [ + 0.8179413224638157 + ], + [ + 0.963749256395003 + ], + [ + 0.9894860390412652 + ], + [ + 0.7661643396391405 + ], + [ + 0.8822836096135876 + ], + [ + 0.9987169080982063 + ], + [ + 0.8212112306855328 + ], + [ + 0.8510831692167852 + ], + [ + 0.9674464520962212 + ], + [ + 0.8140738302718742 + ], + [ + 0.9084937590490597 + ], + [ + 0.8588550489464593 + ], + [ + 0.9132111582886344 + ], + [ + 0.9652833528240462 + ], + [ + 0.8704495461768502 + ], + [ + 0.908214664444781 + ], + [ + 0.8330370179351025 + ], + [ + 0.8542414865764498 + ], + [ + 0.951833769945225 + ], + [ + 0.9369276682149368 + ], + [ + 0.9172096473904445 + ], + [ + 0.7660118606375093 + ], + [ + 0.8049385749385749 + ], + [ + 0.819882410141537 + ], + [ + 0.9479738077588338 + ], + [ + 0.8453139910143218 + ], + [ + 0.9957870470931044 + ], + [ + 0.835084520570639 + ], + [ + 0.7568829071309779 + ], + [ + 0.8003212087852895 + ], + [ + 0.7757575757575756 + ], + [ + 0.9818181818181816 + ], + [ + 0.8296247866194634 + ], + [ + 0.8397480840731469 + ], + [ + 0.8084175084175085 + ], + [ + 0.8224948407969244 + ], + [ + 0.7604961330297303 + ], + [ + 0.8801077325173712 + ], + [ + 0.769382100421295 + ], + [ + 0.8025699565810901 + ], + [ + 0.7925192834831389 + ], + [ + 0.932353379320096 + ], + [ + 0.94491648331435 + ], + [ + 0.8001582377938935 + ], + [ + 0.7832517257911142 + ], + [ + 0.8082508107205724 + ], + [ + 0.7628286200410923 + ], + [ + 0.7621748136686876 + ], + [ + 0.9364192202560784 + ], + [ + 0.7690913021991601 + ], + [ + 0.8585000323687447 + ], + [ + 0.9150177303560064 + ], + [ + 0.8405722943067688 + ], + [ + 0.904913008013858 + ], + [ + 0.917314235445159 + ], + [ + 0.9929855448480356 + ], + [ + 0.8268991218112046 + ], + [ + 0.8398859728050183 + ], + [ + 0.996521739130435 + ], + [ + 0.8330381744436689 + ], + [ + 0.8550497957993816 + ], + [ + 0.9913111768722972 + ], + [ + 0.8557422839635942 + ], + [ + 0.8935463671803986 + ], + [ + 0.9006445563787115 + ], + [ + 0.8921379258150505 + ], + [ + 0.9000168618023969 + ], + [ + 0.7589099863492517 + ], + [ + 0.923526237747262 + ], + [ + 0.9028882720019862 + ], + [ + 0.9170617535185012 + ], + [ + 0.9807828100228472 + ], + [ + 0.939548148620228 + ], + [ + 0.9363191484705866 + ], + [ + 0.8321093615368212 + ], + [ + 0.8571281012005368 + ], + [ + 0.8384981048972464 + ], + [ + 0.9086443302842008 + ], + [ + 0.8871943647917209 + ], + [ + 0.8878997468865361 + ], + [ + 0.8999564578859198 + ], + [ + 0.9894860390412652 + ], + [ + 0.9134801839907836 + ], + [ + 0.8586028659246839 + ], + [ + 0.9532628651995616 + ], + [ + 0.8991005792297246 + ], + [ + 0.9248167539267018 + ], + [ + 0.8647701376567242 + ], + [ + 0.9063380676482872 + ], + [ + 0.9006445563787115 + ], + [ + 0.9964912280701756 + ], + [ + 0.9104377104377104 + ], + [ + 0.9861142727065788 + ], + [ + 0.8766608932307983 + ], + [ + 0.9228068405104872 + ], + [ + 0.945216049382716 + ], + [ + 0.872288139441828 + ], + [ + 0.8287614081607514 + ], + [ + 0.9364502164502164 + ], + [ + 0.9107716613157442 + ], + [ + 0.7558233373684017 + ], + [ + 0.9637205387205386 + ], + [ + 0.911011004178706 + ], + [ + 0.825019069412662 + ], + [ + 0.7745592680619333 + ], + [ + 0.9563893487499426 + ], + [ + 0.8643469043976432 + ], + [ + 0.8938717567128639 + ], + [ + 0.8935795415901516 + ], + [ + 0.9090909090909088 + ], + [ + 0.8890241171514016 + ], + [ + 0.8412491105292438 + ], + [ + 0.8993946860474129 + ], + [ + 0.9779240761641758 + ], + [ + 0.8448498489942445 + ], + [ + 0.9637205387205386 + ], + [ + 0.8307739463601531 + ], + [ + 0.7840680498436611 + ], + [ + 0.9234588281480026 + ], + [ + 0.7533766040551628 + ], + [ + 0.8411108025383495 + ], + [ + 0.8186320718389478 + ], + [ + 0.7507073140597975 + ], + [ + 0.8665855131372373 + ], + [ + 0.8141166099294752 + ], + [ + 0.8465178639695039 + ], + [ + 0.8674324881574892 + ], + [ + 0.894897491091307 + ], + [ + 0.926797128906551 + ], + [ + 0.8002254756609835 + ], + [ + 0.8899568476668683 + ], + [ + 0.8050891517303731 + ], + [ + 0.7551272091668285 + ], + [ + 0.9170723522722332 + ], + [ + 0.8862820694208641 + ], + [ + 0.7731935891169762 + ], + [ + 0.85279684719044 + ], + [ + 0.8545871559633028 + ], + [ + 0.973043266390798 + ], + [ + 0.9110701550899905 + ], + [ + 0.8806793706489482 + ], + [ + 0.9750233018591332 + ], + [ + 0.8832528651475978 + ], + [ + 0.9637205387205386 + ], + [ + 0.8045977011494252 + ], + [ + 0.7840680498436611 + ], + [ + 0.9718089459310836 + ], + [ + 0.7632159853061836 + ], + [ + 0.8411108025383495 + ], + [ + 0.8186320718389478 + ], + [ + 0.8665855131372373 + ], + [ + 0.8141166099294752 + ], + [ + 0.8465178639695039 + ], + [ + 0.8674324881574892 + ], + [ + 0.8941741955127749 + ], + [ + 0.8055806456563269 + ], + [ + 0.9200506754154923 + ], + [ + 0.8002254756609835 + ], + [ + 0.8055002075550022 + ], + [ + 0.8899568476668683 + ], + [ + 0.8050891517303731 + ], + [ + 0.7551272091668285 + ], + [ + 0.9170723522722332 + ], + [ + 0.8862820694208641 + ], + [ + 0.7643684665873062 + ], + [ + 0.8962930952966316 + ], + [ + 0.8545871559633028 + ], + [ + 0.973043266390798 + ], + [ + 0.8391999316061071 + ], + [ + 0.9106199738197148 + ], + [ + 0.8336184977583577 + ], + [ + 0.9825055596738328 + ], + [ + 0.8275801175590107 + ], + [ + 0.8536656603794738 + ], + [ + 0.9947833674785644 + ], + [ + 0.8871943647917209 + ], + [ + 0.9947833674785644 + ], + [ + 0.8474509259804291 + ], + [ + 0.8970952216775002 + ], + [ + 0.9064029668710988 + ], + [ + 0.8689528166230794 + ], + [ + 0.8668563557933111 + ], + [ + 0.9192140588692024 + ], + [ + 0.8446191193563313 + ], + [ + 0.9070510179197603 + ], + [ + 0.9569231352909934 + ], + [ + 0.9360907526607608 + ], + [ + 0.9363191484705866 + ], + [ + 0.7585150816808764 + ], + [ + 0.8079450438253487 + ], + [ + 0.889311351984684 + ], + [ + 0.9157961667726409 + ], + [ + 0.8495199813878911 + ], + [ + 0.9008127437155956 + ], + [ + 0.9894860390412652 + ], + [ + 0.9084777593712244 + ], + [ + 0.8247288683081853 + ], + [ + 0.9554572159761404 + ], + [ + 0.8803742636840193 + ], + [ + 0.8617666872995883 + ], + [ + 0.9141959372906489 + ], + [ + 0.9034890695907855 + ], + [ + 0.8086181910936574 + ], + [ + 0.9964912280701756 + ], + [ + 0.9859927106498643 + ], + [ + 0.9106199738197148 + ], + [ + 0.7805873465692333 + ], + [ + 0.8878997468865361 + ], + [ + 0.9016573566020095 + ], + [ + 0.996521739130435 + ], + [ + 0.8072721768598793 + ], + [ + 0.8440081063581091 + ], + [ + 0.996521739130435 + ], + [ + 0.8612922801795058 + ], + [ + 0.8405722943067688 + ], + [ + 0.9620426435996664 + ], + [ + 0.8550497957993816 + ], + [ + 0.8140134601423378 + ], + [ + 0.8065264393377811 + ], + [ + 0.8107867382196149 + ], + [ + 0.8640740055556022 + ], + [ + 0.8801559604997237 + ], + [ + 0.7852248168921702 + ], + [ + 0.8640589559565321 + ], + [ + 0.7885457047794436 + ], + [ + 0.8947102177469851 + ], + [ + 0.9459249756326831 + ], + [ + 0.9206503306171988 + ], + [ + 0.8390959753949685 + ], + [ + 0.8829679585824524 + ], + [ + 0.8550497957993816 + ], + [ + 0.9034890695907855 + ], + [ + 0.996521739130435 + ], + [ + 0.8773484472624222 + ], + [ + 0.8453843932985197 + ], + [ + 0.9372480427854252 + ], + [ + 0.7528181818181818 + ], + [ + 0.9513991845811716 + ], + [ + 0.8133380704513155 + ], + [ + 0.8550497957993816 + ], + [ + 0.8822645386075115 + ], + [ + 0.9964912280701756 + ], + [ + 0.984385006449655 + ], + [ + 0.8868917142282169 + ], + [ + 0.8515915595209063 + ], + [ + 0.7801554360634969 + ], + [ + 0.985677698237539 + ], + [ + 0.8248130810601166 + ], + [ + 0.8900224404233377 + ], + [ + 0.9847846012832264 + ], + [ + 0.8665750946042498 + ], + [ + 0.8066554677866482 + ], + [ + 0.9191871761989552 + ], + [ + 0.8436840954545581 + ], + [ + 0.863729744412587 + ], + [ + 0.8256985978203084 + ], + [ + 0.8998085943818406 + ], + [ + 0.8162326248169407 + ], + [ + 0.9119926726575672 + ], + [ + 0.9789271593959374 + ], + [ + 0.9477427513951896 + ], + [ + 0.9452267008277976 + ], + [ + 0.880636467189412 + ], + [ + 0.8867623702302508 + ], + [ + 0.808133830455259 + ], + [ + 0.9714444301275637 + ], + [ + 0.9847846012832264 + ], + [ + 0.9286461770540784 + ], + [ + 0.9203870504644208 + ], + [ + 0.941002197457228 + ], + [ + 0.9704634209196064 + ], + [ + 0.8113283188178101 + ], + [ + 0.7634010982542299 + ], + [ + 0.8902061446452669 + ], + [ + 0.9354771486059212 + ], + [ + 0.9847846012832264 + ], + [ + 0.7809840281171203 + ], + [ + 0.9894860390412652 + ], + [ + 0.8185297955632884 + ], + [ + 0.8802332979851536 + ], + [ + 0.9723196833760273 + ], + [ + 0.9982608695652172 + ], + [ + 0.8258211640188051 + ], + [ + 0.9080000797822109 + ], + [ + 0.9964912280701756 + ], + [ + 0.839409582008935 + ], + [ + 0.8941141728869741 + ], + [ + 0.7725808179227283 + ], + [ + 0.8028188725754469 + ], + [ + 0.8251527896182628 + ], + [ + 0.8315151515151515 + ], + [ + 0.817899229361741 + ], + [ + 0.7620751217250173 + ], + [ + 0.8246468823065852 + ], + [ + 0.8720941750410174 + ], + [ + 0.9294859277773437 + ], + [ + 0.9927523497097036 + ], + [ + 0.9828742809481747 + ], + [ + 0.9543209471735604 + ], + [ + 0.8753860783148016 + ], + [ + 0.939845912034176 + ], + [ + 0.9151374298073564 + ], + [ + 0.9378841050418828 + ], + [ + 0.939845912034176 + ], + [ + 0.7510938991373108 + ], + [ + 0.8610822831727207 + ], + [ + 0.8417508417508417 + ], + [ + 0.8698065557551617 + ], + [ + 0.9372803249238462 + ], + [ + 0.9790245861131704 + ], + [ + 0.9300633742947678 + ], + [ + 0.8054841390869845 + ], + [ + 0.7589199371000429 + ], + [ + 0.896639903044993 + ], + [ + 0.8974694288349275 + ], + [ + 0.9926781739019452 + ], + [ + 0.8458809671812189 + ], + [ + 0.7712684989429177 + ], + [ + 0.7976314145122237 + ], + [ + 0.9416437009068946 + ], + [ + 0.9947856385396152 + ], + [ + 0.7862727272727271 + ], + [ + 0.8586700336700335 + ], + [ + 0.9303687863484544 + ], + [ + 0.8675319709415152 + ], + [ + 0.7920446151287672 + ], + [ + 0.8694866227116197 + ], + [ + 0.8586700336700335 + ], + [ + 0.7834335706711103 + ], + [ + 0.7921764122864366 + ], + [ + 0.934334074623178 + ], + [ + 0.8619283887468031 + ], + [ + 0.7676281237741422 + ], + [ + 0.7631048593350384 + ], + [ + 0.9925507389082384 + ], + [ + 0.978469168274726 + ], + [ + 0.7500718937727315 + ], + [ + 0.8846977863333716 + ], + [ + 0.9378841050418828 + ], + [ + 0.8684059865492091 + ], + [ + 0.8950764254021453 + ], + [ + 0.7740137221269299 + ], + [ + 0.8084175084175085 + ], + [ + 0.8843935880633129 + ], + [ + 0.7975398606698341 + ], + [ + 0.8485069801940157 + ], + [ + 0.7694545454545454 + ], + [ + 0.9679847507357018 + ], + [ + 0.7697689156812739 + ], + [ + 0.7685979300090726 + ], + [ + 0.9457912457912456 + ], + [ + 0.7920033670033668 + ], + [ + 0.81753438081967 + ], + [ + 0.9637205387205386 + ], + [ + 0.8196988466882366 + ], + [ + 0.8876132688068014 + ], + [ + 0.9992667277726852 + ], + [ + 0.813403640566796 + ], + [ + 0.924902134017138 + ], + [ + 0.8505352830088105 + ], + [ + 0.7966210086663266 + ], + [ + 0.8107701860758095 + ], + [ + 0.7920033670033668 + ], + [ + 0.8396249227545072 + ], + [ + 0.7665777912437509 + ], + [ + 0.9309395848776872 + ], + [ + 0.8562069694591002 + ], + [ + 0.8351865579441562 + ], + [ + 0.7614932582627626 + ], + [ + 0.9217240750865684 + ], + [ + 0.9927523497097036 + ], + [ + 0.9824776408025137 + ], + [ + 0.9261759464210148 + ], + [ + 0.8795946591645603 + ], + [ + 0.9517275376077332 + ], + [ + 0.8343766589132309 + ], + [ + 0.9378841050418828 + ], + [ + 0.939845912034176 + ], + [ + 0.8426835486603141 + ], + [ + 0.8084175084175085 + ], + [ + 0.825 + ], + [ + 0.9279912144543816 + ], + [ + 0.9380615545835612 + ], + [ + 0.954821445486407 + ], + [ + 0.8054841390869845 + ], + [ + 0.7644397158986019 + ], + [ + 0.7992420095977141 + ], + [ + 0.9046488352723072 + ], + [ + 0.8607131176664159 + ], + [ + 0.9425530200949087 + ], + [ + 0.9831998467809452 + ], + [ + 0.911913216712972 + ], + [ + 0.8106537530266346 + ], + [ + 0.8669221312020842 + ], + [ + 0.9668646925956867 + ], + [ + 0.9859927106498643 + ], + [ + 0.8221148524429848 + ], + [ + 0.8287744007907092 + ], + [ + 0.82603603526253 + ], + [ + 0.8081220122922833 + ], + [ + 0.9241691376328144 + ], + [ + 0.8905062719442627 + ], + [ + 0.9072244170820468 + ], + [ + 0.9697143291871126 + ], + [ + 0.9165806743803824 + ], + [ + 0.9299779576625525 + ], + [ + 0.8626009468114731 + ], + [ + 0.9129479515242416 + ], + [ + 0.9489917104460288 + ], + [ + 0.857590973901184 + ], + [ + 0.7832356477938764 + ], + [ + 0.8727427378014051 + ], + [ + 0.7882094994286454 + ], + [ + 0.895848674816511 + ], + [ + 0.9755497899678774 + ], + [ + 0.8250670301619656 + ], + [ + 0.7636588119091294 + ], + [ + 0.8344665413033981 + ], + [ + 0.9956140350877192 + ], + [ + 0.7763975155279506 + ], + [ + 0.9842098239836105 + ], + [ + 0.8099989097144443 + ], + [ + 0.8954915979223954 + ], + [ + 0.9774655289026236 + ], + [ + 0.8046862811072518 + ], + [ + 0.8922196480686242 + ], + [ + 0.8757413004727584 + ], + [ + 0.875097886791886 + ], + [ + 0.9781962076503552 + ], + [ + 0.9571952337305224 + ], + [ + 0.8651037425957864 + ], + [ + 0.9276048900878147 + ], + [ + 0.8334407352378117 + ], + [ + 0.7931151679937852 + ], + [ + 0.8060125046665569 + ], + [ + 0.9001590894975678 + ], + [ + 0.8984134418359582 + ], + [ + 0.9307180976298852 + ], + [ + 0.8949088289552438 + ], + [ + 0.9140478958381776 + ], + [ + 0.9195604324464297 + ], + [ + 0.8595611909902062 + ], + [ + 0.8168393183171508 + ], + [ + 0.826467375579422 + ], + [ + 0.94513113161729 + ], + [ + 0.9542466061552302 + ], + [ + 0.8949088289552438 + ], + [ + 0.9053910284366296 + ], + [ + 0.817437533227007 + ], + [ + 0.7978783990223038 + ], + [ + 0.7521903939726886 + ], + [ + 0.754943158980426 + ], + [ + 0.7928605555934748 + ], + [ + 0.8989607068123694 + ], + [ + 0.7975892455476461 + ], + [ + 0.7725199492096488 + ], + [ + 0.773030766193022 + ], + [ + 0.9767351231527428 + ], + [ + 0.9424631082284728 + ], + [ + 0.866898864682116 + ], + [ + 0.7899138991389913 + ], + [ + 0.9376349250962784 + ], + [ + 0.9303020409693342 + ], + [ + 0.8287563928270861 + ], + [ + 0.8603115680426934 + ], + [ + 0.8114732228923959 + ], + [ + 0.9669758970781992 + ], + [ + 0.8105976841695943 + ], + [ + 0.7959269589012261 + ], + [ + 0.8302139037433156 + ], + [ + 0.986986590623621 + ], + [ + 0.751078143739283 + ], + [ + 0.7653353783714458 + ], + [ + 0.8172644988912497 + ], + [ + 0.7803817180307603 + ], + [ + 0.8605730020712427 + ], + [ + 0.912175623606646 + ], + [ + 0.9956171156600898 + ], + [ + 0.8729948690203866 + ], + [ + 0.8364452091564932 + ], + [ + 0.8308541973619359 + ], + [ + 0.901193983595923 + ], + [ + 0.8421276190184838 + ], + [ + 0.8119707766428466 + ], + [ + 0.778036674438649 + ], + [ + 0.7873355614633314 + ], + [ + 0.7837805015771132 + ], + [ + 0.8219385637193856 + ], + [ + 0.8521396824062815 + ], + [ + 0.7718977095748232 + ], + [ + 0.8817091503055309 + ], + [ + 0.7708107321002571 + ], + [ + 0.7512636527567177 + ], + [ + 0.8438110321297421 + ], + [ + 0.9832058480308432 + ], + [ + 0.8890631162040309 + ], + [ + 0.8977160492573557 + ], + [ + 0.9859234217934404 + ], + [ + 0.8546502548557862 + ], + [ + 0.8668958338409165 + ], + [ + 0.9890311615492476 + ], + [ + 0.9350943180643897 + ], + [ + 0.9280169976669376 + ], + [ + 0.8210527935710153 + ], + [ + 0.7559911987169416 + ], + [ + 0.7736264668325739 + ], + [ + 0.863925779862748 + ], + [ + 0.824723044297354 + ], + [ + 0.8806041934635603 + ], + [ + 0.8250833206612556 + ], + [ + 0.928723519908324 + ], + [ + 0.8668958338409165 + ], + [ + 0.8881896291715989 + ], + [ + 0.9593583027873251 + ], + [ + 0.9061435934718377 + ], + [ + 0.9211354224331691 + ], + [ + 0.8859445107741636 + ], + [ + 0.9398812902982936 + ], + [ + 0.8047278408758268 + ], + [ + 0.9223744981227123 + ], + [ + 0.9230788696114616 + ], + [ + 0.9536631479971994 + ], + [ + 0.9694396869310692 + ], + [ + 0.8131377716690427 + ], + [ + 0.8237517359346237 + ], + [ + 0.8173907278944466 + ], + [ + 0.8965017504270001 + ], + [ + 0.9219048551109622 + ], + [ + 0.9097417836628494 + ], + [ + 0.8553134080531343 + ], + [ + 0.9989920981077092 + ], + [ + 0.917451425335698 + ], + [ + 0.9683628785480636 + ], + [ + 0.7970900578406114 + ], + [ + 0.8376203239523712 + ], + [ + 0.9801024844208264 + ], + [ + 0.7557162849632163 + ], + [ + 0.8961803319477781 + ], + [ + 0.996336999414424 + ], + [ + 0.9196524296187878 + ], + [ + 0.8854275250970148 + ], + [ + 0.8283188405797101 + ], + [ + 0.8569170829836921 + ], + [ + 0.7593988263019269 + ], + [ + 0.8392807687593222 + ], + [ + 0.9868446526492484 + ], + [ + 0.7732691595705294 + ], + [ + 0.9521895754027829 + ], + [ + 0.9372227566431792 + ], + [ + 0.9200506754154923 + ], + [ + 0.917500751704446 + ], + [ + 0.8740937766410911 + ], + [ + 0.8518450184501843 + ], + [ + 0.7975089687046684 + ], + [ + 0.8722498962224988 + ], + [ + 0.8978908677866823 + ], + [ + 0.9773557492735576 + ], + [ + 0.8912733076127769 + ], + [ + 0.8868080394461477 + ], + [ + 0.8826697225277056 + ], + [ + 0.9463791440512886 + ], + [ + 0.9521895754027829 + ], + [ + 0.8485714285714286 + ], + [ + 0.999122807017544 + ], + [ + 0.9265379339453412 + ], + [ + 0.789227895392279 + ], + [ + 0.8469796766499825 + ], + [ + 0.953644173755992 + ], + [ + 0.9926761940480948 + ], + [ + 0.8153042353997382 + ], + [ + 0.8607621561631246 + ], + [ + 0.9832058480308432 + ], + [ + 0.9570294209353524 + ], + [ + 0.9992668621947256 + ], + [ + 0.8641670664322122 + ], + [ + 0.7757761746311366 + ], + [ + 0.8357747120217831 + ], + [ + 0.866213238722621 + ], + [ + 0.8792285183078618 + ], + [ + 0.7957371772064827 + ], + [ + 0.878036507710379 + ], + [ + 0.9658331436022252 + ], + [ + 0.7622935296404183 + ], + [ + 0.9857187253140862 + ], + [ + 0.8942561574169895 + ], + [ + 0.9622333213753728 + ], + [ + 0.9131318215287682 + ], + [ + 0.8411490111317951 + ], + [ + 0.8916483082566217 + ], + [ + 0.9500441996469742 + ], + [ + 0.8499116091074294 + ], + [ + 0.9308446996969624 + ], + [ + 0.971973367585848 + ], + [ + 0.950603792184588 + ], + [ + 0.8131377716690427 + ], + [ + 0.8886194359553156 + ], + [ + 0.8284169872492293 + ], + [ + 0.8757940351900098 + ], + [ + 0.9023840086111148 + ], + [ + 0.9230788696114616 + ], + [ + 0.7524570024570024 + ], + [ + 0.9981688711071728 + ], + [ + 0.9020646721236415 + ], + [ + 0.9272440944881892 + ], + [ + 0.917451425335698 + ], + [ + 0.952871096782223 + ], + [ + 0.9954192028862328 + ], + [ + 0.8614426005287826 + ], + [ + 0.8553282796247272 + ], + [ + 0.991220090045964 + ], + [ + 0.962952748132584 + ], + [ + 0.9970690618433798 + ], + [ + 0.8655309124484051 + ], + [ + 0.7810606403025839 + ], + [ + 0.7757761746311366 + ], + [ + 0.8580430671412884 + ], + [ + 0.866213238722621 + ], + [ + 0.8806041934635603 + ], + [ + 0.7777808036382947 + ], + [ + 0.8317573749391951 + ], + [ + 0.9716068390573318 + ], + [ + 0.819882410141537 + ], + [ + 0.9848040830545792 + ], + [ + 0.8737365714482546 + ], + [ + 0.962952748132584 + ], + [ + 0.9154671960778832 + ], + [ + 0.9112764606124896 + ], + [ + 0.8916483082566217 + ], + [ + 0.9529052383428788 + ], + [ + 0.8696289027548957 + ], + [ + 0.9188566733401607 + ], + [ + 0.9507590560548307 + ], + [ + 0.9507917513638928 + ], + [ + 0.9853649117096728 + ], + [ + 0.8131377716690427 + ], + [ + 0.8951137084436364 + ], + [ + 0.8371159751352832 + ], + [ + 0.8703128420935895 + ], + [ + 0.9022988912306722 + ], + [ + 0.9400644385653472 + ], + [ + 0.7531344790477525 + ], + [ + 0.9992668621947256 + ], + [ + 0.9020646721236415 + ], + [ + 0.8645269531463561 + ], + [ + 0.9839330712663648 + ], + [ + 0.975224136149363 + ], + [ + 0.9372677626851672 + ], + [ + 1 + ], + [ + 0.9904901783696456 + ], + [ + 0.9875732201051683 + ], + [ + 1 + ], + [ + 0.9919502705663622 + ], + [ + 0.9890311615492476 + ], + [ + 1 + ], + [ + 0.9883020564051679 + ], + [ + 0.9132421335802218 + ], + [ + 0.996336999414424 + ], + [ + 0.9890311615492476 + ], + [ + 0.9883020564051679 + ], + [ + 0.9897605355374068 + ], + [ + 0.991220090045964 + ], + [ + 0.978122813016422 + ], + [ + 0.9511647444887732 + ], + [ + 0.9919502705663622 + ], + [ + 0.9985339932335306 + ], + [ + 0.8938717567128639 + ], + [ + 0.9891891050899508 + ], + [ + 0.9970690618433798 + ], + [ + 0.9897605355374068 + ], + [ + 0.9978013931164152 + ], + [ + 0.9855637890579251 + ], + [ + 0.9586402202505121 + ], + [ + 0.9607952743931896 + ], + [ + 0.9805263157894736 + ], + [ + 0.99268071993084 + ], + [ + 0.9941424251920344 + ], + [ + 0.996336999414424 + ], + [ + 0.9884575916336614 + ], + [ + 0.9719327874122964 + ], + [ + 0.9753656599277568 + ], + [ + 0.9883020564051679 + ], + [ + 0.9919502705663622 + ], + [ + 0.9883020564051679 + ], + [ + 0.9934114381393974 + ], + [ + 0.9992668621947256 + ], + [ + 0.977723489335005 + ], + [ + 0.9995652173913042 + ], + [ + 0.9948736810887512 + ], + [ + 0.9090909090909088 + ], + [ + 0.8174876847290639 + ], + [ + 0.8553636363636363 + ], + [ + 0.8455433455433455 + ], + [ + 0.8397417807252716 + ], + [ + 0.8437332724582007 + ], + [ + 0.832909538499891 + ], + [ + 0.7619786952586509 + ], + [ + 0.8177290491628549 + ], + [ + 0.9175438596491228 + ], + [ + 0.882198952879581 + ], + [ + 0.8767128866853765 + ], + [ + 0.8150509397735729 + ], + [ + 0.9294196742835898 + ], + [ + 0.8917391304347826 + ], + [ + 0.8253968253968254 + ], + [ + 0.8829402079402078 + ], + [ + 0.8107452697678261 + ], + [ + 0.9637205387205386 + ], + [ + 0.852293824358888 + ], + [ + 0.8709558996012198 + ], + [ + 0.7596801346801346 + ], + [ + 0.8181614349775784 + ], + [ + 0.9017543859649124 + ], + [ + 0.7897773279352229 + ], + [ + 0.805168828270855 + ], + [ + 0.9090909090909088 + ], + [ + 0.945216049382716 + ], + [ + 0.8771929824561405 + ], + [ + 0.8174876847290639 + ], + [ + 0.7599743651365856 + ], + [ + 0.8553636363636363 + ], + [ + 0.8455433455433455 + ], + [ + 0.9416562889165628 + ], + [ + 0.8437332724582007 + ], + [ + 0.832909538499891 + ], + [ + 0.8177290491628549 + ], + [ + 0.9175438596491228 + ], + [ + 0.882198952879581 + ], + [ + 0.8767128866853765 + ], + [ + 0.8150509397735729 + ], + [ + 0.9294196742835898 + ], + [ + 0.8917391304347826 + ], + [ + 0.8253968253968254 + ], + [ + 0.8829402079402078 + ], + [ + 0.8107452697678261 + ], + [ + 0.8417508417508417 + ], + [ + 0.852293824358888 + ], + [ + 0.8709558996012198 + ], + [ + 0.7596801346801346 + ], + [ + 0.8181614349775784 + ], + [ + 0.9017543859649124 + ], + [ + 0.7897773279352229 + ], + [ + 0.805168828270855 + ], + [ + 0.9090909090909088 + ], + [ + 0.9789848244395952 + ], + [ + 0.8771929824561405 + ], + [ + 0.8174876847290639 + ], + [ + 0.8813770455902434 + ], + [ + 0.8553636363636363 + ], + [ + 0.8455433455433455 + ], + [ + 0.8325561291955809 + ], + [ + 0.8437332724582007 + ], + [ + 0.832909538499891 + ], + [ + 0.8177290491628549 + ], + [ + 0.882198952879581 + ], + [ + 0.8150509397735729 + ], + [ + 0.9294196742835898 + ], + [ + 0.8917391304347826 + ], + [ + 0.8253968253968254 + ], + [ + 0.7862727272727271 + ], + [ + 0.8107452697678261 + ], + [ + 0.9825055596738328 + ], + [ + 0.852293824358888 + ], + [ + 0.8709558996012198 + ], + [ + 0.826664274308378 + ], + [ + 0.8181614349775784 + ], + [ + 0.9017543859649124 + ], + [ + 0.7897773279352229 + ], + [ + 0.805168828270855 + ], + [ + 0.9792614678275988 + ], + [ + 0.8553134080531343 + ], + [ + 0.8343739357475309 + ], + [ + 0.9649169511660014 + ], + [ + 0.9815789473684212 + ], + [ + 0.775995920023485 + ], + [ + 0.8490459410817468 + ], + [ + 0.999122807017544 + ], + [ + 0.8887919536466066 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.79241896667796 + ], + [ + 0.8672820048414341 + ], + [ + 0.9416562889165628 + ], + [ + 0.7922752675949607 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8515555890726042 + ], + [ + 0.84746622922539 + ], + [ + 0.8469364035600904 + ], + [ + 0.9088064577345945 + ], + [ + 0.9830807073527456 + ], + [ + 0.9729066716260472 + ], + [ + 0.9309198460265768 + ], + [ + 0.993758325008325 + ], + [ + 0.9220836669819068 + ], + [ + 0.9328333806952732 + ], + [ + 0.9120932616135702 + ], + [ + 0.8672722972717296 + ], + [ + 0.9787330446229278 + ], + [ + 0.9956171156600898 + ], + [ + 0.9044025274049858 + ], + [ + 0.9162907640884717 + ], + [ + 0.9886242163794032 + ], + [ + 0.9856590419138828 + ], + [ + 0.9735969760860068 + ], + [ + 0.9237640299437498 + ], + [ + 0.8150558110147776 + ], + [ + 0.9001503179694077 + ], + [ + 0.9403303455027593 + ], + [ + 0.999122807017544 + ], + [ + 0.9090741230371568 + ], + [ + 0.999122807017544 + ], + [ + 0.903135734615762 + ], + [ + 0.8282546041121969 + ], + [ + 0.9792614678275988 + ], + [ + 0.8553134080531343 + ], + [ + 0.8232860332235971 + ], + [ + 0.909065387196842 + ], + [ + 0.978073311070348 + ], + [ + 0.775995920023485 + ], + [ + 0.8490459410817468 + ], + [ + 0.999122807017544 + ], + [ + 0.8870930627862177 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.79241896667796 + ], + [ + 0.8672820048414341 + ], + [ + 0.9416562889165628 + ], + [ + 0.7922752675949607 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.7737464548987709 + ], + [ + 0.84746622922539 + ], + [ + 0.8291492133323973 + ], + [ + 0.9088064577345945 + ], + [ + 0.9761788895853514 + ], + [ + 0.9770862304997938 + ], + [ + 0.9329580322176916 + ], + [ + 0.993758325008325 + ], + [ + 0.9188951371295636 + ], + [ + 0.9328333806952732 + ], + [ + 0.8980181937554507 + ], + [ + 0.8677050513455755 + ], + [ + 0.9752792033119024 + ], + [ + 0.9882730260033812 + ], + [ + 0.905289786165362 + ], + [ + 0.9143112638406732 + ], + [ + 0.9886242163794032 + ], + [ + 0.9544594777956544 + ], + [ + 0.9581772940528424 + ], + [ + 0.9143045157420016 + ], + [ + 0.8252050839377624 + ], + [ + 0.9001503179694077 + ], + [ + 0.9403303455027593 + ], + [ + 0.999122807017544 + ], + [ + 0.9292464661560496 + ], + [ + 0.999122807017544 + ], + [ + 0.8566176867322529 + ], + [ + 0.8374157216227878 + ], + [ + 0.9280303030303032 + ], + [ + 0.986111279729024 + ], + [ + 0.9950777781016508 + ], + [ + 0.7644397158986019 + ], + [ + 0.8788591215600511 + ], + [ + 0.995055254321861 + ], + [ + 0.8218760444455504 + ], + [ + 0.8963051106025932 + ], + [ + 0.9855308977062668 + ], + [ + 0.8161330049261083 + ], + [ + 0.919010674275554 + ], + [ + 0.8602150725639578 + ], + [ + 0.9437855111487105 + ], + [ + 0.982329825041006 + ], + [ + 0.8843548391463373 + ], + [ + 0.8689327225675706 + ], + [ + 0.931003010693105 + ], + [ + 0.9349500075746098 + ], + [ + 0.8343765747325528 + ], + [ + 0.8587642661603542 + ], + [ + 0.8586700336700335 + ], + [ + 0.9617123795404005 + ], + [ + 0.9664559126905398 + ], + [ + 0.9369276682149368 + ], + [ + 0.9421777653794547 + ], + [ + 0.8002254756609835 + ], + [ + 0.91015350877193 + ], + [ + 0.8195948305972756 + ], + [ + 0.8049385749385749 + ], + [ + 0.8079714438079046 + ], + [ + 0.9248788062414784 + ], + [ + 0.9466765601812077 + ], + [ + 0.9943237305426308 + ], + [ + 0.8922259540680743 + ], + [ + 0.7615894748339839 + ], + [ + 0.92882506393551 + ], + [ + 0.8553134080531343 + ], + [ + 0.8492357350911255 + ], + [ + 0.9943501037415146 + ], + [ + 0.9908190857034046 + ], + [ + 0.7714797416324134 + ], + [ + 0.8958436239049176 + ], + [ + 1 + ], + [ + 0.8217563751752737 + ], + [ + 0.8995898027497777 + ], + [ + 0.9692982456140352 + ], + [ + 0.9108481442025624 + ], + [ + 0.7872481572481572 + ], + [ + 0.7785693212549879 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8833898132089024 + ], + [ + 0.8276770122994085 + ], + [ + 0.895416975651959 + ], + [ + 0.992671182389769 + ], + [ + 0.9514741813067672 + ], + [ + 0.8630706569122703 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8398017274912394 + ], + [ + 0.9988878509623264 + ], + [ + 0.937103645050706 + ], + [ + 0.9851370084561714 + ], + [ + 0.8052224642752426 + ], + [ + 0.9408748628296816 + ], + [ + 0.950672972897766 + ], + [ + 0.9505705348293196 + ], + [ + 1 + ], + [ + 0.7647361516158825 + ], + [ + 0.907644799841382 + ], + [ + 0.8492357350911255 + ], + [ + 0.9514212739063944 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8950014677832712 + ], + [ + 0.9943546343400722 + ], + [ + 0.8210917926103164 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8091752787787085 + ], + [ + 0.8045413788925241 + ], + [ + 0.92385752642948 + ], + [ + 0.7939937969249388 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8564021794854101 + ], + [ + 0.8929190984699815 + ], + [ + 0.7960647061252278 + ], + [ + 0.9048525852298742 + ], + [ + 0.992671182389769 + ], + [ + 0.987968431853366 + ], + [ + 0.9531702386026508 + ], + [ + 0.8651058220157922 + ], + [ + 0.957204861709126 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.8819809439955775 + ], + [ + 0.9883020564051679 + ], + [ + 0.937103645050706 + ], + [ + 0.9407755311560884 + ], + [ + 0.9851370084561714 + ], + [ + 0.8030210815765354 + ], + [ + 0.94362258995985 + ], + [ + 0.7901596681791947 + ], + [ + 0.8868080394461477 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9443944345284628 + ], + [ + 0.9992668621947256 + ], + [ + 0.9385224385224383 + ], + [ + 0.7647361516158825 + ], + [ + 0.907644799841382 + ], + [ + 0.8492357350911255 + ], + [ + 0.9514212739063944 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8950014677832712 + ], + [ + 0.9943546343400722 + ], + [ + 0.8171099429462456 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8091752787787085 + ], + [ + 0.8045413788925241 + ], + [ + 0.92385752642948 + ], + [ + 0.7939937969249388 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8532214540129998 + ], + [ + 0.8929190984699815 + ], + [ + 0.7960647061252278 + ], + [ + 0.9048525852298742 + ], + [ + 0.992671182389769 + ], + [ + 0.987968431853366 + ], + [ + 0.9531702386026508 + ], + [ + 0.8651058220157922 + ], + [ + 0.957204861709126 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.8744221238514268 + ], + [ + 0.9883020564051679 + ], + [ + 0.937103645050706 + ], + [ + 0.9407755311560884 + ], + [ + 0.9851370084561714 + ], + [ + 0.8030210815765354 + ], + [ + 0.94362258995985 + ], + [ + 0.7901596681791947 + ], + [ + 0.8868080394461477 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9443944345284628 + ], + [ + 0.9992668621947256 + ], + [ + 0.9385224385224383 + ], + [ + 0.7647361516158825 + ], + [ + 0.7823572752988579 + ], + [ + 0.9716068390573318 + ], + [ + 0.9615141634622412 + ], + [ + 0.9956019844379308 + ], + [ + 0.9939526010712452 + ], + [ + 0.9868446526492484 + ], + [ + 0.9788481543433862 + ], + [ + 1 + ], + [ + 0.9280169976669376 + ], + [ + 0.975224136149363 + ], + [ + 0.9970690618433798 + ], + [ + 0.9883020564051679 + ], + [ + 0.9301373709233364 + ], + [ + 0.9795737645144298 + ], + [ + 0.9824788936394012 + ], + [ + 0.9883020564051679 + ], + [ + 0.9414868925909092 + ], + [ + 0.9188566733401607 + ], + [ + 0.9978013931164152 + ], + [ + 0.9692438828447324 + ], + [ + 0.9883020564051679 + ], + [ + 0.9934114381393974 + ], + [ + 0.9486152933634998 + ], + [ + 0.9721523399735842 + ], + [ + 0.9934114381393974 + ], + [ + 0.9708841861711646 + ], + [ + 0.9500441996469742 + ], + [ + 0.9174366159265968 + ], + [ + 0.9329682990823176 + ], + [ + 0.9716068390573318 + ], + [ + 0.8840480861242009 + ], + [ + 0.9948736810887512 + ], + [ + 0.9579224065577792 + ], + [ + 0.9679962630672924 + ], + [ + 0.9978013931164152 + ], + [ + 0.8764803941254208 + ], + [ + 0.9414868925909092 + ], + [ + 0.9181539149158895 + ], + [ + 0.9429104219927898 + ], + [ + 0.9919502705663622 + ], + [ + 0.9651126414686952 + ], + [ + 1 + ], + [ + 0.9962804570068788 + ], + [ + 1 + ], + [ + 0.9513949869239996 + ], + [ + 0.917451425335698 + ], + [ + 0.8893524283935244 + ], + [ + 0.8711567490387903 + ], + [ + 0.8402268612783098 + ], + [ + 0.9991101224022378 + ], + [ + 0.875683873894971 + ], + [ + 0.893318343627618 + ], + [ + 0.9998166819431716 + ], + [ + 0.8181684978110831 + ], + [ + 0.8501131405958162 + ], + [ + 0.9791710812316362 + ], + [ + 0.9416562889165628 + ], + [ + 0.7704074975067344 + ], + [ + 0.8205779056365766 + ], + [ + 0.8524355521406097 + ], + [ + 0.8149410602532909 + ], + [ + 0.9678129927260984 + ], + [ + 0.992671182389769 + ], + [ + 0.9904289157282716 + ], + [ + 0.9512909738881008 + ], + [ + 0.9430833061919088 + ], + [ + 0.9498925099667804 + ], + [ + 0.9491784964871592 + ], + [ + 0.9608990650462856 + ], + [ + 0.9498609989321576 + ], + [ + 0.7794361831100473 + ], + [ + 0.9505758519634429 + ], + [ + 0.9773557492735576 + ], + [ + 0.8637008456171156 + ], + [ + 0.9301795973691914 + ], + [ + 0.8828315614940658 + ], + [ + 0.959175062021937 + ], + [ + 0.9531601641545472 + ], + [ + 0.999122807017544 + ], + [ + 0.9998166819431716 + ], + [ + 0.7587536069598175 + ], + [ + 0.7522123063336182 + ], + [ + 0.8258303273081601 + ], + [ + 0.9356248965935622 + ], + [ + 0.9820100634702482 + ], + [ + 0.831081385436793 + ], + [ + 0.8534540516685338 + ], + [ + 0.9818536963567754 + ], + [ + 0.8486878358300123 + ], + [ + 0.9129853629164147 + ], + [ + 0.8998911634924976 + ], + [ + 0.7793718426037994 + ], + [ + 0.932398585032895 + ], + [ + 0.800012400217004 + ], + [ + 0.7984383476710843 + ], + [ + 0.907326978222119 + ], + [ + 0.838169467510867 + ], + [ + 0.7913646289079624 + ], + [ + 0.9278150139590884 + ], + [ + 0.9506223327256856 + ], + [ + 0.9364530503181744 + ], + [ + 0.9417014747671419 + ], + [ + 0.7800217784035494 + ], + [ + 0.9258691777106102 + ], + [ + 0.9376349250962784 + ], + [ + 0.9412635914006205 + ], + [ + 0.8430977292102612 + ], + [ + 0.9461654371370272 + ], + [ + 0.9391302151973808 + ], + [ + 0.968708052390917 + ], + [ + 0.7829559806346367 + ], + [ + 0.8486878358300123 + ], + [ + 0.92049050384555 + ], + [ + 0.9877189123128628 + ], + [ + 0.9672169872900396 + ], + [ + 0.8207867897037397 + ], + [ + 0.8168393183171508 + ], + [ + 0.826467375579422 + ], + [ + 0.94513113161729 + ], + [ + 0.9585637037072424 + ], + [ + 0.8949088289552438 + ], + [ + 0.9053910284366296 + ], + [ + 0.817437533227007 + ], + [ + 0.7978783990223038 + ], + [ + 0.7521903939726886 + ], + [ + 0.754943158980426 + ], + [ + 0.7928605555934748 + ], + [ + 0.8989607068123694 + ], + [ + 0.7975892455476461 + ], + [ + 0.7725199492096488 + ], + [ + 0.7662703504995123 + ], + [ + 0.9767351231527428 + ], + [ + 0.9424631082284728 + ], + [ + 0.866898864682116 + ], + [ + 0.7783625730994154 + ], + [ + 0.9376349250962784 + ], + [ + 0.9303020409693342 + ], + [ + 0.8287563928270861 + ], + [ + 0.8603115680426934 + ], + [ + 0.8114732228923959 + ], + [ + 0.9669758970781992 + ], + [ + 0.8105976841695943 + ], + [ + 0.7959269589012261 + ], + [ + 0.8302139037433156 + ], + [ + 0.986986590623621 + ], + [ + 0.751078143739283 + ], + [ + 0.9104552048233484 + ], + [ + 0.9985339932335306 + ], + [ + 0.9919502705663622 + ], + [ + 0.9890174067689452 + ], + [ + 1 + ], + [ + 0.9985339932335306 + ], + [ + 0.9919502705663622 + ], + [ + 1 + ], + [ + 0.9978013931164152 + ], + [ + 0.9978013931164152 + ], + [ + 1 + ], + [ + 0.996336999414424 + ], + [ + 0.9978013931164152 + ], + [ + 0.9970690618433798 + ], + [ + 0.9985339932335306 + ], + [ + 0.996336999414424 + ], + [ + 0.9883020564051679 + ], + [ + 1 + ], + [ + 0.9904289157282716 + ], + [ + 0.9992668621947256 + ], + [ + 0.9992668621947256 + ], + [ + 0.996336999414424 + ], + [ + 0.9928507310737632 + ], + [ + 1 + ], + [ + 0.8271094654395285 + ], + [ + 0.996336999414424 + ], + [ + 0.9978013931164152 + ], + [ + 0.9956044009241408 + ], + [ + 0.9985339932335306 + ], + [ + 0.9904901783696456 + ], + [ + 0.9978013931164152 + ], + [ + 0.9970690618433798 + ], + [ + 0.996336999414424 + ], + [ + 0.996336999414424 + ], + [ + 0.9970690618433798 + ], + [ + 0.995605205829548 + ], + [ + 1 + ], + [ + 0.9985339932335306 + ], + [ + 0.9853883242696474 + ], + [ + 0.995605205829548 + ], + [ + 0.9992668621947256 + ], + [ + 1 + ], + [ + 0.9992555369697762 + ], + [ + 1 + ], + [ + 0.9882827814745488 + ], + [ + 0.9992668621947256 + ], + [ + 0.9859927106498643 + ], + [ + 0.9550538402276436 + ], + [ + 0.9795737645144298 + ], + [ + 0.9350474891783676 + ], + [ + 0.9946751263076096 + ], + [ + 0.99268071993084 + ], + [ + 0.9529052383428788 + ], + [ + 1 + ], + [ + 0.9832058480308432 + ], + [ + 0.928723519908324 + ], + [ + 0.999122807017544 + ], + [ + 0.9701618021290772 + ], + [ + 0.9181539149158895 + ], + [ + 0.9414868925909092 + ], + [ + 0.916749204599586 + ], + [ + 0.94362258995985 + ], + [ + 0.8771670219049115 + ], + [ + 0.9020646721236415 + ], + [ + 0.9479012434878824 + ], + [ + 0.7967703326479759 + ], + [ + 0.9802996435295532 + ], + [ + 0.9917846709962562 + ], + [ + 0.8938717567128639 + ], + [ + 0.9862646747457392 + ], + [ + 0.9839330712663648 + ], + [ + 0.9600766541682176 + ], + [ + 0.9759484021000084 + ], + [ + 0.9473421475334106 + ], + [ + 0.8472097261066925 + ], + [ + 0.9414868925909092 + ], + [ + 0.9650851977230176 + ], + [ + 0.999122807017544 + ], + [ + 0.9550538402276436 + ], + [ + 0.9441436310000064 + ], + [ + 0.9884575916336614 + ], + [ + 0.94958838214302 + ], + [ + 0.9436364293412104 + ], + [ + 0.9802996435295532 + ], + [ + 0.9817522080920388 + ], + [ + 0.9766729368947332 + ], + [ + 0.975224136149363 + ], + [ + 0.999122807017544 + ], + [ + 0.9763146820695155 + ], + [ + 0.999122807017544 + ], + [ + 0.9716068390573318 + ], + [ + 0.8353033499302194 + ], + [ + 0.9286573911418808 + ], + [ + 0.989388886675146 + ], + [ + 0.811997387314498 + ], + [ + 0.8668958338409165 + ], + [ + 0.9719327874122964 + ], + [ + 0.9416700490012928 + ], + [ + 0.9868446526492484 + ], + [ + 0.8626461571750742 + ], + [ + 0.7693359990306556 + ], + [ + 0.8443573586609718 + ], + [ + 0.8171099429462456 + ], + [ + 0.8861176478495414 + ], + [ + 0.842673863199572 + ], + [ + 0.928723519908324 + ], + [ + 0.758875943584108 + ], + [ + 0.887167247405612 + ], + [ + 0.8928699826089762 + ], + [ + 0.8759576634165684 + ], + [ + 0.9564875857045522 + ], + [ + 0.9061435934718377 + ], + [ + 0.8423092165265303 + ], + [ + 0.8930336617991886 + ], + [ + 0.9400644385653472 + ], + [ + 0.9237835099442904 + ], + [ + 0.9466976131633718 + ], + [ + 0.950603792184588 + ], + [ + 0.8131377716690427 + ], + [ + 0.8598012719162864 + ], + [ + 0.787554569047141 + ], + [ + 0.884737671188568 + ], + [ + 0.9070294784580498 + ], + [ + 0.9069463429223856 + ], + [ + 0.7524570024570024 + ], + [ + 0.9981688711071728 + ], + [ + 0.8971961746848013 + ], + [ + 0.8404738376904276 + ], + [ + 0.8288697152121746 + ], + [ + 0.8829742996323185 + ], + [ + 0.9945048317633112 + ], + [ + 0.885610204525967 + ], + [ + 0.9329682990823176 + ], + [ + 0.9407755311560884 + ], + [ + 0.9274938109996211 + ], + [ + 0.955770578544058 + ], + [ + 0.8609445180643548 + ], + [ + 0.8868080394461477 + ], + [ + 0.8826697225277056 + ], + [ + 0.860081980641546 + ], + [ + 0.8494179248503486 + ], + [ + 0.8806041934635603 + ], + [ + 0.7745935959659945 + ], + [ + 0.804564602812277 + ], + [ + 0.8457610658751216 + ], + [ + 0.9141259733731866 + ], + [ + 0.9083435256044582 + ], + [ + 0.9249744348616508 + ], + [ + 0.878036507710379 + ], + [ + 0.8567036918158099 + ], + [ + 0.9407755311560884 + ], + [ + 0.912541525908588 + ], + [ + 0.8711093063931175 + ], + [ + 0.8951137084436364 + ], + [ + 0.9041552036871964 + ], + [ + 0.953621170127054 + ], + [ + 0.9464739502688859 + ], + [ + 0.9727686004162333 + ], + [ + 0.9824788936394012 + ], + [ + 0.895416975651959 + ], + [ + 0.8388354220573428 + ], + [ + 0.8451861367189766 + ], + [ + 0.9020646721236415 + ], + [ + 0.8838860538503512 + ], + [ + 0.9586402202505121 + ], + [ + 0.99782684342909 + ], + [ + 0.7818532483566868 + ], + [ + 0.8978908677866823 + ], + [ + 0.9346434038598216 + ], + [ + 0.9486152933634998 + ], + [ + 0.975224136149363 + ], + [ + 0.927916573470583 + ], + [ + 0.9974294410273912 + ], + [ + 0.9586402202505121 + ], + [ + 0.9507590560548307 + ], + [ + 0.9978013931164152 + ], + [ + 0.954337370755309 + ], + [ + 0.911841187081034 + ], + [ + 0.975224136149363 + ], + [ + 0.9365130082728363 + ], + [ + 0.8902640300903737 + ], + [ + 0.9500441996469742 + ], + [ + 0.7528067405931878 + ], + [ + 0.9139430100959351 + ], + [ + 0.9486152933634998 + ], + [ + 0.8723662731741496 + ], + [ + 0.8503425879277244 + ], + [ + 0.9643924081792452 + ], + [ + 0.9716068390573318 + ], + [ + 0.9322331995088968 + ], + [ + 0.9730529513619054 + ], + [ + 0.8909560347514579 + ], + [ + 0.9730529513619054 + ], + [ + 0.9225158405279774 + ], + [ + 0.8806041934635603 + ], + [ + 0.9223744981227123 + ], + [ + 0.928723519908324 + ], + [ + 0.8985858297326429 + ], + [ + 0.8868080394461477 + ], + [ + 0.934385376226286 + ], + [ + 0.865978265648834 + ], + [ + 0.9669995060071396 + ], + [ + 0.9215535536561092 + ], + [ + 0.8916483082566217 + ], + [ + 0.8806041934635603 + ], + [ + 0.8614426005287826 + ], + [ + 0.9500441996469742 + ], + [ + 0.9615141634622412 + ], + [ + 0.9836858501848198 + ], + [ + 0.9992668621947256 + ], + [ + 0.8840480861242009 + ], + [ + 0.8659737769303842 + ], + [ + 0.8881896291715989 + ], + [ + 0.9658331436022252 + ], + [ + 0.9117779886590568 + ], + [ + 0.9891164188197914 + ], + [ + 0.9393536148186856 + ], + [ + 0.8999765601568034 + ], + [ + 0.9992668621947256 + ], + [ + 0.8902640300903737 + ], + [ + 0.8937267418365915 + ], + [ + 0.986116354037408 + ], + [ + 0.9745001390427974 + ], + [ + 0.8682618306097468 + ], + [ + 0.917451425335698 + ], + [ + 0.9237835099442904 + ], + [ + 0.9372227566431792 + ], + [ + 0.8605814190983236 + ], + [ + 0.9658331436022252 + ], + [ + 0.99268071993084 + ], + [ + 0.9331273751154144 + ], + [ + 0.9874932258547676 + ], + [ + 0.9817522080920388 + ], + [ + 0.9322601637764528 + ], + [ + 0.9730529513619054 + ], + [ + 0.7966912350949062 + ], + [ + 0.9636724437338746 + ], + [ + 0.9146441554557286 + ], + [ + 0.9665539145798344 + ], + [ + 0.912541525908588 + ], + [ + 0.8923408506058652 + ], + [ + 0.9403639696255566 + ], + [ + 0.9824501714706848 + ], + [ + 0.8958075950132784 + ], + [ + 0.7947875585169598 + ], + [ + 0.8888808273004442 + ], + [ + 0.9817522080920388 + ], + [ + 0.9579224065577792 + ], + [ + 0.9643924081792452 + ], + [ + 0.9978013931164152 + ], + [ + 0.909042520211614 + ], + [ + 0.8839798882716039 + ], + [ + 0.9322601637764528 + ], + [ + 0.977397740533538 + ], + [ + 0.9407327353741834 + ], + [ + 0.9974294410273912 + ], + [ + 0.957204861709126 + ], + [ + 0.9636724437338746 + ], + [ + 1 + ], + [ + 0.9507590560548307 + ], + [ + 0.9244884191211992 + ], + [ + 0.9737764107803116 + ], + [ + 0.9294303109937904 + ], + [ + 0.866213238722621 + ], + [ + 0.889572294273369 + ], + [ + 0.9365130082728363 + ], + [ + 0.9386430599161039 + ], + [ + 0.8614426005287826 + ], + [ + 0.8592127013521056 + ], + [ + 0.9586402202505121 + ], + [ + 0.984660563345966 + ], + [ + 0.942257835125676 + ], + [ + 0.977397740533538 + ], + [ + 0.8944200907180742 + ], + [ + 0.9723297607875788 + ], + [ + 0.9466282499343924 + ], + [ + 0.879916221463671 + ], + [ + 0.917451425335698 + ], + [ + 0.9358035287465732 + ], + [ + 0.9365130082728363 + ], + [ + 0.8785410839961321 + ], + [ + 0.8800026263331926 + ], + [ + 0.9180818572622022 + ], + [ + 0.9300900041631704 + ], + [ + 0.9111411170975592 + ], + [ + 0.8958075950132784 + ], + [ + 0.8751079450986783 + ], + [ + 0.9687178405771408 + ], + [ + 0.9643924081792452 + ], + [ + 0.9741087373430196 + ], + [ + 0.9965539092032524 + ], + [ + 0.8485601299189015 + ], + [ + 0.9039239850807016 + ], + [ + 0.991220090045964 + ], + [ + 0.99268071993084 + ], + [ + 0.9411779284976856 + ], + [ + 1 + ], + [ + 0.9941424251920344 + ], + [ + 0.9839330712663648 + ], + [ + 1 + ], + [ + 0.9948736810887512 + ], + [ + 0.9853883242696474 + ], + [ + 1 + ], + [ + 0.9904901783696456 + ], + [ + 0.9062481548474688 + ], + [ + 0.9948736810887512 + ], + [ + 0.9766729368947332 + ], + [ + 0.99268071993084 + ], + [ + 0.9883020564051679 + ], + [ + 0.996336999414424 + ], + [ + 0.9832058480308432 + ], + [ + 0.9721523399735842 + ], + [ + 0.995605205829548 + ], + [ + 0.995605205829548 + ], + [ + 0.8966477542865559 + ], + [ + 0.989920889126398 + ], + [ + 0.9941424251920344 + ], + [ + 0.9853883242696474 + ], + [ + 0.99268071993084 + ], + [ + 0.989208622446052 + ], + [ + 0.9737764107803116 + ], + [ + 0.9788481543433862 + ], + [ + 0.9508557261229018 + ], + [ + 0.9883020564051679 + ], + [ + 0.9868446526492484 + ], + [ + 0.9948736810887512 + ], + [ + 0.9789725394962472 + ], + [ + 0.9778375229520267 + ], + [ + 0.9630457249445452 + ], + [ + 0.9897605355374068 + ], + [ + 0.9759484021000084 + ], + [ + 0.9745001390427974 + ], + [ + 0.9839330712663648 + ], + [ + 1 + ], + [ + 0.9910847398800986 + ], + [ + 1 + ], + [ + 0.9824788936394012 + ], + [ + 0.8935362109939026 + ], + [ + 0.8492357350911255 + ], + [ + 0.7799775750856683 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8924773755936107 + ], + [ + 0.9921175854473762 + ], + [ + 0.8244173938759 + ], + [ + 0.8995898027497777 + ], + [ + 0.997783274463504 + ], + [ + 0.8019358454012121 + ], + [ + 0.8034463924540262 + ], + [ + 0.9208092958092956 + ], + [ + 0.7862626472757531 + ], + [ + 0.7901234941467935 + ], + [ + 0.9234208215886514 + ], + [ + 0.8754121720256093 + ], + [ + 0.8661215058187304 + ], + [ + 0.992671182389769 + ], + [ + 0.9798792330613568 + ], + [ + 0.9514741813067672 + ], + [ + 0.9550538402276436 + ], + [ + 0.9429977116704804 + ], + [ + 0.9378841050418828 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.9438416558070334 + ], + [ + 0.9894860390412652 + ], + [ + 0.9369022368540908 + ], + [ + 0.9407755311560884 + ], + [ + 0.937924041385235 + ], + [ + 0.9677933860111212 + ], + [ + 0.9970690618433798 + ], + [ + 0.9443944345284628 + ], + [ + 0.9965539092032524 + ], + [ + 0.7647361516158825 + ], + [ + 0.8833587699039136 + ], + [ + 0.8455377025736512 + ], + [ + 0.9378994747569932 + ], + [ + 1 + ], + [ + 0.8854275250970148 + ], + [ + 0.9372227566431792 + ], + [ + 0.9978013931164152 + ], + [ + 0.8621233137385207 + ], + [ + 0.9034580909885984 + ], + [ + 0.9687178405771408 + ], + [ + 0.9788481543433862 + ], + [ + 0.8364452091564932 + ], + [ + 0.8257495162906913 + ], + [ + 0.9450477324262084 + ], + [ + 0.7908116150724073 + ], + [ + 0.7922257273375911 + ], + [ + 0.8186576980160944 + ], + [ + 0.9593583027873251 + ], + [ + 0.9941424251920344 + ], + [ + 0.9848040830545792 + ], + [ + 0.9795737645144298 + ], + [ + 0.9181539149158895 + ], + [ + 0.9579224065577792 + ], + [ + 0.8038532129267693 + ], + [ + 0.7895079901300617 + ], + [ + 0.9393536148186856 + ], + [ + 0.9329682990823176 + ], + [ + 0.9386430599161039 + ], + [ + 0.9097417836628494 + ], + [ + 0.934365235861341 + ], + [ + 0.8682618306097468 + ], + [ + 0.8062236581276447 + ], + [ + 0.7999671002057498 + ], + [ + 0.9579224065577792 + ], + [ + 0.962952748132584 + ], + [ + 0.9421985228698097 + ], + [ + 0.9758471017566333 + ], + [ + 0.8492357350911255 + ], + [ + 0.9883020564051679 + ], + [ + 0.9965191088563604 + ], + [ + 0.9992663243093578 + ], + [ + 0.9992656508417233 + ], + [ + 0.9941424251920344 + ], + [ + 1 + ], + [ + 0.99268071993084 + ], + [ + 1 + ], + [ + 0.9992668621947256 + ], + [ + 0.9965191088563604 + ], + [ + 0.9540512424216696 + ], + [ + 0.9970690618433798 + ], + [ + 0.9768478574449928 + ], + [ + 0.9833831528957327 + ], + [ + 0.9914003253458398 + ], + [ + 0.9890311615492476 + ], + [ + 0.9782982623788444 + ], + [ + 0.9926335425715881 + ], + [ + 0.8068812492978317 + ], + [ + 0.9985339932335306 + ], + [ + 1 + ], + [ + 0.998339483394834 + ], + [ + 1 + ], + [ + 0.9948736810887512 + ], + [ + 0.9875732201051683 + ], + [ + 0.9941413527735856 + ], + [ + 1 + ], + [ + 0.992130773157018 + ], + [ + 0.9721444518798692 + ], + [ + 0.9978013931164152 + ], + [ + 0.998350675275288 + ], + [ + 0.9906529437430028 + ], + [ + 1 + ], + [ + 0.9948736810887512 + ], + [ + 0.9914003253458398 + ], + [ + 0.9970690618433798 + ], + [ + 0.9976169999054124 + ], + [ + 0.9985113511553524 + ], + [ + 0.9954545454545456 + ], + [ + 0.9585725924710128 + ], + [ + 0.9992668621947256 + ], + [ + 0.8558690511962423 + ], + [ + 0.9477543538038498 + ], + [ + 0.7858966339146662 + ], + [ + 0.8467583491924263 + ], + [ + 0.8327122834222226 + ], + [ + 0.8908526998828004 + ], + [ + 0.8135527713116105 + ], + [ + 0.9336872890005498 + ], + [ + 0.8135527713116105 + ], + [ + 0.7969931938295922 + ], + [ + 0.9404358147459344 + ], + [ + 0.7922931599671659 + ], + [ + 0.9455558136112772 + ], + [ + 0.7617997236100775 + ], + [ + 0.8361266348371678 + ], + [ + 0.8706162391527938 + ], + [ + 0.8909999999999999 + ], + [ + 0.8169671679245643 + ], + [ + 0.911393892174019 + ], + [ + 0.950028839221341 + ], + [ + 0.8316766353632711 + ], + [ + 0.8481140741645349 + ], + [ + 0.9263157894736842 + ], + [ + 0.7693317755435274 + ], + [ + 0.8485714285714286 + ], + [ + 0.9975371888373946 + ], + [ + 0.7657492944145039 + ], + [ + 0.782707509881423 + ], + [ + 0.8344731368348524 + ], + [ + 0.7893527624833871 + ], + [ + 0.934334074623178 + ], + [ + 0.9652014577830238 + ], + [ + 0.9712575474049576 + ], + [ + 0.7951570680628274 + ], + [ + 0.8023077073631943 + ], + [ + 0.8378558855512396 + ], + [ + 0.7750750175798774 + ], + [ + 0.8711152458705146 + ], + [ + 0.9450509667184974 + ], + [ + 0.8728200371057514 + ], + [ + 0.8266151860146821 + ], + [ + 0.9508561924475392 + ], + [ + 0.8678771151093215 + ], + [ + 0.7818744360024455 + ], + [ + 0.953621170127054 + ], + [ + 0.9550538402276436 + ], + [ + 0.9255861016232882 + ], + [ + 1 + ], + [ + 0.9890311615492476 + ], + [ + 0.9839330712663648 + ], + [ + 1 + ], + [ + 0.9875732201051683 + ], + [ + 0.9868446526492484 + ], + [ + 1 + ], + [ + 0.9672749544015236 + ], + [ + 0.8485601299189015 + ], + [ + 0.9948736810887512 + ], + [ + 0.9853883242696474 + ], + [ + 0.991220090045964 + ], + [ + 0.9716068390573318 + ], + [ + 0.9853883242696474 + ], + [ + 0.9817522080920388 + ], + [ + 0.9461330864231152 + ], + [ + 0.9934114381393974 + ], + [ + 0.9985339932335306 + ], + [ + 0.8683978095980386 + ], + [ + 0.9869953764615554 + ], + [ + 0.995605205829548 + ], + [ + 0.9868446526492484 + ], + [ + 0.9883020564051679 + ], + [ + 0.9724980906333768 + ], + [ + 0.9407755311560884 + ], + [ + 0.9372227566431792 + ], + [ + 0.9805263157894736 + ], + [ + 0.996336999414424 + ], + [ + 0.996336999414424 + ], + [ + 0.9992668621947256 + ], + [ + 0.9884575916336614 + ], + [ + 0.9887359375145636 + ], + [ + 0.977084365603192 + ], + [ + 0.9817522080920388 + ], + [ + 0.9890311615492476 + ], + [ + 0.9875732201051683 + ], + [ + 0.9883020564051679 + ], + [ + 0.9992668621947256 + ], + [ + 0.9762465658458932 + ], + [ + 1 + ], + [ + 0.991220090045964 + ], + [ + 0.8205020227371977 + ], + [ + 0.8608078181360623 + ], + [ + 0.8831761147394912 + ], + [ + 0.9956171156600898 + ], + [ + 0.8264159807642062 + ], + [ + 0.9851370084561714 + ], + [ + 0.8032496864185852 + ], + [ + 0.7921163153910715 + ], + [ + 0.8189876505853204 + ], + [ + 0.8866880766446407 + ], + [ + 0.7712492904983538 + ], + [ + 0.766650468421388 + ], + [ + 0.9874185848252344 + ], + [ + 0.9860765405159552 + ], + [ + 0.8021177944862157 + ], + [ + 0.9104948113042188 + ], + [ + 0.9076355564584256 + ], + [ + 0.9302834429286485 + ], + [ + 0.8899966113703928 + ], + [ + 0.7950194069243905 + ], + [ + 0.7994718538953012 + ], + [ + 0.9755497899678774 + ], + [ + 0.8737705484182898 + ], + [ + 0.8391756392041623 + ], + [ + 0.8000318742722583 + ], + [ + 0.863706643974955 + ], + [ + 0.999122807017544 + ], + [ + 0.788531116445173 + ], + [ + 0.7673011362392835 + ], + [ + 0.856290549490185 + ], + [ + 0.8500013228910797 + ], + [ + 0.8217519251079187 + ], + [ + 0.9886242163794032 + ], + [ + 0.8335855838820181 + ], + [ + 0.7737677036875701 + ], + [ + 0.80781838380708 + ], + [ + 0.8821104163000745 + ], + [ + 0.7790490801674135 + ], + [ + 0.821180494612969 + ], + [ + 0.8346691294875438 + ], + [ + 0.8306511043531097 + ], + [ + 0.7751893805092811 + ], + [ + 0.7785693212549879 + ], + [ + 0.8213296424597536 + ], + [ + 0.7990961561862842 + ], + [ + 0.8708980045995849 + ], + [ + 0.8508997225351951 + ], + [ + 0.9550538402276436 + ], + [ + 0.8404738376904276 + ], + [ + 0.8608516172237797 + ], + [ + 0.8898770040500942 + ], + [ + 0.9910308796338216 + ], + [ + 0.9443350267709892 + ], + [ + 0.9379327738576018 + ], + [ + 0.9687178405771408 + ], + [ + 0.954337370755309 + ], + [ + 0.8992810605226834 + ], + [ + 0.8104222403360605 + ], + [ + 0.8617768931040987 + ], + [ + 0.8019358454012121 + ], + [ + 0.8489486269748123 + ], + [ + 0.8334307196417515 + ], + [ + 0.8472653300897576 + ], + [ + 0.8641393141487438 + ], + [ + 0.8327404310943477 + ], + [ + 0.8764803941254208 + ], + [ + 0.912541525908588 + ], + [ + 0.8614426005287826 + ], + [ + 0.8750187225119483 + ], + [ + 0.8930336617991886 + ], + [ + 0.9188566733401607 + ], + [ + 0.909042520211614 + ], + [ + 0.9278339260751618 + ], + [ + 0.8855898697110776 + ], + [ + 0.8914924863272463 + ], + [ + 0.9636724437338746 + ], + [ + 0.8594020739640472 + ], + [ + 0.933676703232262 + ], + [ + 0.9471874624563446 + ], + [ + 0.9767901752344744 + ], + [ + 0.8923668029454429 + ], + [ + 0.887801301315952 + ], + [ + 0.8244173938759 + ], + [ + 0.8598281139548333 + ], + [ + 0.9048525852298742 + ], + [ + 0.9202629967209424 + ], + [ + 0.9586402202505121 + ], + [ + 0.99818613436632 + ], + [ + 0.8116526550439349 + ], + [ + 0.9097417836628494 + ], + [ + 0.8938131796635373 + ], + [ + 0.8689452322602814 + ], + [ + 0.7632159853061836 + ], + [ + 0.931092626752598 + ], + [ + 0.9714033929661204 + ], + [ + 0.916047252707554 + ], + [ + 0.9665539145798344 + ], + [ + 0.9992668621947256 + ], + [ + 0.877193998855128 + ], + [ + 0.8621233137385207 + ], + [ + 0.8404336601367269 + ], + [ + 0.8899568476668683 + ], + [ + 0.7657793910062513 + ], + [ + 0.8125492090556029 + ], + [ + 0.8944200907180742 + ], + [ + 0.9832058480308432 + ], + [ + 0.866243248832523 + ], + [ + 0.9723297607875788 + ], + [ + 0.9358035287465732 + ], + [ + 0.9111411170975592 + ], + [ + 0.8984030086479471 + ], + [ + 0.8744221238514268 + ], + [ + 0.831385641452182 + ], + [ + 0.917611437505964 + ], + [ + 0.8478847935907573 + ], + [ + 0.9679962630672924 + ], + [ + 0.8637608966376091 + ], + [ + 0.9294733352278108 + ], + [ + 0.8427886110852929 + ], + [ + 0.928226607524593 + ], + [ + 0.8025926314878588 + ], + [ + 0.9041552036871964 + ], + [ + 0.9045462110180228 + ], + [ + 0.9607952743931896 + ], + [ + 0.7731216272312162 + ], + [ + 0.9960877143127782 + ], + [ + 0.7917919558851796 + ], + [ + 0.7813854250011384 + ], + [ + 0.8594020739640472 + ], + [ + 0.8448171762300786 + ], + [ + 0.9066838594697112 + ], + [ + 0.993041786971632 + ], + [ + 0.9218534208170824 + ], + [ + 0.9280169976669376 + ], + [ + 0.9579224065577792 + ], + [ + 0.7649434377260497 + ], + [ + 0.9324432641365908 + ], + [ + 0.9890311615492476 + ], + [ + 0.8689452322602814 + ], + [ + 0.8861176478495414 + ], + [ + 0.8937267418365915 + ], + [ + 0.8573639669960287 + ], + [ + 0.853295011850143 + ], + [ + 0.9251935971421876 + ], + [ + 0.8902640300903737 + ], + [ + 0.7921163153910715 + ], + [ + 0.8692840854028374 + ], + [ + 0.9120241323975692 + ], + [ + 0.9322601637764528 + ], + [ + 0.9682695039010508 + ], + [ + 0.8869907346430809 + ], + [ + 0.9308446996969624 + ], + [ + 0.928723519908324 + ], + [ + 0.8601704114565033 + ], + [ + 0.8874986998868335 + ], + [ + 0.8888808273004442 + ], + [ + 0.975224136149363 + ], + [ + 0.8091752787787085 + ], + [ + 0.9507590560548307 + ], + [ + 0.9664158428720082 + ], + [ + 0.9817522080920388 + ], + [ + 0.8284169872492293 + ], + [ + 0.9136988002866576 + ], + [ + 0.8445121446112305 + ], + [ + 0.9139430100959351 + ], + [ + 0.8914848829801818 + ], + [ + 0.9672749544015236 + ], + [ + 0.99782684342909 + ], + [ + 0.772138724992434 + ], + [ + 0.90276124713408 + ], + [ + 0.961144204800487 + ], + [ + 0.8634855466902354 + ], + [ + 0.9379327738576018 + ], + [ + 0.908277884446819 + ], + [ + 0.9946871424565764 + ], + [ + 0.9479012434878824 + ], + [ + 0.933676703232262 + ], + [ + 0.9839330712663648 + ], + [ + 0.957204861709126 + ], + [ + 0.9897605355374068 + ], + [ + 0.8668958338409165 + ], + [ + 0.8916483082566217 + ], + [ + 0.9153455696596016 + ], + [ + 0.8573639669960287 + ], + [ + 0.8634855466902354 + ], + [ + 0.9251935971421876 + ], + [ + 0.909042520211614 + ], + [ + 0.8723662731741496 + ], + [ + 0.8537487234650945 + ], + [ + 0.8792285183078618 + ], + [ + 0.9350943180643897 + ], + [ + 0.8079714438079046 + ], + [ + 0.9551004697947988 + ], + [ + 0.8806041934635603 + ], + [ + 0.9273107442696306 + ], + [ + 0.9223744981227123 + ], + [ + 0.9616766085585506 + ], + [ + 0.8730512878891623 + ], + [ + 0.8965017504270001 + ], + [ + 0.975224136149363 + ], + [ + 0.8277497162434753 + ], + [ + 0.9514741813067672 + ], + [ + 0.9622333213753728 + ], + [ + 0.9746102461941208 + ], + [ + 0.940760842211224 + ], + [ + 0.8337648336821305 + ], + [ + 0.9132421335802218 + ], + [ + 0.838458313625102 + ], + [ + 0.9104413159581644 + ], + [ + 0.9230788696114616 + ], + [ + 0.9615141634622412 + ], + [ + 0.9608062684964296 + ], + [ + 0.9992668621947256 + ], + [ + 0.90276124713408 + ], + [ + 0.9316696874472936 + ], + [ + 0.8231087698825403 + ], + [ + 0.9544682296975874 + ], + [ + 0.7552770595350544 + ], + [ + 0.992615515771526 + ], + [ + 0.8512496250257213 + ], + [ + 0.8744043956043956 + ], + [ + 0.9547348484848484 + ], + [ + 0.7548367420848981 + ], + [ + 0.8010008340283569 + ], + [ + 0.8674088334090595 + ], + [ + 0.7996294165768151 + ], + [ + 0.908313797791604 + ], + [ + 0.9891493795585866 + ], + [ + 0.7540999753755234 + ], + [ + 0.9272544060904362 + ], + [ + 0.8780091446372676 + ], + [ + 0.9182823930924128 + ], + [ + 0.8762510425354463 + ], + [ + 0.9053124690879792 + ], + [ + 0.9546304163126592 + ], + [ + 0.9085090856109872 + ], + [ + 0.8064763169544045 + ], + [ + 0.9027775208335084 + ], + [ + 0.8873519569623151 + ], + [ + 0.902977283394997 + ], + [ + 0.9964912280701756 + ], + [ + 0.996521739130435 + ], + [ + 0.9338039426824476 + ], + [ + 0.9139430100959351 + ], + [ + 0.9622333213753728 + ], + [ + 0.9737764107803116 + ], + [ + 0.9701400724878312 + ], + [ + 0.9974294410273912 + ], + [ + 0.9358035287465732 + ], + [ + 0.9464739502688859 + ], + [ + 0.9970690618433798 + ], + [ + 0.9658331436022252 + ], + [ + 0.955770578544058 + ], + [ + 0.9960351014549488 + ], + [ + 0.9477180531985372 + ], + [ + 0.7802288530146114 + ], + [ + 0.9622333213753728 + ], + [ + 0.8067839857133676 + ], + [ + 0.9301373709233364 + ], + [ + 0.8868080394461477 + ], + [ + 0.9450477324262084 + ], + [ + 0.8134050821718116 + ], + [ + 0.9454153674378072 + ], + [ + 0.984660563345966 + ], + [ + 0.9904901783696456 + ], + [ + 0.9507590560548307 + ], + [ + 0.9779823259487208 + ], + [ + 0.9883020564051679 + ], + [ + 0.855139156857862 + ], + [ + 0.9853883242696474 + ], + [ + 0.9564875857045522 + ], + [ + 0.9083271241193304 + ], + [ + 0.9421985228698097 + ], + [ + 0.8621233137385207 + ], + [ + 0.9479012434878824 + ], + [ + 0.9802996435295532 + ], + [ + 0.9613309146374462 + ], + [ + 0.9890311615492476 + ], + [ + 0.9789725394962472 + ], + [ + 0.9230788696114616 + ], + [ + 0.9875732201051683 + ], + [ + 0.8937267418365915 + ], + [ + 0.9948736810887512 + ], + [ + 0.9716068390573318 + ], + [ + 0.9679854547640152 + ], + [ + 0.9572793819640072 + ], + [ + 0.9992668621947256 + ], + [ + 0.9649045221259104 + ], + [ + 0.9365130082728363 + ], + [ + 0.7854822169733378 + ], + [ + 0.9877224033535164 + ], + [ + 0.8267536096879368 + ], + [ + 0.8281155906857192 + ], + [ + 0.7782426513939189 + ], + [ + 0.7770132902980824 + ], + [ + 0.7813852813852814 + ], + [ + 0.8531626502908053 + ], + [ + 0.986652250762675 + ], + [ + 0.8443985380581599 + ], + [ + 0.8507060144843345 + ], + [ + 0.9095966218704222 + ], + [ + 0.7793195367381812 + ], + [ + 0.8485714285714286 + ], + [ + 0.793478260869565 + ], + [ + 0.9357129295614204 + ], + [ + 0.9013778530474436 + ], + [ + 0.8068636548636549 + ], + [ + 0.8283693657758276 + ], + [ + 0.7842947575142669 + ], + [ + 0.929941088884573 + ], + [ + 0.8318189568317447 + ], + [ + 0.9721324228139152 + ], + [ + 0.8929555666008868 + ], + [ + 0.9899175068744273 + ], + [ + 0.7829559806346367 + ], + [ + 0.8330585670487148 + ], + [ + 0.9004712036731742 + ], + [ + 0.8079059133534838 + ], + [ + 0.907326978222119 + ], + [ + 0.8418462145170219 + ], + [ + 0.8355962235887732 + ], + [ + 0.9840600196897172 + ], + [ + 0.9727233543942168 + ], + [ + 0.9456931798893302 + ], + [ + 0.7835307826762479 + ], + [ + 0.9334823561531638 + ], + [ + 0.943912095206486 + ], + [ + 0.9719476865439598 + ], + [ + 0.8989607068123694 + ], + [ + 0.9899175068744273 + ], + [ + 0.91218688144154 + ], + [ + 0.968708052390917 + ], + [ + 0.9275641323723166 + ], + [ + 0.7750817305162342 + ], + [ + 0.7705110005585539 + ], + [ + 0.8746911090742437 + ], + [ + 0.906777236648719 + ], + [ + 0.9877189123128628 + ], + [ + 0.905810189680844 + ], + [ + 0.9039758195768428 + ], + [ + 0.9545454545454548 + ], + [ + 0.8475303670578501 + ], + [ + 0.9511957748205524 + ], + [ + 0.8592904322283405 + ], + [ + 0.9090909090909088 + ], + [ + 0.864748396641959 + ], + [ + 0.8793851481338977 + ], + [ + 0.9499999999999998 + ], + [ + 0.7977657605606996 + ], + [ + 0.828074328074328 + ], + [ + 0.8757161620920398 + ], + [ + 0.8518139443215275 + ], + [ + 0.8919696969696971 + ], + [ + 0.9006463378910865 + ], + [ + 0.9123913868449176 + ], + [ + 0.7538355364442323 + ], + [ + 0.9728462804245892 + ], + [ + 0.8226075640111686 + ], + [ + 0.7627425872585156 + ], + [ + 0.9397093147093144 + ], + [ + 0.9405901494832792 + ], + [ + 0.9373208866593992 + ], + [ + 0.9185281385281384 + ], + [ + 0.9805093555093556 + ], + [ + 0.9045454545454543 + ], + [ + 0.7521739130434782 + ], + [ + 0.8676160350867449 + ], + [ + 0.9096320346320348 + ], + [ + 0.9705446224256292 + ], + [ + 0.7511156903867726 + ], + [ + 0.9498970784947516 + ], + [ + 0.8553636363636363 + ], + [ + 0.8803749979451918 + ], + [ + 0.8868951612903225 + ], + [ + 0.8716773908739449 + ], + [ + 0.7640091133472566 + ], + [ + 0.9754511278195488 + ], + [ + 0.9090909090909088 + ], + [ + 0.919377312007859 + ], + [ + 0.9895652173913044 + ], + [ + 0.9090909090909088 + ], + [ + 0.9895652173913044 + ], + [ + 0.904833326772871 + ], + [ + 0.8896985935172833 + ], + [ + 0.9613560315981924 + ], + [ + 0.9209973066564064 + ], + [ + 0.7738377192982457 + ], + [ + 0.8766948621553885 + ], + [ + 0.8955979105301095 + ], + [ + 0.7862727272727271 + ], + [ + 0.8120276073976656 + ], + [ + 0.9062605084545612 + ], + [ + 0.9819906110654324 + ], + [ + 0.9482809390239644 + ], + [ + 0.9270810254564676 + ], + [ + 0.8858122880872292 + ], + [ + 0.9272543317870856 + ], + [ + 0.9248843536331894 + ], + [ + 0.9592356458451337 + ], + [ + 0.9740750470337556 + ], + [ + 0.8618048445021776 + ], + [ + 0.9826209215251775 + ], + [ + 0.9119804816878757 + ], + [ + 0.901982337361457 + ], + [ + 0.968471177944862 + ], + [ + 0.9722529273134676 + ], + [ + 0.9674022810471118 + ], + [ + 0.8998470475108667 + ], + [ + 0.8758239471864051 + ], + [ + 0.957737379733654 + ], + [ + 0.9619347444028424 + ], + [ + 0.9817460256655812 + ], + [ + 0.9619598036238828 + ], + [ + 0.9754511278195488 + ], + [ + 0.9045454545454543 + ], + [ + 0.9108776132404182 + ], + [ + 0.9895652173913044 + ], + [ + 0.9090909090909088 + ], + [ + 0.9808695652173912 + ], + [ + 0.903936979364855 + ], + [ + 0.8946016606830777 + ], + [ + 0.9582023810487048 + ], + [ + 0.9363189044244398 + ], + [ + 0.7701982739613846 + ], + [ + 0.877299976398395 + ], + [ + 0.8623579834310708 + ], + [ + 0.7862727272727271 + ], + [ + 0.8480601581866628 + ], + [ + 0.8902466538134809 + ], + [ + 0.9819906110654324 + ], + [ + 0.9507874084663184 + ], + [ + 0.925065002188018 + ], + [ + 0.8906569786528593 + ], + [ + 0.9272543317870856 + ], + [ + 0.9318691420627104 + ], + [ + 0.9592356458451337 + ], + [ + 0.9670573870573872 + ], + [ + 0.8638081223124702 + ], + [ + 0.9815789473684212 + ], + [ + 0.9119804816878757 + ], + [ + 0.9027305623701912 + ], + [ + 0.968471177944862 + ], + [ + 0.9722529273134676 + ], + [ + 0.9664533537113174 + ], + [ + 0.8980586357606626 + ], + [ + 0.8824347249543827 + ], + [ + 0.957737379733654 + ], + [ + 0.9606072393507964 + ], + [ + 0.7604223245592875 + ], + [ + 0.9401709401709404 + ], + [ + 0.9616481164026224 + ], + [ + 0.9809453113164672 + ], + [ + 0.825 + ], + [ + 0.8965328341856458 + ], + [ + 0.9930434993747648 + ], + [ + 0.9919417254554761 + ], + [ + 0.7662935746676578 + ], + [ + 0.916200245724204 + ], + [ + 0.8929657620169505 + ], + [ + 0.9764831764168632 + ], + [ + 0.8651113127255622 + ], + [ + 0.8576748602878727 + ], + [ + 0.8002254756609835 + ], + [ + 0.8303849683667892 + ], + [ + 0.945960433937275 + ], + [ + 0.9927523497097036 + ], + [ + 0.9224700032216755 + ], + [ + 0.924592891635332 + ], + [ + 0.8627825284444037 + ], + [ + 0.9427557668775548 + ], + [ + 0.9416944402363276 + ], + [ + 0.7977840705338264 + ], + [ + 0.891911538610805 + ], + [ + 0.7757575757575756 + ], + [ + 0.9186470619844704 + ], + [ + 0.9755497899678774 + ], + [ + 0.9380936401545896 + ], + [ + 0.9430730858023998 + ], + [ + 0.8821269989132121 + ], + [ + 0.8635778359926967 + ], + [ + 0.9686187299234 + ], + [ + 0.82231768595902 + ], + [ + 0.8454690660447776 + ], + [ + 0.936633843357067 + ], + [ + 0.9928614899602092 + ], + [ + 0.7920033670033668 + ], + [ + 0.9790238683337896 + ], + [ + 0.851784484740942 + ], + [ + 0.7835174551354922 + ], + [ + 0.970437888198758 + ], + [ + 0.973913043478261 + ], + [ + 0.8004960204410251 + ], + [ + 0.8608354753566684 + ], + [ + 0.973913043478261 + ], + [ + 0.8932535416128451 + ], + [ + 0.8985806100405787 + ], + [ + 0.9473716579271056 + ], + [ + 0.8802936186789987 + ], + [ + 0.8429844720496896 + ], + [ + 0.7998641304347827 + ], + [ + 0.7548105590062113 + ], + [ + 0.851091804125718 + ], + [ + 0.7982289247602901 + ], + [ + 0.8918317295952493 + ], + [ + 0.9704182624797956 + ], + [ + 0.9250441174468548 + ], + [ + 0.9234004788164912 + ], + [ + 0.8072112569313484 + ], + [ + 0.9458344577995612 + ], + [ + 0.8199687206756333 + ], + [ + 0.9636939983093828 + ], + [ + 0.973913043478261 + ], + [ + 0.8946764860972011 + ], + [ + 0.8953883830144143 + ], + [ + 0.9685626687981476 + ], + [ + 0.8854475897922277 + ], + [ + 0.890074370350509 + ], + [ + 0.9467502582887196 + ], + [ + 0.973913043478261 + ], + [ + 0.7675727377454222 + ], + [ + 0.9240556247405564 + ], + [ + 0.9038176307865486 + ], + [ + 0.8004417918113229 + ], + [ + 0.8571885156262036 + ], + [ + 0.7888661250305931 + ], + [ + 0.7588020905133782 + ], + [ + 0.8150670283151774 + ], + [ + 0.8394858977004067 + ], + [ + 0.8506509425026048 + ], + [ + 0.86632058337082 + ], + [ + 0.907644799841382 + ], + [ + 0.7869039663743268 + ], + [ + 0.8377993482174306 + ], + [ + 0.9661635604440372 + ], + [ + 0.7796002893491529 + ], + [ + 0.8462255001833667 + ], + [ + 0.8698618053513671 + ], + [ + 0.853295011850143 + ], + [ + 0.9457912457912456 + ], + [ + 0.9954545454545456 + ], + [ + 0.786253632545592 + ], + [ + 0.921913236929922 + ], + [ + 0.9090909090909088 + ], + [ + 0.9764931810396176 + ], + [ + 0.9895652173913044 + ], + [ + 0.8409090909090906 + ], + [ + 0.982608695652174 + ], + [ + 0.904833326772871 + ], + [ + 0.9398297385891607 + ], + [ + 0.8728218919864725 + ], + [ + 0.910662682746664 + ], + [ + 0.7508707607699359 + ], + [ + 0.920196146646124 + ], + [ + 0.8941510995342954 + ], + [ + 0.7896297048496517 + ], + [ + 0.9062605084545612 + ], + [ + 0.9819906110654324 + ], + [ + 0.9395768590554164 + ], + [ + 0.8846891981591173 + ], + [ + 0.8753550543024229 + ], + [ + 0.9272543317870856 + ], + [ + 0.9159873721905482 + ], + [ + 0.9592356458451337 + ], + [ + 0.9719230769230768 + ], + [ + 0.853205915989843 + ], + [ + 0.9789473684210526 + ], + [ + 0.9119804816878757 + ], + [ + 0.9021731519130232 + ], + [ + 0.9408793468279631 + ], + [ + 0.9502457651288154 + ], + [ + 0.9343996875499296 + ], + [ + 0.8998470475108667 + ], + [ + 0.7828140592083379 + ], + [ + 0.956227485420032 + ], + [ + 0.9688644688644692 + ], + [ + 0.9878260869565216 + ], + [ + 0.9619598036238828 + ], + [ + 0.9853883242696474 + ], + [ + 0.9069463429223856 + ], + [ + 0.8484535647736858 + ], + [ + 0.9859234217934404 + ], + [ + 0.8546502548557862 + ], + [ + 0.8668958338409165 + ], + [ + 0.9890311615492476 + ], + [ + 0.9365130082728363 + ], + [ + 0.9280169976669376 + ], + [ + 0.8580430671412884 + ], + [ + 0.7643022445960241 + ], + [ + 0.7736264668325739 + ], + [ + 0.8826697225277056 + ], + [ + 0.8391298861361308 + ], + [ + 0.8806041934635603 + ], + [ + 0.8250833206612556 + ], + [ + 0.928723519908324 + ], + [ + 0.8668958338409165 + ], + [ + 0.7521491867834005 + ], + [ + 0.8881896291715989 + ], + [ + 0.9616904586883988 + ], + [ + 0.9061435934718377 + ], + [ + 0.9211354224331691 + ], + [ + 0.90276124713408 + ], + [ + 0.9434394218523597 + ], + [ + 0.8047278408758268 + ], + [ + 0.9216703954780426 + ], + [ + 0.9230788696114616 + ], + [ + 0.9564875857045522 + ], + [ + 0.9694396869310692 + ], + [ + 0.8131377716690427 + ], + [ + 0.8237517359346237 + ], + [ + 0.8025926314878588 + ], + [ + 0.8965017504270001 + ], + [ + 0.9230777619327238 + ], + [ + 0.9104413159581644 + ], + [ + 0.8553134080531343 + ], + [ + 0.9989920981077092 + ], + [ + 0.917451425335698 + ], + [ + 0.9521895754027829 + ], + [ + 0.9069463429223856 + ], + [ + 0.8444028672449848 + ], + [ + 0.9910308796338216 + ], + [ + 0.8526177936134408 + ], + [ + 0.8634855466902354 + ], + [ + 0.9883020564051679 + ], + [ + 0.9464739502688859 + ], + [ + 0.9216703954780426 + ], + [ + 0.8566851356948486 + ], + [ + 0.7694393172704596 + ], + [ + 0.7752390906012949 + ], + [ + 0.7768521470048189 + ], + [ + 0.8785410839961321 + ], + [ + 0.8290845270990632 + ], + [ + 0.8351044837311526 + ], + [ + 0.8264159807642062 + ], + [ + 0.9237835099442904 + ], + [ + 0.8868080394461477 + ], + [ + 0.8944200907180742 + ], + [ + 0.9486152933634998 + ], + [ + 0.9061435934718377 + ], + [ + 0.8987505869438153 + ], + [ + 0.7765308864041348 + ], + [ + 0.9062481548474688 + ], + [ + 0.9414868925909092 + ], + [ + 0.8971961746848013 + ], + [ + 0.9273107442696306 + ], + [ + 0.9564875857045522 + ], + [ + 0.9694396869310692 + ], + [ + 0.917451425335698 + ], + [ + 0.7980007746070045 + ], + [ + 0.900672328635003 + ], + [ + 0.9230777619327238 + ], + [ + 0.909042520211614 + ], + [ + 0.8722498962224988 + ], + [ + 0.99818613436632 + ], + [ + 0.917451425335698 + ], + [ + 0.9350943180643897 + ], + [ + 0.8450773104028045 + ], + [ + 0.7755025814626396 + ], + [ + 0.8499116091074294 + ], + [ + 0.9954545454545456 + ], + [ + 0.8248656842171965 + ], + [ + 0.8771670219049115 + ], + [ + 0.8017627702025453 + ], + [ + 0.8252966318058891 + ], + [ + 0.7989505012531329 + ], + [ + 0.9084382663648368 + ], + [ + 0.7700826611531227 + ], + [ + 0.8173907278944466 + ], + [ + 0.9586402202505121 + ], + [ + 0.8279882714725023 + ], + [ + 0.8750287541127237 + ], + [ + 0.8058469213257959 + ], + [ + 0.8887595093929513 + ], + [ + 0.8741986118728367 + ], + [ + 0.9013332512757184 + ], + [ + 0.8951137084436364 + ], + [ + 0.8085158042512651 + ], + [ + 0.7847209561813264 + ], + [ + 0.9207931801334324 + ], + [ + 0.8813228755976849 + ], + [ + 0.8806041934635603 + ], + [ + 0.904598717548413 + ], + [ + 0.8357423547232772 + ], + [ + 0.8519408442208185 + ], + [ + 0.7585436044093791 + ], + [ + 0.754716608935201 + ], + [ + 0.7526949335249729 + ], + [ + 0.8630753385715217 + ], + [ + 0.945504664970314 + ], + [ + 0.8607621561631246 + ], + [ + 0.8190996579799222 + ], + [ + 0.8138788692223808 + ], + [ + 0.80834947374926 + ], + [ + 0.8461416361416363 + ], + [ + 0.8321563840156672 + ], + [ + 0.9049823065264198 + ], + [ + 0.7611003116070912 + ], + [ + 0.8564208333192405 + ], + [ + 0.9567242111117616 + ], + [ + 0.8830433688448956 + ], + [ + 0.8498282229301768 + ], + [ + 0.8787054248059898 + ], + [ + 0.7583865519843361 + ], + [ + 0.8560065732377481 + ], + [ + 0.7845811712379542 + ], + [ + 0.911841187081034 + ], + [ + 0.7575987286674309 + ], + [ + 0.9032923617208078 + ], + [ + 0.8054515169551613 + ], + [ + 0.9457116500465104 + ], + [ + 0.7972151720771685 + ], + [ + 0.9550538402276436 + ], + [ + 0.8404738376904276 + ], + [ + 0.8951137084436364 + ], + [ + 0.8898770040500942 + ], + [ + 0.9910308796338216 + ], + [ + 0.9443350267709892 + ], + [ + 0.9379327738576018 + ], + [ + 0.9687178405771408 + ], + [ + 0.954337370755309 + ], + [ + 0.8992810605226834 + ], + [ + 0.8655309124484051 + ], + [ + 0.8902640300903737 + ], + [ + 0.8553282796247272 + ], + [ + 0.8614426005287826 + ], + [ + 0.8958075950132784 + ], + [ + 0.8438384213475643 + ], + [ + 0.8771670219049115 + ], + [ + 0.8280046113614686 + ], + [ + 0.8607621561631246 + ], + [ + 0.912541525908588 + ], + [ + 0.8614426005287826 + ], + [ + 0.8946208326427901 + ], + [ + 0.8930336617991886 + ], + [ + 0.9188566733401607 + ], + [ + 0.909042520211614 + ], + [ + 0.9278339260751618 + ], + [ + 0.8773278519419312 + ], + [ + 0.9111411170975592 + ], + [ + 0.9636724437338746 + ], + [ + 0.8566851356948486 + ], + [ + 0.933676703232262 + ], + [ + 0.9471874624563446 + ], + [ + 0.9832058480308432 + ], + [ + 0.8923668029454429 + ], + [ + 0.887801301315952 + ], + [ + 0.8244173938759 + ], + [ + 0.8424917813524705 + ], + [ + 0.9048525852298742 + ], + [ + 0.9202629967209424 + ], + [ + 0.9586402202505121 + ], + [ + 0.99818613436632 + ], + [ + 0.8116526550439349 + ], + [ + 0.9097417836628494 + ], + [ + 0.9329682990823176 + ], + [ + 0.8438384213475643 + ], + [ + 0.8958075950132784 + ], + [ + 0.8921838780119076 + ], + [ + 0.986652250762675 + ], + [ + 0.9479012434878824 + ], + [ + 0.9393536148186856 + ], + [ + 0.9687178405771408 + ], + [ + 0.7643022445960241 + ], + [ + 0.955770578544058 + ], + [ + 0.8478847935907573 + ], + [ + 0.8634855466902354 + ], + [ + 0.8614426005287826 + ], + [ + 0.8580430671412884 + ], + [ + 0.8587224361306279 + ], + [ + 0.8923408506058652 + ], + [ + 0.8351044837311526 + ], + [ + 0.8052224642752426 + ], + [ + 0.911841187081034 + ], + [ + 0.8295875223215042 + ], + [ + 0.889572294273369 + ], + [ + 0.912541525908588 + ], + [ + 0.8958075950132784 + ], + [ + 0.8960129675540568 + ], + [ + 0.8930336617991886 + ], + [ + 0.9550538402276436 + ], + [ + 0.909042520211614 + ], + [ + 0.887315997105363 + ], + [ + 0.8703128420935895 + ], + [ + 0.9111411170975592 + ], + [ + 0.9550538402276436 + ], + [ + 0.8614426005287826 + ], + [ + 0.9372227566431792 + ], + [ + 0.962952748132584 + ], + [ + 0.9824788936394012 + ], + [ + 0.9017863969504004 + ], + [ + 0.877949549206721 + ], + [ + 0.8614426005287826 + ], + [ + 0.8344345242846016 + ], + [ + 0.9013683659572824 + ], + [ + 0.9223744981227123 + ], + [ + 0.9586402202505121 + ], + [ + 0.99782684342909 + ], + [ + 0.8327803954481456 + ], + [ + 0.9377053197580578 + ], + [ + 0.7520783733062728 + ], + [ + 0.8576638516480299 + ], + [ + 0.7973458704289155 + ], + [ + 0.8055002075550022 + ], + [ + 0.8274342134261912 + ], + [ + 0.7682652462041775 + ], + [ + 0.8985858297326429 + ], + [ + 0.9295420779390244 + ], + [ + 0.9497666282126442 + ], + [ + 0.9045462110180228 + ], + [ + 0.8937267418365915 + ], + [ + 0.9450477324262084 + ], + [ + 0.9335682269765724 + ], + [ + 0.9463791440512886 + ], + [ + 0.8655309124484051 + ], + [ + 0.7591412700557859 + ], + [ + 0.8317573749391951 + ], + [ + 0.9191871761989552 + ], + [ + 0.9144998770732076 + ], + [ + 0.8299318662677443 + ], + [ + 0.7999671002057498 + ], + [ + 0.9590943683409436 + ], + [ + 0.9721268361679862 + ], + [ + 0.7512346093262124 + ], + [ + 0.9031905016766244 + ], + [ + 0.9258990440072554 + ], + [ + 0.8277497162434753 + ], + [ + 0.9045462110180228 + ], + [ + 0.9715042130082729 + ], + [ + 0.8091792146047655 + ], + [ + 0.8478274566824184 + ], + [ + 0.8594020739640472 + ], + [ + 0.7511865272235565 + ], + [ + 0.7739458321143061 + ], + [ + 0.8799003347391113 + ], + [ + 0.8438384213475643 + ], + [ + 0.8735155491890395 + ], + [ + 0.8971961746848013 + ], + [ + 0.955770578544058 + ], + [ + 0.962303313592256 + ], + [ + 0.9187077430559348 + ], + [ + 0.9203925414202916 + ], + [ + 0.9514626397110274 + ], + [ + 0.9041122896824668 + ], + [ + 0.7840680498436611 + ], + [ + 0.8292520377479811 + ], + [ + 0.97941509455445 + ], + [ + 0.8836172394187662 + ], + [ + 0.9375944096516282 + ], + [ + 0.9096320346320348 + ], + [ + 0.8897178357319816 + ], + [ + 0.977084365603192 + ], + [ + 0.8159983921213949 + ], + [ + 0.8647743756870857 + ], + [ + 0.9324532116794522 + ], + [ + 0.9496978544622346 + ], + [ + 0.8933384348345432 + ], + [ + 0.9146441554557286 + ], + [ + 0.893013468013468 + ], + [ + 0.7745935959659945 + ], + [ + 0.9240556247405564 + ], + [ + 0.9248385202583678 + ], + [ + 0.9493296120831972 + ], + [ + 0.784239798606639 + ], + [ + 0.7934206675600327 + ], + [ + 0.847568697165119 + ], + [ + 0.8111354653251885 + ], + [ + 0.7558928791805505 + ], + [ + 0.7550475642500958 + ], + [ + 0.8290845270990632 + ], + [ + 0.9166360018268416 + ], + [ + 0.9214315504311476 + ], + [ + 0.8905928806265223 + ], + [ + 0.8833857030636293 + ], + [ + 0.8371864728096656 + ], + [ + 0.7786506591658736 + ], + [ + 0.8732444148742633 + ], + [ + 0.9824788936394012 + ], + [ + 0.9261641390813252 + ], + [ + 0.7920585237916445 + ], + [ + 0.8270827140818009 + ], + [ + 0.8181481481481481 + ], + [ + 0.9685059666773832 + ], + [ + 0.7724990486505474 + ], + [ + 0.8453837597330368 + ], + [ + 0.9028925619834708 + ], + [ + 0.974712351554919 + ], + [ + 0.7990739031960405 + ], + [ + 0.8124766840771211 + ], + [ + 0.8338302155859407 + ], + [ + 0.8257495162906913 + ], + [ + 0.9242514144040864 + ], + [ + 0.8874986998868335 + ], + [ + 0.8316014689297133 + ], + [ + 0.8491709060650188 + ], + [ + 0.9290397110203914 + ], + [ + 0.9429104219927898 + ], + [ + 0.9020663048206212 + ], + [ + 0.9497666282126442 + ], + [ + 0.8735827515879028 + ], + [ + 0.8190930086640767 + ], + [ + 0.9097417836628494 + ], + [ + 0.8836172394187662 + ], + [ + 0.7561436787677326 + ], + [ + 0.9111759366075987 + ], + [ + 0.9685059666773832 + ], + [ + 0.7694393172704596 + ], + [ + 0.9182355818184244 + ], + [ + 0.9443350267709892 + ], + [ + 0.8991822088005293 + ], + [ + 0.9609732144249478 + ], + [ + 0.8388412496816188 + ], + [ + 0.9434738042076424 + ], + [ + 0.9514940210071012 + ], + [ + 0.7974547159339365 + ], + [ + 0.9158098573783174 + ], + [ + 0.8885435517508157 + ], + [ + 0.7927757091445906 + ], + [ + 0.8089575535557855 + ], + [ + 0.8566665569299595 + ], + [ + 0.8314583644863298 + ], + [ + 0.7943437531819572 + ], + [ + 0.8869909377863762 + ], + [ + 0.7623509827444914 + ], + [ + 0.9602434075673276 + ], + [ + 0.8173534679942144 + ], + [ + 0.9145746409758626 + ], + [ + 0.7598389563652722 + ], + [ + 0.8919299119395553 + ], + [ + 0.9546749386121294 + ], + [ + 0.9061863080667324 + ], + [ + 0.9429340786658 + ], + [ + 0.8532240586756394 + ], + [ + 0.8877384763770779 + ], + [ + 0.958686173433348 + ], + [ + 0.9554765128325876 + ], + [ + 0.927589597885256 + ], + [ + 0.9529605866177816 + ], + [ + 0.9690193870107546 + ], + [ + 0.8907469811519957 + ], + [ + 0.9842229467473992 + ], + [ + 0.9364502164502164 + ], + [ + 0.8550444275316389 + ], + [ + 0.9174603174603174 + ], + [ + 0.9919369945954868 + ], + [ + 0.7974492252661268 + ], + [ + 0.9534048316392292 + ], + [ + 0.7523489859050253 + ], + [ + 0.8139854059928581 + ], + [ + 0.9461387983232418 + ], + [ + 0.8098519486211259 + ], + [ + 0.7647244706969056 + ], + [ + 0.906310774345067 + ], + [ + 0.7678224795898994 + ], + [ + 0.9290762303990062 + ], + [ + 0.8524886899155711 + ], + [ + 0.980320788530466 + ], + [ + 0.9254995395026632 + ], + [ + 0.8657481566722074 + ], + [ + 0.9421659088682972 + ], + [ + 0.8474906647205496 + ], + [ + 0.9013546930437588 + ], + [ + 0.9748919688627304 + ], + [ + 0.8388843744066832 + ], + [ + 0.95990063654712 + ], + [ + 0.9796267593595076 + ], + [ + 0.9345104268491364 + ], + [ + 0.9405500820824608 + ], + [ + 0.8701948495342146 + ], + [ + 0.9783368141256884 + ], + [ + 0.7696261546646032 + ], + [ + 0.7607570099969941 + ], + [ + 0.7567551932941814 + ], + [ + 0.89138879753655 + ], + [ + 0.928489598568463 + ], + [ + 0.9086142870609782 + ], + [ + 0.9545454545454548 + ], + [ + 0.9545454545454548 + ], + [ + 0.8077423038829434 + ], + [ + 0.9174603174603174 + ], + [ + 0.948338703873867 + ], + [ + 0.9649045221259104 + ], + [ + 0.8289700533295026 + ], + [ + 0.9245393784589186 + ], + [ + 0.7559638453436506 + ], + [ + 0.8235522434404595 + ], + [ + 0.9007792207792208 + ], + [ + 0.7664355652861399 + ], + [ + 0.9290762303990062 + ], + [ + 0.8491308962278107 + ], + [ + 0.7573901281365926 + ], + [ + 0.8315151515151515 + ], + [ + 0.7505974060116345 + ], + [ + 0.9502677159519249 + ], + [ + 0.8378061008189606 + ], + [ + 0.8657481566722074 + ], + [ + 0.9421659088682972 + ], + [ + 0.9391737997679988 + ], + [ + 0.943947221044588 + ], + [ + 0.9530072970035708 + ], + [ + 0.946585394605002 + ], + [ + 0.8072282340152606 + ], + [ + 0.8919696969696971 + ], + [ + 0.9783368141256884 + ], + [ + 0.8060213664465975 + ], + [ + 0.7894137547439006 + ], + [ + 0.8886194359553156 + ], + [ + 0.8969404465407047 + ], + [ + 0.8395077004692013 + ], + [ + 0.8087262766581881 + ], + [ + 0.9417675428322848 + ], + [ + 0.838458313625102 + ], + [ + 0.9578918616552848 + ], + [ + 0.9877224033535164 + ], + [ + 0.9600766541682176 + ], + [ + 0.9372227566431792 + ], + [ + 0.9996947496947498 + ], + [ + 0.9464739502688859 + ], + [ + 0.9273107442696306 + ], + [ + 0.8427440270131528 + ], + [ + 0.8930336617991886 + ], + [ + 0.8499116091074294 + ], + [ + 0.8297523357929766 + ], + [ + 0.8628042957923382 + ], + [ + 0.94362258995985 + ], + [ + 0.8861176478495414 + ], + [ + 0.992955297959396 + ], + [ + 0.954141881439958 + ], + [ + 0.9716068390573318 + ], + [ + 0.9372227566431792 + ], + [ + 0.9209665616774528 + ], + [ + 0.8810186818949944 + ], + [ + 0.8078565985679013 + ], + [ + 0.7888565809250084 + ], + [ + 0.8999765601568034 + ], + [ + 0.7784705964389922 + ], + [ + 0.8951137084436364 + ], + [ + 0.9694396869310692 + ], + [ + 0.906901471095239 + ], + [ + 0.9521895754027829 + ], + [ + 0.7517286913985001 + ], + [ + 0.8687571885281811 + ], + [ + 0.7912430201328434 + ], + [ + 0.9975369458128078 + ], + [ + 0.9160401958804216 + ], + [ + 0.974218139790659 + ], + [ + 0.8509546425853288 + ], + [ + 0.900767299923892 + ], + [ + 0.9978013931164152 + ], + [ + 0.7966912350949062 + ], + [ + 0.8415390235407055 + ], + [ + 0.9095917165921852 + ], + [ + 0.7732064980993626 + ], + [ + 0.8864392836204776 + ], + [ + 0.804143123374405 + ], + [ + 0.8771670219049115 + ], + [ + 0.9813338311457538 + ], + [ + 0.9514741813067672 + ], + [ + 0.9586402202505121 + ], + [ + 0.9396223310702196 + ], + [ + 0.9574611462809792 + ], + [ + 0.9733296560462246 + ], + [ + 0.9277579783254948 + ], + [ + 0.9766303162486368 + ], + [ + 0.8371159751352832 + ], + [ + 0.7645789491661855 + ], + [ + 0.8881896291715989 + ], + [ + 0.9463791440512886 + ], + [ + 0.9564875857045522 + ], + [ + 0.7686245437524821 + ], + [ + 0.9510994238916862 + ], + [ + 0.8438384213475643 + ], + [ + 0.9041552036871964 + ], + [ + 0.9970690618433798 + ], + [ + 0.7655848997001549 + ], + [ + 0.8569756194651065 + ], + [ + 0.8565438206194017 + ], + [ + 0.7732064980993626 + ], + [ + 0.8167257771569466 + ], + [ + 0.8510568256152782 + ], + [ + 0.8573767226280884 + ], + [ + 0.9514741813067672 + ], + [ + 0.946103858087934 + ], + [ + 0.9425383776528816 + ], + [ + 0.9032923617208078 + ], + [ + 0.905550235616632 + ], + [ + 0.9177635419435248 + ], + [ + 0.9424705422602816 + ], + [ + 0.7733034132276329 + ], + [ + 0.7944363835998364 + ], + [ + 0.8881896291715989 + ], + [ + 0.922836204777124 + ], + [ + 0.9493296120831972 + ], + [ + 0.7731216272312162 + ], + [ + 0.7701503489229721 + ], + [ + 0.9110701550899905 + ], + [ + 0.8749551130106945 + ], + [ + 0.9779240761641758 + ], + [ + 0.8757411810482202 + ], + [ + 0.9637205387205386 + ], + [ + 0.8307739463601531 + ], + [ + 0.7840680498436611 + ], + [ + 0.9718089459310836 + ], + [ + 0.7533766040551628 + ], + [ + 0.8411108025383495 + ], + [ + 0.8186320718389478 + ], + [ + 0.7507073140597975 + ], + [ + 0.8665855131372373 + ], + [ + 0.8141166099294752 + ], + [ + 0.8465178639695039 + ], + [ + 0.8674324881574892 + ], + [ + 0.894897491091307 + ], + [ + 0.8007950286452882 + ], + [ + 0.9200506754154923 + ], + [ + 0.8002254756609835 + ], + [ + 0.8055002075550022 + ], + [ + 0.8899568476668683 + ], + [ + 0.8050891517303731 + ], + [ + 0.7551272091668285 + ], + [ + 0.9170723522722332 + ], + [ + 0.8862820694208641 + ], + [ + 0.7731935891169762 + ], + [ + 0.8962930952966316 + ], + [ + 0.8545871559633028 + ], + [ + 0.973043266390798 + ], + [ + 0.8475513005495156 + ], + [ + 0.8919753086419753 + ], + [ + 0.9230719517449376 + ], + [ + 0.9818181818181816 + ], + [ + 0.8724508253662056 + ], + [ + 0.7850116015543995 + ], + [ + 0.7799035733456022 + ], + [ + 0.7709127626361537 + ], + [ + 0.8079919101295913 + ], + [ + 0.767668950942458 + ], + [ + 0.8706501932048896 + ], + [ + 0.8797516915893117 + ], + [ + 0.8063085414053331 + ], + [ + 0.9356832150292386 + ], + [ + 0.8438519069076046 + ], + [ + 0.8284948236315168 + ], + [ + 0.9064297442948914 + ], + [ + 0.9731718245680656 + ], + [ + 0.8146948605443374 + ], + [ + 0.8586700336700335 + ], + [ + 0.7917861568922506 + ], + [ + 0.8919445048153332 + ], + [ + 0.9275512725475664 + ], + [ + 0.8749102030655429 + ], + [ + 0.7586973969785762 + ], + [ + 0.8582940089755703 + ], + [ + 0.8288372093023257 + ], + [ + 0.9457912457912456 + ], + [ + 0.9067894216205786 + ], + [ + 0.8854903716972683 + ], + [ + 0.7712402158145529 + ], + [ + 0.8514488517233563 + ], + [ + 0.8119647131227026 + ], + [ + 0.7960368686049766 + ], + [ + 0.8764803941254208 + ], + [ + 0.7593988263019269 + ], + [ + 0.8332839656913731 + ], + [ + 0.8409641575217711 + ], + [ + 0.7830059960631146 + ], + [ + 0.8189152639403684 + ], + [ + 0.7914909068376863 + ], + [ + 0.8521396824062815 + ], + [ + 0.9429498910675382 + ], + [ + 0.787554569047141 + ], + [ + 0.9170262364403312 + ], + [ + 0.8143114753878038 + ], + [ + 0.8129887361537077 + ], + [ + 0.9416562889165628 + ], + [ + 0.8249965343560833 + ], + [ + 0.8184361507912837 + ], + [ + 0.7583136897041756 + ], + [ + 0.8954939454973427 + ], + [ + 0.9669995060071396 + ], + [ + 0.7678622085216633 + ], + [ + 0.7965505290883048 + ], + [ + 0.8025926314878588 + ], + [ + 0.8861176478495414 + ], + [ + 0.9066317021702632 + ], + [ + 0.781819981750254 + ], + [ + 0.8492357350911255 + ], + [ + 0.925730625364325 + ], + [ + 0.7682652462041775 + ], + [ + 0.7697542997542998 + ], + [ + 0.9647167592568326 + ], + [ + 0.7591823779426875 + ], + [ + 0.9809290093211468 + ], + [ + 0.8217563751752737 + ], + [ + 0.7791177041387707 + ], + [ + 0.9954545454545456 + ], + [ + 0.8281880073317623 + ], + [ + 0.8580430671412884 + ], + [ + 0.9032397543084568 + ], + [ + 0.7617771431813454 + ], + [ + 0.7866182087539877 + ], + [ + 0.7593988263019269 + ], + [ + 0.7752390906012949 + ], + [ + 0.8085158042512651 + ], + [ + 0.8909560347514579 + ], + [ + 0.9051334791710912 + ], + [ + 0.9066317021702632 + ], + [ + 0.7803249362542886 + ], + [ + 0.8737365714482546 + ], + [ + 0.9248568831411556 + ], + [ + 0.8383783163850447 + ], + [ + 0.9706054674756964 + ], + [ + 0.7623802782704252 + ], + [ + 0.9687833580671199 + ], + [ + 0.7739714809841708 + ], + [ + 0.8782693798816119 + ], + [ + 0.860081980641546 + ], + [ + 0.8833857030636293 + ], + [ + 0.792475110421586 + ], + [ + 0.8157848104775258 + ], + [ + 0.8701372997711668 + ], + [ + 0.9563298076485244 + ], + [ + 0.8490800833801486 + ], + [ + 0.7888565809250084 + ], + [ + 0.7741636141636141 + ], + [ + 0.8401837065840431 + ], + [ + 0.9484588138867748 + ], + [ + 0.9176863587872164 + ], + [ + 0.8973789818590386 + ], + [ + 0.8252966318058891 + ], + [ + 0.7617771431813454 + ], + [ + 0.8289524716549913 + ], + [ + 0.8621233137385207 + ], + [ + 0.7908116150724073 + ], + [ + 0.9316463142933343 + ], + [ + 0.7524570024570024 + ], + [ + 0.8718713242231872 + ], + [ + 0.7728726352092181 + ], + [ + 0.7603048533875102 + ], + [ + 0.973201661164624 + ], + [ + 0.8391298861361308 + ], + [ + 0.7893505683000169 + ], + [ + 0.8608078181360623 + ], + [ + 0.8171099429462456 + ], + [ + 0.8507008302142539 + ], + [ + 0.7796040841350689 + ], + [ + 0.8137991281050442 + ], + [ + 0.8701372997711668 + ], + [ + 0.7906337827256119 + ], + [ + 0.9493296120831972 + ], + [ + 0.782031346414908 + ], + [ + 0.7993113894954217 + ], + [ + 0.7720161433138532 + ], + [ + 0.864620467059047 + ], + [ + 0.8900050041356494 + ], + [ + 0.84746622922539 + ], + [ + 0.9115157598761456 + ], + [ + 0.9054424800276306 + ], + [ + 0.830044253645252 + ], + [ + 0.9288938029152748 + ], + [ + 0.8783604524820522 + ], + [ + 0.7944363835998364 + ], + [ + 0.7921163153910715 + ], + [ + 0.7869039663743268 + ], + [ + 0.948066117973837 + ], + [ + 0.9230788696114616 + ], + [ + 0.7965825732022186 + ], + [ + 0.7641898999679713 + ], + [ + 0.7858832626449197 + ], + [ + 0.8508778496367884 + ], + [ + 0.7802946460653972 + ], + [ + 0.7884721011749333 + ], + [ + 0.9513173145378848 + ], + [ + 0.8649568301570332 + ], + [ + 0.7764651372019794 + ], + [ + 0.8624508476571697 + ], + [ + 0.7631497975708502 + ], + [ + 0.838327526611037 + ], + [ + 0.8166721221205311 + ], + [ + 0.8852917218205886 + ], + [ + 0.763935088255619 + ], + [ + 0.849984522961002 + ], + [ + 0.8818076679096488 + ], + [ + 0.7698644841737025 + ], + [ + 0.8836658805318403 + ], + [ + 0.9201199939290072 + ], + [ + 0.8893648150618828 + ], + [ + 0.8891377897432868 + ], + [ + 0.8205353126405759 + ], + [ + 0.8024182735874719 + ], + [ + 0.922961632460186 + ], + [ + 0.946516510443614 + ], + [ + 0.8942981283868459 + ], + [ + 0.8132787513211815 + ], + [ + 0.9842229467473992 + ], + [ + 0.983927829355058 + ], + [ + 0.9897436575227496 + ], + [ + 0.7789928908269387 + ], + [ + 0.9491102207390418 + ], + [ + 0.8027373398034093 + ], + [ + 0.8097807158117007 + ], + [ + 0.7742275740436659 + ], + [ + 0.8269035371638741 + ], + [ + 0.8164279646777108 + ], + [ + 0.7959065093927479 + ], + [ + 0.9299044396563476 + ], + [ + 0.9815561030337692 + ], + [ + 0.8847353302545712 + ], + [ + 0.8534614846726633 + ], + [ + 0.8781863560189622 + ], + [ + 0.9215082393282026 + ], + [ + 0.8660956368114106 + ], + [ + 0.9778877366568356 + ], + [ + 0.8883570187308942 + ], + [ + 0.8645713114309883 + ], + [ + 0.9608961698823448 + ], + [ + 0.7504350893637566 + ], + [ + 0.7899138991389913 + ], + [ + 0.9237157509601476 + ], + [ + 0.8085999198472382 + ], + [ + 0.9842229467473992 + ], + [ + 0.7915641555108558 + ], + [ + 0.9869637610219488 + ], + [ + 0.8388856048166393 + ], + [ + 0.9083168071393158 + ], + [ + 0.996947496947497 + ], + [ + 0.836399552488273 + ], + [ + 0.8254759949956995 + ], + [ + 0.8054112554112555 + ], + [ + 0.8315151515151515 + ], + [ + 0.9072515573214316 + ], + [ + 0.8455703241525074 + ], + [ + 0.8837147279244052 + ], + [ + 0.992492576897818 + ], + [ + 0.7771153106793246 + ], + [ + 0.9632800296944952 + ], + [ + 0.8751296156972389 + ], + [ + 0.9439627106557767 + ], + [ + 0.7599245853190747 + ], + [ + 0.948022748326122 + ], + [ + 0.797922077922078 + ], + [ + 0.8079059133534838 + ], + [ + 0.9002093642315044 + ], + [ + 0.9417677188802858 + ], + [ + 0.9120792735085574 + ], + [ + 0.9325279623513651 + ], + [ + 0.9765978165772758 + ], + [ + 0.9783368141256884 + ], + [ + 0.803590017884114 + ], + [ + 0.8886194359553156 + ], + [ + 0.9424689576609075 + ], + [ + 0.8695613682942084 + ], + [ + 0.9090909090909088 + ], + [ + 0.8277566532211718 + ], + [ + 0.7800435531915323 + ], + [ + 0.9027223454052724 + ], + [ + 0.8465029384806168 + ], + [ + 0.8272613669834734 + ], + [ + 0.8224835092471747 + ], + [ + 0.7714797416324134 + ], + [ + 0.8924773755936107 + ], + [ + 0.9954545454545456 + ], + [ + 0.8217563751752737 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8019358454012121 + ], + [ + 0.8434706308388399 + ], + [ + 0.8017627702025453 + ], + [ + 0.7916704805491989 + ], + [ + 0.8995057307947333 + ], + [ + 0.84746622922539 + ], + [ + 0.8294442768393521 + ], + [ + 0.90276124713408 + ], + [ + 0.996221188255952 + ], + [ + 0.8143962421732175 + ], + [ + 0.980394402239746 + ], + [ + 0.9514741813067672 + ], + [ + 0.7581308936708563 + ], + [ + 0.9531775071717112 + ], + [ + 0.9001377198115018 + ], + [ + 0.8004102325039334 + ], + [ + 0.8735155491890395 + ], + [ + 0.8677050513455755 + ], + [ + 0.8445527067336185 + ], + [ + 0.9636363636363636 + ], + [ + 0.937103645050706 + ], + [ + 0.9694957490472002 + ], + [ + 0.9822495603003196 + ], + [ + 0.901072927769024 + ], + [ + 0.9510994238916862 + ], + [ + 0.9362530022505056 + ], + [ + 0.8219385637193856 + ], + [ + 0.9996947496947498 + ], + [ + 0.7644937203650517 + ], + [ + 0.758657620282485 + ], + [ + 0.8385429638854296 + ], + [ + 0.8490535457456533 + ], + [ + 0.7757575757575756 + ], + [ + 0.999122807017544 + ], + [ + 0.8217563751752737 + ], + [ + 0.8636588686952739 + ], + [ + 0.8019358454012121 + ], + [ + 0.8455800687861758 + ], + [ + 0.8017627702025453 + ], + [ + 0.7768542199488491 + ], + [ + 0.8884642600370833 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.9926207992132684 + ], + [ + 0.9493296120831972 + ], + [ + 0.8445196063887654 + ], + [ + 0.9531775071717112 + ], + [ + 0.8571885156262036 + ], + [ + 0.8838874680306906 + ], + [ + 0.8891221903616687 + ], + [ + 0.9954545454545456 + ], + [ + 0.937103645050706 + ], + [ + 0.7996865517613174 + ], + [ + 0.9851370084561714 + ], + [ + 0.788353581901969 + ], + [ + 0.8469074304690744 + ], + [ + 0.8276687406622917 + ], + [ + 0.8844613609427292 + ], + [ + 0.9313089878738736 + ], + [ + 0.8709970502763632 + ], + [ + 0.8035084471465264 + ], + [ + 1 + ], + [ + 0.932761391647538 + ], + [ + 0.8392430039425867 + ], + [ + 0.945216049382716 + ], + [ + 0.7537357583191043 + ], + [ + 0.9719327874122964 + ], + [ + 0.9954545454545456 + ], + [ + 0.8217563751752737 + ], + [ + 0.8348054919908466 + ], + [ + 0.8788633070234552 + ], + [ + 0.8019358454012121 + ], + [ + 0.8725525105676494 + ], + [ + 0.8033211036934772 + ], + [ + 0.7916704805491989 + ], + [ + 0.8547301773579906 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.974712351554919 + ], + [ + 0.9500266403708978 + ], + [ + 0.951008471157725 + ], + [ + 0.7628108176190548 + ], + [ + 0.9531775071717112 + ], + [ + 0.7716841489148686 + ], + [ + 0.9391877740213088 + ], + [ + 0.8677050513455755 + ], + [ + 0.8967939861988315 + ], + [ + 0.937103645050706 + ], + [ + 0.8551520659154248 + ], + [ + 0.9851370084561714 + ], + [ + 0.8893524283935244 + ], + [ + 0.8733160901863194 + ], + [ + 0.8916710007549704 + ], + [ + 0.9391302151973808 + ], + [ + 0.9965169569202568 + ], + [ + 0.9136739322359624 + ], + [ + 0.9206651788481804 + ], + [ + 0.8553134080531343 + ], + [ + 0.8530611929128231 + ], + [ + 0.9099770642201834 + ], + [ + 0.949825316001485 + ], + [ + 0.7714797416324134 + ], + [ + 0.8862820694208641 + ], + [ + 0.9970690618433798 + ], + [ + 0.7726587251245717 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8462714704650187 + ], + [ + 0.7559911987169416 + ], + [ + 0.7902969671765014 + ], + [ + 0.8017627702025453 + ], + [ + 0.7916704805491989 + ], + [ + 0.9312885573197214 + ], + [ + 0.8580430671412884 + ], + [ + 0.84746622922539 + ], + [ + 0.7598160347464082 + ], + [ + 0.870252992498577 + ], + [ + 0.992671182389769 + ], + [ + 0.9862539184209972 + ], + [ + 0.9514741813067672 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.948072129659398 + ], + [ + 0.8677050513455755 + ], + [ + 0.880780406807804 + ], + [ + 0.9991101223581756 + ], + [ + 0.937103645050706 + ], + [ + 0.9851370084561714 + ], + [ + 0.7606385491732779 + ], + [ + 0.9822495603003196 + ], + [ + 0.9376831513747739 + ], + [ + 0.9027223454052724 + ], + [ + 0.9526427685969672 + ], + [ + 0.9236004688155952 + ], + [ + 1 + ], + [ + 0.8401802481694282 + ], + [ + 0.9773557492735576 + ], + [ + 0.8553134080531343 + ], + [ + 0.8399280642635364 + ], + [ + 0.9943501037415146 + ], + [ + 0.9991101224022378 + ], + [ + 0.7643053750286719 + ], + [ + 0.8874398840030436 + ], + [ + 1 + ], + [ + 0.8119189817879228 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.9908884770316014 + ], + [ + 0.81573077081821 + ], + [ + 0.9677933860111212 + ], + [ + 0.8398311720625258 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.8985858297326429 + ], + [ + 0.992671182389769 + ], + [ + 0.7506209000762774 + ], + [ + 0.9848040830545792 + ], + [ + 0.9514741813067672 + ], + [ + 0.8622230550415498 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9358184932420454 + ], + [ + 0.8831178664041944 + ], + [ + 0.8571885156262036 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9414868925909092 + ], + [ + 0.9851370084561714 + ], + [ + 0.9822495603003196 + ], + [ + 0.9355427814530765 + ], + [ + 0.7598493905068002 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.8534197605902789 + ], + [ + 0.9090909090909088 + ], + [ + 0.8755816117625161 + ], + [ + 0.986521739130435 + ], + [ + 0.7574533557466553 + ], + [ + 0.9090909090909088 + ], + [ + 0.9891304347826086 + ], + [ + 0.8981981278894755 + ], + [ + 0.8661577367496762 + ], + [ + 0.9416316165688026 + ], + [ + 0.8216969791585356 + ], + [ + 0.7977855477855479 + ], + [ + 0.7730257320319432 + ], + [ + 0.8155778185409907 + ], + [ + 0.806941459089035 + ], + [ + 0.8844523908637408 + ], + [ + 0.9819906110654324 + ], + [ + 0.9267146997929604 + ], + [ + 0.930689847575993 + ], + [ + 0.9272543317870856 + ], + [ + 0.9161147326586146 + ], + [ + 0.9592356458451337 + ], + [ + 0.8911833569094192 + ], + [ + 0.8682065217391305 + ], + [ + 0.8974752586594693 + ], + [ + 0.9606049878058373 + ], + [ + 0.9119804816878757 + ], + [ + 0.8291255500470529 + ], + [ + 0.9571129080563042 + ], + [ + 0.9252515037745752 + ], + [ + 0.8839422379842073 + ], + [ + 0.8731842629559791 + ], + [ + 0.956227485420032 + ], + [ + 0.9623460662981315 + ], + [ + 0.9060336327100176 + ], + [ + 0.9466681074558329 + ], + [ + 0.9773557492735576 + ], + [ + 0.8385429638854296 + ], + [ + 0.7548029253094148 + ], + [ + 0.9943501037415146 + ], + [ + 0.9991101224022378 + ], + [ + 0.7643053750286719 + ], + [ + 0.836061944840571 + ], + [ + 1 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8310447482966568 + ], + [ + 0.9416562889165628 + ], + [ + 0.8111421417088542 + ], + [ + 0.9107768322387694 + ], + [ + 0.7741435607326606 + ], + [ + 0.8710025282890884 + ], + [ + 0.7867084930870223 + ], + [ + 0.90276124713408 + ], + [ + 0.992671182389769 + ], + [ + 0.9470902930560504 + ], + [ + 0.9514741813067672 + ], + [ + 0.9531775071717112 + ], + [ + 0.9531702386026508 + ], + [ + 0.79960452652037 + ], + [ + 0.9133288665033964 + ], + [ + 0.842339274227116 + ], + [ + 0.8546919803903434 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.8941624677316798 + ], + [ + 0.9851370084561714 + ], + [ + 0.7831708752610594 + ], + [ + 0.9822495603003196 + ], + [ + 0.9315717953934872 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9773557492735576 + ], + [ + 0.7647361516158825 + ], + [ + 0.95942299709423 + ], + [ + 0.8553134080531343 + ], + [ + 0.8335272614441825 + ], + [ + 0.9943501037415146 + ], + [ + 0.9991101224022378 + ], + [ + 0.7643053750286719 + ], + [ + 0.8924773755936107 + ], + [ + 1 + ], + [ + 0.8591091351396698 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.9416562889165628 + ], + [ + 0.7916704805491989 + ], + [ + 0.950603792184588 + ], + [ + 0.8460152283133167 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.8881896291715989 + ], + [ + 0.992671182389769 + ], + [ + 0.7614851364851365 + ], + [ + 0.9848040830545792 + ], + [ + 0.9514741813067672 + ], + [ + 0.8605291005291005 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.8888976303496794 + ], + [ + 0.8637008456171156 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.941303736239802 + ], + [ + 0.9851370084561714 + ], + [ + 0.9822495603003196 + ], + [ + 0.9400644385653472 + ], + [ + 0.7589913068467564 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.8297199580886333 + ], + [ + 0.9090909090909088 + ], + [ + 0.8388354220573428 + ], + [ + 0.9440241802550384 + ], + [ + 0.8417508417508417 + ], + [ + 0.8349403911738127 + ], + [ + 0.7751196172248803 + ], + [ + 0.9824561403508774 + ], + [ + 0.8289326387041065 + ], + [ + 0.9363636363636364 + ], + [ + 0.8484963605932038 + ], + [ + 0.7878050123409911 + ], + [ + 0.7845412529955496 + ], + [ + 0.8978080587826363 + ], + [ + 0.8211938237064843 + ], + [ + 0.903572413997316 + ], + [ + 0.9759433010492332 + ], + [ + 0.930358431350264 + ], + [ + 0.773824015559919 + ], + [ + 0.9069851553477366 + ], + [ + 0.859207814594905 + ], + [ + 0.9063976387881104 + ], + [ + 0.982273978187496 + ], + [ + 0.8258268246116464 + ], + [ + 0.8378181818181819 + ], + [ + 0.8545698249141326 + ], + [ + 0.7874000986198109 + ], + [ + 0.880561913058948 + ], + [ + 0.9424238274563508 + ], + [ + 0.99359825065929 + ], + [ + 0.94959978379972 + ], + [ + 0.8034795384843756 + ], + [ + 0.8256241274761228 + ], + [ + 0.7845614802232331 + ], + [ + 0.8780499051174888 + ], + [ + 0.9016573566020095 + ], + [ + 0.996521739130435 + ], + [ + 0.8072721768598793 + ], + [ + 0.8757575757575757 + ], + [ + 0.996521739130435 + ], + [ + 0.8052552577805061 + ], + [ + 0.8262184063662379 + ], + [ + 0.9518172850747404 + ], + [ + 0.8509007531737288 + ], + [ + 0.8092916186648054 + ], + [ + 0.8448511242895973 + ], + [ + 0.8221400000560604 + ], + [ + 0.8780499051174888 + ], + [ + 0.8585150396488364 + ], + [ + 0.758257861793882 + ], + [ + 0.9127647109937574 + ], + [ + 0.8185902535630862 + ], + [ + 0.7647917209753416 + ], + [ + 0.8892853956679526 + ], + [ + 0.9240400548084888 + ], + [ + 0.9264066297227525 + ], + [ + 0.8454089009226885 + ], + [ + 0.8738453625296769 + ], + [ + 0.8228190336839921 + ], + [ + 0.9964912280701756 + ], + [ + 0.8440081063581091 + ], + [ + 0.8488300159492314 + ], + [ + 0.8886054092841905 + ], + [ + 0.9651624660242156 + ], + [ + 0.8337216929170275 + ], + [ + 0.8550497957993816 + ], + [ + 0.9818181818181816 + ], + [ + 0.9104377104377104 + ], + [ + 0.9930465133925186 + ], + [ + 0.8868917142282169 + ], + [ + 0.7519552584840934 + ], + [ + 0.9616732614626587 + ], + [ + 0.996521739130435 + ], + [ + 0.7508148487315153 + ], + [ + 0.9090909090909088 + ], + [ + 0.999122807017544 + ], + [ + 0.9090273199933117 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.8507462616258913 + ], + [ + 0.9136683713678436 + ], + [ + 0.8674088334090595 + ], + [ + 0.8594701086956521 + ], + [ + 0.908313797791604 + ], + [ + 0.9891493795585866 + ], + [ + 0.7642455368060652 + ], + [ + 0.8891663542156248 + ], + [ + 0.924175824175824 + ], + [ + 0.9395716586151368 + ], + [ + 0.9484409722518364 + ], + [ + 0.9641388361295768 + ], + [ + 0.9059750088690924 + ], + [ + 0.999122807017544 + ], + [ + 0.9047503889161738 + ], + [ + 0.9033269863614518 + ], + [ + 0.9033269863614518 + ], + [ + 0.8658678644015689 + ], + [ + 0.9443498545350396 + ], + [ + 0.8906789023521027 + ], + [ + 0.999122807017544 + ], + [ + 0.9551184069702588 + ], + [ + 0.7562762148337596 + ], + [ + 0.9773557492735576 + ], + [ + 0.8409090909090906 + ], + [ + 0.9960831758177524 + ], + [ + 0.9978260869565218 + ], + [ + 0.7508148487315153 + ], + [ + 0.8490484481225223 + ], + [ + 0.999122807017544 + ], + [ + 0.9090273199933117 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.8507462616258913 + ], + [ + 0.9416562889165628 + ], + [ + 0.786316100259506 + ], + [ + 0.7917643088450543 + ], + [ + 0.8674088334090595 + ], + [ + 0.7940883223309813 + ], + [ + 0.8392760078156812 + ], + [ + 0.908313797791604 + ], + [ + 0.9891493795585866 + ], + [ + 0.766483106515241 + ], + [ + 0.8959840947127665 + ], + [ + 0.8891663542156248 + ], + [ + 0.924175824175824 + ], + [ + 0.9395716586151368 + ], + [ + 0.9484409722518364 + ], + [ + 0.9641388361295768 + ], + [ + 0.974712351554919 + ], + [ + 0.999122807017544 + ], + [ + 0.9047503889161738 + ], + [ + 0.9033269863614518 + ], + [ + 0.9773557492735576 + ], + [ + 0.8895761362866625 + ], + [ + 0.9748201493966672 + ], + [ + 0.9033269863614518 + ], + [ + 0.7646806860332477 + ], + [ + 0.8800026263331926 + ], + [ + 0.9443498545350396 + ], + [ + 0.9956140350877192 + ], + [ + 0.932409671284977 + ], + [ + 0.999122807017544 + ], + [ + 0.9551184069702588 + ], + [ + 0.7562762148337596 + ], + [ + 0.9833457647662114 + ], + [ + 0.8409090909090906 + ], + [ + 0.8227240115332337 + ], + [ + 0.9947765595830976 + ], + [ + 0.9978260869565218 + ], + [ + 0.7508148487315153 + ], + [ + 0.8569860866157161 + ], + [ + 0.999122807017544 + ], + [ + 0.9090273199933117 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.79241896667796 + ], + [ + 0.8521396824062815 + ], + [ + 0.9416562889165628 + ], + [ + 0.8683896350563016 + ], + [ + 0.783774936061381 + ], + [ + 0.936963017728694 + ], + [ + 0.8674088334090595 + ], + [ + 0.84746622922539 + ], + [ + 0.7880796625738841 + ], + [ + 0.908313797791604 + ], + [ + 0.9891493795585866 + ], + [ + 0.766483106515241 + ], + [ + 0.8356411205726275 + ], + [ + 0.8959840947127665 + ], + [ + 0.8891663542156248 + ], + [ + 0.924175824175824 + ], + [ + 0.9395716586151368 + ], + [ + 0.9484409722518364 + ], + [ + 0.9641388361295768 + ], + [ + 0.8643546462063086 + ], + [ + 0.9753454579899592 + ], + [ + 0.999122807017544 + ], + [ + 0.9047503889161738 + ], + [ + 0.9033269863614518 + ], + [ + 0.9851370084561714 + ], + [ + 0.9748201493966672 + ], + [ + 0.9033269863614518 + ], + [ + 0.7684710351377019 + ], + [ + 0.8800026263331926 + ], + [ + 0.9443498545350396 + ], + [ + 0.999122807017544 + ], + [ + 0.90662100456621 + ], + [ + 0.999122807017544 + ], + [ + 0.9551184069702588 + ], + [ + 0.7562762148337596 + ], + [ + 0.9833457647662114 + ], + [ + 0.8409090909090906 + ], + [ + 0.7928783407950074 + ], + [ + 0.8919753086419753 + ], + [ + 0.9978260869565218 + ], + [ + 0.7508148487315153 + ], + [ + 0.8490459410817468 + ], + [ + 0.999122807017544 + ], + [ + 0.897855261911528 + ], + [ + 0.999122807017544 + ], + [ + 0.79241896667796 + ], + [ + 0.8507462616258913 + ], + [ + 0.9416562889165628 + ], + [ + 0.7684372454295727 + ], + [ + 0.936963017728694 + ], + [ + 0.8674088334090595 + ], + [ + 0.84746622922539 + ], + [ + 0.9891493795585866 + ], + [ + 0.984323635061576 + ], + [ + 0.9353365093463604 + ], + [ + 0.924175824175824 + ], + [ + 0.9395716586151368 + ], + [ + 0.963346594676518 + ], + [ + 0.8643546462063086 + ], + [ + 0.9047503889161738 + ], + [ + 0.9033269863614518 + ], + [ + 0.9851370084561714 + ], + [ + 0.9447497776699816 + ], + [ + 0.9787330446229278 + ], + [ + 0.9033269863614518 + ], + [ + 0.7646806860332477 + ], + [ + 0.8800026263331926 + ], + [ + 0.9443498545350396 + ], + [ + 0.8849247249134843 + ], + [ + 0.90662100456621 + ], + [ + 0.8830204170152121 + ], + [ + 0.7610810810810811 + ], + [ + 0.918761685155179 + ], + [ + 0.849564043730598 + ], + [ + 0.9295382499658214 + ], + [ + 0.8737807294339347 + ], + [ + 0.7524570024570024 + ], + [ + 0.8764855553630885 + ], + [ + 0.8881376171456311 + ], + [ + 0.8144653876435873 + ], + [ + 0.7569047619047621 + ], + [ + 0.9011440242078431 + ], + [ + 0.9721444518798692 + ], + [ + 0.8580395542059102 + ], + [ + 0.7556448396101646 + ], + [ + 0.8943463267997412 + ], + [ + 0.7708422347381368 + ], + [ + 0.8312540974287805 + ], + [ + 0.927155204148788 + ], + [ + 0.9242507691836442 + ], + [ + 0.8039533480013239 + ], + [ + 0.9253381976987183 + ], + [ + 0.9487056115959976 + ], + [ + 0.996333638863428 + ], + [ + 0.9061372721317869 + ], + [ + 0.8039194902068957 + ], + [ + 0.9773557492735576 + ], + [ + 0.8553134080531343 + ], + [ + 0.8316014689297133 + ], + [ + 0.9590943683409436 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8958436239049176 + ], + [ + 0.9997983870967744 + ], + [ + 0.8210917926103164 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.9416562889165628 + ], + [ + 0.7854916126103976 + ], + [ + 0.8580430671412884 + ], + [ + 0.8452862219584866 + ], + [ + 0.90276124713408 + ], + [ + 0.992671182389769 + ], + [ + 0.9514741813067672 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.856399568810636 + ], + [ + 0.9607331879409255 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9414868925909092 + ], + [ + 0.8733160901863194 + ], + [ + 0.8902640300903737 + ], + [ + 0.9822495603003196 + ], + [ + 0.7724990486505474 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9505705348293196 + ], + [ + 0.890082588516155 + ], + [ + 0.9271888077994948 + ], + [ + 0.7647361516158825 + ], + [ + 0.9773557492735576 + ], + [ + 0.8553134080531343 + ], + [ + 0.9590943683409436 + ], + [ + 0.9991101224022378 + ], + [ + 0.8219385637193856 + ], + [ + 0.8478847935907573 + ], + [ + 0.9954545454545456 + ], + [ + 0.8210917926103164 + ], + [ + 0.8995898027497777 + ], + [ + 0.9479012434878824 + ], + [ + 0.8019358454012121 + ], + [ + 0.9416562889165628 + ], + [ + 0.8188858158239665 + ], + [ + 0.8055002075550022 + ], + [ + 0.8580430671412884 + ], + [ + 0.84746622922539 + ], + [ + 0.895416975651959 + ], + [ + 0.992671182389769 + ], + [ + 0.8356411205726275 + ], + [ + 0.8716815273032167 + ], + [ + 0.9429977116704804 + ], + [ + 0.8677050513455755 + ], + [ + 0.9607331879409255 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9414868925909092 + ], + [ + 0.9240556247405564 + ], + [ + 0.8819809439955775 + ], + [ + 0.9822495603003196 + ], + [ + 0.7999671002057498 + ], + [ + 0.9413092648977816 + ], + [ + 0.9954545454545456 + ], + [ + 0.9326966113459272 + ], + [ + 0.7838827173142349 + ], + [ + 0.9271888077994948 + ], + [ + 0.8469712140023324 + ], + [ + 0.9773557492735576 + ], + [ + 0.8553134080531343 + ], + [ + 0.8394616500465105 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8958436239049176 + ], + [ + 0.9994500458295142 + ], + [ + 0.8184361507912837 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8019358454012121 + ], + [ + 0.8089287811425218 + ], + [ + 0.8553636363636363 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.84746622922539 + ], + [ + 0.8181109552382406 + ], + [ + 0.8966477542865559 + ], + [ + 0.992671182389769 + ], + [ + 0.9775526793347032 + ], + [ + 0.9514741813067672 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9341361232572516 + ], + [ + 0.7767581669691469 + ], + [ + 0.8677050513455755 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9230017232221136 + ], + [ + 0.9851370084561714 + ], + [ + 0.8553134080531343 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.9824561403508774 + ], + [ + 0.9505705348293196 + ], + [ + 0.8909999999999999 + ], + [ + 0.8933113072408856 + ], + [ + 0.7647361516158825 + ], + [ + 0.9929947676208064 + ], + [ + 0.8598347107438016 + ], + [ + 0.8490800833801486 + ], + [ + 0.9947856385396152 + ], + [ + 0.9990150209905604 + ], + [ + 0.7707081956166206 + ], + [ + 0.8952232922255726 + ], + [ + 1 + ], + [ + 0.8216057600038706 + ], + [ + 0.9000234404536862 + ], + [ + 1 + ], + [ + 0.8075842215036355 + ], + [ + 0.946198347107438 + ], + [ + 0.8021928166351607 + ], + [ + 0.7928741020793951 + ], + [ + 0.9344444444444444 + ], + [ + 0.8578858011832347 + ], + [ + 0.8483379501385041 + ], + [ + 0.7871436798157215 + ], + [ + 0.9025957850286672 + ], + [ + 0.9928936489808848 + ], + [ + 0.9846235837724948 + ], + [ + 0.9527305856232412 + ], + [ + 0.9434321361058602 + ], + [ + 0.9373115797727772 + ], + [ + 0.9350049149338372 + ], + [ + 0.8705701323251417 + ], + [ + 0.986135349716446 + ], + [ + 1 + ], + [ + 0.9357441792403746 + ], + [ + 0.941314332676578 + ], + [ + 0.9860141582025238 + ], + [ + 0.9826843100189036 + ], + [ + 0.9826843100189036 + ], + [ + 0.8050748795127288 + ], + [ + 0.884575512524494 + ], + [ + 0.9417436672967864 + ], + [ + 0.9937805570643936 + ], + [ + 0.9503788875440718 + ], + [ + 1 + ], + [ + 0.9245562130177516 + ], + [ + 0.7654094979252105 + ], + [ + 1 + ], + [ + 0.9090909090909088 + ], + [ + 0.8238490179500522 + ], + [ + 0.9637205387205386 + ], + [ + 0.9819008264462812 + ], + [ + 0.7757575757575756 + ], + [ + 0.8216057600038706 + ], + [ + 0.9000234404536862 + ], + [ + 1 + ], + [ + 0.8075842215036355 + ], + [ + 0.9217516347489824 + ], + [ + 0.799080529300567 + ], + [ + 0.9344444444444444 + ], + [ + 0.8948549687825181 + ], + [ + 0.9721268082486919 + ], + [ + 0.8409090909090906 + ], + [ + 0.9499201807471164 + ], + [ + 0.9527305856232412 + ], + [ + 0.9434321361058602 + ], + [ + 0.9206147765314164 + ], + [ + 0.9350049149338372 + ], + [ + 0.8640914933837429 + ], + [ + 0.9964943059402892 + ], + [ + 0.816272967863894 + ], + [ + 0.9860141582025238 + ], + [ + 0.928736342351717 + ], + [ + 0.9792393194706994 + ], + [ + 0.8994380853277835 + ], + [ + 0.9292599608634763 + ], + [ + 1 + ], + [ + 0.8362207611956006 + ], + [ + 0.9902353003770102 + ], + [ + 0.895080529300567 + ], + [ + 0.7602465480841565 + ], + [ + 0.9929947676208064 + ], + [ + 0.8598347107438016 + ], + [ + 0.8490800833801486 + ], + [ + 0.9947856385396152 + ], + [ + 0.9990150209905604 + ], + [ + 0.7707081956166206 + ], + [ + 0.8952232922255726 + ], + [ + 1 + ], + [ + 0.8216057600038706 + ], + [ + 0.9000234404536862 + ], + [ + 1 + ], + [ + 0.8011324661116951 + ], + [ + 0.8075842215036355 + ], + [ + 0.946198347107438 + ], + [ + 0.8021928166351607 + ], + [ + 0.7928741020793951 + ], + [ + 0.9344444444444444 + ], + [ + 0.8578858011832347 + ], + [ + 0.8483379501385041 + ], + [ + 0.9025957850286672 + ], + [ + 0.9928936489808848 + ], + [ + 0.9846235837724948 + ], + [ + 0.951299790877642 + ], + [ + 0.9527305856232412 + ], + [ + 0.9434321361058602 + ], + [ + 0.9396223310702196 + ], + [ + 0.9350049149338372 + ], + [ + 0.8705701323251417 + ], + [ + 0.986135349716446 + ], + [ + 1 + ], + [ + 0.9357441792403746 + ], + [ + 0.941314332676578 + ], + [ + 0.9860141582025238 + ], + [ + 0.9826843100189036 + ], + [ + 0.8050748795127288 + ], + [ + 0.884575512524494 + ], + [ + 0.9417436672967864 + ], + [ + 1 + ], + [ + 0.9503788875440718 + ], + [ + 1 + ], + [ + 0.9245562130177516 + ], + [ + 0.7654094979252105 + ], + [ + 0.9819008264462812 + ], + [ + 0.8598347107438016 + ], + [ + 0.8131334593572779 + ], + [ + 0.7690913021991601 + ], + [ + 0.9990150209905604 + ], + [ + 0.7707081956166206 + ], + [ + 1 + ], + [ + 0.8216057600038706 + ], + [ + 0.9000234404536862 + ], + [ + 1 + ], + [ + 0.8475686570924664 + ], + [ + 0.9583379501385041 + ], + [ + 0.8578858011832347 + ], + [ + 0.8245991597474406 + ], + [ + 0.8852652399934414 + ], + [ + 0.9928936489808848 + ], + [ + 0.81331932016418 + ], + [ + 0.8180035444849115 + ], + [ + 0.8711111111111112 + ], + [ + 0.7763165596167769 + ], + [ + 0.9350049149338372 + ], + [ + 1 + ], + [ + 0.9349642299687824 + ], + [ + 0.9860141582025238 + ], + [ + 0.9826843100189036 + ], + [ + 0.884575512524494 + ], + [ + 0.9417436672967864 + ], + [ + 0.996520316855316 + ], + [ + 1 + ], + [ + 0.9245562130177516 + ], + [ + 0.7654094979252105 + ], + [ + 0.8580139372822299 + ], + [ + 0.9830434782608694 + ], + [ + 0.8893524283935244 + ], + [ + 0.9954545454545456 + ], + [ + 0.9159300003279972 + ], + [ + 0.8181818181818182 + ], + [ + 0.7500000000000002 + ], + [ + 0.8938595877462214 + ], + [ + 0.9042008986509023 + ], + [ + 0.957287033071265 + ], + [ + 0.90234375 + ], + [ + 0.9223350132140808 + ], + [ + 0.8347334184691517 + ], + [ + 0.9207931801334324 + ], + [ + 0.8467468534925462 + ], + [ + 0.8855595367052747 + ], + [ + 0.7719095384164608 + ], + [ + 0.89266067021096 + ], + [ + 0.8763416775577225 + ], + [ + 0.9545454545454548 + ], + [ + 0.911370421730973 + ], + [ + 0.8444352108196725 + ], + [ + 0.889643133181266 + ], + [ + 0.7993302204531539 + ], + [ + 0.9838876285414652 + ], + [ + 0.981598371482293 + ], + [ + 0.8584226317602837 + ], + [ + 0.9320791500266458 + ], + [ + 0.9545454545454548 + ], + [ + 0.8557709287004716 + ], + [ + 0.8980542801375592 + ], + [ + 0.8619577717071254 + ], + [ + 0.9666063921681544 + ], + [ + 0.9199136660983444 + ], + [ + 0.954105606965682 + ], + [ + 0.8784735812133071 + ], + [ + 0.8146320346320346 + ], + [ + 0.8985141146494671 + ], + [ + 0.810999117201063 + ], + [ + 0.8039130434782609 + ], + [ + 0.8999203521041261 + ], + [ + 0.9046926758835667 + ], + [ + 0.9502900712294152 + ], + [ + 0.912840025574134 + ], + [ + 0.9565342960288808 + ], + [ + 0.908022550608102 + ], + [ + 0.7889688874990176 + ], + [ + 0.9947765595830976 + ], + [ + 0.9939130434782611 + ], + [ + 0.7541751489851583 + ], + [ + 0.8333567358870508 + ], + [ + 0.9077642484940728 + ], + [ + 0.89655436679566 + ], + [ + 0.8211280822082608 + ], + [ + 0.7590923827347885 + ], + [ + 0.891518378456824 + ], + [ + 0.9280303030303032 + ], + [ + 0.7756218002597997 + ], + [ + 0.8987662245043503 + ], + [ + 0.8668602157771254 + ], + [ + 0.801511385184123 + ], + [ + 0.9878450565293272 + ], + [ + 0.8198448448448448 + ], + [ + 0.8761625640592721 + ], + [ + 0.9331326790672908 + ], + [ + 0.8095673945542065 + ], + [ + 0.9692603418275338 + ], + [ + 0.8574834373128851 + ], + [ + 0.984385006449655 + ], + [ + 0.996521739130435 + ], + [ + 0.7993577556225364 + ], + [ + 0.904913008013858 + ], + [ + 0.908522355957097 + ], + [ + 0.8922324960716342 + ], + [ + 0.9027775208335084 + ], + [ + 0.8863636363636365 + ], + [ + 0.893013468013468 + ], + [ + 0.8159728122344945 + ], + [ + 0.94712477473252 + ], + [ + 0.9501526150902738 + ], + [ + 0.9360797940299664 + ], + [ + 0.7541751489851583 + ], + [ + 0.7667799490229397 + ], + [ + 0.7911852166525064 + ], + [ + 0.8545853753924373 + ], + [ + 0.8991709050477996 + ], + [ + 0.9636363636363636 + ], + [ + 0.8911305509993319 + ], + [ + 0.9280303030303032 + ], + [ + 0.7559479094211299 + ], + [ + 0.9484006454368564 + ], + [ + 0.8396074640434158 + ], + [ + 0.7602400762912697 + ], + [ + 0.8236580766813324 + ], + [ + 0.8818556180808311 + ], + [ + 0.9202063402841564 + ], + [ + 0.8401634217686861 + ], + [ + 0.9479922753053344 + ], + [ + 0.9495079748317234 + ], + [ + 0.9185105083088952 + ], + [ + 0.8116459489241595 + ], + [ + 0.9143375393297604 + ], + [ + 0.9496030156557552 + ], + [ + 0.8340405157441468 + ], + [ + 0.904913008013858 + ], + [ + 0.8855604489099591 + ], + [ + 0.8008650649412102 + ], + [ + 0.917917299639148 + ], + [ + 0.880492540216932 + ], + [ + 0.9964912280701756 + ], + [ + 0.8884778012684991 + ], + [ + 0.9772727272727272 + ], + [ + 0.9305426817265549 + ], + [ + 0.7903598392225994 + ], + [ + 0.913366781280282 + ], + [ + 0.9096320346320348 + ], + [ + 0.9904188832431408 + ], + [ + 0.996521739130435 + ], + [ + 0.7541751489851583 + ], + [ + 0.8171186929707505 + ], + [ + 0.9908763972444158 + ], + [ + 0.9077642484940728 + ], + [ + 0.89655436679566 + ], + [ + 0.772467875442053 + ], + [ + 0.860588835859315 + ], + [ + 0.9234883720930234 + ], + [ + 0.7875052854122622 + ], + [ + 0.933111940667877 + ], + [ + 0.8330354177655357 + ], + [ + 0.98656936388704 + ], + [ + 0.7578096064482999 + ], + [ + 0.8236580766813324 + ], + [ + 0.9347318308522028 + ], + [ + 0.8932895451827312 + ], + [ + 0.9285799156049388 + ], + [ + 0.9331326790672908 + ], + [ + 0.9644254304363626 + ], + [ + 0.9670876387294297 + ], + [ + 0.984385006449655 + ], + [ + 0.9939130434782611 + ], + [ + 0.8081449326727791 + ], + [ + 0.904913008013858 + ], + [ + 0.958843983408048 + ], + [ + 0.9074265343943518 + ], + [ + 0.914550550747443 + ], + [ + 0.9956140350877192 + ], + [ + 0.7875052854122622 + ], + [ + 0.8930995950038103 + ], + [ + 0.9583981105619436 + ], + [ + 0.7913282390616106 + ], + [ + 0.8553636363636363 + ], + [ + 0.9520786868217588 + ], + [ + 0.8227791822609921 + ], + [ + 0.7541751489851583 + ], + [ + 0.7533175355450237 + ], + [ + 0.7932981415505088 + ], + [ + 0.8738851187127049 + ], + [ + 0.8977552028386393 + ], + [ + 0.9636363636363636 + ], + [ + 0.8909590821089839 + ], + [ + 0.9280303030303032 + ], + [ + 0.7559479094211299 + ], + [ + 0.7751825777502708 + ], + [ + 0.9484006454368564 + ], + [ + 0.8164106024837708 + ], + [ + 0.8378181818181819 + ], + [ + 0.7561931059330722 + ], + [ + 0.8198448448448448 + ], + [ + 0.8746812582275244 + ], + [ + 0.917685782192232 + ], + [ + 0.8430950344725274 + ], + [ + 0.9479922753053344 + ], + [ + 0.9401658822908944 + ], + [ + 0.9345885985711606 + ], + [ + 0.7898873359402224 + ], + [ + 0.9291147879324685 + ], + [ + 0.9688056850309468 + ], + [ + 0.8399373186372248 + ], + [ + 0.904913008013858 + ], + [ + 0.8926128930190145 + ], + [ + 0.8013821571709653 + ], + [ + 0.9027775208335084 + ], + [ + 0.9068677230102368 + ], + [ + 0.9964912280701756 + ], + [ + 0.8884778012684991 + ], + [ + 0.9772727272727272 + ], + [ + 0.937931239097852 + ], + [ + 0.7893307769071134 + ], + [ + 0.8507923269391159 + ], + [ + 0.82454262425017 + ], + [ + 0.9956476370717128 + ], + [ + 0.997391304347826 + ], + [ + 0.7521112125156584 + ], + [ + 0.848613775065388 + ], + [ + 0.9982456140350876 + ], + [ + 0.9095579316931844 + ], + [ + 0.8974216292028354 + ], + [ + 0.9982456140350876 + ], + [ + 0.793236950671892 + ], + [ + 0.865081443540125 + ], + [ + 0.7910710359728593 + ], + [ + 0.7802662901330503 + ], + [ + 0.9360867018160518 + ], + [ + 0.8672259606948435 + ], + [ + 0.8465945179292698 + ], + [ + 0.7860877112960002 + ], + [ + 0.90741737640829 + ], + [ + 0.988714605208294 + ], + [ + 0.7650792722152087 + ], + [ + 0.9834028714566064 + ], + [ + 0.9319643313838056 + ], + [ + 0.8892009084674849 + ], + [ + 0.9238927452772132 + ], + [ + 0.938293658314696 + ], + [ + 0.9463111401682168 + ], + [ + 0.9638336347197108 + ], + [ + 0.8614957734733332 + ], + [ + 0.9743634159016108 + ], + [ + 0.9982456140350876 + ], + [ + 0.904567225435328 + ], + [ + 0.902432554260779 + ], + [ + 0.9842598587858048 + ], + [ + 0.9800758121375232 + ], + [ + 0.9031438311232313 + ], + [ + 0.7664643536742591 + ], + [ + 0.8798196380081303 + ], + [ + 0.9452382460255262 + ], + [ + 0.9982456140350876 + ], + [ + 0.9982456140350876 + ], + [ + 0.9542133966338968 + ], + [ + 0.7550919222167469 + ], + [ + 0.8650485436893204 + ], + [ + 0.9590943683409436 + ], + [ + 0.9899999999999998 + ], + [ + 0.7905998956595828 + ], + [ + 0.9964912280701756 + ], + [ + 0.8794606193667226 + ], + [ + 0.9543859649122808 + ], + [ + 0.8482253411306041 + ], + [ + 0.9416562889165628 + ], + [ + 0.8635977474267438 + ], + [ + 0.908313797791604 + ], + [ + 0.9882608695652176 + ], + [ + 0.9329580322176916 + ], + [ + 0.8517155377371683 + ], + [ + 0.9278910038068524 + ], + [ + 0.7982464236271342 + ], + [ + 0.8646739607798208 + ], + [ + 0.9813471226782764 + ], + [ + 0.9960869565217392 + ], + [ + 0.9094579806240582 + ], + [ + 0.9134140956933028 + ], + [ + 0.9851370084561714 + ], + [ + 0.97920631307383 + ], + [ + 0.977065643648764 + ], + [ + 0.8834465198075598 + ], + [ + 0.9747949320291138 + ], + [ + 0.932911746603152 + ], + [ + 0.999122807017544 + ], + [ + 0.959866019149962 + ], + [ + 0.7617844033057979 + ], + [ + 0.7748830995323981 + ], + [ + 0.8909999999999999 + ], + [ + 0.7596175070890622 + ], + [ + 0.8999999999999999 + ], + [ + 0.9123145440909052 + ], + [ + 0.8741654144553147 + ], + [ + 0.8398585426427478 + ], + [ + 0.8724872612693206 + ], + [ + 0.7669652718124924 + ], + [ + 0.8631126133046548 + ], + [ + 0.8409246558039661 + ], + [ + 0.8097354943626018 + ], + [ + 0.95990063654712 + ], + [ + 0.8969342300921225 + ], + [ + 0.9611031655225016 + ], + [ + 0.827297433674167 + ], + [ + 0.8779350849682387 + ], + [ + 0.8367440082204682 + ], + [ + 0.893013468013468 + ], + [ + 0.9964912280701756 + ], + [ + 0.7824996118615121 + ], + [ + 0.8861176478495414 + ], + [ + 0.9315029605665132 + ], + [ + 0.9240556247405564 + ], + [ + 0.7895079901300617 + ], + [ + 0.8675786978032918 + ], + [ + 0.7532931318639005 + ], + [ + 0.90662100456621 + ], + [ + 0.7716841489148686 + ], + [ + 0.7502640132876188 + ], + [ + 0.8438384213475643 + ], + [ + 0.8979659609796596 + ], + [ + 0.8433356634883351 + ], + [ + 0.8893524283935244 + ], + [ + 0.8088096745504153 + ], + [ + 0.916047252707554 + ], + [ + 0.8157092458590421 + ], + [ + 0.7713701554506877 + ], + [ + 0.8990439807701138 + ], + [ + 0.8907570363540729 + ], + [ + 0.9537544911348904 + ], + [ + 0.808038039840766 + ], + [ + 0.9851370084561714 + ], + [ + 0.8932164255129278 + ], + [ + 0.9471843568535036 + ], + [ + 0.9133288665033964 + ], + [ + 0.9132421335802218 + ], + [ + 0.8276330050739579 + ], + [ + 0.8868080394461477 + ], + [ + 0.8668829861852336 + ], + [ + 0.8964265087723556 + ], + [ + 0.9911660095629562 + ], + [ + 0.9182659870037116 + ], + [ + 0.8633272832102701 + ], + [ + 0.8186320718389478 + ], + [ + 0.8881896291715989 + ], + [ + 0.8840480861242009 + ], + [ + 0.8197634340126408 + ], + [ + 0.7611003116070912 + ], + [ + 0.8939095129169344 + ], + [ + 0.901240425894056 + ], + [ + 0.8290845270990632 + ], + [ + 0.8844734722345178 + ], + [ + 0.900672328635003 + ], + [ + 0.8611114838221064 + ], + [ + 0.9020646721236415 + ], + [ + 0.7524570024570024 + ], + [ + 0.9671031943607348 + ], + [ + 0.7643684665873062 + ], + [ + 0.9177602214566852 + ], + [ + 0.9280169976669376 + ], + [ + 0.9651126414686952 + ], + [ + 0.8767768595041323 + ], + [ + 0.933676703232262 + ], + [ + 0.8344383939714739 + ], + [ + 0.849693862814132 + ], + [ + 0.7954107032792184 + ], + [ + 0.933676703232262 + ], + [ + 0.938108321790696 + ], + [ + 0.928906596493303 + ], + [ + 0.7642353146981488 + ], + [ + 0.8546502548557862 + ], + [ + 0.8224212265843107 + ], + [ + 0.7710819445257563 + ], + [ + 0.8864829929760666 + ], + [ + 0.8716815273032167 + ], + [ + 0.8660098479761721 + ], + [ + 0.9025093300004408 + ], + [ + 0.8121071884193809 + ], + [ + 0.9607952743931896 + ], + [ + 0.8722498962224988 + ], + [ + 0.9310204439345414 + ], + [ + 0.9777167277167276 + ], + [ + 0.8010759771629337 + ], + [ + 0.8522718489127074 + ], + [ + 0.9093424633191152 + ], + [ + 0.8425177354450203 + ], + [ + 0.7805733235714439 + ], + [ + 0.8924918014613418 + ], + [ + 0.9893784849790032 + ], + [ + 0.8451386855821716 + ], + [ + 0.8875135039917615 + ], + [ + 0.9706691109074244 + ], + [ + 0.768635972404227 + ], + [ + 0.8133865875461221 + ], + [ + 0.9501902748414376 + ], + [ + 0.8687372572217293 + ], + [ + 0.7972263500644203 + ], + [ + 0.879221174323091 + ], + [ + 0.8580430671412884 + ], + [ + 0.8347523783886707 + ], + [ + 0.9006369722354359 + ], + [ + 0.992671182389769 + ], + [ + 0.9563291529742204 + ], + [ + 0.947447712690609 + ], + [ + 0.7790788334554246 + ], + [ + 0.9533492330474672 + ], + [ + 0.8986916130118449 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8636563261069188 + ], + [ + 0.9225521327977664 + ], + [ + 0.9272525027808675 + ], + [ + 0.9347188997515521 + ], + [ + 0.7847695804918372 + ], + [ + 0.9443983271522132 + ], + [ + 0.9774342481963584 + ], + [ + 0.97920631307383 + ], + [ + 0.9390325835747532 + ], + [ + 0.7859442359319205 + ], + [ + 0.9452608121807992 + ], + [ + 0.8231219423433573 + ], + [ + 0.9939505041246564 + ], + [ + 0.8711884810416023 + ], + [ + 0.9664525827971132 + ], + [ + 0.8922813036020585 + ], + [ + 0.8517879419237278 + ], + [ + 0.9226251523770824 + ], + [ + 0.9989000916590284 + ], + [ + 0.912544997503788 + ], + [ + 0.8862043421277565 + ], + [ + 0.7932768442135997 + ], + [ + 0.8376774696711561 + ], + [ + 0.7841809006211181 + ], + [ + 0.7925277144429594 + ], + [ + 0.8649220965924544 + ], + [ + 0.8539211685273398 + ], + [ + 0.8363949697251979 + ], + [ + 0.8264854203894482 + ], + [ + 0.9072225728615328 + ], + [ + 0.992671182389769 + ], + [ + 0.8515020101968744 + ], + [ + 0.9309305726600986 + ], + [ + 0.9543209471735604 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8914844044126526 + ], + [ + 0.9256464785119556 + ], + [ + 0.9954545454545456 + ], + [ + 0.9374817381090278 + ], + [ + 0.7688326686368462 + ], + [ + 0.8925869273677869 + ], + [ + 0.9703270521983972 + ], + [ + 0.9809453113164672 + ], + [ + 0.8066868740036242 + ], + [ + 0.8351972694191357 + ], + [ + 0.8433153659377112 + ], + [ + 0.9392359594194456 + ], + [ + 0.8888965657897014 + ], + [ + 0.8930757789029354 + ], + [ + 0.999083409715857 + ], + [ + 0.9743963538884604 + ], + [ + 0.7953195319531954 + ], + [ + 0.8454219118804093 + ], + [ + 0.9502704567873635 + ], + [ + 0.9458992126856904 + ], + [ + 0.7644077516403233 + ], + [ + 0.8706106552426165 + ], + [ + 0.9965172600923464 + ], + [ + 0.8217563751752737 + ], + [ + 0.9124729676453814 + ], + [ + 0.9818515123739688 + ], + [ + 0.8086304821445487 + ], + [ + 0.9321596244131456 + ], + [ + 0.7740195848021936 + ], + [ + 0.8328682787543888 + ], + [ + 0.8700240408314942 + ], + [ + 0.8580430671412884 + ], + [ + 0.8444444444444444 + ], + [ + 0.8063613046642976 + ], + [ + 0.870252992498577 + ], + [ + 0.992671182389769 + ], + [ + 0.9630275323942066 + ], + [ + 0.9518090954793984 + ], + [ + 0.8248761807094434 + ], + [ + 0.9566474322858416 + ], + [ + 0.9285566337630128 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8389228250888328 + ], + [ + 0.908538082241886 + ], + [ + 0.9906562847608452 + ], + [ + 0.937727360640436 + ], + [ + 0.8522952375426849 + ], + [ + 0.9459029430545072 + ], + [ + 0.970027764388316 + ], + [ + 0.9817818865916694 + ], + [ + 0.8466376695566143 + ], + [ + 0.7811519654537372 + ], + [ + 0.9366631199668156 + ], + [ + 0.9535299764377344 + ], + [ + 0.9032200335646016 + ], + [ + 0.9998166819431716 + ], + [ + 0.8480421626051209 + ], + [ + 0.9780701754385964 + ], + [ + 0.8055944055944054 + ], + [ + 0.8519962283651035 + ], + [ + 0.9944372261358286 + ], + [ + 0.8909859611558665 + ], + [ + 0.9930339138405136 + ], + [ + 0.8688321482439127 + ], + [ + 0.8739386859650123 + ], + [ + 0.7999172993636504 + ], + [ + 0.8106128029621074 + ], + [ + 0.9095679827050769 + ], + [ + 0.8277677156441022 + ], + [ + 0.779649885583524 + ], + [ + 0.8288552731227062 + ], + [ + 0.8574961012970123 + ], + [ + 0.841109866865746 + ], + [ + 0.792355474053602 + ], + [ + 0.8966775300321758 + ], + [ + 0.992671182389769 + ], + [ + 0.9572785040629562 + ], + [ + 0.9291879754864996 + ], + [ + 0.889317620077831 + ], + [ + 0.9515562365156858 + ], + [ + 0.9348478408783754 + ], + [ + 0.8753775156331067 + ], + [ + 0.9532353404791928 + ], + [ + 0.9954545454545456 + ], + [ + 0.937189056965018 + ], + [ + 0.9715579478946336 + ], + [ + 0.959737826278744 + ], + [ + 0.961743440323128 + ], + [ + 0.9796080671884818 + ], + [ + 0.8052224642752426 + ], + [ + 0.7647985836235606 + ], + [ + 0.8987594276173578 + ], + [ + 0.935391253108552 + ], + [ + 0.9994500458295142 + ], + [ + 0.8855041459997729 + ], + [ + 0.9090909090909088 + ], + [ + 0.778450363196126 + ], + [ + 0.8409090909090906 + ], + [ + 0.9903940886699508 + ], + [ + 0.9132561051004052 + ], + [ + 0.8590718015934052 + ], + [ + 0.9118814562362948 + ], + [ + 0.7681025602181487 + ], + [ + 0.7961600220298013 + ], + [ + 0.8228255528255527 + ], + [ + 0.7862727272727271 + ], + [ + 0.8598109918146062 + ], + [ + 0.9327132807405768 + ], + [ + 0.8460922217047043 + ], + [ + 0.9090909090909088 + ], + [ + 0.7565260131563887 + ], + [ + 0.8064786173763172 + ], + [ + 0.8049646954986759 + ], + [ + 0.8147984533079082 + ], + [ + 0.8706455071105871 + ], + [ + 0.889459843292596 + ], + [ + 0.8753408574458414 + ], + [ + 0.78943545201723 + ], + [ + 0.9225337271553442 + ], + [ + 0.8471976396567684 + ], + [ + 0.9582046990267186 + ], + [ + 0.7739383306543302 + ], + [ + 0.8439728108918513 + ], + [ + 0.9681818181818184 + ], + [ + 0.9147990007027552 + ], + [ + 0.8965678134850725 + ], + [ + 0.9229230100043496 + ], + [ + 0.8814426843808552 + ], + [ + 0.8299673329703665 + ], + [ + 0.953884157786154 + ], + [ + 0.9568896321070232 + ], + [ + 0.927359277258842 + ], + [ + 0.926999815931348 + ], + [ + 0.9084797370520777 + ], + [ + 0.7588691796008868 + ], + [ + 0.8925148498881217 + ], + [ + 0.941101152368758 + ], + [ + 0.7976890157802166 + ], + [ + 0.8191512279190005 + ], + [ + 0.9383783723654014 + ], + [ + 0.9687898089171972 + ], + [ + 0.8227272727272728 + ], + [ + 0.9667829842995462 + ], + [ + 0.8430578512396696 + ], + [ + 0.8462362704327265 + ], + [ + 0.9937731747479652 + ], + [ + 0.8598347107438016 + ], + [ + 0.9018993376896012 + ], + [ + 0.9380859781477626 + ], + [ + 0.7965452139741043 + ], + [ + 0.8408374965151522 + ], + [ + 0.828891493383743 + ], + [ + 0.8037512287334593 + ], + [ + 0.9310557094490612 + ], + [ + 0.7905217546826223 + ], + [ + 0.8803334593572778 + ], + [ + 0.948060941828255 + ], + [ + 0.9808836171606353 + ], + [ + 0.9419954799687824 + ], + [ + 0.9000657462195923 + ], + [ + 0.9762481841119351 + ], + [ + 0.958536231884058 + ], + [ + 0.8689482041587903 + ], + [ + 0.9625071374155625 + ], + [ + 0.9421304353743684 + ], + [ + 0.9000657462195923 + ], + [ + 0.909072064464046 + ], + [ + 0.7770347430724859 + ], + [ + 0.8258664204370577 + ], + [ + 0.931003010693105 + ], + [ + 0.936341359994194 + ], + [ + 0.944622600300256 + ], + [ + 0.7698155009451796 + ], + [ + 0.9886242163794032 + ], + [ + 0.8385429638854296 + ], + [ + 0.8460152283133167 + ], + [ + 0.8244642857142859 + ], + [ + 0.90662100456621 + ], + [ + 0.8965017504270001 + ], + [ + 0.9477543538038498 + ], + [ + 0.934372987530004 + ], + [ + 0.7966912350949062 + ], + [ + 0.8521832338962485 + ], + [ + 0.8284602000869942 + ], + [ + 0.8025417478298693 + ], + [ + 0.9275512725475664 + ], + [ + 0.9004149252037746 + ], + [ + 0.9814823072033312 + ], + [ + 0.9441436310000064 + ], + [ + 0.9038201493163326 + ], + [ + 0.9502409737496426 + ], + [ + 0.8660854435766022 + ], + [ + 0.880780406807804 + ], + [ + 0.932626333246618 + ], + [ + 0.8230247277595698 + ], + [ + 0.9169832716276728 + ], + [ + 0.9163600219843964 + ], + [ + 0.7558559856410743 + ], + [ + 0.8249965343560833 + ], + [ + 0.9341554258408444 + ], + [ + 0.8231479245485526 + ], + [ + 0.9054813423400642 + ], + [ + 0.7909076419763443 + ], + [ + 0.7862727272727271 + ], + [ + 0.8658008658008658 + ], + [ + 0.996330951542531 + ], + [ + 0.9364502164502164 + ], + [ + 0.7650216450216449 + ], + [ + 0.794733291750721 + ], + [ + 0.894436842425348 + ], + [ + 0.9071691672620463 + ], + [ + 0.8475960459042418 + ], + [ + 0.825019069412662 + ], + [ + 0.9011154934052964 + ], + [ + 0.9888403534005904 + ], + [ + 0.9064975857191632 + ], + [ + 0.8040148172573156 + ], + [ + 0.7544972303681978 + ], + [ + 0.8394258450740808 + ], + [ + 0.8722248098121411 + ], + [ + 0.8832034632034632 + ], + [ + 0.9242506379637506 + ], + [ + 0.8626119406890994 + ], + [ + 0.878664636798608 + ], + [ + 0.796428039082196 + ], + [ + 0.7737936507936508 + ], + [ + 0.9772426641825802 + ], + [ + 0.9771984786553624 + ], + [ + 0.7754989006737327 + ], + [ + 0.9842229467473992 + ], + [ + 0.9545454545454548 + ], + [ + 0.8536368018578387 + ], + [ + 0.9904302907657898 + ], + [ + 0.9985875706214687 + ], + [ + 0.7822341892305151 + ], + [ + 0.8895952017025273 + ], + [ + 0.9977822580645164 + ], + [ + 0.822054489456517 + ], + [ + 0.9068929556529068 + ], + [ + 0.9969759694040504 + ], + [ + 0.8227635041015324 + ], + [ + 0.92385752642948 + ], + [ + 0.7644903235840163 + ], + [ + 0.7893527624833871 + ], + [ + 0.9290762303990062 + ], + [ + 0.8549939348739194 + ], + [ + 0.9024751306250636 + ], + [ + 0.9939538727034296 + ], + [ + 0.9838663951689132 + ], + [ + 0.9555403520366936 + ], + [ + 0.8659230906299106 + ], + [ + 0.9555403520366936 + ], + [ + 0.936556104044048 + ], + [ + 0.9365262267264388 + ], + [ + 0.943947221044588 + ], + [ + 0.8711152458705146 + ], + [ + 0.981787734953484 + ], + [ + 0.9977753058954394 + ], + [ + 0.939105864661958 + ], + [ + 0.941241408860912 + ], + [ + 0.9772426641825802 + ], + [ + 0.9783368141256884 + ], + [ + 0.9783368141256884 + ], + [ + 0.8035224554513878 + ], + [ + 0.8878885108220647 + ], + [ + 0.9498970784947516 + ], + [ + 0.9954182612676434 + ], + [ + 0.8911007105869436 + ], + [ + 0.9977822580645164 + ], + [ + 0.9332845830090168 + ], + [ + 0.7698457560674342 + ], + [ + 0.8237875450920827 + ], + [ + 0.7694629219019462 + ], + [ + 0.9545454545454548 + ], + [ + 0.7676911617909391 + ], + [ + 0.8737944824901346 + ], + [ + 0.7706024497958504 + ], + [ + 0.7971142965635086 + ], + [ + 0.797381306659819 + ], + [ + 0.8620542233987611 + ], + [ + 0.8139854059928581 + ], + [ + 0.9887078033035884 + ], + [ + 0.9359939732913412 + ], + [ + 0.816825438145235 + ], + [ + 0.8422527112008905 + ], + [ + 0.8452819441807481 + ], + [ + 0.8400216450216451 + ], + [ + 0.8999203521041261 + ], + [ + 0.929916690661292 + ], + [ + 0.830854814143431 + ], + [ + 0.9513142174432496 + ], + [ + 0.9688527588701455 + ], + [ + 0.9228795379537954 + ], + [ + 0.7730756056428137 + ], + [ + 0.958302500539574 + ], + [ + 0.8026224595457895 + ], + [ + 0.804211768109809 + ], + [ + 0.999122807017544 + ], + [ + 0.9565843431073292 + ], + [ + 0.8024218124622581 + ], + [ + 0.8815110224684692 + ], + [ + 0.8108800084863914 + ], + [ + 0.9608990650462856 + ], + [ + 0.7587225856098497 + ], + [ + 0.8465945179292698 + ], + [ + 0.8955974273031978 + ], + [ + 0.9430511599324012 + ], + [ + 0.7968522430480871 + ], + [ + 0.942185445331794 + ], + [ + 0.8678328134388728 + ], + [ + 0.8589010971043637 + ], + [ + 0.9773557492735576 + ], + [ + 0.8072544965953004 + ], + [ + 0.9954545454545456 + ], + [ + 0.8468840523666226 + ], + [ + 0.7893040004872826 + ], + [ + 0.999122807017544 + ], + [ + 0.8702035016515567 + ], + [ + 0.7949970358330488 + ], + [ + 0.9294585399607892 + ], + [ + 0.8407994285729776 + ], + [ + 0.8788200589970502 + ], + [ + 0.8314481030702937 + ], + [ + 0.831385641452182 + ], + [ + 0.9804378566350936 + ], + [ + 0.9129349807104162 + ], + [ + 0.8141494511694449 + ], + [ + 0.9133990354371988 + ], + [ + 0.9851370084561714 + ], + [ + 0.9095532047456912 + ], + [ + 0.8505448360551613 + ], + [ + 0.963157894736842 + ], + [ + 0.7634237761904064 + ], + [ + 0.9011822106778054 + ], + [ + 0.9956171156600898 + ], + [ + 0.95942299709423 + ], + [ + 0.8553134080531343 + ], + [ + 0.8472097261066925 + ], + [ + 0.9805098186910532 + ], + [ + 0.8553134080531343 + ], + [ + 0.7714797416324134 + ], + [ + 0.9997983870967744 + ], + [ + 0.8217563751752737 + ], + [ + 0.8946470109877639 + ], + [ + 0.999122807017544 + ], + [ + 0.8354069917967499 + ], + [ + 0.9416562889165628 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8580430671412884 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.8909560347514579 + ], + [ + 0.992671182389769 + ], + [ + 0.9848040830545792 + ], + [ + 0.8630706569122703 + ], + [ + 0.8702378201869908 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.907644799841382 + ], + [ + 0.999122807017544 + ], + [ + 0.9414868925909092 + ], + [ + 0.9335682269765724 + ], + [ + 0.8893524283935244 + ], + [ + 0.9822495603003196 + ], + [ + 0.8052224642752426 + ], + [ + 0.9379369101877942 + ], + [ + 0.9090909090909088 + ], + [ + 0.756404071529602 + ], + [ + 0.9271888077994948 + ], + [ + 0.9921175854473762 + ], + [ + 0.8553134080531343 + ], + [ + 0.9943501037415146 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8958436239049176 + ], + [ + 1 + ], + [ + 0.8217563751752737 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8019358454012121 + ], + [ + 0.8089287811425218 + ], + [ + 0.8017627702025453 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8580430671412884 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.90276124713408 + ], + [ + 0.992671182389769 + ], + [ + 0.8072821072057714 + ], + [ + 0.9848040830545792 + ], + [ + 0.8189889492826025 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.974712351554919 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9773557492735576 + ], + [ + 0.9822495603003196 + ], + [ + 0.9822495603003196 + ], + [ + 0.8052224642752426 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9503668087629396 + ], + [ + 1 + ], + [ + 0.9271888077994948 + ], + [ + 0.7647361516158825 + ], + [ + 0.9807297003570874 + ], + [ + 0.9364502164502164 + ], + [ + 0.7901612469857595 + ], + [ + 0.824287208001439 + ], + [ + 0.9807297003570874 + ], + [ + 0.7614649785030472 + ], + [ + 0.8658008658008658 + ], + [ + 0.9939130434782611 + ], + [ + 0.9066651512935219 + ], + [ + 0.8939526037506182 + ], + [ + 0.9842229467473992 + ], + [ + 0.865081443540125 + ], + [ + 0.9167169276268624 + ], + [ + 0.8794346322201474 + ], + [ + 0.765130456168069 + ], + [ + 0.8734544866674276 + ], + [ + 0.909520787797598 + ], + [ + 0.8854931946173012 + ], + [ + 0.7673924006226841 + ], + [ + 0.8798233135618779 + ], + [ + 0.9852364106660584 + ], + [ + 0.7637569649841349 + ], + [ + 0.9348260838243078 + ], + [ + 0.933522474466579 + ], + [ + 0.8377846225826576 + ], + [ + 0.9583806183156228 + ], + [ + 0.9331326790672908 + ], + [ + 0.9383147514181556 + ], + [ + 0.9589825216566162 + ], + [ + 0.8060876415101113 + ], + [ + 0.9783224922971588 + ], + [ + 0.9583806183156228 + ], + [ + 0.899590944489805 + ], + [ + 0.8941653123998358 + ], + [ + 0.9668188169538892 + ], + [ + 0.9783224922971588 + ], + [ + 0.9679972612119138 + ], + [ + 0.8797605429806478 + ], + [ + 0.7963975193082085 + ], + [ + 0.8839816990630294 + ], + [ + 0.9431528211472392 + ], + [ + 0.8367334869051766 + ], + [ + 0.8658008658008658 + ], + [ + 0.9921746738179468 + ], + [ + 0.9020614173817516 + ], + [ + 0.7562166685686029 + ], + [ + 0.8984134398306008 + ], + [ + 0.9687833580671199 + ], + [ + 0.8324262590094272 + ], + [ + 0.7778237575832933 + ], + [ + 0.8480007561436672 + ], + [ + 0.9579079093729875 + ], + [ + 0.845860397670802 + ], + [ + 0.7551254672930834 + ], + [ + 0.8899966113703928 + ], + [ + 0.7908116150724073 + ], + [ + 0.8910183976510794 + ], + [ + 0.9586402202505121 + ], + [ + 0.9614055686011409 + ], + [ + 0.9466976131633718 + ], + [ + 0.8344345242846016 + ], + [ + 0.7881948755231197 + ], + [ + 0.8703128420935895 + ], + [ + 0.7758848540806752 + ], + [ + 0.9184591472656428 + ], + [ + 0.9495128094164198 + ], + [ + 0.8796487671810186 + ], + [ + 0.7514068195240423 + ], + [ + 0.8716815273032167 + ], + [ + 0.9882425857143352 + ], + [ + 0.9633770826635396 + ], + [ + 0.7728726352092181 + ], + [ + 0.7549603797492292 + ], + [ + 0.8460813462362223 + ], + [ + 0.9172118090262832 + ], + [ + 0.992952541754412 + ], + [ + 0.8606043918383145 + ], + [ + 0.7745935959659945 + ], + [ + 0.9636724437338746 + ], + [ + 0.7960368686049766 + ], + [ + 0.8285988264418827 + ], + [ + 0.9708841861711646 + ], + [ + 0.8299341990318011 + ], + [ + 0.8419381421530754 + ], + [ + 0.784953771420362 + ], + [ + 0.7591712665406429 + ], + [ + 0.8689452322602814 + ], + [ + 0.7766626862314431 + ], + [ + 0.7843042441238667 + ], + [ + 0.7800515724165504 + ], + [ + 0.8797549464963943 + ], + [ + 0.9919502705663622 + ], + [ + 0.9893735932410646 + ], + [ + 0.8894092494980258 + ], + [ + 0.8411462167336957 + ], + [ + 0.8604416000492892 + ], + [ + 0.9391164837414664 + ], + [ + 0.9875732201051683 + ], + [ + 0.8668958338409165 + ], + [ + 0.910974119092226 + ], + [ + 0.9335682269765724 + ], + [ + 0.8903543205412945 + ], + [ + 0.7579050997201501 + ], + [ + 0.9129974387310056 + ], + [ + 0.8184361507912837 + ], + [ + 0.8985858297326429 + ], + [ + 0.8811309071018276 + ], + [ + 0.9600766541682176 + ], + [ + 0.9142379797053092 + ], + [ + 0.8553282796247272 + ], + [ + 0.9209665616774528 + ], + [ + 0.7653056658292261 + ], + [ + 0.9428934497795352 + ], + [ + 0.9766567420679494 + ], + [ + 0.9320892949781068 + ], + [ + 0.8764803941254208 + ], + [ + 0.9615141634622412 + ], + [ + 0.8025926314878588 + ], + [ + 0.935632010504501 + ], + [ + 0.9954545454545456 + ], + [ + 0.8383046372479713 + ], + [ + 0.8085158042512651 + ], + [ + 0.8799003347391113 + ], + [ + 0.8519408442208185 + ], + [ + 0.7642901122754603 + ], + [ + 0.9104413159581644 + ], + [ + 0.89138879753655 + ], + [ + 0.8889595044710776 + ], + [ + 0.8674196841123456 + ], + [ + 0.9890311615492476 + ], + [ + 0.9817061821644611 + ], + [ + 0.9645756670815068 + ], + [ + 0.9013683659572824 + ], + [ + 0.9379327738576018 + ], + [ + 0.8277684278026405 + ], + [ + 0.8025926314878588 + ], + [ + 0.8164472422898458 + ], + [ + 0.9476735033728184 + ], + [ + 0.9280169976669376 + ], + [ + 0.9400644385653472 + ], + [ + 0.8571175858480748 + ], + [ + 0.9457607069255074 + ], + [ + 0.7890197773695017 + ], + [ + 0.9341554258408444 + ], + [ + 0.8197634340126408 + ], + [ + 0.9579224065577792 + ], + [ + 0.8701372997711668 + ], + [ + 0.9529052383428788 + ], + [ + 0.9845238804935112 + ], + [ + 0.909042520211614 + ], + [ + 0.7869703117696519 + ], + [ + 0.8276242108365519 + ], + [ + 0.878685196514601 + ], + [ + 0.7563441975980676 + ], + [ + 0.7552008456659621 + ], + [ + 0.9576803072122886 + ], + [ + 0.7766774350616475 + ], + [ + 0.8786356094048401 + ], + [ + 0.8863636363636365 + ], + [ + 0.8824223337513897 + ], + [ + 0.915641381346678 + ], + [ + 0.9097297101659864 + ], + [ + 0.952612204076308 + ], + [ + 0.9667491997801664 + ], + [ + 0.9203132832080203 + ], + [ + 0.8318181818181817 + ], + [ + 0.8553636363636363 + ], + [ + 0.7733211512105985 + ], + [ + 0.8722470169622666 + ], + [ + 0.8975645313091688 + ], + [ + 0.8977159303535192 + ], + [ + 0.9912311643305796 + ], + [ + 0.9024231247013856 + ], + [ + 0.86918360351979 + ], + [ + 0.8278906432659406 + ], + [ + 0.8317573749391951 + ], + [ + 0.9643924081792452 + ], + [ + 0.938598748759861 + ], + [ + 0.984466571720076 + ], + [ + 0.9883020564051679 + ], + [ + 0.977397740533538 + ], + [ + 0.8324262590094272 + ], + [ + 0.957204861709126 + ], + [ + 0.9815689054392762 + ], + [ + 0.9723297607875788 + ], + [ + 0.9166058436529154 + ], + [ + 0.7521706555006759 + ], + [ + 0.9280169976669376 + ], + [ + 0.9358035287465732 + ], + [ + 0.8764803941254208 + ], + [ + 0.9153455696596016 + ], + [ + 0.8469432605765171 + ], + [ + 0.99268071993084 + ], + [ + 0.988226739831974 + ], + [ + 0.996336999414424 + ], + [ + 0.9244884191211992 + ], + [ + 0.8507008302142539 + ], + [ + 0.9593509283699424 + ], + [ + 0.8061755182821719 + ], + [ + 0.9615141634622412 + ], + [ + 0.9839330712663648 + ], + [ + 0.9555873521968756 + ], + [ + 0.9775173594082412 + ], + [ + 0.8128624949482813 + ], + [ + 0.9514741813067672 + ], + [ + 0.9817522080920388 + ], + [ + 0.981025791388756 + ], + [ + 0.9818181818181816 + ], + [ + 0.9710861248452468 + ], + [ + 0.9773557492735576 + ], + [ + 0.890085589718168 + ], + [ + 0.954337370755309 + ], + [ + 0.8919753086419753 + ], + [ + 0.8552031760963528 + ], + [ + 0.9545454545454548 + ], + [ + 0.8563472606128697 + ], + [ + 0.8478228971791203 + ], + [ + 0.8853335760168058 + ], + [ + 0.825019069412662 + ], + [ + 0.8305431015989557 + ], + [ + 0.7900733399481583 + ], + [ + 0.9108949697942603 + ], + [ + 0.917855352912078 + ], + [ + 0.8955772084667657 + ], + [ + 0.82987479094277 + ], + [ + 0.9090909090909088 + ], + [ + 0.9331273751154144 + ], + [ + 0.841981268119079 + ], + [ + 0.9061617983216465 + ], + [ + 0.7650216450216449 + ], + [ + 0.8414755340099983 + ], + [ + 0.9939138029238658 + ], + [ + 0.8766192814819845 + ], + [ + 0.8315151515151515 + ], + [ + 0.8473382904078122 + ], + [ + 0.914059797380776 + ], + [ + 0.7659476739028936 + ], + [ + 0.8559376367887911 + ], + [ + 0.8114111498257839 + ], + [ + 0.7943527200862163 + ], + [ + 0.7697780793564009 + ], + [ + 0.8192024956758094 + ], + [ + 0.9625172175038818 + ], + [ + 0.9466379024540816 + ], + [ + 0.9248249108281914 + ], + [ + 0.7835010344179048 + ], + [ + 0.7696916201990726 + ], + [ + 0.8741784037558686 + ], + [ + 0.8788591215600511 + ], + [ + 0.7847145200343669 + ], + [ + 0.995553782140972 + ], + [ + 0.885547201336675 + ], + [ + 0.932238896428148 + ], + [ + 0.8666467850773247 + ], + [ + 0.9318181818181815 + ], + [ + 0.874330829529188 + ], + [ + 0.8477600534912598 + ], + [ + 0.8513796499579376 + ], + [ + 0.7928688716866057 + ], + [ + 0.8300839482005723 + ], + [ + 0.8104640050546934 + ], + [ + 0.7623555471966228 + ], + [ + 0.8477133966865695 + ], + [ + 0.8069468267581477 + ], + [ + 0.7970641933918771 + ], + [ + 0.7517470662254077 + ], + [ + 0.811386593204775 + ], + [ + 0.8200234516324811 + ], + [ + 0.8169486429889492 + ], + [ + 0.8731362653208361 + ], + [ + 0.8763157894736843 + ], + [ + 0.8185744024917364 + ], + [ + 0.9052173913043478 + ], + [ + 0.8415792985968426 + ], + [ + 0.7820239132603559 + ], + [ + 0.8373297473297473 + ], + [ + 0.7516072325464591 + ], + [ + 0.9659417587369664 + ], + [ + 0.7649602377888222 + ], + [ + 0.7936066126855602 + ], + [ + 0.9090909090909088 + ], + [ + 0.945216049382716 + ], + [ + 0.8771929824561405 + ], + [ + 0.8174876847290639 + ], + [ + 0.8553636363636363 + ], + [ + 0.8455433455433455 + ], + [ + 0.9233441393338415 + ], + [ + 0.8437332724582007 + ], + [ + 0.832909538499891 + ], + [ + 0.840948616293985 + ], + [ + 0.8177290491628549 + ], + [ + 0.9175438596491228 + ], + [ + 0.882198952879581 + ], + [ + 0.8150509397735729 + ], + [ + 0.9294196742835898 + ], + [ + 0.8917391304347826 + ], + [ + 0.8253968253968254 + ], + [ + 0.7862727272727271 + ], + [ + 0.8107452697678261 + ], + [ + 0.9637205387205386 + ], + [ + 0.852293824358888 + ], + [ + 0.8709558996012198 + ], + [ + 0.7596801346801346 + ], + [ + 0.8181614349775784 + ], + [ + 0.9017543859649124 + ], + [ + 0.7897773279352229 + ], + [ + 0.805168828270855 + ], + [ + 0.9090909090909088 + ], + [ + 0.8771929824561405 + ], + [ + 0.8174876847290639 + ], + [ + 0.8813770455902434 + ], + [ + 0.8553636363636363 + ], + [ + 0.8455433455433455 + ], + [ + 0.8049385749385749 + ], + [ + 0.8437332724582007 + ], + [ + 0.832909538499891 + ], + [ + 0.8177290491628549 + ], + [ + 0.9175438596491228 + ], + [ + 0.8767128866853765 + ], + [ + 0.8150509397735729 + ], + [ + 0.9294196742835898 + ], + [ + 0.8917391304347826 + ], + [ + 0.8253968253968254 + ], + [ + 0.7862727272727271 + ], + [ + 0.8107452697678261 + ], + [ + 0.9637205387205386 + ], + [ + 0.852293824358888 + ], + [ + 0.7596801346801346 + ], + [ + 0.8181614349775784 + ], + [ + 0.9017543859649124 + ], + [ + 0.805168828270855 + ], + [ + 0.9545454545454548 + ], + [ + 0.9545454545454548 + ], + [ + 0.8298946640273919 + ], + [ + 0.8041381029540074 + ], + [ + 0.9786956521739132 + ], + [ + 0.9055353950321428 + ], + [ + 0.8658008658008658 + ], + [ + 0.8041630667784955 + ], + [ + 0.792782754772987 + ], + [ + 0.8259976777571356 + ], + [ + 0.8220626497774737 + ], + [ + 0.8210461476724114 + ], + [ + 0.8101813436763873 + ], + [ + 0.971001604361102 + ], + [ + 0.9289464621791536 + ], + [ + 0.8732908588456849 + ], + [ + 0.9320839327803117 + ], + [ + 0.7799127011297503 + ], + [ + 0.9521230391509398 + ], + [ + 0.8387538514207465 + ], + [ + 0.8873673399520713 + ], + [ + 0.8919696969696971 + ], + [ + 0.9939130434782611 + ], + [ + 0.9772426641825802 + ], + [ + 0.8315151515151515 + ], + [ + 0.8408502506153573 + ], + [ + 0.9545454545454548 + ], + [ + 0.8658008658008658 + ], + [ + 0.9939130434782611 + ], + [ + 0.9418179668098864 + ], + [ + 0.7650216450216449 + ], + [ + 0.8654908035026879 + ], + [ + 0.9992656508417233 + ], + [ + 0.7803152709359605 + ], + [ + 0.833023231770358 + ], + [ + 0.9983501374885428 + ], + [ + 0.8042480240124439 + ], + [ + 0.7697542997542998 + ], + [ + 0.9203347173341052 + ], + [ + 0.8077175608822436 + ], + [ + 0.863207096556374 + ], + [ + 0.9891326164874552 + ], + [ + 0.8157646741278424 + ], + [ + 0.8722929363621342 + ], + [ + 0.8412806151509398 + ], + [ + 0.9100844696456204 + ], + [ + 0.9172591608126068 + ], + [ + 0.9170938628158845 + ], + [ + 0.8485714285714286 + ], + [ + 0.8571645021645024 + ], + [ + 0.8877796694698104 + ], + [ + 0.8146320346320346 + ], + [ + 0.9983501374885428 + ], + [ + 0.9617032985121432 + ], + [ + 0.9108802545427966 + ], + [ + 0.9508984239139112 + ], + [ + 0.9181661424871335 + ], + [ + 0.9529605866177816 + ], + [ + 0.8319465220643232 + ], + [ + 0.8402426098282156 + ], + [ + 0.9191026771713572 + ], + [ + 0.819087310370122 + ], + [ + 0.8628923192823611 + ], + [ + 0.9602434075673276 + ], + [ + 0.7593235251819751 + ], + [ + 0.9456277248027678 + ], + [ + 0.9435343652049158 + ], + [ + 0.9302009048080272 + ], + [ + 0.7932712550607288 + ], + [ + 0.8786981717234608 + ], + [ + 0.8486842544219593 + ], + [ + 0.9126746767131658 + ], + [ + 0.9486042010676804 + ], + [ + 0.9038724480869904 + ], + [ + 0.958686173433348 + ], + [ + 0.7865058108244474 + ], + [ + 0.8704285747314824 + ], + [ + 0.9240999622367164 + ], + [ + 0.806845704003599 + ], + [ + 0.9624336598289146 + ], + [ + 0.8942981283868459 + ], + [ + 0.8045481228624208 + ], + [ + 0.9823493170094518 + ], + [ + 0.8126984126984126 + ], + [ + 0.998531571416838 + ], + [ + 0.8419809946143553 + ], + [ + 0.9228410057516631 + ], + [ + 0.9946871424565764 + ], + [ + 0.814372836946585 + ], + [ + 0.8452819441807481 + ], + [ + 0.9757439972091474 + ], + [ + 0.7999757977078849 + ], + [ + 0.811708695128781 + ], + [ + 0.9226825090266608 + ], + [ + 0.915537959944108 + ], + [ + 0.8447134792639336 + ], + [ + 0.7824996118615121 + ], + [ + 0.9004189790402766 + ], + [ + 0.992492576897818 + ], + [ + 0.8141116751269034 + ], + [ + 0.9641837718077296 + ], + [ + 0.8643778677462887 + ], + [ + 0.9569910794861844 + ], + [ + 0.8929721958656435 + ], + [ + 0.9134879224116806 + ], + [ + 0.8981798632747807 + ], + [ + 0.81115791740409 + ], + [ + 0.9732801304295486 + ], + [ + 0.9270758346340522 + ], + [ + 0.9377496859510692 + ], + [ + 0.9314133822181484 + ], + [ + 0.97145319916461 + ], + [ + 0.969655719759168 + ], + [ + 0.774258455570617 + ], + [ + 0.7646989654610622 + ], + [ + 0.9179126246763072 + ], + [ + 0.9344663297510818 + ], + [ + 0.9954192028862328 + ], + [ + 0.7896845621854086 + ], + [ + 0.9455885850178358 + ], + [ + 0.9633770826635396 + ], + [ + 0.8393119121793614 + ], + [ + 0.9022475277597836 + ], + [ + 0.8956434074042219 + ], + [ + 0.8868725897920605 + ], + [ + 0.947727507922727 + ], + [ + 0.8100165040010109 + ], + [ + 0.7541551246537396 + ], + [ + 0.7542451891577083 + ], + [ + 0.917562326869806 + ], + [ + 0.8951137084436364 + ], + [ + 0.9046867398146928 + ], + [ + 0.9823446334538573 + ], + [ + 0.7795168102658113 + ], + [ + 0.98334457368405 + ], + [ + 0.949870071311262 + ], + [ + 0.7943210699040147 + ], + [ + 0.8322736882141543 + ], + [ + 0.9149338374291116 + ], + [ + 0.8997612989216043 + ], + [ + 0.957120046591764 + ], + [ + 0.8238720996776804 + ], + [ + 0.9493296120831972 + ], + [ + 0.9088759068464726 + ], + [ + 0.929966729678639 + ], + [ + 0.909593974766178 + ], + [ + 0.9088759068464726 + ], + [ + 0.7862360164041836 + ], + [ + 0.9165811787189776 + ], + [ + 0.9386430599161039 + ], + [ + 0.8032011401974772 + ], + [ + 0.7862727272727271 + ], + [ + 0.9754897598639012 + ], + [ + 0.7600017202867505 + ], + [ + 0.9455885850178358 + ], + [ + 0.9633770826635396 + ], + [ + 0.8436837588803084 + ], + [ + 0.8980736820318737 + ], + [ + 0.8859552362571937 + ], + [ + 0.8868725897920605 + ], + [ + 0.947727507922727 + ], + [ + 0.8057328891947176 + ], + [ + 0.761469327784964 + ], + [ + 0.8875623268698062 + ], + [ + 0.8965017504270001 + ], + [ + 0.9039894860912128 + ], + [ + 0.984298575553884 + ], + [ + 0.7714232447296058 + ], + [ + 0.98334457368405 + ], + [ + 0.949870071311262 + ], + [ + 0.7943210699040147 + ], + [ + 0.8202771072840704 + ], + [ + 0.9149338374291116 + ], + [ + 0.8933801982348771 + ], + [ + 0.957120046591764 + ], + [ + 0.8238720996776804 + ], + [ + 0.9529052383428788 + ], + [ + 0.90120315914534 + ], + [ + 0.929966729678639 + ], + [ + 0.945128934703434 + ], + [ + 0.9095750421335858 + ], + [ + 0.7766558276104735 + ], + [ + 0.9151778010434616 + ], + [ + 0.9471874624563446 + ], + [ + 0.8378181818181819 + ], + [ + 0.9754897598639012 + ], + [ + 0.7691572905827265 + ], + [ + 0.7959133007990622 + ], + [ + 0.8262184063662379 + ], + [ + 0.9894645159690536 + ], + [ + 0.996521739130435 + ], + [ + 0.7819131922573495 + ], + [ + 0.850401606425703 + ], + [ + 0.996521739130435 + ], + [ + 0.9077642484940728 + ], + [ + 0.89655436679566 + ], + [ + 0.9964912280701756 + ], + [ + 0.7938737011467188 + ], + [ + 0.8802936186789987 + ], + [ + 0.9280303030303032 + ], + [ + 0.7987525608923287 + ], + [ + 0.755239120734144 + ], + [ + 0.9308288388816562 + ], + [ + 0.8668602157771254 + ], + [ + 0.8448511242895973 + ], + [ + 0.7961445704225082 + ], + [ + 0.9099056220340456 + ], + [ + 0.9878450565293272 + ], + [ + 0.7642455368060652 + ], + [ + 0.9778493899137112 + ], + [ + 0.8965968223131894 + ], + [ + 0.8932895451827312 + ], + [ + 0.9285799156049388 + ], + [ + 0.9432927941623594 + ], + [ + 0.9496993493645752 + ], + [ + 0.9692603418275338 + ], + [ + 0.8702493159014899 + ], + [ + 0.9739749369603424 + ], + [ + 0.996521739130435 + ], + [ + 0.8907367280606716 + ], + [ + 0.904913008013858 + ], + [ + 0.968471177944862 + ], + [ + 0.825 + ], + [ + 0.9027775208335084 + ], + [ + 0.7617903311136486 + ], + [ + 0.884146408684465 + ], + [ + 0.9446018376578228 + ], + [ + 0.9964912280701756 + ], + [ + 0.908597321143829 + ], + [ + 0.996521739130435 + ], + [ + 0.9619598036238828 + ], + [ + 0.760301236816147 + ], + [ + 0.9921175854473762 + ], + [ + 0.8553134080531343 + ], + [ + 0.9943501037415146 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8958436239049176 + ], + [ + 1 + ], + [ + 0.8217563751752737 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8089287811425218 + ], + [ + 0.9416562889165628 + ], + [ + 0.7955445656901864 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8580430671412884 + ], + [ + 0.90276124713408 + ], + [ + 0.992671182389769 + ], + [ + 0.9848040830545792 + ], + [ + 0.9514741813067672 + ], + [ + 0.8630706569122703 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.9857005881574218 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9414868925909092 + ], + [ + 0.9851370084561714 + ], + [ + 0.9822495603003196 + ], + [ + 0.9822495603003196 + ], + [ + 0.8052224642752426 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.8931621545809378 + ], + [ + 1 + ], + [ + 0.9271888077994948 + ], + [ + 0.7647361516158825 + ], + [ + 0.9921175854473762 + ], + [ + 0.8553134080531343 + ], + [ + 0.9943501037415146 + ], + [ + 0.9991101224022378 + ], + [ + 0.7714797416324134 + ], + [ + 0.8958436239049176 + ], + [ + 1 + ], + [ + 0.8217563751752737 + ], + [ + 0.8995898027497777 + ], + [ + 0.999122807017544 + ], + [ + 0.8019358454012121 + ], + [ + 0.8089287811425218 + ], + [ + 0.8017627702025453 + ], + [ + 0.7916704805491989 + ], + [ + 0.936963017728694 + ], + [ + 0.8580430671412884 + ], + [ + 0.84746622922539 + ], + [ + 0.7867084930870223 + ], + [ + 0.90276124713408 + ], + [ + 0.992671182389769 + ], + [ + 0.8072821072057714 + ], + [ + 0.9848040830545792 + ], + [ + 0.8189889492826025 + ], + [ + 0.9531775071717112 + ], + [ + 0.9429977116704804 + ], + [ + 0.9391877740213088 + ], + [ + 0.9348478408783754 + ], + [ + 0.8677050513455755 + ], + [ + 0.974712351554919 + ], + [ + 0.999777530589544 + ], + [ + 0.937103645050706 + ], + [ + 0.9773557492735576 + ], + [ + 0.9822495603003196 + ], + [ + 0.9822495603003196 + ], + [ + 0.8052224642752426 + ], + [ + 0.884737671188568 + ], + [ + 0.9413092648977816 + ], + [ + 0.999122807017544 + ], + [ + 0.9503668087629396 + ], + [ + 1 + ], + [ + 0.9271888077994948 + ], + [ + 0.7647361516158825 + ], + [ + 0.8653436259062406 + ], + [ + 0.9166666666666666 + ], + [ + 0.8513043478260871 + ], + [ + 0.888762154374558 + ], + [ + 0.9072684799014413 + ], + [ + 0.8911473104418144 + ], + [ + 0.8931451612903224 + ], + [ + 0.8046414142652472 + ], + [ + 0.8069790866112391 + ], + [ + 0.8818832214815736 + ], + [ + 0.8945874001774624 + ], + [ + 0.8064644137224782 + ], + [ + 0.8411703547857459 + ], + [ + 0.8850692346282528 + ], + [ + 0.755864605581299 + ], + [ + 0.8544702845816942 + ], + [ + 0.9105444641861692 + ], + [ + 0.9339130434782608 + ], + [ + 0.8908740092733132 + ], + [ + 0.8673913043478261 + ], + [ + 0.8286547121919265 + ], + [ + 0.95706340378198 + ], + [ + 0.9119365546072284 + ], + [ + 0.9110759625390218 + ], + [ + 0.9018301785200464 + ], + [ + 0.9107392505404756 + ], + [ + 0.812383779297877 + ], + [ + 0.8091839475036197 + ], + [ + 0.92656200324369 + ], + [ + 0.9618472252807516 + ], + [ + 0.9614035087719296 + ], + [ + 0.7500000000000002 + ], + [ + 0.8598402189827489 + ], + [ + 0.9545454545454548 + ], + [ + 0.9545454545454548 + ], + [ + 0.8298946640273919 + ], + [ + 0.8041381029540074 + ], + [ + 0.9786956521739132 + ], + [ + 0.9055353950321428 + ], + [ + 0.8658008658008658 + ], + [ + 0.8041630667784955 + ], + [ + 0.792782754772987 + ], + [ + 0.8259976777571356 + ], + [ + 0.8220626497774737 + ], + [ + 0.8210461476724114 + ], + [ + 0.8101813436763873 + ], + [ + 0.971001604361102 + ], + [ + 0.9289464621791536 + ], + [ + 0.8732908588456849 + ], + [ + 0.9320839327803117 + ], + [ + 0.7799127011297503 + ], + [ + 0.9521230391509398 + ], + [ + 0.8387538514207465 + ], + [ + 0.8873673399520713 + ], + [ + 0.8919696969696971 + ], + [ + 0.9939130434782611 + ], + [ + 0.9772426641825802 + ], + [ + 0.8315151515151515 + ], + [ + 0.8408502506153573 + ], + [ + 0.9545454545454548 + ], + [ + 0.8658008658008658 + ], + [ + 0.9939130434782611 + ], + [ + 0.9418179668098864 + ], + [ + 0.912126399896816 + ], + [ + 0.8887138991962918 + ], + [ + 0.8348061215534456 + ], + [ + 0.9654149311197341 + ], + [ + 0.9378050392345934 + ], + [ + 0.7862793427792023 + ], + [ + 0.8443604690958973 + ], + [ + 0.9593698200373342 + ], + [ + 0.8512088827319056 + ], + [ + 0.8685180682717806 + ], + [ + 0.8468774244700616 + ], + [ + 0.7714560308712177 + ], + [ + 0.8438870652966832 + ], + [ + 0.8969414245866957 + ], + [ + 0.7886269744426645 + ], + [ + 0.7869777589350374 + ], + [ + 0.8088224211621804 + ], + [ + 0.8437355447339081 + ], + [ + 0.7910699721201396 + ], + [ + 0.8676659390892717 + ], + [ + 0.9527613124711042 + ], + [ + 0.8204485735368444 + ], + [ + 0.9271303344105843 + ], + [ + 0.8146456352114138 + ], + [ + 0.8976037629362695 + ], + [ + 0.8683719728292518 + ], + [ + 0.8802027440346276 + ], + [ + 0.9196776036942447 + ], + [ + 0.8365367223192828 + ], + [ + 0.9120870195043488 + ], + [ + 0.8288691920804903 + ], + [ + 0.8922059565791751 + ], + [ + 0.8856333436369807 + ], + [ + 0.8958383344884892 + ], + [ + 0.8547177456502489 + ], + [ + 0.8876177172043811 + ], + [ + 0.8044462631285333 + ], + [ + 0.7769360074394543 + ], + [ + 0.870165794962474 + ], + [ + 0.9088771460360435 + ], + [ + 0.8639440219481173 + ], + [ + 0.8216171045177142 + ], + [ + 0.9553836542485572 + ], + [ + 0.8590281921783777 + ], + [ + 0.7787593370202928 + ], + [ + 0.980480932194884 + ], + [ + 0.859475457715449 + ], + [ + 0.8392883910692737 + ], + [ + 0.9697334753456728 + ], + [ + 0.9875342767410386 + ], + [ + 0.7762805813227043 + ], + [ + 0.8819115666628253 + ], + [ + 0.9996664755680739 + ], + [ + 0.8213533116534559 + ], + [ + 0.8993451012599613 + ], + [ + 0.994957229074001 + ], + [ + 0.8044910674094043 + ], + [ + 0.8264324715896463 + ], + [ + 0.9192754972628756 + ], + [ + 0.7970964194386293 + ], + [ + 0.7945612011511877 + ], + [ + 0.9286518512105283 + ], + [ + 0.8566385381298418 + ], + [ + 0.8419664159663934 + ], + [ + 0.8037444492468451 + ], + [ + 0.8979338496600437 + ], + [ + 0.9911725943373176 + ], + [ + 0.8072821072057714 + ], + [ + 0.9582948583751757 + ], + [ + 0.9361559940016043 + ], + [ + 0.848885751747483 + ], + [ + 0.9282065099530084 + ], + [ + 0.9375384371708221 + ], + [ + 0.9244381440159178 + ], + [ + 0.922778749811867 + ], + [ + 0.863030950010363 + ], + [ + 0.9604336230108552 + ], + [ + 0.9997485909897145 + ], + [ + 0.9281372808943766 + ], + [ + 0.9220884721293067 + ], + [ + 0.9635181750863282 + ], + [ + 0.9383494988405086 + ], + [ + 0.9820953369402764 + ], + [ + 0.8113952633989926 + ], + [ + 0.7593325960761085 + ], + [ + 0.8846768686559165 + ], + [ + 0.9402013525622738 + ], + [ + 0.98884684307581 + ], + [ + 0.9345641592934529 + ], + [ + 0.9797300792648269 + ], + [ + 0.9211896852548491 + ], + [ + 0.7727183435914119 + ], + [ + 0.8553134080531343 + ], + [ + 0.7923275652679538 + ], + [ + 0.7819131922573495 + ], + [ + 0.7906170310433895 + ], + [ + 0.8406484670606788 + ], + [ + 0.7894736842105264 + ], + [ + 0.8681498428014106 + ], + [ + 0.8408063572139095 + ], + [ + 0.7738548847622624 + ], + [ + 0.8107066154287429 + ], + [ + 0.909636086500905 + ], + [ + 0.9320839327803117 + ], + [ + 0.894689054121916 + ], + [ + 0.8861995746607623 + ], + [ + 0.8134896030245747 + ], + [ + 0.9636363636363636 + ], + [ + 0.8392276737347159 + ], + [ + 0.901982337361457 + ], + [ + 0.8985728391457872 + ], + [ + 0.792183707284576 + ], + [ + 0.781322126609299 + ], + [ + 0.9062315973735743 + ], + [ + 0.9367756029417319 + ], + [ + 0.9319511232326471 + ], + [ + 0.9114862576701875 + ], + [ + 0.9712199515753038 + ], + [ + 0.8980313754953725 + ], + [ + 0.9114891155371125 + ], + [ + 0.9718991822232025 + ], + [ + 0.8957817018995955 + ], + [ + 0.885216820326823 + ], + [ + 0.9629347112101692 + ], + [ + 0.9112715002623073 + ], + [ + 0.8614427822576298 + ], + [ + 0.9049664936619728 + ], + [ + 0.8820162243309974 + ], + [ + 0.888454039780395 + ], + [ + 0.9041504983342782 + ], + [ + 0.8799225737707326 + ], + [ + 0.8876439844627072 + ], + [ + 0.8799233569935232 + ], + [ + 0.918126588116288 + ], + [ + 0.9555805365011201 + ], + [ + 0.8931008593563526 + ], + [ + 0.9515523658057982 + ], + [ + 0.9349917026220693 + ], + [ + 0.8474827234526232 + ], + [ + 0.9150998524663875 + ], + [ + 0.9019272454814691 + ], + [ + 0.9301521751223218 + ], + [ + 0.9063992024260691 + ], + [ + 0.9084458145791406 + ], + [ + 0.9168300877742804 + ], + [ + 0.9333616542847242 + ], + [ + 0.9154663449613054 + ], + [ + 0.9251461704126609 + ], + [ + 0.917690844476884 + ], + [ + 0.9147435499325136 + ], + [ + 0.9222813943309438 + ], + [ + 0.8949753018246851 + ], + [ + 0.880217317459482 + ], + [ + 0.9102208157579199 + ], + [ + 0.9310777500028851 + ], + [ + 0.9593888728040101 + ], + [ + 0.9143927587731583 + ], + [ + 0.9653623648480182 + ], + [ + 0.895914543937476 + ], + [ + 0.8635374376096991 + ], + [ + 0.9681319140967855 + ], + [ + 0.7944051293641291 + ], + [ + 0.8332891527009144 + ], + [ + 0.9572275212696914 + ], + [ + 0.9858336693217798 + ], + [ + 0.8109702628253749 + ], + [ + 0.8979224069109053 + ], + [ + 0.9560034436331701 + ], + [ + 0.8639809350471249 + ], + [ + 0.9097687059679831 + ], + [ + 0.8322745922557433 + ], + [ + 0.7971859524323482 + ], + [ + 0.8358842439381247 + ], + [ + 0.8283017039354447 + ], + [ + 0.8143104247154894 + ], + [ + 0.7738369426049334 + ], + [ + 0.8995325759943457 + ], + [ + 0.8642235928871177 + ], + [ + 0.8487681619367479 + ], + [ + 0.764572997619905 + ], + [ + 0.8781835807412907 + ], + [ + 0.9926851552084225 + ], + [ + 0.9812777311360182 + ], + [ + 0.8861726828683071 + ], + [ + 0.8774954149924378 + ], + [ + 0.926345302298229 + ], + [ + 0.8766210768243543 + ], + [ + 0.9378841050418827 + ], + [ + 0.939845912034176 + ], + [ + 0.823816185944173 + ], + [ + 0.856345527603842 + ], + [ + 0.8334595938340698 + ], + [ + 0.8998404410917807 + ], + [ + 0.9376711024759753 + ], + [ + 0.911890053248672 + ], + [ + 0.9300633742947678 + ], + [ + 0.8084175084175085 + ], + [ + 0.8334508286707701 + ], + [ + 0.7740091154092624 + ], + [ + 0.7992420095977141 + ], + [ + 0.9006621739097868 + ], + [ + 0.854653633074874 + ], + [ + 0.8760061398599419 + ], + [ + 0.9813930191848028 + ], + [ + 0.8468484447398872 + ], + [ + 0.8096121652455617 + ], + [ + 0.9446374125411141 + ], + [ + 0.8908978309617703 + ], + [ + 0.8171053577998276 + ], + [ + 0.8734377849868722 + ], + [ + 0.9519939718593139 + ], + [ + 0.8280300613338275 + ], + [ + 0.876595396020583 + ], + [ + 0.9655210912171963 + ], + [ + 0.8261344387971954 + ], + [ + 0.8625542828389395 + ], + [ + 0.8903288184273107 + ], + [ + 0.7940378215823586 + ], + [ + 0.821308528676284 + ], + [ + 0.8862838943076522 + ], + [ + 0.801335608067006 + ], + [ + 0.7898913315911535 + ], + [ + 0.8939243895233296 + ], + [ + 0.8298894470003665 + ], + [ + 0.8095100145922008 + ], + [ + 0.8059795113616446 + ], + [ + 0.8742160601633633 + ], + [ + 0.9583180594822122 + ], + [ + 0.7551458714415599 + ], + [ + 0.9136540178884357 + ], + [ + 0.9206422293761181 + ], + [ + 0.8591683975024862 + ], + [ + 0.904109564575604 + ], + [ + 0.8472694098632094 + ], + [ + 0.9130149998360988 + ], + [ + 0.880145246772824 + ], + [ + 0.8361423023057717 + ], + [ + 0.9167552503585765 + ], + [ + 0.9112809824102042 + ], + [ + 0.8970011148753945 + ], + [ + 0.8914866076962089 + ], + [ + 0.923955848833383 + ], + [ + 0.9413970359062177 + ], + [ + 0.9010745526527456 + ], + [ + 0.8041496126372355 + ], + [ + 0.7790726657769016 + ], + [ + 0.8538666204813453 + ], + [ + 0.8917500286633246 + ], + [ + 0.9410172873790268 + ], + [ + 0.828568031294484 + ], + [ + 0.9472721492692258 + ], + [ + 0.8601896132182887 + ], + [ + 0.7893633567566072 + ], + [ + 0.9778255798991798 + ], + [ + 0.8408064685157908 + ], + [ + 0.8526279870536415 + ], + [ + 0.8833001568387581 + ], + [ + 0.9124677847409535 + ], + [ + 0.8503633201346489 + ], + [ + 0.8833774822775062 + ], + [ + 0.9417491009932606 + ], + [ + 0.9147990007027552 + ], + [ + 0.8911473104418144 + ], + [ + 0.9223179978964999 + ], + [ + 0.7993105223748839 + ], + [ + 0.850350519784385 + ], + [ + 0.9028697210251827 + ], + [ + 0.8286759028531826 + ], + [ + 0.8031469436294986 + ], + [ + 0.9091537502090101 + ], + [ + 0.8093089826039098 + ], + [ + 0.8904874214357624 + ], + [ + 0.8411703547857459 + ], + [ + 0.9300497863013258 + ], + [ + 0.9285163775070171 + ], + [ + 0.9184586012318386 + ], + [ + 0.9105444641861692 + ], + [ + 0.9164299777201611 + ], + [ + 0.9326776376702162 + ], + [ + 0.915238611353349 + ], + [ + 0.8549571170132747 + ], + [ + 0.923455550886179 + ], + [ + 0.9049110370735057 + ], + [ + 0.9119365546072284 + ], + [ + 0.9018909142690755 + ], + [ + 0.891364561195284 + ], + [ + 0.9086032637241696 + ], + [ + 0.9120677703982908 + ], + [ + 0.7772353780844471 + ], + [ + 0.812383779297877 + ], + [ + 0.8141980933100278 + ], + [ + 0.8822295931235452 + ], + [ + 0.9449596208074079 + ], + [ + 0.8978862439049966 + ], + [ + 0.9095010430865866 + ], + [ + 0.8584872270322912 + ], + [ + 0.8086861251474953 + ], + [ + 0.9214310387816568 + ], + [ + 0.8513156916323267 + ], + [ + 0.8861426594528754 + ], + [ + 0.9563580635481227 + ], + [ + 0.8379543933348044 + ], + [ + 0.8656705863743085 + ], + [ + 0.98211089011857 + ], + [ + 0.8110596347942214 + ], + [ + 0.9034463518857324 + ], + [ + 0.9635607491657863 + ], + [ + 0.8422382578141601 + ], + [ + 0.804708761453583 + ], + [ + 0.7698095150780381 + ], + [ + 0.7928287729663905 + ], + [ + 0.8372182500994741 + ], + [ + 0.8427896430369138 + ], + [ + 0.855443432650397 + ], + [ + 0.7939358902616885 + ], + [ + 0.7798108510703752 + ], + [ + 0.8567241066808098 + ], + [ + 0.9583038937015214 + ], + [ + 0.8148887053291618 + ], + [ + 0.9152406569855351 + ], + [ + 0.9028534602763532 + ], + [ + 0.8325119458879734 + ], + [ + 0.9302053778183247 + ], + [ + 0.8963386566638 + ], + [ + 0.8746814563549781 + ], + [ + 0.872251181030881 + ], + [ + 0.8686053557864637 + ], + [ + 0.9141058135529145 + ], + [ + 0.8632595037764901 + ], + [ + 0.9040022099272385 + ], + [ + 0.9059581070774078 + ], + [ + 0.9346013746176656 + ], + [ + 0.9298936488832736 + ], + [ + 0.8340239458302267 + ], + [ + 0.8702365021705257 + ], + [ + 0.8123721793207034 + ], + [ + 0.885883024060232 + ], + [ + 0.9117402687572846 + ], + [ + 0.936386353394425 + ], + [ + 0.8186788756172888 + ], + [ + 0.9671464581990991 + ], + [ + 0.848055950280692 + ], + [ + 0.8634065231167884 + ], + [ + 0.943821429875099 + ], + [ + 0.8448605670142738 + ], + [ + 0.8391308618400675 + ], + [ + 0.9254219485466432 + ], + [ + 0.969801679066684 + ], + [ + 0.7878255517886145 + ], + [ + 0.8357804468910168 + ], + [ + 0.9631549837457787 + ], + [ + 0.8766588491633124 + ], + [ + 0.883163649863375 + ], + [ + 0.9511620798446823 + ], + [ + 0.8066657873420849 + ], + [ + 0.8646146885061549 + ], + [ + 0.9029578211833432 + ], + [ + 0.8173068258119696 + ], + [ + 0.8033478921612156 + ], + [ + 0.8925053259258572 + ], + [ + 0.852437315787378 + ], + [ + 0.8476096224149778 + ], + [ + 0.8281685537387745 + ], + [ + 0.8864038761069699 + ], + [ + 0.966688404418 + ], + [ + 0.7614570139762271 + ], + [ + 0.9218212088326015 + ], + [ + 0.9097340269655556 + ], + [ + 0.864077528054265 + ], + [ + 0.8950383362559432 + ], + [ + 0.9073710788569305 + ], + [ + 0.9205839250299366 + ], + [ + 0.925130070799764 + ], + [ + 0.8576299437359549 + ], + [ + 0.9440950401078382 + ], + [ + 0.980790485473866 + ], + [ + 0.8716713610396803 + ], + [ + 0.8830330753654165 + ], + [ + 0.947413628857759 + ], + [ + 0.9115868956816537 + ], + [ + 0.9072478086555293 + ], + [ + 0.8887067486958385 + ], + [ + 0.8045206061109993 + ], + [ + 0.8778102296487642 + ], + [ + 0.9274293484428641 + ], + [ + 0.9658288014409694 + ], + [ + 0.8926838484147005 + ], + [ + 0.9632179959347835 + ], + [ + 0.9170977504366647 + ], + [ + 0.8054854384428153 + ], + [ + 0.9159799347276768 + ], + [ + 0.870259402604351 + ], + [ + 0.8402275254009515 + ], + [ + 0.9026564018866784 + ], + [ + 0.969798543419344 + ], + [ + 0.894474990496069 + ], + [ + 0.924076352335974 + ], + [ + 0.9429126764126102 + ], + [ + 0.8042639289221745 + ], + [ + 0.9218541569170036 + ], + [ + 0.9413543287285013 + ], + [ + 0.84560906239862 + ], + [ + 0.8512530801436985 + ], + [ + 0.8482251915257588 + ], + [ + 0.8418517009699383 + ], + [ + 0.8389250838766459 + ], + [ + 0.8780942953472136 + ], + [ + 0.8631072832356894 + ], + [ + 0.8400551602999186 + ], + [ + 0.8516270815329701 + ], + [ + 0.8873583533901547 + ], + [ + 0.9362723793519837 + ], + [ + 0.8578184506948072 + ], + [ + 0.9200868381562568 + ], + [ + 0.919241753809882 + ], + [ + 0.8090814478617769 + ], + [ + 0.9172442173513957 + ], + [ + 0.9208280320409932 + ], + [ + 0.8851201873403441 + ], + [ + 0.8620858836911702 + ], + [ + 0.8599934079935148 + ], + [ + 0.9464224065318294 + ], + [ + 0.8754179254812067 + ], + [ + 0.9307199381091358 + ], + [ + 0.930707642611767 + ], + [ + 0.9336712798542302 + ], + [ + 0.8756742763151554 + ], + [ + 0.899951826176289 + ], + [ + 0.8561565549568945 + ], + [ + 0.834305428035956 + ], + [ + 0.9043158701608425 + ], + [ + 0.8929659797398322 + ], + [ + 0.9503845826556759 + ], + [ + 0.8991612275139281 + ], + [ + 0.9813148595805599 + ], + [ + 0.8159243483663714 + ], + [ + 0.8774146105790617 + ], + [ + 0.8805473871785698 + ], + [ + 0.8168386335588215 + ], + [ + 0.8698762473047957 + ], + [ + 0.9165009998924976 + ], + [ + 0.9879292185766946 + ], + [ + 0.7704147258241087 + ], + [ + 0.8621323162821838 + ], + [ + 0.9420676506545669 + ], + [ + 0.8430911690338843 + ], + [ + 0.8642044705519123 + ], + [ + 0.8992599156815553 + ], + [ + 0.7848229577759359 + ], + [ + 0.8552257489567264 + ], + [ + 0.9107485390958536 + ], + [ + 0.8109378539976589 + ], + [ + 0.7760442198468392 + ], + [ + 0.8071817939237914 + ], + [ + 0.8488411028364334 + ], + [ + 0.8511599723642802 + ], + [ + 0.7930656733224284 + ], + [ + 0.9026466655874603 + ], + [ + 0.9432330473846552 + ], + [ + 0.8831072264534608 + ], + [ + 0.8943189089693644 + ], + [ + 0.8433884446453952 + ], + [ + 0.8957915181159275 + ], + [ + 0.8920211727858403 + ], + [ + 0.8656532195191253 + ], + [ + 0.8888272271166328 + ], + [ + 0.8185276031664389 + ], + [ + 0.8970283977981403 + ], + [ + 0.9482255936318409 + ], + [ + 0.8981625474527939 + ], + [ + 0.886392267992047 + ], + [ + 0.8763210075301389 + ], + [ + 0.8874771779807347 + ], + [ + 0.8847685034814367 + ], + [ + 0.811961856252122 + ], + [ + 0.7847145200343669 + ], + [ + 0.833222298535868 + ], + [ + 0.9240469682401297 + ], + [ + 0.9470088142769943 + ], + [ + 0.8108332314185674 + ], + [ + 0.9884763288693144 + ], + [ + 0.8537121244334758 + ], + [ + 0.7863842496662736 + ], + [ + 0.9710999057276702 + ], + [ + 0.8545775806305325 + ], + [ + 0.8288670673568047 + ], + [ + 0.9580430413202744 + ], + [ + 0.9851481216084019 + ], + [ + 0.8019990309518411 + ], + [ + 0.8765697319346342 + ], + [ + 0.9984485134812963 + ], + [ + 0.8827784956633106 + ], + [ + 0.897855261911528 + ], + [ + 0.9991228070175441 + ], + [ + 0.7869726824623813 + ], + [ + 0.8574600215751925 + ], + [ + 0.9104950845796125 + ], + [ + 0.7922752675949607 + ], + [ + 0.7825474175827186 + ], + [ + 0.9207382729968335 + ], + [ + 0.8317161986111055 + ], + [ + 0.84746622922539 + ], + [ + 0.8245418106987256 + ], + [ + 0.8914409068710273 + ], + [ + 0.9828315609612513 + ], + [ + 0.766483106515241 + ], + [ + 0.9500231063419912 + ], + [ + 0.9418084238960098 + ], + [ + 0.993758325008325 + ], + [ + 0.9340450649002454 + ], + [ + 0.9369761491626559 + ], + [ + 0.9242059912005234 + ], + [ + 0.9626281577206024 + ], + [ + 0.9004406503802566 + ], + [ + 0.9591920700382297 + ], + [ + 0.9770335633523987 + ], + [ + 0.9120886429915576 + ], + [ + 0.8878004962368867 + ], + [ + 0.9886242163794032 + ], + [ + 0.9651107579751624 + ], + [ + 0.8934452569589426 + ], + [ + 0.906094156405893 + ], + [ + 0.8004902860629857 + ], + [ + 0.8914046330636394 + ], + [ + 0.941658321518602 + ], + [ + 0.9765693239986738 + ], + [ + 0.8760032261652501 + ], + [ + 0.9991228070175441 + ], + [ + 0.9051910717095266 + ], + [ + 0.7935775831141221 + ], + [ + 0.929941088884573 + ], + [ + 0.8318189568317447 + ], + [ + 0.9721324228139152 + ], + [ + 0.8929555666008868 + ], + [ + 0.9899175068744273 + ], + [ + 0.7829559806346367 + ], + [ + 0.8330585670487148 + ], + [ + 0.9004712036731742 + ], + [ + 0.8079059133534838 + ], + [ + 0.907326978222119 + ], + [ + 0.8418462145170219 + ], + [ + 0.8355962235887732 + ], + [ + 0.9840600196897172 + ], + [ + 0.9727233543942168 + ], + [ + 0.9456931798893302 + ], + [ + 0.7835307826762479 + ], + [ + 0.9334823561531638 + ], + [ + 0.943912095206486 + ], + [ + 0.9719476865439598 + ], + [ + 0.8989607068123694 + ], + [ + 0.9899175068744273 + ], + [ + 0.91218688144154 + ], + [ + 0.968708052390917 + ], + [ + 0.9275641323723166 + ], + [ + 0.7750817305162342 + ], + [ + 0.7705110005585539 + ], + [ + 0.8746911090742437 + ], + [ + 0.906777236648719 + ], + [ + 0.9877189123128628 + ], + [ + 0.905810189680844 + ], + [ + 0.9039758195768428 + ], + [ + 0.9417675428322848 + ], + [ + 0.838458313625102 + ], + [ + 0.9578918616552848 + ], + [ + 0.9877224033535164 + ], + [ + 0.9600766541682176 + ], + [ + 0.9372227566431792 + ], + [ + 0.9996947496947498 + ], + [ + 0.9464739502688859 + ], + [ + 0.9273107442696306 + ], + [ + 0.8427440270131528 + ], + [ + 0.8930336617991886 + ], + [ + 0.8499116091074294 + ], + [ + 0.8297523357929766 + ], + [ + 0.8628042957923382 + ], + [ + 0.94362258995985 + ], + [ + 0.8861176478495414 + ], + [ + 0.992955297959396 + ], + [ + 0.954141881439958 + ], + [ + 0.9716068390573318 + ], + [ + 0.9372227566431792 + ], + [ + 0.9209665616774528 + ], + [ + 0.8810186818949944 + ], + [ + 0.8078565985679013 + ], + [ + 0.7888565809250084 + ], + [ + 0.8999765601568034 + ], + [ + 0.7784705964389922 + ], + [ + 0.8951137084436364 + ], + [ + 0.9694396869310692 + ], + [ + 0.906901471095239 + ], + [ + 0.9521895754027829 + ], + [ + 0.7517286913985001 + ], + [ + 0.8687571885281811 + ], + [ + 0.7912430201328434 + ], + [ + 0.9975369458128078 + ], + [ + 0.9160401958804216 + ], + [ + 0.9315711806648126 + ], + [ + 0.8609644958918051 + ], + [ + 0.8386594508420274 + ], + [ + 0.9351549836986592 + ], + [ + 0.9427180341404985 + ], + [ + 0.7681163618132653 + ], + [ + 0.8787858747853352 + ], + [ + 0.9893011313753898 + ], + [ + 0.8546700127495449 + ], + [ + 0.8758173885709947 + ], + [ + 0.9485066687801922 + ], + [ + 0.8003973221301792 + ], + [ + 0.8309934593862532 + ], + [ + 0.9026473100549586 + ], + [ + 0.7957711145179299 + ], + [ + 0.7958134120303104 + ], + [ + 0.8809153393318552 + ], + [ + 0.8550588891603323 + ], + [ + 0.8368966677964681 + ], + [ + 0.8049966847322658 + ], + [ + 0.8894131781606722 + ], + [ + 0.984770563952946 + ], + [ + 0.7945822416508489 + ], + [ + 0.9385796426731732 + ], + [ + 0.9400075247083102 + ], + [ + 0.8370209052650499 + ], + [ + 0.9406181150608247 + ], + [ + 0.9074883728808776 + ], + [ + 0.9137808792941257 + ], + [ + 0.9328829711123616 + ], + [ + 0.8601818483687415 + ], + [ + 0.8898049062435895 + ], + [ + 0.9722307756700375 + ], + [ + 0.9238623216857789 + ], + [ + 0.871665184175204 + ], + [ + 0.9528158707854402 + ], + [ + 0.9020360939999567 + ], + [ + 0.9516904425166645 + ], + [ + 0.8907461235222609 + ], + [ + 0.7809088432800615 + ], + [ + 0.8762088523996857 + ], + [ + 0.9320039039158255 + ], + [ + 0.9272893269521203 + ], + [ + 0.9058370878370338 + ], + [ + 0.9524516791586732 + ], + [ + 0.8829855968328181 + ], + [ + 0.7823245649207289 + ], + [ + 0.8748693498469887 + ], + [ + 0.8742883854021798 + ], + [ + 0.8746611748024347 + ], + [ + 0.9376819623311556 + ], + [ + 0.9947028289732674 + ], + [ + 0.8548763233394239 + ], + [ + 0.9049914056584369 + ], + [ + 0.9941197065722382 + ], + [ + 0.8487320955708422 + ], + [ + 0.9092712562873475 + ], + [ + 0.9763749646497006 + ], + [ + 0.8545982831576736 + ], + [ + 0.850548231352957 + ], + [ + 0.9407255024549774 + ], + [ + 0.8503648922153408 + ], + [ + 0.8359536461222336 + ], + [ + 0.9109614334891537 + ], + [ + 0.8647394698759232 + ], + [ + 0.9043414337084982 + ], + [ + 0.8450197352772266 + ], + [ + 0.9399452292694473 + ], + [ + 0.9846994595492535 + ], + [ + 0.9486152933634998 + ], + [ + 0.9754185212178655 + ], + [ + 0.9588847492141126 + ], + [ + 0.8651058220157922 + ], + [ + 0.9272067154146025 + ], + [ + 0.9405616327785196 + ], + [ + 0.9367871439736926 + ], + [ + 0.9386593272049244 + ], + [ + 0.8902973666791916 + ], + [ + 0.9017097117882626 + ], + [ + 0.9739530318740881 + ], + [ + 0.9085982902991971 + ], + [ + 0.9479750510619678 + ], + [ + 0.9829223011990686 + ], + [ + 0.8379245523453007 + ], + [ + 0.939761065723693 + ], + [ + 0.8491109021102726 + ], + [ + 0.8703455431007857 + ], + [ + 0.9177162151766173 + ], + [ + 0.9445085979284547 + ], + [ + 0.9970392628794374 + ], + [ + 0.9623118653922792 + ], + [ + 0.9932823846253213 + ], + [ + 0.9428523442680733 + ], + [ + 0.8098315966162147 + ], + [ + 0.9090909090909088 + ], + [ + 0.8237875450920827 + ], + [ + 0.945216049382716 + ], + [ + 0.8771929824561405 + ], + [ + 0.7694629219019462 + ], + [ + 0.8174876847290637 + ], + [ + 0.9545454545454548 + ], + [ + 0.8813770455902434 + ], + [ + 0.8553636363636361 + ], + [ + 0.8455433455433456 + ], + [ + 0.7676911617909391 + ], + [ + 0.8737944824901346 + ], + [ + 0.8588924177547349 + ], + [ + 0.7706024497958504 + ], + [ + 0.7971142965635086 + ], + [ + 0.797381306659819 + ], + [ + 0.8483876994316057 + ], + [ + 0.8282595845401285 + ], + [ + 0.8034089244055879 + ], + [ + 0.817729049162855 + ], + [ + 0.9363500515543048 + ], + [ + 0.9359939732913412 + ], + [ + 0.882198952879581 + ], + [ + 0.8576806647865884 + ], + [ + 0.815050939773573 + ], + [ + 0.9091975633632599 + ], + [ + 0.8917391304347826 + ], + [ + 0.8452819441807481 + ], + [ + 0.8400216450216451 + ], + [ + 0.8253968253968254 + ], + [ + 0.8210322890105873 + ], + [ + 0.8348289163941287 + ], + [ + 0.9554938655160816 + ], + [ + 0.852293824358888 + ], + [ + 0.858005568338311 + ], + [ + 0.8161148760137403 + ], + [ + 0.9688527588701455 + ], + [ + 0.8467761176075351 + ], + [ + 0.9017543859649124 + ], + [ + 0.7897773279352229 + ], + [ + 0.805168828270855 + ], + [ + 0.8317573749391951 + ], + [ + 0.9643924081792452 + ], + [ + 0.938598748759861 + ], + [ + 0.984466571720076 + ], + [ + 0.9883020564051679 + ], + [ + 0.977397740533538 + ], + [ + 0.8324262590094272 + ], + [ + 0.957204861709126 + ], + [ + 0.9815689054392762 + ], + [ + 0.9723297607875788 + ], + [ + 0.9166058436529154 + ], + [ + 0.7521706555006759 + ], + [ + 0.9280169976669376 + ], + [ + 0.9358035287465732 + ], + [ + 0.8764803941254208 + ], + [ + 0.9153455696596016 + ], + [ + 0.8469432605765171 + ], + [ + 0.99268071993084 + ], + [ + 0.988226739831974 + ], + [ + 0.996336999414424 + ], + [ + 0.9244884191211992 + ], + [ + 0.8507008302142539 + ], + [ + 0.9593509283699424 + ], + [ + 0.8061755182821719 + ], + [ + 0.9615141634622412 + ], + [ + 0.9839330712663648 + ], + [ + 0.9555873521968756 + ], + [ + 0.9775173594082412 + ], + [ + 0.8128624949482813 + ], + [ + 0.9514741813067672 + ], + [ + 0.9817522080920388 + ], + [ + 0.981025791388756 + ], + [ + 0.9818181818181816 + ], + [ + 0.9710861248452468 + ], + [ + 0.9773557492735576 + ], + [ + 0.890085589718168 + ], + [ + 0.954337370755309 + ], + [ + 0.9807297003570874 + ], + [ + 0.9364502164502164 + ], + [ + 0.7901612469857595 + ], + [ + 0.824287208001439 + ], + [ + 0.9807297003570874 + ], + [ + 0.7614649785030472 + ], + [ + 0.8658008658008658 + ], + [ + 0.9939130434782611 + ], + [ + 0.9066651512935219 + ], + [ + 0.8939526037506182 + ], + [ + 0.9842229467473992 + ], + [ + 0.865081443540125 + ], + [ + 0.9167169276268624 + ], + [ + 0.8794346322201474 + ], + [ + 0.765130456168069 + ], + [ + 0.8734544866674276 + ], + [ + 0.909520787797598 + ], + [ + 0.8854931946173012 + ], + [ + 0.7673924006226841 + ], + [ + 0.8798233135618779 + ], + [ + 0.9852364106660584 + ], + [ + 0.7637569649841349 + ], + [ + 0.9348260838243078 + ], + [ + 0.933522474466579 + ], + [ + 0.8377846225826576 + ], + [ + 0.9583806183156228 + ], + [ + 0.9331326790672908 + ], + [ + 0.9383147514181556 + ], + [ + 0.9589825216566162 + ], + [ + 0.8060876415101113 + ], + [ + 0.9783224922971588 + ], + [ + 0.9583806183156228 + ], + [ + 0.899590944489805 + ], + [ + 0.8941653123998358 + ], + [ + 0.9668188169538892 + ], + [ + 0.9783224922971588 + ], + [ + 0.9679972612119138 + ], + [ + 0.8797605429806478 + ], + [ + 0.7963975193082085 + ], + [ + 0.8839816990630294 + ], + [ + 0.9431528211472392 + ], + [ + 0.8367334869051766 + ], + [ + 0.8658008658008658 + ], + [ + 0.9921746738179468 + ], + [ + 0.9020614173817516 + ], + [ + 0.7562166685686029 + ], + [ + 0.8168393183171508 + ], + [ + 0.826467375579422 + ], + [ + 0.94513113161729 + ], + [ + 0.9585637037072424 + ], + [ + 0.8949088289552438 + ], + [ + 0.9053910284366296 + ], + [ + 0.817437533227007 + ], + [ + 0.7978783990223038 + ], + [ + 0.7521903939726886 + ], + [ + 0.754943158980426 + ], + [ + 0.7928605555934748 + ], + [ + 0.8989607068123694 + ], + [ + 0.7975892455476461 + ], + [ + 0.7725199492096488 + ], + [ + 0.7662703504995123 + ], + [ + 0.9767351231527428 + ], + [ + 0.9424631082284728 + ], + [ + 0.866898864682116 + ], + [ + 0.7783625730994154 + ], + [ + 0.9376349250962784 + ], + [ + 0.9303020409693342 + ], + [ + 0.8287563928270861 + ], + [ + 0.8603115680426934 + ], + [ + 0.8114732228923959 + ], + [ + 0.9669758970781992 + ], + [ + 0.8105976841695943 + ], + [ + 0.7959269589012261 + ], + [ + 0.8302139037433156 + ], + [ + 0.986986590623621 + ], + [ + 0.751078143739283 + ], + [ + 0.9319865517177697 + ], + [ + 0.8782639830593114 + ], + [ + 0.8578369301463997 + ], + [ + 0.9189313114771297 + ], + [ + 0.9633417717529799 + ], + [ + 0.8343138912267726 + ], + [ + 0.8818418640888517 + ], + [ + 0.9736024773604863 + ], + [ + 0.8613042225346038 + ], + [ + 0.888024195606103 + ], + [ + 0.941782855514232 + ], + [ + 0.8404355723269926 + ], + [ + 0.8454461341922117 + ], + [ + 0.8945900568243629 + ], + [ + 0.8289908029078139 + ], + [ + 0.8273210174189225 + ], + [ + 0.8916495568044747 + ], + [ + 0.854433147885652 + ], + [ + 0.8505264662318455 + ], + [ + 0.8308969974341954 + ], + [ + 0.8899385122095016 + ], + [ + 0.9625463006926477 + ], + [ + 0.822879325367078 + ], + [ + 0.9328941076717102 + ], + [ + 0.9254546321964118 + ], + [ + 0.8536794132479856 + ], + [ + 0.9149236519168374 + ], + [ + 0.8988039859606616 + ], + [ + 0.9131258134142545 + ], + [ + 0.905813040144688 + ], + [ + 0.8670687350210408 + ], + [ + 0.9214606820661353 + ], + [ + 0.9408298439101216 + ], + [ + 0.9049472424037028 + ], + [ + 0.9020513700091627 + ], + [ + 0.9349510800595612 + ], + [ + 0.9123902818135722 + ], + [ + 0.914220218308289 + ], + [ + 0.8665729766490252 + ], + [ + 0.8246776811045251 + ], + [ + 0.8835807215942634 + ], + [ + 0.917454975120021 + ], + [ + 0.9496273615183636 + ], + [ + 0.8917539300260674 + ], + [ + 0.9646948055738331 + ], + [ + 0.8878652466688929 + ], + [ + 0.8283471179008514 + ], + [ + 0.9319439135020179 + ], + [ + 0.8611711731084291 + ], + [ + 0.8995765609336107 + ], + [ + 0.9025233427813701 + ], + [ + 0.9630284898620637 + ], + [ + 0.9104667843695463 + ], + [ + 0.871798757072994 + ], + [ + 0.900245383469288 + ] + ], + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "labels=%{label}
R^2 Spearman_sum=%{value}
parent=%{parent}
id=%{id}
R^2 Spearman=%{color}", + "ids": [ + "World/Latam/ARG/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Persian Gulf/AZE/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Asia/BGD/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Latam/BRA/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Pair/CHN/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/South Africa/CMR/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Latam/COL/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Latam/CRI/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/North Africa/DZA/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/North Africa/EGY/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/South Africa/GHA/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Asia/IDN/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Asia/IND/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Persian Gulf/IRQ/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/North Africa/MAR/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/South Africa/MOZ/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/South Africa/NGA/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Latam/PAN/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Latam/PER/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Asia/PHL/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/South Africa/SEN/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Asia/THA/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/North Africa/TUR/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Asia/VNM/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Persian Gulf/YEM/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/South Africa/ZAF/Internet/Access to clean fuels and technologies for cooking (% of population)", + "World/Persian Gulf/AZE/Environment/Access to electricity (% of population)", + "World/Asia/BGD/Environment/Access to electricity (% of population)", + "World/Latam/BRA/Environment/Access to electricity (% of population)", + "World/Latam/CHL/Environment/Access to electricity (% of population)", + "World/Pair/CHN/Environment/Access to electricity (% of population)", + "World/South Africa/CMR/Environment/Access to electricity (% of population)", + "World/Latam/COL/Environment/Access to electricity (% of population)", + "World/Latam/CRI/Environment/Access to electricity (% of population)", + "World/North Africa/EGY/Environment/Access to electricity (% of population)", + "World/South Africa/GHA/Environment/Access to electricity (% of population)", + "World/Asia/IDN/Environment/Access to electricity (% of population)", + "World/Asia/IND/Environment/Access to electricity (% of population)", + "World/Persian Gulf/IRQ/Environment/Access to electricity (% of population)", + "World/South Africa/LBR/Environment/Access to electricity (% of population)", + "World/North Africa/MAR/Environment/Access to electricity (% of population)", + "World/Latam/MEX/Environment/Access to electricity (% of population)", + "World/South Africa/MOZ/Environment/Access to electricity (% of population)", + "World/South Africa/NGA/Environment/Access to electricity (% of population)", + "World/Latam/PAN/Environment/Access to electricity (% of population)", + "World/Latam/PER/Environment/Access to electricity (% of population)", + "World/Asia/PHL/Environment/Access to electricity (% of population)", + "World/South Africa/SEN/Environment/Access to electricity (% of population)", + "World/Asia/THA/Environment/Access to electricity (% of population)", + "World/Asia/VNM/Environment/Access to electricity (% of population)", + "World/Persian Gulf/YEM/Environment/Access to electricity (% of population)", + "World/South Africa/ZAF/Environment/Access to electricity (% of population)", + "World/Persian Gulf/ARE/Economy/Adjusted net national income (current US$)", + "World/Latam/ARG/Economy/Adjusted net national income (current US$)", + "World/Europe/AUT/Economy/Adjusted net national income (current US$)", + "World/Persian Gulf/AZE/Economy/Adjusted net national income (current US$)", + "World/Asia/BGD/Economy/Adjusted net national income (current US$)", + "World/Latam/BRA/Economy/Adjusted net national income (current US$)", + "World/Latam/CHL/Economy/Adjusted net national income (current US$)", + "World/Pair/CHN/Economy/Adjusted net national income (current US$)", + "World/South Africa/CMR/Economy/Adjusted net national income (current US$)", + "World/Latam/COL/Economy/Adjusted net national income (current US$)", + "World/Latam/CRI/Economy/Adjusted net national income (current US$)", + "World/Europe/DEU/Economy/Adjusted net national income (current US$)", + "World/North Africa/DZA/Economy/Adjusted net national income (current US$)", + "World/North Africa/EGY/Economy/Adjusted net national income (current US$)", + "World/Europe/ESP/Economy/Adjusted net national income (current US$)", + "World/Europe/FRA/Economy/Adjusted net national income (current US$)", + "World/Europe/GBR/Economy/Adjusted net national income (current US$)", + "World/South Africa/GHA/Economy/Adjusted net national income (current US$)", + "World/Europe/HRV/Economy/Adjusted net national income (current US$)", + "World/Asia/IDN/Economy/Adjusted net national income (current US$)", + "World/Asia/IND/Economy/Adjusted net national income (current US$)", + "World/North Africa/ISR/Economy/Adjusted net national income (current US$)", + "World/Asia/KOR/Economy/Adjusted net national income (current US$)", + "World/South Africa/LBR/Economy/Adjusted net national income (current US$)", + "World/North Africa/MAR/Economy/Adjusted net national income (current US$)", + "World/Latam/MEX/Economy/Adjusted net national income (current US$)", + "World/South Africa/MOZ/Economy/Adjusted net national income (current US$)", + "World/South Africa/NGA/Economy/Adjusted net national income (current US$)", + "World/Europe/NLD/Economy/Adjusted net national income (current US$)", + "World/Persian Gulf/OMN/Economy/Adjusted net national income (current US$)", + "World/Latam/PAN/Economy/Adjusted net national income (current US$)", + "World/Latam/PER/Economy/Adjusted net national income (current US$)", + "World/Asia/PHL/Economy/Adjusted net national income (current US$)", + "World/Europe/POL/Economy/Adjusted net national income (current US$)", + "World/Persian Gulf/QAT/Economy/Adjusted net national income (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted net national income (current US$)", + "World/South Africa/SEN/Economy/Adjusted net national income (current US$)", + "World/Europe/SWE/Economy/Adjusted net national income (current US$)", + "World/Asia/THA/Economy/Adjusted net national income (current US$)", + "World/North Africa/TUR/Economy/Adjusted net national income (current US$)", + "World/Pair/USA/Economy/Adjusted net national income (current US$)", + "World/Latam/VEN/Economy/Adjusted net national income (current US$)", + "World/Asia/VNM/Economy/Adjusted net national income (current US$)", + "World/Persian Gulf/YEM/Economy/Adjusted net national income (current US$)", + "World/South Africa/ZAF/Economy/Adjusted net national income (current US$)", + "World/Latam/ARG/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/AUT/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/AZE/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/BGD/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/BRA/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/CHL/Economy/Adjusted net national income per capita (current US$)", + "World/Pair/CHN/Economy/Adjusted net national income per capita (current US$)", + "World/South Africa/CMR/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/COL/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/CRI/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/DEU/Economy/Adjusted net national income per capita (current US$)", + "World/North Africa/DZA/Economy/Adjusted net national income per capita (current US$)", + "World/North Africa/EGY/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/ESP/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/FRA/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/GBR/Economy/Adjusted net national income per capita (current US$)", + "World/South Africa/GHA/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/HRV/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/IDN/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/IND/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/IRQ/Economy/Adjusted net national income per capita (current US$)", + "World/North Africa/ISR/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/KOR/Economy/Adjusted net national income per capita (current US$)", + "World/North Africa/MAR/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/MEX/Economy/Adjusted net national income per capita (current US$)", + "World/South Africa/MOZ/Economy/Adjusted net national income per capita (current US$)", + "World/South Africa/NGA/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/NLD/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/OMN/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/PAN/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/PER/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/PHL/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/POL/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/QAT/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted net national income per capita (current US$)", + "World/South Africa/SEN/Economy/Adjusted net national income per capita (current US$)", + "World/Europe/SWE/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/THA/Economy/Adjusted net national income per capita (current US$)", + "World/North Africa/TUR/Economy/Adjusted net national income per capita (current US$)", + "World/Pair/USA/Economy/Adjusted net national income per capita (current US$)", + "World/Latam/VEN/Economy/Adjusted net national income per capita (current US$)", + "World/Asia/VNM/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/YEM/Economy/Adjusted net national income per capita (current US$)", + "World/South Africa/ZAF/Economy/Adjusted net national income per capita (current US$)", + "World/Persian Gulf/ARE/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/ARG/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Europe/AUT/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Persian Gulf/AZE/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/BGD/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/BRA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/CHL/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Pair/CHN/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/CMR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/COL/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/CRI/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Europe/DEU/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/North Africa/DZA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/North Africa/EGY/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Europe/FRA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Europe/GBR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/GHA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/IDN/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/IND/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/North Africa/ISR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/KOR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/LBR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/North Africa/MAR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/MEX/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/MOZ/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/NGA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Europe/NLD/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Persian Gulf/OMN/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/PAN/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/PER/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/PHL/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Europe/POL/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Persian Gulf/QAT/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/SEN/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/THA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/North Africa/TUR/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Pair/USA/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Latam/VEN/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Asia/VNM/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Persian Gulf/YEM/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/South Africa/ZAF/Economy/Adjusted savings: carbon dioxide damage (current US$)", + "World/Persian Gulf/ARE/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/ARG/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/AUT/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Persian Gulf/AZE/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/BGD/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/BRA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/CHL/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Pair/CHN/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/CMR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/COL/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/CRI/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/DEU/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/North Africa/DZA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/North Africa/EGY/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/ESP/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/FRA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/GBR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/GHA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/GRC/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/HRV/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/IDN/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/IND/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/North Africa/ISR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/KOR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/LBR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/North Africa/MAR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/MEX/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/MOZ/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/NGA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/NLD/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Persian Gulf/OMN/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/PAN/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/PER/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/PHL/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/POL/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Persian Gulf/QAT/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/SEN/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Europe/SWE/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/THA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/North Africa/TUR/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Pair/USA/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/VEN/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Asia/VNM/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Persian Gulf/YEM/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/South Africa/ZAF/Economy/Adjusted savings: consumption of fixed capital (current US$)", + "World/Latam/ARG/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/AUT/Economy/Adjusted savings: education expenditure (current US$)", + "World/Persian Gulf/AZE/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/BGD/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/BRA/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/CHL/Economy/Adjusted savings: education expenditure (current US$)", + "World/Pair/CHN/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/CMR/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/COL/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/CRI/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/DEU/Economy/Adjusted savings: education expenditure (current US$)", + "World/North Africa/DZA/Economy/Adjusted savings: education expenditure (current US$)", + "World/North Africa/EGY/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/ESP/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/FRA/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/GBR/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/GHA/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/HRV/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/IDN/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/IND/Economy/Adjusted savings: education expenditure (current US$)", + "World/North Africa/ISR/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/KOR/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/LBR/Economy/Adjusted savings: education expenditure (current US$)", + "World/North Africa/MAR/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/MEX/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/MOZ/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/NGA/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/NLD/Economy/Adjusted savings: education expenditure (current US$)", + "World/Persian Gulf/OMN/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/PAN/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/PER/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/PHL/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/POL/Economy/Adjusted savings: education expenditure (current US$)", + "World/Persian Gulf/QAT/Economy/Adjusted savings: education expenditure (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/SEN/Economy/Adjusted savings: education expenditure (current US$)", + "World/Europe/SWE/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/THA/Economy/Adjusted savings: education expenditure (current US$)", + "World/North Africa/TUR/Economy/Adjusted savings: education expenditure (current US$)", + "World/Pair/USA/Economy/Adjusted savings: education expenditure (current US$)", + "World/Latam/VEN/Economy/Adjusted savings: education expenditure (current US$)", + "World/Asia/VNM/Economy/Adjusted savings: education expenditure (current US$)", + "World/Persian Gulf/YEM/Economy/Adjusted savings: education expenditure (current US$)", + "World/South Africa/ZAF/Economy/Adjusted savings: education expenditure (current US$)", + "World/Persian Gulf/AZE/Economy/Adjusted savings: net national savings (current US$)", + "World/Asia/BGD/Economy/Adjusted savings: net national savings (current US$)", + "World/Latam/CHL/Economy/Adjusted savings: net national savings (current US$)", + "World/Pair/CHN/Economy/Adjusted savings: net national savings (current US$)", + "World/Latam/CRI/Economy/Adjusted savings: net national savings (current US$)", + "World/Europe/DEU/Economy/Adjusted savings: net national savings (current US$)", + "World/North Africa/DZA/Economy/Adjusted savings: net national savings (current US$)", + "World/Europe/GRC/Economy/Adjusted savings: net national savings (current US$)", + "World/Asia/IND/Economy/Adjusted savings: net national savings (current US$)", + "World/North Africa/ISR/Economy/Adjusted savings: net national savings (current US$)", + "World/Asia/KOR/Economy/Adjusted savings: net national savings (current US$)", + "World/South Africa/LBR/Economy/Adjusted savings: net national savings (current US$)", + "World/North Africa/MAR/Economy/Adjusted savings: net national savings (current US$)", + "World/Europe/NLD/Economy/Adjusted savings: net national savings (current US$)", + "World/Latam/PAN/Economy/Adjusted savings: net national savings (current US$)", + "World/Latam/PER/Economy/Adjusted savings: net national savings (current US$)", + "World/Asia/PHL/Economy/Adjusted savings: net national savings (current US$)", + "World/Europe/POL/Economy/Adjusted savings: net national savings (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted savings: net national savings (current US$)", + "World/South Africa/SEN/Economy/Adjusted savings: net national savings (current US$)", + "World/Asia/THA/Economy/Adjusted savings: net national savings (current US$)", + "World/North Africa/TUR/Economy/Adjusted savings: net national savings (current US$)", + "World/Asia/VNM/Economy/Adjusted savings: net national savings (current US$)", + "World/Persian Gulf/ARE/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Europe/AUT/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/BGD/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Latam/CHL/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Pair/CHN/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/South Africa/CMR/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Latam/COL/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Latam/CRI/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/North Africa/EGY/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Europe/FRA/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Europe/GBR/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/South Africa/GHA/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Europe/GRC/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/IDN/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/IND/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/North Africa/ISR/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/KOR/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/North Africa/MAR/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/South Africa/MOZ/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/South Africa/NGA/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Latam/PAN/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/PHL/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Persian Gulf/QAT/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Persian Gulf/SAU/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/THA/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/North Africa/TUR/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Latam/VEN/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Asia/VNM/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Persian Gulf/YEM/Economy/Adjusted savings: particulate emission damage (current US$)", + "World/Persian Gulf/ARE/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/ARG/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/AUT/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Persian Gulf/AZE/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Asia/BGD/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/BRA/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/CHL/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Pair/CHN/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/South Africa/CMR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/COL/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/CRI/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/DEU/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/North Africa/EGY/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/GBR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/South Africa/GHA/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/GRC/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/HRV/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Asia/IND/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/North Africa/ISR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Asia/KOR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/South Africa/LBR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/North Africa/MAR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/MEX/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/South Africa/MOZ/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/South Africa/NGA/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/NLD/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Persian Gulf/OMN/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/PAN/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/PER/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Asia/PHL/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/POL/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Persian Gulf/QAT/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Persian Gulf/SAU/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/South Africa/SEN/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/SWE/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/North Africa/TUR/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Pair/USA/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Latam/VEN/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Asia/VNM/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Persian Gulf/YEM/Demography/Adolescent fertility rate (births per 1,000 women ages 15-19)", + "World/Europe/AUT/Agriculture/Agricultural land (% of land area)", + "World/Persian Gulf/AZE/Agriculture/Agricultural land (% of land area)", + "World/Asia/BGD/Agriculture/Agricultural land (% of land area)", + "World/Latam/BRA/Agriculture/Agricultural land (% of land area)", + "World/Pair/CHN/Agriculture/Agricultural land (% of land area)", + "World/South Africa/CMR/Agriculture/Agricultural land (% of land area)", + "World/Latam/CRI/Agriculture/Agricultural land (% of land area)", + "World/Europe/DEU/Agriculture/Agricultural land (% of land area)", + "World/North Africa/DZA/Agriculture/Agricultural land (% of land area)", + "World/North Africa/EGY/Agriculture/Agricultural land (% of land area)", + "World/Europe/ESP/Agriculture/Agricultural land (% of land area)", + "World/Europe/FRA/Agriculture/Agricultural land (% of land area)", + "World/Europe/GRC/Agriculture/Agricultural land (% of land area)", + "World/Asia/IDN/Agriculture/Agricultural land (% of land area)", + "World/Asia/IND/Agriculture/Agricultural land (% of land area)", + "World/North Africa/ISR/Agriculture/Agricultural land (% of land area)", + "World/Asia/KOR/Agriculture/Agricultural land (% of land area)", + "World/South Africa/LBR/Agriculture/Agricultural land (% of land area)", + "World/South Africa/MOZ/Agriculture/Agricultural land (% of land area)", + "World/South Africa/NGA/Agriculture/Agricultural land (% of land area)", + "World/Europe/NLD/Agriculture/Agricultural land (% of land area)", + "World/Latam/PAN/Agriculture/Agricultural land (% of land area)", + "World/Asia/PHL/Agriculture/Agricultural land (% of land area)", + "World/Europe/POL/Agriculture/Agricultural land (% of land area)", + "World/Europe/SWE/Agriculture/Agricultural land (% of land area)", + "World/North Africa/TUR/Agriculture/Agricultural land (% of land area)", + "World/Pair/USA/Agriculture/Agricultural land (% of land area)", + "World/Latam/VEN/Agriculture/Agricultural land (% of land area)", + "World/Asia/VNM/Agriculture/Agricultural land (% of land area)", + "World/Persian Gulf/YEM/Agriculture/Agricultural land (% of land area)", + "World/Persian Gulf/ARE/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/ARG/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/AUT/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/AZE/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/BGD/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/CHL/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Pair/CHN/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/CRI/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/DZA/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/FRA/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/GHA/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/HRV/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IDN/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IND/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/ISR/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/LBR/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/MAR/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/MEX/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/NGA/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/OMN/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/PER/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/PHL/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/QAT/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/SAU/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/SWE/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/TUR/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/VNM/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/YEM/Agriculture/Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/ARE/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/AZE/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/BGD/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/BRA/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/CRI/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/DZA/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/GHA/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IDN/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IND/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/ISR/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/LBR/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/MAR/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/NGA/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/NLD/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/OMN/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/PER/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/PHL/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/QAT/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Pair/USA/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/VNM/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/YEM/Agriculture/Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/ARG/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Europe/AUT/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Latam/BRA/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Latam/CHL/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Latam/COL/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/North Africa/DZA/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/North Africa/EGY/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Europe/GRC/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Europe/HRV/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Asia/IDN/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Asia/KOR/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/North Africa/MAR/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Latam/MEX/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Asia/PHL/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Europe/POL/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Asia/THA/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/North Africa/TUR/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Pair/USA/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Latam/VEN/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Asia/VNM/Agriculture/Agricultural raw materials imports (% of merchandise imports)", + "World/Asia/BGD/Agriculture/Aquaculture production (metric tons)", + "World/Latam/BRA/Agriculture/Aquaculture production (metric tons)", + "World/Latam/CHL/Agriculture/Aquaculture production (metric tons)", + "World/Pair/CHN/Agriculture/Aquaculture production (metric tons)", + "World/South Africa/CMR/Agriculture/Aquaculture production (metric tons)", + "World/Latam/COL/Agriculture/Aquaculture production (metric tons)", + "World/Latam/CRI/Agriculture/Aquaculture production (metric tons)", + "World/North Africa/EGY/Agriculture/Aquaculture production (metric tons)", + "World/Europe/FRA/Agriculture/Aquaculture production (metric tons)", + "World/South Africa/GHA/Agriculture/Aquaculture production (metric tons)", + "World/Asia/IDN/Agriculture/Aquaculture production (metric tons)", + "World/Asia/IND/Agriculture/Aquaculture production (metric tons)", + "World/Asia/KOR/Agriculture/Aquaculture production (metric tons)", + "World/Latam/MEX/Agriculture/Aquaculture production (metric tons)", + "World/South Africa/NGA/Agriculture/Aquaculture production (metric tons)", + "World/Latam/PER/Agriculture/Aquaculture production (metric tons)", + "World/Asia/PHL/Agriculture/Aquaculture production (metric tons)", + "World/Europe/POL/Agriculture/Aquaculture production (metric tons)", + "World/Persian Gulf/SAU/Agriculture/Aquaculture production (metric tons)", + "World/North Africa/TUR/Agriculture/Aquaculture production (metric tons)", + "World/Pair/USA/Agriculture/Aquaculture production (metric tons)", + "World/Latam/VEN/Agriculture/Aquaculture production (metric tons)", + "World/Asia/VNM/Agriculture/Aquaculture production (metric tons)", + "World/South Africa/ZAF/Agriculture/Aquaculture production (metric tons)", + "World/Europe/AUT/Agriculture/Arable land (% of land area)", + "World/Persian Gulf/AZE/Agriculture/Arable land (% of land area)", + "World/Asia/BGD/Agriculture/Arable land (% of land area)", + "World/Latam/BRA/Agriculture/Arable land (% of land area)", + "World/Latam/CHL/Agriculture/Arable land (% of land area)", + "World/Pair/CHN/Agriculture/Arable land (% of land area)", + "World/South Africa/CMR/Agriculture/Arable land (% of land area)", + "World/Latam/COL/Agriculture/Arable land (% of land area)", + "World/Latam/CRI/Agriculture/Arable land (% of land area)", + "World/South Africa/GHA/Agriculture/Arable land (% of land area)", + "World/Europe/GRC/Agriculture/Arable land (% of land area)", + "World/Asia/IDN/Agriculture/Arable land (% of land area)", + "World/Asia/IND/Agriculture/Arable land (% of land area)", + "World/Asia/KOR/Agriculture/Arable land (% of land area)", + "World/South Africa/LBR/Agriculture/Arable land (% of land area)", + "World/North Africa/MAR/Agriculture/Arable land (% of land area)", + "World/South Africa/MOZ/Agriculture/Arable land (% of land area)", + "World/Latam/PAN/Agriculture/Arable land (% of land area)", + "World/Europe/POL/Agriculture/Arable land (% of land area)", + "World/Europe/SWE/Agriculture/Arable land (% of land area)", + "World/North Africa/TUR/Agriculture/Arable land (% of land area)", + "World/Pair/USA/Agriculture/Arable land (% of land area)", + "World/Persian Gulf/YEM/Agriculture/Arable land (% of land area)", + "World/Persian Gulf/ARE/Agriculture/Arable land (hectares per person)", + "World/Latam/ARG/Agriculture/Arable land (hectares per person)", + "World/Europe/AUT/Agriculture/Arable land (hectares per person)", + "World/Persian Gulf/AZE/Agriculture/Arable land (hectares per person)", + "World/Asia/BGD/Agriculture/Arable land (hectares per person)", + "World/Latam/CHL/Agriculture/Arable land (hectares per person)", + "World/Pair/CHN/Agriculture/Arable land (hectares per person)", + "World/South Africa/CMR/Agriculture/Arable land (hectares per person)", + "World/Latam/COL/Agriculture/Arable land (hectares per person)", + "World/North Africa/DZA/Agriculture/Arable land (hectares per person)", + "World/North Africa/EGY/Agriculture/Arable land (hectares per person)", + "World/Europe/ESP/Agriculture/Arable land (hectares per person)", + "World/Europe/FRA/Agriculture/Arable land (hectares per person)", + "World/South Africa/GHA/Agriculture/Arable land (hectares per person)", + "World/Europe/GRC/Agriculture/Arable land (hectares per person)", + "World/Asia/IND/Agriculture/Arable land (hectares per person)", + "World/Asia/KOR/Agriculture/Arable land (hectares per person)", + "World/South Africa/LBR/Agriculture/Arable land (hectares per person)", + "World/North Africa/MAR/Agriculture/Arable land (hectares per person)", + "World/Latam/MEX/Agriculture/Arable land (hectares per person)", + "World/South Africa/MOZ/Agriculture/Arable land (hectares per person)", + "World/South Africa/NGA/Agriculture/Arable land (hectares per person)", + "World/Persian Gulf/OMN/Agriculture/Arable land (hectares per person)", + "World/Latam/PAN/Agriculture/Arable land (hectares per person)", + "World/Latam/PER/Agriculture/Arable land (hectares per person)", + "World/Asia/PHL/Agriculture/Arable land (hectares per person)", + "World/Europe/POL/Agriculture/Arable land (hectares per person)", + "World/Persian Gulf/QAT/Agriculture/Arable land (hectares per person)", + "World/Persian Gulf/SAU/Agriculture/Arable land (hectares per person)", + "World/Europe/SWE/Agriculture/Arable land (hectares per person)", + "World/North Africa/TUR/Agriculture/Arable land (hectares per person)", + "World/Pair/USA/Agriculture/Arable land (hectares per person)", + "World/Latam/VEN/Agriculture/Arable land (hectares per person)", + "World/Persian Gulf/YEM/Agriculture/Arable land (hectares per person)", + "World/South Africa/ZAF/Agriculture/Arable land (hectares per person)", + "World/Europe/AUT/Agriculture/Arable land (hectares)", + "World/Persian Gulf/AZE/Agriculture/Arable land (hectares)", + "World/Asia/BGD/Agriculture/Arable land (hectares)", + "World/Latam/BRA/Agriculture/Arable land (hectares)", + "World/Latam/CHL/Agriculture/Arable land (hectares)", + "World/Pair/CHN/Agriculture/Arable land (hectares)", + "World/South Africa/CMR/Agriculture/Arable land (hectares)", + "World/Latam/COL/Agriculture/Arable land (hectares)", + "World/Latam/CRI/Agriculture/Arable land (hectares)", + "World/South Africa/GHA/Agriculture/Arable land (hectares)", + "World/Europe/GRC/Agriculture/Arable land (hectares)", + "World/Asia/IDN/Agriculture/Arable land (hectares)", + "World/Asia/IND/Agriculture/Arable land (hectares)", + "World/Asia/KOR/Agriculture/Arable land (hectares)", + "World/South Africa/LBR/Agriculture/Arable land (hectares)", + "World/North Africa/MAR/Agriculture/Arable land (hectares)", + "World/South Africa/MOZ/Agriculture/Arable land (hectares)", + "World/Latam/PAN/Agriculture/Arable land (hectares)", + "World/Europe/POL/Agriculture/Arable land (hectares)", + "World/Europe/SWE/Agriculture/Arable land (hectares)", + "World/North Africa/TUR/Agriculture/Arable land (hectares)", + "World/Pair/USA/Agriculture/Arable land (hectares)", + "World/Persian Gulf/YEM/Agriculture/Arable land (hectares)", + "World/Persian Gulf/ARE/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/ARG/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Persian Gulf/AZE/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Asia/BGD/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Pair/CHN/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/CMR/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/COL/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/CRI/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Europe/DEU/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/North Africa/DZA/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/North Africa/EGY/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Europe/FRA/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/GHA/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Europe/HRV/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Asia/IDN/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Asia/IND/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/North Africa/ISR/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/LBR/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/North Africa/MAR/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/MEX/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/MOZ/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/NGA/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/PAN/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/PER/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Asia/PHL/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Europe/POL/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Persian Gulf/SAU/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/SEN/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Asia/THA/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/North Africa/TUR/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Pair/USA/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Latam/VEN/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Asia/VNM/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Persian Gulf/YEM/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/South Africa/ZAF/Industry/Automated teller machines (ATMs) (per 100,000 adults)", + "World/Persian Gulf/ARE/Mortality/Births attended by skilled health staff (% of total)", + "World/Asia/BGD/Mortality/Births attended by skilled health staff (% of total)", + "World/Pair/CHN/Mortality/Births attended by skilled health staff (% of total)", + "World/Latam/CRI/Mortality/Births attended by skilled health staff (% of total)", + "World/North Africa/DZA/Mortality/Births attended by skilled health staff (% of total)", + "World/North Africa/EGY/Mortality/Births attended by skilled health staff (% of total)", + "World/South Africa/GHA/Mortality/Births attended by skilled health staff (% of total)", + "World/Asia/IDN/Mortality/Births attended by skilled health staff (% of total)", + "World/Asia/IND/Mortality/Births attended by skilled health staff (% of total)", + "World/North Africa/MAR/Mortality/Births attended by skilled health staff (% of total)", + "World/Latam/MEX/Mortality/Births attended by skilled health staff (% of total)", + "World/South Africa/MOZ/Mortality/Births attended by skilled health staff (% of total)", + "World/Latam/PER/Mortality/Births attended by skilled health staff (% of total)", + "World/Asia/PHL/Mortality/Births attended by skilled health staff (% of total)", + "World/Persian Gulf/SAU/Mortality/Births attended by skilled health staff (% of total)", + "World/North Africa/TUR/Mortality/Births attended by skilled health staff (% of total)", + "World/Pair/USA/Mortality/Births attended by skilled health staff (% of total)", + "World/Asia/VNM/Mortality/Births attended by skilled health staff (% of total)", + "World/Persian Gulf/YEM/Mortality/Births attended by skilled health staff (% of total)", + "World/South Africa/ZAF/Mortality/Births attended by skilled health staff (% of total)", + "World/Persian Gulf/ARE/Economy/Broad money (% of GDP)", + "World/Latam/ARG/Economy/Broad money (% of GDP)", + "World/Persian Gulf/AZE/Economy/Broad money (% of GDP)", + "World/Asia/BGD/Economy/Broad money (% of GDP)", + "World/Latam/BRA/Economy/Broad money (% of GDP)", + "World/Pair/CHN/Economy/Broad money (% of GDP)", + "World/South Africa/CMR/Economy/Broad money (% of GDP)", + "World/North Africa/DZA/Economy/Broad money (% of GDP)", + "World/Europe/GBR/Economy/Broad money (% of GDP)", + "World/Europe/HRV/Economy/Broad money (% of GDP)", + "World/Asia/IND/Economy/Broad money (% of GDP)", + "World/North Africa/ISR/Economy/Broad money (% of GDP)", + "World/Asia/KOR/Economy/Broad money (% of GDP)", + "World/North Africa/MAR/Economy/Broad money (% of GDP)", + "World/Latam/MEX/Economy/Broad money (% of GDP)", + "World/South Africa/MOZ/Economy/Broad money (% of GDP)", + "World/Latam/PER/Economy/Broad money (% of GDP)", + "World/Asia/PHL/Economy/Broad money (% of GDP)", + "World/Europe/POL/Economy/Broad money (% of GDP)", + "World/Persian Gulf/QAT/Economy/Broad money (% of GDP)", + "World/South Africa/SEN/Economy/Broad money (% of GDP)", + "World/North Africa/TUR/Economy/Broad money (% of GDP)", + "World/Pair/USA/Economy/Broad money (% of GDP)", + "World/Latam/VEN/Economy/Broad money (% of GDP)", + "World/Asia/VNM/Economy/Broad money (% of GDP)", + "World/Europe/AUT/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Persian Gulf/AZE/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Asia/BGD/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Pair/CHN/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Latam/CRI/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/DEU/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/North Africa/EGY/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/FRA/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/GBR/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/GRC/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/HRV/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Asia/IND/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/North Africa/ISR/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Asia/KOR/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Latam/MEX/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/South Africa/NGA/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/NLD/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Persian Gulf/OMN/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Latam/PAN/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Asia/PHL/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/POL/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Persian Gulf/SAU/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/SWE/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Asia/THA/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Pair/USA/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Asia/VNM/Environment/CO2 emissions (kg per 2015 US$ of GDP)", + "World/Europe/AUT/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Persian Gulf/AZE/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Asia/BGD/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Pair/CHN/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Latam/CRI/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/DEU/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/North Africa/EGY/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/FRA/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/GBR/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/GRC/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/HRV/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Asia/IND/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/North Africa/ISR/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Asia/KOR/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Latam/MEX/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/South Africa/NGA/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/NLD/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Persian Gulf/OMN/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Latam/PAN/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Asia/PHL/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/POL/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Persian Gulf/SAU/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Europe/SWE/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Asia/THA/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Pair/USA/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Asia/VNM/Environment/CO2 emissions (kg per 2017 PPP $ of GDP)", + "World/Latam/ARG/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/AUT/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Persian Gulf/AZE/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Asia/BGD/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/BRA/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/CHL/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Pair/CHN/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/COL/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/CRI/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/DEU/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/North Africa/EGY/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/ESP/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/FRA/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/GBR/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/GRC/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/HRV/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Asia/IDN/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Asia/IND/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/North Africa/ISR/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Asia/KOR/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/North Africa/MAR/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/MEX/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/South Africa/NGA/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/NLD/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Persian Gulf/OMN/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/PAN/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Latam/PER/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/POL/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Europe/SWE/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Asia/THA/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/North Africa/TUR/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Pair/USA/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/South Africa/ZAF/Environment/CO2 emissions (kg per PPP $ of GDP)", + "World/Persian Gulf/ARE/Environment/CO2 emissions (kt)", + "World/Latam/ARG/Environment/CO2 emissions (kt)", + "World/Asia/BGD/Environment/CO2 emissions (kt)", + "World/Latam/BRA/Environment/CO2 emissions (kt)", + "World/Latam/CHL/Environment/CO2 emissions (kt)", + "World/Pair/CHN/Environment/CO2 emissions (kt)", + "World/Latam/COL/Environment/CO2 emissions (kt)", + "World/Latam/CRI/Environment/CO2 emissions (kt)", + "World/Europe/DEU/Environment/CO2 emissions (kt)", + "World/North Africa/DZA/Environment/CO2 emissions (kt)", + "World/North Africa/EGY/Environment/CO2 emissions (kt)", + "World/Europe/GBR/Environment/CO2 emissions (kt)", + "World/South Africa/GHA/Environment/CO2 emissions (kt)", + "World/Asia/IDN/Environment/CO2 emissions (kt)", + "World/Asia/IND/Environment/CO2 emissions (kt)", + "World/Asia/KOR/Environment/CO2 emissions (kt)", + "World/South Africa/LBR/Environment/CO2 emissions (kt)", + "World/North Africa/MAR/Environment/CO2 emissions (kt)", + "World/Latam/MEX/Environment/CO2 emissions (kt)", + "World/South Africa/MOZ/Environment/CO2 emissions (kt)", + "World/South Africa/NGA/Environment/CO2 emissions (kt)", + "World/Persian Gulf/OMN/Environment/CO2 emissions (kt)", + "World/Latam/PAN/Environment/CO2 emissions (kt)", + "World/Latam/PER/Environment/CO2 emissions (kt)", + "World/Asia/PHL/Environment/CO2 emissions (kt)", + "World/Persian Gulf/QAT/Environment/CO2 emissions (kt)", + "World/Persian Gulf/SAU/Environment/CO2 emissions (kt)", + "World/South Africa/SEN/Environment/CO2 emissions (kt)", + "World/Europe/SWE/Environment/CO2 emissions (kt)", + "World/Asia/THA/Environment/CO2 emissions (kt)", + "World/North Africa/TUR/Environment/CO2 emissions (kt)", + "World/Asia/VNM/Environment/CO2 emissions (kt)", + "World/South Africa/ZAF/Environment/CO2 emissions (kt)", + "World/Asia/BGD/Environment/CO2 emissions (metric tons per capita)", + "World/Latam/BRA/Environment/CO2 emissions (metric tons per capita)", + "World/Latam/CHL/Environment/CO2 emissions (metric tons per capita)", + "World/Pair/CHN/Environment/CO2 emissions (metric tons per capita)", + "World/Latam/CRI/Environment/CO2 emissions (metric tons per capita)", + "World/Europe/DEU/Environment/CO2 emissions (metric tons per capita)", + "World/North Africa/DZA/Environment/CO2 emissions (metric tons per capita)", + "World/North Africa/EGY/Environment/CO2 emissions (metric tons per capita)", + "World/Europe/GBR/Environment/CO2 emissions (metric tons per capita)", + "World/South Africa/GHA/Environment/CO2 emissions (metric tons per capita)", + "World/Europe/GRC/Environment/CO2 emissions (metric tons per capita)", + "World/Asia/IDN/Environment/CO2 emissions (metric tons per capita)", + "World/Asia/IND/Environment/CO2 emissions (metric tons per capita)", + "World/North Africa/ISR/Environment/CO2 emissions (metric tons per capita)", + "World/Asia/KOR/Environment/CO2 emissions (metric tons per capita)", + "World/North Africa/MAR/Environment/CO2 emissions (metric tons per capita)", + "World/South Africa/MOZ/Environment/CO2 emissions (metric tons per capita)", + "World/Europe/NLD/Environment/CO2 emissions (metric tons per capita)", + "World/Persian Gulf/OMN/Environment/CO2 emissions (metric tons per capita)", + "World/Latam/PAN/Environment/CO2 emissions (metric tons per capita)", + "World/Latam/PER/Environment/CO2 emissions (metric tons per capita)", + "World/Asia/PHL/Environment/CO2 emissions (metric tons per capita)", + "World/Persian Gulf/SAU/Environment/CO2 emissions (metric tons per capita)", + "World/South Africa/SEN/Environment/CO2 emissions (metric tons per capita)", + "World/Europe/SWE/Environment/CO2 emissions (metric tons per capita)", + "World/Asia/THA/Environment/CO2 emissions (metric tons per capita)", + "World/North Africa/TUR/Environment/CO2 emissions (metric tons per capita)", + "World/Pair/USA/Environment/CO2 emissions (metric tons per capita)", + "World/Asia/VNM/Environment/CO2 emissions (metric tons per capita)", + "World/Persian Gulf/ARE/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Latam/ARG/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Persian Gulf/AZE/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Asia/BGD/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Latam/BRA/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Pair/CHN/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Latam/COL/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/North Africa/DZA/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/North Africa/EGY/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Europe/ESP/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Asia/IND/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/North Africa/ISR/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Asia/KOR/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/North Africa/MAR/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Latam/MEX/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/South Africa/NGA/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Europe/NLD/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Persian Gulf/OMN/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Latam/PER/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Europe/POL/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Persian Gulf/QAT/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Persian Gulf/SAU/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Asia/THA/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/North Africa/TUR/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Pair/USA/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Asia/VNM/Environment/CO2 emissions from gaseous fuel consumption (kt)", + "World/Persian Gulf/ARE/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Asia/BGD/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Latam/BRA/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Latam/CHL/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Pair/CHN/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/South Africa/CMR/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Latam/CRI/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/North Africa/DZA/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/North Africa/EGY/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Europe/GBR/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/South Africa/GHA/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Asia/IDN/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Asia/IND/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/North Africa/MAR/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/South Africa/MOZ/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Europe/NLD/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Persian Gulf/OMN/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Latam/PAN/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Latam/PER/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Asia/PHL/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Europe/POL/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Persian Gulf/SAU/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Asia/THA/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Asia/VNM/Environment/CO2 emissions from liquid fuel consumption (kt)", + "World/Persian Gulf/ARE/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Europe/AUT/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Asia/BGD/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Latam/BRA/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Latam/CHL/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Pair/CHN/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/South Africa/CMR/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Asia/IDN/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Asia/IND/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Asia/KOR/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/North Africa/MAR/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Latam/MEX/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/South Africa/NGA/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Persian Gulf/OMN/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Persian Gulf/QAT/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Persian Gulf/SAU/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/South Africa/SEN/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Asia/VNM/Environment/CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "World/Persian Gulf/ARE/Industry/Capture fisheries production (metric tons)", + "World/Persian Gulf/AZE/Industry/Capture fisheries production (metric tons)", + "World/Asia/BGD/Industry/Capture fisheries production (metric tons)", + "World/Latam/CHL/Industry/Capture fisheries production (metric tons)", + "World/South Africa/CMR/Industry/Capture fisheries production (metric tons)", + "World/Latam/CRI/Industry/Capture fisheries production (metric tons)", + "World/Europe/GRC/Industry/Capture fisheries production (metric tons)", + "World/Europe/HRV/Industry/Capture fisheries production (metric tons)", + "World/Asia/IDN/Industry/Capture fisheries production (metric tons)", + "World/Asia/IND/Industry/Capture fisheries production (metric tons)", + "World/North Africa/ISR/Industry/Capture fisheries production (metric tons)", + "World/North Africa/MAR/Industry/Capture fisheries production (metric tons)", + "World/South Africa/MOZ/Industry/Capture fisheries production (metric tons)", + "World/South Africa/NGA/Industry/Capture fisheries production (metric tons)", + "World/Persian Gulf/OMN/Industry/Capture fisheries production (metric tons)", + "World/Asia/PHL/Industry/Capture fisheries production (metric tons)", + "World/Persian Gulf/SAU/Industry/Capture fisheries production (metric tons)", + "World/Asia/THA/Industry/Capture fisheries production (metric tons)", + "World/Asia/VNM/Industry/Capture fisheries production (metric tons)", + "World/Asia/BGD/Agriculture/Cereal yield (kg per hectare)", + "World/Latam/BRA/Agriculture/Cereal yield (kg per hectare)", + "World/Latam/CHL/Agriculture/Cereal yield (kg per hectare)", + "World/Pair/CHN/Agriculture/Cereal yield (kg per hectare)", + "World/Latam/COL/Agriculture/Cereal yield (kg per hectare)", + "World/South Africa/GHA/Agriculture/Cereal yield (kg per hectare)", + "World/Asia/IDN/Agriculture/Cereal yield (kg per hectare)", + "World/Asia/IND/Agriculture/Cereal yield (kg per hectare)", + "World/North Africa/ISR/Agriculture/Cereal yield (kg per hectare)", + "World/Latam/MEX/Agriculture/Cereal yield (kg per hectare)", + "World/Latam/PAN/Agriculture/Cereal yield (kg per hectare)", + "World/Latam/PER/Agriculture/Cereal yield (kg per hectare)", + "World/Asia/PHL/Agriculture/Cereal yield (kg per hectare)", + "World/Persian Gulf/QAT/Agriculture/Cereal yield (kg per hectare)", + "World/Persian Gulf/SAU/Agriculture/Cereal yield (kg per hectare)", + "World/North Africa/TUR/Agriculture/Cereal yield (kg per hectare)", + "World/Pair/USA/Agriculture/Cereal yield (kg per hectare)", + "World/Asia/VNM/Agriculture/Cereal yield (kg per hectare)", + "World/Europe/AUT/Environment/Combustible renewables and waste (% of total energy)", + "World/Persian Gulf/AZE/Environment/Combustible renewables and waste (% of total energy)", + "World/Asia/BGD/Environment/Combustible renewables and waste (% of total energy)", + "World/Pair/CHN/Environment/Combustible renewables and waste (% of total energy)", + "World/Latam/COL/Environment/Combustible renewables and waste (% of total energy)", + "World/Europe/DEU/Environment/Combustible renewables and waste (% of total energy)", + "World/North Africa/DZA/Environment/Combustible renewables and waste (% of total energy)", + "World/Europe/GBR/Environment/Combustible renewables and waste (% of total energy)", + "World/South Africa/GHA/Environment/Combustible renewables and waste (% of total energy)", + "World/Asia/IDN/Environment/Combustible renewables and waste (% of total energy)", + "World/Asia/IND/Environment/Combustible renewables and waste (% of total energy)", + "World/Asia/KOR/Environment/Combustible renewables and waste (% of total energy)", + "World/North Africa/MAR/Environment/Combustible renewables and waste (% of total energy)", + "World/Latam/MEX/Environment/Combustible renewables and waste (% of total energy)", + "World/South Africa/MOZ/Environment/Combustible renewables and waste (% of total energy)", + "World/Europe/NLD/Environment/Combustible renewables and waste (% of total energy)", + "World/Latam/PAN/Environment/Combustible renewables and waste (% of total energy)", + "World/Latam/PER/Environment/Combustible renewables and waste (% of total energy)", + "World/Asia/PHL/Environment/Combustible renewables and waste (% of total energy)", + "World/Europe/POL/Environment/Combustible renewables and waste (% of total energy)", + "World/Persian Gulf/SAU/Environment/Combustible renewables and waste (% of total energy)", + "World/Europe/SWE/Environment/Combustible renewables and waste (% of total energy)", + "World/North Africa/TUR/Environment/Combustible renewables and waste (% of total energy)", + "World/Pair/USA/Environment/Combustible renewables and waste (% of total energy)", + "World/Asia/VNM/Environment/Combustible renewables and waste (% of total energy)", + "World/Persian Gulf/ARE/Economy/Commercial bank branches (per 100,000 adults)", + "World/Asia/BGD/Economy/Commercial bank branches (per 100,000 adults)", + "World/Pair/CHN/Economy/Commercial bank branches (per 100,000 adults)", + "World/South Africa/CMR/Economy/Commercial bank branches (per 100,000 adults)", + "World/Latam/CRI/Economy/Commercial bank branches (per 100,000 adults)", + "World/Europe/DEU/Economy/Commercial bank branches (per 100,000 adults)", + "World/North Africa/DZA/Economy/Commercial bank branches (per 100,000 adults)", + "World/North Africa/EGY/Economy/Commercial bank branches (per 100,000 adults)", + "World/Europe/FRA/Economy/Commercial bank branches (per 100,000 adults)", + "World/Europe/GBR/Economy/Commercial bank branches (per 100,000 adults)", + "World/South Africa/GHA/Economy/Commercial bank branches (per 100,000 adults)", + "World/Asia/IDN/Economy/Commercial bank branches (per 100,000 adults)", + "World/Asia/IND/Economy/Commercial bank branches (per 100,000 adults)", + "World/North Africa/ISR/Economy/Commercial bank branches (per 100,000 adults)", + "World/North Africa/MAR/Economy/Commercial bank branches (per 100,000 adults)", + "World/Latam/MEX/Economy/Commercial bank branches (per 100,000 adults)", + "World/South Africa/MOZ/Economy/Commercial bank branches (per 100,000 adults)", + "World/Europe/NLD/Economy/Commercial bank branches (per 100,000 adults)", + "World/Persian Gulf/OMN/Economy/Commercial bank branches (per 100,000 adults)", + "World/Europe/POL/Economy/Commercial bank branches (per 100,000 adults)", + "World/Persian Gulf/QAT/Economy/Commercial bank branches (per 100,000 adults)", + "World/South Africa/SEN/Economy/Commercial bank branches (per 100,000 adults)", + "World/North Africa/TUR/Economy/Commercial bank branches (per 100,000 adults)", + "World/Pair/USA/Economy/Commercial bank branches (per 100,000 adults)", + "World/Persian Gulf/YEM/Economy/Commercial bank branches (per 100,000 adults)", + "World/South Africa/ZAF/Economy/Commercial bank branches (per 100,000 adults)", + "World/Europe/AUT/Exports/Commercial service exports (current US$)", + "World/Persian Gulf/AZE/Exports/Commercial service exports (current US$)", + "World/Asia/BGD/Exports/Commercial service exports (current US$)", + "World/Latam/BRA/Exports/Commercial service exports (current US$)", + "World/Latam/CHL/Exports/Commercial service exports (current US$)", + "World/Pair/CHN/Exports/Commercial service exports (current US$)", + "World/South Africa/CMR/Exports/Commercial service exports (current US$)", + "World/Latam/COL/Exports/Commercial service exports (current US$)", + "World/Latam/CRI/Exports/Commercial service exports (current US$)", + "World/Europe/DEU/Exports/Commercial service exports (current US$)", + "World/North Africa/DZA/Exports/Commercial service exports (current US$)", + "World/Europe/ESP/Exports/Commercial service exports (current US$)", + "World/Europe/FRA/Exports/Commercial service exports (current US$)", + "World/Europe/GBR/Exports/Commercial service exports (current US$)", + "World/South Africa/GHA/Exports/Commercial service exports (current US$)", + "World/Europe/GRC/Exports/Commercial service exports (current US$)", + "World/Europe/HRV/Exports/Commercial service exports (current US$)", + "World/Asia/IDN/Exports/Commercial service exports (current US$)", + "World/Asia/IND/Exports/Commercial service exports (current US$)", + "World/North Africa/ISR/Exports/Commercial service exports (current US$)", + "World/Asia/KOR/Exports/Commercial service exports (current US$)", + "World/North Africa/MAR/Exports/Commercial service exports (current US$)", + "World/Europe/NLD/Exports/Commercial service exports (current US$)", + "World/Persian Gulf/OMN/Exports/Commercial service exports (current US$)", + "World/Latam/PAN/Exports/Commercial service exports (current US$)", + "World/Latam/PER/Exports/Commercial service exports (current US$)", + "World/Asia/PHL/Exports/Commercial service exports (current US$)", + "World/Europe/POL/Exports/Commercial service exports (current US$)", + "World/Persian Gulf/QAT/Exports/Commercial service exports (current US$)", + "World/South Africa/SEN/Exports/Commercial service exports (current US$)", + "World/Europe/SWE/Exports/Commercial service exports (current US$)", + "World/Asia/THA/Exports/Commercial service exports (current US$)", + "World/North Africa/TUR/Exports/Commercial service exports (current US$)", + "World/Pair/USA/Exports/Commercial service exports (current US$)", + "World/Asia/VNM/Exports/Commercial service exports (current US$)", + "World/South Africa/ZAF/Exports/Commercial service exports (current US$)", + "World/Latam/ARG/Imports/Commercial service imports (current US$)", + "World/Europe/AUT/Imports/Commercial service imports (current US$)", + "World/Persian Gulf/AZE/Imports/Commercial service imports (current US$)", + "World/Asia/BGD/Imports/Commercial service imports (current US$)", + "World/Latam/BRA/Imports/Commercial service imports (current US$)", + "World/Latam/CHL/Imports/Commercial service imports (current US$)", + "World/Pair/CHN/Imports/Commercial service imports (current US$)", + "World/South Africa/CMR/Imports/Commercial service imports (current US$)", + "World/Latam/COL/Imports/Commercial service imports (current US$)", + "World/Latam/CRI/Imports/Commercial service imports (current US$)", + "World/Europe/DEU/Imports/Commercial service imports (current US$)", + "World/North Africa/DZA/Imports/Commercial service imports (current US$)", + "World/North Africa/EGY/Imports/Commercial service imports (current US$)", + "World/Europe/ESP/Imports/Commercial service imports (current US$)", + "World/Europe/FRA/Imports/Commercial service imports (current US$)", + "World/Europe/GBR/Imports/Commercial service imports (current US$)", + "World/South Africa/GHA/Imports/Commercial service imports (current US$)", + "World/Europe/HRV/Imports/Commercial service imports (current US$)", + "World/Asia/IDN/Imports/Commercial service imports (current US$)", + "World/Asia/IND/Imports/Commercial service imports (current US$)", + "World/North Africa/ISR/Imports/Commercial service imports (current US$)", + "World/Asia/KOR/Imports/Commercial service imports (current US$)", + "World/North Africa/MAR/Imports/Commercial service imports (current US$)", + "World/Latam/MEX/Imports/Commercial service imports (current US$)", + "World/South Africa/MOZ/Imports/Commercial service imports (current US$)", + "World/South Africa/NGA/Imports/Commercial service imports (current US$)", + "World/Europe/NLD/Imports/Commercial service imports (current US$)", + "World/Persian Gulf/OMN/Imports/Commercial service imports (current US$)", + "World/Latam/PAN/Imports/Commercial service imports (current US$)", + "World/Latam/PER/Imports/Commercial service imports (current US$)", + "World/Asia/PHL/Imports/Commercial service imports (current US$)", + "World/Europe/POL/Imports/Commercial service imports (current US$)", + "World/Persian Gulf/QAT/Imports/Commercial service imports (current US$)", + "World/South Africa/SEN/Imports/Commercial service imports (current US$)", + "World/Europe/SWE/Imports/Commercial service imports (current US$)", + "World/Asia/THA/Imports/Commercial service imports (current US$)", + "World/North Africa/TUR/Imports/Commercial service imports (current US$)", + "World/Pair/USA/Imports/Commercial service imports (current US$)", + "World/Asia/VNM/Imports/Commercial service imports (current US$)", + "World/South Africa/ZAF/Imports/Commercial service imports (current US$)", + "World/Latam/ARG/Demoraphy/Completeness of birth registration (%)", + "World/Asia/BGD/Demoraphy/Completeness of birth registration (%)", + "World/Latam/BRA/Demoraphy/Completeness of birth registration (%)", + "World/South Africa/CMR/Demoraphy/Completeness of birth registration (%)", + "World/Latam/COL/Demoraphy/Completeness of birth registration (%)", + "World/Latam/CRI/Demoraphy/Completeness of birth registration (%)", + "World/North Africa/DZA/Demoraphy/Completeness of birth registration (%)", + "World/North Africa/EGY/Demoraphy/Completeness of birth registration (%)", + "World/South Africa/GHA/Demoraphy/Completeness of birth registration (%)", + "World/Asia/IND/Demoraphy/Completeness of birth registration (%)", + "World/South Africa/LBR/Demoraphy/Completeness of birth registration (%)", + "World/North Africa/MAR/Demoraphy/Completeness of birth registration (%)", + "World/Latam/MEX/Demoraphy/Completeness of birth registration (%)", + "World/South Africa/MOZ/Demoraphy/Completeness of birth registration (%)", + "World/South Africa/NGA/Demoraphy/Completeness of birth registration (%)", + "World/Latam/PAN/Demoraphy/Completeness of birth registration (%)", + "World/Latam/PER/Demoraphy/Completeness of birth registration (%)", + "World/Asia/PHL/Demoraphy/Completeness of birth registration (%)", + "World/North Africa/TUR/Demoraphy/Completeness of birth registration (%)", + "World/Latam/VEN/Demoraphy/Completeness of birth registration (%)", + "World/Asia/VNM/Demoraphy/Completeness of birth registration (%)", + "World/Persian Gulf/ARE/Economy/Consumer price index (2010 = 100)", + "World/Europe/AUT/Economy/Consumer price index (2010 = 100)", + "World/Persian Gulf/AZE/Economy/Consumer price index (2010 = 100)", + "World/Asia/BGD/Economy/Consumer price index (2010 = 100)", + "World/Latam/BRA/Economy/Consumer price index (2010 = 100)", + "World/Latam/CHL/Economy/Consumer price index (2010 = 100)", + "World/Pair/CHN/Economy/Consumer price index (2010 = 100)", + "World/South Africa/CMR/Economy/Consumer price index (2010 = 100)", + "World/Latam/COL/Economy/Consumer price index (2010 = 100)", + "World/Latam/CRI/Economy/Consumer price index (2010 = 100)", + "World/Europe/DEU/Economy/Consumer price index (2010 = 100)", + "World/North Africa/DZA/Economy/Consumer price index (2010 = 100)", + "World/North Africa/EGY/Economy/Consumer price index (2010 = 100)", + "World/Europe/ESP/Economy/Consumer price index (2010 = 100)", + "World/Europe/FRA/Economy/Consumer price index (2010 = 100)", + "World/Europe/GBR/Economy/Consumer price index (2010 = 100)", + "World/South Africa/GHA/Economy/Consumer price index (2010 = 100)", + "World/Europe/GRC/Economy/Consumer price index (2010 = 100)", + "World/Asia/IDN/Economy/Consumer price index (2010 = 100)", + "World/Asia/IND/Economy/Consumer price index (2010 = 100)", + "World/North Africa/ISR/Economy/Consumer price index (2010 = 100)", + "World/Asia/KOR/Economy/Consumer price index (2010 = 100)", + "World/South Africa/LBR/Economy/Consumer price index (2010 = 100)", + "World/North Africa/MAR/Economy/Consumer price index (2010 = 100)", + "World/Latam/MEX/Economy/Consumer price index (2010 = 100)", + "World/South Africa/MOZ/Economy/Consumer price index (2010 = 100)", + "World/South Africa/NGA/Economy/Consumer price index (2010 = 100)", + "World/Europe/NLD/Economy/Consumer price index (2010 = 100)", + "World/Persian Gulf/OMN/Economy/Consumer price index (2010 = 100)", + "World/Latam/PAN/Economy/Consumer price index (2010 = 100)", + "World/Latam/PER/Economy/Consumer price index (2010 = 100)", + "World/Asia/PHL/Economy/Consumer price index (2010 = 100)", + "World/Europe/POL/Economy/Consumer price index (2010 = 100)", + "World/Persian Gulf/QAT/Economy/Consumer price index (2010 = 100)", + "World/Persian Gulf/SAU/Economy/Consumer price index (2010 = 100)", + "World/South Africa/SEN/Economy/Consumer price index (2010 = 100)", + "World/Europe/SWE/Economy/Consumer price index (2010 = 100)", + "World/Asia/THA/Economy/Consumer price index (2010 = 100)", + "World/North Africa/TUR/Economy/Consumer price index (2010 = 100)", + "World/Pair/USA/Economy/Consumer price index (2010 = 100)", + "World/Latam/VEN/Economy/Consumer price index (2010 = 100)", + "World/Asia/VNM/Economy/Consumer price index (2010 = 100)", + "World/Persian Gulf/YEM/Economy/Consumer price index (2010 = 100)", + "World/South Africa/ZAF/Economy/Consumer price index (2010 = 100)", + "World/Persian Gulf/ARE/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/BGD/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Latam/CHL/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Pair/CHN/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/South Africa/CMR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Latam/COL/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Latam/CRI/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/DEU/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/ESP/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/FRA/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/GBR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/South Africa/GHA/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/IDN/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/IND/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/North Africa/ISR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/KOR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/South Africa/LBR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/North Africa/MAR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Latam/MEX/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/South Africa/MOZ/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/NLD/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Persian Gulf/OMN/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Latam/PAN/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Latam/PER/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/PHL/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/POL/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Persian Gulf/QAT/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Persian Gulf/SAU/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Europe/SWE/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/THA/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/North Africa/TUR/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Pair/USA/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Asia/VNM/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/South Africa/ZAF/Exports/Container port traffic (TEU: 20 foot equivalent units)", + "World/Persian Gulf/AZE/Agriculture/Crop production index (2014-2016 = 100)", + "World/Asia/BGD/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/BRA/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/CHL/Agriculture/Crop production index (2014-2016 = 100)", + "World/Pair/CHN/Agriculture/Crop production index (2014-2016 = 100)", + "World/South Africa/CMR/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/COL/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/CRI/Agriculture/Crop production index (2014-2016 = 100)", + "World/North Africa/DZA/Agriculture/Crop production index (2014-2016 = 100)", + "World/North Africa/EGY/Agriculture/Crop production index (2014-2016 = 100)", + "World/South Africa/GHA/Agriculture/Crop production index (2014-2016 = 100)", + "World/Asia/IDN/Agriculture/Crop production index (2014-2016 = 100)", + "World/Asia/IND/Agriculture/Crop production index (2014-2016 = 100)", + "World/North Africa/MAR/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/MEX/Agriculture/Crop production index (2014-2016 = 100)", + "World/South Africa/MOZ/Agriculture/Crop production index (2014-2016 = 100)", + "World/South Africa/NGA/Agriculture/Crop production index (2014-2016 = 100)", + "World/Persian Gulf/OMN/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/PER/Agriculture/Crop production index (2014-2016 = 100)", + "World/Asia/PHL/Agriculture/Crop production index (2014-2016 = 100)", + "World/Persian Gulf/QAT/Agriculture/Crop production index (2014-2016 = 100)", + "World/South Africa/SEN/Agriculture/Crop production index (2014-2016 = 100)", + "World/Asia/THA/Agriculture/Crop production index (2014-2016 = 100)", + "World/North Africa/TUR/Agriculture/Crop production index (2014-2016 = 100)", + "World/Pair/USA/Agriculture/Crop production index (2014-2016 = 100)", + "World/Asia/VNM/Agriculture/Crop production index (2014-2016 = 100)", + "World/Persian Gulf/YEM/Agriculture/Crop production index (2014-2016 = 100)", + "World/Latam/ARG/Health/Current health expenditure (% of GDP)", + "World/Europe/AUT/Health/Current health expenditure (% of GDP)", + "World/Latam/CHL/Health/Current health expenditure (% of GDP)", + "World/Pair/CHN/Health/Current health expenditure (% of GDP)", + "World/South Africa/CMR/Health/Current health expenditure (% of GDP)", + "World/Latam/COL/Health/Current health expenditure (% of GDP)", + "World/Latam/CRI/Health/Current health expenditure (% of GDP)", + "World/Europe/ESP/Health/Current health expenditure (% of GDP)", + "World/Europe/FRA/Health/Current health expenditure (% of GDP)", + "World/Europe/GBR/Health/Current health expenditure (% of GDP)", + "World/Europe/GRC/Health/Current health expenditure (% of GDP)", + "World/Asia/IDN/Health/Current health expenditure (% of GDP)", + "World/Asia/IND/Health/Current health expenditure (% of GDP)", + "World/Asia/KOR/Health/Current health expenditure (% of GDP)", + "World/South Africa/MOZ/Health/Current health expenditure (% of GDP)", + "World/Europe/NLD/Health/Current health expenditure (% of GDP)", + "World/Latam/PER/Health/Current health expenditure (% of GDP)", + "World/Europe/POL/Health/Current health expenditure (% of GDP)", + "World/Europe/SWE/Health/Current health expenditure (% of GDP)", + "World/Asia/THA/Health/Current health expenditure (% of GDP)", + "World/Pair/USA/Health/Current health expenditure (% of GDP)", + "World/Asia/VNM/Health/Current health expenditure (% of GDP)", + "World/Persian Gulf/YEM/Health/Current health expenditure (% of GDP)", + "World/Persian Gulf/ARE/Health/Current health expenditure per capita (current US$)", + "World/Latam/ARG/Health/Current health expenditure per capita (current US$)", + "World/Europe/AUT/Health/Current health expenditure per capita (current US$)", + "World/Persian Gulf/AZE/Health/Current health expenditure per capita (current US$)", + "World/Asia/BGD/Health/Current health expenditure per capita (current US$)", + "World/Latam/BRA/Health/Current health expenditure per capita (current US$)", + "World/Latam/CHL/Health/Current health expenditure per capita (current US$)", + "World/Pair/CHN/Health/Current health expenditure per capita (current US$)", + "World/South Africa/CMR/Health/Current health expenditure per capita (current US$)", + "World/Latam/COL/Health/Current health expenditure per capita (current US$)", + "World/Latam/CRI/Health/Current health expenditure per capita (current US$)", + "World/Europe/DEU/Health/Current health expenditure per capita (current US$)", + "World/North Africa/DZA/Health/Current health expenditure per capita (current US$)", + "World/Europe/ESP/Health/Current health expenditure per capita (current US$)", + "World/Europe/FRA/Health/Current health expenditure per capita (current US$)", + "World/Europe/GBR/Health/Current health expenditure per capita (current US$)", + "World/South Africa/GHA/Health/Current health expenditure per capita (current US$)", + "World/Europe/GRC/Health/Current health expenditure per capita (current US$)", + "World/Europe/HRV/Health/Current health expenditure per capita (current US$)", + "World/Asia/IDN/Health/Current health expenditure per capita (current US$)", + "World/Asia/IND/Health/Current health expenditure per capita (current US$)", + "World/North Africa/ISR/Health/Current health expenditure per capita (current US$)", + "World/Asia/KOR/Health/Current health expenditure per capita (current US$)", + "World/South Africa/LBR/Health/Current health expenditure per capita (current US$)", + "World/North Africa/MAR/Health/Current health expenditure per capita (current US$)", + "World/Latam/MEX/Health/Current health expenditure per capita (current US$)", + "World/South Africa/MOZ/Health/Current health expenditure per capita (current US$)", + "World/South Africa/NGA/Health/Current health expenditure per capita (current US$)", + "World/Europe/NLD/Health/Current health expenditure per capita (current US$)", + "World/Persian Gulf/OMN/Health/Current health expenditure per capita (current US$)", + "World/Latam/PAN/Health/Current health expenditure per capita (current US$)", + "World/Latam/PER/Health/Current health expenditure per capita (current US$)", + "World/Asia/PHL/Health/Current health expenditure per capita (current US$)", + "World/Europe/POL/Health/Current health expenditure per capita (current US$)", + "World/Persian Gulf/QAT/Health/Current health expenditure per capita (current US$)", + "World/Persian Gulf/SAU/Health/Current health expenditure per capita (current US$)", + "World/South Africa/SEN/Health/Current health expenditure per capita (current US$)", + "World/Europe/SWE/Health/Current health expenditure per capita (current US$)", + "World/Asia/THA/Health/Current health expenditure per capita (current US$)", + "World/Pair/USA/Health/Current health expenditure per capita (current US$)", + "World/Latam/VEN/Health/Current health expenditure per capita (current US$)", + "World/Asia/VNM/Health/Current health expenditure per capita (current US$)", + "World/Persian Gulf/YEM/Health/Current health expenditure per capita (current US$)", + "World/South Africa/ZAF/Health/Current health expenditure per capita (current US$)", + "World/Persian Gulf/AZE/Economy/Customs and other import duties (% of tax revenue)", + "World/Asia/BGD/Economy/Customs and other import duties (% of tax revenue)", + "World/Latam/CHL/Economy/Customs and other import duties (% of tax revenue)", + "World/Pair/CHN/Economy/Customs and other import duties (% of tax revenue)", + "World/South Africa/CMR/Economy/Customs and other import duties (% of tax revenue)", + "World/Latam/COL/Economy/Customs and other import duties (% of tax revenue)", + "World/Latam/CRI/Economy/Customs and other import duties (% of tax revenue)", + "World/North Africa/EGY/Economy/Customs and other import duties (% of tax revenue)", + "World/Europe/ESP/Economy/Customs and other import duties (% of tax revenue)", + "World/Europe/HRV/Economy/Customs and other import duties (% of tax revenue)", + "World/Asia/IND/Economy/Customs and other import duties (% of tax revenue)", + "World/Asia/KOR/Economy/Customs and other import duties (% of tax revenue)", + "World/North Africa/MAR/Economy/Customs and other import duties (% of tax revenue)", + "World/Latam/MEX/Economy/Customs and other import duties (% of tax revenue)", + "World/Latam/PAN/Economy/Customs and other import duties (% of tax revenue)", + "World/Latam/PER/Economy/Customs and other import duties (% of tax revenue)", + "World/Europe/POL/Economy/Customs and other import duties (% of tax revenue)", + "World/Asia/THA/Economy/Customs and other import duties (% of tax revenue)", + "World/Asia/BGD/Economy/Domestic credit to private sector (% of GDP)", + "World/Latam/CHL/Economy/Domestic credit to private sector (% of GDP)", + "World/Pair/CHN/Economy/Domestic credit to private sector (% of GDP)", + "World/South Africa/CMR/Economy/Domestic credit to private sector (% of GDP)", + "World/Latam/COL/Economy/Domestic credit to private sector (% of GDP)", + "World/Latam/CRI/Economy/Domestic credit to private sector (% of GDP)", + "World/Europe/DEU/Economy/Domestic credit to private sector (% of GDP)", + "World/North Africa/DZA/Economy/Domestic credit to private sector (% of GDP)", + "World/North Africa/EGY/Economy/Domestic credit to private sector (% of GDP)", + "World/Europe/FRA/Economy/Domestic credit to private sector (% of GDP)", + "World/Europe/GRC/Economy/Domestic credit to private sector (% of GDP)", + "World/Europe/HRV/Economy/Domestic credit to private sector (% of GDP)", + "World/Asia/IND/Economy/Domestic credit to private sector (% of GDP)", + "World/Asia/KOR/Economy/Domestic credit to private sector (% of GDP)", + "World/South Africa/LBR/Economy/Domestic credit to private sector (% of GDP)", + "World/Latam/MEX/Economy/Domestic credit to private sector (% of GDP)", + "World/Persian Gulf/OMN/Economy/Domestic credit to private sector (% of GDP)", + "World/Latam/PER/Economy/Domestic credit to private sector (% of GDP)", + "World/Europe/POL/Economy/Domestic credit to private sector (% of GDP)", + "World/Persian Gulf/QAT/Economy/Domestic credit to private sector (% of GDP)", + "World/Persian Gulf/SAU/Economy/Domestic credit to private sector (% of GDP)", + "World/South Africa/SEN/Economy/Domestic credit to private sector (% of GDP)", + "World/Europe/SWE/Economy/Domestic credit to private sector (% of GDP)", + "World/North Africa/TUR/Economy/Domestic credit to private sector (% of GDP)", + "World/Latam/VEN/Economy/Domestic credit to private sector (% of GDP)", + "World/Asia/VNM/Economy/Domestic credit to private sector (% of GDP)", + "World/Persian Gulf/ARE/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Persian Gulf/AZE/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Asia/BGD/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/CHL/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Pair/CHN/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/South Africa/CMR/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/COL/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/CRI/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Europe/DEU/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/North Africa/DZA/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/North Africa/EGY/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Europe/GRC/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Europe/HRV/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Asia/IND/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Asia/KOR/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/South Africa/LBR/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/North Africa/MAR/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/MEX/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Persian Gulf/OMN/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/PAN/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/PER/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Europe/POL/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Persian Gulf/QAT/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Persian Gulf/SAU/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/South Africa/SEN/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Europe/SWE/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/North Africa/TUR/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/VEN/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Asia/VNM/Economy/Domestic credit to private sector by banks (% of GDP)", + "World/Latam/ARG/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/AUT/Health/Domestic general government health expenditure per capita (current US$)", + "World/Persian Gulf/AZE/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/BGD/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/BRA/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/CHL/Health/Domestic general government health expenditure per capita (current US$)", + "World/Pair/CHN/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/COL/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/CRI/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/DEU/Health/Domestic general government health expenditure per capita (current US$)", + "World/North Africa/DZA/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/ESP/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/FRA/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/GBR/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/GRC/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/HRV/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/IDN/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/IND/Health/Domestic general government health expenditure per capita (current US$)", + "World/North Africa/ISR/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/KOR/Health/Domestic general government health expenditure per capita (current US$)", + "World/South Africa/LBR/Health/Domestic general government health expenditure per capita (current US$)", + "World/North Africa/MAR/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/MEX/Health/Domestic general government health expenditure per capita (current US$)", + "World/South Africa/MOZ/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/NLD/Health/Domestic general government health expenditure per capita (current US$)", + "World/Persian Gulf/OMN/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/PAN/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/PER/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/PHL/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/POL/Health/Domestic general government health expenditure per capita (current US$)", + "World/Persian Gulf/QAT/Health/Domestic general government health expenditure per capita (current US$)", + "World/Persian Gulf/SAU/Health/Domestic general government health expenditure per capita (current US$)", + "World/Europe/SWE/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/THA/Health/Domestic general government health expenditure per capita (current US$)", + "World/North Africa/TUR/Health/Domestic general government health expenditure per capita (current US$)", + "World/Pair/USA/Health/Domestic general government health expenditure per capita (current US$)", + "World/Asia/VNM/Health/Domestic general government health expenditure per capita (current US$)", + "World/South Africa/ZAF/Health/Domestic general government health expenditure per capita (current US$)", + "World/Latam/ARG/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/AUT/Health/Domestic private health expenditure per capita (current US$)", + "World/Persian Gulf/AZE/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/BGD/Health/Domestic private health expenditure per capita (current US$)", + "World/Latam/BRA/Health/Domestic private health expenditure per capita (current US$)", + "World/Latam/CHL/Health/Domestic private health expenditure per capita (current US$)", + "World/Pair/CHN/Health/Domestic private health expenditure per capita (current US$)", + "World/South Africa/CMR/Health/Domestic private health expenditure per capita (current US$)", + "World/Latam/COL/Health/Domestic private health expenditure per capita (current US$)", + "World/Latam/CRI/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/DEU/Health/Domestic private health expenditure per capita (current US$)", + "World/North Africa/DZA/Health/Domestic private health expenditure per capita (current US$)", + "World/North Africa/EGY/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/ESP/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/FRA/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/GBR/Health/Domestic private health expenditure per capita (current US$)", + "World/South Africa/GHA/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/HRV/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/IDN/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/IND/Health/Domestic private health expenditure per capita (current US$)", + "World/North Africa/ISR/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/KOR/Health/Domestic private health expenditure per capita (current US$)", + "World/South Africa/LBR/Health/Domestic private health expenditure per capita (current US$)", + "World/North Africa/MAR/Health/Domestic private health expenditure per capita (current US$)", + "World/South Africa/NGA/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/NLD/Health/Domestic private health expenditure per capita (current US$)", + "World/Latam/PAN/Health/Domestic private health expenditure per capita (current US$)", + "World/Latam/PER/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/PHL/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/POL/Health/Domestic private health expenditure per capita (current US$)", + "World/Persian Gulf/QAT/Health/Domestic private health expenditure per capita (current US$)", + "World/Persian Gulf/SAU/Health/Domestic private health expenditure per capita (current US$)", + "World/South Africa/SEN/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/SWE/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/THA/Health/Domestic private health expenditure per capita (current US$)", + "World/Pair/USA/Health/Domestic private health expenditure per capita (current US$)", + "World/Asia/VNM/Health/Domestic private health expenditure per capita (current US$)", + "World/Persian Gulf/YEM/Health/Domestic private health expenditure per capita (current US$)", + "World/South Africa/ZAF/Health/Domestic private health expenditure per capita (current US$)", + "World/Europe/AUT/Environment/Electric power consumption (kWh per capita)", + "World/Asia/BGD/Environment/Electric power consumption (kWh per capita)", + "World/Latam/BRA/Environment/Electric power consumption (kWh per capita)", + "World/Latam/CHL/Environment/Electric power consumption (kWh per capita)", + "World/Pair/CHN/Environment/Electric power consumption (kWh per capita)", + "World/South Africa/CMR/Environment/Electric power consumption (kWh per capita)", + "World/Latam/COL/Environment/Electric power consumption (kWh per capita)", + "World/Latam/CRI/Environment/Electric power consumption (kWh per capita)", + "World/North Africa/DZA/Environment/Electric power consumption (kWh per capita)", + "World/North Africa/EGY/Environment/Electric power consumption (kWh per capita)", + "World/Europe/GBR/Environment/Electric power consumption (kWh per capita)", + "World/Europe/GRC/Environment/Electric power consumption (kWh per capita)", + "World/Europe/HRV/Environment/Electric power consumption (kWh per capita)", + "World/Asia/IDN/Environment/Electric power consumption (kWh per capita)", + "World/Asia/IND/Environment/Electric power consumption (kWh per capita)", + "World/Asia/KOR/Environment/Electric power consumption (kWh per capita)", + "World/North Africa/MAR/Environment/Electric power consumption (kWh per capita)", + "World/Latam/MEX/Environment/Electric power consumption (kWh per capita)", + "World/South Africa/MOZ/Environment/Electric power consumption (kWh per capita)", + "World/South Africa/NGA/Environment/Electric power consumption (kWh per capita)", + "World/Persian Gulf/OMN/Environment/Electric power consumption (kWh per capita)", + "World/Latam/PAN/Environment/Electric power consumption (kWh per capita)", + "World/Latam/PER/Environment/Electric power consumption (kWh per capita)", + "World/Asia/PHL/Environment/Electric power consumption (kWh per capita)", + "World/Europe/POL/Environment/Electric power consumption (kWh per capita)", + "World/Persian Gulf/SAU/Environment/Electric power consumption (kWh per capita)", + "World/South Africa/SEN/Environment/Electric power consumption (kWh per capita)", + "World/Europe/SWE/Environment/Electric power consumption (kWh per capita)", + "World/Asia/THA/Environment/Electric power consumption (kWh per capita)", + "World/North Africa/TUR/Environment/Electric power consumption (kWh per capita)", + "World/Asia/VNM/Environment/Electric power consumption (kWh per capita)", + "World/Persian Gulf/YEM/Environment/Electric power consumption (kWh per capita)", + "World/Persian Gulf/ARE/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/ARG/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/AUT/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/AZE/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Asia/BGD/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/BRA/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/CHL/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Pair/CHN/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/CMR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/COL/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/CRI/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/DEU/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/North Africa/DZA/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/North Africa/EGY/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/ESP/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/FRA/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/GBR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/GHA/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Asia/IDN/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Asia/IND/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/North Africa/ISR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Asia/KOR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/LBR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/North Africa/MAR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/MEX/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/MOZ/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/NGA/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/NLD/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/OMN/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/PAN/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/PER/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Asia/PHL/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/POL/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/QAT/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/SEN/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Europe/SWE/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/North Africa/TUR/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/VEN/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Asia/VNM/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/South Africa/ZAF/Employment/Employment in agriculture (% of total employment) (modeled ILO estimate)", + "World/Latam/ARG/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/AUT/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/AZE/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Asia/BGD/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Latam/BRA/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Pair/CHN/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/South Africa/CMR/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Latam/CRI/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/DEU/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/North Africa/DZA/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/North Africa/EGY/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/ESP/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/FRA/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/GBR/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/GRC/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/HRV/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Asia/IDN/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Asia/IND/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/North Africa/ISR/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Asia/KOR/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/North Africa/MAR/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/South Africa/MOZ/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/NLD/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/OMN/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/POL/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/SAU/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/South Africa/SEN/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Europe/SWE/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Pair/USA/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Latam/VEN/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Asia/VNM/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/YEM/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/South Africa/ZAF/Employment/Employment in industry (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/ARE/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/ARG/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/AUT/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/BGD/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/BRA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/CHL/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Pair/CHN/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/CMR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/COL/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/CRI/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/DEU/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/North Africa/DZA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/North Africa/EGY/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/ESP/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/FRA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/GBR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/GHA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/GRC/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/HRV/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/IDN/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/IND/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/North Africa/ISR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/KOR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/LBR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/North Africa/MAR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/MEX/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/MOZ/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/NGA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/NLD/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/OMN/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/PAN/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/PER/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/PHL/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/POL/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/SEN/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Europe/SWE/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/THA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/North Africa/TUR/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Pair/USA/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Latam/VEN/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Asia/VNM/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/YEM/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/South Africa/ZAF/Employment/Employment in services (% of total employment) (modeled ILO estimate)", + "World/Persian Gulf/AZE/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/BGD/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Pair/CHN/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/South Africa/CMR/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Latam/CRI/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Europe/DEU/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/North Africa/DZA/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Europe/GBR/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/South Africa/GHA/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/IDN/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/IND/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/North Africa/ISR/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/KOR/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Latam/MEX/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/South Africa/MOZ/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/South Africa/NGA/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Europe/NLD/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Persian Gulf/OMN/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Latam/PAN/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Latam/PER/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/PHL/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Europe/POL/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Europe/SWE/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/THA/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/North Africa/TUR/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Pair/USA/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Latam/VEN/Environment/Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "World/Asia/BGD/Environment/Energy use (kg of oil equivalent per capita)", + "World/Latam/BRA/Environment/Energy use (kg of oil equivalent per capita)", + "World/Latam/CHL/Environment/Energy use (kg of oil equivalent per capita)", + "World/Pair/CHN/Environment/Energy use (kg of oil equivalent per capita)", + "World/Latam/CRI/Environment/Energy use (kg of oil equivalent per capita)", + "World/North Africa/DZA/Environment/Energy use (kg of oil equivalent per capita)", + "World/Europe/GBR/Environment/Energy use (kg of oil equivalent per capita)", + "World/Asia/IDN/Environment/Energy use (kg of oil equivalent per capita)", + "World/Asia/IND/Environment/Energy use (kg of oil equivalent per capita)", + "World/Asia/KOR/Environment/Energy use (kg of oil equivalent per capita)", + "World/North Africa/MAR/Environment/Energy use (kg of oil equivalent per capita)", + "World/South Africa/MOZ/Environment/Energy use (kg of oil equivalent per capita)", + "World/South Africa/NGA/Environment/Energy use (kg of oil equivalent per capita)", + "World/Europe/NLD/Environment/Energy use (kg of oil equivalent per capita)", + "World/Persian Gulf/OMN/Environment/Energy use (kg of oil equivalent per capita)", + "World/Latam/PAN/Environment/Energy use (kg of oil equivalent per capita)", + "World/Latam/PER/Environment/Energy use (kg of oil equivalent per capita)", + "World/Persian Gulf/SAU/Environment/Energy use (kg of oil equivalent per capita)", + "World/Asia/THA/Environment/Energy use (kg of oil equivalent per capita)", + "World/North Africa/TUR/Environment/Energy use (kg of oil equivalent per capita)", + "World/Pair/USA/Environment/Energy use (kg of oil equivalent per capita)", + "World/Asia/VNM/Environment/Energy use (kg of oil equivalent per capita)", + "World/Europe/AUT/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Persian Gulf/AZE/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Asia/BGD/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Pair/CHN/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/South Africa/CMR/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Latam/COL/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Latam/CRI/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/DEU/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/North Africa/DZA/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/ESP/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/FRA/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/GBR/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/South Africa/GHA/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/HRV/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Asia/IDN/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Asia/IND/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/North Africa/ISR/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Asia/KOR/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Latam/MEX/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/South Africa/MOZ/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/South Africa/NGA/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/NLD/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Latam/PAN/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Asia/PHL/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/POL/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Persian Gulf/SAU/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Europe/SWE/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/North Africa/TUR/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Pair/USA/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/South Africa/ZAF/Environment/Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "World/Persian Gulf/ARE/Exports/Export unit value index (2000 = 100)", + "World/Europe/AUT/Exports/Export unit value index (2000 = 100)", + "World/Persian Gulf/AZE/Exports/Export unit value index (2000 = 100)", + "World/Asia/BGD/Exports/Export unit value index (2000 = 100)", + "World/Latam/BRA/Exports/Export unit value index (2000 = 100)", + "World/Latam/CRI/Exports/Export unit value index (2000 = 100)", + "World/Europe/DEU/Exports/Export unit value index (2000 = 100)", + "World/North Africa/DZA/Exports/Export unit value index (2000 = 100)", + "World/Europe/ESP/Exports/Export unit value index (2000 = 100)", + "World/Europe/FRA/Exports/Export unit value index (2000 = 100)", + "World/South Africa/GHA/Exports/Export unit value index (2000 = 100)", + "World/Europe/GRC/Exports/Export unit value index (2000 = 100)", + "World/Europe/HRV/Exports/Export unit value index (2000 = 100)", + "World/Latam/MEX/Exports/Export unit value index (2000 = 100)", + "World/Europe/NLD/Exports/Export unit value index (2000 = 100)", + "World/Latam/PAN/Exports/Export unit value index (2000 = 100)", + "World/Europe/POL/Exports/Export unit value index (2000 = 100)", + "World/Europe/SWE/Exports/Export unit value index (2000 = 100)", + "World/Asia/THA/Exports/Export unit value index (2000 = 100)", + "World/Asia/VNM/Exports/Export unit value index (2000 = 100)", + "World/Persian Gulf/YEM/Exports/Export unit value index (2000 = 100)", + "World/South Africa/ZAF/Exports/Export unit value index (2000 = 100)", + "World/Persian Gulf/ARE/Exports/Export value index (2000 = 100)", + "World/Europe/AUT/Exports/Export value index (2000 = 100)", + "World/Persian Gulf/AZE/Exports/Export value index (2000 = 100)", + "World/Asia/BGD/Exports/Export value index (2000 = 100)", + "World/Latam/BRA/Exports/Export value index (2000 = 100)", + "World/Latam/CHL/Exports/Export value index (2000 = 100)", + "World/Pair/CHN/Exports/Export value index (2000 = 100)", + "World/Latam/COL/Exports/Export value index (2000 = 100)", + "World/Latam/CRI/Exports/Export value index (2000 = 100)", + "World/Europe/DEU/Exports/Export value index (2000 = 100)", + "World/North Africa/DZA/Exports/Export value index (2000 = 100)", + "World/Europe/ESP/Exports/Export value index (2000 = 100)", + "World/Europe/FRA/Exports/Export value index (2000 = 100)", + "World/Europe/GBR/Exports/Export value index (2000 = 100)", + "World/South Africa/GHA/Exports/Export value index (2000 = 100)", + "World/Asia/IDN/Exports/Export value index (2000 = 100)", + "World/Asia/IND/Exports/Export value index (2000 = 100)", + "World/Persian Gulf/IRQ/Exports/Export value index (2000 = 100)", + "World/Asia/KOR/Exports/Export value index (2000 = 100)", + "World/North Africa/MAR/Exports/Export value index (2000 = 100)", + "World/Latam/MEX/Exports/Export value index (2000 = 100)", + "World/South Africa/MOZ/Exports/Export value index (2000 = 100)", + "World/Europe/NLD/Exports/Export value index (2000 = 100)", + "World/Persian Gulf/OMN/Exports/Export value index (2000 = 100)", + "World/Latam/PAN/Exports/Export value index (2000 = 100)", + "World/Latam/PER/Exports/Export value index (2000 = 100)", + "World/Asia/PHL/Exports/Export value index (2000 = 100)", + "World/Europe/POL/Exports/Export value index (2000 = 100)", + "World/Persian Gulf/QAT/Exports/Export value index (2000 = 100)", + "World/Persian Gulf/SAU/Exports/Export value index (2000 = 100)", + "World/South Africa/SEN/Exports/Export value index (2000 = 100)", + "World/Europe/SWE/Exports/Export value index (2000 = 100)", + "World/Asia/THA/Exports/Export value index (2000 = 100)", + "World/North Africa/TUR/Exports/Export value index (2000 = 100)", + "World/Pair/USA/Exports/Export value index (2000 = 100)", + "World/Latam/VEN/Exports/Export value index (2000 = 100)", + "World/Asia/VNM/Exports/Export value index (2000 = 100)", + "World/South Africa/ZAF/Exports/Export value index (2000 = 100)", + "World/Persian Gulf/ARE/Exports/Export volume index (2000 = 100)", + "World/Europe/AUT/Exports/Export volume index (2000 = 100)", + "World/Persian Gulf/AZE/Exports/Export volume index (2000 = 100)", + "World/Asia/BGD/Exports/Export volume index (2000 = 100)", + "World/Latam/BRA/Exports/Export volume index (2000 = 100)", + "World/Latam/CHL/Exports/Export volume index (2000 = 100)", + "World/Pair/CHN/Exports/Export volume index (2000 = 100)", + "World/Latam/COL/Exports/Export volume index (2000 = 100)", + "World/Latam/CRI/Exports/Export volume index (2000 = 100)", + "World/Europe/ESP/Exports/Export volume index (2000 = 100)", + "World/South Africa/GHA/Exports/Export volume index (2000 = 100)", + "World/Europe/GRC/Exports/Export volume index (2000 = 100)", + "World/Asia/IDN/Exports/Export volume index (2000 = 100)", + "World/Asia/IND/Exports/Export volume index (2000 = 100)", + "World/North Africa/ISR/Exports/Export volume index (2000 = 100)", + "World/Asia/KOR/Exports/Export volume index (2000 = 100)", + "World/North Africa/MAR/Exports/Export volume index (2000 = 100)", + "World/Latam/MEX/Exports/Export volume index (2000 = 100)", + "World/South Africa/MOZ/Exports/Export volume index (2000 = 100)", + "World/Europe/NLD/Exports/Export volume index (2000 = 100)", + "World/Persian Gulf/OMN/Exports/Export volume index (2000 = 100)", + "World/Latam/PAN/Exports/Export volume index (2000 = 100)", + "World/Latam/PER/Exports/Export volume index (2000 = 100)", + "World/Asia/PHL/Exports/Export volume index (2000 = 100)", + "World/Europe/POL/Exports/Export volume index (2000 = 100)", + "World/Persian Gulf/QAT/Exports/Export volume index (2000 = 100)", + "World/Persian Gulf/SAU/Exports/Export volume index (2000 = 100)", + "World/Asia/THA/Exports/Export volume index (2000 = 100)", + "World/North Africa/TUR/Exports/Export volume index (2000 = 100)", + "World/Pair/USA/Exports/Export volume index (2000 = 100)", + "World/Latam/VEN/Exports/Export volume index (2000 = 100)", + "World/Asia/VNM/Exports/Export volume index (2000 = 100)", + "World/Persian Gulf/YEM/Exports/Export volume index (2000 = 100)", + "World/South Africa/ZAF/Exports/Export volume index (2000 = 100)", + "World/Europe/AUT/Exports/Exports of goods and services (BoP, current US$)", + "World/Persian Gulf/AZE/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/BGD/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/BRA/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/CHL/Exports/Exports of goods and services (BoP, current US$)", + "World/Pair/CHN/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/COL/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/CRI/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/DEU/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/ESP/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/FRA/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/GBR/Exports/Exports of goods and services (BoP, current US$)", + "World/South Africa/GHA/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/HRV/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/IDN/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/IND/Exports/Exports of goods and services (BoP, current US$)", + "World/Persian Gulf/IRQ/Exports/Exports of goods and services (BoP, current US$)", + "World/North Africa/ISR/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/KOR/Exports/Exports of goods and services (BoP, current US$)", + "World/North Africa/MAR/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/MEX/Exports/Exports of goods and services (BoP, current US$)", + "World/South Africa/MOZ/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/NLD/Exports/Exports of goods and services (BoP, current US$)", + "World/Persian Gulf/OMN/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/PAN/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/PER/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/PHL/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/POL/Exports/Exports of goods and services (BoP, current US$)", + "World/Persian Gulf/SAU/Exports/Exports of goods and services (BoP, current US$)", + "World/South Africa/SEN/Exports/Exports of goods and services (BoP, current US$)", + "World/Europe/SWE/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/THA/Exports/Exports of goods and services (BoP, current US$)", + "World/North Africa/TUR/Exports/Exports of goods and services (BoP, current US$)", + "World/Pair/USA/Exports/Exports of goods and services (BoP, current US$)", + "World/Latam/VEN/Exports/Exports of goods and services (BoP, current US$)", + "World/Asia/VNM/Exports/Exports of goods and services (BoP, current US$)", + "World/South Africa/ZAF/Exports/Exports of goods and services (BoP, current US$)", + "World/Persian Gulf/ARE/Exports/Exports of goods and services (current US$)", + "World/Europe/AUT/Exports/Exports of goods and services (current US$)", + "World/Persian Gulf/AZE/Exports/Exports of goods and services (current US$)", + "World/Asia/BGD/Exports/Exports of goods and services (current US$)", + "World/Latam/BRA/Exports/Exports of goods and services (current US$)", + "World/Latam/CHL/Exports/Exports of goods and services (current US$)", + "World/Pair/CHN/Exports/Exports of goods and services (current US$)", + "World/Latam/COL/Exports/Exports of goods and services (current US$)", + "World/Latam/CRI/Exports/Exports of goods and services (current US$)", + "World/Europe/DEU/Exports/Exports of goods and services (current US$)", + "World/North Africa/DZA/Exports/Exports of goods and services (current US$)", + "World/Europe/ESP/Exports/Exports of goods and services (current US$)", + "World/Europe/FRA/Exports/Exports of goods and services (current US$)", + "World/Europe/GBR/Exports/Exports of goods and services (current US$)", + "World/South Africa/GHA/Exports/Exports of goods and services (current US$)", + "World/Europe/HRV/Exports/Exports of goods and services (current US$)", + "World/Asia/IDN/Exports/Exports of goods and services (current US$)", + "World/Asia/IND/Exports/Exports of goods and services (current US$)", + "World/Persian Gulf/IRQ/Exports/Exports of goods and services (current US$)", + "World/North Africa/ISR/Exports/Exports of goods and services (current US$)", + "World/Asia/KOR/Exports/Exports of goods and services (current US$)", + "World/North Africa/MAR/Exports/Exports of goods and services (current US$)", + "World/Latam/MEX/Exports/Exports of goods and services (current US$)", + "World/South Africa/MOZ/Exports/Exports of goods and services (current US$)", + "World/Europe/NLD/Exports/Exports of goods and services (current US$)", + "World/Persian Gulf/OMN/Exports/Exports of goods and services (current US$)", + "World/Latam/PAN/Exports/Exports of goods and services (current US$)", + "World/Latam/PER/Exports/Exports of goods and services (current US$)", + "World/Asia/PHL/Exports/Exports of goods and services (current US$)", + "World/Europe/POL/Exports/Exports of goods and services (current US$)", + "World/Persian Gulf/QAT/Exports/Exports of goods and services (current US$)", + "World/Persian Gulf/SAU/Exports/Exports of goods and services (current US$)", + "World/South Africa/SEN/Exports/Exports of goods and services (current US$)", + "World/Europe/SWE/Exports/Exports of goods and services (current US$)", + "World/Asia/THA/Exports/Exports of goods and services (current US$)", + "World/North Africa/TUR/Exports/Exports of goods and services (current US$)", + "World/Pair/USA/Exports/Exports of goods and services (current US$)", + "World/Latam/VEN/Exports/Exports of goods and services (current US$)", + "World/Asia/VNM/Exports/Exports of goods and services (current US$)", + "World/South Africa/ZAF/Exports/Exports of goods and services (current US$)", + "World/Persian Gulf/ARE/Economy/Final consumption expenditure (current US$)", + "World/Latam/ARG/Economy/Final consumption expenditure (current US$)", + "World/Europe/AUT/Economy/Final consumption expenditure (current US$)", + "World/Persian Gulf/AZE/Economy/Final consumption expenditure (current US$)", + "World/Asia/BGD/Economy/Final consumption expenditure (current US$)", + "World/Latam/BRA/Economy/Final consumption expenditure (current US$)", + "World/Latam/CHL/Economy/Final consumption expenditure (current US$)", + "World/Pair/CHN/Economy/Final consumption expenditure (current US$)", + "World/South Africa/CMR/Economy/Final consumption expenditure (current US$)", + "World/Latam/COL/Economy/Final consumption expenditure (current US$)", + "World/Latam/CRI/Economy/Final consumption expenditure (current US$)", + "World/Europe/DEU/Economy/Final consumption expenditure (current US$)", + "World/North Africa/DZA/Economy/Final consumption expenditure (current US$)", + "World/North Africa/EGY/Economy/Final consumption expenditure (current US$)", + "World/Europe/ESP/Economy/Final consumption expenditure (current US$)", + "World/Europe/FRA/Economy/Final consumption expenditure (current US$)", + "World/Europe/GBR/Economy/Final consumption expenditure (current US$)", + "World/South Africa/GHA/Economy/Final consumption expenditure (current US$)", + "World/Europe/GRC/Economy/Final consumption expenditure (current US$)", + "World/Europe/HRV/Economy/Final consumption expenditure (current US$)", + "World/Asia/IDN/Economy/Final consumption expenditure (current US$)", + "World/Asia/IND/Economy/Final consumption expenditure (current US$)", + "World/Persian Gulf/IRQ/Economy/Final consumption expenditure (current US$)", + "World/North Africa/ISR/Economy/Final consumption expenditure (current US$)", + "World/Asia/KOR/Economy/Final consumption expenditure (current US$)", + "World/North Africa/MAR/Economy/Final consumption expenditure (current US$)", + "World/Latam/MEX/Economy/Final consumption expenditure (current US$)", + "World/South Africa/MOZ/Economy/Final consumption expenditure (current US$)", + "World/South Africa/NGA/Economy/Final consumption expenditure (current US$)", + "World/Europe/NLD/Economy/Final consumption expenditure (current US$)", + "World/Persian Gulf/OMN/Economy/Final consumption expenditure (current US$)", + "World/Latam/PAN/Economy/Final consumption expenditure (current US$)", + "World/Latam/PER/Economy/Final consumption expenditure (current US$)", + "World/Asia/PHL/Economy/Final consumption expenditure (current US$)", + "World/Europe/POL/Economy/Final consumption expenditure (current US$)", + "World/Persian Gulf/QAT/Economy/Final consumption expenditure (current US$)", + "World/Persian Gulf/SAU/Economy/Final consumption expenditure (current US$)", + "World/South Africa/SEN/Economy/Final consumption expenditure (current US$)", + "World/Europe/SWE/Economy/Final consumption expenditure (current US$)", + "World/Asia/THA/Economy/Final consumption expenditure (current US$)", + "World/North Africa/TUR/Economy/Final consumption expenditure (current US$)", + "World/Pair/USA/Economy/Final consumption expenditure (current US$)", + "World/Latam/VEN/Economy/Final consumption expenditure (current US$)", + "World/Asia/VNM/Economy/Final consumption expenditure (current US$)", + "World/South Africa/ZAF/Economy/Final consumption expenditure (current US$)", + "World/Latam/ARG/R&D/Firms offering formal training (% of firms)", + "World/Latam/CHL/R&D/Firms offering formal training (% of firms)", + "World/Latam/COL/R&D/Firms offering formal training (% of firms)", + "World/Latam/CRI/R&D/Firms offering formal training (% of firms)", + "World/North Africa/EGY/R&D/Firms offering formal training (% of firms)", + "World/South Africa/GHA/R&D/Firms offering formal training (% of firms)", + "World/Europe/GRC/R&D/Firms offering formal training (% of firms)", + "World/Europe/HRV/R&D/Firms offering formal training (% of firms)", + "World/Asia/IDN/R&D/Firms offering formal training (% of firms)", + "World/Asia/IND/R&D/Firms offering formal training (% of firms)", + "World/South Africa/LBR/R&D/Firms offering formal training (% of firms)", + "World/North Africa/MAR/R&D/Firms offering formal training (% of firms)", + "World/Latam/MEX/R&D/Firms offering formal training (% of firms)", + "World/South Africa/MOZ/R&D/Firms offering formal training (% of firms)", + "World/South Africa/NGA/R&D/Firms offering formal training (% of firms)", + "World/Latam/PAN/R&D/Firms offering formal training (% of firms)", + "World/Latam/PER/R&D/Firms offering formal training (% of firms)", + "World/Asia/PHL/R&D/Firms offering formal training (% of firms)", + "World/Europe/POL/R&D/Firms offering formal training (% of firms)", + "World/South Africa/SEN/R&D/Firms offering formal training (% of firms)", + "World/Asia/THA/R&D/Firms offering formal training (% of firms)", + "World/North Africa/TUR/R&D/Firms offering formal training (% of firms)", + "World/Latam/VEN/R&D/Firms offering formal training (% of firms)", + "World/Asia/VNM/R&D/Firms offering formal training (% of firms)", + "World/Persian Gulf/YEM/R&D/Firms offering formal training (% of firms)", + "World/South Africa/ZAF/R&D/Firms offering formal training (% of firms)", + "World/Latam/ARG/Economy/Firms using banks to finance investment (% of firms)", + "World/Persian Gulf/AZE/Economy/Firms using banks to finance investment (% of firms)", + "World/Asia/BGD/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/CHL/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/CMR/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/COL/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/CRI/Economy/Firms using banks to finance investment (% of firms)", + "World/North Africa/EGY/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/GHA/Economy/Firms using banks to finance investment (% of firms)", + "World/Europe/GRC/Economy/Firms using banks to finance investment (% of firms)", + "World/Asia/IDN/Economy/Firms using banks to finance investment (% of firms)", + "World/Asia/IND/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/LBR/Economy/Firms using banks to finance investment (% of firms)", + "World/North Africa/MAR/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/MEX/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/MOZ/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/NGA/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/PAN/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/PER/Economy/Firms using banks to finance investment (% of firms)", + "World/Asia/PHL/Economy/Firms using banks to finance investment (% of firms)", + "World/Europe/POL/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/SEN/Economy/Firms using banks to finance investment (% of firms)", + "World/Asia/THA/Economy/Firms using banks to finance investment (% of firms)", + "World/North Africa/TUR/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/VEN/Economy/Firms using banks to finance investment (% of firms)", + "World/Asia/VNM/Economy/Firms using banks to finance investment (% of firms)", + "World/Persian Gulf/YEM/Economy/Firms using banks to finance investment (% of firms)", + "World/South Africa/ZAF/Economy/Firms using banks to finance investment (% of firms)", + "World/Latam/ARG/Economy/Firms using banks to finance working capital (% of firms)", + "World/Persian Gulf/AZE/Economy/Firms using banks to finance working capital (% of firms)", + "World/Asia/BGD/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/CHL/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/CMR/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/COL/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/CRI/Economy/Firms using banks to finance working capital (% of firms)", + "World/North Africa/EGY/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/GHA/Economy/Firms using banks to finance working capital (% of firms)", + "World/Europe/GRC/Economy/Firms using banks to finance working capital (% of firms)", + "World/Asia/IDN/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/LBR/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/MEX/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/MOZ/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/NGA/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/PAN/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/PER/Economy/Firms using banks to finance working capital (% of firms)", + "World/Asia/PHL/Economy/Firms using banks to finance working capital (% of firms)", + "World/Europe/POL/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/SEN/Economy/Firms using banks to finance working capital (% of firms)", + "World/Asia/THA/Economy/Firms using banks to finance working capital (% of firms)", + "World/North Africa/TUR/Economy/Firms using banks to finance working capital (% of firms)", + "World/Latam/VEN/Economy/Firms using banks to finance working capital (% of firms)", + "World/Asia/VNM/Economy/Firms using banks to finance working capital (% of firms)", + "World/Persian Gulf/YEM/Economy/Firms using banks to finance working capital (% of firms)", + "World/South Africa/ZAF/Economy/Firms using banks to finance working capital (% of firms)", + "World/Persian Gulf/ARE/Internet/Fixed broadband subscriptions", + "World/Latam/ARG/Internet/Fixed broadband subscriptions", + "World/Europe/AUT/Internet/Fixed broadband subscriptions", + "World/Persian Gulf/AZE/Internet/Fixed broadband subscriptions", + "World/Asia/BGD/Internet/Fixed broadband subscriptions", + "World/Latam/BRA/Internet/Fixed broadband subscriptions", + "World/Latam/CHL/Internet/Fixed broadband subscriptions", + "World/Pair/CHN/Internet/Fixed broadband subscriptions", + "World/South Africa/CMR/Internet/Fixed broadband subscriptions", + "World/Latam/COL/Internet/Fixed broadband subscriptions", + "World/Latam/CRI/Internet/Fixed broadband subscriptions", + "World/Europe/DEU/Internet/Fixed broadband subscriptions", + "World/North Africa/DZA/Internet/Fixed broadband subscriptions", + "World/North Africa/EGY/Internet/Fixed broadband subscriptions", + "World/Europe/ESP/Internet/Fixed broadband subscriptions", + "World/Europe/FRA/Internet/Fixed broadband subscriptions", + "World/Europe/GBR/Internet/Fixed broadband subscriptions", + "World/South Africa/GHA/Internet/Fixed broadband subscriptions", + "World/Europe/GRC/Internet/Fixed broadband subscriptions", + "World/Europe/HRV/Internet/Fixed broadband subscriptions", + "World/Asia/IDN/Internet/Fixed broadband subscriptions", + "World/Asia/IND/Internet/Fixed broadband subscriptions", + "World/North Africa/ISR/Internet/Fixed broadband subscriptions", + "World/Asia/KOR/Internet/Fixed broadband subscriptions", + "World/South Africa/LBR/Internet/Fixed broadband subscriptions", + "World/North Africa/MAR/Internet/Fixed broadband subscriptions", + "World/Latam/MEX/Internet/Fixed broadband subscriptions", + "World/South Africa/MOZ/Internet/Fixed broadband subscriptions", + "World/Europe/NLD/Internet/Fixed broadband subscriptions", + "World/Persian Gulf/OMN/Internet/Fixed broadband subscriptions", + "World/Latam/PAN/Internet/Fixed broadband subscriptions", + "World/Latam/PER/Internet/Fixed broadband subscriptions", + "World/Asia/PHL/Internet/Fixed broadband subscriptions", + "World/Europe/POL/Internet/Fixed broadband subscriptions", + "World/Persian Gulf/QAT/Internet/Fixed broadband subscriptions", + "World/Persian Gulf/SAU/Internet/Fixed broadband subscriptions", + "World/South Africa/SEN/Internet/Fixed broadband subscriptions", + "World/Europe/SWE/Internet/Fixed broadband subscriptions", + "World/Asia/THA/Internet/Fixed broadband subscriptions", + "World/North Africa/TUR/Internet/Fixed broadband subscriptions", + "World/Pair/USA/Internet/Fixed broadband subscriptions", + "World/Latam/VEN/Internet/Fixed broadband subscriptions", + "World/Asia/VNM/Internet/Fixed broadband subscriptions", + "World/Persian Gulf/YEM/Internet/Fixed broadband subscriptions", + "World/South Africa/ZAF/Internet/Fixed broadband subscriptions", + "World/Persian Gulf/ARE/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/ARG/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/AUT/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Persian Gulf/AZE/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/BGD/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/BRA/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/CHL/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Pair/CHN/Internet/Fixed broadband subscriptions (per 100 people)", + "World/South Africa/CMR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/COL/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/CRI/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/DEU/Internet/Fixed broadband subscriptions (per 100 people)", + "World/North Africa/DZA/Internet/Fixed broadband subscriptions (per 100 people)", + "World/North Africa/EGY/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/ESP/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/FRA/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/GBR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/South Africa/GHA/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/GRC/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/HRV/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/IDN/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/IND/Internet/Fixed broadband subscriptions (per 100 people)", + "World/North Africa/ISR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/KOR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/South Africa/LBR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/North Africa/MAR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/MEX/Internet/Fixed broadband subscriptions (per 100 people)", + "World/South Africa/MOZ/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/NLD/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Persian Gulf/OMN/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/PAN/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/PER/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/PHL/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/POL/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Persian Gulf/QAT/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Persian Gulf/SAU/Internet/Fixed broadband subscriptions (per 100 people)", + "World/South Africa/SEN/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Europe/SWE/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/THA/Internet/Fixed broadband subscriptions (per 100 people)", + "World/North Africa/TUR/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Pair/USA/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Latam/VEN/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Asia/VNM/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Persian Gulf/YEM/Internet/Fixed broadband subscriptions (per 100 people)", + "World/South Africa/ZAF/Internet/Fixed broadband subscriptions (per 100 people)", + "World/Persian Gulf/ARE/Industry/Food production index (2014-2016 = 100)", + "World/Persian Gulf/AZE/Industry/Food production index (2014-2016 = 100)", + "World/Asia/BGD/Industry/Food production index (2014-2016 = 100)", + "World/Latam/BRA/Industry/Food production index (2014-2016 = 100)", + "World/Latam/CHL/Industry/Food production index (2014-2016 = 100)", + "World/Pair/CHN/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/CMR/Industry/Food production index (2014-2016 = 100)", + "World/Latam/COL/Industry/Food production index (2014-2016 = 100)", + "World/Latam/CRI/Industry/Food production index (2014-2016 = 100)", + "World/North Africa/DZA/Industry/Food production index (2014-2016 = 100)", + "World/North Africa/EGY/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/GHA/Industry/Food production index (2014-2016 = 100)", + "World/Asia/IDN/Industry/Food production index (2014-2016 = 100)", + "World/Asia/IND/Industry/Food production index (2014-2016 = 100)", + "World/North Africa/ISR/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/LBR/Industry/Food production index (2014-2016 = 100)", + "World/North Africa/MAR/Industry/Food production index (2014-2016 = 100)", + "World/Latam/MEX/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/MOZ/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/NGA/Industry/Food production index (2014-2016 = 100)", + "World/Europe/NLD/Industry/Food production index (2014-2016 = 100)", + "World/Persian Gulf/OMN/Industry/Food production index (2014-2016 = 100)", + "World/Latam/PAN/Industry/Food production index (2014-2016 = 100)", + "World/Latam/PER/Industry/Food production index (2014-2016 = 100)", + "World/Asia/PHL/Industry/Food production index (2014-2016 = 100)", + "World/Europe/POL/Industry/Food production index (2014-2016 = 100)", + "World/Persian Gulf/QAT/Industry/Food production index (2014-2016 = 100)", + "World/Persian Gulf/SAU/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/SEN/Industry/Food production index (2014-2016 = 100)", + "World/Asia/THA/Industry/Food production index (2014-2016 = 100)", + "World/North Africa/TUR/Industry/Food production index (2014-2016 = 100)", + "World/Pair/USA/Industry/Food production index (2014-2016 = 100)", + "World/Asia/VNM/Industry/Food production index (2014-2016 = 100)", + "World/Persian Gulf/YEM/Industry/Food production index (2014-2016 = 100)", + "World/South Africa/ZAF/Industry/Food production index (2014-2016 = 100)", + "World/Persian Gulf/ARE/Demography/Forest area (% of land area)", + "World/Latam/ARG/Demography/Forest area (% of land area)", + "World/Europe/AUT/Demography/Forest area (% of land area)", + "World/Persian Gulf/AZE/Demography/Forest area (% of land area)", + "World/Asia/BGD/Demography/Forest area (% of land area)", + "World/Latam/BRA/Demography/Forest area (% of land area)", + "World/Latam/CHL/Demography/Forest area (% of land area)", + "World/Pair/CHN/Demography/Forest area (% of land area)", + "World/South Africa/CMR/Demography/Forest area (% of land area)", + "World/Latam/COL/Demography/Forest area (% of land area)", + "World/Latam/CRI/Demography/Forest area (% of land area)", + "World/North Africa/DZA/Demography/Forest area (% of land area)", + "World/North Africa/EGY/Demography/Forest area (% of land area)", + "World/Europe/ESP/Demography/Forest area (% of land area)", + "World/Europe/FRA/Demography/Forest area (% of land area)", + "World/Europe/GBR/Demography/Forest area (% of land area)", + "World/Europe/GRC/Demography/Forest area (% of land area)", + "World/Europe/HRV/Demography/Forest area (% of land area)", + "World/Asia/IDN/Demography/Forest area (% of land area)", + "World/Asia/IND/Demography/Forest area (% of land area)", + "World/Asia/KOR/Demography/Forest area (% of land area)", + "World/South Africa/LBR/Demography/Forest area (% of land area)", + "World/North Africa/MAR/Demography/Forest area (% of land area)", + "World/Latam/MEX/Demography/Forest area (% of land area)", + "World/South Africa/MOZ/Demography/Forest area (% of land area)", + "World/South Africa/NGA/Demography/Forest area (% of land area)", + "World/Europe/NLD/Demography/Forest area (% of land area)", + "World/Latam/PAN/Demography/Forest area (% of land area)", + "World/Latam/PER/Demography/Forest area (% of land area)", + "World/Europe/POL/Demography/Forest area (% of land area)", + "World/South Africa/SEN/Demography/Forest area (% of land area)", + "World/North Africa/TUR/Demography/Forest area (% of land area)", + "World/Pair/USA/Demography/Forest area (% of land area)", + "World/Latam/VEN/Demography/Forest area (% of land area)", + "World/Asia/VNM/Demography/Forest area (% of land area)", + "World/South Africa/ZAF/Demography/Forest area (% of land area)", + "World/Persian Gulf/ARE/Principal/GDP deflator (base year varies by country)", + "World/Europe/AUT/Principal/GDP deflator (base year varies by country)", + "World/Persian Gulf/AZE/Principal/GDP deflator (base year varies by country)", + "World/Asia/BGD/Principal/GDP deflator (base year varies by country)", + "World/Latam/BRA/Principal/GDP deflator (base year varies by country)", + "World/Latam/CHL/Principal/GDP deflator (base year varies by country)", + "World/Pair/CHN/Principal/GDP deflator (base year varies by country)", + "World/South Africa/CMR/Principal/GDP deflator (base year varies by country)", + "World/Latam/COL/Principal/GDP deflator (base year varies by country)", + "World/Latam/CRI/Principal/GDP deflator (base year varies by country)", + "World/Europe/DEU/Principal/GDP deflator (base year varies by country)", + "World/North Africa/DZA/Principal/GDP deflator (base year varies by country)", + "World/North Africa/EGY/Principal/GDP deflator (base year varies by country)", + "World/Europe/ESP/Principal/GDP deflator (base year varies by country)", + "World/Europe/FRA/Principal/GDP deflator (base year varies by country)", + "World/Europe/GBR/Principal/GDP deflator (base year varies by country)", + "World/South Africa/GHA/Principal/GDP deflator (base year varies by country)", + "World/Europe/GRC/Principal/GDP deflator (base year varies by country)", + "World/Europe/HRV/Principal/GDP deflator (base year varies by country)", + "World/Asia/IDN/Principal/GDP deflator (base year varies by country)", + "World/Asia/IND/Principal/GDP deflator (base year varies by country)", + "World/North Africa/ISR/Principal/GDP deflator (base year varies by country)", + "World/Asia/KOR/Principal/GDP deflator (base year varies by country)", + "World/South Africa/LBR/Principal/GDP deflator (base year varies by country)", + "World/North Africa/MAR/Principal/GDP deflator (base year varies by country)", + "World/Latam/MEX/Principal/GDP deflator (base year varies by country)", + "World/South Africa/MOZ/Principal/GDP deflator (base year varies by country)", + "World/South Africa/NGA/Principal/GDP deflator (base year varies by country)", + "World/Europe/NLD/Principal/GDP deflator (base year varies by country)", + "World/Persian Gulf/OMN/Principal/GDP deflator (base year varies by country)", + "World/Latam/PAN/Principal/GDP deflator (base year varies by country)", + "World/Latam/PER/Principal/GDP deflator (base year varies by country)", + "World/Asia/PHL/Principal/GDP deflator (base year varies by country)", + "World/Europe/POL/Principal/GDP deflator (base year varies by country)", + "World/Persian Gulf/QAT/Principal/GDP deflator (base year varies by country)", + "World/Persian Gulf/SAU/Principal/GDP deflator (base year varies by country)", + "World/South Africa/SEN/Principal/GDP deflator (base year varies by country)", + "World/Asia/THA/Principal/GDP deflator (base year varies by country)", + "World/North Africa/TUR/Principal/GDP deflator (base year varies by country)", + "World/Pair/USA/Principal/GDP deflator (base year varies by country)", + "World/Latam/VEN/Principal/GDP deflator (base year varies by country)", + "World/Asia/VNM/Principal/GDP deflator (base year varies by country)", + "World/Persian Gulf/YEM/Principal/GDP deflator (base year varies by country)", + "World/South Africa/ZAF/Principal/GDP deflator (base year varies by country)", + "World/Persian Gulf/ARE/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/AUT/Principal/GDP deflator: linked series (base year varies by country)", + "World/Persian Gulf/AZE/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/BGD/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/BRA/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/CHL/Principal/GDP deflator: linked series (base year varies by country)", + "World/Pair/CHN/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/CMR/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/COL/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/CRI/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/DEU/Principal/GDP deflator: linked series (base year varies by country)", + "World/North Africa/DZA/Principal/GDP deflator: linked series (base year varies by country)", + "World/North Africa/EGY/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/ESP/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/FRA/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/GBR/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/GHA/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/GRC/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/HRV/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/IDN/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/IND/Principal/GDP deflator: linked series (base year varies by country)", + "World/North Africa/ISR/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/KOR/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/LBR/Principal/GDP deflator: linked series (base year varies by country)", + "World/North Africa/MAR/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/MEX/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/MOZ/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/NGA/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/NLD/Principal/GDP deflator: linked series (base year varies by country)", + "World/Persian Gulf/OMN/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/PAN/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/PER/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/PHL/Principal/GDP deflator: linked series (base year varies by country)", + "World/Europe/POL/Principal/GDP deflator: linked series (base year varies by country)", + "World/Persian Gulf/QAT/Principal/GDP deflator: linked series (base year varies by country)", + "World/Persian Gulf/SAU/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/SEN/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/THA/Principal/GDP deflator: linked series (base year varies by country)", + "World/North Africa/TUR/Principal/GDP deflator: linked series (base year varies by country)", + "World/Pair/USA/Principal/GDP deflator: linked series (base year varies by country)", + "World/Latam/VEN/Principal/GDP deflator: linked series (base year varies by country)", + "World/Asia/VNM/Principal/GDP deflator: linked series (base year varies by country)", + "World/Persian Gulf/YEM/Principal/GDP deflator: linked series (base year varies by country)", + "World/South Africa/ZAF/Principal/GDP deflator: linked series (base year varies by country)", + "World/Persian Gulf/ARE/Principal/GDP per capita (current US$)", + "World/Latam/ARG/Principal/GDP per capita (current US$)", + "World/Europe/AUT/Principal/GDP per capita (current US$)", + "World/Persian Gulf/AZE/Principal/GDP per capita (current US$)", + "World/Asia/BGD/Principal/GDP per capita (current US$)", + "World/Latam/BRA/Principal/GDP per capita (current US$)", + "World/Latam/CHL/Principal/GDP per capita (current US$)", + "World/Pair/CHN/Principal/GDP per capita (current US$)", + "World/South Africa/CMR/Principal/GDP per capita (current US$)", + "World/Latam/COL/Principal/GDP per capita (current US$)", + "World/Latam/CRI/Principal/GDP per capita (current US$)", + "World/Europe/DEU/Principal/GDP per capita (current US$)", + "World/North Africa/DZA/Principal/GDP per capita (current US$)", + "World/North Africa/EGY/Principal/GDP per capita (current US$)", + "World/Europe/ESP/Principal/GDP per capita (current US$)", + "World/Europe/FRA/Principal/GDP per capita (current US$)", + "World/Europe/GBR/Principal/GDP per capita (current US$)", + "World/South Africa/GHA/Principal/GDP per capita (current US$)", + "World/Europe/GRC/Principal/GDP per capita (current US$)", + "World/Europe/HRV/Principal/GDP per capita (current US$)", + "World/Asia/IDN/Principal/GDP per capita (current US$)", + "World/Asia/IND/Principal/GDP per capita (current US$)", + "World/Persian Gulf/IRQ/Principal/GDP per capita (current US$)", + "World/North Africa/ISR/Principal/GDP per capita (current US$)", + "World/Asia/KOR/Principal/GDP per capita (current US$)", + "World/North Africa/MAR/Principal/GDP per capita (current US$)", + "World/Latam/MEX/Principal/GDP per capita (current US$)", + "World/South Africa/MOZ/Principal/GDP per capita (current US$)", + "World/South Africa/NGA/Principal/GDP per capita (current US$)", + "World/Europe/NLD/Principal/GDP per capita (current US$)", + "World/Persian Gulf/OMN/Principal/GDP per capita (current US$)", + "World/Latam/PAN/Principal/GDP per capita (current US$)", + "World/Latam/PER/Principal/GDP per capita (current US$)", + "World/Asia/PHL/Principal/GDP per capita (current US$)", + "World/Europe/POL/Principal/GDP per capita (current US$)", + "World/Persian Gulf/QAT/Principal/GDP per capita (current US$)", + "World/Persian Gulf/SAU/Principal/GDP per capita (current US$)", + "World/South Africa/SEN/Principal/GDP per capita (current US$)", + "World/Europe/SWE/Principal/GDP per capita (current US$)", + "World/Asia/THA/Principal/GDP per capita (current US$)", + "World/North Africa/TUR/Principal/GDP per capita (current US$)", + "World/Pair/USA/Principal/GDP per capita (current US$)", + "World/Latam/VEN/Principal/GDP per capita (current US$)", + "World/Asia/VNM/Principal/GDP per capita (current US$)", + "World/Persian Gulf/YEM/Principal/GDP per capita (current US$)", + "World/South Africa/ZAF/Principal/GDP per capita (current US$)", + "World/Persian Gulf/ARE/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/ARG/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Persian Gulf/AZE/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/BGD/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/BRA/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/CHL/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Pair/CHN/Principal/GDP per person employed (constant 2017 PPP $)", + "World/South Africa/CMR/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/COL/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/CRI/Principal/GDP per person employed (constant 2017 PPP $)", + "World/North Africa/EGY/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Europe/FRA/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Europe/GBR/Principal/GDP per person employed (constant 2017 PPP $)", + "World/South Africa/GHA/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Europe/GRC/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/IDN/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/IND/Principal/GDP per person employed (constant 2017 PPP $)", + "World/North Africa/ISR/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/KOR/Principal/GDP per person employed (constant 2017 PPP $)", + "World/North Africa/MAR/Principal/GDP per person employed (constant 2017 PPP $)", + "World/South Africa/MOZ/Principal/GDP per person employed (constant 2017 PPP $)", + "World/South Africa/NGA/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Persian Gulf/OMN/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/PAN/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/PER/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/PHL/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Europe/POL/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Persian Gulf/QAT/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Persian Gulf/SAU/Principal/GDP per person employed (constant 2017 PPP $)", + "World/South Africa/SEN/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/THA/Principal/GDP per person employed (constant 2017 PPP $)", + "World/North Africa/TUR/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Pair/USA/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Asia/VNM/Principal/GDP per person employed (constant 2017 PPP $)", + "World/South Africa/ZAF/Principal/GDP per person employed (constant 2017 PPP $)", + "World/Latam/ARG/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/AUT/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Persian Gulf/AZE/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/BGD/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Latam/BRA/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Latam/CHL/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Pair/CHN/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/South Africa/CMR/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Latam/COL/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Latam/CRI/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/DEU/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/North Africa/EGY/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/ESP/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/FRA/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/GBR/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/South Africa/GHA/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/HRV/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/IDN/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/IND/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/North Africa/ISR/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/KOR/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/North Africa/MAR/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Latam/MEX/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/South Africa/MOZ/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/South Africa/NGA/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/NLD/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Latam/PAN/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/PHL/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/POL/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/SWE/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/THA/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/North Africa/TUR/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Pair/USA/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Asia/VNM/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/South Africa/ZAF/Principal/GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "World/Europe/AUT/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Persian Gulf/AZE/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Asia/BGD/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Pair/CHN/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/South Africa/CMR/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Latam/COL/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Latam/CRI/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/DEU/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/North Africa/DZA/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/ESP/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/FRA/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/GBR/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/South Africa/GHA/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/HRV/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Asia/IDN/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Asia/IND/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/North Africa/ISR/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Asia/KOR/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Latam/MEX/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/South Africa/MOZ/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/South Africa/NGA/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/NLD/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Latam/PAN/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Asia/PHL/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/POL/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Persian Gulf/SAU/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Europe/SWE/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/North Africa/TUR/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Pair/USA/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/South Africa/ZAF/principal/GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "World/Persian Gulf/ARE/Economy/GNI (current US$)", + "World/Latam/ARG/Economy/GNI (current US$)", + "World/Europe/AUT/Economy/GNI (current US$)", + "World/Persian Gulf/AZE/Economy/GNI (current US$)", + "World/Asia/BGD/Economy/GNI (current US$)", + "World/Latam/BRA/Economy/GNI (current US$)", + "World/Latam/CHL/Economy/GNI (current US$)", + "World/Pair/CHN/Economy/GNI (current US$)", + "World/South Africa/CMR/Economy/GNI (current US$)", + "World/Latam/COL/Economy/GNI (current US$)", + "World/Latam/CRI/Economy/GNI (current US$)", + "World/Europe/DEU/Economy/GNI (current US$)", + "World/North Africa/DZA/Economy/GNI (current US$)", + "World/North Africa/EGY/Economy/GNI (current US$)", + "World/Europe/ESP/Economy/GNI (current US$)", + "World/Europe/FRA/Economy/GNI (current US$)", + "World/Europe/GBR/Economy/GNI (current US$)", + "World/South Africa/GHA/Economy/GNI (current US$)", + "World/Europe/HRV/Economy/GNI (current US$)", + "World/Asia/IDN/Economy/GNI (current US$)", + "World/Asia/IND/Economy/GNI (current US$)", + "World/Persian Gulf/IRQ/Economy/GNI (current US$)", + "World/North Africa/ISR/Economy/GNI (current US$)", + "World/Asia/KOR/Economy/GNI (current US$)", + "World/South Africa/LBR/Economy/GNI (current US$)", + "World/North Africa/MAR/Economy/GNI (current US$)", + "World/Latam/MEX/Economy/GNI (current US$)", + "World/South Africa/MOZ/Economy/GNI (current US$)", + "World/South Africa/NGA/Economy/GNI (current US$)", + "World/Europe/NLD/Economy/GNI (current US$)", + "World/Persian Gulf/OMN/Economy/GNI (current US$)", + "World/Latam/PAN/Economy/GNI (current US$)", + "World/Latam/PER/Economy/GNI (current US$)", + "World/Asia/PHL/Economy/GNI (current US$)", + "World/Europe/POL/Economy/GNI (current US$)", + "World/Persian Gulf/QAT/Economy/GNI (current US$)", + "World/Persian Gulf/SAU/Economy/GNI (current US$)", + "World/South Africa/SEN/Economy/GNI (current US$)", + "World/Europe/SWE/Economy/GNI (current US$)", + "World/Asia/THA/Economy/GNI (current US$)", + "World/North Africa/TUR/Economy/GNI (current US$)", + "World/Pair/USA/Economy/GNI (current US$)", + "World/Latam/VEN/Economy/GNI (current US$)", + "World/Asia/VNM/Economy/GNI (current US$)", + "World/Persian Gulf/YEM/Economy/GNI (current US$)", + "World/South Africa/ZAF/Economy/GNI (current US$)", + "World/Persian Gulf/ARE/Economy/General government final consumption expenditure (current US$)", + "World/Latam/ARG/Economy/General government final consumption expenditure (current US$)", + "World/Europe/AUT/Economy/General government final consumption expenditure (current US$)", + "World/Persian Gulf/AZE/Economy/General government final consumption expenditure (current US$)", + "World/Asia/BGD/Economy/General government final consumption expenditure (current US$)", + "World/Latam/BRA/Economy/General government final consumption expenditure (current US$)", + "World/Latam/CHL/Economy/General government final consumption expenditure (current US$)", + "World/Pair/CHN/Economy/General government final consumption expenditure (current US$)", + "World/South Africa/CMR/Economy/General government final consumption expenditure (current US$)", + "World/Latam/COL/Economy/General government final consumption expenditure (current US$)", + "World/Latam/CRI/Economy/General government final consumption expenditure (current US$)", + "World/Europe/DEU/Economy/General government final consumption expenditure (current US$)", + "World/North Africa/DZA/Economy/General government final consumption expenditure (current US$)", + "World/North Africa/EGY/Economy/General government final consumption expenditure (current US$)", + "World/Europe/ESP/Economy/General government final consumption expenditure (current US$)", + "World/Europe/FRA/Economy/General government final consumption expenditure (current US$)", + "World/Europe/GBR/Economy/General government final consumption expenditure (current US$)", + "World/South Africa/GHA/Economy/General government final consumption expenditure (current US$)", + "World/Europe/GRC/Economy/General government final consumption expenditure (current US$)", + "World/Europe/HRV/Economy/General government final consumption expenditure (current US$)", + "World/Asia/IDN/Economy/General government final consumption expenditure (current US$)", + "World/Asia/IND/Economy/General government final consumption expenditure (current US$)", + "World/Persian Gulf/IRQ/Economy/General government final consumption expenditure (current US$)", + "World/North Africa/ISR/Economy/General government final consumption expenditure (current US$)", + "World/Asia/KOR/Economy/General government final consumption expenditure (current US$)", + "World/North Africa/MAR/Economy/General government final consumption expenditure (current US$)", + "World/Latam/MEX/Economy/General government final consumption expenditure (current US$)", + "World/South Africa/MOZ/Economy/General government final consumption expenditure (current US$)", + "World/South Africa/NGA/Economy/General government final consumption expenditure (current US$)", + "World/Europe/NLD/Economy/General government final consumption expenditure (current US$)", + "World/Persian Gulf/OMN/Economy/General government final consumption expenditure (current US$)", + "World/Latam/PAN/Economy/General government final consumption expenditure (current US$)", + "World/Latam/PER/Economy/General government final consumption expenditure (current US$)", + "World/Asia/PHL/Economy/General government final consumption expenditure (current US$)", + "World/Europe/POL/Economy/General government final consumption expenditure (current US$)", + "World/Persian Gulf/QAT/Economy/General government final consumption expenditure (current US$)", + "World/Persian Gulf/SAU/Economy/General government final consumption expenditure (current US$)", + "World/South Africa/SEN/Economy/General government final consumption expenditure (current US$)", + "World/Europe/SWE/Economy/General government final consumption expenditure (current US$)", + "World/Asia/THA/Economy/General government final consumption expenditure (current US$)", + "World/North Africa/TUR/Economy/General government final consumption expenditure (current US$)", + "World/Pair/USA/Economy/General government final consumption expenditure (current US$)", + "World/Latam/VEN/Economy/General government final consumption expenditure (current US$)", + "World/Asia/VNM/Economy/General government final consumption expenditure (current US$)", + "World/South Africa/ZAF/Economy/General government final consumption expenditure (current US$)", + "World/Europe/AUT/Exports/Goods exports (BoP, current US$)", + "World/Persian Gulf/AZE/Exports/Goods exports (BoP, current US$)", + "World/Asia/BGD/Exports/Goods exports (BoP, current US$)", + "World/Latam/BRA/Exports/Goods exports (BoP, current US$)", + "World/Latam/CHL/Exports/Goods exports (BoP, current US$)", + "World/Pair/CHN/Exports/Goods exports (BoP, current US$)", + "World/Latam/COL/Exports/Goods exports (BoP, current US$)", + "World/Latam/CRI/Exports/Goods exports (BoP, current US$)", + "World/Europe/DEU/Exports/Goods exports (BoP, current US$)", + "World/Europe/ESP/Exports/Goods exports (BoP, current US$)", + "World/Europe/FRA/Exports/Goods exports (BoP, current US$)", + "World/Europe/GBR/Exports/Goods exports (BoP, current US$)", + "World/South Africa/GHA/Exports/Goods exports (BoP, current US$)", + "World/Asia/IDN/Exports/Goods exports (BoP, current US$)", + "World/Asia/IND/Exports/Goods exports (BoP, current US$)", + "World/Persian Gulf/IRQ/Exports/Goods exports (BoP, current US$)", + "World/North Africa/ISR/Exports/Goods exports (BoP, current US$)", + "World/Asia/KOR/Exports/Goods exports (BoP, current US$)", + "World/South Africa/LBR/Exports/Goods exports (BoP, current US$)", + "World/North Africa/MAR/Exports/Goods exports (BoP, current US$)", + "World/Latam/MEX/Exports/Goods exports (BoP, current US$)", + "World/South Africa/MOZ/Exports/Goods exports (BoP, current US$)", + "World/Europe/NLD/Exports/Goods exports (BoP, current US$)", + "World/Persian Gulf/OMN/Exports/Goods exports (BoP, current US$)", + "World/Latam/PER/Exports/Goods exports (BoP, current US$)", + "World/Asia/PHL/Exports/Goods exports (BoP, current US$)", + "World/Europe/POL/Exports/Goods exports (BoP, current US$)", + "World/Persian Gulf/SAU/Exports/Goods exports (BoP, current US$)", + "World/South Africa/SEN/Exports/Goods exports (BoP, current US$)", + "World/Europe/SWE/Exports/Goods exports (BoP, current US$)", + "World/Asia/THA/Exports/Goods exports (BoP, current US$)", + "World/North Africa/TUR/Exports/Goods exports (BoP, current US$)", + "World/Pair/USA/Exports/Goods exports (BoP, current US$)", + "World/Latam/VEN/Exports/Goods exports (BoP, current US$)", + "World/Asia/VNM/Exports/Goods exports (BoP, current US$)", + "World/South Africa/ZAF/Exports/Goods exports (BoP, current US$)", + "World/Latam/ARG/Imports/Goods imports (BoP, current US$)", + "World/Europe/AUT/Imports/Goods imports (BoP, current US$)", + "World/Persian Gulf/AZE/Imports/Goods imports (BoP, current US$)", + "World/Asia/BGD/Imports/Goods imports (BoP, current US$)", + "World/Latam/BRA/Imports/Goods imports (BoP, current US$)", + "World/Latam/CHL/Imports/Goods imports (BoP, current US$)", + "World/Pair/CHN/Imports/Goods imports (BoP, current US$)", + "World/Latam/COL/Imports/Goods imports (BoP, current US$)", + "World/Latam/CRI/Imports/Goods imports (BoP, current US$)", + "World/Europe/DEU/Imports/Goods imports (BoP, current US$)", + "World/North Africa/DZA/Imports/Goods imports (BoP, current US$)", + "World/North Africa/EGY/Imports/Goods imports (BoP, current US$)", + "World/Europe/ESP/Imports/Goods imports (BoP, current US$)", + "World/Europe/FRA/Imports/Goods imports (BoP, current US$)", + "World/Europe/GBR/Imports/Goods imports (BoP, current US$)", + "World/South Africa/GHA/Imports/Goods imports (BoP, current US$)", + "World/Europe/GRC/Imports/Goods imports (BoP, current US$)", + "World/Europe/HRV/Imports/Goods imports (BoP, current US$)", + "World/Asia/IDN/Imports/Goods imports (BoP, current US$)", + "World/Asia/IND/Imports/Goods imports (BoP, current US$)", + "World/North Africa/ISR/Imports/Goods imports (BoP, current US$)", + "World/Asia/KOR/Imports/Goods imports (BoP, current US$)", + "World/South Africa/LBR/Imports/Goods imports (BoP, current US$)", + "World/North Africa/MAR/Imports/Goods imports (BoP, current US$)", + "World/Latam/MEX/Imports/Goods imports (BoP, current US$)", + "World/South Africa/MOZ/Imports/Goods imports (BoP, current US$)", + "World/South Africa/NGA/Imports/Goods imports (BoP, current US$)", + "World/Europe/NLD/Imports/Goods imports (BoP, current US$)", + "World/Persian Gulf/OMN/Imports/Goods imports (BoP, current US$)", + "World/Latam/PER/Imports/Goods imports (BoP, current US$)", + "World/Asia/PHL/Imports/Goods imports (BoP, current US$)", + "World/Europe/POL/Imports/Goods imports (BoP, current US$)", + "World/Persian Gulf/SAU/Imports/Goods imports (BoP, current US$)", + "World/South Africa/SEN/Imports/Goods imports (BoP, current US$)", + "World/Europe/SWE/Imports/Goods imports (BoP, current US$)", + "World/Asia/THA/Imports/Goods imports (BoP, current US$)", + "World/North Africa/TUR/Imports/Goods imports (BoP, current US$)", + "World/Pair/USA/Imports/Goods imports (BoP, current US$)", + "World/Asia/VNM/Imports/Goods imports (BoP, current US$)", + "World/Persian Gulf/YEM/Imports/Goods imports (BoP, current US$)", + "World/South Africa/ZAF/Imports/Goods imports (BoP, current US$)", + "World/Persian Gulf/ARE/Economy/Gross capital formation (current US$)", + "World/Latam/ARG/Economy/Gross capital formation (current US$)", + "World/Europe/AUT/Economy/Gross capital formation (current US$)", + "World/Persian Gulf/AZE/Economy/Gross capital formation (current US$)", + "World/Asia/BGD/Economy/Gross capital formation (current US$)", + "World/Latam/BRA/Economy/Gross capital formation (current US$)", + "World/Latam/CHL/Economy/Gross capital formation (current US$)", + "World/Pair/CHN/Economy/Gross capital formation (current US$)", + "World/South Africa/CMR/Economy/Gross capital formation (current US$)", + "World/Latam/COL/Economy/Gross capital formation (current US$)", + "World/Latam/CRI/Economy/Gross capital formation (current US$)", + "World/Europe/DEU/Economy/Gross capital formation (current US$)", + "World/North Africa/DZA/Economy/Gross capital formation (current US$)", + "World/North Africa/EGY/Economy/Gross capital formation (current US$)", + "World/Europe/ESP/Economy/Gross capital formation (current US$)", + "World/Europe/FRA/Economy/Gross capital formation (current US$)", + "World/Europe/GBR/Economy/Gross capital formation (current US$)", + "World/South Africa/GHA/Economy/Gross capital formation (current US$)", + "World/Europe/HRV/Economy/Gross capital formation (current US$)", + "World/Asia/IDN/Economy/Gross capital formation (current US$)", + "World/Asia/IND/Economy/Gross capital formation (current US$)", + "World/North Africa/ISR/Economy/Gross capital formation (current US$)", + "World/Asia/KOR/Economy/Gross capital formation (current US$)", + "World/North Africa/MAR/Economy/Gross capital formation (current US$)", + "World/Latam/MEX/Economy/Gross capital formation (current US$)", + "World/South Africa/MOZ/Economy/Gross capital formation (current US$)", + "World/South Africa/NGA/Economy/Gross capital formation (current US$)", + "World/Europe/NLD/Economy/Gross capital formation (current US$)", + "World/Persian Gulf/OMN/Economy/Gross capital formation (current US$)", + "World/Latam/PAN/Economy/Gross capital formation (current US$)", + "World/Latam/PER/Economy/Gross capital formation (current US$)", + "World/Asia/PHL/Economy/Gross capital formation (current US$)", + "World/Europe/POL/Economy/Gross capital formation (current US$)", + "World/Persian Gulf/QAT/Economy/Gross capital formation (current US$)", + "World/Persian Gulf/SAU/Economy/Gross capital formation (current US$)", + "World/South Africa/SEN/Economy/Gross capital formation (current US$)", + "World/Europe/SWE/Economy/Gross capital formation (current US$)", + "World/Asia/THA/Economy/Gross capital formation (current US$)", + "World/North Africa/TUR/Economy/Gross capital formation (current US$)", + "World/Pair/USA/Economy/Gross capital formation (current US$)", + "World/Latam/VEN/Economy/Gross capital formation (current US$)", + "World/Asia/VNM/Economy/Gross capital formation (current US$)", + "World/South Africa/ZAF/Economy/Gross capital formation (current US$)", + "World/Persian Gulf/ARE/Economy/Gross domestic savings (current US$)", + "World/Latam/ARG/Economy/Gross domestic savings (current US$)", + "World/Europe/AUT/Economy/Gross domestic savings (current US$)", + "World/Persian Gulf/AZE/Economy/Gross domestic savings (current US$)", + "World/Asia/BGD/Economy/Gross domestic savings (current US$)", + "World/Latam/BRA/Economy/Gross domestic savings (current US$)", + "World/Latam/CHL/Economy/Gross domestic savings (current US$)", + "World/Pair/CHN/Economy/Gross domestic savings (current US$)", + "World/South Africa/CMR/Economy/Gross domestic savings (current US$)", + "World/Latam/COL/Economy/Gross domestic savings (current US$)", + "World/Latam/CRI/Economy/Gross domestic savings (current US$)", + "World/Europe/DEU/Economy/Gross domestic savings (current US$)", + "World/North Africa/DZA/Economy/Gross domestic savings (current US$)", + "World/Europe/ESP/Economy/Gross domestic savings (current US$)", + "World/Europe/FRA/Economy/Gross domestic savings (current US$)", + "World/Europe/GBR/Economy/Gross domestic savings (current US$)", + "World/Europe/HRV/Economy/Gross domestic savings (current US$)", + "World/Asia/IDN/Economy/Gross domestic savings (current US$)", + "World/Asia/IND/Economy/Gross domestic savings (current US$)", + "World/Persian Gulf/IRQ/Economy/Gross domestic savings (current US$)", + "World/North Africa/ISR/Economy/Gross domestic savings (current US$)", + "World/Asia/KOR/Economy/Gross domestic savings (current US$)", + "World/North Africa/MAR/Economy/Gross domestic savings (current US$)", + "World/Latam/MEX/Economy/Gross domestic savings (current US$)", + "World/South Africa/NGA/Economy/Gross domestic savings (current US$)", + "World/Europe/NLD/Economy/Gross domestic savings (current US$)", + "World/Persian Gulf/OMN/Economy/Gross domestic savings (current US$)", + "World/Latam/PAN/Economy/Gross domestic savings (current US$)", + "World/Latam/PER/Economy/Gross domestic savings (current US$)", + "World/Asia/PHL/Economy/Gross domestic savings (current US$)", + "World/Europe/POL/Economy/Gross domestic savings (current US$)", + "World/Persian Gulf/QAT/Economy/Gross domestic savings (current US$)", + "World/Persian Gulf/SAU/Economy/Gross domestic savings (current US$)", + "World/South Africa/SEN/Economy/Gross domestic savings (current US$)", + "World/Europe/SWE/Economy/Gross domestic savings (current US$)", + "World/Asia/THA/Economy/Gross domestic savings (current US$)", + "World/North Africa/TUR/Economy/Gross domestic savings (current US$)", + "World/Pair/USA/Economy/Gross domestic savings (current US$)", + "World/Asia/VNM/Economy/Gross domestic savings (current US$)", + "World/South Africa/ZAF/Economy/Gross domestic savings (current US$)", + "World/Persian Gulf/ARE/Economy/Gross fixed capital formation (current US$)", + "World/Latam/ARG/Economy/Gross fixed capital formation (current US$)", + "World/Europe/AUT/Economy/Gross fixed capital formation (current US$)", + "World/Persian Gulf/AZE/Economy/Gross fixed capital formation (current US$)", + "World/Asia/BGD/Economy/Gross fixed capital formation (current US$)", + "World/Latam/BRA/Economy/Gross fixed capital formation (current US$)", + "World/Latam/CHL/Economy/Gross fixed capital formation (current US$)", + "World/Pair/CHN/Economy/Gross fixed capital formation (current US$)", + "World/South Africa/CMR/Economy/Gross fixed capital formation (current US$)", + "World/Latam/COL/Economy/Gross fixed capital formation (current US$)", + "World/Latam/CRI/Economy/Gross fixed capital formation (current US$)", + "World/Europe/DEU/Economy/Gross fixed capital formation (current US$)", + "World/North Africa/DZA/Economy/Gross fixed capital formation (current US$)", + "World/North Africa/EGY/Economy/Gross fixed capital formation (current US$)", + "World/Europe/FRA/Economy/Gross fixed capital formation (current US$)", + "World/Europe/GBR/Economy/Gross fixed capital formation (current US$)", + "World/South Africa/GHA/Economy/Gross fixed capital formation (current US$)", + "World/Europe/HRV/Economy/Gross fixed capital formation (current US$)", + "World/Asia/IDN/Economy/Gross fixed capital formation (current US$)", + "World/Asia/IND/Economy/Gross fixed capital formation (current US$)", + "World/North Africa/ISR/Economy/Gross fixed capital formation (current US$)", + "World/Asia/KOR/Economy/Gross fixed capital formation (current US$)", + "World/North Africa/MAR/Economy/Gross fixed capital formation (current US$)", + "World/Latam/MEX/Economy/Gross fixed capital formation (current US$)", + "World/South Africa/MOZ/Economy/Gross fixed capital formation (current US$)", + "World/South Africa/NGA/Economy/Gross fixed capital formation (current US$)", + "World/Europe/NLD/Economy/Gross fixed capital formation (current US$)", + "World/Persian Gulf/OMN/Economy/Gross fixed capital formation (current US$)", + "World/Latam/PAN/Economy/Gross fixed capital formation (current US$)", + "World/Latam/PER/Economy/Gross fixed capital formation (current US$)", + "World/Asia/PHL/Economy/Gross fixed capital formation (current US$)", + "World/Europe/POL/Economy/Gross fixed capital formation (current US$)", + "World/Persian Gulf/SAU/Economy/Gross fixed capital formation (current US$)", + "World/South Africa/SEN/Economy/Gross fixed capital formation (current US$)", + "World/Europe/SWE/Economy/Gross fixed capital formation (current US$)", + "World/Asia/THA/Economy/Gross fixed capital formation (current US$)", + "World/North Africa/TUR/Economy/Gross fixed capital formation (current US$)", + "World/Pair/USA/Economy/Gross fixed capital formation (current US$)", + "World/Latam/VEN/Economy/Gross fixed capital formation (current US$)", + "World/Asia/VNM/Economy/Gross fixed capital formation (current US$)", + "World/South Africa/ZAF/Economy/Gross fixed capital formation (current US$)", + "World/Persian Gulf/ARE/Economy/Gross national expenditure (current US$)", + "World/Latam/ARG/Economy/Gross national expenditure (current US$)", + "World/Europe/AUT/Economy/Gross national expenditure (current US$)", + "World/Persian Gulf/AZE/Economy/Gross national expenditure (current US$)", + "World/Asia/BGD/Economy/Gross national expenditure (current US$)", + "World/Latam/BRA/Economy/Gross national expenditure (current US$)", + "World/Latam/CHL/Economy/Gross national expenditure (current US$)", + "World/Pair/CHN/Economy/Gross national expenditure (current US$)", + "World/South Africa/CMR/Economy/Gross national expenditure (current US$)", + "World/Latam/COL/Economy/Gross national expenditure (current US$)", + "World/Latam/CRI/Economy/Gross national expenditure (current US$)", + "World/Europe/DEU/Economy/Gross national expenditure (current US$)", + "World/North Africa/DZA/Economy/Gross national expenditure (current US$)", + "World/North Africa/EGY/Economy/Gross national expenditure (current US$)", + "World/Europe/ESP/Economy/Gross national expenditure (current US$)", + "World/Europe/FRA/Economy/Gross national expenditure (current US$)", + "World/Europe/GBR/Economy/Gross national expenditure (current US$)", + "World/South Africa/GHA/Economy/Gross national expenditure (current US$)", + "World/Europe/GRC/Economy/Gross national expenditure (current US$)", + "World/Europe/HRV/Economy/Gross national expenditure (current US$)", + "World/Asia/IDN/Economy/Gross national expenditure (current US$)", + "World/Asia/IND/Economy/Gross national expenditure (current US$)", + "World/Persian Gulf/IRQ/Economy/Gross national expenditure (current US$)", + "World/North Africa/ISR/Economy/Gross national expenditure (current US$)", + "World/Asia/KOR/Economy/Gross national expenditure (current US$)", + "World/North Africa/MAR/Economy/Gross national expenditure (current US$)", + "World/Latam/MEX/Economy/Gross national expenditure (current US$)", + "World/South Africa/MOZ/Economy/Gross national expenditure (current US$)", + "World/South Africa/NGA/Economy/Gross national expenditure (current US$)", + "World/Europe/NLD/Economy/Gross national expenditure (current US$)", + "World/Persian Gulf/OMN/Economy/Gross national expenditure (current US$)", + "World/Latam/PAN/Economy/Gross national expenditure (current US$)", + "World/Latam/PER/Economy/Gross national expenditure (current US$)", + "World/Asia/PHL/Economy/Gross national expenditure (current US$)", + "World/Europe/POL/Economy/Gross national expenditure (current US$)", + "World/Persian Gulf/QAT/Economy/Gross national expenditure (current US$)", + "World/Persian Gulf/SAU/Economy/Gross national expenditure (current US$)", + "World/South Africa/SEN/Economy/Gross national expenditure (current US$)", + "World/Europe/SWE/Economy/Gross national expenditure (current US$)", + "World/Asia/THA/Economy/Gross national expenditure (current US$)", + "World/North Africa/TUR/Economy/Gross national expenditure (current US$)", + "World/Pair/USA/Economy/Gross national expenditure (current US$)", + "World/Latam/VEN/Economy/Gross national expenditure (current US$)", + "World/Asia/VNM/Economy/Gross national expenditure (current US$)", + "World/South Africa/ZAF/Economy/Gross national expenditure (current US$)", + "World/Persian Gulf/ARE/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/AUT/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Persian Gulf/AZE/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Asia/BGD/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/BRA/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/CHL/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Pair/CHN/Economy/Gross national expenditure deflator (base year varies by country)", + "World/South Africa/CMR/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/COL/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/CRI/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/DEU/Economy/Gross national expenditure deflator (base year varies by country)", + "World/North Africa/DZA/Economy/Gross national expenditure deflator (base year varies by country)", + "World/North Africa/EGY/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/ESP/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/FRA/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/GBR/Economy/Gross national expenditure deflator (base year varies by country)", + "World/South Africa/GHA/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/GRC/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Asia/IND/Economy/Gross national expenditure deflator (base year varies by country)", + "World/North Africa/ISR/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Asia/KOR/Economy/Gross national expenditure deflator (base year varies by country)", + "World/North Africa/MAR/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/MEX/Economy/Gross national expenditure deflator (base year varies by country)", + "World/South Africa/MOZ/Economy/Gross national expenditure deflator (base year varies by country)", + "World/South Africa/NGA/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/NLD/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Persian Gulf/OMN/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/PAN/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/PER/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Asia/PHL/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Europe/POL/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Persian Gulf/SAU/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Pair/USA/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/VEN/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Asia/VNM/Economy/Gross national expenditure deflator (base year varies by country)", + "World/South Africa/ZAF/Economy/Gross national expenditure deflator (base year varies by country)", + "World/Latam/ARG/Economy/Gross savings (current US$)", + "World/Europe/AUT/Economy/Gross savings (current US$)", + "World/Persian Gulf/AZE/Economy/Gross savings (current US$)", + "World/Asia/BGD/Economy/Gross savings (current US$)", + "World/Latam/BRA/Economy/Gross savings (current US$)", + "World/Latam/CHL/Economy/Gross savings (current US$)", + "World/Pair/CHN/Economy/Gross savings (current US$)", + "World/South Africa/CMR/Economy/Gross savings (current US$)", + "World/Latam/COL/Economy/Gross savings (current US$)", + "World/Latam/CRI/Economy/Gross savings (current US$)", + "World/Europe/DEU/Economy/Gross savings (current US$)", + "World/North Africa/EGY/Economy/Gross savings (current US$)", + "World/Europe/ESP/Economy/Gross savings (current US$)", + "World/Europe/FRA/Economy/Gross savings (current US$)", + "World/Europe/GBR/Economy/Gross savings (current US$)", + "World/South Africa/GHA/Economy/Gross savings (current US$)", + "World/Europe/HRV/Economy/Gross savings (current US$)", + "World/Asia/IDN/Economy/Gross savings (current US$)", + "World/Asia/IND/Economy/Gross savings (current US$)", + "World/North Africa/ISR/Economy/Gross savings (current US$)", + "World/Asia/KOR/Economy/Gross savings (current US$)", + "World/North Africa/MAR/Economy/Gross savings (current US$)", + "World/Latam/MEX/Economy/Gross savings (current US$)", + "World/South Africa/MOZ/Economy/Gross savings (current US$)", + "World/South Africa/NGA/Economy/Gross savings (current US$)", + "World/Europe/NLD/Economy/Gross savings (current US$)", + "World/Latam/PAN/Economy/Gross savings (current US$)", + "World/Latam/PER/Economy/Gross savings (current US$)", + "World/Asia/PHL/Economy/Gross savings (current US$)", + "World/Europe/POL/Economy/Gross savings (current US$)", + "World/Persian Gulf/SAU/Economy/Gross savings (current US$)", + "World/South Africa/SEN/Economy/Gross savings (current US$)", + "World/Europe/SWE/Economy/Gross savings (current US$)", + "World/Asia/THA/Economy/Gross savings (current US$)", + "World/North Africa/TUR/Economy/Gross savings (current US$)", + "World/Pair/USA/Economy/Gross savings (current US$)", + "World/Asia/VNM/Economy/Gross savings (current US$)", + "World/South Africa/ZAF/Economy/Gross savings (current US$)", + "World/Latam/ARG/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/AUT/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Persian Gulf/AZE/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Asia/BGD/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/BRA/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/CHL/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/South Africa/CMR/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/COL/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/CRI/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/DEU/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/North Africa/DZA/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/North Africa/EGY/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/ESP/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/FRA/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/GBR/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/South Africa/GHA/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/GRC/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/HRV/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Asia/IDN/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Asia/IND/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Persian Gulf/IRQ/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/North Africa/ISR/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Asia/KOR/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/North Africa/MAR/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/MEX/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/South Africa/MOZ/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/South Africa/NGA/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/NLD/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Persian Gulf/OMN/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/PAN/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/PER/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/POL/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Persian Gulf/SAU/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/South Africa/SEN/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/SWE/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/North Africa/TUR/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Pair/USA/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Latam/VEN/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Asia/VNM/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Persian Gulf/YEM/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/South Africa/ZAF/Economy/Gross value added at basic prices (GVA) (current US$)", + "World/Europe/AUT/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Pair/CHN/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/DEU/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/ESP/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/FRA/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/GBR/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IND/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/ISR/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/MEX/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/POL/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/SAU/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/SWE/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Pair/USA/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/VEN/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/ZAF/Environment/HFC gas emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/ARE/Health/Hospital beds (per 1,000 people)", + "World/Latam/ARG/Health/Hospital beds (per 1,000 people)", + "World/Europe/AUT/Health/Hospital beds (per 1,000 people)", + "World/Persian Gulf/AZE/Health/Hospital beds (per 1,000 people)", + "World/Asia/BGD/Health/Hospital beds (per 1,000 people)", + "World/Latam/BRA/Health/Hospital beds (per 1,000 people)", + "World/Latam/CHL/Health/Hospital beds (per 1,000 people)", + "World/Pair/CHN/Health/Hospital beds (per 1,000 people)", + "World/South Africa/CMR/Health/Hospital beds (per 1,000 people)", + "World/Latam/COL/Health/Hospital beds (per 1,000 people)", + "World/Latam/CRI/Health/Hospital beds (per 1,000 people)", + "World/Europe/DEU/Health/Hospital beds (per 1,000 people)", + "World/North Africa/EGY/Health/Hospital beds (per 1,000 people)", + "World/Europe/ESP/Health/Hospital beds (per 1,000 people)", + "World/Europe/FRA/Health/Hospital beds (per 1,000 people)", + "World/Europe/GBR/Health/Hospital beds (per 1,000 people)", + "World/North Africa/ISR/Health/Hospital beds (per 1,000 people)", + "World/Asia/KOR/Health/Hospital beds (per 1,000 people)", + "World/South Africa/LBR/Health/Hospital beds (per 1,000 people)", + "World/Latam/MEX/Health/Hospital beds (per 1,000 people)", + "World/South Africa/MOZ/Health/Hospital beds (per 1,000 people)", + "World/South Africa/NGA/Health/Hospital beds (per 1,000 people)", + "World/Europe/NLD/Health/Hospital beds (per 1,000 people)", + "World/Persian Gulf/OMN/Health/Hospital beds (per 1,000 people)", + "World/Persian Gulf/SAU/Health/Hospital beds (per 1,000 people)", + "World/North Africa/TUR/Health/Hospital beds (per 1,000 people)", + "World/Pair/USA/Health/Hospital beds (per 1,000 people)", + "World/South Africa/ZAF/Health/Hospital beds (per 1,000 people)", + "World/Persian Gulf/ARE/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/ARG/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/AUT/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Persian Gulf/AZE/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/BGD/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/BRA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/CHL/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Pair/CHN/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/South Africa/CMR/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/COL/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/CRI/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/DEU/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/North Africa/DZA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/North Africa/EGY/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/ESP/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/FRA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/GBR/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/South Africa/GHA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/GRC/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/HRV/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/IDN/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/IND/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Persian Gulf/IRQ/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/North Africa/ISR/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/KOR/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/North Africa/MAR/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/MEX/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/South Africa/MOZ/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/South Africa/NGA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/NLD/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Persian Gulf/OMN/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/PAN/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/PER/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/PHL/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/POL/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Persian Gulf/QAT/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Persian Gulf/SAU/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/South Africa/SEN/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/SWE/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/THA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/North Africa/TUR/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Pair/USA/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Latam/VEN/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Asia/VNM/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/South Africa/ZAF/Economy/Households and NPISHs Final consumption expenditure (current US$)", + "World/Europe/AUT/Exports/ICT service exports (BoP, current US$)", + "World/Asia/BGD/Exports/ICT service exports (BoP, current US$)", + "World/Latam/CHL/Exports/ICT service exports (BoP, current US$)", + "World/Pair/CHN/Exports/ICT service exports (BoP, current US$)", + "World/South Africa/CMR/Exports/ICT service exports (BoP, current US$)", + "World/Latam/CRI/Exports/ICT service exports (BoP, current US$)", + "World/Europe/DEU/Exports/ICT service exports (BoP, current US$)", + "World/North Africa/DZA/Exports/ICT service exports (BoP, current US$)", + "World/Europe/ESP/Exports/ICT service exports (BoP, current US$)", + "World/Europe/GBR/Exports/ICT service exports (BoP, current US$)", + "World/Europe/GRC/Exports/ICT service exports (BoP, current US$)", + "World/Europe/HRV/Exports/ICT service exports (BoP, current US$)", + "World/Asia/IND/Exports/ICT service exports (BoP, current US$)", + "World/North Africa/ISR/Exports/ICT service exports (BoP, current US$)", + "World/Asia/KOR/Exports/ICT service exports (BoP, current US$)", + "World/North Africa/MAR/Exports/ICT service exports (BoP, current US$)", + "World/Latam/MEX/Exports/ICT service exports (BoP, current US$)", + "World/South Africa/NGA/Exports/ICT service exports (BoP, current US$)", + "World/Europe/NLD/Exports/ICT service exports (BoP, current US$)", + "World/Persian Gulf/OMN/Exports/ICT service exports (BoP, current US$)", + "World/Latam/PAN/Exports/ICT service exports (BoP, current US$)", + "World/Europe/POL/Exports/ICT service exports (BoP, current US$)", + "World/Persian Gulf/QAT/Exports/ICT service exports (BoP, current US$)", + "World/Persian Gulf/SAU/Exports/ICT service exports (BoP, current US$)", + "World/Europe/SWE/Exports/ICT service exports (BoP, current US$)", + "World/Asia/THA/Exports/ICT service exports (BoP, current US$)", + "World/Pair/USA/Exports/ICT service exports (BoP, current US$)", + "World/South Africa/ZAF/Exports/ICT service exports (BoP, current US$)", + "World/Persian Gulf/ARE/Imports/Import unit value index (2000 = 100)", + "World/Europe/AUT/Imports/Import unit value index (2000 = 100)", + "World/Persian Gulf/AZE/Imports/Import unit value index (2000 = 100)", + "World/Asia/BGD/Imports/Import unit value index (2000 = 100)", + "World/Latam/CRI/Imports/Import unit value index (2000 = 100)", + "World/Europe/DEU/Imports/Import unit value index (2000 = 100)", + "World/North Africa/EGY/Imports/Import unit value index (2000 = 100)", + "World/Europe/ESP/Imports/Import unit value index (2000 = 100)", + "World/Europe/FRA/Imports/Import unit value index (2000 = 100)", + "World/Europe/GRC/Imports/Import unit value index (2000 = 100)", + "World/Europe/HRV/Imports/Import unit value index (2000 = 100)", + "World/Latam/MEX/Imports/Import unit value index (2000 = 100)", + "World/South Africa/MOZ/Imports/Import unit value index (2000 = 100)", + "World/Europe/NLD/Imports/Import unit value index (2000 = 100)", + "World/Latam/PAN/Imports/Import unit value index (2000 = 100)", + "World/Europe/POL/Imports/Import unit value index (2000 = 100)", + "World/Persian Gulf/QAT/Imports/Import unit value index (2000 = 100)", + "World/Europe/SWE/Imports/Import unit value index (2000 = 100)", + "World/Asia/THA/Imports/Import unit value index (2000 = 100)", + "World/Persian Gulf/ARE/Imports/Import value index (2000 = 100)", + "World/Latam/ARG/Imports/Import value index (2000 = 100)", + "World/Europe/AUT/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/AZE/Imports/Import value index (2000 = 100)", + "World/Asia/BGD/Imports/Import value index (2000 = 100)", + "World/Latam/BRA/Imports/Import value index (2000 = 100)", + "World/Latam/CHL/Imports/Import value index (2000 = 100)", + "World/Pair/CHN/Imports/Import value index (2000 = 100)", + "World/Latam/COL/Imports/Import value index (2000 = 100)", + "World/Latam/CRI/Imports/Import value index (2000 = 100)", + "World/Europe/DEU/Imports/Import value index (2000 = 100)", + "World/North Africa/DZA/Imports/Import value index (2000 = 100)", + "World/North Africa/EGY/Imports/Import value index (2000 = 100)", + "World/Europe/ESP/Imports/Import value index (2000 = 100)", + "World/Europe/FRA/Imports/Import value index (2000 = 100)", + "World/Europe/GBR/Imports/Import value index (2000 = 100)", + "World/Europe/GRC/Imports/Import value index (2000 = 100)", + "World/Europe/HRV/Imports/Import value index (2000 = 100)", + "World/Asia/IDN/Imports/Import value index (2000 = 100)", + "World/Asia/IND/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/IRQ/Imports/Import value index (2000 = 100)", + "World/North Africa/ISR/Imports/Import value index (2000 = 100)", + "World/Asia/KOR/Imports/Import value index (2000 = 100)", + "World/North Africa/MAR/Imports/Import value index (2000 = 100)", + "World/Latam/MEX/Imports/Import value index (2000 = 100)", + "World/South Africa/MOZ/Imports/Import value index (2000 = 100)", + "World/South Africa/NGA/Imports/Import value index (2000 = 100)", + "World/Europe/NLD/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/OMN/Imports/Import value index (2000 = 100)", + "World/Latam/PAN/Imports/Import value index (2000 = 100)", + "World/Latam/PER/Imports/Import value index (2000 = 100)", + "World/Asia/PHL/Imports/Import value index (2000 = 100)", + "World/Europe/POL/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/QAT/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/SAU/Imports/Import value index (2000 = 100)", + "World/South Africa/SEN/Imports/Import value index (2000 = 100)", + "World/Europe/SWE/Imports/Import value index (2000 = 100)", + "World/Asia/THA/Imports/Import value index (2000 = 100)", + "World/North Africa/TUR/Imports/Import value index (2000 = 100)", + "World/Pair/USA/Imports/Import value index (2000 = 100)", + "World/Asia/VNM/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/YEM/Imports/Import value index (2000 = 100)", + "World/South Africa/ZAF/Imports/Import value index (2000 = 100)", + "World/Persian Gulf/ARE/Imports/Import volume index (2000 = 100)", + "World/Latam/ARG/Imports/Import volume index (2000 = 100)", + "World/Europe/AUT/Imports/Import volume index (2000 = 100)", + "World/Persian Gulf/AZE/Imports/Import volume index (2000 = 100)", + "World/Asia/BGD/Imports/Import volume index (2000 = 100)", + "World/Latam/BRA/Imports/Import volume index (2000 = 100)", + "World/Latam/CHL/Imports/Import volume index (2000 = 100)", + "World/Pair/CHN/Imports/Import volume index (2000 = 100)", + "World/Latam/COL/Imports/Import volume index (2000 = 100)", + "World/Latam/CRI/Imports/Import volume index (2000 = 100)", + "World/Europe/DEU/Imports/Import volume index (2000 = 100)", + "World/North Africa/DZA/Imports/Import volume index (2000 = 100)", + "World/North Africa/EGY/Imports/Import volume index (2000 = 100)", + "World/Europe/GBR/Imports/Import volume index (2000 = 100)", + "World/Asia/IDN/Imports/Import volume index (2000 = 100)", + "World/Asia/IND/Imports/Import volume index (2000 = 100)", + "World/North Africa/ISR/Imports/Import volume index (2000 = 100)", + "World/Asia/KOR/Imports/Import volume index (2000 = 100)", + "World/North Africa/MAR/Imports/Import volume index (2000 = 100)", + "World/Latam/MEX/Imports/Import volume index (2000 = 100)", + "World/South Africa/MOZ/Imports/Import volume index (2000 = 100)", + "World/South Africa/NGA/Imports/Import volume index (2000 = 100)", + "World/Europe/NLD/Imports/Import volume index (2000 = 100)", + "World/Persian Gulf/OMN/Imports/Import volume index (2000 = 100)", + "World/Latam/PAN/Imports/Import volume index (2000 = 100)", + "World/Latam/PER/Imports/Import volume index (2000 = 100)", + "World/Asia/PHL/Imports/Import volume index (2000 = 100)", + "World/Europe/POL/Imports/Import volume index (2000 = 100)", + "World/Persian Gulf/QAT/Imports/Import volume index (2000 = 100)", + "World/Persian Gulf/SAU/Imports/Import volume index (2000 = 100)", + "World/South Africa/SEN/Imports/Import volume index (2000 = 100)", + "World/Asia/THA/Imports/Import volume index (2000 = 100)", + "World/North Africa/TUR/Imports/Import volume index (2000 = 100)", + "World/Pair/USA/Imports/Import volume index (2000 = 100)", + "World/Latam/VEN/Imports/Import volume index (2000 = 100)", + "World/Asia/VNM/Imports/Import volume index (2000 = 100)", + "World/Persian Gulf/YEM/Imports/Import volume index (2000 = 100)", + "World/South Africa/ZAF/Imports/Import volume index (2000 = 100)", + "World/Latam/ARG/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/AUT/Imports/Imports of goods and services (BoP, current US$)", + "World/Persian Gulf/AZE/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/BGD/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/BRA/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/CHL/Imports/Imports of goods and services (BoP, current US$)", + "World/Pair/CHN/Imports/Imports of goods and services (BoP, current US$)", + "World/South Africa/CMR/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/COL/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/CRI/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/DEU/Imports/Imports of goods and services (BoP, current US$)", + "World/North Africa/DZA/Imports/Imports of goods and services (BoP, current US$)", + "World/North Africa/EGY/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/ESP/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/FRA/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/GBR/Imports/Imports of goods and services (BoP, current US$)", + "World/South Africa/GHA/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/GRC/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/HRV/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/IDN/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/IND/Imports/Imports of goods and services (BoP, current US$)", + "World/North Africa/ISR/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/KOR/Imports/Imports of goods and services (BoP, current US$)", + "World/North Africa/MAR/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/MEX/Imports/Imports of goods and services (BoP, current US$)", + "World/South Africa/MOZ/Imports/Imports of goods and services (BoP, current US$)", + "World/South Africa/NGA/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/NLD/Imports/Imports of goods and services (BoP, current US$)", + "World/Persian Gulf/OMN/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/PAN/Imports/Imports of goods and services (BoP, current US$)", + "World/Latam/PER/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/PHL/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/POL/Imports/Imports of goods and services (BoP, current US$)", + "World/Persian Gulf/SAU/Imports/Imports of goods and services (BoP, current US$)", + "World/South Africa/SEN/Imports/Imports of goods and services (BoP, current US$)", + "World/Europe/SWE/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/THA/Imports/Imports of goods and services (BoP, current US$)", + "World/North Africa/TUR/Imports/Imports of goods and services (BoP, current US$)", + "World/Pair/USA/Imports/Imports of goods and services (BoP, current US$)", + "World/Asia/VNM/Imports/Imports of goods and services (BoP, current US$)", + "World/Persian Gulf/YEM/Imports/Imports of goods and services (BoP, current US$)", + "World/South Africa/ZAF/Imports/Imports of goods and services (BoP, current US$)", + "World/Persian Gulf/ARE/Imports/Imports of goods and services (current US$)", + "World/Latam/ARG/Imports/Imports of goods and services (current US$)", + "World/Europe/AUT/Imports/Imports of goods and services (current US$)", + "World/Persian Gulf/AZE/Imports/Imports of goods and services (current US$)", + "World/Asia/BGD/Imports/Imports of goods and services (current US$)", + "World/Latam/BRA/Imports/Imports of goods and services (current US$)", + "World/Latam/CHL/Imports/Imports of goods and services (current US$)", + "World/Pair/CHN/Imports/Imports of goods and services (current US$)", + "World/Latam/COL/Imports/Imports of goods and services (current US$)", + "World/Latam/CRI/Imports/Imports of goods and services (current US$)", + "World/Europe/DEU/Imports/Imports of goods and services (current US$)", + "World/North Africa/DZA/Imports/Imports of goods and services (current US$)", + "World/North Africa/EGY/Imports/Imports of goods and services (current US$)", + "World/Europe/ESP/Imports/Imports of goods and services (current US$)", + "World/Europe/FRA/Imports/Imports of goods and services (current US$)", + "World/Europe/GBR/Imports/Imports of goods and services (current US$)", + "World/South Africa/GHA/Imports/Imports of goods and services (current US$)", + "World/Europe/GRC/Imports/Imports of goods and services (current US$)", + "World/Europe/HRV/Imports/Imports of goods and services (current US$)", + "World/Asia/IDN/Imports/Imports of goods and services (current US$)", + "World/Asia/IND/Imports/Imports of goods and services (current US$)", + "World/Persian Gulf/IRQ/Imports/Imports of goods and services (current US$)", + "World/North Africa/ISR/Imports/Imports of goods and services (current US$)", + "World/Asia/KOR/Imports/Imports of goods and services (current US$)", + "World/North Africa/MAR/Imports/Imports of goods and services (current US$)", + "World/Latam/MEX/Imports/Imports of goods and services (current US$)", + "World/South Africa/MOZ/Imports/Imports of goods and services (current US$)", + "World/South Africa/NGA/Imports/Imports of goods and services (current US$)", + "World/Europe/NLD/Imports/Imports of goods and services (current US$)", + "World/Persian Gulf/OMN/Imports/Imports of goods and services (current US$)", + "World/Latam/PAN/Imports/Imports of goods and services (current US$)", + "World/Latam/PER/Imports/Imports of goods and services (current US$)", + "World/Asia/PHL/Imports/Imports of goods and services (current US$)", + "World/Europe/POL/Imports/Imports of goods and services (current US$)", + "World/Persian Gulf/QAT/Imports/Imports of goods and services (current US$)", + "World/Persian Gulf/SAU/Imports/Imports of goods and services (current US$)", + "World/South Africa/SEN/Imports/Imports of goods and services (current US$)", + "World/Europe/SWE/Imports/Imports of goods and services (current US$)", + "World/Asia/THA/Imports/Imports of goods and services (current US$)", + "World/North Africa/TUR/Imports/Imports of goods and services (current US$)", + "World/Pair/USA/Imports/Imports of goods and services (current US$)", + "World/Latam/VEN/Imports/Imports of goods and services (current US$)", + "World/Asia/VNM/Imports/Imports of goods and services (current US$)", + "World/South Africa/ZAF/Imports/Imports of goods and services (current US$)", + "World/Persian Gulf/ARE/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Europe/AUT/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/AZE/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Latam/BRA/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Pair/CHN/Health/Incidence of tuberculosis (per 100,000 people)", + "World/South Africa/CMR/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Latam/CRI/Health/Incidence of tuberculosis (per 100,000 people)", + "World/North Africa/EGY/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Europe/ESP/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Europe/GBR/Health/Incidence of tuberculosis (per 100,000 people)", + "World/South Africa/GHA/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Europe/HRV/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Asia/IDN/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Asia/IND/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/IRQ/Health/Incidence of tuberculosis (per 100,000 people)", + "World/North Africa/ISR/Health/Incidence of tuberculosis (per 100,000 people)", + "World/South Africa/LBR/Health/Incidence of tuberculosis (per 100,000 people)", + "World/South Africa/MOZ/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/OMN/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Latam/PER/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Europe/POL/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/QAT/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/SAU/Health/Incidence of tuberculosis (per 100,000 people)", + "World/South Africa/SEN/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Asia/THA/Health/Incidence of tuberculosis (per 100,000 people)", + "World/North Africa/TUR/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Pair/USA/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Asia/VNM/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/YEM/Health/Incidence of tuberculosis (per 100,000 people)", + "World/Persian Gulf/ARE/Economy/Industry (including construction), value added (current US$)", + "World/Latam/ARG/Economy/Industry (including construction), value added (current US$)", + "World/Europe/AUT/Economy/Industry (including construction), value added (current US$)", + "World/Persian Gulf/AZE/Economy/Industry (including construction), value added (current US$)", + "World/Asia/BGD/Economy/Industry (including construction), value added (current US$)", + "World/Latam/BRA/Economy/Industry (including construction), value added (current US$)", + "World/Latam/CHL/Economy/Industry (including construction), value added (current US$)", + "World/Pair/CHN/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/CMR/Economy/Industry (including construction), value added (current US$)", + "World/Latam/COL/Economy/Industry (including construction), value added (current US$)", + "World/Latam/CRI/Economy/Industry (including construction), value added (current US$)", + "World/Europe/DEU/Economy/Industry (including construction), value added (current US$)", + "World/North Africa/DZA/Economy/Industry (including construction), value added (current US$)", + "World/North Africa/EGY/Economy/Industry (including construction), value added (current US$)", + "World/Europe/ESP/Economy/Industry (including construction), value added (current US$)", + "World/Europe/FRA/Economy/Industry (including construction), value added (current US$)", + "World/Europe/GBR/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/GHA/Economy/Industry (including construction), value added (current US$)", + "World/Europe/GRC/Economy/Industry (including construction), value added (current US$)", + "World/Europe/HRV/Economy/Industry (including construction), value added (current US$)", + "World/Asia/IDN/Economy/Industry (including construction), value added (current US$)", + "World/Asia/IND/Economy/Industry (including construction), value added (current US$)", + "World/Persian Gulf/IRQ/Economy/Industry (including construction), value added (current US$)", + "World/North Africa/ISR/Economy/Industry (including construction), value added (current US$)", + "World/Asia/KOR/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/LBR/Economy/Industry (including construction), value added (current US$)", + "World/North Africa/MAR/Economy/Industry (including construction), value added (current US$)", + "World/Latam/MEX/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/MOZ/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/NGA/Economy/Industry (including construction), value added (current US$)", + "World/Europe/NLD/Economy/Industry (including construction), value added (current US$)", + "World/Persian Gulf/OMN/Economy/Industry (including construction), value added (current US$)", + "World/Latam/PAN/Economy/Industry (including construction), value added (current US$)", + "World/Latam/PER/Economy/Industry (including construction), value added (current US$)", + "World/Asia/PHL/Economy/Industry (including construction), value added (current US$)", + "World/Europe/POL/Economy/Industry (including construction), value added (current US$)", + "World/Persian Gulf/SAU/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/SEN/Economy/Industry (including construction), value added (current US$)", + "World/Europe/SWE/Economy/Industry (including construction), value added (current US$)", + "World/Asia/THA/Economy/Industry (including construction), value added (current US$)", + "World/North Africa/TUR/Economy/Industry (including construction), value added (current US$)", + "World/Pair/USA/Economy/Industry (including construction), value added (current US$)", + "World/Latam/VEN/Economy/Industry (including construction), value added (current US$)", + "World/Asia/VNM/Economy/Industry (including construction), value added (current US$)", + "World/Persian Gulf/YEM/Economy/Industry (including construction), value added (current US$)", + "World/South Africa/ZAF/Economy/Industry (including construction), value added (current US$)", + "World/Latam/BRA/Mortality/Intentional homicides (per 100,000 people)", + "World/Pair/CHN/Mortality/Intentional homicides (per 100,000 people)", + "World/Latam/COL/Mortality/Intentional homicides (per 100,000 people)", + "World/Latam/CRI/Mortality/Intentional homicides (per 100,000 people)", + "World/North Africa/EGY/Mortality/Intentional homicides (per 100,000 people)", + "World/Europe/ESP/Mortality/Intentional homicides (per 100,000 people)", + "World/Europe/GBR/Mortality/Intentional homicides (per 100,000 people)", + "World/Asia/IDN/Mortality/Intentional homicides (per 100,000 people)", + "World/Asia/IND/Mortality/Intentional homicides (per 100,000 people)", + "World/Persian Gulf/IRQ/Mortality/Intentional homicides (per 100,000 people)", + "World/North Africa/ISR/Mortality/Intentional homicides (per 100,000 people)", + "World/South Africa/MOZ/Mortality/Intentional homicides (per 100,000 people)", + "World/Europe/NLD/Mortality/Intentional homicides (per 100,000 people)", + "World/Latam/PAN/Mortality/Intentional homicides (per 100,000 people)", + "World/Latam/PER/Mortality/Intentional homicides (per 100,000 people)", + "World/Europe/POL/Mortality/Intentional homicides (per 100,000 people)", + "World/Asia/THA/Mortality/Intentional homicides (per 100,000 people)", + "World/Asia/VNM/Mortality/Intentional homicides (per 100,000 people)", + "World/Persian Gulf/YEM/Mortality/Intentional homicides (per 100,000 people)", + "World/South Africa/ZAF/Mortality/Intentional homicides (per 100,000 people)", + "World/Persian Gulf/ARE/Migration/International migrant stock (% of population)", + "World/Europe/AUT/Migration/International migrant stock (% of population)", + "World/Persian Gulf/AZE/Migration/International migrant stock (% of population)", + "World/Latam/CHL/Migration/International migrant stock (% of population)", + "World/Pair/CHN/Migration/International migrant stock (% of population)", + "World/Europe/DEU/Migration/International migrant stock (% of population)", + "World/North Africa/DZA/Migration/International migrant stock (% of population)", + "World/Europe/ESP/Migration/International migrant stock (% of population)", + "World/Europe/FRA/Migration/International migrant stock (% of population)", + "World/Europe/GBR/Migration/International migrant stock (% of population)", + "World/Europe/GRC/Migration/International migrant stock (% of population)", + "World/Europe/HRV/Migration/International migrant stock (% of population)", + "World/Asia/IND/Migration/International migrant stock (% of population)", + "World/North Africa/ISR/Migration/International migrant stock (% of population)", + "World/Asia/KOR/Migration/International migrant stock (% of population)", + "World/North Africa/MAR/Migration/International migrant stock (% of population)", + "World/Latam/MEX/Migration/International migrant stock (% of population)", + "World/South Africa/MOZ/Migration/International migrant stock (% of population)", + "World/South Africa/NGA/Migration/International migrant stock (% of population)", + "World/Europe/NLD/Migration/International migrant stock (% of population)", + "World/Latam/PAN/Migration/International migrant stock (% of population)", + "World/Latam/PER/Migration/International migrant stock (% of population)", + "World/Europe/POL/Migration/International migrant stock (% of population)", + "World/Persian Gulf/SAU/Migration/International migrant stock (% of population)", + "World/South Africa/SEN/Migration/International migrant stock (% of population)", + "World/Europe/SWE/Migration/International migrant stock (% of population)", + "World/Asia/THA/Migration/International migrant stock (% of population)", + "World/North Africa/TUR/Migration/International migrant stock (% of population)", + "World/Pair/USA/Migration/International migrant stock (% of population)", + "World/Asia/VNM/Migration/International migrant stock (% of population)", + "World/Persian Gulf/YEM/Migration/International migrant stock (% of population)", + "World/Persian Gulf/ARE/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Europe/AUT/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Persian Gulf/AZE/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/BRA/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/CHL/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Pair/CHN/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/COL/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/CRI/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Europe/DEU/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/North Africa/DZA/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/North Africa/EGY/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/South Africa/GHA/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Europe/GRC/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Asia/IDN/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Asia/IND/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Persian Gulf/IRQ/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/North Africa/ISR/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Asia/KOR/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/South Africa/LBR/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/MEX/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/South Africa/MOZ/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/South Africa/NGA/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Europe/NLD/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Persian Gulf/OMN/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/PAN/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/PER/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Asia/PHL/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Europe/POL/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Persian Gulf/QAT/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Europe/SWE/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/North Africa/TUR/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Pair/USA/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Latam/VEN/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Asia/VNM/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Persian Gulf/YEM/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/South Africa/ZAF/Health/Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "World/Persian Gulf/ARE/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/ARG/Mortality/Lifetime risk of maternal death (%)", + "World/Persian Gulf/AZE/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/BGD/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/CHL/Mortality/Lifetime risk of maternal death (%)", + "World/Pair/CHN/Mortality/Lifetime risk of maternal death (%)", + "World/South Africa/CMR/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/COL/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/CRI/Mortality/Lifetime risk of maternal death (%)", + "World/North Africa/EGY/Mortality/Lifetime risk of maternal death (%)", + "World/Europe/ESP/Mortality/Lifetime risk of maternal death (%)", + "World/Europe/GBR/Mortality/Lifetime risk of maternal death (%)", + "World/South Africa/GHA/Mortality/Lifetime risk of maternal death (%)", + "World/Europe/GRC/Mortality/Lifetime risk of maternal death (%)", + "World/Europe/HRV/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/IDN/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/IND/Mortality/Lifetime risk of maternal death (%)", + "World/North Africa/ISR/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/KOR/Mortality/Lifetime risk of maternal death (%)", + "World/South Africa/LBR/Mortality/Lifetime risk of maternal death (%)", + "World/North Africa/MAR/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/MEX/Mortality/Lifetime risk of maternal death (%)", + "World/South Africa/MOZ/Mortality/Lifetime risk of maternal death (%)", + "World/South Africa/NGA/Mortality/Lifetime risk of maternal death (%)", + "World/Europe/NLD/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/PAN/Mortality/Lifetime risk of maternal death (%)", + "World/Latam/PER/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/PHL/Mortality/Lifetime risk of maternal death (%)", + "World/Europe/POL/Mortality/Lifetime risk of maternal death (%)", + "World/Persian Gulf/QAT/Mortality/Lifetime risk of maternal death (%)", + "World/Persian Gulf/SAU/Mortality/Lifetime risk of maternal death (%)", + "World/South Africa/SEN/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/THA/Mortality/Lifetime risk of maternal death (%)", + "World/North Africa/TUR/Mortality/Lifetime risk of maternal death (%)", + "World/Pair/USA/Mortality/Lifetime risk of maternal death (%)", + "World/Asia/VNM/Mortality/Lifetime risk of maternal death (%)", + "World/Persian Gulf/YEM/Mortality/Lifetime risk of maternal death (%)", + "World/Persian Gulf/ARE/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/ARG/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Persian Gulf/AZE/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/BGD/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/CHL/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Pair/CHN/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/South Africa/CMR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/COL/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/CRI/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/North Africa/EGY/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Europe/ESP/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Europe/GBR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/South Africa/GHA/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Europe/GRC/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Europe/HRV/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/IDN/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/IND/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/North Africa/ISR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/KOR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/South Africa/LBR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/North Africa/MAR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/MEX/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/South Africa/MOZ/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/South Africa/NGA/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Europe/NLD/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/PAN/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/PER/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/PHL/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Europe/POL/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Persian Gulf/QAT/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Persian Gulf/SAU/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/South Africa/SEN/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/THA/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/North Africa/TUR/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Pair/USA/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Latam/VEN/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Asia/VNM/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Persian Gulf/YEM/Health/Lifetime risk of maternal death (1 in: rate varies by country)", + "World/Persian Gulf/ARE/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/ARG/Industry/Livestock production index (2014-2016 = 100)", + "World/Europe/AUT/Industry/Livestock production index (2014-2016 = 100)", + "World/Persian Gulf/AZE/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/BGD/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/BRA/Industry/Livestock production index (2014-2016 = 100)", + "World/Pair/CHN/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/COL/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/CRI/Industry/Livestock production index (2014-2016 = 100)", + "World/North Africa/DZA/Industry/Livestock production index (2014-2016 = 100)", + "World/North Africa/EGY/Industry/Livestock production index (2014-2016 = 100)", + "World/Europe/GBR/Industry/Livestock production index (2014-2016 = 100)", + "World/South Africa/GHA/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/IDN/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/IND/Industry/Livestock production index (2014-2016 = 100)", + "World/North Africa/ISR/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/KOR/Industry/Livestock production index (2014-2016 = 100)", + "World/South Africa/LBR/Industry/Livestock production index (2014-2016 = 100)", + "World/North Africa/MAR/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/MEX/Industry/Livestock production index (2014-2016 = 100)", + "World/South Africa/MOZ/Industry/Livestock production index (2014-2016 = 100)", + "World/South Africa/NGA/Industry/Livestock production index (2014-2016 = 100)", + "World/Europe/NLD/Industry/Livestock production index (2014-2016 = 100)", + "World/Persian Gulf/OMN/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/PAN/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/PER/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/PHL/Industry/Livestock production index (2014-2016 = 100)", + "World/Europe/POL/Industry/Livestock production index (2014-2016 = 100)", + "World/Persian Gulf/QAT/Industry/Livestock production index (2014-2016 = 100)", + "World/Persian Gulf/SAU/Industry/Livestock production index (2014-2016 = 100)", + "World/South Africa/SEN/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/THA/Industry/Livestock production index (2014-2016 = 100)", + "World/North Africa/TUR/Industry/Livestock production index (2014-2016 = 100)", + "World/Pair/USA/Industry/Livestock production index (2014-2016 = 100)", + "World/Latam/VEN/Industry/Livestock production index (2014-2016 = 100)", + "World/Asia/VNM/Industry/Livestock production index (2014-2016 = 100)", + "World/Persian Gulf/YEM/Industry/Livestock production index (2014-2016 = 100)", + "World/South Africa/ZAF/Industry/Livestock production index (2014-2016 = 100)", + "World/Persian Gulf/ARE/Health/Low-birthweight babies (% of births)", + "World/Asia/BGD/Health/Low-birthweight babies (% of births)", + "World/Latam/BRA/Health/Low-birthweight babies (% of births)", + "World/Latam/CHL/Health/Low-birthweight babies (% of births)", + "World/Pair/CHN/Health/Low-birthweight babies (% of births)", + "World/South Africa/CMR/Health/Low-birthweight babies (% of births)", + "World/Latam/COL/Health/Low-birthweight babies (% of births)", + "World/Latam/CRI/Health/Low-birthweight babies (% of births)", + "World/North Africa/DZA/Health/Low-birthweight babies (% of births)", + "World/Europe/ESP/Health/Low-birthweight babies (% of births)", + "World/Europe/FRA/Health/Low-birthweight babies (% of births)", + "World/Europe/GBR/Health/Low-birthweight babies (% of births)", + "World/South Africa/GHA/Health/Low-birthweight babies (% of births)", + "World/Europe/HRV/Health/Low-birthweight babies (% of births)", + "World/Asia/IDN/Health/Low-birthweight babies (% of births)", + "World/North Africa/ISR/Health/Low-birthweight babies (% of births)", + "World/Asia/KOR/Health/Low-birthweight babies (% of births)", + "World/North Africa/MAR/Health/Low-birthweight babies (% of births)", + "World/Latam/MEX/Health/Low-birthweight babies (% of births)", + "World/South Africa/MOZ/Health/Low-birthweight babies (% of births)", + "World/Europe/NLD/Health/Low-birthweight babies (% of births)", + "World/Persian Gulf/OMN/Health/Low-birthweight babies (% of births)", + "World/Latam/PAN/Health/Low-birthweight babies (% of births)", + "World/Latam/PER/Health/Low-birthweight babies (% of births)", + "World/Asia/PHL/Health/Low-birthweight babies (% of births)", + "World/Persian Gulf/QAT/Health/Low-birthweight babies (% of births)", + "World/South Africa/SEN/Health/Low-birthweight babies (% of births)", + "World/Asia/THA/Health/Low-birthweight babies (% of births)", + "World/North Africa/TUR/Health/Low-birthweight babies (% of births)", + "World/Asia/VNM/Health/Low-birthweight babies (% of births)", + "World/South Africa/ZAF/Health/Low-birthweight babies (% of births)", + "World/Persian Gulf/ARE/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Asia/BGD/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Latam/CHL/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Pair/CHN/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Latam/COL/Economy/Market capitalization of listed domestic companies (current US$)", + "World/South Africa/GHA/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Europe/HRV/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Asia/IDN/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Asia/IND/Economy/Market capitalization of listed domestic companies (current US$)", + "World/North Africa/ISR/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Asia/KOR/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Latam/MEX/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Persian Gulf/OMN/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Latam/PAN/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Europe/POL/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Persian Gulf/QAT/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Persian Gulf/SAU/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Asia/THA/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Pair/USA/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Asia/VNM/Economy/Market capitalization of listed domestic companies (current US$)", + "World/South Africa/ZAF/Economy/Market capitalization of listed domestic companies (current US$)", + "World/Persian Gulf/ARE/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Latam/ARG/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Persian Gulf/AZE/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/BGD/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Latam/CHL/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Pair/CHN/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/South Africa/CMR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Latam/CRI/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/North Africa/DZA/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/North Africa/EGY/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Europe/ESP/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Europe/GBR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/South Africa/GHA/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Europe/HRV/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/IDN/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/IND/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/North Africa/ISR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/KOR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/South Africa/LBR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/North Africa/MAR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Latam/MEX/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/South Africa/MOZ/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/South Africa/NGA/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Europe/NLD/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Latam/PAN/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Latam/PER/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/PHL/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Europe/POL/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Persian Gulf/QAT/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Persian Gulf/SAU/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/South Africa/SEN/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/THA/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/North Africa/TUR/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Pair/USA/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Asia/VNM/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Persian Gulf/YEM/Mortality/Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "World/Persian Gulf/ARE/Exports/Merchandise exports (current US$)", + "World/Europe/AUT/Exports/Merchandise exports (current US$)", + "World/Persian Gulf/AZE/Exports/Merchandise exports (current US$)", + "World/Asia/BGD/Exports/Merchandise exports (current US$)", + "World/Latam/BRA/Exports/Merchandise exports (current US$)", + "World/Latam/CHL/Exports/Merchandise exports (current US$)", + "World/Pair/CHN/Exports/Merchandise exports (current US$)", + "World/Latam/COL/Exports/Merchandise exports (current US$)", + "World/Latam/CRI/Exports/Merchandise exports (current US$)", + "World/Europe/DEU/Exports/Merchandise exports (current US$)", + "World/North Africa/EGY/Exports/Merchandise exports (current US$)", + "World/Europe/ESP/Exports/Merchandise exports (current US$)", + "World/Europe/FRA/Exports/Merchandise exports (current US$)", + "World/Europe/GBR/Exports/Merchandise exports (current US$)", + "World/South Africa/GHA/Exports/Merchandise exports (current US$)", + "World/Asia/IDN/Exports/Merchandise exports (current US$)", + "World/Asia/IND/Exports/Merchandise exports (current US$)", + "World/Persian Gulf/IRQ/Exports/Merchandise exports (current US$)", + "World/North Africa/ISR/Exports/Merchandise exports (current US$)", + "World/Asia/KOR/Exports/Merchandise exports (current US$)", + "World/North Africa/MAR/Exports/Merchandise exports (current US$)", + "World/Latam/MEX/Exports/Merchandise exports (current US$)", + "World/South Africa/MOZ/Exports/Merchandise exports (current US$)", + "World/Europe/NLD/Exports/Merchandise exports (current US$)", + "World/Persian Gulf/OMN/Exports/Merchandise exports (current US$)", + "World/Latam/PAN/Exports/Merchandise exports (current US$)", + "World/Latam/PER/Exports/Merchandise exports (current US$)", + "World/Asia/PHL/Exports/Merchandise exports (current US$)", + "World/Europe/POL/Exports/Merchandise exports (current US$)", + "World/Persian Gulf/QAT/Exports/Merchandise exports (current US$)", + "World/Persian Gulf/SAU/Exports/Merchandise exports (current US$)", + "World/South Africa/SEN/Exports/Merchandise exports (current US$)", + "World/Europe/SWE/Exports/Merchandise exports (current US$)", + "World/Asia/THA/Exports/Merchandise exports (current US$)", + "World/North Africa/TUR/Exports/Merchandise exports (current US$)", + "World/Pair/USA/Exports/Merchandise exports (current US$)", + "World/Latam/VEN/Exports/Merchandise exports (current US$)", + "World/Asia/VNM/Exports/Merchandise exports (current US$)", + "World/South Africa/ZAF/Exports/Merchandise exports (current US$)", + "World/Persian Gulf/ARE/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/AUT/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Persian Gulf/AZE/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/BGD/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/BRA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/CHL/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Pair/CHN/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/COL/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/CRI/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/DEU/Exports/Merchandise exports by the reporting economy (current US$)", + "World/North Africa/DZA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/North Africa/EGY/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/ESP/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/FRA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/GBR/Exports/Merchandise exports by the reporting economy (current US$)", + "World/South Africa/GHA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/IDN/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/IND/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Persian Gulf/IRQ/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/KOR/Exports/Merchandise exports by the reporting economy (current US$)", + "World/North Africa/MAR/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/MEX/Exports/Merchandise exports by the reporting economy (current US$)", + "World/South Africa/MOZ/Exports/Merchandise exports by the reporting economy (current US$)", + "World/South Africa/NGA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/NLD/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Persian Gulf/OMN/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/PER/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/PHL/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/POL/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Persian Gulf/QAT/Exports/Merchandise exports by the reporting economy (current US$)", + "World/South Africa/SEN/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Europe/SWE/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/THA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/North Africa/TUR/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Pair/USA/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Latam/VEN/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Asia/VNM/Exports/Merchandise exports by the reporting economy (current US$)", + "World/South Africa/ZAF/Exports/Merchandise exports by the reporting economy (current US$)", + "World/Persian Gulf/ARE/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Persian Gulf/AZE/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Asia/BGD/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Latam/CHL/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Pair/CHN/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Latam/COL/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/DEU/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/ESP/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/GBR/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/GRC/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Asia/IDN/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Persian Gulf/IRQ/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/North Africa/ISR/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Asia/KOR/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/South Africa/LBR/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Latam/MEX/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/South Africa/MOZ/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/South Africa/NGA/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/NLD/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Latam/PAN/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Latam/PER/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Asia/PHL/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/POL/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Persian Gulf/QAT/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Europe/SWE/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Asia/THA/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Pair/USA/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Latam/VEN/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/South Africa/ZAF/Exports/Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "World/Persian Gulf/ARE/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Europe/AUT/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Latam/BRA/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Latam/CHL/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Pair/CHN/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Latam/COL/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Europe/DEU/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Europe/ESP/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Europe/FRA/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Europe/GRC/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Asia/IDN/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Asia/IND/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Persian Gulf/IRQ/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/North Africa/ISR/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Asia/KOR/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Latam/MEX/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/South Africa/MOZ/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/South Africa/NGA/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Europe/NLD/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Persian Gulf/OMN/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Latam/PAN/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Latam/PER/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Asia/PHL/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Persian Gulf/QAT/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Persian Gulf/SAU/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Pair/USA/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/South Africa/ZAF/Exports/Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "World/Persian Gulf/ARE/Imports/Merchandise imports (current US$)", + "World/Latam/ARG/Imports/Merchandise imports (current US$)", + "World/Europe/AUT/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/AZE/Imports/Merchandise imports (current US$)", + "World/Asia/BGD/Imports/Merchandise imports (current US$)", + "World/Latam/BRA/Imports/Merchandise imports (current US$)", + "World/Latam/CHL/Imports/Merchandise imports (current US$)", + "World/Pair/CHN/Imports/Merchandise imports (current US$)", + "World/Latam/COL/Imports/Merchandise imports (current US$)", + "World/Latam/CRI/Imports/Merchandise imports (current US$)", + "World/Europe/DEU/Imports/Merchandise imports (current US$)", + "World/North Africa/DZA/Imports/Merchandise imports (current US$)", + "World/North Africa/EGY/Imports/Merchandise imports (current US$)", + "World/Europe/ESP/Imports/Merchandise imports (current US$)", + "World/Europe/FRA/Imports/Merchandise imports (current US$)", + "World/Europe/GBR/Imports/Merchandise imports (current US$)", + "World/Europe/GRC/Imports/Merchandise imports (current US$)", + "World/Europe/HRV/Imports/Merchandise imports (current US$)", + "World/Asia/IDN/Imports/Merchandise imports (current US$)", + "World/Asia/IND/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/IRQ/Imports/Merchandise imports (current US$)", + "World/North Africa/ISR/Imports/Merchandise imports (current US$)", + "World/Asia/KOR/Imports/Merchandise imports (current US$)", + "World/North Africa/MAR/Imports/Merchandise imports (current US$)", + "World/Latam/MEX/Imports/Merchandise imports (current US$)", + "World/South Africa/MOZ/Imports/Merchandise imports (current US$)", + "World/South Africa/NGA/Imports/Merchandise imports (current US$)", + "World/Europe/NLD/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/OMN/Imports/Merchandise imports (current US$)", + "World/Latam/PAN/Imports/Merchandise imports (current US$)", + "World/Latam/PER/Imports/Merchandise imports (current US$)", + "World/Asia/PHL/Imports/Merchandise imports (current US$)", + "World/Europe/POL/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/QAT/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/SAU/Imports/Merchandise imports (current US$)", + "World/South Africa/SEN/Imports/Merchandise imports (current US$)", + "World/Europe/SWE/Imports/Merchandise imports (current US$)", + "World/Asia/THA/Imports/Merchandise imports (current US$)", + "World/North Africa/TUR/Imports/Merchandise imports (current US$)", + "World/Pair/USA/Imports/Merchandise imports (current US$)", + "World/Asia/VNM/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/YEM/Imports/Merchandise imports (current US$)", + "World/South Africa/ZAF/Imports/Merchandise imports (current US$)", + "World/Persian Gulf/ARE/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/ARG/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/AUT/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Persian Gulf/AZE/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/BGD/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/BRA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/CHL/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Pair/CHN/Imports/Merchandise imports by the reporting economy (current US$)", + "World/South Africa/CMR/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/COL/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/CRI/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/DEU/Imports/Merchandise imports by the reporting economy (current US$)", + "World/North Africa/DZA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/North Africa/EGY/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/ESP/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/FRA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/GBR/Imports/Merchandise imports by the reporting economy (current US$)", + "World/South Africa/GHA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/GRC/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/HRV/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/IDN/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/IND/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Persian Gulf/IRQ/Imports/Merchandise imports by the reporting economy (current US$)", + "World/North Africa/ISR/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/KOR/Imports/Merchandise imports by the reporting economy (current US$)", + "World/North Africa/MAR/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/MEX/Imports/Merchandise imports by the reporting economy (current US$)", + "World/South Africa/MOZ/Imports/Merchandise imports by the reporting economy (current US$)", + "World/South Africa/NGA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/NLD/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Persian Gulf/OMN/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/PAN/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Latam/PER/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/PHL/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/POL/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Persian Gulf/QAT/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Persian Gulf/SAU/Imports/Merchandise imports by the reporting economy (current US$)", + "World/South Africa/SEN/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Europe/SWE/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/THA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/North Africa/TUR/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Pair/USA/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/VNM/Imports/Merchandise imports by the reporting economy (current US$)", + "World/South Africa/ZAF/Imports/Merchandise imports by the reporting economy (current US$)", + "World/Asia/BGD/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Latam/BRA/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Pair/CHN/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Latam/COL/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Latam/CRI/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/North Africa/DZA/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Europe/GRC/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Asia/IDN/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Asia/KOR/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Latam/MEX/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/South Africa/NGA/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Persian Gulf/OMN/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Asia/PHL/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Persian Gulf/QAT/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Persian Gulf/SAU/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Asia/THA/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/North Africa/TUR/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Pair/USA/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Latam/VEN/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Asia/VNM/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Persian Gulf/YEM/Imports/Merchandise imports from high-income economies (% of total merchandise imports)", + "World/Europe/AUT/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Persian Gulf/AZE/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/BGD/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/BRA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/CHL/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Pair/CHN/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/South Africa/CMR/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/COL/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/CRI/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/DEU/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/North Africa/DZA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/North Africa/EGY/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/ESP/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/FRA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/GBR/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/South Africa/GHA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/GRC/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/IDN/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/IND/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/North Africa/ISR/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/KOR/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/North Africa/MAR/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/MEX/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/South Africa/MOZ/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/South Africa/NGA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/NLD/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/PAN/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/PER/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/PHL/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/POL/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Persian Gulf/QAT/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Persian Gulf/SAU/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Europe/SWE/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/THA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/North Africa/TUR/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Pair/USA/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/VEN/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Asia/VNM/Imports/Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "World/Latam/ARG/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/BRA/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/CHL/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/COL/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/CRI/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/North Africa/DZA/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/North Africa/EGY/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Europe/ESP/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Europe/GBR/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/North Africa/ISR/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/South Africa/LBR/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/North Africa/MAR/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/MEX/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/PAN/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/PER/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Europe/POL/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Persian Gulf/SAU/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Europe/SWE/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/North Africa/TUR/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Pair/USA/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Latam/VEN/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/South Africa/ZAF/Imports/Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "World/Europe/AUT/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Persian Gulf/AZE/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Asia/BGD/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Pair/CHN/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/South Africa/CMR/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Latam/COL/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Latam/CRI/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/North Africa/DZA/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/North Africa/EGY/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Europe/ESP/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Europe/FRA/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Europe/GBR/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/South Africa/GHA/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Europe/GRC/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Asia/IND/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/North Africa/ISR/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Asia/KOR/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/North Africa/MAR/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Latam/MEX/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/South Africa/MOZ/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Europe/NLD/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Persian Gulf/OMN/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Latam/PER/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Europe/POL/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Persian Gulf/QAT/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Persian Gulf/SAU/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/South Africa/SEN/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/North Africa/TUR/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Pair/USA/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Persian Gulf/YEM/Imports/Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "World/Persian Gulf/ARE/Environment/Methane emissions (% change from 1990)", + "World/Europe/AUT/Environment/Methane emissions (% change from 1990)", + "World/Persian Gulf/AZE/Environment/Methane emissions (% change from 1990)", + "World/Asia/BGD/Environment/Methane emissions (% change from 1990)", + "World/Latam/CHL/Environment/Methane emissions (% change from 1990)", + "World/Pair/CHN/Environment/Methane emissions (% change from 1990)", + "World/Latam/COL/Environment/Methane emissions (% change from 1990)", + "World/Europe/DEU/Environment/Methane emissions (% change from 1990)", + "World/North Africa/DZA/Environment/Methane emissions (% change from 1990)", + "World/North Africa/EGY/Environment/Methane emissions (% change from 1990)", + "World/Europe/ESP/Environment/Methane emissions (% change from 1990)", + "World/Europe/FRA/Environment/Methane emissions (% change from 1990)", + "World/Europe/GBR/Environment/Methane emissions (% change from 1990)", + "World/South Africa/GHA/Environment/Methane emissions (% change from 1990)", + "World/Asia/IND/Environment/Methane emissions (% change from 1990)", + "World/Asia/KOR/Environment/Methane emissions (% change from 1990)", + "World/North Africa/MAR/Environment/Methane emissions (% change from 1990)", + "World/Latam/MEX/Environment/Methane emissions (% change from 1990)", + "World/Europe/NLD/Environment/Methane emissions (% change from 1990)", + "World/Persian Gulf/OMN/Environment/Methane emissions (% change from 1990)", + "World/Latam/PAN/Environment/Methane emissions (% change from 1990)", + "World/Latam/PER/Environment/Methane emissions (% change from 1990)", + "World/Asia/PHL/Environment/Methane emissions (% change from 1990)", + "World/Europe/POL/Environment/Methane emissions (% change from 1990)", + "World/Persian Gulf/QAT/Environment/Methane emissions (% change from 1990)", + "World/Persian Gulf/SAU/Environment/Methane emissions (% change from 1990)", + "World/North Africa/TUR/Environment/Methane emissions (% change from 1990)", + "World/Pair/USA/Environment/Methane emissions (% change from 1990)", + "World/Asia/VNM/Environment/Methane emissions (% change from 1990)", + "World/Persian Gulf/YEM/Environment/Methane emissions (% change from 1990)", + "World/Persian Gulf/ARE/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/ARG/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Europe/AUT/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Persian Gulf/AZE/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Asia/BGD/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/BRA/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Pair/CHN/Environment/Methane emissions (kt of CO2 equivalent)", + "World/South Africa/CMR/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/COL/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/CRI/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Europe/DEU/Environment/Methane emissions (kt of CO2 equivalent)", + "World/North Africa/DZA/Environment/Methane emissions (kt of CO2 equivalent)", + "World/North Africa/EGY/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Europe/FRA/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Europe/GBR/Environment/Methane emissions (kt of CO2 equivalent)", + "World/South Africa/GHA/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Asia/IND/Environment/Methane emissions (kt of CO2 equivalent)", + "World/North Africa/ISR/Environment/Methane emissions (kt of CO2 equivalent)", + "World/South Africa/LBR/Environment/Methane emissions (kt of CO2 equivalent)", + "World/North Africa/MAR/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/MEX/Environment/Methane emissions (kt of CO2 equivalent)", + "World/South Africa/MOZ/Environment/Methane emissions (kt of CO2 equivalent)", + "World/South Africa/NGA/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Europe/NLD/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Persian Gulf/OMN/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/PAN/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Latam/PER/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Asia/PHL/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Europe/POL/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Persian Gulf/QAT/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Persian Gulf/SAU/Environment/Methane emissions (kt of CO2 equivalent)", + "World/South Africa/SEN/Environment/Methane emissions (kt of CO2 equivalent)", + "World/North Africa/TUR/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Pair/USA/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Asia/VNM/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Persian Gulf/YEM/Environment/Methane emissions (kt of CO2 equivalent)", + "World/Persian Gulf/ARE/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/ARG/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/AUT/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/AZE/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/BGD/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Pair/CHN/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/CMR/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/COL/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/DEU/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/DZA/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/EGY/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/FRA/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/GBR/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/GHA/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/GRC/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/IND/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/IRQ/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/ISR/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/KOR/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/LBR/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/MAR/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/MOZ/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/NGA/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/OMN/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/PAN/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/PER/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/POL/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/QAT/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/SEN/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/SWE/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/THA/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Pair/USA/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/VNM/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/YEM/Environment/Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/ARE/Military/Military expenditure (current USD)", + "World/Europe/AUT/Military/Military expenditure (current USD)", + "World/Persian Gulf/AZE/Military/Military expenditure (current USD)", + "World/Asia/BGD/Military/Military expenditure (current USD)", + "World/Latam/BRA/Military/Military expenditure (current USD)", + "World/Latam/CHL/Military/Military expenditure (current USD)", + "World/Pair/CHN/Military/Military expenditure (current USD)", + "World/South Africa/CMR/Military/Military expenditure (current USD)", + "World/Latam/COL/Military/Military expenditure (current USD)", + "World/North Africa/DZA/Military/Military expenditure (current USD)", + "World/North Africa/EGY/Military/Military expenditure (current USD)", + "World/Europe/ESP/Military/Military expenditure (current USD)", + "World/Europe/FRA/Military/Military expenditure (current USD)", + "World/South Africa/GHA/Military/Military expenditure (current USD)", + "World/Europe/GRC/Military/Military expenditure (current USD)", + "World/Asia/IDN/Military/Military expenditure (current USD)", + "World/Asia/IND/Military/Military expenditure (current USD)", + "World/North Africa/ISR/Military/Military expenditure (current USD)", + "World/Asia/KOR/Military/Military expenditure (current USD)", + "World/North Africa/MAR/Military/Military expenditure (current USD)", + "World/Latam/MEX/Military/Military expenditure (current USD)", + "World/South Africa/MOZ/Military/Military expenditure (current USD)", + "World/South Africa/NGA/Military/Military expenditure (current USD)", + "World/Europe/NLD/Military/Military expenditure (current USD)", + "World/Persian Gulf/OMN/Military/Military expenditure (current USD)", + "World/Latam/PER/Military/Military expenditure (current USD)", + "World/Asia/PHL/Military/Military expenditure (current USD)", + "World/Europe/POL/Military/Military expenditure (current USD)", + "World/Persian Gulf/SAU/Military/Military expenditure (current USD)", + "World/South Africa/SEN/Military/Military expenditure (current USD)", + "World/Asia/THA/Military/Military expenditure (current USD)", + "World/North Africa/TUR/Military/Military expenditure (current USD)", + "World/Pair/USA/Military/Military expenditure (current USD)", + "World/Asia/VNM/Military/Military expenditure (current USD)", + "World/Persian Gulf/YEM/Military/Military expenditure (current USD)", + "World/Persian Gulf/ARE/Internet/Mobile cellular subscriptions", + "World/Latam/BRA/Internet/Mobile cellular subscriptions", + "World/Latam/CHL/Internet/Mobile cellular subscriptions", + "World/Pair/CHN/Internet/Mobile cellular subscriptions", + "World/Europe/DEU/Internet/Mobile cellular subscriptions", + "World/North Africa/DZA/Internet/Mobile cellular subscriptions", + "World/North Africa/EGY/Internet/Mobile cellular subscriptions", + "World/Europe/FRA/Internet/Mobile cellular subscriptions", + "World/Europe/GBR/Internet/Mobile cellular subscriptions", + "World/Europe/HRV/Internet/Mobile cellular subscriptions", + "World/Asia/IDN/Internet/Mobile cellular subscriptions", + "World/North Africa/ISR/Internet/Mobile cellular subscriptions", + "World/Asia/KOR/Internet/Mobile cellular subscriptions", + "World/North Africa/MAR/Internet/Mobile cellular subscriptions", + "World/Latam/MEX/Internet/Mobile cellular subscriptions", + "World/Europe/NLD/Internet/Mobile cellular subscriptions", + "World/Persian Gulf/OMN/Internet/Mobile cellular subscriptions", + "World/Latam/PER/Internet/Mobile cellular subscriptions", + "World/Persian Gulf/QAT/Internet/Mobile cellular subscriptions", + "World/Persian Gulf/SAU/Internet/Mobile cellular subscriptions", + "World/Europe/SWE/Internet/Mobile cellular subscriptions", + "World/Asia/THA/Internet/Mobile cellular subscriptions", + "World/North Africa/TUR/Internet/Mobile cellular subscriptions", + "World/Pair/USA/Internet/Mobile cellular subscriptions", + "World/South Africa/ZAF/Internet/Mobile cellular subscriptions", + "World/Persian Gulf/ARE/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Latam/BRA/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Latam/CHL/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Pair/CHN/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Europe/DEU/Internet/Mobile cellular subscriptions (per 100 people)", + "World/North Africa/DZA/Internet/Mobile cellular subscriptions (per 100 people)", + "World/North Africa/EGY/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Europe/FRA/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Europe/HRV/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Asia/IDN/Internet/Mobile cellular subscriptions (per 100 people)", + "World/North Africa/ISR/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Asia/KOR/Internet/Mobile cellular subscriptions (per 100 people)", + "World/North Africa/MAR/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Latam/MEX/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Europe/NLD/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Persian Gulf/OMN/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Latam/PER/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Persian Gulf/QAT/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Persian Gulf/SAU/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Europe/SWE/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Asia/THA/Internet/Mobile cellular subscriptions (per 100 people)", + "World/North Africa/TUR/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Pair/USA/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Latam/VEN/Internet/Mobile cellular subscriptions (per 100 people)", + "World/South Africa/ZAF/Internet/Mobile cellular subscriptions (per 100 people)", + "World/Persian Gulf/ARE/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Persian Gulf/AZE/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Asia/BGD/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/CHL/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Pair/CHN/Economy/Monetary Sector credit to private sector (% GDP)", + "World/South Africa/CMR/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/COL/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/CRI/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/DEU/Economy/Monetary Sector credit to private sector (% GDP)", + "World/North Africa/DZA/Economy/Monetary Sector credit to private sector (% GDP)", + "World/North Africa/EGY/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/FRA/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/GRC/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/HRV/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Asia/IND/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Asia/KOR/Economy/Monetary Sector credit to private sector (% GDP)", + "World/South Africa/LBR/Economy/Monetary Sector credit to private sector (% GDP)", + "World/North Africa/MAR/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/MEX/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Persian Gulf/OMN/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/PAN/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/PER/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/POL/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Persian Gulf/QAT/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Persian Gulf/SAU/Economy/Monetary Sector credit to private sector (% GDP)", + "World/South Africa/SEN/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/SWE/Economy/Monetary Sector credit to private sector (% GDP)", + "World/North Africa/TUR/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Latam/VEN/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Asia/VNM/Economy/Monetary Sector credit to private sector (% GDP)", + "World/Europe/AUT/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Persian Gulf/AZE/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Asia/BGD/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Pair/CHN/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/South Africa/CMR/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/DEU/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/North Africa/DZA/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/ESP/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/GBR/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/GRC/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/HRV/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Asia/IDN/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/North Africa/ISR/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Asia/KOR/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/North Africa/MAR/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Latam/MEX/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/South Africa/MOZ/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/South Africa/NGA/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/NLD/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Persian Gulf/OMN/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Asia/PHL/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/POL/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Persian Gulf/QAT/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Persian Gulf/SAU/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Europe/SWE/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Asia/THA/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/North Africa/TUR/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Latam/VEN/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Asia/VNM/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Persian Gulf/YEM/Mortality/Mortality caused by road traffic injury (per 100,000 population)", + "World/Persian Gulf/ARE/Economy/Net barter terms of trade index (2000 = 100)", + "World/Europe/AUT/Economy/Net barter terms of trade index (2000 = 100)", + "World/Latam/BRA/Economy/Net barter terms of trade index (2000 = 100)", + "World/Latam/COL/Economy/Net barter terms of trade index (2000 = 100)", + "World/North Africa/DZA/Economy/Net barter terms of trade index (2000 = 100)", + "World/North Africa/EGY/Economy/Net barter terms of trade index (2000 = 100)", + "World/Europe/ESP/Economy/Net barter terms of trade index (2000 = 100)", + "World/South Africa/GHA/Economy/Net barter terms of trade index (2000 = 100)", + "World/Asia/KOR/Economy/Net barter terms of trade index (2000 = 100)", + "World/South Africa/LBR/Economy/Net barter terms of trade index (2000 = 100)", + "World/Europe/NLD/Economy/Net barter terms of trade index (2000 = 100)", + "World/Europe/SWE/Economy/Net barter terms of trade index (2000 = 100)", + "World/Asia/VNM/Economy/Net barter terms of trade index (2000 = 100)", + "World/South Africa/ZAF/Economy/Net barter terms of trade index (2000 = 100)", + "World/Asia/BGD/Economy/Net primary income (BoP, current US$)", + "World/Latam/BRA/Economy/Net primary income (BoP, current US$)", + "World/Latam/COL/Economy/Net primary income (BoP, current US$)", + "World/Latam/CRI/Economy/Net primary income (BoP, current US$)", + "World/North Africa/EGY/Economy/Net primary income (BoP, current US$)", + "World/Europe/FRA/Economy/Net primary income (BoP, current US$)", + "World/South Africa/GHA/Economy/Net primary income (BoP, current US$)", + "World/Asia/IDN/Economy/Net primary income (BoP, current US$)", + "World/Asia/IND/Economy/Net primary income (BoP, current US$)", + "World/Asia/KOR/Economy/Net primary income (BoP, current US$)", + "World/Latam/MEX/Economy/Net primary income (BoP, current US$)", + "World/Persian Gulf/OMN/Economy/Net primary income (BoP, current US$)", + "World/Latam/PAN/Economy/Net primary income (BoP, current US$)", + "World/Europe/POL/Economy/Net primary income (BoP, current US$)", + "World/Persian Gulf/QAT/Economy/Net primary income (BoP, current US$)", + "World/Asia/THA/Economy/Net primary income (BoP, current US$)", + "World/North Africa/TUR/Economy/Net primary income (BoP, current US$)", + "World/Pair/USA/Economy/Net primary income (BoP, current US$)", + "World/Latam/VEN/Economy/Net primary income (BoP, current US$)", + "World/Asia/VNM/Economy/Net primary income (BoP, current US$)", + "World/South Africa/ZAF/Economy/Net primary income (BoP, current US$)", + "World/Asia/BGD/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Latam/BRA/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Latam/COL/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Latam/CRI/Economy/Net primary income (Net income from abroad) (current US$)", + "World/North Africa/EGY/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Europe/FRA/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Asia/IND/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Asia/KOR/Economy/Net primary income (Net income from abroad) (current US$)", + "World/South Africa/LBR/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Latam/MEX/Economy/Net primary income (Net income from abroad) (current US$)", + "World/South Africa/NGA/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Persian Gulf/OMN/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Latam/PAN/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Asia/PHL/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Europe/POL/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Persian Gulf/SAU/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Asia/THA/Economy/Net primary income (Net income from abroad) (current US$)", + "World/North Africa/TUR/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Pair/USA/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Asia/VNM/Economy/Net primary income (Net income from abroad) (current US$)", + "World/South Africa/ZAF/Economy/Net primary income (Net income from abroad) (current US$)", + "World/Asia/BGD/Economy/Net secondary income (BoP, current US$)", + "World/Latam/COL/Economy/Net secondary income (BoP, current US$)", + "World/Latam/CRI/Economy/Net secondary income (BoP, current US$)", + "World/Europe/DEU/Economy/Net secondary income (BoP, current US$)", + "World/North Africa/EGY/Economy/Net secondary income (BoP, current US$)", + "World/Europe/ESP/Economy/Net secondary income (BoP, current US$)", + "World/Europe/FRA/Economy/Net secondary income (BoP, current US$)", + "World/Europe/GBR/Economy/Net secondary income (BoP, current US$)", + "World/Asia/IND/Economy/Net secondary income (BoP, current US$)", + "World/Asia/KOR/Economy/Net secondary income (BoP, current US$)", + "World/North Africa/MAR/Economy/Net secondary income (BoP, current US$)", + "World/Latam/MEX/Economy/Net secondary income (BoP, current US$)", + "World/South Africa/NGA/Economy/Net secondary income (BoP, current US$)", + "World/Persian Gulf/OMN/Economy/Net secondary income (BoP, current US$)", + "World/Latam/PER/Economy/Net secondary income (BoP, current US$)", + "World/Asia/PHL/Economy/Net secondary income (BoP, current US$)", + "World/Europe/POL/Economy/Net secondary income (BoP, current US$)", + "World/Persian Gulf/SAU/Economy/Net secondary income (BoP, current US$)", + "World/South Africa/SEN/Economy/Net secondary income (BoP, current US$)", + "World/Europe/SWE/Economy/Net secondary income (BoP, current US$)", + "World/Asia/THA/Economy/Net secondary income (BoP, current US$)", + "World/Pair/USA/Economy/Net secondary income (BoP, current US$)", + "World/Latam/VEN/Economy/Net secondary income (BoP, current US$)", + "World/Asia/VNM/Economy/Net secondary income (BoP, current US$)", + "World/Persian Gulf/YEM/Economy/Net secondary income (BoP, current US$)", + "World/South Africa/ZAF/Economy/Net secondary income (BoP, current US$)", + "World/Persian Gulf/ARE/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/AUT/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Latam/COL/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Latam/CRI/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/North Africa/DZA/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/North Africa/EGY/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/ESP/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/FRA/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/GBR/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/South Africa/GHA/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Asia/IND/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/North Africa/ISR/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/North Africa/MAR/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Latam/MEX/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/South Africa/NGA/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Persian Gulf/OMN/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Latam/PAN/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Latam/PER/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Asia/PHL/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/POL/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Persian Gulf/QAT/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Persian Gulf/SAU/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/South Africa/SEN/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/SWE/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Asia/THA/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Pair/USA/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Asia/VNM/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Persian Gulf/YEM/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/South Africa/ZAF/Economy/Net secondary income (Net current transfers from abroad) (current US$)", + "World/Europe/AUT/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Persian Gulf/AZE/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Asia/BGD/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Latam/CHL/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Pair/CHN/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Latam/COL/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Latam/CRI/Environment/Nitrous oxide emissions (% change from 1990)", + "World/North Africa/DZA/Environment/Nitrous oxide emissions (% change from 1990)", + "World/North Africa/EGY/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Europe/ESP/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Europe/FRA/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Europe/GBR/Environment/Nitrous oxide emissions (% change from 1990)", + "World/South Africa/GHA/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Europe/GRC/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Asia/IND/Environment/Nitrous oxide emissions (% change from 1990)", + "World/South Africa/NGA/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Europe/NLD/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Persian Gulf/OMN/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Latam/PAN/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Latam/PER/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Persian Gulf/QAT/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Europe/SWE/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Pair/USA/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Asia/VNM/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Persian Gulf/YEM/Environment/Nitrous oxide emissions (% change from 1990)", + "World/South Africa/ZAF/Environment/Nitrous oxide emissions (% change from 1990)", + "World/Persian Gulf/ARE/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/AZE/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/BGD/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/BRA/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Pair/CHN/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/CRI/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/DZA/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/FRA/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/GBR/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/GHA/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/GRC/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IDN/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/IND/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/ISR/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/LBR/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/MAR/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/South Africa/NGA/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/NLD/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/OMN/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Latam/PER/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/PHL/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/QAT/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Europe/SWE/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/North Africa/TUR/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Asia/VNM/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/YEM/Environment/Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/ARE/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/AUT/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/BGD/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/BRA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/CHL/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Pair/CHN/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/CMR/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/DZA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/EGY/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/FRA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/GBR/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/GHA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/IDN/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/IND/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/ISR/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/KOR/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/LBR/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/North Africa/MAR/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/MEX/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/MOZ/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/NGA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Europe/NLD/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/OMN/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/PAN/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/PER/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/PHL/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/QAT/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/SAU/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/SEN/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/THA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Pair/USA/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/VEN/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Asia/VNM/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Persian Gulf/YEM/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/South Africa/ZAF/Environment/Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "World/Latam/ARG/Mortality/Number of deaths ages 10-14 years", + "World/Europe/AUT/Mortality/Number of deaths ages 10-14 years", + "World/Persian Gulf/AZE/Mortality/Number of deaths ages 10-14 years", + "World/Asia/BGD/Mortality/Number of deaths ages 10-14 years", + "World/Latam/BRA/Mortality/Number of deaths ages 10-14 years", + "World/Latam/CHL/Mortality/Number of deaths ages 10-14 years", + "World/Pair/CHN/Mortality/Number of deaths ages 10-14 years", + "World/South Africa/CMR/Mortality/Number of deaths ages 10-14 years", + "World/Latam/COL/Mortality/Number of deaths ages 10-14 years", + "World/Latam/CRI/Mortality/Number of deaths ages 10-14 years", + "World/Europe/DEU/Mortality/Number of deaths ages 10-14 years", + "World/North Africa/DZA/Mortality/Number of deaths ages 10-14 years", + "World/Europe/ESP/Mortality/Number of deaths ages 10-14 years", + "World/Europe/FRA/Mortality/Number of deaths ages 10-14 years", + "World/Europe/GBR/Mortality/Number of deaths ages 10-14 years", + "World/Europe/GRC/Mortality/Number of deaths ages 10-14 years", + "World/Europe/HRV/Mortality/Number of deaths ages 10-14 years", + "World/Asia/IDN/Mortality/Number of deaths ages 10-14 years", + "World/Asia/IND/Mortality/Number of deaths ages 10-14 years", + "World/Persian Gulf/IRQ/Mortality/Number of deaths ages 10-14 years", + "World/North Africa/ISR/Mortality/Number of deaths ages 10-14 years", + "World/Asia/KOR/Mortality/Number of deaths ages 10-14 years", + "World/South Africa/LBR/Mortality/Number of deaths ages 10-14 years", + "World/North Africa/MAR/Mortality/Number of deaths ages 10-14 years", + "World/Latam/MEX/Mortality/Number of deaths ages 10-14 years", + "World/South Africa/MOZ/Mortality/Number of deaths ages 10-14 years", + "World/South Africa/NGA/Mortality/Number of deaths ages 10-14 years", + "World/Europe/NLD/Mortality/Number of deaths ages 10-14 years", + "World/Persian Gulf/OMN/Mortality/Number of deaths ages 10-14 years", + "World/Latam/PAN/Mortality/Number of deaths ages 10-14 years", + "World/Latam/PER/Mortality/Number of deaths ages 10-14 years", + "World/Europe/POL/Mortality/Number of deaths ages 10-14 years", + "World/Persian Gulf/SAU/Mortality/Number of deaths ages 10-14 years", + "World/South Africa/SEN/Mortality/Number of deaths ages 10-14 years", + "World/Asia/THA/Mortality/Number of deaths ages 10-14 years", + "World/North Africa/TUR/Mortality/Number of deaths ages 10-14 years", + "World/Pair/USA/Mortality/Number of deaths ages 10-14 years", + "World/Asia/VNM/Mortality/Number of deaths ages 10-14 years", + "World/Persian Gulf/YEM/Mortality/Number of deaths ages 10-14 years", + "World/Persian Gulf/ARE/Mortality/Number of deaths ages 15-19 years", + "World/Latam/ARG/Mortality/Number of deaths ages 15-19 years", + "World/Europe/AUT/Mortality/Number of deaths ages 15-19 years", + "World/Latam/CHL/Mortality/Number of deaths ages 15-19 years", + "World/Pair/CHN/Mortality/Number of deaths ages 15-19 years", + "World/South Africa/CMR/Mortality/Number of deaths ages 15-19 years", + "World/Latam/COL/Mortality/Number of deaths ages 15-19 years", + "World/Europe/DEU/Mortality/Number of deaths ages 15-19 years", + "World/North Africa/DZA/Mortality/Number of deaths ages 15-19 years", + "World/Europe/ESP/Mortality/Number of deaths ages 15-19 years", + "World/Europe/FRA/Mortality/Number of deaths ages 15-19 years", + "World/Europe/GBR/Mortality/Number of deaths ages 15-19 years", + "World/Europe/GRC/Mortality/Number of deaths ages 15-19 years", + "World/Europe/HRV/Mortality/Number of deaths ages 15-19 years", + "World/Asia/IND/Mortality/Number of deaths ages 15-19 years", + "World/Asia/KOR/Mortality/Number of deaths ages 15-19 years", + "World/South Africa/LBR/Mortality/Number of deaths ages 15-19 years", + "World/North Africa/MAR/Mortality/Number of deaths ages 15-19 years", + "World/South Africa/NGA/Mortality/Number of deaths ages 15-19 years", + "World/Europe/NLD/Mortality/Number of deaths ages 15-19 years", + "World/Persian Gulf/OMN/Mortality/Number of deaths ages 15-19 years", + "World/Latam/PAN/Mortality/Number of deaths ages 15-19 years", + "World/Latam/PER/Mortality/Number of deaths ages 15-19 years", + "World/Asia/PHL/Mortality/Number of deaths ages 15-19 years", + "World/Europe/POL/Mortality/Number of deaths ages 15-19 years", + "World/Persian Gulf/QAT/Mortality/Number of deaths ages 15-19 years", + "World/Persian Gulf/SAU/Mortality/Number of deaths ages 15-19 years", + "World/South Africa/SEN/Mortality/Number of deaths ages 15-19 years", + "World/Asia/THA/Mortality/Number of deaths ages 15-19 years", + "World/North Africa/TUR/Mortality/Number of deaths ages 15-19 years", + "World/Pair/USA/Mortality/Number of deaths ages 15-19 years", + "World/Latam/VEN/Mortality/Number of deaths ages 15-19 years", + "World/Asia/VNM/Mortality/Number of deaths ages 15-19 years", + "World/Persian Gulf/YEM/Mortality/Number of deaths ages 15-19 years", + "World/Europe/AUT/Mortality/Number of deaths ages 20-24 years", + "World/Persian Gulf/AZE/Mortality/Number of deaths ages 20-24 years", + "World/Asia/BGD/Mortality/Number of deaths ages 20-24 years", + "World/Latam/CHL/Mortality/Number of deaths ages 20-24 years", + "World/Pair/CHN/Mortality/Number of deaths ages 20-24 years", + "World/South Africa/CMR/Mortality/Number of deaths ages 20-24 years", + "World/Latam/COL/Mortality/Number of deaths ages 20-24 years", + "World/Latam/CRI/Mortality/Number of deaths ages 20-24 years", + "World/Europe/DEU/Mortality/Number of deaths ages 20-24 years", + "World/North Africa/DZA/Mortality/Number of deaths ages 20-24 years", + "World/Europe/ESP/Mortality/Number of deaths ages 20-24 years", + "World/Europe/FRA/Mortality/Number of deaths ages 20-24 years", + "World/Europe/GBR/Mortality/Number of deaths ages 20-24 years", + "World/Europe/GRC/Mortality/Number of deaths ages 20-24 years", + "World/Europe/HRV/Mortality/Number of deaths ages 20-24 years", + "World/Asia/IND/Mortality/Number of deaths ages 20-24 years", + "World/North Africa/ISR/Mortality/Number of deaths ages 20-24 years", + "World/Asia/KOR/Mortality/Number of deaths ages 20-24 years", + "World/South Africa/LBR/Mortality/Number of deaths ages 20-24 years", + "World/North Africa/MAR/Mortality/Number of deaths ages 20-24 years", + "World/Latam/MEX/Mortality/Number of deaths ages 20-24 years", + "World/South Africa/MOZ/Mortality/Number of deaths ages 20-24 years", + "World/Europe/NLD/Mortality/Number of deaths ages 20-24 years", + "World/Persian Gulf/OMN/Mortality/Number of deaths ages 20-24 years", + "World/Latam/PER/Mortality/Number of deaths ages 20-24 years", + "World/Asia/PHL/Mortality/Number of deaths ages 20-24 years", + "World/Europe/POL/Mortality/Number of deaths ages 20-24 years", + "World/Persian Gulf/QAT/Mortality/Number of deaths ages 20-24 years", + "World/South Africa/SEN/Mortality/Number of deaths ages 20-24 years", + "World/North Africa/TUR/Mortality/Number of deaths ages 20-24 years", + "World/Latam/VEN/Mortality/Number of deaths ages 20-24 years", + "World/Asia/VNM/Mortality/Number of deaths ages 20-24 years", + "World/Persian Gulf/YEM/Mortality/Number of deaths ages 20-24 years", + "World/Persian Gulf/ARE/Mortality/Number of deaths ages 5-9 years", + "World/Latam/ARG/Mortality/Number of deaths ages 5-9 years", + "World/Europe/AUT/Mortality/Number of deaths ages 5-9 years", + "World/Persian Gulf/AZE/Mortality/Number of deaths ages 5-9 years", + "World/Asia/BGD/Mortality/Number of deaths ages 5-9 years", + "World/Latam/BRA/Mortality/Number of deaths ages 5-9 years", + "World/Latam/CHL/Mortality/Number of deaths ages 5-9 years", + "World/Pair/CHN/Mortality/Number of deaths ages 5-9 years", + "World/South Africa/CMR/Mortality/Number of deaths ages 5-9 years", + "World/Latam/COL/Mortality/Number of deaths ages 5-9 years", + "World/Latam/CRI/Mortality/Number of deaths ages 5-9 years", + "World/Europe/DEU/Mortality/Number of deaths ages 5-9 years", + "World/North Africa/DZA/Mortality/Number of deaths ages 5-9 years", + "World/North Africa/EGY/Mortality/Number of deaths ages 5-9 years", + "World/Europe/ESP/Mortality/Number of deaths ages 5-9 years", + "World/Europe/FRA/Mortality/Number of deaths ages 5-9 years", + "World/Europe/GBR/Mortality/Number of deaths ages 5-9 years", + "World/South Africa/GHA/Mortality/Number of deaths ages 5-9 years", + "World/Europe/GRC/Mortality/Number of deaths ages 5-9 years", + "World/Europe/HRV/Mortality/Number of deaths ages 5-9 years", + "World/Asia/IDN/Mortality/Number of deaths ages 5-9 years", + "World/Asia/IND/Mortality/Number of deaths ages 5-9 years", + "World/North Africa/ISR/Mortality/Number of deaths ages 5-9 years", + "World/Asia/KOR/Mortality/Number of deaths ages 5-9 years", + "World/North Africa/MAR/Mortality/Number of deaths ages 5-9 years", + "World/Latam/MEX/Mortality/Number of deaths ages 5-9 years", + "World/South Africa/MOZ/Mortality/Number of deaths ages 5-9 years", + "World/South Africa/NGA/Mortality/Number of deaths ages 5-9 years", + "World/Europe/NLD/Mortality/Number of deaths ages 5-9 years", + "World/Persian Gulf/OMN/Mortality/Number of deaths ages 5-9 years", + "World/Latam/PAN/Mortality/Number of deaths ages 5-9 years", + "World/Latam/PER/Mortality/Number of deaths ages 5-9 years", + "World/Europe/POL/Mortality/Number of deaths ages 5-9 years", + "World/Persian Gulf/QAT/Mortality/Number of deaths ages 5-9 years", + "World/Persian Gulf/SAU/Mortality/Number of deaths ages 5-9 years", + "World/South Africa/SEN/Mortality/Number of deaths ages 5-9 years", + "World/Asia/THA/Mortality/Number of deaths ages 5-9 years", + "World/North Africa/TUR/Mortality/Number of deaths ages 5-9 years", + "World/Pair/USA/Mortality/Number of deaths ages 5-9 years", + "World/Asia/VNM/Mortality/Number of deaths ages 5-9 years", + "World/Persian Gulf/YEM/Mortality/Number of deaths ages 5-9 years", + "World/Persian Gulf/ARE/Mortality/Number of infant deaths", + "World/Latam/ARG/Mortality/Number of infant deaths", + "World/Europe/AUT/Mortality/Number of infant deaths", + "World/Persian Gulf/AZE/Mortality/Number of infant deaths", + "World/Asia/BGD/Mortality/Number of infant deaths", + "World/Latam/BRA/Mortality/Number of infant deaths", + "World/Latam/CHL/Mortality/Number of infant deaths", + "World/Pair/CHN/Mortality/Number of infant deaths", + "World/South Africa/CMR/Mortality/Number of infant deaths", + "World/Latam/COL/Mortality/Number of infant deaths", + "World/Latam/CRI/Mortality/Number of infant deaths", + "World/North Africa/EGY/Mortality/Number of infant deaths", + "World/Europe/FRA/Mortality/Number of infant deaths", + "World/Europe/GBR/Mortality/Number of infant deaths", + "World/South Africa/GHA/Mortality/Number of infant deaths", + "World/Europe/GRC/Mortality/Number of infant deaths", + "World/Europe/HRV/Mortality/Number of infant deaths", + "World/Asia/IDN/Mortality/Number of infant deaths", + "World/Asia/IND/Mortality/Number of infant deaths", + "World/Persian Gulf/IRQ/Mortality/Number of infant deaths", + "World/North Africa/ISR/Mortality/Number of infant deaths", + "World/Asia/KOR/Mortality/Number of infant deaths", + "World/South Africa/LBR/Mortality/Number of infant deaths", + "World/North Africa/MAR/Mortality/Number of infant deaths", + "World/Latam/MEX/Mortality/Number of infant deaths", + "World/South Africa/MOZ/Mortality/Number of infant deaths", + "World/Europe/NLD/Mortality/Number of infant deaths", + "World/Persian Gulf/OMN/Mortality/Number of infant deaths", + "World/Latam/PAN/Mortality/Number of infant deaths", + "World/Latam/PER/Mortality/Number of infant deaths", + "World/Asia/PHL/Mortality/Number of infant deaths", + "World/Europe/POL/Mortality/Number of infant deaths", + "World/Persian Gulf/SAU/Mortality/Number of infant deaths", + "World/South Africa/SEN/Mortality/Number of infant deaths", + "World/Europe/SWE/Mortality/Number of infant deaths", + "World/Asia/THA/Mortality/Number of infant deaths", + "World/North Africa/TUR/Mortality/Number of infant deaths", + "World/Pair/USA/Mortality/Number of infant deaths", + "World/Asia/VNM/Mortality/Number of infant deaths", + "World/Latam/ARG/Mortality/Number of maternal deaths", + "World/Persian Gulf/AZE/Mortality/Number of maternal deaths", + "World/Asia/BGD/Mortality/Number of maternal deaths", + "World/Latam/BRA/Mortality/Number of maternal deaths", + "World/Latam/CHL/Mortality/Number of maternal deaths", + "World/Pair/CHN/Mortality/Number of maternal deaths", + "World/South Africa/CMR/Mortality/Number of maternal deaths", + "World/Latam/COL/Mortality/Number of maternal deaths", + "World/Latam/CRI/Mortality/Number of maternal deaths", + "World/North Africa/DZA/Mortality/Number of maternal deaths", + "World/North Africa/EGY/Mortality/Number of maternal deaths", + "World/Europe/FRA/Mortality/Number of maternal deaths", + "World/Europe/GBR/Mortality/Number of maternal deaths", + "World/Europe/HRV/Mortality/Number of maternal deaths", + "World/Asia/IDN/Mortality/Number of maternal deaths", + "World/Asia/IND/Mortality/Number of maternal deaths", + "World/North Africa/ISR/Mortality/Number of maternal deaths", + "World/Asia/KOR/Mortality/Number of maternal deaths", + "World/North Africa/MAR/Mortality/Number of maternal deaths", + "World/Latam/MEX/Mortality/Number of maternal deaths", + "World/South Africa/MOZ/Mortality/Number of maternal deaths", + "World/South Africa/NGA/Mortality/Number of maternal deaths", + "World/Europe/NLD/Mortality/Number of maternal deaths", + "World/Persian Gulf/OMN/Mortality/Number of maternal deaths", + "World/Latam/PAN/Mortality/Number of maternal deaths", + "World/Latam/PER/Mortality/Number of maternal deaths", + "World/Asia/PHL/Mortality/Number of maternal deaths", + "World/Europe/POL/Mortality/Number of maternal deaths", + "World/Persian Gulf/SAU/Mortality/Number of maternal deaths", + "World/South Africa/SEN/Mortality/Number of maternal deaths", + "World/Asia/THA/Mortality/Number of maternal deaths", + "World/North Africa/TUR/Mortality/Number of maternal deaths", + "World/Pair/USA/Mortality/Number of maternal deaths", + "World/Asia/VNM/Mortality/Number of maternal deaths", + "World/Persian Gulf/YEM/Mortality/Number of maternal deaths", + "World/Persian Gulf/ARE/Mortality/Number of neonatal deaths", + "World/Latam/ARG/Mortality/Number of neonatal deaths", + "World/Europe/AUT/Mortality/Number of neonatal deaths", + "World/Persian Gulf/AZE/Mortality/Number of neonatal deaths", + "World/Asia/BGD/Mortality/Number of neonatal deaths", + "World/Latam/BRA/Mortality/Number of neonatal deaths", + "World/Latam/CHL/Mortality/Number of neonatal deaths", + "World/Pair/CHN/Mortality/Number of neonatal deaths", + "World/Latam/COL/Mortality/Number of neonatal deaths", + "World/Latam/CRI/Mortality/Number of neonatal deaths", + "World/North Africa/DZA/Mortality/Number of neonatal deaths", + "World/North Africa/EGY/Mortality/Number of neonatal deaths", + "World/Europe/FRA/Mortality/Number of neonatal deaths", + "World/Europe/GBR/Mortality/Number of neonatal deaths", + "World/South Africa/GHA/Mortality/Number of neonatal deaths", + "World/Europe/GRC/Mortality/Number of neonatal deaths", + "World/Europe/HRV/Mortality/Number of neonatal deaths", + "World/Asia/IDN/Mortality/Number of neonatal deaths", + "World/Asia/IND/Mortality/Number of neonatal deaths", + "World/North Africa/ISR/Mortality/Number of neonatal deaths", + "World/Asia/KOR/Mortality/Number of neonatal deaths", + "World/North Africa/MAR/Mortality/Number of neonatal deaths", + "World/Latam/MEX/Mortality/Number of neonatal deaths", + "World/South Africa/MOZ/Mortality/Number of neonatal deaths", + "World/South Africa/NGA/Mortality/Number of neonatal deaths", + "World/Europe/NLD/Mortality/Number of neonatal deaths", + "World/Persian Gulf/OMN/Mortality/Number of neonatal deaths", + "World/Latam/PAN/Mortality/Number of neonatal deaths", + "World/Latam/PER/Mortality/Number of neonatal deaths", + "World/Asia/PHL/Mortality/Number of neonatal deaths", + "World/Europe/POL/Mortality/Number of neonatal deaths", + "World/Persian Gulf/QAT/Mortality/Number of neonatal deaths", + "World/Persian Gulf/SAU/Mortality/Number of neonatal deaths", + "World/South Africa/SEN/Mortality/Number of neonatal deaths", + "World/Asia/THA/Mortality/Number of neonatal deaths", + "World/North Africa/TUR/Mortality/Number of neonatal deaths", + "World/Pair/USA/Mortality/Number of neonatal deaths", + "World/Asia/VNM/Mortality/Number of neonatal deaths", + "World/South Africa/ZAF/Mortality/Number of neonatal deaths", + "World/Persian Gulf/ARE/Mortality/Number of under-five deaths", + "World/Latam/ARG/Mortality/Number of under-five deaths", + "World/Europe/AUT/Mortality/Number of under-five deaths", + "World/Persian Gulf/AZE/Mortality/Number of under-five deaths", + "World/Asia/BGD/Mortality/Number of under-five deaths", + "World/Latam/BRA/Mortality/Number of under-five deaths", + "World/Latam/CHL/Mortality/Number of under-five deaths", + "World/Pair/CHN/Mortality/Number of under-five deaths", + "World/South Africa/CMR/Mortality/Number of under-five deaths", + "World/Latam/COL/Mortality/Number of under-five deaths", + "World/Latam/CRI/Mortality/Number of under-five deaths", + "World/North Africa/EGY/Mortality/Number of under-five deaths", + "World/Europe/FRA/Mortality/Number of under-five deaths", + "World/Europe/GBR/Mortality/Number of under-five deaths", + "World/South Africa/GHA/Mortality/Number of under-five deaths", + "World/Europe/GRC/Mortality/Number of under-five deaths", + "World/Europe/HRV/Mortality/Number of under-five deaths", + "World/Asia/IDN/Mortality/Number of under-five deaths", + "World/Asia/IND/Mortality/Number of under-five deaths", + "World/Persian Gulf/IRQ/Mortality/Number of under-five deaths", + "World/North Africa/ISR/Mortality/Number of under-five deaths", + "World/Asia/KOR/Mortality/Number of under-five deaths", + "World/South Africa/LBR/Mortality/Number of under-five deaths", + "World/North Africa/MAR/Mortality/Number of under-five deaths", + "World/Latam/MEX/Mortality/Number of under-five deaths", + "World/South Africa/MOZ/Mortality/Number of under-five deaths", + "World/Europe/NLD/Mortality/Number of under-five deaths", + "World/Persian Gulf/OMN/Mortality/Number of under-five deaths", + "World/Latam/PAN/Mortality/Number of under-five deaths", + "World/Latam/PER/Mortality/Number of under-five deaths", + "World/Asia/PHL/Mortality/Number of under-five deaths", + "World/Europe/POL/Mortality/Number of under-five deaths", + "World/Persian Gulf/SAU/Mortality/Number of under-five deaths", + "World/South Africa/SEN/Mortality/Number of under-five deaths", + "World/Europe/SWE/Mortality/Number of under-five deaths", + "World/Asia/THA/Mortality/Number of under-five deaths", + "World/North Africa/TUR/Mortality/Number of under-five deaths", + "World/Pair/USA/Mortality/Number of under-five deaths", + "World/Asia/VNM/Mortality/Number of under-five deaths", + "World/Latam/ARG/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/AUT/Health/Nurses and midwives (per 1,000 people)", + "World/Persian Gulf/AZE/Health/Nurses and midwives (per 1,000 people)", + "World/Asia/BGD/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/BRA/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/CHL/Health/Nurses and midwives (per 1,000 people)", + "World/Pair/CHN/Health/Nurses and midwives (per 1,000 people)", + "World/South Africa/CMR/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/CRI/Health/Nurses and midwives (per 1,000 people)", + "World/North Africa/EGY/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/ESP/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/FRA/Health/Nurses and midwives (per 1,000 people)", + "World/South Africa/GHA/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/HRV/Health/Nurses and midwives (per 1,000 people)", + "World/Asia/IDN/Health/Nurses and midwives (per 1,000 people)", + "World/Asia/IND/Health/Nurses and midwives (per 1,000 people)", + "World/Asia/KOR/Health/Nurses and midwives (per 1,000 people)", + "World/South Africa/LBR/Health/Nurses and midwives (per 1,000 people)", + "World/South Africa/MOZ/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/NLD/Health/Nurses and midwives (per 1,000 people)", + "World/Persian Gulf/OMN/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/PAN/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/PER/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/POL/Health/Nurses and midwives (per 1,000 people)", + "World/Persian Gulf/SAU/Health/Nurses and midwives (per 1,000 people)", + "World/Europe/SWE/Health/Nurses and midwives (per 1,000 people)", + "World/Asia/THA/Health/Nurses and midwives (per 1,000 people)", + "World/North Africa/TUR/Health/Nurses and midwives (per 1,000 people)", + "World/Pair/USA/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/VEN/Health/Nurses and midwives (per 1,000 people)", + "World/Persian Gulf/YEM/Health/Nurses and midwives (per 1,000 people)", + "World/South Africa/ZAF/Health/Nurses and midwives (per 1,000 people)", + "World/Latam/ARG/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/AUT/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Persian Gulf/AZE/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Asia/BGD/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/BRA/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/CHL/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Pair/CHN/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/South Africa/CMR/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/COL/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/CRI/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/DEU/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/North Africa/DZA/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/North Africa/EGY/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/ESP/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/FRA/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/GBR/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/South Africa/GHA/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/GRC/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/HRV/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Asia/IDN/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Asia/IND/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/North Africa/ISR/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Asia/KOR/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/South Africa/LBR/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/South Africa/NGA/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/NLD/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/PAN/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/PER/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Asia/PHL/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/POL/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Persian Gulf/SAU/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/South Africa/SEN/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Europe/SWE/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Pair/USA/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/VEN/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Asia/VNM/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Persian Gulf/YEM/Economy/Out-of-pocket expenditure per capita (current US$)", + "World/Latam/ARG/Health/People practicing open defecation (% of population)", + "World/Persian Gulf/AZE/Health/People practicing open defecation (% of population)", + "World/Asia/BGD/Health/People practicing open defecation (% of population)", + "World/Latam/BRA/Health/People practicing open defecation (% of population)", + "World/Latam/CHL/Health/People practicing open defecation (% of population)", + "World/Pair/CHN/Health/People practicing open defecation (% of population)", + "World/South Africa/CMR/Health/People practicing open defecation (% of population)", + "World/Latam/COL/Health/People practicing open defecation (% of population)", + "World/Latam/CRI/Health/People practicing open defecation (% of population)", + "World/North Africa/DZA/Health/People practicing open defecation (% of population)", + "World/North Africa/EGY/Health/People practicing open defecation (% of population)", + "World/South Africa/GHA/Health/People practicing open defecation (% of population)", + "World/Europe/GRC/Health/People practicing open defecation (% of population)", + "World/Asia/IDN/Health/People practicing open defecation (% of population)", + "World/Asia/IND/Health/People practicing open defecation (% of population)", + "World/Persian Gulf/IRQ/Health/People practicing open defecation (% of population)", + "World/South Africa/LBR/Health/People practicing open defecation (% of population)", + "World/North Africa/MAR/Health/People practicing open defecation (% of population)", + "World/Latam/MEX/Health/People practicing open defecation (% of population)", + "World/South Africa/MOZ/Health/People practicing open defecation (% of population)", + "World/South Africa/NGA/Health/People practicing open defecation (% of population)", + "World/Persian Gulf/OMN/Health/People practicing open defecation (% of population)", + "World/Latam/PAN/Health/People practicing open defecation (% of population)", + "World/Latam/PER/Health/People practicing open defecation (% of population)", + "World/Asia/PHL/Health/People practicing open defecation (% of population)", + "World/South Africa/SEN/Health/People practicing open defecation (% of population)", + "World/Asia/THA/Health/People practicing open defecation (% of population)", + "World/North Africa/TUR/Health/People practicing open defecation (% of population)", + "World/Latam/VEN/Health/People practicing open defecation (% of population)", + "World/Asia/VNM/Health/People practicing open defecation (% of population)", + "World/Persian Gulf/YEM/Health/People practicing open defecation (% of population)", + "World/South Africa/ZAF/Health/People practicing open defecation (% of population)", + "World/Persian Gulf/ARE/Health/People using at least basic drinking water services (% of population)", + "World/Latam/ARG/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/AZE/Health/People using at least basic drinking water services (% of population)", + "World/Asia/BGD/Health/People using at least basic drinking water services (% of population)", + "World/Latam/BRA/Health/People using at least basic drinking water services (% of population)", + "World/Latam/CHL/Health/People using at least basic drinking water services (% of population)", + "World/Pair/CHN/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/CMR/Health/People using at least basic drinking water services (% of population)", + "World/Latam/COL/Health/People using at least basic drinking water services (% of population)", + "World/Latam/CRI/Health/People using at least basic drinking water services (% of population)", + "World/North Africa/DZA/Health/People using at least basic drinking water services (% of population)", + "World/North Africa/EGY/Health/People using at least basic drinking water services (% of population)", + "World/Europe/ESP/Health/People using at least basic drinking water services (% of population)", + "World/Europe/FRA/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/GHA/Health/People using at least basic drinking water services (% of population)", + "World/Europe/GRC/Health/People using at least basic drinking water services (% of population)", + "World/Europe/HRV/Health/People using at least basic drinking water services (% of population)", + "World/Asia/IDN/Health/People using at least basic drinking water services (% of population)", + "World/Asia/IND/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/IRQ/Health/People using at least basic drinking water services (% of population)", + "World/Asia/KOR/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/LBR/Health/People using at least basic drinking water services (% of population)", + "World/North Africa/MAR/Health/People using at least basic drinking water services (% of population)", + "World/Latam/MEX/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/MOZ/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/NGA/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/OMN/Health/People using at least basic drinking water services (% of population)", + "World/Latam/PAN/Health/People using at least basic drinking water services (% of population)", + "World/Latam/PER/Health/People using at least basic drinking water services (% of population)", + "World/Asia/PHL/Health/People using at least basic drinking water services (% of population)", + "World/Europe/POL/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/QAT/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/SAU/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/SEN/Health/People using at least basic drinking water services (% of population)", + "World/Europe/SWE/Health/People using at least basic drinking water services (% of population)", + "World/Asia/THA/Health/People using at least basic drinking water services (% of population)", + "World/North Africa/TUR/Health/People using at least basic drinking water services (% of population)", + "World/Pair/USA/Health/People using at least basic drinking water services (% of population)", + "World/Latam/VEN/Health/People using at least basic drinking water services (% of population)", + "World/Asia/VNM/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/YEM/Health/People using at least basic drinking water services (% of population)", + "World/South Africa/ZAF/Health/People using at least basic drinking water services (% of population)", + "World/Persian Gulf/ARE/Health/People using at least basic sanitation services (% of population)", + "World/Latam/ARG/Health/People using at least basic sanitation services (% of population)", + "World/Europe/AUT/Health/People using at least basic sanitation services (% of population)", + "World/Persian Gulf/AZE/Health/People using at least basic sanitation services (% of population)", + "World/Asia/BGD/Health/People using at least basic sanitation services (% of population)", + "World/Latam/BRA/Health/People using at least basic sanitation services (% of population)", + "World/Latam/CHL/Health/People using at least basic sanitation services (% of population)", + "World/Pair/CHN/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/CMR/Health/People using at least basic sanitation services (% of population)", + "World/Latam/COL/Health/People using at least basic sanitation services (% of population)", + "World/Latam/CRI/Health/People using at least basic sanitation services (% of population)", + "World/Europe/DEU/Health/People using at least basic sanitation services (% of population)", + "World/North Africa/DZA/Health/People using at least basic sanitation services (% of population)", + "World/North Africa/EGY/Health/People using at least basic sanitation services (% of population)", + "World/Europe/ESP/Health/People using at least basic sanitation services (% of population)", + "World/Europe/FRA/Health/People using at least basic sanitation services (% of population)", + "World/Europe/GBR/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/GHA/Health/People using at least basic sanitation services (% of population)", + "World/Europe/GRC/Health/People using at least basic sanitation services (% of population)", + "World/Europe/HRV/Health/People using at least basic sanitation services (% of population)", + "World/Asia/IDN/Health/People using at least basic sanitation services (% of population)", + "World/Asia/IND/Health/People using at least basic sanitation services (% of population)", + "World/Persian Gulf/IRQ/Health/People using at least basic sanitation services (% of population)", + "World/North Africa/ISR/Health/People using at least basic sanitation services (% of population)", + "World/Asia/KOR/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/LBR/Health/People using at least basic sanitation services (% of population)", + "World/North Africa/MAR/Health/People using at least basic sanitation services (% of population)", + "World/Latam/MEX/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/MOZ/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/NGA/Health/People using at least basic sanitation services (% of population)", + "World/Europe/NLD/Health/People using at least basic sanitation services (% of population)", + "World/Persian Gulf/OMN/Health/People using at least basic sanitation services (% of population)", + "World/Latam/PAN/Health/People using at least basic sanitation services (% of population)", + "World/Latam/PER/Health/People using at least basic sanitation services (% of population)", + "World/Asia/PHL/Health/People using at least basic sanitation services (% of population)", + "World/Europe/POL/Health/People using at least basic sanitation services (% of population)", + "World/Persian Gulf/SAU/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/SEN/Health/People using at least basic sanitation services (% of population)", + "World/Europe/SWE/Health/People using at least basic sanitation services (% of population)", + "World/Asia/THA/Health/People using at least basic sanitation services (% of population)", + "World/North Africa/TUR/Health/People using at least basic sanitation services (% of population)", + "World/Pair/USA/Health/People using at least basic sanitation services (% of population)", + "World/Latam/VEN/Health/People using at least basic sanitation services (% of population)", + "World/Asia/VNM/Health/People using at least basic sanitation services (% of population)", + "World/Persian Gulf/YEM/Health/People using at least basic sanitation services (% of population)", + "World/South Africa/ZAF/Health/People using at least basic sanitation services (% of population)", + "World/Persian Gulf/ARE/Health/People using safely managed sanitation services (% of population)", + "World/Latam/ARG/Health/People using safely managed sanitation services (% of population)", + "World/Europe/AUT/Health/People using safely managed sanitation services (% of population)", + "World/Persian Gulf/AZE/Health/People using safely managed sanitation services (% of population)", + "World/Asia/BGD/Health/People using safely managed sanitation services (% of population)", + "World/Latam/BRA/Health/People using safely managed sanitation services (% of population)", + "World/Latam/CHL/Health/People using safely managed sanitation services (% of population)", + "World/Pair/CHN/Health/People using safely managed sanitation services (% of population)", + "World/Latam/COL/Health/People using safely managed sanitation services (% of population)", + "World/Latam/CRI/Health/People using safely managed sanitation services (% of population)", + "World/Europe/DEU/Health/People using safely managed sanitation services (% of population)", + "World/North Africa/DZA/Health/People using safely managed sanitation services (% of population)", + "World/North Africa/EGY/Health/People using safely managed sanitation services (% of population)", + "World/Europe/FRA/Health/People using safely managed sanitation services (% of population)", + "World/Europe/GBR/Health/People using safely managed sanitation services (% of population)", + "World/South Africa/GHA/Health/People using safely managed sanitation services (% of population)", + "World/Europe/GRC/Health/People using safely managed sanitation services (% of population)", + "World/Asia/IND/Health/People using safely managed sanitation services (% of population)", + "World/North Africa/ISR/Health/People using safely managed sanitation services (% of population)", + "World/Asia/KOR/Health/People using safely managed sanitation services (% of population)", + "World/North Africa/MAR/Health/People using safely managed sanitation services (% of population)", + "World/Latam/MEX/Health/People using safely managed sanitation services (% of population)", + "World/South Africa/NGA/Health/People using safely managed sanitation services (% of population)", + "World/Europe/NLD/Health/People using safely managed sanitation services (% of population)", + "World/Latam/PER/Health/People using safely managed sanitation services (% of population)", + "World/Asia/PHL/Health/People using safely managed sanitation services (% of population)", + "World/Europe/POL/Health/People using safely managed sanitation services (% of population)", + "World/Persian Gulf/QAT/Health/People using safely managed sanitation services (% of population)", + "World/Persian Gulf/SAU/Health/People using safely managed sanitation services (% of population)", + "World/South Africa/SEN/Health/People using safely managed sanitation services (% of population)", + "World/Europe/SWE/Health/People using safely managed sanitation services (% of population)", + "World/Asia/THA/Health/People using safely managed sanitation services (% of population)", + "World/North Africa/TUR/Health/People using safely managed sanitation services (% of population)", + "World/Pair/USA/Health/People using safely managed sanitation services (% of population)", + "World/Latam/VEN/Health/People using safely managed sanitation services (% of population)", + "World/Persian Gulf/YEM/Health/People using safely managed sanitation services (% of population)", + "World/Europe/AUT/Agriculture/Permanent cropland (% of land area)", + "World/Persian Gulf/AZE/Agriculture/Permanent cropland (% of land area)", + "World/Latam/CHL/Agriculture/Permanent cropland (% of land area)", + "World/Pair/CHN/Agriculture/Permanent cropland (% of land area)", + "World/South Africa/CMR/Agriculture/Permanent cropland (% of land area)", + "World/Latam/COL/Agriculture/Permanent cropland (% of land area)", + "World/Latam/CRI/Agriculture/Permanent cropland (% of land area)", + "World/North Africa/DZA/Agriculture/Permanent cropland (% of land area)", + "World/Europe/FRA/Agriculture/Permanent cropland (% of land area)", + "World/Europe/GRC/Agriculture/Permanent cropland (% of land area)", + "World/Asia/IDN/Agriculture/Permanent cropland (% of land area)", + "World/Asia/IND/Agriculture/Permanent cropland (% of land area)", + "World/North Africa/MAR/Agriculture/Permanent cropland (% of land area)", + "World/Latam/MEX/Agriculture/Permanent cropland (% of land area)", + "World/South Africa/MOZ/Agriculture/Permanent cropland (% of land area)", + "World/Europe/NLD/Agriculture/Permanent cropland (% of land area)", + "World/Persian Gulf/OMN/Agriculture/Permanent cropland (% of land area)", + "World/Latam/PER/Agriculture/Permanent cropland (% of land area)", + "World/Asia/PHL/Agriculture/Permanent cropland (% of land area)", + "World/South Africa/SEN/Agriculture/Permanent cropland (% of land area)", + "World/Asia/THA/Agriculture/Permanent cropland (% of land area)", + "World/North Africa/TUR/Agriculture/Permanent cropland (% of land area)", + "World/Asia/VNM/Agriculture/Permanent cropland (% of land area)", + "World/Persian Gulf/YEM/Agriculture/Permanent cropland (% of land area)", + "World/South Africa/ZAF/Agriculture/Permanent cropland (% of land area)", + "World/Persian Gulf/ARE/Demography/Population ages 0-14 (% of total population)", + "World/Latam/ARG/Demography/Population ages 0-14 (% of total population)", + "World/Europe/AUT/Demography/Population ages 0-14 (% of total population)", + "World/Persian Gulf/AZE/Demography/Population ages 0-14 (% of total population)", + "World/Asia/BGD/Demography/Population ages 0-14 (% of total population)", + "World/Latam/BRA/Demography/Population ages 0-14 (% of total population)", + "World/Latam/CHL/Demography/Population ages 0-14 (% of total population)", + "World/Pair/CHN/Demography/Population ages 0-14 (% of total population)", + "World/South Africa/CMR/Demography/Population ages 0-14 (% of total population)", + "World/Latam/COL/Demography/Population ages 0-14 (% of total population)", + "World/Latam/CRI/Demography/Population ages 0-14 (% of total population)", + "World/North Africa/EGY/Demography/Population ages 0-14 (% of total population)", + "World/Europe/FRA/Demography/Population ages 0-14 (% of total population)", + "World/South Africa/GHA/Demography/Population ages 0-14 (% of total population)", + "World/Europe/HRV/Demography/Population ages 0-14 (% of total population)", + "World/Asia/IDN/Demography/Population ages 0-14 (% of total population)", + "World/Asia/IND/Demography/Population ages 0-14 (% of total population)", + "World/Asia/KOR/Demography/Population ages 0-14 (% of total population)", + "World/North Africa/MAR/Demography/Population ages 0-14 (% of total population)", + "World/Latam/MEX/Demography/Population ages 0-14 (% of total population)", + "World/Europe/NLD/Demography/Population ages 0-14 (% of total population)", + "World/Persian Gulf/OMN/Demography/Population ages 0-14 (% of total population)", + "World/Latam/PAN/Demography/Population ages 0-14 (% of total population)", + "World/Latam/PER/Demography/Population ages 0-14 (% of total population)", + "World/Asia/PHL/Demography/Population ages 0-14 (% of total population)", + "World/Europe/POL/Demography/Population ages 0-14 (% of total population)", + "World/Persian Gulf/QAT/Demography/Population ages 0-14 (% of total population)", + "World/Persian Gulf/SAU/Demography/Population ages 0-14 (% of total population)", + "World/South Africa/SEN/Demography/Population ages 0-14 (% of total population)", + "World/Asia/THA/Demography/Population ages 0-14 (% of total population)", + "World/North Africa/TUR/Demography/Population ages 0-14 (% of total population)", + "World/Pair/USA/Demography/Population ages 0-14 (% of total population)", + "World/Latam/VEN/Demography/Population ages 0-14 (% of total population)", + "World/Asia/VNM/Demography/Population ages 0-14 (% of total population)", + "World/Persian Gulf/YEM/Demography/Population ages 0-14 (% of total population)", + "World/South Africa/ZAF/Demography/Population ages 0-14 (% of total population)", + "World/Persian Gulf/ARE/Demography/Population ages 15-64 (% of total population)", + "World/Latam/ARG/Demography/Population ages 15-64 (% of total population)", + "World/Persian Gulf/AZE/Demography/Population ages 15-64 (% of total population)", + "World/Asia/BGD/Demography/Population ages 15-64 (% of total population)", + "World/Latam/BRA/Demography/Population ages 15-64 (% of total population)", + "World/Latam/CHL/Demography/Population ages 15-64 (% of total population)", + "World/Pair/CHN/Demography/Population ages 15-64 (% of total population)", + "World/South Africa/CMR/Demography/Population ages 15-64 (% of total population)", + "World/Latam/COL/Demography/Population ages 15-64 (% of total population)", + "World/Latam/CRI/Demography/Population ages 15-64 (% of total population)", + "World/Europe/DEU/Demography/Population ages 15-64 (% of total population)", + "World/North Africa/EGY/Demography/Population ages 15-64 (% of total population)", + "World/Europe/FRA/Demography/Population ages 15-64 (% of total population)", + "World/Europe/GBR/Demography/Population ages 15-64 (% of total population)", + "World/South Africa/GHA/Demography/Population ages 15-64 (% of total population)", + "World/Europe/GRC/Demography/Population ages 15-64 (% of total population)", + "World/Asia/IDN/Demography/Population ages 15-64 (% of total population)", + "World/Asia/IND/Demography/Population ages 15-64 (% of total population)", + "World/North Africa/ISR/Demography/Population ages 15-64 (% of total population)", + "World/North Africa/MAR/Demography/Population ages 15-64 (% of total population)", + "World/Latam/MEX/Demography/Population ages 15-64 (% of total population)", + "World/Europe/NLD/Demography/Population ages 15-64 (% of total population)", + "World/Persian Gulf/OMN/Demography/Population ages 15-64 (% of total population)", + "World/Latam/PAN/Demography/Population ages 15-64 (% of total population)", + "World/Latam/PER/Demography/Population ages 15-64 (% of total population)", + "World/Asia/PHL/Demography/Population ages 15-64 (% of total population)", + "World/Europe/POL/Demography/Population ages 15-64 (% of total population)", + "World/Persian Gulf/QAT/Demography/Population ages 15-64 (% of total population)", + "World/Persian Gulf/SAU/Demography/Population ages 15-64 (% of total population)", + "World/South Africa/SEN/Demography/Population ages 15-64 (% of total population)", + "World/North Africa/TUR/Demography/Population ages 15-64 (% of total population)", + "World/Pair/USA/Demography/Population ages 15-64 (% of total population)", + "World/Latam/VEN/Demography/Population ages 15-64 (% of total population)", + "World/Asia/VNM/Demography/Population ages 15-64 (% of total population)", + "World/Persian Gulf/YEM/Demography/Population ages 15-64 (% of total population)", + "World/South Africa/ZAF/Demography/Population ages 15-64 (% of total population)", + "World/Persian Gulf/ARE/Demography/Population ages 65 and above (% of total population)", + "World/Latam/ARG/Demography/Population ages 65 and above (% of total population)", + "World/Europe/AUT/Demography/Population ages 65 and above (% of total population)", + "World/Asia/BGD/Demography/Population ages 65 and above (% of total population)", + "World/Latam/BRA/Demography/Population ages 65 and above (% of total population)", + "World/Latam/CHL/Demography/Population ages 65 and above (% of total population)", + "World/Pair/CHN/Demography/Population ages 65 and above (% of total population)", + "World/South Africa/CMR/Demography/Population ages 65 and above (% of total population)", + "World/Latam/COL/Demography/Population ages 65 and above (% of total population)", + "World/Latam/CRI/Demography/Population ages 65 and above (% of total population)", + "World/Europe/DEU/Demography/Population ages 65 and above (% of total population)", + "World/North Africa/DZA/Demography/Population ages 65 and above (% of total population)", + "World/North Africa/EGY/Demography/Population ages 65 and above (% of total population)", + "World/Europe/FRA/Demography/Population ages 65 and above (% of total population)", + "World/Europe/GBR/Demography/Population ages 65 and above (% of total population)", + "World/Europe/GRC/Demography/Population ages 65 and above (% of total population)", + "World/Europe/HRV/Demography/Population ages 65 and above (% of total population)", + "World/Asia/IDN/Demography/Population ages 65 and above (% of total population)", + "World/Asia/IND/Demography/Population ages 65 and above (% of total population)", + "World/North Africa/ISR/Demography/Population ages 65 and above (% of total population)", + "World/Asia/KOR/Demography/Population ages 65 and above (% of total population)", + "World/North Africa/MAR/Demography/Population ages 65 and above (% of total population)", + "World/Latam/MEX/Demography/Population ages 65 and above (% of total population)", + "World/South Africa/MOZ/Demography/Population ages 65 and above (% of total population)", + "World/South Africa/NGA/Demography/Population ages 65 and above (% of total population)", + "World/Europe/NLD/Demography/Population ages 65 and above (% of total population)", + "World/Latam/PAN/Demography/Population ages 65 and above (% of total population)", + "World/Latam/PER/Demography/Population ages 65 and above (% of total population)", + "World/Asia/PHL/Demography/Population ages 65 and above (% of total population)", + "World/Europe/POL/Demography/Population ages 65 and above (% of total population)", + "World/Persian Gulf/QAT/Demography/Population ages 65 and above (% of total population)", + "World/Asia/THA/Demography/Population ages 65 and above (% of total population)", + "World/North Africa/TUR/Demography/Population ages 65 and above (% of total population)", + "World/Pair/USA/Demography/Population ages 65 and above (% of total population)", + "World/Latam/VEN/Demography/Population ages 65 and above (% of total population)", + "World/Asia/VNM/Demography/Population ages 65 and above (% of total population)", + "World/Persian Gulf/YEM/Demography/Population ages 65 and above (% of total population)", + "World/South Africa/ZAF/Demography/Population ages 65 and above (% of total population)", + "World/Persian Gulf/ARE/Demography/Population in largest city", + "World/Latam/ARG/Demography/Population in largest city", + "World/Europe/AUT/Demography/Population in largest city", + "World/Persian Gulf/AZE/Demography/Population in largest city", + "World/Asia/BGD/Demography/Population in largest city", + "World/Latam/BRA/Demography/Population in largest city", + "World/Latam/CHL/Demography/Population in largest city", + "World/Pair/CHN/Demography/Population in largest city", + "World/South Africa/CMR/Demography/Population in largest city", + "World/Latam/COL/Demography/Population in largest city", + "World/Latam/CRI/Demography/Population in largest city", + "World/North Africa/DZA/Demography/Population in largest city", + "World/North Africa/EGY/Demography/Population in largest city", + "World/Europe/ESP/Demography/Population in largest city", + "World/Europe/FRA/Demography/Population in largest city", + "World/Europe/GBR/Demography/Population in largest city", + "World/South Africa/GHA/Demography/Population in largest city", + "World/Europe/GRC/Demography/Population in largest city", + "World/Europe/HRV/Demography/Population in largest city", + "World/Asia/IDN/Demography/Population in largest city", + "World/Asia/IND/Demography/Population in largest city", + "World/North Africa/ISR/Demography/Population in largest city", + "World/North Africa/MAR/Demography/Population in largest city", + "World/Latam/MEX/Demography/Population in largest city", + "World/South Africa/MOZ/Demography/Population in largest city", + "World/South Africa/NGA/Demography/Population in largest city", + "World/Europe/NLD/Demography/Population in largest city", + "World/Persian Gulf/OMN/Demography/Population in largest city", + "World/Latam/PAN/Demography/Population in largest city", + "World/Latam/PER/Demography/Population in largest city", + "World/Asia/PHL/Demography/Population in largest city", + "World/Europe/POL/Demography/Population in largest city", + "World/Persian Gulf/QAT/Demography/Population in largest city", + "World/Persian Gulf/SAU/Demography/Population in largest city", + "World/South Africa/SEN/Demography/Population in largest city", + "World/Asia/THA/Demography/Population in largest city", + "World/North Africa/TUR/Demography/Population in largest city", + "World/Pair/USA/Demography/Population in largest city", + "World/Latam/VEN/Demography/Population in largest city", + "World/Asia/VNM/Demography/Population in largest city", + "World/Persian Gulf/YEM/Demography/Population in largest city", + "World/South Africa/ZAF/Demography/Population in largest city", + "World/Persian Gulf/ARE/Demography/Population in the largest city (% of urban population)", + "World/Latam/ARG/Demography/Population in the largest city (% of urban population)", + "World/Europe/AUT/Demography/Population in the largest city (% of urban population)", + "World/Persian Gulf/AZE/Demography/Population in the largest city (% of urban population)", + "World/Asia/BGD/Demography/Population in the largest city (% of urban population)", + "World/Latam/CHL/Demography/Population in the largest city (% of urban population)", + "World/South Africa/CMR/Demography/Population in the largest city (% of urban population)", + "World/Latam/COL/Demography/Population in the largest city (% of urban population)", + "World/Latam/CRI/Demography/Population in the largest city (% of urban population)", + "World/North Africa/DZA/Demography/Population in the largest city (% of urban population)", + "World/North Africa/EGY/Demography/Population in the largest city (% of urban population)", + "World/Europe/FRA/Demography/Population in the largest city (% of urban population)", + "World/Europe/GBR/Demography/Population in the largest city (% of urban population)", + "World/Asia/IDN/Demography/Population in the largest city (% of urban population)", + "World/Asia/IND/Demography/Population in the largest city (% of urban population)", + "World/North Africa/ISR/Demography/Population in the largest city (% of urban population)", + "World/Asia/KOR/Demography/Population in the largest city (% of urban population)", + "World/North Africa/MAR/Demography/Population in the largest city (% of urban population)", + "World/Latam/MEX/Demography/Population in the largest city (% of urban population)", + "World/South Africa/MOZ/Demography/Population in the largest city (% of urban population)", + "World/South Africa/NGA/Demography/Population in the largest city (% of urban population)", + "World/Europe/NLD/Demography/Population in the largest city (% of urban population)", + "World/Latam/PAN/Demography/Population in the largest city (% of urban population)", + "World/Latam/PER/Demography/Population in the largest city (% of urban population)", + "World/Europe/POL/Demography/Population in the largest city (% of urban population)", + "World/Persian Gulf/QAT/Demography/Population in the largest city (% of urban population)", + "World/Persian Gulf/SAU/Demography/Population in the largest city (% of urban population)", + "World/South Africa/SEN/Demography/Population in the largest city (% of urban population)", + "World/North Africa/TUR/Demography/Population in the largest city (% of urban population)", + "World/Pair/USA/Demography/Population in the largest city (% of urban population)", + "World/Latam/VEN/Demography/Population in the largest city (% of urban population)", + "World/Asia/VNM/Demography/Population in the largest city (% of urban population)", + "World/Persian Gulf/YEM/Demography/Population in the largest city (% of urban population)", + "World/South Africa/ZAF/Demography/Population in the largest city (% of urban population)", + "World/Persian Gulf/ARE/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/ARG/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/AUT/Demography/Population in urban agglomerations of more than 1 million", + "World/Persian Gulf/AZE/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/BGD/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/BRA/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/CHL/Demography/Population in urban agglomerations of more than 1 million", + "World/Pair/CHN/Demography/Population in urban agglomerations of more than 1 million", + "World/South Africa/CMR/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/COL/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/CRI/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/DEU/Demography/Population in urban agglomerations of more than 1 million", + "World/North Africa/DZA/Demography/Population in urban agglomerations of more than 1 million", + "World/North Africa/EGY/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/ESP/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/FRA/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/GBR/Demography/Population in urban agglomerations of more than 1 million", + "World/South Africa/GHA/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/GRC/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/IDN/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/IND/Demography/Population in urban agglomerations of more than 1 million", + "World/North Africa/ISR/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/KOR/Demography/Population in urban agglomerations of more than 1 million", + "World/North Africa/MAR/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/MEX/Demography/Population in urban agglomerations of more than 1 million", + "World/South Africa/MOZ/Demography/Population in urban agglomerations of more than 1 million", + "World/South Africa/NGA/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/NLD/Demography/Population in urban agglomerations of more than 1 million", + "World/Persian Gulf/OMN/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/PAN/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/PER/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/PHL/Demography/Population in urban agglomerations of more than 1 million", + "World/Europe/POL/Demography/Population in urban agglomerations of more than 1 million", + "World/Persian Gulf/SAU/Demography/Population in urban agglomerations of more than 1 million", + "World/South Africa/SEN/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/THA/Demography/Population in urban agglomerations of more than 1 million", + "World/North Africa/TUR/Demography/Population in urban agglomerations of more than 1 million", + "World/Pair/USA/Demography/Population in urban agglomerations of more than 1 million", + "World/Latam/VEN/Demography/Population in urban agglomerations of more than 1 million", + "World/Asia/VNM/Demography/Population in urban agglomerations of more than 1 million", + "World/Persian Gulf/YEM/Demography/Population in urban agglomerations of more than 1 million", + "World/South Africa/ZAF/Demography/Population in urban agglomerations of more than 1 million", + "World/Persian Gulf/ARE/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/ARG/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Europe/AUT/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Persian Gulf/AZE/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Asia/BGD/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/BRA/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Pair/CHN/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/South Africa/CMR/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/COL/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/CRI/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/North Africa/DZA/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Europe/GBR/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/South Africa/GHA/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Europe/GRC/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Asia/IDN/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Asia/IND/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Asia/KOR/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/North Africa/MAR/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/MEX/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/South Africa/MOZ/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/South Africa/NGA/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/PAN/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Latam/PER/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Europe/POL/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Persian Gulf/SAU/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Asia/THA/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/North Africa/TUR/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Pair/USA/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Asia/VNM/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Persian Gulf/YEM/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/South Africa/ZAF/Demography/Population in urban agglomerations of more than 1 million (% of total population)", + "World/Persian Gulf/AZE/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Asia/BGD/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Latam/CHL/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Pair/CHN/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/South Africa/CMR/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/North Africa/EGY/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Europe/GBR/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/South Africa/GHA/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Asia/IDN/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Asia/IND/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/South Africa/LBR/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/North Africa/MAR/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/South Africa/MOZ/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Latam/PAN/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Latam/PER/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/South Africa/SEN/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Europe/SWE/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Asia/THA/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/North Africa/TUR/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Asia/VNM/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Persian Gulf/YEM/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/South Africa/ZAF/Economy/Poverty headcount ratio at national poverty lines (% of population)", + "World/Persian Gulf/ARE/Health/Pregnant women receiving prenatal care (%)", + "World/Persian Gulf/AZE/Health/Pregnant women receiving prenatal care (%)", + "World/Asia/BGD/Health/Pregnant women receiving prenatal care (%)", + "World/Pair/CHN/Health/Pregnant women receiving prenatal care (%)", + "World/South Africa/CMR/Health/Pregnant women receiving prenatal care (%)", + "World/Latam/COL/Health/Pregnant women receiving prenatal care (%)", + "World/Latam/CRI/Health/Pregnant women receiving prenatal care (%)", + "World/North Africa/DZA/Health/Pregnant women receiving prenatal care (%)", + "World/North Africa/EGY/Health/Pregnant women receiving prenatal care (%)", + "World/Asia/IDN/Health/Pregnant women receiving prenatal care (%)", + "World/Asia/IND/Health/Pregnant women receiving prenatal care (%)", + "World/South Africa/LBR/Health/Pregnant women receiving prenatal care (%)", + "World/North Africa/MAR/Health/Pregnant women receiving prenatal care (%)", + "World/South Africa/MOZ/Health/Pregnant women receiving prenatal care (%)", + "World/South Africa/NGA/Health/Pregnant women receiving prenatal care (%)", + "World/Latam/PER/Health/Pregnant women receiving prenatal care (%)", + "World/Asia/PHL/Health/Pregnant women receiving prenatal care (%)", + "World/Persian Gulf/QAT/Health/Pregnant women receiving prenatal care (%)", + "World/Persian Gulf/SAU/Health/Pregnant women receiving prenatal care (%)", + "World/South Africa/SEN/Health/Pregnant women receiving prenatal care (%)", + "World/North Africa/TUR/Health/Pregnant women receiving prenatal care (%)", + "World/Latam/VEN/Health/Pregnant women receiving prenatal care (%)", + "World/Asia/VNM/Health/Pregnant women receiving prenatal care (%)", + "World/Persian Gulf/YEM/Health/Pregnant women receiving prenatal care (%)", + "World/Europe/AUT/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Persian Gulf/AZE/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Asia/BGD/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/BRA/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Pair/CHN/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/South Africa/CMR/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/COL/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/CRI/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Europe/DEU/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/North Africa/DZA/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/North Africa/EGY/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Europe/ESP/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Europe/GBR/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/South Africa/GHA/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Europe/GRC/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Asia/IND/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/North Africa/ISR/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/North Africa/MAR/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/MEX/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/South Africa/MOZ/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/South Africa/NGA/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Europe/NLD/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Persian Gulf/OMN/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/PAN/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/PER/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Asia/PHL/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Persian Gulf/QAT/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Persian Gulf/SAU/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/South Africa/SEN/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Pair/USA/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Latam/VEN/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Asia/VNM/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Persian Gulf/YEM/Health/Prevalence of anemia among children (% of children ages 6-59 months)", + "World/Persian Gulf/AZE/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Asia/BGD/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/BRA/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/CHL/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Pair/CHN/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/CMR/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/COL/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/CRI/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/North Africa/DZA/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/North Africa/EGY/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Europe/ESP/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Europe/GBR/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/GHA/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Persian Gulf/IRQ/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/North Africa/ISR/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Asia/KOR/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/LBR/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/North Africa/MAR/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/MEX/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/MOZ/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/NGA/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Europe/NLD/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Persian Gulf/OMN/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/PAN/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/PER/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Asia/PHL/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Persian Gulf/QAT/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Persian Gulf/SAU/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/SEN/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Asia/THA/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Pair/USA/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Latam/VEN/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Asia/VNM/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Persian Gulf/YEM/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/South Africa/ZAF/Health/Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "World/Persian Gulf/ARE/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/ARG/Health/Prevalence of anemia among pregnant women (%)", + "World/Persian Gulf/AZE/Health/Prevalence of anemia among pregnant women (%)", + "World/Asia/BGD/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/BRA/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/CHL/Health/Prevalence of anemia among pregnant women (%)", + "World/Pair/CHN/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/CMR/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/COL/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/CRI/Health/Prevalence of anemia among pregnant women (%)", + "World/North Africa/DZA/Health/Prevalence of anemia among pregnant women (%)", + "World/North Africa/EGY/Health/Prevalence of anemia among pregnant women (%)", + "World/Europe/GBR/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/GHA/Health/Prevalence of anemia among pregnant women (%)", + "World/Europe/HRV/Health/Prevalence of anemia among pregnant women (%)", + "World/Asia/IND/Health/Prevalence of anemia among pregnant women (%)", + "World/Persian Gulf/IRQ/Health/Prevalence of anemia among pregnant women (%)", + "World/North Africa/ISR/Health/Prevalence of anemia among pregnant women (%)", + "World/Asia/KOR/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/LBR/Health/Prevalence of anemia among pregnant women (%)", + "World/North Africa/MAR/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/MEX/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/MOZ/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/NGA/Health/Prevalence of anemia among pregnant women (%)", + "World/Persian Gulf/OMN/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/PAN/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/PER/Health/Prevalence of anemia among pregnant women (%)", + "World/Asia/PHL/Health/Prevalence of anemia among pregnant women (%)", + "World/Persian Gulf/QAT/Health/Prevalence of anemia among pregnant women (%)", + "World/Persian Gulf/SAU/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/SEN/Health/Prevalence of anemia among pregnant women (%)", + "World/Pair/USA/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/VEN/Health/Prevalence of anemia among pregnant women (%)", + "World/Asia/VNM/Health/Prevalence of anemia among pregnant women (%)", + "World/Persian Gulf/YEM/Health/Prevalence of anemia among pregnant women (%)", + "World/South Africa/ZAF/Health/Prevalence of anemia among pregnant women (%)", + "World/Latam/ARG/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Persian Gulf/AZE/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Asia/BGD/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/BRA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/CHL/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Pair/CHN/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/CMR/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/COL/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/CRI/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/North Africa/DZA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/North Africa/EGY/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Europe/ESP/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Europe/FRA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Europe/GBR/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/GHA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Europe/GRC/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Persian Gulf/IRQ/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/North Africa/ISR/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Asia/KOR/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/LBR/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/North Africa/MAR/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/MEX/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/MOZ/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/NGA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Europe/NLD/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Persian Gulf/OMN/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/PAN/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/PER/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Asia/PHL/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Persian Gulf/QAT/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Persian Gulf/SAU/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/SEN/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Asia/THA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Pair/USA/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/VEN/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Asia/VNM/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Persian Gulf/YEM/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/South Africa/ZAF/Health/Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "World/Latam/ARG/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/AUT/Health/Prevalence of current tobacco use (% of adults)", + "World/Persian Gulf/AZE/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/BGD/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/BRA/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/CHL/Health/Prevalence of current tobacco use (% of adults)", + "World/Pair/CHN/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/CMR/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/COL/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/CRI/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/DEU/Health/Prevalence of current tobacco use (% of adults)", + "World/North Africa/DZA/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/ESP/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/FRA/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/GBR/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/GHA/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/GRC/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/HRV/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/IDN/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/IND/Health/Prevalence of current tobacco use (% of adults)", + "World/Persian Gulf/IRQ/Health/Prevalence of current tobacco use (% of adults)", + "World/North Africa/ISR/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/KOR/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/LBR/Health/Prevalence of current tobacco use (% of adults)", + "World/North Africa/MAR/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/MEX/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/MOZ/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/NGA/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/NLD/Health/Prevalence of current tobacco use (% of adults)", + "World/Persian Gulf/OMN/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/PAN/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/PER/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/PHL/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/POL/Health/Prevalence of current tobacco use (% of adults)", + "World/Persian Gulf/QAT/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/SEN/Health/Prevalence of current tobacco use (% of adults)", + "World/Europe/SWE/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/THA/Health/Prevalence of current tobacco use (% of adults)", + "World/North Africa/TUR/Health/Prevalence of current tobacco use (% of adults)", + "World/Pair/USA/Health/Prevalence of current tobacco use (% of adults)", + "World/Asia/VNM/Health/Prevalence of current tobacco use (% of adults)", + "World/Persian Gulf/YEM/Health/Prevalence of current tobacco use (% of adults)", + "World/South Africa/ZAF/Health/Prevalence of current tobacco use (% of adults)", + "World/Latam/ARG/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Persian Gulf/AZE/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/BGD/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/CHL/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Pair/CHN/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/COL/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/CRI/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/North Africa/DZA/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/North Africa/EGY/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Europe/GRC/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/IDN/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/IND/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/KOR/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/North Africa/MAR/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/MEX/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/South Africa/NGA/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Europe/NLD/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Persian Gulf/OMN/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/PAN/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/PER/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/PHL/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Europe/POL/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Persian Gulf/QAT/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Persian Gulf/SAU/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/THA/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Pair/USA/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Latam/VEN/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Asia/VNM/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Persian Gulf/YEM/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/South Africa/ZAF/Health/Prevalence of overweight (modeled estimate, % of children under 5)", + "World/Persian Gulf/AZE/Health/Prevalence of undernourishment (% of population)", + "World/Asia/BGD/Health/Prevalence of undernourishment (% of population)", + "World/Latam/BRA/Health/Prevalence of undernourishment (% of population)", + "World/Pair/CHN/Health/Prevalence of undernourishment (% of population)", + "World/South Africa/CMR/Health/Prevalence of undernourishment (% of population)", + "World/North Africa/DZA/Health/Prevalence of undernourishment (% of population)", + "World/South Africa/GHA/Health/Prevalence of undernourishment (% of population)", + "World/Asia/IDN/Health/Prevalence of undernourishment (% of population)", + "World/Persian Gulf/IRQ/Health/Prevalence of undernourishment (% of population)", + "World/North Africa/MAR/Health/Prevalence of undernourishment (% of population)", + "World/Latam/MEX/Health/Prevalence of undernourishment (% of population)", + "World/South Africa/MOZ/Health/Prevalence of undernourishment (% of population)", + "World/South Africa/NGA/Health/Prevalence of undernourishment (% of population)", + "World/Persian Gulf/OMN/Health/Prevalence of undernourishment (% of population)", + "World/Latam/PAN/Health/Prevalence of undernourishment (% of population)", + "World/Asia/PHL/Health/Prevalence of undernourishment (% of population)", + "World/South Africa/SEN/Health/Prevalence of undernourishment (% of population)", + "World/Asia/THA/Health/Prevalence of undernourishment (% of population)", + "World/Latam/VEN/Health/Prevalence of undernourishment (% of population)", + "World/Asia/VNM/Health/Prevalence of undernourishment (% of population)", + "World/Persian Gulf/YEM/Health/Prevalence of undernourishment (% of population)", + "World/Persian Gulf/ARE/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Persian Gulf/AZE/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Asia/BGD/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Latam/BRA/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Pair/CHN/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/South Africa/CMR/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Latam/CRI/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Europe/GBR/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Asia/IDN/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/South Africa/NGA/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Europe/NLD/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Persian Gulf/OMN/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Latam/PAN/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Persian Gulf/QAT/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Persian Gulf/SAU/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Latam/VEN/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Asia/VNM/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Persian Gulf/YEM/Economy/Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "World/Persian Gulf/AZE/Economy/Primary income payments (BoP, current US$)", + "World/Asia/BGD/Economy/Primary income payments (BoP, current US$)", + "World/Latam/BRA/Economy/Primary income payments (BoP, current US$)", + "World/Pair/CHN/Economy/Primary income payments (BoP, current US$)", + "World/Latam/COL/Economy/Primary income payments (BoP, current US$)", + "World/Latam/CRI/Economy/Primary income payments (BoP, current US$)", + "World/North Africa/EGY/Economy/Primary income payments (BoP, current US$)", + "World/Europe/ESP/Economy/Primary income payments (BoP, current US$)", + "World/South Africa/GHA/Economy/Primary income payments (BoP, current US$)", + "World/Europe/GRC/Economy/Primary income payments (BoP, current US$)", + "World/Europe/HRV/Economy/Primary income payments (BoP, current US$)", + "World/Asia/IDN/Economy/Primary income payments (BoP, current US$)", + "World/Asia/IND/Economy/Primary income payments (BoP, current US$)", + "World/North Africa/ISR/Economy/Primary income payments (BoP, current US$)", + "World/Asia/KOR/Economy/Primary income payments (BoP, current US$)", + "World/Latam/MEX/Economy/Primary income payments (BoP, current US$)", + "World/Europe/NLD/Economy/Primary income payments (BoP, current US$)", + "World/Persian Gulf/OMN/Economy/Primary income payments (BoP, current US$)", + "World/Latam/PAN/Economy/Primary income payments (BoP, current US$)", + "World/Latam/PER/Economy/Primary income payments (BoP, current US$)", + "World/Asia/PHL/Economy/Primary income payments (BoP, current US$)", + "World/Europe/POL/Economy/Primary income payments (BoP, current US$)", + "World/Persian Gulf/SAU/Economy/Primary income payments (BoP, current US$)", + "World/South Africa/SEN/Economy/Primary income payments (BoP, current US$)", + "World/Asia/THA/Economy/Primary income payments (BoP, current US$)", + "World/North Africa/TUR/Economy/Primary income payments (BoP, current US$)", + "World/Pair/USA/Economy/Primary income payments (BoP, current US$)", + "World/Latam/VEN/Economy/Primary income payments (BoP, current US$)", + "World/Asia/VNM/Economy/Primary income payments (BoP, current US$)", + "World/South Africa/ZAF/Economy/Primary income payments (BoP, current US$)", + "World/Persian Gulf/AZE/Economy/Primary income receipts (BoP, current US$)", + "World/Latam/CHL/Economy/Primary income receipts (BoP, current US$)", + "World/Pair/CHN/Economy/Primary income receipts (BoP, current US$)", + "World/Latam/COL/Economy/Primary income receipts (BoP, current US$)", + "World/Europe/ESP/Economy/Primary income receipts (BoP, current US$)", + "World/South Africa/GHA/Economy/Primary income receipts (BoP, current US$)", + "World/Europe/GRC/Economy/Primary income receipts (BoP, current US$)", + "World/Europe/HRV/Economy/Primary income receipts (BoP, current US$)", + "World/Asia/IND/Economy/Primary income receipts (BoP, current US$)", + "World/North Africa/ISR/Economy/Primary income receipts (BoP, current US$)", + "World/Asia/KOR/Economy/Primary income receipts (BoP, current US$)", + "World/South Africa/LBR/Economy/Primary income receipts (BoP, current US$)", + "World/Latam/MEX/Economy/Primary income receipts (BoP, current US$)", + "World/Europe/NLD/Economy/Primary income receipts (BoP, current US$)", + "World/Latam/PER/Economy/Primary income receipts (BoP, current US$)", + "World/Asia/PHL/Economy/Primary income receipts (BoP, current US$)", + "World/Europe/POL/Economy/Primary income receipts (BoP, current US$)", + "World/Persian Gulf/QAT/Economy/Primary income receipts (BoP, current US$)", + "World/South Africa/SEN/Economy/Primary income receipts (BoP, current US$)", + "World/Asia/THA/Economy/Primary income receipts (BoP, current US$)", + "World/Pair/USA/Economy/Primary income receipts (BoP, current US$)", + "World/Asia/VNM/Economy/Primary income receipts (BoP, current US$)", + "World/Persian Gulf/YEM/Economy/Primary income receipts (BoP, current US$)", + "World/Persian Gulf/ARE/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/ARG/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/AUT/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Persian Gulf/AZE/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Asia/BGD/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/BRA/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/CHL/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Pair/CHN/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/South Africa/CMR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/COL/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/CRI/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/DEU/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/North Africa/DZA/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/North Africa/EGY/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/ESP/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/FRA/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/GBR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/South Africa/GHA/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/HRV/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Asia/IDN/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Asia/IND/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/North Africa/ISR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Asia/KOR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/South Africa/LBR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/North Africa/MAR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/MEX/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/South Africa/MOZ/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/South Africa/NGA/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/NLD/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Persian Gulf/OMN/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/PAN/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Latam/PER/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Asia/PHL/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/POL/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Persian Gulf/QAT/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Persian Gulf/SAU/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/South Africa/SEN/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Europe/SWE/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/North Africa/TUR/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Pair/USA/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Asia/VNM/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Persian Gulf/YEM/Mortality/Probability of dying among adolescents ages 10-14 years (per 1,000)", + "World/Persian Gulf/ARE/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Latam/ARG/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/AUT/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Latam/CHL/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Pair/CHN/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/South Africa/CMR/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Latam/COL/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/DEU/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/North Africa/DZA/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/ESP/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/FRA/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/GBR/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/South Africa/GHA/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/GRC/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/HRV/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Asia/IDN/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Asia/IND/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/North Africa/ISR/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Asia/KOR/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/North Africa/MAR/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/South Africa/MOZ/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/South Africa/NGA/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/NLD/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Persian Gulf/OMN/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Latam/PAN/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Latam/PER/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Asia/PHL/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/POL/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Persian Gulf/QAT/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Persian Gulf/SAU/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/South Africa/SEN/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Europe/SWE/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Asia/THA/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/North Africa/TUR/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Pair/USA/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Latam/VEN/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Asia/VNM/Mortality/Probability of dying among adolescents ages 15-19 years (per 1,000)", + "World/Persian Gulf/ARE/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/ARG/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/AUT/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Persian Gulf/AZE/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/BGD/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/BRA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/CHL/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Pair/CHN/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/South Africa/CMR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/COL/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/CRI/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/North Africa/DZA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/North Africa/EGY/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/ESP/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/FRA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/GBR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/South Africa/GHA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/GRC/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/HRV/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/IDN/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/IND/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/North Africa/ISR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/KOR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/South Africa/LBR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/North Africa/MAR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/MEX/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/South Africa/MOZ/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/South Africa/NGA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/NLD/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Persian Gulf/OMN/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/PAN/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Latam/PER/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/PHL/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/POL/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Persian Gulf/QAT/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Persian Gulf/SAU/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/South Africa/SEN/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Europe/SWE/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/THA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/North Africa/TUR/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Pair/USA/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Asia/VNM/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Persian Gulf/YEM/Mortality/Probability of dying among children ages 5-9 years (per 1,000)", + "World/Persian Gulf/ARE/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/ARG/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/AUT/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/BGD/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/CHL/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Pair/CHN/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/South Africa/CMR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/COL/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/DEU/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/North Africa/DZA/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/North Africa/EGY/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/ESP/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/FRA/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/GBR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/South Africa/GHA/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/GRC/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/HRV/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/IDN/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/IND/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/North Africa/ISR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/KOR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/South Africa/LBR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/North Africa/MAR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/South Africa/NGA/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/NLD/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Persian Gulf/OMN/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/PAN/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/PER/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/PHL/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Europe/POL/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Persian Gulf/QAT/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Persian Gulf/SAU/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/South Africa/SEN/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/THA/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/North Africa/TUR/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/VEN/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Asia/VNM/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Persian Gulf/YEM/Mortality/Probability of dying among youth ages 20-24 years (per 1,000)", + "World/Latam/ARG/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Persian Gulf/AZE/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Latam/CHL/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Pair/CHN/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Latam/COL/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Latam/CRI/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/North Africa/EGY/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Europe/ESP/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/South Africa/GHA/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Europe/GRC/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Asia/IND/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Latam/MEX/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/South Africa/MOZ/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/South Africa/NGA/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Latam/PAN/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Latam/PER/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Asia/PHL/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Persian Gulf/SAU/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/South Africa/SEN/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Asia/THA/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/North Africa/TUR/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Pair/USA/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Asia/VNM/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Persian Gulf/YEM/Economy/Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "World/Persian Gulf/AZE/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Asia/BGD/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Latam/BRA/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Latam/CHL/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Pair/CHN/Equality/Proportion of seats held by women in national parliaments (%)", + "World/South Africa/CMR/Equality/Proportion of seats held by women in national parliaments (%)", + "World/North Africa/DZA/Equality/Proportion of seats held by women in national parliaments (%)", + "World/North Africa/EGY/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Europe/GBR/Equality/Proportion of seats held by women in national parliaments (%)", + "World/South Africa/GHA/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Asia/IND/Equality/Proportion of seats held by women in national parliaments (%)", + "World/North Africa/ISR/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Asia/KOR/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Latam/MEX/Equality/Proportion of seats held by women in national parliaments (%)", + "World/South Africa/MOZ/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Latam/PAN/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Asia/PHL/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Europe/POL/Equality/Proportion of seats held by women in national parliaments (%)", + "World/South Africa/SEN/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Asia/THA/Equality/Proportion of seats held by women in national parliaments (%)", + "World/North Africa/TUR/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Pair/USA/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Asia/VNM/Equality/Proportion of seats held by women in national parliaments (%)", + "World/Persian Gulf/ARE/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Latam/ARG/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/AUT/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Asia/BGD/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Latam/BRA/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Latam/CHL/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Latam/CRI/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/DEU/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/North Africa/DZA/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/ESP/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/FRA/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/GBR/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/South Africa/GHA/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/GRC/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Asia/IND/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/North Africa/ISR/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Asia/KOR/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Latam/MEX/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/South Africa/MOZ/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/South Africa/NGA/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Europe/NLD/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Persian Gulf/OMN/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Latam/PAN/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Persian Gulf/QAT/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Persian Gulf/SAU/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/South Africa/SEN/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/North Africa/TUR/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Pair/USA/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Asia/VNM/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Persian Gulf/YEM/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/South Africa/ZAF/Equality/Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "World/Persian Gulf/ARE/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/ARG/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/AUT/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Asia/BGD/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/BRA/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/CHL/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Pair/CHN/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/CRI/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/DEU/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/North Africa/DZA/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/ESP/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/FRA/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/GBR/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/GRC/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/North Africa/ISR/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Asia/KOR/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/MEX/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/South Africa/MOZ/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/NLD/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Persian Gulf/OMN/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/PAN/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Europe/POL/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Persian Gulf/QAT/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Persian Gulf/SAU/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/South Africa/SEN/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/North Africa/TUR/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Pair/USA/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Latam/VEN/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Asia/VNM/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/South Africa/ZAF/Equality/Ratio of female to male labor force participation rate (%) (national estimate)", + "World/Persian Gulf/ARE/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Latam/ARG/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Asia/BGD/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Pair/CHN/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Latam/CRI/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Europe/DEU/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/North Africa/EGY/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Europe/GBR/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/South Africa/GHA/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Europe/GRC/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Asia/IDN/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Asia/IND/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Asia/KOR/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/North Africa/MAR/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Latam/MEX/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/South Africa/MOZ/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Europe/NLD/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Latam/PAN/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Asia/PHL/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Europe/POL/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Persian Gulf/SAU/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Europe/SWE/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/North Africa/TUR/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Pair/USA/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Asia/VNM/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/South Africa/ZAF/Environment/Renewable energy consumption (% of total final energy consumption)", + "World/Persian Gulf/ARE/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/ARG/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/AUT/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Persian Gulf/AZE/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/BGD/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/BRA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/CHL/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Pair/CHN/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/CMR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/COL/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/CRI/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/North Africa/DZA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/North Africa/EGY/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/ESP/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/FRA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/GBR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/GHA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/IDN/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/IND/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/North Africa/ISR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/KOR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/LBR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/North Africa/MAR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/MEX/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/MOZ/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/NGA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/NLD/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Persian Gulf/OMN/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/PAN/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/PER/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/PHL/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/POL/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Persian Gulf/QAT/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Persian Gulf/SAU/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/SEN/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/THA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/North Africa/TUR/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Pair/USA/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Latam/VEN/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Asia/VNM/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Persian Gulf/YEM/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/South Africa/ZAF/Environment/Renewable internal freshwater resources per capita (cubic meters)", + "World/Europe/AUT/R&D/Researchers in R&D (per million people)", + "World/Latam/BRA/R&D/Researchers in R&D (per million people)", + "World/Pair/CHN/R&D/Researchers in R&D (per million people)", + "World/Europe/DEU/R&D/Researchers in R&D (per million people)", + "World/North Africa/DZA/R&D/Researchers in R&D (per million people)", + "World/Europe/ESP/R&D/Researchers in R&D (per million people)", + "World/Europe/FRA/R&D/Researchers in R&D (per million people)", + "World/Europe/GBR/R&D/Researchers in R&D (per million people)", + "World/South Africa/GHA/R&D/Researchers in R&D (per million people)", + "World/Europe/GRC/R&D/Researchers in R&D (per million people)", + "World/Asia/IND/R&D/Researchers in R&D (per million people)", + "World/Asia/KOR/R&D/Researchers in R&D (per million people)", + "World/North Africa/MAR/R&D/Researchers in R&D (per million people)", + "World/South Africa/MOZ/R&D/Researchers in R&D (per million people)", + "World/Europe/NLD/R&D/Researchers in R&D (per million people)", + "World/Persian Gulf/OMN/R&D/Researchers in R&D (per million people)", + "World/Asia/PHL/R&D/Researchers in R&D (per million people)", + "World/Europe/POL/R&D/Researchers in R&D (per million people)", + "World/Asia/THA/R&D/Researchers in R&D (per million people)", + "World/North Africa/TUR/R&D/Researchers in R&D (per million people)", + "World/Pair/USA/R&D/Researchers in R&D (per million people)", + "World/Latam/VEN/R&D/Researchers in R&D (per million people)", + "World/Persian Gulf/AZE/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Asia/BGD/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Latam/BRA/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Latam/CHL/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Pair/CHN/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Latam/CRI/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/North Africa/EGY/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Europe/ESP/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/South Africa/GHA/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Asia/IND/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Asia/KOR/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/North Africa/MAR/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Latam/MEX/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Latam/PAN/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Latam/PER/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Europe/POL/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Asia/THA/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Pair/USA/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Asia/VNM/Health/Risk of catastrophic expenditure for surgical care (% of people at risk)", + "World/Persian Gulf/AZE/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Asia/BGD/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/BRA/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/CHL/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Pair/CHN/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/South Africa/CMR/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/COL/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/CRI/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/North Africa/DZA/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/North Africa/EGY/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/South Africa/GHA/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Asia/IDN/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Asia/IND/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/North Africa/MAR/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/MEX/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/South Africa/MOZ/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/PAN/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Latam/PER/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Asia/PHL/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Europe/POL/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/South Africa/SEN/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Asia/THA/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Asia/VNM/Health/Risk of impoverishing expenditure for surgical care (% of people at risk)", + "World/Persian Gulf/ARE/Demography/Rural population", + "World/Latam/ARG/Demography/Rural population", + "World/Europe/AUT/Demography/Rural population", + "World/Persian Gulf/AZE/Demography/Rural population", + "World/Asia/BGD/Demography/Rural population", + "World/Latam/BRA/Demography/Rural population", + "World/Pair/CHN/Demography/Rural population", + "World/South Africa/CMR/Demography/Rural population", + "World/Latam/COL/Demography/Rural population", + "World/Latam/CRI/Demography/Rural population", + "World/North Africa/DZA/Demography/Rural population", + "World/North Africa/EGY/Demography/Rural population", + "World/Europe/FRA/Demography/Rural population", + "World/Europe/GBR/Demography/Rural population", + "World/South Africa/GHA/Demography/Rural population", + "World/Europe/GRC/Demography/Rural population", + "World/Europe/HRV/Demography/Rural population", + "World/Asia/IDN/Demography/Rural population", + "World/Asia/IND/Demography/Rural population", + "World/North Africa/ISR/Demography/Rural population", + "World/South Africa/LBR/Demography/Rural population", + "World/North Africa/MAR/Demography/Rural population", + "World/South Africa/MOZ/Demography/Rural population", + "World/South Africa/NGA/Demography/Rural population", + "World/Europe/NLD/Demography/Rural population", + "World/Persian Gulf/OMN/Demography/Rural population", + "World/Latam/PAN/Demography/Rural population", + "World/Asia/PHL/Demography/Rural population", + "World/Europe/POL/Demography/Rural population", + "World/Persian Gulf/QAT/Demography/Rural population", + "World/Persian Gulf/SAU/Demography/Rural population", + "World/South Africa/SEN/Demography/Rural population", + "World/North Africa/TUR/Demography/Rural population", + "World/Pair/USA/Demography/Rural population", + "World/Asia/VNM/Demography/Rural population", + "World/Persian Gulf/YEM/Demography/Rural population", + "World/Persian Gulf/ARE/Demography/Rural population (% of total population)", + "World/Latam/ARG/Demography/Rural population (% of total population)", + "World/Persian Gulf/AZE/Demography/Rural population (% of total population)", + "World/Asia/BGD/Demography/Rural population (% of total population)", + "World/Latam/BRA/Demography/Rural population (% of total population)", + "World/Latam/CHL/Demography/Rural population (% of total population)", + "World/Pair/CHN/Demography/Rural population (% of total population)", + "World/South Africa/CMR/Demography/Rural population (% of total population)", + "World/Latam/COL/Demography/Rural population (% of total population)", + "World/Latam/CRI/Demography/Rural population (% of total population)", + "World/Europe/DEU/Demography/Rural population (% of total population)", + "World/North Africa/DZA/Demography/Rural population (% of total population)", + "World/Europe/ESP/Demography/Rural population (% of total population)", + "World/Europe/FRA/Demography/Rural population (% of total population)", + "World/Europe/GBR/Demography/Rural population (% of total population)", + "World/South Africa/GHA/Demography/Rural population (% of total population)", + "World/Europe/GRC/Demography/Rural population (% of total population)", + "World/Europe/HRV/Demography/Rural population (% of total population)", + "World/Asia/IDN/Demography/Rural population (% of total population)", + "World/Asia/IND/Demography/Rural population (% of total population)", + "World/Persian Gulf/IRQ/Demography/Rural population (% of total population)", + "World/North Africa/ISR/Demography/Rural population (% of total population)", + "World/South Africa/LBR/Demography/Rural population (% of total population)", + "World/North Africa/MAR/Demography/Rural population (% of total population)", + "World/Latam/MEX/Demography/Rural population (% of total population)", + "World/South Africa/MOZ/Demography/Rural population (% of total population)", + "World/South Africa/NGA/Demography/Rural population (% of total population)", + "World/Europe/NLD/Demography/Rural population (% of total population)", + "World/Persian Gulf/OMN/Demography/Rural population (% of total population)", + "World/Latam/PAN/Demography/Rural population (% of total population)", + "World/Latam/PER/Demography/Rural population (% of total population)", + "World/Europe/POL/Demography/Rural population (% of total population)", + "World/Persian Gulf/QAT/Demography/Rural population (% of total population)", + "World/Persian Gulf/SAU/Demography/Rural population (% of total population)", + "World/South Africa/SEN/Demography/Rural population (% of total population)", + "World/Asia/THA/Demography/Rural population (% of total population)", + "World/North Africa/TUR/Demography/Rural population (% of total population)", + "World/Pair/USA/Demography/Rural population (% of total population)", + "World/Latam/VEN/Demography/Rural population (% of total population)", + "World/Asia/VNM/Demography/Rural population (% of total population)", + "World/Persian Gulf/YEM/Demography/Rural population (% of total population)", + "World/South Africa/ZAF/Demography/Rural population (% of total population)", + "World/Persian Gulf/ARE/industry/Scientific and technical journal articles", + "World/Latam/ARG/industry/Scientific and technical journal articles", + "World/Europe/AUT/industry/Scientific and technical journal articles", + "World/Persian Gulf/AZE/industry/Scientific and technical journal articles", + "World/Asia/BGD/industry/Scientific and technical journal articles", + "World/Latam/BRA/industry/Scientific and technical journal articles", + "World/Latam/CHL/industry/Scientific and technical journal articles", + "World/Pair/CHN/industry/Scientific and technical journal articles", + "World/South Africa/CMR/industry/Scientific and technical journal articles", + "World/Latam/COL/industry/Scientific and technical journal articles", + "World/Latam/CRI/industry/Scientific and technical journal articles", + "World/North Africa/DZA/industry/Scientific and technical journal articles", + "World/North Africa/EGY/industry/Scientific and technical journal articles", + "World/Europe/ESP/industry/Scientific and technical journal articles", + "World/Europe/FRA/industry/Scientific and technical journal articles", + "World/Europe/GBR/industry/Scientific and technical journal articles", + "World/South Africa/GHA/industry/Scientific and technical journal articles", + "World/Europe/GRC/industry/Scientific and technical journal articles", + "World/Europe/HRV/industry/Scientific and technical journal articles", + "World/Asia/IDN/industry/Scientific and technical journal articles", + "World/Asia/IND/industry/Scientific and technical journal articles", + "World/Persian Gulf/IRQ/industry/Scientific and technical journal articles", + "World/North Africa/ISR/industry/Scientific and technical journal articles", + "World/Asia/KOR/industry/Scientific and technical journal articles", + "World/South Africa/LBR/industry/Scientific and technical journal articles", + "World/North Africa/MAR/industry/Scientific and technical journal articles", + "World/Latam/MEX/industry/Scientific and technical journal articles", + "World/South Africa/MOZ/industry/Scientific and technical journal articles", + "World/South Africa/NGA/industry/Scientific and technical journal articles", + "World/Europe/NLD/industry/Scientific and technical journal articles", + "World/Persian Gulf/OMN/industry/Scientific and technical journal articles", + "World/Latam/PAN/industry/Scientific and technical journal articles", + "World/Latam/PER/industry/Scientific and technical journal articles", + "World/Asia/PHL/industry/Scientific and technical journal articles", + "World/Europe/POL/industry/Scientific and technical journal articles", + "World/Persian Gulf/QAT/industry/Scientific and technical journal articles", + "World/Persian Gulf/SAU/industry/Scientific and technical journal articles", + "World/South Africa/SEN/industry/Scientific and technical journal articles", + "World/Europe/SWE/industry/Scientific and technical journal articles", + "World/Asia/THA/industry/Scientific and technical journal articles", + "World/North Africa/TUR/industry/Scientific and technical journal articles", + "World/Pair/USA/industry/Scientific and technical journal articles", + "World/Latam/VEN/industry/Scientific and technical journal articles", + "World/Asia/VNM/industry/Scientific and technical journal articles", + "World/Persian Gulf/YEM/industry/Scientific and technical journal articles", + "World/South Africa/ZAF/industry/Scientific and technical journal articles", + "World/Persian Gulf/AZE/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/BGD/Economy/Secondary income receipts (BoP, current US$)", + "World/Latam/CHL/Economy/Secondary income receipts (BoP, current US$)", + "World/South Africa/CMR/Economy/Secondary income receipts (BoP, current US$)", + "World/Latam/COL/Economy/Secondary income receipts (BoP, current US$)", + "World/Latam/CRI/Economy/Secondary income receipts (BoP, current US$)", + "World/Europe/DEU/Economy/Secondary income receipts (BoP, current US$)", + "World/North Africa/DZA/Economy/Secondary income receipts (BoP, current US$)", + "World/North Africa/EGY/Economy/Secondary income receipts (BoP, current US$)", + "World/South Africa/GHA/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/IDN/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/IND/Economy/Secondary income receipts (BoP, current US$)", + "World/North Africa/ISR/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/KOR/Economy/Secondary income receipts (BoP, current US$)", + "World/North Africa/MAR/Economy/Secondary income receipts (BoP, current US$)", + "World/Latam/MEX/Economy/Secondary income receipts (BoP, current US$)", + "World/South Africa/NGA/Economy/Secondary income receipts (BoP, current US$)", + "World/Europe/NLD/Economy/Secondary income receipts (BoP, current US$)", + "World/Latam/PER/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/PHL/Economy/Secondary income receipts (BoP, current US$)", + "World/South Africa/SEN/Economy/Secondary income receipts (BoP, current US$)", + "World/Europe/SWE/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/THA/Economy/Secondary income receipts (BoP, current US$)", + "World/Pair/USA/Economy/Secondary income receipts (BoP, current US$)", + "World/Asia/VNM/Economy/Secondary income receipts (BoP, current US$)", + "World/Persian Gulf/YEM/Economy/Secondary income receipts (BoP, current US$)", + "World/South Africa/ZAF/Economy/Secondary income receipts (BoP, current US$)", + "World/Europe/AUT/Exports/Service exports (BoP, current US$)", + "World/Persian Gulf/AZE/Exports/Service exports (BoP, current US$)", + "World/Asia/BGD/Exports/Service exports (BoP, current US$)", + "World/Latam/BRA/Exports/Service exports (BoP, current US$)", + "World/Latam/CHL/Exports/Service exports (BoP, current US$)", + "World/Pair/CHN/Exports/Service exports (BoP, current US$)", + "World/South Africa/CMR/Exports/Service exports (BoP, current US$)", + "World/Latam/COL/Exports/Service exports (BoP, current US$)", + "World/Latam/CRI/Exports/Service exports (BoP, current US$)", + "World/Europe/DEU/Exports/Service exports (BoP, current US$)", + "World/North Africa/DZA/Exports/Service exports (BoP, current US$)", + "World/Europe/ESP/Exports/Service exports (BoP, current US$)", + "World/Europe/FRA/Exports/Service exports (BoP, current US$)", + "World/Europe/GBR/Exports/Service exports (BoP, current US$)", + "World/South Africa/GHA/Exports/Service exports (BoP, current US$)", + "World/Europe/GRC/Exports/Service exports (BoP, current US$)", + "World/Europe/HRV/Exports/Service exports (BoP, current US$)", + "World/Asia/IDN/Exports/Service exports (BoP, current US$)", + "World/Asia/IND/Exports/Service exports (BoP, current US$)", + "World/North Africa/ISR/Exports/Service exports (BoP, current US$)", + "World/Asia/KOR/Exports/Service exports (BoP, current US$)", + "World/North Africa/MAR/Exports/Service exports (BoP, current US$)", + "World/Europe/NLD/Exports/Service exports (BoP, current US$)", + "World/Persian Gulf/OMN/Exports/Service exports (BoP, current US$)", + "World/Latam/PAN/Exports/Service exports (BoP, current US$)", + "World/Latam/PER/Exports/Service exports (BoP, current US$)", + "World/Asia/PHL/Exports/Service exports (BoP, current US$)", + "World/Europe/POL/Exports/Service exports (BoP, current US$)", + "World/Persian Gulf/QAT/Exports/Service exports (BoP, current US$)", + "World/Persian Gulf/SAU/Exports/Service exports (BoP, current US$)", + "World/South Africa/SEN/Exports/Service exports (BoP, current US$)", + "World/Europe/SWE/Exports/Service exports (BoP, current US$)", + "World/Asia/THA/Exports/Service exports (BoP, current US$)", + "World/North Africa/TUR/Exports/Service exports (BoP, current US$)", + "World/Pair/USA/Exports/Service exports (BoP, current US$)", + "World/Asia/VNM/Exports/Service exports (BoP, current US$)", + "World/South Africa/ZAF/Exports/Service exports (BoP, current US$)", + "World/Latam/ARG/Imports/Service imports (BoP, current US$)", + "World/Europe/AUT/Imports/Service imports (BoP, current US$)", + "World/Persian Gulf/AZE/Imports/Service imports (BoP, current US$)", + "World/Asia/BGD/Imports/Service imports (BoP, current US$)", + "World/Latam/BRA/Imports/Service imports (BoP, current US$)", + "World/Latam/CHL/Imports/Service imports (BoP, current US$)", + "World/Pair/CHN/Imports/Service imports (BoP, current US$)", + "World/South Africa/CMR/Imports/Service imports (BoP, current US$)", + "World/Latam/COL/Imports/Service imports (BoP, current US$)", + "World/Latam/CRI/Imports/Service imports (BoP, current US$)", + "World/Europe/DEU/Imports/Service imports (BoP, current US$)", + "World/North Africa/DZA/Imports/Service imports (BoP, current US$)", + "World/North Africa/EGY/Imports/Service imports (BoP, current US$)", + "World/Europe/ESP/Imports/Service imports (BoP, current US$)", + "World/Europe/FRA/Imports/Service imports (BoP, current US$)", + "World/Europe/GBR/Imports/Service imports (BoP, current US$)", + "World/South Africa/GHA/Imports/Service imports (BoP, current US$)", + "World/Europe/HRV/Imports/Service imports (BoP, current US$)", + "World/Asia/IDN/Imports/Service imports (BoP, current US$)", + "World/Asia/IND/Imports/Service imports (BoP, current US$)", + "World/North Africa/ISR/Imports/Service imports (BoP, current US$)", + "World/Asia/KOR/Imports/Service imports (BoP, current US$)", + "World/North Africa/MAR/Imports/Service imports (BoP, current US$)", + "World/Latam/MEX/Imports/Service imports (BoP, current US$)", + "World/South Africa/MOZ/Imports/Service imports (BoP, current US$)", + "World/South Africa/NGA/Imports/Service imports (BoP, current US$)", + "World/Europe/NLD/Imports/Service imports (BoP, current US$)", + "World/Persian Gulf/OMN/Imports/Service imports (BoP, current US$)", + "World/Latam/PAN/Imports/Service imports (BoP, current US$)", + "World/Latam/PER/Imports/Service imports (BoP, current US$)", + "World/Asia/PHL/Imports/Service imports (BoP, current US$)", + "World/Europe/POL/Imports/Service imports (BoP, current US$)", + "World/Persian Gulf/QAT/Imports/Service imports (BoP, current US$)", + "World/South Africa/SEN/Imports/Service imports (BoP, current US$)", + "World/Europe/SWE/Imports/Service imports (BoP, current US$)", + "World/Asia/THA/Imports/Service imports (BoP, current US$)", + "World/North Africa/TUR/Imports/Service imports (BoP, current US$)", + "World/Pair/USA/Imports/Service imports (BoP, current US$)", + "World/Asia/VNM/Imports/Service imports (BoP, current US$)", + "World/South Africa/ZAF/Imports/Service imports (BoP, current US$)", + "World/Persian Gulf/ARE/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Europe/AUT/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Asia/BGD/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/BRA/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/CHL/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Pair/CHN/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/COL/Mortality/Suicide mortality rate (per 100,000 population)", + "World/North Africa/DZA/Mortality/Suicide mortality rate (per 100,000 population)", + "World/North Africa/EGY/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Asia/IDN/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Asia/IND/Mortality/Suicide mortality rate (per 100,000 population)", + "World/North Africa/MAR/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/MEX/Mortality/Suicide mortality rate (per 100,000 population)", + "World/South Africa/NGA/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/PAN/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Asia/PHL/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Europe/POL/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Persian Gulf/QAT/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Persian Gulf/SAU/Mortality/Suicide mortality rate (per 100,000 population)", + "World/South Africa/SEN/Mortality/Suicide mortality rate (per 100,000 population)", + "World/North Africa/TUR/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Pair/USA/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/VEN/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Asia/VNM/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Persian Gulf/YEM/Mortality/Suicide mortality rate (per 100,000 population)", + "World/Latam/ARG/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/AUT/Taxes/Taxes less subsidies on products (current US$)", + "World/Persian Gulf/AZE/Taxes/Taxes less subsidies on products (current US$)", + "World/Asia/BGD/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/BRA/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/CHL/Taxes/Taxes less subsidies on products (current US$)", + "World/South Africa/CMR/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/COL/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/CRI/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/DEU/Taxes/Taxes less subsidies on products (current US$)", + "World/North Africa/DZA/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/ESP/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/FRA/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/GBR/Taxes/Taxes less subsidies on products (current US$)", + "World/South Africa/GHA/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/GRC/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/HRV/Taxes/Taxes less subsidies on products (current US$)", + "World/Asia/IND/Taxes/Taxes less subsidies on products (current US$)", + "World/North Africa/ISR/Taxes/Taxes less subsidies on products (current US$)", + "World/Asia/KOR/Taxes/Taxes less subsidies on products (current US$)", + "World/North Africa/MAR/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/MEX/Taxes/Taxes less subsidies on products (current US$)", + "World/South Africa/MOZ/Taxes/Taxes less subsidies on products (current US$)", + "World/South Africa/NGA/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/NLD/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/PAN/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/PER/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/POL/Taxes/Taxes less subsidies on products (current US$)", + "World/Persian Gulf/SAU/Taxes/Taxes less subsidies on products (current US$)", + "World/South Africa/SEN/Taxes/Taxes less subsidies on products (current US$)", + "World/Europe/SWE/Taxes/Taxes less subsidies on products (current US$)", + "World/North Africa/TUR/Taxes/Taxes less subsidies on products (current US$)", + "World/Pair/USA/Taxes/Taxes less subsidies on products (current US$)", + "World/Latam/VEN/Taxes/Taxes less subsidies on products (current US$)", + "World/Asia/VNM/Taxes/Taxes less subsidies on products (current US$)", + "World/Persian Gulf/YEM/Taxes/Taxes less subsidies on products (current US$)", + "World/South Africa/ZAF/Taxes/Taxes less subsidies on products (current US$)", + "World/Persian Gulf/AZE/Economy/Taxes on international trade (% of revenue)", + "World/Latam/CHL/Economy/Taxes on international trade (% of revenue)", + "World/Pair/CHN/Economy/Taxes on international trade (% of revenue)", + "World/South Africa/CMR/Economy/Taxes on international trade (% of revenue)", + "World/Latam/COL/Economy/Taxes on international trade (% of revenue)", + "World/North Africa/EGY/Economy/Taxes on international trade (% of revenue)", + "World/Europe/ESP/Economy/Taxes on international trade (% of revenue)", + "World/South Africa/GHA/Economy/Taxes on international trade (% of revenue)", + "World/Europe/HRV/Economy/Taxes on international trade (% of revenue)", + "World/Asia/IND/Economy/Taxes on international trade (% of revenue)", + "World/Asia/KOR/Economy/Taxes on international trade (% of revenue)", + "World/North Africa/MAR/Economy/Taxes on international trade (% of revenue)", + "World/Latam/MEX/Economy/Taxes on international trade (% of revenue)", + "World/Latam/PAN/Economy/Taxes on international trade (% of revenue)", + "World/Latam/PER/Economy/Taxes on international trade (% of revenue)", + "World/Europe/POL/Economy/Taxes on international trade (% of revenue)", + "World/Asia/THA/Economy/Taxes on international trade (% of revenue)", + "World/Latam/ARG/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/AUT/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Asia/BGD/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Latam/CHL/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Pair/CHN/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Latam/COL/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Latam/CRI/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/DEU/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/North Africa/DZA/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/ESP/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/FRA/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/GBR/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/GRC/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/North Africa/ISR/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Asia/KOR/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/North Africa/MAR/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Latam/MEX/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Persian Gulf/OMN/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Latam/PER/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/POL/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Europe/SWE/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Pair/USA/Industry/Textiles and clothing (% of value added in manufacturing)", + "World/Persian Gulf/ARE/Industry/Time required to start a business (days)", + "World/Persian Gulf/AZE/Industry/Time required to start a business (days)", + "World/Latam/CHL/Industry/Time required to start a business (days)", + "World/Pair/CHN/Industry/Time required to start a business (days)", + "World/South Africa/CMR/Industry/Time required to start a business (days)", + "World/Latam/COL/Industry/Time required to start a business (days)", + "World/Latam/CRI/Industry/Time required to start a business (days)", + "World/Europe/DEU/Industry/Time required to start a business (days)", + "World/North Africa/DZA/Industry/Time required to start a business (days)", + "World/Europe/ESP/Industry/Time required to start a business (days)", + "World/Europe/FRA/Industry/Time required to start a business (days)", + "World/Europe/GBR/Industry/Time required to start a business (days)", + "World/Asia/IND/Industry/Time required to start a business (days)", + "World/Asia/KOR/Industry/Time required to start a business (days)", + "World/South Africa/LBR/Industry/Time required to start a business (days)", + "World/North Africa/MAR/Industry/Time required to start a business (days)", + "World/South Africa/MOZ/Industry/Time required to start a business (days)", + "World/Europe/NLD/Industry/Time required to start a business (days)", + "World/Persian Gulf/OMN/Industry/Time required to start a business (days)", + "World/Latam/PAN/Industry/Time required to start a business (days)", + "World/Latam/PER/Industry/Time required to start a business (days)", + "World/Europe/POL/Industry/Time required to start a business (days)", + "World/Persian Gulf/SAU/Industry/Time required to start a business (days)", + "World/South Africa/SEN/Industry/Time required to start a business (days)", + "World/Asia/THA/Industry/Time required to start a business (days)", + "World/Latam/VEN/Industry/Time required to start a business (days)", + "World/Asia/VNM/Industry/Time required to start a business (days)", + "World/Persian Gulf/YEM/Industry/Time required to start a business (days)", + "World/South Africa/ZAF/Industry/Time required to start a business (days)", + "World/Latam/ARG/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Persian Gulf/AZE/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Asia/BGD/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/CHL/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/COL/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/CRI/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/North Africa/EGY/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/South Africa/GHA/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Europe/GRC/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Europe/HRV/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Asia/IDN/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Asia/IND/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/South Africa/LBR/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/MEX/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/South Africa/MOZ/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/South Africa/NGA/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/PAN/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/PER/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Asia/PHL/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Europe/POL/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/South Africa/SEN/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Asia/THA/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/North Africa/TUR/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/VEN/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Asia/VNM/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Persian Gulf/YEM/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/South Africa/ZAF/R&D/Time spent dealing with the requirements of government regulations (% of senior management time)", + "World/Latam/ARG/R&D/Time to obtain an electrical connection (days)", + "World/Asia/BGD/R&D/Time to obtain an electrical connection (days)", + "World/Latam/CHL/R&D/Time to obtain an electrical connection (days)", + "World/South Africa/CMR/R&D/Time to obtain an electrical connection (days)", + "World/Latam/COL/R&D/Time to obtain an electrical connection (days)", + "World/Latam/CRI/R&D/Time to obtain an electrical connection (days)", + "World/North Africa/EGY/R&D/Time to obtain an electrical connection (days)", + "World/South Africa/GHA/R&D/Time to obtain an electrical connection (days)", + "World/Europe/GRC/R&D/Time to obtain an electrical connection (days)", + "World/Asia/IDN/R&D/Time to obtain an electrical connection (days)", + "World/Asia/IND/R&D/Time to obtain an electrical connection (days)", + "World/North Africa/MAR/R&D/Time to obtain an electrical connection (days)", + "World/Latam/MEX/R&D/Time to obtain an electrical connection (days)", + "World/South Africa/MOZ/R&D/Time to obtain an electrical connection (days)", + "World/South Africa/NGA/R&D/Time to obtain an electrical connection (days)", + "World/Latam/PAN/R&D/Time to obtain an electrical connection (days)", + "World/Latam/PER/R&D/Time to obtain an electrical connection (days)", + "World/Asia/PHL/R&D/Time to obtain an electrical connection (days)", + "World/Europe/POL/R&D/Time to obtain an electrical connection (days)", + "World/South Africa/SEN/R&D/Time to obtain an electrical connection (days)", + "World/North Africa/TUR/R&D/Time to obtain an electrical connection (days)", + "World/Latam/VEN/R&D/Time to obtain an electrical connection (days)", + "World/Asia/VNM/R&D/Time to obtain an electrical connection (days)", + "World/South Africa/ZAF/R&D/Time to obtain an electrical connection (days)", + "World/Persian Gulf/ARE/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/ARG/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Europe/AUT/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Persian Gulf/AZE/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Asia/BGD/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/BRA/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/CHL/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Pair/CHN/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/CRI/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/North Africa/EGY/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Europe/GBR/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/South Africa/GHA/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Europe/HRV/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Asia/IND/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/North Africa/ISR/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Asia/KOR/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/North Africa/MAR/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/MEX/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/South Africa/MOZ/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/South Africa/NGA/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Europe/NLD/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Persian Gulf/OMN/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/PAN/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Europe/POL/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Persian Gulf/QAT/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Asia/THA/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Pair/USA/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Latam/VEN/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Asia/VNM/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Persian Gulf/YEM/A&D/Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "World/Persian Gulf/ARE/Industry/Total fisheries production (metric tons)", + "World/Persian Gulf/AZE/Industry/Total fisheries production (metric tons)", + "World/Asia/BGD/Industry/Total fisheries production (metric tons)", + "World/Latam/BRA/Industry/Total fisheries production (metric tons)", + "World/Latam/CHL/Industry/Total fisheries production (metric tons)", + "World/Pair/CHN/Industry/Total fisheries production (metric tons)", + "World/South Africa/CMR/Industry/Total fisheries production (metric tons)", + "World/Latam/CRI/Industry/Total fisheries production (metric tons)", + "World/North Africa/EGY/Industry/Total fisheries production (metric tons)", + "World/Europe/HRV/Industry/Total fisheries production (metric tons)", + "World/Asia/IDN/Industry/Total fisheries production (metric tons)", + "World/Asia/IND/Industry/Total fisheries production (metric tons)", + "World/North Africa/ISR/Industry/Total fisheries production (metric tons)", + "World/North Africa/MAR/Industry/Total fisheries production (metric tons)", + "World/Latam/MEX/Industry/Total fisheries production (metric tons)", + "World/South Africa/MOZ/Industry/Total fisheries production (metric tons)", + "World/South Africa/NGA/Industry/Total fisheries production (metric tons)", + "World/Persian Gulf/OMN/Industry/Total fisheries production (metric tons)", + "World/Asia/PHL/Industry/Total fisheries production (metric tons)", + "World/Europe/POL/Industry/Total fisheries production (metric tons)", + "World/Persian Gulf/SAU/Industry/Total fisheries production (metric tons)", + "World/Asia/THA/Industry/Total fisheries production (metric tons)", + "World/Asia/VNM/Industry/Total fisheries production (metric tons)", + "World/Persian Gulf/ARE/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Persian Gulf/AZE/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Asia/BGD/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Latam/CHL/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Pair/CHN/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Latam/CRI/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/North Africa/DZA/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/North Africa/EGY/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Europe/GBR/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Europe/HRV/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Asia/IND/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Persian Gulf/IRQ/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/North Africa/ISR/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Asia/KOR/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/North Africa/MAR/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Latam/MEX/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/South Africa/MOZ/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Europe/NLD/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Persian Gulf/OMN/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Latam/PAN/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Asia/PHL/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Persian Gulf/QAT/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Europe/SWE/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Asia/THA/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/North Africa/TUR/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Pair/USA/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Asia/VNM/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Persian Gulf/YEM/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/South Africa/ZAF/Environment/Total greenhouse gas emissions (% change from 1990)", + "World/Persian Gulf/ARE/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Persian Gulf/AZE/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/BGD/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/BRA/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/CHL/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Pair/CHN/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/CMR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/COL/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/CRI/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Europe/DEU/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/North Africa/DZA/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/North Africa/EGY/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Europe/GBR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/GHA/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Europe/GRC/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/IDN/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/IND/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/North Africa/ISR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/KOR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/LBR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/North Africa/MAR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/MEX/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/MOZ/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/NGA/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Europe/NLD/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Persian Gulf/OMN/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/PAN/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Latam/PER/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/PHL/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Persian Gulf/QAT/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Persian Gulf/SAU/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/SEN/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Europe/SWE/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/THA/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/North Africa/TUR/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Asia/VNM/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/South Africa/ZAF/Environment/Total greenhouse gas emissions (kt of CO2 equivalent)", + "World/Persian Gulf/ARE/Economy/Total reserves (includes gold, current US$)", + "World/Asia/BGD/Economy/Total reserves (includes gold, current US$)", + "World/Latam/BRA/Economy/Total reserves (includes gold, current US$)", + "World/Latam/CHL/Economy/Total reserves (includes gold, current US$)", + "World/Pair/CHN/Economy/Total reserves (includes gold, current US$)", + "World/Latam/COL/Economy/Total reserves (includes gold, current US$)", + "World/Latam/CRI/Economy/Total reserves (includes gold, current US$)", + "World/North Africa/DZA/Economy/Total reserves (includes gold, current US$)", + "World/Europe/ESP/Economy/Total reserves (includes gold, current US$)", + "World/Europe/FRA/Economy/Total reserves (includes gold, current US$)", + "World/Europe/GBR/Economy/Total reserves (includes gold, current US$)", + "World/South Africa/GHA/Economy/Total reserves (includes gold, current US$)", + "World/Asia/IDN/Economy/Total reserves (includes gold, current US$)", + "World/Asia/IND/Economy/Total reserves (includes gold, current US$)", + "World/Persian Gulf/IRQ/Economy/Total reserves (includes gold, current US$)", + "World/North Africa/ISR/Economy/Total reserves (includes gold, current US$)", + "World/Asia/KOR/Economy/Total reserves (includes gold, current US$)", + "World/South Africa/LBR/Economy/Total reserves (includes gold, current US$)", + "World/North Africa/MAR/Economy/Total reserves (includes gold, current US$)", + "World/Latam/MEX/Economy/Total reserves (includes gold, current US$)", + "World/South Africa/MOZ/Economy/Total reserves (includes gold, current US$)", + "World/Persian Gulf/OMN/Economy/Total reserves (includes gold, current US$)", + "World/Latam/PAN/Economy/Total reserves (includes gold, current US$)", + "World/Latam/PER/Economy/Total reserves (includes gold, current US$)", + "World/Asia/PHL/Economy/Total reserves (includes gold, current US$)", + "World/Europe/POL/Economy/Total reserves (includes gold, current US$)", + "World/Persian Gulf/QAT/Economy/Total reserves (includes gold, current US$)", + "World/Persian Gulf/SAU/Economy/Total reserves (includes gold, current US$)", + "World/Europe/SWE/Economy/Total reserves (includes gold, current US$)", + "World/Asia/THA/Economy/Total reserves (includes gold, current US$)", + "World/North Africa/TUR/Economy/Total reserves (includes gold, current US$)", + "World/Pair/USA/Economy/Total reserves (includes gold, current US$)", + "World/Latam/VEN/Economy/Total reserves (includes gold, current US$)", + "World/Asia/VNM/Economy/Total reserves (includes gold, current US$)", + "World/South Africa/ZAF/Economy/Total reserves (includes gold, current US$)", + "World/Persian Gulf/ARE/Economy/Total reserves minus gold (current US$)", + "World/Asia/BGD/Economy/Total reserves minus gold (current US$)", + "World/Latam/BRA/Economy/Total reserves minus gold (current US$)", + "World/Latam/CHL/Economy/Total reserves minus gold (current US$)", + "World/Pair/CHN/Economy/Total reserves minus gold (current US$)", + "World/Latam/COL/Economy/Total reserves minus gold (current US$)", + "World/Latam/CRI/Economy/Total reserves minus gold (current US$)", + "World/North Africa/DZA/Economy/Total reserves minus gold (current US$)", + "World/Europe/FRA/Economy/Total reserves minus gold (current US$)", + "World/Europe/GBR/Economy/Total reserves minus gold (current US$)", + "World/South Africa/GHA/Economy/Total reserves minus gold (current US$)", + "World/Asia/IDN/Economy/Total reserves minus gold (current US$)", + "World/Asia/IND/Economy/Total reserves minus gold (current US$)", + "World/Persian Gulf/IRQ/Economy/Total reserves minus gold (current US$)", + "World/North Africa/ISR/Economy/Total reserves minus gold (current US$)", + "World/Asia/KOR/Economy/Total reserves minus gold (current US$)", + "World/South Africa/LBR/Economy/Total reserves minus gold (current US$)", + "World/North Africa/MAR/Economy/Total reserves minus gold (current US$)", + "World/Latam/MEX/Economy/Total reserves minus gold (current US$)", + "World/South Africa/MOZ/Economy/Total reserves minus gold (current US$)", + "World/Persian Gulf/OMN/Economy/Total reserves minus gold (current US$)", + "World/Latam/PAN/Economy/Total reserves minus gold (current US$)", + "World/Latam/PER/Economy/Total reserves minus gold (current US$)", + "World/Asia/PHL/Economy/Total reserves minus gold (current US$)", + "World/Europe/POL/Economy/Total reserves minus gold (current US$)", + "World/Persian Gulf/QAT/Economy/Total reserves minus gold (current US$)", + "World/Persian Gulf/SAU/Economy/Total reserves minus gold (current US$)", + "World/Europe/SWE/Economy/Total reserves minus gold (current US$)", + "World/Asia/THA/Economy/Total reserves minus gold (current US$)", + "World/North Africa/TUR/Economy/Total reserves minus gold (current US$)", + "World/Latam/VEN/Economy/Total reserves minus gold (current US$)", + "World/Asia/VNM/Economy/Total reserves minus gold (current US$)", + "World/South Africa/ZAF/Economy/Total reserves minus gold (current US$)", + "World/Latam/ARG/Health/UHC service coverage index", + "World/Europe/AUT/Health/UHC service coverage index", + "World/Persian Gulf/AZE/Health/UHC service coverage index", + "World/Asia/BGD/Health/UHC service coverage index", + "World/Latam/BRA/Health/UHC service coverage index", + "World/Latam/CHL/Health/UHC service coverage index", + "World/Pair/CHN/Health/UHC service coverage index", + "World/South Africa/CMR/Health/UHC service coverage index", + "World/Latam/COL/Health/UHC service coverage index", + "World/Latam/CRI/Health/UHC service coverage index", + "World/Europe/DEU/Health/UHC service coverage index", + "World/North Africa/DZA/Health/UHC service coverage index", + "World/North Africa/EGY/Health/UHC service coverage index", + "World/Europe/ESP/Health/UHC service coverage index", + "World/Europe/FRA/Health/UHC service coverage index", + "World/Europe/GBR/Health/UHC service coverage index", + "World/South Africa/GHA/Health/UHC service coverage index", + "World/Europe/GRC/Health/UHC service coverage index", + "World/Europe/HRV/Health/UHC service coverage index", + "World/Asia/IDN/Health/UHC service coverage index", + "World/Asia/IND/Health/UHC service coverage index", + "World/Persian Gulf/IRQ/Health/UHC service coverage index", + "World/North Africa/ISR/Health/UHC service coverage index", + "World/Asia/KOR/Health/UHC service coverage index", + "World/South Africa/LBR/Health/UHC service coverage index", + "World/North Africa/MAR/Health/UHC service coverage index", + "World/Latam/MEX/Health/UHC service coverage index", + "World/South Africa/MOZ/Health/UHC service coverage index", + "World/South Africa/NGA/Health/UHC service coverage index", + "World/Europe/NLD/Health/UHC service coverage index", + "World/Persian Gulf/OMN/Health/UHC service coverage index", + "World/Latam/PAN/Health/UHC service coverage index", + "World/Latam/PER/Health/UHC service coverage index", + "World/Asia/PHL/Health/UHC service coverage index", + "World/Europe/POL/Health/UHC service coverage index", + "World/Persian Gulf/QAT/Health/UHC service coverage index", + "World/South Africa/SEN/Health/UHC service coverage index", + "World/Europe/SWE/Health/UHC service coverage index", + "World/Asia/THA/Health/UHC service coverage index", + "World/North Africa/TUR/Health/UHC service coverage index", + "World/Pair/USA/Health/UHC service coverage index", + "World/Latam/VEN/Health/UHC service coverage index", + "World/Asia/VNM/Health/UHC service coverage index", + "World/Persian Gulf/YEM/Health/UHC service coverage index", + "World/South Africa/ZAF/Health/UHC service coverage index", + "World/Persian Gulf/ARE/Demography/Urban population", + "World/Latam/ARG/Demography/Urban population", + "World/Persian Gulf/AZE/Demography/Urban population", + "World/Asia/BGD/Demography/Urban population", + "World/Latam/BRA/Demography/Urban population", + "World/Latam/CHL/Demography/Urban population", + "World/Pair/CHN/Demography/Urban population", + "World/South Africa/CMR/Demography/Urban population", + "World/Latam/COL/Demography/Urban population", + "World/Latam/CRI/Demography/Urban population", + "World/North Africa/DZA/Demography/Urban population", + "World/North Africa/EGY/Demography/Urban population", + "World/Europe/ESP/Demography/Urban population", + "World/Europe/FRA/Demography/Urban population", + "World/Europe/GBR/Demography/Urban population", + "World/South Africa/GHA/Demography/Urban population", + "World/Asia/IDN/Demography/Urban population", + "World/Asia/IND/Demography/Urban population", + "World/North Africa/ISR/Demography/Urban population", + "World/Asia/KOR/Demography/Urban population", + "World/South Africa/LBR/Demography/Urban population", + "World/North Africa/MAR/Demography/Urban population", + "World/Latam/MEX/Demography/Urban population", + "World/South Africa/MOZ/Demography/Urban population", + "World/South Africa/NGA/Demography/Urban population", + "World/Europe/NLD/Demography/Urban population", + "World/Persian Gulf/OMN/Demography/Urban population", + "World/Latam/PAN/Demography/Urban population", + "World/Latam/PER/Demography/Urban population", + "World/Asia/PHL/Demography/Urban population", + "World/Europe/POL/Demography/Urban population", + "World/Persian Gulf/QAT/Demography/Urban population", + "World/Persian Gulf/SAU/Demography/Urban population", + "World/South Africa/SEN/Demography/Urban population", + "World/Asia/THA/Demography/Urban population", + "World/North Africa/TUR/Demography/Urban population", + "World/Pair/USA/Demography/Urban population", + "World/Latam/VEN/Demography/Urban population", + "World/Asia/VNM/Demography/Urban population", + "World/Persian Gulf/YEM/Demography/Urban population", + "World/South Africa/ZAF/Demography/Urban population", + "World/Persian Gulf/ARE/Demography/Urban population (% of total population)", + "World/Latam/ARG/Demography/Urban population (% of total population)", + "World/Persian Gulf/AZE/Demography/Urban population (% of total population)", + "World/Asia/BGD/Demography/Urban population (% of total population)", + "World/Latam/BRA/Demography/Urban population (% of total population)", + "World/Latam/CHL/Demography/Urban population (% of total population)", + "World/Pair/CHN/Demography/Urban population (% of total population)", + "World/South Africa/CMR/Demography/Urban population (% of total population)", + "World/Latam/COL/Demography/Urban population (% of total population)", + "World/Latam/CRI/Demography/Urban population (% of total population)", + "World/Europe/DEU/Demography/Urban population (% of total population)", + "World/North Africa/DZA/Demography/Urban population (% of total population)", + "World/Europe/ESP/Demography/Urban population (% of total population)", + "World/Europe/FRA/Demography/Urban population (% of total population)", + "World/Europe/GBR/Demography/Urban population (% of total population)", + "World/South Africa/GHA/Demography/Urban population (% of total population)", + "World/Europe/GRC/Demography/Urban population (% of total population)", + "World/Europe/HRV/Demography/Urban population (% of total population)", + "World/Asia/IDN/Demography/Urban population (% of total population)", + "World/Asia/IND/Demography/Urban population (% of total population)", + "World/Persian Gulf/IRQ/Demography/Urban population (% of total population)", + "World/North Africa/ISR/Demography/Urban population (% of total population)", + "World/South Africa/LBR/Demography/Urban population (% of total population)", + "World/North Africa/MAR/Demography/Urban population (% of total population)", + "World/Latam/MEX/Demography/Urban population (% of total population)", + "World/South Africa/MOZ/Demography/Urban population (% of total population)", + "World/South Africa/NGA/Demography/Urban population (% of total population)", + "World/Europe/NLD/Demography/Urban population (% of total population)", + "World/Persian Gulf/OMN/Demography/Urban population (% of total population)", + "World/Latam/PAN/Demography/Urban population (% of total population)", + "World/Latam/PER/Demography/Urban population (% of total population)", + "World/Europe/POL/Demography/Urban population (% of total population)", + "World/Persian Gulf/QAT/Demography/Urban population (% of total population)", + "World/Persian Gulf/SAU/Demography/Urban population (% of total population)", + "World/South Africa/SEN/Demography/Urban population (% of total population)", + "World/Asia/THA/Demography/Urban population (% of total population)", + "World/North Africa/TUR/Demography/Urban population (% of total population)", + "World/Pair/USA/Demography/Urban population (% of total population)", + "World/Latam/VEN/Demography/Urban population (% of total population)", + "World/Asia/VNM/Demography/Urban population (% of total population)", + "World/Persian Gulf/YEM/Demography/Urban population (% of total population)", + "World/South Africa/ZAF/Demography/Urban population (% of total population)", + "World/Europe/AUT/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Persian Gulf/AZE/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Asia/BGD/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/CHL/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Pair/CHN/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/COL/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/CRI/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Europe/DEU/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/North Africa/DZA/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/North Africa/EGY/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Europe/GBR/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/South Africa/GHA/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Europe/HRV/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Asia/IND/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/North Africa/ISR/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Asia/KOR/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/North Africa/MAR/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/MEX/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/South Africa/MOZ/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/South Africa/NGA/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Europe/NLD/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/PAN/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/PER/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Asia/PHL/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Europe/POL/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Persian Gulf/SAU/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Europe/SWE/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Asia/THA/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/North Africa/TUR/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Latam/VEN/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Asia/VNM/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Persian Gulf/YEM/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/South Africa/ZAF/Equality/Women Business and the Law Index Score (scale 1-100)", + "World/Persian Gulf/ARE/A&D", + "World/Latam/ARG/A&D", + "World/Europe/AUT/A&D", + "World/Persian Gulf/AZE/A&D", + "World/Asia/BGD/A&D", + "World/Latam/BRA/A&D", + "World/Latam/CHL/A&D", + "World/Pair/CHN/A&D", + "World/Latam/CRI/A&D", + "World/North Africa/EGY/A&D", + "World/Europe/GBR/A&D", + "World/South Africa/GHA/A&D", + "World/Europe/HRV/A&D", + "World/Asia/IND/A&D", + "World/North Africa/ISR/A&D", + "World/Asia/KOR/A&D", + "World/North Africa/MAR/A&D", + "World/Latam/MEX/A&D", + "World/South Africa/MOZ/A&D", + "World/South Africa/NGA/A&D", + "World/Europe/NLD/A&D", + "World/Persian Gulf/OMN/A&D", + "World/Latam/PAN/A&D", + "World/Europe/POL/A&D", + "World/Persian Gulf/QAT/A&D", + "World/Asia/THA/A&D", + "World/Pair/USA/A&D", + "World/Latam/VEN/A&D", + "World/Asia/VNM/A&D", + "World/Persian Gulf/YEM/A&D", + "World/Persian Gulf/ARE/Agriculture", + "World/Latam/ARG/Agriculture", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/Latam/CRI/Agriculture", + "World/Europe/DEU/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/North Africa/EGY/Agriculture", + "World/Europe/ESP/Agriculture", + "World/Europe/FRA/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Europe/HRV/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/ISR/Agriculture", + "World/Asia/KOR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Europe/NLD/Agriculture", + "World/Persian Gulf/OMN/Agriculture", + "World/Latam/PAN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Europe/POL/Agriculture", + "World/Persian Gulf/QAT/Agriculture", + "World/Persian Gulf/SAU/Agriculture", + "World/South Africa/SEN/Agriculture", + "World/Europe/SWE/Agriculture", + "World/Asia/THA/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Latam/VEN/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/South Africa/ZAF/Agriculture", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/Persian Gulf/IRQ/Demography", + "World/North Africa/ISR/Demography", + "World/Asia/KOR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Europe/SWE/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Latam/ARG/Demoraphy", + "World/Asia/BGD/Demoraphy", + "World/Latam/BRA/Demoraphy", + "World/South Africa/CMR/Demoraphy", + "World/Latam/COL/Demoraphy", + "World/Latam/CRI/Demoraphy", + "World/North Africa/DZA/Demoraphy", + "World/North Africa/EGY/Demoraphy", + "World/South Africa/GHA/Demoraphy", + "World/Asia/IND/Demoraphy", + "World/South Africa/LBR/Demoraphy", + "World/North Africa/MAR/Demoraphy", + "World/Latam/MEX/Demoraphy", + "World/South Africa/MOZ/Demoraphy", + "World/South Africa/NGA/Demoraphy", + "World/Latam/PAN/Demoraphy", + "World/Latam/PER/Demoraphy", + "World/Asia/PHL/Demoraphy", + "World/North Africa/TUR/Demoraphy", + "World/Latam/VEN/Demoraphy", + "World/Asia/VNM/Demoraphy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Employment", + "World/Latam/ARG/Employment", + "World/Europe/AUT/Employment", + "World/Persian Gulf/AZE/Employment", + "World/Asia/BGD/Employment", + "World/Latam/BRA/Employment", + "World/Latam/CHL/Employment", + "World/Pair/CHN/Employment", + "World/South Africa/CMR/Employment", + "World/Latam/COL/Employment", + "World/Latam/CRI/Employment", + "World/Europe/DEU/Employment", + "World/North Africa/DZA/Employment", + "World/North Africa/EGY/Employment", + "World/Europe/ESP/Employment", + "World/Europe/FRA/Employment", + "World/Europe/GBR/Employment", + "World/South Africa/GHA/Employment", + "World/Europe/GRC/Employment", + "World/Europe/HRV/Employment", + "World/Asia/IDN/Employment", + "World/Asia/IND/Employment", + "World/North Africa/ISR/Employment", + "World/Asia/KOR/Employment", + "World/South Africa/LBR/Employment", + "World/North Africa/MAR/Employment", + "World/Latam/MEX/Employment", + "World/South Africa/MOZ/Employment", + "World/South Africa/NGA/Employment", + "World/Europe/NLD/Employment", + "World/Persian Gulf/OMN/Employment", + "World/Latam/PAN/Employment", + "World/Latam/PER/Employment", + "World/Asia/PHL/Employment", + "World/Europe/POL/Employment", + "World/Persian Gulf/QAT/Employment", + "World/Persian Gulf/SAU/Employment", + "World/South Africa/SEN/Employment", + "World/Europe/SWE/Employment", + "World/Asia/THA/Employment", + "World/North Africa/TUR/Employment", + "World/Pair/USA/Employment", + "World/Latam/VEN/Employment", + "World/Asia/VNM/Employment", + "World/Persian Gulf/YEM/Employment", + "World/South Africa/ZAF/Employment", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Persian Gulf/IRQ/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Latam/VEN/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Equality", + "World/Latam/ARG/Equality", + "World/Europe/AUT/Equality", + "World/Persian Gulf/AZE/Equality", + "World/Asia/BGD/Equality", + "World/Latam/BRA/Equality", + "World/Latam/CHL/Equality", + "World/Pair/CHN/Equality", + "World/South Africa/CMR/Equality", + "World/Latam/COL/Equality", + "World/Latam/CRI/Equality", + "World/Europe/DEU/Equality", + "World/North Africa/DZA/Equality", + "World/North Africa/EGY/Equality", + "World/Europe/ESP/Equality", + "World/Europe/FRA/Equality", + "World/Europe/GBR/Equality", + "World/South Africa/GHA/Equality", + "World/Europe/GRC/Equality", + "World/Europe/HRV/Equality", + "World/Asia/IND/Equality", + "World/North Africa/ISR/Equality", + "World/Asia/KOR/Equality", + "World/North Africa/MAR/Equality", + "World/Latam/MEX/Equality", + "World/South Africa/MOZ/Equality", + "World/South Africa/NGA/Equality", + "World/Europe/NLD/Equality", + "World/Persian Gulf/OMN/Equality", + "World/Latam/PAN/Equality", + "World/Latam/PER/Equality", + "World/Asia/PHL/Equality", + "World/Europe/POL/Equality", + "World/Persian Gulf/QAT/Equality", + "World/Persian Gulf/SAU/Equality", + "World/South Africa/SEN/Equality", + "World/Europe/SWE/Equality", + "World/Asia/THA/Equality", + "World/North Africa/TUR/Equality", + "World/Pair/USA/Equality", + "World/Latam/VEN/Equality", + "World/Asia/VNM/Equality", + "World/Persian Gulf/YEM/Equality", + "World/South Africa/ZAF/Equality", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/South Africa/CMR/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/North Africa/EGY/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/GRC/Exports", + "World/Europe/HRV/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/South Africa/LBR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/South Africa/NGA/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/Persian Gulf/YEM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/Persian Gulf/IRQ/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/South Africa/LBR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Latam/VEN/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Industry", + "World/Latam/ARG/Industry", + "World/Europe/AUT/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Asia/BGD/Industry", + "World/Latam/BRA/Industry", + "World/Latam/CHL/Industry", + "World/Pair/CHN/Industry", + "World/South Africa/CMR/Industry", + "World/Latam/COL/Industry", + "World/Latam/CRI/Industry", + "World/Europe/DEU/Industry", + "World/North Africa/DZA/Industry", + "World/North Africa/EGY/Industry", + "World/Europe/ESP/Industry", + "World/Europe/FRA/Industry", + "World/Europe/GBR/Industry", + "World/South Africa/GHA/Industry", + "World/Europe/GRC/Industry", + "World/Europe/HRV/Industry", + "World/Asia/IDN/Industry", + "World/Asia/IND/Industry", + "World/North Africa/ISR/Industry", + "World/Asia/KOR/Industry", + "World/South Africa/LBR/Industry", + "World/North Africa/MAR/Industry", + "World/Latam/MEX/Industry", + "World/South Africa/MOZ/Industry", + "World/South Africa/NGA/Industry", + "World/Europe/NLD/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Latam/PAN/Industry", + "World/Latam/PER/Industry", + "World/Asia/PHL/Industry", + "World/Europe/POL/Industry", + "World/Persian Gulf/QAT/Industry", + "World/Persian Gulf/SAU/Industry", + "World/South Africa/SEN/Industry", + "World/Europe/SWE/Industry", + "World/Asia/THA/Industry", + "World/North Africa/TUR/Industry", + "World/Pair/USA/Industry", + "World/Latam/VEN/Industry", + "World/Asia/VNM/Industry", + "World/Persian Gulf/YEM/Industry", + "World/South Africa/ZAF/Industry", + "World/Persian Gulf/ARE/Internet", + "World/Latam/ARG/Internet", + "World/Europe/AUT/Internet", + "World/Persian Gulf/AZE/Internet", + "World/Asia/BGD/Internet", + "World/Latam/BRA/Internet", + "World/Latam/CHL/Internet", + "World/Pair/CHN/Internet", + "World/South Africa/CMR/Internet", + "World/Latam/COL/Internet", + "World/Latam/CRI/Internet", + "World/Europe/DEU/Internet", + "World/North Africa/DZA/Internet", + "World/North Africa/EGY/Internet", + "World/Europe/ESP/Internet", + "World/Europe/FRA/Internet", + "World/Europe/GBR/Internet", + "World/South Africa/GHA/Internet", + "World/Europe/GRC/Internet", + "World/Europe/HRV/Internet", + "World/Asia/IDN/Internet", + "World/Asia/IND/Internet", + "World/Persian Gulf/IRQ/Internet", + "World/North Africa/ISR/Internet", + "World/Asia/KOR/Internet", + "World/South Africa/LBR/Internet", + "World/North Africa/MAR/Internet", + "World/Latam/MEX/Internet", + "World/South Africa/MOZ/Internet", + "World/South Africa/NGA/Internet", + "World/Europe/NLD/Internet", + "World/Persian Gulf/OMN/Internet", + "World/Latam/PAN/Internet", + "World/Latam/PER/Internet", + "World/Asia/PHL/Internet", + "World/Europe/POL/Internet", + "World/Persian Gulf/QAT/Internet", + "World/Persian Gulf/SAU/Internet", + "World/South Africa/SEN/Internet", + "World/Europe/SWE/Internet", + "World/Asia/THA/Internet", + "World/North Africa/TUR/Internet", + "World/Pair/USA/Internet", + "World/Latam/VEN/Internet", + "World/Asia/VNM/Internet", + "World/Persian Gulf/YEM/Internet", + "World/South Africa/ZAF/Internet", + "World/Persian Gulf/ARE/Migration", + "World/Europe/AUT/Migration", + "World/Persian Gulf/AZE/Migration", + "World/Latam/CHL/Migration", + "World/Pair/CHN/Migration", + "World/Europe/DEU/Migration", + "World/North Africa/DZA/Migration", + "World/Europe/ESP/Migration", + "World/Europe/FRA/Migration", + "World/Europe/GBR/Migration", + "World/Europe/GRC/Migration", + "World/Europe/HRV/Migration", + "World/Asia/IND/Migration", + "World/North Africa/ISR/Migration", + "World/Asia/KOR/Migration", + "World/North Africa/MAR/Migration", + "World/Latam/MEX/Migration", + "World/South Africa/MOZ/Migration", + "World/South Africa/NGA/Migration", + "World/Europe/NLD/Migration", + "World/Latam/PAN/Migration", + "World/Latam/PER/Migration", + "World/Europe/POL/Migration", + "World/Persian Gulf/SAU/Migration", + "World/South Africa/SEN/Migration", + "World/Europe/SWE/Migration", + "World/Asia/THA/Migration", + "World/North Africa/TUR/Migration", + "World/Pair/USA/Migration", + "World/Asia/VNM/Migration", + "World/Persian Gulf/YEM/Migration", + "World/Persian Gulf/ARE/Military", + "World/Europe/AUT/Military", + "World/Persian Gulf/AZE/Military", + "World/Asia/BGD/Military", + "World/Latam/BRA/Military", + "World/Latam/CHL/Military", + "World/Pair/CHN/Military", + "World/South Africa/CMR/Military", + "World/Latam/COL/Military", + "World/North Africa/DZA/Military", + "World/North Africa/EGY/Military", + "World/Europe/ESP/Military", + "World/Europe/FRA/Military", + "World/South Africa/GHA/Military", + "World/Europe/GRC/Military", + "World/Asia/IDN/Military", + "World/Asia/IND/Military", + "World/North Africa/ISR/Military", + "World/Asia/KOR/Military", + "World/North Africa/MAR/Military", + "World/Latam/MEX/Military", + "World/South Africa/MOZ/Military", + "World/South Africa/NGA/Military", + "World/Europe/NLD/Military", + "World/Persian Gulf/OMN/Military", + "World/Latam/PER/Military", + "World/Asia/PHL/Military", + "World/Europe/POL/Military", + "World/Persian Gulf/SAU/Military", + "World/South Africa/SEN/Military", + "World/Asia/THA/Military", + "World/North Africa/TUR/Military", + "World/Pair/USA/Military", + "World/Asia/VNM/Military", + "World/Persian Gulf/YEM/Military", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/Persian Gulf/IRQ/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Europe/SWE/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/South Africa/ZAF/Mortality", + "World/Persian Gulf/ARE/Principal", + "World/Latam/ARG/Principal", + "World/Europe/AUT/Principal", + "World/Persian Gulf/AZE/Principal", + "World/Asia/BGD/Principal", + "World/Latam/BRA/Principal", + "World/Latam/CHL/Principal", + "World/Pair/CHN/Principal", + "World/South Africa/CMR/Principal", + "World/Latam/COL/Principal", + "World/Latam/CRI/Principal", + "World/Europe/DEU/Principal", + "World/North Africa/DZA/Principal", + "World/North Africa/EGY/Principal", + "World/Europe/ESP/Principal", + "World/Europe/FRA/Principal", + "World/Europe/GBR/Principal", + "World/South Africa/GHA/Principal", + "World/Europe/GRC/Principal", + "World/Europe/HRV/Principal", + "World/Asia/IDN/Principal", + "World/Asia/IND/Principal", + "World/Persian Gulf/IRQ/Principal", + "World/North Africa/ISR/Principal", + "World/Asia/KOR/Principal", + "World/South Africa/LBR/Principal", + "World/North Africa/MAR/Principal", + "World/Latam/MEX/Principal", + "World/South Africa/MOZ/Principal", + "World/South Africa/NGA/Principal", + "World/Europe/NLD/Principal", + "World/Persian Gulf/OMN/Principal", + "World/Latam/PAN/Principal", + "World/Latam/PER/Principal", + "World/Asia/PHL/Principal", + "World/Europe/POL/Principal", + "World/Persian Gulf/QAT/Principal", + "World/Persian Gulf/SAU/Principal", + "World/South Africa/SEN/Principal", + "World/Europe/SWE/Principal", + "World/Asia/THA/Principal", + "World/North Africa/TUR/Principal", + "World/Pair/USA/Principal", + "World/Latam/VEN/Principal", + "World/Asia/VNM/Principal", + "World/Persian Gulf/YEM/Principal", + "World/South Africa/ZAF/Principal", + "World/Latam/ARG/R&D", + "World/Europe/AUT/R&D", + "World/Persian Gulf/AZE/R&D", + "World/Asia/BGD/R&D", + "World/Latam/BRA/R&D", + "World/Latam/CHL/R&D", + "World/Pair/CHN/R&D", + "World/South Africa/CMR/R&D", + "World/Latam/COL/R&D", + "World/Latam/CRI/R&D", + "World/Europe/DEU/R&D", + "World/North Africa/DZA/R&D", + "World/North Africa/EGY/R&D", + "World/Europe/ESP/R&D", + "World/Europe/FRA/R&D", + "World/Europe/GBR/R&D", + "World/South Africa/GHA/R&D", + "World/Europe/GRC/R&D", + "World/Europe/HRV/R&D", + "World/Asia/IDN/R&D", + "World/Asia/IND/R&D", + "World/Asia/KOR/R&D", + "World/South Africa/LBR/R&D", + "World/North Africa/MAR/R&D", + "World/Latam/MEX/R&D", + "World/South Africa/MOZ/R&D", + "World/South Africa/NGA/R&D", + "World/Europe/NLD/R&D", + "World/Persian Gulf/OMN/R&D", + "World/Latam/PAN/R&D", + "World/Latam/PER/R&D", + "World/Asia/PHL/R&D", + "World/Europe/POL/R&D", + "World/South Africa/SEN/R&D", + "World/Asia/THA/R&D", + "World/North Africa/TUR/R&D", + "World/Pair/USA/R&D", + "World/Latam/VEN/R&D", + "World/Asia/VNM/R&D", + "World/Persian Gulf/YEM/R&D", + "World/South Africa/ZAF/R&D", + "World/Latam/ARG/Taxes", + "World/Europe/AUT/Taxes", + "World/Persian Gulf/AZE/Taxes", + "World/Asia/BGD/Taxes", + "World/Latam/BRA/Taxes", + "World/Latam/CHL/Taxes", + "World/South Africa/CMR/Taxes", + "World/Latam/COL/Taxes", + "World/Latam/CRI/Taxes", + "World/Europe/DEU/Taxes", + "World/North Africa/DZA/Taxes", + "World/Europe/ESP/Taxes", + "World/Europe/FRA/Taxes", + "World/Europe/GBR/Taxes", + "World/South Africa/GHA/Taxes", + "World/Europe/GRC/Taxes", + "World/Europe/HRV/Taxes", + "World/Asia/IND/Taxes", + "World/North Africa/ISR/Taxes", + "World/Asia/KOR/Taxes", + "World/North Africa/MAR/Taxes", + "World/Latam/MEX/Taxes", + "World/South Africa/MOZ/Taxes", + "World/South Africa/NGA/Taxes", + "World/Europe/NLD/Taxes", + "World/Latam/PAN/Taxes", + "World/Latam/PER/Taxes", + "World/Europe/POL/Taxes", + "World/Persian Gulf/SAU/Taxes", + "World/South Africa/SEN/Taxes", + "World/Europe/SWE/Taxes", + "World/North Africa/TUR/Taxes", + "World/Pair/USA/Taxes", + "World/Latam/VEN/Taxes", + "World/Asia/VNM/Taxes", + "World/Persian Gulf/YEM/Taxes", + "World/South Africa/ZAF/Taxes", + "World/Persian Gulf/ARE/industry", + "World/Latam/ARG/industry", + "World/Europe/AUT/industry", + "World/Persian Gulf/AZE/industry", + "World/Asia/BGD/industry", + "World/Latam/BRA/industry", + "World/Latam/CHL/industry", + "World/Pair/CHN/industry", + "World/South Africa/CMR/industry", + "World/Latam/COL/industry", + "World/Latam/CRI/industry", + "World/North Africa/DZA/industry", + "World/North Africa/EGY/industry", + "World/Europe/ESP/industry", + "World/Europe/FRA/industry", + "World/Europe/GBR/industry", + "World/South Africa/GHA/industry", + "World/Europe/GRC/industry", + "World/Europe/HRV/industry", + "World/Asia/IDN/industry", + "World/Asia/IND/industry", + "World/Persian Gulf/IRQ/industry", + "World/North Africa/ISR/industry", + "World/Asia/KOR/industry", + "World/South Africa/LBR/industry", + "World/North Africa/MAR/industry", + "World/Latam/MEX/industry", + "World/South Africa/MOZ/industry", + "World/South Africa/NGA/industry", + "World/Europe/NLD/industry", + "World/Persian Gulf/OMN/industry", + "World/Latam/PAN/industry", + "World/Latam/PER/industry", + "World/Asia/PHL/industry", + "World/Europe/POL/industry", + "World/Persian Gulf/QAT/industry", + "World/Persian Gulf/SAU/industry", + "World/South Africa/SEN/industry", + "World/Europe/SWE/industry", + "World/Asia/THA/industry", + "World/North Africa/TUR/industry", + "World/Pair/USA/industry", + "World/Latam/VEN/industry", + "World/Asia/VNM/industry", + "World/Persian Gulf/YEM/industry", + "World/South Africa/ZAF/industry", + "World/Europe/AUT/principal", + "World/Persian Gulf/AZE/principal", + "World/Asia/BGD/principal", + "World/Pair/CHN/principal", + "World/South Africa/CMR/principal", + "World/Latam/COL/principal", + "World/Latam/CRI/principal", + "World/Europe/DEU/principal", + "World/North Africa/DZA/principal", + "World/Europe/ESP/principal", + "World/Europe/FRA/principal", + "World/Europe/GBR/principal", + "World/South Africa/GHA/principal", + "World/Europe/HRV/principal", + "World/Asia/IDN/principal", + "World/Asia/IND/principal", + "World/North Africa/ISR/principal", + "World/Asia/KOR/principal", + "World/Latam/MEX/principal", + "World/South Africa/MOZ/principal", + "World/South Africa/NGA/principal", + "World/Europe/NLD/principal", + "World/Latam/PAN/principal", + "World/Asia/PHL/principal", + "World/Europe/POL/principal", + "World/Persian Gulf/SAU/principal", + "World/Europe/SWE/principal", + "World/North Africa/TUR/principal", + "World/Pair/USA/principal", + "World/South Africa/ZAF/principal", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Asia", + "World/Europe", + "World/Latam", + "World/North Africa", + "World/Pair", + "World/Persian Gulf", + "World/South Africa", + "World" + ], + "labels": [ + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to clean fuels and technologies for cooking (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Access to electricity (% of population)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted net national income per capita (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: carbon dioxide damage (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: consumption of fixed capital (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: education expenditure (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: net national savings (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adjusted savings: particulate emission damage (current US$)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Adolescent fertility rate (births per 1,000 women ages 15-19)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural land (% of land area)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural methane emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Agricultural raw materials imports (% of merchandise imports)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Aquaculture production (metric tons)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (% of land area)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares per person)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Arable land (hectares)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Automated teller machines (ATMs) (per 100,000 adults)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Births attended by skilled health staff (% of total)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "Broad money (% of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2015 US$ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per 2017 PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kg per PPP $ of GDP)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (kt)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions (metric tons per capita)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from gaseous fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from liquid fuel consumption (kt)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "CO2 emissions from residential buildings and commercial and public services (% of total fuel combustion)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Capture fisheries production (metric tons)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Cereal yield (kg per hectare)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Combustible renewables and waste (% of total energy)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial bank branches (per 100,000 adults)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service exports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Commercial service imports (current US$)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Completeness of birth registration (%)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Consumer price index (2010 = 100)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Container port traffic (TEU: 20 foot equivalent units)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Crop production index (2014-2016 = 100)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure (% of GDP)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Current health expenditure per capita (current US$)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Customs and other import duties (% of tax revenue)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic credit to private sector by banks (% of GDP)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic general government health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Domestic private health expenditure per capita (current US$)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Electric power consumption (kWh per capita)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in agriculture (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in industry (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Employment in services (% of total employment) (modeled ILO estimate)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy intensity level of primary energy (MJ/$2017 PPP GDP)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent per capita)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Energy use (kg of oil equivalent) per $1,000 GDP (constant 2017 PPP)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export unit value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export value index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Export volume index (2000 = 100)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (BoP, current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Exports of goods and services (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Final consumption expenditure (current US$)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms offering formal training (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance investment (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Firms using banks to finance working capital (% of firms)", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Fixed broadband subscriptions (per 100 people)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Food production index (2014-2016 = 100)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "Forest area (% of land area)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP deflator: linked series (base year varies by country)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per capita (current US$)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per person employed (constant 2017 PPP $)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GDP per unit of energy use (constant 2017 PPP $ per kg of oil equivalent)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "GNI (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "General government final consumption expenditure (current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods exports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Goods imports (BoP, current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross capital formation (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross domestic savings (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross fixed capital formation (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure (current US$)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross national expenditure deflator (base year varies by country)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross savings (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "Gross value added at basic prices (GVA) (current US$)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "HFC gas emissions (thousand metric tons of CO2 equivalent)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Hospital beds (per 1,000 people)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "Households and NPISHs Final consumption expenditure (current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "ICT service exports (BoP, current US$)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import unit value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import value index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Import volume index (2000 = 100)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (BoP, current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Imports of goods and services (current US$)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Incidence of tuberculosis (per 100,000 people)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Industry (including construction), value added (current US$)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "Intentional homicides (per 100,000 people)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "International migrant stock (% of population)", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Level of water stress: freshwater withdrawal as a proportion of available freshwater resources", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (%)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Lifetime risk of maternal death (1 in: rate varies by country)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Livestock production index (2014-2016 = 100)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Low-birthweight babies (% of births)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Market capitalization of listed domestic companies (current US$)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Maternal mortality ratio (modeled estimate, per 100,000 live births)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports by the reporting economy (current US$)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies in East Asia & Pacific (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise exports to low- and middle-income economies outside region (% of total merchandise exports)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports by the reporting economy (current US$)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from high-income economies (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in East Asia & Pacific (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies in South Asia (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Merchandise imports from low- and middle-income economies outside region (% of total merchandise imports)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (% change from 1990)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions (kt of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Methane emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Military expenditure (current USD)", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Mobile cellular subscriptions (per 100 people)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Monetary Sector credit to private sector (% GDP)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Mortality caused by road traffic injury (per 100,000 population)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net barter terms of trade index (2000 = 100)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (BoP, current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net primary income (Net income from abroad) (current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (BoP, current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Net secondary income (Net current transfers from abroad) (current US$)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (% change from 1990)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Nitrous oxide emissions in energy sector (thousand metric tons of CO2 equivalent)", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 10-14 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 15-19 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 20-24 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of deaths ages 5-9 years", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of infant deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of maternal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of neonatal deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Number of under-five deaths", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Nurses and midwives (per 1,000 people)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "Out-of-pocket expenditure per capita (current US$)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People practicing open defecation (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic drinking water services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using at least basic sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "People using safely managed sanitation services (% of population)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Permanent cropland (% of land area)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 0-14 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 15-64 (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population ages 65 and above (% of total population)", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in largest city", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in the largest city (% of urban population)", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Population in urban agglomerations of more than 1 million (% of total population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Poverty headcount ratio at national poverty lines (% of population)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Pregnant women receiving prenatal care (%)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among children (% of children ages 6-59 months)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among non-pregnant women (% of women ages 15-49)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among pregnant women (%)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of anemia among women of reproductive age (% of women ages 15-49)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of current tobacco use (% of adults)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of overweight (modeled estimate, % of children under 5)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Prevalence of undernourishment (% of population)", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Price level ratio of PPP conversion factor (GDP) to market exchange rate", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income payments (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Primary income receipts (BoP, current US$)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 10-14 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among adolescents ages 15-19 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among children ages 5-9 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Probability of dying among youth ages 20-24 years (per 1,000)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of population spending more than 10% of household consumption or income on out-of-pocket health care expenditure (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Proportion of seats held by women in national parliaments (%)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (modeled ILO estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Ratio of female to male labor force participation rate (%) (national estimate)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable energy consumption (% of total final energy consumption)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Renewable internal freshwater resources per capita (cubic meters)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Researchers in R&D (per million people)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of catastrophic expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Risk of impoverishing expenditure for surgical care (% of people at risk)", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Rural population (% of total population)", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Scientific and technical journal articles", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Secondary income receipts (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service exports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Service imports (BoP, current US$)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Suicide mortality rate (per 100,000 population)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes less subsidies on products (current US$)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Taxes on international trade (% of revenue)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Textiles and clothing (% of value added in manufacturing)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time required to start a business (days)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time spent dealing with the requirements of government regulations (% of senior management time)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Time to obtain an electrical connection (days)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total fisheries production (metric tons)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (% change from 1990)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total greenhouse gas emissions (kt of CO2 equivalent)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves (includes gold, current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "Total reserves minus gold (current US$)", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "UHC service coverage index", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Urban population (% of total population)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "Women Business and the Law Index Score (scale 1-100)", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "A&D", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Agriculture", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demography", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Demoraphy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Economy", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Employment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Environment", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Equality", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Exports", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Health", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Imports", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Industry", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Internet", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Migration", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Military", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Mortality", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "Principal", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "R&D", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "Taxes", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "industry", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "principal", + "ARE", + "ARG", + "AUT", + "AZE", + "BGD", + "BRA", + "CHL", + "CHN", + "CMR", + "COL", + "CRI", + "DEU", + "DZA", + "EGY", + "ESP", + "FRA", + "GBR", + "GHA", + "GRC", + "HRV", + "IDN", + "IND", + "IRQ", + "ISR", + "KOR", + "LBR", + "MAR", + "MEX", + "MOZ", + "NGA", + "NLD", + "OMN", + "PAN", + "PER", + "PHL", + "POL", + "QAT", + "SAU", + "SEN", + "SWE", + "THA", + "TUR", + "USA", + "VEN", + "VNM", + "YEM", + "ZAF", + "Asia", + "Europe", + "Latam", + "North Africa", + "Pair", + "Persian Gulf", + "South Africa", + "World" + ], + "marker": { + "coloraxis": "coloraxis", + "colors": [ + 0.8531021111589834, + 0.9960831758177524, + 0.9956171156600898, + 0.7534091311886248, + 0.999122807017544, + 0.872263164968203, + 0.897855261911528, + 0.999122807017544, + 0.8536839205362883, + 0.8975114391781058, + 0.8640740055556022, + 0.908313797791604, + 0.9891493795585866, + 0.766483106515241, + 0.9231736856070656, + 0.9602036241270692, + 0.9626281577206024, + 0.9457244866279326, + 0.9047503889161738, + 0.8269184820807403, + 0.8789838022165389, + 0.8800026263331926, + 0.957737379733654, + 0.999122807017544, + 0.9509004506686832, + 0.7562762148337596, + 0.8442479234380643, + 0.993779175279743, + 0.7763614794595731, + 0.8710617614475394, + 0.9636752136752136, + 0.8119647131227026, + 0.7805172292400585, + 0.9370415079706567, + 0.8701066680233348, + 0.8242647792818613, + 0.8238243435953363, + 0.9791710812316362, + 0.7554660388288974, + 0.8482458889462429, + 0.914656355102988, + 0.8458383400350413, + 0.92448876432027, + 0.8295449908182004, + 0.9773557492735576, + 0.9281390141743808, + 0.9093117324398052, + 0.7806171146277026, + 0.8726620562837514, + 0.9686137921250751, + 0.8257949554417174, + 0.798853868337832, + 0.9506066908754583, + 0.992130773157018, + 0.992130773157018, + 0.8297391428809981, + 0.9981637899375688, + 0.9559378978139692, + 0.9725030984517492, + 0.9994500458295142, + 0.9674464520962212, + 0.9537877101584162, + 0.9973311596620504, + 0.9965191088563604, + 0.9588085805762212, + 0.9804758872197188, + 0.9761230584660866, + 0.9804758872197188, + 0.9815561030337692, + 0.9979840393589112, + 0.9327029435145744, + 0.9855664265688792, + 0.9965191088563604, + 0.990099472619818, + 0.995055254321861, + 0.8099484766436214, + 0.9906701465266744, + 0.931003010693105, + 0.983380118113322, + 0.9892105958643824, + 0.9957870470931044, + 0.9654908347220116, + 0.9987789987789988, + 0.987752121170142, + 0.9645628577173472, + 0.9994500458295142, + 0.94949459763166, + 0.9746742674843129, + 0.9965191088563604, + 0.9899402366995218, + 0.987752121170142, + 0.9987169080982063, + 0.9987169080982063, + 0.9985113511553524, + 0.9987169080982063, + 0.9632178831505792, + 0.9892105958643824, + 0.9537877101584162, + 0.9444982054870336, + 0.8409895539377414, + 0.9935457940810306, + 0.9402260743372878, + 0.9725030984517492, + 0.9994500458295142, + 0.9022126610505616, + 0.9552208996034384, + 0.9963384890035256, + 0.987752121170142, + 0.9133941210450609, + 0.9444982054870336, + 0.960245535909425, + 0.9790238683337896, + 0.9094946702782724, + 0.920417502503307, + 0.9384151778567814, + 0.963122674479988, + 0.992130773157018, + 0.7576460378790729, + 0.9455819726942684, + 0.987752121170142, + 0.968168023170972, + 0.9133941210450609, + 0.8731664917240823, + 0.9746742674843129, + 0.9833831528957327, + 0.8527482577723561, + 0.9964422727546304, + 0.9746742674843129, + 0.9797497432807476, + 0.9987169080982063, + 0.948780020349246, + 0.960245535909425, + 0.9036065776616928, + 0.926761544632836, + 0.9660041169227584, + 0.9710569973901052, + 0.9979840393589112, + 0.9947945803202288, + 0.9987169080982063, + 0.9411662012310432, + 0.9395149939510422, + 0.9612865740616352, + 0.9104377104377104, + 0.8466632549513022, + 0.965460306668771, + 0.9991930603515944, + 0.7661643396391405, + 0.8993946860474129, + 0.9987169080982063, + 0.8053363980490009, + 0.8802332979851536, + 0.9951653583795466, + 0.8038391193200114, + 0.8486048045950245, + 0.9280303030303032, + 0.7681025602181487, + 0.8667078642628765, + 0.8561382296156173, + 0.9288810671989122, + 0.9927523497097036, + 0.975268289884998, + 0.9652833528240462, + 0.8533855094586799, + 0.9552208996034384, + 0.9383191940615055, + 0.9334429906542056, + 0.906974409725021, + 0.872086805029541, + 0.9775003787304952, + 0.9866063032322202, + 0.941241325810687, + 0.9394303111483416, + 0.9755497899678774, + 0.9757801848204816, + 0.97062869262233, + 0.798490964605047, + 0.9022126610505616, + 0.9410307160918406, + 0.9994500458295142, + 0.9434119359795824, + 0.9987169080982063, + 0.8056786244402121, + 0.7609962981315767, + 0.8417508417508417, + 0.9573727012110692, + 0.9833831528957327, + 0.8473209929380159, + 0.9946751263076096, + 0.9580905063976388, + 0.9638426316026611, + 0.9987169080982063, + 0.9015161062330156, + 0.9703343503473024, + 0.9987789987789988, + 0.9826559329887096, + 0.8594361209082695, + 0.9516399434309798, + 0.920417502503307, + 0.9423609294481023, + 0.968168023170972, + 0.9957870470931044, + 0.94521116881737, + 0.9694172098634408, + 0.9466379024540816, + 0.995055254321861, + 0.9879041307837876, + 0.9833831528957327, + 0.9333963910884244, + 0.9899402366995218, + 0.8869505922195406, + 0.9203611665699089, + 0.9884812240212558, + 0.9588085805762212, + 0.9214805336789016, + 0.9881107335844111, + 0.9236131934032984, + 0.9812023001507028, + 0.8379122722898551, + 0.9523555966814456, + 0.9248788062414784, + 0.8139160327981961, + 0.937383366744383, + 0.94521116881737, + 0.9768478574449928, + 0.9972514396116292, + 0.9933098124967774, + 0.9991101223581756, + 0.9286467697656632, + 0.919010674275554, + 0.9473516727604566, + 0.9459244011397192, + 0.907679698406929, + 0.9012628558280068, + 0.923234386862968, + 0.9345449630236856, + 0.9965224965914254, + 0.9537877101584162, + 0.9105923002381252, + 0.9964912280701756, + 0.9732265524705908, + 0.948780020349246, + 0.9833831528957327, + 0.923234386862968, + 0.9717799134249206, + 0.9001238035739624, + 0.8238720996776804, + 0.9369854844016412, + 0.9338360345735434, + 0.986111412381384, + 0.9689798997219612, + 0.9935924757554138, + 0.7605829143427332, + 0.9660041169227584, + 0.9211213201052028, + 0.917590135458235, + 0.9870232873110416, + 0.8507175025705549, + 0.9481552134363872, + 0.9964912280701756, + 0.9553309445702832, + 0.9403778017040136, + 0.9696119722965126, + 0.9725030984517492, + 0.9480657120588448, + 0.9480657120588448, + 0.8911000630113791, + 0.9008198204074828, + 0.9739502754814452, + 0.992130773157018, + 0.9940520578006032, + 0.9979840393589112, + 0.9871951628595732, + 0.9050015702408756, + 0.7835109416675496, + 0.9993324432576768, + 0.7596801346801346, + 0.9906701465266744, + 0.9480657120588448, + 0.8159024043178598, + 0.7811662552209668, + 0.8197944468080158, + 0.9848383996858172, + 0.9221336649411492, + 0.8994280557324552, + 0.786819255636605, + 0.8020486431706626, + 0.8608954878607267, + 0.9309395848776872, + 0.8507175025705549, + 0.9280303030303032, + 0.934334074623178, + 0.8656659267144711, + 0.7814049860815456, + 0.819882410141537, + 0.9043039394552778, + 0.7905837844375335, + 0.9809244351623316, + 0.7920033670033668, + 0.9476817042606516, + 0.9732265524705908, + 0.999014778325123, + 0.8814330280498146, + 0.8106107934390158, + 0.9859927106498643, + 0.843965803045393, + 0.7596801346801346, + 0.8513250555967384, + 0.8046783090893074, + 0.8073122788801593, + 0.9239392804329155, + 0.97062869262233, + 0.9464820597794912, + 0.8731889608367804, + 0.819882410141537, + 0.9189961343104286, + 0.8073122788801593, + 0.941972584550496, + 0.9545041703849207, + 0.8766192814819845, + 0.9739502754814452, + 0.9331273751154144, + 0.8493650107294191, + 0.9873818298349624, + 0.9964912280701756, + 0.895536084777682, + 0.9773557492735576, + 0.8385429638854296, + 0.8492357350911255, + 0.992105287563838, + 0.9991101224022378, + 0.7779288650281017, + 0.8958436239049176, + 0.9954545454545456, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8178037731982906, + 0.9416562889165628, + 0.936963017728694, + 0.8442717785843921, + 0.7686035765445222, + 0.7867084930870223, + 0.992671182389769, + 0.9848040830545792, + 0.951008471157725, + 0.8630706569122703, + 0.9026819923371648, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.84746622922539, + 0.8979659609796596, + 0.999777530589544, + 0.940760842211224, + 0.78115400581154, + 0.9240556247405564, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.7593325960761085, + 0.9413092648977816, + 0.999122807017544, + 0.9505705348293196, + 0.9416562889165628, + 0.9271888077994948, + 0.8673029726406383, + 0.9731456263408548, + 0.7813852813852814, + 0.7822341892305151, + 0.9364502164502164, + 0.8679516484927489, + 0.8857699681136173, + 0.7714560308712177, + 0.8584751140436623, + 0.8985904473621558, + 0.8190486045187014, + 0.7893527624833871, + 0.8919696969696971, + 0.8818618218586448, + 0.756628065305478, + 0.7882882882882881, + 0.950300482513086, + 0.8657481566722074, + 0.9365262267264388, + 0.943947221044588, + 0.887458515283843, + 0.7714763488785488, + 0.9214972959512142, + 0.909072064464046, + 0.7715736896162309, + 0.9290762303990062, + 0.8550758611268748, + 0.7761808341851454, + 0.9819054691235874, + 0.7957985346108523, + 0.9657498873425368, + 0.9364502164502164, + 0.8516827062939479, + 0.9754181770220984, + 0.9731874212360307, + 0.8135371179039302, + 0.8727427378014051, + 0.848344463643581, + 0.8895327800940938, + 0.7627248531396743, + 0.7582569516718274, + 0.7709571931840405, + 0.8921633972095838, + 0.9321707396546104, + 0.8986401163657464, + 0.7580471889891207, + 0.9369652591790605, + 0.8679796630864033, + 0.9098066660834573, + 0.980489676524778, + 0.927246096495326, + 0.9018122770586843, + 0.8810674463937621, + 0.8400216450216451, + 0.7689831576535288, + 0.7729944320019908, + 0.8837147279244052, + 0.881149648377826, + 0.9563110356768192, + 0.983927829355058, + 0.9839066269313416, + 0.7583206652119362, + 0.7925815424300344, + 0.8317161572052402, + 0.7744952514390555, + 0.9360718475073312, + 0.96130346341869, + 0.7958679833679831, + 0.7906981399616313, + 0.8413581378299119, + 0.9203347173341052, + 0.8430006636564963, + 0.9727275146860328, + 0.8287881529651736, + 0.8315151515151515, + 0.853720508166969, + 0.8093402654155926, + 0.8962455479058957, + 0.805605027801719, + 0.8210295170320834, + 0.8039070101933912, + 0.8039838558691283, + 0.7826760060360987, + 0.9269812868749552, + 0.794976794976795, + 0.8900713624983871, + 0.9133288665033964, + 0.810208371742399, + 0.7896057754229846, + 0.923877773549558, + 0.9296009475992656, + 0.895080529300567, + 0.8085490374609781, + 0.9819008264462812, + 0.8587224361306279, + 0.7739174537660428, + 0.7862254487513007, + 0.8193724468472356, + 0.8893524283935244, + 0.997064221767242, + 0.7952666762372825, + 0.9020216682958616, + 0.9983501374885428, + 0.8831534562926947, + 0.8860521920074892, + 0.7872481572481572, + 0.9226825090266608, + 0.7803152709359605, + 0.9122593875476056, + 0.8775850757693318, + 0.9799040094031604, + 0.8206267324852857, + 0.8177880557075959, + 0.9576966355531912, + 0.9220659824046918, + 0.797922077922078, + 0.7896320346320348, + 0.8632950463543738, + 0.9492492880197456, + 0.8832034632034632, + 0.8047193670665553, + 0.9956521739130436, + 0.7685862920068351, + 0.8475960459042418, + 0.9795419233757146, + 0.8269899956502829, + 0.7884382884382883, + 0.8207547087216158, + 0.9545454545454548, + 0.8429554406857294, + 0.8993321115511173, + 0.7984889287851585, + 0.761374210879955, + 0.8305523603886544, + 0.7718491195125222, + 0.980407916624232, + 0.950300482513086, + 0.8240213521788208, + 0.8952485002194801, + 0.9038846565773924, + 0.7965911235687182, + 0.8955324322950189, + 0.7910020962422152, + 0.9427138643067844, + 0.826115183440325, + 0.8573048573048573, + 0.7936317271895962, + 0.9007792207792208, + 0.854365955487306, + 0.9456364522650812, + 0.997982406795966, + 0.8774985212108586, + 0.9977822580645164, + 0.8221159804806326, + 0.9077567136073359, + 0.8205465606720966, + 0.8626119406890994, + 0.7556531232200494, + 0.7862587810898044, + 0.8404814885133853, + 0.8206267324852857, + 0.992492576897818, + 0.9526883899349432, + 0.8172714912841496, + 0.942686481353632, + 0.9073962406670544, + 0.793330615828421, + 0.9250332915366597, + 0.7896320346320348, + 0.9844717839591371, + 0.7676353790613718, + 0.9020216682958616, + 0.8820943870496513, + 0.9628828555154738, + 0.9505406805522968, + 0.7685960591133002, + 0.952282255405342, + 0.9961515326042576, + 0.8792822185970635, + 0.917989916458992, + 0.7624864249098158, + 0.8475960459042418, + 0.9795419233757146, + 0.8269899956502829, + 0.7884382884382883, + 0.8207547087216158, + 0.9545454545454548, + 0.8429554406857294, + 0.8993321115511173, + 0.7834739702517162, + 0.761374210879955, + 0.8305523603886544, + 0.7811065974284784, + 0.980407916624232, + 0.950300482513086, + 0.8240213521788208, + 0.8952485002194801, + 0.9038846565773924, + 0.798508237019148, + 0.8955324322950189, + 0.7839982383292353, + 0.9427138643067844, + 0.8245984899369047, + 0.8573048573048573, + 0.8243136284936928, + 0.8553134080531343, + 0.8473904773631097, + 0.9982456140350876, + 0.9590236663403416, + 0.9014436252397446, + 0.8327140244007301, + 0.8669485569807114, + 0.7949843218068803, + 0.903497324397646, + 0.9416562889165628, + 0.7707143966920784, + 0.855320123139272, + 0.7774854369415835, + 0.8503120994598766, + 0.926867994896457, + 0.8667552028246747, + 0.8775319334595817, + 0.901968773482508, + 0.935627556261994, + 0.9050659282343974, + 0.861924622573884, + 0.9675940297571454, + 0.9116934339203904, + 0.9072582435684412, + 0.9237413014402296, + 0.9238605624457716, + 0.8365273593813229, + 0.8893524283935244, + 0.9102500533059372, + 0.8349825924909352, + 0.8784817670545184, + 0.9947399253846392, + 0.8930927589221841, + 0.8055002075550022, + 0.8605298779944784, + 0.9775071835696456, + 0.9505926587353696, + 0.7588336685332704, + 0.8428335962794538, + 0.9238783245212608, + 0.8585749771698774, + 0.8765915866073055, + 0.9822182852411184, + 0.9533886386596292, + 0.8440336134453781, + 0.7834747760490336, + 0.924617649948652, + 0.9395524842975836, + 0.9389258424390616, + 0.9550800035134204, + 0.7946561709764253, + 0.9558099289684048, + 0.8428529645259684, + 0.7972573636925488, + 0.9379369101877942, + 0.8553636363636363, + 0.8995050491578671, + 0.9706054674756964, + 0.7736264668325739, + 0.9622333213753728, + 0.8220723881235561, + 0.8256741778557297, + 0.8127858031447691, + 0.7817740006858703, + 0.7968179052727826, + 0.8018268268268267, + 0.9281390141743808, + 0.9400806090461262, + 0.8107701860758095, + 0.8909257783846486, + 0.8991789819376026, + 0.8738739499371329, + 0.9781810760439292, + 0.8591088340319827, + 0.9192322609917452, + 0.8578880235734736, + 0.927227398337575, + 0.8549844211383769, + 0.9954545454545456, + 0.7996032354193273, + 0.7663762728169506, + 0.8072044088993242, + 0.9545454545454548, + 0.9222946747399472, + 0.8012891170808603, + 0.9007792207792208, + 0.761725650275299, + 0.9189132122341251, + 0.7700791802515137, + 0.7905809884612046, + 0.9364502164502164, + 0.9272003238960064, + 0.9520381744611566, + 0.7670786695244899, + 0.8558592375366569, + 0.833174972830306, + 0.9256214544793848, + 0.8228255528255527, + 0.8485714285714286, + 0.9702872224809812, + 0.7517555862267378, + 0.7565364592835857, + 0.7612860365462939, + 0.987527533398501, + 0.955555772482297, + 0.7996032354193273, + 0.7663762728169506, + 0.8072044088993242, + 0.9545454545454548, + 0.9222946747399472, + 0.8012891170808603, + 0.9007792207792208, + 0.761725650275299, + 0.9189132122341251, + 0.7700791802515137, + 0.7905809884612046, + 0.9364502164502164, + 0.933977462236232, + 0.9520381744611566, + 0.7670786695244899, + 0.8558592375366569, + 0.833174972830306, + 0.9256214544793848, + 0.8228255528255527, + 0.8485714285714286, + 0.9702872224809812, + 0.7517555862267378, + 0.7565364592835857, + 0.7612860365462939, + 0.987527533398501, + 0.955555772482297, + 0.9364502164502164, + 0.8358612257146861, + 0.8590707598082956, + 0.8832034632034632, + 0.833174972830306, + 0.8630005695842037, + 0.984461621950468, + 0.892391114486425, + 0.9897824784878032, + 0.8085316277505704, + 0.919319387113138, + 0.7940051262578318, + 0.780089044997152, + 0.9222946747399472, + 0.8363949697251979, + 0.796839893191436, + 0.7794331008589288, + 0.9859234217934404, + 0.9873000604890544, + 0.9486101335940044, + 0.9248539005931276, + 0.9517981773305488, + 0.8708608667318343, + 0.8623785126533147, + 0.9299160466862331, + 0.9545454545454548, + 0.8796487671810186, + 0.9772426641825802, + 0.7524584849903713, + 0.807857176503839, + 0.90727093221948, + 0.9971775822743564, + 0.7739306525397351, + 0.9847748699555192, + 0.7535520524804752, + 1, + 0.8551111044973793, + 0.9256631478531152, + 0.989570259523299, + 0.7687418116400186, + 0.9641837718077296, + 0.7942756598240468, + 0.8294322792944961, + 0.9215082393282026, + 0.9054494643688868, + 0.8530098192637454, + 0.9025093300004408, + 0.992492576897818, + 0.9598649249543808, + 0.8332737181503951, + 0.9529394346692732, + 0.8214507035663541, + 0.9309630572047876, + 0.7830101580101578, + 0.9732801304295486, + 0.9004189790402766, + 0.9446639459426616, + 0.9036078185699322, + 0.97145319916461, + 0.9609332238642584, + 0.7899791515690191, + 0.7611733870967741, + 0.863207096556374, + 0.9415725119950472, + 0.9939556858911696, + 0.783163286086673, + 0.9977977617253442, + 0.8662090859332238, + 0.8955509185594555, + 0.9764731504349176, + 0.7530954708374062, + 0.7828061257738677, + 0.8462219807137138, + 0.8842041598248496, + 0.915537959944108, + 0.7865763787648619, + 0.7856202453035243, + 0.903206652230566, + 0.989570259523299, + 0.7882882882882881, + 0.9483953947649668, + 0.9364334975369458, + 0.9056925711224626, + 0.7591535837096157, + 0.8418627955566073, + 0.7573046594982078, + 0.880681818181818, + 0.8409090909090906, + 0.806797048126061, + 0.7826760060360987, + 0.7688448083650483, + 0.8584408270788305, + 0.8956871084108602, + 0.913923675716727, + 0.9910308796338216, + 0.9590266687613186, + 0.7872481572481572, + 0.8646083304603533, + 0.9939410487486168, + 0.8340069434398959, + 0.982598363716604, + 0.9106424097900995, + 0.8008517246406788, + 0.8727928390787971, + 0.7681285613827205, + 0.8812869326621475, + 0.928402586493192, + 0.8532026469355432, + 0.8994624945374701, + 0.9440584784614404, + 0.9003302615524813, + 0.8228255528255527, + 0.9795723406491688, + 0.866515864516721, + 0.955439293598234, + 0.8529365775827682, + 0.934359451290398, + 0.8332769785018068, + 0.9365108715713024, + 0.877525810880078, + 0.9692015664722224, + 0.8409090909090906, + 0.940544771679814, + 0.923587693351357, + 0.7954434590943897, + 0.991568586771984, + 0.7612354435027383, + 0.937924041385235, + 0.8376851905173242, + 0.8927174779953235, + 0.7909951819239077, + 0.8443928295282409, + 0.8202350197681522, + 0.9660981642663024, + 0.8152462729809101, + 0.922004885973844, + 0.7639604667778042, + 0.7872481572481572, + 0.9000298090512994, + 0.8014712850828469, + 0.8228255528255527, + 0.8498088450201552, + 0.7879169357174485, + 0.8556523719936285, + 0.9755199210863276, + 0.8557823298777246, + 0.8293705854653898, + 0.8537505886046147, + 0.8046317312743457, + 0.8779697795654818, + 0.8749239196591598, + 0.8555086871328603, + 0.9225963809255304, + 0.9678016420122257, + 0.9415762523485668, + 0.8057522792271018, + 0.8959576525733801, + 0.9001590894975678, + 0.767145966241361, + 0.8489857866410283, + 0.9644777226717816, + 0.9098253673621896, + 0.8791269994277514, + 0.8664155045733993, + 0.8498893415734232, + 0.947101370798582, + 0.8538593322386425, + 0.8042480240124439, + 0.8931085516844227, + 0.8808798536293945, + 0.7934170900130808, + 0.9012551319648092, + 0.9348648660475504, + 0.8291496315254414, + 0.8722929363621342, + 0.911251618573038, + 0.9109734587383088, + 0.9170938628158845, + 0.7650216450216449, + 0.8491510263929617, + 0.797922077922078, + 0.9976169999054124, + 0.9935999513470776, + 0.8049044578239981, + 0.836149001293594, + 0.9772426641825802, + 0.7947818492500476, + 0.774258455570617, + 0.8948565585013833, + 0.96130346341869, + 0.7882882882882881, + 0.9031253085247768, + 0.7502958618442489, + 0.9074753238868364, + 0.9391271623435224, + 0.7795953486477678, + 0.8889322557418088, + 0.8774400397180557, + 0.9117791157331387, + 0.9837385506159468, + 0.7764964848815781, + 0.763706420963152, + 0.982244407057744, + 0.982258229908174, + 0.8665750946042498, + 0.7595972992524718, + 0.7801043792183331, + 0.905255061999686, + 0.8220123627076744, + 0.8030465628225144, + 0.9789271593959374, + 0.7848592675970836, + 0.78340962656552, + 0.9151319857390936, + 0.8905339474233814, + 0.8105036440440168, + 0.8827179393030227, + 0.9303783215638728, + 0.9188270726931117, + 0.9157320003100056, + 0.9358530842881808, + 0.7937577290427829, + 0.9414073611117948, + 0.8901453226576379, + 0.8602487024132297, + 0.7556614611768913, + 0.9600221996115068, + 0.7680433097131317, + 0.8925061445921794, + 0.9773557492735576, + 0.8013333235492676, + 0.7689202564616309, + 0.8185297955632884, + 0.7566698570378733, + 0.7828314585807773, + 0.8694189151801024, + 0.8065343721704722, + 0.9807788363703636, + 0.8356411205726275, + 0.8778270939877454, + 0.8142980219813145, + 0.9079854938491076, + 0.8369284370856844, + 0.8951910290953499, + 0.8385429638854296, + 0.9335217836825552, + 0.8814450312694764, + 0.8433770449321196, + 0.9773557492735576, + 0.8751169590643275, + 0.7872836439659993, + 0.8460813462362223, + 0.9068505777317312, + 0.974712351554919, + 0.8582253898196657, + 0.7694393172704596, + 0.9593583027873251, + 0.7791177041387707, + 0.8285988264418827, + 0.9708841861711646, + 0.8292663783394395, + 0.8455377025736512, + 0.784953771420362, + 0.7591712665406429, + 0.8668958338409165, + 0.8033611495393503, + 0.7791177041387707, + 0.7800515724165504, + 0.8797549464963943, + 0.9913485744394356, + 0.9893735932410646, + 0.8883723399394137, + 0.8371159751352832, + 0.8604416000492892, + 0.9391164837414664, + 0.9875732201051683, + 0.8696289027548957, + 0.9116740607637536, + 0.9335682269765724, + 0.8903543205412945, + 0.8274478901761246, + 0.8184361507912837, + 0.8985858297326429, + 0.8811309071018276, + 0.9600766541682176, + 0.9142379797053092, + 0.8539724989309248, + 0.9209665616774528, + 0.7653056658292261, + 0.9409789458067938, + 0.9813761990559404, + 0.937050978278692, + 0.8764803941254208, + 0.9622333213753728, + 0.8137991281050442, + 0.9349229298096128, + 0.9954545454545456, + 0.8383046372479713, + 0.8091752787787085, + 0.8992810605226834, + 0.8526177936134408, + 0.7653579292773433, + 0.916749204599586, + 0.8841900402810652, + 0.8889595044710776, + 0.8674196841123456, + 0.9890311615492476, + 0.9817061821644611, + 0.9631360021073514, + 0.9146441554557286, + 0.9372227566431792, + 0.8277684278026405, + 0.8085158042512651, + 0.8164472422898458, + 0.9476735033728184, + 0.9195597006085118, + 0.9400644385653472, + 0.8518992260665973, + 0.9457607069255074, + 0.805969235202997, + 0.8496241912512923, + 0.8197634340126408, + 0.9579224065577792, + 0.8608612476370511, + 0.9529052383428788, + 0.9845238804935112, + 0.9083435256044582, + 0.8553134080531343, + 0.7923275652679538, + 0.7819131922573495, + 0.7906170310433895, + 0.8406484670606788, + 0.7894736842105264, + 0.8681498428014106, + 0.8408063572139095, + 0.7738548847622624, + 0.8107066154287429, + 0.909636086500905, + 0.9320839327803117, + 0.894689054121916, + 0.8861995746607623, + 0.8134896030245747, + 0.9636363636363636, + 0.8392276737347159, + 0.901982337361457, + 0.8985728391457872, + 0.792183707284576, + 0.781322126609299, + 0.9194369973190348, + 0.8490800833801486, + 0.9929855448480356, + 0.9990150209905604, + 0.7707081956166206, + 0.8952232922255726, + 1, + 0.8129887361537077, + 0.9000234404536862, + 0.998221036598569, + 0.8017888630248555, + 0.8075842215036355, + 0.9208092958092956, + 0.7606873345935727, + 0.7928741020793951, + 0.9344444444444444, + 0.8580430671412884, + 0.8053911900065747, + 0.9025957850286672, + 0.992671182389769, + 0.9682695039010508, + 0.951299790877642, + 0.9060155127964962, + 0.9527305856232412, + 0.9434321361058602, + 0.9565966865742668, + 0.943947221044588, + 0.8705701323251417, + 0.9652200677131424, + 0.9884853681548044, + 0.9357441792403746, + 0.9414868925909092, + 0.9505847966970496, + 0.9565269894940224, + 0.9514804555247768, + 0.7993113894954217, + 0.760960813749392, + 0.8859552362571937, + 0.9413092648977816, + 1, + 0.8182545315351611, + 1, + 0.9136739322359624, + 0.7679975248125409, + 0.9492028179458656, + 0.9839615421047646, + 0.9954545454545456, + 0.9954545454545456, + 0.8398210820058983, + 0.8626784395302913, + 0.9781810760439292, + 0.775848555122794, + 0.7830044520223547, + 0.7890565881306622, + 0.7666456034744639, + 0.8730814336484439, + 0.8997733824632729, + 0.9780525030525028, + 0.9501767000609233, + 0.9341770866436075, + 0.7890266466291772, + 0.931285458781014, + 0.9135836385836384, + 0.8161327222259138, + 0.8595055413469735, + 0.8885272049623901, + 0.8850443888003645, + 0.9111695674516778, + 0.8969355419044592, + 0.9369652591790605, + 0.9474196440005122, + 0.9540293886604132, + 0.7751893805092811, + 0.884220727546821, + 0.9248167539267018, + 0.9416562889165628, + 0.9947833674785644, + 0.8179413224638157, + 0.963749256395003, + 0.9894860390412652, + 0.7661643396391405, + 0.8822836096135876, + 0.9987169080982063, + 0.8212112306855328, + 0.8510831692167852, + 0.9674464520962212, + 0.8140738302718742, + 0.9084937590490597, + 0.8588550489464593, + 0.9132111582886344, + 0.9652833528240462, + 0.8704495461768502, + 0.908214664444781, + 0.8330370179351025, + 0.8542414865764498, + 0.951833769945225, + 0.9369276682149368, + 0.9172096473904445, + 0.7660118606375093, + 0.8049385749385749, + 0.819882410141537, + 0.9479738077588338, + 0.8453139910143218, + 0.9957870470931044, + 0.835084520570639, + 0.7568829071309779, + 0.8003212087852895, + 0.7757575757575756, + 0.9818181818181816, + 0.8296247866194634, + 0.8397480840731469, + 0.8084175084175085, + 0.8224948407969244, + 0.7604961330297303, + 0.8801077325173712, + 0.769382100421295, + 0.8025699565810901, + 0.7925192834831389, + 0.932353379320096, + 0.94491648331435, + 0.8001582377938935, + 0.7832517257911142, + 0.8082508107205724, + 0.7628286200410923, + 0.7621748136686876, + 0.9364192202560784, + 0.7690913021991601, + 0.8585000323687447, + 0.9150177303560064, + 0.8405722943067688, + 0.904913008013858, + 0.917314235445159, + 0.9929855448480356, + 0.8268991218112046, + 0.8398859728050183, + 0.996521739130435, + 0.8330381744436689, + 0.8550497957993816, + 0.9913111768722972, + 0.8557422839635942, + 0.8935463671803986, + 0.9006445563787115, + 0.8921379258150505, + 0.9000168618023969, + 0.7589099863492517, + 0.923526237747262, + 0.9028882720019862, + 0.9170617535185012, + 0.9807828100228472, + 0.939548148620228, + 0.9363191484705866, + 0.8321093615368212, + 0.8571281012005368, + 0.8384981048972464, + 0.9086443302842008, + 0.8871943647917209, + 0.8878997468865361, + 0.8999564578859198, + 0.9894860390412652, + 0.9134801839907836, + 0.8586028659246839, + 0.9532628651995616, + 0.8991005792297246, + 0.9248167539267018, + 0.8647701376567242, + 0.9063380676482872, + 0.9006445563787115, + 0.9964912280701756, + 0.9104377104377104, + 0.9861142727065788, + 0.8766608932307983, + 0.9228068405104872, + 0.945216049382716, + 0.872288139441828, + 0.8287614081607514, + 0.9364502164502164, + 0.9107716613157442, + 0.7558233373684017, + 0.9637205387205386, + 0.911011004178706, + 0.825019069412662, + 0.7745592680619333, + 0.9563893487499426, + 0.8643469043976432, + 0.8938717567128639, + 0.8935795415901516, + 0.9090909090909088, + 0.8890241171514016, + 0.8412491105292438, + 0.8993946860474129, + 0.9779240761641758, + 0.8448498489942445, + 0.9637205387205386, + 0.8307739463601531, + 0.7840680498436611, + 0.9234588281480026, + 0.7533766040551628, + 0.8411108025383495, + 0.8186320718389478, + 0.7507073140597975, + 0.8665855131372373, + 0.8141166099294752, + 0.8465178639695039, + 0.8674324881574892, + 0.894897491091307, + 0.926797128906551, + 0.8002254756609835, + 0.8899568476668683, + 0.8050891517303731, + 0.7551272091668285, + 0.9170723522722332, + 0.8862820694208641, + 0.7731935891169762, + 0.85279684719044, + 0.8545871559633028, + 0.973043266390798, + 0.9110701550899905, + 0.8806793706489482, + 0.9750233018591332, + 0.8832528651475978, + 0.9637205387205386, + 0.8045977011494252, + 0.7840680498436611, + 0.9718089459310836, + 0.7632159853061836, + 0.8411108025383495, + 0.8186320718389478, + 0.8665855131372373, + 0.8141166099294752, + 0.8465178639695039, + 0.8674324881574892, + 0.8941741955127749, + 0.8055806456563269, + 0.9200506754154923, + 0.8002254756609835, + 0.8055002075550022, + 0.8899568476668683, + 0.8050891517303731, + 0.7551272091668285, + 0.9170723522722332, + 0.8862820694208641, + 0.7643684665873062, + 0.8962930952966316, + 0.8545871559633028, + 0.973043266390798, + 0.8391999316061071, + 0.9106199738197148, + 0.8336184977583577, + 0.9825055596738328, + 0.8275801175590107, + 0.8536656603794738, + 0.9947833674785644, + 0.8871943647917209, + 0.9947833674785644, + 0.8474509259804291, + 0.8970952216775002, + 0.9064029668710988, + 0.8689528166230794, + 0.8668563557933111, + 0.9192140588692024, + 0.8446191193563313, + 0.9070510179197603, + 0.9569231352909934, + 0.9360907526607608, + 0.9363191484705866, + 0.7585150816808764, + 0.8079450438253487, + 0.889311351984684, + 0.9157961667726409, + 0.8495199813878911, + 0.9008127437155956, + 0.9894860390412652, + 0.9084777593712244, + 0.8247288683081853, + 0.9554572159761404, + 0.8803742636840193, + 0.8617666872995883, + 0.9141959372906489, + 0.9034890695907855, + 0.8086181910936574, + 0.9964912280701756, + 0.9859927106498643, + 0.9106199738197148, + 0.7805873465692333, + 0.8878997468865361, + 0.9016573566020095, + 0.996521739130435, + 0.8072721768598793, + 0.8440081063581091, + 0.996521739130435, + 0.8612922801795058, + 0.8405722943067688, + 0.9620426435996664, + 0.8550497957993816, + 0.8140134601423378, + 0.8065264393377811, + 0.8107867382196149, + 0.8640740055556022, + 0.8801559604997237, + 0.7852248168921702, + 0.8640589559565321, + 0.7885457047794436, + 0.8947102177469851, + 0.9459249756326831, + 0.9206503306171988, + 0.8390959753949685, + 0.8829679585824524, + 0.8550497957993816, + 0.9034890695907855, + 0.996521739130435, + 0.8773484472624222, + 0.8453843932985197, + 0.9372480427854252, + 0.7528181818181818, + 0.9513991845811716, + 0.8133380704513155, + 0.8550497957993816, + 0.8822645386075115, + 0.9964912280701756, + 0.984385006449655, + 0.8868917142282169, + 0.8515915595209063, + 0.7801554360634969, + 0.985677698237539, + 0.8248130810601166, + 0.8900224404233377, + 0.9847846012832264, + 0.8665750946042498, + 0.8066554677866482, + 0.9191871761989552, + 0.8436840954545581, + 0.863729744412587, + 0.8256985978203084, + 0.8998085943818406, + 0.8162326248169407, + 0.9119926726575672, + 0.9789271593959374, + 0.9477427513951896, + 0.9452267008277976, + 0.880636467189412, + 0.8867623702302508, + 0.808133830455259, + 0.9714444301275637, + 0.9847846012832264, + 0.9286461770540784, + 0.9203870504644208, + 0.941002197457228, + 0.9704634209196064, + 0.8113283188178101, + 0.7634010982542299, + 0.8902061446452669, + 0.9354771486059212, + 0.9847846012832264, + 0.7809840281171203, + 0.9894860390412652, + 0.8185297955632884, + 0.8802332979851536, + 0.9723196833760273, + 0.9982608695652172, + 0.8258211640188051, + 0.9080000797822109, + 0.9964912280701756, + 0.839409582008935, + 0.8941141728869741, + 0.7725808179227283, + 0.8028188725754469, + 0.8251527896182628, + 0.8315151515151515, + 0.817899229361741, + 0.7620751217250173, + 0.8246468823065852, + 0.8720941750410174, + 0.9294859277773437, + 0.9927523497097036, + 0.9828742809481747, + 0.9543209471735604, + 0.8753860783148016, + 0.939845912034176, + 0.9151374298073564, + 0.9378841050418828, + 0.939845912034176, + 0.7510938991373108, + 0.8610822831727207, + 0.8417508417508417, + 0.8698065557551617, + 0.9372803249238462, + 0.9790245861131704, + 0.9300633742947678, + 0.8054841390869845, + 0.7589199371000429, + 0.896639903044993, + 0.8974694288349275, + 0.9926781739019452, + 0.8458809671812189, + 0.7712684989429177, + 0.7976314145122237, + 0.9416437009068946, + 0.9947856385396152, + 0.7862727272727271, + 0.8586700336700335, + 0.9303687863484544, + 0.8675319709415152, + 0.7920446151287672, + 0.8694866227116197, + 0.8586700336700335, + 0.7834335706711103, + 0.7921764122864366, + 0.934334074623178, + 0.8619283887468031, + 0.7676281237741422, + 0.7631048593350384, + 0.9925507389082384, + 0.978469168274726, + 0.7500718937727315, + 0.8846977863333716, + 0.9378841050418828, + 0.8684059865492091, + 0.8950764254021453, + 0.7740137221269299, + 0.8084175084175085, + 0.8843935880633129, + 0.7975398606698341, + 0.8485069801940157, + 0.7694545454545454, + 0.9679847507357018, + 0.7697689156812739, + 0.7685979300090726, + 0.9457912457912456, + 0.7920033670033668, + 0.81753438081967, + 0.9637205387205386, + 0.8196988466882366, + 0.8876132688068014, + 0.9992667277726852, + 0.813403640566796, + 0.924902134017138, + 0.8505352830088105, + 0.7966210086663266, + 0.8107701860758095, + 0.7920033670033668, + 0.8396249227545072, + 0.7665777912437509, + 0.9309395848776872, + 0.8562069694591002, + 0.8351865579441562, + 0.7614932582627626, + 0.9217240750865684, + 0.9927523497097036, + 0.9824776408025137, + 0.9261759464210148, + 0.8795946591645603, + 0.9517275376077332, + 0.8343766589132309, + 0.9378841050418828, + 0.939845912034176, + 0.8426835486603141, + 0.8084175084175085, + 0.825, + 0.9279912144543816, + 0.9380615545835612, + 0.954821445486407, + 0.8054841390869845, + 0.7644397158986019, + 0.7992420095977141, + 0.9046488352723072, + 0.8607131176664159, + 0.9425530200949087, + 0.9831998467809452, + 0.911913216712972, + 0.8106537530266346, + 0.8669221312020842, + 0.9668646925956867, + 0.9859927106498643, + 0.8221148524429848, + 0.8287744007907092, + 0.82603603526253, + 0.8081220122922833, + 0.9241691376328144, + 0.8905062719442627, + 0.9072244170820468, + 0.9697143291871126, + 0.9165806743803824, + 0.9299779576625525, + 0.8626009468114731, + 0.9129479515242416, + 0.9489917104460288, + 0.857590973901184, + 0.7832356477938764, + 0.8727427378014051, + 0.7882094994286454, + 0.895848674816511, + 0.9755497899678774, + 0.8250670301619656, + 0.7636588119091294, + 0.8344665413033981, + 0.9956140350877192, + 0.7763975155279506, + 0.9842098239836105, + 0.8099989097144443, + 0.8954915979223954, + 0.9774655289026236, + 0.8046862811072518, + 0.8922196480686242, + 0.8757413004727584, + 0.875097886791886, + 0.9781962076503552, + 0.9571952337305224, + 0.8651037425957864, + 0.9276048900878147, + 0.8334407352378117, + 0.7931151679937852, + 0.8060125046665569, + 0.9001590894975678, + 0.8984134418359582, + 0.9307180976298852, + 0.8949088289552438, + 0.9140478958381776, + 0.9195604324464297, + 0.8595611909902062, + 0.8168393183171508, + 0.826467375579422, + 0.94513113161729, + 0.9542466061552302, + 0.8949088289552438, + 0.9053910284366296, + 0.817437533227007, + 0.7978783990223038, + 0.7521903939726886, + 0.754943158980426, + 0.7928605555934748, + 0.8989607068123694, + 0.7975892455476461, + 0.7725199492096488, + 0.773030766193022, + 0.9767351231527428, + 0.9424631082284728, + 0.866898864682116, + 0.7899138991389913, + 0.9376349250962784, + 0.9303020409693342, + 0.8287563928270861, + 0.8603115680426934, + 0.8114732228923959, + 0.9669758970781992, + 0.8105976841695943, + 0.7959269589012261, + 0.8302139037433156, + 0.986986590623621, + 0.751078143739283, + 0.7653353783714458, + 0.8172644988912497, + 0.7803817180307603, + 0.8605730020712427, + 0.912175623606646, + 0.9956171156600898, + 0.8729948690203866, + 0.8364452091564932, + 0.8308541973619359, + 0.901193983595923, + 0.8421276190184838, + 0.8119707766428466, + 0.778036674438649, + 0.7873355614633314, + 0.7837805015771132, + 0.8219385637193856, + 0.8521396824062815, + 0.7718977095748232, + 0.8817091503055309, + 0.7708107321002571, + 0.7512636527567177, + 0.8438110321297421, + 0.9832058480308432, + 0.8890631162040309, + 0.8977160492573557, + 0.9859234217934404, + 0.8546502548557862, + 0.8668958338409165, + 0.9890311615492476, + 0.9350943180643897, + 0.9280169976669376, + 0.8210527935710153, + 0.7559911987169416, + 0.7736264668325739, + 0.863925779862748, + 0.824723044297354, + 0.8806041934635603, + 0.8250833206612556, + 0.928723519908324, + 0.8668958338409165, + 0.8881896291715989, + 0.9593583027873251, + 0.9061435934718377, + 0.9211354224331691, + 0.8859445107741636, + 0.9398812902982936, + 0.8047278408758268, + 0.9223744981227123, + 0.9230788696114616, + 0.9536631479971994, + 0.9694396869310692, + 0.8131377716690427, + 0.8237517359346237, + 0.8173907278944466, + 0.8965017504270001, + 0.9219048551109622, + 0.9097417836628494, + 0.8553134080531343, + 0.9989920981077092, + 0.917451425335698, + 0.9683628785480636, + 0.7970900578406114, + 0.8376203239523712, + 0.9801024844208264, + 0.7557162849632163, + 0.8961803319477781, + 0.996336999414424, + 0.9196524296187878, + 0.8854275250970148, + 0.8283188405797101, + 0.8569170829836921, + 0.7593988263019269, + 0.8392807687593222, + 0.9868446526492484, + 0.7732691595705294, + 0.9521895754027829, + 0.9372227566431792, + 0.9200506754154923, + 0.917500751704446, + 0.8740937766410911, + 0.8518450184501843, + 0.7975089687046684, + 0.8722498962224988, + 0.8978908677866823, + 0.9773557492735576, + 0.8912733076127769, + 0.8868080394461477, + 0.8826697225277056, + 0.9463791440512886, + 0.9521895754027829, + 0.8485714285714286, + 0.999122807017544, + 0.9265379339453412, + 0.789227895392279, + 0.8469796766499825, + 0.953644173755992, + 0.9926761940480948, + 0.8153042353997382, + 0.8607621561631246, + 0.9832058480308432, + 0.9570294209353524, + 0.9992668621947256, + 0.8641670664322122, + 0.7757761746311366, + 0.8357747120217831, + 0.866213238722621, + 0.8792285183078618, + 0.7957371772064827, + 0.878036507710379, + 0.9658331436022252, + 0.7622935296404183, + 0.9857187253140862, + 0.8942561574169895, + 0.9622333213753728, + 0.9131318215287682, + 0.8411490111317951, + 0.8916483082566217, + 0.9500441996469742, + 0.8499116091074294, + 0.9308446996969624, + 0.971973367585848, + 0.950603792184588, + 0.8131377716690427, + 0.8886194359553156, + 0.8284169872492293, + 0.8757940351900098, + 0.9023840086111148, + 0.9230788696114616, + 0.7524570024570024, + 0.9981688711071728, + 0.9020646721236415, + 0.9272440944881892, + 0.917451425335698, + 0.952871096782223, + 0.9954192028862328, + 0.8614426005287826, + 0.8553282796247272, + 0.991220090045964, + 0.962952748132584, + 0.9970690618433798, + 0.8655309124484051, + 0.7810606403025839, + 0.7757761746311366, + 0.8580430671412884, + 0.866213238722621, + 0.8806041934635603, + 0.7777808036382947, + 0.8317573749391951, + 0.9716068390573318, + 0.819882410141537, + 0.9848040830545792, + 0.8737365714482546, + 0.962952748132584, + 0.9154671960778832, + 0.9112764606124896, + 0.8916483082566217, + 0.9529052383428788, + 0.8696289027548957, + 0.9188566733401607, + 0.9507590560548307, + 0.9507917513638928, + 0.9853649117096728, + 0.8131377716690427, + 0.8951137084436364, + 0.8371159751352832, + 0.8703128420935895, + 0.9022988912306722, + 0.9400644385653472, + 0.7531344790477525, + 0.9992668621947256, + 0.9020646721236415, + 0.8645269531463561, + 0.9839330712663648, + 0.975224136149363, + 0.9372677626851672, + 1, + 0.9904901783696456, + 0.9875732201051683, + 1, + 0.9919502705663622, + 0.9890311615492476, + 1, + 0.9883020564051679, + 0.9132421335802218, + 0.996336999414424, + 0.9890311615492476, + 0.9883020564051679, + 0.9897605355374068, + 0.991220090045964, + 0.978122813016422, + 0.9511647444887732, + 0.9919502705663622, + 0.9985339932335306, + 0.8938717567128639, + 0.9891891050899508, + 0.9970690618433798, + 0.9897605355374068, + 0.9978013931164152, + 0.9855637890579251, + 0.9586402202505121, + 0.9607952743931896, + 0.9805263157894736, + 0.99268071993084, + 0.9941424251920344, + 0.996336999414424, + 0.9884575916336614, + 0.9719327874122964, + 0.9753656599277568, + 0.9883020564051679, + 0.9919502705663622, + 0.9883020564051679, + 0.9934114381393974, + 0.9992668621947256, + 0.977723489335005, + 0.9995652173913042, + 0.9948736810887512, + 0.9090909090909088, + 0.8174876847290639, + 0.8553636363636363, + 0.8455433455433455, + 0.8397417807252716, + 0.8437332724582007, + 0.832909538499891, + 0.7619786952586509, + 0.8177290491628549, + 0.9175438596491228, + 0.882198952879581, + 0.8767128866853765, + 0.8150509397735729, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.8829402079402078, + 0.8107452697678261, + 0.9637205387205386, + 0.852293824358888, + 0.8709558996012198, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352229, + 0.805168828270855, + 0.9090909090909088, + 0.945216049382716, + 0.8771929824561405, + 0.8174876847290639, + 0.7599743651365856, + 0.8553636363636363, + 0.8455433455433455, + 0.9416562889165628, + 0.8437332724582007, + 0.832909538499891, + 0.8177290491628549, + 0.9175438596491228, + 0.882198952879581, + 0.8767128866853765, + 0.8150509397735729, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.8829402079402078, + 0.8107452697678261, + 0.8417508417508417, + 0.852293824358888, + 0.8709558996012198, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352229, + 0.805168828270855, + 0.9090909090909088, + 0.9789848244395952, + 0.8771929824561405, + 0.8174876847290639, + 0.8813770455902434, + 0.8553636363636363, + 0.8455433455433455, + 0.8325561291955809, + 0.8437332724582007, + 0.832909538499891, + 0.8177290491628549, + 0.882198952879581, + 0.8150509397735729, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.7862727272727271, + 0.8107452697678261, + 0.9825055596738328, + 0.852293824358888, + 0.8709558996012198, + 0.826664274308378, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352229, + 0.805168828270855, + 0.9792614678275988, + 0.8553134080531343, + 0.8343739357475309, + 0.9649169511660014, + 0.9815789473684212, + 0.775995920023485, + 0.8490459410817468, + 0.999122807017544, + 0.8887919536466066, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8672820048414341, + 0.9416562889165628, + 0.7922752675949607, + 0.7916704805491989, + 0.936963017728694, + 0.8515555890726042, + 0.84746622922539, + 0.8469364035600904, + 0.9088064577345945, + 0.9830807073527456, + 0.9729066716260472, + 0.9309198460265768, + 0.993758325008325, + 0.9220836669819068, + 0.9328333806952732, + 0.9120932616135702, + 0.8672722972717296, + 0.9787330446229278, + 0.9956171156600898, + 0.9044025274049858, + 0.9162907640884717, + 0.9886242163794032, + 0.9856590419138828, + 0.9735969760860068, + 0.9237640299437498, + 0.8150558110147776, + 0.9001503179694077, + 0.9403303455027593, + 0.999122807017544, + 0.9090741230371568, + 0.999122807017544, + 0.903135734615762, + 0.8282546041121969, + 0.9792614678275988, + 0.8553134080531343, + 0.8232860332235971, + 0.909065387196842, + 0.978073311070348, + 0.775995920023485, + 0.8490459410817468, + 0.999122807017544, + 0.8870930627862177, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8672820048414341, + 0.9416562889165628, + 0.7922752675949607, + 0.7916704805491989, + 0.936963017728694, + 0.7737464548987709, + 0.84746622922539, + 0.8291492133323973, + 0.9088064577345945, + 0.9761788895853514, + 0.9770862304997938, + 0.9329580322176916, + 0.993758325008325, + 0.9188951371295636, + 0.9328333806952732, + 0.8980181937554507, + 0.8677050513455755, + 0.9752792033119024, + 0.9882730260033812, + 0.905289786165362, + 0.9143112638406732, + 0.9886242163794032, + 0.9544594777956544, + 0.9581772940528424, + 0.9143045157420016, + 0.8252050839377624, + 0.9001503179694077, + 0.9403303455027593, + 0.999122807017544, + 0.9292464661560496, + 0.999122807017544, + 0.8566176867322529, + 0.8374157216227878, + 0.9280303030303032, + 0.986111279729024, + 0.9950777781016508, + 0.7644397158986019, + 0.8788591215600511, + 0.995055254321861, + 0.8218760444455504, + 0.8963051106025932, + 0.9855308977062668, + 0.8161330049261083, + 0.919010674275554, + 0.8602150725639578, + 0.9437855111487105, + 0.982329825041006, + 0.8843548391463373, + 0.8689327225675706, + 0.931003010693105, + 0.9349500075746098, + 0.8343765747325528, + 0.8587642661603542, + 0.8586700336700335, + 0.9617123795404005, + 0.9664559126905398, + 0.9369276682149368, + 0.9421777653794547, + 0.8002254756609835, + 0.91015350877193, + 0.8195948305972756, + 0.8049385749385749, + 0.8079714438079046, + 0.9248788062414784, + 0.9466765601812077, + 0.9943237305426308, + 0.8922259540680743, + 0.7615894748339839, + 0.92882506393551, + 0.8553134080531343, + 0.8492357350911255, + 0.9943501037415146, + 0.9908190857034046, + 0.7714797416324134, + 0.8958436239049176, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.9692982456140352, + 0.9108481442025624, + 0.7872481572481572, + 0.7785693212549879, + 0.7916704805491989, + 0.936963017728694, + 0.8833898132089024, + 0.8276770122994085, + 0.895416975651959, + 0.992671182389769, + 0.9514741813067672, + 0.8630706569122703, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8398017274912394, + 0.9988878509623264, + 0.937103645050706, + 0.9851370084561714, + 0.8052224642752426, + 0.9408748628296816, + 0.950672972897766, + 0.9505705348293196, + 1, + 0.7647361516158825, + 0.907644799841382, + 0.8492357350911255, + 0.9514212739063944, + 0.9991101224022378, + 0.7714797416324134, + 0.8950014677832712, + 0.9943546343400722, + 0.8210917926103164, + 0.8995898027497777, + 0.999122807017544, + 0.8091752787787085, + 0.8045413788925241, + 0.92385752642948, + 0.7939937969249388, + 0.7916704805491989, + 0.936963017728694, + 0.8564021794854101, + 0.8929190984699815, + 0.7960647061252278, + 0.9048525852298742, + 0.992671182389769, + 0.987968431853366, + 0.9531702386026508, + 0.8651058220157922, + 0.957204861709126, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.8819809439955775, + 0.9883020564051679, + 0.937103645050706, + 0.9407755311560884, + 0.9851370084561714, + 0.8030210815765354, + 0.94362258995985, + 0.7901596681791947, + 0.8868080394461477, + 0.9413092648977816, + 0.999122807017544, + 0.9443944345284628, + 0.9992668621947256, + 0.9385224385224383, + 0.7647361516158825, + 0.907644799841382, + 0.8492357350911255, + 0.9514212739063944, + 0.9991101224022378, + 0.7714797416324134, + 0.8950014677832712, + 0.9943546343400722, + 0.8171099429462456, + 0.8995898027497777, + 0.999122807017544, + 0.8091752787787085, + 0.8045413788925241, + 0.92385752642948, + 0.7939937969249388, + 0.7916704805491989, + 0.936963017728694, + 0.8532214540129998, + 0.8929190984699815, + 0.7960647061252278, + 0.9048525852298742, + 0.992671182389769, + 0.987968431853366, + 0.9531702386026508, + 0.8651058220157922, + 0.957204861709126, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.8744221238514268, + 0.9883020564051679, + 0.937103645050706, + 0.9407755311560884, + 0.9851370084561714, + 0.8030210815765354, + 0.94362258995985, + 0.7901596681791947, + 0.8868080394461477, + 0.9413092648977816, + 0.999122807017544, + 0.9443944345284628, + 0.9992668621947256, + 0.9385224385224383, + 0.7647361516158825, + 0.7823572752988579, + 0.9716068390573318, + 0.9615141634622412, + 0.9956019844379308, + 0.9939526010712452, + 0.9868446526492484, + 0.9788481543433862, + 1, + 0.9280169976669376, + 0.975224136149363, + 0.9970690618433798, + 0.9883020564051679, + 0.9301373709233364, + 0.9795737645144298, + 0.9824788936394012, + 0.9883020564051679, + 0.9414868925909092, + 0.9188566733401607, + 0.9978013931164152, + 0.9692438828447324, + 0.9883020564051679, + 0.9934114381393974, + 0.9486152933634998, + 0.9721523399735842, + 0.9934114381393974, + 0.9708841861711646, + 0.9500441996469742, + 0.9174366159265968, + 0.9329682990823176, + 0.9716068390573318, + 0.8840480861242009, + 0.9948736810887512, + 0.9579224065577792, + 0.9679962630672924, + 0.9978013931164152, + 0.8764803941254208, + 0.9414868925909092, + 0.9181539149158895, + 0.9429104219927898, + 0.9919502705663622, + 0.9651126414686952, + 1, + 0.9962804570068788, + 1, + 0.9513949869239996, + 0.917451425335698, + 0.8893524283935244, + 0.8711567490387903, + 0.8402268612783098, + 0.9991101224022378, + 0.875683873894971, + 0.893318343627618, + 0.9998166819431716, + 0.8181684978110831, + 0.8501131405958162, + 0.9791710812316362, + 0.9416562889165628, + 0.7704074975067344, + 0.8205779056365766, + 0.8524355521406097, + 0.8149410602532909, + 0.9678129927260984, + 0.992671182389769, + 0.9904289157282716, + 0.9512909738881008, + 0.9430833061919088, + 0.9498925099667804, + 0.9491784964871592, + 0.9608990650462856, + 0.9498609989321576, + 0.7794361831100473, + 0.9505758519634429, + 0.9773557492735576, + 0.8637008456171156, + 0.9301795973691914, + 0.8828315614940658, + 0.959175062021937, + 0.9531601641545472, + 0.999122807017544, + 0.9998166819431716, + 0.7587536069598175, + 0.7522123063336182, + 0.8258303273081601, + 0.9356248965935622, + 0.9820100634702482, + 0.831081385436793, + 0.8534540516685338, + 0.9818536963567754, + 0.8486878358300123, + 0.9129853629164147, + 0.8998911634924976, + 0.7793718426037994, + 0.932398585032895, + 0.800012400217004, + 0.7984383476710843, + 0.907326978222119, + 0.838169467510867, + 0.7913646289079624, + 0.9278150139590884, + 0.9506223327256856, + 0.9364530503181744, + 0.9417014747671419, + 0.7800217784035494, + 0.9258691777106102, + 0.9376349250962784, + 0.9412635914006205, + 0.8430977292102612, + 0.9461654371370272, + 0.9391302151973808, + 0.968708052390917, + 0.7829559806346367, + 0.8486878358300123, + 0.92049050384555, + 0.9877189123128628, + 0.9672169872900396, + 0.8207867897037397, + 0.8168393183171508, + 0.826467375579422, + 0.94513113161729, + 0.9585637037072424, + 0.8949088289552438, + 0.9053910284366296, + 0.817437533227007, + 0.7978783990223038, + 0.7521903939726886, + 0.754943158980426, + 0.7928605555934748, + 0.8989607068123694, + 0.7975892455476461, + 0.7725199492096488, + 0.7662703504995123, + 0.9767351231527428, + 0.9424631082284728, + 0.866898864682116, + 0.7783625730994154, + 0.9376349250962784, + 0.9303020409693342, + 0.8287563928270861, + 0.8603115680426934, + 0.8114732228923959, + 0.9669758970781992, + 0.8105976841695943, + 0.7959269589012261, + 0.8302139037433156, + 0.986986590623621, + 0.751078143739283, + 0.9104552048233484, + 0.9985339932335306, + 0.9919502705663622, + 0.9890174067689452, + 1, + 0.9985339932335306, + 0.9919502705663622, + 1, + 0.9978013931164152, + 0.9978013931164152, + 1, + 0.996336999414424, + 0.9978013931164152, + 0.9970690618433798, + 0.9985339932335306, + 0.996336999414424, + 0.9883020564051679, + 1, + 0.9904289157282716, + 0.9992668621947256, + 0.9992668621947256, + 0.996336999414424, + 0.9928507310737632, + 1, + 0.8271094654395285, + 0.996336999414424, + 0.9978013931164152, + 0.9956044009241408, + 0.9985339932335306, + 0.9904901783696456, + 0.9978013931164152, + 0.9970690618433798, + 0.996336999414424, + 0.996336999414424, + 0.9970690618433798, + 0.995605205829548, + 1, + 0.9985339932335306, + 0.9853883242696474, + 0.995605205829548, + 0.9992668621947256, + 1, + 0.9992555369697762, + 1, + 0.9882827814745488, + 0.9992668621947256, + 0.9859927106498643, + 0.9550538402276436, + 0.9795737645144298, + 0.9350474891783676, + 0.9946751263076096, + 0.99268071993084, + 0.9529052383428788, + 1, + 0.9832058480308432, + 0.928723519908324, + 0.999122807017544, + 0.9701618021290772, + 0.9181539149158895, + 0.9414868925909092, + 0.916749204599586, + 0.94362258995985, + 0.8771670219049115, + 0.9020646721236415, + 0.9479012434878824, + 0.7967703326479759, + 0.9802996435295532, + 0.9917846709962562, + 0.8938717567128639, + 0.9862646747457392, + 0.9839330712663648, + 0.9600766541682176, + 0.9759484021000084, + 0.9473421475334106, + 0.8472097261066925, + 0.9414868925909092, + 0.9650851977230176, + 0.999122807017544, + 0.9550538402276436, + 0.9441436310000064, + 0.9884575916336614, + 0.94958838214302, + 0.9436364293412104, + 0.9802996435295532, + 0.9817522080920388, + 0.9766729368947332, + 0.975224136149363, + 0.999122807017544, + 0.9763146820695155, + 0.999122807017544, + 0.9716068390573318, + 0.8353033499302194, + 0.9286573911418808, + 0.989388886675146, + 0.811997387314498, + 0.8668958338409165, + 0.9719327874122964, + 0.9416700490012928, + 0.9868446526492484, + 0.8626461571750742, + 0.7693359990306556, + 0.8443573586609718, + 0.8171099429462456, + 0.8861176478495414, + 0.842673863199572, + 0.928723519908324, + 0.758875943584108, + 0.887167247405612, + 0.8928699826089762, + 0.8759576634165684, + 0.9564875857045522, + 0.9061435934718377, + 0.8423092165265303, + 0.8930336617991886, + 0.9400644385653472, + 0.9237835099442904, + 0.9466976131633718, + 0.950603792184588, + 0.8131377716690427, + 0.8598012719162864, + 0.787554569047141, + 0.884737671188568, + 0.9070294784580498, + 0.9069463429223856, + 0.7524570024570024, + 0.9981688711071728, + 0.8971961746848013, + 0.8404738376904276, + 0.8288697152121746, + 0.8829742996323185, + 0.9945048317633112, + 0.885610204525967, + 0.9329682990823176, + 0.9407755311560884, + 0.9274938109996211, + 0.955770578544058, + 0.8609445180643548, + 0.8868080394461477, + 0.8826697225277056, + 0.860081980641546, + 0.8494179248503486, + 0.8806041934635603, + 0.7745935959659945, + 0.804564602812277, + 0.8457610658751216, + 0.9141259733731866, + 0.9083435256044582, + 0.9249744348616508, + 0.878036507710379, + 0.8567036918158099, + 0.9407755311560884, + 0.912541525908588, + 0.8711093063931175, + 0.8951137084436364, + 0.9041552036871964, + 0.953621170127054, + 0.9464739502688859, + 0.9727686004162333, + 0.9824788936394012, + 0.895416975651959, + 0.8388354220573428, + 0.8451861367189766, + 0.9020646721236415, + 0.8838860538503512, + 0.9586402202505121, + 0.99782684342909, + 0.7818532483566868, + 0.8978908677866823, + 0.9346434038598216, + 0.9486152933634998, + 0.975224136149363, + 0.927916573470583, + 0.9974294410273912, + 0.9586402202505121, + 0.9507590560548307, + 0.9978013931164152, + 0.954337370755309, + 0.911841187081034, + 0.975224136149363, + 0.9365130082728363, + 0.8902640300903737, + 0.9500441996469742, + 0.7528067405931878, + 0.9139430100959351, + 0.9486152933634998, + 0.8723662731741496, + 0.8503425879277244, + 0.9643924081792452, + 0.9716068390573318, + 0.9322331995088968, + 0.9730529513619054, + 0.8909560347514579, + 0.9730529513619054, + 0.9225158405279774, + 0.8806041934635603, + 0.9223744981227123, + 0.928723519908324, + 0.8985858297326429, + 0.8868080394461477, + 0.934385376226286, + 0.865978265648834, + 0.9669995060071396, + 0.9215535536561092, + 0.8916483082566217, + 0.8806041934635603, + 0.8614426005287826, + 0.9500441996469742, + 0.9615141634622412, + 0.9836858501848198, + 0.9992668621947256, + 0.8840480861242009, + 0.8659737769303842, + 0.8881896291715989, + 0.9658331436022252, + 0.9117779886590568, + 0.9891164188197914, + 0.9393536148186856, + 0.8999765601568034, + 0.9992668621947256, + 0.8902640300903737, + 0.8937267418365915, + 0.986116354037408, + 0.9745001390427974, + 0.8682618306097468, + 0.917451425335698, + 0.9237835099442904, + 0.9372227566431792, + 0.8605814190983236, + 0.9658331436022252, + 0.99268071993084, + 0.9331273751154144, + 0.9874932258547676, + 0.9817522080920388, + 0.9322601637764528, + 0.9730529513619054, + 0.7966912350949062, + 0.9636724437338746, + 0.9146441554557286, + 0.9665539145798344, + 0.912541525908588, + 0.8923408506058652, + 0.9403639696255566, + 0.9824501714706848, + 0.8958075950132784, + 0.7947875585169598, + 0.8888808273004442, + 0.9817522080920388, + 0.9579224065577792, + 0.9643924081792452, + 0.9978013931164152, + 0.909042520211614, + 0.8839798882716039, + 0.9322601637764528, + 0.977397740533538, + 0.9407327353741834, + 0.9974294410273912, + 0.957204861709126, + 0.9636724437338746, + 1, + 0.9507590560548307, + 0.9244884191211992, + 0.9737764107803116, + 0.9294303109937904, + 0.866213238722621, + 0.889572294273369, + 0.9365130082728363, + 0.9386430599161039, + 0.8614426005287826, + 0.8592127013521056, + 0.9586402202505121, + 0.984660563345966, + 0.942257835125676, + 0.977397740533538, + 0.8944200907180742, + 0.9723297607875788, + 0.9466282499343924, + 0.879916221463671, + 0.917451425335698, + 0.9358035287465732, + 0.9365130082728363, + 0.8785410839961321, + 0.8800026263331926, + 0.9180818572622022, + 0.9300900041631704, + 0.9111411170975592, + 0.8958075950132784, + 0.8751079450986783, + 0.9687178405771408, + 0.9643924081792452, + 0.9741087373430196, + 0.9965539092032524, + 0.8485601299189015, + 0.9039239850807016, + 0.991220090045964, + 0.99268071993084, + 0.9411779284976856, + 1, + 0.9941424251920344, + 0.9839330712663648, + 1, + 0.9948736810887512, + 0.9853883242696474, + 1, + 0.9904901783696456, + 0.9062481548474688, + 0.9948736810887512, + 0.9766729368947332, + 0.99268071993084, + 0.9883020564051679, + 0.996336999414424, + 0.9832058480308432, + 0.9721523399735842, + 0.995605205829548, + 0.995605205829548, + 0.8966477542865559, + 0.989920889126398, + 0.9941424251920344, + 0.9853883242696474, + 0.99268071993084, + 0.989208622446052, + 0.9737764107803116, + 0.9788481543433862, + 0.9508557261229018, + 0.9883020564051679, + 0.9868446526492484, + 0.9948736810887512, + 0.9789725394962472, + 0.9778375229520267, + 0.9630457249445452, + 0.9897605355374068, + 0.9759484021000084, + 0.9745001390427974, + 0.9839330712663648, + 1, + 0.9910847398800986, + 1, + 0.9824788936394012, + 0.8935362109939026, + 0.8492357350911255, + 0.7799775750856683, + 0.9991101224022378, + 0.7714797416324134, + 0.8924773755936107, + 0.9921175854473762, + 0.8244173938759, + 0.8995898027497777, + 0.997783274463504, + 0.8019358454012121, + 0.8034463924540262, + 0.9208092958092956, + 0.7862626472757531, + 0.7901234941467935, + 0.9234208215886514, + 0.8754121720256093, + 0.8661215058187304, + 0.992671182389769, + 0.9798792330613568, + 0.9514741813067672, + 0.9550538402276436, + 0.9429977116704804, + 0.9378841050418828, + 0.9348478408783754, + 0.8677050513455755, + 0.9438416558070334, + 0.9894860390412652, + 0.9369022368540908, + 0.9407755311560884, + 0.937924041385235, + 0.9677933860111212, + 0.9970690618433798, + 0.9443944345284628, + 0.9965539092032524, + 0.7647361516158825, + 0.8833587699039136, + 0.8455377025736512, + 0.9378994747569932, + 1, + 0.8854275250970148, + 0.9372227566431792, + 0.9978013931164152, + 0.8621233137385207, + 0.9034580909885984, + 0.9687178405771408, + 0.9788481543433862, + 0.8364452091564932, + 0.8257495162906913, + 0.9450477324262084, + 0.7908116150724073, + 0.7922257273375911, + 0.8186576980160944, + 0.9593583027873251, + 0.9941424251920344, + 0.9848040830545792, + 0.9795737645144298, + 0.9181539149158895, + 0.9579224065577792, + 0.8038532129267693, + 0.7895079901300617, + 0.9393536148186856, + 0.9329682990823176, + 0.9386430599161039, + 0.9097417836628494, + 0.934365235861341, + 0.8682618306097468, + 0.8062236581276447, + 0.7999671002057498, + 0.9579224065577792, + 0.962952748132584, + 0.9421985228698097, + 0.9758471017566333, + 0.8492357350911255, + 0.9883020564051679, + 0.9965191088563604, + 0.9992663243093578, + 0.9992656508417233, + 0.9941424251920344, + 1, + 0.99268071993084, + 1, + 0.9992668621947256, + 0.9965191088563604, + 0.9540512424216696, + 0.9970690618433798, + 0.9768478574449928, + 0.9833831528957327, + 0.9914003253458398, + 0.9890311615492476, + 0.9782982623788444, + 0.9926335425715881, + 0.8068812492978317, + 0.9985339932335306, + 1, + 0.998339483394834, + 1, + 0.9948736810887512, + 0.9875732201051683, + 0.9941413527735856, + 1, + 0.992130773157018, + 0.9721444518798692, + 0.9978013931164152, + 0.998350675275288, + 0.9906529437430028, + 1, + 0.9948736810887512, + 0.9914003253458398, + 0.9970690618433798, + 0.9976169999054124, + 0.9985113511553524, + 0.9954545454545456, + 0.9585725924710128, + 0.9992668621947256, + 0.8558690511962423, + 0.9477543538038498, + 0.7858966339146662, + 0.8467583491924263, + 0.8327122834222226, + 0.8908526998828004, + 0.8135527713116105, + 0.9336872890005498, + 0.8135527713116105, + 0.7969931938295922, + 0.9404358147459344, + 0.7922931599671659, + 0.9455558136112772, + 0.7617997236100775, + 0.8361266348371678, + 0.8706162391527938, + 0.8909999999999999, + 0.8169671679245643, + 0.911393892174019, + 0.950028839221341, + 0.8316766353632711, + 0.8481140741645349, + 0.9263157894736842, + 0.7693317755435274, + 0.8485714285714286, + 0.9975371888373946, + 0.7657492944145039, + 0.782707509881423, + 0.8344731368348524, + 0.7893527624833871, + 0.934334074623178, + 0.9652014577830238, + 0.9712575474049576, + 0.7951570680628274, + 0.8023077073631943, + 0.8378558855512396, + 0.7750750175798774, + 0.8711152458705146, + 0.9450509667184974, + 0.8728200371057514, + 0.8266151860146821, + 0.9508561924475392, + 0.8678771151093215, + 0.7818744360024455, + 0.953621170127054, + 0.9550538402276436, + 0.9255861016232882, + 1, + 0.9890311615492476, + 0.9839330712663648, + 1, + 0.9875732201051683, + 0.9868446526492484, + 1, + 0.9672749544015236, + 0.8485601299189015, + 0.9948736810887512, + 0.9853883242696474, + 0.991220090045964, + 0.9716068390573318, + 0.9853883242696474, + 0.9817522080920388, + 0.9461330864231152, + 0.9934114381393974, + 0.9985339932335306, + 0.8683978095980386, + 0.9869953764615554, + 0.995605205829548, + 0.9868446526492484, + 0.9883020564051679, + 0.9724980906333768, + 0.9407755311560884, + 0.9372227566431792, + 0.9805263157894736, + 0.996336999414424, + 0.996336999414424, + 0.9992668621947256, + 0.9884575916336614, + 0.9887359375145636, + 0.977084365603192, + 0.9817522080920388, + 0.9890311615492476, + 0.9875732201051683, + 0.9883020564051679, + 0.9992668621947256, + 0.9762465658458932, + 1, + 0.991220090045964, + 0.8205020227371977, + 0.8608078181360623, + 0.8831761147394912, + 0.9956171156600898, + 0.8264159807642062, + 0.9851370084561714, + 0.8032496864185852, + 0.7921163153910715, + 0.8189876505853204, + 0.8866880766446407, + 0.7712492904983538, + 0.766650468421388, + 0.9874185848252344, + 0.9860765405159552, + 0.8021177944862157, + 0.9104948113042188, + 0.9076355564584256, + 0.9302834429286485, + 0.8899966113703928, + 0.7950194069243905, + 0.7994718538953012, + 0.9755497899678774, + 0.8737705484182898, + 0.8391756392041623, + 0.8000318742722583, + 0.863706643974955, + 0.999122807017544, + 0.788531116445173, + 0.7673011362392835, + 0.856290549490185, + 0.8500013228910797, + 0.8217519251079187, + 0.9886242163794032, + 0.8335855838820181, + 0.7737677036875701, + 0.80781838380708, + 0.8821104163000745, + 0.7790490801674135, + 0.821180494612969, + 0.8346691294875438, + 0.8306511043531097, + 0.7751893805092811, + 0.7785693212549879, + 0.8213296424597536, + 0.7990961561862842, + 0.8708980045995849, + 0.8508997225351951, + 0.9550538402276436, + 0.8404738376904276, + 0.8608516172237797, + 0.8898770040500942, + 0.9910308796338216, + 0.9443350267709892, + 0.9379327738576018, + 0.9687178405771408, + 0.954337370755309, + 0.8992810605226834, + 0.8104222403360605, + 0.8617768931040987, + 0.8019358454012121, + 0.8489486269748123, + 0.8334307196417515, + 0.8472653300897576, + 0.8641393141487438, + 0.8327404310943477, + 0.8764803941254208, + 0.912541525908588, + 0.8614426005287826, + 0.8750187225119483, + 0.8930336617991886, + 0.9188566733401607, + 0.909042520211614, + 0.9278339260751618, + 0.8855898697110776, + 0.8914924863272463, + 0.9636724437338746, + 0.8594020739640472, + 0.933676703232262, + 0.9471874624563446, + 0.9767901752344744, + 0.8923668029454429, + 0.887801301315952, + 0.8244173938759, + 0.8598281139548333, + 0.9048525852298742, + 0.9202629967209424, + 0.9586402202505121, + 0.99818613436632, + 0.8116526550439349, + 0.9097417836628494, + 0.8938131796635373, + 0.8689452322602814, + 0.7632159853061836, + 0.931092626752598, + 0.9714033929661204, + 0.916047252707554, + 0.9665539145798344, + 0.9992668621947256, + 0.877193998855128, + 0.8621233137385207, + 0.8404336601367269, + 0.8899568476668683, + 0.7657793910062513, + 0.8125492090556029, + 0.8944200907180742, + 0.9832058480308432, + 0.866243248832523, + 0.9723297607875788, + 0.9358035287465732, + 0.9111411170975592, + 0.8984030086479471, + 0.8744221238514268, + 0.831385641452182, + 0.917611437505964, + 0.8478847935907573, + 0.9679962630672924, + 0.8637608966376091, + 0.9294733352278108, + 0.8427886110852929, + 0.928226607524593, + 0.8025926314878588, + 0.9041552036871964, + 0.9045462110180228, + 0.9607952743931896, + 0.7731216272312162, + 0.9960877143127782, + 0.7917919558851796, + 0.7813854250011384, + 0.8594020739640472, + 0.8448171762300786, + 0.9066838594697112, + 0.993041786971632, + 0.9218534208170824, + 0.9280169976669376, + 0.9579224065577792, + 0.7649434377260497, + 0.9324432641365908, + 0.9890311615492476, + 0.8689452322602814, + 0.8861176478495414, + 0.8937267418365915, + 0.8573639669960287, + 0.853295011850143, + 0.9251935971421876, + 0.8902640300903737, + 0.7921163153910715, + 0.8692840854028374, + 0.9120241323975692, + 0.9322601637764528, + 0.9682695039010508, + 0.8869907346430809, + 0.9308446996969624, + 0.928723519908324, + 0.8601704114565033, + 0.8874986998868335, + 0.8888808273004442, + 0.975224136149363, + 0.8091752787787085, + 0.9507590560548307, + 0.9664158428720082, + 0.9817522080920388, + 0.8284169872492293, + 0.9136988002866576, + 0.8445121446112305, + 0.9139430100959351, + 0.8914848829801818, + 0.9672749544015236, + 0.99782684342909, + 0.772138724992434, + 0.90276124713408, + 0.961144204800487, + 0.8634855466902354, + 0.9379327738576018, + 0.908277884446819, + 0.9946871424565764, + 0.9479012434878824, + 0.933676703232262, + 0.9839330712663648, + 0.957204861709126, + 0.9897605355374068, + 0.8668958338409165, + 0.8916483082566217, + 0.9153455696596016, + 0.8573639669960287, + 0.8634855466902354, + 0.9251935971421876, + 0.909042520211614, + 0.8723662731741496, + 0.8537487234650945, + 0.8792285183078618, + 0.9350943180643897, + 0.8079714438079046, + 0.9551004697947988, + 0.8806041934635603, + 0.9273107442696306, + 0.9223744981227123, + 0.9616766085585506, + 0.8730512878891623, + 0.8965017504270001, + 0.975224136149363, + 0.8277497162434753, + 0.9514741813067672, + 0.9622333213753728, + 0.9746102461941208, + 0.940760842211224, + 0.8337648336821305, + 0.9132421335802218, + 0.838458313625102, + 0.9104413159581644, + 0.9230788696114616, + 0.9615141634622412, + 0.9608062684964296, + 0.9992668621947256, + 0.90276124713408, + 0.9316696874472936, + 0.8231087698825403, + 0.9544682296975874, + 0.7552770595350544, + 0.992615515771526, + 0.8512496250257213, + 0.8744043956043956, + 0.9547348484848484, + 0.7548367420848981, + 0.8010008340283569, + 0.8674088334090595, + 0.7996294165768151, + 0.908313797791604, + 0.9891493795585866, + 0.7540999753755234, + 0.9272544060904362, + 0.8780091446372676, + 0.9182823930924128, + 0.8762510425354463, + 0.9053124690879792, + 0.9546304163126592, + 0.9085090856109872, + 0.8064763169544045, + 0.9027775208335084, + 0.8873519569623151, + 0.902977283394997, + 0.9964912280701756, + 0.996521739130435, + 0.9338039426824476, + 0.9139430100959351, + 0.9622333213753728, + 0.9737764107803116, + 0.9701400724878312, + 0.9974294410273912, + 0.9358035287465732, + 0.9464739502688859, + 0.9970690618433798, + 0.9658331436022252, + 0.955770578544058, + 0.9960351014549488, + 0.9477180531985372, + 0.7802288530146114, + 0.9622333213753728, + 0.8067839857133676, + 0.9301373709233364, + 0.8868080394461477, + 0.9450477324262084, + 0.8134050821718116, + 0.9454153674378072, + 0.984660563345966, + 0.9904901783696456, + 0.9507590560548307, + 0.9779823259487208, + 0.9883020564051679, + 0.855139156857862, + 0.9853883242696474, + 0.9564875857045522, + 0.9083271241193304, + 0.9421985228698097, + 0.8621233137385207, + 0.9479012434878824, + 0.9802996435295532, + 0.9613309146374462, + 0.9890311615492476, + 0.9789725394962472, + 0.9230788696114616, + 0.9875732201051683, + 0.8937267418365915, + 0.9948736810887512, + 0.9716068390573318, + 0.9679854547640152, + 0.9572793819640072, + 0.9992668621947256, + 0.9649045221259104, + 0.9365130082728363, + 0.7854822169733378, + 0.9877224033535164, + 0.8267536096879368, + 0.8281155906857192, + 0.7782426513939189, + 0.7770132902980824, + 0.7813852813852814, + 0.8531626502908053, + 0.986652250762675, + 0.8443985380581599, + 0.8507060144843345, + 0.9095966218704222, + 0.7793195367381812, + 0.8485714285714286, + 0.793478260869565, + 0.9357129295614204, + 0.9013778530474436, + 0.8068636548636549, + 0.8283693657758276, + 0.7842947575142669, + 0.929941088884573, + 0.8318189568317447, + 0.9721324228139152, + 0.8929555666008868, + 0.9899175068744273, + 0.7829559806346367, + 0.8330585670487148, + 0.9004712036731742, + 0.8079059133534838, + 0.907326978222119, + 0.8418462145170219, + 0.8355962235887732, + 0.9840600196897172, + 0.9727233543942168, + 0.9456931798893302, + 0.7835307826762479, + 0.9334823561531638, + 0.943912095206486, + 0.9719476865439598, + 0.8989607068123694, + 0.9899175068744273, + 0.91218688144154, + 0.968708052390917, + 0.9275641323723166, + 0.7750817305162342, + 0.7705110005585539, + 0.8746911090742437, + 0.906777236648719, + 0.9877189123128628, + 0.905810189680844, + 0.9039758195768428, + 0.9545454545454548, + 0.8475303670578501, + 0.9511957748205524, + 0.8592904322283405, + 0.9090909090909088, + 0.864748396641959, + 0.8793851481338977, + 0.9499999999999998, + 0.7977657605606996, + 0.828074328074328, + 0.8757161620920398, + 0.8518139443215275, + 0.8919696969696971, + 0.9006463378910865, + 0.9123913868449176, + 0.7538355364442323, + 0.9728462804245892, + 0.8226075640111686, + 0.7627425872585156, + 0.9397093147093144, + 0.9405901494832792, + 0.9373208866593992, + 0.9185281385281384, + 0.9805093555093556, + 0.9045454545454543, + 0.7521739130434782, + 0.8676160350867449, + 0.9096320346320348, + 0.9705446224256292, + 0.7511156903867726, + 0.9498970784947516, + 0.8553636363636363, + 0.8803749979451918, + 0.8868951612903225, + 0.8716773908739449, + 0.7640091133472566, + 0.9754511278195488, + 0.9090909090909088, + 0.919377312007859, + 0.9895652173913044, + 0.9090909090909088, + 0.9895652173913044, + 0.904833326772871, + 0.8896985935172833, + 0.9613560315981924, + 0.9209973066564064, + 0.7738377192982457, + 0.8766948621553885, + 0.8955979105301095, + 0.7862727272727271, + 0.8120276073976656, + 0.9062605084545612, + 0.9819906110654324, + 0.9482809390239644, + 0.9270810254564676, + 0.8858122880872292, + 0.9272543317870856, + 0.9248843536331894, + 0.9592356458451337, + 0.9740750470337556, + 0.8618048445021776, + 0.9826209215251775, + 0.9119804816878757, + 0.901982337361457, + 0.968471177944862, + 0.9722529273134676, + 0.9674022810471118, + 0.8998470475108667, + 0.8758239471864051, + 0.957737379733654, + 0.9619347444028424, + 0.9817460256655812, + 0.9619598036238828, + 0.9754511278195488, + 0.9045454545454543, + 0.9108776132404182, + 0.9895652173913044, + 0.9090909090909088, + 0.9808695652173912, + 0.903936979364855, + 0.8946016606830777, + 0.9582023810487048, + 0.9363189044244398, + 0.7701982739613846, + 0.877299976398395, + 0.8623579834310708, + 0.7862727272727271, + 0.8480601581866628, + 0.8902466538134809, + 0.9819906110654324, + 0.9507874084663184, + 0.925065002188018, + 0.8906569786528593, + 0.9272543317870856, + 0.9318691420627104, + 0.9592356458451337, + 0.9670573870573872, + 0.8638081223124702, + 0.9815789473684212, + 0.9119804816878757, + 0.9027305623701912, + 0.968471177944862, + 0.9722529273134676, + 0.9664533537113174, + 0.8980586357606626, + 0.8824347249543827, + 0.957737379733654, + 0.9606072393507964, + 0.7604223245592875, + 0.9401709401709404, + 0.9616481164026224, + 0.9809453113164672, + 0.825, + 0.8965328341856458, + 0.9930434993747648, + 0.9919417254554761, + 0.7662935746676578, + 0.916200245724204, + 0.8929657620169505, + 0.9764831764168632, + 0.8651113127255622, + 0.8576748602878727, + 0.8002254756609835, + 0.8303849683667892, + 0.945960433937275, + 0.9927523497097036, + 0.9224700032216755, + 0.924592891635332, + 0.8627825284444037, + 0.9427557668775548, + 0.9416944402363276, + 0.7977840705338264, + 0.891911538610805, + 0.7757575757575756, + 0.9186470619844704, + 0.9755497899678774, + 0.9380936401545896, + 0.9430730858023998, + 0.8821269989132121, + 0.8635778359926967, + 0.9686187299234, + 0.82231768595902, + 0.8454690660447776, + 0.936633843357067, + 0.9928614899602092, + 0.7920033670033668, + 0.9790238683337896, + 0.851784484740942, + 0.7835174551354922, + 0.970437888198758, + 0.973913043478261, + 0.8004960204410251, + 0.8608354753566684, + 0.973913043478261, + 0.8932535416128451, + 0.8985806100405787, + 0.9473716579271056, + 0.8802936186789987, + 0.8429844720496896, + 0.7998641304347827, + 0.7548105590062113, + 0.851091804125718, + 0.7982289247602901, + 0.8918317295952493, + 0.9704182624797956, + 0.9250441174468548, + 0.9234004788164912, + 0.8072112569313484, + 0.9458344577995612, + 0.8199687206756333, + 0.9636939983093828, + 0.973913043478261, + 0.8946764860972011, + 0.8953883830144143, + 0.9685626687981476, + 0.8854475897922277, + 0.890074370350509, + 0.9467502582887196, + 0.973913043478261, + 0.7675727377454222, + 0.9240556247405564, + 0.9038176307865486, + 0.8004417918113229, + 0.8571885156262036, + 0.7888661250305931, + 0.7588020905133782, + 0.8150670283151774, + 0.8394858977004067, + 0.8506509425026048, + 0.86632058337082, + 0.907644799841382, + 0.7869039663743268, + 0.8377993482174306, + 0.9661635604440372, + 0.7796002893491529, + 0.8462255001833667, + 0.8698618053513671, + 0.853295011850143, + 0.9457912457912456, + 0.9954545454545456, + 0.786253632545592, + 0.921913236929922, + 0.9090909090909088, + 0.9764931810396176, + 0.9895652173913044, + 0.8409090909090906, + 0.982608695652174, + 0.904833326772871, + 0.9398297385891607, + 0.8728218919864725, + 0.910662682746664, + 0.7508707607699359, + 0.920196146646124, + 0.8941510995342954, + 0.7896297048496517, + 0.9062605084545612, + 0.9819906110654324, + 0.9395768590554164, + 0.8846891981591173, + 0.8753550543024229, + 0.9272543317870856, + 0.9159873721905482, + 0.9592356458451337, + 0.9719230769230768, + 0.853205915989843, + 0.9789473684210526, + 0.9119804816878757, + 0.9021731519130232, + 0.9408793468279631, + 0.9502457651288154, + 0.9343996875499296, + 0.8998470475108667, + 0.7828140592083379, + 0.956227485420032, + 0.9688644688644692, + 0.9878260869565216, + 0.9619598036238828, + 0.9853883242696474, + 0.9069463429223856, + 0.8484535647736858, + 0.9859234217934404, + 0.8546502548557862, + 0.8668958338409165, + 0.9890311615492476, + 0.9365130082728363, + 0.9280169976669376, + 0.8580430671412884, + 0.7643022445960241, + 0.7736264668325739, + 0.8826697225277056, + 0.8391298861361308, + 0.8806041934635603, + 0.8250833206612556, + 0.928723519908324, + 0.8668958338409165, + 0.7521491867834005, + 0.8881896291715989, + 0.9616904586883988, + 0.9061435934718377, + 0.9211354224331691, + 0.90276124713408, + 0.9434394218523597, + 0.8047278408758268, + 0.9216703954780426, + 0.9230788696114616, + 0.9564875857045522, + 0.9694396869310692, + 0.8131377716690427, + 0.8237517359346237, + 0.8025926314878588, + 0.8965017504270001, + 0.9230777619327238, + 0.9104413159581644, + 0.8553134080531343, + 0.9989920981077092, + 0.917451425335698, + 0.9521895754027829, + 0.9069463429223856, + 0.8444028672449848, + 0.9910308796338216, + 0.8526177936134408, + 0.8634855466902354, + 0.9883020564051679, + 0.9464739502688859, + 0.9216703954780426, + 0.8566851356948486, + 0.7694393172704596, + 0.7752390906012949, + 0.7768521470048189, + 0.8785410839961321, + 0.8290845270990632, + 0.8351044837311526, + 0.8264159807642062, + 0.9237835099442904, + 0.8868080394461477, + 0.8944200907180742, + 0.9486152933634998, + 0.9061435934718377, + 0.8987505869438153, + 0.7765308864041348, + 0.9062481548474688, + 0.9414868925909092, + 0.8971961746848013, + 0.9273107442696306, + 0.9564875857045522, + 0.9694396869310692, + 0.917451425335698, + 0.7980007746070045, + 0.900672328635003, + 0.9230777619327238, + 0.909042520211614, + 0.8722498962224988, + 0.99818613436632, + 0.917451425335698, + 0.9350943180643897, + 0.8450773104028045, + 0.7755025814626396, + 0.8499116091074294, + 0.9954545454545456, + 0.8248656842171965, + 0.8771670219049115, + 0.8017627702025453, + 0.8252966318058891, + 0.7989505012531329, + 0.9084382663648368, + 0.7700826611531227, + 0.8173907278944466, + 0.9586402202505121, + 0.8279882714725023, + 0.8750287541127237, + 0.8058469213257959, + 0.8887595093929513, + 0.8741986118728367, + 0.9013332512757184, + 0.8951137084436364, + 0.8085158042512651, + 0.7847209561813264, + 0.9207931801334324, + 0.8813228755976849, + 0.8806041934635603, + 0.904598717548413, + 0.8357423547232772, + 0.8519408442208185, + 0.7585436044093791, + 0.754716608935201, + 0.7526949335249729, + 0.8630753385715217, + 0.945504664970314, + 0.8607621561631246, + 0.8190996579799222, + 0.8138788692223808, + 0.80834947374926, + 0.8461416361416363, + 0.8321563840156672, + 0.9049823065264198, + 0.7611003116070912, + 0.8564208333192405, + 0.9567242111117616, + 0.8830433688448956, + 0.8498282229301768, + 0.8787054248059898, + 0.7583865519843361, + 0.8560065732377481, + 0.7845811712379542, + 0.911841187081034, + 0.7575987286674309, + 0.9032923617208078, + 0.8054515169551613, + 0.9457116500465104, + 0.7972151720771685, + 0.9550538402276436, + 0.8404738376904276, + 0.8951137084436364, + 0.8898770040500942, + 0.9910308796338216, + 0.9443350267709892, + 0.9379327738576018, + 0.9687178405771408, + 0.954337370755309, + 0.8992810605226834, + 0.8655309124484051, + 0.8902640300903737, + 0.8553282796247272, + 0.8614426005287826, + 0.8958075950132784, + 0.8438384213475643, + 0.8771670219049115, + 0.8280046113614686, + 0.8607621561631246, + 0.912541525908588, + 0.8614426005287826, + 0.8946208326427901, + 0.8930336617991886, + 0.9188566733401607, + 0.909042520211614, + 0.9278339260751618, + 0.8773278519419312, + 0.9111411170975592, + 0.9636724437338746, + 0.8566851356948486, + 0.933676703232262, + 0.9471874624563446, + 0.9832058480308432, + 0.8923668029454429, + 0.887801301315952, + 0.8244173938759, + 0.8424917813524705, + 0.9048525852298742, + 0.9202629967209424, + 0.9586402202505121, + 0.99818613436632, + 0.8116526550439349, + 0.9097417836628494, + 0.9329682990823176, + 0.8438384213475643, + 0.8958075950132784, + 0.8921838780119076, + 0.986652250762675, + 0.9479012434878824, + 0.9393536148186856, + 0.9687178405771408, + 0.7643022445960241, + 0.955770578544058, + 0.8478847935907573, + 0.8634855466902354, + 0.8614426005287826, + 0.8580430671412884, + 0.8587224361306279, + 0.8923408506058652, + 0.8351044837311526, + 0.8052224642752426, + 0.911841187081034, + 0.8295875223215042, + 0.889572294273369, + 0.912541525908588, + 0.8958075950132784, + 0.8960129675540568, + 0.8930336617991886, + 0.9550538402276436, + 0.909042520211614, + 0.887315997105363, + 0.8703128420935895, + 0.9111411170975592, + 0.9550538402276436, + 0.8614426005287826, + 0.9372227566431792, + 0.962952748132584, + 0.9824788936394012, + 0.9017863969504004, + 0.877949549206721, + 0.8614426005287826, + 0.8344345242846016, + 0.9013683659572824, + 0.9223744981227123, + 0.9586402202505121, + 0.99782684342909, + 0.8327803954481456, + 0.9377053197580578, + 0.7520783733062728, + 0.8576638516480299, + 0.7973458704289155, + 0.8055002075550022, + 0.8274342134261912, + 0.7682652462041775, + 0.8985858297326429, + 0.9295420779390244, + 0.9497666282126442, + 0.9045462110180228, + 0.8937267418365915, + 0.9450477324262084, + 0.9335682269765724, + 0.9463791440512886, + 0.8655309124484051, + 0.7591412700557859, + 0.8317573749391951, + 0.9191871761989552, + 0.9144998770732076, + 0.8299318662677443, + 0.7999671002057498, + 0.9590943683409436, + 0.9721268361679862, + 0.7512346093262124, + 0.9031905016766244, + 0.9258990440072554, + 0.8277497162434753, + 0.9045462110180228, + 0.9715042130082729, + 0.8091792146047655, + 0.8478274566824184, + 0.8594020739640472, + 0.7511865272235565, + 0.7739458321143061, + 0.8799003347391113, + 0.8438384213475643, + 0.8735155491890395, + 0.8971961746848013, + 0.955770578544058, + 0.962303313592256, + 0.9187077430559348, + 0.9203925414202916, + 0.9514626397110274, + 0.9041122896824668, + 0.7840680498436611, + 0.8292520377479811, + 0.97941509455445, + 0.8836172394187662, + 0.9375944096516282, + 0.9096320346320348, + 0.8897178357319816, + 0.977084365603192, + 0.8159983921213949, + 0.8647743756870857, + 0.9324532116794522, + 0.9496978544622346, + 0.8933384348345432, + 0.9146441554557286, + 0.893013468013468, + 0.7745935959659945, + 0.9240556247405564, + 0.9248385202583678, + 0.9493296120831972, + 0.784239798606639, + 0.7934206675600327, + 0.847568697165119, + 0.8111354653251885, + 0.7558928791805505, + 0.7550475642500958, + 0.8290845270990632, + 0.9166360018268416, + 0.9214315504311476, + 0.8905928806265223, + 0.8833857030636293, + 0.8371864728096656, + 0.7786506591658736, + 0.8732444148742633, + 0.9824788936394012, + 0.9261641390813252, + 0.7920585237916445, + 0.8270827140818009, + 0.8181481481481481, + 0.9685059666773832, + 0.7724990486505474, + 0.8453837597330368, + 0.9028925619834708, + 0.974712351554919, + 0.7990739031960405, + 0.8124766840771211, + 0.8338302155859407, + 0.8257495162906913, + 0.9242514144040864, + 0.8874986998868335, + 0.8316014689297133, + 0.8491709060650188, + 0.9290397110203914, + 0.9429104219927898, + 0.9020663048206212, + 0.9497666282126442, + 0.8735827515879028, + 0.8190930086640767, + 0.9097417836628494, + 0.8836172394187662, + 0.7561436787677326, + 0.9111759366075987, + 0.9685059666773832, + 0.7694393172704596, + 0.9182355818184244, + 0.9443350267709892, + 0.8991822088005293, + 0.9609732144249478, + 0.8388412496816188, + 0.9434738042076424, + 0.9514940210071012, + 0.7974547159339365, + 0.9158098573783174, + 0.8885435517508157, + 0.7927757091445906, + 0.8089575535557855, + 0.8566665569299595, + 0.8314583644863298, + 0.7943437531819572, + 0.8869909377863762, + 0.7623509827444914, + 0.9602434075673276, + 0.8173534679942144, + 0.9145746409758626, + 0.7598389563652722, + 0.8919299119395553, + 0.9546749386121294, + 0.9061863080667324, + 0.9429340786658, + 0.8532240586756394, + 0.8877384763770779, + 0.958686173433348, + 0.9554765128325876, + 0.927589597885256, + 0.9529605866177816, + 0.9690193870107546, + 0.8907469811519957, + 0.9842229467473992, + 0.9364502164502164, + 0.8550444275316389, + 0.9174603174603174, + 0.9919369945954868, + 0.7974492252661268, + 0.9534048316392292, + 0.7523489859050253, + 0.8139854059928581, + 0.9461387983232418, + 0.8098519486211259, + 0.7647244706969056, + 0.906310774345067, + 0.7678224795898994, + 0.9290762303990062, + 0.8524886899155711, + 0.980320788530466, + 0.9254995395026632, + 0.8657481566722074, + 0.9421659088682972, + 0.8474906647205496, + 0.9013546930437588, + 0.9748919688627304, + 0.8388843744066832, + 0.95990063654712, + 0.9796267593595076, + 0.9345104268491364, + 0.9405500820824608, + 0.8701948495342146, + 0.9783368141256884, + 0.7696261546646032, + 0.7607570099969941, + 0.7567551932941814, + 0.89138879753655, + 0.928489598568463, + 0.9086142870609782, + 0.9545454545454548, + 0.9545454545454548, + 0.8077423038829434, + 0.9174603174603174, + 0.948338703873867, + 0.9649045221259104, + 0.8289700533295026, + 0.9245393784589186, + 0.7559638453436506, + 0.8235522434404595, + 0.9007792207792208, + 0.7664355652861399, + 0.9290762303990062, + 0.8491308962278107, + 0.7573901281365926, + 0.8315151515151515, + 0.7505974060116345, + 0.9502677159519249, + 0.8378061008189606, + 0.8657481566722074, + 0.9421659088682972, + 0.9391737997679988, + 0.943947221044588, + 0.9530072970035708, + 0.946585394605002, + 0.8072282340152606, + 0.8919696969696971, + 0.9783368141256884, + 0.8060213664465975, + 0.7894137547439006, + 0.8886194359553156, + 0.8969404465407047, + 0.8395077004692013, + 0.8087262766581881, + 0.9417675428322848, + 0.838458313625102, + 0.9578918616552848, + 0.9877224033535164, + 0.9600766541682176, + 0.9372227566431792, + 0.9996947496947498, + 0.9464739502688859, + 0.9273107442696306, + 0.8427440270131528, + 0.8930336617991886, + 0.8499116091074294, + 0.8297523357929766, + 0.8628042957923382, + 0.94362258995985, + 0.8861176478495414, + 0.992955297959396, + 0.954141881439958, + 0.9716068390573318, + 0.9372227566431792, + 0.9209665616774528, + 0.8810186818949944, + 0.8078565985679013, + 0.7888565809250084, + 0.8999765601568034, + 0.7784705964389922, + 0.8951137084436364, + 0.9694396869310692, + 0.906901471095239, + 0.9521895754027829, + 0.7517286913985001, + 0.8687571885281811, + 0.7912430201328434, + 0.9975369458128078, + 0.9160401958804216, + 0.974218139790659, + 0.8509546425853288, + 0.900767299923892, + 0.9978013931164152, + 0.7966912350949062, + 0.8415390235407055, + 0.9095917165921852, + 0.7732064980993626, + 0.8864392836204776, + 0.804143123374405, + 0.8771670219049115, + 0.9813338311457538, + 0.9514741813067672, + 0.9586402202505121, + 0.9396223310702196, + 0.9574611462809792, + 0.9733296560462246, + 0.9277579783254948, + 0.9766303162486368, + 0.8371159751352832, + 0.7645789491661855, + 0.8881896291715989, + 0.9463791440512886, + 0.9564875857045522, + 0.7686245437524821, + 0.9510994238916862, + 0.8438384213475643, + 0.9041552036871964, + 0.9970690618433798, + 0.7655848997001549, + 0.8569756194651065, + 0.8565438206194017, + 0.7732064980993626, + 0.8167257771569466, + 0.8510568256152782, + 0.8573767226280884, + 0.9514741813067672, + 0.946103858087934, + 0.9425383776528816, + 0.9032923617208078, + 0.905550235616632, + 0.9177635419435248, + 0.9424705422602816, + 0.7733034132276329, + 0.7944363835998364, + 0.8881896291715989, + 0.922836204777124, + 0.9493296120831972, + 0.7731216272312162, + 0.7701503489229721, + 0.9110701550899905, + 0.8749551130106945, + 0.9779240761641758, + 0.8757411810482202, + 0.9637205387205386, + 0.8307739463601531, + 0.7840680498436611, + 0.9718089459310836, + 0.7533766040551628, + 0.8411108025383495, + 0.8186320718389478, + 0.7507073140597975, + 0.8665855131372373, + 0.8141166099294752, + 0.8465178639695039, + 0.8674324881574892, + 0.894897491091307, + 0.8007950286452882, + 0.9200506754154923, + 0.8002254756609835, + 0.8055002075550022, + 0.8899568476668683, + 0.8050891517303731, + 0.7551272091668285, + 0.9170723522722332, + 0.8862820694208641, + 0.7731935891169762, + 0.8962930952966316, + 0.8545871559633028, + 0.973043266390798, + 0.8475513005495156, + 0.8919753086419753, + 0.9230719517449376, + 0.9818181818181816, + 0.8724508253662056, + 0.7850116015543995, + 0.7799035733456022, + 0.7709127626361537, + 0.8079919101295913, + 0.767668950942458, + 0.8706501932048896, + 0.8797516915893117, + 0.8063085414053331, + 0.9356832150292386, + 0.8438519069076046, + 0.8284948236315168, + 0.9064297442948914, + 0.9731718245680656, + 0.8146948605443374, + 0.8586700336700335, + 0.7917861568922506, + 0.8919445048153332, + 0.9275512725475664, + 0.8749102030655429, + 0.7586973969785762, + 0.8582940089755703, + 0.8288372093023257, + 0.9457912457912456, + 0.9067894216205786, + 0.8854903716972683, + 0.7712402158145529, + 0.8514488517233563, + 0.8119647131227026, + 0.7960368686049766, + 0.8764803941254208, + 0.7593988263019269, + 0.8332839656913731, + 0.8409641575217711, + 0.7830059960631146, + 0.8189152639403684, + 0.7914909068376863, + 0.8521396824062815, + 0.9429498910675382, + 0.787554569047141, + 0.9170262364403312, + 0.8143114753878038, + 0.8129887361537077, + 0.9416562889165628, + 0.8249965343560833, + 0.8184361507912837, + 0.7583136897041756, + 0.8954939454973427, + 0.9669995060071396, + 0.7678622085216633, + 0.7965505290883048, + 0.8025926314878588, + 0.8861176478495414, + 0.9066317021702632, + 0.781819981750254, + 0.8492357350911255, + 0.925730625364325, + 0.7682652462041775, + 0.7697542997542998, + 0.9647167592568326, + 0.7591823779426875, + 0.9809290093211468, + 0.8217563751752737, + 0.7791177041387707, + 0.9954545454545456, + 0.8281880073317623, + 0.8580430671412884, + 0.9032397543084568, + 0.7617771431813454, + 0.7866182087539877, + 0.7593988263019269, + 0.7752390906012949, + 0.8085158042512651, + 0.8909560347514579, + 0.9051334791710912, + 0.9066317021702632, + 0.7803249362542886, + 0.8737365714482546, + 0.9248568831411556, + 0.8383783163850447, + 0.9706054674756964, + 0.7623802782704252, + 0.9687833580671199, + 0.7739714809841708, + 0.8782693798816119, + 0.860081980641546, + 0.8833857030636293, + 0.792475110421586, + 0.8157848104775258, + 0.8701372997711668, + 0.9563298076485244, + 0.8490800833801486, + 0.7888565809250084, + 0.7741636141636141, + 0.8401837065840431, + 0.9484588138867748, + 0.9176863587872164, + 0.8973789818590386, + 0.8252966318058891, + 0.7617771431813454, + 0.8289524716549913, + 0.8621233137385207, + 0.7908116150724073, + 0.9316463142933343, + 0.7524570024570024, + 0.8718713242231872, + 0.7728726352092181, + 0.7603048533875102, + 0.973201661164624, + 0.8391298861361308, + 0.7893505683000169, + 0.8608078181360623, + 0.8171099429462456, + 0.8507008302142539, + 0.7796040841350689, + 0.8137991281050442, + 0.8701372997711668, + 0.7906337827256119, + 0.9493296120831972, + 0.782031346414908, + 0.7993113894954217, + 0.7720161433138532, + 0.864620467059047, + 0.8900050041356494, + 0.84746622922539, + 0.9115157598761456, + 0.9054424800276306, + 0.830044253645252, + 0.9288938029152748, + 0.8783604524820522, + 0.7944363835998364, + 0.7921163153910715, + 0.7869039663743268, + 0.948066117973837, + 0.9230788696114616, + 0.7965825732022186, + 0.7641898999679713, + 0.7858832626449197, + 0.8508778496367884, + 0.7802946460653972, + 0.7884721011749333, + 0.9513173145378848, + 0.8649568301570332, + 0.7764651372019794, + 0.8624508476571697, + 0.7631497975708502, + 0.838327526611037, + 0.8166721221205311, + 0.8852917218205886, + 0.763935088255619, + 0.849984522961002, + 0.8818076679096488, + 0.7698644841737025, + 0.8836658805318403, + 0.9201199939290072, + 0.8893648150618828, + 0.8891377897432868, + 0.8205353126405759, + 0.8024182735874719, + 0.922961632460186, + 0.946516510443614, + 0.8942981283868459, + 0.8132787513211815, + 0.9842229467473992, + 0.983927829355058, + 0.9897436575227496, + 0.7789928908269387, + 0.9491102207390418, + 0.8027373398034093, + 0.8097807158117007, + 0.7742275740436659, + 0.8269035371638741, + 0.8164279646777108, + 0.7959065093927479, + 0.9299044396563476, + 0.9815561030337692, + 0.8847353302545712, + 0.8534614846726633, + 0.8781863560189622, + 0.9215082393282026, + 0.8660956368114106, + 0.9778877366568356, + 0.8883570187308942, + 0.8645713114309883, + 0.9608961698823448, + 0.7504350893637566, + 0.7899138991389913, + 0.9237157509601476, + 0.8085999198472382, + 0.9842229467473992, + 0.7915641555108558, + 0.9869637610219488, + 0.8388856048166393, + 0.9083168071393158, + 0.996947496947497, + 0.836399552488273, + 0.8254759949956995, + 0.8054112554112555, + 0.8315151515151515, + 0.9072515573214316, + 0.8455703241525074, + 0.8837147279244052, + 0.992492576897818, + 0.7771153106793246, + 0.9632800296944952, + 0.8751296156972389, + 0.9439627106557767, + 0.7599245853190747, + 0.948022748326122, + 0.797922077922078, + 0.8079059133534838, + 0.9002093642315044, + 0.9417677188802858, + 0.9120792735085574, + 0.9325279623513651, + 0.9765978165772758, + 0.9783368141256884, + 0.803590017884114, + 0.8886194359553156, + 0.9424689576609075, + 0.8695613682942084, + 0.9090909090909088, + 0.8277566532211718, + 0.7800435531915323, + 0.9027223454052724, + 0.8465029384806168, + 0.8272613669834734, + 0.8224835092471747, + 0.7714797416324134, + 0.8924773755936107, + 0.9954545454545456, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8434706308388399, + 0.8017627702025453, + 0.7916704805491989, + 0.8995057307947333, + 0.84746622922539, + 0.8294442768393521, + 0.90276124713408, + 0.996221188255952, + 0.8143962421732175, + 0.980394402239746, + 0.9514741813067672, + 0.7581308936708563, + 0.9531775071717112, + 0.9001377198115018, + 0.8004102325039334, + 0.8735155491890395, + 0.8677050513455755, + 0.8445527067336185, + 0.9636363636363636, + 0.937103645050706, + 0.9694957490472002, + 0.9822495603003196, + 0.901072927769024, + 0.9510994238916862, + 0.9362530022505056, + 0.8219385637193856, + 0.9996947496947498, + 0.7644937203650517, + 0.758657620282485, + 0.8385429638854296, + 0.8490535457456533, + 0.7757575757575756, + 0.999122807017544, + 0.8217563751752737, + 0.8636588686952739, + 0.8019358454012121, + 0.8455800687861758, + 0.8017627702025453, + 0.7768542199488491, + 0.8884642600370833, + 0.84746622922539, + 0.7867084930870223, + 0.9926207992132684, + 0.9493296120831972, + 0.8445196063887654, + 0.9531775071717112, + 0.8571885156262036, + 0.8838874680306906, + 0.8891221903616687, + 0.9954545454545456, + 0.937103645050706, + 0.7996865517613174, + 0.9851370084561714, + 0.788353581901969, + 0.8469074304690744, + 0.8276687406622917, + 0.8844613609427292, + 0.9313089878738736, + 0.8709970502763632, + 0.8035084471465264, + 1, + 0.932761391647538, + 0.8392430039425867, + 0.945216049382716, + 0.7537357583191043, + 0.9719327874122964, + 0.9954545454545456, + 0.8217563751752737, + 0.8348054919908466, + 0.8788633070234552, + 0.8019358454012121, + 0.8725525105676494, + 0.8033211036934772, + 0.7916704805491989, + 0.8547301773579906, + 0.84746622922539, + 0.7867084930870223, + 0.974712351554919, + 0.9500266403708978, + 0.951008471157725, + 0.7628108176190548, + 0.9531775071717112, + 0.7716841489148686, + 0.9391877740213088, + 0.8677050513455755, + 0.8967939861988315, + 0.937103645050706, + 0.8551520659154248, + 0.9851370084561714, + 0.8893524283935244, + 0.8733160901863194, + 0.8916710007549704, + 0.9391302151973808, + 0.9965169569202568, + 0.9136739322359624, + 0.9206651788481804, + 0.8553134080531343, + 0.8530611929128231, + 0.9099770642201834, + 0.949825316001485, + 0.7714797416324134, + 0.8862820694208641, + 0.9970690618433798, + 0.7726587251245717, + 0.8995898027497777, + 0.999122807017544, + 0.8462714704650187, + 0.7559911987169416, + 0.7902969671765014, + 0.8017627702025453, + 0.7916704805491989, + 0.9312885573197214, + 0.8580430671412884, + 0.84746622922539, + 0.7598160347464082, + 0.870252992498577, + 0.992671182389769, + 0.9862539184209972, + 0.9514741813067672, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.948072129659398, + 0.8677050513455755, + 0.880780406807804, + 0.9991101223581756, + 0.937103645050706, + 0.9851370084561714, + 0.7606385491732779, + 0.9822495603003196, + 0.9376831513747739, + 0.9027223454052724, + 0.9526427685969672, + 0.9236004688155952, + 1, + 0.8401802481694282, + 0.9773557492735576, + 0.8553134080531343, + 0.8399280642635364, + 0.9943501037415146, + 0.9991101224022378, + 0.7643053750286719, + 0.8874398840030436, + 1, + 0.8119189817879228, + 0.8995898027497777, + 0.999122807017544, + 0.9908884770316014, + 0.81573077081821, + 0.9677933860111212, + 0.8398311720625258, + 0.84746622922539, + 0.7867084930870223, + 0.8985858297326429, + 0.992671182389769, + 0.7506209000762774, + 0.9848040830545792, + 0.9514741813067672, + 0.8622230550415498, + 0.9531775071717112, + 0.9429977116704804, + 0.9358184932420454, + 0.8831178664041944, + 0.8571885156262036, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.9851370084561714, + 0.9822495603003196, + 0.9355427814530765, + 0.7598493905068002, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.8534197605902789, + 0.9090909090909088, + 0.8755816117625161, + 0.986521739130435, + 0.7574533557466553, + 0.9090909090909088, + 0.9891304347826086, + 0.8981981278894755, + 0.8661577367496762, + 0.9416316165688026, + 0.8216969791585356, + 0.7977855477855479, + 0.7730257320319432, + 0.8155778185409907, + 0.806941459089035, + 0.8844523908637408, + 0.9819906110654324, + 0.9267146997929604, + 0.930689847575993, + 0.9272543317870856, + 0.9161147326586146, + 0.9592356458451337, + 0.8911833569094192, + 0.8682065217391305, + 0.8974752586594693, + 0.9606049878058373, + 0.9119804816878757, + 0.8291255500470529, + 0.9571129080563042, + 0.9252515037745752, + 0.8839422379842073, + 0.8731842629559791, + 0.956227485420032, + 0.9623460662981315, + 0.9060336327100176, + 0.9466681074558329, + 0.9773557492735576, + 0.8385429638854296, + 0.7548029253094148, + 0.9943501037415146, + 0.9991101224022378, + 0.7643053750286719, + 0.836061944840571, + 1, + 0.8995898027497777, + 0.999122807017544, + 0.8310447482966568, + 0.9416562889165628, + 0.8111421417088542, + 0.9107768322387694, + 0.7741435607326606, + 0.8710025282890884, + 0.7867084930870223, + 0.90276124713408, + 0.992671182389769, + 0.9470902930560504, + 0.9514741813067672, + 0.9531775071717112, + 0.9531702386026508, + 0.79960452652037, + 0.9133288665033964, + 0.842339274227116, + 0.8546919803903434, + 0.999777530589544, + 0.937103645050706, + 0.8941624677316798, + 0.9851370084561714, + 0.7831708752610594, + 0.9822495603003196, + 0.9315717953934872, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9773557492735576, + 0.7647361516158825, + 0.95942299709423, + 0.8553134080531343, + 0.8335272614441825, + 0.9943501037415146, + 0.9991101224022378, + 0.7643053750286719, + 0.8924773755936107, + 1, + 0.8591091351396698, + 0.8995898027497777, + 0.999122807017544, + 0.9416562889165628, + 0.7916704805491989, + 0.950603792184588, + 0.8460152283133167, + 0.84746622922539, + 0.7867084930870223, + 0.8881896291715989, + 0.992671182389769, + 0.7614851364851365, + 0.9848040830545792, + 0.9514741813067672, + 0.8605291005291005, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.8888976303496794, + 0.8637008456171156, + 0.999777530589544, + 0.937103645050706, + 0.941303736239802, + 0.9851370084561714, + 0.9822495603003196, + 0.9400644385653472, + 0.7589913068467564, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.8297199580886333, + 0.9090909090909088, + 0.8388354220573428, + 0.9440241802550384, + 0.8417508417508417, + 0.8349403911738127, + 0.7751196172248803, + 0.9824561403508774, + 0.8289326387041065, + 0.9363636363636364, + 0.8484963605932038, + 0.7878050123409911, + 0.7845412529955496, + 0.8978080587826363, + 0.8211938237064843, + 0.903572413997316, + 0.9759433010492332, + 0.930358431350264, + 0.773824015559919, + 0.9069851553477366, + 0.859207814594905, + 0.9063976387881104, + 0.982273978187496, + 0.8258268246116464, + 0.8378181818181819, + 0.8545698249141326, + 0.7874000986198109, + 0.880561913058948, + 0.9424238274563508, + 0.99359825065929, + 0.94959978379972, + 0.8034795384843756, + 0.8256241274761228, + 0.7845614802232331, + 0.8780499051174888, + 0.9016573566020095, + 0.996521739130435, + 0.8072721768598793, + 0.8757575757575757, + 0.996521739130435, + 0.8052552577805061, + 0.8262184063662379, + 0.9518172850747404, + 0.8509007531737288, + 0.8092916186648054, + 0.8448511242895973, + 0.8221400000560604, + 0.8780499051174888, + 0.8585150396488364, + 0.758257861793882, + 0.9127647109937574, + 0.8185902535630862, + 0.7647917209753416, + 0.8892853956679526, + 0.9240400548084888, + 0.9264066297227525, + 0.8454089009226885, + 0.8738453625296769, + 0.8228190336839921, + 0.9964912280701756, + 0.8440081063581091, + 0.8488300159492314, + 0.8886054092841905, + 0.9651624660242156, + 0.8337216929170275, + 0.8550497957993816, + 0.9818181818181816, + 0.9104377104377104, + 0.9930465133925186, + 0.8868917142282169, + 0.7519552584840934, + 0.9616732614626587, + 0.996521739130435, + 0.7508148487315153, + 0.9090909090909088, + 0.999122807017544, + 0.9090273199933117, + 0.897855261911528, + 0.999122807017544, + 0.8507462616258913, + 0.9136683713678436, + 0.8674088334090595, + 0.8594701086956521, + 0.908313797791604, + 0.9891493795585866, + 0.7642455368060652, + 0.8891663542156248, + 0.924175824175824, + 0.9395716586151368, + 0.9484409722518364, + 0.9641388361295768, + 0.9059750088690924, + 0.999122807017544, + 0.9047503889161738, + 0.9033269863614518, + 0.9033269863614518, + 0.8658678644015689, + 0.9443498545350396, + 0.8906789023521027, + 0.999122807017544, + 0.9551184069702588, + 0.7562762148337596, + 0.9773557492735576, + 0.8409090909090906, + 0.9960831758177524, + 0.9978260869565218, + 0.7508148487315153, + 0.8490484481225223, + 0.999122807017544, + 0.9090273199933117, + 0.897855261911528, + 0.999122807017544, + 0.8507462616258913, + 0.9416562889165628, + 0.786316100259506, + 0.7917643088450543, + 0.8674088334090595, + 0.7940883223309813, + 0.8392760078156812, + 0.908313797791604, + 0.9891493795585866, + 0.766483106515241, + 0.8959840947127665, + 0.8891663542156248, + 0.924175824175824, + 0.9395716586151368, + 0.9484409722518364, + 0.9641388361295768, + 0.974712351554919, + 0.999122807017544, + 0.9047503889161738, + 0.9033269863614518, + 0.9773557492735576, + 0.8895761362866625, + 0.9748201493966672, + 0.9033269863614518, + 0.7646806860332477, + 0.8800026263331926, + 0.9443498545350396, + 0.9956140350877192, + 0.932409671284977, + 0.999122807017544, + 0.9551184069702588, + 0.7562762148337596, + 0.9833457647662114, + 0.8409090909090906, + 0.8227240115332337, + 0.9947765595830976, + 0.9978260869565218, + 0.7508148487315153, + 0.8569860866157161, + 0.999122807017544, + 0.9090273199933117, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8521396824062815, + 0.9416562889165628, + 0.8683896350563016, + 0.783774936061381, + 0.936963017728694, + 0.8674088334090595, + 0.84746622922539, + 0.7880796625738841, + 0.908313797791604, + 0.9891493795585866, + 0.766483106515241, + 0.8356411205726275, + 0.8959840947127665, + 0.8891663542156248, + 0.924175824175824, + 0.9395716586151368, + 0.9484409722518364, + 0.9641388361295768, + 0.8643546462063086, + 0.9753454579899592, + 0.999122807017544, + 0.9047503889161738, + 0.9033269863614518, + 0.9851370084561714, + 0.9748201493966672, + 0.9033269863614518, + 0.7684710351377019, + 0.8800026263331926, + 0.9443498545350396, + 0.999122807017544, + 0.90662100456621, + 0.999122807017544, + 0.9551184069702588, + 0.7562762148337596, + 0.9833457647662114, + 0.8409090909090906, + 0.7928783407950074, + 0.8919753086419753, + 0.9978260869565218, + 0.7508148487315153, + 0.8490459410817468, + 0.999122807017544, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8507462616258913, + 0.9416562889165628, + 0.7684372454295727, + 0.936963017728694, + 0.8674088334090595, + 0.84746622922539, + 0.9891493795585866, + 0.984323635061576, + 0.9353365093463604, + 0.924175824175824, + 0.9395716586151368, + 0.963346594676518, + 0.8643546462063086, + 0.9047503889161738, + 0.9033269863614518, + 0.9851370084561714, + 0.9447497776699816, + 0.9787330446229278, + 0.9033269863614518, + 0.7646806860332477, + 0.8800026263331926, + 0.9443498545350396, + 0.8849247249134843, + 0.90662100456621, + 0.8830204170152121, + 0.7610810810810811, + 0.918761685155179, + 0.849564043730598, + 0.9295382499658214, + 0.8737807294339347, + 0.7524570024570024, + 0.8764855553630885, + 0.8881376171456311, + 0.8144653876435873, + 0.7569047619047621, + 0.9011440242078431, + 0.9721444518798692, + 0.8580395542059102, + 0.7556448396101646, + 0.8943463267997412, + 0.7708422347381368, + 0.8312540974287805, + 0.927155204148788, + 0.9242507691836442, + 0.8039533480013239, + 0.9253381976987183, + 0.9487056115959976, + 0.996333638863428, + 0.9061372721317869, + 0.8039194902068957, + 0.9773557492735576, + 0.8553134080531343, + 0.8316014689297133, + 0.9590943683409436, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049176, + 0.9997983870967744, + 0.8210917926103164, + 0.8995898027497777, + 0.999122807017544, + 0.9416562889165628, + 0.7854916126103976, + 0.8580430671412884, + 0.8452862219584866, + 0.90276124713408, + 0.992671182389769, + 0.9514741813067672, + 0.9531775071717112, + 0.9429977116704804, + 0.856399568810636, + 0.9607331879409255, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.8733160901863194, + 0.8902640300903737, + 0.9822495603003196, + 0.7724990486505474, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9505705348293196, + 0.890082588516155, + 0.9271888077994948, + 0.7647361516158825, + 0.9773557492735576, + 0.8553134080531343, + 0.9590943683409436, + 0.9991101224022378, + 0.8219385637193856, + 0.8478847935907573, + 0.9954545454545456, + 0.8210917926103164, + 0.8995898027497777, + 0.9479012434878824, + 0.8019358454012121, + 0.9416562889165628, + 0.8188858158239665, + 0.8055002075550022, + 0.8580430671412884, + 0.84746622922539, + 0.895416975651959, + 0.992671182389769, + 0.8356411205726275, + 0.8716815273032167, + 0.9429977116704804, + 0.8677050513455755, + 0.9607331879409255, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.9240556247405564, + 0.8819809439955775, + 0.9822495603003196, + 0.7999671002057498, + 0.9413092648977816, + 0.9954545454545456, + 0.9326966113459272, + 0.7838827173142349, + 0.9271888077994948, + 0.8469712140023324, + 0.9773557492735576, + 0.8553134080531343, + 0.8394616500465105, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049176, + 0.9994500458295142, + 0.8184361507912837, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8089287811425218, + 0.8553636363636363, + 0.7916704805491989, + 0.936963017728694, + 0.84746622922539, + 0.8181109552382406, + 0.8966477542865559, + 0.992671182389769, + 0.9775526793347032, + 0.9514741813067672, + 0.9531775071717112, + 0.9429977116704804, + 0.9341361232572516, + 0.7767581669691469, + 0.8677050513455755, + 0.999777530589544, + 0.937103645050706, + 0.9230017232221136, + 0.9851370084561714, + 0.8553134080531343, + 0.884737671188568, + 0.9413092648977816, + 0.9824561403508774, + 0.9505705348293196, + 0.8909999999999999, + 0.8933113072408856, + 0.7647361516158825, + 0.9929947676208064, + 0.8598347107438016, + 0.8490800833801486, + 0.9947856385396152, + 0.9990150209905604, + 0.7707081956166206, + 0.8952232922255726, + 1, + 0.8216057600038706, + 0.9000234404536862, + 1, + 0.8075842215036355, + 0.946198347107438, + 0.8021928166351607, + 0.7928741020793951, + 0.9344444444444444, + 0.8578858011832347, + 0.8483379501385041, + 0.7871436798157215, + 0.9025957850286672, + 0.9928936489808848, + 0.9846235837724948, + 0.9527305856232412, + 0.9434321361058602, + 0.9373115797727772, + 0.9350049149338372, + 0.8705701323251417, + 0.986135349716446, + 1, + 0.9357441792403746, + 0.941314332676578, + 0.9860141582025238, + 0.9826843100189036, + 0.9826843100189036, + 0.8050748795127288, + 0.884575512524494, + 0.9417436672967864, + 0.9937805570643936, + 0.9503788875440718, + 1, + 0.9245562130177516, + 0.7654094979252105, + 1, + 0.9090909090909088, + 0.8238490179500522, + 0.9637205387205386, + 0.9819008264462812, + 0.7757575757575756, + 0.8216057600038706, + 0.9000234404536862, + 1, + 0.8075842215036355, + 0.9217516347489824, + 0.799080529300567, + 0.9344444444444444, + 0.8948549687825181, + 0.9721268082486919, + 0.8409090909090906, + 0.9499201807471164, + 0.9527305856232412, + 0.9434321361058602, + 0.9206147765314164, + 0.9350049149338372, + 0.8640914933837429, + 0.9964943059402892, + 0.816272967863894, + 0.9860141582025238, + 0.928736342351717, + 0.9792393194706994, + 0.8994380853277835, + 0.9292599608634763, + 1, + 0.8362207611956006, + 0.9902353003770102, + 0.895080529300567, + 0.7602465480841565, + 0.9929947676208064, + 0.8598347107438016, + 0.8490800833801486, + 0.9947856385396152, + 0.9990150209905604, + 0.7707081956166206, + 0.8952232922255726, + 1, + 0.8216057600038706, + 0.9000234404536862, + 1, + 0.8011324661116951, + 0.8075842215036355, + 0.946198347107438, + 0.8021928166351607, + 0.7928741020793951, + 0.9344444444444444, + 0.8578858011832347, + 0.8483379501385041, + 0.9025957850286672, + 0.9928936489808848, + 0.9846235837724948, + 0.951299790877642, + 0.9527305856232412, + 0.9434321361058602, + 0.9396223310702196, + 0.9350049149338372, + 0.8705701323251417, + 0.986135349716446, + 1, + 0.9357441792403746, + 0.941314332676578, + 0.9860141582025238, + 0.9826843100189036, + 0.8050748795127288, + 0.884575512524494, + 0.9417436672967864, + 1, + 0.9503788875440718, + 1, + 0.9245562130177516, + 0.7654094979252105, + 0.9819008264462812, + 0.8598347107438016, + 0.8131334593572779, + 0.7690913021991601, + 0.9990150209905604, + 0.7707081956166206, + 1, + 0.8216057600038706, + 0.9000234404536862, + 1, + 0.8475686570924664, + 0.9583379501385041, + 0.8578858011832347, + 0.8245991597474406, + 0.8852652399934414, + 0.9928936489808848, + 0.81331932016418, + 0.8180035444849115, + 0.8711111111111112, + 0.7763165596167769, + 0.9350049149338372, + 1, + 0.9349642299687824, + 0.9860141582025238, + 0.9826843100189036, + 0.884575512524494, + 0.9417436672967864, + 0.996520316855316, + 1, + 0.9245562130177516, + 0.7654094979252105, + 0.8580139372822299, + 0.9830434782608694, + 0.8893524283935244, + 0.9954545454545456, + 0.9159300003279972, + 0.8181818181818182, + 0.7500000000000002, + 0.8938595877462214, + 0.9042008986509023, + 0.957287033071265, + 0.90234375, + 0.9223350132140808, + 0.8347334184691517, + 0.9207931801334324, + 0.8467468534925462, + 0.8855595367052747, + 0.7719095384164608, + 0.89266067021096, + 0.8763416775577225, + 0.9545454545454548, + 0.911370421730973, + 0.8444352108196725, + 0.889643133181266, + 0.7993302204531539, + 0.9838876285414652, + 0.981598371482293, + 0.8584226317602837, + 0.9320791500266458, + 0.9545454545454548, + 0.8557709287004716, + 0.8980542801375592, + 0.8619577717071254, + 0.9666063921681544, + 0.9199136660983444, + 0.954105606965682, + 0.8784735812133071, + 0.8146320346320346, + 0.8985141146494671, + 0.810999117201063, + 0.8039130434782609, + 0.8999203521041261, + 0.9046926758835667, + 0.9502900712294152, + 0.912840025574134, + 0.9565342960288808, + 0.908022550608102, + 0.7889688874990176, + 0.9947765595830976, + 0.9939130434782611, + 0.7541751489851583, + 0.8333567358870508, + 0.9077642484940728, + 0.89655436679566, + 0.8211280822082608, + 0.7590923827347885, + 0.891518378456824, + 0.9280303030303032, + 0.7756218002597997, + 0.8987662245043503, + 0.8668602157771254, + 0.801511385184123, + 0.9878450565293272, + 0.8198448448448448, + 0.8761625640592721, + 0.9331326790672908, + 0.8095673945542065, + 0.9692603418275338, + 0.8574834373128851, + 0.984385006449655, + 0.996521739130435, + 0.7993577556225364, + 0.904913008013858, + 0.908522355957097, + 0.8922324960716342, + 0.9027775208335084, + 0.8863636363636365, + 0.893013468013468, + 0.8159728122344945, + 0.94712477473252, + 0.9501526150902738, + 0.9360797940299664, + 0.7541751489851583, + 0.7667799490229397, + 0.7911852166525064, + 0.8545853753924373, + 0.8991709050477996, + 0.9636363636363636, + 0.8911305509993319, + 0.9280303030303032, + 0.7559479094211299, + 0.9484006454368564, + 0.8396074640434158, + 0.7602400762912697, + 0.8236580766813324, + 0.8818556180808311, + 0.9202063402841564, + 0.8401634217686861, + 0.9479922753053344, + 0.9495079748317234, + 0.9185105083088952, + 0.8116459489241595, + 0.9143375393297604, + 0.9496030156557552, + 0.8340405157441468, + 0.904913008013858, + 0.8855604489099591, + 0.8008650649412102, + 0.917917299639148, + 0.880492540216932, + 0.9964912280701756, + 0.8884778012684991, + 0.9772727272727272, + 0.9305426817265549, + 0.7903598392225994, + 0.913366781280282, + 0.9096320346320348, + 0.9904188832431408, + 0.996521739130435, + 0.7541751489851583, + 0.8171186929707505, + 0.9908763972444158, + 0.9077642484940728, + 0.89655436679566, + 0.772467875442053, + 0.860588835859315, + 0.9234883720930234, + 0.7875052854122622, + 0.933111940667877, + 0.8330354177655357, + 0.98656936388704, + 0.7578096064482999, + 0.8236580766813324, + 0.9347318308522028, + 0.8932895451827312, + 0.9285799156049388, + 0.9331326790672908, + 0.9644254304363626, + 0.9670876387294297, + 0.984385006449655, + 0.9939130434782611, + 0.8081449326727791, + 0.904913008013858, + 0.958843983408048, + 0.9074265343943518, + 0.914550550747443, + 0.9956140350877192, + 0.7875052854122622, + 0.8930995950038103, + 0.9583981105619436, + 0.7913282390616106, + 0.8553636363636363, + 0.9520786868217588, + 0.8227791822609921, + 0.7541751489851583, + 0.7533175355450237, + 0.7932981415505088, + 0.8738851187127049, + 0.8977552028386393, + 0.9636363636363636, + 0.8909590821089839, + 0.9280303030303032, + 0.7559479094211299, + 0.7751825777502708, + 0.9484006454368564, + 0.8164106024837708, + 0.8378181818181819, + 0.7561931059330722, + 0.8198448448448448, + 0.8746812582275244, + 0.917685782192232, + 0.8430950344725274, + 0.9479922753053344, + 0.9401658822908944, + 0.9345885985711606, + 0.7898873359402224, + 0.9291147879324685, + 0.9688056850309468, + 0.8399373186372248, + 0.904913008013858, + 0.8926128930190145, + 0.8013821571709653, + 0.9027775208335084, + 0.9068677230102368, + 0.9964912280701756, + 0.8884778012684991, + 0.9772727272727272, + 0.937931239097852, + 0.7893307769071134, + 0.8507923269391159, + 0.82454262425017, + 0.9956476370717128, + 0.997391304347826, + 0.7521112125156584, + 0.848613775065388, + 0.9982456140350876, + 0.9095579316931844, + 0.8974216292028354, + 0.9982456140350876, + 0.793236950671892, + 0.865081443540125, + 0.7910710359728593, + 0.7802662901330503, + 0.9360867018160518, + 0.8672259606948435, + 0.8465945179292698, + 0.7860877112960002, + 0.90741737640829, + 0.988714605208294, + 0.7650792722152087, + 0.9834028714566064, + 0.9319643313838056, + 0.8892009084674849, + 0.9238927452772132, + 0.938293658314696, + 0.9463111401682168, + 0.9638336347197108, + 0.8614957734733332, + 0.9743634159016108, + 0.9982456140350876, + 0.904567225435328, + 0.902432554260779, + 0.9842598587858048, + 0.9800758121375232, + 0.9031438311232313, + 0.7664643536742591, + 0.8798196380081303, + 0.9452382460255262, + 0.9982456140350876, + 0.9982456140350876, + 0.9542133966338968, + 0.7550919222167469, + 0.8650485436893204, + 0.9590943683409436, + 0.9899999999999998, + 0.7905998956595828, + 0.9964912280701756, + 0.8794606193667226, + 0.9543859649122808, + 0.8482253411306041, + 0.9416562889165628, + 0.8635977474267438, + 0.908313797791604, + 0.9882608695652176, + 0.9329580322176916, + 0.8517155377371683, + 0.9278910038068524, + 0.7982464236271342, + 0.8646739607798208, + 0.9813471226782764, + 0.9960869565217392, + 0.9094579806240582, + 0.9134140956933028, + 0.9851370084561714, + 0.97920631307383, + 0.977065643648764, + 0.8834465198075598, + 0.9747949320291138, + 0.932911746603152, + 0.999122807017544, + 0.959866019149962, + 0.7617844033057979, + 0.7748830995323981, + 0.8909999999999999, + 0.7596175070890622, + 0.8999999999999999, + 0.9123145440909052, + 0.8741654144553147, + 0.8398585426427478, + 0.8724872612693206, + 0.7669652718124924, + 0.8631126133046548, + 0.8409246558039661, + 0.8097354943626018, + 0.95990063654712, + 0.8969342300921225, + 0.9611031655225016, + 0.827297433674167, + 0.8779350849682387, + 0.8367440082204682, + 0.893013468013468, + 0.9964912280701756, + 0.7824996118615121, + 0.8861176478495414, + 0.9315029605665132, + 0.9240556247405564, + 0.7895079901300617, + 0.8675786978032918, + 0.7532931318639005, + 0.90662100456621, + 0.7716841489148686, + 0.7502640132876188, + 0.8438384213475643, + 0.8979659609796596, + 0.8433356634883351, + 0.8893524283935244, + 0.8088096745504153, + 0.916047252707554, + 0.8157092458590421, + 0.7713701554506877, + 0.8990439807701138, + 0.8907570363540729, + 0.9537544911348904, + 0.808038039840766, + 0.9851370084561714, + 0.8932164255129278, + 0.9471843568535036, + 0.9133288665033964, + 0.9132421335802218, + 0.8276330050739579, + 0.8868080394461477, + 0.8668829861852336, + 0.8964265087723556, + 0.9911660095629562, + 0.9182659870037116, + 0.8633272832102701, + 0.8186320718389478, + 0.8881896291715989, + 0.8840480861242009, + 0.8197634340126408, + 0.7611003116070912, + 0.8939095129169344, + 0.901240425894056, + 0.8290845270990632, + 0.8844734722345178, + 0.900672328635003, + 0.8611114838221064, + 0.9020646721236415, + 0.7524570024570024, + 0.9671031943607348, + 0.7643684665873062, + 0.9177602214566852, + 0.9280169976669376, + 0.9651126414686952, + 0.8767768595041323, + 0.933676703232262, + 0.8344383939714739, + 0.849693862814132, + 0.7954107032792184, + 0.933676703232262, + 0.938108321790696, + 0.928906596493303, + 0.7642353146981488, + 0.8546502548557862, + 0.8224212265843107, + 0.7710819445257563, + 0.8864829929760666, + 0.8716815273032167, + 0.8660098479761721, + 0.9025093300004408, + 0.8121071884193809, + 0.9607952743931896, + 0.8722498962224988, + 0.9310204439345414, + 0.9777167277167276, + 0.8010759771629337, + 0.8522718489127074, + 0.9093424633191152, + 0.8425177354450203, + 0.7805733235714439, + 0.8924918014613418, + 0.9893784849790032, + 0.8451386855821716, + 0.8875135039917615, + 0.9706691109074244, + 0.768635972404227, + 0.8133865875461221, + 0.9501902748414376, + 0.8687372572217293, + 0.7972263500644203, + 0.879221174323091, + 0.8580430671412884, + 0.8347523783886707, + 0.9006369722354359, + 0.992671182389769, + 0.9563291529742204, + 0.947447712690609, + 0.7790788334554246, + 0.9533492330474672, + 0.8986916130118449, + 0.9391877740213088, + 0.9348478408783754, + 0.8636563261069188, + 0.9225521327977664, + 0.9272525027808675, + 0.9347188997515521, + 0.7847695804918372, + 0.9443983271522132, + 0.9774342481963584, + 0.97920631307383, + 0.9390325835747532, + 0.7859442359319205, + 0.9452608121807992, + 0.8231219423433573, + 0.9939505041246564, + 0.8711884810416023, + 0.9664525827971132, + 0.8922813036020585, + 0.8517879419237278, + 0.9226251523770824, + 0.9989000916590284, + 0.912544997503788, + 0.8862043421277565, + 0.7932768442135997, + 0.8376774696711561, + 0.7841809006211181, + 0.7925277144429594, + 0.8649220965924544, + 0.8539211685273398, + 0.8363949697251979, + 0.8264854203894482, + 0.9072225728615328, + 0.992671182389769, + 0.8515020101968744, + 0.9309305726600986, + 0.9543209471735604, + 0.9391877740213088, + 0.9348478408783754, + 0.8914844044126526, + 0.9256464785119556, + 0.9954545454545456, + 0.9374817381090278, + 0.7688326686368462, + 0.8925869273677869, + 0.9703270521983972, + 0.9809453113164672, + 0.8066868740036242, + 0.8351972694191357, + 0.8433153659377112, + 0.9392359594194456, + 0.8888965657897014, + 0.8930757789029354, + 0.999083409715857, + 0.9743963538884604, + 0.7953195319531954, + 0.8454219118804093, + 0.9502704567873635, + 0.9458992126856904, + 0.7644077516403233, + 0.8706106552426165, + 0.9965172600923464, + 0.8217563751752737, + 0.9124729676453814, + 0.9818515123739688, + 0.8086304821445487, + 0.9321596244131456, + 0.7740195848021936, + 0.8328682787543888, + 0.8700240408314942, + 0.8580430671412884, + 0.8444444444444444, + 0.8063613046642976, + 0.870252992498577, + 0.992671182389769, + 0.9630275323942066, + 0.9518090954793984, + 0.8248761807094434, + 0.9566474322858416, + 0.9285566337630128, + 0.9391877740213088, + 0.9348478408783754, + 0.8389228250888328, + 0.908538082241886, + 0.9906562847608452, + 0.937727360640436, + 0.8522952375426849, + 0.9459029430545072, + 0.970027764388316, + 0.9817818865916694, + 0.8466376695566143, + 0.7811519654537372, + 0.9366631199668156, + 0.9535299764377344, + 0.9032200335646016, + 0.9998166819431716, + 0.8480421626051209, + 0.9780701754385964, + 0.8055944055944054, + 0.8519962283651035, + 0.9944372261358286, + 0.8909859611558665, + 0.9930339138405136, + 0.8688321482439127, + 0.8739386859650123, + 0.7999172993636504, + 0.8106128029621074, + 0.9095679827050769, + 0.8277677156441022, + 0.779649885583524, + 0.8288552731227062, + 0.8574961012970123, + 0.841109866865746, + 0.792355474053602, + 0.8966775300321758, + 0.992671182389769, + 0.9572785040629562, + 0.9291879754864996, + 0.889317620077831, + 0.9515562365156858, + 0.9348478408783754, + 0.8753775156331067, + 0.9532353404791928, + 0.9954545454545456, + 0.937189056965018, + 0.9715579478946336, + 0.959737826278744, + 0.961743440323128, + 0.9796080671884818, + 0.8052224642752426, + 0.7647985836235606, + 0.8987594276173578, + 0.935391253108552, + 0.9994500458295142, + 0.8855041459997729, + 0.9090909090909088, + 0.778450363196126, + 0.8409090909090906, + 0.9903940886699508, + 0.9132561051004052, + 0.8590718015934052, + 0.9118814562362948, + 0.7681025602181487, + 0.7961600220298013, + 0.8228255528255527, + 0.7862727272727271, + 0.8598109918146062, + 0.9327132807405768, + 0.8460922217047043, + 0.9090909090909088, + 0.7565260131563887, + 0.8064786173763172, + 0.8049646954986759, + 0.8147984533079082, + 0.8706455071105871, + 0.889459843292596, + 0.8753408574458414, + 0.78943545201723, + 0.9225337271553442, + 0.8471976396567684, + 0.9582046990267186, + 0.7739383306543302, + 0.8439728108918513, + 0.9681818181818184, + 0.9147990007027552, + 0.8965678134850725, + 0.9229230100043496, + 0.8814426843808552, + 0.8299673329703665, + 0.953884157786154, + 0.9568896321070232, + 0.927359277258842, + 0.926999815931348, + 0.9084797370520777, + 0.7588691796008868, + 0.8925148498881217, + 0.941101152368758, + 0.7976890157802166, + 0.8191512279190005, + 0.9383783723654014, + 0.9687898089171972, + 0.8227272727272728, + 0.9667829842995462, + 0.8430578512396696, + 0.8462362704327265, + 0.9937731747479652, + 0.8598347107438016, + 0.9018993376896012, + 0.9380859781477626, + 0.7965452139741043, + 0.8408374965151522, + 0.828891493383743, + 0.8037512287334593, + 0.9310557094490612, + 0.7905217546826223, + 0.8803334593572778, + 0.948060941828255, + 0.9808836171606353, + 0.9419954799687824, + 0.9000657462195923, + 0.9762481841119351, + 0.958536231884058, + 0.8689482041587903, + 0.9625071374155625, + 0.9421304353743684, + 0.9000657462195923, + 0.909072064464046, + 0.7770347430724859, + 0.8258664204370577, + 0.931003010693105, + 0.936341359994194, + 0.944622600300256, + 0.7698155009451796, + 0.9886242163794032, + 0.8385429638854296, + 0.8460152283133167, + 0.8244642857142859, + 0.90662100456621, + 0.8965017504270001, + 0.9477543538038498, + 0.934372987530004, + 0.7966912350949062, + 0.8521832338962485, + 0.8284602000869942, + 0.8025417478298693, + 0.9275512725475664, + 0.9004149252037746, + 0.9814823072033312, + 0.9441436310000064, + 0.9038201493163326, + 0.9502409737496426, + 0.8660854435766022, + 0.880780406807804, + 0.932626333246618, + 0.8230247277595698, + 0.9169832716276728, + 0.9163600219843964, + 0.7558559856410743, + 0.8249965343560833, + 0.9341554258408444, + 0.8231479245485526, + 0.9054813423400642, + 0.7909076419763443, + 0.7862727272727271, + 0.8658008658008658, + 0.996330951542531, + 0.9364502164502164, + 0.7650216450216449, + 0.794733291750721, + 0.894436842425348, + 0.9071691672620463, + 0.8475960459042418, + 0.825019069412662, + 0.9011154934052964, + 0.9888403534005904, + 0.9064975857191632, + 0.8040148172573156, + 0.7544972303681978, + 0.8394258450740808, + 0.8722248098121411, + 0.8832034632034632, + 0.9242506379637506, + 0.8626119406890994, + 0.878664636798608, + 0.796428039082196, + 0.7737936507936508, + 0.9772426641825802, + 0.9771984786553624, + 0.7754989006737327, + 0.9842229467473992, + 0.9545454545454548, + 0.8536368018578387, + 0.9904302907657898, + 0.9985875706214687, + 0.7822341892305151, + 0.8895952017025273, + 0.9977822580645164, + 0.822054489456517, + 0.9068929556529068, + 0.9969759694040504, + 0.8227635041015324, + 0.92385752642948, + 0.7644903235840163, + 0.7893527624833871, + 0.9290762303990062, + 0.8549939348739194, + 0.9024751306250636, + 0.9939538727034296, + 0.9838663951689132, + 0.9555403520366936, + 0.8659230906299106, + 0.9555403520366936, + 0.936556104044048, + 0.9365262267264388, + 0.943947221044588, + 0.8711152458705146, + 0.981787734953484, + 0.9977753058954394, + 0.939105864661958, + 0.941241408860912, + 0.9772426641825802, + 0.9783368141256884, + 0.9783368141256884, + 0.8035224554513878, + 0.8878885108220647, + 0.9498970784947516, + 0.9954182612676434, + 0.8911007105869436, + 0.9977822580645164, + 0.9332845830090168, + 0.7698457560674342, + 0.8237875450920827, + 0.7694629219019462, + 0.9545454545454548, + 0.7676911617909391, + 0.8737944824901346, + 0.7706024497958504, + 0.7971142965635086, + 0.797381306659819, + 0.8620542233987611, + 0.8139854059928581, + 0.9887078033035884, + 0.9359939732913412, + 0.816825438145235, + 0.8422527112008905, + 0.8452819441807481, + 0.8400216450216451, + 0.8999203521041261, + 0.929916690661292, + 0.830854814143431, + 0.9513142174432496, + 0.9688527588701455, + 0.9228795379537954, + 0.7730756056428137, + 0.958302500539574, + 0.8026224595457895, + 0.804211768109809, + 0.999122807017544, + 0.9565843431073292, + 0.8024218124622581, + 0.8815110224684692, + 0.8108800084863914, + 0.9608990650462856, + 0.7587225856098497, + 0.8465945179292698, + 0.8955974273031978, + 0.9430511599324012, + 0.7968522430480871, + 0.942185445331794, + 0.8678328134388728, + 0.8589010971043637, + 0.9773557492735576, + 0.8072544965953004, + 0.9954545454545456, + 0.8468840523666226, + 0.7893040004872826, + 0.999122807017544, + 0.8702035016515567, + 0.7949970358330488, + 0.9294585399607892, + 0.8407994285729776, + 0.8788200589970502, + 0.8314481030702937, + 0.831385641452182, + 0.9804378566350936, + 0.9129349807104162, + 0.8141494511694449, + 0.9133990354371988, + 0.9851370084561714, + 0.9095532047456912, + 0.8505448360551613, + 0.963157894736842, + 0.7634237761904064, + 0.9011822106778054, + 0.9956171156600898, + 0.95942299709423, + 0.8553134080531343, + 0.8472097261066925, + 0.9805098186910532, + 0.8553134080531343, + 0.7714797416324134, + 0.9997983870967744, + 0.8217563751752737, + 0.8946470109877639, + 0.999122807017544, + 0.8354069917967499, + 0.9416562889165628, + 0.7916704805491989, + 0.936963017728694, + 0.8580430671412884, + 0.84746622922539, + 0.7867084930870223, + 0.8909560347514579, + 0.992671182389769, + 0.9848040830545792, + 0.8630706569122703, + 0.8702378201869908, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.907644799841382, + 0.999122807017544, + 0.9414868925909092, + 0.9335682269765724, + 0.8893524283935244, + 0.9822495603003196, + 0.8052224642752426, + 0.9379369101877942, + 0.9090909090909088, + 0.756404071529602, + 0.9271888077994948, + 0.9921175854473762, + 0.8553134080531343, + 0.9943501037415146, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049176, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8089287811425218, + 0.8017627702025453, + 0.7916704805491989, + 0.936963017728694, + 0.8580430671412884, + 0.84746622922539, + 0.7867084930870223, + 0.90276124713408, + 0.992671182389769, + 0.8072821072057714, + 0.9848040830545792, + 0.8189889492826025, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.974712351554919, + 0.999777530589544, + 0.937103645050706, + 0.9773557492735576, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9503668087629396, + 1, + 0.9271888077994948, + 0.7647361516158825, + 0.9807297003570874, + 0.9364502164502164, + 0.7901612469857595, + 0.824287208001439, + 0.9807297003570874, + 0.7614649785030472, + 0.8658008658008658, + 0.9939130434782611, + 0.9066651512935219, + 0.8939526037506182, + 0.9842229467473992, + 0.865081443540125, + 0.9167169276268624, + 0.8794346322201474, + 0.765130456168069, + 0.8734544866674276, + 0.909520787797598, + 0.8854931946173012, + 0.7673924006226841, + 0.8798233135618779, + 0.9852364106660584, + 0.7637569649841349, + 0.9348260838243078, + 0.933522474466579, + 0.8377846225826576, + 0.9583806183156228, + 0.9331326790672908, + 0.9383147514181556, + 0.9589825216566162, + 0.8060876415101113, + 0.9783224922971588, + 0.9583806183156228, + 0.899590944489805, + 0.8941653123998358, + 0.9668188169538892, + 0.9783224922971588, + 0.9679972612119138, + 0.8797605429806478, + 0.7963975193082085, + 0.8839816990630294, + 0.9431528211472392, + 0.8367334869051766, + 0.8658008658008658, + 0.9921746738179468, + 0.9020614173817516, + 0.7562166685686029, + 0.8984134398306008, + 0.9687833580671199, + 0.8324262590094272, + 0.7778237575832933, + 0.8480007561436672, + 0.9579079093729875, + 0.845860397670802, + 0.7551254672930834, + 0.8899966113703928, + 0.7908116150724073, + 0.8910183976510794, + 0.9586402202505121, + 0.9614055686011409, + 0.9466976131633718, + 0.8344345242846016, + 0.7881948755231197, + 0.8703128420935895, + 0.7758848540806752, + 0.9184591472656428, + 0.9495128094164198, + 0.8796487671810186, + 0.7514068195240423, + 0.8716815273032167, + 0.9882425857143352, + 0.9633770826635396, + 0.7728726352092181, + 0.7549603797492292, + 0.8460813462362223, + 0.9172118090262832, + 0.992952541754412, + 0.8606043918383145, + 0.7745935959659945, + 0.9636724437338746, + 0.7960368686049766, + 0.8285988264418827, + 0.9708841861711646, + 0.8299341990318011, + 0.8419381421530754, + 0.784953771420362, + 0.7591712665406429, + 0.8689452322602814, + 0.7766626862314431, + 0.7843042441238667, + 0.7800515724165504, + 0.8797549464963943, + 0.9919502705663622, + 0.9893735932410646, + 0.8894092494980258, + 0.8411462167336957, + 0.8604416000492892, + 0.9391164837414664, + 0.9875732201051683, + 0.8668958338409165, + 0.910974119092226, + 0.9335682269765724, + 0.8903543205412945, + 0.7579050997201501, + 0.9129974387310056, + 0.8184361507912837, + 0.8985858297326429, + 0.8811309071018276, + 0.9600766541682176, + 0.9142379797053092, + 0.8553282796247272, + 0.9209665616774528, + 0.7653056658292261, + 0.9428934497795352, + 0.9766567420679494, + 0.9320892949781068, + 0.8764803941254208, + 0.9615141634622412, + 0.8025926314878588, + 0.935632010504501, + 0.9954545454545456, + 0.8383046372479713, + 0.8085158042512651, + 0.8799003347391113, + 0.8519408442208185, + 0.7642901122754603, + 0.9104413159581644, + 0.89138879753655, + 0.8889595044710776, + 0.8674196841123456, + 0.9890311615492476, + 0.9817061821644611, + 0.9645756670815068, + 0.9013683659572824, + 0.9379327738576018, + 0.8277684278026405, + 0.8025926314878588, + 0.8164472422898458, + 0.9476735033728184, + 0.9280169976669376, + 0.9400644385653472, + 0.8571175858480748, + 0.9457607069255074, + 0.7890197773695017, + 0.9341554258408444, + 0.8197634340126408, + 0.9579224065577792, + 0.8701372997711668, + 0.9529052383428788, + 0.9845238804935112, + 0.909042520211614, + 0.7869703117696519, + 0.8276242108365519, + 0.878685196514601, + 0.7563441975980676, + 0.7552008456659621, + 0.9576803072122886, + 0.7766774350616475, + 0.8786356094048401, + 0.8863636363636365, + 0.8824223337513897, + 0.915641381346678, + 0.9097297101659864, + 0.952612204076308, + 0.9667491997801664, + 0.9203132832080203, + 0.8318181818181817, + 0.8553636363636363, + 0.7733211512105985, + 0.8722470169622666, + 0.8975645313091688, + 0.8977159303535192, + 0.9912311643305796, + 0.9024231247013856, + 0.86918360351979, + 0.8278906432659406, + 0.8317573749391951, + 0.9643924081792452, + 0.938598748759861, + 0.984466571720076, + 0.9883020564051679, + 0.977397740533538, + 0.8324262590094272, + 0.957204861709126, + 0.9815689054392762, + 0.9723297607875788, + 0.9166058436529154, + 0.7521706555006759, + 0.9280169976669376, + 0.9358035287465732, + 0.8764803941254208, + 0.9153455696596016, + 0.8469432605765171, + 0.99268071993084, + 0.988226739831974, + 0.996336999414424, + 0.9244884191211992, + 0.8507008302142539, + 0.9593509283699424, + 0.8061755182821719, + 0.9615141634622412, + 0.9839330712663648, + 0.9555873521968756, + 0.9775173594082412, + 0.8128624949482813, + 0.9514741813067672, + 0.9817522080920388, + 0.981025791388756, + 0.9818181818181816, + 0.9710861248452468, + 0.9773557492735576, + 0.890085589718168, + 0.954337370755309, + 0.8919753086419753, + 0.8552031760963528, + 0.9545454545454548, + 0.8563472606128697, + 0.8478228971791203, + 0.8853335760168058, + 0.825019069412662, + 0.8305431015989557, + 0.7900733399481583, + 0.9108949697942603, + 0.917855352912078, + 0.8955772084667657, + 0.82987479094277, + 0.9090909090909088, + 0.9331273751154144, + 0.841981268119079, + 0.9061617983216465, + 0.7650216450216449, + 0.8414755340099983, + 0.9939138029238658, + 0.8766192814819845, + 0.8315151515151515, + 0.8473382904078122, + 0.914059797380776, + 0.7659476739028936, + 0.8559376367887911, + 0.8114111498257839, + 0.7943527200862163, + 0.7697780793564009, + 0.8192024956758094, + 0.9625172175038818, + 0.9466379024540816, + 0.9248249108281914, + 0.7835010344179048, + 0.7696916201990726, + 0.8741784037558686, + 0.8788591215600511, + 0.7847145200343669, + 0.995553782140972, + 0.885547201336675, + 0.932238896428148, + 0.8666467850773247, + 0.9318181818181815, + 0.874330829529188, + 0.8477600534912598, + 0.8513796499579376, + 0.7928688716866057, + 0.8300839482005723, + 0.8104640050546934, + 0.7623555471966228, + 0.8477133966865695, + 0.8069468267581477, + 0.7970641933918771, + 0.7517470662254077, + 0.811386593204775, + 0.8200234516324811, + 0.8169486429889492, + 0.8731362653208361, + 0.8763157894736843, + 0.8185744024917364, + 0.9052173913043478, + 0.8415792985968426, + 0.7820239132603559, + 0.8373297473297473, + 0.7516072325464591, + 0.9659417587369664, + 0.7649602377888222, + 0.7936066126855602, + 0.9090909090909088, + 0.945216049382716, + 0.8771929824561405, + 0.8174876847290639, + 0.8553636363636363, + 0.8455433455433455, + 0.9233441393338415, + 0.8437332724582007, + 0.832909538499891, + 0.840948616293985, + 0.8177290491628549, + 0.9175438596491228, + 0.882198952879581, + 0.8150509397735729, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.7862727272727271, + 0.8107452697678261, + 0.9637205387205386, + 0.852293824358888, + 0.8709558996012198, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352229, + 0.805168828270855, + 0.9090909090909088, + 0.8771929824561405, + 0.8174876847290639, + 0.8813770455902434, + 0.8553636363636363, + 0.8455433455433455, + 0.8049385749385749, + 0.8437332724582007, + 0.832909538499891, + 0.8177290491628549, + 0.9175438596491228, + 0.8767128866853765, + 0.8150509397735729, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.7862727272727271, + 0.8107452697678261, + 0.9637205387205386, + 0.852293824358888, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.805168828270855, + 0.9545454545454548, + 0.9545454545454548, + 0.8298946640273919, + 0.8041381029540074, + 0.9786956521739132, + 0.9055353950321428, + 0.8658008658008658, + 0.8041630667784955, + 0.792782754772987, + 0.8259976777571356, + 0.8220626497774737, + 0.8210461476724114, + 0.8101813436763873, + 0.971001604361102, + 0.9289464621791536, + 0.8732908588456849, + 0.9320839327803117, + 0.7799127011297503, + 0.9521230391509398, + 0.8387538514207465, + 0.8873673399520713, + 0.8919696969696971, + 0.9939130434782611, + 0.9772426641825802, + 0.8315151515151515, + 0.8408502506153573, + 0.9545454545454548, + 0.8658008658008658, + 0.9939130434782611, + 0.9418179668098864, + 0.7650216450216449, + 0.8654908035026879, + 0.9992656508417233, + 0.7803152709359605, + 0.833023231770358, + 0.9983501374885428, + 0.8042480240124439, + 0.7697542997542998, + 0.9203347173341052, + 0.8077175608822436, + 0.863207096556374, + 0.9891326164874552, + 0.8157646741278424, + 0.8722929363621342, + 0.8412806151509398, + 0.9100844696456204, + 0.9172591608126068, + 0.9170938628158845, + 0.8485714285714286, + 0.8571645021645024, + 0.8877796694698104, + 0.8146320346320346, + 0.9983501374885428, + 0.9617032985121432, + 0.9108802545427966, + 0.9508984239139112, + 0.9181661424871335, + 0.9529605866177816, + 0.8319465220643232, + 0.8402426098282156, + 0.9191026771713572, + 0.819087310370122, + 0.8628923192823611, + 0.9602434075673276, + 0.7593235251819751, + 0.9456277248027678, + 0.9435343652049158, + 0.9302009048080272, + 0.7932712550607288, + 0.8786981717234608, + 0.8486842544219593, + 0.9126746767131658, + 0.9486042010676804, + 0.9038724480869904, + 0.958686173433348, + 0.7865058108244474, + 0.8704285747314824, + 0.9240999622367164, + 0.806845704003599, + 0.9624336598289146, + 0.8942981283868459, + 0.8045481228624208, + 0.9823493170094518, + 0.8126984126984126, + 0.998531571416838, + 0.8419809946143553, + 0.9228410057516631, + 0.9946871424565764, + 0.814372836946585, + 0.8452819441807481, + 0.9757439972091474, + 0.7999757977078849, + 0.811708695128781, + 0.9226825090266608, + 0.915537959944108, + 0.8447134792639336, + 0.7824996118615121, + 0.9004189790402766, + 0.992492576897818, + 0.8141116751269034, + 0.9641837718077296, + 0.8643778677462887, + 0.9569910794861844, + 0.8929721958656435, + 0.9134879224116806, + 0.8981798632747807, + 0.81115791740409, + 0.9732801304295486, + 0.9270758346340522, + 0.9377496859510692, + 0.9314133822181484, + 0.97145319916461, + 0.969655719759168, + 0.774258455570617, + 0.7646989654610622, + 0.9179126246763072, + 0.9344663297510818, + 0.9954192028862328, + 0.7896845621854086, + 0.9455885850178358, + 0.9633770826635396, + 0.8393119121793614, + 0.9022475277597836, + 0.8956434074042219, + 0.8868725897920605, + 0.947727507922727, + 0.8100165040010109, + 0.7541551246537396, + 0.7542451891577083, + 0.917562326869806, + 0.8951137084436364, + 0.9046867398146928, + 0.9823446334538573, + 0.7795168102658113, + 0.98334457368405, + 0.949870071311262, + 0.7943210699040147, + 0.8322736882141543, + 0.9149338374291116, + 0.8997612989216043, + 0.957120046591764, + 0.8238720996776804, + 0.9493296120831972, + 0.9088759068464726, + 0.929966729678639, + 0.909593974766178, + 0.9088759068464726, + 0.7862360164041836, + 0.9165811787189776, + 0.9386430599161039, + 0.8032011401974772, + 0.7862727272727271, + 0.9754897598639012, + 0.7600017202867505, + 0.9455885850178358, + 0.9633770826635396, + 0.8436837588803084, + 0.8980736820318737, + 0.8859552362571937, + 0.8868725897920605, + 0.947727507922727, + 0.8057328891947176, + 0.761469327784964, + 0.8875623268698062, + 0.8965017504270001, + 0.9039894860912128, + 0.984298575553884, + 0.7714232447296058, + 0.98334457368405, + 0.949870071311262, + 0.7943210699040147, + 0.8202771072840704, + 0.9149338374291116, + 0.8933801982348771, + 0.957120046591764, + 0.8238720996776804, + 0.9529052383428788, + 0.90120315914534, + 0.929966729678639, + 0.945128934703434, + 0.9095750421335858, + 0.7766558276104735, + 0.9151778010434616, + 0.9471874624563446, + 0.8378181818181819, + 0.9754897598639012, + 0.7691572905827265, + 0.7959133007990622, + 0.8262184063662379, + 0.9894645159690536, + 0.996521739130435, + 0.7819131922573495, + 0.850401606425703, + 0.996521739130435, + 0.9077642484940728, + 0.89655436679566, + 0.9964912280701756, + 0.7938737011467188, + 0.8802936186789987, + 0.9280303030303032, + 0.7987525608923287, + 0.755239120734144, + 0.9308288388816562, + 0.8668602157771254, + 0.8448511242895973, + 0.7961445704225082, + 0.9099056220340456, + 0.9878450565293272, + 0.7642455368060652, + 0.9778493899137112, + 0.8965968223131894, + 0.8932895451827312, + 0.9285799156049388, + 0.9432927941623594, + 0.9496993493645752, + 0.9692603418275338, + 0.8702493159014899, + 0.9739749369603424, + 0.996521739130435, + 0.8907367280606716, + 0.904913008013858, + 0.968471177944862, + 0.825, + 0.9027775208335084, + 0.7617903311136486, + 0.884146408684465, + 0.9446018376578228, + 0.9964912280701756, + 0.908597321143829, + 0.996521739130435, + 0.9619598036238828, + 0.760301236816147, + 0.9921175854473762, + 0.8553134080531343, + 0.9943501037415146, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049176, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8089287811425218, + 0.9416562889165628, + 0.7955445656901864, + 0.7916704805491989, + 0.936963017728694, + 0.8580430671412884, + 0.90276124713408, + 0.992671182389769, + 0.9848040830545792, + 0.9514741813067672, + 0.8630706569122703, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.9857005881574218, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.9851370084561714, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.8931621545809378, + 1, + 0.9271888077994948, + 0.7647361516158825, + 0.9921175854473762, + 0.8553134080531343, + 0.9943501037415146, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049176, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8089287811425218, + 0.8017627702025453, + 0.7916704805491989, + 0.936963017728694, + 0.8580430671412884, + 0.84746622922539, + 0.7867084930870223, + 0.90276124713408, + 0.992671182389769, + 0.8072821072057714, + 0.9848040830545792, + 0.8189889492826025, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.974712351554919, + 0.999777530589544, + 0.937103645050706, + 0.9773557492735576, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9503668087629396, + 1, + 0.9271888077994948, + 0.7647361516158825, + 0.8653436259062406, + 0.9166666666666666, + 0.8513043478260871, + 0.888762154374558, + 0.9072684799014413, + 0.8911473104418144, + 0.8931451612903224, + 0.8046414142652472, + 0.8069790866112391, + 0.8818832214815736, + 0.8945874001774624, + 0.8064644137224782, + 0.8411703547857459, + 0.8850692346282528, + 0.755864605581299, + 0.8544702845816942, + 0.9105444641861692, + 0.9339130434782608, + 0.8908740092733132, + 0.8673913043478261, + 0.8286547121919265, + 0.95706340378198, + 0.9119365546072284, + 0.9110759625390218, + 0.9018301785200464, + 0.9107392505404756, + 0.812383779297877, + 0.8091839475036197, + 0.92656200324369, + 0.9618472252807516, + 0.9614035087719296, + 0.7500000000000002, + 0.8598402189827489, + 0.9545454545454548, + 0.9545454545454548, + 0.8298946640273919, + 0.8041381029540074, + 0.9786956521739132, + 0.9055353950321428, + 0.8658008658008658, + 0.8041630667784955, + 0.792782754772987, + 0.8259976777571356, + 0.8220626497774737, + 0.8210461476724114, + 0.8101813436763873, + 0.971001604361102, + 0.9289464621791536, + 0.8732908588456849, + 0.9320839327803117, + 0.7799127011297503, + 0.9521230391509398, + 0.8387538514207465, + 0.8873673399520713, + 0.8919696969696971, + 0.9939130434782611, + 0.9772426641825802, + 0.8315151515151515, + 0.8408502506153573, + 0.9545454545454548, + 0.8658008658008658, + 0.9939130434782611, + 0.9418179668098864, + 0.912126399896816, + 0.8887138991962918, + 0.8348061215534456, + 0.9654149311197341, + 0.9378050392345934, + 0.7862793427792023, + 0.8443604690958973, + 0.9593698200373342, + 0.8512088827319056, + 0.8685180682717806, + 0.8468774244700616, + 0.7714560308712177, + 0.8438870652966832, + 0.8969414245866957, + 0.7886269744426645, + 0.7869777589350374, + 0.8088224211621804, + 0.8437355447339081, + 0.7910699721201396, + 0.8676659390892717, + 0.9527613124711042, + 0.8204485735368444, + 0.9271303344105843, + 0.8146456352114138, + 0.8976037629362695, + 0.8683719728292518, + 0.8802027440346276, + 0.9196776036942447, + 0.8365367223192828, + 0.9120870195043488, + 0.8288691920804903, + 0.8922059565791751, + 0.8856333436369807, + 0.8958383344884892, + 0.8547177456502489, + 0.8876177172043811, + 0.8044462631285333, + 0.7769360074394543, + 0.870165794962474, + 0.9088771460360435, + 0.8639440219481173, + 0.8216171045177142, + 0.9553836542485572, + 0.8590281921783777, + 0.7787593370202928, + 0.980480932194884, + 0.859475457715449, + 0.8392883910692737, + 0.9697334753456728, + 0.9875342767410386, + 0.7762805813227043, + 0.8819115666628253, + 0.9996664755680739, + 0.8213533116534559, + 0.8993451012599613, + 0.994957229074001, + 0.8044910674094043, + 0.8264324715896463, + 0.9192754972628756, + 0.7970964194386293, + 0.7945612011511877, + 0.9286518512105283, + 0.8566385381298418, + 0.8419664159663934, + 0.8037444492468451, + 0.8979338496600437, + 0.9911725943373176, + 0.8072821072057714, + 0.9582948583751757, + 0.9361559940016043, + 0.848885751747483, + 0.9282065099530084, + 0.9375384371708221, + 0.9244381440159178, + 0.922778749811867, + 0.863030950010363, + 0.9604336230108552, + 0.9997485909897145, + 0.9281372808943766, + 0.9220884721293067, + 0.9635181750863282, + 0.9383494988405086, + 0.9820953369402764, + 0.8113952633989926, + 0.7593325960761085, + 0.8846768686559165, + 0.9402013525622738, + 0.98884684307581, + 0.9345641592934529, + 0.9797300792648269, + 0.9211896852548491, + 0.7727183435914119, + 0.8553134080531343, + 0.7923275652679538, + 0.7819131922573495, + 0.7906170310433895, + 0.8406484670606788, + 0.7894736842105264, + 0.8681498428014106, + 0.8408063572139095, + 0.7738548847622624, + 0.8107066154287429, + 0.909636086500905, + 0.9320839327803117, + 0.894689054121916, + 0.8861995746607623, + 0.8134896030245747, + 0.9636363636363636, + 0.8392276737347159, + 0.901982337361457, + 0.8985728391457872, + 0.792183707284576, + 0.781322126609299, + 0.9062315973735743, + 0.9367756029417319, + 0.9319511232326471, + 0.9114862576701875, + 0.9712199515753038, + 0.8980313754953725, + 0.9114891155371125, + 0.9718991822232025, + 0.8957817018995955, + 0.885216820326823, + 0.9629347112101692, + 0.9112715002623073, + 0.8614427822576298, + 0.9049664936619728, + 0.8820162243309974, + 0.888454039780395, + 0.9041504983342782, + 0.8799225737707326, + 0.8876439844627072, + 0.8799233569935232, + 0.918126588116288, + 0.9555805365011201, + 0.8931008593563526, + 0.9515523658057982, + 0.9349917026220693, + 0.8474827234526232, + 0.9150998524663875, + 0.9019272454814691, + 0.9301521751223218, + 0.9063992024260691, + 0.9084458145791406, + 0.9168300877742804, + 0.9333616542847242, + 0.9154663449613054, + 0.9251461704126609, + 0.917690844476884, + 0.9147435499325136, + 0.9222813943309438, + 0.8949753018246851, + 0.880217317459482, + 0.9102208157579199, + 0.9310777500028851, + 0.9593888728040101, + 0.9143927587731583, + 0.9653623648480182, + 0.895914543937476, + 0.8635374376096991, + 0.9681319140967855, + 0.7944051293641291, + 0.8332891527009144, + 0.9572275212696914, + 0.9858336693217798, + 0.8109702628253749, + 0.8979224069109053, + 0.9560034436331701, + 0.8639809350471249, + 0.9097687059679831, + 0.8322745922557433, + 0.7971859524323482, + 0.8358842439381247, + 0.8283017039354447, + 0.8143104247154894, + 0.7738369426049334, + 0.8995325759943457, + 0.8642235928871177, + 0.8487681619367479, + 0.764572997619905, + 0.8781835807412907, + 0.9926851552084225, + 0.9812777311360182, + 0.8861726828683071, + 0.8774954149924378, + 0.926345302298229, + 0.8766210768243543, + 0.9378841050418827, + 0.939845912034176, + 0.823816185944173, + 0.856345527603842, + 0.8334595938340698, + 0.8998404410917807, + 0.9376711024759753, + 0.911890053248672, + 0.9300633742947678, + 0.8084175084175085, + 0.8334508286707701, + 0.7740091154092624, + 0.7992420095977141, + 0.9006621739097868, + 0.854653633074874, + 0.8760061398599419, + 0.9813930191848028, + 0.8468484447398872, + 0.8096121652455617, + 0.9446374125411141, + 0.8908978309617703, + 0.8171053577998276, + 0.8734377849868722, + 0.9519939718593139, + 0.8280300613338275, + 0.876595396020583, + 0.9655210912171963, + 0.8261344387971954, + 0.8625542828389395, + 0.8903288184273107, + 0.7940378215823586, + 0.821308528676284, + 0.8862838943076522, + 0.801335608067006, + 0.7898913315911535, + 0.8939243895233296, + 0.8298894470003665, + 0.8095100145922008, + 0.8059795113616446, + 0.8742160601633633, + 0.9583180594822122, + 0.7551458714415599, + 0.9136540178884357, + 0.9206422293761181, + 0.8591683975024862, + 0.904109564575604, + 0.8472694098632094, + 0.9130149998360988, + 0.880145246772824, + 0.8361423023057717, + 0.9167552503585765, + 0.9112809824102042, + 0.8970011148753945, + 0.8914866076962089, + 0.923955848833383, + 0.9413970359062177, + 0.9010745526527456, + 0.8041496126372355, + 0.7790726657769016, + 0.8538666204813453, + 0.8917500286633246, + 0.9410172873790268, + 0.828568031294484, + 0.9472721492692258, + 0.8601896132182887, + 0.7893633567566072, + 0.9778255798991798, + 0.8408064685157908, + 0.8526279870536415, + 0.8833001568387581, + 0.9124677847409535, + 0.8503633201346489, + 0.8833774822775062, + 0.9417491009932606, + 0.9147990007027552, + 0.8911473104418144, + 0.9223179978964999, + 0.7993105223748839, + 0.850350519784385, + 0.9028697210251827, + 0.8286759028531826, + 0.8031469436294986, + 0.9091537502090101, + 0.8093089826039098, + 0.8904874214357624, + 0.8411703547857459, + 0.9300497863013258, + 0.9285163775070171, + 0.9184586012318386, + 0.9105444641861692, + 0.9164299777201611, + 0.9326776376702162, + 0.915238611353349, + 0.8549571170132747, + 0.923455550886179, + 0.9049110370735057, + 0.9119365546072284, + 0.9018909142690755, + 0.891364561195284, + 0.9086032637241696, + 0.9120677703982908, + 0.7772353780844471, + 0.812383779297877, + 0.8141980933100278, + 0.8822295931235452, + 0.9449596208074079, + 0.8978862439049966, + 0.9095010430865866, + 0.8584872270322912, + 0.8086861251474953, + 0.9214310387816568, + 0.8513156916323267, + 0.8861426594528754, + 0.9563580635481227, + 0.8379543933348044, + 0.8656705863743085, + 0.98211089011857, + 0.8110596347942214, + 0.9034463518857324, + 0.9635607491657863, + 0.8422382578141601, + 0.804708761453583, + 0.7698095150780381, + 0.7928287729663905, + 0.8372182500994741, + 0.8427896430369138, + 0.855443432650397, + 0.7939358902616885, + 0.7798108510703752, + 0.8567241066808098, + 0.9583038937015214, + 0.8148887053291618, + 0.9152406569855351, + 0.9028534602763532, + 0.8325119458879734, + 0.9302053778183247, + 0.8963386566638, + 0.8746814563549781, + 0.872251181030881, + 0.8686053557864637, + 0.9141058135529145, + 0.8632595037764901, + 0.9040022099272385, + 0.9059581070774078, + 0.9346013746176656, + 0.9298936488832736, + 0.8340239458302267, + 0.8702365021705257, + 0.8123721793207034, + 0.885883024060232, + 0.9117402687572846, + 0.936386353394425, + 0.8186788756172888, + 0.9671464581990991, + 0.848055950280692, + 0.8634065231167884, + 0.943821429875099, + 0.8448605670142738, + 0.8391308618400675, + 0.9254219485466432, + 0.969801679066684, + 0.7878255517886145, + 0.8357804468910168, + 0.9631549837457787, + 0.8766588491633124, + 0.883163649863375, + 0.9511620798446823, + 0.8066657873420849, + 0.8646146885061549, + 0.9029578211833432, + 0.8173068258119696, + 0.8033478921612156, + 0.8925053259258572, + 0.852437315787378, + 0.8476096224149778, + 0.8281685537387745, + 0.8864038761069699, + 0.966688404418, + 0.7614570139762271, + 0.9218212088326015, + 0.9097340269655556, + 0.864077528054265, + 0.8950383362559432, + 0.9073710788569305, + 0.9205839250299366, + 0.925130070799764, + 0.8576299437359549, + 0.9440950401078382, + 0.980790485473866, + 0.8716713610396803, + 0.8830330753654165, + 0.947413628857759, + 0.9115868956816537, + 0.9072478086555293, + 0.8887067486958385, + 0.8045206061109993, + 0.8778102296487642, + 0.9274293484428641, + 0.9658288014409694, + 0.8926838484147005, + 0.9632179959347835, + 0.9170977504366647, + 0.8054854384428153, + 0.9159799347276768, + 0.870259402604351, + 0.8402275254009515, + 0.9026564018866784, + 0.969798543419344, + 0.894474990496069, + 0.924076352335974, + 0.9429126764126102, + 0.8042639289221745, + 0.9218541569170036, + 0.9413543287285013, + 0.84560906239862, + 0.8512530801436985, + 0.8482251915257588, + 0.8418517009699383, + 0.8389250838766459, + 0.8780942953472136, + 0.8631072832356894, + 0.8400551602999186, + 0.8516270815329701, + 0.8873583533901547, + 0.9362723793519837, + 0.8578184506948072, + 0.9200868381562568, + 0.919241753809882, + 0.8090814478617769, + 0.9172442173513957, + 0.9208280320409932, + 0.8851201873403441, + 0.8620858836911702, + 0.8599934079935148, + 0.9464224065318294, + 0.8754179254812067, + 0.9307199381091358, + 0.930707642611767, + 0.9336712798542302, + 0.8756742763151554, + 0.899951826176289, + 0.8561565549568945, + 0.834305428035956, + 0.9043158701608425, + 0.8929659797398322, + 0.9503845826556759, + 0.8991612275139281, + 0.9813148595805599, + 0.8159243483663714, + 0.8774146105790617, + 0.8805473871785698, + 0.8168386335588215, + 0.8698762473047957, + 0.9165009998924976, + 0.9879292185766946, + 0.7704147258241087, + 0.8621323162821838, + 0.9420676506545669, + 0.8430911690338843, + 0.8642044705519123, + 0.8992599156815553, + 0.7848229577759359, + 0.8552257489567264, + 0.9107485390958536, + 0.8109378539976589, + 0.7760442198468392, + 0.8071817939237914, + 0.8488411028364334, + 0.8511599723642802, + 0.7930656733224284, + 0.9026466655874603, + 0.9432330473846552, + 0.8831072264534608, + 0.8943189089693644, + 0.8433884446453952, + 0.8957915181159275, + 0.8920211727858403, + 0.8656532195191253, + 0.8888272271166328, + 0.8185276031664389, + 0.8970283977981403, + 0.9482255936318409, + 0.8981625474527939, + 0.886392267992047, + 0.8763210075301389, + 0.8874771779807347, + 0.8847685034814367, + 0.811961856252122, + 0.7847145200343669, + 0.833222298535868, + 0.9240469682401297, + 0.9470088142769943, + 0.8108332314185674, + 0.9884763288693144, + 0.8537121244334758, + 0.7863842496662736, + 0.9710999057276702, + 0.8545775806305325, + 0.8288670673568047, + 0.9580430413202744, + 0.9851481216084019, + 0.8019990309518411, + 0.8765697319346342, + 0.9984485134812963, + 0.8827784956633106, + 0.897855261911528, + 0.9991228070175441, + 0.7869726824623813, + 0.8574600215751925, + 0.9104950845796125, + 0.7922752675949607, + 0.7825474175827186, + 0.9207382729968335, + 0.8317161986111055, + 0.84746622922539, + 0.8245418106987256, + 0.8914409068710273, + 0.9828315609612513, + 0.766483106515241, + 0.9500231063419912, + 0.9418084238960098, + 0.993758325008325, + 0.9340450649002454, + 0.9369761491626559, + 0.9242059912005234, + 0.9626281577206024, + 0.9004406503802566, + 0.9591920700382297, + 0.9770335633523987, + 0.9120886429915576, + 0.8878004962368867, + 0.9886242163794032, + 0.9651107579751624, + 0.8934452569589426, + 0.906094156405893, + 0.8004902860629857, + 0.8914046330636394, + 0.941658321518602, + 0.9765693239986738, + 0.8760032261652501, + 0.9991228070175441, + 0.9051910717095266, + 0.7935775831141221, + 0.929941088884573, + 0.8318189568317447, + 0.9721324228139152, + 0.8929555666008868, + 0.9899175068744273, + 0.7829559806346367, + 0.8330585670487148, + 0.9004712036731742, + 0.8079059133534838, + 0.907326978222119, + 0.8418462145170219, + 0.8355962235887732, + 0.9840600196897172, + 0.9727233543942168, + 0.9456931798893302, + 0.7835307826762479, + 0.9334823561531638, + 0.943912095206486, + 0.9719476865439598, + 0.8989607068123694, + 0.9899175068744273, + 0.91218688144154, + 0.968708052390917, + 0.9275641323723166, + 0.7750817305162342, + 0.7705110005585539, + 0.8746911090742437, + 0.906777236648719, + 0.9877189123128628, + 0.905810189680844, + 0.9039758195768428, + 0.9417675428322848, + 0.838458313625102, + 0.9578918616552848, + 0.9877224033535164, + 0.9600766541682176, + 0.9372227566431792, + 0.9996947496947498, + 0.9464739502688859, + 0.9273107442696306, + 0.8427440270131528, + 0.8930336617991886, + 0.8499116091074294, + 0.8297523357929766, + 0.8628042957923382, + 0.94362258995985, + 0.8861176478495414, + 0.992955297959396, + 0.954141881439958, + 0.9716068390573318, + 0.9372227566431792, + 0.9209665616774528, + 0.8810186818949944, + 0.8078565985679013, + 0.7888565809250084, + 0.8999765601568034, + 0.7784705964389922, + 0.8951137084436364, + 0.9694396869310692, + 0.906901471095239, + 0.9521895754027829, + 0.7517286913985001, + 0.8687571885281811, + 0.7912430201328434, + 0.9975369458128078, + 0.9160401958804216, + 0.9315711806648126, + 0.8609644958918051, + 0.8386594508420274, + 0.9351549836986592, + 0.9427180341404985, + 0.7681163618132653, + 0.8787858747853352, + 0.9893011313753898, + 0.8546700127495449, + 0.8758173885709947, + 0.9485066687801922, + 0.8003973221301792, + 0.8309934593862532, + 0.9026473100549586, + 0.7957711145179299, + 0.7958134120303104, + 0.8809153393318552, + 0.8550588891603323, + 0.8368966677964681, + 0.8049966847322658, + 0.8894131781606722, + 0.984770563952946, + 0.7945822416508489, + 0.9385796426731732, + 0.9400075247083102, + 0.8370209052650499, + 0.9406181150608247, + 0.9074883728808776, + 0.9137808792941257, + 0.9328829711123616, + 0.8601818483687415, + 0.8898049062435895, + 0.9722307756700375, + 0.9238623216857789, + 0.871665184175204, + 0.9528158707854402, + 0.9020360939999567, + 0.9516904425166645, + 0.8907461235222609, + 0.7809088432800615, + 0.8762088523996857, + 0.9320039039158255, + 0.9272893269521203, + 0.9058370878370338, + 0.9524516791586732, + 0.8829855968328181, + 0.7823245649207289, + 0.8748693498469887, + 0.8742883854021798, + 0.8746611748024347, + 0.9376819623311556, + 0.9947028289732674, + 0.8548763233394239, + 0.9049914056584369, + 0.9941197065722382, + 0.8487320955708422, + 0.9092712562873475, + 0.9763749646497006, + 0.8545982831576736, + 0.850548231352957, + 0.9407255024549774, + 0.8503648922153408, + 0.8359536461222336, + 0.9109614334891537, + 0.8647394698759232, + 0.9043414337084982, + 0.8450197352772266, + 0.9399452292694473, + 0.9846994595492535, + 0.9486152933634998, + 0.9754185212178655, + 0.9588847492141126, + 0.8651058220157922, + 0.9272067154146025, + 0.9405616327785196, + 0.9367871439736926, + 0.9386593272049244, + 0.8902973666791916, + 0.9017097117882626, + 0.9739530318740881, + 0.9085982902991971, + 0.9479750510619678, + 0.9829223011990686, + 0.8379245523453007, + 0.939761065723693, + 0.8491109021102726, + 0.8703455431007857, + 0.9177162151766173, + 0.9445085979284547, + 0.9970392628794374, + 0.9623118653922792, + 0.9932823846253213, + 0.9428523442680733, + 0.8098315966162147, + 0.9090909090909088, + 0.8237875450920827, + 0.945216049382716, + 0.8771929824561405, + 0.7694629219019462, + 0.8174876847290637, + 0.9545454545454548, + 0.8813770455902434, + 0.8553636363636361, + 0.8455433455433456, + 0.7676911617909391, + 0.8737944824901346, + 0.8588924177547349, + 0.7706024497958504, + 0.7971142965635086, + 0.797381306659819, + 0.8483876994316057, + 0.8282595845401285, + 0.8034089244055879, + 0.817729049162855, + 0.9363500515543048, + 0.9359939732913412, + 0.882198952879581, + 0.8576806647865884, + 0.815050939773573, + 0.9091975633632599, + 0.8917391304347826, + 0.8452819441807481, + 0.8400216450216451, + 0.8253968253968254, + 0.8210322890105873, + 0.8348289163941287, + 0.9554938655160816, + 0.852293824358888, + 0.858005568338311, + 0.8161148760137403, + 0.9688527588701455, + 0.8467761176075351, + 0.9017543859649124, + 0.7897773279352229, + 0.805168828270855, + 0.8317573749391951, + 0.9643924081792452, + 0.938598748759861, + 0.984466571720076, + 0.9883020564051679, + 0.977397740533538, + 0.8324262590094272, + 0.957204861709126, + 0.9815689054392762, + 0.9723297607875788, + 0.9166058436529154, + 0.7521706555006759, + 0.9280169976669376, + 0.9358035287465732, + 0.8764803941254208, + 0.9153455696596016, + 0.8469432605765171, + 0.99268071993084, + 0.988226739831974, + 0.996336999414424, + 0.9244884191211992, + 0.8507008302142539, + 0.9593509283699424, + 0.8061755182821719, + 0.9615141634622412, + 0.9839330712663648, + 0.9555873521968756, + 0.9775173594082412, + 0.8128624949482813, + 0.9514741813067672, + 0.9817522080920388, + 0.981025791388756, + 0.9818181818181816, + 0.9710861248452468, + 0.9773557492735576, + 0.890085589718168, + 0.954337370755309, + 0.9807297003570874, + 0.9364502164502164, + 0.7901612469857595, + 0.824287208001439, + 0.9807297003570874, + 0.7614649785030472, + 0.8658008658008658, + 0.9939130434782611, + 0.9066651512935219, + 0.8939526037506182, + 0.9842229467473992, + 0.865081443540125, + 0.9167169276268624, + 0.8794346322201474, + 0.765130456168069, + 0.8734544866674276, + 0.909520787797598, + 0.8854931946173012, + 0.7673924006226841, + 0.8798233135618779, + 0.9852364106660584, + 0.7637569649841349, + 0.9348260838243078, + 0.933522474466579, + 0.8377846225826576, + 0.9583806183156228, + 0.9331326790672908, + 0.9383147514181556, + 0.9589825216566162, + 0.8060876415101113, + 0.9783224922971588, + 0.9583806183156228, + 0.899590944489805, + 0.8941653123998358, + 0.9668188169538892, + 0.9783224922971588, + 0.9679972612119138, + 0.8797605429806478, + 0.7963975193082085, + 0.8839816990630294, + 0.9431528211472392, + 0.8367334869051766, + 0.8658008658008658, + 0.9921746738179468, + 0.9020614173817516, + 0.7562166685686029, + 0.8168393183171508, + 0.826467375579422, + 0.94513113161729, + 0.9585637037072424, + 0.8949088289552438, + 0.9053910284366296, + 0.817437533227007, + 0.7978783990223038, + 0.7521903939726886, + 0.754943158980426, + 0.7928605555934748, + 0.8989607068123694, + 0.7975892455476461, + 0.7725199492096488, + 0.7662703504995123, + 0.9767351231527428, + 0.9424631082284728, + 0.866898864682116, + 0.7783625730994154, + 0.9376349250962784, + 0.9303020409693342, + 0.8287563928270861, + 0.8603115680426934, + 0.8114732228923959, + 0.9669758970781992, + 0.8105976841695943, + 0.7959269589012261, + 0.8302139037433156, + 0.986986590623621, + 0.751078143739283, + 0.9319865517177697, + 0.8782639830593114, + 0.8578369301463997, + 0.9189313114771297, + 0.9633417717529799, + 0.8343138912267726, + 0.8818418640888517, + 0.9736024773604863, + 0.8613042225346038, + 0.888024195606103, + 0.941782855514232, + 0.8404355723269926, + 0.8454461341922117, + 0.8945900568243629, + 0.8289908029078139, + 0.8273210174189225, + 0.8916495568044747, + 0.854433147885652, + 0.8505264662318455, + 0.8308969974341954, + 0.8899385122095016, + 0.9625463006926477, + 0.822879325367078, + 0.9328941076717102, + 0.9254546321964118, + 0.8536794132479856, + 0.9149236519168374, + 0.8988039859606616, + 0.9131258134142545, + 0.905813040144688, + 0.8670687350210408, + 0.9214606820661353, + 0.9408298439101216, + 0.9049472424037028, + 0.9020513700091627, + 0.9349510800595612, + 0.9123902818135722, + 0.914220218308289, + 0.8665729766490252, + 0.8246776811045251, + 0.8835807215942634, + 0.917454975120021, + 0.9496273615183636, + 0.8917539300260674, + 0.9646948055738331, + 0.8878652466688929, + 0.8283471179008514, + 0.9319439135020179, + 0.8611711731084291, + 0.8995765609336107, + 0.9025233427813701, + 0.9630284898620637, + 0.9104667843695463, + 0.871798757072994, + 0.900245383469288 + ] + }, + "name": "", + "parents": [ + "World/Latam/ARG/Internet", + "World/Persian Gulf/AZE/Internet", + "World/Asia/BGD/Internet", + "World/Latam/BRA/Internet", + "World/Pair/CHN/Internet", + "World/South Africa/CMR/Internet", + "World/Latam/COL/Internet", + "World/Latam/CRI/Internet", + "World/North Africa/DZA/Internet", + "World/North Africa/EGY/Internet", + "World/South Africa/GHA/Internet", + "World/Asia/IDN/Internet", + "World/Asia/IND/Internet", + "World/Persian Gulf/IRQ/Internet", + "World/North Africa/MAR/Internet", + "World/South Africa/MOZ/Internet", + "World/South Africa/NGA/Internet", + "World/Latam/PAN/Internet", + "World/Latam/PER/Internet", + "World/Asia/PHL/Internet", + "World/South Africa/SEN/Internet", + "World/Asia/THA/Internet", + "World/North Africa/TUR/Internet", + "World/Asia/VNM/Internet", + "World/Persian Gulf/YEM/Internet", + "World/South Africa/ZAF/Internet", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/EGY/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Persian Gulf/IRQ/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/South Africa/SEN/Environment", + "World/Asia/THA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Europe/NLD/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Europe/AUT/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Latam/PAN/Economy", + "World/Asia/PHL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/Asia/KOR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Europe/SWE/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/CRI/Agriculture", + "World/Europe/DEU/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/North Africa/EGY/Agriculture", + "World/Europe/ESP/Agriculture", + "World/Europe/FRA/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/ISR/Agriculture", + "World/Asia/KOR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Europe/NLD/Agriculture", + "World/Latam/PAN/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Europe/POL/Agriculture", + "World/Europe/SWE/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Latam/VEN/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/Persian Gulf/ARE/Agriculture", + "World/Latam/ARG/Agriculture", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/Latam/CRI/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/Europe/FRA/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Europe/HRV/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/ISR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Persian Gulf/OMN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Persian Gulf/QAT/Agriculture", + "World/Persian Gulf/SAU/Agriculture", + "World/Europe/SWE/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/Persian Gulf/ARE/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CRI/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/ISR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Europe/NLD/Agriculture", + "World/Persian Gulf/OMN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Persian Gulf/QAT/Agriculture", + "World/Pair/USA/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/Latam/ARG/Agriculture", + "World/Europe/AUT/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Latam/COL/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/North Africa/EGY/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Europe/HRV/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/KOR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Europe/POL/Agriculture", + "World/Asia/THA/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Latam/VEN/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/Latam/CRI/Agriculture", + "World/North Africa/EGY/Agriculture", + "World/Europe/FRA/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/Asia/KOR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Europe/POL/Agriculture", + "World/Persian Gulf/SAU/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Latam/VEN/Agriculture", + "World/Asia/VNM/Agriculture", + "World/South Africa/ZAF/Agriculture", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/Latam/CRI/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/Asia/KOR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/Latam/PAN/Agriculture", + "World/Europe/POL/Agriculture", + "World/Europe/SWE/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/Persian Gulf/ARE/Agriculture", + "World/Latam/ARG/Agriculture", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/North Africa/EGY/Agriculture", + "World/Europe/ESP/Agriculture", + "World/Europe/FRA/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Asia/IND/Agriculture", + "World/Asia/KOR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Persian Gulf/OMN/Agriculture", + "World/Latam/PAN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Europe/POL/Agriculture", + "World/Persian Gulf/QAT/Agriculture", + "World/Persian Gulf/SAU/Agriculture", + "World/Europe/SWE/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Latam/VEN/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/South Africa/ZAF/Agriculture", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/Latam/CRI/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/Asia/KOR/Agriculture", + "World/South Africa/LBR/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/Latam/PAN/Agriculture", + "World/Europe/POL/Agriculture", + "World/Europe/SWE/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/Persian Gulf/ARE/Industry", + "World/Latam/ARG/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Asia/BGD/Industry", + "World/Pair/CHN/Industry", + "World/South Africa/CMR/Industry", + "World/Latam/COL/Industry", + "World/Latam/CRI/Industry", + "World/Europe/DEU/Industry", + "World/North Africa/DZA/Industry", + "World/North Africa/EGY/Industry", + "World/Europe/FRA/Industry", + "World/South Africa/GHA/Industry", + "World/Europe/HRV/Industry", + "World/Asia/IDN/Industry", + "World/Asia/IND/Industry", + "World/North Africa/ISR/Industry", + "World/South Africa/LBR/Industry", + "World/North Africa/MAR/Industry", + "World/Latam/MEX/Industry", + "World/South Africa/MOZ/Industry", + "World/South Africa/NGA/Industry", + "World/Latam/PAN/Industry", + "World/Latam/PER/Industry", + "World/Asia/PHL/Industry", + "World/Europe/POL/Industry", + "World/Persian Gulf/SAU/Industry", + "World/South Africa/SEN/Industry", + "World/Asia/THA/Industry", + "World/North Africa/TUR/Industry", + "World/Pair/USA/Industry", + "World/Latam/VEN/Industry", + "World/Asia/VNM/Industry", + "World/Persian Gulf/YEM/Industry", + "World/South Africa/ZAF/Industry", + "World/Persian Gulf/ARE/Mortality", + "World/Asia/BGD/Mortality", + "World/Pair/CHN/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/South Africa/GHA/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/South Africa/ZAF/Mortality", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/North Africa/DZA/Economy", + "World/Europe/GBR/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/South Africa/SEN/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/Europe/GRC/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/Europe/GRC/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Latam/ARG/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/Europe/GRC/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Europe/POL/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Asia/VNM/Environment", + "World/South Africa/ZAF/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/South Africa/MOZ/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Pair/CHN/Environment", + "World/Latam/COL/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/ESP/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PER/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/MAR/Environment", + "World/South Africa/MOZ/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Asia/THA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Europe/AUT/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/NGA/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/ARE/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Asia/BGD/Industry", + "World/Latam/CHL/Industry", + "World/South Africa/CMR/Industry", + "World/Latam/CRI/Industry", + "World/Europe/GRC/Industry", + "World/Europe/HRV/Industry", + "World/Asia/IDN/Industry", + "World/Asia/IND/Industry", + "World/North Africa/ISR/Industry", + "World/North Africa/MAR/Industry", + "World/South Africa/MOZ/Industry", + "World/South Africa/NGA/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Asia/PHL/Industry", + "World/Persian Gulf/SAU/Industry", + "World/Asia/THA/Industry", + "World/Asia/VNM/Industry", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/Latam/COL/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/ISR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/Latam/PAN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Persian Gulf/QAT/Agriculture", + "World/Persian Gulf/SAU/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/Latam/COL/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/Europe/NLD/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Europe/SWE/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/ARE/Economy", + "World/Asia/BGD/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/South Africa/SEN/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/South Africa/CMR/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/GRC/Exports", + "World/Europe/HRV/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/South Africa/ZAF/Imports", + "World/Latam/ARG/Demoraphy", + "World/Asia/BGD/Demoraphy", + "World/Latam/BRA/Demoraphy", + "World/South Africa/CMR/Demoraphy", + "World/Latam/COL/Demoraphy", + "World/Latam/CRI/Demoraphy", + "World/North Africa/DZA/Demoraphy", + "World/North Africa/EGY/Demoraphy", + "World/South Africa/GHA/Demoraphy", + "World/Asia/IND/Demoraphy", + "World/South Africa/LBR/Demoraphy", + "World/North Africa/MAR/Demoraphy", + "World/Latam/MEX/Demoraphy", + "World/South Africa/MOZ/Demoraphy", + "World/South Africa/NGA/Demoraphy", + "World/Latam/PAN/Demoraphy", + "World/Latam/PER/Demoraphy", + "World/Asia/PHL/Demoraphy", + "World/North Africa/TUR/Demoraphy", + "World/Latam/VEN/Demoraphy", + "World/Asia/VNM/Demoraphy", + "World/Persian Gulf/ARE/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/South Africa/CMR/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/South Africa/LBR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/AZE/Agriculture", + "World/Asia/BGD/Agriculture", + "World/Latam/BRA/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/Latam/CRI/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/North Africa/EGY/Agriculture", + "World/South Africa/GHA/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/South Africa/NGA/Agriculture", + "World/Persian Gulf/OMN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/Persian Gulf/QAT/Agriculture", + "World/South Africa/SEN/Agriculture", + "World/Asia/THA/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Pair/USA/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/Europe/GRC/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Asia/KOR/Health", + "World/South Africa/MOZ/Health", + "World/Europe/NLD/Health", + "World/Latam/PER/Health", + "World/Europe/POL/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Europe/POL/Economy", + "World/Asia/THA/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/Latam/MEX/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PER/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Asia/VNM/Health", + "World/South Africa/ZAF/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Europe/AUT/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/Europe/GRC/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/Persian Gulf/ARE/Employment", + "World/Latam/ARG/Employment", + "World/Europe/AUT/Employment", + "World/Persian Gulf/AZE/Employment", + "World/Asia/BGD/Employment", + "World/Latam/BRA/Employment", + "World/Latam/CHL/Employment", + "World/Pair/CHN/Employment", + "World/South Africa/CMR/Employment", + "World/Latam/COL/Employment", + "World/Latam/CRI/Employment", + "World/Europe/DEU/Employment", + "World/North Africa/DZA/Employment", + "World/North Africa/EGY/Employment", + "World/Europe/ESP/Employment", + "World/Europe/FRA/Employment", + "World/Europe/GBR/Employment", + "World/South Africa/GHA/Employment", + "World/Asia/IDN/Employment", + "World/Asia/IND/Employment", + "World/North Africa/ISR/Employment", + "World/Asia/KOR/Employment", + "World/South Africa/LBR/Employment", + "World/North Africa/MAR/Employment", + "World/Latam/MEX/Employment", + "World/South Africa/MOZ/Employment", + "World/South Africa/NGA/Employment", + "World/Europe/NLD/Employment", + "World/Persian Gulf/OMN/Employment", + "World/Latam/PAN/Employment", + "World/Latam/PER/Employment", + "World/Asia/PHL/Employment", + "World/Europe/POL/Employment", + "World/Persian Gulf/QAT/Employment", + "World/South Africa/SEN/Employment", + "World/Europe/SWE/Employment", + "World/North Africa/TUR/Employment", + "World/Latam/VEN/Employment", + "World/Asia/VNM/Employment", + "World/South Africa/ZAF/Employment", + "World/Latam/ARG/Employment", + "World/Europe/AUT/Employment", + "World/Persian Gulf/AZE/Employment", + "World/Asia/BGD/Employment", + "World/Latam/BRA/Employment", + "World/Pair/CHN/Employment", + "World/South Africa/CMR/Employment", + "World/Latam/CRI/Employment", + "World/Europe/DEU/Employment", + "World/North Africa/DZA/Employment", + "World/North Africa/EGY/Employment", + "World/Europe/ESP/Employment", + "World/Europe/FRA/Employment", + "World/Europe/GBR/Employment", + "World/Europe/GRC/Employment", + "World/Europe/HRV/Employment", + "World/Asia/IDN/Employment", + "World/Asia/IND/Employment", + "World/North Africa/ISR/Employment", + "World/Asia/KOR/Employment", + "World/North Africa/MAR/Employment", + "World/South Africa/MOZ/Employment", + "World/Europe/NLD/Employment", + "World/Persian Gulf/OMN/Employment", + "World/Europe/POL/Employment", + "World/Persian Gulf/SAU/Employment", + "World/South Africa/SEN/Employment", + "World/Europe/SWE/Employment", + "World/Pair/USA/Employment", + "World/Latam/VEN/Employment", + "World/Asia/VNM/Employment", + "World/Persian Gulf/YEM/Employment", + "World/South Africa/ZAF/Employment", + "World/Persian Gulf/ARE/Employment", + "World/Latam/ARG/Employment", + "World/Europe/AUT/Employment", + "World/Asia/BGD/Employment", + "World/Latam/BRA/Employment", + "World/Latam/CHL/Employment", + "World/Pair/CHN/Employment", + "World/South Africa/CMR/Employment", + "World/Latam/COL/Employment", + "World/Latam/CRI/Employment", + "World/Europe/DEU/Employment", + "World/North Africa/DZA/Employment", + "World/North Africa/EGY/Employment", + "World/Europe/ESP/Employment", + "World/Europe/FRA/Employment", + "World/Europe/GBR/Employment", + "World/South Africa/GHA/Employment", + "World/Europe/GRC/Employment", + "World/Europe/HRV/Employment", + "World/Asia/IDN/Employment", + "World/Asia/IND/Employment", + "World/North Africa/ISR/Employment", + "World/Asia/KOR/Employment", + "World/South Africa/LBR/Employment", + "World/North Africa/MAR/Employment", + "World/Latam/MEX/Employment", + "World/South Africa/MOZ/Employment", + "World/South Africa/NGA/Employment", + "World/Europe/NLD/Employment", + "World/Persian Gulf/OMN/Employment", + "World/Latam/PAN/Employment", + "World/Latam/PER/Employment", + "World/Asia/PHL/Employment", + "World/Europe/POL/Employment", + "World/South Africa/SEN/Employment", + "World/Europe/SWE/Employment", + "World/Asia/THA/Employment", + "World/North Africa/TUR/Employment", + "World/Pair/USA/Employment", + "World/Latam/VEN/Employment", + "World/Asia/VNM/Employment", + "World/Persian Gulf/YEM/Employment", + "World/South Africa/ZAF/Employment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Latam/VEN/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/Europe/GBR/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Latam/PAN/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Europe/SWE/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/GRC/Exports", + "World/Europe/HRV/Exports", + "World/Latam/MEX/Exports", + "World/Europe/NLD/Exports", + "World/Latam/PAN/Exports", + "World/Europe/POL/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/Asia/VNM/Exports", + "World/Persian Gulf/YEM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/ESP/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/GRC/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/Persian Gulf/YEM/Exports", + "World/South Africa/ZAF/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/HRV/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/HRV/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/R&D", + "World/Latam/CHL/R&D", + "World/Latam/COL/R&D", + "World/Latam/CRI/R&D", + "World/North Africa/EGY/R&D", + "World/South Africa/GHA/R&D", + "World/Europe/GRC/R&D", + "World/Europe/HRV/R&D", + "World/Asia/IDN/R&D", + "World/Asia/IND/R&D", + "World/South Africa/LBR/R&D", + "World/North Africa/MAR/R&D", + "World/Latam/MEX/R&D", + "World/South Africa/MOZ/R&D", + "World/South Africa/NGA/R&D", + "World/Latam/PAN/R&D", + "World/Latam/PER/R&D", + "World/Asia/PHL/R&D", + "World/Europe/POL/R&D", + "World/South Africa/SEN/R&D", + "World/Asia/THA/R&D", + "World/North Africa/TUR/R&D", + "World/Latam/VEN/R&D", + "World/Asia/VNM/R&D", + "World/Persian Gulf/YEM/R&D", + "World/South Africa/ZAF/R&D", + "World/Latam/ARG/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IDN/Economy", + "World/South Africa/LBR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Internet", + "World/Latam/ARG/Internet", + "World/Europe/AUT/Internet", + "World/Persian Gulf/AZE/Internet", + "World/Asia/BGD/Internet", + "World/Latam/BRA/Internet", + "World/Latam/CHL/Internet", + "World/Pair/CHN/Internet", + "World/South Africa/CMR/Internet", + "World/Latam/COL/Internet", + "World/Latam/CRI/Internet", + "World/Europe/DEU/Internet", + "World/North Africa/DZA/Internet", + "World/North Africa/EGY/Internet", + "World/Europe/ESP/Internet", + "World/Europe/FRA/Internet", + "World/Europe/GBR/Internet", + "World/South Africa/GHA/Internet", + "World/Europe/GRC/Internet", + "World/Europe/HRV/Internet", + "World/Asia/IDN/Internet", + "World/Asia/IND/Internet", + "World/North Africa/ISR/Internet", + "World/Asia/KOR/Internet", + "World/South Africa/LBR/Internet", + "World/North Africa/MAR/Internet", + "World/Latam/MEX/Internet", + "World/South Africa/MOZ/Internet", + "World/Europe/NLD/Internet", + "World/Persian Gulf/OMN/Internet", + "World/Latam/PAN/Internet", + "World/Latam/PER/Internet", + "World/Asia/PHL/Internet", + "World/Europe/POL/Internet", + "World/Persian Gulf/QAT/Internet", + "World/Persian Gulf/SAU/Internet", + "World/South Africa/SEN/Internet", + "World/Europe/SWE/Internet", + "World/Asia/THA/Internet", + "World/North Africa/TUR/Internet", + "World/Pair/USA/Internet", + "World/Latam/VEN/Internet", + "World/Asia/VNM/Internet", + "World/Persian Gulf/YEM/Internet", + "World/South Africa/ZAF/Internet", + "World/Persian Gulf/ARE/Internet", + "World/Latam/ARG/Internet", + "World/Europe/AUT/Internet", + "World/Persian Gulf/AZE/Internet", + "World/Asia/BGD/Internet", + "World/Latam/BRA/Internet", + "World/Latam/CHL/Internet", + "World/Pair/CHN/Internet", + "World/South Africa/CMR/Internet", + "World/Latam/COL/Internet", + "World/Latam/CRI/Internet", + "World/Europe/DEU/Internet", + "World/North Africa/DZA/Internet", + "World/North Africa/EGY/Internet", + "World/Europe/ESP/Internet", + "World/Europe/FRA/Internet", + "World/Europe/GBR/Internet", + "World/South Africa/GHA/Internet", + "World/Europe/GRC/Internet", + "World/Europe/HRV/Internet", + "World/Asia/IDN/Internet", + "World/Asia/IND/Internet", + "World/North Africa/ISR/Internet", + "World/Asia/KOR/Internet", + "World/South Africa/LBR/Internet", + "World/North Africa/MAR/Internet", + "World/Latam/MEX/Internet", + "World/South Africa/MOZ/Internet", + "World/Europe/NLD/Internet", + "World/Persian Gulf/OMN/Internet", + "World/Latam/PAN/Internet", + "World/Latam/PER/Internet", + "World/Asia/PHL/Internet", + "World/Europe/POL/Internet", + "World/Persian Gulf/QAT/Internet", + "World/Persian Gulf/SAU/Internet", + "World/South Africa/SEN/Internet", + "World/Europe/SWE/Internet", + "World/Asia/THA/Internet", + "World/North Africa/TUR/Internet", + "World/Pair/USA/Internet", + "World/Latam/VEN/Internet", + "World/Asia/VNM/Internet", + "World/Persian Gulf/YEM/Internet", + "World/South Africa/ZAF/Internet", + "World/Persian Gulf/ARE/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Asia/BGD/Industry", + "World/Latam/BRA/Industry", + "World/Latam/CHL/Industry", + "World/Pair/CHN/Industry", + "World/South Africa/CMR/Industry", + "World/Latam/COL/Industry", + "World/Latam/CRI/Industry", + "World/North Africa/DZA/Industry", + "World/North Africa/EGY/Industry", + "World/South Africa/GHA/Industry", + "World/Asia/IDN/Industry", + "World/Asia/IND/Industry", + "World/North Africa/ISR/Industry", + "World/South Africa/LBR/Industry", + "World/North Africa/MAR/Industry", + "World/Latam/MEX/Industry", + "World/South Africa/MOZ/Industry", + "World/South Africa/NGA/Industry", + "World/Europe/NLD/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Latam/PAN/Industry", + "World/Latam/PER/Industry", + "World/Asia/PHL/Industry", + "World/Europe/POL/Industry", + "World/Persian Gulf/QAT/Industry", + "World/Persian Gulf/SAU/Industry", + "World/South Africa/SEN/Industry", + "World/Asia/THA/Industry", + "World/North Africa/TUR/Industry", + "World/Pair/USA/Industry", + "World/Asia/VNM/Industry", + "World/Persian Gulf/YEM/Industry", + "World/South Africa/ZAF/Industry", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/Asia/KOR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Europe/POL/Demography", + "World/South Africa/SEN/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Principal", + "World/Europe/AUT/Principal", + "World/Persian Gulf/AZE/Principal", + "World/Asia/BGD/Principal", + "World/Latam/BRA/Principal", + "World/Latam/CHL/Principal", + "World/Pair/CHN/Principal", + "World/South Africa/CMR/Principal", + "World/Latam/COL/Principal", + "World/Latam/CRI/Principal", + "World/Europe/DEU/Principal", + "World/North Africa/DZA/Principal", + "World/North Africa/EGY/Principal", + "World/Europe/ESP/Principal", + "World/Europe/FRA/Principal", + "World/Europe/GBR/Principal", + "World/South Africa/GHA/Principal", + "World/Europe/GRC/Principal", + "World/Europe/HRV/Principal", + "World/Asia/IDN/Principal", + "World/Asia/IND/Principal", + "World/North Africa/ISR/Principal", + "World/Asia/KOR/Principal", + "World/South Africa/LBR/Principal", + "World/North Africa/MAR/Principal", + "World/Latam/MEX/Principal", + "World/South Africa/MOZ/Principal", + "World/South Africa/NGA/Principal", + "World/Europe/NLD/Principal", + "World/Persian Gulf/OMN/Principal", + "World/Latam/PAN/Principal", + "World/Latam/PER/Principal", + "World/Asia/PHL/Principal", + "World/Europe/POL/Principal", + "World/Persian Gulf/QAT/Principal", + "World/Persian Gulf/SAU/Principal", + "World/South Africa/SEN/Principal", + "World/Asia/THA/Principal", + "World/North Africa/TUR/Principal", + "World/Pair/USA/Principal", + "World/Latam/VEN/Principal", + "World/Asia/VNM/Principal", + "World/Persian Gulf/YEM/Principal", + "World/South Africa/ZAF/Principal", + "World/Persian Gulf/ARE/Principal", + "World/Europe/AUT/Principal", + "World/Persian Gulf/AZE/Principal", + "World/Asia/BGD/Principal", + "World/Latam/BRA/Principal", + "World/Latam/CHL/Principal", + "World/Pair/CHN/Principal", + "World/South Africa/CMR/Principal", + "World/Latam/COL/Principal", + "World/Latam/CRI/Principal", + "World/Europe/DEU/Principal", + "World/North Africa/DZA/Principal", + "World/North Africa/EGY/Principal", + "World/Europe/ESP/Principal", + "World/Europe/FRA/Principal", + "World/Europe/GBR/Principal", + "World/South Africa/GHA/Principal", + "World/Europe/GRC/Principal", + "World/Europe/HRV/Principal", + "World/Asia/IDN/Principal", + "World/Asia/IND/Principal", + "World/North Africa/ISR/Principal", + "World/Asia/KOR/Principal", + "World/South Africa/LBR/Principal", + "World/North Africa/MAR/Principal", + "World/Latam/MEX/Principal", + "World/South Africa/MOZ/Principal", + "World/South Africa/NGA/Principal", + "World/Europe/NLD/Principal", + "World/Persian Gulf/OMN/Principal", + "World/Latam/PAN/Principal", + "World/Latam/PER/Principal", + "World/Asia/PHL/Principal", + "World/Europe/POL/Principal", + "World/Persian Gulf/QAT/Principal", + "World/Persian Gulf/SAU/Principal", + "World/South Africa/SEN/Principal", + "World/Asia/THA/Principal", + "World/North Africa/TUR/Principal", + "World/Pair/USA/Principal", + "World/Latam/VEN/Principal", + "World/Asia/VNM/Principal", + "World/Persian Gulf/YEM/Principal", + "World/South Africa/ZAF/Principal", + "World/Persian Gulf/ARE/Principal", + "World/Latam/ARG/Principal", + "World/Europe/AUT/Principal", + "World/Persian Gulf/AZE/Principal", + "World/Asia/BGD/Principal", + "World/Latam/BRA/Principal", + "World/Latam/CHL/Principal", + "World/Pair/CHN/Principal", + "World/South Africa/CMR/Principal", + "World/Latam/COL/Principal", + "World/Latam/CRI/Principal", + "World/Europe/DEU/Principal", + "World/North Africa/DZA/Principal", + "World/North Africa/EGY/Principal", + "World/Europe/ESP/Principal", + "World/Europe/FRA/Principal", + "World/Europe/GBR/Principal", + "World/South Africa/GHA/Principal", + "World/Europe/GRC/Principal", + "World/Europe/HRV/Principal", + "World/Asia/IDN/Principal", + "World/Asia/IND/Principal", + "World/Persian Gulf/IRQ/Principal", + "World/North Africa/ISR/Principal", + "World/Asia/KOR/Principal", + "World/North Africa/MAR/Principal", + "World/Latam/MEX/Principal", + "World/South Africa/MOZ/Principal", + "World/South Africa/NGA/Principal", + "World/Europe/NLD/Principal", + "World/Persian Gulf/OMN/Principal", + "World/Latam/PAN/Principal", + "World/Latam/PER/Principal", + "World/Asia/PHL/Principal", + "World/Europe/POL/Principal", + "World/Persian Gulf/QAT/Principal", + "World/Persian Gulf/SAU/Principal", + "World/South Africa/SEN/Principal", + "World/Europe/SWE/Principal", + "World/Asia/THA/Principal", + "World/North Africa/TUR/Principal", + "World/Pair/USA/Principal", + "World/Latam/VEN/Principal", + "World/Asia/VNM/Principal", + "World/Persian Gulf/YEM/Principal", + "World/South Africa/ZAF/Principal", + "World/Persian Gulf/ARE/Principal", + "World/Latam/ARG/Principal", + "World/Persian Gulf/AZE/Principal", + "World/Asia/BGD/Principal", + "World/Latam/BRA/Principal", + "World/Latam/CHL/Principal", + "World/Pair/CHN/Principal", + "World/South Africa/CMR/Principal", + "World/Latam/COL/Principal", + "World/Latam/CRI/Principal", + "World/North Africa/EGY/Principal", + "World/Europe/FRA/Principal", + "World/Europe/GBR/Principal", + "World/South Africa/GHA/Principal", + "World/Europe/GRC/Principal", + "World/Asia/IDN/Principal", + "World/Asia/IND/Principal", + "World/North Africa/ISR/Principal", + "World/Asia/KOR/Principal", + "World/North Africa/MAR/Principal", + "World/South Africa/MOZ/Principal", + "World/South Africa/NGA/Principal", + "World/Persian Gulf/OMN/Principal", + "World/Latam/PAN/Principal", + "World/Latam/PER/Principal", + "World/Asia/PHL/Principal", + "World/Europe/POL/Principal", + "World/Persian Gulf/QAT/Principal", + "World/Persian Gulf/SAU/Principal", + "World/South Africa/SEN/Principal", + "World/Asia/THA/Principal", + "World/North Africa/TUR/Principal", + "World/Pair/USA/Principal", + "World/Asia/VNM/Principal", + "World/South Africa/ZAF/Principal", + "World/Latam/ARG/Principal", + "World/Europe/AUT/Principal", + "World/Persian Gulf/AZE/Principal", + "World/Asia/BGD/Principal", + "World/Latam/BRA/Principal", + "World/Latam/CHL/Principal", + "World/Pair/CHN/Principal", + "World/South Africa/CMR/Principal", + "World/Latam/COL/Principal", + "World/Latam/CRI/Principal", + "World/Europe/DEU/Principal", + "World/North Africa/EGY/Principal", + "World/Europe/ESP/Principal", + "World/Europe/FRA/Principal", + "World/Europe/GBR/Principal", + "World/South Africa/GHA/Principal", + "World/Europe/HRV/Principal", + "World/Asia/IDN/Principal", + "World/Asia/IND/Principal", + "World/North Africa/ISR/Principal", + "World/Asia/KOR/Principal", + "World/North Africa/MAR/Principal", + "World/Latam/MEX/Principal", + "World/South Africa/MOZ/Principal", + "World/South Africa/NGA/Principal", + "World/Europe/NLD/Principal", + "World/Latam/PAN/Principal", + "World/Asia/PHL/Principal", + "World/Europe/POL/Principal", + "World/Europe/SWE/Principal", + "World/Asia/THA/Principal", + "World/North Africa/TUR/Principal", + "World/Pair/USA/Principal", + "World/Asia/VNM/Principal", + "World/South Africa/ZAF/Principal", + "World/Europe/AUT/principal", + "World/Persian Gulf/AZE/principal", + "World/Asia/BGD/principal", + "World/Pair/CHN/principal", + "World/South Africa/CMR/principal", + "World/Latam/COL/principal", + "World/Latam/CRI/principal", + "World/Europe/DEU/principal", + "World/North Africa/DZA/principal", + "World/Europe/ESP/principal", + "World/Europe/FRA/principal", + "World/Europe/GBR/principal", + "World/South Africa/GHA/principal", + "World/Europe/HRV/principal", + "World/Asia/IDN/principal", + "World/Asia/IND/principal", + "World/North Africa/ISR/principal", + "World/Asia/KOR/principal", + "World/Latam/MEX/principal", + "World/South Africa/MOZ/principal", + "World/South Africa/NGA/principal", + "World/Europe/NLD/principal", + "World/Latam/PAN/principal", + "World/Asia/PHL/principal", + "World/Europe/POL/principal", + "World/Persian Gulf/SAU/principal", + "World/Europe/SWE/principal", + "World/North Africa/TUR/principal", + "World/Pair/USA/principal", + "World/South Africa/ZAF/principal", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/South Africa/LBR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/South Africa/LBR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Europe/AUT/Environment", + "World/Pair/CHN/Environment", + "World/Europe/DEU/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Latam/MEX/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Europe/SWE/Environment", + "World/Pair/USA/Environment", + "World/Latam/VEN/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Persian Gulf/SAU/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Europe/AUT/Exports", + "World/Asia/BGD/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/South Africa/CMR/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/Europe/ESP/Exports", + "World/Europe/GBR/Exports", + "World/Europe/GRC/Exports", + "World/Europe/HRV/Exports", + "World/Asia/IND/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/NGA/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/Pair/USA/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/Europe/NLD/Imports", + "World/Latam/PAN/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/Persian Gulf/ARE/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/Persian Gulf/IRQ/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/GBR/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Latam/VEN/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/South Africa/ZAF/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/Persian Gulf/IRQ/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Latam/VEN/Imports", + "World/Asia/VNM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Latam/BRA/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/CRI/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/South Africa/LBR/Health", + "World/South Africa/MOZ/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PER/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/Persian Gulf/ARE/Economy", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/BRA/Mortality", + "World/Pair/CHN/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/GBR/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/Persian Gulf/IRQ/Mortality", + "World/North Africa/ISR/Mortality", + "World/South Africa/MOZ/Mortality", + "World/Europe/NLD/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Europe/POL/Mortality", + "World/Asia/THA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/South Africa/ZAF/Mortality", + "World/Persian Gulf/ARE/Migration", + "World/Europe/AUT/Migration", + "World/Persian Gulf/AZE/Migration", + "World/Latam/CHL/Migration", + "World/Pair/CHN/Migration", + "World/Europe/DEU/Migration", + "World/North Africa/DZA/Migration", + "World/Europe/ESP/Migration", + "World/Europe/FRA/Migration", + "World/Europe/GBR/Migration", + "World/Europe/GRC/Migration", + "World/Europe/HRV/Migration", + "World/Asia/IND/Migration", + "World/North Africa/ISR/Migration", + "World/Asia/KOR/Migration", + "World/North Africa/MAR/Migration", + "World/Latam/MEX/Migration", + "World/South Africa/MOZ/Migration", + "World/South Africa/NGA/Migration", + "World/Europe/NLD/Migration", + "World/Latam/PAN/Migration", + "World/Latam/PER/Migration", + "World/Europe/POL/Migration", + "World/Persian Gulf/SAU/Migration", + "World/South Africa/SEN/Migration", + "World/Europe/SWE/Migration", + "World/Asia/THA/Migration", + "World/North Africa/TUR/Migration", + "World/Pair/USA/Migration", + "World/Asia/VNM/Migration", + "World/Persian Gulf/YEM/Migration", + "World/Persian Gulf/ARE/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Europe/SWE/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/Persian Gulf/ARE/Industry", + "World/Latam/ARG/Industry", + "World/Europe/AUT/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Asia/BGD/Industry", + "World/Latam/BRA/Industry", + "World/Pair/CHN/Industry", + "World/Latam/COL/Industry", + "World/Latam/CRI/Industry", + "World/North Africa/DZA/Industry", + "World/North Africa/EGY/Industry", + "World/Europe/GBR/Industry", + "World/South Africa/GHA/Industry", + "World/Asia/IDN/Industry", + "World/Asia/IND/Industry", + "World/North Africa/ISR/Industry", + "World/Asia/KOR/Industry", + "World/South Africa/LBR/Industry", + "World/North Africa/MAR/Industry", + "World/Latam/MEX/Industry", + "World/South Africa/MOZ/Industry", + "World/South Africa/NGA/Industry", + "World/Europe/NLD/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Latam/PAN/Industry", + "World/Latam/PER/Industry", + "World/Asia/PHL/Industry", + "World/Europe/POL/Industry", + "World/Persian Gulf/QAT/Industry", + "World/Persian Gulf/SAU/Industry", + "World/South Africa/SEN/Industry", + "World/Asia/THA/Industry", + "World/North Africa/TUR/Industry", + "World/Pair/USA/Industry", + "World/Latam/VEN/Industry", + "World/Asia/VNM/Industry", + "World/Persian Gulf/YEM/Industry", + "World/South Africa/ZAF/Industry", + "World/Persian Gulf/ARE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Persian Gulf/QAT/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Asia/VNM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/Latam/COL/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/Latam/MEX/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Asia/THA/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/EGY/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/North Africa/EGY/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/South Africa/NGA/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Europe/DEU/Exports", + "World/Europe/ESP/Exports", + "World/Europe/GBR/Exports", + "World/Europe/GRC/Exports", + "World/Asia/IDN/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/South Africa/LBR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/South Africa/NGA/Exports", + "World/Europe/NLD/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/Pair/USA/Exports", + "World/Latam/VEN/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Exports", + "World/Europe/AUT/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/Latam/COL/Exports", + "World/Europe/DEU/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GRC/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/Persian Gulf/IRQ/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/Latam/MEX/Exports", + "World/South Africa/MOZ/Exports", + "World/South Africa/NGA/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/Pair/USA/Exports", + "World/South Africa/ZAF/Exports", + "World/Persian Gulf/ARE/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/Persian Gulf/IRQ/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Imports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/Persian Gulf/IRQ/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/South Africa/ZAF/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Pair/CHN/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/North Africa/DZA/Imports", + "World/Europe/GRC/Imports", + "World/Asia/IDN/Imports", + "World/Asia/KOR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/NGA/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Asia/PHL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Latam/VEN/Imports", + "World/Asia/VNM/Imports", + "World/Persian Gulf/YEM/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Latam/VEN/Imports", + "World/Asia/VNM/Imports", + "World/Latam/ARG/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/GBR/Imports", + "World/North Africa/ISR/Imports", + "World/South Africa/LBR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/SAU/Imports", + "World/Europe/SWE/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Latam/VEN/Imports", + "World/South Africa/ZAF/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/GRC/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PER/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/Persian Gulf/SAU/Imports", + "World/South Africa/SEN/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Persian Gulf/YEM/Imports", + "World/Persian Gulf/ARE/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/COL/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Asia/IND/Environment", + "World/Persian Gulf/IRQ/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/South Africa/SEN/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/Persian Gulf/ARE/Military", + "World/Europe/AUT/Military", + "World/Persian Gulf/AZE/Military", + "World/Asia/BGD/Military", + "World/Latam/BRA/Military", + "World/Latam/CHL/Military", + "World/Pair/CHN/Military", + "World/South Africa/CMR/Military", + "World/Latam/COL/Military", + "World/North Africa/DZA/Military", + "World/North Africa/EGY/Military", + "World/Europe/ESP/Military", + "World/Europe/FRA/Military", + "World/South Africa/GHA/Military", + "World/Europe/GRC/Military", + "World/Asia/IDN/Military", + "World/Asia/IND/Military", + "World/North Africa/ISR/Military", + "World/Asia/KOR/Military", + "World/North Africa/MAR/Military", + "World/Latam/MEX/Military", + "World/South Africa/MOZ/Military", + "World/South Africa/NGA/Military", + "World/Europe/NLD/Military", + "World/Persian Gulf/OMN/Military", + "World/Latam/PER/Military", + "World/Asia/PHL/Military", + "World/Europe/POL/Military", + "World/Persian Gulf/SAU/Military", + "World/South Africa/SEN/Military", + "World/Asia/THA/Military", + "World/North Africa/TUR/Military", + "World/Pair/USA/Military", + "World/Asia/VNM/Military", + "World/Persian Gulf/YEM/Military", + "World/Persian Gulf/ARE/Internet", + "World/Latam/BRA/Internet", + "World/Latam/CHL/Internet", + "World/Pair/CHN/Internet", + "World/Europe/DEU/Internet", + "World/North Africa/DZA/Internet", + "World/North Africa/EGY/Internet", + "World/Europe/FRA/Internet", + "World/Europe/GBR/Internet", + "World/Europe/HRV/Internet", + "World/Asia/IDN/Internet", + "World/North Africa/ISR/Internet", + "World/Asia/KOR/Internet", + "World/North Africa/MAR/Internet", + "World/Latam/MEX/Internet", + "World/Europe/NLD/Internet", + "World/Persian Gulf/OMN/Internet", + "World/Latam/PER/Internet", + "World/Persian Gulf/QAT/Internet", + "World/Persian Gulf/SAU/Internet", + "World/Europe/SWE/Internet", + "World/Asia/THA/Internet", + "World/North Africa/TUR/Internet", + "World/Pair/USA/Internet", + "World/South Africa/ZAF/Internet", + "World/Persian Gulf/ARE/Internet", + "World/Latam/BRA/Internet", + "World/Latam/CHL/Internet", + "World/Pair/CHN/Internet", + "World/Europe/DEU/Internet", + "World/North Africa/DZA/Internet", + "World/North Africa/EGY/Internet", + "World/Europe/FRA/Internet", + "World/Europe/HRV/Internet", + "World/Asia/IDN/Internet", + "World/North Africa/ISR/Internet", + "World/Asia/KOR/Internet", + "World/North Africa/MAR/Internet", + "World/Latam/MEX/Internet", + "World/Europe/NLD/Internet", + "World/Persian Gulf/OMN/Internet", + "World/Latam/PER/Internet", + "World/Persian Gulf/QAT/Internet", + "World/Persian Gulf/SAU/Internet", + "World/Europe/SWE/Internet", + "World/Asia/THA/Internet", + "World/North Africa/TUR/Internet", + "World/Pair/USA/Internet", + "World/Latam/VEN/Internet", + "World/South Africa/ZAF/Internet", + "World/Persian Gulf/ARE/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/GBR/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/Europe/SWE/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Economy", + "World/Europe/AUT/Economy", + "World/Latam/BRA/Economy", + "World/Latam/COL/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/Europe/NLD/Economy", + "World/Europe/SWE/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/Latam/MEX/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/FRA/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/NGA/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Asia/BGD/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/NGA/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Europe/AUT/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/NGA/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Asia/IND/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Europe/SWE/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Europe/SWE/Environment", + "World/North Africa/TUR/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Europe/AUT/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Asia/THA/Environment", + "World/Pair/USA/Environment", + "World/Latam/VEN/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/South Africa/ZAF/Environment", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/Persian Gulf/IRQ/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IND/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/South Africa/SEN/Mortality", + "World/North Africa/TUR/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/Persian Gulf/IRQ/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Europe/SWE/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Latam/ARG/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/South Africa/ZAF/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/Persian Gulf/IRQ/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Europe/SWE/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/CRI/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/South Africa/GHA/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/South Africa/MOZ/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/SAU/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Latam/ARG/Economy", + "World/Europe/AUT/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/Latam/ARG/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Asia/IND/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Persian Gulf/YEM/Health", + "World/Europe/AUT/Agriculture", + "World/Persian Gulf/AZE/Agriculture", + "World/Latam/CHL/Agriculture", + "World/Pair/CHN/Agriculture", + "World/South Africa/CMR/Agriculture", + "World/Latam/COL/Agriculture", + "World/Latam/CRI/Agriculture", + "World/North Africa/DZA/Agriculture", + "World/Europe/FRA/Agriculture", + "World/Europe/GRC/Agriculture", + "World/Asia/IDN/Agriculture", + "World/Asia/IND/Agriculture", + "World/North Africa/MAR/Agriculture", + "World/Latam/MEX/Agriculture", + "World/South Africa/MOZ/Agriculture", + "World/Europe/NLD/Agriculture", + "World/Persian Gulf/OMN/Agriculture", + "World/Latam/PER/Agriculture", + "World/Asia/PHL/Agriculture", + "World/South Africa/SEN/Agriculture", + "World/Asia/THA/Agriculture", + "World/North Africa/TUR/Agriculture", + "World/Asia/VNM/Agriculture", + "World/Persian Gulf/YEM/Agriculture", + "World/South Africa/ZAF/Agriculture", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/FRA/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/Asia/KOR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/Asia/KOR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/CHL/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/Asia/KOR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/Asia/KOR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/DZA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/Asia/KOR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/SAU/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/South Africa/MOZ/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/North Africa/TUR/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Asia/IND/Health", + "World/North Africa/ISR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Health", + "World/Latam/ARG/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/HRV/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Latam/ARG/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Latam/ARG/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/GRC/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Asia/KOR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/Persian Gulf/SAU/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/North Africa/DZA/Health", + "World/South Africa/GHA/Health", + "World/Asia/IDN/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Asia/PHL/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/Persian Gulf/ARE/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/CRI/Economy", + "World/Europe/GBR/Economy", + "World/Asia/IDN/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Pair/CHN/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/Latam/MEX/Economy", + "World/Europe/NLD/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/Latam/COL/Economy", + "World/Europe/ESP/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/Latam/MEX/Economy", + "World/Europe/NLD/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Europe/SWE/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/North Africa/MAR/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Europe/SWE/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Persian Gulf/AZE/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Latam/CRI/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/MOZ/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Europe/SWE/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Persian Gulf/ARE/Mortality", + "World/Latam/ARG/Mortality", + "World/Europe/AUT/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/South Africa/CMR/Mortality", + "World/Latam/COL/Mortality", + "World/Europe/DEU/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Europe/ESP/Mortality", + "World/Europe/FRA/Mortality", + "World/Europe/GBR/Mortality", + "World/South Africa/GHA/Mortality", + "World/Europe/GRC/Mortality", + "World/Europe/HRV/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/ISR/Mortality", + "World/Asia/KOR/Mortality", + "World/South Africa/LBR/Mortality", + "World/North Africa/MAR/Mortality", + "World/South Africa/NGA/Mortality", + "World/Europe/NLD/Mortality", + "World/Persian Gulf/OMN/Mortality", + "World/Latam/PAN/Mortality", + "World/Latam/PER/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/Asia/THA/Mortality", + "World/North Africa/TUR/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Latam/ARG/Economy", + "World/Persian Gulf/AZE/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/GRC/Economy", + "World/Asia/IND/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/South Africa/NGA/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Persian Gulf/SAU/Economy", + "World/South Africa/SEN/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/Persian Gulf/AZE/Equality", + "World/Asia/BGD/Equality", + "World/Latam/BRA/Equality", + "World/Latam/CHL/Equality", + "World/Pair/CHN/Equality", + "World/South Africa/CMR/Equality", + "World/North Africa/DZA/Equality", + "World/North Africa/EGY/Equality", + "World/Europe/GBR/Equality", + "World/South Africa/GHA/Equality", + "World/Asia/IND/Equality", + "World/North Africa/ISR/Equality", + "World/Asia/KOR/Equality", + "World/Latam/MEX/Equality", + "World/South Africa/MOZ/Equality", + "World/Latam/PAN/Equality", + "World/Asia/PHL/Equality", + "World/Europe/POL/Equality", + "World/South Africa/SEN/Equality", + "World/Asia/THA/Equality", + "World/North Africa/TUR/Equality", + "World/Pair/USA/Equality", + "World/Asia/VNM/Equality", + "World/Persian Gulf/ARE/Equality", + "World/Latam/ARG/Equality", + "World/Europe/AUT/Equality", + "World/Asia/BGD/Equality", + "World/Latam/BRA/Equality", + "World/Latam/CHL/Equality", + "World/Latam/CRI/Equality", + "World/Europe/DEU/Equality", + "World/North Africa/DZA/Equality", + "World/Europe/ESP/Equality", + "World/Europe/FRA/Equality", + "World/Europe/GBR/Equality", + "World/South Africa/GHA/Equality", + "World/Europe/GRC/Equality", + "World/Asia/IND/Equality", + "World/North Africa/ISR/Equality", + "World/Asia/KOR/Equality", + "World/Latam/MEX/Equality", + "World/South Africa/MOZ/Equality", + "World/South Africa/NGA/Equality", + "World/Europe/NLD/Equality", + "World/Persian Gulf/OMN/Equality", + "World/Latam/PAN/Equality", + "World/Persian Gulf/QAT/Equality", + "World/Persian Gulf/SAU/Equality", + "World/South Africa/SEN/Equality", + "World/North Africa/TUR/Equality", + "World/Pair/USA/Equality", + "World/Asia/VNM/Equality", + "World/Persian Gulf/YEM/Equality", + "World/South Africa/ZAF/Equality", + "World/Persian Gulf/ARE/Equality", + "World/Latam/ARG/Equality", + "World/Europe/AUT/Equality", + "World/Asia/BGD/Equality", + "World/Latam/BRA/Equality", + "World/Latam/CHL/Equality", + "World/Pair/CHN/Equality", + "World/Latam/CRI/Equality", + "World/Europe/DEU/Equality", + "World/North Africa/DZA/Equality", + "World/Europe/ESP/Equality", + "World/Europe/FRA/Equality", + "World/Europe/GBR/Equality", + "World/Europe/GRC/Equality", + "World/North Africa/ISR/Equality", + "World/Asia/KOR/Equality", + "World/Latam/MEX/Equality", + "World/South Africa/MOZ/Equality", + "World/Europe/NLD/Equality", + "World/Persian Gulf/OMN/Equality", + "World/Latam/PAN/Equality", + "World/Europe/POL/Equality", + "World/Persian Gulf/QAT/Equality", + "World/Persian Gulf/SAU/Equality", + "World/South Africa/SEN/Equality", + "World/North Africa/TUR/Equality", + "World/Pair/USA/Equality", + "World/Latam/VEN/Equality", + "World/Asia/VNM/Equality", + "World/South Africa/ZAF/Equality", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Asia/BGD/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/Europe/NLD/Environment", + "World/Latam/PAN/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/SAU/Environment", + "World/Europe/SWE/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Latam/ARG/Environment", + "World/Europe/AUT/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/ESP/Environment", + "World/Europe/FRA/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Europe/POL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Latam/VEN/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/South Africa/ZAF/Environment", + "World/Europe/AUT/R&D", + "World/Latam/BRA/R&D", + "World/Pair/CHN/R&D", + "World/Europe/DEU/R&D", + "World/North Africa/DZA/R&D", + "World/Europe/ESP/R&D", + "World/Europe/FRA/R&D", + "World/Europe/GBR/R&D", + "World/South Africa/GHA/R&D", + "World/Europe/GRC/R&D", + "World/Asia/IND/R&D", + "World/Asia/KOR/R&D", + "World/North Africa/MAR/R&D", + "World/South Africa/MOZ/R&D", + "World/Europe/NLD/R&D", + "World/Persian Gulf/OMN/R&D", + "World/Asia/PHL/R&D", + "World/Europe/POL/R&D", + "World/Asia/THA/R&D", + "World/North Africa/TUR/R&D", + "World/Pair/USA/R&D", + "World/Latam/VEN/R&D", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/Latam/CRI/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/South Africa/GHA/Health", + "World/Asia/IND/Health", + "World/Asia/KOR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Europe/POL/Health", + "World/Asia/THA/Health", + "World/Pair/USA/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/South Africa/GHA/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/South Africa/SEN/Health", + "World/Asia/THA/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Europe/AUT/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/DZA/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/Persian Gulf/IRQ/Demography", + "World/North Africa/ISR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/industry", + "World/Latam/ARG/industry", + "World/Europe/AUT/industry", + "World/Persian Gulf/AZE/industry", + "World/Asia/BGD/industry", + "World/Latam/BRA/industry", + "World/Latam/CHL/industry", + "World/Pair/CHN/industry", + "World/South Africa/CMR/industry", + "World/Latam/COL/industry", + "World/Latam/CRI/industry", + "World/North Africa/DZA/industry", + "World/North Africa/EGY/industry", + "World/Europe/ESP/industry", + "World/Europe/FRA/industry", + "World/Europe/GBR/industry", + "World/South Africa/GHA/industry", + "World/Europe/GRC/industry", + "World/Europe/HRV/industry", + "World/Asia/IDN/industry", + "World/Asia/IND/industry", + "World/Persian Gulf/IRQ/industry", + "World/North Africa/ISR/industry", + "World/Asia/KOR/industry", + "World/South Africa/LBR/industry", + "World/North Africa/MAR/industry", + "World/Latam/MEX/industry", + "World/South Africa/MOZ/industry", + "World/South Africa/NGA/industry", + "World/Europe/NLD/industry", + "World/Persian Gulf/OMN/industry", + "World/Latam/PAN/industry", + "World/Latam/PER/industry", + "World/Asia/PHL/industry", + "World/Europe/POL/industry", + "World/Persian Gulf/QAT/industry", + "World/Persian Gulf/SAU/industry", + "World/South Africa/SEN/industry", + "World/Europe/SWE/industry", + "World/Asia/THA/industry", + "World/North Africa/TUR/industry", + "World/Pair/USA/industry", + "World/Latam/VEN/industry", + "World/Asia/VNM/industry", + "World/Persian Gulf/YEM/industry", + "World/South Africa/ZAF/industry", + "World/Persian Gulf/AZE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/CHL/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/Europe/DEU/Economy", + "World/North Africa/DZA/Economy", + "World/North Africa/EGY/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/NGA/Economy", + "World/Europe/NLD/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/South Africa/SEN/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/Pair/USA/Economy", + "World/Asia/VNM/Economy", + "World/Persian Gulf/YEM/Economy", + "World/South Africa/ZAF/Economy", + "World/Europe/AUT/Exports", + "World/Persian Gulf/AZE/Exports", + "World/Asia/BGD/Exports", + "World/Latam/BRA/Exports", + "World/Latam/CHL/Exports", + "World/Pair/CHN/Exports", + "World/South Africa/CMR/Exports", + "World/Latam/COL/Exports", + "World/Latam/CRI/Exports", + "World/Europe/DEU/Exports", + "World/North Africa/DZA/Exports", + "World/Europe/ESP/Exports", + "World/Europe/FRA/Exports", + "World/Europe/GBR/Exports", + "World/South Africa/GHA/Exports", + "World/Europe/GRC/Exports", + "World/Europe/HRV/Exports", + "World/Asia/IDN/Exports", + "World/Asia/IND/Exports", + "World/North Africa/ISR/Exports", + "World/Asia/KOR/Exports", + "World/North Africa/MAR/Exports", + "World/Europe/NLD/Exports", + "World/Persian Gulf/OMN/Exports", + "World/Latam/PAN/Exports", + "World/Latam/PER/Exports", + "World/Asia/PHL/Exports", + "World/Europe/POL/Exports", + "World/Persian Gulf/QAT/Exports", + "World/Persian Gulf/SAU/Exports", + "World/South Africa/SEN/Exports", + "World/Europe/SWE/Exports", + "World/Asia/THA/Exports", + "World/North Africa/TUR/Exports", + "World/Pair/USA/Exports", + "World/Asia/VNM/Exports", + "World/South Africa/ZAF/Exports", + "World/Latam/ARG/Imports", + "World/Europe/AUT/Imports", + "World/Persian Gulf/AZE/Imports", + "World/Asia/BGD/Imports", + "World/Latam/BRA/Imports", + "World/Latam/CHL/Imports", + "World/Pair/CHN/Imports", + "World/South Africa/CMR/Imports", + "World/Latam/COL/Imports", + "World/Latam/CRI/Imports", + "World/Europe/DEU/Imports", + "World/North Africa/DZA/Imports", + "World/North Africa/EGY/Imports", + "World/Europe/ESP/Imports", + "World/Europe/FRA/Imports", + "World/Europe/GBR/Imports", + "World/South Africa/GHA/Imports", + "World/Europe/HRV/Imports", + "World/Asia/IDN/Imports", + "World/Asia/IND/Imports", + "World/North Africa/ISR/Imports", + "World/Asia/KOR/Imports", + "World/North Africa/MAR/Imports", + "World/Latam/MEX/Imports", + "World/South Africa/MOZ/Imports", + "World/South Africa/NGA/Imports", + "World/Europe/NLD/Imports", + "World/Persian Gulf/OMN/Imports", + "World/Latam/PAN/Imports", + "World/Latam/PER/Imports", + "World/Asia/PHL/Imports", + "World/Europe/POL/Imports", + "World/Persian Gulf/QAT/Imports", + "World/South Africa/SEN/Imports", + "World/Europe/SWE/Imports", + "World/Asia/THA/Imports", + "World/North Africa/TUR/Imports", + "World/Pair/USA/Imports", + "World/Asia/VNM/Imports", + "World/South Africa/ZAF/Imports", + "World/Persian Gulf/ARE/Mortality", + "World/Europe/AUT/Mortality", + "World/Asia/BGD/Mortality", + "World/Latam/BRA/Mortality", + "World/Latam/CHL/Mortality", + "World/Pair/CHN/Mortality", + "World/Latam/COL/Mortality", + "World/North Africa/DZA/Mortality", + "World/North Africa/EGY/Mortality", + "World/Asia/IDN/Mortality", + "World/Asia/IND/Mortality", + "World/North Africa/MAR/Mortality", + "World/Latam/MEX/Mortality", + "World/South Africa/NGA/Mortality", + "World/Latam/PAN/Mortality", + "World/Asia/PHL/Mortality", + "World/Europe/POL/Mortality", + "World/Persian Gulf/QAT/Mortality", + "World/Persian Gulf/SAU/Mortality", + "World/South Africa/SEN/Mortality", + "World/North Africa/TUR/Mortality", + "World/Pair/USA/Mortality", + "World/Latam/VEN/Mortality", + "World/Asia/VNM/Mortality", + "World/Persian Gulf/YEM/Mortality", + "World/Latam/ARG/Taxes", + "World/Europe/AUT/Taxes", + "World/Persian Gulf/AZE/Taxes", + "World/Asia/BGD/Taxes", + "World/Latam/BRA/Taxes", + "World/Latam/CHL/Taxes", + "World/South Africa/CMR/Taxes", + "World/Latam/COL/Taxes", + "World/Latam/CRI/Taxes", + "World/Europe/DEU/Taxes", + "World/North Africa/DZA/Taxes", + "World/Europe/ESP/Taxes", + "World/Europe/FRA/Taxes", + "World/Europe/GBR/Taxes", + "World/South Africa/GHA/Taxes", + "World/Europe/GRC/Taxes", + "World/Europe/HRV/Taxes", + "World/Asia/IND/Taxes", + "World/North Africa/ISR/Taxes", + "World/Asia/KOR/Taxes", + "World/North Africa/MAR/Taxes", + "World/Latam/MEX/Taxes", + "World/South Africa/MOZ/Taxes", + "World/South Africa/NGA/Taxes", + "World/Europe/NLD/Taxes", + "World/Latam/PAN/Taxes", + "World/Latam/PER/Taxes", + "World/Europe/POL/Taxes", + "World/Persian Gulf/SAU/Taxes", + "World/South Africa/SEN/Taxes", + "World/Europe/SWE/Taxes", + "World/North Africa/TUR/Taxes", + "World/Pair/USA/Taxes", + "World/Latam/VEN/Taxes", + "World/Asia/VNM/Taxes", + "World/Persian Gulf/YEM/Taxes", + "World/South Africa/ZAF/Taxes", + "World/Persian Gulf/AZE/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/South Africa/CMR/Economy", + "World/Latam/COL/Economy", + "World/North Africa/EGY/Economy", + "World/Europe/ESP/Economy", + "World/South Africa/GHA/Economy", + "World/Europe/HRV/Economy", + "World/Asia/IND/Economy", + "World/Asia/KOR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Europe/POL/Economy", + "World/Asia/THA/Economy", + "World/Latam/ARG/Industry", + "World/Europe/AUT/Industry", + "World/Asia/BGD/Industry", + "World/Latam/CHL/Industry", + "World/Pair/CHN/Industry", + "World/Latam/COL/Industry", + "World/Latam/CRI/Industry", + "World/Europe/DEU/Industry", + "World/North Africa/DZA/Industry", + "World/Europe/ESP/Industry", + "World/Europe/FRA/Industry", + "World/Europe/GBR/Industry", + "World/Europe/GRC/Industry", + "World/North Africa/ISR/Industry", + "World/Asia/KOR/Industry", + "World/North Africa/MAR/Industry", + "World/Latam/MEX/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Latam/PER/Industry", + "World/Europe/POL/Industry", + "World/Europe/SWE/Industry", + "World/Pair/USA/Industry", + "World/Persian Gulf/ARE/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Latam/CHL/Industry", + "World/Pair/CHN/Industry", + "World/South Africa/CMR/Industry", + "World/Latam/COL/Industry", + "World/Latam/CRI/Industry", + "World/Europe/DEU/Industry", + "World/North Africa/DZA/Industry", + "World/Europe/ESP/Industry", + "World/Europe/FRA/Industry", + "World/Europe/GBR/Industry", + "World/Asia/IND/Industry", + "World/Asia/KOR/Industry", + "World/South Africa/LBR/Industry", + "World/North Africa/MAR/Industry", + "World/South Africa/MOZ/Industry", + "World/Europe/NLD/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Latam/PAN/Industry", + "World/Latam/PER/Industry", + "World/Europe/POL/Industry", + "World/Persian Gulf/SAU/Industry", + "World/South Africa/SEN/Industry", + "World/Asia/THA/Industry", + "World/Latam/VEN/Industry", + "World/Asia/VNM/Industry", + "World/Persian Gulf/YEM/Industry", + "World/South Africa/ZAF/Industry", + "World/Latam/ARG/R&D", + "World/Persian Gulf/AZE/R&D", + "World/Asia/BGD/R&D", + "World/Latam/CHL/R&D", + "World/Latam/COL/R&D", + "World/Latam/CRI/R&D", + "World/North Africa/EGY/R&D", + "World/South Africa/GHA/R&D", + "World/Europe/GRC/R&D", + "World/Europe/HRV/R&D", + "World/Asia/IDN/R&D", + "World/Asia/IND/R&D", + "World/South Africa/LBR/R&D", + "World/Latam/MEX/R&D", + "World/South Africa/MOZ/R&D", + "World/South Africa/NGA/R&D", + "World/Latam/PAN/R&D", + "World/Latam/PER/R&D", + "World/Asia/PHL/R&D", + "World/Europe/POL/R&D", + "World/South Africa/SEN/R&D", + "World/Asia/THA/R&D", + "World/North Africa/TUR/R&D", + "World/Latam/VEN/R&D", + "World/Asia/VNM/R&D", + "World/Persian Gulf/YEM/R&D", + "World/South Africa/ZAF/R&D", + "World/Latam/ARG/R&D", + "World/Asia/BGD/R&D", + "World/Latam/CHL/R&D", + "World/South Africa/CMR/R&D", + "World/Latam/COL/R&D", + "World/Latam/CRI/R&D", + "World/North Africa/EGY/R&D", + "World/South Africa/GHA/R&D", + "World/Europe/GRC/R&D", + "World/Asia/IDN/R&D", + "World/Asia/IND/R&D", + "World/North Africa/MAR/R&D", + "World/Latam/MEX/R&D", + "World/South Africa/MOZ/R&D", + "World/South Africa/NGA/R&D", + "World/Latam/PAN/R&D", + "World/Latam/PER/R&D", + "World/Asia/PHL/R&D", + "World/Europe/POL/R&D", + "World/South Africa/SEN/R&D", + "World/North Africa/TUR/R&D", + "World/Latam/VEN/R&D", + "World/Asia/VNM/R&D", + "World/South Africa/ZAF/R&D", + "World/Persian Gulf/ARE/A&D", + "World/Latam/ARG/A&D", + "World/Europe/AUT/A&D", + "World/Persian Gulf/AZE/A&D", + "World/Asia/BGD/A&D", + "World/Latam/BRA/A&D", + "World/Latam/CHL/A&D", + "World/Pair/CHN/A&D", + "World/Latam/CRI/A&D", + "World/North Africa/EGY/A&D", + "World/Europe/GBR/A&D", + "World/South Africa/GHA/A&D", + "World/Europe/HRV/A&D", + "World/Asia/IND/A&D", + "World/North Africa/ISR/A&D", + "World/Asia/KOR/A&D", + "World/North Africa/MAR/A&D", + "World/Latam/MEX/A&D", + "World/South Africa/MOZ/A&D", + "World/South Africa/NGA/A&D", + "World/Europe/NLD/A&D", + "World/Persian Gulf/OMN/A&D", + "World/Latam/PAN/A&D", + "World/Europe/POL/A&D", + "World/Persian Gulf/QAT/A&D", + "World/Asia/THA/A&D", + "World/Pair/USA/A&D", + "World/Latam/VEN/A&D", + "World/Asia/VNM/A&D", + "World/Persian Gulf/YEM/A&D", + "World/Persian Gulf/ARE/Industry", + "World/Persian Gulf/AZE/Industry", + "World/Asia/BGD/Industry", + "World/Latam/BRA/Industry", + "World/Latam/CHL/Industry", + "World/Pair/CHN/Industry", + "World/South Africa/CMR/Industry", + "World/Latam/CRI/Industry", + "World/North Africa/EGY/Industry", + "World/Europe/HRV/Industry", + "World/Asia/IDN/Industry", + "World/Asia/IND/Industry", + "World/North Africa/ISR/Industry", + "World/North Africa/MAR/Industry", + "World/Latam/MEX/Industry", + "World/South Africa/MOZ/Industry", + "World/South Africa/NGA/Industry", + "World/Persian Gulf/OMN/Industry", + "World/Asia/PHL/Industry", + "World/Europe/POL/Industry", + "World/Persian Gulf/SAU/Industry", + "World/Asia/THA/Industry", + "World/Asia/VNM/Industry", + "World/Persian Gulf/ARE/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/Latam/CRI/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/Europe/HRV/Environment", + "World/Asia/IND/Environment", + "World/Persian Gulf/IRQ/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Asia/PHL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Pair/USA/Environment", + "World/Asia/VNM/Environment", + "World/Persian Gulf/YEM/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Environment", + "World/Persian Gulf/AZE/Environment", + "World/Asia/BGD/Environment", + "World/Latam/BRA/Environment", + "World/Latam/CHL/Environment", + "World/Pair/CHN/Environment", + "World/South Africa/CMR/Environment", + "World/Latam/COL/Environment", + "World/Latam/CRI/Environment", + "World/Europe/DEU/Environment", + "World/North Africa/DZA/Environment", + "World/North Africa/EGY/Environment", + "World/Europe/GBR/Environment", + "World/South Africa/GHA/Environment", + "World/Europe/GRC/Environment", + "World/Asia/IDN/Environment", + "World/Asia/IND/Environment", + "World/North Africa/ISR/Environment", + "World/Asia/KOR/Environment", + "World/South Africa/LBR/Environment", + "World/North Africa/MAR/Environment", + "World/Latam/MEX/Environment", + "World/South Africa/MOZ/Environment", + "World/South Africa/NGA/Environment", + "World/Europe/NLD/Environment", + "World/Persian Gulf/OMN/Environment", + "World/Latam/PAN/Environment", + "World/Latam/PER/Environment", + "World/Asia/PHL/Environment", + "World/Persian Gulf/QAT/Environment", + "World/Persian Gulf/SAU/Environment", + "World/South Africa/SEN/Environment", + "World/Europe/SWE/Environment", + "World/Asia/THA/Environment", + "World/North Africa/TUR/Environment", + "World/Asia/VNM/Environment", + "World/South Africa/ZAF/Environment", + "World/Persian Gulf/ARE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/DZA/Economy", + "World/Europe/ESP/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Pair/USA/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Persian Gulf/ARE/Economy", + "World/Asia/BGD/Economy", + "World/Latam/BRA/Economy", + "World/Latam/CHL/Economy", + "World/Pair/CHN/Economy", + "World/Latam/COL/Economy", + "World/Latam/CRI/Economy", + "World/North Africa/DZA/Economy", + "World/Europe/FRA/Economy", + "World/Europe/GBR/Economy", + "World/South Africa/GHA/Economy", + "World/Asia/IDN/Economy", + "World/Asia/IND/Economy", + "World/Persian Gulf/IRQ/Economy", + "World/North Africa/ISR/Economy", + "World/Asia/KOR/Economy", + "World/South Africa/LBR/Economy", + "World/North Africa/MAR/Economy", + "World/Latam/MEX/Economy", + "World/South Africa/MOZ/Economy", + "World/Persian Gulf/OMN/Economy", + "World/Latam/PAN/Economy", + "World/Latam/PER/Economy", + "World/Asia/PHL/Economy", + "World/Europe/POL/Economy", + "World/Persian Gulf/QAT/Economy", + "World/Persian Gulf/SAU/Economy", + "World/Europe/SWE/Economy", + "World/Asia/THA/Economy", + "World/North Africa/TUR/Economy", + "World/Latam/VEN/Economy", + "World/Asia/VNM/Economy", + "World/South Africa/ZAF/Economy", + "World/Latam/ARG/Health", + "World/Europe/AUT/Health", + "World/Persian Gulf/AZE/Health", + "World/Asia/BGD/Health", + "World/Latam/BRA/Health", + "World/Latam/CHL/Health", + "World/Pair/CHN/Health", + "World/South Africa/CMR/Health", + "World/Latam/COL/Health", + "World/Latam/CRI/Health", + "World/Europe/DEU/Health", + "World/North Africa/DZA/Health", + "World/North Africa/EGY/Health", + "World/Europe/ESP/Health", + "World/Europe/FRA/Health", + "World/Europe/GBR/Health", + "World/South Africa/GHA/Health", + "World/Europe/GRC/Health", + "World/Europe/HRV/Health", + "World/Asia/IDN/Health", + "World/Asia/IND/Health", + "World/Persian Gulf/IRQ/Health", + "World/North Africa/ISR/Health", + "World/Asia/KOR/Health", + "World/South Africa/LBR/Health", + "World/North Africa/MAR/Health", + "World/Latam/MEX/Health", + "World/South Africa/MOZ/Health", + "World/South Africa/NGA/Health", + "World/Europe/NLD/Health", + "World/Persian Gulf/OMN/Health", + "World/Latam/PAN/Health", + "World/Latam/PER/Health", + "World/Asia/PHL/Health", + "World/Europe/POL/Health", + "World/Persian Gulf/QAT/Health", + "World/South Africa/SEN/Health", + "World/Europe/SWE/Health", + "World/Asia/THA/Health", + "World/North Africa/TUR/Health", + "World/Pair/USA/Health", + "World/Latam/VEN/Health", + "World/Asia/VNM/Health", + "World/Persian Gulf/YEM/Health", + "World/South Africa/ZAF/Health", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/North Africa/DZA/Demography", + "World/North Africa/EGY/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/North Africa/ISR/Demography", + "World/Asia/KOR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Asia/PHL/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Persian Gulf/ARE/Demography", + "World/Latam/ARG/Demography", + "World/Persian Gulf/AZE/Demography", + "World/Asia/BGD/Demography", + "World/Latam/BRA/Demography", + "World/Latam/CHL/Demography", + "World/Pair/CHN/Demography", + "World/South Africa/CMR/Demography", + "World/Latam/COL/Demography", + "World/Latam/CRI/Demography", + "World/Europe/DEU/Demography", + "World/North Africa/DZA/Demography", + "World/Europe/ESP/Demography", + "World/Europe/FRA/Demography", + "World/Europe/GBR/Demography", + "World/South Africa/GHA/Demography", + "World/Europe/GRC/Demography", + "World/Europe/HRV/Demography", + "World/Asia/IDN/Demography", + "World/Asia/IND/Demography", + "World/Persian Gulf/IRQ/Demography", + "World/North Africa/ISR/Demography", + "World/South Africa/LBR/Demography", + "World/North Africa/MAR/Demography", + "World/Latam/MEX/Demography", + "World/South Africa/MOZ/Demography", + "World/South Africa/NGA/Demography", + "World/Europe/NLD/Demography", + "World/Persian Gulf/OMN/Demography", + "World/Latam/PAN/Demography", + "World/Latam/PER/Demography", + "World/Europe/POL/Demography", + "World/Persian Gulf/QAT/Demography", + "World/Persian Gulf/SAU/Demography", + "World/South Africa/SEN/Demography", + "World/Asia/THA/Demography", + "World/North Africa/TUR/Demography", + "World/Pair/USA/Demography", + "World/Latam/VEN/Demography", + "World/Asia/VNM/Demography", + "World/Persian Gulf/YEM/Demography", + "World/South Africa/ZAF/Demography", + "World/Europe/AUT/Equality", + "World/Persian Gulf/AZE/Equality", + "World/Asia/BGD/Equality", + "World/Latam/CHL/Equality", + "World/Pair/CHN/Equality", + "World/Latam/COL/Equality", + "World/Latam/CRI/Equality", + "World/Europe/DEU/Equality", + "World/North Africa/DZA/Equality", + "World/North Africa/EGY/Equality", + "World/Europe/GBR/Equality", + "World/South Africa/GHA/Equality", + "World/Europe/HRV/Equality", + "World/Asia/IND/Equality", + "World/North Africa/ISR/Equality", + "World/Asia/KOR/Equality", + "World/North Africa/MAR/Equality", + "World/Latam/MEX/Equality", + "World/South Africa/MOZ/Equality", + "World/South Africa/NGA/Equality", + "World/Europe/NLD/Equality", + "World/Latam/PAN/Equality", + "World/Latam/PER/Equality", + "World/Asia/PHL/Equality", + "World/Europe/POL/Equality", + "World/Persian Gulf/SAU/Equality", + "World/Europe/SWE/Equality", + "World/Asia/THA/Equality", + "World/North Africa/TUR/Equality", + "World/Latam/VEN/Equality", + "World/Asia/VNM/Equality", + "World/Persian Gulf/YEM/Equality", + "World/South Africa/ZAF/Equality", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/Latam/CRI", + "World/North Africa/EGY", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/HRV", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Asia/THA", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Latam/ARG", + "World/Asia/BGD", + "World/Latam/BRA", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/South Africa/GHA", + "World/Asia/IND", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/North Africa/TUR", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Latam/CHL", + "World/Pair/CHN", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Latam/PAN", + "World/Latam/PER", + "World/Europe/POL", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/Persian Gulf/ARE", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Asia/IDN", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/South Africa/SEN", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Latam/PAN", + "World/Latam/PER", + "World/Europe/POL", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Persian Gulf/ARE", + "World/Latam/ARG", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Latam/BRA", + "World/Latam/CHL", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/North Africa/DZA", + "World/North Africa/EGY", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/GRC", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/Persian Gulf/IRQ", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/South Africa/LBR", + "World/North Africa/MAR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Persian Gulf/OMN", + "World/Latam/PAN", + "World/Latam/PER", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/QAT", + "World/Persian Gulf/SAU", + "World/South Africa/SEN", + "World/Europe/SWE", + "World/Asia/THA", + "World/North Africa/TUR", + "World/Pair/USA", + "World/Latam/VEN", + "World/Asia/VNM", + "World/Persian Gulf/YEM", + "World/South Africa/ZAF", + "World/Europe/AUT", + "World/Persian Gulf/AZE", + "World/Asia/BGD", + "World/Pair/CHN", + "World/South Africa/CMR", + "World/Latam/COL", + "World/Latam/CRI", + "World/Europe/DEU", + "World/North Africa/DZA", + "World/Europe/ESP", + "World/Europe/FRA", + "World/Europe/GBR", + "World/South Africa/GHA", + "World/Europe/HRV", + "World/Asia/IDN", + "World/Asia/IND", + "World/North Africa/ISR", + "World/Asia/KOR", + "World/Latam/MEX", + "World/South Africa/MOZ", + "World/South Africa/NGA", + "World/Europe/NLD", + "World/Latam/PAN", + "World/Asia/PHL", + "World/Europe/POL", + "World/Persian Gulf/SAU", + "World/Europe/SWE", + "World/North Africa/TUR", + "World/Pair/USA", + "World/South Africa/ZAF", + "World/Persian Gulf", + "World/Latam", + "World/Europe", + "World/Persian Gulf", + "World/Asia", + "World/Latam", + "World/Latam", + "World/Pair", + "World/South Africa", + "World/Latam", + "World/Latam", + "World/Europe", + "World/North Africa", + "World/North Africa", + "World/Europe", + "World/Europe", + "World/Europe", + "World/South Africa", + "World/Europe", + "World/Europe", + "World/Asia", + "World/Asia", + "World/Persian Gulf", + "World/North Africa", + "World/Asia", + "World/South Africa", + "World/North Africa", + "World/Latam", + "World/South Africa", + "World/South Africa", + "World/Europe", + "World/Persian Gulf", + "World/Latam", + "World/Latam", + "World/Asia", + "World/Europe", + "World/Persian Gulf", + "World/Persian Gulf", + "World/South Africa", + "World/Europe", + "World/Asia", + "World/North Africa", + "World/Pair", + "World/Latam", + "World/Asia", + "World/Persian Gulf", + "World/South Africa", + "World", + "World", + "World", + "World", + "World", + "World", + "World", + "" + ], + "type": "treemap", + "values": [ + 0.8531021111589834, + 0.9960831758177524, + 0.9956171156600898, + 0.7534091311886247, + 0.999122807017544, + 0.872263164968203, + 0.897855261911528, + 0.999122807017544, + 0.8536839205362883, + 0.8975114391781058, + 0.8640740055556022, + 0.908313797791604, + 0.9891493795585866, + 0.766483106515241, + 0.9231736856070656, + 0.9602036241270692, + 0.9626281577206024, + 0.9457244866279326, + 0.9047503889161737, + 0.8269184820807403, + 0.8789838022165389, + 0.8800026263331926, + 0.957737379733654, + 0.999122807017544, + 0.9509004506686832, + 0.7562762148337596, + 0.8442479234380643, + 0.993779175279743, + 0.7763614794595731, + 0.8710617614475394, + 0.9636752136752136, + 0.8119647131227026, + 0.7805172292400586, + 0.9370415079706566, + 0.8701066680233348, + 0.8242647792818613, + 0.8238243435953362, + 0.9791710812316362, + 0.7554660388288974, + 0.8482458889462429, + 0.914656355102988, + 0.8458383400350413, + 0.92448876432027, + 0.8295449908182004, + 0.9773557492735576, + 0.9281390141743808, + 0.9093117324398052, + 0.7806171146277027, + 0.8726620562837514, + 0.9686137921250751, + 0.8257949554417174, + 0.7988538683378321, + 0.9506066908754583, + 0.992130773157018, + 0.992130773157018, + 0.8297391428809981, + 0.9981637899375688, + 0.9559378978139692, + 0.9725030984517492, + 0.9994500458295142, + 0.9674464520962212, + 0.9537877101584162, + 0.9973311596620504, + 0.9965191088563604, + 0.9588085805762212, + 0.9804758872197188, + 0.9761230584660866, + 0.9804758872197188, + 0.9815561030337692, + 0.9979840393589112, + 0.9327029435145744, + 0.9855664265688792, + 0.9965191088563604, + 0.990099472619818, + 0.995055254321861, + 0.8099484766436214, + 0.9906701465266744, + 0.931003010693105, + 0.983380118113322, + 0.9892105958643824, + 0.9957870470931044, + 0.9654908347220116, + 0.9987789987789988, + 0.987752121170142, + 0.9645628577173472, + 0.9994500458295142, + 0.94949459763166, + 0.9746742674843129, + 0.9965191088563604, + 0.9899402366995218, + 0.987752121170142, + 0.9987169080982063, + 0.9987169080982063, + 0.9985113511553524, + 0.9987169080982063, + 0.9632178831505792, + 0.9892105958643824, + 0.9537877101584162, + 0.9444982054870336, + 0.8409895539377414, + 0.9935457940810306, + 0.9402260743372878, + 0.9725030984517492, + 0.9994500458295142, + 0.9022126610505616, + 0.9552208996034384, + 0.9963384890035256, + 0.987752121170142, + 0.9133941210450608, + 0.9444982054870336, + 0.960245535909425, + 0.9790238683337896, + 0.9094946702782724, + 0.920417502503307, + 0.9384151778567814, + 0.963122674479988, + 0.992130773157018, + 0.7576460378790729, + 0.9455819726942684, + 0.987752121170142, + 0.968168023170972, + 0.9133941210450608, + 0.8731664917240823, + 0.9746742674843129, + 0.9833831528957327, + 0.8527482577723561, + 0.9964422727546304, + 0.9746742674843129, + 0.9797497432807476, + 0.9987169080982063, + 0.948780020349246, + 0.960245535909425, + 0.9036065776616928, + 0.926761544632836, + 0.9660041169227584, + 0.9710569973901052, + 0.9979840393589112, + 0.9947945803202288, + 0.9987169080982063, + 0.9411662012310432, + 0.9395149939510422, + 0.9612865740616352, + 0.9104377104377104, + 0.8466632549513022, + 0.965460306668771, + 0.9991930603515944, + 0.7661643396391405, + 0.8993946860474129, + 0.9987169080982063, + 0.8053363980490009, + 0.8802332979851536, + 0.9951653583795466, + 0.8038391193200113, + 0.8486048045950245, + 0.9280303030303032, + 0.7681025602181487, + 0.8667078642628765, + 0.8561382296156173, + 0.9288810671989122, + 0.9927523497097036, + 0.975268289884998, + 0.9652833528240462, + 0.8533855094586799, + 0.9552208996034384, + 0.9383191940615055, + 0.9334429906542056, + 0.906974409725021, + 0.872086805029541, + 0.9775003787304952, + 0.9866063032322202, + 0.941241325810687, + 0.9394303111483416, + 0.9755497899678774, + 0.9757801848204816, + 0.97062869262233, + 0.798490964605047, + 0.9022126610505616, + 0.9410307160918406, + 0.9994500458295142, + 0.9434119359795824, + 0.9987169080982063, + 0.805678624440212, + 0.7609962981315767, + 0.8417508417508417, + 0.9573727012110692, + 0.9833831528957327, + 0.8473209929380159, + 0.9946751263076096, + 0.9580905063976388, + 0.9638426316026611, + 0.9987169080982063, + 0.9015161062330156, + 0.9703343503473024, + 0.9987789987789988, + 0.9826559329887096, + 0.8594361209082695, + 0.9516399434309798, + 0.920417502503307, + 0.9423609294481023, + 0.968168023170972, + 0.9957870470931044, + 0.94521116881737, + 0.9694172098634408, + 0.9466379024540816, + 0.995055254321861, + 0.9879041307837876, + 0.9833831528957327, + 0.9333963910884244, + 0.9899402366995218, + 0.8869505922195406, + 0.9203611665699089, + 0.9884812240212558, + 0.9588085805762212, + 0.9214805336789016, + 0.9881107335844111, + 0.9236131934032984, + 0.9812023001507028, + 0.8379122722898551, + 0.9523555966814456, + 0.9248788062414784, + 0.8139160327981961, + 0.937383366744383, + 0.94521116881737, + 0.9768478574449928, + 0.9972514396116292, + 0.9933098124967774, + 0.9991101223581756, + 0.9286467697656632, + 0.919010674275554, + 0.9473516727604566, + 0.9459244011397192, + 0.907679698406929, + 0.9012628558280068, + 0.923234386862968, + 0.9345449630236856, + 0.9965224965914254, + 0.9537877101584162, + 0.9105923002381252, + 0.9964912280701756, + 0.9732265524705908, + 0.948780020349246, + 0.9833831528957327, + 0.923234386862968, + 0.9717799134249206, + 0.9001238035739624, + 0.8238720996776803, + 0.9369854844016412, + 0.9338360345735434, + 0.986111412381384, + 0.9689798997219612, + 0.9935924757554138, + 0.7605829143427332, + 0.9660041169227584, + 0.9211213201052028, + 0.917590135458235, + 0.9870232873110416, + 0.8507175025705549, + 0.9481552134363872, + 0.9964912280701756, + 0.9553309445702832, + 0.9403778017040136, + 0.9696119722965126, + 0.9725030984517492, + 0.9480657120588448, + 0.9480657120588448, + 0.8911000630113791, + 0.9008198204074828, + 0.9739502754814452, + 0.992130773157018, + 0.9940520578006032, + 0.9979840393589112, + 0.9871951628595732, + 0.9050015702408756, + 0.7835109416675496, + 0.9993324432576768, + 0.7596801346801346, + 0.9906701465266744, + 0.9480657120588448, + 0.8159024043178598, + 0.7811662552209668, + 0.8197944468080158, + 0.9848383996858172, + 0.9221336649411492, + 0.8994280557324552, + 0.7868192556366049, + 0.8020486431706627, + 0.8608954878607268, + 0.9309395848776872, + 0.8507175025705549, + 0.9280303030303032, + 0.934334074623178, + 0.8656659267144711, + 0.7814049860815457, + 0.819882410141537, + 0.9043039394552778, + 0.7905837844375335, + 0.9809244351623316, + 0.7920033670033668, + 0.9476817042606516, + 0.9732265524705908, + 0.999014778325123, + 0.8814330280498146, + 0.8106107934390159, + 0.9859927106498642, + 0.843965803045393, + 0.7596801346801346, + 0.8513250555967384, + 0.8046783090893074, + 0.8073122788801593, + 0.9239392804329156, + 0.97062869262233, + 0.9464820597794912, + 0.8731889608367804, + 0.819882410141537, + 0.9189961343104286, + 0.8073122788801593, + 0.941972584550496, + 0.9545041703849207, + 0.8766192814819845, + 0.9739502754814452, + 0.9331273751154144, + 0.8493650107294191, + 0.9873818298349624, + 0.9964912280701756, + 0.895536084777682, + 0.9773557492735576, + 0.8385429638854297, + 0.8492357350911255, + 0.992105287563838, + 0.9991101224022378, + 0.7779288650281017, + 0.8958436239049175, + 0.9954545454545456, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8178037731982906, + 0.9416562889165628, + 0.936963017728694, + 0.8442717785843921, + 0.7686035765445222, + 0.7867084930870223, + 0.992671182389769, + 0.9848040830545792, + 0.951008471157725, + 0.8630706569122704, + 0.9026819923371648, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8474662292253902, + 0.8979659609796596, + 0.999777530589544, + 0.940760842211224, + 0.78115400581154, + 0.9240556247405564, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.7593325960761084, + 0.9413092648977816, + 0.999122807017544, + 0.9505705348293196, + 0.9416562889165628, + 0.9271888077994948, + 0.8673029726406383, + 0.9731456263408548, + 0.7813852813852814, + 0.7822341892305151, + 0.9364502164502164, + 0.8679516484927489, + 0.8857699681136173, + 0.7714560308712177, + 0.8584751140436623, + 0.8985904473621558, + 0.8190486045187013, + 0.7893527624833871, + 0.8919696969696971, + 0.8818618218586448, + 0.756628065305478, + 0.7882882882882881, + 0.950300482513086, + 0.8657481566722074, + 0.9365262267264388, + 0.943947221044588, + 0.8874585152838429, + 0.7714763488785487, + 0.9214972959512142, + 0.909072064464046, + 0.7715736896162307, + 0.9290762303990062, + 0.8550758611268748, + 0.7761808341851455, + 0.9819054691235874, + 0.7957985346108523, + 0.9657498873425368, + 0.9364502164502164, + 0.8516827062939479, + 0.9754181770220984, + 0.9731874212360307, + 0.8135371179039302, + 0.8727427378014051, + 0.848344463643581, + 0.8895327800940938, + 0.7627248531396743, + 0.7582569516718275, + 0.7709571931840407, + 0.8921633972095838, + 0.9321707396546104, + 0.8986401163657464, + 0.7580471889891207, + 0.9369652591790606, + 0.8679796630864033, + 0.9098066660834572, + 0.980489676524778, + 0.927246096495326, + 0.9018122770586844, + 0.8810674463937621, + 0.8400216450216451, + 0.7689831576535288, + 0.7729944320019908, + 0.8837147279244052, + 0.8811496483778261, + 0.9563110356768192, + 0.983927829355058, + 0.9839066269313416, + 0.7583206652119362, + 0.7925815424300344, + 0.8317161572052402, + 0.7744952514390555, + 0.9360718475073312, + 0.96130346341869, + 0.7958679833679831, + 0.7906981399616313, + 0.8413581378299119, + 0.9203347173341052, + 0.8430006636564963, + 0.9727275146860328, + 0.8287881529651736, + 0.8315151515151515, + 0.8537205081669691, + 0.8093402654155926, + 0.8962455479058957, + 0.8056050278017189, + 0.8210295170320835, + 0.8039070101933913, + 0.8039838558691283, + 0.7826760060360987, + 0.9269812868749552, + 0.794976794976795, + 0.8900713624983871, + 0.9133288665033964, + 0.810208371742399, + 0.7896057754229845, + 0.923877773549558, + 0.9296009475992656, + 0.8950805293005671, + 0.8085490374609781, + 0.9819008264462812, + 0.8587224361306279, + 0.7739174537660428, + 0.7862254487513007, + 0.8193724468472356, + 0.8893524283935244, + 0.997064221767242, + 0.7952666762372825, + 0.9020216682958616, + 0.9983501374885428, + 0.8831534562926947, + 0.8860521920074892, + 0.7872481572481572, + 0.9226825090266608, + 0.7803152709359606, + 0.9122593875476056, + 0.8775850757693318, + 0.9799040094031604, + 0.8206267324852857, + 0.8177880557075959, + 0.9576966355531912, + 0.9220659824046918, + 0.797922077922078, + 0.7896320346320347, + 0.8632950463543738, + 0.9492492880197456, + 0.8832034632034632, + 0.8047193670665553, + 0.9956521739130436, + 0.7685862920068351, + 0.8475960459042418, + 0.9795419233757146, + 0.8269899956502829, + 0.7884382884382883, + 0.8207547087216158, + 0.9545454545454548, + 0.8429554406857294, + 0.8993321115511173, + 0.7984889287851586, + 0.761374210879955, + 0.8305523603886545, + 0.7718491195125222, + 0.980407916624232, + 0.950300482513086, + 0.8240213521788207, + 0.8952485002194801, + 0.9038846565773924, + 0.7965911235687182, + 0.8955324322950189, + 0.7910020962422152, + 0.9427138643067844, + 0.826115183440325, + 0.8573048573048573, + 0.7936317271895962, + 0.9007792207792208, + 0.854365955487306, + 0.9456364522650812, + 0.997982406795966, + 0.8774985212108586, + 0.9977822580645164, + 0.8221159804806326, + 0.9077567136073358, + 0.8205465606720966, + 0.8626119406890994, + 0.7556531232200494, + 0.7862587810898044, + 0.8404814885133853, + 0.8206267324852857, + 0.992492576897818, + 0.9526883899349432, + 0.8172714912841496, + 0.942686481353632, + 0.9073962406670544, + 0.793330615828421, + 0.9250332915366596, + 0.7896320346320347, + 0.9844717839591371, + 0.7676353790613719, + 0.9020216682958616, + 0.8820943870496513, + 0.9628828555154738, + 0.9505406805522968, + 0.7685960591133003, + 0.952282255405342, + 0.9961515326042576, + 0.8792822185970635, + 0.917989916458992, + 0.7624864249098159, + 0.8475960459042418, + 0.9795419233757146, + 0.8269899956502829, + 0.7884382884382883, + 0.8207547087216158, + 0.9545454545454548, + 0.8429554406857294, + 0.8993321115511173, + 0.7834739702517162, + 0.761374210879955, + 0.8305523603886545, + 0.7811065974284784, + 0.980407916624232, + 0.950300482513086, + 0.8240213521788207, + 0.8952485002194801, + 0.9038846565773924, + 0.798508237019148, + 0.8955324322950189, + 0.7839982383292353, + 0.9427138643067844, + 0.8245984899369047, + 0.8573048573048573, + 0.8243136284936928, + 0.8553134080531342, + 0.8473904773631097, + 0.9982456140350876, + 0.9590236663403416, + 0.9014436252397446, + 0.8327140244007301, + 0.8669485569807114, + 0.7949843218068803, + 0.903497324397646, + 0.9416562889165628, + 0.7707143966920784, + 0.855320123139272, + 0.7774854369415835, + 0.8503120994598766, + 0.926867994896457, + 0.8667552028246747, + 0.8775319334595817, + 0.901968773482508, + 0.935627556261994, + 0.9050659282343974, + 0.861924622573884, + 0.9675940297571454, + 0.9116934339203904, + 0.9072582435684412, + 0.9237413014402296, + 0.9238605624457716, + 0.8365273593813229, + 0.8893524283935244, + 0.9102500533059372, + 0.8349825924909351, + 0.8784817670545184, + 0.9947399253846392, + 0.8930927589221841, + 0.8055002075550022, + 0.8605298779944784, + 0.9775071835696456, + 0.9505926587353696, + 0.7588336685332704, + 0.8428335962794538, + 0.9238783245212608, + 0.8585749771698774, + 0.8765915866073056, + 0.9822182852411184, + 0.9533886386596292, + 0.8440336134453781, + 0.7834747760490336, + 0.924617649948652, + 0.9395524842975836, + 0.9389258424390616, + 0.9550800035134204, + 0.7946561709764254, + 0.9558099289684048, + 0.8428529645259684, + 0.7972573636925488, + 0.9379369101877942, + 0.8553636363636363, + 0.8995050491578672, + 0.9706054674756964, + 0.7736264668325739, + 0.9622333213753728, + 0.8220723881235561, + 0.8256741778557297, + 0.8127858031447691, + 0.7817740006858703, + 0.7968179052727826, + 0.8018268268268267, + 0.9281390141743808, + 0.9400806090461262, + 0.8107701860758095, + 0.8909257783846486, + 0.8991789819376025, + 0.8738739499371329, + 0.9781810760439292, + 0.8591088340319827, + 0.9192322609917452, + 0.8578880235734736, + 0.927227398337575, + 0.8549844211383769, + 0.9954545454545456, + 0.7996032354193273, + 0.7663762728169506, + 0.8072044088993242, + 0.9545454545454548, + 0.9222946747399472, + 0.8012891170808603, + 0.9007792207792208, + 0.761725650275299, + 0.9189132122341253, + 0.7700791802515137, + 0.7905809884612046, + 0.9364502164502164, + 0.9272003238960064, + 0.9520381744611566, + 0.7670786695244899, + 0.8558592375366568, + 0.833174972830306, + 0.9256214544793848, + 0.8228255528255527, + 0.8485714285714286, + 0.9702872224809812, + 0.7517555862267378, + 0.7565364592835856, + 0.7612860365462938, + 0.987527533398501, + 0.955555772482297, + 0.7996032354193273, + 0.7663762728169506, + 0.8072044088993242, + 0.9545454545454548, + 0.9222946747399472, + 0.8012891170808603, + 0.9007792207792208, + 0.761725650275299, + 0.9189132122341253, + 0.7700791802515137, + 0.7905809884612046, + 0.9364502164502164, + 0.933977462236232, + 0.9520381744611566, + 0.7670786695244899, + 0.8558592375366568, + 0.833174972830306, + 0.9256214544793848, + 0.8228255528255527, + 0.8485714285714286, + 0.9702872224809812, + 0.7517555862267378, + 0.7565364592835856, + 0.7612860365462938, + 0.987527533398501, + 0.955555772482297, + 0.9364502164502164, + 0.8358612257146861, + 0.8590707598082956, + 0.8832034632034632, + 0.833174972830306, + 0.8630005695842037, + 0.984461621950468, + 0.892391114486425, + 0.9897824784878032, + 0.8085316277505704, + 0.919319387113138, + 0.7940051262578318, + 0.780089044997152, + 0.9222946747399472, + 0.8363949697251979, + 0.796839893191436, + 0.7794331008589289, + 0.9859234217934404, + 0.9873000604890544, + 0.9486101335940044, + 0.9248539005931276, + 0.9517981773305488, + 0.8708608667318343, + 0.8623785126533147, + 0.9299160466862332, + 0.9545454545454548, + 0.8796487671810186, + 0.9772426641825802, + 0.7524584849903713, + 0.807857176503839, + 0.90727093221948, + 0.9971775822743564, + 0.7739306525397351, + 0.9847748699555192, + 0.7535520524804752, + 1, + 0.8551111044973793, + 0.9256631478531152, + 0.989570259523299, + 0.7687418116400186, + 0.9641837718077296, + 0.7942756598240468, + 0.8294322792944963, + 0.9215082393282026, + 0.9054494643688868, + 0.8530098192637454, + 0.9025093300004408, + 0.992492576897818, + 0.9598649249543808, + 0.8332737181503951, + 0.9529394346692732, + 0.8214507035663541, + 0.9309630572047876, + 0.7830101580101579, + 0.9732801304295486, + 0.9004189790402766, + 0.9446639459426616, + 0.9036078185699322, + 0.97145319916461, + 0.9609332238642584, + 0.7899791515690191, + 0.7611733870967741, + 0.863207096556374, + 0.9415725119950472, + 0.9939556858911696, + 0.783163286086673, + 0.9977977617253442, + 0.8662090859332238, + 0.8955509185594555, + 0.9764731504349176, + 0.7530954708374062, + 0.7828061257738677, + 0.8462219807137138, + 0.8842041598248496, + 0.915537959944108, + 0.7865763787648619, + 0.7856202453035243, + 0.903206652230566, + 0.989570259523299, + 0.7882882882882881, + 0.9483953947649668, + 0.9364334975369458, + 0.9056925711224626, + 0.7591535837096157, + 0.8418627955566074, + 0.7573046594982078, + 0.880681818181818, + 0.8409090909090907, + 0.8067970481260611, + 0.7826760060360987, + 0.7688448083650483, + 0.8584408270788305, + 0.8956871084108602, + 0.913923675716727, + 0.9910308796338216, + 0.9590266687613186, + 0.7872481572481572, + 0.8646083304603533, + 0.9939410487486168, + 0.8340069434398959, + 0.982598363716604, + 0.9106424097900996, + 0.8008517246406788, + 0.8727928390787971, + 0.7681285613827205, + 0.8812869326621476, + 0.928402586493192, + 0.8532026469355432, + 0.8994624945374701, + 0.9440584784614404, + 0.9003302615524813, + 0.8228255528255527, + 0.9795723406491688, + 0.866515864516721, + 0.955439293598234, + 0.8529365775827682, + 0.934359451290398, + 0.8332769785018068, + 0.9365108715713024, + 0.877525810880078, + 0.9692015664722224, + 0.8409090909090907, + 0.940544771679814, + 0.923587693351357, + 0.7954434590943897, + 0.991568586771984, + 0.7612354435027383, + 0.937924041385235, + 0.8376851905173242, + 0.8927174779953234, + 0.7909951819239077, + 0.8443928295282409, + 0.8202350197681522, + 0.9660981642663024, + 0.8152462729809101, + 0.922004885973844, + 0.7639604667778042, + 0.7872481572481572, + 0.9000298090512994, + 0.801471285082847, + 0.8228255528255527, + 0.8498088450201552, + 0.7879169357174486, + 0.8556523719936285, + 0.9755199210863276, + 0.8557823298777246, + 0.8293705854653899, + 0.8537505886046147, + 0.8046317312743457, + 0.8779697795654818, + 0.8749239196591598, + 0.8555086871328603, + 0.9225963809255304, + 0.9678016420122256, + 0.9415762523485668, + 0.8057522792271018, + 0.8959576525733801, + 0.9001590894975677, + 0.767145966241361, + 0.8489857866410284, + 0.9644777226717816, + 0.9098253673621896, + 0.8791269994277514, + 0.8664155045733993, + 0.8498893415734232, + 0.947101370798582, + 0.8538593322386425, + 0.8042480240124439, + 0.8931085516844227, + 0.8808798536293945, + 0.7934170900130808, + 0.9012551319648092, + 0.9348648660475504, + 0.8291496315254414, + 0.8722929363621342, + 0.911251618573038, + 0.9109734587383088, + 0.9170938628158845, + 0.7650216450216449, + 0.8491510263929618, + 0.797922077922078, + 0.9976169999054124, + 0.9935999513470776, + 0.8049044578239981, + 0.836149001293594, + 0.9772426641825802, + 0.7947818492500476, + 0.774258455570617, + 0.8948565585013833, + 0.96130346341869, + 0.7882882882882881, + 0.9031253085247768, + 0.7502958618442489, + 0.9074753238868364, + 0.9391271623435224, + 0.7795953486477679, + 0.8889322557418088, + 0.8774400397180557, + 0.9117791157331387, + 0.9837385506159468, + 0.7764964848815781, + 0.763706420963152, + 0.982244407057744, + 0.982258229908174, + 0.8665750946042498, + 0.7595972992524718, + 0.7801043792183331, + 0.905255061999686, + 0.8220123627076744, + 0.8030465628225143, + 0.9789271593959374, + 0.7848592675970836, + 0.78340962656552, + 0.9151319857390936, + 0.8905339474233814, + 0.8105036440440168, + 0.8827179393030227, + 0.9303783215638728, + 0.9188270726931116, + 0.9157320003100056, + 0.9358530842881808, + 0.7937577290427827, + 0.9414073611117948, + 0.8901453226576379, + 0.8602487024132297, + 0.7556614611768913, + 0.9600221996115068, + 0.7680433097131316, + 0.8925061445921794, + 0.9773557492735576, + 0.8013333235492676, + 0.7689202564616309, + 0.8185297955632883, + 0.7566698570378732, + 0.7828314585807773, + 0.8694189151801023, + 0.8065343721704722, + 0.9807788363703636, + 0.8356411205726274, + 0.8778270939877454, + 0.8142980219813144, + 0.9079854938491076, + 0.8369284370856844, + 0.8951910290953499, + 0.8385429638854297, + 0.9335217836825552, + 0.8814450312694764, + 0.8433770449321196, + 0.9773557492735576, + 0.8751169590643275, + 0.7872836439659993, + 0.8460813462362223, + 0.9068505777317312, + 0.974712351554919, + 0.8582253898196657, + 0.7694393172704596, + 0.9593583027873251, + 0.7791177041387707, + 0.8285988264418827, + 0.9708841861711646, + 0.8292663783394395, + 0.8455377025736512, + 0.7849537714203622, + 0.7591712665406428, + 0.8668958338409165, + 0.8033611495393502, + 0.7791177041387707, + 0.7800515724165504, + 0.8797549464963943, + 0.9913485744394356, + 0.9893735932410646, + 0.8883723399394137, + 0.8371159751352831, + 0.8604416000492892, + 0.9391164837414664, + 0.9875732201051683, + 0.8696289027548957, + 0.9116740607637536, + 0.9335682269765724, + 0.8903543205412945, + 0.8274478901761246, + 0.8184361507912837, + 0.8985858297326429, + 0.8811309071018276, + 0.9600766541682176, + 0.9142379797053092, + 0.8539724989309248, + 0.9209665616774528, + 0.7653056658292261, + 0.9409789458067938, + 0.9813761990559404, + 0.937050978278692, + 0.8764803941254208, + 0.9622333213753728, + 0.8137991281050442, + 0.9349229298096128, + 0.9954545454545456, + 0.8383046372479713, + 0.8091752787787085, + 0.8992810605226834, + 0.8526177936134408, + 0.7653579292773433, + 0.916749204599586, + 0.8841900402810652, + 0.8889595044710776, + 0.8674196841123456, + 0.9890311615492476, + 0.9817061821644611, + 0.9631360021073514, + 0.9146441554557286, + 0.9372227566431792, + 0.8277684278026405, + 0.8085158042512651, + 0.8164472422898458, + 0.9476735033728184, + 0.9195597006085118, + 0.9400644385653472, + 0.8518992260665973, + 0.9457607069255074, + 0.8059692352029971, + 0.8496241912512923, + 0.8197634340126408, + 0.9579224065577792, + 0.860861247637051, + 0.9529052383428788, + 0.9845238804935112, + 0.9083435256044582, + 0.8553134080531342, + 0.7923275652679538, + 0.7819131922573496, + 0.7906170310433895, + 0.8406484670606788, + 0.7894736842105264, + 0.8681498428014106, + 0.8408063572139095, + 0.7738548847622624, + 0.8107066154287429, + 0.909636086500905, + 0.9320839327803117, + 0.894689054121916, + 0.8861995746607623, + 0.8134896030245747, + 0.9636363636363636, + 0.8392276737347159, + 0.901982337361457, + 0.8985728391457872, + 0.7921837072845759, + 0.781322126609299, + 0.9194369973190348, + 0.8490800833801486, + 0.9929855448480356, + 0.9990150209905604, + 0.7707081956166205, + 0.8952232922255726, + 1, + 0.8129887361537077, + 0.9000234404536862, + 0.998221036598569, + 0.8017888630248555, + 0.8075842215036355, + 0.9208092958092956, + 0.7606873345935727, + 0.7928741020793951, + 0.9344444444444444, + 0.8580430671412884, + 0.8053911900065747, + 0.9025957850286672, + 0.992671182389769, + 0.9682695039010508, + 0.951299790877642, + 0.9060155127964962, + 0.9527305856232412, + 0.9434321361058602, + 0.9565966865742668, + 0.943947221044588, + 0.8705701323251417, + 0.9652200677131424, + 0.9884853681548044, + 0.9357441792403746, + 0.9414868925909092, + 0.9505847966970496, + 0.9565269894940224, + 0.9514804555247768, + 0.7993113894954217, + 0.760960813749392, + 0.8859552362571937, + 0.9413092648977816, + 1, + 0.8182545315351611, + 2, + 0.9136739322359624, + 0.7679975248125409, + 0.9492028179458656, + 0.9839615421047646, + 0.9954545454545456, + 0.9954545454545456, + 0.8398210820058982, + 0.8626784395302913, + 0.9781810760439292, + 0.7758485551227942, + 0.7830044520223548, + 0.7890565881306622, + 0.7666456034744639, + 0.8730814336484439, + 0.8997733824632729, + 0.9780525030525028, + 0.9501767000609233, + 0.9341770866436075, + 0.7890266466291772, + 0.931285458781014, + 0.9135836385836384, + 0.8161327222259138, + 0.8595055413469735, + 0.8885272049623901, + 0.8850443888003645, + 0.9111695674516778, + 0.8969355419044592, + 0.9369652591790606, + 0.9474196440005122, + 0.9540293886604132, + 0.7751893805092812, + 0.884220727546821, + 0.9248167539267018, + 0.9416562889165628, + 0.9947833674785644, + 0.8179413224638157, + 0.963749256395003, + 0.9894860390412652, + 0.7661643396391405, + 0.8822836096135876, + 0.9987169080982063, + 0.8212112306855328, + 0.8510831692167852, + 0.9674464520962212, + 0.8140738302718742, + 0.9084937590490596, + 0.8588550489464593, + 0.9132111582886344, + 0.9652833528240462, + 0.8704495461768502, + 0.908214664444781, + 0.8330370179351025, + 0.8542414865764498, + 0.951833769945225, + 0.9369276682149368, + 0.9172096473904444, + 0.7660118606375093, + 0.8049385749385748, + 0.819882410141537, + 0.9479738077588338, + 0.8453139910143218, + 0.9957870470931044, + 0.8350845205706391, + 0.7568829071309779, + 0.8003212087852895, + 0.7757575757575756, + 0.9818181818181816, + 0.8296247866194635, + 0.8397480840731469, + 0.8084175084175084, + 0.8224948407969243, + 0.7604961330297303, + 0.8801077325173712, + 0.769382100421295, + 0.8025699565810901, + 0.792519283483139, + 0.932353379320096, + 0.94491648331435, + 0.8001582377938935, + 0.7832517257911142, + 0.8082508107205724, + 0.7628286200410923, + 0.7621748136686876, + 0.9364192202560784, + 0.76909130219916, + 0.8585000323687447, + 0.9150177303560064, + 0.8405722943067688, + 0.904913008013858, + 0.917314235445159, + 0.9929855448480356, + 0.8268991218112046, + 0.8398859728050183, + 0.996521739130435, + 0.8330381744436689, + 0.8550497957993816, + 0.9913111768722972, + 0.8557422839635942, + 0.8935463671803986, + 0.9006445563787115, + 0.8921379258150505, + 0.9000168618023969, + 0.7589099863492517, + 0.923526237747262, + 0.9028882720019862, + 0.9170617535185012, + 0.9807828100228472, + 0.939548148620228, + 0.9363191484705866, + 0.8321093615368212, + 0.8571281012005368, + 0.8384981048972464, + 0.9086443302842008, + 0.8871943647917209, + 0.8878997468865361, + 0.8999564578859198, + 0.9894860390412652, + 0.9134801839907836, + 0.8586028659246839, + 0.9532628651995616, + 0.8991005792297246, + 0.9248167539267018, + 0.8647701376567242, + 0.9063380676482872, + 0.9006445563787115, + 0.9964912280701756, + 0.9104377104377104, + 0.9861142727065788, + 0.8766608932307983, + 0.9228068405104872, + 0.945216049382716, + 0.8722881394418279, + 0.8287614081607514, + 0.9364502164502164, + 0.9107716613157442, + 0.7558233373684017, + 0.9637205387205386, + 0.911011004178706, + 0.8250190694126619, + 0.7745592680619332, + 0.9563893487499426, + 0.8643469043976432, + 0.8938717567128639, + 0.8935795415901516, + 0.909090909090909, + 0.8890241171514016, + 0.8412491105292438, + 0.8993946860474129, + 0.9779240761641758, + 0.8448498489942446, + 0.9637205387205386, + 0.8307739463601532, + 0.7840680498436611, + 0.9234588281480026, + 0.7533766040551628, + 0.8411108025383495, + 0.8186320718389478, + 0.7507073140597975, + 0.8665855131372373, + 0.8141166099294751, + 0.846517863969504, + 0.8674324881574892, + 0.894897491091307, + 0.926797128906551, + 0.8002254756609835, + 0.8899568476668683, + 0.8050891517303731, + 0.7551272091668285, + 0.9170723522722332, + 0.8862820694208641, + 0.7731935891169761, + 0.8527968471904399, + 0.8545871559633028, + 0.973043266390798, + 0.9110701550899905, + 0.8806793706489482, + 0.9750233018591332, + 0.8832528651475978, + 0.9637205387205386, + 0.8045977011494252, + 0.7840680498436611, + 0.9718089459310836, + 0.7632159853061835, + 0.8411108025383495, + 0.8186320718389478, + 0.8665855131372373, + 0.8141166099294751, + 0.846517863969504, + 0.8674324881574892, + 0.8941741955127749, + 0.8055806456563269, + 0.9200506754154923, + 0.8002254756609835, + 0.8055002075550022, + 0.8899568476668683, + 0.8050891517303731, + 0.7551272091668285, + 0.9170723522722332, + 0.8862820694208641, + 0.7643684665873062, + 0.8962930952966316, + 0.8545871559633028, + 0.973043266390798, + 0.8391999316061071, + 0.9106199738197148, + 0.8336184977583576, + 0.9825055596738328, + 0.8275801175590107, + 0.8536656603794738, + 0.9947833674785644, + 0.8871943647917209, + 0.9947833674785644, + 0.8474509259804291, + 0.8970952216775002, + 0.9064029668710988, + 0.8689528166230794, + 0.8668563557933111, + 0.9192140588692024, + 0.8446191193563313, + 0.9070510179197604, + 0.9569231352909934, + 0.9360907526607608, + 0.9363191484705866, + 0.7585150816808764, + 0.8079450438253487, + 0.889311351984684, + 0.9157961667726408, + 0.8495199813878912, + 0.9008127437155956, + 0.9894860390412652, + 0.9084777593712244, + 0.8247288683081853, + 0.9554572159761404, + 0.8803742636840192, + 0.8617666872995883, + 0.9141959372906489, + 0.9034890695907856, + 0.8086181910936574, + 0.9964912280701756, + 0.9859927106498642, + 0.9106199738197148, + 0.7805873465692333, + 0.8878997468865361, + 0.9016573566020094, + 0.996521739130435, + 0.8072721768598793, + 0.8440081063581091, + 0.996521739130435, + 0.8612922801795058, + 0.8405722943067688, + 0.9620426435996664, + 0.8550497957993816, + 0.8140134601423378, + 0.8065264393377811, + 0.8107867382196149, + 0.8640740055556022, + 0.8801559604997238, + 0.7852248168921702, + 0.8640589559565321, + 0.7885457047794436, + 0.8947102177469851, + 0.9459249756326832, + 0.9206503306171988, + 0.8390959753949685, + 0.8829679585824524, + 0.8550497957993816, + 0.9034890695907856, + 0.996521739130435, + 0.8773484472624222, + 0.8453843932985197, + 0.9372480427854252, + 0.7528181818181817, + 0.9513991845811716, + 0.8133380704513155, + 0.8550497957993816, + 0.8822645386075115, + 0.9964912280701756, + 0.984385006449655, + 0.8868917142282169, + 0.8515915595209063, + 0.780155436063497, + 0.985677698237539, + 0.8248130810601166, + 0.8900224404233377, + 0.9847846012832264, + 0.8665750946042498, + 0.8066554677866482, + 0.9191871761989552, + 0.8436840954545581, + 0.863729744412587, + 0.8256985978203084, + 0.8998085943818406, + 0.8162326248169407, + 0.9119926726575672, + 0.9789271593959374, + 0.9477427513951896, + 0.9452267008277976, + 0.880636467189412, + 0.8867623702302507, + 0.808133830455259, + 0.9714444301275637, + 0.9847846012832264, + 0.9286461770540784, + 0.9203870504644208, + 0.941002197457228, + 0.9704634209196064, + 0.8113283188178101, + 0.7634010982542299, + 0.8902061446452669, + 0.9354771486059212, + 0.9847846012832264, + 0.7809840281171203, + 0.9894860390412652, + 0.8185297955632883, + 0.8802332979851536, + 0.9723196833760274, + 0.9982608695652172, + 0.8258211640188051, + 0.9080000797822108, + 0.9964912280701756, + 0.839409582008935, + 0.8941141728869741, + 0.7725808179227283, + 0.802818872575447, + 0.8251527896182628, + 0.8315151515151515, + 0.817899229361741, + 0.7620751217250175, + 0.8246468823065851, + 0.8720941750410174, + 0.9294859277773438, + 0.9927523497097036, + 0.9828742809481747, + 0.9543209471735604, + 0.8753860783148016, + 0.939845912034176, + 0.9151374298073564, + 0.9378841050418828, + 0.939845912034176, + 0.7510938991373108, + 0.8610822831727207, + 0.8417508417508417, + 0.8698065557551617, + 0.9372803249238462, + 0.9790245861131704, + 0.9300633742947678, + 0.8054841390869845, + 0.7589199371000429, + 0.8966399030449931, + 0.8974694288349275, + 0.9926781739019452, + 0.8458809671812187, + 0.7712684989429177, + 0.7976314145122237, + 0.9416437009068946, + 0.9947856385396152, + 0.7862727272727271, + 0.8586700336700335, + 0.9303687863484544, + 0.8675319709415152, + 0.7920446151287672, + 0.8694866227116197, + 0.8586700336700335, + 0.7834335706711103, + 0.7921764122864366, + 0.934334074623178, + 0.8619283887468031, + 0.7676281237741422, + 0.7631048593350384, + 0.9925507389082384, + 0.978469168274726, + 0.7500718937727315, + 0.8846977863333716, + 0.9378841050418828, + 0.8684059865492091, + 0.8950764254021453, + 0.7740137221269299, + 0.8084175084175084, + 0.8843935880633129, + 0.7975398606698341, + 0.8485069801940157, + 0.7694545454545454, + 0.9679847507357018, + 0.7697689156812738, + 0.7685979300090726, + 0.9457912457912456, + 0.7920033670033668, + 0.81753438081967, + 0.9637205387205386, + 0.8196988466882366, + 0.8876132688068014, + 0.9992667277726852, + 0.813403640566796, + 0.924902134017138, + 0.8505352830088105, + 0.7966210086663266, + 0.8107701860758095, + 0.7920033670033668, + 0.8396249227545072, + 0.7665777912437509, + 0.9309395848776872, + 0.8562069694591002, + 0.8351865579441562, + 0.7614932582627626, + 0.9217240750865684, + 0.9927523497097036, + 0.9824776408025137, + 0.9261759464210148, + 0.8795946591645603, + 0.9517275376077332, + 0.8343766589132309, + 0.9378841050418828, + 0.939845912034176, + 0.8426835486603141, + 0.8084175084175084, + 0.825, + 0.9279912144543816, + 0.9380615545835612, + 0.954821445486407, + 0.8054841390869845, + 0.7644397158986019, + 0.7992420095977141, + 0.9046488352723072, + 0.8607131176664159, + 0.9425530200949088, + 0.9831998467809452, + 0.911913216712972, + 0.8106537530266346, + 0.8669221312020842, + 0.9668646925956867, + 0.9859927106498642, + 0.8221148524429848, + 0.8287744007907092, + 0.82603603526253, + 0.8081220122922833, + 0.9241691376328144, + 0.8905062719442627, + 0.9072244170820468, + 0.9697143291871126, + 0.9165806743803824, + 0.9299779576625526, + 0.8626009468114731, + 0.9129479515242416, + 0.9489917104460288, + 0.857590973901184, + 0.7832356477938764, + 0.8727427378014051, + 0.7882094994286453, + 0.8958486748165111, + 0.9755497899678774, + 0.8250670301619656, + 0.7636588119091295, + 0.8344665413033981, + 0.9956140350877192, + 0.7763975155279504, + 0.9842098239836105, + 0.8099989097144444, + 0.8954915979223954, + 0.9774655289026236, + 0.8046862811072518, + 0.8922196480686242, + 0.8757413004727584, + 0.875097886791886, + 0.9781962076503552, + 0.9571952337305224, + 0.8651037425957864, + 0.9276048900878148, + 0.8334407352378117, + 0.7931151679937852, + 0.8060125046665569, + 0.9001590894975677, + 0.8984134418359582, + 0.9307180976298852, + 0.8949088289552438, + 0.9140478958381776, + 0.9195604324464296, + 0.8595611909902062, + 0.8168393183171508, + 0.826467375579422, + 0.94513113161729, + 0.9542466061552302, + 0.8949088289552438, + 0.9053910284366296, + 0.817437533227007, + 0.7978783990223038, + 0.7521903939726886, + 0.754943158980426, + 0.7928605555934748, + 0.8989607068123694, + 0.7975892455476461, + 0.7725199492096488, + 0.773030766193022, + 0.9767351231527428, + 0.9424631082284728, + 0.866898864682116, + 0.7899138991389913, + 0.9376349250962784, + 0.9303020409693342, + 0.8287563928270861, + 0.8603115680426934, + 0.8114732228923959, + 0.9669758970781992, + 0.8105976841695943, + 0.7959269589012261, + 0.8302139037433156, + 0.986986590623621, + 0.751078143739283, + 0.7653353783714458, + 0.8172644988912497, + 0.7803817180307603, + 0.8605730020712427, + 0.912175623606646, + 0.9956171156600898, + 0.8729948690203866, + 0.8364452091564932, + 0.8308541973619359, + 0.901193983595923, + 0.8421276190184838, + 0.8119707766428466, + 0.778036674438649, + 0.7873355614633314, + 0.7837805015771132, + 0.8219385637193856, + 0.8521396824062815, + 0.7718977095748231, + 0.8817091503055308, + 0.7708107321002571, + 0.7512636527567177, + 0.8438110321297421, + 0.9832058480308432, + 0.8890631162040309, + 0.8977160492573557, + 0.9859234217934404, + 0.8546502548557862, + 0.8668958338409165, + 0.9890311615492476, + 0.9350943180643898, + 0.9280169976669376, + 0.8210527935710153, + 0.7559911987169416, + 0.7736264668325739, + 0.863925779862748, + 0.8247230442973539, + 0.8806041934635603, + 0.8250833206612556, + 0.928723519908324, + 0.8668958338409165, + 0.8881896291715989, + 0.9593583027873251, + 0.9061435934718378, + 0.9211354224331691, + 0.8859445107741636, + 0.9398812902982936, + 0.8047278408758268, + 0.9223744981227122, + 0.9230788696114616, + 0.9536631479971994, + 0.9694396869310692, + 0.8131377716690428, + 0.8237517359346238, + 0.8173907278944466, + 0.8965017504270001, + 0.9219048551109622, + 0.9097417836628494, + 0.8553134080531342, + 0.9989920981077092, + 0.917451425335698, + 0.9683628785480636, + 0.7970900578406114, + 0.8376203239523712, + 0.9801024844208264, + 0.7557162849632164, + 0.8961803319477781, + 0.996336999414424, + 0.9196524296187878, + 0.8854275250970148, + 0.8283188405797101, + 0.8569170829836921, + 0.7593988263019269, + 0.8392807687593222, + 0.9868446526492484, + 0.7732691595705294, + 0.9521895754027828, + 0.9372227566431792, + 0.9200506754154923, + 0.917500751704446, + 0.8740937766410911, + 0.8518450184501843, + 0.7975089687046685, + 0.8722498962224989, + 0.8978908677866823, + 0.9773557492735576, + 0.891273307612777, + 0.8868080394461477, + 0.8826697225277056, + 0.9463791440512886, + 0.9521895754027828, + 0.8485714285714286, + 0.999122807017544, + 0.9265379339453412, + 0.789227895392279, + 0.8469796766499825, + 0.953644173755992, + 0.9926761940480948, + 0.8153042353997382, + 0.8607621561631245, + 0.9832058480308432, + 0.9570294209353524, + 0.9992668621947256, + 0.8641670664322122, + 0.7757761746311366, + 0.8357747120217831, + 0.866213238722621, + 0.8792285183078618, + 0.7957371772064827, + 0.878036507710379, + 0.9658331436022252, + 0.7622935296404183, + 0.9857187253140862, + 0.8942561574169895, + 0.9622333213753728, + 0.9131318215287682, + 0.8411490111317951, + 0.8916483082566217, + 0.9500441996469742, + 0.8499116091074294, + 0.9308446996969624, + 0.971973367585848, + 0.950603792184588, + 0.8131377716690428, + 0.8886194359553157, + 0.8284169872492293, + 0.8757940351900098, + 0.9023840086111148, + 0.9230788696114616, + 0.7524570024570024, + 0.9981688711071728, + 0.9020646721236416, + 0.9272440944881892, + 0.917451425335698, + 0.952871096782223, + 0.9954192028862328, + 0.8614426005287826, + 0.8553282796247272, + 0.991220090045964, + 0.962952748132584, + 0.9970690618433798, + 0.8655309124484051, + 0.7810606403025839, + 0.7757761746311366, + 0.8580430671412884, + 0.866213238722621, + 0.8806041934635603, + 0.7777808036382947, + 0.8317573749391951, + 0.9716068390573318, + 0.819882410141537, + 0.9848040830545792, + 0.8737365714482546, + 0.962952748132584, + 0.9154671960778832, + 0.9112764606124896, + 0.8916483082566217, + 0.9529052383428788, + 0.8696289027548957, + 0.9188566733401607, + 0.9507590560548308, + 0.9507917513638928, + 0.9853649117096728, + 0.8131377716690428, + 0.8951137084436364, + 0.8371159751352831, + 0.8703128420935896, + 0.9022988912306722, + 0.9400644385653472, + 0.7531344790477525, + 0.9992668621947256, + 0.9020646721236416, + 0.8645269531463561, + 0.9839330712663648, + 0.975224136149363, + 0.9372677626851672, + 1, + 0.9904901783696456, + 0.9875732201051683, + 1, + 0.9919502705663622, + 0.9890311615492476, + 1, + 0.988302056405168, + 0.9132421335802218, + 0.996336999414424, + 0.9890311615492476, + 0.988302056405168, + 0.9897605355374068, + 0.991220090045964, + 0.978122813016422, + 0.9511647444887732, + 0.9919502705663622, + 0.9985339932335306, + 0.8938717567128639, + 0.9891891050899508, + 0.9970690618433798, + 0.9897605355374068, + 0.9978013931164152, + 0.985563789057925, + 0.9586402202505122, + 0.9607952743931896, + 0.9805263157894736, + 0.99268071993084, + 0.9941424251920344, + 0.996336999414424, + 0.9884575916336614, + 0.9719327874122964, + 0.9753656599277568, + 0.988302056405168, + 0.9919502705663622, + 0.988302056405168, + 0.9934114381393974, + 0.9992668621947256, + 0.977723489335005, + 0.9995652173913042, + 0.9948736810887512, + 0.909090909090909, + 0.8174876847290639, + 0.8553636363636363, + 0.8455433455433455, + 0.8397417807252716, + 0.8437332724582007, + 0.832909538499891, + 0.7619786952586509, + 0.8177290491628549, + 0.9175438596491228, + 0.882198952879581, + 0.8767128866853765, + 0.8150509397735728, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.8829402079402078, + 0.8107452697678261, + 0.9637205387205386, + 0.852293824358888, + 0.8709558996012198, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352228, + 0.805168828270855, + 0.909090909090909, + 0.945216049382716, + 0.8771929824561405, + 0.8174876847290639, + 0.7599743651365856, + 0.8553636363636363, + 0.8455433455433455, + 0.9416562889165628, + 0.8437332724582007, + 0.832909538499891, + 0.8177290491628549, + 0.9175438596491228, + 0.882198952879581, + 0.8767128866853765, + 0.8150509397735728, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.8829402079402078, + 0.8107452697678261, + 0.8417508417508417, + 0.852293824358888, + 0.8709558996012198, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352228, + 0.805168828270855, + 0.909090909090909, + 0.9789848244395952, + 0.8771929824561405, + 0.8174876847290639, + 0.8813770455902434, + 0.8553636363636363, + 0.8455433455433455, + 0.832556129195581, + 0.8437332724582007, + 0.832909538499891, + 0.8177290491628549, + 0.882198952879581, + 0.8150509397735728, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.7862727272727271, + 0.8107452697678261, + 0.9825055596738328, + 0.852293824358888, + 0.8709558996012198, + 0.826664274308378, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352228, + 0.805168828270855, + 0.9792614678275988, + 0.8553134080531342, + 0.8343739357475309, + 0.9649169511660014, + 0.9815789473684212, + 0.775995920023485, + 0.8490459410817468, + 0.999122807017544, + 0.8887919536466066, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8672820048414341, + 0.9416562889165628, + 0.7922752675949607, + 0.791670480549199, + 0.936963017728694, + 0.8515555890726042, + 0.8474662292253902, + 0.8469364035600903, + 0.9088064577345945, + 0.9830807073527456, + 0.9729066716260472, + 0.9309198460265768, + 0.993758325008325, + 0.9220836669819068, + 0.9328333806952732, + 0.9120932616135702, + 0.8672722972717296, + 0.9787330446229278, + 0.9956171156600898, + 0.9044025274049858, + 0.9162907640884717, + 0.9886242163794032, + 0.9856590419138828, + 0.9735969760860068, + 0.9237640299437498, + 0.8150558110147776, + 0.9001503179694077, + 0.9403303455027592, + 0.999122807017544, + 0.9090741230371568, + 0.999122807017544, + 0.903135734615762, + 0.8282546041121968, + 0.9792614678275988, + 0.8553134080531342, + 0.8232860332235971, + 0.909065387196842, + 0.978073311070348, + 0.775995920023485, + 0.8490459410817468, + 0.999122807017544, + 0.8870930627862177, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8672820048414341, + 0.9416562889165628, + 0.7922752675949607, + 0.791670480549199, + 0.936963017728694, + 0.7737464548987709, + 0.8474662292253902, + 0.8291492133323973, + 0.9088064577345945, + 0.9761788895853514, + 0.9770862304997938, + 0.9329580322176916, + 0.993758325008325, + 0.9188951371295636, + 0.9328333806952732, + 0.8980181937554507, + 0.8677050513455755, + 0.9752792033119024, + 0.9882730260033812, + 0.905289786165362, + 0.9143112638406732, + 0.9886242163794032, + 0.9544594777956544, + 0.9581772940528424, + 0.9143045157420016, + 0.8252050839377624, + 0.9001503179694077, + 0.9403303455027592, + 0.999122807017544, + 0.9292464661560496, + 0.999122807017544, + 0.856617686732253, + 0.8374157216227879, + 0.9280303030303032, + 0.986111279729024, + 0.9950777781016508, + 0.7644397158986019, + 0.8788591215600511, + 0.995055254321861, + 0.8218760444455504, + 0.8963051106025932, + 0.9855308977062668, + 0.8161330049261083, + 0.919010674275554, + 0.8602150725639579, + 0.9437855111487105, + 0.982329825041006, + 0.8843548391463373, + 0.8689327225675706, + 0.931003010693105, + 0.9349500075746098, + 0.8343765747325528, + 0.8587642661603542, + 0.8586700336700335, + 0.9617123795404005, + 0.9664559126905398, + 0.9369276682149368, + 0.9421777653794547, + 0.8002254756609835, + 0.91015350877193, + 0.8195948305972756, + 0.8049385749385748, + 0.8079714438079046, + 0.9248788062414784, + 0.9466765601812076, + 0.9943237305426308, + 0.8922259540680743, + 0.7615894748339839, + 0.92882506393551, + 0.8553134080531342, + 0.8492357350911255, + 0.9943501037415146, + 0.9908190857034046, + 0.7714797416324134, + 0.8958436239049175, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.9692982456140352, + 0.9108481442025624, + 0.7872481572481572, + 0.7785693212549879, + 0.791670480549199, + 0.936963017728694, + 0.8833898132089024, + 0.8276770122994085, + 0.895416975651959, + 0.992671182389769, + 0.9514741813067672, + 0.8630706569122704, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8398017274912394, + 0.9988878509623264, + 0.937103645050706, + 0.9851370084561714, + 0.8052224642752426, + 0.9408748628296816, + 0.950672972897766, + 0.9505705348293196, + 1, + 0.7647361516158825, + 0.907644799841382, + 0.8492357350911255, + 0.9514212739063944, + 0.9991101224022378, + 0.7714797416324134, + 0.8950014677832712, + 0.9943546343400722, + 0.8210917926103164, + 0.8995898027497777, + 0.999122807017544, + 0.8091752787787085, + 0.8045413788925241, + 0.92385752642948, + 0.7939937969249388, + 0.791670480549199, + 0.936963017728694, + 0.8564021794854101, + 0.8929190984699815, + 0.7960647061252277, + 0.9048525852298742, + 0.992671182389769, + 0.987968431853366, + 0.9531702386026508, + 0.8651058220157922, + 0.957204861709126, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.8819809439955775, + 0.988302056405168, + 0.937103645050706, + 0.9407755311560884, + 0.9851370084561714, + 0.8030210815765354, + 0.94362258995985, + 0.7901596681791947, + 0.8868080394461477, + 0.9413092648977816, + 0.999122807017544, + 0.9443944345284628, + 0.9992668621947256, + 0.9385224385224384, + 0.7647361516158825, + 0.907644799841382, + 0.8492357350911255, + 0.9514212739063944, + 0.9991101224022378, + 0.7714797416324134, + 0.8950014677832712, + 0.9943546343400722, + 0.8171099429462455, + 0.8995898027497777, + 0.999122807017544, + 0.8091752787787085, + 0.8045413788925241, + 0.92385752642948, + 0.7939937969249388, + 0.791670480549199, + 0.936963017728694, + 0.8532214540129998, + 0.8929190984699815, + 0.7960647061252277, + 0.9048525852298742, + 0.992671182389769, + 0.987968431853366, + 0.9531702386026508, + 0.8651058220157922, + 0.957204861709126, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.8744221238514268, + 0.988302056405168, + 0.937103645050706, + 0.9407755311560884, + 0.9851370084561714, + 0.8030210815765354, + 0.94362258995985, + 0.7901596681791947, + 0.8868080394461477, + 0.9413092648977816, + 0.999122807017544, + 0.9443944345284628, + 0.9992668621947256, + 0.9385224385224384, + 0.7647361516158825, + 0.782357275298858, + 0.9716068390573318, + 0.9615141634622412, + 0.9956019844379308, + 0.9939526010712452, + 0.9868446526492484, + 0.9788481543433862, + 1, + 0.9280169976669376, + 0.975224136149363, + 0.9970690618433798, + 0.988302056405168, + 0.9301373709233364, + 0.9795737645144298, + 0.9824788936394012, + 0.988302056405168, + 0.9414868925909092, + 0.9188566733401607, + 0.9978013931164152, + 0.9692438828447324, + 0.988302056405168, + 0.9934114381393974, + 0.9486152933634998, + 0.9721523399735842, + 0.9934114381393974, + 0.9708841861711646, + 0.9500441996469742, + 0.9174366159265968, + 0.9329682990823176, + 0.9716068390573318, + 0.8840480861242009, + 0.9948736810887512, + 0.9579224065577792, + 0.9679962630672924, + 0.9978013931164152, + 0.8764803941254208, + 0.9414868925909092, + 0.9181539149158896, + 0.9429104219927898, + 0.9919502705663622, + 0.9651126414686952, + 1, + 0.9962804570068788, + 1, + 0.9513949869239996, + 0.917451425335698, + 0.8893524283935244, + 0.8711567490387903, + 0.8402268612783098, + 0.9991101224022378, + 0.875683873894971, + 0.893318343627618, + 0.9998166819431716, + 0.8181684978110831, + 0.8501131405958161, + 0.9791710812316362, + 0.9416562889165628, + 0.7704074975067343, + 0.8205779056365766, + 0.8524355521406098, + 0.8149410602532909, + 0.9678129927260984, + 0.992671182389769, + 0.9904289157282716, + 0.9512909738881008, + 0.9430833061919088, + 0.9498925099667804, + 0.9491784964871592, + 0.9608990650462856, + 0.9498609989321576, + 0.7794361831100473, + 0.9505758519634429, + 0.9773557492735576, + 0.8637008456171157, + 0.9301795973691914, + 0.8828315614940658, + 0.959175062021937, + 0.9531601641545472, + 0.999122807017544, + 0.9998166819431716, + 0.7587536069598175, + 0.7522123063336182, + 0.82583032730816, + 0.9356248965935622, + 0.9820100634702482, + 0.831081385436793, + 0.8534540516685339, + 0.9818536963567754, + 0.8486878358300123, + 0.9129853629164149, + 0.8998911634924976, + 0.7793718426037994, + 0.932398585032895, + 0.8000124002170039, + 0.7984383476710845, + 0.907326978222119, + 0.838169467510867, + 0.7913646289079624, + 0.9278150139590884, + 0.9506223327256856, + 0.9364530503181744, + 0.941701474767142, + 0.7800217784035494, + 0.9258691777106102, + 0.9376349250962784, + 0.9412635914006204, + 0.8430977292102613, + 0.9461654371370272, + 0.9391302151973808, + 0.968708052390917, + 0.7829559806346367, + 0.8486878358300123, + 0.92049050384555, + 0.9877189123128628, + 0.9672169872900396, + 0.8207867897037397, + 0.8168393183171508, + 0.826467375579422, + 0.94513113161729, + 0.9585637037072424, + 0.8949088289552438, + 0.9053910284366296, + 0.817437533227007, + 0.7978783990223038, + 0.7521903939726886, + 0.754943158980426, + 0.7928605555934748, + 0.8989607068123694, + 0.7975892455476461, + 0.7725199492096488, + 0.7662703504995123, + 0.9767351231527428, + 0.9424631082284728, + 0.866898864682116, + 0.7783625730994153, + 0.9376349250962784, + 0.9303020409693342, + 0.8287563928270861, + 0.8603115680426934, + 0.8114732228923959, + 0.9669758970781992, + 0.8105976841695943, + 0.7959269589012261, + 0.8302139037433156, + 0.986986590623621, + 0.751078143739283, + 0.9104552048233484, + 0.9985339932335306, + 0.9919502705663622, + 0.9890174067689452, + 1, + 0.9985339932335306, + 0.9919502705663622, + 1, + 0.9978013931164152, + 0.9978013931164152, + 1, + 0.996336999414424, + 0.9978013931164152, + 0.9970690618433798, + 0.9985339932335306, + 0.996336999414424, + 0.988302056405168, + 1, + 0.9904289157282716, + 0.9992668621947256, + 0.9992668621947256, + 0.996336999414424, + 0.9928507310737632, + 1, + 0.8271094654395285, + 0.996336999414424, + 0.9978013931164152, + 0.9956044009241408, + 0.9985339932335306, + 0.9904901783696456, + 0.9978013931164152, + 0.9970690618433798, + 0.996336999414424, + 0.996336999414424, + 0.9970690618433798, + 0.995605205829548, + 1, + 0.9985339932335306, + 0.9853883242696474, + 0.995605205829548, + 0.9992668621947256, + 1, + 0.9992555369697762, + 1, + 0.9882827814745488, + 0.9992668621947256, + 0.9859927106498642, + 0.9550538402276436, + 0.9795737645144298, + 0.9350474891783676, + 0.9946751263076096, + 0.99268071993084, + 0.9529052383428788, + 1, + 0.9832058480308432, + 0.928723519908324, + 0.999122807017544, + 0.9701618021290772, + 0.9181539149158896, + 0.9414868925909092, + 0.916749204599586, + 0.94362258995985, + 0.8771670219049115, + 0.9020646721236416, + 0.9479012434878824, + 0.7967703326479759, + 0.9802996435295532, + 0.9917846709962562, + 0.8938717567128639, + 0.9862646747457392, + 0.9839330712663648, + 0.9600766541682176, + 0.9759484021000084, + 0.9473421475334106, + 0.8472097261066925, + 0.9414868925909092, + 0.9650851977230176, + 0.999122807017544, + 0.9550538402276436, + 0.9441436310000064, + 0.9884575916336614, + 0.94958838214302, + 0.9436364293412104, + 0.9802996435295532, + 0.9817522080920388, + 0.9766729368947332, + 0.975224136149363, + 0.999122807017544, + 0.9763146820695155, + 0.999122807017544, + 0.9716068390573318, + 0.8353033499302194, + 0.9286573911418808, + 0.989388886675146, + 0.811997387314498, + 0.8668958338409165, + 0.9719327874122964, + 0.9416700490012928, + 0.9868446526492484, + 0.8626461571750742, + 0.7693359990306556, + 0.8443573586609718, + 0.8171099429462455, + 0.8861176478495413, + 0.842673863199572, + 0.928723519908324, + 0.758875943584108, + 0.887167247405612, + 0.8928699826089762, + 0.8759576634165684, + 0.9564875857045522, + 0.9061435934718378, + 0.8423092165265303, + 0.8930336617991886, + 0.9400644385653472, + 0.9237835099442904, + 0.9466976131633716, + 0.950603792184588, + 0.8131377716690428, + 0.8598012719162864, + 0.787554569047141, + 0.884737671188568, + 0.9070294784580498, + 0.9069463429223856, + 0.7524570024570024, + 0.9981688711071728, + 0.8971961746848013, + 0.8404738376904276, + 0.8288697152121746, + 0.8829742996323185, + 0.9945048317633112, + 0.885610204525967, + 0.9329682990823176, + 0.9407755311560884, + 0.9274938109996212, + 0.955770578544058, + 0.8609445180643548, + 0.8868080394461477, + 0.8826697225277056, + 0.860081980641546, + 0.8494179248503486, + 0.8806041934635603, + 0.7745935959659945, + 0.804564602812277, + 0.8457610658751216, + 0.9141259733731866, + 0.9083435256044582, + 0.9249744348616508, + 0.878036507710379, + 0.8567036918158099, + 0.9407755311560884, + 0.912541525908588, + 0.8711093063931175, + 0.8951137084436364, + 0.9041552036871964, + 0.953621170127054, + 0.946473950268886, + 0.9727686004162333, + 0.9824788936394012, + 0.895416975651959, + 0.8388354220573428, + 0.8451861367189765, + 0.9020646721236416, + 0.8838860538503512, + 0.9586402202505122, + 0.99782684342909, + 0.7818532483566868, + 0.8978908677866823, + 0.9346434038598216, + 0.9486152933634998, + 0.975224136149363, + 0.927916573470583, + 0.9974294410273912, + 0.9586402202505122, + 0.9507590560548308, + 0.9978013931164152, + 0.954337370755309, + 0.911841187081034, + 0.975224136149363, + 0.9365130082728363, + 0.8902640300903737, + 0.9500441996469742, + 0.7528067405931878, + 0.9139430100959351, + 0.9486152933634998, + 0.8723662731741496, + 0.8503425879277244, + 0.9643924081792452, + 0.9716068390573318, + 0.9322331995088968, + 0.9730529513619054, + 0.8909560347514579, + 0.9730529513619054, + 0.9225158405279774, + 0.8806041934635603, + 0.9223744981227122, + 0.928723519908324, + 0.8985858297326429, + 0.8868080394461477, + 0.934385376226286, + 0.8659782656488341, + 0.9669995060071396, + 0.9215535536561092, + 0.8916483082566217, + 0.8806041934635603, + 0.8614426005287826, + 0.9500441996469742, + 0.9615141634622412, + 0.9836858501848198, + 0.9992668621947256, + 0.8840480861242009, + 0.8659737769303842, + 0.8881896291715989, + 0.9658331436022252, + 0.9117779886590568, + 0.9891164188197914, + 0.9393536148186856, + 0.8999765601568034, + 0.9992668621947256, + 0.8902640300903737, + 0.8937267418365915, + 0.986116354037408, + 0.9745001390427974, + 0.8682618306097468, + 0.917451425335698, + 0.9237835099442904, + 0.9372227566431792, + 0.8605814190983238, + 0.9658331436022252, + 0.99268071993084, + 0.9331273751154144, + 0.9874932258547676, + 0.9817522080920388, + 0.9322601637764528, + 0.9730529513619054, + 0.7966912350949062, + 0.9636724437338746, + 0.9146441554557286, + 0.9665539145798344, + 0.912541525908588, + 0.8923408506058652, + 0.9403639696255566, + 0.9824501714706848, + 0.8958075950132784, + 0.7947875585169598, + 0.8888808273004442, + 0.9817522080920388, + 0.9579224065577792, + 0.9643924081792452, + 0.9978013931164152, + 0.909042520211614, + 0.8839798882716039, + 0.9322601637764528, + 0.977397740533538, + 0.9407327353741834, + 0.9974294410273912, + 0.957204861709126, + 0.9636724437338746, + 1, + 0.9507590560548308, + 0.9244884191211992, + 0.9737764107803116, + 0.9294303109937904, + 0.866213238722621, + 0.8895722942733691, + 0.9365130082728363, + 0.938643059916104, + 0.8614426005287826, + 0.8592127013521057, + 0.9586402202505122, + 0.984660563345966, + 0.942257835125676, + 0.977397740533538, + 0.8944200907180742, + 0.9723297607875788, + 0.9466282499343924, + 0.8799162214636711, + 0.917451425335698, + 0.9358035287465732, + 0.9365130082728363, + 0.8785410839961321, + 0.8800026263331926, + 0.9180818572622022, + 0.9300900041631704, + 0.9111411170975592, + 0.8958075950132784, + 0.8751079450986784, + 0.9687178405771408, + 0.9643924081792452, + 0.9741087373430196, + 0.9965539092032524, + 0.8485601299189015, + 0.9039239850807016, + 0.991220090045964, + 0.99268071993084, + 0.9411779284976854, + 1, + 0.9941424251920344, + 0.9839330712663648, + 1, + 0.9948736810887512, + 0.9853883242696474, + 1, + 0.9904901783696456, + 0.9062481548474688, + 0.9948736810887512, + 0.9766729368947332, + 0.99268071993084, + 0.988302056405168, + 0.996336999414424, + 0.9832058480308432, + 0.9721523399735842, + 0.995605205829548, + 0.995605205829548, + 0.8966477542865559, + 0.989920889126398, + 0.9941424251920344, + 0.9853883242696474, + 0.99268071993084, + 0.989208622446052, + 0.9737764107803116, + 0.9788481543433862, + 0.9508557261229018, + 0.988302056405168, + 0.9868446526492484, + 0.9948736810887512, + 0.9789725394962472, + 0.9778375229520267, + 0.9630457249445452, + 0.9897605355374068, + 0.9759484021000084, + 0.9745001390427974, + 0.9839330712663648, + 1, + 0.9910847398800986, + 1, + 0.9824788936394012, + 0.8935362109939026, + 0.8492357350911255, + 0.7799775750856683, + 0.9991101224022378, + 0.7714797416324134, + 0.8924773755936107, + 0.9921175854473762, + 0.8244173938758999, + 0.8995898027497777, + 0.997783274463504, + 0.8019358454012121, + 0.8034463924540262, + 0.9208092958092956, + 0.7862626472757531, + 0.7901234941467935, + 0.9234208215886514, + 0.8754121720256093, + 0.8661215058187303, + 0.992671182389769, + 0.9798792330613568, + 0.9514741813067672, + 0.9550538402276436, + 0.9429977116704804, + 0.9378841050418828, + 0.9348478408783754, + 0.8677050513455755, + 0.9438416558070334, + 0.9894860390412652, + 0.9369022368540908, + 0.9407755311560884, + 0.937924041385235, + 0.9677933860111212, + 0.9970690618433798, + 0.9443944345284628, + 0.9965539092032524, + 0.7647361516158825, + 0.8833587699039136, + 0.8455377025736512, + 0.9378994747569932, + 1, + 0.8854275250970148, + 0.9372227566431792, + 0.9978013931164152, + 0.8621233137385207, + 0.9034580909885984, + 0.9687178405771408, + 0.9788481543433862, + 0.8364452091564932, + 0.8257495162906912, + 0.9450477324262084, + 0.7908116150724073, + 0.792225727337591, + 0.8186576980160944, + 0.9593583027873251, + 0.9941424251920344, + 0.9848040830545792, + 0.9795737645144298, + 0.9181539149158896, + 0.9579224065577792, + 0.8038532129267693, + 0.7895079901300617, + 0.9393536148186856, + 0.9329682990823176, + 0.938643059916104, + 0.9097417836628494, + 0.934365235861341, + 0.8682618306097468, + 0.8062236581276447, + 0.7999671002057498, + 0.9579224065577792, + 0.962952748132584, + 0.9421985228698097, + 0.9758471017566333, + 0.8492357350911255, + 0.988302056405168, + 0.9965191088563604, + 0.9992663243093578, + 0.9992656508417233, + 0.9941424251920344, + 1, + 0.99268071993084, + 1, + 0.9992668621947256, + 0.9965191088563604, + 0.9540512424216696, + 0.9970690618433798, + 0.9768478574449928, + 0.9833831528957327, + 0.9914003253458398, + 0.9890311615492476, + 0.9782982623788444, + 0.9926335425715882, + 0.8068812492978317, + 0.9985339932335306, + 1, + 0.998339483394834, + 1, + 0.9948736810887512, + 0.9875732201051683, + 0.9941413527735856, + 1, + 0.992130773157018, + 0.9721444518798692, + 0.9978013931164152, + 0.998350675275288, + 0.9906529437430028, + 1, + 0.9948736810887512, + 0.9914003253458398, + 0.9970690618433798, + 0.9976169999054124, + 0.9985113511553524, + 0.9954545454545456, + 0.9585725924710128, + 0.9992668621947256, + 0.8558690511962423, + 0.9477543538038498, + 0.7858966339146662, + 0.8467583491924262, + 0.8327122834222226, + 0.8908526998828004, + 0.8135527713116106, + 0.9336872890005496, + 0.8135527713116106, + 0.7969931938295922, + 0.9404358147459344, + 0.7922931599671659, + 0.9455558136112772, + 0.7617997236100775, + 0.8361266348371678, + 0.8706162391527938, + 0.8909999999999999, + 0.8169671679245643, + 0.911393892174019, + 0.950028839221341, + 0.8316766353632711, + 0.8481140741645349, + 0.9263157894736842, + 0.7693317755435274, + 0.8485714285714286, + 0.9975371888373946, + 0.7657492944145039, + 0.7827075098814231, + 0.8344731368348524, + 0.7893527624833871, + 0.934334074623178, + 0.9652014577830238, + 0.9712575474049576, + 0.7951570680628274, + 0.8023077073631945, + 0.8378558855512396, + 0.7750750175798774, + 0.8711152458705146, + 0.9450509667184974, + 0.8728200371057514, + 0.8266151860146821, + 0.9508561924475392, + 0.8678771151093215, + 0.7818744360024457, + 0.953621170127054, + 0.9550538402276436, + 0.9255861016232884, + 1, + 0.9890311615492476, + 0.9839330712663648, + 1, + 0.9875732201051683, + 0.9868446526492484, + 1, + 0.9672749544015236, + 0.8485601299189015, + 0.9948736810887512, + 0.9853883242696474, + 0.991220090045964, + 0.9716068390573318, + 0.9853883242696474, + 0.9817522080920388, + 0.9461330864231152, + 0.9934114381393974, + 0.9985339932335306, + 0.8683978095980386, + 0.9869953764615554, + 0.995605205829548, + 0.9868446526492484, + 0.988302056405168, + 0.9724980906333768, + 0.9407755311560884, + 0.9372227566431792, + 0.9805263157894736, + 0.996336999414424, + 0.996336999414424, + 0.9992668621947256, + 0.9884575916336614, + 0.9887359375145636, + 0.977084365603192, + 0.9817522080920388, + 0.9890311615492476, + 0.9875732201051683, + 0.988302056405168, + 0.9992668621947256, + 0.9762465658458932, + 1, + 0.991220090045964, + 0.8205020227371977, + 0.8608078181360624, + 0.8831761147394912, + 0.9956171156600898, + 0.8264159807642062, + 0.9851370084561714, + 0.8032496864185852, + 0.7921163153910715, + 0.8189876505853204, + 0.8866880766446407, + 0.7712492904983539, + 0.766650468421388, + 0.9874185848252344, + 0.9860765405159552, + 0.8021177944862157, + 0.9104948113042188, + 0.9076355564584256, + 0.9302834429286486, + 0.8899966113703928, + 0.7950194069243905, + 0.7994718538953012, + 0.9755497899678774, + 0.8737705484182898, + 0.8391756392041623, + 0.8000318742722583, + 0.863706643974955, + 0.999122807017544, + 0.788531116445173, + 0.7673011362392834, + 0.856290549490185, + 0.8500013228910795, + 0.8217519251079187, + 0.9886242163794032, + 0.8335855838820181, + 0.7737677036875701, + 0.8078183838070802, + 0.8821104163000745, + 0.7790490801674135, + 0.821180494612969, + 0.8346691294875438, + 0.8306511043531097, + 0.7751893805092812, + 0.7785693212549879, + 0.8213296424597536, + 0.7990961561862842, + 0.8708980045995849, + 0.8508997225351951, + 0.9550538402276436, + 0.8404738376904276, + 0.8608516172237797, + 0.8898770040500942, + 0.9910308796338216, + 0.9443350267709892, + 0.9379327738576018, + 0.9687178405771408, + 0.954337370755309, + 0.8992810605226834, + 0.8104222403360605, + 0.8617768931040987, + 0.8019358454012121, + 0.8489486269748123, + 0.8334307196417516, + 0.8472653300897576, + 0.8641393141487439, + 0.8327404310943478, + 0.8764803941254208, + 0.912541525908588, + 0.8614426005287826, + 0.8750187225119483, + 0.8930336617991886, + 0.9188566733401607, + 0.909042520211614, + 0.9278339260751618, + 0.8855898697110776, + 0.8914924863272463, + 0.9636724437338746, + 0.8594020739640472, + 0.933676703232262, + 0.9471874624563444, + 0.9767901752344744, + 0.8923668029454429, + 0.887801301315952, + 0.8244173938758999, + 0.8598281139548333, + 0.9048525852298742, + 0.9202629967209424, + 0.9586402202505122, + 0.99818613436632, + 0.811652655043935, + 0.9097417836628494, + 0.8938131796635375, + 0.8689452322602814, + 0.7632159853061835, + 0.931092626752598, + 0.9714033929661204, + 0.916047252707554, + 0.9665539145798344, + 0.9992668621947256, + 0.877193998855128, + 0.8621233137385207, + 0.8404336601367269, + 0.8899568476668683, + 0.7657793910062513, + 0.8125492090556029, + 0.8944200907180742, + 0.9832058480308432, + 0.866243248832523, + 0.9723297607875788, + 0.9358035287465732, + 0.9111411170975592, + 0.8984030086479471, + 0.8744221238514268, + 0.831385641452182, + 0.917611437505964, + 0.8478847935907572, + 0.9679962630672924, + 0.8637608966376091, + 0.929473335227811, + 0.8427886110852929, + 0.928226607524593, + 0.8025926314878588, + 0.9041552036871964, + 0.9045462110180228, + 0.9607952743931896, + 0.7731216272312162, + 0.9960877143127782, + 0.7917919558851796, + 0.7813854250011384, + 0.8594020739640472, + 0.8448171762300786, + 0.9066838594697112, + 0.993041786971632, + 0.9218534208170824, + 0.9280169976669376, + 0.9579224065577792, + 0.7649434377260496, + 0.9324432641365908, + 0.9890311615492476, + 0.8689452322602814, + 0.8861176478495413, + 0.8937267418365915, + 0.8573639669960287, + 0.853295011850143, + 0.9251935971421876, + 0.8902640300903737, + 0.7921163153910715, + 0.8692840854028374, + 0.9120241323975692, + 0.9322601637764528, + 0.9682695039010508, + 0.8869907346430809, + 0.9308446996969624, + 0.928723519908324, + 0.8601704114565033, + 0.8874986998868335, + 0.8888808273004442, + 0.975224136149363, + 0.8091752787787085, + 0.9507590560548308, + 0.9664158428720082, + 0.9817522080920388, + 0.8284169872492293, + 0.9136988002866576, + 0.8445121446112305, + 0.9139430100959351, + 0.8914848829801818, + 0.9672749544015236, + 0.99782684342909, + 0.772138724992434, + 0.90276124713408, + 0.961144204800487, + 0.8634855466902354, + 0.9379327738576018, + 0.908277884446819, + 0.9946871424565764, + 0.9479012434878824, + 0.933676703232262, + 0.9839330712663648, + 0.957204861709126, + 0.9897605355374068, + 0.8668958338409165, + 0.8916483082566217, + 0.9153455696596016, + 0.8573639669960287, + 0.8634855466902354, + 0.9251935971421876, + 0.909042520211614, + 0.8723662731741496, + 0.8537487234650945, + 0.8792285183078618, + 0.9350943180643898, + 0.8079714438079046, + 0.9551004697947988, + 0.8806041934635603, + 0.9273107442696306, + 0.9223744981227122, + 0.9616766085585506, + 0.8730512878891623, + 0.8965017504270001, + 0.975224136149363, + 0.8277497162434753, + 0.9514741813067672, + 0.9622333213753728, + 0.9746102461941208, + 0.940760842211224, + 0.8337648336821305, + 0.9132421335802218, + 0.838458313625102, + 0.9104413159581644, + 0.9230788696114616, + 0.9615141634622412, + 0.9608062684964296, + 0.9992668621947256, + 0.90276124713408, + 0.9316696874472936, + 0.8231087698825403, + 0.9544682296975874, + 0.7552770595350544, + 0.992615515771526, + 0.8512496250257213, + 0.8744043956043956, + 0.9547348484848484, + 0.7548367420848981, + 0.8010008340283569, + 0.8674088334090595, + 0.7996294165768151, + 0.908313797791604, + 0.9891493795585866, + 0.7540999753755233, + 0.9272544060904362, + 0.8780091446372676, + 0.9182823930924128, + 0.8762510425354463, + 0.9053124690879792, + 0.9546304163126592, + 0.9085090856109872, + 0.8064763169544045, + 0.9027775208335084, + 0.8873519569623151, + 0.902977283394997, + 0.9964912280701756, + 0.996521739130435, + 0.9338039426824476, + 0.9139430100959351, + 0.9622333213753728, + 0.9737764107803116, + 0.9701400724878312, + 0.9974294410273912, + 0.9358035287465732, + 0.946473950268886, + 0.9970690618433798, + 0.9658331436022252, + 0.955770578544058, + 0.9960351014549488, + 0.9477180531985372, + 0.7802288530146115, + 0.9622333213753728, + 0.8067839857133676, + 0.9301373709233364, + 0.8868080394461477, + 0.9450477324262084, + 0.8134050821718116, + 0.9454153674378072, + 0.984660563345966, + 0.9904901783696456, + 0.9507590560548308, + 0.9779823259487208, + 0.988302056405168, + 0.855139156857862, + 0.9853883242696474, + 0.9564875857045522, + 0.9083271241193304, + 0.9421985228698097, + 0.8621233137385207, + 0.9479012434878824, + 0.9802996435295532, + 0.9613309146374462, + 0.9890311615492476, + 0.9789725394962472, + 0.9230788696114616, + 0.9875732201051683, + 0.8937267418365915, + 0.9948736810887512, + 0.9716068390573318, + 0.9679854547640152, + 0.9572793819640072, + 0.9992668621947256, + 0.9649045221259104, + 0.9365130082728363, + 0.7854822169733378, + 0.9877224033535164, + 0.8267536096879368, + 0.8281155906857193, + 0.778242651393919, + 0.7770132902980824, + 0.7813852813852814, + 0.8531626502908053, + 0.986652250762675, + 0.8443985380581599, + 0.8507060144843345, + 0.9095966218704222, + 0.7793195367381812, + 0.8485714285714286, + 0.793478260869565, + 0.9357129295614204, + 0.9013778530474436, + 0.8068636548636549, + 0.8283693657758276, + 0.7842947575142669, + 0.929941088884573, + 0.8318189568317447, + 0.9721324228139152, + 0.8929555666008868, + 0.9899175068744273, + 0.7829559806346367, + 0.8330585670487148, + 0.9004712036731742, + 0.8079059133534838, + 0.907326978222119, + 0.8418462145170219, + 0.8355962235887732, + 0.9840600196897172, + 0.9727233543942168, + 0.9456931798893302, + 0.7835307826762479, + 0.9334823561531638, + 0.943912095206486, + 0.9719476865439598, + 0.8989607068123694, + 0.9899175068744273, + 0.91218688144154, + 0.968708052390917, + 0.9275641323723166, + 0.7750817305162342, + 0.7705110005585539, + 0.8746911090742437, + 0.906777236648719, + 0.9877189123128628, + 0.905810189680844, + 0.9039758195768428, + 0.9545454545454548, + 0.8475303670578502, + 0.9511957748205524, + 0.8592904322283405, + 0.909090909090909, + 0.864748396641959, + 0.8793851481338977, + 0.9499999999999998, + 0.7977657605606996, + 0.828074328074328, + 0.8757161620920398, + 0.8518139443215275, + 0.8919696969696971, + 0.9006463378910865, + 0.9123913868449176, + 0.7538355364442323, + 0.9728462804245892, + 0.8226075640111686, + 0.7627425872585157, + 0.9397093147093144, + 0.9405901494832792, + 0.9373208866593992, + 0.9185281385281384, + 0.9805093555093556, + 0.9045454545454544, + 0.7521739130434782, + 0.8676160350867449, + 0.9096320346320348, + 0.9705446224256292, + 0.7511156903867726, + 0.9498970784947516, + 0.8553636363636363, + 0.8803749979451918, + 0.8868951612903225, + 0.8716773908739449, + 0.7640091133472566, + 0.9754511278195488, + 0.909090909090909, + 0.919377312007859, + 0.9895652173913044, + 0.909090909090909, + 0.9895652173913044, + 0.904833326772871, + 0.8896985935172833, + 0.9613560315981924, + 0.9209973066564064, + 0.7738377192982457, + 0.8766948621553885, + 0.8955979105301096, + 0.7862727272727271, + 0.8120276073976654, + 0.9062605084545612, + 0.9819906110654324, + 0.9482809390239644, + 0.9270810254564676, + 0.8858122880872293, + 0.9272543317870856, + 0.9248843536331894, + 0.9592356458451337, + 0.9740750470337556, + 0.8618048445021776, + 0.9826209215251775, + 0.9119804816878756, + 0.901982337361457, + 0.968471177944862, + 0.9722529273134676, + 0.9674022810471118, + 0.8998470475108667, + 0.8758239471864051, + 0.957737379733654, + 0.9619347444028424, + 0.9817460256655812, + 0.9619598036238828, + 0.9754511278195488, + 0.9045454545454544, + 0.9108776132404182, + 0.9895652173913044, + 0.909090909090909, + 0.9808695652173912, + 0.903936979364855, + 0.8946016606830778, + 0.9582023810487048, + 0.9363189044244398, + 0.7701982739613846, + 0.877299976398395, + 0.8623579834310708, + 0.7862727272727271, + 0.8480601581866628, + 0.8902466538134809, + 0.9819906110654324, + 0.9507874084663184, + 0.925065002188018, + 0.8906569786528593, + 0.9272543317870856, + 0.9318691420627104, + 0.9592356458451337, + 0.9670573870573872, + 0.8638081223124702, + 0.9815789473684212, + 0.9119804816878756, + 0.9027305623701912, + 0.968471177944862, + 0.9722529273134676, + 0.9664533537113174, + 0.8980586357606626, + 0.8824347249543827, + 0.957737379733654, + 0.9606072393507964, + 0.7604223245592875, + 0.9401709401709404, + 0.9616481164026224, + 0.9809453113164672, + 0.825, + 0.8965328341856458, + 0.9930434993747648, + 0.991941725455476, + 0.7662935746676578, + 0.916200245724204, + 0.8929657620169505, + 0.9764831764168632, + 0.8651113127255622, + 0.8576748602878727, + 0.8002254756609835, + 0.8303849683667891, + 0.945960433937275, + 0.9927523497097036, + 0.9224700032216756, + 0.924592891635332, + 0.8627825284444037, + 0.9427557668775548, + 0.9416944402363276, + 0.7977840705338264, + 0.891911538610805, + 0.7757575757575756, + 0.9186470619844704, + 0.9755497899678774, + 0.9380936401545896, + 0.9430730858023998, + 0.8821269989132121, + 0.8635778359926967, + 0.9686187299234, + 0.82231768595902, + 0.8454690660447776, + 0.936633843357067, + 0.9928614899602092, + 0.7920033670033668, + 0.9790238683337896, + 0.8517844847409421, + 0.7835174551354922, + 0.970437888198758, + 0.973913043478261, + 0.8004960204410251, + 0.8608354753566684, + 0.973913043478261, + 0.893253541612845, + 0.8985806100405787, + 0.9473716579271056, + 0.8802936186789987, + 0.8429844720496895, + 0.7998641304347827, + 0.7548105590062112, + 0.851091804125718, + 0.7982289247602901, + 0.8918317295952493, + 0.9704182624797956, + 0.9250441174468548, + 0.9234004788164912, + 0.8072112569313484, + 0.9458344577995612, + 0.8199687206756334, + 0.9636939983093828, + 0.973913043478261, + 0.8946764860972011, + 0.8953883830144143, + 0.9685626687981476, + 0.8854475897922277, + 0.890074370350509, + 0.9467502582887196, + 0.973913043478261, + 0.7675727377454222, + 0.9240556247405564, + 0.9038176307865486, + 0.800441791811323, + 0.8571885156262036, + 0.7888661250305931, + 0.7588020905133783, + 0.8150670283151774, + 0.8394858977004067, + 0.8506509425026049, + 0.86632058337082, + 0.907644799841382, + 0.7869039663743267, + 0.8377993482174306, + 0.9661635604440372, + 0.7796002893491529, + 0.8462255001833666, + 0.8698618053513671, + 0.853295011850143, + 0.9457912457912456, + 0.9954545454545456, + 0.7862536325455921, + 0.921913236929922, + 0.909090909090909, + 0.9764931810396176, + 0.9895652173913044, + 0.8409090909090907, + 0.982608695652174, + 0.904833326772871, + 0.9398297385891607, + 0.8728218919864726, + 0.910662682746664, + 0.7508707607699359, + 0.920196146646124, + 0.8941510995342954, + 0.7896297048496517, + 0.9062605084545612, + 0.9819906110654324, + 0.9395768590554164, + 0.8846891981591173, + 0.8753550543024229, + 0.9272543317870856, + 0.9159873721905482, + 0.9592356458451337, + 0.9719230769230768, + 0.853205915989843, + 0.9789473684210526, + 0.9119804816878756, + 0.9021731519130232, + 0.9408793468279631, + 0.9502457651288154, + 0.9343996875499296, + 0.8998470475108667, + 0.7828140592083379, + 0.956227485420032, + 0.9688644688644692, + 0.9878260869565216, + 0.9619598036238828, + 0.9853883242696474, + 0.9069463429223856, + 0.8484535647736858, + 0.9859234217934404, + 0.8546502548557862, + 0.8668958338409165, + 0.9890311615492476, + 0.9365130082728363, + 0.9280169976669376, + 0.8580430671412884, + 0.764302244596024, + 0.7736264668325739, + 0.8826697225277056, + 0.8391298861361308, + 0.8806041934635603, + 0.8250833206612556, + 0.928723519908324, + 0.8668958338409165, + 0.7521491867834005, + 0.8881896291715989, + 0.9616904586883988, + 0.9061435934718378, + 0.9211354224331691, + 0.90276124713408, + 0.9434394218523596, + 0.8047278408758268, + 0.9216703954780426, + 0.9230788696114616, + 0.9564875857045522, + 0.9694396869310692, + 0.8131377716690428, + 0.8237517359346238, + 0.8025926314878588, + 0.8965017504270001, + 0.9230777619327238, + 0.9104413159581644, + 0.8553134080531342, + 0.9989920981077092, + 0.917451425335698, + 0.9521895754027828, + 0.9069463429223856, + 0.8444028672449848, + 0.9910308796338216, + 0.8526177936134408, + 0.8634855466902354, + 0.988302056405168, + 0.946473950268886, + 0.9216703954780426, + 0.8566851356948486, + 0.7694393172704596, + 0.7752390906012949, + 0.776852147004819, + 0.8785410839961321, + 0.8290845270990632, + 0.8351044837311526, + 0.8264159807642062, + 0.9237835099442904, + 0.8868080394461477, + 0.8944200907180742, + 0.9486152933634998, + 0.9061435934718378, + 0.8987505869438153, + 0.7765308864041348, + 0.9062481548474688, + 0.9414868925909092, + 0.8971961746848013, + 0.9273107442696306, + 0.9564875857045522, + 0.9694396869310692, + 0.917451425335698, + 0.7980007746070045, + 0.900672328635003, + 0.9230777619327238, + 0.909042520211614, + 0.8722498962224989, + 0.99818613436632, + 0.917451425335698, + 0.9350943180643898, + 0.8450773104028045, + 0.7755025814626396, + 0.8499116091074294, + 0.9954545454545456, + 0.8248656842171965, + 0.8771670219049115, + 0.8017627702025454, + 0.8252966318058891, + 0.7989505012531329, + 0.9084382663648368, + 0.7700826611531227, + 0.8173907278944466, + 0.9586402202505122, + 0.8279882714725023, + 0.8750287541127237, + 0.8058469213257959, + 0.8887595093929513, + 0.8741986118728368, + 0.9013332512757184, + 0.8951137084436364, + 0.8085158042512651, + 0.7847209561813264, + 0.9207931801334324, + 0.8813228755976849, + 0.8806041934635603, + 0.904598717548413, + 0.8357423547232773, + 0.8519408442208184, + 0.7585436044093791, + 0.754716608935201, + 0.752694933524973, + 0.8630753385715217, + 0.945504664970314, + 0.8607621561631245, + 0.8190996579799223, + 0.8138788692223808, + 0.80834947374926, + 0.8461416361416363, + 0.8321563840156672, + 0.9049823065264198, + 0.7611003116070912, + 0.8564208333192405, + 0.9567242111117616, + 0.8830433688448956, + 0.8498282229301769, + 0.8787054248059898, + 0.7583865519843361, + 0.8560065732377481, + 0.7845811712379542, + 0.911841187081034, + 0.757598728667431, + 0.9032923617208078, + 0.8054515169551613, + 0.9457116500465104, + 0.7972151720771685, + 0.9550538402276436, + 0.8404738376904276, + 0.8951137084436364, + 0.8898770040500942, + 0.9910308796338216, + 0.9443350267709892, + 0.9379327738576018, + 0.9687178405771408, + 0.954337370755309, + 0.8992810605226834, + 0.8655309124484051, + 0.8902640300903737, + 0.8553282796247272, + 0.8614426005287826, + 0.8958075950132784, + 0.8438384213475643, + 0.8771670219049115, + 0.8280046113614686, + 0.8607621561631245, + 0.912541525908588, + 0.8614426005287826, + 0.8946208326427901, + 0.8930336617991886, + 0.9188566733401607, + 0.909042520211614, + 0.9278339260751618, + 0.8773278519419312, + 0.9111411170975592, + 0.9636724437338746, + 0.8566851356948486, + 0.933676703232262, + 0.9471874624563444, + 0.9832058480308432, + 0.8923668029454429, + 0.887801301315952, + 0.8244173938758999, + 0.8424917813524705, + 0.9048525852298742, + 0.9202629967209424, + 0.9586402202505122, + 0.99818613436632, + 0.811652655043935, + 0.9097417836628494, + 0.9329682990823176, + 0.8438384213475643, + 0.8958075950132784, + 0.8921838780119077, + 0.986652250762675, + 0.9479012434878824, + 0.9393536148186856, + 0.9687178405771408, + 0.764302244596024, + 0.955770578544058, + 0.8478847935907572, + 0.8634855466902354, + 0.8614426005287826, + 0.8580430671412884, + 0.8587224361306279, + 0.8923408506058652, + 0.8351044837311526, + 0.8052224642752426, + 0.911841187081034, + 0.8295875223215042, + 0.8895722942733691, + 0.912541525908588, + 0.8958075950132784, + 0.8960129675540568, + 0.8930336617991886, + 0.9550538402276436, + 0.909042520211614, + 0.887315997105363, + 0.8703128420935896, + 0.9111411170975592, + 0.9550538402276436, + 0.8614426005287826, + 0.9372227566431792, + 0.962952748132584, + 0.9824788936394012, + 0.9017863969504004, + 0.877949549206721, + 0.8614426005287826, + 0.8344345242846016, + 0.9013683659572824, + 0.9223744981227122, + 0.9586402202505122, + 0.99782684342909, + 0.8327803954481456, + 0.9377053197580578, + 0.7520783733062727, + 0.8576638516480299, + 0.7973458704289155, + 0.8055002075550022, + 0.8274342134261912, + 0.7682652462041775, + 0.8985858297326429, + 0.9295420779390244, + 0.9497666282126442, + 0.9045462110180228, + 0.8937267418365915, + 0.9450477324262084, + 0.9335682269765724, + 0.9463791440512886, + 0.8655309124484051, + 0.7591412700557859, + 0.8317573749391951, + 0.9191871761989552, + 0.9144998770732076, + 0.8299318662677443, + 0.7999671002057498, + 0.9590943683409436, + 0.9721268361679862, + 0.7512346093262124, + 0.9031905016766244, + 0.9258990440072554, + 0.8277497162434753, + 0.9045462110180228, + 0.9715042130082728, + 0.8091792146047655, + 0.8478274566824185, + 0.8594020739640472, + 0.7511865272235565, + 0.7739458321143061, + 0.8799003347391113, + 0.8438384213475643, + 0.8735155491890395, + 0.8971961746848013, + 0.955770578544058, + 0.962303313592256, + 0.9187077430559348, + 0.9203925414202916, + 0.9514626397110274, + 0.9041122896824668, + 0.7840680498436611, + 0.8292520377479811, + 0.97941509455445, + 0.8836172394187662, + 0.9375944096516282, + 0.9096320346320348, + 0.8897178357319816, + 0.977084365603192, + 0.8159983921213949, + 0.8647743756870857, + 0.9324532116794522, + 0.9496978544622346, + 0.8933384348345432, + 0.9146441554557286, + 0.8930134680134679, + 0.7745935959659945, + 0.9240556247405564, + 0.9248385202583678, + 0.9493296120831972, + 0.784239798606639, + 0.7934206675600327, + 0.847568697165119, + 0.8111354653251885, + 0.7558928791805505, + 0.7550475642500959, + 0.8290845270990632, + 0.9166360018268416, + 0.9214315504311476, + 0.8905928806265224, + 0.8833857030636293, + 0.8371864728096656, + 0.7786506591658735, + 0.8732444148742633, + 0.9824788936394012, + 0.9261641390813252, + 0.7920585237916445, + 0.8270827140818009, + 0.8181481481481481, + 0.9685059666773832, + 0.7724990486505474, + 0.8453837597330367, + 0.9028925619834708, + 0.974712351554919, + 0.7990739031960405, + 0.8124766840771213, + 0.8338302155859407, + 0.8257495162906912, + 0.9242514144040864, + 0.8874986998868335, + 0.8316014689297133, + 0.8491709060650188, + 0.9290397110203914, + 0.9429104219927898, + 0.9020663048206212, + 0.9497666282126442, + 0.8735827515879029, + 0.8190930086640767, + 0.9097417836628494, + 0.8836172394187662, + 0.7561436787677325, + 0.9111759366075988, + 0.9685059666773832, + 0.7694393172704596, + 0.9182355818184244, + 0.9443350267709892, + 0.8991822088005295, + 0.9609732144249478, + 0.8388412496816189, + 0.9434738042076424, + 0.9514940210071012, + 0.7974547159339365, + 0.9158098573783174, + 0.8885435517508157, + 0.7927757091445906, + 0.8089575535557855, + 0.8566665569299595, + 0.8314583644863298, + 0.7943437531819572, + 0.8869909377863762, + 0.7623509827444915, + 0.9602434075673276, + 0.8173534679942144, + 0.9145746409758626, + 0.7598389563652722, + 0.8919299119395553, + 0.9546749386121294, + 0.9061863080667324, + 0.9429340786658, + 0.8532240586756394, + 0.8877384763770779, + 0.958686173433348, + 0.9554765128325876, + 0.927589597885256, + 0.9529605866177816, + 0.9690193870107546, + 0.8907469811519958, + 0.9842229467473992, + 0.9364502164502164, + 0.855044427531639, + 0.9174603174603174, + 0.9919369945954868, + 0.7974492252661268, + 0.9534048316392292, + 0.7523489859050253, + 0.8139854059928581, + 0.9461387983232418, + 0.8098519486211259, + 0.7647244706969056, + 0.906310774345067, + 0.7678224795898994, + 0.9290762303990062, + 0.8524886899155711, + 0.980320788530466, + 0.9254995395026632, + 0.8657481566722074, + 0.9421659088682972, + 0.8474906647205497, + 0.9013546930437588, + 0.9748919688627304, + 0.8388843744066832, + 0.95990063654712, + 0.9796267593595076, + 0.9345104268491364, + 0.9405500820824608, + 0.8701948495342146, + 0.9783368141256884, + 0.7696261546646032, + 0.7607570099969941, + 0.7567551932941814, + 0.89138879753655, + 0.928489598568463, + 0.9086142870609782, + 0.9545454545454548, + 0.9545454545454548, + 0.8077423038829434, + 0.9174603174603174, + 0.948338703873867, + 0.9649045221259104, + 0.8289700533295026, + 0.9245393784589186, + 0.7559638453436506, + 0.8235522434404595, + 0.9007792207792208, + 0.7664355652861399, + 0.9290762303990062, + 0.8491308962278107, + 0.7573901281365926, + 0.8315151515151515, + 0.7505974060116344, + 0.9502677159519248, + 0.8378061008189606, + 0.8657481566722074, + 0.9421659088682972, + 0.9391737997679988, + 0.943947221044588, + 0.9530072970035708, + 0.946585394605002, + 0.8072282340152606, + 0.8919696969696971, + 0.9783368141256884, + 0.8060213664465975, + 0.7894137547439006, + 0.8886194359553157, + 0.8969404465407047, + 0.8395077004692013, + 0.8087262766581882, + 0.9417675428322848, + 0.838458313625102, + 0.9578918616552848, + 0.9877224033535164, + 0.9600766541682176, + 0.9372227566431792, + 0.9996947496947498, + 0.946473950268886, + 0.9273107442696306, + 0.8427440270131528, + 0.8930336617991886, + 0.8499116091074294, + 0.8297523357929766, + 0.8628042957923382, + 0.94362258995985, + 0.8861176478495413, + 0.992955297959396, + 0.954141881439958, + 0.9716068390573318, + 0.9372227566431792, + 0.9209665616774528, + 0.8810186818949944, + 0.8078565985679013, + 0.7888565809250084, + 0.8999765601568034, + 0.7784705964389922, + 0.8951137084436364, + 0.9694396869310692, + 0.906901471095239, + 0.9521895754027828, + 0.7517286913985, + 0.8687571885281811, + 0.7912430201328434, + 0.9975369458128078, + 0.9160401958804216, + 0.974218139790659, + 0.8509546425853288, + 0.900767299923892, + 0.9978013931164152, + 0.7966912350949062, + 0.8415390235407055, + 0.9095917165921852, + 0.7732064980993625, + 0.8864392836204776, + 0.804143123374405, + 0.8771670219049115, + 0.9813338311457538, + 0.9514741813067672, + 0.9586402202505122, + 0.9396223310702196, + 0.9574611462809792, + 0.9733296560462246, + 0.9277579783254948, + 0.9766303162486368, + 0.8371159751352831, + 0.7645789491661854, + 0.8881896291715989, + 0.9463791440512886, + 0.9564875857045522, + 0.7686245437524821, + 0.9510994238916862, + 0.8438384213475643, + 0.9041552036871964, + 0.9970690618433798, + 0.7655848997001549, + 0.8569756194651065, + 0.8565438206194017, + 0.7732064980993625, + 0.8167257771569466, + 0.8510568256152781, + 0.8573767226280884, + 0.9514741813067672, + 0.946103858087934, + 0.9425383776528816, + 0.9032923617208078, + 0.9055502356166318, + 0.9177635419435248, + 0.9424705422602816, + 0.7733034132276329, + 0.7944363835998364, + 0.8881896291715989, + 0.922836204777124, + 0.9493296120831972, + 0.7731216272312162, + 0.7701503489229721, + 0.9110701550899905, + 0.8749551130106945, + 0.9779240761641758, + 0.8757411810482202, + 0.9637205387205386, + 0.8307739463601532, + 0.7840680498436611, + 0.9718089459310836, + 0.7533766040551628, + 0.8411108025383495, + 0.8186320718389478, + 0.7507073140597975, + 0.8665855131372373, + 0.8141166099294751, + 0.846517863969504, + 0.8674324881574892, + 0.894897491091307, + 0.8007950286452882, + 0.9200506754154923, + 0.8002254756609835, + 0.8055002075550022, + 0.8899568476668683, + 0.8050891517303731, + 0.7551272091668285, + 0.9170723522722332, + 0.8862820694208641, + 0.7731935891169761, + 0.8962930952966316, + 0.8545871559633028, + 0.973043266390798, + 0.8475513005495156, + 0.8919753086419753, + 0.9230719517449376, + 0.9818181818181816, + 0.8724508253662054, + 0.7850116015543995, + 0.7799035733456022, + 0.7709127626361538, + 0.8079919101295913, + 0.7676689509424581, + 0.8706501932048896, + 0.8797516915893117, + 0.8063085414053331, + 0.9356832150292386, + 0.8438519069076046, + 0.8284948236315168, + 0.9064297442948914, + 0.9731718245680656, + 0.8146948605443375, + 0.8586700336700335, + 0.7917861568922506, + 0.8919445048153332, + 0.9275512725475664, + 0.8749102030655429, + 0.7586973969785763, + 0.8582940089755703, + 0.8288372093023257, + 0.9457912457912456, + 0.9067894216205786, + 0.8854903716972683, + 0.7712402158145529, + 0.8514488517233563, + 0.8119647131227026, + 0.7960368686049766, + 0.8764803941254208, + 0.7593988263019269, + 0.8332839656913731, + 0.8409641575217712, + 0.7830059960631145, + 0.8189152639403684, + 0.7914909068376863, + 0.8521396824062815, + 0.9429498910675382, + 0.787554569047141, + 0.9170262364403312, + 0.8143114753878038, + 0.8129887361537077, + 0.9416562889165628, + 0.8249965343560833, + 0.8184361507912837, + 0.7583136897041756, + 0.8954939454973427, + 0.9669995060071396, + 0.7678622085216633, + 0.7965505290883047, + 0.8025926314878588, + 0.8861176478495413, + 0.9066317021702632, + 0.781819981750254, + 0.8492357350911255, + 0.925730625364325, + 0.7682652462041775, + 0.7697542997542998, + 0.9647167592568326, + 0.7591823779426875, + 0.9809290093211468, + 0.8217563751752737, + 0.7791177041387707, + 0.9954545454545456, + 0.8281880073317623, + 0.8580430671412884, + 0.9032397543084568, + 0.7617771431813454, + 0.7866182087539877, + 0.7593988263019269, + 0.7752390906012949, + 0.8085158042512651, + 0.8909560347514579, + 0.9051334791710912, + 0.9066317021702632, + 0.7803249362542886, + 0.8737365714482546, + 0.9248568831411556, + 0.8383783163850448, + 0.9706054674756964, + 0.7623802782704252, + 0.9687833580671198, + 0.7739714809841708, + 0.8782693798816119, + 0.860081980641546, + 0.8833857030636293, + 0.792475110421586, + 0.8157848104775258, + 0.8701372997711668, + 0.9563298076485244, + 0.8490800833801486, + 0.7888565809250084, + 0.7741636141636141, + 0.8401837065840431, + 0.9484588138867748, + 0.9176863587872164, + 0.8973789818590386, + 0.8252966318058891, + 0.7617771431813454, + 0.8289524716549914, + 0.8621233137385207, + 0.7908116150724073, + 0.9316463142933344, + 0.7524570024570024, + 0.8718713242231872, + 0.772872635209218, + 0.7603048533875102, + 0.973201661164624, + 0.8391298861361308, + 0.7893505683000169, + 0.8608078181360624, + 0.8171099429462455, + 0.8507008302142539, + 0.7796040841350689, + 0.8137991281050442, + 0.8701372997711668, + 0.7906337827256118, + 0.9493296120831972, + 0.782031346414908, + 0.7993113894954217, + 0.7720161433138533, + 0.864620467059047, + 0.8900050041356494, + 0.8474662292253902, + 0.9115157598761456, + 0.9054424800276306, + 0.830044253645252, + 0.9288938029152748, + 0.8783604524820522, + 0.7944363835998364, + 0.7921163153910715, + 0.7869039663743267, + 0.948066117973837, + 0.9230788696114616, + 0.7965825732022186, + 0.7641898999679714, + 0.7858832626449197, + 0.8508778496367884, + 0.7802946460653972, + 0.7884721011749334, + 0.9513173145378848, + 0.8649568301570332, + 0.7764651372019794, + 0.8624508476571697, + 0.7631497975708502, + 0.8383275266110369, + 0.8166721221205311, + 0.8852917218205886, + 0.763935088255619, + 0.849984522961002, + 0.8818076679096488, + 0.7698644841737025, + 0.8836658805318403, + 0.9201199939290072, + 0.8893648150618828, + 0.8891377897432867, + 0.8205353126405759, + 0.8024182735874719, + 0.922961632460186, + 0.946516510443614, + 0.8942981283868459, + 0.8132787513211815, + 0.9842229467473992, + 0.983927829355058, + 0.9897436575227496, + 0.7789928908269387, + 0.9491102207390418, + 0.8027373398034093, + 0.8097807158117009, + 0.7742275740436659, + 0.8269035371638741, + 0.8164279646777108, + 0.7959065093927479, + 0.9299044396563476, + 0.9815561030337692, + 0.8847353302545712, + 0.8534614846726634, + 0.8781863560189622, + 0.9215082393282026, + 0.8660956368114106, + 0.9778877366568356, + 0.8883570187308942, + 0.8645713114309883, + 0.9608961698823448, + 0.7504350893637566, + 0.7899138991389913, + 0.9237157509601476, + 0.8085999198472382, + 0.9842229467473992, + 0.7915641555108558, + 0.9869637610219488, + 0.8388856048166393, + 0.9083168071393158, + 0.996947496947497, + 0.836399552488273, + 0.8254759949956995, + 0.8054112554112555, + 0.8315151515151515, + 0.9072515573214316, + 0.8455703241525074, + 0.8837147279244052, + 0.992492576897818, + 0.7771153106793246, + 0.9632800296944952, + 0.8751296156972389, + 0.9439627106557767, + 0.7599245853190747, + 0.948022748326122, + 0.797922077922078, + 0.8079059133534838, + 0.9002093642315044, + 0.9417677188802858, + 0.9120792735085574, + 0.9325279623513651, + 0.9765978165772758, + 0.9783368141256884, + 0.8035900178841139, + 0.8886194359553157, + 0.9424689576609075, + 0.8695613682942084, + 0.909090909090909, + 0.8277566532211718, + 0.7800435531915323, + 0.9027223454052724, + 0.8465029384806168, + 0.8272613669834734, + 0.8224835092471747, + 0.7714797416324134, + 0.8924773755936107, + 0.9954545454545456, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8434706308388398, + 0.8017627702025454, + 0.791670480549199, + 0.8995057307947333, + 0.8474662292253902, + 0.8294442768393521, + 0.90276124713408, + 0.996221188255952, + 0.8143962421732175, + 0.980394402239746, + 0.9514741813067672, + 0.7581308936708563, + 0.9531775071717112, + 0.9001377198115018, + 0.8004102325039334, + 0.8735155491890395, + 0.8677050513455755, + 0.8445527067336185, + 0.9636363636363636, + 0.937103645050706, + 0.9694957490472002, + 0.9822495603003196, + 0.901072927769024, + 0.9510994238916862, + 0.9362530022505056, + 0.8219385637193856, + 0.9996947496947498, + 0.7644937203650517, + 0.758657620282485, + 0.8385429638854297, + 0.8490535457456533, + 0.7757575757575756, + 0.999122807017544, + 0.8217563751752737, + 0.8636588686952739, + 0.8019358454012121, + 0.8455800687861758, + 0.8017627702025454, + 0.7768542199488491, + 0.8884642600370833, + 0.8474662292253902, + 0.7867084930870223, + 0.9926207992132684, + 0.9493296120831972, + 0.8445196063887654, + 0.9531775071717112, + 0.8571885156262036, + 0.8838874680306906, + 0.8891221903616687, + 0.9954545454545456, + 0.937103645050706, + 0.7996865517613174, + 0.9851370084561714, + 0.788353581901969, + 0.8469074304690744, + 0.8276687406622917, + 0.8844613609427293, + 0.9313089878738736, + 0.8709970502763632, + 0.8035084471465264, + 1, + 0.932761391647538, + 0.8392430039425867, + 0.945216049382716, + 0.7537357583191043, + 0.9719327874122964, + 0.9954545454545456, + 0.8217563751752737, + 0.8348054919908466, + 0.878863307023455, + 0.8019358454012121, + 0.8725525105676493, + 0.8033211036934772, + 0.791670480549199, + 0.8547301773579906, + 0.8474662292253902, + 0.7867084930870223, + 0.974712351554919, + 0.9500266403708978, + 0.951008471157725, + 0.7628108176190548, + 0.9531775071717112, + 0.7716841489148686, + 0.9391877740213088, + 0.8677050513455755, + 0.8967939861988315, + 0.937103645050706, + 0.8551520659154248, + 0.9851370084561714, + 0.8893524283935244, + 0.8733160901863193, + 0.8916710007549704, + 0.9391302151973808, + 0.9965169569202568, + 0.9136739322359624, + 0.9206651788481804, + 0.8553134080531342, + 0.8530611929128231, + 0.9099770642201834, + 0.949825316001485, + 0.7714797416324134, + 0.8862820694208641, + 0.9970690618433798, + 0.7726587251245716, + 0.8995898027497777, + 0.999122807017544, + 0.8462714704650187, + 0.7559911987169416, + 0.7902969671765014, + 0.8017627702025454, + 0.791670480549199, + 0.9312885573197214, + 0.8580430671412884, + 0.8474662292253902, + 0.7598160347464082, + 0.870252992498577, + 0.992671182389769, + 0.9862539184209972, + 0.9514741813067672, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.948072129659398, + 0.8677050513455755, + 0.880780406807804, + 0.9991101223581756, + 0.937103645050706, + 0.9851370084561714, + 0.7606385491732779, + 0.9822495603003196, + 0.937683151374774, + 0.9027223454052724, + 0.9526427685969672, + 0.9236004688155952, + 1, + 0.8401802481694282, + 0.9773557492735576, + 0.8553134080531342, + 0.8399280642635364, + 0.9943501037415146, + 0.9991101224022378, + 0.7643053750286719, + 0.8874398840030436, + 1, + 0.8119189817879228, + 0.8995898027497777, + 0.999122807017544, + 0.9908884770316014, + 0.81573077081821, + 0.9677933860111212, + 0.8398311720625257, + 0.8474662292253902, + 0.7867084930870223, + 0.8985858297326429, + 0.992671182389769, + 0.7506209000762775, + 0.9848040830545792, + 0.9514741813067672, + 0.8622230550415498, + 0.9531775071717112, + 0.9429977116704804, + 0.9358184932420454, + 0.8831178664041945, + 0.8571885156262036, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.9851370084561714, + 0.9822495603003196, + 0.9355427814530765, + 0.7598493905068002, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.8534197605902789, + 0.909090909090909, + 0.8755816117625161, + 0.986521739130435, + 0.7574533557466554, + 0.909090909090909, + 0.9891304347826086, + 0.8981981278894755, + 0.8661577367496762, + 0.9416316165688026, + 0.8216969791585356, + 0.7977855477855479, + 0.7730257320319432, + 0.8155778185409907, + 0.806941459089035, + 0.8844523908637408, + 0.9819906110654324, + 0.9267146997929604, + 0.930689847575993, + 0.9272543317870856, + 0.9161147326586146, + 0.9592356458451337, + 0.8911833569094192, + 0.8682065217391305, + 0.8974752586594693, + 0.9606049878058373, + 0.9119804816878756, + 0.8291255500470529, + 0.9571129080563042, + 0.9252515037745752, + 0.8839422379842073, + 0.8731842629559791, + 0.956227485420032, + 0.9623460662981314, + 0.9060336327100176, + 0.9466681074558329, + 0.9773557492735576, + 0.8385429638854297, + 0.7548029253094148, + 0.9943501037415146, + 0.9991101224022378, + 0.7643053750286719, + 0.836061944840571, + 1, + 0.8995898027497777, + 0.999122807017544, + 0.8310447482966568, + 0.9416562889165628, + 0.8111421417088542, + 0.9107768322387694, + 0.7741435607326606, + 0.8710025282890884, + 0.7867084930870223, + 0.90276124713408, + 0.992671182389769, + 0.9470902930560504, + 0.9514741813067672, + 0.9531775071717112, + 0.9531702386026508, + 0.7996045265203698, + 0.9133288665033964, + 0.8423392742271161, + 0.8546919803903434, + 0.999777530589544, + 0.937103645050706, + 0.8941624677316798, + 0.9851370084561714, + 0.7831708752610594, + 0.9822495603003196, + 0.9315717953934872, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9773557492735576, + 0.7647361516158825, + 0.95942299709423, + 0.8553134080531342, + 0.8335272614441827, + 0.9943501037415146, + 0.9991101224022378, + 0.7643053750286719, + 0.8924773755936107, + 1, + 0.8591091351396697, + 0.8995898027497777, + 0.999122807017544, + 0.9416562889165628, + 0.791670480549199, + 0.950603792184588, + 0.8460152283133167, + 0.8474662292253902, + 0.7867084930870223, + 0.8881896291715989, + 0.992671182389769, + 0.7614851364851365, + 0.9848040830545792, + 0.9514741813067672, + 0.8605291005291005, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.8888976303496793, + 0.8637008456171157, + 0.999777530589544, + 0.937103645050706, + 0.941303736239802, + 0.9851370084561714, + 0.9822495603003196, + 0.9400644385653472, + 0.7589913068467564, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.8297199580886332, + 0.909090909090909, + 0.8388354220573428, + 0.9440241802550384, + 0.8417508417508417, + 0.8349403911738128, + 0.7751196172248803, + 0.9824561403508774, + 0.8289326387041065, + 0.9363636363636364, + 0.8484963605932038, + 0.7878050123409911, + 0.7845412529955496, + 0.8978080587826363, + 0.8211938237064843, + 0.903572413997316, + 0.9759433010492332, + 0.930358431350264, + 0.773824015559919, + 0.9069851553477366, + 0.859207814594905, + 0.9063976387881104, + 0.982273978187496, + 0.8258268246116464, + 0.8378181818181818, + 0.8545698249141326, + 0.7874000986198109, + 0.880561913058948, + 0.9424238274563508, + 0.99359825065929, + 0.94959978379972, + 0.8034795384843757, + 0.8256241274761228, + 0.7845614802232331, + 0.8780499051174888, + 0.9016573566020094, + 0.996521739130435, + 0.8072721768598793, + 0.8757575757575757, + 0.996521739130435, + 0.805255257780506, + 0.8262184063662379, + 0.9518172850747404, + 0.8509007531737288, + 0.8092916186648053, + 0.8448511242895973, + 0.8221400000560604, + 0.8780499051174888, + 0.8585150396488364, + 0.7582578617938821, + 0.9127647109937574, + 0.8185902535630862, + 0.7647917209753416, + 0.8892853956679526, + 0.9240400548084888, + 0.9264066297227525, + 0.8454089009226886, + 0.8738453625296769, + 0.8228190336839921, + 0.9964912280701756, + 0.8440081063581091, + 0.8488300159492314, + 0.8886054092841905, + 0.9651624660242156, + 0.8337216929170275, + 0.8550497957993816, + 0.9818181818181816, + 0.9104377104377104, + 0.9930465133925186, + 0.8868917142282169, + 0.7519552584840934, + 0.9616732614626587, + 0.996521739130435, + 0.7508148487315153, + 0.909090909090909, + 0.999122807017544, + 0.9090273199933117, + 0.897855261911528, + 0.999122807017544, + 0.8507462616258913, + 0.9136683713678436, + 0.8674088334090595, + 0.8594701086956521, + 0.908313797791604, + 0.9891493795585866, + 0.7642455368060652, + 0.8891663542156248, + 0.924175824175824, + 0.9395716586151368, + 0.9484409722518364, + 0.9641388361295768, + 0.9059750088690924, + 0.999122807017544, + 0.9047503889161737, + 0.9033269863614518, + 0.9033269863614518, + 0.8658678644015689, + 0.9443498545350396, + 0.8906789023521027, + 0.999122807017544, + 0.9551184069702588, + 0.7562762148337596, + 0.9773557492735576, + 0.8409090909090907, + 0.9960831758177524, + 0.9978260869565218, + 0.7508148487315153, + 0.8490484481225223, + 0.999122807017544, + 0.9090273199933117, + 0.897855261911528, + 0.999122807017544, + 0.8507462616258913, + 0.9416562889165628, + 0.7863161002595062, + 0.7917643088450543, + 0.8674088334090595, + 0.7940883223309813, + 0.8392760078156812, + 0.908313797791604, + 0.9891493795585866, + 0.766483106515241, + 0.8959840947127665, + 0.8891663542156248, + 0.924175824175824, + 0.9395716586151368, + 0.9484409722518364, + 0.9641388361295768, + 0.974712351554919, + 0.999122807017544, + 0.9047503889161737, + 0.9033269863614518, + 0.9773557492735576, + 0.8895761362866625, + 0.9748201493966672, + 0.9033269863614518, + 0.7646806860332477, + 0.8800026263331926, + 0.9443498545350396, + 0.9956140350877192, + 0.932409671284977, + 0.999122807017544, + 0.9551184069702588, + 0.7562762148337596, + 0.9833457647662114, + 0.8409090909090907, + 0.8227240115332337, + 0.9947765595830976, + 0.9978260869565218, + 0.7508148487315153, + 0.8569860866157162, + 0.999122807017544, + 0.9090273199933117, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8521396824062815, + 0.9416562889165628, + 0.8683896350563016, + 0.783774936061381, + 0.936963017728694, + 0.8674088334090595, + 0.8474662292253902, + 0.7880796625738841, + 0.908313797791604, + 0.9891493795585866, + 0.766483106515241, + 0.8356411205726274, + 0.8959840947127665, + 0.8891663542156248, + 0.924175824175824, + 0.9395716586151368, + 0.9484409722518364, + 0.9641388361295768, + 0.8643546462063086, + 0.9753454579899592, + 0.999122807017544, + 0.9047503889161737, + 0.9033269863614518, + 0.9851370084561714, + 0.9748201493966672, + 0.9033269863614518, + 0.7684710351377019, + 0.8800026263331926, + 0.9443498545350396, + 0.999122807017544, + 0.90662100456621, + 0.999122807017544, + 0.9551184069702588, + 0.7562762148337596, + 0.9833457647662114, + 0.8409090909090907, + 0.7928783407950074, + 0.8919753086419753, + 0.9978260869565218, + 0.7508148487315153, + 0.8490459410817468, + 0.999122807017544, + 0.897855261911528, + 0.999122807017544, + 0.79241896667796, + 0.8507462616258913, + 0.9416562889165628, + 0.7684372454295727, + 0.936963017728694, + 0.8674088334090595, + 0.8474662292253902, + 0.9891493795585866, + 0.984323635061576, + 0.9353365093463604, + 0.924175824175824, + 0.9395716586151368, + 0.963346594676518, + 0.8643546462063086, + 0.9047503889161737, + 0.9033269863614518, + 0.9851370084561714, + 0.9447497776699816, + 0.9787330446229278, + 0.9033269863614518, + 0.7646806860332477, + 0.8800026263331926, + 0.9443498545350396, + 0.8849247249134843, + 0.90662100456621, + 0.8830204170152121, + 0.7610810810810811, + 0.918761685155179, + 0.849564043730598, + 0.9295382499658214, + 0.8737807294339347, + 0.7524570024570024, + 0.8764855553630885, + 0.8881376171456311, + 0.8144653876435873, + 0.7569047619047621, + 0.9011440242078432, + 0.9721444518798692, + 0.8580395542059102, + 0.7556448396101646, + 0.8943463267997412, + 0.7708422347381368, + 0.8312540974287804, + 0.927155204148788, + 0.9242507691836442, + 0.8039533480013239, + 0.9253381976987182, + 0.9487056115959976, + 0.996333638863428, + 0.9061372721317869, + 0.8039194902068956, + 0.9773557492735576, + 0.8553134080531342, + 0.8316014689297133, + 0.9590943683409436, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049175, + 0.9997983870967744, + 0.8210917926103164, + 0.8995898027497777, + 0.999122807017544, + 0.9416562889165628, + 0.7854916126103976, + 0.8580430671412884, + 0.8452862219584866, + 0.90276124713408, + 0.992671182389769, + 0.9514741813067672, + 0.9531775071717112, + 0.9429977116704804, + 0.856399568810636, + 0.9607331879409255, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.8733160901863193, + 0.8902640300903737, + 0.9822495603003196, + 0.7724990486505474, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9505705348293196, + 0.8900825885161551, + 0.9271888077994948, + 0.7647361516158825, + 0.9773557492735576, + 0.8553134080531342, + 0.9590943683409436, + 0.9991101224022378, + 0.8219385637193856, + 0.8478847935907572, + 0.9954545454545456, + 0.8210917926103164, + 0.8995898027497777, + 0.9479012434878824, + 0.8019358454012121, + 0.9416562889165628, + 0.8188858158239666, + 0.8055002075550022, + 0.8580430671412884, + 0.8474662292253902, + 0.895416975651959, + 0.992671182389769, + 0.8356411205726274, + 0.8716815273032167, + 0.9429977116704804, + 0.8677050513455755, + 0.9607331879409255, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.9240556247405564, + 0.8819809439955775, + 0.9822495603003196, + 0.7999671002057498, + 0.9413092648977816, + 0.9954545454545456, + 0.9326966113459272, + 0.7838827173142349, + 0.9271888077994948, + 0.8469712140023324, + 0.9773557492735576, + 0.8553134080531342, + 0.8394616500465105, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049175, + 0.9994500458295142, + 0.8184361507912837, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8089287811425216, + 0.8553636363636363, + 0.791670480549199, + 0.936963017728694, + 0.8474662292253902, + 0.8181109552382407, + 0.8966477542865559, + 0.992671182389769, + 0.9775526793347032, + 0.9514741813067672, + 0.9531775071717112, + 0.9429977116704804, + 0.9341361232572516, + 0.776758166969147, + 0.8677050513455755, + 0.999777530589544, + 0.937103645050706, + 0.9230017232221136, + 0.9851370084561714, + 0.8553134080531342, + 0.884737671188568, + 0.9413092648977816, + 0.9824561403508774, + 0.9505705348293196, + 0.8909999999999999, + 0.8933113072408856, + 0.7647361516158825, + 0.9929947676208064, + 0.8598347107438016, + 0.8490800833801486, + 0.9947856385396152, + 0.9990150209905604, + 0.7707081956166205, + 0.8952232922255726, + 7, + 0.8216057600038708, + 0.9000234404536862, + 2, + 0.8075842215036355, + 0.946198347107438, + 0.8021928166351607, + 0.7928741020793951, + 0.9344444444444444, + 0.8578858011832347, + 0.8483379501385041, + 0.7871436798157214, + 0.9025957850286672, + 0.9928936489808848, + 0.9846235837724948, + 0.9527305856232412, + 0.9434321361058602, + 0.9373115797727772, + 0.9350049149338372, + 0.8705701323251417, + 0.986135349716446, + 6, + 0.9357441792403746, + 0.941314332676578, + 0.9860141582025238, + 0.9826843100189036, + 0.9826843100189036, + 0.8050748795127288, + 0.884575512524494, + 0.9417436672967864, + 0.9937805570643936, + 0.9503788875440718, + 7, + 0.9245562130177516, + 0.7654094979252105, + 1, + 0.909090909090909, + 0.8238490179500522, + 0.9637205387205386, + 0.9819008264462812, + 0.7757575757575756, + 0.8216057600038708, + 0.9000234404536862, + 2, + 0.8075842215036355, + 0.9217516347489824, + 0.799080529300567, + 0.9344444444444444, + 0.8948549687825181, + 0.9721268082486918, + 0.8409090909090907, + 0.9499201807471164, + 0.9527305856232412, + 0.9434321361058602, + 0.9206147765314164, + 0.9350049149338372, + 0.8640914933837429, + 0.9964943059402892, + 0.816272967863894, + 0.9860141582025238, + 0.928736342351717, + 0.9792393194706994, + 0.8994380853277835, + 0.9292599608634764, + 2, + 0.8362207611956006, + 0.9902353003770102, + 0.8950805293005671, + 0.7602465480841565, + 0.9929947676208064, + 0.8598347107438016, + 0.8490800833801486, + 0.9947856385396152, + 0.9990150209905604, + 0.7707081956166205, + 0.8952232922255726, + 7, + 0.8216057600038708, + 0.9000234404536862, + 2, + 0.8011324661116951, + 0.8075842215036355, + 0.946198347107438, + 0.8021928166351607, + 0.7928741020793951, + 0.9344444444444444, + 0.8578858011832347, + 0.8483379501385041, + 0.9025957850286672, + 0.9928936489808848, + 0.9846235837724948, + 0.951299790877642, + 0.9527305856232412, + 0.9434321361058602, + 0.9396223310702196, + 0.9350049149338372, + 0.8705701323251417, + 0.986135349716446, + 6, + 0.9357441792403746, + 0.941314332676578, + 0.9860141582025238, + 0.9826843100189036, + 0.8050748795127288, + 0.884575512524494, + 0.9417436672967864, + 2, + 0.9503788875440718, + 7, + 0.9245562130177516, + 0.7654094979252105, + 0.9819008264462812, + 0.8598347107438016, + 0.8131334593572779, + 0.76909130219916, + 0.9990150209905604, + 0.7707081956166205, + 7, + 0.8216057600038708, + 0.9000234404536862, + 2, + 0.8475686570924665, + 0.9583379501385042, + 0.8578858011832347, + 0.8245991597474406, + 0.8852652399934414, + 0.9928936489808848, + 0.81331932016418, + 0.8180035444849115, + 0.8711111111111112, + 0.7763165596167769, + 0.9350049149338372, + 6, + 0.9349642299687824, + 0.9860141582025238, + 0.9826843100189036, + 0.884575512524494, + 0.9417436672967864, + 0.996520316855316, + 7, + 0.9245562130177516, + 0.7654094979252105, + 0.8580139372822299, + 0.9830434782608694, + 0.8893524283935244, + 0.9954545454545456, + 0.9159300003279972, + 0.8181818181818182, + 0.7500000000000001, + 0.8938595877462214, + 0.9042008986509024, + 0.957287033071265, + 0.90234375, + 0.9223350132140808, + 0.8347334184691517, + 0.9207931801334324, + 0.8467468534925462, + 0.8855595367052747, + 0.7719095384164608, + 0.89266067021096, + 0.8763416775577225, + 0.9545454545454548, + 0.911370421730973, + 0.8444352108196725, + 0.889643133181266, + 0.7993302204531538, + 0.9838876285414652, + 0.981598371482293, + 0.8584226317602835, + 0.9320791500266458, + 0.9545454545454548, + 0.8557709287004716, + 0.8980542801375592, + 0.8619577717071254, + 0.9666063921681544, + 0.9199136660983444, + 0.954105606965682, + 0.8784735812133071, + 0.8146320346320346, + 0.8985141146494671, + 0.8109991172010629, + 0.8039130434782609, + 0.8999203521041262, + 0.9046926758835668, + 0.9502900712294152, + 0.912840025574134, + 0.9565342960288808, + 0.908022550608102, + 0.7889688874990176, + 0.9947765595830976, + 0.9939130434782611, + 0.7541751489851583, + 0.8333567358870508, + 0.9077642484940728, + 0.89655436679566, + 0.8211280822082607, + 0.7590923827347884, + 0.891518378456824, + 0.9280303030303032, + 0.7756218002597997, + 0.8987662245043503, + 0.8668602157771255, + 0.801511385184123, + 0.9878450565293272, + 0.8198448448448448, + 0.8761625640592721, + 0.9331326790672908, + 0.8095673945542065, + 0.9692603418275338, + 0.8574834373128851, + 0.984385006449655, + 0.996521739130435, + 0.7993577556225365, + 0.904913008013858, + 0.908522355957097, + 0.8922324960716342, + 0.9027775208335084, + 0.8863636363636364, + 0.8930134680134679, + 0.8159728122344945, + 0.94712477473252, + 0.9501526150902738, + 0.9360797940299664, + 0.7541751489851583, + 0.7667799490229397, + 0.7911852166525064, + 0.8545853753924373, + 0.8991709050477996, + 0.9636363636363636, + 0.8911305509993319, + 0.9280303030303032, + 0.7559479094211299, + 0.9484006454368564, + 0.8396074640434158, + 0.7602400762912696, + 0.8236580766813324, + 0.8818556180808311, + 0.9202063402841564, + 0.840163421768686, + 0.9479922753053344, + 0.9495079748317236, + 0.9185105083088952, + 0.8116459489241595, + 0.9143375393297604, + 0.9496030156557552, + 0.8340405157441468, + 0.904913008013858, + 0.8855604489099591, + 0.8008650649412102, + 0.917917299639148, + 0.880492540216932, + 0.9964912280701756, + 0.8884778012684991, + 0.9772727272727272, + 0.9305426817265549, + 0.7903598392225996, + 0.913366781280282, + 0.9096320346320348, + 0.9904188832431408, + 0.996521739130435, + 0.7541751489851583, + 0.8171186929707506, + 0.9908763972444158, + 0.9077642484940728, + 0.89655436679566, + 0.772467875442053, + 0.860588835859315, + 0.9234883720930234, + 0.7875052854122622, + 0.933111940667877, + 0.8330354177655357, + 0.98656936388704, + 0.7578096064482999, + 0.8236580766813324, + 0.9347318308522028, + 0.8932895451827312, + 0.9285799156049388, + 0.9331326790672908, + 0.9644254304363626, + 0.9670876387294296, + 0.984385006449655, + 0.9939130434782611, + 0.8081449326727791, + 0.904913008013858, + 0.958843983408048, + 0.9074265343943518, + 0.914550550747443, + 0.9956140350877192, + 0.7875052854122622, + 0.8930995950038104, + 0.9583981105619436, + 0.7913282390616106, + 0.8553636363636363, + 0.9520786868217588, + 0.822779182260992, + 0.7541751489851583, + 0.7533175355450237, + 0.7932981415505088, + 0.8738851187127049, + 0.8977552028386393, + 0.9636363636363636, + 0.8909590821089839, + 0.9280303030303032, + 0.7559479094211299, + 0.7751825777502708, + 0.9484006454368564, + 0.8164106024837708, + 0.8378181818181818, + 0.7561931059330721, + 0.8198448448448448, + 0.8746812582275244, + 0.917685782192232, + 0.8430950344725274, + 0.9479922753053344, + 0.9401658822908944, + 0.9345885985711606, + 0.7898873359402224, + 0.9291147879324684, + 0.9688056850309468, + 0.8399373186372248, + 0.904913008013858, + 0.8926128930190145, + 0.8013821571709653, + 0.9027775208335084, + 0.9068677230102368, + 0.9964912280701756, + 0.8884778012684991, + 0.9772727272727272, + 0.937931239097852, + 0.7893307769071134, + 0.8507923269391159, + 0.82454262425017, + 0.9956476370717128, + 0.997391304347826, + 0.7521112125156584, + 0.8486137750653879, + 0.9982456140350876, + 0.9095579316931844, + 0.8974216292028354, + 0.9982456140350876, + 0.7932369506718919, + 0.865081443540125, + 0.7910710359728593, + 0.7802662901330503, + 0.9360867018160518, + 0.8672259606948435, + 0.8465945179292698, + 0.7860877112960002, + 0.90741737640829, + 0.988714605208294, + 0.7650792722152088, + 0.9834028714566064, + 0.9319643313838056, + 0.8892009084674849, + 0.9238927452772132, + 0.938293658314696, + 0.9463111401682168, + 0.9638336347197108, + 0.8614957734733332, + 0.9743634159016108, + 0.9982456140350876, + 0.904567225435328, + 0.902432554260779, + 0.9842598587858048, + 0.9800758121375232, + 0.9031438311232312, + 0.7664643536742591, + 0.8798196380081305, + 0.9452382460255262, + 0.9982456140350876, + 0.9982456140350876, + 0.9542133966338968, + 0.7550919222167469, + 0.8650485436893204, + 0.9590943683409436, + 0.9899999999999998, + 0.7905998956595828, + 0.9964912280701756, + 0.8794606193667226, + 0.9543859649122808, + 0.8482253411306041, + 0.9416562889165628, + 0.8635977474267437, + 0.908313797791604, + 0.9882608695652176, + 0.9329580322176916, + 0.8517155377371683, + 0.9278910038068524, + 0.7982464236271342, + 0.8646739607798208, + 0.9813471226782764, + 0.9960869565217392, + 0.9094579806240582, + 0.9134140956933028, + 0.9851370084561714, + 0.97920631307383, + 0.977065643648764, + 0.8834465198075598, + 0.9747949320291138, + 0.932911746603152, + 0.999122807017544, + 0.959866019149962, + 0.7617844033057979, + 0.7748830995323981, + 0.8909999999999999, + 0.7596175070890622, + 0.8999999999999999, + 0.9123145440909052, + 0.8741654144553147, + 0.8398585426427478, + 0.8724872612693206, + 0.7669652718124924, + 0.8631126133046548, + 0.8409246558039661, + 0.8097354943626018, + 0.95990063654712, + 0.8969342300921225, + 0.9611031655225016, + 0.827297433674167, + 0.8779350849682387, + 0.8367440082204682, + 0.8930134680134679, + 0.9964912280701756, + 0.7824996118615121, + 0.8861176478495413, + 0.9315029605665132, + 0.9240556247405564, + 0.7895079901300617, + 0.8675786978032918, + 0.7532931318639005, + 0.90662100456621, + 0.7716841489148686, + 0.7502640132876187, + 0.8438384213475643, + 0.8979659609796596, + 0.8433356634883352, + 0.8893524283935244, + 0.8088096745504153, + 0.916047252707554, + 0.8157092458590421, + 0.7713701554506877, + 0.8990439807701139, + 0.890757036354073, + 0.9537544911348904, + 0.808038039840766, + 0.9851370084561714, + 0.8932164255129278, + 0.9471843568535036, + 0.9133288665033964, + 0.9132421335802218, + 0.8276330050739579, + 0.8868080394461477, + 0.8668829861852336, + 0.8964265087723556, + 0.9911660095629562, + 0.9182659870037118, + 0.8633272832102701, + 0.8186320718389478, + 0.8881896291715989, + 0.8840480861242009, + 0.8197634340126408, + 0.7611003116070912, + 0.8939095129169344, + 0.901240425894056, + 0.8290845270990632, + 0.8844734722345178, + 0.900672328635003, + 0.8611114838221066, + 0.9020646721236416, + 0.7524570024570024, + 0.9671031943607348, + 0.7643684665873062, + 0.9177602214566852, + 0.9280169976669376, + 0.9651126414686952, + 0.8767768595041323, + 0.933676703232262, + 0.8344383939714739, + 0.849693862814132, + 0.7954107032792183, + 0.933676703232262, + 0.938108321790696, + 0.928906596493303, + 0.7642353146981488, + 0.8546502548557862, + 0.8224212265843107, + 0.7710819445257563, + 0.8864829929760666, + 0.8716815273032167, + 0.8660098479761721, + 0.9025093300004408, + 0.812107188419381, + 0.9607952743931896, + 0.8722498962224989, + 0.9310204439345414, + 0.9777167277167276, + 0.8010759771629337, + 0.8522718489127074, + 0.9093424633191152, + 0.8425177354450203, + 0.7805733235714439, + 0.8924918014613418, + 0.9893784849790032, + 0.8451386855821716, + 0.8875135039917614, + 0.9706691109074244, + 0.7686359724042269, + 0.8133865875461221, + 0.9501902748414376, + 0.8687372572217293, + 0.7972263500644203, + 0.879221174323091, + 0.8580430671412884, + 0.8347523783886707, + 0.9006369722354359, + 0.992671182389769, + 0.9563291529742204, + 0.947447712690609, + 0.7790788334554246, + 0.9533492330474672, + 0.8986916130118449, + 0.9391877740213088, + 0.9348478408783754, + 0.8636563261069189, + 0.9225521327977664, + 0.9272525027808676, + 0.934718899751552, + 0.7847695804918373, + 0.9443983271522132, + 0.9774342481963584, + 0.97920631307383, + 0.9390325835747532, + 0.7859442359319205, + 0.9452608121807992, + 0.8231219423433573, + 0.9939505041246564, + 0.8711884810416023, + 0.9664525827971132, + 0.8922813036020585, + 0.8517879419237278, + 0.9226251523770824, + 0.9989000916590284, + 0.912544997503788, + 0.8862043421277565, + 0.7932768442135996, + 0.8376774696711561, + 0.7841809006211181, + 0.7925277144429594, + 0.8649220965924544, + 0.8539211685273398, + 0.8363949697251979, + 0.8264854203894482, + 0.9072225728615328, + 0.992671182389769, + 0.8515020101968745, + 0.9309305726600986, + 0.9543209471735604, + 0.9391877740213088, + 0.9348478408783754, + 0.8914844044126528, + 0.9256464785119556, + 0.9954545454545456, + 0.9374817381090278, + 0.7688326686368462, + 0.8925869273677869, + 0.9703270521983972, + 0.9809453113164672, + 0.8066868740036242, + 0.8351972694191357, + 0.8433153659377112, + 0.9392359594194456, + 0.8888965657897014, + 0.8930757789029354, + 0.999083409715857, + 0.9743963538884604, + 0.7953195319531953, + 0.8454219118804093, + 0.9502704567873635, + 0.9458992126856904, + 0.7644077516403233, + 0.8706106552426165, + 0.9965172600923464, + 0.8217563751752737, + 0.9124729676453814, + 0.9818515123739688, + 0.8086304821445487, + 0.9321596244131456, + 0.7740195848021936, + 0.8328682787543888, + 0.8700240408314942, + 0.8580430671412884, + 0.8444444444444444, + 0.8063613046642976, + 0.870252992498577, + 0.992671182389769, + 0.9630275323942066, + 0.9518090954793984, + 0.8248761807094432, + 0.9566474322858416, + 0.9285566337630128, + 0.9391877740213088, + 0.9348478408783754, + 0.8389228250888329, + 0.908538082241886, + 0.9906562847608452, + 0.937727360640436, + 0.8522952375426849, + 0.9459029430545072, + 0.970027764388316, + 0.9817818865916694, + 0.8466376695566145, + 0.7811519654537372, + 0.9366631199668156, + 0.9535299764377344, + 0.9032200335646016, + 0.9998166819431716, + 0.848042162605121, + 0.9780701754385964, + 0.8055944055944054, + 0.8519962283651035, + 0.9944372261358286, + 0.8909859611558665, + 0.9930339138405136, + 0.8688321482439129, + 0.8739386859650123, + 0.7999172993636504, + 0.8106128029621074, + 0.9095679827050768, + 0.8277677156441022, + 0.779649885583524, + 0.8288552731227062, + 0.8574961012970123, + 0.841109866865746, + 0.792355474053602, + 0.8966775300321758, + 0.992671182389769, + 0.9572785040629562, + 0.9291879754864996, + 0.889317620077831, + 0.9515562365156858, + 0.9348478408783754, + 0.8753775156331067, + 0.9532353404791928, + 0.9954545454545456, + 0.937189056965018, + 0.9715579478946336, + 0.959737826278744, + 0.961743440323128, + 0.9796080671884818, + 0.8052224642752426, + 0.7647985836235606, + 0.8987594276173578, + 0.935391253108552, + 0.9994500458295142, + 0.8855041459997729, + 0.909090909090909, + 0.778450363196126, + 0.8409090909090907, + 0.9903940886699508, + 0.9132561051004052, + 0.8590718015934052, + 0.9118814562362948, + 0.7681025602181487, + 0.7961600220298013, + 0.8228255528255527, + 0.7862727272727271, + 0.8598109918146062, + 0.9327132807405768, + 0.8460922217047043, + 0.909090909090909, + 0.7565260131563886, + 0.8064786173763172, + 0.804964695498676, + 0.8147984533079082, + 0.8706455071105871, + 0.8894598432925959, + 0.8753408574458414, + 0.78943545201723, + 0.9225337271553442, + 0.8471976396567684, + 0.9582046990267186, + 0.7739383306543302, + 0.8439728108918513, + 0.9681818181818184, + 0.9147990007027552, + 0.8965678134850725, + 0.9229230100043496, + 0.8814426843808552, + 0.8299673329703665, + 0.953884157786154, + 0.9568896321070232, + 0.927359277258842, + 0.926999815931348, + 0.9084797370520776, + 0.7588691796008868, + 0.8925148498881217, + 0.941101152368758, + 0.7976890157802166, + 0.8191512279190005, + 0.9383783723654014, + 0.9687898089171972, + 0.8227272727272728, + 0.9667829842995462, + 0.8430578512396695, + 0.8462362704327265, + 0.9937731747479652, + 0.8598347107438016, + 0.9018993376896012, + 0.9380859781477626, + 0.7965452139741044, + 0.8408374965151522, + 0.828891493383743, + 0.8037512287334593, + 0.9310557094490612, + 0.7905217546826223, + 0.8803334593572778, + 0.948060941828255, + 0.9808836171606352, + 0.9419954799687824, + 0.9000657462195923, + 0.9762481841119351, + 0.958536231884058, + 0.8689482041587903, + 0.9625071374155624, + 0.9421304353743684, + 0.9000657462195923, + 0.909072064464046, + 0.7770347430724859, + 0.8258664204370576, + 0.931003010693105, + 0.936341359994194, + 0.944622600300256, + 0.7698155009451796, + 0.9886242163794032, + 0.8385429638854297, + 0.8460152283133167, + 0.8244642857142858, + 0.90662100456621, + 0.8965017504270001, + 0.9477543538038498, + 0.934372987530004, + 0.7966912350949062, + 0.8521832338962485, + 0.8284602000869942, + 0.8025417478298693, + 0.9275512725475664, + 0.9004149252037746, + 0.9814823072033312, + 0.9441436310000064, + 0.9038201493163326, + 0.9502409737496426, + 0.8660854435766022, + 0.880780406807804, + 0.932626333246618, + 0.8230247277595697, + 0.9169832716276728, + 0.9163600219843964, + 0.7558559856410743, + 0.8249965343560833, + 0.9341554258408444, + 0.8231479245485526, + 0.9054813423400642, + 0.7909076419763443, + 0.7862727272727271, + 0.8658008658008658, + 0.996330951542531, + 0.9364502164502164, + 0.7650216450216449, + 0.794733291750721, + 0.894436842425348, + 0.9071691672620464, + 0.8475960459042418, + 0.8250190694126619, + 0.9011154934052964, + 0.9888403534005904, + 0.9064975857191632, + 0.8040148172573157, + 0.7544972303681979, + 0.8394258450740809, + 0.872224809812141, + 0.8832034632034632, + 0.9242506379637506, + 0.8626119406890994, + 0.878664636798608, + 0.796428039082196, + 0.7737936507936508, + 0.9772426641825802, + 0.9771984786553624, + 0.7754989006737327, + 0.9842229467473992, + 0.9545454545454548, + 0.8536368018578387, + 0.9904302907657898, + 0.9985875706214687, + 0.7822341892305151, + 0.8895952017025271, + 0.9977822580645164, + 0.822054489456517, + 0.9068929556529068, + 0.9969759694040504, + 0.8227635041015324, + 0.92385752642948, + 0.7644903235840163, + 0.7893527624833871, + 0.9290762303990062, + 0.8549939348739194, + 0.9024751306250636, + 0.9939538727034296, + 0.9838663951689132, + 0.9555403520366936, + 0.8659230906299106, + 0.9555403520366936, + 0.936556104044048, + 0.9365262267264388, + 0.943947221044588, + 0.8711152458705146, + 0.981787734953484, + 0.9977753058954394, + 0.939105864661958, + 0.941241408860912, + 0.9772426641825802, + 0.9783368141256884, + 0.9783368141256884, + 0.8035224554513879, + 0.8878885108220647, + 0.9498970784947516, + 0.9954182612676434, + 0.8911007105869436, + 0.9977822580645164, + 0.9332845830090168, + 0.7698457560674341, + 0.8237875450920827, + 0.7694629219019462, + 0.9545454545454548, + 0.7676911617909391, + 0.8737944824901345, + 0.7706024497958504, + 0.7971142965635086, + 0.797381306659819, + 0.8620542233987611, + 0.8139854059928581, + 0.9887078033035884, + 0.9359939732913412, + 0.816825438145235, + 0.8422527112008905, + 0.8452819441807482, + 0.8400216450216451, + 0.8999203521041262, + 0.929916690661292, + 0.830854814143431, + 0.9513142174432496, + 0.9688527588701455, + 0.9228795379537954, + 0.7730756056428139, + 0.958302500539574, + 0.8026224595457895, + 0.804211768109809, + 0.999122807017544, + 0.9565843431073292, + 0.8024218124622581, + 0.8815110224684692, + 0.8108800084863914, + 0.9608990650462856, + 0.7587225856098497, + 0.8465945179292698, + 0.8955974273031978, + 0.9430511599324012, + 0.7968522430480871, + 0.942185445331794, + 0.8678328134388728, + 0.8589010971043637, + 0.9773557492735576, + 0.8072544965953004, + 0.9954545454545456, + 0.8468840523666226, + 0.7893040004872826, + 0.999122807017544, + 0.8702035016515567, + 0.7949970358330488, + 0.9294585399607892, + 0.8407994285729776, + 0.8788200589970502, + 0.8314481030702938, + 0.831385641452182, + 0.9804378566350936, + 0.9129349807104162, + 0.8141494511694449, + 0.9133990354371988, + 0.9851370084561714, + 0.9095532047456912, + 0.8505448360551612, + 0.963157894736842, + 0.7634237761904064, + 0.9011822106778054, + 0.9956171156600898, + 0.95942299709423, + 0.8553134080531342, + 0.8472097261066925, + 0.9805098186910532, + 0.8553134080531342, + 0.7714797416324134, + 0.9997983870967744, + 0.8217563751752737, + 0.8946470109877639, + 0.999122807017544, + 0.8354069917967499, + 0.9416562889165628, + 0.791670480549199, + 0.936963017728694, + 0.8580430671412884, + 0.8474662292253902, + 0.7867084930870223, + 0.8909560347514579, + 0.992671182389769, + 0.9848040830545792, + 0.8630706569122704, + 0.8702378201869909, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.907644799841382, + 0.999122807017544, + 0.9414868925909092, + 0.9335682269765724, + 0.8893524283935244, + 0.9822495603003196, + 0.8052224642752426, + 0.9379369101877942, + 0.909090909090909, + 0.756404071529602, + 0.9271888077994948, + 0.9921175854473762, + 0.8553134080531342, + 0.9943501037415146, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049175, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8089287811425216, + 0.8017627702025454, + 0.791670480549199, + 0.936963017728694, + 0.8580430671412884, + 0.8474662292253902, + 0.7867084930870223, + 0.90276124713408, + 0.992671182389769, + 0.8072821072057714, + 0.9848040830545792, + 0.8189889492826025, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.974712351554919, + 0.999777530589544, + 0.937103645050706, + 0.9773557492735576, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9503668087629396, + 1, + 0.9271888077994948, + 0.7647361516158825, + 0.9807297003570874, + 0.9364502164502164, + 0.7901612469857595, + 0.824287208001439, + 0.9807297003570874, + 0.7614649785030472, + 0.8658008658008658, + 0.9939130434782611, + 0.906665151293522, + 0.8939526037506182, + 0.9842229467473992, + 0.865081443540125, + 0.9167169276268624, + 0.8794346322201474, + 0.765130456168069, + 0.8734544866674276, + 0.909520787797598, + 0.8854931946173012, + 0.7673924006226841, + 0.8798233135618779, + 0.9852364106660584, + 0.7637569649841349, + 0.9348260838243078, + 0.933522474466579, + 0.8377846225826576, + 0.9583806183156228, + 0.9331326790672908, + 0.9383147514181556, + 0.9589825216566162, + 0.8060876415101113, + 0.9783224922971588, + 0.9583806183156228, + 0.8995909444898049, + 0.8941653123998358, + 0.9668188169538892, + 0.9783224922971588, + 0.9679972612119138, + 0.8797605429806478, + 0.7963975193082085, + 0.8839816990630294, + 0.9431528211472392, + 0.8367334869051766, + 0.8658008658008658, + 0.9921746738179468, + 0.9020614173817516, + 0.756216668568603, + 0.898413439830601, + 0.9687833580671198, + 0.8324262590094272, + 0.7778237575832933, + 0.8480007561436672, + 0.9579079093729876, + 0.845860397670802, + 0.7551254672930834, + 0.8899966113703928, + 0.7908116150724073, + 0.8910183976510794, + 0.9586402202505122, + 0.9614055686011408, + 0.9466976131633716, + 0.8344345242846016, + 0.7881948755231198, + 0.8703128420935896, + 0.7758848540806751, + 0.9184591472656428, + 0.9495128094164198, + 0.8796487671810186, + 0.7514068195240422, + 0.8716815273032167, + 0.9882425857143352, + 0.9633770826635396, + 0.772872635209218, + 0.7549603797492292, + 0.8460813462362223, + 0.9172118090262832, + 0.992952541754412, + 0.8606043918383145, + 0.7745935959659945, + 0.9636724437338746, + 0.7960368686049766, + 0.8285988264418827, + 0.9708841861711646, + 0.8299341990318011, + 0.8419381421530754, + 0.7849537714203622, + 0.7591712665406428, + 0.8689452322602814, + 0.776662686231443, + 0.7843042441238667, + 0.7800515724165504, + 0.8797549464963943, + 0.9919502705663622, + 0.9893735932410646, + 0.8894092494980258, + 0.8411462167336957, + 0.8604416000492892, + 0.9391164837414664, + 0.9875732201051683, + 0.8668958338409165, + 0.910974119092226, + 0.9335682269765724, + 0.8903543205412945, + 0.7579050997201501, + 0.9129974387310056, + 0.8184361507912837, + 0.8985858297326429, + 0.8811309071018276, + 0.9600766541682176, + 0.9142379797053092, + 0.8553282796247272, + 0.9209665616774528, + 0.7653056658292261, + 0.9428934497795352, + 0.9766567420679494, + 0.9320892949781068, + 0.8764803941254208, + 0.9615141634622412, + 0.8025926314878588, + 0.935632010504501, + 0.9954545454545456, + 0.8383046372479713, + 0.8085158042512651, + 0.8799003347391113, + 0.8519408442208184, + 0.7642901122754603, + 0.9104413159581644, + 0.89138879753655, + 0.8889595044710776, + 0.8674196841123456, + 0.9890311615492476, + 0.9817061821644611, + 0.9645756670815068, + 0.9013683659572824, + 0.9379327738576018, + 0.8277684278026405, + 0.8025926314878588, + 0.8164472422898458, + 0.9476735033728184, + 0.9280169976669376, + 0.9400644385653472, + 0.8571175858480748, + 0.9457607069255074, + 0.7890197773695018, + 0.9341554258408444, + 0.8197634340126408, + 0.9579224065577792, + 0.8701372997711668, + 0.9529052383428788, + 0.9845238804935112, + 0.909042520211614, + 0.7869703117696519, + 0.8276242108365519, + 0.878685196514601, + 0.7563441975980676, + 0.7552008456659621, + 0.9576803072122886, + 0.7766774350616475, + 0.8786356094048401, + 0.8863636363636364, + 0.8824223337513897, + 0.915641381346678, + 0.9097297101659864, + 0.952612204076308, + 0.9667491997801664, + 0.9203132832080202, + 0.8318181818181817, + 0.8553636363636363, + 0.7733211512105985, + 0.8722470169622666, + 0.8975645313091688, + 0.8977159303535192, + 0.9912311643305796, + 0.9024231247013856, + 0.8691836035197901, + 0.8278906432659405, + 0.8317573749391951, + 0.9643924081792452, + 0.938598748759861, + 0.984466571720076, + 0.988302056405168, + 0.977397740533538, + 0.8324262590094272, + 0.957204861709126, + 0.9815689054392762, + 0.9723297607875788, + 0.9166058436529154, + 0.7521706555006759, + 0.9280169976669376, + 0.9358035287465732, + 0.8764803941254208, + 0.9153455696596016, + 0.8469432605765171, + 0.99268071993084, + 0.988226739831974, + 0.996336999414424, + 0.9244884191211992, + 0.8507008302142539, + 0.9593509283699424, + 0.8061755182821719, + 0.9615141634622412, + 0.9839330712663648, + 0.9555873521968756, + 0.9775173594082412, + 0.8128624949482813, + 0.9514741813067672, + 0.9817522080920388, + 0.981025791388756, + 0.9818181818181816, + 0.9710861248452468, + 0.9773557492735576, + 0.890085589718168, + 0.954337370755309, + 0.8919753086419753, + 0.8552031760963528, + 0.9545454545454548, + 0.8563472606128697, + 0.8478228971791203, + 0.8853335760168058, + 0.8250190694126619, + 0.8305431015989557, + 0.7900733399481583, + 0.9108949697942604, + 0.917855352912078, + 0.8955772084667657, + 0.82987479094277, + 0.909090909090909, + 0.9331273751154144, + 0.841981268119079, + 0.9061617983216465, + 0.7650216450216449, + 0.8414755340099983, + 0.9939138029238658, + 0.8766192814819845, + 0.8315151515151515, + 0.8473382904078122, + 0.914059797380776, + 0.7659476739028936, + 0.8559376367887911, + 0.811411149825784, + 0.7943527200862163, + 0.7697780793564009, + 0.8192024956758094, + 0.9625172175038818, + 0.9466379024540816, + 0.9248249108281914, + 0.7835010344179048, + 0.7696916201990726, + 0.8741784037558686, + 0.8788591215600511, + 0.7847145200343669, + 0.995553782140972, + 0.885547201336675, + 0.932238896428148, + 0.8666467850773247, + 0.9318181818181815, + 0.874330829529188, + 0.8477600534912598, + 0.8513796499579376, + 0.7928688716866057, + 0.8300839482005723, + 0.8104640050546934, + 0.7623555471966228, + 0.8477133966865695, + 0.8069468267581477, + 0.7970641933918771, + 0.7517470662254077, + 0.811386593204775, + 0.8200234516324812, + 0.8169486429889491, + 0.8731362653208361, + 0.8763157894736843, + 0.8185744024917364, + 0.9052173913043478, + 0.8415792985968426, + 0.7820239132603559, + 0.8373297473297473, + 0.7516072325464591, + 0.9659417587369664, + 0.7649602377888222, + 0.7936066126855602, + 0.909090909090909, + 0.945216049382716, + 0.8771929824561405, + 0.8174876847290639, + 0.8553636363636363, + 0.8455433455433455, + 0.9233441393338416, + 0.8437332724582007, + 0.832909538499891, + 0.840948616293985, + 0.8177290491628549, + 0.9175438596491228, + 0.882198952879581, + 0.8150509397735728, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.7862727272727271, + 0.8107452697678261, + 0.9637205387205386, + 0.852293824358888, + 0.8709558996012198, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.7897773279352228, + 0.805168828270855, + 0.909090909090909, + 0.8771929824561405, + 0.8174876847290639, + 0.8813770455902434, + 0.8553636363636363, + 0.8455433455433455, + 0.8049385749385748, + 0.8437332724582007, + 0.832909538499891, + 0.8177290491628549, + 0.9175438596491228, + 0.8767128866853765, + 0.8150509397735728, + 0.9294196742835898, + 0.8917391304347826, + 0.8253968253968254, + 0.7862727272727271, + 0.8107452697678261, + 0.9637205387205386, + 0.852293824358888, + 0.7596801346801346, + 0.8181614349775784, + 0.9017543859649124, + 0.805168828270855, + 0.9545454545454548, + 0.9545454545454548, + 0.8298946640273919, + 0.8041381029540074, + 0.9786956521739132, + 0.9055353950321428, + 0.8658008658008658, + 0.8041630667784956, + 0.792782754772987, + 0.8259976777571356, + 0.8220626497774737, + 0.8210461476724114, + 0.8101813436763873, + 0.971001604361102, + 0.9289464621791536, + 0.8732908588456849, + 0.9320839327803117, + 0.7799127011297503, + 0.9521230391509398, + 0.8387538514207465, + 0.8873673399520713, + 0.8919696969696971, + 0.9939130434782611, + 0.9772426641825802, + 0.8315151515151515, + 0.8408502506153573, + 0.9545454545454548, + 0.8658008658008658, + 0.9939130434782611, + 0.9418179668098864, + 0.7650216450216449, + 0.8654908035026879, + 0.9992656508417233, + 0.7803152709359606, + 0.8330232317703581, + 0.9983501374885428, + 0.8042480240124439, + 0.7697542997542998, + 0.9203347173341052, + 0.8077175608822436, + 0.863207096556374, + 0.9891326164874552, + 0.8157646741278425, + 0.8722929363621342, + 0.8412806151509398, + 0.9100844696456204, + 0.9172591608126068, + 0.9170938628158845, + 0.8485714285714286, + 0.8571645021645024, + 0.8877796694698104, + 0.8146320346320346, + 0.9983501374885428, + 0.9617032985121432, + 0.9108802545427966, + 0.9508984239139112, + 0.9181661424871336, + 0.9529605866177816, + 0.8319465220643232, + 0.8402426098282156, + 0.9191026771713572, + 0.8190873103701221, + 0.8628923192823611, + 0.9602434075673276, + 0.7593235251819751, + 0.9456277248027678, + 0.9435343652049158, + 0.9302009048080272, + 0.7932712550607288, + 0.8786981717234608, + 0.8486842544219594, + 0.9126746767131658, + 0.9486042010676804, + 0.9038724480869904, + 0.958686173433348, + 0.7865058108244474, + 0.8704285747314824, + 0.9240999622367164, + 0.8068457040035989, + 0.9624336598289146, + 0.8942981283868459, + 0.8045481228624207, + 0.9823493170094518, + 0.8126984126984126, + 0.998531571416838, + 0.8419809946143553, + 0.922841005751663, + 0.9946871424565764, + 0.8143728369465849, + 0.8452819441807482, + 0.9757439972091474, + 0.7999757977078847, + 0.811708695128781, + 0.9226825090266608, + 0.915537959944108, + 0.8447134792639336, + 0.7824996118615121, + 0.9004189790402766, + 0.992492576897818, + 0.8141116751269034, + 0.9641837718077296, + 0.8643778677462887, + 0.9569910794861844, + 0.8929721958656436, + 0.9134879224116806, + 0.8981798632747807, + 0.81115791740409, + 0.9732801304295486, + 0.9270758346340522, + 0.9377496859510692, + 0.9314133822181484, + 0.97145319916461, + 0.969655719759168, + 0.774258455570617, + 0.7646989654610621, + 0.9179126246763072, + 0.9344663297510818, + 0.9954192028862328, + 0.7896845621854086, + 0.9455885850178358, + 0.9633770826635396, + 0.8393119121793614, + 0.9022475277597836, + 0.8956434074042219, + 0.8868725897920605, + 0.947727507922727, + 0.8100165040010108, + 0.7541551246537397, + 0.7542451891577083, + 0.917562326869806, + 0.8951137084436364, + 0.9046867398146928, + 0.9823446334538573, + 0.7795168102658113, + 0.98334457368405, + 0.949870071311262, + 0.7943210699040146, + 0.8322736882141543, + 0.9149338374291116, + 0.8997612989216043, + 0.957120046591764, + 0.8238720996776803, + 0.9493296120831972, + 0.9088759068464726, + 0.929966729678639, + 0.909593974766178, + 0.9088759068464726, + 0.7862360164041836, + 0.9165811787189776, + 0.938643059916104, + 0.8032011401974772, + 0.7862727272727271, + 0.9754897598639012, + 0.7600017202867504, + 0.9455885850178358, + 0.9633770826635396, + 0.8436837588803084, + 0.8980736820318737, + 0.8859552362571937, + 0.8868725897920605, + 0.947727507922727, + 0.8057328891947176, + 0.7614693277849641, + 0.8875623268698062, + 0.8965017504270001, + 0.9039894860912128, + 0.984298575553884, + 0.7714232447296058, + 0.98334457368405, + 0.949870071311262, + 0.7943210699040146, + 0.8202771072840704, + 0.9149338374291116, + 0.8933801982348771, + 0.957120046591764, + 0.8238720996776803, + 0.9529052383428788, + 0.90120315914534, + 0.929966729678639, + 0.945128934703434, + 0.9095750421335858, + 0.7766558276104735, + 0.9151778010434616, + 0.9471874624563444, + 0.8378181818181818, + 0.9754897598639012, + 0.7691572905827264, + 0.7959133007990621, + 0.8262184063662379, + 0.9894645159690536, + 0.996521739130435, + 0.7819131922573496, + 0.850401606425703, + 0.996521739130435, + 0.9077642484940728, + 0.89655436679566, + 0.9964912280701756, + 0.7938737011467188, + 0.8802936186789987, + 0.9280303030303032, + 0.7987525608923287, + 0.7552391207341441, + 0.9308288388816562, + 0.8668602157771255, + 0.8448511242895973, + 0.7961445704225081, + 0.9099056220340456, + 0.9878450565293272, + 0.7642455368060652, + 0.9778493899137112, + 0.8965968223131894, + 0.8932895451827312, + 0.9285799156049388, + 0.9432927941623594, + 0.9496993493645752, + 0.9692603418275338, + 0.8702493159014899, + 0.9739749369603424, + 0.996521739130435, + 0.8907367280606716, + 0.904913008013858, + 0.968471177944862, + 0.825, + 0.9027775208335084, + 0.7617903311136486, + 0.884146408684465, + 0.9446018376578228, + 0.9964912280701756, + 0.908597321143829, + 0.996521739130435, + 0.9619598036238828, + 0.760301236816147, + 0.9921175854473762, + 0.8553134080531342, + 0.9943501037415146, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049175, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8089287811425216, + 0.9416562889165628, + 0.7955445656901864, + 0.791670480549199, + 0.936963017728694, + 0.8580430671412884, + 0.90276124713408, + 0.992671182389769, + 0.9848040830545792, + 0.9514741813067672, + 0.8630706569122704, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.9857005881574218, + 0.999777530589544, + 0.937103645050706, + 0.9414868925909092, + 0.9851370084561714, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.8931621545809378, + 1, + 0.9271888077994948, + 0.7647361516158825, + 0.9921175854473762, + 0.8553134080531342, + 0.9943501037415146, + 0.9991101224022378, + 0.7714797416324134, + 0.8958436239049175, + 1, + 0.8217563751752737, + 0.8995898027497777, + 0.999122807017544, + 0.8019358454012121, + 0.8089287811425216, + 0.8017627702025454, + 0.791670480549199, + 0.936963017728694, + 0.8580430671412884, + 0.8474662292253902, + 0.7867084930870223, + 0.90276124713408, + 0.992671182389769, + 0.8072821072057714, + 0.9848040830545792, + 0.8189889492826025, + 0.9531775071717112, + 0.9429977116704804, + 0.9391877740213088, + 0.9348478408783754, + 0.8677050513455755, + 0.974712351554919, + 0.999777530589544, + 0.937103645050706, + 0.9773557492735576, + 0.9822495603003196, + 0.9822495603003196, + 0.8052224642752426, + 0.884737671188568, + 0.9413092648977816, + 0.999122807017544, + 0.9503668087629396, + 1, + 0.9271888077994948, + 0.7647361516158825, + 0.8653436259062406, + 0.9166666666666666, + 0.8513043478260871, + 0.888762154374558, + 0.9072684799014412, + 0.8911473104418144, + 0.8931451612903224, + 0.804641414265247, + 0.8069790866112391, + 0.8818832214815737, + 0.8945874001774624, + 0.8064644137224782, + 0.8411703547857459, + 0.8850692346282528, + 0.755864605581299, + 0.854470284581694, + 0.9105444641861692, + 0.9339130434782608, + 0.8908740092733132, + 0.8673913043478261, + 0.8286547121919267, + 0.95706340378198, + 0.9119365546072284, + 0.9110759625390218, + 0.9018301785200464, + 0.9107392505404756, + 0.812383779297877, + 0.8091839475036197, + 0.92656200324369, + 0.9618472252807516, + 0.9614035087719296, + 0.7500000000000001, + 0.8598402189827489, + 0.9545454545454548, + 0.9545454545454548, + 0.8298946640273919, + 0.8041381029540074, + 0.9786956521739132, + 0.9055353950321428, + 0.8658008658008658, + 0.8041630667784956, + 0.792782754772987, + 0.8259976777571356, + 0.8220626497774737, + 0.8210461476724114, + 0.8101813436763873, + 0.971001604361102, + 0.9289464621791536, + 0.8732908588456849, + 0.9320839327803117, + 0.7799127011297503, + 0.9521230391509398, + 0.8387538514207465, + 0.8873673399520713, + 0.8919696969696971, + 0.9939130434782611, + 0.9772426641825802, + 0.8315151515151515, + 0.8408502506153573, + 0.9545454545454548, + 0.8658008658008658, + 0.9939130434782611, + 0.9418179668098864, + 2.7156926502089522, + 2.6582589542615205, + 5.8335318175048485, + 7.719722873284703, + 8.37059193980477, + 6.287750760888578, + 7.5852393855277604, + 8.619914081142198, + 5.954123926757003, + 6.91777643651585, + 6.739839037931574, + 0.7714560308712177, + 5.897458854409393, + 4.482450018625363, + 1.5747017277387507, + 3.933117055292414, + 6.441355005448861, + 5.04393477864045, + 1.5811655649264398, + 8.639455375706738, + 9.482045956050825, + 3.2710846763103056, + 5.548094343509045, + 4.87980768126475, + 7.169596926783591, + 6.055229301341344, + 5.265009500444489, + 5.511060018128451, + 2.501301413678476, + 4.525937093216851, + 4.101343355269801, + 6.217293807177125, + 7.943905087121579, + 5.353764177182051, + 4.243278019361482, + 3.5427896276701247, + 1.6088919229398986, + 3.88415324095451, + 2.603943043970883, + 9.037066847278583, + 7.737803351226179, + 3.279554866696, + 7.622729583832935, + 6.856374634561529, + 2.3349922071235465, + 12.741914176153992, + 11.169645269632817, + 7.551886959332794, + 11.590587375901766, + 12.818849239990167, + 9.312350207024242, + 9.6849943211339, + 29.989955910932153, + 10.677581027079041, + 11.69145919480073, + 16.911059138224726, + 4.826679620914834, + 8.252291582172772, + 9.165041567158466, + 4.782025060620587, + 8.739229045188916, + 11.125912615127698, + 8.566187584981826, + 8.410599595904824, + 6.425051841659946, + 10.774794507711546, + 12.884848396699267, + 1.6145642144115429, + 9.547370473634308, + 7.4714444881737325, + 5.090260526214286, + 12.039861684212275, + 11.245389212792535, + 10.143128014376295, + 10.125864871974748, + 10.355129591634745, + 8.634473127403044, + 27.992947678046967, + 11.123211913879592, + 7.352731964750447, + 12.509174723369728, + 9.357329704104508, + 10.803039171629647, + 8.913388778860995, + 0.7593325960761084, + 7.077414893516322, + 12.222467590055782, + 14.823589476801526, + 10.265853059053766, + 30.253260966653563, + 11.052382130191171, + 8.491863165557415, + 0.8553134080531342, + 0.7923275652679538, + 0.7819131922573496, + 0.7906170310433895, + 0.8406484670606788, + 0.7894736842105264, + 0.8681498428014106, + 0.8408063572139095, + 0.7738548847622624, + 0.8107066154287429, + 0.909636086500905, + 0.9320839327803117, + 0.894689054121916, + 0.8861995746607623, + 0.8134896030245747, + 0.9636363636363636, + 0.8392276737347159, + 0.901982337361457, + 0.8985728391457872, + 0.7921837072845759, + 0.781322126609299, + 22.554386120173277, + 19.613599810480828, + 20.40031858996651, + 29.956580694197918, + 37.81896775337313, + 24.030764704798013, + 31.75180467319671, + 33.91801742353348, + 28.462037139542883, + 34.295589536268785, + 36.50591258466256, + 23.467860361429143, + 24.85592909604806, + 32.4035090762865, + 22.71970343234958, + 25.48730319359836, + 25.165096088618046, + 29.69637427409326, + 17.664183829999775, + 21.845720961128904, + 27.377228557396815, + 39.03071723249128, + 9.741598600769482, + 28.447258113530083, + 34.41837306291569, + 16.886927343841723, + 30.022111810263496, + 34.03588277445593, + 24.12543947649044, + 25.237935542547767, + 23.501603133367023, + 27.37331169073333, + 34.357461581381585, + 33.700679285094154, + 29.505192327810473, + 34.68305676523826, + 23.609703244299986, + 30.310558375313995, + 29.354422008390117, + 23.538996128691956, + 30.81569469437525, + 30.60135518038744, + 29.626551856617063, + 27.188295797438027, + 40.38862974807831, + 18.694734300906806, + 27.322990496426154, + 1.9352772848325108, + 2.3818016615095727, + 2.4953990933170473, + 1.913963384282922, + 2.9567670468253713, + 2.4317927379797686, + 1.7956133485890122, + 2.854427989512894, + 2.5831820089241857, + 1.819016306904112, + 2.490648071873054, + 2.391484496370541, + 2.505409598405692, + 2.4821885521885516, + 2.4409577227873585, + 2.320829325255205, + 2.6899205418074503, + 1.7283011445001177, + 1.6971149466909594, + 1.5291213820369047, + 2.6143148621989507, + 2.9780554383276456, + 2.9438210900254145, + 2.6305687873673067, + 1.7549807374793618, + 2.7762712359752806, + 1.7495140887205873, + 2.8136523151256485, + 1.879691824068352, + 2.462183434346834, + 2.5645762169923745, + 1.6667508417508416, + 1.7977977702095433, + 1.8753418795074075, + 2.7078597537265074, + 0.9300633742947678, + 0.8084175084175084, + 2.495361866237282, + 2.320899513668479, + 0.7992420095977141, + 1.8012887383173002, + 1.7092200978604315, + 2.609476994384382, + 2.9438627714185923, + 1.6816821323942457, + 2.425132650216926, + 12.223228758257974, + 6.188592417520841, + 11.426510773587015, + 13.884984563212395, + 22.734673682113414, + 11.567437906315217, + 12.239049648639428, + 24.118238502482495, + 9.066453537886682, + 11.17511422217741, + 15.891731420320445, + 11.11090060753015, + 14.760168339388951, + 15.918334117423873, + 5.598111410494788, + 9.46948259278418, + 19.6282420929314, + 13.255559093054098, + 8.072782011678106, + 4.8296467634227955, + 13.93982590357738, + 23.894763167404346, + 2.265386970022507, + 13.639123484499246, + 17.43059544986341, + 6.871907979187155, + 17.11088698361234, + 15.99964775294984, + 14.595322770056871, + 15.766753234442659, + 15.856298184944649, + 18.22450343743421, + 19.05621149376186, + 16.097870507087965, + 16.01198436442393, + 13.809075954158503, + 11.255240850896975, + 16.076160308182967, + 8.02257526376253, + 12.455895508409569, + 13.615910947660943, + 14.193169986393926, + 16.8877713803648, + 3.29885931801918, + 19.84232834026574, + 8.573103941281119, + 8.676052231842402, + 1.9554072006789496, + 1.6816008151250992, + 2.5575951246522837, + 1.763864306323435, + 3.6277465073150568, + 2.5403940459643417, + 3.5311360533830105, + 2.8232046518871092, + 0.9147990007027552, + 0.8911473104418144, + 2.765604126968089, + 2.3978778633342577, + 3.3965676305077124, + 1.8048062314859235, + 1.657351693470737, + 1.6062929765633287, + 3.6346370665549452, + 2.426953501375467, + 1.7807483845610523, + 0.8411703547857459, + 2.7870143342426617, + 3.6751201620522886, + 3.667968672809325, + 0.9105444641861692, + 3.664798754945534, + 3.7258429041869685, + 1.825927536231884, + 2.563688359927319, + 1.8432875442233665, + 3.590689352003853, + 0.9119365546072284, + 1.8035908124271436, + 2.665956058648374, + 1.8170490178472651, + 2.736171336988918, + 2.3305797444937766, + 0.812383779297877, + 1.6283351754226203, + 3.5158033304022323, + 2.833948245451147, + 1.7849951498293042, + 3.6259534838334604, + 1.694622600300256, + 2.420563361904273, + 8.224566839530606, + 10.184426134841406, + 9.712886882100072, + 12.368974328335042, + 9.190079150320848, + 11.212094337058057, + 12.764121722467886, + 3.2413916355138515, + 10.804889857088506, + 11.547016065098806, + 10.935685500280684, + 5.6225285255642765, + 1.539541335197319, + 11.091707751777868, + 9.180254302767759, + 9.256945255950226, + 9.39441320170065, + 5.551132979100534, + 4.678308268537915, + 10.268209062531751, + 11.487990944388022, + 6.492834563254258, + 9.971920390400902, + 11.713292537867812, + 2.4929725815182477, + 10.208602928649123, + 10.73985094637251, + 8.725064738267301, + 3.4742792635317246, + 12.132128985959467, + 10.937452652354409, + 10.294020831457708, + 10.84162504706163, + 10.826487642762421, + 12.112505546100621, + 10.210941655471288, + 8.309058542331249, + 6.948934642427314, + 9.736385806957578, + 11.514602475245029, + 9.113230469457893, + 12.16274761820007, + 6.525238979585231, + 10.584967800997793, + 1.677801586702059, + 12.051647956223828, + 10.364795320787383, + 13.473311216883985, + 10.885527934871362, + 21.155234773842274, + 21.27912226240755, + 16.506540369612775, + 17.500086908425452, + 23.96687376464905, + 17.50000361025692, + 18.525672076748783, + 22.72750501377361, + 8.052799028627927, + 16.415934485540465, + 17.099699487658935, + 13.844184713289689, + 10.414083505890655, + 14.218496731614366, + 17.016513814591264, + 11.833228667405512, + 9.92130204041871, + 15.926248229924912, + 19.28818590886522, + 8.37568013116271, + 14.67629455221471, + 17.23878984673672, + 14.631195062838609, + 17.864336064349978, + 18.08959241171481, + 19.28474886690515, + 16.57278071374357, + 14.557840142385297, + 16.967547067670168, + 19.604162788738964, + 19.98269186584841, + 17.637012130402308, + 15.115611896830812, + 15.420223092820533, + 14.445567750240382, + 15.967695680992804, + 8.803015301778098, + 17.53540354903747, + 12.952548777529735, + 19.26586401720724, + 14.24200231680872, + 21.10395900812738, + 18.281595454193365, + 12.827126529560525, + 5.465334500240913, + 8.692039378701784, + 10.04056026672292, + 10.812082791380043, + 12.580474153023195, + 10.655030270423625, + 10.156641991763262, + 11.267860822049826, + 4.818770917891489, + 11.958959359758033, + 13.123712195495242, + 9.296032016759707, + 11.044280821883698, + 10.991077141747944, + 10.088886039883782, + 9.199231454909498, + 10.51222656699815, + 6.886038569595238, + 8.374626059002532, + 7.658225943075498, + 9.757234932000742, + 10.27953224090948, + 3.4266642398787486, + 10.99088844822094, + 11.015934094178773, + 1.6117512560659057, + 10.995057585530207, + 12.879364779623508, + 10.598226185540565, + 9.463039080418465, + 10.291127054890218, + 10.402895139872214, + 9.589332263316654, + 11.15923585040023, + 10.214165288339005, + 12.072802072832255, + 9.598616624212738, + 9.868533505088067, + 8.53186531005526, + 9.169984938459349, + 10.838727562068213, + 11.579969534860759, + 12.33822489975658, + 4.47261764584247, + 10.783399169043372, + 5.698203314390444, + 8.746507319437542, + 5.2502735937721825, + 2.4453350530747793, + 1.738008368195644, + 5.474164297971157, + 5.925545942156385, + 2.3110485615022203, + 4.309007752128361, + 5.631962637208282, + 4.206146547239371, + 4.317083240919346, + 6.257264929881277, + 2.3538008673963797, + 4.27076322703868, + 3.6386765408140946, + 1.6218751548804775, + 2.3274226639749176, + 2.417716951703954, + 2.545920164070019, + 1.700082349305204, + 2.3786200878369077, + 4.504520273067046, + 5.63289447894032, + 5.281011568349853, + 2.668294987481291, + 3.3609942506969634, + 6.2565249278104025, + 4.437053653641776, + 5.178586113351916, + 4.440833046895959, + 2.451376252416558, + 5.357375052676549, + 3.7859155218892466, + 4.479467548537522, + 4.406102168343369, + 5.247334791043326, + 1.7737313447646268, + 5.290584117426062, + 3.2458075335392738, + 0.7847145200343669, + 4.992676798130066, + 2.771762702904483, + 3.7700744247733238, + 2.4220923666043443, + 5.929996420391982, + 3.4020634355200228, + 3.1442137502100387, + 3.883840499337543, + 2.5637289272652515, + 1.657659968971128, + 2.8700655141805957, + 2.955269374098859, + 4.000194035168488, + 3.503014385774582, + 4.992238876012427, + 2.6481481814010275, + 2.693565785734584, + 2.9973684210526317, + 3.147114068150981, + 4.286762573224968, + 4.546959554222818, + 1.5845505351899214, + 3.129753957297123, + 2.7603653190778656, + 2.489376049526977, + 1.6949324584507803, + 3.2969545174238393, + 4.454150560780983, + 2.9484089764966837, + 0.766483106515241, + 3.7887034558996833, + 3.766826240857803, + 1.98751665001665, + 4.668896568056982, + 3.7478274701136476, + 2.77031507949609, + 0.9626281577206024, + 3.595730856619092, + 3.8328921395976865, + 2.9296146282914037, + 4.559964222755541, + 2.657520510009885, + 1.9772484327588065, + 3.8592193782184556, + 3.5421936585017653, + 2.7170523479022903, + 3.1992762277185616, + 4.456682520615206, + 4.707613419567585, + 3.904062811822837, + 2.6114422164244226, + 2.9973684210526317, + 2.710653872016698, + 3.9607214332441982, + 0.929941088884573, + 0.8318189568317447, + 0.9721324228139152, + 0.8929555666008868, + 0.9899175068744273, + 0.7829559806346367, + 0.8330585670487148, + 0.9004712036731742, + 0.8079059133534838, + 0.907326978222119, + 0.8418462145170219, + 0.8355962235887732, + 0.9840600196897172, + 0.9727233543942168, + 0.9456931798893302, + 0.7835307826762479, + 0.9334823561531638, + 0.943912095206486, + 0.9719476865439598, + 0.8989607068123694, + 0.9899175068744273, + 0.91218688144154, + 0.968708052390917, + 0.9275641323723166, + 0.7750817305162342, + 0.7705110005585539, + 0.8746911090742437, + 0.906777236648719, + 0.9877189123128628, + 0.905810189680844, + 0.9039758195768428, + 0.9417675428322848, + 0.838458313625102, + 0.9578918616552848, + 0.9877224033535164, + 0.9600766541682176, + 0.9372227566431792, + 0.9996947496947498, + 0.946473950268886, + 0.9273107442696306, + 0.8427440270131528, + 0.8930336617991886, + 0.8499116091074294, + 0.8297523357929766, + 0.8628042957923382, + 0.94362258995985, + 0.8861176478495413, + 0.992955297959396, + 0.954141881439958, + 0.9716068390573318, + 0.9372227566431792, + 0.9209665616774528, + 0.8810186818949944, + 0.8078565985679013, + 0.7888565809250084, + 0.8999765601568034, + 0.7784705964389922, + 0.8951137084436364, + 0.9694396869310692, + 0.906901471095239, + 0.9521895754027828, + 0.7517286913985, + 0.8687571885281811, + 0.7912430201328434, + 0.9975369458128078, + 0.9160401958804216, + 12.034957689126509, + 11.167292442920854, + 10.892772374566828, + 11.188545125369362, + 14.051145630783244, + 7.680136453880671, + 13.13343433761535, + 17.80404860928635, + 11.937543780884553, + 13.115830249181464, + 12.256764611367714, + 6.398920724204531, + 11.614838149705102, + 11.674346053468323, + 9.535949405592675, + 9.545707015549945, + 14.048031339671128, + 9.393860419591002, + 10.031690862892003, + 12.062006319058131, + 14.226242683310376, + 16.73540754868906, + 3.1709008167927912, + 14.033097673587116, + 14.09522763231218, + 8.342653449881677, + 15.97684965031901, + 12.663360588750875, + 13.64816797614395, + 12.108598929706023, + 13.748030143803588, + 11.552947958095888, + 14.557409491200037, + 14.76087992670282, + 13.005685011134684, + 16.172428327206998, + 10.724419056036478, + 15.192833344979608, + 13.325700381129664, + 4.679831565136927, + 12.228767344707215, + 15.824415223567982, + 12.908175660434084, + 5.4193200648480255, + 17.063260170485226, + 12.311035142033079, + 2.346288272822698, + 3.4869993033751463, + 2.5949758944297403, + 3.4858159609526522, + 4.674296290122592, + 4.973293031748207, + 4.236569395245839, + 4.51562348520608, + 4.970379646980091, + 4.233075066864595, + 4.537502245161149, + 4.874376920602602, + 3.3860244565663846, + 2.5392201287083846, + 4.7013436913228475, + 3.3704788877062826, + 4.1404888626813845, + 4.543317811906993, + 4.319085326490048, + 3.5985806503096693, + 3.3527379240031503, + 4.693635233550103, + 4.92204731803439, + 0.9486152933634998, + 4.874971169726762, + 4.792744363999942, + 1.7302116440315845, + 4.608398994184875, + 3.7619088006985453, + 4.683339599032273, + 4.693106068726848, + 3.5501146709587443, + 3.601350219017491, + 4.867504229968272, + 3.6115658797692385, + 4.739253392540292, + 4.914139211693232, + 3.3462234028956073, + 3.758911669879801, + 3.3813048127683447, + 1.7258664026274264, + 4.573429247310607, + 4.721381839264356, + 4.985087333365494, + 2.8850693260638045, + 4.9655673936226625, + 2.8284398639688764, + 4.02646412523102, + 2.7272727272727266, + 0.8237875450920827, + 0.945216049382716, + 1.754385964912281, + 0.7694629219019462, + 2.4524630541871915, + 0.9545454545454548, + 0.8813770455902434, + 2.566090909090909, + 2.5366300366300365, + 0.7676911617909391, + 0.8737944824901345, + 2.568024494997688, + 0.7706024497958504, + 0.7971142965635086, + 0.797381306659819, + 3.393254040773363, + 3.312714021492531, + 1.602927311552636, + 2.4531871474885647, + 3.7413393822509566, + 0.9359939732913412, + 1.764397905759162, + 2.570251211515988, + 2.445152819320718, + 3.63051173405166, + 2.675217391304348, + 0.8452819441807482, + 0.8400216450216451, + 2.4761904761904763, + 2.4554856624856622, + 3.3321561614076045, + 3.821078306822908, + 2.556881473076664, + 2.5727666133458706, + 3.2303546214836536, + 0.9688527588701455, + 3.3773638428865307, + 2.7052631578947373, + 1.5795546558704456, + 2.415506484812565, + 0.8317573749391951, + 0.9643924081792452, + 0.938598748759861, + 0.984466571720076, + 0.988302056405168, + 0.977397740533538, + 0.8324262590094272, + 0.957204861709126, + 0.9815689054392762, + 0.9723297607875788, + 0.9166058436529154, + 0.7521706555006759, + 0.9280169976669376, + 0.9358035287465732, + 0.8764803941254208, + 0.9153455696596016, + 0.8469432605765171, + 0.99268071993084, + 0.988226739831974, + 0.996336999414424, + 0.9244884191211992, + 0.8507008302142539, + 0.9593509283699424, + 0.8061755182821719, + 0.9615141634622412, + 0.9839330712663648, + 0.9555873521968756, + 0.9775173594082412, + 0.8128624949482813, + 0.9514741813067672, + 0.9817522080920388, + 0.981025791388756, + 0.9818181818181816, + 0.9710861248452468, + 0.9773557492735576, + 0.890085589718168, + 0.954337370755309, + 0.9807297003570874, + 0.9364502164502164, + 0.7901612469857595, + 0.824287208001439, + 0.9807297003570874, + 0.7614649785030472, + 0.8658008658008658, + 0.9939130434782611, + 0.906665151293522, + 0.8939526037506182, + 0.9842229467473992, + 0.865081443540125, + 0.9167169276268624, + 0.8794346322201474, + 0.765130456168069, + 0.8734544866674276, + 0.909520787797598, + 0.8854931946173012, + 0.7673924006226841, + 0.8798233135618779, + 0.9852364106660584, + 0.7637569649841349, + 0.9348260838243078, + 0.933522474466579, + 0.8377846225826576, + 0.9583806183156228, + 0.9331326790672908, + 0.9383147514181556, + 0.9589825216566162, + 0.8060876415101113, + 0.9783224922971588, + 0.9583806183156228, + 0.8995909444898049, + 0.8941653123998358, + 0.9668188169538892, + 0.9783224922971588, + 0.9679972612119138, + 0.8797605429806478, + 0.7963975193082085, + 0.8839816990630294, + 0.9431528211472392, + 0.8367334869051766, + 0.8658008658008658, + 0.9921746738179468, + 0.9020614173817516, + 0.756216668568603, + 0.8168393183171508, + 0.826467375579422, + 0.94513113161729, + 0.9585637037072424, + 0.8949088289552438, + 0.9053910284366296, + 0.817437533227007, + 0.7978783990223038, + 0.7521903939726886, + 0.754943158980426, + 0.7928605555934748, + 0.8989607068123694, + 0.7975892455476461, + 0.7725199492096488, + 0.7662703504995123, + 0.9767351231527428, + 0.9424631082284728, + 0.866898864682116, + 0.7783625730994153, + 0.9376349250962784, + 0.9303020409693342, + 0.8287563928270861, + 0.8603115680426934, + 0.8114732228923959, + 0.9669758970781992, + 0.8105976841695943, + 0.7959269589012261, + 0.8302139037433156, + 0.986986590623621, + 0.751078143739283, + 106.64365772309534, + 90.9355210230678, + 105.04536582054092, + 138.98571064131588, + 169.88487988137652, + 115.9168437973925, + 137.9093814780075, + 189.42204216322287, + 111.49572464710506, + 139.83420443601815, + 161.99091839827958, + 91.8574909446722, + 121.41377761311729, + 126.49255248699575, + 94.81801724506019, + 104.41397650689214, + 125.235898038848, + 122.59448794548986, + 92.35265916418771, + 86.03559245754154, + 132.16125864115685, + 172.80662711497877, + 37.566484901154915, + 130.8619928883497, + 142.98149769771985, + 73.15299777787965, + 148.64598147776658, + 147.6058201109054, + 135.68590926926717, + 120.8652234999067, + 123.58337699460165, + 129.4288397337329, + 164.6196467048814, + 146.0847692899186, + 134.81386332207788, + 148.98873849455728, + 107.95587640903702, + 129.11074196044743, + 112.95896779678264, + 85.21532321667084, + 128.60484862515455, + 141.7009280420737, + 149.46101957908905, + 93.87705350821577, + 186.45865916437108, + 101.59622805369719, + 103.65170216767632, + 1067.7116344468354, + 1057.5464388835724, + 1198.7741587466867, + 669.115232508303, + 338.88306174231195, + 751.2875394224807, + 780.4050131041074, + 5863.7230788542975 + ] + } + ], + "layout": { + "coloraxis": { + "colorbar": { + "title": { + "text": "R^2 Spearman" + } + }, + "colorscale": [ + [ + 0, + "rgb(5,48,97)" + ], + [ + 0.1, + "rgb(33,102,172)" + ], + [ + 0.2, + "rgb(67,147,195)" + ], + [ + 0.3, + "rgb(146,197,222)" + ], + [ + 0.4, + "rgb(209,229,240)" + ], + [ + 0.5, + "rgb(247,247,247)" + ], + [ + 0.6, + "rgb(253,219,199)" + ], + [ + 0.7, + "rgb(244,165,130)" + ], + [ + 0.8, + "rgb(214,96,77)" + ], + [ + 0.9, + "rgb(178,24,43)" + ], + [ + 1, + "rgb(103,0,31)" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "b": 25, + "l": 25, + "r": 25, + "t": 50 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display(HBox([path_1_dropdown, path_2_dropdown, path_3_dropdown,path_4_dropdown,ok_button]), out)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.12 ('base')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "vscode": { + "interpreter": { + "hash": "db2f77d7771d8a0072cf3f8e7f9965a22a9c65bf4f8ee5135b3d479c9967abaa" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/WDI-Data normalization.ipynb b/WDI-Data normalization.ipynb deleted file mode 100644 index 4ab91c5..0000000 --- a/WDI-Data normalization.ipynb +++ /dev/null @@ -1,3639 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "BronzeDataFrame= pd.read_csv (os.getcwd()+'/Data/'+'BronzeDataFrame.csv')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# NORMALIZATION" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Taking as reference both works of https://www.pluralsight.com/guides/cleaning-up-data-from-outliers and https://careerfoundry.com/en/blog/data-analytics/how-to-find-outliers/, for normalizing our data we need to start computing the outliers and removing them from our dataframe. As there is not a direct function of pandas that performs this step, it´s been step-by-step code, where we begin with the computation of the quartiles, then the IQR (Inter Quartile Range) and finally the upper and lower limit." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### IQR explanation" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The interquartile range (IQR) measures the spread of the middle half of your data. It is the range for the middle 50% of your sample. Use the IQR to assess the variability where most of your values lie. Larger values indicate that the central portion of your data spread out further. Conversely, smaller values show that the middle values cluster more tightly.\n", - "\n", - "To visualize the interquartile range, imagine dividing your data into quarters. Statisticians refer to these quarters as quartiles and label them from low to high as Q1, Q2, Q3, and Q4. The lowest quartile (Q1) covers the smallest quarter of values in your dataset. The upper quartile (Q4) comprises the highest quarter of values. The interquartile range is the middle half of the data that lies between the upper and lower quartiles. In other words, the interquartile range includes the 50% of data points that are above Q1 and below Q4.\n", - "\n", - "When measuring variability, statisticians prefer using the interquartile range instead of the full data range because extreme values and outliers affect it less. Typically, use the IQR with a measure of central tendency, such as the median, to understand your data’s center and spread. This combination creates a fuller picture of your data’s distribution.\n", - "\n", - "Therefore it is being utilized to get rid of all the outliers that may come from errors when creating the data or from unexpected years." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Firstly, what we have done is to change the name of our indicators, as their original denomination is not easy to handle." - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Country CodeIndicator Name19601961196219631964196519661967...201320142015201620172018201920202021Unnamed: 66
0AFEAccess to clean fuels and technologies for coo...NaNNaNNaNNaNNaNNaNNaNNaN...16.93600417.33789617.68709318.14097118.49134418.82552019.27221219.628009NaNNaN
1AFEAccess to clean fuels and technologies for coo...NaNNaNNaNNaNNaNNaNNaNNaN...6.4994716.6800666.8591107.0162387.1803647.3222947.5171917.651598NaNNaN
2AFEAccess to clean fuels and technologies for coo...NaNNaNNaNNaNNaNNaNNaNNaN...37.85539938.04678138.32625538.46842638.67004438.72278338.92701639.042839NaNNaN
3AFEAccess to electricity (% of population)NaNNaNNaNNaNNaNNaNNaNNaN...31.79416032.00102733.87191038.88017340.26135843.06187744.27086045.803485NaNNaN
4AFEAccess to electricity, rural (% of rural popul...NaNNaNNaNNaNNaNNaNNaNNaN...18.66350217.63398616.46468124.53143625.34511127.44990829.64176030.404935NaNNaN
..................................................................
384365ZWEWomen who believe a husband is justified in be...NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaN14.500000NaNNaNNaNNaNNaNNaNNaN
384366ZWEWomen who were first married by age 15 (% of w...NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaN3.700000NaNNaNNaN5.418352NaNNaNNaN
384367ZWEWomen who were first married by age 18 (% of w...NaNNaNNaNNaNNaNNaNNaNNaN...NaN33.50000032.400000NaNNaNNaN33.658057NaNNaNNaN
384368ZWEWomen's share of population ages 15+ living wi...NaNNaNNaNNaNNaNNaNNaNNaN...59.20000059.40000059.50000059.70000059.90000060.00000060.20000060.400000NaNNaN
384369ZWEYoung people (ages 15-24) newly infected with HIVNaNNaNNaNNaNNaNNaNNaNNaN...18000.00000017000.00000015000.00000014000.00000012000.0000009700.0000009600.0000007500.000000NaNNaN
\n", - "

384370 rows × 65 columns

\n", - "
" - ], - "text/plain": [ - " Country Code Indicator Name 1960 \\\n", - "0 AFE Access to clean fuels and technologies for coo... NaN \n", - "1 AFE Access to clean fuels and technologies for coo... NaN \n", - "2 AFE Access to clean fuels and technologies for coo... NaN \n", - "3 AFE Access to electricity (% of population) NaN \n", - "4 AFE Access to electricity, rural (% of rural popul... NaN \n", - "... ... ... ... \n", - "384365 ZWE Women who believe a husband is justified in be... NaN \n", - "384366 ZWE Women who were first married by age 15 (% of w... NaN \n", - "384367 ZWE Women who were first married by age 18 (% of w... NaN \n", - "384368 ZWE Women's share of population ages 15+ living wi... NaN \n", - "384369 ZWE Young people (ages 15-24) newly infected with HIV NaN \n", - "\n", - " 1961 1962 1963 1964 1965 1966 1967 ... 2013 \\\n", - "0 NaN NaN NaN NaN NaN NaN NaN ... 16.936004 \n", - "1 NaN NaN NaN NaN NaN NaN NaN ... 6.499471 \n", - "2 NaN NaN NaN NaN NaN NaN NaN ... 37.855399 \n", - "3 NaN NaN NaN NaN NaN NaN NaN ... 31.794160 \n", - "4 NaN NaN NaN NaN NaN NaN NaN ... 18.663502 \n", - "... ... ... ... ... ... ... ... ... ... \n", - "384365 NaN NaN NaN NaN NaN NaN NaN ... NaN \n", - "384366 NaN NaN NaN NaN NaN NaN NaN ... NaN \n", - "384367 NaN NaN NaN NaN NaN NaN NaN ... NaN \n", - "384368 NaN NaN NaN NaN NaN NaN NaN ... 59.200000 \n", - "384369 NaN NaN NaN NaN NaN NaN NaN ... 18000.000000 \n", - "\n", - " 2014 2015 2016 2017 2018 \\\n", - "0 17.337896 17.687093 18.140971 18.491344 18.825520 \n", - "1 6.680066 6.859110 7.016238 7.180364 7.322294 \n", - "2 38.046781 38.326255 38.468426 38.670044 38.722783 \n", - "3 32.001027 33.871910 38.880173 40.261358 43.061877 \n", - "4 17.633986 16.464681 24.531436 25.345111 27.449908 \n", - "... ... ... ... ... ... \n", - "384365 NaN 14.500000 NaN NaN NaN \n", - "384366 NaN 3.700000 NaN NaN NaN \n", - "384367 33.500000 32.400000 NaN NaN NaN \n", - "384368 59.400000 59.500000 59.700000 59.900000 60.000000 \n", - "384369 17000.000000 15000.000000 14000.000000 12000.000000 9700.000000 \n", - "\n", - " 2019 2020 2021 Unnamed: 66 \n", - "0 19.272212 19.628009 NaN NaN \n", - "1 7.517191 7.651598 NaN NaN \n", - "2 38.927016 39.042839 NaN NaN \n", - "3 44.270860 45.803485 NaN NaN \n", - "4 29.641760 30.404935 NaN NaN \n", - "... ... ... ... ... \n", - "384365 NaN NaN NaN NaN \n", - "384366 5.418352 NaN NaN NaN \n", - "384367 33.658057 NaN NaN NaN \n", - "384368 60.200000 60.400000 NaN NaN \n", - "384369 9600.000000 7500.000000 NaN NaN \n", - "\n", - "[384370 rows x 65 columns]" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "BronzeDataFrame['Indicator Name']=BronzeDataFrame['Indicator Name'].replace(['CPIA gender equality rating (1=low to 6=high)','Commercial service exports (current US$)','Electricity production from renewable sources, excluding hydroelectric (kWh)','Employment in agriculture (% of total employment) (modeled ILO estimate)','Employment in industry (% of total employment) (modeled ILO estimate)','Employment in services (% of total employment) (modeled ILO estimate)','Exports of goods and services (current US$)','Fertility rate, total (births per woman)','Foreign direct investment, net (BoP, current US$)','GDP (current US$)','Government expenditure on education, total (% of government expenditure)','Labor force with advanced education (% of total working-age population with advanced education)','Literacy rate, adult total (% of people ages 15 and above)','Mortality rate attributed to household and ambient air pollution, age-standardized (per 100,000 population)','Net migration','Number of infant deaths','People using at least basic sanitation services (% of population)','Research and development expenditure (% of GDP)','Share of youth not in education, employment or training, total (% of youth population)','Suicide mortality rate (per 100,000 population)','Taxes on international trade (current LCU)','Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)'],['Gender equality','Exports-Commercial services','Renewable electricity','Employment-agriculture','Employment-industry','Employment-services','Exports-G&S','Fertility rate','Foreign investment','GDP','Education GExp','Workers high education','Literacy rate','Mortality-pollution','Net migration','Mortality-infants','Health services use','R&D GExp','Ninis','Suicide','International taxes','Alcohol per capita'])\n", - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Secondly, we compute the first quartile (Q1=25%) and the third quartile (Q3=75%). For that, we have grouped the data by country code and indicator name, so we get the Q1 and Q3 values for each indicator in each geographical area. " - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "grouped=BronzeDataFrame.groupby(['Country Code','Indicator Name'])\n", - "grouped" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
DateValue
Country CodeIndicator Name
AREAlcohol per capita10.06.400000e-01
Education GExp0.00.000000e+00
Employment-agriculture14.05.130000e+00
Employment-industry14.01.449997e+00
Employment-services14.03.830002e+00
............
ZAFNinis12.52.997499e+00
R&D GExp8.01.011100e-01
Renewable electricity12.52.292500e+08
Suicide9.51.025000e+00
Workers high education10.51.712500e+00
\n", - "

978 rows × 2 columns

\n", - "
" - ], - "text/plain": [ - " Date Value\n", - "Country Code Indicator Name \n", - "ARE Alcohol per capita 10.0 6.400000e-01\n", - " Education GExp 0.0 0.000000e+00\n", - " Employment-agriculture 14.0 5.130000e+00\n", - " Employment-industry 14.0 1.449997e+00\n", - " Employment-services 14.0 3.830002e+00\n", - "... ... ...\n", - "ZAF Ninis 12.5 2.997499e+00\n", - " R&D GExp 8.0 1.011100e-01\n", - " Renewable electricity 12.5 2.292500e+08\n", - " Suicide 9.5 1.025000e+00\n", - " Workers high education 10.5 1.712500e+00\n", - "\n", - "[978 rows x 2 columns]" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Q1=BronzeDataFrame.groupby(['Country Code','Indicator Name']).quantile(0.25)\n", - "Q3=BronzeDataFrame.groupby(['Country Code','Indicator Name']).quantile(0.75)\n", - "IQR=Q3-Q1\n", - "IQR" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Once we got the quartiles, we compute the upper and lower limit, with a basic mathematical expression." - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Lower limit
Country CodeIndicator Name
AREAlcohol per capita2.190000e+00
Education GExp1.026766e+01
Employment-agriculture-4.905000e+00
Employment-industry3.131501e+01
Employment-services5.269500e+01
.........
ZAFNinis2.684375e+01
R&D GExp5.828450e-01
Renewable electricity-2.623750e+08
Suicide2.203750e+01
Workers high education8.050875e+01
\n", - "

978 rows × 1 columns

\n", - "
" - ], - "text/plain": [ - " Lower limit\n", - "Country Code Indicator Name \n", - "ARE Alcohol per capita 2.190000e+00\n", - " Education GExp 1.026766e+01\n", - " Employment-agriculture -4.905000e+00\n", - " Employment-industry 3.131501e+01\n", - " Employment-services 5.269500e+01\n", - "... ...\n", - "ZAF Ninis 2.684375e+01\n", - " R&D GExp 5.828450e-01\n", - " Renewable electricity -2.623750e+08\n", - " Suicide 2.203750e+01\n", - " Workers high education 8.050875e+01\n", - "\n", - "[978 rows x 1 columns]" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lower_limit=Q1 - 1.5 * IQR\n", - "lower=lower_limit.drop(['Date'],axis=1)\n", - "lower.rename(columns={\"Value\":\"Lower limit\"})" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Upper limit
Country CodeIndicator Name
AREAlcohol per capita4.750000e+00
Education GExp1.026766e+01
Employment-agriculture1.561500e+01
Employment-industry3.711499e+01
Employment-services6.801500e+01
.........
ZAFNinis3.883375e+01
R&D GExp9.872850e-01
Renewable electricity6.546250e+08
Suicide2.613750e+01
Workers high education8.735875e+01
\n", - "

978 rows × 1 columns

\n", - "
" - ], - "text/plain": [ - " Upper limit\n", - "Country Code Indicator Name \n", - "ARE Alcohol per capita 4.750000e+00\n", - " Education GExp 1.026766e+01\n", - " Employment-agriculture 1.561500e+01\n", - " Employment-industry 3.711499e+01\n", - " Employment-services 6.801500e+01\n", - "... ...\n", - "ZAF Ninis 3.883375e+01\n", - " R&D GExp 9.872850e-01\n", - " Renewable electricity 6.546250e+08\n", - " Suicide 2.613750e+01\n", - " Workers high education 8.735875e+01\n", - "\n", - "[978 rows x 1 columns]" - ] - }, - "execution_count": 52, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "upper_limit=Q3 + 1.5 * IQR\n", - "upper=upper_limit.drop(['Date'],axis=1)\n", - "upper.rename(columns={\"Value\":\"Upper limit\"})" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Thirdly, we join the three tables we have (main dataframe, upper limit and lower limit) by matching country code and indicator name.." - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Country CodeIndicator NameDateValue_xValue_yValue
0DZAExports-Commercial services19904.795977e+081.736231e+094.453536e+09
1DZAExports-Commercial services19913.747657e+081.736231e+094.453536e+09
2DZAExports-Commercial services20052.466000e+091.736231e+094.453536e+09
3DZAExports-Commercial services20062.512000e+091.736231e+094.453536e+09
4DZAExports-Commercial services20072.786733e+091.736231e+094.453536e+09
.....................
20372YEMAlcohol per capita20007.900000e-01-3.725000e-017.675000e-01
20373YEMAlcohol per capita20053.400000e-01-3.725000e-017.675000e-01
20374YEMAlcohol per capita20101.800000e-01-3.725000e-017.675000e-01
20375YEMAlcohol per capita20155.500000e-02-3.725000e-017.675000e-01
20376YEMAlcohol per capita20185.100000e-02-3.725000e-017.675000e-01
\n", - "

20377 rows × 6 columns

\n", - "
" - ], - "text/plain": [ - " Country Code Indicator Name Date Value_x \\\n", - "0 DZA Exports-Commercial services 1990 4.795977e+08 \n", - "1 DZA Exports-Commercial services 1991 3.747657e+08 \n", - "2 DZA Exports-Commercial services 2005 2.466000e+09 \n", - "3 DZA Exports-Commercial services 2006 2.512000e+09 \n", - "4 DZA Exports-Commercial services 2007 2.786733e+09 \n", - "... ... ... ... ... \n", - "20372 YEM Alcohol per capita 2000 7.900000e-01 \n", - "20373 YEM Alcohol per capita 2005 3.400000e-01 \n", - "20374 YEM Alcohol per capita 2010 1.800000e-01 \n", - "20375 YEM Alcohol per capita 2015 5.500000e-02 \n", - "20376 YEM Alcohol per capita 2018 5.100000e-02 \n", - "\n", - " Value_y Value \n", - "0 1.736231e+09 4.453536e+09 \n", - "1 1.736231e+09 4.453536e+09 \n", - "2 1.736231e+09 4.453536e+09 \n", - "3 1.736231e+09 4.453536e+09 \n", - "4 1.736231e+09 4.453536e+09 \n", - "... ... ... \n", - "20372 -3.725000e-01 7.675000e-01 \n", - "20373 -3.725000e-01 7.675000e-01 \n", - "20374 -3.725000e-01 7.675000e-01 \n", - "20375 -3.725000e-01 7.675000e-01 \n", - "20376 -3.725000e-01 7.675000e-01 \n", - "\n", - "[20377 rows x 6 columns]" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dfs = [BronzeDataFrame,lower,upper]\n", - "df_joined = ft.reduce(lambda left, right: pd.merge(left, right, on=['Country Code','Indicator Name']), dfs)\n", - "df_joined" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['Country Code', 'Indicator Name', 'Date', 'Value_x', 'Value_y', 'Value']" - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list(df_joined)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We rename the columns of the new table, as the columns headers are not saved after the joining. " - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
CountryIndicatorYearReal valueLower valueUpper value
0DZAExports-Commercial services19904.795977e+081.736231e+094.453536e+09
1DZAExports-Commercial services19913.747657e+081.736231e+094.453536e+09
2DZAExports-Commercial services20052.466000e+091.736231e+094.453536e+09
3DZAExports-Commercial services20062.512000e+091.736231e+094.453536e+09
4DZAExports-Commercial services20072.786733e+091.736231e+094.453536e+09
.....................
20372YEMAlcohol per capita20007.900000e-01-3.725000e-017.675000e-01
20373YEMAlcohol per capita20053.400000e-01-3.725000e-017.675000e-01
20374YEMAlcohol per capita20101.800000e-01-3.725000e-017.675000e-01
20375YEMAlcohol per capita20155.500000e-02-3.725000e-017.675000e-01
20376YEMAlcohol per capita20185.100000e-02-3.725000e-017.675000e-01
\n", - "

20377 rows × 6 columns

\n", - "
" - ], - "text/plain": [ - " Country Indicator Year Real value Lower value \\\n", - "0 DZA Exports-Commercial services 1990 4.795977e+08 1.736231e+09 \n", - "1 DZA Exports-Commercial services 1991 3.747657e+08 1.736231e+09 \n", - "2 DZA Exports-Commercial services 2005 2.466000e+09 1.736231e+09 \n", - "3 DZA Exports-Commercial services 2006 2.512000e+09 1.736231e+09 \n", - "4 DZA Exports-Commercial services 2007 2.786733e+09 1.736231e+09 \n", - "... ... ... ... ... ... \n", - "20372 YEM Alcohol per capita 2000 7.900000e-01 -3.725000e-01 \n", - "20373 YEM Alcohol per capita 2005 3.400000e-01 -3.725000e-01 \n", - "20374 YEM Alcohol per capita 2010 1.800000e-01 -3.725000e-01 \n", - "20375 YEM Alcohol per capita 2015 5.500000e-02 -3.725000e-01 \n", - "20376 YEM Alcohol per capita 2018 5.100000e-02 -3.725000e-01 \n", - "\n", - " Upper value \n", - "0 4.453536e+09 \n", - "1 4.453536e+09 \n", - "2 4.453536e+09 \n", - "3 4.453536e+09 \n", - "4 4.453536e+09 \n", - "... ... \n", - "20372 7.675000e-01 \n", - "20373 7.675000e-01 \n", - "20374 7.675000e-01 \n", - "20375 7.675000e-01 \n", - "20376 7.675000e-01 \n", - "\n", - "[20377 rows x 6 columns]" - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "renamed=df_joined.set_axis(['Country','Indicator','Year', 'Real value', 'Lower value', 'Upper value'], axis=1, inplace=False)\n", - "renamed" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that we have the table correctly defined, we remove from our dataframe the values that are outside our range, as it means that they are outliers." - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
CountryIndicatorYearReal valueLower valueUpper value
2DZAExports-Commercial services20052.466000e+091.736231e+094.453536e+09
3DZAExports-Commercial services20062.512000e+091.736231e+094.453536e+09
4DZAExports-Commercial services20072.786733e+091.736231e+094.453536e+09
5DZAExports-Commercial services20083.412421e+091.736231e+094.453536e+09
6DZAExports-Commercial services20092.744716e+091.736231e+094.453536e+09
.....................
20371YEMSuicide20195.800000e+005.400000e+006.200000e+00
20373YEMAlcohol per capita20053.400000e-01-3.725000e-017.675000e-01
20374YEMAlcohol per capita20101.800000e-01-3.725000e-017.675000e-01
20375YEMAlcohol per capita20155.500000e-02-3.725000e-017.675000e-01
20376YEMAlcohol per capita20185.100000e-02-3.725000e-017.675000e-01
\n", - "

19847 rows × 6 columns

\n", - "
" - ], - "text/plain": [ - " Country Indicator Year Real value Lower value \\\n", - "2 DZA Exports-Commercial services 2005 2.466000e+09 1.736231e+09 \n", - "3 DZA Exports-Commercial services 2006 2.512000e+09 1.736231e+09 \n", - "4 DZA Exports-Commercial services 2007 2.786733e+09 1.736231e+09 \n", - "5 DZA Exports-Commercial services 2008 3.412421e+09 1.736231e+09 \n", - "6 DZA Exports-Commercial services 2009 2.744716e+09 1.736231e+09 \n", - "... ... ... ... ... ... \n", - "20371 YEM Suicide 2019 5.800000e+00 5.400000e+00 \n", - "20373 YEM Alcohol per capita 2005 3.400000e-01 -3.725000e-01 \n", - "20374 YEM Alcohol per capita 2010 1.800000e-01 -3.725000e-01 \n", - "20375 YEM Alcohol per capita 2015 5.500000e-02 -3.725000e-01 \n", - "20376 YEM Alcohol per capita 2018 5.100000e-02 -3.725000e-01 \n", - "\n", - " Upper value \n", - "2 4.453536e+09 \n", - "3 4.453536e+09 \n", - "4 4.453536e+09 \n", - "5 4.453536e+09 \n", - "6 4.453536e+09 \n", - "... ... \n", - "20371 6.200000e+00 \n", - "20373 7.675000e-01 \n", - "20374 7.675000e-01 \n", - "20375 7.675000e-01 \n", - "20376 7.675000e-01 \n", - "\n", - "[19847 rows x 6 columns]" - ] - }, - "execution_count": 56, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sin_outliers=renamed.loc[~((renamed['Real value']renamed['Upper value']))]\n", - "sin_outliers" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From the data above, we can perceive that our data comes down from 19944 rows to 19424, so 500 were outliers. The next steps are to order and display data better, removing those columns that we just do not need and pivoting the rows and columns. " - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
CountryIndicatorYearReal value
2DZAExports-Commercial services20052.466000e+09
3DZAExports-Commercial services20062.512000e+09
4DZAExports-Commercial services20072.786733e+09
5DZAExports-Commercial services20083.412421e+09
6DZAExports-Commercial services20092.744716e+09
...............
20371YEMSuicide20195.800000e+00
20373YEMAlcohol per capita20053.400000e-01
20374YEMAlcohol per capita20101.800000e-01
20375YEMAlcohol per capita20155.500000e-02
20376YEMAlcohol per capita20185.100000e-02
\n", - "

19847 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " Country Indicator Year Real value\n", - "2 DZA Exports-Commercial services 2005 2.466000e+09\n", - "3 DZA Exports-Commercial services 2006 2.512000e+09\n", - "4 DZA Exports-Commercial services 2007 2.786733e+09\n", - "5 DZA Exports-Commercial services 2008 3.412421e+09\n", - "6 DZA Exports-Commercial services 2009 2.744716e+09\n", - "... ... ... ... ...\n", - "20371 YEM Suicide 2019 5.800000e+00\n", - "20373 YEM Alcohol per capita 2005 3.400000e-01\n", - "20374 YEM Alcohol per capita 2010 1.800000e-01\n", - "20375 YEM Alcohol per capita 2015 5.500000e-02\n", - "20376 YEM Alcohol per capita 2018 5.100000e-02\n", - "\n", - "[19847 rows x 4 columns]" - ] - }, - "execution_count": 57, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_limpio=sin_outliers.drop(['Lower value','Upper value'],axis=1)\n", - "df_limpio" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
IndicatorCountryYearAlcohol per capitaEducation GExpEmployment-agricultureEmployment-industryEmployment-servicesExports-Commercial servicesExports-G&SFertility rate...International taxesLiteracy rateMortality-infantsMortality-pollutionNet migrationNinisR&D GExpRenewable electricitySuicideWorkers high education
0ARE1990NaNNaNNaNNaNNaNNaNNaN4.454...NaNNaN672.0NaNNaNNaNNaN0.0NaNNaN
1ARE1991NaNNaN8.4633.33000258.200001NaNNaN4.253...NaNNaN645.0NaNNaNNaNNaN0.0NaNNaN
2ARE1992NaNNaN8.3733.36000158.279999NaNNaN4.041...NaNNaN618.0NaN368126.0NaNNaN0.0NaNNaN
3ARE1993NaNNaN8.2433.47000158.290001NaNNaN3.827...NaNNaN592.0NaNNaNNaNNaN0.0NaNNaN
4ARE1994NaNNaN8.1333.49000258.380001NaNNaN3.618...NaNNaN568.0NaNNaNNaNNaN0.0NaNNaN
..................................................................
1504ZAF2017NaN18.7192905.2823.34000071.3799971.614806e+101.042884e+112.430...4.993941e+1087.04666932777.0NaN727026.031.0100000.83215NaN25.283.809998
1505ZAF20189.5218.9015905.1623.12999971.7099991.670823e+101.112854e+112.405...5.572291e+10NaN31810.0NaNNaN31.559999NaNNaN24.182.879997
1506ZAF2019NaN19.5962305.2822.30999972.4100041.554886e+101.060698e+112.381...5.522342e+1095.02297230937.0NaNNaN32.459999NaNNaN23.582.019997
1507ZAF2020NaN19.527281NaNNaNNaN8.404204e+099.317915e+102.358...NaNNaN30153.0NaNNaN32.400002NaNNaNNaNNaN
1508ZAF2021NaN18.417240NaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", - "

1509 rows × 24 columns

\n", - "
" - ], - "text/plain": [ - "Indicator Country Year Alcohol per capita Education GExp \\\n", - "0 ARE 1990 NaN NaN \n", - "1 ARE 1991 NaN NaN \n", - "2 ARE 1992 NaN NaN \n", - "3 ARE 1993 NaN NaN \n", - "4 ARE 1994 NaN NaN \n", - "... ... ... ... ... \n", - "1504 ZAF 2017 NaN 18.719290 \n", - "1505 ZAF 2018 9.52 18.901590 \n", - "1506 ZAF 2019 NaN 19.596230 \n", - "1507 ZAF 2020 NaN 19.527281 \n", - "1508 ZAF 2021 NaN 18.417240 \n", - "\n", - "Indicator Employment-agriculture Employment-industry Employment-services \\\n", - "0 NaN NaN NaN \n", - "1 8.46 33.330002 58.200001 \n", - "2 8.37 33.360001 58.279999 \n", - "3 8.24 33.470001 58.290001 \n", - "4 8.13 33.490002 58.380001 \n", - "... ... ... ... \n", - "1504 5.28 23.340000 71.379997 \n", - "1505 5.16 23.129999 71.709999 \n", - "1506 5.28 22.309999 72.410004 \n", - "1507 NaN NaN NaN \n", - "1508 NaN NaN NaN \n", - "\n", - "Indicator Exports-Commercial services Exports-G&S Fertility rate ... \\\n", - "0 NaN NaN 4.454 ... \n", - "1 NaN NaN 4.253 ... \n", - "2 NaN NaN 4.041 ... \n", - "3 NaN NaN 3.827 ... \n", - "4 NaN NaN 3.618 ... \n", - "... ... ... ... ... \n", - "1504 1.614806e+10 1.042884e+11 2.430 ... \n", - "1505 1.670823e+10 1.112854e+11 2.405 ... \n", - "1506 1.554886e+10 1.060698e+11 2.381 ... \n", - "1507 8.404204e+09 9.317915e+10 2.358 ... \n", - "1508 NaN NaN NaN ... \n", - "\n", - "Indicator International taxes Literacy rate Mortality-infants \\\n", - "0 NaN NaN 672.0 \n", - "1 NaN NaN 645.0 \n", - "2 NaN NaN 618.0 \n", - "3 NaN NaN 592.0 \n", - "4 NaN NaN 568.0 \n", - "... ... ... ... \n", - "1504 4.993941e+10 87.046669 32777.0 \n", - "1505 5.572291e+10 NaN 31810.0 \n", - "1506 5.522342e+10 95.022972 30937.0 \n", - "1507 NaN NaN 30153.0 \n", - "1508 NaN NaN NaN \n", - "\n", - "Indicator Mortality-pollution Net migration Ninis R&D GExp \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN 368126.0 NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - "... ... ... ... ... \n", - "1504 NaN 727026.0 31.010000 0.83215 \n", - "1505 NaN NaN 31.559999 NaN \n", - "1506 NaN NaN 32.459999 NaN \n", - "1507 NaN NaN 32.400002 NaN \n", - "1508 NaN NaN NaN NaN \n", - "\n", - "Indicator Renewable electricity Suicide Workers high education \n", - "0 0.0 NaN NaN \n", - "1 0.0 NaN NaN \n", - "2 0.0 NaN NaN \n", - "3 0.0 NaN NaN \n", - "4 0.0 NaN NaN \n", - "... ... ... ... \n", - "1504 NaN 25.2 83.809998 \n", - "1505 NaN 24.1 82.879997 \n", - "1506 NaN 23.5 82.019997 \n", - "1507 NaN NaN NaN \n", - "1508 NaN NaN NaN \n", - "\n", - "[1509 rows x 24 columns]" - ] - }, - "execution_count": 58, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "SilverDataFrame=df_limpio.set_index([\"Country\", \"Year\"]).pivot(columns=\"Indicator\", values=\"Real value\").reset_index()\n", - "SilverDataFrame" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "SilverDataFrame.to_csv(os.getcwd()+'/Data/SilverDataFrame.csv')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "On the other hand, another big stone of normalizations is to nan/null values, which we have in all variables." - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "13351" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "SilverDataFrame.isna().sum().sum()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As we can observe, we have lots of missing data, and as there is no optimal way to fullfill these values, thus, we will test some to arrive to the optimal method for our data set." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First, we need to create some lists so our loops work." - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [], - "source": [ - "df=SilverDataFrame\n", - "europe_list=['DEU','FRA','SWE','GBR','ESP','HRV','POL','GRC','AUT','NLD']\n", - "persian_list=['IRQ','QAT','ARE','SAU','AZE','YEM','YDR','OMN']\n", - "naf_list=['DZA','EGY','LBY','ISR','TUR','MAR']\n", - "saf_list=['SEN','ZAF','LBR','MOZ','CMR','NGA','GHA']\n", - "asia_list=['BGD','IND','VNM','THA','IDN','PHL','KOR']\n", - "latam_list=['MEX','BRA','ARG','PER','VEN','COL','CHL','PAN','CRI']\n", - "two_list=['USA','CHN']\n", - "country_list=europe_list+persian_list+naf_list+saf_list+asia_list+latam_list+two_list\n", - "col_to_scale=['Gender equality','Exports-Commercial services','Renewable electricity','Employment-agriculture','Employment-industry','Employment-services','Exports-G&S','Fertility rate','Foreign investment','GDP','Education GExp','Workers high education','Literacy rate','Mortality-pollution','Net migration','Mortality-infants','Health services use','R&D GExp','Ninis','Suicide','International taxes','Alcohol per capita']\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We are attempting the linear interpolation, which is achieved by geometrically rendering a straight line between two adjacent points on a graph or plane." - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "8519" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dat=df.loc[df.loc[:, 'Country'] == country_list[0]]\n", - "datc=dat.interpolate(method=\"linear\")\n", - "data=datc\n", - "\n", - "for i in range(1,len(country_list)):\n", - " dat=df.loc[df.loc[:, 'Country'] == country_list[i]]\n", - " datc=dat.interpolate(method=\"linear\")\n", - " data=pd.concat((data, datc), axis = 0)\n", - "data.isna().sum().sum()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here we attempt the backward filling. (Filling the previous cell with future values)" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4500" - ] - }, - "execution_count": 62, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dat=df.loc[df.loc[:, 'Country'] == country_list[0]]\n", - "datc=dat.fillna(method='bfill')\n", - "data=datc\n", - "\n", - "for i in range(1,len(country_list)):\n", - " dat=df.loc[df.loc[:, 'Country'] == country_list[i]]\n", - " datc=dat.fillna(method='bfill')\n", - " data=pd.concat((data, datc), axis = 0)\n", - "data.isna().sum().sum()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here we will attempt the forward filling. (Filling the next cell with previous values)" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "8519" - ] - }, - "execution_count": 63, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dat=df.loc[df.loc[:, 'Country'] == country_list[0]]\n", - "datc=dat.fillna(method='ffill')\n", - "data=datc\n", - "\n", - "for i in range(1,len(country_list)):\n", - " dat=df.loc[df.loc[:, 'Country'] == country_list[i]]\n", - " datc=dat.fillna(method='ffill')\n", - " data=pd.concat((data, datc), axis = 0)\n", - "data.isna().sum().sum()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And as none of the methods have worked out correctly, independently, we are going to mix them, to achieve a better result." - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "8519" - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dat=df.loc[df.loc[:, 'Country'] == country_list[0]]\n", - "datc=dat.interpolate(method=\"linear\")\n", - "datc=datc.fillna(method='ffill')\n", - "data=datc\n", - "\n", - "for i in range(1,len(country_list)):\n", - " dat=df.loc[df.loc[:, 'Country'] == country_list[i]]\n", - " datc=dat.interpolate(method=\"linear\")\n", - " datc=datc.fillna(method='ffill')\n", - " data=pd.concat((data, datc), axis = 0)\n", - "data.isna().sum().sum()" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2447" - ] - }, - "execution_count": 65, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dat=df.loc[df.loc[:, 'Country'] == country_list[0]]\n", - "datc=dat.interpolate(method=\"linear\")\n", - "datc=datc.fillna(method='bfill')\n", - "data=datc\n", - "\n", - "for i in range(1,len(country_list)):\n", - " dat=df.loc[df.loc[:, 'Country'] == country_list[i]]\n", - " datc=dat.interpolate(method=\"linear\")\n", - " datc=datc.fillna(method='bfill')\n", - " data=pd.concat((data, datc), axis = 0)\n", - "data.isna().sum().sum()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And finally, mixing the three methods all together." - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2447" - ] - }, - "execution_count": 66, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dat=df.loc[df.loc[:, 'Country'] == country_list[0]]\n", - "datc=dat.interpolate(method=\"linear\")\n", - "datf=datc.fillna(method='bfill')\n", - "datr=datf.fillna(method='ffill')\n", - "data=datr\n", - "\n", - "for i in range(1,len(country_list)):\n", - " dat=df.loc[df.loc[:, 'Country'] == country_list[i]]\n", - " datc=dat.interpolate(method=\"linear\")\n", - " datc=datc.fillna(method='bfill')\n", - " datc=datc.fillna(method='ffill')\n", - " data=pd.concat((data, datc), axis = 0)\n", - "data.isna().sum().sum()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Therefore, the preferred method for the Nan values´ treatment that we are going to develop is a mix, between the linear interpolation and backwards filling. The linear interpolation a form of interpolation, which involves the generation of new values based on an existing set of values. Linear interpolation is achieved by geometrically rendering a straight line between two adjacent points on a graph or plane. Whereas the backwards filling, will help us to arrive to those values which have not been fullfilled with the linear interpolation." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Moreover, we are also going to scale all the values between the max and min of each country for each variable." - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
IndicatorCountryYearAlcohol per capitaEducation GExpEmployment-agricultureEmployment-industryEmployment-servicesExports-Commercial servicesExports-G&SFertility rate...International taxesLiteracy rateMortality-infantsMortality-pollutionNet migrationNinisR&D GExpRenewable electricitySuicideWorkers high education
347DEU19901.000000.4435291.0000001.0000000.0000000.0023860.0000000.636364...NaNNaN1.000000NaN0.9661240.777580.0000000.0000000.9565221.0
348DEU19911.000000.4435291.0000001.0000000.0000000.0000000.0255350.272727...NaNNaN1.000000NaN0.9661240.777580.0000000.0025250.9565221.0
349DEU19921.000000.4435290.9647580.9667930.0343210.0184150.0464000.151515...NaNNaN0.875324NaN0.9661240.777580.0000000.0040250.9565221.0
350DEU19931.000000.4435290.9427310.9070210.0881430.0121820.0109570.121212...NaNNaN0.765220NaN0.8231870.777580.0000000.0058480.9565221.0
351DEU19941.000000.3802200.9030840.8766600.1193450.0185130.0412610.000000...NaNNaN0.670984NaN0.6802500.777580.0000000.0110120.9565221.0
..................................................................
247CHN20160.990020.2464060.0689560.8314610.8677250.8498880.8043160.588235...0.7903080.9774820.042573NaN0.264203NaN0.9744821.0000000.016129NaN
248CHN20170.980040.2120240.0480070.7539330.9174600.8674900.8881690.647059...1.0000000.9887410.030745NaN0.243061NaN0.9844361.0000000.000000NaN
249CHN20180.970060.0000000.0215300.7775280.9421520.9537480.9746990.698529...0.9203041.0000000.019650NaN0.243061NaN1.0000001.0000000.000000NaN
250CHN20190.970060.0000000.0000000.6764051.0000001.0000000.9647300.742647...0.9203041.0000000.009383NaN0.243061NaN1.0000001.0000000.000000NaN
251CHN20200.970060.0000000.0000000.6764051.0000000.9575141.0000000.772059...0.9203041.0000000.000000NaN0.243061NaN1.0000001.0000000.000000NaN
\n", - "

1509 rows × 24 columns

\n", - "
" - ], - "text/plain": [ - "Indicator Country Year Alcohol per capita Education GExp \\\n", - "347 DEU 1990 1.00000 0.443529 \n", - "348 DEU 1991 1.00000 0.443529 \n", - "349 DEU 1992 1.00000 0.443529 \n", - "350 DEU 1993 1.00000 0.443529 \n", - "351 DEU 1994 1.00000 0.380220 \n", - ".. ... ... ... ... \n", - "247 CHN 2016 0.99002 0.246406 \n", - "248 CHN 2017 0.98004 0.212024 \n", - "249 CHN 2018 0.97006 0.000000 \n", - "250 CHN 2019 0.97006 0.000000 \n", - "251 CHN 2020 0.97006 0.000000 \n", - "\n", - "Indicator Employment-agriculture Employment-industry Employment-services \\\n", - "347 1.000000 1.000000 0.000000 \n", - "348 1.000000 1.000000 0.000000 \n", - "349 0.964758 0.966793 0.034321 \n", - "350 0.942731 0.907021 0.088143 \n", - "351 0.903084 0.876660 0.119345 \n", - ".. ... ... ... \n", - "247 0.068956 0.831461 0.867725 \n", - "248 0.048007 0.753933 0.917460 \n", - "249 0.021530 0.777528 0.942152 \n", - "250 0.000000 0.676405 1.000000 \n", - "251 0.000000 0.676405 1.000000 \n", - "\n", - "Indicator Exports-Commercial services Exports-G&S Fertility rate ... \\\n", - "347 0.002386 0.000000 0.636364 ... \n", - "348 0.000000 0.025535 0.272727 ... \n", - "349 0.018415 0.046400 0.151515 ... \n", - "350 0.012182 0.010957 0.121212 ... \n", - "351 0.018513 0.041261 0.000000 ... \n", - ".. ... ... ... ... \n", - "247 0.849888 0.804316 0.588235 ... \n", - "248 0.867490 0.888169 0.647059 ... \n", - "249 0.953748 0.974699 0.698529 ... \n", - "250 1.000000 0.964730 0.742647 ... \n", - "251 0.957514 1.000000 0.772059 ... \n", - "\n", - "Indicator International taxes Literacy rate Mortality-infants \\\n", - "347 NaN NaN 1.000000 \n", - "348 NaN NaN 1.000000 \n", - "349 NaN NaN 0.875324 \n", - "350 NaN NaN 0.765220 \n", - "351 NaN NaN 0.670984 \n", - ".. ... ... ... \n", - "247 0.790308 0.977482 0.042573 \n", - "248 1.000000 0.988741 0.030745 \n", - "249 0.920304 1.000000 0.019650 \n", - "250 0.920304 1.000000 0.009383 \n", - "251 0.920304 1.000000 0.000000 \n", - "\n", - "Indicator Mortality-pollution Net migration Ninis R&D GExp \\\n", - "347 NaN 0.966124 0.77758 0.000000 \n", - "348 NaN 0.966124 0.77758 0.000000 \n", - "349 NaN 0.966124 0.77758 0.000000 \n", - "350 NaN 0.823187 0.77758 0.000000 \n", - "351 NaN 0.680250 0.77758 0.000000 \n", - ".. ... ... ... ... \n", - "247 NaN 0.264203 NaN 0.974482 \n", - "248 NaN 0.243061 NaN 0.984436 \n", - "249 NaN 0.243061 NaN 1.000000 \n", - "250 NaN 0.243061 NaN 1.000000 \n", - "251 NaN 0.243061 NaN 1.000000 \n", - "\n", - "Indicator Renewable electricity Suicide Workers high education \n", - "347 0.000000 0.956522 1.0 \n", - "348 0.002525 0.956522 1.0 \n", - "349 0.004025 0.956522 1.0 \n", - "350 0.005848 0.956522 1.0 \n", - "351 0.011012 0.956522 1.0 \n", - ".. ... ... ... \n", - "247 1.000000 0.016129 NaN \n", - "248 1.000000 0.000000 NaN \n", - "249 1.000000 0.000000 NaN \n", - "250 1.000000 0.000000 NaN \n", - "251 1.000000 0.000000 NaN \n", - "\n", - "[1509 rows x 24 columns]" - ] - }, - "execution_count": 67, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dat=df.loc[df.loc[:, 'Country'] == country_list[0]]\n", - "datc=dat.interpolate(method=\"linear\")\n", - "datf=datc.fillna(method='bfill')\n", - "datr[col_to_scale]=(datr[col_to_scale]-datr[col_to_scale].min())/(datr[col_to_scale].max()-datr[col_to_scale].min())\n", - "data=datr\n", - "\n", - "for i in range(1,len(country_list)):\n", - " dat=df.loc[df.loc[:, 'Country'] == country_list[i]]\n", - " datc=dat.interpolate(method=\"linear\")\n", - " datc=datc.fillna(method='bfill')\n", - " datc[col_to_scale]=(datc[col_to_scale]-datc[col_to_scale].min())/(datc[col_to_scale].max()-datc[col_to_scale].min())\n", - " data=pd.concat((data, datc), axis = 0)\n", - "data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we will drop the columns which have over 1000 missing values, because the absence of data creates an unreliable source." - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Gender equality\n", - "Mortality-pollution\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
IndicatorCountryYearAlcohol per capitaEducation GExpEmployment-agricultureEmployment-industryEmployment-servicesExports-Commercial servicesExports-G&SFertility rate...Health services useInternational taxesLiteracy rateMortality-infantsNet migrationNinisR&D GExpRenewable electricitySuicideWorkers high education
347DEU19901.000000.4435291.0000001.0000000.0000000.0023860.0000000.636364...0.000000NaNNaN1.0000000.9661240.777580.0000000.0000000.9565221.0
348DEU19911.000000.4435291.0000001.0000000.0000000.0000000.0255350.272727...0.000000NaNNaN1.0000000.9661240.777580.0000000.0025250.9565221.0
349DEU19921.000000.4435290.9647580.9667930.0343210.0184150.0464000.151515...0.000000NaNNaN0.8753240.9661240.777580.0000000.0040250.9565221.0
350DEU19931.000000.4435290.9427310.9070210.0881430.0121820.0109570.121212...0.000000NaNNaN0.7652200.8231870.777580.0000000.0058480.9565221.0
351DEU19941.000000.3802200.9030840.8766600.1193450.0185130.0412610.000000...0.000000NaNNaN0.6709840.6802500.777580.0000000.0110120.9565221.0
..................................................................
247CHN20160.990020.2464060.0689560.8314610.8677250.8498880.8043160.588235...0.8222410.7903080.9774820.0425730.264203NaN0.9744821.0000000.016129NaN
248CHN20170.980040.2120240.0480070.7539330.9174600.8674900.8881690.647059...0.8680641.0000000.9887410.0307450.243061NaN0.9844361.0000000.000000NaN
249CHN20180.970060.0000000.0215300.7775280.9421520.9537480.9746990.698529...0.9129450.9203041.0000000.0196500.243061NaN1.0000001.0000000.000000NaN
250CHN20190.970060.0000000.0000000.6764051.0000001.0000000.9647300.742647...0.9569100.9203041.0000000.0093830.243061NaN1.0000001.0000000.000000NaN
251CHN20200.970060.0000000.0000000.6764051.0000000.9575141.0000000.772059...1.0000000.9203041.0000000.0000000.243061NaN1.0000001.0000000.000000NaN
\n", - "

1509 rows × 22 columns

\n", - "
" - ], - "text/plain": [ - "Indicator Country Year Alcohol per capita Education GExp \\\n", - "347 DEU 1990 1.00000 0.443529 \n", - "348 DEU 1991 1.00000 0.443529 \n", - "349 DEU 1992 1.00000 0.443529 \n", - "350 DEU 1993 1.00000 0.443529 \n", - "351 DEU 1994 1.00000 0.380220 \n", - ".. ... ... ... ... \n", - "247 CHN 2016 0.99002 0.246406 \n", - "248 CHN 2017 0.98004 0.212024 \n", - "249 CHN 2018 0.97006 0.000000 \n", - "250 CHN 2019 0.97006 0.000000 \n", - "251 CHN 2020 0.97006 0.000000 \n", - "\n", - "Indicator Employment-agriculture Employment-industry Employment-services \\\n", - "347 1.000000 1.000000 0.000000 \n", - "348 1.000000 1.000000 0.000000 \n", - "349 0.964758 0.966793 0.034321 \n", - "350 0.942731 0.907021 0.088143 \n", - "351 0.903084 0.876660 0.119345 \n", - ".. ... ... ... \n", - "247 0.068956 0.831461 0.867725 \n", - "248 0.048007 0.753933 0.917460 \n", - "249 0.021530 0.777528 0.942152 \n", - "250 0.000000 0.676405 1.000000 \n", - "251 0.000000 0.676405 1.000000 \n", - "\n", - "Indicator Exports-Commercial services Exports-G&S Fertility rate ... \\\n", - "347 0.002386 0.000000 0.636364 ... \n", - "348 0.000000 0.025535 0.272727 ... \n", - "349 0.018415 0.046400 0.151515 ... \n", - "350 0.012182 0.010957 0.121212 ... \n", - "351 0.018513 0.041261 0.000000 ... \n", - ".. ... ... ... ... \n", - "247 0.849888 0.804316 0.588235 ... \n", - "248 0.867490 0.888169 0.647059 ... \n", - "249 0.953748 0.974699 0.698529 ... \n", - "250 1.000000 0.964730 0.742647 ... \n", - "251 0.957514 1.000000 0.772059 ... \n", - "\n", - "Indicator Health services use International taxes Literacy rate \\\n", - "347 0.000000 NaN NaN \n", - "348 0.000000 NaN NaN \n", - "349 0.000000 NaN NaN \n", - "350 0.000000 NaN NaN \n", - "351 0.000000 NaN NaN \n", - ".. ... ... ... \n", - "247 0.822241 0.790308 0.977482 \n", - "248 0.868064 1.000000 0.988741 \n", - "249 0.912945 0.920304 1.000000 \n", - "250 0.956910 0.920304 1.000000 \n", - "251 1.000000 0.920304 1.000000 \n", - "\n", - "Indicator Mortality-infants Net migration Ninis R&D GExp \\\n", - "347 1.000000 0.966124 0.77758 0.000000 \n", - "348 1.000000 0.966124 0.77758 0.000000 \n", - "349 0.875324 0.966124 0.77758 0.000000 \n", - "350 0.765220 0.823187 0.77758 0.000000 \n", - "351 0.670984 0.680250 0.77758 0.000000 \n", - ".. ... ... ... ... \n", - "247 0.042573 0.264203 NaN 0.974482 \n", - "248 0.030745 0.243061 NaN 0.984436 \n", - "249 0.019650 0.243061 NaN 1.000000 \n", - "250 0.009383 0.243061 NaN 1.000000 \n", - "251 0.000000 0.243061 NaN 1.000000 \n", - "\n", - "Indicator Renewable electricity Suicide Workers high education \n", - "347 0.000000 0.956522 1.0 \n", - "348 0.002525 0.956522 1.0 \n", - "349 0.004025 0.956522 1.0 \n", - "350 0.005848 0.956522 1.0 \n", - "351 0.011012 0.956522 1.0 \n", - ".. ... ... ... \n", - "247 1.000000 0.016129 NaN \n", - "248 1.000000 0.000000 NaN \n", - "249 1.000000 0.000000 NaN \n", - "250 1.000000 0.000000 NaN \n", - "251 1.000000 0.000000 NaN \n", - "\n", - "[1509 rows x 22 columns]" - ] - }, - "execution_count": 68, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "for i in range(0, len(col_to_scale)):\n", - " if data[col_to_scale[i]].isna().sum()>1000:\n", - " del(data[col_to_scale[i]])\n", - " print(col_to_scale[i])\n", - "data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As a result we have dropped the *Gender equality* and *Mortality-pollution* variables." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the next part of analyzing this data, we think it is gonna be interesting to have it classify by the categories of the Country groups defined before, to which we call \"Continent\". This category is useful as it groups the nations with similar economies or geographical proximity, so we can extract common conclusions from them." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We create a dictionary with the regions and the countries included in each one. Where we will relate the countries and regions so then we can apply the .map function and arrive to the final dataframe." - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'DEU': 'Europe', 'FRA': 'Europe', 'SWE': 'Europe', 'GBR': 'Europe', 'ESP': 'Europe', 'HRV': 'Europe', 'POL': 'Europe', 'GRC': 'Europe', 'AUT': 'Europe', 'NLD': 'Europe', 'IRQ': 'Persian Gulf', 'QAT': 'Persian Gulf', 'ARE': 'Persian Gulf', 'SAU': 'Persian Gulf', 'AZE': 'Persian Gulf', 'YEM': 'Persian Gulf', 'YDR': 'Persian Gulf', 'OMN': 'Persian Gulf', 'DZA': 'North Africa', 'EGY': 'North Africa', 'LBY': 'North Africa', 'ISR': 'North Africa', 'TUR': 'North Africa', 'MAR': 'North Africa', 'SEN': 'South Africa', 'ZAF': 'South Africa', 'LBR': 'South Africa', 'MOZ': 'South Africa', 'CMR': 'South Africa', 'NGA': 'South Africa', 'GHA': 'South Africa', 'BGD': 'Asia', 'IND': 'Asia', 'VNM': 'Asia', 'THA': 'Asia', 'IDN': 'Asia', 'PHL': 'Asia', 'KOR': 'Asia', 'MEX': 'Latam', 'BRA': 'Latam', 'ARG': 'Latam', 'PER': 'Latam', 'VEN': 'Latam', 'COL': 'Latam', 'CHL': 'Latam', 'PAN': 'Latam', 'CRI': 'Latam', 'USA': 'Pair', 'CHN': 'Pair'}\n" - ] - } - ], - "source": [ - "countries_by_region = {\n", - " \"Europe\": ('DEU','FRA','SWE','GBR','ESP','HRV','POL','GRC','AUT','NLD'),\n", - " 'Persian Gulf': ('IRQ','QAT','ARE','SAU','AZE','YEM','YDR','OMN'),\n", - " 'North Africa':('DZA','EGY','LBY','ISR','TUR','MAR'),\n", - " 'South Africa':('SEN','ZAF','LBR','MOZ','CMR','NGA','GHA'),\n", - " 'Asia':('BGD','IND','VNM','THA','IDN','PHL','KOR'),\n", - " 'Latam':('MEX','BRA','ARG','PER','VEN','COL','CHL','PAN','CRI'),\n", - " 'Pair':('USA','CHN')\n", - " }\n", - "\n", - "all_countries = {}\n", - "for region in countries_by_region.keys():\n", - " for country in countries_by_region[region]:\n", - " all_countries[country] = region\n", - "\n", - "print(all_countries)" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
IndicatorCountryYearAlcohol per capitaEducation GExpEmployment-agricultureEmployment-industryEmployment-servicesExports-Commercial servicesExports-G&SFertility rate...International taxesLiteracy rateMortality-infantsNet migrationNinisR&D GExpRenewable electricitySuicideWorkers high educationContinent
347DEU19901.000000.4435291.0000001.0000000.0000000.0023860.0000000.636364...NaNNaN1.0000000.9661240.777580.0000000.0000000.9565221.0Europe
348DEU19911.000000.4435291.0000001.0000000.0000000.0000000.0255350.272727...NaNNaN1.0000000.9661240.777580.0000000.0025250.9565221.0Europe
349DEU19921.000000.4435290.9647580.9667930.0343210.0184150.0464000.151515...NaNNaN0.8753240.9661240.777580.0000000.0040250.9565221.0Europe
350DEU19931.000000.4435290.9427310.9070210.0881430.0121820.0109570.121212...NaNNaN0.7652200.8231870.777580.0000000.0058480.9565221.0Europe
351DEU19941.000000.3802200.9030840.8766600.1193450.0185130.0412610.000000...NaNNaN0.6709840.6802500.777580.0000000.0110120.9565221.0Europe
..................................................................
247CHN20160.990020.2464060.0689560.8314610.8677250.8498880.8043160.588235...0.7903080.9774820.0425730.264203NaN0.9744821.0000000.016129NaNPair
248CHN20170.980040.2120240.0480070.7539330.9174600.8674900.8881690.647059...1.0000000.9887410.0307450.243061NaN0.9844361.0000000.000000NaNPair
249CHN20180.970060.0000000.0215300.7775280.9421520.9537480.9746990.698529...0.9203041.0000000.0196500.243061NaN1.0000001.0000000.000000NaNPair
250CHN20190.970060.0000000.0000000.6764051.0000001.0000000.9647300.742647...0.9203041.0000000.0093830.243061NaN1.0000001.0000000.000000NaNPair
251CHN20200.970060.0000000.0000000.6764051.0000000.9575141.0000000.772059...0.9203041.0000000.0000000.243061NaN1.0000001.0000000.000000NaNPair
\n", - "

1509 rows × 23 columns

\n", - "
" - ], - "text/plain": [ - "Indicator Country Year Alcohol per capita Education GExp \\\n", - "347 DEU 1990 1.00000 0.443529 \n", - "348 DEU 1991 1.00000 0.443529 \n", - "349 DEU 1992 1.00000 0.443529 \n", - "350 DEU 1993 1.00000 0.443529 \n", - "351 DEU 1994 1.00000 0.380220 \n", - ".. ... ... ... ... \n", - "247 CHN 2016 0.99002 0.246406 \n", - "248 CHN 2017 0.98004 0.212024 \n", - "249 CHN 2018 0.97006 0.000000 \n", - "250 CHN 2019 0.97006 0.000000 \n", - "251 CHN 2020 0.97006 0.000000 \n", - "\n", - "Indicator Employment-agriculture Employment-industry Employment-services \\\n", - "347 1.000000 1.000000 0.000000 \n", - "348 1.000000 1.000000 0.000000 \n", - "349 0.964758 0.966793 0.034321 \n", - "350 0.942731 0.907021 0.088143 \n", - "351 0.903084 0.876660 0.119345 \n", - ".. ... ... ... \n", - "247 0.068956 0.831461 0.867725 \n", - "248 0.048007 0.753933 0.917460 \n", - "249 0.021530 0.777528 0.942152 \n", - "250 0.000000 0.676405 1.000000 \n", - "251 0.000000 0.676405 1.000000 \n", - "\n", - "Indicator Exports-Commercial services Exports-G&S Fertility rate ... \\\n", - "347 0.002386 0.000000 0.636364 ... \n", - "348 0.000000 0.025535 0.272727 ... \n", - "349 0.018415 0.046400 0.151515 ... \n", - "350 0.012182 0.010957 0.121212 ... \n", - "351 0.018513 0.041261 0.000000 ... \n", - ".. ... ... ... ... \n", - "247 0.849888 0.804316 0.588235 ... \n", - "248 0.867490 0.888169 0.647059 ... \n", - "249 0.953748 0.974699 0.698529 ... \n", - "250 1.000000 0.964730 0.742647 ... \n", - "251 0.957514 1.000000 0.772059 ... \n", - "\n", - "Indicator International taxes Literacy rate Mortality-infants \\\n", - "347 NaN NaN 1.000000 \n", - "348 NaN NaN 1.000000 \n", - "349 NaN NaN 0.875324 \n", - "350 NaN NaN 0.765220 \n", - "351 NaN NaN 0.670984 \n", - ".. ... ... ... \n", - "247 0.790308 0.977482 0.042573 \n", - "248 1.000000 0.988741 0.030745 \n", - "249 0.920304 1.000000 0.019650 \n", - "250 0.920304 1.000000 0.009383 \n", - "251 0.920304 1.000000 0.000000 \n", - "\n", - "Indicator Net migration Ninis R&D GExp Renewable electricity Suicide \\\n", - "347 0.966124 0.77758 0.000000 0.000000 0.956522 \n", - "348 0.966124 0.77758 0.000000 0.002525 0.956522 \n", - "349 0.966124 0.77758 0.000000 0.004025 0.956522 \n", - "350 0.823187 0.77758 0.000000 0.005848 0.956522 \n", - "351 0.680250 0.77758 0.000000 0.011012 0.956522 \n", - ".. ... ... ... ... ... \n", - "247 0.264203 NaN 0.974482 1.000000 0.016129 \n", - "248 0.243061 NaN 0.984436 1.000000 0.000000 \n", - "249 0.243061 NaN 1.000000 1.000000 0.000000 \n", - "250 0.243061 NaN 1.000000 1.000000 0.000000 \n", - "251 0.243061 NaN 1.000000 1.000000 0.000000 \n", - "\n", - "Indicator Workers high education Continent \n", - "347 1.0 Europe \n", - "348 1.0 Europe \n", - "349 1.0 Europe \n", - "350 1.0 Europe \n", - "351 1.0 Europe \n", - ".. ... ... \n", - "247 NaN Pair \n", - "248 NaN Pair \n", - "249 NaN Pair \n", - "250 NaN Pair \n", - "251 NaN Pair \n", - "\n", - "[1509 rows x 23 columns]" - ] - }, - "execution_count": 70, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data['Continent']=data['Country'].map(all_countries)\n", - "Goldendataframe=data\n", - "Goldendataframe" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With that all, we export our dataframe all-in-one and by the continent category." - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [], - "source": [ - "Goldendataframe.to_csv(os.getcwd()+'/Data/GoldenDataFrame.csv')" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [], - "source": [ - "for region, data in Goldendataframe.groupby('Continent'):\n", - " data.to_csv(os.getcwd()+'/Data/{}.csv'.format(region))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3.10.4 ('.venv': poetry)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.4" - }, - "vscode": { - "interpreter": { - "hash": "292912297167048338b5d1136ec8c661b8a2f1d3fcecd6650d637809a967c218" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/WDI-Data visualization (Case).ipynb b/WDI-Data visualization (Case).ipynb deleted file mode 100644 index f13019d..0000000 --- a/WDI-Data visualization (Case).ipynb +++ /dev/null @@ -1,23619 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Correlation matrix and visualization of variables and GDP" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### This is the master notebook, please copy and create a new one for each group." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from scipy import stats\n", - "from scipy.stats import shapiro\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import warnings\n", - "warnings.filterwarnings(\"ignore\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0CountryYearAlcohol per capitaEducation GExpEmployment-agricultureEmployment-industryEmployment-servicesExports-Commercial servicesExports-G&S...Literacy rateMortality-infantsMortality-pollutionNet migrationNinisR&D GExpRenewable electricitySuicideWorkers high educationContinent
0880MEX19900.9679490.0000001.0000000.4684380.0000000.0000000.000000...0.0000001.000000NaN0.1392140.8144330.0000000.0000000.000000.497584Latam
1881MEX19910.9679490.0000001.0000000.4684380.0000000.0866270.005844...0.0380820.941673NaN0.1392140.8144330.0000000.0000000.000000.497584Latam
2882MEX19920.9679490.0000000.9802560.4285720.0330300.1593430.014734...0.0761650.884159NaN0.1392140.8144330.0000000.2779810.000000.497584Latam
3883MEX19930.9679490.3582720.9593500.3787380.0706150.2206280.028455...0.1142470.828258NaN0.1113710.8144330.0000000.3636880.000000.497584Latam
4884MEX19940.9679490.7165440.9303140.3554820.1070620.3838410.049046...0.1523290.773986NaN0.0835290.8144330.0000000.2841840.000000.497584Latam
..................................................................
246342CRI20160.0464140.7149230.2887500.2154470.7512600.8131670.828978...0.9563920.109116NaN0.0153660.7790700.6215101.0000000.781250.108000Latam
247343CRI20170.0928270.8574610.3350000.1991870.7394960.8190920.901126...0.9781960.098066NaN0.0192070.6465120.5698951.0000000.281250.150666Latam
248344CRI20180.1392411.0000000.3125000.3231710.6812320.9382190.963286...1.0000000.078729NaN0.0192070.3953490.3807151.0000000.625000.117333Latam
249345CRI20190.1392410.8356350.2587500.2347560.7535011.0000001.000000...1.0000000.046961NaN0.0192070.1348840.3807151.0000000.906250.653333Latam
250346CRI20200.1392410.5133040.2587500.2347560.7535010.7589530.884100...1.0000000.000000NaN0.0192070.6604650.3807151.0000000.906250.417333Latam
\n", - "

251 rows × 26 columns

\n", - "
" - ], - "text/plain": [ - " Unnamed: 0 Country Year Alcohol per capita Education GExp \\\n", - "0 880 MEX 1990 0.967949 0.000000 \n", - "1 881 MEX 1991 0.967949 0.000000 \n", - "2 882 MEX 1992 0.967949 0.000000 \n", - "3 883 MEX 1993 0.967949 0.358272 \n", - "4 884 MEX 1994 0.967949 0.716544 \n", - ".. ... ... ... ... ... \n", - "246 342 CRI 2016 0.046414 0.714923 \n", - "247 343 CRI 2017 0.092827 0.857461 \n", - "248 344 CRI 2018 0.139241 1.000000 \n", - "249 345 CRI 2019 0.139241 0.835635 \n", - "250 346 CRI 2020 0.139241 0.513304 \n", - "\n", - " Employment-agriculture Employment-industry Employment-services \\\n", - "0 1.000000 0.468438 0.000000 \n", - "1 1.000000 0.468438 0.000000 \n", - "2 0.980256 0.428572 0.033030 \n", - "3 0.959350 0.378738 0.070615 \n", - "4 0.930314 0.355482 0.107062 \n", - ".. ... ... ... \n", - "246 0.288750 0.215447 0.751260 \n", - "247 0.335000 0.199187 0.739496 \n", - "248 0.312500 0.323171 0.681232 \n", - "249 0.258750 0.234756 0.753501 \n", - "250 0.258750 0.234756 0.753501 \n", - "\n", - " Exports-Commercial services Exports-G&S ... Literacy rate \\\n", - "0 0.000000 0.000000 ... 0.000000 \n", - "1 0.086627 0.005844 ... 0.038082 \n", - "2 0.159343 0.014734 ... 0.076165 \n", - "3 0.220628 0.028455 ... 0.114247 \n", - "4 0.383841 0.049046 ... 0.152329 \n", - ".. ... ... ... ... \n", - "246 0.813167 0.828978 ... 0.956392 \n", - "247 0.819092 0.901126 ... 0.978196 \n", - "248 0.938219 0.963286 ... 1.000000 \n", - "249 1.000000 1.000000 ... 1.000000 \n", - "250 0.758953 0.884100 ... 1.000000 \n", - "\n", - " Mortality-infants Mortality-pollution Net migration Ninis \\\n", - "0 1.000000 NaN 0.139214 0.814433 \n", - "1 0.941673 NaN 0.139214 0.814433 \n", - "2 0.884159 NaN 0.139214 0.814433 \n", - "3 0.828258 NaN 0.111371 0.814433 \n", - "4 0.773986 NaN 0.083529 0.814433 \n", - ".. ... ... ... ... \n", - "246 0.109116 NaN 0.015366 0.779070 \n", - "247 0.098066 NaN 0.019207 0.646512 \n", - "248 0.078729 NaN 0.019207 0.395349 \n", - "249 0.046961 NaN 0.019207 0.134884 \n", - "250 0.000000 NaN 0.019207 0.660465 \n", - "\n", - " R&D GExp Renewable electricity Suicide Workers high education \\\n", - "0 0.000000 0.000000 0.00000 0.497584 \n", - "1 0.000000 0.000000 0.00000 0.497584 \n", - "2 0.000000 0.277981 0.00000 0.497584 \n", - "3 0.000000 0.363688 0.00000 0.497584 \n", - "4 0.000000 0.284184 0.00000 0.497584 \n", - ".. ... ... ... ... \n", - "246 0.621510 1.000000 0.78125 0.108000 \n", - "247 0.569895 1.000000 0.28125 0.150666 \n", - "248 0.380715 1.000000 0.62500 0.117333 \n", - "249 0.380715 1.000000 0.90625 0.653333 \n", - "250 0.380715 1.000000 0.90625 0.417333 \n", - "\n", - " Continent \n", - "0 Latam \n", - "1 Latam \n", - "2 Latam \n", - "3 Latam \n", - "4 Latam \n", - ".. ... \n", - "246 Latam \n", - "247 Latam \n", - "248 Latam \n", - "249 Latam \n", - "250 Latam \n", - "\n", - "[251 rows x 26 columns]" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df= pd.read_csv (os.getcwd()+'\\\\Data'+'\\\\Latam.csv')\n", - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Visualization" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "STEP 0: Line graphs by country to anticipate which correlations are we looking for." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: plotly in c:\\users\\mferna38\\documents\\github\\python-data-driven-decisions\\.venv\\lib\\site-packages (5.9.0)\n", - "Requirement already satisfied: tenacity>=6.2.0 in c:\\users\\mferna38\\documents\\github\\python-data-driven-decisions\\.venv\\lib\\site-packages (from plotly) (8.0.1)\n", - "Note: you may need to restart the kernel to use updated packages.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING: You are using pip version 22.0.3; however, version 22.1.2 is available.\n", - "You should consider upgrading via the 'c:\\Users\\mferna38\\Documents\\GitHub\\python-data-driven-decisions\\.venv\\Scripts\\python.exe -m pip install --upgrade pip' command.\n" - ] - } - ], - "source": [ - "pip install plotly" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import plotly.express as px" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "myvariables=['Alcohol per capita',\n", - " 'Education GExp',\n", - " 'Employment-agriculture',\n", - " 'Employment-industry',\n", - " 'Employment-services',\n", - " 'Exports-Commercial services',\n", - " 'Exports-G&S',\n", - " 'Fertility rate',\n", - " 'Foreign investment',\n", - " 'GDP',\n", - " 'Health services use',\n", - " 'International taxes',\n", - " 'Literacy rate',\n", - " 'Mortality-infants',\n", - " 'Net migration',\n", - " 'Ninis',\n", - " 'R&D GExp',\n", - " 'Renewable electricity',\n", - " 'Suicide',\n", - " 'Workers high education']\n", - "latam_list=['MEX','BRA','ARG','PER','VEN','COL','CHL','PAN','CRI']" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "variable=Alcohol per capita
Year=%{x}
value=%{y}", - "legendgroup": "Alcohol per capita", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Alcohol per capita", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.9679487179487176, - 0.9679487179487176, - 0.9679487179487176, - 0.9679487179487176, - 0.9679487179487176, - 0.9679487179487176, - 0.9679487179487176, - 0.9679487179487176, - 0.9679487179487176, - 0.9679487179487176, - 0.9679487179487176, - 0.9743589743589738, - 0.9807692307692306, - 0.9871794871794868, - 0.9935897435897436, - 1, - 0.837179487179487, - 0.6743589743589744, - 0.5115384615384614, - 0.3487179487179489, - 0.1858974358974358, - 0.1487179487179488, - 0.1115384615384617, - 0.0743589743589741, - 0.037179487179487, - 0, - 0.0170940170940169, - 0.0341880341880344, - 0.0512820512820513, - 0.0512820512820513, - 0.0512820512820513 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Education GExp
Year=%{x}
value=%{y}", - "legendgroup": "Education GExp", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Education GExp", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0.3582720653692154, - 0.7165441307384308, - 1, - 0.7117945669428033, - 0.4235891338856066, - 0.1353837008284099, - 0.1770807500866098, - 0.5041692083084717, - 0.6125444274408746, - 0.7056827923250815, - 0.8172498873893793, - 0.7709326061728253, - 0.754308815898354, - 0.6347079314122802, - 0.5310860799530732, - 0.2531088510208198, - 0.3954772107053381, - 0.3929810217151736, - 0.3684320638561136, - 0.3314450603321424, - 0.2005728639616018, - 0.4110796598530448, - 0.4346579949528822, - 0.3150626049566439, - 0.274951138664332, - 0.1642162474811187, - 0.1642162474811187, - 0.1642162474811187 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-agriculture
Year=%{x}
value=%{y}", - "legendgroup": "Employment-agriculture", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-agriculture", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 1, - 0.9802555093794516, - 0.9593495520721678, - 0.9303135494847312, - 0.9210220375178308, - 0.8815330562767466, - 0.8443670084091689, - 0.7955865152011959, - 0.6840883715984513, - 0.5725900064685914, - 0.5783971183752371, - 0.5063879560135774, - 0.4285714602181559, - 0.351916431109494, - 0.2787456912975286, - 0.2055749514855632, - 0.1521487022941343, - 0.1463414796239423, - 0.154471635667641, - 0.1672474369312263, - 0.1405342569537389, - 0.1440186570139932, - 0.1358885009702945, - 0.1498258796841968, - 0.1103368984431124, - 0.0720093838887755, - 0.0743322064987246, - 0.0383276253178945, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-industry
Year=%{x}
value=%{y}", - "legendgroup": "Employment-industry", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-industry", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.4684384518920473, - 0.4684384518920473, - 0.4285717001445311, - 0.3787379436248758, - 0.355481599156456, - 0.2524917511930344, - 0.289036801687088, - 0.275747461990838, - 0.282392131838963, - 0.631229061147327, - 1, - 0.6710964465654277, - 0.631229061147327, - 0.6212626900457393, - 0.6644517767173027, - 0.6744187814894737, - 0.7076414970594481, - 0.7109638319835272, - 0.504983502386102, - 0.0797341371655838, - 0.1129568527355913, - 0.0797341371655838, - 0, - 0.0830564720896628, - 0.2491694162689885, - 0.3654486039286258, - 0.5614619287538811, - 0.6478407357675899, - 0.6877074875151074, - 0.495016497613898, - 0.495016497613898 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-services
Year=%{x}
value=%{y}", - "legendgroup": "Employment-services", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-services", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0.0330297072720313, - 0.070615326128276, - 0.1070617498506438, - 0.1514808016075622, - 0.1776766415032849, - 0.2198177374680966, - 0.2642367892250037, - 0.2539862053983578, - 0.238040949329281, - 0.3439635040460593, - 0.4282461304513177, - 0.5091116059305926, - 0.568337153098358, - 0.6366740889588924, - 0.6970388312605226, - 0.7471525552598728, - 0.8257400749470523, - 0.9635535762776322, - 0.93849649704014, - 0.9772208765546144, - 1, - 0.97949883234671, - 0.9088835062184338, - 0.907744745560204, - 0.878132189214144, - 0.8462412426003433, - 0.8678816053874989, - 0.9715262043121706, - 0.9715262043121706 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Exports-Commercial services
Year=%{x}
value=%{y}", - "legendgroup": "Exports-Commercial services", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Exports-Commercial services", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0.08662701404483, - 0.1593425718411413, - 0.2206281763954265, - 0.3838411409560882, - 0.2808820772754972, - 0.4212222014576484, - 0.638875582127716, - 0.0422158825968183, - 0.0476251681262559, - 0.1892771139825623, - 0.1143181981354825, - 0.1132107607723345, - 0.1145098620583921, - 0.2149308309367809, - 0.3702051926013035, - 0.3868124906257417, - 0.5001464420272795, - 0.530692812044831, - 0.3173555721931074, - 0.3467133367108028, - 0.3712137505450058, - 0.4128149324371828, - 0.540764793522152, - 0.7718909759814483, - 0.8993167356605577, - 1, - 0.8643491059134027, - 0.7286982118268055, - 0.5930473177402081, - 0.4573964236536109 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Exports-G&S
Year=%{x}
value=%{y}", - "legendgroup": "Exports-G&S", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Exports-G&S", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0.0058436308039807, - 0.0147335398292416, - 0.0284553967115377, - 0.0490456651898613, - 0.0858088463647804, - 0.1306842934774009, - 0.1642316351353116, - 0.1816348641674885, - 0.2230042539788042, - 0.2951016413577452, - 0.2763232494166335, - 0.282200298972682, - 0.2901761650115127, - 0.3452897072677354, - 0.4084847891147924, - 0.4903576114342043, - 0.5427412915139083, - 0.5826290521112374, - 0.4405270350457708, - 0.5976301926084505, - 0.7153259657203032, - 0.7629816288458747, - 0.7887413419764794, - 0.834417991891657, - 0.8013871537019135, - 0.7899209919392279, - 0.872944714457518, - 0.9710310948522451, - 1, - 0.8618669264310127 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Fertility rate
Year=%{x}
value=%{y}", - "legendgroup": "Fertility rate", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Fertility rate", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 0.9273903666427032, - 0.8583752695902228, - 0.7929547088425591, - 0.7318475916606756, - 0.6750539180445719, - 0.6232925952552121, - 0.5758447160316317, - 0.5334291876347951, - 0.4938892882818115, - 0.4579439252336448, - 0.424155283968368, - 0.3910855499640546, - 0.3594536304816678, - 0.3285406182602443, - 0.2990654205607476, - 0.2710280373831774, - 0.2458662832494605, - 0.2242990654205606, - 0.2048885693745504, - 0.1876347951114303, - 0.1710999281092739, - 0.154565061107117, - 0.137311286843997, - 0.1179007907979868, - 0.0977713874910134, - 0.0769230769230767, - 0.05607476635514, - 0.0359453630481666, - 0.01725377426312, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Foreign investment
Year=%{x}
value=%{y}", - "legendgroup": "Foreign investment", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Foreign investment", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.9041158605792132, - 0.8403064602042396, - 0.8513711541602382, - 0.8514910966421462, - 0.6540807642320714, - 0.6974462684220576, - 0.7076620694623535, - 0.5983884713202111, - 0.6005784843653903, - 0.5650671535078673, - 0.4318937687736167, - 0.2137850071791646, - 0.2885011645183933, - 0.4742405015226865, - 0.3688681063392376, - 0.397054101091838, - 0.5193528989347622, - 0.3000722511351639, - 0.1106732946114936, - 0.7434095175904792, - 0.6042796794872998, - 0.6151599223563174, - 1, - 0, - 0.2928907024373799, - 0.2381054878585633, - 0.0531440208188366, - 0.074707125040643, - 0.2160980386012144, - 0.2745649815771557, - 0.2337283061741779 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=GDP
Year=%{x}
value=%{y}", - "legendgroup": "GDP", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GDP", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0.0492261680627736, - 0.0966741745421443, - 0.2271919437404439, - 0.2528794820694166, - 0.0937487443008527, - 0.1420380924898635, - 0.2268859165794428, - 0.2516356610540758, - 0.3215824521428513, - 0.4237303656361693, - 0.4700254677044024, - 0.4846351948635264, - 0.4440601482750786, - 0.4942493169737317, - 0.5845973258605914, - 0.6774833264237656, - 0.7508248751665748, - 0.8051773196353722, - 0.606008179326024, - 0.7556678928356215, - 0.872059682637554, - 0.8916028302965527, - 0.961191355733964, - 1, - 0.8638801803276992, - 0.7752954453764448, - 0.8515904527042624, - 0.9118269690046924, - 0.9564392797333684, - 0.7709554575046468 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Health services use
Year=%{x}
value=%{y}", - "legendgroup": "Health services use", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Health services use", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.0558600837126413, - 0.1110193760550986, - 0.1654921842718195, - 0.219309589280484, - 0.2724501788252542, - 0.3249452635018362, - 0.3767940263872552, - 0.428039201948965, - 0.4786654467814286, - 0.5287010576087747, - 0.5782046225546026, - 0.6271478533772112, - 0.6755615478117181, - 0.7234513146998833, - 0.770806219540751, - 0.8176528912827925, - 0.8639818635374268, - 0.9098110746803706, - 0.9551474261447658, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=International taxes
Year=%{x}
value=%{y}", - "legendgroup": "International taxes", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "International taxes", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0.0621514812460272, - 0.1163906583804981, - 0.093784075204623, - 0.0943326172963906, - 0.0687339863472379, - 0.1301873231128336, - 0.1833460385513988, - 0.2396297816642761, - 0.3362895472287714, - 0.4287272009354196, - 0.4392327139675483, - 0.4497382269996772, - 0.4602437400318059, - 0.4707492530639348, - 0.4812547660960635, - 0.4917602791281922, - 0.5022657921603211, - 0.5127713051924498, - 0.4099004969112173, - 0.3246221532154874, - 0.3802356152085459, - 0.400422340129912, - 0.4197458698033552, - 0.4947751183659788, - 0.6365468405096111, - 0.7449612321442998, - 0.7766108037632181, - 1, - 0.9844198264215808, - 0.9844198264215808 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Literacy rate
Year=%{x}
value=%{y}", - "legendgroup": "Literacy rate", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Literacy rate", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0.0380823149444747, - 0.0761646298889494, - 0.1142469448334241, - 0.1523292597778988, - 0.1904115747223735, - 0.2284938896668482, - 0.2665762046113229, - 0.3046585195557976, - 0.3427408345002723, - 0.380823149444747, - 0.3641450409370899, - 0.3474669324294328, - 0.3908662903861245, - 0.4342656483428163, - 0.5207367115368882, - 0.5340612554560048, - 0.6696295183895077, - 0.6862998256419556, - 0.7522886932507413, - 0.7046210735307373, - 0.7622713744641486, - 0.8528185935116955, - 0.8188772823547285, - 0.8946752532482545, - 0.8839904590648704, - 0.933498199860361, - 0.9479617270418844, - 1, - 0.99156001700674, - 0.983120034013478 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Mortality-infants
Year=%{x}
value=%{y}", - "legendgroup": "Mortality-infants", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Mortality-infants", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 0.941672637269589, - 0.8841594476649515, - 0.8282583208493454, - 0.7739855402852862, - 0.7220250113984238, - 0.6718556633882629, - 0.6229401419917932, - 0.576646258060314, - 0.5322412557806292, - 0.48993682016544, - 0.4497980850648082, - 0.4123786882042597, - 0.3762294014199179, - 0.342783169413144, - 0.3118934410212988, - 0.2829740115938253, - 0.2560900149807855, - 0.2319904904578909, - 0.2100240995245229, - 0.1894743698300006, - 0.1696248290236436, - 0.1504591936429362, - 0.1315215267374454, - 0.1122744740441607, - 0.0928971536507523, - 0.0738455025076532, - 0.0544681821142447, - 0.0354490978961766, - 0.0172441868038819, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Net migration
Year=%{x}
value=%{y}", - "legendgroup": "Net migration", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Net migration", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.1392142130860969, - 0.1392142130860969, - 0.1392142130860969, - 0.1113713704688776, - 0.0835285278516582, - 0.0556856852344386, - 0.0278428426172193, - 0, - 0.009051576031696, - 0.0181031520633918, - 0.0271547280950878, - 0.0362063041267836, - 0.0452578801584797, - 0.2099195079314991, - 0.3745811357045184, - 0.5392427634775379, - 0.7039043912505573, - 0.8685660190235767, - 0.8825834598065585, - 0.8966009005895406, - 0.9106183413725224, - 0.9246357821555043, - 0.9386532229384864, - 0.9509225783507892, - 0.963191933763092, - 0.9754612891753944, - 0.9877306445876972, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Ninis
Year=%{x}
value=%{y}", - "legendgroup": "Ninis", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Ninis", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.8144327261608618, - 0.8144327261608618, - 0.8144327261608618, - 0.8144327261608618, - 0.8144327261608618, - 0.8144327261608618, - 0.8144327261608618, - 0.8144327261608618, - 0.8144327261608618, - 0.8144327261608618, - 0.8144327261608618, - 0.8144327261608618, - 0.8144327261608618, - 0.8144327261608618, - 0.8144327261608618, - 0.8144327261608618, - 0.7731956634375988, - 0.7190722029575721, - 0.9304122723103134, - 0.9896904885268932, - 1, - 0.9072163630804184, - 0.7319586007143605, - 0.5592782162165928, - 0.5103095114730938, - 0.3737114339620102, - 0.3221648597656661, - 0.1108247904129239, - 0.0335054207030015, - 0, - 0.5386596848549607 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=R&D GExp
Year=%{x}
value=%{y}", - "legendgroup": "R&D GExp", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "R&D GExp", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.104554017528053, - 0.2100499631419444, - 0.3826275698255386, - 0.2271275288721435, - 0.3010484069129331, - 0.424400032762716, - 0.583463019084282, - 0.5630682283561307, - 0.6051683184535999, - 0.4855024981570972, - 0.6047178311081989, - 0.7912195921041854, - 0.9373003521991974, - 1, - 0.9035138012941272, - 0.6973953640756818, - 0.7140633958555165, - 0.7569006470636415, - 0.7338438856581211, - 0.5623310672454745, - 0.3184535998034237, - 0.2548939307068557, - 0.2548939307068557, - 0.2548939307068557 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Renewable electricity
Year=%{x}
value=%{y}", - "legendgroup": "Renewable electricity", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Renewable electricity", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0.2779813927262475, - 0.3636876233436707, - 0.2841838173104031, - 0.4364251480124048, - 0.1468846912884127, - 0.0183253453622779, - 0.1423738370453904, - 0.0921905835917677, - 0.1883281646461798, - 0.3301381449111925, - 0.2743163236537919, - 0.5164928108260501, - 0.6174231745136736, - 0.9782915139554552, - 0.6075556808570624, - 0.8759515083168875, - 0.3160417254017479, - 0.287003101212292, - 0.475049337468283, - 0.5351000845785171, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Suicide
Year=%{x}
value=%{y}", - "legendgroup": "Suicide", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Suicide", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.1249999999999999, - 0.1666666666666666, - 0.2083333333333333, - 0.2083333333333333, - 0.2499999999999998, - 0.2083333333333333, - 0.2499999999999998, - 0.3750000000000001, - 0.4583333333333331, - 0.4166666666666666, - 0.7083333333333333, - 0.5833333333333334, - 0.7083333333333333, - 0.9166666666666666, - 0.8749999999999998, - 0.8749999999999998, - 1, - 0.7916666666666667, - 0.7499999999999998, - 0.7499999999999998 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Workers high education
Year=%{x}
value=%{y}", - "legendgroup": "Workers high education", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Workers high education", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.4975840247089219, - 0.4975840247089219, - 0.4975840247089219, - 0.4975840247089219, - 0.4975840247089219, - 0.4975840247089219, - 0.4975840247089219, - 0.4975840247089219, - 0.4975840247089219, - 0.4975840247089219, - 0.4975840247089219, - 0.4975840247089219, - 0.4975840247089219, - 0.6054742449539727, - 0.5539444958394636, - 0.8743963133187751, - 1, - 0.9436395288694608, - 0.9098232461911462, - 0.7713368150897408, - 0.5974234511159644, - 0.5362310294032689, - 0.541062979985425, - 0.4959733745148653, - 0.3752004098496546, - 0.2415459293304213, - 0.2592593957666, - 0.1207729646652106, - 0, - 0.006441372210073, - 0.006441372210073 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "variable" - }, - "tracegroupgap": 0 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "MEX" - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "value" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "variable=Alcohol per capita
Year=%{x}
value=%{y}", - "legendgroup": "Alcohol per capita", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Alcohol per capita", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 0.9323529411764702, - 0.8647058823529417, - 0.7970588235294118, - 0.7294117647058833, - 0.6617647058823535, - 0.686764705882354, - 0.7117647058823532, - 0.7367647058823538, - 0.761764705882353, - 0.7867647058823535, - 0.6941176470588244, - 0.6014705882352941, - 0.508823529411765, - 0.416176470588236, - 0.3235294117647063, - 0.2156862745098044, - 0.1078431372549018, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Education GExp
Year=%{x}
value=%{y}", - "legendgroup": "Education GExp", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Education GExp", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.2939457922809504, - 0.2939457922809504, - 0.2939457922809504, - 0.2939457922809504, - 0.2939457922809504, - 0.2939457922809504, - 0.2939457922809504, - 0.2939457922809504, - 0.2939457922809504, - 0, - 0.2682094668274566, - 0.1463754546073536, - 0.0053195846044475, - 0.061472389858672, - 0.1176251951128967, - 0.2410625136135259, - 0.4093044250175944, - 0.5246312899695725, - 0.6492923587842453, - 0.7424124372810627, - 0.6603660560391974, - 0.8210030360333704, - 0.8874482582207106, - 0.8678859326586451, - 0.8463251371988464, - 0.958462654690118, - 0.9165663334133992, - 1, - 0.9483607754046642, - 0.9483607754046642, - 0.9483607754046642, - 0.9483607754046642 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-agriculture
Year=%{x}
value=%{y}", - "legendgroup": "Employment-agriculture", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-agriculture", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.9896906645206128, - 0.9896906645206128, - 1, - 0.9587628368405384, - 0.9006560957485416, - 0.8491095971096929, - 0.7516401499923201, - 0.7282099720905002, - 0.6672915452973891, - 0.7132146725339817, - 0.6944704587093022, - 0.6879100374980764, - 0.6982193729774636, - 0.7122774439669437, - 0.755388885502413, - 0.7066542513227652, - 0.6129334503364514, - 0.5248360207523841, - 0.4470478372686602, - 0.4076851312432841, - 0.3355201404037389, - 0.2727272564765426, - 0.2239925329178514, - 0.1958763015598568, - 0.1180881180761425, - 0.1049671862746662, - 0.0993439936304971, - 0.0356138811362509, - 0.0168697566906026, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-industry
Year=%{x}
value=%{y}", - "legendgroup": "Employment-industry", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-industry", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1, - 1, - 0.8741493972714531, - 0.8503399815882553, - 0.86734717047478, - 0.7789117345386631, - 0.8061225879991523, - 0.8197276903504409, - 0.7891153991126276, - 0.5374148424134763, - 0.4625851575865587, - 0.3707482838731166, - 0.5238097400621865, - 0.3435374304126273, - 0.38775547275964, - 0.5034011133983705, - 0.493197448824372, - 0.6836734230479296, - 0.938775417524406, - 0.7551023188554653, - 0.7074828387311274, - 0.6224488405723018, - 0.8639457326974886, - 0.8401363170142908, - 0.8197276903504409, - 0.5748300092058723, - 0.1394557050798366, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-services
Year=%{x}
value=%{y}", - "legendgroup": "Employment-services", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-services", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0.0185715760989687, - 0.0550000177110914, - 0.0957142705333524, - 0.1542856613470718, - 0.2221428402102717, - 0.2371427707283082, - 0.2900000190734792, - 0.307857157064938, - 0.338571456208513, - 0.3621427366685201, - 0.3228570875829741, - 0.3492858479947085, - 0.3071429914357325, - 0.3199998801095441, - 0.3935714739196044, - 0.4207143999605439, - 0.4271427080582972, - 0.4949998869215047, - 0.5599998583112823, - 0.625713995330265, - 0.6121429410272478, - 0.6392855945898828, - 0.7021425241354436, - 0.7628572292716846, - 0.860000103541751, - 0.9378569636053408, - 0.9764284470616884, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Exports-Commercial services
Year=%{x}
value=%{y}", - "legendgroup": "Exports-Commercial services", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Exports-Commercial services", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0122530322452561, - 0, - 0.0205336202466163, - 0.0181557486921717, - 0.0433332122098212, - 0.0765674640531186, - 0.0360876977086309, - 0.0743973884903136, - 0.10101042210379, - 0.080576678279828, - 0.1388072697501377, - 0.137843543622679, - 0.140882805470549, - 0.1630442267959918, - 0.2199157438917374, - 0.3031691853174944, - 0.3803058213588564, - 0.5071783180126391, - 0.671089083856151, - 0.5968583550068242, - 0.7236290864962807, - 0.8930839746586033, - 0.9451961904888964, - 0.9229573748496426, - 1, - 0.8312945861803018, - 0.8183020509156365, - 0.8501045548669749, - 0.8761518725885509, - 0.8483994606544506, - 0.6908767420613627, - 0.8176068487091324 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Exports-G&S
Year=%{x}
value=%{y}", - "legendgroup": "Exports-G&S", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Exports-G&S", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0084103460024519, - 0, - 0.0217289183457282, - 0.0327598783381038, - 0.0740928174076401, - 0.1031586977419479, - 0.1006460847098487, - 0.1169094686483285, - 0.1134082389214655, - 0.1010839851795634, - 0.1355614530411867, - 0.14471736338668, - 0.1566730023064438, - 0.2013052176856572, - 0.2964243408882638, - 0.388562558486787, - 0.4738014556017657, - 0.572558954214446, - 0.7310528630993703, - 0.5531255146190028, - 0.7694232321963511, - 1, - 0.9626464501505726, - 0.9537023502705914, - 0.8808629474802868, - 0.741926877849657, - 0.7103648176405857, - 0.8364868110054178, - 0.917766004483843, - 0.8604293608071457, - 0.7830926785615973, - 0.7830926785615973 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Fertility rate
Year=%{x}
value=%{y}", - "legendgroup": "Fertility rate", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Fertility rate", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1, - 0.9331103678929764, - 0.8762541806020065, - 0.8252508361204013, - 0.7801003344481603, - 0.7374581939799331, - 0.6939799331103679, - 0.649665551839465, - 0.6020066889632107, - 0.5510033444816055, - 0.4966555183946486, - 0.4397993311036791, - 0.382107023411371, - 0.3269230769230768, - 0.2734113712374581, - 0.225752508361204, - 0.1831103678929766, - 0.1471571906354514, - 0.1178929765886287, - 0.0936454849498328, - 0.0752508361204014, - 0.0627090301003344, - 0.0543478260869564, - 0.048494983277592, - 0.0434782608695652, - 0.0392976588628761, - 0.0342809364548496, - 0.0275919732441472, - 0.020066889632107, - 0.0108695652173914, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Foreign investment
Year=%{x}
value=%{y}", - "legendgroup": "Foreign investment", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Foreign investment", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.9028263803649796, - 0.9051795475699635, - 0.8868048164161518, - 0.8980499516127354, - 0.8856933204172018, - 0.8712739128632568, - 0.7892435054452585, - 0.7270561022715525, - 0.6457043422095753, - 0.6368281885172583, - 0.600683188928251, - 0.6585882585371662, - 0.7647996437182484, - 0.8069951512581564, - 0.8225693952567471, - 0.7804057030070652, - 1, - 0.6305174581153141, - 0.6597282839211368, - 0.5452570580768711, - 0.3490518182781737, - 0.0413057193824803, - 0, - 0.3095926734000327, - 0.2340950193540358, - 0.2891987151008245, - 0.3092560157036884, - 0.4299801777397528, - 0.1436630499586901, - 0.4418979291177335, - 0.4929793557111374, - 0.632857118666097 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=GDP
Year=%{x}
value=%{y}", - "legendgroup": "GDP", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GDP", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0273332772125013, - 0.0063030945947597, - 0, - 0.0175298875936964, - 0.0861820838266866, - 0.1928109389452668, - 0.2282542140079774, - 0.2425813419666065, - 0.2340604886042737, - 0.1186441646551596, - 0.1430352824938007, - 0.1013107231781706, - 0.0793749186217016, - 0.1005458613344557, - 0.1490848118920109, - 0.246264685163947, - 0.3406684627838383, - 0.4671944684439054, - 0.5977649388326204, - 0.5851515241855028, - 0.8219737425650003, - 1, - 0.9340339248280816, - 0.9373517448872214, - 0.9300196531221996, - 0.6442501068671377, - 0.6414009709346071, - 0.7584573919237076, - 0.694391400640187, - 0.6772978821386393, - 0.4880072585942927, - 0.4880072585942927 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Health services use
Year=%{x}
value=%{y}", - "legendgroup": "Health services use", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Health services use", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.0536353590101904, - 0.1061482849390583, - 0.1583414878235999, - 0.2101950504615466, - 0.2617154833042466, - 0.3129326530103816, - 0.363852226357041, - 0.4144789544692553, - 0.4647716229745934, - 0.5147830765606114, - 0.5647177711287686, - 0.6143733086348145, - 0.6637130470668032, - 0.7128068568127865, - 0.7616172397969403, - 0.8101303125628871, - 0.858374053826917, - 0.9063152204633722, - 0.9540005915548896, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=International taxes
Year=%{x}
value=%{y}", - "legendgroup": "International taxes", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "International taxes", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.2549237986407653, - 0.4597727954975766, - 0.7274849685012854, - 0.7180866135164272, - 0.8186054920027334, - 0.4743577398000932, - 0.515664503963792, - 0.8979992089225634, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Literacy rate
Year=%{x}
value=%{y}", - "legendgroup": "Literacy rate", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Literacy rate", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.1083202213078338, - 0.2166404426156676, - 0.3021143037721403, - 0.3080242287068222, - 0.3647525591199442, - 0.3823119189552747, - 0.606124680885561, - 0.5902099082240928, - 0.6219550733197983, - 0.6751278525894181, - 0.7441905868065839, - 0.9091224952722406, - 0.9671066020082678, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Mortality-infants
Year=%{x}
value=%{y}", - "legendgroup": "Mortality-infants", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Mortality-infants", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1, - 0.9427646479251705, - 0.8852541874064311, - 0.826342593184988, - 0.7676677201827232, - 0.7092935471075226, - 0.6533953500275108, - 0.5987127483973333, - 0.5456424102058834, - 0.493576537728244, - 0.4424639479981062, - 0.3921830814704866, - 0.3434504996737086, - 0.2970339471024043, - 0.2536179959309542, - 0.2133306035751302, - 0.1776944632826195, - 0.1465816176376501, - 0.1198641092244501, - 0.0977082826835229, - 0.079096876559481, - 0.0640810738186331, - 0.052168238410257, - 0.0425842279689319, - 0.0349451702473416, - 0.0284513313969111, - 0.0412726644572686, - 0.0175685531854998, - 0.0121623523691315, - 0.0063274942099269, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Net migration
Year=%{x}
value=%{y}", - "legendgroup": "Net migration", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Net migration", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.2, - 0.4, - 0.6000000000000001, - 0.8, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Ninis
Year=%{x}
value=%{y}", - "legendgroup": "Ninis", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Ninis", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.3850172774557746, - 0.3850172774557746, - 0.3850172774557746, - 0.3850172774557746, - 0.3850172774557746, - 0.3850172774557746, - 0.4616724258185913, - 0.4128918164439407, - 0.3693378077385889, - 0.2735191215030917, - 0.2534843173735182, - 0.2334495132439447, - 0.1602787653273329, - 0.1689894341521089, - 0.116724756621981, - 0.1289198258929619, - 0.1620209655504267, - 0.1515677642118293, - 0, - 0.0801392165183113, - 0.1341462604169051, - 0.188153304315499, - 0.38153320930028, - 0.4442507558783117, - 0.4076655480653523, - 0.658536398958867, - 0.9634144598963305, - 0.9756096399308872, - 0.9878048199654432, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=R&D GExp
Year=%{x}
value=%{y}", - "legendgroup": "R&D GExp", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "R&D GExp", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.2217241106510902, - 0.2217241106510902, - 0.2217241106510902, - 0.2217241106510902, - 0.2217241106510902, - 0.2217241106510902, - 0.2217241106510902, - 0.2217241106510902, - 0.2217241106510902, - 0.2217241106510902, - 0.2217241106510902, - 0.2598823870678513, - 0.121964083225653, - 0.0948287228712322, - 0, - 0.1029245009361564, - 0.0649771894201102, - 0.3110413754911526, - 0.4367237150919016, - 0.4093510192241765, - 0.5181561667677541, - 0.4647293056617702, - 0.430922180322249, - 0.6124311067746103, - 0.8118984204003056, - 1, - 0.7911183776799136, - 0.344110123678173, - 0.5193692149468631, - 0.5193692149468631, - 0.5193692149468631, - 0.5193692149468631 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Renewable electricity
Year=%{x}
value=%{y}", - "legendgroup": "Renewable electricity", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Renewable electricity", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0.0032469038452618, - 0.0241198571362308, - 0.0253954265040122, - 0.0354608284243239, - 0.0402384155109235, - 0.0671413330859501, - 0.0817292082193051, - 0.0846746138503641, - 0.1045734959877545, - 0.0924671830789925, - 0.1195788301869288, - 0.1489169256459019, - 0.1877638109374275, - 0.2012616540655874, - 0.2278630734264112, - 0.2574562827589405, - 0.3434992346583793, - 0.3895125005798042, - 0.4634027552298344, - 0.6914281738485087, - 0.7208126536481284, - 0.8448443805371306, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Suicide
Year=%{x}
value=%{y}", - "legendgroup": "Suicide", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Suicide", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.1333333333333334, - 0.1333333333333334, - 0.0999999999999999, - 0.1333333333333334, - 0.2333333333333334, - 0.2333333333333334, - 0.3000000000000001, - 0.3666666666666665, - 0.3666666666666665, - 0.3333333333333333, - 0.4000000000000001, - 0.4666666666666668, - 0.5333333333333332, - 0.5333333333333332, - 0.6333333333333334, - 0.6666666666666666, - 0.8666666666666666, - 1, - 0.9666666666666668, - 0.9666666666666668, - 0.9666666666666668 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Workers high education
Year=%{x}
value=%{y}", - "legendgroup": "Workers high education", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Workers high education", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1, - 1, - 1, - 1, - 1, - 1, - 0.7128966688633044, - 0.866180933906308, - 0.7226274120344244, - 0.5036504209168283, - 0.5523115619866199, - 0.6009727030564114, - 0.7201956543934253, - 0.5936737175262905, - 0.4890505935530542, - 0.6861324843838478, - 0.5936737175262905, - 0.5985409454154123, - 0.520682005921605, - 0.5936737175262905, - 0.4416053313037744, - 0.2895369450812582, - 0.0486611410697915, - 0, - 0.3406317000956089, - 0.2238442190066935, - 0.2919705590258173, - 0.2871051874402591, - 0.2189769911175959, - 0.2919705590258173, - 0.2919705590258173, - 0.2919705590258173 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "variable" - }, - "tracegroupgap": 0 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "BRA" - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "value" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "variable=Alcohol per capita
Year=%{x}
value=%{y}", - "legendgroup": "Alcohol per capita", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Alcohol per capita", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0909090909090907, - 0.0909090909090907, - 0.0909090909090907, - 0.0909090909090907, - 0.0909090909090907, - 0.0909090909090907, - 0.0909090909090907, - 0.0909090909090907, - 0.0909090909090907, - 0.0909090909090907, - 0.0909090909090907, - 0.0727272727272718, - 0.0545454545454548, - 0.0363636363636359, - 0.0181818181818188, - 0, - 0.0868686868686871, - 0.1737373737373743, - 0.2606060606060597, - 0.3474747474747468, - 0.434343434343434, - 0.5272727272727274, - 0.6202020202020209, - 0.7131313131313125, - 0.8060606060606059, - 0.8989898989898993, - 0.932659932659933, - 0.9663299663299664, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Education GExp
Year=%{x}
value=%{y}", - "legendgroup": "Education GExp", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Education GExp", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.7337397839790964, - 0.7337397839790964, - 0.7337397839790964, - 0.7337397839790964, - 0.7337397839790964, - 0.7337397839790964, - 0.7337397839790964, - 0.7621267185693164, - 0.7905136531595359, - 0.8559100581325241, - 0.9448670700510462, - 0.9779915079022192, - 1, - 0.4673235777391005, - 0.6675293582839825, - 0.8369327893874132, - 0.7620820630229781, - 0.6579015251511684, - 0.8228138494005635, - 0.8924334279495603, - 0.6442240301837385, - 0.672443901926195, - 0.5090549766963729, - 0.4936601291920412, - 0.325601474922806, - 0.3674453036479815, - 0.2123571995934991, - 0.1889778917325818, - 0, - 0.0017173525369271, - 0.0017173525369271 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-agriculture
Year=%{x}
value=%{y}", - "legendgroup": "Employment-agriculture", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-agriculture", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.1944444476782036, - 0.1944444476782036, - 0.2361111159617491, - 0.2708333257339998, - 0.2708333257339998, - 0.3888888927693999, - 0.4861111049669692, - 0.513888897620038, - 0.4861111049669692, - 0.4722222293364918, - 0.4236111232377074, - 0.5347222110657536, - 0.6388889024706762, - 0.9305555390633836, - 1, - 0.8472222024962924, - 0.6874999671773439, - 0.7361111146682449, - 0.7916666999743867, - 0.8125000134201023, - 0.8402777646810514, - 0.4027777683998767, - 0.3888888927693999, - 0.3888888927693999, - 0.3402777866706148, - 0.1388888830681229, - 0.0486111086857916, - 0, - 0.027777779718033, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-industry
Year=%{x}
value=%{y}", - "legendgroup": "Employment-industry", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-industry", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 1, - 1, - 1, - 1, - 1, - 0.6957787631331473, - 0.7772925036765749, - 0.6812226686275082, - 0.5036390930350146, - 0.3726347977530469, - 0.2620088681983417, - 0, - 0.2285300451794402, - 0.3595343404614079, - 0.4425037182188355, - 0.502183455821, - 0.5400291904819163, - 0.5531296477735553, - 0.4323145353552113, - 0.4541485382964744, - 0.5458514617035256, - 0.5007278186069998, - 0.5429404649099311, - 0.5735080135008033, - 0.5007278186069998, - 0.3871906146242803, - 0.3231442430145062, - 0.2459971364786878, - 0.2358079536150641, - 0.2358079536150641 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-services
Year=%{x}
value=%{y}", - "legendgroup": "Employment-services", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-services", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0.2980033494320198, - 0.208909395402916, - 0.3148993471068674, - 0.5053763188828104, - 0.6543779935988127, - 0.7465436275825408, - 1, - 0.694315692757012, - 0.5407059121342621, - 0.4869427233062214, - 0.4592929159161395, - 0.408601407042721, - 0.3824880256047645, - 0.5053763188828104, - 0.4761900855406007, - 0.4761900855406007, - 0.5284180203661447, - 0.4838710433516016, - 0.4608293418682497, - 0.5821812091941854, - 0.7219655001470787, - 0.8003068164105792, - 0.8755752807698286, - 0.8924724503943051, - 0.8924724503943051 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Exports-Commercial services
Year=%{x}
value=%{y}", - "legendgroup": "Exports-Commercial services", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Exports-Commercial services", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0068701765003476, - 0, - 0.0509996102209144, - 0.054309508588193, - 0.0768391073916665, - 0.1137777563752027, - 0.1576747218337638, - 0.1722713147684414, - 0.1924236867983685, - 0.1812290519038184, - 0.1958397486459701, - 0.1722928112053633, - 0.0900145792134445, - 0.1626567721163431, - 0.2220120436675693, - 0.3182303922608278, - 0.4284671476348854, - 0.5909463782593462, - 0.6945605880895894, - 0.6286211553663366, - 0.7982699525673983, - 0.9253170847738968, - 0.9063813097550186, - 0.8635918674468337, - 0.8408972224211241, - 0.8268287743802407, - 0.8449058999825543, - 1, - 0.9886283245303004, - 0.9464887626352644, - 0.5389126064841571 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Exports-G&S
Year=%{x}
value=%{y}", - "legendgroup": "Exports-G&S", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Exports-G&S", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.000989303124016, - 0, - 0.0064241665132154, - 0.0215763327573714, - 0.0579461639140929, - 0.1251346641291599, - 0.1660100331959233, - 0.1966046860043915, - 0.199112798884803, - 0.1597745858960113, - 0.2001517245853392, - 0.1988151214415214, - 0.1582647968161241, - 0.2225038977801997, - 0.2967681991823419, - 0.3800258173627445, - 0.468339139711573, - 0.6078237410629896, - 0.7832071041698098, - 0.607477304289329, - 0.7885633858739604, - 1, - 0.8900288384932281, - 0.7943484287459948, - 0.7358305517873717, - 0.5899194171922783, - 0.6640420450392707, - 0.700295598710354, - 0.7352024320040687, - 0.7857385030552182, - 0.600948524040367 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Fertility rate
Year=%{x}
value=%{y}", - "legendgroup": "Fertility rate", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Fertility rate", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 0.9581151832460733, - 0.9057591623036648, - 0.8455497382198954, - 0.7787958115183244, - 0.7068062827225133, - 0.6348167539267016, - 0.5667539267015707, - 0.5039267015706805, - 0.4502617801047119, - 0.4044502617801044, - 0.3651832460732984, - 0.3311518324607332, - 0.2984293193717275, - 0.2683246073298431, - 0.2395287958115181, - 0.214659685863874, - 0.1924083769633505, - 0.1740837696335079, - 0.1596858638743454, - 0.1479057591623037, - 0.137434554973822, - 0.1269633507853403, - 0.1164921465968586, - 0.1034031413612562, - 0.0890052356020943, - 0.0719895287958111, - 0.0549738219895285, - 0.0366492146596859, - 0.0183246073298426, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Foreign investment
Year=%{x}
value=%{y}", - "legendgroup": "Foreign investment", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Foreign investment", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.9284758107459086, - 0.8834450767281201, - 0.8217564643228155, - 0.9096558457367558, - 0.8697724705125262, - 0.7584885682609657, - 0.6662231121648858, - 0.6542995737738291, - 0.694795415685357, - 0.5248247068507224, - 0.3548539980160878, - 0.9158358299062392, - 0.8582749127136997, - 1, - 0.8080413739877532, - 0.7702939691387126, - 0.8341855560922593, - 0.6945157719368497, - 0.4431730528902726, - 0.8187283305658171, - 0.29132766991804, - 0.3672023658603075, - 0, - 0.3985851241682079, - 0.8307379012929824, - 0.2528086311143841, - 0.9555365630927564, - 0.2918300054384352, - 0.319493886236455, - 0.6829465960969714, - 0.8620702273867586 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=GDP
Year=%{x}
value=%{y}", - "legendgroup": "GDP", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GDP", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0799193844194184, - 0.1685202317921757, - 0.2400870010849031, - 0.2546556581797475, - 0.2925712256071486, - 0.2936552060935242, - 0.3195168647443913, - 0.3574525181241524, - 0.3686069383635484, - 0.340350630805517, - 0.3415976434225009, - 0.3131915844411299, - 0, - 0.0547036348487332, - 0.1226110179608085, - 0.1850379708538802, - 0.2469904842102556, - 0.3476916716804158, - 0.4832969045381561, - 0.4309405966110349, - 0.59699695037153, - 0.7921516487710603, - 0.8211294085433157, - 0.8321986757290766, - 0.7851108445478007, - 0.9104616916168085, - 0.8422851182136074, - 1, - 0.7823632387477637, - 0.6488465424576183, - 0.5340933551519955 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Health services use
Year=%{x}
value=%{y}", - "legendgroup": "Health services use", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Health services use", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.0646609031536448, - 0.1292046650098688, - 0.1936620304931598, - 0.258108584078434, - 0.3225212478590339, - 0.3869285697349259, - 0.4513052735550418, - 0.5156801914540604, - 0.5800294111195635, - 0.6443563140906814, - 0.7083458133820955, - 0.7721671128189934, - 0.8287628658246958, - 0.8856243612061243, - 0.9427048612617384, - 1, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=International taxes
Year=%{x}
value=%{y}", - "legendgroup": "International taxes", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "International taxes", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0.0043597713460936, - 0.0088238361572501, - 0.0129567501851779, - 0.013502578027879, - 0.0066428085849508, - 0.0099581227480795, - 0.015199440317113, - 0.0128577855832935, - 0.0090780990574763, - 0.0072594341813077, - 0.0043239918361816, - 0.037948357225672, - 0.073389408457591, - 0.0901881512692971, - 0.1093155379753821, - 0.1301095233636393, - 0.1853698345235729, - 0.326969909432164, - 0.2644387450983974, - 0.4145870778112989, - 0.5060037256366279, - 0.5828596354600827, - 0.5816507447847558, - 0.8299377055894446, - 0.800301613655897, - 0.9441283921068878, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Literacy rate
Year=%{x}
value=%{y}", - "legendgroup": "Literacy rate", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Literacy rate", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.218227637699246, - 0.4364552753984921, - 0.6546829130977382, - 0.6046969879761672, - 0.8741437782335638, - 0.8687014919371087, - 0.8980710714334112, - 0.6730740874788281, - 1, - 0.90344633449954, - 0.7970268495060439, - 0.6906073645125228, - 0.6906073645125228, - 0.6906073645125228 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Mortality-infants
Year=%{x}
value=%{y}", - "legendgroup": "Mortality-infants", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Mortality-infants", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 0.98413715750681, - 0.9495273193398494, - 0.9022592533247876, - 0.8465790738663675, - 0.7880147412273674, - 0.730411792981894, - 0.6765742669443999, - 0.6279442397051754, - 0.585082518827111, - 0.5479891043102066, - 0.5153821502964269, - 0.4854991187309726, - 0.4561768947284089, - 0.4268546707258452, - 0.4003364845377343, - 0.3793462586124018, - 0.3623618009934305, - 0.3464188431341131, - 0.3286332318538695, - 0.307242429097901, - 0.2811248197404262, - 0.2517224803717353, - 0.221118410511136, - 0.1909149174811729, - 0.1602307322544464, - 0.1284249319019388, - 0.0958179778881589, - 0.0628104470437429, - 0.0301233776638359, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Net migration
Year=%{x}
value=%{y}", - "legendgroup": "Net migration", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Net migration", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.1455696202531645, - 0.1455696202531645, - 0.1455696202531645, - 0.1164556962025316, - 0.0873417721518987, - 0.0582278481012658, - 0.0291139240506329, - 0, - 0.0037974683544303, - 0.0075949367088607, - 0.0113924050632911, - 0.0151898734177215, - 0.0189873417721519, - 0.0253164556962025, - 0.0316455696202531, - 0.0379746835443038, - 0.0443037974683544, - 0.050632911392405, - 0.240506329113924, - 0.430379746835443, - 0.620253164556962, - 0.810126582278481, - 1, - 0.9924050632911392, - 0.9848101265822784, - 0.9772151898734176, - 0.9696202531645568, - 0.9620253164556962, - 0.9620253164556962, - 0.9620253164556962, - 0.9620253164556962 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Ninis
Year=%{x}
value=%{y}", - "legendgroup": "Ninis", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Ninis", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.8963414988724772, - 0.8963414988724772, - 0.8963414988724772, - 0.8963414988724772, - 0.8963414988724772, - 0.8963414988724772, - 0.8963414988724772, - 0.8963414988724772, - 0.8963414988724772, - 0.8963414988724772, - 0.8963414988724772, - 0.8963414988724772, - 0.8963414988724772, - 0.8963414988724772, - 0.8963414988724772, - 0.8963414988724772, - 0.6768291051866959, - 0.6493900559759717, - 0.6219510067652495, - 1, - 0.6463406266100885, - 0, - 0.0060976957153093, - 0.4085363087948382, - 0.7743899105989072, - 0.6890241089451817, - 0.6036583072914542, - 0.5182925056377289, - 0.3780489932347505, - 0.5060971142070495, - 0.5060971142070495 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=R&D GExp
Year=%{x}
value=%{y}", - "legendgroup": "R&D GExp", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "R&D GExp", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.1163584637268849, - 0.1163584637268849, - 0.1163584637268849, - 0.1163584637268849, - 0.1163584637268849, - 0.1163584637268849, - 0.1163584637268849, - 0.1248933143669987, - 0.0912416175574071, - 0.2621824832351149, - 0.2031294452347085, - 0.1452956716114611, - 0, - 0.0864458443405812, - 0.0605567973989027, - 0.1295671611461086, - 0.2572647835805731, - 0.2894127209916683, - 0.3320056899004269, - 0.793009550904288, - 0.6997764681975208, - 0.7198130461288356, - 1, - 0.9332655964234912, - 0.8335704125177812, - 0.9500508026823816, - 0.6880308880308883, - 0.6838447470026416, - 0.425685836212152, - 0.425685836212152, - 0.425685836212152 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Renewable electricity
Year=%{x}
value=%{y}", - "legendgroup": "Renewable electricity", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Renewable electricity", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0024630541871921, - 0, - 0.0007037297677691, - 0.0024630541871921, - 0.0070372976776917, - 0.005981703026038, - 0.0925404644616467, - 0.1270232230823363, - 0.1400422237860661, - 0.1657283603096411, - 0.2139338494018297, - 0.2012667135819845, - 0.2959183673469387, - 0.3567909922589725, - 0.4035890218156228, - 0.4440534834623504, - 0.5728360309641097, - 0.5587614356087263, - 0.5341308937368051, - 0.458128078817734, - 0.7459535538353272, - 0.723082336382829, - 0.9331456720619282, - 1, - 0.9215341308937368, - 0.9331456720619282, - 0.9331456720619282, - 0.9331456720619282, - 0.9331456720619282, - 0.9331456720619282, - 0.9331456720619282 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Suicide
Year=%{x}
value=%{y}", - "legendgroup": "Suicide", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Suicide", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.5714285714285713, - 0.5714285714285713, - 0.5714285714285713, - 0.5714285714285713, - 0.5714285714285713, - 0.5714285714285713, - 0.5714285714285713, - 0.5714285714285713, - 0.5714285714285713, - 0.5714285714285713, - 0.5714285714285713, - 0.7142857142857137, - 0.8571428571428575, - 1, - 0.285714285714285, - 0.2142857142857137, - 0.2142857142857137, - 0, - 0.285714285714285, - 0.0714285714285712, - 0.2142857142857137, - 0.1428571428571425, - 0.5714285714285713, - 0.2142857142857137, - 0.714285714285715, - 0, - 0, - 0.4285714285714287, - 0.6428571428571425, - 0.0714285714285712, - 0.0714285714285712 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Workers high education
Year=%{x}
value=%{y}", - "legendgroup": "Workers high education", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Workers high education", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.8949419384205797, - 0.8949419384205797, - 0.8949419384205797, - 0.8949419384205797, - 0.8949419384205797, - 0.8949419384205797, - 0.8949419384205797, - 0.8949419384205797, - 0.8949419384205797, - 0.8949419384205797, - 0.8949419384205797, - 0.8949419384205797, - 0.8949419384205797, - 0.8949419384205797, - 0.8949419384205797, - 0.9247737651709635, - 1, - 0.9286641631166708, - 0.8573283262333437, - 0.8612192189517771, - 0.8560310321453792, - 0.8300910876588775, - 0.6783403343674046, - 0.7016866802234392, - 0.644617614898602, - 0.5071337980898533, - 0.3696499812811045, - 0.2321661644723557, - 0.3035024961284073, - 0.4111551458837434, - 0 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "variable" - }, - "tracegroupgap": 0 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "ARG" - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "value" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "variable=Alcohol per capita
Year=%{x}
value=%{y}", - "legendgroup": "Alcohol per capita", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Alcohol per capita", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.2622950819672132, - 0.2622950819672132, - 0.2622950819672132, - 0.2622950819672132, - 0.2622950819672132, - 0.2622950819672132, - 0.2622950819672132, - 0.2622950819672132, - 0.2622950819672132, - 0.2622950819672132, - 0.2622950819672132, - 0.4098360655737703, - 0.5573770491803274, - 0.7049180327868859, - 0.8524590163934429, - 1, - 0.9409836065573778, - 0.881967213114754, - 0.8229508196721304, - 0.7639344262295081, - 0.7049180327868859, - 0.6459016393442621, - 0.5868852459016385, - 0.5278688524590163, - 0.468852459016394, - 0.4098360655737703, - 0.2732240437158473, - 0.1366120218579229, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Education GExp
Year=%{x}
value=%{y}", - "legendgroup": "Education GExp", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Education GExp", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.3625209713392985, - 0.3625209713392985, - 0.3625209713392985, - 0.3625209713392985, - 0.3625209713392985, - 0.3625209713392985, - 0.3625209713392985, - 0.3625209713392985, - 0.3625209713392985, - 0.3625209713392985, - 0.3625209713392985, - 0.2655523900148855, - 0.2189683740291259, - 0.2361034269087574, - 0.3675345442934866, - 0.1550100399745944, - 0.1030774797698846, - 0.1258111344448456, - 0.2096502676002939, - 0.2228650367175315, - 0.0006469323453918, - 0, - 0.1743444999245633, - 0.3568647422686214, - 0.5695344347405683, - 0.8588494215585795, - 0.9218895881767522, - 1, - 0.764163531953308, - 0.8989938440630293, - 0.5137860529368571, - 0.9227521646372532 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-agriculture
Year=%{x}
value=%{y}", - "legendgroup": "Employment-agriculture", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-agriculture", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.9979486705973024, - 0.9979486705973024, - 1, - 0.9723076399402376, - 0.9056411949825196, - 0.859487261549582, - 0.8369230293710227, - 0.7938462856676717, - 0.7907694871891667, - 0.7897436268622767, - 0.7620512668025142, - 0.7476923522347346, - 0.7015384188018071, - 0.8830769628039495, - 0.7056410776071919, - 0.7641025962052117, - 0.5856412419326467, - 0.2112820378390665, - 0.1589743118235827, - 0.1179487018973941, - 0.0369229511208041, - 0.0933333359416727, - 0.0071794572838901, - 0.0041024631798489, - 0.0676923052846077, - 0.0912820065389753, - 0.1035895917040682, - 0.0328204879409551, - 0.0430769393288864, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-industry
Year=%{x}
value=%{y}", - "legendgroup": "Employment-industry", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-industry", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.5217391078999594, - 0.5217391078999594, - 0.4864129927748982, - 0.4864129927748982, - 0.5353258559744573, - 0.5516303164747219, - 0.5190216546247965, - 0.5244563020244914, - 0.4619564315998035, - 0.3749997408493896, - 0.3260868776498306, - 0.290760762524742, - 0.2880433092496068, - 0, - 0.2853258559744711, - 0.1956519710995251, - 0.4076086618499185, - 0.7989131223501764, - 0.8396738848749319, - 0.8396738848749319, - 0.9538043309249732, - 0.8505431796742945, - 1, - 0.9972825467248644, - 0.820652230250135, - 0.8749997408493898, - 0.7798909494241724, - 0.6249997408494032, - 0.5543477697498846, - 0.5027171941245319, - 0.5027171941245319, - 0.5027171941245319 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-services
Year=%{x}
value=%{y}", - "legendgroup": "Employment-services", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-services", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0.0122447899211054, - 0.0387752329593017, - 0.0877551711534158, - 0.1275510303381332, - 0.1612242999348847, - 0.2010201591196021, - 0.2285712283832242, - 0.2622448872348224, - 0.3081633360075153, - 0.3357140160162804, - 0.3826530910143998, - 0.3112244361740803, - 0.3806122278184145, - 0.3551020217507878, - 0.4530611196293036, - 0.6785712478459636, - 0.7153060068641159, - 0.7561224922742592, - 0.7948977252335602, - 0.7765307349793356, - 0.8061222781840968, - 0.8091837676055079, - 0.8132651047426418, - 0.7693875191659335, - 0.7938774882629913, - 0.920408281630555, - 0.93775503491421, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Exports-Commercial services
Year=%{x}
value=%{y}", - "legendgroup": "Exports-Commercial services", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Exports-Commercial services", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0204313282910208, - 0.0242488838480411, - 0.015977513474497, - 0, - 0.0332899231598575, - 0.0294379892170773, - 0.0943429586332937, - 0.1028377556632362, - 0.126743021531938, - 0.1121402589764673, - 0.0925986673117683, - 0.0734102173976408, - 0.0830299288033746, - 0.1360260052737835, - 0.1753750020721339, - 0.2118779574491796, - 0.2559553174528659, - 0.3406207696711308, - 0.4128075125931169, - 0.4364748595699159, - 0.4094664536139789, - 0.4555070167929698, - 0.5551174645986409, - 0.7093637416333286, - 0.7867051417991296, - 0.8342827674918768, - 0.862020639025661, - 1, - 0.9001163157410066, - 0.94930089423053, - 0.3162323234207306, - 0.3162323234207306 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Exports-G&S
Year=%{x}
value=%{y}", - "legendgroup": "Exports-G&S", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Exports-G&S", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0.0008624742637466, - 0.0068350991919085, - 0.0036806202276256, - 0.0305483340825987, - 0.0495203532675822, - 0.0618510001588205, - 0.0822715778903372, - 0.0666190764651314, - 0.0689678377423766, - 0.0872509292589805, - 0.0864993842905708, - 0.1023855880437505, - 0.1352133620364785, - 0.2147546548071557, - 0.3134064881935167, - 0.441408383953447, - 0.540342842565644, - 0.610250065436652, - 0.5353674739042122, - 0.7106672784570175, - 0.929040424491123, - 0.9384631864861552, - 0.8812108514030415, - 0.7942534420322527, - 0.6982052181218346, - 0.7552923152481049, - 0.9245853471395192, - 1, - 0.971466799321471, - 0.788986799842211, - 0.788986799842211 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Fertility rate
Year=%{x}
value=%{y}", - "legendgroup": "Fertility rate", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Fertility rate", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1, - 0.9305882352941176, - 0.8594117647058824, - 0.7882352941176471, - 0.7176470588235294, - 0.6488235294117647, - 0.5829411764705881, - 0.521764705882353, - 0.464705882352941, - 0.414705882352941, - 0.3723529411764706, - 0.3394117647058823, - 0.3158823529411764, - 0.3005882352941175, - 0.2905882352941175, - 0.2841176470588233, - 0.276470588235294, - 0.264705882352941, - 0.2476470588235293, - 0.224705882352941, - 0.1964705882352939, - 0.1652941176470586, - 0.1347058823529409, - 0.1070588235294117, - 0.0841176470588234, - 0.0652941176470587, - 0.0499999999999999, - 0.0370588235294116, - 0.024705882352941, - 0.0123529411764705, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Foreign investment
Year=%{x}
value=%{y}", - "legendgroup": "Foreign investment", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Foreign investment", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.9899544206404596, - 0.9939726523842758, - 1, - 0.929715354005509, - 0.7180384414503548, - 0.780003360719549, - 0.7013818431450092, - 0.8214180614622231, - 0.8609601864118873, - 0.8416976752500889, - 0.9256043847543528, - 0.9038252974749864, - 0.8129147451831039, - 0.8866517874532968, - 0.8595261016274726, - 0.7775139100200005, - 0.7031923862688687, - 0.5392105861370583, - 0.4753820364082452, - 0.4894384551132297, - 0.3221446399936072, - 0.3789598857780324, - 0, - 0.2120339256150494, - 0.7570508700528819, - 0.3132266572856, - 0.5260085580729833, - 0.4609355110056881, - 0.4118911338361203, - 0.4249114286958422, - 0.9198746674531892, - 0.9198746674531892 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=GDP
Year=%{x}
value=%{y}", - "legendgroup": "GDP", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GDP", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0.0392510066839196, - 0.047292341037793, - 0.0416790475067558, - 0.091416630596302, - 0.1331403348644173, - 0.1427395396904766, - 0.1570674658329517, - 0.1439721096706696, - 0.117672350720845, - 0.1253800635665837, - 0.1267925593075628, - 0.1403894488126569, - 0.1599552519377649, - 0.1997337938375587, - 0.2457195310223968, - 0.30799090494334, - 0.3749400903473601, - 0.4659010435043949, - 0.4672490885782137, - 0.5994171578157479, - 0.7193455756302523, - 0.8227168859003331, - 0.8649144882739379, - 0.8630036417709164, - 0.8086433891755899, - 0.818990006359575, - 0.9135718793354922, - 0.9708195248994738, - 1, - 0.869066188067635, - 0.869066188067635 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Health services use
Year=%{x}
value=%{y}", - "legendgroup": "Health services use", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Health services use", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.0580225579313978, - 0.115306647599703, - 0.1718916693773644, - 0.2277585422772007, - 0.282891541644888, - 0.3373547986235319, - 0.3911074708703097, - 0.4410631134473927, - 0.4892340906230722, - 0.5371182833801235, - 0.5846725219963865, - 0.6319439660803783, - 0.6788931526220218, - 0.7255446081672112, - 0.7719205866904284, - 0.8179851433283251, - 0.8637606416712321, - 0.909368459086171, - 0.9547797300666164, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=International taxes
Year=%{x}
value=%{y}", - "legendgroup": "International taxes", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "International taxes", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0.1245396221931804, - 0.3631256470747976, - 0.5590938406965495, - 0.7331293810146133, - 0.7969033758210424, - 0.8369371510039206, - 1, - 0.9709134574585448, - 0.9715371951323004, - 0.9109709940766136, - 0.7773129211290076, - 0.797289499142891, - 0.8671353892632258, - 0.9692798587891852, - 0.8580230489206241, - 0.5281420707432365, - 0.6604574054902705, - 0.4831629564826287, - 0.6147410178210764, - 0.4354317732819633, - 0.4972437691788727, - 0.573571474117008, - 0.6091684319404607, - 0.6026894679197076, - 0.5310746697560634, - 0.4639600524008003, - 0.4669021069555322, - 0.4541559728103285, - 0.4541559728103285, - 0.4541559728103285 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Literacy rate
Year=%{x}
value=%{y}", - "legendgroup": "Literacy rate", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Literacy rate", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0.0064244465787094, - 0.0128488931574189, - 0.0192733397361304, - 0.0256977863148399, - 0.0321222328935494, - 0.0385466794722589, - 0.0449711260509684, - 0.0513955726296779, - 0.0578200192083893, - 0.0642444657870988, - 0.0706689123658083, - 0.1031727076942855, - 0.2107866246601834, - 0.3321197973886504, - 0.4478333918295067, - 0.5635469862703631, - 0.6792605807112175, - 0.7949741751520739, - 0.9106877695929302, - 0.9015836540238858, - 0.8924795384548396, - 0.954324182316986, - 0.9558661967589638, - 0.9525921418528696, - 0.9877967988403278, - 0.9938983994201648, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Mortality-infants
Year=%{x}
value=%{y}", - "legendgroup": "Mortality-infants", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Mortality-infants", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1, - 0.9424458204334364, - 0.8803715170278638, - 0.814891640866873, - 0.7472755417956657, - 0.6791950464396285, - 0.611702786377709, - 0.5471826625386997, - 0.4865015479876161, - 0.430030959752322, - 0.3801857585139319, - 0.336594427244582, - 0.2996594427244582, - 0.2678018575851393, - 0.2402476780185758, - 0.2153250773993808, - 0.1923839009287925, - 0.1703715170278637, - 0.1490712074303405, - 0.1284210526315789, - 0.1088854489164086, - 0.0908978328173374, - 0.0743962848297213, - 0.0600928792569659, - 0.0480185758513931, - 0.0375541795665634, - 0.0285448916408668, - 0.0205572755417956, - 0.0130650154798761, - 0.0063777089783281, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Net migration
Year=%{x}
value=%{y}", - "legendgroup": "Net migration", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Net migration", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.499473824614879, - 0.499473824614879, - 0.499473824614879, - 0.5111103390077045, - 0.5227468534005298, - 0.5343833677933553, - 0.5460198821861807, - 0.5576563965790061, - 0.4806313869064479, - 0.4036063772338898, - 0.3265813675613317, - 0.2495563578887735, - 0.1725313482162153, - 0.1380250785729723, - 0.1035188089297292, - 0.0690125392864861, - 0.034506269643243, - 0, - 0.0680699580649701, - 0.1361399161299402, - 0.2042098741949104, - 0.2722798322598805, - 0.3403497903248507, - 0.4722798322598806, - 0.6042098741949105, - 0.7361399161299402, - 0.8680699580649701, - 1, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Ninis
Year=%{x}
value=%{y}", - "legendgroup": "Ninis", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Ninis", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.5000000000000003, - 1, - 0.9258188459990768, - 0.8516376919981536, - 0.5992293430305621, - 0.5356455492446868, - 0.4181117250478335, - 0.2427745855927336, - 0.3545279312619583, - 0.265895948446464, - 0.4855491711854481, - 0.5414260277723154, - 0.8535645181740235, - 0.5472061387954343, - 0.6955684467972999, - 0.7610790667590444, - 0.5953756906788034, - 0.5953756906788034, - 0.5953756906788034 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=R&D GExp
Year=%{x}
value=%{y}", - "legendgroup": "R&D GExp", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "R&D GExp", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0409601409381193, - 0.0409601409381193, - 0.0409601409381193, - 0.0409601409381193, - 0.0409601409381193, - 0.0409601409381193, - 0.0409601409381193, - 0.0409601409381193, - 0.4179696102180137, - 0.3688614842545693, - 0.6809072891433603, - 0.6434706011891653, - 0.5373265800484474, - 0.5811495265360053, - 0.5114787491741909, - 0.4418079718123762, - 0.3721371944505615, - 0.3024664170887471, - 0.2327956397269326, - 0.163124862365118, - 0.0934540850033033, - 0.0237833076414889, - 0.0118916538207442, - 0, - 0.5793878000440429, - 0.776921382955296, - 0.8443074212728473, - 0.8612640387579826, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Renewable electricity
Year=%{x}
value=%{y}", - "legendgroup": "Renewable electricity", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Renewable electricity", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0435483870967741, - 0.0387096774193548, - 0.0387096774193548, - 0, - 0.0161290322580645, - 0.0532258064516129, - 0.0451612903225806, - 0.0741935483870967, - 0.0290322580645161, - 0.05, - 0.0806451612903225, - 0.0887096774193548, - 0.1258064516129032, - 0.1419354838709677, - 0.0725806451612903, - 0.3870967741935484, - 0.3870967741935484, - 0.4983870967741935, - 0.567741935483871, - 0.567741935483871, - 0.9112903225806452, - 0.914516129032258, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Suicide
Year=%{x}
value=%{y}", - "legendgroup": "Suicide", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Suicide", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.5555555555555556, - 0.5555555555555556, - 0.5555555555555556, - 0.5555555555555556, - 0.5555555555555556, - 0.5555555555555556, - 0.5555555555555556, - 0.5555555555555556, - 0.5555555555555556, - 0.5555555555555556, - 0.5555555555555556, - 0.3333333333333331, - 0.3333333333333331, - 0.4444444444444443, - 0.2222222222222219, - 0.1111111111111112, - 0.1111111111111112, - 0, - 0.1111111111111112, - 0.7777777777777776, - 1, - 0.7777777777777776, - 0.6666666666666669, - 0.5555555555555556, - 0.3333333333333331, - 0.1111111111111112, - 0, - 0.1111111111111112, - 0.2222222222222219, - 0.2222222222222219, - 0.2222222222222219, - 0.2222222222222219 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Workers high education
Year=%{x}
value=%{y}", - "legendgroup": "Workers high education", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Workers high education", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.4865665659282546, - 0.4865665659282546, - 0.4865665659282546, - 0.4865665659282546, - 0.4865665659282546, - 0.4865665659282546, - 0.4865665659282546, - 0.4865665659282546, - 0.4865665659282546, - 0.4865665659282546, - 0.4865665659282546, - 0.4865665659282546, - 0.4865665659282546, - 0.186567249157919, - 0.4626865501684151, - 0, - 0.4134325230988535, - 0.9880594227620222, - 0.8059696053893182, - 0.8462687688884497, - 0.8626867779116426, - 0.898507370909443, - 1, - 0.8835822187200335, - 0.8671642096968555, - 0.7074626899663259, - 0.822387614412509, - 0.7298509876084981, - 0.9059705163622228, - 0.7014924013473296, - 0.7014924013473296, - 0.7014924013473296 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "variable" - }, - "tracegroupgap": 0 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "PER" - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "value" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "variable=Alcohol per capita
Year=%{x}
value=%{y}", - "legendgroup": "Alcohol per capita", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Alcohol per capita", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.9488636363636364, - 0.9488636363636364, - 0.9488636363636364, - 0.9488636363636364, - 0.9488636363636364, - 0.9488636363636364, - 0.9488636363636364, - 0.9488636363636364, - 0.9488636363636364, - 0.9488636363636364, - 0.9488636363636364, - 0.9590909090909092, - 0.969318181818182, - 0.9795454545454544, - 0.9897727272727272, - 1, - 0.9715909090909092, - 0.943181818181818, - 0.9147727272727274, - 0.8863636363636365, - 0.8579545454545454, - 0.7878787878787881, - 0.7178030303030303, - 0.6477272727272728, - 0.5776515151515152, - 0.5075757575757577, - 0.3383838383838384, - 0.1691919191919192, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Education GExp
Year=%{x}
value=%{y}", - "legendgroup": "Education GExp", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Education GExp", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.0617845310471904, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-agriculture
Year=%{x}
value=%{y}", - "legendgroup": "Employment-agriculture", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-agriculture", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.8082192794924924, - 0.8082192794924924, - 0.6773211592035225, - 0.599695695140066, - 1, - 0.9421614644722196, - 0.9436834242396418, - 0.5312024251488962, - 0.4048706196299551, - 0.4353119923171863, - 0.4992389475383211, - 0.3531202134837056, - 0.4018265549391903, - 0.523592190844032, - 0.48249622884933, - 0.4505327512387551, - 0.3181126711823704, - 0.2298326178114432, - 0.1811264215118739, - 0.1582952831295147, - 0.1445966291312822, - 0.1004566024458186, - 0.0502283012229101, - 0.0182648236123396, - 0, - 0, - 0.0106545167295098, - 0.0182648236123396, - 0.031963477610572, - 0.0806697464880974, - 0.0806697464880974 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-industry
Year=%{x}
value=%{y}", - "legendgroup": "Employment-industry", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-industry", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.934684687103503, - 0.934684687103503, - 1, - 0.9605857536938228, - 0.6644144342487704, - 0.6542792809724578, - 0.5225225031719296, - 0.6903152860475501, - 0.7601352069741951, - 0.5585585082470331, - 0.5720721175459604, - 0.4887388021119174, - 0.33108117251261, - 0.2342342477796514, - 0.289414407399824, - 0.3265765644824615, - 0.4988739553882302, - 0.6058558186059729, - 0.5765767255761085, - 0.5213963511643956, - 0.4369368837228184, - 0.4200450331928063, - 0.435810946506813, - 0.4031531826628059, - 0.3322073245201555, - 0.2342342477796514, - 0.1193693205091352, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-services
Year=%{x}
value=%{y}", - "legendgroup": "Employment-services", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-services", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0.0174306323434181, - 0.0729503695257651, - 0.0735958390488166, - 0.1032923624775587, - 0.1781796331093125, - 0.25694021341621, - 0.2704972898160639, - 0.3731439365021506, - 0.3382826718153217, - 0.4480312071339045, - 0.518398959762202, - 0.5216270461827152, - 0.5074242539913951, - 0.5003228578957328, - 0.4570692580671368, - 0.4331826991511138, - 0.4706263344669907, - 0.5119432794580112, - 0.5661715850574142, - 0.5945771694400597, - 0.6068433067938033, - 0.6391222008515925, - 0.6875405419382763, - 0.7430602791206232, - 0.8050356966071546, - 0.8702392005142046, - 0.9347969886297828, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Exports-Commercial services
Year=%{x}
value=%{y}", - "legendgroup": "Exports-Commercial services", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Exports-Commercial services", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.2668288726682887, - 0.2895377128953771, - 0.3454987834549878, - 0.3641524736415247, - 0.5450121654501217, - 0.6066504460665044, - 0.5417680454176804, - 0.3227899432278994, - 0.4014598540145985, - 0.3373884833738848, - 0.2157339821573398, - 0.3657745336577453, - 0.0989456609894566, - 0, - 0.1889699918896999, - 0.3706407137064071, - 0.527169505271695, - 0.772911597729116, - 1, - 0.9318734793187348, - 0.6666666666666666, - 0.6699107866991079, - 0.8199513381995134, - 0.8548256285482563, - 0.8304947283049473, - 0.5985401459854015, - 0.3625304136253041, - 0.3625304136253041, - 0.3625304136253041, - 0.3625304136253041, - 0.3625304136253041 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Exports-G&S
Year=%{x}
value=%{y}", - "legendgroup": "Exports-G&S", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Exports-G&S", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0325411455689738, - 0.008490247578368, - 0, - 0.0027482251827153, - 0.0211209908438175, - 0.0506495878625207, - 0.0983982987110852, - 0.1003720820842052, - 0.0382695408369952, - 0.0727951068981334, - 0.2008683118990778, - 0.1295737650735249, - 0.1329614223135455, - 0.1333497567455342, - 0.2614585156273298, - 0.4371325695798272, - 0.5331910056446395, - 0.5818610829493118, - 0.8470977495651745, - 0.4566655565979723, - 1, - 0.820047670743639, - 0.8719424167635351, - 0.7902375297879067, - 0.6729029893699042, - 0.6729029893699042, - 0.6729029893699042, - 0.6729029893699042, - 0.6729029893699042, - 0.6729029893699042, - 0.6729029893699042 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Fertility rate
Year=%{x}
value=%{y}", - "legendgroup": "Fertility rate", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Fertility rate", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 0.935960591133005, - 0.8719211822660098, - 0.8111658456486043, - 0.7528735632183907, - 0.6995073891625615, - 0.6502463054187191, - 0.6050903119868638, - 0.5623973727422004, - 0.5229885057471264, - 0.4860426929392447, - 0.4507389162561576, - 0.4178981937602626, - 0.3866995073891626, - 0.3563218390804599, - 0.3275862068965517, - 0.2996715927750412, - 0.2725779967159276, - 0.2463054187192117, - 0.2216748768472906, - 0.1978653530377669, - 0.1756978653530377, - 0.1535303776683085, - 0.1313628899835797, - 0.1108374384236455, - 0.0903119868637109, - 0.0714285714285715, - 0.0525451559934319, - 0.0344827586206895, - 0.0164203612479474, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Foreign investment
Year=%{x}
value=%{y}", - "legendgroup": "Foreign investment", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Foreign investment", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.660656793303284, - 0.3947198969735995, - 0.5967482292337412, - 0.7556342562781713, - 0.5996458467482292, - 0.5289761751448808, - 0.4030907920154539, - 0.2207018673535093, - 0.0383129426915647, - 0.3480360592401803, - 0, - 0.1128461043142305, - 0.71216999356085, - 0.5566645202833226, - 0.5338055376690277, - 0.4439793947198969, - 1, - 0.0639085640695428, - 0.4610431423052157, - 0.640856406954282, - 0.8206696716033484, - 0.6116387636831938, - 0.4026078557630392, - 0.3625241468126207, - 0.487926593689633, - 0.6133290405666452, - 0.6685447520927238, - 0.6685447520927238, - 0.6685447520927238, - 0.6685447520927238, - 0.6685447520927238 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=GDP
Year=%{x}
value=%{y}", - "legendgroup": "GDP", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GDP", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0.0112473371970564, - 0.0272119498835328, - 0.0264355148653743, - 0.0226400045857654, - 0.0664177057563908, - 0.0505921357430406, - 0.0858657619024965, - 0.0985171270644732, - 0.1138381973430043, - 0.158018834008354, - 0.1713054979374306, - 0.1021190744247848, - 0.0807410365581258, - 0.1472125578212647, - 0.2234218656222465, - 0.3109528186328011, - 0.4190457317937514, - 0.6163649359246955, - 0.6482586292619205, - 0.7944329628558436, - 0.6175840457242894, - 0.7669843988423033, - 0.7432827336737141, - 1, - 1, - 1, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Health services use
Year=%{x}
value=%{y}", - "legendgroup": "Health services use", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Health services use", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.1074975912693932, - 0.2158050847533736, - 0.3249316621112003, - 0.381407045262369, - 0.4376427703902855, - 0.4938784924225669, - 0.5501142144548482, - 0.6063499395827646, - 0.6625856616150461, - 0.7188213836473231, - 0.7750571087752438, - 0.8312928308075208, - 0.8875285528398023, - 0.9437642779677188, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=International taxes
Year=%{x}
value=%{y}", - "legendgroup": "International taxes", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "International taxes", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Literacy rate
Year=%{x}
value=%{y}", - "legendgroup": "Literacy rate", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Literacy rate", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.0873995106606078, - 0.1747990213212123, - 0.2621985319818202, - 0.3495980426424281, - 0.4369975533030325, - 0.5243970639636404, - 0.5674800860942868, - 0.6105631082249332, - 0.5211335749369774, - 0.4317040416490252, - 0.542319119189086, - 0.6529341967291434, - 0.7635492742692042, - 0.874164351809265, - 1, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Mortality-infants
Year=%{x}
value=%{y}", - "legendgroup": "Mortality-infants", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Mortality-infants", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 0.9233910169161968, - 0.8635037915613455, - 0.818977250631927, - 0.7849504180439433, - 0.7445070970250827, - 0.6826754812366324, - 0.6037332296325102, - 0.5191522457709508, - 0.4406960917752284, - 0.3622399377795061, - 0.3136301769395294, - 0.27065914835699, - 0.2253548512541318, - 0.1713007972000777, - 0.1160801088858642, - 0.0672759090025277, - 0.0293602955473459, - 0.0071942446043165, - 0, - 0.0023332685203188, - 0.0071942446043165, - 0.0134162939918335, - 0.022749368073109, - 0.0334435154579039, - 0.1135524013221855, - 0.5706785922613261, - 0.5210966362045498, - 0.4755979000583317, - 0.4359323352129107, - 0.4052109663620455 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Net migration
Year=%{x}
value=%{y}", - "legendgroup": "Net migration", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Net migration", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 1, - 1, - 0.9989411572638012, - 0.9978823145276022, - 0.9968234717914032, - 0.9957646290552044, - 0.9947057863190056, - 0.9862163864076312, - 0.9777269864962568, - 0.9692375865848823, - 0.960748186673508, - 0.9522587867621336, - 0.8694731441098957, - 0.786687501457658, - 0.7039018588054201, - 0.6211162161531824, - 0.5383305735009446, - 0.4306644588007556, - 0.3229983441005667, - 0.2153322294003778, - 0.1076661147001889, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Ninis
Year=%{x}
value=%{y}", - "legendgroup": "Ninis", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Ninis", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.1511312260152037, - 0.1511312260152037, - 0.1511312260152037, - 0.1511312260152037, - 0.1511312260152037, - 0.1511312260152037, - 0.1511312260152037, - 0.1511312260152037, - 0.1511312260152037, - 0.1511312260152037, - 0.1511312260152037, - 0.1511312260152037, - 0.1511312260152037, - 0.1511312260152037, - 0.1511312260152037, - 0.1511312260152037, - 0.0941176419820435, - 0, - 0.0316742421202188, - 0.2950226400552747, - 0.6425338737775355, - 0.6515836818991357, - 0.7176469877485226, - 0.7309954072599221, - 0.7443438267713217, - 0.7576922462827215, - 0.7710406657941208, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=R&D GExp
Year=%{x}
value=%{y}", - "legendgroup": "R&D GExp", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "R&D GExp", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.1960688494325893, - 0.1960688494325893, - 0.1960688494325893, - 0.1960688494325893, - 0.1960688494325893, - 0.1960688494325893, - 0.1960688494325893, - 0.1960688494325893, - 0.1960688494325893, - 0.1960688494325893, - 0.1960688494325893, - 0.1960688494325893, - 0.1960688494325893, - 0.1960688494325893, - 0.1960688494325893, - 0.1960688494325893, - 0.8929793125916272, - 0.2613889341369387, - 0.4619101916707389, - 0.4733669978823912, - 0.1915078460118369, - 0, - 0.5274474670141717, - 0.8990063528261931, - 1, - 1, - 1, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Renewable electricity
Year=%{x}
value=%{y}", - "legendgroup": "Renewable electricity", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Renewable electricity", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Suicide
Year=%{x}
value=%{y}", - "legendgroup": "Suicide", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Suicide", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.9166666666666669, - 0.9166666666666669, - 0.9166666666666669, - 0.9166666666666669, - 0.9166666666666669, - 0.9166666666666669, - 0.9166666666666669, - 0.9166666666666669, - 0.9166666666666669, - 0.9166666666666669, - 0.9166666666666669, - 1, - 0.9166666666666669, - 0.7777777777777778, - 0.6666666666666666, - 0.638888888888889, - 0.4999999999999999, - 0.4444444444444445, - 0.3888888888888888, - 0.3055555555555556, - 0.361111111111111, - 0.4166666666666666, - 0.3055555555555556, - 0.111111111111111, - 0, - 0.0555555555555554, - 0.0277777777777778, - 0.0277777777777778, - 0.0277777777777778, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Workers high education
Year=%{x}
value=%{y}", - "legendgroup": "Workers high education", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Workers high education", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.741107076945354, - 0.741107076945354, - 0.741107076945354, - 0.741107076945354, - 0.741107076945354, - 0.741107076945354, - 0.741107076945354, - 0.741107076945354, - 0.741107076945354, - 0.741107076945354, - 0.741107076945354, - 0.741107076945354, - 0.741107076945354, - 0.741107076945354, - 0.741107076945354, - 0.741107076945354, - 0.8083000615176807, - 0.5415018153745949, - 0.3280626153456402, - 0.2984180307105844, - 0.355730492262048, - 0.2371536615080329, - 0.2055338769405147, - 0.1541504077053867, - 0.1027669384702587, - 0.0513834692351279, - 0, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "variable" - }, - "tracegroupgap": 0 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "VEN" - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "value" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "variable=Alcohol per capita
Year=%{x}
value=%{y}", - "legendgroup": "Alcohol per capita", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Alcohol per capita", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.7297297297297296, - 0.7297297297297296, - 0.7297297297297296, - 0.7297297297297296, - 0.7297297297297296, - 0.7297297297297296, - 0.7297297297297296, - 0.7297297297297296, - 0.7297297297297296, - 0.7297297297297296, - 0.7297297297297296, - 0.6837837837837839, - 0.6378378378378382, - 0.5918918918918914, - 0.5459459459459457, - 0.5, - 0.4000000000000002, - 0.3000000000000005, - 0.1999999999999995, - 0.0999999999999997, - 0, - 0.1999999999999995, - 0.4000000000000002, - 0.5999999999999998, - 0.8000000000000005, - 1, - 0.9819819819819816, - 0.9639639639639644, - 0.945945945945946, - 0.945945945945946, - 0.945945945945946, - 0.945945945945946 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Education GExp
Year=%{x}
value=%{y}", - "legendgroup": "Education GExp", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Education GExp", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.1786384713491346, - 0.2167809646353957, - 0.2891637467910652, - 0.7463491587862537, - 0.8090417730013287, - 0.7768083608953716, - 0.806916296619897, - 0.3421795386701551, - 0.5340936131209914, - 0.364250146990508, - 0.7856428993200073, - 0.9113106516809651, - 0.606402364941856, - 0.6724930722462994, - 1, - 0.6161585054937185, - 0.4798502774249035, - 0.647370097536216, - 0.7903586820082256, - 0.0955358952697305, - 0.438621172423947, - 0.438621172423947, - 0.438621172423947 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-agriculture
Year=%{x}
value=%{y}", - "legendgroup": "Employment-agriculture", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-agriculture", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1, - 1, - 0.979949892657856, - 0.952381054816438, - 0.917293247459618, - 0.8859649248604992, - 0.8583960870190811, - 0.8182956333186513, - 0.8032581723201168, - 0.8245614412481577, - 0.8345864949192356, - 0.8057644954919219, - 0.7719298497209979, - 0.7243106655212946, - 0.6591479361673933, - 0.6127819135535983, - 0.5313283225991127, - 0.4511278932305353, - 0.408521355374442, - 0.3571429254331786, - 0.3270675254038273, - 0.2556389881204197, - 0.2055137197650525, - 0.1040100214684227, - 0.0576439988546277, - 0.0300751610132101, - 0.0300751610132101, - 0.095238129383253, - 0.117794320881073, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-industry
Year=%{x}
value=%{y}", - "legendgroup": "Employment-industry", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-industry", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.7751473680290284, - 0.7751473680290284, - 0.7455620300051671, - 0.7455620300051671, - 0.7455620300051671, - 0.7218928566994871, - 0.6449703006725508, - 0.5976330826694147, - 0.4674548867046542, - 0.2011834586652936, - 0.0828398493533437, - 0, - 0.0177507513709918, - 0.0828398493533437, - 0.2011834586652936, - 0.2899406013450405, - 0.4674548867046542, - 0.6449703006725508, - 0.7278101500258924, - 0.8284018793585697, - 0.928993608691186, - 0.8579875935851317, - 0.7869815784790773, - 0.7159755633730229, - 0.8047338346611137, - 0.8284018793585697, - 0.57988120269014, - 0.5857984960165453, - 0.9230763153647809, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-services
Year=%{x}
value=%{y}", - "legendgroup": "Employment-services", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-services", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0.0260544725424598, - 0.0521089450849321, - 0.0868487150956374, - 0.1228284981501528, - 0.16625309234169, - 0.215880591476753, - 0.2580642260496428, - 0.292803996060348, - 0.3089326848033532, - 0.3548387249447482, - 0.3833746434370905, - 0.4168734538291483, - 0.4565756424521813, - 0.4838706013258629, - 0.5272951955174011, - 0.5707193164215135, - 0.5942928163015291, - 0.6253101807437291, - 0.6327540453059137, - 0.6215877751752239, - 0.6712157475977116, - 0.8982626092051544, - 0.9267990009849092, - 0.949131067958864, - 1, - 0.9342433388345072, - 0.8411907722204812, - 0.9416872033966924, - 0.9416872033966924, - 0.9416872033966924 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Exports-Commercial services
Year=%{x}
value=%{y}", - "legendgroup": "Exports-Commercial services", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Exports-Commercial services", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.0051332650998335, - 0.0042498662850452, - 0.0475695356652253, - 0.1054873704597817, - 0, - 0.0128095575930407, - 0.067105414634017, - 0.06244680202466, - 0.0393332700082113, - 0.0384245493670193, - 0.0547763771472911, - 0.0699731152240934, - 0.0353866759604675, - 0.0396972498964514, - 0.0955602552813321, - 0.1525035653985279, - 0.2338998909161632, - 0.3305579618833119, - 0.4288836462264953, - 0.4177891416363165, - 0.4894304754546213, - 0.544574970458898, - 0.6571869977930531, - 0.7393633203991171, - 0.7661146123316117, - 0.7553704693939602, - 0.7805007527094726, - 0.8700126216847197, - 1, - 0.9920281686980308, - 0.4554563859039827, - 0.6573498587028421 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Exports-G&S
Year=%{x}
value=%{y}", - "legendgroup": "Exports-G&S", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Exports-G&S", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0.0060111027252753, - 0.0102929805448722, - 0.0175298392514582, - 0.053160641459621, - 0.0727586911619504, - 0.0945371489885934, - 0.1120203136774794, - 0.0946356481096181, - 0.1117288556842274, - 0.1131260034475543, - 0.1002023521468242, - 0.0903554847961912, - 0.1096692819870587, - 0.1746627388158895, - 0.2582452471410143, - 0.3230944473686296, - 0.4091759643375821, - 0.5734048935773246, - 0.4797605388477139, - 0.6222567629679965, - 0.914250368391628, - 1, - 0.9890770850277508, - 0.895017024545962, - 0.6075025841581333, - 0.5366094691664365, - 0.6289869995039311, - 0.7261207450400181, - 0.6954140940206367, - 0.4555950769709765, - 0.4555950769709765 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Fertility rate
Year=%{x}
value=%{y}", - "legendgroup": "Fertility rate", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Fertility rate", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1, - 0.9733028222730742, - 0.9450800915331808, - 0.9130434782608696, - 0.8749046529366897, - 0.8321891685736081, - 0.786422578184592, - 0.740655987795576, - 0.6956521739130435, - 0.6529366895499618, - 0.610983981693364, - 0.5682684973302823, - 0.5240274599542336, - 0.4759725400457666, - 0.4263920671243327, - 0.3752860411899313, - 0.3257055682684974, - 0.2791762013729978, - 0.2364607170099161, - 0.1998474446987033, - 0.1685736079328757, - 0.1426392067124333, - 0.1212814645308924, - 0.1022120518688025, - 0.0854309687261633, - 0.0701754385964913, - 0.0549199084668192, - 0.0411899313501144, - 0.0274599542334096, - 0.0137299771167048, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Foreign investment
Year=%{x}
value=%{y}", - "legendgroup": "Foreign investment", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Foreign investment", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.9966214398032094, - 1, - 0.9838236641161444, - 0.9811681420937642, - 0.9431471881232912, - 0.9816237956737528, - 0.8454572084565757, - 0.7160300211359096, - 0.8948158224448739, - 0.9369135321532828, - 0.8896700671645179, - 0.8624108860734003, - 0.9445053486623312, - 0.976980679311795, - 0.836291879692069, - 0.6708660640237595, - 0.6680420913655833, - 0.5284234594394694, - 0.5368328258491205, - 0.7306690507832785, - 0.966166359948029, - 0.6191151126440503, - 0, - 0.4658891756590341, - 0.2219346647948019, - 0.541843823386211, - 0.4144714735392928, - 0.370383854742322, - 0.6227203203856084, - 0.3161992971115416, - 0.6470264023265232, - 0.6313798276385196 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=GDP
Year=%{x}
value=%{y}", - "legendgroup": "GDP", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GDP", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0.003983208461135, - 0.0316355949727038, - 0.0556514219069559, - 0.1012929785204264, - 0.1336132966503342, - 0.1475325881175062, - 0.1759507564888378, - 0.1513726660364429, - 0.1147031874504908, - 0.1556890228814682, - 0.1506786494247643, - 0.1499345076355491, - 0.1399976156540734, - 0.2071289974547471, - 0.292501586787061, - 0.340364967428232, - 0.4736792767167844, - 0.5813913202801705, - 0.5521064439643573, - 0.7141459319354176, - 0.8588806436871594, - 0.9665098938354852, - 1, - 0.996996437979352, - 0.734843574300372, - 0.7029631379672063, - 0.7898944923608415, - 0.8566499538722323, - 0.8244356953622146, - 0.6688968315576531, - 0.6688968315576531 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Health services use
Year=%{x}
value=%{y}", - "legendgroup": "Health services use", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Health services use", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.0509708778034318, - 0.1018487480506471, - 0.1526323984769075, - 0.2033108874529221, - 0.2538842504621922, - 0.3043529069514952, - 0.3547074717992095, - 0.4049590206245704, - 0.4551082620384195, - 0.5051465931450048, - 0.5550758283693977, - 0.604906800771964, - 0.6546316515512978, - 0.7042530859272633, - 0.7537799917228426, - 0.8032143300635569, - 0.8525503081352139, - 0.9017905707827653, - 0.9509377024762468, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=International taxes
Year=%{x}
value=%{y}", - "legendgroup": "International taxes", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "International taxes", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.0123245705431369, - 0.0246491410862738, - 0.0434799923850905, - 0.0623108436839072, - 0.0811416949827239, - 0.2644451922578659, - 0.4477486895330078, - 0.6310521868081498, - 0.8143556840832918, - 0.9976591813584336, - 0.7641729550084793, - 1, - 0.9168798190070429, - 0.7036359198683779, - 0.6803491373368793, - 0.5859725115802057, - 0.7817875765537484, - 0.6428906231507621, - 0.6374774983536672, - 0.5956166794182453, - 0.6781827604223514, - 0.6781827604223514, - 0.6781827604223514 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Literacy rate
Year=%{x}
value=%{y}", - "legendgroup": "Literacy rate", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Literacy rate", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0.0105011922556755, - 0.0210023845113479, - 0.0315035767670234, - 0.0751438047191908, - 0.1187840326713614, - 0.1624242606235288, - 0.2060644885756993, - 0.2497047165278667, - 0.2933449444800342, - 0.3369851724322046, - 0.3806254003843721, - 0.3904398222293339, - 0.2703979153320521, - 0.3473901612214361, - 0.5062259769378541, - 0.4770362881699889, - 0.5049464152252923, - 0.5504717862481222, - 0.5946213920919586, - 0.6387709979357982, - 0.6829206037796347, - 0.6957779468289527, - 0.7851670937433363, - 0.8331264680760259, - 0.8810858424087123, - 0.9153637491992312, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Mortality-infants
Year=%{x}
value=%{y}", - "legendgroup": "Mortality-infants", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Mortality-infants", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1, - 0.9693952180028128, - 0.9358087201125176, - 0.8983403656821378, - 0.8564275668073137, - 0.8111954992967652, - 0.7641068917018284, - 0.7171308016877637, - 0.6715049226441632, - 0.6282981715893108, - 0.5867791842475387, - 0.5466104078762306, - 0.5063291139240507, - 0.4671167369901547, - 0.4273417721518987, - 0.3863853727144866, - 0.3463853727144866, - 0.3075105485232067, - 0.2708860759493671, - 0.2377496483825597, - 0.2071448663853727, - 0.1795780590717299, - 0.1547679324894514, - 0.1318706047819972, - 0.110886075949367, - 0.0915893108298171, - 0.0735302390998593, - 0.0553023909985935, - 0.0369620253164557, - 0.0182278481012658, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Net migration
Year=%{x}
value=%{y}", - "legendgroup": "Net migration", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Net migration", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0.0612244897959183, - 0.1224489795918367, - 0.1836734693877551, - 0.2448979591836734, - 0.3061224489795918, - 0.3653378449825526, - 0.4245532409855134, - 0.4837686369884741, - 0.5429840329914349, - 0.6021994289943957, - 0.678333509569631, - 0.7544675901448662, - 0.8306016707201015, - 0.9067357512953368, - 0.982869831870572, - 0.9862958654964576, - 0.9897218991223432, - 0.9931479327482288, - 0.9965739663741144, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Ninis
Year=%{x}
value=%{y}", - "legendgroup": "Ninis", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Ninis", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 0.7944444020589224, - 0.8666665818956223, - 0.7533331976996556, - 0.696111043294272, - 0.6388888888888888, - 0.5111111534966335, - 0.4466665056016777, - 0.2911109924316445, - 0.2722220950656443, - 0.1711110009087444, - 0.1277777353922557, - 0.0499998728434221, - 0, - 0.0044443342420778, - 0.0933333502875445, - 0.1833332909478113, - 0.3344444698757666, - 0.3344444698757666, - 0.3344444698757666 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=R&D GExp
Year=%{x}
value=%{y}", - "legendgroup": "R&D GExp", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "R&D GExp", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.9635618310179912, - 0.9635618310179912, - 0.9635618310179912, - 0.9635618310179912, - 0.9635618310179912, - 0.9635618310179912, - 0.9635618310179912, - 0.8179799590070599, - 0.5453199726713732, - 0.2726599863356865, - 0, - 0.0104759735823275, - 0.0538032338874972, - 0.1482008654065132, - 0.1340241402869506, - 0.1188225916647688, - 0.1110794807560919, - 0.3106353905716237, - 0.4057162377590527, - 0.3762810293782737, - 0.3701890230015941, - 0.4324755181052152, - 0.5909246185379183, - 0.8034616260532909, - 1, - 0.909587793213391, - 0.7797198815759508, - 0.6426212707811432, - 0.595707128216807, - 0.595707128216807, - 0.595707128216807, - 0.595707128216807 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Renewable electricity
Year=%{x}
value=%{y}", - "legendgroup": "Renewable electricity", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Renewable electricity", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0.1891891891891892, - 0.4015444015444015, - 0.528957528957529, - 0.6023166023166023, - 0.5521235521235521, - 0.7413127413127413, - 0.4517374517374517, - 0.6023166023166023, - 0.6023166023166023, - 0.583011583011583, - 0.5984555984555985, - 0.6911196911196911, - 0.8185328185328186, - 0.9768339768339768, - 0.9305019305019304, - 0.9691119691119692, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Suicide
Year=%{x}
value=%{y}", - "legendgroup": "Suicide", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Suicide", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 0.9230769230769234, - 0.7692307692307694, - 0.692307692307692, - 0.6153846153846153, - 0.3076923076923073, - 0.3076923076923073, - 0.3076923076923073, - 0.3846153846153847, - 0.3076923076923073, - 0.0769230769230766, - 0, - 0.0769230769230766, - 0, - 0.0769230769230766, - 0.3076923076923073, - 0.3846153846153847, - 0.7692307692307694, - 0.2307692307692306, - 0.1538461538461536, - 0.1538461538461536, - 0.1538461538461536 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Workers high education
Year=%{x}
value=%{y}", - "legendgroup": "Workers high education", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Workers high education", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020, - 2021 - ], - "xaxis": "x", - "y": [ - 0.9821883742013924, - 0.9821883742013924, - 0.9821883742013924, - 0.9821883742013924, - 0.9821883742013924, - 0.9821883742013924, - 0.9821883742013924, - 0.9821883742013924, - 0.9821883742013924, - 0.9821883742013924, - 0.9821883742013924, - 0.9821883742013924, - 0.9821883742013924, - 1, - 0.8333326862261387, - 0.8091603201627591, - 0.4045801600813795, - 0, - 0.0534348773958321, - 0.2569970084233963, - 0.3842234616482236, - 0.4949108253917101, - 0.6399489044151433, - 0.5712465031944453, - 0.5674298649034258, - 0.5699739668771675, - 0.5038166382910122, - 0.4414759479958762, - 0.3091603201627662, - 0.2659028213226984, - 0.2659028213226984, - 0.2659028213226984 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "variable" - }, - "tracegroupgap": 0 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "COL" - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "value" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "variable=Alcohol per capita
Year=%{x}
value=%{y}", - "legendgroup": "Alcohol per capita", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Alcohol per capita", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.2000000000000009, - 0.4000000000000018, - 0.5999999999999981, - 0.799999999999999, - 1, - 0.9736842105263164, - 0.9473684210526327, - 0.9210526315789446, - 0.8947368421052609, - 0.8684210526315773, - 0.701754385964913, - 0.5350877192982441, - 0.3684210526315797, - 0.3684210526315797, - 0.3684210526315797 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Education GExp
Year=%{x}
value=%{y}", - "legendgroup": "Education GExp", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Education GExp", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0.0780578464820495, - 0.1915592533904282, - 0.2851094098288483, - 0.125346297943804, - 0.2101008657403134, - 0.2713994385954614, - 0.3700789598741479, - 0.4351297736947929, - 0.5001805875154374, - 0.523921567390445, - 0.4455353027664671, - 0.3409694898696981, - 0.3450645862726057, - 0.4105970476822607, - 0.4938873825438057, - 0.4473876441742935, - 0.5501709970262831, - 0.5382358425635971, - 0.658832634256844, - 0.7794294259500905, - 0.8144171803331057, - 0.7728598498933866, - 0.9714973816933375, - 0.9913519386800832, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-agriculture
Year=%{x}
value=%{y}", - "legendgroup": "Employment-agriculture", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-agriculture", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 1, - 0.8941642304424161, - 0.7487635250064467, - 0.7161225849685089, - 0.6656775558470155, - 0.6360039482680279, - 0.5380811281541946, - 0.5400593183502391, - 0.5390702704171201, - 0.5400593183502391, - 0.4569733491907981, - 0.4470821152212065, - 0.4569733491907981, - 0.4332344065297299, - 0.4134520329203435, - 0.3827893774082366, - 0.3293769214979869, - 0.2710188486029367, - 0.2176063926926871, - 0.1612265099936712, - 0.1266073797596891, - 0.0989119623767486, - 0.0494559811883743, - 0.0415430317446177, - 0.0395648415485783, - 0.0494559811883743, - 0.026706275120025, - 0.0237389426610662, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-industry
Year=%{x}
value=%{y}", - "legendgroup": "Employment-industry", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-industry", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.803571131224046, - 0.803571131224046, - 0.8373012989647423, - 0.9880949677794406, - 0.7539679656313976, - 0.7559521376681707, - 0.861110984963747, - 1, - 0.6507936688147082, - 0.2321428301112699, - 0.2261903140009902, - 0.3313491612965666, - 0.3194445075181416, - 0.2281744860377632, - 0.2678571698887202, - 0.1388890150362726, - 0.2063493505176264, - 0.2242061419642376, - 0.2559525161102747, - 0.1666666666666701, - 0.140872808630912, - 0.2242061419642376, - 0.3134919914078619, - 0.3234124731495343, - 0.2460316559264884, - 0.2043651784808731, - 0.1507936688146983, - 0.0972221591485433, - 0.0158729978519718, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-services
Year=%{x}
value=%{y}", - "legendgroup": "Employment-services", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-services", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0.0635143138658989, - 0.1136203823850835, - 0.2201834393121116, - 0.25617512612462, - 0.2392378142347159, - 0.2597036542489272, - 0.3824981559153387, - 0.5321102251129306, - 0.5335214209951026, - 0.5553987261009278, - 0.5666901776243835, - 0.5920960108545223, - 0.5949189410377433, - 0.6549047267793351, - 0.652787663746642, - 0.6845446860748744, - 0.7148905125209268, - 0.7854621518448882, - 0.8348626224229946, - 0.8292167620565457, - 0.8172197125920042, - 0.849682602070757, - 0.8821454915495166, - 0.8983766670794504, - 0.910374254962876, - 0.9456600746248566, - 0.9774170969530884, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Exports-Commercial services
Year=%{x}
value=%{y}", - "legendgroup": "Exports-Commercial services", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Exports-Commercial services", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0.0254971855565976, - 0.0463593636112856, - 0.0610910708217642, - 0.090861008784932, - 0.135910680897682, - 0.1587938860129279, - 0.1870757702788909, - 0.1926351910218197, - 0.1852810326899264, - 0.2052004579107957, - 0.2122794660328372, - 0.2351132946753162, - 0.2971065432146024, - 0.3830488875199039, - 0.4715241532449986, - 0.5361521611102426, - 0.6475004926168754, - 0.7931934970733407, - 0.5898748112192557, - 0.8132486925724444, - 1, - 0.9374692996047186, - 0.9175121843323628, - 0.7869967804252895, - 0.6835360409195923, - 0.67988498852789, - 0.7047042421869453, - 0.7196472990708339, - 0.6645051965096609, - 0.3964556116542231 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Exports-G&S
Year=%{x}
value=%{y}", - "legendgroup": "Exports-G&S", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Exports-G&S", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0.0128108932547825, - 0.0302014677047605, - 0.0236508638224022, - 0.0579459038776576, - 0.121485471900314, - 0.118750709825701, - 0.1387898008569263, - 0.1190515105265577, - 0.1285799782439955, - 0.1539977215499259, - 0.1448167920489196, - 0.1433953401298089, - 0.1918871435626447, - 0.3399946239936977, - 0.4570944092528136, - 0.6749430650068347, - 0.7986532356651351, - 0.753340196540277, - 0.6283702082126845, - 0.8488900599924903, - 1, - 0.9513795398231916, - 0.9335227405201744, - 0.8936269268899159, - 0.7206846476813981, - 0.7069672409797848, - 0.8050139250380262, - 0.8766084109719551, - 0.7992452977120924, - 0.8169633735275004 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Fertility rate
Year=%{x}
value=%{y}", - "legendgroup": "Fertility rate", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Fertility rate", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 0.9783057851239666, - 0.9452479338842972, - 0.9018595041322311, - 0.8481404958677684, - 0.7861570247933881, - 0.7179752066115702, - 0.6477272727272726, - 0.5795454545454546, - 0.5154958677685948, - 0.4586776859504133, - 0.4111570247933883, - 0.3729338842975205, - 0.3429752066115702, - 0.3223140495867768, - 0.3078512396694214, - 0.2995867768595041, - 0.296487603305785, - 0.2933884297520661, - 0.2902892561983469, - 0.2820247933884296, - 0.2675619834710744, - 0.2458677685950412, - 0.2169421487603305, - 0.1818181818181817, - 0.143595041322314, - 0.1053719008264463, - 0.0692148760330577, - 0.0392561983471074, - 0.0165289256198347, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Foreign investment
Year=%{x}
value=%{y}", - "legendgroup": "Foreign investment", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Foreign investment", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.7518810785827357, - 0.7490651656083751, - 0.7593171508308185, - 0.7553349214986563, - 0.6863031693377283, - 0.6519193898613247, - 0.556799281609333, - 0.5485807206040622, - 0.5913910044745732, - 0.3942928501704389, - 0.7377260885992586, - 0.6271090048730149, - 0.6518053580815549, - 0.6446781262173344, - 0.4941988022352871, - 0.4507420648038507, - 0.4476997774794725, - 0.2383472112922012, - 0.1933343681925672, - 0.3672836142053877, - 0.3713608486797612, - 0.4516482690960726, - 0.0972995424515541, - 0, - 0.1008024944654919, - 0.4751633383444335, - 0.546811155355804, - 0.626190931488157, - 0.3783579285035102, - 0.5847652134138891, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=GDP
Year=%{x}
value=%{y}", - "legendgroup": "GDP", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GDP", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0.0178512632967851, - 0.0485916448143637, - 0.061196474413291, - 0.0903529296690858, - 0.1525127060015439, - 0.1698784589163547, - 0.1960179358527882, - 0.1832562374869812, - 0.1590420318277881, - 0.1692029633698879, - 0.1431836587583959, - 0.1384830505685453, - 0.1608179875121886, - 0.2499321393751904, - 0.3397552367362022, - 0.4600890371702541, - 0.5312457321140157, - 0.5540566606612505, - 0.5266458688826984, - 0.7011464956744751, - 0.8286316375026984, - 0.8848611294377509, - 0.9274464206037372, - 0.8599774519724926, - 0.7971222154822829, - 0.8217804790088695, - 0.9223429328191382, - 1, - 0.9312321082647989, - 0.8312333040175074 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Health services use
Year=%{x}
value=%{y}", - "legendgroup": "Health services use", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Health services use", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.0709909445841261, - 0.1392431087056606, - 0.2010391404236482, - 0.2626064917603754, - 0.3238642501798328, - 0.3848927402976962, - 0.4456446177661666, - 0.5061635266449722, - 0.5664104437219257, - 0.6263912262822857, - 0.6861371759266591, - 0.7456211529115423, - 0.8048586146423942, - 0.86384813644384, - 0.9182439852600678, - 0.957004051527921, - 1, - 0.9999993282752324, - 0.9999991671128586, - 0.9999994997519952 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=International taxes
Year=%{x}
value=%{y}", - "legendgroup": "International taxes", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "International taxes", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.1311554543591009, - 0.2496743320776842, - 0.3787732844298772, - 0.5513166682463306, - 0.5869362528461503, - 0.8211967386919942, - 1, - 0.9979060268954314, - 0.9915138984709588, - 0.821064487759074, - 0.8498951911356608, - 0.7654088868218558, - 0.6030929084845587, - 0.3403323465944283, - 0.2137241201455642, - 0.2711430668550508, - 0.3328601688844413, - 0.3029273744001869, - 0.3273871844437636, - 0, - 0.2338634134406623, - 0.2864308537018138, - 0.3307265204999967, - 0.3081292444283784, - 0.3838611982375359, - 0.3537671656200474, - 0.3197507797294587, - 0.3196483006857211, - 0.4034266405339587, - 0.3493534326611312, - 0.3493534326611312 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Literacy rate
Year=%{x}
value=%{y}", - "legendgroup": "Literacy rate", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Literacy rate", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.1666666666666643, - 0.3333333333333357, - 0.5, - 0.6666666666666643, - 0.8333333333333357, - 1, - 0.9709746375157712, - 0.7313680070594862, - 0.4917613766031942, - 0.3830902825322801, - 0.2744191884613661, - 0.4257458882955123, - 0.5770725881296515, - 0.4594534970407763, - 0.3418344059519083, - 0.3418344059519083, - 0.3418344059519083, - 0.3418344059519083 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Mortality-infants
Year=%{x}
value=%{y}", - "legendgroup": "Mortality-infants", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Mortality-infants", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 1, - 1, - 0.8776402039329935, - 0.7687545520757465, - 0.6780772032046614, - 0.6067006554989075, - 0.5549890750182083, - 0.5094683175528041, - 0.4530225782957028, - 0.3831026948288419, - 0.3182811361981063, - 0.2723962126729788, - 0.2425345957756737, - 0.2221412964311726, - 0.2068463219227967, - 0.1981063364894391, - 0.1970138383102694, - 0.1995630007283321, - 0.1991988346686088, - 0.1930080116533139, - 0.1824471959213401, - 0.1707938820101966, - 0.157319737800437, - 0.1394756008739985, - 0.1165331391114348, - 0.0914056809905316, - 0.0666423889293517, - 0.0433357611070648, - 0.021849963583394, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Net migration
Year=%{x}
value=%{y}", - "legendgroup": "Net migration", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Net migration", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0.0196477641768673, - 0.0392955283537347, - 0.058943292530602, - 0.0785910567074694, - 0.0982388208843367, - 0.1269547839120659, - 0.1556707469397951, - 0.1843867099675243, - 0.2131026729952535, - 0.2418186360229827, - 0.3228066450162378, - 0.4037946540094929, - 0.4847826630027479, - 0.565770671996003, - 0.646758680989258, - 0.7174069447914064, - 0.7880552085935548, - 0.8587034723957032, - 0.9293517361978516, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Ninis
Year=%{x}
value=%{y}", - "legendgroup": "Ninis", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Ninis", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 0.8350977473482166, - 0.6701954946964334, - 0.6897394504241979, - 0.7092834061519625, - 0.5570032818667646, - 0.4047231575815668, - 0.5036645402369455, - 0.602605922892324, - 0.6339577337436013, - 0.6653095445948788, - 0.5705755639486163, - 0.4758415833023542, - 0.3811076026560918, - 0.3634636954896097, - 0.3458197883231279, - 0.3281758811566458, - 0.4180239117013563, - 0.507871942246067, - 0.5977199727907775, - 0.2711727157810525, - 0.2703583648772043, - 0.1644950771998636, - 0.2003257403615426, - 0.2263843479985618, - 0.269544013973348, - 0.1009772599150112, - 0.0545603456463749, - 0, - 0.0529316438386705, - 0.4079805611969673 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=R&D GExp
Year=%{x}
value=%{y}", - "legendgroup": "R&D GExp", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "R&D GExp", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.7681917946986331, - 0.7681917946986331, - 0.7681917946986331, - 0.7681917946986331, - 0.7681917946986331, - 0.7681917946986331, - 0.7681917946986331, - 0.7681917946986331, - 0.7681917946986331, - 0.7681917946986331, - 0.7681917946986331, - 0.7681917946986331, - 0.7681917946986331, - 0.7681917946986331, - 0.7681917946986331, - 0.7681917946986331, - 0.7681917946986331, - 0.7681917946986331, - 0.7681917946986331, - 0.3807192301198719, - 0, - 0.3709268951544823, - 0.5525915920985992, - 1, - 0.7692047948674656, - 0.8654398109066356, - 0.6731386121897689, - 0.4492655748775961, - 0.4492655748775961, - 0.4492655748775961, - 0.4492655748775961 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Renewable electricity
Year=%{x}
value=%{y}", - "legendgroup": "Renewable electricity", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Renewable electricity", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.0064478311840562, - 0.0269636576787807, - 0.235052754982415, - 0.2371043376318874, - 0.2476553341148886, - 0.2749120750293083, - 0.2335873388042204, - 0.235052754982415, - 0.0644783118405627, - 0.0202227432590855, - 0, - 0.3323563892145369, - 0.2960140679953106, - 0.2558616647127784, - 0.3215123094958968, - 0.2508792497069168, - 0.1456623681125439, - 0.5169988276670574, - 0.6389214536928488, - 1, - 0.4800703399765533, - 0.4800703399765533, - 0.4800703399765533, - 0.4800703399765533, - 0.4800703399765533, - 0.4800703399765533, - 0.4800703399765533, - 0.4800703399765533, - 0.4800703399765533, - 0.4800703399765533, - 0.4800703399765533 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Suicide
Year=%{x}
value=%{y}", - "legendgroup": "Suicide", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Suicide", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.5172413793103451, - 0.5172413793103451, - 0.5172413793103451, - 0.5172413793103451, - 0.5172413793103451, - 0.5172413793103451, - 0.5172413793103451, - 0.5172413793103451, - 0.5172413793103451, - 0.5172413793103451, - 0.5172413793103451, - 0.5172413793103451, - 0.275862068965517, - 0.3103448275862066, - 0.4482758620689653, - 0.3103448275862066, - 0.4137931034482758, - 0.7586206896551725, - 0.8275862068965516, - 0.8965517241379314, - 0.9655172413793104, - 1, - 0.5862068965517242, - 0.3448275862068967, - 0.3793103448275862, - 0.4137931034482758, - 0.4137931034482758, - 0.1724137931034483, - 0, - 0.0689655172413791, - 0.0689655172413791 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Workers high education
Year=%{x}
value=%{y}", - "legendgroup": "Workers high education", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Workers high education", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.9274613959234024, - 0.9274613959234024, - 0.9274613959234024, - 0.9274613959234024, - 0.9274613959234024, - 0.9274613959234024, - 0.9274613959234024, - 0.9274613959234024, - 0.9274613959234024, - 0.9419691167387222, - 0.956476837554042, - 0.9709845583693602, - 0.98549227918468, - 1, - 0.9240070825612532, - 0.8480141651225082, - 0.7720212476837613, - 0.6601902408894422, - 0.5483592340951213, - 0.4365282273008021, - 0.4676160592958571, - 0.5453371216800558, - 0.6282386658431137, - 0.5207253860407649, - 0.3471505867819672, - 0.479274613959235, - 0.3536266831377442, - 0.2888597899938283, - 0.3018129709697412, - 0.3808286596664582, - 0 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "variable" - }, - "tracegroupgap": 0 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "CHL" - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "value" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [], - "layout": { - "height": 600, - "legend": { - "tracegroupgap": 0 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "PAN" - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "value" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "variable=Alcohol per capita
Year=%{x}
value=%{y}", - "legendgroup": "Alcohol per capita", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Alcohol per capita", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 0.967088607594937, - 0.934177215189874, - 0.9012658227848096, - 0.8683544303797467, - 0.8354430379746837, - 0.6784810126582285, - 0.521518987341772, - 0.3645569620253168, - 0.2075949367088603, - 0.0506329113924051, - 0.040506329113924, - 0.030379746835443, - 0.020253164556962, - 0.010126582278481, - 0, - 0.0464135021097051, - 0.0928270042194091, - 0.1392405063291143, - 0.1392405063291143, - 0.1392405063291143 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Education GExp
Year=%{x}
value=%{y}", - "legendgroup": "Education GExp", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Education GExp", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0.2537702014448703, - 0.3539891431481543, - 0.4542080848514382, - 0.5544270265547221, - 0.2221795553334407, - 0.2578545863434888, - 0.2672390562492506, - 0.3647690312697259, - 0.3946491230219102, - 0.4060186239948775, - 0.4173881249678448, - 0.4579053374848815, - 0.4353290413301242, - 0.7133195411084235, - 0.6568781882781561, - 0.6706565311370275, - 0.7233099216644033, - 0.6515286995050618, - 0.6813499966928088, - 0.7095958853603975, - 0.7149229178762406, - 0.8574614589381205, - 1, - 0.8356348955539011, - 0.5133041075352577 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-agriculture
Year=%{x}
value=%{y}", - "legendgroup": "Employment-agriculture", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-agriculture", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 1, - 0.9812500476837128, - 0.96875, - 0.9287500381469757, - 0.9600000381469754, - 0.9500000476837128, - 0.9049999713897628, - 0.8824999332428005, - 0.8262500762939384, - 0.7937500476837135, - 0.7187500000000012, - 0.7512500286102262, - 0.6637500524520888, - 0.6225000619888266, - 0.6687500476837139, - 0.5175000429153395, - 0.4212501049041773, - 0.3112500905990651, - 0.2425000667572028, - 0.183750033378603, - 0.1262500286102283, - 0.0475000143051161, - 0, - 0.1575000286102282, - 0.3012501001358026, - 0.2887500524520902, - 0.3350000381469777, - 0.3125000000000026, - 0.2587500810623153, - 0.2587500810623153 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-industry
Year=%{x}
value=%{y}", - "legendgroup": "Employment-industry", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-industry", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 1, - 0.9837398531574084, - 0.9339431292224774, - 0.976626063143311, - 0.7693089001460336, - 0.6941056725400278, - 0.7266259662251898, - 0.6636179456692511, - 0.6890244493403157, - 0.6036585814986386, - 0.7042683127756988, - 0.6189024449340321, - 0.5884147180632453, - 0.5680894375919031, - 0.5223576534494861, - 0.5355691439067306, - 0.5863821512488596, - 0.5254065036710593, - 0.3648374082233869, - 0.3201219074881574, - 0.2804878237888976, - 0.1707317356833437, - 0, - 0.1209350117484125, - 0.2703251835532262, - 0.2154472364185732, - 0.1991870895759918, - 0.3231707577097308, - 0.2347560396464806, - 0.2347560396464806 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Employment-services
Year=%{x}
value=%{y}", - "legendgroup": "Employment-services", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Employment-services", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0.0173670214868932, - 0.0504200333769917, - 0.0448178786823818, - 0.1450980291588164, - 0.1910363815218227, - 0.1932773288830649, - 0.2380952075654527, - 0.2492997306631714, - 0.3109242871378878, - 0.2896357146230685, - 0.3221288102356125, - 0.3775908683211547, - 0.4078430165724502, - 0.4117645676003822, - 0.4722686503944745, - 0.4879552819231884, - 0.570307853509661, - 0.6901957591257261, - 0.7406160062112231, - 0.7887953059354768, - 0.8840336454118605, - 1, - 0.8627448591885364, - 0.7154060963769767, - 0.7512603993228876, - 0.7394957462391035, - 0.6812323970977544, - 0.7535013466841302, - 0.7535013466841302 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Exports-Commercial services
Year=%{x}
value=%{y}", - "legendgroup": "Exports-Commercial services", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Exports-Commercial services", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0.0081265381643341, - 0.0230867561486766, - 0.0432799721933857, - 0.0594817446195014, - 0.0542795289006663, - 0.0739514972954409, - 0.0837078578360665, - 0.1536274840377025, - 0.306458637006, - 0.1739116887999278, - 0.174737449052274, - 0.1699191995386889, - 0.1889293858701987, - 0.2219438633947229, - 0.2644148160275775, - 0.3043698889654036, - 0.3596492036401, - 0.4095037887428081, - 0.3636866194507012, - 0.4521585289004677, - 0.5308521657348808, - 0.5741518509018811, - 0.6504784859144538, - 0.6660473398132671, - 0.7270677150766289, - 0.8131670758790821, - 0.8190915687484652, - 0.9382189476263052, - 1, - 0.7589531329798987 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Exports-G&S
Year=%{x}
value=%{y}", - "legendgroup": "Exports-G&S", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Exports-G&S", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0.0227453514452709, - 0.0538796511145271, - 0.0756519709260276, - 0.0912681952166342, - 0.1241232385849309, - 0.1371276867059752, - 0.166169675015745, - 0.2048472039249415, - 0.207397198482701, - 0.2264963937335213, - 0.2278233696855156, - 0.2293986243994143, - 0.2557034004369932, - 0.2975674850353237, - 0.3406969897245013, - 0.3975886972963993, - 0.4516027340501784, - 0.504170438917283, - 0.4383717197859718, - 0.5248427026099874, - 0.6016249592214199, - 0.6552352999064252, - 0.6873454456760132, - 0.724023884760265, - 0.7550933040916737, - 0.8289782874849426, - 0.9011257550104452, - 0.9632862743326208, - 1, - 0.8841003403924843 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Fertility rate
Year=%{x}
value=%{y}", - "legendgroup": "Fertility rate", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Fertility rate", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 0.9539857420609203, - 0.9027867790019444, - 0.8476992871030461, - 0.7906675307841866, - 0.7316915100453664, - 0.6701231367465975, - 0.6066104990278679, - 0.542449773169151, - 0.4782890473104343, - 0.4160725858716785, - 0.3590408295528191, - 0.307193778353856, - 0.2611795204147765, - 0.2229423201555411, - 0.1911860012961762, - 0.1665586519766688, - 0.1471160077770576, - 0.1309138042773817, - 0.1179520414776409, - 0.1062864549578742, - 0.0959170447180816, - 0.0855476344782889, - 0.0758263123784834, - 0.0661049902786778, - 0.0550874918988982, - 0.0440699935191185, - 0.0330524951393389, - 0.0213869086195722, - 0.0103694102397926, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Foreign investment
Year=%{x}
value=%{y}", - "legendgroup": "Foreign investment", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Foreign investment", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 0.9953336784243708, - 0.976969445126733, - 0.9683894344876728, - 0.9501380960668648, - 0.935649920207048, - 0.90183414143398, - 0.9084196759157148, - 0.8314630015434419, - 0.8291277220951054, - 0.8285364498154765, - 0.8520994814274343, - 0.8380200528008177, - 0.8262553264374002, - 0.730232585226936, - 0.5413496471835255, - 0.4650062483791232, - 0.3785248944240232, - 0.2175983728266041, - 0.5559776756383381, - 0.4623156048492687, - 0.1842152822987705, - 0.3819626843012838, - 0.1566560476996097, - 0, - 0.1040252526821108, - 0.2599232705743844, - 0.0623352742336175, - 0.1444860814298405, - 0.0461350471769384, - 0.4415972379958625 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=GDP
Year=%{x}
value=%{y}", - "legendgroup": "GDP", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "GDP", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0.0254379405233159, - 0.0488742015924928, - 0.0663313913135603, - 0.0818197432035533, - 0.1005275451452156, - 0.1022381041486946, - 0.1182792092899244, - 0.13660737720388, - 0.146384600755857, - 0.1593857658560704, - 0.1758786576483961, - 0.1862048079712593, - 0.1980781076968892, - 0.2210186011399955, - 0.2455220048328482, - 0.2913555144239309, - 0.3627927231323684, - 0.4299100145381598, - 0.4289499093538503, - 0.547400263240806, - 0.6348556917172128, - 0.7114311574701393, - 0.7751382336918852, - 0.7934164228500818, - 0.8692460833145108, - 0.9104566664831168, - 0.9390549137329324, - 0.97168142003271, - 1, - 0.9618586243308728 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Health services use
Year=%{x}
value=%{y}", - "legendgroup": "Health services use", - "line": { - "color": "#636efa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Health services use", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.0580521989392189, - 0.1144237303042081, - 0.1691253276175992, - 0.2221309998266807, - 0.273389677710351, - 0.3229894046818659, - 0.3709135277343454, - 0.41721785167629, - 0.4779717721667544, - 0.5363842157023919, - 0.5924521773723294, - 0.6459805233991314, - 0.6971079908033081, - 0.7459798327926386, - 0.7927602591883014, - 0.8375904366143819, - 0.8805963383520613, - 0.9219172077873656, - 0.9616766789354122, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=International taxes
Year=%{x}
value=%{y}", - "legendgroup": "International taxes", - "line": { - "color": "#EF553B", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "International taxes", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0.0093592503808103, - 0.0211744742658049, - 0.0306664799711657, - 0.0428578439423867, - 0.07952043940575, - 0.0320604108789459, - 0.0623950025387354, - 0.0777503684117433, - 0.0529915003830749, - 0.0490973441962602, - 0.0608240645315545, - 0.0718870082440962, - 0.0973317787829422, - 0.1429951852508296, - 0.1845675151338189, - 0.2401028951338058, - 0.316006559669152, - 0.3846690501846809, - 0.3070861573045284, - 0.3523931031915496, - 0.4923951051638055, - 0.5384774235753087, - 0.6130331125318184, - 0.68518493611491, - 0.7746588317263146, - 0.923820666547536, - 0.956806667653825, - 0.983704292722972, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Literacy rate
Year=%{x}
value=%{y}", - "legendgroup": "Literacy rate", - "line": { - "color": "#00cc96", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Literacy rate", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0.0770337852856177, - 0.1540675705712354, - 0.2311013558568532, - 0.3081351411424709, - 0.3851689264280886, - 0.4622027117137064, - 0.5392364969993241, - 0.6162702822849419, - 0.6933040675705596, - 0.7703378528561773, - 0.8473716381417951, - 0.8691756898358244, - 0.8909797415298536, - 0.9127837932238828, - 0.934587844917912, - 0.9563918966119416, - 0.9781959483059708, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Mortality-infants
Year=%{x}
value=%{y}", - "legendgroup": "Mortality-infants", - "line": { - "color": "#ab63fa", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Mortality-infants", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 1, - 0.9751381215469612, - 0.9267955801104972, - 0.8674033149171271, - 0.8259668508287292, - 0.8149171270718232, - 0.8038674033149171, - 0.7693370165745856, - 0.7113259668508287, - 0.6312154696132597, - 0.5400552486187845, - 0.4585635359116022, - 0.4019337016574585, - 0.3687845303867403, - 0.3522099447513812, - 0.3411602209944751, - 0.3314917127071823, - 0.319060773480663, - 0.3024861878453038, - 0.2859116022099447, - 0.2693370165745856, - 0.2486187845303867, - 0.2168508287292817, - 0.1781767955801105, - 0.1464088397790055, - 0.1243093922651933, - 0.1091160220994475, - 0.0980662983425414, - 0.0787292817679558, - 0.0469613259668508, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Net migration
Year=%{x}
value=%{y}", - "legendgroup": "Net migration", - "line": { - "color": "#FFA15A", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Net migration", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.7090984556813466, - 0.7090984556813466, - 0.7090984556813466, - 0.7672787645450773, - 0.8254590734088079, - 0.8836393822725386, - 0.9418196911362692, - 1, - 0.8633585710400893, - 0.7267171420801786, - 0.590075713120268, - 0.4534342841603572, - 0.3167928552004465, - 0.2840086447494597, - 0.2512244342984729, - 0.2184402238474859, - 0.1856560133964991, - 0.1528718029455123, - 0.1222974423564098, - 0.0917230817673073, - 0.0611487211782049, - 0.0305743605891024, - 0, - 0.0038414747599078, - 0.0076829495198156, - 0.0115244242797234, - 0.0153658990396312, - 0.0192073737995391, - 0.0192073737995391, - 0.0192073737995391, - 0.0192073737995391 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Ninis
Year=%{x}
value=%{y}", - "legendgroup": "Ninis", - "line": { - "color": "#19d3f3", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Ninis", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.9976743659952744, - 0.9976743659952744, - 0.9976743659952744, - 0.9976743659952744, - 0.9976743659952744, - 0.9976743659952744, - 0.9976743659952744, - 0.9976743659952744, - 0.9976743659952744, - 0.9976743659952744, - 0.9976743659952744, - 0.9976743659952744, - 0.7534881183301085, - 1, - 0.6627906099920996, - 0.3116278595251416, - 0.2674417005738503, - 0.0348836229323626, - 0, - 0.5395346691571534, - 0.4116279038820793, - 0.9441856710250311, - 0.1000000443569368, - 0.2139534491729543, - 0.3000001330708114, - 0.3604652864859088, - 0.7790696488128434, - 0.6465116155282934, - 0.3953489094182724, - 0.1348836672892995, - 0.6604649759873732 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=R&D GExp
Year=%{x}
value=%{y}", - "legendgroup": "R&D GExp", - "line": { - "color": "#FF6692", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "R&D GExp", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.1217883677543939, - 0.1217883677543939, - 0.1217883677543939, - 0.1217883677543939, - 0.1217883677543939, - 0.1217883677543939, - 0.1217883677543939, - 0.1001538310476875, - 0, - 0.3357117140706314, - 0.4796582986940725, - 0.4255228619120871, - 0.3713874251301017, - 0.3172519883481163, - 0.3533531895394888, - 0.4426079272084574, - 0.5318626648774261, - 0.3006578732039407, - 0.3984878735312407, - 0.8304258174320033, - 0.7146925015546756, - 0.6587241842044972, - 0.947533793735476, - 0.9462573233397704, - 1, - 0.6001701960527608, - 0.6215101626681505, - 0.5698949366674304, - 0.3807154780217981, - 0.3807154780217981, - 0.3807154780217981 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Renewable electricity
Year=%{x}
value=%{y}", - "legendgroup": "Renewable electricity", - "line": { - "color": "#B6E880", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Renewable electricity", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0, - 0.0037921880925293, - 0.1839211224876754, - 0.1839211224876754, - 0.1839211224876754, - 0.1839211224876754, - 0.2062950322335988, - 0.2396662874478574, - 0.2597648843382631, - 0.3447098976109215, - 0.4459613196814562, - 0.4501327265832385, - 0.5434205536594615, - 0.4831247629882442, - 0.5635191505498672, - 0.5396283655669322, - 0.5927189988623436, - 0.5912021236253319, - 0.5350777398558969, - 0.6200227531285551, - 0.6370875995449374, - 0.69548729616989, - 0.8005309063329541, - 0.8297307546454304, - 0.931740614334471, - 1, - 1, - 1, - 1, - 1, - 1 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Suicide
Year=%{x}
value=%{y}", - "legendgroup": "Suicide", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Suicide", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.375, - 0.375, - 0.375, - 0.375, - 0.375, - 0.375, - 0.375, - 0.375, - 0.375, - 0.375, - 0.375, - 0, - 0.5624999999999999, - 0.84375, - 0.9062499999999998, - 0.4374999999999998, - 1, - 0.15625, - 0.0937499999999999, - 0.1249999999999998, - 0.53125, - 0.53125, - 0.4374999999999998, - 0.46875, - 0.1249999999999998, - 0.46875, - 0.78125, - 0.2812499999999998, - 0.625, - 0.9062499999999998, - 0.9062499999999998 - ], - "yaxis": "y" - }, - { - "hovertemplate": "variable=Workers high education
Year=%{x}
value=%{y}", - "legendgroup": "Workers high education", - "line": { - "color": "#FECB52", - "dash": "solid" - }, - "marker": { - "symbol": "circle" - }, - "mode": "lines", - "name": "Workers high education", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 1990, - 1991, - 1992, - 1993, - 1994, - 1995, - 1996, - 1997, - 1998, - 1999, - 2000, - 2001, - 2002, - 2003, - 2004, - 2005, - 2006, - 2007, - 2008, - 2009, - 2010, - 2011, - 2012, - 2013, - 2014, - 2015, - 2016, - 2017, - 2018, - 2019, - 2020 - ], - "xaxis": "x", - "y": [ - 0.924000040690106, - 0.924000040690106, - 0.924000040690106, - 0.924000040690106, - 0.924000040690106, - 0.924000040690106, - 0.924000040690106, - 0.924000040690106, - 0.924000040690106, - 0.924000040690106, - 0.924000040690106, - 0.924000040690106, - 0.9253326416015606, - 0.9413330078125076, - 0.7599995930989603, - 0.8266662597656269, - 1, - 0.9573333740234394, - 0.824000040690106, - 0.7573333740234394, - 0.179999796549481, - 0, - 0.4906667073567727, - 0.7266662597656269, - 0.530666097005214, - 0.5666666666666667, - 0.1079996744791742, - 0.1506663004557329, - 0.1173329671223996, - 0.6533325195312538, - 0.4173329671223996 - ], - "yaxis": "y" - } - ], - "layout": { - "height": 600, - "legend": { - "title": { - "text": "variable" - }, - "tracegroupgap": 0 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "CRI" - }, - "width": 800, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "Year" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "value" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "for i in range(0,len(latam_list)):\n", - " dat=df.loc[df.loc[:, 'Country'] == latam_list[i]]\n", - " a=px.line(dat, x=\"Year\", y=myvariables, width=800, height=600,title=latam_list[i])\n", - " display(a)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "columns=['Country','Year','Gender equality','Exports-Commercial services','Renewable electricity','Employment-agriculture','Employment-industry','Employment-services','Exports-G&S','Fertility rate','Foreign investment','GDP','Education GExp','Workers high education','Literacy rate','Mortality-pollution','Net migration','Mortality-infants','Health services use','R&D GExp','Ninis','Suicide','International taxes','Alcohol per capita']\n", - "clist=df['Country'].unique()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The following loop has been created to test if each variable for each country follows a normal distribution and also to present in an orderly manner all the correlations between the GDP and the variables so they can be understood on a lower scale." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def multcolumn(frame):\n", - " for u in range(2, len(columns)):\n", - " name2=columns[u]+'.^2'\n", - " name3=columns[u]+'.^3'\n", - " namelog=columns[u]+'.log'\n", - " frame.loc[:,name2] = frame[columns[u]]**2\n", - " frame.loc[:,name3] = frame[columns[u]]**3\n", - " frame.loc[:,namelog] = np.log(frame[columns[u]])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MEX-Gender equality\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "MEX-Exports-Commercial services\n", - "Statistical=0.734, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "MEX-Renewable electricity\n", - "Statistical=0.964, p=0.361\n", - "Data is NORMAL ( H0 not denied )\n", - "MEX-Employment-agriculture\n", - "Statistical=0.852, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "MEX-Employment-industry\n", - "Statistical=0.960, p=0.291\n", - "Data is NORMAL ( H0 not denied )\n", - "MEX-Employment-services\n", - "Statistical=0.872, p=0.002\n", - "It does NOT seem normal( Denies H0 )\n", - "MEX-Exports-G&S\n", - "Statistical=0.951, p=0.169\n", - "Data is NORMAL ( H0 not denied )\n", - "MEX-Fertility rate\n", - "Statistical=0.927, p=0.036\n", - "It does NOT seem normal( Denies H0 )\n", - "MEX-Foreign investment\n", - "Statistical=0.929, p=0.042\n", - "It does NOT seem normal( Denies H0 )\n", - "MEX-GDP\n", - "Statistical=0.967, p=0.445\n", - "Data is NORMAL ( H0 not denied )\n", - "MEX-Education GExp\n", - "Statistical=0.928, p=0.039\n", - "It does NOT seem normal( Denies H0 )\n", - "MEX-Workers high education\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "MEX-Literacy rate\n", - "Statistical=0.856, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "MEX-Mortality-pollution\n", - "Statistical=0.926, p=0.035\n", - "It does NOT seem normal( Denies H0 )\n", - "MEX-Net migration\n", - "Statistical=0.931, p=0.046\n", - "It does NOT seem normal( Denies H0 )\n", - "MEX-Mortality-infants\n", - "Statistical=0.927, p=0.036\n", - "It does NOT seem normal( Denies H0 )\n", - "MEX-Health services use\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "MEX-R&D GExp\n", - "Statistical=0.780, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "MEX-Ninis\n", - "Statistical=0.751, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "MEX-Suicide\n", - "Statistical=0.928, p=0.038\n", - "It does NOT seem normal( Denies H0 )\n", - "MEX-International taxes\n", - "Statistical=0.862, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "MEX-Alcohol per capita\n", - "Statistical=0.846, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "MEX\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
 IndicatorTypeGDP-R^2Behaviour
2Employment-agricultureNone0.921578Negative
4Exports-G&SNone0.920006Positive
3Employment-servicesNone0.915810Positive
9Mortality-infantsNone0.912197Negative
8Literacy rateNone0.910581Positive
5Fertility rateNone0.896893Negative
11Net migrationCuadratic0.828048Positive
7Health services useNone0.798128Positive
10SuicideNone0.785826Positive
12Alcohol per capitaCuadratic0.752071Negative
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BRA-Gender equality\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "BRA-Exports-Commercial services\n", - "Statistical=0.824, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "BRA-Renewable electricity\n", - "Statistical=0.875, p=0.002\n", - "It does NOT seem normal( Denies H0 )\n", - "BRA-Employment-agriculture\n", - "Statistical=0.904, p=0.008\n", - "It does NOT seem normal( Denies H0 )\n", - "BRA-Employment-industry\n", - "Statistical=0.890, p=0.003\n", - "It does NOT seem normal( Denies H0 )\n", - "BRA-Employment-services\n", - "Statistical=0.932, p=0.045\n", - "It does NOT seem normal( Denies H0 )\n", - "BRA-Exports-G&S\n", - "Statistical=0.846, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "BRA-Fertility rate\n", - "Statistical=0.866, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "BRA-Foreign investment\n", - "Statistical=0.861, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "BRA-GDP\n", - "Statistical=0.937, p=0.062\n", - "Data is NORMAL ( H0 not denied )\n", - "BRA-Education GExp\n", - "Statistical=0.907, p=0.009\n", - "It does NOT seem normal( Denies H0 )\n", - "BRA-Workers high education\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "BRA-Literacy rate\n", - "Statistical=0.856, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "BRA-Mortality-pollution\n", - "Statistical=0.672, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "BRA-Net migration\n", - "Statistical=0.785, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "BRA-Mortality-infants\n", - "Statistical=0.861, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "BRA-Health services use\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "BRA-R&D GExp\n", - "Statistical=0.679, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "BRA-Ninis\n", - "Statistical=0.834, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "BRA-Suicide\n", - "Statistical=0.906, p=0.009\n", - "It does NOT seem normal( Denies H0 )\n", - "BRA-International taxes\n", - "Statistical=0.797, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "BRA-Alcohol per capita\n", - "Statistical=0.842, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "BRA\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
 IndicatorTypeGDP-R^2Behaviour
5Exports-G&SCuadratic0.910308Positive
0Exports-Commercial servicesNone0.906864Positive
1Foreign investmentNone0.785408Negative
6Fertility rateLogarithmic0.775957Negative
4Employment-agricultureCuadratic0.770973Negative
3Renewable electricityNone0.756093Positive
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ARG-Gender equality\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "ARG-Exports-Commercial services\n", - "Statistical=0.767, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "ARG-Renewable electricity\n", - "Statistical=0.879, p=0.002\n", - "It does NOT seem normal( Denies H0 )\n", - "ARG-Employment-agriculture\n", - "Statistical=0.956, p=0.227\n", - "Data is NORMAL ( H0 not denied )\n", - "ARG-Employment-industry\n", - "Statistical=0.915, p=0.017\n", - "It does NOT seem normal( Denies H0 )\n", - "ARG-Employment-services\n", - "Statistical=0.932, p=0.048\n", - "It does NOT seem normal( Denies H0 )\n", - "ARG-Exports-G&S\n", - "Statistical=0.864, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "ARG-Fertility rate\n", - "Statistical=0.907, p=0.011\n", - "It does NOT seem normal( Denies H0 )\n", - "ARG-Foreign investment\n", - "Statistical=0.880, p=0.002\n", - "It does NOT seem normal( Denies H0 )\n", - "ARG-GDP\n", - "Statistical=0.898, p=0.006\n", - "It does NOT seem normal( Denies H0 )\n", - "ARG-Education GExp\n", - "Statistical=0.931, p=0.047\n", - "It does NOT seem normal( Denies H0 )\n", - "ARG-Workers high education\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "ARG-Literacy rate\n", - "Statistical=0.827, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "ARG-Mortality-pollution\n", - "Statistical=0.776, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "ARG-Net migration\n", - "Statistical=0.745, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "ARG-Mortality-infants\n", - "Statistical=0.954, p=0.204\n", - "Data is NORMAL ( H0 not denied )\n", - "ARG-Health services use\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "ARG-R&D GExp\n", - "Statistical=0.737, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "ARG-Ninis\n", - "Statistical=0.772, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "ARG-Suicide\n", - "Statistical=0.843, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "ARG-International taxes\n", - "Statistical=0.871, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "ARG-Alcohol per capita\n", - "Statistical=0.909, p=0.012\n", - "It does NOT seem normal( Denies H0 )\n", - "ARG\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
 IndicatorTypeGDP-R^2Behaviour
1Literacy rateNone0.843882Positive
3Exports-Commercial servicesCuadratic0.835598Positive
6Alcohol per capitaLogarithmic0.835137Positive
2Net migrationNone0.814017Positive
5R&D GExpLogarithmic0.783710Positive
4Renewable electricityCubic0.769916Positive
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PER-Gender equality\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "PER-Exports-Commercial services\n", - "Statistical=0.918, p=0.018\n", - "It does NOT seem normal( Denies H0 )\n", - "PER-Renewable electricity\n", - "Statistical=0.866, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "PER-Employment-agriculture\n", - "Statistical=0.811, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "PER-Employment-industry\n", - "Statistical=0.951, p=0.154\n", - "Data is NORMAL ( H0 not denied )\n", - "PER-Employment-services\n", - "Statistical=0.904, p=0.008\n", - "It does NOT seem normal( Denies H0 )\n", - "PER-Exports-G&S\n", - "Statistical=0.861, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "PER-Fertility rate\n", - "Statistical=0.848, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "PER-Foreign investment\n", - "Statistical=0.905, p=0.008\n", - "It does NOT seem normal( Denies H0 )\n", - "PER-GDP\n", - "Statistical=0.915, p=0.015\n", - "It does NOT seem normal( Denies H0 )\n", - "PER-Education GExp\n", - "Statistical=0.845, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "PER-Workers high education\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "PER-Literacy rate\n", - "Statistical=0.858, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "PER-Mortality-pollution\n", - "Statistical=0.936, p=0.058\n", - "Data is NORMAL ( H0 not denied )\n", - "PER-Net migration\n", - "Statistical=0.772, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "PER-Mortality-infants\n", - "Statistical=0.865, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "PER-Health services use\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "PER-R&D GExp\n", - "Statistical=0.919, p=0.019\n", - "It does NOT seem normal( Denies H0 )\n", - "PER-Ninis\n", - "Statistical=0.854, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "PER-Suicide\n", - "Statistical=0.873, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "PER-International taxes\n", - "Statistical=0.770, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "PER-Alcohol per capita\n", - "Statistical=0.924, p=0.026\n", - "It does NOT seem normal( Denies H0 )\n", - "PER\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
 IndicatorTypeGDP-R^2Behaviour
7Literacy rateNone0.981591Positive
8Renewable electricityCuadratic0.964792Positive
6Health services useNone0.950532Positive
4Exports-G&SNone0.949986Positive
9Employment-servicesCuadratic0.929864Positive
11Mortality-infantsLogarithmic0.912324Negative
2Employment-agricultureNone0.901629Negative
10Fertility rateLogarithmic0.863525Negative
3Exports-Commercial servicesNone0.832625Positive
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VEN-Gender equality\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "VEN-Exports-Commercial services\n", - "Statistical=0.683, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "VEN-Renewable electricity\n", - "Statistical=0.407, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "VEN-Employment-agriculture\n", - "Statistical=0.909, p=0.012\n", - "It does NOT seem normal( Denies H0 )\n", - "VEN-Employment-industry\n", - "Statistical=0.959, p=0.272\n", - "Data is NORMAL ( H0 not denied )\n", - "VEN-Employment-services\n", - "Statistical=0.958, p=0.263\n", - "Data is NORMAL ( H0 not denied )\n", - "VEN-Exports-G&S\n", - "Statistical=0.946, p=0.119\n", - "Data is NORMAL ( H0 not denied )\n", - "VEN-Fertility rate\n", - "Statistical=0.874, p=0.002\n", - "It does NOT seem normal( Denies H0 )\n", - "VEN-Foreign investment\n", - "Statistical=0.936, p=0.066\n", - "Data is NORMAL ( H0 not denied )\n", - "VEN-GDP\n", - "Statistical=0.941, p=0.087\n", - "Data is NORMAL ( H0 not denied )\n", - "VEN-Education GExp\n", - "Statistical=0.818, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "VEN-Workers high education\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "VEN-Literacy rate\n", - "Statistical=0.781, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "VEN-Mortality-pollution\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "VEN-Net migration\n", - "Statistical=0.834, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "VEN-Mortality-infants\n", - "Statistical=0.914, p=0.016\n", - "It does NOT seem normal( Denies H0 )\n", - "VEN-Health services use\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "VEN-R&D GExp\n", - "Statistical=0.775, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "VEN-Ninis\n", - "Statistical=0.759, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "VEN-Suicide\n", - "Statistical=0.716, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "VEN-International taxes\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "VEN-Alcohol per capita\n", - "Statistical=0.826, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "VEN\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
 IndicatorTypeGDP-R^2Behaviour
7Net migrationNone0.956769Negative
9SuicideNone0.950687Negative
5Health services useNone0.941372Positive
6Literacy rateNone0.929998Positive
11Fertility rateLogarithmic0.860478Negative
13Alcohol per capitaCubic0.846460Negative
10Employment-agricultureLogarithmic0.846406Negative
8NinisNone0.797741Positive
12R&D GExpLogarithmic0.791297Positive
3Exports-G&SNone0.777485Positive
2Employment-servicesNone0.773967Positive
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COL-Gender equality\n", - "Statistical=0.957, p=0.229\n", - "Data is NORMAL ( H0 not denied )\n", - "COL-Exports-Commercial services\n", - "Statistical=0.900, p=0.006\n", - "It does NOT seem normal( Denies H0 )\n", - "COL-Renewable electricity\n", - "Statistical=0.898, p=0.006\n", - "It does NOT seem normal( Denies H0 )\n", - "COL-Employment-agriculture\n", - "Statistical=0.883, p=0.002\n", - "It does NOT seem normal( Denies H0 )\n", - "COL-Employment-industry\n", - "Statistical=0.889, p=0.003\n", - "It does NOT seem normal( Denies H0 )\n", - "COL-Employment-services\n", - "Statistical=0.925, p=0.028\n", - "It does NOT seem normal( Denies H0 )\n", - "COL-Exports-G&S\n", - "Statistical=0.851, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "COL-Fertility rate\n", - "Statistical=0.886, p=0.003\n", - "It does NOT seem normal( Denies H0 )\n", - "COL-Foreign investment\n", - "Statistical=0.901, p=0.007\n", - "It does NOT seem normal( Denies H0 )\n", - "COL-GDP\n", - "Statistical=0.907, p=0.010\n", - "It does NOT seem normal( Denies H0 )\n", - "COL-Education GExp\n", - "Statistical=0.880, p=0.002\n", - "It does NOT seem normal( Denies H0 )\n", - "COL-Workers high education\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "COL-Literacy rate\n", - "Statistical=0.855, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "COL-Mortality-pollution\n", - "Statistical=0.826, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "COL-Net migration\n", - "Statistical=0.927, p=0.033\n", - "It does NOT seem normal( Denies H0 )\n", - "COL-Mortality-infants\n", - "Statistical=0.921, p=0.023\n", - "It does NOT seem normal( Denies H0 )\n", - "COL-Health services use\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "COL-R&D GExp\n", - "Statistical=0.797, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "COL-Ninis\n", - "Statistical=0.827, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "COL-Suicide\n", - "Statistical=0.907, p=0.009\n", - "It does NOT seem normal( Denies H0 )\n", - "COL-International taxes\n", - "Statistical=0.798, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "COL-Alcohol per capita\n", - "Statistical=0.832, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "COL\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
 IndicatorTypeGDP-R^2Behaviour
5Exports-G&SNone0.964646Positive
11NinisNone0.917990Negative
2Employment-agricultureNone0.894700Negative
4Exports-Commercial servicesNone0.879453Positive
13Renewable electricityCubic0.869699Positive
15Net migrationCubic0.864357Positive
6Fertility rateNone0.830613Negative
3Employment-servicesNone0.814804Positive
10Mortality-infantsNone0.813618Negative
8Health services useNone0.806753Positive
12SuicideNone0.779785Negative
14Workers high educationCubic0.754164Negative
9Literacy rateNone0.750022Positive
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CHL-Gender equality\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "CHL-Exports-Commercial services\n", - "Statistical=0.771, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "CHL-Renewable electricity\n", - "Statistical=0.933, p=0.053\n", - "Data is NORMAL ( H0 not denied )\n", - "CHL-Employment-agriculture\n", - "Statistical=0.925, p=0.033\n", - "It does NOT seem normal( Denies H0 )\n", - "CHL-Employment-industry\n", - "Statistical=0.843, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "CHL-Employment-services\n", - "Statistical=0.921, p=0.025\n", - "It does NOT seem normal( Denies H0 )\n", - "CHL-Exports-G&S\n", - "Statistical=0.924, p=0.031\n", - "It does NOT seem normal( Denies H0 )\n", - "CHL-Fertility rate\n", - "Statistical=0.847, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "CHL-Foreign investment\n", - "Statistical=0.912, p=0.015\n", - "It does NOT seem normal( Denies H0 )\n", - "CHL-GDP\n", - "Statistical=0.963, p=0.348\n", - "Data is NORMAL ( H0 not denied )\n", - "CHL-Education GExp\n", - "Statistical=0.865, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "CHL-Workers high education\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "CHL-Literacy rate\n", - "Statistical=0.835, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "CHL-Mortality-pollution\n", - "Statistical=0.867, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "CHL-Net migration\n", - "Statistical=0.851, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "CHL-Mortality-infants\n", - "Statistical=0.848, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "CHL-Health services use\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "CHL-R&D GExp\n", - "Statistical=0.833, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "CHL-Ninis\n", - "Statistical=0.984, p=0.910\n", - "Data is NORMAL ( H0 not denied )\n", - "CHL-Suicide\n", - "Statistical=0.728, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "CHL-International taxes\n", - "Statistical=0.903, p=0.009\n", - "It does NOT seem normal( Denies H0 )\n", - "CHL-Alcohol per capita\n", - "Statistical=0.925, p=0.032\n", - "It does NOT seem normal( Denies H0 )\n", - "CHL\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
 IndicatorTypeGDP-R^2Behaviour
10Net migrationCuadratic0.970016Positive
6Health services useNone0.947701Positive
4Exports-G&SNone0.918738Positive
7Employment-agricultureLogarithmic0.905977Negative
8Employment-servicesCuadratic0.901296Positive
9Workers high educationCubic0.889408Negative
3Exports-Commercial servicesNone0.828029Positive
2Education GExpNone0.798479Positive
11Mortality-infantsLogarithmic0.764060Negative
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CRI-Gender equality\n", - "Statistical=0.957, p=0.247\n", - "Data is NORMAL ( H0 not denied )\n", - "CRI-Exports-Commercial services\n", - "Statistical=0.764, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "CRI-Renewable electricity\n", - "Statistical=0.941, p=0.086\n", - "Data is NORMAL ( H0 not denied )\n", - "CRI-Employment-agriculture\n", - "Statistical=0.904, p=0.009\n", - "It does NOT seem normal( Denies H0 )\n", - "CRI-Employment-industry\n", - "Statistical=0.951, p=0.163\n", - "Data is NORMAL ( H0 not denied )\n", - "CRI-Employment-services\n", - "Statistical=0.938, p=0.071\n", - "Data is NORMAL ( H0 not denied )\n", - "CRI-Exports-G&S\n", - "Statistical=0.913, p=0.016\n", - "It does NOT seem normal( Denies H0 )\n", - "CRI-Fertility rate\n", - "Statistical=0.927, p=0.037\n", - "It does NOT seem normal( Denies H0 )\n", - "CRI-Foreign investment\n", - "Statistical=0.856, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "CRI-GDP\n", - "Statistical=0.888, p=0.004\n", - "It does NOT seem normal( Denies H0 )\n", - "CRI-Education GExp\n", - "Statistical=0.861, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "CRI-Workers high education\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "CRI-Literacy rate\n", - "Statistical=0.852, p=0.001\n", - "It does NOT seem normal( Denies H0 )\n", - "CRI-Mortality-pollution\n", - "Statistical=0.821, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "CRI-Net migration\n", - "Statistical=0.816, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "CRI-Mortality-infants\n", - "Statistical=0.915, p=0.017\n", - "It does NOT seem normal( Denies H0 )\n", - "CRI-Health services use\n", - "Statistical=nan, p=1.000\n", - "Data is NORMAL ( H0 not denied )\n", - "CRI-R&D GExp\n", - "Statistical=0.838, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "CRI-Ninis\n", - "Statistical=0.830, p=0.000\n", - "It does NOT seem normal( Denies H0 )\n", - "CRI-Suicide\n", - "Statistical=0.929, p=0.042\n", - "It does NOT seem normal( Denies H0 )\n", - "CRI-International taxes\n", - "Statistical=0.927, p=0.037\n", - "It does NOT seem normal( Denies H0 )\n", - "CRI-Alcohol per capita\n", - "Statistical=0.914, p=0.017\n", - "It does NOT seem normal( Denies H0 )\n", - "CRI\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
 IndicatorTypeGDP-R^2Behaviour
16Literacy rateCuadratic0.982076Positive
6Exports-G&SNone0.979859Positive
9Health services useNone0.977659Positive
10International taxesNone0.971802Positive
5Exports-Commercial servicesNone0.970797Positive
11Renewable electricityCuadratic0.959768Positive
18Mortality-infantsLogarithmic0.924853Negative
13Fertility rateLogarithmic0.923296Negative
17Net migrationLogarithmic0.900249Negative
2Alcohol per capitaNone0.871295Negative
12Employment-industryLogarithmic0.842319Negative
7Foreign investmentNone0.839332Negative
4Employment-servicesNone0.809260Positive
15Workers high educationCubic0.775853Negative
14Education GExpCuadratic0.771182Positive
3Employment-agricultureNone0.758186Negative
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "multcolumn(df)\n", - "for i in range(0,len(clist)):\n", - " dat=df.loc[df.loc[:, 'Country'] == clist[i]]\n", - " for e in range(2,len(columns)):\n", - " data=dat.iloc[:, e]\n", - " stat, p = shapiro(data)\n", - " print(clist[i] +\"-\"+ columns[e])\n", - " print('Statistical=%.3f, p=%.3f' % (stat, p))\n", - " alpha = 0.05\n", - " if p > alpha:\n", - " print('Data is NORMAL ( H0 not denied )')\n", - " else:\n", - " print('It does NOT seem normal( Denies H0 )')\n", - " print(clist[i])\n", - " cor=dat.corr()\n", - " cor.loc[:,'GDP-R^2']=cor['GDP']**2\n", - " cor.loc[:,'Indicator']=cor.index \n", - " cor[['Indicator','Type']]=cor.Indicator.str.split('.',expand=True)\n", - " corcolumn=cor[['Indicator','Type', 'GDP-R^2','GDP']]\n", - " corcolumn=corcolumn.loc[corcolumn.loc[:,'GDP-R^2']>=0.75]\n", - " id=corcolumn.groupby('Indicator')['GDP-R^2'].transform(max)==corcolumn['GDP-R^2']\n", - " corcolumn[id]\n", - " max_df=pd.DataFrame(corcolumn[id])\n", - " max_df['Behaviour']=np.where(max_df['GDP']>0, 'Positive', 'Negative')\n", - " max_df['Type']=max_df['Type'].replace(['None','^2','^3','log'],['Linear','Cuadratic','Cubic','Logarithmic'])\n", - " max_df.drop(\"GDP\",axis=1,inplace=True)\n", - " max_df=max_df.reset_index(drop=True)\n", - " max_df = max_df.drop(max_df[max_df['Indicator']=='Year'].index)\n", - " max_df = max_df.drop(max_df[max_df['Indicator']=='GDP'].index)\n", - " max_df = max_df.drop(max_df[max_df['Indicator']=='Unnamed: 0'].index)\n", - " max_df=max_df.sort_values(by = 'GDP-R^2',ascending = False).style.background_gradient()\n", - " display(max_df)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3.10.4 ('.venv': poetry)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.4" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "292912297167048338b5d1136ec8c661b8a2f1d3fcecd6650d637809a967c218" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/WDI-Data extraction.ipynb b/WDI-Extraction.ipynb similarity index 74% rename from WDI-Data extraction.ipynb rename to WDI-Extraction.ipynb index c13b935..d31ec6b 100644 --- a/WDI-Data extraction.ipynb +++ b/WDI-Extraction.ipynb @@ -2,36 +2,49 @@ "cells": [ { "cell_type": "markdown", - "id": "292a79ab", "metadata": {}, "source": [ - "# Data extraction" + "# Extraction" ] }, { "cell_type": "markdown", - "id": "fa3ee36c", "metadata": {}, "source": [ - "In the following cells we are going to import the data from the [World Bank website](https://www.worldbank.org/en/home), Data sections, and decompress it. So later on, we can process it in the integration, and subsequent parts." + "Import libraries and functions." ] }, { "cell_type": "code", "execution_count": 1, - "id": "760c86c6", "metadata": {}, "outputs": [], "source": [ - "import requests\n", + "import pandas as pd\n", + "import numpy as np\n", "import glob\n", "import os\n", - "from zipfile import ZipFile" + "from zipfile import ZipFile\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This step has been depreciated due to security features added to the World Bank website. However, the data is still obtainable by openinng the `url`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the following cells we are going to import the data from the [World Bank website](https://www.worldbank.org/en/home), Data sections, and decompress it. So later on, we can process it in the integration, and subsequent parts." ] }, { "cell_type": "markdown", - "id": "4066cd3c", "metadata": {}, "source": [ "To download the data, we are going to use the `request` library as just to be sure that we do not run into any inconvinient we are going to use the `stream` and `verify` to have a simple and cleaner download. Therefore, at the end we will have the data downloaded in our working directory data by design. (It can be obtained with the following function `os.getcwd()`)" @@ -40,7 +53,6 @@ { "cell_type": "code", "execution_count": null, - "id": "fbae03c0", "metadata": {}, "outputs": [], "source": [ @@ -51,16 +63,14 @@ }, { "cell_type": "markdown", - "id": "ef0affe5", "metadata": {}, "source": [ - "Then we extract all the files that are contained in *WDI_csv.zip* , into the default directory in a new folder called *Data*. " + "Then we extract all the files that are contained in WDI_csv.zip , into the default directory in a new folder called Data." ] }, { "cell_type": "code", "execution_count": null, - "id": "1aa3d76c", "metadata": {}, "outputs": [], "source": [ @@ -72,34 +82,24 @@ }, { "cell_type": "markdown", - "id": "4d97ef77", "metadata": {}, "source": [ - "Finally we are going to delete the *WDI_csv.zip*." + "Finally we are going to delete the WDI_csv.zip." ] }, { "cell_type": "code", "execution_count": null, - "id": "566bfbbc", "metadata": {}, "outputs": [], "source": [ "os.remove(os.getcwd()+'/Data/'+\"/**.zip\")" ] - }, - { - "cell_type": "markdown", - "id": "61a307d6", - "metadata": {}, - "source": [ - "As this online extraction was giving us errors, we made it offline manually. We are working on a fix." - ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3.10.5 ('.venv': poetry)", + "display_name": "Python 3.9.12 ('base')", "language": "python", "name": "python3" }, @@ -113,14 +113,14 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.5" + "version": "3.9.12" }, "vscode": { "interpreter": { - "hash": "6fbc2df73014fb514f729a0213c4b355904e0c6715319af310302fb291c75f15" + "hash": "db2f77d7771d8a0072cf3f8e7f9965a22a9c65bf4f8ee5135b3d479c9967abaa" } } }, "nbformat": 4, - "nbformat_minor": 5 + "nbformat_minor": 2 } diff --git a/WDI-Data integration.ipynb b/WDI-Integration.ipynb similarity index 51% rename from WDI-Data integration.ipynb rename to WDI-Integration.ipynb index cee41f8..6c33e64 100644 --- a/WDI-Data integration.ipynb +++ b/WDI-Integration.ipynb @@ -1,5 +1,19 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Integration" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import libraries and functions." + ] + }, { "cell_type": "code", "execution_count": 1, @@ -10,24 +24,416 @@ "import numpy as np\n", "import glob\n", "import os\n", + "from zipfile import ZipFile\n", "import warnings\n", - "warnings.filterwarnings(\"ignore\")" + "warnings.filterwarnings(\"ignore\")\n", + "import functools as ft\n", + "from pandas.api.types import is_numeric_dtype" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# INTEGRATION" + "Firstly we load the database from World Data Bank that has been downloaded and extracted in the *Data extraction* notebook. We acquire it from the predetermined path that is on our computer." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Country NameCountry CodeIndicator NameIndicator Code196019611962196319641965...201320142015201620172018201920202021Unnamed: 66
0Africa Eastern and SouthernAFEAccess to clean fuels and technologies for coo...EG.CFT.ACCS.ZSNaNNaNNaNNaNNaNNaN...16.93600417.33789617.68709318.14097118.49134418.82552019.27221219.628009NaNNaN
1Africa Eastern and SouthernAFEAccess to clean fuels and technologies for coo...EG.CFT.ACCS.RU.ZSNaNNaNNaNNaNNaNNaN...6.4994716.6800666.8591107.0162387.1803647.3222947.5171917.651598NaNNaN
2Africa Eastern and SouthernAFEAccess to clean fuels and technologies for coo...EG.CFT.ACCS.UR.ZSNaNNaNNaNNaNNaNNaN...37.85539938.04678138.32625538.46842638.67004438.72278338.92701639.042839NaNNaN
3Africa Eastern and SouthernAFEAccess to electricity (% of population)EG.ELC.ACCS.ZSNaNNaNNaNNaNNaNNaN...31.79416032.00102733.87191038.88017340.26135843.06187744.27086045.803485NaNNaN
4Africa Eastern and SouthernAFEAccess to electricity, rural (% of rural popul...EG.ELC.ACCS.RU.ZSNaNNaNNaNNaNNaNNaN...18.66350217.63398616.46468124.53143625.34511127.44990829.64176030.404935NaNNaN
..................................................................
384365ZimbabweZWEWomen who believe a husband is justified in be...SG.VAW.REFU.ZSNaNNaNNaNNaNNaNNaN...NaNNaN14.500000NaNNaNNaNNaNNaNNaNNaN
384366ZimbabweZWEWomen who were first married by age 15 (% of w...SP.M15.2024.FE.ZSNaNNaNNaNNaNNaNNaN...NaNNaN3.700000NaNNaNNaN5.418352NaNNaNNaN
384367ZimbabweZWEWomen who were first married by age 18 (% of w...SP.M18.2024.FE.ZSNaNNaNNaNNaNNaNNaN...NaN33.50000032.400000NaNNaNNaN33.658057NaNNaNNaN
384368ZimbabweZWEWomen's share of population ages 15+ living wi...SH.DYN.AIDS.FE.ZSNaNNaNNaNNaNNaNNaN...59.20000059.40000059.50000059.70000059.90000060.00000060.20000060.400000NaNNaN
384369ZimbabweZWEYoung people (ages 15-24) newly infected with HIVSH.HIV.INCD.YGNaNNaNNaNNaNNaNNaN...18000.00000017000.00000015000.00000014000.00000012000.0000009700.0000009600.0000007500.000000NaNNaN
\n", + "

384370 rows × 67 columns

\n", + "
" + ], + "text/plain": [ + " Country Name Country Code \\\n", + "0 Africa Eastern and Southern AFE \n", + "1 Africa Eastern and Southern AFE \n", + "2 Africa Eastern and Southern AFE \n", + "3 Africa Eastern and Southern AFE \n", + "4 Africa Eastern and Southern AFE \n", + "... ... ... \n", + "384365 Zimbabwe ZWE \n", + "384366 Zimbabwe ZWE \n", + "384367 Zimbabwe ZWE \n", + "384368 Zimbabwe ZWE \n", + "384369 Zimbabwe ZWE \n", + "\n", + " Indicator Name Indicator Code \\\n", + "0 Access to clean fuels and technologies for coo... EG.CFT.ACCS.ZS \n", + "1 Access to clean fuels and technologies for coo... EG.CFT.ACCS.RU.ZS \n", + "2 Access to clean fuels and technologies for coo... EG.CFT.ACCS.UR.ZS \n", + "3 Access to electricity (% of population) EG.ELC.ACCS.ZS \n", + "4 Access to electricity, rural (% of rural popul... EG.ELC.ACCS.RU.ZS \n", + "... ... ... \n", + "384365 Women who believe a husband is justified in be... SG.VAW.REFU.ZS \n", + "384366 Women who were first married by age 15 (% of w... SP.M15.2024.FE.ZS \n", + "384367 Women who were first married by age 18 (% of w... SP.M18.2024.FE.ZS \n", + "384368 Women's share of population ages 15+ living wi... SH.DYN.AIDS.FE.ZS \n", + "384369 Young people (ages 15-24) newly infected with HIV SH.HIV.INCD.YG \n", + "\n", + " 1960 1961 1962 1963 1964 1965 ... 2013 2014 \\\n", + "0 NaN NaN NaN NaN NaN NaN ... 16.936004 17.337896 \n", + "1 NaN NaN NaN NaN NaN NaN ... 6.499471 6.680066 \n", + "2 NaN NaN NaN NaN NaN NaN ... 37.855399 38.046781 \n", + "3 NaN NaN NaN NaN NaN NaN ... 31.794160 32.001027 \n", + "4 NaN NaN NaN NaN NaN NaN ... 18.663502 17.633986 \n", + "... ... ... ... ... ... ... ... ... ... \n", + "384365 NaN NaN NaN NaN NaN NaN ... NaN NaN \n", + "384366 NaN NaN NaN NaN NaN NaN ... NaN NaN \n", + "384367 NaN NaN NaN NaN NaN NaN ... NaN 33.500000 \n", + "384368 NaN NaN NaN NaN NaN NaN ... 59.200000 59.400000 \n", + "384369 NaN NaN NaN NaN NaN NaN ... 18000.000000 17000.000000 \n", + "\n", + " 2015 2016 2017 2018 2019 \\\n", + "0 17.687093 18.140971 18.491344 18.825520 19.272212 \n", + "1 6.859110 7.016238 7.180364 7.322294 7.517191 \n", + "2 38.326255 38.468426 38.670044 38.722783 38.927016 \n", + "3 33.871910 38.880173 40.261358 43.061877 44.270860 \n", + "4 16.464681 24.531436 25.345111 27.449908 29.641760 \n", + "... ... ... ... ... ... \n", + "384365 14.500000 NaN NaN NaN NaN \n", + "384366 3.700000 NaN NaN NaN 5.418352 \n", + "384367 32.400000 NaN NaN NaN 33.658057 \n", + "384368 59.500000 59.700000 59.900000 60.000000 60.200000 \n", + "384369 15000.000000 14000.000000 12000.000000 9700.000000 9600.000000 \n", + "\n", + " 2020 2021 Unnamed: 66 \n", + "0 19.628009 NaN NaN \n", + "1 7.651598 NaN NaN \n", + "2 39.042839 NaN NaN \n", + "3 45.803485 NaN NaN \n", + "4 30.404935 NaN NaN \n", + "... ... ... ... \n", + "384365 NaN NaN NaN \n", + "384366 NaN NaN NaN \n", + "384367 NaN NaN NaN \n", + "384368 60.400000 NaN NaN \n", + "384369 7500.000000 NaN NaN \n", + "\n", + "[384370 rows x 67 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "df= pd.read_csv (os.getcwd()+'/Data/'+'WDIData.csv')" + "df= pd.read_csv (os.getcwd()+'/Data/'+'WDIData.csv')\n", + "df" ] }, { @@ -52,7 +458,7 @@ "source": [ "FILTER 1: BY COUNTRY\n", "\n", - "From the almost two hundred countries we have information about in the worldwide database, we have decided to study 50 of them, grouping them by geographical and economical similiarities. With this, we can keep in our dataframe the selected countries." + "From the almost two hundred countries we have information about in the worldwide database, we have decided to study 50 of them, making an initial grouping by geographical and economical similiarities. With this, we can keep in our dataframe the selected countries." ] }, { @@ -191,35 +597,35 @@ " ...\n", " \n", " \n", - " 1729300\n", + " 1769874\n", " YEM\n", " Young people (ages 15-24) newly infected with HIV\n", " 2016\n", " 200.0\n", " \n", " \n", - " 1729301\n", + " 1769875\n", " YEM\n", " Young people (ages 15-24) newly infected with HIV\n", " 2017\n", " 200.0\n", " \n", " \n", - " 1729302\n", + " 1769876\n", " YEM\n", " Young people (ages 15-24) newly infected with HIV\n", " 2018\n", " 200.0\n", " \n", " \n", - " 1729303\n", + " 1769877\n", " YEM\n", " Young people (ages 15-24) newly infected with HIV\n", " 2019\n", " 200.0\n", " \n", " \n", - " 1729304\n", + " 1769878\n", " YEM\n", " Young people (ages 15-24) newly infected with HIV\n", " 2020\n", @@ -227,7 +633,7 @@ " \n", " \n", "\n", - "

1729305 rows × 4 columns

\n", + "

1769879 rows × 4 columns

\n", "" ], "text/plain": [ @@ -238,11 +644,11 @@ "3 DZA Access to clean fuels and technologies for coo... 2003 \n", "4 DZA Access to clean fuels and technologies for coo... 2004 \n", "... ... ... ... \n", - "1729300 YEM Young people (ages 15-24) newly infected with HIV 2016 \n", - "1729301 YEM Young people (ages 15-24) newly infected with HIV 2017 \n", - "1729302 YEM Young people (ages 15-24) newly infected with HIV 2018 \n", - "1729303 YEM Young people (ages 15-24) newly infected with HIV 2019 \n", - "1729304 YEM Young people (ages 15-24) newly infected with HIV 2020 \n", + "1769874 YEM Young people (ages 15-24) newly infected with HIV 2016 \n", + "1769875 YEM Young people (ages 15-24) newly infected with HIV 2017 \n", + "1769876 YEM Young people (ages 15-24) newly infected with HIV 2018 \n", + "1769877 YEM Young people (ages 15-24) newly infected with HIV 2019 \n", + "1769878 YEM Young people (ages 15-24) newly infected with HIV 2020 \n", "\n", " Value \n", "0 97.1 \n", @@ -251,13 +657,13 @@ "3 98.0 \n", "4 98.2 \n", "... ... \n", - "1729300 200.0 \n", - "1729301 200.0 \n", - "1729302 200.0 \n", - "1729303 200.0 \n", - "1729304 200.0 \n", + "1769874 200.0 \n", + "1769875 200.0 \n", + "1769876 200.0 \n", + "1769877 200.0 \n", + "1769878 200.0 \n", "\n", - "[1729305 rows x 4 columns]" + "[1769879 rows x 4 columns]" ] }, "execution_count": 6, @@ -388,35 +794,35 @@ " ...\n", " \n", " \n", - " 1729300\n", + " 1769874\n", " YEM\n", " Young people (ages 15-24) newly infected with HIV\n", " 2016\n", " 200.0\n", " \n", " \n", - " 1729301\n", + " 1769875\n", " YEM\n", " Young people (ages 15-24) newly infected with HIV\n", " 2017\n", " 200.0\n", " \n", " \n", - " 1729302\n", + " 1769876\n", " YEM\n", " Young people (ages 15-24) newly infected with HIV\n", " 2018\n", " 200.0\n", " \n", " \n", - " 1729303\n", + " 1769877\n", " YEM\n", " Young people (ages 15-24) newly infected with HIV\n", " 2019\n", " 200.0\n", " \n", " \n", - " 1729304\n", + " 1769878\n", " YEM\n", " Young people (ages 15-24) newly infected with HIV\n", " 2020\n", @@ -424,7 +830,7 @@ " \n", " \n", "\n", - "

1198444 rows × 4 columns

\n", + "

1225418 rows × 4 columns

\n", "" ], "text/plain": [ @@ -435,11 +841,11 @@ "3 DZA Access to clean fuels and technologies for coo... 2003 \n", "4 DZA Access to clean fuels and technologies for coo... 2004 \n", "... ... ... ... \n", - "1729300 YEM Young people (ages 15-24) newly infected with HIV 2016 \n", - "1729301 YEM Young people (ages 15-24) newly infected with HIV 2017 \n", - "1729302 YEM Young people (ages 15-24) newly infected with HIV 2018 \n", - "1729303 YEM Young people (ages 15-24) newly infected with HIV 2019 \n", - "1729304 YEM Young people (ages 15-24) newly infected with HIV 2020 \n", + "1769874 YEM Young people (ages 15-24) newly infected with HIV 2016 \n", + "1769875 YEM Young people (ages 15-24) newly infected with HIV 2017 \n", + "1769876 YEM Young people (ages 15-24) newly infected with HIV 2018 \n", + "1769877 YEM Young people (ages 15-24) newly infected with HIV 2019 \n", + "1769878 YEM Young people (ages 15-24) newly infected with HIV 2020 \n", "\n", " Value \n", "0 97.1 \n", @@ -448,13 +854,13 @@ "3 98.0 \n", "4 98.2 \n", "... ... \n", - "1729300 200.0 \n", - "1729301 200.0 \n", - "1729302 200.0 \n", - "1729303 200.0 \n", - "1729304 200.0 \n", + "1769874 200.0 \n", + "1769875 200.0 \n", + "1769876 200.0 \n", + "1769877 200.0 \n", + "1769878 200.0 \n", "\n", - "[1198444 rows x 4 columns]" + "[1225418 rows x 4 columns]" ] }, "execution_count": 9, @@ -467,218 +873,19 @@ "df3" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "FILTER 3: BY INDICATOR" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As there are lots of indicators that have very similar meaning we have decided to select some indicators to perform the study (**Indicator group** = *Name of the selected indicator*):\n", - "- **GDP** = *GDP (current US$)*\n", - "- **Literacy** = *Literacy rate, adult total (% of people ages 15 and above)', 'Government expenditure on education, total (% of government expenditure)*\n", - "- **Migration** = *Net migration*\n", - "- **Exports** = *Commercial service exports (current US$)* & *Exports of goods and services (current US$)*\n", - "- **International trading** = *Taxes on international trade (current LCU)*\n", - "- **Fertility** = *Fertility rate, total (births per woman)*\n", - "- **Healthcare** = *People using at least basic sanitation services (% of population)*\n", - "- **Employment** = *Employment in agriculture (% of total employment) (modeled ILO estimate)*, *Employment in services (% of total employment) (modeled ILO estimate)* & *Employment in industry (% of total employment) (modeled ILO estimate)*\n", - "- **Renewable energy** = *Electricity production from renewable sources, excluding hydroelectric (kWh)*\n", - "- **Mortality** = *Number of infant deaths*\n", - "- **Outside investment** = *Foreign direct investment, net (BoP, current US$)*\n", - "- **Pollution** = *Mortality rate attributed to household and ambient air pollution, age-standardized (per 100,000 population)*\n", - "- **Alcoholism** = *Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)*\n", - "- **Tech adoption** = *Research and development expenditure (% of GDP)*\n", - "- **Workers high education** = *Labor force with advanced education (% of total working-age population with advanced education)*\n", - "- **Optimisim and pessimisim** = *Suicide mortality rate (per 100,000 population)*\n", - "- **Gender inequality** = *CPIA gender equality rating (**1=low to **6=high)*\n", - "- **Education** = *Share of youth not in education, employment or training, total (% of youth population)* & *Government expenditure on education, total (% of government expenditure)'*\n", - "\n", - "To acomplish this, we use the function `isin` that will allow us to only select the the indicators afromentioned, that have been compilied in the list called *indicators_list*" - ] - }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ - "indicators_list=['GDP (current US$)','Literacy rate, adult total (% of people ages 15 and above)', 'Government expenditure on education, total (% of government expenditure)','Net migration','Commercial service exports (current US$)','Exports of goods and services (current US$)','Taxes on international trade (current LCU)','Fertility rate, total (births per woman)','People using at least basic sanitation services (% of population)','Employment in agriculture (% of total employment) (modeled ILO estimate)','Employment in services (% of total employment) (modeled ILO estimate)','Employment in industry (% of total employment) (modeled ILO estimate)','Electricity production from renewable sources, excluding hydroelectric (kWh)','Number of infant deaths','Number of infant deaths','Foreign direct investment, net (BoP, current US$)','Mortality rate attributed to household and ambient air pollution, age-standardized (per 100,000 population)','Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)','Research and development expenditure (% of GDP)','Labor force with advanced education (% of total working-age population with advanced education)','Suicide mortality rate (per 100,000 population)','CPIA gender equality rating (1=low to 6=high)','Share of youth not in education, employment or training, total (% of youth population)','Government expenditure on education, total (% of government expenditure)']" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Country CodeIndicator NameDateValue
5334DZACommercial service exports (current US$)19904.795977e+08
5335DZACommercial service exports (current US$)19913.747657e+08
5336DZACommercial service exports (current US$)20052.466000e+09
5337DZACommercial service exports (current US$)20062.512000e+09
5338DZACommercial service exports (current US$)20072.786733e+09
...............
1727918YEMTotal alcohol consumption per capita (liters o...20007.900000e-01
1727919YEMTotal alcohol consumption per capita (liters o...20053.400000e-01
1727920YEMTotal alcohol consumption per capita (liters o...20101.800000e-01
1727921YEMTotal alcohol consumption per capita (liters o...20155.500000e-02
1727922YEMTotal alcohol consumption per capita (liters o...20185.100000e-02
\n", - "

19944 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " Country Code Indicator Name Date \\\n", - "5334 DZA Commercial service exports (current US$) 1990 \n", - "5335 DZA Commercial service exports (current US$) 1991 \n", - "5336 DZA Commercial service exports (current US$) 2005 \n", - "5337 DZA Commercial service exports (current US$) 2006 \n", - "5338 DZA Commercial service exports (current US$) 2007 \n", - "... ... ... ... \n", - "1727918 YEM Total alcohol consumption per capita (liters o... 2000 \n", - "1727919 YEM Total alcohol consumption per capita (liters o... 2005 \n", - "1727920 YEM Total alcohol consumption per capita (liters o... 2010 \n", - "1727921 YEM Total alcohol consumption per capita (liters o... 2015 \n", - "1727922 YEM Total alcohol consumption per capita (liters o... 2018 \n", - "\n", - " Value \n", - "5334 4.795977e+08 \n", - "5335 3.747657e+08 \n", - "5336 2.466000e+09 \n", - "5337 2.512000e+09 \n", - "5338 2.786733e+09 \n", - "... ... \n", - "1727918 7.900000e-01 \n", - "1727919 3.400000e-01 \n", - "1727920 1.800000e-01 \n", - "1727921 5.500000e-02 \n", - "1727922 5.100000e-02 \n", - "\n", - "[19944 rows x 4 columns]" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "BronzeDataFrame=df3.loc[df3['Indicator Name'].isin(indicators_list)]\n", - "pd.set_option('display.max_rows', 10)\n", - "BronzeDataFrame" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "BronzeDataFrame.to_csv(os.getcwd()+'/Data/BronzeDataFrame.csv')" + "BronzeDataFrame=df3" ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3.10.4 ('.venv': poetry)", + "display_name": "Python 3.9.12 ('base')", "language": "python", "name": "python3" }, @@ -692,11 +899,11 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.9.12" }, "vscode": { "interpreter": { - "hash": "ad72b07258a3fa24452fee21e868a537ead700a3a6ac2a1adaf5006160c747dc" + "hash": "db2f77d7771d8a0072cf3f8e7f9965a22a9c65bf4f8ee5135b3d479c9967abaa" } } }, diff --git a/WDI-Normalization&Categorization.ipynb b/WDI-Normalization&Categorization.ipynb new file mode 100644 index 0000000..5881920 --- /dev/null +++ b/WDI-Normalization&Categorization.ipynb @@ -0,0 +1,8155 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Normalization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import libraries and functions." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import glob\n", + "import os\n", + "from zipfile import ZipFile\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", + "import functools as ft\n", + "import ipywidgets as widgets\n", + "from ipywidgets import Layout\n", + "from ipywidgets import interact, interact_manual\n", + "from pandas.api.types import is_numeric_dtype" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Taking as reference both works of https://www.pluralsight.com/guides/cleaning-up-data-from-outliers and https://careerfoundry.com/en/blog/data-analytics/how-to-find-outliers/, for normalizing our data we need to start computing the outliers and removing them from our dataframe. As there is not a direct function of pandas that performs this step, it´s been step-by-step code, where we begin with the computation of the quartiles, then the IQR (Inter Quartile Range) and finally the upper and lower limit." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### IQR explanation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The interquartile range (IQR) measures the spread of the middle half of your data. It is the range for the middle 50% of your sample. Use the IQR to assess the variability where most of your values lie. Larger values indicate that the central portion of your data spread out further. Conversely, smaller values show that the middle values cluster more tightly.\n", + "\n", + "To visualize the interquartile range, imagine dividing your data into quarters. Statisticians refer to these quarters as quartiles and label them from low to high as Q1, Q2, Q3, and Q4. The lowest quartile (Q1) covers the smallest quarter of values in your dataset. The upper quartile (Q4) comprises the highest quarter of values. The interquartile range is the middle half of the data that lies between the upper and lower quartiles. In other words, the interquartile range includes the 50% of data points that are above Q1 and below Q4. The IQR is the red area in the graph below, containing Q2 and Q3 (not labeled).\n", + "\n", + "https://camo.githubusercontent.com/a5f6cf8164048f8c28f9b00b94e1264480c8c3b20a1b3d0bdca47083f3a86a19/68747470733a2f2f69302e77702e636f6d2f7374617469737469637362796a696d2e636f6d2f77702d636f6e74656e742f75706c6f6164732f323031382f30332f696e7465727175617274696c655f72616e67652e706e673f773d3537362673736c3d31\n", + "\n", + "When measuring variability, statisticians prefer using the interquartile range instead of the full data range because extreme values and outliers affect it less. Typically, use the IQR with a measure of central tendency, such as the median, to understand your data’s center and spread. This combination creates a fuller picture of your data’s distribution.\n", + "\n", + "Therefore it is being utilized to get rid of all the outliers that may come from errors when creating the data or from unexpected years." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Firstly, we compute the first quartile (Q1=25%) and the third quartile (Q3=75%). For that, we have grouped the data by country code and indicator name, so we get the Q1 and Q3 values for each indicator in each geographical area. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grouped=BronzeDataFrame.groupby(['Country Code','Indicator Name'])\n", + "grouped" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateValue
Country CodeIndicator Name
AREAccess to clean fuels and technologies for cooking (% of population)10.00.00
Access to clean fuels and technologies for cooking, rural (% of rural population)10.00.00
Access to clean fuels and technologies for cooking, urban (% of urban population)10.00.00
Access to electricity (% of population)15.00.00
Access to electricity, rural (% of rural population)15.00.00
............
ZAFWomen who believe a husband is justified in beating his wife when she refuses sex with him (%)0.00.00
Women who were first married by age 15 (% of women ages 20-24)9.00.15
Women who were first married by age 18 (% of women ages 20-24)9.02.15
Women's share of population ages 15+ living with HIV (%)15.04.90
Young people (ages 15-24) newly infected with HIV15.085000.00
\n", + "

59239 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " Date \\\n", + "Country Code Indicator Name \n", + "ARE Access to clean fuels and technologies for cook... 10.0 \n", + " Access to clean fuels and technologies for cook... 10.0 \n", + " Access to clean fuels and technologies for cook... 10.0 \n", + " Access to electricity (% of population) 15.0 \n", + " Access to electricity, rural (% of rural popula... 15.0 \n", + "... ... \n", + "ZAF Women who believe a husband is justified in bea... 0.0 \n", + " Women who were first married by age 15 (% of wo... 9.0 \n", + " Women who were first married by age 18 (% of wo... 9.0 \n", + " Women's share of population ages 15+ living wit... 15.0 \n", + " Young people (ages 15-24) newly infected with HIV 15.0 \n", + "\n", + " Value \n", + "Country Code Indicator Name \n", + "ARE Access to clean fuels and technologies for cook... 0.00 \n", + " Access to clean fuels and technologies for cook... 0.00 \n", + " Access to clean fuels and technologies for cook... 0.00 \n", + " Access to electricity (% of population) 0.00 \n", + " Access to electricity, rural (% of rural popula... 0.00 \n", + "... ... \n", + "ZAF Women who believe a husband is justified in bea... 0.00 \n", + " Women who were first married by age 15 (% of wo... 0.15 \n", + " Women who were first married by age 18 (% of wo... 2.15 \n", + " Women's share of population ages 15+ living wit... 4.90 \n", + " Young people (ages 15-24) newly infected with HIV 85000.00 \n", + "\n", + "[59239 rows x 2 columns]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Q1=BronzeDataFrame.groupby(['Country Code','Indicator Name']).quantile(0.25)\n", + "Q3=BronzeDataFrame.groupby(['Country Code','Indicator Name']).quantile(0.75)\n", + "IQR=Q3-Q1\n", + "IQR" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Once we got the quartiles, we compute the upper and lower limit, with a basic mathematical expression." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Lower limit
Country CodeIndicator Name
AREAccess to clean fuels and technologies for cooking (% of population)100.000
Access to clean fuels and technologies for cooking, rural (% of rural population)100.000
Access to clean fuels and technologies for cooking, urban (% of urban population)100.000
Access to electricity (% of population)100.000
Access to electricity, rural (% of rural population)100.000
.........
ZAFWomen who believe a husband is justified in beating his wife when she refuses sex with him (%)1.000
Women who were first married by age 15 (% of women ages 20-24)0.625
Women who were first married by age 18 (% of women ages 20-24)1.375
Women's share of population ages 15+ living with HIV (%)49.850
Young people (ages 15-24) newly infected with HIV-22500.000
\n", + "

59239 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " Lower limit\n", + "Country Code Indicator Name \n", + "ARE Access to clean fuels and technologies for cook... 100.000\n", + " Access to clean fuels and technologies for cook... 100.000\n", + " Access to clean fuels and technologies for cook... 100.000\n", + " Access to electricity (% of population) 100.000\n", + " Access to electricity, rural (% of rural popula... 100.000\n", + "... ...\n", + "ZAF Women who believe a husband is justified in bea... 1.000\n", + " Women who were first married by age 15 (% of wo... 0.625\n", + " Women who were first married by age 18 (% of wo... 1.375\n", + " Women's share of population ages 15+ living wit... 49.850\n", + " Young people (ages 15-24) newly infected with HIV -22500.000\n", + "\n", + "[59239 rows x 1 columns]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lower_limit=Q1 - 1.5 * IQR\n", + "lower=lower_limit.drop(['Date'],axis=1)\n", + "lower.rename(columns={\"Value\":\"Lower limit\"})" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Upper limit
Country CodeIndicator Name
AREAccess to clean fuels and technologies for cooking (% of population)100.000
Access to clean fuels and technologies for cooking, rural (% of rural population)100.000
Access to clean fuels and technologies for cooking, urban (% of urban population)100.000
Access to electricity (% of population)100.000
Access to electricity, rural (% of rural population)100.000
.........
ZAFWomen who believe a husband is justified in beating his wife when she refuses sex with him (%)1.000
Women who were first married by age 15 (% of women ages 20-24)1.225
Women who were first married by age 18 (% of women ages 20-24)9.975
Women's share of population ages 15+ living with HIV (%)69.450
Young people (ages 15-24) newly infected with HIV317500.000
\n", + "

59239 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " Upper limit\n", + "Country Code Indicator Name \n", + "ARE Access to clean fuels and technologies for cook... 100.000\n", + " Access to clean fuels and technologies for cook... 100.000\n", + " Access to clean fuels and technologies for cook... 100.000\n", + " Access to electricity (% of population) 100.000\n", + " Access to electricity, rural (% of rural popula... 100.000\n", + "... ...\n", + "ZAF Women who believe a husband is justified in bea... 1.000\n", + " Women who were first married by age 15 (% of wo... 1.225\n", + " Women who were first married by age 18 (% of wo... 9.975\n", + " Women's share of population ages 15+ living wit... 69.450\n", + " Young people (ages 15-24) newly infected with HIV 317500.000\n", + "\n", + "[59239 rows x 1 columns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "upper_limit=Q3 + 1.5 * IQR\n", + "upper=upper_limit.drop(['Date'],axis=1)\n", + "upper.rename(columns={\"Value\":\"Upper limit\"})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Thirdly, we join the three tables we have (main dataframe, upper limit and lower limit) by matching country code and indicator name.." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Country CodeIndicator NameDateValue_xValue_yValue
0DZAAccess to clean fuels and technologies for coo...200097.197.0101.0
1DZAAccess to clean fuels and technologies for coo...200197.397.0101.0
2DZAAccess to clean fuels and technologies for coo...200297.897.0101.0
3DZAAccess to clean fuels and technologies for coo...200398.097.0101.0
4DZAAccess to clean fuels and technologies for coo...200498.297.0101.0
.....................
1225413YEMYoung people (ages 15-24) newly infected with HIV2016200.0-50.0350.0
1225414YEMYoung people (ages 15-24) newly infected with HIV2017200.0-50.0350.0
1225415YEMYoung people (ages 15-24) newly infected with HIV2018200.0-50.0350.0
1225416YEMYoung people (ages 15-24) newly infected with HIV2019200.0-50.0350.0
1225417YEMYoung people (ages 15-24) newly infected with HIV2020200.0-50.0350.0
\n", + "

1225418 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " Country Code Indicator Name Date \\\n", + "0 DZA Access to clean fuels and technologies for coo... 2000 \n", + "1 DZA Access to clean fuels and technologies for coo... 2001 \n", + "2 DZA Access to clean fuels and technologies for coo... 2002 \n", + "3 DZA Access to clean fuels and technologies for coo... 2003 \n", + "4 DZA Access to clean fuels and technologies for coo... 2004 \n", + "... ... ... ... \n", + "1225413 YEM Young people (ages 15-24) newly infected with HIV 2016 \n", + "1225414 YEM Young people (ages 15-24) newly infected with HIV 2017 \n", + "1225415 YEM Young people (ages 15-24) newly infected with HIV 2018 \n", + "1225416 YEM Young people (ages 15-24) newly infected with HIV 2019 \n", + "1225417 YEM Young people (ages 15-24) newly infected with HIV 2020 \n", + "\n", + " Value_x Value_y Value \n", + "0 97.1 97.0 101.0 \n", + "1 97.3 97.0 101.0 \n", + "2 97.8 97.0 101.0 \n", + "3 98.0 97.0 101.0 \n", + "4 98.2 97.0 101.0 \n", + "... ... ... ... \n", + "1225413 200.0 -50.0 350.0 \n", + "1225414 200.0 -50.0 350.0 \n", + "1225415 200.0 -50.0 350.0 \n", + "1225416 200.0 -50.0 350.0 \n", + "1225417 200.0 -50.0 350.0 \n", + "\n", + "[1225418 rows x 6 columns]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dfs = [BronzeDataFrame,lower,upper]\n", + "df_joined = ft.reduce(lambda left, right: pd.merge(left, right, on=['Country Code','Indicator Name']), dfs)\n", + "df_joined" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['Country Code', 'Indicator Name', 'Date', 'Value_x', 'Value_y', 'Value']" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "list(df_joined)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We rename the columns of the new table, as the columns headers are not saved after the joining. " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryIndicatorYearReal valueLower valueUpper value
0DZAAccess to clean fuels and technologies for coo...200097.197.0101.0
1DZAAccess to clean fuels and technologies for coo...200197.397.0101.0
2DZAAccess to clean fuels and technologies for coo...200297.897.0101.0
3DZAAccess to clean fuels and technologies for coo...200398.097.0101.0
4DZAAccess to clean fuels and technologies for coo...200498.297.0101.0
.....................
1225413YEMYoung people (ages 15-24) newly infected with HIV2016200.0-50.0350.0
1225414YEMYoung people (ages 15-24) newly infected with HIV2017200.0-50.0350.0
1225415YEMYoung people (ages 15-24) newly infected with HIV2018200.0-50.0350.0
1225416YEMYoung people (ages 15-24) newly infected with HIV2019200.0-50.0350.0
1225417YEMYoung people (ages 15-24) newly infected with HIV2020200.0-50.0350.0
\n", + "

1225418 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " Country Indicator Year \\\n", + "0 DZA Access to clean fuels and technologies for coo... 2000 \n", + "1 DZA Access to clean fuels and technologies for coo... 2001 \n", + "2 DZA Access to clean fuels and technologies for coo... 2002 \n", + "3 DZA Access to clean fuels and technologies for coo... 2003 \n", + "4 DZA Access to clean fuels and technologies for coo... 2004 \n", + "... ... ... ... \n", + "1225413 YEM Young people (ages 15-24) newly infected with HIV 2016 \n", + "1225414 YEM Young people (ages 15-24) newly infected with HIV 2017 \n", + "1225415 YEM Young people (ages 15-24) newly infected with HIV 2018 \n", + "1225416 YEM Young people (ages 15-24) newly infected with HIV 2019 \n", + "1225417 YEM Young people (ages 15-24) newly infected with HIV 2020 \n", + "\n", + " Real value Lower value Upper value \n", + "0 97.1 97.0 101.0 \n", + "1 97.3 97.0 101.0 \n", + "2 97.8 97.0 101.0 \n", + "3 98.0 97.0 101.0 \n", + "4 98.2 97.0 101.0 \n", + "... ... ... ... \n", + "1225413 200.0 -50.0 350.0 \n", + "1225414 200.0 -50.0 350.0 \n", + "1225415 200.0 -50.0 350.0 \n", + "1225416 200.0 -50.0 350.0 \n", + "1225417 200.0 -50.0 350.0 \n", + "\n", + "[1225418 rows x 6 columns]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "renamed=df_joined.set_axis(['Country','Indicator','Year', 'Real value', 'Lower value', 'Upper value'], axis=1, inplace=False)\n", + "renamed" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have the table correctly defined, we remove from our dataframe the values that are outside our range, as it means that they are outliers." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryIndicatorYearReal valueLower valueUpper value
0DZAAccess to clean fuels and technologies for coo...200097.197.0101.0
1DZAAccess to clean fuels and technologies for coo...200197.397.0101.0
2DZAAccess to clean fuels and technologies for coo...200297.897.0101.0
3DZAAccess to clean fuels and technologies for coo...200398.097.0101.0
4DZAAccess to clean fuels and technologies for coo...200498.297.0101.0
.....................
1225413YEMYoung people (ages 15-24) newly infected with HIV2016200.0-50.0350.0
1225414YEMYoung people (ages 15-24) newly infected with HIV2017200.0-50.0350.0
1225415YEMYoung people (ages 15-24) newly infected with HIV2018200.0-50.0350.0
1225416YEMYoung people (ages 15-24) newly infected with HIV2019200.0-50.0350.0
1225417YEMYoung people (ages 15-24) newly infected with HIV2020200.0-50.0350.0
\n", + "

1189068 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " Country Indicator Year \\\n", + "0 DZA Access to clean fuels and technologies for coo... 2000 \n", + "1 DZA Access to clean fuels and technologies for coo... 2001 \n", + "2 DZA Access to clean fuels and technologies for coo... 2002 \n", + "3 DZA Access to clean fuels and technologies for coo... 2003 \n", + "4 DZA Access to clean fuels and technologies for coo... 2004 \n", + "... ... ... ... \n", + "1225413 YEM Young people (ages 15-24) newly infected with HIV 2016 \n", + "1225414 YEM Young people (ages 15-24) newly infected with HIV 2017 \n", + "1225415 YEM Young people (ages 15-24) newly infected with HIV 2018 \n", + "1225416 YEM Young people (ages 15-24) newly infected with HIV 2019 \n", + "1225417 YEM Young people (ages 15-24) newly infected with HIV 2020 \n", + "\n", + " Real value Lower value Upper value \n", + "0 97.1 97.0 101.0 \n", + "1 97.3 97.0 101.0 \n", + "2 97.8 97.0 101.0 \n", + "3 98.0 97.0 101.0 \n", + "4 98.2 97.0 101.0 \n", + "... ... ... ... \n", + "1225413 200.0 -50.0 350.0 \n", + "1225414 200.0 -50.0 350.0 \n", + "1225415 200.0 -50.0 350.0 \n", + "1225416 200.0 -50.0 350.0 \n", + "1225417 200.0 -50.0 350.0 \n", + "\n", + "[1189068 rows x 6 columns]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sin_outliers=renamed.loc[~((renamed['Real value']renamed['Upper value']))]\n", + "sin_outliers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the data above, we can perceive that our data comes down from 1225418 rows to 1189068, so 36.350 were outliers. The next steps are to order and display data better, removing those columns that we just do not need and pivoting the rows and columns. " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryIndicatorYearReal value
0DZAAccess to clean fuels and technologies for coo...200097.1
1DZAAccess to clean fuels and technologies for coo...200197.3
2DZAAccess to clean fuels and technologies for coo...200297.8
3DZAAccess to clean fuels and technologies for coo...200398.0
4DZAAccess to clean fuels and technologies for coo...200498.2
...............
1225413YEMYoung people (ages 15-24) newly infected with HIV2016200.0
1225414YEMYoung people (ages 15-24) newly infected with HIV2017200.0
1225415YEMYoung people (ages 15-24) newly infected with HIV2018200.0
1225416YEMYoung people (ages 15-24) newly infected with HIV2019200.0
1225417YEMYoung people (ages 15-24) newly infected with HIV2020200.0
\n", + "

1189068 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " Country Indicator Year \\\n", + "0 DZA Access to clean fuels and technologies for coo... 2000 \n", + "1 DZA Access to clean fuels and technologies for coo... 2001 \n", + "2 DZA Access to clean fuels and technologies for coo... 2002 \n", + "3 DZA Access to clean fuels and technologies for coo... 2003 \n", + "4 DZA Access to clean fuels and technologies for coo... 2004 \n", + "... ... ... ... \n", + "1225413 YEM Young people (ages 15-24) newly infected with HIV 2016 \n", + "1225414 YEM Young people (ages 15-24) newly infected with HIV 2017 \n", + "1225415 YEM Young people (ages 15-24) newly infected with HIV 2018 \n", + "1225416 YEM Young people (ages 15-24) newly infected with HIV 2019 \n", + "1225417 YEM Young people (ages 15-24) newly infected with HIV 2020 \n", + "\n", + " Real value \n", + "0 97.1 \n", + "1 97.3 \n", + "2 97.8 \n", + "3 98.0 \n", + "4 98.2 \n", + "... ... \n", + "1225413 200.0 \n", + "1225414 200.0 \n", + "1225415 200.0 \n", + "1225416 200.0 \n", + "1225417 200.0 \n", + "\n", + "[1189068 rows x 4 columns]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_limpio=sin_outliers.drop(['Lower value','Upper value'],axis=1)\n", + "df_limpio" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "cols=df_limpio['Indicator'].unique().tolist()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorCountryYearARI treatment (% of children under 5 taken to a health provider)Access to clean fuels and technologies for cooking (% of population)Access to clean fuels and technologies for cooking, rural (% of rural population)Access to clean fuels and technologies for cooking, urban (% of urban population)Access to electricity (% of population)Access to electricity, rural (% of rural population)Access to electricity, urban (% of urban population)Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+)...Women who believe a husband is justified in beating his wife (any of five reasons) (%)Women who believe a husband is justified in beating his wife when she argues with him (%)Women who believe a husband is justified in beating his wife when she burns the food (%)Women who believe a husband is justified in beating his wife when she goes out without telling him (%)Women who believe a husband is justified in beating his wife when she neglects the children (%)Women who believe a husband is justified in beating his wife when she refuses sex with him (%)Women who were first married by age 15 (% of women ages 20-24)Women who were first married by age 18 (% of women ages 20-24)Women's share of population ages 15+ living with HIV (%)Young people (ages 15-24) newly infected with HIV
0ARE1990NaNNaNNaNNaN100.000000100.000000100.000000NaN...NaNNaNNaNNaNNaNNaNNaNNaN18.8100.0
1ARE1991NaNNaNNaNNaN100.000000100.000000100.000000NaN...NaNNaNNaNNaNNaNNaNNaNNaN18.2100.0
2ARE1992NaNNaNNaNNaN100.000000100.000000100.000000NaN...NaNNaNNaNNaNNaNNaNNaNNaN19.4100.0
3ARE1993NaNNaNNaNNaN100.000000100.000000100.000000NaN...NaNNaNNaNNaNNaNNaNNaNNaN20.0100.0
4ARE1994NaNNaNNaNNaN100.000000100.000000100.000000NaN...NaNNaNNaNNaNNaNNaNNaNNaN20.0100.0
..................................................................
1531ZAF2017NaN85.264.694.2084.40000276.73898388.37302469.218491...NaNNaNNaNNaNNaNNaNNaNNaN63.3100000.0
1532ZAF2018NaN85.765.594.6584.69999777.16849588.518814NaN...NaNNaNNaNNaNNaNNaNNaNNaN63.792000.0
1533ZAF2019NaN86.365.594.9085.00000077.61182488.662704NaN...NaNNaNNaNNaNNaNNaNNaNNaN64.185000.0
1534ZAF2020NaN86.865.995.2084.38553675.26485488.806267NaN...NaNNaNNaNNaNNaNNaNNaNNaN64.479000.0
1535ZAF2021NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", + "

1536 rows × 1438 columns

\n", + "
" + ], + "text/plain": [ + "Indicator Country Year \\\n", + "0 ARE 1990 \n", + "1 ARE 1991 \n", + "2 ARE 1992 \n", + "3 ARE 1993 \n", + "4 ARE 1994 \n", + "... ... ... \n", + "1531 ZAF 2017 \n", + "1532 ZAF 2018 \n", + "1533 ZAF 2019 \n", + "1534 ZAF 2020 \n", + "1535 ZAF 2021 \n", + "\n", + "Indicator ARI treatment (% of children under 5 taken to a health provider) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 NaN \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking (% of population) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 85.2 \n", + "1532 85.7 \n", + "1533 86.3 \n", + "1534 86.8 \n", + "1535 NaN \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, rural (% of rural population) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 64.6 \n", + "1532 65.5 \n", + "1533 65.5 \n", + "1534 65.9 \n", + "1535 NaN \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, urban (% of urban population) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 94.20 \n", + "1532 94.65 \n", + "1533 94.90 \n", + "1534 95.20 \n", + "1535 NaN \n", + "\n", + "Indicator Access to electricity (% of population) \\\n", + "0 100.000000 \n", + "1 100.000000 \n", + "2 100.000000 \n", + "3 100.000000 \n", + "4 100.000000 \n", + "... ... \n", + "1531 84.400002 \n", + "1532 84.699997 \n", + "1533 85.000000 \n", + "1534 84.385536 \n", + "1535 NaN \n", + "\n", + "Indicator Access to electricity, rural (% of rural population) \\\n", + "0 100.000000 \n", + "1 100.000000 \n", + "2 100.000000 \n", + "3 100.000000 \n", + "4 100.000000 \n", + "... ... \n", + "1531 76.738983 \n", + "1532 77.168495 \n", + "1533 77.611824 \n", + "1534 75.264854 \n", + "1535 NaN \n", + "\n", + "Indicator Access to electricity, urban (% of urban population) \\\n", + "0 100.000000 \n", + "1 100.000000 \n", + "2 100.000000 \n", + "3 100.000000 \n", + "4 100.000000 \n", + "... ... \n", + "1531 88.373024 \n", + "1532 88.518814 \n", + "1533 88.662704 \n", + "1534 88.806267 \n", + "1535 NaN \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 69.218491 \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator ... \\\n", + "0 ... \n", + "1 ... \n", + "2 ... \n", + "3 ... \n", + "4 ... \n", + "... ... \n", + "1531 ... \n", + "1532 ... \n", + "1533 ... \n", + "1534 ... \n", + "1535 ... \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife (any of five reasons) (%) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 NaN \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she argues with him (%) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 NaN \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she burns the food (%) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 NaN \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she goes out without telling him (%) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 NaN \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she neglects the children (%) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 NaN \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she refuses sex with him (%) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 NaN \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator Women who were first married by age 15 (% of women ages 20-24) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 NaN \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator Women who were first married by age 18 (% of women ages 20-24) \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "1531 NaN \n", + "1532 NaN \n", + "1533 NaN \n", + "1534 NaN \n", + "1535 NaN \n", + "\n", + "Indicator Women's share of population ages 15+ living with HIV (%) \\\n", + "0 18.8 \n", + "1 18.2 \n", + "2 19.4 \n", + "3 20.0 \n", + "4 20.0 \n", + "... ... \n", + "1531 63.3 \n", + "1532 63.7 \n", + "1533 64.1 \n", + "1534 64.4 \n", + "1535 NaN \n", + "\n", + "Indicator Young people (ages 15-24) newly infected with HIV \n", + "0 100.0 \n", + "1 100.0 \n", + "2 100.0 \n", + "3 100.0 \n", + "4 100.0 \n", + "... ... \n", + "1531 100000.0 \n", + "1532 92000.0 \n", + "1533 85000.0 \n", + "1534 79000.0 \n", + "1535 NaN \n", + "\n", + "[1536 rows x 1438 columns]" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "SilverDataFrame=df_limpio.set_index([\"Country\", \"Year\"]).pivot(columns=\"Indicator\", values=\"Real value\").reset_index()\n", + "SilverDataFrame" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "On the other hand, another big stone of normalizations is to nan/null values, which we have in all variables." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1016628" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "SilverDataFrame.isna().sum().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can observe, we have lots of missing data, and as there is no optimal way to fullfill these values, thus, we will test some to arrive to the optimal method for our data set." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, we need to create some lists so our loops work." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "df=SilverDataFrame\n", + "europe_list=['DEU','FRA','SWE','GBR','ESP','HRV','POL','GRC','AUT','NLD']\n", + "persian_list=['IRQ','QAT','ARE','SAU','AZE','YEM','OMN']\n", + "naf_list=['DZA','EGY','LBY','ISR','TUR','MAR']\n", + "saf_list=['SEN','ZAF','LBR','MOZ','CMR','NGA','GHA']\n", + "asia_list=['BGD','IND','VNM','THA','IDN','PHL','KOR']\n", + "latam_list=['MEX','BRA','ARG','PER','VEN','COL','CHL','PAN','CRI']\n", + "two_list=['USA','CHN']\n", + "country_list=europe_list+persian_list+naf_list+saf_list+asia_list+latam_list+two_list\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are attempting the linear interpolation, which is achieved by geometrically rendering a straight line between two adjacent points on a graph or plane." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "685787" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dat=df.loc[df.loc[:, 'Country'] == country_list[0]]\n", + "datc=dat.interpolate(method=\"linear\")\n", + "data=datc\n", + "\n", + "for i in range(1,len(country_list)):\n", + " dat=df.loc[df.loc[:, 'Country'] == country_list[i]]\n", + " datc=dat.interpolate(method=\"linear\")\n", + " data=pd.concat((data, datc), axis = 0)\n", + "data.isna().sum().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we attempt the backward filling, filling the previous cell with future values." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "498648" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dat=df.loc[df.loc[:, 'Country'] == country_list[0]]\n", + "datc=dat.fillna(method='bfill')\n", + "data=datc\n", + "\n", + "for i in range(1,len(country_list)):\n", + " dat=df.loc[df.loc[:, 'Country'] == country_list[i]]\n", + " datc=dat.fillna(method='bfill')\n", + " data=pd.concat((data, datc), axis = 0)\n", + "data.isna().sum().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we will attempt the forward filling, which concists of filling the next cell with previous values." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "685787" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dat=df.loc[df.loc[:, 'Country'] == country_list[0]]\n", + "datc=dat.fillna(method='ffill')\n", + "data=datc\n", + "\n", + "for i in range(1,len(country_list)):\n", + " dat=df.loc[df.loc[:, 'Country'] == country_list[i]]\n", + " datc=dat.fillna(method='ffill')\n", + " data=pd.concat((data, datc), axis = 0)\n", + "data.isna().sum().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The linear interpolation a form of interpolation, which involves the generation of new values based on an existing set of values. Linear interpolation is achieved by geometrically rendering a straight line between two adjacent points on a graph or plane. Whereas the backwards filling, will help us to arrive to those values which have not been fullfilled with the linear interpolation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And as none of the methods have worked out correctly, independently, we are going to mix them, to achieve a better result." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "685787" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dat=df.loc[df.loc[:, 'Country'] == country_list[0]]\n", + "datc=dat.interpolate(method=\"linear\")\n", + "datc=datc.fillna(method='ffill')\n", + "data=datc\n", + "\n", + "for i in range(1,len(country_list)):\n", + " dat=df.loc[df.loc[:, 'Country'] == country_list[i]]\n", + " datc=dat.interpolate(method=\"linear\")\n", + " datc=datc.fillna(method='ffill')\n", + " data=pd.concat((data, datc), axis = 0)\n", + "data.isna().sum().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "310048" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dat=df.loc[df.loc[:, 'Country'] == country_list[0]]\n", + "datc=dat.interpolate(method=\"linear\")\n", + "datc=datc.fillna(method='bfill')\n", + "data=datc\n", + "\n", + "for i in range(1,len(country_list)):\n", + " dat=df.loc[df.loc[:, 'Country'] == country_list[i]]\n", + " datc=dat.interpolate(method=\"linear\")\n", + " datc=datc.fillna(method='bfill')\n", + " data=pd.concat((data, datc), axis = 0)\n", + "data.isna().sum().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And finally, mixing the three methods all together." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "310048" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dat=df.loc[df.loc[:, 'Country'] == country_list[0]]\n", + "datc=dat.interpolate(method=\"linear\")\n", + "datf=datc.fillna(method='bfill')\n", + "datr=datf.fillna(method='ffill')\n", + "data=datr\n", + "\n", + "for i in range(1,len(country_list)):\n", + " dat=df.loc[df.loc[:, 'Country'] == country_list[i]]\n", + " datc=dat.interpolate(method=\"linear\")\n", + " datc=datc.fillna(method='bfill')\n", + " datc=datc.fillna(method='ffill')\n", + " data=pd.concat((data, datc), axis = 0)\n", + "data.isna().sum().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Conclusion" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Therefore, the preferred method for the Nan values´ treatment that we are going to develop is a mix, between the linear interpolation and backwards filling." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorCountryYearARI treatment (% of children under 5 taken to a health provider)Access to clean fuels and technologies for cooking (% of population)Access to clean fuels and technologies for cooking, rural (% of rural population)Access to clean fuels and technologies for cooking, urban (% of urban population)Access to electricity (% of population)Access to electricity, rural (% of rural population)Access to electricity, urban (% of urban population)Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+)...Women who believe a husband is justified in beating his wife (any of five reasons) (%)Women who believe a husband is justified in beating his wife when she argues with him (%)Women who believe a husband is justified in beating his wife when she burns the food (%)Women who believe a husband is justified in beating his wife when she goes out without telling him (%)Women who believe a husband is justified in beating his wife when she neglects the children (%)Women who believe a husband is justified in beating his wife when she refuses sex with him (%)Women who were first married by age 15 (% of women ages 20-24)Women who were first married by age 18 (% of women ages 20-24)Women's share of population ages 15+ living with HIV (%)Young people (ages 15-24) newly infected with HIV
352DEU1990NaN100.0100.0100.0100.0100.0100.098.133621...NaNNaNNaNNaNNaNNaNNaNNaN19.1500.0
353DEU1991NaN100.0100.0100.0100.0100.0100.098.133621...NaNNaNNaNNaNNaNNaNNaNNaN19.1500.0
354DEU1992NaN100.0100.0100.0100.0100.0100.098.133621...NaNNaNNaNNaNNaNNaNNaNNaN19.1500.0
355DEU1993NaN100.0100.0100.0100.0100.0100.098.133621...NaNNaNNaNNaNNaNNaNNaNNaN19.1500.0
356DEU1994NaN100.0100.0100.0100.0100.0100.098.133621...NaNNaNNaNNaNNaNNaNNaNNaN19.1500.0
..................................................................
251CHN2017NaN73.255.286.2100.0100.0100.080.229118...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
252CHN2018NaN75.659.087.4100.0100.0100.080.229118...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
253CHN2019NaN77.661.988.4100.0100.0100.080.229118...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
254CHN2020NaN79.465.289.4100.0100.0100.080.229118...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
255CHN2021NaN79.465.289.4100.0100.0100.080.229118...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", + "

1536 rows × 1438 columns

\n", + "
" + ], + "text/plain": [ + "Indicator Country Year \\\n", + "352 DEU 1990 \n", + "353 DEU 1991 \n", + "354 DEU 1992 \n", + "355 DEU 1993 \n", + "356 DEU 1994 \n", + ".. ... ... \n", + "251 CHN 2017 \n", + "252 CHN 2018 \n", + "253 CHN 2019 \n", + "254 CHN 2020 \n", + "255 CHN 2021 \n", + "\n", + "Indicator ARI treatment (% of children under 5 taken to a health provider) \\\n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking (% of population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 73.2 \n", + "252 75.6 \n", + "253 77.6 \n", + "254 79.4 \n", + "255 79.4 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, rural (% of rural population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 55.2 \n", + "252 59.0 \n", + "253 61.9 \n", + "254 65.2 \n", + "255 65.2 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, urban (% of urban population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 86.2 \n", + "252 87.4 \n", + "253 88.4 \n", + "254 89.4 \n", + "255 89.4 \n", + "\n", + "Indicator Access to electricity (% of population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 100.0 \n", + "252 100.0 \n", + "253 100.0 \n", + "254 100.0 \n", + "255 100.0 \n", + "\n", + "Indicator Access to electricity, rural (% of rural population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 100.0 \n", + "252 100.0 \n", + "253 100.0 \n", + "254 100.0 \n", + "255 100.0 \n", + "\n", + "Indicator Access to electricity, urban (% of urban population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 100.0 \n", + "252 100.0 \n", + "253 100.0 \n", + "254 100.0 \n", + "255 100.0 \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+) \\\n", + "352 98.133621 \n", + "353 98.133621 \n", + "354 98.133621 \n", + "355 98.133621 \n", + "356 98.133621 \n", + ".. ... \n", + "251 80.229118 \n", + "252 80.229118 \n", + "253 80.229118 \n", + "254 80.229118 \n", + "255 80.229118 \n", + "\n", + "Indicator ... \\\n", + "352 ... \n", + "353 ... \n", + "354 ... \n", + "355 ... \n", + "356 ... \n", + ".. ... \n", + "251 ... \n", + "252 ... \n", + "253 ... \n", + "254 ... \n", + "255 ... \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife (any of five reasons) (%) \\\n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she argues with him (%) \\\n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she burns the food (%) \\\n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she goes out without telling him (%) \\\n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she neglects the children (%) \\\n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Women who believe a husband is justified in beating his wife when she refuses sex with him (%) \\\n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Women who were first married by age 15 (% of women ages 20-24) \\\n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Women who were first married by age 18 (% of women ages 20-24) \\\n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Women's share of population ages 15+ living with HIV (%) \\\n", + "352 19.1 \n", + "353 19.1 \n", + "354 19.1 \n", + "355 19.1 \n", + "356 19.1 \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "Indicator Young people (ages 15-24) newly infected with HIV \n", + "352 500.0 \n", + "353 500.0 \n", + "354 500.0 \n", + "355 500.0 \n", + "356 500.0 \n", + ".. ... \n", + "251 NaN \n", + "252 NaN \n", + "253 NaN \n", + "254 NaN \n", + "255 NaN \n", + "\n", + "[1536 rows x 1438 columns]" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dat=df.loc[df.loc[:, 'Country'] == country_list[0]]\n", + "datc=dat.interpolate(method=\"linear\")\n", + "datf=datc.fillna(method='bfill')\n", + "datr=datf.fillna(method='ffill')\n", + "data=datr\n", + "\n", + "for i in range(1,len(country_list)):\n", + " dat=df.loc[df.loc[:, 'Country'] == country_list[i]]\n", + " datc=dat.interpolate(method=\"linear\")\n", + " datc=datc.fillna(method='bfill')\n", + " datc=datc.fillna(method='ffill')\n", + " data=pd.concat((data, datc), axis = 0)\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we will drop the columns which have over X% missing values because the absence of data creates an unreliable source. This % can be adjusted in the following slider. We have predetermined that 20% is a great starting point." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3dda106d850e463580b809ff362ca4f3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatSlider(value=0.2, continuous_update=False, description='% that creates unreliable source:', max=1.0, read…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Slider1=widgets.FloatSlider(\n", + " value=0.2,\n", + " min=0,\n", + " max=1.0,\n", + " step=0.05,\n", + " description='% that creates unreliable source:',\n", + " disabled=False,\n", + " continuous_update=False,\n", + " orientation='horizontal',\n", + " readout=True,\n", + " readout_format='.1f',\n", + ")\n", + "Slider1" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Adults (ages 15+) and children (ages 0-14) newly infected with HIV\n", + "Adults (ages 15-49) newly infected with HIV\n", + "Antiretroviral therapy coverage (% of people living with HIV)\n", + "Antiretroviral therapy coverage for PMTCT (% of pregnant women living with HIV)\n", + "ARI treatment (% of children under 5 taken to a health provider)\n", + "Average transaction cost of sending remittances to a specific country (%)\n", + "Average working hours of children, study and work, ages 7-14 (hours per week)\n", + "Average working hours of children, study and work, female, ages 7-14 (hours per week)\n", + "Average working hours of children, study and work, male, ages 7-14 (hours per week)\n", + "Average working hours of children, working only, ages 7-14 (hours per week)\n", + "Average working hours of children, working only, female, ages 7-14 (hours per week)\n", + "Average working hours of children, working only, male, ages 7-14 (hours per week)\n", + "Bank capital to assets ratio (%)\n", + "Bank liquid reserves to bank assets ratio (%)\n", + "Bank nonperforming loans to total gross loans (%)\n", + "Battle-related deaths (number of people)\n", + "Borrowers from commercial banks (per 1,000 adults)\n", + "Bribery incidence (% of firms experiencing at least one bribe payment request)\n", + "Changes in inventories (constant LCU)\n", + "Children (0-14) living with HIV\n", + "Children (ages 0-14) newly infected with HIV\n", + "Children in employment, female (% of female children ages 7-14)\n", + "Children in employment, male (% of male children ages 7-14)\n", + "Children in employment, study and work (% of children in employment, ages 7-14)\n", + "Children in employment, study and work, female (% of female children in employment, ages 7-14)\n", + "Children in employment, study and work, male (% of male children in employment, ages 7-14)\n", + "Children in employment, total (% of children ages 7-14)\n", + "Children in employment, unpaid family workers (% of children in employment, ages 7-14)\n", + "Children in employment, unpaid family workers, female (% of female children in employment, ages 7-14)\n", + "Children in employment, unpaid family workers, male (% of male children in employment, ages 7-14)\n", + "Children in employment, wage workers (% of children in employment, ages 7-14)\n", + "Children in employment, wage workers, female (% of female children in employment, ages 7-14)\n", + "Children in employment, wage workers, male (% of male children in employment, ages 7-14)\n", + "Children in employment, work only (% of children in employment, ages 7-14)\n", + "Children in employment, work only, female (% of female children in employment, ages 7-14)\n", + "Children in employment, work only, male (% of male children in employment, ages 7-14)\n", + "Claims on other sectors of the domestic economy (annual growth as % of broad money)\n", + "Commercial banks and other lending (PPG + PNG) (NFL, current US$)\n", + "Completeness of birth registration, rural (%)\n", + "Completeness of birth registration, urban (%)\n", + "Consumption of iodized salt (% of households)\n", + "Debt service (PPG and IMF only, % of exports of goods, services and primary income)\n", + "Debt service on external debt, public and publicly guaranteed (PPG) (TDS, current US$)\n", + "Debt service on external debt, total (TDS, current US$)\n", + "Demand for family planning satisfied by modern methods (% of married women with demand for family planning)\n", + "Diarrhea treatment (% of children under 5 receiving oral rehydration and continued feeding)\n", + "Diarrhea treatment (% of children under 5 who received ORS packet)\n", + "Disaster risk reduction progress score (1-5 scale; 5=best)\n", + "Exclusive breastfeeding (% of children under 6 months)\n", + "External debt stocks (% of GNI)\n", + "External debt stocks, long-term (DOD, current US$)\n", + "External debt stocks, private nonguaranteed (PNG) (DOD, current US$)\n", + "External debt stocks, public and publicly guaranteed (PPG) (DOD, current US$)\n", + "External debt stocks, short-term (DOD, current US$)\n", + "External debt stocks, total (DOD, current US$)\n", + "Financial intermediary services indirectly Measured (FISIM) (constant LCU)\n", + "Financial intermediary services indirectly Measured (FISIM) (current LCU)\n", + "Firms competing against unregistered firms (% of firms)\n", + "Firms formally registered when operations started (% of firms)\n", + "Firms that do not report all sales for tax purposes (% of firms)\n", + "Gross fixed capital formation, private sector (% of GDP)\n", + "Gross fixed capital formation, private sector (current LCU)\n", + "IBRD loans and IDA credits (DOD, current US$)\n", + "IFC, private nonguaranteed (NFL, current US$)\n", + "IMF repurchases and charges (TDS, current US$)\n", + "Incidence of HIV, ages 15-24 (per 1,000 uninfected population ages 15-24)\n", + "Incidence of HIV, ages 15-49 (per 1,000 uninfected population ages 15-49)\n", + "Incidence of HIV, all (per 1,000 uninfected population)\n", + "Incidence of malaria (per 1,000 population at risk)\n", + "Informal payments to public officials (% of firms)\n", + "Intentional homicides, female (per 100,000 female)\n", + "Intentional homicides, male (per 100,000 male)\n", + "Interest rate spread (lending rate minus deposit rate, %)\n", + "Internally displaced persons, new displacement associated with conflict and violence (number of cases)\n", + "Internally displaced persons, total displaced by conflict and violence (number of people)\n", + "International tourism, number of departures\n", + "Investment in energy with private participation (current US$)\n", + "Investment in ICT with private participation (current US$)\n", + "Investment in transport with private participation (current US$)\n", + "Investment in water and sanitation with private participation (current US$)\n", + "Lending interest rate (%)\n", + "Merchandise exports to low- and middle-income economies within region (% of total merchandise exports)\n", + "Merchandise imports from low- and middle-income economies within region (% of total merchandise imports)\n", + "Methodology assessment of statistical capacity (scale 0 - 100)\n", + "Multilateral debt service (% of public and publicly guaranteed debt service)\n", + "Multilateral debt service (TDS, current US$)\n", + "Net bilateral aid flows from DAC donors, Australia (current US$)\n", + "Net bilateral aid flows from DAC donors, Belgium (current US$)\n", + "Net bilateral aid flows from DAC donors, Canada (current US$)\n", + "Net bilateral aid flows from DAC donors, Czech Republic (current US$)\n", + "Net bilateral aid flows from DAC donors, Denmark (current US$)\n", + "Net bilateral aid flows from DAC donors, Finland (current US$)\n", + "Net bilateral aid flows from DAC donors, Greece (current US$)\n", + "Net bilateral aid flows from DAC donors, Hungary (current US$)\n", + "Net bilateral aid flows from DAC donors, Ireland (current US$)\n", + "Net bilateral aid flows from DAC donors, Italy (current US$)\n", + "Net bilateral aid flows from DAC donors, Korea, Rep. (current US$)\n", + "Net bilateral aid flows from DAC donors, Luxembourg (current US$)\n", + "Net bilateral aid flows from DAC donors, Netherlands (current US$)\n", + "Net bilateral aid flows from DAC donors, New Zealand (current US$)\n", + "Net bilateral aid flows from DAC donors, Norway (current US$)\n", + "Net bilateral aid flows from DAC donors, Poland (current US$)\n", + "Net bilateral aid flows from DAC donors, Portugal (current US$)\n", + "Net bilateral aid flows from DAC donors, Slovenia (current US$)\n", + "Net bilateral aid flows from DAC donors, Spain (current US$)\n", + "Net bilateral aid flows from DAC donors, Sweden (current US$)\n", + "Net bilateral aid flows from DAC donors, Switzerland (current US$)\n", + "Net financial flows, bilateral (NFL, current US$)\n", + "Net financial flows, IBRD (NFL, current US$)\n", + "Net financial flows, IMF nonconcessional (NFL, current US$)\n", + "Net financial flows, multilateral (NFL, current US$)\n", + "Net financial flows, others (NFL, current US$)\n", + "Net financial flows, RDB concessional (NFL, current US$)\n", + "Net financial flows, RDB nonconcessional (NFL, current US$)\n", + "Net flows on external debt, private nonguaranteed (PNG) (NFL, current US$)\n", + "Net intake rate in grade 1 (% of official school-age population)\n", + "Net intake rate in grade 1, female (% of official school-age population)\n", + "Net intake rate in grade 1, male (% of official school-age population)\n", + "Net ODA received (% of GNI)\n", + "Net ODA received (% of gross capital formation)\n", + "Net ODA received (% of imports of goods, services and primary income)\n", + "Net ODA received per capita (current US$)\n", + "Net official development assistance received (constant 2018 US$)\n", + "Net official development assistance received (current US$)\n", + "Net official flows from UN agencies, FAO (current US$)\n", + "Net official flows from UN agencies, IAEA (current US$)\n", + "Net official flows from UN agencies, IFAD (current US$)\n", + "Net official flows from UN agencies, ILO (current US$)\n", + "Net official flows from UN agencies, UNAIDS (current US$)\n", + "Net official flows from UN agencies, UNDP (current US$)\n", + "Net official flows from UN agencies, UNFPA (current US$)\n", + "Net official flows from UN agencies, UNHCR (current US$)\n", + "Net official flows from UN agencies, UNICEF (current US$)\n", + "Net official flows from UN agencies, WFP (current US$)\n", + "Net official flows from UN agencies, WHO (current US$)\n", + "Net secondary income (Net current transfers from abroad) (constant LCU)\n", + "Newborns protected against tetanus (%)\n", + "People using safely managed drinking water services (% of population)\n", + "People using safely managed drinking water services, rural (% of rural population)\n", + "People using safely managed drinking water services, urban (% of urban population)\n", + "People using safely managed sanitation services, rural (% of rural population)\n", + "People using safely managed sanitation services, urban (% of urban population)\n", + "People with basic handwashing facilities including soap and water (% of population)\n", + "People with basic handwashing facilities including soap and water, rural (% of rural population)\n", + "People with basic handwashing facilities including soap and water, urban (% of urban population)\n", + "Periodicity and timeliness assessment of statistical capacity (scale 0 - 100)\n", + "PNG, commercial banks and other creditors (NFL, current US$)\n", + "Portfolio investment, bonds (PPG + PNG) (NFL, current US$)\n", + "Power outages in firms in a typical month (number)\n", + "PPG, bonds (NFL, current US$)\n", + "PPG, commercial banks (NFL, current US$)\n", + "PPG, IBRD (DOD, current US$)\n", + "PPG, official creditors (NFL, current US$)\n", + "PPG, other private creditors (NFL, current US$)\n", + "PPG, private creditors (NFL, current US$)\n", + "Present value of external debt (% of exports of goods, services and primary income)\n", + "Present value of external debt (% of GNI)\n", + "Present value of external debt (current US$)\n", + "Prevalence of HIV, female (% ages 15-24)\n", + "Prevalence of HIV, male (% ages 15-24)\n", + "Prevalence of HIV, total (% of population ages 15-49)\n", + "Prevalence of moderate or severe food insecurity in the population (%)\n", + "Prevalence of overweight, weight for height, female (% of children under 5)\n", + "Prevalence of overweight, weight for height, male (% of children under 5)\n", + "Prevalence of severe food insecurity in the population (%)\n", + "Prevalence of severe wasting, weight for height (% of children under 5)\n", + "Prevalence of severe wasting, weight for height, female (% of children under 5)\n", + "Prevalence of severe wasting, weight for height, male (% of children under 5)\n", + "Prevalence of stunting, height for age, female (% of children under 5)\n", + "Prevalence of stunting, height for age, male (% of children under 5)\n", + "Prevalence of underweight, weight for age, female (% of children under 5)\n", + "Prevalence of underweight, weight for age, male (% of children under 5)\n", + "Prevalence of wasting, weight for height, female (% of children under 5)\n", + "Prevalence of wasting, weight for height, male (% of children under 5)\n", + "Primary government expenditures as a proportion of original approved budget (%)\n", + "Proportion of time spent on unpaid domestic and care work, female (% of 24 hour day)\n", + "Proportion of time spent on unpaid domestic and care work, male (% of 24 hour day)\n", + "Public and publicly guaranteed debt service (% of exports of goods, services and primary income)\n", + "Public and publicly guaranteed debt service (% of GNI)\n", + "Public private partnerships investment in energy (current US$)\n", + "Public private partnerships investment in transport (current US$)\n", + "Public private partnerships investment in water and sanitation (current US$)\n", + "Real effective exchange rate index (2010 = 100)\n", + "Real interest rate (%)\n", + "Risk premium on lending (lending rate minus treasury bill rate, %)\n", + "Short-term debt (% of exports of goods, services and primary income)\n", + "Short-term debt (% of total external debt)\n", + "Short-term debt (% of total reserves)\n", + "Source data assessment of statistical capacity (scale 0 - 100)\n", + "Statistical Capacity Score (Overall Average) (scale 0 - 100)\n", + "Technicians in R&D (per million people)\n", + "Time required to obtain an operating license (days)\n", + "Total debt service (% of exports of goods, services and primary income)\n", + "Total debt service (% of GNI)\n", + "Total reserves (% of total external debt)\n", + "Trained teachers in primary education (% of total teachers)\n", + "Trained teachers in primary education, female (% of female teachers)\n", + "Trained teachers in primary education, male (% of male teachers)\n", + "Unmet need for contraception (% of married women ages 15-49)\n", + "Use of IMF credit (DOD, current US$)\n", + "Women who believe a husband is justified in beating his wife (any of five reasons) (%)\n", + "Women who were first married by age 15 (% of women ages 20-24)\n", + "Women who were first married by age 18 (% of women ages 20-24)\n", + "Women's share of population ages 15+ living with HIV (%)\n", + "Young people (ages 15-24) newly infected with HIV\n", + "Adequacy of social insurance programs (% of total welfare of beneficiary households)\n", + "Adequacy of social protection and labor programs (% of total welfare of beneficiary households)\n", + "Adequacy of social safety net programs (% of total welfare of beneficiary households)\n", + "Adequacy of unemployment benefits and ALMP (% of total welfare of beneficiary households)\n", + "Annualized average growth rate in per capita real survey mean consumption or income, bottom 40% of population (%)\n", + "Annualized average growth rate in per capita real survey mean consumption or income, total population (%)\n", + "Benefit incidence of social insurance programs to poorest quintile (% of total social insurance benefits)\n", + "Benefit incidence of social protection and labor programs to poorest quintile (% of total SPL benefits)\n", + "Benefit incidence of social safety net programs to poorest quintile (% of total safety net benefits)\n", + "Benefit incidence of unemployment benefits and ALMP to poorest quintile (% of total U/ALMP benefits)\n", + "Children in employment, self-employed (% of children in employment, ages 7-14)\n", + "Children in employment, self-employed, female (% of female children in employment, ages 7-14)\n", + "Children in employment, self-employed, male (% of male children in employment, ages 7-14)\n", + "Compensation of employees (% of expense)\n", + "Compensation of employees (current LCU)\n", + "Completeness of death registration with cause-of-death information (%)\n", + "Coverage of social insurance programs (% of population)\n", + "Coverage of social insurance programs in 2nd quintile (% of population)\n", + "Coverage of social insurance programs in 3rd quintile (% of population)\n", + "Coverage of social insurance programs in 4th quintile (% of population)\n", + "Coverage of social insurance programs in poorest quintile (% of population)\n", + "Coverage of social insurance programs in richest quintile (% of population)\n", + "Coverage of social protection and labor programs (% of population)\n", + "Coverage of social safety net programs (% of population)\n", + "Coverage of social safety net programs in 2nd quintile (% of population)\n", + "Coverage of social safety net programs in 3rd quintile (% of population)\n", + "Coverage of social safety net programs in 4th quintile (% of population)\n", + "Coverage of social safety net programs in poorest quintile (% of population)\n", + "Coverage of social safety net programs in richest quintile (% of population)\n", + "Coverage of unemployment benefits and ALMP (% of population)\n", + "Coverage of unemployment benefits and ALMP in 2nd quintile (% of population)\n", + "Coverage of unemployment benefits and ALMP in 3rd quintile (% of population)\n", + "Coverage of unemployment benefits and ALMP in 4th quintile (% of population)\n", + "Coverage of unemployment benefits and ALMP in poorest quintile (% of population)\n", + "Coverage of unemployment benefits and ALMP in richest quintile (% of population)\n", + "Current education expenditure, tertiary (% of total expenditure in tertiary public institutions)\n", + "Depositors with commercial banks (per 1,000 adults)\n", + "Domestic credit provided by financial sector (% of GDP)\n", + "Expenditure on primary education (% of government expenditure on education)\n", + "Expenditure on secondary education (% of government expenditure on education)\n", + "Expense (% of GDP)\n", + "Expense (current LCU)\n", + "Female share of employment in senior and middle management (%)\n", + "Firms experiencing electrical outages (% of firms)\n", + "Firms experiencing losses due to theft and vandalism (% of firms)\n", + "Firms that spend on R&D (% of firms)\n", + "Firms visited or required meetings with tax officials (% of firms)\n", + "Firms with female top manager (% of firms)\n", + "Goods and services expense (% of expense)\n", + "Goods and services expense (current LCU)\n", + "Interest payments (% of expense)\n", + "Losses due to theft and vandalism (% of annual sales of affected firms)\n", + "Net acquisition of financial assets (% of GDP)\n", + "Net acquisition of financial assets (current LCU)\n", + "Net bilateral aid flows from DAC donors, Slovak Republic (current US$)\n", + "Net incurrence of liabilities, total (% of GDP)\n", + "Net incurrence of liabilities, total (current LCU)\n", + "Net investment in nonfinancial assets (% of GDP)\n", + "Net investment in nonfinancial assets (current LCU)\n", + "Net lending (+) / net borrowing (-) (% of GDP)\n", + "Net lending (+) / net borrowing (-) (current LCU)\n", + "Net ODA received (% of central government expense)\n", + "Number of visits or required meetings with tax officials (average for affected firms)\n", + "Other expense (% of expense)\n", + "Other expense (current LCU)\n", + "PNG, bonds (NFL, current US$)\n", + "Population living in slums (% of urban population)\n", + "Public private partnerships investment in ICT (current US$)\n", + "S&P Global Equity Indices (annual % change)\n", + "Subsidies and other transfers (% of expense)\n", + "Subsidies and other transfers (current LCU)\n", + "Survey mean consumption or income per capita, bottom 40% of population (2011 PPP $ per day)\n", + "Survey mean consumption or income per capita, total population (2011 PPP $ per day)\n", + "Value lost due to electrical outages (% of sales for affected firms)\n", + "Average transaction cost of sending remittances from a specific country (%)\n", + "Educational attainment, at least Bachelor's or equivalent, population 25+, female (%) (cumulative)\n", + "Educational attainment, at least Bachelor's or equivalent, population 25+, male (%) (cumulative)\n", + "Educational attainment, at least Bachelor's or equivalent, population 25+, total (%) (cumulative)\n", + "Educational attainment, at least completed post-secondary, population 25+, female (%) (cumulative)\n", + "Educational attainment, at least completed post-secondary, population 25+, male (%) (cumulative)\n", + "Educational attainment, at least completed post-secondary, population 25+, total (%) (cumulative)\n", + "Educational attainment, at least Master's or equivalent, population 25+, female (%) (cumulative)\n", + "Educational attainment, at least Master's or equivalent, population 25+, male (%) (cumulative)\n", + "Educational attainment, at least Master's or equivalent, population 25+, total (%) (cumulative)\n", + "Educational attainment, Doctoral or equivalent, population 25+, female (%) (cumulative)\n", + "Educational attainment, Doctoral or equivalent, population 25+, male (%) (cumulative)\n", + "Educational attainment, Doctoral or equivalent, population 25+, total (%) (cumulative)\n", + "Multidimensional poverty headcount ratio (% of total population)\n", + "Multidimensional poverty headcount ratio, children (% of population ages 0-17)\n", + "Multidimensional poverty headcount ratio, female (% of female population)\n", + "Multidimensional poverty headcount ratio, male (% of male population)\n", + "Net ODA provided to the least developed countries (% of GNI)\n", + "Net ODA provided, to the least developed countries (current US$)\n", + "Net ODA provided, total (% of GNI)\n", + "Net ODA provided, total (constant 2015 US$)\n", + "Net ODA provided, total (current US$)\n", + "Net primary income (Net income from abroad) (constant LCU)\n", + "Number of surgical procedures (per 100,000 population)\n", + "Proportion of women subjected to physical and/or sexual violence in the last 12 months (% of ever-partnered women ages 15-49)\n", + "Wholesale price index (2010 = 100)\n", + "Central government debt, total (% of GDP)\n", + "Central government debt, total (current LCU)\n", + "Child employment in agriculture (% of economically active children ages 7-14)\n", + "Child employment in agriculture, female (% of female economically active children ages 7-14)\n", + "Child employment in agriculture, male (% of male economically active children ages 7-14)\n", + "Child employment in manufacturing (% of economically active children ages 7-14)\n", + "Child employment in manufacturing, female (% of female economically active children ages 7-14)\n", + "Child employment in manufacturing, male (% of male economically active children ages 7-14)\n", + "Child employment in services (% of economically active children ages 7-14)\n", + "Child employment in services, female (% of female economically active children ages 7-14)\n", + "Child employment in services, male (% of male economically active children ages 7-14)\n", + "Children with fever receiving antimalarial drugs (% of children under age 5 with fever)\n", + "Claims on other sectors of the domestic economy (% of GDP)\n", + "Condom use, population ages 15-24, female (% of females ages 15-24)\n", + "Condom use, population ages 15-24, male (% of males ages 15-24)\n", + "CPIA building human resources rating (1=low to 6=high)\n", + "CPIA business regulatory environment rating (1=low to 6=high)\n", + "CPIA debt policy rating (1=low to 6=high)\n", + "CPIA economic management cluster average (1=low to 6=high)\n", + "CPIA efficiency of revenue mobilization rating (1=low to 6=high)\n", + "CPIA equity of public resource use rating (1=low to 6=high)\n", + "CPIA financial sector rating (1=low to 6=high)\n", + "CPIA fiscal policy rating (1=low to 6=high)\n", + "CPIA gender equality rating (1=low to 6=high)\n", + "CPIA macroeconomic management rating (1=low to 6=high)\n", + "CPIA policies for social inclusion/equity cluster average (1=low to 6=high)\n", + "CPIA policy and institutions for environmental sustainability rating (1=low to 6=high)\n", + "CPIA property rights and rule-based governance rating (1=low to 6=high)\n", + "CPIA public sector management and institutions cluster average (1=low to 6=high)\n", + "CPIA quality of budgetary and financial management rating (1=low to 6=high)\n", + "CPIA quality of public administration rating (1=low to 6=high)\n", + "CPIA social protection rating (1=low to 6=high)\n", + "CPIA structural policies cluster average (1=low to 6=high)\n", + "CPIA trade rating (1=low to 6=high)\n", + "CPIA transparency, accountability, and corruption in the public sector rating (1=low to 6=high)\n", + "Female headed households (% of households with a female head)\n", + "IDA resource allocation index (1=low to 6=high)\n", + "Net financial flows, IDA (NFL, current US$)\n", + "PPG, IDA (DOD, current US$)\n", + "Teenage mothers (% of women ages 15-19 who have had children or are currently pregnant)\n", + "Trained teachers in lower secondary education (% of total teachers)\n", + "Trained teachers in lower secondary education, female (% of female teachers)\n", + "Trained teachers in lower secondary education, male (% of male teachers)\n", + "Trained teachers in preprimary education (% of total teachers)\n", + "Trained teachers in preprimary education, female (% of female teachers)\n", + "Trained teachers in preprimary education, male (% of male teachers)\n", + "Trained teachers in upper secondary education (% of total teachers)\n", + "Trained teachers in upper secondary education, female (% of female teachers)\n", + "Trained teachers in upper secondary education, male (% of male teachers)\n", + "Use of insecticide-treated bed nets (% of under-5 population)\n", + "Vitamin A supplementation coverage rate (% of children ages 6-59 months)\n", + "Wanted fertility rate (births per woman)\n", + "Women participating in the three decisions (own health care, major household purchases, and visiting family) (% of women age 15-49)\n", + "Women who believe a husband is justified in beating his wife when she argues with him (%)\n", + "Women who believe a husband is justified in beating his wife when she burns the food (%)\n", + "Women who believe a husband is justified in beating his wife when she goes out without telling him (%)\n", + "Women who believe a husband is justified in beating his wife when she neglects the children (%)\n", + "Women who believe a husband is justified in beating his wife when she refuses sex with him (%)\n", + "Community health workers (per 1,000 people)\n", + "Net bilateral aid flows from DAC donors, Iceland (current US$)\n", + "Trained teachers in secondary education (% of total teachers)\n", + "Trained teachers in secondary education, female (% of female teachers)\n", + "Trained teachers in secondary education, male (% of male teachers)\n", + "Women making their own informed decisions regarding sexual relations, contraceptive use and reproductive health care (% of women age 15-49)\n", + "Female genital mutilation prevalence (%)\n", + "Net official flows from UN agencies, UNPBF (current US$)\n", + "Multidimensional poverty headcount ratio, household (% of total households)\n", + "Multidimensional poverty index (scale 0-1)\n", + "Multidimensional poverty intensity (average share of deprivations experienced by the poor)\n", + "Net financial flows, IMF concessional (NFL, current US$)\n", + "Net official aid received (constant 2018 US$)\n", + "Net official aid received (current US$)\n", + "Multidimensional poverty index, children (population ages 0-17) (scale 0-1)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorCountryYearAccess to clean fuels and technologies for cooking (% of population)Access to clean fuels and technologies for cooking, rural (% of rural population)Access to clean fuels and technologies for cooking, urban (% of urban population)Access to electricity (% of population)Access to electricity, rural (% of rural population)Access to electricity, urban (% of urban population)Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+)Account ownership at a financial institution or with a mobile-money-service provider, female (% of population ages 15+)...Urban population growth (annual %)Urban population living in areas where elevation is below 5 meters (% of total population)Vulnerable employment, female (% of female employment) (modeled ILO estimate)Vulnerable employment, male (% of male employment) (modeled ILO estimate)Vulnerable employment, total (% of total employment) (modeled ILO estimate)Wage and salaried workers, female (% of female employment) (modeled ILO estimate)Wage and salaried workers, male (% of male employment) (modeled ILO estimate)Wage and salaried workers, total (% of total employment) (modeled ILO estimate)Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal)Women Business and the Law Index Score (scale 1-100)
352DEU1990100.0100.0100.0100.0100.0100.098.13362198.704536...1.0563653.0317765.7000004.8000005.17000092.05000389.11000190.33000254.51949771.250
353DEU1991100.0100.0100.0100.0100.0100.098.13362198.704536...0.9349083.0293785.7000004.8000005.17000092.05000389.11000190.33000254.51949771.250
354DEU1992100.0100.0100.0100.0100.0100.098.13362198.704536...0.8844703.0269805.7400004.9300005.27000091.91000488.58999689.97000154.51949771.250
355DEU1993100.0100.0100.0100.0100.0100.098.13362198.704536...0.8439673.0245815.8500005.0400005.38000091.66999888.25000089.66999856.03963171.250
356DEU1994100.0100.0100.0100.0100.0100.098.13362198.704536...0.6362453.0221835.6100005.2000005.37000091.62999787.73999889.37000357.55976471.250
..................................................................
251CHN201773.255.286.2100.0100.0100.080.22911876.364731...2.7396644.20300246.53000142.94999944.53000252.43000054.16999853.40000221.35895875.625
252CHN201875.659.087.4100.0100.0100.080.22911876.364731...2.5034014.20300245.72000141.94000143.60999953.20999955.13999954.29000121.35895875.625
253CHN201977.661.988.4100.0100.0100.080.22911876.364731...2.2901774.20300244.76000040.81999942.54000054.15000256.27999955.34000021.35895875.625
254CHN202079.465.289.4100.0100.0100.080.22911876.364731...2.0660474.20300244.76000040.81999942.54000054.15000256.27999955.34000021.35895875.625
255CHN202179.465.289.4100.0100.0100.080.22911876.364731...2.0660474.20300244.76000040.81999942.54000054.15000256.27999955.34000021.35895875.625
\n", + "

1536 rows × 1060 columns

\n", + "
" + ], + "text/plain": [ + "Indicator Country Year \\\n", + "352 DEU 1990 \n", + "353 DEU 1991 \n", + "354 DEU 1992 \n", + "355 DEU 1993 \n", + "356 DEU 1994 \n", + ".. ... ... \n", + "251 CHN 2017 \n", + "252 CHN 2018 \n", + "253 CHN 2019 \n", + "254 CHN 2020 \n", + "255 CHN 2021 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking (% of population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 73.2 \n", + "252 75.6 \n", + "253 77.6 \n", + "254 79.4 \n", + "255 79.4 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, rural (% of rural population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 55.2 \n", + "252 59.0 \n", + "253 61.9 \n", + "254 65.2 \n", + "255 65.2 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, urban (% of urban population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 86.2 \n", + "252 87.4 \n", + "253 88.4 \n", + "254 89.4 \n", + "255 89.4 \n", + "\n", + "Indicator Access to electricity (% of population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 100.0 \n", + "252 100.0 \n", + "253 100.0 \n", + "254 100.0 \n", + "255 100.0 \n", + "\n", + "Indicator Access to electricity, rural (% of rural population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 100.0 \n", + "252 100.0 \n", + "253 100.0 \n", + "254 100.0 \n", + "255 100.0 \n", + "\n", + "Indicator Access to electricity, urban (% of urban population) \\\n", + "352 100.0 \n", + "353 100.0 \n", + "354 100.0 \n", + "355 100.0 \n", + "356 100.0 \n", + ".. ... \n", + "251 100.0 \n", + "252 100.0 \n", + "253 100.0 \n", + "254 100.0 \n", + "255 100.0 \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+) \\\n", + "352 98.133621 \n", + "353 98.133621 \n", + "354 98.133621 \n", + "355 98.133621 \n", + "356 98.133621 \n", + ".. ... \n", + "251 80.229118 \n", + "252 80.229118 \n", + "253 80.229118 \n", + "254 80.229118 \n", + "255 80.229118 \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider, female (% of population ages 15+) \\\n", + "352 98.704536 \n", + "353 98.704536 \n", + "354 98.704536 \n", + "355 98.704536 \n", + "356 98.704536 \n", + ".. ... \n", + "251 76.364731 \n", + "252 76.364731 \n", + "253 76.364731 \n", + "254 76.364731 \n", + "255 76.364731 \n", + "\n", + "Indicator ... Urban population growth (annual %) \\\n", + "352 ... 1.056365 \n", + "353 ... 0.934908 \n", + "354 ... 0.884470 \n", + "355 ... 0.843967 \n", + "356 ... 0.636245 \n", + ".. ... ... \n", + "251 ... 2.739664 \n", + "252 ... 2.503401 \n", + "253 ... 2.290177 \n", + "254 ... 2.066047 \n", + "255 ... 2.066047 \n", + "\n", + "Indicator Urban population living in areas where elevation is below 5 meters (% of total population) \\\n", + "352 3.031776 \n", + "353 3.029378 \n", + "354 3.026980 \n", + "355 3.024581 \n", + "356 3.022183 \n", + ".. ... \n", + "251 4.203002 \n", + "252 4.203002 \n", + "253 4.203002 \n", + "254 4.203002 \n", + "255 4.203002 \n", + "\n", + "Indicator Vulnerable employment, female (% of female employment) (modeled ILO estimate) \\\n", + "352 5.700000 \n", + "353 5.700000 \n", + "354 5.740000 \n", + "355 5.850000 \n", + "356 5.610000 \n", + ".. ... \n", + "251 46.530001 \n", + "252 45.720001 \n", + "253 44.760000 \n", + "254 44.760000 \n", + "255 44.760000 \n", + "\n", + "Indicator Vulnerable employment, male (% of male employment) (modeled ILO estimate) \\\n", + "352 4.800000 \n", + "353 4.800000 \n", + "354 4.930000 \n", + "355 5.040000 \n", + "356 5.200000 \n", + ".. ... \n", + "251 42.949999 \n", + "252 41.940001 \n", + "253 40.819999 \n", + "254 40.819999 \n", + "255 40.819999 \n", + "\n", + "Indicator Vulnerable employment, total (% of total employment) (modeled ILO estimate) \\\n", + "352 5.170000 \n", + "353 5.170000 \n", + "354 5.270000 \n", + "355 5.380000 \n", + "356 5.370000 \n", + ".. ... \n", + "251 44.530002 \n", + "252 43.609999 \n", + "253 42.540000 \n", + "254 42.540000 \n", + "255 42.540000 \n", + "\n", + "Indicator Wage and salaried workers, female (% of female employment) (modeled ILO estimate) \\\n", + "352 92.050003 \n", + "353 92.050003 \n", + "354 91.910004 \n", + "355 91.669998 \n", + "356 91.629997 \n", + ".. ... \n", + "251 52.430000 \n", + "252 53.209999 \n", + "253 54.150002 \n", + "254 54.150002 \n", + "255 54.150002 \n", + "\n", + "Indicator Wage and salaried workers, male (% of male employment) (modeled ILO estimate) \\\n", + "352 89.110001 \n", + "353 89.110001 \n", + "354 88.589996 \n", + "355 88.250000 \n", + "356 87.739998 \n", + ".. ... \n", + "251 54.169998 \n", + "252 55.139999 \n", + "253 56.279999 \n", + "254 56.279999 \n", + "255 56.279999 \n", + "\n", + "Indicator Wage and salaried workers, total (% of total employment) (modeled ILO estimate) \\\n", + "352 90.330002 \n", + "353 90.330002 \n", + "354 89.970001 \n", + "355 89.669998 \n", + "356 89.370003 \n", + ".. ... \n", + "251 53.400002 \n", + "252 54.290001 \n", + "253 55.340000 \n", + "254 55.340000 \n", + "255 55.340000 \n", + "\n", + "Indicator Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal) \\\n", + "352 54.519497 \n", + "353 54.519497 \n", + "354 54.519497 \n", + "355 56.039631 \n", + "356 57.559764 \n", + ".. ... \n", + "251 21.358958 \n", + "252 21.358958 \n", + "253 21.358958 \n", + "254 21.358958 \n", + "255 21.358958 \n", + "\n", + "Indicator Women Business and the Law Index Score (scale 1-100) \n", + "352 71.250 \n", + "353 71.250 \n", + "354 71.250 \n", + "355 71.250 \n", + "356 71.250 \n", + ".. ... \n", + "251 75.625 \n", + "252 75.625 \n", + "253 75.625 \n", + "254 75.625 \n", + "255 75.625 \n", + "\n", + "[1536 rows x 1060 columns]" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "number_1=len(data.index)*Slider1.value\n", + "for i in range(0, len(cols)):\n", + " if data[cols[i]].isna().sum()>number_1:\n", + " del(data[cols[i]])\n", + " print(cols[i])\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Afterwards, we have scaled the values. The escalation process has been done dividing each value by the initial one of an indicator (value in 1990). Considering the start point as 1 (initial value divided by itself), each result will show the growth respect to the initial data." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "columns=data.columns.values.tolist()" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "datae=data.loc[data.loc[:, 'Country'] == country_list[0]]\n", + "for i in range(2,len(columns)):\n", + " a=columns[i]\n", + " datae[a]=datae[a]/datae.iloc[0,i]\n", + "datau=datae" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorCountryYearAccess to clean fuels and technologies for cooking (% of population)Access to clean fuels and technologies for cooking, rural (% of rural population)Access to clean fuels and technologies for cooking, urban (% of urban population)Access to electricity (% of population)Access to electricity, rural (% of rural population)Access to electricity, urban (% of urban population)Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+)Account ownership at a financial institution or with a mobile-money-service provider, female (% of population ages 15+)...Urban population growth (annual %)Urban population living in areas where elevation is below 5 meters (% of total population)Vulnerable employment, female (% of female employment) (modeled ILO estimate)Vulnerable employment, male (% of male employment) (modeled ILO estimate)Vulnerable employment, total (% of total employment) (modeled ILO estimate)Wage and salaried workers, female (% of female employment) (modeled ILO estimate)Wage and salaried workers, male (% of male employment) (modeled ILO estimate)Wage and salaried workers, total (% of total employment) (modeled ILO estimate)Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal)Women Business and the Law Index Score (scale 1-100)
352DEU19901.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...1.0000001.0000001.0000001.0000001.0000001.0000001.0000001.0000001.0000001.000000
353DEU19911.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...0.8850230.9992091.0000001.0000001.0000001.0000001.0000001.0000001.0000001.000000
354DEU19921.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...0.8372770.9984181.0070181.0270831.0193420.9984790.9941640.9960151.0000001.000000
355DEU19931.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...0.7989350.9976271.0263161.0500001.0406190.9958720.9903490.9926931.0278821.000000
356DEU19941.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...0.6022960.9968360.9842101.0833331.0386850.9954370.9846260.9893721.0557651.000000
..................................................................
251CHN20171.7428572.3489361.2611561.0306961.0487071.01.2571691.272562...0.6357001.3628190.7072500.6172750.6562041.5557861.9849761.7687988.6109871.273684
252CHN20181.8000002.5106381.2787131.0306961.0487071.01.2571691.272562...0.5808791.3628190.6949380.6027590.6426471.5789322.0205201.7982788.6109871.273684
253CHN20191.8476192.6340431.2933431.0306961.0487071.01.2571691.272562...0.5314031.3628190.6803470.5866630.6268791.6068252.0622941.8330578.6109871.273684
254CHN20201.8904762.7744681.3079741.0306961.0487071.01.2571691.272562...0.4793971.3628190.6803470.5866630.6268791.6068252.0622941.8330578.6109871.273684
255CHN20211.8904762.7744681.3079741.0306961.0487071.01.2571691.272562...0.4793971.3628190.6803470.5866630.6268791.6068252.0622941.8330578.6109871.273684
\n", + "

1536 rows × 1060 columns

\n", + "
" + ], + "text/plain": [ + "Indicator Country Year \\\n", + "352 DEU 1990 \n", + "353 DEU 1991 \n", + "354 DEU 1992 \n", + "355 DEU 1993 \n", + "356 DEU 1994 \n", + ".. ... ... \n", + "251 CHN 2017 \n", + "252 CHN 2018 \n", + "253 CHN 2019 \n", + "254 CHN 2020 \n", + "255 CHN 2021 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking (% of population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.742857 \n", + "252 1.800000 \n", + "253 1.847619 \n", + "254 1.890476 \n", + "255 1.890476 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, rural (% of rural population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 2.348936 \n", + "252 2.510638 \n", + "253 2.634043 \n", + "254 2.774468 \n", + "255 2.774468 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, urban (% of urban population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.261156 \n", + "252 1.278713 \n", + "253 1.293343 \n", + "254 1.307974 \n", + "255 1.307974 \n", + "\n", + "Indicator Access to electricity (% of population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.030696 \n", + "252 1.030696 \n", + "253 1.030696 \n", + "254 1.030696 \n", + "255 1.030696 \n", + "\n", + "Indicator Access to electricity, rural (% of rural population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.048707 \n", + "252 1.048707 \n", + "253 1.048707 \n", + "254 1.048707 \n", + "255 1.048707 \n", + "\n", + "Indicator Access to electricity, urban (% of urban population) \\\n", + "352 1.0 \n", + "353 1.0 \n", + "354 1.0 \n", + "355 1.0 \n", + "356 1.0 \n", + ".. ... \n", + "251 1.0 \n", + "252 1.0 \n", + "253 1.0 \n", + "254 1.0 \n", + "255 1.0 \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.257169 \n", + "252 1.257169 \n", + "253 1.257169 \n", + "254 1.257169 \n", + "255 1.257169 \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider, female (% of population ages 15+) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.272562 \n", + "252 1.272562 \n", + "253 1.272562 \n", + "254 1.272562 \n", + "255 1.272562 \n", + "\n", + "Indicator ... Urban population growth (annual %) \\\n", + "352 ... 1.000000 \n", + "353 ... 0.885023 \n", + "354 ... 0.837277 \n", + "355 ... 0.798935 \n", + "356 ... 0.602296 \n", + ".. ... ... \n", + "251 ... 0.635700 \n", + "252 ... 0.580879 \n", + "253 ... 0.531403 \n", + "254 ... 0.479397 \n", + "255 ... 0.479397 \n", + "\n", + "Indicator Urban population living in areas where elevation is below 5 meters (% of total population) \\\n", + "352 1.000000 \n", + "353 0.999209 \n", + "354 0.998418 \n", + "355 0.997627 \n", + "356 0.996836 \n", + ".. ... \n", + "251 1.362819 \n", + "252 1.362819 \n", + "253 1.362819 \n", + "254 1.362819 \n", + "255 1.362819 \n", + "\n", + "Indicator Vulnerable employment, female (% of female employment) (modeled ILO estimate) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.007018 \n", + "355 1.026316 \n", + "356 0.984210 \n", + ".. ... \n", + "251 0.707250 \n", + "252 0.694938 \n", + "253 0.680347 \n", + "254 0.680347 \n", + "255 0.680347 \n", + "\n", + "Indicator Vulnerable employment, male (% of male employment) (modeled ILO estimate) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.027083 \n", + "355 1.050000 \n", + "356 1.083333 \n", + ".. ... \n", + "251 0.617275 \n", + "252 0.602759 \n", + "253 0.586663 \n", + "254 0.586663 \n", + "255 0.586663 \n", + "\n", + "Indicator Vulnerable employment, total (% of total employment) (modeled ILO estimate) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.019342 \n", + "355 1.040619 \n", + "356 1.038685 \n", + ".. ... \n", + "251 0.656204 \n", + "252 0.642647 \n", + "253 0.626879 \n", + "254 0.626879 \n", + "255 0.626879 \n", + "\n", + "Indicator Wage and salaried workers, female (% of female employment) (modeled ILO estimate) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 0.998479 \n", + "355 0.995872 \n", + "356 0.995437 \n", + ".. ... \n", + "251 1.555786 \n", + "252 1.578932 \n", + "253 1.606825 \n", + "254 1.606825 \n", + "255 1.606825 \n", + "\n", + "Indicator Wage and salaried workers, male (% of male employment) (modeled ILO estimate) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 0.994164 \n", + "355 0.990349 \n", + "356 0.984626 \n", + ".. ... \n", + "251 1.984976 \n", + "252 2.020520 \n", + "253 2.062294 \n", + "254 2.062294 \n", + "255 2.062294 \n", + "\n", + "Indicator Wage and salaried workers, total (% of total employment) (modeled ILO estimate) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 0.996015 \n", + "355 0.992693 \n", + "356 0.989372 \n", + ".. ... \n", + "251 1.768798 \n", + "252 1.798278 \n", + "253 1.833057 \n", + "254 1.833057 \n", + "255 1.833057 \n", + "\n", + "Indicator Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.027882 \n", + "356 1.055765 \n", + ".. ... \n", + "251 8.610987 \n", + "252 8.610987 \n", + "253 8.610987 \n", + "254 8.610987 \n", + "255 8.610987 \n", + "\n", + "Indicator Women Business and the Law Index Score (scale 1-100) \n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.273684 \n", + "252 1.273684 \n", + "253 1.273684 \n", + "254 1.273684 \n", + "255 1.273684 \n", + "\n", + "[1536 rows x 1060 columns]" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "for u in range(1,len(country_list)):\n", + " datae=data.loc[data.loc[:, 'Country'] == country_list[u]] \n", + " for i in range(2,len(columns)):\n", + " a=columns[i]\n", + " datae[a]=datae[a]/datae.iloc[0,i]\n", + " datau=pd.concat((datau, datae), axis = 0)\n", + "datau" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As later on we want to study the correlations with time moved, we need to create new columns for it. The reason why is because, maybe the effect of a variable does not happen until a couple of years later. The time movements that have been considered are those of the Fibonacci serie within our time period. \n", + "\n", + "The following pictures helps to realize the behaviour that we were explaining. \n", + "\n", + "![](https://raw.githubusercontent.com/devonfw-forge/python-data-driven-decisions/main-the-big-three/Logos/Time%20moved.JPG)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorCountryYearAccess to clean fuels and technologies for cooking (% of population)Access to clean fuels and technologies for cooking, rural (% of rural population)Access to clean fuels and technologies for cooking, urban (% of urban population)Access to electricity (% of population)Access to electricity, rural (% of rural population)Access to electricity, urban (% of urban population)Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+)Account ownership at a financial institution or with a mobile-money-service provider, female (% of population ages 15+)...Wage and salaried workers, total (% of total employment) (modeled ILO estimate)Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal)Women Business and the Law Index Score (scale 1-100)GDP (current US$)+1GDP (current US$)+2GDP (current US$)+3GDP (current US$)+5GDP (current US$)+8GDP (current US$)+13GDP (current US$)+21
352DEU19901.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...1.0000001.0000001.000000NaNNaNNaNNaNNaNNaNNaN
353DEU19911.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...1.0000001.0000001.0000001.000000NaNNaNNaNNaNNaNNaN
354DEU19921.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...0.9960151.0000001.0000001.0549051.000000NaNNaNNaNNaNNaN
355DEU19931.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...0.9926931.0278821.0000001.2031421.0549051.000000NaNNaNNaNNaN
356DEU19941.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...0.9893721.0557651.0000001.1691361.2031421.054905NaNNaNNaNNaN
..................................................................
251CHN20171.7428572.3489361.2611561.0306961.0487071.01.2571691.272562...1.7687988.6109871.27368431.12936230.65348629.02993823.64429214.1377065.4186062.393592
252CHN20181.8000002.5106381.2787131.0306961.0487071.01.2571691.272562...1.7982788.6109871.27368434.11428431.12936230.65348626.52125916.8685896.3348092.664772
253CHN20191.8476192.6340431.2933431.0306961.0487071.01.2571691.272562...1.8330578.6109871.27368438.50495534.11428431.12936229.02993820.9265197.6266362.851657
254CHN20201.8904762.7744681.3079741.0306961.0487071.01.2571691.272562...1.8330578.6109871.27368439.57218938.50495534.11428430.65348623.6442929.8386173.031657
255CHN20211.8904762.7744681.3079741.0306961.0487071.01.2571691.272562...1.8330578.6109871.27368440.79924639.57218938.50495531.12936226.52125912.7316233.356853
\n", + "

1536 rows × 1067 columns

\n", + "
" + ], + "text/plain": [ + "Indicator Country Year \\\n", + "352 DEU 1990 \n", + "353 DEU 1991 \n", + "354 DEU 1992 \n", + "355 DEU 1993 \n", + "356 DEU 1994 \n", + ".. ... ... \n", + "251 CHN 2017 \n", + "252 CHN 2018 \n", + "253 CHN 2019 \n", + "254 CHN 2020 \n", + "255 CHN 2021 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking (% of population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.742857 \n", + "252 1.800000 \n", + "253 1.847619 \n", + "254 1.890476 \n", + "255 1.890476 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, rural (% of rural population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 2.348936 \n", + "252 2.510638 \n", + "253 2.634043 \n", + "254 2.774468 \n", + "255 2.774468 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, urban (% of urban population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.261156 \n", + "252 1.278713 \n", + "253 1.293343 \n", + "254 1.307974 \n", + "255 1.307974 \n", + "\n", + "Indicator Access to electricity (% of population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.030696 \n", + "252 1.030696 \n", + "253 1.030696 \n", + "254 1.030696 \n", + "255 1.030696 \n", + "\n", + "Indicator Access to electricity, rural (% of rural population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.048707 \n", + "252 1.048707 \n", + "253 1.048707 \n", + "254 1.048707 \n", + "255 1.048707 \n", + "\n", + "Indicator Access to electricity, urban (% of urban population) \\\n", + "352 1.0 \n", + "353 1.0 \n", + "354 1.0 \n", + "355 1.0 \n", + "356 1.0 \n", + ".. ... \n", + "251 1.0 \n", + "252 1.0 \n", + "253 1.0 \n", + "254 1.0 \n", + "255 1.0 \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.257169 \n", + "252 1.257169 \n", + "253 1.257169 \n", + "254 1.257169 \n", + "255 1.257169 \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider, female (% of population ages 15+) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.272562 \n", + "252 1.272562 \n", + "253 1.272562 \n", + "254 1.272562 \n", + "255 1.272562 \n", + "\n", + "Indicator ... \\\n", + "352 ... \n", + "353 ... \n", + "354 ... \n", + "355 ... \n", + "356 ... \n", + ".. ... \n", + "251 ... \n", + "252 ... \n", + "253 ... \n", + "254 ... \n", + "255 ... \n", + "\n", + "Indicator Wage and salaried workers, total (% of total employment) (modeled ILO estimate) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 0.996015 \n", + "355 0.992693 \n", + "356 0.989372 \n", + ".. ... \n", + "251 1.768798 \n", + "252 1.798278 \n", + "253 1.833057 \n", + "254 1.833057 \n", + "255 1.833057 \n", + "\n", + "Indicator Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.027882 \n", + "356 1.055765 \n", + ".. ... \n", + "251 8.610987 \n", + "252 8.610987 \n", + "253 8.610987 \n", + "254 8.610987 \n", + "255 8.610987 \n", + "\n", + "Indicator Women Business and the Law Index Score (scale 1-100) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.273684 \n", + "252 1.273684 \n", + "253 1.273684 \n", + "254 1.273684 \n", + "255 1.273684 \n", + "\n", + "Indicator GDP (current US$)+1 GDP (current US$)+2 GDP (current US$)+3 \\\n", + "352 NaN NaN NaN \n", + "353 1.000000 NaN NaN \n", + "354 1.054905 1.000000 NaN \n", + "355 1.203142 1.054905 1.000000 \n", + "356 1.169136 1.203142 1.054905 \n", + ".. ... ... ... \n", + "251 31.129362 30.653486 29.029938 \n", + "252 34.114284 31.129362 30.653486 \n", + "253 38.504955 34.114284 31.129362 \n", + "254 39.572189 38.504955 34.114284 \n", + "255 40.799246 39.572189 38.504955 \n", + "\n", + "Indicator GDP (current US$)+5 GDP (current US$)+8 GDP (current US$)+13 \\\n", + "352 NaN NaN NaN \n", + "353 NaN NaN NaN \n", + "354 NaN NaN NaN \n", + "355 NaN NaN NaN \n", + "356 NaN NaN NaN \n", + ".. ... ... ... \n", + "251 23.644292 14.137706 5.418606 \n", + "252 26.521259 16.868589 6.334809 \n", + "253 29.029938 20.926519 7.626636 \n", + "254 30.653486 23.644292 9.838617 \n", + "255 31.129362 26.521259 12.731623 \n", + "\n", + "Indicator GDP (current US$)+21 \n", + "352 NaN \n", + "353 NaN \n", + "354 NaN \n", + "355 NaN \n", + "356 NaN \n", + ".. ... \n", + "251 2.393592 \n", + "252 2.664772 \n", + "253 2.851657 \n", + "254 3.031657 \n", + "255 3.356853 \n", + "\n", + "[1536 rows x 1067 columns]" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "shifted=pd.DataFrame()\n", + "for i in range(0,len(country_list)):\n", + " dat=datau.loc[datau.loc[:, 'Country'] == country_list[i]]\n", + " dat['GDP (current US$)+1']=dat['GDP (current US$)'].shift(periods=1)\n", + " dat['GDP (current US$)+2']=dat['GDP (current US$)'].shift(periods=2)\n", + " dat['GDP (current US$)+3']=dat['GDP (current US$)'].shift(periods=3)\n", + " dat['GDP (current US$)+5']=dat['GDP (current US$)'].shift(periods=5)\n", + " dat['GDP (current US$)+8']=dat['GDP (current US$)'].shift(periods=8)\n", + " dat['GDP (current US$)+13']=dat['GDP (current US$)'].shift(periods=13)\n", + " dat['GDP (current US$)+21']=dat['GDP (current US$)'].shift(periods=21)\n", + " shifted=pd.concat((shifted, dat), axis = 0)\n", + "shifted" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "data=shifted" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the next part of analyzing this data, we think it is gonna be interesting to have it classify by the categories of the Country groups defined before, to which we call \"Continent\". This category is useful as it groups the nations with similar economies or geographical proximity, so we can extract common conclusions from them." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We create a dictionary with the regions and the countries included in each one. Where we will relate the countries and regions so then we can apply the .map function and arrive to the final dataframe." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'DEU': 'Europe', 'FRA': 'Europe', 'SWE': 'Europe', 'GBR': 'Europe', 'ESP': 'Europe', 'HRV': 'Europe', 'POL': 'Europe', 'GRC': 'Europe', 'AUT': 'Europe', 'NLD': 'Europe', 'IRQ': 'Persian Gulf', 'QAT': 'Persian Gulf', 'ARE': 'Persian Gulf', 'SAU': 'Persian Gulf', 'AZE': 'Persian Gulf', 'YEM': 'Persian Gulf', 'YDR': 'Persian Gulf', 'OMN': 'Persian Gulf', 'DZA': 'North Africa', 'EGY': 'North Africa', 'LBY': 'North Africa', 'ISR': 'North Africa', 'TUR': 'North Africa', 'MAR': 'North Africa', 'SEN': 'South Africa', 'ZAF': 'South Africa', 'LBR': 'South Africa', 'MOZ': 'South Africa', 'CMR': 'South Africa', 'NGA': 'South Africa', 'GHA': 'South Africa', 'BGD': 'Asia', 'IND': 'Asia', 'VNM': 'Asia', 'THA': 'Asia', 'IDN': 'Asia', 'PHL': 'Asia', 'KOR': 'Asia', 'MEX': 'Latam', 'BRA': 'Latam', 'ARG': 'Latam', 'PER': 'Latam', 'VEN': 'Latam', 'COL': 'Latam', 'CHL': 'Latam', 'PAN': 'Latam', 'CRI': 'Latam', 'USA': 'Pair', 'CHN': 'Pair'}\n" + ] + } + ], + "source": [ + "countries_by_region = {\n", + " \"Europe\": ('DEU','FRA','SWE','GBR','ESP','HRV','POL','GRC','AUT','NLD'),\n", + " 'Persian Gulf': ('IRQ','QAT','ARE','SAU','AZE','YEM','YDR','OMN'),\n", + " 'North Africa':('DZA','EGY','LBY','ISR','TUR','MAR'),\n", + " 'South Africa':('SEN','ZAF','LBR','MOZ','CMR','NGA','GHA'),\n", + " 'Asia':('BGD','IND','VNM','THA','IDN','PHL','KOR'),\n", + " 'Latam':('MEX','BRA','ARG','PER','VEN','COL','CHL','PAN','CRI'),\n", + " 'Pair':('USA','CHN')\n", + " }\n", + "\n", + "all_countries = {}\n", + "for region in countries_by_region.keys():\n", + " for country in countries_by_region[region]:\n", + " all_countries[country] = region\n", + "\n", + "print(all_countries)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndicatorCountryYearAccess to clean fuels and technologies for cooking (% of population)Access to clean fuels and technologies for cooking, rural (% of rural population)Access to clean fuels and technologies for cooking, urban (% of urban population)Access to electricity (% of population)Access to electricity, rural (% of rural population)Access to electricity, urban (% of urban population)Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+)Account ownership at a financial institution or with a mobile-money-service provider, female (% of population ages 15+)...Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal)Women Business and the Law Index Score (scale 1-100)GDP (current US$)+1GDP (current US$)+2GDP (current US$)+3GDP (current US$)+5GDP (current US$)+8GDP (current US$)+13GDP (current US$)+21Continent
352DEU19901.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...1.0000001.000000NaNNaNNaNNaNNaNNaNNaNEurope
353DEU19911.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...1.0000001.0000001.000000NaNNaNNaNNaNNaNNaNEurope
354DEU19921.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...1.0000001.0000001.0549051.000000NaNNaNNaNNaNNaNEurope
355DEU19931.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...1.0278821.0000001.2031421.0549051.000000NaNNaNNaNNaNEurope
356DEU19941.0000001.0000001.0000001.0000001.0000001.01.0000001.000000...1.0557651.0000001.1691361.2031421.054905NaNNaNNaNNaNEurope
..................................................................
251CHN20171.7428572.3489361.2611561.0306961.0487071.01.2571691.272562...8.6109871.27368431.12936230.65348629.02993823.64429214.1377065.4186062.393592Pair
252CHN20181.8000002.5106381.2787131.0306961.0487071.01.2571691.272562...8.6109871.27368434.11428431.12936230.65348626.52125916.8685896.3348092.664772Pair
253CHN20191.8476192.6340431.2933431.0306961.0487071.01.2571691.272562...8.6109871.27368438.50495534.11428431.12936229.02993820.9265197.6266362.851657Pair
254CHN20201.8904762.7744681.3079741.0306961.0487071.01.2571691.272562...8.6109871.27368439.57218938.50495534.11428430.65348623.6442929.8386173.031657Pair
255CHN20211.8904762.7744681.3079741.0306961.0487071.01.2571691.272562...8.6109871.27368440.79924639.57218938.50495531.12936226.52125912.7316233.356853Pair
\n", + "

1536 rows × 1068 columns

\n", + "
" + ], + "text/plain": [ + "Indicator Country Year \\\n", + "352 DEU 1990 \n", + "353 DEU 1991 \n", + "354 DEU 1992 \n", + "355 DEU 1993 \n", + "356 DEU 1994 \n", + ".. ... ... \n", + "251 CHN 2017 \n", + "252 CHN 2018 \n", + "253 CHN 2019 \n", + "254 CHN 2020 \n", + "255 CHN 2021 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking (% of population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.742857 \n", + "252 1.800000 \n", + "253 1.847619 \n", + "254 1.890476 \n", + "255 1.890476 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, rural (% of rural population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 2.348936 \n", + "252 2.510638 \n", + "253 2.634043 \n", + "254 2.774468 \n", + "255 2.774468 \n", + "\n", + "Indicator Access to clean fuels and technologies for cooking, urban (% of urban population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.261156 \n", + "252 1.278713 \n", + "253 1.293343 \n", + "254 1.307974 \n", + "255 1.307974 \n", + "\n", + "Indicator Access to electricity (% of population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.030696 \n", + "252 1.030696 \n", + "253 1.030696 \n", + "254 1.030696 \n", + "255 1.030696 \n", + "\n", + "Indicator Access to electricity, rural (% of rural population) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.048707 \n", + "252 1.048707 \n", + "253 1.048707 \n", + "254 1.048707 \n", + "255 1.048707 \n", + "\n", + "Indicator Access to electricity, urban (% of urban population) \\\n", + "352 1.0 \n", + "353 1.0 \n", + "354 1.0 \n", + "355 1.0 \n", + "356 1.0 \n", + ".. ... \n", + "251 1.0 \n", + "252 1.0 \n", + "253 1.0 \n", + "254 1.0 \n", + "255 1.0 \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider (% of population ages 15+) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.257169 \n", + "252 1.257169 \n", + "253 1.257169 \n", + "254 1.257169 \n", + "255 1.257169 \n", + "\n", + "Indicator Account ownership at a financial institution or with a mobile-money-service provider, female (% of population ages 15+) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.272562 \n", + "252 1.272562 \n", + "253 1.272562 \n", + "254 1.272562 \n", + "255 1.272562 \n", + "\n", + "Indicator ... \\\n", + "352 ... \n", + "353 ... \n", + "354 ... \n", + "355 ... \n", + "356 ... \n", + ".. ... \n", + "251 ... \n", + "252 ... \n", + "253 ... \n", + "254 ... \n", + "255 ... \n", + "\n", + "Indicator Water productivity, total (constant 2015 US$ GDP per cubic meter of total freshwater withdrawal) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.027882 \n", + "356 1.055765 \n", + ".. ... \n", + "251 8.610987 \n", + "252 8.610987 \n", + "253 8.610987 \n", + "254 8.610987 \n", + "255 8.610987 \n", + "\n", + "Indicator Women Business and the Law Index Score (scale 1-100) \\\n", + "352 1.000000 \n", + "353 1.000000 \n", + "354 1.000000 \n", + "355 1.000000 \n", + "356 1.000000 \n", + ".. ... \n", + "251 1.273684 \n", + "252 1.273684 \n", + "253 1.273684 \n", + "254 1.273684 \n", + "255 1.273684 \n", + "\n", + "Indicator GDP (current US$)+1 GDP (current US$)+2 GDP (current US$)+3 \\\n", + "352 NaN NaN NaN \n", + "353 1.000000 NaN NaN \n", + "354 1.054905 1.000000 NaN \n", + "355 1.203142 1.054905 1.000000 \n", + "356 1.169136 1.203142 1.054905 \n", + ".. ... ... ... \n", + "251 31.129362 30.653486 29.029938 \n", + "252 34.114284 31.129362 30.653486 \n", + "253 38.504955 34.114284 31.129362 \n", + "254 39.572189 38.504955 34.114284 \n", + "255 40.799246 39.572189 38.504955 \n", + "\n", + "Indicator GDP (current US$)+5 GDP (current US$)+8 GDP (current US$)+13 \\\n", + "352 NaN NaN NaN \n", + "353 NaN NaN NaN \n", + "354 NaN NaN NaN \n", + "355 NaN NaN NaN \n", + "356 NaN NaN NaN \n", + ".. ... ... ... \n", + "251 23.644292 14.137706 5.418606 \n", + "252 26.521259 16.868589 6.334809 \n", + "253 29.029938 20.926519 7.626636 \n", + "254 30.653486 23.644292 9.838617 \n", + "255 31.129362 26.521259 12.731623 \n", + "\n", + "Indicator GDP (current US$)+21 Continent \n", + "352 NaN Europe \n", + "353 NaN Europe \n", + "354 NaN Europe \n", + "355 NaN Europe \n", + "356 NaN Europe \n", + ".. ... ... \n", + "251 2.393592 Pair \n", + "252 2.664772 Pair \n", + "253 2.851657 Pair \n", + "254 3.031657 Pair \n", + "255 3.356853 Pair \n", + "\n", + "[1536 rows x 1068 columns]" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data['Continent']=data['Country'].map(all_countries)\n", + "Goldendataframe=data\n", + "Goldendataframe" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With that all, we export our dataframe all-in-one and by the continent category." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "Goldendataframe.to_csv(os.getcwd()+'/Data/GoldenDataFrame.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "for region, data in Goldendataframe.groupby('Continent'):\n", + " data.to_csv(os.getcwd()+'/Data/{}.csv'.format(region))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Categorization of variables" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this section, we are going to attempt a categorization of the whole of the variables, which most of them come the same sources and just differ in the units that are measured, or the total that they are refering, between others. For a simpler treatment of the data, the variables have been pivoted into the same column." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "columns_golden=list(Goldendataframe.columns)\n", + "del columns_golden[0:2]" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicator0Short indicator
0DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...
1DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...
2DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...
3DEU1990EuropeAccess to electricity (% of population)1.000000Access to electricity (% of population)
4DEU1990EuropeAccess to electricity, rural (% of rural popul...1.000000Access to electricity, rural (% of rural popul...
.....................
1540358CHN2021PairGDP (current US$)+338.504955GDP (current US$)+3
1540359CHN2021PairGDP (current US$)+531.129362GDP (current US$)+5
1540360CHN2021PairGDP (current US$)+826.521259GDP (current US$)+8
1540361CHN2021PairGDP (current US$)+1312.731623GDP (current US$)+13
1540362CHN2021PairGDP (current US$)+213.356853GDP (current US$)+21
\n", + "

1540363 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "1 DEU 1990 Europe \n", + "2 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "4 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator 0 \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "1 Access to clean fuels and technologies for coo... 1.000000 \n", + "2 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity (% of population) 1.000000 \n", + "4 Access to electricity, rural (% of rural popul... 1.000000 \n", + "... ... ... \n", + "1540358 GDP (current US$)+3 38.504955 \n", + "1540359 GDP (current US$)+5 31.129362 \n", + "1540360 GDP (current US$)+8 26.521259 \n", + "1540361 GDP (current US$)+13 12.731623 \n", + "1540362 GDP (current US$)+21 3.356853 \n", + "\n", + " Short indicator \n", + "0 Access to clean fuels and technologies for coo... \n", + "1 Access to clean fuels and technologies for coo... \n", + "2 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity (% of population) \n", + "4 Access to electricity, rural (% of rural popul... \n", + "... ... \n", + "1540358 GDP (current US$)+3 \n", + "1540359 GDP (current US$)+5 \n", + "1540360 GDP (current US$)+8 \n", + "1540361 GDP (current US$)+13 \n", + "1540362 GDP (current US$)+21 \n", + "\n", + "[1540363 rows x 6 columns]" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Categorization=Goldendataframe.set_index(['Country','Year', 'Continent']).stack().reset_index()\n", + "Categorization['Short indicator']=Categorization['Indicator']\n", + "Categorization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " There are some indicators which represent exactly the same through different units, so, we are going to select only one type. For example, in monetary cases, indicators which are expressed with current US $ has been selected. Then, which are showed with the percentage and the total value, we have programmed to selct which ones which show a greater value.\n", + "\n", + "The links used to learn about these functions have been:\n", + "\n", + "https://www.geeksforgeeks.org/how-to-drop-rows-that-contain-a-specific-string-in-pandas/ \n", + "\n", + "https://www.statology.org/pandas-drop-rows-that-contain-string/ " + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicator0Short indicator
0DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...
1DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...
2DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...
3DEU1990EuropeAccess to electricity (% of population)1.000000Access to electricity (% of population)
4DEU1990EuropeAccess to electricity, rural (% of rural popul...1.000000Access to electricity, rural (% of rural popul...
.....................
1540358CHN2021PairGDP (current US$)+338.504955GDP (current US$)+3
1540359CHN2021PairGDP (current US$)+531.129362GDP (current US$)+5
1540360CHN2021PairGDP (current US$)+826.521259GDP (current US$)+8
1540361CHN2021PairGDP (current US$)+1312.731623GDP (current US$)+13
1540362CHN2021PairGDP (current US$)+213.356853GDP (current US$)+21
\n", + "

1372098 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "1 DEU 1990 Europe \n", + "2 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "4 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator 0 \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "1 Access to clean fuels and technologies for coo... 1.000000 \n", + "2 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity (% of population) 1.000000 \n", + "4 Access to electricity, rural (% of rural popul... 1.000000 \n", + "... ... ... \n", + "1540358 GDP (current US$)+3 38.504955 \n", + "1540359 GDP (current US$)+5 31.129362 \n", + "1540360 GDP (current US$)+8 26.521259 \n", + "1540361 GDP (current US$)+13 12.731623 \n", + "1540362 GDP (current US$)+21 3.356853 \n", + "\n", + " Short indicator \n", + "0 Access to clean fuels and technologies for coo... \n", + "1 Access to clean fuels and technologies for coo... \n", + "2 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity (% of population) \n", + "4 Access to electricity, rural (% of rural popul... \n", + "... ... \n", + "1540358 GDP (current US$)+3 \n", + "1540359 GDP (current US$)+5 \n", + "1540360 GDP (current US$)+8 \n", + "1540361 GDP (current US$)+13 \n", + "1540362 GDP (current US$)+21 \n", + "\n", + "[1372098 rows x 6 columns]" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import re\n", + "discard=[\"annual % growth\",\"constant 2015 US[$]\",\"% of GNI\",\"constant LCU\",\"current LCU\"]\n", + "Categorization2=Categorization[~Categorization['Short indicator'].str.contains('|'.join(discard))]\n", + "Categorization2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To check previous step." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "#Categorization2.apply(lambda row: row.astype(str).str.contains('US').any(), axis=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we are going to structure the indicators in a same way to work better. The first step consist of making a new column that shows the units of each variable. Units are showed inside the parenthesis of the indicator name." + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicator0Short indicatorUnits
0DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of population)
1DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of rural population)
2DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of urban population)
3DEU1990EuropeAccess to electricity (% of population)1.000000Access to electricity (% of population)(% of population)
4DEU1990EuropeAccess to electricity, rural (% of rural popul...1.000000Access to electricity, rural (% of rural popul...(% of rural population)
........................
1540358CHN2021PairGDP (current US$)+338.504955GDP (current US$)+3(current US$)
1540359CHN2021PairGDP (current US$)+531.129362GDP (current US$)+5(current US$)
1540360CHN2021PairGDP (current US$)+826.521259GDP (current US$)+8(current US$)
1540361CHN2021PairGDP (current US$)+1312.731623GDP (current US$)+13(current US$)
1540362CHN2021PairGDP (current US$)+213.356853GDP (current US$)+21(current US$)
\n", + "

1372098 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "1 DEU 1990 Europe \n", + "2 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "4 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator 0 \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "1 Access to clean fuels and technologies for coo... 1.000000 \n", + "2 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity (% of population) 1.000000 \n", + "4 Access to electricity, rural (% of rural popul... 1.000000 \n", + "... ... ... \n", + "1540358 GDP (current US$)+3 38.504955 \n", + "1540359 GDP (current US$)+5 31.129362 \n", + "1540360 GDP (current US$)+8 26.521259 \n", + "1540361 GDP (current US$)+13 12.731623 \n", + "1540362 GDP (current US$)+21 3.356853 \n", + "\n", + " Short indicator \\\n", + "0 Access to clean fuels and technologies for coo... \n", + "1 Access to clean fuels and technologies for coo... \n", + "2 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity (% of population) \n", + "4 Access to electricity, rural (% of rural popul... \n", + "... ... \n", + "1540358 GDP (current US$)+3 \n", + "1540359 GDP (current US$)+5 \n", + "1540360 GDP (current US$)+8 \n", + "1540361 GDP (current US$)+13 \n", + "1540362 GDP (current US$)+21 \n", + "\n", + " Units \n", + "0 (% of population) \n", + "1 (% of rural population) \n", + "2 (% of urban population) \n", + "3 (% of population) \n", + "4 (% of rural population) \n", + "... ... \n", + "1540358 (current US$) \n", + "1540359 (current US$) \n", + "1540360 (current US$) \n", + "1540361 (current US$) \n", + "1540362 (current US$) \n", + "\n", + "[1372098 rows x 7 columns]" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Categorization2['Units']=Categorization2['Short indicator'].str.extract(' (\\(.*\\))')\n", + "Categorization2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, short indicator refers to the original indicator name without the units. The extracted information from the origin column has been deleted." + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicator0Short indicatorUnits
0DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of population)
1DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of rural population)
2DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of urban population)
3DEU1990EuropeAccess to electricity (% of population)1.000000Access to electricity(% of population)
4DEU1990EuropeAccess to electricity, rural (% of rural popul...1.000000Access to electricity, rural(% of rural population)
........................
1540358CHN2021PairGDP (current US$)+338.504955GDP+3(current US$)
1540359CHN2021PairGDP (current US$)+531.129362GDP+5(current US$)
1540360CHN2021PairGDP (current US$)+826.521259GDP+8(current US$)
1540361CHN2021PairGDP (current US$)+1312.731623GDP+13(current US$)
1540362CHN2021PairGDP (current US$)+213.356853GDP+21(current US$)
\n", + "

1372098 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "1 DEU 1990 Europe \n", + "2 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "4 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator 0 \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "1 Access to clean fuels and technologies for coo... 1.000000 \n", + "2 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity (% of population) 1.000000 \n", + "4 Access to electricity, rural (% of rural popul... 1.000000 \n", + "... ... ... \n", + "1540358 GDP (current US$)+3 38.504955 \n", + "1540359 GDP (current US$)+5 31.129362 \n", + "1540360 GDP (current US$)+8 26.521259 \n", + "1540361 GDP (current US$)+13 12.731623 \n", + "1540362 GDP (current US$)+21 3.356853 \n", + "\n", + " Short indicator \\\n", + "0 Access to clean fuels and technologies for coo... \n", + "1 Access to clean fuels and technologies for coo... \n", + "2 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity \n", + "4 Access to electricity, rural \n", + "... ... \n", + "1540358 GDP+3 \n", + "1540359 GDP+5 \n", + "1540360 GDP+8 \n", + "1540361 GDP+13 \n", + "1540362 GDP+21 \n", + "\n", + " Units \n", + "0 (% of population) \n", + "1 (% of rural population) \n", + "2 (% of urban population) \n", + "3 (% of population) \n", + "4 (% of rural population) \n", + "... ... \n", + "1540358 (current US$) \n", + "1540359 (current US$) \n", + "1540360 (current US$) \n", + "1540361 (current US$) \n", + "1540362 (current US$) \n", + "\n", + "[1372098 rows x 7 columns]" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Categorization2['Short indicator']=Categorization2['Short indicator'].str.replace(r\" (\\(.*\\))\",\"\")\n", + "Categorization2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In some cases there are extra information in indicators name. The information of the second parenthesis is extracted as a new column too." + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicator0Short indicatorUnits
151DEU1990EuropeContributing family workers, female (% of fema...1.000000Contributing family workers, female(% of female employment) (modeled ILO estimate)
152DEU1990EuropeContributing family workers, male (% of male e...1.000000Contributing family workers, male(% of male employment) (modeled ILO estimate)
153DEU1990EuropeContributing family workers, total (% of total...1.000000Contributing family workers, total(% of total employment) (modeled ILO estimate)
1151DEU1991EuropeContributing family workers, female (% of fema...1.000000Contributing family workers, female(% of female employment) (modeled ILO estimate)
1152DEU1991EuropeContributing family workers, male (% of male e...1.000000Contributing family workers, male(% of male employment) (modeled ILO estimate)
........................
1538535CHN2020PairContributing family workers, male (% of male e...0.252894Contributing family workers, male(% of male employment) (modeled ILO estimate)
1538536CHN2020PairContributing family workers, total (% of total...0.329385Contributing family workers, total(% of total employment) (modeled ILO estimate)
1539524CHN2021PairContributing family workers, female (% of fema...0.386565Contributing family workers, female(% of female employment) (modeled ILO estimate)
1539525CHN2021PairContributing family workers, male (% of male e...0.252894Contributing family workers, male(% of male employment) (modeled ILO estimate)
1539526CHN2021PairContributing family workers, total (% of total...0.329385Contributing family workers, total(% of total employment) (modeled ILO estimate)
\n", + "

4545 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "151 DEU 1990 Europe \n", + "152 DEU 1990 Europe \n", + "153 DEU 1990 Europe \n", + "1151 DEU 1991 Europe \n", + "1152 DEU 1991 Europe \n", + "... ... ... ... \n", + "1538535 CHN 2020 Pair \n", + "1538536 CHN 2020 Pair \n", + "1539524 CHN 2021 Pair \n", + "1539525 CHN 2021 Pair \n", + "1539526 CHN 2021 Pair \n", + "\n", + " Indicator 0 \\\n", + "151 Contributing family workers, female (% of fema... 1.000000 \n", + "152 Contributing family workers, male (% of male e... 1.000000 \n", + "153 Contributing family workers, total (% of total... 1.000000 \n", + "1151 Contributing family workers, female (% of fema... 1.000000 \n", + "1152 Contributing family workers, male (% of male e... 1.000000 \n", + "... ... ... \n", + "1538535 Contributing family workers, male (% of male e... 0.252894 \n", + "1538536 Contributing family workers, total (% of total... 0.329385 \n", + "1539524 Contributing family workers, female (% of fema... 0.386565 \n", + "1539525 Contributing family workers, male (% of male e... 0.252894 \n", + "1539526 Contributing family workers, total (% of total... 0.329385 \n", + "\n", + " Short indicator \\\n", + "151 Contributing family workers, female \n", + "152 Contributing family workers, male \n", + "153 Contributing family workers, total \n", + "1151 Contributing family workers, female \n", + "1152 Contributing family workers, male \n", + "... ... \n", + "1538535 Contributing family workers, male \n", + "1538536 Contributing family workers, total \n", + "1539524 Contributing family workers, female \n", + "1539525 Contributing family workers, male \n", + "1539526 Contributing family workers, total \n", + "\n", + " Units \n", + "151 (% of female employment) (modeled ILO estimate) \n", + "152 (% of male employment) (modeled ILO estimate) \n", + "153 (% of total employment) (modeled ILO estimate) \n", + "1151 (% of female employment) (modeled ILO estimate) \n", + "1152 (% of male employment) (modeled ILO estimate) \n", + "... ... \n", + "1538535 (% of male employment) (modeled ILO estimate) \n", + "1538536 (% of total employment) (modeled ILO estimate) \n", + "1539524 (% of female employment) (modeled ILO estimate) \n", + "1539525 (% of male employment) (modeled ILO estimate) \n", + "1539526 (% of total employment) (modeled ILO estimate) \n", + "\n", + "[4545 rows x 7 columns]" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "two_parent=Categorization2[Categorization2['Short indicator'].str.contains('Contributing family workers')]\n", + "two_parent" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Moreover, there are some inidcators with an extra parenthesis adding some more information. As this information isn't related with units, another column named as 'other specification' has been created." + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicator0Short indicatorUnitsOther specification
0DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of population)None
1DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of rural population)None
2DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of urban population)None
3DEU1990EuropeAccess to electricity (% of population)1.000000Access to electricity(% of population)None
4DEU1990EuropeAccess to electricity, rural (% of rural popul...1.000000Access to electricity, rural(% of rural population)None
...........................
1540358CHN2021PairGDP (current US$)+338.504955GDP+3(current US$)None
1540359CHN2021PairGDP (current US$)+531.129362GDP+5(current US$)None
1540360CHN2021PairGDP (current US$)+826.521259GDP+8(current US$)None
1540361CHN2021PairGDP (current US$)+1312.731623GDP+13(current US$)None
1540362CHN2021PairGDP (current US$)+213.356853GDP+21(current US$)None
\n", + "

1372098 rows × 8 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "1 DEU 1990 Europe \n", + "2 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "4 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator 0 \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "1 Access to clean fuels and technologies for coo... 1.000000 \n", + "2 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity (% of population) 1.000000 \n", + "4 Access to electricity, rural (% of rural popul... 1.000000 \n", + "... ... ... \n", + "1540358 GDP (current US$)+3 38.504955 \n", + "1540359 GDP (current US$)+5 31.129362 \n", + "1540360 GDP (current US$)+8 26.521259 \n", + "1540361 GDP (current US$)+13 12.731623 \n", + "1540362 GDP (current US$)+21 3.356853 \n", + "\n", + " Short indicator \\\n", + "0 Access to clean fuels and technologies for coo... \n", + "1 Access to clean fuels and technologies for coo... \n", + "2 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity \n", + "4 Access to electricity, rural \n", + "... ... \n", + "1540358 GDP+3 \n", + "1540359 GDP+5 \n", + "1540360 GDP+8 \n", + "1540361 GDP+13 \n", + "1540362 GDP+21 \n", + "\n", + " Units Other specification \n", + "0 (% of population) None \n", + "1 (% of rural population) None \n", + "2 (% of urban population) None \n", + "3 (% of population) None \n", + "4 (% of rural population) None \n", + "... ... ... \n", + "1540358 (current US$) None \n", + "1540359 (current US$) None \n", + "1540360 (current US$) None \n", + "1540361 (current US$) None \n", + "1540362 (current US$) None \n", + "\n", + "[1372098 rows x 8 columns]" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Categorization2[['Units','Other specification']]=Categorization2['Units'].str.split(\"\\) \", n=1,expand=True)\n", + "Categorization2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At the end of the variable name, separated by the last \",\" it is informing us about to which subgroup makes reference the variable. Thus, there are some indicators that have information divided for small groups. This information is shown as a new column named 'Subgroup'." + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicator0Short indicatorUnitsOther specificationSubgroup
0DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of population)NoneNaN
1DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of rural population)Nonerural
2DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of urban population)Noneurban
3DEU1990EuropeAccess to electricity (% of population)1.000000Access to electricity(% of population)NoneNaN
4DEU1990EuropeAccess to electricity, rural (% of rural popul...1.000000Access to electricity, rural(% of rural population)Nonerural
..............................
1540358CHN2021PairGDP (current US$)+338.504955GDP+3(current US$)NoneNaN
1540359CHN2021PairGDP (current US$)+531.129362GDP+5(current US$)NoneNaN
1540360CHN2021PairGDP (current US$)+826.521259GDP+8(current US$)NoneNaN
1540361CHN2021PairGDP (current US$)+1312.731623GDP+13(current US$)NoneNaN
1540362CHN2021PairGDP (current US$)+213.356853GDP+21(current US$)NoneNaN
\n", + "

1372098 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "1 DEU 1990 Europe \n", + "2 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "4 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator 0 \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "1 Access to clean fuels and technologies for coo... 1.000000 \n", + "2 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity (% of population) 1.000000 \n", + "4 Access to electricity, rural (% of rural popul... 1.000000 \n", + "... ... ... \n", + "1540358 GDP (current US$)+3 38.504955 \n", + "1540359 GDP (current US$)+5 31.129362 \n", + "1540360 GDP (current US$)+8 26.521259 \n", + "1540361 GDP (current US$)+13 12.731623 \n", + "1540362 GDP (current US$)+21 3.356853 \n", + "\n", + " Short indicator \\\n", + "0 Access to clean fuels and technologies for coo... \n", + "1 Access to clean fuels and technologies for coo... \n", + "2 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity \n", + "4 Access to electricity, rural \n", + "... ... \n", + "1540358 GDP+3 \n", + "1540359 GDP+5 \n", + "1540360 GDP+8 \n", + "1540361 GDP+13 \n", + "1540362 GDP+21 \n", + "\n", + " Units Other specification Subgroup \n", + "0 (% of population) None NaN \n", + "1 (% of rural population) None rural \n", + "2 (% of urban population) None urban \n", + "3 (% of population) None NaN \n", + "4 (% of rural population) None rural \n", + "... ... ... ... \n", + "1540358 (current US$) None NaN \n", + "1540359 (current US$) None NaN \n", + "1540360 (current US$) None NaN \n", + "1540361 (current US$) None NaN \n", + "1540362 (current US$) None NaN \n", + "\n", + "[1372098 rows x 9 columns]" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Categorization2[['Subgroup']]=Categorization2['Short indicator'].str.extract(',(?P[^,]*?)$')\n", + "Categorization2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As before, information which is shown as a new column is deleted from the origin one." + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicator0Short indicatorUnitsOther specificationSubgroup
0DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of population)NoneNaN
1DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of rural population)Nonerural
2DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of urban population)Noneurban
3DEU1990EuropeAccess to electricity (% of population)1.000000Access to electricity(% of population)NoneNaN
4DEU1990EuropeAccess to electricity, rural (% of rural popul...1.000000Access to electricity(% of rural population)Nonerural
..............................
1540358CHN2021PairGDP (current US$)+338.504955GDP+3(current US$)NoneNaN
1540359CHN2021PairGDP (current US$)+531.129362GDP+5(current US$)NoneNaN
1540360CHN2021PairGDP (current US$)+826.521259GDP+8(current US$)NoneNaN
1540361CHN2021PairGDP (current US$)+1312.731623GDP+13(current US$)NoneNaN
1540362CHN2021PairGDP (current US$)+213.356853GDP+21(current US$)NoneNaN
\n", + "

1372098 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "1 DEU 1990 Europe \n", + "2 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "4 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator 0 \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "1 Access to clean fuels and technologies for coo... 1.000000 \n", + "2 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity (% of population) 1.000000 \n", + "4 Access to electricity, rural (% of rural popul... 1.000000 \n", + "... ... ... \n", + "1540358 GDP (current US$)+3 38.504955 \n", + "1540359 GDP (current US$)+5 31.129362 \n", + "1540360 GDP (current US$)+8 26.521259 \n", + "1540361 GDP (current US$)+13 12.731623 \n", + "1540362 GDP (current US$)+21 3.356853 \n", + "\n", + " Short indicator \\\n", + "0 Access to clean fuels and technologies for coo... \n", + "1 Access to clean fuels and technologies for coo... \n", + "2 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity \n", + "4 Access to electricity \n", + "... ... \n", + "1540358 GDP+3 \n", + "1540359 GDP+5 \n", + "1540360 GDP+8 \n", + "1540361 GDP+13 \n", + "1540362 GDP+21 \n", + "\n", + " Units Other specification Subgroup \n", + "0 (% of population) None NaN \n", + "1 (% of rural population) None rural \n", + "2 (% of urban population) None urban \n", + "3 (% of population) None NaN \n", + "4 (% of rural population) None rural \n", + "... ... ... ... \n", + "1540358 (current US$) None NaN \n", + "1540359 (current US$) None NaN \n", + "1540360 (current US$) None NaN \n", + "1540361 (current US$) None NaN \n", + "1540362 (current US$) None NaN \n", + "\n", + "[1372098 rows x 9 columns]" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Categorization2['Short indicator']=Categorization2['Short indicator'].str.replace(',(?P[^,]*?)$',\"\")\n", + "Categorization2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All the indicators don't have these elements. So, a checking point is needed." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "Categorization2['Subgroup']=Categorization2['Subgroup'].replace(['None'],['total'])\n", + "Categorization2['Subgroup']=Categorization2['Subgroup'].fillna('total')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are some duplicate variables which should be removed too." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicator0Short indicatorUnitsOther specificationSubgroup
0DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of population)Nonetotal
1DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of rural population)Nonerural
2DEU1990EuropeAccess to clean fuels and technologies for coo...1.000000Access to clean fuels and technologies for coo...(% of urban population)Noneurban
3DEU1990EuropeAccess to electricity (% of population)1.000000Access to electricity(% of population)Nonetotal
4DEU1990EuropeAccess to electricity, rural (% of rural popul...1.000000Access to electricity(% of rural population)Nonerural
..............................
1540358CHN2021PairGDP (current US$)+338.504955GDP+3(current US$)Nonetotal
1540359CHN2021PairGDP (current US$)+531.129362GDP+5(current US$)Nonetotal
1540360CHN2021PairGDP (current US$)+826.521259GDP+8(current US$)Nonetotal
1540361CHN2021PairGDP (current US$)+1312.731623GDP+13(current US$)Nonetotal
1540362CHN2021PairGDP (current US$)+213.356853GDP+21(current US$)Nonetotal
\n", + "

1157276 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "1 DEU 1990 Europe \n", + "2 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "4 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator 0 \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "1 Access to clean fuels and technologies for coo... 1.000000 \n", + "2 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity (% of population) 1.000000 \n", + "4 Access to electricity, rural (% of rural popul... 1.000000 \n", + "... ... ... \n", + "1540358 GDP (current US$)+3 38.504955 \n", + "1540359 GDP (current US$)+5 31.129362 \n", + "1540360 GDP (current US$)+8 26.521259 \n", + "1540361 GDP (current US$)+13 12.731623 \n", + "1540362 GDP (current US$)+21 3.356853 \n", + "\n", + " Short indicator \\\n", + "0 Access to clean fuels and technologies for coo... \n", + "1 Access to clean fuels and technologies for coo... \n", + "2 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity \n", + "4 Access to electricity \n", + "... ... \n", + "1540358 GDP+3 \n", + "1540359 GDP+5 \n", + "1540360 GDP+8 \n", + "1540361 GDP+13 \n", + "1540362 GDP+21 \n", + "\n", + " Units Other specification Subgroup \n", + "0 (% of population) None total \n", + "1 (% of rural population) None rural \n", + "2 (% of urban population) None urban \n", + "3 (% of population) None total \n", + "4 (% of rural population) None rural \n", + "... ... ... ... \n", + "1540358 (current US$) None total \n", + "1540359 (current US$) None total \n", + "1540360 (current US$) None total \n", + "1540361 (current US$) None total \n", + "1540362 (current US$) None total \n", + "\n", + "[1157276 rows x 9 columns]" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Categorization2.drop_duplicates(subset=['Country','Year','Short indicator','Continent','Subgroup'], keep='first')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Reordering columns, categorization3 is our df after all these division in categories." + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicatorShort indicatorValueSubgroupUnitsOther specification
0DEU1990EuropeAccess to clean fuels and technologies for coo...Access to clean fuels and technologies for coo...1.000000total(% of population)None
1DEU1990EuropeAccess to clean fuels and technologies for coo...Access to clean fuels and technologies for coo...1.000000rural(% of rural population)None
2DEU1990EuropeAccess to clean fuels and technologies for coo...Access to clean fuels and technologies for coo...1.000000urban(% of urban population)None
3DEU1990EuropeAccess to electricity (% of population)Access to electricity1.000000total(% of population)None
4DEU1990EuropeAccess to electricity, rural (% of rural popul...Access to electricity1.000000rural(% of rural population)None
..............................
1540358CHN2021PairGDP (current US$)+3GDP+338.504955total(current US$)None
1540359CHN2021PairGDP (current US$)+5GDP+531.129362total(current US$)None
1540360CHN2021PairGDP (current US$)+8GDP+826.521259total(current US$)None
1540361CHN2021PairGDP (current US$)+13GDP+1312.731623total(current US$)None
1540362CHN2021PairGDP (current US$)+21GDP+213.356853total(current US$)None
\n", + "

1372098 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "1 DEU 1990 Europe \n", + "2 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "4 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator \\\n", + "0 Access to clean fuels and technologies for coo... \n", + "1 Access to clean fuels and technologies for coo... \n", + "2 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity (% of population) \n", + "4 Access to electricity, rural (% of rural popul... \n", + "... ... \n", + "1540358 GDP (current US$)+3 \n", + "1540359 GDP (current US$)+5 \n", + "1540360 GDP (current US$)+8 \n", + "1540361 GDP (current US$)+13 \n", + "1540362 GDP (current US$)+21 \n", + "\n", + " Short indicator Value \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "1 Access to clean fuels and technologies for coo... 1.000000 \n", + "2 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity 1.000000 \n", + "4 Access to electricity 1.000000 \n", + "... ... ... \n", + "1540358 GDP+3 38.504955 \n", + "1540359 GDP+5 31.129362 \n", + "1540360 GDP+8 26.521259 \n", + "1540361 GDP+13 12.731623 \n", + "1540362 GDP+21 3.356853 \n", + "\n", + " Subgroup Units Other specification \n", + "0 total (% of population) None \n", + "1 rural (% of rural population) None \n", + "2 urban (% of urban population) None \n", + "3 total (% of population) None \n", + "4 rural (% of rural population) None \n", + "... ... ... ... \n", + "1540358 total (current US$) None \n", + "1540359 total (current US$) None \n", + "1540360 total (current US$) None \n", + "1540361 total (current US$) None \n", + "1540362 total (current US$) None \n", + "\n", + "[1372098 rows x 9 columns]" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Categorization2.rename(columns={Categorization2.columns[4]:'Value'},inplace=True)\n", + "Categorization3=Categorization2[['Country','Year','Continent','Indicator','Short indicator','Value','Subgroup','Units','Other specification']]\n", + "Categorization3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "------------------------------" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryYearContinentIndicatorShort indicatorValueSubgroupUnitsOther specification
0DEU1990EuropeAccess to clean fuels and technologies for coo...Access to clean fuels and technologies for coo...1.000000total(% of population)None
3DEU1990EuropeAccess to electricity (% of population)Access to electricity1.000000total(% of population)None
6DEU1990EuropeAccount ownership at a financial institution o...Account ownership at a financial institution o...1.000000total(% of population ages 15+)None
20DEU1990EuropeAdjusted net national income (current US$)Adjusted net national income1.000000total(current US$)None
23DEU1990EuropeAdjusted net national income per capita (curre...Adjusted net national income per capita1.000000total(current US$)None
..............................
1540358CHN2021PairGDP (current US$)+3GDP+338.504955total(current US$)None
1540359CHN2021PairGDP (current US$)+5GDP+531.129362total(current US$)None
1540360CHN2021PairGDP (current US$)+8GDP+826.521259total(current US$)None
1540361CHN2021PairGDP (current US$)+13GDP+1312.731623total(current US$)None
1540362CHN2021PairGDP (current US$)+21GDP+213.356853total(current US$)None
\n", + "

687830 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Country Year Continent \\\n", + "0 DEU 1990 Europe \n", + "3 DEU 1990 Europe \n", + "6 DEU 1990 Europe \n", + "20 DEU 1990 Europe \n", + "23 DEU 1990 Europe \n", + "... ... ... ... \n", + "1540358 CHN 2021 Pair \n", + "1540359 CHN 2021 Pair \n", + "1540360 CHN 2021 Pair \n", + "1540361 CHN 2021 Pair \n", + "1540362 CHN 2021 Pair \n", + "\n", + " Indicator \\\n", + "0 Access to clean fuels and technologies for coo... \n", + "3 Access to electricity (% of population) \n", + "6 Account ownership at a financial institution o... \n", + "20 Adjusted net national income (current US$) \n", + "23 Adjusted net national income per capita (curre... \n", + "... ... \n", + "1540358 GDP (current US$)+3 \n", + "1540359 GDP (current US$)+5 \n", + "1540360 GDP (current US$)+8 \n", + "1540361 GDP (current US$)+13 \n", + "1540362 GDP (current US$)+21 \n", + "\n", + " Short indicator Value \\\n", + "0 Access to clean fuels and technologies for coo... 1.000000 \n", + "3 Access to electricity 1.000000 \n", + "6 Account ownership at a financial institution o... 1.000000 \n", + "20 Adjusted net national income 1.000000 \n", + "23 Adjusted net national income per capita 1.000000 \n", + "... ... ... \n", + "1540358 GDP+3 38.504955 \n", + "1540359 GDP+5 31.129362 \n", + "1540360 GDP+8 26.521259 \n", + "1540361 GDP+13 12.731623 \n", + "1540362 GDP+21 3.356853 \n", + "\n", + " Subgroup Units Other specification \n", + "0 total (% of population) None \n", + "3 total (% of population) None \n", + "6 total (% of population ages 15+) None \n", + "20 total (current US$) None \n", + "23 total (current US$) None \n", + "... ... ... ... \n", + "1540358 total (current US$) None \n", + "1540359 total (current US$) None \n", + "1540360 total (current US$) None \n", + "1540361 total (current US$) None \n", + "1540362 total (current US$) None \n", + "\n", + "[687830 rows x 9 columns]" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Categorization4=Categorization3.loc[Categorization3['Subgroup']=='total']\n", + "Categorization4" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "Categorization4.to_csv(os.getcwd()+'/Data/Categorization.csv')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.10.4 64-bit", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + }, + "vscode": { + "interpreter": { + "hash": "e21cf16a31979fe9d2d6e9786ebc932e404e707404f15260e38504afc6c53159" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/WDI-Spurious.ipynb b/WDI-Spurious.ipynb new file mode 100644 index 0000000..58c3716 --- /dev/null +++ b/WDI-Spurious.ipynb @@ -0,0 +1,958 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Spurious correlations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import libraries and functions." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import glob\n", + "import os\n", + "from zipfile import ZipFile\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", + "import functools as ft\n", + "import ipywidgets as widgets\n", + "from ipywidgets import Layout\n", + "from ipywidgets import interact, interact_manual\n", + "import plotly.express as px\n", + "from scipy import stats\n", + "from scipy.stats import shapiro\n", + "from scipy.stats import pearsonr\n", + "from scipy.stats import spearmanr\n", + "from pandas.api.types import is_numeric_dtype" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "However, there is an interesting phenomenon, in some cases there are correlations that have a high coefficient and also an adequate graphics, but they do not make sense in the analysis, these are called **spurious correlations**. Here are some examples:\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "Therefore, we have to be carefull with our results because correlation does not imply causation, it may have happened by chance that both variables are really similar.\n", + "So, after some thought and experimenting, we have developed a method that we think, it will allow us to find out if the correlation has happened by chance or if there is really a correlation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This method, consists of the following:\n", + "\n", + "\n", + "Firstly we have classified the indicators by a group, which can be one of the following: *A&D*, *Agriculture*, *Demography*, *Economy*, *Employment*, *Environment*, *Equality*, *Exports*, *Health*, *Mortality* or *Principal*. Moreover inside each group we have also assigned each varible a level, *primary* or *secondary*, depending on their level of relevance. For example we have consider more relevant the *Population in the largest city* over the *Rural population*, thus the first will be *primary* and the latter *secondary*, while both are part of the *Demography* group. \n", + "\n", + "With this set, we can expose our hypothesis:\n", + "\n", + "\"It is assumed that the correlation in the primary indicators can be caused by randomness, however if this correlation also appears in the secondary indicators for at least X% of the countries that appears in the primaries (Pareto's rule), we can suppose that there is no randomness affecting each group. Furthermore, the first assumption has to happen in Y% of the secondary indicators to avoid any fortuity.\" \n", + "\n", + "This hypothesis can be used in a global level, all the countries, or in the different regions. \n", + "\n", + "For example if, X and Y =80% a primary indicator is repeated 20 times the secondary indicators must have repeated 18 times. And if there are 10 secondary indicators, it has to happen for, at least, 8 indicators.\n", + "\n", + "Finally, we will finish with two possible errors of 20%, which combined (20%*20%), leaves us with a 4% of margin of error, which is lower than the wildly spread of 5%.\n", + "\n", + "**This will only work if the data has been collected by independent sources and uses different methods to collect it. Therefore, this step has only been developed for this data (WDI), which we have checked that comes from different sources and is gathered differently.**\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e154ff7a4c684bebb8a1f62906fac3fe", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatSlider(value=0.8, continuous_update=False, description='% of primary indicators:', max=1.0, step=0.05)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1436ccab37804d3e82fbc5b3bd07c8f9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatSlider(value=0.8, continuous_update=False, description='% of secondary indicators:', max=1.0, step=0.05)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "limita=widgets.FloatSlider( value=0.8, min=0, max=1.0, step=0.05, description='% of primary indicators:', disabled=False, continuous_update=False, orientation='horizontal', readout=True)\n", + "limitb=widgets.FloatSlider( value=0.8, min=0, max=1.0, step=0.05, description='% of secondary indicators:', disabled=False, continuous_update=False, orientation='horizontal', readout=True)\n", + "display(limita,limitb)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The margin of error in this combination is: 3.9999999999999982\n" + ] + } + ], + "source": [ + "a=(1-limita.value)*(1-limitb.value)*100\n", + "print('The margin of error in this combination is:',a)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Once we have selected both percentages and we agree with the margin of error, we can proceed to put into action our method. Firstly, we filter the primary indicators and get the minimun of times thatthe secondary have to be repeated." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Min
Group
A&D13.0
Agriculture10.0
Demography24.0
Economy26.0
Employment11.0
Environment13.0
Equality14.0
Exports28.0
Health9.0
Internet27.0
Mortality14.0
Principal23.0
\n", + "
" + ], + "text/plain": [ + " Min\n", + "Group \n", + "A&D 13.0\n", + "Agriculture 10.0\n", + "Demography 24.0\n", + "Economy 26.0\n", + "Employment 11.0\n", + "Environment 13.0\n", + "Equality 14.0\n", + "Exports 28.0\n", + "Health 9.0\n", + "Internet 27.0\n", + "Mortality 14.0\n", + "Principal 23.0" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "selected_p=categories.loc[categories['Level']=='primary']\n", + "minprimary=selected_p.groupby('Group').min()\n", + "minprimary['Min']=round(minprimary['Number of times repeated']*limita.value)\n", + "minprimary.drop(columns=['Indicator','Number of times repeated','Level'], inplace=True)\n", + "minprimary\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "grouplist=minprimary.index.to_list()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then, we test if the repetition are accomplished. \n", + "\n", + "- H_0 data has correlation buy has not happened by randomness.\n", + "- H_1 data has correlation due to randomness \n", + "\n", + "**If Number of times repeated the secondary indicator < Minimun per group, then H_0 denied and H_1 accepted**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Does it have some global casuallity implied?% of count (Global)
Group
AgricultureNo100.000000
DemographyNo100.000000
EconomyYes71.039604
EmploymentNo100.000000
EnvironmentNo100.000000
EqualityNo100.000000
ExportsNo82.379863
HealthNo100.000000
InternetYes37.190083
MortalityNo100.000000
PrincipalNo100.000000
\n", + "
" + ], + "text/plain": [ + " Does it have some global casuallity implied? % of count (Global)\n", + "Group \n", + "Agriculture No 100.000000\n", + "Demography No 100.000000\n", + "Economy Yes 71.039604\n", + "Employment No 100.000000\n", + "Environment No 100.000000\n", + "Equality No 100.000000\n", + "Exports No 82.379863\n", + "Health No 100.000000\n", + "Internet Yes 37.190083\n", + "Mortality No 100.000000\n", + "Principal No 100.000000" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "secondary=final.loc[final['Level']=='secondary']\n", + "secondary=pd.merge(secondary,minprimary, left_on='Group',right_on='Group')\n", + "secondaryp=secondary.loc[:,['Group','Min']]\n", + "Global_Count=secondaryp.groupby('Group').count()\n", + "Global_Count.rename(columns={'Min':'Global Count'},inplace=True)\n", + "secondary['H_0']=np.where(secondary['Number of times repeated']-secondary['Min']>0,'Not Discarded', 'Denied')\n", + "seco=secondary.groupby(['H_0','Group']).count()\n", + "sec=seco.loc['Not Discarded']\n", + "secondarycount=sec.drop(columns=['Indicator','R^2 Spearman','Behaviour','Country','Moved','Type','Continent','Number of times repeated','Level'])\n", + "secondarycount.rename(columns={'Min':'Secondary Count'},inplace=True)\n", + "continentlist=final['Continent'].unique()\n", + "namescontinents=['European', 'North African', 'Asian', 'Pair', 'Persian', 'South African', 'Latino-American']\n", + "finalcount=pd.merge(Global_Count,secondarycount, left_on='Group',right_on='Group')\n", + "finalcount['Does it have some global casuallity implied?']=np.where(finalcount['Secondary Count']/finalcount['Global Count']>limitb.value,'No', 'Yes')\n", + "finalcount['% of count (Global)']=finalcount['Secondary Count']/finalcount['Global Count']*100\n", + "finalcount.drop(columns=['Global Count','Secondary Count'],inplace=True)\n", + "finalcount" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see, in a Global situation for the groups that have a **NO**, we do not need to worry about casualities, however for the rest of the groups correlation can still be a great indicator as a basis for decision making, if we carefully analyze the variables and found some sort of real relationship between them. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Does it have some global casuallity implied?% of count (Global)Does it have some European casuallity implied?% of count (European)Does it have some North African casuallity implied?% of count (North African)Does it have some Asian casuallity implied?% of count (Asian)Does it have some Pair casuallity implied?% of count (Pair)Does it have some Persian casuallity implied?% of count (Persian)Does it have some South African casuallity implied?% of count (South African)Does it have some Latino-American casuallity implied?% of count (Latino-American)
Group
AgricultureNo100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000
DemographyNo100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000
EconomyYes71.039604Yes75.799087Yes71.812081Yes72.794118Yes70.348837Yes66.968326Yes70.542636Yes66.666667
EmploymentNo100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000
EnvironmentNo100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000
EqualityNo100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000
ExportsNo82.379863Yes77.142857No80.701754No86.842105No84.000000No86.075949No83.333333No83.333333
HealthNo100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000
InternetYes37.190083Yes47.619048Yes35.294118Yes26.315789Yes42.857143Yes36.842105Yes37.500000Yes28.571429
MortalityNo100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000
PrincipalNo100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000No100.000000
\n", + "
" + ], + "text/plain": [ + " Does it have some global casuallity implied? % of count (Global) \\\n", + "Group \n", + "Agriculture No 100.000000 \n", + "Demography No 100.000000 \n", + "Economy Yes 71.039604 \n", + "Employment No 100.000000 \n", + "Environment No 100.000000 \n", + "Equality No 100.000000 \n", + "Exports No 82.379863 \n", + "Health No 100.000000 \n", + "Internet Yes 37.190083 \n", + "Mortality No 100.000000 \n", + "Principal No 100.000000 \n", + "\n", + " Does it have some European casuallity implied? \\\n", + "Group \n", + "Agriculture No \n", + "Demography No \n", + "Economy Yes \n", + "Employment No \n", + "Environment No \n", + "Equality No \n", + "Exports Yes \n", + "Health No \n", + "Internet Yes \n", + "Mortality No \n", + "Principal No \n", + "\n", + " % of count (European) \\\n", + "Group \n", + "Agriculture 100.000000 \n", + "Demography 100.000000 \n", + "Economy 75.799087 \n", + "Employment 100.000000 \n", + "Environment 100.000000 \n", + "Equality 100.000000 \n", + "Exports 77.142857 \n", + "Health 100.000000 \n", + "Internet 47.619048 \n", + "Mortality 100.000000 \n", + "Principal 100.000000 \n", + "\n", + " Does it have some North African casuallity implied? \\\n", + "Group \n", + "Agriculture No \n", + "Demography No \n", + "Economy Yes \n", + "Employment No \n", + "Environment No \n", + "Equality No \n", + "Exports No \n", + "Health No \n", + "Internet Yes \n", + "Mortality No \n", + "Principal No \n", + "\n", + " % of count (North African) \\\n", + "Group \n", + "Agriculture 100.000000 \n", + "Demography 100.000000 \n", + "Economy 71.812081 \n", + "Employment 100.000000 \n", + "Environment 100.000000 \n", + "Equality 100.000000 \n", + "Exports 80.701754 \n", + "Health 100.000000 \n", + "Internet 35.294118 \n", + "Mortality 100.000000 \n", + "Principal 100.000000 \n", + "\n", + " Does it have some Asian casuallity implied? % of count (Asian) \\\n", + "Group \n", + "Agriculture No 100.000000 \n", + "Demography No 100.000000 \n", + "Economy Yes 72.794118 \n", + "Employment No 100.000000 \n", + "Environment No 100.000000 \n", + "Equality No 100.000000 \n", + "Exports No 86.842105 \n", + "Health No 100.000000 \n", + "Internet Yes 26.315789 \n", + "Mortality No 100.000000 \n", + "Principal No 100.000000 \n", + "\n", + " Does it have some Pair casuallity implied? % of count (Pair) \\\n", + "Group \n", + "Agriculture No 100.000000 \n", + "Demography No 100.000000 \n", + "Economy Yes 70.348837 \n", + "Employment No 100.000000 \n", + "Environment No 100.000000 \n", + "Equality No 100.000000 \n", + "Exports No 84.000000 \n", + "Health No 100.000000 \n", + "Internet Yes 42.857143 \n", + "Mortality No 100.000000 \n", + "Principal No 100.000000 \n", + "\n", + " Does it have some Persian casuallity implied? \\\n", + "Group \n", + "Agriculture No \n", + "Demography No \n", + "Economy Yes \n", + "Employment No \n", + "Environment No \n", + "Equality No \n", + "Exports No \n", + "Health No \n", + "Internet Yes \n", + "Mortality No \n", + "Principal No \n", + "\n", + " % of count (Persian) \\\n", + "Group \n", + "Agriculture 100.000000 \n", + "Demography 100.000000 \n", + "Economy 66.968326 \n", + "Employment 100.000000 \n", + "Environment 100.000000 \n", + "Equality 100.000000 \n", + "Exports 86.075949 \n", + "Health 100.000000 \n", + "Internet 36.842105 \n", + "Mortality 100.000000 \n", + "Principal 100.000000 \n", + "\n", + " Does it have some South African casuallity implied? \\\n", + "Group \n", + "Agriculture No \n", + "Demography No \n", + "Economy Yes \n", + "Employment No \n", + "Environment No \n", + "Equality No \n", + "Exports No \n", + "Health No \n", + "Internet Yes \n", + "Mortality No \n", + "Principal No \n", + "\n", + " % of count (South African) \\\n", + "Group \n", + "Agriculture 100.000000 \n", + "Demography 100.000000 \n", + "Economy 70.542636 \n", + "Employment 100.000000 \n", + "Environment 100.000000 \n", + "Equality 100.000000 \n", + "Exports 83.333333 \n", + "Health 100.000000 \n", + "Internet 37.500000 \n", + "Mortality 100.000000 \n", + "Principal 100.000000 \n", + "\n", + " Does it have some Latino-American casuallity implied? \\\n", + "Group \n", + "Agriculture No \n", + "Demography No \n", + "Economy Yes \n", + "Employment No \n", + "Environment No \n", + "Equality No \n", + "Exports No \n", + "Health No \n", + "Internet Yes \n", + "Mortality No \n", + "Principal No \n", + "\n", + " % of count (Latino-American) \n", + "Group \n", + "Agriculture 100.000000 \n", + "Demography 100.000000 \n", + "Economy 66.666667 \n", + "Employment 100.000000 \n", + "Environment 100.000000 \n", + "Equality 100.000000 \n", + "Exports 83.333333 \n", + "Health 100.000000 \n", + "Internet 28.571429 \n", + "Mortality 100.000000 \n", + "Principal 100.000000 " + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "for i in range(0,len(continentlist)):\n", + " apfinal=final.loc[final['Continent']==continentlist[i]]\n", + " \n", + " selected_p=categories.loc[categories['Level']=='primary']\n", + " minprimary=selected_p.groupby('Group').min()\n", + " minprimary['Min']=round(minprimary['Number of times repeated']*limita.value)\n", + " minprimary.drop(columns=['Indicator','Number of times repeated','Level'], inplace=True)\n", + "\n", + " grouplist=minprimary.index.to_list()\n", + "\n", + " secondary=apfinal.loc[apfinal['Level']=='secondary']\n", + " secondary=pd.merge(secondary,minprimary, left_on='Group',right_on='Group')\n", + "\n", + " secondaryp=secondary.loc[:,['Group','Min']]\n", + " Global_Count=secondaryp.groupby('Group').count()\n", + " Global_Count.rename(columns={'Min':'Global Count'},inplace=True)\n", + "\n", + " secondary['H_0']=np.where(secondary['Number of times repeated']-secondary['Min']>0,'Not Discarded', 'Denied')\n", + " seco=secondary.groupby(['H_0','Group']).count()\n", + " sec=seco.loc['Not Discarded']\n", + " secondarycount=sec.drop(columns=['Indicator','R^2 Spearman','Behaviour','Country','Moved','Type','Continent','Number of times repeated','Level'])\n", + " secondarycount.rename(columns={'Min':'Secondary Count'},inplace=True)\n", + "\n", + " apfinalcount=pd.merge(Global_Count,secondarycount, left_on='Group',right_on='Group')\n", + " apfinalcount['Does it have some '+namescontinents[i]+' casuallity implied?']=np.where(apfinalcount['Secondary Count']/apfinalcount['Global Count']>limitb.value,'No', 'Yes')\n", + " apfinalcount['% of count ('+namescontinents[i]+')']=apfinalcount['Secondary Count']/apfinalcount['Global Count']*100\n", + " apfinalcount.drop(columns=['Global Count','Secondary Count'],inplace=True)\n", + " finalcount=pd.merge(finalcount,apfinalcount, left_on='Group',right_on='Group')\n", + "\n", + "finalcount" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we can observe into much more detail the differnt regions that we defined before, and for groups that have a **NO**, we do not need to worry about casualities. Meanwhile, for the rest of the groups correlation can still be a great indicator as a basis for decision making, if we carefully analyze the variables and found some sort of real relationship between them. " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.10.4 64-bit", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + }, + "vscode": { + "interpreter": { + "hash": "e21cf16a31979fe9d2d6e9786ebc932e404e707404f15260e38504afc6c53159" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/dynamic_path_treemap.ipynb b/dynamic_path_treemap.ipynb new file mode 100644 index 0000000..9f00cd5 --- /dev/null +++ b/dynamic_path_treemap.ipynb @@ -0,0 +1,2590 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 5, + "id": "8559121d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countrycontinentyearlifeExppopgdpPercapiso_alphaiso_num
11AfghanistanAsia200743.82831889923974.580338AFG4
23AlbaniaEurope200776.42336005235937.029526ALB8
35AlgeriaAfrica200772.301333332166223.367465DZA12
47AngolaAfrica200742.731124204764797.231267AGO24
59ArgentinaAmericas200775.3204030192712779.379640ARG32
...........................
1655VietnamAsia200774.249852623562441.576404VNM704
1667West Bank and GazaAsia200773.42240183323025.349798PSE275
1679Yemen, Rep.Asia200762.698222117432280.769906YEM887
1691ZambiaAfrica200742.384117460351271.211593ZMB894
1703ZimbabweAfrica200743.48712311143469.709298ZWE716
\n", + "

142 rows × 8 columns

\n", + "
" + ], + "text/plain": [ + " country continent year lifeExp pop gdpPercap \\\n", + "11 Afghanistan Asia 2007 43.828 31889923 974.580338 \n", + "23 Albania Europe 2007 76.423 3600523 5937.029526 \n", + "35 Algeria Africa 2007 72.301 33333216 6223.367465 \n", + "47 Angola Africa 2007 42.731 12420476 4797.231267 \n", + "59 Argentina Americas 2007 75.320 40301927 12779.379640 \n", + "... ... ... ... ... ... ... \n", + "1655 Vietnam Asia 2007 74.249 85262356 2441.576404 \n", + "1667 West Bank and Gaza Asia 2007 73.422 4018332 3025.349798 \n", + "1679 Yemen, Rep. Asia 2007 62.698 22211743 2280.769906 \n", + "1691 Zambia Africa 2007 42.384 11746035 1271.211593 \n", + "1703 Zimbabwe Africa 2007 43.487 12311143 469.709298 \n", + "\n", + " iso_alpha iso_num \n", + "11 AFG 4 \n", + "23 ALB 8 \n", + "35 DZA 12 \n", + "47 AGO 24 \n", + "59 ARG 32 \n", + "... ... ... \n", + "1655 VNM 704 \n", + "1667 PSE 275 \n", + "1679 YEM 887 \n", + "1691 ZMB 894 \n", + "1703 ZWE 716 \n", + "\n", + "[142 rows x 8 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import plotly.express as px\n", + "import numpy as np\n", + "from ipywidgets import widgets, HBox\n", + "df = px.data.gapminder().query(\"year == 2007\")\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "2a1f4b90", + "metadata": {}, + "outputs": [], + "source": [ + "out = widgets.Output()\n", + "\n", + "def output_treemap(path):\n", + " fig = px.treemap(df, path=path, values='pop',\n", + " color='lifeExp', hover_data=['iso_alpha'],\n", + " color_continuous_scale='RdBu',\n", + " color_continuous_midpoint=np.average(df['lifeExp'], weights=df['pop']))\n", + " fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))\n", + " out.clear_output(wait=True)\n", + " with out:\n", + " fig.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "81d13d00", + "metadata": {}, + "outputs": [], + "source": [ + "path_1_dropdown = widgets.Dropdown(\n", + " options=['continent', 'country'],\n", + " value='continent',\n", + " description='Path 1',\n", + " disabled=False,\n", + ")\n", + "path_2_dropdown = widgets.Dropdown(\n", + " options=['continent', 'country'],\n", + " value='country',\n", + " description='Path 2',\n", + " disabled=False,\n", + ")\n", + "\n", + "ok_button = widgets.Button(\n", + " description='Ready to go',\n", + " disabled=False,\n", + " button_style='info', # 'success', 'info', 'warning', 'danger' or ''\n", + " icon='check' # (FontAwesome names without the `fa-` prefix)\n", + ")\n", + "ok_button.on_click(lambda _: output_treemap([px.Constant(\"world\"), path_1_dropdown.value, path_2_dropdown.value]))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "9d413d86", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b83f06cf8e8541ffae99fd6d7c5cb87a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(Dropdown(description='Path 1', options=('continent', 'country'), value='continent'), Dropdown(d…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "75bed787f5bb476cab05f62e6c1ac563", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "branchvalues": "total", + "customdata": [ + [ + "AFG", + 43.828 + ], + [ + "ALB", + 76.423 + ], + [ + "DZA", + 72.301 + ], + [ + "AGO", + 42.731 + ], + [ + "ARG", + 75.32 + ], + [ + "AUS", + 81.235 + ], + [ + "AUT", + 79.829 + ], + [ + "BHR", + 75.635 + ], + [ + "BGD", + 64.062 + ], + [ + "BEL", + 79.441 + ], + [ + "BEN", + 56.728 + ], + [ + "BOL", + 65.554 + ], + [ + "BIH", + 74.852 + ], + [ + "BWA", + 50.728 + ], + [ + "BRA", + 72.39 + ], + [ + "BGR", + 73.005 + ], + [ + "BFA", + 52.295 + ], + [ + "BDI", + 49.58 + ], + [ + "KHM", + 59.723 + ], + [ + "CMR", + 50.43 + ], + [ + "CAN", + 80.65300000000002 + ], + [ + "CAF", + 44.74100000000001 + ], + [ + "TCD", + 50.651 + ], + [ + "CHL", + 78.553 + ], + [ + "CHN", + 72.961 + ], + [ + "COL", + 72.889 + ], + [ + "COM", + 65.152 + ], + [ + "COD", + 46.462 + ], + [ + "COG", + 55.322 + ], + [ + "CRI", + 78.782 + ], + [ + "CIV", + 48.328 + ], + [ + "HRV", + 75.748 + ], + [ + "CUB", + 78.273 + ], + [ + "CZE", + 76.486 + ], + [ + "DNK", + 78.332 + ], + [ + "DJI", + 54.791 + ], + [ + "DOM", + 72.235 + ], + [ + "ECU", + 74.994 + ], + [ + "EGY", + 71.33800000000002 + ], + [ + "SLV", + 71.878 + ], + [ + "GNQ", + 51.57899999999999 + ], + [ + "ERI", + 58.03999999999999 + ], + [ + "ETH", + 52.947 + ], + [ + "FIN", + 79.313 + ], + [ + "FRA", + 80.65699999999998 + ], + [ + "GAB", + 56.73500000000001 + ], + [ + "GMB", + 59.448 + ], + [ + "DEU", + 79.406 + ], + [ + "GHA", + 60.02199999999999 + ], + [ + "GRC", + 79.483 + ], + [ + "GTM", + 70.259 + ], + [ + "GIN", + 56.007 + ], + [ + "GNB", + 46.38800000000001 + ], + [ + "HTI", + 60.916 + ], + [ + "HND", + 70.19800000000001 + ], + [ + "HKG", + 82.208 + ], + [ + "HUN", + 73.33800000000002 + ], + [ + "ISL", + 81.757 + ], + [ + "IND", + 64.69800000000001 + ], + [ + "IDN", + 70.65 + ], + [ + "IRN", + 70.964 + ], + [ + "IRQ", + 59.545 + ], + [ + "IRL", + 78.885 + ], + [ + "ISR", + 80.745 + ], + [ + "ITA", + 80.546 + ], + [ + "JAM", + 72.567 + ], + [ + "JPN", + 82.603 + ], + [ + "JOR", + 72.535 + ], + [ + "KEN", + 54.11 + ], + [ + "KOR", + 67.297 + ], + [ + "KOR", + 78.623 + ], + [ + "KWT", + 77.58800000000002 + ], + [ + "LBN", + 71.993 + ], + [ + "LSO", + 42.592 + ], + [ + "LBR", + 45.678 + ], + [ + "LBY", + 73.952 + ], + [ + "MDG", + 59.443000000000005 + ], + [ + "MWI", + 48.303 + ], + [ + "MYS", + 74.241 + ], + [ + "MLI", + 54.467 + ], + [ + "MRT", + 64.164 + ], + [ + "MUS", + 72.801 + ], + [ + "MEX", + 76.195 + ], + [ + "MNG", + 66.803 + ], + [ + "MNE", + 74.543 + ], + [ + "MAR", + 71.164 + ], + [ + "MOZ", + 42.082 + ], + [ + "MMR", + 62.06900000000001 + ], + [ + "NAM", + 52.90600000000001 + ], + [ + "NPL", + 63.785 + ], + [ + "NLD", + 79.762 + ], + [ + "NZL", + 80.204 + ], + [ + "NIC", + 72.899 + ], + [ + "NER", + 56.867 + ], + [ + "NGA", + 46.859 + ], + [ + "NOR", + 80.196 + ], + [ + "OMN", + 75.64 + ], + [ + "PAK", + 65.483 + ], + [ + "PAN", + 75.53699999999998 + ], + [ + "PRY", + 71.752 + ], + [ + "PER", + 71.421 + ], + [ + "PHL", + 71.688 + ], + [ + "POL", + 75.563 + ], + [ + "PRT", + 78.098 + ], + [ + "PRI", + 78.74600000000002 + ], + [ + "REU", + 76.442 + ], + [ + "ROU", + 72.476 + ], + [ + "RWA", + 46.242 + ], + [ + "STP", + 65.528 + ], + [ + "SAU", + 72.777 + ], + [ + "SEN", + 63.062 + ], + [ + "SRB", + 74.002 + ], + [ + "SLE", + 42.56800000000001 + ], + [ + "SGP", + 79.972 + ], + [ + "SVK", + 74.663 + ], + [ + "SVN", + 77.926 + ], + [ + "SOM", + 48.159 + ], + [ + "ZAF", + 49.339 + ], + [ + "ESP", + 80.941 + ], + [ + "LKA", + 72.396 + ], + [ + "SDN", + 58.55599999999999 + ], + [ + "SWZ", + 39.613 + ], + [ + "SWE", + 80.884 + ], + [ + "CHE", + 81.70100000000002 + ], + [ + "SYR", + 74.143 + ], + [ + "TWN", + 78.4 + ], + [ + "TZA", + 52.517 + ], + [ + "THA", + 70.616 + ], + [ + "TGO", + 58.42 + ], + [ + "TTO", + 69.819 + ], + [ + "TUN", + 73.923 + ], + [ + "TUR", + 71.777 + ], + [ + "UGA", + 51.542 + ], + [ + "GBR", + 79.425 + ], + [ + "USA", + 78.242 + ], + [ + "URY", + 76.384 + ], + [ + "VEN", + 73.747 + ], + [ + "VNM", + 74.249 + ], + [ + "PSE", + 73.422 + ], + [ + "YEM", + 62.698 + ], + [ + "ZMB", + 42.38399999999999 + ], + [ + "ZWE", + 43.487 + ], + [ + "(?)", + 54.56441057558197 + ], + [ + "(?)", + 75.35668222743027 + ], + [ + "(?)", + 69.44386304205017 + ], + [ + "(?)", + 77.89057081069897 + ], + [ + "(?)", + 81.06215400970112 + ], + [ + "(?)", + 68.91909251904043 + ] + ], + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "labels=%{label}
pop=%{value}
parent=%{parent}
id=%{id}
iso_alpha=%{customdata[0]}
lifeExp=%{color}", + "ids": [ + "world/Asia/Afghanistan", + "world/Europe/Albania", + "world/Africa/Algeria", + "world/Africa/Angola", + "world/Americas/Argentina", + "world/Oceania/Australia", + "world/Europe/Austria", + "world/Asia/Bahrain", + "world/Asia/Bangladesh", + "world/Europe/Belgium", + "world/Africa/Benin", + "world/Americas/Bolivia", + "world/Europe/Bosnia and Herzegovina", + "world/Africa/Botswana", + "world/Americas/Brazil", + "world/Europe/Bulgaria", + "world/Africa/Burkina Faso", + "world/Africa/Burundi", + "world/Asia/Cambodia", + "world/Africa/Cameroon", + "world/Americas/Canada", + "world/Africa/Central African Republic", + "world/Africa/Chad", + "world/Americas/Chile", + "world/Asia/China", + "world/Americas/Colombia", + "world/Africa/Comoros", + "world/Africa/Congo, Dem. Rep.", + "world/Africa/Congo, Rep.", + "world/Americas/Costa Rica", + "world/Africa/Cote d'Ivoire", + "world/Europe/Croatia", + "world/Americas/Cuba", + "world/Europe/Czech Republic", + "world/Europe/Denmark", + "world/Africa/Djibouti", + "world/Americas/Dominican Republic", + "world/Americas/Ecuador", + "world/Africa/Egypt", + "world/Americas/El Salvador", + "world/Africa/Equatorial Guinea", + "world/Africa/Eritrea", + "world/Africa/Ethiopia", + "world/Europe/Finland", + "world/Europe/France", + "world/Africa/Gabon", + "world/Africa/Gambia", + "world/Europe/Germany", + "world/Africa/Ghana", + "world/Europe/Greece", + "world/Americas/Guatemala", + "world/Africa/Guinea", + "world/Africa/Guinea-Bissau", + "world/Americas/Haiti", + "world/Americas/Honduras", + "world/Asia/Hong Kong, China", + "world/Europe/Hungary", + "world/Europe/Iceland", + "world/Asia/India", + "world/Asia/Indonesia", + "world/Asia/Iran", + "world/Asia/Iraq", + "world/Europe/Ireland", + "world/Asia/Israel", + "world/Europe/Italy", + "world/Americas/Jamaica", + "world/Asia/Japan", + "world/Asia/Jordan", + "world/Africa/Kenya", + "world/Asia/Korea, Dem. Rep.", + "world/Asia/Korea, Rep.", + "world/Asia/Kuwait", + "world/Asia/Lebanon", + "world/Africa/Lesotho", + "world/Africa/Liberia", + "world/Africa/Libya", + "world/Africa/Madagascar", + "world/Africa/Malawi", + "world/Asia/Malaysia", + "world/Africa/Mali", + "world/Africa/Mauritania", + "world/Africa/Mauritius", + "world/Americas/Mexico", + "world/Asia/Mongolia", + "world/Europe/Montenegro", + "world/Africa/Morocco", + "world/Africa/Mozambique", + "world/Asia/Myanmar", + "world/Africa/Namibia", + "world/Asia/Nepal", + "world/Europe/Netherlands", + "world/Oceania/New Zealand", + "world/Americas/Nicaragua", + "world/Africa/Niger", + "world/Africa/Nigeria", + "world/Europe/Norway", + "world/Asia/Oman", + "world/Asia/Pakistan", + "world/Americas/Panama", + "world/Americas/Paraguay", + "world/Americas/Peru", + "world/Asia/Philippines", + "world/Europe/Poland", + "world/Europe/Portugal", + "world/Americas/Puerto Rico", + "world/Africa/Reunion", + "world/Europe/Romania", + "world/Africa/Rwanda", + "world/Africa/Sao Tome and Principe", + "world/Asia/Saudi Arabia", + "world/Africa/Senegal", + "world/Europe/Serbia", + "world/Africa/Sierra Leone", + "world/Asia/Singapore", + "world/Europe/Slovak Republic", + "world/Europe/Slovenia", + "world/Africa/Somalia", + "world/Africa/South Africa", + "world/Europe/Spain", + "world/Asia/Sri Lanka", + "world/Africa/Sudan", + "world/Africa/Swaziland", + "world/Europe/Sweden", + "world/Europe/Switzerland", + "world/Asia/Syria", + "world/Asia/Taiwan", + "world/Africa/Tanzania", + "world/Asia/Thailand", + "world/Africa/Togo", + "world/Americas/Trinidad and Tobago", + "world/Africa/Tunisia", + "world/Europe/Turkey", + "world/Africa/Uganda", + "world/Europe/United Kingdom", + "world/Americas/United States", + "world/Americas/Uruguay", + "world/Americas/Venezuela", + "world/Asia/Vietnam", + "world/Asia/West Bank and Gaza", + "world/Asia/Yemen, Rep.", + "world/Africa/Zambia", + "world/Africa/Zimbabwe", + "world/Africa", + "world/Americas", + "world/Asia", + "world/Europe", + "world/Oceania", + "world" + ], + "labels": [ + "Afghanistan", + "Albania", + "Algeria", + "Angola", + "Argentina", + "Australia", + "Austria", + "Bahrain", + "Bangladesh", + "Belgium", + "Benin", + "Bolivia", + "Bosnia and Herzegovina", + "Botswana", + "Brazil", + "Bulgaria", + "Burkina Faso", + "Burundi", + "Cambodia", + "Cameroon", + "Canada", + "Central African Republic", + "Chad", + "Chile", + "China", + "Colombia", + "Comoros", + "Congo, Dem. Rep.", + "Congo, Rep.", + "Costa Rica", + "Cote d'Ivoire", + "Croatia", + "Cuba", + "Czech Republic", + "Denmark", + "Djibouti", + "Dominican Republic", + "Ecuador", + "Egypt", + "El Salvador", + "Equatorial Guinea", + "Eritrea", + "Ethiopia", + "Finland", + "France", + "Gabon", + "Gambia", + "Germany", + "Ghana", + "Greece", + "Guatemala", + "Guinea", + "Guinea-Bissau", + "Haiti", + "Honduras", + "Hong Kong, China", + "Hungary", + "Iceland", + "India", + "Indonesia", + "Iran", + "Iraq", + "Ireland", + "Israel", + "Italy", + "Jamaica", + "Japan", + "Jordan", + "Kenya", + "Korea, Dem. Rep.", + "Korea, Rep.", + "Kuwait", + "Lebanon", + "Lesotho", + "Liberia", + "Libya", + "Madagascar", + "Malawi", + "Malaysia", + "Mali", + "Mauritania", + "Mauritius", + "Mexico", + "Mongolia", + "Montenegro", + "Morocco", + "Mozambique", + "Myanmar", + "Namibia", + "Nepal", + "Netherlands", + "New Zealand", + "Nicaragua", + "Niger", + "Nigeria", + "Norway", + "Oman", + "Pakistan", + "Panama", + "Paraguay", + "Peru", + "Philippines", + "Poland", + "Portugal", + "Puerto Rico", + "Reunion", + "Romania", + "Rwanda", + "Sao Tome and Principe", + "Saudi Arabia", + "Senegal", + "Serbia", + "Sierra Leone", + "Singapore", + "Slovak Republic", + "Slovenia", + "Somalia", + "South Africa", + "Spain", + "Sri Lanka", + "Sudan", + "Swaziland", + "Sweden", + "Switzerland", + "Syria", + "Taiwan", + "Tanzania", + "Thailand", + "Togo", + "Trinidad and Tobago", + "Tunisia", + "Turkey", + "Uganda", + "United Kingdom", + "United States", + "Uruguay", + "Venezuela", + "Vietnam", + "West Bank and Gaza", + "Yemen, Rep.", + "Zambia", + "Zimbabwe", + "Africa", + "Americas", + "Asia", + "Europe", + "Oceania", + "world" + ], + "marker": { + "coloraxis": "coloraxis", + "colors": [ + 43.828, + 76.423, + 72.301, + 42.731, + 75.32, + 81.235, + 79.829, + 75.635, + 64.062, + 79.441, + 56.728, + 65.554, + 74.852, + 50.728, + 72.39, + 73.005, + 52.295, + 49.58, + 59.723, + 50.43, + 80.65300000000002, + 44.74100000000001, + 50.651, + 78.553, + 72.961, + 72.889, + 65.152, + 46.462, + 55.322, + 78.782, + 48.328, + 75.748, + 78.273, + 76.486, + 78.332, + 54.791, + 72.235, + 74.994, + 71.33800000000002, + 71.878, + 51.57899999999999, + 58.03999999999999, + 52.947, + 79.313, + 80.65699999999998, + 56.73500000000001, + 59.448, + 79.406, + 60.02199999999999, + 79.483, + 70.259, + 56.007, + 46.38800000000001, + 60.916, + 70.19800000000001, + 82.208, + 73.33800000000002, + 81.757, + 64.69800000000001, + 70.65, + 70.964, + 59.545, + 78.885, + 80.745, + 80.546, + 72.567, + 82.603, + 72.535, + 54.11, + 67.297, + 78.623, + 77.58800000000002, + 71.993, + 42.592, + 45.678, + 73.952, + 59.443000000000005, + 48.303, + 74.241, + 54.467, + 64.164, + 72.801, + 76.195, + 66.803, + 74.543, + 71.164, + 42.082, + 62.06900000000001, + 52.90600000000001, + 63.785, + 79.762, + 80.204, + 72.899, + 56.867, + 46.859, + 80.196, + 75.64, + 65.483, + 75.53699999999998, + 71.752, + 71.421, + 71.688, + 75.563, + 78.098, + 78.74600000000002, + 76.442, + 72.476, + 46.242, + 65.528, + 72.777, + 63.062, + 74.002, + 42.56800000000001, + 79.972, + 74.663, + 77.926, + 48.159, + 49.339, + 80.941, + 72.396, + 58.55599999999999, + 39.613, + 80.884, + 81.70100000000002, + 74.143, + 78.4, + 52.517, + 70.616, + 58.42, + 69.819, + 73.923, + 71.777, + 51.542, + 79.425, + 78.242, + 76.384, + 73.747, + 74.249, + 73.422, + 62.698, + 42.38399999999999, + 43.487, + 54.56441057558197, + 75.35668222743027, + 69.44386304205017, + 77.89057081069897, + 81.06215400970112, + 68.91909251904043 + ] + }, + "name": "", + "parents": [ + "world/Asia", + "world/Europe", + "world/Africa", + "world/Africa", + "world/Americas", + "world/Oceania", + "world/Europe", + "world/Asia", + "world/Asia", + "world/Europe", + "world/Africa", + "world/Americas", + "world/Europe", + "world/Africa", + "world/Americas", + "world/Europe", + "world/Africa", + "world/Africa", + "world/Asia", + "world/Africa", + "world/Americas", + "world/Africa", + "world/Africa", + "world/Americas", + "world/Asia", + "world/Americas", + "world/Africa", + "world/Africa", + "world/Africa", + "world/Americas", + "world/Africa", + "world/Europe", + "world/Americas", + "world/Europe", + "world/Europe", + "world/Africa", + "world/Americas", + "world/Americas", + "world/Africa", + "world/Americas", + "world/Africa", + "world/Africa", + "world/Africa", + "world/Europe", + "world/Europe", + "world/Africa", + "world/Africa", + "world/Europe", + "world/Africa", + "world/Europe", + "world/Americas", + "world/Africa", + "world/Africa", + "world/Americas", + "world/Americas", + "world/Asia", + "world/Europe", + "world/Europe", + "world/Asia", + "world/Asia", + "world/Asia", + "world/Asia", + "world/Europe", + "world/Asia", + "world/Europe", + "world/Americas", + "world/Asia", + "world/Asia", + "world/Africa", + "world/Asia", + "world/Asia", + "world/Asia", + "world/Asia", + "world/Africa", + "world/Africa", + "world/Africa", + "world/Africa", + "world/Africa", + "world/Asia", + "world/Africa", + "world/Africa", + "world/Africa", + "world/Americas", + "world/Asia", + "world/Europe", + "world/Africa", + "world/Africa", + "world/Asia", + "world/Africa", + "world/Asia", + "world/Europe", + "world/Oceania", + "world/Americas", + "world/Africa", + "world/Africa", + "world/Europe", + "world/Asia", + "world/Asia", + "world/Americas", + "world/Americas", + "world/Americas", + "world/Asia", + "world/Europe", + "world/Europe", + "world/Americas", + "world/Africa", + "world/Europe", + "world/Africa", + "world/Africa", + "world/Asia", + "world/Africa", + "world/Europe", + "world/Africa", + "world/Asia", + "world/Europe", + "world/Europe", + "world/Africa", + "world/Africa", + "world/Europe", + "world/Asia", + "world/Africa", + "world/Africa", + "world/Europe", + "world/Europe", + "world/Asia", + "world/Asia", + "world/Africa", + "world/Asia", + "world/Africa", + "world/Americas", + "world/Africa", + "world/Europe", + "world/Africa", + "world/Europe", + "world/Americas", + "world/Americas", + "world/Americas", + "world/Asia", + "world/Asia", + "world/Asia", + "world/Africa", + "world/Africa", + "world", + "world", + "world", + "world", + "world", + "" + ], + "type": "treemap", + "values": [ + 31889923, + 3600523, + 33333216, + 12420476, + 40301927, + 20434176, + 8199783, + 708573, + 150448339, + 10392226, + 8078314, + 9119152, + 4552198, + 1639131, + 190010647, + 7322858, + 14326203, + 8390505, + 14131858, + 17696293, + 33390141, + 4369038, + 10238807, + 16284741, + 1318683096, + 44227550, + 710960, + 64606759, + 3800610, + 4133884, + 18013409, + 4493312, + 11416987, + 10228744, + 5468120, + 496374, + 9319622, + 13755680, + 80264543, + 6939688, + 551201, + 4906585, + 76511887, + 5238460, + 61083916, + 1454867, + 1688359, + 82400996, + 22873338, + 10706290, + 12572928, + 9947814, + 1472041, + 8502814, + 7483763, + 6980412, + 9956108, + 301931, + 1110396331, + 223547000, + 69453570, + 27499638, + 4109086, + 6426679, + 58147733, + 2780132, + 127467972, + 6053193, + 35610177, + 23301725, + 49044790, + 2505559, + 3921278, + 2012649, + 3193942, + 6036914, + 19167654, + 13327079, + 24821286, + 12031795, + 3270065, + 1250882, + 108700891, + 2874127, + 684736, + 33757175, + 19951656, + 47761980, + 2055080, + 28901790, + 16570613, + 4115771, + 5675356, + 12894865, + 135031164, + 4627926, + 3204897, + 169270617, + 3242173, + 6667147, + 28674757, + 91077287, + 38518241, + 10642836, + 3942491, + 798094, + 22276056, + 8860588, + 199579, + 27601038, + 12267493, + 10150265, + 6144562, + 4553009, + 5447502, + 2009245, + 9118773, + 43997828, + 40448191, + 20378239, + 42292929, + 1133066, + 9031088, + 7554661, + 19314747, + 23174294, + 38139640, + 65068149, + 5701579, + 1056608, + 10276158, + 71158647, + 29170398, + 60776238, + 301139947, + 3447496, + 26084662, + 85262356, + 4018332, + 22211743, + 11746035, + 12311143, + 929539692, + 898871184, + 3811953827, + 586098529, + 24549947, + 6251013179 + ] + } + ], + "layout": { + "coloraxis": { + "cmid": 68.91909251904043, + "colorbar": { + "title": { + "text": "lifeExp" + } + }, + "colorscale": [ + [ + 0, + "rgb(103,0,31)" + ], + [ + 0.1, + "rgb(178,24,43)" + ], + [ + 0.2, + "rgb(214,96,77)" + ], + [ + 0.3, + "rgb(244,165,130)" + ], + [ + 0.4, + "rgb(253,219,199)" + ], + [ + 0.5, + "rgb(247,247,247)" + ], + [ + 0.6, + "rgb(209,229,240)" + ], + [ + 0.7, + "rgb(146,197,222)" + ], + [ + 0.8, + "rgb(67,147,195)" + ], + [ + 0.9, + "rgb(33,102,172)" + ], + [ + 1, + "rgb(5,48,97)" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "b": 25, + "l": 25, + "r": 25, + "t": 50 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display(HBox([path_1_dropdown, path_2_dropdown, ok_button]), out)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f14d0703", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.10.4 ('.venv': poetry)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + }, + "vscode": { + "interpreter": { + "hash": "292912297167048338b5d1136ec8c661b8a2f1d3fcecd6650d637809a967c218" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/images.png b/images.png new file mode 100644 index 0000000..d6f3aee Binary files /dev/null and b/images.png differ